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ABSTRACT

[t is frequently desired to determine the extent of agreement between two raters when the
data are measured on an ordinal scale. Five common measures of interobserver reliability
are the overall proportion of agreement. Cohen's kappa. weighted kappa, the

disagreement rate and the concordance between raters.

A number of studies have assessed interobserver reliability including ones which have
reservations about the measures of reliability and others which recognize several
paradoxes. [t is known that chance-corrected measures of agreement are prone to exhibit
paradoxical and counter-intuitive results. Also. if measures are to be adjusted for chance
agreement. then the guessing mechanism needs to be specified properly and precisely, as

the current assumption that all observations are guessed is simply impractical.

The tnadequacies of these measures are discussed and, in light of their deficiencies, new
measures are proposed. The assumption that some but not all observations are guessed is
used to develop three new measures of interobserver reliability, namely, partial-chance

proportion, partial-chance kappa and the expected-chance proportion.



Simulations are used to compare the finite sample performance of these measures. In the
simulations. the concordance between raters produced the best results. closely followed
bv partial-chance proportion. expected-chance proportion and partial-chance kappa. in

terms of bias. efficiency and the empirical distributions of critical ratios.

Recommended measures of interobserver reliability are the concordance between raters.
partial-chance proportion. expected-chance proportion and partial-chance kappa.
Although the concordance between raters is highly advised, its usage should be cautioned

as it is based on assumptions that are impractical in clinical practice.
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1

INTRODUCTION

Studies in medicine. epidemiology, sociology, psychology and psychiatry are conducted
in which two or more raters independently examine a group of subjects to determine
whether attributes are present or absent in each of the subjects. The subjects may be
human or animal subjects. written materials, X-rays, etc. The usual goal of such studies
is to evaluate how well the raters identifv the attributes for any variable under
investigation. Since the raters will invariably make some incorrect assessments.
quantification of rater performance becomes an important statistical concern. When the
set of attributes possessed by each subject is known without error. this becomes an issue
of validity rather than agreement. However, in some situations an absolute standard is
not known. and hence measurement of the extent of agreement among the different raters.

interobserver agreement. is of primary interest.

The reliability of a classification procedure refers generally to the degree of
reproducibility attained in repeated use of the procedure. Ideally, reproducibility would
be measured by repeated evaluation of the same subjects by the same raters on different
occasions. However. since a rater-subject pair may not be usually be used more than
once, most studies designed to measure the reliability of an instrument employ a large

group of subjects, who are considered representative of a population of interest. The



subjects are then evaluated by a small group of raters, and the agreement displayed by the
raters in classifying the subjects is used as a measure of reliability of the classification
instrument. If agreement among the raters is high. then there is a possibility that the
ratings do in fact reflect the dimension they are purported to reflect. If their agreement is
low. on the other hand. then the usefulness of the variable rated is severely limited. Itis
futile to ask what is associated with the vanable in question when one cannot trust those

ratings.

In psychological investigations it frequently happens that two or more raters interview the
same sample of subjects for the purpose of allocating them to various categories (Cohen
1960). For example, the raters may be clinical psychologists, the categories
schizophrenic. neurotic or brain-damaged. and the subjects psychological test protocols;
or the raters may be social psychologists. the categories various types of leadership, and
the subjects small groups. etc. [n such situations. one would desire assurance that the
diagnosis given a patient is valid. i.e.. actually serves the purpose intended. In the
absence of ultimate criteria for validating psychological diagnosis. the question arises as

to the degree of agreement between the raters.

The management of the comatose child is determined by the assessment of the level of
consciousness and brainstem function (Gordon er al. 1983). A wide range of conditions
may be associated with coma or impaired consciousness. Apart from acute brain damage,
there are metabolic disorders and therefore, it is vital to be able to assess and to record

changing states of altered consciousness reliably. Unfortunately, the level of
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consciousness cannot be directly measured and its estimation requires the interpretation
of several clinical signs. The grouping of such signs has brought forth different tvpes of
scales. and some have included brain stem signs (Born ez a/. 1987). The three most
commonly used coma scales in unconscious children are the Adelaide Scale. a pediatric
modification of the Glasgow Coma Scale (Simpson and Reilly 1982) (Table A-1), the
Jacobi Scale (Table A-2), and the 0-IV Scale (Table A-3). Agreement among different
observers is an indispensable condition for the validation of an evaluation scale of
consciousness disorders. Assessment of interobserver agreement is desirable since
important judgmental decisions are made on the basis of the clinical information. and if

the data are to be used in clinical research.

Necrotizing enterocolitis (NEC) is the most common acquired gastrointestinal emergency
in the neonatal intensive care unit and is suspected when gastrointestinal signs and
symptoms predominate (Kliegman and Fanaroff 1984). It occurs mainly in premature
neonates. predominantly in the first two weeks of life. the incidence between | and 5
percent of admissions to the neonatal intensive care unit. Overall, NEC has a mortality of
20 to 40 percent. [ts pathogenesis is still incompletely understood and there is no clinical
sign or laboratory test that contfirms the diagnosis. The interpretation of the abdominal
radiograph is the most important factor in making a definitive diagnosis of NEC. with
management strategies generally guided by NEC staging based on clinical and
radiographic features (Bell er al. 1978). Although correct interpretation of abdominal
radiographs is the single most important factor in diagnosing NEC, a wide range of

interobserver variability in their interpretation has been suggested (Mata and Rosengart
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1980: Markus er al. 1989). Clearly. observer variation is an important consideration in
the interpretation of abdominal radiographs as the signs and diagnoses for which

agreement is poor cannot be considered reliable.

A number of studies have assessed interobserver reliability (Shinar er al. 1987: Solari er
al. 1989) including ones which have reservations about the measures of reliability
(Kupper and Hafner 1989; Posner er al. 1990; Yager. Johnston and Seshia 1990) and
others which recognize several paradoxes (Feinstein and Cicchetti 1990; Byrt, Bishop and

Carlin 1993).

Numerous measures of interrater agreement have been used to quantify the degree of
concordance among two raters. but it should be clear that there must be more to the
measurement ot interrater agreement than the arbitrary selection of an index of
agreement. Five common measures of interobserver reliability are the overall proportion
of agreement, Cohen’s (1960) kappa. weighted kappa (Cohen 1968), the disagreement
rate (Teasdale. Knill-Jones and Van der Sande 1978) and the concordance between raters
(Kupper and Hafner 1989). This thesis will evaluate the five common measures of
interobserver reliability and propose new refined measures. These measures will be
described, contrasted and their properties illustrated in order to aid users with
interpretation and selection. The reliability of these measures can be studied through

simulation techniques.



2

LITERATURE REVIEW

Occastonally, the £ x k table of joint categorical assignment frequencies of two raters
(where each rater has made assignments to the same 4-level nominal scale) has been
treated as a contingency table. This having been done, many investigators have
computed " over the table for use as a test of the hypothesis of chance agreement. and
some have gone on to compute the contingency coefficient C as a measure of agreement
(McNemar 1962). The defect of 7 in this context. and therefore of C. is that it indexes

assoctiation and not necessarily agreement. which is the special kind of association of

interest in reliability.

The simplest and most frequently used index to measure interobserver agreement has
been the overall proportion of agreement, i.e., the ratio of the number of cases in which
the raters agreed to the number of cases. This index suffers in that it includes agreements

which can be accounted for by chance.

Different opinions have been stated on the need to incorporate chance-expected
agreement into the assessment of interrater reliability. The presumptive reason for the
chance correction is that the measuring instruments are often human observers, rather

than inanimate technologic procedures, and that the subjective responses of the raters



may sometimes agree by chance. Cohen’s (1960) kappa adjusts for chance-expected
agreement. and can be interpreted as the proportion of agreement after chance agreement
is removed from consideration. This apparent virtue of the kappa coefficient has made it
increasingly popular in studies of interobserver reliability. but many investigators are not
aware of an important disadvantage, kappa is affected by prevalence. leading to two
paradoxes in the kappa coefficient (Feinstein and Cicchetti 1990). The use of these
particular measures in practice can be misleading as difficulties with their use and

interpretation have been cited.

The development of weighted kappa (Cohen 1968) is motivated by studies where the
relative seriousness of each possible disagreement could be quantified. [t can be
interpreted as the proportion of weighted agreement corrected for chance. The weights
assigned are an integral part of how agreement is defined and therefore how it is
measured with weighted kappa. Cohen’s (1960) kappa makes no such distinction,
implicitly treating all disagreement cells equally. Weighted kappa has been advocated as

one of the preferred methods for the analysis of agreement data.

Properties of kappa and weighted kappa. in particular. approximations of their standard
errors, have been given by Cohen (1960, 1968) and Everitt (1968). However, they are in
error. having been derived from the contradictory assumptions of fixed marginal totais
and binomial variation of cell frequencies. The errors seem to be in the direction of
overestimation, so that their use results in conservative significance tests and confidence

intervals. Everitt (1968) derived the exact variances of kappa and weighted kappa when



the parameters are zero assuming a generalized hypergeometric distribution. Valid
formulas for the approximate large-sample variances are given by Fleiss, Everitt and

Cohen (1969), which do not require such assumptions.

The disagreement rate incorporates the magnitude of disagreement, and was first
proposed in an article by Teasdale. Knill-Jones and Van der Sande (1978). It basically
takes account of differences between raters, although it does not adjust for agreement
expected by chance as in kappa. It has been previously suggested (Yager. Johnston and
Seshia 1990) that the disagreement rate and kappa statistics may provide different yet
complementary information about interobserver agreement, where the former provides a
better measure of the degree of disagreement and the latter corrects for chance-expected

agreement.

For assessing the extent of interrater agreement for multiple (nominal) response data,
Kupper and Hafner (1989) denived a two-rater concordance statistic, the concordance
between raters. This statistic is comparable to kappa in that there is an adjustment for
chance-expected agreement. however, the assumption in the guessing mechanism differs
between the two statistics. The adjustment for chance-expected agreement in the
concordance between raters is based on the assumption that the observers are guessing by
giving every one of the categories an equal chance of being observed, whereas the
adjustment in kappa uses the marginal totals in the familiar approach to contingency
tables. Furthermore, the adjustment made in either coefficient is based on the assumption

that all subjects are guessed.



A number of assumptions underlying the use of standard statistical tests of reliability may
not be valid when applied to many rating scales, as convincingly argued by Hall (1974):
(1) scores are distributed normally. The distribution of scores obtained will depend on
the degree of handicap in the rated sample, which will often contain many grossly
abnormal individuals: (2) agreement is meaningful. For agreement to be a useful measure
it should take account of both partial agreement and the total score distribution; (3)
chance agreement is negligible. There is a certain level of agreement between two raters
on an item that could be attained by chance alone. If one category of an item is
consistently rated more frequently than others then the overall probability of agreement
by chance will be higher; (4) total scores are meaningful. While total scores are normally
more stable than item scores. they may lead to false results in calculating interrater
reliability. Total score reliabilities may therefore give spurious values, so that the
reliability of the individual item scores making up the total score should be examined;
and (5) mean scores of both raters are similar. Correlation methods fail to take account of
differences between the means. so that apparentiy good reliabilities can be obtained with
significant differences between sets of scores. as well, the addition of a constant in order
to correct one set of means will not correct the skewed form of score distribution that may

be associated with such differences.

Hall (1974) states. further. that the test of choice for calculating reliability with rating
scales should: (1) be distribution free; (2) allow credit for partial rater agreement; (3)
correct for rater agreement due to chance alone; (4) make use of individual items in the

rating scale; and (5) correct for differences in rater mean scores. One method which



appears to meet these criteria satisfactorily is weighted kappa. introduced by Cohen
(1968), however, Graham and Jackson (1993) identified serious problems with the use of
weighted kappa. suggesting that weighted kappa behaves more like a measure of

association than an index of agreement.
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STATEMENT OF THE PROBLEM

Chance-corrected measures of agreement are prone to exhibit paradoxical and counter-
intuitive results when used as measures of reliability. [t will be demonstrated that these
problems arise with both kappa and weighted kappa, and that the correction for guessing
(knowledge-based decision making under uncertainty) needs to be carefully considered

because these statistics change dramatically with this assessment.

The adjustment made for agreement expected by chance alone requires the guessing
mechanism to be specified precisely. There is an implicit assumption in kappa. weighted
kappa. and the concordance between raters that some rater’s scores are based on perfect
knowledge. Other rater’s scores on a subject. based on less than perfect knowledge, are
then guessed at with some of the guesses being correct (raters agree) and some incorrect
(raters disagree). The adjustments in these statistics then are computed based on the
assumption that all subjects are guessed, rather than assuming that only a subset of them
are guessed, with the statistics differing in the assumptions for the probability of falling in

the various categories.

It is desired to evaluate the five common measures of interobserver reliability, to

determine the conditions under which the statistics can be readily used, and the

10



limitations. Based on the failings of these current statistics. new measures of
interobserver reliability are proposed in this thesis. These newly refined measures are
induced by the assumptions that only some observations are subject to classification by
chance, and secondly, the information of the number of disagreements arising can be used

to determine a likely value for the number of subjects guessed.

Computer simulations are used to compare the finite sample performance of the measures
of interobserver reliability. [n particular, simulation is used to achieve two objectives:
first. to evaluate the accuracy of the statistics and their variances: and second. to compare
the empirical distributions of provided critical ratios under the hypothesis of no

association between the two raters’ examinations with the theoretical normal distribution.
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4

METHODOLOGY

4.1 Examination of the Subjects

Consider a study in which two raters. say rater A and rater B, independently examine
each of n subjects. Assume that each subject is examined by the raters within a short
period of time (minimize the possibility of clinical change in the interval) and that the
raters did not see each other examine the subjects (minimize any bias involved during the
course of an examination). Following examination of the rth subject, r =1, 2,....n, each
rater must decide which one attribute. from & 2 2 mutually exclusive and exhaustive

(categorical) attributes for any vartable under investigation. best describes the rth subject.

4.2 Symbols and Notation

Let n, denote the number of subjects assigned to category / by rater A and to category j

by rater B; let

k
n = Z n; and n,= Z n;
=1

s=1
denote the total number of subjects assigned to category / by rater A and to category J

by rater B, respectively. The resulting frequencies can be arranged ina k x &

k&

contingency table with cell frequencies n,; and ZZ n,=n:
1=l =1



Rater B
Rater A 1 2 k Total
1 my " M m
2 n., n., ce N, s
k &3 M2 Ry 1
Total n, n. . n, n

The n subjects will be regarded as a sample of size #» from some target population
according to some characteristic of interest. Under the hypothesis of rater independence

and. conditional on the marginal totals. the distribution of a single », is hypergeometric

(Eventt 1968)

(n. '\[ n—n, )

] ! t J

1 jln, —n,

\’-l)( ;TN _ (1)
\

Therefore, the null expected value and null variance of n, based on (1) are. respectively,

non, n(n—n)n (n—n,)

E.(n,) =—'n— and Var,(n,) = Py

Also the sum of any number of the n, is a hypergeometric variable (Everitt 1968), and
using this fact the null covariance of any two of the #, can be derived. The null

covariance for any two elements in the same row. in the same column, and for any
diagonally opposed elements has been shown by Everitt (1968) to be. respectively,

-n.n n(n—n)

n (n-1)

Covy(n;.n,) = . J =L

13



-n, n, n,(n—n,)

n(n-=1)

Covo(n“.,n”) = R [ %5,

non.n n,

Cov,(n;,n,) = ———"—. (=S, j=I.
n(n-1)

Let
k k
I,=> n, and T,.=>> wn,
=1

denote the total number of agreements observed and the weighted total number of

agreements observed. respectively. The w, are a set of weights indicating the level or

amount of agreement. These weights are arbitrary and chosen by the experimenter.

Using the values derived for the null variances and null covariances of the #,. then 1t

follows that

3 k k& 1
{Z n(n—n_)n (n—-n) + ZZZ non n.n.y,

n:()l—l) e=i 1=l j=

‘ar(T)) =

n(n—n)n (n—n)

Var(T, )= Z Z W

- + 25w, w, Cov,(n,,n,).
=t =l n ('1_1)

where S denotes the appropriate summation over the whole table.

The argument for finding the expected values is the same as that used in the familiar

approach to contingency tables (Bhattacharyya and Johnson 1977). Then,

k k k
n, n, i J
Tr - z . - and Tm = : :: : ‘Vfi .

14



the total number of agreements expected by chance alone and the weighted total number

of agreements expected by chance alone. respectively.

4.3 Five Common Measures of Interobserver Reliability

[n a sample of n subjects. a number of agreements will arise based completely on perfect
knowledge, i.e.. guessing will have played no role in these ¢ agreements. The ratio of
these two numbers gives the true proportion

(&
P=—. 0<c<n.
n

where ¢ is generally unknown.

Overall Proportion of Agreement

The simplest agreement index is based on the proportion of subjects classified into the

same category by the raters. [t is given by

P =

g

5 L

n
and is known as the overall proportion of agreement. This statistic sutfers in that it
doesn't take into account agreements arising from guessing, nor does it reflect the

magnitude of disagreements which could be close.

Kappa

-

Correcting P, for agreement attributable to chance yields Cohen’s (1960) kappa

coefficient, defined by

15
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Paradoxical Results Produced bv Kappa

Although & is the most popular summary measure of agreement between two raters on a
nominal scale, Feinstein and Cicchetti (1990) identified two paradoxes associated with its
interpretation. These paradoxes arise because of the decision to impose a correction for
chance agreement. making the assumption that the expected values of agreement should
depend on the marginal totals. However, these marginal totals depend on the prevalence
of the target trait and on the validity of the raters under study. The dependence of < on
prevalence can be explored, whereas. the investigation of the agreement of the two raters
within the purview of validity will not be pursued further as it is beyond the scope of this

thesis.

The first paradox of & is that a high value of P. can be drastically lowered by a

substantial imbalance in the marginal totals either vertically or horizontally. The second
paradox is & will be higher if the imbalance in the corresponding marginal totals is

asymmetrical rather than symmetricai.

Weighted Kappa

When the concept of full credit for complete agreement and varying amounts of partial

credit for different off-diagonal (i # j) cells seems natural in a given context, agreement

is scaled so as to yield a ratio scale of positive agreement weights, w,_, ranging down

[T
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from some convenient maximum value assigned to the diagonal (i = ;) cells representing

complete agreement. Several authors have suggested alternative ways of determining

weights. Fleiss and Cohen (1973) suggested the squared error weights

w,:l—([—j)‘

. -, i.j=1.....k,
J PR J

and Cicchetti and Allison (1971) suggested the absolute error weights

Weighted kappa (Cohen 1968) has been used as an agreement index for ordinal data and
is defined by

— T:xu - T:-\.
nT.

Using the approach in Section 4.2. Everitt (1968) derived the exact null variances of £

and A, to be

Var, (& f n(n—n)n (n-n )+ 2 n.n n_ n 1 (2)
(A7) = n (n—l)(n—T) Z ( yn. ) ,2,:; P

<y

and

. .n (n- n;)nj(n—nl,)
Var,(K,) = {lel n*(n-1) (3)

+ 25w, w, Cov,,(n,./.,n“)},

respectively, where S denotes the appropriate summation over the whole table. Fleiss,

Cohen and Zveritt (1969) found the large-sample variances of & and &, to be estimable

by
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A . l 3 .
Var(k) = —— JA=p)=(p,+p, N1=p,)]
prO {gp[ p)—(p,+p p.)]

k k
F0=p,0 Y pp.+p,) - (pop.=2p.+p,) }
=1 =1

and

A
Var(/%“)=;“———{zz pilw,(1=p)=(Ww, +Ww =p)T
=t =1

- (p,p. —2p. +po)‘},

respectively. and under H, : x4 =0, the estimated variances of £ and &, are.

respectively.
A
Vary(#) = ——— {3 p. p.ll~(p, + p. I}
n(l—p,) oy
Ca o )
> p.op,(p,+p, ) - pl}
=l 4=l
’l
and
A . -\
Var, (K, )= —— 1= {ZZ p.p, fw, =(w +w )]' - ply. (5)
n =l =l
where

k
i = I _L ——‘ W, ! and w w
pti'_ ng_ !py— ‘pa— ) t— ° = ‘(Up '_ “p"

n n n n i=1
An approximate significance test of . i.e.. an approximate test of H,:x =0 versus

H, : x>0, is accomplished by referming the critical ratio

K

VVo(x)

Z(k) =
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to the standard normal distribution. where ¥ (£) can be replaced by either (2) or (4). A
significance test of &, is defined analogously. £ and 4, along with their respective

vanances are undefined when there is perfect agreement between the two raters. i.e.,

when all observations fall in a main diagonal cell.

The value of &, and its variance can be greatly influenced by the choice of weighting

system. An obvious consequence of this is that the weights. however determined. must
be set prior to the collection of the data. [n the event that investigators use different

weighting systems. comparison of &_'s from different studies would prove difficult.

Under the squared error weighting system. Graham and Jackson (1993) suggested that

x, should be regarded as a measure of association rather than an index of agreement.
Amongst tables with the same marginal distributions. &, is dependent only on the overall

correlation between row and column classifications and is not directly dependent on the

propensity for exact agreement (data concentrated on the diagonal). Hence £, can

appear insensitive to differences in P, and large values of &, can be observed even when

-~

P is low.

a

The Disagreement Rate
Disagreements occur when two observers report different findings after examining the
same subject. The frequency with which observers are in disagreement is a measure of

the lack of reproducibility of the particular observation under test. First proposed in an
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article by Teasdale, Knill-Jones and Van der Sande (1978), the disagreement rate takes
into account incorrect responses (disagreements). [f on a subject. the first rater observes

category ¢ and the second rater records category /. then the disagreement score for that

observation is {i — Jj} If we use frequency counts »,, then

A

num = 2i nﬁli - j!. 6)

= =l
An adjustment to this absolute difference is made because differing scores lead to

differing ranges. To standardize the change in scale of the absolute differences the term

L A
den =23 n [maxid, —1l.k-d,}], where d, = (i +)/2. (7)

=l =i

is calculated. The disagreement rate is then the ratio of (6) and (7), or

« k

ZZ n,ji = jl
D - - - =l =1 .
2 n,max{d, —1.k—d }]
1

1=l =

D has arange of 0 to 0.5. with a lower value usually associated with a relatively larger
kappa value. A relatively low kappa value despite a relatively low D is a reflection of
the different properties between these two measures. The low D suggests that the

disagreement was relatively small. whereas, a low kappa value does not take this into

account but implies that chance played a major role.

The Concordance Between Raters
When determination regarding the presence or absence of exactly one nominal attribute is

sufficient to describe each subject, the supposed measure of interrater agreement is the



kappa statistic. In Cohen’s (1960) kappa, the adjustment for chance-expected agreement
depends on the marginal totals. however, this reliance on the marginal totals is not

necessary.

Kupper and Hafner (1989) have developed a method for assessing the extent of interrater
agreement when each unit is to be characterized by a (possibly empty) subset of £ =2
distinct nominal attributes. Except when 4 =2 and the two attributes refer to the
presence or absence of a single nominal trait. the & distinct nominal attributes should be
defined so that the selection of any one attribute does not preclude the possible selection

of any other.

Let ¢ ¥ denote the subset of attributes for the ith subject chosen by rater A, and let
Card(c ¥ ) = 4. 0< 4 <k. be the random variable denoting the number ot elements in
the set ¢ #.. The set ¢J and its cardinality B,. 0< B < k. are defined analogously for

rater B. Based on these definttions. it is informative to depict the data for the ith subject

in the following table:

Rater B
Rater A '€ (-;',7' Total
cw Card(c ¥, N (7)) Card(c#, N cJ)) 4
= 'X'l' = '4I - ,Y‘
o Card(c ¥, N (3) Card(C¥, N (3)) P
=B -X =k-4-B+X
Total B, k—B k




From the above table. the random variable .X, can be seen to be the number of attributes
for the ith subject chosen by both raters. where max(0. 4, + 8, —k) <.X, <min(4,, B)).
Kupper and Hafner (1989) consider the agreement proportion

X

i

- max(.4,B8)’

Y
L

and define the overail concordance between raters A and B to be the average of the .7,'s,

==Y i

n 1=l
[f both raters choose their subsets of attributes for the ith subject completely at random.

then. conditional on 4 =¢, and B, = b, the null distribution of .X| is central

hypergeometric (Johnson and Kotz 1969)
a \(k-aq,
_\x J\b-x

where max(0,u ~b, —k) < x <min(a,.b,). This conditional model for chance
agreement on the /th subject derives from an underlving unconditional model which
assumes that 4, ~ binomial(k.#, ) and B, ~ binomial(k, &, ), and that 4 and B, are
independent. Under the assumption of random attribute selection, conditioning on the

marginal frequencies in the previous table eliminates the nuisance parameters ¢, and &,

from consideration. This approach to correction for chance agreement is based on the
underlying assumption of rater-specific a priori equal probabilities of attribute selection

(i.e., for the ith subject. rater A has the same probability &, of choosing each attribute).

(8]
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Then. since

E(#)=masb) g E,,(/‘r)=—ll—c-z min(a,,b.) = z,,

k n 1=l
the concordance between raters (Kupper and Hafner 1989) is given by

T-x,

C\B = (&)

1— Ty )
When each rater selects only one attribute to describe the ith subject. a, =4, =1 forall /,
and Equation (8) simplifies to

. kP, —1
Co =7 9

Considering the special case when a, =5, =1 for all /, the estimated large-sample

variance of C,, given by Kupper and Hafner (1989) is

AB &
AL Tpa_p
Var(cm):( k J[a(l PJ)}

(k-1 n
and a significance test of C,,, i.e..atestof A,:C, gz =0 versus H,:C,z>0. is
accomplished by referring the critical ratio

Cis

JVar,(C )

to the standard normal distribution, where the null variance of C,g is

Z(C5) =

1
ntk=1"

Va'f)(ém) =

When the observed marginal proportions for the attributes selected by raters A and B are
exactly the same. then (9) is always at least as large in value as the kappa statistic. The

two measures are equal when each rater chooses each attribute an equal number of times,
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i.e.. for data in the format of a k x & frequency table. the marginal proportions are all 1/4.

In general. however. Equation (9) can be smaller in value than kappa. The concordance

between raters does not account for the magnitude of disagreements.

4.4 Newly Refined Measures of Interobserver Reliability
Three new measures of interobserver reliability described as alternatives are now
proposed. These new measures represent the unique contribution of this thesis to the

furthering development and utilization of measures of interobserver reliability.

An alternative approach is to assume that in a sample of n subjects. a certain number of
observations will be guessed. For a certain number of subjects, c. there is no guessing
involved and the rater’s examinations result in agreement for each subject. [t is
envisaged that the information about the number of disagreements arising can be used to
determine a likely value for the number of observations guessed. Three different
strategies of differentiating between those observations that are guessed and those that are
not guessed (based completely on perfect knowledge) are developed. leading to new
measures of interobserver reliability. These three new measures are: (1) partial-chance

proportion: (2) partial-chance kappa: and (3) expected-chance proportion.

Partial-Chance Proportion

Define a concordance type statistic in its general form to be

Y= £, (10)
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where 7, is the number of guessed observations in a sample of » subjects. In asample

of n subjects. assume that there are G guessed and n — G nonguessed observations with

the chance of agreeing in the guess of p,. With some reasonable value for p, we can

estimate G and use this to adjust the number of correct responses similarly to before.
The information about the number of disagreements. .Y. can be used to give the most

likely or maximum value for G. The distribution of .Y is

/
f_\,(_r;g,p):LgJ(l—pa)‘pﬁg”. 0<x<n x<g<n 0<p, <l (11)
x

Now. if we observe x disagreements from a sample of n subjects. we are then primanly
interested in determining the most likely or maximum number of guessed observations.

g. Consequently,

folxig-Lp)sfu(xg.p)2 fe(xig+lp,), for 0<p<L (12)
which leads to the inequalities

X ~ X
-l<g<

. (13)
I-p, l-p,

where the difference in the bounds on the inequality is one. Now the optimal value of G

is the minimal value of g from (13) and the boundary inequality g < » from (11). [t may

not be unique. There are two solutions for g when 1/(1- p,) is an integer.

Since x=n-T,, and if p, =1/k (equal weighting), then g =k(n-T,)/(k -1).
Replacing n, by g in Equation (10) leads to the partial-chance proportion

P =kT0—M

. 14
ok -1 (14)




Partial-Chance Kappa

With perfect agreement, the number of concordant instances would be 7. Similar to the

strategy used in P,_, since there are g guessed observations, of which a result in

ol
agreement. the number of observations that are nonguessed is simply n — g, whereas the
maximum number of observations excluding those that are guessed correctly is n —a.

The general form of partial-chance kappa is defined to be

i =178 (15)

* n—a
Again.since x =n—T,, and if p, =1/k. then g =k(n-T,)/(k —1). Also, since
a =g — x, Equation (15) reduces to

. kT —-n
=2 = 16
Foe mk—-2)+T, (16)

Expected-Chance Proportion

Consider a random experiment consisting of repeated independent Bernoulli trials where

p, 1s the probability of disagreement between two raters at each individual trial (subject).
Suppose that a number of subjects are independently examined by two raters and. assume
for a moment. that the exact number of subjects rated is unknown. The information about

the number of disagreements, .Y. resulting from these examinations can be used to

determine the number of observations that were guessed.



Let the random variable /” represent the number of trials (subjects) that were guessed.
resulting in x disagreements. [f x disagreements are observed and. for some constant

b, the distribution of V" is

vy o
f‘.(v;x.p)=b;l\r}pd (1-p,)"". v=x.x+1l....0<p, <1.

[t can be shown that

x+1

Pa

E(WV)= -1.

Therefore. an estimate of the number of guessed observations is

’;1.=.r+1_1‘

P4

and. if p, =1-1/k, then it follows that

. ke +1
n = .
T k-1

The assumption made during the experimental set-up that the number of subjects
independently examined by the two raters is unknown shall now be relaxed. In order to
compare the various measures of interobserver reliability via computer simulation. each

measure is computed based on a fixed number of subjects. n, and hence x=n-T,.

Replacing n, by s, in Equation (10) leads to the expected-chance proportion

P'c:kl;—n—l
° n(k-1)

which can be rewritten as



where C s refers to Equation (9). Using the approach of Everitt (1968) in Section 4.2,

the exact null vanance of P_ is

Va"g(éc) o [)(k-l) {Z n{n-n)n(n—n)+ ’Z; h,n n.n /}’

i<y

and a significance testof P, i.e..atestof H,:P_=0 versus H, : P_> 0.

accomplished by referring the critical ratio

Z(P,)= P

\/lfarj(P )

to the standard normal distribution.

The Concordance Between Raters: Revisited

One may arrive at the concordance between raters another way under seemingly different
conditions. Consider a population in which each subject is examined by two raters

according to some characteristic of interest. with some mean value of disagreements. 4.
Assuming that the population of subjects. .V, . is comprised of C, perfect knowledge-
based (nonguessed) agreements. and .V, — C, guessed observations, and the chance of
being in disagreement in the guess of p,. then
(Ny-Cop, =1,
Furthermore. from a sample of n subjects. let the random variable .Y represent the

number of disagreements between two raters. Assuming that there are c, (unknown)

perfect knowledge-based agreements. and the chance of being in disagreement in the



guess of 1 —1/k. then the number of observations that are guessed (# —c¢,) may be
estimated. Since.
E(X)=(n=c,)(1-1/k),

and if x disagreements are observed. where x =n—T, then it follows that.

i.e., 71, is an estimate of the number of guessed observations. Replacing n, by r , 1N

Equation (10). it can be shown that

n —ng _

AB?
n

where C'AB refers to Equation (9).

4.5 Simulation Method

All simulations are done on a 166 MHz PC using FORTRAN 77 with use of a random

number generator adapted from a FORTRAN version of the Long Period random number

generator (Press er al. 1992). This routine is based on the simple combination method of

L’Ecuyer (1988) which efficiently combines two multiplicative linear congruential
generators so as to obtain a generator whose period (= 2.3x10'*) is the least common

multiple of the individual periods. A shuffle is also implemented in this routine to
remove low-order serial correlations. the shuffling algorithm is due to Bays and Durham

as described in Knuth (1981).



The simulation technique employed to study the reliability of these measures consists of
four parameters: (1) the number of subjects. n, sampled; (2) the number of perfect
knowledge-based (nonguessed) agreements. c. in a sample of n subjects; (3) the number
of categories of classification. £. on a given scale of measurement: and (4) an indicator
as to the prevalence of the target trait. Prevalence of the observed entity (d =2) is
demonstrated by ¢ subjects observing the first category of the classification scale.
otherwise. ¢ will be evenly distributed amongst each of the categories along the main

diagonal (d =1). The underlying marginal probabilities (4., #,;i. j =1...., k) used to
generate the guessed observations in a set of tables are uniform marginals (g, = ¢, = /k,

forall i and j).

Simulations were performed to compare the finite sample performance of the measures of
interobserver reliability. The sample sizes #n examined were 15 and 50, and the number
of perfect knowledge-based agreements ¢ was varied over the interval [0.n]. The
number of categories of classification & was chosen to be 3 and 5. Under each
combination of the parameters considered. 10 replicates of & x & tables were generated
at random by a program written in FORTRAN 77. For each table. various sample
measures were calculated: (a) for each measure of interobserver reliability, values of
interobserver reliability; and (b) for provided measures of interobserver reliability, exact

null variances, null and nonnull large-sample variance estimates. and critical ratios.

A certain number of the generated tables were discarded whenever any one of the sample

measures was found undefined. Based on the nondegenerate samples. outcome measures
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for the simulations include the mean and empirical variance of each measure of
interobserver reliability. which relates to bias and efficiency, respectively. For provided
measures, the means of the large-sample variance estimates are compared to the empirical
variances. Also. for provided measures. the sampling distributions of the critical ratios

provided for #. £, C,, and P“ are studied by simulation under the hypothesis that the

assignments by the two raters are independent. The empirical distributions of these
critical ratios are compared with the theoretical normal distribution in terms of the mean,
variance, skewness and kurtosis. for which the theoretical values are respectively, 0. 1. 0

and 0. and in terms of one-tailed areas.

The results that follow are based on the conditional distnibution of the estimates.

conditional on nondegenerate findings.
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RESULTS

Kappa values range from -1.00 to —1.00: minus values reflect less than chance agreement,
positive values suggest greater than chance agreement and a value of 0 indicates chance
agreement (Cohen 1960). Landis and Koch (1977) provided the following labels to the
corresponding ranges of Kappa: less than 0 indicates poor agreement: O to 0.20. slight
agreement; 0.21 to 0.40. fair agreement: 0.41 to 0.60. moderate agreement: 0.61 to 0.80,
substantial agreement: 0.81 to 1.00. almost perfect agreement. These divisions are clearly
arbitrary, but now generally accepted. guidelines for interpreting kappa statistics in

clinical studies.

5.1 Degenerate Samples

Table B-1 shows the number of degenerate samples at different combinations of n. ¢, &
and d. When d =1 (nonprevalent case). a degenerate result is unlikely to occur. Itis
suggested that degenerate samples are likely to occur when d = 2 (prevalent case) and.

more likely to occur as ¢ tends to .

5.2 Bias
The mean values of the measures of interobserver reliability obtained for each

combination of n, c¢. & and d are depicted in Figures [-8. The goal of these figures is to
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give an idea of how each measure of interobserver reliability varies with ¢, compared to
the true proportion P.
In the nonprevalent case (Figures 1-4), P, is overly optimistic since agreement may occur

by chance. Another measure which is positively biased is & ., although not as grossly

pe?
inflated as P,. Partial-chance proportion appears to overestimate the true proportion

slightly, while 2_ underestimates the true proportion slightly, but the bias appears to be
of little practical importance. Looking at A, both weighting systems tend to give

similar results. however, the absolute error weights tend to produce better results than the

squared error weights.

In the nonprevaient case. it is clear that £ and C,5 give very similar results throughout
the range of values of c¢. and that they produce the best results. [t is also suggested that

the results obtained with the use of D were generally in accord with those using the

complimentary measures of interobserver reliability.

[n order to explore how & and &, are affected by prevalence, simulations were
performed for each combination of #n, ¢ and k&, when & =2 (Figures 5-8). The

remaining measures of interobserver reliability are not affected by prevalence and are

included merely for comparison. producing results similar to those when d =1. As

expected, high values of P‘z were associated with low values of & and &, when the
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raters place a preponderance of observations in one category. The choice of weighting
system greatly influences the value of & as illustrated in Figures 5-8. For higher values
of Pa & under the squared error weighting system is paradoxically altered to a lesser
extent than under the absolute error weighting system. For larger values of ¢, both «
and &, grossly underestimate the true proportion. with this problem not repaired by

larger sample sizes n.

It is clear from Figures 5>-8 that C,5, P,  and P_ outperform the remaining measures of

C

interobserver reliability when ¢ = 2.

Note the somewhat irregular increase in value of interobserver reliability for £ and x,
when ¢ arrives at the upper boundary of its revised parameter space (d =2). This

increase is due to the safeguards required by the simulation program. where the

degenerate samples generated are discarded (see Table B-1).

53 Efficiency - Empirical Variances
The empirical variances of the measures of interobserver reliability obtained for each
combination of the parameters are depicted in Figures 9-16. The goal of these figures is

to give an idea of how the efficiency vanies with ¢. For the sake of clarity in Figures 9-

16. the empirical variance of 2, is equivalent to that of C ., as can be seen from the

expression of P,_ in Section 4.4.
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For the most part. it appears that the empirical variances tend to decrease when the
number of categories of classification & increased from a value of 3 to 5. The situation is
evident regardless of the indication as to the prevalence of the observed entity as

illustrated in Figures 9-16, with the exception occurring for d = 2, when c¢ arrives at the

boundary of is revised parameter space.

When d =1 (Figures 9-12), each measure attains its greatest efficiency when ¢ is large

and its smallest efficiency when ¢ is small, with minor exceptions to P,  and &, where
their smallest efficiency is realized when ¢ is moderately low in value. It is clear from

Figures 9-12 that Pa has the smallest empirical variance generally throughout the range

of values of ¢ (amongst agreement measures). For the mid- to upper range of values of

¢, competing measures include £, which performs quite well, followed by «.

F-’“ (C«g) and f’pc. For very small c. f’pc has moderately high efficiency relative to P,.

Looking at &, when & = 1. the empirical variance is greatly influenced by the choice of
weighting system as illustrated in Figures 9-12. £ using absolute error weights is much

more efficient than under the squared error weights. Nonetheless. the empirical variance

is relatively large and, consequently, & is unstable under either weighting system.

Figures 13-16 show how the empirical variances of £ and £, are affected by prevalence

(d = 2), while the remaining measures produce similar results to those when d =1.
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Note that £ and &<, attain their highest efficiency when ¢ is moderately low in value and

their lowest efficiency when ¢ approaches the boundary of its revised parameter space.

Again. the empirical variance of & is greatly influenced by the choice of weighting
system as shown in Figures 13-16. with the choice of weighting system having a similar

effect on efficiency as when d =1. [t is clear that the empirical variances of £ and «,

are relatively large and. consequently. £ and x, are unstable.

Note the somewhat irregular decrease in value of the empirical variances of & and &,
when ¢ arrives at the upper boundary of its revised parameter space (d =2). The

explanation for this decrease is drawn from the same argument provided earlier in Section

5.2 for the irregular increase in value of interobserver reliability for & and &, (see Table

B-1).

54 Efficiency - Large-Sample Variance Estimates
Figures 17-24 give the mean values of the large-sample variance estimates and the

~

empirical variances of K. &, and C,p obtained for each combination of the parameters.
The goal of these figures is to give an idea of how the large-sample variance estimates
compare to the empirical variances for the provided measures of interobserver reliability

over the entire range of values of c.
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What is clear in the nonprevalent case (Figures 17-20) is that for ¢ close to the
boundaries of its parameter space. the large-sample variance estimates of «. «, and C,g
do not differ greatly from the empirical variances. However. as ¢ tends to move away

from its boundaries, the estimated large-sample variances depart somewhat markedly
from the empirical variances. This departure is consistent for &~ &, and C,5, with the

large-sample estimates overestimating the varnances.

When d =2 (prevalent case), Figures 21-24 seem to suggest that when ¢ is small to
moderate in value, the estimated large-sample variances of £ and &, do not differ
greatly from the empirical variances. However. as ¢ tends to approach the upper

boundary of its revised parameter space. the large-sample variance estimates of & and
K, underestimate the variances. Since C s 1s not affected by prevalence. the results are

similar to those when d =1.

5.5 Empirical Distributions of Critical Ratios

Table B-2 gives the empirical central moments of the null distributions of critical ratios
provided for &, £, C,z and P, obtained for each combination of . & and d. when

¢ =0. For the most part. the observed central moments are reasonably close to their

expected values as illustrated in Table B-2.

For x and & _, the exact variance approach of Eventt (1968) produces slightly better

results than the large-sample variance approach of Fleiss, Cohen and Everitt (1969) in



terms of the means and variances. regardless of the indication as to the prevalence. The

Z of C,y also produces acceptable results with the means and variances close to their

theoretical values of 0 and 1. respectively. However. the Z of 2, produces mean values

differing slightly from 0. approximately in the range of -0.1 to -0.2.

Looking at £, when 4 =1 (nonprevalent case), the squared error weights of Fleiss and

Cohen (1973) tend to approximate the expected values of the mean. variance and
skewness slightly better than the absolute error weights of Cicchetti and Allison (1971).

However. the Z of &_ based upon the absolute error weights produces kurtosis values

closer to the theoretical value of 0 than when the squared error weights are applied.

When d =2 (prevalent case), A, under the absolute error weights tend to produce

slightly better results than under the squared error weights in terms of the mean. varance

and kurtosis. However, the critical ratio Z(x, ) under squared error weights tend to

approximate the expected value of skewness slightly better than under the absolute error

weighting system.

Table B-3 gives the empirical tail areas of the null distributions of critical ratios provided
for £ &,, Cyg and P, obtained for each combination of n, k and d, when ¢ = 0. The
results tended to closely parallel those based upon the central moments in Table B-2.

Therefore, these results indicate that the null variances of £, £,, C,g and P_ are valid

for assessing levels of statistical significance.
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6

DISCUSSION

6.1 Conclusions and Recommendations

[t is generally appreciated that there is no perfect measure for summarizing any mass of
data. When a k x k& table is to be represented by only one measure. information is [ost.
The unwarranted presumption of sufficiently high agreement may lead to the use of a
feasible but unreliable study procedure or technique, with attendant risk of drawing

erroneous conclusions from the study results.

[n conclusion. five common measures of interobserver reliability have been assessed.
resulting in three newly refined measures being proposed. The simulation experiment
confirms that these new measures prove to be very useful as they eliminate the problems
encountered with the common measures. Due to the broad range of possible data
configurations and underlying probability distributions generating the data, it is difficult
to draw definitive conclusions from the simulations. and only general suggestions should

be made.

A researcher who assumes that some of the results could have arisen due to guessing and
then wants to adjust for this needs to clearly specify the guessing mechanism. Possible

guessing circumstances and the associated measures are as follows:
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(a) If we assume that all observations are guessed and further assume that the sample
proportions are those used in the guessing, we would recommend < or &, .
However. it might not be wise to use £ or &, in the circumstance when an observer
places a preponderance of observations in one category, as these measures are known

to produce two types of paradoxes. Furthermore, £ and &, are unstable as their

variances are relatively large.

(b) If 1t is assumed that all observations are guessed and further assumed that the

guessing is done by giving each of the categories of classification an equal chance of
being observed. we would advise C,, in practice. This measure is particularly

applicable to studies in which the rates do not have a priori knowledge of the

prevalence of the scores in the population. C,g accurately estimates the true

proportion and is stable for equal and unequal marginals. Also. the variance of C.'AB IS

acceptably approximated.

(c) Assume that only some observations are subject to classification by chance. Then, if

we assume that the raters are able to state and use some proportion for guessing, this

leadsto P

e» K, and P,. Each cfthese measures indicate some presence of bias,

however, not substantial enough in that it may be inappropriate to quote an index of

agreement. [n companison to C,;, these measures estimate the true proportion

moderately well and are relatively stable. Since C,, is based upon the assumption
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that all observations are guessed. which is not a practical assumption often in a

clinical seting, P, «, and P, may appear as more attractive.

pc o

(d) The alternative is to assume that there is no guessing, in which case we would
recommend either P, or D. The overall proportion of agreement is positively biased

to a large extent and should only be recommend as a preliminary measure of
interobserver reliability. The disagreement rate provides a measure of disagreement

and should be recommended as a complimentary measure.

6.2 Future Research

Often in practice, ethical and practical considerations limit the number of raters who can
assess a patient within a short time of each other. As pointed out by Koran (1975a),
studies of clinical reliability should focus on agreement between two physicians or
perhaps three. as this more closely reflects clinical practice. In this thesis. focus was on

the common case of two raters.

When given a diagnosis carrying out serious cost and risk consequences, a patient often
seeks a second (or third or fourth) diagnostic opinion. Even the most careful and expert
diagnostician using the best of diagnostic methods can make a mistake. There is potential
to extend the work to the multi-rater case, allowing agreement among the muitiple raters

to be measured.
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Sample sizes in clinical studies are often [imited because of ethical considerations along
with the practical difficulty in getting the same set of raters 10 examine patients within a
short time of each other. Cicchetti and Fleiss (1977) and Cicchetti (1981) derived an
empiricaily based formula for determining the approximate sample sizes required for the
valid application of the kappa statistics. which is approximately n > 2k~. This finding is
of some comfort to investigators in contrast to the implied conservative estimate of

n = 200, wrespective of the number of categones of classification k, due to Fleiss,

Cohen and Everitt (1969).

However, studies have been conducted in which the sample sizes were small relative to
Cicchetti’s approximation. For instance, Teasdale. Knill-Jones and Van der Sande (1978)
had 16 patients in their study employing a scale with 5 categories of classification.
whereas. Yager. Johnston and Seshia (1990) had 15 patients in their study with 7
categories of classification in one scale. These sampie size values have been similar in
several studies of interobserver reliability (Koran 1975b). The sample sizes n examined
in the simulations were 15 and 50. and the number of categories of classification & were
chosen to be 3 and 5. These values were chosen arbitrarily, within a countless number of

parameter combinations that could have been considered.

The underlying marginal probabilities used to generate the guessed observations in a set

of tables were untform marginals. where each rater has the same probability 1/k of

choosing each category on the classification scale. Also, a deliberate attempt was made
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to demonstrate the situation where the raters place a preponderance of observations in one

classification category. resulting in symmetrical unbalanced marginals.

Often. however. these marginals depend on the background of the two raters. aside from

the prevalence of the target trait. There is potential to explore vanations of the

underlying probabilities used to generate a set of tables.
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APPENDIX A

COMA SCALES

Table A-1: Adelaide Scale.*

Criternion Score
Eves open
Spontaneously 4
To speech 3
To pain 2
None l
Best verbal response
Orientated 5
Words 4
Vocal sounds 3
Cries 2
None l
Best motor response
Obeys commands 5
Localise pain 4
Flexion to pain 3
Extension to pain 2
None 1

* A pediatric modification of the Glasgow Coma Scale used in the
Adelaide Children’s Hospital. South Australia, since 1977 takes
neurological immaturity into account (Simpson and Reilly 1982).



Table A-2: Jacobi Scale.?

Criterion

Score

Best verbal response
Orientated
Confused
[nappropriate
[ncomprehensible
None

Best motor response
Obeying
Localizing
Flexing
Extending
None

Eyes open
Spontaneous
To speech
To pain
None

Ocular vestibular response
Normal
Tonic-conjugate
Minimal-dysconjugate
No eve movements

Non-reacting pupil

[V SOV

(1]

(9%] 4 W

19

[U'S B N

£

= W

v W

* Gordon er al. (1983).
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Table A-3: 0-IV Scale.?

Criterion Score

Arouses spontaneously and to stimult 0

Stuporous; spontaneous arousal rare; roused [
readily but briefly by stimuli

Spontaneous arousal absent; avoidance [1
motor response to stimuli

Motor response to intense painful stimuli only I

No response v

* Huttenlocher (1972); Seshia. S. S.. Seshia. M. M. K., and Sachdeva (1977).
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APPENDIX B

SIMULATION RESULTS

Table B-1: The number of degenerate samples out of 10° replicates in
the simulation experiment.

d=1 d=2
c k=3 k=5 k=3 k=35
(1) n=13
0 3 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 1 0
5 0 0 3 0
6 0 0 9 0
7 0 0 32 0
8 0 0 99 4
9 0 0 253 11
10 0 0 384 70
11 0 0 2499 308
12 0 0 7283 1632
13 0 0 21041 7842
14 0 0 55563 36084
15 0 0 100000 100000
(i) n =50
0 0 6] 0 0
l 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
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Table B-1: rconcluded).

d=1 d=2

I
GJ
L
I
W
~

I
LI
P

I
W

c k

(i) n=50
10

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30

-

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
16
47
48
49
50

NN~ —~ OO0 OO0 00O O0OO0O0CO0COCOOCOODOOOODOODODOOC O

31

95
250 16
825 68
2391 310
7151 1569
21183 7758
55367 36004
100000 100000

LR eelooleBo o NejooleNoNoNeNoNole NeNeo NoNolNe NoNoNoNeNoNo NoNol o)

(=il lojeo ool ol oo NoleReNeoNeNe NeNo No NoNoNoNoNoNoNoNoNoeNoNeoNo NeoNo N ol oo
= eeoleNo ool NeoNeNoNeNoNoe o ReNoeNoNoNeNoNeNoNeo NoNeNoNolloNeNoll o Noll ol ol o Mol o)
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O  True Proportion —+— Overall Proportion of Agreement
Weighted Kappa (squared error weights)
— — — Weighted Kappa (absolute error weights) —— Disagreement Rate

— - — - Concordance Between Raters —#— Partial-Chance Kappa

Partial-Chance Proportion —o— Expected-Chance Proportion
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Figure 1: Mean values of the measures of interobserver reliability versus ¢ when
n=15, k=3, and d=1. Simulation results are based on the nondegenerate samples.
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O  True Proportion —&— Qverall Proportion of Agreement

------ Kappa Weighted Kappa {squared error weights)
= — ~ Weighted Kappa {absolute error weights) —— Disagreement Rate
— - — - Concordance Between Raters —#&— Partial-Chance Kappa

Partial-Chance Proportion -—&— Expected-Chance Proportion

Interobserver Reliability

Figure 2: Mean values of the measures of interobserver reliability versus ¢ when
n=15. k=5, and d=1. Simulation results are based on the nondegenerate samples.



O  True Proportion —=8— Overali Propartion of Agreement
------ Kappa Weighted Kappa {squared error weights)
— — — Weighted Kappa (absolute error weights) —— Disagreement Rate
— - — - Concordance Between Raters —2&4—— Partial-Chance Kappa

Partial-Chance Proportion —o— Expected-Chance Propartion
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Figure 3: Mean values of the measures of interobserver reliability versus ¢ when
n =50, k=3, and d=1. Simulation results are based on the nondegenerate samples.
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O  True Proportion ——&— Qverali Propartion of Agreement
------ Kappa Weighted Kappa (squared error weights)
— — — Weighted Kappa (absolute error weights) —€— Disagreement Rate
— - — - Concorgance Between Raters —#&— Partial-Chance Kappa

Partial-Chance Proportion —o6— Expected-Chance Proportion

Interobserver Reliability

Figure 4: Mean values of the measures of interobserver reliability versus ¢ when
n=50, k=5, and d=1. Simulation results are based on the nondegenerate samples.
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O  True Proportion —&8— Qverall Proportion of Agreement

------ Kappa Weighted Kappa (squared error weights)
— — — Weighted Kappa (absolute error weights) —— Disagreement Rate
— - — - Concordance Between Raters —a&—Partial-Chance Kappa

Partial-Chance Proportion —o—— Expected-Chance Proportion
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Figure 5: Mean values of the measures of interobserver reliability versus ¢ when
n=15, k=3, and d=2. Simulation results are based on the nondegenerate samples.
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O  True Proportion —+&— Overall Proportion of Agreement
------ Kappa Weighted Kappa (squared error weights)
— — — Weighted Kappa (absolute error weights) ~—€—— Disagreement Rate
— - — - Concordance Between Raters —&— Partial-Chance Kappa

Partial-Chance Propartion —o— Expected-Chance Proportion
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Figure 6: Mean values of the measures of interobserver reliability versus ¢ when
n=15, k=5, and d=2. Simulation resuits are based on the nondegenerate samples.
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O  True Proportion —&— Qverall Proportion of Agreement
Weighted Kappa (squared error weights)

— — — Weighted Kappa (absolute error weights) —>¢— Disagreement Rate
— - — - Concordance Between Raters —a&—— Partial-Chance Kappa
Partial-Chance Proportion —— Expected-Chance Proportion
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Figure 7: Mean values of the measures of interobserver reliability versus ¢ when
n =50, k=3, and 4 =2. Simulation results are based on the nondegenerate samples.
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O True Proportion —&8— Overall Propaortion of Agreement

------ Kappa Weighted Kappa (squared error weights)
— — — Weighted Kappa (absolute error weights) —¢— Disagreement Rate
— - — - Concordance Between Raters —&—— Partiai-Chance Kappa
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Figure 8: Mean values of the measures of interobserver reliability versus ¢ when
n =50, k=5, and d=2. Simulation results are based on the nondegenerate samples.
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—8— Overall Proportion of Agreement ~ ------ Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute error weights)
—— Disagreement Rate — - — - Concordance Between Raters

—aA—— Partial-Chance Kappa
—o— Expected-Chance Proportion

Partial-Chance Proportion
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Figure 9: Empirical vanances of the measures of interobserver reliability versus ¢
when n=15, k=3, and d=1. Simulation results are based on the nondegenerate
samples.



—&— Overall Proportion of Agreement - ----- Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absciute error weights)
~—3— Disagreement Rate — - — - Concordance Between Raters

~—&— Partial-Chance Kappa Partia-Chance Proportion

—o— Expected-Chance Proportion

0.065

0.040 A

o o
o (o]
[%] (28]
o [3;]
A 1

Empirical variance

Figure 10: Empirical variances of the measures of interobserver reliability versus
¢ when n=15, k=5, and d=1. Simulation results are based on the nondegenerate
samples.
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—&8—— Overall Proportion of Agreement ~ ------ Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute error weights)
—»— Disagreement Rate — - — - Concordance Between Raters

—#&— Partial-Chance Kappa
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Figure 11: Empirical variances of the measures of interobserver reliability versus
¢ when n=50, k=3, and d=1. Simulation results are based on the nondegenerate
samples.



—&8— Overall Proportion of Agreement ~ ------ Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute error weights)
—»— Disagreement Rate -~ - — - Concordance Between Raters
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Figure 12: Empirical variances of the measures of interobserver reliability versus
¢ when n =50, k=5, and d=1. Simulation results are based on the nondegenerate
samples.
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—=8— Overall Proportion of Agreement - ----- Kappa
Weighted Kappa (squared efror weights) — — — Weighted Kappa (absolute error weights)

—¢— Disagreement Rate - - — - Concordance Between Raters
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Figure 13: Empirical vanances of the measures of interobserver reliability versus
¢ when n=15, k=3, and d=2. Simulation results are based on the nondegenerate
samples.
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—+8-— Overall Proportion of Agreement - ----- Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute eror weights)
—»— Disagreement Rate — - — - Concordance Between Raters
—a&— Partial-Chance Kappa Partial-Chance Proportion

—o— Expected-Chance Proportion
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Figure 14: Empirical variances of the measures of interobserver reliability versus
¢ when n=15. k=5, and d=2. Simulation results are based on the nondegenerate
samples.
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—&8— Overall Proportion of Agreement - ----- Kappa

Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute error weights)
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Figure 15: Empirical variances of the measures of interobserver reliability versus
¢ when n=50, k=3, and 4=2. Simulation results are based on the nondegenerate
samples.
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Weighted Kappa (squared error weights) — — — Weighted Kappa (absolute error weights)
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Figure 16: Empirical variances of the measures of interobserver reliability versus
¢ when n=50, k=5, and d=2. Simulation results are based on the nondegenerate
samples.
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Figure 17: Mean values of the large-sample variance estimates and the empirical
vaniances of provided measures of interobserver reliability versus ¢ when n =15,
k=3, and d=1. Simulation results are based on the nondegenerate samples.
(unmarked line, empirical variance; marked line [+], mean of the large-sample
variance estimates)
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—+—— Weighted Kappa (squared error weights) Weighted Kappa (squared error weights)
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Figure 18: Mean values of the large-sample variance estimates and the empirical
vanances of provided measures of interobserver reliability versus ¢ when n =15,
k=5, and d=1. Simulation results are based on the nondegenerate samples.
(unmarked line, empirncal variance; marked line [+], mean of the large-sample
variance estimates)
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Figure 19: Mean values of the large-sample variance estimates and the empirical
variances of provided measures of interobserver reliability versus ¢ when n =50,
k=3, and d=1. Simulation results are based on the nondegenerate samples.
(unmarked line, empirical variance; marked line [+], mean of the large-sample
variance estimates)
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Figure 20: Mean values of the large-sample variance estimates and the empirical
variances of provided measures of interobserver reliability versus ¢ when n =50,

k=5, and d=1.

Simulation results are based on the nondegenerate samples.

(unmarked line, empirical variance; marked line [+], mean of the large-sample
variance estimates)
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Figure 21: Mean values of the large-sample variance estimates and the empirical
variances of provided measures of interobserver reliability versus ¢ when n =135,
k=3, and 4=2. Simulation results are based on the nondegenerate samples.
(unmarked line, empirical vanance; marked line [+], mean of the large-sample
variance estimatas)
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Figure 22: Mean values of the large-sample variance estimates and the empirical

variances of provided measures of interobserver reliability versus ¢ when n =15,

k=5, and d=2. Simulation results are based on the nondegenerate samples.
(unmarked line. empirical vanance; marked line [+], mean of the large-sample

variance estimates)

70




-+-+--Keppa ~  meee- Kappa

——+—— Weighted Kappa (squared error weights) Weignted Kappa (squared error weights)

~ -+ — Weighted Kappa (absolute error weights) — — — Weighted Kappa (absolute efror weights)
— ~ - Concordance Between Raters — - — - Concordance Between Raters
0.100

0.090 -1
0.080 -
0.070 -
0.060 -
0.050 -

0.040 A

o
(]
(9%
o
1

Large-Sample Variance Estimate and Empirical Variance

0.020

0.010 %

0.000

Figure 23: Mean values of the large-sample variance estimates and the empirical
variances of provided measures of interobserver reliability versus ¢ when n =50,
k=3, and d=2. Simulation results are based on the nondegenerate samples.
(unmarked line, empirical variance; marked line [+], mean of the large-sample
variance estimates)
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Figure 24: Mean values of the large-sample variance estimates and the empirical
variances of provided measures of interobserver reliability versus ¢ when n =30,
k=5, and d=2. Simulation results are based on the nondegenerate samples.
(unmarked line. empirical variance; marked line [+], mean of the large-sample
variance estimates)



Table B-2: Central moments of the null distributions of provided critical ratios when
¢ =0. Simulation results are based on the nondegenerate samples.

Central Expected
Moment Value

(1 n=15 k=3, d =1
Mean 0 -0.0026 -0.0027 -0.0023 -0.0024 -0.0027 -0.0028 -0.0017 -0.1993
Variance 1 0.9954 1.0665 1.0000 1.0714 0.9978 1.0691 0.9955 1.0848
Skewness 0 0.1563 0.1563 0.0028 0.0028 0.1162 0.1162 0.1801 0.1249
Kurtosis 0 -0.1284 -0.1284 -0.2960 -0.2960 -0.2370 -0.2370 -0.0880 -0.0384
() n=15, k=5d =1

Mean 0 0.0031 0.0032 0.0036 0.0037 0.0042 0.0044 0.0020 -0.1476
Variance 1 1.0046 1.0763 0.9995 1.0709 1.0033 1.0750 1.0050 1.0902
Skewness 0 0.3383 0.3383 0.0048 0.0048 0.1301 0.1301 0.3829 0.2889
Kurtosis 0 -0.0500 -0.0500 -0.3154 -0.3154 -0.2108 -0.2108 0.0211 -0.0431
(1) n=50; k=3 d =1

Mean 0 -0.0054 -0.0054 -0.0024 -0.0025 -0.0039 -0.0040 -0.0060 -0.1081
Vanance 1 0.9986 1.0190 1.0006 1.0210 1.0001 1.0205 0.9976 1.0193
Skewness 0 0.0964 0.0964 -0.0124 -0.0124 0.0561 0.0561 0.101t 0.0956
Kurtosis 0 -0.0203 -0.0203 -0.0606 -0.0606 -0.0439 -0.0439 -0.0222 -0.0214
(av) n=350; k=5,d =1
Mean 0 -0.0080 -0.0081 -0.0036 -0.0036 -0.0057 -0.0058 -0.0078 -0.0816
Variance l 0.9955 1.0159 1.0067 1.0273 1.0042 1.0247 0.9955 1.0166
Skewness 0 0.1939 0.1939 -0.0009 -0.0009 0.0702 0.0702 0.2002 0.1872
Kurtosis 0 -0.0204 -0.0204 -0.0821 -0.0821 -0.0531 -0.0531 -0.0219 -0.0265

~a -b ~ ac - be ~ ad < bd N e a
K K K K, K K Ces P

w w W w

* Exact null vanance using the approach of Everitt (1968).

® Large-sample null variance using the approach of Fleiss, Cohen and Everitt (1969).
* Squared error weights of Fleiss and Cohen (1973).

* Absolute error weights of Cicchetti and Allison (1971).

° Null variance using the approach of Kupper and Hather (1989).
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Table B-2: (concluded).

Central Expected

Moment Value K K2 K" K wbc K wm K wbd Cis P’
(V) n=15 k=3 d=2

Mean 0 -0.0018 -0.0019 -0.0037 -0.0039 -0.0030 -0.0031 -0.0027 -0.2007
Variance 1 1.0023 1.0739 0.9993 1.0707 1.0004 1(.0719 1.0039 1.0937
Skewness 0 0.1503 0.1503 -0.0083 -0.0083 0.1022 0.1022 0.1716 0.1122
Kurtosis 0 -0.1600 -0.1600 -0.3143 -0.3143 -0.2584 -0.2584 -0.1172 -0.0835
(vi) n =15 k=5, d=2

Mean 0 -0.0001 -0.0001 0.0053 0.0055 0.0031 0.0033 -0.0010 -0.1507
Vanance l 1.0030 1.0746 0.9989 1.0702 1.0022 1.0738 1.0020 1.0887
Skewness 0 0.3394 0.3394 0.0073 0.0073 0.1305 0.1305 0.3761 0.2824
Kurtosis 0 -0.0716 -0.0716 -0.3281 -0.3281 -0.2440 -0.2440 -0.0271 -0.0793
(vil) n=50; k=3, d =2

Mean 0 -0.0017 -0.0018 0.0005 0.0005 -0.0005 -0.0005 -0.0019 -0.1041
Vanance 1 1.0050 1.0255 0.9998 1.0202 1.0022 1.0227 1.0051 1.0270
Skewness 0 0.1054 0.1054 0.0086 0.0086 0.0753 0.0753 0.1094 0.1018
Kurtosis 0 -0.0109 -0.0109 -0.0860 -0.0860 -0.0597 -0.0597 -0.0085 -0.0054
(vitll) n=350; k=5, d =2

Mean 0 -0.0038 -0.0038 -0.0046 -0.0046 -0.0039 -0.0039 -0.0041 -0.0777
Variance 1 1.0029 1.0233 0.9966 1.0169 0.9966 1.0169 1.0012 1.0224
Skewness 0 0.2038 0.2038 -0.0025 -0.0025 0.0685 0.0685 0.2115 0.1985
Kurtosis 0 -0.0029 -0.0029 -0.0800 -0.0800 -0.0522 -0.0522 0.0093 0.0023

* Exact null vanance using the approach of Everitt (1968).
* Large-sample null variance using the approach of Fleiss, Cohen and Everitt (1969).
° Squared error weights of Fleiss and Cohen (1973).

* Absolute error weights of Cicchetti and Allison (1971).

¢ Null variance using the approach of Kupper and Hafner (1989).
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Table B-3: Empirical tail areas of the null distributions of provided critical ratios when
¢ =0. Simulation results are based on the nondegenerate samples.

Expected
Prop.

() n=15 k=3 d=1
z<-2576 0.005 0.0023 0.0029 0.0028 0.0042 0.0015 0.0026 0.0025 0.0074
Z<-1.96 0.025 0.0210 0.0228 0.0236 0.0279 0.0198 0.0246 0.0197 0.0362
22196 0.025 0.0298 0.0330 0.0238 0.0281 0.0274 0.0327 0.0309 0.0298
Z22576 0.005 0.0067 0.0084 0.0027 0.0041 0.0052 0.0070 0.0086 0.0051
i1y n=15 k=35 d =1

Z<-2576 0.005 0.0000 0.0001 0.0025 0.0038 0.0016 0.0024 0.0000 0.0019
Z<-1.96 0.025 0.0127 0.0198 0.0226 0.0271 0.0195 0.0242 0.0000 0.0368
Z21.96 0.025 0.0333 0.0387 0.0240 0.0286 0.0280 0.0324 0.0180 0.0220
222576 0.005 0.0087 0.0111 0.0028 0.0040 0.0058 0.0074 0.0180 0.0061
(ii1) n=350; k=3. d =1

z<-2576  0.005 0.0037 0.0042 0.0048 0.0052 0.0038 0.0043 0.0053 0.0054
Z<-1.96 0.025 0.0232 0.0246 0.0258 0.0271 0.0238 0.0250 0.0285 0.0288
Z21.96 0.025 0.0263 0.0275 0.0240 0.0254 0.0260 0.0271 0.0218 0.0218
222576 0.005 0.0057 0.0062 0.0043 0.0047 0.0054 0.0058 0.0048 0.0049
(iv) n=350; k=5, d =1

zZ<-2576 0.005 0.0017 0.0020 0.0047 0.0050 0.0038 0.0042 0.0012 0.0033
Z<-1.96 0.025 0.0193 0.0200 0.0257 0.0267 0.0236 0.0247 0.0190 0.0198
22196 0.025 0.0297 0.0307 0.0250 0.0263 0.0262 0.0275 0.0299 0.0299
222576 0.005 0.0072 0.0076 0.0045 0.0048 0.0058 0.0063 0.0058 0.0058

* Exact null variance using the approach of Everitt (1968).

® Large-sample null variance using the approach of Fleiss. Cohen and Everitt (1969).
° Squared error weights of Fleiss and Cohen (1973).

* Absolute error weights of Cicchetti and Allison (1971).

¢ Null variance using the approach of Kupper and Hafner (1989).

- - - ~ bc ~ ad - bd = a
£ £° £ K, K, K, Cy' P

Interval
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Table B-3: (concluded).

(v) n=15; k=3:d=2

Z<-2576 0.005 0.0022 0.0027 0.0030 0.0044 0.0014 0.0026 0.0024 0.0076
Z<-196 0.025 0.0212 0.0233 0.0240 0.0280 0.0201 0.0248 0.0203 0.0376
Z>196 0.025 0.0298 0.0330 0.0225 0.0264 0.0265 0.0317 0.0304 0.0291
222576 0.005 0.0066 0.0081 0.0028 0.0039 0.0049 0.0065 0.0083 0.0051
(vi) n=15; k=5,d=2

Z<-2576 0.005 0.0001 0.0001 0.0027 0.0039 0.0016 0.0024 0.0000 0.0020
Z<-196 0.025 0.0121 0.0195 0.0223 0.0267 0.0187 0.0230 0.0000 0.0363
Z21.96 0.025 0.0336 0.0385 0.0232 0.0280 0.0283 0.0331 0.0177 0.0219
222576 0.005 0.0089 0.0111 0.0028 0.0038 0.0050 0.0065 0.0177 0.0063
(vil) n=30; k=3, d=2

Z<-2576 0.005 0.0038 0.0042 0.0043 0.0046 0.0035 0.0038 0.0052 0.0054
Z<-196 0.025 0.0234 0.0247 0.0245 0.0259 0.0230 0.0240 0.0286 0.0288
Z2>196 0.025 0.0273 0.0285 0.0254 0.0266 0.0275 0.0287 0.0228 0.0229
222576 0.005 0.0061 0.0064 0.0041 0.0046 0.0054 0.0059 0.0052 0.0052
(vin) n =50 k=5, d =2

Zz<-2576 0.005 0.0020 0.0022 0.0045 0.0050 0.0037 0.0041 0.0016 0.0036
Z2<-196 0.025 0.0191 0.0196 0.0243 0.0257 0.0227 0.0238 0.0186 0.0193
22196 0.025 0.0305 0.0314 0.0240 0.0252 0.0260 0.0271 0.0306 0.0306
222576 0.005 0.0078 0.0083 0.0044 0.0048 0.0055 0.0060 0.0064 0.0064

* Exact null variance using the approach of Everitt (1968).
® Large-sample null variance using the approach of Fleiss. Cohen and Everitt (1969).
¢ Squared error weights of Fleiss and Cohen (1973).
* Absolute error weights of Cicchetti and Allison (1971).

° Null variance using the approach of Kupper and Hafner (1989).
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APPENDIX C

SIMULATION PROGRAM

nonNnaoanonNnnooonNnnoooNOonNnonNnOononNOnNOnNnNOoOnNnNnONNONONONNNAN

MIRS.FOR - Measures of Interobserver Reliability Simulation

Variable dictionary

IDUM
RAN2
N

LC
CA(_

cC
K
D
SIMS

I
J

CUTMAT

CcC
TP

A
DEG
PA
SPA
SPA2
PASV
KC
SKC
SKCz2
KCsVv
VKC
SVKC
VOKC
SUM1
EVKC
ZEKC

SZEKC (_)
BZEKC (

ZKC

SZKC(_)
BZKC (_)
PZEKC (_)

:Random number generator seed {(must be a negative integer)
:Function (see for explanation)

:Sample size of subjects

:Number of levels of C

:Levels of C

:Perfect knowledge based (nonguessed) agreements
:Categories of classification

:Distribution of C

1-C is spaced evenly along the main diagonal
2-C observes ist category of classification (prevalence}

:Number cof simulations

:Counter

:Counter

:Indicator for output simulated matrix

:Parameter combination loop counter

:True proportion

:Simulation loop counter

:Number of degenerate samples per parameter combination
:Overall proportion cf agreement

sum
sum of squares
empirical wvariance

:Cohen's kappa

sum
sum of squares

empirical variance

large-sample estimate of nonnull variance

sum of VKC

large-sample estimate of null variance

sum of terms in calculation of VOKC

exact null variance

Z ratio using exact null variance

sums of powers of ZEKC

central moments of ZEKC

2 ratio using large-sample null variance estimate
sums of powers of ZKC

central moments of ZKC

: l-tailed areas using exact null variance
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nonononNnonoononoononoaoocaaonNnaoanoaonnOooanNnnNnOaoncOoonNnnooonoaonNnoooonNonNnaoOnNnnNnOonNnOnoOononn

PZKC(_)
KW1
SKW1
SKW12
KW1SV
VKW1
SVKW1
VOKW1
EVKW1
ZEKW1

SZEKW1(_) :
BZEKW1(_j :

ZKW1
SZKW1 (_)
BZKW1 (_)
PZEKW1 (_)
PZKW1(_)
KW2

SKW2
SKW22
KW2SV
VKW2
SVKW2
VOKW2
EVKW2
ZEKW2

SZEKW2 (_) :
BZEKW2 (_) :

ZKW2
SZKW2 ()
BZKW2 ()

PZEKW2(_):

PZKW2 (_)
DR

NUM

DEN

SDR
SDR2
DRSV

SCAB
SCAB2
CABSV
VOCAB
VCAB
SVCAB
ZCAB
SZCAB(_)
BZCAB ()
PZCAB (_)
GSTAR

SKPC
SKPC2
KPCSV
PPC
SPPC

: 1-tailed areas using large-sample null ~ariance estimate
:Weighted kappa (squared error weights)
: sum
: sum of squares
empirical variance
large-sample estimate of nonnull variance
sum of VKW1
large-sample estimate of null variance
exact null wvariance
: Z ratio using exact null variance
sums of powers of ZEKW1
central moments of ZEKW1
Z ratio using large-sample null wvariance estimate
sums of powers of ZKW1
central moments of ZKW1
: 1l-tailed areas using exact null variance
l-tailed areas using large-sample null variance estimate
:Weighted kappa (absolute error weights)
sum
sum of squares
empirical wvariance
large-sample estimate of nonnull variance
sum of VKW2
: large-sample estimate of null variance
exact null variance
Z ratio using exact null variance
sums of powers of ZEKW2
central moments of ZEKW2
Z ratio using large-sample null variance estimate
sums of powers of ZKW2
central moments of ZKW2
l-tailed areas using exact null variance
l-tailed areas using large-sample null variance estimate
:The disagreement rate
numerator in calculation of DR
denominator in calculation of DR
sum
sum of squares
: empirical variance
:The concordance between raters
: sum
: sum of squares
empirical wvariance
: large-sample estimate of null variance
: large-sample estimate of nonnull variance
sum of VCAB
Z ratio using large-sample null variance estimate
sums of powers of ZCAB
central moments of ZCAB
l1-tailed areas using large-sample null variance estimate
:Estimated number of guessed observations in N subjects
:Partial-Chance Kappa (equal weights)
: sum
sum of squares
empirical variance
:Partial-Chance Proportion
: sum
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nonoonnononoaoannonoaoanooonnnnoonNnnNnOnoNoonNnNnOoOnononNnNnNONnnNn

9]

SPPC2
PPCSV
PEC
SPEC
SPEC2
PECSV
EVPEC
2EPEC

SZEPEC( ) :
BZEPEC (_} :
PZEPEC(_) :

W(_,_,2)

FLAG

IX1
IX2
IX(_,2)
JCNT
Ic{_,_
DEGVAL
TO

TC
VOTO
suMv
SUMC
TOW1
TCW1
VOTOW1
SUMVW1
SUMCW1
TOW2
TCW2
VOTOW2
SUMVW2
SUMCW2
S

T
ENDCEL
SIMS2

sum of squares
empirical wvariance

:Expected-Chance Proportion

sum
sum cf squares

empirical wvariance

exact null variance

Z ratio using exact aull variance

sums of powers of ZEPEC

central moments of ZEPEC

l1-tailed areas using exact null variance

:K+1 x K+1 weight matrix, 3rd-dimension is an indicator:

l-Squared error weights of Fleiss and Cohen (1973)
2-Absolute error weights of Cicchetti and Allison (1371)

:Flags a degenerate sample

:Number of guessed observations

:Guessed observation from Rater A

:Guessed observation from Rater B

:N x 2 table of subjects' classifications, subjects'-matrix
:Counter

:K+1 x K+1 table of simulated obs., observations-matrix
:Remote Block (see for explanation)

:Total number of observed agreements

:Total number of chance-expected agreements

:Exact null variance of TO

:Sum of wvariances used in calculation of VOTO

:Sum of covariances used in calculation of VOTO
:Wed (1) total number of observed agreements

:Wtd (1) ctotal number of chance-expected agreements
:Exact null wvariance of TOWl

:Sum of variances used in calculation of VOTOWl
:Sum of covariances used in calculation of VOTOW1l
:Wed (2) total number of observed agreements

:Wed (2) total number cf chance-expected agreements
:Exact null - ariance of TCW2

:Sum of -~rariances used in calculation cf VOTOW2
:Sum of covariances used in calculation of VOTOW2
:Counter

:Counter

:Indicator for searching for end of cells

:Number of non-degenerate samples

Declare variables

INTEGER IDUM, LC,CA(S51),SIMS,D,CUTMAT,CC,N,C,K, A, NRAN, IX1, INT,
*IX2,IX(50,2),JCNT,I,J,IC(6,6),TO,ABS,SUMV,SUMC,S, T, ENDCEL, SUML,
*DEG, FLAG, NUM, GSTAR, SIMS2, PZEKC (4) , PZKC(4) ,PZEKW1 (4) , PZKW1 (4),
*PZEKW2 (+) , PZKW2 (4) , PZCAB (4) , PZEPEC{4)

REAL RAN2

DOUBLE PRECISION W(6,6,2),TC,VOTO, TOW1l, TOW2, TCW1, TCW2, SUMVW1,
*SUMVW2, SUMCW1, SUMCW2, VOTOW1, VOTOW2, DEN, MAX, DSQRT, TP, PA, SPA, SPA2,
*PASV, KC, EVKC, VKC, VOKC, ZEKC, ZKC, SKC, SKC2, SVKC, SZEKC(4) ,SZKC(4),
*BZEKC (4) ,BZKC (4) ,KCSV,KW1,EVKW1, VKW1, VOKW1, ZEKW1, ZKW1l, SKW1, SKW12,
*SVKW1,SZEKW1(4),SZKW1 (4) ,BZEKW1 (4),BZKW1(4),KW1SV, KW2, EVKW2, VKW2,
*VOKW2, ZEKW2, ZKW2, SKW2, SKW22,SVKW2, SZEKW2 (4) , SZKW2 (4) ,BZEKW2 (4) ,
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READ *,D

END WHILE

OCUTMAT=0

WHILE (QUTMAT.LT.1.OR.OUTMAT.GT.2) DO
WRITE(*,10043)

10043 FORMAT (/, 'OUTPUT SIMULATED MATRIX? (1:YES, 2:NO]')

READ *,QUTMAT

END WHILE

C OQutput simulation parameters to output file MIRS_MAT.TXT

WRITE(1,10041) IDUM,SIMS,D,XK,N, (CA(I),I=1,LC)
10041 FORMAT(/,'IDUM: ',6Il1l,/,'SIMS:',6X,16,/.," D:',11X,I1,/.' K:',
*11X,I1,/," N:',10X,I2,/," C:',10X,10(I2,2X))

C oOutput column headings to variocus output files

WRITE (2,20053)
20053 FORMAT(/, 'C_TP_PA_KC_KW1_KW2_DR')
WRITE (3,20054)
20054 FORMAT (/,'C_TP_CAB_KPC_PPC_PEC')
WRITE (4,20055)
20055 FORMAT (/, 'C_PASV_KCSV_VKC_KW1SV_VKW1_KW2SV_VKW2')}
WRITE (7,20056)
20056 FORMAT(/,'C_DRSV_CABSV_VCAB_KPCSV_PPCSV_PECSV')
DO 20057 I=1,4
WRITE(I+7,20058) I
20058 FORMAT(/,Il,' _C_ZEKC_ZKC_ ZEKWl_ZKW1_ZEKW2_ZKW2_ZCAB_ZEPEC')
20057 CONTINUE
WRITE (12,20059)
20059 FORMAT (/, 'C_DEG')
WRITE(13,20060)
20060 FORMAT(/,'C_Tail_ ZEKC_ZKC_ZEKW1_ZKW1_ZEKW2_ZKW2_ZCAB_ZEPEC')

C Parameter combination loop commences

DO 4000 CC=1,LC
C=CA (CC)
IF (C.GT.N) GO TO 4000

C Initialize variables per parameter combination

DEG=0
SPA=0.0DO
SPA2=0.0D0
SKC=0.0DO
SKC2=0.0D0
SVKC=0.0D0
SKW1=0.0DO
SKW12=0.0D0
SVKW1=0.0DO
SKW2=0.0D0O
SKW22=0.0DO0
SVKW2=0.0D0
SDR=0.0DO
SDR2=0.0D0C
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SCAB=0.0DO
SCAB2=0.0D0
SVCAB=0.0DO0
SKPC=0.0D0
SKPC2=0.0D0
SPPC=0.0DO
SPPC2=0.0D0
SPEC=0.0D0
SPEC2=0.0D0O
DO 20062 I=1,4
SZEKC(I)=0.0D0
SZKC (I} =0.0D0
SZEKW1 (I)=0.0D0
SZKW1(I)=0.0DO
SZEKW2 (I)=0.0D0
SZKW2 (I)=0.0D0
SZCAB (I)=0.0D0
SZEPEC(I)=0.0D0
20062 CONTINUE
DO 20063 I=1,4
PZEKC(I) =0
PZKC(I) =0
PZEKW1 (I)
PZKW1(I)=
PZEKWZ2 (I}
PZKW2 (I) =
PZCAB(I) =0
PZEPEC(I) =0
20063 CONTINUE

0

0

C Construct weight matrix

DO 10110 I=1,K
DO 10110 J=1,K
W(I,J,1)=1.0D0-(((I-J)**2)/(((K-1)**2)}*1.0D0}]
W(I,J,2)=1.0D0-{(ABS(I-J))/(K-1.0D0))
10110 CCNTINUE

C True Proportion
TP=C/ (N*1.0D0)
C Simulation lcop commences

DO 10050 A=1,SIMS
WRITE(*,10051) A,SIMS.D.X,N,C
10051 FCRMAT (' ',I6,' OF ',6Ise,' D=',I1,' K=',6I1,'
*=',I2)
FLAG=0

€ Construct subjects'-matrix with guessed observations

NRAN=N-C

WHILE (MRAN.GT.0) DO
IX1=1+INT(K*RAN2 (IDUM) )
IX2=1+INT{K*RAN2 (IDUM) )
IX(NRAN, 1) =IX1



IX (NRAN, 2) =IX2
NRAN=NRAN-1
END WHILE

C Fill in balance of subjects‘-matrix with knowledge based agreements

IF (D.EQ.1) THEN
JCNT=1
DO 10070 I=N-C+1,N
IX(I,1)=JCNT
IX(I,b2)=JCNT
IF (JCNT.GE.K) JCNT=0
JCNT=JCNT+1
10070 CONTINUE
ELSE
DO 10071 I=N-C+1,N
IX(I,1)=1
IX(I,2)=1
10071 CONTINUE
END IF

C Construct observations-matrix and marginal totals

DO 10095 I=1,K+1
DO 10095 J=1,K+1
IC(I,J)=0
10095 CONTINUE
DO 10100 I=1,N
IC(IX(I,1),IX(I,2)})=IC(IX(I,1),IX(I,2))+1
10100 CONTINUE
DO 10105 I=1,K
DO 10105 J=1,K
IC(I,X+1)=IC(I,K+1)+IC(I,J)
IC(K+1,I)=IC(X+1,I)+IC{J,1I)
10105 CONTINUE

C Total number of agreements observed and chance-expected

TO=0
TC=0.0D0
DO 410 I=1,K
TO=TO+IC(I, I)
TC=TC+(IC(I,K+1}*IC{(K+1,I))/(N*1.0DQ}
110 CONTINUE

C Check for degenerate sample
IF (TC.EQ.N*1.0D0) THEN
WRITE (1,55001)
55001 FORMAT (/, 'DEGENERATE SAMPLE SINCE TC.EQ.N*1.0D0')
EXECUTE DEGVAL
GO TO 10054
END IF
C Exact null variance cf TO and TOW

SUMV=C
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SUMC=0
DO 411 I=1,K
SUMV=SUMV+IC(I,K+1)*(N-IC(I,K+1))*IC(K+1,I)*{(N-IC(K+1,6I)!}
DO 411 J=I+1,XK
SUMC=SUMC+IC{I,K+1)*IC(J,K+1)*IC(K+1,6I)*IC(K+1,J)
411 CONTINUE
VOTO= (SUMV+2*SUMC) / ( (N**2) *(N-1.0D0) )

C Check for degenerate sample

IF (VOTO.EQ.0.0D0) THEN
WRITE (1,55002)
55002 FORMAT (/, 'DEGENERATE SAMPLE SINCE V0TO.EQ.0.0DO0')
EXECUTE DEGVAL
GO TO 10054
END IF

SUMVW1=0.0D0
SUMVW2=0.0D0
SUMCW1=0.0DO0
SUMCW2=0.0D0O
DO 412 I=1,K
DO 412 J=1.K
SUMVW1=SUMVW1+ (W(I,J,1)**2)*IC(I,K+1)*{(N-IC(I,K+1})*IC(K+1,J
*)* (N-IC(K+1,J))
SUMVW2=SUMVW2+ (W(I,J,2) **2}*IC(I,K+1) ~(N-IC(I,K+1))*IC(K+1,J
=) *(N-IC(K+1.J))
S=1I
T=J
ENDCEL=0
WHILE (ENDCEL.EQ.Q) DO
IF (T+1.LE.K) THEN
T=T+1
ELSE IF (S+1.LE.K) THEN
S=S+1
T=1
ELSE
ENDCEL=1
END IF
IF (ENDPCEL.EQ.Q) THEN
IF (I.EQ.S.AND.J.NE.T) THEN
SUMCW1=SUMCW1-W(I,J,1)*W(S,T,1}*IC(I,K+1)*IC{K+1,J)*IC
*{K+1,T)*(N-IC(I,K+1))
SUMCW2=SUMCW2-W(I,J,2)*W(S,T,2)*IC{I,K+1)*IC(K+1,6J)~*IC
*(K+1,T)*(N-IC(I,K+1)}
ELSE IF (J.EQ.T.AND.I.NE.S) THEN
SUMCW1=SUMCW1-W(I,J,1)*W(S,T,1)*IC(I,K+1)*IC(S,K+1)~*IC
*(K+1,J) *{N-IC(K+1,J))
SUMCW2=SUMCW2-W(I,J,2)*W(S,T,2)*IC(I,K+1)*IC(S,K+1)*IC
*(K+1,J)})*(N-IC(K+1,J))
ELSE
SUMCW1=SUMCW1+W(I,J,1)*W(S,T,1)*IC(I,K+1)*IC(S,K+1)*IC
*(K+1,J)*IC(K+1,T)
SUMCW2=SUMCW2+W(I,J,2)*W(S,T,2)*IC(I,K+1)*IC(S,K+1l)~IC
*(K+1,J) *IC(K+1,T)
END IF
‘END IF
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END WHILE
<12 CONTINUE
VOTOW1= (SUMVW1+2*SUMCW1) / ((N**2) * (N-1))

C Check for degenerate sample

IF (VOTOW1.EQ.0.0DQO) THEN
WRITE (1,55003)
55003 FORMAT (/, 'DEGENERATE SAMPLE SINCE VOTOW1.EQ.0.0DO')
EXECUTE DEGVAL
GO TO 10054
END IF

VOTOW2= (SUMVW2+2*SUMCW2) / { (N**2) * (N-1))
C Check for degenerate sample

IF (VOTOW2.EQ.0.0DO) THEN
WRITE (1,55004)
55004 FORMAT (/, ‘'DEGENERATE SAMPLE SINCE VOTOW2.EQ.0.0DO')
EXECUTE DEGVAL
GO TO 10054
END IF

C Large-sample est. of the null and nonnull variance of Xappa

VKC=0.0D0
SUM1=0
DO 431 I=1,K
VKC=VKC+IC(I,I)*((N*(N-TC)-(IC(K+1,I)+IC(I,K+1))*®(N-TO))**2)
SUM1=SUM1+IC(I,K+1)*IC{(K+1,I)* ((N-IC(K+1,I)-IC(I,K+1))=**2)
DO 431 J=1,K
IF (I.NE.J) THEN
VKC=VKC+ ( (N-TO) **2) *IC(I,J) ®((IC(K+1,I)+IC(J,K+1))**2)
SUM1=SUMi+IC(I,K+1)*IC(K+1l,J)*((IC(K+1,I)+IC(J,K+1})**2)
END IF
131 CONTINUE
VOKC= (SUML- (N*TC) **2) / ((N**3) #( (N-TC) **2))
VKC= (VKC-N* ( (TO*TC+N* (TO-2*TC) ) **2) )/ {(N**2) = ({(N-TC) **4))

C Check for degenerate sample

IF (VOKC.EQ.0.0DO) THEN
WRITE (1,55005)
55008 FORMAT (/. 'DEGENERATE SAMPLE SINCE VOKC.EQ.0.0DO')
EXECUTE DEGVAL
GO TO 10054
END IF

C Construct weight matrix marginals (weighted averages of the weights)

DO 10115 I=1,K
W(I,K+1,1)=0.0D0
W(I,K+1,2)=0.0D0
W(K+1,I,1)=0.0D0
W(K+1,I,2)=0.0DO

10115 CONTINJE
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DO 10120 I=i,K
DO 10120 J=1,K
W(I,K+1,1)=W(I, K+1,1)+~(W(L,

J,1)*IC(K+1,J) )/ (N*1.0D0)

W(I,K+1,2)=W(I, K+1,2)+(W(I,J,2
1

2

) *IC(K+1,J))/ (N*1.0D0)
) *IC(J,K+1) )/ (N*1.0DO)
) *IC{J,K+1})/ (N*1.0D0)

W(K+1,I,1)=W(K+1,I,1)+(W(J, I,
W(K+1,I,2)=W(K+1,I,2)+(W(J,I,
10120 CONTINUE

C wWeighted total number cf agreements observed and chance-expected

TOW1=0.0D0O
TOW2=0.0D0
TCW1=0.0DO0
TCW2=0.0D0
DO 600 I=1,K
DO 600 J=1,K
TOWLl=TOW1+W(I,J,1) *IC(I,J)
TOW2=TOW2+W (I,J,2) *IC(I,J)
TCW1=TCW1+(W(I,J, 1) *IC(I,K+1)*IC(K+1,J))/N
TCW2=TCW2+ (W(I,J,2)*IC(I,K+1)*IC(K+1,J))/N
600 CONTINUE

C Large-sample est. of the null and nonnull variance of Weighted Kappa

VKW1=0.0DC
VKW2=0.0D0
VOKW1=0.0D0O
VOKW2=0.0D0O
DO 704 I=1,K
DO 704 J=1,K
VKW1=VKW1+IC{I,J) * ((W(I,J,1)*(N-TCW1)-(W(I,K+1,1)+W({(K+1,J,1)
*) * (N-TOW1) ) **2)
VKW2=VKW2+IC(I,J) * ((W(I,J,2)*(N-TCW2)-(W(I,K+1,2)+W(K+1,J,2)
) * (N-TOW2) ) **2)
VOKW1=VOKW1+IC!I,K+1)})*IC(K+1,J)*((W(I,J,1)-W(I,K+1,1)-W(K+1,
*J,1)) **2)
VOKW2=VOKW2+IC(I,K+1) *IC(K+1,J) * ((W(I,J,2)-W(I, K+1,2)-W(K+1,
«J,2)) **2)
704 CONTINUE
VKW1l=(VKW1-( (TOW1l*TCW1+N* (TOW1-2*TCW1))**2)/N)/ ((N-TCW1)**4)
VKW2= (VKW2- { (TOW2*TCW2+N* (TOW2-2*TCW2)) **2) /N) / ( (N-TCW2) **4)
VOKW1=(VOKWL-TCW1**2)/ (N* ((N-TCW1) *=*2))

C Check for degenerate sample
IF {(VOKW1.EQ.0.0DO) THEN
WRITE (1,55006)
55006 FORMAT (/, 'DEGENERATE SAMPLE SINCE VOKW1.EQ.0.0DO')
EXECUTE DEGVAL
GO TO 10054
END IF
VOKW2=(VOKW2-TCW2**2) / (N* ( (N-TCW2) **2))
C Check for degenerate sample

IF (VOKW2.EQ.0.0DO) THEN
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WRITE (1,55007)
55007 FORMAT (/, ‘'DEGENERATE SAMPLE SINCE VOKW2.EQ.0.0DO')
EXECUTE DEGVAL
GO TO 10054
END IF

C Exact null vrariance of Kappa and Weighted Kappa

EVKC=VOTO/ ( (N-TC) **2}
EVKW1=VOTOW1/ ( (N-TCW1) **2)
EVKW2=VOTOW2/ { (N-TCW2) **2)

C Overall Proportion of Agreement
PA=TO/ (N*1.0D0O)
C Kappa and Weighted Kappa

KC=(TO-TC) / (N-TC)
ZEKC=KC/DSQRT (EVKC)
ZKC=KC/DSQRT (VOKC)
KWl=(TOW1-TCW1)/ (N-TCW1)
ZEKW1=KW1/DSQRT (EVKW1)
ZKW1=KW1/DSQRT (VOKW1)
KwW2=(TOW2-TCW2) / (N-TCW2)
ZEKW2=KW2 /DSQRT (EVKW2)
ZKW2=KW2/DSQRT (VOKW2)

C The Disagreement Rate

NUM=0
DEN=0.0DO0
DO 500 I=1,K
DO 500 J=1,K
NUM=NUM+IC(I,J) * (ABS(I-J)})
DEN=DEN+IC(I,J) *MAX (((I+J})/2.0D0)-1,K-({I+J)/2.0D0))
500 CONTINUE
DR=NUM/ (2 *DEN)

C The Concordance Between Raters
CAB=(K*PA-1)/(K-1)
VCAB=( (K**2) *PA* (1-PA) )/ (((K-1)**2) *N)
YVOCAB=1.0DO/ (N* (K-1})
ZCAB=CAB/DSQRT (VOCAB)
C Partial-Chance Kappa (Equal Weights; p=1/K), Partial-Chance Proportion
GSTAR=INT(((N-TO) *K) / (K-1.0D0)}
IF (GSTAR.GT.N) GSTAR=N
KPC=(N-GSTAR)/ (2.0DO0*N-GSTAR-TO)
PPC=(N-GSTAR)/ (N*1.0D0)

C Expected-Chance Proportion

PEC=CAB- (1.0D0/ (N* (K-1)))
EVPEC=( (K**2) *VOTO)} / ( (N* (K-1)) **2)
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C
c
c
Cc
10054

10055

10121

10122
10123
10124

10125

10140
10111
10142
10143
10135

10144
10145
10146
10150
10155

10064
10065

420

Note:

ZEPEC=PEC/DSQRT (EVPEC)

This matrix has been formatted for 2<=K<=5, and may not output

sactisfacrorily when K is larger.

CONTINUE
IF (OUTMAT.EQ.1l) THEN

WRITE(1l,10055) A,SIMS,D,K,N,C
FORMAT (/, 'SIMULATION SIMS D K N

*X,I16,6X,I1,4X,I1,3X,I2,4X,1I2)

WRITE(1,10121)

FORMAT (/, 30X, 'Rater B',/, 'Rater A'}

SELECT (K) FROM

CASE 2
WRITE(1,10122) (I,I=1,K),'Marginal’
FORMAT(/, 15X,2(6X,I1l), 3X,6A8)

CASE 3
WRITE(1,10123) (I,I=1,K), 'Marginal’
FORMAT(/, 15X, 3 (6X,I1),3X,6A8)

CASE 4
WRITE(1,10124) (I,I=1,K), 'Marginal’
FORMAT(/,15X,4(6X,I1},3X,A8)

CASE 5
WRITE(1,10125) (I, I=1,K), 'Marginal’
FORMAT(/,15X,5(6X,I1},3X, A3)

END SELECT

DO 10135 I=1,K
WRITE(1,10140) I, (IC(I,J),J=1,K+1]}
WRITE(1,10141) ((IC{(I,J)*1.0D0)/N,J=1,K+1)
WRITE(1,10142) (W(I,J,1),Jd=1,K+1)
WRITE(1,10143) (W(I,J,2),J=1,K+1)

FORMAT (/, ' *,I2,4X,'Cij',10X,7(I3,4X))

FORMAT (' ',7X,'Pij',7X,7(F6.4,1X))

FORMAT (' ',7X,'Wij(1)',4X.,7(F6.4,1X))

FORMAT (' ',7%,'Wij(2)',4X,7(F6.4,1X})
CONTINUE

WRITE(1,10144)

WRITE(1,10145) (IC(K+1l,J),J=1,K).,N
WRITE(1,10146) ((IC(K+1,J)*1.0D0)/N,J=1,K)
WRITE(1,10150) (W(K+1,J,1),J=1,K)
WRITE(1,10155) (W(K+1,J,2),J=1,K)
FORMAT (/, 3X, 'Marginal')

FORMAT (' ',7X,'C.j',10X,7(I3,4X))
FORMAT (" ',7X,'P.j',7X,6(F6.4,1X))
FORMAT(' ',7X,'W.JjBAR{1)',1X,6(F6.4,1X))
FORMAT (' ',7X,'W.jBAR(2)',1X,6(F6.4,1X))

IF (FLAG.EQ.l) THEN

WRITE(1,10064)

FORMAT (/,1X, '****+* DEGENERATE SAMPLE ****+')
ELSE

WRITE(1,10065) TP,PA

Qutput simulated observations-matrix and measures per simulation

cr,/.4X,16,2

FORMAT(//,1X, 'True Proportion t,7X,F7.4,/,' Overall

*rop. of Agreement',k 4X,F7.4)

WRITE(1,420) KC,EVKC,VOKC, VKC

=]

FORMAT (1X, 'Kappa', 25X,F7.4,3X, 'Exact Null Var(Kc]',611X,F7.4,
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122

S01

«*/ ' L.S.Est. Null Var(Kc]',9X,F7.4,3X,'L.S.Est. vVar{Kc]',6 13X,F7.4)

WRITE(1,421) KW1,EVKW1l,VOKW1, VKW1

FORMAT (1X, 'Wtd. (1) Kappa',K17X,F7.4,3X, 'Exact Null Var(Kwlj',
*10X,F7.4,/,' L.S.Est. Null Var(Kwl]',8X,F7.4,3X,'L.S.Est. Var[Kwl]
*' , 12X,F7.4)

WRITE(1,422) KW2,EVKW2, VOKW2, VKW2

FORMAT (1X, 'Wtd. (2) Kappa',17X,F7.4,3X, 'Exact Null Var({Kw2]',
*10X,F7.4,/," L.S.Est. Null Var(Kw2]',8X,F7.4,3X,'L.S.Est. Var [Kw2]
*',12X,F7.4)

WRITE{(1,501) DR, CAB,VOCAB,VCAB,KPC, PPC, PEC, EVPEC

FORMAT (1X, 'Disagreement Rate',b 13X,F7.4,/,' Concordance Betwe
*en Raters',4X,F7.4,/,' L.S. Null var{caB]',612X,F7.4,3X,'L.S.Est.Va
*r{CAB] ', 13X,F7.4,/,' Partial-Chance Kappa (p=1/K)',3X,F7.4,/,' Par
*tial-Chance Prop‘,12X,F7.4,/,' Expected-Chance PFroportion’,lX,
*F7.4,3X, 'Exact Null var({PEC]',10X,F7.4)

END IF
END IF

C Aggregate measures and associated wvariables

502

SPA=SPA+PA
SPA2=SPA2+DA**2
SKC=SKC+KC
SKC2=SKC2+KC**2
SVKC=SVKC+VKC
SKW1=SKW1+KW1l
SKW12=SKW12+KWL1**2
SVKW1=SVKW1+VKW1
SKW2=SKW2 +KW2
SKW22=SKW22+KW2**2
SVKW2=SVKW2 +VKW2
SDR=SDR+DR
SDR2=SDR2+DR**2
SCAB=SCAB+CAR
SCAB2=SCAB2 :CAB**2
SVCAB=SVCAB+VCAB
SKPC=SKPC+KPC
SKPC2=SKPC2+KPC**2
SPPC=SPPC+PPC
SPPC2=SPPC2+PPC**2
SPEC=SPEC+PEC
SPEC2=SPEC2+PEC**2
DO 502 I=1,4
SZEKC (I)=SZEKC (I} +ZEKC**I
SZKC(I)=SZKC{I) +ZKC**I
SZEXW1 (I) =SZEKW1 (I) +ZEKW1**T
SZKW1 (I) =SZKW1(I) +ZKWl*=*TI
SZEKW2 (1) =SZEKW2 (I) +ZEKW2**T
SZKW2 (I) =SZKW2(I) +2KW2*=*T
SZCAB(I) =SZCAB(I) +ZCAB**"T
SZEPEC(I)=SZEPEC (I} +ZEPEC**I
CONTINUE
IF (ZEKC.LE.-1.96) THEN
PZEKC (2) =PZEKC (2) +1
IF (ZEKC.LE.-2.576) THEN
PZEKC (1) =PZEKC (1) +1
END IF
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ELSE IF (ZEKC.GE.l1.96) THEN
PZEKC(3)=PZEKC (3} +1
IF (ZEKC.GE.2.576) THEN
PZEKC (4) =P2ZEKC (4) +1
END IF
END IF
IF (ZKC.LE.-1.96) THEN
PZKC (2) =PZKC(2) +1
IF (ZKC.LE.-2.576) THEN
PZKC (1) =PZKC (1) +1
END IF
ELSE IF (ZKC.GE.1.96) THEN
PZKC(3)=PZKC(3) +1
IF (ZKC.GE.2.576) THEN
PZKC(4) =PZKC{4) +1
END IF
END IF
IF (ZEKW1.LE.-1.96) THEN
PZEKW1 (2) =PZEKW1 (2) +1
IF (ZEKW1l.LE.-2.576) THEN
PZEKW1 (1) =PZEKW1 (1) +1
END IF
ELSE IF (ZEKW1.GE.1.96) THEN
PZEKW1 (3) =PZEKW1 (3) +1
IF (ZEKW1.GE.2.576) THEN
PZEKW1 (4) =PZEKW1 (4) +1
END IF
END IF
IF (ZKW1.LE.-1.96) THEN
PZKW1 (2) =PZKW1 (2} +1
IF (ZKW1.LE.-2.576) THEN
PZKW1 (1) =PZKW1(1l)+1
END IF
ELSE IF (ZKW1.GE.l1.96) THEN
PZKW1 (3) =PZKW1 (3} +1
IF (ZKW1.GE.2.576) THEN
PZKW1 (4) =PZKW1 (4) +1
END IF
END IF
IF (ZEKW2.LE.-1.96) THEN
PZEKW2 (2) =PZEKW2 (2) +1
IF (ZEKW2.LE.-2.576) THEN
PZEKW2 (1) =PZEKW2 (1) +1
END IF
ELSE IF (ZEKW2.GE.1.96) THEN
PZEKW2 (3) =PZEKW2 (3) +1
IF (ZEKW2.GE.2.576) THEN
PZEKW2 (4) =PZEKW2 (4} +1
END IF
END IF
IF (ZKW2.LE.-1.96) THEN
PZKW2 (2) =PZKW2 (2) +1
IF (ZKW2.LE.-2.576) THEN
PZKW2 (1) =PZKW2 (1) +1
END IF
ELSE IF (ZKW2.GE.1.96) THEN
PZKW2 (3) =PZKW2 (3) +1
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IF (ZKW2.GE.2.576) THEN
PZKW2 (4) =PZKW2 (4) +1
END IF
END IF
IF (ZCAB.LE.-1.96) THEN
PZCAB (2) =P2CAB(2) +1
IF (ZCAB.LE.-2.576! THEN
PZCAB(1)=PZCAB (1) +1
END IF
ELSE IF (2CAB.GE.1.96) THEN
PZCAB (3) =PZCAB(3) +1
I'F (ZCAB.GE.2.376) THEN
PZCAB(4)=PZ2CAB (4) +1
END IF
END IF
IF (ZEPEC.LE.-1.96) THEN
PZEPEC (2) =PZEPEC(2) +1
IF (ZEPEC.LE.-2.576) THEN
PZEPEC(1) =PZEPEC (1) +1
END IF
ELSE IF (ZEPEC.GE.1.96) THEN
PZEPEC (3) =PZEPEC(3) +1
IF (ZEPEC.GE.Z2.576) THEN
PZEPEC (4)=PZEPEC({%) +1
END IF
END IF

C Simulation loop terminates

10050 CONTINUE

nNnnonNonNnNnonaan

nnn

Results of all simulations per parameter combination

Note:

Results are based on the non-degenerate samples, SIMS2. A value
of -5.9999 will result when SIMS2 prevents the calculation from
being performed. For the 3rd/ith moment of selected critical
ratios, a value of -8.8888 will result in order to prevent the
square root of a negative value from being performed, this
negative wvalue arising because of rounding error in DOUBLE
PRECISION arithmetic.

SIMS2=SIMS-DEG

Mean value of measures
Mean value of large-sample nonnull variance estimates

First moment of selected critical ratiocs

IF

(SIMS2.GT.0) THEN
PA=SPA/SIMS2
KC=SKC/SIMS2
VKC=SVKC/SIMS2
BZEKC (1) =SZEKC (1) /SIMS2
BZKC (1) =SZKC (1) /SIMS2
KW1=SKW1/SIMS2
VKW1=SVKW1/SIMS2
BZEKW1 (1) =SZEKW1 (1) /SIMS2
BZKW1 (1) =SZKW1 (1) /SIMS2
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KW2=SKW2/SIMS2
VKW2=SVKW2/SIMS2

BZEKW2 (1) =SZEKW2 (1) /SIMS2
BZKW2 (1) =SZKW2 (1) /SIMS2
DR=SDR/SIMSZ
CAB=SCAB/SIMS2
VCAR=SVCAB/SIMS2

BZCAB (1) =SZCAB (1) /SIMS2
KPC=SKPC/SIMS2
PPC=SPPC/SIMS2
PEC=SPEC/SIMS2

BZEPEC(1) =SZEPEC(1) /SIMS2

C Empirical variance of measures
C Second moment of selected critical ratiocs

IF (SIMS2.GT.1) THEN
PASV=(SPA2-SIMS2* (PA**2) )/ (SIMS2-1)
KCSV=(SKC2-SIMS2* (KC**2) )/ (SIMS2-1)

BZEKC (2) = (SZEKC (2) -SIMS2* (BZEKC (1) **2) )/ (SIMS2-1)
BZKC(2) =(SZKC(2) -SIMS2* (BZKC (1) **2)) / (SIMS2-1)
KW1SV=(SKW12-SIMS2* (KW1*=2))/(SIMS2-1)}

BZEKW1 (2) =(SZEKW1(2) -SIMS2* (BZEKW1 (1) **2))/(SIMS2-1)
BZKW1 (2) = (S2ZKW1 (2) -SIMS2* (BZKW1 (1) **2) )/ (SIMS2-1)
KW2SV=(SKW22-SIMS2* (KW2**2) )/ (SIMS2-1)

BZEKW2 (2) = (SZEKW2 (2) -SIMS2* (BZEKW2 (1) **2)) / (SIMS2-1)
BZKW2 (2) = (SZKW2 (2) -SIMS2* (BZKW2 (1) **2) ) / (SIMS2-1)
DRSV=(SDR2-SIMS2* (DR**2) )/ (SIMS2-1)
CABSV=(SCAB2-SIMS2* (CAB**2}))/(SIMS2-1)

BZCAB (2) = (SZCAB (2) -SIMS2* (BZCAB (1) **2) )/ (SIMS2-1)
KPCSV=(SKPC2-SIMS2* (KPC**2) )/ (SIMS2-1)
PPCSV=(SPPC2-SIMS2* (PPC**2) )/ (SIMS2-1)
PECSV={(SPEC2-SIMS2*(PEC**2) )/ (SIMS2-1)

BZEPEC(2) =(SZEPEC(2) -SIMS2* (BZEPEC (1) **2) )/ (SIMS2-1)

C Third moment of selected critical ratios
IF (SIMS2.GT.2) THEN

IF (BZEKC({2) .GT.0.0D0) THEN
BZEKC{3) =( (SZEKC(3) -3*BZEKC (1) *SZEKC (2) +3* (BZEKC (1) **2) *
*SZEKC (1) -SIMS2* (BZEKC (1) **3) ) *SIMS2) / ( (SIMS2-1) * (SIMS2-2) *°
* ( (DSQRT (BZEKC(2) } ) **3))
ELSE
BZEKC(3)=-8.8888
END IF
IF (BZKC(2) .GT.0.0D0) THEN
BZKC(3)=((SZ2KC (3} -3*BZKC (1) *SZKC{2) +3* (BZKC (1} **2} *
*SZKC (1) -SIMS2* (BZKC (1) **3)) *SIMS2)/((SIMS2-1) *(SIMS2-2) ~*
* ( (DSQRT(BZKC(2)) )} **3))
ELSE
BZKC(3)=-8.8888
END IF
IF (BZEKW1(2).GT.0.0D0) TEEN
BZEKW1(3)=((SZEKW1(3) -3*BZEKW1 (1) *SZEKW1(2) +3~*
* (BZEKW1 (1) **2) *SZEKW1 (1) -SIMS2* (BZEKW1 (1) **3) ) *SIMS2}/ ( (SIMS2-1) *
* (SIMS2-2) * ( (DSQRT (BZEKW1(2) ) ) **3))

92



ELSE
BZEKW1(3)=-8.8888
END IF
IF (BZKW1(2) .GT.0.0D0C) THEN
BZKW1(3)=({SZKW1(3)-3*BZKW1 (1) *SZKW1(2) +3*(BZKW1 (1) **2)~*
*SZKW1 (1) -SIMS2*(BZKW1 (1) **3)) *SIMS2) / ((SIMS2-1) *(SIMS2-2) *
*( (DSQRT (BZKW1(2)))**3))

ELSE
BZKW1(3})=-8.8888
END IF
IF (BZEKW2(2).GT.0.0D0) THEN
BZEKW2 (3) =( (SZEKW2 (3) -3*BZEKW2 (1) *SZEKW2 (2) +3*

* (BZEKW2 (1) **2) *SZEKW2 (1) -SIMS2* (BZEKW2 (1) **3) ) *SIMS2) / ( (SIMS2-1) *
*(SIMS2-2) * ( (DSQRT (BZEKW2(2) ) ) **3})

ELSE
BZEKW2(3) =-8.8888
END IF
IF (BZKW2(2) .GT.0.0D0O) THEN
BZKW2(3) = ( (SZKW2 (3) -3*BZKW2 (1) *SZKW2 (2) +3* (BZKW2 (1) **2) *

*SZKW2 (1) -SIMS2* (BZKW2 (1) **3) ) *SIMS2) / ((SIMS2-1) * (SIMS2-2) *°
* ( (DSQRT (BZKW2(2))) **3))

ELSE
BZKW2(3)=-8.8888

END IF

IF (BZCAB(2) .GT.0.0D0) THEN
BZCAB(3)=((SZCAB(3) -3*BZCAB (1) *S2CAB (2) +3* (BZCAB (1) **2) *

*SZCAB (1) -SIMS2* (BZCAB (1) **3)) *SIMS2)/( (SIMS2-1) * (SIMS2-2) *
**( (DSQRT (BZCAB (2))) **3))

ELSE
BZCAB(3)=-3.8888

END IF

IF (BZEPEC(2) .GT.0.0D0) THEN
BZEPEC(3)=((SZEPEC(3) -3*BZEPEC(1) *SZEPEC(2) +3* (BZEPEC(1) **

+2) *SZEPEC (1} -SIMS2* (BZEPEC (1) **3) ) *SIMS2) / ( (SIMS2-1) *(SIMS2-2) *
* { {DSQRT (BZEPEC(2)) ) **3))
ELSE
BZEPEC(3)=-8.8888
END IF

C Fourth moment ¢of selected critical ratios
IF (SIMS2.GT.3) THEN

IF (BZEKC(2).GT.0.0D0O) THEN
BZEKC (4) = ( ( {SZEKC (4) -4*BZEKC (1) *SZEKC (3) +6* (BZEKC (1) **2)
**SZEKC (2) -4* (BZEKC (1) **23) *SZEKC (1) +SIMS2* (BZEKC (1) **4) ) *SIMS2*
* (SIMS2+1) )/ ( (SIMS2-1) * (SIMS2-2) * (SIMS2-3) * ( (DSQRT (BZEKC (2))) **4)))
*-((3.0DO* ((SIMS2-1)**2))/((SIMS2-2)*(SIMS2-3)))
ELSE
BZEKC(4) =-8.8888
END IF
IF (BZKC(2).GT.0.0D0) THEN
BZKC(4) =(({SZKC(4) -4*BZKC (1) *SZKC (3) +6* (BZKC (1) **2) *
*SZKC (2) -4* (BZKC (1) **3) *SZKC (1) +SIMS2+* (BZKC (1) **4) ) *SIMS2*
**(SIMS2+1) )/ ((SIMS2-1) * (SIMS2-2) **(SIMS2-3) **( (DSQRT (BZKC (2)) ) **4)))
*-{(3.0D0* ((SIMS2-1)**2))/((SIMS2-2)*(SIMS2-3)))
ELSE
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BZKC(4)=-8.8888
END IF
IF (BZEKW1(2) .GT.0.0D0) THEN
BZEKW1 (4) =(( (SZEKW1 (4) -4*BZEKW1 (1) *SZEKW1 (3) +6*
* (BZEKW1 (1) **2) *SZEKW1 (2) -4* (BZEKW1 (1) **3) *SZEKW1 (1) +SIMS2*
*(BZEKW1 (1) **4))*SIMS2* (SIMS2+1) )/ ((SIMS2-1) *(SIMS2-2) * (SIMS2-3)*

* ( (DSQRT (BZEKW1(2)))**4)) )} -((3.0D0*((SIMS2-1)**2))/((SIMS2-2)~*
*(SIMS2-3)))
ELSE
BZEKW1(4)=-8.8888
END IF

IF (BZKW1(2) .GT.0.0D0) THEN
BZKW1 (4)=({ (SZKW1(4) -4*BZKW1 (1) *SZKW1 (3} +6* (BZKW1 (1) **2)
**GZKW1(2) -4* (BZKW1 (1) **3) *SZKW1 (1) +SIMS2* (BZKW1 (1) **4) ) *SIMS2*
* (SIMS2+1) )/ ((SIMS2-1) * (SIMS2-2) * (SIMS2-3) * ( (DSQRT (BZKW1(2)))**4)))
*-{(3.0D0O*((SIMS2-1)**2))/((SIMS2-2) *(SIMS2-3))}
ELSE
BZKW1(4)=-8.8888
END IF
IF (BZEKW2(2) .GT.0.0D0) THEN
BZEKW2 (4) =( ( (SZEKW2 (4) -4*BZEKW2 (1) *SZEKW2 (3} +6*
* (BZEKW2 (1) **2) *SZEKW2 (2) -4* (BZEKW2 (1) **3) *SZEKW2 (1) +SIMS2*
* (BZEKW2 (1) **4) ) *SIMS2~* (SIMS2+1) )/ ( (SIMS2-1) * (SIMS2-2) = (SIMS2-3) *

* ( (DSQRT (BZEKW2 (2} ) ) **4))}) - ((3.0DO* { (SIMS2-1)**2)})/((SIMS2-2})*
* (SIMS2-3)))
ELSE
BZEKW2($)=-8.8888
END IF

IF (B2ZKW2(2) .GT.0.0D0Q) THEN
BZKW2 (1) =( { (SZKW2 (4} -4*BZKW2 (1) *SZKW2 (3) +6* (BZKW2 (1} **2}
**SZKW2 (2) -4* (BZKW2 (1) **3) *SZKW2 (1) +SIMS2* (BZKW2 (1) **4) )} *SIMS2~*
* (SIMS2+1))/ ({SIMS2-1) = (SIMS2-2) * (SIMS2-3) * ( (DSQRT (BZKW2(2) )} **4)))
*-((3.0DO*((SIMS2-1)**2}))/((SIMS2-2)~(SIMS2-3)))

ELSE
BZKW2(4)=-8.8888
END IF
IF (BZCAB(2) .GT.0.0D0) THEN
BZCAB(4) =( ((SZCAB(4) -4*BZCAB (1) *SZCAB(3) +6* (BZCAB (1) **2)

**SZCAB(2) -4* (BZCAB (1) **3) *SZCAB (1) +SIMS2* (BZCAB (1) **4) ) *SIMS2*
*(SIMS2+1))/((SIMS2-1) * (SIMS2-2) *(SIMS2-3) * ( (DSQRT (BZCAB (2)) ) **4)))
*-((3.0DO*((SIMS2-1)**2))/({SIMS2-2)*(SIMS2-3)))
ELSE
BZCAB(4)=-8.8888
END IF
IF (BZEPEC(2) .GT.0.0D0) THEN
BZEPEC(4)=(((SZEPEC(4)-4*BZEPEC(1)*SZEPEC(3)+6*(BZEPEC(}
*)**2) *GZEPEC(2) -4* (BZEPEC(1) **3) *SZEPEC (1) +SIMS2* (BZEPEC (1) **4) ) *
*SIMS2* (SIMS2+1) )/ ( (SIMS2-1) * (SIMS2-2) * (SIMS2-13) **( (DSQRT {BZEPEC(2) )

*)**4)))-((3.0D0*((SIMS2-1)**2))/((SIMS2-2)*(SIMS2-3)))
ELSE
BZEPEC(4)=-8.8888
END IF
ELSE

BZEKC(4})=-9.9999
BZKC(4) =-9.9999%
‘BZEKW1 (4)=-9.999%9
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503

504

BZKW1(4)=-2.9999
BZEKW2 (4)=-9.9999
BZKW2(4)=-9.9989
BZCAB(4)=-9.9999
BZEPEC(4)}=-9.9999

END IF

ELSE

DO 503 I=3,4
BZEKC(I)=-9.9999
BZKC(I)=-9.9999
BZEKW1(I)=-9.9999
BZKW1 (I} =-9.9999
BZEKW2 (I)=-9.999%
BZKW2 (I)=-9.5999

BZCAB(I;=-5.9999

BZEPEC(I})=-95.9999

CONTINUE

END IF

ELSE

PASV=-9.9999

KCSV=-9.9999

KW1sSV=-9.9999%

KW2SV=-9.9999%

DRSV=-9.9999

CABSV=-3.9999

KPCSV=-9.9999

PPCSV=-5.9999

PECSV=-9.9999

DO 504 I=2,4
BZEKC(I)=-9.9999
BZKC(I)=-9.9995
BZEKW1(I)=-9.9999
BZKW1(I)=-9.9999
BZEKW2 (I} =-9.9999
BZKW2(I)=-9.9999
BZCAB(I)=-9.999%
BZEPEC{(I)=-9.9998%

CONTINUE

END IF

ELSE

PA=-9.9999
KC=-9.9999
VKC=-9.9999
KW1=-9.9999
VKW1=-9.9999
KW2=-9.9999
VKW2=-9.9999
DR=-9.5599
CAB=-9.9999
VCAB=-9.9999
KPC=-9.9999
PPC=-9.9999
PEC=-9.9999
PASV=-9.998%9
KCSV=-9.9999%
KW1sSV=-9.9999
KW28V=-9.9999
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DRSV=-5.9999

CABSV=-9.9999

KPCSV=-9.9999

PPCSV=-9.9999

PECSV=-9.9999

DO 505 I=1,4
BZEKC(I)=-9.99899
BZKC(I)=-9.9999
BZEKW1(I)=-9.9999
BZKW1 (I} =-9.9999
BZEKW2 (I)=-9.939¢%
BZKW2 (I)=-9.9995%
B2CAB(I)=-9.9999
BZEPEC(I}=-9.9939

505 CONTINUE
END IF

C Qutput results of all simulations per parameter combination

WRITE(2,3000), C,TP,PA,KC,KW1l,KW2,DR

3000 FORMAT(' ',I2,6{'_',F8.4))

WRITE(3,3002) C,Tp,CAB,KPC,PPC,PEC
3002 FORMAT(' ',I2,5('_',F8.4)}

WRITE (4,3004) C,PASV,KCSV,VKC, KN1SV,VKW1, KW25V, VKW2
3004 FORMAT(' ',I2,7('_',F8.4))

WRITE(7,3006) C,DRSV,CABSV,VCAB, KPCSV, PPCSV, PECSV
3006 FORMAT(' ',I2,6('_',F8.4))

DO 3008 I=1,4
WRITE(I+7,3009) I,C,BZEKC(I),BZKC(I),BZEKW1(I),6 BZKW1(I},
*BZEKW2 (I) ,BZKW2(I) ,BZCAB(I) ,BZEPEC(I)
3009 FORMAT (' ',Il1,'_',I2,8('_',F8.4))
3008 CONTINUE
WRITE(12,3011) C,DEG
3011 FORMAT(' *,I2,'_"',1Is)
DO 3015 I=1.,4
IF (SIMS2.GT.0) THEN
WRITE(13,3016) C,I,PZEKC(I)*1.0D0/SIMS2,PZKC(I)*1.0D0/SIMS2,
*DZEKW1 (I)*1.0D0/SIMS2,PZKW1(I)*1.0D0/SIMS2,PZEKW2(I)*1.0D0/SIMS2,
«PZKW2 (I)*1.0D0/SIMS2,PZCAB(I)*1.0D0/SIMS2, PZEPEC(I)*1.0D0/SIMS2

3016 FORMAT(' ',I2,'_',I1,8('_',F8.4))
ELSE
WRITE(13,3017) C,I
3017 FORMAT (' ',I2,'_',I1,8('_-9.9999'})
END IF

3015 CONTINUE
C Parameter combination loop terminates
4000 CONTINUE
STOP
Remote block DEGVAL
Flags a degenerate sample and counts the number of degenerate samples

per parameter combination. Assigns a value of 0 to the measures and
associated wvariables per simulation when executed, as the results are

anonaon
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C

nNnNnnonoann

based on non-degenerate samples.

REMOTE BLOCK DEGVAL
FLAG=1
DEG=DEG+1
PA=0.0DO
KC=0.0D0
VKC=0.0D0
KW1=0.0D0
VKW1=0.0DO
KW2=0.CDO0
VKW2=0.0DO
DR=0.0DO
CAB=0.QD0O
VCAB=0.0DO
KPC=0.0D0
PPC=0.0D0
PEC=0.0D0
ZEKC=0.0DO
ZKC=0.0D0
ZEKW1=0.0DQ
ZKW1=0.0DO
ZEKW2=0.0D0O
ZKW2=0.0DO
ZCAB=0.0DO
ZEPEC=0.0DO

END BLOCK

END

REAIL FUNCTION RAN2 (IDUM)
INTEGER IDUM, IM1, IM2, IMM1, IAl, IA2,1IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAIL, AM,EPS, RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1, IMM1=IM1-1,
*TA1=40014,IA2=40692,IQ1=53668,1Q2=52774,IR1=12211, IR2=3791,
*NTAB=32,NDIV=1+IMM1/NTAB,EFS=1.2E-7,RNMX=1i. -EPS)
Long period (>2*10718) random number generator of L'Ecuyer with Bays-
Durham shuffle and added safeguards. Returns a uniform random deviate
between 0.0 and 1.0 (exclusive cf the endpoint values). Call with
IDUM a negative integer to initialize; thereafter, do not alter IDUM
between successive deviates in a sequence. RNMX should approximate
the largest flocating wvalue that is less than 1.
INTEGER IDUM2,J,K,IV(NTAB),IY
SAVE IV,IY,IDUM2 ‘
DATA IDUM2/123456789/, IV/NTAE*0/, IY/0/
IF (IDUM.LE.O) THEN
IDUM=MAX (-IDUM, 1)
IDUM2=IDUM
DO 4005 J=NTAB+8,1, -1
K=IDUM/IQ1l
IDUM=IA1* (IDUM-K*IQl) -K*IR1
IF (IDUM.LT.O0) IDUM=IDUM+IM1
IF (J.LE.NTAB)} IV(J)=IDUM

4005 CONTINUE

IY=IVI(1)
END IF
K=IDUM/IQ1
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IDUM=IAl* (IDUM-K*IQl) -K*IR1
IF (IDUM.LT.0) IDUM=IDUM+IM1
K=IDUM2/IQ2

IDUM2=IA2* (IDUM2-K*IQ2) -K*IR2
IF (IDUM2.LT.O0) IDUM2=IDUM2+IM2
J=1+IY/NDIV

IY=IV(J)-IDUM2

IV (J)=IDUM

IF (IY.LT.1) IY=IY+IMM1
RAN2=MIN(AM*TIY,6 RNMX)

RETURN

END
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