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Abstract

IN GENERAL, microwave devices can be split into two major categories, active and
passive devices. In this thesis, an attempt is made to address one of the most important
issues in the realm of passive devices, guided wave structures. A quick survey of the liter-
ature published in the last four decades reveals the fact that analysis of waveguides has

always posed itself as a challenge to researchers. Noting that Maxwell’s equations are a set

of eight partial differential equations of six vector field quantities, E, E),, E,H, Hy, H,

in terms of four space and time variables, x, y, z, ¢, it can be understood why the ultimate
solution technique for solving electromagnetic problems with any kind of complexity has

yet to be found.

By definition, a waveguide is a three dimensional structure with exactly the same
cross section at any arbitrary point along the z direction. In microwave engineering termi-
nology, this is equivalent to not having any discontinuity along the direction of wave prop-
agation. From analytical point of view, it can be proved that under these circumstances, all
the information regarding this three dimensional structure can be extracted from a two
dimensional analysis of its cross section. Solving the problem for this two dimensional

cross section will result in an eigenvalue problem. For any eigenvalue problem, the solu-

tion should be expressed in terms of eigenvalue pairs, i.e. (A, X) , in which A and X rep-

resent eigenvalues and eigenvectors, respectively. Interestingly, these eigenvalue and




eigenvector pairs correspond to two common terms in microwave engineering. As shown

later on, eigenvalues are nothing but the points generated by crossing the dispersion
curves with a horizontal line and eigenvectors, on the other hand, contain al! the informa-

tion needed to draw the field patterns of different field components inside a waveguide.

In this thesis, two new methods have been proposed which are capable of solving a
waveguide eigenvalue problem completely and efficiently. The first method is specialized
for solving the eigenvalues and is called the COMPACT FINITE DIFFERENCE TIME
DOMAIN (Compact FDTD). The second method solves the other half of the problem,
eigenvectors or field patterns, and is called the FULL WAVE FINITE DIFFERENCE (FWFD)
technique. Other new signal processing and estimation techniques have also been pro-
posed and investigated in a separate chapter. These signal processing techniques, AUTO-
REGRESSIVE (AR), AUTO-REGRESSIVE MOVING AVERAGE (ARMA) and PRONY, have
the potential of enhancing the efficiency of time domain methods. In addition to those, a
new SINGULAR VALUE DECOMPOSITION (SVD) Based Prony method is also contributed.
In each chapter, the simulation results of these new techniques are presented and com-
pared to the results obtained using other standard procedures. Specifically, complicated
problems containing diagonally anisotropic materials are addressed in chapters threec and

four.

The CEDTD and FWFD can be integrated as the numerical engine of a powerful
CAD package to calculate the dispersion curves and field patterns of an inhomogeneous,
anisotropic waveguide. The computational efficiency gained using these new methods,
when combined with advanced signal processing techniques, can easily exceed those

achievable by most other numerical techniques.

Abstract
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I.A. Introduction

FNITE DIFFERENCE (Time Domain) method has been selected as the main numerical
tool throughout this thesis. Therefore, in the first section of introduction, a few justifica-
tions for such a selection are provided followed by a comparative study between the
FD(TD) and other methods. Then, in the second section, samples of different Microwave
waveguides and Optical Waveguides accompanied by the final objectives of a guided
wave analysis are presented. This helps in understanding the purpose behind such an anal-
ysis. A brief formulation of the problem which is going to be analyzed is the subject of the
third section. Finally, in the last section, a few common differences between a microwave

guided wave analysis and an optical one are pointed out.

L.B. Why finite difference?

THE ANALYSIS of guided wave structures is one of the few subjects that constitutes the
major part of microwave engineering [1]. Even now, the majority of papers published in
transactions and technical journals are devoted to the applications of techniques such as
the Moment, Finite Element and Spectral Domain methods; to guided wave structures

such as microstrip, slot, coplanar and optical fiber transmission lines.

Due to the vast variety of available numerical techniques, an a priori insight to the

capabilities and speed of each of these methods can be quite useful. There are usually sev-

L
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eral factors which can affect one’s decision for choosing a specific method for a particular

problem. Among them are:

» The fopology of the structure, i.e. two or three dimensional, inhomogenity,

anisotropicity, bounded or open,...

» Computer resources, CPU elapsed time and RAM,....

» Complexity and versatility of a method

As a general rule, the more analytical processes that can be done prior to starting a
numerical procedure, the less computational burden will be left for the computer to han-
dle. Therefore, in those instances that a strong computer resource is not available, it is
highly recommended that the problem be dealt with using analytical methods as much as
possible. In fact, this is one of the reasons that in early stages of microwave developments,
researchers attempted to reduce every complicated structure to a simple one to be solved
using rigorous or analytical methods. Needless to say these rigorous, or analytical, solu-
tions can only be found for some particular geometries under certain simplifying assump-

tions.

In the wake of recent advances in computer technology, a general trend towards less
analytical, and naturally more numerical methods, has started. As a matter of fact, finite
difference methods are among numerical methods from this category with a strong capa-
bility to deal with arbitrary geometries, i.e. versatility. For this class of numerical meth-
ods, the analytical pre-processing and the mathematically involved procedures before

passing the problem to the computer are almost nonexistent, i.e. less complexity. The only

Problem Description and Objectives Al Asi 14



restriction which had previously limited the wide spread use of these methods is their
dependency on large computer resources which were not available until recently. Table (I

.1) offers a good comparison between the characteristics of different methods [2].

TABLE I.1 Comparison table between different methods

Pre-

Method Memory | CPU time | Generality .
processing

Finite
Difference
Finite Element ML VG

Boundary
Element M VG

TLM ML VG

Integral
Equation SM G

Mode Matching SM G

Transverse
SM Ma
Resonance

Method of Lines M S G
Spectral Domain S S Ma

=

L VG

- 2|2 28 |1wn o|n

L=large, M=moderate, S=small, VG=very good, G=good, Ma=marginal.

Problem Description and Objectives Ali As 15



1.C. Guided wave analysis
GENERALLY SPEAKING, there are two major categories of guided wave structures,
microwave and optical waveguides. Some of the most common configurations of both cat-

egories are illustrated in what follows. Basically, the methods presented in this thesis are

capable of dealing with all these configurations.

I.C.1 Microwave integrated waveguides [4]

PITOETO OIS

’»’»“Q»:»’o,’#’o:,
H;,o e atenates
SSEHRHRRIELREE:

Conductor
[ 1 Air

] Ground Plane

FIGURE L1 (a) Microstrip (b) Suspended microstrip (c) Slot (d) Co-planar

waveguide (CPW) (e) Fin line (f) Strip lire (g) Co-planar strips (CPS),
transmission lines
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(b)

(a) Non-radiative dielectric (b) Dielectric image line (c) Dielectric
(d) Strip dielectric, or insulated image (e) Ridge (f) Inverted strip
(g) Channel or embedded strip (h) Strip slab (i) Graded index,
waveguides
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I.D. Objectives of Analysis

USUALLY, the final objective of any analysis strongly depends on its very own nature.
But, in general, one can summarize the most common objectives of guided wave analysis

as follows:

Field distribution, i.e. E, E,H, Hy, H , patterns inside the waveguide

v
» Cut off frequencies of different modes

» Dispersion curve, i.e. B versus ®

» Studying the conditions to amplify a particular mode and/or attenuate the others
* Studying the effects of feed and output positions, type of excitation,...

o Studying the effects of different shielding on the modes

* Studying the effects of different dielectrics as the propagation media, like

inhomogenity, anisotropicity, chirality, lossy,...

Among these, maybe the first three are the basic objectives of any type of analysis.
Yet, it has to be mentioned that not all numerical methods have the capability of investi-
gating all the above items. For instance, some of the methods like perturbation method can
be useful only in determining the cut off frequencies or at most the dispersion curve. On
the other hand, the two methods proposed throughout this thesis are capable of answering
all the above mentioned questions effectively and efficiently. Explicit solution approaches

for most of the items in the aforementioned list of objectives are presented by applying the
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methods to different structures. However, the power of the methods in addressing all the

above mentioned objectives becomes apparent by investigating the final formulations.

LE. Mathematical formulation of the problem

STARTING from Maxwell’s equations, one can proceed to formulate the problem:

._)
2 2 oH >
VXE = —uﬁ; ~p,H (L.1.a)
e 83 2
VxH = =" oF d.1.b)
p,=0 c=40 in loss-less media (L1.c)

in which p, and ¢ are magnetic resistivity and electric conductivity, respectively. These

two parameters can properly represent magnetic and electric loss mechanism in a lossy

medium. In above equations,

> > 2
D = ¢k y €= g4, (x,y) =n (x,y) (L2)

Taking the curl of eq. (I.1.a):

9
E (1.3)

2
3(3-%)-3 7= _uedf @.4)
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V.D =0

<N
S e
o
Lol
\-n_/
1l
o

<N

225 32})5 2= > 2> =2
VE-ue— = V(V Ej = —V(E Vinn )
ot
225 5 2}?’,’ 22 2 2 2
V E-n HEy—F = —V[E-Vlnn ) ;5 no=¢g.(xY)
ot

(1.5)

(L.6)

1.7)

1.8)

1.9)

(L10)

(I.11)

(1.12)

(1.13)

Equation (I.13) is the governing wave equation for any inhomogeneous guided wave

structure regardless of its operating frequency. For the homogeneous case, the right hand

side of eq. (1.13) is equal to zero. Hence:

Problem Deseription and Objeciives
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2

IE

> >
VE-n"pe, 2= = 0 ; ' =g (x,y) (L.14)

3
CAUTION: One must be reminded that the inhomogeneous vectorial equation (1.13)

is not decomposable into three x, y, 7 components!!!

LE. Microwave waveguide analysis versus the optical one

EVEN a quick survey of the microwave and optical waveguide literatures reveals the
fact that there are distinctions between their analyses. While, the governing equations,
(I.1.a) and (I.1.b) or (1.13) are the same for both media, this double standard in treating
them differently seems questionable. This question and the rational behind this distinction

is addressed in this section. Let’s rephrase the question once more:

“What are the major differences between the analysis techniques of microwave

and optical guided wave structures?”

The first major distinction is due to different fabrication procedures dominant in
microwave and optical frequency bands. Practically, almost all waveguides operating in
microwave frequency bands are constructed from several distinct regions of homogeneity,
whereas in the optical frequency bands the dominant configuration belongs to the class of
Graded Index type of Optical Waveguides, as shown in Fig. 1.2 (j). In addition, due to
high conductor losses at higher frequencies, usually no conductor is used as a transmission
medium at optical frequencies. As it has been explained in §LE., for a complete analysis,
either eq. (I.13) for the inhomogeneous waveguide or eq. (I.14) for the homogeneous one,

has to be solved. In fact, for the homogencous case, the governing equation is a well
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known one, the so-called Helmholtz equation. Instead, the difficulty will arise when one

intends to solve the inhomogeneous case. This is exactly one of the points that distin-
guishes the analysis of microwave waveguides and graded index optical waveguides. The
reason is that, usually, at microwave frequency bands, one is dealing with homogeneous
waveguides or waveguides which can be divided into several homogeneous regions. And,
in each region of homogeneity, one can simply analyze the problem using eq. (1.14) and
then using methods like Mode Matching, impose the boundary conditions on the unknown
constants of the field equations. The same procedure is still valid for step index optical
waveguides, as of Figs. 1.2 (a) to (i). On the other hand, the Graded Index Optical Fibers
constitute an important class of optical waveguides and therefore require special attention.
Since, the variation of permittivity index inside graded index optical waveguides is a
smooth and continuous function of position, they cannot be split into several regions of
homogeneity. Hence, in general, one has to solve a fairly complicated system of equations.
Quite interestingly, from the FD(TD) point of view, both these two classes of problems
can be handled easily. This is one of the most interesting features of an FD(TD) algorithm
that once it is written, it can deal with more complex situations as easily as with simpler

ones.

The other major distinction lays in the fact that optical waveguides are usually being
considered as open structures. While, in the case of microwave waveguides, a surrounding
conductor is usually present that shields the structure. Although this shield is mainly used
for isolating the fields inside and outside of the structure, it also facilitates the numerical
computation of the field. In contrast, for most optical waveguides, the region for numeri-

cal solution is surrounded by absorbing walls. Note that the surrounding rectangles in
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Figs. (a) to (i) do not necessarily represent PECs (Perfect Electric Conductors). Modeling

Absorbing Boundary Conditions [6] has always been a challenging problem for research-
ers. Since the objective of this thesis is not in developing new kinds of absorbing boundary

conditions, it will not be discussed in further details.

So far, from analytical point of view, two factors in favor of the microwave
waveguide analysis have been pointed out. However, an important property makes the
analysis of optical waveguides easier than the microwave ones. This is due to an assump-
tion, which is valid only for optical waveguide structures. It is called the scalar approxi-

mation in optics.

I.LE.1 Scalar approximation in optics

AN OPTICAL waveguide consists of different layers of dielectrics with different refrac-
tive indexes. One with the higher index, the core, is located at the center of the guide and
the other, the cladding, acts as the shielding layer for the core. Luckily, in optics we usu-
ally are dealing with structures whose refractive index varies smoothly (2%) along the
transverse direction, i.e. Weakly Guided Structures. Under these circumstances, one can
assume that the right hand side of equation (I.13) equals zero, allowing the Scalar
Approximation in Optics [7]. A careful examination of Maxwell’s equations in such a
guiding structure shows that the z components of both electric and magnetic fields

approach zero. This in turn means that the field distribution inside the waveguide tends to

follow a Quasi-TEM pattern.

s
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On the other hand, according to a known theorem in Electromagnetic theory, only a

scalar helmholtz equation suffices to describe the behavior of all the field components of a

TEM field distribution. Assuming propagation along the direction, this equation can be

written as:
[V 4K () -B°]® = 0 (1.15.2)
2 2
2_ 9", 0
vi= 4 B =k, (1.15.b)

The field components for the TE mode are:

E =& = 2 = = | 1.16
i ) Hy n B =0 n €y, (L.16)
By the same token, the TM field components are:
E,=®x H = 5 H =0 n= -~ (1.17)
; * n ¢ 808?'

I.GG. Conclusion

BASED UPON what have been cited above, it can now be understood why time con-
suming methods, like the FD(TD), gradually become more dominant than rigorous or ana-
lytical ones; a) they do not require a simplified model, b) they do not require complex
mathematical algorithms ¢) using high speed computers, the computational time for these

methods can be kept quite affordable.

The followings can be listed as the common differences between a microwave

waveguide analysis and an optical one.
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» In microwave analysis, one can usually find regions of homogeneity inside

the waveguide and therefore solve eq. (I.14) for each of these regions. On
the other hand, for graded index optical fibers, solution is usually obtained

using more complicated eq. (1.13).

* In optical structures, scalar approximation can be used (as long as rigor-
ous polarization study is not of any concern). While in Microwave, a vecto-

rial analysis is a must.

*» In optical fiber analysis, one needs an absorbing boundary condition to
confine the computational region, while this requirement can be waived

Jor most of the closed Microwave structures,i.e. Fin-lines, Strip-lines,...

As can be seen from Figs. (I.1) and (1.2), for some of the cases, an optical waveguide
can be quite similar to a microwave waveguide. However, as it was mentioned earlier, due
to excessive conductor losses at higher frequencies, conducting waveguides are not usu-

ally used as a wave carrier at optical frequencies.
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II.A. Introduction

AS WAS pointed out in comparative table I .1, Finite Difference (F D) based methods
are one of the most powerful and versatile techniques available, provided that computer
resources do not pose limitations. With recent advances in computer technology, this is

becoming less and less a problem.

FD methods can be divided into two general categories, Finite Difference Frequency
Domain and Finite Difference Time Domain methods. In general, Finite Difference refers
to those class of problems that are formulated by replacing all or some of the spatial deriv-
atives with their equivalent finite difference forms. Time Domain methods refer to tech-
niques which are based on the time domain extraction of the evolution of the fields.
Needless to say that time variable, ¢, plays a crucial role in this formulation and is present
in the final formulations, either explicitly or in terms of numerical iterations. Frequency
Domain, in turn, refers to the techniques which are based on solving field equations for a

certain frequency. Different categories and branches of finite difference based methods are

illustrated in the following chart, Fig. IL.1.
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IL.B. Time Domain Methods

TIME DOMAIN methods constitute a major branch of the class of finite difference
methods. Among methods from this category are: TLM [8], FDTD [9], Bergeron’s [10]
[11]. Even though the original derivations of these three time domain methods were based
on completely different physical interpretations, their equivalency has been established by
several researchers [12]. Therefore, from a theoretical point of view, there is no major
advantage in choosing one time domain method over another. Yet, it has to be mentioned
that from a practical point of view (CPU time and required memory space), there are sev-

eral advantages in using the FDTD method over any other time domain method [13].

I1.B.1. Transmission line matrix (TLM) method [14]

THE TRANSMISSION Line Matrix method was first inspired by Huygen’s principle and
the physical nature of wave propagation {15]. When Johns first proposed this method, he
simply assumed that space be modeled by a mesh of transmission lines. The equivalency is
established if the physical properties of the transmission lines, characteristic impedance,...,
be adjusted in a way that the effective behavior of the wave propagation in the resultant
slow wave structure follows the same pattern as the actual wave in the corresponding
media. According to the Huygen’s principle in optics, in the course of propagation of a
wave, each point on the wave-front of a wavelet acts like a new source of spherical waves.
The upcoming wave-front is nothing but the envelope of the wave-fronts to all these new

spherical waves. To simulate this algorithm on a computer, first, space and time must be
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discretized. This procedure can be performed in different coordinate systems. For conve-
nience, here, only the derivation in the cartesian coordinate system is presented. Fig. T1.2
depicts the wave propagation mechanism in a mesh grid in the cartesian coordinate sys-
tem. Suppose that one of the nodes is excited by a unit voltage pulse. Since all four
branches connected to a specific node have the same properties, the incident power will be

split equally between the lines. Knowing that the initial pulse was launched with a unit
power, each of the reflected pulses in the four branches will have 1/4 of the unit power.

So, each of them will have an amplitude equal to 1/2 the unit voltage.

FIGURE II.2 TLM wave propagation mechanism (a) Incident unit impulse impinges on a
node (b) The resultant reflected impulses (¢) The numbering sequence of the
branches in each node

Now, having the amplitudes of all the reflected waves, the only remaining unknowns
are their phases. These can also be determined from a very straightforward mathematical

analysis. As it is clearly shown in Fig. I1.2, in each node, there are three identical transmis-
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sion lines connected to the incoming line with the same unit normalized impedance. The

three outgoing lines appear in parallel, terminating the incoming line in a normalized

impedance of 1/3. Hence,

== = _= (IL.1)

(1L.2)

and therefore, the reflected wave at the branch 1 is 180° degrees out of phase with respect
to the other three scattered waves and also the initial excitation pulse. The concluded
results so far, can easily be extended to a more general formulation, in which the node

excitations are not just unit impulses. Let us concentrate on a more general case in which
many nodes can be excited simultaneously. The voltage kVi stands for the incident volt-

age if / = i and reflected voltage if [ = r; n and k stand for the branch and iteration

numbers, respectively. Using superposition in linear systems,

4
A 5[ > kV:n:I -V, I1.3)

m=1
This situation can be conveniently formulated in a scattering matrix which relates the

reflected voltages at the (k+ 1) A¢ th step to the incident voltages at the kAz th step:
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! 1111 !
Vol _ 11 -11 1, |Y2 (L)
Vil 2]1 1 -11 v,
k+I_V_ b k+1_V‘£

It is obvious that any impulse emerging (reflected) from a node at position (z, x) will

act as an incident impulse for the adjacent node at the next time step. Therefore,

eV @) = Vi x-1) (IL5.2)
eV (x) = Viz-1,%) (IL5.h)
eV5(@X) = V(2 x+1) (IL5.¢)
Ve @x) = Vo (z+1,x) (IL5.d)

By repeating the two algorithms expressed in egs. (I1.4) and (I1.5.a)-(I1.5.d), a wave
propagation mechanism can be simulated by a digital computer. But, still, one may be
skeptical about the precise relationship that holds between this algorithm and the actual
electromagnetic wave propagation, which is formally a solution to Helmholtz equation. To
investigate the validity of this method and also establish an accurate mathematical model,

we write the telegraph equations for a mesh of transmission lines. Fig. I1.3 depicts one unit

cell of such a mesh.
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The derived equations can be written in partial differential, not partial difference,

form only if the mesh grid is infinitesimally small, i.e. Al — 0. Assuming that this condi-

tion is met, one can proceed to:

Ty _ x1 ™ x3)

oV ol 1
y
ox L ot

W, _ -1

oz ot
a(le _IxS) 8(122—1’24) avy
ot + ot =205

(IL6.2)

(I1.6.b)

(IL6.c)

These expressions can also be combined to yield the following Helmholtz wave equa-

tion,
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AV, IV, AV,
——-2—}+-é-?) = 2LC?—}— (L7)
ox v t

Therefore, this fact has just been proved that the mechanism generated by iterating

egs. (IL.4) and (I.5.a)-(I1.5.d) can simulate any wave propagation phenomena which has a

similar formula to eq. (IL.7). The H,_, can serve as a good example which can be easily

modeled by the TLM shunt-connected network. For this mode, Maxwell’s equations can

be re-written as:

BEy oH, I8
=M ({1.82)
% A, I1.8.b
T Mo (IL8:b)
o0H, OJH, aEy 118
I L8
dH
After taking time derivative of both sides of eq. (IL.8.c) and substituting for a—tz and
oH
—a?' in terms of partial derivatives of E ¥ (from egs. (11.8.a) & (11.8.b)), one obtains:
e IE IE.
2) + 2) = ue 2J (I11.9)
ox dy dt

Thus, an H, , mode inside a waveguide can be simulated by a TLM shunt-connected

network on a digital computer. Now that this equivalency is established, it seems to be a
good idea to derive the exact relationships that hold between the model parameters and the

actual electromagnetic field components. A direct comparison between equations (I1.6.a)-

Preview of Numerical Techniques Afi Asi 34



(IL.6.c} & (11.8.2)-(I1.8.c) can be made with the following equivalences between parame-

fers:

E =V, (IL10.2)
Hy=-(4-1,) (IL.10.b)
Ho==(I,-1,) (IL10.c)
u=L (11.10.d)
e=2C (IL10.e)

From the transmission line theory, the speed of the wave propagation and the parame-

ters of the medium, assuming free space i, = 1, &, = 1 are related to each other accord-

ing to the following equation:

— = —— = (IL.11)

Now, when this transmission line is placed in a shunt-connected network, the resultant

structure will exhibit a slow wave structure behavior represented by:

1

T 2IC

v (IL.12)
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I1.B.2. Bergeron’s method

THE OTHER TIME domain technique which is somehow similar to TLM is the Alterna-
tive Network or Bergeron’s method. This model which was first proposed by Yoshida,
Fukai and Fukuoka [11] is based on the equations which were already obtained by
Bergeron. The basic idea behind this method is very close to the one of TLM. In fact, both

methods utilize the traveling wave concept. Their differences are:

» The way that unit cells are defined is different. Instead of having two
different shunt and series connected networks as in the TLM, only shunt
connected network is introduced. But, two different electric and magnetic
nodes are defined in the structure. In the electric nodes, voltage represents
the electric field while in the magnetic nodes, it represents the magnetic

field component.

» In Bergeron’s method, the voltage and current variables directly model the
electromagnetic fields. On the other hand, the TLM is based on the
decomposition of each voltage and current variable into two incident and

reflected components.

» The application of just shunt connected network in Bergeron’s method will
result in some mismatching behavior between the voltage and current
variables. To remove this, a gyrator has to be utilized between any two

connected nodes in the unit cell structure.

Most of the other properties of the Bergeron and TLM models are similar to each
other and there is no particular advantage in using one over the other. Therefore, no further
detailed derivation is presented here. Later on, only the justifications that make the FDTD

more preferable than TLM for this study will be presented.
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IL.B.3. Finite difference time domain (FDTD) method

UNLIKE THE two preceding methods which are based on some physical interpretation

of the wave propagation mechanism, the FDTD method is based on a very straightforward

mathematical procedure and normally does not require any a priori physical interpretation

in order to derive the basic formulas. FDTD results from replacing space and time deriva-

tives in Maxwell’s equations by their corresponding finite difference equivalences.

11.B.3.a. Formulation

STARTING FROM Maxwell’s equations, expanding egs. (I.1.a) and (I.1.b) will result in:

oH 1(3&

ot VAN 74

¥y o

oH 1( dE_ OF

AN
L G
ot p\ody ox miz

X

ot €

aEy B 1(8Hx
ot e\ 0z

JE 1 ( oH  oH

3E,

(IL13.2)

(I1.13.b)

(IL.13.¢)

(I1.13.d)

(I1.13.e)

(11.13.f)
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A quick inspection of eqs. (II.13.a) to (II.13.f) shows that these equations constitute a

system of coupled differential equations in terms of six vector field components,

E, Ey, Ez, H, Hy, H P functions of four independent variables, x, y, z, t. This makes

the task of discretizing the above equations to their finite difference forms a peculiar one.
Specifically, care has to be taken in discretizing the differential operators if a final iterative
algorithm is desired. It was Yee who first proposed a method to accomplish this task.
Although, it has should mentioned that his algorithm is not the only way to obtain a practi-

cal algorithm.

At this stage, all the derivatives with respect to time and space must be replaced by
their corresponding finite difference forms. But, there are several different ways to discre-
tize a derivative operator, such as the forward, backward and central difference formulas.

Following are some basic definitions and notations required for the rest of the discussion.

(i, 1, k) = (iAx, jAy, kAz) (I1.14)

F'(i,j,k) = F(iAx, jAy, kAz, nAf) (IL.15)
. n+% n—%

oF (k) _ F (o) <F (o) +0( Nz) aL16)

. F”('+1, ',k)-F['—l, ',k)
oF" (ij by _ - \'T3) Tyt +O(sz)

o " (11.17.a)

(I1.17.b)

f .. 1 R |
OF" (ij, k) _ F(””i’k)‘F(”f“i’k)+O(Ay2j

dy Ay
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i L. 1 . . 1

52 A (IL.17.¢)

Eq. (IL16) is the central difference representation for the time derivative operator.
Eqgs. (IL.17.a), (IL.17.b) and (II.17.c) are, respectively, the expressions for central, forward

and backward difference formulas for the spatial derivative operators.

At the next step, Yee defined the spatial locations of electric and magnetic field vec-

tors half a unit cell length apart in space. Also, he evaluated ?3 and ?I at alternative half
time steps. Fig. IL4 illustrates a unit cell of Yee’s lattice. Using this unit cell and the finite
difference expressions for time and space derivative operators, eqs (I1.18.a)-(I1.18.f) can
easily be obtained. These are the governing equations of a three dimensional FDTD algo-
rithm for an inhomogeneous medium, i.e. permittivity, permeability, magnetic resistance

and electric conductance can be functions of space coordinates.

FIGURE I1.4 Conventional Yee’s 3D-lattice
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Now that all derivative operators have been replaced by their finite difference forms,

one can start from any instant of time, after assuming some initial and boundary condi-
tions, proceed to obtain the values of electric and magnetic fields at any instant of time and
any position in space. Needless to say, it is to the advantage of the required calculation
time if one can assume larger time (Ar) and space (Ax, Ay, Az) steps in Yee’s lattice. The
bigger these step sizes are, the larger domain in both space and time can be covered. But,
there are several theoretical barriers that are against increasing the step sizes uncondition-

ally.

» Accuracy: Equations (11.16), (I1.17.a)-(II.17.c) are valid only when step

sizes approach zero (Al — 0 and At — 0), i.e. fine grid assumption.

 Stability factor

» Numerical dispersion

The exact meaning of stability factor and numerical dispersion will be explained in

what follows.
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pm(g1+§,k+~)At

1 2
1
1 2ul L+ = k+ 1
1,1 ”(J 2) S TORE T At
H, (z,]+§,k+§)= I 7 “H, (z,]+§,k+§)+ T 7 (11.18.a)
pm(Lj+—,k+—)At u(@j+—,k+—)
I+ 2 2 2 2
| 1)
M(g]+fk+§
-1
pm(i,j+%,k+%)At {E’;(z;+ k+1) E*;’(z]+2k) Ef(i,j,k+%)—EZ(i,j+1,k+%)}
1+ +
c. 1 1 Az Ay
2u(z,]+2,k+2)
A 1
I_Pm(V+§J’k+§)At
.1, 1
1 2W| i+ S k+ = _1
A1, 1 ”( 2 2) 31
Hy (l+§,_],k+§)= — 7 -Hy (z+§,],k+%)+ lAt I (I1.18.b)
1+pm(l+§:J:k+§)At u(l+§,],k+§)
.1 . 1
2“(1+§,],k+§)
p(i+1jl’c+1)Az‘_1 E%i+ljk+i)—ﬁ(ijk+1) E( ) Eli+l ikt
LN G ‘{Z hhry) B B +50J; 1 ¥ 500 }
Ax Az

N 1
i)
Wit 35k
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A B |
pm(z+—,]+§,kJAt

2
1 -
1 2“(i+%’j+%’k) 311 At
H. (i+—,j+—,k)= -H. (i+—,j+—,k)+ (I1.18.c)
2 2 p (i+1j+1k)m ) 2 2 u(i+lj+lk)
m 2 2 2’ 2’
1+ T ]
ouf el inl
”(”2’”2’]‘)
1.1 -1 nf . 1. nf . 1 . nf .. 1 ] o1
1+pm(z+§,]+§,k)At ‘{Ex(l+§,1+l,k)—Ex(z+i,J,k)+Ey(z,J+§,k)—E;(z+1,]+§,k)}
1.1 ) Ay Ax
2u(z+2,]+2,k
(hss
Gli+=,j, kAt
2
- 1 1 -1
1 28(i+§,j,kj ! At 0(i+§,j,k)At
EY (i+-,j,k)— -E”(i+-,j,k)+—-—m—~ 1+ (I1.18.d)
x 2 A x 2 N R
Gl i+, 7 kAt gli+=, 1k 2el i+ 2, ), k
1+ 2 2 2

A
2 s
8(14—2,],16)

n+= n+ = n+= n+ =
20, 1 . 1 2(. 1., 1 2. 1. 1 2( . . 1
H, (z+§,]+~2-,k)—Hz (z+§,]—§,kj+Hy (z+§,1,k——J—H (z+—~,],k+~—J
Ay Az
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O'(i,j + 1, k)At

2
1- - 1 i
28(i,j + =, k) c(i,j + =, k)At
”'”(','+%,k]= 12 -E';(i,j+%,kj+——~—%~—- 1+ 2 (IL18.¢)
cs(i,j+—,k)m g(z,J+ ,kj 28(i,j+-~,k)
- 2 2 2
28(i,j+%,k)
’“‘% 1 1 "*% 1 1 ”*% 1. 1 ’”% 1.1
A (g krg)-H, (l’f+§’k‘§)+Hz (i-gieg)-a i+ 5ie )
Az Ax
1
0(1,], k+ i)At
1- 1 N
28[i,j,k+—) c(i,j,k+-~)At
E'Hl(i,j,k+%)_ 12 -EZ(z‘,j,k+%)+—-~At—-i-—- 1+ 21 (L18.9)
G(i,j,k+§)At :—:(i,j,k+§) 2£(i,j,k+§)
1+

.. 1
k+ -
28(1,], + 2)

n+= n+z n+z n+ =
N I A TON I | 2(.._1 1)_ 2(.‘ 1 l)
H, (z+2,],k+2j H, (z 2,],k+2)+Hx i, j 2,k+2 H. iij+ ,k+2
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IL.B.3.b. Numerical Stability

IN SOLVING differential equations using numerical methods, there is usually an upper
limit for the step sizes. Beyond this numerical limit, the algorithm is unstable and results in
excessive errors. Note that this error is not due to any physical phenomenon, and is just the
result of an improper choice of the step size. For the three dimensional FDTD, it has been

shown that the upper limit can be determined from the following equation.

2
Ar< 1 {LZ + L i} (I1.19)

Ax = Ay = Az = Al (11.20)

where ¢, . is the maximum phase velocity of the electromagnetic wave within the

medium. For homogeneous free space, it is simply the speed of light. For the two dimen-

sional case, one has:

Ar< L [%*‘ —1—] (1.21)

Ax = Ay = Al Az—0 (I1.22)

cAr

Al the stability factor. Therefore, the stability

It is customary to call the ratio s =

factor for a three dimensional FDTD lattice must be less than 1/ ,ﬁ, while for the two

dimensional lattice, it should be less than 1/ ﬁ .

Preview of Numerical Techniques Ali Asi 44



I1.B.3.c. Dispersion Analysis

THE NUMERICAL algorithm represented by eqs. (II.18.a)-(I1.18.f) introduces disper-
sions to the wave propagation within numerical lattice. This is called the numerical disper-
sion in contrast to the medium dispersion which is just a result of the inhomogeneous and/
or anisotropic properties of the medium. In order to investigate the properties of numerical
dispersion, one can consider the plane wave propagation in free space. In this case, free
space is considered as a homogeneous medium and therefore there is no contribution due

to “medium properties” in the total dispersion.

Starting from Maxwell’s curl equations (I.1.a)-(L.1.b}, and following a procedure sim-

ilar to the one explained in section LE., one finds the three dimensional lossy Helmholtz

equation as, assuming p, = 0:

o’E, 3’E, 'E, 9E, O, .
ox’ ' ay2 ' 97 I ar S -

The second derivative operator can easily be discretized by implementing central dif-

ference operator (I1.17.a) twice:

PR F”(i + %J k)—zf«” (i), k) +F"(i—%,j, k)
11

5 (11.24)
ox Ax
1 1
2 . i+ E . n—- i
OF (k) F "G,k =2F (i,j,k) +F " (i,j,k)
5 IS 3 (11.25)
ot At
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The second derivative operators with respect to y and z can also be discretized in the

same fashion. Substituting eqs. (I1.24) and (I1.25) into eq. (I1.23) yields:

i+ 1 k)28 Gjm + B i- 1 k)
2 (IL.26)
Ax
of .1 . of .01
+E;(z,1+§,k)—2E;(z,j,k)+E’Z(1,]—§,k)
Ay2
of o, 1 (P T 1
B ik 1) 28 ik + B g k-1)
+ 2
Az
n+% ) n—% n+% n-s
E, 2(,j,0) -2E' (LK) +E, 2Gjk)  E, "Gk —E, "(5j, k)
- 2 o At
At

On the other hand, the standard solution to a lossy scalar Helmholtz equation has the

following general form:
eT {xsinBcos¢ + ysin@sind + zcosB) + jor 01.27)

E =

Z

in which Y = — o —jf3, where o0 and [ represent attenuation and propagation constants

of the wave, respectively. Substituting (I1.27) into (I1.26) results in:

1. AszinGcosq)) 2 ri.. (z'ly’[’sinf)sinq)ﬂ2

[ Axsmh(————-——-—z } + [ gysin| =g (11.28)
1. AzYcosG) 2 _ posin (0Af)  per . oAr)?

+{Azsmh( 2 ] AT 4 Afz[sm 2 ]

For the special lossless case, eq. (I1.28) can be simplified to:

{ . (kxAxHZ [1 . (kyij]Z [1 _ (kZAZ)]Z
[ Axsmh 5 + Ayslnh 5 + Azsmh 5 (I1.29)
, [Lsin(m_m)]z

" LeAt 2

46
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k, = BsinBcosd

k, = BsinBsing 6=
y Je
k, = BcosB

Eq. (IL29) is called the numerical dispersion equation for the three dimensional
FDTD lattice. It clearly demonstrates the fact that there is a transcendental relationship
between [} and ®, i.e. numerically dispersive. This numerical dispersion is a characteristic
of the FDTD lattice; there is no other dispersion present in the free space medium under

study. In fact, in this case the “medium dispersion” equation is:

(I1.30)

o]
il
olg

It is customary to call a medium non-dispersive whenever a linear relationship holds

between § and .

Careful inspection of eq. (IL.29) shows that numerical dispersion is generally a func-
tion of wavelength, direction of propagation and grid sizes (in both time and space
domains). When all step sizes approach zero (Ax, Ay, Az, At — 0), eq. (I1.29) becomes
exactly the same as eq. (IL.30). Thus, the smaller the grid size, the less numerical disper-
sion is introduced to the simulation lattice. But, as it has already been stated, this has a
destructive effect on CPU elapsed time. In conclusion, one has to choose the grid sizes as
small as possible while keeping the computational time affordable. Usually, it is recom-
mended [16] that the grid size be taken not larger than 0.IA, if numerical dispersion less

than 1% is to be achieved.
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I1.C. Frequency domain methods

ACCORDING TO THE terminology used in this thesis, frequency domain methods are
those which are based on removing the time variable in the final formulations. This

removal can be accomplished by applying the Fourier transform on the time derivative

operator, i.e. 9 — jo. This transformation, automatically, shifts the whole technique to

ot
frequency domain. Traditionally, these frequency domain techniques have been based on
the Helmholtz equation. There are, at least, two classes of Finite Difference Frequency
Domain techniques that are pertinent to our discussion, see Fig. II.1. Other derivations

usually fit into one of the following two categories [17][18][19].

IL.C.1 Beaubien-Wexler’s iterative approach [20]

IN GENERAL, it can be proved (appendix A:) that at certain frequencies, namely cut-
off, all electromagnetic waves can be decomposed into two orthogonal TE and TM

modes. Under these circumstances, Maxwell’s equations can be written in terms of a scalar

field potential @ [21].

For the TM modes:
=z Y
E=-ivo (I1.31.a)
kC

E =& - (IL3Lb)

- ] ~

H = {J%:Jazxvtcp (IL3L.c)
k
c
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H =0 (IL.31.d)

and for the TE modes:

%

E = %‘CQZ xV,® (IL.32.2)

E, =0 (IL32.b)

7=

H =-Ivo (IL32.0)
kC

H = (IL32.d)

in which @ should satisfy the scalar Helmholtz equation subject to relevant boundary con-

ditions:

(v} +#2 ) = 0 (I1.33)

in which &, = kz—kf = k2+72 is the cutoff wave number. Assuming that only

waveguides surrounded by PEC (Perfect Electric Conductor) walls are of major concern,

@ should satisfy Dirichlet and Neumann boundary conditions:

P =0 (I1.34)
for the TM mode and,

9 _ (11.35)

on

for the TE mode. Replacing the transverse Laplace operator by its discretized form yields,

Fig. (IL5):

2 42 _ _
V?tI) _ [i+i}b _ Pivy,; 2®i,j+®i—l,j+q)i,j+l 20, ;+®; (IL.36)

o oy (Ax)* (Ay)”

inwhich ® = ® (x,y) = ©. .,

i
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Assuming a uniform grid in both directions, Ax = Ay = k, eq. (I1.33) converts to:

- o @ D, +(4-MD, =0 aL37)

41, " Lo Py
This is called a five point finite difference operator, and generally can be expressed in

the following form:

ij—1 i-1,j ij it1,j
by @ +b;; DIRWREIYEL UL I L I (IL.38)
Lhj+1 _
b Py =0
where, for the internal points, b;:j:-l = bj’;l’j = bi;l’j = Zj” = ~1 and
bij = 4 — A. The eigenvalue A is also defined as:
2
A = (k h) dL.39)

FIGURE IL.5  The finite difference grid
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Now, assuming a rectangular grid with M and N mesh grid nodes in the x and y

directions, respectively, the following eigenvalue system of equations can be generated:

[A -A]] mnsun LP s = (0] sy (IL.40)

or,

[BY piv e [P a1 = [01 s (IL.41)
in which B = A - AJ. For a non-trivial solution to eq. (IL.41), the determinant of matrix B

must be zero. This can be achieved only for certain discrete values of A called eigenval-
ues. The problem is that these eigenvalues are not known beforehand. Two approaches can
be chosen to solve the problem, either direct or iterative methods. On the other hand,
according to eq. (I11.37), only five non-zero elements exist corresponding to each row of the
B matrix. This renders the final system of equations highly sparse. According to the Lin-
ear Algebra theory, iterative methods are generally much more efficient compared to direct
methods when it comes to sparse matrices. This results in shorter computational time.
Also, in iterative methods, one row of the matrix is needed at a time, whereas in direct
methods the entire matrix must be calculated and stored in computer memory. This makes
direct methods inefficient compared to iterative methods both in CPU time and RAM
memory. Based upon this analysis, iterative schemes have been favored for solving the

above eigenvalue problems.

The algorithm starts with an initial guess for the eigenvalue A and eigenvector @.

Generally speaking, these guessed values are inaccurate. As long as the initial guess is not
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too far from the correct one, a variational relation known as the Rayleigh quotient can be

implemented:

A O+ " a0

o™ T(D ()

(1L.42)
where r and T represent iteration number and vector transpose operator respectively. In
the same manner, Rayleigh quotient can be implemented after each iteration to reach a bet-

ter estimate of the eigenvalue. Finally, iteration can be terminated whenever the following

convergence tests are met:

WD a0 <e, (IL43.2)

[0+ 0] <, (IL43.b)
T

rR= [BD BD (IL.43.¢)
'@

Depending on the objectives of the analysis, any or all of the above criteria can be
checked before terminating the iterations. For instance, if the dispersion curve is desired,
eq. (I1.43.a) can be enforced, whereas for field pattern analysis, eq. (I1.43.b) seems more
appropriate. Eq. (IL43.c) might be more meaningful if the final convergence of the mathe-
matical system is desired. However, under ideal circumstances, and upon reaching the

convergence, all three criteria should be vanishingly small.

To review the mathematical concept of convergence, suppose a successive over-relax-

ation method is implemented to achieve faster convergence:
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r+ i [0} -+ 1 | r
0, = (-0 e} + —2—[ol ) +0 Y v0”, +0 ] aag

ij (4_?\‘) iLji-1 of i+1,j

assuming that scanning of the numerical space is done from left to right and from bottom

to top. Eq. (I1.44) is valid only for internal nodes. For nodes in the neighborhood of the

boundary, some of the coefficients would be different, depending on the TE or TM mode
analysis. For the TM mode, matrix B is symmetric. This is not the case for the TE mode
due to Neumann boundary conditions that can deteriorate the convergence properties of

the final algorithm.

In any case, there are several strategies that can be adopted to ensure convergence of
the final algorithm. One of them [22] is based on multiplying the B matrix by its transpose

to achieve a symmefric positive definite matrix. From eq. (Il.41), and pre-multiplying by

T )
B~ , one obtains:

B (B®) = 0 (IL.45)
Cd =0 (I1.46)

where C = BTB. It can be proved that B and C share the same eigenvalues.

det(C) = dei| B |det (B) = (det(B))” (IL.47)

The main advantage of using C instead of B is in the fact that C is a positive definite
matrix when A is not an eigenvalue, and positive semi-definite when A is an eigenvalue.

Suppose, x is an arbitrary matrix with at least one nonzero element:

X x>0 (IL48)

Preview of Numerical Techniques 53



and also assume that for each x, there exists a y that satisfies the following equation:

x = By (IL.49)

It is obvious that y is a real matrix, provided that B is non-singular, an assumption

which is valid when A is not an eigenvalue. Replacing (I1.49) in (I1.48) gives:

y'B'By =y cy=0 (IL.50)

As indicated earlier, C is not only a positive semi-definite matrix, but also symmetric:

T
c’ = (BTBJ =BB=cC (IL51)

It is known that successive over-relaxation is guaranteed to converge for a positive
semi-definite matrix [23]. Therefore, the aforementioned procedure is a reliable method

even for higher order modes.

Since this method is meant to be an iterative one, not all the elements of B are known

in advance and therefore, the multiplication C = BB cannot be performed directly. A
thorough investigation of how this multiplication works on a highly sparse matrix such as
the one generated by eq. (11.37), results in a thirteen point finite difference [22], in contrast
with the original finite difference which was based on a five point operator. Again, assum-

ing that scanning is done from left to right and from bottom to top:
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o0 = -oyof) - L[l ) v el (L52)

i Pij-2 Y6 i-1,j-1
.. . . IJ
VR AV S Rl Ay R N
!+11q)1(-:-)11 l+2jq)1(-:)2j jlj+!q)(r)lj+1+ §j+1¢)i(})+l
+C;:,;1,j+lq)(+lj+l+ Z}HZ '(;')+2]
= b bl (IL.53)
TRAR §:§+1-b§,}i’{’” bi’fl,,--biiiiﬁ”
b = i:jgl-biji’{”+bi’i},,--biii:ﬁ”

i"'2:j _ ilj i'—z’j
i = bty

i-Lj _ iLj i-1,j i l—lj
i =0l bbby

PR . . 2 « . 2 « 2 . o 2 P 2
LJ _ [ ) LJ [ %} L7 iL,J
¢ = (”ml) +(bf—1.f) +(bf,f) +(bi+1,1) +(bf,j—1)

i+1,j iJ i+1,j iLj i+1,j
¢t f=b,.j.-bij Tep  pT

i+1,j Yi+l,j

llJ

1+21_ i, j bi+2,j
ij T Y+l Yi+Lj

i-1,j-1 ij i-1,j-1 i i-1,j~1
T =g pi T pd b

i j T Y-, i, -1 Yij-1

iLj—1 i Lji-1 Lj ihj—1
¢’ =bfbf +b_ b

Ly Lj i j—1
Pt1,j-1 ij il j-1 i i+l,j—1
i j = by, by +b/5 b

Lj-2 ij ij-2
R Y X

Lj —Yij-1 Yihj-1
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FIGURE IIL.6

Thirteen point finite difference mesh

In summary, eq. (II.52) can be written as:

(e 1) M _ g 5O
@ =v 0" = o (11.54)

where the subscripts in operator ¥ refer to its dependence on @ and A.

Since the set of eigenvectors spans a complete vector space, any vector can be

expressed in terms of a linear combination of orthonormal eigenvectors. Let’s decompose

0 . . . .
<IJ( ) , the first eigenvector guesses, into a summation of eigenvectors:

CD(O) = a. X, +a,x,+ ... +a,x (I1.55)
11 T %ty N'N
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in which, the eigenvectors x; are those of C, or to be more accurate . Since, the eigen-

vectors constitute an orthonormal set, after » + 1 iterations, one obtains:

. 1 - .
o < g ulx +agir, .+ agl,, (11.56)
where |; is the corresponding eigenvalue to x;. For this iteration to be stable, the modulus

of all eigenvalues should be less than unity. Suppose that p, has the biggest modulus.

Therefore:

oY = limaulx, (I.57)

¥ oo

and the only possible way that this iteration can result in a unique stable solution, the fact

that was already proven, is by assuming |, = 1. Of course, this happens, if and only if
the correct value of A, is substituted into eq. (IL.44) or (I1.52). If A, deviates slightly from
the correct value, so does |1, and as a result the iterations either blow up or converge to
zero, depending on | u,1| being greater or less than unity. On the other hand, the interesting
point is that even for the wrong A, s, eq. (I1.57) has the tendency to converge to the correct

shape of @, even though the amplitude will not be accurate until the correct eigenvalue is

substituted. This fact, can be very useful whenever only the field pattern is sought, i.e.

FWFD.
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I1.C.2. Arndt’s direct approach

THE NEXT approach which is more general, but less efficient, is due to Arndt et al.
[24]. It is general, because it is not restricted to cut-off frequencies. One major drawback
of the Beaubien-Wexler approach is the fact that it is derived from the assumption that the
modes are decomposable into TE and TM modes. It can be proved that this is only valid

for the following special cases:

» Homogeneous waveguides and entire range of the frequency spectrum
* Inhomogeneous waveguides operating only at cut-off frequency, appendix A:

As can be seen, the general case of inhomogeneous waveguide operating in an arbi-
trary frequency is missing from the aforementioned list. Under these circumstances,
modes are generally present in their hybrid form, meaning all six vector field components
are present. Now, let’s investigate more carefully why the Beaubien-Wexler approach can
not be implemented for this general case, and determine if there is any possibility of mod-

ifications:

» Itis based on a TE and TM mode decomposition which is not
generally valid.

Comment: Even for the general case, the homogeneous Helmholtz equation for
H field components holds, similar to eq. (I.14). But, remember that

for the electric field components, E, the inhomogeneous Helmholtz
equation (1.13) must be used, which leads to excessively compli-

cated equations, correlating all electric field components. There-
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fore, as long as the dispersion curve analysis is desired, not the field

patterns; the homogeneous Helmholtz equation in terms of one of
the magnetic field components can be expanded into its finite dif-
ference form and used to extract the eigenvalues. But, as will be
explained in the next paragraph, this approach does not lead to a
unique solution and hence is prone to the appearance of spurious

modes.

o Atleast the knowledge of two field components is required to

determine the total field uniquely.

Comment:

As it is demonstrated by Harrington [25], every hybrid field config-
uration can be expressed as a superposition of two electric and
magnetic vector potentials. On the other hand, each of these vector
potentials can only generate one type of TE or TM field, and hence
the presence of both is necessary to provide a hybrid field. By a
simple analogy, @ in Beaubien-Wexler’s formulation can be

viewed as the z component of the generating potential. It is a scalar

function because we are only considering the TE, and/or ™,

which are both in the z direction. Now, if the general Inhomogene-
ous case is desired, at least two potentials, or equivalently two field
components have to be solved simultaneously. But, the presence of
two field components was not predicted in the original Beaubien-

Wezxler formulation.
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Arndt’s approach [24] was developed by keeping both of the aforementioned points in

mind. As usual, it starts from the Homogeneous Helmholtz equations:

2 (V) 2 (V)
Ver +kax =0 (I1.58)
and;
2..(v) 2., (V)
VrHy + k\,Hy =0 (11.59)

where k2 = (nzue + ? and v = 1, 2, 3, 4 represents region numbers, Fig. (II.7).
v vTY P ¢4

FIGURE I1.7 Adaptive finite difference scheme

Now, these equations have to be expanded in an inhomogeneous medium. Assume

that each inhomogeneous medium can be discretized into a finite number of homogeneous

ones. At the worst case, the central node P can be placed on the interface between four
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different homogeneous media. Expanding egs. (I1.58) and (I1.59) results in each of these

sub-regions as:

Region 1:  ~2p1,~ Y 4 (";" ¥ %)HF ~ SwnkiH + w%ij'l - n%;"’l =0 (ILG60.a)
Region2: - ~Hy, —~~H+ (g + ;—SV)HP - %wskgHP—w%—i—I - saa—fj = 0 (IL60.b)
Region3: ~2Hy—SH+ (E ¥ g)HP - %eskiHP—e%‘g K s =0 (IL60.0)
Region4: ~SHp—“H, + (g + Z)HP - %enkiHP + e%—‘;" * n%g S0 e

where H stands for H, or Hy. The existence of partial derivative operators in the finite

difference formulations of (IL.60.a)-(I1.60.d) can be explained in lieu of the inhomogenity
between neighboring regions. As was explained in section I1.C.1, in five point finite differ-
ence operator the potential, or the field, at the central node must be expressed in terms of
its four neighboring points. On the other hand, according to Fig. I1.7, only two of these
neighbors fall on the same region each time. The other two points must be extrapolated
using the first term of taylor’s series; hence the presence of these partial derivatives come
to the picture. But, a digital computer is only capable of dealing with partial differences,
not derivatives. Therefore, to remove them, additional equations are needed. These extra
equations can be supplied by imposing boundary conditions. In fact, by imposing the
boundary conditions, another purpose which is assuring the unique solution of maxwell’s

equations, can also be served.

When solving for H_ in egs. (I1.60.a)-(I1.60.d):
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_13Hx | 0H 1 aHy
S| e | e
19 198 194,
g, 0y g, 0y g, Ox
oH | oH aHy oH
X X + _ y
dx || ox , Oy ay |,
0H | oH oH,| oH
x4 7y
dx |, ox|, oy 9 |,
oH | oH, +8Hy oH,
ox |, ox |, dy| dy 4

When solving for H y in eqs. (I1.60.a)-(11.60.d):

21 22
E,=E,
Hzl = H22
H,=H,
H,=H,
E =L,
E,=Eg
H,=H,
H, = H,
H, = Hp,

_38Hx 1aHx 13Hy
e oyl ey Teox
19 =9 & :
1 aHx _18Hx _laHy
ey | T oy| T ox
3 2y B 3
oH | JH BHy oH
X + y
dx || dx|, Oy dy |,
oH.| oH BHy oH
x . 3
ox |, x|, dy|; 9y,
oH.| oH aHy oH
x x4 ¥
ox |, ox L Wy 9y

1 aHy

=0
g, Ox

4

198,
g, ox

2

(1L.61.a)

(1L.61.b)

(IL61.c)

(IL.61.d)

(IL.61.e)

(11.62.a)

(11.62.b)

(I1.62.c)

(a1.62.d)

(I1.62.e)

And finally, by cancelling the partial derivative operators, the final equations are

derived, egs. (I1.65.a) and (I1.65.b). One interesting point about these equations is the

inter-dependency of x and y components of the ficld. In other words, H_ in a mesh point
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is a function of both H and H y at its four neighboring points. This observation is in close

agreement with the predictions on page 58.

Writing these equations for each individual node results in the following matrix equa-
tion:

[(X) (YX)} HY| 2| HD (IL63)
(XY) (¥) ]| (H,) (H,)

in which (X) and (Y) stand for the coefficient matrices of H_ and Hy terms. Also,

(XY) and (YX) refer to the mutual coupling Hy — H_ and Hx—éHy, respectively.

Finally, by rewriting this last equation:

[(A)-A(D][x] =0

(I1.64)
where:

T
(0] = [Hy Hy o Hy Hy Hy,y o Hy

Finally, one of the eigen-solver packages, like EISPACK [26] can be employed to
extract the eigenvalues of eq. (11.64).
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I1.D. Conclusion

DIFFERENT FINITE difference methods have been discussed. They were subdivided
into two major categories of time domain and frequency domain techniques. It has been
stressed that all time domain methods are in essence equivalent and therefore for most of
the applications are interchangeable. However, this does not mean that these methods can
offer the same speed or require the same amount of CPU and memory resources. On the
contrary, one can usually find one (or some) of these methods more efficient than the oth-
ers. In the dispersion curve analysis, it can be shown that the FDTD is superior than other

time domain finite difference methods and so it is the method of choice.

Frequency domain techniques are historically older and mathematically more
involved than time domain techniques. It has also been demonstrated that the frequency
domain finite difference techniques, in their present form, lack the generality and the effi-

ciency required for a versatile CAD package.

During the following two chapters, two novel finite difference techniques will be pro-
posed. One of them is based on a time domain scheme and the other on a frequency
domain one. It will be shown that they are much more powerful and efficient than their

predecessors.
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[II.A. Imtroduction

ALL versions of finite difference (time and frequency domain) techniques relevant to
the particular topic of this thesis (guided wave structures) were discussed in the previous
chapter. Some of these methods, like the TLM and FDTD have been used for a vast array
of electromagnetic applications, i.e. scattering, antennas,..., and finally eigenvalue prob-
lems. Whereas others, like finite difference methods were mainly developed to deal with

eigenvalue, and particularly waveguide, problems.

In this chapter, the following objectives are pursued:

*  Demonstrate different possible strategies that have been common in time

domain analysis of guided wave structures.

» Introduce Compact FDTD

*  Compare Compact FDTD with classical time and frequency domain

Jfinite difference methods and prove its superiority.

This chapter begins with the basic idea behind the frequency spectroscopy as a means
of eigenvalue evaluation. The implementations of two and three dimensional TLM and
FDTD constitute the subject of the succeeding sections. Finally, the Compact FDTD
which is the main subject of this study is introduced with major emphasize on its advan-

tages over the other methods.
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IILB. Frequency spectroscopy as a means for evaluating
eigenvalues

FROM GENERAL circuit theory, it is known that if the input port of a circuit is excited
with a unit impulse function, the Fourier transform of the output will represent the circuit
transfer function which in turn contains all the information about the network. Using the
same analogy, one can excite any linear structure (or in fact any linear system of differen-
tial equations) with a unit impulse and safely assume that all the characteristics of the

structure will manifest themselves in the output response.

FIGUREIII.1 a) A general linear network model, (b) Corresponding waveguide model

O Input probe

® OQutput probe
mm Conductor |

€
SN
(b)
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Fig. IlI.1(a) depicts a general linear network which is excited by a unit impulse and its

corresponding response at an arbitrary point known as the output port. Fig. IIL.1(b) illus-
trates the same theory and procedure when it is applied to an inhomogeneous waveguide.
In fact what is shown in this figure is the cross section of a rectangular waveguide with two

probes input and output probes.

The choice of input and output ports is quite arbitrary and does not affect the locations
of the poles of the transfer function in the complex frequency plane. On the other hand,
certain modes can benefit from a particular probe location and have a stronger peak in the
output spectrogram. This feature can be useful in the analysis of guided wave structures.
For instance, one can use the symmetry property of a mode to enhance that particular
mode and filter out the others. The probe type is another instrument that can be used to
serve this purpose. Like practical situations, a probe can have six different configurations,
its type being E or H and its alignment being in the x, y or z direction.As mentioned
each propagating mode can be best excited, or attenuated, with a certain combination of

the input and output probes. In a laboratory, the £ probe can be made by the continuation

of the central conductor of a coaxial cable, while the H probe can be constructed by a
closed loop. However, from numerical computation point of view, implementation is much
easier and can be accomplished by assuming the particular component as the input (or out-

put) entry of the program.
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HI.B.1 Mathematical basis of frequency spectroscopy

GENERALLY SPEAKING, a waveguide can be viewed as a two dimensional resonant
structure. In such a structure, the eigenvalues are cut-off frequencies, and eigenvectors are
the orthonormal basis functions. According to applied mathematics terminology, these
eigenvectors are also known as modes. If these modes span a complete set, then any arbi-
trary field distribution which satisfies the governing equations of the system, i.e. Maxwell
or Helmholtz equations, can be expressed as a linear combination of these fundamental

modes [35], i.e.:

Jenf. ¢
lP (x’ y’ t) = chgéng ('x’ y) € (III.].)

i

where m, €, &m (x,y) and f,, stand for modal index, modal amplitude, modal basis

function and modal cut-off frequency, respectively. This represents a two dimensional
wave function. In general, wave propagates in a three dimensional space, but since the

B

. . . . . —iBz .
wave behavior along the z direction is already known, i.e. e ", there is no need to enter

it in the equation and make the final derivations more complex.

Eq. (IIL.1) is a continuous equation in terms of the time and space variables. But, we
are interested in numerical computations in digital computers. Therefore, eq. (I11.1) must

be discretized:

W (i,j) = W(iAx,jAy,nA) ;3 n=0,1,2,..,N—1 (I1L.2)
But, from frequency spectroscopy point of view, the response in frequency domain is

required. Taking DFT of the discrete time domain response results in:
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N-1

—j2nfnA
S, Gy = S ¥ (e (II1.3)
n=0
in which f, = —_
kT ONAt
Inserting eq. (IIL.1) in (II1.3) yields:
N1 J2nf, nAt —j2nfnAt
S, =2,y D e " e d11.4)
m n=0

On the other hand:

P2n(f,, —f) NAt J2rf, NAt
€ (4

N-1
j2n(f,—fondt 1 — _ _
Z ‘ - ejzn (fm _ftk) At - ej27r. (ﬁn _fi) At (III'S)

n=0 —

Eq. (IIL5) is obtained using the trigonometric sum formula and f, NAt = k. Hence:

jonf, NAt

m

. . l1-¢€
S, G0 =Y ek, x5y EIITAAYY (TI1L6)
[

mn 1 —

Eq. (II1.6) is quite adequate for drawing the conclusion that the poles in the frequency

domain response, peaks of the spectrogram, are located at the eigenvalues of the structure,

ie.f, = f,.
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I.C. TLM

THE CONCEPTS presented in section §IILB. are applicable using any time domain
technique, i.e. the TLM, FDTD or Bergeron’s. In this section, a brief survey of the imple-
mentations of frequency spectroscopy concept using the TLM, as reported in the litera-
ture, are presented. In §IIL.C.1 the evaluation of cut-off frequencies using the 2D-TLM is
discussed. The extension of this technique to the entire dispersion curve is the subject of

SHI.C.2.

HI.C.1 2D-TLM for evaluating cut-off frequencies

THE BASIC PRINCIPLES of a two dimensional TLM network have already been
described in §ILB.1.. Here, the algorithms represented by egs. (I.3) and (II.5.a)-(I1.5.d)
are being executed iteratively to simulate the structure shown by Fig. IIL1 in the time
domain. The idea of frequency spectroscopy as a numerical tool for calculating the eigen-
values of resonant structures, i.e. the cutoff frequencies of waveguides, goes back to 1971
when Johns [27][28][29] and his Ph.D. student, Akhtarzad were investigating the applica-
tions of their TLM method for different structures. The method was later extended to cal-
culate the entire dispersion curve, not just cutoff frequencies, using a three dimensional
application of the TLM. The results of their simulations have been reported in numerous

publications [30][31][32][33]. There are also software packages which have been devel-
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oped by Akhtarzad (in Fortran) {34] and later on by Hoefer (in Pascal) [2] to handle these

simulations.

The basic weakness of this approach is in the fact that it is limited to cut off frequency

calculations. A quick examination of eq. (II.7) depicts that there is no derivative with

respect to the z variable present in that equation. In fact, that equation has been based on

the major assumption that 9 = 0, which in turn means = k, = 0. As is known, the

dz

latter is the basic criteria for defining the cut off frequency of a propagating mode.

II1.C.2 3D-TLM for dispersion analysis

THE EXTENSION of the two dimensional TLM to three dimensions will enable one to
solve for dispersion analysis. In fact, this step had also been undertaken by Akhtarzad [36]

at the early stages of the TLM development. In this way, there is no need to assume

B = k, = 0, and therefore the analysis need not be restricted just to determination of cut-

off frequencies.

It is obvious that a digital computer can only simulate a finite region of space. There-
fore, the structure under study (waveguide) must be bounded along all coordinate system
directions, x, y and z. The boundaries along the x and y directions can be considered as
perfect electric conductors (PEC) provided that the waveguide is a closed one or the
dimensions of the structure are much greater than the operating wavelength, i.e. high fre-
quency assumption. One or several boundaries along the x and y directions can be consid-

ered as perfect magnetic conductors (PMC) in case that the study of a mode with a
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particular symmetry, is desired. In this case, PMCs will be applied along the planes of

even symmetry of the propagating mode under study. In case of odd symmetry, a PEC
must be applied. Finally, in case of open waveguides, absorbing boundary condition must
be enforced at the outer boundaries of the structure. Ideally, a waveguide possesses a
cylindrical shape and so is infinite along the z direction. But, again, an infinite structure
can not be modelled using the finite memory of a digital computer. To solve this problem,
two different approaches have been proposed and utilized by researchers. Here, the first
approach which was used in Akhtarzad’s studies is presented. The second one is postponed

to §IIL.D.

Fig. IIL.2 illustrates a partially filled waveguide which is surrounded by PEC walls

along its transverse directions. As has been mentioned earlier, PECs can be applied along
the x and y directions as the surrounding walls of a closed waveguide or a waveguide
operating at higher frequencies. But, in the z direction, the implementation of conductor
walls serves another purpose. By closing the two ends of a waveguide in the z direction, it

becomes a three dimensional resonant structure. The resonant frequencies of such a struc-

ture can be easily obtained at the locations of the peaks in the frequency response to a unit

impulse excitation. On the other hand, the corresponding k, (or ) can be calculated from

the distance between the two conductor walls at the two ends of the waveguide along the z

direction.

e
B = kZ = % H m = 1,2, 3, (III-7)

in which m is a positive integer and L is the length of the structure along the z direction.

The values of a and b, the dimensions of the waveguide along the x and y directions
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should be chosen exactly as the physical dimensions of the waveguide (in case of a closed

structure) or large enough to have the least effect on the field distribution inside the struc-
ture (in case of an open structure). On the other hand, the choice of the value of L is quite

arbitrary. In fact, in a complete dispersion analysis, one can start with a value of k, (input
of the problem) and then proceed to calculate L from eq. (IIL7).

FIGURE II1.2 Partially filled waveguide. All surrounding walls are PECs.

Fig. I11.4 illustrates the procedure that generates a complete dispersion curve. Con-

trary to what will be described for classical FD, Fig., the dispersion curve in this case has

been swept (generated) vertically. Note that for any particular value of k,, there are sev-

eral peaks in the frequency response in the desired bandwidth, @, ®,,, ®,5,..... Note,

rl?
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however, that the 3D-TLM is not a very reliable method for multimode analysis. Let’s

elaborate on this with an example. Suppose the distance between the two PEC walls is set

tol = L1 , therefore;

T 21 3w
B = LI (T11.8)
FIGURE IIL3

General procedure for generating a complete dispersion curve using
3D-TLM.

So, there can be no assurance whether a particular peak in the frequency spectrogram

belongs to a second propagating mode of B = m/L, or the first mode corresponding to

B = (mm)/L,.Of course, intuitively, for a single mode analysis, one can always assume
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that the first peak corresponds to B = w/L,. Yet again, this is based on the assumption

that dispersion curves are usually monotonic ascending functions, and hopefully the char-
acteristic curve of the first mode would not intersect the second mode. Fig. IIL.4 presents a

sample of dispersion curve that has been reported in the literature using the 3D-TLM

method.

FIGURE IIL4 Dispersion curve of the structure shown in Fig. IIL.2 generated by
changing the distance 7. along the z direction.
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IL.D. FDTD

IT HAS been stated that all time domain analyses are in essence equivalent. So, all the
material presented in §II1.C.1 and $III.C.2 is equally applicable using the FDTD method.
However, it is emphasized once again that this equivalency does not extend to implemen-
tation. On the contrary, for some applications, one of these methods may be more efficient
than the others. In particular it has been shown that for the dispersion curve type of analy-

sis, the FDTD is more efficient than TLM [13].

III.D.1 2D-FDTD for evaluating cut-off frequencies

ACCORDING TO the theorem which is discussed in appendix A:, one can assume that
all the modes at cutoff frequencies are either TE or TM. And this is true even if the
waveguide is inhomogeneous and/or anisotropic. Hence one can simply start a very
straightforward algorithm to either discretize the set of egs. (A.1), (A.2) and (A.3) for the
TM type or the set of (A.4), (A.5) and (A.6) for the TE type modes. As can be seen, the
analysis possesses a very important feature which is being a two dimensional one. But,

unfortunately it is restricted just to cutoff frequency studies.
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I11I.D.2 3D-FDTD for dispersion analysis [37]

LIKE THE 3D-TLM case, one can extend the analysis to the whole dispersion curve

and for any arbitrary value of &, at the expense of going to a three dimensional simulation.

Before doing so, one question has to be addressed. How to truncate the cylindrical
waveguide, which theoretically goes to infinity along the z-direction. There are two tradi-

tional answers to this question. The first one which was based on truncating the waveguide

using two PEC planes was discussed in §1II1.C.2 and was based on eq. (IIL.7).

The second type of analysis utilizes a pair of absorbing boundary conditions (ABC) at
the two ends of the waveguide. The method is based on launching an incident wave at one
end of the waveguide and measuring the occurred phase delay on the output probe. From a
theoretical point of view, the separation distance between these two ABCs is arbitrary pro-
vided that they are perfect; i.e., there would be no reflection back from these surfaces.
~ Since, up to now, no perfect ABC has been reported, one has to consider the separation
distance between these two planes as large as possible. This, in turn, reduces the destruc-
tive effect caused by the reflected waves from these imperfect absorbing surfaces. Fig.

II1.5 illustrates a scheme from the computational domain.
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FIGUREIILS Computational field of a 3D-FDTD

~ Excitation Plane

Suppose that a Gaussian pulse of the following shape excites the structure.

{_ (11 2]
T

E () =e¢ (I11.9)

If the output probe is located at a distance L from the input probe, then the Fourier

transforms of the input and output data can be calculated from

E(0,2=0) = [ E (rz=0)e""ar (IT1.10.2)

E(o,z=L) = [ E(tz=1)e"a (11.10.b)
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The efficient method for evaluating egs. (II1.10.a) and (II1.10.b) is the subject of chap-

ter five. Thereafter, the dispersion and attenuation characteristics of the waveguide can be

calculated from:

E(0,z=L
N8 _ E__XE(; ; o; (IIL11)

where
Y(®) = o(w) +jp () (I1L.12)

The relative effective permittivity, € eff(m) , can also be calculated through B (®) as:

B(w) = o /poaoseff(co) (II1.13)

Figure 1I1.6 illustrates a sample example from the literature [37].

FIGURE III.6 The dispersion curves corresponding to the structure shown in Fig. IIL5
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ILE. Compact FDTD [38]

THIS METHOD is one of the major contributions that has been made during this thesis.
The basic motivation for developing such a method was for finding a technique with
which the entire dispersion curve could be generated using just a two dimensional analy-
sis. As will be shown, the Compact FDTD can successfully accomplish this task. By ren-
dering a traditionally three dimensional analysis to a two dimensional one, a great deal of

reduction in CPU time and memory resources is achieved.

III.LE.1 Formulation

THEORETICALLY, in time domain methods the structure under study, such as a
waveguide, is excited at an arbitrary location in space (input probe) and its response is
recorded at another point (output probe). After taking a Fourier transform of the output,
several peaks appear in the frequency domain, that correspond to the waveguide cutoff fre-
quencies. By a quick inspection of Maxwell’s equations on page 182, it can be shown that
at cutoff frequencies, they decompose into two sets of uncoupled equations, each corre-
sponding to the TE or the TM modes. Consequently, the calculation of cutoff frequencies
can be carried out in a two dimensional space. However, when the entire dispersion curve
analysis is the major concern, i.e. B = 0, all six vector field components in Maxwell’s
equations are coupled and a three dimensional analysis becomes necessary. This compli-
cates the problem considerably and in using numerical methods, increases the computation

time dramatically.
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It will be shown here, however, that for axially inhomogeneous waveguides with no

discontinuity along the z direction, the problem can still be reduced to a two dimensional
analysis. To describe the solution technique, a waveguide region, homogeneous and free of
discontinuity along its z axis, is considered. Such a waveguide will support modes that
have constant propagation constant § along its axis. In Maxwell’s equations, therefore one
can replace the z derivatives with —jf3, to efficiently reduce them to a two dimensional

space in the waveguide cross section. Here, the derivation of expressions is limited to

waveguides with diagonal tensor constants. Maxwell’s equations are given by:

3.7 oE . . e
VxH = 8025 g = Diagonal relative permittivity tensor (111.14)
._>
A oH . : .
VXE = —uoﬂ—a}- [l = Diagonal relative permeability tensor (III1.15)
where:
e, 0 0 p., 0 O
E=1|0 €, 0 and g=|0 H, O (I11.16)
0 €2 0 0 e

which generates six scalar equations for six vector field components.

i ( iBE aEZ) 1.17.2)
TS .
oH, 1 ('BE aEz) (IIL17.b)

- ——— 4+ — . .
0f Mok, TP Ok
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% _ _x__ 7

5 UOHZZ( > 3% ) (I1.17.c)
aEx = ( H aHZ) 11.17.d
—gf—_ﬁgﬁxxjﬁ 3’+_8—y— (IIL17.d)
9L, =L ( iBH aHZ) I1.17
ot £0E,, —JB X ox (L17.¢)
aEZ 1 ( aHx aHy) 1L17
‘é}"eoau‘ay*ax ALL17.6

An important distinction here is the concept of complex impulses in the time domain
marching. Although it has not been used previously in the FDTD analysis, its introduction
here does not violate the requirement of the time to frequency domain transformation. The
transformation is with respect to the spatial variable and all expressions are still in the time
domain. In fact, we originally proposed COMPACT FDTD [33] [34] using these complex
impulses in the time domain. But, a more careful inspection of egs. (III.17.a)-(I11.17.1)
shows that even these complex impulses can be avoided if the following change of vari-

ables is made.

E' = jE, (IIL.18.2)
E) = jE, (IIL.18.b)
H = jH, (HIL18.c)

The new system of equations which are entirely based on real variables is as follows:
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oH, _ 1 (__ BE v_?_ﬂ) (IIL.19.2)
ot Hollyy g ay

oH, _ _1 (BEIJ,?__E::) (TL.19.b)
ot Hoty N 7 ox

oH ' 1 (9E' OE

. _ ( _ 9% ) (I1L19.c)

ot Holl,, N dy  ox

Ak _ 1 (~BH +a£z_') (IT1.19.d)
ot SOExx 7 ay

oE' oH'

oo L(BH___z) 1L.19.¢)
ot EoE,, ¥ ox

ok, _ 1 (_ aHxJ,aHYJ (ITL.19.f)
ot gye N dy  Ox o

This, in turn, can enhance the algorithm efficiency by factors of two and (around)
four, for RAM memory space and elapsed CPU time, respectively. In a conventional
FDTD method, the three dimensional Yee’s lattice of Fig. III.7 (a) is used to solve the
respective field equations in the waveguide volume. In the present method, however, since
the z variable is eliminated, the above equations are solved in the two dimensional leap
frog lattice of Fig. I11.7 (b), the waveguide cross section. Conceptually, this is equivalent to
compressing the 3D-Yee’s lattice in the direction of the arrows. It is therefore a Compact
FDTD method. It is worthwhile mentioning that one of the other advantages of such a
compression is doubling the numerical resolution for defining the media characteristics,

i.e. the permittivity, permeability, conductivity.
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FIGURE II1.7 ( a) Conventional Yee’s 3D-lattice. Arrows indicate the direction of
compression to reduce the 3D lattice to a 2D one, (b) The unit cell in the
new compact FDTD,

(i+1,j+1)
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Discretizing all the derivatives using their central difference formula:

) (I11.20)
b ) B Do
Hobl AT Ay

where for convenience, the notation of F" (i,j) = F(iAx, jAy, nAr) is adopted. Further-
more, by performing the following normalizations, the characteristic impedance of free

space is set to unity.

E'
e, = —= (II1.21.a)

X JITL'(;

E 1
e, = —= (II1.21.b)

¥ JEO
e = 2 (IIL.21.c)

ho= X (IL.21.d)

h = 2 (I11.21.e)
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h, = =% (II1.21.1)
z Ja)

So, the final discretized form of Maxwell’s equations which constitutes the body of a

Compact FDTD algorithm is as follows:

LS TOR | "Ta1
h, (z,;+§)= h, (I’J.I-i) (I111.22.a)
+— 1l:—(BAl)e:(i,j+%)—e';(i,j+1)+e';(i,j)}

u’xx(i’j-i-ij
hH_(' 1 ) - hn—i(' L ) 1.22.h
¥ l+§,_] = n, l+i,_] ( 22. )
+—S—1[(BAI)ez(i+%,j)+e';(i+1,j)~e';(i,j):|

o143

n+ - -

1,1 3. 1. 1

hZ (I+§,j+§) = hz (l+§,1+§) (III.ZZ.C)

_ '.|._
2172

s nf . 1, af . 1, af ., 01 nf . .1
e i+ 1)[%(”5’1*1)‘%(”5’0*%(“1*5)‘%(‘*1’”5)}
ZZ

ez+1(i+ %;) _ e;(H %1) (I11.22.d)

1 1 1
n+ = "t = H+ =
By 2(, 1. 2. 1 . 1 2(,. 1. 1
+—~————1—){—(BAI)hy (z+i,1)+hz (1+§,J+§]—hz (z+§,1—§):|

Compact FDTD




n+1f , . I/ A |
e, (I,J+—) = ey(1,1+§) (I1L.22.€)

I 1 1
n+ = ez nd =
Ky 2f ., 1 20, 1. 1 2f, 1 . 1
+’—'"‘—““""'. . 1)[(BAl)hx (l’j+§)+hz (l—i,_]'i'i)'—hz (l+§,]+§):|

&G j) = ) (TL.22.0)
g n+% 1 u+% 1 n+% 1 n+% 1
e | (’”’“i)_hx ("’”5%’3 (Hi’f)"hy (“5’1)
1
21 2
in which, s = %A—t@s [2+ (EZAJ) ] [40] is the stability factor and Ax = Ay = Al. By

iterating the six resultant equations, the time domain response of the structure can be
obtained, and by taking an FFT of the output data, one can easily calculate the resonant
frequencies of different modes by finding the locations of the peaks in the frequency

domain spectrum.

To solve the resulting equations, however, one needs to select a value for [, as input
parameter, and locate the peaks at the frequency spectrum, to determine the eigenvalues
for the dominant and higher order modes. The method, thus, reduces a complex three

dimensional FDTD analysis to a number of small two dimensional ones.

Fig. II1.8 depicts the systematic procedure of generating a complete dispersion curve.
First, for each arbitrary value of BA/, the CFDTD algorithm is executed. Next, the Fourier

transform of the output time sequence is calculated. The corresponding resonant frequen-
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cies, %‘.—l, are located at the peaks of these transforms. By having several of these points,

the complete dispersion curve can be interpolated using techniques such as cubic splines.

FIGURE IIL.8 : Generation of a complete dispersion curve using compact FDTD.
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IHL.E.2 Applications

TO GENERATE a complete dispersion curve, generally, the time domain responses are

evaluated for eleven incremental values of BA! from zero to one (or any other desired
value as the upper margin). The corresponding peaks are extracted from the spectrograms
of the signals and finally a natural cubic spline interpolation technique [41] is implemented
to obtain a smooth dispersion curve for each mode. To illustrate the accuracy of the
method several different cases, ranging from simple rectangular hollow waveguides to
more complex coupled strip lines on anisotropic substrate, are considered. In each case,
excellent agreement between the Compact FDTD and earlier results, with errors less than

0.5%, are achieved.

Two frequency spectra of the time domain data corresponding to two distinct values
of BAl = 0.1, 0.3, for a hollow rectangular waveguide, are illustrated in Fig. II1.10. The
dispersion curves of its first three dominant modes are depicted in Fig. III.11. The agree-
ment between the Compact FDTD and analytical solutions obtained from the following

parabolic formula is excellent and they are practically indistinguishable.

W ey

One interesting phenomenon in Fig. II1.10 is the existence of a sharp peak at zero fre-

quency, i.e. DC. In fact, this happened in most of the simulated cases. In two conductor
structures such as boxed microstrip line, it may be attributed to the propagation of DC

waves in the form of a TEM mode along the line. But, in a hollow rectangular waveguide,
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a TEM or Quasi-TEM mode cannot exist and therefore propagation at DC frequency is not

feasible. On the other hand, from electrostatic and magno-static point of view, Fig. I1L.9,

one can assume a circulating electric surface current along the waveguide walls with no
longitudinal component, i.e. J, = 0. Such an arrangement can explain the presence of one

solution to Maxwell’s equations in DC frequency. Also, the following observations can be

used to support the preceding theory:

o Under cut-off condition, the zero frequency peak appears only for TE

modes.

o Ifone of the waveguide walls is replaced with a PMC, a significant drop

in the amplitude of the zero frequency component will be observed.

FIGURE IIL9 Circular electric surface currents along the surface of the waveguide

Fig. II1.12 depicts a partially filled rectangular waveguide which is selected for the
next example. This problem is somewhat more complicated than the hollow rectangular
waveguide. But, still it can be solved analytically up to the point of a transcendental equa-

tion [25]:
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For TE v modes:

e ol 257]] = fteon k(4]

and for the TM . modes:

where:

k +('m) +B =k§=co.eouO
k +( )+B =kf=me]p,1

The dominant mode is the lowest order TE mode (smallest root for n =

(111.24.a)

(I11.24.b)

(I11.24.¢)

(I11.24.d)

0). Also, ifa

small amount of error can be tolerated, the following perturbational equation can be used:

€, —&
B = 1+ O[C—i+ism(nd)] ( &
kg g, La = a kya

)2 (ITL.25)

Again an excellent match between analytical techniques and CFDTD is observed.

The analysis of a Unilateral Fin-line constitutes our next example, Fig. II1.13. From

this point, there is usually no standard analytical solution available for the cases under

study. However, using standard numerical procedures, like mode matching, its dispersion

curves can be evaluated. One major distinction between this case and previous one of par-

tially filled waveguide, is that for the present case a set of different modes, in each region,

are required in order to satisfy all the boundary conditions. Whereas for the partially filled

waveguide, just a single TE or TM . mode will suffice to fulfil all boundary conditions.
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Fig. IIL.13 illustrates the dispersion curve generated by CFDTD. Again this result

shows a good agreement with the reported data in the literature [13]. In fact, Choi and
Hoefer constructed a three dimensional resonant structure by terminating a unilateral fin-
line at its two ends with two PEC walls. By adjusting the distance between these walls,
they managed to tune the resonant structure for different values of [, refer to

Section III.C.2 on page 73.

The next case deals with a more complicated structure consisting of an anisotropic
inhomogeneous medium. Using conventional techniques, this class of problems has
always been more difficult to deal with compared to isotropic media. The difficulty arises
from the fact that in this case some extra correlation between electromagnetic field compo-
nents will be generated. Expanding one of Maxwell’s equations for both isotropic and ani-

sotropic cases is used for further elaboration. For the isotropic case:

OH, OH, O, i
ER T (120

and for the anisotropic case:

oH, aHy oE, aEy oE, ——
g % S Eoexx‘gg' + aoexyw + 808xz‘a_{ (IXL.27)

By comparing these two equations, one notices the presence of two extra terms on the
right side of eq. (II.27). This can noticeably increase the mathematical preprocessing
required using conventional techniques. But, from CFDTD point of view the problem can

be treated simply by adding the finite difference equivalences of the added terms.
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Fig. I1I.14 illustrates a boxed microstrip line on Sapphire. The substrate is placed such

that its main dielectric axis is parallel to one of the axes of cartesian coordinate system.

Under these circumstances, dielectric will behave like a diagonally anisotropic medium

with the following specifications: €, = g, =94 and €, = 11.6. The dispersion curve

of this structure, with the same geometrical specifications, had already been reported by
Alexopoulos et al {42] using quasi-static, and by Hoefer et al [13] using 3D-FDTD meth-
ods. Some empirical data was also presented by Getsinger [43]. Finally, in an invited paper
by Alexopoulos, a comparative study was conducted among all available data versus the
results obtained using 3D-TLM method [44]. This comparative study reveals the fact that
TLM results have always been an underestimation of the dispersion data obtained from
other techniques. The same observation is true for the present case, i.e. 3D-TLM and 3D-

FDTD underestimate CFDTD results, as shown in Table III .1. CFDTD generates more
accurate results than the other two simply because it calculates the z derivative analyti-

cally.

TABLE HI .1 Comparison of computed dominant mode frequencies, 1 = g—; for problem of

fig. IIL14.
B(1/ (mm))
1.0472 07854 | 06283 | 04180 | 03142
3DTLM | 1497 11.70. 966 | 675 | 522
jg 0 SDFDID | 14.64 152 | 954 | 618 | 5.28
£ 8 oo T .
2 Difference | 5

The observed discrepancies can be attributed to three separate reasons. One is due to

the approximation for the permittivity at the boundary of the two regions, where an aver-
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age value between the air and substrate is used. Second, due to the inherent advantage of

the present method, a double resolution mesh is used to define the dielectric constant of the
medium and, consequently, the results are expected to be more accurate. Third, the z
derivative in the present approach is handled analytically, while in others, this has been
done numerically. Furthermore, as mentioned above, the previous results listed in Table III
.1, in comparison to the 3D-TLM and other methods, has shown consistent underestima-
tion of the resonant frequencies at given values. It is therefore believed that our computed

results are more accurate.

In these examples, 1000 iterations have achieved an acceptable solution accuracy, and
extending it to more than 5000 iterations had no appreciable effect on increasing the accu-
racy. On a Sun-Sparc20 computer, each 1000 iterations needed about 3 seconds of CPU

time, which is sufficiently small to generate the entire dispersion curve rapidly. For
instance, the dispersion curve presented in Fig. III.14 was generated using 11 incremental

values of BA! from 0.1 to 1. To enhance the resolution of the FFT operation, all time
domain sequences have been zero padded to eight times their actual data size. However,
there are other signal processing methods that are available to serve the same purpose [39].

Also, 1n [40], a technique based on taking the average value between the permittivity of

e +1 g _+1

XX
and =

5 , were used

free space and Sapphire in the x and z directions, i.e.

while along the y direction the permittivity of Sapphire has been directly used, i.e. €y

This modification, compared to what has been explained in [33] in which the average val-
ues were used along all coordinate directions, did not show any noticeable effect on the

resonant frequencies. To make the output results independent of the physical dimensions
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of the structure, the input and output quantities of the analysis are presented in their nor-

malized forms. Consequently, we define BA/ as the normalized propagation constant and

Al . . : . .
—+ as the normalized frequency. Since these normalized parameters are dimensionless,

A

they are independent of the actual physical dimensions of the structures and hence the
analysis is general as long as the ratios between different structural dimensions are kept

constant.

In microwave engineering, it is desirable to have a waveguide that exhibits a linear
dispersion characteristics. Fig. III.14 shows that by introducing a conductor at the center of
a partially Sapphire-filled rectangular waveguide, this goal for the first dominant mode
was indeed achieved. However, at higher frequencies and therefore higher order modes,
the famous parabolic shape of the results for a hollow rectangular waveguide, similar to
those of Fig. IIL.11, gradually appears and deteriorates the perfect linear shape of the

higher order modes.

Fig. III.15 illustrates the dispersion curves of even and odd modes for a coupled
microstrip line laid on Sapphire. In fact, half of the structure was analyzed for each case.
This was achieved by placing a PEC (for odd mode) or PMC (for even mode) wall instead

of the dash-line. The results are in good agreement with those reported using TLM [44].

In all above analysis, reducing the grid size and/or increasing the number of iterations
can enhance the accuracy. Also as the Al/A decreases, the higher number of iterations is

required to achieve the same degree of accuracy. This is due to the fact that as Al/A

departs from the origin in the positive direction, its shadow moves in the negative direc-
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tion along the fourier frequency axis. For lower values of AL/}, the side lobe generated by

the negative frequency component can interfere with the main lobe of the positive compo-

nent. Specially, this problem is quite noticeable when the study of the modes in a Quasi-
TEM structure is concerned. In such a structure, the value of Al/A = 0 corresponds to
the value BAl = 0. On the other hand, in the structures that do not support Q-TEM (usu-
ally structures with one or no conductor), the Al = 0 case corresponds to a non-zero
positive values of Al/A >0, and therefore the aforementioned problem do not exist or

quite alleviated.
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FIGURE IIL.10 The Fourier spectrum (after zero padding and Hanning windowing) of the structure in Fig. ITL.11, corresponding to two
distinct values of normalized propagation constant .

99




o Input probe

® Output probe
Al = 1mm

- a -

—— Analytic TE\;  — - — Analytic TE,, — — Analytic TE,, & TM,

600 CFDIDTE,  —--— CFDIDTEy = CFDTD TE, & TM,,

10%)

< 500

(

O
<

. 400 —

w

o

o
]

Norm. propag. const. {3

T ] T T I I I | I | I I I 1 | 1T T ’ lii| I ] | 1 1 I i l I T T ] ! I T T I l [ | T |
50 60 70 80 90 100 110 120 130
Normalized frequency { (A1) /1 } (x10®)

FIGURE IIL.11 (i) Hollow rectangular waveguide (ii) Corresponding dispersion curves for the first four modes
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HLF. Conclusion

A NEW Compact 2D-FDTD method was proposed to determine the dispersion charac-
teristics of guiding structures. Its speed and accuracy promises to make it the dominant
method for such analyses. While it has the versatility of finite difference methods, it enjoys

the power and speed of other full wave analyses.
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Chapter Four

FIELD PATTERN ANALYSIS

Full Wave Finite Difference (FWFD)

Ali Asi




IV.A. Introduction

ALTHOUGH NUMEROUS techniques are available for determining eigenvalues of
microwave and optical waveguide structures, only a few are capable, or efficient in finding

eigenvectors. A novel iterative FULL WAVE FINITE DIFFERENCE (FWFD) method is

proposed which is capable of evaluating all six vector field components of an arbitrary
shaped inhomogeneous waveguide structure simultaneously and efficiently. It is based on

a new four directional finite difference treatment of Maxwell equations. For the E);lo

mode of a shielded suspended coupled dielectric guide with a mesh discretization of
18 X 12, a total number of 100 iterations is adequate to achieve convergence. In this case,

the entire process takes about three seconds on a Sun-Sparc10/41 workstation.

For design and analysis of waveguides one usually requires the dispersion curves and
information on the field patterns. However, most of the reported papers deal with the dis-
persion curves and the computation of the field patterns is often neglected. This part of the
thesis addresses the latter question and provides a full wave solution method for computa-
tion of the field patterns. In general, a knowledge of the dispersion curves along with the
field patterns provides all the necessary information, or, means for derivation of any
unknown attributes of the waveguide. Historically, a number of analytic and numerical
techniques have been developed to deal with such problems. However, the analytical

methods and some of the numerical ones suffer from lack of generality. The finite differ-
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ence method is one of the numerical schemes which requires minimal initial assumptions

and hence is applicable to almost all waveguide problems. This is therefore used in the

present study for developing a full wave finite difference method.

The Classical finite difference method is the first version in the course of evolution of
finite difference methods. It was developed for solving the Laplace equation which is
valid only for static, i.e. zero frequency, or Quasi-TEM modes. Since Laplace equation is
just a special case of the Helmholtz equation, the next attempt was aimed at solving this
equation. Two different strategies, Section IL.C. on page 48, were reported to accomplish
this task. Beaubien et al., Section II.C.1 on page 48, proposed an iterative scheme which is

based on the assumption that the solution can be decomposed into two independent modes,

ie. TE, and TM, . This assumption is only valid for homogeneous waveguides or the

inhomogeneous ones operating at cut-off frequencies. In their method, finite difference
was implemented iteratively using over-relaxation in conjunction with Rayleigh quotient
to improve the solution for eigenvalues. The second approach was implemented by
Bierwirth et al., SectionI.C.2. on page S8, in which the general inhomogeneous

waveguides operating beyond cut-off frequencies were studied. In this method, first Helm-
holtz equation is discretized for both H_ and H , components and then a homogeneous
system of equations is constructed by enforcing boundary conditions between neighboring

regions. In the next stage, EISPACK package was employed to extract the eigenvalues of

the system of equations, and hence the dispersion curves of the waveguide.
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It is worthwhile to make a comparison between the aforementioned finite difference

techniques. Bierwirth’s method is more general than Beaubien’s in the sense that it is not
restricted to homogeneous waveguides or inhomogeneous ones operating at cut-off. On
the other hand, from the numerical point of view, Beaubien’s method is more efficient. The
reason for this superior numerical efficiency is twofold. First, it can be shown that the
resulting matrix generated by discretization of the Helmholtz equation is sparse. There-
fore, indirect methods like Beaubien’s, require less CPU time to find the solution for such
systems. Secondly, in the Bierwirth’s method all the matrix elements ought to be calcu-
lated and stored before calculating the eigenvalues. This also poses an unnecessary burden
on the RAM computer resources. In fact, in Beaubien’s iterative method, only the ele-

ments of one row of the mairix need to be calculated and stored at a time.

The proposed method in this thesis, FWFD, enjoys the generality of dealing with an
inhomogeneous waveguide and at the same time implements the more efficient indirect
technique to extract the solution. The other important distinction between FWFD and its
predecessors is in the fact that the main emphasis, here, is given to finding the eigenvectors
(field patterns) rather than the eigenvalues (dispersion curves). On the other hand, due to
mathematical correlation, calculation of an eigenvector requires a prior knowledge of the
corresponding eigenvalue. However, the eigenvalue calculation can be performed more
efficiently by the Compact FDTD (CFDTD) method, Section IILE. on page 82. In FWFD,
this computed eigenvalue is used to calculate the eigenvector or field patterns. This proce-

dure is illustrated in Fig. IV.1.
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The aforementioned discussion provided a comparison between the FWFD, based on

Maxwell equations, and different versions of classical finite difference methods which
were all based on the Helmholtz equation. Another important comparison can also be
made between the FWFD and Time Domain methods. Such a comparison is postponed to
section IV.E. where a more detailed study on the application of time domain methods for

calculating field patterns is conducted.

Mathematical derivation of the FWFD is described in section IV.B. Since the method
is based on a four directional operator at all interior points, boundary conditions pose a
problem for FWFD in the sense that at the boundaries only the information of three neigh-
boring points are available. To overcome the problem, a boundary condition treatment,
which is based on a three directional operator, is discussed in section IV.C. Details of the
time domain based methods are addressed in section IV.E. The results of applying the

algorithm for the case of hollow rectangular waveguide and a shielded suspended coupled

dielectric guide operating at ET 1o mode are presented in section IV.E, followed by the

conclusion in section IV.G.
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IV.B. Formulation

IN AN INHOMOGENEOUS waveguide carrying a wave of arbitrary frequency, all six
field components are generally present. Starting from Maxwell’s equations for a loss-less

non-magnetic medium:

.)
VI = eosraa—? v.1.a)
_)
o SR 3 aH
VXE ““05 v.ai.b)
> >
Ve er'EJ =0 (IV.1.c)
> o
VeH =10 (Iv.l.d)

in which &,, |1, and g, represent free space permittivity, permeability and relative permit-

tivity, respectively. Assuming no discontinuity in the z direction, the variation of all field

components with respect to z and # can be represented by the term ¢ (r-pz) . Therefore

the transformations %—) jo and -a% — —jP are warranted, and Maxwell’s equations can

be expanded as:

1 ahz
—_ h +=—=
we, = — B v (IV.2.a)
0 r
i 8hz
(DEy = é;)—ﬁ—‘; — th— g (IV.2.b)

E
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1 de
why = —| Be_+ ==

Hol™ ¥ ox

l[aey aex]
(l)hz = [J,_O -637_3)-)—
ahx ahy
g'l‘gj}—'i'ﬁhz =0

(IV.2.c)

av.a.d)

(IV.2.e)

(IV.2.)

(IV.2.g)

(IV.2.h)

in which Egs. (IV.2.a)-(IV.2.c) and (IV.2.e)-(IV.2.g) are derived from (IV.1.a) and (IV.1.b),

while Eqs. (IV.2.d) and (IV.2.h) from (IV.1.c) and (IV.1.d), respectively. All information

contained in Maxwell’s equations is transferred to the final algorithm. Also the following

conventions are adopted:

E (%3210 = —je_(x) o/ (01=B2)
- 3 o j(())t—ﬁz)
Ey (x,¥,2,0) = Jey(x’y) ¢
E (x,9,2,0) = e (%) o (07— B2)
z z
J (@1=PB2)

Hx(x,y,z, t) = “jhx(xsy) b

(IV.3.a)

(IV.3.b)

(IV.3.c)

(Iv.3i.d)
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jh (x,7) o PAC Y (IV3.¢)

Hy (x, 9,2, 1)
H,(xy.2,0 = h, (%) WA (AV.3.0

Note that in Egs. (IV.3.2) to (IV.3.f) the phasor field variables in the transverse and
axial directions are defined 90° out of phase. These phase differences are introduced ini-
tially so that the final equations are in the real domain, to improve the computational effi-

ciency in both time and RAM memory space.

Eqs. (IV.2.2)-(IV.2.h) constitute a system of equations for six two dimensional func-
tions and their first derivatives with respect to x and y coordinates. To derive required
expressions, we select e, component and provide the details of the procedure. It may be
extracted directly from Eqn. (IV.2.f). Unfortunately, this will result in an off-diagonal

dominant system of equations and therefore yields a highly unstable iterative algorithm.

de,,

e
The correct strategy is in selecting only those equations that contain —é—f and a_y terms,
X

ie. (IV.2.d) and (IV.2.g), and calculate e, by breaking down the derivatives.

Expanding Eqn. (IV.2.d) into its finite difference form yields:

N TAYE R T T
e (i+50)e i) e (i-17)e (-1i) Iv.4)
= Er(l,J—i)ey(l,J— 1)-8,.(1,J+5)9},(1,])—38,.(1,]) ez(w)

in which B = B - Al is the normalized propagation constant along the z direction and

other notations are defined according to Fig. IV.2.
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FIGUREIV.2 Configuration of field components in FWFD
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Calculating for e, (i,J) gives:

i+=,7

e (i,])= :(-il_j{er( i) (=17 (Ivs.a)
r 2

ve (i) %]ey i~ 12+ %)ey (i) -Be, (i)e, (i,j)}

and replacing i with i + 1 in Eqn. (IV.4) and again sorting for e (i, j) provides:

o 1 3. . N oo ._1) . .
ex(z,1)= -—-—._1-___{8],(3+2,J)€x(1+1,1) er(z+1,1 5 ey(z-i-l,; D
Sr(l'i'i,_])

+er(i+1,j+%)ey(i+1,j) +Gsr(i+1,j)ez(i+1,j)}

IVv.s.b)
aex
Similarly, —a—y— in Eqn. (IV.2.g) yields:
e (bj+ 1) —e (i,j) = -Ah (1)) +6’y(l+ Lj) —ey(l,J) (IV.6)
in which A = ou, Al = ZTC([E)Z and gives e_ (i, ) as:
- p’O x 0 g x »J '
eybi)=e (bj+ 1) +Ah (i,j)-e (i+1,)) +e (i) (IV.7.a)

and by replacing j with j— 1 in Eq. (IV.6) provides:

e (Ljy=e (Lj—-1)-Ah_(i,j-1)+e (i+1,j-1)-e_(i,j—1) ({IV.7.b)
X X Z y y
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Egs. (IV.5.a), (IV.5.b), (IV.7.2), (IV.7.b) constitute a set of finite difference equations

expressing the x component of electric field in terms of its values at four neighboring
nodes. Adding them provides a single expression relating the field value at each point to its

four adjacent nodes. Final expression for e, can be found as:

. lcee 1.ee Aceh foee
ex(z,;) = Zﬁxx+28xy+§8xz +§5xz (IV.8.a)
in which:
8 = e (Lj+1) +e (i,j-1) (IV.8.b)

1 A . . .. 3. . .
+————T—)|:8r(l—i,j)ex(l— Lp +ar(z+§,j)ex(1+ 1,])]

ar(i+§,j

5§§ = {ey(i,j) +e, (i+1,j-1) (IV.8.¢)

1 | .. . o1 . .
+———Tj[£r(z,1—§)ey(1,1— 1) +8r(1+ 1,_]+§)6’y(l+ 1,]):[}

8,_(1 + i’j

—{ey(i+1,j) +ey(i,j-—1)

+-——1—[e_(i,j+1)e (i, /) +e(f+1,j—1)e (i+1,j—1)]
(- 1 -) t 2 y ¥ 2 y
El 1+,
! 2
8% = h (L)) =k (ij-1) AV.8.d)
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ce 1

8 = ————|& i+ Lie i+ 1) —e,(bi)e, () ] (IV.8.0)
& (”2"’)

Aeh S
and ESXZ represents the contribution of 2 to e,

To help in understanding equation (IV.8.a), the following cases are considered.

» Inside a homogeneous medium Sii = 0 and Eq. (IV.1.a) takes a simplified

Jorm:

e (ij) = [ex(i,j+1)+ex(i,j—1)+ex(i—1,j)+ex(i+1,j)] Iv.9)

+*§[hz(i,j) ~h, (i, j - 1)] + g[ez(m 1, 7) —ez(i,j)]

Bl

* The first bracket in Eq. (IV.9) represents an averaging scheme for the field
components at neighboring points. This averaging term appears in all

other equations as well. Its presence can be understood from the finite dif-

ference solution of Laplace equation, i.e. V?@ = 0, in which

2 2
2 .
vV, = _8_2 + iz In that case, the solution is expressed as:
ax~ dy ~

D)) = i[tl)(i-i-l,j) +®@(i-1,7)+O(Lj+1)+®(i,j~1)] (Iv.10)

It can easily be verified that Eq. (IV.10) is a special case of Eq. (IV.9), when the criteria
(w=0) =A =0 at ﬁ = 0 is met. In fact, this is the same criteria for the validity of

Laplace equation, i.e. Quasi-TEM or TEM assumptions.
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o It is known that inside a homogeneous waveguide, all the field components

can be generated by superposition of two TE and TM modes. This is ver-
ified by Egs. (IV.9), in which 521 and Sis can be viewed as the contribu-

tions of TE, and TM, based modes, respectively. Note that for the

. eg . . . s
inhomogeneous case, an extra term, & ey 15 also required which diminishes

everywhere except at the interface of two media with different permittivi-

ties.

Eq. (IV.10) cannot be derived simply by adding Egs. (IV.5.a), (IV.5.b),

(IV.7.a) and (IV.7.b) and dividing them by four. The presence of % multi-

plication factor for Si: and Sig in lieu of }1 can be understood by studying

an extreme case of a one dimensional problem. Suppose, the solution for

the TE, mode in a hollow rectangular waveguide is desired. In this case,

assuming the longer edge of the waveguide in the x direction, all the field

components are a function of x only and i = 0. Egs. (IV.2.a)-(IV.2.h)

dy
reduce to:
1 ahz
coey = 8—0 -B M (IV.11.a)
) de
oh = —| =2 (IV.11.b)
z ox 4
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ahx
"a‘x—'*'ﬁhz =0

From Eq. (IV.2.a):

h, () = h,(i=1,))-Be (i,7)-Bh (i)

. ; Al
in which B = conAl = 21{7)

1
2

and performing the i — i + 1 transformation gives:

hz(l,J) = hz(z+1,1) +Bey(z+1,j) +[3hx(z+1,J)

and finally, by adding Eqs. (IV.3.a} and (IV.3.b) and dividing by two provides:

hy () = Sl G410 +h G- 1] +5[e G+ L)) —e, (0.))]

+§[hx(i+ L) =k, ()]

Other two components can similarly be obtained as:

e, (i) = 3le, i+ 1)) +e, (= L)) + 51, (1= 1,) ~h, (i, )]

b 0>

B (o) = 5 UG+ L) +h (=101 42 [, () ~h (i~ 1,))]

(IV.1l.c)

(IV.12.a)

(IV.12.b)

(IV.13.a)

(IV.13.b)

(IV.13.c)

After confirming the validity of the Egs. (IV.13.a), (IV.13.b) and (IV.13.c) by compar-

ing its computer generated results to the analytical ones, it can act as a benchmark to

examine the final equations. It can be easily verified that the aforementioned equations for

the TE,, mode are the same as those obtained from the final equations, assuming -E% = 0

or in finite difference terms f(i,j) = f(i,j+1) = f(i,j—-1) .
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IV.B.1 Complete derivation of FWFD

FINAL EQUATIONS of the FWED method.

e e
x
ex (i, J) I> (IV.8.a), (IV.8.b), (IV.8.c), IV.8.d)} & (IV.8.¢) aIv.14)
e e
Y
. ce  lgee eh [3 ee
- - gl (IV.15.a)
e, (i,)) = 5 8 28yz 28yz a
8y =& i+ Lj) +e (i-1,)) (IV.15.b)

+—1—[e(i,j—-1-)e (i,j-1) +£(z;+3) (z;+1)]
(i 1) A\B/=3),
El L]+
, 2
8, = {ex(i,j)+ex(i—1,j+1) (IV.15.0)

+——-———-§——-——|:8[i—£,j)e (i—l,j)+e(i+z,j+1)e (i,j+1)]
.. 1) r 2 x ¥ 2 x

8?,(l,j +§

—{ex(i,j+1)+ex(i—1,j)

+————.—1.——1—)[8r(i+%,j)ex(i,j) +er(i—%,j+ l)ex(i— 1,j+ 1)}}
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(Iv.15.d)

8o = by (i~ 1) =k, (i,))
ee 1
5y, = : [sr(i,j+1)Ez(i,j+1) —sr(i,j)EZ(i,j)] (IV.15.e)
er(z‘,j+§)
. loee Af qeh  geh 6( ee ee)
e, (i) = Zﬁzz + E(Szx + Szy) *5 5zx + Szy (IV.16.a)
8oy = e, (i+1,)) +e (i-Lj) +e (i,j+1) +e (ij—1) (IV.16.b)
8 = b (i) —h (5j-1) (IV.16.¢)
eh . . ..
8y = B, (i=1,))-h (i,)) AV.16.d)
8 = e (i,j) —e (i—1,/) (IV.16.€)
sjj = e, (L)) e, (5,j-1) (IV.16.£)
« h
X
. 1ohh  Bohe Bohh
h ) = 28+ -2-8xze + g 5., (IV.17.a)
Sor = b (i+1,)) +h, (i=1,j) +h _(hj+1) +h_(i,j~1) (V.17.b)
Ser = &, (L)e, (i) ~2, G+ e, (j+1) (IV.17.0)
(IV.17.d)

hh .o . .
8., = h, (L,j) —h (i-1,))
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y
. n _ Lohh Bohe Bohh

h s = = +_8 + =

y(l /) 47yy 2 yz 26}’2

hh . . . . .o .o
Syy = hy(1+1,1) +hy(1—1,;) +hy(l,]-i—1) +hy(l,j—1)
} . . . . PR . .
5;; = Er(i+ 1:]) ez(l+ 1!]) "'8,«(15.]) ez(ls.])

hh . ..

Syz = h,(i,j) ~h,(i,j-1)

e h
F4
R W B( he he) B( hh hh)

hz(l,J) = ZSZZ +-2- 52x+5Zy +§ 8zx+82y
hi , . . . .. .
8;; = hz(l+ 1,]) +hz(l—19.]) +hz(l:J+ 1) +hz(l’-]_]‘)
6he _ A .. A 1 i ial

. = €, l-!-i,] e (i,])-¢€, l+§,j+ ex(l,j+ )
e = a(i+1 '+1)e (i+1 ‘)—a(i '+-1—)e (i, /)

zy = Ly »J 2)y s J ¥ »J 2 ¥ s J
Shh = b (i . ;.

o = (L) —h (4,))

hir ho(ii+l ho(i

oy = B Gj+ 1) -h ()
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IV.C. Boundary conditions

TWO POSSIBLE BOUNDARY conditions, i.e. Dirichlet or Neumann, might be encoun-
tered when treating a field component for the points located exactly on the boundaries. The
Dirichlet boundary condition can be easily satisfied just by resetting the field component at
the boundary nodes to zero. The Neumann boundary condition, on the other hand, can be
fulfilled by resetting to zero the normal derivative of the field component at the boundary.
In this study we have accomplished this by assuming identical values for the field compo-
nent at the two adjacent points at opposite sides of the boundary node. This insures nullify-

ing the central difference derivative of that component.

To be specific, an example of treating the e, component of a waveguide structure is

presented. Suppose that two PEC (Perfect Electric Conductor) walls are placed at x = 0
and y = 0, and two PMC (Perfect Magnetic Conductor) walls at x = gAl and y = bAl.
Therefore, the boundary conditions at x = aAl and y = 0 are Dirichlet type, i.e.

e.(a,j) =0 and e _(i,0) = 0. And, because of the Neumann boundary condition at

x = 0 and y = bAI, Eq. (IV.9) converts into:

e.(0,/) = %[2ex (0+1,7) +e,(0,j+1) +e,(0,j-1)] (Iv.20)

+ 50, (0) ~h, (0,5~ 11 + B 1e, (04 1,)))

e (i,0) = 7le (i~ 1,b) +e,(i+1,b) +2¢,(i,b~1)] avai

+%[—hz(i,b—1)] +-g{ez(b+1,j) —e, (b ))]
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Note that, in Egs. (IV.20) and (IV.21), valid boundary conditions on e, and A . were

taken into account. Another scheme is also tried for this class of problems which imposes
only the Dirichlet boundary condition and handles the Neumann one using a one direc-
tional operator as of Eq. (IV.5.a). Maxwell’s equations automatically adjust the field val-

ues, even at the Neumann boundary nodes.

IV.D. FWFD flowchart

THE FLOWCHART of FWFD is illustrated in Fig. IV.3. First, the eigenvalue information
is fed into the algorithm. Like any other iterative scheme for solving system of linear equa-
tions, an initial guess is required. In most cases, the speed of convergence is dependent on
starting with a good initial guess. At this stage, FWFD formulation, i.e. Egs. (IV.8.a)-
(IV.8.e), (IV.15.a)-(IV.15.e), (IV.16.2)-(IV.16.f), (IV.17.2)-(IV.17.d), (IV.18.a)-(IV.18.d)
and (IV.19.a)-(IV.19.f); must be implemented iteratively to update the field values. There
have been two updating strategies reported in the literature, i.e. Jacobi and Guass-Siedel. It
is found that FWFD does not converge to the correct results using either of these methods.
Only a combination of the two was found to be successful. In the combined method, first
the electric field values at all nodes are calculated and then updated. The same procedure is
applied to the magnetic field components. In other words, calculation of electric field com-
ponents follows a Jacobi procedure, while the overall updating of electric and magnetic
fields is a Guass-Siedel one. The reason for this special updating mechanism goes back to
the essence of the leap frog algorithm in Yee’s lattice. It is known that leap frog mecha-

nism, a half step time difference between electric and magnetic field calculation, is
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required to obtain any meaningful and stable algorithm. Since in FWFD, time variable

does not exist, the leap frog algorithm constitutes itself as two distinct updating stages to

evaluate the electric and magnetic field components.

The other important stage of the FWFD algorithm is normalization. Normalization is

required in view of the fact that for each distinct eigenvalue, there corresponds an infinite

set of eigenvectors. Mathematically speaking, eigenvector problem (A-A,)X = 0 hasa
pair of unique solutions, X and —X, when accompanied by a constraint, |X||, = 1, where

X1, is the Euclidean norm and,

X (IV.21.g)

= [e, (L) e, (L 1) e, (1L,1) A (1, 1) k(L 1) h(L1) .. hz(M,N)]T

Finally, a convergence test is used to end the iterations.
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FIGUREIV.3 Flowchart of FWFD
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IV.E. Time Domain Techniques

AS WAS MENTIONED eatlier, field patterns can be calculated using both classical and
time domain based finite difference methods. Many studies have already been conducted
on the classical finite difference method. And, a comparison between this class of methods
and the FWFD was made in the introduction. On the other hand, time domain based
method, i.e. FDTD, was used for calculating field patterns restricted to cut-off frequencies
[35]. For this reason, we preferred to use time domain based methods as a benchmark for
confirming the validity of the results obtained using FWFD. This way, the applicability of
the time domain methods for field pattern calculations will also be elaborated which has its

own merits.

Both CFDTD and TLM are capable of evaluating the dispersion curves of inhomoge-
neous waveguides by the Fourier transformation of their impulse responses. Theoretically,
these methods can also be deployed for calculating field patterns inside a waveguide. To

do this, two different strategies can be adopted. In one the structure is excited with a time

impulse and evolution of all six field components ( E, Ey, Ez, H, Hy, HZ ) is recorded at

each individual node in the mesh. A Fourier transformation of the nodal field time history
provides the desired field distributions. This method, i.e. impulse-FFT analysis, though
feasible, is a rather tedious and inefficient approach. The second method [13] is based on
the steady state analysis of the structure. In this approach, the structure is excited with a
sinusoidal waveform at an arbitrary point. After sufficient iterations, the transient response
decays and what is left is the steady state response. But, this information still has an unde-

sirable time dependency. In fact, the average of the absolute values of the time history of
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the fields can better serve the purpose. This, in turn will result in the loss of relative phase

information of the field components.

The flowcharts of the two different time domain algorithms, steady state and impulse-
FFT analyses, are depicted in Figs. IV.4.a and IV.4.b, respectively. Compact FDTD is
selected as the main engine for both. In the steady state analysis, a relatively long waiting
period is required for the transient response to damp out. This waiting period is one of the
main disadvantages of steady state method in addition to losing the phase information due
to the presence of absolute value operator in the algorithm. Impulse-FFT, on the other
hand, relies on large computer resources. The results of applying steady state and impulse-

FFT analysis on a coupled waveguide are presented in the next section.

FWED, is capable of providing the ampiitude and phase information of all six field
components simultaneously and through one single analysis. The algorithm starts with a
crude guess of the field distribution and then proceeds with an iterative scheme to con-

verge to the correct results.
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FIGURE IV4 (a) Flowchart.of steady state algorithm, (b) Flowchart of impulse-FFT algorithm.
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IVE. Applications

IN THIS SECTION, the results of applying the proposed method to a hollow rectangular
waveguide, consisting of four PEC walls, and a shielded suspended coupled dielectric
guide are presented. Like any other iterative method for solving linear system of equa-
tions, a good initial guess, can noticeably enhance the speed of convergence. However, to

show the power of FWFED and the fact that the field patterns for arbitrary waveguides are

not generally known, a simple initial field distribution is selected, by uniformly setting e,

to unity and resetting the remaining components to zero.

IV.E.1  Hollow Rectangular Waveguide

The first case is a hollow rectangular waveguide of dimensions 18Alx 12Al. The

objective, here, is calculating the field patterns corresponding to TM,; mode. The eigen-

value information of this structure for the mn th mode can be obtained from:

Al 1 f{fm\2 (n\? (BAljz

o 2A/(ka) +(kb] +( B2 av.22)
. . a b .
in which ka = Al = 18, kb = Al = 12, m = 3 and n = 1. From this, the correspond-

ing eigenvalue to BAl = 0.1 is calculated as % = 0.0945 . Next, this pair of values is fed

to FWEFD. The field patterns, i.e. eigenvectors, are obtained after 250 iterations. These
patterns are in close agreement with those obtainable from an analytical solution. Normal-

ized pattern of &, component, with respect to ’hxl i’ is illustrated in Fig. IV.5 in which
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TABLEL TM 31 normalized modal fields, with respect to |eZ|max in a rectangular waveguide

CI

Exact 0.15 7.6e2 100 12e3 24¢73 0.

FWFD 0.14 68e2 100 1.le3 21e3 671

IVE2 Shielded Suspended Coupled Dielectric Guide [48]

The study of dominant E;IO mode in a shielded suspended coupled dielectric guide,

Fig. IV.6, constitutes our second example. Since the coupled dielectric waveguide is sym-
metric, its propagating modes can be decomposed into two sets of even and odd modes.
Odd or even mode analysis can be performed by placing a PEC (Perfect Electric Conduc-
tor) or PMC (Perfect Magnetic Conductor) on the plane of symmetry, respectively. For
demonstration purposes, only the odd mode analysis is presented here. In any event, only
analysis of half of the structure suffices. This configuration was already analyzed using

mode matching technique [46] and an older version of CFDTD [47]. Using our CFDTD

routine, normalized eigenvalue pair is calculated as Al 0.02644 corresponding to

A

BAI = 0.1. By choosing Al = % mm, the physical dimension as of [46] can be obtained.

p

In this case, the eigenvalue pair would be f = 23.8 GHz at =~ = 0.6. For convenience,

B

FWFED is formulated in terms of normalized quantities, and so it is the normalized pair that
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is actually used here. To initialize, the structure is excited by setting e, to unity uniformly

all across the waveguide, except at the boundaries. This crude initial guess is made with

. . . . 110 .
the only available information, i.e. an Ey would definitely have an e, component.

Since, no other information is available, a uniform distribution is assumed for excitation.

Of course, if any other information is accommodated, a smarter choice and faster conver-
gence can be achieved. For this configuration, field patterns were calculated in 100 itera-

tions. On a Sun-Sparc 10/41, this is equivalent to about 3 seconds computational time.

FIGURE 1V.6 Shielded suspended coupled dielectric guide

PEC |
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d S '
| &
€, Ii € b
ay r g
| & """’"
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To prove the validity of FWEFD results, both steady state and impulse-FFT were tried.

For the sake of brevity only the patterns for normalized e y are illustrated. Figs. IV.7.a and

IV.7.b are generated by steady and impulse-FFT methods, respectively. The patterns for

other field components are in close agreement with each other regardless of the method,
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steady state or impulse-FFT. For the impulse-FFT method, a uniform excitation of e y all

across the waveguide was used. While for the steady state analysis, a point excitation of e,

at the node (4,3) was implemented. Obviously since the field distribution is unknown,
one cannot excite the entire structure steadily with a uniform distribution. The drawback of
using point excitation is evident in Fig, IV.7.a; the field pattern is distorted exactly at the
location of excitation. Also the calculated field patterns using FWFD are presented in Figs.

IV.8.a to IV.8.¢, and, as expected are in good agreement with those of the other methods.
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FIGURE IV.7.a Normalized e, field pattern of E); 10 Mode using steady state method.
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FIGURE IV.7.b  Normalized e, field pattern of E){ 1o Mode using impulse-FFT method.
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FIGURE IV.8.a Normalized ¢ . field pattern of E}ly 1o Mmode using FWFD.
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FIGURE IV8b Normalized e, field pattern of E’; 10 mode using FWFD.
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Normalized e, field pattern of E‘: 10 Mode using FWFD.

FIGURE IV.8.c
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FIGURE IV.8.d Normalized /1, field pattern of E)l) 1o mode using FWFD.
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Normalized /., field pattern of E); 1o mode using FWFD.

FIGURE 1V.8.e
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IV.E.3  Unilateral Fin-line [49]

As the next example, the study of field patterns inside a unilateral fin-line operating at

cut-off frequency is selected. Fig. IV.9 depicts the fin-line structure under investigation.

FIGUREIV.9 TM mode in a Unilateral Fin-line

o Input probe

For the dominant TM mode of this fin-line with a mesh discretization of 20 x 10, a
total number of 250 iterations is quite adequate to achieve an error less than 1% in con-

vergence accuracy. In this case, the entire process takes about two seconds on a Sun-

Sparc10/41 workstation. Corresponding field patterns for e , #, and hy components are

illustrated in Figs. IV.10.a, IV.10.b and IV.10.c, respectively.

B s
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FIGURE IV.10.b Normalized /4 _ field pattern of the dominant mode inside a unilateral
fin-line.
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FIGURE IV.10.c Normalized & y field pattern of the dominant mode
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IVE.4 Boxed Microstrip Line [50]

Finally, as the last example, the study of field patterns inside a boxed microstrip line
operating at cut-off frequency is selected. Fig. IV.11 depicts the specifics of the structure

under investigation. Also, the corresponding field pattern for the dominant TM mode at

cut-off frequency is illustrated in Fig. TV.12.

FIGUREIV.11  Boxed microstrip line
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IV.G. Conclusion

A NOVEL FULL WAVE FINITE DIFFERENCE, FWFD, technique for calculating field
patterns of guided wave structures is proposed. It is based on a four directional finite dif-
ference treatment of Maxwell equations. Classical finite difference methods are derived
from the Helmholtz equation and therefore are restricted to dealing with just a single field
component. Even though this is a desirable feature for calculating eigenvalues, it lacks the
power to provide the field pattern information for all six vector field components. FWFD,
on the other hand, has no such limitation and therefore is a powerful CAD tool for calcu-

lating field patterns efficiently and simultaneously.
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V.A. Introduction

IN PREVIOUS CHAPTERS different time domain techniques were discussed. All these
methods have a common requirement, they need to go the frequency domain in order to
determine eigenvalues at the final stage of the analysis. For most applications, the impact
of using an advanced spectral technique, alone, on saving CPU time can be as significant
as using the Compact FDTD for the first part of the analysis. In fact, by using advanced
spectral analysis techniques, one can use far fewer iterations in the time domain to extract
information than is needed to achieve the same degree of accuracy using a less efficient
spectral technique. Generally speaking, it is known that time domain simulation (FD-TD,
TLM, Bergeron’s method) of Electromagnetic problems suffers from one major draw-
back, considerable CPU time. This means that for obtaining reliable information from the
time domain simulation, the program must run for several thousand iterations. From a Sig-
nal Theory point of view, the simplest way to accomplish this task is the use of the Dis-
crete Fourier Transform (DFT). But, due to its slow performance, most problems are
usually handled by a much faster technique, the Fast Fourier Transform (FFT). The term
DET in the context of this thesis refers to taking the Fourier transform of discrete time
samples, while frequency can still be assumed as a continuous variable. This definition is
somewhat different from that found in standard literature in which this term implies dis-

crete frequency domain as well.

This chapter begins with the basic spectral techniques and gradually proceeds to the
most advanced available ones. Along this thread, a brief discussion of the Discrete Fourier

Transform (DFT) and Fast Fourier Transform (FFT) is presented in sections V.C. and
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V.D., respectively. In fact, the very first concept of frequency domain had been originated

from the Fourier transformation definition. Sections V.E. and V.F. will discuss Auto-
Regressive (AR) and Maximum Entropy Method (MEM), respectively. Both these
algorithms belong to the same family and are based on the same concepts. Finally,
Prony’s method is the subject of V.G.. Prony-Hildebrand accompanied with its modified

version are presented in V.H. and V.L, respectively.

V.B. The best method and numerical noise

ONE MAY ASK: “What is the best available spectral technique?”. Answering this ques-
tion is not as easy as it may look. The reason is behind the empirical nature of the spectral
analysis science. In fact, each of the spectral analysis techniques are based on a certain set
of assumptions, either about the basic characteristics of the signal or the embedded noise.
The problem becomes more critical when the signal under study contains some noise with
unspecified statistical characteristics, which is usually the case. Ideally, one can give an
accurate answer to the above mentioned question if and only if all the characteristics of the
noise for a particular problem are a priori known. One may still argue about the source of

noise in the current problem, dispersion analysis, truncation and round-off errors,

Here the problem is approached numerically; there is no background noise present in
the output time domain data. But, on the other hand, due to the limitations of the digital
computer and the algorithm, the data is contaminated with several numerical noises. The
origin of the first noise is the round off error which is an inherent property of any digital

computer calculations. Even though, the round off error has a deterministic nature, i.e. it
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can be determined for any particular operation, it must be kept in mind that for just one

single analysis, hundreds of thousands of mathematical operations may be required. One
can easily see that for a problem of this extent, the round off error of the entire operation
will exhibit a random behavior and so can be considered as a source of noise. The second
source of noise is due to the approximations that have been made in the derivation of egs.

(II1.22.a) to (1I1.22.1). It has already been stated that those equations are valid (in approxi-

mate sense) if and only if Al - 0 or when %'f « 1. The exact amount of the error intro-

duced by using a Al # 0, in a single operation can be determined quite accurately. But, yet
again, one is dealing with hundreds of thousands of operations of this kind and this can

easily make the truncation error behave like a random variable.

In conclusion, to determine the superiority of a particular spectral analysis method for
a specific problem, one has to experimentally apply each of these methods and then make
the final judgement. The desirable qualities of a good technique can be summarized as fol-

lows:

L]

Stability

Higher resolution

Less CPU time

Less required computer memory space

Less complexity
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V.C. Discrete Fourier Transform (DFT)[51]

DISCRETE FOURIER TRANSFORM is the first, most important and most inefficient
method for transforming the time domain data to its frequency domain counterpart. Due to

its simplicity, it was the method of choice for researchers utilizing time domain methods

like TLM.

Suppose that x, represents a time domain data sequence. Then, the DFT for such a

discrete signal, X('—A—E) , is defined as:

A
N —jonk
()= Zae v
k=1

In some literatures, the DFT is defined by a plus sign in the exponent and its Inverse

DET (IDFT) by a minus sign in the exponent. The only important issue is to use different

signs to define DFT and IDFT. Here, ATI is the normalized frequency. Equivalently:

X(%l) = Elx" : cos[znk%-l) (V.2)
X(%—lj = —kg“lxn- sin(an%ﬁ!) (V.3)
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V.D. Fast Fourier Transform (FFT)[41][51]

AS IT HAS BEEN stated, DFT in its original form is a very straightforward but ineffi-
cient method. Fortunately, a careful inspection of eq. (V.1) depicts that for a complete cal-
culation cycle, the exponent and its harmonics have to be calculated repeatedly. Inspired
by this observation, a variety of different algorithms have been introduced to reduce the
CPU time drastically. While there is evidence of contributions by many researchers to the
development of FI'T, a concise paper by Jim Cooley and John Tukey focused the attention

of the digital processing community. The proposed algorithms can reduce the proportion-

ality of the CPU time from N to NlogzN .

V.D.1 Drawbacks of FFT

IN ACHIEVING the higher speed of the FFT, one usually has to compromise the resolu-
tion. This means that while there is no theoretical barrier for increasing the resolution in

the DF'T, it is positively restricted to a certain theoretical limit in the case of the FFT. This
theoretical limit is always set by ]—\—}z , in which N is the number of time domain iterations

or samples (which of course has to be zero-padded or truncated to an integer power of 2)
and A is the sampling interval in the time simulation. The other problem of both the DFT

and the FFT is the fact that they implicitly apply a window to the time domain data by tak-

. . . N . o0 . . . .
ing the Fourier summation as ¥ instcad of X, or equivalently multiplying the input

sequence by a rectangular window. This in turn means that the actual frequency domain
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(1f)
nf

o ... Sin
spectrum is being convolved with

. The impact of such an assumption on the fre-
quency domain is twofold. First, it limits the resolution of Fourier transform operation to

(at most) the bandwidth of the main lobe of sin (nf) function. Second, it causes leakage

nf
of energy from one main lobe to another through the side lobes. The destructive effect of
this can sometimes be so severe as to mask a main lobe by a side lobe of another neighbor-
ing lobe. Even though extensive studies[52] have been conducted to alleviate this problem
by other windowing schemes, in general, either the bandwidth of the main lobe or the level
of side lobes must be compromised in order to achieve better performance compared to a

rectangular window.

V.E. Auto-Regressive method (AR)[53]

BASED UPON what has been cited in section V.D.1, the need for having a versatile
extrapolating technique, to substitute FFT, which also is capable of extracting the desired
information by a fraction of iterations, is inevitable. As has been mentioned in section
V.B., the most important features of a successful extrapolating technique can be summa-
rized in two aspects. First, from the speed point of view, it is desirable for the proposed
method to possess a speed comparable to the FFT, or be at least much faster than the DFT.
Second, from the resolution point of view, it must generate results more accurate than both

the DFT or the FFT even with fewer time samples.

While no extrapolating technique can overtake the speed of the FFT method, there is

a good chance that by applying a suitable method to a particular problem, results much
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more accurate and with better resolutions than those achievable by the DFT and the FFT

can be obtained. In what follows, first a quick survey of the AutoRegressive (AR) and
Maximum Entropy Method (MEM) is presented, then the applications of these methods
particularly to Guided Wave Structures are indicated. Finally, a few numerical results are

presented.

Among the vast class of extrapolating techniques, so far, only Prony’s method has
been widely used for time domain simulations. The implementation of this method dealing
particularly with resonant structures has already been reported by Wills[54]. Thus, it is not
the intention of this thesis to question the validity or suitability of the classical Prony’s
method, but rather to present alternative methods which are found to be very efficient for
resonant structures. A comparative study between the presented methods and Prony’s,
including some modifications to enhance the Prony’s performance is the subject of the

ongoing research by the author.

V.E.1 Mathematical formulation[55]

CONTRARY TO Prony’s method in which the major objective is extrapolating the time
domain samples to intervals beyond the simulation period, in the AR, it is the discrete
auto-correlation function of a signal that is subject of extrapolation. Mathematically, the
problem can be phrased as follows:

“Given the discrete auto-correlation function R [n] of a process
Jor |n| < M, extrapolate the values of this function for |n| >M.”
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The importance of such an odd extrapolating technique lies in the fact that according

to Wiener-Khinchin theorem, there is a direct Fourier transform relationship between the
auto-correlation function of a signal and its power spectrum. Using this useful property,
some fast algorithms can be developed. Hence, the significance of this kind of approach is
mainly due to its numerical advantages. Considering the following relationships:

oo

S = [R,me?™ar  or S = ¥ R, (V4

—oa il = —oa

in which for the discrete case R, [n] can be replaced by its biased estimate[56], R e lnl:

N-n
A 1 *
Rxx [n] = j—\_f 2 XnamX m (V.5)

m=1

FIGURE V.1 Wiener-Khinchin Theorem

P
Auto-Correlation| rourier q Power Spectrum

Rxx (1] Transform S (o)

Now, let’s assume that the power spectrum of a signal can be regarded as a rational

function with a constant numerator, i.e. a function with several poles and no zeros, such as:

A b M . .
$(@) ~—x—~ X Rulild g =7 (V.6)
1+ Zbkzk j=-M
k=1

There are at least three justifications for such an assumption[56]:
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* In the FDTD analysis of guided wave structures, the frequency spectrum

consists of several sharp peaks which respectively correspond to different
modes. Therefore, a rational function with several poles appears to be a

good representation of these peaks.

* According to Information theory, it can be readily proved that this form of
extrapolation will maximize the entropy which in turn can secure the fact
that the unknown parameters will have the maximum degree of freedom to

fit into the data.

» According to Wold decomposition theorem, any stationary ARMA
(AutoRegressive Moving Average) or MA (Moving Average) process of
finite variance can be represented as a unique AR model of possibly infi-

nite order,

At this stage, the only task left to accomplish the extrapolation procedure is having an

efficient algorithm for calculating the unknown coefficients & ¢ [47]of S (®) in terms of

the estimated values of the discrete auto-correlation function R, [n] . If one expands the
left hand side of eq. (V.4) using Laurent series, one can obtain a non-linear system of equa-

tions relating b, ‘s to R, () ’s. Straightforward but practically useless!!!!

Fortunately, techniques exist that can handle the problem without resorting to non-lin-
ear equations. Here, the final result of such an algorithm known as the Yule-Walker equa-

tion is presented. It is given by:
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Rol0]  R,l11 R,(2] Roim) | [b]  |R.11)
R..[11 R, [0] R.,[11 ..R_ [M-11| |b, R, [2]
Ro[21 R, 111 R,[0] ...R, [M-21| |bs| =~|R_[3] V.7)
R [M] R IM-1] R IM-2] ... R,[0] | |Pu] R [M]]

As is clear, the resultant matrix is a Toeplitz symmetric[41] one for which a very effi-
cient inverting algorithm is available. One is reported by Levinson-Durbinf57] which also

employs a recursive scheme for calculating the coefficients.

Finally, after solving the above matrix equation, one may continue with an extrapola-
tion of the power spectrum. From here on, two different strategies can be chosen for find-
ing the eigenvalue (resonant frequency) of the structure. The first strategy is to find the
roots of the denominator directly by any numerical method. The other strategy is to find
Iocations of peaks of the extrapolated power spectrum function in a particular frequency
range of interest. I have found the former strategy to be much easier and trouble free, not
withstanding the fact that finding the roots of a polynomial is always considered an ill-con-
ditioned problem; i.e., small deviation (error) in the coefficients of the polynomial can

result in extreme changes in the roots.

3
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V.E.2 Applications[53]

Since this part of the thesis is mainly aimed at signal processing part of the time
domain analysis, only a simple example, a rectangular hollow waveguide, for which the
analytical solution is readily available is presented. For a more sophisticated example, a
boxed anisotropic microstrip line, for which this method can equally be applied, one may
consult section IILE.2 or [58]. Fig. V.2 depicts the structure under study. Fig. V.3, also

illustrates the final results obtained by AR.

FIGURE V.2 (a) The structure under study, (b} The frequency spectrum of input signal

x(f) A Input Spectrum

O  Input Probe

@ Output Probe

As is implied by Fig. V.2.b, a modulated -S—%lic is used for the purpose of exciting the
FDTD meshes. By a simple calculation, one can show that the first mode in this structure,
the TE 10 mode, will be located at A—g = (.025. For convenience, the curve is normalized

A

to unity.
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FIGURE V.3 Result generated by AR

Rectangular Hollow Waveguide Spectroscopy (N=400)
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V.F.  Maximum Entropy Method (MEM)[59]

DESPITE THE effectiveness and higher efficiency of the AR model, it still suffers from the
lack of high resolution required for a successful method. The major cause of this problem
stems from the fact that for most practical situations, it is the time samples that are directly
available not the auto-correlation coefficients. Although eq. (V.5) seems to be a straightfor-
ward way of calculating these coefficients, this equation is obtained by assuming the ergodic-
ity of the samples. This property permits the substitution of time averages for ensemble
averages. Unfortunately, this is not always the case, especially when it comes to short data

records. Hence the only way left for calculating the auto-correlation coefficients is through
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statistical methods. A better solution to this problem can be found by reformulating the

entire problem again in terms of the time samples themselves, not the auto-correlations.
This had been done by Burg in an algorithm called after his name, Burg’s algorithm or
MEM. Due to the lack of space, the mathematical details of this algorithm can not be
explained here. The interested reader is referred to the literature. It is adequate to say that
the essence of this algorithm is based upon a least square formulation of time samples,
both known as well as those to be determined using forward and backward linear predic-

tion theory.

One of the major weaknesses of the classic MEM, as presented by Burg, is its insta-
bility when detecting several peaks, i.e. biases in the frequency estimate. Another problem
arises when the implementation of the method requires polynomials of higher degrees. In
such a case, instead of a sharp clear peak, one obtains a peak surrounded by a set of several
other peaks, i.e. spectral line splitting. This effect is particularly evident if the original data
contains noise. In the present case, the origin of this noise can be attributed to the inherent

round-off error of the finite difference method.

All these problems can be alleviated using a more advanced technique called Modi-
fied Covariance Method[60]. It is believed that this algorithm can be used as a very attrac-

tive, fast as well as accurate and spurious peak free, tool in CAD packages.
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V.F.1. Applications[53]

FIG. V 4 illustrates the results obtained respectively by the FET, DFT and finally the
classical MEM or Burg’s algorithm. For convenience, again, all the data have been nor-
malized to unity, but it must be appreciated that neither the amplitudes nor the dimensions
of the graphs are identical. To be more specific, the DFT and FFT results correspond to
the frequency spectrum of the output probe signal and the MEM may correspond to its

power spectrum.

FIGURE V4 Results generated by FFT, DFT and classical MEM
Rectangular Hollow Waveguide Spectroscopy (N=400)
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V.G. Prony’s method[61]

PRONY’S METHOD and FFT are in essence similar methods; both are based on approx-

imating the signal in terms of a polynomial of finite number of exponential functions.

o,x 0% o,x

+Cie " +..+Ce” (V.8)

s

o, x
f(x) =Ce +C,e
The only difference between these two methods is in the fact that in FFT, all the fre-

quencies ¢, 0.y, O ,... are integer harmonics of a basic frequency 0., . But, in Prony’s
approach, all these frequencies can be chosen quite arbitrarily. And, this property makes it
more suitable for approximating a general signal. In turn, one can not expect the same
speed as the FFT.

Eq. (V.8) can be rephrased as:

Oy

f(x) = Cjuy+ Colty + Colty + ... + C, 1L ; w, =e (V.9)
in which, C ; ‘s and Q.; ‘s are the unknown parameters that have to be calculated. In fact, for

the specific problem in hand, only the calculation of ¢, ’s (the resonant frequencies) is ade-

quate. For a complete model, one needs to determine all unknown parameters.

Now, suppose that NI (Number of Input) discrete samples of the signal, f;, f;,

f5 s-sfy; are available, the output of the time domain CFDTD simulation. And also, let’s

assume that all these samples have been taken at equally spaced intervals of time.
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Ci+C+Cy+...+C, =1,

Ciuy + Colly + Ciplg + ... + C.un, =f

2 2 2 2
< Ciiy + Colty + Calis + .. + C 1L = f,

NI-1 NI-1 NI-1 NI-1
Ciy  +Gu, +CGuy +.+ Gy = i

\ (V.10)

If the values of the [1;s are known in advance, the above system of eqs (V.10) would

be linear one, otherwise it is a nonlinear system of equations!!!

Baron de Prony found an ingenious method for solving this class of problems in 1795.
His method is presented in this section. Let’s suppose that .’s be the roots of the follow-

ing algebraic equation:
1 n—-2

u”+a1p,”_ +al “+..+a, U+a, =0 (V.11)

Now, if the first equation of the system of eqs. (V.10) is multiplied by a,, , the second

one by a, _,, and so on..., and then be added up all together, one will come up with:

fotaf,_tasf, +...+af, =0 (V.12)

Repeating the same procedure but starting from a different point, the following sys-

tem of equations can be generated:
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i
<

(
frz+a1-f;1—l+a2fn—2+ +anf0

Il
o}

Sasrtaf,vayf, (+..+af

< f;z+2+a1f;1+l+a2f;1+"' +anf2 =0

| Turortafy ot afyy s+ +afy =0

(V.13)

The resultant matrix also enjoys nice symmetrical Toeplitz property which has a

noticeable effect on reducing CPU elapsed time and required computer memory space.
This can be solved exactly if NI = 2n, or approximately (in the least square sense) if

NI#2n. After calculating all a,’s from eq. (V.13), one can proceed to eq. (V.11) to evalu-
ate |1, ’s. At this stage, our problem is completely solved. But, if one may wish, he can pro-

ceed to solve eq. (V.10) for all the values of C,’s and hence completing the model.

V.H. Prony-Hildebrand approach[62]

IF THE STUDY of an unattenuated periodic signal is what is desired (like the case of
this study), then there is a more efficient approach to solve the problem. First, suppose that
the signal can be described (approximated) by the following equation (NF stands for the

Number of constituting Frequencies):

NF
f(x) = Y (A;cos0x + B;sinm,x) (V.14)

i=1
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One can easily realize that Prony-Hildebrand is just the same as classical Prony’s

method with one major distinction that here, all the values of o.;’s are pure imaginary and

also they appear in conjugate pairs. Since, in this case, all the roots of eq. (V.11) are

required to occur in the form of (ejmk, e_Jka , it follows that eq. (V.11) must be invariant

L. 1
under the substitution of L—L for p, so that we must have Ognp = 1y Oppp_; = A 5o

a = aup_ 4. Thus, with n = ejm,eq. (V.11) becomes:
NF +1 NF-1 n

j2NFo JONF-De [(NF+ 1) o JNFo JINF-1)o
e tae +...+aNF_1eJ +apype +ayp_ € (V.15)
joy
+.o.taed +1 =0
or equivalently:
iNFor| jNFo  —iNFe i(NF-D)o | —j(NF-1)o
| P R Fo (V.16)

jo —j® _
+aNF_1(e +e )] =0

and finally:

2cos (NF®) +2a,cos [ (NF~1)®] +... +2a,,_,cos® tay =0 (V17)
Since cos (k) can be expressed in terms of a Chebychev polynomial, the final equation

can be rewritten in terms of a transcendental equation of the following form:

Typ(cos®) +a,Typ_(cos®) + ... +ay, T, (cosw) +%aNF =0 (V.18)

in which the coefficients of this equation, a ;» can be calculated from:
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Jothonrt G\t honp_Day+ B+ fonp_ ay+ o+ (Fypoy +fara 1) Onr-q
+fypayr = 0

fithonpor+ thoyp) a+ i+ foyp_ag+ o+ (Fyp +fypa2) Gyp s
< +fypayg = 0

Inrconr— 1 ¥+ Unroane - e+ Gypane e s ap+ o
+ Unronr—2 Y v we) @yp 1t i onp— 19y = 0

\ (V.19)

In accordance with the fact that the approximation of eq. (V.14) contains 3NF

unknowns, NF of Ais, NF of Bis and finally NF of ®,s; one must have at least

NI23NF in order to be able to solve the problem exactly or approximately (in the least
square sense). This is exactly the same number of equations required for solving the sys-

tem of egs. (V.19). Because the above system of equations contains N/ ~2NF equations

and NF unknowns, so we must have NI —2NF 2 NF or equivalently NI > 3NF .

After solving the system of egs. (V.19), one can insert the calculated values of ;s in

eq. (V.18) to solve for the unknown frequencies. Once again, the current problem is solved

at this stage, but if one is interested, he can easily solve for the other unknown parameters

of the model A;’s and B,’s, as explained in section V.G.
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V.I. SVD based Prony-Hildebrand’s method [63]

ACCORDING TO what have been explained in section V.H., in a noise free simulation,
exactly 3NF number of equally spaced samples of a signal suffices to determine the con-
stituting frequencies of that signal. But, of course, in most practical situations (like the
present problem), this is not the case and the data is contaminated with noise in one way or
another. Under these circumstances, it is not wise to consent just to the 3NF number of
data samples. In fact, if a stable and accurate result is desired, it is much better to use as

many data samples as are available in calculating the model parameters.

Strictly speaking, for solving a general problem, one has to generate the system of
equations of (V.19) using all available data, and proceed to solve the resultant system of
equations in the least square sense. My proposed method to accomplish this task is Singu-

far Value Decomposition (SVD).

Still, there is another major advantage in using SVD (which is in fact one of the other
contributions that have been made in this thesis). And that is the ability to exactly deter-
mine the number of required frequencies for a model. One has to keep in mind, that for
many practical applications, the number of model frequencies (NF), is not initially
known. In the proposed method, one can run SVD on the non-square matrix of the system
of eqs. (V.19), and thereafter find the singular values of the matrix. The number of model
frequencies is exactly equal to the number of non-zero singular values. This finding is very

crucial in the applicability of Prony-Hildebrand’s method.
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V.I.1 Application

To prove the validity of the method and its advantages to classical Prony-Hildebrand

method, a signal consisting of two neighboring frequencies is considered:

£(5) = cos [(%’—‘)r] + sin [(%)t] (V.20)

As is pointed out on page 174, even sophisticated techniques such as Burg’s have dif-
ficulties in distinguishing between two closely located frequencies. Let’s see how the clas-

sical Prony-Hildebrand and the proposed technique handle this problem.

To run any version of Prony’s method, one has to decide on the number of frequencies
that the method has to look for, i.e. the number of frequencies in egs. (V.8) or (V.14).
Unfortunately, for many practical situations, this information may not be a priori known.
Therefore, using conventional Prony’s method, it seems that guessing the number of
involved frequencies would be the only solution. Let’s try this concept on the signal

expressed by eq. (V.20), which has been sampled only slightly above the Nyquist level at
intervals of At = 1. Also, let’s assume that one hundred of these time samples are avail-

able.

Table V.1 illustrates the calculated frequencies by Prony-Hildebrand technique using
different number of terms as the initial guess. As can be seen, for methods of orders higher
than two, the correct frequencies are always detected. But, the problem still remains: How

to distinguish the actual frequencies from the spurious ones?

Spectral Estimation Al Asi 171



2rn

TABLE V.1  Detecting frequencies of f{r) = cos [(2—315):] + sin [(—l)t] by Prony-Hildebrand

Prony-Hildebrand Techni

Order of
the

method
i=1 3.0499
i=2 2.9999 3.1007
i=3 3.0000 3.0995 9.2787
i =4 2.8992 3.1007 3.3794 14.005
i=35 2.3183 2.9993 3.1000 6.1279 19.712
i=6 2.2076 3.0005 3.0995 4.5789 7.9598 22.032
i =7 21774 2.9999 3.1001 3.2387 5.2855 8.8741 27.000
i =8 2.1371 2.5339 2.9999 3.1002 4.4075 6.2826 10.346 32.136

| The desired periods are 3.0000 and 3.1000

Now, let’s see how the proposed SVD-based Prony-Hildebrand technique solves this
problem. At the first run, the matrix of coefficients is generated, i.e. eq. (V.19). Then, the
method proceeds to SVD decompose the resultant matrix. Again, for the first trial, an ini-
tial guess for the order of the method, large enough to cover all possible number of fre-
quencies, is selected. Assuming { = 8, the following singular values are calculated.

TABLE V.2 Singular value decomposition of the matrix represented by eq. (V.19) for

s - ol (22)] e[ (2))

Singular Value Decomposition

Order of

the rie
method =
[T
Singular 45 ze3 53551 0 0 0 0 0 0
Values : ’

| Any singular value less than 1.e-4 is set to zero
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After performing this analysis, it is clear that only two non-zero singular values exist,

table V.2. This shows that only two of the equations in the entire system of equations are
linearly independent. The subsequent conclusion that can be drawn from this observation

is that only two frequencies have been involved in generating the original signal.

Executing the program for a second time and assuming { = 2 as the order of the

method, the following periods are calculated: T, = 2.99999 and T, = 3.10066. The

above mentioned example proves that the proposed algorithm is not only capable of calcu-

lating the frequencies, but also picking out the right solutions from the spurious ones.
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V.J. Conclusion

IN PART ONE, several techniques for analyzing the problem in the time domain have
been explained. On the other hand, the raw time domain response, by itself, is not useful
and usually requires another processing stage to convert it to frequency domain informa-
tion. The easiest means for performing this transformation are using basic DFT or an
advanced version of it, FFT. But, these are not the only possible choices. As a matter of
fact, one can find a variety of techniques in digital signal processing literatures that can
accomplish this task much better than DFT and, in some aspects, even better than FFT.

Among these are, AR, MEM, Prony’s and Prony-Hildebrand methods, to name a few.

For the first time, the Auto-Regressive and Maximum Entropy Methods were suc-
cessfully implemented for determining the cutoff frequencies of guided wave structures.
While the AR method always provides stable results, it cannot be used in those occasions
where higher resolution is the prime concern. On the other hand, MEM is capable of pro-
viding results with very high resolutions. The Burg algorithm has several problems associ-
ated with it, including spectral line splitting and biases in the frequency estimate. Both
these problems can be alleviated using a more sophisticated algorithm, Modified Covari-
ance Method. Still, even AR and MEM in their present forms can be used very success-

fully for narrow band, single mode, analysis.

Using the least square concept, a modified version of Prony-Hildebrand method has
been proposed. It is believed that this new technique, SVD-based Prony-Hildebrand, can

enhance the performance and applicability of the older version noticeably.

Spectral Estimation Ali Asi 174



Chapter Six

CONCLUSIONS AND FUTURE WORKS




VI.A. Conclusions

Throughout this thesis, two novel finite difference scheme were presented. Together,

they can be integrated into a very efficient CAD package for calculating the dispersion

curves and field patterns of arbitrary guided wave structures.

Advantages of Compact FDTD compared to other methods, ie. classical FD,

FDTD and TLM can be summarized as follows:

Rendering a traditionally 3D problem to a 2D space and thereafter

obtaining the entire dispersion curve, not just cut off frequencies.

Compared to the 3D-TLM or 3D-FDTD, the relative efficiency of the pro-
posed technique, the CFDTD, is estimated to be somewhere between 10 to

100 times, depending on the method and the objectives of the analysis.

Elimination of the troublesome and rather time consuming direct eigen-

value and eigenvector extraction from excessively large matrices.

The method provides an important physical insight to the real situation.
For instance, the locations of the input and output probes have exactly

the same effect as in the experimental situations.

Usually information along a constant 3 axis is needed more than along a

constant k axis. Just consider the cutoff spectrum is a special case of
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s All the intermediate results are quite informative. For instance one can

even plot the actual field distribution of either six field components or

study the evolution of a transient response.

s In the case of a Microwave waveguide, characteristic impedance can be

easily calculated from the same analysis.

e Because of the implementation of all six Maxwellian equations at the

same time, this method is free of spurious modes.

» Inthe case of the 3D-FDTD or 3D-TLM using PECs at the two ends of
the waveguide along the z direction, all the harmonics of the main B in
equation (I11.7) will appear at the final spectrum which results in modes

being mixed with each other, while this is not the case for the Compact

FDTD.

Some disadvantages of classical FD approach can be summarized as follows:

*  Normally, even for a moderately accurate study one has to consider at
least a 50 x 100 point structure which in turn renders the problem to

finding the eigenvalues of a 5000 x 5000 square matrix!!!!

»  Spurious modes

» Inlots of practical applications, finding the cut-off frequencies of a par-
ticular waveguide is of major concern. Using this method, the problem

has to be completely solved to obtain this information.
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»  None of the intermediate information is useful.

e The operation cannot be terminated at any point for a less accurate estimate

of the desired quantity.

As it was shown, all these drawbacks can be effectively eliminated using a completely

different approach, the Compact FDTD.

FIGURE VL1 The procedure that generates a complete dispersion curve using classical
FD method

Finite Difference

1. Select frequency k.

. Execute finite difference code,
either iteratively or directly.

//

. Extract corresponding P s. /
4. Interpolate the dispersion b
curve.
% Spurious modes
e

k

At the next stage, a novel frequency domain finite difference technique was intro-
duced. This method, i.e. the FWFD, is based on the knowledge acquired after executing
the first part of the analysis, i.e. the CFDTD. This means that after calculating the disper-
sion curve, the eigenvalue pairs will be passed on to the FWFD for calculating the field
patterns. It has to be pointed out that the CFDTD by itself is also capable of calculating the

field patterns. But, the method will be very inefficient compared to FWFD. This is due to
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the presence of an unnecessary time variable in CFDTD formulation when only field pat-

tern calculation is desired.

Finally, some new spectral estimation techniques were investigated. These techniques
are far more efficient and accurate than standard DFT or FFT techniques. The application

of some previously known methods, as well as proposition of a new one, were discussed in

chapter five.

Conclusions and Future Works Afi Asi 179



VLB.

Future Works

Time Domain (CFDTD)

Expanding the technique to generalized coordinate systems.
Developing an adaptive CFDTD,
A user friendly CAD package that provides the complete dispersion

CHIVves.

Finite Difference {(CFDTD)

Expanding the technique to generalized coordinate systems
Developing an adaptive FWFD.
A user friendly CAD package that provides the complete dispersion

curves.

Still some improvements are required to make the method more relia-

ble and stable.

Signal Processing Techniques

Performing a comparative study between AR, MEM, Prony, Prony-
Hildebrand and SVD based Prony Hildebrand method.

Maximum Covariance Method to improve the current problems

encountered using MEM method,
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Appendix A: TE-TM decomposition theorem

THEOREM:

“At cut-off frequencies, i.e. } = k, = 0, all modes are either TE or TM”
Note that in general, in inhomogeneous and/or anisotropic waveguides, for a non-zero

value of &, almost all the modes are of hybrid type, i.e. a mode with all six vector compo-

nents present.

PROOF:

Assuming a%— = 0 in equations (IL.13.a)-(IL.13.f) which is in fact equivalent to the

cut-off frequency assumption, i.e. f = k, = 0 in phasor domain, yields:

0H ;( JE, H) "
ot _}Tl __a'}_)-_pm x (A.1)
oH 1(aE )
SO i 2 :

at l.l ax p]]IH)I (A 2)
JE, 1( OH, OH, E) A3
o ey T ok A-3)
OF, 1(8Hz E) A
o~y ok @A
oF 1( oH )

Ty M T

ot e\ oOx ok, (A-5)
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—% = X _2_
ot LL( dy ox p’"HZ) (4.6)

Note that in the aforementioned equations, each of them corresponds to its counterpart

in the set of equations (I1.13.a)-(I1.13.), except for equations (A.3) and (A.6) which have

interchanged their positions.

A quick inspection of the above equations reveals the fact that these equations consti-

tute two sets of uncoupled differential equations. The first set consists of H.,H y and E,

vector field components and hence is a TM type mode. While the second one consists of

E_, Ey and H vector field components and hence is a TE type.

It has to be emphasized that this theorem is valid for the most general case, i.e. lossy

anisotropic inhomogeneous waveguide.
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Appendix B: Singular value decomposition theorem [41]

SVD IS THE most robust matrix decomposition technique.

THEOREM:

Any M xN matrix A whose number of rows M is greater than
or equal to its number of columns N, can be written as the
product of an M x N column orthogonal matrix U, an NxN
diagonal matrix W with positive or zero elements, singular val-
ues, and the transpose of an Nx N orthogonal matrix V,

NxN NxN

L JMxN L dMxN

in which the following orthogonality relationship holds:

M 1<k<N
Z UpUp = Skn
i=1 1€n<N
il 1<k<N
Zijan kn
J:] ISHSN

The most important feature of an SVD decomposition is that it can even deal with
non-square matrices. Also, the condition number of the matrix A is defined as the ratio

between the largest element of the diagonal matrix W to its smallest element.
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Since matrices U and V are orthonormal matrices, their inverse can be obtained by

simply transposing them. Also, the inverse of the diagonal matrix W can be obtained by

inverting its diagonal elements. Therefore:

ATl = ve I:diag(—i—)} U
W

This means that once the SVD decomposition is performed, the inverse of the matrix

is also readily available. The only possible difficulty occurs when one or more elements of

the diagonal matrix W is zero, i.e. w; = 0. Obviously, having at least one zero diagonal

element in matrix W means that the condition number of the original A matrix has been

infinity. Therefore, unless the matrix A is a singular matrix, this situation will never occur.
On the other hand, a singular matrix by definition can not have an inverse in the strict
sense. This means that there has been a linear dependency between the equations from
which the A matrix is originated. Eventhough, there would not be any inverse for a singu-

lar matrix, but one may still be interested in calculating the inverse in the least square
sense. The beauty of the SVD decomposition is that even under such circumstances, the

inverse of a singular matrix can still be achieved by simply substituting the infinite ele-

-1 . . . .
ments of W , i.e. ‘—vl— — oo, With zero, i.e. wi — 0. The proof of this procedure can be
i i

found in the literature [64].
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Appendix D:

[8]

[9]

[10]

A. Asi and L. Shafai, “Full Wave Finite Difference
(FWED),” Submitted for publication to IEEE
Microwave Theory and Techniques transaction.

A. Asi and L. Shafai, “SVD based Prony Hilde-
brand Technique for CFDTD Processing,”
Accepted for publication by URSI-95 International
Conference.

A. Asi and L. Shafai, “Cavity Micrestrip Antenna
with Radome,” Accepted for publication by IEEE
AP-95 International Conference.

Major Contributions

[1]

[2]

3]

[4]

Introducing and developing a new Finite Differ-
ence Time Domain technique for calculating
eigenvalues (dispersion curves) of guided wave
structures, COMPACT IFDTD.

Introducing and developing a novel Finite Dif-
ference technique for calculating eigenvectors
(field patterns) of guided wave structures, FULL
WAVE FINITE DIFFERENCE (FWFD).

Applying advanced signal Processing tech-
niques such as AUTO REGRESSIVE and MAXI-
MUM ENTROPY METHOD to dispersion curve
analysis of guided wave structures.

Introducing and enhancing a new signal pro-
cessing technique, SVD BASED PRONY-HILDE-
BRAND.
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