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Abstract

IN cENERAL, microwave devices can be split into two major categories, active and

passive devices. In this thesis, an attempt is made to address one of the most important

issues in the realm ofpassive devices, guided wave structures. A quick survey ofthe liter.-

aturc published in the last four decades reveals the fact that analysis of waveguides has

always posed itself as a challenge to researchers. Noting that Maxwell's equations are a set

of eight partial differential equations of six vector field quantities, Er, Ey, Ez, Hr, Hy, Hz,

in terms of four space and time variables, x,y,z,t, it can be understood why the ultimate

solution technique for solving electromagnetic problems with any kind of complexity has

yet to be found.

By def,nition, a waveguide is a three dimensional structure with exactly the same

cross section at any arbitrary point along the z direction. In microwave engineering termi-

nology, this is equivalent to not having any discontinuity along the direction of wave prop-

agation. From analytical point ofview, it can be proved that under these circumstances, all

the information regarding this three dimensional structure can be extracted from a two

dimensional analysis of its cross section. solving the problem for this two dimensional

cross section will result in an eigenvalue problem. For any eigenvalue problem, the solu-

tion should be expressed in terms of eigenvalue pairs, i.e. (À, X) , in which À and X rep-

resent eigenvalues and eigenvectors, respectively. Interestingly, these eigenvalue and



eigenvector pairs conespond to two common terms in microwave engineering. As shown

later on, eigenvalues are nothing but the points generated by crossing the dispersion

curves with a horizontal line and eigenvectors, on the other hand, contain all the infoma-

tion needed to draw the fleld patterns of different field components inside a waveguide.

In this thesis, two new methods have been proposed which are capable of solving a

waveguide eigenvalue problem completely and efficiently. The first method is specialized

for solving the eigenvalues and is called the CoMpAcT FntITE DTFFERENcE TIME

DoMAIN (Compact FDTD). The second method solves the other half of the probtem,

eigenvectors or ûeld patterns, and is called the FULL \ryAvo FNITE DTFFERENcE (FWFD)

technique. Other new signal processing and estimation techniques have also been pro-

posed and investigated in a separate chapter. These signal processing techniques, AuTo-

REGRESSñE (AR), Auro-REcRESswE Movn\G AVERAGE (ARMA) and pnoNv, have

the potential of enhancing the efficiency of time domain methods, In addition to those, a

new St¡tculen VaLUE DEcoMposrTroN (SVD) Based Prony method is also contributed.

In each chapter, the simulation results of these new techniques are presented and com-

paled to the results obtained using other standard procedures. Specifically, complicated

problems containing diagonally anisotropic materials are addressed in chapters th¡ee and

four.

The CFDTD and FWFD can be integrated as the numerical engine of a powerful

CAD package to calculate the dispersion curves and field patterns of an inhomogeneous,

anisotropic waveguide. The computational efûciency gained using these new methods,

when combined with advanced signal processing techniques, can easily exceed those

achievable by most other numerical techniques.

4[i Asi 11
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I.A. Introduction

Fn.tne DFFERENcE (Time Domain) method has been selected as the main numerical

tool throughout this thesis. Therefore, in the f,rst section of introduction, a few justifica-

tions for such a selection are provided followed by a comparative study between the

FD(TD) and other methods. Then, in the second section, samples of different Microwave

waveguides and Optical waveguides accompanied by the final objectives of a guided

wave analysis are presented. This helps in understanding the purpose behind such an anal-

ysis. A brief formulation of the problem which is going to be analyzed is the subject of the

thi¡d section. Finally, in the last section, a few common differences between a microwave

guided wave analysis and an optical one are pointed out.

I.B. Why finite difference?

THE ANALYSIS of guided wave structures is one of the few subjects that constitutes the

major part of microwave engineering [1]. Even now, the majority of papers published in

transactions and technical journals are devoted to the applications of techniques such as

the Moment, Finite Element and Spectral Domain methods; to guided wave structures

such as microstrip, slot, coplanar and optical fiber transmission lines.

Due to the vast variety of available numerical techniques, an a priori insight to the

capabilities and speed of each of these methods can be quite useful. There are usually sev-

Problem Descript¡on and Objectives AI¡ 9.çi. 1i



!lì¡*ålì3.\ìS$lÈÌåT;t1.sÌ99 :$*ïfë!ää::.{-i:ttèqi:È:r!rö:t- ]'-].:}r¡:.$iË},:lj:i'ËÌ}i;;Ì:,iri:1l:è}:;]li::Ììi:å:Tr.i.:1:5èa,,ì

eral factors which can affect one's decision for choosing a specific method for a particular

problem. Among them are:

. The topology of the structure, i.e. hao or three dimensional, inhomogenity,

anisotropicity, bounded or open,,,,

. Computer resources, CPU elapsed tíme and RAM,.,..

. Complexity and versatility of a method

As a general rule, the more analytical processes that can be done prior to starting a

numerical procedure, the less computational burden will be left for the computer to han-

dle. Therefore, in those instances that a strong computer lesource is not available, it is

highly recommended that the problem be dealt with using analytical methods as much as

possible. In fact, this is one ofthe reasons that in early stages of microwave developments,

researchers attempted to reduce every complicated structure to a simple one to be solved

using rigorous or analytical methods. Needless to say these rigorous, or analytical, solu-

tions can only be found for some particul geometdes under ce¡tain simplifying assump-

tions.

In the wake of recent advances in computer technology, a general trend towards less

analytical, and naturally more numerical methods, has sta¡ted. As a matter of fact, finite

difference methods are among numerical methods fi'om this category with a strong capa-

bility to deal with arbitrary geometries, i.e. versatility. For this class of numerical meth-

ods, the analytical pre-processing and the mathematically involved procedures before

passing the problem to the computer are almost nonexistent, i.e. less complexity. The only

Problem Description and Objectives AI¡ Asi. 14



restriction which had previously limited the wide spread use of these methods is their

dependency on large computer resources which were not available until recently. Table (I

.1) offers a good comparison between the characteristics of different methods [2],

¡L1Ëið. jlsr:Ë!::$ìùì$Yl*$SÈlìì:,$iì.lr:jrr:: :;"':-ï"--e.9.!Þ|'!.'.'r

15

TABLD I .1 Cornparison table between different methods

Method Memory CPU time Generality
Pre-

processing

þ'inite
Dffirence L L VG Nit

Finite Element L ML VG S

Boundary
Element M M VG S

TLM ML ML VG s
Integral

Equation SM SM G M

Mode Matching M SM G M

Transverse
Resonance

SM SM Ma M

Methoil of Lines M S G L

Spectral Domain S s Ma L

L=large, M=modercte, S=small, YG=very Bood, ç=good, l|4.a=ntarginal

Problem Description and Objectives Ati.gsi



I.C. Guided wave analysis

GENERALLY spEAKINc, there are two major categories of guided wave structures,

mic¡owave and optical waveguides. Some of the most common configurations ofboth caç

egories are illustrated in what follows. Basically, the methods presented in this thesis are

capable of dealing with all these configurations.

I.C.1 Microwave integrated waveguides [4]

Ëæzz-E)

(a)

Ø Conductor

fl Air

f Ground Plane

FIGURE Ll (a) Microstrip (b) Suspended microstrip (c) Slot (d) Co-planar
waveguide (CPW) (e) Fin line (Ð Strip line (g) Co-planar strips (CpS),
transmission lines

(e)

Problem Description and objecrive¡ AI¡ A-<ì 16



I.C.2 Optical waveguides [5]

Problem Descriprion and Objecrives A{i. Asi 17

(a) Non-radiative dielectric (b) Dielectric image line (c) Dielectric
(d) Strip dielectric, or insulated image (e) Ridge (f) Inverted strip
(g) Channel or embedded strip (h) Strip slab (i) Graded index,
waveguides

FIGURE I.2



I.D. Objectives of Analysis

UsuArLY, the final objective of any analysis strongly depends on its very own nature.

But, in general, one can summarize the most common objectives of guided wave analysis

as follows:

. Field distribution, i.e. Er,Ey,E?Hx,Hr,H, pattems inside the waveguide

. Cut offfrequencies of different modes

Dispersion curve, i,e, þ versus a

Studying the conditions to ampliþ a particular mode and/or attenuate the others

Studying the effects offeed and output positions, type of excitation,...

Studying the effects of dffirent shieldíng on the modes

. Stud!íng the effects of dffirent dielectics as the propagatíon media, Iike

inhomo genity, anisotropicity, chirality, Iossy,...

Among these, maybe the first three are the basic objectives of any type of analysis.

Yet, it has to be mentioned that not all numerical methods have the capability of investi-

gating ali the above items. For instance, some ofthe methods like perturbation method can

be useful only in determining the cut off frequencies or at most the dispersion curve. On

the other hand, the two methods proposed throughout this thesis are capable of answering

all the above mentioned questions effectively and efficiently. Explicit solution approaches

for most of the items in the aforementioned list of objectives are presented by applying the

Problenì Description and Objectives A[iAsi
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methods to different structures. Howeve¡ the power of the methods in addressing all the

above mentioned objectives becomes apparent by investigating the final formulations.

I.E. Mathematical formulation of the problem

STARTD{c from Maxwell's equations, one can proceed to formulate the problem:

?rÈ = -r€-" È'dt '¡

?"Ê = ']-"2
Pr,=0 o=0

(L1.a)

(r.1.b)

in lossJess media (I.l.c)

(t.2)

(r.3)

(r.4)

in which pr,, and o are magnetic resistivity and electric conductivity, respectively. These

two parameters can properly represent magnetic and electric loss mechanism in a lossy

medium. In above equations,

-))D=eE ,

Taking the curl ofeq. (I.1.a):

e = ene,.(x,)) = n2 (r,y)

,))
3"?,. È = -u.ò:P

dt

Using the well known curl of curl expansion from vector analysis:

+(v ;)-+'; = -þ"+
dt

Problem Description and Objectives AI¡Asi 19



From Guass's law in source free media, i.r. I . B = p = 0:

à-)
V.D = 0

) I è\
v.[Ê,EJ = 0

+ / rå\v.ln'n)= 0

r+ å à -) tn'Y.E+E.Yn'=0

iÈ=-È1
n

-)tà. ( zl Vn'v Inln )= 2
n

Finally, substituting eq. (I.11) into eq. (I.4) yields:

ç'È-t "fJ = 3(3 a) = -3(; v,",,)'ðt"\

i'È-r'¡rrot] = -3(È 3'",') )n = e,.\x,l)

(r.s)

(r.6)

(L7)

(r.8)

(r.e)

(r.10)

(r.11)

(r.r2)

(r.13)

Equation (I.13) is the governing wave equation for any inhomogeneous guided wave

structure regardless of its operating frequency. For the homogeneous case, the right hand

side of eq. (I.13) is equal to zero. Hence:

ì È=-È ür(,')

Problem Description and Objectives



i n2 = e,.(x,y) (I.14)

CAUTION: One must be reminded that the inhomogeneous vectorial equation (1.13)

is not decomposable ínto three x, y, z co,nponents!!!

I.F. Microwave \üaveguide analysis versus the optical one

EveN a quick survey of the microwave and optical waveguide literatures reveals the

fact that there are distinctions between their.analyses. While, the governing equations,

(I.1.a) and (I.1.b) or (L13) are the same for both media, this double standar.d in treating

them differently seems questionable. This question and the ¡ational behind this distinction

is addressed in this section. Let's rephrase the question once more:

"What øre the najor dffirences between the analysís techniqttes of microwave

and optical guitled wøve slructures?"

The first major distinction is due to different fabrication procedures dominant in

microwave and optical frequency bands. Practically, almost all waveguides operating in

microwave frequency bands are constructed from several distinct regions of homogeneity,

whereas in the optical frequency bands the dominant configuration belongs to the class of

G¡aded Index type of Optical Waveguides, as shown in Fig. I.2 O. In addition, due to

high conductor losses at higher frequencies, usually no conductor is used as a transmission

medium at optical frequencies. As it has been explained in $I.E., for a complete analysis,

either eq. (I.13) for the inhomogeneous waveguide or eq. (I.14) for the homogeneous one,

has to be solved. In fact, for the homogeneous case, the govetning equation is a well

ì'È-rt¡r"'fi = ã

Problem Desc¡iption and Objectives A[i A-.i 21



known one, the so-called Helmholtz equation. Instead, the difficulty will arise when one

intends to solve the inhomogeneous case. This is exactly one of the points that distin-

guishes the analysis of microwave waveguides and graded index optical waveguides. The

reason is that, usuaily, at microwave frequency bands, one is dealing with homogeneous

waveguides or waveguides which can be divided into seve¡al homogeneous regions. And,

in each region of homogeneity, one can simply analyze the problem using eq. (Ll4) and

then using methods like Mode Matching, impose the boundary conditions on the unknown

constants of the field equations. The same procedure is still valid for step index opticai

waveguides, as of Figs. I.2 (a) to (i). On the othe¡ hand, the G¡aded Index Optical Fibers

constitute an important class of optical waveguides and therefore require special attention.

Since, the variation of permittivity index inside graded index optical waveguides is a

smooth and continuous function of position, they cannot be split into several regions of

homogeneity. Hence, in general, one has to solve a fairly complicated system ofequations.

Quite interestingly, from the FD(TD) point of view, both these two classes of problems

can be handled easily. This is one ofthe most interesting features of an FD(TD) algorithm

that once it is written, it can deal with more complex situations as easily as with simpler

ones.

The other major distinction lays in the fact that optical waveguides are usually being

conside¡ed as open structures. While, in the case of microwave waveguides, a sunounding

conductor is usually present that shields the structure. Although this shield is mainly used

for isoìating the fields inside and outside of the structure, it also facilitates the numerical

computation of the field. In contrast, fo¡ most optical waveguides, the region for numeri-

cal solution is surrounded by absorbing walls. Note that the suffounding rectangles in

Problem Descriplion and Objeclive¡ A[iAsi



Figs. (a) to (i) do not necessarily represent PECs (Perfect Electric Conductors). Modeling

Absorbing Boundary Conditions [6] has always been a challenging problem for resea¡ch-

ers. Since the objective of this thesis is not in developing new kinds of absorbing boundary

conditions, it will not be discussed in furthe¡ details.

So far, from analytical point of view, two factors in favor of the microwave

waveguide analysis have been pointed out. However, an important property makes the

analysis of optical waveguides easier than the microwave ones. This is due to an assump-

tion, which is valid only for optical waveguide structures. It is called the scalnr approxi-

mation in optics,

I.F.l Scalar approximation in optics

AN oPricAI waveguide consists of different layers of dielectrics with different refrac-

tive indexes. One with the higher index, the core, is located at the center of the guide and

the othe¡ the cladding, acts as the shielding layer for the core. Luckily, in optics we usu-

ally are dealing with structures whose refractive index varies smoothly (2Vo) along the

transverse direction, i.e. Weakly Guided Structures. Under these circumstances, one can

assume that the right hand side of equation (I.13) equals zero, allowing the Scalar

Approximation in Optics [7]. A careful examination of Maxwell's equations in such a

guiding structure shows that the z components of both electr.ic and magnetic fields

approach zero. This in turn means that the field distribution inside the waveguide tends to

follow a Quasi-TEM pattern.

Problem Description and Objecrives Ati As¡ 2-l



On the other hand, according to a known theorem in Electromagnetic theory, only a

scalar helmholtz equation sufflces to describe the behavior of all the field components of a

TEM field distribution. Assuming propagation along the direction, this equation can be

written as:

lv',*t'rl.1x,y¡ -B2]o = o

-7 _t
-2 ò- ò-v;=^2-:-+= þ=k,ðx' ðy'

The fleld components for the TE mode are:

EE =<Þ(-r) H =-t E =0' Y r -z

By the same token, the TM field components are:

E
H =-),n H =Oz

tuïì = l ---r-' dtot'

lu
n = /..c

(I.15.a)

(r.1s.b)

(r.17)

(r.16)

EY = @(x)

I.G. Conclusion

BASED uPoN what have been cited above, it can now be understood why time con-

suming methods, like the FD(TD), gladually become more dominant than rigorous or ana-

lytical ones; a) they do not require a simplified model, b) they do not require complex

mathematical algorithms c) using high speed computers, the computational time for these

methods can be kept quite affordable.

The followings can be listed as the common differences between a microwave

waveguide analysis and an optical one,

Problem Description and Ob¡ectives g[i +si 24



. In microwave analysis, one can usually rtnd regions of homogeneity inside

the waveguide and rhereþre solve eq. (Ll4) for each oÍ these regions. On

the other hanà, for graded index opticalfibers, solution is usually obtained

using more complicated eq. (l.13).

. In optical structures, scalar approximation can be used (as long as rigor-

ous polarization study is not of any concem). Whíle in Mícrowave, a vecto-

rial analysis is a must.

. In optical fiber analysis, one needs an absorbing boundary condition to

confine the computational regíon, while this requirement can be waived

for most of the closed Microwave stuctures,i.e. Fin-lines, Sn.ip-Iines,...

As can be seen from Figs. (L1) and (L2), for some ofthe cases, an optical waveguide

can be quite similar to a microwave waveguide. However, as it was mentioned earlier, due

to excessive conductor losses at higher frequencies, conducting waveguides are not usu-

ally used as a wave carrier at optical frequencies.
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II.A. Introduction

As wAS pointed out in comparative table I .1, Finite Difference lFD; baseO methods

a¡e one of the most powerful and versatile techniques available, provided that computer

resources do not pose limitations. With recent advances in computer technology, this is

becoming less and less a problem.

FD methods can be divided into two general categories, Finite Difference Frequency

Domain and Finite Difference Time Domain methods. In general, Finite Difference refers

to those class of problems that are formulated by replacing all or some ofthe spatial deriv-

atives with their equivalent finite difference forms. Time Domain methods refer to tech-

niques which ate based on the time domain extraction of the evolution of the f,elds,

Needless to say that time variable, r, plays a crucial role in this formulation and is present

in the final formulations, either explicitly or in terms of numerical iterations. Flequency

Domain, in turn, refers to the techniques which are based on solving field equations for a

certain frequency. Different categories and branches of finite difference based methods are

illustrated in the following chart, Fig. IL 1.

lì-1ì' S*Ï ìÈå¡*s..\l 'lììrÈS[r$*]ñì"$i*" ì]l.r¡åS$r$***s;$Ë:Èïr$ilT. åf$*;' .ËÌ{iffiitrffiì*:nå'ìr$'Yår. :*ì1.ì}ffi*}i*".åS1ì
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II.B. Time Domain Methods

Tltlae DoMÀN methods constitute a major branch of the class of finite difference

methods. Among methods from this category are: TLM [8], FDTD [9], Bergeron's [10]

[1 1]. Even though the original derivations of these thee time domain methods we¡e based

on completely different physical interpretations, their equivalency has been established by

several researchers [i2]. Therefore, from a theoretical point of view, there is no major

advantage in choosing one time domain method over another. Yet, it has to be mentioned

that from a practical point of view (CPU time and required memory space), there are sev-

elal advantages in using the FDTD method over any other time domain method [13].

II.B.1. Transmission line matrix (TLM) method [14]

THE TRANSMISSIoN Line Matrix method was first inspired by Huygen's principle and

the physical nature of wave propagation [15]. When Johns first proposed this method, he

simply assumed that space be modeled by a mesh of transmission lines. The equivalency is

established if the physical properties of the transmission lines, characteristic impedance,...,

be adjusted in a way that the effective behavior of the wave propagation in the resultant

slow wave structure follows the same pattern as the actual wave in the corresponding

media. According to the Huygen's principle in optics, in the course of propagation of a

wave, each point on the wave-front of a wavelet acts like a new source of spherical waves.

The upcoming wave-front is nothing but the envelope of the wave-fronts to all these new

spherical waves. To simulate this algorithm on a computer, first, space and time must be

ll$itiiitili¿..1;',::nÉIãir*X&ììì l$få:*äS#il3:'*¡J,¡
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discretized. This procedure can be performed in different coordinate systems. For conve-

nience, here, only the derivation in the cartesian coordinate system is presented. Fig. D'2

depicts the wave propagation mechanism in a mesh grid in the cartesian coordinate sys-

tem. Suppose that one of the nodes is excited by a unit voltage pulse. Since all four

branches connected to a specific node have the same properties, the incident power will be

split equally between the lines. Knowing that the initial pulse was launched with a unit

power, each of the reflected pulses in the four branches will have 1/ 4 of the unit power.

So, each of them will have an amplitude eq)al to 1/2 the unit voltage.

FIGURE II.2 TLM rvave propagation mechanism (a) Incident unit impulse impinges on a
node (b) The resultant reflected impulses (c) The numbering sequence of the
branches in each node

(a)

3

,l o

I

I

(b) (c)

Now, having the amplihrdes of all the reflected waves, the only remaining unknowns

are their phases. These can also be determined from a very straightforward mathematical

analysis. As it is clearly shown in Fig. II.2, in each node, there are thtee identical transmis-

tR,ì,.sil*Sl$"s;fÞ$$ùr,RË!$tl*!Strì$È*:*ìR*ffiï! ìS " ì9àìÌìlìT*t:lir':-j:*.tÈl:# lå'i':i3$iì5È' frSÈ*Till!ii{ìËTÈËÈ\râ-}Ë
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sion lines connected to the incoming line with the same unit normalized impedance. The

three outgoing lines appear in parallel, terminating the incoming line in a normalized

impedance of I/3 .Hence,

I
;_I_J

¡l
-+ I

3

r,*tfu = ll,,í,ru,,,)- r',

1

2
(rr.1)

(rr.3)

and the transmission coefficient for each outgoing line is

7. = 1+I-, = 1tt2

and therefore, the reflected wave at the branch 1 is 180' degrees out of phase with respect

to the other three scattered waves and also the initial excitation pulse. The concluded

results so far, can easily be extended to a more general formulation, in which the node

excitations are notjust unit impulses. Let us concentrate on a more general case in which

many nodes can be excited simultaneously. The voltage ol, stands for the incident volt-

ag iÎ I = i and reflected voltage if I = ri n and fr stand for the branch and iteration

numbers, respectively. Using superposition in linear systems,

or.2)

This situation can be conveniently formulated in a scattering matrix which rclates the

reflected voltages at the (k+1)^f th step to the incident voltages at the fr^t th step:

Preview of Numericâl Technìques A(i Ási -11



lvf'
l;,1
lul =

-., Lu;]

t1
-1 1

i -1
11 ,.r|ilt

il
ll.
-'l

,1,'
llt
L'

or.4)

(II.5.a)

(rr.s.b)

(II.5.c)

(rr.s.d)

It is obvious that any impulse emerging (reflected) from a node at position (2, .rc)

act as an incident impulse for the adjacent node at the next time step. Therefore,

o* rf, {2, x) = ollrtz, x - 1)

¡,* rir{2, *) = ot/o1z- t, x)

¡* rfrk, x) = ol/, {2, x + 1)

o* rfo{2, x) = ofr{z + r, x)

By repeating the two algorithms expressed in eqs. (IL4) and (II.5.a)-([.5.d), a wave

propagation mechanism can be simulated by a digital computer. But, still, one may be

skeptical about the precise relationship that holds between this algorithm and the actual

electiomagnetic wave propagation, which is formaliy a solution to Helmholtz equation. To

investigate the validity of this method and also establish an accurate mathematical model,

we write the telegraph equations for a mesh of transmission lines. Fig. tr.3 depicts one unit

cell of such a mesh.

Pæviev of Numerical Techniques ñ.ti tlsi



FIGURE tr.3 Details of a unit cell structure constructing a TLM mesh

(b)

The derived equations can be written

form only if the mesh grid is infinitesimally

tion is met, one can proceed to:

in paÍial differential, not partial difference,

small, i.e. 
^/ 

-+ 0 . Assuming that this condi-

(II.6.a)

(rr.6.b)

(II.6.c)

ðvn , a(1,1 -1,3)
âx-àt

av a(r ^-r .\\ , 'Z¿ Z+'

ð2. - ðr

a (¡,f -1,3) . aUz2- 1,4) 
^^ðV,----ãt -----ãr = -'"ãt

These expressions can also be combined to yield the following Helnììoltz wave equa-

tion,

tl$:{:ì*ft:i*IË:.ü SSfi. T$}T*fÈ.ïSSii:. a}j¡l¡li!tèT. 
" 
å lÌi$ìSë;iT¡-¡iììlÌIi;:ri.{_t#:,tF^{t#ì,t$,Si$Sf:$tSt+Tåt
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Therefore, this fact has just been proved that the mechanism generated by iterating

eqs. (IL4) and (tr.5.a)-(I.5.d) can simulate any wave propagation phenomena which has a

simila¡ formula to eq. (II.7). The I1,,,0 can serve as a good example which can be easily

modeled by the TLM shunt-connected network. For.this mode, Maxwell's equations can

be re-written as:

a2v à2v à2v
--]+--; = 2LC ;j
òx' ðy' ðf

àH
- Ll "=--''dt

òH,
-U-'òt

ãE^v
dt

(rr.7)

(II.8.a)

(rr.8.b)

(rr.B.c)

ðH
(II.8.c) and substituting for -j and

dt

AH
z

ãx-

ãEv_
ðx

AEv_
ðz

AH,
-=---: +
òz

After taking time derivative of both sides of eq.

S ,n r"rrn, of partial de¡ivatives of E, (from eqs. (tr.8.a) & G.8.b)), one obrains:

a2Er, . ð28,-:ã* -i =
dx dy

ð2 8,,
u8--Í

dr
(rr.9)

Thus, an I1,,,0 mode inside a waveguide can be simulated by a TLM shunt-connected

network on a digital computer. Now that this equivalency is established, it seems to be a

good idea to derive the exact relationships that hold between the model parameters and the

actual electromagnetic field components. A direct comparison between equations (II.6.a)-
Iìiì..liËll1Ì|1a. ,.r*"a:ìT S!ATìitTST;i$\}lI*ìn:1ir-:.ìX$Ii.iåTS1 t,!:äïÌ{$Êlþ:{:Ti*i$::.ãl**,ïtì

P¡evjew of Numericâl Techniques n(i A.si



([.6.c) & (II.8.a)-(II.8.c) can be made with the following equivalences between parame-

ters:

From the transmission line theory, the speed of the wave propagation and the parame-

ters of the medium, assuming free space þ,. = 1 , Êr. = 1 are related to each other accord-

ing to the following equation:

E=Vvv

Hr=-(Irr-l¡)

Hr=-(1"2-I"a)

þ=L

t =2C

11
J¡te JLC

GL10.a)

(rr.10.b)

(IL10.c)

(rr.10.d)

(IL10.e)

(rI.11)

Now, when this transmission line is placed in a shunt-connected network, the resultant

structure will exhibit a slow wave stlucture behavior represented by:

(tr.r2)

l:T.::j}Þì Ï*"å*Iåü!¿js":*llillâ!l$.ììËSlÈ :L\ilïji¡Sï:Èlï tçlJrïli:Ì;;:Tj*':*:li!
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lLB.2. Bergeron's method

THE orHER TrN4E domain technique which is somehow similar to TLM is the Alterna-

tive Network or Bergeron's method. This model which was first proposed by Yoshida,

Fukai and Fukuoka [11] is based on the equations which were already obtained by

Bergeron. The basic idea behind this method is very close to the one of TLM. In fact, both

methods utilize the traveling wave concept. Their differences are:

. The way that unit cells are defined is dffirent. Instead of having two

different shunt and series connected networks as in the TLM, only shunt

connected network is íntroduced, But, two different electric and magnetic

nodes are defined in the structure. In the elecÛic nodes, voltage represents

the electric field while in the magnetic nodes, it represents the magnetic

field component.

. In Bergeron's method, the voltctge and current variables directly model the

electromagnetic fields. On the other hand, the TLM is based on the

decomposition of each voltage and current variable into two incident and

reflected components.

. The application of just shunt connected network in Bergeron's method wiII
result in some mismatching behavior between the voltage and current

vøriøbles. To remove this, d gyrator has to be utílized befween any tvvo

connected nodes in the unil cell structure,

Most of the other properties of the Bergeron and TLM models are similar to each

other and there is no particular advantage in using one over the other. Therefore, no further.

detailed derivation is presented here. Later on, only the justifications that make the FDTD

more preferable than TLM for this study will be presented.

Preview of Numerical Techniques Atí Asi i(;



II.B.3. Finite difference time domain (FDTD) method

UNLIKE TtD two preceding methods which are based on some physical interpretation

of the wave propagation mechanism, the FDTD method is based on a very straightforward

mathematical procedure and normally does not require any a priori physical interpretation

in order to derive the basic formulas. FDTD results from replacing space and time deriva-

tives in Maxwell's equations by their corresponding finite difference equivalences.

II.B.3.a. Formulation

STARTtr Ic FRoM Maxwell's equations, expanding eqs, (I.1.a) and (I.i.b) will result in:

'+ = tJ:# u*-o-,")

^+ = tJ'#* 
*Y-o*',)

(II.13.a)

(rr.13.b)

(II.13.c)

(rr.13.d)

(II.13.e)

or.13.f)

òr, 
=ðt

õEr

dr

ð8, ( ðH,
-=- = -l - "=- -t
dt t\ d'

ò3=
àt

i(# '#-,,,,")

!(-ð3*%-o" Ie\ dz dy r/

(àH, ðH, _ \
-t 

- 
--j-6¿ I€\ dz dx Y./

AH\J-oE Iòx z/

SÌ.i,ì*'.::l*:;ìlä::tì,ïè' l{i!ì*È l . .ìi1"ïi-j:$èì*::: .¡$:lii{It:TSTLi}S' ,.äì:!f:ï.åt
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A quick inspection of eqs. (IL13.a) to (IL13.Ð shows that these equations constitute a

system of coupled differential equations in terms of six vector field components,

E*,Ey,Ez,Hr,Hy,Hz, as functions of four independent variables, x,y,z,t. This makes

the task of discretizing the above equations to their finite difference forms a peculiar one.

Specifically, ca¡e has to be taken in discretizing the differential operators if a final iterative

algorithm is desired. It was Yee who first proposed a method to accomplish this task.

Although, it has should mentioned that his algorithm is not the only way to obtain a practi-

cal algorithm.

At this stage, all the derivatives with respect to time and space must be replaced by

their corresponding finite difference forms. But, there are several different ways to discre-

tize a de¡ivative operator, such as the forward, backward and central diffe¡ence formulas.

Following ale some basic definitions and notations required for the rest of the discussion.

(i, j, k) = (iLx,jLy, k|z)

f'G, j,Ð = F (ilx, jly,ka,z,na.t)

(rr.14)

(rr.1s)

(rr.16)

(II.17.a)

(rr.17.b)

- í'-1 (r, j,,r) _!'-t (,, j,,r) * o(tt)

/(i* ),i,1-r(,-),i,r)

d'(i, i * ), r) - r(', i - ), *)

+ ol^x" )

* o(ly')
Ây
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f'(i, i, t * L) - r(t, t, r - i) *o(u') (IL17.c)

Eq. (tr.16) is the central difference representation for the time derivative operator.

Eqs. (II.17.a), (II.17.b) and (II.17.c) are, respectively, the expressions for central, forward

and backward difference formulas for the spatial derivative operators.

At the next step, Yee defined the spatial locations of electric and magnetic field vec-

tors half a unit cell length apart in space. Also, he evaluated È u"A È at alternative half

time steps. Fig. tr.4 illustrates a unit cell of Yee's lattice. Using this unit cell and the finite

difference expressions for time and space derivative operators, eqs (tr.18.a)-(II.18.f) can

easily be obtained. These a¡e the governing equations of a th¡ee dimensional FDTD algo-

rithm fo¡ an inhomogeneous medium, i.e. permittivity, permeability, magnetic resistance

and electric conductance can be functions of space coordinates.

FIGURE II.4 Conventional Yee's 3D-lattice

P¡eview of Numerical Techniques nti Asi



Now that all derivative operators have been replaced by their finite difference forms,

one can start from any instant of time, after assuming some initial and boundary condi-

tions, proceed to obtain the values of electric and magnetic fields at any instant of time and

any position in space. Needless to say, it is to the advantage of the required calculation

time if one can assume larger time (^r) and space (^r, 
^), ^z 

) steps in Yee's lattice. The

bigger these step sizes are, the larger domain in both space and time can be covercd. But

there are several theoretical barriers that are against increasing the step sizes uncondition-

ally.

. Accurac!: Equations (1L16), QI.17.a)-QLI7.c) are valid only when step

sizes approach Tero ( Ll -+ O and Lt -+ 0 ), i.e. fine grül assumption.

. Stability fdctor

. Numerical dispersion

The exact meaning of stability factor and numerical dispersion will be explained in

what follows.
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(tr.18.a)

u(',¡.),0.1)

4(,, i, o * )) - q(', t .,, o. 
+)

Lr
I

+-'(,,t *l,o-)).

(rr.18.b)

Ây

,^(t,¡*L,0.))o,
11t,t+r,k+t

-4(ti.),0)

Ltllt,l+a,k+a

,u(r¡.L,n.!r)

(. r.. il
þlt+ r,t, k+ r)

_4('. ), ¡, 
o) - 4(,. ), ¡, 

o.')¡
Lz. 

-)

2þ

Lt

l-

,)

ñ
\,(''i *),0*

p-

1

+-'(,.),t,0.))-

l+

]'

o^(t*),i,r*))u

,^(,,¡*L,0.))o,

1.. I
+ 

r,J, 
k+ t

tlt,t+r,k+a

-t(¡.¡.t*L\¿\'"' 2)

*l,i,r*))u
zv(i*),i,t*)

(,

[,.

L

2p

2¡t

1\
-tz)
L,

1-

fr

{(r*r,i,r,*

p*4-i(,.),,,0.1) =

[+

l

o*(t*),;,r*))u
,v(t.),i,o.l)
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(II.18.c)(. I r -\
ILlt+ 2,t 

+ 
1, 

rc )

)1*4(,¡ 
*i. r)- 4(¡. t,¡.i,t

Lt
I

+-'(,.T,t.ï,0).

(rr.18.d)

L,x

,.(,*),i *),0)o,

,í;r;n

-4(,.),i,0)

I'

Lt¿'l

"(,*),i,r)n'

1l*r,l*t,
zu(i*),i *),r,

,,(t*),i,r)

ol

^1l

1-

(,
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['.
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I
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;, i, o. ))

l+

,(';ij,4
Lt

]'

(. 1 1.\.
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(II.18.e)

I'
o(;,i*)'r)n'

z,(',i*),r)[,.

+.:(,-;,, . ), o)- a.;(,.),, .),0)

(rr.18.Ð

/..rIEl,'t+a,k)
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II.B.3.b. Numericalstability

IN sol,vr.Ic differential equations using numerical methods, there is usually an upper

limit for the step sizes. Beyond this numerical limit, the algorithm is unstable and results in

excessive errors. Note that this er¡or is not due to any physical phenomenon, and is just the

result of an improper choice of the step size. For the three dimensional FDTD, it has been

shown that the upper limit can be determined from the following equation.

^,<+l+*4*4'l 'L llr.ax l\,x- A,y' Lz' )

Lt< LI 
=

" r,o*J3

where crrn, is the maximum phase velocity of

medium. For homogeneous free space, it is simply

sional case, one has:

I

¡r<1[1*-]-lt
, r,orl!*z Ly' l

^r< 
À1 

=c,,'",'"12

It is customary to call the ratio s = S the stabilitf factor. Therefore,

factor for a three dimensional FDTD lattice must be less than 1/ Ji, while for the two

dimensional lattice, it should be less than | / J2 .
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Ax=Â)=Lz=L,l

(rr.19)

(rr.20)

the electromagnetic wave within the

the speed of light. For the two dimen-

A,x=Ly=LI Áz-+0

(rr.21)

(rr.22)

the stability



THE NUMERTcAT algorithm represented by eqs, (II.18.a)-(tr.18.Ð introduces disper-

sions to the wave propagation within numerical lattice. This is called the numerical disper-

sion in contrast to the medium dispersion which isjust a result of the inhomogeneous and./

or anisotropic properties of the medium. In order to investigate the properties of numerical

dispersion, one can consider the plane wave propagation in free space. In this case, free

space is considered as a homogeneous medium and therefore the¡e is no contribution due

to "medium properties" in the total dispersion.

Stafing from Maxwell's curl equations (I. 1.a)-(I. 1.b), and following a procedurc sim-

ilar to the one explained in section I.8., one finds the three dimensional lossy Helmholtz

equation as, assuming p,,, = 0 :

t¿f }iìèiSä!ï:ìis:ïìTf ßs****tñ!ü*SSllrtål¡in'*:*X:*Ë5,tll$ jiä:SÈSii

II.B.3.c. DispersionAnalysis

òt2

(rr.23)

The second derivative operator can easily be discretized by implementing central dif-

ference operator (II.17.a) twice:

à2n- ð28- a2E- a2E- aE-
1+--i i-;" = pe ."+froi
òx' ðy' ðz' A1' ot

a2f'u, j,n)
^2dx

ll
^ r¡+Ã n-a

ò'f'G,j,t) _r 'e,j,t<) -zd'G,j,tÒ +r 'e,j,t<)

.t'(t-),i,r)

;*f :ri$.:t$;lIriÏa-T-x*Ë*l

(rr.24)

(rr.2s)

t'(i *),i, r)-zf' 1i,¡, r,¡

Lx2

Lt2
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The second derivative operators with respect to )l and z can also be discretized in the

same fashion. Substituting eqs. (1L24) and (II.25) into eq. (II.23) yields:

t;(t. 
), i, 

o) - 14 lt, ¡, r,¡ + fl(t - ), i, n)

.2
^.r

{(t,i *},r)-24<t,i,ø + Q(t,i -},*)
'

d,y-

4(,, i, o * )) -, n: rt, ¡, ø . fl(t, ¡, n - ))
' 

Lz2"*: ,, ,-+ ,*: ,-:
_ Ez' G,i,k) -28;(i,i,k) +8,' (i,i,k) E,'(i,i,k) -Ez' G,i,k)

L,' - 
"t

On the other hand, the standard solution to a lossy scalar Helmholtz equation has the

following general form:

F I (¡sinecoso + )sinesino + ¿coso) +j(otE, = e (11.27)

in which T = - ct -iP, where c¿ and B represent attenuation and propagation constants

of the wave, respectively. Substituting (tr.27) into (II.26) results in:

[*.'"'(e!#@)]'. [*,*n(^"Ë#t.r)]' (rr.zs)

. [o1,*n(o-llÉ)1' = ;çugu - ff [,'"qfJ'
For the special lossless case, eq. (II.28) can be simplified to:

Ir (k..A,x\12 f r /ft..Àv\lz Fr (k,Lz\12

L*""n[;J] . Lor.*nl.å.)l * lç'i"t'¡-:-¡ ut.ze)

r 1 lr¡^¡\2
= L.¡r""[ z J]

F "']*.*"ï;"i:.:::.:;:ï:#'i..!r ' " "s '" ¡; ]lSfiîi.;.5 ..¿\..i. q^c'!-ni
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fr, = Bsin0cosQ

/<, = Bsin0sinQ

fr, = Bcos0

Eq. (IL29) is called the nume¡ical dispersion equation for the three dimensional

FDTD lattice. It clearly demonstrates the fact that the¡e is a transcendental relationship

between B and ro, i,e. numerically dispersive. This numerical dispersion is a characteristic

of the FDTD lattice; there is no other dispersion present in the free space medium under

study. In fact, in this case the "medium dispersion" equation is:

(rr.30)

It is customary to call a medium non-dispersive whenever a linear relationship holds

between B and ro .

Careful inspection of eq. (II.29) shows that numerical dispersion is generally a func-

tion of wavelength, direction of propagation and grid sizes (in both time and space

domains). When all step sizes approach zerc (d.x, Ly, A,z, A,t + 0), eq. (tr.29) becomes

exactly the same as eq. (II.30). Thus, the smaller the gfid size, the less numerical disper-

sion is introduced to the simulation lattice. But, as it has already been stated, this has a

destructive effect on CPU elapsed time. In conclusion, one has to choose the grid sizes as

small as possible while keeping the computational time affordable. Usually, it is lecom-

mended [16] that the grid size be taken not larger than 0.1À, if numerical dispersion less

Than IVo is to be achieved.

lìllÈ:ìtËiTiììTliffiLç.ììif.1*. : l .lr-È,-{ì$-aÌ.:{.*ii¡¡'ìlfä:ÉSÌtÈ,r;;,r'}:Ì}} ñ:}

1

.JIe

o(Ðlr=;
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II.C. Frequency domain methods

AccoRDD{c To THE terminology used in this thesis, frequency domain methods are

those which a¡e based on removing the time va¡iable in the final formulations. This

removal can be accomplished by applying the Fourier transform on the time derivative

.ð
operator, i.e. i -+ jro. This transformation, automatically, shifts the whole technique todt

frequency domain. Traditionally, these frequency domain techniques have been based on

the Helmholtz equation. There a¡e, at least, two classes of Finite Difference Frequency

Domain techniques that are pertinent to our discussion, see Fig. tr.1. Other derivations

usually fit into one of the following two categories [ 17] [18] [ 19].

U.C.l Beaubien-Wexler's iterative approach [20]

IN cENERAL, it can be proved (appendix A:) that at certain frequencies, namely cut-

off, all electromagnetic waves can be decomposed into two orthogonal TE and TM

modes. Under these circumstances, Maxwell's equations can be written in terms of a scalat

field potential Õ [21].

For the TM modes:

È, = -\v,a
k;

E"= Q

È' = -( 
n_s);,"v '*

(II.31.a)

(rr.31.b)

OI.31.c)
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H, = o

and for the TE modes:

(rr.31.d)

(11.32.a)

(rr.32.b)

(II.32.c)

(rr.32.d)

(rr.3s)

Õ¡,¡*r-2Õ¡, +o.
-l (rr.36)

(Ly)2

È, =iffâ,*v,o
k

E =Oz

-)
H, = -\Y,Q

k-
c

Hr=Q

in which Õ should satisfy the scalar Helmholtz equation subject to relevant boundary con-

ditions:

lvi.{)a = o (rr.33)

in which k" = k2 -tl = *'+f is the cutoff wave number. Assuming that only

waveguides sur¡ounded by PEC (Perfect Electric Conductor) walls are of major concem,

Õ should satisfy Dirichlet and Neumann boundary conditions:

<Þ=0

fo¡ the TM mode and,

(rr.34)

fol the TE mode. Replacing the transverse Laplace operator by its discretized form yields,

Fig. (II.5):

,?* = ( 4.41. = 
Õi* r,i-2@¿,¿+ Q;- r.i *' \ðx" ày' ) (^r)'

inwhich Õ = Õ(.r,y) = @,,r.
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Assuming a uniform grid in both directions, Á¡ = Ày = h, eq. (tr.33) converts to:

-@¡*,,i-Õ¡-t,i-Õ¡,i*, -Õi,;-t + (a-À)@r,-, = 0 (rr.37)

This is called a five point finite difference operator, and generally can be expressed in

the following form:

b',1,t¡' .a,¡_r*b',,-l'i .a,_r,,+u¡,:,!r.@,j+bii,:''i.Õ,*,,j (IL3B)

*b',),ti .oi,;*r =o

where, for the internal points, u',:,1¡- 
t 

= u',,jt'' = u',,*,t't = b',:,!¡* 
t 

= -t and

b,l,i = a - À ' The eigenvalue l, is also defined as:

L = (kch)2 (rr.3e)

FICURE II.5 The finite difference grid

j+1

l

j-L
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Now, assuming a rectangular grid with M and N mesh grid nodes in the .r and y

directions, respectively, the following eigenvalue system of equations can be generated:

ÍA - ),.1) MN x MN [(Þ] ø,v 
" 
I = [0] M¡lx 1

lBl uu*u¡t [Õ] ø,vr r = [0lM1vx r
(rr.41)

inwhichB=A-ìJ.Fo¡anon-trivialsolutiontoeq.(tr.41),thedeterminantofmatrixB

must be zero. This can be achieved only for certain discrete values of À called eigenval-

ues. The problem is that these eigenvalues are not known beforehand. Two approaches can

be chosen to solve the problem, either direct or iterative methods. On the other hand,

according to eq. (II.37), only five non-zero elements exist conesponding to each ¡ow of the

B matrix. This renders the final system of equations highly sparse. According to the Lin-

ear Algebra theory iterative methods are generally much more efficient compared to direct

methods when it comes to sparse matrices. This results in shorter computational time.

Also, in iterative methods, one row of the matrix is needed at a time, whereas in direct

methods the entire matrix must be calculated and stored in computer memory. This makes

direct methods inefficient compared to iterative methods both in CPU time and RAM

memory. Based upon this analysis, iterative schemes have been favored for solving the

above eigenvalue problems.

The algorithm stats with an initial guess for the eigenvalue ì, and eigenvector (Þ.

Generally speaking, these guessed values are inaccurate. As long as the initial guess is not

(rr.40)
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too far from the corect one, a variational relation known as the Rayleigh quotient can be

implemented:

(Ir.42)

where r and Z represent iteration number and vector transpose operator respectively. In

the same manne¡ Rayleigh quotient can be implemented after each iteration to reach a bet-

ter estimate of the eigenvalue. Finally, iteration can be terminated whenever the following

convergence tests are met:

1 (r.+ l) _ a(r)1o*(t)" -;i;%lt

l¡{,*l)_1{,)l<r,

llqt'*tr -o(')ll<r.

*= @=.*4J @'O

(II.43.a)

(rr.43.b)

(II.43.c)

Depending on the objectives of the analysis, any or all of the above criteria can be

checked before terminating the iterations. For instance, if the dispersion curve is desired,

eq. (IL43.a) can be enforced, whereas for field pattern analysis, eq. (tr.43.b) seems more

appropriate. Eq. (II.43.c) might be more meaningful if the final convergence of the mathe-

matical system is desired. Howeve¡ under ideal circumstances, and upon reaching the

convergence, all three criteria should be vanishingly small.

To review the mathematical concept of convergence, suppose a successive over-lelax-

ation method is implemented to achieve faster convergence:

ili3,\i: , iìÌ*S. f33iT::L Èl;.Tlïi$!ìlTifi*¡i; lüÌffii.*fË*ì.i* ilitèt*-:t$"ê::"i\S: ,rïit$:l$rti#,:f.
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.l;." = 1r-.¡o,l'/. nl1,tollll,.oJli,l, *o,{,ì, *ol?,,,.] Gr.44)

assuming that scanning of the numerical space is done from left to right and from bottom

to top. Eq. (tr,44) is valid only for internal nodes. For nodes in the neighborhood of the

boundary, some of the coefficients would be different, depending on the TE or TM mode

analysis. For the TM mode, matrix B is symmetric. This is not the case for the TE mode

due to Neumann boundary conditions that can deteriotate the convergence properties of

the final algorithm.

In any case, there are several strategies that can be adopted to ensure convergence of

the final algorithm. One of them [22] is based on multiplying the B matrix by its transpose

to achieve a symmetric positive definite matrix. From eq. (tr.41), and pre-multiplying by

87, one obtains:

rr(no) = o

CÕ=0

where C = BTB .It canbe proved that B and C share the same eigenvalues.

xTr>o

d.et(c) =a"tlnr)aet6¡ = @et(B))2 (rr.47)

The main advantage ofusing C instead ofB is in the factthat C is a positive definite

matrix when L is not an eigenvalue, and positive semi-definite when l, is an eigenvalue.

Suppose, ¡ is an arbitrary matrix with at least one nonzero element:

(rr.4s)

(rr.46)

(rr.48)
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and also assume that fol' each r , there exists a ) that satisfies the following equation:

x=By (11.49')

It is obvious that y is a real matrix, provided that B is non-singular, an assumption

which is valid when l, is not an eigenvalue. Replacing (IL49) in (tr.48) gives:

y'B'By = yr cy>o Gr.s0)

As indicated earlie¡ C is not only a positive semi-definite matrix, but also symmetric

c'=(a'a)' = BrB = c Gr.sr)

It is known that successive over-relaxation is guatanteed to converge for a positive

semi-definite matrix [23]. Therefore, the aforementioned procedure is a reliable method

even for higher orde¡ modes.

Since this method is meant to be an iterative one, not all the elements of B are known

in advance and therefore, the multiplicatio n C = BrB cannot be performed directly. A

thorough investigation of how this multiplication works on a highly spatse matrix such as

the one generated by eq. (II.37), results in a thirteen point frnite difference [22], in contrast

with the original finite difference which was based on a five point operator, Again, assum-

ing that scanning is done from left to right and from bottom to top:
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tå?.*tä1sg8s+**$THilffit Ë$blsüääïts:.:ëffi,t

r,{;.', = (1 - o) @l? - fl,',,,!,-'a!,,,!)) *,i,,,,i 
-' a!li,',)_, Gr.s2)

*r',',i,-'a,\',1| *"',),t'' '.J;i,1'_,*"',,,t'ia!li,t,) *.i,rt'io,l1i,])

*,',,j'' i ø !'] r,, * "',,*,'' 
i a!i\ r,, *';,;'', 

*' 
o,ll),, 

r *, *';' j 
- t olf-,

* r',),t' t * t a,fl',,r *, * rt,',|," ø!,1] * r]

-i, 
j +2 ,¡,j ,¡,j+2c ¡1,"j = b¡1,"j*t.b.¡,jrt GI.53)

"',, t''' 
*' 

= b'i,jj *,' t',,-rt;t. 
1 

+ øíi 
t- 

r, ¡ b', -l',ti'

'',:,1,* 

t 
= b',1,1¡ *, b',1,1¡I', * øi,|,j, uí,;,ji'

"',,*r'' 
t *' = b'i,jj * t' ø',,-rt' T' * a'; 

t* 
r, ¡ b',It:ti'

-í-2,j ,ì,j ,í-2,jc. = t, ,.D,'i,j 'i - r,j " i- t,j

'',,j'' 
t = u'; t- r,, ø', 

-ti,j, 
* ø',:,j, ø',,,t' i

"',1,j, 
= (u',1,i, *,)' *(u''t ,,1' *(u',:,',)' *(ø','1,,,)' *(r',:,!, -,)'

í+l,j ,¡,j 1i+l'j. '¡'j 'i+l'j
"¡,i = o¡,i' o¡,i + oit t,¡'Di*1,¡

,¡+2,j ,i,j ,i+2,j
'¡, j = oi*t,¡'oitt,¡

"',,it' 
t -' = a'i t- 

r, ¡ b', 
-',',1,-' 

* b'i,j¡ -, ø',,j'-' l- 
t

"',1,t, 
' = b',|,j¡'b',|'¡-t +bt¡',:j-r b',',:j-l

"',),'' 
t -' = b'i t.,, ¡ b',i'i,:j-' * b',1,!¡ -,' b',,','-' t - 

t

¡,i-2 ,i,¡ ,ì.j-2c¡,"j = b¡','j_t' b¡,j_,

Sll$If*i:fì'ìätllÍ51i.!RÈXlìSílFål:{:+Åli':i*ìSi¡ÌHgirir'-t$:ffi&*-î"Sù"ï. Ë$$St6i T$i.rÈ¡.*$l*
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FIGURE II.6 Thirteen point finite difference mesh

2,j

Qi,¡*z

oi- r,; * r oi,, * t Õ,*1,i*,

o. ^. Õ... <Þ. o, * ,,; <Þ.¡+

or- t,;- r Õ., or*r,;-t

Õ.. ^

In summary, eq. @.52) can be written as:

a(t+1) - yr, lÕ(') = vlr,ro(o)

where the subscripts in operator Y refer to its dependence on ro and l,.

(rr.s4)

since the set of eigenvectors spans a complete vector space, any vector can be

expressed in terms of a linear combination of orthonormal eigenvecto¡s. Let's decompose

I fìlÕ'-' , the first eigenvector guesses, into a summation of eigenvectors:

o(o) = at*t + a2x2+ ,,, + aNx.N (rr.ss)
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in which, the eigenvectors .r, are those of C, or to be more accurate y. Since, the eigen-

vectors constitute an orthonormal set, after r + 1 iterations, one obtains:

*(r+l) r r r(Þ' = alLF|+ a2ll2x2+ ... + aNlr'NxN (rr.s6)

where p, is the corresponding eigenvalue to .r, . For this iteration to be stable, the modulus

of all eigenvalues should be less than unity. Suppose that pl has the biggest modulus.

Therefore:

*(rt l) - lim a, ¡r'j.t¡ (rr.s7)

and the only possible way that this iteration can result in a unique stable solution, the fact

that was already proven, is by assuming þ r = 1 . Of course, this happens, if and only if

the conect value of 1,, is substituted into eq. (II.44) or (II.52). If î,, deviates slightly from

the correct value, so does p,, and as a result the iterations either blow up or converge to

zero, depending on lÞ,1 being greater or less than unity. On the other hand, the interesting

point is that even for the wrong À, s, eq. (II.57) has the tendency to converge to the correct

shape of (Þ , even though the amplitude will not be accurate until the corect eigenvalue is

substituted. This fact, can be very useful whenever only the field pattern is sought, i.e.

FWFD.
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II.C.2, Arndt's direct approach

THE NErI approach which is more general, but less efÊcient, is due to Amdt et al.

[24]. It is general, because it is not ¡estricted to cut-off frequencies. One major drawback

ofthe Beaubien-wexler approach is the fact that it is derived from the assumption that the

modes are decomposable into TE and TM modes. It can be proved that this is only valid

for the following special cases:

Homogeneous wavegui.des and entire range of the frequency spectrum

Inhomogeneous waveguides operdting only at cut-offfrequency, appendix A:

As can be seen, the general case of inhomogeneous waveguide operating in an a¡bi-

trary frequency is missing from the aforementioned list. Under these circumstances,

modes are generally present in their hybrid form, meaning all six vector field components

are present. Now, let's investigate more carefully why the Beaubien-Wexler approach can

not be implemented for this general case, and determine if there is any possibility of mod-

ifications:

It is bøsed on ø TE and TM mode decomposition which is not
generallj valíd.

Comment: Even for the general case, the homogeneous Helmholtz equation for

11 field components holds, similar to eq. (I.14). But, remember that

for the electric field components, E, the inhomogeneous Helmholtz

equation (I.13) must be used, which leads to excessively compli-

cated equations, correlating ali electrjc field components. There-
ljï: f$**Èi$11¡.1äAÈT5ìlll$$'iÈ$.i{ËlüìftSi*l¡r:{S:äSîT**f, JË'rif , fË.-ìl{È:*i -}¡iÞ" Tl}H iï. }å6ìt¡.sÀllstss.rÞrÌliTt
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fore, as long as the dispersion curve analysis is desired, not the field

patterns; the homogeneous Helmholtz equation in terms of one of

the magnetic field components can be expanded into its finite dif-

ference form and used to extract the eigenvalues, But, as will be

explained in the next paragraph, this approach does not lead to a

unique solution and hence is prone to the appearance of spurious

modes.

At leøst the knowledge of tuofreld components is requìred to

determíne the totalfield uníquely.

Comment: As it is demonstrated by Harrington 1251, every hybrid f,eld config-

uration can be expressed as a superposition of two electric and

magnetic vector potentials. On the other hand, each of these vector

potentials can only generate one type ofTE or TM field, and hence

the presence of both is necessary to provide a hybrid field. By a

simple analogy, (Þ in Beaubien-Wexler's formulation can be

viewed as the z component of the generating potential. It is a scala¡

function because we are only considering the TE, andlor TM 
"

which are both in the z direction. Now, if the general Inhomogene-

ous case is desired, at least two potentials, or equivalently two field

components have to be solved simultaneously. But, the presence of

two field components was not predicted in the original Beaubien-

Wexler forrnulation.
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Arndt's approach [24] was developed by keeping both of the aforementioned points in

mind. As usual, it starts from the Homogeneous Helmholtz equations:

and;

vln!'\ +*løl') = o

vlnj") +Ê,nj') = o

. -2 2 2
where ku = o-ltsv +f and v = 1,2,3,4 represents region numbers, Fig. (tr.7).

FIGURE II.7 Adaptive finite difference scheme

(rr.s8)

(rr.se)

Now, these equations have to be expanded in an inhomogeneous medium. Assume

that each inhomogeneous medium can be discretized into a finite number of homogeneous

ones. At the worst case, the central node P can be placed on the interface between foul
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different homogeneous media. Expanding eqs. (II.58) and (tr.59) results in each of these

sub-regions as:

Region r: -i,r*-ir,.(i.ï,)r,-),nrlu,+,H1, -,H1, = o (rr.60.a)

Region2: -flø*-in,+(î.;)*- ),,nla,-*frI,-,#1, = o (rr.60.b)

Region 3: -)o"-í",. (í .'¿)ur-;,'n?, n"#lr*,H1, = o

Region 4: - ia u - in, + (2. i)r, - i,,*ln, *,fi1"*'H[ = o

(II.60.c)

(rI.60.d)

where Il stands for H, or Hr. The existence of partial derjvative operators in the finite

difference formulations of (tr.60.a)-(tr.60.d) can be explained in lieu of the inhomogenity

between neighboring regions. As was explained in section tr.C.1, in five point finite differ-

ence operator the potential, or the field, at the central node must be explessed in terms of

its four neighboring points. On the other hand, according to Fig. tr.7, only two of these

neighbors fall on the same region each time. The other two points must be extrapolated

using the first term of taylor's series; hence the presence of these partial derivatives come

to the picture. But, a digital computer is only capable of dealing with partial differences,

not derivatives, Therefore, to remove them, additional equations are needed. These extra

equations can be supplied by imposing boundary conditions. In fact, by imposing the

boundary conditions, another purpose which is assuring the unique solution of maxwell's

equations, can also be served.

When solving for È1" in eqs. (tr.60.a)-(tr.60.d):

lÌÈ;lìTlt$T4ç,$Slf:i:Ë"tì:,*1¿¡,aif,.""\s.ffììSiïiTf$-iägåT tr3!lË"1Siì:ä.-S;i-,tLSl.:iS::FjJ. äii$ìt:iï}ìlî¡Iiiì$ìiåiï.¡ìSÌ.
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Ezt = Ezz

E^=8.zt z+

Hrt = H"z

H^=H.

H.=H.zt z1

H.=H.

-laH,l , raä,| , tðHrl _f_51 =oq Ð1, 
* 
%ãll,*''a"l, -qE-l, = "

r%l .--l%l .r%l .r%l = oe¡ d) l¡ eq dy lo e: dr l¡ ,o ð* 
lo

?1,1 _%l .%l _þl =oA" lr ðx lr' òy l, ðy l,

#1,-#1..ä1,-ä1. ='

'#1,-'#l^-#1,-ll. =,

(II.61.a)

(rr.61.b)

(II.61.c)

(rr.61.d)

(IL61.e)

ûr.62.d)

When solving for 11, in eqs. (tr.60.a)-(tr.60.d):

Ez, = Ez+ ;iäl .+ä[.+#1,-+#1, =' tt'62'a)

1 AH-l -r ðll-l -r ðtI. I I ðI1..1
E,z = E,t iõ|, . 

Ë"i1,. ä#l,. trll, = o (rr.62.b)

#1,-#1..#1,-ä1, =.

Hzz= Hzt #1,-#[.#¡-#1, ='

*1,-#1,.#1,-ä1, ='H.=H^
z L z¿

(II.62.e)

And finally, by cancelling the partial derivative operators, the final equations are

derived, eqs. (tr.65.a) and (II.65.b). One interesting point about these equations is the

inter-dependency of r and ) components of the field. In other words, ,I1, in a mesh point
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is a function of both 11, and ¡1y at its four neighboring points. This observation is in close

agreement with the predictions on page 58.

Writing these equations for each individual node results in the following matrix equa-

tion:

f rxr trxrlftarl = -r,l(4)l Gr.63)
L(xÐ (Ð I L(¡l)l L(Hr)l

in which (X) and (IJ stand for the coefficient matrices of -F1, and I1r, terms. Also,

(XI) and (YX) refer to the mutual coupling Hr) Hx and H,-+ Ë1r, respectively.

Finally, by rewriting this last equation:

t(A) -À(¡)ltxl = 0 (rr.64)

^2lu = _^l

F
lXl = pt H,2... H,N Hyt Hyz ..

Finally, one of the eigen-solver packages,

extfact the eigenvalues of eq. (tr.64).

H ,,1
)rY.l

like EISPACK 126l can be employed to
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II.Ð. Conclusion

DTFFEREN-I rn¡rre difference methods have been discussed. They were subdivided

into two major categories of time domain and frequency domain techniques. It has been

stressed that all time domain methods are in essence equivalent and therefore for most of

the applications are interchangeable. However, this does not mean that these methods can

offer the same speed or require the same amount of CPU and memory resources. On the

contrary, one can usually find one (or some) of these methods more efficient than the oth-

efs. In the dispersion curve analysis, it can be shown that the FDTD is superior than other

time domain finite difference methods and so it is the method of choice.

Frequency domain techniques are historically older and mathematically more

involved than time domain techniques. It has also been demonstrated that the fi'equency

domain finite difference techniques, in their present form, lack the generality and the effi-

ciency required for a versatile CAD package.

During the following two chapters, two novel flnite difference techniques will be pro-

posed. One of them is based on a time domain scheme and the other on a fiequency

domain one. It will be shown that they are much more powerful and efficient than their

predecessors.
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Chapter Three

Coupecr FDTD

Dispersion Analysis
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III.A. Introduction

Ar-L versions of finite difference (time and frequency domain) techniques relevant to

the particular topic of this thesis (guided wave structures) were discussed in the previous

chapter. Some of these methods, like the TLM and FDTD have been used fo¡ a vast array

of electromagnetic applications, i.e. scattering, antennas,..., and finally eigenvalue prob-

lems. Whereas others, like tnite difference methods were mainiy developed to deal with

eigenvalue, and particularly waveguide, problems.

In this chapter, the following objectives are pursued:

Demonstrate different possible strategies that have been common in time

domain analysis of guided wave structures.

. Introduce Compact FDTD

. Compare Compact FDTD with classical time and fi.equency domain

finite dffirence methods and prove its superiority.

This chapter begins with the basic idea behind the frequency spectroscopy as a means

of eigenvalue evaluation. The implementations of two and tbree dimensional TLM and

FDTD constitute the subject of the succeeding sections. Finally, the Compact FDTD

which is the main subject of this study is introduced with major. emphasize on its advan-

tages over the other methods.

füìì.:i$il:.Ìl*i:ë;Fli#S$XlliT$$ìi!l$ÊKT$ï,ìt:ì,{i;{g*}Ìt-i$i:-d,üff"T$ÌiT$:tì-!ïiì"riÈ:l
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III.B. Frequency spectroscopy as a means for evaluating
eigenvalues

FRoM GENERAL circuit theor¡ it is known that if the input port of a ci¡cuit is excited

with a unit impulse function, the Fourier transform of the output will represent the circuit

transfe¡ function which in tum contains all the information about the network. using the

same analogy, one can excite any linear structure (or in fact any linear system of differen-

tial equations) with a unit impulse and safely assume that all the cha¡acteristics of the

structure will manifest themselves in the output response.

FIGURE IIL1 a) A general linear network model, (b) Corresponding waveguide model

h (t)

o

o

lnput probe

Output probe

Conductor
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Fig. trL1(a) depicts a general linea¡ network which is excited by a unit impulse and its

conesponding response at an arbitrary point known as the output port, Fig. trI.1(b) illus-

trates the same theory and procedure when it is applied to an inhomogeneous waveguide.

In fact what is shown in this flgure is the cross section of a rectangular waveguide with two

probes input and output probes.

The choice of input and output ports is quite arbitrary and does not affect the locations

of the poles of the transfer function in the complex frequency plane. On the other hand,

certain modes can benefit from a particular probe location and have a stronger peak in the

output spectrogram. This feature can be useful in the analysis of guided wave structures.

For instance, one can use the synìnetry property of a mode to enhance that particular'

mode and filter out the others. The probe type is another instrument that can be used to

serve this purpose. Like practical situations, a probe can have six different configurations,

its type being E or H and its alignment being in the -r, y or ¿ direction.As mentioned

each propagating mode can be best excited, or attenuated, with a certain combination of

the input and output probes. In a laboratory, the E' probe can be made by the continuation

of the centrai conductor of a coaxial cable, while the 11 probe can be constructed by a

closed loop. However, from numerical computation point of view, implementation is much

easier and can be accomplished by assuming the particular component as the input (or out-

put) entry of the program.
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III.B.1 Mathematical basis of frequency spectroscopy

GENERALLY spEAKINc, a waveguide can be viewed as a two dimensionai resonant

structure. In such a structure, the eigenvalues are cut-off frequencies, and eigenvectors are

the orthonormal basis functions. According to applied mathematics terminology, these

eigenvectors are also known as modes. If these modes span a complete set, then any arbi-

trary field distribution which satisfies the governing equations of the system, i.e. Maxwell

or Helrnloltz equations, can be expressed as a linear combination of these fundamental

modes [35], i.e.:

V (x, y, t) = Z, ,,8,, G, y) ,i'"f ""
nt

Grr.1)

where lz, c,,,, E,,r(x, !) and d,, stand for modal index, modal amplitude, modal basis

function and modal cut-off frequency, respectively. This represents a two dimensional

wave function. In general, wave propagates in a three dimensional space, but since the

wave behaviol along the e direction is already known, i.e. 
"-iþ' , 

ïh"r"is no need to enter

it in the equation and make the f,nal derivations more complex.

Eq. (m.1) is a continuous equation in terms of the time and space variables. But, we

are interested in numerical computations in digital computers. Therefore, eq. (III.1) must

be discretized:

Y" (;,i) = Y (ilx,iLy,nlt) ; n = 0,1,2,...,N-l (rrr.2)

But, from frequency spectroscopy point of view, the response in frequency domain is

required. Taking DFT of the discrete time domain response results in:

Compact FDTD
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N-1

s*(ii) = I v"(¡,j) ,-i2nf!at (III.3)
tt=0

t
inwhichfl = --:-.

Inserting eq, (Itr.1) in (Itr.3) yields:

N-l
5¿(r,i) = 2",,8u,t*,y) L 

i2rf''¡t^t 
e-i21tfrt^t

Irr ¡t=0

On the other hand:

(rrr.4)

,V- I i2n (f,,-¡) N At j2Íf,,N^t
-- j2ttll,,-!*)n{t I-¿ l-e'-
z-¿ - j2Í U,,-f) ^t _ j2TU,,-f) A1n=0 I-e I-e

Grr.s)

Eq. (I[.5) is obtained using the trigonometric sum formula and f kNLt = ft. Hence:

sr(t,i) = L"u,l,,<r,r¡#, GII.6)
Dt I-e

Eq. (Itr.6) is quite adequate for drawing the conclusion that the poles in the frequency

domain response, peaks ofthe spectrogram, ate located at the eigenvalues ofthe structure,

i.e.f, = f
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IU.C. TLM

THE coNcEl'fs presented in section gIII.B. are applicable using any time domain

technique, i.e. the TLM, FDTD or Bergeron's. In this section, a brief survey of the imple-

mentations of frequency spectroscopy concept using the TLM, as reported in the litera-

ture, are presented. In gtrI.C.1 the evaluation of cut-off frequencies using the 2D-TLM is

discussed. The extension of this technique to the entire dispersion curve is the subject of

$m.c.2.

l[.C,1 2D.TLM for evaluating cut.off frequencies

THE BAsIc pRINcrpLEs of a two dimensional TLM network have aheady been

described in $tr.B.1.. Here, the algorithms represented by eqs. (tr.3) and (tr.5.a)-(I.5.d)

are being executed iteratively to simulate the structure shown by Fig. trI.l in the time

domain. The idea of frequency spectroscopy as a numerical tool for calculating the eigen-

values of resonant structures, i.e. the cutoff frequencies of waveguides, goes back to 1971

when Johns t27lî2811291and his Ph.D. student, Akhtarzad were invesrigaring rhe applica-

tions of their TLM method for diffe¡ent structures. The method was later extended to cal-

culate the entire dispersion curve, not just cutoff frequencies, using a th¡ee dimensional

application of the TLM. The results of their simulations have been reported in numetous

publications t30lt31lt32lt33l. There are also software packages which have been devel-

1í:+#,ìiffiri:!.\*:Àlri{};!,ifinìì}ii*Ë$;t.ii*r}ìs ffitiïiri:ÌåìsiqsifÈwiT\ì,r*è3-\iì:îi¡Nåytïffi; ¡}:*ì*Ti$*È¡tÈ;¡s$ËÈ*31¡
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oped by Akhtarzad (in Fortran) [34] and later on by Hoefer (in Pascal) [2] to handle these

simulations.

The basic weakness of this approach is in the fact that it is limited to cut off frequency

calculations. A quick examination of eq. (tr.7) depicts that there is no derivative with

respect to the z variable present in that equation. In fact, that equation has been based on

the major assumption that -9 = 0, which in turn means þ = k" = 0. As is known, the
ðz

latter is the basic criteria for defining the cut off frequency ofa propagating mode.

lll.C.2 3D-TLM for dispersion analysis

THE EXTENSIoN of the two dimensional TLM to three dimensions will enable one to

solve for dispersion analysis. In fact, this step had also been undertaken by Akhtarzad [36]

at the early stages of the TLM development. In this way, there is no need to assume

þ = k, = 0 , and the¡efore the analysis need not be restricted just to detemination of cut-

off frequencies.

It is obvious that a digital computer can only simulate a finite region of space. There-

fore, the structure under study (waveguide) must be bounded along all coordinate system

directions, x,y and z. The boundaries along the ¡ andy directions can be considered as

perfect electric conductors (PEC) provided that the waveguide is a closed one or the

dimensions of the structure are much greater than the operating wavelength, i.e. high fre-

quency assumption. One or several boundaries along the x and y directions can be consid-

ered as perfect magnetic conductors (PMC) in case that the study of a mode with a

'*ìì\$ìnïs\år}ì*$1îåRlr$s¡itR*ilïi:*i\$$_Ësis?,ï*s.T,Tffi.Èìssff$r*R*if&È\¡:Ti-:¡JisiÌ,ïf"li,r"tT$,ì$#Ìtr
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particular symmetry, is desired. In this case, PMCs will be applied along the planes of

even symmetry of the propagating mode under study. In case of odd symmetry, a PEC

must be applied. Finally, in case of open waveguides, absorbing boundary condition must

be enforced at the outer boundaries of the structure. Ideally, a waveguide possesses a

cylindrical shape and so is infinite aiong the z direction. But, again, an infinite structure

can not be modelled using the finite memory of a digital computer. To solve this problem,

two different approaches have been proposed and utilized by researchers. Here, the first

approach which was used in Akhtarzad's studies is presented, The second one is postponed

to $Itr.D.

Fig. Itr.2 illustrates a partially filled waveguide which is surrounded by PEC walls

along its transverse directions. As has been mentioned earlier, PECs can be applied along

the x and y directions as the surrounding walls of a closed waveguide or a waveguide

operating at higher frequencies. But, in the z direction, the implementation of conductor

walls serves another purpose. By closing the two ends of a waveguide in the z direction, it

becomes a three dimensional resonant structure. The ¡esonant frequencies of such a struc-

ture can be easily obtained at the locations ofthe peaks in the frequency response to a unit

impulse excitation. On the other hand, the corresponding fr, (or B ) can be calculated from

the distance between the two conductor walls at the two ends of the waveguide along the z

direction.

mllD=¡f =- L i m = 1,2,3,... (rrr.7)

in which iz is a positive integer and L is the length of the structure along the z direction.

The values of a and å, the dimensions of the waveguide along the .r and ) directions
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should be chosen exactly as the physical dimensions of the waveguide (in case of a closed

structure) or large enough to have the least effect on the field distribution inside the struc-

ture (in case of an open structure). On the other hand, the choice of the value of I, is quite

arbitrary. In fact, in a complete dispersion analysis, one can start with a value of fr. (input

of the problem) and then proceed to calculate Z from eq. (Itr.7).

FIGURE IIL2 Partially filled waveguide, All surrounding walls are PECs,

Fig. Itr.4 illustrates the procedure that generates a complete dispersion curve. Con-

trary to what will be described for classical FD, Fig., the dispersion cule in this case has

been swept (generated) vertically. Note that for any particular value of ft., there ale sev-

eral peaks in the fiequency response in the desired bandwidth, o),.¡ , ú),.2, cù,.3,..... Note,

*i.Si.ìTh"$"1*fÌ;}al*S:ä.isi1l:ils S,tffi
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.-"''
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however, that the 3D-TLM is not a very reliable method for multimode analysis. Let,s

elabo¡ate on this with an example. Suppose the distance between the two PEC walls is set

toL= Lt, therefore:

^ rE 2n 3n- LiLiLi"'
FIGURE III.3 G-encral procedure for generating a complete dispersion curve using

3D-TLM.

So, there can be no assurance whether a particular peak in the frequency spectrogram

belongs to a second propagating mode of þ = n/Lt or the first mode conesponding to

g = çmn) /2,. Of course, intuitively, for a single mode analysis, one can always assume

(rrr.8)

þ4

p3

þ2

o1 @2 (t)3 o4
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that the first peak conesponds to B = T,/Lr. Yet again, this is based on the assumption

that dispersion cutves are usually monotonic ascending functions, and hopefully the char-

acteristic curve of the first mode would not intersect the second mode. Fig. III.4 presents a

sample of dispersion curve that has been reported in the literature using the 3D-TLM

method.

FIGURE IIL4 Dispersion curve of the structure shown in Fig. III.2 generated by
changing the distance Z along the z direction.
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ITI.D. FDTD

It gas been stated that all time domain analyses are in essence equivalent. So, all the

material presented in gltr.C.1 and gIILC.2 is equally applicable using the FDTD method.

However, it is emphasized once again that this equivalency does not extend to implemen-

tation. On the contrary, for some applications, one of these methods may be more efficient

than the others. In particular it has been shown that for the dispersion curve type of analy-

sis, the FDTD is more efficient than TLM [13].

III.D.I 2D-FDTD for evaluating cut-off frequencies

AccoRDn tc To the theorem which is discussed in appendix A:, one can assume that

all the modes at cutoff frequencies are either TE or TM. And this is true even if the

waveguide is inhomogeneous and,/or anisotropic. Hence one can simply staft a very

straightforwafd algorithm to either discretize the set of eqs. (4.1), (4.2) and (4.3) for the

TM type or the set of (4.4), (4.5) and (4.6) for the TE type modes. As can be seen, the

analysis possesses a very important feature which is being a two dimensional one. But,

unfortunately it is restricted just to cutoff frequency studies.

lrìÌìa\frl S$:r-s: *r\.l$ À*iT.\ð,Ì{1iL-î.:;-rì.ìtïT$i:*{,S*tftrt:i*tq}ti
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III.D.2 3D-FDTD for dispersion analysis [37]

LIKE THE 3D-TLM case, one can extend the analysis to the whole dispersion curve

and for any arbitrary value of k¿ at the expense of going to a three dimensional simulation.

Before doing so, one question has to be addressed. How to truncate the cylindrical

waveguide, which theoretically goes to infinity along the e -direction. There are two tradi-

tional answers to this question. The first one which was based on truncating the waveguide

using two PEC planes was discussed in $Itr.C.2 and was based on eq. (III.7).

The second type of analysis utilizes a pair of absorbing boundary conditions (ABC) at

the two ends ofthe waveguide. The method is based on launching an incident wave at one

end of the waveguide and measuring the occumed phase delay on the output probe. From a

theoretical point of view, the separation distance between these two ABCs is arbitrary pro-

vided that they are perfect; i.e., there would be no reflection back from these surfaces.

Since, up to now, no perfect ABC has been reported, one has to consider the separation

distance between these two planes as large as possible. This, in turn, reduces the destruc-

tive effect caused by the reflected waves from these impe¡fect absorbing surfaces. Fig.

Itr.5 illustrates a scheme from the computational domain.
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FIGURE III.5 Computational field of a 3D-FDTD

' lixt:itatio tz ljÍane

Suppose that a Gaussian pulse of the following shape excites the structure.

f_ 
(r _ ro) ,,l

l-2 I

E,(t)=e't r (III.9)

If the output probe is located at a distance Z from the input probe, then the Fourier

transforms of the input and output data can be calculated from

E,(ø, z= 0) = tE,( t, z = O) e-i't dt

E,(a, z = D = LE,(t, z = L) e-i'tdt

(III.10.a)

(rrr.10.b)
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The efficient method for evaluating eqs. (Itr.10.a) and (m,10.b) is the subject of chap-

ter five. Thereafter, the dispersion and attenuation characteristics of the waveguide can be

calculated from:

--1((Ð)¿ - 
Ex(ì, z = L)

c-

where

T(ro) = d(ú)) +iP (o)

The relative effective permittivity,

Þ(or) = r"fioro%/(,Ð

(rrr.11)

(rrr.12)

e*(ø) , can also be calculated through F (co) as:

(rrr.13)

Figure Itr.6 illustrates a sample example from the literature [37].

FIGURE III.6 The dispersion curves corresponding to the structure shown in Fig. IIL5
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III.E. Compact FDTD [38]

THIS NßTHoD is one ofthe major contributions that has been made during this thesis.

The basic motivation for developing such a method was for finding a technique with

which the enthe dispersion curve could be generated using just a two dimensional analy-

sis. As will be shown, the Compact FDTD can successfully accomplish this task. By ren-

dering a traditionally three dimensional analysis to a two dimensional one, a great deal of

reduction in CPU time and memory resources is achieved.

III.E.1 Formulation

TIEoRETICALLY, in time domain methods the structure under study, such as a

waveguide, is excited at an arbitrary location in space (input probe) and its response is

recorded at another point (output probe). After taking a Fourier transform of the output,

several peaks appear in the frequency domain, that conespond to the waveguide cutoff fre-

quencies. By a quick inspection of Maxwell's equations on page 182, it can be shown that

at cutoff frequencies, they decompose into two sets of uncoupled equations, each core-

sponding to the TE or the TM modes. Consequently, the calculation of cutoff frequencies

can be carried out in a two dimensional space, Howeve¡ when the entire dispersion curve

analysis is the major concern, i.e. B = 0, all six vector field components in Maxwell's

equations are coupled and a tfuee dimensional analysis becomes necessary. This compli-

cates the problem considerably and in using numerical methods, increases the computation

time dramatically.
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It will be shown here, however, that for axially inhomogeneous waveguides with no

discontinuity along the z direction, the problem can still be reduced to a two dimensional

analysis. To describe the solution technique, a waveguide region, homogeneous and free of

discontinuity along its z axis, is considered. Such a waveguide will support modes that

have constant propagation constant B atong its axis. In Maxwell's equations, therefore one

can replace the z derivatives with -jp, to efficiently reduce them to a two dimensional

space in the waveguide cross section. Here, the derivation of expressions is limited to

waveguides with diagonal tensor constants. Maxwell's equations are given by:

ürÈ = ,or$

ç *È = -uro*

where:

Ê = Diagonal relative permittivity tensor (III.14)

F = Diagonal relative permeability tensor (III.15)

[r---. o

e= lo e,,

lo o

:l
"lzzJ

'iï (rrr.16)

(III.17.a)

o o'l

Fnu ol
oul, zzJ

which generates six scalar equations for six vector field components.

#=*--( iþu,-'*)

#=ü(,þ"".u#)
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òHr_ I fAE, aEyl

ìi - trou,,\Ð-ãi/

AE t / ã¡1 \
="= 'lißH+Jldl eoerr\"' r òy /

'3 = t(-,ßä -%ldr 8o€yy\ "' t dx 't

ð8, t( ðH, A¡1"1

ã¡ = r.r-(- ãl " ã; )

(III.17.c)

(rrr.17.d)

(III.17.e)

ofi.l1.f)

(III.18.a)

(rrr.18.b)

(III.18.c)

An important distinction here is the concept of complex impulses in the time domain

marching. Although it has not been used previously in the f,'DTD analysis, its introduction

here does not violate the requirement of the time to frequency domain transformation. The

transformation is with respect to the spatial variable and all expressions are still in the time

domain. In fact, we originally proposed CoMpÁ.cT FDTD t33l [34] using these complex

impulses in the time domain. But, a more careful inspection of eqs. ([I.17.a)-(m.17.Ð

shows that even these complex impulses can be avoided if the follo\üing change of vari-

ables is made.

E,' = jE,

E'
v = jEy

H'= iH

The new system of equations which are entirely based on real variables is as follows:

Compacr FDTD Ati Asi



+=#( p',-*)

òH t ( ðE\
#=ffitoø;*fi)
ðH,'_ | (ð8,' ðE'l
it - trorr*\Ð--Fi

Y = t(-u" *tilðr eo€rì,\ ' , ò! ,

òE' t ( ã¡1 '\
# = *-tou,-É)

1 f aH,,aall
€o€..\ òy dx ./

ãE
z

ãt

This, in turn, can enhance the algorithm efficiency by factors of two and (around)

four, for RAM memory space and elapsed CPU time, respectively. In a conventional

FDTD method, the th¡ee dimensional Yee's lattice of Fig. IILT (a) is used to solve the

respective field equations in the waveguide volume. In the present method, howeve¡ since

the z vatiable is eliminated, the above equations are solved in the two dimensional leap

frog lattice of Fig. m.7 þ), the waveguide cross section. Conceptually, this is equivalent to

compressing the 3D-Yee's lattice in the direction of the anows. It is therefore a Compact

FDTD method. It is worthwhile mentioning that one of the other advantages of such a

compression is doubling the numerical resolution for defining the media characteristics,

i.e. the peÌmittivity, permeability, conductivity.

(III.19.a)

(rrr.19.b)

(III.19.c)

(rrr.19.d)

(III.19.e)

crrr.19.f)
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FIGURE III.7 ( a) Conventional Yee's 3DJattice. Arrows indicate the direction of
compression to reduce the 3D lattice to a 2D one, (b) The unit cell in the
new compact FDTD.
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Discretizing all the derivatives using their central difference formula:

(rrr.20)
ì.. )(,,, . )) - i)- 

)(,,, . :)

(III.21.a)

(rrr.21.b)

(III.21.c)

(rrr.21.d)

(III.21.e)

where for convenience, the notation of f' 1i, ¡¡ = F (i!x, j Ly,rx 
^t) 

is adopted. Further-

more, by performing the following normalizations, the characteristic impedance of free

space is set to unity.

= -nir[u";(,,. å) 
.q-Ë+þ)

E'¡
,Jrro

"=l- 
/Po

E
z

" 
^ltto

H
h=x'- 

JÊo

H..
h = ---L- 

J€o

t:TT:.iÌä:ÈÈ: slï\ T*l$-il$i:$i$èl$ l*l"s-ìHÌ::ì*ì[{}**l.i Slr']fäl$.1ìÍTi\l:r;tirst$t$}:åìTäSlil*Tt{ì;,'i*;i:
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So, the final discretized form of Maxwell's equations which constitutes the body of a

Compact FDTD algorithm is as follows:

H'
hr= -!

J€o

,i". ;(,, ¡ . )) =,'"- 
i(,,, . 

1)

. --n:ll [- (B^Ð ;](i, i * i) - r:,,,,. ¡ + d) 1i,¡¡f
Itxtlt't + r1-

ll

h';.'(i + 
), i) = ni- 1(,. 

), i)

* - r. . .¡- [ 1Bra,;( i . ),,). { ri + t, n -ii ri, itf
þtt\'+ i,t )

."*L(. 1 1\ ."-!z(n, \,*r,t*t)= n, tt-å,;-å)

(rrr.21.Ð

(rrt,22,a)

(rrr.22.b)

(lll.22.c)

(rtt.22.d)

s t n( 
' ,* t)-,;(, .*l).,'l(i,i*L)-')(,.t,i.å)]';F.¡;¡1"['*t'

n+t(. 1.ì u(. 1.\ê" l'*r't)= exlt+r't)

.J,,ol-t-[-(F^/)oil.i(,.],i).oi".i(,*l,i*))-n'l,.t(,.:,,-;)l
E,"lt + 

1't )t

l:tÌ.t*1" .r,ffiï$.ñ, ËÍ"
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n+t(. l\ ,,( l\
"y \''t*r)= eylt'J+-) (III.22.e)

. z- [ $ N) h::. ; (i, i . ]) . /" : 
(, - 1,, 

. 
L) - r',' 

L (' . 
L, 

t . Ðf^ t. ,. r ìt
"w\"1- r.,'

,¡+1,. .. n,, .-ê" U,J) = ez(i,i) (lll.zz,f)

t ,,.!. ,,-1. ,,,r I l. s l,'"r(.. l\,"*t/. 1\ .'na(. l.\."*t/. I .\l* qiÒln, \"r-r)-h, l"t*z)*n, li+;,i )-h' l'-;'i )J

I

in which, " = # = Þ.[ry1'l-t [40] is the stability factor and Âx = Ây = Â/. By' Lî L \2/l

iterating the six resultant equations, the time domain response of the structure can be

obtained, and by taking an FFT of the output data, one can easily calculate the ¡esonant

frequencies of different modes by finding the locations of the peaks in the frequency

domain spectrum.

To solve the resulting equations, however, one needs to select a value for B , as input

palameter, and locate the peaks at the frequency spectrum, to determine the eigenvalues

for the dominant and higher order modes. The method, thus, reduces a complex three

dimensional FDTD analysis to a number of small two dimensional ones.

Fig. Itr.8 depicts the systematic procedure of generating a complete dispersion curve.

First, for each arbitrary value of BÂl, the CFDTD algorithm is executed. Next, the Fourier

tlansform of the output time sequence is calculated. The corresponding resonant frequen-

*l$1*ÌT$+TffiïJxi*.i:.'il]ilirrlfrR:.:|.]i\I{,;iiTl"lË*iRì Ss;F"*È.1;ìl$:*sìi*$,{:Siä*åì:tt*¡' !T,f\TTå}ì:ìflì.r)ïrtï: }
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.Lt
cies, î, are located at the peaks of these transforms. By having several of these points,L'

the complete dispersion curve can be interpolated using techniques such as cubic splines.

FIGURE III.8 : Generation of a complete dispersion curve using compact FDTD.
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III.E.2 Applications

To cENBRATB a complete dispersion curve, generally, the time domain responses are

evaluated for eleven incremental values of BAI from zero to one (or any other desired

value as the upper margin). The corresponding peaks are extracted from the spectrograms

of the signals and finally a natural cubic spline interpolation technique [41] is implemented

to obtain a smooth dispersion curve for each mode. To illustrate the accuracy of the

method several different cases, ranging from simple rectangular hollow waveguides to

more compiex coupled strip lines on anisotropic substrate, are considered. In each case,

excellent agreement between the Compact FDTD and earlier results, with errors less than

0.5Vo, are achieved,

Two frequency spectra of the time domain data conesponding to two distinct values

of BÂl = 0.1,0.3, for a hollow rectangular waveguide, are illustrated in Fig. Itr.10. The

dispersion curves of its first three dominant modes are depicted in Fig. trI.11. The agree-

ment between the Compact FDTD and analytical solutions obtained from the following

parabolic formula is excellent and they are practically indistinguishable.

þLI=n

One interesting phenomenon in Fig. trI.10 is the existence of a sharp peak atzero fte-

quency, i,e. DC. In fact, this happened in most of the simulated cases. In two conductor

structures such as boxed microstrip line, it may be attributed to the propagation of DC

waves in the form of a TEM mode along the line. But, in a hollow rectangular waveguide,

(rrr.23)2^I\2 _( m\2 _(n\2
L ) \.10/ \6/
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a TEM or Quasi-TEM mode cannot exist and therefore propagation at DC frequency is not

feasible. On the other hand, from electrostatic and magno-static point of view, Fig. Itr,9,

one can assume a circulating electric surface current along the waveguide walls with no

longitudinal component, i,e. /. = 0 . Such an affangement can explain the presence of one

solution to Maxwell's equations in DC frequency. Also, the following observations can be

used to support the preceding theory:

. Under cut-off condition, the zero frequency peak appears only for TE

modes.

If one of the waveguide walls is replaced with a PMC, a significant drop

in the amplitude of the zero frequency component wíll be observed.

FIGURE IIL9 Circular electric surface currents along the surface of the waveguide

J,

-.1

ôVH
z

J)t

J,

Fig. III.12 depicts a partially filled rectangular waveguide which is selected for the

next example. This problem is somewhat more complicated than the hollow rectangular

waveguide. But, still it can be solved analytically up to the point of a transcendental equa-

tion [25]:

Compact FDTD
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For ZE modes:.l

k'o r. (a-d\t
*'otlß.0[ z /J =

and for the TM, modes:

h*[*',(Ð]

?*'[*',(í)]

Qrt.u.a)

(rrr.24.b)

(llL24.c)

(trr.24.d)

The dominant mode is the lowest order TE mode (smallest root for z = 0 ). Also, if a

small amount of enor can be tolerated, the following perturbational equation can be used:

3""10.,(T)) =

ú,.(T)'.þ' = t?- rD€6p¡

4,.(T)'+82=rl=roe¡Þ1

åffi (rrr.2s)

Again an excellent match between analytical techniques and CFDTD is observed.

The analysis of a Unilateral Fin-line constitutes our next example, Fig. IIL13. From

this point, there is usually no standard analytical solution available for the cases under

study. However, using standard numerical procedures, like mode matching, its dispersion

curves can be evaluated. One major distinction between this case and previous one of par.

tially filled waveguide, is that for the present case a set of different modes, in each region,

are required in order to satisfy all the boundary conditions. Whereas for the partially filled

waveguide, just a single lE, or TM, mode will suffice to fulfil all boundary conditions.

l*iÌi*.*\ìia,þf$l¿ì*n ¡Ëili*iffi¡nikiñtïS.ii$fRi\tå,Ë..1s-cllT.!.*.*li+lT$L,i3d$.r,i$1'd$îrri\r*:
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Fig. III.13 illustrates the dispersion curve generated by CFDTD. Again this result

shows a good agreement with the reported data in the literature [13]. In fact, Choi and

Hoefer constructed a three dimensional resonant structure by terminating a unilateral fin-

line at its two ends with two PEC walls. By adjusting the distance between these walls,

they managed to tune the fesonant structure for different values of B, refer to

Section IILC.2 on page 73.

The next case deals with a more complicated structure consisting of an anisotropic

inhomogeneous medium. Using conventional techniques, this class of problems has

always been more difficult to deal with compared to isotropic media. The difûculty arises

from the fact that in this case some extra cor¡elation between electromagnetic field compo-

nents will be generated. Expanding one of Maxwell's equations for both isotropic and ani-

sotropic cases is used for further elaboration. For the isotropic case:

aH- aä.. ðE-z y _^^ t
ðY ðz -u-¡ 4,

and for the anisotropic case:

(rrr.26)

Uil,N)

By comparing these two equations, one notices the presence of two extra terms on the

right side of eq. (trI.27). This can noticeably increase the mathematical preprocessing

required using conventional techniques. But, from CFDTD point of view the problem can

be treated simply by adding the finite difference equivalences of the added tems.
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Fig. trL14 illustrates a boxed microstrip line on Sapphire. The substrate is placed such

that its main dielectric axis is parallel to one of the axes of cartesian coordinate system.

Under these circumstances, dielectric will behave like a diagonally anisotropic medium

with the following specifications: Er, = 8", = 9.4 and err = 11.6. The dispersion curve

of this structure, with the same geometrical specifications, had already been reported by

Alexopoulos et al [42] using quasi-static, and by Hoefer et al [13] using 3D-FDTD meth-

ods. Some empirical data was also presented by Getsinger [43]. Finally, in an invited paper

by Alexopoulos, a comparative study was conducted among all available data versus the

results obtained using 3D-TLM method [44]. This comparative study reveals the fact that

TLM results have always been an underestimation of the dispersion data obtained from

other techniques. The same observation is true for the present case, i.e. 3D-TLM and 3D-

FDTD underestimate CFDTD results, as shown in Table trI .1. CFDTD generates morc

accurate results than the other two simply because it calculates the z derivative analyti-

cally.

TABLE III .1 Comparison of computed dominant mode frequencies, ¡ = fr for problem of

TII.14.

þ (1/ (mm))

L.0472 0,7854 0.6283 0.4189 0.3142

9^
ãi{
9ìt

t¡,(

3DTLM 14.97 't1.70 9.66 6.75 s.22

3D F'DTD 14.64 tl.s2 9.54 6,78 5;28

Dffirence 7 -9 qo 5.7 -7 Eo 5-67o 3.7 -4E" 2.3 -3.4 q.

The observed discrepancies can be attributed to three separate reasons. One is due to

the approximation for the permittivity at the boundary of the two regions, where an aver-
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age value between the air and substrate is used. Second, due to the inherent advantage of

the present method, a double resolution mesh is used to define the dielectric constant of the

medium and, consequently, the results are expected to be mo¡e accurate. Third, the z

de¡ivative in the present approach is handled analytically, while in others, this has been

done numerically. Furthermore, as mentioned above, the previous ¡esults listed in Table III

.1, in comparison to the 3D-TLM and other methods, has shown consistent underestima-

tion of the ¡esonant frequencies at given values. It is therefo¡e believed that our computed

¡esults are more accurate.

In these examples, 1000 iterations have achieved an acceptable solution accuracy, and

extending it to more than 5000 iterations had no appreciable effect on increasing the accu-

racy. On a Sun-Sparc20 computer, each 1000 iterations needed about 3 seconds of CPU

time, which is sufficiently small to generate the entire dispersion curve rapidly. For

instance, the dispersion curve presented in Fig. m. 14 was generated using 1 1 incremental

values of BAI from 0.1 to 1 To enhance the resolution of the FFT operation, all time

domain sequences have been zero padded to eight times their actual data size. However,

there are other signal processing methods that are availabie to serve the same purpose [39].

Also, in [40], a technique based on taking the average value between the permittivity of

e-..+ 1 €__+ I
free space and Sapphire in the .r and ¿ directions, i.e. -iF and 4- , were used¿z

while along the y direction the permittivity of Sapphire has been directly used, i.e. err,

This modification, compared to what has been explained in [33] in which the average val-

ues were used along all coordinate directions, did not show any noticeable effect on the

resonant frequencies. To make the output results independent of the physical dimensions

liËi$*Tiì11:::ì:k¡*.r,it3];*ì*ì :ä:iliì*:H:*:íT*.$:.q.*i*r::*:åì.:ì:¡-f$tì$ËìittiïÈËTjl

Compact FDTD A(i tlsi 96



of the structure, the input and output quantities of the analysis are presented in their nor-

malized forms. Consequently, we define BÀl as the normalized propagation constant and

N
î as the normalized frequency. Since these normalized parameters are dimensionless,

they are independent of the actual physical dimensions of the structures and hence the

analysis is general as long as the ratios between different structural dimensions are kept

constant.

In microwave engineering, it is desirable to have a waveguide that exhibits a linear

dispersion characteristics. Fig. tII.14 shows that by introducing a conductor at the center of

a partially Sapphire-filled rectangular waveguide, this goal for the first dominant mode

was indeed achieved. However, at higher frequencies and therefore higher order modes,

the famous parabolic shape of the results for a hollow rectangular waveguide, similar to

those of Fig. III.1i, gradually appears and deteriorates the perfect linear shape of the

higher order modes.

Fig. IIL15 illustrates the dispersion curves of even and odd modes for a coupled

microstrip line laid on Sapphire. In fact, half of the structure was analyzed for each case.

This was achieved by placing a PEC (for odd mode) or PMC (for even mode) wall instead

ofthe dashJine. The results are in good agreement with those reported using TLM [44].

In all above analysis, reducing the grid size and/or increasing the number of iterations

can enhance the accuracy. Also as the Âll1, decreases, the higher number of iterations is

required to achieve the same degree of accuracy. This is due to the fact that as LI/ìv

departs from the origin in the positive direction, its shadow moves in the negative direc-

J:¡; ii- ;*.rr.ilRÍì Ëfi#ilSSX,I- :ì*
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tion along the fourier frequency axis. For lower values of A/,/1", the side lobe generated by

the negative frequency component can interfere with the main lobe of the positive compo-

nent. Speciall¡ this problem is quite noticeable when the study of the modes in a Quasi-

TEM structure is concerned. In such a structure, the value of LI/)u = 0 corresponds to

the value P^l = 0. On the other hand, in the structures that do not support Q-TEM (usu-

ally structures with one or no conductor), the BÁl = 0 case corresponds to a non-zero

positive values of Ll/?.,>O, and therefore the aforementioned problem do not exist or

quite alleviated.
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FIGIIRE m.10 The Fourier spectrum (after zero padding and Hanning windowing) of the structure in Fig. III.11, corresponding to two
distinct values of normalized propagation constant
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III.F. Conclusion

ANøw Compact 2D-FDTD method was proposed to determine the dispersion charac-

teristics of guiding structures. Its speed and accuracy promises to make it the dominant

method for such analyses. Whiie it has the y ersatility of finite difference methods, it enjoys

tlte power and sp¿¿d of other full wave analyses.
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IV.A. Introduction

ALTHoUGH NuMERous techniques are available for determining eigenvalues of

microwave and optical waveguide structures, only a few are capable, or effrcient in finding

eigenvectors. A novel iterative FULL WAVE FINITE DIFFERENCE (FWFD) method is

proposed which is capable of evaluating all six vector field components of an arbitrary

shaped inhomogeneous waveguide structure simultaneously and efficiently. It is based on

a new four directional finite difference treatment of Maxwell equations. For the Ef,,

mode of a shielded suspended coupled dielectric guide with a mesh discretization of

18 x 12, a total number of 100 iterations is adequate to achieve convergence. ln this case,

the entire process takes about three seconds on a Sun-Sparc10/41 wo¡kstation.

For design and analysis of waveguides one usually requires the dispersion curves and

information on the field pattems. However, most of the reported papers deal with the dis-

persion curves and the computation ofthe field patterns is often neglected. This part of the

thesis addresses the latter question and provides a full wave solution method for computa-

tion of the field patterns. In general, a knowledge of the dispersion curves along with the

field patterns provides all the necessary information, or, means for derivation of any

unknown attributes of the waveguide. Historicall¡ a number of analytic and numerical

techniques have been developed to deal with such problems. However, the analytical

methods and some of the numerical ones suffer from lack of generality. The finite differ-

Fìeld Patlem Analysis tlti tlsi



ence method is one of the numerical schemes which requires minimal initial assumptions

and hence is applicable to almost all waveguide problems. This is therefo¡e used in the

present study for developing a full wave finite difference method.

The Classical flnite difference method is the first version in the course of evolution of

finite difference methods. It was developed for solving the Laplace equation which is

valid only for static, i.e. zero frequency, or Quasi-TEM modes. Since Laplace equation is

just a special case of the Helmholtz equation, the next attempt was aimed at solving this

equation. Two diffe¡ent strategies, Section tr.C. on page 48, were reported to accomplish

this task. Beaubien et al., Section II.C.1 on page 48, proposed an iterative scheme which is

based on the assumption that the solution can be decomposed into two independent modes,

i.e. TE, and TM". This assumption is only valid for homogeneous waveguides or the

inhomogeneous ones operating at cut-off frequencies. In their method, finite difference

was implemented iteratively using over-relaxation in conjunction with Rayleigh quotient

to improve the solution for eigenvalues. The second approach was implemented by

Bierwirth et al., Section II.C.2. on page 58, in which the general inhomogeneous

waveguides operating beyond cut-off frequencies were studied. In this method, fi¡st Helm-

holtz equation is disc¡etized for both H" and H, components and then a homogeneous

system of equations is constructed by enforcing boundary conditions between neighboring

regions. In the next stage, EISPACK package was employed to extract the eigenvalues of

the system of equations, and hence the dispersion curves of the waveguide.

*WffiI
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It is worthwhile to make a comparison between the aforementioned finite difference

techniques. Bierwirth's method is more general than Beaubien's in the sense that it is not

restricted to homogeneous waveguides or inhomogeneous ones operating at cut-off. On

the other hand, from the numerical point of view, Beaubien's method is mo¡e efficient. The

¡eason for this superior numerical efficiency is twofold. First, it can be shown that the

resulting matrix generated by discretization of the Helmholtz equation is sparse. There-

fore, indirect methods like Beaubien's, require less CPU time to find the solution for such

systems. Secondl¡ in the Bierwirth's method all the matrix elements ought to be calcu-

lated and stored before calculating the eigenvalues. This also poses an unnecessary burden

on the RAM computer resources. In fact, in Beaubien's iterative method, only the ele-

ments of one row of the matrix need to be calculated and stored at a time.

The proposed method in this thesis, FWFD, enjoys the generality of dealing with an

inhomogeneous waveguide and at the same time implements the more efficient indirect

technique to extract the solution. The other important distinction between FWFD and its

predecessors is in the fact that the main emphasis, here, is given to f,nding the eigenvectors

(field patterns) rather than the eigenvalues (dispersion curves). On the other hand, due to

mathematical correlation, calculation of an eigenvector requires a ptior knowledge of the

coruesponding eigenvalue. However, the eigenvalue calculation can be performed more

efficiently by the Compact FDTD (CFDTD) method, Section III.E. on page 82. In FWFD,

this computed eigenvalue is used to calculate the eigenvector or field patterns. This proce-

dure is illustrated in Fig. IV.1.
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FIGURE IV.I Flowchart of a complete CAD tool based on CFDTD and FWFD
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The aforementioned discussion provided a comparison between the FWFD, based on

Maxwell equations, and different versions of classical finite difference methods which

were all based on the Helmholtz equation. Another important comparison can also be

made between the FWFD and Time Domain methods. Such a comparison is postponed to

section IV.E. where a more detailed study on the application of time domain methods for

calculating field patterns is conducted,

Mathematical derivation of the FWFD is described in section IV.B. Since the method

is based on a four directional operator at all interior points, boundary conditions pose a

problem for FWFD in the sense that at the boundaries only the information of three neigh-

boring points are available. To overcome the problem, a boundary condition treatment,

which is based on a three directional operator, is discussed in section IV.C. Details of the

time domain based methods are addressed in section IV.E. The results of applying the

algorithm for the case of hollow rectangular waveguide and a shielded suspended coupled

dielectric guide operating at {,, mode are presented in section IV.F., followed by the

conclusion in section IV,G.

lssiÀHãn.\1iHçs$sçsstË*,t *ìg*x$*
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IV.B. Formulation

IN AN ntHoMocENËous waveguide carrying a wave of arbitrary frequency, all six

fleld components are generally present. Starting from Maxwell's equations for a loss-less

non-magnetic medium:

?*È = ,or.$

, 
"¿ = _uo*

) I à\
V. [€,. E) = 0

+-)
Vo.FI=0

(IV.1.a)

(w.1.b)

(IV.1.c)

GV.1.d)

in which s0 , p0 and €,. represent free space permittivity, permeability and relative permit-

tivity, respectively. Assuming no discontinuity in the z direction, the variation of all field

components with respect to z and t can be represented by the term ¿&rt-þz). Therefore

ÂÂ
the transformations 

,J- 
+lcrl and f -+ -jB are wananted, and Maxwell's equations can

be expanded as:

""=;[u',.*) (IV.2.a)

, ( aft,l
ae = '-':-l - lJft - =-: IY €0erU x dx )
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. (ðh aft I
co¿= rl-r-Jl

z ÊOer( d) òx )
(IV.2.c)

(rv.2.d)

(IV.2.e)

(rv.2.Ð

(Iv.2.e)

(IY.3.a)

GV.3.b)

(IV.3.c)

(w.3.d)

ðle " I af e-e ')

\J"l+ \='y./+ßee =0dx dy 'rz

^h = L(-u" -11x tlo\ ) dy)

, ( ô"-l
oh = -:-l Be +Jl) tro\' , dx )

.lòe òe \
an = L-l J-=j Iz pO\dx dy)

ah ðh

=j* J* þh_ = 0 Gv.2.h)òxdv'z

in which Eqs. W:.ul-flV.Z."l and (IV.2.e)-(N.2.g) are derived from (tV.1.a) and (IV.1.b),

while Eqs. (IV.2.d) and (IV.2.h) from (IV.1.c) and (IV.1.d), respectively. All information

contained in Maxwell's equations is transfe¡red to the final algorithm. AIso the following

conventions are adopted:

ExQ,y, z, t) = -ie r(x, r¡ . "i 
(at -Fz)

Er(x, t, z, t)

E r(x, t, z, t)

H r(x,I, z, t)

ffËS{Sër$*ì*StË*RÞtÌtl*ãn{TS.:1trä*XSS*T*Àr$xS ì*irìJ
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Note that in Eqs. (IV.3.a) to (IV.3.f) the phasor field variables in the transverse and

axial directions are deûned 90o out of phase. These phase differences a¡e introduced ini-

tially so that the final equations are in the real domain, to improve the computationai effi-

ciency in both time and RAM memory space.

Eqs. (IV2.a)-(N.2,h) constitute a system of equations for six two dimensional func-

tions and their first derivatives with respect to x and y coordinates. To derive required

expressions, we select ¿¡ component and provide the details of the procedure. It may be

extracted directly from Eqn. (tV.2.fl. Unfortunatel¡ this will result in an off-diagonal

dominant system of equations and therefore yields a highly unstable iterative algorithm.

àe ãe
The correct strategy is in selecting only those equations thar contain ;i and 6l terrns,

i.e. (IV.2.d) and (IV.2.g), and calculate e, by breaking down the derivatives.

H (x.y.z.ù = -ih ¡r. n¡ . "i(r':l- 
Þz)y""' " v""

H zí,y, z, t) = hrlr,r¡, i (at - Fz)

Expanding Eqn. (IV.2.d) into its finite difference form yields:

(. r.\ (. 1.\er\,+1,t 1rrlt,t) -erlt-r,t )ex\t- I,J)

/ r\ / r\
= e,li, i - ) )e r( 

t, i - I ) -€r[ ¡, I + 
) )e, 

(i, i) -ge, (i, t) e 

r(i, 
i)

(IV.3.e)

(rv.3.f)

(rv.4)

in which P = B .¡¿ is the normalized propagation constant along the z direction and

other notations are defined according to Fig. IV.2.
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FIGURE IV.2 Configuration of field components in FWFD
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Calculating for e *(i,j) Eives:

(,
e,(i,Ð=r¡ rli'.(,-),i),,tt-t,it ûv.5.a)

'rl'*r'l )/ r\
+ e,[ i, i - à),, t,, ¡ -r I -e,( i,; + ]),, <i, n -P;r, çi, ¡) e r{i, i)}

and replacing i with i + 1 in Eqn. (IV.4) and again sorring for e,(i,j) provides:

I / ? \ / r\
e * (i, Ð =-7:-- 1",1, 

* 
), t 

y -rr + 1, i) -e,[ i + t' ¡ - à)" y( 
t + r, i - i )

'rl'* r't .)

*u,(,* r,i +))r 
r<i+1,i) 

+per(i+ t,i) e 

r(i 
+ r,i)\

(IV.s.b)

ðe
Similarly, 6f in non. (IV.2.g) yields:

e*(i,i+t) -e*(i,i) = -Ahz1,i) +er(i+1,j)-er(i,i) (IV.6)

in which A = r¡tL0Â1 = ,"(N^)ro and gives e, (i,l) as:

er(i,i)= e*(i,i+1) +Ahzj,i)-ey(i+t,j) +er(i,i) GV.7.a)

and by replacing I with I - i in Eq. (IV.6) provides:

erU,i)= erU,i -t)-AhzU,i -I) + er(i+ t,j -t)-er(i,i -1) (IV.7.b)

Field Patteíi Anûlysis lLn 
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Eqs. (IV.5.a), GV.s.b), (IV.7.a), (IV.7.b) constiture a set of finire difference equations

expressing the x component of electric field in terms of its values at four neighboring

nodes. Adding them provides a single expression relating the field value at each point to its

four adjacent nodes. Final expression for e' can be found as:

e * (i, il = iu",i,. iu:,í. tu",|. ;u".í

in which:

0v.8.a)

(rv.8.b)

(IV.8.c)

õä = e,(i,j + t) + e,(i,i - I)

. 
{iÐ t"(' -}' i)".r' -t';¡ + e'( ; +

,:; = 
{",(i,j) 

+ e,(, + r,i - 1)

t r (..1\.,t-Ð 
L''¡i' i - ) )e,(i' i -

(

- 
{er(l+ 

1,i) +er(i,i-1)

t r (..1\.{;ÐL''lli'i+ )ev(i'i)

ai!) = n"ç,¡¡ -hzu,i-1)

1,i) ]

r) + e,(; + ui * )), rti 
* t, illj

* r,(, * t, i -:),,(t + 1,i -

'r'i)',t'*

,,]Ì

Field Paltem Anâlys¡s tlti tlsi

(rv.8.d)



Niìi{Ëä, $r.xfi{. È" :i#J{

¡íi = Zjr ¡-[e,.(i+ i,j) e,(i+t,j) -e,.(i,j) e,(i,Ðl (rv.B.e)

",1'* r'J )

- A ^ehana jòr, represents the contribution of h, ß er.

To help in understanding equation (IV.8.a), the following cases are considered.

. Inside a homogeneous medium 0íí = O and Eq. (lV. 1.a) takes a simplified

form:

e,(i,Ð = )1",f,,i*1) +e,(i,i- r) +e*(i-1,j) +e,(i+1,fl1 Gv.9)

* tln,<i, il - h z(i, i - tl *i1,, (i + t, i) -, 
"(¡, 

Ðf

. The rtr$ bracket in Eq. (1V.9) represents an averaging scheme for the field

components at neíghboring points. This averaging term appears in all

other equations as well. Its presence can be understood from the finite dif-

ference soluTion of ktptace equation, i.e. Vlø = 0, in which

-) _)
-2 ò- .l- -V; = -;+-;.lnthat case, the solution is expressed as:

dx dy

Io(r,j) = ¿tÕ(i+1,j) +@(i-r,j) +o(r,j+1) +o(r,j_1)l Gv.10)

It can easily be verified that Eq. (IV.10) is a special case ofEq. (IV.9), when the criteria

(o= 0) =åA = 0 at F = 0 is met. In fact, this is the same criteria for the validity of

Laplace equation, i.e. Quasi-TEM or TEM assumptions.

sfüT**tTå{i'T**

Field Pârtem Anatysis 
^[í 

2sí j18



tisihfi*TJ

. It is known that inside a homogeneous waveguide, all the field components

can be generated by superposition of two TE and TM modes. This is ver-

ified by Eqs. (1V.9), in wAcn õi!) and õii can be viewed as the contribu-

tions of TE, and TM, based modes, respectively. Note that for the

inhomogeneous case, an extra term, õ:;, is also required which diminishes

everywhere except at the interface of two media with dffirent pemifiivi-

ties.

. Eq. (lV.l0) cannot be derived simply by adding Eqs. (IV.S.a), (N.s.b),

(N.7.a) and (lV.7.b) and dividing them by four. The presence of ) muhï

ptication fauo r for õii and õil i" U"u o¡ j can be und erstood by studying

an extreme case of a one dimensional problem. Suppose, the solution for

the TE ro mode in a hollow rectangular waveguide is desíred. In this case,

assuming the longer edge of the waveguide in the x direction, all the field

components are afunction of x only ora ! = O. Eqs. (lV.2.a)-(lV.2.h)
dy

reduce to:

.( àå \
co¿ = fl -Bh -:31) e0\ -ï òx)

, (àe \
o¿ = rl=Yl

z trO\ dr /

(IV.11.a)

GV.11.b)

l3T*ir"qìÈ$Àì*.ìffiWfSglSs.'SKË#HçË.*ËrS*Ès$$S"ï**S",llSi$SÊsffigrW#i:$äJSlS*"lls1ffi;r$TSSSiSS¡.ì-*S\RS, SSS$Sì$-ç{tïS\S# ffiaì¡
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tr|+Þnr= o

From Eq. (IY.2.a):

(IV.11.c)

hz1,ì = hr(i - t,Ð -Bey(i,Ð -þhx\,i¡ (rv.12.a)

/^lì I
in which B = oeoÂ/ = ,"lT )%

and performing the i --> i + 1 transformation gives:

hzu,Ð = hzu+r,i) +Ber(i+t,¡¡ +þn*{i+t,Ð Gv.12.b)

and finally, by adding Eqs. (IV.3.a) and (IV.3.b) and dividing by two provides:

hz(i,i) = )lor<, * I,i) +hz|-t,¡)l +Ïl,y(¡+ r,i) -er(i,Ðl (rv.t3.a)

*ilo,r, + t, i) - h *(i, i))

Other two components can similarly be obtained as:

er(i,Ð = lleyG+t,i) +er(i-t,il +tln,(¡-t,i) -h"(i,i)l (rv.rs.¡)

h,(i,j) = )rn.ri*t,i) +hr(i-r,i)l +Ethz(i,i) -hz(i-t,j)l (rv.r3.c)

After confirming the validity of the Eqs. (IV.13.a), (IV.13.b) and (tV.13.c) by compar-

ing its computer generated results to the analytical ones, it can act as a benchmark to

examine the final equations. It can be easily verified that the aforementioned equations for

the TEro mode a¡e the same as those obtained from the final equations, urrurning $ = g
"òy

orinfinitedifferenceterms Í(¡,j) = fG,j+l) = f(i,j-l).
K*Nçi K*ffiS#Slî*$SHX"\SfiSrgS#;ì1S

Field Patrem Analysis A{i tlsí 120



IV.B.I Complete derivation of FWFD

Fß{AL EeuATIoNs of the ¡'\ry}'D method.

.e
x

e *(i, Ð ) ou.t."i, (IV.8,b), (rv.8.c), (rv.8.d) & (rv8.e) (rv.14)

.e
v

7 -ee I ^ee A-eh 6^r,er(i,i) = iõ;;+iô;; +;õ;:;*;E;; GV.15.a)

õíÍ, = "r(i+1,i) +er(i-r,i) (w.1s.b)

. 
4fu I',(', t - ))",(i, i - t) * u.(', ; * |)",ri, i * rtf

A"f, = 
{",<r,i> 

+e,(i-r,i +t) (tV.ls.c)

. 
;pfu [',(, -), i),,<, -1,;) + e,( ; + j,; *' ),, r,,; *' r ] ]

- 
{r,<r, 

i * L) + e,(i - 1, i)

. J,,lfì [',(' * ), i)",<tl + e, ( i - ), i *')" . r' -1, i + i ) ] ]e,lt'J + r)-

Fieid Pattem Analysis
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õí! = o,(i-r,i) -h"(i,i) (w.ls.d)

-ee1-ôíl = f . . rlåle,G,i + r)EzU,i +t) -e,(i,i)Ez1,Ðl (rv.ls.e)

"l"l 
* t)

e,(i,i) = iuí:.tî:!. u":).E!i-. uií)

õ"J = ,"(t+ 1,i) +er(i-r,i) +e,(i,j+1) +er(i,i-D

õ"1 = h,(¡' i) - h*(i,j - r)

a"f; = nrri-\i)-htl,i)

aä = ",çi,¡¡ -e,(i-t,i)

õií = "r(i,i) -er(i,i-Ð

(IV.16.a)

(rv.16.b)

(W.16.c)

(rv.16.d)

(W.16.e)

(rv.16.Ð

(W.17.a)

ov.17.b)

(IV.17.c)

(rv.17.d)

.h
x

h x 
(í, i) = 1u!! 

. uzu!:. 
Eu!!

õ',! = n,O+l,j) +h,(i-1,i) +h:t(i,i+l) +h,(i,j-1)

-heò,i = e,.(,,"1) e,(i,l) -e,(i'i + 1)e,(i,i + l)

a!;'; = n,ç,¡ -h,(i-1, j)
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.h
v

.h

1-hh B^he È^ttthy\t,J) = 4Òy, 
* rÒrr* iÒr:-

{r! = or<r*t,i) +hy(i-t,i) +hy(i,i+1) +hy(i,j-L)

õt'" = e,(i + l,j) e,(i + 1,j) - e,.(i,j) e"(i,j)

u!i,! = o,(i,i) -h,(i,i-1)

h 
z 

(i, i) = lorl} . tu!i:. 
u,yr) . EGi,! . ui,i)

a'!i = n,e+L,i) +h,(í-1,i) +hze,i+L) +h,(i,j-r)

ohe (. t.\ (. I -\o¿r = s/f , +r,t 
)e,\t,t)-e¡.1¿+ t,i + t )e,(i,i + t)

a';; = ",(i*r,i*))",(r+ 1,i) -.,(,,;* )),,rt,o

õ')! = n,G* t,¡¡ -rr.1i,¡¡

6'!i, ='r<',¡ * 1) - \(i,i)

(IV.18.a)

(rv.18.b)

(IV.18.c)

(rv.18.d)

(IV.19.a)

(rv.19.b)

(IV.19.c)

(rv.19.d)

(IV.19.e)

(rv.1e.Ð
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IV.C. Boundary conditions

Two possIBLE BoIJNDARv conditions, i.e. Dirichlet or Neumann, might be encoun-

tered when treating a field component for the points located exactly on the boundaries. The

Dirichlet boundary condition can be easily satisfiedjust by resetting the field component at

the boundary nodes to zero. The Neumann boundary condition, on the other hand, can be

fulfilled by resetting to zero the normal derivative of the field component at the boundaty.

In this study we have accomplished this by assuming identical values for the field compo-

nent at the two adjacent points at opposite sides ofthe boundary node. This insures nullify-

ing the central diffe¡ence derivative of that component.

To be specific, an example of treating the e" component of a waveguide structure is

presented. Suppose that two PEC (Perfect Electric Conductor) walls are placed at x = 0

and y = 0, and two PMC (Perfect Magnetic Conductor) walls at ¡ = aA.I and y = bA,I.

Therefore, the boundary conditions at x = aLI and y = 0 are Dirichlet type, i.e.

e*(a,i) = 0 and e"(i,0) = 0. And, because of the Neumann boundary condition at

¡=0andI=bLI , Eq, (IV.9) convefs into:

e,(0,Ð = )er,O+1,i) + e,(0,i+1) +e"(0,j-1)J

+!tn,p.¡¡ - hzq,i - r¡1 *f;t",(o + 1,i) l

e,(i,b) = jV,O-1,b) +e,(i+r,b) +2e,(i,b-r)J

*|r-n,ti,å- 1) I + it",<ø * r,i) -e"(b,i))

(rv.20)

(rv.21)

nlìSi-ilnïlTr;:r+Hi$ì$åI*"ììì$i:ìS$*r, ñ*J*SitrS. ãSSÉS$h'WliXtS:$ËlSi*:s*#lSrSiçiËlffiffiif$iËS$S:åiIiTSS!.. !*S" ssl$$S#
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Note that, in Eqs. (IV.20) and (IV.21), valid boundary conditions on e, and h, were

taken into account. Another scheme is also tried for this class of problems which imposes

only the Dirichlet boundary condition and handles the Neumann one using a one direc-

tional operator as of Eq. (IV.S.a). Maxwell's equations automatically adjust the field val-

ues, even at the Neumann boundary nodes.

IV.D. FWFD flowchart

THE FLowcHART of FWFD is illustrated in Fig. IV.3. First, the eigenvalue information

is fed into the algorithm. Like any other iterative scheme for solving system of linear equa-

tions, an initial guess is required. In most cases, the speed of convergence is dependent on

starting with a good initial guess. At this stage, FWFD formulation, i.e. Eqs. (IV8.a)-

(IV.8.e), (rV.15.a)-(N.15.e), (IV.l6.a)-(N.i6.f), (IV.17.a)-(N.17.d), GV.18.a)-(N.18.d)

and (IV.19.a)-(IV.19.f); must be implemented iterativeiy to update the field values. There

have been two updating strategies reported in the literature, i.e. Jacobi and Guass-Siedel. It

is found that FWFD does not converge to the conect ¡esults using either of these methods.

Only a combination of the two was found to be successful. In the combined method, first

the electric field values at all nodes are calculated and then updated. The same procedure is

applied to the magnetic field components. In other words, calculation ofelectric field com-

ponents follows a Jacobi procedure, while the overall updating of electric and magnetic

fields is a Guass-Siedel one. The reason for this special updating mechanism goes back to

the essence of the leap frog algorithm in Yee's lattice. It is known that leap frog mecha-

nism, a half step time difference between electric and magnetic field calculation, is

ti}:.:iåS:ï'i*$Sll$ì:{'ì \ãr{$r$iÄl$S$$*åi$$NffiFi$l*$i$*$Siffi\ÈÈR\ãrç ì¡
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required to obtain any meaningful and stable algorithm. Since in FWFD, time variable

does not exist, the leap frog algorithm constitutes itself as two distinct updating stages to

evaluate the electric and magnetic field components.

The other important stage of the FWFD algorithm is no¡malization. Normalization is

required in view of the fact that fo¡ each distinct eigenvalue, there corresponds an infinite

setofeigenvectors.Mathematicallyspeaking,eigenvectorproblem(.4-Àe)X=0hasa

pair of unique solutions, X and -X, when accompanied by a constraint, Jlxll2 = I , where

llXll2 is the ructidean norm and,

(Iv.21.g)

þ,rr, rl er(l,1) e, (r,t) hr\,t) hy(t,t) hzl,r) ... h,(M,Ð]r

Finally, a convergence test is used to end the iterations.
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FIGURE IV.3 Flowchart of FWFD
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IV.E. Time Domain Techniques

As wAs MENTIoNED earlier, field patterns can be calculated using both classical and

time domain based finite difference methods. Many studies have already been conducted

on the classical finite difference method. And, a comparison between this class of methods

and the FWFD was made in the introduction. on the other hand, time domain based

method, i.e. FDTD, was used for calculating field patterns restricted to cut-off frequencies

[35]' For this reason, we preferred to use time domain based methods as a benchma¡k for

confiüning the validity of the results obtained using FWFD. This way, the applicability of

the time domain methods for ûeld pattem calculations will also be elaborated which has its

own merits.

Both CFDTD and TLM are capable of evaluating the dispersion curves of inhomoge-

neous waveguides by the Fourier transformation of their impulse responses. Theoretically,

these methods can also be deployed for calculating field patterns inside a waveguide. To

do this, two different strategies can be adopted. In one the structure is excited with a time

impulse and evolution of all six field components ( E r, EO E z, H r, H r,I1. ) is recorded at

each individual node in the mesh. A Fourier transfomation of the nodal field time history

provides the desired field distributions. This method, i.e. impulse-FFT analysis, though

feasible, is a rather tedious and inefficient approach. The second method [13] is based on

the steady state analysis of the structure. In this approach, the structure is excited with a

sinusoidal waveform at an arbitrary point. After sufficient iterations, the transient response

decays and what is left is the steady state response. But, this info¡mation still has an unde-

sirable time dependency. In fact, the average of the absolute values of the time history of
rsäÍäs"
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the fields can better serve the purpose. This, in tum will result in the loss of relative phase

information of the field components.

The flowcharts of the two different time domain algorithms, steady state and impulse-

FFT analyses, are depicted in Figs. IV.4.a and IV.4.b, respectively. Compact FDTD is

selected as the main engine for both. In the steady state analysis, a relatively long waiting

period is required for the transient response to damp out. This waiting period is one of the

main disadvantages of steady state method in addition to losing the phase information due

to the presence of absolute value operator in the algorithm, Impulse-FFT, on the other

hand, relies on large computer resources. The results of applying steady state and impulse-

FFT analysis on a coupled waveguide are presented in the next section.

FWFD, is capable of providing the amplitude and phase information of all six field

components simultaneously and through one single analysis. The algorithm starts with a

crude guess of the field distribution and then proceeds with an iterative scheme to con-

verge to the coüect results.
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FTGURE rv.4 (a) Flowchart;of steady state algorithm, (b) Flowchart of impulse-FFT algorithm.
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IV.F. Applications

IN TI-[s sncfloN, the results of applying the proposed method to a hollow rectangular

waveguide, consisting of four PFIC walls, and a shielded suspended coupled dielectric

guide are presented. Like any other iterative method for solving linear system of equa-

tions, a good initial guess, can noticeably enhance the speed of convergence. However, to

show the power of FWFD and the fact that the Reid patterns for arbitrary waveguides are

not generally known, a simple initial field distribution is selected, by uniformly setting ¿¿

to unity and resetting the remaining components to zero.

W.Al Hollow Rectangular Waveguide

The first case is a hollow rectangular waveguide of dimensions 18Àl x 1241. The

objective, here, is calculating the field patterns conesponding to TM, mode. The eigen-

value information of this structure for the ¡zz th mode can be obtained from:

(rv.22)

in which k =at = 12,m = 3 and n = 1. From this, the conespond-

ing eigenvalue to PA¿ = 0.1 is calculated u, ff = O.O9+S. Next, this pair ofvalues is fed

to FWFD. The fleld pattems, i.e. eigenvectors, are obtained after 250 iterations, These

patterns are in close agreement with those obtainable from an analytical solution. Normal-

ized pattem of å, component, with respect to lh,lu,o,, is illustrated in Fig. IV.5 in which

I -,fr"\ si; ?-r .1e\' '{-;.r: 
.ê'.il ¡1"\S- ,"E\{ !. *+ +1. ". :tf}Nù"*"-1;:;;å{*L:s:s\"--fütr;;s}*-Ì*1.}ff-"ì"*f"Þ"åTr""¡}' ."1
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both amplitude and phase information are contained. The normalized amplitudes of all

field components, with respect to ltrl^or, are also calculated and compared with those

obtained from the exact solution. Table I summarizes the results of this comparison.

FIGURE IV.5 Normalized å, fietd pattern of aTM, in a hollow rectangular waveguide

seRffilü$ffi
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TABLE I. TM, normalîzed modal ffelds, with res p""t to le"l,ro* in a rectangular waveguide

l',1 l"rl l,,l lh,l lhS lh,l

Exact 0.15 7.6e-2

FV/FD 0.14 6.8e-2

1.00 l.2e-3 2.4e-3 0.

1.00 l.Le-3 2.le-3 6.7 e-rl

IV.F.2 Shielded Suspended Coupled Dielectric Guide [48]

The study of dominant Z)to moaein a shielded suspended coupled dielectric guide,

Fig. IV.6, constitutes our second example. Since the coupled dielectric waveguide is sym-

metric, its propagating modes can be decomposed into two sets of even and odd modes.

Odd or even mode analysis can be performed by placing a PEC (Perfect Electric Conduc-

tor) or PMC (Perfect Magnetic Conductor) on the plane of symmetry, respectively. For

demonstration purposes, only the odd mode analysis is presented here. In any event, only

analysis of half of the structure suffices. This configuration was already analyzed using

mode matching technique [46] and an older version of CFDTD [47]. Using our CFDTD

routine, normalized eigenvalue pair is calculatea u, { = 0.O2644 corresponding to'L

p^l = 0.1. By choosing Âl mm, the physical dimension as of [46] can be obtained
1

3

In this case, the eigenvalue pair would be f = 23.g CHz at p = 0.6. For convenience,
Po

FWFD is formulated in terms of normalized quantities, and so it is the normalized pair that

t
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is actually used here. To initialize, the structure is excited by setting ¿) to unity uniformly

all across the waveguide, except at the boundaries. This crude initial guess is made with

the only available information, i.". an Etto would definitely have an ¿y component.

Since, no other information is available, a uniform distribution is assumed fo¡ excitation.

Of course, if any other information is accommodated, a smarter choice and faster conver-

gence can be achieved. For this configuration, field patterns were calculated in 100 itera-

tions. On a Sun-Sparc 10/41, this is equivalent to about 3 seconds computational time.

FIGURE IV.6 Shielded suspended coupled dielectric guide

PEC -{n
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I,'{o

a=6Aj l, ,,=2.56 p=q=3LI
b=6LI I s=3Âl d=3Lt

FJ
ô
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ô

To prove the validity of FWFD results, both steady state and impulse-FFT werc tried.

For the sake of brevity only the pattems for normalized e, are illustrated. Figs. IV.7.a and

lV.7.b are generated by steady and impulse-FFT methods, respectively. The patterns for

other field components are in close agreement with each other regardiess of the method,

Field Patfem Analysis ,1(i Asi 1.34
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steady state or impulse-FFT. For the impulse-FFT method, a uniform excitation of e, all

across the waveguide was used. While for the steady state analysis, a point excitation of e,

at the node (4,3) was implemented. Obviously since the field distribution is unknown,

one cannot excite the entire structure steadily with a uniform distribution. The drawback of

using point excitation is evident in Fig, IV.7.a; the field pattern is distorted exactly at the

location ofexcitation. Also the calculated field patterns using FWFD are presented in Figs.

lv.8.a to IV.8.e, and, as expected are in good agreement with those of the other methods.

Field Pattem Analysis tlli tlsi



FIGURE IV.?.a Normalized en field pattern of El, mode using steady state method.
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FIGURE IV.7.b Normalized ¿v field pattern of .{,o mode using impulse-FFT method.

r*Hsff
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FIGURE W.8.a Normalized e, field pattern of Ef ,o mode using FWFD.
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FIGURE IV.8.b Normalized e, field pattern of Ef , mode using FWFD.
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FIGURE IV.8.c Normalized e. field pattern of ,Ðf 
, o mode using FWFD.
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FIGURE IV,8,d Normalized å, field pattern of {r, mode using FWFD.

r
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FIGURE IV,8,e Normalized å. field pattern of E{, o mode using FWFD.
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IV.F.3 Unilateral FinJine [49]

As the next example, the study of field patterns inside a unilateral finline operating at

cut-off frequency is selected. Fig. IV.9 depicts the finJine structure under investigation.

FIGURE IV,9 TM mode in a Unilnteral Fin-line

b

FW^Llffi-- I d

+

r Input probe

ou, ='o *,='o
s- d =oLl e, = 2'22

For the dominant TM mode of this finline with a mesh discretization of 20 x 10, a

total number of 250 iterations is quite adequate to achieve an enor less than 17o in con-

vergence accuracy. In this case, the entire process takes about two seconds on a Sun-

SparclO/4l workstation. Conesponding field pattems lor er, h* and å, components are

illustrated in Figs. IV. 10.a, IV.10.b and [V.10.c, respectively.
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FIGURE IV.10,a Normalized ¿z field pattern of the dominant mode inside a unilateral
finJine,

e
z6r-I Zlmax
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FIGURE IV.10.b Normalized å, field pattern of the dominant mode inside a unilateral
finJine,
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FIGURE IV,10,c Normalized å, field pattern of the dominant mode inside a unilateral
finJine.
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IV.F.4 Boxed Microstrip Line [50]

Finally, as the last example, the study of field patterns inside a boxed microstrip line

operating at cut-off frequency is selected. Fig. tV.11 depicts the specifics of the structure

under investigation. Also, the corresponding field pattem for the dominant TM mode at

cut-off frequency is illustrated in Fig. IV.12.

FIGURE fv.ll Boxed microstrip line

7LI

å
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FIGURE, w,12 Normalized li, field pattern of the dominant mode inside a unilateral fin-
Iine.
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IV.G. Conclusion

A NovEL FULL WAVE FßrrIE DTFFERENCE, FWFD, technique for calculating fietd

pattems of guided wave structures is proposed. It is based on a four directional finite dif-

ference treatment of Maxwell equations. Classical finite difference methods are derived

from the Helmholtz equation and therefore are restricted to dealing with just a single field

component. Even though this is a desirable feature for calculating eigenvalues, it lacks the

power to provide the field pattern information fo¡ all six vector field components. FWFD,

on the other hand, has no such limitation and therefore is a powerful CAD tool fo¡ calcu-

lating field patterns efficiently and simultaneously.
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V.A. Introduction

IN pREvIoUs CHAI/IERS different time domain techniques were discussed. All these

methods have a common requirement, they need to go the frequency domain in order to

determine eigenvalues at the final stage of the analysis. For most applications, the impact

ofusing an advanced spectral technique, alone, on saving CPU time can be as significant

as using the Compact FDTD for the first part of the analysis. In fact, by using advanced

spectral analysis techniques, one can use far fewer iterations in the time domain to extract

information than is needed to achieve the same degree of accuracy using a less efûcient

spectral technique. Generally speaking, it is known that time domain simulation (FD-TD,

TLM, Bergeron's method) of Electromagnetic problems suffers from one major draw-

back, considerable CPU time. This means that for obtaining reliable information from the

time domain simulation, the program must run for several thousand iterations. From a Sig-

nal Theory point of view, the simplest way to accomplish this task is the use of the Dis-

crete Fourier Transform (DFT). But, due to its slow performance, most problems are

usually handled by a much faster technique, the Fast Fourier Transform (FFT). The term

DFT in the context of this thesis refers to taking the Fourier transform of discrete time

samples, while frequency can still be assumed as a continuous variable. This definition is

somewhat different from that found in standard literature in which this term implies dis-

crete frequency domain as well.

This chapter begins with the basic spectral techniques and gradually proceeds to the

most advanced available ones. Along this thread, a brief discussion of the Discrete Fourier

Transform (DFT) and Fast Fourier Transform (FFT) is presented in sections V.C. and

tiT:i;:¡.T*ili*il$,ïÍi.$Säf*Ãi"rï.f.$t$,'if$ì äq$.Ètr
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V.D., respectively. In fact, the very first concept of frequency domain had been originated

from the Fourier transformation definition. Sections V.E. and V.F. will discuss Auto-

Regressive (AR) and Maximum Entropy Method (MEM), respectively. Both these

algorithms belong to the same family and are based on the same concepts. Finally,

Prony's method is the subject of V.G.. Prony-Hildebrand accompanied with its modified

version are presented in V.H. and V.I., respectively.

V.B. The best method and numerical noise

ONE MAY AsK: "What is the best available spectral technique?". Answering this ques-

tion is not as easy as it may look. The reason is behind the empirical nature of the spectral

analysis science. In fact, each of the spectral analysis techniques are based on a certain set

of assumptions, either about the basic characteristics of the signal or the embedded noise.

The problem becomes more critical when the signal under study contains some noise with

unspecified statistical characteristics, which is usually the case. Ideally, one can give an

accurate answer to the above mentioned question if and only if all the characteristics of the

noise for a particular problem are a priori known. One may still argue about the source of

noise in the current problem, dispersion analysis, truncation and round-off er¡ors.

Here the problem is approached numerically; there is no background noise present in

the output time domain data. But, on the other hand, due to the limitations of the digital

computer and the algorithm, the data is contaminated with several numerical noises. The

origin of the first noise is the round off e¡ror which is an inherent properfy of any digital

computer calculations. Even though, the ¡ound off error has a deterministic nature, i.e, it

f â*ltiåTÌr$l#;S*iffiiJ$ss{S'Ìr*åffiST}r$Èìr$S,sÃ.lål$sftfçÌË#$ffi
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can be determined for any particulff operation, it must be kept in mind that for just one

single analysis, hundreds of thousands of mathematical operations may be required. One

can easily see that for a problem of this extent, the round off enor of the entire operation

will exhibit a random behavior and so can be considered as a source of noise. The second

source of noise is due to the approximations that have been made in the derivation of eqs.

(m.22.a) rc (m.22.Ð.It has already been stated that those equations are valid (in approxi-

mate sense) if and only if Â/ -+ 0 or when ^f . f . fn" exact amount of the error intro-

duced by using a Al + 0 , in a single operation can be determined quite accurately. But, yet

again, one is dealing with hundreds of thousands of operations of this kind and this can

easily make the truncation error behave like a random variable.

In conclusion, to determine the superiority ofa particular spectral analysis method for

a specific problem, one has to experimentally apply each of these methods and then make

the final judgement. The desi¡able qualities of a good technique can be summarized as fol-

lows:

¡ Stabiliry

o Higher resolution

e Less CPU time

o Less required computer memory space

r Less complexity
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V.C. Discrete Fourier Thansform (DFT)I511

DISCRETE FoURER TR-ANSFoRM is the first, most important and most inefficient

method for transforming the time domain data to its frequency domain counterpat. Due to

its simplicity, it was the method of choice fo¡ researchers utilizing time domain methods

like TLM.

Suppose that r,¡ represents a time domain data sequence. Then, the DFT for such a

discrete signal, 
"(#) 

,is defined as:

r¡ .- .Ál

/ry1 = i * ."-""rT\À,/ L) tt
k= I

(v.1)

In some literatures, the DFT is defined by a plus sign in the exponent and its Inverse

DFT (IDFT) by a minus sign in the exponent. The only important issue is to use different

signs to define DFT and IDFT. ff"r", ff is the normalized frequency. Equivalently:

"(#) = i',, *,(r'oot')
t= 1

"(#) = -f ,,,.,r"(z't^f)
k= |

(v.2)

(v.3)

t$Si"låill\f.L{iïr:ìl*lüSÌñÈlBËf+#Tl1È.T$S S*àffiltrSl*"\\-iì$.S:Tf$S$.}:liS,ìfËSSÀlSTlk¡:}ìiïff{èT;s¡XIS;ËS
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V.D. Fast Fourier Thansform (FFT)t41ll51l

As rr HAs sBBN stated, DFT in its original form is a very straightforward but ineffi-

cient method. Fortunately, a careful inspection of eq, (V.1) depicts that for a complete cai-

culation cycle, the exponent and its harmonics have to be calculated repeatedly. Inspired

by this observation, a variety of different algorithms have been introduced to reduce the

CPU time drastically. While there is evidence of contributions by many researchers to the

development ofFFT, a concise paper by Jim Cooley and John Tukey focused the attention

of the digital processing community. The proposed algorithms can reduce the proportion-

1
ality of the CPU time from N- to Nlog2N.

V.D.l Drawbacks of FFT

IN AcHEvD'tc the higher speed of the FFT, one usually has to compromise the resolu-

tion. This means that while there is no theoretical barrier fo¡ increasing the resolution in

the DFT, it is positively restricted to a certain theotetical limit in the case of the FFT. This

theoretical limit is always set bV ¡f , in which N is the number of time domain iterations

or samples (which of course has to be zero-padded or truncated to an integer power of 2)

and A is the sampling interval in the time simulation. The other problem of both the DFT

and the FFT is the fact that they implicitly apply a window to the time domain data by tak-

ing the Fourier summation u, >f; inrt"ud of Li or equivalently muttiplying the input

sequence by a rectangular window. This in turn means that the actuai frequency domain

i:*"{ia,ìÌl¡Lì:ìlLirê$i.'TìtT*itfll.*Sn}*;,1' Ti{:l*Siti*iT*;r$i*i,{* äiìff,;¡: lË},r
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spectrum is being convolved with sin=(l/) 
. The impact of such an assumprion on the fre-

4r

quency domain is twofold. First, it limits the resolution of Fourier transform operation to

(at most) the bandwidth of the main 1o6, o¡ !ln-(pD- function. Second, it causes leakagenr

of energy from one main lobe to another through the side lobes. The destructive effect of

this can sometimes be so severe as to mask a main lobe by a side lobe of another neighbor-

ing lobe. Even though extensive studies[52] have been conducted to alleviate this problem

by other windowing schemes, in general, either the bandwidth of the main lobe or the level

of side lobes must be compromised in order to achieve better performance compared to a

rcctangular window.

V.E. Auto-Regressivemethod (AR)t531

BAsED uPoN what has been cited in section V.D.l, the need for having a versatile

extrapolating technique, to substitute FFT, which also is capable of extracting the desired

information by a fraction of iterations, is inevitable. As has been mentioned in section

V.8., the most impoÍant features of a successful extrapolating technique can be summa-

rized in two aspects. First, from the speed point of view, it is desirable for the proposed

method to possess a speed comparable to the FFT, or be at least much faster than the DFT.

Second, from the resolution point of view, it must generate results more accurate than both

the Dtr'T or the FFT even with fewer time samples.

While no extrapolating technique can overtake the speed of the FFT method, there is

a good chance that by applying a suitable method to a particular problem, results much

iL\Ë::.ïä:${ÈflÉåÌiïÈi. **,ñ:Hffi*'SS**¡isfS$$È'i .!it$.5$åì\Êü.1S}ìrrH.\SS*ii:iT*f"Sì: $ffi.*Tli't'S i,\S$åH:äTSìì$#ì
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more accurate and with better resolutions than those achievable by the DFT and the FFT

can be obtained. ln what follows, first a quick survey of the AutoRegressive (AR) and

Maximum Entropy Method (MEM) is presented, then the applications of these methods

particularly to Guided Wave Structures are indicated. Finally, a few numerical results are

presented.

Among the vast class of extrapolating techniques, so far, only Prony's method has

been widely used for time domain simulations. The implementation of this method dealing

particularly with resonant structures has already been reported by \ryills[54]. Thus, it is not

the intention of this thesis to question the validity or suitability of the classical Prony's

method, but rather to present altemative methods which a¡e found to be very efficient for

resonant structures. A comparative study between the presented methods and Prony's,

including some modifications to enhance the Prony's performance is the subject of the

ongoing research by the author.

V.8.1 Mathematicalformulation[S5]

CotffRARY To Prony's method in which the major objective is extrapolating the time

domain samples to intervals beyond the simulation period, in the AR, it is the discrete

auto-correlation function of a signal that is subject of extrapolation. Mathematically, the

problem can be phrased as follows:

"Given the disct'ete auto-con'elationfunction Rfnl of a process

for lnl < M , ertrapolate the values of this function for l"l > U ."

Sp€clral Estimation )Ln lß1
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The importance of such an odd extrapolating technique lies in the fact that according

to Wiener-Khinchín theorem, there is a direct Fourier transform relationship between the

auto-correlation function of a signal and its power spectrum. Using this useful property,

some fast algorithms can be developed. Hence, the significance of this kind of approach is

mainly due to its numerical advantages. Considering the following relationships:

S (ro) =
-il]Dt. -"dÎ

N-l
^ l- ri

R** [n] = =N L ,rru,* u,

m=1

FIGURE V.l Wiener-KhinchinTheorem

s(rrr) = i o,¡rlr-t"o'J R", {r) , (v.4)

in which for the discrete case R,, InJ can be replaced by its biased estimate[56], Ê,, In] :

Auto-Correlation
Rrrln)

Power Spectrum
,S (ú))

Now, let's assume that the power spectrum of a signal can be regarded as a rational

function with a constant numerator, i.e. a function with several poles and no zeros, such as:

M
;

= > R*,Lil¿

(v.s)

-io^ (v.6).î(r)=---ft-, , "
l' 

. -ì,t*l
There a¡e at least three justifications for such an assumption[56]:
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. In the FDTD analysis of guided wave structures, the frequency spectrum

consists of several sharp peaks which respectively correspond to dffirent

modes. Thereþre, ct rational function with several poles appears to be a

good representation of these peaks,

. According to Information theory, it can be readily proved that this form of

extrapolation will maximize the entropy which in tum can secure the fact

that the unknown parameters v)ill have the maximum degree offreedom to

fit into the data.

. According to Wold decomposition theorem, any stcttionary 
^R,MA

(ÄutoRegressive Moving Äverage) orMA (Moving Average) process of

jinite variance can be represented as a unique AR model of possibly infi-

nite order.

At this stage, the only task left to accomplish the extrapolation procedure is having an

effrcient algorithm for calculating the unknown coefficients bo 147)of 3 (al) ln terms of

the estimated values of the discrete auto-conelation function Âr" [r] . If one expands the

left hand side ofeq. (V.4) using Laurent series, one can obtain a non-linear system ofequa-

tions relating åo 's to Â,, ç¡ 's. Straightforward but practically useless ! ! ! !

Fortunately, techniques exist that can handle the problem without resorting to nonlin-

ear equations. Here, the final result of such an algorithm known as the Yule-Wølker equa-

tion is presented. It is given by:

'q*ål}tf 
¡Fli:ì¡"rÊ\ll$TåH;l\Ëll$$t\lTl\1"1:\SàR!r,
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k,,lMl ft,,IM - t] Â,, lM -21 ... Â,, [o]

As is clear, the resultant matrix is a Toeplitz symmetric[4l] one for which a very effi-

cient inverting algorithm is available. One is reported by Levinson-Durbin[57] which also

employs a recursive scheme for calculating the coefficients.

Finally, after solving the above matrix equation, one may continue with an extrapola-

tion of the power spectrum. From here on, two different strategies can be chosen for find-

ing the eigenvalue (resonant frequency) of the structure. The first strategy is to find the

roots of the denominato¡ directly by any numerical method. The other strategy is to find

locations of peaks of the extrapolated power spectrum function in a particular frequency

range of interest. I have found the former strategy to be much easier and trouble free, not

withstanding the fact that finding the roots of a polynomial is always considered an ill-con-

ditioned problem; i.e., small deviation (enor) in the coefficients of the polynomial can

result in extreme changes in the roots.

I þ,1 [n,,rtll
rl lr,l ln,*'r, I

rl lr,l = -ln,.rrr I ry.7)

] t, lu..i',I

ft,,lMl
R,,¡M - |
ft,r¡M -2
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V.î,,2 Applications[53]

Since this part of the thesis is mainiy aimed at signal processing part of the time

domain analysis, only a simple example, a rectangular hollow waveguide, for which the

analytical solution is readily available is presented. For a more sophisticated example, a

boxed anisotropic microstrip line, for which this method can equally be applied, one may

consult section Itr.E.2 or t58]. Fig. V.2 depicts the structure under study. Fig. V.3, also

illustrates the final results obtained by AR.

FIGURE V,2 (a) The structure under study, (b) The frequency spectrum of input signal

As is implied by Fig. V2.b, a modulated !l!f ¡5 ìrss¿ for the purpose of exciting the

FDTD meshes. By a simple calculation, one can show that the first mode in this structure,

lhe TEro mode, will be located at ^l = g.g25. For convenience, the curve is normalized
lv

to unity.

i$*È::r.i:È-!.:1¡.sil$#Ëi*. Tlrl"l¡i¡*t*T*$tf. T$ìlR.!f.ìF.n.l#.,Sff-ìT,r"{SììqWi ìiJlÌffiS-S*:i.'r t1ï.#ïf4$f$"{it
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FIGURE V.3 Result generated by AR
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V.F. Maximum Entropy Method (MEM)I591

DESPnE THE effectiveness and higher efficiency of the AR model, it still suffers from the

lack of high resolution required for a successful method, The major cause of this problem

stems from the fact that for most practical situations, it is the time samples that are directly

available not the auto-coffelation coeffrcients. Although eq. (V.5) seems to be a straightfor-

ward way of calculating these coefficients, this equation is obtained by assuming the ergodic-

ity of the samples. This property permits the substitution of time averages fo¡ ensemble

averages. Unfortunately, this is not always the case, especially when it comes to short data

records. Hence the only way left for calculating the auto-correlation coeffrcients is through

Spectral Estimûtion n{i Stsi



statistical methods. A better solution to this problem can be found by reformulating the

entire problem again in terms of the time samples themselves, not the auto-correlations.

This had been done by Burg in an algorithm called after his name, Burg's algorithm or

MEM. Due to the lack of space, the mathematical details of this algorithm can not be

explained he¡e. The interested reader is refened to the literature. It is adequate to say that

the essence of this algorithm is based upon a least square formulation of time samples,

both known as well as those to be determined using forward and backward linear predic-

tion theory.

One of the major weaknesses of the classic MEM, as presented by Burg, is its insta-

bility when detecting several peaks, i.e. biases in the frequency estimate. Another problem

arises when the implementation of the method requires polynomials of higher degrees. In

such a case, instead of a sharp clear peak, one obtains a peak surrounded by a set of several

other peaks, i.e. spectral line splitting. This effect is particularly evident if the original data

contains noise. In the present case, the origin of this noise can be attributed to the inherent

round-off enor of the finite difference method.

All these problems can be alleviated using a more advanced technique caìled Modi-

fied Covariance Method[60]. It is believed that this algorithm can be used as a very attrac-

tive, fast as well as accurate and spurious peak free, tool in CAD packages.

làïï::f¡r\-:,"r¿iFHi!T.Slï.;ËSf*$ri ix#*'lìTl$*¡StRl\riËëì1"I$.i$:: È ìi¡.åÌ ìåTrTSìf*-"\;s;,1i ,t"1¡ì
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V.F.1-. Applications[53]

Hc. V.4 illustrates the results obtained respectively by the FFT, DFT and finally the

classical MEM or Burg's algorithm. For convenience, again, all the data have been nor-

malized to unity, but it must be appreciated that neither the amplitudes nor the dimensions

of the graphs are identical. To be more specific, the DFT and FFT results correspond to

the frequency spectrum of the output probe signal and the MEM may conespond to its

power spectrum.

FIGURE V.4 Results generated by FFI DFT and classical MEM

fËIËSili*lliùll*ìåråS Y1$txsn¡å1ãq$$Hiìî*, ìÈì¡Ë*S:S, Slrì$:li*ii$iËT#$"flçS1iti.T.Ì:-::tr{À:.f.1fi.ìS;:.r Sì
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V.G. Prony's method[61]

PRoNY'S METHoD and FFT are in essence similar methods; both are based on approx-

imating the signal in terms of a polynornial of finite number of exponential functions.

û,x t.x ct,.l ct ì
f (x) = C( ' +Cre' +Cre' +...+C,e " (v.8)

The only difference between these two methods is in the fact that in FFT, all the fre-

quencies at, a2, c[3,... are integer harmonics of a basic frequency ol . But, in Prony's

approach, all these frequencies can be chosen quite arbitrarily. And, this property makes it

more suitable for approximating a general signal. In turn, one can not expect the same

speed as the FFT.

Eq. (V.8) can be rephrased as:

f (r) = C tËt + cr¡ir+ C.rtrti + ... + C,,rt, IL* = e (v.9)

in which, C, 's and o, 's are the unknown parameters that have to be calculated. In fact, for

the specif,c problem in hand, only the calculation of cr,'s (the resonant frequencies) is ade-

quate. For a complete model, one needs to determine all unknown parameters.

Now, suppose that NI (Number of Input) discrete samples of the signal, /o , /, ,

h,...,f m are available, the output of the time domain CFDTD simulation. And also, let's

assume that all these samples have been taken at equally spaced intervals of time.

*11".rï\ììT$i.$T$ì*iìS*1,.;1ï:r$:*\W;H1"iñ*S*.$tìiit$.:ìTslii,rffiffq;1*. Sr.î#S,,;*rT$rä
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Cr+ Cr+ C3+ .., + C,, = fo

Crvr+ Cr¡tr+ C.¡t., + ... + C,¡t, = f1

cr¡t2r+ cr¡tl+ crp?* ...+ c,,¡tl, = f2

:

^ NI-I . NI_I ^ NI_I ^ NI-]Urlrr +CzVz + Ca[3 +... +CiJL,, = Iwt_t

If the values of the p, s are known in advance, the above system of eqs (V 10) would

be linear one, otherwise it is a nonlinear system of equations!!!

Baron de Prony found an ingenious method for solving this class of problems in 1795.

His method is presented in this section. Let's suppose that p's be the roots of the follow-

ing algebraic equation:

n tt-l ¡t-2
¡1 +aþ ' +a2ll -+...+dn_IlL+an=0 (v.11)

Now, if the first equation of the system of eqs. (V.10) is multiplied by a,,, the second

one by a,r_r, and so on..., and then be added up all together, one will come up with:

f,+ atf,-t+ afu_z+ ... + a,{o = 0 N,lz)

Repeating the same procedure but starting from a different point, the following sys-

tem of equations can be generated:

(v.10)
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f,r* otf,r-t+ azfr-z+ ,,' + a,fo = o

fu* t + dtfu+ a{r_t+ ... + a,f, = o

fr*zl atfr*r+ a;f,r+ ,.. + a,l2 = 0

fwt - t + otf¡tt -z+ Lfnt -z + "' + a,fr, -,,-, = o
ff.13)

The resultant matrix also enjoys nice symmetrical Toeplitz property which has a

noticeable effect on reducing CPU elapsed time and required computer memory space,

This can be solved exactly if NI = 2n, or approximately (in the least square sense) if

NI +2n. After calculating all a,'s from eq. (V.13), one can proceed to eq. (V.11) to evalu-

ate pr's. At this stage, our problem is completely solved. But, if one may wish, he can pro-

ceed to solve eq. (V10) for ali the values of C,'s and hence completing the model.

V.H. Prony-Hildebrandapproach[62]

IF TID STUDY of an unattenuated periodic signal is what is desired (like the case of

this study), then there is a more efficient approach to solve the problem. First, suppose that

the signal can be described (approximated) by the following equation (N¡' stands for the

Number of constinrting Frequencies):

f@ = 2 (A,cosro,x+B,sinco,.r) (v.14)
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One can easily realize that Prony-Hildebrand is just the same as classical Prony's

method with one major distinction that here, all the values of cxr's are pure imaginary and

also they appear in conjugate pairs. Since, in this case, all the roots of eq. (V.li) are

required to occur in the form or Irit*, ,-i^') , irfollows that eq. (v.1 1) must be invariant

under the substitution of 1 fo, p, so that we must have cx,rra = l, azur-t = ar,..,p

aNF*r = aro-, ' Thus, with p = /t, eq. (V.11) becomes:

¿2NFo' +at¿QNF- t)'*.,, *o"r_ ,l@F'1)^ + orr¿r" * orr_rl'ro- t)t (v.rs)

*...*orl^ +1 = o

or equivalently:

(v.16)

and finally:

2cos (NFor) + 2arcos t(NF-1)ol + ... + 2ar, _,cosrÐ + ar, = 0 ry.f7)

Since cos (frco) can be expressed in terms ofa Chebychev polynomial, the final equation

can be rer,vritten in terms of a transcendental equation of the following form:

Zr. ( cosrrl) + arTrr-, (cosco) + ... + arr-rTr(coso) + )or, = o (V.lS)

in which the coefncients of this equation, a, , can be calculated from:

/N"' [[ riilF + e-i 
N Fu' 

)+ a, [ / 
trr- t l.o +,e-) @ r - 

l, î.) -Lol -ro l-l+a*r_rld- +e"- )) = o
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fs + fr*, + (f 
1 

+ f2¡¡ p - ) a y + (fz + fzN r - z) a2 + ... + (Í¡,¡p 
- t + f ¡t p t ) n u, - t

+ frra r, = o

f t + fz¡vr * t + (fz + fznì a t + (fz + f2¡¡p - ) a2 + "' + jfNF + fNF + 2) a NF - 1

+ frra r, = 0

:

fu,-rur-t +fwt -t + (Í¡q-zup+fnt-z)ar+ çr,-r*r+t+f¡¡¡-3)ar+ '..
+ (f ut - nr -z+ f ut - ¡tp) o*r - t +.f y1- ¡¡p - (¡¡¡ = 0

(v.1e)

In accordance with the fact that the approximation of eq. (V.14) contains 3NF

unknowns, NF of A, s, NF of B, s and finally NF of co, s; one must have at least

NI> 3¡,/F in order to be able to solve the problem exactly or approximately (in the least

square sense). This is exactly the same number of equations required for solving the sys-

tem of eqs. (V.19). Because the above system of equations contains NI -2NF equations

and NF unknowns, so we must have NI -2NF> NF or equivalently NI>3NF.

After solving the system ofeqs. (V.19), one can insert the calculated values of d,'s in

eq. (V.18) to solve for the unknown frequencies. Once again, the cuüent problem is solved

at this stage, but if one is interested, he can easily solve for the other unknown parametefs

of the model A, 's and Br's, as explained in section V.G.
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V.I. SVD based Prony-Hildebrand's method [63]

AccoRDtr.¡c To what have been explained in section V.H., in a noise free simulation,

exactly 3NF number of equally spaced samples of a signal suffices to determine the con-

stituting frequencies of that signal. But, of course, in most practical situations (like the

present problem), this is not the case and the data is contaminated with noise in one way or

another. Under these circumstances, it is not wise to consent just to the 3NF number of

data samples. In fact, if a stable and accurate result is desired, it is much better to use as

many data samples as are available in calculating the model parameters.

Strictly speaking, for solving a general problem, one has to generate the system of

equations of (V19) using all available data, and proceed to solve the resultant system of

equations in the least square sense. My proposed method to accomplish this task is Singu-

lar Value Decomposition (SVD).

Still, there is another major advantage in using SVD (which is in fact one of the other

contributions that have been made in this thesis). And that is the ability to exactly deter-

mine the number of required frequencies for a model. One has to keep in mind, that for

many practical applications, the number of model frequencies (NF), is not initially

known. In the proposed method, one can run SVD on the non-square matrix ofthe system

of eqs, (V.19), and thereafter find the singular values of the matrix. The number of model

frequencies is exactly equal to the number of non-zero singular values. This finding is very

crucial in the applicability of Prony-Hildebrand's method.
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V.I.1 Application

To prove the validity of the method and its advantages to classical Prony-Hildebrand

method, a signal consisting of two neighboring frequencies is considered:

f(t) = (v.20)

As is pointed out on page I7 4, even sophisticated techniques such as Burg's have dif-

ficulties in distinguishing between two closely located frequencies. Let's see how the clas-

sical Prony-Hildebrand and the proposed technique handle this problem.

To run any version of Prony's rnethod, one has to decide on the number of frequencies

that the method has to look for, i.e. the number of frequencies in eqs. (V.8) or (V.14).

Unfortunatel¡ for many practical situations, this information may not be a priori known.

Therefore, using conventional Prony's method, it seems that guessing the number of

involved frequencies would be the only solution. Let's try this concept on the signal

expressed by eq. (V.20), which has been sampled only slightty above the Nyquist level at

intervals of Â¡ = 1. Also, let's assume that one hundred of these time samples ate avail-

able,

Table Vl illustrates the calculated frequencies by Prony-Hildebrand technique using

different number of terms as the initial guess. As can be seen, for methods of orders higher

than two, the conect frequencies are always detected. But, the problem still remains: How

to distinguish the actual frequencies from the spurious ones?

*'(?)'l . ,'" (#)'l
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TABLEv.I Det€ctinsfrequenciesof/(r) = *,(?),] .'.(fi)r] byprony-Hitdebrand

Order of
the

method
qt

lt

3.0499

i=2 2.9999 3.1007

i=3 3.0000 3.0995 9.27A7

i=4 2,9992 3.1007 3.3794 14.005

i=5 2.3183 2.9993 3.1000 6.1279 19.712

i=6 2.2076 3.0005 3.0995 4.5789 7.9598 22.032

i=7 2.1774 2.9999 3.1001 3.2387 5.2855 8.8741 27.000
j=8 2.137'l 2.5339 2.9999 3.1002 4.4075 6.2826 10.346 32.136

Now, let's see how the proposed SVD-based Prony-Hildebrand technique solves this

problem. At the first run, the matrix of coefficients is generated, i.e. eq. (V.19). Then, the

method proceeds to SVD decompose the resultant matrix. Again, for the first trial, an ini-

tial guess fo¡ the order of the method, large enough to cover ali possible number of fre-

quencies, is selected. Assuming i = 8, the following singular values are calculated.

TABLE Y,2 Singular value decomposition ofthe matrix repres€nt€d by eq. (V.19) for
r(2Í\1 r( 2Í\ 1/(r) = cosL[ïJl + sinL[3rJrJ

Order of
the

method

i:i,13' o3.5ss 5.sss1 o

q,

l¡.

i:$"ËlTS
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After performing this analysis, it is clear that only two non-zero singular values exist,

table V2. This shows that only two of the equations in the entire system of equations are

linearly independent. The subsequent conciusion that can be drawn from this observation

is that only two frequencies have been involved in generating the original signal.

Executing the program for a second time and assuming í = 2 as the order of the

method, the following periods are calculated: Tt = 2.99999 and T, = 3.10066. The

above mentioned example proves that the proposed algorithm is not only capable of calcu-

lating the frequencies, but also picking out the right solutions from the spurious ones.
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V.J. Conclusion

IN PART ot{t, several techniques for analyzing the problem in the time domain have

been explained. On the other hand, the raw time domain response, by itself, is not useful

and usually requires another processing stage to convert it to frequency domain informa-

tion. The easiest means for perforrning this transformation are using basic DFT or an

advanced version of it, FFT. But, these are not the only possible choices. As a matter of

fact, one can find a variety of techniques in digital signal processing literatures that can

accomplish this task much better than DFT and, in some aspects, even better than FFT.

Among these are, ÀR, MEM, Prony's and Prony-Hildebrand methods, to name a few.

For the first time, the Auto-Regressive and Maximum Entropy Methods were suc-

cessfully implemented for determining the cutoff frequencies of guided wave structures.

Vr'hile the ÄR method always provides stable results, it cannot be used in those occasions

where higher resolution is the prime concern. On the other hand, MEM is capable of pro-

viding results with very high resolutions. The Burg algorithm has several problems associ-

ated with it, including spectral line splitting and biases in the frequency estimate. Both

these problems can be alleviated using a more sophisticated algorithm, Modified Covari-

ance Method. Still, even AR and MEM in their present forms can be used very success-

fully for nanow band, single mode, analysis.

Using the least square concept, a modified version of Prony-Hildebrand method has

been proposed. It is believed that this new technique, SVD-based Prony-Hildebrand, can

enhance the performance and applicability of the older version noticeably.

liìs¡tiT$**:"ii1¡t$$s*i*Asås#**r$$sìs$ffidii;i+.*xìgÐ îtirgffiåìì,tìf,ts
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VLA. Conclusions

Throughout this thesis, two novel finite difference scheme were presented, Together,

they can be integrated into a very efficient CAD package for calculating the dispersion

curves and field patterns of arbittary guided wave structures.

Advøntages of Compact FDTD compared to other methods, i.e. classical FD

FDTD and TLM can be summarized as follows:

Rendering a traditíonally 3D problem to a 2D space and thereafter

obtaining the enfire dispersion curve, not just cú offrt-equencies.

Compared to the 3D-TLM or 3D-FDTD, the relative efficiency of the pro-

posed technique, the CFDTD, is estimated to be somewhere between l0 to

100 times, depending on the method and the objectives of the analysis.

Elimination of the n'oublesome and rather time consuming direct eigen-

value and eigenvector extractionrt'om excessively large matûces.

The method provides an important physical insight to the real situation.

For instance, the locations of the input and oufput probes have exactly

the same effect as in the experimental situations.

. UsuaIIy information along a constant þ axis is needed more than along a

constant k axis. Just consíder the cutoff spectrun is a special case of

Þ=o'
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. AII the intetmediate results are quíte informative, For instance one can

even plot the actual fíeld distribution of either six field components or

study the evolution of a transient response.

In the case of a Mícrowave waveguide, characteristic impedance can be

easíly calculatedfrom the same analysis,

Because of the implementation of all six Maxwellian equations at the

same time, this method is free of spurious modes,

In the case of the 3D-FDTD or 3D-TLM using PECs at the two ends of

the waveguide along the z direction, all the harmonics of the main þ in

equation (III.7) will appear at the final spectrum which results ín modes

being mixed with each other, while this is not the case for the Compact

FDTD.

Some disadvantages of classical FD approach can be summarized as follows:

. Notmally, evenfor a moderately accurate study one has to consider at

least a 50 x 100 point structure which in tutn renders the problem to

finding the eigenvalues of a 5000 x 5000 square matt'ix!!! !

Spurious modes

In lots of practícal applications, finding the cut-offfrequencies of a par-

ticular waveguide is of major concern. Using thís method, the problem

has to be completely solved to obtain this information.

conclusions and Furure works t\(i tlsi 177



. None oÍ the intermediate information is useful.

o The operation cannol be termínated at any point for a less accur.ate estimate

of the desired quantity.

As it was shown, all these drawbacks can be effectively eliminated using a completely

different approach, the Compact FDTD.

FIGURE VI.l The procedure that generates a complete dispersion curve using classical
FD method

L

)
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4.

Finite Differencc

Select frequency k.

Execute finite dffirence code,
either iteratively or directl!.

Extract cotesponding þ s,

Interpolate the dßpe rsiott
cufve,

At the next stage, a novel frequency domain finite difference technique was intro-

duced. This method, i.e. the FWFD, is based on the knowledge acquiled after executing

the first part of the analysis, i.e. the CFDTD. This means that aftet' calculating the disper-

sion curue, the eigenvalue pairs will be passed on to the FWFD fol calculating the field

patterns. It has to be pointed out that the CFDTD by itself is also capable of calculating the

field patterns. But, the method will be very inefficient compared to FWFD. This is due to
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the presence of an unnecessary time variable in CFDTD formulation when only field pat-

tern calculation is desired.

Finally, some new spectral estimation techniques were investigated. These techniques

are far more efficient and accurate than standard DFT or FFT techniques. The application

of some previously known methods, as well as proposition of a new one, were discussed in

chapter five.
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VI.B. Future Works

Time Domain (CFDTD)

. Expanding the technique 1o generaliTed coordinate systems,

. Developíng an adaptive CFDTD.

. A user rt'iendly CAD package that provides the complete dispersion

curves.

F'inite Difference (CFDTD)

. Expanding the techníque to generalized coordinate systems

. Developing an adaptíve FWFD.

. A user friendly CAD package that provides the complete dispersion

cutnes.

. Still some improvements are required to make the method more relia-

ble and stable.

Signal Processing Techniques

. Peformin7 a comparative study benveen AR, MEM, Prony, Prony-

Hildebrand and SVD based Prony Hildebrand method.

. Maximum Covariance Method to improve the current problerns

encountered using MEM method.
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Appendix A: TE-TM decomposition theorem

TTDoREM:

"At cat-offfrequencies, í,e, þ = kr= 0, allmoiles are either TE orTM"

Note that in general, in inhomogeneous and/or anisotropic waveguides, for a non-zeLo

value of k., almost all the modes are of hybrid type, i.e. a mode with all six vector compo-

nents present.

PRooFs

Assuming $ = O in equations (II.13.a)-([.13.f) which is in fact equivalent to the"dz

cut-off frequency assumption, i.e. þ = k, = 0 in phasor domain, yields:

!(-Y-" ,\
P.\ òy ' ¡'t r)
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àH 1/AE ãE \¿ = ,t '_ y _p'.H-l (A.6)ðt [\ ðY ðx vnt'-z)

Note that in the aforementioned equations, each of them conesponds to its countelpart

in the set of equations (IL 13.a)-([.13.f), except for equarions (4.3) and (4,6) which have

interchanged their positions.

A quick inspection ofthe above equations reveals the fact that these equations consti-

tute two sets of uncoupled differential equations. The first set consists of Hr, H, arrd E"

vector field components and hence is a TM type mode, While the second one consists of

E r, E, and 11. vector field components and hence is a TE type.

It has to be emphasized that this theorem is valid for the most general case, i.e. lossy

anisotropic inhomogeneous waveguide.
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Appendix B: Singular value decomposition theorem [41]

SVD ts tuE most robust matrix decomposition technique.

TTDoREM:

Atty M x N wc¿trix A tvhose number of rows M ís greater thetn

or eEtal to íts tutmber oJ'cohtmns N, cøn be wrìtten as the
product of øn M x N column orthogonal matrix U, &n N x N
diagonøl møtrix W witlt positive or zero elements, singular val-
ues, and the tra.nspose of øn N x N orthogonal ntatrix V ,

^1"."=[u

in which the following orthogonality relationship holds:

M

lu,our, = õou

i= I

VT

1,..'Iw]...
.I

],.,

1<fr<¡/

l<n<N

1<fr<N

l<n<N
v.,v. = ã.lK J¡t K't

The most important featr¡re of an SVD decomposition is that it can even deal with

non-square matrices. Also, the condition number of the matrix A is defined as the ratio

between the largest element of the diagonal matrix W to its smallest element.

^ti 
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Since matr.ices U ard V are orthonormal matrices, their inverse can be obtained by

simply transposing them. Also, the inverse of the diagonal matrix IV can be obtained by

inverting its diagonal elements. Therefote:

A-t = = þ1 
'.w-t.Lr-lþ'*'r'f-'

ments of W-r , i.".1 - .", with zero, i.e.
w¡

found in the literature [64].

å - 
O The proof of this procedure can be

Appendices Aft Ãsí 1,35

A-r = v.V,.'lïn. n

This means that once the SVD decomposition is performed, the inve¡se of the matrix

is also readily available. The only possible difficulty occurs when one or more elements of

the diagonal matrix !7 is zero, i.e. w¡ = 0. Obviously, having at least one zero diagonal

element in matrix W means that the condition number of the original A matrix has been

infinity. Therefore, unless the matrix A is a singular matrix, this situation will nevel occur.

On the othe¡ hand, a singular matrix by definition can not have an inverse in the strict

sense. This means that there has been a linear dependency between the equations from

which the A matrix is orÌginated. Eventhough, there wouid not be any inverse for a singu-

lar matrix, but one may still be interested in calculating the inverse in the least square

sense. The beauty of the SVD decomposition is that even under such circumstances, the

inverse of a singular matlix can still be achieved by simply substituting the infinite ele-
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t8l A. Asi and L. Shafai, "Full Wave Finite Difference
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Microwave Theory and Techniques transaction.

t10l

A. Asi and L. Shafai, "SVD based Prony Hiltle-
brand Technique fol CFDTD Processing,"
Accepted for publication by URSI-95 International
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Appendix D: Major Contributions

Introducing and developing a new Finite Differ-
ence Time Domain technique for calculating
eigenvalues (dispersion curves) of guided wave
structures, Coup¡rcr FDTD.

Introducing and developing a novel Finite Dif-
ference technique for calculating eigenvectors
(field patterns) of guided wave structures, FULL
WEva FrNrrc DTFFERßNCE (FWFD).

Applying advanced signal Processing tech-
niques such as Auto REGRESSTvE and Mtxr-
MUM ENTRoPY tvIEt'HoD to dispersion curve
analysis of guided wave structures.

l4l Introducing and enhancing a new signal pro-
cessing technique, S\T) sÄ.suo PRoNv-HILDE-
IIRAND.
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