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ABSTRACT

High speed data communication over channels with limited bandwidth results in
intersymbol interference (ISI) at the receiver. This results in a poor receiver error
performance. An important parameter that determines the receiver error performance is
the minimum Euclidean distance between two received sequences.

Properties of the minimum Euclidean distance for ISI channels are considered in
detail in this thesis. Channel properties for worst distance properties and for maximum
distance are investigated. A condition is established if the zeros of worst distance
channels are to lie on the unit circle. Also a theorem is given that proves the existence of
maximal distance channels for any length of interference.

The Euclidean distance can be increased using a convolutional encoder at the
transmitter to improve the receiver performance. The addition of an encoder results in
several problems such as increased channel signaling rate which produces more ISI
terms. It is seen from the results that by selecting an appropriate encoder matched to the
channel, coding gain can be improved significantly compared to the uncoded situation.
Another important aspect is that encoders with best free Hamming distance, dg, , do
not always give the best overall Euclidean distance. A proposition is made to show that
the maximum distance channels usually give higher coded distances than the rest of the
channels. A search is carried out to find the best encoder of different rates for length
two and three ISI channels. Results indicate that while the encoder with the best
Hamming distance doesn't always give the best coded distance, it generally gives the
highest distance achievable for encoders of given constraint length.

As an alternative to using convolutional coders application of trellis coded modulation
(TCM) 1s also considered for ISI channels. Euclidean distance is found for best encoders
for given modulation schemes where the channel considered has one interference term.
Although TCM is generally used with ISI free channels results show that these can be
applied with the IST present to obtain moderate coding gains. A particular class of
encoders known as quasiregular encoders are considered to simplify the finding of
Euclidean distance. As an alternative to binary convolutional encoders, ring convolutional
encoders working directly with the modulation alphabet are briefly looked at. A maximum
of 2 dB coding gain can be expected over the regular TCM using PAM (pulse amplitude

modulation) for this kind of encoders.
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Chapter 1
Introduction

As technology advances it is essential to exchange information at increasingly higher
rates around the globe to various places. This in terms of digital communication
systems gives rise to the need for transmission of digital data at very high speed. If the
channel used in this case is bandlimited the transmitted pulse overlaps with other
transmission pulses causing intersymbol interference (ISI), with the number of
overlapping pulses known as the memory of the channel or length of ISI. The simplest
communication system to exhibit ISI is a pulse amplitude modulation (PAM)
communication system. The telephone channel can be considered as a real world example
of a bandlimited medium with ISI. The presence of ISI degrades the receiver performance.

Various techniques have been developed for combating ISI. Among these the Viterbi
algorithm is well known. Originally developed by Viterbi for decoding convolutional
codes, it can be applied to ISI channels with a finite memory for maximum likelihood
sequence estimation (MLSE) as shown by Forney [12]. The receiver consists of a
whitened matched filter and a sampler. The detection problem is modelled as a graph
search through a trellis. The Euclidean distance between two channel output sequences
which diverge from a common state in the trellis and later merge into one state, is an
important parameter in MLSE. More important, for the determination of error probability
at high signal to noise ratios, however, is the minimum Euclidean distance which is the
minimum of all distances. Assuming an additive white Gaussian noise (AWGN)
channel, the error probability can be approximated by a Q-function with the ratio of

minimum distance to noise variance as the argument. It is therefore clear that at high




signal to noise ratios the error probability decreases with an increase of the minimum
distance.

A finite memory channel can be represented by the discrete spectral factorization of
its impulse response [12]. The channel coefficients obtained from the factorization
completely describe the ISI characteristics of the channel. In light of the discussion in
the previous paragraph it is worthwhile to investigate the dependence of the minimum
distance on the channel coefficients.

Therefore one of the objectives in the research was to find out which channel
coefficients give rise to the maximum value of the minimum distance and also which
attain the minimum value of the minimum distance for different ISI lengths. This is
considered in detail in chapter 2. In [8,13,19] the problem of worst ISI channels has
been addressed. Channel characteristics which give worst IST channels for different
lengths and location of zeros of the channel spectrum have been studied. Zero locations
are important if equalization techniques are to be used at the receiver. It can be shown
that worst ISI channels are obtained when the distance correlation matrix corresponding
to an error event attains its minimum eigenvalue [19]. In fact the smallest of all minimum
eigenvalues for different distance correlation matrices is the worst minimum distance
for a channel of given ISI length, subject to a channel energy constraint. For these
channels Larsson [19] has shown that if the minimum eigenvalue of the distance
correlation matrix is unique then the roots of the channel spectrum lie on the unit circle.
Thus finding a method to show the uniqueness of that eigenvalue is certainly of interest.

Of equal importance is to maximize the distance to obtain better error performance.
Recently Said [29], among other authors [39,27] considered this problem . He gives a
search procedure by computer to find optimal partial response channels subject to
distance and bandwidth constraints. In this thesis it is shown that for any IST length it

is possible to find maximum distance channels which in effect give the ISI free



performance in terms of minimum distance at high signal to noise ratios.

Another issue related to this is the signaling scheme. To increase the free Euclidean
distance between permitted channel output sequences which results in a better noise
margin than found in the baseband system, coding techniques can be used. Typically a
convolutional encoder is used at the transmitter which has the original data sequence as
its input. As a result of adding an encoder, the memory of the entire system is
generally increased. It was shown in [35] that the total ISI length is less than the sum
of the memories of the encoder and the channel separately. If a good encoder is used a
better noise margin can be obtained at the expense of slightly increasing the ISI length.
There have been several papers [7,16] that address this problem for a class of channels.
The class considered arises from the magnetic recording channel or a variation of it.
Wolf et. al. [38] sought a class of convolutional codes for combatting both noise and
ISI which lead to easily implementable Viterbi decoders.

Another objective of the research was therefore to extend these results or to find
good codes for the general ISI channel. Since the channel coefficients are real, for a
given ISI length there are an infinite number of combinations of channel coefficients.
Therefore some constraints, to be discussed in chapter 3, are necessary so that the
search for good codes can be conducted with reasonable complexity. Studies of
convolutional codes for continuous phase modulation (CPM) schemes {2, 15, 28]
provide some clues in this regard. A related issue is to find which convolutional
encoder, whether it is the one with the best free distance , gives the best distance when
combined with an IST channel of given memory length. In this respect lower and upper
bounds for the overall minimum distance are given to estimate the performance given an
encoded input. Once the encoder is placed signaling may be done at a higher rate which
maintains the original data rate or keeps at the same signaling rate but reduces the

original data rate. If the output signaling rate is increased then number of ISI terms




should change. Bergmans [4] studied this problem for the channels whose forms are
variations of the magnetic recording channel. In this research several ISI channels are
compared in terms of the coding gain with different signaling rates to discuss the
relative merits of each method.

A brief outline of the thesis is as follows. Properties of the minimum Euclidean
distance for ISI channels are considered in detail in chapter 2. Channels which give
worst distance properties and those with maximum distance properties are investigated.
Then in chapter 3, the use of convolutional encoded inputs for ISI is discussed. A
search is carried out to find the best encoder of different rates for several ISI channels.
As a natural extension to the work in chapter 3 in binary schemes, application of trellis
coded modulation (TCM) schemes to IST is examined next to get a more complete
understanding of how ISI channels behave under different coding schemes with different
alphabets. This is given in chapter 4, which essentially is a study of TCM with ISI
channels. This serves as a comparison to the convolutional codes studied in chapter 3.
Several authors [9,10,14,18,33,37] have done some work in this area. They compare
different modulation methods according to minimum distance. Another motivation to
use TCM is the fact that both TCM and ISI use the Euclidean space for distance
calculations whereas with convolutional codes we have to work in GF(2). Because of
the involvement of two different fields, the complexity is higher when a convolutional
encoder is combined with an ISI channel. A particular class of encoders known as
quasiregular encoders are considered to simplify the finding of Euclidean distance. As
an alternative to binary convolutional encoders, ring convolutional encoders working
directly with the modulation alphabet are briefly considered [3,23,41]. Chapter 5

presents conclusions and suggestions for further research.




Chapter 2
Distance Considerations

Distance properties of bandlimited channels are considered in this chapter. A binary
PAM system is typically assumed and throughout only channels of finite intersymbol
interference length (ISI) are considered. First the necessary background is given along
with the details regarding the free Euclidean distance measure denoted by dg,.. Then
some properties of the worst ISI channels are presented.

Worst case channels are those that for a given IST length have the smallest d,.,. In
particular it is known that the roots of the transfer function polynomial for these
channels lie on the unit circle provided that the minimum eigenvalue of the error
correlation matrix is unique [19]. Methods to show this uniqueness are detailed here.

The converse to the worst case channel is{are) the channel(s) that has(have) the
maximum dp,... Here it is shown that a2 maximum distance channel exists for any finite
length of IST and a set of sufficient conditions for the channel response coefficients are
presented. The chapter concludes with a brief discussion of equalization to obtain a

maximum distance channels for a given channel response.

2.1 Background:

A block diagram of the binary PAM communication system considered in the
research is shown in Figure 2.1. The channel impulse response is finite of duration LT.
The length of interference is then

v=L - 1 symbols. 2.1)

Forney [12] showed that the input can be estimated using MLSE with the receiver as
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shown in Figure 2.2. The output of the matched filter sampled at t=kT is

I = j r(Oh(t - kT) dt (2.2)
k+v fo° b

= 3 ajh(t -iDh(t - kT) dt + f n(Oh(t -kT)ydt (2.3)
j:k-V -~ CO - 00
k+v

= E ajhj_k + nlk (243.)
j=k-v

where hj-k = f h(t - jT)h(t - kKT) dt (2.4b)

Using the D transform where D=z, (2.4) can be written as

1(D) = a(D)h(D) + n'(D) (2.5)

R(D) is the discrete autocorrelation function of the channel. Using spectral factorization

h(D) = F(D)F(D™") (2.6)
where F(D) = i £.D! (2.7)
i=0

and fj's are the channel coefficients of the discrete impulse response.

Therefore
1(D) = a(DYFD)ED"") + n(D)F(D) 2.8)
Dividing by F(D")
2D) =) _ o DyED) + n(D) 2.9)
F(Dh



The noise n(D) is white. The discrete time equivalent system for the communication

system is given in Figure 2.3. As shown in Figure 2.2

is called the whitening

F(D™
filter. The cascade with the matched filter is usually referred to as the whitened matched
filter.
v
Hence 7y = Y, fag;+n =y +ny (2.10)
i=0
v
Yk = _ZO fiay (2.11)
1=

As seen from (2.11), y, can be represented by a trellis of memory v where for

binary inputs the number of trellis states is 2¥. An example of a trellis is shown in

Figure 2.4.
Output sequence: VA Zy Z3 it Z
-2 -1 2 =-1
-1-1
-11
1-1
1 1 i EEE WeN EEN NN BN O ma E e W e e e
T=0 T=1 T=2 e T=k M-
Sampling
time

Figure 2.4 : Channel trellis for v=2

The Viterbi algorithm searches the channel trellis and determines the most likely

transmitted sequence {a, } based on the received sequence {z, }. The parameter that is




ifnportant in the receiver performance is the Euclidean distance between any two output
sequences, particularly those that diverge from a common trellis state and later merge at
a common state. The Euclidean distance between any two sequences in the trellis which
diverge from a common state at time step j=k and merge to a common state at time step

j=k +¢€- 1 can be expressed in the form

k+{-1
= % (z-7;) (2.12)
=k
k+¢-1 v v 2
= % (X figi- X fa)y) (2.13)
=k =0 i=0
k+-11 2
= 2 {Z fi(aj—i'a'j-i)} (2.14)
=k Li=0
k+l-17 2
= X {2 fiej-i} (2.15)
j=k Li=0

where g; € {0, 2, -2} is called an error or difference symbol and £ is the length of the
error event.

The squared free Euclidean distance is defined as

P free =min ¢ (d?) (2.16)

where € is the set of all error sequences. In essence dg, is the minimum Euclidean

10




distance between two received sequences. At high signal to noise ratios this distance

dominates the error probability of the communication system which can be approximated

by
Pr(error) — Q(di"'e-) (2.17)
(4}
[ore} 2
1 = dA (2.18)
where Qx)=— e 2 .
2n .

2. . L - Lo Ofee
and ¢ is the variance of white noise. Variation of the error probability with ~free i
c

shown in Figure 2.5.

Thus dy,.. is an important parameter closely related to the error performance of a
bandlimited channel. The next section considers the relationship of dg,,, to the channel
characteristics, h(t), in terms of £ = (fy,f,.f,,...,f,) the channel coefficient vector, i.e.,

the discrete impulse response of the discrete equivalent system.

2.1.1 Channel distance function:

The material of this section is primarily from [26]. The distance from time j=k to
j=k+¢-1 in the trellis of the discrete equivalent system, i.e. a segment of length € is,
from (2.15)

k+l-17 2
d* = z [2 figj-i:! (2.19)
=k L=

which can be expressed in matrix form as

=fTAT (2.20)

11
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where

"fO‘ |30 Bl .
f] By Bo By

f=1. A=| By By
_fv_ B Bv

The entries of matrix A are given by

k+¢-1-m

Bn= X  &&m

i=

By
Bv—l
Bv-2

Bo

(2.21)

(2.22)

Matrix A is a correlation matrix and hence positive definite. Therefore all the eigenvalues

of A are positive and hence the quadratic form given in (2.20) can be minimized by

considering the eigenvalues of

Af =puf, u>0

From the above it follows that
2 . 2
(dﬁ-ee)min =nmung ( d )
= ( fTuf )min

= [“'(fo)] min

13

(2.23)

(2.24)

(2.25)

(2.26)



But £Tf = ] h2(Odt=E is fixed. (2.27)

OO

Therefore

(Afree)min = Et min (2.28)

In this case f is the eigenvector of A corresponding to the minimum eigenvalue min-
Denote it by £ ;. £ iy defines the channel that exhibits the worst IST characteristics
for the given length. Also it is important to note that the matrix A depends on the error
event € which implies that (dge)min depends on € as well. Further without any loss of
generality an error event can start at time 0, i.e., k= 0.
An upperbound on d%ee can be established readily by considering the shortest error
event where

k=0and€=L(L=v+1);80=2,ej=0forj>0
Using (2.19)

& =4+ 1] ot £2)= 4178 (2.29)

In general for M-ary modulation
&2 <leml £7f foranyL (2.30)

where €,;, is the error symbol with the least magnitude.

Further it is easily shown that for L=2

oo =4 T =4(f2+ ) (2.31)

14



Thus there is no loss in signal to noise ratio (SNR) in MLSE of the information

symbols when the channel dispersion has a length of 2.

2.2 Worst ISI channels;

In the previous section some properties of dy., have been discussed. Since dg, is a
measure of the error performance of the communication system it is of interest to
determine the worst possible performance which can be expected over a channel with a
fixed energy, finite duration pulse response. Worst case chanrnels for carrier modulated
systems and complex symbol alphabets were studied by Larsson [19]. He showed that
the zeros of the worst ISI channels lie on the unit circle provided that the minimum
eigenvalue of the distance correlation matrix A is unique. The main objective of this
section is to discuss the methods to show the uniqueness of that eigenvalue. First some
examples of ISI channels for which the minimum Euclidean distance is the smallest
possible, are given along with an investigation of their characteristics.

Consider the L=3 channel.

F(D) = fy + f,D + £,D? (2.32)

where the channel coefficients are the components of the eigenvector corresponding to

the minimum eigenvalue of A. The error event of the form

ED)=1+D (2.33)

is the error event that results in the smallest dg.., for the above channel. All other error

events give larger minimum eigenvalues. It results in a matrix

15



210
A= [121} (2.34)

012

and the eigenvector corresponding to the minimum eigenvalue is

T 1 1
{1

b | —

2.35
5 } (2.35)

fir=1 (2.36)

This is the worst channel for L=3. Extension for other lengths is straightforward by
eliminating the error events which give larger eigenvalues. An algorithm to find the
worst channel is given in [19] and some examples are given in Table 2.1. It is seen that
the zeros of the channel spectra lie on the unit circle (shown for the above examples in
Figure 2.6). The following lemma establishes a condition for the uniqueness of the

minimum eigenvalue of A.

Lemma 2.2.1:

The minimum eigenvalue of the correlation matrix corresponding to the error event
of the worst ISI channel is unique if the corresponding worst distance strictly decreases
with the length of interference.

Proof:

Consider a channel of length L with a correlation matrix that has multiple eigenvalues.
From matrix theory [36] the eigenvalues of the principal submatrix of A (obtained by
excluding the last row and the last column of A ) separate the eigenvalues of A. This

relationship can be given as follows assuming A to be a matrix of dimension nxn.
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Channel Length | Performance Minimum distance channel
L Loss dB
3 2.3 0.50, 0.71, 0.50
4 4.2 0.38, 0.60, 0.60, 0.38
5 57 0.29, 0.50, 0.58, 0.50, 0.29
6 7.0 0.23,042,0.52,0.52,0.42,0.23

Table 2.1: Maximum performance loss and channel characteristics

A

>eomnO
5,

S

Figure 2.6: Zero locations which result in the Euclidean distance for

the channels with length L.=34,...7




A’i+] < ?\'is < ?Li 5 i=n-1,n~2,-~,2a1 (238)

where A, A,,...... A, are eigenvalues of A and A, ,Aq,...... A(n-1)s are eigenvalues of

its principal submatrix A ;. For multiple eigenvalues of A when i=n-1 and i=n,

?\zn < ;\‘(n-l)s < 7\,“_1 where 7\4“ = 7\’1’1-] (2.39)

Therefore Aanns = Ay (2.40)

i.e., the minimum eigenvalue of the principal submatrix is equal to the minimum
eigenvalue of A.

Now consider a channel of length L-1 and an error event of length L identical to the one
that defined A. Its correlation matrix is A . Hence the minimum eigenvalue in L-1 is
the same as that obtained for L which means that the worst distances for L-1 and L are
equal. This is a contradiction to the condition given in the lemma. Thus if the condition
holds then the minimum eigenvalue of A corresponding to the worst channel is unique.

QED.

From the above proof since A,, < A, 1, it follows that

(dworst)L = (dworst)L-l (2-4 1)

To see the effect on distance when going from a length of interference of L-1 to L

consider an error correlation matrix A; ; in L-1. Then

18




2
di =f A (2.42)

Assume for example that L.-1=3 and that

C1C2C3
T
Ajg=|ccrcy| , f=[fof; f] (2.43)
C3CyC
where Aj is the correlation matrix corresponding to the error event that gives the

minimun distance.

Since the channel energy is fixed
2, 2
E= f% + 1 + . (2.44)
Now consider an incremental change in coefficients so that the channel is in L=4.

Thus fu=|fp+Sfy [,+8f, f,+3f, Sf;) (2.45)
For fixed energy E= fo4. (2.46)

Approximating the 2" order terms to zero the following relationship can be obtained.

foﬁfo + fISfI + f26f2 = 0. (2.47)

The error correlation matrix in L=4 is

Ci C2 C3 C4
CyC1CyCy

A,y= ; (2.48)
C3CeCi Gy

Cyq C3 Cr ¢y
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2
di=f1Af, (2.49)
Comparing with dg this can be written as

di:d§+ 28f0(01f0+02f1 +03f2) + 28f1(C2fo+C]f1+C2f2) + 25f2(C3f0+C2f1+C1f2)

+ 28f3(04f0+C3f1 +C2f2). (250)

Now consider A corresponding to the error event that results in the worst distance

for L=3 with f; as the corresponding cigenvector of A ;.

i.e., Cif0+C2f1+C3f2 = lfo,szo'l‘C!fi'*‘szz = A;fl, C3f0+C2f| +le2 = }sz. (251)
Hence di=d§+ 27\.(f05f0 + f] 8f1 + f25f2) + 26f3(C4f0+C3f1+C2f2). (252)
Using (247)  dy=dy+ 28f3(cyfyresfyteyhy). (2.53)

Therefore if 6f, is appropriately selected then di can be made smaller than dg.

If C4f0+C3f1 +sz2 =0 then

2_ 42
dj=d3. (2.54)

This implies that A, the matrix in L has multiple eigenvalues according to Lemma
2.2.1. Consider the eigenvectors of the matrix A, and consider f; = [fo f; f, O] Then

AL, =08, (2.55)
will hold if

le0+02f1+03f2 = Kfo

20




szO+C1f1 +C2f2 = lfi (2.56)
C3fo+C2f1+C1f2 = lfz

C4f0+C3f] +C2f2 = K X 0O

ie., if cgfptesfy+e,f; = O then £4 is an eigenvector of A4. By the symmetry of A, it
can easily be shown that f:{bz [O f, f fO], ie., fz taken backwards, is also an
eigenvector with the same eigenvalue. The procedure given above can be applied for
any length of ISI in a similar manner. Thus the result of the calculations given above

can be generalized in the following lemma.

Lemma 2.2.2: Whenever the error correlation matrix in L has multiple minimum

eigenvalues the corresponding eigenvectors can be expressed as a combination of f;_;
with a zero added, and f; ;y, where f;_; is the eigenvector corresponding to the
minimum eigenvalue in L-1, with respect to the same error event. Note further that in

this case minimum eigenvalues in L. and L-1 are the same.

The roots of worst ISI channels lie on the unit circle if the corresponding worst
distance decreases with the length of ISI as given in Lemma 2.2.1. The worst distance
is obtained by the smallest eigenvalue of all the distance correlation matrices possible
for a certain length of inteference(L). If for any reason this eigenvalue is multiple it
implies that the worst distance for the length L-1 is the same as well. This is given in
Lemma 2.2.2. Also in this case the zeros of the channel may not necessarily lie on the

unit circle.
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The opposite to the worst distance channel is the maximum distance channel where
the minimum squared Euclidean distance is equal to the channel energy. In this case

there is asymptotically no loss in error performance due to ISI. This is considered next.

2.3 Maximization of Free Euclidean Distance:

Maximization of the free distance can be viewed as an effort to reduce the loss of
performance or in other words a loss in the signal to noise ratio, due to intersymbol
interference. Here a method to maximize dg,., for general bandlimited channels but
having finite impulse response with an energy constraint is considered. For the
maximization of d, the set of possible free distance paths is important. This can be

obtained using signal flow graph theory [35] which is illustrated by an example.

2.3.1 Transfer function approach

To find the shortest path from the all zero state back to the all zero state one needs
an error state diagram as shown in Figure 2.7 for a channel with L = 3. Considering a

“unit impulse” as an input the following state equations can be written.

T, =x,+x,T, (2.57)
T,=x,T, + x,T, + x,T, (2.58)
T, =x,T, + x,T, + x,T, (2.59)
Ts =x,T, + x,,T; +x,,T, (2.60)
T(x) = x,,T, (2.61)
where the “gain” of an edge is X, = Ddi2 and d? represents the distance between

corresponding error states in the error state diagram as shown. di2 is a quadratic f

22
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Figure 2.7: Reduced Error State Diagram for L=3
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unction of the channel coefficients and is the weight of x..

To find the free distance express T(x) in the form

Tx) = 8% (2.62)
1 -¢(x)

where g(x) and ¢(x) are functions of x; obtained by solving the equations given above.

Expand T(x) in a power series

2
= g(x)[l +O(xX)+ ¢ (xX) + ....... ] (2.63)
which can be written as a summation of products of x; where X, = Ddiz. By comparing
each term in the sum the ones with the lowest weight terms contributing to T(x) can be

found. The minimum of these gives the free distance.

For the example, these terms are
K1 XeXi2 » X1 XX 10X 12 0 X X3 XgXgoXyy o XX X Xpp 5 X XXX Xy (2.64)

with distances of

=4+ +8) (2.65)
@3 = {2 +[fg + 2 +[fy + 52 + £) (2.66)
@3 = 4@ +[fo- 1 + [Ty - 1 - Fo +[F) + P+ £2) 2.67)
a3 = 482+t - P +[f; - £ + £) (2.68)
@2 = 4[R2+ [fo+ R +[f) + £ - o2 +[Fy - B2 ) (2.69)
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2 . 2 2 2 2 2
Qe = MiN {dl -dy dy, dy . ds] (2.70)

Other ISI lengths can be handled in the same way. The number of equations from
the error state diagram grows exponentially with the channel memory. In addition the
lowest weight terms from the expansion of T(x) have to be considered as the set of
possible free distance paths. Algebraically the problem rapidly becomes very
computationally intensive and therefore symbolic processing has to be used to find

dzﬁ.ee for long interference lengths.

2.3.2 Maximum distance channels:

The main result of this section is that for any L, the coefficients of the channel
(fo, fy, -~ -fy..;) can always be chosen to attain a dp,, equal to the non ISI case. Before
presenting this the case L=3 is described using the set of paths found above. From the
previous section the free distance is the minimum of [d% . dg , dg , di s dg} The
maximum value of the d21°ree is d% and is achieved if

2

2 .2 2 .2
dy,dj,dy,ds > d] (2.71)

By comparing each distance with d% the following inequalities are found for the channel

coefficients, f;.

Ech(fy+ty)<E (2.72)
2 2
fofy SE=f; + £ + 12 (2.73)
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The condition given in (2.73) is always satisfied as can be seen by noticing that

fo? +f,2 + £,2 = E 2 ff,, (2.74)
where only the case fyf, = 0 needs to be considered, since

(fo- 52+ 1,2 >0 (2.75)
ie., fol + ;% + £,2 > 26of, 2 fif, (2.76)

Thus if the condition in (2.72) is satisfied then the channel (L.=3) is a maximum

distance channel. Fix one variable by using the energy constraint
fo? + £, =E - £,2 (2.77)

where f5 is the variable that is fixed. The above describes a circle of radius V E - f22.
Thus if the conditions given by (2.72) are satisficd by some segments of the circle,
those channel coefficient combinations will have maximum distance. The solution region
is sketched approximately in Figure 2.8. From the figure it is clear that the solution is
not unique.

These inequalities are derived using the set of possible free distance paths. Therefore
once this set of paths is found a series of inequalities can be found to obtain the
maximuim d2ﬁ'ee channels. In [1] the above set is found for binary, three level and four
level signals for channel memories up to four. It is clear that this set is finite because
only those paths in the error state diagram which start from all zero state and end in that
state without touching the same state twice in between, have the chance of becoming
candidates for the free distance path. As seen in (2.70) only a subset of these paths

would actually be in the potential free distance path set. Therefore the channel coefficient
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E
A Hllg+f) =7

1

B fl(f0+f2)="2*

Figure 2.8 : Maximum Distance Channel Coefficient Region for L=3
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space is partitioned into regions where in a particular region only one path always gives
the free distance. This fact was also shown in [32] where the optimum transmitter filter
for IST channels was found using the eigenvalue technique.

For L=3 this set of paths are
S = { (2’000)’(232:():0)1(2:'25030) } (278)
In general the following theorem can be stated for any finite ISI channel.

Theorem:
For any finite IS length there exists a maximum distance channel. Specifically if
the coefficients of the channel have the relationships given below then that channel is a

maximum distance channel for a binary signaling scheme,

Vi, fi20&f122f,,+ 260 + 4 26, 1=0,1,...,.1-2 (2.79)
Proof:

The distance of an error event of length £is given by

e']- L-1 2
?= 3 {z fken_k] e>L (2.80)
H=O k=0

where €; € {0,2,-2} and since there is a merge at n=¢ - 1

81782 ==y (L.1)=0 (2.81)

Also gy # 0 to start the error event,
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To use an inductive proof first consider € = L which establishes the starting conditions.

)e=L.
A merge at 8=1. means that
EL-i = EL-Z == EL-(L-l) =0 (282)
2 2 2 2 2Lt o,
and therefore d° = (fogo) + (f]go) + ...+ (fL_ieo) =gy Z fk (283)
k=0

Thus all error events of length L have a distance equal to the maximum free distance.

ii) Assume now that this is true for error events of length ¢=m > L

,  mel[Lel 2 oL,
dm = Z 2 fken_k > 80 z fk (284)
=0 [ k=0 k=0

j=m j=m+1

8m-L+I #0

Figure 2.9 j=m + 1 as an Extension of j=m

Consider €= m+1. If it can be shown that (2.84) implies
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o[ L1
&, zso{z fﬁ} (2.85)

then the proof is complete.
The error event of € = m+1 can be considered as an extension of the error event € = m
as shown in Figure 2.9.

Now the distance of this error event is

5 m [L-1 2
dog =2 | 2 fidy (2.86)
n=0{ k=0
where & =g i=0,1,....m-L ; 8,1, #0 (2.87)

and the merge conditions mean that

L =0, i=1,.....L-1 (2.88)
rpei=0,i=2,..., L (2.89)
s mL[Ll 2 m-1 [ L-1 2
d,= fighx| + T | 2 fgnx (2.90)
n=0 | k=0 n=m-L+1 | k=0
5 m-L [ L-1 2 m1 L 2 5
Aoy = 2 | 2 G&px| + 2 | 2 f8ux| + FoiSpmrsn) (2.91)
n=0[ k=0 n=m-L+1 [ k=0
From the above if
m-1 L-1 2 L 2
Y Y fi8uk| - | S figgnl 20 (2.92)
n=m-L+1 { | k=0 k=0

then the desired result is obtained. The left hand side is a series of L-1 differences.

Name these differences A; , A, , ..., Ap_;. Consider the last difference, i.c. A . ; (When
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n=m-1).

Using equations (2.88) & (2.89) for zero error symbols it can be seen that

2 2
Ap = E20m ey + L 1Emr) - (L 8mr) (2.93)

2 o2
=1 28mre1 + 2fLof1 1 0m L 41EmL (2.94)

if f; > 0 then the maximum possible negative value for A; _;, which gives the worst case

in contributing to possible failure of (2.92), is

A= 4(fi-2' 27 of1 1) (2.95)
However if fi0221 (2.96)

then A; | in fact contributes a positive amount to left hand side of (2.92).

Now consider the difference when n=m-2. Proceeding as above,
2 2
Ay o= (a8 *+ fLoBmr + faEnr ) - (Lofmr Hi i€y ) (2.97)
Cancelling common terms the maximum possible negative value for A, , is
2
AL-2 = fL-3 - 2fL-3fL-2 - 2fL-3fL~l (298)
Again if

fL32 26 5 +2f . (2.99)

then Ay _, contributes a positive amount to left hand side of (2.92).

Continuing in the same manner for other n a similar set of required inequalities are
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obtained to ensure (2.92). In general
f;2 26, + 26, + ...+ 2f_; , i=0,1,....L-2 (2.100)

Therefore by induction if the above relationships are satisfied by the channel coefficients

it follows that

dZZeg[Lg ff{} , VL. (2.101)
¢ =0

and hence the channel is a maximum distance channel.

QED.

The main point behind this proof is to consider the error event of length m+1 as an
extension of an event of length m. All the possibilities that could arise are given in
Figure 2.10. However, the strongest conditions for the channel coefficients are always
obtained by the case considered in the proof. The theorem only gives an existence proof
and the conditions on the channel coefficients are only sufficient. There could always
be maximum distance channels whose coefficients violate the given conditions. The
conditions can be easily extended to M-ary PAM. Extension to complex signal alphabets
(QAM) is possible with necessary medifications. For a discussion of these see Appendix

A.

2.4 Obtaining the maximum distance by modifying the overall response:

There are clearly two methods of achieving this. A prefilter can be used at the

transmitter so that the combination of that filter and the channel response would give a

maximum distance channel. The other method is to use an equalizer at the receiver for
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6m—L+1 #0
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only one zero

§=0 jemLel -

J=m

Figure 2.10 All possibilities of extension
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the same purpose. When a prefilter is employed at the transmitter the channel response
H(f) and discrete response F, (Z) for the maximum distance case are assumed known.
From F, (Z) the analog response H,,(f) can be found. Thus the response of the prefilter

Hy(f) is given by;

Hy(f) H() = H,,(f) (2.102)
H
H,(f) = E‘“(%) (2.103)

If H(f) is stable and does not have spectral nulls then Hp(f), the prefilter, can be
realized. This results in an overall response of H, (f) which will achieve maximum
distance. Since this is done at the transmitter there is no noise enhancement.

The other option is to use a equalizer at the receiver end for the same purpose as

shown in Fig. 2.11. If the known maximum distance response is F,(Z) then

Fn(Z) = C(Z) F(Z) (2.104)
C(7Z) = Fm(Z) 2.105
@)= Fors (2.105)

The equalizer output signal to noise ratio is
L)
_ O [Fnf

2
" Icf

SNR (2.106)
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—  F2) cz —>

Channel Equalizer

Figure 2.11

As a more sophisticated method, the equalizer for the mean square error (MSE)
criterion is described below following the procedure given in [26]. In the MSE criterion
the tap coefficients {c;} of the equalizer are adjusted to minimize the mean-square value

of the error

& = [Yk]max - [gf;(]max (2.107)

[Yk]max is the channel output without noise for the maximum distance channel and

[ﬂ]max is the estimated output by the equalizer. These can be expressed as

L-1
[Vidmax = 2 9mxem (2.108)

m=0

where Q(Z) is the known maximum distance response.

and [Fimax= % mYiom (2.109)
M=- oo
The performance index for the MSE criterion, denoted by I is defined as

T=Elgf (2.110)
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A set of linear equations can be obtained by invoking the orthogonality principle in the
mean-square estimation. That s, the coefficients {c;} are selected to make the error g,
orthogonal to {y;_m} for -co < m < oo, Thus

E(€Y).) =0 oo <m<oo (2.111)
substitution for g, and y;_m yields

E([Yk]main(-m) = E([Yk}maxyl;-m) (2.112)

By simplifying the expectation from MSE it can be shown that

F(Zho@) = C(Z)[F(Z)F*(Z*l) +o (2.113)

% rp 1
ie. c@z)=—1r (Z )_?(Z) . 2.114)
[FoF @) + o

with the noise whitening filter

cy=— 2D @.115)
[F(Z)F"(Z1 )+G ]

The difference in this case is Q(Z) which for zero ISI would be 1.
In the above calculations Q(Z) (maximum distance response) is not unique. There
are many maximum distance channels for a given length of interference as shown in

section 2.4. Hence one can select Q(Z) subject to the condition that the signal to noise
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ratio (SNR) be maximized at the output of the channel. Thus the equalization can be
done subject to two constraints; one is the minimizing the error in approximating the
maximum distance response, the other is maximizing the SNR. The brute force method
of doing this is to go through all the maximum distance channels and select the one
which gives the highest SNR. It is also important to realize the fact that if the
approximation is close enough one would still end up with a maximum distance channel
as they span over a range of coefficients. The main concern is therefore SNR as what is
gained by the maximum distance channel can be diminished by the enhancement of

noise.
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Chapter 3
Convolutional Codes for ISI

The previous chapter considered distance properties of ISI channels. In particular it
was shown that any finite ISI channel can achieve the same error performance as the
non IST channel though depending on the specific channel the transmitter power may
increase. This is in the sense that the minimum Euclidean distance, d,;,, between two
channel output signals is the same. To further increase d ;,, block, convolutional or
trellis, coding could be used. Though all three techniques have a trellis representation,
the trellis structure of convolutional or trellis codes, being regular, is more closely
related to that of IST channels. Thus convolutional codes for ISI channels are considered
in this chapter while trellis coding is discussed in the next chapter.

The literature on convolutional coding for ISI channels is sparse. Historically,
perhaps Viterbi [35] first discussed the application of convolutional codes to ISI
channels. He was primarily concerned with the decoder/demodulator structure and did
not consider the interaction between code and channel. Wolf and Ungerboeck [37],
motivated by the magnetic recording channel derived several lemmas which show that if
convolutional codes with a good dy., (Hamming) are used then the resulting minimum
Euclidean distance is increased. They considered specifically a (1 - D) channel as
shown in Figure 3.1 and used a configuration of a coder followed by a channel
precoder (Figure 3.2). Lee [7] considered a slightly more general channel of the form
1-DNY (N = 1,2,3). An algebraic procedure is given to obtain codes with desirable
properties such as run length limited codewords.

In this chapter convolutional codes for ISI channels with real coefficients are
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1 —» +1 Decoder

Figure 3.1(a). ( 1 - D ) Baseline Communication System

.........

_O____O

Figure 3.1(b). Trellis Diagram
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{a;}

Paralle] - serial converter

1
2V
{b;}
State Y {b;}
Convolutional //
Encoder k+1
k+1 D
Precoder
1 v+1
: (z) | 2 (3
0— - £\ State Viterbi - |
’ 7 Decoder
15 +1 kil K
k+1

Noisy (1 - D) Channel

Serial - parallel converter

Figure 3.2. Convolutional codes with a precoded (1 - D) channel
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investigated. The criterion is to optimize the encoder/channel combination to maximize
dins 1€, the code is “matched” to the bandlimited channel. To do this d,;, must be
determined for the coder/channel cascade. Thus the methods of Chapter 2 are extended
and presented in the next section. Following this there is a discussion of the general
propetties of convolutionally coded ISI channels. Of these, the changes such as signaling
rate and change in ISI that should be taken into account when an encoder is placed at
the transmitter, are considered first. If the encoder is catastrophic then the coder/channel
cascade is also catastrophic. Proof of this is given next followed by bounds on the
coded distance of the ISI channel. The chapter concludes by developing search procedures
to find the best combination of convolutional encoder and ISI channel. These are

illustrated by examples.

3.1 Error _state diagram:

A crucial step in determining the minimum distance for the combined system of a
convolutional encoder followed by a finite real IST channel (coded ISI system) is the
construction of an error state diagram. Once an error state diagram is constructed, well
known graph search techniques such as Dijkstra's algorithm [17,19] can be readily
applied to find d ;. These methods are essentially those of the uncoded case except for
an increase in computational complexity.

To illustrate the construction of an error state diagram consider the system of Figure
3.3. Here PAM with (0,1) signaling instead of (-1,1) is used. For the purpose of
distance calculations the difference would be a factor of four. The Euclidean distance
between two sequences (i.e. k , k') of length 2¢ in the channel trellis ( ¢ is the length

of the input bit sequence u; and thus 2¢ is the channel input sequence length) is given

by
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TRl D | D —> h(t)*w(-t) _M

\—-> Channel & Receiver
N==()-

Parallel to serial
conversion

Convolutional Encoder

* Convolutional code: R = 1/2 ; Generators g(l)(D) =1+D+D? , g(z)(D) =D+D?

* ISI Channel: Impulse response length L.=3 ; Coefficients ( fo.f;.5)

Figure 3.3. Communication system with convolutionally encoded input
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[
=3 [yP0-yP]” +[ym -yQu)’ 3.1)
m=1
where
Yy = fo[ () @ - 100 @ uyy o0 + £ [ugy - 2() @ 1y _ 5K

. [ty 100 @ 1y 500 ® uyy 3] (3.2)

Y200 = fo. [ugn - 100 © upy o)) + 1. [0 @ - 1) @ iy 5(K)]
+ . [un - 20 ® upy - 3(K)] (3.3)

@ represents modulo 2 addition and ‘" ordinary real multiplication ;
yg)(k) is the channel output corresponding to first output of the encoder ;
yg‘)(k) the channel output corresponding to second output of the encoder ;

each m considers two ISI trellis steps due to the rate of the code (see Figure 3.4).

Thus to calculate d2, [yg)(k) - yg)(k')] and [yg)(k) - yg) (k')} have to be found. If

an error state diagram is to be drawn then these differences must be found using error

symbols. In addition it is necessary to find the memory of the coded ISI system. From

equations (3.2) and (3.3) it can be seen that the memory is 3, (since the present output

depends on three previous inputs, Uy, _ , Uy, -9, Uy, _3). Calculation of the memory
for a given system is detailed in the next section. For a binary alphabet the error

symbols are 0, 1, -1. Thus there are 33= 27 error states. With the modulo operations

present in equations (3.2) and (3.3) values for u,(k) and up, (k') should be found given

the values of the error symbols. Consider the case where the error symbol is zero.
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Figure 3.4. Channel trellis for the coded input
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€m = Upk) - vy (k) > upk) =1, u,(kY=1oru,k)=0,u,(k)=0 (3.4)

For a given error state a set of state pairs for the two sequences are possible. For

example
£=(0,0,0)=u=(0,0,0),u=(0,0,0)or u=(0,0,1),u=(0,0,1)

etc. Thus for a given error state there can be many state pairs.

A portion of the error state diagram is shown in Figure 3.5 with the state pairs.
Distances for each and every set of encoder state pairs need to be calculated in order to
obtain the minimum distance. Extensions for the other constraint lengths of the
convolutional encoders and ISI can be carried out in a similar manner. Another way to
find the distance is to directly use a state pair diagram. Here a state is given by (u, u).

All possibilities for u and u have to be considered to construct this state pair diagram.

3.1.1 Memory of the coded ISI system:

An important thing to note is that the combined memory of the coder/channel
system is less than the sum of the memories of the ISI channel and the convolutional
encoder [35]. In general the n output symbols from the coder that are input to the
channel have a memory given by the constraint length (K) of the coder. Since the ISI
channel also has a memory of v (= L - 1) there are at most [ﬂ ([.]1is the ceiling

function.) groups of n symbols in memory length v. Hence in terms of the encoder
v

inputs, if the present time at the encoder is k, then the k - ( -

+ K ) previous input is

the last to affect the present channel output. Therefore the total combined memory is
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State pairs

1,1,1 0,1,0

1,0,1 0,0,0

1,1,0 000
,1,1 00,1

u= um—l(k) ’um-2(k) » U3 (k)

1,1,0 0,1,1
1,0,0 0,0,1
N
N

1,0,0 0,0,0
1,0,1 0,0,1
1,1,0 0,1,0
11,1 0,1,1

Figure 3.5. Portion of the error state diagram showing state pair

needed for distance calculation
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Encoder input intervals k ‘[ —:]
k-1

k3 k-2 k
J 1 | olpl} o/p2
L=3, v=2 = - > -~
K=2, n=2

[_j symbols affecting channel

Total memory = K + output

=3

Figure 3.6

E— + K. This is illustrated in Figure 3.6 for the example.

3.2 Change in IST due to coding:

The addition of an encoder at the transmitter poses a problem for the data
transmission due to the increased rate. Either the source rate, or the channel rate, has to
be kept the same. If the source rate is kept constant then the channel rate has to be
increased and hence the ISI changes,

Consider the example of a rate 1/n convolutional encoder used with an ISI channel.
For every information(source) symbol the encoder produces n channel symbols.
Therefore either the channel rate is increased n times if the source rate is maintained or
the source rate is reduced by the factor n. If the channel rate is kept constant the
reduction of the source rate has to be taken into account when the coding gain is
defined. On the other hand, if the channel rate is increased which is the usual situation
where one has a fixed source rate, then the number of ISI terms generally increase due

to the fixed bandwidth. This is shown in Figure 3.7. In this case the loss of signal to
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noise ratio due to additional ISI terms should be taken into account. In the literature the

coding gain is defined as follows:

2
Rd_ . (coded)
G=—"M" " . Ris the rate of the code. (3.5)

d2 (uncoded)

min

where R is supposed to take the change in signaling rate into consideration. The above
does not account for the change in ISI terms should the channel rate increase. This
problem was addressed by Bergmans [4] who incorporated the change of ISI into the
coding gain for rate 1/n codes for some integer coefficient channels with response of
the form (1 + D) or (1-D)(1 + DN (N=0,1,2).

Here codes of rate [/n and b/n are considered for channels with real coefficients
with the source rate kept constant. Thus a new set of ISI coefficients have to be found
in each case due to the increased channel signaling rate. Consider the autocorrelation
function R(7) of the channel impulse response. If the code rate is b/n then the new
sampling rate at the receiver is bT/n where T is the sampling interval before coding.
Thus the sampled autocorrelation function is R(kbT/n). It is straightforward to find the
coded channel response F (D) using spectral factorization and hence the new set of ISI
coefficients. On the other hand if one starts from the coded response F (D) and the
uncoded F(D) is required this can be found exactly only for the case of rate 1/n. This is
done by undersampling R (D) by a factor of n as illustrated in Figure 3.8 for a rate 1/2
code. In general if

R.(D) =¥ RD! (3.6)
i

then R(D) =3, R,;D' (3.7)

48




A y(©) Channel rate : ;11: symbols / sec

No. of interference terms = 1

A y(t) Channel rate : 2—}1, symbols / sec

No. of interference terms = 3
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Figure 3.7. Effect on ISI due to a doubling of rate ; Length of channel impulse

response = 2T
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for the uncoded case. However if the code rate is b/n then it is not possible to find out
an exact uncoded response from the coded response given since the samples do not
coincide.

Several examples are given next which consider codes of different rates for different
channels. The signaling rate is increased to account for the encoder output, i.e., the

source rate is kept constant.

(A) Code rate is R=1/2. Two channels are considered.
i) A single pole truncated channel of different ISI lengths.

ii) A raised cosine impulse response channel of different ISI lengths.

The coding gains for the two cases are given in Table 3.1 and 3.2. From the tables
it can be seen that there is a coding gain only for the truncated single pole channel with
a rate 1/2 code. For the raised cosine channel there is a loss which implies that for this

kind of channel a higher rate code may be more suitable.

(B) R=2/3. Same channels as above are considered.

Results for distances are given in Tables 3.3 & 3.4. The tables show there is a
coding gain for both truncated single pole channels and one of the half cosine channels
in this case.

As seen from the results when the length of IST is long the coding gain is either low
or there is no gain. This is not intuitive because it is generally expected that there is a
coding gain when a convolutional coder is used. The loss is partly due to the factor R in
the coding gain expression and also due to the increase in ISI. Therefore it is essential

to take the change in ISI into account when the channel rate is increased, otherwise the
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source rate R=1/2
a constant a
L. {(coded) G (dB)
4 2 B 322 (3.88)
3 2 @ 268  (3.73)
2 3 (6) L66  (3.21)
1.5 4 (8) 085 (2.0

Table 3.1. Encoder Matrix G(D) = [

111
101

} Free distance = 5

Channel impulse response is e * truncated: Gain values
assuming no change in IST are given within brackets

source rate R=1/2
constant
L (coded) G (dB)
2@ 27 (3.0)
5 (10) -4.95 (-0.16)

Table 3.2. Encoder Matrix G(D) = {

2LT {

Channel impulse response 1

I11
101

LT

] Free distance = 5

1-cos Etﬂ : Gain values

assuming no change in ISI are given within brackets
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source rate _

a constant R=2/3

L G (dB)

4 2 (3 3.75

3 2 3 4.5

2 3 3.75

1.5 4 (6) 3.75
111101

Table 3.3. Encoder Matrix G(D)= | 110101 | Free distance =5

011100

Channel impulse response is e * truncated

source rate R=2/3
constant
L G (dB)
2 (3 1.72
5 (8) -3.56
111101
Table 3.4. Encoder Matrix G(D)= |1 1010 1 | Free distance = 5
011100
. ] 1 2n
Channel impulse response i—f{l - cos(ﬁ tH
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gain calculated assuming the ISI remains unchanged is not realistic, i.e., if (3.5) is used
without accounting for the increase of ISI the gain would be higher in general. Using a
higher rate code is one method of not increasing the ISI substantially although to obtain
a significant amount of gain a long constraint length code which has a larger dy,, may
be necessary.

In the search for the best coder of a given rate it is important to keep in mind that the

IST used 1s that due to the increased channel rate.

3.3 Catastrophic Encoders:

Convolutional codes in general are divided into two main categories: catastrophic
codes and noncatastrophic codes. In [6, 11, 20] properties of convolutional codes are
described in detail. As the name implies catastrophic codes can produce an infinite
number of decoding errors due to a finite number of channel errors. Massey and Sain
[22] found the conditions for a code to be noncatastrophic. The channel they considered
was a memoryless one. ISI channels, however have memory. Here it is shown that for
finite memory channels the combined encoder and IST trellis is still catastrophic whenever
a catastrophic encoder is used. Note that for infinite ISI channels this may not be a

problem depending on the impulse response.

Lemma:
The combined encoder and ISI trellis is catastrophic if the encoder used is catastrophic.
For a convolutional code to be noncatastrophic its generator polynomial matrix

G (D) has determinants A,(D), & = 1,2,...., [! that satisfy
k
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GCD [AQ(D) e=1,...,(§ﬂ = D? (3.8)
for some a [22].
When this condition is not met the trellis will have output sequences with finite weight
for an input sequence(s) of infinite weight. This is illustrated in Figure 3.9 for a code of
rate 1/2. Without loss of generality assume the length of ISI is 3. The paths in the ISI
channel are shown in Figure 3.10. For the paths shown in the combined trellis the
Euclidean distance does not increase after several intervals although the input sequences
have an infinite weight. This would be same even if the ISI length is longer which
implies that the combined trellis is catastrophic as well.
QED.

The above argument is also valid for the rate b/n codes as well. The reason is that
for a catastrophic code after the first few intervals, there exists convolutional code
output sequences that are the same. Thus in the ISI trellis the Euclidean distance does
not increase. Hence the resulting ISI trellis is also catastrophic. Therefore only
noncatastrophic codes have to be considered for the use in ISI channels. For
wideband(infinite) channels the best convolutional code for a given rate and constraint
length is usually considered to be one with the best free Hamming distance. Questions
arise as to what would happen when the encoder and the ISI channel are combined;
whether the best code still gives the best coded distance for any channel, what are the
properties of the channel which gives the best distance; is it a maximum distance
channel without coding? Some properties of the coded distance are discussed next to

gain some insight into the above questions.
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Encoder Matrix G(D) = [ 11 OJ

011

-~ 00
00 \\10
~
01
10
11 -~ -~
- 00" 00 00 00

No weight increase between the paths shown after this point

Figure 3.9. Trellis for a R=1/2 catastrophic code

Two paths from the encoder are
0 merged after this point

=+ +H+f+F+2=2E

Figure 3.10. ISI trellis for L=3 with paths from the encoder of Figure 3.9
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3.4 Bounds for coded distance:

The channel response here is that of the coded channel where the rate increase due
to the encoder is taken into consideration i.e., that the source rate is constant. With an
encoder the output sequences form only part of the paths in the ISI trellis. Therefore the
ISI trellis can be considered to be pruned to follow the paths that are allowed by the
encoder. This is illustrated in Figure 3.11. Thus the coded ISI trellis is a pruned version
of the original trellis and hence the coded distance is always larger than or equal to the

minimum distance without coding. This can be stated as an upper bound.

2 2
(dpinduncoded = (i) coded (3.9)

To calculate the Euclidean distance, error sequences from the encoder need to be
generated. This can be done by considering either the error events in the encoder trellis
diagram or in general using a pair state diagram for the encoder to find all the possible
error paths. Obviously not all the error paths are essential to find the minimum distance
of the coded ISI trellis. The error sequences which have a Hamming weight equal to or
close to the Hamming weight of the free distance of the convolutional encoder are more
important since they have a better chance of giving the coded minimum distance.

As an example consider the encoder given in Figure 3.12. The set of error sequences
with Hamming weight equal to the free distance of the code is given in Table 3.5 along
with an expression for Euclidean distance for a channel of IST length two. As seen from
the table, for several sets of paths the squared distanceis of the form dg..E + ¥ (E =
channel energy). In general the squared coded distance is found to be less than dg,...E
or slightly higher. Thus based on the above discussion the following proposition is

made for the
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. _[111
Encoder matrix G(D) = [1 01 ]
allowed paths ———— not allowed paths
00
01
10
11
Figure 3.11. Paths allowed in the ISI trellis of L=3
u L\ vl
L D = D -

Figure 3.12. Encoder of the constraint length 2 best convolutional code
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No. | Eror sequence n, 1y 1,
1 111011 3 9 3
2 11101-1 1 2 1
3 1110-11 [ 0 1
4 1110-1-1 3 0 3
5 11-1011 1 -2 1
6 11-101-1 -1 ) -1
7 11-10-11 -1 0 -1
8 11-10-1-1 1 0 1
9 [-11011 -1 2 -1
10| 1-1101-1 3 9 3
11 1-110-11 3 0 3
12 [-110-1-1 -1 0 -1
13 1-1-1011 1 X)) 1
14 1-1-101-1 -1 ) -1
15 1-1-10-11 -1 0 -1
6| 1-1-10-1-1 1 0 I

Table 3.5. Error sequences of shortest length. The Euclidean distance for
each error sequence is d? = 5E + ny.(2fpf1) + n,.(2ff,) + n5.(2f,f,) where

1,1,,N5 are integers.
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coded channel configuration given in Figure 3.3.

Proposition 3.1:

(d?‘mn)Coded < [(dﬁee)cC + G']E ; 0< 1 usually. (3.10)

where (dpee)ec 18 the free Hamming distance of the convolutional code.

From this it can be inferred that the convolutional code with the best free distance
would give the best coded distance. The specific channel or channels with this property
are still to be found. To get the highest minimum distance upperbounded by the
Hamming weight of the error sequence, the distance spread among the error sequences
must be small. It is clear that for non maximum distance channels there are several paths
with smaller distance. The reason is that the length of error events which determine the
minimum distance can be up to 2(L-1) and for non maximum distance channels it is
possible to have squared distances close to E (channel energy) for some of these paths.
If they didn't have these paths then they would become maximum distance channels.
But a good maximum distance channel with its small spread of distance would have
squared distances close to (L-1)E for these paths. Therefore when an encoder is placed
the maximum distance channels usually give the best coded distance. For the non
maximum distance channels it is possible for the coder to pick up a path with less
distance as there are usually several such paths and at least one path with smaller
distance. It is also possible for a non maximum distance channel to give a better coded
distance than some maximum distance channels. Still this distance is usually not the
best coded distance possible for a given ISI length and for a given constraint length of

the encoder. Based on the above discussion the following proposition is stated.
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Proposition 3.2:

The channels that have best coded distances are in the set of maximum distance

channels without coding.

3.5 Search for Good Codes:

Certain properties of the convolutionally coded ISI channels have been discussed
up to now. Here a search is carried out to find out the best convolutional encoder of
given constraint length and rate for a given ISI channel. In other words to match the
code with the channel. It is impossible to obtain an analytical solution since there is no
analytical method even to find the convolutional code with maximum free distance,
hence the search. Some properties such as symmetry are used to limit the search.

Another issue is the coefficients of the ISI channel. Although a fixed energy constraint
can be imposed, within that an infinite number of combinations may be possible. Hence
the search has to be limited to certain set of channels. In literature the class of magnetic
recording channels has been studied in detail. Here the search is carried out to find the

best encoder for L=2 ISI channels and for some L.=3 IST channels.

3.5.1 A search method for a given channel:

The objective here is to find the best convolutional encoder of given constraint
length and rate for a given ISI channel. A set of non catastrophic encoders are selected
which usually is a subset of all the encoders possible satisfying the requirements given
above. Of the total number of possible encoders, the ones with a Hamming weight in

the set of

[(dfree)best CC’(dfree)best cC- 'Y] (3- 1 1)
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are selected for distance calculation. 1y is chosen to include codes which could possibly
give a better distance even though their free distances are less. In addition to this,
symmetries in the encoders are used in order to reduce the amount of search. The
symmetry exploited here is based on the following.

Assume there are two encoders G(D) and G'(D) of rate 1/n, constraint length v. If

g'i) = guerp(v -1, 1<j<n,0<i<y (3.12)

then the Euclidean distance from these two encoders when combined with an ISI
channel will be the same. Aulin et al showed this for the CPM case {21]. Here a similar
argument is made for the ISI channels.
proof:

Assume u = (---,0,0,ug,uy, -0y, - yand u' = (--,0,0,u’,u', - -0’y - ) are input
sequences to the convolutional encoders G(D) and G' (D) respectively. If the condition
given in (3.12) is satisfied and u'j =y, the output sequences from the encoders vj

and v'j where j=1,2,...,n are related by

Vi = Vi L) (kev-i) (3.13)

Thus the output sequence v' from the encoder G'(D) is a time reversed form of the
output v from G(D). Therefore when the ISI trellis is considered output sequences
from G'(D) make state merges which are only time reversed if G(D) is considered.
Thus the Euclidean distances corresponding to these two encoders will be the same.

QED.
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In the following L=2 and L=3 coded ISI channels are considered. Longer ISI
lengths can also be considered, the limitation here being the complexity of the distance
calculating algorithms and hence the time involved. By the same token long constraint
convolutional codes also add to the complexity. Thus short constraint length codes of
memory up to five are searched. For the L=2 channel first a formula is derived to show

the general form of the distance curve. Search results are given next .

3.5.2 L=2 channels:

(Channel response is for the coded case)

The channel : fy =cos o0 f; =sin«

Consider the v=2,R = 1/2, dg,. = 5 encoder given by [ 111,10 1 ]. It produces

the following error sequences of Hamming weight 5

1110110 b)1-110-110
d) = 5(f; + ) + 6fgfy = 5+ 6fof;  d2 = 5(2 + £2) - 6£5f; = 5 - 6f,f, (3.14)

Thus diﬁn < 5 for with this coder achieving equality for the no IST case. In general

regardless of the encoder,
2
dp,c = dfpee 0 (3.15)
here n is an integer multiple of 2 due to the expansion of squares.

But fofy = sin ol.cos o = —;—sin 20.. (3.16)

therefore if n = 2n, then
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2. = dpee + Ngsin 20t (3.17)

where ny, is the adjacent pairs of 1's in the error sequence.
If error sequences other than the above are considered, one has

d2

min

= (dy + ngsin 20),,, (3.18)

where the minimum is taken over the set of possible candidates for the minimum
Euclidean distance.

Some of the results of the search are given in Figures 3.13 - 3.16 for rate 1/2, 2/3
and 1/3 encoders. The rest are in Appendix B. The channel response is that of the
coded channel. The corresponding uncoded channel is therefore an ISI free channel for
rate 1/2 and 1/3 cases and a channel with one interference term for rate 2/3 codes.

Convolutional codes of constraint lengths up to 5 are considered.

The following notation is used in the Figures.

R : code rate;

K : encoder constraint length , CC : Convolutional codes ;

L : Channel impulse response duration ;

Encoders are specified in terms of generator polynomial coefficients
R=12 [gDg®];R=1/3 [g) g@ @]
R =2/3 Feed Back Encoeders [ h® h O ]

All angles are given in degrees.
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2
Rd_. (coded)
Coding gain = 10 Log { — ™™ """ | 4B, here d*

(uncoded)

(coded) takes the increase of ISI

min
dmin
1nfo account.

From the results the following observations may be made:

1) All the curves are parts of sinusoids and symmetric about the angle 45 degrees.

This can be explained using (3.18). Further from 90° - 180° the graphs are the
same. Also at 45 the coding gain is always the lowest regardless of the encoder except
for the case shown in Figure 3.15. The probable reason in this case is that the candidates
for minimum distance are of the form

d2

min

= (dy + ngsin 200, (3.19)

and hence the distance curve has a maximum at o = 45°,

2) Highest coding gain is always at zero degrees, which is the ISI free situation.

Thus the presence of ISI degrades the gain here whereas without coding there is no
loss in performance for L=2 channels.

3) Approximately between 30 - 50 degrees the encoder with the best dg, does

not give the highest coding gain for some constraint lengths.

(see Figures 3.13, 3.14, 3.15 and 3.16) The encoder with the best dj,,, therefore,
does not necessarily give the best performance for any ISI channel. This encoder
always gives the best coding gain in the region close to the ISI free situation.

4) It is also seen that for the cases considered here the upperbound given in

proposition 3.1

(dfnin)coded s [(dfree)cc + G]E (3.20)
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holds with ¢ equal to zero except for the case shown in Figure 3.15 where cis
one.
The ISI free case usually achieves equality. Even for the case in Figure 3.15 the

upperbound given by the encoder with best dy,,, holds with ¢ equal to zero.
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Figure 3.13. Coding gain with K=4, R=1/2 CC for L=2 ISI channel
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Figure 3.14. Coding gain with K=4, R=2/3 CC for L=2 ISI channel
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Figure 3.15. Coding gain with K=3, R=1/3 for L.=2 ISI channel
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Figure 3.16. Coding gain with K=4, R=1/3 CC for L=2 ISI channel
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3.5.3 L=3 channels:

The channel coefficients are expressed as

fo=VEsino  f, = YEcoso.sinp  f, = YEcosa.cosp

so that the channel energy is fixed at E. Maximum distance regions for the channel

considered here are as follows. Angles are given in degrees.
o=10;B=0t025;70to 290 ;335 to 360
0.=30;B=0to25;85t0275; 335 to 360
o =60; B =0to360

The worst ISI channels are at o, =30%, B =55%and f = 315°.

Here rate 1/2 convolutional codes of constraint lengths up to 4 are considered. The

corresponding uncoded channel for rate 1/2 codes is a .=1.5, a maximum distance ISI

channel.
For this channel dfnin(uncoded) = 8.
2
d” . (uncoded)
Since = 2d} (uncoded) = 16
dz. (coded
the Coding gain = ~ml—nlg~—)

Some of the results are given in Figures 3.17 and 3.18, the rest are in Appendix B.
Squared Euclidean distance is plotted against the variation of angle B for a fixed value
of angle 0.

The following observations can be made:

1) As seen from all the graphs here, the encoder with the best d. does not

necessarily give the best performance for all values of p.
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As an example consider the case shown in Figure 3.17. For B in range of 20° to
60° the code with diree = 5 gives a smaller coded distance than those with d., = 4.
Many other examples can be seen by examining the Figures.

2) The highest coded distances are always given by the encoders with the highest

dfee values.

Again this is the situation for all the cases considered here. Thus if the channel
response can be modified, to obtain the largest coding gain the encoder with the best
dfee may be used.

3) The highest coded distances are obtained by the maximum distance

channels.

Consider Figure 3.17. The highest coded distance of approximately 38 is given by
angles o = 10° and B= 100° . Channels in this region belong to the set of maximum
distance channels. All figures give the same observation.

4) For some ranges of B the coded distance is lower than 16 implying that for these

cases there is no coding gain,

Consider Figure 3.17. One of the regions in which the above happens is B = 25° to
60°. The channels in this region are non maximum distance channels. The same holds
for Figure 3.18 as well. Thus it can be argued that maximum distance channels give
better coded distance in general. Another thing is that, as seen above, coding doesn't
always improve the error performance. To obtain a gain for these channels an encoder
with a large dg,, and hence one with longer constraint length would probably be

required.
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In conclusion, properties of ISI channels with convolutional encoded inputs have
been considered in this chapter. Construction of the error state diagram or the pair state
diagram for the channel/coder cascade is the first step in determining the coded Buclidean
distance. Catastrophic convolutional coders produce catastrophic ISI trellises and
therefore should be avoided. Without coding there is a unique upperbound, the
channel energy, for the minimum Euclidean distance for ISI channels. Once coding is
considered this upperbound is no longer valid, instead an upperbound related to both
the free distance of the code and the channel energy is conjectured. Search results
indicate that the encoder with the best free distance does not always give the best coded
distance when combined with an IST channel. On the other hand it usually gives the
best coded distance possible for a given ISI length and a given constraint length of the
coder. Another observation is that for the cases considered in the search, a particular
encoder is usually best over a range of channel coefficients. Thus if the channel coefficients
change by a small amount, the best encoder would still be the same. This is a good

property specially because all channels change their characteristics over time.
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Chapter 4
Trellis Coded Modulation for ISI

Trellis coded modulation (TCM ) is generally used to achieve bandwidth efficiency
while obtaining a higher noise margin [34]. Therefore an alternative to using a
convolutional encoder for ISI channels is to use TCM techniques. A study of TCM
schemes in general can be found in [5]. TCM signals usually have a quadrature component
and an inphase component and these are modulated by a carrier. Hence the channel in
this case is a bandpass channel. For the work presented here the equivalent baseband
channel is considered. Unlike the convolutional code case where GF(2) operations are
involved, here only Euclidean space is present. Hence, in loose terms, some form of
continuity is preserved when TCM and ISI is combined.

The main objective is to discuss the properties of the TCM coded channels and find
the best encoders for several IS channels along the same lines as described in chapter
3. A brief survey of some of the work in this area is given first followed by a
description of the communication system used. Calculation of Euclidean distance for
the TCM coded trellis and methods to simplify the trellis structure are considered next.
Finally a search for good TCM encoders is carried out for several ISI channels. A
comparison of their coding gain against another alternative scheme is made to obtain
insight into the application of coded modulation for ISI channels. Analogies drawn

from the application of convolutional codes are discussed as well.

4.1 Background:

Wolf and Ungerboeck [37] discussed the application of trellis codes based on the

set partitioning idea developed in [34]. The channel considered was a (1 - D) channel.
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All possible noiseless channel outputs of a certain length were grouped into a number
of sets. Using these sets a trellis code was found. By using longer lengths of channel
outputs larger values of d?m-n can be obtained. Several other papers considered the same
channel model with TCM [14,18,31].

Performance bounds and distance spectra for certain trellis codes in ISI are given in
[30]. There it is shown that if quasiregular TCM codes are used for ISI channels the
complexity for distance calculations is reduced. Larsson [19] uses this idea to find the
worst case ISI channels for certain TCM schemes. Chevillat [10] describes decoding
the trellis encoded signal in the presence of ISI using reduced state sequence
detection(RSSD). Wong and McLane [40] considered the error performance of trellis
codes for a class of equalized channels. Extensions from these results are worthwhile to
investigate since it should provide more insight to the problem of matched TCM codes

to ISI channels.

4.1.1 Communication system:

A block diagram of a bandlimited channel with a TCM encoder is shown in Figure
4.1. Here the channel can be thought of as the baseband equivalent of the band pass
channel for the carrier modulated signals. In general it is a complex channel. Signals
can be represented by a sequence of complex numbers (x) from the encoder sent to the
channel. The channel output depends on the state of the encoder and the present
information input, usually a binary vector.

The output of the channel, using the discrete equivalent system can be given by
v

Yk = 2 fXpi 5 xj's are complex. (4.1)
i=0

where v is the length of ISI and f}'s are coefficients of the discrete channel response.
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TCM encoder Complex Equivalent

Baseband Channel

Figure 4.1. Transmitter side of a TCM system
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Xg = guy , Sy) (4.2)

where uy is the input vector and Sy is the encoder state vector. g(.) is the mapping
from the binary output of the encoder to the complex channel signal.

Two typical encoders and the corresponding channel signal alphabets are shown in
Figure 4.2. A definition for coding gain is given below which will be used throughout

this chapter. It is the same as that given in [15].

Definition:
2
(d_. /P..) coded
The asymptotic coding gain G = zmm s (4.3)
(d,,;,/ Pay) uncoded

where is dfnin is the overall minimum distance and P, is the average transmitted power.
The reason for dividing by P,, is that with TCM the signal set is usually expanded.
This results in a larger P,, thus requiring normalization to compare the coded and
uncoded cases fairly. For PSK schemes P,,, the average transmitted power does not
change whereas for other schemes such as PAM, P,, of the uncoded and coded signal

sets are different.

When the constraint length of the convolutional coder in TCM is large the number
of states in the combined coded trellis becomes very large. Thus the computational
complexity of the distance calculating algorithms becomes much higher. To avoid this
to a certain degree some properties of the encoder can be used. It is shown [19,30] that
if the coded trellis is quasiregular then the complexity of the distance calculation can be
reduced by a significant amount. The next section discusses quasiregularity as applied

to various signal sets.
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Figure 4.2(a). 4-PAM Mapping
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Yo Mapper
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Figure 4.2(b). Four state, 4-AM convolutional encoder and mapper
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Figure 4.2(c). 8-PSK signal set
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Figure 4.2(d). Ungerboeck encoder for 8-PSK, eight state
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4.2 Quasiregularity in TCM encoders:

To calculate the minimum Euclidean distance for a TCM encoder combined with an
ISI channel, all pairs of input sequences have to be considered in general. In other
words a state pair diagram for the encoder has to be used. Hence the computational
complexity of the distance calculation depends on the square of the number of states of
the encoder. However by confining the encoders to have a special configuration the
distance evaluation can be simplified considerably.

Recently Schlegel [30] introduced the concept of quasiregularity as applied to IST
channels using an Ungerboeck type PSK encoder as an example. A similar approach to
PAM and QAM coders in ISI using the same convolutional coder configuration is
considered here. Finally the reduction of complexity in the coded trellis using

quasiregularity is discussed [19].

4.2.1 Set partition of PAM Encoders with Feedback Convolutional

Coders:

The signal mapping for a 4 - PAM trellis code is given in Figure 4.3 and the
configuration of the encoder is given in Figure 4.4. All the trellis states S are equivalent
to one of two states which can be represented by the contents of the last delay cell S, If
S'=0thenS=0andif S' =1then S= 1. When S! =0 the signals marked " A " are
possible and when S! = 1 signals marked " B" are possible. The output from the
convolutional encoder can be represented by v, = (ur , Srl) due to the feedback
representation. Hence the difference symbols can be given by e = (eu , es). Consider

the distance polynomial defined by

Ps o000 = 3. p(u) XHC-) (4.4)
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Figure 4.3(a). Signal mapping for 4 - PAM
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Figure 4.3(b). Signal mapping for 8 - PAM
u =(' *sUpo s Uy s ur)
-
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K Mapper | = (- X2 s X1 5 Xp)
— S e s » @ + Si -
0 0
HK-I H]

Figure 4.4. PAM Encoder Feedback Realization
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where (v ,?) represents the difference signal and p(u) is the probability of the input
signal u. Pg (X)) is a list of all the distances (v ,v) that can be generated when the
correct path is in S, the incorrect path is in state S and the two branch labels differ bye.
Here the ISI channel is not taken into consideration. For the example given in Figure

4.3(a) Pg  o(X) can be expressed as follows.

P, 0)X) = X° (4.5)
1 A 1 -A

P(O , 1)(X) = 5X +§X (46)

Po o) =iX +ix

(1, 0X) =5 t3 4.7)
1 A 1 -A 1 3A 1 -3A

P(l,l)(X)=ZX +oX 71X +7X (4.8)

Note in the above equations S is not included since the right hand side is independent of
whether S' = 0 or 1. Thus for this type of PAM encoders the distance polynomials do
not depend on the equivalent state of S. In general if the sequence of equivalent states
along a path does not have memory, i.e. there are “no” sequences of equivalent states 0
, 1 that cannot be traced by any path through the trellis, then the difference symbols can
be generated using the encoder error state diagram. This means that the coder is
quasiregular. Thus it is not necessary to consider a state pair diagram to calculate the
difference symbols which are required to calculate the Euclidean distance in an ISI
trellis. The procedure given above can be generalized in the following lemma for M -

PAM encoders.

Lemma:
For an M - PAM encoder which produces a Z / 2Z partition, all sequences of

equivalent states are possible, making it quasiregular, if and only if the input sequences
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are independent and identically distributed.
Proof:

If it can be shown that Pg (e, , e5) for eg = 0 is independent of S then the code is
quasiregular. eg can be zero if the equivalent states are either 1, 1 or 0, 0. The
equivalent state is given by the rightmost bit of the binary representation of the signal.
Two signals with the same rightmost bit, have a difference that is an integer multiple of
2A (see Figures 4.3(a) and 4.3(b)) since the signals are represented in binary format
(from right to left). For a given difference 2nA (n - integer) the modulo sum of any two
states ¢, for eg = 0 is the same. Thus Pg (e, , 0) is independent of S. Hence the code is
quasiregular. On the other hand if the code is quasiregular then all Pg (e, , eg) are
independent of S and this implies that input sequences are independent as S is dependent

on the input as well.

4.2.2 Set partition of QAM Encoders with Feedback Convolutional

Coders:
Consider the signal mapping given in Figure 4.5 and the encoder type shown in
Figure 4.6. Using the same notation as before Pg (e, , eg) for two of the states are

given below.

1 A1 1 M
Po ot 0)X) =5 X +3X (4.9)
1% 1 % ‘
Proor, X =5X "+5X (4.10)

It is seen from the above equations that the distance polynomials Pg(001 , 0) depend on
the equivalent state of S (A} # A), i.e. for these cases the possible distances depend on
whether the correct path passes through a state S = 0 or S = 1. Hence QAM encoders of

the type given in Figure 4.6 are not quasiregular with respect to 4, the difference
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symbol. To combine the two equations the equivalent states should be equiprobable.
This is the same situation encountered in the case of PSK encoders [30]. Therefore the
same conditions on the encoder can be imposed to make it quasiregular. i.e. to be
quasiregular all equivalent states have to be possible and occur with equal probability.
The conditions can be stated in the following lemma similar to the one given for PSK

encoders in [30].

Lemma:

If at least one of the connections Hi , H% is present in the feedback realization of the
encoder then the resulting code is quasiregular. Usually for QAM coders at least one
input is uncoded. Thus one of the remaining connections H : , H% must be present for
the quasiregularity.

Proof:

If H} =1 and H:l2 = 0, the last delay cell which determines the equivalent state toggles
half the time depending on whether url =0 or 1. Similarly with H} =0 and H?‘ =] the
delay cell toggles with u? =0or [. When Hi =1and H% = | their binary sum Hi @ H?
will be O or 1 with equal probability and hence the equivalent state is equiprobable. On
the other hand if H} = 0 and H% = 0 the equivalent state depends entirely on the

preceding state.

4.2.3 Simplification of the trellis structure using quasiregular encoders:

From Chapter 2, for an IST channel of memory v the Euclidean distance in terms of the

difference symbols can be given by

2
A2 (&) =d | (€) +8; (en €n. 1+ v ) @.11)

where
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2 Y 2
6n=.zo|fien_i[ (4.12)
1=
( €y-1r- €, v ) defines the difference state.
Since there is an encoder in front, to generate the difference symbols it is usually

necessary to consider all sequences of encoder state pairs (&, , &,). Thus the joint

encoder and channel error state can be considered as

AG:(&n:F:naEn-l1"';8n..v) (413)

But for a quasiregular code instead of (&, , &, ), the encoder error state diagram (AE,)
can be used.

Therefore Ao =(AE e, | € .y) (4.14)

and the number of error states grow linearly with respect to S, the number of states in
the encoder. The encoder error state diagram for the encoder of Figure 4.7 is given in

Figure 4.8.

For the uncoded case there is no encoder , that means that input is directly mapped
to a channel signal. Then the channel signals are independent and equiprobable. The ISI
trellis has all possible channel sequences determined by the signal alphabet. Once the
encoder is placed, out of all these possibilities only certain paths are allowed. The new
trellis can be considered as a pruned version of the original trellis similar to the situation
described in chapter 3. The next section discusses the calculation of Euclidean distance

using the pruned trellis for a channel with one ISI term.

4.3 Calculation of Euclidean distance in the coded ISI trellis:

The TCM schemes considered here are either one or two dimensional schemes.
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Figure 4.7. Four state PAM encoder

Figure 4.8. Encoder error state diagram
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Consider an ISI channel of length one. i.e. L=2. The channel output from the equivalent

discrete system is given by

Yy = foxk + flxk-l (415)
where fo=a+jb, , f; =a, +jb,. (4.16)

The difference output signal is then

Vi - Yk = folkg - Xi) + F1 (Xt - Xt) (4.17)

= (a,+jb,)(p,+jq,) + (a,+jb,}p,*iq,) (4.13)
where (p,+jq,) and (p,+jq,) are channel difference symbols.

~ P2
yic- 9 = @240, 00,240, + (a4 ,)(p,24,2)
+ 2(a;a,+b1b)(p1p2+q;90) + 2(a1by-byay)(q py-piqr) (4.19)
Now if, a; =rsinasinB b, =r sincicos (4.20)

ay =r1 cosasin® by =rcoscicos® and r =VE (4.21)
to satisfy the channel energy constraint, then

~ 2 . .
’yk - yk] = 1'2sm2a(p?+q%) + rzcos2a(p§+q§) + r281n20c005'y(p1p2+q1q2)
+ 1'2sin20csin'y(q1p2-p1q2) (4.22)
where ¥ = [ - 8. For real channels = 8 = n/2. (4.23)

To obtain the channel difference symbols the encoder state diagram has to be used.

For a valid error sequence in the ISI trellis, two sequences must start from one state of
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the encoder state diagram and subsequently merge into an encoder state after several
error symbols. That means it should also be an error sequence in the encoder state
diagram.

As an example consider an error event (€ , €, , €3) of length 3 in the encoder state

diagram . The corresponding error event in the ISI trellis is (g, , €, , €5, 0 ).

Letey=p;+Jjd; » &=py+jq9y , €& =p3+]gs. (4.24)

Using the equation (4.22) repeatedly, it can be shown that

3
d? = 2 (Piz+q§2) +[Pa(P1+P3)+d2(q;+q3)Isin20cosy+[q, (P -P3)-Pa(qy-qs) Isin2oisiny
- (4.25)
Equations of this form can be obtained for longer ISI lengths in a similar manner. The
increase in the number of terms however makes them difficult to analyze.

For areal channel y = 0. Therefore

3
(@) real = % (D;+a}) +Da(P1 P+ rHap)Isin2e  (4.26)
1=

Thus depending on the difference symbols

3
(@real = 21 (Pr+a2) E|[pa(P1+p3)+aa(qi+qa)]fsin2e  (4.27)
1=

Longer error events will also have the same general form for this channel. For the
encoder trellis shown in Figure 4.9 the two shortest error events are indicated. One is a
parallel path which governs the minimum distance for the no ISI case. From the trellis

diagram the following distances can be obtained.
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Error symbol; equal in magnitude
for all parallel branches path 2

path 1: any parallel branch

Figure 4.9. Encoder trellis diagram for the 8-PSK signal alphabet shown in Fig. 4.2(c)

with signal labels
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42 =4 (4.28)
d3 = (6 - V2) % 2sin20; (4.29)

The minimum distance of the combined encoder and channel is governed by the distances
given above. As can be seen it is upperbounded by the ISI free minimum distance d%.

For encoder trellises with parallel branches the following lemma can be stated.

Lemma:

If there are parallel branches in the encoder trellis then let the difference symbol
with the smallest magnitude in a parallel branch be denoted by €ps- Then the minimum
distance of the combined encoder and the IST channel satisfies the following inequality

regardless of the length of ISL.
2 2, <
diin < Iﬁpsl ( ZO It (4.30)
1=

Proof:
After error symbol €, it is possible to have a sequence of '0" error symbols in the
TCM trellis. i.e., epS,O,O,...,O which defines a merged error event in the ISI trellis. The
distance for this error event is given by the right hand side of the above equation. This
is illustrated in Figure 4.10.
QED.

From the above discussion it can be seen that the coded distance for a real channel
of ISI length one satisfies the following relationship.

2 2 .
oded-151 = Deoded-No 151 T ASin20t (4.31)
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Figure 4.10. ISI trellis diagram for the trellis encoded signals showing an error event

due to a parallel branch
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where A is a real constant and A = O for parallel branches regardless of the ISI in
channel.

For the minimum distance path in the encoder trellis this usually turns out to be
42 = (d%.) + Asin2 432
coded-IST = (AinJcoded-No 151 £ ASIn2d. (4.32)
Therefore for these ISI channels

2 2
(d pindcoded-1s1 < (Aiin)coded-No 1ST- (4.33)

Circumstances under which the relationship in (4.33) holds, must be investigated further,

specially for longer IST lengths.

4.4 Search for TCM encoders matched to the ISI channel

Using quasiregular encoders, a search for the best encoder has been carried out for
different TCM schemes (PAM, PSK & QAM). The ISI channel considered is a real-valued
L=2 channel. A longer ISI length can also be used with a resultant increase in the
computational complexity as indicated in (4.14). TCM coders of constraint lengths up
to 6 were considered. The source code for the search was written in FORTRAN and
implemented on SUN SPARC computers. Encoders are given in terms of coefficients
H™ .., H, m represents the number of coded inputs. Algorithms for converting
convolutional codes from feedback to feedforward form and vice versa are given in
[25]. A typical encoder is given in Figure 4.11. Some of the results are given in
Figures 4.12 - 4.15 with the coding gain as defined in section 4.1. The rest of the

results are in Appendix B.
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Notation for Figures:

The channel : fy=cos o f]; =sin
K : constraint length of the encoder
L : length of channel impulse response

All angles are given in degrees.

The following observations may be made.

1) As shown in section 4.3 all the curves are parts of sinusoids and symmetric

about the angle 45°.

Always at 45° the coding gain is the lowest regardless of the encoder.

2) Highest coding gain is always at zero degrees, which in essence is the ISI free

situation.

Thus the presence of ISI degrades the gain here as it did in the case of convolutional
coding. For the coder given in Figure 4.15 the coding gain is constant regardiess of the
IST because for these two cases the minimum distance is governed by the parallel paths
in the encoder.

3} Approximately between 30 - 60 degrees the encoder with the best Euclidean

distance for ISI free case does not give the highest coding gain.

(see Figures 4.12, 4.13, 4.14, 4.15) Thus the encoder with the best déuc without
IST does not necessarily give the best performance for any ISI channel.

The above observations are essentially the same as those seen with convolutional codes

for the same IST length.
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Figure 4.11. A typical convolutional encoder used in different TCM schemes
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Figure 4.12. Coding gain with K=4, 4 PAM for L=2 ISI channel
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Figure 4.13. Coding gain with K=5, 4 PAM for L=2 ISI channel
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Figure 4.14. Coding gain with K=4, 8 PSK for L=2 ISI channel
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Figure 4.15. Coding gain with K=4, 16 QAM for L=2 ISI channel
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As an alternative to using TCM, ring convolutional codes can be used where the ring
is based on the integer modulo operation. In the next section the application of these

codes for ISI channels is discussed briefly.

4.5 Ring Convolutional Codes for Coded Modulation:

Recently several authors considered using ring convolutional encoders modulo p
(p>2, usually a multiple of 2) , instead of binary convolutional codes for coded modulation
schemes, specially for phase modulation [3,23,24,41]. One advantage is that the relevant
encoder can directly work with the modulation input non binary signal set thus avoiding
the necessity to use a binary to M-ary signal mapper such as the one used in TCM
schemes. Basically the convolutional coded modulation scheme maps m+1 information
bits onto an expanded channels signal set which is fed to the ring convolutional encoder.
As in the case of binary convolutional codes the channel rate has to be increased which
results in more ISI. The transmitter side of the communication system is shown in
Figure 4.16. Tt has been proven that systematic encoders of ring convolutional codes
are always non catastrophic [23]. Therefore in the following it is assumed that the

encoder is systematic.

bl g =M(b1""’bm+l)

. = i
Binary > Mapping to a - glél & S
source 2 multilevel Modulo p | To
b1 channel

Figure 4.16. Transmitter of the ring convolutional coded scheme

First consider the following example to compare TCM and ring convolutional codes for

the no ISI or wideband case.
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Assume that an ISI free channel (channel energy E=2) combined with

i) the best TCM coder of constraint length K=4 or

ii) one of the mod 4 systematic convolutional encoders of K=2 and rate R=1/2 which
has the largest Euclidean distance. Encoderis [100, 2 2 1].

The encoders have the same number of states for comparison. The signal alphabet used

is 4 PAM (-3,-1,1,3 ). From Ungerboeck's paper [34]

G 8PAMTCM =472dB
4PAM Uncoded

For the ring coder since it operates in 4 PAM alphabet ( Channel energy E=2 Joules)

2
& R
G ModdcC = 10Log Mot % =10L0g{ 64 . 1"2]= 10Log[4] = 6.02 dB
4PAM Uncoded dZP AM 8

Therefore a gain of approximately 1.8 dB over TCM can be obtained if mod 4 ring
convolutional coders are used. Even with ISI present, a higher gain than with TCM can
be expected. Thus it is worthwhile to investigate the use of mod p (p>2) convolutional
encoders in the presence of ISI at least as a comparison to TCM schemes which are
usually designed for channels with no ISL

Search results for constraint length K=2 encoders are shown in Figure 4.17. The
channel considered is a L=2 ISI channel with the same coefficients as used in section
4.4. The channel response is that of the coded channel , again similar to binary
convolutional codes. It is seen that in the regions of 0°-25° and 65° - 90° ring
convolutional codes perform better than TCM codes with the same number of encoder
states. Longer constraint lengths involve searches with a long time duration due to

large number of encoder combinations possible, especially with a large alphabet.
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Figure 4.17. Coding gain with K=2, Mod 4 CC for L=2 ISI channel
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To conclude, application of trellis coded modulation (TCM) for ISI channels has
been studied in this chapter. The concept of quasiregularity has been used to reduce the
computational complexity of the distance calculating algorithms. Most of the properties
considered here have similarities with those in the case of convolutional codes. A main
difference is that the ISI here remains unchanged due to there being only a single output
from the TCM coder. Also TCM is used for non binary signaling schemes whereas
convolutional codes are used for binary signaling schemes.

Ring convolutional codes also considered briefly in this chapter have the same effect on
IST as binary convolutional codes but with the added advantage of being able to work
directly in the modulation alphabet. Compared with TCM it is seen (L=2 coded channel)
that ring convolutional codes perform better in several cases including the ISI free
situation. Therefore further investigation is warranted in the application of ring
convolutional codes. From the Euclidean distance point of view all types of codes seem
to behave in a similar pattern particularly with respect to the conclusions drawn for the

best encoders.
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Chapter 5
Conclusions and Suggestions for Further Study

5.1 Conclusions

The properties of the Euclidean distance between two received signal sequences in a
finite length ISI channel have been studied in this thesis. Application of convolutional
encoders and trellis coded modulation for these types of channels have also been
investigated.

A theorem has been proven to show the existence of the maximum distance channels
for any finite length of interference. Channel energy has been used as a constraint
throughout the thesis. Certain properties have been established for the worst case
channels since it is important to have an idea about the worst performance to be
expected at the receiver. It has been shown that if the worst distance decreases with the
length of interference then the zeros of those channels lie on the unit circle. Conversely
to the worst distance case it has been shown that for a given length of interference,
there is a maximum distance region defined by certain regions of channel coefficients
subject to the energy constraint . Using a prefilter to modify the channel impulse
response appropriately one can obtain a maximum distance channel. Since this is done
at the transmitter noise enhancement is not a problem. However if one chooses to use
an equalizer at the receiver to obtain a maximum distance channel then noise enhancement
becomes an issue. Therefore the objective is to select a proper maximum distance
channel which maximizes the output signal to noise ratio.

Alternatively convolutional codes can be used to increase the minimum Euclidean
distance. A search has been carried out for L=2 channels and certain L=3 channels for
convolutional codes of different rates and constraint lengths. The objective was to find

out the best encoders for given ISI channels. With the convolutional encoder generally
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it is required to transmit data at a higher speed which produces more interference terms.
It has been seen from the results for several IST channels that moderate coding gains
can be obtained if the channel and the encoder are properly matched. Further it has been
observed that if the channel is a maximum distance one then the resulting coded distance
is usually higher than that for a non maximum distance channel. Another thing to note
is the fact that convolutional codes with the best Hamming distance sometimes give
poor coded distance compared to other encoders with less Hamming distance. However
usually the best Hamming distance encoders produce the highest coded distances for a
given length of interference. Further while the uncoded distance for any L=2 channel is
the same, with an encoder present the coded distance usually changes from channel to
channel. The results confirm the propositions given in chapter 3 regarding the bound on
coded distance and the best coded channels.

Trellis coded modulation (TCM) has been investigated with respect to several
modulation alphabets for bandlimited channels as the coding technique for non binary
signaling schemes. The Euclidean distance is found for the best encoders for given
modulation schemes where the channel considered has one interference term. For PSK
and QAM schemes quasiregular encoders have been used to simplify the distance
calculation procedure using a computer program. The results from the search indicate
that similar to the Hamming distance in convolutional encoders, a TCM encoder with
the best Euclidean distance do not always give the highest coding gain when combined
with an ISI channel.

A main difference between convolutional coders and TCM is that the original IST
before coding remains unchanged in the case of TCM due to the fact that there is only
one output from the TCM coder. With convolutional codes, however, the ISI increases
with the increase of the channel rate due to the multiple outputs from the encoder. Also

TCM is used in general for non binary signaling schemes whereas convolutional codes
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are applied in binary cases. A maximum gain of approximately 1 dB can be obtained
from the convolutional codes over the TCM schemes for the same constraint length of
the encoder. The number of states in the decoder trellis for ISI with TCM is much
higher due to non binary signaling schemes. Finally instead of binary convolutional
encoders, ring convolutional encoders which work in the modulation alphabet have
been considered. For a 4 - PAM system a maximum gain of 2 dB can be obtained over

the conventional TCM (see Fig. 4.17).

5.2 Suggestions for Further Study:

The following problems are suggested for further investigation.

1) Location of zeros for the worst ISI channels. In the thesis it has been shown that
if the worst distance decreases with the length of interference then the roots will lie on
the unit circle. It remains to be shown that the worst distance decreases with the length
of interference.

2) Performance of equalized maximum distance channels. If the channel is not a
maximum distance channel then using an equalizer at the receiver the channel response
can be modified to a maximum distance one. The selection of the proper maximum
distance channel plays an important role in reducing the noise enhancement as there are
many maximum distance channels to choose from. Thus it may be worthwhile to find a
method to select a suitable maximum distance channel instead of going through all the
maximum distance channels to see whether any gain can be obtained in this manner.

3) Analytical expressions for the coded distance with convolutional coders have
been given in the two propositions in chapter 3. A challenging problem is to prove that
the encoders with the best Hamming distance give the best coded distance for a given
length of interference. Another is to prove that the highest coded distance is always

obtained by maximum distance ISI channels.
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4) More thorough investigation about ring convolutional codes in ISI channels. Up
to now it has been seen that some amount of gain over TCM schemes can be obtained
for some specific constraint length. From these results it seems promising to study
these codes further for the application in IST channels. A potential difficulty is the

amount of time required for a search involving longer constraint lengths.
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APPENDIX A

Existence of maximum distance channels for complex alphabets(QAM):

Starting with (2.93), the equation for complex alphabets can be given as

A= ifL-ZSm-L-:-l + fL-Iem-L} . lfL.18m-L| ’

Now assume the channel to be real; the purpose is to select the channel coefficients so

that the channel is a maximum distance one.
Also let OmL+1 = AnLst +i0mpa and  €qp =cpp +jdpy
Therefore

2 .2 2
Ap =1 @1 b)) + 2008 @ + Prrsidmy) AL

Thus if f; > 0, for A, to be greater than zero

2

a

am-L+1Cm-L + P+ 19mp
fio2-2f, [ !
m-L+1 T bm-L+1 minimum

If for the given complex alphabet for all error symbols

Op= rm-LHCm-L + bm-L+ldm-L}
a1211-L+1 + b;—LH maximum
then
fi2221 0p
similarly fL3220,(f 2+
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This procedure can be continued for other coefficients as well.
In generai fi =22 Gm(fi-!-] + fi+2 +--- 4+ fL-l) s i=0,1, ....... ,L"2

Therefore the existence of a maximum distance channel is proved based on the argument

made in section 2.3.2.

For M - PAM:

From A.1 forreal d and €
2 2
At =11 20m L1 + 20000 10 Le1 €L,
for the maximum difference

O =2and g, ; =-(2M - 2) ; largest difference symbol

Therefore fi,=2CM-2) 1,
In general the condition is
f,2 (2M-2) (f ., + £+ -+ 10 ) ,i=0,1,.L-2

Once this is satisfied the channel is 2 maximum distance channel.
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APPENDIX B

Additional results from chapters 3 and 4 are given here.

Notation for Figures:

R : code rate;
K : encoder constraint length , CC : Convolutional codes ;
L : Channel impulse response duration ;

Encoders are specified in terms of generator polynomial coefficients for
R=172 [gVg®1;R=1/3 [gD gD g,

Feed Back Encoders [ h® hVh©@ | are given for R = 2/3 CC and the same format is
followed for the encoders in Figures B.11 to B.17. All angles are given in degrees.

Also for Figures B.7 to B.10

& (coded)

Coding gain = 6

Figures B.1 to B.10 show search results for chapter 3 and the rest, from B.11 to B.17

give results for chapter 4.
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Figure B.1. Coding gain with K=2, R=1/2 CC for L=2 ISI channel
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Figure B.2. Coding gain with K=3, R=1/2 CC for L=2 ISI channel
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Figure B.3. Coding gain with K=5, R=1/2 CC for L=2 ISI channel
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Figure B.4. Coding gain with

K=2, R=2/3 CC for L=2 ISI channel
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Figure B.5. Coding gain with K=3, R = 2/3 CC for L=2 ISI channel
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Figure B.6. Coding gain with K=2, R=1/3 CC for L=2 ISI channel
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Figure B.7. Coded distance with K=2, R=1/2 CC for L=3 IST at Angle 0:=30
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Figure B.8. Coded distance with K=2, R=1/2 CC for L.=3 ISI at Angle 0=60
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Figure B.9. Coded distance with K=3, R=1/2 CC for L=3 ISI at Angle a=60
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Figure B.10. Coded distance with K=4, R=1/2 CC for L=3 ISI at Angle 0:=30
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Figure B.11. Coding gain with K=2, 4 PAM for L=2 ISI channel
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Figure B.12. Coding gain with K=3, 4 PAM for L=2 ISI channel
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Figure B.13. Coding gain with K=6, 4 PAM for L=2 ISI channel
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Figure B.14. Coding gain with K=2, 8 PSK for L=2 ISI channel
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Figure B.16. Coding gain with K=2, 16 QAM for L=2 ISI channel
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