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ABSTRACT

High speed data communication over channels with limited bandwidth results in
intersymbol interference (ISI) at the receiver. This results in a poor receiver error

performance. An important parameter that determines the receivel error performance is

the minimum Euclidean distance between two received sequences.

Properties of the minimum Euclidean distance for ISI channels are considered in
detail in this thesis. channel properties for worst distance propelties and for maximum

distance are investigated. A condition is established if the zeros of worst distance

channels are to lie on the unit circle. AIso a theorem is given that proves the existence of
maximal distance channels for any length of interference.

The Euclidean distance can be increased using a convolutional encoder at the

tlansmitter to improve the receiver performance. The addition of an encoder. results in
several problems such as incleased channel signaling rate which produces more ISI
terms. It is seen from the results that by selecting an approprÌate encoder matched to the

channel, coding gain can be improved significantly compared to the uncoded situation.

Another important aspect is that encoders with best free Hamming distance, d¡."" , do

not always give the best overall Euclidean distance. A proposition is made to show that

the maximum distance channels usually give higher coded distances than the rest ofthe
channels. A search is canied out to find the best encoder of different rates for length

two and three ISI channels. Results indicate that while the encoder with the best

Hamming distance doesn't always give the best coded distance, it generally gives the

highest distance achievable for encoders of given constraint length.

As an aitemative to using convolutional coders application of trellis coded modulation

(TCM) is also considercd for ISI channels. Euclidean distance is found for best encodels

for given modulation schemes where the channel considered has one intelference teÍm,

Although TCM is generally used with ISI free channels results show that these can be

applied with the ISI present to obtain moderate coding gains. A particular class of
encoders known as quasiregular encoders are considered to simplify the finding of
Euclidean distance. As an altemative to binary convolutional encoders, ring convolutional

encoders working dir€ctly with the modulation alphabet are briefly looked at, A maximum

of2 dB coding gain can be expected over the regular TCM using pAM (pulse amplitude

modulation) for this kind of encoders.
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Chapter 1

Introduction

As technology advances it is essential to exchange infomation at increasingly higher

Lates around the globe to various places. This in terms of digital communication

systems gives rise to the need for transmission of digitat data at very high speed. If the

channel used in this case is bandlimited the transmitted pulse overlaps with other

tlansmission pulses causing intersymbol interference (ISI), with the number of

overlapping pulses known as the memory of the channel or length ofISI. The simplest

communication system to exhibit ISI is a pulse amplitude modulation (pAM)

communication system. The telephone channel can be considered as a real world example

of a bandlimited medium with ISI. The presence of ISI degrades the receiver performance.

Various techniques have been developed for combating ISI. Among these the Vitelbi

algorithm is well known. originally developed by viterbi for decoding convolutional

codes, it can be applied to ISI channels with a finite memory for maximum likelihood

sequence estimation (MLSE) as shown by Forney [12]. The receiver consists of a

whitened matched filter and a sampler. The detection problem is modelled as a graph

search ttu'ough a trellis. The Euclidean distance between two channel output sequences

which diverge from a common state in the trellis and later merge into one state, is an

impofiant pal ametel in MLSE. More impoÍant, fot the determination of enor. probability

at high signal to noise ratios, however, is the minimum Euclidean distance which is the

minimum of all distances. Assuming an additive white Gaussian noise (AWGN)

channel, the error probability can be approximated by a e-function with the ¡atio of

minimum distance to noise vaÏiance as the argument, It is therefore clear that at high



signal to noise ratios the error probability decreases with an increase of the minimum

distance.

A finite memory channel can be represented by the discrete spectral factorization of

its impulse response [12]. The channel coefficients obtained from the factorization

completeiy describe the ISI characteristics of the channel. In light of the discussion in

the previous paragraph it is worthwhile to investigate the dependence ofthe minimum

distance on the channel coefficients.

Therefore one of the objectives in the research was to find out which channel

coefficients give rise to the maximum value of the minimum distance and also which

attain the minimum value of the minimum distance for different ISI lengths. This is

considered in detail in chapter 2. In [8,13,19] the problem of worst ISI channels has

been addressed. Channel characteristics which give worst ISI channels for different

lengths and location of zeros of the channel spectrum have been studied. Zero locations

arc important if equalization techniques are to be used at the ¡eceiver. It can be shown

that wolst ISI channels are obtained when the distance corelation matrix conesponding

to an enor event attains its minimum eigenvalue [19]. In fact the smallest of all minimum

eigenvalues for different distance correlation matrices is the worst minimum distance

for a channel of given ISI length, subject to a channel energy constraint. For these

channels Lalsson [19] has shown that if the minimum eigenvalue of the distance

coffelation matrix is unique then the roots of the channel spectrum lie on the unit circle.

Thus finding a method to show the uniqueness of that eigenvalue is certainly of interest,

Of equal importance is to maximize the distance to obtain better error pelformance.

Recently Said [29], among other authors [39,27] considered this problem . He gives a

search procedure by computer to find optimal partial response channels subject to

distance and bandwidth constraints. In this thesis it is shown that for any ISI length it

is possible to find maximum distance channels which in effect give the ISI fi.ee



performance in telms of minimum distance at high signal to noise latios.

Another issue related to this is the signa.ling scheme. To increase the free Euclidean

distance between permitted channel output sequences which results in a better noise

margin than found in the baseband system, coding techniques can be used. Typically a

convolutional encoder is used at the transmitter which has the original data sequence as

its input. As a result of adding an encoder, the memory of the entire system is

generally increased. It was shown in [35] that the total ISI length is less than the sum

of the memories of the encoder and the channel separately. If a good encoder is used a

better noise margin can be obtained at the expense of slightly increasing the ISI length.

There have been several papels [7,16] that address this problem fol a class ofchannels.

The class considered arises f¡om the magnetic recording channel or a variation of it.

Wolf et. al. [38] sought a class of convolutional codes for combatting both noise and

ISI which lead to easily implementable Viterbi decoders.

Another objective of the research was therefore to extend these r.esults or to find

good codes for the general ISI channel. Since the channel coefficients are real, for a

given ISI length there are an infinite number of combinations of channel coefficients.

Therefo¡e some constraints, to be discussed in chapter 3, are necessaly so that the

search for good codes can be conducted with reasonable complexity. Studies of

convolutional codes fol continuous phase modulation (CPM) schemes 12, 15,2gl

provide some clues in this regard. A related issue is to find which convolutional

encoder, whether it is the one with the best fi.ee distance , gives the best distance when

combined with an ISI channel of given memory length. In this respect lower and upper

bounds for the overali minimum distance are given to estimate the performance given an

encoded input. once the encoder is placed signaling may be done at a higher rate which

maintains the original data late ol keeps at the same signaling rate but reduces the

oliginal data rate. If the output signaling rate is incleased then number of ISI terms



should change. Bergmans [4] studied this problem fo¡ the channels whose forms are

variations of the magnetic recording channel. In this research several ISI channels are

compared in terms of the coding gain with different signaling rates to discuss the

relative merits of each method.

A brief outline of the thesis is as follows. Pr.operties of the minimum Euclidean

distance for ISI channels are considered in detail in chapter 2. Channels which give

wolst distance properties and those with maximum distance properlies are investigated.

Then in chapter 3, the use of convolutional encoded inputs for ISI is discussed. A

search is carried out to find the best encoder of different rates for several ISI channels.

As a natural extension to the work in chapter 3 in binary schemes, application of tlellis

coded modulation (TCM) schemes to ISI is examined next to get a more complete

understanding of how ISI channels behave under differcnt coding schemes with different

alphabets. This is given in chapter 4, which essentially is a study of TCM with ISI

channels. This serves as a comparison to the convolutional codes studied in chapter 3.

Several authors Í9,10,14,18,33,371 have done some work in this area. They compare

different modulation methods according to minimum distance. Anothel motivation to

use TCM is the fact that both TCM and ISI use the Euclidean space for distance

calculations whereas with convolutional codes we have to work in GF(2). Because of

the involvement of two different fields, the complexity is higher when a convolutional

encoder is combined with an ISI channel. A particular class of encoders known as

quasiregular encoders are considered to simplify the finding ofEuclidean distance. As

an alternative to binaly convolutional encoders, ring convolutional encoders working

directly with the moduiation alphabet are briefly considered 13,23,411. Chapter 5

pr€sents conclusions and suggestions for furthel research.



Chapter 2
Distance Considerations

Distance properties of bandlimited channels are considered in this chapter. A binary

PAM system is typically assumed and throughout only channels of finite intersymbol

interference length (ISI) a¡e considered. First the necessary background is given along

with the details regarding the free Euclidean distance measure denoted by d¡r"". Then

some propelties of the worst ISI channels are presented.

Worst case channels are those that for a given ISI length have the smallest d¡."". In

particular it is known that the roots of the transfer function polynomial for these

channels lie on the unit circle provided that the minimum eigenvalue of the erro¡

coruelation matrix is unique [19]. Methods to show this uniqueness are detailed here.

The converse to the worst case channel is(are) the channel(s) that has(have) the

maximum d¡.".. Here it is shown that a maximum distance channel exists for any finite

length of ISI and a set of sufficient conditions for the channel rcsponse coefficients are

presented. The chapter concludes with a brief discussion of equalization to obtain a

maximum distance channels for a given channel response.

2.1 Background:

A block diagram of the binary PAM communication system considered in the

Lesearch is shown in Figule 2.1. The channel impulse response is finite of duration LT.

The length of interference is then

v=L- l symbols. (2.1)

Forney [12] showed that the input can be estimated using MLSE with the receiver as
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Figure 2.1(b). The digital communication system: Channel and noise
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Figure 2.2. Receiver of the digital communication system
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z(D) = a1¡¡P1¡¡

Discrete channel response

Viterbi

Algorithm

Figure 2.3. Discrcte Equivalent model of the communication system



shown in Figure 2.2. The output of the matched filter sampled at t=kT is

rk=J _r(t)h(t-kr)dt (2.2)

k+v foo fØ
=,ì" 

J_ ." 
ajh(t - jr)h(t - kr) dt + 

J- ." 
n(t)h(t -kr) dt (2.3)

k+v
= I ajhj-k + n'k e.4a)

h¡ o = 
J_ "" 

h( - jr)h(t - kr) dt (2.4b)

Using the D transform where D = z-l , (2.4) canbe written as

r(D)=a(D)h(D)+n'(D) (2.s)

R(D) is the discrete autoconelation function of the channel. using spectral factorization

where

h(D) =F1¡¡PP't;
v

F(D) = I fiD'
i=0

and f¡'s are the channel coefficients of the discrete impulse rcsponse.

Therefole

(2.6)

(2.'7)

(2.8)

(2.e)

r(D) = ¿1¡;P1¡¡F(D'') + n(D)F(D-')

z(o; = J(DL =a(D)F(D)+n(D)
F(D-,)

Dividing by F(D-r)



The noise n(D) is white. The discrete time equivalent system for the communication

system is given in Figure 2.3. As shown in Figure 2,2 -L i"called the whitening

filter. The cascade with the marched filter is usually refe.r'f,ÁT ls the whitened matched

filter'.

Hence z¡= ! fia¡-¡+nk=yk+nk
i=0

Yr = I fiaL-i
i=0

(2.10)

(2.11)

As seen from (2.1 1), y* can be leprcsented by a tr.ellis of memory v wher.e for

binary inputs the number of trellis states is 2v. An example of a tr.ellis is shown in

Figurc 2.4.

Output sequence: 21

aL ^ù. 1

^_lak - -l

23 ..........,.,........,.,,, zu

-1 -1

¡

1 -1 1.:
\ \

-rr-r¡rT=2
\

-.---->
Sampling
time

Figure 2.4 : Channel trellis for v=2

The viterbi algorithm searches the channel t.ellis and determines the most likely

transmitted sequence { a¡} based on the received sequence {z¡}. The parameter that is

22

-1 1

T=k
11



important in the receiver performance is the Euclidean distance between any two output

sequences, particularly those that divelge from a common trellis state and later merge at

a common state. The Euclidean distance between any two sequences in the trellis which

diverge frorn a common state at time step j=¡ ¿¡¿ merge to a common state at time step

j=k + 0 - i can be expressed in the form

k+0-l

d'= .l (z¡- z'¡)2
J=r

(2.12)

(2.13)
k+ø-1

_\¡
j=k

I
i=0

(I
i=0

fiaj_i - f¡a;_i)

f¡(a¡-¡ - a'¡_J (2.14)

d2fr""=-in.(d2) e.16)
where € is the set of all error sequences. In essence d¡r"" is the minimum Euclidean

k+¿_ I 
I v

= s ts
j--k Li=o

k+Ø-l ¡ u l2
= > l)rieiil e.ts)j=k Li+ " I

where e.¡ e {0, 2, -2 } is called an error or difference symbol and 0 is the length of the

error event.

The squared free Euclidean distance is defined as

t0



distance between two received sequences, At high signal to noise ratios this distance

dominates the eÍor probability of the con¡munication system which can be approximated

by

(2.17)

where

and o2 i, the variance

shown in Figure 2.5.

Thus d¡r"" is an important parameter closely related to the enor performance of a

bandlimited channel. The next section considers the relationship of drr"" to the channel

characteristics, h(t), in tems of f = (f0,fI,f2,...,fu) the channel coefficient vector, i.e.,

the disclete impulse response of the discrcte equivalent system.

2.1.1 Channel distance function:

The material of this section is primarily from [26]. The distance from time j=k to

j=k+41 in the trellis of the discrete equivalent sysrem, i.e. a segmenr of length 0 is,

from (2.15)

k+Ø-I r .. 12
d2=: lir,.,,lj=k Li+ " j

which can be expressed in matdx form as

a.,=#f
of white noise.

Pr(error)-a/@ì
\"/

= fraf

2
À

e-T d?' (2.18)

Variation of the error probability with 
dfr* 

is
o

(2.re)

(2.20)
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t) t1\

(2.22)

eigenvalues

nimized by

(2.23)

(2.24)

(2.2s)

(2.26)

f fot foo o' p"l
lr, I l0' Po Êr F"rl

r=l . I A=l o, p, F"_, Illr''lLt".l 
L u" B, .]

The entdes of matrix A are given by

k+0-1-m

Þrn =
i=k

Matrix A is a corelation matrix and hence positive definite. Therefor.e all the

of A are positive and hence the quadratic form given in (2.20) can be mi

considedng the eigenvalues of

Af =¡rf , þ>0
From the above it follows that

(4.J'¡" = mina ( d2 )

= ( frpf )*¡n

= [p(rtÐ] ,ni"



frf = tr2(t)¿t = E is fixed.t: (2.2'1)

(2.28)

(2.2e)

(2.30)

Therefore

.,2 ,(ofi"")rin = 11þ min

In this case f is the eigenvector of A conesponding to the minimum eigenvalue p,',''¡n.

Denote it by f min. f -in defines the channel that exhibits the worst ISI cha¡acter.istics

for the given length. Also it is important to note that the matrix A depends on the enol.

event e which implies that (d¡r"").¡n depends on e as well. Fur.ther without any loss of

generality an error event can start at time 0, i,e., k = 0.

An upperbound on dt can be established readily by considering the shortest euor.

event where

Using (2.19)

ln general for M-ary modulation

Ç < lr"',J'trr for any L

where etìr¡n is the e or symbol with the least magnitude,

Furthet it is easily shown that lot I-,=2

k=0 and 0=L (L=v+l) i%=2,sj=0forj>0

d" =a(t+4 *......* (,¡=c{r

fi*=+rrr=+( t*(, ¡ (2.31)



Thus there is no loss in signal to noise ratio (SNR) in MLSE of the information

symbols when the channel dispersion has a length of 2.

2.2 Worst ISI channels:

In the previous section some p¡opefiies of d¡r." have been discussed. Since d¡r"" is a

measufe of the error performance of the communication system it is of interest to

determine the worst possible performance which can be expected over a channel with a

fixed energy, finite duration pulse response. Vy'orst case channels fol canier modulated

systems and complex symbol alphabets were studied by Larsson [19]. He showed that

the zeros of the worst ISI channels lie on the unit circle provided that the minimum

eigenvalue ofthe distance comelation matrix A is unique. The main objective of this

section is to discuss the methods to show the uniqueness of that eigenvalue. Fir.st some

examples of ISI channels for which the minimum Euclidean distance is the smallest

possible, are given along with an investigation of their characteristics.

Consider the L=3 channel.

F(D)=f0+f1D+f2D2 (2.32)

where the channel coefficients arc the components of the eigenvector corrcsponding

the minimum eigenvalue of A. The errol event of the for.m

t(D)=1.''"¡ (2.33)

is the elror event that results in the smallest d¡,"" for the above channel. All other.error

events give larger minimum eigenvalues. It results in a matrjx

15



t2 I 0'l
n=lrzrl

Lorzl

and the eigenvectol conesponding to the minimum eigenvalue is

(2.34)

(2.3s)

(2.36)

tt.," = 
[

frf = 1

1r 1l
I

2 't, 2l

This is the wo¡st channel for L=3. Extension for other lengths is straightforwal'd by

eliminating the erro¡ events which give larger eigenvalues. An algorithm to find the

worst channel is given in [19] and some examples are given in Table 2.1. It is seen that

the zeros ofthe channel spectra lie on the unit circle (shown for.the above examples in

Figure 2.6). The following lemma establishes a condition for the uniqueness of the

minimum eigenvalue of A.

Lemma 2,2,I:

The minimum eigenvalue of the correlation matrix conesponding to the er:ror event

ofthe worst ISI channel is unique if the comesponding worst distance strictly decreases

with the length of interference.

Proof:

Consider a channel of length L with a co¡relation matrix that has multiple eigenvalues.

From matrix theory [3ó] the eigenvalues of the principal submatrix of A (obtained by

excluding the last row and the last column of A ) separate the eigenvalues of A. This

relationship can be given as follows assuming A to be a matrix of dimension nxn.

t6



Channel Length
L

Performance
Loss dB

Minimum distance channel

3 ,1...1 0.50, 0.71, 0.50

4 4.2 0,38,0.60,0.60, 0.38

5 5.7 0.29, 0.50, 0.58, 0.50, 0.29

6 7.0 o.23, 0.42, 0.52, 0.52, 0.42, 0.23

Table 2.1: Maximum perfomance loss and channel characteristics

Figure 2.6: Zero locations which result in the Euclidean distance for

the channels with length L=3,4,...7



Ài*r <Àir< ¡,i ; i=n-l,n-2,...,2,1 (2.38)

where À1,À2,...... î,n are eigenvalues of A and 1,1r,À2s,...... I(n_r), are eigenvalues of

its prÌncipal submatrix As. For multiple eigenvalues of A when i=n-1 and i=n,

Therefore

Àn I À1n-r¡s S l,n- ¡ where Àn = Àn-l

À¡n-r¡, = In

(2.3e)

(2.40)

i.e., the minimum eigenvalue of the principal submatrix is equal to the minimum

eigenvalue of A .

Now consider a channel of length L- 1 and an enor event of length L identical to the one

that defined A. Its conelation matrix is Ar. Hence the rninimum eigenvalue in L-1 is

the same as that obtained for L which means that the worst distances for.L-i and L are

equal, This is a contradiction to the condition given in the lemma. Thus if the condition

holds then the minimum eigenvalue of A coresponding to the worst channel is unique.

QED.

From the above proof since Àn ( À1n_ r¡. it follows that

(druorrr)L I (druor.,)L-l (2.4t')

To see the effect on distance when going from a length of interference of L- 1 to L

consider an enor conelation matrix A¡_, in L- 1. Then

18



ol.,= rl_,ar.,rr.,

Assume for example that L-1=3 and that

fc, c2 ca I
A3 = | 

c2.r cz I , rT= lro r, ir]
lca c2 c1 l

where A3 is the correlation matrix corresponding to the e¡Ì.or event that

minimum distance.

Since the channel energy is fixed

(2.42)

(2.43)

gives the

(2.44)

(2.4s)

(2.46)

(2.48)

ø= fo+ Ê, + *r.

Now consider an incremental change in coefficients so that the channel is in L=4.

Thus ri= [to*¡io f,+ôf, f2+õf, ôfJ.

For fixed energy E = f]f,

Approxirnating the 2nd order terms to zero the following relationship can be obtained.

foðfo+ftôf,+f2õf2=Q.

The enor correlation matrix in L=4 is

(2.47)

I c¡ c2 ca cal

^, 
= I :::: :::: I

L.; ";.; .; I

19



a?o= r[n oro

Comparing with d] this can be written as

(2.49)

¿?=¿3+ Zôfo(cr fo+c2f, +cafr) + 2ôf1(c2fe+c 
1 
f 1+c 2f.r) + 2õf2(caf o+c2f ¡c f 2)

+ 2õ\(cafs+cafr+c2f2). eSO)

Now consider A3 corresponding to the error event that results in the worst distance

for L=3 with f3 as the corresponding eigenvector of 43.

i.e., cfs+crfr+c.f2 = Àfs,c2f6+c1f1+ c2f2 = )rfr, crfo+crf ,+crf, = ìufz. e.sl)
Hence al=a,'z+ zl,{foOfo + f¡ôf, + frôfr) + zôfr(caro +caf¡crfr). (2.s2)

rJsing (2.47) al=a!+ 2ôf3(cy'e +caf ¡c2f2). e53)

Therefore if õf3 is appropriately selected then dl can be made smaller than dl.

If c 4f s+ c al t+ c rf , = 0 then

¡?^=a?. (2.s4)

This implies that Aa, the matrix in L has multiple eigenvalues according to Lemma

2.2. 1. Consider the eigenvectors of the marrix A4 and consider. fl = tfg E f, 0]. Then

^4f4 
= ?\f4 Q'55)

will hold if

c1f9+c2f1+caf2 = l,f¡



c21ç+c f t+crf, = ì,,f ,

cafs+c2f r+c tf, = ),f,

c4fs+caf1+c2f, = Àx 0

(2.s6)

i.e., if cof6+caf ¡+c2f2 - 0 then fo is an eigenvector of Aa. By the symmetr.y of Aa it

can easily be shown that flo= [0 f2 fl f6], i.e., f[ taken backwards, is also an

eigenvector with the same eigenvalue. The procedure given above can be applied for

any length of ISI in a similar manner. Thus the result of the calculations given above

can be generalized in the following lemma.

Lemma 2.2.2: Whenever the er¡or correlation matrix in L has multiple minimum

eigenvalues the corresponding eigenvectors can be expressed as a combination off¡_,

with a zero added, and f1l_1;6 where f¡_, is the eigenvector corresponding to the

minimum eigenvalue in L-i, with respect to the same effor event. Note further that in

this case minimum eigenvalues in L and L-l are the same.

The loots of worst ISI channels lie on the unit cir.cle if the corr.esponding worst

distance decreases with the length of ISI as given inLemma2.2J. The worst distance

is obtained by the smallest eigenvalue of all the distance conelation matrices possible

fol a certain length of inteference(L). If for any reason this eigenvalue is multiple it

implies that the worst distance for the length L-1 is the same as well. This is given in

Lemma 2.2.2. Also in this case the zeros of the channel may not necessarily lie on the

unit circle-

21



The opposite to the worst distance channel is the maximum distance channel where

the minimum squared Euclidean distance is equal to the channel energy. In this case

there is asymptotically no loss in error performance due to ISL This is considered next.

2.3 Maximization of Free Euclidean Distance:

Maximization of the free distance can be viewed as an effort to reduce the loss of

pelformance or in other words a loss in the signal to noise ratio, due to intersymbol

interference. Here a method to maximize d¡r.", for general bandlimited channels but

having finite impulse response with an energy constraint is considered. For the

maximization of d¡r"" the set of possible free distance paths is important. This can be

obtained using signal flow graph theory [35] which is illustrated by an example.

2.3.1 Transfer function annroach

To find the shortest path from the all zero state back to the all zero state one needs

an error state diagram as shown in Figure 2.7 for a channel with L = 3. Considering a

"unit impulse" as an input the following state equations can be written.

T2=xl+x7T5

Tr= xrT, + xoT, + x*To

To=xrTr+xrTr+xrTo

T, = xuT, + x,o\ + x,,To

T(x) = x,rT,

(2.s7)

(2.s8)

(2.se)

(2.60)

(2.6r)

where the "gain" of an edge is x. = ¡4 and df represents the distance between

conesponding effor states in the erro¡ state diagram as shown. df is a quadratic f

22



.2

xi=DQ-x3
d? =4ß
al= +¡ro+ rr12

al= a¡ro- t¡2
al=+¡ro+\+r)2
d?=ql¡o-\+î212

06=4Il

al=+¡ro +412

¿r'=+tro +\-f212
dA=4?rs +\+r2f2

d?o= al\ + rz)2

alr=a¡rr-rr12

d?r=at

Figwe 2.7: Reduced Enor State Diagram for L=3
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where g(x) and Q(x) are functions ofx¡ obtained by solving the equations given above.

Expand T(x) in a power series

= g1*¡[r + O(x) + O2(x) + .......] (2.63)

which can be written as a sunìmation of products of x¡ where xi = D4. By comparing

each term in the sum the ones with the lowest weight terms contributing to T(x) can be

found. The minimum of these gives the free distance.

For the example, these terms are

unction of the channel coefficients and is the weight of x,.

To find the fiee distance express T(x) in the form

r(x) =-€E)
1 - 0(x)

Xtx6XI2 ' XtXzXtoXrz ' XtX: XsXroXIz , XtXg XltXlz , X1XrXrx,,x,,

with distances of

d? = 4.(Po* fi, * Pr)

a7 = q(t+ 
frs + r1]2 + lr1 + r2l2 + S\

a? = +(t+ fre - f1]2 +lr2 - f1- rel2 + [r1 + ldz+ $)

ú= o(t+ frs - r1]2 +[r1 - r2]2 + $)
o?= o(t+fre + r1]2 +[f1 + 12 - 16]2 +[r1 -tù'*t)

(2.62)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)



(2.70)

Other ISI lengths can be handled in the same way. The number of equations from

the el.lor state diagram grows exponentially with the channel memory. In addition the

lowest weight telms from the expansion of T(x) have to be considered as the set of

possible free distance paths. Algebraically the problem rapidly becomes very

computationally intensive and therefore symbolic processing has to be used to find

d2o"" for long interference lengths.

2.3.2 Maximum distance channels:

The main result of this section is that for any L, the coefficients of the channel

(fo, fl, .. .,f¡_¡) can always be chosen to attain a d¡r"" equal to the non ISI case. Before

presenting this the case L=3 is described using the set of paths found above. From the

previous section the free disrance is rhe minimum * [o? , al , a! , al, a]]. rrte

maximum value of the d2¡"" is df and is achieved if

al,a!,al,,a? > a? (2.7 r)

By comparing each distance with df tne following inequalities are found for the channel

coefficients, f1.

d2¡"" = min [o? ,03 ,d? ,ú ,a?]

-"r.tuh+rù<2

fofz <E=fo+fi+fi

(2.72)

(2.73)



The condition given in (2.73) is always satisfied as can be seen by noticing that

fsz +fr2 +frz =g¿¡o¡r,
where only the case f¡f2 ) 0 needs to be considered, since

(fo-fù2+fr2 >0

l.€.' fs2 +fr2 + b2 >2for2>fof2

(2.74)

(2.7s)

l¿,to)

Thus if the condition in (2.72) is satisfied then the channel (L=3) is a maximum

distance channel. Fix one va¡iable by using the energy constlaint

1s2+f12=E-rz2 (2.77)

where f2 is the variable that is fixed. The above descr.ibes a circle of r.adiu t 
^/ 

E - ú .

Thus if the conditions given by (2.72) arc satisfied by some segments of the circle,

those channel coefficient combinations will have maximum distance. The solution rcgion

is sketched apploximately in Figure 2,8. From the figure it is clear that the solution is

not unique.

These inequalities are derived using the set ofpossible free distance paths. Ther.efor.e

once this set of paths is found a series of inequalities can be found to obtain the

maximum d2¡=" channels. In [1] the above set is found for binary, three level and four

level signals fo¡ channel memories up to four, It is clea¡ that this set is finite because

only those paths in the enor state diagram which starl from all zero state and end in that

state without touching the same state twice in between, have the chance of becoming

candidates for the fi'ee distance path. As seen in (2.70) only a subset of these paths

would actually be in the potential fiee distance path set. Thercfor.e the channel coefficient
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Solution

Figure 2.8 : Maximum Distance Channel Coefficient Region for L=3

)

f1

I
A

B

oluuon segm€nl

f 1$s + fr¡ =!
rlfs+fr¡ = -|

fo

o\

-f2

N
0,0
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space is partitioned into regions where in a paÍicular tegion only one path always gives

the free distance. This fact was also shown in [32] where the optimum transmitter filter

fo¡ ISI channels was found using the eigenvalue technique.

For L=3 this set of paths are

s = { (2,0,0),(2,2,0,0),(2,_2,0,0) l.

In general the following theorem can be stated for any finite ISI channel.

Theorem:

(2.78)

For any finite ISI length there exists a maximum distance channel. Specifically if
the coefficients of the channel have the relationships given below then that channel is a

maximum distance channel for a binary signaling scheme,

V i, fi > 0 & fi > 2f¡r+2f,*2+....+2fLt ,i=0,1,...,L-Z (2.79)

Proof:

The distance of an error event of tength Øis given by

(2.80)

where e¡ e {0,2,-2} and since there is a merge at n=Ø -1

W-r=e¿-2="=e¿-(L-1)=o (2.81)

AIso e0 + 0 to statt the error.event.

Ùl L-, f2¿,=IlIfre"_rl !,>_L
n=01 k=o I
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To use an inductive proof first consider ø = L which establishes the starting conditions.

i)ø=L.

A merge at 0=L means that

Evt = Er_z = ...= €l_(r__r) = 0

and rherefore ¿z = 1foe6)2 + (f1es)2 + ... + (f¡-1€6)2 =.2o1:=t:(]

. m-l ft--r ì2 ?[L-l ^'ld;=>llfken_rl >eõl Ifil
n=0 Lk=o I Lk=O l

Thus all eror events of length L have a distance equal to the maximum free distance.

ii) Assume now that this is true for enor events of length ?, = m > L

(2.82)

(2.83)

(2.84)

ô.-¡*1 É 0

Figure 2.9 j=¡¡ a 1 as an Extension ofj=¡¡¡

Consider Ø = m+1. If it can be shown that (2.84) implies

29



(2.8s)

then the proof is complete.

The effo¡ event of 0 = ¡1a1 can be considered as an extension of the error event Ø = m

as shown in Figure 2.9.

Now the distance of this enor event is

^ n fr--r ^'ldí.r >eol > fíl
Lk=0 I

wherc

and the merge conditions mean that

€m-L+i = 0' i=1,..'.'L-1

ôrn-L+i = 0 , i=2,.....,L

" m fl--t 12dí*r=IlIfrônrl
n=0 Lk=o l

õ¡ = er i=Q,1,....,m-L ; ôr_¡*¡ É 0

m-l ltl.r f2 ll-r t2 ì

"=å., ilåt-u"'-] 
-l¿t-'"¡ 

¡ =o

(2.86)

(2.87)

(2.88)

(2.89)

(2.9t)

^ m.L[L.l f2 m-l [l-r f2d;=Illr¡en-¡l + | lLror"ol e.so)
n=0 Lk=o I n=m-L+t Lk=o l

" m-L[L-l f2 m.l ll-r 12 "dí*r = I I L fren-rl + I, I I frô"-r,l +(f¡-1ô,-¡*1)'
n=0 Lk=o I n=m-L+l [k=0 I

From the above if

(2.92)

then the desiled result is obtained. The left hand side is a series of L-l differences.

Name these differences A1 , L2,...., À¡-1. Consider the last difference, i.e. Á¡_1 (when

JU



n=m-i).

Using equations (2.88) d¿ (2.89) lor zerc enor symbols it can be seen that

À¡-1 = (f¡-2ôr-¡*, + fr_,er_¡)2 - (f¡-1en._¡)2 (2.g3)

= t -rõ?^-rr+ 2fL-2fL-rôm-L+1€n-L e.g4)

if fi > 0 then the maximum possible negative value for À¡_1, which gives the worst case

in contributing to possible failure of (2.92), is

Lr¡ = 4(fr-z- 2fL-2rL-r)

However if 1L_2> 2fL_l

then Á¡_1 in fact contributes a positive amount to left hand side of (2.92).

Now consider the difference when n=m-2. Proceeding as above,

(2.es)

(2.e6)

(2.e8)

(2.ee)

Á¡-2 = (f¡-3ôr-¡11 * f¡-2rr-¡ * f¡-1er-¡-¡)2 - (fr-2e^_¡ +f¡-1er_¡_1 )2 (2.g7)

Cancelling common tems the maximum possible negative value for Â¡-2 is

Again if

Ar-z = t_t - 2îL-3fL-2 - 2fL-3fL-l

1L_3>- 2fL_2 + 2fL-r

then Â¡_2 contributes a positive amount to left hand side of (2.92).

continuing in the same manner for other n a similar set of required inequalities are
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obtained to ensure (2.92). In general

îi> 2fi+r + 2fi+2 + ....+ 21L_t , i=0,1,...,L-2 (2.100)

Thercfore by induction if the above relationships are satisfied by the channel coefficients

it follows that

v ø>L (2.101)

and hence the channel is a maximum distance channel.

QED.

The main point behind this proof is to consider the euor event of length m+l as an

extension of an event of length m. Al1 the possibilities that could arise are given in

Figure 2.10. However, the strongest conditions for the channel coefficients are always

obtained by the case considered in the proof. The theorem only gives an existence proof

and the conditions on the channel coefficients are only sufficient. There could always

be maximum distance channels whose coefficients violate the given conditions. The

conditions can be easily extended to M-ary PAM. Extension to complex signal alphabets

(QAM) is possible with necessary modifications. For a discussion of these see Appendix

A.

2.4 Obtaining the maximum distance by modifying the overall resnonse:

There are clearly two methods of achieving this. A prefilter can be used at the

transmitter so that the combination of that filter and the channel response would give a

maximum distance channel. The other method is to use an equalize¡ at the receiver for

o3=,ål'; r?lç Lk=0 I
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only one zero

Figure 2.10 Aìl possibilities of extension

ôr-¡*1 + 0
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the same purpose. When a prefilter is employed at the transmitter the channel response

H(f) and discrete response F.(Z) for the maximum distance case are assumed known.

From Fr(Z) the analog response H.(f) can be found. Thus the response of the prefilter.

Ho(Ð is Biven by;

Ho(Ð H(Ð = Hm(f)

Hp(Ð =

Fn(z) =c(z)F(z)

cz\=!&
F(Z)

The equalizer output signal to noise ratio is

snn = 9lF't
a^

o-lq'

Hr(Ð
H(Ð

(2.102)

(2.t03)

(2.104)

(2.105)

(2.106)

If H(f) is stable and does not have spectral nulls then Hp(Ð, the prefilter, can be

realized. This results in an overall response of H.(f) which will achieve maximum

distance. Since this is done at the transmitte¡ there is no noise enhancement.

The other option is to use a equalizer at the receiver end for. the same pulpose as

shown in Fig. 2.1i. If the known maximum distance response is Fr(Z) then
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Channel Equalizer

Figure 2.1 1

As a more sophisticated method, the equalizer for the mean square error (MSE)

cdterion is described below following the procedure given in [26]. In the MSE criterion

the tap coefficients {cj} of the equ alizer arc adjusted to minimize the mean-square value

of the error

sk=[Yr],u*-[ñ]."", (2.to7)

[yr],n"" ir the channel output without noise for the maximum distance channel and

[fr]n''* i, the estimated output by the equalizer. These can be expressed as

L-l
[Yr].u* = I q,nar-n,,

m=0

where Q(Z) is the known maximum distance response.

[yr].u^ = I c.yr-'
m=- æ

The performance index for the MSE criterion, denoted by J is defined as

r=nlel'z
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A set of linear equations can be obtained by invoking the orthogonality principle in the

mean-square estimation. Thatis, the coefficients {cj} are selected to make the enof €k

orthogonal to {yi-.} for -"," < m < "". Thus

E(e*yi_J=s -cô<m<co

substitution for e¡ and yi-. yields

E(vkl,.*vi-J = edñ],"*vi-,'1

By simplifying the expectation from MSE it can be shown that

(2.1t1\

(2.1t2)

1'9.'

with the noise whitening filter

(2.t13)

(2.r14)

(2.tts)

The difference in this case is Q(Z) which for zero ISI would be l.

In the above calculations Q(Z) (maximum distance response) is not unique. There

are many maximum distance channels for a given length of interference as shown in

section 2.4. Hence one can select Q(Z) subject to the condition that the signal to noise

F. (z\Q(z) = cØ)lF Ø)F. (zt¡ + o')

cØ¡=-E-Ø)atz)__,
lrq¡r"ç-t7 + o'l
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ratio (SNR) be maximized at the output of the channel. Thus the equalization can be

done subject to two constraints; one is the minimizing the emor in approximating the

maximum distance response, the other is maximizing the SNR, The brute force method

of doing this is to go through all the maximum distance channels and select the one

which gives the highest SNR. It is also important to realize the fâct that if the

approximation is close enough one would still end up with a maximum distance channel

as they span over a range of coefficients. The main conceln is therefore SNR as what is

gained by the maximum distance channel can be diminished by the enhancement of

noise-
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Chapter 3

Convolutional Codes for ISI

The previous chapter considered distance proper.ties ofISI channels. In particular it

was shown that any finite ISI channel can achieve the same error performance as the

non ISI channel though depending on the specific channel the transmitter power may

increase. This is in the sense that the minimum Euclidean distance, d.in, between two

channel output signals is the same. To further increase dn,'in, block, convolutional or.

trellis, coding could be used. Though all three techniques have a trellis representation,

the tlellis structure of convolutional or trellis codes, being reguiar, is more closely

rclated to that of ISI channels. Thus convolutional codes for ISI channels are considered

in this chapter while trellis coding is discussed in the next chapter.

The literature on convolutional coding for ISI channels is sparse. Historically,

perhaps Viterbi [35] first discussed the application of convolutional codes to ISI

channels. He was primarily concerned with the decoder/demodulator. structur.e and did

not consider the interaction between code and channel. Vy'olf and Unger.boeck [37],

motivated by the magnetic recording channel derived several lemmas which show that if
convolutional codes with a good d¡."" (Hamming) are used then the resulting minimum

Euclidean distance is increased. They considered specifically a (1 - D) channel as

shown in Figure 3.1 and used a configuration of a coder followed by a channel

precoder (Figure 3.2). Lee [7] considered a slightly more general channel of the form

1 - DN (N = I,2,3). An algebraic procedure is given to obtain codes with desirable

properties such as run length limited codewords.

In this chapter convolutional codes for ISI channels with real coefficients are
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2 state
Viterbi
Decoder

0-+ -1

1-++1

yi e {0,+2}

Figurc 3. 1(a). ( 1 - D ) Baseline Communication Sysrem

- 

bi =0
--bi =1

Figure 3.1(b). Trellis Diagram



Parallel - serial converter

Convolutional
Encoder

2v+!

State Viterbi
Decoder

0-+ -1

1-++1

Noisy (1 - D) Channel
Selial - parallel converter

Figure 3.2. Convolutional codes with a precoded (1 - D ) channel
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investigated. The criterion is to optimize the encoder/channel combination to maximize

dr¡n, i.e., the code is "matched" to the bandlimited channel. To do this dn.¡n must be

determined for the coder/channel cascade. Thus the methods of Chapter 2 are extended

and presented in the next section. Following this there is a discussion of the general

properties of convolutionally coded ISI channels. Of these, the changes such as signaiing

rate and change in ISI that should be taken into account when an encoder is placed at

the transmitter, are consideled first. If the encodet is catas[ophic then the coder./channel

cascade is also catastrophic. Ploof of this is given next followed by bounds on the

coded distance of the ISI channel. The chapter concludes by developing search procedures

to find the best combination of convolutional encoder and ISI channel. These are

illustrated by examples.

3^1 Errnr sfefc diaor¡rn:

A crucial step in determining the minimum distance for the combined system of a

convolutional encoder followed by a finite real ISI channel (coded ISI system) is the

construction of an effor state diagram. Once an error state diagram is constructed, well

known graph search techniques such as Dijkstra's algorithm [L7,191 can be readily

applied to find dr¡n. These methods are essentially those of the uncoded case except for

an inclease in computational complexity.

To illustrate the construction of an error state diagram consider the system of Figure

3.3. Hele PAM with (0,1) signaling instead of (-1,1) is used. For the purpose of

distance calculations the diffelence would be a factor of four. The Euclidean distance

between two sequences (i.e. k , k') of length 2Ø in the channel trellis ( Øis the length

of the input bit sequence u, and thus 20 is the channel input sequence length) is given

by
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'' conversion

x Convolutional code: R= 1/2 ; Generators t(t)p¡ = 1+D+D2, g(2\l)=D+D2
x ISI Channel: Impulse rcsponse length L=3 ; Coefficients ( fo , fl , fz )

Figure 3.3. Communication system with convoiutionally encoded input
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e_
o'=.1, lrÍ,1'ror - rÍ,1)ro'l]'* fvff)rrl-vÍ3)rrl] ' e,)
wherc

v$)ttl = fe.[u-g¡ @ u. - 1(k) @ u'n - 2ft)] + t1. [u,n -2(k) o u. - 3(k)]

+ t2. [u,n - 1(k) @ u, - 2(k) @ u. - 3ft)] ß.2)

yf;)ft¡ = rs. [r* rG) @ u- - 2(k)] + f1. [u,ft) @ u. - 1(k) @ u- - 2(k)]

+ f2. [u- - 2(k) o u- - 3(k)] (3.3)

@ represents modulo 2 addition and '.' ordinary real multiplication ;

V$){k) i. ttt" "tr*nel 
output conesponding to filst output of the encoder ;

Vfi){t) ttr" 
"ttunnel 

output coffesponding to second output of the encoder;

each m considers two ISI tlellis steps due to the rate of the code (see Figure 3.4).

rhus ro calcurar" 42, lv$)tr.l - y$)tr.'l] una fvff)rtl - vf 
,trl] have to be round. rf

an error state diagram is to be drawn then these differences must be found using error

symbols. In addition it is necessary to find the memory of the coded ISI system. From

equations (3.2) and (3.3) it can be seen that the memory is 3, (since the pt€sent output

depends on three previous inputs, u- - l, um _ 2, u- _ 3). Calculation of the memory

for a given system is detailed in the next section. For a binary alphabet the erlor

symbols are 0, 1, -1. Thus there are 33= 27 error states. With the modulo opelations

present in equations (3.2) and (3.3) values for u.(k) and u*(k,) should be found given

the values ofthe error symbols. Consider the case where the error symbol is zero.



I Channel inout
6 sYmbols ' k,k' - two Paths

vÍ')trl v!')rtt v!)ttl

vÍ')G) '

,z\

y!')rr.ì,,

vt)(k')

Figure 3.4. Channel trellis for the coded input



sm = um(k) - un(k') = u.(k) = l, um(k')= 1oru,n(k) =0,umG')=0 (3.4)

For a given elror state a set of state pairs for the two sequences ar.e possible. For

example

€= (0,0,0)=u = (0,0,0),i =(0,0,0)or u = (0,0, I ),u = (0,0, t )

etc. Thus for a given error state there can be many state pairs.

A poltion of the error state diagram is shown in Figure 3.5 with the state pairs.

Distances for each and every set of encoder state pairs need to be calculated in order. to

obtain the minimum distance. Extensions for the other constraint lengths of the

convolutional encodet's and ISI can be carried out in a similar manner. Another way to

find the distance is to dilectly use a state pair diagram. Here a state is given by (u, ñ) .

All possibilities fof u and ñ have to be considered to construct this state pair diagram.

3-1-1 Memnrv .¡f fhA ¡ndêd lSf swcfern.

An important thing to note is that the combined memory of the coder./channel

system is less than the sum of the memories of the ISI channel and the convolutional

encoder [35]. In general the n output symbols from the coder that are input to the

channel have a memory given by the constraint length (K) of the coder. Since the ISI

channel also has a memory of v (= | - 1) thele are at mosr [;l t f.f is the ceiling

function.) groups of n symbols in memory length v. Hence in terms of the encoder.

inputs, if the present time at the encoder is k, then t¡e t - f lll + K ) previous input is'lnl
the last to affect the present channel output. Therefore the total combined memoly is
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State pairs

|_r.r,' qlpl

I r,o, r o,o,o 
I

u = u,_r (k) ,u,n_2(k) , u._3(k)

Figure 3.5. Pottion of the euor state diagram showing state pait

needed for distance calculation
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Encoder input intervals

L=3,v=2
K=2,n=2

Totalmemorv=K*li' =3 lnl

lll-.t

symbols affecting channel
output

Figure 3.ó

f.,l
l:l + K. This is illustrated in Figure 3.6 for the example.
lnl

3.2 Change in ISI due to coding:

The addition of an encoder at the transmitter poses a problem for the data

transrnission due to the increased rate. Either the source rate, or the channel rate, has to

be kept the same. If the source rate is kept constant then the channel rate has to be

increased and hence the ISI changes.

Consider the example of a rate l/n convolutional encoder used with an ISI channel.

For evely information(source) symbol the encoder produces n channel symbols.

Therefore either the channel rate is increased n times if the source rate is maintained or

the source rate is leduced by the factor n, If the channel rate is kept constant the

reduction of the source rate has to be taken into account when the coding gain is

defined. On the othel hand, if the channel rate is incleased which is the usual situation

where one has a fixed source rate, then the numbel ofISI terms generally increase due

to the fixed bandwidth. This is shown in Figule 3.7, In this case the loss of signal to
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noise ratio due to additional ISI terms should be taken into account. In the literature the

coding gain is defined as follows:

6 = td2ti"("oot¿) ; R is the rate of the code.
dfi',,,(uncoded)

(3.5)

where R is supposed to take the change in signaling rate into consideration. The above

does not account for the change in ISI terms should the channel r.ate increase. This

ploblem was addressed by Bergmans [4] who incoryorated the change of ISI into the

coding gain for rate 1/n codes for some integer coefficient channels with r.esponse of

the form (1 + D)N or (1-D)(1 + D)N (N=0,1,2),

Here codes of rate i/n and b/n are considered for channels with real coefficients

with the soutce rate kept constant, Thus a new set of ISI coefficients have to be found

in each case due to the increased channel signaling rate. Consider the autocotrelation

function R(T) of the channel impulse response. If the code rate is b/n then the new

sampling late at the receiveL is bT/n where T is the sampling interval before coding.

Thus the sampled autoconelation function is R(kbT/n). It is straightforward to find the

coded channel response F"(D) using spectral factorization and hence the new set ofISI

coefficients. On the other hand if one starts from the coded response Fc(D) and the

uncoded F(D) is required this can be found exactly only for the case of tate 1/n. This is

done by undersampling \(D) by a factol of n as illustrated in Figure 3.8 lor ala;ïe ll2

code. In general if

R"(D) = ! R¡D'
I

then R(D)=lRn¡Di
t

(3.6)

(3.7)
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Channel rate : -1 symbols / sec

No. of interference terms = 1

Channel rcte i Tl symbols / sec

No. of interference terms = 3

Figule 3.7. Effect on ISI due to a doubling of late ; Length of channel impulse

response = 2T
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OT2T3T
sampled autoconelation function for coded channel
glven

sampled autocotrelation function fol uncoded
channel where code rate is l/2

Figure 3.8
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for the uncoded case. However if the code rate is b/n then it is not possible to find out

an exact uncoded ¡esponse from the coded response given since the samples do not

coincide.

Several examples are given next which consider codes of different rates for differcnt

channels. The signaling rate is increased to account for the encoder output, i.e., the

source rate is kept constant,

(A) Code rate is R=1/2. Two channels are considercd.

i) A single pole truncated channel of different ISI lengths.

ii) A raised cosine impulse response channel of different ISI lengths.

The coding gains for the two cases are given in Table 3.1 and3.2. Fr.om the tables

it can be seen that thele is a coding gain only for the ttuncated single pole channel with

arute l/2 code. For the laised cosine channel there is a loss which implies that for this

kind of channel a higher rate code may be more suitable.

(B) R=2/3, Same channels as above are considered.

Results for distances are given in Tables 3.3 & 3.4. The tables show there is a

coding gain for both truncated single pole channels and one of the half cosine channels

in this case.

As seen fi'om the results when the length of ISI is long the coding gain is either. low

or ther€ is no gain. This is not intuitive because it is generally expected that there is a

coding gain when a convolutional coder is used. The loss is partly due to the factor.R in

the coding gain expression and also due to the increase in ISI. Ther.efore it is essential

to take the change in ISI into account when the channel rate is increased, other.wise the
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source rate p=1 t,
constant

L (coded) G (dB)

4 2 (4) 3.22 (3.88)

3 2 (4) 2.68 (3.73)

2 3 (6) t.66 (3.21)

1.5 4 (8) 0.8s (2.0)

Table3.t. Encoder Matrix C 
-r r Ir

(D) = 
| i ö i1 t'""distance=5

Channel impulse response is e- at truncated: Gain values
assuming no change in ISI are given within brackets

source rate R=1/2
constant

L (coded) G (dB)

2 (4) a1 (3.0)

5 (10) -4.9s (-0.16)

rabte 3.2.Encoder Marrix c(D) = 
[ I å I ] "* 

disrance = 5

channel imputse."rnonr" rf [r ""'(#,)] : Gain values

assuming no change in ISI arc given within brackets
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a
source rate I2=) t?
constant

L G (dB)

4 2 (3) 3.75

3 2 (3) 4.5

2 3 (5) 3.75

1.5 4 (6) 3.15

f1
Table 3.3. Encoder Matrix G(D) = | I

t0
3 l] o*" *u** = ,

at truncatedChannel impulse response is

source tate R= 2/3
constant

L G (dB)

2 (3) r.72

5 (8) -3.56

rabre 3.4.EncoderMatrix c(D) = [ I I å i 3 i I F,." disran"" = s

Lorrrool
channet impulse respons" #lt *r(#,)]



gain calculated assuming the ISI remains unchanged is not t€alistic, i.e., if (3.5) is used

without accounting for the increase ofISI the gain would be higher in general. Using a

higher rate code is one method of not increasing the ISI substantially although to obtain

a significant amount of gain a long constraint length code which has a larger d¡."" may

be necessary.

In the search for the best coder of a given rate it is important to keep in mind that the

ISI used is that due to the increased channel rate.

3.3 Catastronhic Encoders:

Convolutional codes in general are divided into two main categorÌes: catastrophic

codes and noncatastrophic codes. In 16, 11, 201properties of convolutional codes are

described in detail. As the name implies catastrophic codes can produce an infinite

number of decoding errols due to a finite number of channel errors. Massey and Sain

[22] found the conditions for a code to be noncatastrophic. The channel they considered

was a memoryless one. ISI channels, however.have memory. Her.e it is shown that for.

finite memory charurels the combined encoder and ISI trellis is still catastrophic whenever

a catastrophic encodel is used. Note that for infinite ISI channels this may not be a

problem depending on the impulse response.

Lemma:

The combined encoder and ISI trellis is catasnophic if the encoder used is catast¡Jphic.

ploof:

For a convolutional code to be noncatastrophic its generator polynomial matr.ix

G(D) has dereminants 4(D), ø = 1,r,...., (tl rhar satisff
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(3.8)

fol some a [22].

When this condition is not met the trellis will have output sequences with finite weight

for an input sequence(s) of infinite rveight. This is illustrated in Figure 3.9 for a code of

rate 1/2. Without loss of generality assume the length of ISI is 3. The paths in the ISI

channel are shown in Figure 3.10. For the paths shown in the combined tr.ellis the

Euclidean distance does not increase after several intervals although the input sequences

have an infinite weight. This would be same even if the ISI length is longer. which

implies that the combined trellis is catastrophic as well.

QED.

The above argument is also valid for the rate b/n codes as well. The r.eason is that

for a catastrophic code after the first few intervals, there exists convolutional code

output sequences that are the same. Thus in the ISI trellis the Euclidean distance does

not increase. Hence the resulting ISI trellis is also catast¡ophic. Therefore only

noncatastl'ophic codes have to be considered for. the use in ISI channels. For

wideband(infinite) channels the best convolutional code for a given rate and constraint

length is usually considered to be one with the best fiee Hamming distance. euestions

arise as to what would happen when the encoder and the ISI channel are combined;

whether the best code still gives the best coded distance for. any channel, what are the

properties of the channel which gives the best distance; is it a maximum distance

channel without coding? Some propelties of the coded distance are discussed next to

gain some insight into the above questions.

ccD 
[^?ro) ø= r ,.. . ,(il = o"
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Encoder Matrix GrD) = ll I ol
[0rrl

output path corresponding to input sequence 1 1 1 1 1

output path corresponding to input sequence 0 0 0 0 0

00 -:
00nn00

\ 10

01

-'õo- -- õo- -- To- 00
No weight increase between the paths shown after this point

Figure 3.9. Trellis for a R=1/2 catastrophic code

Two paths fiom the encoder are
merged aftel this point

1

0

d2=Po+fr*t*t*4*É=r"

Figure 3.10, ISI trellis for L=3 with paths fi.om the encoder of Figure 3.9



3,4 Bounds for coded distance:

The channel response here is that ofthe coded channel whe¡e the rate incr.ease due

to the encoder is taken into consideration i.e., that the source rate is constant. With an

encoder the output sequences form only part ofthe paths in the ISI trellis. Therefore the

ISI trellis can be considered to be pruned to follow the paths that ar.e allowed by the

encoder, This is illustrated in Figure 3.i 1. Thus the coded ISI trellis is a pruned ver.sion

ofthe oliginal trellis and hence the coded distance is always lar.ger than or equal to the

minimum distance without coding. This can be stated as an upper bound.

(d2,',i n)rnroo"¿ < (dI; J.o¿.¡ (3.e)

To calculate the Euclidean distance, eüor sequences from the encoder need to be

genelated. This can be done by considering either the err.or events in the encoder trellis

diagram ol in genelal using a pair state diagram for the encoder. to find all the possible

emor paths. Obviously not all the error paths ar.e essential to find the minimum distance

of the coded ISI trellis. The elror sequences which have a Hamming weight equal to or

close to the Hamrning weight of the free distance of the convolutional encodel are more

important since they have a better chance of giving the coded minimum distance.

As an example consider the encoder given in Figure 3.12. The set of etrol. sequences

with Hamming weight equal to the fiee distance of the code is given in Table 3.5 along

with an expression for Euclidean distance for. a channel of ISI length two. As seen from

the table, for several sets of paths the squared distanceis of the for.m d¡r""E + 1 (E =

channel energy). In generai the squared coded distance is found to be less than d¡r"".E

ol slightly higher. Thus based on the above discussion the following proposition is

made for the
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Encoder matrix 

"r 
= 

[1 å l]

allowed paths not allowed paths

00

01

10

11

Figure 3.11. Paths allowed in the ISI trellis of L=3

Figure 3.12. Encoder of the constlaint length 2 best convolutional code
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No Bror sequence nl n2 n3

I r0l 3 2 J

2 11101-1 2 I

3 1110-1 1 0 I

4 1i10-1 -1 3 0 3

5 l1-1 011 l n I

6 t1 101 I 1
a I

7 11-10-1 I t n 1

8 11-1 0-1 -1 0

9 1-1 1011 I 2 1

10 1-1 101 -3 2 -3

1t f-i10-1 i -3 0 -3

1.2 l-1 10-1 -1 0

t3 I 1-1 011 n

t4 i-1 -101-1 I a

r5 1-1 -1 0-1 1 0 I

T6 1-1 -10-1 -r 0 I

Table 3.5. Euor sequences of shortest length. The Euclidean distance for.

each elror sequence is d2 = 5E + nt.(2fofl ) + n2.(2fsfù + n3.(2f1f2) wherc

h1,1ì2:o3 ale integers,
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coded channel configuration given in Figure 3.3.

Proposition 3,1r

(d|in)"o¿"¿ <[{dr,"")"" * o]r; o< l usually'

where (d¡r"")"" is the free Hamming distance of the convolutional code.

(3. i0)

Flom this it can be infened that the convolutional code with the best free distance

would give the best coded distance. The specific channel or channels with this property

are still to be found. To get the highest minimum distance upperbounded by the

Hamming weight of the errot'sequence, the distance spread among the er¡or sequences

must be small. It is clear that for non maximum distance channels there ale several paths

with smaller distance. The reason is that the length of emor events which determine the

minimum distance can be up to 2(L-1) and for non maximum distance channels it is

possible to have squared distances close to E (channel energy) for some of these paths.

If they didn't have these paths then they would become maximum distance channels.

But a good maximum distance channel with its small spread of distance would have

squared distances close to (L-l)E for these paths, Therefore when an encoder. is placed

the maximum distance channels usually give the best coded distance. Fo¡ the non

maximum distance channels it is possible for the coder to pick up a path with less

distance as there are usually several such paths and at least one path with smaller.

distance. It is also possible for a non maximum distance channel to give a better coded

distance than some maximum distance channels. Still this distance is usually not the

best coded distance possible for a given ISI length and for a given constraint length of

the encoder. Based on the above discussion the following proposition is stated.
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Proposition 3.2:

The channels that have best coded distances are in the set of maximum distance

channels without coding.

3.5 Search for Good Codes:

Certain properties of the convolutionally coded ISI channels have been discussed

up to now. Here a seatch is carried out to find out the best convolutional encoder of

given constraint length and rate for a given ISI channel. In other words to match the

code with the channel. It is impossible to obtain an analytical solution since there is no

analytical method even to find the convolutional code with maximum free distance,

hence the search. Some properties such as symmetry are used to limit the search.

Another issue is the coefficients ofthe ISI channel. Although a fixed energy constraint

can be imposed, within that an infinite number of combinations may be possible. Hence

the seatch has to be limited to certain set ofchannels. In literature the class of magnetic

recording channels has been snrdied in detail. He¡e the search is carded out to find the

best encodel for L=2 ISI channels and fol some L=3 ISI channels.

3.5.1 A search method for a given channel:

The objective he¡e is to find the best convolutional encoder of given constraint

length and rate for a given ISI channel. A set ofnon catastrophic encoders are selected

which usually is a subset of all the encoders possible satisfying the requitements given

above. Of the total number of possible encoders, the ones with a Hamming weight in

the set of

[(d¡r.")u"rr cc,(drr"")¡".t cc - y]
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are selected for distance calculation. 1 is chosen to include codes which could possibly

give a better distance even though their fi'ee distances ale less. In addition to this,

symmetlies in the encoders are used in order to leduce the amount of search. The

symmetry exploited here is based on the following.

Assume there arc two encodels G(D) and G'(D) of rate 1/n, constr.aint length v. If

S'¡(i) = s¡"+r-¡¡(v - i), 1<jln,0lilv (3.r2)

then tho Euclidean distance from these two encoders when combined with an ISI

channel will be the same, Aulin et al showed this for the CPM case [21]. Here a similar

argument is made for the ISI channels.

proof:

Assume u = (...,0,0,uo,u1,...,u¡,...) a¡rd u'= (...,0,0,u'6,u'1,.,.,u'¡,...) are input

sequences to the convolutional encoders G(D) and G'(D) respectively. If the condition

given in (3.12) is satisfied and uj = u¡-¡, the output sequences from the encoders v¡

and v'¡ where j=1,2,...,n arc related by

v ji = v(n+l-jxk+v-i) (3.13)

Thus the output sequence v' from the encoder G'(D) is a time levelsed form of the

output y from G(D). Therefore when the ISI tl'ellis is considered output sequences

from G'(D) make state merges which are only time reversed if G(D) is considered.

Thus the Euclidean distances comesponding to these two encoders will be the same.

QED,
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In the following L=2 and L=3 coded ISI channels are considered. Longer ISI

lengths can also be conside¡ed, the limitation her.e being the complexity of the distance

calculating algorithms and hence the time involved. By the same token long constraint

convolutional codes also add to the complexity. Thus short constraint length codes of

memory up to five ale searched. For the L=2 channel first a formula is derived to show

the general form of the distance curve. Search results arc given next .

3.5.2 L=2 channels:

(Channel resnonse is for the coded case)

The channel : fs = çss ct f1 - sin u

Consider the v =2,R= ll2, dr,"" = 5 encoder given by [ 111, I01]. It produces

the following enor sequences of Hamming weight 5

a) 1 1 101 10 b) 1-1 10-1 10

a?^=sçfo+f)+6fofr=5+6rofr ¿3=sr4+4)-6f0fr=5-6forr G.14)

Thus d'r," < 5 for with this codel achieving equality for the no ISI case. In general

regardless of the encoder,

dfu"=d¡,""+nf¡f1

here n is an integel multiple of2 due to the expansion of squar.es.

(3.1s)

Bur f6f1 = si¡ o..o, o = þin zo. (3.16)

therefore if n = 2n6 then



då.," = dr."" + nosin 2c¿

where n0 is the adjacent pairs of 1's in the error sequence.

If emor sequences othel than the above are considered, one has

(3.17)

d2,n;n = (du + n6sin 2o)r¡n (3. 18)

where the minimum is taken over the set of possible candidates for the minimum

Euclidean distance.

Some of the results of the search are given in Figures 3.13 - 3.16for rute 1/2,2/3

and 1/3 encoders. The rest are in Appendix B. The channel response is that of the

coded channel. The conesponding uncoded channel is therefore an ISI free channel for

rale 1/2 and, 1/3 cases and a channel with one intelference tetm for rate 2/3 codes.

Convolutional codes of constraint lengths up to 5 are considercd.

The following notation is used in the Figures.

R : code late;

K : encodel constraint length , CC : Convolutional codes ;

L : Channel impulse response duration ;

Encoders are specified in terms of generator polynomial coefficients

R= 1t2 lg(1) g(2) I ; R=1/3 ¡ *{t) *(z) U{:) 1

R = 2/3 Feed Back Encoders ¡ h(z) 6(t) ¡(o) ¡

All angles ale given in degrees.
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coding gain = ro Los fIfo{.og:ql
1dfi,"(uncoded)l

into account.

dB, he¡e d2-,"(coded) takes the increase of ISI

From the results the following observations may be made:

1) All the cutl)es are parts of sinusoids and symmett.ic about the angle 45 degrees,

This can be explained using (3.18). Further from 900 - 1800 the graphs are the

same. Also at 450 the coding gain is always the lowest rcgardless of the encoder except

fol the case shown in Figure 3.15. The probable rcason in this case is that the candidates

for minimum distance are of the form

d|¡n = (dr.r + nosin 2cr)min (3.19)

and hence the distance curve has a maximum at o = 450.

2) Highest coding gain is always at zero degrees, which is the ISI free situation.

Thus the presence of ISI degrades the gain here whereas without coding ther.e is no

loss in performance fol L=2 channels.

3 ) Approximately befiveen 30 - 50 degrees the encoder with the best d¡r.. does

not give the highest coding gainfor some constraint lengths.

(see Figures 3.I3,3.14,3.i5 and 3,16) The encoder with the best drree therefore,

does not necessarily give the best performance for any ISI channel. This encoder.

always gives the best coding gain in the rcgion close to the ISI fiee situation.

4) It is also seen that for the cases considered here the upperbound given in

proposition 3.1

(d|,¡n)"oo"a < [(arr"")"" * o]n
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holds with 6 equal to lero except Íor the case shown in Figure 3.15 where o ís

one.

The ISI free case usually achieves equality. Even for the case in Figure 3.15 the

upperbound given by the encoder with best d¡r"" holds with o equal to zero.
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3.5.3 L=3 channels:

The channel coefficients are expressed as

fo = fErincx fr = fiEcoscx.sinþ fz= fiEcoso.cosB

so that the channel energy is fixed at E. Maximum distance regions for the channel

considered here are as follows. Angles are given in degrees.

cx = 10 ; Þ = 0 to 25 ;7O to 290; 335 to 360

cx = 30; Ê = 0to 25 ;85to275;335 to 360

ct=60;P=0to360

The worst ISI channels arc at o=300,F=5S0andP=3150.

Here late 1/2 convolutional codes of constraint lengths up to 4 are considered. The

corlesponding uncoded channel for rate 1/2 codes is a L=1.5, a maximum distance ISI

channel.

For this channel d2.,n(uncoded) = 8.

d2,-(uncoded)Since 2d'.,n(uncoded) = 16,',,'

the coding gain - 
otin(-tlo"d).

Some of the results ale given in Figures 3.17 and 3.18, the rest are in Appendix B.

Squared Euclidean distance is plotted against the var.iation of angle B for. a fixed value

of angle o.

The following obsewations can be made:

1) As seenfi'om all the graphs her.e, the encoder with the best d¡r."does not

necessarily give the best perfomnnce for all values of þ.
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As an example consider the case shown in Figure 3.17. For B in range of 200 to

600 the code with d¡r"" = 5 gives a smaller coded distance than those with drr". = 4,

Many other examples can be seen by examining the Figures.

2)The highest coded distances are always given by the encoders with the highest

dfree values.

Again this is the situation for all the cases considered here. Thus if the channel

lesponse can be modified, to obtain the largest coding gain the encoder. with the best

d¡."" ma] be used.

3) The highest coded distances are obtained by the ntaxíntum distance

channels.

Consider Figule 3.I7.The highest coded distance of approximately 38 is given by

angles or = 100 and F = 1000 . Channels in this region belong to the set of maximum

distance channels. All figures give the same observation.

4) For some ranges of þ the coded distance is lower than t6 implyirtg that for these

c(tses there is no coding gain,

Consider Figule 3.17. One of the regions in which the above happens is B = 250 ¡o

600. The channels in this region are non maximum distance channels. The same holds

for Figule 3.18 as well. Thus it can be argued that maximum distance channels give

better coded distance in general. Another thing is that, as seen above, coding doesn't

always improve the errot performance. To obtain a gain for these channels an encoder

with a large d¡r"" and hence one with longer constraint length would pr.obably be

lequired.
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In conclusion, properties of ISI channels with convolutional encoded inputs have

been considered in this chapter. Construction of the error state diagram or the pair state

diagram for the channeVcoder cascade is the flrst step in determining the coded Euclidean

distance. Catastrophic convolutional coders produce catastrophic ISI trellises and

therefore should be avoided. Vy'ithout coding there is a unique upperbound, the

channel energy, for the minimum Euclidean distance for ISI channels. Once coding is

considered this upperbound is no longer valid, instead an upperbound related to both

the free distance of the code and the channel energy is conjectured. Search results

indicate that the encoder with the best free distance does not always give the best coded

distance when combined with an ISI channel. On the other hand it usually gives the

best coded distance possible for a given ISI length and a given consttaint length of the

coder, Another observation is that for the cases considered in the sear.ch, a particular

encoder is usually best over a range of channel coefficients. Thus if the channel coefficients

change by a small amount, the best encodel would still be the same. This is a good

properry specially because all channels change their. char.acteristics over time.
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Chapter 4

Trellis Coded Modulation for ISI

T¡ellis coded modulation (TCM ) is generally used to achieve bandwidth efficiency

while obtaining a higher noise margin [34]. Therefore an alternative to using a

convolutional encoder for ISI channels is to use TCM techniques. A study ofTCM

schemes in general can be found in [5]. TCM signals usually have a quadrature component

and an inphase component and these are modulated by a carrier. Hence the channel in

this case is a bandpass channel. For the work presented here the equivalent baseband

channel is considered. Unlike the convolutional code case where GF(2) operations are

involved, here only Euclidean space is present. Hence, in loose terms, some form of

continuity is preserved when TCM and ISI is combined.

The main objective is to discuss the properties of the TCM coded channels and find

the best encoders for sevetal ISI channels along the same lines as described in chapter

3. A brief survey of some of the work in this area is given first followed by a

descliption of the communication system used. Calculation of Euclidean distance for

the TCM coded trellis and methods to simplify the trellis structure are considered next.

Finally a search for good TCM encoders is car¡ied out for several ISI channels. A

comparison of their coding gain against another alternative scheme is made to obtain

insight into the application of coded modulation for. ISI channels. Analogies dtawn

from the application of convolutional codes a¡e discussed as well.

4.1 Background:

wolf and ungerboeck [37] discussed the application of trellis codes based on the

set partitioning idea developed in [34]. The channel considered was a (1 - D) channel.
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All possible noiseless channel outputs of a certain length were grouped into a numbel

of sets. Using these sets a trellis code was found. By using longer lengths of channel

outputs larger values of dl¡n can be obtained. Several other papers considered the same

channel model with TCM [14,18,31].

Performance bounds and distance spectra for certain trellis codes in ISI ar.e given in

[30]. There it is shown that if quasiregular TCM codes are used for ISI channels the

complexity for distance calculations is reduced. Larsson [19] uses this idea to find the

worst case ISI channels for ceÍain TCM schemes. Chevillat [10] descr.ibes decoding

the trellis encoded signal in the presence of ISI using reduced state sequence

detection(RSSD). Wong and Mclane [40] considered the eror performance of trellis

codes for a class ofequalized channels. Extensions from these results are worthwhile to

investigate since it should provide more insight to the problem of matched TCM codes

to ISI channels.

4.1.1 Communication svstem:

A block diaglam of a bandlimited channel with a TCM encoder is shown in Figur.e

4.1. Here the channel can be thought of as the baseband equivalent of the band pass

channel for the caruier modulated signals. In general it is a complex channel. Signals

can be replesented by a sequence of complex numbers (x) from the encoder sent to the

channel. The channel output depends on the state of the encoder and the present

information input, usually a binary vector.

The output ofthe channel, using the discrete equivalent system can be given by

; xi 's are complex. (4.1)

wherc v is the length ofISI and f¡'s are coefficients of the discrcte channel response.

Yr = I fixr-i
i=0
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Figure 4.1. Transmitter side of a TCM system
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Kk = g(uk , sk) (4.2)

whele uk is the input vector and S¡ is the encoder state vector. g(.) is the mapping

from the binary output ofthe encoder to the complex channel signal.

Two typical encoders and the conesponding channel signal alphabets are shown in

Figwe 4.2. A definition for coding gain is given below which will be used throughout

this chapter. It is the same as that given in [15].

Definition:

The asymptotic coding gain G =
(d2r,n/ Puu¡ coded

(dTin/ P"") uncoded
(4.3)

where is d|,n is the overall minimum distance and P"u is the average transrnitted power.

The reason for dividing by Puu is that with TCM the signal set is usually expanded.

This results in a larger P"u thus requiring normalization to compare the coded and

uncoded cases fairly. For PSK schemes P^u, the average transmitted power does not

change whereas for other schemes such as PAM, Pav of the uncoded and coded signal

sets are different.

When the constraint length of the convolutional coder in TCM is large the number

of states in the combined coded tr.ellis becomes very large. Thus the computational

complexity of the distance calculating algorithms becomes much higher. To avoid this

to a certain degree some properties of the encoder can be used. It is shown [19,30] that

if the coded trellis is quasiregular then the complexity of the distance calculation can be

leduced by a significant amount. The next section discusses quasiregularity as applied

to valious signal sets,
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4.2 Ouasiregularity in TCM encoders:

To calculate the minimum Euclidean distance for a TCM encoder combined with an

ISI channel, al1 pairs of input sequences have to be conside¡ed in general. In other

words a state pair diagram for the encoder has to be used. Hence the computational

complexity of the distance calculation depends on the square of the number of states of

the encoder. However by confining the encoders to have a special configuration the

distance evaluation can be simplified considerably.

Recently Schlegel [30] introduced the concept of quasiregularity as applied to ISI

channels using an Ungerboeck type PSK encoder as an example. A similat approach to

PAM and QAM coders in ISI using the same convolutional coder configuration is

considered here. Finally the reduction of complexity in the coded trellis using

quasiregularity is discussed [19].

4.2.1 Set nartition of PÁ.M Encoders with Feedback Convolutional

Coders:

The signal mapping for a 4 - PAM trellis code is given in Figure 4.3 and the

configulation of the encoder is given in Figure 4.4. All the trellis states S arc equivalent

to one of two states which can be represented by the contents of the last delay cell S 
l, If

Sl =0thenS =0andif Sl= l then S = 1. When SI = 0 the signals marked ,' A ,' 
ar.e

possible and when Sl = 1 signals marked " B" are possible. The output fi.om the

convolutional encoder can be represented by vr=(",,t]) due to the leedback

representation. Hence the difference symbols can be given by e = (eu , es). Consider

the distance polynomial defined by

Ps , "(X) 
= t p(u) XF(v , v )

u
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Figure 4.3(a). Signal mapping fo¡ 4 - PAM

011 010

Figurc 4.3(b). Signal mapping for 8 - PAM
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Figure 4.4. PAM Encoder Feedback Realization



where p(v , v ) represents the difference signal and p(u) is the probability of the input

signal u. Ps , "(X) 
is a list of all the distances p(v ,1) that can be generated when the

comect path is in S, the inconect path is in state 3 and the two branch labels differ by e.

Here the ISI channel is not taken into consideration. For the example given in Figur.e

4.3(a) P5 , "(X) 
can be expressed as follows.

P1o, sfx) = ¡o

P(o, r)(X) =tx
e1r,o;(x)=fx

P(r,r)(x)=lx
3^ r -3^x +ix

A r -^+lx
2

2L 1 -2A+ix,¿

(4.s)

(4.6)

(4.7)

(4.8)^ 1---^ 1* ¿n * 
¿

Note in the above equations S is not included since the rÌght hand side is independent of

whether S 
1 

= 0 or' 1. Thus for this type of PAM encodets the distance polynomials do

not depend on the equivalent state of S. In gener.al if the sequence of equivalent states

along a path does not have memory, i.e. there are "no" sequences of equivalent states 0

, 1 that cannot be traced by any path ttxough the trellis, then the difference symbols can

be generated using the encoder error state diagr.am. This means that the coder. is

quasiregular. Thus it is not necessary to consider a state pair diagram to calculate the

difference symbols which are required to calculate the Euclidean distance in an ISI

trellis. The procedure given above can be generalized in the following lemma for.M -

PAM encoders.

Lemma:

For an M - PAM encoder which produces a Z / 22 partition, all sequences of

equivalent states are possible, making it quasiregular., if and only if the input sequences
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ale independent and identically distributed,

Proof:

If it can be shown that Ps (eu , es) for e5 - 0 is independent of S then the code is

quasilegular. es can be zero if the equivalent states are either 1, i or 0, 0. The

equivalent state is given by the rightmost bit of the binary representation of the signal.

Two signals with the same rightmost bit, have a difference that is an integer multiple of

2Â (see Figures 4.3(a) and 4.3(b)) since the signals are represented in binary format

(from right to left). For a given difference 2nÀ (n - integer) the modulo sum of any two

states eu for es = 0 is the same. Thus P5 (eo , 0) is independent ofS. Hence the code is

quasiregular. On the other hand if the code is quasiregular then all P5 (eu , e5) are

independent ofS and this implies that input sequences are independent as S is dependent

on the input as well.

4.2.2 Set partition of OAM Encoders with Feedback Convolutional

Coders:

Consider the signal mapping given in Figure 4.5 and the encoder type shown in

Figure 4.6. Using the same notation as before P, (eu , e5) for two of the states ale

given below.
r 

^, ' -^l
Po(oor,o)(X) =rX'+|X

Pr (oor , o)ë) =
lÁo'x'
2

*!x o'

(4.e)

(4.10)

It is seen from the above equations that the distance polynomials ps(001 , 0) depend on

the equivalent state ofS (Â1 + L),i.e. for these cases the possible distances depend on

whether the conect path passes through a state S = 0 or S = 1. Hence QAM encoders of

the type given in Figure 4.6 are not quasilegular. with respect to a., the difference
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symbol. To combine the two equations the equivalent states should be equiprobable.

This is the same situation encountered in the case of PSK encoders [30]. Therefore the

same conditions on the encoder can be imposed to make it quasiregular. i.e. to be

quasiregular all equivalent states have to be possible and occur with equal probability.

The conditions can be stated in the following lemma similar to the one given for pSK

encoders in [30].

Lemma:

If at least one of the connections g I , H? is present in the feedback realization of the

encoder then the resulting code is quasiregular. Usually for QAM coders at least one

input is uncoded. Thus one of the remaining connections gl , U? must be present for

the quasiregularity.

Proof:

If Hi = 1 and Hf = 0, the last delay cell which determines the equivalent state toggles

half the time depending on whether ul = 0 or 1. Similarly with Hl = 0 and H? = 1 the

delay cell toggles with uf = 0 or 1. When Hl = t and H? = 1 their binary sum Hl O ftl
will be 0 or 1 with equal probability and hence the equivalent state is equiprobable. On

the other hand if Hl = 0 and H? = O ttt" equivalent state depends entirely on the

pleceding state.

4.2.3 Simplification of the trellis structure using auasiregular encoders:

From Chapter 2, for an ISI channel of memory v the Euclidean distance in terms of the

difference symbols can be given by

ol re; = ol-, çe¡ + ôl 1e" ,€n - 1,. 
. .,r¡- y )

where
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ôî= Ë lisn-il2 (4.r2)
r=0

( €n - rt . .,en- u ) defines the difference state.

Since there is an encoder in front, to generate the difference symbols it is usually

necessary to consider al1 sequences of encoder state pairs f É" , â l. Thus the joint

encodel' and channel error state can be considercd as

Ào = ( É", (n,en_,,...,rn-u ) (4.13)

But for a quasiregular code instead of ( (n , â l, ,n" encoder enor state diagram (Â(n)

can be used.

Therefore (4.r4)

and the number of error states grow linearly with respect to S", the number of states in

the encoder. The encoder error state diagram for the encoder of Figure 4.7 is given in

Figure 4.8.

For the uncoded case there is no encoder , that means that input is directly mapped

to a channel signal. Then the channel signals are independent and equiprobable. The ISI

trellis has all possible channel sequences determined by the signal alphabet. Once the

encoder is placed, out of all these possibilities only certain paths are allowed. The new

trellis can be consideled as a pruned version of the original tlellis similar to the sifuation

described in chapter 3. The next section discusses the calculation ofEuclidean distance

using the pruned trellis fol a channel with one ISI term.

4,3 Calculation of Euclidean distance in the coded ISI trellis:

The TCM schemes considered here ar.e either one or two dimensional schemes.

46 = ( A(n,en- I i,.,Ên_u )
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Figure 4.7. Fout state PAM encoder

Figure 4.8. Encoder eror state diagram
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Consider an ISI channel of length one. i,e. L=2. The channel output from the equivalent

discrete system is given by

where

The difference output signal is then

yk -yk = fg(x¡- x¡) +f1(x¡_1 -x¡_1)

y¡=fgx¡+f1x¡-1

fo = ar+jbr , 11 = ar + jbr.

= (a, +jbr Xpr+jq, ) + (q+jbr)(pr+jqr)

(4.ts)

(4.16)

(4.17)

(4.18)

where (p,+jq, ) and (pr+jqr) are cha¡nel difference symbols.

Iru - Îu]' = ça,2+br2¡7pl+qÎ) + @r2+ bz2)(pz2+qz2)

+ 2(a rar+b 1b ) (p 
I 
pz+q 

r 9z) + 2(a þ 2-b p) (qrp r-p p2) (4. 19)

Now if, a1 = r' sincxsinp bl = r sindcosp Ø.20)

a2=rcoso¿sine bz=rcosdcosO and r ={E @.2I)

to satisfy the channel energy constraint, then

lvu - Îul'= r2sin2cx(p?+q?¡ + ?cos2uçp?r+ql) + r2sin2acosï(prp2+q1q2)

+ r2sin2asin{q rpz-p rgz)

wherey= B - 0. For leal channels B =0=n/2.

(4.22)

(4.23)

To obtain the channei difference symbols the encoder state diagram has to be used.

For a valid error sequence in the ISI trellis, two sequences must staÍ from one state of



the encoder state diagram and subsequently merge into an encoder state after several

error symbols. That means it should also be an error sequence in the encodel state

diagram.

As an example consider an error event (€l , e2 , e3) of length 3 in the encoder state

diagram . The conesponding eruor event in the ISI trellis is (et , €2 , e:, 0 ).

I-et €r - pr + jgr , ¿z=pz+ jgz , e¡ = p: + jQ¡. (4.24)

Using the equation (4.22) rcpeatedly, it can be shown that

3

a2=2çp!+q?l+[pr(p,+p3)+q2(q,+q3)]sin2acosl+[q2(pr-p3)-p2(q1-q3)]sin2øsin1
i=1

(4.2s)

Equations of this form can be obtained for longer ISI lengths in a similar manner. The

increase in the number of terms however makes them difficult to analyze,

For a real channel 'y = 0. Therefore

(d2) real = i fr?*n?l+[p2(p1+p3)+q2(q,+q3)]sin2o (4.26)

Thus depending on the difference symbols

3

(d2)r'eal = > fpl*qi) t llnz(tr +p:)+92 @r+q.))lsinzu (4.27)

Longer error events will also have the same gener.al form for this channel. For the

encoder trellis shown in Figure 4.9 the two shortest eüor events are indicated. One is a

palallel path which governs the minimum distance for the no ISI case, From the trellis

diagram the following distances can be obtained.



_ Error symbol; equal in magnitude
y' 

^, 
all parallel branches

:--È-- --¿.

path 1: any parállel branch

Figure 4.9. Encoder trellis diagram fo¡ the 8-PSK signal alphabet shown in Fig. 4.2(c)

with signal labels
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¿?=+

d?r= <ø - 1[2) + 2sin2a

(4.28)

(4.29)

The minimum distance ofthe combined encoder and channel is govemed by the distances

given above. As can be seen it is upperbounded by the ISI free minimum distance dl.

For encoder trellises with parallel branches the following lernma can be stated.

Lemma:

If there are parallel branches in the encoder trellis then let the difference symbol

with the smallest magnitude in a patallel branch be denoted by Êos. Then the minimum

distance of the combined encoder and the ISI channel satisfies the following inequality

regardless of the length of ISI.

o'?,',"<leol'?t I firlr.r (4.30)

Ploof:

Aftel er¡or symbol Êos, it is possible to have a sequence of '0' erro¡ symbols in the

TCM trellis. i.e., e'r,0,0,...,0 which defines a merged error event in the ISI tr€llis. The

distance for this euor event is given by the right hand side ofthe above equation. This

is illustrated in Figure 4.10.

QED,

From the above discussion it can be seen that the coded distance for. a leal channel

of ISI length one satisfies the following relationship.

d3oo"o"r, = dåo"o-*o ,., + Asin2s
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Figure 4.10. ISI tlellis diagram for the trellis encoded signals showing an error event

due to a parallel branch



where A is a real constant and A = 0 for paraliel branches regatdless of the ISI in

channel.

For the minimum distance path in the encoder trellis this usually tums out to be

d"'oo"o-rr, = (dI¡n)"o¿"¿-No lsl + Asin2cx.

Therefole for these ISI channels

(4.32)

(dT,¡n)co¿"¿¡sr I (d2r¡n)"ooø-No rsr. (4.33)

Chcumstances under which the relationship in (4.33) holds, must be investigated further,

specially fol Ionger ISI lengths.

4.4 Search for TCM encoders matched to the ISI channel

Using quasiregular encoders, a search for the best encoder has been car.ried out fol

different TCM schemes (PAM, PSK & q4¡¡4. 1¡. ISI cha¡nel considered is a rcal-valued

L=2 channel, A longer ISI length can also be used with a r.esultant increase in the

computational complexity as indicated in (4.14). TCM coders of constraint lengths up

to 6 were considered. The source code for the search was written in FORTRAN and

implemented on SUN SPARC computers. Encoders are given in terms of coefficients

[H', ..,, H0], m represents the number of coded inputs. Algorithms for converting

convolutional codes from feedback to feedforward form and vice ver.sa are given in

[25]. A typical encodel is given in Figure 4.11. Some of the r.esults are given in

Figules 4.12 - 4.15 with the coding gain as defined in section 4.1. The rcst of the

results are in Appendix B.
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Notation for Figures:

The channel : f6 = s6s d f1 = si¡ s

K : constraint length of the encoder

L : length of channel impulse response

A1l angles are given in degrces.

The following observations may be made.

1) As shown in sectíon 4.3 all the curues are parts of sinusoíds and symmetric

about the angle 45o.

Always at 450 the coding gain is the lowest legardless ofthe encoder.

2) Highest coding gain is always at zero degrees, which in essence is the ISI free

situation.

Thus the presence ofISI degrades the gain here as it did in the case of convolutional

coding. For the coder given in Figure 4.15 the coding gain is constant regardless of the

ISI because for these two cases the minimum distance is governed by the parallel paths

in the encoder.

3 ) Approximately between 30 - 60 degrees the encoder with the best Euclidean

distance for ISI ft'ee case does not give the highest coding gain.

(see Figures 4.12,4.13,4.14,4.15) Thus the encoder with rhe best dflu" without

ISI does not necessarily give the best performance for any ISI channel.

The above observations are essentially the same as those seen with convolutional codes

for the same ISI length.



Figure 4, 1 1. A typical convolutional encoder used in different TCM schemes
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Figure 4.12. Coding gain with K=4, 4 PAM for L=2 ISI channel
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Figule 4.13. Coding gain wirh K=5, 4 PAM for L=2 ISI channel
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As an alternative to using TCM, ring convolutional codes can be used where the ring

is based on the integer modulo operation. In the next section the application of these

codes for ISI channels is discussed briefly.

4,5 Ring Convolutional Codes for Coded Modulation:

Recently several authors considered using ring convolutional encoders modulo p

(p>2, usually a multiple of2) , instead of binary convolutional codes for coded modulation

schemes, specially for phase modulation 13,23,24,411. One advantage is that the rclevant

encoder can directly work with the modulation input non binary signal set thus avoiding

the necessity to use a binary to M-ary signal mapper such as the one used in TCM

schemes. Basically the convolutional coded modulation scheme maps m+l information

bits onto an expanded channels signal set which is fed to the ring convolutional encoder.

As in the case ofbinary convolutional codes the channel rate has to be increased which

results in more ISI. The transmitter side of the communication system is shown in

Figure 4,16. It has been proven that systematic encoder.s of ring convolutional codes

are always non catastrophic [23]. Thelefor.e in the following it is assumed that the

encoder is systematic.

br

b-*t

4=M(brt..,bm+r)

channel

Figure 4.16. Transmitter of the ling convolutional coded scheme

First consider the following example to compare TCM and ring convolutional codes for.

the no ISI or wideband case.

Binary
source

Maooinsto I a I Ring

'nrliiÈuËi røSaculo o
O2

To
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Assume that an ISI free channel (channel energy E=2) combined with

i) the best TCM coder of constraint length K=4 or

ii) one of the mod 4 systematic convolutional encoders of K=2 and rate R= 1/2 which

has the largest Euclidean distance. Encoder is [1 0 0,22l].

The encoders have the same number of states for comparison. The signal alphabet used

is 4 PAM (-3,-1,1,3 ). From Ungerboeck's paper [34]

G sPAMTCM = 4.2 dB
4PAM Uncoded

For the ring coder since it operates in 4 PAM alphabet ( Channel energy E=2 Joules)

Lz *l
G Mod4cc = Iglod 5eS1 i 

| =rol"JÉ_Ja. I = lg¡-oet4l = 6.02 dB
4PAM uncoded L díro" I L õ I

Therefole a gain of approximately 1.8 dB over TCM can be obtained if mod 4 ring

convolutional coders are used. Even with ISI present, a higher gain than with TCM can

be expected. Thus it is worthwhile to investigate the use ofmod p (p>2) convolutional

encoders in the presence of ISI at least as a comparison to TCM schemes which are

usually designed for channels with no ISL

Search results for constraint length K=2 encoders are shown in Figure 4.I7. The

channel consideted is a L=2 ISI channel with the same coefficients as used in section

4.4. The channel response is that of the coded channel , again similar to binary

convolutional codes. It is seen that in the regions of 00 - 250 and 650 - 900 ring

convolutional codes perform better than TCM codes with the same number of encoder

states. Longer constraint lengths involve searches with a long time duration due to

large number of encodel combinations possible, especially with a lar.ge alphabet.
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Figure 4.17. Coding gain with K=2, Mod 4 CC for L=2 ISI channei
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To conclude, application of trellis coded modulation (TCM) for ISI channels has

been studied in this chapter. The concept of quasiregulatity has been used to rcduce the

computational complexity of the distance calculating algorithms. Most of the properties

considered here have similarities with those in the case of convolutional codes. A main

difference is that the ISI here remains unchanged due to there being only a single output

from the TCM coder. Also TCM is used for non binary signaling schemes whereas

convolutional codes are used for binary signaling schemes.

Ring convolutional codes also considered briefly in this chapter have the same effect on

ISI as binary convolutional codes but with the added advantage of being able to wor.k

directly in the modulation alphabet. Compared with TCM it is seen (L=2 coded channel)

that ring convolutional codes perform better in several cases including the ISI free

situation. Therefore further investigation is warranted in the application of rìng

convolutional codes. From the Euclidean distance point of view all types of codes seem

to behave in a similar pattern particularly with respect to the conclusions drawn for the

best encoders.
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Chapter 5

Conclusions and Suggestions for Further Study

5.1 Conclusions

The properties ofthe Euclidean distance between two received signaÌ sequences in a

finite length ISI channel have been studied in this thesis. Application of convolutional

encoders and trellis coded modulation for these types of channels have also been

investigated.

A theorem has been proven to show the existence of the maximum distance channels

for any finite length of interference. Channel energy has been used as a constraint

throughout the thesis. Certain properties have been established fo¡ the worst case

channels since it is important to have an idea about the worst performance to be

expected at the receiver. It has been shown that if the worst distance decreases with the

length of interference then the zeros of those channels lie on the unit circle. Conversely

to the worst distance case it has been shown that for a given length of interference,

there is a maximum distance region defined by certain regions of channel coefficients

subject to the energy constraint . Using a prefilter to modify the channel impulse

response appropriately one can obtain a maximum distance channel. Since this is done

at the transmitter noise enhancement is not a problem. However. if one chooses to use

an equalizer at the receiver to obtain a maximum distance channel then noise enhancement

becomes an issue. Therefore the objective is to select a proper maximum distance

channel which maximizes the output signal to noise ratio.

Alternatively convolutionai codes can be used to increase the minimum Euclidean

distance. A sealch has been canied out for L=2 channels and ceftain L=3 channels for

convolutional codes of different rates and constraint lengths. The objective was to find

out the best encoders for given ISI channels. With the convolutional encoder generally
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it is required to transmit data at a higher speed which produces more interference terms.

It has been seen from the results for several ISI channels that moderate coding gains

can be obtained if the channel and the encoder are properly matched. Further it has been

observed that if the channel is a maximum distance one then the resulting coded distance

is usually higher than that for a non maximum distance channel. Another thing to note

is the fact that convoiutional codes with the best Hamming distance sometimes give

poor coded distance compared to other encoders with less Hamming distance. However

usually the best Hamming distance encodeLs produce the highest coded distances for a

given length of interference. Further while the uncoded distance for any L=2 channel is

the same, with an encoder present the coded distance usually changes from channel to

channel. The results confirm the propositions given in chapter 3 regarding the bound on

coded distance and the best coded channels.

Trellis coded modulation (TCM) has been investigated with respect to several

modulation alphabets for bandlimited channels as the coding technique for.non binary

signaling schemes. The Euclidean distance is found for the best encodets for given

modulation schemes where the channel considered has one interference ter.m. For pSK

and QAM schemes quasiregular encoders have been used to simplify the distance

calculation procedure using a computer program. The results from the search indicate

that similar to the Hanìming distance in convolutional encoders, a TCM encoder with

the best Euclidean distance do not always give the highest coding gain when combined

with an ISI channel.

A main difference between convolutional coders and TCM is that the or.iginal ISI

before coding remains unchanged in the case ofTCM due to the fact that there is only

one output from the TCM coder'. With convolutional codes, however, the ISI increases

with the increase of the channel rate due to the multiple outputs from the encoder. Also

TCM is used in general for non binary signaling schemes whereas convolutional codes
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are applied in binary cases. A maximum gain of approximately I dB can be obtained

fi'om the convolutional codes over the TCM schemes for the same constraint length of

the encodet. The number of states in the decoder trellis for ISI with TCM is much

higher due to non binary signaling schemes. Finally instead of binary convolutional

encoders, ring convolutional encoders which work in the modulation alphabet have

been considered. For a 4 - PAM system a maximum gain of 2 dB can be obtained over

the conventional TCM (see Fig. 4.17).

5.2 Sueeestions for Further Study:

The following ptoblems are suggested for further investigation.

1) Location of zeros for the worst ISI channels. In the thesis it has been shown that

if the worst distance decreases with the length of interference then the roots will lie on

the unit circle. It remains to be shown that the worst distance decreases with the length

of intelference.

2) Pelformance of equalized maximum distance channels. If the channel is not a

maximum distance channel then using an equalizer at the receiver the channel response

can be modified to a maximum distance one. The selection of the proper maximum

distance channel plays an important role in reducing the noise enhancement as there ate

many maximum distance channels to choose from. Thus it may be worthwhile to find a

method to select a suitable maximum distance channel instead of going though all the

maximum distance channels to see whether any gain can be obtained in this manner.

3) Analytical expressions for the coded distance with convolutional coders have

been given in the two propositions in chapter 3. A challenging problem is to prove that

the encoders with the best Hamming distance give the best coded distance for a given

length of interference. Another is to prove that the highest coded distance is always

obtained by maximum distance ISI channels.
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4) More thorough investigation about ring convolutional codes in ISI channels. Up

to now it has been seen that some amount of gain over TCM schemes can be obtained

fol some specific constraint length. F¡om these results it seems promising to study

these codes further for the application in ISI channels. A potential difficulty is the

amount of time requircd for a search involving longer constraint lengths.
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APPENDIX A

Existence of maximum distance channels for complex alphabets(OAM):

StaÍing with (2.93), the equation for complex alphabets can be given as

Âr-, = lfr_rõn,,-r*, + f._1e^-¡.12 - lfr-,u*-J'

Now assume the channel to be real; the purpose is to select the channel coefficients so

that the channel is a maximum distance one.

Also let ôm-t +l = a,n-¡*, + jb,n_¡*, and en._¡ = c,n_¡ + jdn,'_¡

Therefo¡e

Lt-, = ft-2{fl-¡,*, + a}-r*,) + 211,-21¡--{a^-y¡1cn,,-¡ + b,n-¡*1dn,'-¡) A. i

Thus if f' > 0, for Á¡-1 to be greater than zero

. [ar-r*,cn,,-¡- + b,n-l-+td,n-ll
'L-2 ' -- 'L-l r 

- 

-- 

|

L uí-t*t + bl-l*, lminimu.

If for the given complex alphabet for all enor symbols

_ la,n-L+lcm-L + b.-¡*1d.-¡l

" = 

L-- u'.t*, * 4-r*, ].u*,'",n
then

1L-2>_ 2 fL_pn

sirnilarly fy3> 2 o^(fy_2 + 1y_)
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This procedure can be continued for other coefficients as well.

In general 412 o^(4*l + fi*z + . . . + fi--l) , i=O,L, .......,L-2

Therefore the existence ofa maximum distance channel is proved based on the atgument

made in section 2.3.2.

For M - PAM:

From 4.1 for leal ô and e

tr, ={r rõ?^-r*1 + 2f¡-2f¡-1ô,n-¡*1en,'-¡

fo¡ the maximum difference

ôm_L+r = 2 and e,n_¡ = - (2M - 2); largest difference symbol

Thereforc fL_2>- (2M - 2) fL_l

In general the condition is

fi> QM-2) (4*r + 4+z +... + fl-r), i = 0,1,...,L-2

Once this is satisfied the channel is a maximum distance channel.
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APPENDIX B

Additional results from chapters 3 and 4 are given here.

Notation for Figures:

R : code rate;

K : encode¡ constraint length , CC : Convolutional codes ;

L : Channel impulse response duration ;

Encodels are specified in terms of generator polynomial coefficients for

R= 1/2 lg(1) g(2) I ; R=1/3 ¡ g(t) *{z) *(:) 1.

Feed Back Encoders [ ¡(2) ¡(1) ¡(0) ] are given for R = 2/3 CC and the same format is

followed for the encoders in Figures 8.11 to 8.i7. All angles are given in degr.ees.

Also for Figures 8.7 to B.i0

. d2.,"(coded)
uoolng galn = 

16

Figules 8.1 to 8.10 show search results for chapter 3 and the rest, from B,1 1 to 8.17

give results for chapter 4.
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Figure 8.1. Coding gain with K=2, R=1/2 CC for L=2 ISI channel
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Figure B.3. Coding gain with K=5, R=1i2 CC for L=2 ISI channel
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Figure B.4. Coding gain with K=2, R=213 CC for L=2 ISI channel
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Figure 8.5. Coding gain with K=3, R = 2/3 CC for L=2 ISI channel
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Figure 8.6. Coding gain with K=2, R=1/3 CC for L=2 ISI channel
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8.9. Coded distance with K=3, R=1/2 CC for L=3 ISI at Angle cr=60

0

Figure

::T

ÍN
ï,iL

oI

c¡

I
rIl

€),

U)

Angle Bo

Figure 8.10. Coded distance with K=4, R=1/2 CC for L=3 ISI ar Angle o=30

4r""

4 -'-- -
6-

[1001 1,11 101]

[0000r,101 10]

[01011,11110]

0 40 80 120 160 200 240 280 320 360

r13



..19

èo

Ë
(J

1

Encoders [0 10, l0l]
[0 10, 1 1 11

10 20 30 40 50 60 70 80 90

Angle oo

Figure 8.11. Coding gain with K=2, 4 PAM for L=2 ISI channel

0 10 20 30 40 50 60 '70 80 90

Angle cro

Figure 8.i2. Coding gain with K=3, 4 PAM for L=2 ISI channel
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Figure B.13. Coding gain with K=6, 4 PAM for L=2 ISI channel
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115



[0100,0010,101 I ]

[0000,0010,101 1]

[0000,01 10,101 1]

[0000,0010,11 1 1]

cË

Þ¡
É

Q

É

Þ0

rõ

O

3.5

3.0

2.5

2.0

i.5

0102030405060708090
Angle o,o

Figure B.15. Coding gain with K=3, 8 PSK for L=2 ISI channel
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