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CHAPTER I
THE PROBLEM AND DEFINITIONS OF SYMBOLS USED

Statement of the problem It was the purpose of this study (a) to

devise labour saving methods for the construction of sampling inspection
tables; and (b) with these methods to develop a set of tables of single
sampling plans providing lot quality protection at a minimum average cost

of inspection per lot.

Importance of the study A number of sampling inspection tables

have been published, notably those developed by Dodge and Romig (4) who
based their calculations on certain approximate formulae, thus effecting
a great saving in computative effort. In the present study the same
approximate formulae were used; however they were evaluated here with

Tables of the Incomplete Beta-Function (6) and Tables of the Incomplete

Gamma-Function (7) to further lessen the work of computing.

The Dodge and Romig tables give sampling plans that minimize the
averasge amount of inspection per lot, but they do not state what that

amount is; hence they fail to provide an estimate of the inspection costs

involved. Furthermore, the samplihg plans they list will minimize the
average cost of inspection only when the cost of inspection per piece in

the remainder of those lots that fail to be accepted by sample is the

same as the cost .of inspection per piece in the sample. Since this is
not always the case in practice, the tables in this study were compiled

"~ for a number of different ratios of the two costs. Not only was the
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appropriate sample plan for each ratio tabulated, but also the relative

average amount of the inspection costs involved in that plan.

Definitions of symbols used

N = number of pieces in lot,

n = number of pieces in sample,

Py = lot tolerance fraction defective,

P = process averége (expected) fraction defective,

M = ptN = number of defective pieces in lot of tolerance quality,

m = number of defects found in sample,

¢ = acceptance number, the maximum allowable number of defective pieces

| in sample, |

PC = Consumer's Risk, the probability.of accepting a submitted lot of
tolerance (pt) quality,

PP = Producer's Risk, the probability of rejecting a submitted lot drawn

from a product of process average (p) quality,

g) o ?'n, = number of combinations of N things taken n at a time,

b = cost (in a monetary unit) of inspection per piece in the sample,
| B = cost (in the same monetary unit as b) of inspection per piece in the
| remainder of those lots that fail to be accepted by sample,

C = b/B = inspection cost ratio,

45C average cost (in the same monetary unit as b) of inspection per lot
for product of process average (p) quality,
Pe =€£C/B = relative average cost of inspeetion per lot for product of

pfocess average quality,

p = fraction defective in general.
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Prime notation was used in numbering probability formulae in this study
as follows:
Exact formulae - no primes;

Formulae based on the binomial approximation - single primes;

Formulae based on the Poisson approximation - double primes.

Organization of the remainder of the thesis The remainder of the

thesis was organized in the following manner. The general considerations
that influence the choice of a particular method of sampling inspection
~are discussed in Chapter II. This is followed in Chapter IIT by an out-
line of the basic principles of sampling insbection upon which‘the tables
in this study are based. The nathematical development appears in Chapter
IV under two distinct headings, (a) sampling from a finite ﬁniverse and
(b) sampling from an infinite universe. Boﬁh parfs begin with a statement
of the applicable exact formulae, from which the approximate fo?mnlae are
then derived. Finally, this chapter indicates how these approximate

formulae may be evaluated exactly with the use of Tables of the Incomplete

Beta-Function and Tables of the Incomplete Gamma-Function. Chapter V

outlines the computing procedure followed in the construction of the

Minimum Average Cost Sampling Tables (Table V), with numerical examples.
The uses of these tables are described in Chapter VI, while Chapter VII
comprises a study of the natu;e and magnitude of the erroré resulting
‘from the use of approximate formulae. Finally, a general discussion of
the problems encountered in the construction of these tables is presented

in Chapter VIII, along with a few observations concerning the limitations




of the methods developed here.
All tabulations are given.in.the Addenda, Tables I-V. Tables I-IV
illustrate the different steps in the construction of the Minimum Average

Cost Sampling Tables, which are presented in Table V.




CHAPTER II
THE CHOICE OF A PARTICULAR METHOD OF SAMPLING INSPECTION

Sampling inspectitn, as against total inspection, implies that the
product that is to be inspectéd will be considered acceptable even though
a certain small percentage of the pieces do not conform to specifications.
The choice of é particular method of sampling inspection will depend on
certain general considerations such as those described by Dodge and

Romig (4, pp. 1-10).

Lot Quality or Average Quality Protection The choice of a meﬁhod

may start with the fixing of a specific value for the allowable per cent
defective, and then choosing either one of two kinds of gonsumer protection:
(1) Lot Quality Protectioﬁ, in which this value applies'to a
finite lot. .
(2) Average Quality Protection, in which iﬁ applies to.the general
output of a product.

- Tables based on Lot Quality Protection are most useful where each
lot is considered as a distindt unit.as, for example, where the product
goes'out to a large number of consumers, each making only intermittent
purchases. On the other hand, when constant purchases of large shipments
are being made the individual lots tend to lose their identity, and the

concept of Average Quality Protection will be more useful.

Single sampling or double sampling A choice must also be made as

to inspection procedure. Either single sampling, double sampling, or
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multiple sampling may be employed with either type of protection. Double
sampling generally requires less sampling than single sampling, especially
for large lot sizes and a high grade product. Single sampling however has
the advantage of being simpler, both in the use and the development of the
 tables.

Tables of sample plans giving Lot Quality Protection and Average
Quality Protection with a minimum amount of inspection have been developed

~and published (4) for both single sampling and double sampling procedure.




CHAPTER III

BASIC PRINCIPLES EMPLOYED

The tables developed in this study are for single sampling and are
based on lot quality protection with a minimum average cost of inspection.
They are drawn up for stated values of the inspection cost ratio, which is
the ratio of b, the cost of inspection per piece in the sample, to B, the
cost of inspection per piece in the remainder of those lots that fail to
~ be accepted by sample. |

The general conditions under which these tables are applicable,
and the principles used in their development, are the same as those
described by Dodge and Romig (4, pp. 10-14, 25-31), except for the
inspection cost ratio which ié introduced here. They have therefore been
reviewed only briefly here. The basic requirements for the method are: -

(a) The specified degree of consumer protection shall be provided

for, and
(b) The average cost of inspection per lot shall be a minimum for

a product of process (expected) quality.

Inspection procedure The inspection procedure is assumed to be

as follows:
(a) Inépect a sample of n pieces.
(b) 1f the number of defects found in the sample does not exceed
¢, the allowable defect number, accept the lot.
(¢) If the number of defects found in the sample exceeds c¢, inspect
| all the pieces in the remainder of the lot.

(d) Correct or replace all defective pieces found.
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The protection aspect = Consumer protection is defined numerically

by specifying values of:
(a) Lot tolerance fraction defective, the allowable fraction
defective in a lot.

(b) Consumer's Risk, the prqbability of accepting a submitted

lot having exactly lot tolerance fraction defective.
In this study a Consumer's Risk of 0.10 was used throughout. Hence if a
lot of worse than tolerance quality is submitted, the probability of
accepting it will be less than one tenth. The sample size n correspond-
ing to each value of ¢ will be uniquely determined by specifying the

degree of protection desired.

The economy aspect For each such sample plan (paired values of

n and ¢) there will be an average cost of inspection per lot for a sub-
mitted product of process average quality. This cost will consist of
two parts:

(a) The cost of inspecting the sample. This is nb, where n is
the number of pieces in the sample, and b is the cost of inspection per
piece in the sample.

(b) The average (expected) cost of inspecting the remainder of
those lots that fail to be accepted by sample. This is (N-n) Py B,
where N is the number of pieces in the lot, PP is the probability of
rejecting a lot of process éverage quality, known as the Producer's
Risk, and B is the cost of inspection per piece in the remaihdgr portions
of the rejected lots.

Clearly the first cost factor will be minimized by taking the
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smallest sample that will give the desired protection, that is, the value
of n corresponding to ¢ = 0. The second cost factor on the other hand
will be minimized by inspecting the whole lot, when it will obviously
be zero. The problem was to find the sample plan that would strike a
balance between these two cost factors so as to make their sum a minimum

for stated values of the inspection cost ratio, b/B.




CHAPTER IV
MATHEMATICAL BACKGROUND

Mathematical probability formniae used in sampling work are either
one or the other of two types, depending on whether they involve

(a) Sampling from a finite universe, or

(b) Sampling from an infinite universe.
In determining the sample size, which involves the Consumer's Risk, the
sample is considered as being drawn from a finite lot, and probabiliti;s.
are therefore based on (a). In determining the Producer's Risk the sample

is considered as being drawn from the general output of product, a source

of supply, and probabilities are therefore based on (b).
I. SAMPLING FROM A FINITE UNIVERSE

The probability of finding m defects in a random sample of n piecés
drawn from a finite universe (lot) of N pieces in which the number of
defective pieces is M = p$N, is given exactly by

(M)(Nﬂj
P(m,n,N,M) = B4 007 (1)

(a)

The binomial approximation When p < 0.10 a good approximation

to equation (1) is given by the m + 1st term of thekexpansion of the

binomial, [(l - -%) +-§-] M s that is

P(m,n,N,M) & P(m,—rN—l,M)




11

\ M-
where P(m,—%,M) = (ffl) (1 - %) " (-13)m .

The approximation is arrived at as follows:

()@
P(m,n,N,M) = -m

@)

(ﬁ) (n—m).('NZ§-)-b.:I~rr¥-m).'
) o ek
i
[=9E
_ (f:i) B (B {1(1- L)ueen(a- 1'11-;-1—)} {1(1- Tg)ee oo (1o BEEL )}
Mo {1(1-%)....(1-%1)}

‘M-m m
=(5) -3 @ rausim,

where F(N,n,M,m) is the expr‘essiozi in the large brackets.

Since . log (1-x) = -x - 3{_2- _}_c_s... for 1xli <'1, it follows that
2 3
S Ml o r m-l o r M-m-l e .. T
log Filo,Mm) = 2 22 - 2 3 ) - 3 3z L.
y=0 r=1 y=0 r=1 y=0 r=1

Neglecting terms of the order 1/N°, 1/n®, and 1/(N-n)*, and replacing

m by its expected value (%)M gives the approximation

log F(N,n,M,m) = eWzN = ep/2 for the maximum term where m = (-II%)M,

so that

M-m m

Pmyn, i) = (M) 27 @) oP/2,

b
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Finally, setting F(N,n,M,m) = 1 gives the approximation (See Chapter VII .

for'errors involved)

P(myn,N,H) & P(my,M) (11)
 Me-m m
where P(m,%,M) =<f§) (l-'%) (%)‘ .

The Poisson approximation Dodge and Romig (4, p. 43) state that

when p < 0.10 and when -1% < 0,10, a good approximation to equation (1) is

given by the m + 1st term of the Poisson expohential distribution,

that is

-pn m
P(m,n,N,M) * P(m,pn),  where P(m,pn) == m§ o)

This approximation is arrived at as follows:
From equation (1')

M—m m
Plo) =(X) -2~ @

= M(M-l)ooo. (M- m“l) (l-‘a M(l- B).m (E)m
o omd N N N ?
which, when -II% = 0 and M -« in such a way that -ﬁ}@-— = pn remains constant,
yields
1 m-1 M - m
Plof) = 207 - 5 (ot o™ (T
md ' .

Henece in the limit

. -pn m
Pim —r-l-,M) « & (pn)
’N m
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From equation (1') we have also
. n
P(m,n,N,M) & P(m;ﬁ,M),

thus giving the approximation (See Chapter VII for errors involved)
“PR(on)m

P(m,n,N,M) & P(m,pn), where P(m,pn) ='§———;£L-—-. (1)

Application of the foregoing gpgroximaﬁions_ﬁg the problem Equat-
ions (1') and (1'') are’genéral eéuations applicable for any fraction
defecﬁive, p, but were used in this study only for the specific case
where p = pﬁ, the lot tolerance fraction defective, and where in turn
M= ptN.

The Consumer's Risk, PC’ is the probability of meeting the accept-~
ance criterion, ¢, in samples drawn from a lot of N pieces containing

exactly the tolerance number of defects, M = ptN, so that

e

PC = P(m,l’l,N,M), when P = p‘b’ ' (2)

m=0 :
or, using approximations (1') and (1'') with p = Py >
- c . M-m _m »
- M a n
P - 2 B a-3 @ | (27)
. -p, It m
c t -
and Py= 2 £ m,(}tn) . (grr)
- - m=0 ©

Equations (2') and (2'') may be evaluated exactly with Tables of the

- Incomplete Beta-Function (6) and Tables of the Incomplete Gamma-Function

(7) respectively, as shown by Deming (3, pp. 18-20).

Y




From equation (2!)

o
|

n/N
S x(_:
0

L
M
c -méo(m> (1- g

m

0B 4
¥ (§ » whenp=p,

(l-x)M-c_l dx

1 -

s x°
0

1l - Ix(p;q) P

I (psa),

( 1 -X) IVI'fc-l dx

n
Where X = ==
» N

p = o
q = M-c,
where x = l= —er
p = M-c
q = cH,

14

(5;)

(32)

where the notation Ix(p,q) for the incomplete Beta-function is that of

Pearson (6, p.vi).

From equation (21'')

-p.n m
P. = § e t Lptn)
3
¢ m=0 e
Pen
= 1 - 2
sox®e™ ax
0
p.n
=1 - I(u,p)) Wherev u = m)

P =c,

(311)

where the notation I(u,p) for the incomplete Gamma-function is that of
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Pearson (7, p. vii).
IT. SAMPLING FROM AN INFINITE UNIVERSE

The probability of finding m defects in a random sample of n
pieces drawn from an infinite universe (general output of a uniform
product) in which the fraction defective is p, is v\given exactly by the

m+ 1st term of the expansion of the binomial, [(l-p) + p]n, that is
_(n _. 0-m _m ' :
P(m,n,p) = (m) {1-p) P e (4)

The Poisson approximation Dodge and Romig (4, p. 44) state that

when p < 0,10, a good approximation to equation (4) is given by the

m st term of the Poisson exponential distribution, that is .

\ -pn 1]
v P(m,n,p) S P(m,pn), where P(m,pn) = 2B m§ n__) *

This approximation is arrived at as follows:

From equation (4)
P(m:n,P) = (;11) (1-p)n‘m pm

n{n-1)eco.(n- m-1) n -m _m
2 = L (1-p)” (1-p) " p

_ po(pn-pleess (pn-p m-1) . -m
md (1- %") (1-p) s

which, when p - 0 and n >« in such a way that pn remains constant, gives

the approximation (See Chapter VII for errors involved)

' -pn m
P(m,n,p) ® Plm,pn), where Plmpn) = S—tBal_ (411)
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Application_g£ the foregoing approximation to the problem The

Producer's Risk, PP’ is the probability of failing to meet the acceptance
criterion, c, in samples drawn from a product of process average (p)
quality, so that
c o
P, =1- 2 P(myn,p), whenp =p, (5)
m=0
or, using approximation (4'') with p = b,
¢ _-pn,- \m -

P.=1- 2 f_.___(.Pn_)_.. (511)

m.' 3
m=0

which, like equation (2'!) ,may be evaluated exactly with Tables of the

Ingomplete Gamma-Function, that is

b1l
P = md
= _
che‘ dx
- 0
s x®e™* ax
0
= I(u,p), where u = -t (611)

| v(cH)

p = c.




CHAPTER V
CONSTRUCTION OF MINIMUM AVERAGE COST SAMPLING TABLES

The constructioh of minimum average cost sampling tables g:w:.ng
lot qual:.ty protection consists of the solving of three distinct problems:
I. Determining sample size;
ITI. Determining Producer's Risk;
III. Determining the minimum average cost of inspection per lot..
The methods employed in this study are therefore discussed under these

three headings.
I. DETERMINING SAMPLE SIZE

Given: Lot size (N), lot tolerance fraction defective (pt),

Consumer's Risk (P, = 0.10).

C
To find: Sample size (n) corresponding to allowable number of

defects (¢ = 0, 1, 2...) to give the specified protection to the consumer.

Method I - using Tables of the Incomplete Beta-Function (6) These

tables could only be used where M = ptN < 50. Since they are so tabulated

that g < p, it was necessary to use equation (3{3) where ¢ 5_%’-1—, and

Ml

equation (3') where ¢ > —=

For ¢ < Egj—'- values of n were found from equation (5};) by setting

Py = 0.10 giving

Ix(p,q) = 0,10, where p = M-c (7;) :
n= N(l"X)o
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This equation was solved for X, using linear interpolation in the tables.

For example, given N = 1000, Py = 0.05 and ¢ = 8, it follows that

M= ptN = 50
P = M-c = 42
g=cH = 9,

From Tables of the Incomplete Beta-Function then

I (42,9) = .09160 for x = .75

n

]

and Ix(42,9) = +12062 for x = .76,

which by linear interpolaﬁion gives

IX(42,9) .10000 for x = ,7529,

so that n = N(1-x) = 1000(1-.7529) = 247 to the nearest integer.

For ¢ > ﬂ%& values of n were found from equation (Sé) by setting '

PC = 0.10 giving

;x(p,q) = 0.90, where p = cH (Vé)
q = M-c
n = Nx,

where again x was found from the tables by linear interpolation. For

example, given N = 500, P = 0.05, ¢ = 13, it follows that

M=pHN =25
p=cH =14
g = M-c = 12.

Tables_gglthe Incomplete Beta-Function give

;x(14,12) = ,89559 for x = .66
and Ix(l4,12) = ,91411 for X = .67.
By linear interpolation then
I (14,12) = .90000 for x = .6624,
. 80 that n = Mx = 500(.6624) = 331 to the nearest integer. -




19
The method is illustrated in tabular form in Table I.

Method II - using Tables of the Incomplete Gamma—Fuﬁction (7)

For those parts of the sampling tables where M = Py

were found by setting PC = 0,10 in equation (311), giving

N > 50, values of n

I(u,p) = 0.90, where p =c¢ | (811)
n=¥lctl)
Py

This equation was solved for u, using linear interpolation in the tables.

(Note: Since the lot size is considered infinite in deriving equation

(8'1), the value of n does not depend on N in Method II) For example,

for Py = 0.02 and ¢ = 5, Tables of the Incomplete Gamma-Function give

I(u,5)

fi

8881 for u

3.7

anhd I(u,5) = .9018 for u = 3.8 . By linear interpolation then

I(u,5) = .9000 for u = 3,787,

wict) _ 3.787 6

so that n= pt 0o

= 464 to the nearest integer.

This value of n was then used wherever p, = 0.02 and ¢ = 5 régardless of

the value of N except for N < 2000 where it was possible to determine n by

Method I which is more accuréte. Method II is illustrated in tabular form

in Table II.

II. DETERMINING PRODUCER'S RISK

Given: Sample size (n), acceptance number (c), process average

fraction defective (p).

To find: Producer's Risk (PP), the probability of rejecting a
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submitted lot drawn from a product of process average (p) quality.
Method: Values of Pp were found from equation (6'1),

pn

P, = I{u,p), where u = )

b =c,

using Tables of the Incomplete Gamma-Function with linear interpolation.

For example, given that P, = 0.0, n =97, ¢ =1 and p = 0.02, it follows

that  wo= Rl =2 QLT Ly ppg

and rP=c =1,

Tables of the Incompkete Gamma-Function give

i
fl

I(u,l) = .5485 for u = 1,3

. 5885 for u

]
]

and I(u,1) l.4. By linear interpolation then

I(u,1) = .577 for u

[}

1.3718,
so that PP = . 577,

The tables presented in this sﬁudy were drawn up with three values of p.
for each value of Py and -hence each pair of n and ¢ values yielded three

values of PP’ one for each value of p. A saving in time was therefore

effected by tabulating the work as shown in Table ITT.
IIT. DETERMINING THE MINIMUM AVERAGE COST OF INSPECTION PER IOT

Given: Lot size (N), sample plans {paired values of n and e),
‘Producer's Risk (PP,’ iﬁspection cost fatio (C = b/B, where b is the cost
- of inspection per piece in the sample and B is the cost of inspection per
piece in the remasinder of those lots that fail to be accepted by sample).

To find: (a) The sample plan that will minimize QSC’ the average
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Cost of inspection per lot for a product of process average (p) qdality,

and . (b) @y the relative amount of that cost.

Method: 45 G is composed of two parts:

(1) Cost of inspecting the sample. This is always nb.

(2) Expected or average cost per lot of inspecting the remainder
of those lots that fail to be accepted by samplé. This is (N-n) Pp B.
It follows that

P = b + (3-n) P, B, (9)

where Pp i1s as defined in equation (6''). To find the sample plan to
minimize 450 it Was'only necessary to find the plan that would minimige

the relative average cost of inspection,qOC, given by

P = CI; € = nC + (N-n) Py, (10)

where C = b/B, the inspection cost ratio. From equation (10) 430 was
calculated for each inspeqtion cost ratio, C, a number of sample plans
being tried until a minimum q?c was found. The computing was simplified
by taﬁulating the work as shown in Table IV.

The product (N-n) PP was first punched in the machine and then the

different multiples of n, viz., 10n, 9n, 8n..., added to it, the results
being tabulated in rows. After a few minima had been found, they were
underlined in red. Succeeding minima were then found with only a few

trials by observing the trend. Finally, these minimum values of CPC, were

rounded to three significant figures and tabulated along with the corres-

ponding sample plans in Minimum Average Cost Sampling Tables (Table V).



CHAPTER VI

USES OF THE TABLES

These tables give the combinations of the sample size and allow-
able defect number that will provide the specified consumer protection
at a minimum averége cost of inspection per lot, and they also give the
relative amount of that cost. From this relative cost figure may be
obtained the average cost in dollars simply by ﬁnltiplying the relative
cost by B, the cost of inspection per piece in the remainder of.those
lots that fail to be accepted by sample. These cost figures, besides
being useful as an estimate of the actual inspection costs, serve as a
basis of comparison of different plans on a cost basis.

They will show, for example, to what extent inspection costs could
be reduced by a certain decrease in the process average. This saving
might then be compared with the decrease in costs that would result from
the use of a higher lot tolerance per cent defective. Still another form
of savings in inspection costs could be effected by the use of larger lot
sizes. Inspection costs relative to the lot sizg will always be lower for
larger lot sizes and, since these tables make this difference measurable,
this difference might now be considered as one of the factors in setting
the price differential between small and large quanitity purchases,

Numerical examples are given below to illustrate the method.

Howﬂgg find the appropriate sample plan and the average cost of

inspection per lot

The problem: Suppose the ABC Co. is manufacturing a product that
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has been observed over a period of a year to have an average fraction
defective of 0.02, with only minor fluctuations in the quality from day
to day. They wish to set up a sampling inspection plan such that fhey
will be able to guarantee their customers that if any lot should have a
fraction defective of 0.04 then the chances that it will pass inspection
vwill not be more than one in ten. For lots having more than 0.04 fraction
defective the chances of passing inspection will then of course be less
than one in ten. The product is sold in lots of 500 pieces each, and the
cost of inspecting a piece in the sample is about 16 cents whereas thé
cost of inspecting a piece in the remainder of those lots that fail to be
accepted by sample is about 20 cents. What sampling plan will insure the
desired protection to the consumer at a minimum average cost of‘inspection
per lot?-

The solution: Lot tolerance per cent defective is 4 per cent, and

process average is 2 per cent, lot size is 500, and the inspection cost
ratio is .16/.20 or 0.8. For these values the tables give n = 208, ¢ = 5,
and relative average cost = 237. This means that a sample of 208 pieces
should be drawn at random from each lot and inspected. The lot should be
accepted if the sample has five or less defective pieces, and rejected if
it has more than‘five defective pieces. The average cost of ﬁhis inspect-

ion plan will be 237($0.20) =£47.40 per lot of 500 pieces.

How to compare alternative means of reducing inspection costs

The problem: Suppose the company wishes to know how they could

reduce this inspection cost, and to what extent.
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The solution: They might investigate the possibility of improving

their manufacturing process to get a process average of 1 per cent, say,
instead of 2 per cent. Other factors béing unchanged, they would then
require a sample size of only 152 with an allowable defect number of 3.
The average cost of the plan would then be 146(#0.20) =4 29.20 per lot
of 500 pieces.

A second alternative would be to guarantee the consumer less
protection by using a lot tolerance per cent defective of 5 per cent
instead of 4 ber cent. Other factors being unchanged, they would then
require a sample of size 170 with an allowable defect number of 5. The
average cost of inspection would then be 179(% 0.20) =#35,80 per lot of
500 piéces.

A third alternative would be to sell their product in larger lots,
say of size 1000. With other factors the same, the required sample size
would then be 224 with an allowable deféct'number of 7. Average cost of
the plan would then be 245(%0,20) =¥49.00 per lot of 1000 or # 24.50 per
500 pieces.

A1l of the three alternatives effetta saving over the method given

in the preceding section, and although cost is only one of the many factors
to be considered in setting up a sampling scheme, a comparison of the
amounts saved by the respective schemes should serve as a useful guide in

making the choice.




CHAPTER VII
NATURE AND MAGNITUDE OF ERRORS

The use of fhe binomial approximation, equation_(Z'), and the
Poisson approximation, equation (2!'!'), in determining the values of n
resulted in errors in the value of the Consumer's Risk. Errors in the
Producer's Risk resulted from the use of the Poisson approximation,
equation (5'*). The following is a brief study of the magnitude of the

errors arising from these three sources.

Errors in the Consumer's Risk due to the binomial approximation

Equation (2') is based on equation (11), which involved two approximations
in its derivation, viz.:

(a) DNeglecting terms of the order 1/N°, 1/n° and 1/(N-n)® in the
expansion of log F(N,n,M,m), and

(b) Replacing m by (n/N) M, and then setting ep/z = 1.
Although an upper bound to the error caused by (a) can be found in the
form of a function of the variables involved, thiéyfunction was found to
be too unwieldy to determine its maximum numerical value oVer the range
of the tables. For the error resulting from (b), however, a numerical
upper bound was easily established as follows:

Assuming that terms of the order 1/N°, 1/n®* and 1/(N-n)® can be
neglected, as they in fact were, it follows that

log F(N,nM,m) = Am 5
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M-1 m-1 M-m~1
where A = % (y/¥) - Z (y/n) - Z (y/(¥-n))
y=0 y=0 y=0

2

M =M _m-m _ M -2Mm +m -M+m
N n ) Ne-ni

= -%- ] for all m.

For the maximum term where m = (n/N)M this general expression for A
reduces to M/2N = p/2. Consider now the terms where m # (n/N)M, in
particular those terms where m < (n/N)M, since these are the only values

of m for which equation (1') was used in this study.

From the definition of Am it follows that

A . = 4Bl _Mmlooothat A L < A

m-1 m n N-n m=l1 — "m
if m-l o Mem or if Nm-N < Mn-n.

n = Nen -

This last inequality is certainly true for m < (n/N)M since n is always

< N. Hence it follows that A . <A for m < (n/N)M. Similarly

1
‘Am-z <A _;s etc. Hence Am < p/2 for all m < (n/N)M, and

F(N,ﬁ,M,m) < ep/2 for all caleulations that were based on equation (1')
(with the assumption that terms of the order 1/N, 1/n°, and 1/(N-n)®

are equal to zero) so that

P(m,n,N,M) < oP/2 P(m,3,4)

= 1.0513 P(m,—%,M) for p = 0.10.

Hence when n is determined from equation (2'), which is based on

equation (1'), and where p = Py < 0.10, the Consumer's Risk, P, by

&7

exact mehhods should not exceed the stated value of 0.10 by more than

about five per cent. of 0.10.
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Since Amrl S.Am it follows that log F(N,n,M,m) may be negative
for small m and thus result in a Consumer's Risk that will be less than
the stated value by more than five per cent; however an error in this

direction will result in more protection to the consumer than is speci~

vfied, never less.
Exploratory checks over that part of the tables where n was found
from the binomial approximation gave a Consumer's Risk by exact methods

as low as 0.0836 but never greater than the stated value, 0.10. 1In

. general these checks showed that the error in the Consumer's Risk was

greéter for larger values of P, and smaller values of n.

Errors in the Consumer's Risk due to the Poisson approximation

A method of éhecking the accuracy of the Poisson exponential approximation
to the binomial Bl-p) +-p]n is given by Fig. 5 of Campbell's paper
" (1, p. 100). However it is not applicable here since the Poisson used

M
in equation (2'') is derived from the binomial Pl-~§)-+%ﬂ .

Exploratory checks were made over that part of the table where n

was found from the Poisson approximation. These gave a Consumer's Risk

by exact methods as low as 0.0450 but never greater than the stated

value, 0.10. The checks showed that the error in the Consumer's Risk

was greater for larger values of Py and n/N.

Errors.;g the Producer's Risk due to the Poisson approximation

The Poisson approximation, equation (5'!'), was used here in place of the
binomial [(l—ﬁ) +-§]n to find the Producer's Risk, so that Fig. 5 of

Campbell's paper was useful in determining the error involved. Since




28
P(c,n,a) in that paper denotes the probability of finding ¢ or more
. defects in a sample of size n when the expected number is a, it follows

that the Producer's Risk, PP’ is given exactly by
P, = P(cHl,n,a) where a = pn.

Campbell's Fig. 5 gives curves of A, the first coefficient in the
expansion of the ratio of the increments in probability due to a decrease
in n (from =) and to unit increase in c. Denoting this ratio by rp we

have, using‘Campbell's notation,

P(C'+l ,n)a) - P(C+l _3°°,a)
7 Plet,~,a) - P(ctH ,,a)

L}

r'p

A/n - (terms of the order 1/n°),

where A =-%(c+1)(c-a)‘ and a = pn.

It can be seen from Fig. 5 that the coefficient A, and hence the error

ratio r,, is zero for P_ % 0.45, positive for P

P P P
negative for PP greater than this, except for the small ¢ values, where

less than this, and

the zero error will occur for smaller values of PP than this. Since the
denominator in the expression

p = P(e-!-l,n,a) - P(C'H-:":a)
P Plct2 = ,a) - P{ctH ,~,a)

is essentially negétive it follows that the numerator will be of opposite

sign to that of rpe Hence the lower values of the Producer's Risk will
tend to be overstated and the higher values will tend to be understated
by the Poisson approximation.

An upper bound to the absolute value of the error ratio over the

range of the Minimum Average Cost Sampling Tables can be established
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from an inspection of Fig. 5 as follows. In the tables
0.00001L < P? < 0.700

and. 0<c <46

If ¢ is replaced by ctl in Fig. 5, these boundaries of P, and ¢ will

P
determine the region of Fig. 5 to be considered. The value of the co-
efficient A in this region ranges from about-100 to 4600, so that the
value of rp ranges from about -100/n to +600/n. Hence for n = 23, which
is the lowest value of n in the tables, the upper bound to IrPl would be
established at about 25.

However, since the smaller n values correspond to the smaller ¢
values, which in turn correspond to smaller values of |Al, it was
possible to establish a much lower uppe? bound than this by calculating

values 6f r_ from the approximation

P
r, & A/n, where A =g%(c+i)(c-§n), |
for exp&oratory cases throughout the tables. The values of the error
ratio found in this way ranged from -0.025 to -+0.755. Hence the error in
the Producer's Risk due to the use of the Poisson appraximation in place
of the binomial should not be more than about three quarters of the error
in the Producer's Risk that would have been caused by the use of a value
of ¢ greater by one than the specified value.
Finally a number of values of the Producer's Risk were calculated
by the exact method and compared with the approximate values that were
used in the construction of the tables. These checks showed that the

lower values of the Producer's Risk were overstated and the higher values
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were understated by the Poisson approximation, and thus confirmed the
information given by Campbell's paper. The error in the Producer's Risk
in absolute value was found to be greater for larger values of p and
smaller values of n. The largest error observed occurred when the exact
method gave a Producer's Risk of 0.693 as against 0.683 by the Poisson
approximation. This error of -0.010 in the Producer's Risk resulted in
an understatement of the average minimum cost of inspection of not more

than 1 %ﬁper cent.



CHAPTER VIII

DISCUSSION

The binomial approximation is a better one than the Poisson
approximation for determining values of n. However the binomial was

evaluated in this paper with Tables of the Incomplete Beta-Function (6)

in which both p and g range from 0.5 to 50 and %herefore the use of the
binomial for finding n was restricted to the following parté of the
~sampling tables:
| p, = 0,10, 0.07 : for N = 500,

P = 0.05, 0.04, 0.03 : for N = 500, 1000,

p, = 0.02 : for N = 500, 1000, 2000.
Values of n for the balance of the tables were found using the Poisson
approximation which, according to Dodge and Romié (4, p. 43) is good
when Py < 0.10 and when n/N < 0.10; Although in the tables presented
here, values of p£ never exceeded 0.10, the values of n/N did exceed 0.10
over a considerable portion of the tables, running as high as 0.50 in a
few extremé cases. These high values of n/N, which were necessitated by
the use of low inspection cost ratios, account for the tables giving a
Consumer's Risk as low as 0.045 when it should be 0.100. However as a
result of these errors the tables will always give more than the specified
protection, never less.

The method outlined in this paper can be extended to the construct-

ion of minimum average cost sampling tables using other values of N, Py s
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p, C and P, with certain restrictions on their range. For example,

C’

since the error introduced by using the binomial approximation to

determine n increases with Py s there exists a practical upper limit to

the value of 2 when Tables of the Incomplete Beta-Function are used to
find n. Furthermore Since the error resulting from the use of the Polsson
approximation for finding n increases with n/N, this fraction as well as
Py must be kept reasonably low over any part of the sampling tables where

Tables of the Incomplete Gamma-Function (7) are used to find n. This in

turn implies that the inspection cost ratio cannot be too low over that
part of the tables, since the lower the inspection cost ratio thé greater
the fraction of the lot that must be inspected to minimize the average
cost of inspection. Also if n/N is to be kept low, then the ratio f')/pt
must be considerably less than unity. It was found necessary in the
present tables to keep §/pt < 0.5 in ofder to keep ¢ < 80, since that is

the greatest value of p giveh in Tables of the Incomplete Gamma-Function.
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ADDENDA




DETERMINING SAMPLE SIZE n USING TABLES OF THE INCOMPLETE BETA-FUNCTION

TABLE I

(p,=-02, N=500, M=10)

n
c Pl ¢q x 1-x 500x 500(1-x)
Using eqn. ( 7,) | Using eqn. (7 o)

‘ 0 10 1 « 7942 «2058 103

1 9 2 « 6630 3370 169

2 8 3 « 5503 «4497 225

3 7 4 4482 «5518 278

4 8 5 « 3541 « 6459 323
5 6 1 6 . 7328 366
_ 6 7 4 «8125 4086
7 8 3 «88453 442
' 8 9 2 * 9456 473
9 110 | 1| .9895 495




TABLE IT

DETERMINING SAMPLE SIZE n USING TABLES OF THE INCOMPLETE GAMMA-FUNCTION

M

| Py

.Col.(l) Col. (2)] Col.(3) <02 «03 . W04 .05 .07 .10

p=c u wet | n=50.00 n=533.33 n=35, 00 n=20, 00 n=14.29 n=10.00
X Cole(3)| x Cole(3)} x Col.(3)] x Col.(3)} x Col.(3)] x Col.(3)

0 2.303 2,303 115 77 58 46 33 23
1 2.752 3.892 195 130 97 78 56 39
2 3.074 5.324 2686 177 133 106 76 53
etc.
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