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ABSTRACT 

It is frequently desired to determine the extent of agreement between two raters when the 

data are rneasured on an ordinal scale. Five common measures of interobserver reliability 

are the overall proportion of agreement. Cohen's kappa weighted kappa, the 

disagreement rate and the concordance benveen raten. 

.A number of studies have assessed interobsemer reliability including ones which have 

reservations about the measures of reliability and othen whic h recognize several 

paradoxes. It is k n o w  that chance-corrected measures of agreement are prone to exhibit 

paradoxical and counter-intuitive results. Also. if measures are to be adjusted for chance 

agreement. then the guessing rnechanisrn needs to be specified properly and precisely, as 

the current assurnption that al1 obsemations are guessed is simply irnpractical. 

The inadequacies of these measures are discussed and, in light of their deficiencies. new 

mesures are proposed. The assurnption that some but not al1 observations are guessed is 

used to develop three new measures of interobserver reliability, namely, partial-chance 

proportion. partial-chance kappa and the expected-chance proportion. 



Simulations are used to compare the finite sarnple performance of these measures. In the 

simulations. the concordance behveen raters produced the best results. closely followed 

by partial-chance proportion. expected-chance proportion and partial-chance kappa in 

terms of b i s .  rfficiency and the empirical distributions of critical ratios. 

Recommended measures of interobserver reliabiliry are the concordance benveen raters. 

partial-chance proportion. expected-chance proportion and partial-chance kappa. 

Although the concordance benveen rarers is highly advised, its usage should be cautioned 

as it is based on assumptions that are irnpractical in clinical practice. 
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INTRODUCTION 

Studies in medicine. spidemiology, socioiogy, psychology and psychiatry are conducted 

in which hvo or more raters independently examine a group of subjects to determine 

whether attnbutes are present or absent in each of the subjects. The subjects may be 

human or animal subjects. written materials. .Y-rays. etc. The usual goal of such studies 

is to evaiuate how well the raters identify the attnbutes for any variable under 

investigation. Since the raters will invariably make some incorrect assessments. 

quantification of rater performance becomes an important statistical concem. When the 

set of attributes possessed by each subject is known without error. this becornes an issue 

of validity rather than agreement. However, in some situations an absolute standard is 

not known. and hence mesurement of the extent of agreement amon_e the different raters. 

interohenver agreenzem. is of prima- interest. 

The reliability of a classification procedure refers generally to the degree of 

reproducibili ty attained in repeated use of the procedure. Ideail y, reproducibility would 

be rneasured by repeated evaluation of the same subjects by the same raters on different 

occasions. However. since a rater-subject pair may not be usually be used more than 

once. most studies designed to measure the reliability of an instniment employ a large 

group of subjects. who are considered representative of a population of interest. The 



subjects are then evaluated by a small p u p  of raters. and the agreement displayed by the 

raters in classi@ing the subjects is used as a measure of reliability of the classification 

instrument. 1 f agreement among the raters is high. then there is a possibility that the 

ratings do in fact reflect the dimension they are purponed to reflect. If their agreement is 

low. on the other hand. then the usehlness of the variable rated is severely limited. It is 

futile to ask what is associated with the variable in question when one cannot trust those 

ratings. 

In psychological investigations it Frequently happens that twvo or more raters interview the 

same sarnple of subjects for the purpose of allocating them to various categones (Cohen 

1960). For example, the raters may be clinical psychologists. the categories 

schizophrenic. neurotic or brain-damaged. and the subjects psychological test protocols; 

or the raters may be social psychologists. the categories various types of leadership. and 

the subjects small groups. etc. In such situations. one wouId desire ;issurance that the 

diagnosis given a patient is valid. i.e.. actually serves the purpose intended. In the 

absence of ultimare criteria for validating psychological diagnosis. the question arises as 

to the degree of agreement between the raters. 

The management of the comatose child is determined by the assessrnent of the level of 

consciousness and brainstem function (Gordon et ni. 1983). A wide range of conditions 

may be associated with coma or impaired consciousness. Apart fiom acute brain damage, 

there are metabolic disorders and therefore, it is vital to be able to assess and to record 

changing States of altered consciousness reliably. Unfortunately, the level of 



consciousness cannot be directly measured and its estimation requires the interpretation 

of several clinical signs. The grouping of such signs has brought forth di fferent types of 

scales. and sorne have included brain stem signs (Born et al. 1987). The three most 

commonly used coma scales in unconscious children are the Adelaide Scaie. a pedianic 

modification of the Glasgow Coma Scale (Simpson and Reilly 1982) (Table A-1). the 

Jacobi Scale (Table A-21, and the O-IV Scale (Table A-3). Agreement among different 

observers is an indispensable condition for the validation of an evaluation scale of 

consciousness disorders. Assessment of interobserver agreement is desirable since 

important judgmental decisions are made on the basis of  the clinical information. and if 

the data are to be used in clinical research. 

Necrotizing enterocolitis (NEC) is the most cornmon acquired gastrointestinal emergency 

in the neonatal intensive care unit and is suspected when gastrointestinal s i p s  and 

symptoms predominate (Kliegman and Fanaroff 1984). It occurs mainly in prernature 

neonates. predominantly in the first nvo weeks of life. the incidence benveen 1 and 5 

percent of admissions to the neonatal intensive care unit. Overall. NEC has a monality of 

10 to 40 percent. Its pathogenesis is still incompletely understood and there is no ciinical 

sign or laboratory test that contirms the diagnosis. The interpretation of the abdominal 

radiogaph is the most important factor in making a definitive diagnosis of NEC. with 

management strategies generally guided by NEC staging based on clinical and 

radiographie features (Bell er al. 1978). Xlthough correct interpretation of abdominal 

radiographs is the single most imponant factor in diagnosing NEC. a wide range of 

interobserver variability in their interpretation has been suggested (Mata and Rosengart 



1980: Markus et al. 1989). Clearly. observer variation is an important consideration in 

the interpretation of abdominal radiographs as the signs and diagnoses for which 

agreement is poor cannot be considered reiiable. 

.A number of studies have assessed interobserver reliability (Shinar er al. 1987: Solari er 

al. 1989) including ones which have reservations about the measures of reliability 

(Kupper and Hafher 1989; Posner er al. 1 990; Yager. Johnston and Seshia 1990) and 

others which recognize several paradoxes (Feinstein and Cicchetti 1990; Byrt. Bishop and 

Carlin 1993). 

Numerous measures of interrater agreement have been used to quanti@ the degree of 

concordance among hvo raters. but it should be dear that there must be more ro the 

measurement of interrater agreement than the a r b i t r q  selection of an index of 

agreement. Five common measures of interobserver reliability are the overalI proportion 

of agreement. Cohen's ( 1960) kappa. weighted kappa (Cohen 1968). the disagreement 

rate (Teasdate. Knill-Jones and Van der Sande 1978) and the concordance between raters 

(Kupper and Hafher 1989). This thesis will evaluate the five common measures of 

interobserver reliability and propose new refined measures. These measures will be 

described. contrasted and their properties illustrated in order to aid users with 

interpretation and selection. The reliability of these measures can be studied through 

simulation techniques. 



LITERATURE REVIEW 

Occasionally, the k x k table of joint categorical assigrment frequencies of hvo raters 

(where each rater has made assignrnents to the same k-ievel nominal scale) has been 

treated as a contingency table. This having been done. many investigators have 

cornputed X' over the table for use as a test of the hypothesis of chance agreement. and 

some have gone on to compute the contingency coefficient C as a measure ofagrcement 

(McNemar 1962). The defect of ,f in this context. and therefore of C. is that it indexes 

association and not necessarïly agreement. which is the special kind of association of 

interest in reliability. 

The simplest and most frequently used index to measure interobserver agreement has 

been the overail proponion of agreement. Le.. the ratio of the number of cases in which 

the raters agreed to the number of cases. This index suffers in that it includes agreements 

which can be accounted for by chance. 

Different opinions have been stated on the need ro incorporate chance-expected 

agreement into the assessrnent of interrater reliability. The presumptive reason for the 

chance correctio>i is that the measuring instruments are oRen human observers. rather 

than inanimate technologie procedures, and that the subjective responses of the raten 



may sometimes agree by chance. Cohen's ( 1960) kappa adjusts for chance-expected 

agreement. and can be interpreted as the proportion of agreement after chance agreement 

is removed frorn consideration. This apparent virtue of the kappa coefficient has made it 

increasingly popuiar in studies of interobserver reliability. but many investigators are not 

aware of an important disadvantage, kappa is affected by prevalence. leading to two 

paradoxes in the kappa coefficient (Feinstein and Cicchetti 1990). The use of these 

particular measures in pnctice can be misleading as difficulties with their use and 

interpretation have been cited. 

The development of weighted kappa (Cohen 1968) is motivated by studies where the 

relative seriousness of each possible disagreement could be quantified. [t c m  be 

interpreted as the proportion of weighted agreement corrected for chance. The weights 

assigned are an integrai part of how agreement is defined and therefore how it is 

measured with weighted kappa. Cohen's (1960) kappa makes no such distinction. 

irnplicitly treating al1 disagreement cells equally. Weighted kappa has been advocated as 

one of the preferred methods for the analysis of agreement data. 

Properties of kappa and weighted kappa. in particular. approximations of their standard 

errors, have been given by Cohen ( 1960, 1968) and Eventt (1968). However, they are in 

error. having been denved from the contradictory assumptions of fixed marginal totals 

and binomial variation of ce11 frequencies. The errors seem to be in the direction of 

overestimation, so that their use results in conservative significance tests and confidence 

intervals. Eventt ( 1968) derived the exact variances of kappa and weighted kappa when 



the parameten are zero assuming a generalized hypergeornetric distribution. Valid 

formulas for the approximate large-sample variances are given by Fleiss. Everitt and 

Cohen ( 1 969), which do not require such assumptions. 

The disageement rate incorporates the magnitude of disageement, and was fint 

proposed in an article by Teasdale. Knill-Jones and Van der Sande ( 1978). It basically 

takes account of di fferences benveen raters. although i t does not adj ust for agreement 

expected by chance as in kappa. It has been previously suggested (Yager. Johnston and 

Seshia 1990) that the disagreement rate and kappa statistics may provide different yet 

complementary information about interobserver agreement, where the former provides a 

better measure of the degree of disagreement and the latter corrects for chance-expected 

agreement. 

For assessing the extent of interrater agreement for multiple (nominal) response data, 

Kupper and Haher ( 1989) derived a hvo-rater concordance statistsc. the concordance 

behveen raters. This statistic is comparable to kappa in that there is an adjustment for 

chance-npected agreement. however, the assumption in the guessing mechanism differs 

between the hvo statistics. The adj ustrnent for chance-expected agreement in the 

concordance behveen raters is based on the assumption that the observers are guessing by 

giving every one of the categories an equal chance of being observed, whereas the 

adjustment in kappa uses the marginal totals in the familiar approach to contingency 

tables. Furthermore, the adjustrnent made in either coefficient is based on the assumption 

that al1 subjects are guessed. 



A number of assumptions underlying the use of standard statistical tests of reliability may 

not be valid when applied to many rating scales, as convincingly argued by Hall (1974): 

( 1 ) scores are distributed normally. The distribution of scores obtained will depend on 

the degee of handicap in the rated sarnple. which will O Aen contain many grossly 

abnormal individuafs: (1) agreement is rneaningful. For agreement to be a usefil measure 

it should take account of both partial agreement and the total score distribution; (3) 

chance agreement is negligible. There is a certain level of agreement between nvo raten 

on an item that could bs attained by chance alone. If one category of an item is 

consistently rated more frequently than others then the overall probability of agreement 

by chance will be higher; (4) total scores are rneaningful. LVhile total scores are normally 

more stable than item scores. they may lead to false results in calculating interrater 

reliability. Total score reliabilities rnay therefore give spurious values, so that the 

reliability of the individual item scores making up the total score should be examined: 

and (5) mean scores of both raters are similar. Corretation methods fail to take account of 

differences betsveen the means. so that apparentiy good reliabilities cm be obtained with 

sigificant differences between sets of scores. as well, the addition of a constant in order 

to correct one set of means will not correct the skewed fom of score distribution that rnay 

be associated with such differences. 

Hall (1974) States. Further. that the test of choice for calculating reliability with rating 

scales should: ( 1 ) be distribution fiee; (7) allow credit for pmial rater agreement; (3) 

correct for rater agreement due to chance alone; (4) make use of individual items in the 

rating scale; and (5) correct b r  differences in rater mean scores. One method which 



appean to meet these criteria satisfactorily is weighted kappa introduced by Cohen 

( 1968). however. Graham and Jackson ( 1993) identified serious problems with the use of 

weighted kappa suggesting that weighted kappa behaves more like a measure of 

association than an index of agreement. 



STATEMENT OF THE PROBLEM 

Chance-corrected measures of agreement are prone to exhibit paradoxical and counter- 

intuitive results when used as measures of reliability. It will be demonstrated that these 

problems arise with both kappa and weighted kappa and that the correction for gziessing 

(knowledge-based decision making under uncertainty) needs to be carefully considered 

because these statistics change drarnatically with this assessment. 

The adjustment made for agreement expected by chance alone requires the guessing 

rnechanism to be specified precisely. There is an impiicit assurnption in kappa. weighted 

kappa. and the concordance benveen raters that some rater's scores are based on perfect 

knowledge. Other rater's scores on a subject. based on less than perfect knowledge, are 

then guessed at with some of the guesses being correct (raters agree) and some incorrect 

(raters disagree). The adjustrnents in these statistics then are cornputed based on the 

assumprion that al1 subjects are guessed. rather than assuming that only a subset of them 

are guessed. with the statistics differing in the assumptions for the probability of falling in 

the various categories. 

It is desired to evaluate the five cornmon measures of interobserver reliability, to 

determine the conditions under which the statistics can be readily used, and the 



limitations. Based on the failings of these current statistics. new measures of 

interobserver reliability are proposed in this thesis. These newly refined measures are 

induced by the assumptions that only some observations are subject to classification by 

chance, and secondly, the information of the number of disagreements arising can be used 

to deterrnine a likel y value for the nurnber of subjects guessed. 

Cornputer simulations are used to compare the finite sample performance of the rneasures 

of interobserver reliability. In particular. simulation is used to achieve two objectives: 

fint. to evaluate the accuracy of the statistics and their variances: and second. to compare 

the empirical distributions of provided critical ratios under the hypothesis of no 

association between the two raters' exminations with the theoretical normal distribution. 



METHODOLOGY 

4.1 Examination of the Subjects 

Consider a study in which hvo raten. say rater A and rater B. independently examine 

each of t i  subjects. Assume that each subject is exarnined by the raters within a shon 

period of time (minimize the possibility of clinical change in the interval) and that the 

raten did not see each other examine the subjects (minimize any bias involved during the 

course of an examination). Following examination of the rth subject. r = 1.2,. . . . n. each 

rater must decide which one attnbute. fiom A- > 2 mutually exclusive and exhaustive 

(categorical) attnbutes for any variable under investigation. best descnbes the rth subject. 

4.2 Symbols and Notation 

Let tri, denote the number of subjects assigned to category i by rater .-2 and to category J 

by rater B; let 

k k 

n, = c n, and n , = c ,la 

1'1 l = l  

denote the total number ofsubjects assigned to category i by rater A and to category j 

by rater B. respectively. The resuiting fiequencies can be arranged in a k x k 

contingency table with ce11 frequencies q, and ?il, = n : 



Rater A 

Total 

The n subjects wili be regarded as a sample of size n from some target population 

according to some characteristic of interest. Under the hypothesis of rater independence 

and. conditional on the marginal totals. the distribution of a single ri*, is hypergeometric 

Rater B 

1 - 7 . . k 

l2t 1 Ill 2 . f f l k  

(Eventt 1968) 

Total 

II1 

Therefore. the nui1 expected value and null variance of n,, based on (1) are. respectively, 

Also the sum of any nurnber of the q, is a hypergeometric variable (Everitt 1968), and 

using this fact the null covariance ofany hvo of the I I ,  can be derived. The nul1 

covariance for any two elements in the same row. in the sarne colurnn, and for any 

diagonally opposed elernents h a  been shown by Everitt (1968) to be. respectively. 



11,. PlJ, n , n * 
Cov, (n, , nSr ) = L # S ,  j s t .  

t l = ( ? l - l )  

Let 

4 

= c tIll and 

denote the total number of agreements observed and the weighted total number of 

agreements obsenred. respectively. The it, are a set of weights indicating the level or 

amount of agreement. These weiehts are arbitrary and chosen by the experimenter. 

Using the values derived for the nul1 variances and nul1 covariances of the r i i , .  then it 

follows that 

i . tli (12  -11' ) tZ , ( I I  - 1 1  , )  
var0 ( T,& 1 = 7 + 2s w, wsr cov,, (P l , , ,  I l J r  ). 

1=I 1 = 1  t l  = (tz - 1) 

where S denotes the appropriate sumrnation over the whole table. 

The argument for finding the expected values is the same as that used in the farniliar 

approach to contingency tables (Bhattach-rya and Johnson 1977). Then, 

and 
"i. ï'' = 9 9 wii -, 

l = I  J = I  n 



the total number of agreements expected by chance alone and the weighted total number 

of agreements expected b y chance alone. respectively. 

4.3 Five Common hleasures of Interobserver Reliability 

Ln a sample of n subjects. a number of agreements will arise based completely on perfect 

knowledge. Le.. guessing will have played no role in these c agreements. The ratio of 

these hvo numbers gives the true proportion 

where c is generally unknown. 

Overail Pro~ortion of Agreement 

The simples agreement index is based on the proponion of subjects classified into the 

same category by the raters. [t is given by 

and is known as the overall proportion of agreement. This statistic suffen in that it 

doesn't take into account apreements arising from guessing, nor does it reflect the 

magnitude of disagreements which could be close. 

Kappa 

Correcting for ageernent attnbutable to chance yields Cohen's ( 1960) kappa 

coefficient, defined by 



Paradoxical Results Produced bv Kat3~a 

Although A? is the most popular surnmq measure of agreement benveen two raten on a 

nominal scale. Feinstein and Cicchetti (1 990) identified nvo paradoxes associated with its 

interpretation. These paradoxes arise because of the decision to impose a correction for 

chance agreement. making the assumption that the expected values of agreement should 

depend on the marginal totals. However. these marginal totaIs depend on the prevalence 

of the target trait and on the validity of the raters under study. The dependence of h- on 

prevalence can be explored. whereas. the investigation of the agreement of the two raters 

within the purview of validity will not be pursued funher as it is beyond the scope of this 

thesis. 

The first paradox of is thar a high value of c m  be drastically lowered by a 

substantial imbaiance in the marginal totals cither venically or horizontally. The second 

paradox is K will be higher if the imbaiance in the corresponding marginal rotals is 

asymmetrical rather than symmerrical. 

Weiehted Kappa 

When the concept of ful l  credit for complete agreement and varying amounts of partial 

credit for different off-diagonal ( i  t J )  cells seerns natural in a given context. agreement 

is scaled so as to yield a ratio scale of positive agreement weights, iv,,, ranging d o m  



from some convenient maximum value assigned to the diagonal (i = j )  cells representing 

cornplete agreement. Several authors have suggested alternative w y s  of determinhg 

weights. Fleiss and Cohen ( 1973) suggested the squared error weights 

and Cicchetti and Allison ( 197 1 ) suggested the absolute error weights 

Weighted kappa (Cohen 1968) has been used as an agreement index for ordinal data and 

is defined by 

Using the approach in Section 4.2. Everitt ( 1968) derived the exact nul1 variances of k 

and 2% iio be 

and 

respectively. where S denotes the appropriate sumrnation over the whole table. Fleiss, 

Cohen and Zventt ( 1969) found the large-sarnple variances of k and 2- to be estimable 



and 

respectively. and under H, : w = 0 .  the estimated variances of B and K, are. 

A 1 t 

var, (2) = 
Y {x P,  PJNP, + p,,)12 

- P -  ; = i  

and 

w here 

'l ,;  ni I Z  , r* k t 
- Pl, -- Pt =- ' P I = -  . p, = .  p , - -  - T- - , ivi = y, p ; and E ; = ivll pl . 

11 fz  n n I I  j = 1  l =  1 

.Zn approximate significance test of K. Le.. an approximate test of Ho : K = O venus 

H,  : > O. is accomplished by refemng the critical ratio 



to the standard normal distribution. where V , ( k )  c m  be replaced by either (2) or (4). A 

significance test of q is defined analogously. Y and k*, alone with their respective 

variances are undefined when there is perfect agreement between the two raten. Le., 

when al1 obsemations fa11 in a main diagonal cell. 

The value of and its variance c m  be greatly influenced by the choice of weighting 

system. .h obvious consequence of this is that the weights. however determined. must 

be set pnor to the collection of the data. in the event that investigators use different 

weighting systems. cornparison of 2% ' s  Frorn different studies would prove difficult. 

Under the squared error weightine system. Graham and Jackson ( 1993) suggested that 

CLV should be regarded as a rneasure of association rather than an index of agreement. 

Amongst tables with the same marginal distributions. k,,, is dependent only on the overall 

correlation benveen row and column classifica~ions and is not directly dependent on the 

propensity for exact agreement (data concentrated on the diagonal). Hence k.A can 

appear insensitive to differences in and large values of kR c m  be obsewed even when 

is low. 

The Disaoreement Rate 

Disagreements occur when hvo observers report different findings after examining the 

same subject. The fkequency with which observers are in disagreement is a measure of 

the lack of reproducibility of the particular observation under test. Fint proposed in an 



article by Teasdale. bill-Jones and Van der Sande ( 1978), the disagreement rate takes 

into account incorrect responses (disagreements). If on a subject. the fint rater observes 

category i and the second rater records category j. then the disagreement score for that 

observation is (i - j( If we use frequency counts r i , , ,  then 

An adjustment to this absolute difference is made because differïng scores lead to 

diffenng ranges. To standardize the chan- in scale of the absolute differences the term 

t ' 

den = 22s ri.,[rnau(d,, - 1 .  k - c l : ,  i] . where d,, = ( i  + j ) / I  . 

is calculated. The disagreement rate is then the ratio of (6) and (7), or 

D has a range of O to 0.5. ivith a lower value usually associated with a relatively larger 

kappa value. A relatively low kappa value despite a relatively low D is a reflection of 

the different properties between these two measures. The low b suegests that the 

disagreement was relatively small. whereas. a Iow kappa value does not take this into 

account but implies that chance played a major role. 

The Concordance Behveen Raters 

When determination regarding the presence or absence of exactly one nominal attribute is 

sufficient to descnbe each subject. the supposed rneasure of interrater agreement is the 



kappa statistic. In Cohen's ( 1 960) kappa the adjusunent for chance-expected agreement 

depends on the marginal totals. however. this reliance on the marginal totals is not 

necessary. 

Kupper and Hafner ( 1989) have developed a method for assessing the extent of interrater 

agreement when each unit is to be charactenzed by a (possibly empty) subset of k > 2 

distinct nominal attributes. Except when k = 2 and the two attributes refer to the 

presence or absence of a single nominal trait. the k distinct nominal attributes should be 

defined so that the selection of any one attnbute does not preclude the possible selection 

of any other. 

Let c. < denote the subset of attnbutes for the tth subject chosen by rater A. and let 

Card(c. ( ) = -4.. O i -4: < k. be the random variable denoting the number of elements in 

the set c. (. The set ( 3  and its cardinality B,. O < B, 4 k. are defined analogously for 

rater B. Based on rhese definitions. i t  is informative to depict the data for the ith subject 

in the following table: 

1 Rater B 1 - 
Rater A ~ 3 .  Total 

- 
c 4  

Total 

~ a r d ( c T n f < )  

= Bi - .Y, 

4 

c a r d ( c 7  n c?) 
= k - .-1, - B, +.Y, 

k - 4 

k - B; I 



From the above table. the random variable .Y can be seen to be the number of attributes 

for the ith subject chosen by both raters. where mau(0. A, + B - k ) I .Y, 5 min( -4,. B, ). 

Kupper and Hafher ( 1989) consider the agreement proportion 

and define the overail concordance between raters A and B to be the average of the . i l ' s .  

If both raters choose their subsets of attributes for the ith subject completely at random. 

then. conditional on .$ = a, and B, = b,. the nul1 distribution of .y is central 

hypergeometric (Johnson and Kotz 1 969) 

where m u (  0, u,  - - k )  < xl  i min@, . 6, ). This conditionai mode1 for chance 

agreement on the ith subject derives from an underlying unconditional mode1 which 

assumes that .ai - binomial(k. 8, ) and BI - binomial(k, 8, ), and that -4 and B, are 

independent. Cnder the assumption of  random attribute selection, conditioning on the 

marginal frequencies in the previous table eliminates the nuisance parameters 8, and 8, 

from consideration. This approach to correction for chance agreement is based on the 

underlying assumption of rater-specific a priori equal probabilities of aaribure selection 

(Le.. for the ith subject. rater A has the same probability O,, of choosing each attribute). 



min( a , .  6, ) 
Eq (2, ) = and 

1 " 
E q ( 2 )  =-x min(a;.b,) = x,, 

k nk ,=, 

the concordance bstsveen raters (Kupper and Hafher 1989) is given by 

(8) 

When each rater seiects onIy one attribute to descnbe the ith subject. a: = b, = 1 for al1 i, 

and Equation (8) simplifies to 

Considenng the special case when a; = bi = 1 for al1 i, the estimated large-sarnple 

variance of C,,, given by Kupper and Hafker ( L 989) is 

and a sigificancr test of CAB, Le.. a test of H, : C,, = O versus H, : C,, > O. is 

accomplished by referring the critical ratio 

to the standard normal distribution. where the nul1 variance of e.- is 

When the observed marginal proportions for the attnbutes seiected by raters A and B are 

exactly the same. then (9) is always at least as large in value as the kappa statistic. The 

nvo measures are equal when each rater chooses each attribute an equal number of times, 



Le.. for data in the format of a k x k fkequency table. the marginal proponions are al1 l l k .  

In generai. however. Equation (9) can be smaller in value than kappa. The concordance 

beween raters does not account for the magnitude of disagreements. 

4.4 Newly Refined Measures of Interobserver Reliability 

Three new measures of interobserver reliability described as alternatives are now 

proposed. These new measures represent the unique contribution of this thesis IO the 

Funhering development and utilization of measures of intembserver reliability. 

lui alternative approach is to assume rhat in a sampie of n subjects. a certain number of 

obsenrations will be guessed. For a certain nurnber of subjects. c. there is no guessing 

involved and the rater's examinations result in agreement for each subject. It is 

envisaged that the information about the number of disagreements arising c m  be used to 

determine a likely value for the number of observations guessed. Three different 

strategies of differentiating behveen those observations that are guessed and those that are 

not guessed (based cornpletely on perfect knowiedge) are developed. leadin, a to new 

measures of interobsewer reliability. These three new measures are: ( 1 ) partial-chance 

proportion; (2)  partial-chance kappa: and (3) expected-chance proportion. 

Partiai-Chance Proportion 

Define a concordance type statistic in its generai form to be 



where ir, is the number of guessed observations in a sample of ri subjects. In a sample 

of Ir subjecrs. assume that there are G guessed and ri - G nonguessed observations with 

the chance of agreeing in the guess of p,. With some reasonable value for p, we can 

estimate G and use this to adjust the number of correct responses sirnilarly to before. 

The information about the number ofdisagreements. .Y. can be used to give the most 

likely or maximum value for G. The distribution of .Y is 

Now. if we observe x disagreements from a sample of tr subjects. we are then primarily 

interested in determining the most likely or maximum number ofguessed observations. 

g'. Consequently, 

which leads to the inequalities 

.r - .Y -- l s g l - .  < 13) 
1 - P d  1-P ,  

where the difference in the bounds on the inequality is one. Now the optimal value of G 

is the minimal value of ij from ( 13) and the boundary inequality g < t i  from ( 1  1). It may 

not be unique. There are hvo solutions for g when !/(I - p,) is an integer. 

Since .Y = n - c, and if pu = l / k  (equal weighting), then g = k(n - T , ) / ( k  - 1). 

Replacing tr, by in Equation ( l O) leads to the partial-chance proportion 



Partial-Chance K ~ D D ~  

With perfect agreement, the nurnber of concordant instances would be rt. Similar to the 

strategy used in P,,, since there are g juessed observations. of which a result in 

agreement. the number of observations that are nonguessed is simply I I  - g, whereas the 

maximum number of observations excluding those that are guessed correctly is >t - u. 

The general form of  partial-chance kappa is defined to be 

Again. since x = 11 - 7;. and if pa = l l k .  then = k ( n  - T , ) / ( k  - 1). Xlso. since 

a = g - x. Equation ( 15) reduces to 

Expected-Chance Pro~ortion 

Consider a randorn expenment consisting of repeared independent BernoulIi trials where 

p, is the probability of disagreement between hvo raters at each individual trial (subject). 

Suppose that a number of subjects are independently examined by bvo raters and. assume 

for a moment. that the exact number of subjects rated is unknown. Tke information about 

the number of disagreements, .Y. resulting fiom these examinations can be used to 

determine the number of observations that were guessed. 



Let the random variable Y represent the number of trials (subjects) that were guessed. 

resulting in -r disagreements. If x disagreements are observed and. for some constant 

b, , the distribution of  V is 

It c m  be s h o w  that 

Therefore. an estimate of the number of guessed observations is 

and. if p, = 1 - l l k .  then it follows that 

k t 1  
tl; = -. 

k - l  

The assumption made during the experimental set-up that the nurnber of subjects 

independently examined by the hvo raters is unknown shall now be relaxed. In order ro 

compare the various measures of interobserver reliability via computer simulation. sach 

measure is computed based on a fixed number of subjects. I I ,  and hence r = n - T,. 

Replacing tz, by 6,. in Equation (10) leads to the expected-chance proportion 

which c m  be rewitten as 



where C,, refen to Equation (9). Lkng  the approach of Eventt ( 1968) in Section 4.2, 

the exact nul1 variance of is 

and a significance test of P,. Le.. a test of H ,  : P., = 0 versus H ,  : P,, > O. is 

accomplished by refemng the critical ratio 

to the standard normal distribution. 

The Concordance Behveen Raters: Rsvisited 

One may arrive at the concordance between raters another way under seemin_ely different 

conditions. Consider a population in which each subject is enamined by two raters 

according to some characteristic of interest. with some mean value of disagreements. p,. 

Assuming that the population of subjects. Y., . is comprised of Co perfect knowledge- 

based (nonguessed) agreements. and S., - C,, guessed observations, and the chance of 

being in disagreement in the Suess of p,: then 

(4 - C ~ P ,  =Pr- 

Furthermore. frorn a sample of 11 subjects. let the random variable .Y represent the 

number of disageements behveen two raters. Assuming that there are c, (unknown) 

perfect knowledge-based agreements. and the chance of being in disagreement in the 



guess of 1 - l / k .  then the nurnber of observations that are guessed ( r t  - c, ) may be 

estimated. Since. 

and if -Y disagreements are obsenred. where x = n - 5 ,  then it follows that. 

Le.. f i g  is an estimate of the number of guessed observations. Replacing n,  by r i ,  in 

Equation ( 1 O). it can be show that 

where C,,, refers to Equation (9). 

1.5 Simulation Method 

A11 simulations are done on a 166 MHz PC using FORTRAN 77 with use of a random 

number generator adapted from a F O R T W  version of the Long Period random nurnber 

generator (Press et al. 1992). This routine is based on the simple combination method of 

L'Ecuyer ( 1988) which efficiently combines hvo multiplicative linear conyuential 

generators so as to obtain a generator whose penod (= 2.3 x 10") is the l e s t  common 

multiple of  the individual periods. .A shume is also implernented in this routine to 

remove low-order senal correlations. the shuffiing algorithm is due to Bays and Durham 

as described in Knuth ( 198 2 ). 



The simulation technique employed to study the reliability of these measures consists of 

four parameten: ( 1) the number of subjects. 11, sampled: ( 2 )  the number of perfect 

knowledge-based (nonguessed) agreements. c. in a sample of n subjects; (3) the number 

of categories of classification. k. on a given scale of mesurement: and (4) an indicator 

as to the prevalence of the target trait. Prevalence of the observed entity (d = 1) is 

demonstrated by c subjects obsenring the fint category of the classification scale. 

othenvise. c will be evenly distributed amongst each of the categones along the main 

diagonal (d  = 1). The underlying marginal probabilities (4;. 4, ; i, j = 1.. . . , k) used to 

generate the guessed obsenrations in a set of tables are unifom marginals (4' = 4, = Ilk.  

for al1 i and j ) .  

Simulations were performed to compare the finite sample performance of the rneasures of 

interobserver reliability. The sample sizes 11 çxamined were 15 and 50, and the number 

of perfect knowledge-based agreements c was vaned over the intemal [O. HI. The 

number of categones of classification k was chosen to be 3 and 5 .  L'nder each 

combination of the parameters considered. 10' replicates of k x k tables were generated 

at random by a program written in FORTRLU 77. For each table. various sample 

rneasures were calculated: (a) for each measure of interobserver reliability, wlues of 

interobsener reliability; and (b) for provided measures of interobserver reliabiiity, exact 

nul1 variances. nul1 and nonnul1 large-sampie variance estimates. and critical ratios. 

A certain number of the generated tables were discarded whenever any one of the sample 

measures was found undefined. Based on the nondegenerate samples. outcome rneasures 



for the simulations include the mean and empirical variance of each measure of 

interobserver reliability. which relates to bias and efficiency, respectively. For provided 

measures. the means of the large-sarnple variance estimates are compared to the empirical 

variances. Xlso. for provided measures. the sarnpling distributions of the critical ratios 

provided for k. kW, 5',, and are studied by simulation under the hypothesis that the 

assignrnents by the hvo raters are independent. The empirical distributions of these 

critical ratios are compared with the theoretical normal distribution in terms of the mean. 

variance. skewness and kurtosis. for which the theoretical values are respectively, 0. 1. O 

and 0. and in t e m s  of one-tailed areas- 

The results that follow are based on the conditional distribution of the estimates. 

conditional on nondegenerate findings. 



RESULTS 

Kappa values range from - 1 .O0 to - 1.00: minus values reflecr less than chance agreement. 

positive values suggest greater than chance agreement and a value of O indicates chance 

agreement (Cohen 1960). Landis and Koch ( 1977) provided the following labels to the 

corresponding ranges of kappa: less than O indicates poor agreement: O to 0.30. slight 

agreement; 0.1 1 to O. JO. fair agreement: 0.4 1 to 0.60. moderate agreement: 0.6 1 to 0.80, 

substantial agreement: 0.9 1 to 1.00. almost perfect agreement. These divisions are clearly 

arbitrary, but now generally accepted. guidelines for interpreting kappa statistics in 

dinical studies. 

5.1 Degenerate Samples 

Table B-1 shows the number of degenerate samples at different combinations of 11. c. Ir 

and ri. L a e n  LI = i (nonprevalent case). a degenerate result is unlikely to occur. It is 

suggested that degenerate sarnples are likely to occur when d = 2 (prevalent case) and. 

more likely to occur as c tends to rt .  

5.2 Bias 

The mean values of the rneasures of interobserver reliability obtained for each 

combination of ~ i .  c. k and d are depicted in Figures 1-8. The goal of these figures is to 



give an idea of how each measure of interobserver reliability varies with c. compued to 

the true proportion 4. 

In the nonprevalent case (Figures 1-4). PJ is overly optimistic since agreement may occur 

by chance. Another measure which is positively biased is K,,, although not as grossly 

inflated as e. Partial-chance proportion appean to overestirnate the true proportion 

slightly. while &, underestimates the true proponion slightly, but the bias appears to be 

of little practical importance. Looking at 2.. , both weighting systems tend to give 

similar results. however. the absolute error weights tend to produce better results than the 

squared error weights. 

In the nonprevaient case. it is clear that 2 and ?,, give very similar results rhroughout 

the range of values of c.  and that they produce the best results. I t  is also suggested that 

the results obtained with the use of b were generally in accord with rhose using the 

complimentary measures of interobsewer reiiability. 

In order to explore how A? and Kb are affected by prevalence. simulations were 

performed for each combination of tz, c and k. when d = 2 (Figures 5-8). The 

remaining measures of interobserver reliability are not affected by prevalence and are 

included mereiy for cornparison. producing results similar to those when d = 1 .  As 

expected. high values of bJ were associated with low values of 2 and iTb when the 



raters place a preponderance of obsen-ations in one cateeoy. The choice of weighting 

system geatly influences the value of as illustrated in Figures 5-8. For higher values 

of e, k ,  under the squared enor weighting system is paradoxically altered to a iesser 

extent than under the absolute error weighting system. For larger values of c. both k 

and KN grossly underestimate the true proportion. with this problem not repaired by 

larger sample sizes 12 .  

It is clear tiom Figures 5-8 that C,, , Fpc and outperform the remaining measures of 

interobsewer reliability when d = 2 .  

Note the somewhat irregular increase in value of interobserver reliability for 2 and 2* 

when c arrives at the upper boundary of its revised parameter space (d = 2). This 

increase is due to the safeguards required by the simulation program. where the 

degenerate sarnples generated are discarded (see Table B-l ). 

5.3 Efficiency - Empirical Variances 

The empincal variances of the measures of interobserver reliability obtained for each 

combination of the parameters are depicted in Figures 9-1 6 .  The goal of these figures is 

to give an idea of how the efficiency varies with c. For the sake of clarity in Figures 9- 

16. the empirical variance of & is equivalent to that of c,, as can be seen fiom the 

expression of P,= in Section 4.3. 



For the most pan. it appean that the empirical variances tend to decrease when the 

number of categories of classification k increased from a value of 3 to 5.  The situation is 

evident regardless of the indication as to the prevalence of the observed entity as 

iilustrated in Figures 9- 16. with the exception occurring for d = 2. when c arrives at the 

bound- of is revised parameter space. 

When d = 1 (Figures 9-1 2). rach mesure attains its greatesr efficiency when c is large 

and its smaliest efficiency when c is srnall. with minor exceptions to Ppc and 2, where 

their smallest efficiency is realized when c is rnoderately low in value. it is clear from 

Figures 9- 12 that has the smallest empirical variance generally throughout the range 

of values of c (amongst agreement measures). For the mid- to upper range of values of 

c, competing measures iriclude K,, which performs quite well, followed by 2. 

(Ca) and pPc. For very srnall c. ppc h a  rnoderately high efficiency relative to k .  

Looking at *,, when d = 1. the empirical variance is greatly influenced by the choice of 

weighting system as illustrated in Figures 9-12. 1;; using absolute error weights is much 

more efficient than under the squared error weights. Nonetheless. the empirical variance 

is relatively large and. consequently, 2,,, is unstable under either weighting system. 

Figures 13- 1 6 show how the empirical variances of t and K, are affecteci by prevalence 

(d = 2). while the remaining measures produce sirnilar results to those when d = 1. 



Yote that A? and K,, attain their highest efficiency when c is moderately low in value and 

their lowest efficiency when c approaches the boundary of its revised parameter space. 

hgain. the empirical variance of I?., is greatly influenced by the choice of weighting 

system as shown in Figures 13-16. with the choice of weighting system having a similar 

efect  on efficiency as when d = 1. It is clear that the empirical variances of 2 and 2, 

are relatively large and. consequently. 2 and i-4 are unstable. 

'lote the sornetvhat irreguiar decrease in value of the empirical variances of A? and ?.* 

when c arrives at the upper boundary of irs revised parameter space ( d  = 2). The 

explanarion for this decrease is drawn from the same argument provided earlier in Section 

5.2 for the irregular increase in value of interobserver reliability for 2 and k,, (see Table 

B- 1 ). 

5.4 Efficiency - Large-Sarnple Variance Estimates 

Figures 17-24 give the mean values of the large-sample variance estimares and the 

empirical variances of 2. k,. and C,, obtained for each combination of the parameters. 

The goal of  these figures is to give an idea of how the large-sample variance estimates 

compare to the empirical variances for the provided mesures o f  interobserver reliability 

over the entire range of values of c. 



What is clear in the nonprevalent case (Figures 17-70) is that for c close to the 

boundaries of its pararneter space. the large-sarnple variance estimates of &. ki;* and CAB 

do not differ greatly From the empirical variances. However. as c tends to move away 

from its boundaries. the estimated large-sarnple variances depart somewhat markedly 

from the empincal variances. This departure is consistent for AI 4, and C,, with the 

large-sarnple estimates overesrimating the variances. 

When d = 2 (prevalent case), Figures 2 1-24 seem to suggest that when c is small to 

moderate in value. the estimated large-sample variances of i? and 4, do not differ 

greatly From the empirical variances. However. as c tends to approach the upper 

boundary of its revised parameter space. the large-sample variance estimates of A? and 

2,. underestimate the variances. Since is not affected by prevalence. the results are 

simiIar to those when d = t. 

5.5 Empirical Distributions of Critical Ratios 

Table B-2 gives the empirical central moments of  the nul1 distributions of critical ratios 

provided for 2. i?,. , 5',, and e,, obtained for each combination of 11.  k and d .  when 

c = O. For the most part. the obsened central moments are reasonably close to their 

expected values as illustrated in Table B-2. 

For k and k k ,  the exact variance approach of Eventt (1968) produces slightly better 

results than the large-sample variance approach of Fleiss, Cohen and Eventt (1969) in 



terms of the means and variances. regardless of the indication as to the prevalence. The 

Z of C,, also produces acceptable results with the means and variances close to their 

theoretical values of O and 1. respectively. However. the Z of produces mean values 

differing siightly fiom O. approximately in the range of -0.1 to -0.2. 

Looking at k* when d = 1 (nonprevalent case). the squared error weights of Fleiss and 

Cohen ( 1973) tend to approximate the expected values of the mean. variance and 

skewness slightly better than the absolute error weights of Cicchetti and Allison ( 1971 1. 

However. the Z of Ka based upon the absolute error weights produces kurtosis values 

closer to the theoretical value of O than when the squared error weights are applied. 

When d = 2 (prevalent case), 2.. under the absolute error weights tend to produce 

slightly better results than under the squared error weights in terms of the rnean. variance 

and kunosis. However. the critical ratio Z ( i & )  under squared error weights tend to 

approximate the expectrd value of skewness slightly better than under the absolute error 

weighting system. 

Table B-3 gives the empincal tail areas of the nul1 distributions of critical ratios provided 

for 2. tg,, and <, , obtained for each combination of 11. k and d, when c = O. The 

results tended to closely panllel those based upon the central moments in Table B-2. 

Therefore. these results indicate that the nul1 variances of k, k,,, c,, and k, are valid 

for assessing feveIs of statistical significance. 



DISCUSSION 

6.1 Conclusions and Recomrnendations 

It is generally appreciated that there is no perfect measure for surnmarizing any rnass of 

data. When a k x k table is to be represented by only one rneasure. information is lost. 

The unwarranted presumption of sufficiently high agreement may lead to the use of a 

feasible but unreliable study procedure or technique, with attendant risk of drawing 

erroneous conclusions from the study results. 

In conclusion. five comrnon measures of interobserver reliability have been assessed. 

resulting in three newly refined measures being proposed. The simulation expenment 

confirms that these new measures prove to be very usehl as they elirninate the problems 

encountered with the cornmon rneasures. Due to the broad range of possible data 

configurations and underlying probability distributions generating the data. i t  is difficult 

to draw definitive concIusions from the simulations. and only general suggestions should 

be made. 

A researcher who assumes that some of the results could have arisen due to guessing and 

then wants to adjust for this needs to clearly speciQ the guessing mechanism. Possible 

guessing circurnstances and the associated measures are as follows: 



(a) If we assume that al1 observations are guessed and further assume that the sample 

proportions are those used in the guessing, we would recornmend 2 or A?,. . 

However. it might not be wise to use 2 or k, in the circumstance when an observer 

places a preponderance of observations in one category, as these mesures are known 

to produce two types of paradoxes. Furthemore, K and 4, are unstable as their 

variances are relatively large. 

(b) If it is assumed that al1 observations are guessed and funher assurned that the 

guessing is done by giving each of the categories of classification an equal chance of 

being observed. we would advise c, in practice. This measure is particularly 

applicable to studies in which the rates do not have a priori knowledge of the 

prevalence of the scores in the population. c,, accurately estimates the true 

proportion and is stable for equal and unequal marginals. Also. the variance of C-, is 

acceptably approximated. 

( c )  Assume that only some observations are subject to classification by chance. Then. if 

we assume that the raten are able to state and use some proportion for guessing, this 

leads to FPc, kpc and ec. Each cf these rneasures indicate sorne presence of bias, 

however. not substantial enough in that it may be inappropnate to quote an index of 

agreement. In cornparison to C,, , these rneasures estimate the tme proponion 

moderately well and are relatively stable. Since C,, is based upon the assurnption 



that al1 observations are guessed. which is not a practical assumption O ften in a 

clinical sening, P,,, kpc and P, may appear as more attractive. 

(d) The alternative is to assume that there is no guessing, in which case we would 

recommend rither or fi. The overall proportion of agreement is positively biased 

to a large extent and should only be recornmend as a preliminary measure of 

interobsenrer reliabiiity. The disagreement rate provides a measure of disagreement 

and should be recommended as a complimentary measure. 

6.2 Future Research 

OAen in practice. rthical and practical considerations limit the number of raters who c m  

assess a patient within a short time of each other. As pointed out by Koran ( 1  97ja), 

studies of clinical reliability should focus on agreement behveen hvo physicians or 

perhaps three. as this more closely reflects clinical practice. In this thesis. focus was on 

the cornmon case of two raters. 

When given a diagnosis carrying out serious cost and risk consequences, a patient ofien 

seeks a second (or third or founh) diagnostic opinion. Even the most careful and expen 

diagnostician using the besr of diagnostic methods c m  make a mistake. There is potential 

to extend the work to the multi-rater case. allowing agreement arnong the multiple raters 

to be measured. 



Sarnple sizes in clinical studies are oRen limited because of ethical considerations along 

with the practical difficulty in getting the same set of raters ro examine patients within a 

shon time of each other. Cicchetti and Fleiss ( 1977) and Cicchetti (1981) derived an 

empiricaily based formula for determining the approximate sample sizes required for the 

valid application of the kappa statistics. which is approximately n 2 X 2 .  This finding is 

of some comfort to investigators in contrast to the implied conservative estimate of 

n 1 200. irrespective of the number of categories of classification k, due to Fleiss, 

Cohen and Everitt (1969). 

However. studies have been conducted in which the sarnple sizes were small relative to 

Cicchetti's approximation. For instance. Teasdale. Knill-Jones and Van der Sande ( 1978) 

had 16 patients in their srudy employing a scale with 5 categones of classification. 

whereas. Yager. Johnston and Seshia ( 1990) had 1 5 patients in their study with 7 

categories of classification in one scale. These sample size values have been similar in 

several studies of interobsen-er reliability (Koran 1975b). The sarnple sizes n examined 

in the simulations were 15 and 50. and the number of categones of classification k were 

chosen ro be 3 and 5 .  These values were chosen arbitrarily, within a countless number of 

parameter combinations that could have been considered. 

The underlying marginal probabilities used to generate the guessed observations in a set 

of tables were uniform marginals. where each rater has the s m e  probability l / k  of 

choosing each category on the classification scale. Also, a deliberate attempt was made 



to demonstrate the situation where the raters place a preponderance of  observations in one 

classification category. resulting in symmetrical unbalanced rnarginals. 

OAen. however. these marginals depend on the background of the hvo raten. aside fiom 

the prevalence of the target trait. There is potential to explore variations of the 

underl ying probabilities used to generate a set of tables. 



APPENDIX A 
COMA SCALES 

Table -4- 1 : Adelaide Scale.' 
- - 

Critenon Score 

Eyes open 

Spontaneously 

To speech 

To pain 

None 

Best verbal response 

Orientated 

Words 

Vocal sounds 

Cries 

'lone 

Best motor response 

Obeys c o m a n d s  

Localise pain 

Flexion to pain 

Extension to pain 

None 
.- - 

' A pediatric modification of the Glasgow Coma Scate used in the 
Adelaide Children's Hospital. South Australia, since 1977 takes 
neurological imrnatunty into account (Simpson and Reilly 1982). 



Table A-?: Jacob1 Scale.' 

Critenon Score 

Best verbal response 

Orientated 5 

Confused 4 

Inappropriate 3 

Incomprehensib le 

Yone 

Best motor response 

Obeying 

Localizing 

Flexing 

Extending 

Eyes open 

Spontaneous 

To speech 

To pain 

None 

Ocular vestibular responsr 

Minimal-dysconjugate 

No eye movements 

Non-reacting pupil 1 

Gordon et ai. ( 1983). 



Table A-3: O-IV Scale." 

Critenon Score 

Arouses spontaneously and to stimuli 

Stuporous; spontaneous arousai rare; roused 

readily but briefly by stimuli 

Spontaneous arousal absent; avoidance 

motor response to stimuli 

Motor response to intense painhl stimuii only 

No response 

III 

IV 

Huttenlocher ( 1972); Seshia S. S.. Seshia. .M. .M. K.. and Sachdeva ( 1977). 



APPENDIX B 
SIMULATION RESULTS 

Table B-1: The number of degenerate sarnples out of 10' replicates in 
the simulation expenment. 

( i )  rl = 15 
O 
1 
7 - 
3 
4 
5 
6 
7 
S 
9 

1 O 
11 
12 
13 
13 
15 

(ii) n = 50 
O 
1 
3 - 
3 
4 
5 
6 
7 
8 
9 



Table B- 1 : f conclztded). 

( i i )  n = 50 



O Tnie Proportion Y Overall Proportion of Agreement 
* * - - -  - Kappa Weighted Kappa (squared error weights) 
- -- Weighted Kappa (absolute ermr weights) * Disagreement Rate 

- - - -  Concordance Between Raters * Partial-Chance Kappa 

- Partial-Chance Proportion - Expected-Chance Propomon 

Figure 1 : Luean values of the measures of interobserver reliability versus c when 
12 =15. k =3. and d =l  . Simulation results are based on the nondegenerate sarnples. 



O True Proportion + Overall Proportion of Agreement 

- - - - - -Kappa Weighted Kappa (squared error weights) 
--- Weighted Kappa (absolute enor weights) + Disagreement Rate 

- - - -  Concordance Between Raters Y Parbai-Cha~Ce Kappa - Partial-Chance Proportion Expected-Chance Proporuon 

Figure 2: Mean vaiues of the measures of interobserver reliability versus c when 
ri =15. k =5. and d = l .  Simulation results are based on the nondegenerate samples. 



O True Propomon Y Overall Proporbon of Agreement 

- - - - - - Kappa Weighted Kappa (squared error weigh ts) 
--- Weighted Kappa (absolute error weights) + Disagreement Rate 

- -- .  Concordance Between Raters + Partial-Chance Kappa - Partial-C hance Proportion - Expected-Chance Proportion 

Figure 3 : Mean values of the measures of interobserver reliability versus c when 
tr =50, k =3. and d = 1. Simulation results are based on the nondegenerate samples. 



O Tme Proponion Y Overali Proportion of Agreement 
- - - - -  - Kappa WeightEd Kappa (squared error weights) 
--- Weighted Kappa (absolute error weights) * Disagreement Rate 

Concordance Between Raters * Partial-Chance Kappa 

- Partial-Chance Proportion .I Expected-Chance Proportion 

Figure 4: Mean values of the measures of interobserver reliability versus c when 
tz =50. k =5. and d = 1. Simulation results are based on the nondegenerate samples. 



O True Proportion + Overall Proportion of Agreement 

- - - -  - - Kappa Weighted Kappa (squared error weights) 
--- Weighted Kappa (absolute error weights) + Disagreement Rate 

---- Concordance Between Raters + Partial-Chance Kappa 

- Partial-Chance Propohon + Expected-Chance Proportion 

Figure 5 :  Mean values of the measures of interobserver reliability versus c when 
ti 4 5 .  k 4, and d =2. Simulation results are based on the nondegenerate samples. 



O True Proportion + Overall Proportion of Agreement 
- - - - * - Kappa Weighted Kappa (squared error weights) 
--- Weighted Kappa (absolute error weights) + Disagreement Rate 

- - - -  Concordance Between Raters P Partial-Chance Kappa 

- Partial-Chance Proparfion + Expected-Chanœ Proportion 

Figure 6:  Mean values of the measures of interobserver reliability versus c when 
n =15, k = j ,  and d=2. Simulation results are based on the nondegenerate samples. 



0 True Proporhon + Overall Proportion of Agreement 

- - - - -  - Kappa Weighted Kappa (squared error weights) 
--- Weighted Kappa (absolute error weigh ts) + Disagreernen t Rate 

- - - -  Concordance Beniveen Raters * Partial-Chance Kappa 

- Partial-Chance Proportion d Expected-Chance Proportion 

Figure 7: Mean values of the measures of interobserver reliability versus c when 
F Z  =50, k=3,  and d=2. Simulation results are based on the nondegenerate sarnples. 



O True Propomon + Overall Proportion of Agreement 

- - * * -  - Kappa - Weighted Kappa (squared enor weights) 
--- Weighted Kappa (absolute error weights) + Disagreement Rate 

- - - -  Concordance Between Raters Y Partial-Chance Kappa 

- Partial-Chance Proportion --+- Expected-Chance Proportion 

Figure 8: Mean values of the measures of interobserver reliability venus c when 
n =SOT k=5.  and d =2 .  Simulation results are based on the nondegenerate samples. 



Y Overall Proportion of Agreement a - * - -  - Kappa 

Weigh ted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

+ Oisagreemen t Rate - - - -  Concordance Between Raters 

+ Partial-Chance Kappa - Partial-Chance Proportion 

Y Expected-Chance Proportion 

Figure 9: Empincal variances of the measures of interobserver reliability venus c 
when n = 15, k =3. and d = 1. Simulation results are based on the nondegenerate 
sarnp les. 



Y Overall Proporbon of Agreement - - - - - - Kappa 

Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

* Oisagreemen t Rate -.-- Concordance Between Raters 

* Partial-Chance Kappa - Parbat-Chance Proportion 

+ Expected-Chance Propoaon 

0.065 , 

Figure 10: Empincal variances of the measures of interobserver reliability versus 
c when >i = 15, li =5, and d =l  . Simulation results are based on the nondegenerate 
samples. 



+ Overall Proportion of Agreement - - - - -  - Kappa 

Weighted Kappa (squared enor weights) - - - Weighted Kappa (absolute error weights) 

* Oisagreement Rate - - - -  Concordance Between Raters 

Y Partial-Chance Kappa - Partial-Chance Proportion 

Expected-Chance Proportion 

Figure 1 1 : Empirical variances of the measures of interobserver reliability venus 
c when n =50, k=3 .  and d = l .  Simulation results are based on the nondegenerate 
samp les. 



Y Overall Proporbon of Agreement - - - - -  - Kappa 

Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

II Oisagreement Rate - - - -  Concordance Between Raters 

Y Partial-Chance Kappa - Partial-Chance Proportion 

V Expected-Chance Proportion 

Figure 12: Empirical variances of the measures of interobserver reliability venus 
c when n =50. k=5. and d = l .  Simulation resuits are based on the nondegenerate 
samples. 



Y Overall Proportion of Agreement - a - - - - Kappa 

Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

* Oisagreement Kate - - - -  Concordance Between Raters 

Y- PartiabChance Kappa - Partial-Chance Proportion 

Y Expected-Chance ProportÏon 

Figure 13: Empirical variances of the measures of interobserver reliability versus 
c when n = 15. k =3. and d =2. Simulation resutts are based on the nondegenerate 
samp les. 



Y Overall Proportion of Agreement - - * . -  - Kappa 

- Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

+ Oisagreement Rate - . - - Concordance Between Raters 

Y Partial-Chance Kappa - Partial-Chance Proportion 

Y Expected-Chance Proportion 

Figure 14: Empirical variances of the measures of interobserver reliability versus 
c when n =15. R = j .  and d =2. Simulation results are based on the nondegenerate 
samples. 



U Overall Proporhon of Agreement - - - - -  - Kappa 
- Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

+ Disagreement Rate - - - -  Concordance Between Raters 

* Partial-Chance Kappa - Partial-Chance Proportion - Expected-Chance Proportion 

Figure 15: Empincal variances of the measures of interobserver reliability versus 
c when n =50, k = 3 ,  and d=2.  Simulation results are based on the nondegenerate 
samples. 



Y Overall Proporrion of Agreement - - - a . - Kappa 

Weighted Kappa (squared error weights) - - - Weighted Kappa (absolute error weights) 

+ Oisagreement Rate - - - -  Concordance Between Raters 

* Partial-Chance Kappa - Parûal-Chance Proportion - Expected-Chance Proportion 

Figure 16: Empincal variances of the mesures of interobserver reliability verjus 
c when rz =50, k =5, and d =2.  Simulation results are based on the nondegenerate 
samples. 



- - + - - Kappa - - - - -  - Kappa 

l + Weighted Kappa (squared error weights) - Weighted Kappa (squared error weights) 

1 - + - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - -  Concordance Between Raters 

Figure 17: Mean values of the large-sample variance estimates and the empirical 
variances of provided measures of  interobserver reliability venus c when tz 4 5 ,  
k=3. and d = l .  Simulation results are based on the nondegenerate samples. 
(unmarked line. ernpirical variance; marked line [+], mean of the large-sample 
variance estimates) 



- - + - - Kappa - - - - -  - Kappa 

+ Weighted Kappa (squared error weights) - Weighted Kappa (squared error weights) 

- + - Weighted Kappa (absolute enor weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - -  Concordance Between Raters 

Figure 18: Mean values of the large-sarnple variance estimates and the empirical 
variances of provided measures of interobserver reliability versus c when n 4 5 ,  
k =S. and d =l .  Simulation results are based on the nondegenerate samples. 
(unrnarked line. empirical variance; marked line [+], mean of the large-sample 
variance estimates) 



l - - + - - Kappa - - - - -  - Kappa 

1 + Weighted Kappa (squared error weights) - Weighted Kappa (squared error weights) 

I - + - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - -  Concordance Between Raters 

Figure 19: Mean values of the large-sample variance estimates and the empirical 
variances of provided measures of interobserver reliability versus c when n =50, 
k=3.  and d = l .  Simulation results are based on the nondegenerate samples. 
(unmarked line, ernpirical variance; marked line [+], mean of the large-sample 
variance estimata) 



- - + - - Kappa - - - - -  - Kappa 

+ Weighted Kappa (squafed error weights) - Weighted Kappa (squared error weights) 

- + - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - -  Concordance Between Raters 

Figure 20: ~Mean values of the large-sample variance estimates and the empirical 
variances of provided measures of  interobserver reliability versus c when n 4 0 .  
k=5.  and d = l .  Simulation results are based on the nondegenerate samples. 
(unmarked Iine, empincal variance; marked line [+], mean of the large-sarnple 
variance estimates) 



r 

- - + - - Kappa - - - - -  - Kappa 

+ Weighted Kappa (squared error weights) - Weighted Kappa (squared enor weights) 

I - + - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolute error weights) I 
- + - Concordance Between Raters - - - -  Concordance Between Raters 

Figure 2 1 : Mean values of the large-sarnple variance estimates and the empincal 
variances of provided measures of interobserver reliability versus c when n =15, 
k = 3 ,  and d=2. Simulation results are based on the nondegenerate samples. 
(unmarked line. ernpirical variance; marked line [+], mean of the large-sample 
variance estimates) 



- - + - - Kappa - - - -  - - Kappa 

+ Weighted Kappa (squared error weights) - Weighted Kappa (squared error weights) 

- + - Weighted Kappa (absolu te error weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - -  Concordance Between Raters 
A 

Figure II: .Mean values of the large-sample variance estimates and the empincal 
variances of provided measures of interobserver reliability versus c when n 4 5 ,  
k=5 .  and d=2. Simulation results are based on the nondegenerate sarnples. 
(unmarked line. empincal variance; marked line [-1. mean of the large-sample 
variance estimates) 



- - + - - Kappa - - - - -  - Kappa 

+ Weighted Kappa (squared error weights) - Weignted Kappa (squared error weights) 

- -+ - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolu te error weights) 

- + - Concordance Between Raters -.-- Concordance Between Raters 

Figure 13: Mean values of the large-sample variance estimates and the empincal 
variances of provided measures of interobserver reliability venus c when n =50, 
k = 3 .  and d=7. Simulation results are based on the nondegenerate sarnples. 
(unmarked line. empincal variance; marked line [+], mean of the large-sample 
variance estimates) 



--+--Kappa - - - - -  - Kappa 

+ Wetghted Kappa (squared emr weights) - Weighted Kappa (squared error weights) 

- + - Weighted Kappa (absolute error weights) - - - Weighted Kappa (absolute error weights) 

- + - Concordance Between Raters - - - - Concordance Between Raters 

Figure 71: Mean values of the large-sample variance estimates and the empirical 
variances of provided measures of interobserver reliability versus c when tz =jO. 

k = 5 ,  and d = l .  Simulation results are based on the nondegenerate samples. 
(unmarked Iine. empirical variance; marked line [+], mean of the large-sarnple 
variance estimates) 



Table B-2: Central moments of the null distributions of provided critical ratios when 
c = O. Simulation results are based on the nondegenerate samples. 

Central Expected 2," 2," - ad 
K b  - W  

-Moment Value 2" K W  K w  Cae P C C  = 

( i )  n =15; k = 3 ;  d = 1  

-Mean O -0.0026 -0.0027 -0.0023 -0.0024 -0.0027 -0.0028 -0.001 7 -9.1993 
Variance I 0.9954 1 .O665 1 .O000 1 .O7 14 0.9975 1.069 1 0.9955 1 .O848 
Skewness O 0.1563 0.1563 0.0028 0.0028 O. 1 162 0.1 162 0.1801 0.1249 
Kurtosis O -0.1284 -0.1284 -0.2960 -0.2960 -0.2370 -0.2370 -0.0880 -0.0384 

( i i )  rr = 15; k = 5; d = 1 

.Mean O 0.0031 0.0032 0.0036 0.0037 0.0042 0.0044 0.0020 -0.1476 
Variance 1 1 -0046 1 .O763 0.9995 1 .O709 1,0033 1 .O750 1 .O050 1 -0902 
Skewness O 0.3353 0.3383 0.0048 0.0048 O. 1301 O. 130 1 0.3829 0.2889 
Kurtosis O -0.0500 -0.0500 -0.3 154 -0.3 154 -0.2 1 08 -0.2 1 08 0.02 1 1 -0.043 1 
( i i i )  n = 50; k = 3; d = 1 

,Mean O -0.0054 -0.0054 -0.0024 -0.0025 -0.0039 -0.0040 -0.0060 -0.1 08 1 
Variance 1 0.9986 1 .O 190 1 -0006 1 .O2 1 O 1 .O00 1 1 .O205 0.9976 1 .O 193 
Skewness O 0.0964 0.0964 -0.0121 -0.0123 0.056 1 0.056 1 O. 101 1 0.0956 
Kurtosis O -0.0203 -0.0203 -0.0606 -0.0606 -0.0439 -0.0439 -0.0222 -0.02 14 

(iv) n = 50; k = 5; d = 1 

.Mean O -0.0080 -0.008 1 -0.0036 -0.0036 -0.0057 -0.0058 -0.0078 -0.08 16 
Variance 1 0.9955 1 .O1 59 1 -0067 1 .O273 1 .O042 1 .O247 0.9955 1 .O 166 
Skewness O O. 1939 O. 1939 -0.0009 -0.0009 0.0702 0.0702 0.2002 O. 1872 
Kurtosis O -0.0204 -0.0204 -0.082 1 -0.082 1 -0.053 1 -0.053 1 -0.02 19 -0.0265 

Exact null variance using the approach of Everin ( 1968). 
b Large-sample nul1 variance using the approach of Fleiss. Cohen and Eventt ( 1969). 
' Squared error weights of Fleiss and Cohen ( 1973). 
"bsoiute error weights of Cicchetti and Allison ( 1971 ). 

Nul1 variance using the approach of Kupper and Hafher ( 1989). 



Centrai Expected 
Ka teb K, " - bc - 31 - bd 

,Mornent Value K~ K, K,. (Le PM' 
(v)  n=15: k = 3  d = 2  
Mean O -0.00 1 8 -0.00 19 -0.0037 -0.0039 -0.0030 -0.003 1 -0.0027 -0.2007 
Variance 1 1 .O023 1.0739 0.9993 1 .O707 1 -0004 1 .O71 9 1 .O039 1 -0937 
Skewness O O. 1503 O. 1503 -0.0083 -0.0083 0.1022 0.1022 0.1716 0.1 122 
Kurtosis O -0.1600 -0.1600 -0.3 143 -0.3 143 -0.2584 -0.2584 -0.1 172 -0.0835 
(vi) n=15: k = 5 ;  d = 2  

iMean O -0.0001 -0.0001 0.0053 0.0055 0.003 1 0.0033 -0.0010 -0.1507 
Variance 1 1 -0030 1.0746 0.9989 1 -0702 1 .O022 1 -0738 1.0020 1 .O887 
Skewness O 0.3394 0.3394 0.0073 0.0073 O. 1305 O. 1305 0.376 1 0.2823 
Kurtosis O -0.0716 -0.0716 -0.3281 -0.328 1 -0.2430 -0.2440 -0.0271 -0.0793 

(vii) n =jO; k = 3; d = 2 
:Mean O -0.00 1 7 -0.00 15 0.0005 0.0005 -0.0005 -0.0005 -0.00 19 -0.1 04 1 
Variance 1 1 .O050 1 -0255 0.9998 1.0202 1.0022 1 .O227 1.005 1 1 .O270 
Skewness O O. 1054 O. 1054 0.0086 0.0086 0.0753 0.0753 O. 1094 O. 1 O 18 
Kurtosis 0 -0.0 1 09 -0.0 1 09 -0.0860 -0.0860 -0.0597 -0.0597 -0.0085 -0.0054 
(viii) n = 50; k = 5; d = 2 
 mea an O -0.0038 -0.0038 -0.0046 -0.0046 -0.0039 -0.0039 -0.0041 -0.0777 
Variance 1 1 .O029 1 .O233 0.9966 1 .O 169 0.9966 1 .O1 69 1 .O0 12 1 .O223 
Skewness O 0.2038 0.2038 -0.0025 -0.0025 0.0685 0.0685 0.2 1 15 O. 1985 
Kurtosis O -0.0029 -0.0029 -0.0800 -0.0800 -0.0522 -0.0522 0.0093 0.0023 

Exact nul1 variance using the approach of Everitt (1 968). 
Large-sarnple nul1 variance using the approach of Fleiss. Cohen and Everitt ( 1969). 
Squared error weights of Fleiss and Cohen ( 1973). 
Xbsolute error weights of Cicchetti and Allison ( 1 97 1 ). 
Nul1 variance using the approach of Kupper and Hafher (1989). 



Table B-3: Empirical tail areas of the nul1 distributions of provided critical ratios when 
c = O. Simulation results are based on the nondegenerate samples. 

Interval Expected kk 2,,k ad 

Prop. K" teb K,. c.u3c k c  = 

( i )  n=15; k = 3 ;  d = l  

Z 5 -2.576 0.005 0.0023 
z 5 - i .96 0.025 0.02 1 O 
z L 1-96 0.025 0.0298 
z 2 2.576 0.005 0.0067 

(ii) n=l5;  k = 5 ;  d = 1  

Z 5 -2.576 0.005 O.OOOO 
z 5 - I .96 0.025 0.0 127 
z 1 1.96 0.025 0.0333 
z r 2.576 0.005 0.0087 

( i i i )  r i  = 50: k = 3; d = 1 

Z 5 -2.576 0.005 0.0037 
Z 5 - i .96 0.025 0.0232 
z 1 1.96 0.025 0.0263 
z 2 2.576 0.005 0.0057 

(iv) rr = 50; k = 5; d = 1 
Z 5 -2.576 0.005 0.00 17 
Z s - I .96 0.025 0.0 193 
z 3 1.96 0.025 0.0297 
z 2 2.576 0.005 0.0072 

- 

' Exact nul1 variance using the approach of Everitt ( 1968). 
b Large-sample nui1 variance using the approach of Fleiss. Cohen and Everitt ( 1969). 
' Squared error weights of Fleiss and Cohen ( 1  973). 
LI .~bsolute error weights of Cicchetti and Allison ( 1971). 

NuIl variance using the approach of Kupper and Hafher ( 1989). 



Table B-3 : (conclzrded). 

(v) n = l 5 ;  k = 3 ;  d = 2  
Z 5 -2.576 0.005 0.0022 
z 5 - r -96 0.025 0.02 1 2 
z 2 1.96 0.025 0.0298 
z 2 2.576 0.005 0.0066 
(vi) tz=15; k = 5 ;  d = 2  

Z 5 -2.576 0.005 0.000 1 
2s-1-96 0.025 0.0121 
z 2 1.96 0.025 0.0336 
z 2 2.576 0.005 0.0089 

(vii) tt = 50; k = 3: ci = 3 

z 5 -2.576 0.005 0.0038 
Z s - 1.96 0.025 0.0234 
z 1 1-96 0.025 0.0273 
z 1 2.576 0.005 0.006 1 

(viii) n = 50; k = 5 ;  d = 2 

z 2 -2.576 0.005 0.0020 
Z 5 - I .96 0.025 0.0 19 1 
2 2 1.96 0.025 0.0305 
z 2 2.576 0.005 0.0075 

- - -- 

a Exact nul1 variance using the approach of Eventt ( 1  968). 
b Large-sample nuil variance using the approach of Fleiss. Cohen and Eventt ( 1969). 
' Squared error weights of Fleiss and Cohen ( 1973). 
1 Absolute error weishts of Cicchetti and Allison ( 1971 ). 

Nui1 variance using the approach of Kupper and Haher ( 1989). 



APPENDIX C 
SIMULATION PROGRAM 

MIRS-FOR - Measures of Interobserver Reliability Simulation 

Variable dictionary 

SIMS 
1 
J 
OUTMAT 
CC 
TP 
A 
3EG 
PA 
SPA 
S PA2 
PASV 
KC 
S KC 
S KC2 
KCSV 
VKC 
SVKC 
VOKC 
SUMl 
EVKC 
ZEKC 
SZEKC ( - )  

BZEKC (-1 
Z KC 
S Z K C  ( -1 
BZKC (-1 
PZEKC (-1 

:Randam number generator seed (must be a negative integer) 
:Function (see for explanation) 
:Sample size of subjects 
:Number of levels of C 
:Levels of C 
:Perfect knowledge based (nonguessed) agreements 
:Categories of classification 
:Distribution of C 

1 - C  is spaced evenly along the main diagonal 
2 -C observes 1st category of classification (prevalence) 

:Number of simulations 
: Counter 
: Counter 
:Indicator for output simulated matrix 
:Parameter combination loop counter 
: ïrue proport ion 
:Simulation loop counter 
:Number of degenerate samples per  parameter combination 
:Overall proportion of agreement 
: sum 
: sum of squares 
: empirical variance 
: Cohen ' s kappa 
: sum 
: sum of squares 
: empirical variance 
: large-sample estimate of nomull variance 
: sum of VKC 
: large-sample estimate of null variance 
: sum of terms in calculation of VOKC 
: exact null variance 
: Z ratio using exact null variance 
: sums of powers of ZEKC 
: central moments of ZEKC 
: 2 ratio using large-sample null variance estimate 
: sums of powers of ZKC 
: central moments of ZKC 
: 1-tailed areas using exact null variance 



C PZKC (-1 : 1- tailed areas using large-sample null -rariance estimate 
C KW1 :Weighted kappa (squared error weights) 
C SKW1 : sum 
C Sm412 : sum of squares 
C KWlSV : empirical variance 
C VKWl : large-sarnple estimate of nonnul1 variance 
C S v K w l  : sum of VKWl 
C VOKWl : large-sarnple estimate of nul1 variance 
C EVKWl : exact nul1 variance 
C ZEKWl : Z ratio using exact nul1 variance 
C ÇZEKWl(- j  : sums of powers of ZEKWl 
C BZEFdl(-i: central moments of ZEKWl 

ZKWl : Z ratio using large-sample nul1 -~ariance estimate 
SZKW1(-) : sums of powers of ZKW1 
BZKWl(-1 : central moments of ZKWl 
PZEKWI(-1 : 1-tailed areas using exact null variance 
PZKWI(-) : 1-tailed areaç using large-sample null variance estimate 
KW2 :Weighted kappa (absolute error weights) 
sKW2 : sum 
sw22 : sum of squares 
W Z S V  : empirical variance 
VKW2 : large-sample estimate of nomull variance 
SVKW2 : sum of VKW2 
VO KW2 : large-sample estimate of nul1 variance 
EVKW2 : exact nul1 variance 
ZEKW2 : Z ratio using exact nul1 variance 
SZEKW2(-1 : sums of powers of ZEKW2 
BZEKW2(-1: central moments of ZEKW2 
ZKW2 : Z ratio using large-sample nul1 variance estimate 
SZKW2 ( -1  : sums of powers of ZKW2 
BZICd2 ( - )  : central moments of ZKW2 
PZEKW2(-1 : 1-tailed areas using exact nul1 variance 
PZICd2I-) : 1-tailed areas using large-sample nul1 variance estimate 
DR :The disagreement rate 
NUM : numerator in calculation of DR 
DEN : denorninator in calculation of DR 
SDR : sum 
SDR2 : sum of squares 
DRSV : empirical variance 
CAB :The concordance between raters 
SCAB : sum 
S CAB 2 : sum of squares 
CABSV : empirical variance 
VOCAB : large-sample estimate of nul1 variance 
VCAB : large-sample estimate of n o ~ u l l  variance 
SVCAE : sum of VCAB 

C ZCAB : Z ratio using large-sample nul1 variance estimate 
C SZCAB(-1 : sums of powers of ZCAB 
C BZCA.B(-1 : central moments of ZCAB 
C PZCAB(-1 : 1-tailed areas using large-sarnple null -~ariance estimate 
C GSTAR :Estimated number of guessed observations in N subjects 
C KPC :Partial-Chance Kappa (equal weights) 
C SKPC : sum 
C SKPC2 : sum of squares 
C KPCSV : ernpirical variance 
C PPC :Partial-Chance Proportion 
C SPPC : sum 



SPPC2 : sum of squares 
PPCSV : empirical variance 
PEC :Expected-Chance Proportion 
S PEC : sum 
SPEC2 : sum of squares 
PECSV : empirical variance 
EVPEC : exact nul1 variance 
ZEPEC : Z ratio using exact nul1 -~ariance 
SZEPEC ( - 1  : sums of powers of ZEPEC 
BZEPECC-) : central moments of ZEPEC 
PZEPEC(-i : 1-tailed areas using exact null variance 
2 : K + 1  x K+1 weight matrix, 3rd-dimension is an indicator: 

1-Squared error weights of Fleiss and Cohen (1973) 
2-Absolute error weights of Cicchetti and Allison (1971) 

FLAC :Flags a degenerate sarnple 
NRAN :Number of guessed observations 
1x1 :Gucssea observation from Rater A 
1x2 :Guessed observacion from Rater El 
ï X ( - . 2 )  :N x 2 table of subjects' classifications. subjectsl-rnatrix 
JCNT : Counter 
TC i-,-i 
DEGVAL 
TO 
TC 
VOTO 
SUMV 
SUMC 
TOWl 
TCWl 
VOTOWl 
SUMVWl 
SUMCW1 
TOW2 
TCW2 
VOTOW2 
SUMVWZ 
SUMCW2 
S 
T 
ENDCEL 
SIMS2 

:K+1 x K+1 table of simulated obs., observations-rnatrix 
:Remote Slock (see for explanation) 
:Total number of observed agreements 
:Total nurnber of chance-expected agreements 
:Exact null variance of TO 
:Sum of +lariances used in calculation of VOTO 
:Sum of covariances used in calculation of VOTO 
:Wtd(l) total number of observed agreements 
:wtd ( l) total number of chance-expected àgreements 
:Exact null variance of TOWl 
:Sum of variances used in calculation of VOTOWl 
:Sum of covariances used in calculation of VOTOWl 
: Wtd ( 2  total number of obser~ed agreements 
:Wtd (2 1 total number of chance-exp&ted agreements 
:Exact nul1 variance of TCW2 
:Sum of .fariances used in caiculation of VOTOW2 
:Sum of covariances used in calculation of VOTOW2 
: Counter 
: Counter 
:Indicator for searching for end of cells 
:Number of non-degenerate samples 

C Declare variables 

REAL RANZ 

DOUBLE PRECISION W(6,6,2) , T C , V ~ T ~ , T ~ W ~ ~ T ~ W ~ ~ T C W ~ , T C W ~ ~ S ~ ~ ~ ,  
*SUMVW2, SüMCW1, SUMCW2 VOTOW1, VOTOW2 DEN,, DSQRTl TPl PAl SPA, SPA2 
*PASV, KC,EVKC~VKC1V0KC~EKC,ZKC1SKC1SKC2,SVKC1~ZEKC~4~ lSZXc(4) 
*BZEKC (4 1 , BZKC (4) , KCSV, KW1, EVKW1 VKW1 VOKWI , ZEKW1, ZKWZ , S m 1  Sm12 I 
*SVKW1,SZEKW1(4) ,SZKW1(41 1B2EKW1(4) ,BZKNI ( 4 )  l ~ 1 ~ ~ I K W 2 , E V K W 2 1 V ~ 2 1  
*VOKW2,ZEKW2,ZKW2,SKW21SKW221SVKW21SZEKW2(4) ISZKW2 ( 4 1  ,BZEKW2 ( 4 )  





READ *,D 
END WHILE 
OUTMAT= O 
'IJHILE (OUTMAT-LT. l.OR.OUTMAT.GT.2) DO 

W R I T E ( * ,  10043) 
10043 FORMAT(/,'OUTPUTSIMULATED MATRIX? [l:YES, 2:NOl') 

READ * , OUTMAT 
END WHILE 

C Output simulation parameters CO outpuc file MIRS-MAT.TXT 

WRITE (1,10041) IDUM,SIMS,D,K,N, (CA(I), I=I, LC) 
10041 FORMAT(/, 'IDUM: ',Ill,/, 'SIMS:',6X,161/l ' D:',llX,Il,/, ' K:', 

* l /  N : ' , 0 x , 1 2 / '  C:',10X,10(I2,2X)) 

C Output column headings to various output files 

WRITE (2,20053) 
2 0 0 5 3 FORMAT ( / , ' C-TP-PA-KCCICW1-Rd22DR ' 1 

'WRITE(3,20054) 
2 0 0 54 FORMAT ( / , ' C-TP-CAB-KPC-PPC-PFC ' ) 

WRITE (4,20055) 
2 0 0 5 5 FORMAT ( / , ' C-PASV-KCSV-VKC-KWlSV-VWl KWZSV-VKWZ ' - 

WRITE (7,20056) 

2 0058 FORMAT ( /  . 11, '-C-ZEKC-ZKC ZEKW~_ZKW~-ZEKW~-ZKW~~ZCI~B-ZEPEC' 1 - 
20057 CONTINUE 

WRITE(12,20059) 
20059 FORMAT(/, 'C-DEG' ) 

WRITE (l3,2OO6O 1 
20060 FORMAT ( /  , ' C-Tail-ZEKC-ZKC-ZEKW1-ZKW1 ZE~~~-ZKW~-ZCAB-ZEPEC' ? - 
C Parameter combination loop commences 

C Initialize - ~ a r i a b l e s  per paramecer combination 

DEG=O 
SPA=O . ODO 
SPA2=0. ODO 
SKC=O . ODO 
S K C 2 = O .  ODO 
SVKC=O.ODO 
SKWl=O. ODO 
SKWIZ=O. ODO 
SVKWI=O.ODO 
SKW2=0.000 
SKW22=0. ODO 
SVKW2=O. ODO 
SDR=O . ODO 
SDR2 =O. ODO 



SCPl=O. ODO 
SCAB2=O. ODO 
SVCAB=O. ODO 
SKPC=O - ODO 
SKPCS=O. ODO 
SPPC=O.ODO 
SPPCZ=O.ODO 
SPEC=O.ODO 
SPECZ=O.ODO 
DO 20062 1=1,4 

SZEKC(1) =O.ODO 
SZKC(I1 =O.ODO 
SZEKWl(1) =O.ODO 
SZKWl(I1 =O.ODO 
SZEKWZ (I)=O.ODO 
SZKW2 (I)=O.ODO 
SZCAB (1 =O. ODO 
SZEPEC (1) =O. ODO 

20062 CONTINUE 
DO 20063 I=1,4 

PZEKC (1 1 = O  
PZKC(I1 =O 
PZEKW1( 1) = O  
PZKWI (1 1 =O 
PZEKW2 ( 1 ) =O 
PZKw2 !I) = O  
PZCAB (1) =O 
PZEPEC ( 1) =O 

20063 CONTINUE 

c Construct weight matrix 

DO 10110 I=l,K 
DO 10110 J=l, K 

W ( 1 ,  J,i)=l.ODO-! ( ( I - J ) * * 2 ) /  ( (  (K-1) **2)*7,.0DO) j 

W(IfJ,2)=1.0DO-i (ABS(1-JI )/(K-1.ODO) 1 
IO110 CONTINUE 

C True Proportion 

TP=C/ (Nfl . ODO) 

C Simulation lcop commences 

DO 10050 A=l,SIMS 
WRITE(*,10051) A,SIMS,D,K,N,C 

10051 FCRMAT ( ' ' 6 ' OF ' 16, ' D=',Il, l , I f  ' N=',I2, ' C 
*=  1 ,121 

FLAG=O 

C Construct subjectst-rnatrix with guessed ~bser~ations 



IX (NRAN, 2 )  =IX2 
NRAN=NRAN - I 

END 'WHILE 

C F i l 1  in balance of subjectsg-rnatrix with knowledge based agreements 

IF iD.EQ.1) THEN 
JCNT= 1 
DO 10070 I=N-C+I, N 
IX(1,l) =JCNT 
IX(1,Z) =JCNT 
IF (JC2JT.GE.K) JCNT=O 
JCNT= JCNTt 1 

10070 CONTINUE 
ELSE 
DO 10071 I=N-C+I,N 

IX(I,l) =1 
IX(1,Z) =I 

10071 CONTINUE 
END IF 

C Construct observations-matrix and marginal totals 

DO 10095 1=1, K+l 
DO 10095 J=1,K+1 

IC(1, J) =O 
10095 CONTINUE 

DO 10100 I=1,N 
IC(IX(I,1) ,IX(I,2) )=ICIIX(I, 11 , 1 ~ ( 1 , 2 )  + l  

10100 CONTIIUE 
DO 10105 I=l,K 
DO 10105 J=I,K 
IC(I,K+1)=1C(I,K+I) +IC(I,J) 
IC(K+1, 1) =fC(Ktl, 1) +IC(J, 1) 

10105 CONTIINUE 

C Total number of aoreernents onser~ed and ckance-expected 

TO=G 
TC=O . ODO 
DO 410 I=l,K 
TO=TO+IC ( 1, Il 
TC=TC+(IC(I,K+l)*IC(K+l, 1) ) /(N*I.oDo) 

410 CONTINUE 

C Check for degenerate sample 

IF (TC.EQ.N*l.ODO) THEN 
WRITE (1,550011 

55001 FORMAT ( / ,  'DEGENERATE SAMPLE SINCE TC.EQ.N+l.ODO') 
EXECUTE DEGVAL 
GO TO 10054 

END IF 

C Exact nul1 variance of TO and TON 



C Check f o r  degenerate sample 

IF (VOTO.EQ.O.OD0) THEN 
'nITE (l,SSOO2) 

55002 FORMAT ( / ,  'DEGENERATE SAMPLE SINCE VOTO.EQ.O.ODO'! 
EXECUTE DEGVAL 
GO TO 10054 

END IF 

SUMVWl=O. ODO 
SUMVW2=0. ODO 
SUMCWI=O . ODO 
SUMCW2=0. O D O  
DO 412 I=L,K 
DO 412 J=l,K 

SUE.NW1=SUMV?d1+(W(IrJ,i) * * 2 )  *IC(I,K+l)*!N-IC!IIK+ll) *IC(K+llJ 
* )  * (N-IC(K+l,J) ) 

S U M V W 2 = S W d 2 - f W ~ I , 2 , 2 ) * * 2 ) * I C ( I I K + 1 ~ ~ ( N - I C ( I , K + l )  1 *IC(K+l,J 
' 1  *(N-IC(K+l, JI 1 

S=I 
T=J 
ENDCEL=O 
WHILE ( ENDCEL . EQ . O 1 DO 
IF (T+l.LE.K) TXEN 
T=T+ I 

ELSE IF !S+l.LE.K) THEN 
S = S + l  
T= 1 

ELSE 
ENDCEL= i 

END IF 
IF (ENDCEL.EQ.0) THEN 
IF (1.EQ.S.AND.J.NE.T) THEN 
SUMCWl=SUMCWI-W(I,J, 1) *W(S,T, Ii *IC(IIK+l) *IC!K+ll JI *IC 

*(K+l,T) *IN-IC(IfK+l)) 
SUMCW2=SUMCW2-X(I,J,2) *W(SITf2) *IC!I,K+l) *IC(K+l,J) *IC 

*(K+l,T) *CN-IC(I,K+i)j 
ELSE IF (J.EQ.T.AND.1.NE.S) TXEN 
SUMCWI=SUMCWI-W(I, J, 1) *W(SITl 1) fIC(I,K+l) *IC(S, K+l) *IC 

*(K+i,J)+(N-IC(K+l,J)) 
SUMCWZ=SUMCW2-W(1, J,2) *W(S,T,2) *IC(I,K+l) *IC(S,K+l)*Ic 

*(K+l, JI *(N-IC(K+l,J)) 
ELSE 
SUMCWl=SUMCWl+W(I,J,l) *W(S,T,~)*IC(I,K+~)*IC(S,K+~) *IC 

* (K+l, J)*IC(K+l,T) 
SUMCW2=SUMCW2+W(Il J12)*W(SlTf2) *IC(I,K+I) *IC(S,K+l) *IC 

* (K+lf JI *IC(K+l1T) 
END IF 

:END 1 F 



C Check for degenerate sample 

IF (VOTOW1. EQ. O. ODO 1 THEN 
rWRITE (1,55003) 

55003 FORMAT ( / ,  'DEGENERATE SAMPLE S I N C E  VOTOWI.EQ.O.ODO') 
EXECUTE DEGVAL 
GO TO 10054 

"LND IF 

C Check for degenerate sample 

IF (VOTOW2 . EQ. O. ODO) THEN 
'WRITE (l,SSOO4 ) 

55004 FORMAT ( / ,  'DEGENERATE SAMPLE SINCE VOTOW2.EQ.O.ODO') 
EXECZrrE DEGVAL 
GO TO 10054 

END IF 

C Large-sample est. of the nul1 and nonnull variance of Kappa 

VKC=O . ODO 
SUMl=O 
DO 431 I = l , K  
VI<C=VKC+IC(I, 1) * ( (N* (N-TC) - (IC(K+l, 1) +IC(I,K+~I ) (N-TO) ) " 2 )  
SUM1=SUM1+IC(I,K+l)*IC(K+II 1) * (  (N-IC(K+l1 1) -1C(1,K+l) * * 2 )  

DO 431 J=l,K 
IF (1.NE.J) THEN 
VKC=VKC+ ( (N-TOI **2) *IC(I, J I  ( (Ic!K+~~ 1) * I C ( J ,  K+l) * * 2 )  

SUMI=SUMI+IC(I,R+l} *IC(K+I13) * (  (1C(K+lI I)+IC(J,K+l) !**2) 
END IF 

431 CONTINUE 
VOKC=(SUMl- (N*TC) * * 2 )  / ( ( N * * 3 I  II (N-TC) * * 2 )  
VKC= <VKC-N* ( (T0*TCtNt (TO-2*TC) ) **2) ) / ( (N**2) * ( (N-TC) **4) 

C Check for degenerate sample 

IF (VOKC. EQ. O. ODO THEN 
WRITE t 1,55005) 

55005 FORMAT ( / ,  'DEGENERATE SAMPLE SINCE VOKC.EQ.O.ODO'1 
EXECUTE DEGVAL 
GO TO 10054 

END IF 

C Construct weight rnatrix marginals (weighted averages of the weights) 

DO 10115 I=l,K 
W(I,K+l, 1) =O.ODO 
W(I,K+ll2)=O.0DO 
W(K+1, I,l)=O.ODO 
W(K+111,2)=0.0D0 

10115 CONTINUE 



DO 10120 I=i,K 
DO 10120 J=I,K 
W(I,K+l, l)=W(I,K+I,1) t(W(I,Z, 1) *IC(K+l,J) ) /  (N*l.ODO) 
~ ( I , K + 1 , 2 ) = W ( I , K + 1 , 2 ) + ( W ( I I ~ , 2 )  *IC(K+l, JI ) / (N*l.ODOl 
W(K+l, 1, l)=W(K+I, I l  l ~ + ~ N ~ J I I , l ~ * I C ~ J I K + l ~  1 / (N*l.ODO) 
W(K+l,I12)=W(K+1, I,2)+(W(Jl 1 1 2 )  *IC~J,K+l) 1 / (N*l.ODO) 

10120 CONTINUE 

C Weighted total number of agreements observed and chance-expec~ed 

TOWl=O . ODO 
TOW2=O, ODO 
TCWI=O.ODO 
TCW2=O.ODO 
DO 600 I=I,K 
DO 600 J=1, K 
TOWl=TOWI+W(I,J, 1) *IC(I,J) 
TOW2=TOW2+W(I1 J I  2 )  *IC(I, J) 
TCWl=TCWI+(W(I, J I  1) *IC(I,K+l) *IC(K+I,J) /N 
TCW2=TCW2+(W(I, J,2) *IC(I,Ktl) *IC(K+l,J) 1 /N 

600 CONTINUE 

C Large-sample est. of the nul1 and nomull variance of Weighted Kappa 

VKwl=O. ODO 
VKWS=O. ODO 
VOKWl=O. ODO 
VOKW2=O. ODO 
DO 704 I=l,K 
DO 704 J=1, K 

VKWl=VKWl+IC(I, J) * ( (W(I,J, 1) +(N-TCW1) - (W(I,K+l,l) +W(K+llJl 1) 
* )  * (N-TOW1) 1 **2 ) 

VKW2=VKid2+IC(I1J) * (  (W(I,J,2) (N-TCW2) - (W(I,K+1,2)+W(K+1,J12) 
* ?  * (N-TOW2 1 ) **2 1 

VOKW1=VOKW1+IC!I,K+1)tIC(K+I,3) * (  (W(I,J,l) -W(I,K+l,l) -W(K+l, 
*J, 1) ) * * 2 )  

VOKW2=VOKW2tIC(I1 Ktl) *IC(K+lI Jj * ( (W(IlJ12) - W ( I , K + l 1 2 )  -W(K+l, 
* J , 2 )  * * 2 )  

704 CONTINUE 
VKW1= (VKW1- ( (TOWl*TCWl+N* (TOWI-2fTCWl) ) **2) / N I  / ( (N-TCNI) **4) 
VKW2= (VKW2- ( (TOWS*TCW~+N* ( T O W ~ - ~ * T C W ~ )  ) **2) IN) / ( (N-TCW2) * * 4 )  
vOKWI=(VOKW~-TCWl**2) / (N* ( (N-TCWI) **2) ) 

C Check for degenerate sample 

IF (VOKWI . EQ. O. ODO THEN 
WRITE (1,55006) 

55006 FORMAT ( / , ' DEGENERATE SAMPLE SINCE VOKW1. EQ . O. ODO ' 1 
FXECUTE DEGVAL 
GO TO 10054 

END IF 

VOKW~= ( v o K w ~ - T c ~ ~ * * ~ )  / (N* ( (N-TCW2) **2) ) 

C Check for degenerate sample 



WRITE (1,55007) 
55007 FORMAT ( /  , ' DEGENERATE SAMPLE SINCE VOKW2. EQ . O. ODO ' 

ZXECUTE DEGVAL 
GO TO 10054 

END IF 

C Exact nul1 -1ariance of Kappa and Weighted Kappa 

EVKC=VOTO/ ( (N-TC) * * 2 )  
EVKWI=VOTOWI/ ( (N-TCWl) t+s 1 
EVKW2=VOTOW2/ ( (N-TCd2) t'2) 

C Overall Proportion of Agreement 

C Kappa and Weightea Kappa 

KC= (TO-TC) / (N-TC) 
ZEKC=KC/DSQRT (EVKC) 
ZKC=KC/DSQRT (VOKC) 
K W ~ =  (TOWI -TCWl) / (N-TCWl) 
ZEKW~=KWI/DSQRT(EVKW~) 
ZKWl=KWl/DSQRT (VOKWi 
K W ~ =  (TOW2 -TCW2 ) / (N-TCW2) 
ZEKW2 =KW2 /DSQRT ( EVKW2 
ZKW~=KW~/DSQRT (VOKW2 

C The Disagreement Rate 

N U M = O  
DEN=O . ODO 
DO 500 1 = 1 , K  

DO 500 J=I,K 
NUM=NUM+IC (1, J) * (ABS ( 1-J) 
DEN=DEN+IC(I,J) *MAX( ( (I+Jl /Z.ODO) 

500 CONTINUE 
DR=NUM/ ( 2  *DEN) 

C The Concordance Between Raters 

C Partial-Chance Kappa (Equal Weights; p=l/~), parrial-Chance proportion 

GSTAR=ïNT ( ( (N-TOI *K) / (K-1. ODO 1 
IF (GSTAR. GT. N) GSTAR=N 
KPC= (N-GSTAR) / ( 2 .  0DOtN-GSTAR-TO) 
PPC= (N-GSTAR) / (N*l. ODO) 

C Expected-Chance Proportion 



C Oucput simulated observations-matrix and measures per simulation 
C 
C Note: This matrrx has been formacted for 2 c = K c = S ,  and may not ou tpur  
C sa~isfactorily when K Fs larger. 

10054 CONTINUE 
IF (OUTMAT.EQ.1) THEN 
'W!ITE(l,10055) A,SIMS,D,K,N,C 

10055 FORMAT ( / , ' SIMULATION S IMS 
*X, I6,6X, Il, 4X, 11, 3 X I  12, 4 X ,  T2) 

WRITE(1,10121) 
FORMAT(/, 3OX, 'Rater BI,/, 'Rater A ' )  
SELECT ( i0 FROM 
CASE 2 
;1~1TE(l,10122) ( 1 : , I = L , K ) ,  'Marginal' 
FORMAT(/, lSX, 2 (6X, Il), 3X,A8) 

CASE 3 
rmITE(1,10123) ~I,I=l,K),'Marginal' 
FORMAT(/, LSX, 3 (6X, 11) ,3X,A8) 

CASE 4 
7 m ~ ~ ~ ( 1 , 1 0 1 2 4 )  (1,1=l,K), 'Marginal' 
FORMAT!/, 1SX,4 (GX, Il) ,3X1A8) 

CASE 5 
WRITE(1,10125) (I,I=I,K), 'Marginal' 
FORMAT(/, lSX, 5 (6X, 111 , 3X,Aô) 

END SELECT 
DO 10135 I=l,K 
rWRITE(1,L0140) 1, (IC(1, JI ,J=l,K+lj 
'WRITE (1 
WRITE ( 1 
'IJRITE ( I 
FORKAT ( 
FORMAT ( 
FORMAT ( 
FORMAT I 

CONTINUE 

WRITE(1,10145) (IC(K+l, J) , J=1,K) ,N 
WRITE(1,10146) ((IC(K+l,J) *1.ODO)/N1J=1,K) 
WRITE(1,IGlSO) (W(K+I,J,l),J=l,K) 
WRITE(1,lOlSS) (W(K+l, J , S )  , J=l, K) 
FORMAT ( /  ,3X, 'Margina1' 
FORMAT(' ',7X, ~C.j',lOX,7(13,4X)) 
FORMAT(' ',7X, 'P.j1,7X,6(F6-4,IX)) 
FORMAT(' ',7X, 'W.jBAR(1) ' ,  1X16(F6.4, 1x1) 
FORMAT(' ' ,7X, l x .  jBAR(2) ' ,  IX,6(F6.4,1X) 
IF (FLAG.EQ.l) THEN 
WRITE (1,10064 ) 

FORMAT(/,~X,~***** DEGENERATE SAMPLE * * * * * '  1 
ELSE 
WRITE(1 , 10065) TP, PA 
FORMAT ( / /  , lx, 'True ~roportion ',7X1F7.4,/,' Overall 2 
of Agreement ' ,4X, F7.4 
WRITE(l,420) KC,EVKC,VOKCr7JKC 
FORMAT(lX, 'Kappa',2SX,F7.4,3X,'Exact Nul1 ~ a r [ ~ c ]  ',1lX,F7.4, 



/ ,  ' L.S .Est. Null Var [Kc] ' ,9X, F7.4,3X1 ' L . S  .Est. Var [Kc] ' , l3X, F7.4) 
WRITE(1,421) KWl,EVKW1,VOKWl,VKWl 
FORMAT(IX, 'Wtd. Il) Kappa', 17X, F7.4,3X, 'Exact ~ u l l  ~ a r [ ~ w l ]  ' , 

*10X, F7 -4, / ,  ' L.S.Est. Null Var [Kwl] ' ,8X, F7 .4,3X, 'L.S.Est. .~ar[Kwl] 
* ' ,  12X,F7.4) 

WRITE!I1422) KW2,EVKW2,VOKW2,VKWZ 
FORMAT(lX,'Wtd. (2) Kappa',17X,F7.3,3X, 'Exact Nuil ~ar[~i+12] ' ,  

*10X, F7 -4, / ,  ' L.S.Est. Null Var (Kw2] * , BX, "7 .4,3X, IL-S .Est. Var [Kw2] 
*',12X,F7.4) 

WRITE(1,501) DR,CEIB,VOCAB,VCAB,KPC, PPC, PEC,EVPEC 
FORMAT(IXI1Disagreement Rate1,13X,F7.4,/,' Concordance Betwe 

*en Raters ' , lx, F7.4, j, ' L.S. Null Var (CAB] ' ,12X, F7.4,3X, ' L .S .Est .Va 
*r[CAB] ',13X,F?.4,/, ' Partial-Chance Kappa (p=l/K) ',3X,F7.4,/, ' Par 
*tial-Chance Prop',l2X1F7.4,/, ' Expected-Chance Proportion',lX, 
* F 7 . 4 , 3 X 1  'Exact Nul1 Var[PEC] ',lOX,F7.4) 

END I F  
END IF 

C Aggregate measures and associated variables 

SPA=SPA+PA 
SPA2=SPA2+PA**2 
SKC=SKC+KC 
SKC2=SKC2+KC**2 
SVKC=SVKC+VKC 
SKWl=SKWl+KW1 
SKW12=SKWlZ+KW1**2 
SVKWl=SVKWI+VKWl 
SKWZ=SEm2 +KW2 
SKW22=SKWZZ+KW2**2 
ÇVKW2 =SVKW2 +VKW2 
SDR=SDR+DR 
SDR2 =SDR27DR* * 2  
SCAB=SCAB+CAB 
SCAB2=SCAB2 +CAR-2 
SVCAB=SVCAE+VCAB 
SKPC=SKPC+KPC 
SKPC2=SKPC2+KPC**2 
SPPC=SPPC+PPC 
SPPC2=SPPC2+PPC**2 
SPEC=SPEC+PEC 
SPEC2=SPEC2 +PEC**2 
DO 502 I=l,4 

SZEKC ( 1) =SZEKC ( 1) +ZEKCt+T 
SZKC(1) =SZKCfI) +ZKC**I 
SZEKWl(1) =SZEKWl(I) +ZEKWIt*I 
SZKWl(1) =SZKWl(I 1 +ZKWl**I 
SZEKW2 ( 1) =SZEKW2 ( 1) +ZEKW2**1 
SZKW2 (1) =SZKW2 (1) +ZKW2**1 
SZCAB ( 1) =SZCAB (1 1 tZCAB* 1 
SZEPEC ( 1) =SZEPEC ( 1) +ZEPEC* * 1 

CONTINUE 
IF (ZEKC.LE.-1.96) THEN 

PZEKC(2) =PZEKC(2) +1 
IF (ZEKC-LE. -2.576) THEN 

PZEKC(1) =PZEKC(l) +1 
END :IF 



ELSE IF (ZEKC.GE.1.96) THEN 
PZEKC ( 3  =PZEKC (3 1 +1 
IF (ZEKC.GE.2-576) THEN 
PZEKC(4) =PZEKC(4) +1 

END IF 
END IF 
IF (ZKC-LE. -1.96) THEN 
PZKC(2) =PZKC(2) +l 
IF (ZKC-LE. -2 -576) THEN 
PZKC(1) =PZKC(l) +1 

END IF 
ELSE IF (ZKC.GE.1.96) THEN 
PZKC(3) =PZKC(3) +1 
IF (ZKC.GE.2.576) THEN 
PZKC(41 =PZKC(9) +1 

END IF 
END IF 
IF (ZEKW1.LE.-1.96) THEN 
PZEKWl(2 1 =PZEKWl(Z +l 
IF IZEKWl-LE. -2.576) THEN 
PZEKWl(1) =PZEKW1(1) +1 

END IF 
ELSE IF (ZEKW1. GE. 1.96 THEN 
PZEKWl(3) =PZEKW1(3) +l 
IF (ZEKWl.GE.2.576) THEN 
PZEKWl(4) =PZEKW1(4 1 +l 

END IF 
END Ia 
IF (ZKW1.LE. -1.96) THEN 
PZKWl(2) =PZKw1(2) +1 
IF (ZKW1.LE.-2.576) THEN 
PZKWl(1) =PZRdI(l)+l 

END IF 
ELSE IF (ZKWl.GE.1.96) THEN 
PZKWl(3) =PZKW1(3! i l  
IF (ZEWl.GE.Z.576) THEN 
PZKwl(4) =PZKw1(4) +1 

END IF 
END If 
IF (ZEKW2. LE. - 1.96 THEN 
PZEKW2 ( 2 )  =PZEKW2 (2) +1 
IF (ZEKW2.LE.-2.576) THEN 
PZEKW2 ( 1) =PZEhW2 ( 1) +l 

END IF 
ELSE IF (ZEKW2.GE.1.96) THEN 
PZEKW2 ( 3 1 =PZEKW2 ( 3 +l 
IF (ZEKW2.GE.2.576) THEN 
PZEKW2 (4 ) =PZEKW2 ( 4  ) +l 

END IF 
END IF 
IF (ZKW2.LE.-1.96) THEN 
PZKW2 (2 =PZIfd2 (2 1 +l 
IF (ZKW2 .LE. -2 -576) THEN 
PZKW2 (1) =PZKW2 (1) +1 

END IF 
ELSE IF (ZKW2.GE.1.96) THEN 
PZKW2 ( 3 )  =PZKW2 ( 3 )  +1 



IF (ZKWZ.GE.2.576) TKEN 
PZKW2 (4)=PZKw2(4)+1 

END IF 
YND IF 
IF (2CA.B-LE. -1.96) THEN 
PZCAB(2) =PZCAB(2) +1 
IF (ZCAB-LE. -2 - 576) THEN 
PZCAB(1) =PZCAB(l) tl  

END IF 
ELSE IF (ZCAB-GE. 1.96) ïHEN 

PZCAB(3) =PZCAB(3l+l 
IF (ZCAB.GE.2.576) THEN 

PZCAB(4) =PZCJm(4) +1 
END IF 

END IF 
IF (ZEPEC.LE.-1.961 THEN 
PZEPEC ( 2 1 =PZZPEC ( 2 +I 
IF (ZEPEC.LE.-2.576) THEN 
PZEPEC ( I) =PZEPEC ( i +l 

END IF 
ELSE IF (ZEPEC.GE.1.96) THEN 

PZEPEC(31 =PZEPEC(3) +1 
IF (ZEPEC.GE.2.576) THEN 

PZEPEC(4) =PZEPEC(4) +l 
END IF 

END IF 

C Simulation loop texminates 

10050 CONTINUE 

Results of al1 simulations per  parameter combination 

Note: Results are based on the non-degenerate sampies, SIMÇ2. A value 
of -9.9999 will result when SIMS2 prevents the calculation from 
being performed. For the 3rd/-1th moment of selected critical 
ratios, a value of -8.8888 will result in order to prevent the 
square root of a negatr-~e value from neing performed, ~ h i s  
negative value arising ~ecause of rounding error in DOüBLE 
PRECISION arithmetic. 

Mean value of measures 
Mean value of large-sarnple nonnull variance estimates 
First moment of selected critical ratios 

IF (SIMS2.GT.O) THEN 
PA=SPA/SIMS2 
KC=SKC/SIMS2 
VKC=SVKC/S IMS2 
BZEKC ( 1) =SZEKC ( 1) / S N 2  
BZKC (1) =SZKC (1) /SIMS2 
KWI=SKWl/SIMSZ 
vKWI=SVKW~/SIMS~ 
BZEKWl(1) =SZEKWl( 1) /SIMS2 
BZKWI ( 3 )  =SZKWl(l) / S I M S ~  



KW2=SKW2/SIMS2 
'VKW2=SVKW2/SIMS2 
BZEKW2 (1) =SZEKW2 (1) /SIMS2 
BZKW2 (1) =SZKW2 ( 1 )  /SIMS2 
DR=SDR/SIMS2 
CAB=SCAB/SIMS2 
VCAB=SVCAB/ S XMS2 
BZCAB(1) =SZCAB(l) /SIMS2 
KPC=SKPC/SIMS2 
PPC=SPPC/SIMS2 
PEC=SPEC/SIMS2 
BZEPEC ( 1) =SZEPEC ( 11 /SIMS2 

C Ympirical variance of rneasures 
C Second moment of selected critical ratios 

C Third moment of selectea critical ratios 

IF (BZEKC(2) .GT.O.ODO) THEN 
BZEKC(3) = ( (SZEKC(3) -3*3ZEKC(l) tSZEKC(2) + 3 *  (BZEKC(1) **2) * 

*SZEKC(l) -sIMs~*(BZEKC(I)*+~) ) *SIMS~) / ( (SIPIS2-1) * (SIMS2-2) 
*((DSQRT(BZEKCiZ) ) ) * * 3 ) )  

ELSE 
BZEKC(3) = - 8 . 8 8 8 8  

END IF 
IF (BZKC(2) .GT.O.ODO) THEN 
BZKC(3)=( (SZKC(3) -3*BZKC(l) *SZKC(2) +3* (BZKC(1) **2)* 

*SZKC (1) -SIMS2* (BZKC (1) * * 3 )  1 tçIMSZ) / ( SIMS2-1) * (SIMS2-2) * 
* (  (DSQRTCSZKC(2) ) **3) 1 

ELSE 
BZKC (3) = - a .  8 8 8 8  

END IF 
IF (BZEKWl(2) .GT.O.ODO) THEN 
BZEKWI(3) = ( (SZEKWl(3) -3*BZEKWl(l) *SZEKW1(2) +3* 

* (BZEKWl(1) **2) 'SZEKWl(1) -SIMS2* (BZEKWI (1) **3) ) *SIMS~) / ( (SIMS2-1) * 
*(SIMS2-2) * ((DSQRT(BZEKWl(2) 1 )  * * 3 )  1 



ELSE 
BZEKWl(3) =-8.8888 

END IF 
IF (BZKWl(2) .GT.O.ODO) THEN 

3ZKW1(3)=( (SZKWl(3) - 3 * B Z K W l ( S ) t l ( 1 ) * * 2 ) *  
*SZKWl(1) -SIMS~*(BZKW~ (1) **3) ) * S I M S ~ )  / ( (SIMS2-1) '(SIMS2-2) * 
* <  (DSQRTCEZKWl(2)))**3)) 

ELSE 
BZKWl(3) =-8 -8888 

END IF 
IF (BZEKW2 ( 2 )  .GT.O.ODO) THEN 

BZEKW2 (3) = ( (SZEKW2 (3 ) -3*BZEKW2 (1) *SZEKW2 (2) +3 * 
( B Z E K W ~  (1) * * 2 )  *SZEKW~ (1) -SIMS~* (BZEKW~ (1) * * 3 )  ) 'SIMS~) / ( (SIMS2-1) ' 
'(SIMS2-2) * ((DSQRT(BZEKW2(2) ) ) * * 3 )  

ELSE 
BZEKW2 (3) =-8.8888 

END IF 
IF (BZKW2(2) .GT.O.ODO) THEN 
BZKW2 (3) = ( (SZKW2 (3) -3*BZKW2 (t)+2 (1) **2) * 

*SZKW2(1) -SIMS2*(BZKW2(1) * * 3 ) )  * S m )  / ( (SIMS2-L)*(SIMS2-2) 
* ( (DSQRT(BZKW2 (2) 1 )  **3) ) 

ELSE 
BZKW2 (3) =-8.8888 

END IF 
IF (BZCAB(2) .GT.O.ODO) THEN 
BZCAB(3)=( (SZCAB(3) -3*BZCAB(l) * S Z C A B ( 2 )  +3* (BZCAB(1) * * 2 )  * 

*SZCAB(l) -SIM~~*(BZCAB(I) * * 3 ) )  *SIMS2)/( (SIMSZ-I) *(SIMS2-2) * 
( (DSQRT (BZCAB (2) * * 3 )  

ELSE 
BZCAB(3) =-a.8888 

END IF 
IF (BZEPEC(2) .GT.O.ODO) TKEN 
BZEPEC(3) = (  (SZEPEC(3) - ~ * B z E P E c ( ~ )  *SZEPEC(2) +3*(BZEPEC(lI * *  

* 2 )  *SzEPEC(l) - S I M S ~ *  (BZEPEC(~) **3) ) * S I M S ~ )  / ( (SIMS~-1) (SIMSZ-2) ' 
* t  (DSQRT(BZEPEC(21 1 )  **3) 1 

ELSE 
BZEPEC(3) =-8.8888 

END Ir" 

C F o u r t h  m o m e n t  of selecteà critical ratios 

IF (BZEKC(2) .GT.O.ODO) THEN 
B z E K C ~ ~ )  = (  ((SZEKC(~) - ~ * B Z E K C ( ~ )  *SZEKC(~)+~*(BZEKC(~) * * 2 )  

**SZEKC(2) -4*(BZEKC(l) * * 3 )  *SZEKC(l)+SIMS2* (BZEKC(1) **4) 1 *SIMS2* 
* (S1MS2+1) ) / ( (SIMS~-1) * (sIMs~-~)'(SIMS~-~) * ( (DSQRT(BZEKC(2) 1 )  * * 4 )  1 )  
*-((3.0D0*((SIMS2-l),t2))/((SIMS2-2)*(SIMS2-3))) 

ELSE 
BZEKC (4) =-8.8888 

END IF 
IF (BZKC(2) .GT.O.ODO) THEN 

BZKC(4)=( ((SZKC(4) -4*BZKC(1) *SzKC(3)+6*(BZKC(l) **2)* 
*SZKC(2) -4*(BZKC(l) * * 3 )  *SZKC(lf +SIMS2* (BZKC(1) **4) 1 *SIMS2* 
(SIMS2+1) / ((SIMS2-i) * (SIMSZ-2) (SIMS2-3) ( (DSQRT(BZKC(2) 1 )  * * 4 )  1 )  

* -  ( (3 .ODO* ( (SIMS2-1) * * 2 )  / ( (SIMS2-2) (SIMS2-3) 1 )  
ELSE 



ELSE 
BZEKW2 ( 4 )  =-a. 8888 

END IF 
IF (BZKWZ(2) .GT.O.ODO) THEN 
BZKW2 (4) = (  i (SZKW2 (4) -4*BZKW2 (1) *SZKIJ2 (3) +6* (BZFd2 (1) **2) 

**SZKW~ (2) -4* (~~Kii2 (1) * * ~ ) * s z K w ~  (1) +SIMS~* (BZKW~ (1) **4) ) *SIMS2' 
* !SIMS2+1) / ( (SIMS~-1) *(sIMS2-2) * (SIMS2-3) * ( (DsQRT(BzKW~ ( 2 )  I ) **4) 1 )  
'- ( (3 .ODO* ( (SIMS2-1) **2) ) / ( (SIMS2-2) *(SIMS2-3) 1 )  

ELSE 
BZKW2 ( 4 )  =-8.8888 

END IF 
IF (3ZCA9(2) .GT.O.ODO) THEN 
BZCAB(4)=( ((SZCAB(4) - ~ * B z C A B ( ~ ) * S Z C ~ ( ~ ) + ~ * ( B Z C A B ( ~ )  * * 2 )  

**SZCAH ( 2 )  -4* (BZCAB (1) **3) *SZCAB (1) +SIMS2* (BZCAB (1) * * 4 )  ) *SIMS2* 
* (SIMS2+1) / ( (SIMSZ-il * (SIMS~-2) (sIMS2-2) * ( (DSQRT(BZCAB (2) 1 )  * * 4 )  1 )  
* - (  (3.0DO*( (SIMS2-1) **2) ) / (  (SIMS2-2)*(SIMS2-3) 1 )  

ELSE 
BZCAB(4) =-8 -8888 

END IF 
IF (BZEPEC(2) .GT.O.ODO) THEN 
BZEPEC(4) = ( ( (SZEPEC(~) -~*BZEPEC(I) *szEPEC(~) +6* (BZEPEC(1 

* )  **2) *SZEPEC(2) -4. (BzEPEC(~) **3) *SZEPEC(~) +sIMS~*(BZEPEC(~) * * 4 )  
*SIMS2* <SIMS2+1) / ( (SIMS2-1) * (SIMS2-2) * (SIMS2-3) ( (DSQRT(BZEPEC(2) ) 

*)"4)))-((3.0DO*((SIMS2-1)**2))/((SIMS2-2)*(SIMS2-3))~ 
ELSE 
BZEPEC(4) =-8. 8888 

END IF 



BZKW1(4)=-9.9999 
BZEKW2 (4) =-9.9999 
BZKW2 ( 4 )  =-9.9999 
BZCAB(4) =-9.9999 
BZEPEC(4) =-9.9999 

àm IF 
ELSE 

DO 503 I=3,4 
SZEKC(1) =-9.9999 
BZKC(I) =-9.9999 
BZEKWl(1) =-9.9999 
BZKWl(1) =-9.9999 
BZEKW2 (1) =-9.9999 
B Z K W ~  ( r )  =-9.5999 
BZCABtIi =-9.9999 
3ZEPEC!I) =-9.9999 

CONTINUE 
END IF 

ELSE 
PASV=-9 -9999 
KCSV=-9.9999 
KWlSV=-9.9999 
EW2SV=-9.9999 
DRSV=-9.9999 
cABsv=-3.9999 
EcPCSV=-9.9999 
PPCSV=-9.9999 
PECSV=-9.9999 
DO 504 1=2,4 

BZEKC(1) =-9- 9999 
BZKC(1) =-9.9999 
BZEKWl(II=-9.9999 
BZKWl(1) =-9.9999 
BZEKW2 (1) =-9.9999 
BZKW2(1) =-9.9999 
9ZCA9(1)=-9.9999 
3ZEPEC!I) =-9.9999 

504 CONTINUE 
END IF 

ELSE 
PA=-9.9999 
KC=-9.9999 
VKC=-9.9999 
WI=-9.9999 
ml=-9.9999 
KW2=-9.9999 
VKW2=-9.9999 
DR=-9.9999 
CAB=-9-9999 
va=-9.9999 
KPC=-9.9999 
PPC=-9.9999 
PEC=-9.9999 
PAÇV=-9.9999 
KCSV=-9.9999 
KWlSV=-9.9999 
KW2sv=-9.9999 



DRSV=-4.9999 
CABSV=-9.9999 
KPCSV=-9.9999 
OPCSV=-9.9999 
PECSV=-9.9999 
DO 505 I=1,3 

BZEKC(1) =-9.9999 
BZKC(1) =-9.9999 
BZEKWl(1) =-9.9999 
BZKWl(1) =-9.9999 
BZEKWZ (1) =-9.9999 
BZKW2 (1) =-9.9999 
BZCA!3(1)=-9.9999 
BZEPEC(1) =-9.9999 

CONTINUE 
END IF 

C Out?ut results of a l 1  simulations per parameter combination 

WRITE(2,3000i C,TP,PAIKC,KW1,KW2.DR 
3000 FORMAT(' ',12,6('-'.F8.4)) 

WRITE(3, 3332) C,TP,CAB,KPC, PPC, PEC 
3002 FORMAT(' ' . I2,5('-'. F8.4) 1 

WRITE(4,3004) C,PASV,KCÇV,VKC,KWiSVlVKW11~iJ2S~lvh~2 
3004 ?ORMAT(' , 1 2 7 '  ',F8.4) 1 

WRITE ( 7 . 3  O06 ) C, DRSV. CABSV. VCAB, KPCSV. TPCSV. PECSV 
3006 FORMAT(' ',12,6('-',F8-4) 1 

DO 3008 I=1,4 
WRITE(I+7,3009) I,C,BZEKC(I),BZKC(I) ,3ZEKW1(I)IBZK"'1(I) , 

'BZEKWZ (1) ,BZKW2 (1) . BZCAB(I1 .SZEPEC(I) 
3009 FORMAT(' ' . I l l 1  ',1210('-11F8.4)) - 
3008 CONTINUE 

XRITE (12,3011) C, DEG 
3011 FORMAT(' ',12.'- ' . 1 6 )  

DO 3015 I=l,4 
IF (SIMS2.GT.O) THEN 
WRITE(13,3016) C l  I,?ZEKC(I) *~.ODO/SIMS~,PZKC(I)'~.ODO/SIMS~, 

* P Z E K W ~ ( I ) * I . ~ D ~ / S I M S ~ , P Z K W ~ ( ~ ) * ~ . ~ D ~ / S ~ M S ~ . ? Z E K W ~ ~ ~ ~ * ~ . ~ D ~ / S ~ M S ~ ,  
*PZKtl2 (Ii*I.ODO/SIMS2, PZCAB(1i *II0D0/S1PiS2, PZEPEC(I)*~.ODO/SIMSZ 

3016 FORMAT(' ',12, ' ',11,8('-',F8-4)) - 
ELSE 

WRITE(13.3017) C, 1 
3 O 17 FORMAT(' '.12, '-'.11,8('--9.9999') 1 

END IF 
3015 CONTINUE 

C Parameter combination loop terminates 

STOP 

C Remote block DEGVAL 
C 
C Flags a degenerate sample and counts the number of degenerate samples 
C per parameter combination. Assigns a value of O to the measures and 
C associated variables per simulation when executed, as the results are 



C based on non-degenerate sarnples. 

REMOTE BLOCK DEGVAL, 
FLAG= 1 
DEG=DEG+l 
PA=O . ODO 
KC=O . ODO 
VKC=O . ODO 
KWl=O. ODO 
VKWl=O. ODO 
KW2=O. CD0 
VKTiZ=O. ODO 
DR=O . ODO 
CAB=O . O00 
VCAB=O. ODO 
KPC=O. ODO 
PPC=O. ODO 
PEC=O. ODO 
ZEKC=O . ODO 
ZKC=O. ODO 
ZEKWl=O.ODO 
ZKWl=O. ODO 
ZEKWZ=O.ODO 
ZKW2=O. ODO 
ZCAB=O . ODO 
ZEPEC=O . ODO 

END BLOCK 

END 

REAL FUNCTION RANZ (IDUM) 
INTEGER IDUM, ;Ml, IM2, IMMI, IAI, I A 2 ,  IQI , IQ2 , IR1 , IR2, NTAB, NDIV 
R E A L  AM, EPS, RNMX 
PAFAMSTER ( L M 1 = 2 1 4 7 4 8 3 5 6 3 , I F 2 = 2 1 4 7 4 8 3 3 9 9 I A M = 1 . / I M 1 , 1 M M 1 = 1 M 1 - 1 ,  

C I A 1 = 4 0 0 1 4 , I A S = 4 0 6 9 2 , I Q 1 = 5 3 6 6 8 , I Q 2 = 5 2 7 7 4 , 1 R 1 = 1 2 2 1 1 f 1 R 2 = 3 7 9 1 ,  
" N T ~ = 3 2 , N D I V = I + I M M l / N T A B , E F S = 1 . Z t - 7 , R N = i . - E P S )  

C Lon9 period (>2*10A18) random number generacor of L'Ecuyer with Bays- 
C Durham shuffle and added safeguards. Returns a unifom random deviate 
C between 0.0 and 1.0 (exclusive of Che endpoinc values). Cal1 wich 
C IDUM a negative integer to initialize; thereafter, do noc alter IDUM 
C between successive deviates in a secpence. RNMX should approximate 
C the largest floating *~alue that is less than 1. 

INTEGER IDUM2, J , K ,  IV(NTAâ1, IY 
SAVE IV, IY, IDUM2 , 
DATA IDUM2/123456789/, IV/NTAB*0/, IY/O/ 
IF (1DUM.LE.O) THEN 

IDUM=MAX ( - IDUM ,1) 
IDUM2=IDUM 
DO 4005 J=NTAB+8,1, -1 

K=IDUM/ IQI 
IDUM=IAle ( IDUM-KeIQ1) -K*IR1 
IF (1DUM.LT.O) IDUM=IDUM+IXl 
IF (J.LE.NTZ4.B) IV(J) =IDUM 

4005 CONTINUE 
IY=IV(l) 

END IF 
K=IDUM/ TQI 



IDUM=TAl*(IDUM-KtIQ1) -K*IRI 
IF (1DUM.LT.O) IDüM=IDUM+IMl 
K=IDUM2/IQ2 
IDUM2=1AZf (IDUM2 -K*IQ2 1 -KtiR2 
IF (IDUM2-LT.0) IDUM2=IDUM2+IM2 
J=l+IY/NDIv 
IY=IV (JI - IDUMZ 
IV(J) =IDUM 
IF (1Y.LT.I) IY=IY+IMMl 
RAN2=MIN (AM* IY, RNMX) 
RETURN 
END 
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