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ABSTRACT

In this dissertation, the difficulties encountered in implementing the Bayesian

paradigm are explored under a number of multiparameter distributional settings. A

combination of statistical theory, mathematical approximations and numerical solutions

are applied to each problem.

Chapter one contains a precis of the philosophical discussion that has surrounded

the implementation of the Bayes paradigm since it was fust suggested. The remaining

chapters deal with a variety of multiparameter situations where implementation of the

Bayesian paradigm is undertaken and compared to results for the classical or likelihood

approach.

Chapters two, three and four compare the performance of the classical and

Bayesian methods in application to a variety of distributions most commonly used in

reliability and lifetesting situations. Two approximations of the Bayes estimator, due to

Lindley (1980) and Tierney & Kadane (1986) are compared to assess the degree of

success achieved in circumventing the intractability problems common to the Bayes ratio

of integrals problem. Improved numerical methods for obtaining maximum likelihood

estimators are proposed. Chapter two compares the two Bayes methods to the maximum

Iikelihood estimator in application to the two-parameter normal and trvo-parameter

inverse gaussian distribution. Chapter three continues to detail the applicability of the

approximations to three commonly used three-parameter distributions in reliability and

lifetesting - the Weibull, gamma and lognormal distributions. Chapter four gives a

similar presentation involving the five-parameter estimation task necessary in working

with the bivariaæ normal disribution.
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Chapters five and six discuss estimation in nvo special mixture distribution

settings. Both censored and uncensored sampling envi¡onments a¡e explored. Chapter

five details the wo¡k for a mixture of exponentials distributions while Chapter six deals

with a mixture of lVeibull's distribution. The use of predictive interr¿als for both

distributions is explored.

Chapter seven investigates two settings for Bayesian alternatives to traditional

quality control techniques. The first section proposes alternatives for the traditional p-

chart control limits by taking advantage of the inherent updating of information available

through the Bayesian paradigm. The second portion presents a modification of the

standard p-chart based on the predictive distribution.
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CHAPTER 1: INTRODUCTION

"411 models are incorrect. "

"A rose by any other name would smell as sweet."

George E. P. Box

William Shakespeare

l.l Motivation

Objectives of the work contained herein are twofold. Of primary importance is

the advancement of the theory and application of that segment of statistical methodology

commonly referred to as Bayesian inference. Much has been built upon the framework

as set out by Reverend Thomas Bayes n L763. More than two hundred years later,

Bayesian methodology remains a viable alternative to the classical or likelihood sampling

theory approach.

This text undoubtedly will be read by proponents of both schools of thought with

an eye towards gathering ammunition for further contributions to the literary debate. It

is due to this fact that it is necessary to state, in the most emphatic terms possible, that

this dissertation is not written for this puqpose.

Bayes and classical methodology are merely different platforms upon which to

build a framework for attacking statistical problems. Since, as the opening quote of one

of this century's foremost statisticians infers, all such platforms enjoy certain advantages

while suffering other shortcomings, absolute superiority by either school of thought is

impossible. Philosophical arguments pervade the literature which attempt to ridicule

either philosophy. The most recent example with lengthy discussants by well known

authors on both sides of the issue can be found in Lindley (1990). Such self-indulgent

exercises are merely a sign of academic immaturity bordering on æligious fanaticism.
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The primary goal of any statistical analysis is to find a quantifiable answer to the

problem at hand. The methods used to attain that answer are, for the most part,

irrelevant, providing a satisfactory answer is obtained. Moreover, using more than one

method to attack the same problem often gains the researcher added insight. As Berger

(1990) points out, it is often sensible "to carry along separate models until the end,

hoping that ttre answer will turn out to be insensitive to the various models". Whether

the modelling approaches used a¡e referred to as Bayes, Fisherian or a hybrid procedure,

the ultimate assessment should be based only on the quality of the answer. Furthermore,

since in many situations competing methods produce the same answer, the name of the

process is irrelevant.

The motivation of this dissertation, therefore, is to examine the relative strengths

and weaknesses of the two doctrines under various distributional settings. As will be

seen, neither philosophy can claim uniform superiority. Rather, each approach has its

own arena of enhanced performance. Many of these areas were heretofore unexplored

from a Bayesian perspective. As the reader progresses through the dissertation, it is

desirable to keep this intent of the author in mind. This is not a Bayesian dissertation,

nor is it a dissertation of a Bayesian statistician. It is, instead, a Statistics dissertation,

exploring alternative solution paths to complex estimation problems.

A persistent criticism of the Bayesian approach is that it often leads one through

a morass of algebra culminating in a blank wall of mathematical intractability. As

extensively detailed by Smith et al (1987), the advent of modern computer technology

has had a major impact on the intractability problem. Advances in numerical analysis

techniques allow for numerical solutions or at least approximate soLutions when closed
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form ones a¡e unobtainable. Along the path to new results in Bayesian methods, one is

required to produce innovative algorithmic solutions to the numerical difficulties

encountered. nOne of the main obstacles to the routine implementation of Bayesian

methods has been the absence of efficient algorithms for carrying out the computational

tasks implicit in the Bayesian approach" (Smith et al, 1987). Hence the second

contribution of this thesis will be the development of algorithms designed to circumvent

the mathematical roadbloclcs.

A great deal of resea¡ch has been done in estimation theory involving single

parameter distributions from both a classical and Bayesian perspective, and is available

from many sources in a unified format (Johnson and Kotz, 1970 for example). A

considerably smaller battery of work is available for situations in which more than one

parameter is of interest, especially when more than two parameters are involved.

Algebraic manipulations become rather complex, particularly under a Bayesian

framework.

Recently some results have been found to be useful in obtaining approximations

to the true Bayes estimators for multiparameter distributions. The application and

properties of these approximation techniques will be scrutinized under various

distributional settings. Wherever possible, closed form solutions will be obtained.

1.2 The Bayesian Paradigm

The phrase "Bayesian Paradigm" was coined by D. V. Lindley and has come into

common usage in the literature. Just as the exact definition of a paradigm is the

grammatical collection of a verb's conjugation, so does a paradigm of Bayes
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methodology attempt to represent any and atl statistical environments which incorporate

a Bayesian framework.

Lindley (1990) states that this Bayesian framewo¡k relies upon one basic premise:

that we "make judgements about as yet unobserved data y on the basis of observed data

x". He further refers to the Bayesian paradigm as that field of inference (inductive logic)

which utilizes only the calculus of conditional probability. Smith (1986) gives a more

intuitive overview of the Bayesian paradigm by calling it a "form of disciplined

uncertainty accounting n.

Although it may be argued that the classical or sampling theory approach may

also be formulated in such a way as to mimic the above definition of the Bayesian

format, there remains a f,urrdamental difference - the inferential starting point. While the

classical approach defines a static parameter 0 and discusses the "likelihood" of various

data outcomes in terms of the value of the parameter 0, the Bayesian framework requires

that the data remain the starting point and concerns itself instead with the distribution

P(0lx) of the parameter given the data results. Thus, a key feature of the Bayesian

paradigm is that the parameter 0 is given the status of an unknown random variable.

Another way of expressing the difference would be to say that the classical approach is

to be suspicious about the sample results for a given value of 0 while the Bayesian

perspective involves suspicions about the parameter for given sample results.

The Bayesian approach to estimation may be presented as an alternative to the

classical techniques when one considers 0, the quantity to be estimated, as a random

rather than a static entity. One assumes that 0, which may be single or vector-vatued

such that A.= (0r,02, --.o 0), has an a priori or PRIOR probability density function (pdf)
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g(d) which represents all the information, objective and subjective, that is known

regarding the behaviour of the environmental cha¡acteristic 0. Throughout this

dissertation the notation 0 and 0 will be used to represent the parameter of interest, be

it single or vector-valued. In explaining the works of other authors, the notation used

for 0 will be consistent with that of the original author. This results in a somewhat

uneven representation, but it maintains consistency with the published literature. It will

be generally understood that unless explicitly stated otherwise, the parameter of interest

is a vector-valued entity.

It is not unreasonable to assume that for a fixed point in time 0 will be static and

hence the classical school of thought could be employed as well for the same situation.

In this light ii can be seen that the two inferential methods may be applied to a single

experimental setting and are not necessarily contradictory. The decision may be reduced

to a question of whether or not for convenience, be it practical or mathematical, it is

reasonable to interpret the entity under scrutiny as a fixed constant or variable quantity.

On a basic level, many lay people involved in statistical applications use the

Bayesian paradigm instinctively. The so-called "fudge factor" utilised to adjust a result

which from the expert individual's experience (prior information), seems too extreme,

is in fact an ad hoc Bayesian analysis. For example, in estimating the binomial

parameter p involved in a shop floor application, an investigator will often consider

¡esults too close to either zÊro or one for p as biased or improbable from an intuitive

standpoint and want to adjust the results accordingly. Mathematically, this is analogous

to replacing the informative prior distribution most often used for the binomial parameter

p, which is gþ)=p11-p), by sornething rnore in line with past experience, such as
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þ(l-p)lot, so as to reduce or 'dampen" the importance of the endpoint values.

Besides basic estimation theory settings, the Bayesian paradigm has gained wide

acceptance among industrial settings such as assembly line production investigations.

Classical methodology has diffrculty incorporating a worker's vital knowledge of the line

gained through twenty years of experience into the analysis. Furthermore, the classical

framework would require either a complex sequential analysis or the bending of systemic

assumptions such as independent sampling to address the time element inherent in the

process. The incorporation of today's results in tomorrow's investigation is inhe¡ent to

the Bayesian paradigm. Today's results merely become tomorow's prior.

The mechanism of constructing Bayes estimators may be described as follows.

It is assumed ttrat X, the data quantity to be observed is a random variable with a

probability function f(xl0), which involves the environmental characteristic 0. Further

assume that 0 is a random variable with a prior distribution g(0) and that a random

sample of n observations is taken from the population with the aforementioned probability

function and denoted by x : (X,,Xr,...,X").

Define Y to be a statistic that is a function of x, say Y = u(X,,X2,...,Ð.

Fisher's likelihood function is meant to represent the information that the sample has to

offer on the likelihood of various true values for the parameter 0. It is given by

r(0lx) = fIf (xjl0)
i=1

(1.1)

Finding Bayesian estimators is equivalent to finding the conditional distribution

of the statistic Y given ttre prior information about 0. This conditional distribution will

be proportional tp the product of the likelihood of the sample and the prior information
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known about 0. The conditional distribution of 0 given the sample information Y, the

so-called POSTERIOR distribution of 0 is

n¡0lv¡ = K(Y,0)lc = L(0lxlg(0)lc (L.2',)

where C-l is a normaliring constant. More specifically, C is given by

" = IrßlZ)g(01d0. Theposteriordistributionof 0representstheideattrattheprior

information about 0 has been adjusted by what has been observed through sampling. A

natural bridge between the two methods is the fact that if g(0) is a uniform density

function, then the posterior distribution (1.2) is equivalent to the likelihood function.

Once obtained, the posterior distribution gives rise to a number of alternative

Bayes estimators of 0 and related characteristics, depending upon the way in which the

investigator believes loss will be incurred by an inaccurate estimator. In general, the

Bayes estimator is that which minimizes the average or expected loss incurred. The loss

incur¡ed by the use of the Bayes estimator 0'as a guess at 0 is denoted by l(0',0) and the

choice of 0'is obtained by seeking the minimum of

dt rc', o)f = Jr, 
o', o)r (o ly)do

The most commonly-used loss function is the quadratic or squared error loss of

the form l,(0',0) : (0' - 0)2. The expected loss is minimized under squared error loss

if d'is the mean of the posterior distribution of 0.



8

Hence the Bayes estimator under squared error loss is defrned as theposterior expectation

of 0, i.e.

0. = 401¿] = (1.3)

Although other loss functions are used, unless otherwise specified this text will only be

concerned with squared error loss models. Howlader (1982) gives a detailed discussion

of the effects of va¡ious loss functions.

Recall that 0 may be a vector-valued parameter and thus produce a multivariate

posterior distribution. In such a case, it is necessary to find the marginal posterior for

each element of 0 to construct the corresponding Bayes estimators.

Clearly, the Bayesian paradigm is more than merely constructing Bayes

estimators. Examination of the posterior distribution itself is but one of many points of

interest in such a framework. Rather than delineate all possible applications and

methodology, the Bayesian paradigm description will be left at this point. Other aspects

will be introduced as required in the text to follow.

1.3 Implementation Considerations for the Ba)¡esian Paradigm

The previous section infers that implementation of the Bayesian paradigm is

straightforward. Clearly, the degree of diff,rculty encountered will be directly linked to

the nature of the prior and likelihood functions. If they comprise a natural "conjugate"

pair, typically of the exponential family, then the integrations required in (1.3) to

produce the Bayes estirnator a¡e abþ to be performed analytically and produce a closed

fo¡m solution. P¡ess (1989) summarizes the use of the more commonly seen natural

0s (0) L(0 lxl d0

[ø rc) r'(o lxl do
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conjugate priors. Unfortunately in the majority of cases, as Naylor and Smith (1982)

point out, "the forms of likelihoods and/or prior densities do not permit such a tractable

analysis and the required inægrations must either be performed numerically, or analytic

approximations found". It is this basic diffrculty with the mathematics of calculus that

has hampered the application of the Bayesian paradigm virtually since its inception.

One of the approaches taken to solve this problem involves the use of

mathematically simplistic prior distributions when little is known regarding the behaviour

of the parameter of interest. It has been argued that if Bayes methods perform well

under this "worst case" scenario, performance will only be enhanced with improved prior

information. Most notable among efforts in the development of "useful" prior

distributions are Jeffreys (1961) and Hartigan Qge) in producing the so-called

noninformative prior. Howlader (L982, Section 1.4) provides a detailed discussion of

alternative prior distributions and their relative merits. More recent work has been done

by Zellner (1986), Efron et al (1986) and Berger & Bernardo (1989).

Many statisticians have addressed the evaluation of (1.3) under the titte "the ratio

of integrals problem", when analytic closed form solutions are unavailable. Several

authors have attacked the problem by drawing on a wide variety of mathematical theories

to approximate the integral ratio in (1.3). Most notable are approximations due to

Lindley (1980) and Tierney/Kadane (1986). Reilly (1976), Smith et at (1985), Van Dijk,

Hop & Louter (198Ð, Iæonard et al (1989) and Gelfand & Smith (1990) also propose

methods to approximate the posterior distribution.

Virtually all of these methods would be unusable except over a very n¿urow range

of problems if it rvere not for the availability of c*onsiderable computing po'r¡/er.
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Although these approaches btinË the most modern technology to bear on what has been

a longstanding problem, they also introduce the pitfalls of this new methodology to the

process. Just as it is a folly to suggest that constructing the posterior distribution formula

(1.3) means it is simple to carry out, so is it easy to forget that involving the computer

in the analytic loop introduces some new difficulties that must be overcome. These

cornputer-based problems can be split into two categories: method and accuracy.

There are various competing methods to attack any numerical problem, each one

having its own strengths and weaknesses. Numerical search routines form a large part

of the body of computer science literature. Due to the variety and complexity of Bayes

problems, it is not possible to find an algorithm to suit all cases. The most commonly

known Newton-Raphson search technique, for example, performs well for some problems

while failing at others. Rice (1988) provides an extensive discussion of alternative

methods.

Any mathematical exercise on the computer has a built in error. Such errors

compound directly with the number of calculations performed. In Statistics we deal with

mathematical truisms such as the sum of a probability distribution being one. The

cornputer, no matter how precise it may be, cannot incorporate such rules. Further

cornplications exist for the Bayesian approach in that the very form of (1.3) typically

involves calculation of extremely large or extremely small quantities. These produce

overflow/underflow complexities which must be addressed with great care so as to not

lose too much accuracy for the final result. Hence in using a computer to produce the

results of a mathematically designed approximation to the ratio of integrals problem, we

are actually performing an approximation to the aprprrcximation. Good programming
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techniques minimize the error of the computer approximation, but it is important to point

out the issue so as to forewarn the practitioner.

1.4 Attempts to Address Implementation Problems

Many authors have attempted to address the problems of implementing the

Bayesian paradigm. This seætion will describe in detail two such attempts which will be

used extensively in this dissertation. Other alternatives will be described briefly.

1.4. 1 Lindle]¡'s Approximation

Lindley (1980) proposed a method to tackle the general problem of evaluating the

ratio of two integrals and obtaining the Bayes estimator u'(0), where u(0) is a function

of the vector-valued parameter 0, defined as

where u(0) is an arbitrary function of the parameter of interest, g(0) is the prior

distribution of 0 and 9(0.Ð is the likelihood function. Lindley actually utilised L(0lx),

the log of the liketihood function 9(0lx) in his paper so that (1.4) becomes

u. (0, - lu 
(.0) s rc)gto lzl ao

[ø te)s(0lx) d0

- [u(0)s(0)explL(0ix)]d0tt'(H ì = -l

lt t0 ) exp lL(0lx) )d0

(1.4)

(1.5)

which is the Bayes estimator of u(0) under squared-error loss.

Consider the numerator of (1.5) and expand both w(0):u(0)g(0) and L(0lx) by

Taylor series expansion about the maximum likelihood estimator (mle) of d designaæd
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as A. For the sake of brevity L(0lx) will be written simply as L and all functions

involving 0 assumed to be evaluated at the mle.

The Taylor series expansion of L about 0 is

L(0) = L(A) . Ë Lt(lrll) . +å Lü(Lri,) tlrl)

- +,rÐ, Lük(Lí-l.) rlrÞ (lr-a*) + - . . (1.6)

where

r_ôn1_ô2n,_ô3rt'i - -õT¡' uü - TWj', u,jk - Tî7TFYr

Using 0, to represent the deviation term (0¡0¡, th" expression simplifies to

L(0) = L(A) - Ë L,0, + +,"Ð r'r0,0, - +,r-Ð, Lìik0ì0i0k + ...

where all summations run over all subscripts from 1 to m, the dimensionality of 0.

Applying the Taylor series expansion to w(0):u(0)g(0) gives

w(0) = w(0) . É w¡0¡ *+Ë w00,0,. + i**r,t,or * ...
i=l o' ,j=l ' ' í¡,k=1
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Hence

I*rt)expr (0)d0 = Jþral 
+1w,0,. *E wu0,0, - *E wurl,0,0r - ...]

.""nþr0l * }Lp,. *E n00,0,. *E Lij¡0¡0¡0¿ + ...lot .

To simplify, factor out the w(0) term and define

*,=ft, *o=#, **=#, and so on.

All terms of the form !0t aÍe zero since the functions a¡e evaluated at the mle.

This leads us to the simplified form

I*rr) exp lL(0) ldî = w10¡¿uø

.Jþ . E*,0,. åE wrr.,o,. *E w*o,o,or - . . .]

.""{+E 40,0,. *E Lük0i0j0k. ...]o, (1.7)

Lindley then uses therelation e.+x : e"[1 * x * x2l2 * x3l6 + ...] and sets

a : (ll2)ÐLijîiîj to get

[* ,t ) exp LL (0) ]d0 = w (A) eue>

flr - 8w,0, - *E w00,0,. *Ð r{tkliljlt . . . .]

.""o[åE r,oo,e]. [1 * (+> Lük0i0j0k. *E LüH0i0j0k0, . ...)
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Expanding the latter part of the equation produces

P ,r) exp tL (0't id0 = w ú)e'rarJ"xnf ]E, "'r.,ef,

. [1 * Ð*,0, - *E L$firjrk - *Ewrf,o,

. (!r,a)+E Lûk0i0i0k - *E Lr*líljr.kl¡ + . . .Jdl

Lindley (1980) notes that L, and all its derivatives are O(n) and further that all

terms involving any segment of the multiparameter 0 are O(n tz). He considers the terms

only to O(n"), assuming that terms of higher order tend towards zero as n-Ðæ. Using

this assumption, the numerator of the integral ratio (1.5) becomes

Prr) exp tL(0) ) = wft¡euet[e"{+E Lù0þ]

. [1 * E*,0, - åE Lükfífjok * lr}wrf ,o,

- (Er,o)+E Lükr.ír-jr.k + R)do (1.8)

where R contains terms involving only L, and not W or its first derivatives.

The term exp[(1/2)ÐLu0¡0¡] is in the form of the kernel of the multivariate normal

distribution. The meanvectoris (0r, 42, ...t 0^). Thevariance-covariance matrix

for this multiva¡iate normal will thus be the inverse of the matrix with the -I.¡ at

elements. Write this as E : [ø¡l = [-L¡]t. The expression (1.8) then involves

integration of moments of fre multivariate normal distribution. Using the fact that the
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mle 0 is asymptotically unbiased for 0 and the following results (Anderson, 1958; page

39) for the multivariate normal distribution,

E (0,-0,¡ =s

E (0 rA ) ¡0,-0,1 =on

E(lrît) t0r0ì (0r-0r¡ =s

E (0 i-0 t) Cï¡-A) (0 r-A ) (0 ,-A ù =o,oo+o¡o,¡+o¡p¡x

Equation (1.8) will yield

[* r, ) exp lL (0) 7d0 = w G') "uø 
qzn)''tzl[ ltt2

.Et1 * Ew,o, - *E Lükfífjrk - åE wur ,o,

* !r{w,0,)lnorf-,o,or + Ãl (1.9)

Note that the second last term may be rewritten as

I w,o,lf r.,rur ,o,o. = *; r',,¿r,o,o,o r/ ,

which involves the fourth moment. Applying the results for the multivariate normal

distribution reduces (1.9) to

[* r, ) exp lL (0) Jdl = w (A) 
"uãt lzr)ñt2lE ln . O * ]f*uoo

- *E Ls{f¡(osokt + a¡¡a¡t * o,F¡r) + R'l (1.1,0)

where R* is the appropriate result of integrating all the remaining terms, not involving

w. Recall that L¡r, being a partial derivative term, has the property that the order of
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differentiation is irelevant to the final answer (for example Lr.a : l<tù. Hence the

three-term permutation of the ø subscripts in the last term of (1.10) are redundant as the

three summations will be equivalent.

Thus, the basic result is

[* rt) exp LL (0) f = w úl euu (2n)^nl E l'"

' [ 1 * ]E *uo, - åE Luflpoo¡1+ R' l

If this algebraic route is repeated for the denominator of (1.5), the result is identical

except for the w's being replaced by v's(say), where in the present application v(0):g(0).

Furthermore, in this application the likelihood function of interest in the numerator and

denominator will be the same since the denominator is always merely a normalizing

constant on the same posterior distribution. It follows directly that the variance-

covariance matrix Ð will be the same for the numerator and denominator of (1.5). Hence

there will be considerable cancellation once the ratio is constructed, leaving the result

,. tAr = 
vG) [t 

. *> wüo,i * ]E "ulo,onoo 
* a'l

u (u/

F (+r v,ia,i * |E'*',oo')

u'(0t = ffiþ - åf wüos * jE'rtoerrl (1'11)

+ (...)2 - (. . .)', - ...]
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so that

u'(0) = +[t - ål Wu-v,j)oo * *E (wrvùLsroso, - ...] .

Recall that for this special application, v(0) was defined to be the prior distribution g(g)

and w(0) was set to be the product of the prior and the parameter of interest, producing

by definition the posterior mean of u(0) which is the Bayes estimator under squared-error

loss. Translating back into the original notation then, it is seen that

w, v.
Wr-V, = '-lwv

becomes

ôu(0)s(01 ôu(0)s(0)w,-vi=,(ffi W
which, after differentiation and using the established algebra becomes

w,- v, - s(0)u¡(0)_:ryJ??¡(0)u(0) = i,$l ( L.L2)

Note that all functions are evaluated at the maximum likelihood estimator 0.

Similarly, it can be shown that

wu - v,i = ?{il * 
u,(0) q¡L0lr-*-:i-(-0) s'(0) ( r-. 13 )
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Substituting the results (1.12) and (1.13) into (1.11) gives

u'(0) = u(â) - +Ð wf.,
. *¿uío) L¡rof , (1.14)

For convenience, Lindley (1980) assigns p(0) : logþ(0)l so thar (1.14)

becomes

u'(0) = u(0) + ¡ 2ui(0') p¡(O))o,¡ - *¿L¡pur(l¡onoo

(1.15)

evaluated at 0 : 0 , the maximum likelihood estimator. This is the basic result. One

of the major drawbacks to this approach is that it requires evaluation of the third

derivative of the likelihood function, which for certain distributional settings may be

onerous. Lindley (1980) describes an alternate route by using the logarithmic posterior

distribution Â(0):log[g(0)L(xl0)] in the expansion, which is maximized at the posterior

mode. The form of the final approximation then becomes

u'' (0) = u(ltt) . åp uûr,j * +Ðrt\¡*u¡rsr,

þu,', 
.

*pt"',',

(i..16)

where 0" is the posterior mode, the point at which all functions in (1.16) are evaluated,

and r¡ - -^ij. The advantage of this approach over the use of the mle expansion will be

for distributions that have unruly forms for the derivatives of the likelihood functions.

In such situations, Lindley susgests that the method of differencing be used whereby the

appropriate derivative function is approximated by the same order differenced function.
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This allows the researcher to be able to compute the Bayes estimator without having to

refer to an iærative computer sea¡ch technique to evaluate the derivatives of the

likelihood function. It does involve, however, the evaluation of the log-posterior over

a surface grid surrounding the posterior mode 0". Howlader and V/eiss (1987a) give an

excellent exposition on the details of carrying out the differencing technique.

Howlade¡ (1982) has used this æchnique for one- and two-parameter estimation

problems. Howlader and Weiss (1987(a) and (b)) discuss some of the advantages and

problems in the implementation of the procedure in these specific settings for the Cauchy

distribution. Their work provides detailed explanation of the implementation of Lindley' s

technique using both the posterior evaluated at the mle and the log-posterior evaluated

at the mode approaches.

To facilitate the implementation of Lindley's method, a computer program was

developed to produce the general expanded form of Lindley's approximation equation for

any number of parameters unde¡ consideration. The equation can be formulated in terms

of the third partial derivatives (Ins's), elements of the inverse Hessian matrix (ø¡'s) and

partiat derivatives of the log-prior (pr's) and the parameter to be estimated (q's and ut's).

This algorithm, written in the BASIC language, was included in Press' (1989) review of

algorithms available for Bayesian inference under the name LINDLEY.BAS. The

program produces the algebraic form after expansion and collection of like terms.

Algebraic forms for one and two parameters have been given by several authors

(Sinha, 1986; Howlader and Weiss, 1988 for example). Forms for three and four

parameters are given in Ouþut #L and Ouþut #2. Although the program does produce

results for as many as seven parameters, the equation is too long to be of practical use.



20

The ouþut equation for frve parameters, for example, covers seven pages. Once input

to a symbolic algebra program, however, the production of Lindley's expansion for any

number of parameters becomes a manageable task by simply entering the appropriaæ

elements (L,È'r, o¡'s the p¡'s and the q's, g's) and allowing the program to perform the

tedious algebra.
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OUTPUT #1

LINDLEY'S METHOD ALGEBRAIC EXPANSION

To estimate the vector-parameter 0 and related functions,

where ! is made up of 3 separate parameters, Lindley's equation is

0n"y.' : A*," * (l/2)PARTI + (ll2)PART2

where PART1 and PART2 are given by:

PARTl

ø,, (u,, * 2u ,p,) *2op(ur2 * urp, * u.2p ) *2op(u13 * urp, * usp ) * o22(u22*2u,2p2)

* 2 o,2r(u6 * u.2p * u,sp r) * ø3, (u33 * 2u3pr)

PART2

Lrrr(urolr+tJzorrop+uro1161.) *Lttz(3ttrorrorr+ttrorrorr+2urolr*urorrorr+2urorrorr)

* L rc (3 u r o 
r r 

o r, + u zo fio 23 
+ 2 u 20 no ß +tJ ro rro rr + 2 u rozu¡

+ L rr, ( u ro r ro rr+ 2 u ro2r2 
+ 3 u zo no zz 

+ 2 u ro rro u + u ro rsa 22)

*Lnt(2uro rror,+Auro rro r,+Auro rrou+2uro rrorr+Zuro rror,+Au'o ßoæ¡

+Lß3(uprror,+zuro2o+u2o,,oß+2urorrou+3uro,,o,'l +Lrr,(urorrorr*urozu*u3o22ov)

* L zæ ( 2 tJ ro rro u + u ro rro rr+ 3 u 20 z2o 2j + u ro uo r, + 2 u rozu¡

+ L ur ( u ro rro rr + 2 u ro r3o B +u 20 22o 3s 
+ 2 u rozu + 3 u ro po e) + L rrr ( u ro rso ß + u, zo Bo ss 

* u .øT)
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OUTPUT #2

LINDLEY'S METHOD ALGEBRAIC EXPANSION

To estimate the vector-parameter 0 and related functions,

where 0 is made up of 4 separate parameters, Lindley's equation is

04,y." = A*,"* (1/2)PART1 + (1/2)PART2

where PARTI and PART2 are given by:

PARTl

ørr(urr *2urpr)*2ø,2(u12*u,p 2*urpr)*2ørr(u13*u,p 3*qpr)*2øro(u1a*u1p¿*uopr)

* o 22(u22* 2u.2p 2) I 2 o u(u, * urp, * qp ) * 2 o 2¡(u2o * u,2p a * l ap ) * q3(u33 * 2 u3p 3)

* 2 o *(u y * u3pa * u*or) * o aa(u aa* 2u op a)

PART2

-Lr r, ( u røf, + uzo no rz,+tl3o rro ß+tJ4o tp ul

+ L rrr ( 3 u ro ro e+ u. zo flo rr* 2 u ro2rr + u 3o no n + 2 u. ro rro rr + u oo r ro 
^+ 

2 u oo pa s)

*trrrs ( 3ulo'ot3+u.rorrorr+2uzo rzoß+u.ro rrorr+2urozrr*uoorro*+2uaa,,op)

*Lno(3tlro rro ro+u.ro rro^+Zuzo no A+tJro rro*+2tJso ßo b+u4o rro*+2uoo2*)

+Lrrr(uro rrorr+zurol2+3urorrorr+2tJrorrou+u3o ßo22+2uoo rro^+uoo roorr)

*Lw(2trro rrou+4uro rro r,+ uro rrou+2tJro rrorr+ZtJro rror,+4tlro rrou
+ 2u oo rro *+ 2u 40 ßo u+ 2u oo roo,j)

*L'zn(2u'onou+^:;::,:::;::,::,:,::'-:7^:::::""o*+2'l1'o"o^
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+Lrrr(urorrorr+2urol3+tfzo 
r2oß+Zuro rrou+3u.ro rrorr+ZtJoo rro.+uoo rao3,.)

+Lr*(2uro Ío34+4uro rro ro+2tJro rro*+2uro rro^+2uro roou+Auro rro*
+2u3o 

Mo ß+2tt4o ßo 44+ Auno ,oo sal

+L,*(uro rro*+2uro2ro+tJ2o no 44+2uro roo^+uro rro *+2u\o Mou+3uao 1aoaa)

+ L rr, ( u ro rro rr* u rozu * t\o no B + u ao 22o 2a)

+ L ru ( 2 u ro no B + u ro ßo rr+ 3 tJ ro rro B + tJ so z2o y + Z u rol, + u oo rro * + 2 u oo yo 2al

+ L rro ( 2 u ro no 24 
+ u ro t4o rr+ 3 u ro rro u + t\o 22o u + Z t4o Bo u + u 40 22o 44 

+ 2 u 4oT)

+ L rr, ( u ro rzo ß + 2 IJ ro r3o 23 
+ tJ 20 22o e + 2 u rozu + 3 u ro uo r, + 2 u oo uo * + u ao yo s)

+ L r* ( 2 u ro no 34+ 2 tJ ro ßo u + 2 u ro ßo ß + 2 u zo rro *+ 4 u ro 23o 2A+ 4 u 3o 2so 34

+ 2u ro 
^o 

rr+ 2u 40 ßo 44+ 4 u 40 uo u)

+ L r* (u ro rzo 44 
+ 2 u ro | 40 u. + u 20 22o u + 2 u zoT + u ro uo * + Z u ro 

^o 
* + 3 ¿ ao yo aa,)

+ L rr, (u rø r3o ß + tJ 20 Bo s + u ro2u + ¿ ao y6 3al

+ L t* ( 2u ro ßo 34 
+ u ro Mo rr + 2 u. ro uo 34+u zo uo rr + 3 u ro rro y+ u 4o sso 44+ 2 u 4oTl

+ L r* (u ro r3o u+ 2 u to r4o 34+ u 2o Bo 44+ 2 u 20 uo y + t\o ßo 44 
+ 2 u fT + 3 u ao 3ao a)

+L * (u ro r4o 44+tJ2o uo 44+u3o yo u*u qoh)
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1 .4. 2 Tierney-Kadane Aoproximation

Tierney and Kadane (1986) attacked the ratio of integrals problem from a

perspective different from that of Lindley, employing the I-aptace method for integrals.

Thei¡ technique is closely related to that of Lindley however, in that the major difference

is merely the means by which the complicated integral equation (1.3) is evaluated.

Rather than expanding about the maximum likelihood estimators, Tierney & Kadane use

the point which maximizes the value of the integral, which in this case turns out to be

a function of the posterior mode. Because the numerator and denominator are of

different forms, it is to be expected that the point about which each integral is maximized

will differ in the two cases. Hence this method uses a different point about which to

expand each integral in a Taylor series. They then use a result involving the I-aplace

method for integrals to evaluate the integrals and, subsequently, the ratio. In competition

with the Lindley approximation, the Tierney-Kadane (I-K) method has been seen to be

more accurate in terms of estimating posterior variance and numerically more convenient

in some cases, although does suffer when the sample size n is small (Howlader and

Weiss (1987)). The T-K method represents an alternative to Lindley's method so that

given suitable conditions it is left to the researcher to decide which of the two techniques

is most appropriate for the particular situation under study.

Specifically, the method begins by reexpressing the integral ratio (1.5) as

... ,¿\ _ luf Al g(0)exp[¡ (0lx) jdl |""* lnL.(0.,)Jdl
tl lãl = -ll

Is(elexp[¿(0lx)]d0 |""*plnL,(0"r)deJ '- - 
J

(1.1Ð
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where

L"(0) = (rogg(0)) + ¡,(0lx))

L. (0) _ (logtu(0)l + logls(0)) + zfOl¿))
= Lo * logt-T(o) l

and L(01Ð is the logarithmic-likelihood fi¡nction. The points do and 0. maximize the L"

and L. functions respectively. Tierney and Kadane then proceed to construct asymptotic

approximations fo¡ the numerato¡ and denominator separately. They first consider the

simpler of the two functions, the denominator and assume that L. is essentially unimodal.

They expand Lo about the modal value 0o, approximating it by L"(0,):L"(0-gJ'DJ."(0-0J

where Ðo is the inverse of the matrix with the negatives of the second partial derivatives

of L" with respect to 0 as elements, evaluated at 0o. They then make use of a result due

to Laplace, described in detail by DeBruijn (1961). Known as the I-aplace method for

integrals, it is based on the premise that if one were to integrate over the entire real line

for any reasonably unimodal distribution, most of the value of the integration will come

from a relatively compact area around the distribution's modal value (Iaplace, 1776).

Stigler (1986) gives a translated and modernized account of l^aptace's approach. The

mathematical justification for applying laplace's work to the T-K method is detailed by

Kass, Tierney and Kadane (1990). Specifically, to integrate z(x,t) over the real line with

respect to x only, if t is large, one need only consider the value of the integration around

the mode of r(x,t) to get a reasonable approximation to the value of the entire integral.

For example, @eBruijn (1961)) consider the problem of integrating the function

f exp[+x2]1og(1+x+x2)dx. hrge values of t cause the integral to be dispersed rather
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closely around zero. If one were to do this integration for large t over the interval [-

0.5,0.51, the result would be a reasonable approximation of the overall inægral.

Furthermore, if necessaÐ¡, it may be possible to find a close approximation to the

function required over the newly restricted a¡ea of integration which is easier to

integrate. Applying this idea to the L. integral produces

I""n LnLoJdl = expfnLo'l {""n[-"2 "(0 
-0,') ,E;' L"(0 -0 )fdl (1.18)

This integral is in the form of a multivariate normal distribution, so that (1.18) becomes

J""n tnLoJdl = exp [n.1,] (+)* lE" l'" (1.le)

Similarly, the numerator integral, evaluated at its maximization point 0. becomes

Jexnþr,. 
(0.)lar' " expþ.r. (0.)l(+)*lE. l'" ( 1.20)

Combining (1.19) and (1.20), the Tierney-Kadane approximation for the ratio of integrals

(1.5) is found to be

u' (0, =[#]"'"*nr* L. (o .) -Lo(0,) ]l (1.2r_)

The error of this approximation is O(n-'), the same degree of accuracy as that of

Lindley's method. Furthe¡more, in estimating the posterior variance via the relation

Var[u(d)] : E{tu(0)]'z} - {ptu(d)l}', he authors state that due to fortuitous cancellation

of terms, the error of approximation is again of order O(n') whereas Lindley's method

has error O(n-t) for estimating the posterior variance. They then state, however, that in

practice they have encountered difficulties with numerical precision because the væiance
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calculation involves taking the difference of two very large numbers, which naturally

could lead to the loss of signifrcant digits. Furthermore the results are strictly asymptotic

and they do not expect great accuracy in results for small sample size. They note that

it is possible to obtain negative va¡iance estimates or nonsingular mafices for small n.

The primary advantage of this approach over Lindley's is that one does not have

to derive any third partial derivatives. However two sets of second paftial derivatives

must be derived for L. and L.. Furthermore one must separately maximize L. and L.

to find the evaluation points 0o and d. respectively. The authors suggest that the

maximum likelihood estimators are an appropriate starting point for ma:rimization since

each of the functions is related to the likelihood function. Newton-Raphson iteration

from that point has proven to be convenient with convergence usually appearing after one

or two iterations. Clearly, for some distributional settings, this method will be superior

to Lindley's in terms of numerical convenience, but not in general.

One of the major restrictions imposed on this technique is that the function u(0),

the parameter of interest, be nonnegative. The reason for this assumption is involved in

the cancellation of error terms in approximating the numerator and denominator integrals.

If u(d) is nonnegative, then the two integrals are roughly of the same shape. If u(0) can

take on negative values, then the overall shape of the numerator integral may be

markedly different from that of the denominator. Tierney and Kadane (1986) soften this

restriction by stating that as long as the posterior distribution of u(0) is "concentrated

almost entirely" on the positive side of the origin, the approximation technique should

be applicable. For the applications considered in this text, this assumption is met.

An updated version of the T-K method was presented in TTerney, Kass and
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Kadane (1989) in order to address the restricted range space problem. They attack the

problem by using the fact that the inægrals involved in (1.5) are actually forms of

moment-generating functions. As such, they can estimate the integrals by approximating

the moment-generating function and differentiating to get means and va¡iances.

This nnewn method covers both "positive" and "negative" parameter spaces. The

method is mathematically equivalent to simply adding a large constant to the ftrnction,

using their previously published method and then subtracting the same constant from the

result. Furthermore, the new method is seen to be equivalent to Lindley's method.

Since this updated T-K method is redundant with Lindley's method, it will not be

discussed separately here.

1.4.3 Relative Merits of the Two Procedures

Tierney and Kadane (1986) state that they proposed their approximation because

"it would be useful to have approximations that are more accurate than the normal

approximation, yet not as computationally intensive as numerical integration methods".

They refer to Lindley's technique as "being accurate enough" but being rather tedious

in application due to the required construction of the third partial derivatives of the log-

Iikelihood function. In fact, for estimating posterior means @ayes estimators), the two

techniques have the same error O(n') and it is only for posterior variance estimates that

the T-K method becomes more accurate than that of Lindley.

A technical detail often omitted from published papers dealing with Bayes

methods is de-emphasized by Tierney and Kadane (1986), atthough it has implications

for use of their technique in practical situations. The T-K method retains the basic
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structure of the Bayes problem - ttrat being the ratio of two inægrals. In practical

situations this often involves taking the ratio of a very large number to a very small

number so that the differences almost balance. Typically involving large powers, these

calculations are prone ûo overflow/underflow problems as well as numerical accuracy

considerations.

Although Tierney and Kadane mention that caution should be used if n is very

large, they fail to address this problem directty. Lindley's method, however, does not

suffer from this problem simply because of the way it attacks the ratio of integrals

problem. Whereas T-K separately approximate the numerator and denominator, Lindley

approaches the ratio as a whole and produces a single numerical result. The T-K method

literally requires setting up two separate functions, L. and L., and obtaining separate

approximations for each. Lindley's approach is more convenient in that once the

functional structure has been achieved it can be utilised repeatedly for various parameter

functions without much additional work.

Due to asymptotic foundations, small sample sizes produce theoretical problems

for both procedures. This in turn causes practical problems for producing variance

estimates. In estimating V(0), by estimatingF;(F) and using the ¡elation V(g)=qgz¡-

[E(0)]', there is a risk of negative variance estimates due to ove¡estimating E(0) and/or

underestimating E(02), both in Lindley's and the T-K method.

Howlader and Weiss (1987) report such problems and note that the T-K method

evidences instability for small n. The reason for this is the same as that fo¡ the negative

variance estimates. By separately estimating each part of the integral ratio, it

incotporates the risk of over/underestimating one or both pffis, thereby exaggerating the
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erTor.

In comparing numerical ease, Tierney and Kadane only address the issue of

computational ease. They staûe that their method is superior to Lindley's because it

requires only second order partial derivatives of the likelihood function whereas Lindley's

demands construction of the third order partials. This is correct but misleading. It is

true that for an m-dimensional parameter one will need to construct m(m*1)/2 second

derivatives and m(m*1)(m+2)/6 third partials to implement Lindley's method. What

is omitted is that once constructed these partials become constants with respect to the

parameter being estimated so that they need never be recalculated or modified. Changing

the parameter of interest involves only a change in the u(0) function and its partials q(d),

u¡(0). This means that once u(0):9. has been estimated, for example, P,log(0), etc. can

be estimated by merely recalculating the partials of u(0) and substituting them into the

static Lindley expansion. The T-K method requires a separate reconstruction of the

second partial derivatives for every parameter estimated. This is due to the fact that the

method requires L" and L. functions be constructed, leading to the Hessian matrices E"

and Ð. respectively. Although Lo remains constant across all estimators and therefore

need only be constructed and maximized once, L changes with every change in u(0).

This induces a need for the reconstruction of the E. matrix, involving m(m* 1)/2 second

partial derivatives.

These facts point to a general conclusion regarding the two techniques. If

numerical maximization and partial differentiation routines are readily available, the T-K

method will be just as simple to implement as Lindley's approximation. If, however, one

wishes to produce closed form algebraic solutions, or perform estimation for numerous
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functions of theparameter spac€, Lindley's method is both more convenient and efficient.

As originally proposed, the T-K method was applicable only to smooth positive

functions on the parameter space. This problem does not really hamper the technique's

applicability. The addition of a large constant ûo a negative parameter before

approximation, followed by the subtraction of the same constant from the resultant

estimate produces the desired quantity without violating the procedural assumptions.

Both methods do rely on the exisûence of the maximum likelihood estimator and

the unimodality of the likelihood function. In applications where no unique global MLE

exists, local maxima are usable. Regularity conditions have been discussed in Tierney

and Kadane (1986) and Kass, Tierney & Kadane (1990), but largely assumed to be

derived from the works of IæCam (1970), Johnson (L970) and IVatker (1969).

Collectively, these wo¡ks state that the following regularity conditions are assumed for

the asymptotic expansions involved in the approximations to be valid:

1) the posterior distribution is jointly measurable in G,ú) and has continuous

partial derivatives of the first and second order with respect to 0.

2) the maximum likelihood estimate is strongly consistent and is asymptotically

normal.

3) the prior density is continuous and nonnegative.

The main function of these assumptions is to make the second order partial derivatives

of the likelihood function "behave suffrciently smoothly" (Walker, 1969) near the mode.

For the limiting distribution of the posterior to be asymptotically normal, Walker

(1969) demands that the data be independent of the parameter space, which is not the

case for several models ttrat involve multþarameter settings (such as the three-parameter
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Weibull). He then goes on to say that it is not strictly needed as long as the continuity

conditions seen above are satisfied. He does sûate, however, that if 0 is involved in the

mnge space of the data, then another assumption tpically fails. The assumption

regarding the differentiabifity of the likelihood function is usually drawn into question.

This problem is circumvented by use of local maximum likelihood estimators.

A final issue of comparison is of ¡elevance mainty to statisticat theorists.

Although the T-K method is convenient with the aid of numerical ma:cimization routines,

it does not lend itself well to algebraic closed form solutions. Lindley's method on the

other hand routinely produces closed form estimators that are simple modiflrcations of the

maximum likelihood estimator. Both methods produce estimators that are asymptotically

indistinguishable from the MLE. Closed form solutions arrived at via the T-K approach

tend to be more mathematically complex than those arrived at via Lindley's method. As

will be seen in examples given later in the text, the T-K closed form typically involve

functions raised to the nú power followed by taking the nú ¡oot of the result. This makes

mathematical work with T-K closed forms inconvenient at best. Dealing with location

parameters is especially diffrcult algebraically in the T-K approach.

In summary, the two methods provide reasonable alternatives depending upon the

distributional setting and the parameters to be estimated. The T-K method was designed

to be used in a numerical setting using readily available computing facilities. Although

Lindley's method can also be applied under such a setting, it has clear advantages if

mathematical work is desirable.
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1.4.4 Other Approaches

A considerable amount of work has been done to complement the works by

Lindley (1980) and Tierney & Kadane (1986) addressing the general problem of

evaluating the inconvenient ratio of inægrals. R. A. Johnson (1967 and 1970) and

Naylor & Smith (1982, 1983) have presented an optional route by approximating the

ratio by a multivariate normal distribution multiplied by a power series, which is

generally expanded about the mle's. Johnson (1967) lays the groundwork and his 1970

work describes the strengths and weaknesses of the technique. When successful, the

technique has compared favorably to other methods (Naylor & Smith 1982,1983). Two

major difficulties arise, however. The primary problem lies in the assumption that the

posterior may be represented roughly by a normal distribution, which not only limits the

scope of its application, but also may cause anomalous results. Secondly, fohnson (1970)

states that the method is only applicable in situations where the mle's are strongly

consistent and asymptotically normal. It is not known at this time what the weakest

regularity conditions for the posterior are for the expansion to work nor how large a

sample is actually sufficient to ensure a reasonable degree of integrity in the resultant

estimates. Naylor and Smith have applied modifred forms of this process with success

in the biomedical field. They make a substantial contribution to solving many of the

numerical problems encountered in the applications.

A summary of the approximation techniques, mainly involving numerical

quadrature, has been given by Smith et al (1985). Not only do they describe each

approximation technique, but they also detail some of the practical solutions crucial to

the success of their implementation. Clearly, the entire a¡ea of integral ratio
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approximations is presently a major topic in Bayesian inference and will lead ûo a wider

application of the Bayesian paradigm. This will be especially true in the more complex

mathematical settings where classical ûechniques involving the maximum likelihood

principle encounter tractability problems that have been a roadblock of the Bayesian

approach since its inception.

In recent years the computer has taken the foreground in Bayesian estimation

theory. Various techniques involving computer-intensive techniques for estimating the

posterior distributions have been put forward. Bagchi and Kadane (1991) categorize the

aiternate methods of attack by the type of numerical approximation used. Aside from

methods already discussed, they cite Van Dijk, Hop and Louter (1987) as a good

representation of methods involving Monte Carlo integration for approximating the

posterior distribution. Finally, the most recent form of approximation makes use of

Gibbs sampling as exemplifred by Gelfand and Smith (1990).

I . 5 Mathematical Intractability (Simulation Versus Derivation)

A good portion of the work in this dissertation relies on the results of Monte

Carlo simulations. Wherever possible, algebraic results have been sought after and

obtained, so that all-encompassing distributional properties may be explored. As has

been discussed, however, it is the very nature of Bayesian methodology that makes such

closed form analytic results the exception rather than the rule.

As a result the general thrust in Bayesian methodology has evolved towards an

interactive, applied environment. Several works (notably Kass et al, 1988; Lindley,

1988; Srnith €t al, 1987) have addressed the basic issue, as pr€sently developed Bayesian
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methodology requires an inæractive and powerful computing environment to be effective.

This fact has caused some authors to express concern over a movement away

from theoretical derivation of analytic results towa¡ds too much reliance upon the

computer. Keenly aware of this dichotomy in the literature, this dissertation attempts to

shike a balance. Some of the work contained herein takes a purely analytic approach,

others rely on computer simulation. In all segments, however, justifrcation for and

advantages of each approach are given. It is true that computers have been a boon to the

amount of work that is attainable in statistical theory. It is not meant to replace the

calculus.

1.6 Outline of the Dissertation

This Chapter lays out the philosophy behind the dissertation wo¡k. It may be

considered a precis of the philosophicat discussion that has surrounded the

implementation of the Bayes paradigm since it was first suggested. The remaining

chapters deal with a variety of multiparameter situations where implementation of the

Bayesian paradigm is undertaken.

Chapters two, three and four present the application of the Lindley and Tierney-

Kadane approximations to a variety of distributions most commonly used in reliabitity

and lifetesting situations. Chapter two describes the merits and disadvantages of the two

methods in application to the two-parameter normal and two-parameter inverse Gaussian

distribution. Chapær three continues to detail the applicability of the approximations to

the three most commonly used three-parameter distributions in reliability and lifetesting.

The Weibull, gamma and lognormal dishibutions are studied. Chapær four gives a
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simila¡ presentation involving the five-parameter estimation task necessary in working

with the bivariaæ normal distribution.

Chapters five and six discuss estimation in two of the most commonly seen

mixture distributions. Both censored and uncensored sampling environments a¡e

explored. Chapter five details the work for a mixture of ex¡nnentials distributions while

Chapter six deals with a mixture of Weibull distributions.

Chapter seven investigates two settings for Bayesian alternatives to traditional

quality control techniques. The first section proposes alternatives for the traditional p-

chart control limits by taking advantage of the inherent updating of information available

through the Bayesian paradigm. The second portion presents a modification of the

standard p-chart based on the predictive distribution.

Three papers concerning work contained in this dissertation have been published

in refereed journals. The material published pertains to work involving the three-

parameter Weibull distribution (section 3.1), the mixture of exponential distributions

(Chapter five) and the mixture of V/eibull distributions (Chapter six). Three other papers

are in the refereeing process at the time of writing this dissertation. These papers pertain

to the three-parameter gamma work (section 3.2), the work in Chapter four dealing with

the bivariate normal and the predictive p-chart material (Chapter seven). The exact

references for papers published at the time of this writing a¡e noted at the beginning of

the appropriate sections.
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CHAPTER 2: BAYES appRoxrMATroNs FoR Two-paRAMETER
DISTRIBUTIONS

2.1 Introduction

This chapær examines two Bayesian approximation methods, due to Lindley

(1980) and Tierney/Kadane (1986), for distributions commonly used for reliability and

lifetesting situations involving two systemic parameters. These approximations are

examined in relation to maximum likelihood estimators and, wherever possible, exact

Bayes estimators. Closed form solutions for the approximations are explored.

As mentioned in Chapter l, one of the basic diffîculties encountered in

implementing the Bayesian approach is evaluating the ratio of integrals involved in

producing the Bayes estimator as the mean of the posterior distribution. Several authors

have turned their attention to the problem, typically leading to an approximation for the

exact Bayes estimator, often necessitating the use of computer maximization routines.

This means that more work is generally involved than most other estimation techniques

and, in a practical sense, loses its appeal. Evaluation of these approximation methods

is undertaken in the hopes of developing, under various distributional settings, convenient

Bayes estimators that perform reasonably well.

Little work has been done in applying the generalized approximation techniques

to specif,rc applications so that the algebraic manipulations required be kept to a

minimum. Most often, in fact, the authors of such techniques recommend the

construction of interactive computing environments to handle the approximations. This

not only leaves the researcher at the mercy of the accuracy of computer technology and

methodology employed, but also ignores the possibility that a closed-form solution may

exist. If such a solution exists, it is of much greats value than a computational
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approximation since dist¡ibutional cha¡acæristics may be derived and studied.

2.2 Normal Distribution

The normal disfibution N(¡.,ø) with probability density fi¡nction

t(xl|) = r(xlt,,o) = å"*pl-+ W-t,tr1, -æ<¡r<æ, o)0,/zo L 2o" J

provides a convenient forum to test the approximations since the exact Bayes estimator

is known to be (Sinha, 1986)

rl-

p.=x and o.="(#) lÐ,",-u,'
"["_r\J 

2

\21

for the mean and standard deviation respectively. Sinha (1986) assumes a vague prior

(Jeffreys, ße) for Q--fu.,o) of the form n (0) e o-t .

This is an exemplary setting because of the inherent normality of functions of

variables involving the normal distribution. Both Lindley and Tierney/Kadane used

normal distribution theory to develop their approximations. If the approximations

perform poorly under these most favourable conditions, it would suggest that difficulties

would most likely arise in their applicability to more complex settings.
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2.2. I Lindley's Approximatioi

As described in Chapter l, Lindley's approximation to the Bayes estimator is

u'(0) = u(a). +åËt , (¡"')*zu,r|)lou. +ååå f,Luru,oooo

where

p is the number of parameters to be estimated

0 is the parameter vector, evaluated at the maximum likelihood estimator

u¡¡u¡ âre the fust and second partial derivatives of the parameter function being estimated

R.¡ is the first partial derivative of the log-prior

ø¡ is the ijú element of the variance-covariance matrix

L,¡ is the third partial derivative of the log-likelihood function.

Now for estimating A:Q",o) from the normal distribution

r(xlo) = ã""n[ ry] -æ((x, ¡¡)<æ, o>o

it can be seen that

f1 if índex matchestt = 
Lo othentise and uo=o 

' 
vo

and calculate

p (0)=-toso, pt(o) ='or\f' =o, pz(Ð = 
ôoðl:) =-+
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It is further found that

L(g-lx) =c-nlo 
"t-+Ð 

(xí-p)2

so that the partial derivatives are found as follows

n,=p=]irx¡-ttl' ôlt o"r=,

",= # = -l. oaå 1x,-Ð,

-n
-ll 

-o"

r __ì
Ltz = *Ð (x¡-þ)=o, evaruted at the mre A=þ, 

.J *å , * -Zr,)

- n 3."Lzz = # - åÐ 6;Ð' = #, at the mte

and the variance-covariance matrix, evaluated at the mle is
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The thi¡d partial derivatives are

Lttt = o

-2nLrr2 = 
-

-n
Ltzz = :I (x,-tt') - o at the mte

O"Tí

r = -2n ¿ -i (x,-tt)z = Lo-! at the mre.L22z - -7 - 
o, Ti o,

Substitutin gthe znro elements into Lindley's approximation formula, the equation reduces

to

u'(0, = u(A). ÉÉ u,ú)pj(O)o, * 
äLrnuzottozz 

* 
|4rrurorn .

t=r j=l

For estimating the normal mean ¡.r, set u(0):p. It is found that u,(f):l, u2(0):Q.

Hence all terms in the above formula have a zero element so that

u'(0) =u(0) + 0 = u(0).

So Lindley's approximation for the normal mean parameter turns out to be exactly equal

to the true Bayes estimator and the mle.

Now, for the standard deviation, set u(f):o to get ur(Ð:0, ur(Q¡:1.

Combined with other zero elements, Lindley's approximation equation reduces to

u'(0') = ã + pzozz + 
|trrrorror, * |nrrrol,
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and substituting from the above calculations, Lindley's approximation to the Bayes

estimator of o turns out to be

u'(0)=@-*-+-#
ah* sl
\ 4nl

So after an amount of tedious algebra, an easily calculable closed form for Lindley,s

approximation to the Bayes estimator of ø is produced. From a classical theory

perspective the relationship can be examined between theposterior variance for Lindley's

approximation and that of the mle. Here

var (u, (0r,) =varÞ{r-*¡ = [r-=î], 
var (t)

Since the constant is clearly greater than one for all values of n, it is true that

Var[u'(f)] >Var(â).

2.2.2 Tierne)¡-Kadane Approximation

As described in Chapter one, the Tierney-Kadane approximation procedure can

be detailed as a five-point process as follows:

1. construct L(0lx), the log-likelihood funcrion of the pdf under study.

Define r($ to be the prior distribution of the multivariate parameter 0 and

u(Ð to be a function of the multivariate pammeter to estimate.

2. construct two modified log-likelihood functions L' and L. where

L" : Qoglzr(f)l+L)/n and

L. : floglu(f)l +1og[ r@)l +L) I n : Lo* tog[u@)]/n.
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3. Find points f" and 0. which maximize L" and L,.

4. Construct two matrices, Eo and 8., the negative of the inverse of the second orde¡

partial derivatives of L. and L. respectively, and evaluated at the ma:cimization points

of f" and 0. respectively.

5. Calculate the estimator by the formula

u' (0) = 
I # . exp{n lL. (0 .,) -L,(gu) )}

Once again, consider the normal distribution and follow the frve-step algorithm.

1. The log-likelihood function and prior distribution are as above.

2. construct the modifred maximum-likelihood functions L. and L. as

"'= *r"ø(j)-r ono-ftf ø;ut'

= -('.*)r ono-fif w,-ut,

and L. will differ for each of the parameters p and o. As such the discussion will be

split into two parts.

First, for estimating ø the population standard deviation, construct L

L. = f logu (0) +L" = -logo- *Ð Vi-Ðz
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Next, the points 4 and 0. that maximize L" and L. respectively must be found. The

partial derivatives of the functions a¡e

ôLo=i(x,-f) 
e.z,)wk@

* = 1'+).¿i 6,-tttz e.3)E o ñkr^,

Setting these expressions equal to znro and solving finds f" to be

í. I
0. = (p.,o],) = lx,*f 6,-x'lrl

l. "'*i=l )

Similarly for L,, the partial derivatives are

ôL. 
= S 6¡-tt)waæ

!# = -+.*Ð 6¡-þ)2

and solving the system of equations produces the maximizing point

o. = (p.,o'.) = 
[r-,*p,*-r.,r]

Step 4 requires Eo and E,, the negative inverse of the matrix of second derivatives, to be

evaluated at the two maximization points 4 and f. respectiveþ.
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Using Q.2) nd (2.3) produces

ô'L" 1æa
l- 1\

ry *Ð 1x,-rtt,

zf ø;ut
- i=l

no3

Hence

S =-/ro

ôzLo =It-*)_ 3 (n+1) 
", = _ 

r(t.*)
ôo2 o'" noa " o',

ô22^

7Éo = o'

ôzLo 
=

ôo2

ô'Lo-rw-

The second partials are then evaluated at the mærimization point by substituting ¡r. and

oo for p and o respectively so that

_1 o
o'.

fffil-'('.*)7
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The matrix construction process is then repeated for 8.. The second partials of L. a¡e

ô'L. 1=__ôp' 02

ô'L. 
= 1- 3 n

ôoz 02 ";;Ð 
(xrþ)z

%=-''(x¡-tt)TW æ1,

and the maximization lrcints ¡¿. and ot àrê substituted so that

ô'L. _ 2

ôo2 02,

ô'L.
-õP = tt'

Finally step 5 is reached where the pieces are put together to evaluate

u' (a') = I# .*pft[". (0.) -L,(0")]l

The relation o', {r- 
1)"3 ir used to evaluate the first part of e.4)

(2.4)

l:. I

TãT

oo.

T

-
oo

=
z/r* 1\
\ n/

= ('.*)"'



The second part of Q.4) can be evaluated as

"*pþ[¿. 
( 0. ) -L.(0"t 

.1t 
= 

[" [r"n" 
.-#Ð (xi-þ. ),(r*1)roøo,

-*o,Ð,",-r,,J]

Using the relation above and the fact that ¡tr.:lto, it is found that

47

"*pftp. (0.) -Lo(',) l) = exntL+-r"nl** .*r"n"J)

t-l
""nlrf -r,roøl r* r -tonr,_l

= o l-=-
1 ('.*)"

Combining the two pafs of (2.4), a closed form solution for o'r-* the Tierney-Kadane

approximation to the Bayes estimator for the population standard deviation is produced

to be

(n+1
('.*)'";- = 

I
E tx,-xl'
i=l

f, tx,-xl,
i=l* 1\'-t

nl

õ

r(n+1";- = 

I

e
-;_-
) ('.;)
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Further, wriæ

and since ;lqt-*)n = ", asymprorically or-* úends ro rhe maximum liketihood

estimator, as does Lindley's approximation.

Because a closed form is obtained, the variance properties of the approximation may be

examined to find

u 
^,1' ;-) = 

F(*-)"']var r a r

and since the constant is clearly less than one for all values of the sample size n, one can

see that the variance of the Tierney-Kadane approximation is less than that of the mle.

Hence

varço]-*¡ S Var@) < var (oi*,r)

Now, returning to the population mean parameter, set u(@):p and begin by

creating L. and L' again. The first function L, is the same regardless of the parameter

being estimated so that the maximization point 0. and matrix Do will be the same. The

L. function does change for each different parameter, and is found here to be

L. = *ronr1t.*)t" r"-#Ð (xi-ptz
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Take putiat derivatives of L to find the maximization point 0. and obtain

ô!. 
= a-1É 6¡-plW r4t -æi='

Ir-1lôL' ry.¿i (x,-tüzE =-- o no37"

Producing a closed-form solution for the maximization point 0. from the above system

of equations requires use of the quadratic formula to obtain the roots of af *bx*c:Q.

This, it turns out produces a very messy result. Substituting this result into E, and

attempting to solve the Tierney-Kadane approximation equation becomes intractable.

This is the first of several distributional applications where this phenomenon appeared.

Typically the Tierney-Kadane approximation works out algebraically in a fairly

convenient fashion, as seen above, when working with scale parameters not involving the

sample space. When applying the technique for a threshold or location parameter,

however, the addition of the log term involving the threshold parameter to L. prevents

the convenient cancelling of terms when thepartial derivatives are taken. When working

with scale parameters, L. typically involves other terms with the scale parameter in the

denominator, as seen above. Thus, when paÍial derivatives are taken, convenient

collecting of terms and cancellation are possible. Such is not the case with a location

parameter because it produces an L. equation as above with terms involving the threshold

parameter alternately in the numerator and denominator, effectively ruling out the

possibility of a convenient closed-form solution. Numerical optimization routines become

necessary to achieve the Tierney-Kadane approximation when dealing with such ttueshold

parameters on a case-by-case basis. This fact holds imporønt implications for the



50

comparative success in the application of the two approximation techniques.

2.2.3 Examole

Using data from an N(¡r,ø) example in Sinha (1986b), the two approximation

methods a¡e examined and compared against the exact Bayes estimator. Sinha (1986b)

also gave forms for the estimated posterior variance of the exact Bayes estimator. For

the approximations, as well as the exact Bayes estimator, an estimate of the posterior

variance can be obtained by use of the relation

varlutg_lXl )=Etu2([-lX) J -þtu tg_lXll'

Estimating each part of the variance equation produces an estimate for the estimator's

variance. Performing estimation in this manner does bring into the possibility of negative

variance estimates. Such estimates are typically observed in small sample cases. These

estimators are useful for comparing the relative precision of the various techniques. The

Sinha (1986b) sample deålt with 30 component lifetimes. Maximum likelihood estimates

were found to be þ=Í=lg .g78 and 6=5.588. The Bayes methods results are in

Table 2.1.

Table 2.1: Ba)¡es Estimation Resutts for Sinha (1986b) Sample

Parameter
Exact
Bayes V@xact) Lindley V(Lindley)

Tierney
-Kadane ïcr-*l

p 19.978 1.160 19.978 1.160 19.974 1.159

o 5.836 2.5& 5.82r 2.782 5.822 2.75s

The example produces results that seem to favour neither of the a¡ryroximation
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techniques in terms of closeness to the exact Bayes estimator. The Tierney-Kadane

estimator does exhibit smaller estimated variance, however. The results for ø are more

interesting than those for ¡r since the Lindþ approximation is algebraically equivalent

to the exact Bayes estimator.

2.2.4 Monte Carlo Simulation

To assess the distributional assumptions, Monte Carlo simulations were run for

both small and moderate sample sizes. Again recall that results for p. will not be as

interesting as those for o, since Lindley's method produces the exact Bayes estimator.

For this reason, the ¡esults for the scale parameter onry are given.

Two runs were performed. First 5000 samples of size 10 from N(50,3) were

generated, followed by a run of 1000 samples of size 100, both with parameter settings

of Q:Q,,o):(50.0, 3.0). The mean value for the simulation sample estimates and mean

square error are given in Table 2.2 for the three Bayes estimato¡s as well as the

maximum likelihood estimator.

Table 2.2: Simulation Results for Sampling from N(¡¿.o):N(50,3)

n:10
5000 samples

n:100
1000 samples

Estimator Mean MSE Mean MSE

Exact Bayes 3.2040 .6251 3.0177 .0468

Lindley 3.1329 .5698 3.0177 .0467

Tierney 3.1347 .5718 3.0177 .M67

MLE 2.7837 .4833 2.98M .0457

The first notable result is that sample size has a profound impact on results. This
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is not surprising as the authors of both approximation techniques state their methods rely

on asymptotic results. Neither technique has been adequately explored for implications

of small sample size. From Table 2.2 it is clea¡ that for a moderate sample size, there

is little to choose between the Bayes approximations. Both the Lindley and T-K method

produce results identical to that of the exact Bayes estimator. The Bayes estimators are

certainly competitive alternatives to the mle, especially considering that the work is

performed in a noninformative prior situation.

Results for the small sample size run reveal some differences between the

approximations. Lindley's approximation reveals a stightly less accurate estimator on

average, with marginally better mse than the T-K estimator. Both approximations still

do perform remarkably well considering the sparse sample information.

Figures 2.1 through 2.4 provide the sampling distributions of the four estimators

for the smaller sample size run. As can be seen they are almost identical. Also notable

is the bell-shaped consistency. Given that all the estimato¡s are merely a constant

multiplier of the mle, which is known to follow a normal distribution, one would expect

this. The Shapiro-Wilk test of normality was applied to all these distributions and

produced a nonrejection of the normality hypothesis with a typical p-value of 0.g0.

The fact that there is little to choose between the approximations in this very

simplistic setting has implications for choice of technique. The Lindley method would

have to be preferred for its algebraic simplicity over the Tierney-Kadane approach.

Lindley's method produces closed-form results for both parameters whereas the T-K

method becomes intractable in working with the location parameter ¡r. Even in the case

of estimating o, the form of the Lindley approximation is much simpler than that of the
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T-K technique. The T-K technique will always involve some form of the constant e

raised to a power, divided by a cancelling constant. This produces comparable results

to the Lindley method, albeit by a roundabout algebraic manipulation. It seems clea¡ that

the T-K method is better suited to computer application environments while the Lindley

method lends itself more readily to algebraic investigation. As will be seen, these basic

frndings will persist through a variety of distributional settings.

2.3 Inverse Gaussian Distribution

A close relative of the normal distribution, the inverse Gaussian distribution is

often used in reliability and lifetime studies. The same pattern of analysis is foltowed

as with the normal distribution, making comparisons among the two approximations, the

exact Bayes estimator and the maximum tikelihood estimator.

Consider a distribution for the lifetime X of a component which arises from the

two-parameter inverse Gaussian IG(¡¿,\) which is defined by

t (xl\, ¡t 
f -

) =r (xt o) = IF**[*g] x, þ,À>o .

The maximum likelihood estimators of the parameters are well known as

þ=V, Â=

åt+ +l

The vector parameter Q:Gr,À) is assumed to follow a diffuse prior distribution @ox and
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Tiao, L973) so that

Tr (0')*{,"o that p (0) =-logÀ

The same procedures can be cårried out as was done with the normal distribution in

section 2.

2.3. 1 Lindley's Approximation

Sinha (1986) produced closed forms for Lindley's approximation under the inverse

Gaussian distribution following the same process seen in section 2.2.I, finding

t i*, = F,*3(, \;*,, = (+)^

The variance of the Lindley approximations for both parameters is smaller than that of

the mle although for moderate to large sample sizes the differences tend toward zerc.

Similar to the closed-form solution for the normal distribution, Lindley's approximation

produces easily calculable estimators that are simple functions of the maximum likelihood

estimator.

2.3.2 Tiernev-Kadane Aooroximation

Following the five step algorithm described in section two, construct the log-

likelihood function

,f " I
L(glx) = "*l,rosÀ- 

À- 

þ"-2"r. 
fÐ +,)

where C is a normalizing constant, irrelevant to calculations.
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Further,

ô2, r-d = 
fr.ø-P)

It r\

1+ =H +þ-,r.+å+]
The maximizing point fl is obtained by setting the partials to zeÍo and solving so that

t - ,d+-+J 
l0o=(¡ro,lt) =fx,-;;fr!l

I nH *,)

The L. function changes for each parameter function to be estimated so that for

u(É):À,, it is found to be

Lo= (logLn(01+Ll/n = "-(+-

and the partial derivatives of L" are

L, = 
"*+rogÀ-

ôL.w
ôL.
TÃ-

*),"n^- +F-,,.gå+,]

+F ".+lå+,]

ì r"-ul

+ +þ ',.*å+]



producing the result

o.=íx, x l.
| -r.."í t I[ '' "k T'J

Next construct the two matrices E and 8., comprised of partial derivatives of the Io and

L' functions respectively, evaluated at the maximizatton points g. and 9.. The partials

of L. are

ô'Lo

æ
= 4 c zp,-tx) = -+ since þo=î

It rl
ô2Lo 

= -tz-;i
ð\2 \2

ô221-
ãøft = fi(x-P) = o since þo=x

so that E. is

¿ro -

-Ào

xt

0

o

)\3

il 1T

[z -;/

0

It 1

\2 n

x3
T;

0

I

similarly, for Do the second paÍial derivatives evaluated at the maxima a¡e

ð'L.w
ô'L.
ô\'
ô'L.

7pðX

_À
x3

_1
zlP

=Q
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so that E, is

E _f_+ 
;l 

, 
[i,rJL'

Evaluate the Tierney-Kadane approximation formula Q.$ in two pieces as before so

that the first part is

l-1r.1 =f ,Lr' -l'É-*)"l-lÐr læ=l--t-
læl

but it can be seen that X"=r(*-*)^., so rhe firsr parr becomes

lÞJ l;-.
Jrry =Jr; = r

so the Tierney-Kadane approximation for the Bayes estimator of \ is

\i_* = 1. exp{n[r. { 4. ) -t .(0 ,)]}

which becomes

Ài-* = ".nF.+1osÀ.-*[-,.*å +] " t+-j)'"n^..*[-,.*å +]]
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After substituting the calculated values and simplifying, the result is

Ài-r = ""n F'1å 
-') 

['"",.r"n(å 
-*)].r"n^.] .

The final form of the approximation is then

æT ^ffi1À.Ài-x =

Once again one may notice that asymptotically Àþ becomes indistinguishable from the

mle.

Now turn to complete the approximation for the location parameter ¡r. Recall that

Lo, Eo and the maxima f" have already been obtained. Reconstruct L. for ¡r so that

u(@):¡r and

To maximizeL., obtain the two partial derivatives

! tos ¡, *¿.(å - *)r.n^ - + F 
-r,. 4*å]

= +*ìrx-¡rl
ð1. = 

(+ *) 
+þ_,r.+åå]TÃ- -tr

Unfortunately, the same problem appears that was encountered with estimation

of the location parameter in the normal distribution. The added ¡r term in the

denominator of the partial derivative with respect to ¡r requires that the quadratic formula

be used, producing a very unwieldy algebraic form for the maximization point. At this

point a closed-form solution for ¡r'¡r-*¡ becomes untenable, forcing reliance upon

ôL.w
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computer maximization routines.

2.3.3 Examole

Bannerjee and Bhattacharyya (1979) present a method to find the exact Bayes

estimator in terms of the solution of a system of equations and give an example dataset.

The sample dataset comprised nine lifetimes. The results of estimation are given in

Table2.3.

Table 2.3: Estimation Results for Bannerjee and Bhattacharyya Sample

Parameter Exact Bayes Lindley Tierney MLE

p not given 4.L178 4.0930 2.60&

À 1,.6229 t.6228 t.6216 1.6589

Lindley's approximation more closely estimates the true Bayes estimator than the T-K

method.

2.3.4 Monte Carlo Simulation

Two simulation runs were performed, as with the normal distribution, generated

from an inverse Gaussian distribution with ¡r:5 and X:4. Since both parameters ¡r and

À displayed interesting results for the example dataset, results are presented for both

parameters in Tables 2.4 and2.5. In looking at the individual samples it was seen that

the T-K estimator was always less than the Lindley estimator, atthough the magnitude

of difference was relatively small.
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Table 2.4: Simulation Results for Estimating p from an rG(5,4) Distribution

n=10
5000 samples

n:100
1000 samples

Estimator Mean MSE Mean MSE

Lindley 5.6395 15.2415 5.2698 0.573r

Tierney 5.6102 15.1507 s.2695 0.5729

MLE 6.0231 18.6680 5.3771 0.6621

Table 2.5: Simulation Results for Estimating À from an rG(5.4) Distribution

n=10
5000 samples

n:100
1000 samples

Estimator Mean MSE Mean MSE

Lindley 5.8525 20.1326 4.3722 0.6730

Tierney 5.8404 20.0192 4.372r 0.6730

MLE 6.5028 26.8824 4.4163 0.7187

Findings for both the scale and location parameters in terms of estimator

performance are basically the same. The reduced variability of the T-K approach is

evidenced, although there is little to choose between the two approximation methods in

terms of precision.

As with the normal distribution, the impact of sample size is notable. For the

smaller sample size, the discrepancy between the two approximation techniques is

greater. For the larger sample size, the discrepancy between the two techniques becomes

negligible. Figures 2.5 through 2.7 contain sampling distributions for the three

estimators of )r involved for the (n:100) larger sample size. The two Bayes

approximations produce identical plots while the mle does differentiate itself slightly.
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2.4 Summarv

In their paper, Tierney and Kadane (1986) assert that their method is

computationally easier than Lindley's technique because of the need for the second partial

derivatives only to be calculated, while Lindley requires third partials. As has been seen,

however, the T-K method requires such derivations for each parameter estimated while

Lindley's method demands such algebraic manipulations only once. Furthermore, each

technique requires matrix inversion. The Lindley approach needs such inversion only

once, whereas the T-K approach needs a new matrix construction and inversion for each

parameter to be estimated.

From these two distributional examples, it is clear that the Tierney-Kadane

approximation lends itself to closed-form solutions only in the case of scale-type

parameters and becomes algebraically intractable for threshold/location parameters. This

has largely to do with the choice of prior, of course, and the fact that in this setting

priors were used that involve only the scale parameter. This is not an unusual situation.

Lindley's method on the other hand does not seem to have any mathematical tendency

towards either scale or location parameters and produces closed forms with an equal

amount of manipulation.

In terms of the closed-form solutions themselves, the Lindley estimators are much

simpler, avoiding the exponential form of the Tierney-Kadane solutions. Lindley,s

method would be preferred for its simplicity at a negligible cost of accuracy.

Attention will now be turned to more complex distributional settings where even

obtaining a numerical solution is difficult.
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CHAPTER. 3: BAYESIAN APPROXIMATIONS FoR THREF-PARAMETER.

DISTRJBUTIONS

This chapter continues the work of the previous section, expanding the work to

now deal with more complicated estimation environments involving th¡ee systemic

parameters. Three distributions used routinely in reliability and lifetesting work are the

Weibull, ga'mma and lognormal distributions. Estimation procedures from both the

classical and Bayesian perspective are examined. White in many applied situations these

three distributions may be thought of as interchangeable, each one has its own special

mathematical characteristics. This individuality leads to complicating factors in any

attempt at generalization across the three distributions.

3.1 Weibull Distribution

In this section, the three-parameter Weibult distribution will be used to

demonstrate the efficacy of the two Bayes approximation techniques relative to the

mæ<imum likelihood estimator. Work in this section has been published in IEEE

Transactions on Reliability by Sinha and Sloan (19gg).

Of the three-paramete¡ distributions commonly had in life testing situations

presented in this chapter, the Weibull distribution has seen the most attention in the

literature. Named for the Swedish physicist who applied it to maærial breaking strength

testing during the second world war (Weibull, 1939), the Weibull distribution is

particularly useful since the reliability and hazard functions can be expressed in simple,

closed forms and if the shape parameter is greater than one, the Weibull distribution

aptty takÊs into account hilure due to agrng and fatigue.
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The density function for the three-parameter Weibull distribution is

f (xl r',b, ct = *.,-tt)c-rexp[l+lJ
where c is a shape parameter, b is a scale parameter and ¡r is the location or threshold

parameter representing minimum time until wear out.

A considerably larger body of publications deal with the Weibu[ than with the

alternative life testing distributions of the gamma and lognormal. Citing that there is no

clear theoretical reason why the Weibull is so popular a choice over alternative

competitors, Johnson and Kotz (L970) provide an extensive list of applications.

The reliability function ar a given time t is pr(X > t):R(t) and is given by

R(r) = explt+lJ , t,tt .

Although the idea of a minimum "guaranteed" time until failure is intuitivety

appealing, the addition of the ¡r parameter creates numerous mathematical problems. As

such, work in the literature until recently concerned itself more often with the two-

parameter incarnation of the Weibull distribution, assuming that p, was zero.

The more difficult three parameter situation is of interest for use with the Bayes

approximations for a number of ¡easons. First, the problem of finding Bayes estimators

for the systemic parameters does not produce closed form solutions. Second, since the

Bayes approximations a¡e both based on the mle's which are also unavailable in closed

form, some insight to the problems can be gained. Finally, in practical applications, if
numerical work is required to produce mle's there is no reason to prefer them over any

competing estimafor, except for possibly desirable asy¡nptotic properties.
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3. 1. 1 Estimation Problems

The value of c, the shape parameter, is critical for the production of estimators

for the three-parameter Weibull. If c< 1, the pdf of a Weibull takes the shape of an

exponential distribution. The mle's are regular and have the usual desi¡able properties

if and only if c>2 (Cohen and 'Whitten, L982). When c:1, the Weibull is a two-

parameter exponential variate. fohnson and Haskell (1983) discuss the application of the

Weibull distribution for measuring lumber strength, a situation which demands the shape

parameter lie between one and two, the nonregular situation. They then demonstrate that

the mle's are in fact consistent with the traditional regularity properties as long as c is

greater than one. They further give an intuitive interpretation for the shape parameter

c. If c is greater than one, the items under test must be wearing out over time, whereas

if c< I the components can be thought of having to go through an initial "breaking in"

period.

Due to the extraordinary eccentricity of thei¡ behaviour, maximum likelihood

estimators of the parameters of this distribution have been studied by several authors.

They do not satisfy the usual regularity conditions, due in part because the threshold

parameter is a function of the observational range space. As a result for some

combinations of parameters and sample sizes the mle may not exist o¡ may lead to

inconsistent estimato¡s (Cohen and Whitten, 1982). Smith (1985) demonstrates that the

mle's are asymptotically efficient and have a normal distribution only if c)2. Further,

if c<1, the maximum likelihood estimators may not exist at all. At best they are

difficult to find by numerical methods.

The likelihood function (assuming a sample of size n, namely X=(xr,xz,...,xJ



72

from the three-parameter Weibull distribution) is

7(c,b,plx) =
[#]"þ r*,-,,J-'"*nl * t#]l

a¡d the log-likelihood function is

L(c,b,plxl = n(Iosc-c1os.b) +(c-1)å t"n 6,-tt) å [#]"
To produce maximum likelihood estimators, L must be maximizæd with the

restriction that p'sxrrl. The system of partial derivative equations that would produce

mle's is

,, = # = !-nrosr*E ros(x,-tr) -É [Tt]"t""[#] = ,

î -ôz n, n

Lz= fi = -=;.ÉÐ G¡-tt)" = o

",= H (1-c)åt+].;å[=r]-'= o

Unfortunately, this system cannot be solved in closed form so that a number of

alternative approaches are possible. The true global maximum for the log{ikelihood

function occurs at (e,Ê,þI=(0,O,x'r). Since this is an impractical mle, a local

maximum must be found. Rockette, Antle and Klimko (1974) provide the definitive

work on mle's with the three-parameter Weibull model. They demonstrate that either

no point of inflection will exist for the above system of equations on the log-likelihood

surface ftence no mle), or that along with a local maximum a saddle point will exist.

In the former case, the mle is found to be G,Ê,þ) =(t, *å (x,-Ê),x*l) . In the
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latter case, the value of the likelihood fi,¡nction at the local maximum found through

iterative sea¡ch procedures should be compared with this so-called ncorner point'. It is

possible that the log-likelihood function will be greater at this corner point than at the

local maximum. After presenting this result, however, Rockette et al fail to mention that

the relatively involved calculation of the log-likelihood function becomes trivial at the

corner point.

Specifically,

L(9_llr.) p-",7 = -n log (6+f )

This bit of information economizes a considerable amount of CPU time in a Monte Carlo

simulation, as an added pass through the data is unnecessary.

Numerical approaches for solving the mle system of equations abound in the

literature. Zanakis (1977, 1979a and 1979b) presents extensive work on various

alternatives. He also notes that the log-likelihood function is incredibly flat in the region

around the locå.l maximum so that great care must be taken to ensure that the numerical

routine produces accurate results. Harter and Moore (1965) suggest solving the

equations in a cyclical fashion, slowly zeroing in on the true local mæ<ima, which is

CPU intensive. Other numerical recþs are given by Haan and Beer (1967),IVingo

(1972),I-emon (1974) and Archer (1980). A detailed comparison of these methods is

given by Amin (1981).

The nature of difficulties with the system of mle equations has led to several

modified mærimum likelihood procedures. Cohen and Whitten (1982a) and Cohen,

Whitten & Ding (1984) replace the partial derivative equation for ¡r in tlre system above

with a relation involving other moments of the distribution o¡ the first order statistic and
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solve this new modified system of equations via an iærative numerical routine.

Because of the difficulty in producing maximum likelihood estimators, a number

of authors have presented alternative estimation approaches. Zanakis (Lg7g) proposed

a set of simple estimators based on sample percentiles which always exist and have at

least comparable properties to the mle's. Amin (1981) describes a method based on

spacings between successive observations that also produce competitive ¡esults. Adatia

and Chan (1985) present an approach based on order statistics. Any of these estimators

are useful as starting points in the iterative numerical routines necessary to find the mle.

In this section, an adapted Newton-Raphson algorithm is used to locate the local

mle's, using either the moment estimators or Zanakis-type estimators for starting the

iterative search. Cohen (1965) gives moment estimators of the parameters. Convergence

was typically obtained after three to ten iterations. As pointed out by Cohen and Whitten

(1982) and 7-anaþ'ts (1979), it is possible that an iterative numerical process could

converge to a saddle point, or to an enoneous local maxima. To circumvent this

problem, a 3x3 dimensional grid of the log-liketihood function was constructed around

the final estimates produced by the iterative algorithm. If the grid was not uniformly

decreasing around the local maximum, the direction of ascent was followed until a

further convergence was achieved. If convergence was not achieved, a further set of

initial points was used. The estimates reached by use of the second set of initial

estimates and the first were then used to bracket the search process. The grid process

was then repeated. In this way, it was easy to verify that estimates produced by the

iterative process were indeed at a local maximum of the log-likelihood function.

The rnle for the reliability function is found sfunply by substituting the mle's for
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the systemic parameters into the reliability fi.rnction. Despiæ the difficulties in producing

the mle for the three parameters, Thoman, Bain and Antle (1920) show that the

mærimum likelihood estimator of the system reliability is unbiased for even moderate

sample sizes'and has desi¡able variance properties.

3. 1.2 Lindley's Approximation

For the Bayesian framework, a strate of "in-ignorancen about the parameters a

priori is assumed so that the vague priors

9(b'c) h(tt) = constant

as per Jeffreys (1961) would be appropriaüe. It is reasonable to believe that ¡r is

distributed independently of c and b since any a priori idea one might have about ¡r is not

likely to be very much influenced by one's knowledge about the values of the other

parameters @ox and Tiao, 1973). The joint prior distribution for 0:(c,b,¡r) can then

be written as the product of the marginals so that

9(c,b,tt)

and the joint log-prior is

c =1 and
þC

c1
bc

with partial derivatives

pt(o) = 
u orL!' =-}, eg=uorLl' =0.

p(0', = roø[ø(¿)] = -losc-J-og.b

pz(,t = 
ôpr\Ll_ -1-ct

Although the mle's are difficult to obtain for the three-parameter Weibull, the
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approximation to the Bayes estimator as proposed by Lindley (1970) encounters no

further complications. The formulation for the expansion seen in chapter one was

utilised and for brevity will not be repeated here. The necessary quantities a¡e derived

below for estimating the systemic parameûers by setting u(0) in turn to each of the

elements of 0:(c,b,¡¿) and running through the machinations.

The second paftial derivatives, required to construct the information matrix are

'u= ffi = -# åt+]"['"nt+]l

Lzz= #= # #,!,D,*_rr"

Ls3 = # =-(c-r) [,å,*-r*#Ðt#fl

1,2= # = -1.*[å[+]"F,"n[#].,]]

1,3= {#r= -å @¡-t,) '.+å[#l 'F'.n[#].']

L2'=ffi=-#Ð[#]-'



z"'=#=3 åt+]"['""t#lÏ

Lz,s = # = (c-1) lryå t#]-' -,Ð,*-r,,]
d l.L'

L,,z = #= *å [#]"["['",[+]],.,,",[#il

L,zz= # = # *[,* [#]"[," 
z+c)ro{#].,".,]]

L,,g = #= +Ð [#]"'f,,"n[#]."[,",[#]]J

L,,s = # = -å çx,-r,) "- *Ð[ry)*þ.,"-r, F'"n [#].,]]

Lzzs= #= "'(ert)å[qt]""

Note that for the three-parameter V/eibull distribution, one cannot algebraically simplify

the L* functions as was done for the simpler two-parameter distributions seen ea¡lier in

chapter one because the mle's are not available in closed form.
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The third partial derivatives (ti¡'s) are

L2z2 = #' =# 
[t".' 

) (e+z' å [#]"'"]
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Now for estimating the reliability function, R(t), wriæ the parameter ûo be

estimated as

u(e,) =R(r) =exp[t+lJ , t>tt

and find the first and second partial derivatives of the function to be estimaûed (the q's

and uo's) as follows

u, ='\l-!) = -"(+)".'*,.,

,,= ðuð(r) 
= t(+)h,.,

ur= ô"r(-f) ="l(+)

u,,= ry=n(+)"1+|-$,r,

un= ry = #(+)"F(+)"-"-$,.,

ü33= W = #(+)""[{+)"-".$rrr

u,3 = 4# = +(+)-' þ"(+l ['t+l ].,]- r,,

ü,2=!# =(+)",,
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uB= 4# = #,(+)"'[(+)"-,]*,,,
The prior distribution and its partials remain the same, as do the ø,¡'s and the L,,*'s.

Using the Lindley algebra from Chapter one, Sinha and Sloan (1988) give some

simplified algebraic equations for the three-parameter Weibull. These forms serve to

reduce CPU time. Lindley's equation (1.15) for estimating the three systemic parameters

becomes

c' = "- + - + - 
+ (Aorr+116rr+Do13)

b' = b- 2 - + - 
+ (Aorr+s6rz*Dozt)

p' = p- + - +- + (Aorr+p6rz*Doss)

where

A = o rrL rrt+ 2 o tF ,,t+ 2 o ßL ßr+ 2 o rrL ur+ o r{, zzt+ 6 ssL sst

B = o rrLrrz+2o t*pz+2o rrLrrr+2ozsLæz+ozþzzz+otzLtsz

D = o rrLrrr+2o rrLru+2o rrLrrr+2ovL2ß+oz{,zzg+atgLgss

Recall that øu:-{Lu}-l and that all parametric functions are evaluated at the maximum

likelihood estimato¡.

The Lindley approximation to the Bayes estimator of R(t) is found in a simila¡

manner to be

R' (t) = .Ê(t) +Xrur+Àr6rr+Àrur+ao+¿, .
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where

À, = *-å, ¡', = ä-f , >,, = 3
Aj = urojr+u2o¡2+t\o¡t , j =L 12 13

ao = urro rz+tJßo ß+llzjo 23

1
as = i, (urrorr+urr622+l\3oss)

and the u function partial derivatives a¡e based on the setting of u(@)=R(Ð. Note that

in this case the partiat derivatives of u a¡e all nonzero and contribute to the

approximation, whereas in estimating the three elements of 0: (c,b,F), all but one of the

partial derivatives was zero.

The posterior variance can be estimated using Lindley's approximation. In

Lindley's algebra this means, to obtain the posterior variance of systemic parameter c,

setting u(4):c2 and reconstructing the u, and uu functions.

After some algeb¡a it is seen that

z lczlx¡ = ê2-2ê[+.+r] +ott+ê (Aorr+Borr+Do13)

and substituting into the variance relation form, the posterior variance for c is found to

be

Var(elx) = E(c2lx) -(c')' = ",,-F (Aorr+B6rr+Do12) + +I
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Similarly, for the other systemic parameúers

var (blx) = a22-þ ruorr*"orr+Do,y) + +I
var (¡rlxl = o33-þ ruorr*"or2+Do33) + +I

Again it is important to note that all functions a¡e evaluated at the mle. This algebra

reinforces the finding of Sinha (198Ð which proved that by including terms up ro O(n1,

the posterior variance is less than the estimated asymptotic variance of the mle for the

same parameter.

In estimating the posterior variance of the reliability estimator, the same route is

followed so that

E(R2(t) lx) = .Ê2(t) +2.Ê(t) (\,u,+Àryr+Àrur+ao+¿r¡

+ u? o t t 
+ u3 o rr+ tJ ro r, + 2 u ru ro r, + 2 u {t 30 ß + z u zu3o ?3

and finally

var[R(t) lx] = vârtÊ(t) J -[À,u,*¡rtJr+ltrur+ao*arf,

Again it is seen that the posterior variance witl be less than the estimated asymptotic

variance of the mle if terms to order O(n-) a¡e included.

3. 1.3 Tierney-Kadane Approximation

To produce a closed fo¡m solution for the Tierney-Kadane approximation to the

Bayes estimator, the L. and L. functions must fust be constructed and maximized,

producing the poinæ do and ú. respectively where 0=(c,b,p).
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The Lo function, constant for any parameter estimated, is

¿, = llro g(s tDt).¿ r¿ l¿l ]

= * [r"n 
b-Losc+nrosc-nc tos.b+ (c-r) 

Ð 
,"n 6,-r) Ð [+tj J

and the filst partial derivatives with respect to d necessary to produce the maximization

point 0o are

#=-#-=fti (x,-tt),

# =*[,-",å 
t"+].;å t+]"]

These functions are slightly modif,red functions of the log-likelihood, and as such any

maximization attempt suffers from the same problems seen in constructing the mle.

Hence, closed form solutions are not achievable for the Tierney-Kadane approximation

either and the computer must be used instead.

!* =* 
l+-nroe.b+å 

r"n @,-t,) å t#]"'"nFf]
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In a similar fashion the L. fi.¡nctions that are required to estimate the elements of

Q:(c,b,¡) are

Ltc j lroøc) *-a,

L.b = )GoUÐ *r,"

L.r ),JouÐ *2.

and again they cannot be maximized algebraically.

To produce posterior variances, the u(f) function is reset, as was done in the

previous chapter, to estimate E(c2lx) and substitute this value into the variance relation

form. Although Lo remains constant, three more L functions are necessaÐ/.

L.ê = ln{ztolc) *t,"

L.b, = |e]r,uÐ*n,
L.r, |{ztovÐ *t",

Once the maximization points are achieved numerically, the remaining steps of

the T-K method, involving the production of the D. and D. matrices, must be ca¡ried out.

Recall thqse matrices are constructed using the second partial derivatives of the In" and

L. functions respectively. These turn out to be stight modifications of th" In¡ functions

presented in the previous section and so will not be repeated here.

To produce an estimate for the reliability function R(t), reset

u(ot =R(r) ="-(+)'
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and reconstruct

L.RØ = -+(+)"*"" .

Again the ma¡rimizatton must be done numerically.

As was seen earlier in work done with other distributions, the two approximation

methods take very different algebraic routes toward the same goal. However, except for

very small samples lnitO¡, it was found that results for the two approximations are

virtually identical. For sake of brevity, then, results in the subsequent sections will be

presented under the heading "Lindley" only, yet can be considered to be representative

of the T-K approximation as well. The "Lindley' heading is used to be consistent with

the published paper in IEEE. This reduces the amount of redundancy in the results for

example datasets and Monte Carlo simulation.

In terms of computing time, the T-K method did prove to be slightly advantageous

over Lindley's method for estimating the systemic parameters. The maximization

performed on the L" and L. ftlnctions in the T-K method was equivalent to the time

required to produce the maximum likelihood estimators necessary to Lindley's approach.

The subsequent matrix construction and inversion needed to complete the T-K

approximation took less time than the calculation of the L¡'s needed to finish Lindley's

procedure.

Once the added task of estimating R(t) was considered, however, the CpU time

required to perform the T-K method overtook that for Lindley's. This was due to the

T-K approach requiring a further ma;çimization of the new L.*,,, seen above, as opposed

1o Lindleyls method where the mle for R(g was found simply by substituting the
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parameter mle's into the R(t) equation.

As mentioned previously, the choice between the two approximations becomes

Iargely a matter of personal preference and availability of computer software. This is

especially true for the three-parameter Weibull case. The algebraic advantages of

Lindley's method seen for the simpler two-parameær distributions fail to produce closed

form solutions. The computer must be relied u¡rcn for both approximation techniques

for the production of estimates.

3.1.4 Examoles

In searching the literature for real data examples, one comes across several

situations where the mle's are non-existent (Steen and Stickler, 1976, for example).

Lindley's approximation cannot be used in such a situation since the formula is based on

an adjustment to the value of the maximum likelihood estimator. In efforts to implement

the Tierney-Kadane method on such samples, the same problems facing the mle were

encountered and so were not obtainable either. Although this does not constitute a proof

that the T-K method will be unable to produce estimates whenever the environment is so

eccentric so as to exclude the possibility of mle's, it is the author's opinion that this is

tikely the case.

Reat life examples of three-parameter Weibull datasets in the literature seem to

specialize in producing troublesome samples, either due to small sample size or deviant

shape parameter. If the Bayes approximations can perform adequately using a

noninformative prior setting under such conditions, one can only expect them to improve

under less adverse conditions.
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Th¡ee ¡eal data exampres are provided by Englehardt &, r-æ, (lg7g, ¡,1LL),

Dumonceaux & Antle (L973, D&A) and Cohen & Whitten (1982, C&\Ð involving ball-

bearing lifetimes, flood levels and component lifetimes respectively. Although none of

the parameters are known, it is clea¡ that the shape parameter is between one and two,

which is the nonregular case described at the beginning of this section. These are also

good illustrative samples as the sizes range from very small (n:10) for the E&L sample

to moderately large (n:100) for the C&W sample.

Table 3.1 presents the results of parameter estimation for the three given

application datasets. Once the mle's were obtained, empirical goodness of fit tests as per

D'Agostino and Sæphens (1986) were performed to ensure that the model assumption of

a three-parameter weibult distribution was appropriate for each sample.

The approximation to the Bayes estimators a¡e very similar to the mle's of c,b

nd p for the D&A and C&V/ samples and could adequately be described as competitive.

For the very small sample of FEJL, however, the Bayes approximations are markedly

different from the mle's. The mle for the shape parameter c, suggests the nonregular

case by an estimate below two whereas the Bayes approach produces a value of c'=3.67,

suggesting that the sample arose from a more regular Weibull process. Bayes estimates

for the other two parameters based on the E&L sample are also terribly discordant with

the mle's.
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Source n c mle b mle ,¿ mle c b' p

E&L 10 1.74 53.34 86.s7 3.67 103.90 43.91

D&A 20 1.24 0.t7 0.26 1.32 0.15 0.26

c&w 100 1.50 0.97 0.09 1.58 1.02 0.05

The posterior variance estimates also show stark contrast to the estimated

asymptotic variance of the mle in Table 3.2. The forms for the estimated asymptotic

variance of the mle were taken from Cohen and Whitten (1982). For the two smaller

samples (E&L and D&A) negative posterior variance estimates are observed. As

discussed previously, this phenomenon is common when n is small, due to the estimation

process being composed of two separate estimates subtracted from one another. Even

though the D&A sample produces a posterior variance for c of 0.002, it is undoubtedty

underestimated and not to be given much credence. The C&W sample demonstrates that

for moderate sample sizes, the negative estimates disappear and results are comparable

to the mle- The posterior variance values are less than the estimated asymptotic

variances of the mle's, a result found algebraically by sinha (19gÐ.

Source n c mle b mle ¡r mle c b' tt

E&L 10 1.45 674.45 343.44 neg neg neg

D&A 20 0.13 0.0016 0.0001 0.002 neg neg

c&w 100 0.02 0.006 0.0006 0.01 0.004 0.0005
I tteg : negatrve variance

Estimation results for the reliability fi¡nction a¡e given for the Englehardt and l-ee
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(F*L) sample in Table 3.3. Inspection of the table reveals that the problems seen in

estimating the parameters seemingly disappear in estimating R(t). The outcome is quiæ

surprising considering how poorly the Bayes parameter estimates were in relation to the

mle's. The estimated R(t) functions are given in relation to the true value in Figure 3.1

for a more parsimonious display. The Bayes approximation is clearly closer to the true

R(t) function throughout most of the range than !o the mle. The mle function seems to

better parallel the R(t) function however. From Table 3.3, it can be seen that the

problem with negativevariance estimates is absent for this very small sample (n:10).

The posterio¡ variance is consistently smaller than the estimated asymptotic variance.

Table 3.3: R(tl Estimates For Englehardt & r-ee (1979) sample(n:10)

t True R(t) MLE R(t) R'(r) Estd V(^) Posterior V(*)

100 0.9726 0.9130 0.8247 0.00439 0.00341

110 0.8948 0.7871 0.76& 0.01516 0.0t473

120 0.7788 0.6415 0.7024 0.025t4 0.02143

130 0.&12 0.4968 0.6037 0.02511 0.01368

140 0.4994 0.3669 0.4749 0.01894 0.w727

150 0.3679 0.2590 0.339s 0.01303 0.00654

160 0.25& 0.1751 0.22t4 0.00953 0.00739

170 0.1690 0.1136 0.1336 0.00745 0.0070s

180 0.1054 0.0708 0.0775 0.00564 0.00560

190 0.0622 0.0424 0.0465 0.00385 0.00383

200 0.0347 0.0245 0.0313 0.00231 0.00226
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3.1.5 Monte Carlo Simulation

To explore more fully the effect of sample sizæ, a series of samples were

generated from a three-parameter V/eibull process. An interesting side issue arose in this

sample generation process.

Mathematit"lly, the well known inverse transformation approach proceeds as

follows

1) I-et ur be a point generated from a uniform [0,1] distribution

2) Transform q to obtain x¡ = bl-1og(1-u;) ]r,"*lt

The resultant xr will follow a three-parameter Weibull distribution as required. In beta-

testing the samples generated from the above algorithm, it became apparent via empirical

goodness of fit testing that a larger proportion of samples we¡e failing to fit the model

than would otherwise have been expected. In graphing some of the generated

distributions, it was found that an ino¡dinate number of large-valued observations were

being generated, causing the distribution to have either an extension or a ,'bump" in the

upper tail. Upon closer inspection it became clear that numerical problems associated

with the use of the logarithmic fi,lnction were the cause. If the q generated were small,

raising the logarithm of this value to the prescribed power resulted in a loss of accuracy

so that several different u,'s would produce the same 4 value. As an alternative, the

following algorithm was used

1) I-et gt be a point generated from an Exponential distribution with mean one.

2) Transform to obtaiû xd = b(g,lr,"*lt.

This algorithm performed much better than the previous one, with no evidence of

'bumps" in the resultant empirical distribution.
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There are no added complications for generating observations from an exlnnential

distribution as opposed to a uniform variate, since there are numerous accurate and

efficient algorithms available. The IMSL (1975) routines GGUBS and GGEXp were

used for the uniform and ex¡rcnential variates respectively. All simulations tvere

produced via the PL/I language on an Amdahl 470 mainframe.

Parameter settings of (c,b,¡r):(3.0, 100.0, 30.0) were used so that the lack of

regularity of the environment would not influence estimation results. Sample size was

varied from n:10 to n:400 with results contained in Table 3.4. The method of moment

estimators, used to initiate the search routine for the mle's are also given for comparison.

Table 3.4: Estimation Results Based On Varying Sample Sizes

\ü/ith Pa¡ameters (c,b.¡¿l : (3. 100,30)

Parameter mle Lindley Moment MLE Var Post Var

n:10

c 2.44 4.73 2.98 2.67 neg

b 44.69 85.78 53.52 5&.s neg

p 69.42 31.36 61.29 423.0 neg

n:20

c r.66 2.14 1.87 1.25 0.02

b 45.68 58.53 50.26 406.7 neg

p 76.91 66.89 73.25 363.1 neg

n:40

c 3.02 3.73 2.77 0.58 0.06

b 90.09 111.78 83.47 331.2 neg

p 40.03 20.00 46.54 265.8 neg
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n:100

c 3.26 3.72 3.56 0.53 32.t
b 99.16 112.77 t71.29 348.0 163.2

p 30.44 17.42 -34.96 240.7 131.5

n:200

c 2.96 3.13 1.55 0.16 0.13

b 91.48 96.75 1.00 100.s 72.73

p 36.59 3r.6t 633.22 82.09 57.49

n:300

c 2.99 3.12 3.28 0.16 0.10

b 92.53 96.75 101.90 77.t9 62.46

p 34.74 31.61 2s.9s 63.79 50.66

n:400

c 2.78 2.87 3.09 0.07 0.06

b 93.43 96.23 103.15 47.70 39.90

It 37.5t 34.90 28.41 37.68 30.87

The impact of sample size is clearly illustrated as the Bayes estimates go from

wildly different values in comparison with the mle's to practically identical values.

Interestingly enough, however, the convergence seen between the Bayes and mle

approaches in the two-parameter distributions earlier in this chapter was much more rapid

than is the case for the three-parameter Weibull distribution. By n:100 for the two-

parameter case, the competing estimates were identical to significant digits. Here in

Table 3.5, even at n:400 there are observable differences in the estimates. This is due

likely to the mo¡e difficult estimation environment produced by the introduction of a

threshold parameter.
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The Bayes estimators of c and b a¡e consistently larger than the corresponding

mle. There is no clear winner between the two approaches, although both are clearly

superior to the method of moments estimators. The smaller samples naturally evidence

the greatest fluctuation. In agreement with ttre literature, it is apparent that if the shape

parameter is not adequaæly estimated, the other two parameters are poorly estimated.

The n:10 sample size results show marked differences between the Bayes and mle c

estimates, producing quiæ different results for the other two parameters. Stability with

the Bayes estimato¡s does not seem to arrive until the n:200 sample, whereas the mle

results look decent at the n:100 size.

The negative posterior va¡iance estimates for the examples from the previous

section reappeår. Not until the sample size reaches n:200 do the posterior variance

results look believable from a practical standpoint. In other simulations the author has

observed negative posterior variance estimates for samples as large as 200 observations.

For the larger samples, however, the Bayes approximations do demonstrate lower

variance than the asymptotic estimates of the mle.

To further investigate the surprising results of reliability estimation in the previous

section, the process was repeated for the simulation series. Running the sample size

from n:40 to n:400 produced a monotone effect as n increased. As intermediate

results along a continuum, ttre figures for each sampte size will not be given.

Representative information can be gleaned from inspection of the n=40 sample results

given in Table 3.5 and the n=400 sample size in Table 3.6. Graphical displays of the

estimated functions in relation to the true R(t) function are given in Figures 3.2 and 3.3

respectively.
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t True R(t) MLE R(r) R'(r) Estd V(^) Posærior V(*)

50 0.9920 0.9988 0.9920 0.00001 neg

60 0.9734 0.9899 0.97& 0.00012 neg

70 0.9380 0.965s 0.9469 0.00040 0.00006

80 0.8825 0.9192 0.8998 0.00098 0.00060

90 0.8057 0.8470 0.8323 0.00197 0.00175

100 0.7w6 0.7492 0.7437 0.00319 0.00316

110 0.5993 0.6309 0.6361 0.00418 0.00415

120 0.4824 0.5015 0.5151 0.00446 0.00427

130 0.3679 0.3731 0.3907 0.00402 0.00371

140 0.2&2 0.2577 0.2744 0.00317 0.00289

150 0.t776 0.1638 0.1767 0.00224 0.00207

160 0.1111 0.0950 0.1038 0.00139 0.00132

t70 0.0643 0.0499 0.0555 0.00073 0.00070

180 0.0342 0.023s 0.0273 0.00031 0.00030

190 0.0166 0.0098 0.0126 0.00010 0.00009

200 0.0074 0.0036 0.0055 0.00003 0.00002

Convergence of results between the competing estimation procedures is much

more rapid for estimating R(t) than it was for the systemic parameters. The n:40

results show the two methods equally advantageous, depending upon the value of t. The

n:40 case seems to suggest that the mle does a better job in the middle range of t while

the Bayes approach exhibits less bias in the tails. By the time n reaches 400, there is

little to choose between the two methods as the estimated functions almost coincide with

the true R(t),
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The Bayes procedure still evidences negative variance estimates in Table 3.5. As

might be expected, they tend to appear in the tails of the R(t) function when the true

value is close to zÊro or one. The larger sample size results of Table 3.6 reinforce the

idea of the Bayes estimator having smaller variance.

Table 3.6: Reliability Estimates For The n=400 Generated sample

t True R(t) MLE R(r) R'(Ð Estd V(^) Posterior V(*)

50 0.9920 0.9963 0.9950 0.0000r 0.00001

60 0.9734 0.9812 0.9792 0.00003 0.00003

70 0.9380 0.948s 0.9462 0.00007 0.00006

80 0.8825 0.8944 0.8925 0.00013 0.00013

90 0.80s7 0.8180 0.8169 0.00024 0.00024

100 0.7096 0.7215 0.7215 0.00036 0.00036

110 0.5993 0.610s 0.6tr7 0.00045 0.00045

t20 0.4824 0.4931 0.4951 0.00047 0.00046

130 0.3679 0.3782 0.3805 0.00042 0.00041

r40 0.2&2 o.2742 0.2t62 0.00033 0.00033

150 0.1776 0.1870 0.1885 0.00025 0.0002s

160 0.11r1 0.1194 0.1203 0.00017 0.00017

170 0.0643 0.0711 0.0716 0.00011 0.00011

180 0.0342 0.3926 0.0395 0.00006 0.00006

190 0.0166 0.0200 0.0202 0.00003 0.00003

200 0.0074 0.0094 0.0096 0.00001 0.00001
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3.2 Gamma Distribution

In this section, Bayes estimators of the parameters and ¡eliability function for the

three-parameter gamma distribution are derived and compared with those of the

maximum likelihood approach. Methods due to Lindley (1980) and Weiss (l9gg) are

presented. Separate results for the Tierney-Kadane approach are omitted because, as has

been seen earlier with other distributions, the two Bayes approximation methods produce

almost indistinguishable results. Some difficulties encountered due to the inherent

problem of working with the origin unknown are encountered which are similar ûo those

seen with the three-parameter \ileibull distribution

The gamma distribution, also referred to as a Pea¡son's Type III distribution, can

take on a wide diversity of shapes ranging from a near-normal to an extraordinarily

positively skewed distribution. It is seen mo¡e commonly in its trvo-parameter form, due

largely to the mathematical complications that arise with the addition of a threshold

parameter. The generalizatton to three parameters was fust proposed by Stacy and

Mihram (1965). Johnson and Kotz (1980) give an extensive list of references which can

be supplemented by a definitive text on estimation with the gamma distribution by

Bowman and Shenton (1988). In life testing situations, the three-parameter gamma

distribution is used gpically when the exponentiality of a process is in doubt or as a

substitute for the three-parameter lognormal distribution.

A particular member of the three parameter gamma family is specified by the

triad of (a,ß,c) where a is ttre shape parameter, 0 is the scale parameter and c is the

threshold or origin. The concept of a threshold parameter has direct application in

reliability thæry as it tpically refers to a ninimum lifetime past which a component is
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guaranteed to survive. The density function is given by

r (xl a, F, c) = 

"fhp[ 
x-c]'-'ex"t-#1 (3.1)

where a,ß)0 and x)c.

If a = 1, the resultant distribution is exponential and for positive values of a ttre

distribution is often referred to as the Erlang. As cu is inc¡eased the relative normality

of the distribution is augmented. I:rger values of a also ænd to make the task of

parameter estimation more tenable.

In this section the relative merit of the maximum likelihood approach is compared

with that of the Bayesian paradigm. Both the systemic parameters and reliability function

are studied. Single sample estimation results are presented and a Monte Carlo simulation

study is undertaken.

3.2. 1 Estimation Problems

No text dealing with the three-parameter gamma distribution can avoid mentioning

the myriad of problems that arise in attempting to estimate the three systemic parameters.

The problems are of such a nature as to be a likely cause of the relative lack of attention

given to the three-parameter case in favour of the more convenient two parameter case.

The addition of the threshold parameter, while intuitively appealing fo¡ a wide variety

of applications, complicates any estimation process considered, involving polygama and

incomplete gamma functions which do not lend themselves readily to closed form

algebraic solutions.

Bain (1978) mentions that the Ínximum likelihood estirnation(IvLE) alrproach
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produces 'probably the best estimates availablen, but concedes that the method is

particularly difficult to implement for the three-parameter g¿rmma distribution. Johnson

and Kotz (1980) suggest that the mle's only be used for a)2.5 as the mle approach

becomes impractical otherwise due to frequentty unobtainable solutions. If a(1, the

likelihood tends towards -æ as ê*x-a and the estimators fail to exist.

Smith (1985) shows that for this and other disrributions of a simila¡ form (notably

the three-parameter Weibull distribution) if the shape parameter (here a) is greater than

two, the maximum likelihood estimators have the same properties as the regular cases

(i.e- efficient and asymptotically normal). For shape parameters less than two the

situation degenerates into a case-by-case inspection, but in general does not have the

desirable properties.

Moment estimators that perform reasonably well in the two-parameter case are

subject to extreme variability when the threshold parameter is added. This is due to the

required ttrird component in the system of equations that produces moment estimators

involving the third moment. Both the third and fourth moments of the distribution are

unstable (Cohen and Whitten, 1988). Although sometimes usable as starting points in

iterative searching for the mle, the moment estimators have little practical value.

Most notable in the development of estimation procedures for the three-parameter

gamma distribution are the works of Ha¡ter and Moore (1965, Lg67) which was

expanded in the collecæd works of Harter (1969). Moment, mle and modified moment

estimators complete with algorithmic instructions can be found from these sources.

Cohen and Whitten (1988) apply such modified methods of both the moment and

mærimum likelihood approaches by replacing one of the sysûemic equations with a
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simpler form. The modifred maximum likelihood estimators of Cohen and Whitten

(1988) have been seen to be quite usable when a12, which circumvents the problems

with the mle's. Kappenman (1985) substituæd an equation involving convenient

percentile relations to produce estimators that always exist and seem to compare

favourably with the mle's.

3.2.2 Maximum Likelihood Estimation

In this section the maximum likelihood approach is explored and an extension of

the method by Cohen and Whitten (1988) for finding the mle's is proposed. This does

not address the problem that the mle's do fail to exist fo¡ some samples, but ensures that

if they do exist, they are obtainable.

The log-likelihood function corres¡ronding to the three-parameter gamma pdf (3.5)

is

L(a,ß,clx) = -nlogtr(a) l-natogp+(c-1)å t"n G¿-c) Ð #
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and the system of fust partial derivatives which must be solved to obtain the maximum

likelihood estimators is

,, = H = -nú(al * ¡rontït]

= + (x¡-c)
/-t tt2
i=l P

= ä - (c-1)Ðrub

-ôzur= W

- ð1,
l¡a=-"dc

nd,_T (3.2',)

where /(o) is the digamma function, defined as

ú(e) - ôtlogl(a)l = T,ÍT,

The above system of equations (3.2) does not produce closed form algebraic

solutions. Several authors have suggested graphical techniques be used to find initial

values to feed into an iterative root-finding algorithm. Such an approach is practical only

if a single sample is being considered as it demands a further referral to a graph for each

sample.

Analogous to procedures used for the three-parameter lognormal distribution, a

reasonable approach is to obtain a feasible estimate for the threshold parameter c and

continue in a cyclic fashion to estimate the other two parameters (Stacy and Mihram,

1965). Cohen and Whitten (1988) give such an algorithm for producing mle's while

Bowman and Shenton (1988) compare the relative merits of five competing algorithms.

AII methods eliminate one parameter at a time typically estimating the threshold

paxameter c fust and then solving for tlre other two paraÍieters directly from one of the
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partial derivative equations of (3.2).

An irritating aspect of these algorithms is the requirement of a starting point

estimate for the threshold parameter. As one needs to be very close to the final value

for the mle of c, it puts up another barrier to finding the mle's. The primary difficulty

lies in finding a reasonable first estimate for c because such an estimate typicatly involves

the third sample moment. As mentioned above, the third and fourth sample moments are

quite unstable, especially for small samples, and hence have a üendency to produce

extreme initial estimates for the threshold parameter.

The method proposed is a minor extension of the method proposed by Cohen and

Whitten (1988). Their method in brief is to:

1) find a reasonable fust estimate of c, say c,

2) Calculate ø, by substituting c, into

"' = 

L'-

lt

(x-c,) E (x,-c,) -t
i=1 ]'

3) Calculate p, by substituting (a,,c,) into ß, = Y-Qi

4) Substitute (ar,pr,c) into the L, equation of (3.2) above.

5) Iterate via linear interpolation to solve Lr:0.

This method merely negates the need for an initial estimate of c, which is a potential

stumbling block. This is accomplished by examining the L, function over the enti¡e

range 0<c<¡.r and using adaptive linear interpolation to find the point of solution.

The other values are then substituted into the above formulae.
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This method accomplishes two things. First, it allows for the investigation into

whether or not a solution for a given sample is available. Bowman and Shenton (1988)

provide a table of simulation results showing that as many as 50Vo of simulated samples

will fail to produce a solution ûo the maximum likelihood equations (i.2), depending

upon sample size and paramehic settings. Second, it guards against the possibility that

a malformed likelihood f,¡nction will produce a local ma¡rimum instead of the correct

mle.

Cohen and Whitten (1988) discuss how the L, function may not have a zero value

over the range O<ccx.t". In such cases the mle faits to exist. They do mention

however that there may well be more than one zero point, or a very flat surface that

could point to erroneous values for c due to a poor starting value.

Figure 3.4 provides L, functions that are representative of the type of cases

possible. The horizontal axis has been scated as a percentage of each sample's minimum

value so that comparisons across samples is possible. Types one and three are examples

of small samples that provide a solution to I4:0 and hence produce mle's. Note that

although the type one case L, function is well-behaved and should provide no problems

for any numerical sea¡ch routine, the type th¡ee case would cause many routines to head

towards c=0 and not produce a solution unless the starting value used was close enough

to x* so that L, is positive.

The type two case function illustrates the situation where no solution to I" exists.

Here the Lt function remains above zero. The type four curve, the large sample case,

is monotone inc¡easing and provides an easily found solution.
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True asymptotic variances and covariances for the mle's are given in pa¡r and

V/ebster (1965). The second partial derivatives, needed for producing the sample

information mahix are

- ô22Ltt= iî = -nt'@)
de"

,$ (x¡-c)
frß3

= -(c-1)ådã,

7 - ô2t'utz - Te-fF

Li,=#=-åt¿']

Í-ð2nLr23 - TEæ

where Ú'(a) is the trigamma function. Several authors have noted that the sample

information matrix is very unstable, especially for small sample sizes. Since Lindley's

method relies heavily on this information, it could cause the approach to be more

variable than desired.

- ô22
JJ^^ = 

-

¿¿ 
aß2

Í - ô2t'
J-t.. - 

-

JJ 
ôc2

=DQ-p'

= -D
B

= -tr
ß2

3.2. 3 Lindle],'s Approximation

As this is the fourth distribution for which Lindley's method is applied in this

dissertation, the more technical aspects ìilill be described in b¡ief. For a more complete
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discussion of the mechanics of the approximation the reader is referred to ea¡lier

sections.

feffreys' invariant prior approach is employed, analogous to that seen for the

three-parameter rweibull, to produce the joint prior distribution

n(e,9,c)

Hence the log-prior fi¡nction is p(ø,p,c) = -lo9|, with partial derivatives

An attempt was made to produce simplified algebra for the Lindley equation as was seen

in the section on the three-parameter'Weibull. Unfortunately the formulae involved for

the three-parameter gamma distribution do not lend themselves well to such a solution.

Although a final form was achieved, it was longer than the original approximation

formula and as such impractical. Work was also done on the T-K approximation, with

the algebra even more intractable. Once again the computer must be used to produce

estimates on a case by case basis.
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The L* terms necessa¡y for the Lindley expansion are

- ô32Ltl-=#=-nú'(a)

r - ð'¿ - .å (xi-c) 2naUnú - 

- 

- Ot&AP'HTT

-ô3zDLsgs = # = -z(a-L)Ð.'ã-:

Ì _ ð32 _nU.^^ - ôaôpz p'

r_ô322nu2zs- aßn"-E

r-ô3¡,_å1u'^^ - ôaôcz ã (x,-c)z

where Ú"(u) is the tetragamma function. All other L* terms are zÊÍo. Specifrcally,

these are Luz, Lrn, brr, Lrrs and their permuted subscripts.

The final piece to Lindley's approximation a¡e the u, and uu functions. For

estimating the systemic parameters three sets of u functions are needed, namely

u(a,p,c) : d, ß and c respectively. In doing so one may notice that for any one of

these functions all of the second partial derivatives (U¡ functions) will be zero. Further,

the u¡ functions will be zero for all values of i except where the index matches the

parameter to be estimated, in which case the q function equals one.

In implementing the approximation techniques, one of the hurdles to surmount

was the evaluation of the di-, fü- and ætragamma fi¡nctions. After researching the



109

literature of the time, it was found that no standard algorithm existed for evaluation of

the polygamma ñrnctions. The IMSL set of routines does contain algorithms for the log-

gamma and the digamma functions, howeve¡ no algorithms are provided for the trigamma

or higher order functions (see Rice (1983). The genesis of such an algorithm had to be

undertaken before Lindþ's method could be implemented.

Abramowitz and Stegun (1965) present an asymptotic approximation to the

polygamma functions on page 260 of their reference as

ú(n) e) È ( -1) ,,-t

where Br is the iü Bernoulli number. Unfortunatety the approximation is not terribly

accurate if lzl ( r. To construct an all-encompassing algorithm, the recurrence relation

for the polygamma functions is used, namely,

ú(n) (z+I) = 1t1{n) (z) + ( -1) "n ! z-"-r

which can also be found in Abramowitz and Stegun. Testing of the algorithm ¡evealed

that using the first ten terms of the recurrence relation gave more than suffrcient accuracy

for most practical applications. To ensure a degree of accuracy that would be usable

under virtually any conditions, the final algorithm uses the first fifteen terms.

The POLYGAMA algorithm was then tested extensively for various values of z.

The algorithm successfully duplicated, to the displayed number of significant digits,

Tables 6.1 through 6.5 in Abramowitz and Stegun. rilhile preparing a paper concerning

this algorithm, the author discovered that Balakrishnan, working on an entirely different

problem, had arrived at the same result (personal communication, March 19g6) and

. #.t"-f:;í'l:):l
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submitted a paper for publication. Mo¡e recently Cohen and whitten (19gg) present the

same algorithm in thei¡ text.

The reliability ñrnction R(t) for the three-parameter gamma dishibution is

R(t) = Pr(r>t) = 
,J ,,åTu(#f-'"*r[- 

(*-") 
]o* 

.

Maximum likelihood estimation of R(t) is straightforward using the principle of

invariance and merely substituting the mle's of the systemic parameters into the reliability

function.

Bayes estimation is once again more complicated due to mathematical

intractability. An approximation may be used as before as well as the possibility of a

nontraditional approach proposed by Weiss (1988) which states that although the Bayes

estimators may not be invariant, substituting the Bayes estimators analogous to the mle

does produce estimators that are Bayesian in nature. This approach has been criticized

as being 'quasi-Bayesian" and is somewhat controve¡sial. As stated at the outset of the

dissertation, however, the goal here is to explore different roads toward the same

destination, not to question the quality of the asphalt.

Setting y : (x-c)/p, R(r) becomes

R(f)
frrr"-texp ( -y) dy, a>l .=rf

v
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In implementing Lindley's method, for convenience the u(f) function is written as follows

+
u(a,g,c) = f _b"o-'exp(-ytdy

so that Lindley's approximation to the Bayes estimator will be R.(t):l-u(ø,p,c).

To construct the appropriate q and ur, functions, the following relation from

Protter and Morrey (1966) is used whereby if

then

r+{¿)

r = 
Jr 

g,t) dt

!É = t(x,Ð# - r(x,q# - [rtfrt, o,

Now set I=u(a,p,c) to construct the u¡ functions

ôu 1+u, = #. = fä f, 
r'-'"*n ( -y) tog (y) dy - ú (a) u

Note that the part of u, that is an integral is the incomplete digamma function.

",=4ä--".h(#)""""(#)

u,= # =(&¡",



112

and the u¡¡ functions

ü, = # = -zú(a)u, - (fú@) 12 + rþt @))u

+
+ 

{ -att-lexp (-Ð lhos(yl )2dy .

Note that the inægral part of u' is the incomplete trigamma function.

ur2= #= #t+ -" -']

u33=#=tr¡, +]
ú,2=ffi=",8"n(#) -ør"l]

u'¡3= #=(+¡""

u23 = rih = &. (&)""

3.2.4 Examples

Application data fo¡ the three-parameter gamma distribution is absent in the

literature- Harter (1969), Kappenman (19s5) and cohen and whitten (lggg) all have

exemplary samples in their presentations, but they are alt the result of computer

simulation. Harter's so-called G3 sample was used for comparison of the Bayes

approximation with üre previousty published ¡esults.
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Generated from I(3,50,20), the sample of size 40 does pass the Ande¡son-Darling

(1954) empirical frequency dishibution(edÐ goodness of fit test, but is a typically

problematic sample from a parameter estimation vieupoint in that there is a seeming

outlier as the smallest sample value. This problem is a result of the skewed nature of

the ditribution and causes diffrculty in estimating the threshold parameter in that the L,

function will be of case type two from Figure 3.4. Harter proposes to set ê:0 under

such circumstances. The mle and Lindley estimates of the parameters are presented in

Table 3.7 below.

Clearly the Bayes estimates are unacceptable. The information given by the

Bayes estimates suggest a totally different parametric environment f¡om that of the mle

results. Variance approximations for the Lindley estimators were also negative for ø and

c, similar to what was seen for the three-parameter weibull.

Reliability estimation proceeds remarkably well despite the above results for the

systemic parameters, analogous to the three-parameter Weibull. Figure 3.5 indicates that

over a large range of the sample space, Lindley's approximation is as close to the true

value as the mle- All approaches overestimate the true reliability for the given sample,

with Weiss' estimate being highest. At nopoint do the mle and Lindley esti¡nates differ

by more than l.SVo.
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The above sample was put forward as a "problem sample" to demonstrate the

difflrculties in estimation with the three-parameter gamma distribution. Acknowledging

such difficulties exist, the goal here is ûo demonstrate that for "non problem' samples the

Bayes approximation is a usable approach. As such the simulations presented in the

following discussion use a large shape parameter value of a:6.0 in the hopes that the

regularity of the environment will allow for a clearer and fairer comparison of the

competing estimation procedures. It is a given premise that "non problem" samples may

exist for the three-parameter gamma distribution under very specific parametric

circumstances.

sample generation was accomplished by the IMSL routine GGAMR which

produces one-parameter gamma variates and then transforms them into three-parameter

gamma va¡iates. The following sample of fifty observations was drawn from

I(a,p,c):(6,50,20)

118.25 150.19 1s5.92 161.80 163.09 170.74 174.86

180.34 187.24 190.16 193.88 202.45 2U.33 217.63

220.39 220.97 221.79 230.43 237.58 2û.6r u2.M

256.69 274.M 280.60 288.24 2go.4t 296.39 303.57

307.57 314.68 327.70 328.28 338.63 339.32 y7.27

369.4t 378.M 378.68 402.65 422.58 445.U3 446.A7

467.23 470.51 476.74 477.06 501.78 553.49 558.70

647.t2

The sample proved to give a good fit to the prescribed model using the Anderson-Darling

(1954) and Cramer-von Mises @'Agostinoand Stevens (1986) edf statistics. Estimation
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results are given in Table 3.8.

Even for this "non problemn sample marked differences exist between the mle and

approximate Bayes estimators, but note that neither approach lools particularly

preferable. The variance estimates for the Bayes approximations are once again negative

for a and c and as such are useless.

Figure 3.6 reveals that the reliability estimates are once again reasonable despite

what was seen for the systemic parameters. All estimation approaches here

underestimate the true reliability for most of the sample range, with the Weiss estimator

consistent in its underestimation. The mle and Bayes methods compete across the range

much the same way as was seen for the three-parameter Weibull. The Weiss estimator

is clearly the weakest of the three approaches, but may be practical as an extremist

benchmark in applications.

The effect of sample size is more pronounced for the three-parameter gamma than

for other distributions seen to this point. This is due mainly to the poor information a

small sample gives about the threshold parameter. Once this parameter is missed, results

for the other two parameters a¡e of dubious merit as seen in the above examples. To

give a more detailed picture a series run for the above generated sample was undertaken

to see how long it would take before the estimates stabilized. Results are given in Table

101.17
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3.9 for sample size ranging as large as n=2000.

Parameter Estimates

Negative threshold estimates persist for the method of moments estimator up to

n:1000. Differences between the Lindley and mle results remain even for n as large

as 2000, which is different from what has been seen previously in using Bayes

approximations for other distributions. Clearly the three-parameter gamma distribution

is unique in its degree of estimation diffrculty. Reliability estimates (not shown for

single sample) converge more readily to their true values, reinforcing the previous

conclusions drawn from the generated sample.

Negative values for the posûerior va¡iances of the parameters are a problem

encountered in applying Bayes approximations, especially for small sample sizes. As

was seen earlier, by increasing the sample size above n:200 these estimates also

stabilize. As can be seen in Table 3.10, however, the negative estimates remain at

n:200 and are clearly underestimated for n:500. It is not until 1000 observations a¡e

taken that the Bayes posterior variance estimates cornpare reasonabty withûreasymptotic

variances of the maximum likelihood estimators.

ALPHAISHAPE) BETA(SCALE) err{-RESHOIÐ)
N MME MLE BAY MME MLE BAY MME MLE BAY
50 8.18 2.55 4.W 43.r3 80.85 57.96 -45.47 101.2 58.40

100 10.8 3.12 4.76 37.69 73.49 56.10 -91.89 84.95 40.77

200 7.62 3.45 4.36 46.52 71.36 63.06 -28.70 79.82 55.t4
500 8.66 5.39 6.30 41.27 53.09 49.51 -37.13 34.05 14.30

1000 7.05 6.04 6.54 45.52 49.50 47.87 -0.63 2t.38 11.05

2000 6.72 s.93 6.t6 46.81 50.07 49.30 8.55 26.30 21.51
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Table 3.10: AsymÞtotic Versus Estimated posterior Variance

cY(SHAPEI ß(SCALE) c(fr{RESHoLD)

N MLE BAY MLE BAY MLE BAY

50 15.18 neg. 402.94 53.74 6&7.07 neg.

100 7.56 neg. 201.47 ffi.r4 3323.53 neg.

2A0 3.78 neg. 100.74 tM.37 166t.77 neg.

500 1.51 0.02 40.29 44.70 6&.71 382.28

1000 0.76 0.74 20.15 21.98 332.3s 333.70

2000 0.38 0.38 10.07 10.08 161.18 161.19

It is important to keep in mind that the discrepancy between the mle and Bayes

approaches should not be interpreted as being due to a lack of accuracy in the

approximation methodology. Rather, it is indicative that under a noninformative a priori

state the Bayes estimator of the systemic parameters does not perform as well as the mle

for the three-parameter gamma distribution. Improving prior knowledge may bring the

Bayes estimators' performance into line.

3.2.5 Monte Carlo Simulation

To more fully investigate the distributional properties of the Bayes approximation,

1000 samples of size n= 100 were run with parameter settings f(4,20,50). As discussed

in previous sections, because the maximum likelihood estimators fail to exist for some

samples, screening rules had to be incorporated into the simulation n¡n. A sample was

rejected if:

1) the sample skewness was negative {Bowman and shenton, rggg)
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2) the L, function was ill-behaved (case tlpe two from Figure 3.4)

3) the Bayes estimator for c was negative

Bowman and Shenton note that for small n and/or large a the rejection rate for generated

samples is high. They consider any n < 100 to be small. As such the simulations were

run with n:100 to investigate the Bayes estimators' relative merit.

A total of ll47 samples had to be generated to produce 1000 usable samples. Of

the L47 rejected samples 120 were due to negative Bayes estimators while the remaining

20had malformed L, functions. The negative Bayes estimators often coincided with low

p-values for the Anderson-Darling goodness of fit test, so it is uncertain whether or not

sampling is the true problem in these cases. These phenomena are similar to previously

published results, although other authors did not specify the criteria for sample rejection.

From a practical perspective, if faced with a sample that failed the above criteria,

the ¡esearcher has a dilemna. Even if only the reliability function is of interest, the

Bayes approximate estimator is unobtainable because it is based on the mle of R(t).

Given that the other closely related distributions seen ea¡lier in this chapter do provide

estimators more readily, it may be advisable to use the lognormal or Weibull distribution

as a substitute for the gamma. Such a switch would have to be predicated on a sound

theoretical base from the liærature that dealt with the particular application under study.

Naive switching between theoretical models is not recommended in general.

Results are given in two sections. First, Table 3.11 compares the parametric

estimators via the maximum likelihood(MLE) and Lindley approaches. The method of

moments estimator(MME) is also given as it is a useful reference point. Second, Table

3.12 presents reliability estimation results for the mte, Lindley and Weiss estirnaÍors.
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In terms of parameüer estimates, it is not surprising that the method of moments

estimator approach is ttre worst of the three. It is surprising however that the mle results

are clearly superior to Lindley's, both in terms of deviation from the true value and mean

square elror. Lindley's is especially poor in estimating the shape and threshold

parameters.

MME MLE LINDLEY
PARAMETER MEAN MSE MEAN MSE MEAN MSE

d, s.69 L7.W 3.62 1.36 5.s0 7.33

I 19.46 50.09 22.20 28.30 17.88 28.46

c 39.82 765.08 54.39 96.29 40.17 338.07

MLE LINDLEY WEISS

TIME TRUE MEAN MSE MEAN MSE MEAN MSE

75 .9617 .9657 .00024 .9572 .00022 .9542 .00056

100 .7576 .7527 .0014 .7637 .00t2 .7498 .0023

L2s .4838 .4771 .0018 .4926 .0020 .4745 .0034

150 .26s0 .2628 .0013 .2681 .0014 .2544 .w26
175 .1303 .1319 .0007 .1294 .0008 .1215 .0013

200 .0s91 .0623 .0003 .0578 .0003 .0537 .0005

225 .0253 .0283 .0001 .0247 .0001 .0226 .0001

2s0 .0103 .0126 .00004 .0104 .00003 .0093 .00004

275 .0041 .0055 .00001 .0044 .00001 .0037 .00001

300 .0016 .4024 .00000s .0019 .000003 .0015 .000002
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Entirely different findings are evident for the reliability estimation. Here once

again the Bayes and mle approach compete across the range space, with neither clearly

superior. The Bayes method seems slightly better when estimating in the upper tail of

the sample space in terms of bias. Mean square errors are virtually equal. The Weiss

estimator is consistently smaller than both the true reliability and the other estimators.

Reliability results for the mean of the sampling distributions at each time point

are given in Figure 3.7. Again the Bayes estimator and the mle compete well in terms

of estimating the true reliability. The V/eiss estimator reliability curve is uniformly

below the true reliability and the other two estimators.

The threshold parameter's mle and Lindley estimators' sampling distributions are

depicted in Figures 3.8 and 3.9. Although similar in shape, the distribution of the

approximation to the Bayes estimator is clearly more variable. F¡om these pictures one

can see that it is a general, consistent failure of the Bayes estimator in that the adjustment

it makes to the mle is overly large. It is not merely a few cases that have a special

cha¡acteristic about them that causes the Bayes approximation to produce a markedly

different result from the mle.

Results fo¡ Bayes approximations applied to the three-parameter gamma

distribution differ somewhat from what was seen for the other distributions in this

chapter. Often in life-testing studies, models involving the three-parameter gamma,

Iognormal and V/eibull distributions will be used interchangeably because the parametric

settings can be arranged to mimic one another. Given the poor performance of the

approximation seen above, the Bayesian approach cannot be suggested as a viable option

for estimating the three systernic parameters. It can be useit successfully to estimate the
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Figure 3.7
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system reliability, where it compares favourably with the ma¡rimum likelihood approach.

Again it should be sEessed that the Bayes approach was examined under the worst

possible conditions by assuming a noninformative prior. As such it is possibte that

results would improve for situations where good prior information is available. It is
important to keep in mind, however, that such conditions were present in applying this

approximation to other life-testing distributions with much better results.

The problem seems inherent with the Bayes estimator itself as the T-K method,

of approximating the Bayes estimator encounters the same difficulties. Negative values

for systemic parameter and variance estimates have been observed in other situations.
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3. 3 Lognormal Distribution

In this section, Bayes estimators of the parameters and the reliability function for

the three-parameter lognormal distribution are derived and compared with the maximum

likelihood estimators. The Tierney-Kadane approach is used for the systemic parameter

estimates, while Lindley's approach is used to estimate R(t).

Separate results for Lindþ's approach applied to estimating the parameters of

the lognormal distribution d:(k,F,o) are omitted because, as has been seen earlier with

other distributions, the two Bayes approximation methods produce indistinguishable

findings. Furthermore, work was ¡ecently published by Lye, Sinha and Booy (l9gg)

using Lindley's approximation for flood data assumed to follow a three-parameter

lognormal distribution. Work with Lindley's approximation and the lognormal

distribution by the author predates the work of Lye et al. Their paper was published

after consultation with the author and the paper in fact refers to the author's prepublished

work with the three-parameter Weibull distribution. Lye et al cover the application of

Lindley's method sufficiently well so that any attempt to describe it here would be

superfluous.

In any event, the Lye et al paper does not address the Tierney-Kadane approach,

although as seen in previous sections, the results are basically equivalent except for very

small samples. Further, in this section the estimation of the reliability function is

undertaken

Papers dating back to 1879 include discussion of a distribution whose logarithm

is normally distributed. The f¡pical genesis of the distribution is attributed to life testing

environments rvhere *re degree of variability in the daa is related to the value observed
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(Cohen, 1951). A popular appl.ication of the distribution is incumbent upon regression

theory where an appropriate stabilizing or normalization transformation is to work with

the logarithms of the observed values. Other popular areas of application besides life

testing range from agriculture to economics. Extensive application lists are available

from the bools by Crow and Shimizu (1988), Aitchison and Brown (1957) and in

Chapær 14 of Johnson and Kotz (1970).

The three-parameter lognormal pdf is

f (xlk,þ,o') =

Jn o G-k'l

such that x)k, o)0 and -æ (¡r,( æ.

The distribution parameters are typically described in this way to indicate that x-k

is a variate whose logarithm is Nfu,ø) where p and o are the usual location and shape

parameters. In the lognormal pdf, however, ¡r is a scale parameter and o is a shape

parameter. I-arger values of produce a more spread out distribution. Very small values

of ø generate an almost exponential-like curve whereas as ø increases the distribution's

skewness becomes greater. For this section then our vector systemic parameter is

8:(k,F,o).

3.3. I Estimation Problems

There is a long history of difficulty recorded in the literature of solving the

system of likelihood equations to obtain the mle's of k, ¡r and ø. As with the previously

seen Weibull and gamma distributions, work with the lognormal distribution is

complicated when a third systernic parameter representing a threshold or rninimum time

""n[ ]æu*-n-u1)
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until failure is added to the mathematical envi¡onment. Much of the literature deals with

the simpler situations of having one or more of the parameters known a priori. The

remainder of the published materials dedicates itself to circumventing the intractabitity

difficulties due to the added threshold parameter. As was seen with the other three-

parameûer distributions earlier in this chapter, there is as yet no really satisfying

estimation procedure for the three-parameter lognormal that works in all cases for all

parametric values.

The primary difficulty once again lies in the fact that an absolute maximum for

the likelihood function may or may not exist fo¡ a given sample. Hill (1963) shows that

iterative solutions arrived at from some numeric¿t process are actually only local

maximums. As was seen for the three-parameter Weibull, there is a path which exists

for the mle of k to tend towa¡ds infinity white the likelihood function remains bounded

and roughly constant (Hill, 1963). It turns out that the true value that maximizes the

likelihood occurs at (.Ê , þ,6) = (xrrì, -æræ) . Clearly the true mle would be an absurd

estimator to use in practice.

The use of a local muimum as the mle has become standard practice and has

been shown to have most of the well known asymptotic properties of the mle (Harter and

Moore, 1966). From a Bayesian perspective, Hill (1963) notes that a local maximum

will suffice because the goal is to find a 'region of high posterior probability". The

Bayes approach would hence downplay the classic¿l true mærimum as an extreme and

therefore unlikely case in terms of posterior probability.

Hill also describes in some detail how the problem of finding even the local

ma¡rimurn ís complicated in small samples, especially if the threshold paftìmeter k is not
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estimated with care. In essence it occurs that the local mærimum is attained at a point

with a k value very close to the sample minimum xur. If the iterative procedure used

begins by underestimating k, the process will overshoot the interval of convergence and

send the estimate off towards the global maximum ât k:-æ.

This result sparked a flurry of activity for a method which would circumvent this

problem. Richards (1961) suggests a method whereu¡ron one fixes the value of one

parameter and then proceeds in a cyclical fashion to solve for the other parameters.

Unfortunately, the definition of what constitutes a 'suitable" estimate for the troublesome

threshold parameter is not obtained so that one is left with a hunt and peck approach for

any given sample. Harter and Moore (1966) discover that for some samples not even

a local maximum will exist for the likelihood function. In such situations, they suggest

the method of censoring the first order statistic and using its value as an upper bound for

the iterative process used to find the estimate for k.

Calitz (1973) makes some very useful contributions regarding the choices of initial

values for the iæration process. He suggests setting k:0 as an appropriate starting point

and bracketing the sea¡ch with k:max(O.6x¡¡¡, xrrr.l).

Giesbrecht and Kempthorne (1976) provide another alternative involving the

discretization of the sample. This allows for the approximation of the lognormal by the

multinomial distribution as an alternative form of the likelihood function. Unfortunately,

this method also suffers from the possibility that no set of maximizing values will be

obtainable.

Cohen and Whitten (1980) apply their modified moment and modified mle method

used for va¡ious.distributions. Again they substitute a simpler equation for one of thc
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partial derivatives of the log-likelihood fi,¡nction. In doing so, estimators will always

exist and have most of the desi¡able properties of the mle. Unfortunately, these

estimators may also be hard to find numerically. In general they found that if the

lognormal sample was symmetric or slightty negatively skewed, the numerical procedure

would fail to converge. The more positively skewed the sample, the more regular the

results became. Since the lognormal distribution is put into practical use mainly where

dataare extraordina¡ily positively skewed (Johnson and Kotz, L}TO), a sample which

evidences a lack of skewness or slight negativism of skew could be regarded as an

anomaly and would be better represented by a distribution other than the lognormal.

This a posteriori model decision-making process limits the scope of this procedure.

Amin (1981) give an excellent review of the difficulties encountered in

implementation of the mle process and discusses various means of attacking the

problems. He also suggests a method of surmounting the computational difficulties in

a modification of Cohen's (1951) technique. Unfortunately, his technique also runs into

the problem of needing a very good initial estimate for the threshold parameter k to avoid

heading off towa¡ds -æ.

To further demonstrate the basis of numerical problems encountered in

maximizing the likelihood frlnction, Figures 3.10,3.11 and 3.12 present the log-

likelihood surfaces in the area around the maximum likelihood estimates for the given

sample used in subsequent subsections. In all three figures the actual local maximum

(the mle) is located on or near the centre of the surface grid. The problem in searching

for the maximization point involving the dimension of k is immediaæly evident from

Figures 3.10 and 3.11. The drop towards negative inñnity as k increases begins very
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Figure 3.10
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Fieure 3.11
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Figure 3.12
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close to the minimum of the observed values. This illustrates the need for an initial

estimate of k to be very close to the fust order statistic and yet still on the appropriate

side of the log-likelihood surface for the iærative process ûo converge.

Figure 3.10 reveals that the seeming regularity of the surface along the ¡r æris is

complicated by the cliff-like face of the k axis and certainly is much flatter. Similar

results are seen in Figure 3.11, which portrays the interaction between k and o. The ¡r,

o gnd in Figure 3.12 illustrates a regular parabolic surface over which to maximize.

This indicates why without the involvement of the troublesome threshold parameter,

finding the mle for the lognormal distribution is a simple task. Graphical æchniques such

as these would suffice in many practical applications but would not be feasible as a

routine process for a large number of samples.

For obtaining the mle in this study, a combination of the Cohen (1951) and Calitz

(1973) method was used. The algorithm was constructed to check for the appropriateness

of the two techniques for each sample and then a choice was made based upon the shape

of the log{ikelihood function along the k axis. Once convergence was obtained for the

k parameter, the other parameters were found by simple substitution. The final result

was checked via the 3x3 grid method used for the three-parameter Weibull distribution

to ensure a local maximum had been obtained.

The mle search method is based on solving the equation À(k):0 such that

r(k) = Ð 
t"Xjl', *' .Ð t'= [*e Losz(x,-k, -*å ros(x,-rc)

*Þ'"'(''-.)]l '
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Calitz (1973) and Amin (1981) mention that searching this function may be diffrcult and

demonstrate ttrat the ñlnction is very steep in the neighbourhood of the solution. CaJitz

proposes that a Newton-Raphson approach could be used. This necessitates the

construction of the derivative of À(k)

)r'(k) Iog (x,-k) -1
@=E

i-1

.*å .*'æþ'"n (x¡-k)-å'"n (x¡-k) * Þ'"r,*--, ]l

Searching for a root along this functional surface is also somewhat tenuous however and

Newton-Raphson may not converge if the interval is not chosen appropriately. Figure

3.13 displays the form of the À'ft) function fo¡ the Cohen (1951) sample. One must

ensure that the search interval must be along the steep cliff near the sample minimum and

yet be on either side of zero. It was found that the smaller the sample the more steep

the cliff became. This would cause many search algorithms to miss the zero point.

Previous algorithmic suggestions involve taking a percentage of the sample

minimum for the search interval starting point. This is not ideal, however, because

depending upon the parametric settings, such a point could be either on the plateau or

cliff area of Figure 3.13, with a great deal of inconsistency across samples.

A new algorithm is proposed whereby the search is split into two parts. First,

the \'ft) function is searched to find the zero point by "creeping" along the plateau area

as seen in Fþure 3.13 unfil the cliff edge is reached so that N(k) becomes negative.
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This point and xu,-e a¡e then used as boundaries for a linea¡ search routine of the lambda

function. With epsilon and the size of the successive "creepingn steps chosen as being

very small, the search routine is guaranteed to find the solution. Numerically, the

routine is not optimal as it t¡pically takes 30 iærations for each of the two parts ûo

produce a solution. Unlike other algorithms in the literature, however, results are

universally obtainable.

3.3.2 Tierney-Kadane Aporoximation

Jeffreys' invariant prior approach is once again used to represent a prior lack of

knowledge about the parameters. Hill (1963) first investigated the use of this prior with

the lognormal distribution. Many authors have used Bayes methods for estimation of

lognormal distributions, but strictly for the two-parameter case. Padgett (1988) provides

an extensive list of references. Although he refers to the prior as "unrealistic", Hill finds

that the results seen with feffreys' prior yield "nearly the same posterior density,' as a

more informative model. Using this approach, assuming prior independence of the three

systemic parameters, the joint prior is

g(k,lt,o) * +

and the log-likelihood function is

L(k,p,ol¿l = -tkos(21T)-ntoso-å t"n(+-k) *Ð[tog (x,-k) -tt),

The T-K method requires the construction of one L. function and an L. function for each

parameter to be estimated. These modifred log-likelihood ñ¡nctions here are calculated
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to be

L, = -+ros( ,o) -ni' roso- lE los(xr-k, -#Ð[1os (x,-k) -tt],

and, for estimating the th¡ee systemic parameters, set u(f):Q in turn to produce three

L. equations where

L., *t"n (0,1*Lo

To produce the maximization points 0. and 0. for the L. and L. functions, the first partial

derivatives are necessar5¡. These are

ôro= 1S 1 -1åtog(x,-k)-¡rw nlíWlækT

# = #Ðrroe G,-k)-ttl

:* = -#.*å rlog (x,-k)-tt),

for Lo, and again for L. the relationship between the two functions can be used so that

the partials of L are easily found by

+t = +?,.;",l1roe1o'¡]

Unfortunately, like the mle system of equations, the Lo and L. fi¡nctions do not

produce closed forms for the maximization points 0o and 0. respectively. Numerical

routines as described in previous sections were used, with the mle's as a starting point

for iterative sea¡ches. Convergence is t¡pically obrained within 15 iterations.
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To produce the Eo and E' matrices, the second derivatives of L" and L. must be

construced and evaluated at the maximizing points 0. and d. respectively. These are

found to be

7 - 
ô'Lo

uoII - @

ð2n7-VLo22 - 

-
dp'

ô227_OLo33 - 

-
do'

ð2:,
LoI2 = -¿¡kW

=1S 1 ¿1ålog(x,-k)-p-1Aft 11ar7ryæk@

__1
o2

Lot3
ô'Lo- -õffi

= # *Ð rtog (x,-k) -ttt,

=- 1Ë 1ækæ

= _ 2 S tog(xr-k)-¡r
no3fí x¡-k

= -*Ðtrog (x,-k)-ttlð2t'
Lo2s = -ðr+"

The partials of L, follow directly via the relation

a2L..

Wr
Once obtained, the remaining

methods.

= 
ô'Lo J ð2 [1r^-ro.l-õr¡qþ r-ü-¡url+ros ( o') 

]

steps in the T-K algorithm are carried out by numerical

CaJLtz (1973) mentions that the value of the parameters should have little impact

on competing estimation methods' relative efficiency. To circumvent the difficulty of

positive-valued parameters without loss of generality, positive parameûer settings were
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used for the large scale simulation runs. For the single sample case which did involve

negative parameters, the approach of using large additive constants as described by

Tierney and Kadane (1985) was used.

3.3.3 Reliability Estimation

The reliability function for the three-parameter lognormal distribution is

R(t) =pr(Þr) = i:--exp|.-
'J ,/n o(x-rc) ' l. fit"n(x-k) -ul)a.

To estimate R(t) using Bayesian methods, the alternatives are Lindley's or the Tierney-

Kadane approximations. Once the three systemic parameters have been estimated by

Lindley's approach, only the u¡ and uu functions need to be reconstructed. Using the T-K

method, however, the L" and L. functions and their respective first and second partial

derivatives are necessary to obtain the maximization points. Furthermore, a numerical

maximization process must still be relied upon to produce the T-K approximation which

could be subject to further convergence problems seen with the mle's. V/ith Lindley's

method the Lt¡'s do not need to be reconstructed. As such, the Lindley approximation

is easier to implement in this situation.

Set u(k,¡r,ø):R(t) as above and let

,= Log (x-k) -tt so that dy= _ d*, 
,'o@T
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so that

R(r) = l' å"C-*y'lay
-@ 'l* 

'l 2'J'

or, taking the complement

R(t) = r-o( r"gf t- rl -,¡

where iÞ is the standa¡d normal distribution function.

For estimation purposes, the work simplifies by setting

log(¡-È)-r¿
o

u(o)= J È""n -|vloy=,

Recall, as with the gamma R(t) function, the relation that if

then

!É = r (x,*') H-r (x,rI #. l' 
ut fft, o,

r4r)

r - I te,tldt
.Å
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Using this result, the u¡ functions a¡e

u,= H _ _#*n"_"[_ät"nrã*)-u],]

u, = H = -à"*[+[ r"gct- rr -P1']

us = !! - - log(t-,k) -¡¿"*n|.-*[ ros(t. t) -Á¿flæ-TzL"J)
The u¡ functions can now be found by straightforward differentiation.

u,,=ry=å|'.=ry-]

n^^ = ô2u(o) = fiFos(r-k) -r¿I¿L 
ôp'

u33 = a'zY\) = u, [-È"s(rk) -P.f -zlôoz " l---'J

ütz = 4# = þFon(r-,k) -r¿I

u,3= !# =f[el/ ',t-r]

t,-_ = ô2u(0) = ur[,Êgg1_t-*l -pf _rl4'23--õW -ot----'J

Lindley's approximation to the Bayes estimator is then constructed by simple substitution

into the formula.
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3.3.4 Examoles

Several application datasets are available in the literature, mainty to demonstrate

the difficulty in estimation for the three-parameter lognormal. Three such examples are

given by Cohen (1951), Dumonceaux and Antle (1973, D&A) and McCool (L97e. Tl¡e

Cohen sample has been used by a number of other authors as a test sample of mle search

routines. The th¡ee samples are interesting because they are all small and give any

numerical routine problems. They also reflect very different paramefic settings.

The McCool (I97$ sample is of speciat interest because, as noted by Crow and

Shimizu (1988), the sample was a good example where the mle was unobtainable. It

turned out that this sample \ryas a good example of the very steep cliff face mentioned in

the eadier section on estimation problems. Although it is true that the sample required

a very nanow search intenal, results for the sample were obtained and verified as the

m1e.

Each sample was tested via the empirical goodness of fit tests described ea¡lier.

The Cohen (1951) sample failed the test (p-value = .0001), which is surprising seeing

that it has been used extensively in the literature. Estimation ¡esults for the three

samples are given in Table 3.13.

Table 3.13: Parameter Estimation Results For Lognormal Samples

Source n k hat ¡r hat ø hat k' p a

McCool 10 L44.12 3.94 0.91 t24.02 4.41 0.65

D&A 20 0.18 -1.56 0.51 0.05 -0.98 0.30

Cohen 20 1r7.72 3.37 0.60 89.58 4.32 0.16

giveThe two methods markedly different parameter estimates for these small



145

samples. Researchers using the Bayes approximation would arrive at a much different

result in terms of the assumed parent distribution than those using the mle.

In terms of variance estimation, Cohen (1951) provides forms for the asymptotic

variances of the mle for the systemic parameters. The posærior variance estimates,

arrived at in the same manner as for the other distributions in this chapter, once again

exhibit negative values and a¡e as such inadmissible.

Reliability estimation was subsequently undertaken with results for the McCool

(1974) sample are presented in Table 3.14 and displayed in Figurc 3.L4.

Table 3.14: R(t) Estimates For McCool (1974) Sampte(n:10)

t MLE R(r) R'(r)

155 0.9559 0.7065

185 0.5989 0.6808

205 0.4257 0.5076

23s 0.26s1 0.3073

26s 0.t732 0.1928

295 0.1180 0.1297

325 0.083r 0.0938

355 0.0602 0.0723

385 0.0446 0.0552

405 0.0370 0.0521

445 0.0259 0.M26

F¡om Figure 3.14, it can be seen that the Bayes approximate estimator displays

a disturbing tendency for the lower t values. There is actually a part of the t range space

where an inc¡ease in t causes an inc¡ease in Rþ, which is theo¡etically impossible.
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Further, ttre Bayes approximation is consistently larger than the mle once t is taken to

be outside the 'disturbing" range. After the initial problem, the Bayes results are within

1% of the mle estimate. The abnormal result for small values of t makes the use of this

approach, for small samples at least, untenable. Posterior va¡iance estimates were

produced as well, but the presence of negative values makes a comparison with the

asymptotic va¡iance of the mle meaningless. It should be noted at this point the sample

size is extremely small, so the results are not all that surprising.

To establish sample sizn impact limitations, three generated samples

(n:25,50,100) with the parametric settings (k,F,ø):(25,2,0.8) were used for R(t)

estimation. The use of generated samples also allows for a comparison against the true

R(t) value which was not possible for the McCooI sample. As mentioned by Calltz

(1973), these settings provide a good environment for illustration without loss of

generality. The estimators along with the true parametric values are given in Tables

3. 15, 3. 16 and 3 .\7 for the small, moderate and large sample sizes respectively. Figures

3.15, 3.16 and 3.17 display the resultant R(t) functions.
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Table 3.15: Rltl Estimates For Generated Sample(n:25)

t True R(t) MLE R(r) R'(r)

27 0.9448 0.9286 0.8480

30 0.6873 0.4819 0.51s6

33 0.4604 0.2410 0.2548

36 0.309s 0.1294 0.1331

39 0.2122 0.0743 0.0763

42 0.1488 0.0450 0.M77

45 0.1066 0.0284 0.032t

48 0.0779 0.0187 0.0228

51 0.0s79 0.0126 0.0170

54 0.0437 0.0088 0.0130

Both estimation techniques consistently underestimate the true R(t) value for all

three sample sizes. In Figure 3.15, the Bayes estimates are closer to the true value for

small values of t but less than the mle for larger values of t. This result agrees with

what was obtained for R@ results for the three-parameter gamma distribution. The

margin of error for the estimates is as large as 6%.
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Table 3.16: R(t) Estimates For Generated Sample(n:50)

t True R(t) MLE R(r) R'(r)

26 0.9938 0.9941 0.9566

29 0.7785 0.5942 0.6135

32 0.5270 0.3013 0.3t29

35 0.3s26 0.16t4 0.1634

38 0.2400 0.4921 0.0913

4L 0.1671 0.0555 0.0546

44 0.1 189 0.0349 0.0347

47 0.0863 0.0228 0.0231

50 0.0638 0.0153 0.0161

53 0.0479 0.0106 0.0116

Results for n:50 in Table 3.16 and Figure 3.16 indicate a converging of the ¡vo

estimation processes, unfofunately to a point distant from the true R(t) value. The

underestimation by the Bayes estimator continues. Due to the larger sample size, the

deviant behavio¡ of the Bayes estimator seen in the McCool sample is absent from these

results.
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Table 3.17: R(t) Estimates For Generated Samplefn=100)

t True R(t) MLE R(r) R'(r)

26 0.9938 0.9606 0.9419

29 0.7785 0.5581 0.5688

32 0.5270 0.3052 0.3115

35 0.3s26 0.1767 0.1785

38 0.2400 0.1082 0.1082

4L 0.1671 0.0694 0.0689

44 0.1189 0.0463 0.0458

47 0.0863 0.0318 0.0316

50 0.0638 0.0225 0.0224

53 0.0479 0.0163 0.0164

Even with n:100, R(t) is consistently underestimated, with the margin as much

as 20%. Figure 3.17 indicates that the two estimation process do indeed virtually

overlap at this point, unfortunately, it is not at R(t).

3.3.5 Monte Carlo Simulation

Sample generation for the three-parameter lognormal distribution is

straightforward using a normal sample generation procedure such as the IMSL (1975)

routine RNOR and the relation xi=expl o (RÀIOR,+ U)]+y. Empirical goodness of fit

testing as was done with the previous distributions in this chapter was performed to

ensure sample veracity. Pa¡ameter settings of 0:(k,p,o):(25,2,0.8) were once again

used. Three separately seeded simulation runs of 1000 samples each were used to

examine the inrpact ofsampb sizeon the estimation resuls {n=25, 50, 100). This allows
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for a discussion of small versr¡s moderate and large samples. Convergence for the

ma;rimum likelihood estimators was achieved in all cases. It was found, however, that

the search interval for the small sample size had to be extremely narrow úo achieve the

100% success rate. The 3x3 grid approach was used ûo ensure that a local maximum was

indeed the point of convergence. The method of moments estimator (Cohen, 1951) was

inctuded for comparison purposes as it is recognized as being poor estimates relative to

the mle.

Table 3.18 presents the meân and mean squÍue error for parameter estimates using

the 1000 samples produced for each sample size.

Table 3.18: Estimation Results Based On Varving Sample Sizes

With Parameters ß.p.ø) : (25.2,0. 8l

METHOD OF
MOMENTS

MLE TIERNEY-
KADANE

Parameter Mean MSE Mean MSE Mean MSE

n:25

k 18.883 63.628 25.137 t.282 23.388 18.249

LL 2.377 0.3029 1.s06 0.3578 1.8440 0.2965

(, 0.4& 0.1419 0.8718 0.0694 0.6849 0.0899

n:50

k 21.234 20.94 25.t19 0.4268 24.52s 1.4657

It 2.165 0.1280 1.548 0.2492 1.683 0.1592

ú 0.553 0.0866 0.838 0.0268 0.762 0.0278

n:100

k 22.434 9.802 25.072 0.1790 24.809 0.3092

p 2.021 0.0731 1.573 0.2029 1.635 0.1554

ú 0.618 0.0ss6 0.820 0.0114 0.784 0.0114
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The impact of sampte size is impressive, but not uniform for estimating the three

parameters. The mle's exhibit smaller bias and mse fo¡ estimating k and o. The Bayes

estimator of ¡r is closer on average ûo the parametric value with smaller variability than

the mle. The mle and approximate Bayes estimators are clearly superior to the method

of moments estimato¡s at all sample sizes.

In estimating the location parameter for small samples, the Bayes approximation

is subject to much greater variability than its mle counterpart. The mle results are

satisfactory considering the difficulty required to produce them.

Once enough sample information is available, the Bayes approximations begin to

converge towa¡ds the mle as expected. At n:100 it is arguable which estimator would

be preferred. The mle exhibits smaller mse for k than the Bayes approach, but larger

mse for p ñd indistinguishable results for o.

Posterior variance estimators once again are useless for the small n:25 samples.

Only 1% of the posterior va¡iance estimates for k were greater than zero. Over half of

the posterior variance estimates for ¡r were negative. Surprisingly, only lTVo of the ø

posterior variance estimates were negative.

At n:50 the proportion of negative va¡iance estimates decreases (40Vo, 27o and

1% for k, ¡r and ø respectively), but a¡e still present so as to bring their validity into

question. The negative estimates are absent when n:100 and so Table 3.19 compares

the posterior va¡iances to the asymptotic variances of the mle.
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Table 3.19: Average Estimated Posterior VS Asymptotic Variance

Parameter Bayes MLE

k 0.0820 0.0850

p 0.0140 0.0141

o 0.0093 0.0163

The above table substantiates Sinha's (1987) claim that the ¡nsterior variance of the

Bayes approximations is less than the asymptotic variance of the mre.

The empirical distributions of the estimates produced for the three simulation runs

provide further insight. The stark contrast between the success of the two methods is

seen in comparing the n:25 sampling distributions in Figures 3.18 to 3.23.

In comparing the sampling distributions for estimators of the location parameter

k (Figures 3.18 and 3.2L), the Bayes approach seems to be succeptible to wildly

inaccurate estimates, albeit rarely. White both sampling distributions are markedly

negatively skewed, the Bayes estimates have a few negative estimates. Clearly the

asymptotic properties which underlie this approach are absent at n:25.

The pictures for estimating p are quite different (Figures 3.19 and 3.22). The

mle's sampling distribution appears almost symmetric while the Bayes estimator is

noticeably postiveþ skewed. Here also the tendency to have an occasional outlying

estimate in the Bayes approach is evident, while absent for the mle. The Bayes sampling

distribution does have a greater frequency of estimates close to the true ,¿ value,

however.

Figures 3.20 and 3.23 depict the sampling distributions for estimating ø. Here

the results look much more regular, although the mle distribution is positively skewed
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and the Bayes negatively skewed. In this case at least the two disributions look like

those of competing estimators, unlike those for the other two parameters where the mle

is clearly superior. Closer inspection reveals, however, that negative estimates for ø are

obtained which are inadmissible.

Once again when n becomes moderaæly large the distributions converge so that

Figures 3.24 tß 3.26 present the Bayes sampling distributions, although they are

representative of the mle results as well. The negative estimates seen for the smaller

sample size a¡e absent and the sampling dist¡ibutions a¡e much more well-behaved.

The location parameter's sampling distribution is still negatively skewed with a

tendency to produce inordinately small estimates. This is likely a fact of working with

a location parameter and not the result of the estimation process itself. In observing

some of the individual samples it became clear that the location parameter was extremely

sensitive to outlying observations.

The pictures of the sampling distributions for ¡r and ø (Figures 3.25 and 3.26)

indicate a much more well behaved estimation process due to the larger sample size.

The skewness is very slight in both cases and the distributions are appropriately centered

around the parametric values.

Results would tend to suggest that for estimating the parameters of the three-

parameter lognormal, the maximum likelihood approach is superior for small samples

(n<50), especially if it is important to accurately estimate the tocation parameter. For

moderately large samples, the Bayes approach is competitive, even given the

noninformative a priori environment.

In estimating the reliability function R(t), neithtr approach is particularty
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successful. For the small sample sizes especially, results of estimation a¡e markedly

diffe¡ent from the true R(t). The two methods do converge quiæ well, unfortunately they

converge to a consistent underestimation of the true reliability.

Some of the results of this section contrast the Lye et al (1988) paper. The

marked discrepancies between the mle and the Bayes estimators are largely ignored.

Further although they mention the negative variance estimates, they shnrg them off as

a minor nuisance. In doing so they fail to notice ttrat as with previous dist¡ibutions in

this chapter, the variance estimates cannot really be trusted below n:100 whereas all

samples presented in the paper are smaller than this.

3.4 Summarv

-

As the work in this chapter covered detailed estimation procedures for three

different distributions, a summary of the findings in terms of the estimation process is

useful. For some distributions and sampling environments, the mle is clearly superior

whereas for others, the Bayes estimators have attractive properties. A choice of which

approach to use for a particular application really boils down to:

1) how much is known about the environment (prior and distributional

options)

2) how many estimation processes are expected to be needed

3) is bias or variance more important to the application

4) what access is available to advanced numerical routines

The use of good a priori information in most sampling environments will produce

superior estimato¡s. In the absence of such information, the mle is likely the better
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choice.

If options for distributional choice are allowable, often there a¡e clearly superior

estimation environments. For example, the Weibull with shape less than two is less

preferable to a lognormal in terms of difficulties in producing estimators. Further, the

lognormal distribution seems to be much more unstable than the other two distributions

for estimation processes.

In terms of a choice between the two Bayes approaches, there is no clear choice

either. If many distributional parameters and related functions need to be estimated

under varying prior information, Lindley's approach will be less wo¡k in the long run,

assuming the mle's are obtainable. Otherwise the Tierney-Kadane method is less

arduous.

Depending upon the distribution and estimator to be studied, the competing

schools of thought have both advantages and disadvantages in terms of bias/variance.

For example, a small sample size will suggest the use of the mle for variance estimation

because although they may not be terribly accurate, at least they produce a believable

positive estimate.

Access to a standard powerful computer worlstation with advanced numerical

software will suggest the T-K method and its reduced CPU time. Otherwise, Lindley's

method should be preferred as it is more likely to produce a closed form algebraic

solution and once the L*'s are constructed, prior distributional comparisons Íue easier.
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CHAPTER 4: ESTIMATION FOR THE BTVARIAI]E NORMAL DISTRIBUTION

4.l lntroduction

In this chapter, two methods for the approximation to the Bayes estimators due

to Lindley (1980) and Tierney & Kadane (1986) are compared to the maximum

likelihood estimator of the distributional parameters for the bivariate normal. Jeffreys'

invariant prior is developed.

The bivariate normal distribution has received a greåt deal of attention in the

literature (see lohnson and Kotz, 1970 for an extensive list) because of its wide range of

applicability and the mathematical challenge it presents incorporating five systemic

parameters. The majority of work has been done with assumptions regarding the

parameters to make the mathematics easier. Several texts only consider situations where

some parameters a¡e known so as to make the mathematics tractable and focus on a

subset of the parameters, such as Lindley (1965). In this chapter, the approximations

will be applied assuming all five systemic parameters are unknown and a state of

ignorance a priori exists about the parameters.

The pdf of the bivariate normal random variable X:(X,,Xz¡ with the five element

vector system parameter 0:(pr,prroroz,p) is given by

f (xltxzl þrt F2tolroy pl =
ZoororrfQ"*pF t =

L 2 (L-P')

IGr-ur)z * (x2-tt2)z _zp(x1-tr¡) (*r-pr) I
[T7T))
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where

-æ<xt,xz1@, -æ<l¿r tF2<æt orro2>O, -L<p<l .

The mærimum likelihood estimator (mle) of the systemic parameters is

-7¡12 , i=r ,2 ¡ j =L ,2 , ... , n.

ø = 15- (.xtt-:þt) (xu-þz')
' nfi 6rõ,

Having closed form expressions for the mle will allow for the investigation of closed

forms for the Bayes approximations which were not obtainable for the three-parameter

distributions seen previously. Obtaining closed forms allow for further insight into the

distributional properties of the Bayes approximations as well as removing the need fo¡

reliance upon the computer for the mathematics.

4.2 Prior Distributions

Lindley (1965) gives a noninformative prior for the bivariate normal vector

parameter 0 as

g(tttrlt2tol,ozt p) æ
oPz(t-Pz'll

based on the assumptions that the priors of p.r,¡t2,or,o, and p Te independent, with the

means' priors uniform in nature and the p prior nonvanishing.

A well known alternative method for constructing invariant priors is due to

Jeffreys. This approach had not been used for the bivariate normal dist¡ibution.

Jeffreys' approach requires that the prior be proportional to the squ¿ue root of the

*p,*,
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determinant of the information matrix (Box and Tiao, 1973). More specifically, if E¿ is

the asymptotic variance-covariance matrix for 0:Qt¡,F2,út,oz,p) then Jeffreys'prior is

l- Y'"
g'(tttrlt2r01,a2rp, * 

I l+l

The information matrix has as its elements the negatives of the expected values of second

partial derivatives of the well known log-likelihood function. The second partial

derivatives with respect to 0:Qtr,¡tr,or,q,p) are:

Ì _ô2n_ n
LJ.. -¡¡ ôp? o?(G-pz)

Í.=ô22-npu-^ - dþpþz op2(]--p2)

7 - ô22 - n lZ ;l.r-trr) ptXr-t)11,3-W, -@L-E-T)

7 - ô22 - np (Íz-þz)
'e ð p,rö o, o roT(t- p2)

t - ô2t n I Zp W;trrl (L*pz) tX;t Sf!'r5--ãffi orlnfl * - % )

r _ ô21, _np(X,_pr)Þ ôprôo, olorlt-p2l
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Llþz

7r-ltr)'l(7,
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o?o3t:--p')

,oE (xt¡-þ) (xu-ttz
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o toz

(xr¡-ttr)z (t*pz)f wr,-rr¡ Qtr-ttz
j=r

o toz

Í-ô2r134 - T-o@,
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| {x'
-ô221J¿..=-=JJ 

ô p' (]--pz)2

.tryfF
Taking expectations, and after some algebra the inverse of E, is found to be

F-l =Le

o?,1-p2)

-np
o toz(I- p")

0

0

0

-np

-

o 102(L- p")

n

ffi
0

0

0

0

nQ-p2)
ffi

-np2
o ro2(t- p2)

-np
@

0

-np2

ñ
n (2- p2)

æn\
-npffi

0

-np
or(t- o2)

-npffi
n (L+p2)

@
Jeffreys invariant prior is the square root of the determinant of

1-p
A "r%
-p1

ot% 4
D'- 1
n (t-pz)

2-p2 -p2

7 "r%
-p2 2-p2

-oro, 7
-p -p
or o2

0

-p
or

-p
o2

L+p2

L-p2
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so that

det

det

which after some algebra becomes

det

2-p' -p2 -p
7",%4
-p2 2-p2 -p

-oro, Z %

-p -p L+pz
or oz L-pz

1.-
oi
-p

o toz

0

0

2-p'

-
oi

_p2

otoz

-po
o toz

1

4

o2

L+ p2

-L-p2

o

"..[+] =

00,,
or

-p2 -p
otaz ol

2-p2 'p7
-p
o2

1-p
;? T,o,

-p1
oto, 4

t+l
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and so Jeffreys' invariant prior is

r-q'(01 c I n 2

I "i"i1-pz)o o'ro'r(r--p2')2

which is basically the square of the noninformative prior. This result may have

implications for other Bayesian methods, but for the two approximations under

consideration in this endeavour the log of the prior is the important quantity. As such,

the two log-priors differ only by an multiplicative constant and are therefore equivalent

for our purposes.

4.3 Lindlev's Approximation

Rec¿ll Lindley's estimator u'(Q) is an approximation to the Bayes estimator of the

vector parameter u(Q), taking the form

u'(0) = u(0) - +ÐÉt', (A)*zu,tîto,ú)lou . +Ðåå f L,¡ru,ono*

(4.1)

where

t : maximum likelihood estimator

ui, uü : fust and second partial derivatives of u(f)

p¡ : fust partial derivative of the log-prior

øu : element of the asymptotic variance-covariance matrix

L¡È : third partial derivative of the log-likelihood function

p : dimensionaliry of É.

Recall that all functions are evaluated at the mle. For easier reading, the mle "hats' will
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be omitted from our formulations except where ambiguity requires clarification. For

estimating any of the systemic parameters (Ft,Fz,or,oz,p), the q's will all be znro except

for the partial pertaining to the appropriaûe parameter and the q.¡'s will all be zero.

For the prior distribution

9(t\rlt2ro1,o2tg) = j--
oPz(l-P")

the log prior function is, apart from the constant k,

p(0) = loglg(0)l = -rogor-logor-Log(:--pz)

and the partial derivatives þ,'s) are

pt(o) = urrrÏ, =o

pz(o) = uorLoT, =o

pt(o)=urrfr=-å

p¿(o)=utt:, =-ä

ps(o)=ôPr(o) =&

The ø¡'s are found via the inverse of the matrix E seen earlier whose elements a¡e

the negative of the second partial derivatives, evaluated at the mle.
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To find the inverse of the information matrix, it is fust important to note that the

matrix is of the form

whose inverse may be found from Anderson (1958), pâge 342, by

whereCisaconstant.

For the given matrix,

nu=- (t- p2)

E;' ="\i,:A

D =c-,f-";'",,]

f lSTl
L',% 4

fi,=

so that the inverses of A and B a¡e

2-p2 -p2 -p

-
oi otaz or

-p2 2-p2 -p

-oro, Z %

-p -p L*p'
or o2 L-p2

obtainable.
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This produces the required matrix as

ol
L-p2

PoPz

G
o

PoPz 
O

l-pz
o7+o

L-p"
o?

0
2 (L-p2)

o Pzotoz

2 (:--p2)

o got
2

00

p2opz Ptt
ñT

toi PozmT
goz-7

| -n-2-r

o

s=
/¿e

(t- p2)

n

or more simply

r=1.{:g n

- ol popz

popz o?,

oo

0

0

o"
z

pzo toz
T

0

o

p2opz
T

ol
z

0

0

po t(L- pz)

T
por(t- o2)
T

(t- p2)'

0

po t(L- p2') por(t- o2)TT
Lindley's approximation formula (4.1) simplifies in application to the bivariate normal

because of a considerable number of zero terms, when evaluated at the mle. Substituting

the ur, uu and p¡ terms

u' (o) = u(A) -t o,çQ¡ o,*lfå å Loroooo (4.2)

Note that in the second te¡m the summation goes from j:3 to j:5 rather than from 1

to 5 because p1 and p2 are rßÍo. Further, the I subscrþt represents which of the f¡ve

systemic parameters is being estimated and is therefore a constant for each approximation.
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At this point the approximation formula 4.1 simplifies to varying degrees

depending u¡rcn which systemic parameter is being estimated. For each parameter, it is

a straightforward, albeit tedious, problem of algebraically evaluating each of the 125

terms in equation 4.2 to produce a closed-form for Lindley's approximation to the Bayes

estimator. Of the 125 ærms, only 35 are actually distinct because the subscripts of !n
can be transposed. The population means will be dealt with first, followed by the

standa¡d deviations and finally the correlation coeffrcient.

In estimating the population means, inspection of the D0 matrix reveals

o¡s:os:o1s:ú23:ovA:ox:O so that the third term of (a.2) will be zæro for all k>2.

For k:l and k:2 it can be seen that most of the L¡ terms are zerowhen evaluated at

the mle. Going through an elimination process, it can be shown that all of the terms in

the triple summation of 4.2 are zero. As such, Lindley's approximation for the Bayes

estimator of the population mean is merely

P; = þ¡ = 7¡ fot í=Lt2

Next consider the population standard deviations so that

u'(0) = oí lor i=!,2

For this exercise u(0)=ør will be used throughout without loss of generality. Starting

from 4.2, the second term is

Ð0,(0tos¡= -å14) +[+).#r,,,;;t,] = _",rr:p'r

The fact that several L* and øu terms are zÊÍo when evaluated at the mle causes only 17

of the 35 distinct terms from the 125 ærm füple summation to be nonzero. Specifrcally,
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the approximation formula 4.2 becomes

oi=a,-Y*}z,,,o,,o,,*!,L,,,o||o53+Lp3o|2o33+L|uono+l+Ltzsotzoslfr2n

* lrLr orron * )r*orrorr* äLrrro?r* |Lr*orroor* 2zLtssassast

* à, *o ( 2 o2* + o rrs ù * ) n *, ( 4 o *o r, + 2 o 3sr. a) * lr r rr, ( 2 o2s5 + o rro rrl

* !L*o*oor* 
|n*r(zo*oor+6uorl 

* 
àr*r(2oororr+ossoy) 

* 
|Lrrrorro*

which, afær substituting the third partial derivatives and ø¡ elements from above becomes

-. _^ tt\-þz).6t19 ^^r\ot = of ' 
2ñ =ñ\;-ze')

õ
= ô,*# Q -2Þ2)

Similarly results are obtained for o2 merely by substitution.

The closed form solution for Lindley's approximation with regard to the

population standard deviation is quite easy to calculate and use in practice. As is

expected, asymptotically the Bayes estimator converges to the mle and will have a normal

posterior distribution. The exact distribution for the estimator under small samples is

more complex to derive and is perhaps a direction for future work. The posterior

variance of the approximation will be close to the variance of the mle for large samples.

The final systemic parameter for which a closed form approximation is needed

is the traditionally difficult p. Once again the starting point is equation 4.2.
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The first part of the equation becomes

__1
or

= p (t-p2l
n

The next step involves examination of the 125-term triple summation. 7æro terrns

and redundancies reduce the form substantially to involve 13 distinct nonzero terms.

Specifically,

p' = p - þ (l-þ2) * lLrrro rrorr* lrLrrro rLo ss+Ln3o rrorr+Lr o rro or+Lruo rro *
* | z r^o rro o, * | z ruo zzo ss 

+ !2 L rrro rro r, * *, r* ( 2 o to rr+ 6 sf ¿sl

* t rrr, ( 2 ol, + o rrs u) * | t *o ( 2 o *o or+ o uo s) * *, *, ( 4 o rro o, + 2 a yo 55)

* 
|zrrro rro ,r* |n*o *o or* tL*5 (2o2or+6 *o à * lLorro or, ,r* lzlsrro?,

Now putting the pieces together

p. = p* þ (L-Þ2) -

= ;- 3þ (L-þ2)-T

Again the Lindley approximation will tend towa¡ds the mle as n increases.

As mentioned in Chapter one, Lindley's approximation formula lends itself to

algebraic closed-form solutions much more readily than does the Tierney-Kadane method.

Although the Lindley method requires construction and evaluation of the third partial

derivatives, once derived that section of the approximation formula remains constant

regardless of the prior distribution. This is an important point foralgebraic work since

5

E o,(A) os¡
i=3

loor(r-p') l_ rF)4
-poz1-p211- 

2p
T)ñ



182

it means altering the prior does not necessitate starting the algebraic process from the

beginning. An altered prior demands onty a reconstruction of the first summation term

of 4.2, which is not tedious.

For example, suppose the a priori state of knowledge about the population

standard deviations was such that a natural conjugate prior as suggested by Press (1989)

was appropriate. In this case one would assume independent inverted gÍLmma priors for

the two ø's so that

s¡(o¡) * #"*[-å] 
ror i=l,2

This new assumption would cause the joint prior distribution to be

s(þt,þ2,o1¡o2rP) = ffi"*fä ä)
and the log-prior is

p (01 = log lg (0) I = -1o9 (r-pzl - (br+1) Iogor- (bz+L) togor-1.-2

The partial derivatives of the log-prior are as before except now

ps(o) = u orLT' = a; (ba:t') o'

p¿(o) = 
"rLrT' 

=#
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and, after substitution into the first part of 4.2

Ð o,( o ) .s¡ = [#] H]. [ryJ É=]. #,w1
= *þ' -o' -' * o'b'-o'.'ll

so that the revised Bayes estimator is

oi = a,**þ,-o,-r* o[ä-u,*rJ]. *(+-ru)
= a,* *l+ - oþ.o,- 

Ë ].", 
*,]

or, one can express the relationship between the estimators produced under the

noninformative (NI) and conjugate (CON) prior conditions as

oi*= oi-**þ,-o,-þr}rl

Similarly, with indices reversed as above, for o2.

For p, again the only part of 4.2 that changes is the second term to be

i o,(0) o,¡ - f 
a'- (¡,+r) o,lf por r-ïp'?l l,*l "r- 

(o,*') orll ,"+'-nr1¡= L-flJL-z-J=L ,-JL-E--J
* 2p I rt-o'ltl
t_prL n J

= o.*_{,) 
li.ä_o-r,*l

so that under the inverted gamma prior assumptions, Lindley's approximation to the
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Bayes estimator of p is

Pàn = P * þ (r:þzt 
lä. ä-u-u'.1- 

sþ (!:þ''t

= p_Þ(t_-?z) 
[, + 

_ä.ono4

= o ;* þ (L_-ip2,) 

lä. ä_o_ol .

It is a straightforward task therefore for a practitioner in an applied setting to

investigate algebraically the impact of various a priori assumptions via Lindley's

approximation. One needs only to reconstruct the first part of the approximation formula

to adjust for different prior information.

detS'

"o-."*p[ 
nþ. (o .) -Lo(oo) ì

4. 4 Tierne)¡-Kadane Approximation

In this section the Tierney-Kadane (1986) approximation to the Bayes estimator

will be applied to the bivariate normal distribution. As described in Chapter one, the

Tierney-Kadane approximation to the Bayes estimator is

u'(0, = 

I
where

Lo(o) - (losts(o)-l+'t(olT ))
n

L. (0¡ = ¿n+ 1o9[u (0) ]tn

and the points 0o and 0. are maximizing points of the L, and L. fi¡nctions respectively.

The Do and E. matrices are the inverses of matrices that are comprised of elements of the
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negative of the second partiat derivatives of the I.." and L. fi,lnctions respectively.

For the bivariate normal distribution, assuming the noninformative prior situation

", = -(* *r) (rogor+tosoz) 
1*.å)t" g (L-pz)-ros(2rr)

- 1 
= ¡ [ tx,r-¡r,lt * (xn-tt)z _zp(xr,-ttr) (xu-p)l

zn (t-pz) 'ji I ol ol t* l
which remains constant regardless of the parameûer being estimated. For estimating each

element of the vector parameter 0, a separate L. function is needed. For the sake of

brevity, these may be represented as

L .,, * t"n ( 0¿) *.Ë,o f or i=! ,2 , ...,5

Six separate maximization points must be found (0. and five 0.'s). As an example, to

find the maximization point algebraically for Lo one must take five partial derivatives to

produce a system of five equations with five unknowns.

ô"o 
= _ 1 S [p6u-ttù_ (x,¡-¡¿r)lW, ñftL "'", t' 

-l

ô"0 
= - r $ f o6y-url -62¡-P)1TP', MftL ",", % )

þ=-i r*rì 1- 1 çlpxrrtt)(xu-p)_-(xu-p)1E,-\"-l4ffikl6-Tl



186

-rrl 

]
The solution to this sysûem of equations is mathematically inconvenient in a

fashion similar to what was seen for the univariate normal disEibution in Chapter two.

Even if this solution were obtained, the point 0e would have to be substituted into a 5x5

matrix and inverted algebraicalty. To produce closed form solutions for the five systemic

parameters, a similar exe¡cise would have to be accomplished for each L. function.

Again, the solutions to these five equation systems in five unknowns are inconvenient to

the extent that working with them algebraically quickly becomes intractable. As such,

it is evident that the T-K algorithm is not as well suited for algebraically closed form

solutions as Lindley's method. Furthermore, even if the closed form solution were

obtained for the noninformative setting, the entire exercise would have to be repeated to

duplicate the effort for a change in the prior distribution. This is due to the fact that the

prior distribution is directly involved with the L. function. The maximization point 0.

will change for any but the most rudimentary change in the prior distribution,

necessitating a reconstruction of the E. matrices. The comparative work done in the

previous section with the inverted gamma priors would be intractable via the T-K

al gorithm algebraically.

This is not to say that the T-K algorithm is inappropriate for application to the

bivariate normal distribution. Rather it illustrates that the work must be done by

numerical ¡pproximæion, the me¿¡ris by which the method rvas designed to produce the
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approximation to the Bayes estimator. As was seen in Chapter two, even in the simplest

applications, the T-K method is algebraically inconvenient. In terms of numerical

computation however, the method has some distin.¡ ¿dysnreges over Lindley,s.

Newton's method, is typically all that is required ûo produce the maximization points.

Once again, the issue of applicability boits down to the availability of computer

technology and the degree üo which atgebraic results are seen to be desirable.

4.5 Examnle

As an illustration, data from Pope, I-ehrer and Stevens (1980) are used. Bivariate

measures on reading skills we¡e taken on26 children with the V/oodcock reading test and

were demonstrated to be applicable to the bivariate normal model. Table 4.1 presents

the estimation results. The estimated posterior variances were computed by the same

method in Chapters one and two. This method involved separately estimating the two

pieces of the posterior variance formulation.

Parameter MLE LINDLEY T-K v(MLE) v(LTNDLEY) v(r-K)
Ft 6.4A4 6.4M 6.378 .1292 .t631 .1208

ltz 6.869 6.869 6.797 .2908 .2673 .2656

ú1 2.059 2.179 2.t81 .0702 .0672 .0669

O2 2.636 2.790 2.794 .1586 .1101 .1093

p 0.688 0.667 0.670 .0234 .0102 .0088

Both approximations produce similar results. Note that Lindley's approximation

for the population means is exactly equat to the mle whe¡eas the T-K 4pproximate is

slightly diffe¡ent. The Bayes estimators fo¡ the population standard deviations a¡e both
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larger than the mle and have smaller estimated posterior variance than the mle. As noted

by Tierney and Kadane (1986), however, when n is small it is easy for the'estimate for

the variance to be small and even to be negative if either of the two parts of the variance

formula is poorly estimated. In previous work, notably with the three-parameter Weibull

dishibution, the author has noted negative variance estimates for even samples of

moderaûely large size. The observed smaller variance is likely due to this phenomenon.

The Bayes estimators for the correlation coefficient are both smaller than the mle and

again present smaller variance estimates.

The key point to note here is that Lindley and the T-K Bayes approximate

estimators under noninformative prior conditions produce reasonable estimates, relative

to the mle. Lindley's is certainly no more difficult to calculate than the mle, since a

closed form has been produced. The T-K estimate is gained only after considerable

numerical work. The next section will explore these issues a bit deeper wittr the use of

Monte Ca¡lo simulation.

4.6 Monte Carlo Simulation

To compare the closed form estimators with the T-K numerical approximations,

Monte Carlo simulation was undertaken. Samples were generated via the IMSL routine

GGNSM (1975) and validated through the use of the empirical distribution function tests

of Anderson and Darling found in D'Agostino and Stephens (1986). Any samples that

failed to meet ttre criterion were rejected and another sample generated. Algorithms

were constructed via the PL|I language on an Amdahl 470 mainframe at the University

of Manitoba.
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Four simulation runs of 1000 samples each were performed using samples of size

10,25,50 and 100 respectively with parameúer settings of ¡r, --I4.0, p.2=26.0, o1:3.0,

0z:6.0 and p:Q.69. Different random seeds were used for each run.

Bayes estimators via Lindþ's approximation and the Tierney-Kadane method

were constructed for each sample as well as the mle's for the five systemic parameters

Fs\Lz¡Útoz and p. Estimates fo¡ the posterior variances were calculated for each

parameter by the piecewise method described in Chapter one. For each estimator the

root mean square error based on the 1000 samples was catculated as a relative measure

of precision. The results for estimating the two population standard deviations and the

population correlation coefficient a¡e summari zrÅ ínTables 4.2 throug h 4.4. Results for

the population means a¡e not presented because the mle's and Lindley's approximation

a¡e identical while the T-K approximation produces near identical results.

Table 4.2: Simulation Results for ør=3.0 (1000 Samoles)

ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE

n MLE LINDLEY T-K MLE LINDLEY T-K MLE LINDLEY T-K

10 2.7t 3.1.3 3.16 .7130 .7456 .7509 0.35 0.21 0.20

25 2.88 3.06 3.07 .4374 .4480 .4503 0.14 0.14 0.13

50 2.88 2.97 2.98 .3250 .3099 .3108 0.07 0.08 0.08

100 2.90 2.94 2.94 .2302 .2160 .2r61 0.04 0.04 0.04



ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE

n MLE LINDLEY T-K MLE LINDLEY T-K MLE LINDLEY T-K

10 5.49 6.34 6.38 t.39 1.50 1.53 1.40 0.84 0.81

25 5.78 6.14 6.16 0.85 0.88 0.90 0.56 0.55 0.53

50 5.78 5.96 5.97 0.62 0.59 0.60 0.28 0.30 0.29

100 5.77 s.86 5.86 0.49 0.46 0.46 0.14 0.16 0.16
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Table 4.3: Simuiation Results for o^:6.0 (1000 Samoles)

Table 4.4: Simulation Results for o:0.60 (1000 Samples)

ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE

n MLE LINDLET T-K MLE LINDLEY T-K MLE LINDLEY T-K

10 .5849 .s396 .5488 .2626 .2379 .24t8 .0301 .0392 .0375

25 .5910 .s698 .5706 .1350 .1378 .t396 .0120 .0165 .0159

50 .5967 .5857 .5860 .0959 .096s .097t .0060 .0082 .008c

100 .5975 .5919 .s920 .0679 .0683 .0684 .0030 .0041 .004c

Supplementary runs of n:200 and n:400 were also performed. The results for

the three estimators become indistinguishable for these sample sizes, however, and are

therefore not worth presenting. The interesting point is that for moderate to large sample

sizes, any one of the three techniques will give the same estimator. This may have

implication for practitioners of both schools of thought.

In estimating ø¡:3.0 in Table 4.2, the three methods provide quite diffe¡ent

results for the smaller sample sizes. Although the average of the mle estimate over 1000

samples was below the true parametric value, both Bayes approximations overestimated

ür, lvith fte T-K rnethod very slightty higher than Lindley's. The psitive difference
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between the mle and the Bayes approximations remains for n as large as 100, although

by then the two approximations become indistinguishable from one another. The

posterior variance is clearly underestimated at the small sample size and should not be

given any credence. In terms of precision, the mle is a clear winner for the small sample

sizes although the root mean square error for the Bayes approximations becomes smaller

than that of the mle for the larger samples.

Results for o2 in Table 4.3 arc comparable to those for ø1. The Bayes

approximations actually look to be closer on average to the true parametric value of

0z:6.0 than the mle, but again for larger samples the results converge.

In estimating p:0.60, the Bayes approximations exhibit greater precision (in

terms of root mean square error) than the mle for the n:10 samples. On average, the

mle is closer to the true value, however. The underestimation of the posterior variance

for the Bayes approximations is not as clear for the smaller samples as it was in

estimating thepopulation standard deviations. This information is important to those who

might use the approximation and assume that as long as the posterior variance estimate

is positive, it must be appropriate. Traditionally p is the most difficult parameter to

estimate for the bivariate normal. This can be reinforced by the observation that the

results for the three procedures do not converge by the n:100 sample sizc. The

supplementary runs did show, however, that the results are identical for n=200 and

larger. For the smaller sample sizes the Bayes approximations tend to markedly

underestimate p relative to the mle.

The posterior sampling distributions for the two Bayes approximations are

virtuatly identical, even for the small sample sizes, so only the pictures of the Lindley
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estimator and the mle has been given. Figures 4.1 and 4.2 provide the histograms for

the mle and Lindley approximation of o, respectively for the 1000 samples of sizæ n:1.0.

Both distributions are positively skewed with Lindley's estimator evidencing the greater

variability seen in Table 4.2. The Shapiro.Wilk test supports a lack of normality for

both posterior sampling distributions.

Figures 4.3 and 4.4 give the histograms for the same estimators with the 1000

samples of size n:100. These trpo distributions now appear normal, a hypothesis which

is supported by Shapiro-tü/ilk testing. The difference in variability between the two

estimators seen for the small sample size is no longer evident.

Figures 4.5 through 4.8 give the same figures for the ø, parameter. Surprisingly,

the smaller sample size histograms do achieve normality (again by Shapiro-Witk). Other

than this surprising result, the comments regarding or are applicable.

The histograms in Figures 4.9 through 4.12 deal with the results for the two

estimation methods on p for n:10 and n:100 sample sizes. Most noticeable is the shift

in shape from the low to moderate sample size from an extremely negatively skewed

distribution to ones approaching normality by the time n:100. The dist¡ibution is still

significantly different from that of a normal distribution (p-vatue of 0.0001). The

instability of estimating p is evident in the fact that negative estimates are found even at

the larger sample size for the parametric value of p =Q.69. The superior precision of the

Bayes approximations for the smaller sample size mentioned in Table 4.4 is evident in

that Lindley's method actually seems to produce estimates closer to the true p value more

often than the mle for the 1000 simulated samples from Figures 4.9 and 4.10.

The n=25 and n:-50 histograms are rnerely gradients atong the continuum from
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n:10 to n:100 and so for the sake of brevity are not presenüed here.

4.7 Summarv

-

In this chapter, the most general case of the biva¡iaæ normal dishibution was

studied and the nvo Bayes approximations of Lindtey and Tierney-Kadane compared to

the mle. The Bayes estimators were set in an a priori environment of noninformation

and so are as hampered as they could possibly be. If accurate prior information is

available, it is reasonable to expect that the Bayes approximations would perform even

better.

There is no clear winner between the two schools of estimation for the bivariate

normal distribution. For some of the parameters and certain sample sizes, the mle has

some advantageous properties. For others, the Bayes approximations are seemingly more

precise. A most encouraging finding is that for samples of n:200 and larger, the two

methodologies converge so that no matter which path is chosen , the destination reached

will be the same in both cases.

There is little to choose between the two Bayes approximations in terms of

precision and accuracy. As was demonstrated, however, Lindley's approach opens the

door to algebraically closed form solutions fo¡ the Bayes estimator whereas the Tierney-

Kadane method becomes arduous and intractable. The end result would seem to favour

Lindley's approach for those practitioners who do not have ready access to powerful

numerical routines.
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CHAPTER 5: PREDTCTT\rE rNTERvar,S FoR a MXTIIRE oF EXF0NENITTaL
FAILT]RE.TIME DISTRIBUTIONS

5.1 Introduction

In this chapter, predictive inærvals of a future observation for a mixture of

exponential distributions with time-censored sampling are studied assuming inverted

gamma priors. Effects of the prior information and sample size on the predictive interval

are discussed. Distributional properties of Monte Carlo sampling distributions of the

predictive intervals a¡e examined and Pearsonian curves frtted. A portion of this work

has been published in Statistics and Probability Iætters by Sloan and Sinha (1991).

Consider a mixture distribution F(t¡ : pFr(t) + qFr(t) where e : l-p and

(5. 1)

and p is an unknown mixture proportion for the two component distributions. Situations

where this model applies arise often in life-testing problems. For example, a

manufacturer may produce a brand name line as well as a generic product, each with a

different life expectancy.

Sinha (1983) provides an extensive list of such applications. Cheng, Fu and Sinha

(1985) use an empirical procedure to estimate the systemic parameters and reliability

function. Titterington, Smith and Makov (1988) include a considerable amount of work

on the mixture of exponentials model from a theoretical perspective in their monograph

on mixture distributions. They deal not only with various estimation approaches for

finiæ mixture models, but also give algorithms for identifying the number of com¡ronent

distributions present.

The model dealt with in this chapter is slightly more complicated than simply

F,(t) = l-êxptä] ú20, 0ì0, i=!,2
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drawing observations at random from the mixture density 5.1. The mathematicat

complications introduced a¡e a ¡esult of the timing and tlpe of information that is

available in an applied sampling environment. The model which is the focus of this

chapter first appeared in Mendenhall and Hader (1958) involving observed failure times

of ransmitter-receivers until a specified time T had elapsed. When brought in for

maintenance, the items we¡e further checked and classified into two groups - confirmed

and unconf,rrmed failures. Tltus, only once a failure had occurred could an item be

attributed to the appropriate subpopulation. Time censoring occurred due to policy

conside¡ations which set an upper limit on the time until replacement became mandatory.

We assume that n units from the Mendenhall and Hade¡ (1958) mixture model

(5. 1) are subjected to some life-testing experiment and let r = (x1,x2,...,Ð be the failure

times of these units. We further assume that n components of the same kind are to be

put into future use and let y : (y,,yr,...,yJ be the future tailure times of these

components. The predictive distribution and the corresponding prediction interval of the

failure time y are studied on the basis of previously observed life test data x whose

parent population is the mixture density (5.1) using a Bayesian approach.

5.2 Algebraic Preliminaries

If the experiment involving the n com¡ronents subjected to the life-testing

experiment were allowed to continue until all items failed, the mixture in the sample of

the two subpopulations (i.e., n, and n) would be known. In most situations, however,

this approach is impractical as the experiment could continue for a very long time.

Tlpically, censoring is introduced after some predetermined time T. At time T, only r
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of the n items will have failed, leaving n-r items still working. The r items that fail by

time T can be attributed to their respective subpopulations. Hence it is known that the

r failed items can be separated into r, and 12 iæms from the respective subpopulations.

When the remaining n-r items will fail and the mixture of these items is unknown. As

such there is no way of knowing n, and nr, beyond the relation 0 ( nr,n, ( n-¡.

The likelihood function must then take into account all possible combinations of

the subpopulation mixture for the remaining n-r items. t t -h denote the failure time for

the j* unit belonging to the iú subpopulation, j : L,2,...,r¡i i : L,2 and ! : {t,.¡lj :

L,2,...,f¡l i : 1,2) so that r, I fz : r censored failure times are observed.

Mendenhall and Hader (1958) show that in such a sampling situation, the

likelihood is given by

L (p, 0r, 021 trrr...,tvJtrr,...,tz,,,f) c

exp ( -f tr,E,* r (n-r-k) J -åtrrtr+ry1¡r2

2

l_

'r'00 Ð 
(";')"n-r'-knr"+k

where

E, = f,3
i=t r¡

i=r r2 (s.2 )

The complex likelihood function (5.2) is due to the fact that the sampling

environment involved in this chapter (and chapter six) is not simply drawing a random

sample from a parent population that is a mixture distribution. The environment is, in

fact, complicated by censoring and additional information regarding attributability to the

appropriate subpopulation. The following detaild derivation of the likelihood ñrnction
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involving a mixture of exponentials parent population applies without loss of generatity

to the Weibulls situation in Chapter six. This discussion follows the logic of Mendenhall

and Hader (1958) and Chapter four of Sinha (1986).

Assume n items subjected to some lifetesting experiment which is ærminated after

some predetermined time T. Consider the two subpopulations spr and sp, mixed in

unknown proportion p and define q:l-p. Further assume that f,(x I 
g,) and fr(xll) are

exponential density functions such that

as

(s.3)

The population cumulative distribution function and density function are defined

F (t,) =pFt(t) +q?r(t) and f (t) =pf t(t) +qfr(t)

r,(xls,¡=*,.*[-ä] , o,>o, í=L,2.

(s.4 )

respectively.

Suppose that after the experimental termination time T, r units are observed to

have failed, leaving n-r units still working at time T. It is assumed that once an item has

failed it can be attributed to the appropriate subpopulation spr or sp2. Thus, further

information is gained from this sampling environemnt in that it is known that the r units

which failed befo¡e time T are comprised of r, units from subpopulation sp, and r, units

from subpopulation sp, such that r=rr*rz.
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bt r,i denote the failure time for the j* unit belonging to the i6 subpopulation spi

such that i=1,2i i:|,2,...,r,. The observed sample is hence summarized as

t = {tgli=L,2ì j=!12 r...rT¡} = {t¡ ¡ty2t...ttv,ì trptzzr...rt4}

As per Mendenhall and Hader (1958), the additional information about the

attributability of each failed item to the appropriate subpopulation produces a multinomial

sampling environment. Specifically, given a sample of n units, the probability of r, units

from subpopulation sp, failing, rr units from subpopulation sp, failing where the failure

times are less than or equal to T, and n-r units surviving is derived from the multinomial

distribution to be

pr(r,r,n-rlnl = '' ,lerr(Ðf',1ørz(nl\F-r(r) fn-, .' rrlrr! (n-r) . -

Furthermore, the conditional density of obtaining r¡ ordered failure times from a

particular subpopulation sp¡ ,given r, and the fact that all the units failed before the

censoring time T is

\
r,!II r1tü)

Pr (t,r,ta,...,tr,lrrì tÉT) = ;l=t .

lr,(r) ]n
, i=L 12.

Combining this information produces the Mendenhall and Hader (1958) liketihood for the

sample based on the mixture population and the info¡mation from this specialized

sampling environment as

L(p,0t,02lt,n = *- p^qrfrrt(tu)frrrËz¡) t-F ßl fn-, .(n-r)!- i=t j-l
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More specif,rcally, this can be written as

L (p, 0,, 
'ztt,r) 

n r,,n.rt[å""n 
f fiilS [å "*n l?]]

' 
[t [ä".' lt].å"* lt]]",]"

which simplifies to (Sinha, 1986, page 104)

,*ffi"."[+]"."f+]
. 
Þ"*nfä]."""n[-ä]]"'

rt

Expanding and definin , 
=,=Ð='r,' 

, for i=LÅ produces

L(p,oy,o2lt,r) - ffi"*[_+ +)
' ä [";')ø"*n I iÞ"--*"*p t- 

qPI
Finally, collecting like terms together under the summation sign results in

L (p, 0 r, 02lt ,r¡ e,

ñä ( ";' )" 
n - rz-k 

nrz+ 
k 

"* f -å t',t + r ( n - r - k ) I fiV ;t,., xl)

which is the likelihood function (5.2).
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The choice of a prior dishibution must now be addressed. Assume a uniform

prior distribution for the unknown mixture proportion p. Raiffa and Schlaifer (1961)

suggest an inverted gamma distribution as an appropriate prior for the exponential

parameters as follows

9¡(0,1*7þ"* f l,l 0r>o ì aí,bí>o for Í=L,2 (5. s)

Titterington, Smith and Makov (1988) support the use of such a conjugate prior (5.5)

without providing a specific recommendation for the mixture of exponentials problem.

Further, assuming prior independence of the three parameters, the joint prior

distribution for 0 : (p,0r,0r) is

(s.6)

The joint posterior distribution is given by

fl(p, 0t,021 t) o

tF;'Þ
exp f tr,E,*r @-r-k) *"i - 

älrS,r+rk+¿r1n-rr-knr.+k

T';*b"r gn*u"t

This posterior distribution will be asymptotically normal (Titterington, Smith and Makov,

1988) although only for considerably large samples. The Bayes predictive density of a

future observation y is defined as the posterior expectation of the density function of y



and is given by

h (ylr) c flJr ul p, 0,, 0r¡fr1p, 0 t, 02lt¡ apaï ral,

which, on using (5.a) and after some algebra reduces to

h(vlt) =

I r, t, + ( n - r - k ) T + a J' r', ç r r-t r* ltT + a r+ y ¡ 
r,*b.'l

where

B (n-rr-k+l r¡r+lç+!)
Irrtr * @ -r -k) f +ar ]'Ìu, qrrEr*yT + ¿r¡',*b,

The 100(1-a)% predictive limits (L,u) are solutions to the equations

"å(";')
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(5.71

(5.8)

(s. e)

(rz*b) B (n-rr-k+l, y'r+ft+))

c, = nF;')

Læ

lnrrlgav 
= 

)nelË'tdy 
= Ë

(rr+Þr ) B (n-rr-k+), ¡r+lç +l)
I rrE, + @ - r - k) T + a f y J','b "r ¡ r lt 2+ kT + ¿r) tz'b.
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Using (5.8) and (5.9), we obtain equations for the predictive limits L and U as

IrrE, + @-r -k) T +ar+¡,1r,'b,

B (n-4-k+t,¡r+lç+))

-

[r,Er+ (n-r-k) T1r"b, ¡rr-tr+*f +ã2)r'*b" frj'+k?+a;+L)rfb,

and (s.10)

g = cr F;')- É=0' '

1

'-k)ÆFIrrtr+ (n-

a
z = #F;')

B (n-rr-k+l , y'r+lç+l)

I r, t, + (n -r-k ) T + a i'Ìu, ¡ rrtr*kT + ¿r+g 1r"'b"

which can be solved by an iterative linear search technique.

5.3 Sample Generation

Sinha (1983) obtained Bayes estimators of the parameters and reliability function

for the mixtures of ex¡ronentials model and used Mendenhall and Hader's (1958) aircraft

components data as an example. The dataset had n:369 observations censored at time

T:630 hours of operation, producing rt:2|8 conhrmed failures and rz:107

unconfirmed failures. Inspection of the sample histograms raised some question as to the

fit for the assumed model to this data.

B (n-rr-k+z , r2+k+L')

¡trtr+kf +ã21'fb,

B (n-rr-k+2 , r2+k+L')

I r rt r+ 
yy + ã2f r,'b, 

I r,E, + @ - r -k ) T + ¿, +g 1r,'b,
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To test the validity of the mixture of exponentials model producing such a sample,

a goodness of fit testing was initiated. The lrcwer of the usual chi-square test is known

to be suspect for small samples, so empirical distribution function or EDF tests as

described by D'Agostino and Stephens (1986) were used. The Anderson-Darling egsa)

statistic and the Cramer-von Mises W2 statistic have been recommended for testing

exponentiality from a power standpoint. Further, if we can totally specify the pdf of our

mixture population (5.1), we can perform an omnibus test on the combined sample to

investigate the assumption of our hypothesized model. Thus, we can directly test

whether or not it is likely that, as a single entity, the combined samples did arise from

a population comprised of a mixture of two such exponential subpopulations. Note that

the omnibus test will only be possible for computer generated samples due to having

specified the model parameters for sample generation. These tests were conducted via

algorithmic implementations in BASIC on an IBM PC microcomputer. These programs,

collectively named EDFff, are obtainable from the authors on request.

Using the Mendenhall and Hader (1958) data, the test for the unconfirmed failures

sample found that the exponential model was supportable, producing a p-value of .143.

The test on the unconfirmed failures data resulted in the rejection of the exponential null

hypothesis þ-value of 0.000a). Because we cannot completely specify the mixture pdf

parameters for this sample, we cannot perform the omnibus test precisely. Using the

parameter estimates given by Sinha (1983), we can, however, carry out the process.

This results in further evidence that the mixture of exponentials model is somewhat

questionable for the Mendenhall and Hader dataset, producing a p-value of 0.006.

To investigate this ariomaly a bit ñ¡rttrer, Figure 5.1 depicts the individual
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subpopulation histograms for the Mendenhall and Hader dataset. The confirmed failures,

histogram does evidence marked departure from an exponential distribution and is no

doubt the source of the significant result indicating a lack of model frt. The unconfirmed

failures' histogram seems much more likely to have arisen from an exponential process.

This poûentially confounding effect makes it necessary to generate samples from

a mixture distribution to ensure our results are not compromised by the lack of model

fit. We will produce results for the Mendenhall and Hader dataset for completeness.

The generation of samples from a mixture of distributions was outlined by

Marsaglia (1961). It proceeds as follows:

1. Generate u from U(0,1).

2. If u (p then generate a deviate from the first exponential

population by !¡ : 0,(log p - log u);

othenvise, generate a deviate from the second exponential

popularion by h : 020og(t-p) - log(u_p)).

The use of the inverse cumulative density function approach does provide a mechanism

for generating random va¡iables from a distribution with pdf (5.1). For further details

see Kennedy and Gentle (1980), pages 72-75.

The results of this simulation approach may be more representative than those

seen in Sinha (1983) because the subpopulation sample sizes are not fixed. It is not

realistic to assume that the experimenter would know, in advance, the makeup of the

sample in terms of subpopulation representation. If this were the case, there would be

no need to model the situation as a mixture distribution and instead it would be more

efficiently dispatched by individual estimation on e¿ch subpopulation.
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using the above algorithm, test samples of size n : 100 and n : 25 were

generated with 01 : 50, 02 : 40, p : 0.75. The pdf of the population is given in

Figure 5.2, having the appearance of an exponential distribution with an elongated tail.

The goodness of fit tests desc¡ibed above were used on both the subsamples and

combined samples, producing pvalues in excess of 0.6 in all cases. The uncensored

samples are given below. Again it is important to stress that although the complete

sample is generated, it is an artificial construct of the generation process. The sampling

environment described at the beginning of this chapter is still assumed to be the process

under which the sample information is obtained.

Uncensored Sample #1 (n:100)

First Subsample:

0.2087 2.2476 2.8014 3.0100 3.8054 4.7702 5.1446
6.4945 8.&56 9.6344 9.9463 10.4170 10.6014 11.4011
1r.6312 13.677t 13.8988 14.9665 15.2257 15.6106 18.4381
2r.5347 23.5108 24.0437 24.5634 27.3509 27.1656 31.5811
33.7771 34.4975 34.7668 35.5825 40.3650 4r.4672 43.1305
43.6357 45.1505 45.5953 48.2052 48.6234 48.9956 49.0108
50.7063 51.5283 56.7423 60.7091 &.2133 &.7181 65.1220
66.2278 71.6285 79.6639 80.3535 82.7512 88.6533 90.6015
99.4277 99.5481 103.4692 104.8867 111.6388
t24.9026 131.3938 t57.7569 200.8856

Second Subsample:

r.t076 2.5084
6.9616 7.7776
15.0578 t5.7602
24.2991 29.9614
67.7229 67.8506

2.5325 3.0741
8.5718 9.8603

16.0200 20.2314
30.6392 33.9987
74.2290 81.6555

5.1013 s.9654
13.2814 13.6507
21.8975 23.27t6
45.8027 47.4253
99.8087 t84.8992

4.28t5
12.8670
20.7096
44.9577
93.3770

The computer produces rr : 65, nr: 35, 1t : 47.314,ir. : 33.060, information that

is considered as unknown in our sampling environment. Censoring at time T:100, the
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sample information obtained is r, : 58, 12 - 34,î = 36.905,1r: 28.595

Uncensored Samole #2 (n:25\

First Subsample:

6.1886 8.7778
26.3979 27.2176
38.4326 46.7884

208.2t73

9.t949 9.7326 11.5059
28.7843 30.0532 3t.0214
56.24t6 91.1947 101.0766

13.0639 13.LL45
32.5078 36.LLL6

110.0240 131.0561

Second Subsample:

t2.4904 49.0183 84.0717

The computer produces the additional (and considered to be unknown) information of n,

= 22, îz:3,ir : 48.497,ir: 48.527. Censoring once again at T:100, the sample

information actually obtained is r, : L8, 12 : 3,1t : 28.686,1 : 48.527.

Once appropriateness of model selection is established for each sample, censoring

then takes place by adding a third algorithmic rule as follows:

3. if qj produced is in the inten¿al [0,T] then increment r, by 1,

otherwise we consider this observation to be censored.

5.4 Effect Of Prior Distribution

An important aspect of Bayesian inference is the degree to which the prior

information impacts on the resultant posterior distribution. In this paper we are more

interested, however in the related impact on the predictive distribution. We examine the

effects of altering the inverted gamma prior (5.4) parameters (a,,b,,ar,b) for our

moderate n : 100 size sample and our small n :25 size sample in Figures 5.3 and 5.4

respectively, censoring once again at T=100. Each plot has six predictive density

functions, produced by varying the prior parameter from zero to 50 in steps of 10. The
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vertical axes on the four plots are uniformly scåled so that comparisons can be made.

Although the impact of the prior distribution is more pronounced fo¡ the smaller sample

size, the effects are the same. Altering the 4 parameters has very little effect on the

predictive distribution. From the prior formula it can be seen that any change in the 4

pÍLrameters is dampened by the size of 0 parameters. The impact of the b¡ prior

specifications is clearly demonstrated in the figures as a result of being in the exponent

of the denominator. Increasing the value of the b, parameters causes the predictive

distribution to become increasingly steeper. Without doing any calculations, it is clear

that the predictive interval will become shorter as the b¡'s are increased. With this in

mind, it is important to have meaningful prior knowledge of the parameters, especially

the b¡'s. If no information is available, it is perhaps advisable to set the prior parameters

all to zeto, in which case the usual uniform prior is the result (Jeffreys, 19g3). This

could be said to be a state of ignorance, or a noninformative prior.

A modified regula falsi approach @ice (1983), page 222) was used to solve the

system of equations (5.8) and obtain 95% prúictive intervals for a future observation,

under the various prior parameter settings fo¡ the two given samples. Typically, ten

iterations were necessary for algorithmic convergence. Results are presented in Tables

5.1 and 5.2.
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Table 5.1: 95% Predictive Intervals And Width ô For Various Prior parameters

lN:100. T:1001

Table 5.2: 95% Predictive Intervals And \ù/idth ô For Various Prior par.ameters

lN:25. T:100)

(L,U)
ô (10,10) Q0,20)

(br'bJ
(30,30) (40,40) (50,50)

iar, ar)
:(10,10)

(.67, t25.62)
124.95

(.46,94.37)
93.91

(.35, 75.60)
75.25

(.28, 63.05)
62.77

(.24,54.09)
53.84

(20,20) (.69,126.82)
126.t3

(.48,95.25)
94.77

(.36,76.30)
75.94

(.29, 63.&)
63.35

(.25, 54.58)
54.33

(30,30) (.71, 128.03)
127.32

(.49,96.13)
95.&

(.37, 77.00)
76.63

(.30, &.23)
63.93

(.25, 55.09)
54.84

(40,40) (.73, 129.25)
t28.52

(.50, 97.01)
96.51

(.38, 77.71)
77.33

(.31, 64.81)
&.s0

(.26,55.59)
55.33

(50,50) (.74, 130.48)
129.74

(.51, 97.89)
97.38

(.39,78.4t)
78.02

(.32,65.40)
65.08

(.27, 56.09)
55.82

As expected, shifts in the bt parameters cause much mor€ ¡novement in the

predictive interval than shifts in the q parameters. Because the predictive distribution

(L,U)
ô (10,10) (20,20)

(br'bz)
(30,30) (40,40) (50,50)

'.\r a,z)
:(10,10)

(.86, 140.59)
139.73

(.74, 122.&)
121.90

(.64, 108.97)
108.33

(.57,98.13)
97.56

(.51, 89.29)
88.78

Q0,20) (.87, 141.14)
140.27

(.74, 123.10)
122.36

(.64, 109.36)
108.72

(.57,98.47)
97.90

(.51, 89.60)
89.09

(30,30) (.87, 141.68)
140.81

(.74, 123.56)
122.82

(.65, 109.76)
109.11

(.57, 98.82)
98.25

(.52,89.92)
89.40

(40,40) (.88, 142.23)
141.35

(.75, 124.02)
123.27

(.65, 110.15)
109.50

(.58,99.17)
98.59

(.52,90.23)
89.71

(50,50) (.88, t42.78)
141.90

(.75,124.48)
t23.t3

(.66, 110.55)
109.89

(.58, 99.52)
98.94

(.52, 90.55)
90.03
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is unimodal and becomes steeper with larger b¡ values, the length of the predictive

interval decreases. Furthermore, the upper limit of the interval (U) moves more readily

than the lower limit (L) because of the shape of the distribution.

As mentioned previously, setting the prior parameters to zæro is equivalent to a

state of ignorance of the parameters. This produces extremely wide predictive intervals

forboth the n:100 and n:25 samples of (1.Of, L68.24)and (1. L0,214.26) and interval

widths of L67.20 and 213.16 respectively. The effect of sample size on the interval

length is clearly evident here.

The potential effect of prior information can be seen to be equally as important

by setting the b, parameters to the large values of br : l0O and b, : 100 which

produces extraordinarity smalt intervals for the n:100 and n:25 samples of (.3g, 7I.&)

and (0. 16, 41.75) with width s of 71.26 and 4L.59 respectively. The priors are more

concentrated about zero as the Q's increase, since the prior means are 4/(b¡l), . Thus,

choice of the prior parameters has an enonnous impact on the steepness of the ¡esultant

predictive distribution and hence the predictive interval. V/e see dominance of the prior

distributional parameters even in the face of considerable information from the data.

Clearly, this points towards a need for careful selection of the prior parameters for

results to have any relevance to the application at hand.

The predictive density for the Mendenhall and Hader (1958) dataset was obtained

for varying prior parameters, with results analogous to those for our given samples.

Once again the influence of the b, parameters was profound. A lack of prior information,

represented by setting all prior parameters to zero,produced an enormously wide interval

of (L,U) : {7.493, 1157.227). Using the values of {a,, b,) : (10; 50) and
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(az, bù : Q0,40), we get (L,U) : (5.693, 960.205) for an inrerval width of ô =

954.5L2. Using bt parameûers to values assumed to be close to the theta parameters from

the Mendenhall and Hader pâper, we get (a,, b,) = (10, 230) and (az, bù : (20, 190)

and produce a much narrower interval of (3.060, 583.040) with a width of ô = 579.98.

5.5 Monte Carlo Simulation

To more firlly investigate the distributional properties of the length of the

predictive interval (ô), Monte Carlo simulation of samples of size n:25 was undertaken

using prior parameter settings of (a,, b,) : (10, 40) and (ar, br) : (10, 40) with

censoring at time T:100 because these gave reasonable results for the single sample

case. Each sample was tested using the two EDF tests mentioned previously as well as

the omnibus hypothesis of a mixture of exponential populations.

Over the 1000 samples, censoring at time T:100 typicalty censored three or four

of the n:25 observations. This represented a moderate censoring between I2To and

16%. The predictive intervals averaged ô = 55.03 in width with a standard deviation

of 6.77 units. The smallest interval observed was (0.I44,22.176) white the largest was

(0.208, 97.435) and a bæicål (median) interval was (0.L76,54.413). The empirical

frequency distribution is illustrated in Figure 5.5.

The interval produced for any particular sample was largely a result of the size

and makeup of the smaller subsample. Because less information was available from the

second subpopulation (the mixture proportion, p, was set at 0.75), r, could be as small

as a single data point. Even if r, was bigger (averaging 6 points over the 1000 generated

samples), a single relatively large value would inflate the censored sample avrage and
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hence produce an unusually large predictive inærval. This is evidenced by the fact that

the empirical frequency dishibution of the endpoints of the predictive inærvals are

markedly different. The lower endpoint's empirical frequency distribution follows that

of a normal distribution while the upper endpoint's distribution is markedly and positively

skewed (Shapiro-Wilk test for normality p-values of .2619 and .0001 respectively).

The Shapiro-Wilk test for normality (pvalue : 0.0012) revealed that a normal

curve does not adequately represent the sampling disfibution of the predictive inærval

length (ô). It is desirable to be able to find a relatively simple closed-form

approximation to the true pdf because the exact distribution cannot be obtained in closed

form due to mathematical intractability.

Pea¡son compiled a family of probability density functions and established a

methodology, based on observed momental constants, to select a family member curve

from the system that would adequately fit the shape of an empirical frequency distribution

@lderton and Johnson (1969)). The type of Pearsonian curve chosen for a given

empirical distribution depends upon the sample measures of skewness and kurtosis,

typically denoted as pt and pr respectively. Elderton and Johnson (1969) provide a

simple table to choose the appropriate Pearsonian curve based on the values of p, and pr.

Alternatively, one may use a nomograph from Pearson and Hartley's (1966) Biometrika

Tables for Statisticians.

The observed values of p, : .1069 and ßz: 3. 1006 for the sampling distribution

of ô suggest a Pearsonian Type f curve, which for the given empirical frequency
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distribution is

r G) = (2s. 331) (1.=-,*uo)"*'(t-,-=î,,-)"*

wherex = ô -52.939.

(5. 11)

Simpson's rule was used to generate expected frequency counts for comparison

with the observed sampling distribution. This produced a chi-square statistic of

x2 : 8.983 which carried four degrees of freedom. This compares favourably with

x2Ø, .05) : 9.488. Hence the Type I Pearsonian curve fits the empirical sampling

distribution of the.predictive interval length (ô). The shape of the curve (5.11) is

illustrated in Figure 5.6, reflecting a positively skewed distribution. To examine the

effect of prior information on the resultant distribution of the predictive interval length,

several other similar runs were performed varying the b, parameters from zero to fifty

in steps of ten units. The general shape of the empirical frequency distribution remained

the same as depicted in Figure 5.6 with the sole difference being the extent of the upper

tail. As the b, parameters increase, the upper tail elongates due to the effects on the

shape of the predictive distribution seen in the previous section. It should be noted that

the effect of the prior information on the predictive interval length's distribution is not

surprising due to the fact that the sample size used was quite small (n:25).

Further simulations were run with varying levels of censoring. Results were as

one might expect in that the width of the predictive interval increased proportionately

with the amount of sample information lost through censoring.
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5.6 Comolete Samoles

In some situations complete samples become available because no censoring

occurs. Many of the findings relevant to the censored samples case already presented

are directly applicable to the complete samples case. The algebra simplifies dramatically

when censoring is absent however and so it is of interest to consider this situation, if
nothing more than a special case of a censored environment. The formulae of this

section could be obtained by setting T=æ, in the previous section, but the resulting

equations are not obvious. Further insight into the environment is gained by looking at

the problem from a different perspective. With complete sample information, it is

interesting to investigate results for the previously used samples if a noninformative prior

is used. To avoid redundancy, only cursory algebraic work is presented here. Detailed

algebra is found in Sloan and Sinha (1988).

Algebraic work becomes much simpler due to the absence of any combinatoric

terms which were necessary in the censored case. The likelihood is now

r
L(p, 0r, 0zl t,,r...,tn,ì trr, -.,t4) n oi'ni'.*pl 4o"t:o? T

_'t

+:)

where q:1-p.

Since complete sample information is now available and the impact of prior

information was demonstrated in the previous section, a noninformative prior distribution

will be used here to compare the relative importance of prior information versus

moderate censoring. This is the primary reason for examining the complete samples

case,



232

Jeffreys' inva¡iant prior (Sinha, 1983) is

g(p,0r,02') * &
so that the joint ¡rcsterior distribution is

rr(p,ot,oz¡t¡= þ'E')'(t't')oP"'d' . 
f '=l

B (n,+1, rrz+Llr (nr) r (nz) ;i"r g;-.,xP[+ +]
for 0<p< 1 and 0b02 >0.

Following the triple integral form for the predictive distribution (5.7), it is found

that the combinatorics are replaced by beta functions att of which cancel to produce, after

considerable algebra

h(vlt) = #
n, (nr+1¡ (nrt,) n' nz(nz+L') (nztz')

+ (5.12)
(DrEr+Y¡ n''t (nrtr+Y¡+'r

for 0(y< æ.

Proceeding as with the censored samples case, equation (5.9) is used to set up the

system of equations that will produce the 100(1-a) % preÃictive limits (L,u)

+[*.'' ["*] + (n,+1,W)1='-','

(5.13)

#[",.,, ["+l + (n,+1,[*)]= ",,
which can once again be solved by iærative search,techniques.
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We reuse the generated samples from the censored case for the previous section

and constru ct 95% predictive intervals. TTre n: 100 and n:25 samples produce intervals

of (1.0''1, L&.97) and (1.10, 110.09) with inærval widths of 163.93 and 10g.99

respectively. These inærvals are almost as wide as the censored samples using the

noninformative prior parameter settings. This would indicate even more strongly than

before the importance of the prior information, even for a moderate sample size.

Moderate censoring, then, does not impact as heavily on the predictive distribution as the

amount of prior information available.

Monte Carlo simulation was subsequently undertaken for the n:100 sample size

and the 1000 samples from the previous section were used. The predictive intervals

averaged ô:183.21 in width with a standard deviation of 18.45 units. The typical

(median) interval was (1.18, 184.39). The large interval width maintained throughout,

reinforcing the concept that the noninformative prior is more damaging in terms of lack

of information than is moderate censoring.

The momental constants for the sampling distribution of the predictive interval

width were p1:.0377 and pr:3.0957, which are indicative of a normal distribution.

The Shapiro-Wilk test for normality indicated that a normal curve does adequately

represent the sampling distribution (p- .7102). Sampling distributions of both the lower

and upper endpoints follow a normal curve (p-values of .5236 and .3256 respectively).

The complete sample information does at least induce normality to the predictive intenal,

reducing the possibilify of anomalously large intervals. As was seen, however, ample

prior information is necessary to bring the predictive interval's average length down to

a reasonable level.



234

5.7 Summarv

The advantage of prior information is clearly demonstrated in predicting future

observations. In a state of ignorance, using noninformative prior settings, we see that

the predictive intervals become very wide regardless of the amount of sample

information. In such a situation the predictive intervals are likely of little practical value.

With appropriately specified prior information however, the precision with which one can

predict future observations increases dramatically.

In the censored case, the sampling distribution for the length of predictive

intervals is positively skewed and nonnormal. If one of the subsamples is very small or

severely censored, the result is an unduly large interval. This causes the tail of the

sampling distribution to be elongated. When complete sample information is available

the interval length distribution tends towa¡d normality, with the extremely large intervals

of the upper tail from the censored case being brought back into line. As one might

expect, the predictive intervals become shorter when complete sample information is

available. The greater the degree of censoring, the wider the interval becomes. The

potential for dominance by the prior information is still present, however.

The author is indebted to a referee for suggesting the investigation of a conjugate

prior distribution. Although the general shape of the predictive distribution and the

sampling distribution for the length of the predictive interval were comparable using a

noninformative prior, the effect of the prior distribution, as seen above, was impressive.

Algorithms used to produce predictive intervals in both the censored and

uncensored case were included, under the name PREDSIM, in Press' (1989) ¡eview of

statistical softwa¡e available for Bayesian analysis.
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CHAPTER 6: PREDICTTVE INTERVALS FOR A MIXTI]RE OF WEIBI]LL
FAILURF-TIME DIS TRIBUTIONS

6.1 Introduction

In this chapter, predictive intervals of a future observation for a mixture of

Weibull distributions for complete and time-censored samples are studied assuming vague

prior information. The sampling environment once again follows the definition of the

previous chapter from Mendenhall and Hader (1958). Effects of the sample size and

degree of censoring on the predictive interval are explored via Monte Carlo simulations.

A portion of this work has been published in the South African Journal of Statistics by

Sinha and Sloan (1989).

As described in the previous chapter, one often encounters situations where the

underlying distribution is not homogeneous, but may consist of two or more

subpopulations mixed in unknown proportions. Classical examples typically involve

electrical components manufactured under different processing conditions or

specifications. After having been sampled, each item of the population is attributable to

the appropriate subpopulation. The mixture proportion p is an unknown entity.

Titterington, Smith and Makov (1988) provide a detailed exposition of the theory and

application of such mixture distributions.

The subject distribution of this chapter is a mixture of two Weibull

subpopulations. The components under study are assumed to have lifetimes t, which

follow a composite distribution such that

F (t) = pFt( t) + ( r -p) Fz(t)
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where p is an unknown mixture proportion parameter and

Fi') = l_êxPri]

which produces the corresponding mixture density function

f(tlpre1,a2,er,0z) =

t relterr 0rr 0r>o o<p<1 (6.1)

A considerable amount of wo¡k has been done involving this model. Sinha

(1987b) provides numerical algorithms for estimating the parameters involved

(p,a1,u2,01,0r,) under a Bayesian framework. Lawless (1982) gives maximum likelihood

estimators of the parameters as well as tests of hypothesis for investigating equivalence

of the scale parameters for the two subpopulations. Cheng and Fu (1982) give a

weighted least-squares alternative to maximum likelihood estimation of the parameters

for the mixture of two Weibull distributions. McCool (1975, Lg79) studied rù/eibull

distributions and the effect of censoring.

Recall that the Bayesian predictive distribution of a future observation (typicalty

a component lifetime) Y is defined as the posterior expectation of the density function

h (y lt ) a 
fjffJt u I p, Q1 ¡ o.2' e t' 0 zlfr ( p t Q1, ar, 0 r, 0 rl t) dpdc.rdard 0 F 0 2

where II is the joint posterior distribution of the parameters.

Predictive distributions under industrial settings have been extensively studied.

Englehardt and Bain (1979) provide maximum likelihood based prediction limits for the

single sample lVeibull distribution Predictive distributions and intervats åave been

fft"-'""nf i).ry¿q-'1exp[#]
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derived for related lifeæsting distibutions such as the inverse Gaussian (Chhikara and

Guttman, 1982) and the two'parameter exponential dishibution (I^awless, L977).

In this chapær n units are assumed to be sampled from the mixture of V/eibull

distributions model (6.1) by being subjected to some life testing experiment and letting

Ã=(xr,x2,...,Ð be the failure times of these units. The complications of the Mendenhall

and Hader (1958) sampling environment are also assumed to be present. Further assume

that an additional set of n components of the same kind a¡e to be put into future use and

let y:(y1,!2,...,y) be the future failure times of these components. The predictive

distribution and the corresponding predictive interval of the future failure time Y of a

single component on the basis of the previously observed life test data x wilt be derived

using a Bayesian approach. Although the example of two subpopulations will be used,

these results are directly generalisable to any arbitrary number of subpopulations.

6.2 Comolete Samoles Case

t t -Li denote the failure time of the j* unit belonging to the iú subpopulation so

that the observed sample drawn from the mixture of V/eibull's distribution (6.1) may be

represented by !: {q, lj: L,2,...,n,; i:L,2} and be thought of in terms of two subsamples

that are identif,rable a posteriori as being comprised of n, and n2 components respectively.

As in the previous chapter, the attributability of the failed components to the

appropriate subpopulation alters the likelihood function so that it is more than merely a

product of the mixture density function 6.1. For further details the reader is referred to

the discussion in Chapter five.
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Due to the complex sampling situation, the liketihood function is more

complicated than merely taking the product of the mixture density 6.1. The process of

deriving the likelihood function described in chapter frve is directly appticable here since

the sampling environment is the same. Hence, given this complicated sampling

environment, the likelihood function for this sample is

L(P,Q1¡d2,0|,02l!.,r,t-WÀi,-,À}-'expL+]"-|u*]

(6.2)

where

I, = II,Nj=r

As usual with Bayes ú*ry, a decision must be made about the form of the prior

distribution of the parameters. Following Jeffreys (1983), a state of vague knowledge

will assume to exist about the five parameters. Appropriate choices under this assumption

for the mixture parameter p and the shape parameters o, and d.2 ãrè uniform prior

distributions. Specifically, the marginal priors are

p-U(0,1), a,-U(0,æ) for i=L,2.

Further, Jeffreys sets the scale parameter (0b0) priors as

9t( 0,) *ä tor í=L 12.
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Assuming prior independence of knowledge regarding the f,rve systemic parameters, the

joint prior distribution is simply the product of the marginals such that

g(p,e1¡e2t0r,0ù * ,i (6.3 )

Combining the likelihood (6.2) and the prior distribution (6.3), rhe joint posærior

distribution is

fI(p, ertd2,0r,02lËl o p"' ( 1 -p) n'*l'or*Ài'-tÀl-t
[,, na I
I E',t Ðúl

""n[=-''I +)oin'07"

(6.4)

The predictive density formula was given in the previous chapter as the integrated

product of the posterior distribution and the parent distribution. Substituting the

appropriate forms (6.a) and (6.1) respectively, the predictive density function of a future

observation y may be found, after some algebra, to be h(y!1) such that

l-o
h(vlt) = ol",(nr*l),J 

#%oo,.J- #o",L F"-.""J F"J
+nz(nz+L"JËä""'j6 Or)

l
(6.5)
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where

t- æ \o'-t r. 6 r( I
6-r = (n+2) I [- ^l-'"i' oo, i ^?-'"? aorl

L.' Þ'4"' 
'J 

Þ'4" l
Unfortunately, equation (6.5) leaves six integrals which do not lead to closed

forms. Numerical integration routines must hence be employed to evaluate the predictive

density function. Producing the predictive distribution thus becomes a computer

intensive exercise as it is necessary to evaluate six integrals at each point along the

distribution.

The next step is to produce an equal-tail 100(1-a) Vo prúictron interval [L,U].

This adds one more numerical integration step to the process as L and U are solutions

to the equation

Lø

å =Jhult)dv= 
)nwlqav

(6.6)

To produce the predictive interval a numerical integration of an already numerically

integrated function must be performed.

6.3 Censored Samples Case

In most practical life testing applications it is impractical to perform the

experimentation until the nú failure time is observed. Time censoring typically is

performed so that a censored sample of r component lifetimes is observed. As before,

each failure time can be attributed to the appropriaæ subpopulation after the unit has
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failed so that the r failure times can be dichotomized into r, and 12 observations from the

two subpopulations respectively. Information regarding n, and n, is now unavailable and

all that is known is that n-r components survived to time T. These n-r items are not

attibutable to either subpopulation and as such must be represented only by the

knowledge that they are drawn from the mixture population density 6.1. The sample can

now be described by t= þ¡,tp, . . . ,tþ,ì tzt,tzz, . . . ,tu,\, ta.T.

Incorporating the Mendenhall and Hader (1958) approach to this sampling

environment once again, the likelihood function is obtained as

. 
þ.."n f ä]. ( r-p) 

""n [-äl]"-'
with \ defined as above, except now the product represents a product over the non-

censored observations.

The censoring has no impact on the prior information, so the posterior distribution

is found in the same manner as for the complete samples case, but produces a more

complicated result of

L (p, e1r e2r 0 r, 021Ê,r'l - W\i,-ttrf-'extf +'+

II(P,Q1¡Q2t0|,02lt,r)"WH("'')"n-k_rzç,-o,,-l

1,, n I
I E ti- (n-r-k¡7* ftfi+xr%l

'expt t
Again, combining the posterio¡ and parent distributions and performing the tractable
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integrations involving p,0, and 0, the predictive distribution of a future component

lifetime is given by

h(ylL,rt = %( ";t)" 
(n-k-rr+L,rr+k+1¡

u"'^J

6.4 Examole

I-a.wless (1982) contains an example dataset for the mixture of Weibull's model.

. 
fr, 

(n-k-rr+r,,J'

L

Àf-tci'.1"*-t )rl-1a?' n 
==do,fn

D'i
k'=t

ß;
þ.r

+ r2(r2+k+L) f
oJ

f'
,jI

+yot

-do..
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where

n-r
Cr = (n+2)Ð ( ";tÞ (n-k-rr+L , rr+k+1¡

l- @ .c.-l r. o -e-l r- I. | [' Àî'-'o'i oo, î ^7-'":; aorl

f' þ".r"-'-*r'*]n 
'or 

þ'r.-*) l
The prediction interval is again intractable by any means but numerical integration and

is the solution to the system of equations (6.6). Naturally, the censored case involves

a much more complicated expression than the complete samples case. To evaluate any

point on the predictive density function six integrats must be numerically evaluated for

each term of the summation running from zero to the number of observed failure times.
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Failure times for twenty specimens subjected to accelerated life æsting were obsened,

being comprised of ten specimens from each of two t¡pes of polyethylene cable. An

underlying Weibull process was a reasonable assumption for the lifetime distribution.

Type I: 5.1, 9.2, 9.3, 11.8, 17.7, 19.4,22.1,26.7,37.3, fl.O

Tlpe II: 11.0, 15.1, 18.3, 24.0,29.1, 3g.6, 44.2,45.1, 50.9, 70.0

It would not be reasonable to assume the distribution is a singular Weibull process.

Clearly, the Type II dataset has a longer average lifetime, substantiated by an average

sample lifetime of 34.6 in comparison to an average of 2I.86 for the Type I insulation.

To assess the assumption of Weibull parent populations, empirical goodness of

fit tests @'Agostino and Stephens) we¡e used. Tests were performed on each subsample

to confirm that each was likely to have arisen from a Weibull process (p-values of 0.47

and 0.92 respectivelY). An omnibus test of the ove¡all mixture of Weibull's model (6.1)

was also done to verify that the model was appropriate for these data (p-value of 0.gg).

These tests were developed and implemented in the Microsoft BASIC language under the

program name EDFIT and a¡e available on request. Parametric values were not available

for the given samples so maximum likelihood estimates as given by Lawless (1982) were

used in the application of the empirical goodness of fit test procedures.

Construction of the predictive distribution is made difficult by the fact that the

integration involving the systemic parameters was intractable. Since in most applied

situations, the true value of the parameters will be unknown, it is necessary to estimate

these entities to be able to construct the predictive dist¡ibution. As with the empirical

goodness of fit tests, maximum likelihood estimates of the parameters are substituted for

parametric values.
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Another practical consideration arose in the computer implementation of the

previous algebra. There are several parameterizations of the Weibull model, all of which

are equally valid mathematically, differing only in the way in which the parameters are

defined. For certain algebraic conveniences or intuitive applications, for example, it

might be useful to define a scale parameter 0 as p:gt. This minor algebraic

consideration can have implications when computers enter the process and accuracy

becomes a concern. For this model, parameterization is critical to the accuracy of the

results due to the necessity of numerically integrating a large number of functions for

each point on the predictive distribution.

In implementing the parameterization seen in previous sections, it was found to

be numerically inconvenient, leading to consistent overflow and underflow conditions,

even for small sample sizes. Although correctable, whenever such a situation occurs in

programming, some degree of accuracy is lost.

A paramete¡ization due to I¿wless (1982) turned out to be much better suited to

numerical wo¡k. The difference lies merely in the definition of the 0 scale pa¡ameters.

The l^awless form defines the scale parameter in terms of the algebra of the previous

section as 0'. This minor change does not alter the atgebraic results, but does make for

more practical computer implementation because it reduces the amount of exponentiation

work required by the numerical integration routines.

As an illustration, for the given sample the mle's under the Lawless

parameterization are

ãu=L.5L, ã,u=2. LL, Ao=24. 4O, A¡t=39.25

whereas under the original parameterization the scale parameters are much larger.
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speciflrcally, for the given sample the original constants would have been

0t= (Ao)r= (24.40¡t.st =L24.44
and

Az = (0u), = (39 .2s¡z.n = 2306.76

Even with the improved parameterization, the normalizing constants involved in this

small sample are of the order 1x10P3. It should be noted that with careful implementation

and corrective action for the overflow conditions the results found with the I¿wless

parameterization can be duplicated using the original algebra. The algorithms under the

original parameterization take more than triple the cpu time, however.

Using the complete samples from the insulation data above, the predictive

distribution and 95% predictive interval were constructed. The predictive density

function is of a shape similar to those which will be presented in the next section and so

is omitted here. The 95% predictive interval was found to be Q.184,62.500) which

covers all of the given data except for one point. Although the interval is quite wide,

it is reasonable given the fact that a noninformative a priori state is assumed. As was

seen with the mixture of exponentials model in the previous chapter, incorporating

accurate prior information to the process would reduce the width of the interval.

The censored samples case was then conside¡ed by censoring at time T:55,

which reduces each subsample by one observation. Because for the given sample this

amounts to excising obvious tail observations, the change in the predictive distribution

was expected to be considerable. By censoring l0% of the dataset, the 95% predictive

intervalisnow Q.023,73.456),anincrease of 18% inwidth. Movementof theinterval

is more marked in the upper fail due to,the positive skewness of the parent Weibull
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distributions.

6.5 Monte Carlo Simulation

Simulated samples allow for more informed analysis of the mixture of Weibull's

model as the parametric values a¡e within our control and can be used insæad of the

substituted maximum likelihood estimates as was done with the previous given sample.

Both methods were investigated however, and the results were comparable.

Sample generation followed the method of Marsaglia (1961), which involves a

two-srage randomization process. First the IMSL uniform random sample generation

subroutine GGUBS was used to identify from which subpopulation an observation was

to be drawn. Subsequently, the exponential variate generator REXP from IMSI was used

along with appropriate transformation to produce the desi¡ed rù/eibull observation. As

with the given sample, all generated samples underwent empirical goodness of fit testing

procedures. Each subsample was tested as well as the adequacy of the overall mixture

of Weibull's model. Any sample that failed to pass all three tests was rejected and

another sample generated in its place.

The algorithms for the predictive distribution and interval was implemented on

an Amdahl 470 mainframe using the PL/I programming language. The censored sample

algorithm was much more expensive than the complete samples counterpoint, as might

be expected. CPU time for the censored sample case ranged from double to five times

that of the complete samples case, depending upon the sample size and degree of

censoring.

îo examine the relationship between sample size, degree of censoring and the
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resultant predictive distribution, a series of simulations were run. Pa¡amefic settings of

p:0.75, ar:2.0, a2:3.0, d1:5.0, 0z:6.0 were used. Total sample size ran from very

small (n:10) to moderate (n:50). The amount of censoring was controlled so that the

percentage of sample information available that was used in calculations (PIU) ranged

form 40% to the complete sampling case. rilidths for the resultant predictive inærvals

are given in Table 6.1.

Table 6.1: v/idth of 95% Predictive Intervals For Given N And pIU

Percentage of Sample Information Used

n 40% 50% 60% 70% L00To

10 6.44 5.22 3.75 3.24 2.23

15 6.40 4.02 3.75 2.87 2.58

20 6.18 3.18 2.82 2.69 2.34

30 5.04 3.96 2.88 2.56 2.57

40 2.52 2.87 2.77 2.88 2.88

50 2.25 2.35 2.84 3.83 3.0s

The results of the simulation are not uniform across either the amount of sample

information used or the sample size. This is due largely to the degree of censoring in

the tail of the distribution. One outlying observation left in or censored out caused great

shifts in the predictive interval, much in the way that was seen for the given sample in

the previous section. The degree to which these outlying observations had an impact on

the resultant predictive distribution did relate to the amount of sample information and

sample size, analogous to the way that a sample mean is sensitive to outliers. If the

sample size is sufficiently lzr:ge, the predictive interval was affected to a l,esser degree

by the inclusion or exclusion of an observation from the upper tail of the parent
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population than if the sample size was very small. It is remarkable, however, that

because of these outlying observations, which arise due to the skewness of the parlnt

Weibull populations, there are some situations where the predictive inten¡al is actually

narower for the censored c¿se than it is for the compleûe samples case.

This phenomenon notwithstanding, some general inferences can be drawn from

the simulation results. The effect of censoring is much more pronounced for small

samples (n < 30) due to the lack of remaining information. The predictive inærvals for

small censo¡ed samples are noticeably wider than those for the complete samples case

which is what one would expect since we only have partial information with censored

samples. As n increases, however, the fwo distributions trend to convergence.

For small fixed n (moving across any particular row of Table 6.1), as the

percentage of sample information used increases the width of the predictive interval

decreases and ultimately tends to the uncensored prediction interval. For larger n, more

information remaining after censoring produces more stable interval estimates.

The predictive distributions for the complete samples case and 607o PIll censored

samples case are given for the six sample sizes of Table 6.1in Figures 6.l through 6.6

respectively. In Figure 6.1, the impact of censoring on a small sample size is dramatic.

The two distributions have markedly different upper tails although both demonstrate

considerable positive skewness.

As n increases, flþing through the figures reveals a general, albeit inconsistent,

convergence. This is a graphic illustration of the concept noted above that implied the

secondary importance of censoring relative to the size of the sample. By the time n:50

is reached in Figure ó.6, the complete and censored samptes €ase's predictive
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distributions are almost superimposed. The interim distribution in Figure 6.5 actually

displays a situation where the censored dist¡ibution has a shorter tait than that of the

complete samples case. This is indicative of the situation mentioned above.

6.6 Summarv

-

In this chapter, theMendenhall and Hader (1958) sampling environmentinvolving

the mixture of Weibull's model was seen to be much more algebraically complex than

the mixture of exponentials model in Chapter five. The intractability of the integrals in

the predictive distribution forms posed a major problem. Although not mathematically

profound, the steps involved for the numerical work were trecherous and fraught with

potential for measurement elTor. For the more complex censored samples case with even

moderate sample size, five minutes of CPU time were required to complete the many

numerical integrations.

These results hold practical implications for the use of censoring in order to

predict future observations. Findings would suggest that if the sample size is sufficiently

large, the exact moment that sampling is stopped is not a critical issue. In terms of

predicting future observations, once the bulk of the distributional information is

represented through sufficient sample size, the amount of censoring that has taken place

is of secondary importance. This would seem to indicate that the adjustment made to the

predictive distribution by the incorporation of the censoring time T adequately estimates

the remaining distributional information. For large sample experimentation, then, if the

experiment is costly to keep running, it would be equally as effective to subject a large

numbe¡ of components to testing for a shorter perior of time. The increased sample size
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would offset the lost information due to censoring. The importance of the loss of sample

information through censoring was seen ûo have differing degrees of importance,

depending upon the base sample size.
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CIIAPTER 7: BAYESIAN p,CHARTS FOR PROCESS CON1ROL

7.1 Introduction

First detailed by Dodge and Roming (1959), attribute sampling plans have been

studied extensively under va¡ious conditions. Duncan (1974) contains an extensive list

of references. They are an inægral part of basic quality control methodology (see

Montgomery, 1985, for example). They apply ûo production envi¡onments where the

items under study are declared to be of acceptable quality or not based on the number

of items found to be nonconforming to accepted standards. As first proposed by

Shewhart(1931), control charts were derived from the classical, or frequentist

perspective. Attribute sampling plans (MIL-STD-105D, 1963 for example) were

developed under the simplistic assumption of the normal approximation to the binomial

distribution, an assumption which several authors have demonstrated to have potentially

misleading ramifications. Furthermore, the classical approach assumes that the

probability of a defect is constant. In an assembly line situation, this assumption often

fails in practice.

Approaching quality control from a Bayesian perspective has been considered by

several authors (Hald, 1981 provides an extensive reference list). Attribute sampling

under a Bayesian framework has been detailed by the American Society for Quality

Control in Calvin (1984). The primary difference between this approach and the

classical method is to produce an estimator that will more readily incorporate new

knowledge on the process va¡iation. The way in which the intervals are used as process

watchdogs is no different from the usage of the classical interval formulation. It is

expected, however, that the intinsic nature of the Bayesian approach will produce more
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accurate inærval estimators and hence a more accurately measured process.

In this chapter attribute control charts are further examined (also referred to as

p-charts) under the Bayesian framework. The traditional Bayesian approach merely

substitutes the Bayes estimator of process variation for its classical counterpart in the p-

chart formula (Calvin, 1984). The use of predictive intervals, highest posterior

density(HPD) intervals and predictivep-charts as alærnatives to the classical pcharts and

traditional Bayesian p-charts is investigated.

7.2 Alternatives for p-chart Control Limits

7.2. 1 Model Preliminaries

Consider an attribute sampling environment where a sample of n items is tested,

producing x defects. The pdf of x is the binomial B(n,p) where p is the probability of

an item being defective.

Shewhart proposed a general formulation for a control chart of a quality

characteristic. If S is a statistic that estimates such a characteristic, then knowing the

mean ¡¿s and the standard deviation ø, for the statistic S allows us to construct a k-sigma

Shewhart control chart as follows

(LCL,UCL) = (fr, - kos,Fs * ÉoJ

Typically, k:3.
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If the characteristic of inærest is the proportion p of nonconforming (or defective)

units in the population, then the classical p-chart is

(LCL,UCL)=þ+3@
ln

(7.1\

where þ is the usual sample average proportion of nonconforming units.

In testing r samples (running r experiments), the likelihood fi.¡nction is

L(plÐ = g 
[Í,] 

o"':'l-p)*- -D:'

U, ,=f,*,be the total number of defective units found in the r samples tested. Then
i=I

the sample proportion defectives for the classical p-chart is

^tP=-nr

and the likelihood function can be rewritten as

L(plx)Gp'(1-p)nr-'

Under a Bayesian framework, p is considered to be a random va¡iable with conjugate

prior distribution

g(p) npt-'(L-p¡^-r

so that p has a beta prior.
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combining prior and sample information, the posterior distribution of p is

III(PlÐ æP'+t-1(l-P)n7+ñ-'-r ,<p<l

which is clearly a beta distribution with parameters t*/ and n¡*m-t.

Assuming squared error loss, the Bayes estimator p' of p is the mean of the

posterior distribution which is easily found to be

,!. = t+l-( ñw

Under the Bayesian framework, the classic confidence intervals are referred to

as credible intervals. The interpretation of a credibility interval differs markedly from

that of a confidence interval in that one refers precisely to the probability that the

parameter under consideration falls within a specified interval, conditional on the given

observations. One such technique of frnding credible intervals is the so-called highest

posterior densíty (HPD) interval. An interval (LCL,UCL) is sought which satisfies two

conditions:

1) F(UCL) - F(LCL) : l-a

2) (LCL,UCL) is the shorrest among all intervals sarisfying (1).

For unimodal distributions, the second condition is replaced by

2) the posterior density at the interval endpoints is identical

i.e., fI(P =LCL I Ð :fl(p :UCL 
I Ð.

where fI represents the posterior density.
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Since the posterior distribution is beta with parameters strictly greater than one,

the posterior distribution must be unimodal with mode at

7.2.2 The Predictive Interval

Given the prior and sample information, the predictive distribution for the number

of nonconforming items to be found in a future lot of n items is given by

modetll(P)l = '!-l =nr+t +m-¿

This will provide a starting point for the numerical search routine.

h}lÐ = [fly>"tplt¡¿p
d

where f(y) is the parent binomial distribution of the process. After collecting terms this

becomes

I

h(y 
I Ð * ffi ! 

l"' " 
-t 

1r -p¡n'*^'n-v -t-t dp

*ffþo-t +y,nr+m+n-y-t)
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After removing some constants and collecting like terms

h(y 
I L) n (* 

r *t - tY,.* i;-, - t)

* 
¡,.,!.îr_;' ] [ 

*.#:;_,,:i-' 
]

h(y 
t Ð = 

"f',)l_ r') l, 
u;l-')

where

c_, = å [,;ll;r)[,*:,]-'),,,=,*r, 
v,=nr+m_t

To evaluate this function, consider the following expansions

(r_z).,= 
å [,,T_t].,

and

(t-z)-' = h['*Í-t].-
Multiply the two series together and collect the coefficients of zo.

fvtz+n-L] 
= å [,, T-'] [,*ij-,)

f";,?;,:;'] 
= å [';,1;' 1 ['*::;')

which is the inverse of our normalizing constant C.

Incorporating this informæion, the predictive distribution for the number of
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defectives in a future lot of n items is found to be

hUlÐ = Q.2)

for y=0,1,2...,iand hence y is beta-binomial b$,n,v2,vr).

The mean of the predictive distribution is

E(ylL) = , t*t
l+m+n+r

and is a Bayes estimator of y under squared error loss.

A 100(1-cu)% preÅictle interval for the number of defects in a future lot of n

items is composed of the endpoints (L,U) such that

Ln

EnfylÐ=EhylÐ=o
)-0 y-U

Calvin (1984) discusses the predictive distribution (7.2) as being a Polya

distribution. He arrives at the so-called Polya distribution by assuming that the process

is not stable. The process is assumed to vary about its average in an individual manner

with the probability of an item being nonconforming varying over time.

Ca1vin uses this distribution to replace øn in the p-chart limit formula by

;'7;=þ(r:þ)tH) (7.3)

This variance form is interesting in that it will always produce wider control limits than

its classical counterpart. In this manner, however, Calvin states that the polya

distribution will give a better assessment of the true sampling risks than the binomial

z,+y-11 [vr*n-y-l

r';,?;,:,')
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model of the frequentist approach. Hald (1981) staæs that this variance formulation is

signifrcantly larger than that of the classical binomial model.

All four of the alternative approaches to a p-chart have been derived. Before

exploring the relative merits of each approach, a more basic problem must be addressed,

namely, estimating the prior distribution pa¡ameters u1rcn which all the Bayes methods

rely.

7.2.3 Prior Estimation

In quality control applications, it is very likely that little knowledge will be

available about the prior parameters f and m. Two approaches are open to the

researcher under such circumstances.

One may assume a state of ignorance and make use of a noninformative prior.

In this case one could use the uniform prior gþ):1. A second approach was to use an

asymptotically linear invariant (ALI) prior as set out in Hartigan Qg6l) by putting

/:m:0. Another alternative by Jeffreys was to set /:m:0.5 (Ilartigan, 1983). As

has been demonstrated under several applications, however, such an assumption typically

produces predictive intervals that are so wide as to be practically useless.

A second and more informative approach is to use the Empirical Bayes methods

due to Robbins 0964) to estimate the prior parameters f and m from the sample data.

Consider the marginal disfibution of x, the number of defects in the lot, from our

model by inægrating over p. This produces

I

Ãr) *çl 
J O-t-r{t-rt)n'^-t-t,rn
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*fiaø.t,n+m-x)

and following the algebra in the previous section,

.nx)nf.:,J-r[it_¡tl

Restoring ¡1e ner¡alizing constant, the marginal distribution is then obtained

= 
(.i-i-'f;'-t'l

lm+n+l -1\
\ m*Î.-l I

Hence, the marginal distribution of x is also beta-binomial b(x,n,m,l).

The forms for the mean and variance of the beta-binomial distribution are

E(Ð = ltl+m

Va\X) - nlm(I+m+n)
(l +m)z(t *m+l)

Def,rne the two first sample moments as follows

o=-Xr=

v=s1 =

^x)

F¡.ur/
í=1 I

-=-
rr

åÐ,' a)2



266

Equating the true moments to their sample counterparts produces the system of equations

nLA=-
l+m

_ nlm(l+m+n)
(t*m)2(t+m+l)

From the fi¡st equation of the system derive

e*m = f,t
a

and substituting this into the second equation gives

[+.')
Finally, solve for l, and m to produce estimates for the prior parameters

V=

t'= tr)
I a@-a)-v

t4e-

These preliminary estimators for the beta prior parameters allow for much greater

precision in the posterior and predictive information as will be seen later. A problem

arises in their use with the possibility that the estimators can be negative. When one is

negative the other must be also. In such a case it is sensible to use the noninformative

priors mentioned a.bove. Since lifle or no information about the true prior parameters

is assumed under each of the noninformative approaches, a uniform prior (/:m:1) will

FLl I nt *n
nl I a
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be used when the empirical prior estimates are unacce,ptable.

Negative values for l'and m'occur under special ci¡cumstances. It should be

noted that only two cases exist. Either both prior estimates are positive or both are

negative. Negative values are more likely ûo occur when the true prolnrtion defectives

in the population is small. F¡om a sample perspective it is also true that if the observed

variability in the number of defectives across samples is large relative to the average

number of defectives, then v is overestimaæd. This causes /' to be negative.

7.2.4 Effect Of Prior Parameters

This section gives some insight to the impact on the posterior of using our f ' and

m' priors over the noninformative priors. As previously stated, the noninformative

priors give little or no information about the true value of p, the population proportion

of nonconforming units. Using the empirical Bayes estimates for the beta prior

parameters I and m, it will be seen that a prior is produced that contains a considerable

amount of information about p. Although this will be further detailed in the discussion

of the HPD and predictive interval methodology, it is useful to put in context at this point

the value of the empirical quantities.

Figures 7.L and 7.2 display the resultant prior distributions observed from

generated data. In a practical setting this sort of exercise typically takes the form of a

pre-production run. It is readily apparent from the two graphs that these priors give a

good deal of accurate information about the prior distribution. Clearly, including such

information in the analysis should produce more accurate results than merely using a flat

uniform distribution for the prior.
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7.2.5 Comparisons Of The Four Methods

Now that the theoretical foundation has been built, comparisons may be made

¡rmong the four alternative approaches. The classical p-chart will be compared against:

1) the semi-Bayesian p-chart which uses p'and øn from (7.3)

2) the predictive inærval

3) the HPD interval.

Results are produced for selected sample sizes and sample ¡esults. To begin, consider

example datasets drawn from Montgomery (1985) on samples of n:50 orange

concentrate cans. Three different samples are presented in total, referred to as the Ml,

M2 and M3 samples. Specifications for the three samples are given in Table 7.1.

Table 7.1: Specifications For Montgomery Samples

se! r t Ê p J.m) 3lassical Jemi-Bavesian

M1 30 347 .2313 .2313 :5.6,18.6) .0524,.4102)
ô=.3578

.0757,.5394)
ô:.6141

M2 24 131 .1092 .1098 í1.0,1.0) -.023t,.24t5)
õ:.2646

-.441,0,.6607)
ô:1.102

M3 40 218 .1090 .1090 (118.6,970) -.0232,.2412)
ô:.2644

-.0262,.2442)
õ=.2704

Montgomery describes the first sample as a "warm-up" for the process and so the results

are markedly different from the other two samples. The usual estimate (Þ) and Bayes

estimate (p) are comparable for all three samples. Very different values are observed

for our empirical prior parameter estimates. M2 produces negative values for the

estimates so the uniform noninformative settings are used. M3 produces extraordinarily

large values.

The standard p-chart 3-sigma limits are given along with the semi-Bayes
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alternative and the respective interval length ô. The Bayes limits a¡e much wider, as

noticed by Calvin. The negative lower limits are problematic. Montgomery, as other

authors, suggest that a rescreening of the data for outliers would produce an inærval with

positive endpoints, but it is clear that if the true proportion of nonconforming items is

small (<.25), then the control chart lower limit will be negative. The standa¡d fixup in

practical settings is ûo use zero as the lower limit and ignore the problem.

In comparing the four methods one is actually comparing three distributions: the

predictive, binomial and posterior distribution which form the basis of the four methods.

Figure 7.3 depicts the three distributions for the Montgomery Ml sample. The

distributions are depicted as continuous for comparison sake, but it should be noted that

the predictive is definitely discrete whereas the binomial graph could be thought of as the

normal approximation. Most striking is the marked kurtosis of the posterior distribution.

This is mainly due to good information, both from the empirical prior and the moderate

sample size. Obviously any interval based on the posterior distribution will be smaller

than its counterparts from the other methods. The predictive dist¡ibution shows

variability similar to that of the binomial, but shares the same me¿lsure of centrality that

the posterior does. As with any predictive distribution, it by definition must be wider

than the parent distribution upon which it is based.

To compare the four methods it is necessary to set a common k-sigma level. This

is accomplished by first noting that of the four methods, only the predictive interval is

restricted to working with a discrete distribution. One cannot, therefore set an arbitrary

significance level and compare the four methods. Instead, an arbitrary level must be set

and the procedure must come as close as possible to that level for the discreæ predictive



Figure 7.3

PDF

COMPARISON OF P DISTRIBUTIONS
PREDICTIVE VS BINOMIAL VS POSTERIOR

RESULTS FOR GENERATED SAMPLE M3

POSTERIOR

PREDICTIVE
BIl.lCl4IAL

N)\¡
t\)



273

distribution. The observed significance level is then taken for the predictive inærval and

intervals are constructed using the same level for the other three methods. For the

classical and semi-Bayes inærvals this means merely changing the percentile of the

standard normal variate. For the IIPD interval, it merely requires a different target value

for the numerical search routine. In all cases, inærvals are construcúed coverin g 95Vo

of the distribution. In Table 7.2 theæ,comparable inærvals are presented.

Table 7.2: Comparable Intervals For Montgomery Samples

The semi-Bayes intervals are clearly the poorest estimates. The predictive intervals,

although suffering from their discrete nature in that the same interval is produced for M2

and M3 are smaller than their classical counterparts. As expected, however, the HpD

intervals zero in on p with much greater accuracy than any of the other methods.

The impact of the empirical prior parameter estimates can be seen by comparing

the M2 and M3 HPD intervals. The point estimates are almost identical and both

samples contain considerable information to the extent that one would expect it to

dominate prior information. M2 suffers, however, relative to M3 because by using the

empirical estimates instead of the noninformative values, the M3 interval is noticeably

smaller, as desired.

The predictive interval and HPD interval approaches do not suffer from the

&r Classical Semi-Bayesian Predictive HPD

M1 (.1024,.3603)
õ:.2579

(.0100,.4527)
6:.4427

(.1200,.3600)
ô:.2400

(.2071,.2561)
ô:.0490

M2 (.0201,. t982)
ô:. 1781

(-.2610,.4806)
õ:.74L6

(.0400,.2000)
ô=.1600

(.0908,. 1296)
ô:.0388

M3 (.0189,.1991)
ô:.1802

(.0169,.2011)
õ:.L842

(.0400,.2000)
ô:.1600

(.0976,.1206)
ô:.0230
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negative lower limit problem. Although the predictive lower limit can become zero due

to the discreteness of the underlying disEibution, it is still a valid zero and not an

arbitrary bandaid to cover up for the technique's failing, such as is the case with the

classical inærval. The HPD interval cannot attain arÊro lower limit as it uses numerical

integration across a continuous disEibution in p.

The results for these three samples are convincing. The Bayes methodology was

proposed, however, to examine the impact on small samples. Because it is well known

that the normal approximation to the binomial becomes poor as n decreases, it was

expected that a Bayes exact approach would produce more accurate results. As has been

seen above, the domination of the empirical prior estimates is impressive even at

moderate sample sizes.

A number of samples were generated from a parent binomial process and the four

methods applied. Table 7.3 below presents the specifications of four such samples which

will form the basis for our discussion.

Table 7.3: Specifications For Generated Samples

Set
r ! Þ p 0'.mJ Classical Semi-

Bayesian

G1 5 19 .3800 .3846 (-4.1,-6.7) (-.080s,.8405)
ô:.9210

(-.536,1.315)
ô= 1.8513

G2 10 47 .3r33 .3t33 (41.4,90.8) (-.Mffi,.6726)
ô:.7186

(-.064,.6910)
ô:.7554

G3 6 6 .0667 .0667 (3.2,44.8) (-.1266,.2599)
ô=.3865

(-.152,.2858)
ô:.4378

G4 5 17 .3400 .3400 (6.2,12.0) (-.2050,.8850)
ô:1.090

(-.560,1.060)
õ=1.6203

Gl and G4 have n:10 while G2 and G3 have n:15. G1 is interesting for comparison
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with the other three samples due to the negative prior empirical estimates. Note that

once again the noninformative uniform prior is substituted for the negative values. The

comments regarding the estimators of p and the usual 3-sigma limits given for the

Montgomery samples above remain the same.

Figures 7.4 and 7.5 depict the three distributions mentioned previously for the G1

and G3 samples respectively. This comparison is interesting because Gl uses the

noninformative prior whereas G3 uses the empirical estimates. It is notable that the

posterior curye is still much narrower in the noninformative case, though it is not as

impressive as in the G3 case. Figures for G2 and G4 provide similar information and

are therefore omitted.

Table 7.4 presents the comparable intervals of the four techniques, again using

a level of 95%. As before, the actual observed level of significance is not exactly 95Vo

because of discreteness, but the four intervals are all constructed at the observed level

so that they are directly comparable.

Table 7.4: Comparable Intervals For Generated Samples

Again it is seen that the prior information in G4 produces a smaller interval than in Gl.

The G3 results indicate that the most reasonable interval is likely the I{PD as it is the

set Classical Semi-Bavesian Predictive HPD

G1 (.M30,.7170)
õ:.6740

(-.2895,1.059)
ô:1.3485

(.1000,.7000)
ô:.6000

(.2421,.5325)
õ:.29M

G2 (.0493,.5773)
ô:.5280

(.0358,.5909)
ô:.5551

(.0667,.5333)
õ:.4666

(.2535,.3748)
õ=.1213

G3 (-.0825,.2159)
õ:.2984

(-.1025,.2358)
ô:.3383

(.0000,.2000)
ô:.2@0

(.0241,.t194)
ô:.0953

G4 (.0106,.6094)
ô:.5988

(-.0594,.7394)
ô:.7988

(.1000,.7000)
ô:.6000

(.2187,.4670)
õ:.2483
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only one that does not have zero as a member. However,the predictive inærval does

have the practical advantage for the discreteness of the model situation.

To gain further insight into the comparative performance of the four intervals,

1000 sampling runs consisting of ten lots drawn from a B(10,0.3) lnpulation were

generaüed. Intervals for each of the four methods were then constructed as before and

summary statistics created for the run of 1000 samplings. The average and standard

deviation for the length of the resultant intervals are given in Table 7.5.

Table 7.5: Interval Comparison For 10@ Generated Samples

Interval Avg leneth s.d. length max upper bound

Classical .689 .051 .837

Semi-Bayes I.125 .307 1.2454

Predictive .574 .M4 .800

HPD .197 .038 .561

The order of performance remains as it was for the single sample results. The HPD

interval is by far the shortest, while the predictive interval is consistently shorter than its

classical counterpart. The semi-Bayes interval performs terribly in comparison. In terms

of coverage of the true proportion defective, the classical, semi-Bayes and predictive

intervals covered the true value of the proportion nonconforming units for all of the 1000

sampling cycles. The HPD intervals covered the true p 95% of the time, which is to be

expected.

Several points of interest \ryere uncovered via the simulation. As mentioned

before, when the lot variance of defectives is high relative to the average lot defectives,

the estimæors for the prior pararneters f' and m' become'negative, causing the traditional

noninformative prior to be used. This will happen with increasing frequency as n and
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p decrease. In our simulation 55.g% of the samples produced negative prior parameær

estimates. The average length of the intervals where positive prior estimates were

obtained produced an average interval length of 0.570, noticeably smaller than the full

1000 sample result of 0.574. The positive prior parameter estimates were as large as

(/',m):(3544,7531), although more than half of the samples with positive prior

estimates produced (f',m)<(10,10). The higher the prior parameter estimates, the

shorter the resultant predictive and HPD intervals. Negative lower bounds were

evidenced n 34.5Vo of the classical inten¡als and 87.6% of the semi-Bayes intervals

respectively.

7.2.6 Summarv

Two new approaches were presented to attribute sampling control limits that are

definite improvements on the classical approach. The predictive interval approach

maintains the discreteness of the model situation while producing smaller interval

estimates than the classical p-chart at the same coverage level. Using the posterior

distribution to produce an HPD interval incorporates all sources of information to

produce markedly smaller inærvals.

The estimation of prior parameters by empirical methods is a defrnite asset. Even

with the possibility of negative estimates, the approach does no worse than simply using

a state of ignorurce about the parameters. Even in the face of considerable information

from the data, the empirical prior estimates have an impact on the resultant interval

estimators for p.
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7.3 Predictive o-Charts

The intrinsic advantage that Bayesian methods have over classical techniques is

the constant updating of model parameters through conditional probability. This allowed

for the construction of the predictive distribution for a future lot proportion defective.

This information would be useful to incorporate into the traditional pchart as a

supplementary indicator of process control. In this section such a chart is proposed,

which will be referred to as a predictive p-chart.

7.3.1 Construction of the Predictive p-Chart

As with the previous section's work, this method will be most easily applied to

sifuations in which a presample is observed on a process to give foundation figures for

the construction of control limits. Once these limits have been established, it is prolnsed

to monitor the probability that the next lot will produce an observed proportion of

defectives that falls outside the limits. This predictive probability is updated after each

sampling and superimposed on the traditionat p-chart. In this way, a trend for an

upcoming problem in the process control can be spotted more readity than through the

use of a p-chart alone. This holds important implications for practitioners in that the

sooner a problem is detected, the lower the cost of the problem.

The method of construction is straightforward:

1) Construct the traditional p-chart limits as usual.

2) Use the beta-binomial predictive distribution of the previous section

to calculate the probability that the next sample wilt produce a proportion of

defectives outside üre p-chart limits.
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3) Repeat step 2 before each sampling and plot the probability on a separate y-axis

superimposed on the traditional pchaÍ.

Note that although the traditional p-chart 3-ø limits are used for demonstration pu{poses,

any of the alærnative limits proposed in the previous section could be used without loss

of generality. Furthermore, 2-o limits could be used as well if desired. The technique

is robust with respect to the limits used.

Figure 7.6 provides an example of the predictive pchart. Data was generated for

an artificial 8(10,0.1) process in control (i.e. stable). The figure can be read as a typical

p-chart if the left y-axis is used and the asterisk points are ignored. The right-hand axis

and asterisk points represent the scale and observed values for the probabilþ that the

next sample from the process will produce an observed level of defectives outside the

traditional 3-ø process control limits. The limits were established by a presample of 15

Iots to be (LCL,UCL¡:1-.1826,.3693). By convention, since the lower control limit is

negative and therefore meaningless, the zæ.ro honzontal is used in its place.

Some mention of the right-hand scaling technic¿lities must be made. The reader

will notice that the scale is not uniform. The method of scaling is such that the right

hand æcis values may be ignored below ttre upper control limit. The remainder of the

scale is adjusted so that the range of the observed predictive probability falls above the

corresponding horizontal of the left-hand upper control limit. To make the graph

readable, the right-hand y-axis is scaled so that the range of the predictive probabilities

Iie outside the graph space occupied for the traditional p-chart. As can be seen in Figure

7.6, the observed predictive probabilities fall above 0.01. This value is used as a starting

point for plotting of the predictive probabilities so that all the predictive probability
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points lie above the traditional pchart's plotting area. Traditional pchart points that fall

outside the control limits a¡e made more noticeable as they will fall into the qpace of the

predictive p-chart. The predictive p-chart y-axis for Figure 7.6 is wider than the

observed data for this example only so that comparison against the results in Figure 7.7

can be made. This comparison is interesting because Figure 7.6 represents a process in

control whereas Figure 7.7 portnys a process that runs out of control afær the ænth

sample.

It may be argued that the inclusion of a right-hand scale and second set of points

may be confusing to some practitioners. For such situations, it would be just as easy to

produce a separate plot of the predictive probabilities. It is preferable, however, that the

information contained in the predictive distribution be weighed in conjunction with that

of the traditional p-chart in the same way it is preferable to examine location and

dispersion of a dataset. Combining both types of information into a parsimonious

display, therefore, is desirable. Furthermore, the plot can easily be viewed as two

separate entities. If one ignores the right-hand y-axis and predictive probability

points(the *'s), what remains is the traditional p-chart. I-ooking only at the plot above

the upper control limit and reading the right-hand y-axis produces a picture of the

predictive p-chart.

Following is a detailed description for the first two lots sampled. At time zero,

information is available from the presample of fifæen lots of size ten that produced the

traditional 3-ø limits. The prior parameters of the beta prior are estimated as in the

previous section and produce the predictive distribution. Using this distribution the

Pr(next sample falls outside 3-ø limits):Pr(number of defectives in fhe next sample is
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less than 0 or greater than .3693) is calculated to be 0.0117. This value is plotted

against the right-hand y-axis. The presample process average defectives is also plotted,

represented by the X at time zero. A supplementary sample of ten items is then taken

at time one and 20% defætives are observed. Using this information, the prior and

predictive distributions are updated as per the previous section. The process is then

repeated by calculating the probability of the next sample (now referring to time two)

falling outside the 3-o limits. This value turns out to be 0.0140, up from the time zero

value due to the fact that the present percent lot defectives was above the process

average. It is this intrinsic updating of information that is gained from the predictive p-

chart. At time two, a fi.¡rther lot is taken and l0% observed defectives are found.

Although this information indic¿tes that the process is in control, the previous runs are

not ignored by the predictive distribution and the predictive probability of the sample at

time three falling outside the interval is 0.180. Only in subsequent lots when the lot

quality level is maintained does the carryover effect of the present lot cause the predictive

probability decre¿se. Hence the predictive p-chart is more than a mere echo of the

present lot performance.

7.3.2 Examples

Figure 7.6 is a good exemplary plot for the ûechnique, but not terribly exciting

as far as process control is concerned. By both the Faditional p-chart (the X's) and the

predictive p-chart (the *'s) it is obvious that the process is in confiol, with random

fluctuation being the only differentiating component. Although the predictive probability

shows jumps and dives, the overall appe¿rarice is that of a whiæ noisp Brocess.
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Now that the basic construction of the predictive p-chart has been described, some

illustrative examples are presented. Figure 7.7 takes the process seen in Figure 7.6 and

adds a disruptive influence at time T=10. Again thepredictive pchart y-axes in Figures

7.6 and 7.7 are the same for easy comparison. This disruption quietty adds a l0%

additional raæ of defectives to the process. This causes the pints at time T:17 and

T:22 to fall outside the conúol limits, indicative of a process out of conEol. Evidence

that the process has suffered shortly afær time T:10 is much more obvious from the

predictive p-chart values as represented by an almost monotone increasing plot. The plot

is much more dynamic than the traditional p-chart and a practitioner would be more

Iikely to spot the problem, which was introduced at time T:10, before the process

produces a lot outside the control limits at time T=17.

For a real application, the Montgomery Ml dataset discussed in the previous

section is presented in Figure 7.8. The fust ten lots are used as the presample in this

situation and the latter twenty lots a¡e considered to be supplementary samples. The

process clearly has control problems and in this case does not necessarily demand the use

of the p-chart to see that a problem exists at time T:5. The predictive p-chart does

however give a better overview of the carryover effect inherent in the process under the

assumptions of the Bayes model. As stated above, the predictive p-chart is meant to

supplement, not replace, the traditional p-chart.

To fi¡rther drive home the point that the predictive p-chart can spot a trend before

examination of the traditional p-chart, a specially "designed" observed process was

constructed and is presented in Figure 7.9. A preliminary sample from a 8(10,0.1) of

fifteen lots was used ts produce confol lirnits of (LCL,UCL)=(-1815,.3615). The n¡n
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of supplementary samples was then designed to remain in control by all úaditional

measures and to demonsEate an out-of-contol point laæ in the process. The traditional

p-chart of Figure 7.9 lools úo be in control until time T=18 when a lot falls outside the

3-o limits. The predictive pchart, however, demonstrates that a problem has been

brewing since time T:0 and would have caused the practitioner to raise the alarm much

earlier.

7.3.3 Discussion

The reader will notice that no mention of precise stopping rules have beæn

presented with regard to the predictive p-chart. This is due to the fact that other

considerations such as cost factors and the importance/consequences of stopping the

process must be incorporated into the setting of any such arbitrary alarm condition. Just

as some practitioners use 2-ø limits instead of 3-ø limits, so will the actual point for

stopping a process due to evidence provided by the predictive p-chart be a largely

arbitrary and situation-specific decision.

The level of probability expected deserves some discussion. In alt our examples,

the probability of the next sample falling outside the 3-ø control limits is below 0.2.

This is not surprising when one considers that the 3-ø limits are used. Under normal

distribution ú*ry, if the process is under confiol, the probability that an observation

falls outside 3-o limits is less than 0.003. Predictive probabilities are observed to be as

large as 40 times this level in order of magnitude. It is for this reason that a great deal

of forethought must be given to the exact criteria for stopping the process. Using a rule

such as stopping the process if the probability doubles from one sample to the next may
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be too lenient. Demanding a stoppage after a SVo næ,in the predictive probability may

be too strict. Such decisions a¡e certainly relevant and will no doubt be the source of

great discussion. Because this discussion is best situated in ttre hands of the practitioner

rather than the mathematician, speculation on such stopping rules is beyond the purview

of the statistician. The important contribution of the technique is a parsimonious

presentation of supplementary information to the practitioner which may allow for an

earlier detection of a trend or a process going out of control. The exact definition of

what will constitute an alarm situation is best left to quality control engineers.

It should also be pointed out that this approach has some relatives in the literature.

The CUSUM chart of Shewhart(l93l) for example includes the carryover effect inherent

in the Bayesian underpinnings of the predictive p-chart. It does not however give

probabilistic information directly. Hunter's(1986) exponentially weighted moving

average (EWMA) control chart also incorporates the concept of updating process

performance information from a time series approach. The EWMA chart, however, is

more difficult to read than the predictive p-chart in that it overlaps two process results.

The required computation work to produce a predictive p-chart, while more

involved than the traditional p-chart, is easily accomplished. The algorithms were coded

in FORTRAN-77 and the plot produced via SAS/GRAPH on an AMDAHL 470

mainframe. Algorithms are available from the author upon request.
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