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ABSTRACT

In this dissertation, the difficulties encountered in implementing the Bayesian
paradigm are explored under a number of multiparameter distributional settings. A
combination of statistical theory, mathematical approximations and numerical solutions
are applied to each problem.

Chapter one contains a precis of the philosophical discussion that has surrounded
the implementation of the Bayes paradigm since it was first suggested. The remaining
chapters deal with a variety of multiparameter situations where implementation of the
Bayesian paradigm is undertaken and compared to results for the classical or likelihood
approach. |

Chapters two, three and four compare the performance of the classical and
Bayesian methods in application to a variety of distributions most commonly used in
reliability and lifetesting situations. Two approximations of the Bayes estimator, due to
Lindley (1980) and Tierney & Kadane (1986) are compared to assess the degree of
success achieved in circumventing the intractability problems common to the Bayes ratio
of integrals problem. Improved numerical methods for obtaining maximum likelihood
estimators are proposed. Chapter two compares the two Bayes methods to the maximum
likelihood estimator in application to the two-parameter normal and two-parameter
inverse gaussian distribution. Chapter three continues to detail the applicability of the
approximations to three commonly used three-parameter distributions in reliability and
lifetesting - the Weibull, gamma and lognormal distributions. Chapter four gives a
similar presentation involving the five-parameter estimation task necessary in working

with the bivariate normal distribution.



vi

Chapters five and six discuss estimation in two special mixture distribution
settings. Both censored and uncensored sampling environments are explored. Chapter
five details the work for a mixture of exponentials distributions while Chapter six deals
with a mixture of Weibull’s distribution. The use of predictive intervals for both
distributions is explored.

Chapter seven investigates two settings for Bayesian alternatives to traditional
quality control techniques. The first section proposes alternatives for the traditional p-
chart control limits by taking advantage of the inherent updating of information available
through the Bayesian paradigm. The second portion presents a modification of the

standard p-chart based on the predictive distribution.
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CHAPTER 1: INTRODUCTION
"All models are incorrect."” George E. P. Box

"A rose by any other name would smell as sweet." William Shakespeare

1.1 Motivation

Objectives of the work contained herein are twofold. Of primary importance is
the advancement of the theory and application of that segment of statistical methodology
commonly referred to as Bayesian inference. Much has been built upon the framework
as set out by Reverend Thomas Bayes in 1763. More than two hundred years later,
Bayesian methodology remains a viable alternative to the classical or likelihood sampling
theory approach.

This text undoubtedly will be read by proponents of both schools of thought with
an eye towards gathering ammunition for further contributions to the literary debate. It
is due to this fact that it is necessary to state, in the most emphatic terms possible, that
this dissertation is not written for this purpose.

Bayes and classical methodology are merely different platforms upon which to
build a framework for attacking statistical problems. Since, as the opening quote of one
of this century’s foremost statisticians infers, all such platforms enjoy certain advantages
while suffering other shortcomings, absolute superiority by either school of thought is
impossible. Philosophical arguments pervade the literature which attempt to ridicule
either philosophy. The most recent example with lengthy discussants by well known
authors on both sides of the issue can be found in Lindley (1990). Such self-indulgent

exercises are merely a sign of academic immaturity bordering on religious fanaticism.
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The primary goal of any statistical analysis is to find a quantifiable answer to the
problem at hand. The methods used to attain that answer are, for the most part,
irrelevant, providing a satisfactory answer is obtained. Moreover, using more than one
method to attack the same problem often gains the researcher added insight. As Berger
(1990) points out, it is often sensible "to carry along separate models until the end,
hoping that the answer will turn out to be insensitive to the various models". Whether
the modelling approaches used are referred to as Bayes, Fisherian or a hybrid procedure,
the ultimate assessment should be based only on the quality of the answer. Furthermore,
since in many situations competing methods produce the same answer, the name of the
process is irrelevant.

The motivation of this dissertation, therefore, is to examine the relative strengths
and weaknesses of the two doctrines under various distributional settings. As will be
seen, neither philosophy can claim uniform superiority. Rather, each approach has its
own arena of enhanced performance. Many of these areas were heretofore unexplored
from a Bayesian perspective. As the reader progresses through the dissertation, it is
desirable to keep this intent of the author in mind. This is not a Bayesian dissertation,
nor is it a dissertation of a Bayesian statistician. It is, instead, a Statistics dissertation,
exploring alternative solution paths to complex estimation problems.

A persistent criticism of the Bayesian approach is that it often leads one through
a morass of algebra culminating in a blank wall of mathematical intractability. As
extensively detailed by Smith et al (1987), the advent of modern computer technology
has had a major impact on the intractability problem. Advances in numerical analysis

techniques allow for numerical solutions or at least approximate solutions when closed
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form ones are unobtainable. Along the path to new results in Bayesian methods, one is
required to produce innovative algorithmic solutions to the numerical difficulties
encountered. "One of the main obstacles to the routine implementation of Bayesian
methods has been the absence of efficient algorithms for carrying out the computational
tasks implicit in the Bayesian approach" (Smith et al, 1987). Hence the second
contribution of this thesis will be the development of algorithms designed to circumvent
the mathematical roadblocks.

A great deal of research has been done in estimation theory involving single
parameter distributions from both a classical and Bayesian perspective, and is available
from many sources in a unified format (Johnson and Kotz, 1970 for example). A
considerably smaller battery of work is available for situations in which more than one
parameter is of interest, especially when more than two parameters are involved.
Algebraic manipulations become rather complex, particularly under a Bayesian
framework.

Recently some results have been found to be useful in obtaining approximations
to the true Bayes estimators for multiparameter distributions. The application and
properties of these approximation techniques will be scrutinized under various

distributional settings. Wherever possible, closed form solutions will be obtained.

1.2 The Bayesian Paradigm

The phrase "Bayesian Paradigm" was coined by D. V. Lindley and has come into
common usage in the literature. Just as the exact definition of a paradigm is the

grammatical collection of a verb’s conjugation, so does a paradigm of Bayes
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methodology attempt to represent any and all statistical environments which incorporate
a Bayesian framework.

Lindley (1990) states that this Bayesian framework relies upon one basic premise:
that we "make judgements about as yet unobserved data y on the basis of observed data
x". He further refers to the Bayesian paradigm as that field of inference (inductive logic)
which utilizes only the calculus of conditional probability. Smith (1986) gives a more
intuitive overview of the Bayesian paradigm by calling it a "form of disciplined
uncertainty accounting”.

Although it may be argued that the classical or sampling theory approach may
also be formulated in such a way as to mimic the above definition of the Bayésian
format, there remains a fundamental difference - the inferential starting point. While the
classical approach defines a static parameter 6 and discusses the "likelihood" of various
data outcomes in terms of the value of the parameter 6, the Bayesian framework requires
that the data remain the starting point and concerns itself instead with the distribution
P(0}1x) of the parameter given the data results. Thus, a key feature of the Bayesian
paradigm is that the parameter 6 is given the status of an unknown random variable.
Another way of expressing the difference would be to say that the classical approach is
to be suspicious about the sample results for a given value of ¢ while the Bayesian
perspective involves suspicions about the parameter for given sample results.

The Bayesian approach to estimation may be presented as an alternative to the
classical techniques when one considers 6, the quantity to be estimated, as a random
rather than a static entity. One assumes that 6, which may be single or vector-valued

such that § = (8,,0,, ..., 65), has an a priori or PRIOR probability density function (pdf)
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g(6) which represents all the information, objective and subjective, that is known
regarding the behaviour of the environmental characteristic . Throughout this
dissertation the notation 6 and § will be used to represent the parameter of interest, be
it single or vector-valued. In explaining the works of other authors, the notation used
for 6 will be consistent with that of the original author. This results in a somewhat
uneven representation, but it maintains consistency with the published literature. It will
be generally understood that unless explicitly stated otherwise, the parameter of interest
is a vector-valued entity.

It is not unreasonable to assume that for a fixed point in time § will be static and
hence the classical school of thought could be employed as well for the same situation.
In this light it can be seen that the two inferential methods may be applied to a single
experimental setting and are not necessarily contradictory. The decision may be reduced
to a question of whether or not for convenience, be it practical or mathematical, it is
reasonable to interpret the entity under scrutiny as a fixed constant or variable quantity.

On a basic level, many lay people involved in statistical applications use the
Bayesian paradigm instinctively. The so-called "fudge factor" utilised to adjust a result
which from the expert individual’s experience (prior information), seems too extreme,
is in fact an ad hoc Bayesian analysis. For example, in estimating the binomial
parameter p involved in a shop floor application, an investigator will often consider
results too close to either zero or one for p as biased or improbable from an intuitive
standpoint and want to adjust the results accordingly. Mathematically, this is analogous
to replacing the informative prior distribution most often used for the binomial parameter

p, which is g(p)=p(1-p), by something more in line with past experience, such as



[p(1-p)1°?, so as to reduce or "dampen" the importance of the endpoint values.

Besides basic estimation theory settings, the Bayesian paradigm has gained wide
acceptance among industrial settings such as assembly line production investigations.
Classical methodology has difficulty incorporating a worker’s vital knowledge of the line
gained through twenty years of experience into the analysis. Furthermore, the classical
framework would require either a complex sequexitial analysis or the bending of systemic
assumptions such as independent sampling to address the time element inherent in the
process. The incorporation of today’s results in tomorrow’s investigation is inherent to
the Bayesian paradigm. Today’s results merely become tomorrow’s prior.

The mechanism of constructing Bayes estimators may be described as follows.’
It is assumed that X, the data quantity to be observed is a random variable with a
probability function f(x|6), which involves the environmental characteristic §. Further
assume that 6 is a random variable with a prior distribution g(f) and that a random
sample of n observations is taken from the population with the aforementioned probability
function and denoted by x = (X, X,,...,X).

Define Y to be a statistic that is a function of x, say Y = u(X,,X,,...,X).
Fisher’s likelihood function is meant to represent the information that the sample has to
offer on the likelihood of various true values for the parameter §. It is given by

L(8]x) =f!:f(xi|9) : (1.1)

Finding Bayesian estimators is equivalent to finding the conditional distribution

of the statistic Y given the prior information about 6. This conditional distribution will

be proportional to the product of the likelihood of the sample and the prior information
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known about 6. The conditional distribution of # given the sample information Y, the

so-called POSTERIOR distribution of 4 is
m(6|Y) = K(¥,0)/c =L(8|x)g(0)/C (1.2)
where C' is a normalizing constant. = More specifically, C is given by

C = IL (6|x)g(6)dé. The posterior distribution of @ represents the idea that the prior

information about 6 has been adjusted by what has been observed through sampling. A
natural bridge between the two methods is the fact that if g(6) is a uniform density
function, then the posterior distribution (1.2) is equivalent to the likelihood function.
Once obtained, the posterior distribution gives rise to a number of alternative
Bayes estimators of 6 and related characteristics, depending upon the way in which the
investigator believes loss will be incurred by an inaccurate estimator. In general, the
Bayes estimator is that which minimizes the average or expected loss incurred. The loss
incurred by the use of the Bayes estimator 6" as a guess at  is denoted by £(6",0) and the

choice of 6" is obtained by seeking the minimum of

EHe(9,0)] = IZ(O‘,O)H(&IY)dO
The most commonly-used loss function is the quadratic or squared error loss of
the form £(6°,6) = (6" - 6)°>. The expected loss is minimized under squared error loss

if 6" is the mean of the posterior distribution of 6.
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Hence the Bayes estimator under squared error loss is defined as the posterior expectation

of §, i.e.

[89(0)L(8]x)d6

. (1.3)
jgw)Lwlz)do

6* = E0|x| =

Although other loss functions are used, unless otherwise specified this text will only be
concerned with squared error loss models. Howlader (1982) gives a detailed discussion
of the effects of various loss functions.

Recall that § may be a vector-valued parameter and thus produce a multivariate
posterior distribution. In such a case, it is necessary to find the marginal posterior for
each element of 8 to construct the corresponding Bayes estimators.

Clearly, the Bayesian paradigm is more than merely constructing Bayes
estimators. Examination of the posterior distribution itself is but one of many points of
interest in such a framework. Rather than delineate all possible applications and
methodology, the Bayesian paradigm description will be left at this point. Other aspects

will be introduced as required in the text to follow.

1.3 Implementation Considerations for the Bayesian Paradigm

The previous section infers that implementation of the Bayesian paradigm is
straightforward. Clearly, the degree of difficulty encountered will be directly linked to
the nature of the prior and likelihood functions. If they comprise a natural "conjugate”
pair, typically of the exponential family, then the integrations required in (1.3) to
produce the Bayes estimator are able to be performed analytically and produce a closed

form solution. Press (1989) summarizes the use of the more commonly seen natural
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conjugate priors. Unfortunately in the majority of cases, as Naylor and Smith (1982)
point out, "the forms of likelihoods and/or prior densities do not permit such a tractable
analysis and the required integrations must either be performed numerically, or analytic
approximations found". It is this basic difficulty with the mathematics of calculus that
has hampered the application of the Bayesian paradigm virtually since its inception.

One of the approaches taken to solve this problem involves the use of
mathematically simplistic prior distributions when little is known regarding the behaviour
of the parameter of interest. It has been argued that if Bayes methods perform well
under this "worst case" scenario, performance will only be enhanced with improved prior
information. Most notable among efforts in the development of "useful" prior
distributions are Jeffreys (1961) and Hartigan (1964) in producing the so-called
noninformative prior. Howlader (1982, Section 1.4) provides a detailed discussion of
alternative prior distributions and their relative merits. More recent work has been done
by Zellner (1986), Efron et al (1986) and Berger & Bernardo (1989).

Many statisticians have addressed the evaluation of (1.3) under the title "the ratio
of integrals problem", when analytic closed form solutions are unavailable. Several
authors have attacked the problem by drawing on a wide variety of mathematical theories
to approximate the integral ratio in (1.3). Most notable are approximations due to
Lindley (1980) and Tierney/Kadane (1986). Reilly (1976), Smith et al (1985), Van Dijk,
Hop & Louter (1987), Leonard et al (1989) and Gelfand & Smith (1990) also propose
methods to approximate the posterior distribution.

Virtually all of these methods would be unusable except over a very narrow range

of problems if it were not for the availability of considerable computing power.
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Although these approaches bn'rié the most modern technology to bear on what has been
a longstanding problem, they also introduce the pitfalls of this new methodology to the
process. Just as it is a folly to suggest that constructing the posterior distribution formula
(1.3) means it is simple to carry out, so is it easy to forget that involving the computer
in the analytic loop introduces some new difficulties that must be overcome. These
computer-based problems can be split into two categories: method and accuracy.

There are various competing methods to attack any numerical problem, each one
having its own strengths and weaknesses. Numerical search routines form a large part
of the body of computer science literature. Due to the variety and complexity of Bayes
problems, it is not possible to find an algorithm to suit all cases. The most comrﬂonly
known Newton-Raphson search technique, for example, performs well for some problems
while failing at others. Rice (1988) provides an extensive discussion of alternative
methods.

Any mathematical exercise on the computer has a built in error. Such errors
compound directly with the number of calculations performed. In Statistics we deal with
mathematical truisms such as the sum of a probability distribution being one. The
computer, no matter how precise it may be, cannot incorporate such rules. Further
complications exist for the Bayesian approach in that the very form of (1.3) typically
involves calculation of extremely large or extremely small quantities. These produce
overflow/underflow complexities which must be addressed with great care so as to not
lose too much accuracy for the final result. Hence in using a computer to produce the
results of a mathematically designed approximation to the ratio of integrals problem, we

are actually performing an approximation to the approximation. Good programming
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techniques minimize the error of the computer approximation, but it is important to point

out the issue so as to forewarn the practitioner.

1.4 Attempts to Address Implementation Problems

Many authors have attempted to address the problems of implementing the
Bayesian paradigm. This section will describe in detail two such attempts which will be

used extensively in this dissertation. Other alternatives will be described briefly.

1.4.1 Lindley’s Approximation

Lindley (1980) proposed a method to tackle the general problem of evaluating the
ratio of two integrals and obtaining the Bayes estimator u’(f), where u(6) is a function

of the vector-valued parameter 6, defined as

[u(0)g(0)<(0]|x)d0

u*(6) =
jg(0»$(0|z)d0

(1.4)

where u(f) is an arbitrary function of the parameter of interest, g(6) is the prior
distribution of § and £(6}x) is the likelihood function. Lindley actually utilised L(6]x),

the log of the likelihood function £(#}x) in his paper so that (1.4) becomes

[u(e)g(e)exp[L(G:z)lde

u* () =
fg(e)exp[L(elz)]do

(1.5)

which is the Bayes estimator of u(f) under squared-error loss.
Consider the numerator of (1.5) and expand both w(6)=u(f)g(f) and L(8}x) by

Taylor series expansion about the maximum likelihood estimator (mle) of § designated
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as §. For the sake of brev1ty L(6}x) will be written simply as L and all functions

involving @ assumed to be evaluated at the mle.

The Taylor series expansion of L about 8 is

L(8) = L(B) +EL(0 -8 + _zigLﬁ(ei—Bi)(oj—aj)

i=1

" 2 Lu0m8) (00) (8,0 + . (1.6)
k=1
where
aL azL 33L
Li=-6-6-;' LU:W’ Lljk:m

Using 6, to represent the deviation term (0;9 ), the expression simplifies to

L(8) =L(8) + Y Lo, + _L,El 10,6, + _3l§kj L 6.8.6, + ...

i=1
where all summations run over all subscripts from 1 to m, the dimensionality of 6.
Applying the Taylor series expansion to w(f)=u(6)g(6) gives

m 1 m mn
w(O) = w(B) + Nwify + S, - 3 B0,

'k=
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Hence

J'W(B)expL(H)df) = ﬂw(@) + Y wh, + %‘.Ewﬁﬂiaj + %EwﬁkOi()jOk + ]

-exp[L(@) + L0, + 1Y 1,00, + 1Y 1,000, + ...]d() .

To simplify, factor out the w(f) term and define

W W

Sy Wy=—L_, Wy=—%_, and so on.
w(f) w(0) w(f)

All terms of the form L6, are zero since the functions are evaluated at the mle.

This leads us to the simplified form

[w(0rexprr(8)1d6 = w(d)er®

ﬂl + W0+ 2,00, + X W,000, + ]

-exp[_;.z L;6,0, + %ELgkOinOk + .. .]d() . (1.7)

Lindley then uses the relation e*** = e*[1 + x + x%*2 + x%/6 + ...] and sets

a = (1/2)EL;6,6; to get

fW(ﬁ)eXptL(e)]do = w(h)e®
ﬂl + Ewiei + %ZWQ.O,-OJ. + %Zwyk()i()j()k + .. .]

‘exp

5> Lg.e,.oj] 1+ (%ELgka,.ojak + oY L0,6,0,6, + )

2
* (%ZLé'keiejgk * -z-leLg-k,l),-ﬂjﬂkal + . -,) L ]dg
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Expanding the latter part of the equation produces

Iw(ﬂ)exp[L(G)]dG = W(a)e“a)fexp[%zLinﬁj]
(1 + 3 W6, ¢ %ELﬁkoiofok * %E Wy9.9;

(T W0) 2T 1,008, + Y Lubi0,0,0, + ...1a0 .

Lindley (1980) notes that L, and all its derivatives are O(n) and further that all
terms involving any segment of the multiparameter 6 are O(n'?). He considers the terms
only to O(n?), assuming that terms of higher order tend towards zero as n—>oo. Using

this assumption, the numerator of the integral ratio (1.5) becomes

J'W(G)exp[L(()) ] = w(@)e“a’fexp[%z L,.J.O,.Oj]
1+ YW+ 2T Lyub.66, + 23,00,

. (zw,.a,.)_;.z L,6,0,0, + R1d0 (1.8)

where R contains terms involving only L, and not W or its first derivatives.

The term exp[(1/2)EL;0,6,] is in the form of the kernel of the multivariate normal

3
distribution. The mean vector is (8,, 8,, .., 8,). The variance-covariance matrix
for this multivariate normal will thus be the inverse of the matrix with the -L; as
elements. Write this as £ = [gy] = [—Lij]". The expression (1.8) then involves

integration of moments of the multivariate normal distribution. Using the fact that the
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mle 6 is asymptotically unbiased for 6 and the following results (Anderson, 1958; page

39) for the multivariate normal distribution,

E(6,-8,)=0
E(0,-8,) (8,-9,) =0,
E(6,-8,) (6,-8,) (6,-8,) =0

E(0,-0,) (6,-8)) (6,-8,) (6,-8,) =00, +0,0,,+0,,0;

Equation (1.8) will yield

jw(o)expth)lde =w(h)el®(2m)m?|} |12

"E[1 + LW, + 2 L,6,6,6, + Y w,6.6,

1
* =z (w,0,)Y L;00,0, + R)

Note that the second last term may be rewritten as

1 1
< (W:6)) Y Lyb,0,6, = € > Ll 0,0,0,0,

ikl

(1.9)

which involves the fourth moment. Applying the results for the multivariate normal

distribution reduces (1.9) to

fw(())exp[L(O)]d() =w(B)e®(2m)m? |} [ . [1 + %Ewgag.

1 .
+ —G-EL.y. (004 + 0,0, + 0,0,) +R"]

(1.10)

where R* is the appropriate result of integrating all the remaining terms, not involving

w. Recall that Ly, being a partial derivative term, has the property that the order of
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differentiation is irrelevant to the final answer (for example L,; = L;;,). Hence the
three-term permutation of the o subscripts in the last term of (1.10) are redundant as the
three summations will be equivalent.

Thus, the basic result is
jw(o)exp[Lw)] =w(d)e®(2m)m? |} |2
« 1+ _];Ew..o.. + _1_EL..kon..o + R"]
2 yUy 2 y §UH

If this algebraic route is repeated for the denominator of (1.5), the result is identical
except for the w’s being replaced by v’s(say), where in the present application v(6) =g(6).
Furthermore, in this application the likelihood function of interest in the numerator and
denominator will be the same since the denominator is always merely a normalizing
constant on the same posterior distribution. It follows directly that the variance-
covariance matrix I will be the same for the numerator and denominator of (1.5). Hence

there will be considerable cancellation once the ratio is constructed, leaving the result

w(@)[l + %Ewﬁog + %ELij,jV,ayok, + R']

u* () =
V(9)[1 + %Evﬁ%‘ + _zl_EL.y.kV,ag.ok, + R‘]
. 8 1 1
u*(0) = dei[l + EEW*”'% + _Z..ELg.kW,aijaH] (1.11)

. [1 —(%‘.ng.ag + %ELg.kV,oﬁau) (o)t = (aaa)3+ ]
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so that
. 8 1 1
u*(0) = _O_ZE ;[1 + _2_2 (W;-V,) o, + .52: (W V) L0045 + « o

Recall that for this special application, v(6) was defined to be the prior distribution g(f)
and w(6) was set to be the product of the prior and the parameter of interest, producing
by definition the posterior mean of u(f) which is the Bayes estimator under squared-error

loss. Translating back into the original notation then, it is seen that

=
1
<
"

g| =
|

<l=

becomes

du(0)g(0) du(0)g(0)
I 30, ) a0,
P u()g(0) g (o)

which, after differentiation and using the established algebra becomes

- 9(O)u(8) +u(8)g,(0)u(s) _ u(h) (1.12)
fT O a@

-~

Note that all functions are evaluated at the maximum likelihood estimator ? .

Similarly, it can be shown that

v = u;(0)  u(0)g;(0) +u;(8)g:(9) ] (1.13)
v u(o) u(d)g(o)
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Substituting the results (1.12) and (1.13) into (1.11) gives

i

2u,(0)g;(0) -
g(d)

ut(0) =ud + 3% [u,;,-(e) +

+

v

Y u,(6)Lyo.0, . (1.14)
ikl

For convenience, Lindley ('1980) assigns p(f) = 'log[g(())] so that (1.14)

becomes

u*(0) =u(d) + _;_%‘[uy(()) + 2u,(0) p,(8)]o, + %E L,u,(8) 0,0,

gkl
(1.15)
evaluated at 8 = 8 , the maximum likelihood estimator. This is the basic result. One

of the major drawbacks to this approach is that it requires evaluation of the third
derivative of the likelihood function, which for certain distributional settings may be
onerous. Lindley (1980) describes an alternate route by using the logarithmic posterior
distribution A(f)=log[g(f)L.(x|6)] in the expansion, which is maximized at the posterior

mode. The form of the final approximation then becomes
ut‘(a) = u(o//) + %Euy'[y + %‘glAijkulTikal (1.16)
iJ 15K,

where 6" is the posterior mode, the point at which all functions in (1.16) are evaluated,
and 7; = -Ay. The advantage of this approach over the use of the mle expansion will be
for distributions that have unruly forms for the derivatives of the likelihood functions.
In such situations, Lindley suggests that the method of differencing be used whereby the

appropriate derivative function is approximated by the same order differenced function.
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This allows the researcher to be able to compute the Bayes estimator without having to
refer to an iterative computer search technique to evaluate the derivatives of the
Iikelihood function. It does involve, however, the evaluation of the log-posterior over
a surface grid surrounding the posterior mode §". Howlader and Weiss (1987a) give an
excellent exposition on the details of carrying out the differencing technique.

Howlader (1982) has used this technique for one- and two-parameter estimation
problems. Howlader and Weiss (1987(a) and (b)) discuss some of the advantages and
problems in the implementation of the procedure in these specific settings for the Cauchy
distribution. Their work provides detailed explanation of the implementation of Lindley’s
technique using both the posterior evaluated at the mle and the log-posterior evaluated
at the mode approaches.

To facilitate the implementation of Lindley’s method, a computer program was
developed to produce the general expanded form of Lindley’s approximation equation for
any number of parameters under consideration. The equation can be formulated in terms
of the third partial derivatives (L;;’s), elements of the inverse Hessian matrix (0y’s) and
partial derivatives of the log-prior (p;’s) and the parameter to be estimated (u;’s and u;’s).
This algorithm, written in the BASIC language, was included in Press’ (1989) review of
algorithms available for Bayesian inference under the name LINDLEY.BAS. The
program produces the algebraic form after expansion and collection of like terms.

Algebraic forms for one and two parameters have been given by several authors
(Sinha, 1986; Howlader and Weiss, 1988 for example). Forms for three and four
parameters are given in Output #1 and Output #2. Although the program does produce

results for as many as seven parameters, the equation is too long to be of practical use.
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The output equation for five pérameters, for example, covers seven pages. Once input
to a symbolic algebra program, however, the production of Lindley’s expansion for any
number of parameters becomes a manageable task by simply entering the appropriate
elements (L ’s, 0;’s the p;’s and the u;’s, u;’s) and allowing the program to perform the

tedious algebra.
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OUTPUT #1

LINDLEY’S METHOD ALGEBRAIC EXPANSION

To estimate the vector-parameter § and related functions,

where @ is made up of 3 separate parameters, Lindley’s equation is
Opiyes = O + (1/2)PARTI + (1/2)PART2

where PART1 and PART? are given by:

PART]

011Uy +2u101) +201,(u,+uy0,+Uy0,) +2013(u53+uy05+us0)) + 022(U5,+2u,p,)
+2055(uy5+up05+us0,) + 033(Us3+2U503)

PART?2
Ly, (ulafl +Uy0,015+U30,,043) +Lypy ( 3ulaualz+u2°u°22"'2uz"?z+u3°11°23+2u3°12°13)
+Ly53(3U,01,013+U,0,,053+2U,0,,0 3 +u3ona33+2u3of3)
+Lyy (ulanozz+2ulafz+3u20‘12022+2u3012023 +U30,305,)
*L193 (2U;01,093+41,01,013+4U,01,0,53+2U,0 30,5, +2U;0 1,043+ 413050, )
+Ly33 (104,055 +2u,0 2 +Uy015033+2Uy0303+3U;303053) +Lyy, (u,012022+u20§2 +U30,,0,)
+Lyp3 (2U1015053+U, 01300 + 31,0053 +U30,,0 3, +2 u3o§3)

2 2
*+ L33 (U0 13033+ 2U,0130,3+1,05,033+2U,053+3U30,,053) +Ly, (1,030,353 +U,0,3053+11,073;)
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OUTPUT #2

LINDLEY’S METHOD ALGEBRAIC EXPANSION

To estimate the vector-parameter § and related functions,

where @ is made up of 4 separate parameters, Lindley’s equation is
O8eyes = Ohpe + (1/2)PART1 + (1/2)PART2

where PARTI1 and PART? are given by:

PARTI1

011(Uy +2u10.) +201,(u5, U0, +Us0,) +203(u;5+uy03+u30;) +2014(u14+Huy04+404)
+ 03 (Uy +20,0,) +2053(Uy5 1,05 +130,) +2054(uy +uy04+00.) + 033(U33+2u305)
+2634(U34+U3p4 +U4p3) + 044(“44+2U4p4)

PART2
L 2 4 + +
11 (U107 +U,0,,01,+U,0,,0,3+1,0,,0,,)
2
+Ly15 (3U,0,0154U,01109+2U,071p +U30,,0,3+2U,0 1,03 +U,0,,0,,+2U,0,,0,,)
2
*+L433 (3U01,013+U,0 10,3 +2U,01,0 3 +U30,,033+2U,073 +U,0,,03,+2U,0,30,,)
2
+Ly34 (31,0110, +U,0,,0,+2U,01,0,,+U30,,03,+2U30,,0,,+U,0,,0,,+2U,014)
2
+Lyy (u1011022+2u1012+3uzonan+2u3012023+u3al3022+2u4012024+u4014022)

+L153 (2U,01,053+4U,0,,0,3+4U,0 1,03 +2Uy0 30, +2U30 1,03, +4U,0 30,

+2U,013034+2U,0130,,+2U,0,,05;)

+Lpq (20104105, +4U,0 1,01, +4Uy0 1,05, +2U,0,0,+2U;0,,0,+2U;0,30,,

+2U3014023+2U,0150 44 +4U,401,0)
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+ L33 (U101 033+2U,073+U,0,,033+2U,0,30,3+3U;0 305, +2U,0,,0,,+U,0,,0,,)

+1 2U,0,,03,+4U,0,,0,,+2U,0,,0,,+2U,0,,0,,+2U. 0,0, +4U.0..0
134 1¥11Y 34 1¥Y13% 14 2Y12¥ 34 2¥13Y 24 2¥14%¥ 23 3¥Y13Y34

+2U30,4033+20,403044+41,0,,03,)

+Ly44 (U,0,,04+2u, 07, FUy0 13044+ 2U0 14094 +U30130 44 +2U;0 1,03, +31,0,,0,,)
*+Lipgy (U401,0,+U,0%, +U309,053+U,0,,0,)

* L3 (2U10503 4,030, +3U,0,,0 3 +U;0,,033+2U,0% +UL09)034+2U,0,30,,)
* L4 (211015054 +U,0 1405, + 31,050, +11;0,,0,,+2 U30,5304+U 05,04, +2U,0 %)
+L1y33 (U)01,0 53+ 2U, 01303 +U,0, 033+ 2U, 0755+ 3 U303033+2U405303,+U,0,,0;3)

+Lp3 (2ulcna34+2u1013024+2u1014023+2u2022034+4u2023024+4u3023034

+2U30,,053+2U,0,,0,,+4U,0,,0,,)
+ D9y (U0 15044 +2U,0,,0,,+U,0,,0,,+2 uzog,, +U30930,4,12U,0,,03,+3U,0,,0,,)
+Liygs (U1013033 410,030,531, 033 +U,03303,)
L34 (211013034 +U,014053+2Uy03054 +Up 07,033+ 3U3053,05,+U, 03,0, +2U,034)
L34 (Uy0130,44+2U, 01,03, +Up0 30 44 + 20505403 +U3 0330 4, + 21Uy 034 +311,0,3,0,,)

2
+Ligq (101014044 +U5 040,44 +U303,0 4, +1,02,)

23
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1.4.2 Tierney-Kadane Approximation

Tierney and Kadane (1986) attacked the ratio of integrals problem from a
perspective different from that of Lindley, employing the Laplace method for integrals.
Their technique is closely related to that of Lindley however, in that the major difference
is merely the means by which the complicated integral equation (1.3) is evaluated.
Rather than expanding about the maximum hkeliﬁood estimators, Tierney & Kadane use
the point which maximizes the value of the integral, which in this case turns out to be
a function of the posterior mode. Because the numerator and denominator are of
different forms, it is to be expected that the point about which each integral is maximized
will differ in the two cases. Hence this method uses a different point about which to
expand each integral in a Taylor series. They then use a result involving the Laplace
method for integrals to evaluate the integrals and, subsequently, the ratio. In competition
with the Lindley approximation, the Tierney-Kadane (T-K) method has been seen to be
more accurate in terms of estimating posterior variance and numerically more convenient
in some cases, although does suffer when the sample size n is small (Howlader and
Weiss (1987)). The T-K method represents an alternative to Lindley’s method so that
given suitable conditions it is left to the researcher to decide which of the two techniques
is most appropﬁate for the particular situation under study.

Specifically, the method begins by reexpressing the integral ratio (1.5) as

[u(0)g(8)exp(L(0|x)1d0 _ [exp[nL.(8.)]1d0

u®(6) =
fg(e)exp[L(elz)Jde jexp[nL,,w.,)]do

1.17)
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where

L(6) = (Logrg(#h) i + L(0|x))

z.(0) - BeuD) 2 305t (D)) 2 2010) . Legluco),

and L(6{x) is the logarithmic-likelihood function. The points 6, and . maximize the L,
and L. functions respectively. Tierney and Kadane then proceed to construct asymptotic
approximations for the numerator and denominator separately. They first consider the
simpler of the two functions, the denominator and assume that L is essentially unimodal.
They expand L, about the modal value 6,, approximating it by L.(6,)=L,(6-6.)’E,L.(6-6,)
where L, is the inverse of the matrix with the negatives of the second partial derivatives
of L, with respect to 6 as elements, evaluated at §,. They then make use of a result due
to Laplace, described in detail by DeBruijn (1961). Known as the Laplace method for
integrals, it is based on the premise that if one were to integrate over the entire real line
for any reasonably unimodal distribution, most of the value of the integration will come
from a relatively compact area around the distribution’s modal value (Laplace, 1776).
Stigler (1986) gives a translated and modernized account of Laplace’s approach. The
mathematical justification for applying Laplace’s work to the T-K method is detailed by
Kass, Tierney and Kadane (1990). Specifically, to integrate (x,t) over the real line with
respect to x only, if t is large, one need only consider the value of the integration around
the mode of 7(x,t) to get a reasonable approximation to the value of the entire integral.
For example, (DeBruijn (1961)) consider the problem of integrating the function

§ exp[-tx*log(1 +x+x*dx. Large values of t cause the integral to be dispersed rather
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closely around zero. If one wére to do this integration for large t over the interval [-
0.5,0.5], the result would be a reasonable approximation of the overall integral.
Furthermore, if necessary, it may be possible to find a close approximation to the
function required over the newly restricted area of integration which is easier to

integrate. Applying this idea to the L, integral produces
Iexp (nL,]d6 =~ exp[nL,] Iexp[—nLo (0-6,) 'E;l L,(6-6,)) ]d0 (1.18)
This integral is in the form of a multivariate normal distribution, so that (1.18) becomes
. 27 mi2
Iexp[nLo]dG ~ exp[nLA(T) |Eo | 12 (1.19)

Similarly, the numerator integral, evaluated at its maximization point f. becomes

Iexp[nL, (0,)]d0 ~ exp[nL_ (0_)]( 2")'”,2]2_ | 122 (1.20)

n
Combining (1.19) and (1.20), the Tierney-Kadane approximation for the ratio of integrals

(1.5) is found to be

13, |
13, |

12
u'(e)z[ } exp[n{L, (8.)-L,(8,) }] (1.21)

The error of this approximation is O(n?), the same degree of accuracy as that of
Lindley’s method. Furthermore, in estimating the posterior variancé via the relation
Var[u(®)] = E{[u(®)]*} - {E[u(6)1}?, the authors state that due to fortuitous cancellation
of terms, the error of approximation is again of order O(n?) whereas Lindley’s method
has error O(n) for estimating the posterior variance. They then state, however, that in

practice they have encountered difficulties with numerical precision because the variance
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calculation involves taking the difference of two very large numbers, which naturally
could lead to the loss of significant digits. Furthermore the results are strictly asymptotic
and they do not expect great accuracy in results for small sample size. They note that
it is possible to obtain negative variance estimates or nonsingular matrices for small n.

The primary advantage of this approach over Lindley’s is that one does not have
to derive any third partial derivatives. However two sets of second partial derivatives
must be derived for L, and L.. Furthermore one must separately maximize L, and L.
to find the evaluation points 8, and 0. respectively. The authors suggest that the
maximum likelihood estimators are an appropriate starting point for maximization since
each of the functions is related to the likelihood function. Newton-Raphson iteration
from that point has proven to be convenient with convergence usually appearing after one
or two iterations. Clearly, for some distributional settings, this method will be superior
to Lindley’s in terms of numerical convenience, but not in general.

One of the major restrictions imposed on this technique is that the function u(6),
the parameter of interest, be nonnegative. The reason for this assumption is involved in
the cancellation of error terms in approximating the numerator and denominator integrals.
If u(f) is nonnegative, then the two integrals are roughly of the same shape. If u(f) can
take on negative values, then the overall shape of the numerator integral may be
markedly different from that of the denominator. Tierney and Kadane (1986) soften this
restriction by stating that as long as the posterior distribution of u(6) is "concentrated
almost entirely"” on the positive side of the origin, the approximation technique should
be applicable. For the applications considered in this text, this assumption is met.

An updated version of the T-K method was presented in Tierney, Kass and
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Kadane (1989) in order to addfess the restricted range space problem. They attack the
problem by using the fact that the integrals involved in (1.5) are actually forms of
moment-generating functions. As such, they can estimate the integrals by approximating
the moment-generating function and differentiating to get means and variances.

This "new" method covers both "positive" and "negative” parameter spaces. The
method is mathematically equivalent to simply adding a large constant to the function,
using their previously published method and then subtracting the same constant from the
result. Furthermore, the new method is seen to be equivalent to Lindley’s method.
Since this updated T-K method is redundant with Lindley’s method, it will not be

discussed separately here.

1.4.3 Relative Merits of the Two Procedures

Tierney and Kadane (1986) state that they proposed their approximation because
"it would be useful to have approximations that are more accurate than the normal
approximation, yet not as computationally intensive as numerical integration methods".
They refer to Lindley’s technique as "being accurate enough" but being rather tedious
in application due to the required construction of the third partial derivatives of the log-
likelihood function. In fact, for estimating posterior means (Bayes estimaitors), the two
techniques have the same error O(n®) and it is only for posterior variance estimates that
the T-K method becomes more accurate than that of Lindley.

A technical detail often omitted from published papers dealing with Bayes
methods is de-emphasized by Tierney and Kadane (1986), although it has implications

for use of their technique in practical situations. The T-K method retains the basic
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structure of the Bayes problerh - that being the ratio of two integrals. In practical
situations this often involves taking the ratio of a very large number to a very small
number so that the differences almost balance. Typically involving large powers, these
calculations are prone to overflow/underflow problems as well as numerical accuracy
considerations,

Although Tierney and Kadane mention that caution should be used if n is very
large, they fail to address this problem directly. Lindley’s method, however, does not
suffer from this problem simply because of the way it attacks the ratio of integrals
problem. Whereas T-K separately approximate the numerator and denominator, Lindley
approaches the ratio as a whole and produces a single numerical result. The T-K method
literally requires setting up two separate functions, L, and L., and obtaining separate
approximations for each. Lindley’s approach is more convenient in that once the
functional structure has been achieved it can be utilised repeatedly for various parameter
functions without much additional work.

Due to asymptotic foundations, small sample sizes produce theoretical problems
for both procedures. This in turn causes practical problems for producing variance
estimates. In estimating V(f), by estimating E(6*) and using the relation V(§)=E(6?)-
[E(6)], there is a risk of negative variance estimates due to overestimating E(f) and/or
underestimating E(6%), both in Lindley’s and the T-K method.

Howlader and Weiss (1987) report such problems and note that the T-K method
evidences instability for small n. The reason for this is the same as that for the negative
variance estimates. By separately estimating each part of the integral ratio, it

incorporates the risk of over/underestimating one or both parts, thereby exaggerating the
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erTor.

In comparing numerical ease, Tierney and Kadane only address the issue of
computational ease. They state that their method is superior to Lindley’s because it
requires only second order partial derivatives of the likelihood function whereas Lindley’s
demands construction of the third order partials. This is correct but misleading. It is
true that for an m-dimensional parameter one wﬂl need to construct m(m+1)/2 second
derivatives and m(m+1)(m+2)/6 third partials to implement Lindley’s method. What
is omitted is that once constructed these partials become constants with respect to the
parameter being estimated so that they need never be recalculated or modiﬁéd. Changingv
the parameter of interest involves only a change in the u(§) function and its partials u,(6),
u;(6). This means that once u(f) =6; has been estimated, for example, ¢, log(d), etc. can
be estimated by merely recalculating the partials of u(f) and substituting them into the
static Lindley expansion. The T-K method requires a separate reconstruction of the
second partial derivatives for every parameter estimated. This is due to the fact that the
method requires L, and L. functions be constructed, leading to the Hessian matrices £,
and X. respectively. Although L, remains constant across all estimators and therefore
need only be constructed and maximized once, L. changes with every change in u(f).
This induces a need for the reconstruction of the . matrix, involving m(m+1)/2 second
partial derivatives.

These facts point to a general conclusion regarding the two techniques. If
numerical maximization and partial differentiation routines are readily available, the T-K
method will be just as simple to implement as Lindley’s approximation. If, however, one

wishes to produce closed form algebraic solutions, or perform estimation for numerous
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functions of the parameter spacé, Lindley’s method is both more convenient and efficient.

As originally proposed, the T-K method was applicable only to smooth positive
functions on the parameter space. This problem does not really hamper the technique’s
applicability. ~The addition of a large constant to a negative parameter before
approximation, followed by the subtraction of the same constant from the resultant
estimate produces the desired quantity without violating the procedural assumptions.

Both methods do rely on the existence of the maximum likelihood estimator and
the unimodality of the likelihood function. In applications where no unique global MLE
exists, local maxima are usable. Regularity conditions have been discussed in Tierney
and Kadane (1986) and Kass, Tiemney & Kadane (1990), but largely assumed to be
derived from the works of LeCam (1970), Johnson (1970) and Walker (1969).
Collectively, these works state that the following regularity conditions are assumed for
the asymptotic expansions involved in the approximations to be valid:

1) the posterior distribution is jointly measurable in (x,6) and has continuous

partial derivatives of the first and second order with respect to 0.
2) the maximum likelihood estimate is strongly consistent and is asymptotically
normal.

3) the prior density is continuous and nonnegative.
The main function of these assumptions is to make the second order partial derivatives
of the likelihood function "behave sufficiently smoothly" (Walker, 1969) near the mode.

For the limiting distribution of the posterior to be asymptotically normal, Walker
(1969) demands that the data be independent of the parameter space, which is not the

case for several models that involve multiparameter settings (such as the three-parameter
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Weibull). He then goes on to Say that it is not strictly needed as long as the continuity
conditions seen above are satisfied. He does state, however, that if 6 is involved in the
range space of the data, then another assumption typically fails. The assumption
regarding the differentiability of the likelihood function is usually drawn into question.
This problem is circumvented by use of local maximum likelihood estimators.

A final issue of comparison is of relevance mainly to statistical theorists.
Although the T-K method is convenient with the aid of numerical maximization routines,
it does not lend itself well to algebraic closed form solutions. Lindley’s method on the
other hand routinely produces closed form estimators that are simple modifications of the
maximum likelihood estimator. Both methods produce estimators that are asymptotically
indistinguishable from the MLE. Closed form solutions arrived at via the T-K approach
tend to be more mathematically complex than those arrived at via Lindley’s method. As
will be seen in examples given later in the text, the T-K closed form typically involve
functions raised to the n® power followed by taking the n® root of the result. This makes
mathematical work with T-K closed forms inconvenient at best. Dealing with location |
parameters is especially difficult algebraically in the T-K approach.

In summary, the two methods provide reasonable alternatives depending upon the
distributional setting and the parameters to be estimated. The T-K method was designed
to be used in a numerical setting using readily available computing faéilities. Although
Lindley’s method can also be applied under such a setting, it has clear advantages if

mathematical work is desirable.
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1.4.4 Other Approaches

A considerable amount of work has been done to complement the works by
Lindley (1980) and Tierney & Kadane (1986) addressing the general problem of
evaluating the inconvenient ratio of integrals. R. A. Johnson (1967 and 1970) and
Naylor & Smith (1982, 1983) have presented an optional route by approximating the
ratio by a multivariate normal distribution multiplied by a power series, which is
generally expanded about the mle’s. Johnson (1967) lays the groundwork and his 1970
work describes the strengths and weaknesses of the technique. When successful, the
technique has compared favorably to other methods (Naylor & Smith 1982, 1983). Two
major difficulties arise, however. The primary problem lies in the assumption that the
posterior may be represented roughly by a normal distribution, which not only limits the
scope of its application, but also may cause anomalous results. Secondly, Johnson (1970)
states that the method is only applicable in situations where the mle’s are strongly
consistent and asymptotically normal. It is not known at this time what the weakest
regularity conditions for the posterior are for the expansion to work nor how large a
sample is actually sufficient to ensure a reasonable degree of integrity in the resultant
estimates. Naylor and Smith have applied modified forms of this process with success
in the biomedical field. They make a substantial contribution to solving many of the
numerical problems encountered in the applications.

A summary of the approximation techniques, mainly involving numerical
quadrature, has been given by Smith et al (1985). Not only do they describe each
approximation technique, but they also detail some of the practical solutions crucial to

the success of their implementation. Clearly, the entire area of integral ratio
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approximations is presently a major topic in Bayesian inference and will lead to a wider
application of the Bayesian paradigm. This will be especially true in the more complex
mathematical settings where classical techniques involving the maximum likelihood
principle encounter tractability problems that have been a roadblock of the Bayesian
approach since its inception.

In recent years the computer has taken the foreground in Bayesian estimation
theory. Various techniques involving computer-intensive techniques for estimating the
posterior distributions have been put forward. Bagchi and Kadane (1991) categorize the
alternate methods of attack by the type of numerical approximation used. Aside from
methods already discussed, they cite Van Dijk, Hop and Louter (1987) as a good
representation of methods involving Monte Carlo integration for approximating the
posterior distribution. Finally, the most recent form of approximation makes use of

Gibbs sampling as exemplified by Gelfand and Smith (1990).

1.5 Mathematical Intractability (Simulation Versus Derivation)

A good portion of the work in this dissertation relies on the results of Monte
Carlo simulations. Wherever possible, algebraic results have been sought after and
obtained, so that all-encompassing distributional properties may be explored. As has
been discussed, however, it is the vefy nature of Bayesian methodclogy that makes such
closed form analytic results the exception rather than the rule.

As a result the general thrust in Bayesian methodology has evolved towards an
interactive, applied environment. Several works (notably Kass et al, 1988; Lindley,

1988; Smith et al, 1987) have addressed the basic issue, as presently developed Bayesian
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methodology requires an interactive and powerful computing environment to be effective.
This fact has caused some authors to express concern over a movement away

from theoretical derivation of analytic results towards too much reliance upon the
computer. Keenly aware of this dichotomy in the literature, this dissertation attempts to
strike a balance. Some of the work contained herein takes a purely analytic approach,
others rely on computer simulation. In all segments, however, justification for and
advantages of each approach are given. It is true that computers have been a boon to the
amount of work that is attainable in statistical theory. It is not meant to replace the

calculus.

1.6 Outline of the Dissertation

This Chapter lays out the philosophy behind the dissertation work. It may be
considered a precis of the philosophical discussion that has surrounded the
implementation of the Bayes paradigm since it was first suggested. The remaining
chapters deal with a variety of multiparameter situations where implementation of the
Bayesian paradigm is undertaken.

Chapters two, three and four present the application of the Lindley and Tierney-
Kadane approximations to a variety of distributions most commonly used in reliability
and lifetesting situations. Chapter two describes the merits and disadvantages of the two
methods in application to the two-parameter normal and two-parameter inverse Gaussian
distribution. Chapter three continues to detail the applicability of the approximations to
the three most commonly used three-parameter distributions in reliability and lifetesting.

The Weibull, gamma and lognormal distributions are studied. Chapter four gives a
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similar presentation involving the five-parameter estimation task necessary in working
with the bivariate normal distribution.

Chapters five and six discuss estimation in two of the most commonly seen
mixture distributions. Both censored and uncensored sampling environments are
explored. Chapter five details the work for a mixture of exponentials distributions while
Chapter six deals with a mixture of Weibull distributions.

Chapter seven investigates two settings for Bayesian alternatives to traditional
quality control techniques. The first section proposes alternatives for the traditional p-
chart control limits by taking‘advantage of the inherent updating of information available
through the Bayesian paradigm. The second portion presents a modification of the
standard p-chart based on the predictive distribution.

Three papers concerning work contained in this dissertation have been published
in refereed journals. The material published pertains to work involving the three-
parameter Weibull distribution (section 3.1), the mixture of exponential distributions
(Chapter five) and the mixture of Weibull distributions (Chapter six). Three other papers
are in the refereeing process at the time of writing this dissertation. These papers pertain
to the three-parameter gamma work (section 3.2), the work in Chapter four dealing with
the bivariate normal and the predictive p-chart material (Chapter seven). The exact
references for papers published at the time of this writing are noted at the beginning of

the appropriate sections.
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CHAPTER 2: BAYES APPROXIMATIONS FOR TWO-PARAMETER
DISTRIBUTIONS

2.1 Introduction

This chapter examines two Bayesian approximation methods, due to Lindley
(1980) and Tierney/Kadane (1986), for distributions commonly used for reliability and
lifetesting situations involving two systemic parameters. These approximations are
examined in relation to maximum likelihood estimators and, wherever possible, exact
Bayes estimators. Closed form solutions for the approximations are explored.

As mentioned in Chapter 1, one of the basic difficulties encountered in
implementing the Bayesian approach is evaluating the ratio of integrals involved in
producing the Bayes estimator as the mean of the posterior distribution. Several authors
have turned their attention to the problem, typically leading to an approximation for the
exact Bayes estimator, often necessitating the use of computer maximization routines.
This means that more work is generally involved than most other estimation techniques
and, in a practical sense, loses its appeal. Evaluation of these approximation methods
is undertaken in the hopes of developing, under various distributional settings, convenient
Bayes estimators that perform reasonably well.

Little work has been done in applying the generalized approximation techniques
to specific applications so that the algebraic manipulations required be kept to a
minimum. Most often, in fact, the authors of such techniques recommend the
construction of interactive computing environments to handle the approximations. This
not only leaves the researcher at the mercy of the accuracy of computer technology and
methodology employed, but also ignores the possibility that a closed-form solution may

exist. If such a solution exists, it is of much greater value than a computational
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approximation since distributional characteristics may be derived and studied.

2.2 Normal Distribution

The normal distribution N(u,0) with probability density function

f(x|8) = f(x|u,0) = —--1—exp[----1—2 (x-u)z], —0<pu<0, >0
27 20

provides a convenient forum to test the approximations since the exact Bayes estimator

is known to be (Sinha, 1986)

_ r(f_:.z_) Y (x-X)?
b* =X and o' = 2 =l 3

7

o
[y

for the mean and standard deviation respectively. Sinha (1986) assumes a vague prior
(Jeffreys, 1964) for §=(u,0) of the form 7 (§) o« o!.

This is an exemplary setting because of the inherent normality of functions of
variables involving the normal distribution. Both Lindley and Tierney/Kadane used
normal distribution theory to develop their approximations. If the approximations
perform poorly under these most favourable conditions, it would suggest that difficulties

would most likely arise in their applicability to more complex settings.
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2.2.1 Lindley’s Approximation

As described in Chapter 1, Lindley’s approximation to the Bayes estimator is

- . P P P
ut(8) =u(d + 3Y Y [u,() +2u,(8) o, + EZEEEL&”!%%
2 i=1 j=1 2 i=1 j=1 k=1 f=]

where

p is the number of parameters to be estimated

8 is the parameter vector, evaluated at the maximum likelihood estimator

U;,u; are the first and second partial derivatives of the parameter function being estimated
p; is the first partial derivative of the log-prior

0; is the ij* element of the variance-covariance matrix

Ly is the third partial derivative of the log-likelihood function.

Now for estimating §=(u,0) from the normal distribution

f(x|8) = ‘_]-_epr%] -0< (X, 4) <o, g>0
v2llo

it can be seen that

i

1 if index matches
and u.,=0,V

0 otherwise

and calculate

dp (8 6
p(8)=-10g0, py(8) =508 <0, p,(9)- 208 1



It is further found that

- N S
L(f8|X)=c-nlogo 3—52 (X;-p)?

i=1

so that the partial derivatives are found as follows

iy
i
I

l n
= —5-12 '-0722 (Xi-/-")

I=1

= =_n 1’z _ 2
L= 36 =75 " o Kk

i=1

n
L, = -__232 (X;-u) =0, evaluted at the mle @=
07 =1

L= 3y (%) = 2D at the mle
(¢ (o Ay o

'e,’h
i

and the variance-covariance matrix, evaluated at the mle is

o ol [,
o; = [-L;)7 = o* ="
g~ LTy B B 2

o 22 o &

1 T2
r | 52 (X7X)

i=1

40
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The third partial derivatives are

Ly =0
.. 2n
Ly, = >3

n
L, = %Z (X;-u) = 0 at the mle
o

i=1

n
L, = -2n 1_52 (X;-u)? = 232 at the mle.
o

[e) 3 0 =1
Substituting the zero elements into Lindley’s approximation formula, the equation reduces
to

u*(8) =u(d +

2
i=1

1 1 2
u,-(Q)Pj(Q) o; + 3L112u2°11°22 + -é-Lzzzuzazz .

2
j=1
For estimating the normal mean p, set u(@)=u. It is found that u (@) =1, uy()=0.

Hence all terms in the above formula have a zero element so that

So Lindley’s approximation for the normal mean parameter turns out to be exactly equal
to the true Bayes estimator and the mle.
Now, for the standard deviation, set u(g)=o to get u,(8)=0, u,(6)=1.

Combined with other zero elements, Lindley’s approximation equation reduces to

. 1 1 2
u*(f) =8 + p,0, + §L112°u°22 + 3L222°22
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and substituting from the above calculations, Lindley’s approximation to the Bayes

estimator of o turns out to be

u®(f)

n
(o1}
{

|
+
|
+
|

L[}
Q
—
+
8]

)

So after an amount of tedious algebra, an easin calculable closed form for Lindley’s
approximation to the Bayes estimator of ¢ is produced. From a classical theory
perspective the relationship can be examined between the posterior variance for Lindley’s

approximation and that of the mle. Here

Var(u® (§)) =Varl:6(1+_4.55)] = [1+4_5n]2Var(6‘) )

Since the constant is clearly greater than one for all values of n, it is true that

Var[u'(8)] > Var(s).

2.2.2 Tierney-Kadane Approximation

As described in Chapter one, the Tierney-Kadane approximation procedure can
be detailed as a five-point process as follows:
1. Construct L(8]x), the log-likelihood function of the pdf under study.
Define =() to be the prior distribution of the multivariate parameter § and
u(®) to be a function of the multivariate parameter to estimate.
2. Construct two modified log-likelihood functions L, and L. where
L, = (log[n(@)]1+L)/n and

L. = (log[u@]+log[=(®)]+L)/n = L, +log[u(@))/n.
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3. Find points 6, and §. which maximize L, and L..

4. Construct two matrices, I, and L., the negative of the inverse of the second order
partial derivatives of L, and L. respectively, and evaluated at the maximization points
of §, and §. respectively.

5. Calculate the estimator by the formula

z'
u* () = “2_} explL. (0.) -L,(0,) )

Once again, consider the normal distribution and follow the five-step algorithm.
1. The log-likelihood function and prior distribution are as above.

2. Construct the modified maximum-likelihood functions L, and L. as

t
"

1 1 1 2
21og(l}-10q0- X.—
- og(o) ogo 202n,z=1:( 1)

1 1 «
~{1+=|1090- X~u)?
( H) d 2n02§( i~H)

and L. will differ for each of the parameters u and 0. As such the discussion will be
split into two parts.

First, for estimating o the population standard deviation, construct L.

1 1 -
L, = Zlogu(f)+L = -logo- X.-u)?
=109 (9)+L, g 2n02,-§=1:( i~K)
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Next, the points g, and 4. that maximize L, and L. respectively must be found. The

partial derivatives of the functions are

L - (Xi_/-")

_a_‘ro = ; - (2.2)
1
dL 5 i
7 3] a”) Y (Ko’ 2:3)
i=1

Setting these expressions equal to zero and solving finds 6, to be

n+l4z

8, = (k,0) = [J_f, 1 f:(X,--f)Z] .

Similarly for L., the partial derivatives are

0L, 1 1 x~,,_ 2
Fo T o ey KH)

i=1
and solving the system of equations produces the maximizing point

0_'.. = (uclazt) = [}—{'%E (Xi—uc)z] .

i=1

Step 4 requires X, and L., the negative inverse of the matrix of second derivatives, to be

evaluated at the two maximization points 8, and f. respectively.



Using (2.2) and (2.3) produces

62Lo __1
ou? o2
1
aZL (1'*3) 3 n
o _ - X.~1)2
do? o? no“,z:]:( ~H)
azL 22 (X,"ﬂ)
o . =1
aﬂaO' - no?
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The second partials are then evaluated at the maximization point by substituting u, and

o, for p and ¢ respectively so that

1
1+
9L, _ ( n)_3(n+1)a
do? o’ no*
oL, 0
dudo )
Hence
5 -1
-__1_2 0
00




The matrix construction process is then repeated for Z..

’L, _ !
ou? o2
9L,

_1_3y¢ 2
=2 X~
do? o? no“g( ~H)
L, 2 -
dLdo ‘MsE (X;=1)

i=1

and the maximization points u. and o. are substituted so that

o’L, 2
do? 0'2‘
o’L, 0

dudo )

Finally step 5 is reached where the pieces are put together to evaluate

|=. |

ut () = | g5 explL. (8.)L,(89)]}
20

The relation o> =(1+%)a§ is used to evaluate the first part of (2.4)

46

The second partials of L. are

(2.4)
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The second part of (2.4) can be evaluated as

expflL. (0.)-L,(0,)]} =

2

nflogo,-— 1 E(Xi—u,)2(1+i)1ogao
2no’, = n

2no,’i=1

+ 1 ZE (Xi"ﬂ'o) 2}]

Using the relation above and the fact that u.=p,, it is found that

exp L. (8.) ~Lo(8,) ]} = exphL;-logj1+% +%logao]}

= expl:%—nlogfl+% +log00]

e

= 00 -
[r+3)

n
Combining the two parts of (2.4), a closed form solution for o™y the Tierney-Kadane

approximation to the Bayes estimator for the population standard deviation is produced

to be

o <1+i)3 (n+1)€(al~r--l-)ng e
n

UT.-K = ,,-32 (Xi_}-) ’
(n+1)(1+_;) =1
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Further, write

.« n e 2

UT_K - ( ) _36
n+1 1+ 1\"

n

and since Ill_i.z(l+%)” = e, asymptotically oy tends to the maximum likelihood

estimator, as does Lindley’s approximation.
Because a closed form is obtained, the variance properties of the approximation may be

examined to find

Var(a;_x) = H nzl)Ml:IVar(a)

and since the constant is clearly less than one for all values of the sample size n, one can
see that the variance of the Tierney-Kadane approximation is less than that of the mle.

Hence

var(ory) < Var(8) < Var (i)

Now, returning to the population mean parameter, set u(@)=g and begin by
creating L, and L. again. The first function L, is the same regardless of the parameter
being estimated so that the maximization point §, and matrix I, will be the same. The
L. function does change for each different parameter, and is found here to be

L, = &logu— 1+1 loga~__1__zn: (X,~u)?
* n n 2no? !

i=]
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Take partial derivatives of L. to find the maximization point 6. and obtain

oL, 1, 1%
—ar = + E (X;—u)

nu HO'2 =1

1
aL. (1+3) 1 - 2
aa, = = o +n03§ (Xl—“')

Producing a closed-form solution for the maximization point 6. from the above system

of equations requires use of the quadratic formula to obtain the roots of ax’*+bx+c=0.
This, it turns out produces a very messy result. Substituting this result into I. and
attempting to solve the Tierney-Kadane approximation equation becomes intractable.
This is the first of several distributional applications where this phenomenon appeared.
Typically the Tierney-Kadane approximation works out algebraically in a fairly
convenient fashion, as seen above, when working with scale parameters not involving the
sample space. When applying the technique for a threshold or location parameter,
however, the addition of the log term involving the threshold parameter to L. prevents
the convenient cancelling of terms when the partial derivatives are taken. When working
with scale parameters, L. typically involves other terms with the scale parameter in the
denominator, as seen above. Thus, when partial derivatives are taken, convenient
collecting of terms and cancellation are possible. Such is not the case with a location
parameter because it produces an L. equation as above with terms involving the threshold
parameter alternately in the numerator and denominator, effectively ruling out the
possibility of a convenient closed-form solution. Numerical optimization routines become
necessary to achieve the Tierney-Kadane approximation when dealing with such threshold

parameters on a case-by-case basis. This fact holds important implications for the



50

comparative success in the application of the two approximation techniques.

2.2.3 Example
Using data from an N(u,0) example in Sinha (1986b), the two approximation

methods are examined and compared against the exact Bayes estimator. Sinha (1986b)
also gave forms for the estimated posterior variance of the exact Bayes estimator. For
the approximations, as well as the exact Bayes estimator, an estimate of the posterior

variance can be obtained by use of the relation

Var(u(8|X) 1=E(u*(8|X)1-{E[u(8|x]1]
Estimating each part of the variance equation produces an estimate for the estimator’s
variance. Performing estimation in this manner does bring into the possibility of negative
variance estimates. Such estimates are typically observed in small sample cases. These
estimators are useful for comparing the relative precision of the various techniques. The

Sinha (1986b) sample dealt with 30 component lifetimes. Maximum likelihood estimates .

were found to be £=X=19.978 and 8=5.588. The Bayes methods results are in

Table 2.1.
Table 2.1: Bayes Estimation Results for Sinha (1986b) Sample
Exact - s Tiefney .
Parameter | Bayes | V(Exact) | Lindley [ Yindley) | gagane | V(T-K)
© 19.978 1.160 19.978 1.160 19.974 1.159
o 5.836 2.564 5.821 2.782 5.822 2.755

The example produces results that seem to favour neither of the approximation
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techniques in terms of closeness to the exact Bayes estimator. The Tierney-Kadane
estimator does exhibit smaller estimated variance, however. The results for ¢ are more
interesting than those for u since the Lindley approximation is algebraically equivalent

to the exact Bayes estimator.

2.2.4 Monte Carlo Simulation

To assess the distributional assumptions, Monte Carlo simulations were run for
both small and moderate sample sizes. Again recall that results for p will not be as
interesting as those for o, since Lindley’s method produces the exact Bayes estimator.
For this reason, the results for the scale parameter only are given.

Two runs were performed. First 5000 samples of size 10 from N(50,3) were
generated, followed by a run of 1000 samples of size 100, both with parameter settings
of §=(u,0)=(50.0, 3.0). The mean value for the simulation sample estimates and mean
square error are given in Table 2.2 for the three Bayes estimators as well as the

maximum likelihood estimator.

Table 2.2: Simulation Results for Sampling from N(u,0)=N(50,3)

n=10 n=100
5000 samples 1000 samples
Estimator Mean MSE Mean MSE
Exact Bayes | 3.2040 | .6251 3.0177 .0468
Lindley 3.1329 | .5698 3.0177 0467
Tierney 3.1347 | .5718 3.0177 0467
MLE 2.7837 | .4833 2.9804 .0457 J‘

The first notable result is that sample size has a profound impact on results. This
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is not surprising as the authors 'of both approximation techniques state their methods rely
on asymptotic results. Neither technique has been adequately explored for implications
of small sample size. From Table 2.2 it is clear that for a moderate sample size, there
is little to choose between the Bayes approximations. Both the Lindley and T-K method
produce results identical to that of the exact Bayes estimator. The Bayes estimators are
certainly competitive alternatives to the mle, especially considering that the work is
performed in a noninformative prior situation.

Results for the small sample size run reveal some differences between the
approximations. Lindley’s approximation reveals a slightly less accurate estimator on
average, with marginally better mse than the T-K estimator. Both approximations still
do perform remarkably well considering the sparse sample information.

Figures 2.1 through 2.4 provide the sampling distributions of the four estimators
for the smaller sample size run. As can be seen they are almost identical. Also notable
is the bell-shaped consistency. Given that all the estimators are merely a constant
multiplier of the mle, which is known to follow a normal distribution, one would expect
this. The Shapiro-Wilk test of normality was applied to all these distributions and
produced a nonrejection of the normality hypothesis with a typical p-value of 0.80.

The fact that there is little to choose between the approximations in this very
simplistic setting has implications for choice of technique. The Lindley method would
have to be preferred for its algebraic simplicity over the Tierney-Kadane approach.
Lindley’s method produces closed-form results for both parameters whereas the T-K
method becomes intractable in working with the location parameter u. Even in the case

of estimating o, the form of the Lindley approximation is much simpler than that of the
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Figure 2.2
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Figure 2.4
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T-K technique. The T-K techhique will always involve some form of the constant e
raised to a power, divided by a cancelling constant. This produces comparable results
to the Lindley method, albeit by a roundabout algebraic manipulation. It seems clear that
the T-K method is better suited to computer application environments while the Lindley
method lends itself more readily to algebraic investigation. As will be seen, these basic

findings will persist through a variety of distributional settings.

2.3 Inverse Gaussian Distribution

A close relative of the normal distribution, the inverse Gaussian distribution is
often used in reliability and lifetime studies. The same pattern of analysis is followed
as with the normal distribution, making comparisons among the two approximations, the
exact Bayes estimator and the maximum likelihood estimator.

Consider a distribution for the lifetime X of a component which arises from the

two-parameter inverse Gaussian IG(u,N) which is defined by

£(x|N ) =£(x[0) = | D exp| A 4 4 o .
2mx3 2xu?

The maximum likelihood estimators of the parameters are well known as

p=X, X=n_£’_____ .
1.1

The vector parameter §=(u,\) is assumed to follow a diffuse prior distribution (Box and
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Tiao, 1973) so that

'rI(Q)oc%,so that p(6)=-logh .

The same procedures can be carried out as was done with the normal distribution in

section 2.

2.3.1 Lindley’s Approximation

Sinha (1986) produced closed forms for Lindley’s approximation under the inverse

Gaussian distribution following the same process seen in section 2.2.1, finding
. 302 . n-1
Hindey = B+ Nty = (T)X ‘

The variance of the Lindley approximations for both parameters is smaller than that of
the mle although for moderate to large sample sizes the differences tend toward zero.
Similar to the closed-form solution for the normal distribution, Lindley’s approximation
produces easily calculable estimators that are simple functions of the maximum likelihood

estimator.

2.3.2 Tierney-Kadane Approximation

Following the five step algorithm described in section two, construct the log-

likelihood function

_ D N |3 ~ 1
Lg]x) = C+—2—10g>\ W[ﬁX 2np+u?y" YJ

i=1 i

where C is a normalizing constant, irrelevant to calculations.
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Further,

i=1 X;

i

= (log[m(8]+L) /n = C+(%-—%)log)\—._.z_ [:_Z,H 53 1]

and the partial derivatives of L, are

0L, =
W—F(x “‘)

w8 ]
2N —T_gu n4

i=1

R I

The maximizing point §, is obtained by setting the partials to zero and solving so that

2)?[1-&]
= (g, \,) = | X, —12 n]

4 -—n
1+ Xy 1
nF X

The L. function changes for each parameter function to be estimated so that for

u(@ =N\, it is found to be

A i 1
L, = log)\— X-2u+2
2u? [ ; Xi]
oL, A\ ,=
—TIJ’_ - -I?(X #)

dL, 11 Ex= 1
= - X-2 o —_—
o~ 2M 2,‘2%2 b < X,
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producing the result

6. = X

X

Xv= 1
-1+ —
n,Z,l: X

Next construct the two matrices I, and ., comprised of partial derivatives of the I, and

L. functions respectively, evaluated at the maximization points 6, and §.. The partials

of L, are

2

L — -
_q__i’ = A(Zu—3X) = —=>‘ since pu,=X
ou? ut X3

(23]

0L, _ \Z2 7

N2 A2

0L, 1 .= , -
FTTED = -IF(X_“) = 0 since u,=X

so that X is

_)\ 3
o 0 X 0
X3 A,
z, = f1_1 = A2 .
3 n o
o =72/ 1_1
Ao i 2 3_

Similarly, for X, the second partial derivatives evaluated at the maxima are

d’L, __

ol x?

°’L, __1
IN? 2\2
d’L,

LJTE)N
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so that I. is

3 0
s, =-| % ARy
v L0

Evaluate the Tierney-Kadane approximation formula (2.4) in two pieces as before so

that the first part is

[ |=. | 27, X3 2(%—%))\.
=T AKX R
3-3)

but it can be seen that )\o=2(_21_ —%))\_ , So the first part becomes

=1 | n
J‘ﬁ:r ‘[rﬂ‘l

So the Tierney-Kadane approximation for the Bayes estimator of A is

Arx = 1-expf[L. (6.)-L,(8,)]}

which becomes

. 1 A, X 1 11 A, X 1
= =1 -2 F1+E2Y S |-eH{=-2h 2 -1+2% 2.
Arx eXpth ogh. 2Xl +n.~=1 X,»] (2 n) ogA,* 2X[1+n X.”
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After substituting the calculated values and simplifying, the result is

Arx = exp [—1—(; —1) E.ogz +log(..2]: —%)]+log)\ .] .
The final form of the approximation is then

. A, =% 1

) n—
. [2 __1)]1
2 n

Arx = B R T
. [2(_1-3)]1
2 n

Once again one may notice that asymptotically N\ becomes indistinguishable from the

mle.
Now turn to complete the approximation for the location parameter u. Recall that
L,, ¥, and the maxima @, have already been obtained. Reconstruct L. for u so that

u(@)=p and

1 1_1 A By 1
= = —-=1J1 - X-2u+ Yy .
L, nlogy,+c+(2 n) ogA 2u2t€ L+ - ; %

To maximize L., obtain the two partial derivatives

oL, 1.\,
—aﬁ- n_ﬂ+—[—£3 (X-u)

[z-3) |
L. _\2Z =/_ 1 {;_zwﬁf" _1_]_

i=1 i

Unfortunately, the same problem appears that was encountered with estimation
of the location parameter in the normal distribution. The added u term in the
denominator of the partial derivative with respect to u requires that the quadratic formula
be used, producing a very unwieldy algebraic form for the maximization point. At this

point a closed-form solution for u’(rxy becomes untenable, forcing reliance upon
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computer maximization routines.

2.3.3 Example

Bannerjee and Bhattacharyya (1979) present a method to find the exact Bayes
estimator in terms of the solution of a system of equations and give an example dataset.
The sample dataset comprised nine lifetimes. The results of estimation are given in

Table 2.3.

Table 2.3: Estimation Results for Bannerjee and Bhattacharyya Sample

Parameter Exact Bayes Lindley Tierney MLE
7 not given 4.1178 4.0930 2.6064
A 1.6229 1.6228 1.6216 1.6589

Lindley’s approximation more closely estimates the true Bayes estimator than the T-K

method.

2.3.4 Monte Carlo Simulation

Two simulation runs were performed, as with the normal distribution, generated
from an inverse Gaussian distribution with 4=5 and A=4. Since both parameters p and
A displayed interesting results for the example dataset, results are presented for both
parameters in Tables 2.4 and 2.5. In looking at the individual samples it was seen that
the T-K estimator was always less than the Lindley estimator, although the magnitude

of difference was relatively small.



Table 2.4: Simulation Results for Estimating u from an 1G(5,4) Distribution

n=10 n=100
5000 samples 1000 samples
Estimator Mean MSE Mean MSE
Lindley 5.6395 15.2415 5.2698 0.5731
Tierney 5.6102 15.1507 | 5.2695 0.5729
MLE 6.0231 18.6680 5.3771 0.6621
Table 2.5: Simulation Results for Estimating A from an IG(5.4) Distribution
n=10 n=100
5000 samples 1000 samples
Estimator Mean MSE Mean MSE
Lindley 5.8525 | 20.1326 4.3722 0.6730
Tierney 5.8404 | 20.0192 4.3721 0.6730
MLE 6.5028 | 26.8824 4.4163 0.7187

Findings for both the scale and location parameters in terms of estimator
performance are basically the same. The reduced variability of the T-K approach is
evidenced, although there is little to choose between the two approximation methods in
terms of precision.

As with the normal distribution, the impact of sample size is notable. For the
smaller sample size, the discrepancy between the two approximation techniques is
greater. For the larger sample size, the discrepancy between the two techniques becomes
negligible.  Figures 2;5 through 2.7 contain sampling distributions for the three
estimators of A involved for the (n=100) larger sample size. The two Bayes

approximations produce identical plots while the mle does differentiate itself slightly.
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Figure 2.6 ESTIMATION FOR INVERSE GAUSSIAN DISTRIBUTION A
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Figure 2.7 ESTIMATION FOR INVERSE GAUSSIAN DISTRIBUTION X\
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2.4 Summary

In their paper, Tierney and Kadane (1986) assert that their method is
computationally easier than Lindley’s technique because of the need for the second partial
derivatives only to be calculated, while Lindley requires third partials. As has been seen,
however, the T-K method requires such derivations for each parameter estimated while
Lindley’s method demands such algebraic manipulations only once. Furthermore, each
technique requires matrix inversion. The Lindley approach needs such inversion only
once, whereas the T-K approach needs a new matrix construction and inversion for each
parameter to be estimated.

From these two distributional examples, it is clear that the Tierney-Ka&ane
approximation lends itself to closed-form solutions only in the case of scale-type
parameters and becomes algebraically intractable for threshold/location parameters. This
has largely to do with the choice of prior, of course, and the fact that in this setting
priors were used that involve only the scale parameter. This is not an unusual situation.
Lindley’s method on the other hand does not seem to have any mathematical tendency
towards either scale or location parameters and produces closed forms with an equal
amount of manipulation.

In terms of the closed-form solutions themselves, the Lindley estimators are much
simpler, avoiding the exponential form of the Tierney-Kadane solutions. Lindley’s
method would be preferred for its simplicity at a negligible cost of accuracy.

Attention will now be turned to more complex distributional settings where even

obtaining a numerical solution is difficult.
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CHAPTER 3: BAYESIAN APPROXIMATIONS FOR THREE-PARAMETER
DISTRIBUTIONS
This chapter continues the work of the previous section, expanding the work to

now deal with more complicated estimation environments involving three systemic
parameters. Three distributions used routinely in reliability and lifetesting work are the
Weibull, gamma and lognormal distributions. Estimation procedures from both the
classical and Bayesian perspective are examined. While in many applied situations these
three distributions may be thought of as interchangeable, each one has its own special
mathematical characteristics. This individuality leads to complicating factors in any

attempt at generalization across the three distributions.

3.1 Weibull Distribution

In this section, the three-parameter Weibull distribution will be used to
demonstrate the efficacy of the two Bayes approximation techniques relative to the
maximum likelihood estimator. Work in this section has been published in IEEE
Transactions on Reliability by Sinha and Sloan (1988).

Of the three-parameter distributions commonly had in life testing situations
presented in this chapter, the Weibull distribution has seen the most attention in the
literature. Named for the Swedish physicist who applied it to material breaking strength
testing during the second world war (Weibull, 1939), the Weibull distribution is
particularly useful since the reliability and hazard functions can be expressed in simple,
closed forms and if the shape parameter is greater than one, the Weibull distribution

aptly takes into account failure due to aging and fatigue.
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The density function for the three-parameter Weibull distribution is

f(x|p,b,c) = gcz (x-p)lexp [-(%—“)]

where c is a shape parameter, b is a scale parameter and p is the location or threshold
parameter representing minimum time until wear out.

A considerably larger body of publications deal with the Weibull than with the
alternative life testing distributions of the gamma and lognormal. Citing that there is no
clear theoretical reason why the Weibull is so popular a choice over alternative
competitors, Johnson and Kotz (1970) provide an extensive list of applications.

The reliability function at a given time t is Pr(X>t)=R(t) and is given by

R(t) = exp[-—(ib—ﬁ)c], t>u .

Although the idea of a minimum "guaranteed" time until failure is intuitively
appealing, the addition of the u parameter creates numerous mathematical problems. As
such, work in the literature until recently concerned itself more often with the two-
parameter incarnation of the Weibull distribution, assuming that  was zero.

The more difficult three parameter situation is of interest for use with the Bayes
approximations for a number of reasons. First, the problem of finding Bayes estimators
for the systemic parameters does not produce closed form solutions. Second, since the
Bayes approximations are both based on the mle’s which are also unavailable in closed
form, some insight to the problems can be gained. Finally, in practical applications, if
numerical work is required to produce mle’s there is no reason to prefer them over any

competing estimator, except for possibly desirable asymptotic properties.
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3.1.1 Estimation Problems

The value of c, the shape parameter, is critical for the production of estimators
for the three-parameter Weibull. If c<1, the pdf of a Weibull takes the shape of an
exponential distribution. The mle’s are regular and have the usual desirable properties
if and only if ¢>2 (Cohen and Whitten, 1982). When c=1, the Weibull is a two-
parameter exponential variate. Johnson and Haskell (1983) discuss the application of the
Weibull distribution for measuring lumber strength, a situation which demands the shape
parameter lie between one and two, the nonregular situation. They then demonstrate that
the mle’s are in fact consistent with the traditional regularity properties as long as ¢ is
greater than one. They further give an intuitive interpretation for the shape parameter
c. If cis greater than one, the items under test must be wearing out over time, whereas
if c<1 the components can be thought of having to go through an initial "breaking in"
period.

Due to the extraordinary eccentricity of their behaviour, maximum likelihood
estimators of the parameters of this distribution have been studied by several authors.
They do not satisfy the usual regularity conditions, due in part because the threshold
parameter is a function of the observational range space. As a result for some
combinations of parameters and sample sizes the mle may not exist or may lead to
inconsistent estimators (Cohen and Whitten, 1982). Smith (1985) demonstrates that the
mle’s are asymptotically efficient and have a normal distribution only if ¢>2. Further,
if ¢<1, the maximum likelihood estimators may not exist at all. At best théy are
difficult to find by numerical methods.

The likelihood function (assuming a sample of size n, namely x=(x,,x,,...,x.)
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from the three-parameter Weibull distribution) is

-1
1(c,b,pl|x) = [—B‘i] ﬁ](xru)] exp[-z [ﬁ;]]
i=1 i=1

and the log-likelihood function is

L(c,b,ulx) = n(logc-—clogb)+(c—1)i log(xi—u)-i [X,;#] .
i=1

i=1
To produce maximum likelihood estimators, I must be maximized with the

restriction that u <x;;. The system of partial derivative equations that would produce

mle’s is

oL n = L (x-u ) X~
= a_ b+Y log (x,-u) -3 |22 [ 109|200
i = g5 = gRlogb+} °g(x‘”)§[b]°g b

oL nc. c - ¢
= = -7 - .- =0
L2 % b +bc*1,z=1: (Xx u)

L, = _g% = (1—c)i§:l: [Xil-u]+’gi2:; [f%u]c-x .
Unfortunately, this system cannot be solved in closed form so that a number of
alternative approaches are possible. The true global maximum for the log-likelihood
function occurs at (é&,5,) =(0,0,xy,) . Since this is an impractical mle, a local
maximum must be found. Rockette, Antle and Klimko (1974) provide the definitive
work on mle’s with the three-parameter Weibull model. They demonstrate that either

no point of inflection will exist for the above system of equations on the log-likelihood

surface (hence no mle), or that along with a local maximum a saddle point will exist.

In the former case, the mle is found to be (&,5,2)=(2, %Z (x;-B) ,Xp;) . In the
i=1



73

latter case, the value of the likelihood function at the local maximum found through
iterative search procedures should be compared with this so-called "corner point". It is
possible that the log-likelihood function will be greater at this corner point than at the
local maximum. After presenting this result, however, Rockette et al fail to mention that
the relatively involved calculation of the log-likelihood function becomes trivial at the
corner point.

Specifically,

This bit of information economizes a considerable amount of CPU time in a Monte Carlo
simulation, as an added pass through the data is unnecessary.

Numerical approaches for solving the mle system of equations abound in the
literature. Zanakis (1977, 1979a and 1979b) presents extensive work on various
alternatives. He also notes that the log-likelihood function is incredibly flat in the region
around the local maximum so that great care must be taken to ensure that the numerical
routine produces accurate results. Harter and Moore (1965) suggest solving the
equations in a cyclical fashion, slowly zeroing in on the true local maxima, which is
CPU intensive. Other numerical recipes are given by Haan and Beer (1967), Wingo
(1972), Lemon (1974) and Archer (1980). A detailed comparison of these methods is
given by Amin (1981).

The nature of difficulties with the system of mle equations has led to several
modified maximum likelihood procedures. Cohen and Whitten (1982a) and Cohen,
Whitten & Ding (1984) replace the partial derivative equation for u in the system above

with a relation involving other moments of the distribution or the first order statistic and
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solve this new modified system of equations via an iterative numerical routine.
Because of the difficulty in producing maximum likelihood estimators, a number
of authors have presented alternative estimation approaches. Zanakis (1979) proposed
a set of simple estimators based on sample percentiles which always exist and have at
least comparable properties to the mle’s. Amin (1981) describes a method based on
spacings between successive observations that also produce competitive results. Adatia
and Chan (1985) present an approach based on order statistics. Any of these estimators
are useful as starting points in the iterative numerical routines necessary to find the mle.
In this section, an adapted Newton-Raphson algorithm is used to locate the local
mle’s, using either the moment estimators or Zanakis-type estimators for starting the
iterative search. Cohen (1965) gives moment estimators of the parameters. Convergence
was typically obtained after three to ten iterations. As pointed out by Cohen and Whitten
(1982) and Zanakis (1979), it is possible that an iterative numerical process could
converge to a saddle point, or to an erroneous local maxima. To circumvent this
problem, a 3x3 dimensional grid of the log-likelihood function was constructed around
the final estimates produced by the iterative algorithm. If the grid was not uniformly
decreasing around the local maximum, the direction of ascent was followed until a
further convergence was achieved. If convergence was not achieved, a further set of
initial points was used. The estimétes reached by use of the second set of initial
estimates and the first were then used to bracket the search process. The grid process
was then repeated. In this way, it was easy to verify that estimates produced by the
iterative process were indeed at a local maximum of the log-likelihood function.

The mle for the reliability function is found simply by substituting the mile’s for
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the systemic parameters into the reliability function. Despite the difficulties in producing
the mle for the three parameters, Thoman, Bain and Antle (1970) show that the
maximum likelihood estimator of the system reliability is unbiased for even moderate

sample sizes and has desirable variance properties.

3.1.2 Lindley’s Approximation

For the Bayesian framework, a state of "in-ignorance" about the parameters a

priori is assumed so that the vague priors

g(b,c) « —b&E and h(u) = constant

as per Jeffreys (1961) would be appropriate. It is reasonable to believe that W is
distributed independently of ¢ and b since any a priori idea one might have about u is not
likely to be very much influenced by one’s knowledge about the values of the other
parameters (Box and Tiao, 1973). The joint prior distribution for § =(c,b,u) can then

be written as the product of the marginals so that

g(c,b, ) & 2

and the joint log-prior is
p(8) = loglg(d)] = -logc-logh
with partial derivatives

dp (8) -

- _ 1 _0p(8) _ 1 _ dp(8) _
pl(ﬁ)‘—-ac— = <c’ pz(i)‘—ab— = B’ P3 _—674— =0.

Although the mle’s are difficult to obtain for the three-parameter Weibull, the
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approximation to the Bayes estimator as proposed by Lindley (1970) encounters no
further complications. The formulation for the expansion seen in chapter one was
utilised and for brevity will not be repeated here. The necessary quantities are derived
below for estimating the systemic parameters by setting u(f) in turn to each of the
elements of §=(c,b,u) and running through the machinations.

The second partial derivatives, required to construct the information matrix are

= 2% -2 [ [ao ]

d’L _ nc _c(c+1)
Ly, = —— = X;-u)°
2 9p? B pez ,21:( )

z-l

c-2

- [ (3 — )
0%L n 1 z X;—U ¢ X;=l

= = - l -+
L, =535 =+ l'=1 [__ C og~ 1)

n n (o _, )1 (v _
%L .1 X~ F X~
L. = = - (x;-u) 1+ = —_— log +1
B Jecau .Z=1: bg b B
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The third partial derivatives (L;’s) are

_ L _ 2n < [x-u) X~
- B e

i=1

i=1

3 d —-ul°
Ly = % = fg[(c"‘l) (c+2)Y) [#] ‘212:'

c-3
_ 0L _ c(c-2) x= [Xi—u = .
Ly = a—u-g = (C‘l)[ (b3 )Zl:[ 5 ] _2i2=1: (x;~1t) 3]

c 2
. L _ 1. Xk X;=l X;~l
Ly, = o738 -5,'=1 [__b_] [c[log[_g_]] +2log[_b__]]

_ 0L _ n_1 = | x;~u ‘ X~k
o5 2lg )]

c-1 2
. L _ 1 |xm X~ X~k
Lus dcou b4 [ b ] [Zlog[ b ]+C[log[ b ”:l

c~-2
a3L n ) 1 ] X,'—# X'-"‘[J
b = gogn T TR MY [—b—] ["*‘C‘“F“‘?[ 5 ]1]]

i=1 i=1

c-2
3°’L c2(c-1) x [Xi—1
L = =
B bou? b3 21[ b]

Note that for the three-parameter Weibull distribution, one cannot algebraically simplify
the Ly, functions as was done for the simpler two-parameter distributions seen earlier in

chapter one because the mle’s are not available in closed form. -
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Now for estimating the reliability function, R(t), write the parameter to be

estimated as

u(8) = R(t) = exp[—(t—;‘i)”], t>u

and find the first and second partial derivatives of the function to be estimated (the y;’s

and uy’s) as follows

du (g -~
u, = —r—u (C—) -n(t K

s B0 - gl

o T - SR e
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2 c- c
o i - ol (5 o
The prior distribution and its partials remain the same, as do the oy’s and the Ly ’s.
Using the Lindley algebra from Chapter one, Sinha and Sloan (1988) give some
simplified algebraic equations for the three-parameter Weibull. These forms serve to

reduce CPU time. Lindley’s equation (1.15) for estimating the three systemic parameters

becomes

s - o-fu_Yn

1
c’ = = T+5(A0”+Bo‘2+pal3)
. _ On_09n_ 1
b* = b_T—T+3 (A0, +B0,,+D0,;)
. _ O31_0O3 1
L= #__E_-_b_+3(Ao'31+Basz+Do33)

where

= 03111 +20 1505, +2013143, 4205315, + 05,1y, +033043
= 0130112420 15045, 420131130+ 20 311535 + 00y Lip0y +0 Ery )

= 041 L113+20150153 42013013342 0,313,405, L1003 +0 33l

Recall that o;=-{L;}"" and that all parametric functions are evaluated at the maximum
likelihood estimator.
The Lindley approximation to the Bayes estimator of R(t) is found in a similar

manner to be

R™(t) = R(t) +NU+NU,+\,U,+a,+a; .
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- A_1 - B_1 _ D
M=375r M3 Ty
U; = u,0;,+u,0,,+U,0,;, jF=1,2,3

4, = U045+ U 303+ U,30

_ 1
as = 3 (U101 +Up 04y +U;33043)

and the u function partial derivatives are based on the setting of u(§)=R(t). Note that
in this case the partial derivatives of u are all nonzero and contribute to the
approximation, whereas in estimating the three elements of §=(c,b, ), all but one of the
partial derivatives was zero.

The posterior variance can be estimated using Lindley’s approximation. In
Lindley’s algebra this means, to obtain the posterior variance of systemic parameter c,
setting u(g) =c? and reconstructing the u; and u; functions.

After some algebra it is seen that

o, O
E(c?|x) = 62—26[_5"1 +_1,;_2]+ou+é(Aau+Bolz+Dal3)

and substituting into the variance relation form, the posterior variance for ¢ is found to

be

- 1 g g
Var(c|x) = E(c?|x)-(c*)? = on—[?:(Aon+Bou+Dau)—_.CE—.Blz
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Similarly, for the other systemic parameters

6, ©
Var(b|x) = 0’22°P (A0, +B0,,+D0,,) —_‘E—JET
2 c b
1 0y ©
Var(p|x) = 033—£2 (A0y;+B0,,+D0,,) —%—_gz .

Again it is important to note that all functions are evaluated at the mle. This algebra
reinforces the finding of Sinha (1987) which proved that by including terms up to O(n?),
the posterior variance is less than the estimated asymptotic variance of the mle for the
same parameter.

In estimating the posterior variance of the reliability estimator, the same route is
followed so that

E(RY(t) |x) = R*(t) +2R(t) (U, +NU,+\U,+a,+a;)

2 2
TULO1FU 05 FU3033+2U,U,01,+2U, U303+ 2U,U,0,,
and finally

Var([R(t) |x] = Var[R(t) J-]\U+AU,+N U, +a,+a,] .
Again it is seen that the posterior variance will be less than the estimated asymptotic

variance of the mle if terms to order O(n?) are included.

3.1.3 Tierney-Kadane Approximation

To produce a closed form solution for the Tierney-Kadane approximation to the
Bayes estimator, the L, and L. functions must first be constructed and maximized,

producing the points 4, and 6. respectively where 8=(c,b, ).
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The L, function, constant for any parameter estimated, is

(3]
I

o %[log(g(ﬁ))%(ilz)]

i=1

{Jpgb -logc+nlogc-nclogb+(c- 1): log(x; ““)'E[ u]]

and the first partial derivatives with respect to § necessary to produce the maximization

point 8, are

i

oL =
Tci’ = zlz[ncl —nlogb+E log (x,-u) E [ ”] 1og[_}i’b_p']:|

dL, nc+1l .
Fb " T mE Tppeidy KM

L) es

o - 1. v
rm zﬁm;[x,.

These functions are slightly modified functions of the log-likelihood, and as such any

maximization attempt suffers from the same problems seen in constructing the mile.
Hence, closed form solutions are not achievable for the Tierney-Kadane approximation

either and the computer must be used instead.
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In a similar fashion the L. functions that are required to estimate the elements of

8=(c,b,u) are

L,

1
¢ =5 (logc) +L,

L., %(logb) +L,

1
L-”, - ‘I"l' (1°gu’) +Lo
and again they cannot be maximized algebraically.
To produce posterior variances, the u(§) function is reset, as was done in the

previous chapter, to estimate E(c?}x) and substitute this value into the variance relation

form. Although L, remains constant, three more L. functions are necessary.

L,.= %(210gc) +L,
L., = X(21logb)+L
* B2 '5 g o
L., = 1 (2logu)+L
.y o 0

Once the maximization points are achieved numerically, the remaining steps of
the T-K method, involving the production of the X, and X. matrices, must be carried out.
Recall these matrices are constructed using the second partial derivatives of the L, and
L. functions respectively. These turn out to be slight modifications of the L; functions
presented in the previous section and so will not be repeated here.

To produce an estimate for the reliability function R(t), reset

u(d) = R(t) = e’(%ﬁ)c
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and reconstruct

Again the maximization must be done numerically.

As was seen earlier in work done with other distributions, the two approximation
methods take very different algebraic routes toward the same goal. However, except for
very small samples (n<( 10), it was found that results for the two approximations are
virtually identical. For sake of brevity, then, results in the subsequent sections will be
presented under the heading "Lindley” only, yet can be considered to be representative
of the T-K approximation as well. The "Lindley" heading is used to be consistent with
the published paper in IEEE. This reduces the amount of redundancy in the results for
example datasets and Monte Carlo simulation.

In terms of computing time, the T-K method did prove to be slightly advantageous
over Lindley’s method for estimating the systemic parameters. The maximization
performed on the L, and L. functions in the T-K method was equivalent to the time
required to produce the maximum likelihood estimators necessary to Lindley’s approach.
The subsequent matrix construction and inversion needed to complete the T-K
approximation took less time than the calculation of the Li’s needed to finish Lindley’s
procedure. |

Once the added task of estimating R(t) was considered, however, the CPU time
required to perform the T-K method overtook that for Lindley’s. This was due to the
T-K approach requiring a further maximization of the new L. seen above, as opposed

to Lindley’s method where the mle for R(t) was found simply by substituting the
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parameter mle’s into the R(t) e@uation.

As mentioned previously, the choice between the two approximations becomes
largely a matter of personal preference and availability of computer software. This is
especially true for the three-parameter Weibull case. The algebraic advantages of
Lindley’s method seen for the simpler two-parameter distributions fail to produce closed
form solutions. The computer must be relied upon for both approximation techniques

for the production of estimates.

3.1.4 Examples

In searching the literature for real data examples, one comes across several
situations where the mle’s are non-existent (Steen and Stickler, 1976, for example).
Lindley’s approximation cannot be used in such a situation since the formula is based on
an adjustment to the value of the maximum likelihood estimator. In efforts to implement
the Tierney-Kadane method on such samples, the same problems facing the mle were
encountered and so were not obtainable either. Although this does not constitute a proof
that the T-K method will be unable to produce estimates whenever the environment is so
eccentric so as to exclude the possibility of mle’s, it is the author’s opinion that this is
likely the case.

Real life examples of three-parameter Weibull datasets in the literature seem to
specialize in producing troublesome samples, either due to small sample size or deviant
shape parameter. If the Bayes approximations can perform adequately using a
noninformative prior setting under such conditions, one can only expect them to improve

under less adverse conditions.
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Three real data examples are provided by Englehardt & Lee (1979, E&L),
Dumonceaux & Antle (1973, D&A) and Cohen & Whitten (1982, C&W) involving ball-
bearing lifetimes, flood levels and component lifetimes respectively. Although none of
the parameters are known, it is clear that the shape parameter is between one and two,
which is the nonregular case described at the beginning of this section. These are also
good illustrative samples as the sizes range from very small (n= 10) for the E&L sample
to moderately large (n=100) for the C&W sample.

Table 3.1 presents the results of parameter estimation for the three given
application datasets. Once the mle’s were obtained, empirical goodness of fit tests as per
D’Agostino and Stephens (1986) were performed to ensure that the model assumptién of
a three-parameter Weibull distribution was appropriate for each sample.

The approximation to the Bayes estimators are very similar to the mle’s of c,b
and y for the D&A and C&W samples and could adequately be described as competitive.
For the very small sample of E&L, however, the Bayes approximations are markedly
different from the mle’s. The mle for the shape parameter c, suggests the nonregular
case by an estimate below two whereas the Bayes approach produces a value of ¢*=3.67 ,
suggesting that the sample arose from a more regular Weibull process. Bayes estimates
for the other two parameters based on the E&L sample are also terribly discordant with

the mle’s.
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Table 3.1: Parametér Estimation Results For Application Samples

Source n ¢ mle b mle p mle ¢ b’ w

E&L 10 1.74 53.34 86.57 3.67 103.90 | 43.91

D&A 20 1.24 0.17 0.26 1.32 0.15 0.26
L C&w 100 1.50 0.97 0.09 1.58 1.02 0.05

The posterior variance estimates also show stark contrast to the estimated
asymptotic variance of the mle in Table 3.2. The forms for the estimated asymptotic
variance of the mle were taken from Cohen and Whitten (1982). For the two smaller
samples (E&L and D&A) negative posterior variance estimates are observed. As
discussed previously, this phenomenon is common when n is small, due to the éstimation
process being composed of two separate estimates subtracted from one another. Even
though the D&A sample produces a posterior variance for ¢ of 0.002, it is undoubtedly
underestimated and not to be given much credence. The C&W sample demonstrates that
for moderate sample sizes, the negative estimates disappear and results are comparable
to the mle. The posterior variance values are less than the estimated asymptotic

variances of the mle’s, a result found algebraically by Sinha (1987).

Table 3.2: Variance Estimation Results For Application Samples

Source n ¢ mle bmle | xmle c b 'y

| E&L 10 1.45 674.45 | 343.44 neg neg neg
D&A 20 0.13 0.0016 | 0.0001 | 0.002 neg neg
C&W 100 0.02 0.006 | 0.0006 0.01 0.004 | 0.0005

Note: neg = negative variance estimate

Estimation results for the reliability function are given for the Englehardt and Lee
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(E&L) sample in Table 3.3. Inspection of the table reveals that the problems seen in
estimating the parameters seemingly disappear in estimating R(t). The outcome is quite
surprising considering how poorly the Bayes parameter estimates were in relation to the
mle’s. The estimated R(t) functions are given in relation to the true value in Figure 3.1
for a more parsimonious display. The Bayes approximation is clearly closer to the true
R(t) function throughout most of the range than to the mle. The mle function seems to
better parallel the R(t) function however. From Table 3.3, it can be seen that the
problem with negative variance estimates is absent for this very small sample (n=10).
The posterior variance is consistently smaller than the estimated asymptotic variance.

Table 3.3: R(t) Estimates For Englehardt & Lee (1979) Sample(n=10)

t True R(t) | MLE R(t) R'(t) Estd V(*) | Posterior V(*)
100 0.9726 0.9130 0.8247 0.00439 0.00341
110 0.8948 0.7871 0.7664 0.01516 0.01473
120 0.7788 0.6415 0.7024 0.02514 0.02143
130 0.6412 0.4968 0.6037 0.02511 0.01368
140 0.4994 0.3669 0.4749 0.01894 0.00727
150 0.3679 0.2590 0.3395 0.01303 0.00654
160 0.2564 0.1751 0.2214 0.00953 0.00739
170 0.1690 0.1136 0.1336 0.00745 0.00705
180 0.1054 0.0708 0.0775 0.00564 0.00560
190 0.0622 0.0424 0.0465 0.00385 0.00383
200 0.0347 0.0245 0.0313 0.00231 0.00226
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3.1.5 Monte Carlo Simulation’

To explore more fully the effect of sample size, a series of samples were
generated from a three-parameter Weibull process. An interesting side issue arose in this
sample generation process.

Mathematically, the well known inverse transformation approach proceeds as
follows

1) Let u; be a point generated from a Uniform [0,1] distribution

2) Transform v, to obtain x, = b[-log(1-u,) 1V+y
The resultant x; will follow a three-parameter Weibull distribution as required. In beta-
testing the samples generated from the above algorithm, it became apparent via empirical
goodness of fit testing that a larger proportion of samples were failing to fit the model
than would otherwise have been expected. In graphing some of the generated
distributions, it was found that an inordinate number of large-valued observations were
being generated, causing the distribution to have either an extension or a "bump" in the
upper tail. Upon closer inspection it became clear that numerical problems associated |
with the use of the logarithmic function were the cause. If the u; generated were small,
raising the logarithm of this value to the prescribed power resulted in a loss of accuracy
so that several different u;’s would produce the same x; value. As an alternative, the
following algorithm was used |

1) Let g; be a point generated from an Exponential distribution with mean one.,
2) Transform to obtain x; = b(g,) V+pu.

This algorithm performed much better than the previous one, with no evidence of

"bumps" in the resultant empirical distribution.
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There are no added complications for generating observations from an exponential
distribution as opposed to a uniform variate, since there are numerous accurate and
efficient algorithms available. The IMSL (1975) routines GGUBS and GGEXP were
used for the uniform and exponential variates respectively. All simulations were
produced via the PL/I language on an Amdahl 470 mainframe.

Parameter settings of (c,b,u)=(3.0, 100.0, 30.0) were used so that the lack of
regularity of the environment would not influence estimation results. Sample size was
varied from n=10 to n=400 with results contained in Table 3.4. The method of moment

estimators, used to initiate the search routine for the mle’s are also given for comparison.

Table 3.4: Estimation Results Based On Varying Sample Sizes

With Parameters (c,b.u)=(3,100,30)

Parameter mle Lindley Moment MLE Var Post Var

n=10

c 2.44 4.73 2.98 2.67 neg

b 44.69 85.78 53.52 564.5 neg

7 69.42 31.36 61.29 423.0 neg
n=20

c 1.66 2.14 1.87 1.25 0.02

b 45.68 58.53 50.26 406.7 neg

© 76.91 66.89 73.25 363.1 neg
n=40

c 3.02 3.73 2.77 0.58 0.06

b 90.09 111.78 83.47 331.2 neg

w 40.03 20.00 46.54 265.8 neg
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n=100
c 3.26 3.72 3.56 0.53 32.1
b 99.16 112.77 171.29 348.0 163.2
u 30.44 17.42 -34.96 200.7 131.5
n=200
c 2.96 3.13 1.55 0.16 0.13
b 91.48 96.75 1.00 100.5 72.73
u 36.59 31.61 633.22 82.09 57.49
n=300
c 2.9 3.12 3.28 0.16 0.10
b 92.53 96.75 101.90 77.19 62.46
5 34.74 31.61 25.95 63.79 50.66
n=400
c 2.78 2.87 3.09 0.07 0.06
b 93.43 96.23 103.15 47.70 39.90
“ 37.51 34.90 28.41 37.68 30.87

The impact of sample size is clearly illustrated as the Bayes estimates go from

wildly different values in comparison with the mle’s to practically identical values.

Interestingly enough, however, the convergence seen between the Bayes and mle

approaches in the two-parameter distributions earlier in this chapter was much more rapid

than is the case for the three-parameter Weibull distribution. By n=100 for the two-

parameter case, the competing estimates were identical to significant digits. Here in

Table 3.5, even at n=400 there are observable differences in the estimates. This is due

likely to the more difficult estimation environment produced by the introduction of a

‘threshold parameter.
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The Bayes estimators of ¢ and b are consistently larger than the corresponding
mle. There is no clear winner between the two approaches, although both are clearly
superior to the method of moments estimators. The smaller samples naturally evidence
the greatest fluctuation. In agreement with the literature, it is apparent that if the shape
parameter is not adequately estimated, the other two parametefs are poorly estimated.
The n=10 sample size results show marked differences between the Bayes and mle ¢
estimates, producing quite different results for the other two parameters. Stability with
the Bayes estimators does not seem to arrive until the n=200 sample, whereas the mle
results Jook decent at the n=100 size.

The negative posterior variance estimates for the examples from the previous
section reappear. Not until the sample size reaches n=200 do the posterior variance
results look believable from a practical standpoint. In other simulations the author has
observed negative posterior variance estimates for samples as large as 200 observations.
For the larger samples, however, the Bayes approximations do demonstrate lower
variance than the asymptotic estimates of the mle.

To further investigate the surprising results of reliability estimation in the previous
section, the process was repeated for the simulation series. Running the sample size
from n=40 to n=400 produced a monotone effect as n increased. As intermediate
results along a continuum, the figures for each sample size will not be given.
Representative information can be gleaned from inspection of the n=40 sample results
given in Table 3.5 and the n=400 sample size in Table 3.6. Graphical displays of the
estimated functions in relation to the true R(t) function are given in Figures 3.2 and 3.3

respectively.
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Figure 3.3 THREE-PARAMETER WEIBULL DISTRIBUTION
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Table 3.5: Reliability Estimates For The n=40 Generated Sample

t True R(t) | MLE R(}) R'(t) Estd V(*) | Posterior V(*)
50 0.9920 0.9988 0.9920 0.00001 neg
60 0.9734 0.9899 0.9764 0.00012 neg
70 0.9380 0.9655 0.9469 0.00040 0.00006
80 0.8825 0.9192 0.8998 0.00098 0.00060
90 0.8057 0.8470 0.8323 0.00197 0.00175
100 0.7096 0.7492 0.7437 0.00319 0.00316
110 0.5993 0.6309 0.6361 0.00418 0.00415
120 0.4824 0.5015 0.5151 0.00446 0.00427
130 0.3679 0.3731 0.3907 0.00402 0.00371
140 0.2642 0.2577 0.2744 0.00317 0.00289
150 0.1776 0.1638 0.1767 0.00224 0.00207
160 0.1111 0.0950 0.1038 0.00139 0.00132
170 0.0643 0.0499 0.0555 0.00073 0.00070
180 0.0342 0.0235 0.0273 0.00031 0.00030
190 0.0166 0.0098 0.0126 0.00010 0.00009
200 0.0074 0.0036 0.0055 0.00003 0.00002

96

Convergence of results between the competing estimation procedures is much

more rapid for estimating R(t) than it was for the systemic parameters. The n=40

results show the two methods equally advantageous, depending upon the value of t. The

n=40 case seems to suggest that the mle does a better job in the middle range of t while

the Bayes approach exhibits less bias in the tails. By the time n reaches 400, there is

little to choose between the two methods as the estimated functions almost coincide with

the true R(1).
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The Bayes procedure still evidences negative variance estimates in Table 3.5. As
might be expected, they tend to appear in the tails of the R(t) function when the true
value is close to zero or one. The larger sample size results of Table 3.6 reinforc;e the
idea of the Bayes estimator having smaller variance.

Table 3.6: Reliability Estimates For The n=400 Generated Sample

t | TneR® | MLER® | R'(®) | Estd V() | Posterior V(%)
50 | 09920 | 09963 | 0.9950 | 0.00001 0.00001
60 | 09734 | 09812 | 09792 | 0.00003 0.00003
70 | 0938 | 09485 | 0.9462 | 0.00007 0.00006
80 | 08825 | 08944 | 08925 | 0.00013 0.00013
9 | 0.8057 | 0.8180 | 0.8169 | 0.00024 0.00024
100 | 0709 | 0.7215 | 0.7215 | 0.00036 0.00036
110 | 05993 | 0.6105 | 0.6117 | 0.00045 0.00045
120 | 04824 | 04931 | 0.4951 | 0.00047 0.00046
130 | 03679 | 0.3782 | 0.3805 | 0.00042 0.00041
140 | 02642 | 02742 | 02762 | 0.00033 0.00033
150 | 0.1776 | 0.1870 | 0.1885 | 0.00025 0.00025
160 | 0.1111 | 0.1194 | 0.1203 | 0.00017 0.00017
170 | 0.0643 | 0.0711 | 0.0716 | 0.00011 0.00011
180 | 0.0342 | 0.3926 | 0.0395 | 0.00006 0.00006
190 | 0.0166 | 0.0200 | 0.0202 | 0.00003 0.00003
200 | 0.0074 | 0.0094 | 0.0096 | 0.00001 0.00001
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3.2 Gamma Distribution

In this section, Bayes estimators of the parameters and reliability function for the
three-parameter gamma distribution are derived and compared with those of the
maximum likelihood approach. Methods due to Lindley (1980) and Weiss (1988) are
presented. Separate results for the Tierney-Kadane approach are omitted because, as has
been seen earlier with other distributions, the two Bayes approximation methods produce
almost indistinguishable results. Some difficulties encountered due to the inherent
problem of working with the origin unknown are encountered which are similar to those
seen with the three-parameter Weibull distribution.

The gamma distribution, also referred to as a Pearson’s Type III distribution, can
take on a wide diversity of shapes ranging from a near-normal to an extraordinarily
positively skewed distribution. It is seen more commonly in its two-parameter form, due
largely to the mathematical complications that arise with the addition of a threshold
parameter. The generalization to three parameters was first proposed by Stacy and
Mihram (1965). Johnson and Kotz (1980) give an extensive list of references which can
be supplemented by a definitive text on estimation with the gamma distribution by
Bowman and Shenton (1988). In life testing situations, the three-parameter gamma
distribution is used typically when the exponentiality of a process is in doubt or as a
substitute for the three-parameter lognormal distribution.

A particular member of the three parameter gamma family is specified by the
triad of (e,B,c) where o is the shape parameter, g is the scale parameter and c is the
threshold or origin. The concept of a threshold parameter has direct application in

reliability theory as it typically refers to a minimum lifetime past which a component is
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guaranteed to survive. The density function is given by

f(x|e,B,c) = .r_(%m[%f]ﬂexp[-%ﬂ] (3.1)

where a,$>0 and x>c.

If a=1, the resultant distribution is exponential and for positive values of o the
distribution is often referred to as the Erlang. As « is increased the relative normality
of the distribution is augmented. Larger values of « also tend to make the task of
parameter estimation more tenable.

In this section the relative merit of the maximum likelihood approach is compared
with that of the Bayesian paradigm. Both the systemic parameters and reliability function
are studied. Single sample estimation results are presented and a Monte Carlo simulation

study is undertaken.

3.2.1 Estimation Problems

No text dealing with the three-parameter gamma distribution can avoid mentioning
the myriad of problems that arise in attempting to estimate the three systemic parameters.
The problems are of such a nature as to be a likely cause of the relative lack of attention
given to the three-parameter case in favour of the more convenient two parameter case.
The addition of the threshold parameter, while intuitively appealing for a wide variety
of applications, complicates any estimation process considered, involving polygama and
incomplete gamma functions which do not lend themselves readily to closed form
algebraic solutions.

Bain (1978) mentions that the maximum likelihood estimation(MLE) approach
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produces "probably the best estimates available", but concedes that the method is
particularly difficult to implement for the three-parameter gamma distribution. Johnson
and Kotz (1980) suggest that the mle’s only be used for &>2.5 as the mle approach
becomes impractical otherwise due to frequently unobtainable solutions. If o< 1, the
likelihood tends towards -oo as &-»x_, and the estimators fail to exist.

Smith (1985) shows that for this and other distributions of a similar form (notably
the three-parameter Weibull distribution) if the shape parameter (here «) is greater than
two, the maximum likelihood estimators have the same properties as the regular cases
(i.e. efficient and asymptotically normal). For shape parameters less than two the
situation degenerates into a case-by-case inspection, but in general does not have the
desirable properties.

Moment estimators that perform reasonably well in the two-parameter case are
subject to extreme variability when the threshold parameter is added. This is due to the
required third component in the system of equations that produces moment estimators
involving the third moment. Both the third and fourth moments of the distribution are
unstable (Cohen and Whitten, 1988). Although sometimes usable as starting points in
iterative searching for the mle, the moment estimators have little practical value.

Most notable in the development of estimation procedures for the three-parameter
gamma distribution are the works of Harter and Moore (1965, 1967) which was
expanded in the collected works of Harter (1969). Moment, mle and modified moment
estimators complete with algorithmic instructions can be found from these sources.

Cohen and Whitten (1988) apply such modified methods of both the moment and

maximum likelihood approaches by replacing one of the systemic equations with a
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simpler form. The modified - maximum likelihood estimators of Cohen and Whitten
(1988) have been seen to be quite usable when or <2, which circumvents the problems
with the mle’s. Kappenman (1985) substituted an equation involving convenient
percentile relations to produce estimators that always exist and seem to compare

favourably with the mle’s.

3.2.2 Maximum Likelihood Estimation

In this section the maximum likelihood approach is explored and an extension of
the method by Cohen and Whitten (1988) for finding the mle’s is proposed. This does
not address the problem that the mle’s do fail to exist for some samples, but ensures that
if they do exist, they are obtainable.

The log-likelihood function corresponding to the three-parameter gamma pdf (3.5)
is

L(e,B,c|x) = -nlog[I'(a) ]—nalogﬁ+(a—1)zn: log(x;-c) —fn: _(_}%;c_)
i1

i=1
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and the system of first partial derivatives which must be solved to obtain the maximum

likelihood estimators is

L = .gé’ = -ny(a) + Elog[f%_c]

i=1

n

(Xi_c) _ na (3.2)

DT TE T F

n

_ 0L _ n _ _ 1
L, = 7 " B (a 1)2;'55:57

where y(a) is the digamma function, defined as

= 0[logT'(a)] _ I'’(a)
v (a) oa I'(a)

The above system of equations (3.2) does not produce closed form algebraic
solutions. Several authors have suggested graphical techniques be used to find initial
values to feed into an iterative root-finding algorithm. Such an approach is practical only
if a single sample is being considered as it demands a further referral to a graph for each
sample.

Analogous to procedures used for the three-parameter lognormal distribution, a
reasonable approach is to obtain a feasible estimate for the threshold parameter ¢ and
continue in a cyclic fashion to estimate the other two parameters (Stacy and Mihram,
1965). Cohen and Whitten (1988) give such an algorithm for producing mle’s while
Bowman and Shenton (1988) compare the relative merits of five competing algorithms.
All methods eliminate one parameter at a time typically estimating the threshold

parameter ¢ first and then solving for the other two parameters directly from one of the
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partial derivative equations of (3.2).

An irritating aspect of these algorithms is the requirement of a starting point
estimate for the threshold parameter. As one needs to be very close to the final value
for the mle of c, it puts up another barrier to finding the mle’s. The primary difficulty
lies in finding a reasonable first estimate for ¢ because such an estimate typically involves
the third sample moment. As mentioned above, the third and fourth sample moments are
quite unstable, especially for small samples, and hence have a tendency to produce
extreme initial estimates for the threshold parameter.

The method proposed is a minor extension of the method proposed by Cohen and
Whitten (1988). Their method in brief is to:

1) find a reasonable first estimate of c, say c,

2) Calculate o, by substituting ¢, into

(x-c;) i (x;~c;) !
i=1

]!

3) Calculate 8, by substituting (ay,c,) into 8, = %"

4) Substitute (y,B;,¢y) into the L, equation of (3.2) above.

5) Iterate via linear interpolation to solve L,=0.
This method merely negates the need for an initial estimate of ¢, which is a potential
stumbling block. This is accomplished by examining the L, function over the entire
range 0=<c<x,;, and using adaptive linear interpolation to find the point of solution.

The other values are then substituted into the above formulae.
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This method accomplishes two things. First, it allows for the investigation into
whether or not a solution for a given sample is available. Bowman and Shenton (1988)
provide a table of simulation results showing that as many as 50% of simulated samples
will fail to produce a solution to the maximum likelihood equations (3.2), depending
upon sample size and parametric settings. Second, it guards against the possibility that
a malformed likelihood function will produce a local maximum instead of the correct
mle.

Cohen and Whitten (1988) discuss how the L, function may not have a zero value
over the range 0<c<x,,. In such cases the mle fails to exist. They do mention
however that there may well be more than one zero point, or a very flat surface' that
could point to erroneous values for ¢ due to a poor starting value.

Figure 3.4 provides L, functions that are representative of the type of cases
possible. The horizontal axis has been scaled as a percentage of each sample’s minimum
value so that comparisons across samples is possible. Types one and three are examples
of small samples that provide a solution to L,=0 and hence produce mle’s. Note that
although the type one case L, function is well-behaved and should provide no problems
for any numerical search routine, the type three case would cause many routines to head
towards ¢=0 and not produce a solution unless the starting value used was close enough
t0 X, SO that L, is positive.

The type two case function illustrates the situation where no solution to L, exists.
Here the L, function remains above zero. The type four curve, the large sample case,

is monotone increasing and provides an easily found solution.
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True asymptotic variances and covariances for the mle’s are given in Parr and

Webster (1965). The second partial derivatives, needed for producing the sample
information matrix are

90%L

L —_—

= -ny’ (a)

n

- %L, _ ha (Xi—C)
S R Y o

02L - 1
L,=29% = _(q-1
i I C) Y (x,-¢)2
1. = %L _ n
12 ma - —B

_ L | ¢ 1
Ls = Ja3c g—; [(x,.—c)]

1. = 9L _n

where Y'(c) is the trigamma function. Several authors have noted that the sample
information matrix is very unstable, especially for small sample sizes. Since Lindley’s
method relies heavily on this information, it could cause the approach to be more

variable than desired.

3.2.3 Lindley’s Approximation
As this is the fourth distribution for which Lindley’s method is applied in this

dissertation, the more technical aspects will be described in brief. For a more complete



107

discussion of the mechanics of the approximation the reader is referred to earlier
sections.
Jeffreys’ invariant prior approach is employed, analogous to that seen for the

three-parameter Weibull, to produce the joint prior distribution

7(a,B,c) «% .

Hence the log-prior function is p(e,8,c) = -logB, with partial derivatives

ap___o dp _ _1 dap

pl:?& rp2=-a-B“B'lp3=—a-E=0'

An attempt was made to produce simplified algebra for the Lindley equation as was seen
in the section on the three-parameter Weibull. Unfortunately the formulae involyed for
the three-parameter gamma distribution do not lend themselves well to such a solution.
Although a final form was achieved, it was longer than the original approximation
formula and as such impractical. Work was also done on the T-K approximation, with
the algebra even more intractable. Once again the computer must be used to produce

estimates on a case by case basis.
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The Ly, terms necessary for the Lindley expansion are

3
Ly, = % = -ny" (a)
. L _ .~ (%-¢) _ 2png
Ly = 5?5 - 6§ B 83
0L - 1
Ly = 22 = 22(a-1) Y 1
w2 (a ),z:l: TESE
_ 0L _ n
L122 - __aaaBZ - ‘B'i
.. = 0L _ 2n
=" e B
. L _ ¢ 1
B Badc? i1 (x,~c)?

where y"(e) is the tetragamma function. All other Ly terms are zero. Specifically,
these are Ly, Lyy3, Lyss, Lyy; and their permuted subscripts.

The final piece to Lindley’s approximation are the y; and u; functions. For
estimating the systemic parameters three sets of u functions are needed, namely
u(a,B,¢) = a, B and c respectively. In doing so one may notice that for any one of
these functions all of the second partial derivatives (u; functions) will be zero. Further,
the u; functions will be zero for all values of i except where the index matches the
parameter to be estimated, in which case the u; function equals one.

In implementing the approximation techniques, one of the hurdles to surmount

was the evaluation of the di-, tri- and tetragamma functions. After researching the
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literature of the time, it was found that no standard algorithm existed for evaluation of
the polygamma functions. The IMSL set of routines does contain algorithms for the log-
gamma and the digamma functions, however no algorithms are provided for the trigamma
or higher order functions (see Rice (1983)). The genesis of such an algorithm had to be
undertaken before Lindley’s method could be implemented.

Abramowitz and Stegun (1965) present an asymptotic approximation to the

polygamma functions on page 260 of their reference as

z" 2z" 4 (2k) 1 z%=

¢(")(Z) ~ (_l)n-ll,:(n"l)! - n! + f:sz (2k+n—1)!:l

where B; is the i® Bernoulli number. Unfortunately the approximation is not terribly
accurate if |z| <#. To construct an all-encompassing algorithm, the recurrence relation

for the polygamma functions is used, namely,
YO (z+1) =y (z) + (-1)"niz™!

which can also be found in Abramowitz and Stegun. Testing of the algorithm revealed
that using the first ten terms of the recurrence relation gave more than sufficient accuracy
for most practical applications. To ensure a degree of accuracy that would be usable
under virtually any conditions, the final algorithm uses the first fifteen terms.

The POLYGAMA algorithm was then tested extensively for various values of z.
The algorithm successfully duplicated, to the displayed number of significant digits,
Tables 6.1 through 6.5 in Abramowitz and Stegun. While preparing a paper concerning
this algorithm, the author discovered that Balakrishnan, working on an entirely different

problem, had arrived at the same result (personal communication, March 1986) and
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submitted a paper for publication. More recently Cohen and Whitten (1988) present the
same algorithm in their text.
The reliability function R(t) for the three-parameter gamma distribution is

R(t) = Pr(T2t) = fmr_(iﬂg(%g)a-lexp[—i’%c_)]dx .

Maximum likelihood estimation of R(t) is straightforward using the principle of
invariance and merely substituting the mle’s of the systemic parameters into the reliability
function.

Bayes estimation is once again more complicated due to mathematical
intractability. An approximation may be used as before as well as the possibility of a
nontraditional approach proposed by Weiss (1988) which states that although the Bayes
estimators may not be invariant, substituting the Bayes estimators analogous to the mie
does produce estimators that are Bayesian in nature. This approach has been criticized
as being "quasi-Bayesian" and is somewhat controversial. As stated at the outset of the
dissertation, however, the goal here is to explore different roads toward the same
destination, not to question the quality of the asphalt.

Setting y = (x-c)/8, R(t) becomes

oo

R T R _
R(t) j Ty e (-y)dy, o1 .
F
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In implementing Lindley’s method, for convenience the u(f) function is written as follows

t-c

F

u(alﬁlc) = I T"—(-J;z_) a-lexp(_Y)dy

so that Lindley’s approximation to the Bayes estimator will be R*(t)= 1-u(e,B,¢).
To construct the appropriate v, and u; functions, the following relation from

Protter and Morrey (1966) is used whereby if

wix)
I = if(x,t)dt
)

then

9T _ w v . [ 0f(x,t)
=% f(x,w).(ﬁ’ f(x,V)_‘T}_{+ Tdt

Now set I=u(a,,c) to construct the u; functions

t-c

F
w s gE = s [rex(-pt09(ray - (@)

Note that the part of u, that is an integral is the incomplete digamma function.
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and the u; functions

w = L8 - apiayy, - ((9(a) )2 + g (@) Ju

da?

t-c

F
* [ ey yieme (v g (v yay

Note that the integral part of u,, is the incomplete trigamma function.

SRR R e =
o oy =] ) - v
B = aizgc - (tfc)ulz

- d%u = u,
Us = dBIc  T-c (t—c)u22

3.2.4 Examples

112

Application data for the three-parameter gamma distribution is absent in the

literature. Harter (1969), Kappenman (1985) and Cohen and Whitten (1988) all have

exemplary samples in their presentations, but they are all the result of computer

simulation. Harter’s so-called G3 sample was used for comparison of the Bayes

approximation with the previously published resuits.
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Generated from I'(3,50,20), the sample of size 40 does pass the Anderson-Darling
(1954) empirical frequency distribution(edf) goodness of fit test, but is a typically
problematic sample from a parameter estimation viewpoint in that there is a seeming
outlier as the smallest sample value. This problem is a result of the skewed nature of
the ditribution and causes difficulty in estimating the threshold parameter in that the L,
function will be of case type two from Figure 3.4. Harter proposes to set =0 under
such circumstances. The mle and Lindley estimates of the parameters are presented in
Table 3.7 below.

Table 3.7: Estimation Results For Harter’s ( 1969) G3 Sample

PARAMETER TRUE MLE LINDLEY
3.00 3.59 5.36
50.00 48.87 40.71
20.00 0.00 -33.05

Clearly the Bayes estimates are unacceptable. The information given by the
Bayes estimates suggest a totally different parametric environment from that of the mle
results. Variance approximations for the Lindley estimators were also negative for « and
¢, similar to what was seen for the three-parameter Weibull.

Reliability estimation proceeds remarkably well despite the above results for the
systemic parameters, analogous to the three-parameter Weibull. Figure 3.5 indicates that
over a large range of the sample space, Lindley’s approximation is as close to the true
value as the mle. All approaches overestimate the true reliability for the given sample,
with Weiss’ estimate being highest. At no point do the mle and Lindley estimates differ

by more than 1.5%.
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The above sample was put forward as a "problem sample" to demonstrate the
difficulties in estimation with the three-parameter gamma distribution. Acknowledging
such difficulties exist, the goal here is to demonstrate that for "non problem" samples the
Bayes approximation is a usable approach. As such the simulations presented in the
following discussion use a large shape parameter value of «=6.0 in the hopes that the
regularity of the environment will allow for a clearer and fairer comparison of the
competing estimation procedures. It is a given premise that "non problem” samples may
exist for the three-parameter gamma distribution under very specific parametric
circumstances.

Sample generation was accomplished by the IMSL routine GGAMR which
produces one-parameter gamma variates and then transforms them into three-parameter
gamma variates. The following sample of fifty observations was drawn from

I(a,B,¢)=(6,50,20)

118.25 150.19 155.92 161.80 163.09 170.74 174.86
180.34 187.24 190.16 193.88 202.45 204.33 217.63
220.39 220.97 221.79 230.43 237.58 240.61 242.04
256.69 274.04 280.60 288.24 290.41 296.39 303.57
307.57 314.68 327.70 328.28 338.63 339.32 347.27
369.41 378.04 378.68 402.65 422.58 445.03 446.07
467.23 470.51 476.74 4717.06 501.78 353.49 558.70
647.12

The sample proved to give a good fit to the prescribed model using the Anderson-Darling

(1954) and Cramer-von Mises (D*Agostino and Stevens (1986)) edf statistics. Estimation
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results are given in Table 3.8.

Table 3.8 Estimation Results For Generated I'(6.50.20) Sample

PARAMETER TRUE MLE LINDLEY
6.00 2.55 4.09
B 50.00 80.85 57.96
c 20.00 101.17 58.35

Even for this "non problem" sample marked differences exist between the mle and
approximate Bayes estimators, but note that neither approach looks particularly
preferable. The variance estimates for the Bayes approximations are once again negative
for o and ¢ and as such are useless.

Figure 3.6 reveals that the reliability estimates are once again reasonable despite
what was seen for the systemic parameters. All estimation approaches here
underestimate the true reliability for most of the sample range, with the Weiss estimator
consistent in its underestimation. The mle and Bayes methods compete across the range
much the same way as was seen for the three-parameter Weibull. The Weiss estimator
is clearly the weakest of the three approaches, but may be practical as an extremist
benchmark in applications.

The effect of sample size is more pronounced for the three-parameter gamma than
for other distributions seen to this point. This is due mainly to the poor information a
small sample gives about the threshold parameter. Once this parameter is missed, results
for the other two parameters are of dubious merit as seen in the above examples. To
give a more detailed picture a series run for the above generated sample was undertaken

to see how long it would take before the estimates stabilized. Results are given in Table
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3.9 for sample size ranging as large as n=2000.

Table 3.9: Three-parameter Gamma Single Sample Series Run

Parameter Estimates

ALPHA(SHAPE) BETA(SCALE) C(THRESHOI D)

N MME | MLE | BAY | MME | MLE | BAY | MME MLE | BAY
50 818 255 |4.09 |43.13 |80.85 |57.96 |-45.47 |101.2 |58.40
100 10.8 |3.12 |4.76 [37.69 |73.49 |56.10 |-91.89 |84.95 |40.77
200 |7.62 345 |4.36 [46.52 [71.36 [63.06 |-2870 |79.82 |55.14
500 [8.66 |5.39 |630 |[41.27 [53.09 |49.51 |-37.13 |34.05 | 14.30
1000 |7.05 |6.04 |6.54 |4552 |49.50 |47.87 |-0.63 21.38 | 11.05
2000 [6.72 [5.93 |6.16 |46.81 [50.07 |49.30 | 8.55 26.30 | 21.51

Negative threshold estimates persist for the method of moments estimator up to
n=1000. Differences between the Lindley and mle results remain even for n as large
as 2000, which is different from what has been seen previously in using Bayes
approximations for other distributions. Clearly the three-parameter gamma distribution
is unique in its degree of estimation difficulty. Reliability estimates (not shown for
single sample) converge more readily to their true values, reinforcing the previous
conclusions drawn from the generated sample.

Negative values for the posterior variances of the parameters are a problem
encountered in applying Bayes approximations, especially for small sample sizes. As
was seen earlier, by increasing the sample size above n=200 these estimates also
stabilize. As can be seen in Table 3.10, however, the negative estimates remain at
n=200 and are clearly underestimated for n=500. It is not until 1000 observations are
taken that the Bayes posterior variance estimates compare reasonably with the asymptotic

variances of the maximum likelihood estimators.
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Table 3.10: Asymptotic Versus Estimated Posterior Variance
Effect Of Sample Size Using Generated I'(6.50,20) Samples

a(SHAPE) B(SCALE) C(THRESHOQOLD)
N MLE | BAY | MLE BAY MLE ABAY
50 15.18 | neg. |402.94 | 53.74 | 6647.07 | neg.
100 7.56 | neg. | 201.47 | 60.14 | 3323.53 | neg.
200 3.78 | neg. | 100.74 | 104.37 | 1661.77 | neg.
500 1.51 | 0.02 40.29 | 44.70 | 664.71 | 382.28
1000 0.76 | 0.74 20.15 | 21.98 | 332.35 | 333.70
2000 0.38 | 0.38 10.07 | 10.08 | 161.18 | 161.19

It is important to keep in mind that the discrepancy between the mle and Bayes
approaches should not be interpreted as being due to a lack of accuracy in the
approximation methodology. Rather, it is indicative that under a noninformative a priori
state the Bayes estimator of the systemic parameters does not perform as well as the mle
for the three-parameter gamma distribution. Improving prior knowledge may bring the

Bayes estimators’ performance into line.

3.2.5 Monte Carlo Simulation

To more fully investigate the distributional properties of the Bayes approximation,
1000 samples of size n=100 were run with parameter settings I"'(4,20,50). As discussed
in previous sections, because the maximum likelihood estimators fail to exist for some
samples, screening rules had to be incorporated into the simulation run. A sample was
rejected if:

1) the sample skewness was negative (Bowman and Shenton, 1988)
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2) the L, function was ill-behaved (case type two from Figure 3.4)

3) the Bayes estimator for ¢ was negative
Bowman and Shenton note that for small n and/or large « the rejection rate for generated
samples is high. They consider any n <100 to be small. As such the simulations were
run with n=100 to investigate the Bayes estimators’ relative merit.

A total of 1147 samples had to be generated to produce 1000 usable samples. Of
the 147 rejected samples 120 were due to negative Bayes estimators while the remaining
20 had malformed L, functions. The negative Bayes estimators often coincided with low
p-values for the Anderson-Darling goodness of fit test, so it is uncertain whether or not
sampling is the true problem in these cases. These phenomena are similar to previously
published results, although other authors did not specify the criteria for sample rejection.

From a practical perspective, if faced with a sample that failed the above criteria,
the researcher has a dilemna. Even if only the reliability function is of interest, the
Bayes approximate estimator is unobtainable because it is based on the mle of R(t).
Given that the other closely related distributions seen earlier in this chapter do provide -
estimators more readily, it may be advisable to use the lognormal or Weibull distribution
as a substitute for the gamma. Such a switch would have to be predicated on a sound
theoretical base from the literature that dealt with the particular application under study.
Naive switching between theoretical models is not recommended in general.

Results are given in two sections. First, Table 3.11 compares the parametric
estimators via the maximum likelihood(MLE) and Lindley approaches. The method of
moments estimator(MME) is also given as it is a useful reference point. Second, Table

3.12 presents reliability estimation results for the mle, Lindley and Weiss estimators.
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Table 3.11: Simulation Results For 1000 Valid I'(4,20,50) Samples
Sampling Distribution Mean And Mean Square Error

MME MLE LINDLEY
PARAMETER | MEAN ’MSE MEAN | MSE | MEAN | MSE
5.69 17.09 3.62 1.36 5.50 7.33
B 19.46 50.09 22.20 | 28.30 | 17.88 28.46
C 39.82 765.08 | 54.39 | 96.29 | 40.17 | 338.07

Table 3.12: R(t) Estimates Sampling Distribution Mean And MSE

MLE LINDLEY WEISS
TIME | TRUE | MEAN MSE | MEAN| MSE | MEAN| MSE
75 .9617 9657 | .00024 9572 | .00022 9542 | .00056
100 7576 7527 | .0014 7637 | .0012 7498 | .0023
125 .4838 4771 | .0018 .4926 | .0020 4745 | .0034
150 .2650 2628 | .0013 .2681 | .0014 2544 | .0026
175 .1303 1319 | .0007 .1294 | .0008 1215 ] .0013
200 .0591 0623 | .0003 .0578 | .0003 .0537 | .0005
225 .0253 .0283 | .0001 .0247 | .0001 .0226 | .0001
250 .0103 .0126 | .00004 .0104 | .00003 .0093 | .00004
275 .0041 .0055 | .00001 .0044 | .00001 .0037 | .00001
300 .0016 .0024 | .000005 | .0019 | .000003 | .0015 | .000002

In terms of parameter estimates, it is not surprising that the method of moments

estimator approach is the worst of the three. It is surprising however that the mle results

are clearly superior to Lindley’s, both in terms of deviation from the true value and mean

square error.

parameters.

Lindley’s is especially poor in estimating the shape and threshold
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Entirely different findings are evident for the reliability estimation. Here once
again the Bayes and mle approach compete across the range space, with neither clearly
superior. The Bayes method seems slightly better when estimating in the upper tail of
the sample space in terms of bias. Mean square errors are virtually equal. The Weiss
estimator is consistently smaller than both the true reliability and the other estimators.

Reliability results for the mean of the sampling distributions at each time point
are given in Figure 3.7. Again the Bayes estimator and the mle compete well in terms
of estimating the true reliability. The Weiss estimator reliability curve is uniformly
below the true reliability and the other two estimators.

The threshold parameter’s mle and Lindley estimators’ sampling distributioné are
depicted in Figures 3.8 and 3.9. Although similar in shape, the distribution of the
approximation to the Bayes estimator is clearly more variable. From these pictures one
can see that it is a general, consistent failure of the Bayes estimator in that the adjustment
it makes to the mle is overly large. It is not merely a few cases that have a special
characteristic about them that causes the Bayes approximation to produce a markedly
different result from the mle.

Results for Bayes approximations applied to the three-parameter gamma
distribution differ somewhat from what was seen for the other distributions in this
chapter. Often in life-testing studies, models involving the three-parameter gamma,
lognormal and Weibull distributions will be used interchangeably because the parametric
settings can be arranged to mimic one another. Given the poor performance of the
approximation seen above, the Bayesian approach cannot be suggested as a viable option

for estimating the three systemic parameters. It can be used successfully to estimate the
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Figure3.7 THREE-PARAMETER GAMMA RELIABILITY ESTIMATION
_ ESTIMATOR RAVERAGES FOR 1000 SAMPLES
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system reliability, where it compares favourably with the maximum likelihood approach.

Again it should be stressed that the Bayes approach was examined under the worst
possible conditions by assuming a noninformative prior. As such it is possible that
results would improve for situations where good prior information is available. It is
important to keep in mind, however, that such conditions were present in applying this
approximation to other life-testing distributions with much better results.

The problem seems inherent with the Bayes estimator itself as the T-K method,
of approximating the Bayes estimator encounters the same difficulties. Negative values

for systemic parameter and variance estimates have been observed in other situations.
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3.3 Lognormal Distribution

In this section, Bayes estimators of the pafameters and the reliability function for
the three-parameter lognormal distribution are derived and compared with the maximum
likelihood estimators. The Tierney-Kadane approach is used for the systemic parameter
estimates, while Lindley’s approach is used to estimate R(t).

Separate results for Lindley’s approach applied to estimating the parameters of
the lognormal distribution §=(k,u,0) are omitted because, as has been seen earlier with
other distributions, the two Bayes approximation methods produce indistinguishable
findings. Furthermore, work was recently published by Lye, Sinha and Booy (1988)
using Lindley’s approximation for flood data assumed to follow a three-parameter
lognormal distribution. = Work with Lindley’s approximation and the lognormal
distribution by the author predates the work of Lye et al. Their paper was published
after consultation with the author and the paper in fact refers to the author’s prepublished
work with the three-parameter Weibull distribution. Lye et al cover the application of
Lindley’s method sufficiently well so that any attempt to describe it here would be
superfluous.

In any event, the Lye et al paper does not address the Tierney-Kadane approach,
although as seen in previous sections, the results are basically equivalent except for very
small samples. Further, in this section the estimation of the reliability function is
undertaken.

Papers dating back to 1879 include discussion of a distribution whose logarithm
is normally distributed. The typical genesis of the distribution is attributed to life testing

environments where the degree of variability in the data is related to the value observed
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(Cohen, 1951). A popular application of the distribution is incumbent upon regression
theory where an appropriate stabilizing or normalization transformation is to work with
the logarithms of the observed values. Other popular areas of application besides life
testing range from agriculture to economics. Extensive application lists are available
from the books by Crow and Shimizu (1988), Aitchison and Brown (1957) and in
Chapter 14 of Johnson and Kotz (1970).

The three-parameter lognormal pdf is

f(x|k,u,0) = exp[—i-z[log(x—k) -uf]

1
Vamo (x-k)
such that x>k, ¢>0 and -0 <pu< o,

The distribution parameters are typically described in this way to indicate that x-k
is a variate whose logarithm is N(u,0) where u and o are the usual location and shape
parameters. In the lognormal pdf, however, u is a scale parameter and o is a shape
parameter. Larger values of produce a more spread out distribution. Very small values
of ¢ generate an almost exponential-like curve whereas as o increases the distribution’s

skewness becomes greater. For this section then our vector systemic parameter is

Q=(k3#90)'

3.3.1 Estimation Problems

There is a long history of difficulty recorded in the literature of solving the
system of likelihood equations to obtain the mle’s of k, 4 and o. As with the previously
seen Weibull and gamma distributions, work with the lognormal distribution is

complicated when a third systemic parameter representing a threshold or minimum time
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until failure is added to the mathematical environment. Much of the literature deals with
the simpler situations of having one or more of the parameters known a priori. The
remainder of the published materials dedicates itself to circumventing the intractability
difficulties due to the added threshold parameter. As was seen with the other three-
parameter distributions earlier in this chapter, there is as yet no really satisfying
estimation procedure for the three-parameter lognormal that works in all cases for all
parametric values.

The primary difficulty once again lies in the fact that an absolute maximum for
the likelihood function may or may not exist for a given sample. Hill (1963) shows that
iterative solutions arrived at from some numerical process are actually only local
maximums. As was seen for the three-parameter Weibull, there is a path which exists
for the mle of k to tend towards infinity while the likelihood function remains bounded

and roughly constant (Hill, 1963). It turns out that the true value that maximizes the
likelihood occurs at (k,f,8) =( X0 —%,9) . Clearly the true mle would be an absurd

estimator to use in practice.

The use of a local maximum as the mle has become standard practice and has
been shown to have most of the well known asymptotic properties of the mle (Harter and
Moore, 1966). From a Bayesian perspective, Hill (1963) notes that a local maximum
will suffice because the goal is to find a "region of high posterior probability”. The
Bayes approach would hence downplay the classical true maximum as an extreme and
therefore unlikely case in terms of posterior probability.

Hill also describes in some detail how the problem of finding even the local

maximum is complicated in small samples, especially if the threshold parameter k is not
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estimated with care. In essence it occurs that the local maximum is attained at a point
with a k value very close to the sample minimum x;;. If the iterative procedure used
begins by underestimating k, the process will overshoot the interval of convergence and
send the estimate off towards the global maximum at k=-co.

This result sparked a flurry of activity for a method which would circumvent this
problem. Richards (1961) suggests a method whereupon one fixes the value of one
parameter and then proceeds in a cyclical fashion to solve for the other parameters.
Unfortunately, the definition of what constitutes a "suitable” estimate for the troublesome
threshold parameter is not obtained so that one is left with a hunt and peck approach for
any given sample. Harter and Moore (1966) discover that for some samples not even
a local maximum will exist for the likelihood function. In such situations, they suggest
the method of censoring the first order statistic and using its value as an upper bound for
the iterative process used to find the estimate for k.

Calitz (1973) makes some very useful contributions regarding the choices of initial
values for the iteration process. He suggests setting k=0 as an appropriate starting point
and bracketing the search with k=max(0.6x;, x;,-.1).

Giesbrecht and Kempthorne (1976) provide another alternative involving the
discretization of the sample. This allows for the approximation of the lognormal by the
multinomial distribution as an alternative form of the likelihood function. Unfortunately,
this method also suffers from the possibility that no set of maximizing values will be
obtainable.

Cohen and Whitten (1980) apply their modified moment and modified mle method

used for various distributions. Again they substitute a simpler equation for one of the
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partial derivatives of the log-likelihood function. In doing so, estimators will always
exist and have most of the desirable properties of the mle. Unfortunately, these
estimators may also be hard to find numerically. In general they found that if the
lognormal sample was symmetric or slightly negatively skewed, the numerical procedure
would fail to converge. The more positively skewed the sample, the more regular the
results became. Since the lognormal distribution is put into practical use mainly where
data are extraordinarily positively skewed (Johnson and Kotz, 1970), a sample which
evidences a lack of skewness or slight negativism of skew could be regarded as an
anomaly and would be better represented by a distribution other than the lognormal.
This a posteriori model decision-making process limits the scope of this procedure.

Amin (1981) give an excellent review of the difficulties encountered in
implementation of the mle process and discusses various means of attacking the
problems. He also suggests a method of surmounting the computational difficulties in
a modification of Cohen’s (1951) technique. Unfortunately, his technique also runs into
the problem of needing a very good initial estimate for the threshold parameter k to avoid
heading off towards -oo.

To further demonstrate the basis of numerical problems encountered in
maximizing the likelihood function, Figures 3.10, 3.11 and 3.12 present the log-
likelihood surfaces in the area around the maximum likelihood estimates for the given
sample used in subsequent subsections. In all three figures the actual local maximum
(the mle) is located on or near the centre of the surface grid. The problem in searching
for the maximization point involving the dimension of k is immediately evident from

Figures 3.10 and 3.11. The drop towards negative infinity as k increases begins very
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Figure 3.11
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Figure 3,12
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close to the minimum of the observed values. This illustrates the need for an initial
estimate of k to be very close to the first order statistic and yet still on the appropriate
side of the log-likelihood surface for the iterative process to converge.

Figure 3.10 reveals that the seeming regularity of the surface along the p axis is
complicated by the cliff-like face of the k axis and certainly is much flatter. Similar
results are seen in Figure 3.11, which portrays the interaction between k and 0. The g,
o grid in Figure 3.12 illustrates a regular parabolic surface over which to maximize.
This indicates why without the involvement of the troublesome threshold parameter,
finding the mle for the lognormal distribution is a simple task. Graphical techniques such
as these would suffice in many practical applications but would not be feasible as a
routine process for a large number of samples.

For obtaining the mle in this study, a combination of the Cohen (1951) and Calitz
(1973) method was used. The algorithm was constructed to check for the appropriateness
of the two techniques for each sample and then a choice was made based upon the shape
of the log-likelihood function along the k axis. Once convergence was obtained for the
k parameter, the other parameters were found by simple substitution. The final result
was checked via the 3x3 grid method used for the three-parameter Weibull distribution
to ensure a local maximum had been obtained.

The mle search method is based on solving the equation A(k)=0 such that

_ v log(x-k) & 1 1e Qe 1y _ 1 - _
Ak) = 21 = {; oF [_55_; log?(x;-k) 321: log (x;-k)

2
-%hlog(xi—k)] .
n° iz
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Calitz (1973) and Amin (1981) mention that searching this function may be difficult and
demonstrate that the function is very steep in the neighbourhood of the solution. Calitz
proposes that a Newton-Raphson approach could be used. This necessitates the

construction of the derivative of A(k)

=, log(x,~k) -1
/ k) =
. (k) zizl: (xi-k)2

i=1

1e 1 n 1 n lOg(X,-—k) 5 | 1 n
n - T x-k 1 —_— ~k
+n,~z=1: (x,-k) k: X~k 2§ XK = > %% |2 log (x;-k)

Searching for a root along this functional surface is also somewhat tenuous however and

2
log?(x,~k) -i log (x,-k) —31 & log (x,.—k)]
i=1

Newton-Raphson may not converge if the interval is not chosen appropriately. Figure
3.13 displays the form of the X\’(k) function for the Cohen (1951) sample. One must
ensure that the search interval must be along the steep cliff near the sample minimum and
yet be on either side of zero. It was found that the smaller the sample the more steep
the cliff became. This would cause many search algorithms to miss the zero point.

Previous algorithmic suggestions involve taking a percentage of the sample
minimum for the search interval starting point. This is not ideal, however, because
depending upon the parametric settings, such a point could be either on the plateau or
cliff area of Figure 3.13, with a great deal of inconsistency across samples.

A new algorithm is proposed whereby the search is split into two parts. First,
the A’ (k) function is searched to find the zero point by "creeping" along the plateau area

as seen in Figure 3.13 until the cliff edge is reached so that A’(k) becomes negative.
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This point and x;;- are then used as boundaries for a linear search routine of the lambda
function. With epsilon and the size of the successive "creeping" steps chosen as being
very small, the search routine is guaranteed to find the solution. Numerically, the
routine is not optimal as it typically takes 30 iterations for each of the two parts to
produce a solution. Unlike other algorithms in the literature, however, results are

universally obtainable,

3.3.2 Tierney-Kadane Approximation

Jeffreys’ invariant prior approach is once again used to represent a prior lack of
knowledge about the parameters. Hill (1963) first investigated the use of this prior with
the lognormal distribution. Many authors have used Bayes methods for estimation of
lognormal distributions, but strictly for the two-parameter case. Padgett (1988) provides
an extensive list of references. Although he refers to the prior as "unrealistic"”, Hill finds
that the results seen with Jeffreys’ prior yield "nearly the same posterior density" as a
more informative model. Using this approach, assuming prior independence of the three -

systemic parameters, the joint prior is

g(k,pu,0) x X
o

and the log-likelihood function is

L(k,p,0]X) = —_Izzlog(zn) —nloga—z log(x,.—k)-.zl_zz [log(x;-k)-u]? .
i=1 i=1

The T-K method requires the construction of one L, function and an L. function for each

‘parameter to be estimated. These modified log-likelihood functions here are calculated
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to be

__1 _n+2 _ 1y 1y
L, = -51log(2m) —=logo _glog(x k) E_E[log(x, k) -u3?

and, for estimating the three systemic parameters, set u(6)=6; in turn to produce three

L. equations where
L, = ..1.log(0.) +L, .
., n i o
To produce the maximization points 6, and 6. for the L, and L. functions, the first partial

derivatives are necessary. These are

i log (x;-k) -u
D02 i=1 x;-k

(')L 1
) E (%, —k)

l=1

o. 1y “k) -

aLo - —n+2+
a0 no

=53 (109 (x,7k) )
i=1

for L,, and again for L. the relationship between the two functions can be used so that

the partials of L. are easily found by

35%‘" %% W[ 1°9“’)]

Unfortunately, like the mle system of equations, the L, and L. functions do not
produce closed forms for the maximization points 8, and 6. respectively. Numerical
routines as described in previous sections were used, with the mle’s as a starting point

for iterative searches. Convergence is typically obtained within 15 iterations.
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To produce the X, and I. matrices, the second derivatives of L, and L. must be

construced and evaluated at the maximizing points 6, and 0. respectively. These are

found to be
.LoII = azkzo = 12 =, -k)2 ntzg 109’((}:;};{));“_1
L2z aall;o = —.‘%
Lyss = ‘?::20 - 1’111‘;3 n042 [log (x,-k) -2
L, . 1 1

Lotz = KoL noz.): X -k

i=1 i

0L, 2 « log(x,-k) ~u
L013 - dkdo - DUS; Xi"k
d’L 2 -«
= o = - ~_k - .

The partials of L. follow directly via the relation
Once obtained, the remaining steps in the T-K algorithm are carried out by numerical
methods.

Calitz (1973) mentions that the value of the parameters should have little impact
on competing estimation methods’ relative efficiency. To circumvent the difficulty of

positive-valued parameters without loss of generality, positive parameter settings were
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used for the large scale simulation runs. For the single sample case which did involve
negative parameters, the approach of using large additive constants as described by

Tierney and Kadane (1985) was used.

3.3.3 Reliability Estimation

The reliability function for the three-parameter lognormal distribution is

R(t) = Pr(T2t) exp ['“2%.'2 [Log (x-k) —uf]dx

1
x'f \/2_1;-0 (x-k)

To estimate R(t) using Bayesian methods, the alternatives are Lindley’s or the Tierney-
Kadane approximations. Once the three systemic parameters have been estimated by
Lindley’s approach, only the y; and u; functions need to be reconstructed. Using the T-K
method, however, the L, and L. functions and their respective first and second partial
derivatives are necessary to obtain the maximization points. Furthermore, a numerical
maximization process must still be relied upon to produce the T-K approximation which
could be subject to further convergence problems seen with the mle’s. With Lindley’s
method the Ly ’s do not need to be reconstructed. As such, the Lindley approximation
is easier to implement in this situation.

Set u(k,u,0)=R(t) as above and let

- log(x-k)-u t . dx
y = so that dy 6 T3)
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so that

R(t) = hg(ﬂ!;‘“ _zflz_;exp[-_;yz]dy

or, taking the complement

R(t) = 1-q>( 1°g(ta—k) -u)

where ¢ is the standard normal distribution function.

For estimation purposes, the work simplifies by setting

log(¢-k)-p
(-2

u(f) = J = exp[--zl—yz]dy =I
- 27

Recall, as with the gamma R(t) function, the relation that if

wix)

I-= J f(x,t)dt
then

a1 ow v, O df(x,E)
7% = f(x,w)?}_{—f(x,v).a}+ .__.._5}{'__dt
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Using this result, the u; functions are

_ a1 _ 1 [_ 1[ log (t-k) -4 2]
u, = F r—— e eXp i —
'K omo(tk) 2 o ]
61 _ _ 1 _1[ log(t-k) -ul?
T 21wexp[ 2| o ”

2 o

do J2r o’ | 2

The u; functions can now be found by straightforward differentiation.

{
u, = 81 _ _log(t-k)-p . 1[ log (t-k) -u]z]

_ du(f) _ oy log (t-k) -u
7 {59 [“ o7

_ du(f) _ u
u, = 5 .&.;[log(t—k)—u]

w. = Ju(d) _u fog(t-k)-pf_,
33 ao_z _—o.— o

du(f) _ u
U = g T oI (tk) -u

_ u(f) _ u(pog(t-k)-pf._
s = Jxas ‘a‘[ o7 t

g

_dul) | Wffog(t-k)-uf_
2 " 3o 7[ z .

Lindley’s approximation to the Bayes estimator is then constructed by simple substitution

into the formula.
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3.3.4 Examples

Several application datasets are available in the literature, mainly to demonstrate
the difficulty in estimation for the three-parameter lognormal. Three such examples are
given by Cohen (1951), Dumonceaux and Antle (1973, D&A) and McCool (1974). The
Cohen sample has been used by a number of other authors as a test sample of mle search
routines. The three samples are interesting because they are all small and give any
numerical routine problems. They also reflect very different parametric settings.

The McCool (1974) sample is of special interest because, as noted by Crow and
Shimizu (1988), the sample was a good example where the mle was unobtainable. It
turned out that this sample was a good example of the very steep cliff face mentioned in
the earlier section on estimation problems. Although it is true that the sample required
a very narrow search interval, results for the sample were obtained and verified as the
mle.

Each sample was tested via the empirical goodness of fit tests described earlier.
The Cohen (1951) sample failed the test (p-value = .0001), which is surprising seeing -
that it has been used extensively in the literature. Estimation results for the three

samples are given in Table 3.13.

Table 3.13: Parameter Estimation Results For Lognormal Samples

Source n k hat p hat ¢ hat 'y ™ o
—— ]
McCool 10 144.12 3.94 0.91 124.02 4.41 0.65

D&A 20 0.18 -1.56 0.51 0.05 -0.98 0.30
Cohen 20 117.72 3.37 0.60 89.58 4.32 0.16

The two methods give markedly different parameter estimates for these small
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samples. Researchers using the Bayes approximation would arrive at a much different
result in terms of the assumed parent distribution than those using the mle.

In terms of variance estimation, Cohen (1951) provides forms for the asymptotic
variances of the mle for the systemic parameters. The posterior variance estimates,
arrived at in the same manner as for the other distributions in this chapter, once again
exhibit negative values and are as such inadmissible.

Reliability estimation was subsequently undertaken with results for the McCool
(1974) sample are presented in Table 3.14 and displayed in Figure 3.14.

Table 3.14: R(t) Estimates For McCool (1974) Sample(n=10)

" t IMLE R(t)l R'(0)

155 0.9559 0.7065
185 0.5989 0.6808
205 0.4257 0.5076
235 0.2651 0.3073
265 0.1732 0.1928
295 0.1180 0.1297
325 0.0831 0.0938
355 0.0602 0.0723
385 0.0446 0.0552
405 0.0370 0.0521
445 0.0259 0.0426

From Figure 3.14, it can be seen that the Bayes approximate estimator displays
a disturbing tendency for the lower t values. There is actually a part of the t range space

‘where an increase in t causes an increase in R’(t), which is theoretically impossible.
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Further, the Bayes approximation is consistently larger than the mle once t is taken to
be outside the "disturbing” range. After the initial problem, the Bayes results are within
1% of the mle estimate. The abnormal result for small values of t makes the use of this
approach, for small samples at least, untenable. Posterior variance estimates were
produced as well, but the presence of negative values makes a comparison with the
asymptotic variance of the mle meaningless. It should be noted at this point the sample
size is extremely small, so the results are not all that surprising.

To establish sample size impact limitations, three generated samples
(n=25,50,100) with the parametric settings (k,u,0)=(25,2,0.8) were used for R(t)
estimation. The use of generated samples also allows for a comparison against the true
R(t) value which was not possible for the McCool sample. As mentioned by Calitz
(1973), these settings provide a good environment for illustration without loss of
generality. The estimators along with the true parametric values are given in Tables
3.15, 3.16 and 3.17 for the small, moderate and large sample sizes respectively. Figures

3.15, 3.16 and 3.17 display the resultant R(t) functions.
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Table 3.15: R(t) Estimates For Generated Sample(n=2

l t True R(t) | MLE R(t) R(t) |
27 0.9448 0.9286 0.8480
30 0.6873 0.4819 0.5156
33 0.4604 0.2410 0.2548
36 0.3095 0.1294 0.1331
39 0.2122 0.0743 0.0763
42 0.1488 0.0450 0.0477
45 0.1066 0.0284 0.0321
48 0.0779 0.0187 0.0228
51 0.0579 0.0126 0.0170
54 0.0437 0.0088 0.0130
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Both estimation techniques consistently underestimate the true R(t) value for all

three sample sizes. In Figure 3.15, the Bayes estimates are closer to the true value for

small values of t but less than the mle for larger values of t. This result agrees with

what was obtained for R(t) results for the three-parameter gamma distribution. The

margin of error for the estimates is as large as 6%.



Table 3.16: R(t) Estimates For Generated Sample(n=>50)

l t True R(t) | MLE R(t) R'(t)
26 0.9938 0.9941 0.9566
29 0.7785 0.5942 0.6135
32 0.5270 0.3013 0.3129
35 0.3526 0.1614 0.1634
38 0.2400 0.0921 0.0913
41 0.1671 0.0555 0.0546
44 0.1189 0.0349 0.0347
47 0.0863 0.0228 0.0231
50 0.0638 0.0153 0.0161
53 0.0479 0.0106 0.0116
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Results for n=50 in Table 3.16 and Figure 3.16 indicate a converging of the two

estimation processes, unfortunately to a point distant from the true R(t) value. The

underestimation by the Bayes estimator continues. Due to the larger sample size, the

deviant behavior of the Bayes estimator seen in the McCool sample is absent from these

results.
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Table 3.17: R(t) Estimates For Generated Sample(n=100)

l t True R(t) | MLE R(t) R'(t)

26 0.9938 0.9606 0.9419
29 0.7785 0.5581 0.5688
32 0.5270 0.3052 0.3115
35 0.3526 0.1767 0.1785
38 0.2400 0.1082 0.1082
41 0.1671 0.0694 0.0689
44 0.1189 0.0463 0.0458
47 0.0863 0.0318 0.0316
50 0.0638 0.0225 0.0224
53 0.0479 0.0163 0.0164

Even with n=100, R(t) is consistently underestimated, with the margin as much
as 20%. Figure 3.17 indicates that the two estimation process do indeed virtually

overlap at this point, unfortunately, it is not at R(t).

3.3.5 Monte Carlo Simulation
Sample generation for the three-parameter lognormal distribution is 4

straightforward using a normal sample generation procedure such as the IMSL (1975)
routine RNOR and the relation x,=exp| o (RNOR,+u)]+k. Empirical goodness of fit

testing as was done with the previous distributions in this chapter was performed to
ensure sample veracity. Parameter settings of §=(k,u,0)=(25,2,0.8) were once again
used. Three separately seeded simulation runs of 1000 samples each were used to

examine the impact of sample size on the estimation results (n=25, 50, 100). This allows



154

for a discussion of small versus moderate and large samples. Convergence for the

maximum likelihood estimators was achieved in all cases. It was found, however, that

the search interval for the small sample size had to be extremely narrow to achieve the

100% success rate. The 3x3 grid approach was used to ensure that a local maximum was

indeed the point of convergence. The method of moments estimator (Cohen, 1951) was

included for comparison purposes as it is recognized as being poor estimates relative to

the mle.

Table 3.18 presents the mean and mean square error for parameter estimates using

the 1000 samples produced for each sample size.

Table 3.18: Estimation Results Based On Varying Sample Sizes

VWith Parameters (k,u.0)=(25,2,0.8)

METHOD OF MLE TIERNEY-
MOMENTS KADANE
Parameter Mean MSE Mean MSE Mean MSE
n=25
k 18.883 63.628 25.137 1.282 | 23.388 | 18.249
7 2.377 0.3029 1.506 0.3578 | 1.8440 | 0.2965
o 0.464 0.1419 0.8718 0.0694 | 0.6849 | 0.0899
n=50
k 21.234 20.94 25.119 0.4268 | 24.525 | 1.4657
U 2.165 0.1280 1.548 0.2492 1.683 | 0.1592
o 0.553 0.0866 0.838 0.0268 | 0.762 | 0.0278
n=100
k 22.434 9.802 25.072 0.1790 | 24.809 | 0.3092
u 2.021 0.0731 1.573 0.2029 1.635 | 0.1554
- 0.618 | 0.0556 0.820 0.0114 | 0.784 | 0.0114
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The impact of sample size is impressive, but not uniform for estimating the three
parameters. The mle’s exhibit smaller bias and mse for estimating k and ¢. The Bayes
estimator of p is closer on average to the parametric value with smaller variability than
the mle. The mle and approximate Bayes estimators are clearly superior to the method
of moments estimators at all sample sizes.

In estimating the location parameter for small samples, the Bayes approximation
is subject to much greater variability than its mle counterpart. The mle results are
satisfactory considering the difficulty required to produce them.

Once enough sample information is available, the Bayes approximations begin to
converge towards the mle as expected. At n=100 it is arguable which estimator would
be preferred. The mle exhibits smaller mse for k than the Bayes approach, but larger
mse for p and indistinguishable results for o.

Posterior variance estimators once again are useless for the small n=25 samples.
Only 1% of the posterior variance estimates for k were greater than zero. Over half of
the posterior variance estimates for u were negative. Surprisingly, only 10% of the ¢
posterior variance estimates were negative.

At n=50 the proportion of negative variance estimates decreases (40%, 2% and
1% for k, u and o respectively), but are still present so as to bring their validity into
question. The negative estimates are absent when n=100 and so Table 3.19 compares

the posterior variances to the asymptotic variances of the mle.
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Table 3.19: Average Estimated Posterior VS Asymptotic Variance

Parameter | Bayes MLE

k 0.0820 | 0.0850
u 0.0140 | 0.0141
o 0.0093 | 0.0163

The above table substantiates Sinha’s (1987) claim that the posterior variance of the
Bayes approximations is less than the asymptotic variance of the mle.

The empirical distributions of the estimates produced for the three simulation runs
provide further insight. The stark contrast between the success of the two methods is
seen in comparing the n=25 sampling distributions in Figures 3.18 to 3.23.

In comparing the sampling distributions for estimators of the location parameter
k (Figures 3.18 and 3.21), the Bayes approach seems to be succeptible to wildly
inaccurate estimates, albeit rarely. While both sampling distributions are markedly
negatively skewed, the Bayes estimates have a few negative estimates. Clearly the
asymptotic properties which underlie this approach are absent at n=25.

The pictures for estimating p are quite different (Figures 3.19 and 3.22). The
mle’s sampling distribution appears almost symmetric while the Bayes estimator is
noticeably postively skewed. Here also the tendency to have an occasional outlying
estimate in the Bayes approach is evident, while absent for the mle. The Bayes sampling
distribution does have a greater frequency of estimates close to the true u value,
however.

Figures 3.20 and 3.23 depict the sampling distributions for estimating ¢. Here

the results look much more regular, although the mle distribution is positively skewed




Figure 3.13  ESTIMATION OF THREE-PARAMETER LOGNORMAL THRESHOLD
RESULTS FOR 1000 SAMPLES
N=25, K=25.0, p=2.0, 0=0.8

FREQUENCY
400 -

300 1

200 -

100 A

0 ey BEER BEE R

20.0 20.8 21.6 22.4 23.2 24.0 24.8 25.6 26.4 27.2
K MAXIMUM LIKELIHOOD ESTIMATOR

LS




Figure

19 ESTIMATION OF THREE-PARAMETER LOGNORMAL ;. PARAMETER

FREQUENCY
300 -

200

100 -

RESULTS FOR 1000 SAMPLES
N=25, K=25.0, p=2.0, ¢=0.8

0.6

0.8 1.0 1.2 1.4 1.6 1.8

# MAXIMUM LIKELIHOOD ESTIMATOR

8ST




Fi

re 3.20 ESTIMATION OF THREE-PARAMETER LOGNORMAL ¢ PARAMETER

RESULTS FOR 1000 SAMPLES
N=25, K=25.0, u=2.0, ¢=0.8

FREQUENCY
300 -
200 -
100 A

0 mm

0.32 0.48 0.64 0.80 0-.96 1.12 1.28 .44 1.60 1.76

¢ MAXIMUM LIKELIHOOD ESTIMATOR

651
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and the Bayes negatively skewed. In this case at least the two distributions look like
those of competing estimators, unlike those for the other two parameters where the mle
is clearly superior. Closer inspection reveals, however, that negative estimates for ¢ are
obtained which are inadmissible.

Once again when n becomes moderately large the distributions converge so that
Figures 3.24 to 3.26 present the Bayes sampling distributions, although they are
representative of the mle results as well. The negative estimates seen for the smaller
sample size are absent and the sampling distributions are much more well-behaved.

The location parameter’s sampling distribution is still negatively skewed with a
tendency to produce inordinately small estimates. This is likely a fact of working with
a location parameter and not the result of the estimation process itself. In observing
some of the individual samples it became clear that the location parameter was extremely
sensitive to outlying observations.

The pictures of the sampling distributions for u and o (Figures 3.25 and 3.26)
indicate a much more well behaved estimation process due to the larger sample size.
The skewness is very slight in both cases and the distributions are appropriately centered
around the parametric values.

Results would tend to suggest that for estimating the parameters of the three-
parameter lognormal, the maximum likelihood approach is superior for small samples
(n<50), especially if it is important to accurately estimate the location parameter. For
moderately large samples, the Bayes approach is competitive, even given the
noninformative a priori environment.

In estimating the reliability function R(t), neither approach is particularly
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successful. For the small sample sizes especially, results of estimation are markedly
different from the true R(t). The two methods do converge quite well, unfortunately they
converge to a consistent underestimation of the true reliability.

Some of the results of this section contrast the Lye et al (1988) paper. The
marked discrepancies between the mle and the Bayes estimators are largely ignored.
Further although they mention the negative variance estimates, they shrug them off as
a minor nuisance. In doing so they fail to notice that as with previous distributions in
this chapter, the variance estimates cannot really be trusted below n=100 whereas all

samples presented in the paper are smaller than this.

3.4 Summary

As the work in this chapter covered detailed estimation procedures for three
different distributions, a summary of the findings in terms of the estimation process is
useful. For some distributions and sampling environments, the mle is clearly superior
whereas for others, the Bayes estimators have attractive properties. A choice of which
approach to use for a particular application really boils down to:

1) how much is known about the environment (prior and distributional

options)

2) how many estimation processes are expected to be needed

3) is bias or variance more important to the application

4) what access is available to advanced numerical routines
The use of good a priori information in most sampling environments will produce

superior estimators. In the absence of such information, the mle is likely the better
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choice.

If options for distributional choice are allowable, often there are clearly superior
estimation environments. For example, the Weibull with shape less than two is less
preferable to a lognormal in terms of difficulties in producing estimators. Further, the
lognormal distribution seems to be much more unstable than the other two distributions
for estimation processes.

In terms of a choice between the two Bayes approaches, there is no clear choice
either. If many distributional parameters and related functions need to be estimated
under varying prior information, Lindley’s approach will be less work in the long run,
assuming the mle’s are obtainable. Otherwise the Tierney-Kadane method is less
arduous.

Depending upon the distribution and estimator to be studied, the competing
schools of thought have both advantages and disadvantages in terms of bias/variance.
For example, a small sample size will suggest the use of the mle for variance estimation
because although they may not be terribly accurate, at least they produce a believable |
positive estimate.

Access to a standard powerful computer workstation with advanced numerical
software will suggest the T-K method and its reduced CPU time. Otherwise, Lindley’s
method should be preferred as it is more likely to produce a closéd form algebraic

solution and once the Ly;’s are constructed, prior distributional comparisons are easier.



169
CHAPTER 4: ESTIMATION FOR THE BIVARIATE NORMAL DISTRIBUTION
4.1 Introduction

In this chapter, two methods for the approximation to the Bayes estimators due
to Lindley (1980) and Tiemey & Kadane (1986) are compared to the maximum
likelihood estimator of the distributional parameters for the bivariate normal. J effreys’
invariant prior is developed.

The bivariate normal distribution has received a great deal of attention in the
literature (see Johnson and Kotz, 1970 for an extensive list) because of its wide range of
applicability and the mathematical challenge it presents incorporating five systemic
parameters. The majority of work has been done with assumptions regarding the
parameters to make the mathematics easier. Several texts only consider situations where
some parameters are known so as to make the mathematics tractable and focus on a
subset of the parameters, such as Lindley (1965). In this chapter, the approximations
will be applied assuming all five systemic parameters are unknown and a state of
ignorance a priori exists about the parameters.

The pdf of the bivariate normal random variable X = (X;,X,, with the five element

vector system parameter 8=(u,,u,,01,06,,p) is given by

1 1
f(xllx2ll"'1lll'2la]lazlp) = exPE

S (1-07)
2m0,0,/1-p? 2(1-p%)

o} o3 0,0,

[(xl_l-"l)2+ (Xz'uz)z_ 2p (x,-1y) (X,-H,) ]:I
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where
—0<X) , X)<®, —0O<U,, 4,<0, 0,,0,>0, -1<p<l.

The maximum likelihood estimator (mle) of the systemic parameters is

B, =X, & _E(x -x)?, i=1,2; j=1,2,..,n.
]=1

—E (xy- 111) (xz, a,)

]=l
Having closed form expressions for the mle will allow for the investigation of closed
forms for the Bayes approximations which were not obtainable for the three-parameter
distributions seen previously. Obtaining closed forms allow for further insight into the
distributional properties of the Bayes approximations as well as removing the need for

reliance upon the computer for the mathematics.

4.2 Prior Distributions
Lindley (1965) gives a noninformative prior for the bivariate normal vector

parameter § as

1

g(#u/-‘zrauazrp) < -
0,0,(1-p?)

based on the assumptions that the priors of p;,u,,0,,0, and p are independent, with the
means’ priors uniform in nature and the p prior nonvanishing.

A well known alternative method for constructing invariant priors is due to
Jeffreys. This approach had not been used for the bivariate normal distribution.

Jeffreys’ approach requires that the prior be proportional to the square root of the
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determinant of the information matrix (Box and Tiao, 1973). More specifically, if I, is
the asymptotic variance-covariance matrix for 8= (u,,u,,0;,0,,p) then Jeffreys’ prior is
-1
G (H11kys 01, 030p) & | | =
The information matrix has as its elements the negatives of the expected values of second

partial derivatives of the well known log-likelihood function. The second partial

derivatives with respect to 8=(u,,u,,0;,0,,p) are:

1. =9L __ n
11

du;  ol(1-p%)
I = °L  _ np
2 9u0n, 0,0,(1-p?)
Lo 0L n | 2(Xk) e (X))
? o du,do, (1-p%) o; ol0,
1. = d°L = np (}_{2_1“2)
“ 9pdo, 0,05(1-p?)
L.= 8L _ n 20 (X;=p) _ (1+40°) (X,py)
B Gu,dp 0,(1-p%)2 o, 0,
I = °L _ _ n
22

duz  03(1-p?)

- L, _ np ()_(1"#1)

L23 - -

0400, o25,(1-p?)
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L _ n p(Xy=Hy) _ 2(Xy=p,)
0K, 00,  g2(1-p?) 9, )

L _  n 20 (Xp=1,) _ (1+p%) (X,=y)
du,0p 0,(1-p%)? o, o,

) 32 (le'l-‘l)z ZPE (le"nl) (ij"ﬂ'z)

dor  or(1-p?) o’ 0,0,

Py (Xy=Hy) (Xp=y)
j=1

°L  _
00,00, 0103 (1-p?)
n n
. ZPE (le'lh)z (1+P2)z (Xy=ty) (Xy—1iy)
J’L  _ 1 i _ j=1
00,0p  g,(1-p?)2 o 010,
n n
2 3) ) (Xymk))? 20 (Xymy) (Xy=iy)
0°L _ 1 —p2y - J )
5 T n(1-p%) 5 +
602 02(1"p2) 02 0102

o 1 29; (ij"ﬂz)z (1+P2)ngl: (le—/"‘l) (ij"ﬂ'z)

do,0p 0,(1-p?%) a% 0,0,



+ =1

E (le"'ﬂl)z z (Xy’”z)z

of

o 2 -
n(p2+1) -|3P7+1 ||
- 1-p?

o

1-p?

0,0,

Taking expectations, and after some algebra the inverse of I, is found to be

(2p (3+p?) } 121: hymi) (i)
. -

- “ne - 0 0 0
01(1-p%)  0,0,(1-p%)
~np n 0 0 0
0102(1"92) O%(l—pz)
A2 - 2 -

E_l _ 0 0 n2(2 pz) np ; np ;
6 01(1-p%) 0,0,(1-p%) o0,(1-p%)

0 o -np’ n(2-p?) -np
0102(1_p2) O'%(l—pz) oz(l_pz)
0 0 ~np -np n(1+p2)
0,(1-p%)  o,(1-p?) (1-p%)2

Jeffreys invariant prior is the square root of the determinant of

e 0
o7 010,
> 1 o 0 0
0,0, o3
-1
Ze - 1 0 o 2 o P
n (1-p%) oy 9% 0,
o o P 2 'fz )
019 o, 9,
o o P P 1
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so that
r ™
L 2 0o o o
o; 919
=L 1 0o o 0
0,92 o,
-1
2-p? - -
get|2 | _qet| 2 |0 o =L F
(1-p?%) o; 19 0y
o o P2 20 -»
9.9, o} 0,
o o £ o 1+
| i 0, g, 1-p?
T
L 2 o o o
o; 919
2 1 o o 0
019 o,
-1
2- 2 —n2 -
get|Z |1 gl 0 o -
n (1-p%)3 o1 1“2 1
o o £ z"fz '
0,9, o, )
o o P e 1+
which after some algebra becomes
E-l
det | <= 1 [4(1~p2) 4
n

(1—p2)5[ o'o’

o103 (1-p2)*
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and so Jeffreys’ invariant prior is

. 4 2
g () « o
[ 0105(1-p%)*  oj03(1-p%)?

which is basically the square of the noninformative prior. This result may have
implications for other Bayesian methods, but for the two approximations under
consideration in this endeavour the log of the prior is the important quantity. As such,
the two log-priors differ only by an multiplicative constant and are therefore equivalent

for our purposes.

4.3 Lindley’s Approximation

Recall Lindley’s estimator u’(¢) is an approximation to the Bayes estimator of the

vector parameter u(f), taking the form

P

-~ - n p p P p
- [u(2) +2u,(8) (@) Joy + =539 3939 R ACEAN

Py

1P
ut(8) =u@ + 33}

i=1 j

where
§ = maximum likelihood estimator
u;, u; = first and second partial derivatives of u(f)
p; = first partial derivative of the log-prior
o; = element of the asymptotic variance-covariance matrix
L;; = third partial derivative of the log-likelihood function
p = dimensionality of §.

Recall that all functions are evaluated at the mle. For easier reading, the mle "hats" will
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be omitted from our formulations except where ambiguity requires clarification. For
estimating any of the systemic parameters (u;,u,,01,0,,p), the u;’s will all be zero except
for the partial pertaining to the appropriate parameter and the u;’s will all be zero.

For the prior distribution

k
My, 0.,0 = =
g(Lyrly,01,0,,P) 0102(1_p2)
the log prior function is, apart from the constant k,

p(8) = log[g(f)] = -logo,-logo,-log(1-p?)

and the partial derivatives (p;’s) are

1
It
(@]

Py (.0_) = T
1

|
]
o

P2 (8) = '—'a'lz—

P3(_.Q) = —6_0—'1—— 'a—l

_dp(8) _ 1
94(.Q.) = o, = ?2
dp(8) 2p
gy = =
ps(_) ap (1_p2)

The g;’s are found via the inverse of the matrix ¥ seen earlier whose elements are

the negative of the second partial derivatives, evaluated at the mle.
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To find the inverse of the information matrix, it is first important to note that the

matrix is of the form

E-l =C A?JZ 0213
(4

03:2 337(3

whose inverse may be found from Anderson (1958), page 342, by

LAt o
Y, =¢
(4 0 B!

where C is a constant.

For the given matrix,

c=__2_
(1-p7)
1 =P
o} 019
A=
0,0, g’
20" 0% -p
o7 919 0
B = —p2 2_p2 ___p
0.0, g’ )
e 1
i Gl 02 1—p2 ]

so that the inverses of A and B are obtainable.
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This produces the required matrix as

2
g 0.0
1 P0% 0 0 0
1-p?2 1-p2
2
g,0 o
P00, 2 0 0 0
1-p? 1-p?
2
Ea = (1-p%) 0 0 0, p’c,0,  po,
- n 2(1-p%) 2(1-p?) 2
2
0 0 p’0,0, o, po,
2(1-p%) 2(1-p%) 2
PO, ) 2
0 0 1 2 1-
or more simply
-, -
oy po,0, 0 0 0
po,0, O 0 0 0
2
0 0 o p’00,  po(1-p?)
¥ o= 1 2 2 2
( n 2 2 2
0 o p°0,0, o3 po,(1-p%)
2 2 2
o, (1-p2 o,(1-p2
0 o P ,(2 %) p 2(2 P°) (1-p2)?

Lindley’s approximation formula (4.1) simplifies in application to the bivariate normal
because of a considerable number of zero terms, when evaluated at the mle. Substituting
the u;, u; and p; terms
R 3 1 & &
ut(8) =u@+y) (o33N Y Ly0,0, (4.2)
i3 i=1 j=1 k=1
Note that in the second term the summation goes from j=3 to j=35 rather than from 1
to 5 because p, and p, are zero. Further, the ? subscript represents which of the five

systemic parameters is being estimated and is therefore a constant for each approximation.
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At this point the approximation formula 4.1 simplifies to varying degrees
depending upon which systemic parameter is being estimated. For each parameter, it is
a straightforward, albeit tedious, problem of algebraically evaluating each of the 125
terms in equation 4.2 to produce a closed-form for Lindley’s approximation to the Bayes
estimator. Of the 125 terms, only 35 are actually distinct because the subscripts of Ly
can be transposed. The population means will be dealt with first, followed by the
standard deviations and finally the correlation coefficient.

In estimating the population means, inspection of the X, matrix reveals
013=014= 015 =053 =02 =0,5=0 50 that the third term of (4.2) will be zero for all k>2.
For k=1 and k=2 it can be seen that most of the L, terms are zero when evaluated af
the mle. Going through an elimination process, it can be shown that all of the terms in
the triple summation of 4.2 are zero. As such, Lindley’s approximation for the Bayes

estimator of the population mean is merely

-

p =p, =X, for i=1,2

Next consider the population standard deviations so that

u® () =o

1

for i=1,2

For this exercise u(@)=o, will be used throughout without loss of generality. Starting

from 4.2, the second term is

=3

o, |2n| o, 2n 1-p2 2n 2n
The fact that several Ly, and o;; terms are zero when evaluated at the mle causes only 17

of the 35 distinct terms from the 125 term triple summation to be nonzero. Specifically,
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the approximation formula 4.2 becomes

_8,(1-pY) 1

. 1
o, =0 T +31'113011"’33'*-2-1'115‘711053"‘L123‘712033‘*1:’124"12‘743"’1'125‘712"53

1 1 1 2.3 3
+ -2-11224"22‘7 ' 5L225°22053 + 3 L3330+ -5L334°33°43 + 5 L335053053

1 2 1 1 2
*5L344 (2034+053,04) "'—2-L345 (40434035+204,0,5) "’31'355 (2035+033055)

1 1 1 1
+ 31'444‘744043"' §L445 (204,0,5+044055) + -2-L455 (2045035+055034) + -51‘555055053

which, after substituting the third partial derivatives and o;; elements from above becomes

. 8,(1-p%)  8,(9
=g~ "4 127 25
1 1 2n Zn( p)

8, W5 (7-2p2)
4n
Similarly results are obtained for o, merely by substitution.

The closed form solution for Lindley’s approximation with regard to the
population standard deviation is quite easy to calculate and use in practice. As is
expected, asymptotically the Bayes estimator converges to the mle and will have a normal
posterior distribution. The exact distribution for the estimator under small samples is
more complex to derive and is perhaps a direction for future work. The posterior
variance of the approximation will be close to the variance of the mle for large samples.

The final systemic parameter for which a closed form approximation is needed

is the traditionally difficult p. Once again the starting point is equation 4.2.
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The first part of the equation becomes

5 2 2
4 _ _1|poy(1-p%) | 1 fpoz(l—p ). 2p |(1-p2)2
Jz:s:pj(ﬁ) Os; ?’-; 55 ] FZL 55 ]-6- l-pz[ =
- p(1-p%)
n

The next step involves examination of the 125-term triple summation. Zero terms
and redundancies reduce the form substantially to involve 13 distinct nonzero terms.

Specifically,

-~ A2

e = a_P(1-5%) .1 1

P = P+ S L4130,1035+ = L4150, 055+ 1193015035+ L15,01,0 45+ 11550 1,05
n 2 2

1 1 1 1
+ -51'224o 22045+ —Z-Lzzsozzass + 31—"3330 33035+ §L334 (2034035+03,0,5)
1

2 1 1
*-2—L335 (2035+033055) *31'344 (20340,5+044055) +31'345 (4055045+20,,055)

3 1 1 2 3 1 2
+ -§L355°35°55 + 31'444044045 + -51'445 (2045+04,055) + 3L455°450 55t -é-Lsssoss

Now putting the pieces together

[]
)
I
w
-}
———
[
I
R -}
™~
S

Again the Lindley approximation will tend towards the mle as n increases.

As mentioned in Chapter one, Lindley’s approximation formula lends itself to
algebraic closed-form solutions much more readily than does the Tierney-Kadane method.
Although the Lindley method requires construction and evaluation of the third partial
derivatives, once derived that section of the approximation formula remains constant

regardless of the prior distribution. This is an important point for algebraic work since
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it means altering the prior does not necessitate starting the algebraic process from the
beginning. An altered prior demands only a reconstruction of the first summation term
of 4.2, which is not tedious.

For example, suppose the a priori state of knowledge about the population
standard deviations was such that a natural conjugate prior as suggested by Press (1989)
was appropriate. In this case one would assume independent inverted gamma priors for
the two o’s so that

a.
g;(0;) « _..l.,l_dexp[-?'] for i=1,2

This new assumption would cause the joint prior distribution to be

1 exp|-81_ 232
b+l b+l o. o-
oy 0y (1-p%) % %

g(“llﬂzrouozrp) =

and the log-prior is

a a
p(8) =loglg(h)] = -log(l-pz)-(b1+1)1ogc;(bz+1)1ogoz-_a_‘—.a.2 .
1 2

The partial derivatives of the log-prior are as before except now

dp(8) _ a,-(b+1)o,
do, ot

i

P3 (8)

dp(8) _ a,-(by*1)0,
do, o2

Py (9)
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and, after substitution into the first part of 4.2

Ep:p (8)oy = [al—(b1+l)ol [G%J" 2~ (by*1) 0y [p2°1°2]+ 2p [po(1-p%)
jN— 3 —
Jj=3 J y l o‘f 2n 0’% 2n 1_p2 30

0, a,
— |a,-b,-1+p?|2-b,+1
21’1[1 1 P[az 2 ]]

so that the revised Bayes estimator is

2
"

(o] a 8,/9
=g+ L -b,~-1+p2| 2-b.+1 ||+ 12 - “2)
" 2n [al 7P [62 2 7n\z 2P

8,17 . a
61+_2_I_12_ [5 -p? [1 +b2-?;]+a1—bl]

or, one can express the relationship between the estimators produced under the

noninformative (NI) and conjugate (CON) prior conditions as

. -, 9 a |4
Ot = 01, % 5— a,-b,-b,-=|p
2n l: 6,

Similarly, with indices reversed as above, for a,.

For p, again the only part of 4.2 that changes is the second term to be

i"i(ﬁ)%’ 2 [pOI(l—pz):I“ 3, (Py*1) o [paz(l-pz)]
i3

ol 2n o2 2n

+ 20 | (1-p%)?
1-p? n

-»y[a, a )
pQ=p) | 21, %2y _p,+2
2n g, o, |

so that under the inverted gamma prior assumptions, Lindley’s approximation to the
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Bayes estimator of p is

©

. -52 a a 3 —52
Pcon = ﬁ*————(l /) [—1+—2'b1_b2+2]"‘—_—~5p(1 )

n 6, 0, 2n

- “_5(1—52) 3...al_.a2+b +b
o T ?1 5; 110,

. ﬁ(l—ﬁz) a, a,
=pyt2 Pl _+_<-b -b,|.
M ™2n 5 8, !7?

It is a straightforward task therefore for a practitioner in an applied setting to
investigate algebraically the impact of various a priori assumptions via Lindley’s
approximation. One needs only to reconstruct the first part of the approximation formula

to adjust for different prior information.

4.4 Tierney-Kadane Approximation

In this section the Tierney-Kadane (1986) approximation to the Bayes estimator
will be applied to the bivariate normal distribution. As described in Chapter one, the

Tierney-Kadane approximation to the Bayes estimator is

e
u*(4) = _Z:_l.-exp[n{L,(O,)—Lo(Bo)E

det}:0

where

(log[g(8)1+L(6|x))
n

L.(8) = Ly+ logtzw)]

Lo(o) =

and the points 0, and 6. are maximizing points of the L, and L. functions respectively.

The X, and . matrices are the inverses of matrices that are comprised of elements of the
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negative of the second partial derivatives of the 1., and L. functions respectively.

For the bivariate normal distribution, assuming the noninformative prior situation

I, = _(;11. +1) (logo,+logo,) -(%*‘%)109(1*102) -log (2II)

1 z (Xy=Hy) 2 . (Xy—H,) 2 _2p(Xy=ky) (Xy~H,)

2n(1-p?) 43 o’ o2 0,0,

which remains constant regardless of the parameter being estimated. For estimating each
element of the vector parameter 0, a separate L. function is needed. For the sake of

brevity, these may be represented as

L, = %‘log(O,.) +L, for i=1,2,..,5

Six separate maximization points must be found (4, and five 6.’s). As an example, to
find the maximization point algebraically for L, one must take five partial derivatives to

produce a system of five equations with five unknowns.

dL, - - 1 En: Fp(ij"”z) _ (le_u'l)-

A n(1-p%) = | 9% 9 ]

dL, - - 1 z": ’-P(le‘ul) _ (ij"#z)-

LT n(1-p%) = | 019 % ]

aI‘o - _( 1+1) 1_ 1 zn: Fp (Xxj"”l) (ij—ﬂz) _ (X1j°“'1)
da, n |0, no,(1-p%) 13 9,0, o}
aLg - _(_]; +1)_£_ 1 i P(le'lh) (ij"/-l'z) _ (ij_ﬂz)
9o, n 10, noy(1-p%) 5T 010, o
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9Ly _ _2p (3+3)+ 1 i[(xlj-ul) (X,j-nz)]

n( 1_p2) j=1 0,0,

n(1-p%)%j3 A o) 010,

_ p = [ (le_”1)2+ (ij'ﬂz)z_ 2p (le-ul) (ij_“z):l
2

The solution to this system of equations is mathematically inconvenient in a
fashion similar to what was seen for the univariate normal distribution in Chapter two.
Even if this solution were obtained, the point 8, would have to be substituted into a 5x5
matrix and inverted algebraically. To produce closed form solutions for the five systemic
parameters, a similar exercise would have to be accomplished for each L. function.
Again, the solutions to these five equation systems in five unknowns are inconvenient to
the extent that working with them algebraically quickly becomes intractable. As such,
it is evident that the T-K algorithm is not as well suited for algebraically closed form
solutions as Lindley’s method. Furthermore, even if the closed form solution were
obtained for the noninformative setting, the entire exercise would have to be repeated to
duplicate the effort for a change in the prior distribution. This is due to the fact that the
prior distribution is directly involved with the L. function. The maximization point 6.
will change for any but the most rudimentary change in the prior distribution,
necessitating a reconstruction of the L. matrices. The comparative work done in the
previous section with the inverted gamma priors would be intractable via the T-K
algorithm algebraically.

This is not to say that the T-K algorithm is inappropriate for application to the
bivariate normal distribution. Rather it illustrates that the work must be done by

numerical approximation, the means by which the method was designed to produce the
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approximation to the Bayes estimator. As was seen in Chapter two, even in the simplest
applications, the T-K method is algebraically inconvenient. In terms of numerical
computation however, the method has some distinct advantages over Lindley’s.
Newton’s method, is typically all that is required to produce the maximization points.
Once again, the issue of applicability boils down to the availability of computer

technology and the degree to which algebraic results are seen to be desirable.

4.5 Example

As an illustration, data from Pope, Lehrer and Stevens (1980) are used. Bivariate
measures on reading skills were taken on 26 children with the Woodcock reading test and
were demonstrated to be applicable to the bivariate normal model. Table 4.1 presents
the estimation results. The estimated posterior variances were computed by the same
method in Chapters one and two. This method involved separately estimating the two
pieces of the posterior variance formulation.

Table 4.1: Estimation Results for Pope et al ( 1980) Sample

Parameter | MLE | LINDLEY | TK | V(MLE) |V(LINDLEY)| V(T-K)
“ 6.404 |  6.404 6.378 .1292 .1631 .1208
i 6.869 |  6.869 6.797 .2908 2673 2656
o 2.059 |  2.179 2.181 .0702 0672 .0669
o 2.636 | 2.790 2.794 .1586 .1101 .1093
p 0.688 | 0.667 0.670 .0234 .0102 .0088

Both approximations produce similar results. Note that Lindley’s approximation
for the population means is exactly equal to the mle whereas the T-K approximate is

slightly different. The Bayes estimators for the population standard deviations are both



188

larger than the mle and have srﬁaller estimated posterior variance than the mle. As noted
by Tierney and Kadane (1986), however, when n is small it is easy for the estimate for
the variance to be small and even to be negative if either of the two parts of the variance
formula is poorly estimated. In previous work, notably with the three-parameter Weibull
distribution, the author has noted negative variance estimates for even samples of
moderately large size. The observed smaller variance is likely due to this phenomenon.
The Bayes estimators for the correlation coefficient are both smaller than the mle and
again present smaller variance estimates.

The key point to note here is that Lindley and the T-K Bayes approximate
estimators under noninformative prior conditions produce reasonable estimates, relative
to the mle. Lindley’s is certainly no more difficult to calculate than the mle, since a
closed form has been produced. The T-K estimate is gained only after considerable
numerical work. The next section will explore these issues a bit deeper with the use of

Monte Carlo simulation.

4.6 Monte Carlo Simulation

To compare the closed form estimators with the T-K numerical approximations,
Monte Carlo simulation was undertaken. Samples were generated via the IMSL routine
GGNSM (1975) and validated through the use of the empirical distribution function tests
of Anderson and Darling found in D’Agostino and Stephens (1986). Any samples that
failed to meet the criterion were rejected and another sample generated. Algorithms
were constructed via the PL/I language on an Amdahl 470 mainframe at the University

of Manitoba.
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Four simulation runs of 1000 samples each were performed using samples of size
10, 25, 50 and 100 respectively with parameter settings of p;=14.0, #2=26.0, 0,=3.0,
0,=6.0 and p=0.60. Different random seeds were used for each run.

Bayes estimators via Lindley’s approximation and the Tierney-Kadane method
were constructed for each sample as well as the mle’s for the five systemic parameters
B1,82,01,0, and p. Estimates for the posterior vaﬁances were calculated for each
parameter by the piecewise method described in Chapter one. For each estimator the
root mean square error based on the 1000 samples was calculated as a relative measure
of precision. The results for estimating the two pépulation standard deviations and the
population correlation coefficient are summarized in Tables 4.2 through 4.4. Resulfs for
the population means are not presented because the mle’s and Lindley’s approximation
are identical while the T-K approximation produces near identical results.

Table 4.2: Simulation Results for ¢,=3.0 (1000 Samples)

ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE
n | MLE [LINDLEY| T-K {MLE| LINDLEY | T-K |MLE |[LINDLEY| T-K
10] 2.71 3.13 3.16 |.7130] .7456 75091035 021 ]0.20
25| 2.88 3.06 3.07 [.4374 .4480 .450310.14| 0.14 [0.13
50| 2.88 2.97 2.98 |.3250f .3099 31081 0.07| 0.08 |[0.08

100f 2.90 2.94 2.94 [.2302 .2160 21611 0.04 | 0.04 |0.04
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Table 4.3: Simuiation Results for g,=6.0 (1000 Samples)

ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE
n | MLE [LINDLEY| T-K |MLE| LINDLEY | T-K |MLE [LINDLEY| T-K
10| 5.49 6.34 6.38 | 1.39 1.50 1.53 1 1.40| 0.84 |[0.81
251 5.78 6.14 6.16 | 0.85 0.88 0.90 10.56{ 0.55 |[0.53
50| 5.78 5.96 5.97 {0.62 0.59 0.60 10.28( 0.30 }0.29
100§ 5.77 5.86 5.86 | 0.49 0.46 0.46 {0.14| 0.16 |0.16

Table 4.4: Simulation Results for p=0.60 (1000 Samples)

ESTIMATE AVERAGE ROOT MSE AVG EST VARIANCE
n | MLE [LINDLEY| T-K |MLE| LINDLEY | T-K |MLE [LINDLEY| T-K
10 | .5849 | .5396 | .5488 |.2626] .2379 .24181.0301| .0392 |.0375
251 .5910 | .5698 | .5706 |.1350f .1378 .1396 |.0120{ .0165 |.0159
50 [ .5967 | .5857 | .5860 |.0959 .0965 .0971 |.0060{ .0082 |.0080
100| .5975 | .5919 | .5920 [.0679 .0683 .0684 1.0030| .0041 ].0040

Supplementary runs of n=200 and n=400 were also performed. The results for
the three estimators become indistinguishable for these sample sizes, however, and are
therefore not worth presenting. The interesting point is that for moderate to large sample
sizes, any one of the three techniques will give the same estimator. This may have
implication for practitioners of both schools of thought.

In estimating ¢,=3.0 in Table 4.2, the three methods provide quite different
results for the smaller sample sizes. Although the average of the mle estimate over 1000
samples was below the true parametric value, both Bayes approximations overestimated

0,, with the T-K method very slightly higher than Lindley’s. The positive difference
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between the mle and the Bayes approximations remains for n as large as 100, although
by then the two approximations become indistinguishable from one another. The
posterior variance is clearly underestimated at the small sample size and should not be
given any credence. In terms of precision, the mle is a clear winner for the small sample
sizes although the root mean square error for the Bayes approximations becomes smaller
than that of the mle for the larger samples.

Results for o, in Table 4.3 are comparable to those for o,. The Bayes
approximations actually look to be closer on average to the true parametric value of
0,=6.0 than the mle, but again for larger samples the results converge.

In estimating p=0.60, the Bayes approximations exhibit greater precision (in'
terms of root mean square error) than the mle for the n=10 samples. On average, the
mle is closer to the true value, however. The underestimation of the posterior variance
for the Bayes approximations is not as clear for the smaller samples as it was in
estimating the population standard deviations. This information is important to those who
might use the approximation and assume that as long as the posterior variance estimate
is positive, it must be appropriate. Traditionally p is the most difficult parameter to
estimate for the bivariate normal. This can be reinforced by the observation that the
results for the three procedures do not converge by the n=100 sample size. The
supplementary runs did show, however, that the results are identical for n=200 and
larger. For the smaller sample sizes the Bayes approximations tend to markedly
underestimate p relative to the mle.

The posterior sampling distributions for the two Bayes approximations are

“virtually identical, even for the small sample sizes, so only the pictures of the Lindley
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estimator and the mle has been given. Figures 4.1 and 4.2 provide the histograms for
the mle and Lindley approximation of ¢, respectively for the 1000 samples of size n=10.
Both distributions are positively skewed with Lindley’s estimator evidencing the greater
variability seen in Table 4.2. The Shapiro-Wilk test supports a lack of normality for
both posterior sampling distributions.

Figures 4.3 and 4.4 give the histograms for the same estimators with the 1000
samples of size n=100. These two distributions now appear normal, a hypothesis which
is supported by Shapiro-Wilk testing. The difference in variability between the two
estimators seen for the small sample size is no longer evident.

Figures 4.5 through 4.8 give the same figures for the o, parameter. Surprisingly,
the smaller sample size histograms do achieve normality (again by Shapiro-Wilk). Other
than this surprising result, the comments regarding o, are applicable.

The histograms in Figures 4.9 through 4.12 deal with the results for the two
estimation methods on p for n=10 and n=100 sample sizes. Most noticeable is the shift
in shape from the low to moderate sample size from an extremely negatively skewed
distribution to ones approaching normality by the time n=100. The distribution is still
significantly different from that of a normal distribution (p-value of 0.0001). The
instability of estimating p is evident in the fact that negative estimates are found even at
the larger sample size for the parametric value of p=0.60. The superior precision of the
Bayes approximations for the smaller sample size mentioned in Table 4.4 is evident in
that Lindley’s method actually seems to produce estimates closer to the true p value more
often than the mle for the 1000 simulated samples from Figures 4.9 and 4.10.

The n=23 and n=>50 histograms are merely gradients along the continuum from
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n=10 to n=100 and so for the sake of brevity are not presented here.

4.7 Summary

In this chapter, the most general case of the bivariate normal distribution was
studied and the two Bayes approximations of Lindley and Tierney-Kadane compared to
the mle. The Bayes estimators were set in an a priori environment of noninformation
and so are as hampered as they could possibly be. If accurate prior information is
available, it is reasonable to expect that the Bayes approximations would perform even
better.

There is no clear winner between the two schools of estimation for the bivariate
normal distribution. For some of the parameters and certain sample sizes, the mle has
some advantageous properties. For others, the Bayes approximations are seemingly more
precise. A most encouraging finding is that for samples of n=200 and larger, the two
methodologies converge so that no matter which path is chosen , the destination reached
will be the same in both cases.

There is little to choose between the two Bayes approximations in terms of
precision and accuracy. As was demonstrated, however, Lindley’s approach opens the
door to algebraically closed form solutions for the Bayes estimator whereas the Tierney-
Kadane method becomes arduous and intractable. The end result woﬁld seem to favour
Lindley’s approach for those practitioners who do not have ready access to powerful

numerical routines.
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CHAPTER 5: PREDICTIVE INTERVALS FOR A MIXTURE OF EXPONENTIAL
FAILURE-TIME DISTRIBUTIONS

3.1 Introduction

In this chapter, predictive intervals of a future observation for a mixture of
exponential distributions with time-censored sampling are studied assuming inverted
gamma priors. Effects of the prior information and sample size on the predictive interval
are discussed. Distributional properties of Monte Carlo sampling distributions of the
predictive intervals are examined and Pearsonian curves fitted. A portion of this work
has been published in Statistics and Probability Letters by Sloan and Sinha (1991).

Consider a mixture distribution F(t) = pF(t) + qF,(t) where q = 1-p and

F,(t) = 1—exp[—_§.] tx0, >0, i=1,2 (5.1)

and p is an unknown mixture proportion for the two component distributions. Situations
where this model applies arise often in life-testing problems. For example, a
manufacturer may produce a brand name line as well as a generic product, each with a
different life expectancy.

Sinha (1983) provides an extensive list of such applications. Cheng, Fu and Sinha
(1985) use an empirical procedure to estimate the systemic parameters and reliability
function. Titterington, Smith and Makov (1988) include a considerable amount of work
on the mixture of exponentials model from a theoretical perspective in their monograph
on mixture distributions. They deal not only with various estimation approaches for
finite mixture models, but also give algorithms for identifying the number of component
distributions present.

The model dealt with in this chapter is slightly more complicated than simply
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drawing observations at random from the mixture density 5.1. The mathematical
complications introduced are a result of the timing and type of information that is
available in an applied sampling environment. The model which is the focus of this
chapter first appeared in Mendenhall and Hader (1958) involving observed failure times
of transmitter-receivers until a specified time T had elapsed. When brought in for
maintenance, the items were further checked and classified into two groups - confirmed
and unconfirmed failures. Thus, only once a failure had occurred could an item be
attributed to the appropriate subpopulation. Time censoring occurred due to policy
considerations which set an upper limit on the time until replacement became mandatory.

We assume that n units from the Mendenhall and Hader (1958) mixture ﬁodel
(5.1) are subjected to some life-testing experiment and let x = (X1,X3,...,X,) be the failure
times of these units. We further assume that n components of the same kind are to be
put into future use and let y = (y,,¥,...,y,) be the future failure times of these
components. The predictive distribution and the corresponding prediction interval of the
failure time y are studied on the basis of previously observed life test data x whose

parent population is the mixture density (5.1) using a Bayesian approach.

5.2 Algebraic Preliminaries

If the experiment involving the n components subjected to the life-testing
experiment were allowed to continue until all items failed, the mixture in the sample of
the two subpopulations (i.e., n, and n,) would be known. In most situations, however,
this approach is impractical as the experiment could continue for a very long time.

Typically, censoring is introduced after some predetermined time T. At time T, only r
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of the n items will have failed; leaving n-r items still working. The r items that fail by
time T can be attributed to their respective subpopulations. Hence it is known that the
r failed items can be separated into r; and r, items from the respective subpopulations.
When the remaining n-r items will fail and the mixture of these items is unknown. As
such there is no way of knowing n, and n,, beyond the relation 0 < n,,n, < n-r.

The likelihood function must then take into account all possible combinations of
the subpopulation mixture for the remaining n-r items. Let t; denote the failure time for
the j* unit belonging to the i* subpopulation, j = 1,2,...,r;i = 1,2 and t = {;lj =
1,2,...,r;;1 = 1,2} so that r; + r, = r censored failure times are observed.

Mendenhall and Hader (1958) show that in such a sampling situation, the

likelihood is given by

L(Ps 0110y tysrty ity ty, , T) o

1 «— (n—r) A Y S R v 1T
p ( [rt,+T (n-r-k) r,t,+Tk])
0;’0 k [P q ?—1 i+ ] ‘9;[ 2%2 ]

k=0

Ny

where

t, =

)

4 i=1,2 (5.2)

1 I;

[ R

t.

j

The complex likelihood function (5.2) is due to the fact that the sampling
environment involved in this chapter (and chapter six) is not simply drawing a random
sample from a parent population that is a mixture distribution. The environment is, in
fact, complicated by censoring and additional information regarding attributability to the

appropriate subpopulation. The following detailed derivation of the likelihood function
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involving a mixture of exponentials parent population applies without loss of generality
to the Weibulls situation in Chapter six. This discussion follows the logic of Mendenhall
and Hader (1958) and Chapter four of Sinha (1986).

Assume n items subjected to some lifetesting experiment which is terminated after
some predetermined time T. Consider the two subpopulations sp, and sp, mixed in
unknown proportion p and define q=1-p. Further assume that f,(x 10, and f,(x|6,) are

exponential density functions such that

_X

fi(XIO,.)=%exp[ _6_.]' >0, i=1,2. (5.3)

H

The population cumulative distribution function and density function are defined

as
F(t)=pF,(t)+gF,(t) and f(t)=pf,(t)+qf,(t) (5.4)

respectively.

Suppose that after the experimental termination time T, r units are observed to
have failed, leaving n-r units still working at time T. It is assumed that once an item has
failed it can be attributed to the appropriate subpopulation Sp; or sp,. Thus, further
information is gained from this sampling environemnt in that it is known that the r units
which failed before time T are comprised of r; units from subpopulation Sp,; and r, units

from subpopulation sp, such that r=r,+r,.
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Let t; denote the failure time for the j® unit belonging to the i* subpopulation sp,

such that i=1,2; j=1,2,...,r,. The observed sample is hence summarized as

t={t;|i=1,2; j=1,2,..,r;} = {Cr ety i Ey ity ty}

2

As per Mendenhall and Hader (1958), the additional information about the
attributability of each failed item to the appropriate subpopulation produces a multinomial
sampling environment. Specifically, given a sample of n units, the probability of r, units
from subpopulation sp, failing, r, units from subpopulation sp, failing where the failure
times are less than or equal to T, and n-r units surviving is derived from the multinomial

distribution to be

n!
r!r,l(n-r)!

Pr(r,,r,,n-r|n) = [pF (1) [Y[gFy (D) ]2 p-F(T) T .

Furthermore, the conditional density of obtaining r, ordered failure times from a
particular subpopulation sp; ,given r; and the fact that all the units failed before the

censoring time T is

7
r! ] £t
Pr(ty,ty, .., t, | t,<T) = _;1____ , i=1,2.
[F]

Combining this information produces the Mendenhall and Hader (1958) likelihood for the
sample based on the mixture population and the information from this specialized
sampling environment as

L(p.6,,0,|t,T) = ﬁ?%,—)-TPr’qrszx(tlj)Hfz(tzj) p-F(T) " .

i=l j=1
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More specifically, this can be written as

j=1 Jj=1

. - P _tl,a _t "
flreol i) oot i)

which simplifies to (Sinha, 1986, page 104)

ror, i t,. ]2 t..
2@ tlem « o] o [T [ew 2]
1 1 i 2 2

L(p,0,,8,|t,T) pr'qrz exp —_T_j=1 exp [-Log—
01‘021 1 2

Pt

Expanding and defining t,=2*L__, for i=1,2 produces
p g i p

Ty t t
L(p,01,02!_§,T) o« P9 exP[‘rl 1T 2]

0767 KA
. v [ n-r) KT | _nrk _T(n-r-k)
kZ;[ k )q exp[ 7; exp[ __yl_]]

Finally, collecting like terms together under the summation sign results in

L(p,0,,0,|t,T)

n-r

0’3-0"1 kE; ( n;r)pn—rz—kgrz+k exp [- -vlz[rl-gl - (n —r-k) ]— %[r2€2+Tk]]
1V *

which is the likelihood function (5.2).
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The choice of a prior distribution must now be addressed. Assume a uniform

prior distribution for the unknown mixture proportion p. Raiffa and Schlaifer (1961)

suggest an inverted gamma distribution as an appropriate prior for the exponential
parameters as follows

g;(0,)cx _é_.exp( .9.) 6,>0; a,,b>0 for i=1,2 (5.5)

Titterington, Smith and Makov (1988) support the use of such a conjugate prior (5.5)
without providing a specific recommendation for the mixture of exponentials problem.
Further, assuming prior independence of the three parameters, the joint prior

distribution for § = (p,6,,0,) is

g A g
g(p,0,,0,)c ?_1 E — (5.6)

b+1 b, +1

6, 60y

The joint posterior distribution is given by

H(p,al, 02!1:_) &

1 — 1 —
exp |- [rt+T(n-r-K) +a,] -5 [r,t,+Tk +a, ]
kot [T 1t1 1 g, 2 |

«— (n- 1
( k )p 7 or +bl+10r,+b ,+1
1

This posterior distribution will be asymptotically normal (Titterington, Smith and Makov,
1988) although only for considerably large samples. The Bayes predictive density of a

future observation y is defined as the posterior expectation of the density function of y
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and is given by

h(y|t) « ”jf(ylp,ol,az)mp,01,02|;)dpd01d02 (5.7)

which, on using (5.4) and after some algebra reduces to

h(y|t) = Cf:(n-r)l- (r;+b,) B(n-r,~k+2 ,r,+k+1)
0 g I--[rlzl*.(n--r_k)Tq"al"'y]rl+l,l+1 (rzzz+kT+a2)’z*b,

-+

(r,+b,) B (n-rz—k+1,£2+k+2) (5.8)
[r,t+ (n-r-k) T+a,]" " ( r,t,+kT+a,+y) +**!

where

cl = — (n— ) B(n-r,~k+1,r,+k+1)
[r,t,+ (n-r-k)T+a,]""" (r,t,+kT+a,) =

The 100(1-a) % predictive limits (L., U) are solutions to the equations

L o
= =« 5.9
(Jb(yl_i;)dy V[h(ylgdy = (5.9)
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Using (5.8) and (5.9), we obtain equations for the predictive limits L and U as

@ _ ~x~|n-r
§'C§(k)

I—B(n—rz—k+2 1 Tytk+1) 1 _ 1
l_ [r222+kT+a2] 50 [ [rl—t-l+ (n”r-k) T+al ] 1%, [rlzl-i' (n—r—k) T+a1+L} rx’bx}

. B(n-r,~k+1,r,+k+2) 1 _ 1
[rlEI+ (n-r-k) T itk [r2-52+kT+a2] T2t [rz—E2+kT+a’2+L] r,+b,

and (5.10)

B(n-r,-k+2,r,+k+1)
l_[ r,t,+KT +a,]""" [ t,+ (n-r-k) T+a,+U]+h

B(n-r,-k+1,r,+k+2) ]

[zt + (n-r-k) T+a,1"" [ r,t,+kT+a,+U] """

which can be solved by an iterative linear search technique.

5.3 Sample Generation

Sinha (1983) obtained Bayes estimators of the parameters and reliability function
for the mixtures of exponentials model and used Mendenhall and Hader’s (1958) aircraft
components data as an example. The dataset had n=369 observations censored at time
T=630 hours of operation, producing r,=218 confirmed failures and r,=107
unconfirmed failures. Inspection of the sample histograms raised some question as to the

- fit for the assumed model to this data.
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To test the validity of the mixture of exponentials model producing such a sample,
a goodness of fit testing was initiated. The power of the usual chi-square test is known
to be suspect for small samples, so empirical distribution function or EDF tests as
described by D’Agostino and Stephens (1986) were used. The Anderson-Darling (1954)
statistic and the Cramer-von Mises W? statistic have been recommended for testing
exponentiality from a power standpoint. Further, if we can totally specify the pdf of our
mixture population (5.1), we can perform an omnibus test on the combined sample to
investigate the assumption of our hypothesized model. Thus, we can directly test
whether or not it is likely that, as a single entity, the combined samples did arise from
a population comprised of a mixture of two such exponential subpopulations. Note that
the omnibus test will only be possible for computer generated samples due to having
specified the model parameters for sample generation. These tests were conducted via
algorithmic implementations in BASIC on an IBM PC microcomputer. These programs,
collectively named EDFIT, are obtainable from the authors on request.

Using the Mendenhall and Hader (1958) data, the test for the unconfirmed failures
sample found that the exponential model was supportable, producing a p-value of .143.
The test on the unconfirmed failures data resulted in the rejection of the exponential null
hypothesis (p-value of 0.0004). Because we cannot completely specify the mixture pdf
parameters for this sample, we cannot perform the omnibus test precisely. Using the
parameter estimates given by Sinha (1983), we can, however, carry out the process.
This results in further evidence that the mixture of exponentials model is somewhat
questionable for the Mendenhall and Hader dataset, producing a p-value of 0.006.

To investigate this anomaly a bit further, Figure 5.1 depicts the individual
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subpopulation histograms for the Mendenhall and Hader dataset. The confirmed failures’
histogram does evidence marked departure from an exponential distribution and is no
doubt the source of the significant result indicating a lack of model fit. The unconfirmed
failures’ histogram seems much more likely to have arisen from an exponential process.

This potentially confounding effect makes it necessary to generate samples from
a mixture distribution to ensure our results are not compromised by the lack of model
fit. 'We will produce results for the Mendenhall and Hader dataset for completeness.

The generation of samples from a mixture of distributions was outlined by
Marsaglia (1961). It proceeds as follows:

1. Generate u from U(0,1).

2. If u<p then generate a deviate from the first exponential

population by t; = 6,(log p - log u);
otherwise, generate a deviate from the second exponential
population by t; = 6,(log(1-p) - log(u-p)).
The use of the inverse cumulative density function approach does provide a mechanism
for generating random variables from a distribution with pdf (5.1). For further details
see Kennedy and Gentle (1980), pages 72-75.

The results of this simulation approach may be more representative than those
seen in Sinha (1983) because the subpopulation sample sizes are not fixed. It is not
realistic to assume that the experimenter would know, in advance, the makeup of the
sample in terms of subpopulation representation. If this were the case, there would be
no need to model the situation as a mixture distribution and instead it would be more

efficiently dispatched by individual estimation on each subpopulation.
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Using the above algorithm, test samples of size n = 100 and n = 25 were
generated with 6, = 50, 8, = 40, p = 0.75. The pdf of the population is given in
Figure 5.2, having the appearance of an exponential distribution with an glongated tail.
The goodness of fit tests described above were used on both the subsamples and
combined samples, producing p-values in excess of 0.6 in all cases. The uncensored
samples are given below. Again it is important to stress that although the complete
sample is generated, it is an artificial construct of the generation process. The sampling
environment described at the beginning of this chapter is still assumed to be the process

under which the sample information is obtained.

Uncensored Sample #1 (n=100)

First Subsample:

0.2087 2.2476 2.8014 3.0100 3.8054 4.7702 5.1446
6.4945 8.6456 9.6344 9.9463  10.4170 10.6014 11.4011
11.6312  13.6771 13.8988 14.9665  15.2257 15.6106 18.4381
21.5347 23.5108 24.0437 24.5634  27.3509 27.77656 31.5811
33.7771  34.4975 34.7668 35.5825  40.3650 41.4672 43.1305
43.6357 45.1505 45.5953 48.2052  48.6234 48.9956 49.0108
50.7063  51.5283 56.7423 60.7091  64.2133 64.7181 65.1220
66.2278  71.6285 79.6639 80.3535  82.7512 88.6533 90.6015
99.4277 99.5481 103.4692 104.8867 111.6388
1249026 131.3938  157.7569  200.8856

Second Subsample:

1.1076 2.5084 2.5325 3.0741 4.2815 5.1013 5.9654
6.9616 1.7776 8.5718 9.8603  12.8670 13.2814 13.6507
15.0578  15.7602 16.0200 20.2314  20.7096 21.8975 23.2716
24.2991 29.9614 30.6392 33.9987  44.9577 45.8027 47.4253
67.7229  67.8506 74.2290 81.6555  93.3770 99.8087  184.8992

The computer produces n; = 65, n, = 35, 'fl = 47.314, .t'z = 33.060, information that

is considered as unknown in our sampling environment. Censoring at time T=100, the
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sample information obtained is\rl = 58,1, =34, = 36.905,t, = 28.595
Uncensored Sample #2 (n=25)
First Subsample:

6.1886 8.7778 9.1949 9.7326  11.5059 13.0639 13.1145
26.3979  27.2176 28.7843 30.0532  31.0214 32.5078 36.1116
38.4326 46.7884 56.2416 91.1947 101.0766 110.0240 131.0561

208.2173
Second Subsample:
12.4904 49.0183 84.0717
The computer produces the additional (and considered to be unknown) information of n,
=22, n, = 3,7, = 48.487, T, = 48.527. Censoring once again at T=100, the sample
information actually obtained isr; = 18, r, = 3, T, = 28.686, T, = 48.527.

Once appropriateness of model selection is established for each sample, censoring
then takes place by adding a third algorithmic rule as follows:

3. if t; produced is in the interval [0,T] then increment r; by 1,

otherwise we consider this observation to be censored.

5.4 Effect Of Prior Distribution

An important aspect of Bayesian inference is the degree to which the prior
information impacts on the resultant posterior distribution. In this paper we are more
interested, however in the related impact on the predictive distribution. We examine the
effects of altering the inverted gamma prior (5.4) parameters (a,,b,,a,,b,) for our
moderate n = 100 size sample and our small n = 25 size sample in Figures 5.3 and 5.4
respectively, censoring once again at T=100. Each plot has six predictive density

functions, produced by varying the prior parameter from zero to 50 in steps of 10. The



ZOMUMNZICN AA—tNZMO MGt OMBD

0.08 4

0.07 4

0.06 4

0.05 -

0.02 4

ZO=—MECEN (A ADEMD Mot et (Ve OIMID D

0.01 4

0-04-\

0.034™

0.00 4
1

MIXTURE OF EXPONENTIALS: EFFECT OF PRIOR
FUTURE OBSERVATION DENSITY(nx100)

C.08 4

0.07 4

0.06 4

0.05 4

0.04 4

0.03 +

0.024

0.01 4

0.00 4

FUTURE DBSERVATION

VARYING. Bl FROM 0 70 SO

MIXTURE OF EXPONENTIALS: EFFECT OF PRIOR

FUTURE OBSERVATION DENSITY (n=100)

FUTURE OBSERVAT)ONM

VRRYING RI FROM 0 10 SO

221




QI ZEN AN EZMNME Nt =i e IM 0D

0.03

0.02

ZO=4MZICT A~ ZMD MMM D D

0.06 4

0.044"

MIXTURE OF EXPONENTIALS: EFFECT OF PRIOR
FUTURE OBSERVATION DENSITY(nx25)

.01 1
0.004
+
o
FUTURE OBSERVATION
YARYING B1 FROM 8 70 SO
MIXTURE OF EXPONENTIALS: EFFECT OF PRIOR
FUTURE OBSERVATION DENSITY (n=25)
6.084
0.07 4
0.06 4
0.05
0.044
6-03 4
6.02 4
0.01
.00 4
L T T . i 1 T & L) L ¥ T
0 10 20 30 0 50 60 70 88 80 100

FUTURE OBSERVATION

VARYING R1 FROM D 70 SO

222



223
vertical axes on the four plots' are uniformly scaled so that comparisons can be made.
Although the impact of the prior distribution is more pronounced for the smaller sample
size, the effects are the same. Altering the a, parameters has very little effect on the
predictive distribution. From the prior formula it can be seen that any change in the a
parameters is dampened by the size of @ parameters. The impact of the b; prior
specifications is clearly demonstrated in the figures as a result of being in the exponent
of the denominator. Increasing the value of the b; parameters causes the predictive
distribution to become increasingly steeper. Without doing any calculations, it is clear
that the predictive interval will become shorter as the b,’s are increased. With this in
mind, it is important to have meaningful prior knowledge of the parameters, especially
the b;’s. If no information is available, it is perhaps advisable to set the prior parameters
all to zero, in which case the usual uniform prior is the result (Jeffreys, 1983). This
could be said to be a state of ignorance, or a noninformative prior.

A modified regula falsi approach (Rice (1983), page 222) was used to solve the
system of equations (5.8) and obtain 95% predictive intervals for a future observation, |
under the various prior parameter settings for the two given samples. Typically, ten
iterations were necessary for algorithmic convergence. Results are presented in Tables

5.1and 5.2.
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Table 5.1: 95% Predictive Intervals And Width 8 For Various Prior Parameters

(N=100, T=100)
, €,U) l (bs,by)
5 (10,10) (20,20) (30,30) (40,40 (50,50)

(.86, 140.59)
139.73

(.74, 122.64)
121.90

(.64, 108.97)
108.33

(.57, 98.13)
97.56

(.51, 89.29)
88.78

(20,20) [1(.87, 141.14)
140.27

(.74, 123.10)
122.36

(.64, 109.36)
108.72

(.57, 98.47)
97.90

(.51, 89.60)
89.09

(30,30) 11 (.87, 141.68)
140.81

(.74, 123.56)
122.82

(.65, 109.76)
109.11

(.57, 98.82)
98.25

(.52, 89.92)
89.40

(40,40) [1(.88, 142.23)
141.35

(.75, 124.02)
123.27

(.65, 110.15)
109.50

(.58, 99.17)
98.59

(.52, 90.23)
89.71

(50,50) [|(.88, 142.78)

141.90

(.75, 124.48)
123.73

(.66, 110.55)
109.89

(.58, 99.52)

98.94

(.52, 90.55)
90.03

Table 5.2: 95% Predictive Intervals And Width 8§ For Various Prior Parameters

(N=25. T=100)
(L,U) (b,,b,)
5 (10,10) (20,20) (30,30) (40,40) (50,50)
(.67, 125.62)| (.46, 94.37) | (.35, 75.60) | (.28, 63.05) | (.24, 54.08)
124.95 93.91 75.25 62.77 53.84
(20,20) ||(.69, 126.82)| (.48, 95.25) | (.36, 76.30) | (.29, 63.64) | (.25, 54.58)
126.13 94.77 75.94 63.35 54.33
(30,30) [|(.71, 128.03)| (.49, 96.13) | (.37, 77.00) | (.30, 64.23) | (.25, 55.09)
127.32 95.64 76.63 63.93 54.84
(40,40) ||(.73, 129.25)| (.50, 97.01) | (.38, 77.71) | (.31, 64.81) | (.26, 55.59)
128.52 96.51 71.33 64.50 55.33
(50,50) [}(.74, 130.48)| (.51, 97.89) | (.39, 78.41) | (.32, 65.40) | (.27, 56.09)
129.74 97.38 78.02 65.08 55.82

As expected, shifts in the b; parameters cause much more movement in the

predictive interval than shifts in the a; parameters. Because the predictive distribution
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is unimodal and becomes steeper with larger b; values, the length of the predictive
interval decreases. Furthermore, the upper limit of the interval (U) moves more readily
than the lower limit (L) because of the shape of the distribution.

As mentioned previously, setting the prior parameters to zero is equivalent to a
state of ignorance of the parameters. This produces extremely wide predictive intervals
for both the n=100 and n=25 samples of (1.04, 168.24) and (1.10, 214.26) and interval
widths of 167.20 and 213.16 respectively. The effect of sample size on the interval
length is clearly evident here.

The potential effect of prior information can be seen to be equally as important
by setting the b; parameters to the large values of b, = 100 and b, = 100 which
produces extraordinarily small intervals for the n=100 and n=25 samples of (.38, 71.64)
and (0.16, 41.75) with widths of 71.26 and 41.59 respectively. The priors are more
concentrated about zero as the b,’s increase, since the prior means are a/(b-1), . Thus,
choice of the prior parameters has an enormous impact on the steepness of the resultant
predictive distribution and hence the predictive interval. We see dominance of the prior
distributional parameters even in the face of considerable information from the data.
Clearly, this points towards a need for careful selection of the prior parameters for
results to have any relevance to the application at hand.

The predictive density for the Mendenhall and Hader (1958) dataset was obtained
for varying prior parameters, with results analogous to those for our given samples.
Once again the influence of the b; parameters was profound. A lack of prior information,
represented by setting all prior parameters to zero, produced an enormously wide interval

of (L,U) = (7.493, 1157.227). Using the values of {a;, b)) = (10, 50) and
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(a;, by = (20, 40), we get (L,U) = (3.693, 960.205) for an interval width of 6 =
954.512. Using b; parameters to values assumed to be close to the theta parameters from
the Mendenhall and Hader paper, we get (a;, b;) = (10, 230) and (a,, by = (20, 190)

and produce a much narrower interval of (3.060, 583.040) with a width of & = 579.98.

3.5 Monte Carlo Simulation

To more fully investigate the distributional properties of the length of the
predictive interval (8), Monte Carlo simulation of samples of size n=25 was undertaken
using prior parameter settings of (a;, b)) = (10, 40) and (a,, b,) = (10, 40) with
censoring at time T=100 because these gave reasonable results for the single sample
case. Each sample was tested using the two EDF tests mentioned previously as well as
the omnibus hypothesis of a mixture of exponential populations.

Over the 1000 samples, censoring at time T =100 typically censored three or four
of the n=25 observations. This represented a moderate censoring between 12% and
16%. The predictive intervals averaged 6 = 55.03 in width with a standard deviation
of 6.77 units. The smallest interval observed was (0.144, 22.176) while the largest was
(0.208, 97.435) and a typical (median) interval was (0.176, 54.413). The empirical
frequency distribution is illustrated in Figure 5.5.

The interval produced for any particular sample was largely a result of the size
and makeup of the smaller subsample. Because less information was available from the
second subpopulation (the mixture proportion, p, was set at 0.75), r, could be as small
as a single data point. Even if r, was bigger (averaging 6 points over the 1000 generated

samples), a single relatively large value would inflate the censored sample average and
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hence produce an unusually lal;ge predictive interval. This is evidenced by the fact that
the empirical frequency distribution of the endpoints of the predictive intervals are
markedly different. The lower endpoint’s empirical frequency distribution follows that
of a normal distribution while the upper endpoint’s distribution is markedly and positively
skewed (Shapiro-Wilk test for normality p-values of .2619 and .0001 respectively).

The Shapiro-Wilk test for normality (p-value = 0.0012) revealed that a normal
curve does not adequately represent the sampling distribution of the predictive interval
length (). It is desirable to be able to find a relatively simple closed-form
approximation to the true pdf because the exact distribution cannot be obtained in closed
form due to mathematical intractability.

Pearson compiled a family of probability density functions and established a
methodology, based on observed momental constants, to select a family member curve
from the system that would adequately fit the shape of an empirical frequency distribution
(Elderton and Johnson (1969)). The type of Pearsonian curve chosen for a given
empirical distribution depends upon the sample measures of skewness and kurtosis,
typically denoted as 8, and B, respectively. Elderton and Johnson (1969) provide a
simple table to choose the appropriate Pearsonian curve based on the values of B, and B,.
Alternatively, one may use a nomograph from Pearson and Hartley’s (1966) Biometrika
Tables for Statisticians.

The observed values of 8; = .1069 and 8, = 3.1006 for the sampling distribution

of 8 suggest a Pearsonian Type I curve, which for the given empirical frequency
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distribution is

£ 29.330) 1+ %X __|"" x__ )" (5.11)
X = . [ —— g —— .
() = ( ( 55.875) ( 265.236)

where x = 6 - 52.939.

Simpson’s rule was used to generate expected frequency counts for comparison
with the observed sampling distribution. This produced a chi-square statistic of
x> = 8.983 which carried four degrees of freedom. This compares favourably with
x’(4, .05) = 9.488. Hence the Type I Pearsonian curve fits the empirical sampling
distribution of the predictive interval length (8). The shape of the curve (5.11) is
illustrated in Figure 5.6, reflecting a positively skewed distribution. To examine the
effect of prior information on the resultant distribution of the predictive interval length,
several other similar runs were performed varying the b, parameters from zero to fifty
in steps of ten units. The general shape of the empirical frequency distribution remained
the same as depicted in Figure 5.6 with the sole difference being the extent of the upper
tail. As the b; parameters increase, the upper tail elongates due to the effects on the
shape of the predictive distribution seen in the previous section. It should be noted that
the effect of the prior information on the predictive interval length’s distribution is not
surprising due to the fact that the sample size used was quite small (n=25).

Further simulations were run with varying levels of censoring. Results were as
one might expect in that the width of the predictive interval increased proportionately

with the amount of sample information lost through censoring.
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3.6 Complete Samples
In some situations complete samples become available because no censoring
occurs. Many of the findings relevant to the censored samples case already presented
are directly applicable to the complete samples case. The algebra simplifies dramatically
when censoring is absent however and so it is of interest to consider this situation, if
nothing more than a special case of a censored environment. The formulae of this
section could be obtained by setting T=oo, in the previous section, but the resulting
equations are not obvious. Further insight into the environment is gained by looking at
the problem from a different perspective. With complete sample information, it is
interesting to investigate results for the previously used samples if a noninformative prior
is used. To avoid redundancy, only cursory algebraic work is presented here. Detailed
algebra is found in Sloan and Sinha (1988).
Algebraic work becomes much simpler due to the absence of any combinatoric

terms which were necessary in the censored case. The likelihood is now

nt, nt
L(Ps 0140yt sty i Eypsby,) o I;T‘;;zexp[—_b_l-_s_zJ

1 2

where q=1-p.

Since complete sample information is now available and the impact of prior
information was demonstrated in the previous section, a noninformative prior distribution
will be used here to compare the relative importance of prior information versus
moderate censoring. This is the primary reason for examining the complete samples

case.
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Jeffreys’ invariant prior (Sinha, 1983) is
g(P,0;,6,) & =
1v2

so that the joint posterior distribution is

II(p, 01: 02“.:_) =

(n1El)n'(nzzz)"zf"""q]lz exp{ nl_t-l nzzz]

B(n,+1,n,+1)T(n,)T (n,) 67" 63" 6, 9,

for 0<p<1 and 6,,6, >0.
Following the triple integral form for the predictive distribution (5.7), it is found
that the combinatorics are replaced by beta functions all of which cancel to produce, after

considerable algebra

h(y|t) =

1 [n (1) ()™ | my(mped) (B | (g )
n +my+2 l_ (nt,+y)™ (n,t,+y) ™"
for 0<y< oo,

Proceeding as with the censored samples case, equation (5.9) is used to set up the

system of equations that will produce the 100(1-a)% predictive limits (L,U)

— n, —_ n,
1 (n1+1)[ mt ] + (n2+1)[ ,t, ] = 1-a/2

n,+n,+2 nt,+L n,t,+L

and (5.13)

—_ y — .
1 <n1+1)[ ki ] ! <n2+1)[ ke ] = a/2

+n, +
n +m,y+2 n,t,+U m,t,+U

which can once again be solved by iterative search techniques.
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We reuse the generated samples from the censored case for the previous section
and construct 95% predictive intervals. The n=100 and n=25 samples produce intervals
of (1.04, 164.97) and (1.10, 110.09) with interval widths of 163.93 and 108.99
respectively. These intervals are almost as wide as the censored samples using the
noninformative prior parameter settings. This would indicate even more strongly than
before the importance of the prior informatioh, even for a moderate sample size.
Moderate censoring, then, does not impact as heavily on the predictive distribution as the
amount of prior information available.

Monte Carlo simulation was subsequently undertaken for the n=100 sample size
and the 1000 samples from the previous section were used. The predictive intervals
averaged 6=183.21 in width with a standard deviation of 18.45 units. The typical
(median) interval was (1.18, 184.39). The large interval width maintained throughout,
reinforcing the concept that the noninformative prior is more damaging in terms of lack
of information than is moderate censoring.

The momental constants for the sampling distribution of the predictive interval
width were 8,=.0377 and $8,=3.0957, which are indicative of a normal distribution.
The Shapiro-Wilk test for normality indicated that a normal curve does adequately
represent the sampling distribution (p=.7102). Sampling distributions of both the lower
and upper endpoints follow a normal curve (p-values of .5236 and .3256 respectively).
The complete sample information does at least induce normality to the predictive interval,
reducing the possibility of anomalously large intervals. As was seen, however, ample
prior information is necessary to bring the predictive interval’s average length down to

-.a reasonable level.
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5.7 Summary

The advantage of prior information is clearly demonstrated in predicting future
observations. In a state of ignorance, using noninformative prior settings, we see that
the predictive intervals become very wide regardless of the amount of sample
information. In such a situation the predictive intervals are likely of little practical value.
With appropriately specified prior information however, the precision with which one can
predict future observations increases dramatically.

In the censored case, the sampling distribution for the length of predictive
intervals is positively skewed and nonnormal. If one of the subsamples is very small or
severely censored, the result is an unduly large interval. This causes the tail of the
sampling distribution to be elongated. When complete sample information is available
the interval length distribution tends toward normality, with the extremely large intervals
of the upper tail from the censored case being brought back into line. As one might
expect, the predictive intervals become shorter when complete sample information is
available. The greater the degree of censoring, the wider the interval becomes. The
potential for dominance by the prior information is still present, however.

The author is indebted to a referee for suggesting the investigation of a conjugate
prior distribution. Although the general shape of the predictive distribution and the
sampling distribution for the length of the predictive interval were comparable using a
noninformative prior, the effect of the prior distribution, as seen above, was impressive.

Algorithms used to produce predictive intervals in both the censored and
uncensored case were included, under the name PREDSIM, in Press’ (1989) review of

statistical software available for Bayesian analysis.
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CHAPTER 6: PREDICTIVE INTERVALS FOR A MIXTURE OF WEIBULL
FAILURE-TIME DISTRIBUTIONS

6.1 Introduction

In this chapter, predictive intervals of a future observation for a mixture of
Weibull distributions for complete and time-censored samples are studied assuming vague
prior information. The sampling environment once again follows the definition of the
previous chapter from Mendenhall and Hader (1958). Effects of the sample size and
degree of censoring on the predictive interval are explored via Monte Carlo simulations.
A portion of this work has been published in the South African Journal of Statistics by
Sinha and Sloan (1989).

As described in the previous chapter, one often encounters situations where the
underlying distribution is not homogeneous, but may consist of two or more
subpopulations mixed in unknown proportions. Classical examples typically involve
electrical components manufactured under different processing conditions or
specifications. After having been sampled, each item of the population is attributable to
the appropriate subpopulation. The mixture proportion p is an unknown entity.
Titterington, Smith and Makov (1988) provide a detailed exposition of the theory and
application of such mixture distributions.

The subject distribution of this chapter is a mixture of two Weibull
subpopulations. The components under study are assumed to have lifetimes t, which

follow a composite distribution such that

F(t) = pF(t)+(1-p)F,(t)
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where p is an unknown mixture proportion parameter and
= t
F.(t) = 1-exp [—T]

which produces the corresponding mixture density function

- -1
f(tlprallazl 011 02) = —Pio(—):—‘t“"lexp[—%?]+£_;:i.f2t%"exp[—-E;Z_]

t,e,q,,6;,0,>0 O<p<1 (6.1)

A considerable amount of work has been done involving this model. Sinha
(1987b) provides numerical algorithms for estimating the parameters involved
(p,011,05,0,,0,,) under a Bayesian framework. Lawless (1982) gives maximum likelihood
estimators of the parameters as well as tests of hypothesis for investigating equivalence
of the scale parameters for the two subpopulations. Cheng and Fu (1982) give a
weighted least-squares alternative to maximum likelihood estimation of the parameters
for the mixture of two Weibull distributions. McCool (1975, 1979) studied Weibull
distributions and the effect of censoring.

Recall that the Bayesian predictive distribution of a future observation (typically

a component lifetime) Y is defined as the posterior expectation of the density function

h(y|t) « ”J'”f(y“a,azl,ozz,491,()Z)H(p,ozl,ozz,61,492|§)dpdczldazcwlde2
where II is the joint posterior distribution of the parameters.
Predictive distributions under industrial settings have been extensively studied.
Englehardt and Bain (1979) provide maximum likelihood based prediction limits for the

single sample Weibull distribution. Predictive distributions and intervals have been
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derived for related lifetesting distributions such as the inverse Gaussian (Chhikara and
Guttman, 1982) and the two-parameter exponential distribution (Lawless, 1977).

In this chapter n units are assumed to be sampled from the mixture of Weibull
distributions model (6.1) by being subjected to some life testing experiment and letting
X=(X;,X,,...,X,) be the failure times of these units. The complications of the Mendenhall
and Hader (1958) sampling environment are also assumed to be present. Further assume
that an additional set of n components of the same kind are to be put into future use and
let y=(¥1,¥2.-.,y») be the future failure times of these components. The predictive
distribution and the corresponding predictive interval of the future failure time Y of a
single component on the basis of the previously observed life test data x will be derived
using a Bayesian approach. Although the example of two subpopulations will be used,

these results are directly generalisable to any arbitrary number of subpopulations.

6.2 Complete Samples Case

Let t; denote the failure time of the j® unit belonging to the i" subpopulation so
that the observed sample drawn from the mixture of Weibull’s distribution (6.1) may be
represented by t={t;|j=1,2,...,n;; i=1,2} and be thought of in terms of two subsamples
that are identifiable a posteriori as being comprised of n; and n, components respectively.

As in the previous chapter, the attributability of the failed components to the
appropriate subpopulation alters the likelihood function so that it is more than merely a
product of the mixture density function 6.1. For further details the reader is referred to

the discussion in Chapter five.



238

Due to the complex - sampling situation, the likelihood function is more
complicated than merely taking the product of the mixture density 6.1. The process of
deriving the likelihood function described in chapter five is directly applicable here since
the sampling environment is the same. Hence, given this complicated sampling

environment, the likelihood function for this sample is

ny 7

2ty 2ty
M1 ~-p)aha™ -1y -1 o -

L(Plallazlouezl_t.l’r) « P 0’?0);2 )\1 )\g’ exp —.J_loT._ exp —j_lvz_

(6.2)

where

n,

Jj=1

As usual with Bayes theory, a decision must be made about the form of the prior
distribution of the parameters. Following Jeffreys (1983), a state of vague knowledge
will assume to exist about the five parameters. Appropriate choices under this assumption
for the mixture parameter p and the shape parameters o; and «, are uniform prior

distributions. Specifically, the marginal priors are
p~U(0,1), oa~U(0,®) for i=1,2.
Further, Jeffreys sets the scale parameter (6,,6,) priors as

g;(6,) « _‘;_ for i=1,2.

i
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Assuming prior independence of knowledge regarding the five systemic parameters, the

joint prior distribution is simply the product of the marginals such that

(pray,2,,60,,0,) « 1 . 6.3
gip,a,,2,,0,,0, 7.5, ( )
Combining the likelihood (6.2) and the prior distribution (6.3), the joint posterior

distribution is

ny

n,
cole e £ t2
pnl (1-p) nza’l'xaz"z)\l; 1)\‘2"; 1 o b J; 2
g SXPI"—p 9
01 02 1 2

H(plallazl 011 02“_:.) &«

(6.4)

The predictive density formula was given in the previous chapter as the integrated
product of the posterior distribution and the parent distribution. Substituting the
appropriate forms (6.4) and (6.1) respectively, the predictive density function of a future
observation y may be found, after some algebra, to be h(y|t) such that

oo )\a,—l n+l o -1 o

4 %1
h(y|t) =Cnl(nl+1)J‘ 1 ¢ Y d J' A
0

@ | ——
i +1 ,
n 0 n,
& ] %
tlj ¥y t21
ry 2y

o

+ nz(n2+1)0J‘

-1 n -3} -1 +1 -
A e A a';’ y™

o1 J m19%
t;‘] t;;‘+y°’=]

o1

(6.5)
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where

oo

-1 n ] -1
Ny 1

0 n, & 0 n, "
t,; to
j=1 j=1

Unfortunately, equation (6.5) leaves six integrals which do not lead to closed

da?2

forms. Numerical integration routines must hence be employed to evaluate the predictive
density function. Producing the predictive distribution thus becomes a computer
intensive exercise as it is necessary to evaluate six integrals at each point along the
distribution.

The next step is to produce an equal-tail 100(1-a)% prediction interval [L,U].
This adds one more numerical integration step to the process as.L and U are solutions

" to the equation

L [

a - = 6.6
5 0jh(ylz)dy Jh(ylz)dy (6.6)

To produce the predictive interval a numerical integration of an already numerically

integrated function must be performed.

6.3 Censored Samples Case

In most practical life testing applications it is impractical to perform the
experimentation until the n® failure time is observed. Time censoring typically is
performed so that a censored sample of r component lifetimes is observed. As before,

each failure time can be attributed to the appropriate subpopulation after the unit has
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failed so that the r failure times can be dichotomized into r, and r, observations from the
two subpopulations respectively. Information regarding n, and n, is now unavailable aﬂd
all that is known is that n-r components survived to time T. These n-r items are not
attibutable to either subpopulation and as such must be represented only by the
knowledge that they are drawn from the mixture population density 6.1. The sample can

now be described by =&/t 0 s ty,i tystpseee by} EST.

Incorporating the Mendenhall and Hader (1958) approach to this sampling

environment once again, the likelihood function is obtained as

n n
Xty Yty
- J=1

n -0y - - n
L(plalla2I8]I02'ElT) o« P (1-p)‘a’e >‘11 l)\? 1eXp -

0;:9;: | 01 62
) P (=™
[p exp[ —9;]+(1 P)exp |-

with A; defined as above, except now the product represents a product over the non-
censored observations.

The censoring has no impact on the prior information, so the posterior distribution
is found in the same manner as for the complete samples case, but produces a more

complicated result of

r, Iy a-1 -1 -
ale, A A [ n-r\ st -
I(p,a;,,,0,,6,|t,T) « 221 2 &(nkr)p kz(l'P)’k]
=0

ri+l ar,+l
076,

n n
Y ty+(n-r-k)T™ Y ty+kT

- exp|- L1 7 - 7
1 2

Again, combining the posterior and parent distributions and performing the tractable
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integrations involving p,f;, and 6, the predictive distribution of a future component

lifetime is given by

h(y|t,T) = Cz(n_r)B (n-k-r,+1,r,+k+1)

k=0 k
-] =1 r+l1 -1 o -1 .
A y® A
| (n-k-r,+1) J' 1 & ¥ +1d°‘1_f 2 2 _de,
0 ' 0 r, ?
ty+ (n-r-k) Th+y™ t +kT™
=
S T Ny
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n-r
C! = (n+2)z(n];r)B(n—k—r2+1,r2+k+1)
k=0
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da,
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0
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The prediction interval is again intractable by any means but numerical integration and
is the solution to the system of equations (6.6). Naturally, the censored case involves
a much more complicated expression than the complete samples case. To evaluate any
point on the predictive density function six integrals must be numerically evaluated for

each term of the summation running from zero to the number of observed failure times.

6.4 Example

Lawless (1982) contains an example dataset for the mixture of Weibull’s model.
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Failure times for twenty specifnens subjected to accelerated life testing were observed,
being comprised of ten specimens from each of two types of polyethylene cable. An
underlying Weibull process was a reasonable assumption for the lifetime distribﬁtion.

TypeI: 5.1, 9.2, 9.3, 11.8, 17.7, 19.4, 22.1, 26.7, 37.3, 60.0

Type II: 11.0, 15.1, 18.3, 24.0, 29.1, 38.6, 44.2, 45.1, 50.9, 70.0
It would not be reasonable to assume the distribution is a singular Weibull process.
Clearly, the Type II dataset has a longer average lifetime, substantiated by an average
sample lifetime of 34.6 in comparison to an average of 21.86 for the Type I insulation,

To assess the assumption of Weibull parent populations, empirical goodne;s of
fit tests (D’ Agostino and Stephens) were used. Tests were performed on each subsample
to confirm that each was likely to have arisen from a Weibull process (p-values of 0.47
and 0.92 respectively). An omnibus test of the overall mixture of Weibull’s model 6.1)
was also done to verify that the model was appropriate for these data (p-value of 0.88).
These tests were developed and implemented in the Microsoft BASIC language under the
program name EDFIT and are available on request. Parametric values were not available
for the given samples so maximum likelihood estimates as given by Lawless (1982) were
used in the application of the empirical goodness of fit test procedures.

Construction of the predictive distribution is made difficult by the fact that the
integration involving the systemic parameters was intractable. Since in most applied
situations, the true value of the parameters will be unknown, it is necessary to estimate
these entities to be able to construct the predictive distribution. As with the empirical
goodness of fit tests, maximum likelihood estimates of the parameters are substituted for

parametric values.
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Another practical consideration arose in the computer implementation of the
previous algebra. There are several parameterizations of the Weibull model, all of which
are equally valid mathematically, differing only in the way in which the parameters are
defined. For certain algebraic conveniences or intuitive applications, for example, it
might be useful to define a scale parameter § as $=6'. This minor algebraic
consideration can have implications when computers enter the process and accuracy
becomes a concern. For this model, parameterization is critical to the accuracy of the
results due to the necessity of numerically integrating a large number of functions for
each point on the predictive distribution.

In implementing the parameterization seen in previous sections, it was found to
be numerically inconvenient, leading to consistent overflow and underflow conditions,
even for small sample sizes. Although correctable, whenever such a situation occurs in
programming, some degree of accuracy is lost.

A parameterization due to Lawless (1982) turned out to be much better suited to
numerical work. The difference lies merely in the definition of the 8 scale parameters.
The Lawless form defines the scale parameter in terms of the algebra of the previous
section as §*. This minor change does not alter the algebraic results, but does make for
more practical computer implementation because it reduces the amount of exponentiation
work required by the numerical integration routines.

As an illustration, for the given sample the mle’s under the Lawless

parameterization are
8y;=1.51, &,=2.11, §,=24.40, §,=39.25

whereas under the original parameterization the scale parameters are much larger.
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Specifically, for the given sample the original constants would have been

b, = (8,)™ = (24.40)"! = 124.44
and
8, = (8,))% = (39.25)>! = 2306.76

Even with the improved parameterization, the normalizing constants involved in this
small sample are of the order 1x10%. It should be noted that with careful implementation
and corrective action for the overflow conditions the results found with the Lawless
parameterization can be duplicated using the original algebra. The algorithms under the .
original parameterization take more than triple the CPU time, however.

Using the complete samples from the insulation data above, the predictivé
distribution and 95% predictive interval were constructed. The predictive density
function is of a shape similar to those which will be presented in the next section and so
is omitted here. The 95% predictive interval was found to be (2.184,62.500) which
covers all of the given data except for one point. Although the interval is quite wide,
it is reasonable given the fact that a noninformative a priori state is assumed. As was
seen with the mixture of exponentials model in the previous chapter, incorporating
accurate prior information to the process would reduce the width of the interval.

The censored samples case was then considered by censoring at time T=55,
which reduces each subsample by one observation. Because for the given sample this
amounts to excising obvious tail observations, the change in the predictive distribution
was expected to be considerable. By censoring 10% of the dataset, the 95% predictive
interval is now (2.023, 73.456), an increase of 18% in width. Movement of the interval

is more marked in the upper tail due to the positive skewness of the parent Weibull
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distributions.

6.5 Monte Carlo Simulation

Simulated samples allow for more informed analysis of the mixture of Weibull’s
model as the parametric values are within our control and can be used instead of the
substituted maximum likelihood estimates as was done with the previous given sample.
Both methods were investigated however, and the results were comparable.

Sample generation followed the method of Marsaglia (1961), which involves a
two-stage randomization process. First the IMSL uniform random sample generation
subroutine GGUBS was used to identify from which subpopulation an observation was
to be drawn. Subsequently, the exponential variate generator REXP from IMSI was used
along with appropriate transformation to produce the desired Weibull observation. As
with the given sample, all generated samples underwent empirical goodness of fit testing
procedures. Each subsample was tested as well as the adequacy of the overall mixture
of Weibull’s model. Any sample that failed to pass all three tests was rejected and
another sample generated in its place.

The algorithms for the predictive distribution and interval was implemented on
an Amdahl 470 mainframe using the PL/I programming language. The censored sample
algorithm was much more expensive than the complete samples counterpoint, as might
be expected. CPU time for the censored sample case ranged from double to five times
that of the complete samples case, depending upon the sample size and degree of
censoring.

- To examine the relationship between sample size, degree of censoring and the
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resultant predictive distribution, a series of simulations were run. Parametric settings of
p=0.75, 0;=2.0, a,=3.0, 6,=5.0, 6,=6.0 were used. Total sample size ran from very
small (n=10) to moderate (n=50). The amount of censoring was controlled so that the
percentage of sample information available that was used in calculations (PIU) ranged
form 40% to the complete sampling case. Widths for the resultant predictive intervals
are given in Table 6.1.

Table 6.1;: Width Of 95% Predictive Intervals For Given N And PIU

Percentage of Sample Information Used
n 40% 50% 60% 70% 100%
10 6.44 5.22 3.75 3.24 2.23
15 6.40 4.02 3.75 2.87 2.58
20 6.18 3.18 2.82 2.69 2.34
30 5.04 3.96 2.88 2.56 2.57
40 2.52 2.87 2.77 2.88 2.88
50 2.25 2.35 2.84 3.83 3.05

The results of the simulation are not uniform across either the amount of sample
information used or the sample size. This is due largely to the degree of censoring in
the tail of the distribution. One outlying observation left in or censored out caused great
shifts in the predictive interval, much in the way that was seen for the given sample in
the previous section. The degree to which these outlying observations had an impact on
the resultant predictive distribution did relate to the amount of sample information and
sample size, analogous to the way that a sample mean is sensitive to outliers. If the
sample size is sufficiently large, the predictive interval was affected to a lesser degree

by the inclusion or exclusion of an observation from the upper tail of the parent



248

population than if the sample size was very small. It is remarkable, however, that
because of these outlying observations, which arise due to the skewness of the par‘ent
Weibull populations, there are some situations where the predictive interval is actually
narrower for the censored case than it is for the complete samples case.

This phenomenon notwithstanding, some general inferences can be drawn from
the simulation results. The effect of censoring is much more pronounced for small
samples (n <30) due to the lack of remaining information. The predictive intervals for
small censored samples are noticeably wider than those for the complete samples case
which is what one would expect since we only have partial information with censored
samples. As n increases, however, the two distributions trend to convergence.

For small fixed n (moving across any particular row of Table 6.1), as the
percentage of sample information used increases the width of the predictive interval
decreases and ultimately tends to the uncensored prediction interval. For larger n, more
information remaining after censoring produces more stable interval estimates.

The predictive distributions for the complete samples case and 60% PIU censored
samples case are given for the six sample sizes of Table 6.1 in Figures 6.1 through 6.6
respectively. In Figure 6.1, the impact of censoring on a small sample size is dramatic.
The two distributions have markedly different upper tails although both demonstrate
considerable positive skewness.

As n increases, flipping through the figures reveals a general, albeit inconsistent,
convergence. This is a graphic illustration of the concept noted above that implied the
secondary importance of censoring relative to the size of the sample. By the time n=50

is reached in Figure 6.6, the complete and censored samples case’s predictive
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distributions are almost superihmposed. The interim distribution in Figure 6.5 actually
displays a situation where the censored distribution has a shorter tail than that of the

complete samples case. This is indicative of the situation mentioned above.

6.6 Summary

In this chapter, the Mendenhall and Hader- (1958) sampling environment involving
the mixture of Weibull’s model was seen to be much more algebraically complex than
the mixture of exponentials model in Chapter five. The intractability of the integrals in
the predictive distribution forms posed a major problem. Although not mathematically
profound, the steps involved for the numerical work were trecherous and fraught with
potential for measurement error. For the more complex censored samples case with even
moderate sample size, five minutes of CPU time were required to complete the many
numerical integrations.

These results hold practical implications for the use of censoring in order to
predict future observations. Findings would suggest that if the sample size is sufficiently
large, the exact moment that sampling is stopped is not a critical issue. In terms of
predicting future observations, once the bulk of the distributional information is
represented through sufficient sample size, the amount of censoring that has taken place
is of secondary importance. This would seem to indicate that the adjustment made to the
predictive distribution by the incorporation of the censoring time T adequately estimates
the remaining distributional information. For large sample experimentation, then, if the
experiment is costly to keep running, it would be equally as effective to subject a large

number of components to testing for a shorter perior of time. The increased sample size
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would offset the lost informatidn due to censoring. The importance of the loss of sample
information through censoring was seen to have differing degrees of importance,

depending upon the base sample size.
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CHAPTER 7: BAYESIAN p-CHARTS FOR PROCESS CONTROL
7.1 Introduction

First detailed by Dodge and Roming (1959), attribute sampling plans have been
studied extensively under various conditions. Duncan (1974) contains an extensive list
of references. They are an integral part of basic quality control methodology (see
Montgomery, 1985, for example). They apply to production environments where the
items under study are declared to be of acceptable quality or not based on the number
of items found to be nonconforming to accepted standards. As first proposed by
Shewhart(1931), control charts were derived from the classical, or frequentist
perspective.  Attribute sampling plans (MIL-STD-105D, 1963 for example) were
developed under the simplistic assumption of the normal approximation to the binomial
distribution, an assumption which several authors have demonstrated to have potentially
misleading ramifications.  Furthermore, the classical approach assumes that the
probability of a defect is constant. In an assembly line situation, this assumption often
fails in practice.

Approaching quality control from a Bayesian perspective has been considered by
several authors (Hald, 1981 provides an extensive reference list). Attribute sampling
under a Bayesian framework has been detailed by the American Society for Quality
Control in Calvin (1984). The primary difference between this Vapproach and the
classical method is to produce an estimator that will more readily incorporate new
knowledge on the process variation. The way in which the intervals are used as process
watchdogs is no different from the usage of the classical interval formulation. It is

expected, however, that the intrinsic nature of the Bayesian approach will produce more
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accurate interval estimators and hence a more accurately measured process.

In this chapter attribute control charts are further examined (also referred to as
p-charts) under the Bayesian framework. The traditional Bayesian approach merely
substitutes the Bayes estimator of process variation for its classical counterpart in the p-
chart formula (Calvin, 1984). The use of predictive intervals, highest posterior
density(HPD) intervals and predictive p-charts as alternatives to the classical p-charts and

traditional Bayesian p-charts is investigated.

7.2 Alternatives for p-chart Control Limits
7.2.1 Model Preliminaries

Consider an attribute sampling environment where a sample of n items is tested,
producing x defects. The pdf of x is the binomial B(n,p) where p is the probability of
an item being defective.

Shewhart proposed a general formulation for a control chart of a quality
characteristic. If S is a statistic that estimates such a characteristic, then knowing the
mean pg and the standard deviation o; for the statistic S allows us to construct a k-sigma

Shewhart control chart as follows
(LCL,UCL) = (ug - kogpg + ko)

Typically, k=3.
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If the characteristic of interest is the proportion p of nonconforming (or defective)

units in the population, then the classical p-chart is

(LCL,UCL) = p + 3|ﬁ_<1,{_@ (7.1)

where P is the usual sample average proportion of nonconforming units.

In testing r samples (running r experiments), the likelihood function is

r
ar-Yx,

Lply = 11 [,’f ]p"z‘x'(l—p) -

Let t=Y  x; be the total number of defective units found in the r samples tested. Then

i=1

the sample proportion defectives for the classical p-chart is

and the likelihood function can be rewritten as

Lp|x)ecp'1-p)y
Under a Bayesian framework, p is considered to be a random variable with conjugate

prior distribution

gp)xpt(1-pym?

so that p has a beta prior.
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Combining prior and sample information, the posterior distribution of pis

H(p l&) ocphl-l(l _p)nrﬂn-t-l 0 SP <1

which is clearly a beta distribution with parameters t+£ and nr+m-t.
Assuming squared error loss, the Bayes estimator p* of p is the mean of the

posterior distribution which is easily found to be

. t+£
pr =L
L+m+nr

Under the Bayesian framework, the classic confidence intervals are referred to
as credible intervals. The interpretation of a credibility interval differs markedly from
that of a confidence interval in that one refers precisely to the probability that the
parameter under consideration falls within a specified interval, conditional on the given
observations. One such technique of finding credible intervals is the so-called highest
posterior density (HPD) interval. An interval (LCL,UCL) is sought which satisfies two
conditions:

1) F(UCL) - F(LCL) = 1-«

2) (LCL,UCL) is the shortest among all intervals satisfying (1).

For unimodal distributions, the second condition is replaced by

2) the posterior density at the interval endpoints is identical

ie., II(p=LCL|x)=II(p=UCL!x).

where II represents the posterior density.
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Since the posterior distribution is beta with parameters strictly greater than one,

the posterior distribution must be unimodal with mode at

t+f-1
nr+f+m-2

mode[Il(p)] =

This will provide a starting point for the numerical search routine.

1.2.2 The Predictive Interval
Given the prior and sample information, the predictive distribution for the number

of nonconforming items to be found in a future lot of n items is given by

hy|x) = Jf(y)vr(m&)dp

where f(y) is the parent binomial distribution of the process. After collecting terms this

becomes

1
holDe (;l) J prti(1-pyrmenytidp

o« (;)B(He +y,nr+m+n-y-t)
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After removing some constants and collecting like terms

L+y-1\nr+m+n-t-y-1
h (t"' y Y )
ol ey

« [ t+4 +y—1] [ nr+m+n-t-y-1 ]

t+0-1 nr+m-t-1
_ Afnty-1) (v tn-y-1
holo = C[ b -1 ] [ v,-1 ]

where

z -1 -y-1
Cct = E [Vl+y ] [V2+n Y ], v,=t+l, v,=nr+m-t

= | ! v,-1

To evaluate this function, consider the following expansions

(1-7)™ = f: [V‘?_l] 7

j=0

and

a5 [

k=0

Multiply the two series together and collect the coefficients of z°.

r 3 n [ . N0 . h
vitytn-ll ) vi+j-1| [ v,+n-j-1
n = J nj

. J J .

(v, +v,+n-1) = (v, +7-1] (v,+n—j-1)

v +v,-1 - v,-1 v,-1 J
. y . P .

j=0

which is the inverse of our normalizing constant C.

Incorporating this information, the predictive distribution for the number of
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defectives in a future lot of n items is found to be

v,-1 v,~1
v +v,+n-1
v, +p,-1

for y=0,1,2...,n and hence y is beta-binomial b(y,n,»,,»,).

"1*’)"‘1] [vzm—y—l]

h(y|x) = [ (7.2)

The mean of the predictive distribution is

t+f
Eylx)y = "~
0D = o

and is a Bayes estimator of y under squared error loss.
A 100(1-0)% predictive interval for the number of defects in a future lot of n
items is composed of the endpoints (L,U) such that

Y Rl =Y holD = o

y=0 y=U
Calvin (1984) discusses the predictive distribution (7.2) as being a Polya
distribution. He arrives at the so-called Polya distribution by assuming that the process
is not stable. The process is assumed to vary about its average in an individual manner
with the probability of an item being nonconforming varying over time.

Calvin uses this distribution to replace o, in the p-chart limit formula by

0; = BA-p) [ n+l+m (7.3
n 1+l+m

This variance form is interesting in that it will always produce wider control limits than

its classical counterpart. In this manner, however, Calvin states that the Polya

distribution will give a better assessment of the true sampling risks than the binomial
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model of the frequentist approach. Hald (1981) states that this variance formulation is
significantly larger than that of the classical binomial model.

All four of the alternative approaches to a p-chart have been derived. Before
exploring the relative merits of each approach, a more basic problem must be addressed,
namely, estimating the prior distribution parameters upon which all the Bayes methods

rely.

7.2.3 Prior Estimation

In quality control applications, it is very likely that little knowledge will be
available about the prior parameters £ and m. Two approaches are open to the
researcher under such circumstances.

One may assume a state of ignorance and make use of a noninformative prior.
In this case one could use the uniform prior g(p)=1. A second approach was to use an
asymptotically linear invariant (ALI) prior as set out in Hartigan (1964) by putting
£=m=0. Another alternative by Jeffreys was to set £ =m=0.5 (Hartigan, 1983). As
has been demonstrated under several applications, however, such an assumption typically
produces predictive intervals that are so wide as to be practically useless.

A second and more informative approach is to use the Empirical Bayes methods
due to Robbins (1964) to estimate the prior parameters £ and m from the sample data.

Consider the marginal distribution of x, the number of defects in the lot, from our

model by integrating over p. This produces

()| Pyl



o:(;l).B(xw,n-rm—x)

and following the algebra in the previous section,

x-1\x+-1
ﬂ")“(m;;zlq x;-1)

Restoring the normalizing constant, the marginal distribution is then obtained

(m+n-—x—1 +B—1)
n-1 £-1
x =
U m+n+£-1
m+f-1

Hence, the marginal distribution of x is also beta-binomial b(x,n,m,l).

The forms for the mean and variance of the beta-binomial distribution are

nt

EX) =

nfm(f +m+n)

var®) = (£ +m)*(£ +m+1)

Define the two first sample moments as follows

265
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Equating the true moments to their sample counterparts produces the system of equations

_  nfm(f+m+n)
(£ +m)*(£ +m+1)

From the first equation of the system derive
£+m = =
and substituting this into the second equation gives
][] (%]
nl—|{1-=| |—+n
v = n n a |
ﬂ +1
a

Finally, solve for £ and m to produce estimates for the prior parameters

I* = [g] a(n-a)-v

" v-a [1-—2]
n

.« _ {"(n-a)
a

m

These preliminary estimators for the beta prior parameters allow for much greater
precision in the posterior and predictive information as will be seen later. A problem
arises in their use with the possibility that the estimators can be negative. When one is
negative the other must be also. In such a case it is sensible to use the noninformative
priors mentioned above. Since little or no information about the true prior parameters

is assumed under each of the noninformative approaches, a uniform prior (f =m=1) will
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be used when the empirical prior estimates are unacceptable.

Negative values for £* and m" occur under special circumstances. It should be
noted that only two cases exist. Either both prior estimates are positive or both are
negative. Negative values are more likely to occur when the true proportion defectives
in the population is small. From a sample perspective it is also true that if the observed
variability in the number of defectives across samples is large relative to the average

number of defectives, then v is overestimated. This causes £° to be negative.

1.2.4 Effect Of Prior Parameters

This section gives some insight to the impact on the posterior of using our £* and
m" priors over the noninformative priors. As previously stated, the noninformative
priors give little or no information about the true value of p, the population proportion
of nonconforming units. Using the empirical Bayes estimates for the beta prior
parameters ¢ and m, it will be seen that a prior is produced that contains a considerable
amount of information about p. Although this will be further detailed in the discussion
of the HPD and predictive interval methodology, it is useful to put in context at this point
the value of the empirical quantities.

Figures 7.1 and 7.2 display the resultant prior distributions observed from
generated data. In a practical setting this sort of exercise typically takes the form of a
pre-production run. It is readily apparent from the two graphs that these priors give a
good deal of accurate information about the prior distribution. Clearly, including such
information in the analysis should produce more accurate results than merely using a flat

uniform distribution for the prior.
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7.2.5 Comparisons Of The Four Methods

Now that the theoretical foundation has been built, comparisons may be made
among the four alternative approaches. The classical p-chart will be compared against:

1) the semi-Bayesian p-chart which uses p* and o, from (7.3)

2) the predictive interval

3) the HPD interval.
Results are produced for selected sample sizes and sample results. To begin, consider
example datasets drawn from Montgomery (1985) on samples of n=50 orange
concentrate cans. Three different samples are presented in total, referred to as the M1,
M2 and M3 samples. Specifications for the three samples are given in Table 7.1.

Table 7.1: Specifications For Montgomery Samples

Set | r | t P p ['m) Classical Semi-Bayesian
M1 |30 |347 |.2313].2313 (5.6,18.6) [(.0524,.4102)  |(-.0757,.5384)
6=.3578 6=.6141
M2 124 |131 |.1092].1098 [(1.0,1.0)  [(-.0231,.2415) |-.4410,.6607)
6=.2646 6=1.102
M3 |40 | 218 |.1090 | .1090 |(118.6,970) {(-.0232,.2412) (-.0262,.2442)
6=.2644 6=.2704

Montgomery describes the first sample as a "warm-up" for the process and so the results
are markedly different from the other two samples. The usual estimate (P) and Bayes
estimate (p*) are comparable for all three samples. Very different values are observed
for our empirical prior parameter estimates. M2 produces negative values for the
estimates so the uniform noninformative settings are used. M3 produces extraordinarily
large values.

The standard p-chart 3-sigma limits are given along with the semi-Bayes
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alternative and the respective interval length 8. The Bayes limits are much wider, as
noticed by Calvin. The negative lower limits are problematic. Montgomery, as other
authors, suggest that a rescreening of the data for outliers would produce an interval with
positive endpoints, but it is clear that if the true proportion of nonconforming items is
small (<.25), then the control chart lower limit will be negative. The standard fixup in
practical settings is to use zero as the lower limit and ignore the problem.

In comparing the four methods one is actually comparing three distributions: the
predictive, binomial and posterior distribution which form the basis of the four methods.
Figure 7.3 depicts the three distributions for the Montgomery M1 sample. The
distributions are depicted as continuous for comparison sake, but it should be noted' that
the predictive is definitely discrete whereas the binomial graph could be thought of as the
normal approximation. Most striking is the marked kurtosis of the posterior distribution.
This is mainly due to good information, both from the empirical prior and the moderate
sample size. Obviously any interval based on the posterior distribution will be smaller
than its counterparts from the other methods. The predictive distribution shows
variability similar to that of the binomial, but shares the same measure of centrality that
the posterior does. As with any predictive distribution, it by definition must be wider
than the parent distribution upon which it is based.

To compare the four methods it is necessary to set a common k-sigma level. This
is accomplished by first noting that of the four methods, only the predictive interval is
restricted to working with a discrete distribution. One cannot, therefore set an arbitrary
significance level and compare the four methods. Instead, an arbitrary level must be set

and the procedure must come as close as possible to that level for the discrete predictive
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distribution. The observed sigﬁiﬁcance level is then taken for the predictive interval and
intervals are constructed using the same level for the other three methods. For the
classical and semi-Bayes intervals this means merely changing the percentile of the
standard normal variate. For the HPD interval, it merely requires a different target value
for the numerical search routine. In all cases, intervals are constructed covering 95%

of the distribution. In Table 7.2 these comparable intervals are presented.

Table 7.2: Comparable Intervals For Montgomery Samples

Set Classical Semi-Bayesian Predictive HPD

M1 (.1024,.3603) (.0100,.4527) (.1200,.3600) (.2071,.2561)
6=.2579 0=.4427 0=.2400 0=.0490

M2 (.0201,.1982) (-.2610,.4806) (.0400,.2000) (.0908,.1296)
6=.1781 6=.7416 6=.1600 6=.0388

M3 (.0189,.1991) (.0169,.2011) (.0400,.2000) (.0976,.1206)
6=.1802 0=.1842 6=.1600 6=.0230

The semi-Bayes intervals are clearly the poorest estimates. The predictive intervals,
although suffering from their discrete nature in that the same interval is produced for M2
and M3 are smaller than their classical counterparts. As expected, however, the HPD
intervals zero in on p with much greater accuracy than any of the other methods.

The impact of the empirical prior parameter estimates can be seen by comparing
the M2 and M3 HPD intervals. The point estimates are almost identical and both
samples contain considerable information to the extent that one would expect it to
dominate prior information. M2 suffers, however, relative to M3 because by using the
empirical estimates instead of the noninformative values, the M3 interval is noticeably
smaller, as desired.

The predictive interval and HPD interval approaches do not suffer from the
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negative lower limit problem. -Although the predictive lower limit can become iero due
to the discreteness of the underlying distribution, it is still a valid zero and not an
arbitrary bandaid to cover up for the technique’s failing, such as is the case with the
classical interval. The HPD interval cannot attain a zero lower limit as it uses numerical
integration across a continuous distribution in p.

The results for these three samples are convincing. The Bayes methodology was
proposed, however, to examine the impact on small samples. Because it is well known
that the normal approximation to the binomial becomes poor as n decreases, it was
expected that a Bayes exact approach would produce more accurate results. As has been
seen above, the domination of the empirical prior estimates is impressive even at
moderate sample sizes.

A number of samples were generated from a parent binomial process and the four
methods applied. Table 7.3 below presents the specifications of four such samples which

will form the basis for our discussion.

Table 7.3: Specifications For Generated Samples

r t P p | dm) Classical Semi-

Set Bayesian

Gl | 5 19 | .3800 | .3846 | (-4.1,-6.7) | (-.0805,.8405) | (-.536,1.315)
6=.9210 6=1.8513

G2 [ 10 |47 |.3133 |.3133 | (41.4,90.8) | (-.0460,.6726) | (-.064,.6910)
6=.7186 6=.7554

G3| 6 6 0667 | .0667 | (3.2,44.8) (-.1266,.2599) | (-.152,.2858)
6=.3865 6=.4378

G4 1| 5 17 | .3400 | .3400 | (6.2,12.0) (-.2050,.8850) | (-.560,1.060)
6=1.090 6=1.6203

G1 and G4 have n=10 while G2 and G3 have n=15. Gl is interesting for comparison
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with the other three samples due to the negative prior empirical estimates. Note that
once again the noninformative uniform prior is substituted for the negative values. The
comments regarding the estimators of p and the usual 3-sigma limits given for the
Montgomery samples above remain the same.

Figures 7.4 and 7.5 depict the three distributions mentioned previously for the G1
and G3 samples respectively. This comparison is interesting because G1 uses the
noninformative prior whereas G3 uses the empirical estimates. It is notable that the
posterior curve is still much narrower in the noninformative case, though it is not as
impressive as in the G3 case. Figures for G2 and G4 provide similar information and
are therefore omitted.

Table 7.4 presents the comparable intervals of the four techniques, again using
alevel of 95%. As before, the actual observed level of significance is not exactly 95%
because of discreteness, but the four intervals are all constructed at the observed level

so that they are directly comparable.

Table 7.4: Comparable Intervals For Generated Samples

Set Classical Semi-Bayesian Predictive HPD

Gl (.0430,.7170) (-.2895,1.059) (.1000,.7000) (.2421,.5325)
6=.6740 0=1.3485 6=.6000 6=.2904

G2 (.0493,.5773) (.0358,.5909) (.0667,.5333) (.2535,.3748)
6=.5280 6=.5551 0=.4666 6=.1213

G3 (-.0825,.2159) (-.1025,.2358) (.0000,.2000) (.0241,.1194)
6=.2984 6=.3383 6=.2000 6=.0953

G4 (.0106,.6094) (-.0594,.7394) (.1000,.7000) (.2187,.4670)
6=.5988 6=.7988 6=.6000 6=.2483

Again it is seen that the prior information in G4 produces a smaller interval than in G1.

The G3 results indicate that the most reasonable interval is likely the HPD as it is the
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only one that does not have zero as a member. However,the predictive interval does
have the practical advantage for the discreteness of the model situation.

To gain further insight into the comparative performance of the four intervals,
1000 sampling runs consisting of ten lots drawn from a B(10,0.3) population were
generated. Intervals for each of the four methods were then constructed as before and
summary statistics created for the run of 1000 samplings. The average and standard

deviation for the length of the resultant intervals are given in Table 7.5.

Table 7.5: Interval Comparison For 1000 Generated Samples

Interval Avg length | s.d. length | max upper bound
Classical .689 .051 .837
Semi-Bayes 1.125 307 1.2454
Predictive 574 044 .800

HPD 197 .038 561

The order of performance remains as it was for the single sample results. The HPD
interval is by far the shortest, while the predictive interval is consistently shorter than its
classical counterpart. The semi-Bayes interval performs terribly in comparison. In terms
of coverage of the true proportion defective, the classical, semi-Bayes and predictive
intervals covered the true value of the proportion nonconforming units for all of the 1000
sampling cycles. The HPD intervals covered the true p 95% of the time, which is to be
expected.

Several points of interest were uncovered via the simulation. As mentioned
before, when the lot variance of defectives is high relative to the average lot defectives,
the estimators for the prior parameters £* and m” become negative, causing the traditional

noninformative prior to be used. This will happen with increasing frequency as n and
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p decrease. In our simulation 55.9% of the samples produced negative prior parameter
estimates. The average length of the intervals where positive prior estimates were
obtained produced an average interval length of 0.570, noticeably smaller than the full
1000 sample result of 0.574. The positive prior parameter estimates were as large as
(£°,m")=(3544,7531), although more than half of the samples with positive prior
estimates produced (£°,m")<(10,10). The higﬁer the prior parameter estimates, the
shorter the resultant predictive and HPD intervals. Negative lower bounds were
evidenced in 34.5% of the classical intervals and 87.6% of the semi-Bayes intervals

respectively.

7.2.6 Summary

Two new approaches were presented to attribute sampling control limits that are
definite improvements on the classical approach. The predictive interval approach
maintains the discreteness of the model situation while producing smaller interval
estimates than the classical p-chart at the same coverage level. Using the posterior
distribution to produce an HPD interval incorporates all sources of information to
produce markedly smaller intervals.

The estimation of prior parameters by empirical methods is a definite asset. Even
with the possibility of negative estimates, the approach does no worse than simply using
a state of ignorance about the parameters. Even in the face of considerable information
from the data, the empirical prior estimates have an impact on the resultant interval

estimators for p.
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7.3 Predictive p-Charts

The intrinsic advantage that Bayesian methods have over classical techniques is
the constant updating of model parameters through conditional probability. This allowed
for the construction of the predictive distribﬁtion for a future lot proportion defective.
This information would be useful to incorporate into the traditional p-chart as a
supplementary indicator of process control. In this section such a chart is proposed,

which will be referred to as a predictive p-chart.

7.3.1 Construction of the Predictive p-Chart

As with the previous section’s work, this method will be most easily applied to
situations in which a presample is observed on a process to give foundation figures for
the construction of control limits. Once these limits have been established, it is proposed
to monitor the probability that the next lot will produce an observed proportion of
defectives that falls outside the limits. This predictive probability is updated after each
sampling and superimposed on the traditional p-chart. In this way, a trend for an
upcoming problem in the process control can be spotted more readily than through the
use of a p-chart alone. This holds important implications for practitioners in that the
sooner a problem is detected, the lower the cost of the problem.

The method of construction is straightforward:

1) Construct the traditional p-chart limits as usual.

2) Use the beta-binomial predictive distribution of the previous section

to calculate the probability that the next sample will produce a proportion of

defectives outside the p-chart limits.
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3) Repeat step 2 before each sampling and plot the probability on a separate y-axis
superimposed on the traditional p-chart.
Note that although the traditional p-chart 3-¢ limits are used for demonstration purposes,
any of the alternative limits proposed in the previous section could be used without loss
of generality. Furthermore, 2-¢ limits could be used as well if desired. The technique
is robust with respect to the limits used.

Figure 7.6 provides an example of the predictive p-chart. Data was generated for
an artificial B(10,0.1) process in control (i.e. stable). The figure can be read as a typical
p-chart if the left y-axis is used and the asterisk points are ignored. The right-hand axis
and asterisk points represent the scale and observed values for the probability that the
next sample from the process will produce an observed level of defectives outside the
traditional 3-o process control limits. The limits were established by a presample of 15
lots to be (LCL,UCL)=(-.1826,.3693). By convention, since the lower control limit is
negative and therefore meaningless, the zero horizontal is used in its place.

Some mention of the right-hand scaling technicalities must be made. The reader
will notice that the scale is not uniform. The method of scaling is such that the right
hand axis values may be ignored below the upper control limit. The remainder of the
scale is adjusted so that the range of the observed predictive probability falls above the
corresponding horizontal of the left-hand upper control limit. Td make the graph
readable, the right-hand y-axis is scaled so that the range of the predictive probabilities
lie outside the graph space occupied for the traditional p-chart. As can be seen in Figure
7.6, the observed predictive probabilities fall above 0.01. This value is used as a starting

-point for plotting of the predictive probabilities so that all the predictive probability
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points lie above the traditional p-chart’s plotting area. Traditional p-chart points that fall
outside the control limits are made more noticeable as they will fall into the space of the
predictive p-chart. The predictive p-chart y-axis for Figure 7.6 is wider than the
observed data for this example only so that comparison against the results in Figure 7.7
can be made. This comparison is interesting because Figure 7.6 represents a process in
control whereas Figure 7.7 portrays a process that runs out of control after the tenth
sample.

It may be argued that the inclusion of a right-hand scale and second set of points
may be confusing to some practitioners. For such situations, it would be just as easy to
produce a separate plot of the predictive probabilities. It is preferable, however, thét the
information contained in the predictive distribution be weighed in conjunction with that
of the traditional p-chart in the same way it is preferable to examine location and
dispersion of a dataset. Combining both types of information into a parsimonious
display, therefore, is desirable. Furthermore, the plot can easily be viewed as two
separate entities. If one ignores the right-hand y-axis and predictive probability
points(the *’s), what remains is the traditional p-chart. Looking only at the plot above
the upper control limit and reading the right-hand y-axis produces a picture of the
predictive p-chart.

Following is a detailed description for the first two lots sampled. At time zero,
information is available from the presample of fifteen lots of size ten that produced the
traditional 3-o limits. The prior parameters of the beta prior are estimated as in the
previous section and produce the predictive distribution. Using this distribution the

Pr(next sample falls outside 3-o limits)=Pr(number of defectives in the next sample is
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less than O or greater than .3693) is calculated to be 0.0117. This value is plotted
against the right-hand y-axis. The presample process average defectives is also plotted,
represented by the X at time zero. A supplementary sample of ten items is then taken
at time one and 20% defectives are observed. Using this information, the prior and
predictive distributions are updated as per the previous section. The process is then
repeated by calculating the probability of the next sample (now referring to time two)
falling outside the 3-o limits. This value turns out to be 0.0140, up from the time zero
value due to the fact that the present percent lot defectives was above the process
average. It is this intrinsic updating of information that is gained from the predictive p-
chart. At time two, a further lot is taken and 10% observed defectives are found.
Although this information indicates that the process is in control, the previous runs are
not ignored by the predictive distribution and the predictive probability of the sample at
time three falling outside the interval is 0.180. Only in subsequent lots when the lot
quality level is maintained does the carryover effect of the present lot cause the predictive
probability decrease. Hence the predictive p-chart is more than a mere echo of the

present lot performance.

7.3.2 Examples

Figure 7.6 is a good exemplary plot for the technique, but not terribly exciting
as far as process control is concerned. By both the traditional p-chart (the X’s) and the
predictive p-chart (the *’s) it is obvious that the process is in control, with random
fluctuation being the only differentiating component. Although the predictive probability

shows jumps and dives, the overall appearance is that of a white noise process.
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Now that the basic construction of the predictive p-chart has been described, some
illustrative examples are presented. Figure 7.7 takes the process seen in Figure 7.6 and
adds a disruptive influence at time T=10. Again the predictive p-chart y-axes in Figures
7.6 and 7.7 are the same for easy comparison. This disruption quietly adds a 10%
additional rate of defectives to the process. This causes the points at time T=17 and
T=22 to fall outside the control limits, indicative of a process out of control. Evidence
that the process has suffered shortly after time T=10 is much more obvious from the
predictive p-chart values as represented by an almost monotone increasing plot. The plot
is much more dynamic than the traditional p-chart and a practitioner would be more
likely to spot the problem, which was introduced at time T=10, before the process
produces a lot outside the control limits at time T=17.

For a real application, the Montgomery M1 dataset discussed in the previous
section is presented in Figure 7.8. The first ten lots are used as the presample in this
situation and the latter twenty lots are considered to be supplementary samples. The
process clearly has control problems and in this case does not necessarily demand the use
of the p-chart to see that a problem exists at time T=5. The predictive p-chart does
however give a better overview of the carryover effect inherent in the process under the
assumptions of the Bayes model. As stated above, the predictive p-chart is meant to
supplement, not replace, the traditional p-chart.

To further drive home the point that the predictive p-chart can spot a trend before
examination of the traditional p-chart, a specially "designed" observed process was
constructed and is presented in Figure 7.9. A preliminary sample from a B(10,0.1) of

fifteen lots was used to produce control limits of (LCL,UCL)=(-.1815,.3615). The run
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of supplementary samples was then designed to remain in control by all traditional
measures and to demonstrate an out-of-control point late in the process. The traditional
p-chart of Figure 7.9 looks to be in control until time T=18 when a lot falls outside the
3-0 limits. The predictive p-chart, however, demonstrates that a problem has been
brewing since time T=0 and would have caused the practitioner to raise the alarm much

earlier.

7.3.3 Discussion

The reader will notice that no mention of precise stopping rules have been
presented with regard to the predictive p-chart. This is due to the fact that other
considerations such as cost factors and the importance/consequences of stopping the
process must be incorporated into the setting of any such arbitrary alarm condition. Just
as some practitioners use 2-¢ limits instead of 3-¢ limits, so will the actual point for
stopping a process due to evidence provided by the predictive p-chart be a largely
arbitrary and situation-specific decision.

The level of probability expected deserves some discussion. In all our examples,
the probability of the next sample falling outside the 3-¢ control limits is below 0.2,
This is not surprising when one considers that the 3-¢ limits are used. Under normal
distribution theory, if the process is under control, the probability that an observation
falls outside 3-¢ limits is less than 0.003. Predictive probabilities are observed to be as
large as 40 times this level in order of magnitude. It is for this reason that a great deal
of forethought must be given to the exact criteria for stopping the process. Using a rule

such as stopping the process if the probability doubles from one sample to the next may
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be too lenient. Demanding a stoppage after a 5% rise in the predictive probability may
be too strict. Such decisions are certainly relevant and will no doubt be the source of
great discussion. Because this discussion is best situated in the hands of the practitioner
rather than the mathematician, speculation on such stopping rules is beyond the purview
of the statistician. The important contribution of the technique is a parsimonious
presentation of supplementary information to the practitioner which may allow for an
earlier detection of a trend or a process going out of control. The exact definition of
what will constitute an alarm situation is best left to quality control engineers.

It should also be pointed out that this approach has some relatives in the literature.
The CUSUM chart of Shewhart(1931) for example includes the carryover effect inherent
in the Bayesian underpinnings of the predictive p-chart. It does not however give
probabilistic information directly. Hunter’s(1986) exponentially weighted moving
average (EWMA) control chart also incorporates the concept of updating process
performance information from a time series approach. The EWMA chart, however, is
more difficult to read than the predictive p-chart in that it overlaps two process results.

The required computation work to produce a predictive p-chart, while more
involved than the traditional p-chart, is easily accomplished. The algorithms were coded
in FORTRAN-77 and the plot produced via SAS/GRAPH on an AMDAHL 470

mainframe. Algorithms are available from the author upon request.
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