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Abstract

Speech compression for the purposes of storage and transmission has long been important,
especially in the telecommunications industry. Coding techniques range from the compu-
tationally simple (u-law, ADPCM) to the computationally complex (CELP). Most sophis-
ticated techniques use linear prediction to obtain a model of the speaker’s vocal tract for
each of a series of 20 ms (or so) speech segments.

For the method of linear predictive coding (LPC), it is assumed that either a periodic
impulse train or white noise is sufficient to model the glottal excitation. This method
requires a DSP chip rating of about 1.7 MIPS to provide reasonable speech quality (some-
what mechanical sounding) at 2400 bps.

Code Excited Linear Prediction (CELP) is similar to LPC, but it accounts for nonideal
excitation. For each code in a codebook, the CELP compressor applies the vocal tract fil-
ter, subtracts the result from the real speech to obtain an error signal, perceptually weights
the error signal, and then calculates the norm of the weighted error. The code with the
minimum weighted error is considered optimal and its index and gain are transmitted over
the channel. This method requires a DSP chip rating of about 25 MIPS to provide excel-
lent speech quality at 4800 bps. Although high-MIPS DSPs are available for CELP imple-
mentations, their power requirements would heavily burden the small battery that would
be available in a cellular phone or a portable terminal. A lower-power system is better
suited to the portable communication link.

Presented in this thesis is an original compression scheme for which the error feedback
loop is closed earlier than for CELP. Instead of determining the best approximation to the
speech segment, the best approximation to the vocal tract excitation is found. As well, in
order to reduce the codebook search time, error not accounted for by a simple long-term
codebook is coded using the discrete wavelet transform (DWT). This method is called
Code and Wavelet Excited Linear Prediction (CWELP). It was motivated by intentions to
improve the speech quality of the LPC vocoder while using less computation than the
CELP vocoder. The CWELP vocoder requires 3.6 MIPS and provides speech quality
slightly superior to LPC at a bit rate of 4600 bps.

Individual letter recognition tests were performed using the ISOLET database. Whereas
the recognition accuracy for LPC and CELP was 73% and 85%, the accuracy for CWELP
was 76%. Informal subjective sentence tests show that the CWELP-compressed speech
sounds slightly better than the LPC-compressed speech. Tests show that because it models
more complicated forms of excitation, CWELP can compress non-human sounds better
than LPC can. CWELP appears to be in its expected performance regime: a compromise
between LPC and CELP.
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hapter 1: Introduction

In the past, public communications have been coded using simple schemes such as A-law
and pi-law. These schemes require very little computation and can be implemented cheaply
in hardware. More sophisticated compression methods have been used by the U.S. govern-
ment, notably linear predictive techniques used by their LPC-10e vocoder (2400 bps).
When classical linear prediction (Appendix C) is applied to a speech segment, it turns out
that the predictor models the vocal tract transfer function and the prediction error is the
excitation for the vocal tract. The linear predictive coding (LPC) technique presumes a
simple form for this excitation: white noise or a periodic impulse train. This method is
consequently not very robust when presented with noisy input, multiple speakers, and
non-voiced sounds.

Opening up of the telecommunications market and new high-speed DSP processors have
stimulated interest in sophisticated compression schemes for use in the public network. A
most impressive compression competitor is CELP which uses an exhaustive codebook
search in an attempt to find a good approximation to the vocal tract excitation. The vocal
tract model parameters and the codebook data are used to reconstruct the speech, segment
by segment. A typical CELP system requires a 25 MIP DSP chip. This method is compu-
tational intensive because for each code the speech segment must be synthesized and per-
ceptually weighted to determine its error measure.

Although high-MIPS DSPs are available, they are relatively expensive and have high
power consumption rates. A compromise between the extremes of low speech quality,
computationally simple LPC and high speech quality, computationally complex CELP
seems in order. A wide variety of coding schemes have been developed and it would be
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futile to attempt to list them here. They range from vector quantization of blocks of LPC
data frames to binary pulse CELP and so on.

The compromise presented in this thesis is Code and Wavelet Excited Linear Prediction
(CWELP). Instead of determining the code which produces the “optimal” speech segment,
CWELP determines the code that best matches the real vocal tract excitation. Although
this leads to lower speech quality, the CWELP vocoder does not need to synthesize the
speech for each code in the codebook. This shortcut reduces the computational complexity
of the system significantly. The remaining excitation error is coded by transmitting the
locations and magnitudes of the two largest coefficients of the excitation error’s discrete
wavelet transform.
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Chapter 2: Physiology of

VYocalization

In order to design optimal speech compression algorithms, we must understand the pro-
cesses of vocalization and audition. This chapter examines the physiology of vocalization;
the field of audition is not considered in this thesis although it does play an important part
in many new speech compression schemes. In the general case where all signals band-lim-
ited by a particular frequency f;, are to be coded, a sampling frequency of fg = 2f, (Nyquist
rate) is necessary and the sampled signal will use the channel to its fullest (no compression
will be possible). However, by studying the physiology of speech and audition, it is possi-
ble to achieve further compression due to the physiological constraints of the animal.

2.1 Structure of the Vocal System

Figure 1 shows the physiology of the human vocal system. The lungs force air up the tra-
chea, through the glottis and the vocal tract, and out through the lips or the nose. The glot-
tis is the source of excitation for the vocal tract. Two types of excitation are possible
giving rise to voiced and unvoiced speech. For voiced sounds, the glottis vibrates accord-
ing to the tension in the vocal chords, producing a periodic signal (Figure 2a). For
unvoiced sounds, the glottis is held open and the air travels along the vocal tract until it
encounters a consiriction (at the back of the mouth, for /sh/ as in “show” illustrated in Fig-
ure 2c¢). At this constriction broadband noise is generated which excites the vocal tract.
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nasal cavity
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tongue velum
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vocal cords

trachea

FIGURE 1. Structure of the human vocal system

By varying the shape of the vocal tract, the excitation is transformed to produce the final
sound. Nasal sounds are obtained by opening the velum and closing the mouth tract (for
example with the tongue, as in /n/). Finally, the sound is radiated at the lips or at the nose
for nasal sounds.

2.2 Phonemes

A set of phonemes forms the atomic basis for a language. By concatenating phonemes,
any utterance from the language can be constructed. Different languages often have
extremely different phonetic structure. A table of the English phonemes is illustrated in
Appendix A. This set of phonemes can be broken down into vowels, diphthongs, semi-
vowels, and consonants.

Vowels are generated by fixing the shape of the vocal tract and exciting it with a periodic
glottal signal. Examples are /ce/ (hat) and /i/ (beet). The periodicity of the resulting sounds
is evident in Figures 2a and 2b respectively. Notice that the vowels shown have approxi-
mately the same pitch period. They sound different because each is spoken with a different
vocal tract shape.
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FIGURE 2. Waveforms for 128 ms segments from the words “hat”, “beet”, and “show”.

Diphthongs account for the smooth transition from one vowel sound to another. For exam-
ple, /aU/ as in “how” is generated by the transition from /a/ (hat) to /U/ (food).

Semivowels consist of the phonemes /w/, /l/, /t/, and /y/. These phonemes are difficult to
classify because they are highly modified by the accompanying phoneme(s). However,
they do have a vowel-like sound and thus the classification.

Consonants can be broken down into nasals, stops, fricatives, whispers and affricates.
Nasals are voiced sounds produced by radiating from the nose instead of the mouth. Stops
are shock waves generated with the lips, tongue or near the velum. They may be either
voiced (/b/) or unvoiced (/p/). Whereas stops consist of short-time bursts of white noise,
fricatives are excited by time-invariant white noise; for example /sh/ (show) as in Figure
2c. Voiced fricatives are excited by white noise generated at a constriction as well as a
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periodic glottal signal (for example, /v/ and /z/). Whispers are excited by white noise pro-
duced at the glottis. The nature of the whisper is usually determined by the following pho-
neme which determines the shape of the vocal tract. Affricates are created by following a

stop with a fricative. An example is /j/ which is produced by following /d/ with /zh/.

By trying out all the phonemes and reflecting on the type of excitation, status of the
velum, and shape of the vocal tract, one can gain very useful insight into the production of
speech.

2.3 Analysis of the Vocal System
2.3.1 Voiced vs Unvoiced Speech

In the case of voiced speech the glottis stimulates the vocal tract with a periodic signal
whose period is called the pitch period. Tension in the vocal chords causes the glottal
opening to close more tightly. The result is that when air is forced through the opening, the
glottis vibrates with a higher pitch.

A voiced sound has several peaks, or “formants”, in its frequency response. Formant fre-
quencies are determined by the resonances of the vocal tract. Figure 3 illustrates the Fast
Fourier Transform (FFT) of the phoneme /c/. The formant frequencies are 220 Hz, 690
Hz, 1.8 kHz, 2.6 kHz, and 3.6 kHz. Notice that signal levels above 4 kHz are more than 40
dB lower than the peak level (level of the first formant). This is the case generally with
voiced sounds; unvoiced sounds, however, have appreciable signal content above 4 kHz.

T 220 Hz

120 T | + * 26

100 1,

0 64 128 192 256 320 384 448 512
Frequency Index (512 samples / 4 kHz)

FIGURE 3. FFT of the phoneme /cE/ (hat). The peaks in the FFT correspond to the resonances of the
vocal tract and the frequencies are called “formants”.
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For unvoiced speech, the glottis forces air through a constriction at some point in the vocal
tract which results in broadband noise excitation. In this case, air forced up the trachea
passes through the glottis but the glottis does not vibrate.

2.3.2 Vocal Tract

The vocal tract is shown in Figure 1. For a typical human male the vocal tract is 17 cm
long. Most sounds are made by closing the velum preventing the nasal cavity from partic-
ipating in the dynamics of the system. In this case, air enters at the glottis and exits at the
lips. The vocal tract can be represented by an area function which gives the variation in
area along the tract. An example is shown in Figure 4. In the case of nasals, sound cannot
radiate from the mouth because it is blocked (i.e.: by the lips for the nasal /m/). However,
the velum is open and sound does travel up the nasal cavity and is radiated at the nose. So
the vocal tract works in two modes: nasal or non-nasal.

Jﬂmﬂi&
glottis >~  mouth
(or nose)

FIGURE 4. A typical vocal tract area function (smooth curve) and a concatenated-tube approximation.

The sound dynamics of the vocal tract can be modelled by two equations:

_Qg _ d(u/A)
x P

du 1 d(pA) N dA
ox P 2 o ot
where p(x,t) is the variation in sound pressure with position x and time z, u(x,t) is the vari-
ation in volume velocity, p is the density of air in the tube, ¢ is the speed of sound, and
A(x,t) is the area function of the tube. Equation 1 expresses that a change in pressure
across a distance will result in acceleration of the air molecules. This is illustrated in Fig-
ure 5.

1)

2
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FIGURE 5. Forces due to pressure act on a disk of air inside the vocal tract.

The force acting on the disk of air is

dF = Fx"Fx+dx:Apx—Apx+dx= —Adp

The mass of the disk of air is dm = pAdx and the acceleration can be written in terms of
the volume velocity as ¢ = 9 (u/A) /or. The bold quantities are vectors where a positive
value indicates the direction towards the right in Figure 5. From Newton’s law,

dF = dma we get

—Adp = (pAdx) (0 (u/A) /adt)
which simplifies to Equation 1.

Equation 2 expresses the conservation of matter. The left hand side expresses the change
in volume velocity with space. The second term on the right hand side is the change in
area with respect to time. If the area is increasing with time, the volume velocity will
decrease with space since some of that volume velocity is required to fill the opening
space. The first term on the right hand side of Equation 2 is due to the compressibility of
air and this term gives rise to the wave-like nature of the system.

Losses in the tube consist of viscous friction between the air and the walls of the tract, heat
conduction through the walls of the tract, and vibration of the tract walls. These losses will
result in frequency warping and attenuation of the frequency response of the tract.

Except for the most simple configurations, Equations 1 and 2 do not have closed form
solutions. However, if we consider a general area function to be simplified to a series of
uniform lossless tubes as shown in Figure 4, then for each tube the area function is con-
stant for space and time and Equations 1 and 2 simplify to the following equation:

2 2

—%u(x, H = iz %u(x, 4] &)
o0x c”)ot
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This is the wave equation and is easily solved given boundary conditions at each end of a
tube. The boundary condition for the tube closest to the glottis is the glottal volume veloc-
ity excitation. The boundary condition for the tube at the other end of the vocal tract is the
open air lip termination (discussed below). Adjacent tube ends must have equal volume
velocity and pressure.

For voiced sounds, the glottal volume velocity is a periodic excitation signal. For
unvoiced sounds, white noise excites the vocal tract, and the glottis can be considered to
be the source of this noise to simplify the model.

An electrical analogy can be made if pressure is considered to be voltage and volume
velocity is considered to be current. We can define an impedance to be pressure divided by
volume velocity. In this case, the vocal tract can be modelled by a series of concatenated
lines of characteristic impedance. The termination at the end of the line represents the lip
termination and the glottal excitation is a current source. Rabiner and Schafer [1] have
shown that a good approximation to the lip radiation impedance is the impedance charac-
teristic of a plane baffle which is given by

P h.p((n) Jj (oLr

U h.p((o) 1+ er/Rr

Z;(w) = @

where R, = 128/97% and L, = 8a/3rc. a is a free parameter used to best fit the model (see
[1] for a more detailed explanation).

This model of the vocal tract is a linear model and can be approximated by a frequency
response given by

Ulip(z) G
P
1- Z ockz_k
k=1

where P is the number of poles. This all-pole frequency response sufficiently models the
vocal tract when it has no energy sinks. However, for nasal sounds, zeros are introduced
because energy can be trapped in the mouth cavity. Figure 6 shows the electrical analogy
of the system for a nasal sound. The lips are closed resulting in zero volume velocity (cur-
rent) which is analogous to an open circuit. Sound radiates from the nostrils which can be

= (5)
Uglom‘s(z)
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represented by an impedance similar to the lip impedance. In this case, the mouth cavity
can trap energy leading to zeros in the frequency response of the vocal tract. This can be a
problem when modelling the vocal tract since standard linear prediction techniques do not
account for zeros in the system transfer function.

—— T —
Zy! nose
| i« }——
—{___ 1
mouth
—{

FIGURE 6. Electrical analogy of the vocal tract for a nasal sound. Z, is the free-air interface impedance at
the nose. Note that the line impedances vary with space.

As energy travels along the series of concatenated ideal tubes, it will be reflected at each
boundary. Each reflection will delay the signal by 2, where 1t is the time required for the
sound to travel across one tube. Thus, the impulse response of the system will be of the
form

W) = Z 0, 8(t - 2kt — P1) ©)
k=0

where the output impulses occur every two time delays because of backward and then for-
ward reflections. P is the number of tubes in the model (equivalent to the number of poles
in the model), and the delay P7 in the output is the time required for the sound to travel
from the glottis to the mouth or nose opening.

The Fourier transform of this impulse response is periodic in frequency with period 1/21.
Thus, to prevent aliasing, the input to the model should be band-limited by 1/4t; the sam-
pling frequency should be f; = 1/2t. The tube delay, T, depends on the length of the vocal
tract, /; the number of uniform tubes used to model the tract, P; and the speed of sound, c:
T = I/cP. These relations lead to the following equation:

pol 12 _ s
¢t 2tc  1kHz

Q)

Values /=17 cm and ¢ = 340 m/s were used to obtain Equation 7. For a sampling fre-
quency of 8kHz, the number of coefficients in the model should be at least 8. Fewer coef-
ficients will cause aliasing in the vocal tract model.
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Chapter 3: Frequencys-
Time Representation of
Sounds

3.1 What Does Frequency-Time Mean?

As the vocal tract changes shape and the glottal excitation changes form, the frequency
response of the vocal tract and the frequency content of the glottal excitation change. Fou-
rier analysis proper does not explicitly account for the time-varying frequency content of a
signal. This is not inherently problematic; however, when perceiving sounds, the human
does break the signal down into time-varying frequency components via the cochlea.

In the time representation, a one-dimensional series of data expresses how the signal var-
ies with time. In the frequency representation, we take the Fourier transform of the signal
to get an expression of the signal as it varies in frequency. The frequency-time representa-
tion explicitly shows how the frequency components vary in frequency and time. Exam-
ples of the frequency-time representation are the short-time Fourier transform (STFT) and
the wavelet transform.

All transforms discussed in this chapter are linear transforms. A useful paradigm for linear
transforms is the Hilbert Space, H. A signal can be represented by a pointin H. In the time
domain, each dimension of H is an impulse at a particular time. In the frequency domain,
each dimension is an impulse at a particular frequency. In the frequency-time domain,
each dimension is a basis function which is in some way localized in both ifrequency and
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time. This allows the frequency-time representation to show how the signal varies in fre-
quency and time.

3.2 Suitability of Frequency-Time Analysis to the Human Speech
Channel

Physiological and neurological attributes of the cochlea and early auditory processing sys-
tem of the brain indicate that sounds are broken down into frequency components chang-
ing in time by the cochlea and are processed in this way by the brain [3]. In essence, the
cochlea performs a frequency-time transform of the auditory signal. So by considering a
frequency-time representation of incoming sounds, we can understand how the cochlea
and brain will transform them. For example, certain frequency channels in the cochlea
may have a slower response time than other channels. Therefore the information rate in
the slower channel is lower than the information rate in the faster channel. Such knowl-
edge can be useful when choosing a coding scheme.

Sound vocalization can be modelled by either a periodic source or a white noise source
being transformed by a time-varying linear filter which represents the vocal tract. A time-
varying linear filter is most explicitly represented in the frequency-time domain. Again,
certain frequency components of the time-varying transform may behave differently than
other components and the frequency-time representation of the transform allows us to
make use of this information.

Because of its physiological and neurological relevance, the frequency-time representa-
tion is very important in the area of non-linear transforms. An appropriate domain must be
chosen before a non-linear method (i.e.: vector quantization) can be applied. For example,
the compression technique of silence or zero detection would result in no compression of a
pure sinusoid if applied in the time domain. However, if the zero detection transform were
applied in the frequency domain, where the sinusoid is represented as a single non-zero
element, excellent compression would result. The success of the frequency-time domain
as a starting point for non-linear methods can be measured by experiment only. But the
relevance of this domain to the vocalization and audition processes indicates that it may be
a beneficial paradigm for speech compression.

3.3 Sound Spectrograph

One of the first devices developed to provide a frequency-time representation of a signal
was the sound spectrograph. This device uses a bank of filters to show time-varying spec-
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tral characteristics. The two-dimensional map produced by the device is called a spectro-
gram. The vertical dimension corresponds to frequency and the horizontal dimension to
time. The energy of the signal at a particular frequency and time is represented by the
darkness of the map at that point. Fricatives contain broadband energy, whereas voiced
phonemes contain bands in the spectrogram. Those bands correspond to the formants in
the phoneme. It is possible to learn to read a spectrogram and determine the utterance from
the spectrogram information alone. Note that the spectrogram is an electro-mechanical
tool used for studying the time-varying frequency characteristics of sounds. The machine
does not readily provide digital data. Also, the elements of the map do not correspond to
the dimensions of a Hilbert space because they are not orthogonal. Since the spectrograph
does not provide numerical values for the time frequency coefficients, we will not study
how the spectrogram corresponds to a Hilbert Space. In later sections we will study how
other transforms such as the Short-Time Fourier Transform (STFT) correspond to Hilbert
Spaces.

FIGURE 7. Sound spectrograph spectrogram of the utterances /UH-F-A/, /UH-S-A/, and /UH-SH-A/
from Rabiner and Schafer [1].

Figure 7 shows the sound spectrogram for three utterances. Notice that the fricatives, such
as /s/, have energy spread across the spectrum, whereas voiced sounds, such as /JUH/ have
energy in frequency bands.

3.4 Short-Time Fourier Transform (STFT)

The method of short-time Fourier analysis provides a frequency-time representation of the
signal by repetitively windowing the signal, taking the Fourier transform of the windowed
signal, and shifting the window. The width of the window provides the localization in time

Chapter 3: Frequency- Time Representation of Sounds

13



for the Fourier analysis. The block diagram shown in Figure 8 indicates how the STFT is
obtained. The resemblance of the transform to the Fourier transform with the addition of a

window is obvious.

Filter with impulse Xn(ej‘”)

x(n)
response w(n)

e-jmn

FIGURE 8. Block diagram of the STFT operation, Each signal sample is multiplied by a frequency-
domain basis function as with the Fourier series. Then, a filter with a window-type impulse response is used
to sum a portion of the weighted sample sequence. In this way, the frequency content of the signal in the
locality of each sample is calculated.

The system equation is
H@) = Y wn- ke ®
k= —oco

The window w(n) selects the portion of the signal to be transformed.

Frequency

Time

FIGURE 9. Computer-generated STFT sound spectrogram from Oppenheim [6]. It closely resembles the
spectrograph output.

Figure 9 shows an example of the STFT in spectrogram format. Equation 8 can be written
as a filter bank summation which indicates the resemblance between the STFT and the
sound spectrograph (where the filter banks are implemented in hardware).
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3.4.1 STFT Does NOT Have an Orthonormal Basis

When studying the frequency-time representation of a signal, it is important to know to
what extent the different frequency-time states are orthogonal. For example, two adjacent
non-zero coefficients may lead the observer to believe that the signal has more content
than it does since the basis might be non-orthogonal. In addition, the entropy of the repre-
sentation is low since information is duplicated by non-orthogonal states. Consequently,
coding of the frequency-time representation must include careful consideration of the non-
orthogonality.

The inner product between two bases indicates to what degree they duplicate information.
We can examine the orthogonality of STFT states which differ in time but not in frequency
by calculating the following inner product:

T o oo
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The inner product of two states with same frequency and with different time indices
depends on the window function and the signal itself. Consider the signal x(m) = 1.0;

o0
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This quantity will be zero only if the window function is uncorrelated with itself when
shifted by (n-1). In general, then, the STFT does not have orthogonal states.

The fact that the STFT has a non-orthogonal basis does not mean that the signal cannot be
recovered from the transform. In fact the conditions for recovery of the signal are reason-
ably weak: the window function at time 0 must be non-zero.

3.4.2 Phase Space Localization of Basis States

The location of the short-time Fourier transform basis states in phase-space (frequency-
time space), is shown in Figure 10.

Frequency

a) Time
A Frequency
O Y Y N TV E OO OO T L
[ e o e o e e e o s e I e e o s [ O
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FIGURE 10. Location of STFT basis states (a) and wavelet transform basis states (b) in phase space
(frequency-time space).

Notice that the lattice is regular, periodic in both time and frequency. This lattice illus-
trates a further drawback of the STFT: poor utilization of information. The zero frequency
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elements in the lattice are represented periodically in time even though they represent DC
components of the signal. Obviously, the DC components of the signal do not vary with
time, so these coefficients are wasted. High-frequency components have a short period
and therefore can have an envelope which varies quickly with time. Consequently, a good
representation of high frequencies should have states which are closer together in time
than those at low frequencies. The STFT has a periodic lattice of states, not allowing for
more resolved representation at high frequencies.

Gabor, who originally developed the STFT, used a Gaussian window. It can be shown that
 the Fourier transform of a Gaussian is a Gaussian. The Fourier transform of a Gaussian
multiplied by the sinusoid of a particular frequency is a Gaussian shifted by that fre-
quency. This may be the one saving grace of the STFT for it means that the basis states are
well-localized in frequency and time.

3.5 Wavelet Transform

The wavelet transform, also called the “affine” transform, overcomes the STFIs inability
to utilize information efficiently. In addition, a wavelet basis may be chosen such that it is
an orthogonal basis. Consequently, it is possible to construct a wavelet basis which forms
the basis for a Hilbert space in which almost any signal can be represented (the exceptions
are non-Lebague-integrable functions which are indeed exceptional). The wavelet trans-
form consists of projecting the signal on to the basis. This frequency-time representation
of a signal is much simpler than the STFT since different coefficients correspond to
orthogonal bases. Each coefficient indicates signal content that is independent of other
coefficients.

3.5.1 Generation of the Basis from the Mother Wavelet

The transform name “wavelet” or “affine” refers to the way in which the lattice of bases in
phase-space is assigned. “Affine” refers to the transform t’ = at + b, where t, for example,
is the time variable. Instead of modulating a Gaussian by sine waves at different frequen-
cies, the affine transform warps and shifts the time variable of a basis state called the
“mother wavelet”. In this way, the entire basis is formed. As a result, the mother wavelet is
“squeezed” or “stretched” and shifted in time to form the basis. The basis states are shifted
by a smaller amount of time if squeezing occurs; they are shifted by a larger amount of
time if stretching occurs. The assignment of basis states in phase space can be seen in Fig-
ure 10.
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High-frequency wavelets are shifted less in time. This allows for a more efficient repre-
sentation since high-frequency signals can have a more quickly changing envelope. This is
what allows the wavelet transform to represent signals more efficiently than the STFT.

3.5.2 A Simple Example: the Haar Wavelet

A type of wavelet which clearly illustrates how wavelets work is the Haar wavelet. The
mother wavelet from which all other wavelets are derived is called the Haar function:

0,t<0

1,0<t<0.5
() = (10)
-1,05<1<1

0,1<¢

The set of basis states are generated from the affine transform as follows:

m/2 m/2

m m -m
B o0 = 2720 = n) = 272" - n2 ™)) an
Increasing m leads to more squeezing; decreasing m leads to more stretching. The second
form in Equation 11 indicates that highly squeezed wavelets are closer together in time.
Figure 11 illustrates the mother wavelet in addition to other wavelets generated from the

affine transform.

_ A Aim,n(t)
Mother wavelet
1,-3 0,0
-1.1
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FIGURE 11. The wavelet basis is formed by shifting and then stretching or squeezing the mother
wavelet. The scale for shifting is determined by the stretching or squeezing, so that high-frequency wavelets
are shifted more finely. The values for m,n are shown beside each wavelet.
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- Consideration of how the wavelets are generated indicates that the basis is orthogonal. The
affine transform squeezes/stretches a wavelet by a factor of two and shifts it by the width
of the generated wavelet. The inner product of these two wavelets will consist of the inner
product of an odd function with the even portion of another function which is zero. Wave-
lets that have not been stretched or squeezed with respect to each other will be shifted in
time by an amount such that the wavelets do not overlap and, of course, the inner products
will be zero. Therefore, this wavelet basis is orthogonal.

By mixing various wavelets together, it is possible to obtain a time-domain impulse func-
tion located at any particular instant. An infinite number of wavelets will be needed, but
the sum will have vanishingly small coefficients. Although a rigorous proof is not pre-
sented here, one can become convinced that this is possible simply by trying out combina-
tions. It follows that if any impulse function can be expressed as a weighted sum of
wavelets, the wavelets form a basis for L2 (R) . Since the Euclidean norm of each wavelet
is unity, the Haar wavelets presented form an orthonormal basis.

3.5.3 Daubechies Discrete Wavelet Transform (DWT)

Although the Haar wavelet transform has an orthonormal basis and has good time local-
ization of the basis states, it does not have good frequency localization of the basis states.
As seen in Figure 13a, the FFTs of the various basis states overlap significantly.
Daubechies [5] has developed a variety of wavelet transforms. Already very popular are
her discrete wavelet transforms (DW'Ts) [7], which are generated from a set of wavelet fil-
ter coefficients. The specific way in which the wavelet transform matrix, D, is constructed
from the wavelet filter is presented in Appendix B. The final result is

DWT(s) = Ds (12)

The sample vector, s, is linearly transformed by the transform matrix. Because the pyrami-
dal algorithm can be used when applying the transform, the calculation is order N, where
N is the number of samples. (Note: N must be an integer power of 2.)

It is easiest to understand the DWT by considering each row of the transform matrix to be
a basis state vector. The sum of two such basis states are shown in Figure 12 for the case of
Daubechies’ 20-coefficient DWT. They obviously have different time and frequency indi-
ces. This wavelet basis is orthonormal, has good time localization, and has good frequency
localization.
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FIGURE 12. Time-domain basis states for the DWT generated from Daubechies’ 20-coefficient wavelet
filter.

The frequency localization of the Haar wavelet basis states and the so-called DAUB20
wavelet basis states are shown for comparison in Figure 13.

FFT P
a) Haar Bases
0 16 32 48 64 80 96 112 128
Frequency index
FFT ||
b) DAUB20 Bases
0 16 32 48 64 80 96 112 128

Frequency index

FIGURE 13. The FFT of the Haar basis states (a) indicates a greater amount of overlap in the frequency
domain than for the DAUB20 basis states (b). .
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A plot similar to a spectrogram‘can be used to show the DWT of a signal (Figure 14).
Instead of having uniform resolution, however, the DWT has varying resolution: fine at
high frequencies; rough at low frequencies.

Frequency

Wavelet Transform o_f a.wav

t= 0.000s t= 0.128s

FIGURE 14. The DWT of /0g/ (hat). Notice the finer temporal resolution at higher frequencies.

According to the uncertainty principle, decreasing the localization width of one variable
causes an increase in the localization width of its conjugate variable: AtA® = 1/2. The
superior temporal localization of the Haar wavelet leads to inferior frequency localization.
A Daubechies DWT which has bases which are more highly localized in time than the
DAUB?20 wavelets are the DAUB4 wavelets, shown in Figure 15.
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FIGURE 15. Time-domain basis states for the DWT generated from Daubechies’ 4-coefficient wavelet

filter.

Chapter 3: Frequency- Time Representation of Sounds

21



Chapter 3: Frequency- Time Representation of Sounds

22



Chapter 4: Representation

of Speech

In Section 2.3.1 we saw that for voiced sounds, frequencies above 4 kHz are more than 40
db attenuated from the peak amplitude. However, for unvoiced sounds such as /s/, there is
appreciable signal content above 4 kHz. However, practical implementations of telephone
systems have proven that 4 kHz of bandwidth is sufficient for good quality speech trans-
mission [8]. This means that a rate of 8000 samples / second (Nyquist rate) is suitable for
sampling the speech signal for telephone quality sound.

The technique of sampling a signal, coding (quantizing) the pulses, and reconstructing the
signal from the pulse codes is called PCM (Pulse Code Modulation). “Code” means that a
code is sent down the line to reconstruct the pulse level at the sampling rate.

4.1 Optimal PCM

Shannon’s information rate provides a good measure of compression. If 1 of N symbols is
sent over the channel at a time, Shannon’s information rate or entropy measure is:

N
H = "K<10gpl> = _szilogpi (13)
i=1

where p; is the probability of symbol i occurring. If K is chosen as follows, the entropy
measure can be used to compare the information utilization of different sets of symbols:
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i=1

An entropy of 1 indicates good utilization of the symbol set. An entropy of 0 indicates
extremely poor utilization. For the case of PCM, the set of symbols is the set of quantiza-
tion levels. For 8-bit PCM, there are 256 symbols or quantization levels. Figure 16 shows
the code utilization for 8-bit uniform PCM applied to a variety of both male and female
human speech. Uniform quantization does not give uniform usage of the PCM codes. In
fact, the entropy of the code book is quite low: 0.59. Paez and Glisson [9] have shown that
a good approximation to the speech amplitude distribution is a gamma distribution. If the
quantization levels are assigned according to this distribution, then code usage will be uni-
form, giving an entropy near 1.0. Such an assignment of quantization levels would result
in a clustering of levels near O (fewer levels at high amplitude).

O.BT
0.25¢
0.2
p(N0.15;
0.1;

0.051 L
0 : ;

0 64 128 192 256
Code Index

Entropy = 0.59

FIGURE 16. Code utilization for 8-bit uniform PCM. This curve shows the probability distribution for
the uniformly assigned codes.

Another consideration when assigning quantization levels is the quantization error. Indeed
the optimal assignment of levels so as to maintain a constant percentage quantization error
is a logarithmic distribution [1]. The principles of high entropy codebook utilization and
uniform quantization error are important in all areas of coding, including vector quantiza-
tion. Later, Shannon’s entropy measure will be used to measure coding performance.
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Using the above ideas, a coding scheme called p-law has been developed [10]. In this case
the following equation is applied before uniform PCM.

log (1 + H%QQ,J
max

max - log (1+u)

yk) = x sgn [x(k)] (15)
This coding scheme provides telephone quality speech at a sampling rate of 8000 bytes
per second or 64000 bits per second [1].

4.2 Wavelet Representation

In Chapter 2 and Chapter 3 we saw that the dynamics of speech are of a frequency-time
nature. Therefore, it makes sense to look for coding schemes in the frequency-time
domain. Techniques such as the short-time Fourier transform have been used to compress
speech [11]. However, the wavelet transform’s ability to zoom in on short-time features
has generated interest in compressing speech using DWTs [12].

Figure 15 illustrates the DWT of the vowel in “hat”. The temporal periodicity in the DWT
indicates the pitch period of the voiced sound. The time-domain signal remains near zero
most of the time so that the DWT is sparse. A sparse representation of a signal is ripe for
compression.

4.3 Wavelet Transform Compressed

An implemented zero-detection coder breaks the speech signal into 16 ms segments. For
each segment, it calculates the DWT, quantizes the transform coefficients to a number of
levels (either 8 or 16) and transmits the location and quantization level of only the non-
zero components. This scheme generates only slightly distorted speech at an average rate
of 12800 bits per second (1600 bytes per second).

Since the vocal tract changes fairly slowly with time, the frequency response of a vocal
tract is approximately constant during the pitch period. From one pitch period to the next,
the glottal excitation is usually similar (except when switching from one phoneme to
another). A technique called Linear Predictive Coding (LPC) makes use of this (see the
following section). However, during changes of the glottal excitation, short-time features
are present which may not be represented by the Simple coding methods used in LPC.
However, these features can be efficiently coded using the DWT (Chapter 5).
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4.4 Linear Predictive Coding (LPC)

For the linear predictive coding of speech, we assume that the glottal excitation and vocal
tract have a simple model. The vocal tract can be modelled by an all-pole linear filter
(Equation 5). If we assume that the glottal excitation is either a series of impulses (whose
period is the pitch period) or stationary white noise, then the particular shape of the actual
glottal excitation can be modelled by adding poles to the vocal tract filter. Atal and
Hanauer [13] have found that the addition of four poles is sufficient. From Equation 7, the
total number of poles needed to model the “vocal tract” for LPC is

7

P =
1kHz

+ 4 16)

For 8000 sample /second input speech, 12 poles are needed.

This model does not include the zeros of the vocal tract transfer function (mainly caused
by the mouth during nasal sounds) nor the non-linear effects of the vocal system. We also
assume that the true glottal waveform can be sufficiently simplified by the 4-pole glottal
filter. For each segment of speech, usually about 30 ms in duration, the filter coefficients
are calculated; it is determined whether the sound is voiced or unvoiced; if the sound is
voiced, the pitch period is calculated; and the gain of the system is found. Given these
parameters, either random white noise for unvoiced sounds or an impulse train with period
determined by the pitch period for voiced sounds is applied to the linear filter given by the
filter coefficients. This gives a perceptual approximation to the original speech segment.
Note that although the perceptual error may be low, the Euclidean error between the two
waveform vectors will be very high. Figure 17 illustrates the synthesis block diagram.

Pitch %‘385% 4 , Vocal Tract
Period Swien. ~ Gain Filter Parameters

L

Impulse Series
Generator Synthesized
Speech
| Time-varying Vocal
Tract Filter
White Noise
Generator

FIGURE 17. Block diagram of the LPC synthesizer.
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If u(m) is the synthetic excitation, then the synthetic speech samples s(m) are generated
(see Equation 5) by

P
s(m) = Gu(m) + Z o ks(m ~ k) 17
k=1
It can be shown that if u(m) is a periodic impulse series or white noise, then the technique

of linear predictive analysis gives the correct coefficients o 15 --» 0p[1][7]. The linear pre-
dictive analysis technique used for this thesis is Burg’s method (see Appendix C).

The LPC technique was implemented under DOS on a 20MHz 386 PC. Filter parameters
are coded using 4 bits each, the voiced/unvoiced switch is coded using 1 bit, the pitch
period is coded using 5 bits, and the gain is coded using 6 bits. The LPC parameters are
calculated every 25 ms giving a total bit rate of 2400 bits / second.

Figure 18 shows the FFT of the phoneme /ok/ from Figure 3 and the FFT of the LPC syn-
thesized phoneme. The spectra match reasonably well. Notice that the formant peaks are
preserved.

120 1
110 1
100 1
dB 90
80 1
70 1

LPC synthesized phoneme

\

Actual phoneme

0 64 128 192 256 320 384 448 512
Frequency Index (512 samples / 4 kHz)

FIGURE 18. Comparison between the FFT of an actual phoneme, /a&/ (hat) and the FET of its LPC
synthesized counterpart. The formants are preserved.

So LPC efficiently determines the vocal tract transfer function. However, in many cases,
LPC generates erroneous codes because the excitation signal does not follow its assumed
form or the filter does not follow its assumed form (such as for nasals). Also, stop con-
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stants, such as /p/, have short-time dynamics which are smeared out by the frame analysis
of LPC. Figure 19 shows the DWT of the original utterance /p/ and of the LPC synthesized
sound.

Wavelet Transform of p.wav

a)

t= 0.000s t= 0.064s

Wavelet Transform of plpc.wav

b)

t= 0.000s t= 0.064s

FIGURE 19. DWTs of the original utterance of /p/ (a) and the LPC synthesized utterance (b). The frame
loses the short-time features of the stop consonant.

4.5 Code Excited Linear Prediction (CELP)

4.5.1 True Excitation: More Than White Noise or Impulses

An LPC vocoder synthesizes speech by assuming the excitation is a series of impulses or a
white noise source. If the vocalization system were ideal, this would indeed be sufficient.
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Figure 20 illustrates the excitation obtained by applying the inverse linear predictor filter
to the voiced phoneme from which the predictor was obtained. The excitation is seen to be
more complex than a series of impulses.

Amplitude

4
i

128 ms

FIGURE 20. By applying the inverse vocal tract filter to the phoneme /0E/, we see that the true excitation
is more complex than a series of impulses.

4.5.2 Using a Code to Approximate the True Excitation

If instead of using an impulse train or a white noise source we use a code selected from a
codebook to excite the linear predictive filter, we obtain Code Excited Linear Prediction
(CELP). Various methods have been used to determine the optimal code. Different appli-
cation domains place different restrictions on the technique used. Some of the application
issues are low-delay, low bit rate, high noise tolerance, and, of course, cost [14].

4.5.3 Important: Pre VS Post Filter Error

If we consider the block diagram shown in Figure 17, there are two obvious ways of
obtaining an error measure for true speech and given synthetic excitation:
1. The inverse vocal tract filter can be applied to the real speech, generating a true exci-

tation. The Euclidean (sum-of-squares) error between the true excitation and the
synthetic excitation is then calculated.

2. The vocal tract filter can be applied to the synthetic excitation, generating synthetic
speech. The Euclidean error between the true speech and the synthetic speech is
then calculated. This method is called “analysis-by-synthesis”.

2 makes the most sense as a perceptual error, since it is the final output that the listener
hears. However, 1 makes sense from the point of view of conservative computation.
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4.5.4 Analysis by Synthesis CELP

Traditionally, CELP coding is based on analysis-by-synthesis techniques. The following
describes a basic CELP vocoder [2] whose block diagrams are shown in Figures 21 and
22.

Speech
|  Perceptual
Weighting Filter
CELP Synthesizer Minimize
% Error
Code indices and gains
FIGURE 21. Block diagram of the CELP Analyzer.
Vocal Tract
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. Stochastic Codebook

Stochastic
Code ———p
index

Stochastic Svnthesized
Code ynthesize '
Gain a Excitation v Synthesized

Speech

Long-term
Code X Subframe
Gain Delay

In %,

Long-term
Code g}
Index

Out Long-term Codebook

o T———

FIGURE 22. Block diagram of a CELP synthesizer.
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For analysis, a code is selected, the linear predictive filter is applied, and the output is sub-
tracted from the real speech to give an error. This error is then fed through a perceptual
waiting filter and the code which minimizes this error is chosen to be the best code. The
perceptual weighting filter enhances certain components of the signal so as to make the
error minimization procedure relevant to the perceptual domain. Figure 21 illustrates the
block diagram for the CELP analysis procedure. The CELP analyzer must synthesize the
speech segment for each code to be tested.

Synthesis usually uses two (or more) codebooks in order to account for different proper-
ties of the true excitation. Figure 22 shows the CELP synthesizer.

Usually the code used to excite the prediction filter consists of two components. One is a
long-term predictive code which is generated by shifting previous excitation codes into a
buffer called the “long-term codebook™. The long-term codebook may contain four or
more subframes of previous excitation. The current code from the long-term codebook is
selected by choosing a section of the codebook that minimizes the perceptually weighted
error. Added to the long-term code is another code from a stochastic codebook. The long-
term codebook contains long-term periodicity of the voice waveform, whereas the sto-
chastic codebook allows for unpredictable excitation spikes as well as innovation when
new sounds begin. It is a fixed codebook which contains random numbers which satisfy a
particular distribution.

The subframe size is 64 samples and since the long-term codebook stores four subframes,
the long-term codebook is 256 samples long. The stochastic codebook is 1024 samples
long. Linear prediction occurs at multiple subframe intervals. For example, four sub-
frames comprise a frame; the linear predictive coefficients are calculated for each frame
whereas the codebook indices and gains are calculated for each sub-frame. The linear pre-
dictive coefficients may be interpolated for each subframe.

For each subframe, an optimal adaptive codebook index and gain and a stochastic code-
book index and gain must be determined. Usually this is done using analysis by synthesis,
which means the excitation is applied to the filter and an error is generated which is then
perceptually weighted by another filter.

Although the analysis-by-synthesis CELP vocoder requires a large amount of computation
[2], synthesized speech quality is much better than for LPC.
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An additional advantage of the CELP vocoder is that it does not presume a particular type
of excitation. Consequently, it is more capable of handling non-vocalized sounds than the
LPC vocoder. This is useful for faithfully reproducing background noise.
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Chapter Code and
Wavelet Excited Linear
Prediction (CWELRP)

5.1 Introduction

The advantage of the LPC vocoder is that it uses linear prediction which does not require
much computation. Its disadvantage is that the excitation is not complicated enough to
account for nonideal excitation. The advantage of the analysis-by-synthesis CELP
vocoder is that it can adaptively create more complicated excitation to improve synthe-
sized speech quality. Its disadvantage is the high computational requirement for the analy-
sis-by-synthesis techniques. It seems that a compromise might be a good solution to the
speech coding problem. One idea is to try to match an excitation code to the signal gener-
ated by applying the inverse predictive filter to the speech segment. This has the advan-
tage that the analysis by synthesis stage is skipped (i.e. the linear predictive filter and
perceptual weighting filter need not be applied) and this significantly reduces the compu-
tational power required. At the same time, a more complicated excitation signal can be
generated leading to sound quality which is more robust than that from the LPC vocoder.
The price to be paid for the model is higher computational complexity than the linear pre-
- dictive vocoder and lower speech quality than the CELP vocoder (see Section 4.5.3).

5.2 CWELP System

Figure 23 illustrates the synthesis block diagram for the vocoder described above. Both
short-term and long-term signals are generated and summed together to give the synthe-
sized excitation signal. As with CELP synthesis, this excitation signal is delayed and
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added to the long-term codebook. The linear predictive filter is applied to produce the syn-
thesized speech. However, as the analysis block diagram in Figure 24 shows, the error is
calculated earlier than in the CELP vocoder. Here, we try to obtain the optimal excitation
instead of the optimal speech signal output.

Vocal Tract
Filter Parameters
Coded WT of Short =1
Term Excitation —= WT Synthesized
Excitation Synthesized
+ % =1 H(z) > “speech
Code h 4 Subframe
Gain Delay
In é’
Code
Index -

£

out %{ Long-term Codebook

FIGURE 23. Block diagram of the CWELP synthesizer.
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Linear Predictive Vocal Tract
t_’ Analysis ™ Filter Parameters
WCodle - CTodedEWT_ of Short
H (z)'1 ” avelets erm Excitation
True Excitation + = WT
v e Code
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Long-term vV V
Code Search: ¢
Maximize Inge S CWELP
2 ndex nthesizer
(ele)” /{cle) B e -
Long-term Codebook * > Code Gain
- (Code Index

FIGURE 24. Block diagram of the CWELP analyzer.
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Since the short-term excitation is used to represent spontaneous spikes and innovate for
when new sounds begin, most of the time the short-term excitation is zero. The wavelet
transform is an excellent way of representing high-frequency short-time spikes
[51[7]. Other short-term excitation compression schemes were not investigated; the wave-
let transform domain was chosen for its ability to zoom in on oscillatory features (see Sec-
tion 3.5).

The method used to determine the short-term excitation is to calculate the linear predictive
coetficients, apply the inverse linear prediction filter to the speech segment to generate a
true excitation signal, select an optimal amplified code from the long-term codebook and
subtract it from the true excitation signal. This short-term excitation vector is transformed
by the wavelet transform and is then compressed in the wavelet domain. The long-term
codebook index and gain and the compressed wavelet transform of the short-term residual
is transmitted through the channel to synthesize the speech. Since the excitation is gener-
ated from a series of codebook codes and wavelets, the compression technique is called
the Code and Wavelet Excited Linear Predictive vocoder or CWELP vocoder.,

The CWELP vocoder uses 8,000 sample/second input. Each frame consists of 256 sam-
ples and the linear prediction coefficients are calculated once per frame. The order of the
linear predictor which minimized model error and bit rate was determined experimentally
to be 10. A long-term codebook code index and gain and the coded wavelet transform of
the short-term excitation are transmitted once per sub-frame (there are four subframes per
frame).

5.2.1 Qualitative Difference Between Short-term and Long-term Codes

During voiced speech segments on the order of 20 ms duration, a significant portion of the
vocal tract excitation energy is in the form of a periodic signal (at the voiced pitch). The
long-term codebook is a means of storing recent excitation with the hope that future exci-
tation will be similar. If the true excitation were as simple as a periodic series of impulses,
the long-term codebook would be sufficient to perfectly reproduce the excitation.

Innovative excitation features (not accounted for by recent excitation) must be accounted
for by a means other than the long-term codebook. Indeed, if these features were not
coded, the long-term codebook would have no way of incorporating recent excitation
approximations. These innovative excitation features are considered to be the “short-term”
excitation.
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5.3 Long-term Codebook

The size of the long-term codebook is 256 samples. Each code consists of a 64-sample
segment of the codebook, so that each code overlaps by 63 samples with its adjacent
codes. 8 bits are sufficient therefore to give the position of the code in the long-term code-
book. Searching for the optimal code can be considered to be finding the optimal match
between a codebook vector and a 64-sample segment of the true excitation. If e is the exci-
tation vector and ¢(i) (where i ranges from 0 to 255) are the codebook vectors, the optimal
codebook vector is found by maximizing the squared inner product of the excitation vec-
tor e with the normalized code vectors ¢(i)/||¢(i)||. Using the squared inner product saves
computation required by the square root operation and allows for negative gain (when the
unsquared inner product is negative). o, the code vector gain, is then found by dividing the
unsquared inner product by the squared norm of the code vector as shown below. Figure
235 illustrates the scenario used to derive Equation 18 and Equation 19.
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FIGURE 25. Projecting the excitation onto the code.

Once the complete excitation is found (including the short-term excitation; see below) the
subframe of synthesized excitation is shifted into the long-term codebook buffer. The old-
est sub-frame in the buffer is lost. Consequently, the long-term codebook consists of the
last four sub-frames of synthesized excitation. It is from this that future long-term codes
can be selected. Figure 26 shows the excitation for the phoneme /ck/, along with the long-
term code excitation. Note that at first, the long-tarm codebook does not contain the infor-
mation to account for the periodicity of the excitation. However, the short-term excitation
synthesizer provides the innovation, such that the long-term code excitation eventually
does mimic the periodicity of the true excitation.
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The long-term codebook is restricted to a size of 256 samples for two reasons. First,
extending the length of the codebook increases the codebook search time. Since the code-
book search requires the greatest portion of CWELP analysis (Section 5.7), it is desirable
to keep the codebook as small as possible. Second, 256 samples correspond to a period of
256/ (8000 Hz) = 32 ms. It is reasonable to assume that most ordinary speech will have
pitch periods below this limit. Since only one pitch period need be stored in order to select
the optimal short-term excitation segment for the next subframe, a codebook size of 256 is
sufficient.
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FIGURE 26. True excitation (a) and long-term codebook excitation (b). With time, the codebook stores
useful information about the excitation,
5.3.1 Coding the Code Index and Gain
Figure 27 shows the probability distribution of the code index determined by applying the
CWELP analyzer to a signal consisting of concatenated utterances of letters from the

alphabet. The utterances were extracted from the ISOLET database (Appendix D) and
were spoken by both males and females.
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FIGURE 27. Probability distribution of the code index, i.
Evidently, the set of code indices are well utilized: the distribution has an entropy of
0.965.

Figure 28 shows the probability distribution of the absolute code gain. A distribution
model that fits the data is

2
p(x) = 6.67x°¢ 0% 10.01,0<x< 10 20)

14 1

12 + / Code gain distribution

08 T
p(x)
0.6 Code gain distribution model

0.4
02
0 . 4
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FIGURE 28. Probability distributions of the absolute code gain (a) and the code gain distribution model
(b), where x is the absolute code gain.
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The second term in the sum is necessary to account for gains greater than 2.0 which typi-

cally occur following a segment of silence (when the near-zero codebook codes must sud-
denly account for a sizeable signal). The distribution of the actual gain (as opposed to the

absolute gain) is mostly even, indicating that the distribution of the absolute gain is a good
approximation to the distributions for the negative and positive gains.

It was experimentally determined that 5 bits of non-uniform quantization are adequate to
code the code gain without degradation in speech quality. One bit is used to represent the
sign of the gain, while the other 4 bits represent the quantization level index of the abso-
lute gain. The non-uniform quantization levels are assigned by dividing the code gain dis-
tribution model (Figure 28) into 16 sections of equal area. Consequently, the likelihoods of
occurrence of the quantization levels should be almost equal, giving an entropy near unity.
Placing a quantization level at the centroid of each section ensures that the mean square
quantization error within each section is minimized.

Figure 29 shows the symbol utilization (2* symbols) for uniform quantization and non-
uniform quantization of the code gain for test data. Whereas the uniform quantization
scheme has a distribution entropy of 0.294, the non-uniform quantization scheme has a
distribution entropy of 0.974.

0.8

0.7

0.6

0.5
P 0.4 p®M

0.3

0.2

0.1

0 e — ot 00
0 SymbolIndex,i 15 0 Symbol Index,i 15

Entropy = 0.294 Entropy = 0.974

0.1t

a) Uniform Quantization b) Non-uniform Quantization

FIGURE 29. Symbol utilization for the uniform quantization scheme (a) and the non-uniform scheme (b).

Since the index is coded in 8 bits, and the gain is coded in 5 bits, the long-term codebook
excitation requires 8+5 = 13 bits per subframe, or 4x13 = 52 bits per frame.
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5.4 Short-term Excitation

Figure 30 shows the wavelet transform of the short-term excitation (Figure 31) which is
generated by subtracting the long-term code from the true excitation (Figure 26). The
short-term excitation consists of short, high-frequency bursts. The wavelet transform is
well known for its ability to efficiently represent such signals [4]. Compared to the time-
domain signal, the wavelet transform gives a much simpler representation (i.e. fewer of
the components are large).

Wavelet Transform of stex.wav

t= 0.000s t=0.128s

FIGURE 30. Wavelet transform of the short-term excitation. The excitation (Fi gure 31) consists of many
short-time spikes and it is well-suited to compression in the wavelet domain.
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FIGURE 31. Short-term excitation (true excitation - long-term codebook excitation).
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5.4.1 Coding the Short-term Excitation

Two coefficients per sub-frame seem to be adequate to account for the short-term innova-
tion of the excitation. Figures 32a and 32b show the probability distribution of the second-
largest wavelet coefficient and the cumulative distribution of the five next largest coeffi-
cients, averaged over a database (Section 5.3.1) of excitation signals minus long-term
codes. Notice that the coefficient range is [-1,1]: the largest coefficient is used to normal-
ize the magnitudes. The second-largest coefficient is almost always of nearly the same
magnitude as the largest coefficient, whereas the next five coefficients drop significantly
in magnitude. Of even less importance are the remaining coefficients.

30 7 1
p(x) p(x)
20
05 4
1.0
00 Do 0 f }
-1.0 00 X 10 -1.0 00 X 1.0
a) Second-largest b) Five next largest

FIGURE 32. Amplitude probability distributions of the second-largest (a) and the five next largest (b)
wavelet coefficients, where x is the coefficient value.

As with the absolute code gain, the distribution in Figure 32a is assumed to be even, and
four quantization levels (2 bits) are assigned non-uniformly to maximize the entropy of
the symbol distribution.

Only the 32 highest frequency wavelet coefficients (uppermost band in Figure 31) are con-
sidered during coding; the first 32 wavelet coefficients do not seem to be important for
maintaining reproduced speech quality. Also, since the long-term codebook accounts for
periodicity, accurate timing is not necessary for the short-term excitation. Consequently,
the 32 high-frequency coefficient indices are quantized to 16 indices (4 bits).

Four bits code the magnitude of the largest wavelet coefficient in a manner similar to the
coding of the absolute code gain. One bit codes the sign of the largest coefficient. Four bits
code the positions of each of the two largest wavelet coefficients. Two bits code the rela-
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tive magnitude of the second largest coefficient. Therefore, the wavelet transform is coded
in 4+1+4+4+2 = 15 bits per subframe, or 4x15 = 60 bits per frame.

Figure 33 shows the short-term excitation and the coded short-term excitation. Although
most information is lost, the coded short-term excitation does account for spikes and some
of the second order effects (usually caused by damped oscillations in the vocal tract [1D.

Amplitude

b) | !“ 1 “Hl ‘H
T

128 ms
FIGURE 33. Short-term excitation (a) and the coded shori-term excitation ®).

5.5 Discussion of Synthesized Excitation

Figure 34 shows the true excitation and the synthesized excitation for the phoneme /cg/.
Innovation by the short-term excitation quickly allows the long-term codebook to account
for periodicity. The periodicity is well-modelled; however, the synthetic excitation does
not have the same envelope as the true excitation. This gives rise to a “roughening” effect
in the synthesized speech. The sound level does not vary smoothly from one pitch period
to the next.
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FIGURE 34. Comparison of the true excitation (a) and the synthesized excitation (b).
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5.6 Bit Rate

Since 10th order linear predictive analysis is used, 10 vocal tract coefficients must be
transmitted for each frame. The partial correlation coefficients [1] are suitable for trans-
mission since they are bounded by the interval (-1, 1) in order to maintain stability and
since they show very low inter-parameter correlation. These PARCOR coefficients are
non-uniformly scalar quantized; the set of vocal tract parameters are coded in 34 bits.
Table 1 summarizes the allocation of bits per frame.

TABLE 1. Summary of bits transmitted per CWELP frame

Number of Bits | Percentage
Linear Prediction 34 23%
Long-term Codebook 4x13=752 36%
Short-term Coded Wavelet Transform | 4 x 15 = 60 41%
Total 146 100%

Since 146 bits are transmitted per 256 sample frame, and since the input rate is 8000 sam-
ples / second, the CWELP vocoder has a bit rate of 146 x 8000 / 256 = 4563 bits/second.
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5.7 Computational Complexity

For the purpose of comparing vocoder computational complexity, the analyzer is of prime
importance. The synthesizer usually requires a small fraction of the computation required
by the analyzer (often the difference is greater than an order of magnitude). Table 2 shows
the allocation of theoretical computation for the CWELP analyzer.

TABLE 2. Theoretical Computational complexity of

the CWELP analyzer
MIPS? Percentage
10th order linear prediction | 0.4 25%
Inverse vocal tract filter 0.08 5%
Long-term codebook search | 1.04 63%
Wavelet transforms (2) 0.12 T%
Total 1.64 100%

a. An “instruction” is considered to be a multiply or a multi-
ply-and-accumulate, for the purpose of caleulating MIPS (Mil-
lion Instructions Per Second)

As with CELP, the majority of the analyzer’s computation time is spent on codebook
searching. An exhaustive search was used. The computation required by the long-term
“codebook search could be reduced by using other methods.
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Chapter 6: Performance

6.1 Comparison of Bit Rates

Table 3 gives a comparison between the bit rates for LPC (Section 4.4), CWELP, and
CELP (Section 4.5). Both CWELP and CELP have double the bit rate of LPC due to the
excitation coding and transmission.

TABLE 3. Comparison of bit rates

Bit Rate (bits/sec)

LPC 2400
CWELP 4563
CELP 4800

6.2 Comparison of Computational Complexity

One motivation behind the CWELP vocoder was to model more complicated excitations

without introducing much more computation than the LPC vocoder requires (Section 5.1).

At the same time, it was hoped that the CWELP vocoder’s computational requirements
would be much less than the CELP vocoder’s. Table 4 gives a comparison between LPC,
CWELP, and CELP.

TABLE 4. Comparison of computational complexity

Theoretical MIPS | Measured MIPS
LPC 0.58 1.7
CWELP 1.64 3.6
CELP 12,6 257

a. This is the MIP rating of the DSP chip that Campbell et. al. [2] imple-

mented their CELP vocoder on.
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Both the LPC and CWELP vocoders were implemented on an IBM PC-compatible
20MHz 386; the algorithms did not run real-time, but the measured computation rates
were adjusted to give the true rates:

(Coding-Time ) (MIPS-Rating-of-PC)

Measured-MIPS = - @D
(Duration-of-Utterance )

As expected, the CWELP vocoder requires somewhat more computation than LPC but’
much less than CELP.

6.3 Recognition Tests Using the ISOLET Database

Five female and five male speakers were selected from the ISOLET Database (see Appen-
dix D). One pronunciation of each letter of the alphabet was compiled for each speaker to
give a total of (5+5)x26 = 260 test utterances. Although single-letter listening is not a
usual test for speech compression schemes, this data was readily available and proved suc-
cessful at eliciting recognition mistakes. Other types of tests used for vocoder compari-
sons are Dynastat’s diagnostic rhyme test (DRT) and diagnostic acceptability measure
(DAM) [15].

A total of 1332 utterances were read to two female and four male listeners. It was found
that 8000 sample / second 16-bit PCM recordings were accurately identified 90% of the
time. That 10% of the uncompressed recordings were misidentified indicates that the data
set was noisy to begin with. Although this complicates the interpretation of the test results,
it is a realistic test set.

TABLE 5. Comparison of recognition rates

Percentage Correct | Number of Tests

16-bit 8kHz PCM 90% 333
LPC 73% 320
CWELP 76% 341

CELP 85% 338

Table 5 shows that of the three vocoders CELP performed the best. CWELP appears to
have performed slightly better than LPC. However, the difference is not significant
enough to make a judgement as to which technique provides superior speech quality.
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6.3.1 Common Mistakes

Table 6 shows the most common misidentifications and their percentage contribution to
the total number of misidentifications. The z/v misidentification was augmented because
the ISOLET database is American, whereas the listeners were Canadian -- they expected
“zed,” not “zee”.

TABLE 6. Common misidentifications

Percentage of Total Misidentifications
d,b,ande 16%
sand f 10%
z and v 8%
nand m 6%
Other 60%

6.4 Informal Sentence Tests

Two females and two males recorded the sentence “The quick brown fox jumped over the
lazy dog’s back.” When randomly presented with the LPC and CWELP synthesized sen-
tences, listeners consistently chose the CWELP sentences as being of superior sound qual-
ity. CWELP-synthesized speech tends to be consistently noisy. LPC-synthesized speech is
mostly clear, but an occasional pure tone or misplaced unvoiced sound will occur, distract-
ing the listener. The listener can become used to the consistent noise of CWELP, but is
more confused by the unpredictable LPC noise.

6.5 Non-human Speech Coding

In order to test the ability of the vocoder to reproduce sounds with extraordinarily com-
plex excitation, bat calls and whale calls were compressed. The original bandwidths of
80kHz and 10kHz respectively were reduced to 4kHz by simply reinterpreting the sample
rate for the calls. Whereas the CWELP vocoder reproduced the bat calls and whale calls
reasonably accurately (to the human ear), the LPC vocoder could not reproduce the bat
calls at all and generated extremely mechanical-sounding whale call reproductions.

This experiment illustrates the ability of the CWELP vocoder to correctly compress
sounds which have more complicated forms of excitation.
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Conclusions

The CWELP vocoder perforrﬁ; as expected; it is a compromise of speech quality and
computational complexity between the LPC vocoder and the CELP vocoder as shown in
Figure 35.

4 Speech Quality

CELP

-
Resources

FIGURE 35. Qualitative comparison between LPC, CWELP, and CELP., “Resources” refer to
computational complexity and bit rate.

Whether or not the CWELP compression scheme is of any use in the practical market can
be determined only by exhaustive experimentation. Popular coding methods such as
ADPCM, LPC, and CELP have been optimized and well-tested by thousands of research-
ers receiving support from the telecommunications industry.
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Low-level improvements such as delta-coding the vocal tract parameters and the wavelet
coefficients would further reduce the CWELP bit rate.

Other DWT bases may lead to superior sound quality. Indeed, another short-term excita-
tion coding scheme altogether may outperform the DWT method. Another alternative for
coding the short-term excitation is to combine impulse coding and DWT coding.

Further improvement could also be obtained by applying a weighting filter to the true
excitation before coding it. Such a weighting filter should emphasize excitation compo-
nents that are crizical to the human ear after the vocal tract filter is applied.

Regardless, at its simplest, the CWELP vocoder performs well.
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Appendix A:

TABLE 7. Classification of English phonemes along with examples

List of English Phonemes

Orthographic and Phonetic

Classification Representations Example
Vowels Front i Iy beet
1 1 bit
e E bet
e AE bat
Mid a A hot
- ER bird
A UH but
0 ow bought
Back u 00 boot
U U foot
0 0 bow
Diphthongs al Al bay
ol Ol boat
al AU buy
el EI how
oU oU hey
ju JU you
Semivowels Liquids w W walk
1 L ock
Glides r R rock
y Y yacht
Consonants Nasals m M rum
n N run
n NG rung
Stops Voiced b B bun
d D done
g G gun
Unvoiced p P pun
t T ton
k K come
Fricatives | Voiced v \% very
F) TH this
z VA Z00
zh ZH Jaque
Unvoiced f F ferry
6 THE thistle
S S sue
sh SH shack
Affricates tsh TSH witch
] DZH jack
Whisper h H hot
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Appendix B: Using Daubechies’
Filter to Generate the DWT

Consider the following linear transform matrix:
- -
Co €1 €5 G5

C C

0o ¢ ¢ G

(22)
€3 =€, €1 =€y

€3 =C5 €1 =€y

€3 =€y €1 =€y

¢4 =Cg €3 =Cy)

This matrix has the form of two convolution transforms with every other sample skipped.
The net effect is that two types of filtering operations occur. If {cy, c;, c5, c3} form a
smoothing-type filter (like a lowpass filter), then {c3, -¢,, ¢;, -c} form a detail-type filter
(like a highpass filter).

This transform will be used to construct the wavelet transform, so it is desirable that it be
orthonormal (each row and column has a norm of unity, and the inner product of any two
rows or columns is zero). The normality condition requires

2,2, 2, 2
Coteitey+ey = 1 (23)

Most of the rows and columns in Equation 22 are explicitly orthogonal, but another
requirement results from the orthogonality condition:

Cotptcie3 =0 (24)

Since there are four coefficients and only two restrictive equations above, the system still
has two degrees of freedom. Daubechies’ filter coefficients are constructed by requiring
the detail filter to have a certain number of vanishing moments. Two degrees of freedom
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can be removed by requiring the first two moments to be vanishing (“approximation con-
dition of order 27):

3—cz+cl—00=0 (25)

c
003— 102+2c1—3c0 =0 (26)

Equations 23 to 26 give rise to the following Daubechies filter coefficients:

co = (1+43) /442 ¢, = 3+43) /4.2
¢, = 3-43)/442 ¢, = (1-43) /4.2
These are the so-called DAUBA4 filter coefficients. Higher order filters, such as the

DAUB20 filter, are constructed in a similar manner, using higher order approximation
conditions (the number of vanishing moments is greater).

27

The discrete wavelet transform (DWT) is obtained by hierarchically applying the wavelet
filter. First, the filter is used to extract the finest detail via the detail filter. The remainder,
generated by the smooth filter consists of a lower-sampled version of the smooth part of
the input vector. When the wavelet filter is applied again to this smoothed vector, the
detail filter extracts lower-frequency detail, while the smooth filter generates a smooth-
smooth vector. In this way, the DWT extracts high-frequency detail all the way down to
low-frequency detail. The results of repetitive application of the wavelet filter are shown
in Equation 28 on page 55. Notice that if the input vector is of size N, the first wavelet fil-
ter is of size N x N, the second filter is of size N/2 x N2, the third filter is of size N/4 x N/
4, and so on. The raised roman index in Equation 28 refers to the number of filters used to
obtain the coefficient. The output of the system consists of a hierarchy of detail coeffi-
cients, where the higher raised indices refer to courser detail. Also, two smooth coeffi-
cients are left (obviously, all of the smooth coefficients cannot be filtered away). These are
called the “mother-function coefficients”.

Since each filter coefficient is calculated using a fixed number of multiplications (four in
the DAUBA4 case), the total number of multiplications is of order N + N/2 + N/4 + N/8 + ...
Consequently, the DWT is of order N.

Higher-order DWTSs are obtained by satisfying the orthonormality and vanishing moment
conditions (analogous to Equations 23 to 26) to obtain the wavelet filter. A gain, the filter
is applied hierarchically to perform the DWT.
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For information on the theory and application of the DWT see [16] and [7].
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Appendix C: Mathematics of Classical
Linear Prediction

Given samples of data, x(k), the goal of classical linear prediction is to determine a set of
coefficients o, j = 1, ..., p (where p is the predictor order) such that the series in Equation
29 is a good approximation to the data.

p
Yy = 3 ok =) (29)
j=1

The Euclidean metric is used to define an approximation error as

2

: p
E=3 @) -y®]" =Y xk)- Y oxtk-j) (30)
k

k j=1

where the sum should range over the portion of the data for which most accurate linear
prediction is desired. The formal definition of classical linear prediction allows for any
appropriately large range for & by making the following qualification: the data series is
assumed to be stationary. This means that the local statistics of the data do not change with
index k; in other words, the local statistics are the same as the global statistics. If we are
interested in obtaining optimal linear prediction for a subset of the data series, then it
makes more sense to expect that the data is nonstationary, but restrict the range of summa-
tion so that optimal coefficients are obtained for the subset.

The error in Equation 30 is minimized by setting 0E /da. ;= 0,Vi:

p
% = =Y"2 [x(k) - y(¥)] a—g’? ==-Y2(xk0)- Y ox(k—j) |x(k—=) =0 @3
i X i B i=1
Equation 31 simplifies to
p
Y aj[Zx(k — x(k - i)J = > x(k)x(k — i) (32)
j=1 k k
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The following definition separates out the statistical constants from this equation:
0, ) = Y x(k—pxik—i) 33
: k

These constants can be calculated from the data series. Equation 32 becomes

p
2, %0, ) = 6G, 0) (349

j=1

which is p equations in p unknowns. This equation may be solved using standard matrix
techniques once the statistical constants are calculated. However, by appropriately choos-
ing the index k over which the statistics are determined, various specialized techniques
exist [1]. The linear predictive techniques used in this thesis were developed by Burg and
are described in detail in [1] and [7].
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Appendix
Database

): The ISOLET Spoken Letter

This database was compiled by researchers at the Oregon Graduate Institute of Science
and Technology [17]. The names and address of the authors is

Ron Cole, Yeshwant Muthusamy, Mark Fanty
Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology
19600 N.W. Von Neumann Drive
Beaverton, OR 97006
E-mail: cole@cse.ogi.edu

ISOLET consists of 7800 letters spoken in isolation by 150 speakers. Each speaker uttered
each letter of the alphabet twice. Data from all age groups was collected across Canada
and the United States.

Table 8 lists the speakers whose utterances were used in Chapter 6.

TABILE 8. List of speaker’s used in this thesis.

ISOLETLD. | Sex Age | Location
femc0 female | 38 | Oregon
fet0 female | 60 Florida
fiw0 female | 38 Oregon
fkh0 female | 42 Montana
frw0 female | 22 California
mjcl male 17 Oregon
mjp0 male 41 New York
msa0 male 36 Oregon
mteb0 male 32 Washington
mwr( male 58 Oregon

Data was recorded in a 15” by 15’ tiled-floor room with standard office wall board and
drop ceiling. The analog signal from a Sennheiser HMD 224 noise-cancelling microphone
was lowpass filtered at 7.6 kHz and then sampled at 16 kHz.

Since the compression schemes used in this paper required data sampled at 8 kHz, the
ISOLET data were digitally lowpass filtered at 3.8 kHz and then decimated by two.

The signal to noise ratio was calculated to be 31.5 dB with a standard deviation of 5.6 dB.
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