MINIMUM AVERAGE COST SAMPLING TABLES A Thesis Presented to The Faculty of Graduate Studies and Research The University of Manitoba In Partial Fulfillment of the Requirements for the Degree Master of Arts by Cornelius Reimer May 1950 # TABLE OF CONTENTS | CHAPT | ER | PAGE | |-------|--|-----------------------| | I. | THE PROBLEM AND DEFINITIONS OF SYMBOLS USED Statement of the problem Importance of the study Definitions of symbols used Organization of the remainder of the thesis | 1
1
1
2
3 | | II. | THE CHOICE OF A PARTICULAR METHOD OF SAMPLING INSPECTION Lot Quality or Average Quality Protection Single sampling or double sampling | 5
5
5 | | III. | BASIC PRINCIPLES EMPLOYED Inspection procedure The protection aspect The economy aspect | 7
7
8
8 | | IV. | MATHEMATICAL BACKGROUND Sampling from a finite universe The binomial approximation The Poisson approximation Application of the foregoing approximations to the | 10
10
10
12 | | | problem Sampling from an infinite universe The Poisson approximation Application of the foregoing approximation to the problem | 13
15
15 | | ₩. | CONSTRUCTION OF MINIMUM AVERAGE COST SAMPLING TABLES Determining sample size | 17
17 | | | Function Method II - using Tables of the Incomplete Gamma- Function Determining Producer's Risk Determining the minimum average cost of inspection per | 17
19
19 | | **** | lot | 20 | | VI. | USES OF THE TABLES | 22 | | | cost of inspection per lot | 22 | | | | 23 | | CHAPTE | R | | · · · · · · · · · · · · · · · · · · · | PAGE | |----------|------------|---|--|------| | VII. | | MAGNITUDE OF ERRORS .
in the Consumer's Risk | due to the binomial | 25 | | | app | roximation in the Consumer's Risk | | 25 | | | | roximation in the Producer's Risk | due to the Poisson | 27 | | • | app | roximation | • • • • • • • | 27 | | VIII. | DISCUSSION | • • • • • • | • • • • • • • | 31 | | BIBLIOGE | RAPHY | | • • • • • • • • | 34 | | ADDENDA | Table I : | Determining sample size the Incomplete Beta-Fu | | 36 | | | Table II: | Determining sample size the Incomplete Gamma-F | | | | | Table III: | Determining Producer's Tables of the Incomple | s Risk, P _p , using
ete Gamma-Function | | | | Table IV : | Determining the minimu
of inspection per lot | m relative average cost | | | | Table V : | Minimum Average Cost S | Sampling Tables | | ### CHAPTER I # THE PROBLEM AND DEFINITIONS OF SYMBOLS USED Statement of the problem It was the purpose of this study (a) to devise labour saving methods for the construction of sampling inspection tables; and (b) with these methods to develop a set of tables of single sampling plans providing lot quality protection at a minimum average cost of inspection per lot. Importance of the study A number of sampling inspection tables have been published, notably those developed by Dodge and Romig (4) who based their calculations on certain approximate formulae, thus effecting a great saving in computative effort. In the present study the same approximate formulae were used; however they were evaluated here with Tables of the Incomplete Beta-Function (6) and Tables of the Incomplete Gamma-Function (7) to further lessen the work of computing. The Dodge and Romig tables give sampling plans that minimize the average amount of inspection per lot, but they do not state what that amount is; hence they fail to provide an estimate of the inspection costs involved. Furthermore, the sampling plans they list will minimize the average cost of inspection only when the cost of inspection per piece in the remainder of those lots that fail to be accepted by sample is the same as the cost of inspection per piece in the sample. Since this is not always the case in practice, the tables in this study were compiled for a number of different ratios of the two costs. Not only was the appropriate sample plan for each ratio tabulated, but also the relative average amount of the inspection costs involved in that plan. # Definitions of symbols used - N = number of pieces in lot, - n = number of pieces in sample, - pt = lot tolerance fraction defective, - p = process average (expected) fraction defective, - $M = p_t N = number of defective pieces in lot of tolerance quality,$ - m = number of defects found in sample, - c = acceptance number, the maximum allowable number of defective pieces in sample, - P_C = Consumer's Risk, the probability of accepting a submitted lot of tolerance (p_t) quality, - P_p = Producer's Risk, the probability of rejecting a submitted lot drawn from a product of process average (p̄) quality, - $\binom{N}{n} = \frac{N!}{(N-n)! n!}$ = number of combinations of N things taken n at a time, - b = cost (in a monetary unit) of inspection per piece in the sample, - B = cost (in the same monetary unit as b) of inspection per piece in the remainder of those lots that fail to be accepted by sample, - C = b/B = inspection cost ratio, - $\Phi_{\rm C}$ = average cost (in the same monetary unit as b) of inspection per lot for product of process average ($\bar{\rm p}$) quality, - $\varphi_{\rm C} = \Phi_{\rm C}/{\rm B} = {\rm relative~average~cost~of~inspection~per~lot~for~product~of~process~average~quality,}$ - p = fraction defective in general. Prime notation was used in numbering probability formulae in this study as follows: Exact formulae - no primes; Formulae based on the binomial approximation - single primes; Formulae based on the Poisson approximation - double primes. Organization of the remainder of the thesis The remainder of the thesis was organized in the following manner. The general considerations that influence the choice of a particular method of sampling inspection are discussed in Chapter II. This is followed in Chapter III by an outline of the basic principles of sampling inspection upon which the tables in this study are based. The mathematical development appears in Chapter IV under two distinct headings, (a) sampling from a finite universe and (b) sampling from an infinite universe. Both parts begin with a statement of the applicable exact formulae, from which the approximate formulae are then derived. Finally, this chapter indicates how these approximate formulae may be evaluated exactly with the use of Tables of the Incomplete Beta-Function and Tables of the Incomplete Gamma-Function. Chapter V outlines the computing procedure followed in the construction of the Minimum Average Cost Sampling Tables (Table V), with numerical examples. The uses of these tables are described in Chapter VI, while Chapter VII comprises a study of the nature and magnitude of the errors resulting from the use of approximate formulae. Finally, a general discussion of the problems encountered in the construction of these tables is presented in Chapter VIII, along with a few observations concerning the limitations of the methods developed here. All tabulations are given in the Addenda, Tables I-V. Tables I-IV illustrate the different steps in the construction of the Minimum Average Cost Sampling Tables, which are presented in Table V. ### CHAPTER II # THE CHOICE OF A PARTICULAR METHOD OF SAMPLING INSPECTION Sampling inspection, as against total inspection, implies that the product that is to be inspected will be considered acceptable even though a certain small percentage of the pieces do not conform to specifications. The choice of a particular method of sampling inspection will depend on certain general considerations such as those described by Dodge and Romig (4, pp. 1-10). Lot Quality or Average Quality Protection The choice of a method may start with the fixing of a specific value for the allowable per cent defective, and then choosing either one of two kinds of consumer protection: - (1) Lot Quality Protection, in which this value applies to a finite lot. - (2) Average Quality Protection, in which it applies to the general output of a product. Tables based on Lot Quality Protection are most useful where each lot is considered as a distinct unit as, for example, where the product goes out to a large number of consumers, each making only intermittent purchases. On the other hand, when constant purchases of large shipments are being made the individual lots tend to lose their identity, and the concept of Average Quality Protection will be more useful. Single sampling or double sampling A choice must also be made as to inspection procedure. Either single sampling, double sampling, or multiple sampling may be employed with either type of protection. Double sampling generally requires less sampling than single sampling, especially for large lot sizes and a high grade product. Single sampling however has the advantage of being simpler, both in the use and the development of the tables. Tables of sample plans giving Lot Quality Protection and Average Quality Protection with a minimum amount of inspection have been developed and published (4) for both single sampling and double sampling procedure. # CHAPTER III # BASIC PRINCIPLES EMPLOYED The tables developed in this study are for single sampling and are based on lot quality protection with a minimum average cost of inspection. They are drawn up for stated values of the inspection cost ratio, which is the ratio of b, the cost of inspection per piece in the sample, to B, the cost of inspection per piece in the remainder of those lots that fail to be accepted by sample. The general conditions under which these tables are applicable, and the principles used in their development, are the same as those described by Dodge and Romig (4, pp. 10-14, 25-31), except for the inspection cost ratio which is introduced here. They have therefore been reviewed only briefly here. The basic
requirements for the method are: - (a) The specified degree of consumer protection shall be provided for, and - (b) The average cost of inspection per lot shall be a minimum for a product of process (expected) quality. <u>Inspection procedure</u> The inspection procedure is assumed to be as follows: - (a) Inspect a sample of n pieces. - (b) If the number of defects found in the sample does not exceed c, the allowable defect number, accept the lot. - (c) If the number of defects found in the sample exceeds c, inspect all the pieces in the remainder of the lot. - (d) Correct or replace all defective pieces found. The protection aspect Consumer protection is defined numerically by specifying values of: - (a) Lot tolerance fraction defective, the allowable fraction defective in a lot. - (b) Consumer's Risk, the probability of accepting a submitted lot having exactly lot tolerance fraction defective. In this study a Consumer's Risk of 0.10 was used throughout. Hence if a lot of worse than tolerance quality is submitted, the probability of accepting it will be less than one tenth. The sample size n corresponding to each value of c will be uniquely determined by specifying the degree of protection desired. The economy aspect For each such sample plan (paired values of n and c) there will be an average cost of inspection per lot for a submitted product of process average quality. This cost will consist of two parts: - (a) The cost of inspecting the sample. This is nb, where n is the number of pieces in the sample, and b is the cost of inspection per piece in the sample. - (b) The average (expected) cost of inspecting the remainder of those lots that fail to be accepted by sample. This is (N-n) P_p B, where N is the number of pieces in the lot, P_p is the probability of rejecting a lot of process average quality, known as the Producer's Risk, and B is the cost of inspection per piece in the remainder portions of the rejected lots. Clearly the first cost factor will be minimized by taking the smallest sample that will give the desired protection, that is, the value of n corresponding to c = 0. The second cost factor on the other hand will be minimized by inspecting the whole lot, when it will obviously be zero. The problem was to find the sample plan that would strike a balance between these two cost factors so as to make their sum a minimum for stated values of the inspection cost ratio, b/B. #### CHAPTER IV # MATHEMATICAL BACKGROUND Mathematical probability formulae used in sampling work are either one or the other of two types, depending on whether they involve - (a) Sampling from a finite universe, or - (b) Sampling from an infinite universe. In determining the sample size, which involves the Consumer's Risk, the sample is considered as being drawn from a finite lot, and probabilities are therefore based on (a). In determining the Producer's Risk the sample is considered as being drawn from the general output of product, a source of supply, and probabilities are therefore based on (b). ### I. SAMPLING FROM A FINITE UNIVERSE The probability of finding m defects in a random sample of n pieces drawn from a finite universe (lot) of N pieces in which the number of defective pieces is M = p N, is given exactly by $$P(m,n,N,M) = \frac{\binom{M}{m} \binom{N-M}{n-m}}{\binom{N}{n}}.$$ (1) The binomial approximation When p < 0.10 a good approximation to equation (1) is given by the m + 1st term of the expansion of the binomial, $\left[\left(1-\frac{n}{N}\right)+\frac{n}{N}\right]^M$, that is $$P(m,n,N,M) \triangleq P(m,\frac{n}{N},M)$$ where $$P(m, \frac{n}{N}, M) = {M \choose m} (1 - \frac{n}{N})^{M-m} (\frac{n}{N})^{m}$$. The approximation is arrived at as follows: $$P(m,n,N,M) = \frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{m}}$$ $$= \frac{\binom{M}{m}\frac{(N-M)!}{(n-m)!\frac{(N-M-m+m)!}{N!}}}{\frac{N!}{(N-m)!}}$$ $$= \frac{\binom{M}{m}\frac{n!}{(n-m)!}\frac{(N-m)!}{(N-M-m+m)!}}{\binom{N!}{(N-M)!}}$$ $$= \frac{\binom{M}{m}n^{m}(N-n)^{M-m}}{N^{M}} \left[\frac{\left\{1\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{m-1}{n}\right)\right\}\left\{1\left(1-\frac{1}{N-n}\right)\cdots\left(1-\frac{M-m-1}{N-n}\right)\right\}}{\left\{1\left(1-\frac{1}{N}\right)\cdots\left(1-\frac{M-1}{N}\right)\right\}}\right]$$ $$= \binom{M}{m}\left(1-\frac{n}{M}\right)^{M-m}\left(\frac{n}{M}\right)^{m}F(N,n,M,m),$$ where F(N,n,M,m) is the expression in the large brackets. Since $$\log (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3}$$... for $|x| < 1$, it follows that $$\log F(N,n,M,m) = \sum_{y=0}^{M-1} \sum_{r=1}^{\infty} \frac{1}{r} (\frac{y}{N})^{r} - \sum_{y=0}^{m-1} \sum_{r=1}^{\infty} \frac{1}{r} (\frac{y}{n})^{r} - \sum_{y=0}^{M-m-1} \sum_{r=1}^{\infty} \frac{1}{r} (\frac{y}{N-n})^{r}.$$ Neglecting terms of the order $1/N^2$, $1/n^2$, and $1/(N-n)^2$, and replacing m by its expected value $(\frac{n}{N})M$ gives the approximation $\log F(N,n,M,m) \stackrel{!}{=} e^{M/2N} = e^{p/2} \quad \text{for the maximum term where} \quad m = (\frac{n}{N})M,$ so that $$P(m,n,N,M) = {M \choose m} (1-\frac{n}{N})^{M-m} (\frac{n}{N})^m e^{p/2}.$$ Finally, setting F(N,n,M,m) = 1 gives the approximation (See Chapter VII for errors involved) $$P(m,n,N,M) \stackrel{2}{=} P(m,\frac{n}{N},M)$$ (1.) where $$P(m, \frac{n}{N}, M) = {M \choose m} (1 - \frac{n}{N})^{M-m} (\frac{n}{N})^m$$ The Poisson approximation Dodge and Romig (4, p. 43) state that when p < 0.10 and when $\frac{n}{N}$ < 0.10, a good approximation to equation (1) is given by the m + 1st term of the Poisson exponential distribution, that is $$P(m,n,N,M) = P(m,pn), \quad \text{where} \quad P(m,pn) = \frac{e^{-pn}(pn)^m}{m!}.$$ This approximation is arrived at as follows: From equation (1') $$P(m, \frac{n}{N}, M) = {M \choose m} (1 - \frac{n}{N})^{M-m} (\frac{n}{N})^{m}$$ $$= \frac{M(M-1) \cdot \dots \cdot (M - m-1)}{m!} (1 - \frac{n}{N})^{M} (1 - \frac{n}{N})^{-m} (\frac{n}{N})^{m},$$ which, when $\frac{n}{N} \to 0$ and $M \to \infty$ in such a way that $\frac{Mn}{N}$ = pn remains constant, yields $$P(m, \frac{n}{N}, M) = \frac{1(1-\frac{1}{M})\cdots(1-\frac{m-1}{M})}{m!} (1-\frac{pn}{M})^{M} (1-\frac{n}{N})^{-m} (pn)^{m}.$$ Hence in the limit $$P(m, \frac{n}{N}, M) = \frac{e^{-pn}(pn)^{m}}{m!}.$$ From equation (1') we have also $$P(m,n,N,M) = P(m,\frac{n}{N},M)$$ thus giving the approximation (See Chapter VII for errors involved) $$P(m,n,N,M) = P(m,pn), \text{ where } P(m,pn) = \frac{e^{-pn}(pn)^m}{m!}.$$ (1'') Application of the foregoing approximations to the problem Equations (1') and (1'') are general equations applicable for any fraction defective, p, but were used in this study only for the specific case where $p = p_t$, the lot tolerance fraction defective, and where in turn $M = p_t N$. The Consumer's Risk, P_C , is the probability of meeting the acceptance criterion, c, in samples drawn from a lot of N pieces containing exactly the tolerance number of defects, $M = p_t N$, so that $$P_{C} = \sum_{m=0}^{C} P(m,n,N,M), \text{ when } p = p_{t},$$ (2) or, using approximations (1') and (1'') with $p = p_t$, Kaem a partitor (51) $$P_{C} = \sum_{m=0}^{C} {M \choose m} \left(1 - \frac{n}{N}\right)^{M-m} \left(\frac{n}{N}\right)^{m}$$ (2*) and $$P_C = \sum_{m=0}^{c} \frac{e^{-p_t n} (p_t n)^m}{m!}$$. (2:1) Equations (2') and (2'') may be evaluated exactly with <u>Tables of the Incomplete Beta-Function</u> (6) and <u>Tables of the Incomplete Gamma-Function</u> (7) respectively, as shown by Deming (3, pp. 18-20). From equation (2') $$P_{C} = \sum_{m=0}^{C} {M \choose m} (1 - \frac{n}{N})^{M-m} (\frac{n}{N})^{m}, \text{ when } p = p_{t},$$ $$= 1 - \frac{0}{1} x^{c} (1 - x)^{M-c-1} dx$$ $$= 1 - I_{x}(p,q), \text{ where } x = \frac{n}{N}$$ $$p = c+1$$ $$q = M-c,$$ $$= I_{x}(p,q), \text{ where } x = 1 - \frac{n}{N}$$ $$p = M-c$$ $$q = c+1,$$ where the notation $I_{\mathbf{x}}(\mathbf{p},\mathbf{q})$ for the incomplete Beta-function is that of Pearson (6, p.vi). From equation (2'') $$P_{C} = \sum_{m=0}^{C} \frac{e^{-p_{t}n} (p_{t}n)^{m}}{m!}$$ $$= 1 - \frac{0}{\sum_{m=0}^{\infty} x^{c} e^{-x} dx}$$ $$= 1 - I(u,p), \quad \text{where } u = \frac{p_{t}n}{\sqrt{(c+1)}}$$ (3.11) where the notation I(u,p) for the incomplete Gamma-function is that of Pearson (7, p. vii). # II. SAMPLING FROM AN INFINITE UNIVERSE The probability of finding m defects in a random sample of n pieces drawn from an infinite universe (general output of a uniform product) in which the fraction defective is p, is given exactly by the m + 1st term of the expansion of the binomial, $[(1-p) + p]^n$, that is $$P(m,n,p) = {n \choose m} (1-p)^{n-m} p^{m}.$$ (4) The Poisson approximation Dodge and Romig (4, p. 44) state that when p < 0.10, a good approximation to equation (4) is given by the m +1st term of the Poisson exponential distribution, that is $$P(m,n,p) \stackrel{*}{=} P(m,pn), \text{ where } P(m,pn) = \frac{e^{-pn}(pn)^m}{m!}.$$ This approximation is arrived at as follows: From equation (4) $$P(m,n,p) = {n \choose m} (1-p)^{n-m} p^{m}$$ $$= \frac{n(n-1)....(n-\overline{m-1})}{m!} (1-p)^{n} (1-p)^{-m} p^{m}$$ $$= \frac{pn(pn-p)....(pn-p\overline{m-1})}{m!} (1-\frac{pn}{n})^{n} (1-p)^{-m},$$ which, when $p \to 0$ and $n \to \infty$ in such a way that pn remains constant, gives the approximation (See Chapter VII for errors involved) $$P(m,n,p) = P(m,pn), \text{ where } P(m,pn) = \frac{e^{-pn}(pn)^m}{m!}.$$ (4'') Application of the foregoing approximation to the problem The Producer's Risk, P_p , is the probability of failing to meet the acceptance criterion, c, in samples drawn from a product of process average (\bar{p}) quality, so that $$P_{p} = 1 - \sum_{m=0}^{c} P(m,n,p), \text{ when } p = \bar{p},$$ (5) or, using approximation (4'') with $p = \bar{p}$, $$P_{p} = 1 - \sum_{m=0}^{c} \frac{e^{-pn}(\bar{p}n)^{m}}{m!},$$ (5'') which, like equation (2''), may be evaluated exactly with <u>Tables of the Incomplete Gamma-Function</u>, that is $$P_{p} = 1 - \sum_{m=0}^{c} \frac{e^{-pn}(pn)^{m}}{m!}$$ $$=
\frac{\int_{\infty}^{c} x^{c} e^{-x} dx}{\int_{0}^{\infty} x^{c} e^{-x} dx}$$ $$= I(u,p), \quad \text{where } u = \frac{pn}{\sqrt{(c+1)}}$$ (6:1) # CHAPTER V # CONSTRUCTION OF MINIMUM AVERAGE COST SAMPLING TABLES The construction of minimum average cost sampling tables giving lot quality protection consists of the solving of three distinct problems: - I. Determining sample size; - II. Determining Producer's Risk; - III. Determining the minimum average cost of inspection per lot. The methods employed in this study are therefore discussed under these three headings. ### I. DETERMINING SAMPLE SIZE <u>Given</u>: Lot size (N), lot tolerance fraction defective (p_t) , Consumer's Risk $(P_C = 0.10)$. To find: Sample size (n) corresponding to allowable number of defects (c = 0, 1, 2...) to give the specified protection to the consumer. Method I - using Tables of the Incomplete Beta-Function (6) These tables could only be used where $M = p_t N \le 50$. Since they are so tabulated that $q \le p$, it was necessary to use equation (3;) where $c \le \frac{M-1}{2}$, and equation (3;) where $c > \frac{M-1}{2}$. For $c \leq \frac{M-1}{2}$ values of n were found from equation (3%) by setting P_C = 0.10 giving $$I_{x}(p,q) = 0.10$$, where $p = M-c$ (7:) $$q = c+1$$ $$n = N(1-x).$$ This equation was solved for x, using linear interpolation in the tables. For example, given N = 1000, p_t = 0.05 and c = 8, it follows that $$M = p_t N = 50$$ $$p = M-c = 42$$ $$q = c+1 = 9.$$ From Tables of the Incomplete Beta-Function then $$I_{x}(42,9) = .09160$$ for $x = .75$ and $$I_x(42,9) = .12062$$ for $x = .76$, which by linear interpolation gives $$I_{x}(42,9) = .10000 \text{ for } x = .7529,$$ so that $$n = N(1-x) = 1000(1-.7529) = 247$$ to the nearest integer. For $c > \frac{M-1}{2}$ values of n were found from equation (3:) by setting $P_C = 0.10$ giving $$I_x(p,q) = 0.90$$, where $p = c+1$ $$q = M-c$$ $$n = Nx$$ where again x was found from the tables by linear interpolation. For example, given N = 500, p_t = 0.05, c = 13, it follows that $$M = p_t N = 25$$ $$p = c+1 = 14$$ $$q = M-c = 12.$$ Tables of the Incomplete Beta-Function give $$I_{x}(14,12) = .89559$$ for $x = .66$ and $$I_x(14,12) = .91411$$ for $x = .67$. By linear interpolation then $$I_{x}(14,12) = .90000$$ for $x = .6624$, so that $$n = Nx = 500(.6624) = 331$$ to the nearest integer. The method is illustrated in tabular form in Table I. Method II - using Tables of the Incomplete Gamma-Function (7) For those parts of the sampling tables where $M = p_t N > 50$, values of n were found by setting $P_C = 0.10$ in equation (3''), giving $$I(u,p) = 0.90$$, where $p = c$ (8'') $$n = \frac{u \cdot (c+1)}{p_t}.$$ This equation was solved for u, using linear interpolation in the tables. (Note: Since the lot size is considered infinite in deriving equation (8''), the value of n does not depend on N in Method II) For example, for $p_t = 0.02$ and c = 5, Tables of the Incomplete Gamma-Function give I(u,5) = .8881 for u = 3.7 and I(u,5) = .9018 for u = 3.8. By linear interpolation then I(u,5) = .9000 for u = 3.787, so that $n = \frac{u\sqrt{(c+1)}}{p_t} = \frac{3.787\sqrt{6}}{.02} = 464$ to the nearest integer. This value of n was then used wherever p_t = 0.02 and c = 5 regardless of the value of N except for N \leq 2000 where it was possible to determine n by Method I which is more accurate. Method II is illustrated in tabular form in Table II. # II. DETERMINING PRODUCER'S RISK Given: Sample size (n), acceptance number (c), process average fraction defective (\bar{p}) . To find: Producer's Risk (Pp), the probability of rejecting a submitted lot drawn from a product of process average (p) quality. Method: Values of P_P were found from equation (6''), $$P_{p} = I(u,p),$$ where $u = \frac{\bar{p}n}{\sqrt{(c+1)}}$ $p = c.$ using <u>Tables of the Incomplete Gamma-Function</u> with linear interpolation. For example, given that $p_t = 0.04$, n = 97, c = 1 and $\bar{p} = 0.02$, it follows that $u = \frac{\bar{p}n}{\sqrt{(c+1)}} = \frac{.02(97)}{\sqrt{2}} = 1.3718$ and p = c = 1. Tables of the Incomplete Gamma-Function give $$I(u,1) = .5485$$ for $u = 1.3$ and I(u,1) = .5885 for u = 1.4. By linear interpolation then I(u,1) = .577 for u = 1.3718, so that $P_p = .577$. The tables presented in this study were drawn up with three values of \bar{p} for each value of p_t and hence each pair of n and c values yielded three values of P_p , one for each value of \bar{p} . A saving in time was therefore effected by tabulating the work as shown in Table III. # III. DETERMINING THE MINIMUM AVERAGE COST OF INSPECTION PER LOT Given: Lot size (N), sample plans (paired values of n and c), Producer's Risk (P_p) , inspection cost ratio (C = b/B, where b is the cost of inspection per piece in the sample and B is the cost of inspection per piece in the remainder of those lots that fail to be accepted by sample). To find: (a) The sample plan that will minimize Φ C, the average cost of inspection per lot for a product of process average (\bar{p}) quality, and (b) φ_{c} , the relative amount of that cost. Method: Φ_{c} is composed of two parts: - (1) Cost of inspecting the sample. This is always nb. - (2) Expected or average cost per lot of inspecting the remainder of those lots that fail to be accepted by sample. This is (N-n) P_p B. It follows that $$\Phi_{C} = nb + (N-n) P_{P} B, \qquad (9)$$ where P_P is as defined in equation (6''). To find the sample plan to minimize ϕ_C it was only necessary to find the plan that would minimize the <u>relative</u> average cost of inspection, ϕ_C , given by $$\varphi_{C} = \frac{\Phi_{C}}{B} = nC + (N-n) P_{P}, \qquad (10)$$ where C = b/B, the inspection cost ratio. From equation (10) $\varphi_{\rm C}$ was calculated for each inspection cost ratio, C, a number of sample plans being tried until a minimum $\varphi_{\rm C}$ was found. The computing was simplified by tabulating the work as shown in Table IV. The product (N-n) P_p was first punched in the machine and then the different multiples of n, viz., 10n, 9n, 8n..., added to it, the results being tabulated in rows. After a few minima had been found, they were underlined in red. Succeeding minima were then found with only a few trials by observing the trend. Finally, these minimum values of φ_C , were rounded to three significant figures and tabulated along with the corresponding sample plans in Minimum Average Cost Sampling Tables (Table V). #### CHAPTER VI ### USES OF THE TABLES These tables give the combinations of the sample size and allowable defect number that will provide the specified consumer protection at a minimum average cost of inspection per lot, and they also give the relative amount of that cost. From this relative cost figure may be obtained the average cost in dollars simply by multiplying the relative cost by B, the cost of inspection per piece in the remainder of those lots that fail to be accepted by sample. These cost figures, besides being useful as an estimate of the actual inspection costs, serve as a basis of comparison of different plans on a cost basis. They will show, for example, to what extent inspection costs could be reduced by a certain decrease in the process average. This saving might then be compared with the decrease in costs that would result from the use of a higher lot tolerance per cent defective. Still another form of savings in inspection costs could be effected by the use of larger lot sizes. Inspection costs relative to the lot size will always be lower for larger lot sizes and, since these tables make this difference measurable, this difference might now be considered as one of the factors in setting the price differential between small and large quantity purchases. Numerical examples are given below to illustrate the method. How to find the appropriate sample plan and the average cost of inspection per lot The problem: Suppose the ABC Co. is manufacturing a product that has been observed over a period of a year to have an average fraction defective of 0.02, with only minor fluctuations in the quality from day to day. They wish to set up a sampling inspection plan such that they will be able to guarantee their customers that if any lot should have a fraction defective of 0.04 then the chances that it will pass inspection will not be more than one in ten. For lots having more than 0.04 fraction defective the chances of passing inspection will then of course be less than one in ten. The product is sold in lots of 500 pieces each, and the cost of inspecting a piece in the sample is about 16 cents whereas the cost of inspecting a piece in the remainder of those lots that fail to be accepted by sample is about 20 cents. What sampling plan will insure the desired protection to the consumer at a minimum average cost of inspection per lot? The solution: Lot tolerance per cent defective is 4 per cent, and process average is 2 per cent, lot size is 500, and the inspection cost ratio is .16/.20 or 0.8. For these values the tables give n = 208, c = 5, and relative average cost = 237. This means that a sample of 208 pieces should be drawn at random from each lot and inspected. The lot should be accepted if the sample has five or less defective pieces, and rejected if it has more than five defective pieces. The average cost of this inspection plan will be 237(\$0.20) = \$47.40 per lot of 500 pieces. How to compare alternative means of reducing inspection costs The problem: Suppose the company wishes to know how they could reduce this inspection cost, and to what extent. The solution: They might investigate the possibility of improving their manufacturing process to get a process average of 1 per cent, say, instead of 2 per cent. Other factors being unchanged, they would then require a sample size of only 152 with an allowable defect number of 3. The average cost of the plan would then be 146(\$0.20) =
\$29.20 per lot of 500 pieces. A second alternative would be to guarantee the consumer less protection by using a lot tolerance per cent defective of 5 per cent instead of 4 per cent. Other factors being unchanged, they would then require a sample of size 170 with an allowable defect number of 5. The average cost of inspection would then be 179(\$0.20) = \$35.80 per lot of 500 pieces. A third alternative would be to sell their product in larger lots, say of size 1000. With other factors the same, the required sample size would then be 224 with an allowable defect number of 7. Average cost of the plan would then be 245(\$0.20) = \$49.00 per lot of 1000 or \$24.50 per 500 pieces. All of the three alternatives effect a saving over the method given in the preceding section, and although cost is only one of the many factors to be considered in setting up a sampling scheme, a comparison of the amounts saved by the respective schemes should serve as a useful guide in making the choice. ### CHAPTER VII # NATURE AND MAGNITUDE OF ERRORS The use of the binomial approximation, equation (2'), and the Poisson approximation, equation (2''), in determining the values of n resulted in errors in the value of the Consumer's Risk. Errors in the Producer's Risk resulted from the use of the Poisson approximation, equation (5''). The following is a brief study of the magnitude of the errors arising from these three sources. Errors in the Consumer's Risk due to the binomial approximation Equation (2') is based on equation (1'), which involved two approximations in its derivation, viz.: - (a) Neglecting terms of the order $1/N^2$, $1/n^2$ and $1/(N-n)^2$ in the expansion of log F(N,n,M,m), and - (b) Replacing m by (n/N) M, and then setting $e^{p/2} = 1$. Although an upper bound to the error caused by (a) can be found in the form of a function of the variables involved, this function was found to be too unwieldy to determine its maximum numerical value over the range of the tables. For the error resulting from (b), however, a numerical upper bound was easily established as follows: Assuming that terms of the order $1/N^2$, $1/n^2$ and $1/(N-n)^2$ can be neglected, as they in fact were, it follows that $log F(N,nM,m) \stackrel{*}{=} A_m$, where $$A_{m} = \sum_{y=0}^{M-1} (y/N) - \sum_{y=0}^{m-1} (y/n) - \sum_{y=0}^{M-m-1} (y/(N-n))$$ $$= \frac{1}{2} \left[\frac{M^{2}-M}{N} - \frac{m^{2}-m}{n} - \frac{M^{2}-2Mm + m^{2}-M + m}{N-n} \right] \quad \text{for all } m.$$ For the maximum term where m = (n/N)M this general expression for A_m reduces to M/2N = p/2. Consider now the terms where $m \neq (n/N)M$, in particular those terms where m < (n/N)M, since these are the only values of m for which equation (1') was used in this study. From the definition of $\mathbf{A}_{\mathbf{m}}$ it follows that $$A_{m-1} = A_m + \left[\frac{m-1}{n} - \frac{M-m}{N-n}\right]$$ so that $A_{m-1} \leq A_m$ if $$\frac{m-1}{n} \le \frac{M-m}{N-n}$$ or if Nm-N \le Mn-n. This last inequality is certainly true for $m \leq (n/N)M$ since n is always $\leq N$. Hence it follows that $A_{m-1} \leq A_m$ for $m \leq (n/N)M$. Similarly $A_{m-2} \leq A_{m-1}$, etc. Hence $A_m \leq p/2$ for all $m \leq (n/N)M$, and $F(N,n,M,m) \leq e^{p/2}$ for all calculations that were based on equation (1') (with the assumption that terms of the order $1/N^2$, $1/n^2$, and $1/(N-n)^2$ are equal to zero) so that $$P(m,n,N,M) \le e^{p/2} P(m,\frac{n}{N},M)$$ = 1.0513 $P(m,\frac{n}{N},M)$ for p = 0.10. Hence when n is determined from equation (2'), which is based on equation (1'), and where $p = p_t \le 0.10$, the Consumer's Risk, P_C , by exact methods should not exceed the stated value of 0.10 by more than about five per cent of 0.10. Since $A_{m-1} \leq A_m$ it follows that log F(N,n,M,m) may be negative for small m and thus result in a Consumer's Risk that will be less than the stated value by more than five per cent; however an error in this direction will result in more protection to the consumer than is specified, never less. Exploratory checks over that part of the tables where n was found from the binomial approximation gave a Consumer's Risk by exact methods as low as 0.0836 but never greater than the stated value, 0.10. In general these checks showed that the error in the Consumer's Risk was greater for larger values of $p_{\rm t}$ and smaller values of n. Errors in the Consumer's Risk due to the Poisson approximation A method of checking the accuracy of the Poisson exponential approximation to the binomial $[(1-p)+p]^n$ is given by Fig. 5 of Campbell's paper (1, p. 100). However it is not applicable here since the Poisson used in equation (2'') is derived from the binomial $[(1-\frac{n}{N})+\frac{n}{N}]^M$. Exploratory checks were made over that part of the table where n was found from the Poisson approximation. These gave a Consumer's Risk by exact methods as low as 0.0450 but never greater than the stated value, 0.10. The checks showed that the error in the Consumer's Risk was greater for larger values of $p_{\rm t}$ and n/N. Errors in the Producer's Risk due to the Poisson approximation. The Poisson approximation, equation (5''), was used here in place of the binomial $[(1-\bar{p})+\bar{p}]^n$ to find the Producer's Risk, so that Fig. 5 of Campbell's paper was useful in determining the error involved. Since P(c,n,a) in that paper denotes the probability of finding c or more defects in a sample of size n when the expected number is a, it follows that the Producer's Risk, P_p , is given exactly by $$P_p = P(c+1,n,a)$$ where $a = \bar{p}n$. Campbell's Fig. 5 gives curves of A, the first coefficient in the expansion of the ratio of the increments in probability due to a decrease in n (from ∞) and to unit increase in c. Denoting this ratio by r_p we have, using Campbell's notation, $$r_{P} = \frac{P(c+1,n,a) - P(c+1,\infty,a)}{P(c+2,\infty,a) - P(c+1,\infty,a)}$$ $$= A/n - (terms of the order 1/n^{2}),$$ where $$A = \frac{1}{2}(c+1)(c-a)$$ and $a = \overline{p}n$. It can be seen from Fig. 5 that the coefficient A, and hence the error ratio r_p , is zero for $P_p \stackrel{*}{=} 0.45$, positive for P_p less than this, and negative for P_p greater than this, except for the small c values, where the zero error will occur for smaller values of P_p than this. Since the denominator in the expression $$r_{P} = \frac{P(c+1,n,a) - P(c+1,\infty,a)}{P(c+2,\infty,a) - P(c+1,\infty,a)}$$ is essentially negative it follows that the numerator will be of opposite sign to that of \mathbf{r}_p . Hence the lower values of the Producer's Risk will tend to be overstated and the higher values will tend to be understated by the Poisson approximation. An upper bound to the absolute value of the error ratio over the range of the Minimum Average Cost Sampling Tables can be established from an inspection of Fig. 5 as follows. In the tables $$0.00001 < P_p < 0.700$$ and $$0 < c < 46$$. If c is replaced by c+1 in Fig. 5, these boundaries of $P_{\rm p}$ and c will determine the region of Fig. 5 to be considered. The value of the coefficient A in this region ranges from about -100 to +600, so that the value of $r_{\rm p}$ ranges from about -100/n to +600/n. Hence for n = 23, which is the lowest value of n in the tables, the upper bound to $|r_{\rm p}|$ would be established at about 25. However, since the smaller n values correspond to the smaller c values, which in turn correspond to smaller values of IAI, it was possible to establish a much lower upper bound than this by calculating values of r_p from the approximation $$r_p = A/n$$, where $A = \frac{1}{2}(c+1)(c-\bar{p}n)$, for exploratory cases throughout the tables. The values of the error ratio found in this way ranged from -0.025 to +0.755. Hence the error in the Producer's Risk due to the use of the Poisson approximation in place of the binomial should not be more than about three quarters of the error in the Producer's Risk that would have been caused by the use of a value of c greater by one than the specified value. Finally a number of values of the Producer's Risk were calculated by the exact method and compared with the approximate values that were used in the construction of the tables. These checks showed that the lower values of the Producer's Risk were overstated and the higher values were understated by the Poisson approximation, and thus confirmed the information given by Campbell's paper. The error in the Producer's Risk in absolute value was found to be greater for larger values of \bar{p} and smaller values of n. The largest error observed occurred when the exact method gave a Producer's Risk of 0.693 as against 0.683 by the Poisson approximation. This error of -0.010 in the Producer's Risk resulted in an understatement of the average minimum cost of inspection of not more than $1\frac{1}{4}$ per cent. # CHAPTER VIII #### DISCUSSION The binomial approximation is a better one than the Poisson approximation for determining values of n. However the binomial was evaluated in this paper with <u>Tables of the Incomplete Beta-Function</u> (6) in which both p and q range from 0.5 to 50 and therefore the use of the binomial for finding n was restricted to the following parts of the sampling tables: $p_{+} = 0.10, 0.07 : for N = 500,$ $p_{+} = 0.05, 0.04, 0.03$: for N = 500, 1000, $p_{t} = 0.02 : for N = 500, 1000, 2000.$ Values of n for the balance of the tables were found using the Poisson approximation which, according to Dodge and Romig (4, p. 43) is good when $p_{\rm t} < 0.10$ and when n/N < 0.10. Although in the tables presented here, values of $p_{\rm t}$ never exceeded 0.10, the values of n/N did exceed 0.10 over a considerable portion of the tables, running as high as 0.50 in a few extreme cases. These high values of n/N, which were necessitated by the use of low inspection cost ratios, account for the tables giving a Consumer's Risk as low as 0.045 when it should be 0.100. However as a
result of these errors the tables will always give more than the specified protection, never less. The method outlined in this paper can be extended to the construction of minimum average cost sampling tables using other values of N, p_t , \bar{p} , C and P_{C} , with certain restrictions on their range. For example, since the error introduced by using the binomial approximation to determine n increases with p_{t} , there exists a practical upper limit to the value of p_{t} when <u>Tables of the Incomplete Beta-Function</u> are used to find n. Furthermore since the error resulting from the use of the Poisson approximation for finding n increases with n/N, this fraction as well as p_{t} must be kept reasonably low over any part of the sampling tables where <u>Tables of the Incomplete Gamma-Function</u> (7) are used to find n. This in turn implies that the inspection cost ratio cannot be too low over that part of the tables, since the lower the inspection cost ratio the greater the fraction of the lot that must be inspected to minimize the average cost of inspection. Also if n/N is to be kept low, then the ratio \bar{p}/p_{t} must be considerably less than unity. It was found necessary in the present tables to keep $\bar{p}/p_{t} \leq 0.5$ in order to keep $c \leq 50$, since that is the greatest value of p given in <u>Tables of the Incomplete Gamma-Function</u>. - 1. Campbell, George A., 'Probability Curves Showing Poisson's Exponential Summation', The Bell System Technical Journal, 2:95-113, January, 1923. - 2. Coggins, Paul P., 'Some General Results of Elementary Sampling Theory for Engineering Use', The Bell System Technical Journal, 7:26-69, January, 1928. - 3. Deming, William Edwards, The Gamma and Beta Functions. Washington: Graduate School, Dept. of Agriculture, 1944. 37 pp. - 4. Dodge, Harold F., and Harry G. Romig, <u>Sampling Inspection Tables</u>. New York: John Wiley and Sons, Inc., 1946. 106 pp. - 5. Kavanagh, A. J., 'On the Selection of an Inspection Plan', <u>Industrial</u> Quality Control, 2:10-11, March, 1946. - 6. Pearson, Karl, <u>Tables of the Incomplete Beta-Function</u>. London: The Biometrika Office, University College, 1934. 494 pp. - 7. Tables of the Incomplete Gamma-Function. London: The Biometrika Office, University College, 1946. 164 pp. TABLE I DETERMINING SAMPLE SIZE $\, n \,$ USING TABLES OF THE INCOMPLETE BETA-FUNCTION (p_t =.02 , N=500 , M=10) | | | | | | | 1 | 1 | |----|---|----|----|--------|--------------------|-----------------|---------------| | | C | р | q | x | l-x | 500x | 500(1-x) | | - | | | | | | Using eqn. (7b) | Using eqn. (7 | | | 0 | 10 | 1 | .7942 | .2058 | | 103 | | | 1 | 9 | 2 | -6630 | .3370 | | 169 | | | 2 | 8 | 3 | • 5503 | •4497 | | 225 | | | 3 | 7 | 4 | •4482 | .5518 | | 276 | | | 4 | 6 | 5 | •3541 | •6 4 59 | | 323 | | | 5 | 6 | 5 | . 7328 | | 366 | | | | 6 | 7 | .4 | .8125 | | 406 | | | | 7 | 8 | 3 | .8843 | | 442 | | | ** | 8 | 9 | 2 | 9456 | | 473 | | | | 9 | 10 | 1 | 9895 | | 495 | | TABLE II DETERMINING SAMPLE SIZE n USING TABLES OF THE INCOMPLETE GAMMA-FUNCTION | | | | | | l | t | | | |----------|---------|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | Col. (1) | Col.(2) | Col.(3) | •02 | • 03 | •04 | •05 | .07 | .10 | | p=c | u | u√c+l | n=50.00
x Col.(3) | n=33.33
x Col.(3) | n=25.00
x Col.(3) | n=20.00
x Col.(3) | n=14.29
x Col.(3) | n=10.00
x Col.(3) | | 0 | 2.303 | 2.303 | 115 | 77 | 58 | 46 | 33 | 23 | | 1 | 2.752 | 3.892 | 195 | 130 | 97 | 78 | 56 | 39 | | 2 | 3.074 | 5.324 | 266 | 177 | 133 | 106 | 76 | 53 | | etc. | ļ | | | | | | | | Lot Tolerance Fer Cent Defective = 3.0% | Process
Average | Cost
Ratio | | 500 | | | 1,0 | 00 | SELVE OLUMBIA COLUM | 2,0 | 00 | | ა,0 | 00 | | 4,0 | 00 | | 5, | 000 | Name and Associated Section 1989 | 10, | 000 | |--------------------|--|--|---|--|---|--------------------|---|---|---------------------|--|--|---------------------|---|---|-------------------------|---|--|----------------------|---|--|---------------------|---| | o.5% | 10 9 5 7 6 5 4 5 2 1 9 8 7 6 5 4 5 2 1 | 7777777718 11559 159 159 159 159 159 159 159 159 1 | 000000000000000000000000000000000000000 | 858
767
696
625
554
483
412
541
270
163
152
140
128
112
95.7
79.8
63.9
44.7
25.1 | 74
74
74
74
74
74
124
168
168
168
209
209
209
249
288 | 000000112222333345 | 1030
952
878
804
730
656
582
485
361
213
196
179
162
143
122
101
80.3
56.9
31.5 | 77
77
77
77
130
130
130
177
223
223
225
227
267
267
267
267
267
267
267
267
267 | 0000111225355444456 | 1380
1510
1230
1150
1040
910
780
642
465
272
250
227
205
181
154
127
101
70.9 | 130
130
130
130
130
177
177
223
267
267
267
267
267
309
309
351 | 1111122334444455556 | 1700
1570
1440
1510
1180
1050
879
702
522
299
275
246
219
193
166
138
107
76.2
41.4 | 130
130
130
177
177
177
177
223
267
267
267
267
267
267
309
309
309
351
393 | IIII SEESSAAAAA SEESSE? | 1840
1710
1580
1450
1290
120
940
763
550
511
265
231
205
174
143
112
78.8 | 130
130
177
177
177
177
177
223
267
267
267
267
309
309
309
351
351
393 | 11222223344455555667 | 1980
1850
1710
1530
1360
1180
1000
577
323
297
270
241
210
180
149
116
51.2
43.9 | 177
177
177
223
223
267
267
309
309
361
351
351
393
433 | 2223333445555666778 | 2370
2190
2010
1830
1610
1560
1160
\$17
650
361
330
299
268
234
196
163
128 | - 5 -Lot Tolerance Per Cent Defective = 3.0%. | Process Cost
Average Ratio | ¥ 500 | 1,000 | 2,000 | 5,000 | 4,000 | 5,000 | 10,000 | |---|---|-------|-------|--|--|---|---| | 1.0% 10
9
8
7
6
5
4
1
9
8
1
9
8
1
9
8
1
9
8
1
9
8
1
9
8
1
9
8
1
9
8
1
9
1
9 | 71 0 928 71 0 857 71 0 786 71 0 715 71 0 644 71 0 573 71 0 502 71 0 360 159 2 232 159 2 216 196 3 198 196 3 198 196 3 159 232 4 18 266 5 92.6 266 5 92.6 329 7 36.3 | | | 77 0 2340
130 1 2240
130 1 2110
177 2 1980
177 2 1620
223 3 1410
267 4 1160
309 5 870
393 7 516
433 8 475
433 8 432
433 8 432
433 8 389
474 9 344
474 9 296
514 10 247
553 11 194
593 12 138
671 14 76.5 | 130 1 2740
177 2 2590
177 2 2410
177 2 2240
223 3
2040
223 3 1820
267 4 1560
309 5 1270
351 6 944
453 8 552
433 8 508
474 9 462
474 9 414
514 10 367
514 10 367
514 10 315
553 11 261
553 11 206
632 13 146
710 15 80.3 | 177 2 3030
177 2 2850
177 2 2680
223 3 2450
223 3 2230
267 4 1960
309 5 1680
351 6 1360
393 7 1000
474 9 580
474 9 485
514 10 435
553 11 383
553 11 383
553 11 272
593 12 214
632 13 151
710 15 83.1 | 267 4 3960
309 5 3690
309 5 3380
309 5 3070
351 6 2750
351 6 2400
393 7 2020
453 8 1620
474 9 1170
555 11 662
553 11 606
553 11 551
593 12 493
632 13 432
632 13 366
671 14 239
749 16 168
825 18 91.1 | - 6 Lot Tolerance Fer Cent Defective = 3.0%. | Précess
Average | Cost
Ratio | ≅ = 500 | 1,000 | 2,000 | 3,000 | 4,000 | 5,000 | 10,000 | |--------------------|----------------------|--|--|---|--|--|--|---| | I.5% | 10 9 8 5 6 5 4 5 8 1 | 71 0 991
71 0 920
71 0 849
71 0 707
71 0 836
71 0 836
71 0 494
71 0 423
196 3 299
196 3 280
232 4 258
232 7 280
232 4 258
232 258
233 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 74 0 1360
74 0 1290
74 0 1210
74 0 1140
74 0 1060
74 0 916
74 0 916
74 0 842
168 2 719
325 6 474
361 7 404
397 8 367
397 8 388
432 9 285
466 10 239
500 11 190
566 13 136
662 16 74.9 | 77 0 2090
77 0 2010
77 0 1930
77 0 1860
77 0 1780
77 0 1760
130 1 1600
223 3 1430
309 5 1160
514 10 747
553 11 692
553 11 637
593 12 580
632 13 517
671 14 451
749 16 381
787 17 304
863 19 220
1015 25 124 | 77 0 2770
77 0 2700
77 0 2620
77 0 2540
130 1 2440
177 2 2280
223 3 2080
309 5 1790
433 8 1400
632 13 871
671 14 806
671 14 739
710 15 670
787 17 596
825 18 517
863 19 434
940 21 346
1015 23 248
1165 27 139 | 77 0 3460
77 6 3380
130 1 3280
177 2 3130
177 2 2950
267 4 2720
309 5 2420
433 8 2040
553 11 1570
710 15 958
749 16 886
787 17 810
825 18 730
863 19 647
863 19 561
940 21 471
1015 23 572
1091 25 267
1240 29 149 | 130 1 4120
177 2 3980
177 2 3800
223 3 3610
309 5 3360
309 5 3360
309 5 3050
433 8 2680
474 9 2240
593 12 1700
787 17 1020
825 18 944
825 18 861
863 19 775
863 19 775
863 19 689
977 22 595
1015 23 496
1091 25 393
1165 27 280
1314 31 156 | 309 5 6190
351 6 5840
433 8 5460
433 8 5020
474 9 4570
553 11 4040
593 12 3470
671 14 2820
787 17 2090
977 22 1220
1015 23 1120
1015 23 1010
1015 23 1010
1015 23 913
1091 25 805
1165 27 575
1240 29 452
1352 32 321
1499 36 176 | -7. Lot Tolerance Per Cent Defective = 4.0% | Process
Average | Cost
Ratio | | 500 | | | 1,00 | 0 | | 2,(| 100 | | 5,0 | 000 | | 4,0 | 00 | | 5,0 | | | 10, |)00 | |--------------------|---------------------------|--|------------------|---|--|----------------------|------|-------------------|----------------------|------|---|--------------------|--|------------|------------------------|----|------------|---------------------------------------|--|--|---------------------|--| | | - Postosiasa - Hackaasaas | 54
54
54
54
54
91
91
123
123
123
152 | 00000000HHH00000 | 645
591
537
483
429
375
321
267
213
114
104
95.4
83.4
71.1
56.6
46.5
33.2
18.0 | 56
56
56
56
56
56
56
94
128
128
128
128
160
160
160
190 | 00000111288888888888 | 55.6 | 167
200
200 | 007.1111123333333445 | 47.1 | 97
97
97
97
97
97
133
135
135
167
167
167
200
200
200
232
232 | 111112223333344455 | 1220
1120
1030
930
833
736
619
486
353
198
181
164
148
131
111
91.1
71.1
50.2
27.0 | 232
232 | 7111000000000000444556 | | 232
232 | 1 1 1 2 2 2 2 2 3 3 4 4 4 4 4 4 5 5 6 | 1890
1300
1800
1800
946
813
680
547
586
219
199
179
139
139
139
119
99.0
76.1
52.9
28.4 | 133
133
133
133
167
167
167
200
200
200
232
232
232
263
263
263 | 2222255544445555566 | 1630
1500
1360
1230
1100
941
774
607
439
239
219
199
176
152
129
106
82. | - 8 Lot Tolerance Per Cent Defective = 4.0%. | Process
Average | Cost
Retio | | 500 | | | 1,0 | 00 | 2,0 | 100 | | 3,00 | O | 4,00 | 0 | | 5,00 | 0 | | 10,0 | 00 | |--------------------|--|---|--
--|-------------------|---------------------|----|---------------------|-----|--|----------------------|---|----------------------|---|--|----------------------|--|--|----------------|---| | 1.0% | The contraction of contracti | 54
54
54
54
54
54
54
54
123
123
152
152
152
152
150
208
234 | 00000000000000000000000000000000000000 | 726
672
618
564
510
456
402
348
277
171
159
146
150
115
99.9
85.7
47.5
26.2 | 220
249
249 | 0000001124444555687 | | 0111122345556667789 | | 97
97
133
133
167
167
200
263
263
263
263
294
294
325
325
325
325
325 | 11222334466667788910 | | 22233344566777689911 | | 133
167
167
167
200
232
263
294
294
294
294
294
325
355
355
355
355
415 | 22333445677778899011 | 2060
1930
1770
1600
1430
1250
1050
846
612
345
516
287
257
225
192
160
124
87.2 | 200
200
200
232
232
253
263
263
263
255
355
355
355
355
355
355
355
355
35 | 10
11
11 | 2520
2320
2120
1920
1700
1470
1230
966
694
357
354
320
285
249
214
175
136
95. | Lot Tolerance Per Cent Defective = 4.0% | Frocess
Average | ₹ 50(| 9 | | 1,000 | | 2,00 | 0 | | 3,000 | 3 | | 1,000 | | | 5,0 0 | 0 | | 10,0 | /OC | |--------------------|--|---|--------------------------|---|--|-------------------------|---|--|--------------------------------------|--|--|--|---|---|--|--|---|---|--| | 2.0% | 54 0
54 0
54 0
54 0
54 0
54 0
180 4
180 4
180 4
234 6
234 6
234 6
234 6
234 8
234 8
234 8
234 8
234 8
234 8
234 8
234 8
234 8
236 2
236 2
237 2
284 8 | 654
780
726
672
618
564
510
456
402
274
256
274
215
192
168
140
111
78.7
43.0 | 386
412
463
489 | 0 1200
0 1140
0 1080
0 1030
0 972
0 916
0 860
1 790
4 649
7 419
8 388
9 356
9 356
9 323
10 287
11 250
12 210
14 166
15 119
18 65.9 | 58
58
58
58
58
58
57
167
232
294
445
474
503
503
503
503
561
619
676
761
874 | 00000155723144156805237 | 1910
1850
1800
1740
1680
1580
1450
1260
997
628
581
532
482
429
374
514
250
180
101 | 58
58
97
133
167
200
263
294
365
561
561
561
590
619
676
705
761
818
930 | 00123467
105167
18022
22529 | 2600
2540
2450
2350
2350
2040
1810
1530
1180
717
662
606
548
487
421
353
279
200
112 | 97
133
167
200
232
263
294
365
474
590
619
648
676
733
761
818
874
1014 | 1 2 5 4 5 6 7 10 3 7 8 9 9 0 2 2 3 5 7 2 3 5 7 5 7 | 3220
3120
2950
2610
2600
2550
2060
1720
1300
721
658
592
525
453
378
299
213
119 | 167
167
200
263
263
294
355
415
503
648
676
705
761
761
930
1069 | 3 5 4 6 6 7 9 11 4 19 20 21 23 25 27 29 34 |
3740
3570
3580
3150
2890
2600
2600
1860
1400
829
763
696
626
552
476
398
313
223
124 | 294
355
385
385
415
474
503
561
648
761
818
818
874
930
930
1014
1069
1209 | 7 9 10 10 11 13 14 16 19 25 27 29 29 32 34 39 | 5270
4930
4580
4190
3780
3330
2290
1680
970
891
809
725
637
548
454
357
252
158 | - 10 Lot Tolerance Fer Cent Defective = 5.0%. | Frocess
Average | Cost
Patio | | | 500 | , | 1,000 | | 2 | ,000 | | * | 3,000 | | | 4,000 | | | 5, 00 | 0 | | 10 | ,000 | |--------------------|--|--|---------------------|---|--|--------------------|---|---|-------------------|---|---|------------------|---|---|-------------------|--|--|---------------------|-------------------|-------------------|--------------------|---| | 0.5% | 10 98 7 8 5 4 3 2 1 .9 8 7 6 5 4 3 2 1 | 44
44
44
44
44
100
100
100
124 | 0000000011111000000 | 530
436
442
398
554
510
266
822
171
97.8
89.9
82.5
75.1
65.9
45.9
85.9
15.9 | 46
46
46
46
46
46
46
75
75
103
103
103
103
103
129
129
154 | 000001111000000004 | 855
609
563
517
471
425
352
277
202
117
107
96.4
86.1
75.8
65.5
55.2
42.8
29.9
16.6 | 46
46
78
78
78
78
78
106
106
106
134
134
134
134
160
160 | 00111111222255544 | 860
814
739
661
583
505
427
349
244
136
128
117
104
77.0
63.6
50.2
34.9
18.9 | 78
78
78
78
78
78
106
106
108
134
134
134
134
160
160
160
160 | 1111122233333444 | 954
976
798
720
642
554
473
367
261
149
136
123
109
95.8
82.4
68.5
52.5
36.5
19.9 | 78
78
78
78
78
106
106
106
134
134
134
134
160
160
160
160 | 11112222333334445 | 1010
936
858
780
702
596
490
384
278
141
126
114
101
86.1
70.1
54.1
38.1
20.3 | 78
78
78
106
106
106
106
134
134
134
154
160
160
160
160
186
186 | 1112222253334444555 | 507
401
294 | 186
186
186 | 222223334444445556 | 1230
1120
1020
910
804
698
589
455
321
176
160
144
128
112
95.6
78.8
60.2
41.6
22.3 | - 11 Lot Tolerance Per Cent Defective = 5.0%. | /Access | Cost
Ratio | | = 31 |)0 | I | ,000 | | | 3,00 | 0 | | 3, | 000 | | 4,000 | | 5 | ,000 | |] | 10,0 | 00 | |---------|---|---|-------------------|--|--|--------------------|--|---|-------------------|---|--|----|--|---|-------------------------------|--|--|-------------------|---|---|-------------------|---| | | 10
9
8
7
8
5
4
5
2
1
9
8
7
6
5
4
5
2
1
9 | 44
44
44
44
44
44
74
100
100
100
124
124
124
124 | 00000000122235555 | 602
558
514
470
426
582
582
358
294
210
112
113
101
886, 856
50, 6 | 46
46
46
46
75
75
75
75
103
129
129
129
154
154
154
178 | 000011112533444455 | 811
765
719
673
611
536
461
586
263
166
153
140
125
110
94.5
79.1
61.7 | 78
78
78
78
106
106
134
134
160
160
186
186
186
211
211 | 11112223344555566 | 1130
1060
978
900
810
704
598
491
357
804
188
171
153
134
115
95.2
74.1 | 78
106
106
106
106
134
134
160
186
186
211
211
211
211
236 | | 1520
1220
1110
1010
902
796
673
539
366
221
202
184
164
143
122
101
79.5 | 106
106
106
106
134
134
154
160
160
186
211
211
211
211
211
236
236 | 2 2 2 2 3 3 3 4 4 5 6 6 6 7 7 | 1420
1310
1210
1100
968
654
720
572
412
233
213
192
170
149
128
106
62.7 | 106
106
134
134
134
160
160
211
211
211
211
236
236
260 | 22253344566665778 | 1510
1400
1300
1170
1040
902
756
596
432
240
219
198
177
156
133
110
85.4 | | 54444455677778889 | 1810
1680
1520
1360
1200
1040
865
679
481
267
243
220
196
171
145
119
92. | | | .2
.1 | 147
170 | 5 | 10.7 | 201 | 6 | 43.9
24.0 | 256
260 | 7
 8 | 52.8
23.7 | 236
260 | 8 | 55.9
30.3 | 260
284 | 8 | 57.8
31.1 | 260
284 | 8 9 | 59.4
51.9 | | 10 | 64
54 | - 12 -Lot Tolerance Per Cent Defective = 5.0%. | Process
Average | | | 500 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1,000 | | | 2,00 | 10 | | 3,00 | 0 | | 4,000 | 0 | | ,000 | | | 1 | 0,000 | |--------------------
--|--|--|--|--|-------------------------|--|---|---------------------------|--|--|-----------------------------------|--|--|---|--|--|--|--|--|---|--| | | Linda Sino Francisco de Como d | 44
44
44
44
44
1007
147
170
192
234
254
253 | 00000000000000000000000000000000000000 | 707
665
619
575
531
487
443
389
529
194
179
144
145
108
44
108
5,4 | 46
46
46
46
75
75
129
154
224
224
224
227
269
269
291
313
335
377 | WHE SESSAN STREET SOOOO | 1030
988
942
896
850
784
709
613
476
290
268
245
222
196
169
142
112
80.4
44.5 | 46
46
78
106
106
134
160
186
308
332
356
379
379
426
449
518 | 0012254571001111213515619 | 1640
1590
1510
1420
1510
1200
1040
872
659
393
362
397
264
228
190
150
107
59.4 | 106
106
106
160
160
186
211
236
234
332
356
379
379
403
426
449
495
564 | 22244567911213
131415
16121 | 2090
1980
1880
1740
1580
1420
1000
741
436
401
365
327
289
249
207
163
116
63.8 | 134
160
160
186
186
211
236
280
308
379
379
403
428
449
449
518
518
586 | 3 4 4 5 5 6 7 8 0 13 13 14 15 16 18 19 22 | 2430
2280
2120
1960
1960
1570
1540
1090
801
464
426
388
348
307
264
219
172
121
66.7 | 160
160
186
211
211
236
260
284
332
379
403
426
449
472
472
516
541
609 | 4
5
6
7
8
9
11
13
14
15
16
17
17
19
20
23 | 2660
2500
2520
2520
2120
1910
1450
1450
1450
446
466
466
466
364
320
275
227
178
126
68.8 | 403
472
472
495
495
518
518
541
564
609 | 8
9
9
10
11
12
14
17
18
18
19
20
21
23 | 3400
3140
2880
2610
2320
2020
1700
1360
983
553
506
459
409
359
307
254
198
139
75.3 | - 13 Lot Tolerance Per Cent Defective = 7.0%. | rocess
Verage | Cost
Retio | | 500 | | | 1,00 | | | 2,0 | 00 | | 3,00 | | | 4,0 | 00 | | 5,0 | 00 | | 10 | ,000 | |------------------|-----------------------|---|-------------------|---|---|----------------------|---|--|-------------------|--|---|--------------------|--|---|--------------------|---|---|-------------------|---|--------------------------|-------------------|--| | | 109876543%1 9856545%1 | *************************************** | OCCOCCHANNANANANA | 448
416
384
352
320
288
256
208
154
89.4
82.1
74.8
67.5
60.2
51.4
42.3
33.2
23.6
12.8 | 33
33
35
56
56
56
76
95
95
95
95
914
114
113 | 00011112233333344455 | 601
568
535
495
439
383
327
267
191
110
100
90.9
81.4
71.9
62.4
51.3
39.9
28.5
15.6 | 56
56
56
56
76
76
76
95
114
114
114
114
114
113
133
133 | 11122223444445556 | 772
716
660
604
538
462
386
310
221
126
115
103
91.9
80.5
69.1
57.7
44.9
31.6 | 56
76
76
76
76
76
95
95
114
114
114
114
114
1135
133
133
151
158 | 122223334444455567 | 881
809
733
657
581
505
428
333
238
133
121
110
98.3
66.9
74.2
60.9
47.6
33.1
17.8 | 76
76
76
76
76
95
95
114
114
113
133
133
133
135
151
151 | 222233344445555667 | 927
851
775
699
623
539
444
349
253
139
128
116
104
90.2
76.9
63.6
49.3
34.2
10.2 | 76
76
76
76
95
95
95
114
1133
133
133
153
153
151
151
151
168 | 22233334455556667 | 970
894
818
742
651
556
461
366
259
145
133
120
106
92.9
79.6
55.4
50.3
35.2
18.6 | 151
151
168
168 | 33334444566666778 | 1110
1020
923
828
733
633
519
405
291
160
146
131
116
101
85
70 | TABLE III DETERMINING PRODUCER'S RISK, Pp. USING TABLES OF THE INCOMPLETE GAMMA-FUNCTION $(\tilde{p}_{\tilde{t}}^+ = .07)$ | | | | § = ₹ | | | | 5 = .02 | | | | 79 = | .03 | | |---------------------|----------------
--------------------------------------|-------------------------------|---|---------------------------------|------------------------------------|--|------------------------------------|----------------|--------------------------------------|--------------------------------------|---------------------------|--| | | | N = 500
.01n | | N = 100 | 0 and over | N = 50
.02n | | N = 100 | 0 and over | N = 500 | | N = 1000 | and over | | 0
1
2
etc. | 52
54
73 | u =/e 乗 1
.3200
.3818
.4215 | Pp = I(u,e) .2733 .1030 .0385 | n u =/c45
33 .3300
56 .3960
76 .4388 | 1 Pp = I(u.c) .2803 .1090 .0426 | u =/c#1
.6400
.7637
.8429 | P _P = I(u,c)
.4721
.2936
.1815 | u =/c≩1
.6600
.7920
.8776 | .4825
.3083 | u =/ckl
.9600
1.1455
1.2644 | Pp= I(u.c
.6166
.4812
.3745 | .9900
1.1879
1.3164 | and over
Pp = I(u.c)
.6283
.5004
.3986 | The values of n used for finding u are either one or the other of the values given in the second and fifth columns depending on whether N = 500 or N = 1000 and over. TABLE IV DETERMINING THE MINIMUM RELATIVE AVERAGE COST OF INSPECTION PER LOT $(p_t=.03,\ \overline{p}=.01,\ N=1000)$ | 11 | 3 | P_{p} | N-n | P _P (N-n) | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | .9 | .8 | ., | | .5 | | .4 . | | | |--|--|---|---|--|------|------|------|------|---|-----|-----|------------|-------------------|-------------------|---------------------|------------------------------|-----------------------|-----------------------|-------------------------|-------------|-------------------------------------|--------|------------------------------| | 74
124
168
209
249
288
325
361
397
432
466 | 0
1
2
3
4
5
6
7
8
9 | .522
.352
.238
.160
.108
.0727
.0481
.0315
.0207
.0135
.00854 | 926
876
832
791
751
712
675
639
603
568
534 | 483
308
198
127
81
51.8
32.5
20.1
12.5
7.7
4.6 | 1223 | 1149 | 1075 | 1001 | | 928 | 804 | 580
702 | 556
534
545 | 366
336
330 | 315
305
311.0 | 294
280
282.2
292.5 | 255
253.4
260.0 | 230
224.6
227.5 | 195.8
195.0
200.6 | 182.
164 | .0
.5 130.
.5 128.
.3 131. | 1 92.3 | 56.2
52.2
50.9
51.2 | ## TABLE V ## MINIMUM AVERAGE COST SAMPLING TABLES (For Single Sampling Lot Inspection-Based on stated values of "Lot Tolerance Per Cent Defective" and Consumer's Risk = 0.10) Lot Tolerance Per Cent Defective = 2.0%. | Int S | 12. 0 | | turk. | 500 | | 1, | ,000 | | 2,1 | 000 | | 3, | ,000 | | 4, | ,000 | | 5, | 000 | 10 | ,0(| 20 | |--------------------|--|------------|-------|---------------------|------------|----|---------|--------------|-----|---------|------|----|---------------------|------|----|---------|------|----------|---------------------|--------------|-----|--------------------| | Process
average | | plan | | helstive
average | plan | | average | Samp
plan | 1 | average | plai | 1 | Relative
average | plan | V. | average | plan | l . | Neletive
average | Sem.
Plan | | Relativ
Average | | | retio | 11 | C | <u>cost</u> | <u>n</u> | C | COBIL | n_ | £ | _cost | 11 | _C | Cost | n | 0 | cost | D. | <u> </u> | cost | 11 | e | cost | | 0.1% | 10 | 103 | o | 1070 | 109 | 0 | 1180 | 113 | 0 | 1350 | 115 | 0 | 1460 | 115 | 0 | 1570 | 115 | 0 | 1680 | 195 | 4 | 2130 | | | 9 | 103 | 0 | 966 | 109 | 0 | | 113 | 0 | 1220 | 115 | O | 1350 | 115 | ŏ | 1460 | 115 | ŏ | 1560 | 195 | 1 | 1930 | | | 8 | 103 | 0 | 863 | 109 | 0 | | 113 | 0 | 1100 | 115 | 0 | 1230 | 115 | o | | 115 | O. | 1450 | 195 | 1 | 1740 | | | | 105 | 0 | 760 | 109 | 0 | | 113
113 | 0 | 991 | 115 | 0 | 1120 | 115 | 0 | 1220 | 115 | 0 | 1330 | 195 | 1 | 1540 | | | 6 | 103 | 0 | 657 | 109 | 0 | | 113 | 0 | 878 | 115 | 0 | 1000 | 115 | 0 | 1110 | 115 | 0 | 1880 | 195 | 1 | 1350 | | | • | 103 | 0 | 554 | 109 | 0 | | 113 | 0 | 765 | 115 | 0 | 887 | 115 | 0 | 995 | 195 | 1 | 1060 | 195 | 1 | 1150 | | | 4 | 103 | 0 | 451 | 109 | 0 | | 113
113 | 0 | 652 | 115 | 0 | 772 | 195 | 1 | 849 | 195 | 1 | 867 | 195 | 1 | 958 | | | 2 | 103 | 0 | 348 | 109 | 0 | | 113 | 0 | 539 | 195 | 1 | 636 | 195 | 1 | 654 | 195 | 1 | 672 | 195 | 1 | 765 | | | 2 | 103 | Q | 245 | 109 | 0 | | 188 | 1 | 407 | 195 | 1 | 441 | 195 | 1 | 459 | 195 | 1 | 477 | 266 | 2 | 563 | | | 1 | 103 | 0 | 142 | 181 | L | 194 | 188
188 | 11 | 219 | 195 | 1 | 246 | 195 | 1 | 264 | 266 | 23 | 281 | 266 | 2 | 297 | | | .9 | 103 | 0 | 132 | 191 | | 176 | | 11 | 200 | 195 | 1 | 227 | 195 | 1 | 245 | 266 | 2 | 254 | 266 | 2 | 270 | | | .8 | 105 | 0 | 121 | 181 | 1 | 159 | 188 | 11 | 181 | 195 | 1 | 207 | 266 | 2 | 225 | 266 | 2 | 888 | 266 | 2 | 244 | | | .7 | 103 | 0 | 111 | 181 | 4 | 140 | 188 | 1 | 162 | 195 | 1 | 188 | 266 | 2 | 198 | 266 | 2 | 201 | 266 | 2 | 217 | | | .6 | 103 | 9 | 101 | 181 | * | 182 | 188 | L | 144 | 195 | À | 168 | 266 | 2 | 172 | 266 | 2 | 175 | 266 | 2 | 191 | | | .5 | 169 | 4 | 89.1 | 181 | 4 | 104 | 108 | 1 | 125 | 266 | 2 | 142 | 266 | 2 | 145 | 266 | 8 | 148 | 266 | 2 | 164 | | | .3 | 169
169 | 4 | 72.2
55.3 | 181
181 | 1 | | 188 | 1 | 106 | 266 | Z | 115 | 266 | 2 | 118 | 266 | 2 | 122 | 266 | 2 | 138 | | | .2 | 168 | 9-1 | 38.4 | 191 | 4 | | 256 | 2 | 82.0 | 266 | 2 | 88.5 | 266 | 2 | 91.7 | 266 | 2 | 94.9 | 334 | 3 | 105 | | | *** | | 4 | | | 2 | 49.2 | 256
254 | 2 | 56.4 | 266 | 2 | 61.9 | 266 | 2 | 65.1 | 266 | 2 | 68.3 | 334 | 3 | 71.6
33.2 | | | Mark . • • • • • · · · · · · · · · · · · · · | 169 | 1 | 21.5 | 245 | 4 | 28.5 | 256 | Z | 50.8 | 534 | 3 | 34.7 | 354 | 3 | 35.2 | 334 | 3 | 35.7 | 554 | 5 | 3 | Lot Tolerance Per Cent Defective = 2.0%. | Process Cost
Average Ratio | N = 500 | 1,000 | 2,000 | 3,000 | 4,000 | 5,000 | 10,000 | |-------------------------------|--|------------|---|--|--|---|---| | 0.5% 10 | 103 0 1190
103 0 1090
103 0 984
103 0 881
103 0 675
103 0 572
103 0 366
103 0 366
169 1 236
169 1 221
169 1 204
225 2 186
225 2 186
225 2 141
226 3 94.4
276 3 66.8
323 4 36.7 | 415 5 94.6 | 113 0 1940
113 0 1830
113 0 1720
113 0 1600
113 0 1490
113 0 1380
188 1 1190
188 1 1190
256 2 754
319 3 450
380 4 414
380 4 376
380 4 338
380 4 338
380 4 300
439 5 258
439 5 214
439 5 170
497 6 121
554 7 68.7 | 115 0 2410
115 0 2300
115 0 2180
115 0 2070
195 1 1880
195 1 1690
266 2 1470
266 2 1210
334 3 906
400 4 537
400 4 497
464 5 451
464 5 451
464 5 451
464 5 358
527 6 256
589 7 203
589 7 144
710 9 79.6 | 115 0 2850
195 1 2720
195 1 2530
195 1 2340
195 1 2140
266 2 1890
266 2 1620
334 3 1330
400 4 990
464 5 575
464 5 529
464 5 529
464 5 482
527 6 423
527 6 327
589 7 273
589 7 214
650 8 151
710 9 83.4 | 195 1 3180
195 1 2980
195 1 2780
266 2 2570
266 2 2310
266 2 2040
334 3 1750
334 3 1420
400 4 1040
464 5 607
527 6 557
527 6 504
527 6 451
527 6 398
589 7 284
650 8 223
650 8 158
771 10 86.6 | 256 2 4120
266 2 3850
334 3 3540
334 3 3200
334 3 2870
400 4 2510
400 4 2110
464 5 1690
527 6 1230
589 7 693
589 7 634
589 7 575
650 8 515
650 8 450
650 8 365
710 9 319
710 9 248
771 10 175
830 11 94 | Lot Tolerance Per Cent Defective = 2.0%. | Frocess
Average | Cost
Ratio | - 500 | 1,000 | 2,000 | 3,000 | 4,000 | 5,000 | 10,000 | |--------------------|--|-------|---
---|--|---|---|--| | 1.0% | 10
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
2
1 | | 109 0 1570
109 0 1460
109 0 1360
109 0 1250
109 0 1140
109 0 1030
109 0 919
181 1 804
361 4 550
415 5 513
415 5 472
467 6 429
467 6 382
518 7 333
568 8 280 | 113 0 2410
113 0 2290
113 0 2180
113 0 2070
113 0 1960
113 0 1840
113 0 1730
188 1 1580
380 4 1300
609 8 856
609 8 775
664 9 712
664 9 645
718 10 574
771 11 499
823 12 418
875 13 333
977 15 238
1127 18 132 | 115 0 3120
115 0 3000
115 0 2890
115 0 2780
115 0 2660
115 0 2540
195 1 2410
334 3 2140
527 6 1740
710 9 1120
830 11 1040
830 11 957
889 12 869
948 13 776
1006 14 676
1123 16 571
1181 17 456
1352 20 329
1523 23 186 | 115 0 3800
115 0 3690
115 0 3570
115 0 3460
115 0 3840
195 1 3180
334 3 2900
464 5 2530
650 8 2000
889 12 1250
948 13 1160
1006 14 1060
1006 14 1060
1006 14 964
1065 15 861
1181 17 749
1238 18 629
1352 20 500
1466 22 361
1748 27 203 | 115 0 4490 115 0 4370 115 0 4260 115 0 4140 266 2 3940 334 3 3670 400 4 3310 527 6 2820 710 9 2190 1006 14 1350 1065 15 1150 1123 16 1040 1181 17 923 1295 19 801 1352 20 671 1409 21 533 1580 24 384 1804 28 215 | 334 3 7480
334 3 7140
400 4 6760
464 5 6310
527 6 5890
650 8 5200
710 9 4510
830 11 3730
1006 14 2790
1295 19 1660
1295 19 1660
1295 19 1530
1409 21 1250
1409 21 1250
1466 22 1110
1523 23 955
1636 25 795
1748 27 627
1860 29 446
2138 34 247 | Lot Tolerance Per Cent Defective = 10.0%. | AAGLEGE
TLOCORE | Cost
Eatlo | | | 500 | | 1,0 | 1 0 | | 2,000 | | | 5,00 | | 4 | ,000 | | | ,000 | elikalistikus myön elektrinin kunna ku
Kunna kunna ku | | 10,00 | 10 | |--------------------|--|--|---------------------|---|---|------------------------|--|---|--|---|---|--|--|---|--|---|---|---|--|---|--|--| | 5.0% | 10 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 5 2 1 | 23
23
23
23
23
23
23
23
23
23
23
24
26
27
27
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 0000001358222222222 | 446
424
402
460
460
460
460
460
460
460
460
460
460 | 23
23
23
53
53
53
80
105
142
201
201
236
236
259
270
293
327
372 | 0000224691441719022529 | 897
874
851
828
786
733
661
561
438
270
250
250
230
208
164
160
134
107
76.6
42.9 | 53
50
80
105
105
130
142
166
201
259
270
293
293
316
327
338
372
428 | 24
46
66
89
11
19
20
22
24
25
26
29
34 | 1490
1430
1350
1260
1150
1040
902
745
557
331
304
277
250
221
191
159
125
89.2
49.5 | 105
105
105
142
142
166
178
201
236
293
293
316
327
327
338
372
383
394
450 | 66
69
91
11
12
14
17
22
25
25
26
29
30
51
36 | 1850
1740
1640
1510
1370
1210
1040
844
626
384
335
306
274
241
207
173
136
96.2
52.9 | 130
142
142
154
156
190
201
236
270
327
327
327
327
327
327
327
327
327
327 | 8 9 9 10 113 14 17 20 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 | 2110
1970
1830
1680
1510
1340
1130
918
672
388
356
323
289
256
219
182
142
101
55.2 | 142
154
166
176
201
236
259
270
327
338
372
394
426
450
505 | 9
10
11
14
14
17
19
25
26
29
51
34
36
41 | 2290
2140
1980
1810
1620
1420
1210
973
707
405
371
338
338
308
265
226
185
148
104
56.8 | 201
201
236
236
259
270
293
388
394
394
394
420
450
450
478
505
560 | 14
14
17
17
19
20
22
25
31
31
36
36
36
38
41
46 | 28,60
2650
2450
2200
1960
1690
1420
1140
815
458
419
379
340
298
255
210
163
114
62. | c = Maximum allowable number of defective pieces per sample. Inspection cost rath = b/B = Cost of inspection per piece in the sample divided by cost of inspection per piece in the remaining of those lots that fail to be accepted by sample. Relative average COR (rounded to three significant figures) = Relative average cost of inspection per lot for product of product of product. The average cost of inspection per lot (in dollars) is obtained by multiplying the figure by E (expressed in dollars). Lot Tolerance Per Cent Defective = 10.0%. | Process
Average | Cost
Retio | | 300 | | 1,000 | | | 2,0 | 60 | | 5,00 | 0 | | 4,00 |)0 | | 5,000 | | | | .0,000 | |--------------------|-------------------------|---|---|--|--|---|---|---|--|--|-----------------------------------|---|---|---------------------------
---|--|---|--|---|--|---| | | 1987-954521 9.87-954521 | 23 23 25 37 37 647 112 112 113 1467 159 159 | 517
494
471
448
423
586
349
303
258
145
134
123
112
96.8
71.8
56.8
40.0
22.8 | 23
23
39
53
53
67
60
105
105
154
166
178
178
201
201
225
259 | 0 0 1 2 2 3 4 5 6 10 11 12 12 14 15 19 | 817
794
756
708
555
598
522
434
329
196
181
185
149
132
114
94.9
74.8
53.7
29.7 | 190
201
201
201
201
213
236 | 4
5
6
6
8
10
14
14
14
17
17
19 | 1220
1140
1060
981
881
776
671
544
400
233
214
193
173
132
109
85.8
60.7 | 93
105
105
105
118
130
142
154
178
201
213
225
236
259
270
282
316 | 5666789101214
1515161717192021 | 1430
1330
1220
1120
1010
886
750
604
442
252
232
210
189
165
142
118
91.7
64.7
35.4 | 105
105
118
130
142
154
166
201
213
236
236
236
236
259
270
293
327 | 6678991011415171719202225 | 1570
1460
1360
1280
1100
955
806
647
471
267
244
221
197
174
149
123
95.6
67.3
36.7 | 118
130
130
142
142
154
166
178
201
236
236
238
259
270
270
282
305
338 | 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1700
1570
1440
1500
1160
1010
852
681
489
277
253
229
206
180
154
126
98.9
59.6 | 154
166
166
166
178
201
201
236
270
270
270
282
293
305
327
338
361 | 10
11
11
12
14
14
15
20
20
20
21
22
23
25
26
28 | 2030
1880
1710
1540
1370
1180
981
779
555
308
281
254
227
199
189
140
108
75.3 | - 14 Lot Tolerance Per Cent Defective = 7.0%. | Process
Average | Cost
Ratio | | . • | 000 | | 1,00 | | | 2,0 | 00 | | 5,00 | | | 4,00 | | 5, | 000 | | | 10, | 000 | |--------------------|-----------------------|--|---------------------|---|---|---------------------|---|------------|---------------------|---|--|---------------------------------------|--|--|---------------------|---|--|---|---|--|--------------------------|--| | 2.0% | 10987654321 987654321 | 32
32
32
32
32
32
54
73
108
108
125
141
157
172 | 0000001104444556678 | 541
509
477
445
581
581
581
581
581
581
581
581
581
58 | 33
33
56
56
76
75
114
133
151
151
168
168
168
203
220 | 0001122345666777890 | 797
764
731
683
627
561
485
399
300
180
150
150
175
119
102
85.4
67.5
47.8
26.5 | 220
237 | 22255344577788990H2 | 1140
1060
986
905
810
715
610
496
566
208
191
174
156
158
118
97.5
76.4
54.0
29.5 | 95
95
95
95
114
133
151
168
186
203
203
203
220
237
254
271 | 3 3 3 4 4 5 6 7 8 8 9 9 9 10 11 12 13 | 1320
1220
1130
1030
920
806
686
553
398
227
208
188
188
147
126
104
81.4
57.2
31.3 | 95
114
114
114
113
151
168
203
203
203
220
220
220
227
254
254
288 | 544445667999000H284 | 1440
1340
1230
1120
1000
873
739
588
420
237
217
197
196
154
132
109
85.0
59.6
32.4 | 114
114
113
133
151
151
168
186
203
220
220
220
220
237
237
254
271
268 | 4
4
4
5
5
6
7
8
9
10
10
10
11
11
12
13
14 | 1540
1420
1310
1190
1060
925
774
610
441
847
226
204
162
160
136
112
67.3
61.5
33.3 | 151
151
151
168
168
186
203
237
237
237
254
254
271
288
304
321 | 89911128834
111128834 | 1850
1700
1550
1390
1220
1220
1220
226
295
273
250
226
201
175
150
123
95. | - 15 Lot Tolerance Per Cent Defestive = 7.0%. | Process
Average | Cost
Ratio | | = 5 00 | | | 1,000 | | | 2,(| 000 | | 3,00 | 0 | | 4,00 | • | | ,000 | | | 10,0 | 100 | |--------------------|-----------------------|---|--------------------|--|--|-------------------------|---|---------------------------------|--|---|---|---|--|--|--------------------------------------|---|--|--|---|--|--|--| | | 10987654321 987654321 | 52
52
52
52
52
54
91
141
141
157
157
172
188
203
218
261 | WEEGG4488GHOOOOOOO | 609
577
545
513
449
417
377
503
178
144
130
113
74.8
53.6
23.6 | 33
33
33
33
76
95
114
151
203
220
220
220
227
254
271
304
371
370 | 00000234690101121351619 | 938
905
872
839
806
748
669
572
449
275
255
255
211
187
162
136
108
77.8
43.5 | 271
271
304
304
337 | 13
15
15
15
17
17
20 | 1530
1450
1370
1270
1170
1060
924
756
569
337
310
283
254
224
194
161
128
90.4
50.1 | 95
114
114
133
168
168
186
220
237
304
304
304
337
337
357
37
37
37
37
386
419
467 | \$ 34
4 5 7 7 8 10 15 15 17 17 19 20 22 25 | 1880
1780
1660
1540
1400
1230
1060
862
637
370
340
310
278
244
211
175
137
97.5
53.5 |
114
133
168
168
168
203
220
237
271
304
337
337
337
370
370
370
370
370
451
463 | 4 5 7 7 9 10 11 15 17 19 19 22 24 25 | 2150
2020
1870
1700
1540
1360
1160
933
685
395
362
328
294
259
222
184
145
102
55.7 | 168
168
168
168
203
220
254
288
337
370
370
386
403
435
451
499 | 7 7 7 9 10 10 12 14 17 19 20 21 23 24 27 | 2350
2180
2010
1840
1650
1450
1230
987
723
411
377
343
306
269
231
192
150
105
57.6 | 220
220
237
237
254
271
288
304
337
386
386
419
435
451
451
483
515
563 | 10
10
11
12
13
14
15
17
20
22
23
24
26
28
31 | 2910
2690
2470
2230
1990
1730
1460
1150
828
465
426
386
344
302
257
212
165
116
62.8 | - 16 Lot Tolerance Fer Cent Defective = 10.0%. | Process
Average | | | | | | 1,000 | | | 2,0 | 00 | | 5,0 0 | | | 4,00 | Ć. | | 5,0 | OU | | 10, | 000 | |--------------------|-----------------------|---|---------------------|--|--|----------------------|---|--|--|--|--|---|--|---|---------------------------------|---|--|--|--|--|---|--| | 3.0% | 10007654581 907654521 | 23
23
23
23
37
37
37
64
89
89
89
101
112
112
112
112
124
146 | 0000111355555577780 | 468
445
428
391
361
321
281
241
181
103
93.6
84.7
74.8
64.5
53.3
42.1
30.2
16.6 | 39
39
39
53
53
53
67
80
93
105
118
130
130
142
154
154
178 | 11122234567788890012 | 703
684
625
574
521
468
403
329
245
142
132
120
107
94.1
67.4
53.0
57.6
20.7 | 53
57
80
80
80
93
105
130
142
142
154
154
166
166
178
201 | 3
4
4
5
6
6
8
9
10
11
12
12 | 947
894
816
745
665
585
495
394
289
165
151
137
122
107
91.9
76.4
59.8
42.1
22.8 | 80
80
93
93
105
105
130
154
154
154
166
166
178
178
201
213 | 4
4
4
5
5
6
6
8
8
10
10
10
11
11
12
14
15 | 1080
1000
921
839
746
646
541
436
313
177
162
146
131
115
98.4
81.2
63.4
44.5
24.0 | 80
93
93
105
105
105
130
130
154
166
166
178
176
190
201
213 | 45566688100111
1111212131415 | 1180
1090
997
898
793
688
583
462
332
185
170
154
137
120
103
84.8
66.1
46.0
25.0 | 93
105
105
105
105
130
130
142
166
166
178
178
178
190
201
213
236 | 5 6 6 6 6 6 8 9 11 11 12 12 12 13 14 15 17 | 1250
1150
1040
940
840
750
610
480
544
192
176
159
142
124
106
87.4
87.6
47.3
25.6 | 105
118
130
130
130
142
142
154
166
178
190
201
201
201
213
213
236
248 | 67888990
1021
13313
1414
1515
1718 | 1460
1350
1220
1090
963
832
690
541
385
213
194
175
156
156
156
115
94.8
73.5
51.4
27.5 |