ENHANCING ESTIMATES OF ANNUAL AVERAGE DAILY TRAFFIC (AADT) ON MANITOBA'S PROVINCIAL HIGHWAYS

\author{

Jessie Mei-Li Yeow, E.I.T.

}

By

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE
Department of Civil and Geological Engineering
University of Manitoba
Winnipeg, Manitoba
Canada

© March 1997

Acquisitions and Bibliographic Services 395 Wellington Street Canada

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Otrawa ON KIA ONA Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

EI

JESSIR MEI-LI ERON

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCTHEE

$$
\text { Jessie Mei-Li Yeow } 1997 \text { (c) }
$$

Permission has been granted to the Library of The University of Manitoba to lead or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of this thesis/practicum.

The author reserves other pablication rights, and neither this thesis/practicum nor extensive extracts from it may be priated or otherwise reproduced without the author's written permission.

Abstract

This thesis is an empirical analysis of methods to enhance estimates of annual average daily traffic (AADT) on Manitoba's provincial highways. It develops methods to evaluate and improve the quality of AADT estimates in order to enhance the decisionmaking potential of this essential traffic statistic.

Three methods of enhancing AADT estimates are presented: (1) human-intervention techniques to evaluate the estimates, (2) developing new traffic pattern groups (TPGs) to improve the representation of provincial highway traffic patterns, and (3) developing a "transparent" methodology for assigning short-count sites to appropriate TPGs and control stations.

In Manitoba, AADT estimates are produced through the Manitoba Highway Traffic Information System (MHTIS). AADT estimates are essential for the operation of highway agencies to perform various transportation-related functions. This thesis describes the engineering needs for AADT estimates and other traffic information in the transportation profession in Manitoba.

AADTs can be obtained by direct measurements from permanent counters, or by estimating from a short-count. A short-count estimate of AADT is obtained by relating the short-count site to a TPG and a control station. Estimating AADTs from short-counts involves a procedure which requires the manipulation of many numbers, tables and computer programs. During this process, problems can occur which can affect the quality of AADT estimates that are produced. Currently, no systematic procedures have been developed for evaluating AADT estimates that are produced through the system.

This thesis develops human-intervention techniques for evaluating AADT estimates on Manitoba's provincial highways, including visual route consistency checks, comparison of current year estimates with historical estimates, and checking for intersection balancing. These techniques allow AADT estimates to be evaluated systematically in order to improve its quality.

This research also investigates whether improved TPGs can enhance the quality of AADT estimates on Manitoba's provincial highways. To date, TPGs have been developed based on permanent counter data from Manitoba. This research develops new TPGs for an expanded study region consisting of Manitoba and Saskatchewan, based on the premise that traffic patterns are not affected by the political boundary that separates two provinces, rather these patterns are characterized by the transportation, activity and flow systems of a region. Based on the analysis conducted for this research, the new TPGs are found to improve the quality of AADT estimates for the majority of Manitoba's short-count sites.

The TPG and control station which are assigned to a short-count site depends on the method which is used for assignment. An inappropriate assignment method leads to inconsistent and non-reproducible assignments, which in turn affects the quality of AADTs estimated from short-count sites. This research develops a "transparent" methodology to assign Manitoba's short-count sites to TPGs and control stations. Unlike the previous method, the new method involves a documented rule-based procedure to assign short-count sites to appropriate TPGs and control stations.

Acknowledgments

I would like to express my sincere gratitude in particular to Professor Alan Clayton for his guidance, encouragement and support throughout the course of this research. The invaluable help and suggestions which he has provided made this research possible.

I would also like to acknowledge Mr. John Woodrooffe, Dr. Barry Prentice, and Dr. Gordon Sparks for their helpful suggestions, comments, and contribution towards the completion of this thesis.

In addition, I am grateful to the following individuals for their cooperation and assistance in this research:

- Mr. Ben Rogers, Mr. Glenn Cuthbertson, Mr. Harry Beamish, and the staff of the Manitoba Department of Highways and Transportation.
- Mr. Tom Anderson of the Saskatchewan Department of Highways and Transportation.

My sincere thanks to the individuals whom I worked with at the Manitoba Highway Traffic Information System who provided me with the help and continuous support that I needed to complete this thesis - Sherry Zhi, Luis Escobar, Mohammed Alam, Brian Lucas, and Jeannie Mak.

Finally, I am grateful for the support from my family, friends, and colleagues during this endless journey of learning.

Table of Contents

Abstract i
Acknowledgments. iii
Table of Contents iv
List of Figures vii
List of Tables ix
Acronyms x
Chapter 1 Introduction 1
1.1 The Thesis I
1.2 Background
1.3 Relevance of the Research 4
1.4 Objectives of the Research 5
1.5 Organization of the Thesis 5
Chapter 1 References 7
Chapter 2 The Manitoba Highway Traffic Information System 9
2.1 Manitoba's Provincial Highway Network 9
2.2 The Manitoba Highway Traffic Information System (MHTIS) 11
2.2.1 Traffic Data Collection 11
2.2.2 Editing Traffic Data 13
2.2.3 Creating Summary Traffic Statistics 15
2.2.4 Estimating AADT 15
2.2.5 Reporting Summary Traffic Statistics 20
2.3 Potential Problems with the Current Method of Estimating AADTs. 22
Chapter 2 References 23
Chapter 3 Enhancing AADT Estimates through Human-Intervention Techniques 24
3.1 Introduction 24
3.2 Route Consistency 24
3.3 Comparison of Current Year AADT Estimates with Historical AADT Estimates 28
3.4 Intersection Balancing 33
3.5 Other Human-Intervention Techniques for Enhancing AADT Estimates 34
Chapter 3 References 36
Chapter 4 Traffic Data Needs in Manitoba 37
4.1 Background 37
4.2 Survey Methodology 38
4.3 Survey Results 39
4.3.1 Manitoba Department of Highways and Transportation 39
4.3.2 Manitoba Department of Industry, Trade and Tourism. 50
4.3.3 Transportation Consulting Groups 51
4.3.4 Other Traffic Data Users 54
4.4 Summary of Expressed Data Needs 55
4.5 Additional Facts and Figures 57
Chapter 4 References 67
Chapter 5 Traffic Pattern Groups 70
5.1 Introduction 70
5.2 Traffic Monitoring in the Study Region 72
5.3 Comparison of Traffic Monitoring Practices in the Study Region 72
5.4 Existing Traffic Patterns 73
5.5 Comparison of Existing Traffic Patterns in the Study Region 76
5.6 Developing the New Traffic Pattern Groups 76
5.6.1 Cluster Analysis 77
5.6.2 Permanent Counter Selection Criteria 78
5.6.3 Analysis of Seasonal Traffic Patterns. 80
5.6.4 Determination of Optimum Number of Groups 80
5.6.5 Results of the Seasonal Grouping Analysis 82
5.6.6 Analysis of Average Hourly Traffic Patterns 85
5.6.7 Results of the Average Hourly Analysis 85
5.7 Summary of the New Traffic Pattern Groups 86
5.8 Similarities in Highway Traffic Patterns in the Study Region 98
5.9 Evaluation of AADT Estimates 100
5.9.1 Method of Evaluation 100
5.9.2 Example Application 101
5.10 Results of Evaluation 102
5.11 Discussion of Results 108
Chapter 5 References 110
Chapter 6 New Methodology for Assigning Short-Term Count Sites to TPGs and Control Stations 112
6.1 Introduction 112
6.2 The Current Method 112
6.3 Review of Literature 113
6.4 Development of a New Assignment Methodology 114
6.5 Assigning Short-Term Count Sites using the New Method. 121
Chapter 6 References 125
Chapter 7 Summary, Conclusions and Recommendations 126
7.1 Summary 126
7.2 Conclusions 127
7.3 Recommendations 128
Appendix A Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995) A-1
Appendix B Average Hourly Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995) B-1
Appendix C Overview of the Traffic Pattern Groups C-1
Appendix D List of Short-Term Counting Stations' Assignments to TPGs and Control Stations D-1
Appendix E Cluster Analysis Results E-I

List of Figures

Figure 2-1 Provincial Trunk Highways (PTHs) and Provincial Roads (PRs) in Manitoba 10
Figure 2-2 The Manitoba Highway Traffic Information System 12
Figure 2-3 Locations of Permanent Counting Stations in Manitoba 14
Figure 3-1 (a) 1995 Traffic Flow Map for Winnipeg and Surrounding Northeastern Region 26
Figure 3-1 (b) Combined AADTs (1995) for PTH 11 26
Figure 3-2 (a)-(e) Comparison of 1995 and 1993 AADT Estimates 30
Figure 3-3 Example of an "Imbalanced" Intersection 33
Figure 5-1 The Study Region 71
Figure 5-2 Permanent Counter Locations in the Study Region 74
Figure 5-3 Existing Traffic Patterns in the Study Region 75
Figure 5-4 Semi-partial $\mathbf{R}^{\mathbf{2}}$ in the Seasonal Grouping Process 81
Figure 5-5 Graphs of Seasonal Traffic Variation Patterns. 84
Figure 5-6 Average Hourly Traffic Patterns (Weekdays and Weekends) 88
Figure 5-7 Sites in Prairie Group 1 91
Figure 5-8 Sites in Prairie Group 2 92
Figure 5-9 Sites in Prairie Group 3 93
Figure 5-10 Sites in Prairie Group 4 94
Figure 5-11 Sites in Prairie Group 5 95
Figure 5-12 Sites in Prairie Group 6 96
Figure 5-13 Sites in Prairie Group 7 97
Figure 5-14 (a)-(e) Seasonal Traffic Patterns at Typical Manitoba and Saskatchewan Sites 99
Figure 5-15 (a)-(f) Graphical Comparison of Actual and Estimated AADTs for Different TPGs 105
Figure 6-1 (a) Flowchart 1 for Assigning Short-Count Sites to Appropriate TPGs and Control Stations 117
Figure 6-1 (b) Flowchart 2 for Assigning Short-Count Sites to Appropriate TPGs and Control Stations 118
Figure 6-2 Location of Short-Term Counting Station 1165 and Surrounding Control Stations 119
Figure 6-3 Example Assignment of Short-Term Counting Stations to TPGs and Control Stations 119
Figure 6-4 Frequency of Short-Count Sites' Assignments to TPGs 122
Figure 6-5 Frequency of Short-Count Sites' Assignments to Control Stations 123
Figure A-1 Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995) A-1
Figure B-1 Average Hourly Traffic Variations at Permanent Counters in Manitoba and Saskatchewan B-2
Figure C-1 Examples of Typical Prairie Group 1 Routes C-2
Figure C-2 Examples of Typical Prairie Group 2 Routes C-3
Figure C-3 Examples of Typical Prairie Group 4 Routes C-4

List of Tables

Table 2-1 Calculation of AADT for Station 25 on PTH 1 16
Table 2-2 Short Count at Station 357, West of PTH 5 18
Table 2-3 Types of Traffic Data Reports Produced Through the MHTIS 21
Table 3-1 Actual Traffic Counts at Stations 119 and 659 on PTH 11 27
Table 3-2 Actual Traffic Counts at Station 118 on PTH 11 27
Table 3-3 Comparison of 1995 and 1993 AADT Estimates for Station 205 on PTH 9. 32
Table 4-1 Engineering and Technical Services Division 58
Table 4-2 Construction and Maintenance Division. 60
Table 4-3 Transportation Policy Planning and Development Division 62
Table 4-4 Transportation Safety and Regulatory Services Division 63
Table 4-5 Regional Offices 64
Table 4-6 External Traffic Data Users 65
Table 5-1 List of Permanent Counters Analyzed 79
Table 5-2 Tukey Comparison of Means for Optimum Number of Seasonal Groups 82
Table 5-3 Summary of the New TPGs Developed from the Study Region 87
Table 5-4 List of Permanent Counters in the New TPGs 89
Table 5-5 Comparison of Actual and Estimated AADTs for Sample PCS 16 in MB 101
Table 5-6 (a) Comparison of Actual and Estimated AADTs for Prairie Group 1 103
Table 5-6 (b) Comparison of Actual and Estimated AADTs for Prairie Group 2. 103
Table 5-6 (c) Comparison of Actual and Estimated AADTs for Prairie Group 3 103
Table 5-6 (d) Comparison of Actual and Estimated AADTs for Prairie Group 4 104
Table 5-6 (e) Comparison of Actual and Estimated AADTs for Prairie Group 5 104
Table 5-6 (f) Comparison of Actual and Estimated AADTs for Prairie Group 6 104
Table 5-6 (g) Comparison of Actual and Estimated AADTs for Prairie Group 7. 104
Table D-1 List of Short-Term Counting Stations' Assignments to Traffic Pattern Groups and Control Stations D-2

Acronyms

AADT: Annual Average Daily Traffic, measured in units of vehicles per day.
AASHTO: American Association of State and Highway Transportation Officials
ASDT: Average Summer Daily Traffic
ATR: Automatic Traffic Recorder (Saskatchewan)
AVC: Automatic Vehicle Classification
CV: Coefficient of Variation
ESAL: Equivalent Single Axle Load
FHWA: Federal Highway Administration
MADT: Monthly Average Daily Traffic
MDHT: Manitoba Department of Highways and Transportation
MHTIS: Manitoba Highway Traffic Information System
PCS: Permanent Counting Station
PR: Provincial Road
PTH: Provincial Trunk Highway
SHRP: Strategic Highway Research Program
STC: Short-Term Counter
TMG: Traffic Monitoring Guide
TPG: Traffic Pattern Group
UMTIG: University of Manitoba Transport Information Group
WIM: Weigh-in-Motion

CHAPTER 1

Introduction

1.1 The Thesis

This thesis is an empirical analysis of methods to enhance estimates of annual average daily traffic (AADT) on Manitoba's provincial highways. The thesis develops methods to evaluate and improve the quality of AADT estimates in order to enhance the decision-making potential of this essential traffic statistic.

1.2 Background

Traffic data is essential for the operation of highway agencies. The most important and commonly used traffic measurement is AADT. AADT is defined as the number of vehicles passing a point on an average day of a given year, and is measured in units of vehicles per day [Ref. 1].

In Manitoba, AADT estimates and other traffic information on provincial highways are produced by a traffic monitoring system operated jointly by the Manitoba Department of Highways and Transportation (MDHT) and the University of Manitoba Transport Information Group (UMTIG). In this system, MDHT is responsible for collecting traffic data in the field, and UMTIG is responsible for creating summary traffic statistics including AADT.

AADT is the single most important traffic measurement produced through the MHTIS. AADTs can either be measured directly or estimated. Direct measurements of AADT are obtained from permanent counting stations given perfect operating conditions. Permanent counting stations are permanent traffic recording devices
which operate continuously throughout the year and are located on a selected number of sites on provincial highways.

The AADTs for the majority of Manitoba's provincial highways must be estimated from short-counts. These short-counts are typically conducted in the summer months for a period of 48 -hours twice during a year. Currently, short-counts are conducted once every two years on roads with AADT greater than 200 vehicles per day, and once every four years on lower volume roads [Ref. 2].

In order to expand a short-count to an AADT estimate, short-count sites are assigned to control stations and traffic pattern groups (TPGs). A control station is a permanent counter which exhibits similar traffic variations patterns as the short-term count site to which it is assigned. A TPG is a group of permanent counters which exhibit similar traffic variation patterns. TPGs are developed by grouping Manitoba's permanent counters into different groups, each group consists of a number of permanent counters which exhibit similar traffic variation patterns. The short-count is expanded to AADT using information from its control station or TPG.

The quality of an AADT estimate obtained from a short-count site depends on: (1) the procedure used to obtain the estimate, (2) the appropriateness of the TPG (and control station) which is assigned to the short-count site, and (3) the method of assigning TPGs and control stations to the short-count site.

The procedure of estimating AADTs from short-counts requires the manipulation of many numbers and tables and relies heavily on a computerized system. A potential shortcoming with this method is that system operation errors can occur in the process which can affect the quality of AADT estimates that are produced. Currently there are no systematic methods of checking the resulting AADT estimates. This research develops human-intervention techniques to systematically evaluate AADT estimates
in order to detect errors and inconsistencies, and to improve the quality of the estimates.

The quality of AADT estimates which are derived from short-counts also depends on the TPG and control station which are assigned to the short-count site. Research by Sharma (1996) has found that a short-count site's assignment to a TPG (or control station) has more influence on its AADT estimate than the duration of the short-count itself. This finding was also confirmed in research by Davis (1997) which indicated that a short-count estimate of AADT will be close to the true AADT only if the shortcount site is assigned to an appropriate TPG. This means that a TPG which does not reflect the actual traffic pattern at the short-count site to which it is assigned will result in poor quality AADT estimates. Similarly, a control station which is inappropriately assigned to a short-count site will also result in AADT estimates which do not reflect the true AADT at that location.

To date, Manitoba's TPGs have been developed by using permanent counter data from Manitoba. This research develops new TPGs for an expanded study region by drawing on permanent counter data from Manitoba and its neighboring province to the west, Saskatchewan. This idea is based on the premise that traffic patterns are not affected by the political boundary that separates the two provinces. Traffic patterns are a function of the transportation, activity, and flow systems within the study region. The new TPGs developed in this research are evaluated to determine if it improves AADT estimates for Manitoba's short-count sites.

The quality of AADT estimates are also affected by the method which is used to assign short-count sites to TPGs and control stations. The current method is inadequately documented and does not create reproducible assignments of short-count sites to appropriate TPGs and control stations. The current assignment process requires subjective human judgment which can lead to inconsistent and non-
reproducible assignments. This research develops a transparent procedure for assigning Manitoba's short-count sites to appropriate TPGs and control stations.

1.3 Relevance of the Research

Provincial highway AADTs are used in many applications in Manitoba. The major users of AADT estimates in Manitoba includes the MDHT and transportation consulting firms. AADT data is required for planning, design, project selection, policy making, and other engineering-related functions. The need for accurate traffic data continues to grow as more policy decisions, plans and designs are based on this statistic.

The use of AADT data to guide decisions is critical. Too low an AADT can result in inadequate traffic lanes or thickness of pavements causing low levels of service and surface failures. Too high AADT values can result in overbuilding a facility. In both cases, inaccurate AADT estimates can result in costly errors, and these errors expand significantly as the data are forecast to the design year.

In addition to being used to guide many decisions in the transportation profession, AADT estimates are also used as the foundation of many other traffic statistics. Traffic statistics such as average summer daily traffic (ASDT), percent trucks, and design hourly volumes are all expressed in terms of the highway's AADT. These statistics are important for many applications, and would not be meaningful without a reference to the actual highway traffic volume.

The American Association of State and Highway Transportation Officials (AASHTO) Guidelines for Traffic Monitoring Programs [Ref. 5] indicates that out of all data collected by state agencies, traffic data is viewed as being the most commonly used and the most important in almost every decision-making process. The Guidelines also point out that the cost of improving the quality of traffic data should be compared
with the cost of providing data users with less precise data. The cost of imprecision, and the benefit of increased precision, accumulates each time data are used. The Guidelines indicates that quality assurance should be an integral part of a traffic monitoring program.

1.4 Objectives of the Research

The objectives of this research are:

- To determine the engineering needs for AADT estimates and other traffic information in the transportation profession in Manitoba.
- To develop human-intervention techniques for evaluating and improving the quality of AADT estimates on Manitoba's provincial highways.
- To develop new TPGs using the expanded permanent counter database from Manitoba and Saskatchewan.
- To evaluate how the improved TPGs alter the AADT estimates at Manitoba's short-count sites.
- To develop a systematic methodology which creates reproducible assignments of TPGs and control stations for short-count sites in Manitoba.
- To provide recommendations as to how AADT estimates and other related traffic statistics on Manitoba's provincial highways may be further improved.

1.5 Organization of the Thesis

- Chapter 2 describes Manitoba's provincial highway network and how AADTs are estimated for these highways.
- Chapter 3 describes and generally evaluates human-intervention techniques for enhancing the quality of AADT estimates.
- Chapter 4 describes the engineering needs for AADT estimates and other traffic information in the transportation profession in Manitoba.
- Chapter 5 develops new TPGs on Manitoba's and Saskatchewan's provincial highway networks, and evaluates how the new TPGs affect AADT estimates at Manitoba's short-count sites.
- Chapter 6 develops a transparent procedure for assigning Manitoba's short-count sites to appropriate TPGs and control stations.
- Chapter 7 presents the summary and conclusions of this research and suggests recommendations for further research.

Chapter 1 References

1. "Traffic on Manitoba Highways". University of Manitoba Transport Information Group, June 1996.
2. Lucas, Brian. "Design, Development and Implementation of the Manitoba Highway Traffic Information System". M.Sc. Thesis. University of Manitoba, 1996.
3. Sharma, S.C., Gulati, B., and Rizak, S. "Statewide Traffic Volume Studies and Precision of AADT Estimates". Transportation Engineering Journal of the ASCE, Vol. 122, No. 6, pp. 1-10, 1996.
4. Davis, Gary A. "Accuracy of Estimates of Mean Daily Traffic: A Review". Paper Presented at the Transportation Research Board 76th Annual Meeting. January 12-16, 1997, Washington, D.C.
5. American Association of State Highway and Transportation Officials. "Guidelines for Traffic Data Programs". 1992.

Additional References

1. Clayton, Alan, Lucas, Brian, et al. "Design, Development, and Implementation of a Traffic Monitoring System for Manitoba Highways and Transportation". University of Manitoba Transport Institute, April 1993.
2. Esteve, Tony. "Precision Estimation Applied to Traffic Monitoring Data". Presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
3. Albright, David. "Standards, Innovation, and the Future of Traffic Monitoring". ITE Journal, January 1993.
4. Wright, Tommy, Hu, Pat, et al. "Variability in Continuous Traffic Monitoring Data". Presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
5. Brubaker, Michelle Morris, P.E. "Transportation Data Issues in the San Francisco Bay Area with National Applications and Recommendations". Preprint, Transportation Research Board 76th Annual Meeting. January, 1997, Washington, D.C.
6. Youngblood, William R. "A Model for Information Integration Within Transportation Agencies". Paper presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
7. Johnson, Christine Dr. "The Role of Traffic Monitoring Within A Systems Approach To The Future Of Transportation". Presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
8. Vibbert, Ronald L. "Michigan's Transportation Management System And Traffic Monitoring Data". Presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
9. Maring, Gary E. 'National Travel Trends and Implications". Presented at National Traffic Data Acquisition Conference, Albuquerque, New Mexico, May 1996.
10. Erhunmwnsee, P.O. "Estimating average annual daily traffic flow from short period counts". ITE Journal, 1991.

CHAPTER 2

The Manitoba Highway Traffic Information System

This chapter describes Manitoba's provincial highway network, explains how traffic on the provincial highways is monitored through the Manitoba Highway Traffic Information System (MHTIS) to create estimates of AADT and other summary traffic statistics, and discusses potential shortcomings of the current methods for estimating AADTs for Manitoba's provincial highways.

2.1 Manitoba's Provincial Highway Network

There are 315 highways in Manitoba's provincial highway network which total a length of approximately 18,000 kilometers. The two types of provincial highways in Manitoba are: (1) Provincial Trunk Highways (PTH), and (2) Provincial Roads (PR). Figure 2-1 shows a map of PTHs and PRs in Manitoba.

Provincial Trunk Highways(PTH)

There are 51 PTHs in the province, which total approximately 8,000 kilometers of highway segments, or forty percent of the provincial highway network.

Provincial Roads(PR)

There are 264 roads designated as PRs. This accounts for over 10,000 kilometers or sixty percent of the total provincial highway network.

Figure 2-1
Provincial Trunk Highways (PTH) and Provincial Roads (PR) in Manitoba

2.2 The Manitoba Highway Traffic Information System (MHTIS)

Traffic on Manitoba's provincial highways is monitored through the Manitoba Highway Traffic Information System (MHTIS). Traffic monitoring is conducted in four phases: (1) traffic data collection, (2) editing traffic data, (3) creating summary traffic statistics, and (4) reporting summary traffic statistics. Each of these steps are discussed in detail in the following sections, and summarized in Figure 2-2.

2.2.1 Traffic Data Collection

Provincial highway traffic data is collected by MDHT using permanent and portable traffic monitoring equipment. MDHT's traffic data collection program is currently made up of four main components:

1. Permanent Counting Stations Program - this program is designed to monitor traffic continuously at selected locations throughout the province, and is the foundation of the traffic information system. Permanent counting stations employ the use of permanently installed traffic recording devices which operate continuously throughout the year. Currently, there are fifty-seven permanent counting stations in Manitoba. Figure 2-3 shows a map of the locations of permanent counting stations in Manitoba.
2. Short-Term Counting Stations Program (or Coverage Counting Stations) - the majority of Manitoba's provincial highways are monitored through the short-term counting program. Currently, there are 2013 sites counted under the coverage count program in Manitoba. Short-term count sites are counted on a two- or fouryear cycle. Sites which have an AADT of greater than 200 veh/day are counted once every two years, lower volume sites are counted once every four years.

Two types of equipment are used for collecting short-counts in the field: loop and tube counters. A loop counter is capable of detecting a vehicle as it passes by the count location and records one count for each vehicle that passes. Tube counters detect axles of a vehicle. It records once count for every two axles that pass by the counter. Tube counts must be corrected with axle correction factors prior to being summarized.
3. Weigh-in-Motion (WIM) and Automatic Vehicle Classifier (AVC) Program these stations monitor vehicle weights and classifications. There are currently

Figure 2-2

The Manitoba Highway Traffic Information System

The collection of traffic data is the responsibility of MDHT and involves

After traffic data is collected, it is sent to UMTIG via modem, on count sheets or on disk for processing. At UMTIG traffic data is edited (screened) to remove errors and anomalies. The purpose of editing traffic data to ensure that field measurements are valid prior to being summarized and reported. Editing incorporates criteria from ASTM standards. Raw data which are deemed to be inappropriate for further analysis are removed from the master database, however, none of the data are patched or filled in.

The most important phase of the MHTIS is creating summary traffic statistics. Traffic information is of little use if it is provided to data users in its raw form. What is more commonly needed is a summary of the data. At UMTIG, traffic data are summarized into statistics including AADT, ASDT, percent trucks, and 30th highest hours.

The final step in the MHTIS is reporting summary traffic statistics. Currently, traffic data on Manitoba's provincial highways is reported in four sources: Traffic on Manitoba Highways, Truck Traffic on Manitoba Highways, Station Detail Reports, and through the MHTIS Intemet site. In addition, traffic data can also be obtained through the Help-Desk at UMTIG's office at the University of Manitoba.
fifteen WIM/AVC sites located throughout the province. MDHT recently purchased eight new AVC counters to increase coverage of truck data collection sites in the province.
4. Special counts - these consist of intersection turning movement counts and town counts. Special counts are conducted on an as-request basis only.

2.2.2 Editing Traffic Data

After traffic data have been collected in the field, they are edited. Editing traffic data involves screening the raw data to remove (1) errors and anomalies which may be present due to counter malfunctions, (2) counts which may be conducted during atypical periods such as festivals and unusual weather conditions, and (3) counts which are less than the specified minimum count duration, 48-hours.

Permanent Counting Stations

Data from permanent counting stations are received at UMTIG through modem. The data are screened according to the criteria set by ASTM standards which include:

- Checking data for sudden increases or decreases in traffic volume
- Checking data for repeated zeroes.

Data which are suspected to contain errors or anomalies are removed from the master database. This master database stores all current year traffic volume data from permanent counting stations, short-term counting stations and WIM/AVC stations.

Short-Term Counting Stations

Short-term counts are received at UMTIG in the form of count sheets. This data is entered manually into the master database by an operator. The raw counts are checked to ensure that minimum count durations have been completed, the minimum count duration for short-term counts is 48 -hours [Ref. 2]. Data which are suspected to be errors or anomalies are rejected but not patched (missing values or not filled in).

Figure 2-3
Locations of Permanent Counting Stations in Manitoba

WIM/AVC Stations

Similar to the permanent counting stations program, WIM/AVC data are downloaded at UMTIG via modem once a week. The data are processed using the SHOWMAN+ software which is capable of producing hourly volume counts from the raw data files. The screened data is then saved into the master database.

Special Counts

UMTIG receives turning movement count data via modem and town count data on count sheets similar to data for short-term counts. No screening procedures have been implemented to verify turning movement counts. Town counts are processed and checked in the same way as the short-term count data.

2.2.3 Creating Summary Traffic Statistics

Summarization of traffic data is a critical part of the traffic monitoring process. The AASHTO Guidelines indicates that when traffic data are summarized they also have the potential to be misused [Ref. 4]. If summarization is inconsistent or inappropriate, the results can be misleading.

At UMTIG, traffic data are summarized using standard procedures to produce statistics including AADT, average summer daily traffic (ASDT), highest hourly volumes, and percent trucks. The procedures used to produced these summaries are well-documented, consistent, clear, and reproducible.

2.2.4 Estimating AADT

The single most important piece of traffic data produced through the MHTIS is AADT. AADT represents the number of vehicles that use a road on an average day of the year. AADTs are estimated from three major sources (1) permanent counting stations, (2) short-term counting stations, and (3) WIM/AVC stations.

Permanent Counting Stations

At permanent count sites, AADT estimates are made at the end of the data year based on standard methods specified by ASTM Standard Practice E1442-94, Standard Practice for Highway-Traffic Monitoring, and the AASHTO Guidelines for Traffic Data Programs [Ref. 4]. The following describes this procedure:

1. Calculate the seven monthly average days of the week (MADW), from Monday through Sunday for each month.
2. Calculate the monthly average daily traffic (MADT) for each month. This is simply the sum of the month's MADWs divided by the number of MADWs (usually seven MADWs for each month).
3. Calculate the AADT by dividing the sum of the MADTs by the number of MADTs (usually 12 MADTs for each data year).

This procedure is shown by an example for station 25, located in Manitoba on PTH 1 just east of the Manitoba and Saskatchewan border. To calculate the 1995 AADT for this station, the first step is to calculate the seven MADWs from January until December 1995. Next, the MADWs are calculated as the average of the MADTs for each month, shown in Table 2-1. Finally, the AADT is estimated by averaging the 12 MADTs, and rounding the value to the nearest 10 vehicles.

Table 2-1
Calculation of AADT for Station 25 on PTH 1

Month	Sun	Mon	Tue	$\begin{aligned} & \text { Mov } \\ & \text { Wed } \end{aligned}$	Thus	Fri	Sat	$\begin{aligned} & \text { Montiny Avorge Delly Traitic } \\ & \text { (MiNOT) } \end{aligned}$
Jancory	1798	2422	1509	1759	1289	1335	1078	1524
Februsy	1953	1680	1584	1752	1824	2112	1680	1798
March	2322	1968	1896	2519	2735	3177	2151	2395
Apris	3714	2502	2235	2453	2892	3027	3013	2834
May	2544	3432	3120	3264	2928	3168	2424	2983
June	2830	2544	2520	2712	3840	4344	2616	3058
Juty	5340	5060	3840	3524	3834	4392	4752	4406
August	3843	3912	4255	4536	4825	4344	3720	4205
September	2914	2928	2712	2634	2731	4123	3504	3078
October	3166	2712	2904	2888	2640	3120	2352	2797
Novernber	2084	2232	1722	2398	2473	2420	1876	2169
Decernber	2234	1392	1747	2056	2208	2944	2901	2212
Averege: (rounded to 2750								

Short-Term Counting Stations

Short-term counts are expanded to AADT estimates by using one of two methods: control stations or traffic pattern groups. A control station is a permanent counter which exhibits similar traffic flow patterns as that of the short-term count site. If data for the control station is not available for expanding the short-term count then the short-term count is expanded based on a traffic pattern group. A traffic pattern group is a group of permanent counters which exhibit similar temporal traffic characteristics. Since the traffic pattern at a short-count site is unknown, the shortcount site is assigned to a TPG and a control station in order to estimate AADT from the short-count.

To estimate the AADT at a short-count site using a control station or a TPG, a "factorless" expansion procedure is used. This expansion method relates the shortcount period to that of its control station or its TPG in order to estimate AADT:

$$
\begin{equation*}
\frac{\mathrm{AADT}_{\text {site }}}{\mathrm{Vol}_{\text {site }}}=\frac{\mathrm{AADT}_{\text {ControlStation }}}{\mathrm{Vol}_{\text {ConvolStation }}} \tag{Equation2.1}
\end{equation*}
$$

where $\mathrm{AADT}_{\text {site }} \quad=$ the AADT at the short-term count site (to be calculated).
Vol $_{\text {site }} \quad=$ traffic volume recorded at the short-term count site .
$\mathrm{AADT}_{\text {ControlStation }}=$ the AADT at the site's control station.
$\mathrm{Vol}_{\text {Controlstation }}=$ the traffic volume at the site's control station during the same time period as the short-term count.

This method was developed by Lucas [Ref. 1], and has the advantage over traditional methods because it does not require calculation of fixed expansion factors. This allows short-term count estimates to be made at the end of the data year instead of having to first develop expansion factors. In addition, his method has been shown to produce consistent and realistic AADT estimates [Ref. 1]. This method assumes that unusual phenomena such as unusual weather conditions affect both the short-term
counter and its control station. Localized events are still checked to ensure that it is accounted for by both counters before estimating the AADT at the short-term counter.

Short-counts which are conducted using tube counters must be corrected for axle counts using an axde correction factor. This factor is determined using the following equation:

$$
\text { Axle Correction Factor }=(1-\% \mathrm{~T})+(2.5 \times \% \mathrm{~T}) \quad \text { (Equation 2.2) }[\text { Ref. } 1]
$$

where $\% \mathrm{~T}=$ Percent trucks at the location.

The calculation of AADT for a short-term count is shown by an example. Consider a short-count that was taken at Station 357 (combined direction) which is located on PTH 5, south of PTH 1 in 1995. The short-count data that was recorded by the field crew is shown in Table 2-2. This table shows the dates and times when the shortcounts were started, the end dates and times of the count, the type of counter used to collect the counts, as well as the actual raw traffic counts that were recorded during this period.

Table 2-2
Short Count at Station 357, West of PTH 5

Stn	Dir'n	Start Date	Start Time	End Date	End Time	Loop?	Count	Hwy	Location Description
357	C	95.05 .15	$11: 28$	95.05 .17	$11: 28$	Y	4366	5	South of PTH 1
357	C	95.07 .18	$09: 46$	95.07 .20	$09: 46$	Y	4548	5	South of PTH 1

Since the count at Station 357 was conducted using a loop counter it does not need to be corrected using an axle correction factor (if the count was conducted using a tube counter, the raw counts must first be corrected using the axle correction factor before expansion). The control station for short-count Station 357 is Station 24 [Ref. 7]. Based on the short-count information shown in Table 2-2, the raw counts during these
same periods at Control Station 24 were 10228 vehicles for the first period, and 11836 vehicles for the second period. The AADT for Control Station 24 in 1995 was 4570 [Ref. 7].

The AADT for Station 357 is calculated as the average of the two AADTs obtained from the two counts, shown below:

For the first period:

$$
\begin{aligned}
& \frac{\mathrm{Vol}_{357}}{\mathrm{AADT}_{357}}=\frac{\mathrm{Vol}_{24}}{\mathrm{AADT}}{ }_{24} \\
& \frac{4366}{\mathrm{AADT}_{357}}=\frac{10228}{4570} \\
& \mathrm{AADT}_{357}=1950
\end{aligned}
$$

For the second period:

$$
\begin{aligned}
& \frac{\mathrm{Vol}_{357}}{\mathrm{AADT}_{357}}=\frac{\mathrm{Vol}_{24}}{\mathrm{AADT}}{ }_{24} \\
& \frac{4584}{\mathrm{AADT}_{357}}=\frac{11836}{4570} \\
& \mathrm{AADT}_{357}=1770
\end{aligned}
$$

The AADT estimate for Station 357 is: $\quad 1 / 2(1950+1770)=1860$.
This is the AADT estimate which is reported for Station 357 for the year 1995.

WIM/AVC Stations

AADT estimates from WIM/AVC data are produced in the same manner as the permanent counting stations. At the present time, WIM equipment does not produce reliable traffic counts or vehicle weights. Further research is being conducted to analyze and enhance the utility of data from WIM traffic recording devices.

Special Counts

Town counts are currently not expanded to an AADT because there are no control stations located within towns to allow appropriate expansion of short-term counts that are conducted within towns. Currently, town counts are reported in the annual report as the raw count divided by the number of days which the count was conducted. All town counts obtained in this manner are flagged to note that these counts are obtained in a different manner than regular short-term counts.

Turning movement counts are also not expanded to AADT estimates because the majority of these counts are conducted within towns.

2.2.5 Reporting Summary Traffic Statistics

After traffic data has been edited and summarized, it is reported. UMTIG reports AADT and related traffic estimates in five sources. Table 2-3 summarizes the types of traffic reports produced through the MHTIS and the frequency of production of each source.

In addition, traffic data users can obtain AADT data and other traffic statistics through the MHTIS Help Desk at the University of Manitoba. Users can request traffic information by phone, fax, or e-mail.

Table 2-3

Types of Traffic Data Reports Produced through the MHTIS

Report Name	Types of seturitice reported	Frequency of Production
Trafic on Manitoba Highways	This annual report lists trallic statistics from: 1. Permanent Counting Stations - this section reports the station's current year AADT. graphs of average hourly and monthly tratic variations, highest 100 hourly volumes, and annual traffic volumes since 1989 for each permanent counter. 2. Coverage Counting Stations - this section reports the AADTs for the current and previous years since 1993, ASDT, 30th highest hour, and percent trucks for all coverage counting stations. In addition, this report includes a section which describes the methodology used to obtain traffic statistics, a list of the raw short-term count data, and its assignments to TPGs and control stations. Also included is a section on how users can obtain traffic statistics through the Internet, and maps showing the locations of permanent and short-term counters in the province.	- Annual.
Truck Trafinc on Manitoba Highways	This report details truck traficic on Manitoba's provincial highways in terms of truck flows and truck classifications.	- Annual.
Station Detail Reports	These standard reports show detailed information about specific traffic monitoring stations. Information presented in these reports include a complete description of the station, the AADT, ASDT. 30th highest hour, percent trucks, TPG, and control station.	On-request. Updated on an annual basis.
Turning Movement Count Reports	Raw traffic counts for the 14 -hour count period and expanded 24-hour estimates are produced. Turning movernent counts are reported as either car-truck-pedestrian type studies or FHWA vehicle classification studies.	On-request. A list of the sites counted in the data year are published in a report format at the end of the year.
MHTIS Internet site	In this method, users can access traftic statistics by pointing and clicking on individual stations shown on the map or by entering a specific count station number. The types of traffic data reported includes AADTs since 1989 (where available), ASDT, percent trucks, the control station and traffic pattern group which the station is assigned to.	- Users can access traffic statistics at any time. - The site is updated on an annual basis.

2.3 Potential Problems with the Current Method of Estimating AADTs

The current method of estimating AADTs is based on standard procedures. These methods are transparent and produce reproducible results. This means that given a raw traffic count for a permanent or short-count site, the AADT estimate for that site can be re-created by using the same procedure. Although these methods allow the recreation of AADT estimates for any count site, the entire procedure requires the manipulation of many numbers and tables, which can result in many sources of error.

In 1995, 1,006 sites were counted under the short-count program, and based on these sites a total of 2,158 surveys were conducted (most sites are typically counted twice, others are counted more often). Each of these surveys are edited and processed in order to create AADT estimates. Several problems can occur during this process due to the handling and manipulation of numerous databases and numbers. Some of these problems may occur due to system operating errors, and the others may be a result of human errors. Several potential sources of error include:

- insufficient computer resources
- rounding errors
- inadequate screening procedures
- transfer of data between different mediums
- human-error

Any one of these problems can result in poor quality AADT estimates being produced. To date, no systematic methods have been developed to evaluate AADT estimates that are produced through the current AADT estimation process.

Chapter 2 References

1. Lucas, Brian. "Design, Development, and Implementation of the Manitoba Highway Traffic Information System". Master of Science Thesis. Department of Civil and Geological Engineering, University of Manitoba. 1996.
2. Federal Highway Administration. "Traffic Monitoring Guide". Third Edition, February 1995.
3. Escobar, Luis. "Advanced Automated System for Weigh-in-Motion Data Analysis". B.Sc. graduation project. University of Manitoba, 1996.
4. AASHTO Guidelines for Traffic Data Programs. 1992.
5. Melchiorre, Marina. "Automated Quality-Control Evaluation of Traffic Estimates". Draft B.Sc. graduation project. University of Manitoba, 1997.
6. Clayton, Alan, Lucas, Brian, et al. "Design, Development, and Implementation of a Traffic Monitoring System for Manitoba Highways and Transportation".
University of Manitoba Transport Institute, April 1993.
7. "Traffic on Manitoba Highways 1995". University of Manitoba Transport Information Group, June 1996.
8. "Truck Traffic on Manitoba Highways, 1994". University of Manitoba Transport Information Group, 1996.

CHAPTER 3
 Enhancing AADT Estimates through Human-Intervention Techniques

This chapter develops human-intervention techniques for evaluating and improving the quality of AADT estimates on Manitoba's provincial highways. The humanintervention techniques discussed in this chapter are route consistency checks, comparison of current year AADT estimates with historical AADT estimates, and checking for intersection balancing.

3.1 Introduction

The previous chapter discussed potential shortcomings of the current method of estimating AADT in Manitoba, which involves a complex procedure requiring the manipulation of numbers, tabies and several computer programs. These problems give rise to the development of human-intervention techniques to improve the quality of AADT estimates on Manitoba's provincial highways.

Three different human-intervention techniques are presented in this research to evaluate AADT estimates: (1) route consistency, (2) comparison of current year AADT estimates with historical AADT estimates, (3) intersection balancing techniques.

3.2 Route Consistency

Route consistency involves examining AADT estimates in a spatial context to identify irregularities in traffic volume estimates. An effective method for conducting route consistency checks is by using a Geographic Information System (GIS). The

GIS is used to plot a highway map which shows scaled-AADT estimates. AADT estimates are displayed graphically using a scaled-line theme, where the thickness of the line represents the AADT at the location. This allows discontinuities in traffic estimates, such as sudden increases or decreases in AADT along a roadway to be identified by the data analyst.

Example Application

An example of how a route consistency check is conducted for Provincial Trunk Highway 11 (PTH 11) is shown in Figure 3-1 (a) and (b). The traffic flow maps were plotted using Transcad, a GIS-based software, and show the 1995 AADT estimates on each highway link as a scaled-line theme. Figure 3-1 (b) shows the enlargement of PTH 11, in addition, it shows the combined AADT estimates for 1995 on each highway link. Each link has been assigned to a control station, which is the source of the AADT estimate along that link.

To begin the route consistency check, a starting point on PTH 11 is selected, in this case, the starting point is selected just east of the intersection of PTH 11 and PTH 59. The first link on PTH 11 has an AADT of 750 vehicles per day, the connecting link to the east has an AADT of 2370 vehicles per day. This represents a sixty-eight percent increase in traffic volume, and is flagged for further analysis to determine the source of the inconsistency. Either one or both of the links could be potential sources of error.

The control stations assigned to each of these highway links are Station 119 for the first link, and Station 659 for the second link. The actual traffic counts at these stations are shown in Table 3-1. The actual traffic counts at both of the stations appear to be as expected, with approximately the same or slightly higher volumes in July compared to May and June. Based on these counts, the AADT is recalculated and

Figure 3-1 (a)
1995 Traffic Flow Map for Winnipeg and Surrounding Northeastern Region

Figure 3-1 (b)
Combined AADTs (1995) for PTH 11

Source: University of Menitobe Trensport intornetion Group
produces the same estimates, 750 and 2370 vehicles per day. This shows that the original AADTs have been correctly determined, and therefore no sources of error can be identified using this method.

Table 3-1

Actual Traffic Counts at Stations 119 and 659 on PTH 11

Stn	Dirn	Slart Date	End Date	Loop?	Count(vehicles)
119	C	95.05 .30	95.06 .01	N	1794
119	C	95.07 .11	95.07 .13	N	2391
659	C	95.05 .31	95.06 .02	N	6417
659	C	95.07 .10	95.07 .12	N	6272

Moving further to the east of PTH 11 finds that the traffic volume increases to 4140 vehicles, which represents a forty-three percent increase. This increase in traffic could be due to two things: (1) the location of the town of Pine Falls nearby, or (2) it could mean that AADT estimate for this link is of poor quality. In order to investigate whether there has been any error in the estimation process, the count station for this link is flagged, and the actual counts are retrieved. The data for Station 118, which is the control station for this link is shown in Table 3-2.

Table 3-2
Actual Traffic Counts for Station 118 on PTH 11

Stn	Diŕn	Start Date	End Date	Loop?	Count(vehicles)
118	C	95.05 .31	95.06 .02	N	12313
118	C	95.07 .10	95.07 .12	N	8104

Inspection of the actual traffic counts for Station 118 in Table 3-2 shows that although both counts were taken in the summer months approximately one month apart, the first count is significantly higher than the second count. The typical traffic flow pattern on this route is a high summer peak in the months of July and August, due to its proximity to the popular Lake Winnipeg beaches area. The higher traffic count in May and June does not fit the expected pattern for PTH 11. Based on this
information, it can be concluded that there is a problem with the actual traffic counts at Station 118, which is the source of the high AADT estimate at this location. The discrepancy in the raw traffic counts should be recorded, and a copy of this should be sent to MDHT to verify the count either by re-counting in the field or referring back to original count sheets.

This example shows how a route consistency checks allows any inconsistent AADT estimate to be re-considered in further detail to determine the cause of error, or provide explanations as to why the AADT estimate does not fit the pattern on that route. Although this method is manual and requires subjective human judgment, it does allow discontinuities in AADT estimates to be highlighted. The result is to produce better quality AADT estimates for provincial highways.

3.3 Comparison of Current Year AADT Estimates with Historical AADT Estimates

The AADT for any short-term count site that is reported at the end of a given year is an estimated value, and its true value is unknown. This poses a problem for analysis purposes because it does not allow one to determine whether an estimate reflects the true situation at any site, or the quality of that estimate.

One method of identifying possibly poor quality AADT estimates is by comparing current year AADT estimates with historical AADT estimates. Comparing estimates in this method allows sites which exhibit a significant difference in AADT between the given years to be flagged. AADT estimates can be affected by the estimation procedure and the representativeness of a short-term count site's assignment to a TPG and control station. On the other hand, some change in AADT is expected from yearto year due to population growth, the development of new communities, or the construction of a new highway which may redirect traffic to and from other existing
highways. This change is inevitable, however, in general, the traffic in most locations throughout the province are not significantly affected by these changes. As a result, any location which exhibits a significant change in AADT from one year to the next should be flagged and reasons for that occurrence must be provided. This allows potential errors or anomalies to be removed, and explanations for any significant change in AADT to be provided.

In order to conduct this comparison for 1995 AADT estimates, several graphs are plotted to show the 1995 and corresponding 1993 AADT estimate for each site, shown in Figures 3-2 (a) - (e). Each point on the graph represents a count station; the value on the x-axis shows the station's 1993 AADT and the y-axis shows the station's 1995 AADT estimate.

The graphs are separated into different ranges of AADT - low volume sites and high volume sites. This is to account for the inherent traffic variation on roads with different traffic volumes. Lower volume roads have greater variabilities than higher volume roads, meaning that larger variations of traffic volume are expected on these roads [Ref. 1].

For example, a short-count site which was reported having an AADT in 1993 of 200 vehicles per day has an AADT in 1995 of 400 vehicles per day, and this represents a 100 percent increase in traffic volume. However, this large percent difference translates to a difference in the number of vehicles of only 200 vehicles, which is expected for a low volume road due to the nature of traffic variability on low volume roads. On the other hand, the same 100 percent increase in traffic on a higher volume road with an AADT of 5,000 vehicles per day represents a difference of 5000 vehicles per day. Such a large increase in traffic is not expected particularly if there have been no significant changes in land use, roadway development or other improvements in the region. Hence, on higher volume roads a greater percent difference between year-to-year estimates is of more importance than on lower volume roads.

Figure 3-2 (a) - (e)
Comparison of 1995 and 1993 AADT Estimates

In order to compare equivalent sites in terms of the inherent variability, the sites are grouped into five different ranges of AADT estimates. Sites which have a 1995 AADT of less than 500 vehicles per day (low volume) are shown in Figure 3-2(a), and sites where the AADTs are between 5,000 and 10,000 vehicles per day (high volume) are shown in Figure 3-2(e). The other graphs (Figures 3-2 (b) - (c)) show AADT estimates that fall within the moderate range (between 500 vehicles per day and $\mathbf{5 , 0 0 0}$ vehicles per day).

Each graph also shows a series of percent difference lines. For example, the $+50 \%$ difference line in Figure 3-2 (a) indicates the line where the 1995 estimates differ from the 1993 estimates by $+50 \%$. Similarly, the -50% difference line represents the line where the 1995 estimates differ from the 1993 estimates by -50%. If there is no difference in the 1995 estimate from the 1993 estimate, the points should fall on the 0% difference line as indicated in the same figure.

These figures along with the percent difference lines allows inconsistent estimates to be identified in a systematic and progressive way. After inconsistent estimates have been identified, these estimates can be evaluated in further detail to either accept or reject an estimate, and explanations as to why there is such a significant difference between the different years' estimates must be provided.

Example Application

This technique is used to analyze and compare the 1995 AADT estimates with 1993 AADT estimates. An example of a station which is identified as having a large difference in AADT between 1993 and 1995 is Station 205 (combined direction), located on PTH 9, north of the north junction with PTH 9A. The 1995 AADT estimate for this station is 3,470 vehicles per day and the 1993 AADT estimate was 4,600 vehicles per day, which represents a 25 percent decrease in AADT over the two years.

The next step is to check these estimates against each other and provide explanations as to which estimate is more appropriate based on the actual traffic counts and the average summer daily traffic (ASDT). This information is shown in Table 3-3 for Station 205.

The first row of count information shown in Table 3-3 corresponds to the count period when this station was first counted in 1995 (June 13-16, 1995). The second row of count information corresponds to the second period when this station was counted in 1995 (Sept. 18-20, 1995).

Table 3-3

Comparison of 1995 and 1993 AADT Estimates for Station 205 on PTH 9

Stn	Diŕn	93 AADT	95 AADT	Start Date	End Date	No. of Days	Loop?	Count	ASDT\%	ASDT	ADT
205	C	4600	3470	95.06 .13	95.06 .16	3	N	12417	116	4025	4139
205	C	4600	3470	95.09 .18	95.09 .20	2	N	7338	116	4025	3669

The actual counts can be used as a basis of evaluating the 1995 estimate compared to the 1993 estimate. Since the counts were conducted during the summer months, the summer traffic volume is expected to be greater than the annual average. In 1995, the ASDT for this site is 116 percent of the AADT, which translates to 4,025 vehicles per day. Based on the two traffic counts, the average daily traffic (ADT) is calculated as the actual count divided by the number of days when the count was conducted, resulting in 4,139 and 3,669 vehicles per day respectively. These values are close (three-percent and nine-percent difference, respectively) to the summer traffic volume of 4,025 vehicles. These values are also greater than the estimated AADT for 1995 which is 3,470 vehicles per day. However, the AADT estimate for 1993, 4,600 vehicles per day, is greater than the summer traffic volume. This cannot be explained from the basic mathematical calculations.

Based on this analysis, it is concluded that 1993 AADT estimate for Station 205 is high.

3.4 Intersection Balancing [Ref. 3]

The sum of traffic entering an intersection must equal the sum of traffic leaving that intersection. The method of intersection balancing identifies intersections which do not balance. After identifying the imbalanced intersections, the AADT estimates on the individual highway links that make up that intersection are evaluated.

The evaluation considers the inherent traffic variability an intersection. Low volume intersections which are inherently more variable than high volume intersections are expected to have a greater degree of imbalance compared to higher volume intersections. Hence, this must also be taken into consideration during the evaluation process.

An example of an intersection which does not balance is shown in Figure 3-3.

Figure 3-3

Example of an "Imbalanced" Intersection

This example shows a four-leg intersection, labeled by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D and the corresponding AADT estimates on each of those links. If the AADT estimates for any two of the legs are added, it does not equal the sum of the AADT estimates of remaining two legs. Similarly, if the AADT estimates for any three legs of this intersection are summed, the resulting value does not equal the AADT estimate on the fourth leg. Based on the method of intersection balancing, the intersection is identified as being imbalanced, and the corresponding AADT estimates on each of the highway links A, B, C, and D are examined in further detail to determine the cause of the imbalance. An automated system which will facilitate more efficient checking of AADT estimates on provincial highway intersections is currently being developed [Ref. 3].

3.5 Other Techniques for Enhancing AADT Estimates

Other techniques which may be able to enhance AADT estimates are:

- Incorporating feedback from data users

Traffic data users may be aware of specific system or locational characteristics which should be highlighted. For example, residents of the town of Steinbach may be more aware of local traffic conditions in their area such as the occurrence of a special event or an unusual weather condition, which may affect counts taken in that area during that time. The input which they can provide about these matters can be used to remove unusual counts from the database, which in turn results in a cleaner dataset.

Identifying inconsistencies in AADT estimates through this method may be an effective method for improving its quality because it incorporates input about actual traffic conditions. Currently, users are able to phone, fax, mail or e-mail in any comments which they may have about specific traffic conditions to the MHTIS office. The knowledge gained through feedback from other users should be kept on a database for future reference.

- Utilizing an integrated count database

The quality of AADT estimates on Manitoba's provincial highways may be improved by utilizing an integrated traffic count database. Currently, each province/jurisdiction conducts its own traffic counts on roads which lie in their
jurisdictions. Manitoba should consider integrating its traffic count database with those of neighbouring jurisdictions including the City of Winnipeg, Saskatchewan, Ontario, North Dakota and Minnesota to enhance the understanding of traffic movements in this region. The use of an integrated count database such as this may result in improved AADT estimates and/or reduced traffic monitoring costs since sites which have already been counted by one highway agency can be shared with other highway agencies, and need not be duplicated.

- Cordon counts

Cordon counts are traffic counts which are taken on roads along jurisdictional boundaries by the respective officials. These counts can be used to improve the quality of AADT estimates on the related highways. For example, AADT estimates for the section of PTH 75 which lies just north of the Manitoba-U.S. border are produced at the MHTIS using the standard expansion method. However, the traffic count at this location is known in exact by the officials at U.S.-Canada Customs office. These exact counts should be used to check against estimated AADTs to determine how closely these two values relate to each other and to identify errors or inconsistencies. Similar counts for other highways should also be used as a method of evaluating AADT estimates on Manitoba's provincial highways.

Chapter 3 References

1. Clayton, Alan, Lucas, Brian. "Design, Development, and Implementation of a Traffic Monitoring System for Manitoba Highways and Transportation". University of Manitoba Transport Institute, April 1993.
2. "Traffic on Manitoba Highways 1995". University of Manitoba Transport Information Group, 1996.
3. Melchiorre, Marina. "Automated Quality-Control Evaluation of Traffic Estimates". Draft B.Sc. graduation project, University of Manitoba, 1997.

Additional References

1. American Association of State Highway and Transportation Officials. "Guidelines for Traffic Data Programs", 1992.
2. Missouri Highway and Transportation Department. "Traffic Monitoring". Presented at National Traffic Data Acquisition Conference, Albuquerque, 1996.

CHAPTER 4

Traffic Data Needs in Manitoba

This chapter describes the current AADT and other traffic data needs of traffic data users in Manitoba. Information for this chapter was obtained from a survey of traffic data needs that was conducted during the months of November 96 - January 97.

4.1 Background

One important part of the MHTIS is determining how well it is serving the needs of traffic data users. In Manitoba, AADT and other types of traffic data on provincial highways is required by the Manitoba Department of Highways and Transportation (MDHT), transportation engineering consulting firms, and the general public. Each of these data users may require different types, formats, and accuracies of traffic data to support their functions.

The most recent survey of traffic data needs was conducted in early 1992 before the implementation of the Manitoba Highway Traffic Information System (MHTIS). Since then, no work has been undertaken to review these data needs to provide an up-to-date account of traffic data needs in Manitoba.

This chapter reports and describes the current traffic data needs of the various traffic data users in Manitoba. These traffic data needs were obtained through a survey of data users conducted during the months of November 96 - January 97. The results of the survey are used to determine key areas of improvement and change which should be made to the current traffic monitoring system.

The objectives of this survey were to determine:
(1) the types of traffic data required by traffic data users to perform their functions.
(2) the importance, formats, and accuracy required of each type of traffic data.
(3) the importance of traffic data concerning low volume roads in their functions.
(4) the level of satisfaction with the current traffic monitoring program, and changes and improvements which can be made to enhance the traffic monitoring system in Manitoba.

4.2 Survey Methodology

The survey consisted of personal and telephone interviews with the major traffic data users in Manitoba. Four major groups of data users were surveyed: (1) The Manitoba Department of Highways and Transportation (MDHT); (2) Manitoba Department of Industry, Trade and Tourism; (3) Transportation Consulting Groups; (5) Other Traffic Data Users.

The traffic data requirements were obtained through personal and telephone interviews with staff members of MDHT, transportation consulting firms, and other users. The individuals who participated in this survey are acknowledged at the end of this chapter.

The types of data requested by the traffic data user was assessed according to three criteria: (1) its relative importance; (2) the frequency at which it is required; (3) the level of detail required. The following describes each of these criteria in further detail.

Importance: The importance of each type of data to each traffic data user is rated as either (1) essential to the data user's operations; (2) useful but not essential; (3) interesting but not often used; or (4) of no interest.

Frequency: The frequency at which the data is needed is described as either: (1) annual; (2) infrequent; (3) special-needs basis.

Detail: \quad The level of detail required for the data are described as either (1) individual sites; (2) summarized by highway sections; (3) summarized by regions; (4) province-wide.

4.3 Survey Results

The results of the survey are presented in the following order:

- Section 4.3.1 presents the survey results of traffic data users within the Manitoba Department of Highways and Transportation;
- Section 4.3.2 presents the survey results of the Manitoba Department of Industry, Trade and Tourism;
- Section 4.3.3 presents the survey results of transportation consulting groups in Manitoba; and
- Section 4.3.4 presents the survey results of other traffic data users.

4.3.1 Manitoba Department of Highways and Transportation

4.3.1.1 Engineering and Technical Services Division

Highway Planning and Design Branch [Ref. 3]

Function

The Design Branch handles the conceptual, functional, and geometric designs for roadway projects in Manitoba. The Branch is responsible for coordinating activities from the Planning, Design and Access Management sections.

Data Requirements

- AADT - this is considered to be the most important of all the traffic data needed by the Branch.
- Intersection turning movement counts
- Percent Trucks
- Vehicle classifications
- Hourly traffic volumes, including peak hour volumes

Accuracy

An error range of $\pm 10 \%$ in traffic data estimates is satisfactory for this Branch's purposes, however, final decisions are always made based on engineering judgment.

Low Volume Roads

Design work usually involves roads with AADT of greater than 500 vehicles per day. Less frequent counting on low volume roads is acceptable. It was indicated that there is no need to count on low volume roads more than once every three to five years.

Growth rates can be applied to determine the AADTs in years when these roads are not counted.

Changes and Improvements to the Current System

- Generally, this Branch feels that the current reporting procedure through the annual report Traffic on Manitoba Highways is satisfactory in meeting their data needs. However, the Branch prefers to have exact figures of average hourly and monthly traffic variations instead of graphs. This information is currently shown in graphical form in Traffic on Manitoba Highways 1995.
- Increased coverage of classification count sites in Manitoba. It was indicated that more sites should be classified according to the FHWA 13 vehicle classification scheme to provide a more accurate picture of truck traffic on Manitoba's provincial highways.
- The Branch frequently requires intersection and town counts to be done on a special request basis. These special counts should be indexed or recorded in a report so that the branch can refer to the locations of special counts which have already been done in order to avoid unnecessary duplication of counts.
- Finally, the Planning and Design Branch would like to obtain a large-scale traffic flow map of the province. This is a useful and efficient method to reference traffic volumes on individual highway sections. It is preferable that this map is included as part of Traffic on Manitoba Highways.

Programming Branch[Ref.12.13]

Function

The Programming Branch is responsible for four functions:
(1) Providing proposed annual highway construction programs for the Department. A program consists of a number of projects which require funding, for example a highway design project, highway construction project, or maintenance and resurfacing work. These projects are proposed by the various branches within the Department including the Construction and Maintenance Division, Highway Planning and Design Division, and regional offices. The Programming Branch is responsible for prioritizing these projects and submitting these for final approval by the Minister of Highways.
(2) Producing a highway inventory report which is an inventory and appraisal of existing conditions on Provincial Trunk Highways and Provincial Roads each year.
(3) Provide coordination for land acquisition.
(4) Provide coordination for utility reviews.

Data Requirements

- AADT - this statistic is considered essential and the most frequently used.
- Percent Trucks - this is also regarded as essential and is frequently used by the branch.
- Vehicle kilometers of travel
- Design hourly volumes

All of these statistics are required by highway sections for the entire province.
The Department is currently developing a new link-node system for subdividing the provincial highway network. This may result in a new control section map with a change in the way links are defined. Further work is required to develop a new inventory system.

Accuracy

Accurate traffic data is critical to this branch's operations. For example, when the branch is prioritizing two projects for maintenance, one in Dauphin and the other in Steinbach where both projects cost the same, the final decision as to which project is placed at a higher priority is based on the reported traffic volume estimate.

Decisions on projects which involve millions of dollars are based on traffic counts. This branch is responsible for setting the level of priority for each of these large-cost projects. Traffic data is what determines the final decision in almost all cases. Therefore, highly accurate traffic data is deemed to be extremely important.

Low Volume Roads

All roads are equally important to this branch's functions; traffic volumes are not used to differentiate between roads. All roads in the province must be listed in the annual inventory report produced by this branch, inventory such as traffic volumes, percent trucks, design hourly volumes, and projected traffic volumes for each control section are all listed in this report.

Changes and Improvements to the Current System

- Overall, the Programming Branch is confident with the estimates produced by UMTIG in Traffic on Manitoba Highways.
- The Programming Branch suggested that there should be more communication between traffic data users in this branch and UMTIG.
- This Branch indicated that a large-scale traffic flow map would be a highly useful format for presenting overall traffic volumes in the province, and they would like to see this produced as part of UMTIG's annual report.
- Transfer of data between the MHTIS and the current system - Currently, traffic information is broken down into control sections which do not necessarily match those of UMTIG's. A better way of integrating information between these two systems should be developed. The Computer Services branch is currently developing an improved control section map which will allow easier traffic data integration between the two systems.

Materials and Research Branch [Ref, 7. 8. 9]

Function

The Materials and Research Branch is responsible for pavement designs in the province. The Branch requires traffic data for pavement impact studies, pavement design, and the impacts of trucks on pavement deterioration.

Data Requirements

- AADT - required annually and seasonally
- Growth rates on AADT
- Percent trucks - required annually and seasonally
- Growth rates on percent trucks
- Vehicle classifications - the branch would like detailed information on the types of trucks which use provincial highways on an annual and seasonal basis
- Directional distribution of trucks
- Lane distribution of trucks
- Truck weight information - annually and seasonally

Truck data including classifications, weight data, and lane distributions are required to predict the number of ESALs (equivalent standard axle loads) that the pavement is expected to sustain. This information is used for pavement design and impact studies.

Overall, information pertaining to truck classifications and truck weights are most important to this branch. The Branch is particularly interested in knowing the types of trucks which use provincial highways, how these trucks are loaded, and the seasons in which the loading occurs. All of this data is considered essential for the Branch's functions.

Accuracy

The Branch believes that there are many variables involved in pavement design, each of which carries an inherent error. It is difficult to estimate how sensitive a design is based on the different variables (inputs). The Branch feels that for higher ESAL pavement designs, an accuracy of $\pm 25 \%$ of traffic estimates is acceptable.

Low Volume Roads

Low volume roads are relevant to this branch's operations. The Branch considers all roads with an AADT of less than 300 vehicles per day to be low volume. For these roads, AADT estimates within $\pm 30 \%$ of the actual traffic volume is acceptable.

Changes and Improvements to the Current System

- More data collection at more locations throughout the province is needed.
- More truck data particularly truck classifications, trucks weights and their distributions, and percent trucks. Currently all decisions requiring truck data are based on previous years' estimates if current year estimates are unavailable. Due to the changing fleet characteristics it is difficult to project the growth trends of truck traffic using previous years' data. It will be useful for the Branch if more current information on vehicle classifications and percent trucks is available.

Traffic.Engineering Branch Ref, 30]

Function

The Traffic Engineering Branch is responsible for providing the necessary traffic control devices and expertise to ensure safe and effective highway systems for the movement of people and goods in the province.

Data Requirements

Traffic data is essential for prioritizing Branch activities, and for the design and operation of various traffic control strategies and devices.

The types of traffic data required by this Branch includes:

- AADT - essential, required on an annual basis for province-wide highway sections.
- Seasonal, daily, and hourly variations of traffic - essential, required on an annual basis for province-wide highway sections.
- Intersection turning movements - essential, required on a special-needs basis for site-specific locations.
- Vehicle-kilometers of travel - essential.
- Percent Trucks - important.
- Vehicle weights - useful.

Accuracy

This Branch would like traffic data to be as accurate as possible, given the state of existing technology in traffic monitoring.

Low Volume Roads

This Branch does not require much traffic data on low volume roads. Roads are considered low volume if they have an AADT of less than 300 vehicles per day. In general, an accuracy level of $\pm 20 \%$ is satisfactory to this Branch's functions.

Changes and Improvements

- Traffic on Manitoba Highways - It was indicated that improvements should be made to the sorting of count stations.

Northern_Airports and Marines [Ref. 22$]$

This branch is responsible for designing, planning and maintaining aircraft landings and ferry services in northern Manitoba. This branch does not require traffic data for its functions.

4.3.1.2 Construction and Maintenance Division

Maintenance.Management [Ref. 1 and 2]

Function

The Maintenance Management Branch coordinates maintenance activities for regional offices and for the province. The province is broken down into five regions, each of these regions is broken down into "beats". Each beat reports to the maintenance engineer of its regional office, which then reports to the head office. The head office is responsible for budgetary expenditures for each region, and monitors these expenditures according to allocated resources.

Maintenance activities are broken down into summer and winter activities. In 1997 the summer maintenance budget is approximately $\$ 26$ million, and the winter budget is about $\$ 17$ million. The head office oversees region's activities in terms of what portion of the budget has been spent, and what activity it has been spent on. The Branch also deals closely with the construction, research, contract and quality assurance divisions of the Department.

Data Requirements

- AADT data - AADT is used to assign roads to maintenance categories.
- Segment lengths
- Percent trucks
- Traffic growth rates
- Design hourly volume factors.

Low Volume Roads

In general, the Branch is concemed only with roads of AADT greater than 250 vehicles per day.

Accuracy

- No specific level of accuracy was provided.
- The Branch mainly bases decisions on engineering judgment and knowledge of specific locations to determine if the data is accurate enough for their purposes.
- The most important issue is that justification is provided for any activity.

Changes and Improvements to the Current System

- The Branch prefers a provincial highway map showing AADT estimates at point specific locations rather than for highway links.

Construction Management [Ref, 29]

Traffic data is not required by this Branch.

Contracts Branch [Ref.18]

Functions

This Branch is responsible for traffic control for contracts for the construction of new roads. Traffic control includes all detours and traffic diversions.

Data Requirements

The following factors influence the types of traffic control devices that need to be implemented:

- AADT - different volumes of traffic require different traffic control devices to be implemented.
- Geometry of the road
- Topography
- Type of traffic which uses the road - percent trucks.

Low Volume Roads

All roads are equally important to this Branch.

Changes and Improvements to the Current System

The Branch obtains all of their traffic information from the Highway Planning and Design Branch for the designs of new highways and highway structures. No suggestions for improvement were provided.

Bridges and Structures Branch [Ref.16]

Function

This Branch is responsible for the construction, maintenance, and design of bridges. Traffic data is needed for bridge ratings, which involves estimating an existing bridge's load-carrying capacity and the remaining life of a bridge structure.

Data Requirements

The most important types of data to this Branch are truck-related data, specifically:

- Truck weight data - essential for determining bridge ratings. The Branch would like to obtain gross vehicle weight and axle weight data, and the distributions of these weights.
- Percent Trucks.

Currently, the Branch obtains all truck data from the regional offices and the Highway Planning and Design Branch of MDHT.

AADT estimates are not important for bridge ratings.

Changes and Improvements to the Current System

No comments were provided.

4.3.1.3 Transportation Policy, Planning and Development Division

Transpartation Systems Planning and Development Branch_Ref.5]

Function

The function of this Branch is to strategically plan and optimize investments in provincial transportation systems [Ref. 5]. This is a relatively new Branch, being in operation for only two years. It is responsible for the long-term planning and development of provincial highway systems.

Data Requirements

- AADT data - essential, required province-wide.
- Percent trucks - essential, required province-wide.
- Growth rates $-3,5,10$ and 20 years.
- Traffic mix and vehicle classifications - the Branch would like more information on the types of vehicles that use a particular highway. Detailed breakdowns of what types of trucks and cars (bicycles, small, medium, large cars, and pickup trucks) that use a highway are very useful. The Branch conducts many costbenefit analyses and detailed breakdowns of traffic mix are required for input into the "MICROBENCOST" software, a cost-benefit analysis software for highway capitalization projects.
- Seasonal traffic variations, particularly summer recreational traffic volumes on provincial highways.
- Traffic volumes during spring restrictions period - the Branch is particularly interested in obtaining information on truck volumes during spring restriction periods.
- Design hourly volumes -30 th, 50 th, 100 th highest hours.
- Intersection volumes - particularly at intersections where the combined traffic volume is greater than or equal to 7000 vehicles per day.
- Traffic volumes within towns - the Branch would like to have more locations counted under the town counts program. A better method for expanding town counts into AADT will be very useful to this Branch.
- Vehicle-Kilometers of Travel - by highway section, province-wide.

Low Volume Roads

- This Branch requires more information concerning low volume roads throughout the province. The types of information which are considered useful for these roads includes AADTs, truck volumes, and seasonal traffic variations.
- Traffic estimates on low volume roads are required to be as accurate as possible.

Accuracy

Accurate traffic data is essential to this Branch's functions.

Changes and Improvements to the Current System

- Overall, this Branch is satisfied with the information that is currently being produced.
- More detailed vehicle classification information is needed.
- More intersection turning movement counts should be conducted, and a more accurate method for estimating traffic volumes within towns should be developed.
- Provincial vehicle-kilometers of travel data is useful, however, the Branch would like to obtain this information broken down by region, within towns, and also within the City of Winnipeg where possible.
- Traffic on Manitoba Highways - information shown in UMTIG's annual report is found to be satisfactory. However, it was indicated that improvements could be made with the sorting of count stations according to highway numbers and control sections.
- AADT traffic flow map - the Branch would like to see a copy of the traffic flow map included as part of Traffic on Manitoba Highways on an annual basis.
- Truck flow map.

4.3.1.4 Transportation Safety and Regulatory Services Division

Compliance and Regulatory Services Branch [Ref. 20,21]

Functions

This Branch is responsible for enforcing weight and dimension regulations in the province through various scheduling and enforcement programs. This is a relatively new Branch, being in operation since April 1996.

Data Requirements

This Branch requires mostly truck-related data in their functions:

- Truck accident data is considered essential. This data is needed to determine accident locations, accident rates, and what types of trucks are involved in these accidents.
- Truck weight data is also considered essential. Currently, truck weights are monitored through static weigh scales in the province. The Branch feels that weight data from dynamic weigh scales are not reliable enough for their operations, and would like to see an improvement in this area.
- Truck classifications broken down into the FHWA scheme is very important for this Branch. It was indicated that there is a lack of computer capability to capture vehicle classification data in the province. More classification data will be very useful for this Branch's operations.
- Percent Trucks.
- AADT data is used mainly in conjunction with percent trucks figures to determine the levels of trucking activities on provincial highways and roads.

Changes and Improvements

In general, the Branch feels that more truck related data is needed in the province. The Branch is particularly interested in obtaining vehicle classification data and vehicle weight data. It was indicated that more research should be conducted to determine the best way of obtaining accurate vehicle weight data from WIM sites.

4.3.1.5 Regional Offices [Ref. 15]

Functions

Regional offices are responsible for administering the planning, survey, design and acquisition of R.O.W. for all regional projects, from inception to draft tender.

Data Requirements

- AADT
- Summer Daily Traffic (ASDT)
- Intersection turning movement counts
- Peak hourly and daily volumes
- Percent trucks
- Vehicle classifications and distributions
- Origin and destination data
- Weigh-in-motion data

Low Volume Roads

- Low volume roads tend to be more of a concern to local governments. There is always pressure to upgrade these roads to higher standard. AADT is used to justify whether or not an upgrade should be considered. In some cases, requests for upgrade are denied if traffic volumes are less than 300 vehicles per day. Any difference of $20-30$ vehicles can make a difference in the decision.
- Highly accurate traffic estimates are needed for low volume roads.

Changes and Improvements to the Current System

- Computer access to traffic data, without the need for Internet.
- A large-scale traffic flow map.
- Concise data that will serve the needs of the District/Region.

4.3.2 Manitoba Department of Industry Trade, and Tourism

Travel Manitoba [Ref.4]

Function

The main function of Travel Manitoba is to promote tourism in Manitoba. Promotional material is produced by this Branch to encourage visitors into Manitoba. In order to produce this promotional material, the research analyst must determine the amounts and changes in tourist activity from a month-to-month and year-to-year basis. This performance is measured by using "performance indicators" such as traffic volumes entering the province, customs data, and tourist inquiries at visitor centers. The Branch is particularly interested in the growth or decline of tourist traffic entering the province, and one of the measures used to determine this is traffic volume data.

Data Requirements

The only summary traffic statistic which is required by this Branch is traffic volume data. Traffic volume data is needed in the form of daily and monthly traffic volumes. This data is used as an indicator of tourist activity into the province.

The Branch only requires traffic volumes for PTH \#1 at the provincial boundaries (Stations 25 and 74) as an indicator of the amount of tourist activity entering the province. Directional distributions at these locations is essential.

Accuracy of Data

The Branch feels that if they are provided with more accurate traffic volumes they will be able to determine tourist activities to a better accuracy. It is preferred that traffic volumes are reported as accurately as possible.

Changes and Improvements to the Current System

Currently, UMTIG produces a report for Travel Manitoba on a monthly basis for traffic volumes at Stations 25 and 74 on the eastern and western provincial
boundaries. This report includes hourly traffic volumes for each month and a graph showing the cumulative traffic volume since the beginning of the year for each site.

This current reporting procedure is useful, however several changes can be made to which will assist the Branch in the analysis of the data. These include:

- A summary of traffic volume for each month
- A cumulative summary of traffic volumes from January 1st until the current reporting period (for example, the total traffic volume from January ist until August 31st for 1996). Currently; the graph of cumulative volumes is not particularly helpful as it does not provide the analyst with precise volume figures.
- For each reporting period, show previous years' traffic volume for that same period. This is useful for identifying whether traffic has grown/declined compared to previous years.
- Conduct a license plate survey to determine the origins and destinations of traffic.

4.3.3 Transportation Consulting Groups

UMA Engineering[Ref 6]

Functions

Transportation consultants provide engineering consulting services to different clients. Most of the work related to transportation projects involve consulting services for the Manitoba Department of Highways and Transportation. The types of projects undertaken by these consultants are diverse and include projects such as feasibility studies, functional design studies, and the design of pavements which all require traffic information.

Data Requirements

The type of traffic data required by the consulting firm depends on the project which is currently being investigated. Examples of the most important and frequently used traffic statistics required are:

- AADT at specific locations.
- Peak hour traffic volumes - this is needed particularly for the town areas such as Brandon and Portage La Prairie for specific projects such as traffic signal design.
- Intersection turning movement data - also required for traffic signal designs.
- Percent trucks - this is needed for pavement design work. UMA Engineering does not require detailed breakdowns of truck types into axle configurations, rather a percent trucks figure is sufficient for the design of pavements.

Low Volume Roads

More accurate traffic data is required for roads with higher traffic volumes, however, for lower volume roads, the allowable range of accuracy is larger. In all cases, the engineers also base their decisions on historical traffic volumes at the location under investigation in order to verify a growth or decline in traffic in the area.

Improvements to the Current System

Transportation consultants are often unaware of the types of traffic information which can be obtained through a traffic information system. It was indicated that more "advertising" of the system will allow them to know what types of information exists and are available to users.

Reid Crowther \& Partners Lid. [Ref 10]

Functions

Transportation engineers at Reid Crowther \& Partners conduct a variety of transportation consulting work, from conceptual design work to detailed design and construction of roads and highways in the province. Projects such as functional designs of roads, intersections designs, and traffic signal studies are conducted.

Data Requirements

- AADT estimates - this is viewed as being the single most important source of traffic volume information.
- Percent Trucks.
- Truck Classifications - more detailed information on truck classifications are required. In particular, large truck configurations from the 6 -wheel trucks to B trains and other unique configurations which may be present in Manitoba are considered highly useful.
- Intersection turning movement counts.
- Growth rates and past trends in traffic data are considered important in all of their proposals, design work, and construction. For projecting traffic volumes, the company also uses land use projections to determine growths in land use in the area under investigation.

Low Volume Roads

Reid Crowther \& Partners performs studies of pavement improvements on low volume roads, such as determining whether a gravel road should be upgraded to an asphalt surfaced road. Roads which are considered for improvements must have an

AADT of greater than 1,000 vehicles per day. This criteria has been set up by the Manitoba Department of Highways and Transportation. Roads with less than 500 vehicles per day are considered to be less important because the traffic growth on these roads are viewed as being minimal.

Changes and Improvements to the Current System

More permanent counting stations should be installed in the province. Information at these sites can be used to develop expansion factors for short-term counts.

Dillon Consulting Engincers Planners - Environmental Scientists [Ref_17]

Functions

Dillon conducts a variety of transportation related projects such as functional design studies, construction of provincial highways, traffic signalization studies, and level of service analysis for roadway projects in Manitoba.

Data Requirements

- AADT - considered to be essential
- Percent Trucks - this is used for pavement designs and level of service calculations. Detailed breakdowns of trucks into specific classes is not required, rather it is adequate if the traffic stream is broken down into cars and trucks.
- Intersection turning movement counts - Dillon is currently involved in a functional design study for PTH 6 from the Perimeter Highway to Warren, Manitoba. This is an example of a study which requires turning movement count data.
- Hourly traffic variations - these are used to determine the design hourly volumes.
- Seasonal traffic variations - this statistic is useful, but not required to perform the majority of projects.

Improvements to the Current System

The only comment that was provided was that the current traffic information system is viewed as providing more accurate traffic data compared to the old system.

DS-Lea Consultants Litd.[Ref. 23, 24, 25]

Functions

DS-Lea conducts a variety of transportation-related projects in Manitoba. Currently, $D S$-Lea is conducting a project which involves warrants for traffic control devices for the Manitoba Department of Highways and Transportation.

Data Requirements

The following types of traffic data are required by this company:

- Intersection turning movement counts - essential, province-wide.
- Percent Trucks - essential, province-wide.
- Vehicle classification counts - essential, province-wide.
- Truck weight data - special-needs, individual sites as required.

Accuracy

Due to the high variability in traffic counts on a daily basis, an accuracy level of ± 20 to 25% of traffic volume estimates is acceptable.

Changes and Improvements to the Current System

- Develop a method to expand intersection turning movement counts into an AADT. Confirm the factors currently used to expand a 14 -hour count into a $24-$ hour count.
- Produce a map which shows locations which have been counted under the turning movement count program. This will allow more efficient reference to locations which have already been counted thus avoiding unnecessary duplication of count locations.

4.3.4 Other Traffic Data Users

The City of Winnipeg Streets and Transportation Department [Ref. 11]

Provincial highway traffic data is not used by this department. The Department obtains all of their traffic data from traffic counts done in The City of Winnipeg.

The types of traffic data needed by this Department include peak hour traffic volumes and average daily traffic. This information is used for transportation modeling projects.

Police[Ref 26

In Manitoba the RCMP requires AADT information for allocating resources. AADT estimates and accident rates are used to review existing programs and to allocate resources to roads or regions in the province. This statistic is needed on a specialneeds basis for site-specific locations.

Businesses [Ref. 26, 28]

Businesses use AADT estimates for conducting feasibility studies, determining suitable locations for setting up a business, service stations, or advertising signs. Potential businesses also often require truck classification data. This information is useful for determining whether the location is suitable for setting up restaurants, recreational vehicle sales businesses, and gas stations.

4.4 Summary of Expressed Data Needs

This section summarizes the results of the traffic data needs survey. Tables 4-1 through 4-6 on pages 59-67 summarize the information in tabular form.

1. Data Requirements

- The most important data type requested by traffic data users is Annual Average Daily Traffic (AADT). 81 percent of traffic data users surveyed use AADT data in their functions. Out of these, 44 percent indicated that AADT is essential in their functions.
- The second most important statistic is percent trucks. 62 percent of users surveyed use percent trucks data in their functions. Out of these, 80 percent indicated that percent trucks data is essential.
- The third most important traffic statistic is vehicle classification data. 44 percent of users surveyed indicated that vehicle classification data is used in their branches. Out of these, 43 percent indicated that vehicle classification data is essential in their functions and would like to see more classification data collected and reported. For most users, classifications of vehicles according to the FHWA 13 vehicle classification scheme is found to be most useful, with the exception of the Transportation System Planning and Development Branch which would like more detailed breakdowns of vehicles.
- Intersection turning movement counts are useful to one-quarter of all users surveyed. These counts are mostly required for specific locations in the province and on a special-request basis.
- Variations in AADT such as seasonal, day-of-week, and hourly variations are found to be important to most Branches and external users.

2. Low Volume Roads

Out of all users surveyed, about one-quarter require traffic statistics on low volume roads. In general, the lowest volume roads which are of concern to these traffic data users are roads with AADTs of greater than 300 vehicles per day.

Most Branches indicated that AADT on low volume roads need not be monitored on a frequent basis. It is sufficient for their functions if AADT estimates on these roads are provided once every five years.

Most users indicated that they could tolerate greater variability when dealing with low volume roads, and less variability when dealing with high volume roads. This suggests that lower volume roads should be counted less frequently. Currently shortterm counts are conducted where the AADT is greater than 200 vehicles per day once every two years. Sites where the AADT is less than 200 vehicles per day are counted less frequently, typically once every four years. Less frequent counting on low volume roads will reduce traffic monitoring costs in terms of counting, processing, and summarizing of traffic statistics on these roads.

3. Accuracy

Users strongly emphasized the importance of accurate traffic data. All indicated that accurate traffic data is required for good decision-making. In general it is difficult for most of the Branches to quantify the level of accuracy required of traffic data. A few Branches indicated that an error of ± 10 percent of the traffic estimate is adequate, however, little work has been done to determine the sensitivity of decisions to data inputs.

4. Changes and Improvements to the Current System

The main suggestions for change and improvement which users would like to see in the current system are:

- Production and distribution of a provincial traffic flow map. Approximately 40 percent of all traffic data users indicated that they would like to see a large-scale traffic flow map included as part of the annual report, Traffic on Manitoba Highways on an annual basis.
- Collection and reporting of more vehicle classification information (38 percent).
- Truck weight data is important for the Materials and Research Branch, Compliance and Regulatory Services Branch, and Bridges and Structures Branch. These users feel that there is a lack of truck weight data in the province. Increased coverage of truck weight collection locations will be very useful. Several traffic data users also expressed an interest in receiving Truck Traffic on Manitoba Highways on an annual basis.
- Intersection turning movement counts should be reported in further detail. Users which require this data would like to obtain peak hour volumes and factors in addition to the current reporting method. Further, the factor used to expand a 14hour count into a 24-hour estimate (1.3) should be confirmed to ensure that they are representative of the location which they are being applied to.
- Overall, traffic data users indicated that they were satisfied with the traffic data that is currently being produced by UMTIG. Some of these users also indicated that current traffic statistics produced by UMTIG are more accurate compared to the previous system.

4.5 Additional Facts and Figures

The University of Manitoba Transport Information Group receives many requests for traffic data from traffic data users in Manitoba and in other jurisdictions. The following shows some figures on the usage of this system:

- From the period January 1995 until December 1996, UMTIG received 205 requests for traffic information from staff members of the Manitoba Department of Highways and Transportation.
- In this same period, UMTIG received 227 traffic data requests from external users including engineering consulting groups, Travel Manitoba, Manitoba Bureau of Statistics, businesses, and the general public.
- The MHTIS Internet site has been accessed 3,597 times from December 20, 1995 until December 16, 1996.

Table 4-1 Engineering and Technical Services Division

Type of Tratic Data	Hiothwy Planning and Desion Branch	Propramming Branch
AADT Importance: Frequencr: Detivi:	Essential Annual Hiphwey sections, individual sites	Essential Annual Higtwaty sections, province-wide
Sessonal tratic variations Importance: Frequency: Detail:	Essential Annual Hiptway sections, individual sites	Not used
Day-of-week traffic variations Importance: Frequency: Detait:	Essention Annual Hiptwey sections, individual sites	Not used
Hourty tralic variations Importance: Frequency: Detait:	Essential Annual Hiphwey sections, individual sites	Essential Annual Hiphway sections, province-wide
Directional Distribution of Tranic Importance: Frequency: Detail:	Not used	Not used
Intersection Turning Movernents Importance: Frequency: Detai:	Escential Annual Special-needs	Not used
Vehicle-Kilometers of Travel Data importance: Frequency: Detail:	Not used	Essential Annual Highway sections, province-wide
Percent Trucks importance: Frequency: Detail:	Essential Annual Highway sections, individual sites	Essential Annual Highway sections, province-wide
Venicie Classifications Importance: Frequency: Detail: No. of classes:	Interesting Special-needs Individual sites FHWA scheme	Not used
Vehicre Weights importance: Frequency. Detail:	Not used	Not used
Other	-	-

Table 4-1 Engineering and Technical Services Division (continued)

Type of Tranic Dete	Tratice Engineering Branch	Wenterials and Research Branch
	Essentia! Annual Hiptwicy sections, provinceswide	Essential Annual Hiotrway sections
Seasonal tratic variations Importance: Frequencr: Detai:	Estertisa! Semi-annual Hintmay sections, province-wide	Essentiod Annual Hiotway sections, province-wide
Day-of-week traticic variations Inportance: Frequency: Detsil:	Escential Semi-annual Hinthey sections, province-wide	Not used
	Essential Semi-annual Hiptwey sections, provincewide	Not used
Directional Distribution of Tramic importance: Frequency: Detail:	Useful Serm-annuat Hiphway sections	Essential Annual Highway sections, individual sites
Intersection Turning Movernents Importance: Frequency: Detait	Essential Special-needs Individual sites	Not used
Vehicle-Kiometers of Travel Data Importance: Frequency: Detail:	Escential Annual Highway sections, province-wide	Not used
Percent Trucks Importance: Frequency: Detait:	Important Annual Highway sections, individual sites	Essential Annual Higthway sections
Vehicle Classifications importance: Frequency: Detail: No. of ctasses:	Not used	Essential Annual Highway sections, province-wide As detailed as possible
Vehicle Weights	Useful	Essential Annual Individual sites, province-wide
Other		Growth rates of Percent Trucks

Table 4-2 Construction and Maintenance Division

Type of Traflic Data	Maintenance Management Branch	Construction Manaperment Branch
AADT Importance: Frequency: Deter:	Escential Annual Hintwoy sections, province-wide	Not used
Seasonal tratic veriations Importance: Frequency: Detei:	Not used	Not used
Day-of-week tramic varimions Importance: Frequencr: Detai:	Not used	Not used
Hourty tratic variations Importance: Frequency. Detail:	Escential Annual Hiptmay sections	Not used
Directional Distribution of Tramic Importance: Frequencr: Detail:	Not used	Not used
Intersection Turning Movernents Importance: Frequency: Detail:	Not used	Not used
Vehicle-Kilometers of Travel Data Importance: Frequency: Detail:	Useful Annual Hiphway sections	Not used
Percent Trucks importance: Frequency: Detail:	Essential Annual Highway sections, province-wide	Not used
Venicle Classifications Importance: Frequency: Detail: No. of classes:	Not used	Not used
Vehicle Weights importance: Frequency. Detail:	Not used	Not used
Other	-	-

Table 4-2 Construction and Maintenance Division (continued)

Type of Tratic Data	Eridoes and Structures Branch	Contracts Branch
Importunce: Frequency: Demiz:	Useful Special-needs Individumel sites	Essential Annual Hiptway sections, special-needs
Seasonal tratic variations importance: Frequency: Detail:	Not used	Useful Annual Hiptmay sections, speciat-needs
Day-of-week trafic variations Importance: Frequency: Detait:	Not used	Useful Annual Hiothway sections, special-needs
Hounty tratic variations Importance: Frequancy: Detail:	Not used	Useful Annual Highway sections, speciat-needs
	Not used	Not used
Intersection Turning Movernents Importance: Frequency: Detail:	Not used	Not used
Vehicte-Kiometers of Travel Data Importance: Frequency: Detail:	Not used	Not used
Percent Trucks Importance: Frequency. Detait	Important Special-needs Individual sites	Essential Annual Highway sections, speciat-needs
Vehicle Classifications Importance: Frequency: Detail: No. of classes:	Useful Special-needs Individual sites	Useful Annual Individual sites
Vehicle Weights importance: Frequency: Detail:	Important Special-needs Individual sites	Not used
Other	-	-

 	SN0
pesin 20 N	
eraissod se pepepep sy epm-arunosd fenuly jeguassy	ssessep jo on .10200 - Aousnband :oouenodul sugamysselj әр!чəА
apim-oulnald renury renuresse	7weo : Kouenbend :avelodul SPPN1 1400\%d
apu-soulnosd renury requass	```7100 Noumobats tovequodu! eyeg pren to smpuromp--p,up^```
	```-1,400 :Nouenbety Tocuenoduy sunfumaN Gumum, uopoosemul```
pesn 20 N	```7%0 -Kurenbaj」 souryoduy suen_ to vognquns!a peuogson!```
suogoes kemuphy jenuly myesn	
pesn ion	```Nama :Nurnbes, coumuodu```
suonper remiping senuery jeguess	7neo   :Ourabeds   :ruapotur   suopeytin juren reuosees
	: 10 n 0 g : Koushbay tiounjoduj
	$\frac{10 w}{}$



Table 4-4 Transportation Safety and Regulatory Services Division

Type of Tratic Data	Transport Compliance Branch
AADT   Importance: Frequency: Detait:	important Anntual Individual sites, province-wide
Seasonal tratlic variations Importance: Frequency: Detait	Useful Annual Individual sites
Day-of-week tratic variations importance: Frequency: Detait:	Not used
Hourly tramic variations importance: Frequency: Detail:	Not used
Directional Distribution of Trantic importance: Frequency: Demit	Useful Annual Individual sites
Intersection Turning Movements Importance: Frequency: Detail:	Not used
Vehicle-Kiometers of Travel Data importance: Frequency: Detail:	Not used
Percent Trucks	Essential Antiual Province-wide
$\qquad$	Essential Annual Individual sites FHWA 13 Class
Vehicle Weights   importance: Frequency: Detail:	Essential Annual, special-needs Individual sites
Other	-

Table 4-5 Regional Offices

Type of Tratic Date	Ptanning, Desion and Materials and Research Branches
	Escential Anmuai Hiptwey sections
Seesonal tratic variations Importance: Frequency: Detail:	Essential   Annual   Hiptway sactions
Diy-or-week tratic variations Importance: Frequencr: Deteri:	Escential   Annuat   Hiothwy sactions
Hourly tratic variations Importance: Frequency: Demait:	Excential   Annual   Hiptrway sections
Directional Distribution of Tratic importance: Frequency: Detail:	Not used
Intersection Turning Movements Importance: Frequency: Detail:	Escential Special-needs Individual sites
Vehicia-Kilometers of Travel Dath Importance: Frequency: Detail:	Not used
Percent Trucks   Importance: Frequency: Detai:	Escential   Annual   Hiphway sections
Vehicle Classifications Importance:   Frequency:   Detail:   No. of classes:	Important Annual Individual sites $-$
Vehicie Weights   Importance: Frequency: Detail:	Important   Annual   Highway sections
Other	- -

Table 4-6 External Traffic Data Users

Type of Traftic Data	Travel Manitoba	Engineering Consutiong Firms	The City of Winnipeg Streets and Transportation Department
AADT   importanca: Frequency: Detai:	Useful   Annual   Individual sites - Stations 25 and 74 only	Essemtial Special-needs Individual sites	Not used
Seasonal tratic variations Importence: Frequency: Detmil:	Essential Annual Individual sites	Userul Special-needs Individual sites	Not used
Day-of-week tratic variations Inmportance: Frequency: Detait	Essential   Speciat-reeds   Individual sites	Not used	Not used
Houty trafic variations   Importance:   Frequency:   Detail:	Not used	Escential Special-needs Individual sites	Not used
Directional Distribution of   Traflic           	Essential Special-needs Individual sites	Not used	Not used
Intersection Turning Movernents   Importance: Frequency: Detail:	Not used	Essential Special-needs Indrividual sites	Not used
Vehicle-Kilometers of Travel Data   Importance: Frequency: Detail:	Not used	Not used	Not used
Percent Trucks   Importance: Frequency: Detail:	Not used	Essential   Speciat-needs   Highway sections	Not used
Vehicle Classifications Importance: Frequency. Detail: No. of dasses:	Not used	Not used	Not used
Vehicle Weights   Importance: Frequency: Detail:	Not used	Not used	Not used
Other	-	-	-

Table 4-6 External Traffic Data Users (continued)

Type of TraficData	Police	Businesses
Importance: Frequency: Detai:	important   Special-needs   Hiphwey sections	Useful   Special-needs   Individual sites
Seasonal tratic variations importance: Frequency: Detrit:	Important Special-needs Hiptivaly sections	Useful Special-needs Individual sites
Day-of-week trwific variations   Inportance:   Frequency:   Detait:	Useful   Special-needs   Hiptminy sections	Useful Special-needs Individual sites
Hourty traftic variations   Importence: Frequency: Detail:	Useful   Special-needs   Hiphwaty sections	Userul Special-needs Individual sites
Directional Distribution of Tratic Importance: Frequency: Detail:	Useful   Special-needs   Highway sections	Important Speciat-needs Individual sites
Intersection Turning Movements Importance: Frequency: Detail:	Not used	Useful Special-needs Individual sites
Vehicle-Kiometers of Travel Data Importance: Frequency: Detail:	Not used	Not used
Percent Trucks   importance: Frequency: Detail:	Important   Special-needs   Highway sections	Useful Special-needs Individual sites
Vehicle Classifications Importance:   Frequency:   Detail:   No. of ctasses:	Important   Special-needs   Highway sections   -	Useful Special-needs Individual sites
Venicle Weights   Importance: Frequency: Detail:	Not used	Not used
Other	-	-

## Chapter 4 References

1. Mr. Vic Weselak. Assistant Manager. Construction and Maintenance Division, Manitoba Department of Highways and Transportation. Phone No: 945-3896. Personal interview on November 13, 1996.
2. Mr. Brett Wareham. Methods Engineer. Construction and Maintenance Division, Manitoba Department of Highways and Transportation. Phone No: 945-3896. Personal interview on November 13, 1996.
3. Mr. Eric Christiansen, P.Eng. Senior Functional Design Engineer. Design Branch, Manitoba Department of Highways and Transportation. Phone No: 9450236. Personal interview on November 13, 1996.
4. Ms. Statia Elliot. Research and Policy Analyst. Travel Manitoba, Manitoba Department of Industry, Trade and Tourism. Phone No: 945-2402. Personal interview on November 14, 1996.
5. Mr. David Duncan, P.Eng. Senior Transportation Planning Consultant. Transportation System Planning and Development Branch, Manitoba Department of Highways and Transportation. Phone No: 945-3646. Personal Interview on November 21, 96.
6. Mr. Derek Durant, P.Eng. Transportation Project Engineer. Transportation Division, UMA Engineering Ltd. Phone No: 284-0580. Personal interview on: November 26, 1996.
7. Mr. Ray Van Cauwenberghe, P.Eng. Director. Materials and Research Branch, Manitoba Department of Highways and Transportation. Phone No: 945-1934. Personal interview on: November 27, 1996.
8. Mr. Said Kass, P.Eng. Senior Pavements and Geotechnical Engineer. Materials and Research Branch, Manitoba Department of Highways and Transportation. Phone No: 945-8982. Personal interview on: November 27, 1996.
9. Mr. Stan Hildebrand, P.Eng. Pavement Design Engineer. Materials and Research Branch, Manitoba Department of Highways and Transportation. Phone No: 9452410. Personal interview on: November 27, 1996.
10. Mr. Todd Smith, P.Eng. Reid Crowther \& Partners Ltd. 850 Pembina Highway, Winnipeg, MB R3M 2M7. Telephone interview on December 10, 1996.
11. Mr. Doug Hurl, P.Eng. Transportation Systems Planner. Transportation Systems Planning Branch, The City of Winnipeg Streets and Transportation Department,

100 Main Street, Winnipeg, MB R3C 1A4. Phone No: 986-5207. Telephone interview on: December 10, 1996.
12. Mr. Trevor Curtis, P.Eng. Senior Programming Engineer. Programming Branch. Manitoba Department of Highways and Transportation. Phone No: 945-3679. Personal interview on: December 11, 1996.
13. Mr. Don Bodnaruk, C.E.T. Programming Technologist. Programming Branch. Manitoba Department of Highways and Transportation. Phone No: 945-7111. Personal interview on December 11, 1996.
14. Mr. Chuck Lund. Technical Services Engineer. Dauphin Regional Office, Manitoba Department of Highways and Transportation. Phone No: 622-2261.
15. Mr. Brian Little. Regional Design Engineer. Southwestern Region (Brandon, MB). Manitoba Department of Highways and Transportation. Phone No: 7266819.
16. Mr. Walter Saltzberg, P.Eng. Director. Bridges and Structures Branch. Manitoba Department of Highways and Transportation. Phone No: 945-5058. Personal interview on: December 13, 1996.
17. Mr. Bill Kavanaugh. Transportation Engineer. Dillon Consulting Engineers Planners - Environmental Scientists, 6 Donald Street, Winnipeg, MB. Phone No: 453-2301. Telephone interview on December 10, 1996.
18. Mr. Gerald Tencha, P.Eng. Contracts Engineer. Contracts Branch, Manitoba Department of Highways and Transportation. Phone No: 945-3776. Telephone interview on December 10, 1996.
19. Mr. Rolie Savoie, P.Eng. Transportation Policy and Service Development Branch, Manitoba Department of Highways and Transportation. Phone No: 9458617.
20. Mr. Greg Catteeuw. Director. Compliance and Regulatory Services Branch, Manitoba Department of Highways and Transportation. Phone No: 945-3898. Personal interview on December 12, 1996.
21. Mr. Dwight Solon. Manager. Compliance Services Branch, Manitoba Department of Highways and Transportation. Phone No: 945-1966. Personal interview on December 12, 1996.
22. Mr. Dave Salby. Director. Northern Airports and Marines Branch, Manitoba Department of Highways and Transportation. Phone No: 945-3421. Telephone interview on December 11, 1996.
23. Mr. Richard Tebinka, P.Eng. DS-Lea Consultants Ltd., Winnipeg, MB. Phone No: 943-3178. Personal interview on : December 13, 1996.
24. Mr. Gerry LeMoal, P.Eng. DS-Lea Consultants Ltd., Winnipeg, MB. Phone No: 943-3178. Personal interview on: December 13, 1996.
25. Mr. Mohammed Alam, P.Eng. DS-Lea Consultants Ltd., Winnipeg, MB. Phone No: 943-3178. Personal interview on: December 13, 1996.
26. Clayton, Alan; Lucas, Brian. Design, Development and Implementation of a Traffic Monitoring System for Manitoba Highways and Transportation. University of Manitoba. April 1993.
27. AASHTO Guidelines for Traffic Data Programs, 1992.
28. Small Business Consulting Company. University of Manitoba. Personal communication in April 1996.
29. Mr. Don Kuryk. Construction Management Division. Manitoba Department of Highways and Transportation. Phone No: 945-5827.
30. Mr. Ben Rogers, P.Eng. Director. Traffic Engineering Branch, Manitoba Department of Highways and Transportation. Phone No: 945-3781. Personal interview on: January 10, 1997.

# CHAPTER 5 <br> Traffic Pattern Groups 

This chapter develops new traffic pattern groups (TPGs) for the study region (Manitoba and Saskatchewan) and evaluates how the new TPGs affect the AADT estimates for short-counts in Manitoba.

### 5.1 Introduction

TPGs are used to expand short-counts into AADT estimates. Approximately onethird of Manitoba's short-count sites are expanded using this method. The quality of the AADT estimate depends on the quality of the TPG to which the short-count site is assigned. A TPG which does not reflect the actual traffic pattern at the short-count site to which it is assigned will result in AADT estimates which are inaccurate.

To date, Manitoba's TPGs have been developed by using permanent counter data from Manitoba. This chapter investigates whether TPGs can be strengthened based on traffic patterns for an expanded region, consisting of Manitoba and Saskatchewan.

This region was selected because Manitoba and Saskatchewan share many highways at the provincial border, and the traffic patterns on these and many other highways in the region could be similar. The traffic flow on these highways is controlled by the activity systems and transportation systems in this region, and not by the political boundary that separates the two provinces.

For example, the TransCanada highway adjacent to Regina, Saskatchewan could be similar to the TransCanada highway adjacent to Winnipeg, Manitoba. This research develops TPGs in the region based on the premise that the traffic patterns in the

Figure 5-1
The Study Region

region are independent of the provincial boundaries. Figure 5-1 (b) shows the provincial highway network in the study region, distinct from the current highway networks which are separated by a political boundary (Figure 5-1 (a)).

### 5.2 Traffic Monitoring in the Study Region

Traffic on Manitoba's provincial highways is monitored by the Manitoba Department of Highways and Transportation, and traffic on Saskatchewan's provincial highways is monitored by the Saskatchewan Department of Highways and Transportation.

There are many similarities in traffic monitoring practices in the two jurisdictions. However, traffic data is not exchanged between the two provinces to either (1) enhance existing AADT data, or (2) reduce traffic monitoring costs.

### 5.3 Comparison of Traffic Monitoring Practices in the Study Region

Traffic on the 18,000 kilometers of Manitoba's provincial highways is monitored using permanent counters and short-term counts. There are currently 57 permanent counters located throughout Manitoba, and 2,013 sites are counted under the shortterm count program. Out of the 57 permanent counters, 15 are AVC/WIM stations which are used to monitor vehicle classifications and weights in the province.

Traffic on Saskatchewan's 26,000 kilometers of provincial highways is monitored by using automatic traffic recorders (ATRs) and short-term counts. The ATRs are the same as Manitoba's permanent counters which are used for continuous traffic monitoring; there are currently 40 ATR locations throughout Saskatchewan. For purposes of this research, permanent counting stations in Manitoba and ATRs in Saskatchewan are referred to as permanent counters in both provinces. Short-term counts are conducted using a sampling procedure; in 1994, Saskatchewan Highways conducted 800 short-term counts throughout the province [Ref. 3]. In addition to

ATRs and short-term counts, Saskatchewan Highways also operates 10 AVC sites to monitor truck traffic on provincial highways. Figure 5-2 shows the locations of permanent counters in the region.

### 5.4 Existing Traficic Patterns

The existing highway traffic patterns in the region are shown in Figure 5-3. In this map, each symbol and colour-coded station represents an existing TPG in Manitoba and Saskatchewan.

Manitoba's provincial highway network is classified into six TPGs [Ref. 11]:

- Urban Commuter (UC) - high morning and afternoon peaks with little seasonal variation.
- Rural Commuter (RC) - daily peaking different from Urban Commuter Group, little seasonal variation.
- Trunk (T) - steady traffic through the day and through the year.
- Trunk-Seasonal (TS) - steady traffic through the day but significantly more traffic in summer than in winter.
- Rural Commuter Seasonal (RCS) - daily peaking similar to Rural Commuter Group, significantly higher in summer than in winter.
- Resort (RES) - extreme seasonal variation.

Saskatchewan's provincial highway network is also classified into six TPGs [Ref. 3]:

- Regional Commuter Rural Highways (ADT over 2000) (REG) - roads which carry mainly commuter traffic.
- Long Distance Rural Highways (ADT over 2000) (LDR) - roads that are generally used for long-distance commuter traffic.
- Rural Highways (ADT>600) ( $\mathrm{R}>600$ ) - roads that bring commuter traffic to and from smaller towns.
- Rural Highways ( ADT <600) $(\mathrm{R}<600)$ - these roads exhibit the same characteristics as the previous Rural Highways group, except the majority of the roads in this group are collector roads which carry lower volumes of traffic.
- Rural Recreational Highways (RR) - these roads mainly serve a rural area, and also carry significant recreational traffic during the summer months.
- Resort Highways (RES) - these roads are mainly used for recreational purposes.

Figure 5-2
Permanent Counter Locations in the Study Region


Enlargement of Regina


Source: University of Mantobe Trensport information Group

Enlargement of Winnipeg


1997-03-29

Figure 5-3
Existing Traffic Patterns in the Study Region


Enlargement of Regina


Socure: University of Marnitibe Transport Informebion Group

Enlargement of Winnipeg


1997-02-28

### 5.5 Comparison of Existing Traffic Patterns in the Study Region

- The Urban Commuter Group in Manitoba is similar to the Regional Commuter Group in Saskatchewan. Both groups have low seasonal variation and carry heavy commuter traffic to and from major urban centers such as Winnipeg and Regina.
- The Trunk Group in Manitoba and Long Distance Rural Highways Group in Saskatchewan consist of highways which mainly carry long-distance throughtraffic. These roads are located away from population centers and recreational destinations, and serve mainly longer-trip purposes.
- The Rural Commuter Seasonal and Rural Recreational Highways Groups consist of highways which carry both commuter traffic to nearby towns and significant recreational traffic during the summer months.
- Resort Highways in both Manitoba and Saskatchewan carry mainly recreational traffic. Summer peaks are very high compared to the rest of the year.


### 5.6 Developing the New Traffic Pattern Groups

The traffic patterns on highways in the region are examined to develop TPGs. These patterns are based on the seasonal and hourly traffic variations at permanent counter sites from the year 1995. Permanent counter data from Manitoba was obtained from UMTIG through the MHTIS, and ATR data from Saskatchewan was obtained from Saskatchewan Department of Highways and Transportation. The data from each permanent counter was summarized into seasonal (monthly) and average hourly traffic volumes.

The procedure for developing TPGs is as follows:

1. Select the permanent counters for the analysis.
2. Develop groups based on the seasonal variations at each permanent counter site.
3. Further define the seasonal groups by sub-dividing each group based on the average weekday and weekend hourly traffic patterns at each permanent counter.

### 5.6.1 Cluster Analysis

Cluster analysis is used to form the TPGs. The purpose of cluster analysis is to identify similar objects from the characteristics they possess [Ref. 1]. This technique is used to identify and classify objects or variables so that each object is very similar to others in its cluster.

In the field of transportation engineering, cluster analysis has been used to group permanent counter data based on their seasonal traffic patterns. Albright [Ref. 4] used cluster analysis on permanent counters in New Mexico to group counters with similar seasonal traffic patterns. The resulting groups were then used for expanding shortterm counts into AADT. Albright also notes that several other states including New York, New Jersey and Louisiana also applied cluster analysis to their permanent counter locations in order to identify seasonal traffic variation patterns on state highways.

The Traffic Monitoring Guide (TMG) [Ref. 2] describes and recommends the use of cluster analysis to identify highway patterns based on state permanent counter data. The TMG indicates that the application of these methods to a number of State programs in the U.S. has produced very reasonable results. In most cases, the patterns of variation that stand out the most are those of rural, urban, and recreational areas. However, the TMG also indicates that the major weakness of this procedure is the lack of theoretical guidelines for establishing the optimal number of groups.

In this analysis, permanent counters with similar seasonal traffic variation patterns are grouped using the CLUSTER procedure of the Statistical Analysis Software (SAS) [Ref. 5, 6]. This procedure uses Ward's minimum variance method of hierarchical grouping, which involves calculating the distance between two clusters using analysis of variance (ANOVA) [Ref. 8, 12]. The ANOVA sum-of-squares is summed over all the variables (in the case of the seasonal grouping analysis there are 12 variables, one
for each month of the year), and the two objects with the least within-cluster sum-ofsquares is joined to form a new cluster. This process is repeated until only one cluster remains.

This grouping method was developed by Ward [Ref. 10] in 1963 and was first applied to traffic counter grouping by Sharma and Werner [Ref. 8] in 1981. In this method, counters are grouped based on their twelve monthly factors. The twelve monthly factors are defined as the monthly average daily traffic (MADT) divided by the AADT at the site, normalizing the traffic flows at each site. This allows the twelve monthly factors to be compared for different sites.

### 5.6.2 Permanent Counter Selection Criteria

This research uses permanent counter data from Manitoba and Saskatchewan for the year 1995. For purposes of this research, permanent counters were selected based on the following two criteria:

1. The data set at the permanent counter site must be complete.

Permanent counter data are vulnerable to equipment malfunctions and errors. As a result, there may be missing data in any permanent counter data set. For this analysis, permanent counters are selected if they contain data for at least two consecutive weeks for each month in the data year. This allows continuous data from at least half of each month to be analyzed.
2. Missing data must not be imputed

This criteria follows from the principle of truth-in-data [Ref. 9]. Permanent counter raw data is screened to remove errors and anomalies (refer to Chapter 2 for an explanation of traffic data screening methods), but none of the data has been imputed or patched in any way.

Based on these criteria, 49 permanent counters from Manitoba and 34 automatic traffic recorders from Saskatchewan -- a total of 83 sites were used in the analysis. These sites are listed in Table 5-1.

Table 5-1
List of Permanent Counters Analyzed

		Namis			crinalchindy
PCSNo.	Hey. No.	Location	ATR No.	Hery. No.	Loction
1	8		1	11	7.5 IOM. W. of JCT. 48
3	9	1.7 $7 \mathrm{MM} \mathrm{S} .\mathrm{OF} \mathrm{P.T.H}$.	2	1	Q. 1 IM. W. OF JCT. 6
4	9	SOUTH OFP.T.H. 17	3	39	3.0 kM SE OF YELLOW GRASS
7	210	EAST OF P.T.H. \#Sg	4	10	6.5 MM. E OF BALCARRES
8	59	N. OF N. JCT. P.R. 210	5	11	5.0 kM S. OF ROAD TO DUNDURN
9	75	1.1 KM N. OF P.R ${ }^{\text {24 }} 17$	8	1	Q. 5.1 MM W. OF JCT. ${ }^{\text {H2 }}$
12	44	3.7 KM E OFP.R 1215	9	16	1.5 IGR NW. OF ORCADA
13	1	5.8 KME OF P.T.H. ${ }^{\text {H2 }}$	10	48	3.0 kM SE OF DAVIN
14	12	3.7 IOM S. OF P.R 0303	11	11	$5.0101 . E$ OF JCT. 354
16	7	3.7 KM N. OF P.T.H. ${ }^{\text {W }} 17$	13	7	8, OKM. E OF JCT. Wh
21	10	I. 6 IGM N. OF P.R tala	15	49	8.0 KM. E. OF JCT. 338
24	10	1.3 KU N. OF P.T.H. ${ }^{\text {(1) }}$	16	38	8.0 KM. S. OF JCT. \#no
25	1	WEST OF P.T.H. ${ }^{\text {a }} 1$	17	4	1.5 KM . N. OF JCT. ${ }^{\text {W13 }}$
28	21	3.2 KM N. OF P.T.H. 24	18	210	Q. 1 IMM. N. OF JCT. HWY. \#10
32	5	4.0 KME OF E JCT. P.R. ${ }^{274}$	20	4	1.5 KOL S. OF GLASLYM
40	2	2.4 KM E OF P.T.H. 183	21	2	1.5 KM. N. OF JCT. HWY. 355
41	5	$3.2 \mathrm{KCM} \mathrm{N} .\mathrm{OF} \mathrm{P.R}$.	22	1	5 KM . E OF GRENFELL
43	16	3.2 KME OF E JCT. P.R. 334	28	6	$1.5 \mathrm{KM}. \mathrm{S} .\mathrm{OF} \mathrm{JCT}$.
46	16	$24 \mathrm{KMN}$. OFP.T.H. ${ }^{\text {H }}$	34	4	6.0 KM. W. OF WARTIME
47	100	$0.8 \mathrm{KM} \mathrm{S} .\mathrm{OF} \mathrm{P.T.H}. \mathrm{\# 1}$	36	36	2.0 KM . N. OF GALILEE
48	1	4.0 KM E OF P.R 3332	38	38	N OF LPTON
49	5	1.6 KM E OF P.T.H. 20	39	33	SE OF FRANCIS
51	3	$0.3 \mathrm{kM} \mathrm{S.W} .\mathrm{OF} \mathrm{P.T.H}.{ }^{\text {\% }}$	40	40	$1.01 \mathrm{KM}. \mathrm{W} .\mathrm{OF} \mathrm{JCT}$.
56	3	3.2 KM E OF N. JCT. P.T.H. 83	41	41	NE OF ABERDEEN
58	34	O.8 KM S. OF P.R 449	42	55	SW OF GREEN LAKE
59	325	WEST OF P.T.H. ${ }^{\text {W }}$	43	3	W OF PRINCE ALBERT
60	6	S. OF S. JCT. P.R. ${ }^{3} 325$	44	11	NE OF ROSTHERN
63	75	5.1 KM SOUTH OF P. R. 1210	45	5	E OF WATSON
65	1	WEST OF MACGREGOR	46	322	1.6 KM. AW OF SILTON
66	2	EAST OF NESEITT	71	106	MILE 75 Of HANSON LAKE ROAD
67	4	WEST OF SELKIRK BR.	74	9	10.5 KM. N. OF HUDSON BAY
68	320	CONNECTING RTE - SELIARK BR. TO PR 320	75	10	10.0 KM. NE OF JCT. ${ }^{\text {H }}$
70	100	W. END OF RED RN. PRIDGE	91	20	NW OF CRAVEN
72	10	SOUTH OF P.R *287	92	57	SW OF Duck mountan Park
73	287	EAST Of P.T.H. \#10			
74	1	WEST OF ONTARIO EDRY.			
75	317	EAST OFP.T.H. ${ }^{\text {WSS }}$			
	59	NORTH OF P.R :3317			
77	$101$	1.1 KM W. OF P.T.H. *59   SOLTH OF BIPOS HIL PARK ENTPANCE			
79	1	4.3 KNW W. OF P.T.H. MS			
80	16	O.B KM. E OF SASK BDRY.			
81	13	2 MILES S. OF OARVILLE			
83	50	$1.3 \mathrm{KMS} \mathrm{S}$.			
84	10	$3.8 \mathrm{KMS} \mathrm{OF} \mathrm{S} \mathrm{JCT}$.104 (ETHELBERT)			
93	313	EAST OF P.R 315			
94	315	NORTH OF P.R ${ }^{\text {W }}$			
$\begin{aligned} & 96 \\ & 97 \end{aligned}$	10 367	SOUTH OF P.R ${ }^{3} 357$ EAST OF P.T.H. \#10			
Totel Number of MB srees $=4$			Totul Number of SK stiea $=34$		

### 5.6.3 Analysis of Seasonal Traffic Patterns

At each of the 83 permanent counter sites, the 12 monthly factors were used as input values into the CLUSTER procedure in SAS. The SAS software produced numbers of groups ranging from 83 groups (each site was considered as a separate group) to one group (all sites were grouped together into a single group). The output of the analysis from the SAS program are given in Appendix $E$.

The resulting groups are analyzed in terms of the semi-partial $\mathbf{R}^{\mathbf{2}}$ at each level of the grouping process. The semi-partial $\mathbf{R}^{\mathbf{2}}$ is an indication of the change in the $\mathrm{R}^{\mathbf{2}}$ statistic at each level of the grouping process. Each time two stations are grouped together, the $\mathrm{R}^{2}$ value becomes less than it was compared to the previous step due to the greater error associated with joining two sites which are not the same [Ref. 5]. This can also be viewed as the marginal cost of reducing the number of groups by one. The semipartial $\mathbf{R}^{\mathbf{2}}$ measures the decrease in the proportion of variance accounted for resulting from joining two clusters [Ref. 6].

Figure 5-4 shows a graph of the semi-partial $\mathbf{R}^{2}$ in the grouping process, from 83 groups to one group. From this figure, it can be seen that the semi-partial $R^{2}$ is greatest when the number of groups equals one, and least when the number of groups is 83 . The optimum number of groups is selected at the point when the gains in the semi-partial $\mathrm{R}^{2}$ values become negligible (the "knee of the curve"). From this graph, it appears that the optimum number of counter groups lies somewhere between five and nine because a substantially large increase in error is observed before five groups, and there is little change in semi-partial $\mathbf{R}^{\mathbf{2}}$ after nine groups.

### 5.6.4 Determination of Optimum Number of Groups

The optimum number of seasonal counter groups was determined by comparing the mean monthly factors of each group using the Tukey multiple comparison of means
test. This test compares the two samples (groups) based on the hypothesis that all of the group means are equal to each other. The test compares the group means of a number of groups and the resulting hypothesis is either accepted or rejected. The Tukey multiple comparison of means was conducted using Minitab [Ref. 7] for numbers of groups ( n ) ranging from nine to five at a $95 \%$ confidence level.

Figure 5-4

## Semi-partial $\mathbf{R}^{\mathbf{2}}$ in the Seasonal Grouping Process



The significance of difference in counter group means was established by comparing the monthly factors of each month of the year. The various group contrasts differed significantly from each other for a number of months at the $\mathbf{9 5 \%}$ confidence level. Previous research has shown that counter groups should be considered different if the group means differ for three or more months out of the year based on the $\mathbf{9 5 \%}$ confidence level [Ref. 8]. This is used as the basis for determining the optimum number of groups in this research.

Based on the Tukey multiple comparison of means, the optimum number of seasonal groups was determined to be five. Table 5-2 summarizes the differences in group means for the five groups. As shown in this table, further consolidation of groups into less than five groups results in group means which differ for greater than three months, which in turn results in inappropriate groupings.

Table 5-2

## Tukey Multiple Comparison of Means for Optimum Number of Seasonal Groups

This table shows the results of the Tukey multiple comparison of means test for the mean monthly factors. It shows the number of months which differ when two groups are joined together based on the Tukey test. For example when GI and G2 are joined, 6 out of the 12 months were found to be significantly different. Similarty, when G1 and G3 are joined, it was found that 10 out of the 12 months were different, and so on. in this analysis, groups are considered to be inappropriate for joining together if at least 3 out of the 12 months are different. This table shows that all of the groups differ from each other by more than 3 months and hence, should not be joined together.

Group	G1	G2	G3	G4	G5
G1	-	6	10	11	11
G2	6	-	6	9	10
G3	10	6	-	4	8
G4	11	9	4	-	4
G5	11	10	8	4	-

### 5.6.5 Results of the Seasonal Grouping Analysis

The five major groups resulting from the seasonal grouping analysis are:

- Seasonal Group 1 counters exhibit the lowest seasonal variation compared to the other seasonal groups. These counters lie on highway sections which are adjacent to population centers such as Winnipeg, Brandon, and Regina, and consists of mainly commuter type traffic.
- Seasonal Group 2 counters have moderately high seasonal variation, and are located on major highways such as the TransCanada Highway, PTH 75 in Manitoba, the Yellowhead Highway \#16, and Highways 5, 7, and 11 in Saskatchewan all of which serve longer trip distances.

These routes connect major urban centers which are separated over longer distances. Examples include PTH 1 west of Winnipeg, and PTH 75, south of Winnipeg.

Similarly, in Saskatchewan, Highway \#11 is a major arterial highway which connects Regina with Saskatoon, two major urban centers. This same highway runs northeast from Saskatoon to the town of Prince Albert which also exhibits the same characteristics.

- Seasonal Group 3 counters exhibit moderately high seasonal variations similar to counters in Seasonal Group 2. However, all of the counters in this group are located on routes which also serve largely recreational destinations. This recreational nature of the routes creates a large proportion of summer traffic.

For example, Station 12 in Manitoba located on PTH 44 exhibits a large proportion of summer traffic. PTH 44 is a route which is connected to the Whiteshell Provincial Park region, a largely recreational destination which attracts heavy summer traffic. Because this counter is located on a section which is farther away from the Park with many intersecting routes and small towns in between, it also carries a significant proportion of through-traffic.

- Seasonal Group 4 counters have very high seasonal variations and are all located close to recreational destinations. For example, Station 74 in Manitoba located on PTH 1 is located on a route which carries major recreational traffic to the Whiteshell Park and northwestern Ontario. It also carries a significant amount of long distance traffic to and from Winnipeg, in addition to TransCanada summer travel.
- Seasonal Group 5 consists of roads which carry heavy recreational traffic. This is shown by the very high summer traffic volumes compared to the rest of the year. Permanent counting sites that belong to this group include Stations 4, 76, and 94 in Manitoba, and Stations 18, 91 and 92 in Saskatchewan. All of these stations are located on routes which serve largely recreational destinations.

Figure 5-5 summarizes the seasonal variation patterns of these five groups. The $y$ axis shows the ratio of MADT to AADT, a high ratio represents a high traffic volume for the corresponding month. Most of the groups show a higher peak during the summer months, however, Seasonal Groups 4 and 5 exhibit significantly higher summer traffic volumes compared to the other groups. Seasonal Group 1 has the least seasonal variation, and Seasonal Group 2 and 3 have moderate seasonal rise.

Figure 5-5 indicates another important characteristic of provincial highway traffic patterns. All of the five seasonal groups intersect each other at two points during the
year - May and September - and the corresponding ratio of MADT to AADT at these times is approximately one. This indicates that a short-count which is conducted in May or in September is close to the annual average compared to counts which are done during other times of the year. This characteristic of highway patterns is true for all the five groups.

The five seasonal groups account for 98 percent of the counters in the study region ( 81 out of 83). The remaining two counters, Station 71 (located in Saskatchewan on Highway 106, mile 75 of Hanson Lake Road) and Station 74 (located in Saskatchewan on Highway 9, north of Hudson Bay) have distinctly different patterns from the other five seasonal groups; therefore, these two counters were left ungrouped. Appendix A shows the seasonal traffic patterns of these stations.

Figure 5-5
Graphs of Seasonal Traffic Variation Patterns


### 5.6.6 Analysis of Average Hourly Traffic Patterns

Each of the five seasonal groups were further subdivided in terms of the average hourly patterns within each seasonal group. This is done to further define the traffic patterns in terms of hourly traffic variations.

The permanent counter data for the 81 sites (excluding the two sites which were ungrouped) were summarized into average hourly values for weekdays and weekends. Weekdays are from Monday to Friday and weekends are from Saturday to Sunday. Appendix B shows the average hourly traffic patterns for weekdays and weekends for these sites. The average hourly values were standardized by taking the ratio of the hourly volume to the AADT. These values were then used as input variables into the CLUSTER procedure in SAS, similar to the analysis of seasonal patterns.

### 5.6.7 Results of the Average Hourly Analysis

The analysis of the average hourly traffic patterns for each seasonal group produced the following results (shown graphically in Figure 5-6):

## - Hourly Patterns for Seasonal Group 1

Permanent counters in Seasonal Group 1 can be sub-divided into two groups of hourly patterns: (1) counters which exhibit high morning and afternoon peaking characteristics, with roughly equal volumes during the two peak times; (2) counters which exhibit higher afternoon peaks compared to morning peaks. In both cases, weekday traffic volume is much higher than the weekend traffic volume.

Counters in the first hourly group with roughly equal morning and afternoon peaks tend to be located closer to major urban centers including Winnipeg and Regina. Counters in the second group are located near smaller population centers such ass Roblin and Dauphin in Manitoba, and Yorkton and Prince Albert in Saskatchewan.

## - Hourly Patterns for Seasonal Group 2

Seasonal Group 2 counters exhibit steady traffic throughout the weekday and weekend. The weekday and weekend patterns are similar, with no well-defined peaks in this group.

- Hourly Patterns for Seasonal Group 3

Counters in this group exhibit high weekend traffic volumes compared to weekday traffic volumes. Two main groups of hourly patterns are observed for Seasonal Group 1: (1) weekday traffic which has high morning and afternoon peaks, similar to the hourly patterns in Seasonal Group 1, indicating a commuterseasonal pattern; and (2) steadily increasing traffic throughout the weekday and weekend similar to Seasonal Group 2. The first type can be found on routes that lie adjacent to towns and that lead to major recreational destinations. The second type of hourly pattern can be found on routes that lead mainly to recreational destinations.

- Hourly Patterns for Seasonal Group 4

Seasonal Group 4 counters exhibit significantly higher weekend traffic volumes compared to weekday traffic volumes because they are located on highly recreational routes. There is steady traffic flow throughout the weekend.

## - Hourly Patterns for Seasonal Group 5

The hourly patterns for roads in this group are the same as those in Seasonal Group 4. Weekend traffic is peaks on Saturdays and Sundays, and is generally greater than weekday traffic.

### 5.7 Summary of the New Traffic Pattern Groups

Based on the analysis of seasonal and average hourly traffic variations at permanent counters in Manitoba and Saskatchewan, seven major TPGs are developed. These groups are named Prairie Groups, because of the prairie region (Manitoba and Saskatchewan) in which they are located. Table 5-3 describes the Prairie Groups by their seasonal and average hourly traffic variation patterns, and comments on the general geographic locations of the sites. Table 5-4 lists the permanent counters which belongs to each of these groups. Figures 5-7 to 5-13 show the locations of
permanent counter sites which have been assigned to each group. Individual seasonal and average hourly patterns at each permanent counter are shown in Appendix $\mathbf{A}$ and Appendix B.

Table 5-3
Summary of the New TPGs Developed from the Study Region

TPG	Seasonal Pattern	Hourty Pattern	Geographic Characteristics
Prairie Group 1	Flat seasonal pattern.	High morning and afternoon peaks during the weekdays.	These routes are located in and around major urtan centers like Winnipeg and Regina.
Prairie Group 2	Moderately high summer peak.	Similar pattern of steady trafic increases throughout the weekday and weekend.	These routes are not located adjacent to population centers. Rather, they serve longer-trip purposes.
Prairie Group 3	High summer peak.	Steady traffic throughout the day, but weekend traffic volumes tend to be greater than weekdays.	These routes are similar to Prainie Group 2, but also connect to recreational destinations.
Prairie Group 4	Flat seasonal pattern, similar to Prairie Group 1.	Weekday afternoon peaks are higher than weekday morning peaks.	These routes lie adjacent to rural population centers such as Dauphin, Minnedosa, and Roblin in Manitoba, and Yorkton in Saskatchewan.
Prairie Group 5	High summer peak.	Same as Prairie Group 4, with steady increasing traffic throughout the day on weekends.	These routes are similar to the Prairie Group 4, but are also used for recreational purposes since they lead to recreational destinations.
Prairie Group 6	Very high summer peak.	Very high weekend traffic volumes compared to weekday traffic volumes.	These routes connect to mainly recreational destinations which attract a high proportion of summer traffic. For example, the TransCanada highway near the Whiteshell Provincial Park. Riding Mountain National Park, and the beaches of Lake Winnipeg.
Prairie Group 7	Moderately high summer peak.	Similar to Prairie Group 1. with high morning and afternoon peaks.	These routes are located near population centers in Northern Manitoba such as The Pas and Thompson (Region 5 . north of the intersection of PTH 6 and PTH 60). These routes also connect to the Cleanwater Lake Prov. Park, a major recreational destination during the summer months in northern Manitoba.

Figure 5-6
Average Hourly Traffic Patterns (Weekdays and Weekends)

(a)

(c)

Praitit Group 5

(e)

(b)

(d)

(f)

(g)

Table 5-4

## List of Permanent Counters in the New TPGs

Praifis Group 1				$\begin{aligned} \text { MB Sites } & =9 \\ \text { SK witet } & =2 \end{aligned}$
Stie No.	Province	Hiphonty	Locetion	
1	MB	8	1.4MMS OFP.R W29	
3	MB	9	1.7 KM S. OF P.T.H. 27	
7	MB	210	EAST OFP.T.H. ${ }_{\text {WS }}$	
8	MB	59	M OF N. JCT. P.R ${ }^{2} 10$	
9	MS	75	I.1 KM N. OFP.R ${ }^{2} \mathbf{2 4}$	
47	ME	100	0.8 KM S. OFP.T.H.	
51	MB	3	0.3 KM S.W. OFP.T.H.	
70	ME	100	W. END OF RED RIV. BRIDGE	
77	ME	101	1.1 KM W. OF P.T.H. 559	
1	SK	1	T.5 KM W. OF JCT. 4 H8	
2	SK	1	8.0 KM W. OF JCT. ${ }^{\text {\% }}$	


Prailia Croup 2				$\begin{aligned} \text { MB Sites } & =17 \\ \text { SK Sites } & =13 \end{aligned}$
Site No.	Province	Higionvay	Loction	
16	MB	7	3.7 KMN OFP.T.H. 17	
25	MB	1	WEST OF P.T.H. 41	
40	MB	2	24 KM E OF P.T.H. we3	
43	MB	16	32 KME OF E JCT. P.R. 354	
46	MB	16	24 KM N. OFP.T.H. \#1	
48	MB	1	4.0 KM E OFP.R ${ }^{\text {K }} 332$	
49	MB	5	1.6 KM E OFP.T.H. \% $^{\text {O }}$	
60	MB	6	S. OF S. JCT. P.R. 325	
63	MB	75	5.1 KM S. OFP. R. $\mathbf{W}^{1} 10$	
66	MB	2	EAST OF NESEITT	
67	MB	4	WEST OF SELKIRK ERIDGE	
68	MB	320	CONNECTING RTE SELKIRK BR. TO P.R. 320	
79	MB	1	4.3 KA W. OF P.T.H. ${ }^{\text {W }}$	
80	MB	16	O.8 KM E OF SASK. BDRY.	
81	MB	13	2 MILES S. OF OAKVILLE	
83	MB	50	1.3 MA S. OF P.R 265	
84	NB	10	3.8 KM S. OF S. JCT. \#HOA (ETHELAERT)	
5	SK	It	5.0 IMM 5. OF ROAD TO DUNDURN	
8	SK	1	0.5 IMM W. OF JCT. 32	
9	SK	16	1.5 KA N.W. OF ORCADIA	
11	SK	11	5.0 KM E OF JCT. 54	
13	SK	7	80 KME OF JCT. \#4	
20	SK	4	1.5 KM S. OF GLASLYM	
22	SK	1	5 KM E OF GRENFELL	
28	SK	6	1.5 KM S. OF JCT. \#15	
38	SK	38	NORTH OF LIPTON	
41	SK	41	N.E OF ABERDEEN	
44	SK	11	N.E OF ROSTHERN	
45	SK	5	E OF WATSON	
75	SK	10	10.0 KM NE OF JCT. 1	


Prairie croup 3				$\begin{aligned} \text { MB Sites } & =4 \\ \text { SK Sikes } & =0 \end{aligned}$
Site Na.	Province	Highway	Loction	
13	NB	1	5.8 KM E OFP.T.H. 12	
65	M8	1	WEST OF MACGREGOR	
74	MB	1	WEST OF ONTARIO EDRY.	
75	MB	317	EAST OF P.T.H.	


Site No.	Provicas	Higivaty	Location	
14	W8	12	$37 \mathrm{KMS} \mathrm{OFPRMSO3}$	
24	MB	10	1.3 KM N. OF P.T.H. ${ }^{\text {che }}$	
28	MB	21	3.2 KM N OFP.T.H. 24	
32	M $\mathrm{B}^{\text {B }}$	5	4.0 IOM E OF E JCT. P.R \#274	
41	M ${ }^{\text {c }}$	83	$3.2 \mathrm{KMM} \mathrm{N}. \mathrm{OFP.R}$.	
56	MB	3	3.2 HM E OFN. JCT. P.T.H. ${ }^{\text {W83 }}$	
58	MB	34	0.810 SS OFP.R.ang	
59	M8	325	WEST OFP.T.H	
3	SK	39	$3.0 \mathrm{KMS.E}$ OF YeLLOW GRASS	
4	SK	10	6.5 KME OF BALCARRES	
10	SK	48	$3.0 \mathrm{IGMS.E}$ OF DAVIN	
15	SK	49	A.OICM E OF JCT. 38	
16	SK	38	8.0 KM S OF JCT. A9	
17	SK	4	1.5 KM N OF JCT. 13	
34	SK	44	6.0 IGM W OF WARTIME	
36	SK	36	2.0 kM N OF GALILEE	
39	SK	33	SE OF FRANCIS	
40	SK	40	1.0 KM W OF JCT. ${ }^{\text {2 } 29}$	
42	SK	55	S.W. OF GREEN LAKE	
43	SK	3	W. OF PRINCE ALBERT	


Prairia Group 5				$\begin{array}{r} \text { MB Sites }=6 \\ \text { SK Sites }=1 \end{array}$
Site Na.	Province	Highway	Location	
12	MB	44	$37 \mathrm{KME} \mathrm{OFPRR215}$	
21	MB	10	1.6 KM N. OF P.R tens	
78	MB	59	SOUTH OF BIRDS HILL PARK ENTRANCE	
93	MB	313	EAST OF P.R. ${ }^{\text {K }}$ S 15	
96	MB	10	SOUTH OFP.R 1357	
97	MB	357	EAST OFPTH TO	
21	SK	2	1.5 KM N OF JCT. HWV. 355	


Prairie Group 6				$\begin{aligned} \text { MB } \text { Sites } & =3 \\ \text { SK Sites } & =4 \end{aligned}$
Site No.	Province	Hiotway	Location	
4	MB	9	SOUTH OF PTH 17	
76	MB	59	NORTH OFPR W317	
94	MB	315	NORTH OF P.R M313	
18	SK	210	8.1 KM N OF JCT. HWY. \#1O	
46	SK	322	1.6 KM NW OF SLITON	
91	SK	20	NW OF CRAVEN	
92	SK	57	SW OF DUCK MOUNTAIN PARK	


Prairie Group 7				$\begin{aligned} & \text { MB Sites }=2 \\ & \text { SK Sites }=0 \end{aligned}$
Site Mo.	Province	Highway	Locrion	
72	MB	10	SOUTH OFF P.R. ${ }^{\text {W87 }}$	
73	MB	287	EAST OFP.T.H. \#10	


Ungroupad Sitas				SK Sites $=2$
Site No	Province	Higtway	LOclion	
71	SK	106	MILE 75 OF HANSON LAKE ROAD	
74	SK	9	10.5 KM N OF HUOSON BAY	

Number of Manitoba Sites $=49$
Number of Saskatchewan Sites $=34$
Total Number of Sites Analyzed $=83$

Figure 5-7
Sites in Prairie Group 1


Source: University of Manitbbe Transport Information Group
1997-03-29



Figure 5-8
Sites in Prairie Group 2


Source: University of Manitobe Transport Information Group
1997-02-27



Figure 5-9
Sites in Prairie Group 3


Source: University of Menitobe Transport informition Graep
1997-02-27



Figure 5-10
Sites in Prairie Group 4


Socure: University of Menitobe Trensport Intornetion Group
1997-02-27



Figure 5-11
Sites in Prairie Group 5




Figure 5-12
Sites in Prairie Group 6



Figure 5-13
Sites in Prairie Group 7


Source: University of Menniobe Transport Information Group



### 5.8 Similarities in Highway Traffic Patterns in the Study Region

The previous section demonstrated that many of Manitoba's and Saskatchewan's highways exhibit similar traffic patterns and can be grouped together into TPGs.

The similarities in seasonal traffic patterns at many of Manitoba's and Saskatchewan's sites are shown in more detail by several graphs. Figures 5-14 (a)-(e) shows typical sites in Manitoba and Saskatchewan which exhibit similar seasonal traffic patterns. As shown in Figure 5-14 (a), all four of the sites in Prairie Group 1 exhibit very similar seasonal patterns, and all four of these sites are located near Winnipeg or Regina.

The sites which belong to Prairie Group 2 are shown in Figure 5-14 (b). All four of the sites also show close resemblance to one another. These sites are all located on major highways not adjacent to major population centers or recreational destinations.

Likewise, Manitoba and Saskatchewan sites within the other groups including Prairie Groups 4, 5, and 6 also exhibit very similar patterns to one another (Prairie Groups 3 and 7 consist only of Manitoba-based sites).

Figure 5-14 (a) - (e)
Seasonal Traffic Patterns at Typical Manitoba and Saskatchewan Sites


### 5.9 Evaluation of AADT Estimates

The next step is to investigate how the new TPGs affect the AADT estimates for short-term counts in Manitoba. The evaluation is carried out by comparing the estimated AADT for a short-term count obtained from using the new TPG with the estimated AADT obtained from using the existing TPG in Manitoba. The estimated AADTs from the two methods are compared to the actual AADT to determine which estimate is more accurate. The next section describes the method of evaluation followed by an example application.

### 5.9.1 Method of Evaluation

The method of evaluation is based on using existing permanent counter data to develop sample short-counts [Ref. 1]. First, a permanent counter was temporarily removed from a known TPG in order to develop experimental samples of short counts; this permanent counter is referred to as a "sample permanent counter", or "sample PCS" [Ref. 1]. Next, the short-count is expanded to AADT using the new TPG and the old TPG. Since the actual AADT at the sample PCS is known, the two AADT estimates from the old and new TPGs are compared to the actual AADT to determine which method produces more accurate estimates. This procedure was repeated for all sample PCSs in Manitoba for each TPG.

This procedure is summarized in the following steps:
(1) generate short-counts from existing permanent counter data;
(2) estimate AADT from these short-counts using (i) the new TPGs and (ii) the current Manitoba-based TPGs;
(3) compare the resulting AADTs with the actual AADT, and
(4) discuss results.

### 5.9.2 Example Application

The method of evaluation is shown by an example. In this example, Station 16 is selected as the sample PCS. Station 16 is located on PTH 7 and belongs to Prairie Group 2 (refer to Table 5-4 for a list of permanent counters and their TPGs). Two randomly selected short-count periods were obtained from the sample PCS, July 5 and 6, 1995 (Monday and Tuesday) and August 28 and 29, 1995 (Wednesday and Thursday). The traffic volume counts during these periods are $\mathbf{3 , 8 1 0}$ vehicles and 4,574 vehicles, respectively.

Based on this information, the AADT at this location is estimated using the following relationship:

$$
\frac{\text { Vol }_{\text {STC }}}{\mathrm{AADT}_{\mathrm{STC}}}=\frac{\sum_{i=1}^{\mathrm{n}} \frac{\mathrm{Vol}_{\mathrm{i}}}{\mathrm{AADT}_{\mathrm{i}}}}{\mathrm{n}}
$$

where Vol $_{\text {STC }} \quad=$ the observed short-term count traffic volume
$\mathrm{AADT}_{\text {STC }}=$ the estimated AADT from the short-term count site
$\mathrm{Vol}_{i} \quad=$ the observed traffic volume at site " $i$ " in the traffic pattern group
$\mathrm{AADT}_{i}=$ the AADT at site " $i$ " in the traffic pattern group
$\mathrm{n} \quad=$ the number of sites in the traffic pattern group.

Table 5-5 shows the estimated AADTs for sample PCS 16 based on the two shortcount periods.

Table 5-5
Comparison of Actual and Estimated AADT at Sample PCS 16 in Manitoba

		Estimated	Estimated
Count period	Volume	AADT (Old)	AADT (New)
July 5 and 6, 1995	3810	1400	1460
August 28 and 29, 1995	4574	1840	1820
Estimated AADT		1620	1640

Table 5-5 shows that there is only a slight difference in AADT estimates between the two methods. However, since the sample PCS is in fact a permanent counting station, its actual AADT is known from the continuously recorded traffic data at the site. The actual AADT at Station 16 is 1760 vehicles per day. The analysis shows that the AADT (New) is closer to the actual AADT than the AADT (Old). This example indicates that the use of the new TPGs results in a better quality AADT estimate compared to the existing TPG.

### 5.10 Results of Evaluation

Similar evaluations were carried out for all sample PCSs in Manitoba in each of the new TPGs. The same short-count period was selected for all sample PCSs. Tables 56 (a) - (g) show the results of the evaluation for each TPG. Each table shows the site which was sampled, the actual AADT of that site, the estimated AADTs using the new (NEW) and the existing (OLD) TPGs, and the percent difference between the estimated and actual AADTs. The last column shows the method which produces the more accurate AADT estimate, based on the percent difference. A lower percent difference indicates that the estimated AADT is closer to the true value.

These results are also shown in graphical form in Figures 5-15 (a) - (f) for Prairie Groups 1 to 6. Prairie Group 7 is not shown in the graphs because both sites in this group were previously not assigned to any TPG, and therefore no comparison to the previous method can be made. Each graph in Figure 5-15 shows the actual and estimated AADTs using the old and new TPGs. The 45-degree line on each graph represents the line where the estimated AADT is equal to the actual AADT.

Table 5-6 (a)
Comparison of Actual and Estimated AADTs for Prairie Group 1

Sample site	Actual   AMDT	Estimated AADT   (OLD)	\%Difierence   (OLD)	Estimated AADT   (NEW)	\%Difierence   (NEW)	Enhanced   Method
1	9820	7360	$-25.0 \%$	7550	$-23.1 \%$	New
3	8780	7160	$-18.4 \%$	7320	$-16.6 \%$	New
7	760	790	$4.0 \%$	800	$5.3 \%$	Old
8	4690	3880	$-17.3 \%$	3980	$-15.1 \%$	New
9	6880	7100	$3.2 \%$	6950	$1.0 \%$	New
47	22020	18870	$-14.3 \%$	19310	$-12.3 \%$	New
51	3610	4100	$13.6 \%$	3950	$9.4 \%$	New
70	14720	14440	$-1.9 \%$	14960	$1.6 \%$	New
77	11350	14690	$29.4 \%$	15190	$33.8 \%$	Old

Table 5-6 (b)
Comparison of Actual and Estimated AADTs for Prairie Group 2

Sample site	Actual   AADT	Estimated AADT   (OLD)	\%Dinerence   (OLD)	Estimated AADT   (NEW)	\%Difference   (NEW)	Enhanced   Method
16	1760	1620	$-8.0 \%$	1640	$-6.8 \%$	New
25	2790	3080	$10.4 \%$	3120	$11.8 \%$	Old
40	750	730	$-2.7 \%$	750	$0 \%$	New
43	1580	1190	$-24.7 \%$	1220	$-22.8 \%$	New
46	3070	2760	$-10.1 \%$	2810	$-8.5 \%$	New
48	9900	9370	$-5.4 \%$	9530	$-3.7 \%$	New
49	1670	1480	$-11.4 \%$	1510	$-9.6 \%$	New
60	1280	1090	$-14.8 \%$	1150	$-10.2 \%$	New
63	4580	4700	$2.6 \%$	4900	$7 \%$	Old
66	1310	1100	$-16.0 \%$	1250	$-4.6 \%$	New
67	2060	2350	$14.1 \%$	2200	$6.8 \%$	New
68	900	860	$-4.4 \%$	880	$-2.2 \%$	New
79	5180	4850	$-6.4 \%$	4930	$-4.8 \%$	New
80	1210	1480	$22.3 \%$	1490	$23.1 \%$	Old
81	880	780	$-11.4 \%$	840	$-4.5 \%$	New
83	780	760	$-2.6 \%$	720	$-7.7 \%$	$14.5 \%$
84	620	750	$21.0 \%$	710		Old

Table 5-6 (c)
Comparison of Actual and Estimated AADTs for Prairie Group 3

Sample site	Actual   AADT	Estimated AADT   (OLD)	\%Difierence   (OLD)	Estimated AMDT   (NEW)	\%Difírence   (NEW)	Enhanced   Method
13	5480	5700	$4.0 \%$	5700	$4.0 \%$	No difierence
65	4920	4850	$-1.4 \%$	4850	$-1.4 \%$	No difference
74	3600	3850	$6.9 \%$	3850	$6.9 \%$	No difference
75	940	800	$-14.9 \%$	800	$-14.9 \%$	No difierence

Table 5-6 (d)
Comparison of Actual and Estimated AADTs for Prairie Group 4

Sample site	Actual   AADT	Estimated AADT   (OLD)	\%Difierence   (OLD)	Estimated AADT   (NEW)	\%Difierence   (NEW)	Enhanced   Method
14	2870	2750	$-4.2 \%$	2930	$2.1 \%$	New
24	4570	4630	$1.3 \%$	4900	$7.2 \%$	Old
28	1090	1370	$25.7 \%$	1430	$31.2 \%$	Old
32	2650	2780	$4.9 \%$	2930	$10.6 \%$	Old
41	1110	1100	$-0.9 \%$	1140	$2.7 \%$	Old
56	760	820	$7.9 \%$	780	$2.6 \%$	New
58	630	520	$-17.5 \%$	560	$-11.1 \%$	New
59	650	620	$-10.1 \%$	650	$-5.9 \%$	New

Table 5-6 (e)
Comparison of Actual and Estimated AADTs for Prairie Group 5

Sample site	Actual   AADT	Estimated AMDT   (OLD)	\%Difference   (OLD)	Estimated AADT   (NEW)	\%Difference   (NEW)	Enhanced   Method
12	2960	2730	$-7.8 \%$	3070	$3.7 \%$	New
21	1120	970	$-13.4 \%$	990	$-11.6 \%$	New
78	8730	7330	$-16.0 \%$	7410	$-15.1 \%$	New
93	200	250	$25.0 \%$	260	$30.0 \%$	Old
96	1580	1680	$6.3 \%$	1680	$6.3 \%$	No Difference
97	410	480	$17.1 \%$	480	$17.1 \%$	No Difference

Table 5-6 (f)
Comparison of Actual and Estimated AADTs for Prairie Group 6

Sample site	Actual   AADT	Estimated AADT   (OLD)	\%Ditierence   (OLD)	Estimated AADT   (NEW)	\%Difference   (NEW)	Enhanced   Method
4	1920	2340	$21.9 \%$	2500	$30.2 \%$	Old
76	3350	2960	$-11.6 \%$	3330	$-0.6 \%$	New
94	690	650	$-5.8 \%$	730	$5.8 \%$	No Difference

Table 5-6 (g)
Comparison of Actual and Estimated AADTs for Prairie Group 7

Sample site	Actual   AADT	Estimated AADT   (OLD)	\%Difierence   (OLD)	Estimated AADT   (NEW)	\%Diference   (NEW)	Enhanced   Method
72	1620	Not assigned	-	1510	$-6.8 \%$	
73	880	Not assigned	-	980	$11.4 \%$	-

Figure 5-15
Graphical Comparison of Actual and Estimated AADTs for Different TPGs

(a)

Prairie Group 2

(b)

Figure 5-15 (continued)


(d)

Figure 5-15 (continued)


Prairie Group 6

(f)

### 5.11 Discussion of Results

The following summarizes the results of the analysis:

- 78 percent of the sites in Prairie Group 1 showed better AADT estimates when the new TPGs were used; the remaining 22 percent showed better AADT estimates when the old TPGs were used.
- 76 percent of the sites in Prairie Group 2 showed better AADT estimates when the new TPGs were used; the remaining 24 percent showed better AADT estimates when the old TPGs were used.
- All four of the sites in Prairie Group 3 showed no difference in the estimates for both methods.
- 50 percent of the sites in Prairie Group 4 showed better AADT estimates when the new TPGs were used; the remaining 50 percent were better when the old TPGs were used.
- In Prairie Group 5, 50 percent of the sites showed better AADT estimates using the new TPGs; 17 percent were better when the old TPGs were used, and the remaining 33 percent showed no difference in the two methods.
- In Prairie Group 6, 33 percent of the sites showed better AADT estimates when the new TPGs were used; 33 percent showed better AADT estimates when the old TPGs were used, and 33 percent showed no difference.
- The sites in Prairie Group 7 were not assigned to any TPG previously, so no comparison can be made for these sites.

Overall, the AADT estimates for 60 percent of the sites improved when the new TPGs are used for expansion, 25 percent of the sites improved when the old TPGs are used, and the remaining 15 percent showed no difference in the two methods. All of the sites in Prairie Group 3 showed no difference because the new and old TPGs in which they have been assigned consist of the same permanent counters, meaning that there is no change in the pattern in these groups from the old and new methods.

The graphical representation of estimated AADTs in Figures 5-15 (a) - (f) show that both the new and old TPGs produce similar estimates, hence, many of the data points overlap. However, based on the estimates from Tables 5-6 (a) - (g) it can be concluded that the AADT for the majority of the sample sites improved when the new TPGs are used.

The advantage of this method is that it simulates actual short-counts in Manitoba, and the evaluation of the new and old TPGs can be conducted based on these actual counts.

A shortcoming of this method is that the selection of the sample short-count is based on random sampling, and in this analysis only two short-count periods were selected for each sample permanent counter to simulate actual field counts. The AADT estimates can vary if a different short-count was selected for another period. Further analysis is required to analyze all possible short-count periods and to determine the effect of these count periods on the resulting AADT estimates.

In addition, due to the nature of low volume roads and the number of these roads in the province, the results of this method can vary particularly if the estimate is for a low volume road. The analysis is best suited for higher volume roads.

## Chapter 5 References

1. Hair, Joseph, et al. Multivariate Data Analysis. Second_Edition. MacMillan Publishing Company, New York, 1987.
2. Federal Highway Administration. "Traffic Monitoring Guide". U.S. Department of Transportation, February 1995.
3. "Travel on Saskatchewan Highways 1994". Saskatchewan Highways and Transportation, Regina, Canada.
4. Albright, David. "A Quick Cluster Control Method: Permanent Control Station Cluster Analysis in Average Daily Traffic Calculations". Transportation Research Record 1134. National Research Council 1987.
5. SAS User's Guide: Statistics. Version 5 Edition, SAS Institute, Cary, North Carolina, 1985.
6. SAS User's Guide. Volume 1, ANOVA-FREQ. Version 6, Fourth Edition. SAS Institute, Cary North Carolina, 1990.
7. McKenzie, John, Schaefer, Robert, et al. The Student Edition of Minitab for Windows. Addison-Wesley Publishing Company, 1995.
8. Sharma, Satish and Werner, Al. "Improved Method of Grouping Province-wide Permanent Traffic Counters". Transportation Research Record 815, National Research Council, 1981.
9. Lucas, Brian. "Design, Development and Implementation of the Manitoba Highway Traffic Information System". M.Sc. Thesis. University of Manitoba, 1996.
10. Ward, J.H. "Hierarchical Grouping to Optimize an Objective Function". Journal of American Statistical Association, Vol. 58, 1963.
11. Clayton, Alan, Lucas, Brian, et al. "Design, Development and Implementation of a Traffic Monitoring System for Manitoba Highways and Transportation". University of Manitoba, 1993.
12. Pulak, Pat. "Utilizing an Expanded Permanent Counter Database to Enhance Highway Grouping in Manitoba". B.Sc. graduation project, University of Manitoba, 1992.
13. Sharma, S.C., Gulati B., and Rizak, S. "Statewide Traffic Volume Studies and Precision of AADT Estimates". Transportation Engineering Journal of the ASCE, Vol. 122, No. 6, pp. 1-10, 1996.
14. Federal Highway Administration. "Traffic Monitoring Guide". 1995.

## Additional References

1. Everitt, Brian S. Cluster Analysis, Third Edition. Edward Arnold, New York, 1993.

## CHAPTER 6

New Methodology for Assigning Short-Term Count Sites to TPGs and Control Stations

This chapter develops a new procedure for assigning Manitoba's short-term count sites to appropriate traffic pattern groups (TPGs) and control stations.

### 6.1 Introduction

Short-term counts are expanded to AADT estimates using a control station or a TPG. In order to do this, the short-count site must first be assigned to a control station and a TPG which are most appropriate for that short-count site. The problem with this assignment process is that unlike permanent counters, the traffic patterns at shortcount sites are unknown. The short-count is typically counted for a period of 48hours twice during a given year, and based on these counts it can be difficult to determine the traffic pattern at that site.

This chapter develops a transparent procedure for assigning Manitoba's short-count sites to appropriate TPGs and control stations.

### 6.2 The Current Method

The current method for assigning short-count sites to TPGs and control stations involves identifying the short-count location on a map and relating this site to a control station and a TPG which are "believed to be" most representative of the shortcount site. This procedure is based only on subjective human judgment which can result in inconsistent assignments. In addition, this method is not transparent and the reason for selecting a particular TPG or control station for a short-count site is not
recorded. As a result, poor quality AADT estimates may be produced at those sites which were assigned to an inappropriate TPG and/or control station.

Other highway agencies [Ref. 6, 7] have expressed similar concerns regarding the assignments of the existing short-count sites in their jurisdictions. Highway agencies indicated that this is an area in which much of the uncertainty in AADT estimates on provincial highways arises. These highway agencies also indicated that it is difficult to justify the current assignments since the procedure of assigning short-counts to more appropriate TPGs was conducted many years ago and was not documented. It was indicated that a thorough review of short-term count assignments to pattern groups should be conducted to confirm the current assignments.

### 6.3 Review of Literature

There has been little research in the area of determining the most appropriate TPG and control station for a short-count. The main contributors of research in this area have been by Dr. S. Sharma and researchers from the University of Regina, and Dr. Gary Davis and researchers from the University of Minnesota. The existing literature by these individuals indicates that in order to produce reliable and accurate estimates of AADT from short-count sites, large amounts of data are required.

Sharma and Allipuram [Ref. 2] developed a method for determining the TPG which best fits the pattern of traffic counts taken at a short-term count site using Minnesota data. In this method, short-count sites are assigned to the most appropriate TPG based on an index of assignment effectiveness (IAE). An LAE of 100 percent indicates that the short-count site was assigned to the correct traffic pattern group, and an IAE of 0 percent means that the assignment is poor. This method is systematic, however it requires large amounts of short-term count data to be effective in determining which TPG is most appropriate for a short-count site. The study found
that two or more one-week duration counts would be needed to give an assignment effectiveness of greater than 90 percent.

Similar conclusions were drawn by Davis (1996) [Ref. 4] who found that two fullweek counts (i.e. 14 days) from two different but well-chosen months are needed to reliably identify the TPG to which a short-count belongs. Davis also found that three sets of five-day duration counts (i.e. 15 days) consisting entirely of weekdays gave unreliable results.

In these studies, it was found that in order to produce reliable and accurate estimates of AADT from short-count sites, large amounts of data are required. Based on this literature review, the current short-count program in Manitoba which is typically of two 48-hour duration counts is not appropriate for determining what is the best TPG which fits the pattern at the short-count site. More short-counts during different times of the year to provide a seasonally balanced traffic volume sample would be required to determine the actual traffic pattern at any short-count site [Ref. 2]. As a result, the assignment of short-count sites to TPGs and control stations has to be based on other characteristics of the short-count site. This chapter develops a new "transparent" methodology for assigning short-count sites to TPGs and control stations.

### 6.4 Development of a New Assignment Methodology

The proposed method of assignment is based on the geographic characteristics of the highway on which the short-count site is located, and does not utilize data that has been collected from the short-count site.

To develop the new method, the geographic characteristics of permanent counting stations and the traffic patterns at these sites are first examined. The analysis in Chapter 5 found that many permanent counters in the same TPG exhibit similar geographic characteristics. For example, PTH 1 (TransCanada highway) which runs
west of Winnipeg, through Regina, and further west across Canada exhibits moderately higher summer traffic compared to winter traffic, and a steady increasing hourly pattern which is relatively the same for both weekdays and weekends. This pattern can be found along the sections of PTH 1 which do not lie adjacent to population centers. The sections of highways which lie adjacent to population centers are characterized by relatively flat seasonal patterns, and high morning and afternoon peaking characteristics. Highways which lead to mainly recreational destinations are characterized by very high summer peaks, and weekend traffic volumes which are higher than weekday traffic volumes. Similarly, the patterns on other highways can also be characterized by their geographic locations. Table 5-3 in Chapter 5 describes the geographic characteristics of the permanent counting stations in each of the TPGs. This finding was also shown by Lucas (1996) who indicated that many of Manitoba's permanent counters which are located on similar geographic locations exhibit the same traffic pattern. Hence, knowledge of the geographic characteristics of a site are useful in determining the most appropriate TPG and control station for a short-count site.

Based on these site characteristics, the proposed method is developed by applying the same knowledge about short-count site locations to determine the most likely traffic pattern which can be observed at that site. This method involves identifying the short-count site on a map and determining its geographic location, such as its proximity to population centers, recreational destinations, or whether it lies on a route that serves longer trip purposes, for example PTH 1.

Once the geographic characteristics of a site has been determined, the method guides the user through several steps in order to select the most appropriate TPG and control station for that short-count site.

The proposed method is best shown by a flowchart, which can guide a user through the entire assignment process. These flowcharts are shown in Figures 6-1 (a) and (b), the steps are summarized below:

1. Identify the short-count site on a provincial highway map.
2. Determine its location relative to activity areas such as the City of Winnipeg, other population centers (Dauphin, Roblin), and recreational destinations (Whiteshell Provincial Park, beach areas, Riding Mountain National Park).
3. Determine if the short-count site is located on a route that leads to one or more of these activity areas by referring to the highway map.
4. Determine if there are any major intersections that lie between the short-count site and the activity area. (This procedure assumes that traffic patterns can change at an intersection since traffic can either enter or exit from the highway at this location, therefore creating a different traffic pattern).
5. Based on the above information, assign the short-count site to the indicated TPG and select the control station which lies closest to the short-count site that also exhibits the same traffic pattern.

This method can be shown by an example. Consider short-count Station 1165 located on Highway 17, 2.4 kilometers east of PTH 7 as shown in Figure 6-2. In order to select the most appropriate TPG for this site, the user begins by referring to Flowchart

1 shown in Figure 6-1 (a). The steps in the assignment process are described below:

1. Is the STC located on a route which leads directly to PTH 100/101 (the perimeter highway surrounding Winnipeg)? - No.
2. Is the STC located on a route that is directly connected to another route which leads to PTH 100/101? - No.
3. Go to Chart 2.
4. Locate population centers (other than the City of Winnipeg) that lie closest to the STC location - in this case, the town of Teulon, Manitoba is located closest to the short-count site.
5. Is the STC located on a route that leads directly to one or more of the above population centers? -- Yes.
6. Is there an intersection between the STC location and the population center? - No.
7. Is the STC located on a route that also leads to a recreational destination? -- Yes.
8. Based on the answers which were provided, the flowchart identifies the most appropriate TPG for Station 1165 to be Prairie Group 5.
9. To select the control station for Station 1165 , four immediate choices are apparent - Stations $16,4,75$ and 76 , as shown on the map. Since the short-count site has already been assigned to Prairie Group 5 and none of the four permanent counters exhibit this pattern, no control station is assigned to this site.

Figure 6-1 (a)

## Flowchart 1 for Assigning Short-Count Sites to TPGs and Control Stations



Figure 6-1 (b)
Flowchart 2 for Assigning Short-Count Sites to Appropriate TPGs and Control Stations


Figure 6-2
Location of Short-Term Counting Station 1165 and Surrounding Control Stations


Figure 6-3
Example Assignment of Short-Term Counting Stations to TPGs and Control Stations


Other short-count sites in the same area are shown in Figure 6-3. The same procedure was used to select the most appropriate TPG and control station for these sites, and these are shown in Figure 6-3. In this figure, each colour represents a different TPG and the number labeled beside the short-count site represents the control station which was selected for that site. As shown, the majority of the sites that lie on highways closest to the Winnipeg Beach area, for example on PTH 9 and PR 232, are assigned to Prairie Group 6 which exhibits the highest seasonal rise of all the groups. These routes are used mainly for summer recreational travel. The sites represented by the green stars indicate a moderate degree of seasonal variation and belong to Prairie Group 3, for example PTH 8. These routes serve longer trip purposes as well as carry a significant component of summer traffic. Other sites which lie closest to population centers for example, Teulon, Manitoba, are assigned to Prairie Group 4 which has a flat seasonal pattern, and higher afternoon peaks during the weekday representing more of a commuter pattern.

This example shows that the new method can be used to assign short-count sites to appropriate TPGs and control stations. The advantages of the proposed method are:

- Sites can be systematically and efficiently assigned to the most appropriate TPG and control station;
- The selection of a TPG and control station for any short-count site can be better justified;
- A rule-base can be maintained which keeps a record of the rules that were used to assign a particular short-count site to a TPG and a control station.
- The rule-base can be modified to further refine the assignment process. For example, one method of enhancing the rule-base is by involving traffic engineers from different districts to incorporate knowledge about routes in the different districts.

The disadvantages of this method are:

- The new method requires some judgment on the part of the analyst in selecting an appropriate control station. Further research should be conducted to relate shortcount sites to control stations.
- The new method is based on TPGs that were developed from 1995 permanent counter data. These traffic patterns should be evaluated periodically and if any new traffic patterns emerge the rules must be modified to take this into account.
- The assignment process is not based on actual count data. In order to verify the assignments, more short-counts over different seasons would be required.
- The new method assumes that the traffic patterns can change at an intersection, and hence can assign two sites located on the same highway on either side of an intersection to different TPGs. In reality, the traffic patterns at the two sites may not be different. Judgment should be made for sites which fall into this category.


### 6.5 Assigning Short-Term Count Sites using the New Method

The new method was used to assign the 2013 short-count sites in Manitoba to a TPG and control station. Appendix D lists the new assignments as well as the former assignments for each short-count site. In this method, permanent counters based in Manitoba and Saskatchewan could be assigned as control stations. In those cases where a Saskatchewan-based control station is selected, a second control station based in Manitoba was also identified to facilitate future comparisons between both methods. This differs from the previous method which only uses Manitoba-based permanent counters as control stations.

Figure 6-4 shows a frequency graph of the number of short-count sites which were assigned to each new TPG. This figure shows that the majority of Manitoba's shortcount sites are assigned to Prairie Group 2 ( 27 percent) and Prairie Group 4 (25 percent). Prairie Group 2 (PG2) consists of highways which have a moderate seasonal rise and steady traffic throughout the weekdays and weekends. These highways are not located close to population centers or recreational destinations, rather they serve mainly longer trip purposes. Examples include PTH 1, PTH 75, PTH 59, and other provincial trunk highways that serve longer trip purposes.

Prairie Group 4 (PG4) consists of highways that lie adjacent to rural population centers such as Neepawa (MB), Roblin (MB), Prince Albert (SK), Yorkton (SK), and other rural population centers.

In addition, a significant number of sites are also located within towns (TOWN). Currently, town counts are not expanded to AADT using the same method as shortterm counts because there are no control stations that are located within towns. Town

Figure 6-4
Frequency of Short-Count Sites' Assignments to TPGs

counts are reported at the end of the year as the actual counts (tube counts are corrected first using the axle correction factor) divided by the number of days when the count was conducted.

The least frequently assigned TPG is Prairie Group 7, which represents a unique pattern found in Northern Manitoba near The Pas.

Figure 6-5 shows a frequency graph of the number of short-count sites which are assigned to each control station. This figure shows that the most commonly assigned control station is Station 14 located on PTH 12, 3.7 kilometers south of PR 303, and
which belongs to Prairie Group 4. This follows from the previous graph which showed that Prairie Group 4 was one of the most frequently assigned TPGs.

Figure 6-5
Frequency of Short-Count Sites' Assignments to Control Stations


Other frequently assigned control stations include Station 58 (six-percent, belongs to Prairie Group 4), 21 (six-percent, belongs to Prairie Group 5) and 28 (five-percent, belongs to Prairie Group 4). The three least frequently assigned control stations were Station 9 (Prairie Group 1), Station 68 (Prairie Group 2), and Station 97 (Prairie Group 5).

Based on the new method, 11 out of the $\mathbf{2 , 0 1 3}$ short-count sites in Manitoba were identified as having a more appropriate control station which is located in Saskatchewan. Most of these sites are located on routes which lead to the Duck Mountain Provincial Park and have been assigned to Station 92 in Saskatchewan, which is also located on a route (Highway 57) that leads to the same destination.

Hence, Station 92 was selected as being the most appropriate control station for these short-count sites.

During the re-assignment process, several problems were found with the existing assignments including:

- 24 percent of the sites had no control station identified.
- 21 percent of the sites were assigned to a TPG which did not match that of its control station.
- 6 percent of the sites were assigned to a control station which had been removed.

Finally, engineering judgment must be used in order to identify a more appropriate TPG and/or control station for any particular site. The rules are meant to be used as a systematic method of assigning the numerous short-count sites in Manitoba to a TPG and control station that best reflects that of the short-count site based on its geographic characteristics.

## Chapter 6 References

1. Lucas, Brian. "Design, Development and Implementation of the Manitoba Highway Traffic Information System". M.Sc. Thesis. University of Manitoba, 1996.
2. Sharma, Satish C. and Allipuram, Reddy R. "Duration and Frequency of Seasonal Traffic Counts". Journal of Transportation Engineering, Vol. 119, No. 3, May/June, 1993.
3. FHWA. Traffic Monitoring Guide. 1996.
4. Davis, Gary and Guan, Yuzhe. "Bayesian Assignment of Coverage Count Locations to Factor Groups and Estimation of Average Daily Traffic". Preprint, Transportation Research Board 75th Annual Meeting, January 7-11, 1996, Washington, D.C.
5. Anderson, Tom. Traffic Information Engineer. Planning and Coordination Branch, Saskatchewan Highways and Transportation. Personal communication throughout duration of research project.
6. Schirelli, Marianne. Ontario Ministry of Transportation. Personal communication, 07 November 1996.

## Additional References

1. Davis, Gary A. "Accuracy of Estimates of Mean Daily Traffic: A Review". Transportation Research Board 76th Annual Meeting. January 12-16, 1997, Washington, D.C.
2. Hallenbeck, Mark. E. "Development of a Statewide Traffic-Monitoring System". Transportation Research Record 1050. Transportation Research Board.

## CHAPTER 7

## Summary, Conclusions and Recommendations

### 7.1 Summary

This research investigated three ways of enhancing AADT estimates on Manitoba's provincial highways: (1) utilizing human-intervention techniques to systematically evaluate provincial highway AADT estimates, (2) enhancing traffic pattern groups by using an expanded permanent counter database, and (3) developing a transparent methodology for assigning short-count sites to the most appropriate traffic pattern group and control station.

The three human-intervention techniques that were presented in this research included visual route consistency checks, comparison of current year AADT estimates with historical AADT estimates, and intersection balancing. These methods allows AADT estimates to be systematically evaluated, which in turn leads to the production of better quality AADT estimates.

The second technique for enhancing AADT estimates was based on developing new TPGs for the region consisting of the provincial highway network in Manitoba and Saskatchewan. This idea was based on the premise that traffic patterns on a highway are affected by the transportation, activity, and flow systems within the region and not by a political boundary that separates the two provinces. This research found that the new TPGs can improve AADT estimates for short-count sites in Manitoba.

Third, the research developed a transparent method for assigning short-count sites to TPGs and control stations. Appropriate traffic pattern groups and control stations are necessary to produce estimates of AADT which reflect actual highway traffic volumes. The former procedure is manual, highly subjective, not well-documented,
and can result in inconsistent assignments. The new method employs a rule-based procedure to identify the most appropriate TPG and control station for Manitoba's short-count sites. This method is transparent, efficient, and produces consistent results.

As part of this research, a survey of traffic data needs was conducted to determine the engineering needs for AADT estimates and related traffic data in the transportation profession in Manitoba and how well the current MHTTS is serving the needs of these traffic data users. The survey showed that AADT was the single most important traffic statistic to these individuals, and is considered essential for planning, design, and construction of highways, prioritizing projects, and for implementing appropriate traffic control devices.

### 7.2 Conclusions

1. AADT estimates that are produced through the current MHTIS can be systematically evaluated using human-intervention techniques. These techniques allow the identification of inconsistent AADT estimates, and can be automated to further improve the efficiency in checking these numbers. This is an improvement over the current system where no formal documented methods for evaluating AADT estimates have been made.
2. AADT estimates can be improved in quality by utilizing the new TPGs developed from Manitoba and Saskatchewan permanent counter data. The new traffic patterns are more representative of actual highway traffic patterns in this region, hence, allowing AADT estimates to be improved.
3. Manitoba's short-count sites can be assigned to appropriate TPGs and control stations using a more transparent rule-based procedure as described in this research. This procedure is reproducible and does not require subjective humanjudgment to identify appropriate TPGs and control stations for the numerous short-count sites in Manitoba.
4. The survey of traffic data needs indicated that more users require more truckrelated data in their functions. Currently, there is a lack of available and reliable truck data in the province. Many users indicated that more truck data, including vehicle classifications, vehicle weights, and truck percentages is required because
many decisions are currently being based on assumed values, and not on actual truck data on Manitoba's provincial highways.
5. Based on the survey of traffic data needs, the majority of traffic data users are less interested in traffic data on low volume roads. In general, these users consider roads to be of low volume if the AADT is less than 300 vehicles per day. Because of the nature of traffic on low volume roads, these users could tolerate a greater degree of uncertainty in traffic estimates for these roads compared to higher volume roads.

### 7.3 Recommendations

Based on the research, the following recommendations are made:

- The human-intervention techniques presented in this research should be automated to facilitate efficient evaluation of AADT estimates.
- More research should be conducted to develop formal, systematic computer-based human-intervention methods to evaluate AADT estimates from short-term counts as well as permanent counters in order to further enhance the quality of AADT estimates on Manitoba's provincial highways.
- Further research should also be conducted to evaluate other traffic estimates produced through the MHTIS, including ASDT, percent trucks, and 30th highest hour percentages.
- An integrated traffic monitoring system should be developed for Manitoba and Saskatchewan. The need for more accurate traffic estimates continue to grow over time as traffic data users are becoming more concerned over the quality rather than quantity of traffic data. One of the ways in which better quality AADT estimates can be achieved is by developing an integrated traffic monitoring system.

An integrated system should be developed which can (1) improve the current level of traffic data quality on the region's provincial highways, as was shown in this research, and (2) reduce traffic monitoring costs. Better quality traffic data can be obtained by joining efforts for data collection and incorporating a standardized method for data analysis and reporting. Traffic monitoring costs can be reduced by removing existing count sites, and counting at fewer sites only where necessary. A joint system such as this can provide enhanced and highly useful traffic information which is critical for the operation of highway agencies. Possibilities for integration with other jurisdictions including the City of

Winnipeg Streets and Transportation Department, North Dakota, Minnesota, and Ontario should also be considered.

- The transparent methodology for assigning short-term counting stations to appropriate traffic pattern groups and control stations that was presented in this thesis should be validated and refined by involving input from traffic engineers in each district.
- The traffic patterns at short-term count sites should be confirmed by conducting these counts during different times of the year to obtain a seasonally balanced sample of short-counts.
- More truck data on major provincial highways is needed to serve the needs of many traffic data users. Currently there are 15 AVC/WIM sites in the province, and MDHT has recently purchased several new AVCs to increase coverage of classification count sites in Manitoba. These counters should be installed on routes which carry higher volumes of truck traffic.
- An improved method of obtaining reliable truck data from weigh-in-motion sites should be developed to allow better use of the data that is collected from these sites.
- Low volume roads should be counted less frequently since the majority of traffic data users are less interested in traffic estimates on these roads. In 1993, the Design report recommended that MDHT to count on low volume roads on a five year cycle due to the inherent variability in traffic volume at these locations. Since then, MDHTs short-count program has been changed and currently roads with AADTs of less than 200 vehicles per day are counted once every four years. However, as indicated in the needs survey, this counting plan still exceeds the needs of the majority of traffic data users. A five year counting cycle on roads with less than 300 vehicles per day would be adequate for the purposes of most of these traffic data users. This would permit more resources to be allocated for collecting and processing traffic estimates on higher volume roads.
- The traffic data needs of users should be periodically reviewed to (1) assess the performance of the MHTIS, and (2) keep informed about the current traffic data needs of users. This will allow areas of improvement and change to be identified in order for the system to better meet the needs of traffic data users in Manitoba. In this way, better quality traffic data estimates can be provided and unnecessary data can be eliminated, and the adequacy and level of coverage of the current traffic counting program can be assessed.
- More research in the statistical area should be conducted to further enhance traffic estimates on provincial highways.


## APPENDIX A

## Seasonal Traffic Variations at Permanent Counters in

## Manitoba and Saskatchewan (1995)

Table A-1
List of Pormanent Counters in Manitobe and Seakatchewan Analyzed in this Theais

		Mavioan			saskatchenday
PCSNa.	Here. Na.	Leotrion	ATR Na.	Hay. Na	Locwion
1	8	1.4 KıS S of P.R. 0321	1	11	$1.5 \mathrm{kM}$. W. OF JCT. Ahs
3	9	1. 7 KM S. OFP.T.E. 627	2	1	a.akl w. Of Jct. ${ }^{\text {cos }}$
4	9	SOUTH OFPTH 17	3	39	3.0 kM SE OF YELIOW GRASS
7	210	EAST OF P.T.H. 59	4	10	6. 5 KM E E OF Balcarres
-	59	N. OF N. JCT. P.R E210	5	11	S. kM S. OF ROAD TO DUNDURN
9	75	T.1 IGU N. OF PR R 247	8	1	O. 5 INM W. W. OF JCT. 132
12	4	3.7 KM E OFP.R 1215	9	16	1.5 KGL NWL OF ORCADMA
13	1	5.8 KM E OFP.T.M 812	10	40	30 KM SE OFDAVIN
14	12	37 KWHS S. OFP.R 1303	19	11	5.0 kM. E OF JCT. 854
16	7	$3.710 W$ N. OF P.T.E. 17	13	7	8.0 \%M. E OF JCT. H
21	10	1.6 KM N. OFP.R ent	15	49	$2.0101 . E$ OF JCT. 388
24	10	1.3 KMM OFP.T.H. ${ }^{\text {\% }}$	16	38	2.0 kg S. Of JCT. mg
25	1	WEST OF P.T.H. AT	17	4	1.5 ICR N. OF JCT. 13
28	21	32 KM N OFP.T.H. ${ }^{\text {P4 }}$	18	210	2. 1 LIM. N. OF JCT. HWW. Ho
32	5		20	4	1.5 rcu. S. OF GUASLYN
40	2	24 KUE OFP.T.H. 183	21	2	1.5 KM . . OF JCT. HMY. ${ }^{\text {asss }}$
41	5	32 KM N OFP.R 0583	22	1	5 KM E OF GRENFEL
43	16	32 KM E OF E JCT. P. R 1054	28	6	1.5 kM . S. OF JCT. 13
48	16	$2410 \mathrm{NN}. \mathrm{OFP.T.H}.{ }^{\text {E }}$	34	4	6.0 kM . W. OF WARTIME
47	100	Q8 KMS OFP.T.H. 4	36	36	2.0 kM . N. Of Gaule
48	1	4.01M E OF P.R ${ }^{\text {a }} 332$	38	30	N OF UPTON
49	5	1.6 IOM E OF P.T.H.	39	33	SE OF Francis
51	3	0.3 KM S.W. OFP.T.K. 12	40	40	1.0 KM W. OF JCT. 129
58	3	3.2 KM E OF N. JCT. P.T.M. 283	41		NE OF AgERDEEN
58	34	O.E KOM S. OFP.R.ens	42	$55$	SW Of Green lake
59	325	WEST OFP.T.H. ${ }^{\text {S }}$	43	$3$	W Of Prince albert
60	6	S. OFS. JCT. P.R. 3325	4	$17$	NE OF ROSTHERN
83	75	5.1 KM SOUTH OFP. R \%210	45	$5$	E OF WATSON
85	$1$	WEST OF MACGREGOR	$46$	322	1.6 kM. AWOF SILTON
	2	EAST OF NESEITT	$7$	108	MILE 75 OF HANSON LAKE ROAD
67	4	WEST OF SEIKIRK BR.	74	9	10.5 KM . N. OF HUDSSON BAY
	320	CONNECTING RTE -SEIKRXK RR. TO PR 320	75	$10$	10.0 KM. NE OF JCT. ${ }^{\text {d }}$
$70$	100	W. END OF RED RIV. BRIDGE	91	20	NW OF CRAVEN
$72$	TO	SOUTH OF P.R. WIE $^{6} 7$	92	57	SW OF DUCK MOUNTAN PARK
$73$	287	EAST OF P.T.M. \#10			
74	1	WEST OF ONTARIO BORY			
75	317	EAST OF P.T.H. ES9			
78	59	MORTH OF P.R. 3317			
$\pi$	101	1.1 KOU W. OFP.T.M. 850			
78	59	SOUTH OF BROS HIL PARKENTRANCE			
79	1	4.3 kM W. OF P.T.H. ©s			
80	16	O. 8 KM E OF SASK EDRY.			
81	13	2 MIES S OF OAKVILE			
83	50	1.3 KMMS S. Of PR 285			
84	10	3.8 KM S OF S JCT M1OA (EMHELBERT)			
93	313	EAST OF P.R R315			
94	315	NORTH OF P.R 3013			
$\begin{aligned} & 96 \\ & 97 \end{aligned}$	$\begin{array}{r} 10 \\ 357 \\ \hline \end{array}$	SOUTH OF P.R. 1357   EAST OF P.T.M. 10			
		Teed nemeor of ma sime $=4$			Trocal Mumber or SK steres $=34$

Figure A-1

## Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 1



Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 1 (continued)




Figure A-1 (continued)

## Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 2










Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)

 Month







Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)


Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)


Figure A-1 (continued)

## Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 3






Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 4









Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 4 (continued)


Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 4 (continued)


Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 5








Figure A-1 (continued)

## Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)

Prairie Group 6








Figure A-1 (continued)

Seasonal Traffic Variations at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 7



Ungrouped Sites



## APPENDIX B

## Average Hourly Traffic Variations at Permanent Counters

 in Manitoba and Saskatchewan (1995)Figure B-1

Average Hourty Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 1


STATION 7 (MB)








Figure B-1 (continued)

Average Hourty Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 1 (continued)




Figure B-1 (continued)

Average Hourty Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2









Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)



STATION 79 (MB)


STATION 81 (MB)






Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)




STATION 20 (SK)



STATION 9 (SK)

$\qquad$
STATION 13 (SK)


STATION 22 (SK)


Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 2 (continued)



STATION 45 (SK)





Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 3





Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 4










Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 4 (continued)










Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairie Group 4 (continued)





Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 5




HOUR OF DAY


STATION 21 (SK)





Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)

## Prairie Group 6




STATION 46 (SK)




STATION 91 (SK)



Figure B-1 (continued)

Average Hourly Traffic Variations (Weekdays and Weekends) at Permanent Counters in Manitoba and Saskatchewan (1995)
Prairle Group 7



## Ungrouped Sites




## APPENDIX C

## Overview of the New Traffic Pattern Groups

## Overview of the New Trafic Pattern Groups


#### Abstract

A field survey was undertaken to provide an overview of the most common traffic patterns on Manitoba's and Saskatchewan's provincial highways. This survey was conducted on a typical weekend and weekday in January. The following photographs and notes in Figures $\mathrm{C}-1$ to $\mathrm{C}-3$ show the highlights of this survey.


Figure C-1
Examples of Typical Prairie Group 1 Routes


Figure C-2

## Examples of Typical Prairie Group 2 Routes


(a)

- Description: Figure C-2 (a) shows a photo of PTH 5. north of PR 265 in Manitoba at 5pm.
- Type of road: Paved, 2-lane undivided road.
- Functional class: Arterial.
- Weekday traffic: Steady traffic volume throughout the day.
- Weekend traffic: Same as weekday pattern.
- Seasonal traffic: Moderately high summer rise.
- Surveyed volumes: 80 vehicles between 5 -6pm on a weekday, and 58 vehicles on the weekend.
(b)


Description: Figure C-2 (b) shows a photo of Highway 10. east of Highway 22 in Saskatchewan at 10am.

- Type of road: Paved, 2-lane undivided highway.
- Functional class: Arterial.
- Weekday traffic: Steady traffic volumes throughout the day.
- Weekend traffic: Same as weekday pattern.
- Seasonal traficic. Moderately high summer rise.
- Surveyed volumes: $\mathbf{1 3 0}$ vehicles between 10-11 am on a weekday, and 110 vehicles on the weekend.


## Figure C-3

## Examples of Typical Prairie Group 4 Routes



## APPENDIX D

List of Short-Term Counting Stations' Assignments to Traffic Pattern Groups and Control Stations

Table D-1

S	Dim	Hoy. No.	mary. AR	Locmiten	Naw TPG	New Control Stun	Sask Control Sin.A	Old TPG	Old Contro Son.
102	C	301		SOUTH OFFP.T.M.EA	PG8			RES	74
103	C	307		N OF CPR TRACNSAT GRERETOM	PGS	93		RES	93
105	C	44		WEST OFREMNE	PG3	74		TS	74
108	C	44		EOFE SCT. P.T.H. 19	PG3	74		TS	74
107	C	11		W. OFE ECT.P.T.H. ${ }^{\text {a }}$	PG3	74		TS	61
109	C	11		S OFE ECT. P.T. ${ }^{\text {a }}$ /	PG3	74		IS	12
109	C	11			PG3	74		TS	12
111	C	19		E OFW. JCT, P. T.M. ${ }^{\text {Pa }}$	PG5	12		TS	61
194	C	48		W. OFW. .CT. P.T.M. 111	PG5	12		RC	12
115	C	87		O.EKMN. OFP.RB313	PG6	93		$\stackrel{R}{\text { R }}$	12
116	C	313		W. OFFPG. RIVER GTADGE	PGS	93		RC	93
117	C	17		4.2 NGN OFGREAT FAELS	PG3	75		$\bar{T}$	76
118	${ }_{c}$	11		WESTOFP.REOM	PG3	75		TS	$7 \overline{5}$
179	C	19		EAST OFP.TM 130	PG3	75		TS	$7 \overline{7}$
129	C	59		SOUTH OF P.R S 304	PGB	76		RES	76
127	C	59		SOUTH OFP.T.H. 119	PGB	76		RES	76
122	C	5		N. OFR JCT. P.T.H. 12	PG8	76		RES	76
123	C	12		W. OFM. SCT. P.T.H. ${ }^{\text {P }} 59$	PG8	76		RES	76
126	C	12		S. OFR JCT. P.T.H. 30	PG6	76		RES	76
125	C	304		ESST OFP.T.M 12	PG4	14		RC	75
128	C	12		1.6 KIN OF ERDKENHEAD RIVER	PG8	76		7	75
127	c	12		K. OFE JCT. P.T. M. MA	PGS	12		$T$	12
128	c	12		4.8 100 W. OFE JCT. P.T.R BAA	PG6	12		TS	12
129	C	44		W. OFW W JCT.P.T.E. 12	PG1	77		UC	77
130	C	12		S. OF W. JCT. P.T.A TM	PGS	12		T	12
138	$\underline{C}$	44		ESST OFFP.T.H. 39	PG1	7		UC	77
132	${ }_{C}$	59		NORTH OF P.T.H Ma	PGS	78		RC	78
133	C	44		WEST OF P.T.H ${ }^{3} 3$	PG1	77		UC	77
140	C	15		1.6 KM W. OFP.T.F. W12	PG3	13		UC	64
141	C	15		EAST OFPP.T.H. 12	PG3	13		IS	61
142	C	12		O.2 KM SOUTH OFP.T.R. EIS $^{\text {a }}$	PG2	81		$T$	14
143	c	12		NORTH OFPP.T.H. ${ }^{\text {P }}$	PG2	88		T	14
146	c	1		WEST OFP.T.H. 12	PG1	8		UC	13
145	C	12		SOUTH OFP.T.M. ${ }^{\text {A }}$	PGA	14		RC	14
146	C	1		WEST OFPP.T.M. 11	PG3			TS	61
147	c	11			P63	75		TS	12
148	C	1		ESSTOFP.TM. 11	PG3			TS	74
149	c	12		S. OFS JCT. P.R EST1	PG4	14		RC	14
150	C	52		4.810ME OF STENEACH	PG4	14		RC	14
151	C	52		4.3 TOM W. OFP.T.M. 12	FGA	14		RC	14
152	C	302		SOUTH OFP.T.H 12	FG6	14		RC	14
153	C	12		S.E OFP.R ${ }^{3}$	FG6	14		$T$	14
155	C	12		NLW. OFP.T.H.	FGA	14		$T$	14
156	C	201		WEST OF P.T.H. ${ }^{\text {a }}$	PG1	14		RC	35
257	C	69		$3.2 \mathrm{KMN}. \mathrm{OFUS}. \mathrm{BDRY}$.	PG3			15	14
158	C	82		S.E OFP.T.E. ${ }^{\text {des }}$	PG4	14		7	14
159	C	340		INORTH OF U.S. EOERY.	PG3	74		T	14
180	C	12		O.5 KUN OF US B BRY.	PG4	14		$T$	14
181	C	201		3.2 KMW OF VITA	PG1	14		RC	35
182	C	59		$3.2 \mathrm{kONN} \mathrm{OF} \mathrm{U.S} \mathrm{EORY}$.	PG2	63		TS	14
163	C	202		WEST OFPP.T.R W 6	PG1	14		T	16
187	c	59		MORTH OFPR.R EOTI	PG2	63		RC	14
185	C	59		SOUTH OFP.T.M ${ }^{\text {P23 }}$	PG9	14		RC	14
868	C	59		Q.8KM N OFP.T.H. ${ }^{2} 23$	FGI	14		RC	8
167	C	23			FG4			$T$	14
168	C	59		SOUTH OFP P.T.H.	PGI	14		RC	8
169	C	52		EAST Of P.T.H. ${ }^{\text {S }}$ S9	PG4	14		RC	14
170	C	59		MORTH OF P.T.M 1	PGT	14		UC	8
172	C	800		STE ANNES RD. N. OFP.T.M. 100	TOWN			UC	
173	C	800		STE MARY'SRD. M OF P.T.M. 100	TOWN			UC	
174	C	101		WEST OFP.T.H. 7	PG1	77		UC	2
175	C	7		NORTH OF P.T.H. 101	PG1	7		U	2
178	C	67		WEST OFP.T.M. ${ }^{\text {T }}$	PGA	14		T	16
177	C	67		EAST OFP.T.H. 7	PGA	14		UC	3
178	C	7		1.6 KMS OFP.R.M15	PG2	86		T	16
182	C	7		MORTH OFP.R. 8229	PG2	16		T	16
163	C	231		1,6 KME OFP.T.H. 7	PG6	4		$T$	75
184	C	231		$3.2 \mathrm{CWW.OFP.T.M.T}$	PGO	4		$T$	75
185	C	7		M. OFN. JCT. P.R P231	PG2	16		$T$	16
186	C	17		1.6 KMS. OF P.R 2231	PG2	16		$T$	16
187	C	17			PG2	16		$T$	16
188	C	17			PG2	16		$T$	16
168	C	68		1.6 KOWW. CFP.T.H. 17	PGA			$T$	16
180	C	68		4.a KM E OFP.T.M © 17	PG2	16		T	16
182	C	7		SOUTH CFP.T.H. 0	PG2	16		$T$	16
193	C	6		NOUTH OFPP.T.H. 63	PG3	75		T	4
189	C	6		WESTOFP.T.M.	PG\%	4		TS	4
185	6	8		SOUTH OFP.T.M. 100	PG3	75		TS	4
198	C	222		3.2 KINL OF GMU	PGT	4		RCS	75
197	C	8		NORTH OF P.R. 231	PG3	75		RC	4
198	c	231		EAST OFP.T.M. 1 S	PGO	4		T	75
199	C	8		SOUTH OFP.R. 1231	PG3	75		RC	4
200	C	9		4.8 KMS. OF GIM	PGS	4		RC	4
2021	C	225		WESTOFP.T.M. ${ }^{\text {P }}$	PGS	4		TS	75
203	C	8		MORTH OFFP.T.H. 17	PG3	75		T	4
205	C	9		N. OFN JCT. P.T.H. ©SA	PG8	4		RC	3
206	c	9		NORTH OFP.T.H. ${ }^{\text {MAM }}$	${ }_{\text {PGB }}$	3		UC	3

Table D-1 (continued)

Sth.	Orn	Hwy. No .	Hyy Al	Locwion	New TPG	$\begin{aligned} & \text { New Contral } \\ & \text { Sun. } \end{aligned}$	Sask Control Sin^	Old TPG	$\begin{gathered} \text { Oid Control } \\ \sin \text {. } \end{gathered}$
207	${ }_{c}$	9		SOUTH OF P.T.H. CM	PG6	3		UC	3
2031	C	8			P68	1		UC	1
2001	C	8		SOUTH OFP.T.M. ${ }^{\text {P2 }}$	FG1	1		$\underline{0}$	1
210	C	27		WEST OFP.T.A. ${ }^{\text {a }}$ O	PGT	3		$T$	3
217	c	204		NORTH OF HOUTNNOTT ROKD	PGI	3		UC	77
212	C	67		3.219.E OFP.T.K. ${ }^{\text {a }}$	PGA	14		7	16
214	C	6		32 KMS OFLNEFRKNCIS	PG3	60		TS	4
216	c	6		3.2ME. OFS JCT. P.T. H OS	PG3	60		TS	4
217	C	6		3.2\%EOFP.T.K 0	PG3	60		$T$	16
219	c	$6{ }^{6}$		WEST OFP.T.M E	PG3	60		$T$	49
223	C	6		3.2101 M OFHOCSEECRN	PG3			$T$	60
224	C	6		3.2MOS OFFNMFORDACCESS	PG3	60		$T$	60
225	C	513		3.2KMS OFGYPSUMMLE	PGA			RC	60
220	C	75		NORTH OFPRES30	PG2	63		$T$	63
227	C	75		3,501 S. Of S JCT. P.T.M. 203	PG2	63		T	63
228	C	23			PG4			$t$	14
229	C	23		EAST OFP.R M22	PG4			$T$	14
230	C	75		NORTM OFP.T.H.EAA	PG2	63		$T$	63
239	c	75		SOUTH OF P.T.M. 14	PG2	63		$t$	63
234	c	201		EASTOFP.T.M. ${ }^{\text {P }}$ S	PGZ	63		RC	35
236	C	200		SOUTH OFPPR R18	PGA			RC	35
237	c	30		S. OFA. JCT. P.R. 1243	PGA			T	48
239	c	30		SOUTH PFFPTHOTA	PG4			$T$	48
240	C	14		WEST OFP.T.M 130	PGA			RC	35
241	C	32			PGA			Re	35
242	C	14		EAST OF P.T.L. WS2	PGA			RC	35
243	C	14		EEST OFP.T.H. 13	PGA			RC	35
	C	3		MORTH OFP.T. ${ }^{\text {Co }}$	PGA			RC	45
245	C	3		SOUTH OFP.T.M. 23	PG4			RC	$\frac{35}{14}$
246	c	23		WEST OFP.T.M. 3	PGA			T	14
247	c	23		EASTOFPT.AW3	PG4			RC	35
248	C	3			PGG4			RC	35
250	C	13		\| 5.3 KMS. OFP.T.M. 12	PG2	81		RC	81
251	c	13		NORTH OFP.T.K. 22 EAST OFFPR. 247	PG2	48		T	81
252	C	2		EAST OFP.R. 247	PG4			RC	35
258	C	3		WEST OFP.T.M. $\mathrm{BS}^{\text {S }}$	PGA			RC	35
258	C	31		SOUTH OF PTTA ${ }^{\text {a }}$	PG2	21		$T$	35
200	C	3		K OFW. CTT.P.T.M. ${ }^{\text {W }}$ M	PG4	58		RC	35
281	C	3		NOFE JCT. P.T.H. Q3	PG4	58		RC	35
202	C	3		W. OFE JCT.P.T.H. ${ }^{\text {G }}$	PG4	58		RC	35
283	C	3		EAST OFP.T.M. ${ }^{\text {a }}$ (	PG4			RC	35
204	C	34		NORTH OF P.T.H. ${ }^{\text {S }}$	PGS	50		RC	58
205	C	3		W. Of W. XCT. P.T. M. 3 34	PGA	58		RC	58
206	C	23		WEST OFPRE24	PG4			$T$	68
27	C	23		EAST OFP.T.M. 34	PG4	58		$T$	58
266	C	23		WEST OFP.T.M. 3 S	PG4	56		T	58
269	C	34		SOUTH Of P.T.H. 23	PGA	58		RC	58
270	6	34		NORTH OFP.T.R ${ }^{\text {P23 }}$	PGA	50		RC	58
271	C	23		4.8 KM E OF ELLOUR	FG4	58		1	68
272	C	24		$24 \mathrm{HOMS}$. OFP.T.H. ${ }^{\text {d }}$	PG:	88		AC	58
273	C	2		29 IOME OFPR.R 244	PG2	81		T	48
274	C	2		EAST OFP.T.H. 134	PGA	58		$T$	48
275	C	2			PG4	58		RC	58
277	C	34		STOKMN OFP.T.R. 12	PG	58		RC	58
278	C	2		34 रuIW OF P.R. 1302	PG2	66		RC	50
250\|	C	2		EASTOFP.T.A.ET8	PG2	68		$T$	68
201	C	2			PG2	66		$T$	68
202	C	18		SOUTH OFP.T.M. 12	PG2	6		$T$	68
203	C	18		32 KMN OF NINETIE	PG2	63		T	66
201	C	23		W. OFW. JCT. P.T.H. 18	PGA	5		T	${ }^{68}$
285	c	23		4.8 KME OF NTMETTE	PGA	58		T	68
209	C	18		S. OFW. JCT. P.T.H. 233	PG2	0		$T$	66
20.	c	3		4.B ICMW OF N. JCT. P.T.A. 16	PG2	21		RC	56
20	C	3		$3.2 \mathrm{KWN.OFSSTC.P.T.M}$.	PGR	21		R R	58
290	C	18		S. Of S.JCT. PT.M	PG2	88		T	66
291	C	3		E. OFSS.JCT.P.T.H.18	PG2	21		RC	58
292	C	5		SOUTH OF P.T.M 1	PG2	21		RC	58
283	C	3		1.6 NOI E OFP.T.M. ${ }^{\text {E }}$	PG2	21		RC	58
297	C	3		WEST OFP.T.M.	PG2	21		RC	56
293	C	10		SOUTH OFPP.T.R. 63	PG2	21		T	21
297	C	3		WEST OFP.T.M. 10	PG2	21		RC	56
293	6	3		EAST OFP. P.M. 10	PG2	21		RC	56
299	C	10		FORTH OFP P.T.A. ${ }^{\text {C }}$ S	PG2	21		T	21
300	C	10		S. OFS. JCT. P.T.M. 23	PG2	21		$T$	21
307	c	10		M. OFS JCT. P.T.H. 223	PG2	21		$T$	21
302	c	10		W. OFN. XT. P.T.H. ${ }^{\text {cha }}$	PG2	21		T	21
303	C	23		E OFS S. JT. P.T.A. 10	PGA	58		T	6
304	c	23		W. OFFN JCT. P.T.M. 10	PG4	58		$T$	40
305	C	10		S. OFS XTT. P.T.M. ${ }^{\text {a }}$	PG2	21		$T$	21
306	C	10		N. OFP. XCT.P.T.H. ${ }^{\text {R }}$	PG2	27		$T$	86
308	C	2		WEST OF WEGGH SCALES	PG2	68		$T$	40
309	C	2		4.0 KME OFPR	PG2	6		T	40
310	C	250		3.7 KOM. OFP.T.H. ${ }^{\text {P }}$	PG4	29		RC	24
381	C	2		E OF E JCT. P.T. H 21	PG2	40		$T$	40
312	C	2		WW. OFE JCT. P.T.H. 21	PG2	40		T	40.

Table D-1 (continued)

Sun	Dim	Ham. No.	Hay. Alt	Location	New IPG	Now Control Stn.	Sask Controt $\operatorname{Sin}^{n}$	Ond TPG	Old Control Sur
313	C	21		NOFE.JCT. P.T.M. ${ }^{\text {P }}$	PG2			CTR	$\frac{78}{78}$
3141	C	2		W. OFW. JCT. P.T.H. ${ }^{\text {d }} 21$	PG2	40		$T$	40
315	C	21		S. OFW. JCT. P.T.M. $\mathrm{R}^{2}$	PG2	40		T	78
316	C	29		MORTH OFP. P.I. ${ }^{\text {P23 }}$	PG7	56		$T$	78
317	C	21		SOUTH OFP.T.H. 23	PG4	58		T	78
319	C	23		ERST OFP.T.M. 21	PG\%	58		$T$	40
319	C	21		N. OFR , JCT. P.T.L. 3	PG2	21		T	78
320	C	3		S. OFN. JCT. P.T.R. ${ }^{\text {RII }}$	FG2	21		RC	56
321	C	3		WEST OFP.T.M. PRI	PG4	56		R'C	50
322	C	3		EAST OFP.TAL 21	PG4	58		RC	56
323	C	21		8.016TS OF DELCRANE	PG2	21		$T$	78
328	C	63		S. OFS S. JT. P.t.M. 3	PG2	40		$T$	40
327	C	3		W. Of S. JCI. P.T.H. ${ }^{\text {a }}$	PGA	56		RC	58
320	C	3		Q.4 KIS OFP.REAS	PG4	56		RC	56
3301	C	63		32 NMN OFF CTI. P.T.H. ${ }^{\text {S }}$	PG\%	56		$T$	40
3311	C	63		SOUTH OFP.T.M. 2	PG2	40		1	40
332	c	83		HORTH OFP.T.A. ${ }^{\text {P }}$	PG2	40		$T$	40
333	C	2		8.6 ROM W. OFP.T.H. 63	PG2	80		$T$	40
331	C	2		11.6IGE OFSASK BDRY.	PG2	40		$T$	40
330	C	255		WEST OFP.T.H. 103	PGR	40		$T$	56
338	C	1		EAST OF P.T.M. BM1	PG2	25		$T$	25
339	C	48		WORIH OFP.T.H. 1	PG2	25		T	25
340	C	1		W. OFW. JCT. P.T.M. ${ }^{\text {S }}$	PG2	25		T	25
341	c	1		E OFW.JCT.P.T.M. ${ }^{\text {B }}$ S	PG2	25		$T$	25
342	C	83		N. OFW. ST. P.T.MEI	PG2	40		$T$	40
343	c	259		1.6 KGNN. OFPP.T.H. ${ }^{\text {m }}$	PG4	28		RC	24
341	c	1		WEST OFP.R. ${ }^{\text {W2S }} 7$	PG2			$T$	62
340	C	257		WEST OFP.T.H. 1	PG2	40		RC	58
349	C	1		O.5 KOMW. OFP.T.H. 21	PG2			T	62
349	c	1		EAST OFP.T.H.EPI	PG2			$T$	62
350	C	21		SOUTH OF GASTVOLO ACCESS	PG2			$T$	78
351	C	21		NORTTH OFP.T.M. 1	PG2			$T$	78
353	c	250		MORTM OFP.R. MSS	PG2			RC	24
359	C	1	A	E OFW. XCT. P.T.M. E1-EDN	PGA	24		$\overline{\mathrm{R}} \mathrm{C}$	24
355	C	1		W. OFW. SCT. P.T.M. ${ }^{\text {P10 }}$	PGA	24		RC	24
356	C	340		SOUTH OFP.T.L. ${ }^{\text {I }}$	PG4	56		RC	68
357	C	5		SOUTH OFP.T.R	PG4	24		RC	24
359	C	5		NORTH OFP.T.M. ${ }^{\text {N }}$	PG2	79		$T$	79
359	C	1		WEST OF P.T.H. ${ }^{\text {Wh }}$	$\mathrm{PG}^{3}$	65		TS	65
350	C	1		EAST OFFP.T.H. 334	PG3	65		TS	65
361	C	34		1.5 KMS. OfP.T.H. 8	PG4	58		RC	58
362	C	34		NORTH OFFP.T.H. ${ }^{\text {PI }}$	PGA	58		RC	58
363	c	1		WEST OFP.T.H P16	PG3	65		TS	65
3061	C	240		SOUTH OFPP.T.M. ${ }^{\text {S }}$	PGA			RC	35
307	C	331		EAST OFP.R ${ }^{\text {de }}$	FG4	58		RC	8 t
368	C	1	A	Q8KM W. OF W. JCT. P.T.H. 206 (PTGE	PG	65		$\overline{\mathrm{R} C}$	81
369	$\bar{C}$	1	A	2. 4 MME OF W. JCT. P.T.M. $26{ }^{\circ}$	PG3	65		1	48
370	C	26		WEST OF HIGH BRUFFACCESS	PG4	81		RC	81
372	C	13		SSOUTH OFP.T.M ${ }^{\text {B }}$	PG2	81		RC	81
374	C	1			PG2	48		7	48
375	C	1		WEST OFP.T.H. 13	PG2	48		T	48
378	c	26		N. OFE JCT.P.T.M ${ }^{\text {P1 }}$	PG1	46		UC	48
377	c	249		3.2 KMW. OFJCT.P.R 333	PG1	47		UC	47
378	C	16		EAST OFP.T.M. 030	PG2	48		$T$	48
379	c	18		WEST OFP.T.A. ${ }^{\text {S }}$ S	PG2	46		T	46
380	6	50		NORIH OFP.T.K. ${ }^{\text {P6 }}$	PG2	83		RC	46
301	c	50		MORTH OFPPR Meb5	PG2	83		RC	46
302	C	16		1.3 KME OFP.T.H.E34	PG2	46		$T$	46
383	C	16		1.6 KIM W. OFP.T.H. ${ }^{\text {E3M }}$	PG2	46		T	43
384	6	34		SOUTH OFPP.T.M. ${ }^{\text {cio }}$	PGA	56		RC	58
305	C	260		NORTH OFP.T.L. 186	PG2	83		RC	58
386	C	352		NORTH OFP.T.H. 18	PG5			$T$	58
387	c	86			PG2	46		T	43
380	6	16		1.6 KM W. OF W. JCT. P.T.K. ${ }^{\text {ES }}$	PG2	46		$T$	43
389	C	5		32 MOM N OFP.T.H. 16	PG2	79		T	79
380	C	5		0.510MS. OFPPTM 16	PG2	79		$T$	79
381	C	202		SOUTH OFFP.T.A. 16	PG2	43		RC	24
392	C	16		N. OFE JCT. P.T.P. 16	PGA	20		RC	90
383	C	16		E OFM ST. P.T.R. $10+$ P16	FG!	28		RC	90
389	C	10		N. OFW. JT. P.T.P. 18	PG3	96		TS	98
395	c	16		W. OF W. JCT. P. T. . ${ }^{\text {M } 10}$	PG4	28		T	43
396	C	16		WESTOFPR 270	PG2	43		7	43
397	C	270		1.6KM S OF P.T.A. 16	PG2	43		RC	24
390	C	16		3.2100 E OFP.T.H. 221	PG2	43		$T$	43
400	C	16		13.2 NOW W. OFP.T.H. El	PG2	43		$T$	46
401	C	21		3.210 SS OF SHOAL LAKE	PGA	28		$\bar{T}$	78
402	6	42		$3.2 \mathrm{IOM} \mathrm{SW.OFP.T.M}.{ }^{10}$	PGA	28		RC	90
403	C	27			PGA	28		$T$	78
409	6	45			PG3	88		RC	90
405	C	63		1.6 10M S OFFP.T.H. 1212	PG2	43		RC	90
408	C	42		1.610 ME OF E JCT.P.T.M. ${ }^{\text {d }} 3$	PG2	43		RC	90
407	C	42		W. OFW. JCT. P.T.H. ${ }^{\text {We3 }}$	FG2	43		RC	90
408	C	83		S. OF E JCT. PT. T. 16	PG2	43		RC	90
409	C	16		E OFS JCT.P.T.M. 103	FG2	43		$T$	46
410	C	16		W. OF S. JCT. P.T.M ${ }^{\text {CS }}$	PG2	80		T	80
411	c	41		NORTH OFP.T.H. ${ }^{\text {a }}$ (2	PG2	80		$T$	25
412	c	41		NORTH OFP.R. 1545	$\overline{\mathrm{P}} 2$	80		$T$	25

Table D－1（continued）

Sth	Dion	Hery．Ma．	Hwy． AR	Locman	New TPG	Now Control Sun，	Sask Control Sen．${ }^{\wedge}$	Old TPG	$\begin{aligned} & \text { Old Control } \\ & \text { Stu. } \\ & \hline \end{aligned}$
413	C	16		SOUTH EAST OFP．T．M．EM	PG2	80		$T$	80
414	c	48		SOUTH OFP．T．R． 16	PG2	80		$T$	25
415	C	16		32 NOT N．CFP．R．$A 76$	PG2	0		$T$	80
418	C	16			PG2	0		$T$	80
417	C	63		M OFN．RLSSEL ACCESS	PGA	41		RC	51
418	C	4		O．8 KME OFP．T．M． 18	PG2	80		RC	50
49	C	16		Q．anW OF N．JCT，P．T．H．D3	PG2	60		$T$	80
420	c	83		NORTM OFP．T．H．${ }^{24}$	PG4	28		RC	90
421	C	24		EAST OFP．T．L 103	PGA	28		T	78
422	C	83		SOUTH OFP．TM．E2	FGA	28		T	40
423	c	24		WEST OFP．T．M． $\mathbf{F S}^{21}$	PG4	20		T	7
424	C	26		EAST OFP．T．H． 221	PG4	20		5	72
425	C	21		SOUTH OFPP．T．M． 24	PGA	2 L		$T$	78
4261	c	24		WEST OFPPR ER270	PGA	28		$T$	78
427	C	24		WEST OFFP．T．M． $\mathrm{F}_{10}$	PGA	20		$T$	78
428	C	202		ERST OFP．T．M ${ }^{\text {Wio }}$	PG2	43		RC	24
429	C	10		NORTM OFP．T．M．P＇S	PG2	21		RC	24
430	C	10		SOUTH OF P．T．M．${ }^{\text {PS }}$	PG2	21		RC	24
431	C	25		WEST OFFP．T．M． 10	FG2	79		$\overline{7}$	78
432	c	25		32 COTWEST OF RIVERS	PG4	28		RC	24
433	c	250		32 COM M．OF RIVERS	PGA	28		RC	24
434	C	258		O．B WOW．OF WHEATLAND	PGA	28		RC	24
435	c	259		12，Wh．OFP．T．M． 21	PGA	28		RC	24
436	C	10		SOUTH OFP．T．H．WES	P63	96		15	98
438	C	45		WEST OFP P．T．H． 10	FG3	96		RC	75
439	C	10		4.6 NO．S．OF S GATE（CLEARLAKE）	PG3	96		TS	96
440	C	10		S．OF E JCT．P．T．M． 15	P63	96		TS	58
42	C	5		3.2 KMS OF RIOING MOUNTAN	FG3	96		T	79
43	c	289		EEST OFPP．T．A． 13	PG2	83		RC	32
44	c	5		SOUTH OFP．T．H． 19	PGA	32		RC	32
44	C	5		HORTH OF P．T．H． 19	PGA	32		RC	32
466	c	19		WEST OFP．T．M ES	PGE			RC	98
47	C	5		1.61015	PGA	32		RC	32
488	C	5		MORTH OFP．T．H $\overline{50}$	PGR	49		7	49
491	c	50		2.0 KMEAST OF MCCREARY	PGS			RC	49
450	C	50		3．2KM W．OFALOMSA	PG2	83		RC	49
451	C	278		NORTH OFP．PT．H． 30	PG3			RC	75
452	c	50		SOUTH OFPR PR ${ }^{\text {S }}$	PG2	83		RC	49
453	C	5		SOUTH OFP．T．M．	PG2	49		T	48
454	C	5		WEST OFP．R．CRT	PG2	49		T	49
455	C	60		EASTOFP．T．A ${ }^{\text {S }}$ S	PG2	49		$T$	49
456	c	278		3．2101N OfP．T．M 65	PG3			RC	75
453	c	20		3．2KMN OFOCHRERIVER	PG3	60		RC	75
459	C	20		EAST OF S．JCT．P．T．H．EZAA	PG3	60		RC	75
400	C	5		N OF S JCT．P．T．H． 10	PG2	49		T	49
483	c	90		N．OFW．SCT．P．T．M．${ }^{\text {P }}$	FG2	84		RC	32
494	C	5		W．OF W JCT．P．T． H \＃ 10	PGA	32		RC	32
45	C	5		4．80＇t E OFP．R． 366	PGA	32		RC	32
406	C	306		3.2 KMN OF GRANOVIEW	PGA	41		RC	32
467	C	5			PG4	41		RC	41
408	c	5		3.2101 W OFPP．T．M 1203	PGA	41		RC	41
469	C	83		SOUTH OFP．${ }^{\text {a }}$	PGA	41		RC	61
470	c	287		EAST OFPP．T．M．MAO	PG2	86		$T$	32
171	C	267		WEST OFP．T．A．W20	P⿳亠二口欠彡	84		$\underline{T}$	32
474	c	20		ACRRTH OF FISFIING RIVER	PG3	60		RC	75
478	C	20		3．2KMS．OFP．R．${ }^{364}$	PG3	60		RC	75
477	C	20		3．2NGN．OFP．R COM	PG3	60		RC	75
478	c	271		WEST OFP．TH 120	PG2	84		RC	32
479	c	20		3.2 KMS OFCOMFERVLE	PG6			RC	75
400	c	20		WEST OFP．R 8272	PG3	60		RC	75
481	C	272		AORTH OFP．T．K C20	PG6			RES	76
402	C	20			PG3	60		RC	75
463	C	10		1．6 FMU N OF P．T．H． 120	PG3	96		TS	36
439	C	10		SOUTH OFP．T．H． 210	PG2	64		TS	36
485	C	271		32 MOME OF PINERIVER	PGA			RC	32
47	C	10		3，2MMS．OFETHELBEET	P62	B		RC	32
488	C	10			PG2	84		TS	38
209	C	208		NORTH OFP．T．M． 010	PG2	84		RC	36
4601	C	306		NORTH OFP．R．${ }^{\text {a }}$	PG2	84		RC	38
482	C	63		MORTH OF BEMiTO	PG4			RC	36
493	c	83		SOUTH OFP．T．H． 049	PGA			RC	38
496	C	49		WEST OFP．T．M 63	PGA		15	$T$	49
495	C	10		NORTH OFP．R． 6 R2：	PG5			75	36
496	C	10		SOUTH OF P．T．H． BT $^{\text {P }}$	PG3	98		TS	36
497	C	10		NORTH OFP．T．L ${ }^{\text {Co }}$	PG7	72		TS	72
480	C	10		4．81OMS OF THEPAS	PG7	72		TS	72
499	C	203		4．0101 W．OF THEPAS	PG7	72		RC	73
500	C	10		3．2 INM S OFCRANE ERRY PORTAGE	PG7	72		TS	72
509	6	10		S．OF S．JCT．P．T．M．PTCA（FIn Fion）	PG7	72		T	72
502	C	214		O．SKMN OFP．T．t．AM	PG5	12		RC	12
504	C	10		1．6GM S．OF REPAP ROAD	PG7	72		TS	72
505	C	261			PG2	83		RC	32
506	C	260		N OFE JCT．P．R． 203	PG2	83		RC	58
507	C	4		EAST OFP．T．R 6	PG8	78		UC	78
506	C	89		SOUTH OF P．T．H． 112	FG3			TS	14
509	${ }_{5}$	7			PG2	16		$T$	16
510	C	7		SOUTH OFP．T．M．${ }^{\text {a }} 7$	PG2	18		UC	2

Table D-1 (continued)

Sth	Dion	Hmy. No.	Hwy.   AR	Locmion	Now TPG	New Control Ster.	Sask Control Sinn.	Old TPG	$\begin{aligned} & \text { Old Control } \\ & \operatorname{Sin} . \end{aligned}$
511	C	1	A	S. OF SERVICEROAD-BON	PG4	24		RC	24
512	c	308		3.2 KNN N. OF SPRAGUE	PG3	74		RES	93
514	C	210		3.2 MMS OFPR 203	PG2			RC	
515	C	3		W. OF SOUTH ACCESS TO CRYSTALCTY	PG4	56		RC	621
516	C	210		32.0MS OFP.T.M 152	PG1	14		RC	12
517	c	200		2.4MM M OFP.R	PG4			RC	35
519	C	200		SOUTH OF P.T.H. EZ3 $^{\text {a }}$	PG4			RC	35
5201	C	200		NORTH OFP P.T.M. ${ }^{\text {as }}$	PG4			RC	35
521	C	200		$3.5 \mathrm{CMS} \mathrm{OFP.R}$.	PGI	B		RC	35
522	c	6		SOUTH Of P.T.M 137	PG2	16		UC	2
523	C	239		WEST OFFP.T.M. 3	PG2	60		RC	12
529	C	26		1.5 KOME OFPOPLARPOINT	PG2	61		RC	81
525	C	240		MORTH OFP.R PR227	PG8	4		RC	35
528	C	233		EAST OFPP.T.H. E17 $^{\text {a }}$	PG2	60		RC	81
527	C	224			PG\%	4		TS	75
520	c	8		4.0 KMM OFP.R 0320	PG6	4		TS	4
528	C	6		EAST OFPR.REM	PG6	4		TS	4
530	C	234			PG6	4		15	75
531	C	304		112 KMW OF ESSETT	PG8	78		RES	58
532	C	304		3.2 KME OF BSSETT	PGO	78		RES	56
533	C	304		$3.2 \mathrm{KMS} \mathrm{OFFMNUGOTOGAN} \mathrm{ACCESSRD}$.	PG6	78		RES	56
534	C	304		4.8KOM N OFP.T.T. Eli	PG5	93		RES	58
537	C	315		SOUTHOFP.R.E314	PG6	9		RES	93
538	C	315		ESST OFPP.R ${ }^{\text {S }} 14$	PG6	94		RES	93
540	C	22		5.3 kMS OFP.T.H. ${ }^{\text {c }}$ 2	PG2	68		$T$	21
541	C	251		WEST OFP.T.A. 121	PG2	40		$T$	58
5431	C	83		$3.2 \mathrm{KMN.OF}$ US. 日DRY.	PG2	40		$T$	40
549	C	251		WEST OFP.T.H. 103	PG2	40		$T$	58
547	c	45		WEST OF P.R W234	PG2	80		FC	90
550	C	68		NORTH OFP P.R. 8278	PG2	49		T	49
551	C	59		SOUTHOFP.R. ${ }^{\text {P202 }}$	PG1	77		UC	77
552	C	63		NOPRTH OFPR.R 367	PG2	8		RC	41
553	C	307		EAST OF SANCLARA	PG5			RC	42
554	c	357		W. OFW. JCT. P.R EOB	PG8			RC	41
555	C	293		EAST OFP.R.R. 282	PG7	72		RC	73
556	C	283		WEST OF P.R. 282	PG7	72		RC	73
557	C	$2{ }^{2}$		SOUTH OFP.R 623	PG7	72		RC	73
559	C	1		E OF W. JCT, P.T.H. BA (BDN)	PG4	24		RC	24
580	C	44		1.3 KOMN OFP.T.E. 1	PG3	74		TS	74
561	c	307		4.0 KOE OFP.R 400	P65	93		RES	93
563	C	9		24 kOSS OFN JCT. P.T.M. ma	PG1	3		RC	75
589	C	9	$\boldsymbol{A}$	S. OF N. JCT.P.T.K. 9	PG1	3		UC	3
565	C	9	A	N. OF S. JCT. P.T.M. ${ }^{\text {a }}$	PG1	3		UC	3
588	C	204		WEST OFP.R. 212	PG2	67		UC	71
569	C	212		WEST OFFP.T.A. ESA	PG1	67		UC	67
570	C	204		NORTH OF P.T.M. MA	PGI	77		UC	77
572	C	59		SOUTH OF P.T.H. 100	PG1	8		UC	8
573	C	240		3, KMN. OF PORTAGELA PRAIRIE	PGS			RC	35
577	C	6		N. OFN GYPSUMVILEACCESS	PG3	60		$T$	16
578	c	5			PG2	49		$T$	49
579	C	10		0.8 KM W. OFP.R 1468	PG4			TS	38
580	C	20			PG4	32		RC	32
581	C	5		4.8KMW. OFP.R © ${ }^{\text {co6 }}$	PG2	49		RC	41
582	C	1		W. OFW. JCT. P.T.H. STA (BDN)	PG4	24		TS	61
583	c	2		$24 \mathrm{KMW}$. OFP.T.M. 13	PG2	48		$T$	48
585	C	202		NORTH OF RESECK ROAD	PG1	77		UC	7
508	c	8			PG6	4		$T$	1
587	c	8		SOUTH OFFP.T.I. 017	PG3	75		$T$	4
508	C	44		ERST OF P.R 107	PG3	74		TS	74
569	C	600		STE. ANNESRD. S OFP.T.M. 200	TOWN			UC	
589	c	200		SOUTH OF P.T.A. 100	PG1	70		RC	35
597	c	I		[W. OF W. JCT. P.T.P. 1100	PG1	47		$T$	47
592	$\bar{C}$	1		E. OF E JCT. P.T.H. ZZ $^{\text {O }}$	PG2	48		$T$	47
593	c	59		MORTH OFP.R A212	PGS	76		RC	78
594	c	12		S. OF S. ACT. P.T.H. 12	PGE	76		RES	78
585	C	309		NORTH OFP P.R. 3 S 7	PG6	76		RES	93
593	C	215		EAST OFP.T.L 12	PG5	12		RC	12
597	C	205		E OF S. JCT. OFPR R16	PG1	14		RC	35
590	c	205		EAST OFP.T.M. 85	PG1	14		RC	35
599	c	67		EAST OFPP.T.H. Cos $^{\text {S }}$	PG1	3		UC	3
602	c	214		S.W. OFP.T.H. E11	PG5	12		RC	12
603	C	8		EAST OF CAUSEWAY	PGE	4		TS	4
604	C	B		1.6KMN. OFHECLA	PG8	4		RES	78
605	C	233		NORTH OFF P.T.A. 600	PG5			RC	61
606	C	229		$3.2 \mathrm{KME} \mathrm{OFP.T.H}.{ }^{\text {W }}$	PG2	60		$T$	61
607	c	228		WEST OFP.T.M. Pi7	PG2	16		T	81
603	C	229		24 KNW W. OF KOMARNO	PG2	16		T	81
609	C	17		WEST OFP.T.P. ${ }^{\text {P }}$	PG2	16		$T$	16
610	C	248		1.9 KMS. OFP.T.A.E1	PG2	46		RC	81
611	c	240		SOUTH Of P.T.H. 28	PTA			RC	81
612	c	305		NORTH OFP.P.T.H. ${ }^{\text {d }}$	PG2	46		$T$	48
613	c	305		0.2 kM S. OF P.T.H. ${ }^{\text {d }}$	PG2	46		$T$	48
694	C	245		EAST OFP.R.1244	PG4	58		RC	58
615	$\bar{C}$	244		NORTH Of P.T.H.	PG2	81		RC	58
616	$\bar{C}$	244		SOUTH OFP.T.H. ${ }^{\text {CSS }}$	PG2	81		RC	58
617	C	244		0.0 KM N. OF MANNTOU	PG4			RC	58
618	C	245		2.4 KM W. OFP.T.M. ${ }^{\text {W }}$ S	PGA			RC	58

Table D-1 (continued)

Sint	Dron	Hmy. No.	thay. AR	Locmion	Now TPG	$\begin{aligned} & \text { New Cortrol } \\ & \text { St. } \end{aligned}$	$\begin{gathered} \text { Sask Control } \\ \text { Sin.A } \end{gathered}$	Ond TPG	$\begin{gathered} \text { Old Control } \\ \sin \end{gathered}$
618	C	242		AT PEMBMC RINER ERIDGE LA RIVERE]	PG2	81		RC	58
620	C	253		1.6 WM W. Of PILOT MOUNO	PG2	68		RC	58
621	C	34		SOUTH OFP.T.H. ${ }_{\text {S }}$	PG4	50		RC	59
622	c	258		EASTOFP.T.L. 203	PG2	40		T	56
623	C	256		SOUTH OFP.R (i23i	FG2	27		$T$	58
624	C	256		SOUTH OFP.R SES7	PG2	21		$T$	58
625	C	257		1.8/6E OFSNSK EORY.	PG2	40		RC	58
6261	C	27 T		SOUTH OFP.T.M	PG3			RC	75
627	C	237		ESSTOFP.T.A 0	PG2	60		RC	75
630	C	387		WEST OFPPT.M. 10	PG6			RC	41
639	C	488		WEST OFPP.T.H. 120	PG5			RC	79
0	C	208		$3.5 \mathrm{NMN} .\mathrm{OFPR} \mathrm{WSPI} \mathrm{(EXACTL}$	PGA			RC	36
633	c	258		EAST OF ERECHRVER	PGA			RC	36
634	C	77		3.2MAE OF SMSK. EORY.	PG3		74	7	49
635	C	205		1.6 WOM E OF THE PAS	PG7	73		RCS	73
$6{ }^{6}$	C	39		EASTOFP.T.H. 10	PG2			RC	73
637	c	39		W. OFW. PT.P.R \% ${ }^{\text {WR }}$	PG2			RC	73
636	C	392		N. OFP.T.M	PG7	73		RC	82
63	C	39		N. OFICT.P.R E5is	PG7	72		RC	82
80	C	207		$3.9 \mathrm{KMW}. \mathrm{OFW}. \mathrm{JCT.PR} 200$	PGi	14		RC	35
611	C	1		0.5 Kich of FalCOTV	PG3	74		TS	74
642	C	1		O.5 KMW OF FALCOM LIAE ACCESS	PG3	74		TS	74
$6 \times 4$	C	800		POFTAGEAVE WPG, E OF W. ACT. PTH. 100	TOWN			UC	
87	C	2		EAST Of P.R R240	PG2	46		T	48
847	C	2		WEST OFFP.R. ${ }^{\text {P4 }}$	PG2	48		$T$	48
6	C	3		N.E. OFP.T.K. 100	PG1	51		UC	51
69	c	3		1.6 10nM.E OFP.R 632	PG1	59		UC	51
650	C	3		1.6 KM SW OFP.R 3005	PG1	51		UC	51
651	c	44		SOUTH OFP.R. 312	PG3	74		TS	74
6521	C	4		1.6 KMW OF CADOY LAME	P63	74		TS	74
653	c	8		SOUTH OFPR. ${ }^{\text {a } 29}$	PG3	75		$T$	4
654	C	8		NORTH OFP.R. 220	PG3	75		T	4
655	C	204		SOUTH OFP.T.H. 101	PGT	77		UC	77
650	c	204		NCRTH OFP. F.METET	PG1	77		UC	77
657	C	18		NORTH OFPPR 211	PG3	75		RC	12
659	C	11		1.6FM S OF ST. GEORGE	PG3	75		T	76
659	c	11		W. OF RR. TRACKSIN PINE FALLS	PG3	75		TS	78
680	C	15		EAST OF P.R. 2007	PG9			UC	64
639	C	20		SOUTH OFPR R 0207	PG3	60		RC	32
68.	C	59		SOUTHOFP.T.K-101	PG1			UC	64
6031	C	75		S. OFS. JCT. P.R M263	PG2	63		$T$	14
69	C	75		N OF N. JCT. P.R. $\mathrm{P}^{26}$	PG2	63		$T$	14
635	c	75		SOUTH OFP.R - $\mathrm{R}^{\text {POS }}$	PGE	63		T	14
687	C	75		T.6 KMN OFPR 10305	PG2	63		$T$	14
Big	c	800		PEMEIMA HWY. WPG.S. OF P.T.H. $\$ 100$	TOWN			UC	
669	c	800		PEMEINA HWY. WPG.N. OFPP.T.H. 700	TOMN			UC	
670	c	100		WEST OFPP.T.F. 775	PG1	70		UC	70
671	c	100		WEST OF WAVERLEY ST.	PG1	70		UC	70
672	C	100		FORTH OFP.T.H. 3 S	PG1	47		UC	47
673	c	100		SOUTH OFPR R ${ }^{\text {a }}$	PG1	47		UC	47
674	C	100		NORTIH OFPP.R M27	PGI	47		UC	47
676	c	109		WEST OFP.T.M ${ }^{\text {P }} 9$	PGI	77		UC	77
677	C	201		EAST OF P.R 1008	PG1	77		UC	2
678	C	101		MORTH OFP.T. ${ }^{\text {P }}$	PG1	47		UC	47
679	C	77		WEST OFP.T.H 10	PG3		74	T	49
681	c	800		ROEUNEEVD. WPG.E OFP.T.M. 100	TOMN			UC	
662	c	241		WEST OF P.T.M. 1700	PGI	47		4 C	47
683	C	300			PG1			UC	64
684	C	307		WEST OFPP.R. $0^{309}$	PG5	93		RES	93
6551	c	000		MLIES AVE WPG.E OFP.T.M. W100	TOWN			UC	
681	c	427		WEST OFP.T.M. 2100	PGT	51		UC	51
687	C	276		NORTH OFPP.R. 364	PGS			RC	75
638	C	278		SOUTH OFP.RSBA	PGS			RC	75
68	C	17		SOUTH OFP.R. 325	PG2	18		$T$	16
$6{ }^{6} 0$	C	218		1.6 KM S. OF P.T.H.ESP	PG4	14		RC	35
691	C	22		WORTH OFP.P.E.E.	PG2	21		$T$	21
682	c	211		EAST OFP.T.M 117	PG5	93		$\overline{\mathrm{R} C}$	93
6.33	C	312		EAST OFP.T.M. M4	PG3	74		RES	74
634	c	314		NORTHOFPRRMS	PG3	94		RES	93
685	c	238		1.3 KON N. OF P. R W10	PG1	3		UC	3
686	C	325		1.6 KM E. OFP.T.A. ${ }^{\text {a }}$	PG3	60		$T$	60
687	c	325		WEST OFP.R. W23	PG3	60		$T$	60
68	C	303		WEST OFP.T.K. 3	PGA	41		RC	41
701	C	307		ERSTOFPP.T.G. 11	PG5	93		RES	93
702	C	5		4.5 RONL OFP.T.H. $\mathrm{C}_{2}$	PGA	50		$T$	79
703	c	10		W. OFFE JCT. P.T.A. 16	PGA	24		RC	24
704	c	10		FORTH OFFPR WITSSWWN RIVER)	PGA			RC	32
705	c	10		O.S KM N. OF S. JCT.P.T.H.ETOM (SWANRIV.)	PGA			RC	38
708	C	57		WEST OFP.T.R. W03	PG9		92	RES	41
707	C	3		332 KME OFSASKBORY .	PGA	58		RC	58
701	C	100		EAST OFPP.T.H. ES $^{\circ}$	PG1	70		UC	70
709	C	1			PG2	46		T'S	5
711	c	9		SOUTHOF P.T.M. 101	PG1	3		UC	3
712	C	8		SOUTH CFP.T.L. 101	PG1	1		UC	1
713	C	29		SOUTH OFFP.T.H. 875	PGA			T	82
714	C	204		SOUTHOFP.R.EVO2	PG1	7		UC	77
715	C	9		IS. OF S. JCT. P.R. 2232	PG6	4		RC	75

Table D-1 (continued)

Ster.	Dion	Hey. Ma.	Hey. $A n$	Locabort	Now TPG	$\begin{aligned} & \text { New Control } \\ & \text { Sth } \end{aligned}$	Sask Control Smin	Old TPG	$\begin{aligned} & \text { Odd Contror } \\ & \text { Sort. } \end{aligned}$
716	c	14		WEST OFP PT.M M 75	PGA			RC	35
717	c	10		2.0 kOS S OFRCHMONDAVE	PG5	24		T	65
718	C	1		1.6 KME OF E. .CT. P.T.H. ${ }^{\text {er }}$	PG4	24		RC	24
719	c	16		1.6 KME OF E JCT. P.TH PIGA	PGA	28		T	43
7201	C	63		3.2 km S OF SWANRTVER	PG2	8		RC	36
721	$\bar{C}$	10		SOUTH OFP.R W271	PG2	8		TS	36
722	C	23		E OFF S JCT. P.R. $2^{240}$	PG			$\tau$	14
723	c	2		ESST OFP.T.M.E10	PG2	66		$T$	68
724	6	12		$3.2 \mathrm{MWM}$. OFM. JCT. P.T.R. ${ }^{\text {a }}$	PG2	68		$T$	68
725	c	6		2.4WM OF S. JCT. P.T.M 388	PG3	60		$T$	
725	C	11		WORTH OFP.R 1307	PG5	12		RC	12
727	C	75		NORTH OFP.R. 243	PG2	63		$T$	14
728	c	17		4.8 KOM NW. OF TEULON	PG2	16		$T$	16
729	c	200		SOUTH OFP.T.R. ${ }^{\text {a }}$	PG1	$\pi$		LC	77
730	C	229		WEST OFPP.T.L ${ }^{\text {a }}$	PG6	4		$T$	75
731	c	100		W. OFF ST. ANESRO.	PG:			UC	6
732	c	100		WEST OFP.T.M. 39	PGI			UC	64
733	c	100		EAST OFP.T.K. ${ }^{\text {P2 }}$	PGI	70		UC	70
734	c	263		WEST OFP.T.M. 175	P64			RC	35
735	c	243		3.7 KOE EFPT.M 60	PG4			RC	35
736	c	20		E OF E JCT, P.R ${ }^{\text {P48 }}$	PG1	48		UC	48
737	c	395		WEST OF P.R. 1392	PG7	73		RC	82
730	c	635		MMDOLESER-N. OFP.T.M. 112	TOWN			RC	
739	c	308		MORTH OF P.T.M. AT	P63	74		RES	93
741	c	308		SOUTH Of P. ${ }^{\text {a }}$	PG3	74		RES	93
742	c	300		WEST OF S EETRANCE TO PARK	$\mathrm{FG3}^{3}$	74		RES	93
743	C	641		Wrampumis S. OFP.T.H. 12	TOWN			RC	
744	C	638		VASSAR-N. OF S. JCT. P.T.H. $\# 12$	TOWN			RC	
745	c	839		VASSAR-E OFR JCT. P.T.H. \#12	TOWN			RC	
746	c	203		NORTH OF P.T.H. 12	PG2	16		RC	75
740	c	201		WEST OF SUNDOWN	PG2	63		RC	35
749	c	302		NORTM OFP.R. 2201	PGA	14		RC	12
750	C	201		EAST OFP. P.	PG2	63		RC	35
751	c	209		SOUTH OFP.R 2001	PGt	14		RC	35
752	c	207		ERST OFP.T.M. ${ }^{\text {a }}$ S0	PGI	14		RC	35
753	c	203		Q. 6 KME OF P.T.M. ES9	PGI	14		RC	35
758	C	218		SOUTH OFP.R 201	PGA	14		RC	35
759	c	218		EAST OF P.R. 2200	PG4	14		AC	35
780	c	200		NORTH OFP. P. 218	PG4			RC	35
761	C	201		E OF E JCT. P. 1200	PG1	14		RC	35
762	C	203		Q.4 KMM OF PADGER	PG2	16		RC	75
763	c	210			PGA	14		RC	12
765	c	203		1.6 KOW W. OFP.R. 210	PG1	14		RC	75
768	c	203		EAST Of P.R. 400	PG2	18		RC	75
767	C	404		NORTH OF P.T.H. 12	PG5			RC	
788	c	210		NORTH OF P.T.H. 12	PG4	14		RC	12
$\overline{7} 2$	C	210		SOUTH OFP P. R - 404	PG4	14		RC	12
773	c	404		SOUTH OF P.R 210	PGS			RC	
T17	c	210		W. OFRR TRACK (MRCHAND)	PGA	14		RC	12
778	C	210		E OF MUN RD E OF MARCHAND	PGA	14		RC	12
783	C	216		MORTH OF P.T.H. 139	PG4	12		RC	12
785	C	218		SOUTH Of P.R. 217	PG4	12		RC	35
78	C	217		W. Of W. ICT.P.R E218	PGA			RC	35
789	c	217		ERST Of P.R. 1200	PGA	14		RC	35
789	C	200		S. OFS. JCT. P.R. ${ }^{1717}$	PGA			RC	35
791	c	217		WEST OF P.R	PG4	14		RC	35
792	c	217		EAST OF P.R P240	PG4	14		RC	35
783	C	246		S.8 KMTE OFP.R. 1297	PGA			RC	35
799	c	205		WEST OFP.T.K \#12	PG1	14		RC	35
797	c	216		S. OFS S. MCT. P.R M205	PG:	12		RC	12
799	c	403		EAST OF P.T.M. 6	PG5			$T$	
800	c	246		1.0 KOM M OFPP.T.A. 123	PG2	63		RC	35
801	c	302		NORTH OFPR 13003	PGA	14		RC	12
802	C	303		EAST Of P.T.M. 12	PG	14		RC	14
804	c	276		N. OF N. JCT. P.R 1205	PG4	12		RC	12
805	c	205		W. Of N JCT. Of P.R W216	PG1	14		RC	35
807	c	205		0.8 KM W. OFP. P.M. ${ }^{59}$	PG1	14		RC	35
606	c	205		EAST OF P.R 1600	PGI	14		RC	35
809	C	205		WEST OFP.R. 2200	PG1	14		RC	35
871	C	200		EAST OFP.R. 1246	PG4			RC	35
815	c	216		SOUTH Of P.T.H. S $^{\text {S }}$	PG4	12		RC	12
816	c	210			PGA	14		RC	12
817	c	319		0.5101 W. OF P.R. 1210	PGA	14		RC	8
618	c	317		ESST OFP.T.M 12	PGA	14		RC	8
619	C	311			PGA	14		RC	8
8201	C	311		ERST OFPRR M2003	PGA	14		RC	8
821	c	206		NORTH OFPPR 317	PG1	14		RC	12
822	c	206			PGI	14		RC	12
823	c	311		WEST OF P PR	PGA	14		RC	8
824	C	216		SOUTH OF P.R. ${ }^{\text {a }}$ 11	PGA	12		RC	12
825	c	317		EAST OFPP.T.M. ${ }^{\text {OSO }}$	PGA	14		RC	0
826	c	311		WEST OF P.T.M. ${ }^{\text {d }}$ S 59	PG4	14		RC	${ }^{1}$
828	c	311		ERST OFPR ${ }^{\text {a }} \mathbf{2 0 0}$	PG4	14		RC	8
829	c	200		NORTH OFP P. R 12005	PG2	63		RC	35
830	c	305		EAST OFP.R M200	PG2	63		T	63
831	c	305		WEST OF P.T.H. ESO $^{\text {a }}$	PG2	63		$T$	63
833	c	210		WEST OFP.T.H.\#12.	PG4	14		UC	8

Table D-1 (continued)

Sen.	Orn	Hmy. No.	they.   AR	Locetion	New TPG	New Control Sin.	Sesk Controd Stran	Od TPG	Old Controt Sts.
635	$\bar{C}$	210		EAST OFP.R 1200	FGA	14		UC	6
836	C	210		0.5 KMW WFPR 1200	PGT	7		UC	8
40	C	200		T.4 1GM N. OFP.R P210	PGI			RC	35
842	C	405			PG1	8		RC	
843	C	207		S. OFW. JCT.P.I.M.E1	PG1			UC	84
84	C	207		WESTOFP.R 2200	PG1	7		UC	6
845	C	201		NORTH OFP.R	PG1	4		RC	12
8 H	C	207		EAST OFPREROL	PG1			UC	64
847	C	208		NORTM OFPR ${ }^{\text {a }}$	PG1	14		RC	12
848	C	405		WEST OFPR 2003	PGI	7		RC	
59	C	301		3.2 MME OF FALCONLAKEACCESS	PG6			RES	74
851	C	308		SOUTHOFP.T.M ${ }^{\text {P }}$	PG3	74		RES	93
652	C	308		NORTH OFP.R 1003	FG3	74		RES	93
853	C	308		SOUTH OF P.R 1503	PG3	74		RES	93
854	C	503		WEST OFP.R W00	PG6			RES	93
65	C	503		EAST OFFP.R. 605	PGS			RES	93
65	C	505		WEST OFP.R ${ }^{\text {S }}$ S03	PG6			RES	93
657	C	503		NORTH OFP.R.R 1505	PEB			RES	93
859	C	$50 \%$		NORTH OFP.T.F ${ }^{\text {d }}$	PG5	12		RC	93
E0\%	C	508		SOUTH OFP P.R 1	PGA			RC	93
81	C	508		WORTH OFP.R. ${ }_{\text {WSOT }}$	PGA			RC	93
862	C	507		WEST OFFP.R. 1503	PG5	12		$\underline{R}$	93
805	C	302		NORTH OFP.T.H. ${ }^{\text {I }}$	PGA	14		RC	12
806	C	302		MOORTH OFP.R. $\mathrm{E}^{501}$	PGA	14		RC	12
607	C	501		EAST OFP.T.M. ${ }_{\text {ET }}$	PG1	8		RC	13
808	C	200		NORTH Of P.T.H. 1	PG1			RC	12
68.8	C	207		O.5 KM MORTH OFPP.T.H. $\mathrm{SO}_{1}$	PG1			UC	84
879	C	406		SOUTH OFP. P.T.E. 11	PG5	12		RC	
872	C	15			P63	13		TS	61
873	c	302		SOUTH OFP.T.M. ${ }^{\text {F15 }}$	PGA	14		RC	12
874	C	302		NORTH OFPP.T.H. 15	PGA	14		RC	12
878	C	207		NOKRTH OFP.T.H. 15	PG?	77		UC	77
87	C	208		NORTH OF P.R 213	PGI	8		UC	77
80.1	C	307		SOUTH OFPP.R	PGS	93		RES	93
601	C	408		SOUTH OFP.R. ${ }^{\text {P30 }} 07$	PG6	93		RC	
862	C	400		NORTH OFP.T.M. ${ }^{\text {P }} 11$	PG5	93		RC	
83	C	827		WOOLSON-S. OF P.T.H. ${ }^{\text {am }}$	TOW:			RC	
$8 \cdot 5$	c	435		WESTOFP.T.H. 12	PG5	12		RC	12
887	C	636		TYNDALL-0.2 KMK OFP.T.HEA4	TOWN			RC	
889	C	212		SOUTH OFP.T.M. RMA	PG4	12		RC	12
890	C	212		NORTH OF P.T.M. 84	PGi	67		UC	67
895	C	433		NORTH OFP.R 3313	PG6			RES	
897	C	520		NORTIH OFP.R W13	PG5	12		RC	93
898	c	317		NORTH OFP.T.H. ${ }^{\text {EII }}$	PGS	93		RC	75
907	C	317		EAST OFF P.T.H. E12	PG3	75		RC	75
902	C	317		WEST OFP.T.H. 12	PG3	75		RC	75
904	C	672			TOWN			RC	
907	c	319		NORTH OFPP.T.H. ${ }^{\text {P5 }}$	PGE	76		RES	78
504	${ }^{\text {c }}$	500		WEST OFP.T.M. © 12	PG8	78		RC	78
909	c	504		NORTH OFP.T.R	PGS	76		RC	93
910	C	205		EAST OFFP.T.A. 775	PG1	14		RC	35
912	c	243		EAST OFP.R. ${ }^{\text {P }}$ S24	PGA			RC	35
913	C	524		SOUTH OFP.R. 243	PGA			RC	35
914	$\bar{C}$	243		WEST OFP.R 6324	PG4			RC	35
915	C	243		EAST OFPR R M 31	PGA			RC	35
916	C	243		EAST OFP.T.H ${ }^{\text {S }}$	PGA			RC	35
9181	c	521		EAST OFP.T.H. 132	PG4			RC	35
921	$\underline{C}$	201		SOUTHOFP.R E 432	PG2	21		RC	35
922	C	432		NORTH OFP.R. 201	PG4			RC	35
824	c	201		EAST OFP.T.H. ${ }^{\text {P }} 31$	PG2	21		RC	35
925	c	201		WEST OFP.T.M. 31	PG2	21		RC	35
923	c	209		3.2 KME OFPR R 242	PG2	21		RC	35
929	C	242		SOUTH OF STOWFLLKE	PGA	58		RC	50
930	C	242		MORTH OFF SNOWFLAKE	PG4	58		RC	50
932	C	421		WEST Of P.T.H. 175	PG?	63		RC	35
933	C	421		EAST OF P.T.M. 030	PGA			RC	35
935	C	201		EASTOFP.R MJO	PG2	21		RC	35
936	c	300		SOUTH OF-P.R 2001	PG4			RC	35
937	c	306		MORTH OFP. R K201	PG4			RC	35
939	c	201		EAST OF P.T.M. ${ }^{\text {B2 }}$	PG2	21		RC	35
939	C	201		WEST OFP.T.H. ${ }^{\text {P32 }}$	PGS			RC	35
941	C	201		WEST OFP.T.P. ${ }^{\text {P }} 75$	P62	63		RC	35
942	C	420		O. 5 KM M. OF P.R 1201	PGA			RC	
943	C	207		EAST OFP. P. P.M. 30	PG2	63		RC	35
945	c	332		T.9 KIVIN. OFP.T.H. 114	PG2	81		RC	35
947	c	308		1.6 KMN. OFP.T.H. ${ }^{\text {P14 }}$	PG4			RC	35
949	$\bar{C}$	428		NORTH OFP.T.E. ${ }^{\text {Wha }}$	PG4			RC	35
950	C	432			PG7			RC	35
953	C	432		6.4 KMS. OF MORDEN	PGA			RC	35
957	c	240		NORTH OF P.T.H. ${ }^{\text {a }}$	PG2	61		RC	35
958	C	520		SOUTH OFP.T.M. ${ }^{3}$	PGA			$T$	35
$9 \overline{2}$	C	422		NORTH OFP.T.E. 23	PGA			RC	35
963	c	332		SOUTH OFP.T.M. ${ }^{\text {P23 }}$	PG2	81		RC	35
93	C	332		0.8 KOM N. OFP.T.L. 123	PG2	81		RC	35
956	C	336		NOFRTH OF P.T.H. 23	PGA			RC	35
981	C	300		SOUTH OFP.T.M. ${ }^{\text {W23 }}$	PGA			RC	35
9751	C	432		SOUTH OFP.T.H.C23	PGA			RC	35

Table D-1 (continued)

5 Sm	Dran	How. No.	Hany. All	Location	Now TPG	$\begin{aligned} & \text { New Control } \\ & \text { Son } \end{aligned}$	Susk Control Sen. ${ }^{4}$	Ond TPG	Ola Control Son
979	C	336		M OF W. ACCESS TO MIMMI	PS			$T$	35
981	c	200		MORTH OF P.T.H. ${ }^{\text {STS }}$	PG2	81		RC	35
802	c	240		SOUTH OF P.T.E. ${ }^{2} 23$	PG2	81		RC	35
965	c	212		MORTH OF P.T.M. 123	FG2	81		RC	58
900	c	242		SOUTH OFPP.T.H. ${ }^{123}$	PG2	81		RC	58
897	c	205		WEST OFP.T.E. 075	PGA			RC	35
960	c	330			PG2	63		UC	63
909	c	205		WEST OFPRR 0330	PG4			RC	35
900	C	205		E OFE JCT. P.R 1032	PG4			RC	35
891	C	205		EAST OFP.T.M. ${ }^{\text {a }}$	PGA			RC	35
933	c	336		SOUTH OFP.T.M. ${ }^{\text {S }}$	PGA			RC	35
906	c	655		POMEWOCO-M. OFP.T.H. ${ }^{\text {S }}$	TOWN			RC	
996	c	245		ERST Of P.R. E338	PGA			RC	58
909	c	330		WORTH OFPR 21245	PGA			T	35
1000	c	245		WEST OFPR. 0338	PGA			RC	50
1002	c	245		E OFF EJCT. PR. ${ }^{242}$	PGA			RC	58
1003	c	242		N. OFW. JCT. OFP.R.REAS	PG2	81		RC	58
1009	c	409		MORTH OF P.R EztS	PG4	58		RC	58
1007	c	305		WEST OFP.T.M. 175	PGI	14		RC	63
1000	c	330		N. OFFN. JCT. P.R. 3 S05	PG2	63		UC	63
1009	c	330		S. OFFS. JCT. P.R. ${ }^{10} 0$	PG2	63		UC	63
1010	C	305		ERST Of PR. ${ }^{\text {COB32 }}$	PG2	63		T	81
1019	c	332		SOUTH OFP.R	PG2	81		RC	35
1012	c	305		O. 3 K00 W. OFPP.T.H. ${ }^{\text {a }}$	PG4			$T$	87
1013	C	305		EASTOFP.T.M ${ }^{\text {P13 }}$	PG7	81		$T$	81
1074	c	305		WEST OFPT. T. ${ }^{\text {P13 }}$	PG2	81		$T$	81
1095	C	305		EAST OF P.R ${ }^{\text {P2 }} 40$	PG2	89		$T$	58
1076	c	240		SOUTH OFP P. $\mathrm{R}^{10305}$	PG2	68		RC	35
1018	c	247		WEST OFP.T.H. 75	PG1	9		UC	63
1019	c	247		EAST OF P.T.H. 13	PG1	51		UC	63
1020	c	334		SOUTH OFP. P.T.E. ${ }^{\text {a }}$	PG9	47		UC	47
1021	c	334		NORTH OF P.R. 1267	PG7	47		UC	47
1022	c	247		WEST OF P.R. CO3M	PG2	48		RC	89
1024	c	247		EAST OFPP.R 8248	PG2	81		RC	89
1025	C	24		SOUIT OFP.R. 204	PG4			RC	89
1023	c	247		WEST OFP.R. 240	PG2	51		RC	81
1027	c	332		SOUTH OFP. PT.TE	PG2	51		RC	35
1029	C	240		SOUTH OFFP.T.E.	PG4			RC	81
1030	C	248			PGa			RC	81
1034	C	240		WORTH OFP. P.T.E. 2	PG9	56		RC	35
1035	c	200		1.8 Kin S Of P.T.R. ${ }^{2}$	PGA	58		RC	35
1039	c	24		NORTH OF P.T.L. ${ }^{\text {M }}$	PG2	81		RC	58
1040	c	49		EAST OF P.T.M WM	PG4	58		RC	58
1041	c	427		ERST OFP.R	PG1	51		UC	57
8002	c	334		NORTH OF-P.R. Mi27	PGI	47		UC	47
1043	c	425		ENST OF P.R. 1034	PGi	47		UC	47
1045	c	33			PGI	47		UC	47
1045	c	424		SOUTH OFPR R 219	PG1	47		UC	47
1046	c	332		SOUTH OFP. P.T.L. 1	PG2	81		RE	35
1048	c	248		0.8 KM N OFP. T.H. ${ }^{\text {PI }}$	PG4			RC	81
1050	c	241		EAST OFPR. 240	PG1	48		UC	46
1059	C	661		ST. EUSTACME-WEST OF P.R 248	rown			RC	
1054	C	430		NORTM OFP.T.M. 1	PG2	87		RC	89
1035	c	250		$3.2 \mathrm{KOM} \mathrm{S}. \mathrm{OFP.T.M}.{ }^{\text {a }}$	PG3	96		RC	75
1056	c	331		1.3 KME OF P.T.L. ${ }^{\text {a }} 3$	PGM	58		RC	81
1058	c	331		3.0 kMW WEST OF NEWTON	PG4	58		RC	81
1060	c	240		2.7 ROM W. Of P.R. 1331	PG2	81		RC	35
1081	C	242		O.BMOMS. Of P.T.H. 1	PG2	46		RC	58
1062	c	242		NORTH OFP.T.L. 1	PG2	46		RC	58
1063	c	350		NORTH OF P.T.E. 11	PGa	58		$T$	58
1003	C	350		1.6 KOMS OF P. T.H. PI $^{\text {a }}$	PGA	58		$T$	58
1085	c	352		WEST OFP. P.T.EM	PG2	79		$T$	79
1070	C	350		WEST OF LAVENHAM	PGA	58		$T$	58
1077	C	350		WEST OFP.R W242	PG4	58		$T$	58
1072	c	242		EAST OFP.R 01350	PG2	46		RC	58
1073	c	330		SOUTH OFP.P.T.K. 910	PG2	63		4 C	63
1074	C	221		WEST OF P.T.H. 101	PG1	47		UC	2
1075	c	236		WEST OFP. T.M. $\mathrm{C}^{\text {a }}$	PG1	51		RC	2
1076	c	236		NOFTIH OFP P.T.L. 10	PG1	59		RC	2
1079	C	221		WEST OFPPT.T.S 7	PGT	57		UC	2
1000	C	220		WEST OFP.T.T. ${ }^{\text {a }}$	PG1	1		UC	1
1083	c	321		WEST OFP.T.H.C	PG1	1		UC	1
1064	C	230		S. Of P.R. ${ }^{\text {a }} 10$	PG1	3		UC	3
1005	c	480		EAST OFP.R. 1230	PG1	3		UC	3
1087	C	230		S.W. OFP.T.A. 137	PG1	3		UC	3
1063	c	67			PG1	3		UC	3
1082	c	221			PG2	48		UC	2
1099	c	221			PGA			UC	2
1095	c	248			PG4			RC	76
1090	c	67		EAST OFP.P. 1220	PGA	14		UC	3
1101	C	220		SOUTH OF P.T.E 107	PG1	1		UC	1
1102	C	321		WEST OFP.R. 6220	PG1			UC	1
1704	c	321		WEST OFPP.T.H. 7	PG1	-		UC	1
1105	c	236		SOUTH OF P.T.H. 67	PG1	1		RC	$\overline{2}$
1108	C	321		EAST OFP.R 1022	PG1	1		UC	1
1107	C	322		SOUTH OFP.T.R. ${ }^{\text {a }} 7$	PG4			RC	88
1108	c	227		WEST OFP.T.H. ${ }^{\text {a }}$	PGA			$T$	81

Table D-1 (continued)

Stin.	Dran	truy. No.	Hwy. Als.	Locrution	New TPG	Now Cortrox Strn	Sask Control $5 \mathrm{Sa}^{\wedge}$	Odd TPG	$\begin{gathered} \text { Old Control } \\ \text { Stu. } \end{gathered}$
1110	C	248		SOUTH OFP.R 2227	PG4			RC	75
1112	C	227		WEST OFPP.R 248	PG2	8		$T$	81
1113	C	430		N. OFN. MCT. P.R P227	PG3	65		RC	81
1114	C	227		WEST OFP.R 230	PG2	81		$T$	${ }^{1}$
1115	C	430		MORTM OFP.T.M 126	PG2	89		RC	81
1116	C	624		HIGH ELUFF-NORTM OFP.T.M. 20	TOWH			RC	
1110	C	227		EAST OFP. P.T. ${ }^{\text {a }}$	PG ${ }^{\text {c }}$	3		T	81
1119	C	23		NORTH OFP.R. ${ }^{\text {NS }} 23$	PG4			RC	2
1120	C	323		EAST OFPP.R. ${ }^{\text {230 }}$	PG5			RC	81
1121	C	2 C		SOUTH OFP.R :323	PGA			AC	2
1122	C	323		E OFE JCT.P.R 332	PG5			RC	81
1123	C	322		SOUTIA OFP.R 1323	PG4			RC	83
1124	C	322		W. OFE JCT. P.R. H23 $^{\text {a }}$	PGA			RC	61
1125	c	323		ESST OFP.T.A. ${ }^{\text {P }}$	PG6	4		RC	81
1127	C	240		HORTH OFP.R. ${ }^{\text {C27 }}$ 27	PG4			RC	76
1129	C	248		SOUTH OFP.R Will	PGA			RC	78
1129	C	518		1.6 KM ML OFP.T.K. 6	PG2	16		RC	86
1130	C	411		WESTOFP.R. 268	PGS			RC	75
1132	c	411		ESSTOFP.R. ${ }^{\text {a }} 30$	PGS			RC	75
1835	C	320		Q. 5 KM S OFP.T.M. ${ }^{\text {a }}$	PGA	68		UC	67
1739	C	238		WEST OFFP.T.E. 17	PG2	96		T	2
1741	C	$3{ }^{2} 2$		NOFTH OFP.R ${ }^{\text {Wa }} 3$	PGB	4		RC	81
1142	C	322		SOUTH OFP.R.EA15	PG:	4		RC	81
1143	C	232		E OFS. STT.P.T.M. ${ }^{\text {do }}$	PG6	4		RC	75
3149	C	225		EASTOFPFT.A. 6	PG8	4		TS	75
1745	C	6.4		FONEMXH-E OFP.T.H. ${ }^{\text {P }}$	TOWN			RC	
174	C	229		WEST OFP.T.R. B $^{\text {S }}$	PG6	4		T	75
1147	C	519		EAST OF P.T.H. ${ }^{\text {P }}$	PG\%	78		RC	93
1146	C	238		32 KM W. OF P.T.H. ${ }^{\text {W }}$	PGB	4		T	75
1150	C	324		EAST OFPPT.E. ${ }^{\text {a }}$	PGS			RC	4
1151	c	222		NORTH OFP.R 1324	PG6	4		TS	75
1152	C	604		ARNESACCESS E OF PIH	TOWN			RC	
1853	C	222		1.6 KOMS. OF HNAUSA	PGE	4		TS	75
1159	C	222		1.0 KMN.W OF RALWAY CROSSING	PG:	4		TS	75
1155	C	640			TOWN			RC	
1158	C	329		1.8 KOW OF SANDYEAR	PGB	,		RC	16
1157	C	329		EAST OFPPT.H. ${ }_{\text {B }}$	PGE	4		RC	16
1158	C	8		SOUTH OF P.R ${ }^{\text {d }} 3$	PG3	75		IS	4
1181	C	234		SOUTH OFP.R. 1235	PG6	4		TS	75
1762	C	234		AORTH OFP.R 3325	PG6	4		TS	75
1165	C	17		24 KME E Of P.T.A. ${ }^{\text {F }} 7$	PGS			T	18
1780	C	415		0.5 kOW W. OFP.T.M. ${ }^{\text {P }}$	PG4			T	89
1167	$\bar{C}$	518		SOUTH OFP.R A15	PG2	16		RC	16
1468	C	415		EAST OFP P.R 6518	PGA			T	81
1169	C	415		NORTH OF P.R 1 ST8	PG5			T	81
1179	c	17			PG2	18		T	16
1172	C	47		S. OF N. JCT. P.R \$229	PG2	16		$T$	16
1173	C	416		WEST Of P.T.H. 17	PG4			$T$	81
1174	C	17		N. OFFN. JCT. P.R. 2229	PG2	16		T	16
1178	C	229		20.0 KMEAST OFP.T.H. 10	PG2			T	81
1181	C	6		24 KMNW. OFP.R. 229	PG3	60		TS	4
11.8	C	17		NORTH OFP.R P 231	PG2	16		T	18
1183	c	449		EXST OF P.R.ES 12	PG2	60		RC	81
1884	C	512		HORTH OF P.R P49	PG2	60		$T$	60
1985	C	419		WEST OFP.R. ${ }^{\text {P }} 12$	PS2	60		RC	81
1186	c	419		24 MOE OF P.T. H. 38	PG2	60		RC	81
1180	c	419		0.6 KM N.W. OFP.T.H.	PG2	6		RC	75
1193	c	68		32 MME OFP.T.H. ${ }^{7} 7$	PG6	4		TS	4
1194	C	328		1.8 KM N. Of ARBOAG	PG4			RC	16
1195	C	329		WEST OF P.T.M. ${ }^{\text {P }} 8$	PG5			RC	16
1202	C	320		WORTH OFP.R. 329	PGA			RC	16
1203	C	326		EAST OFP P.R 2383	PG4			RC	16
1205	c	233			PG6	4		RC	81
1206	$\bar{C}$	329		EST OFPR 233	PG5			RC	16
1207	c	233		SOUTIH OF P.R. 389	PG6	4		RC	81
1200	c	329			PGS			RC	16
1209	C	329		EXST OF P.T.M. ${ }^{\text {P }} 17$	PGS			RC	16
1210	C	17		SOUTH OFP.R. ${ }^{\text {a }}$ S 3	PG2	16		$T$	16
1211	C	233		WEST OFP. P.T.H. 17	PGS			RC	81
1212	c	17			PG2			$T$	$8 \overline{8}$
1213	C	325		ERST OFP.R. 122	PG3	60		$T$	60
1214	C	325		WEST OF P.R 0224	PG3	60		$T$	60
1215	C	325		WEST OFP.P.T. ${ }^{\text {a }} 17$	PG3	60		T	80
1218	$\bar{C}$	68		SOUTH OFPPR R ${ }^{\text {S }}$	PG2	49		T	49
1218	c	325		NORTH OF P.T.H. 8	PG3	60		T	60
1220	C	68		WEST OFPR 1325	PG2	49		7	49
1221	C	328		WEST OFP.T.H. ${ }^{\text {M }}$ S	PG2	60		RC	60
1222	C	65		GYPSUMNLLE-E OFP.T.H. d $^{\text {a }}$	TOWN			RC	
1223	C	34		MORTH OF U.S. EORDER	PG2	21		RC	621
1225	C	423		ESST OFP.T.M. 34	PGA	58		RC	621
1228	C	342		N. OF CLEARWATER ACCESS RD	PG4	58		T	621
1227	C	253		WEST OFFP.R 140	PG2	68		RC	58
1226	C	400		NORTH OF P.R. 2353	PGA	50		RC	621
1229	C	242		0.3 KMN OFP.T.H. ${ }^{\text {C/ }}$	PG2	48		RC	58
1230	$\bar{C}$	440		SOUTH OF P.T. ${ }^{\text {a }}$ 23	PG4	58		RC	621
1232	C	532		SOUTH OFP.R. 245	TOWN			RC	58
12331	C	245		EAST OFP.R. 0532	PG4			RC	58

Table D-1 (continued)

Str,	Dren	Hwry. Na.	Hary. AR	Locmion	New TPG	$\begin{aligned} & \text { New Control } \\ & \text { Sun. } \end{aligned}$	$\begin{gathered} \text { Sask Coritod } \\ \text { Stu2." } \end{gathered}$	Old TPG	Ola Control Sts.
1235	C	245		EAST OFPPR M312	PG8			RC	58
1236	C	32		NORTM OFP.R 0245	PG2	21		T	58
1239	C	42			PG4	58		RC	621
12401	C	42		WEST OFP.R. 1312	PG4	58		RC	627
124	C	253		WEST OFS JCT. P.R R342	PG2	68		RC	50
1212	C	253		S. OFM JCT. P.R W302	PG2	68		RC	58
1243	C	312		ESSTOFP.RET253	PGA	58		T	621
1248	C	342		SOUTH OFFP.T.E.ER3	PG2	21		T	627
1245	C	32		MORTH OFFP.T.M. ${ }^{\text {P23 }}$	PG2	21		T	53
1246	C	5			PG2	21		AC	821
1290	C	5		SOUTHOFPR Eza3	FGR	21		RC	621
1209	c	253		EAST OFPP.T.H.ES	PG2	6		RC	58
12501	C	5		SOUTH OFP.T.M. ${ }^{23}$	PG2	21		RC	621
1251	C	5		NOKTIH OFPP.T.H. ${ }^{23}$	PG2	21		RC	621
1253	C	458		MORTH Of P.T.M. ${ }^{\text {S }}$	PG4	58		RC	621
1256	c	253		E OFE JCT.P.R MSS	PG2	6		RC	58
1257	C	253		W. OFE JCT. PR M153	PG2	68		RC	58
1258	C	458		NLOFE JCT. P.R MES	PGA	58		RC	621
1250	C	458		SOUTH OFP.T.M 123	PG4	58		RC	621
2200	c	618			TOWN			RC	
1281	C	618		BEINOTT-E OFWEST JT.P.T.H. 23	TOWN			RC	
1201	C	18		SOUTHOFLENA	PG2	66		T	60
1205	C	341		OSTOW OFP.T.M 18	PG2	21		$\gamma$	621
1207	C	253		EAST OFP.T.M ${ }^{\text {P }}$	PG2	66		RC	58
1272	6	34		WAVAAESA - NORTH OFP P.T.H. R 2	PG4	58		RC	68
1273	C	340		NORTH OFFP.T.H. ${ }^{\text {P } 2}$	PGA	58		RC	68
1274	C	340		MORTH OF SOURISRIVER	PGA	58		RC	6
1279	C	675		STOCKTON-NORTH OFP.T.H E2	TOWN			RC	
1282	C	311		EAST OF P.TM ${ }^{\text {P }} 10$	PG2	27		$T$	629
1283	C	10		SOUTH OFPR ${ }^{\text {cha }}$	PG2	21		$T$	27
1285	C	346		MORTH OFP.T.E. ${ }^{3}$	PG2	65		T	66
1283	C	348		1.6KMN. OFP.R. 1.43	PGA	56		T	68
1287	C	43		32 kME OFP.T.H. ${ }^{\text {a }}$	PGA	56		RC	21
1290	C	346		SOUTH OFP. P.T. ${ }^{\text {COS }}$	PGZ	68		$T$	66
1292	C	346		1.6 KOM OF P P.TM ERS	PG2	68		$T$	68
1293	C	346		SOUTH OFP.P.M. 2	PGA	58		$\stackrel{5}{6}$	68
1293	C	650		NESSITT - N. Of P.T.H. 2	TOWN			RC	
1296	C	453		WEST OF P.R. ${ }^{3} 40$	PGA	56		$T$	24
1308	C	349		WEST OFP.T.R STO	PG2	66		$T$	24
1308	C	232		EOFN.CT.P.T.H. 9	PG6	4		RC	75
$\underline{4} 309$	C	43			P(4)	24		T	24
23101	c	457		WEST OFPR. 1340	PGA	24		RC	24
1311	C	340		SOUTH OFPR 1057	PGA	50		RC	68
1314	C	450		SOUTH OFP.P.T. ${ }^{\text {S }}$ S 3	PG2	21		RC	21
1318	C	21		SOUTH OFPR R 225	PG2	21		$T$	78
1319	C	258		EAST OFPR MST	PGA	55		$T$	56
1320	C	452		MORIH OFP.R 2251	PG4	56		$T$	58
1329	C	25 t		5,0KOM WEST OF WASKADA	PG2	40		t	58
1326	C	258		NORTTH OFU.S EOROER	PG2	29		T	56
1328	C	254		SOUTH OFP. P. . ${ }^{\text {S }}$	PG4	58		$T$	56
1327	C	254		1.6 KOM OFP.T.K. ${ }^{\text {a }}$	PG4	58		$T$	58
1328	C	452		SOUTH OFP.T.E. ${ }^{\text {a }}$	PG2	21		$T$	56
1329	C	452		WORTH OFPP.T.A. H $^{\text {S }}$	PGA	56		$T$	56
1331	C	45		EASTOFPPR R256	PGA	5		RC	58
1332	C	252		NORTH OFFP.T.E. 13	PG2	40		RC	56
7336	C	452			PGA	58		$T$	56
1337	C	254		1.6 KMAS Of PR 345	PGA	5		$T$	58
1338	C	345		1.6 KMEOFPR254	PG4	58		$T$	58
1339	C	254		NORTH OFPR R WES	PGA	50		7	56
1340	C	355		EAST OFPP.T.M. ${ }^{\text {de }}$	PG2	40		$T$	56
1341	C	345		WEST OF P.T.M 23	PG2	40		T	56
134	C	252		SOXTH OFP.R.3TS	PG2	40		RC	56
1344	C	345		WEST OFP.R. 252	PG2	40		$T$	56
1345	C	25		SOUTHOFP.R 236	PG2	21		$T$	58
1340	C	256		NORTM OFPR	PG2	21		T	56
1347	C	345		1.6 KG1 W. OF W. JCT. P.R.EDS6	PGA	56		$T$	56
1350	c	548		WESTOFP.TH WR	PGA	56		$T$	40
13571	C	254		WEST OFP P.R 31	PGA	56		T	56
1358	C	254		SOUTH OFPP.T.Y. ${ }^{\text {P2 }}$	PG4	56		T	56
1350	c	340		WORTH OFF.T.H. ${ }^{\text {d }}$ 2	PG2	68		$T$	24
1361	C	254		NORTHOFP.T.H. ${ }^{\text {P2 }}$	PG2			T	58
1384	C	258			PG2	21		T	56
1305	C	256		SOUTH OFP.T.M. ${ }^{\text {P }}$	PG2	21		$t$	56
1307	C	349		EAST OFP.R. $\mathrm{Sa}^{50}$	PGR	68		T	24
1368	C	250		MORTH OFP.R. 3 39,	PG2			RC	24
1370	c	513		EAST OFP.R P2SA	PG2			T	78
1372	C	254		EASTOFOMRAKE	FG3			$T$	58
1373	C	254			PG3			$T$	58
1374	C	255		EASTOFFP.T.H. 103	PG2	40		T	75
1377	C	255		EEST OFPR R 230	P64	58		$T$	56
1378	C	256		SOUTH OFP.R.E255	PG2	21		$T$	55
1379	C	255		WEST OFP.R.RSS	PG4	50		$T$	56
1360	C	257		ERST OFP.R. ${ }^{258}$	PG2	40		RC	56
1369	C	256		TNORTH OFPP.R 1237	FG2	29		$T$	58
1384	C	352		NORTH OFFP.T.H. ©	PG2	79		$T$	58
1387	C	351		S. OF E. JCT. P.T.H. 81	PG2	79		RC	79
1388	C	5		9.7K01S OFP.R. ${ }^{3} 351$	PG2	79		T	79

Table D-1 (contínued)

Stan	Din	Hmy. Na	Hary. AL	Location	Now TPG	$\begin{gathered} \mathrm{New} \text { Contro: } \\ \mathrm{Sta} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Sask Cortres } \\ & \text { Sen. } \end{aligned}$	Okd TPG	Olit Control Sut.
1389	c	- 5		SOUTH OF P.R $\mathbf{3} 551$	PG2	79		AC	24
1397	C	351		S. Of W. JCT P.T.H.	PG2	79		RC	79
1392	C	44		NOFTH OFP.T.M. ${ }^{\text {a }}$	PG2	79		$T$	24
$13 \times 3$	C	40		WCRTHOFP.T.H.EI	PG4	24		$T$	24
13991	c	457		3.2 NEDEO	PG4	24		RC	24
1386	C	639		BRANOON MRPOFT - W. OFP.T.H. E1O $^{\text {S }}$	TOWN			RC	
1389	C	10			PGE	24		RC	24
13971	C	450		ERST OFP.T.M	PG7	24		RC	24
1300	C	455		WEST OFP.R. CSO $^{\text {a }}$	PG2			RC	24
1407	C	254		NORTH OFP.T.A.	PG2			T	56
14031	C	238		Q.SEIS OFRLW X-SING	PG3			$T$	56
1408	C	258		1. TMS OFP.T.H.	PGR	21		$T$	56
1407	C	255		WCRTH OFP.T.H. ${ }^{\text {a }}$	PG	21		T	58
1400	C	242		SOUTH OFP.T.M ATS	PG2	48		RC	51
1490	c	242		32 KMN OF WESTEOURNE	PGE	4		RC	75
1411	C	242		12.SMN. OFP.T.KE16	PGS	4		RES	75
1482	C	507		EAST OFPP.T.E 130	PGS			RES	46
1415	c	508		EAST OFFP.T.EL 30	PGB			RES	$4{ }^{4}$
1418	C	205		OESTE EF P.T.H. 0	PGS			RES	76
1417	C	206		1.8KMW OF P.T.H. 060	PG			RC	87
1419	c	350		SOUTH OFP.TAL TIS	PGA	58		T	50
1422	C	205		EAST OFP.R m200	PGA			RC	87
1423	C	205		1.610, W. OFPR. 1200	PG4			RC	59
1428	C	352		SOUTH OFP.T.M. ${ }^{\text {P1 }}$	PG2	79		$T$	58
14301	C	352		SOUTH OFPR.	PG2	79		T	58
14311	C	205		EAST OFPR 0 SS2	PG2	83		RC	81
1432	C	352		EAST OF EIRNE	PG2	79		T	58
1433	C	215		11.6 NOM E OFP.TM. 5	PG2	83		RC	89
1434	C	352		EMST OFPTM	PG2	19		T	58
1435	C	357		WEST OFP.TM. ${ }^{\text {W }}$	PG3	97		RC	98
1438	C	235		WEST OFP.T.H. ${ }^{\text {S }}$	PG2	83		T	79
1440	C	5		SOUTH OFPR.R 153	PGE	79		R T	79
1481	C	353		1.0 ROM E OFP.R Ma	PGA	28		T	24
1492	C	464			PG4	28			24
1443	c	353		W OFPR AMA	PG4	79		RC	24
14461	C	353		ESST OF P.R	PG4			T	24
14478	C	353		ESST OFP.T.M. ${ }^{\text {WeST }}$	PG2	79		T	24
14491	C	485		EAST OFP.R. ${ }^{\text {ckick }}$	PG2	79		T	24
1451	$\stackrel{C}{C}$	4			FGA	58		T	24
1453	C	406		SOUTH OFP.T.	PG2	43		T	24
1454	C	673		FRANIUN-NORTH OF P.T.H. 818	TOMN			RC	
1459	c	471		EAST OFP.R 600 EETHANY	PG2	43		T	24
1459	c	472		WEST OF PR.R CoS EETHANY	PG2	43		T	24
14801	c	202		SOUTH OFP.R. 479	PG2	43		RC	24
1461	C	262		SOUTH OF P.R. 28.5	PG3	${ }^{3}$		RC	24
1462	C	285		EAST OF P.R. 2802	PG2	83		RC	24
1453	C	202		NOTIT OF P.R 1235	PG3	97		RC	96
1465	C	357		EAST OFPR R 282	PG3	96		RC	24
1406	C	202		NORTH OF P.R 3157	PG2	43		RC	24
14691	C	270		SOUTH OFP.T.H. ${ }^{\text {NS }}$	PG2	43		RC	24
1470	c	270			PG2			RC	24
1471	C	250			PG4	28		RC	24
1472	C	259		1.6 KOW R OFPR R 6364	PGM	28		RC	24
1473	C	259			PGZ			RC	62
1474	c			SOUTH OFP.R. MSS	PGA	28		RC	24
1481	C	254		EMST OFP.R.RES NORTH OFPR R 23	PG1	28		RC	24
1483	C	250			PGZ	43		RC	24
1484	C	270			PG2	43		RC	24
1486	C	250		NORTH OF P.T.H. 24 SOUTH OFP.T.H. 24	PG2	43		RC	24
1487	C	250			FG2	21		RC	90
1488	c	354			PGA	28		$T$	90
1492	c	607		WEST OFP.T.H. ${ }^{\text {E OFE JCT.P.R. } 23}$	PGA	28		$T$	24
1483	c	67		E OFE HCT. P.R. ${ }^{\text {NORTH }}$	PG2	21		$T$	56
1439	c	258			PG2	21		$T$	58
14851	C	256		SOUTH OFP.R. W. OFW. JCT. P.R SSS	PG2	29		T	24
14891	c	256		W. OF W. JCT. P.R 258 SOUTH OFP.R 07	PG2	25		$T$	25
1497	C	48		SOUTH OFP.R ${ }_{\text {N }}$	PG2	27		RC	90
1501	C	354		NOFTH OFP.T.H: 24	FG2	21		RC	90
15021	C	354		SOUTH OFP.R. 335	PGA	28		RC	24
15081	C	408		WEST OFPT.H. ${ }^{\text {Eat }}$	PGi	20		RC	24
1507	C	40			PG4	28		RC	24
1509	C	355		EAST OFP.R. 270 SOUTH OFP.R S	PG2	43		RC	24
1511	C	270		SOUTH OFP.R WEST OFP.R R270	PGA	28		RC	24
1512	C	355		WEST OFP.R. P270 E OFW. JCT. P.R 0353	PG2	43		RC	24
1514	C	250		E OFW. JCT. P.R ${ }^{\text {N }} 35$ NORTII OFP.R. 363	PG4	58		T	24
1515	C	434		NORTH OF P.R. 363	PG4	28		RC	90
15161	C	353			PGZ	21		RC	90
1517	C	354		NORTH OF P.R. ${ }^{\text {W. } 35}$	PG2	21		RC	90
7518	C	354		W. OFW. JCT. P.R. 351	PG4	28		RC	90
15211	C	355		EAST Of P.T.H. 21					

Table D-1 (continued)

Sm.	Dirn	Hay. No.	\$ny. Aks.	Lecation	New TPG:	New Control Sin .	Sask Control Strn.^	Old TrG	Oid Contral Stir
1522	C	356		WEST OFPP.T.M. ${ }^{\text {C21 }}$	PG4	28		RC	90
15231	C	355		EAST OFP.R 1204	PG4	28		RC	90
15291	C	264		1.6 KMS. OFP.R. 3 S 5	PG4	28		$T$	90
1525	C	238		1.6 KMN OFP.R W3SS	PG4	28		$T$	90
1528	C	355		1.6KW W. OFP.R. 234	PG4	28		AC	SO
1520	C	474		1.60MS. OFPR.ROS	PG*	28		R ${ }_{\text {c }}$	90
1529	C	355		UEST OFP.R. 1774	PG4	28		RC	50
1531	C	256			PG2	21		$T$	56
1532	C	571		WESTOFP.T.M ${ }^{\text {ati }}$	PG2	25		$T$	90
7535	c	270			PG2	43		AC	75
1537	C	250			PGA	28		AC	75
1538	C	250		T.8 LomS OFPP.T.H. 16	PG2	43		RC	26
15300	C	354		1.610. M, OFPP.T.R. 16	PG2	27		RC	50
1549	C	354		12.6 KMS OFP.T.M. ${ }^{1 / 16}$	FG2	27		RC	90
15181	C	477		WEST OF P.T.M. 27	PG4			RC	90
15971	C	23		SOUTH OFP.TIT. AR	PG2	43		T	SO
1548	C	264		17.6 KMS. OFP.T.H. ${ }^{\text {P16 }}$	PG2	43		1	90
1550	c	508		WEST OFPP.T.M E3	PG2	43		$T$	90
1551	C	583		SOUTH OFFP.T.M. AR2	PG2	43		$T$	90
155	C	23		MORTH OFP.TH. ${ }^{\text {cio }}$	PG2	43		$T$	90
1558	C	472		$13.2 \mathrm{kMS.OFP.T.M}$ P16	PGA	20		$T$	90
155	C	475			Prat	28		$T$	90
1559	C	354		SOUTH OFP.T.M MS	P' ${ }^{\text {ck }}$	23		FC	90
7581	C	$50 \%$			PG2	43		RC	90
1534	C	$2 \overline{2}$		ERST OFP.T.M. Fio	PG5			FC	24
1585	C	270			PG3	96		RC	24
1507	C	270		SOUTH OFP.R. 359	PG3	96		RC	75
15501	C	358		NORTH OFFPR M202	PG3	96		RC	90
1509	C	470		WEST OFPR.RES0	PG3	98		RC	75
1570	C	354		N. OFN. JCT. P.R 2970	PG3	96		RC	90
1573	C	577		SOUTH OFPR R 638	PG2	43		RC	90
1574	C	577		[MORTHOFP.R SSE6	PG2	43		RC	90
1578	C	577		EAST OFP.R.	PG2	43		RC	90
1577	C	234		NORTHOFP. 0577	PG2	43		$T$	90
1578	C	264		MORTH OFFP.T.M. MS	PG4	26		T	90
1579	c	204		0.5 kOS . OF ROSSEURM	PG2	43		$T$	90
1582	c	475		ESST OFP.T.T. ${ }^{\text {P18 }}$	PG4	28		$T$	90
1583	C	478		IT.6 KOW W. OFP.T.M. ${ }^{16}$	PG4	28		$T$	90
1505	C	478		WEST OFP.R. 519	PG2	60		$T$	90
1503	C	579		MOORTH OF P.R PA7E	PG2	80		$T$	90
1589	c	478		SOUTH OF P.T.H. 1.5	PG2	80		$T$	90
1591	$\bar{C}$	476			PG2	80		$T$	90
1592	C	478			PG4	28		$T$	90
15931	C	478			PG4	28		$\bar{T}$	90
1585	C	28		EASTOFPR ACT6	PG2	43		$T$	90
1590	c	284		WEST OF P.R 678	PG2	43		$T$	90
1602	c	575		WEST OFP.R 1200	PGA			RC	49
1600	C	48		10.010M N OFP.R. 2.5	PG2	49		T	24
1605	C	462		MORTH OF P.R 28.5	PG2	49		$T$	24
1608	C	200			PG2	83		RC	58
1609	c	281		NORTH OFFP.R ${ }^{\text {P200 }}$	PG2	83		RC	32
1612	C	261		EAST OFP.R 12	PG2	83		RC	32
1612	C	482		MORTH OF P.R 1281	PG4	58		5	24
1613	C	42		1.91015.	PG4	58		$T$	24
1614	$\bar{C}$	281		WEST OFP.R. ${ }^{\text {N/E2 }}$	PG2	83		RC	32
1816	C	270			PG3	96		RC	75
1617	C	462		EAST OFPP.T.H.ES	PG2	49		$T$	24
1623	C	300		EAST OFS JCT PIM	PG2	48		RC	49
1624	$\bar{C}$	480		WEST OFP.T.H.ES	PGA	32		RC	32
1625	c	360		EAST OFNJCT PTHS	PG2	49		RC	49
1639	C	276		SOUTH OF MEIHLEY BEACHACCESS	PG3			RC	75
1632	C	276		NORTH OF METHLEY EEACHACCESS	PG3			RC	75
1633	C	628		WETHLEY BEACH - WEST OFP.R \$276	TOWN			RC	
1636	$\bar{C}$	304		WESTOFRORKTON	PGS			7	32
1637	C	364			PGB			5	32
1639	C	401		EAST OFP.R. 8278	PG2	60		RC	75
1638	C	278		2.7 KMM . OFP. P. Meit	PG6			RC	75
1840	c	481		WESTCFP.R. ${ }^{\text {P27 }}$	PG2	60		RC	75
9691	C	480		NORTH OFP.R. ${ }^{\text {Ma }}$	PG5			RC	75
1642	C	208		SOUTH OFP.R M276	PG3			$T$	32
1683	C	276		ERST OFPR R 200	PG6			AC	75
1644	c	276			PGB			RC	75
1645	C	323			PGS			RC	60
1846	C	276		NORTH OFFP.R. ${ }^{\text {an }} 3$	PG6			RC	75
1647	C	400		SOUTH OFPP.R. EST2	PG2	48		RC	32
864	C	502		WEST OFPR M ${ }^{\text {P }}$	PG2	49		RC	49
$\underline{7649}$	C	450			PG2	49		RC	32
1653	C	502		SOUTH OFFP.T.H. HS $^{\text {S }}$	PG2	49		RC	49
7659	C	302		O.S KOM OFP.T.H ES-A	PGA	32		T	32
1658	c	274		S. OFE JCT. P.T.M. BS $^{\text {S }}$	PG2	84		T	32
1657	c	274			PG4	32		$T$	32
1658	c	274		S. OF W. JCT. P.T.M. ${ }_{\text {W }}$	PSA	32		$T$	32
1659	c	303		SOUTHOFP.T.M.	PG4	41		RC	32
1630	C	594		SOUTH OFP.P.T.H. ${ }^{\text {W }}$	PG2	8		RC	41
1601	c	504		NORTH OFPP.T.H. ${ }^{\text {H }} 5$	PG2	84		RC	48
1602	C	584		NORTTH OFP.P. ${ }^{\text {S }}$	PG2	84		RC	41
1681	C	$30 \%$		EASTOFPR RSSA	PG2	84		RC	32

Table D-1 (continued)

Sten.	Dim	Hery. Na	thery. AR	Locrion	Now TPG	$\begin{gathered} \text { New Control } \\ \text { Ston. } \end{gathered}$	Sask Control Sm.n	Of TPG	$\begin{aligned} & \text { Old Controt } \\ & \text { Sen. } \end{aligned}$
$\underline{165}$	C	563		SOUTH OFPP.T.M. ${ }^{\text {B }}$	PG4	41		RC	41
1067	C	533		EASTOFP.T.H. ${ }^{\text {a }} 3$	PG4	41		RC	41
168	c	434		FORTIH OFF P.T.H. 6	PGA	41		RC	75
1671	C	300		ERST OFP.R. 6002	P34	41		RC	41
1672	C	592		NORTH OFP.R EOB	PGA	49		RC	41
1673	C	300		ERST OFFP.T.H. ${ }^{\text {C3 }}$	PG4	41		RC	47
1674	$\bar{C}$	462		WEST OFP.T.H WSS	PG6		92	RC	75
1875	C	42		O.S IOMN. OF SHELINOUTH DAM	P66		92	RC	75
1600	C	592		SOUTH OFP.R	PG4	41		RC	41
1606	C	334		SOUTH OFP.R 020	PG6			$T$	32
1607	C	209		IN. OFS JCT. P.R M304	PGZ	64		$T$	32
1685	C	20		WEST OFPR SAM	PG2	84		T	32
1669	C	20			PG3			$T$	32
1080	C	336			PG6			T	32
1607	$\underline{C}$	208		OS KOWW OFP.TH.	PG2	84		$T$	32
1683	${ }^{\text {c }}$	271		EASTOFPR M00	PG2	4		RC	32
1689	C	49		WORTHOFP.R. E271	PG5			RC	79
1006	C	271		WESTOFPR MOP	PG2	84		FC	32
16871	C	302		32 CMS OF VALLEY RIVER	PG2	49		T	32
1700	C	362		200MS OFPR W207	PG4	32		T	32
1762	C	267		WEST OFFP.T.M. 10	PG2	84		7	32
1704	C	273		EAST OFP.T.M E10	PGZ	84		RC	32
1705	C	274		SOUTH WEST OF P.T.H. $\$ 10$	PG2	84		T	32
1703	C	209		1.6NOE OF ETHELBERT	PG4	32		7	32
1707	C	613		GARLANO-EAST OFP.T.H. 10	TOWN			RC	
1791	C	308		S. OF N. EDRY, RMI OF GRANDVIEW	PG2	84		RC	32
1713	$\bar{C}$	274		S. OF P.R ${ }^{\text {a }}$ 207	PG2	B		$T$	32
1794	C	274		N. OFFPR R207	PG2	B		T	32
1795	C	307		E OFW. SCT. P.R W0S	PG6			RC	41
17161	c	308		N. OFW. JCT. P.R ESAT	PG2	84		RC	36
7719	E	594		SOUTH OFPPR RSG4	PG5			RC	75
1719	C	447		W. OF N. JCT.P.T.M. 03	PGA			RC	38
1722	C	403		SOUTHLEAST OF DUREAN	PG4			RC	36
1723	C	308		SOUTH OFP.R Eas	PG2	84		RC	38
1724	C	485		EAST OFPR R MEO	PG4			RC	38
1725	6	480		SOUTH OFP.R. 415	PGA			RC	36
1728	C	485		WEST OFP.R MOCS	PG4			RC	36
1727	C	406		NORTH OFFP.R M	PG4			RC	36
1729	C	487			PG4			RC	38
1730	c	406		SOUTH OFP.T.H. 03	PGA			RC	38
1732	c	408		SOUTH OFF P.T.M. ${ }^{\text {a }} 10$	PGA			RC	36
17331	C	275		1.E Kin W. OFP.T.M. \#10A	PG4			RC	36
1735	C	275		WEST OF JCT. P.R SE8	PG4			RC	36
7737	C	275		EAST OF SASK BIORY.	PG4			RC	36
1736	C	557		EAST OF BOWSTAN	PGA			RC	38
1739	C	279		WEST OFP.T.H. 10	PG5			RC	36
1770	c	279		NORTH OFPR SSE	PGE			RC	36
1741	C	588		SOUTHOFP.R 273	PG5		74	RES	36
1748	C	206		1.6 KMS OFPR CRA	PG4			RC	38
1775	C	288		EAST OF P.T.F. 10	PG4			RC	36
1747	C	10		SOUTH OFP.R. ${ }^{\text {CR2 }}$	PGT	72		TS	72
1746	c	202		WEST OFP.T.H. ${ }^{\text {P10 }}$	PG7	72		RC	73
1749	C	10		NORTH OF P.R. ${ }_{\text {WRe }}$	PG7	72		TS	72
1750	C	39		E OFISMUASLM LAKEACCESS	PG7	72		RC	73
1751	C	588		S. OF P.T.M 69	PG7	72		RC	82
1752	C	30		E OF JCT. PR. 590	PG7	72		RC	82
9753	C	393		EAST OF P.R 1392	PG7	73		RC	82
1755	C	258		NORTHOFP.P.T. ${ }^{\text {a }}$ S	PG4	56		T	56
1755	C	445		3.2 KMW OFMELITA	PGA	56		RC	56
17501	C	258		NORTH OFP.R. ${ }^{\text {P4 }}$	PG2	29		$T$	58
1759	c	343		ERST OFFP.R. ${ }^{\text {a }}$	PGZ	21		T	56
1760	c	44		NORTH OFPRR 3 M	PGA	58		$T$	21.
1762	c	343		EAST OFP.R PaM	PG7	56		$t$	56
1763	C	449		MORTH OFPR R W ${ }^{\text {a }}$	PS4	56		T	50
1764	C	512		SOUTH OFP PTM 103	PG2	6		T	80
1785	C	68		WCRTH OFFPR RST2	PGS	60		$T$	16
7780	6	418		SOUTH OFPR.REA7	PG2	50		AC	19
1787	c	417		WEST OFP.R ETIS	PG6	78		RES	78
1771	6	250		1.6 KMN. OFP.T.M. ${ }^{\text {a }}$	PG3	96		RC	90
1772	C	354			PG4	28		RC	90
1873	C	600		MANHGOTOGAN ENTRY W. OFP P.R Ba4	TOWN			RC	
1775	C	352		$T$	PG2	79		$T$	79
1789	C	347		SOUTH OFP.T.M. ${ }^{\text {a }}$	PG2	40		T	66
1792	C	10		NORTH OF P.R. 2187	PG7	72		TS	72
1601	C	634		STE GENEVEVE-S OFPR WSOT	TOWN			RC	
1802	C	501		ERST OFPPR SSM2	PGS	12		RC	13
1204	C	406		NORTH OFP. P.T.H. 315	PGS	12		RC	
1814	C	610		ERANDON-0.8 KM E PTH 10 RICHMONDAV	TOWN			UC	
1816	${ }_{C}$	213		ERST OFP.T.H. 130	PG1	77		UC	77
1817	C	207		SOUTH OFP.R. 213	PG1	78		UC	78
1539	c	201			PG4			RC	35
1232	C	32		WEST OFP.R. ${ }^{\text {S }} 21$	PGA			FC	35
18351	C	13		56 kM S. OFP.R - 305	PG2	81		RC	81
1636	C	63		SOUTH OF P.R W2, 7	PG2	40		T	40
1837	C	1		3.7 KME OFP.T.H. ${ }^{\text {W }}$	PG2	79		TS	79
1838	c	1	A	EAST OFP.T.H. A10-BDN	PG4	24		RC	24
1839	c	1	A	WEST OFP.T.K. 10 -8DN	PG4	24		UC	24



Table D-1 (continued)

Star	Dien	Hwy. Na.	Hay.   AR	Location	New TPG	$\begin{aligned} & \text { Naw Control } \\ & \operatorname{Sin} . \end{aligned}$	Sask Control Sin. ${ }^{-}$	OVA TPG	$\begin{aligned} & \text { Old Contros } \\ & \text { Sint. } \end{aligned}$
2018	C	394		BETWEENLYNWUKEEARPCORT	PG7	73		RC	82
2019	C	380		0.2 kME OFPR (394	PG7	73		RCS	82
2020	C	380		MORTHEEAST OF CANOEST.	PG7	73		RC	82
2021	c	307			PG7	73		RC	82
2022	C	396		$02 \mathrm{MS} \mathrm{OFP.R.KOT}$	PG7	73		RC	62
2023	C	391		ERDGEAT 7.2 KME OFIMNUKKE	PGZ			RC	82
2024	C	229		EAST OFP.T.M. 17	PG4			$T$	87
2025	C	7		M. Of STOWY MOUNTAINACCESS	PGA			U'C	2
2027	$\bar{C}$	240		NORTH OFP.T.M OI	PG4			RC	35
20201	c	577		MORTHOFP.T.M MS	PG2	43		RC	90
20001	C	476			PG2	80		$T$	90
2039	C	264		WEST OFP.R CATI	PGz	43		$T$	
2002	C	237		0.5 rome OFP.T.H. ${ }^{\text {d }} 3$	PG2	63		T	
20033	C	83			PG2	80		RC	47
2034	C	216		S. OFMEEFELD	FGA	12		RC	12
2035	C	200		N. OF N. JCT. PR 2210	PG5	78		RC	12
2037	c	68		O.5 KMW OF MARROWS BROGE	PG2	49		$T$	49
2036	c	313		EOFE STT.PR PA33	PGS	93		RC	93
2039	C	383		ELSTOFLEERVER	FG5	93		RC	93
2040	C	507		EAST OFP.T.M ${ }^{\text {P }} 12$	PG5	12		RC	13
2041	C	1		S. OFE JCT. P.T.M MA-PTGE	$\mathrm{PG}^{\text {c }}$	65		$T$	48
2042	C	1		S. OFW. JCT. P.T.L. PA -PTEE	PG3	65		$T$	48
2043	c	1	A	EAST OFW. JCT. P.T.R M1-PTGE	PG3	65		RC	88
2044	C	10		N. OFFE. JCT. PT.M. 16	PG4	24		RC	24
2045	C	637		WAMLESS-AT RALWAY XSSING	TOWN			RC	
2046	C	202		EASTOFP.R E204	PG1	77		UC	77
2048	C	200		IS OF BROS HILL PARIK ENIRANCE	PGS	78		UC	77
2049	C	3		W. OFW. JCT. P.T.A. ${ }^{\text {Wha }}$	PG2	21		RC	821
2050	C	351		EAST OFP.T.H. ${ }^{\text {S }}$	PG4	24		RC	79
2051	C	351		24KM W. OFP.T.M. ${ }^{\text {CS }}$	PGA	24		RC	79
20521	C	20		NORTH OF P.R W207	FG3	60		RC	75
2055	C	584		ERST OFP.R. ${ }^{\text {SSMA }}$	PG2	84		RCS	
2059	C	392		NORTH OFP.R. 1385	PG7	73		RC	
2057	C	430		NORTH OFP:R ATA	P65	93		RC	81
2050	C	41		SOUTH OFPR ${ }^{\text {a }}$ S71	PG2	25		$T$	25
2050	C	41		SOUTHOFPR 253	PG2	25		$T$	25
2061	C	208		NORTH OFP. T.H.E15	PG5	78		UC	7
2002	C	67		WEST OFP.T.L ${ }^{\text {¢ }}$ O	PG1	$\overline{3}$		UC	3
2037	C	2		IS. OFN. JCT. P.T.M. 10	PG2	66		T	
2035	C	68		0.5 K AE OFRD. TOCAYER	PG2	49		$T$	49
20061	C	6		SOUTH OFFP.T.M. 39	PG2			$T$	82
2067	C	39		0.5100 E OFFP.T.M. 139	PGR			RC	82
20881	C	6		SOUTH OF WUEOWDEN ACCESSSRD.	PG2			RC	82
2009	C	373		EAST OF P.T.L 6	PG7	72		RC	$\underline{2}$
2070	C	392		SOUTH OFP.R $0^{3} 3$	PG7	73		RC	
2072	C	482		N OF SHEUMOUTH ACCESS RD.	PGE		92	RC	75
2074	c	236		NORTH OFP.R ESZ	PG1	1		RC	2
2075	C	255		WEST OF P.R. 2254	PG2	40		$T$	75
2078	C	250		SOUTH OF P.T.H. ${ }^{\text {P }}$	PG2			RC	24
2077	C	16		W. OFE JCT. P.T. M PTQA	PG4	28		$T$	43
2078	C	42		SOUTH OFP.T.E. 16	PG4	28		RC	90
2000	C	207		O. 5 KME OFARRPORT	PG7	73		RC	73
2081	c	205		WEST OFPR. ${ }^{\text {P122 }}$	PGA			RC	35
2082	C	6		NORTH OFP.R 2239	PG3	60		$T$	16
20031	C	325		13.7 KMW OF PR 233	PG3	60		T	80
2004	C	508		24OTN. OFPRRE12	PGA	87		RC	67
2005	C	213		WEST OF P.R 8206	PGI	77		UC	77
2006	C	213		EAST OFP PR 2206	P61	77		UC	77
2000	C	200		SOUTH OF P.R W575	PG2	63		RC	58
2099	C	375		ERST OFP.T.H. ${ }^{\text {a }}$	PGE			RES	73
2092	C	52		ESST OF KROEKER AVE (STENBACM)	PGA	14		UC	14
2093	C	52		O.5 KMW. OFP.R. 302	PGA	14		RC	14
2093	C	209		$24 \mathrm{MMS.OFPR}$ R235	PG7	72		RCS	73
2097	c	203		EAST OFSASK BORY.	PG7	72		RC	73
2102	C	5		SOUTH OFP.P.T. ${ }^{\text {che }}$	PG4	51		RC	621
2104	C	242		M OFPPR 623	PG2	46		RC	58
2105	C	423		WEST OFP.R. 262	PGA	58		RC	621
2108	C	201		EAST OFP.R A 42	PG2	29		RC	35
2110	c	227		EAST OFPR W20	PG2	89		$t$	81
2111	C	97		NORTH OFP.R. ${ }^{\text {P18 }} 18$	PG2	16		$T$	16
2112	c	220			PG1	1		UC	1
2113	c	220		NORTM OFP.R M09	PG1	1		UC	1
2114	C	409		NORTTH OFPP.T.H. 109	PG1	77		UC	
2115	c	617			Town			RC	
2117	C	12		1.3 KMN. OFN. SCT. P.R. 1311	PG4	14		RC	14
2118	c	12		NOFS.JCT. P.R ${ }^{\text {S }} 19$	PGA	14		RC	14
2120	C	10		WEST OF NORTH STAR ROAD	PG7	72		$T$	$\sqrt{2}$
2421	c	10		S. OF E BMKERS MARROWS	PG7	72		$T$	72
2122	c	391		E OF NESSON HOUSEROAD	PG2			RC	82
2123	C	391		W. OF NELSON HOUSEROAD	PG2			RC	82
2124	C	623			TOWN			RC	
2125	C	381		2.1 MOM OFLEAFRAPIDS	PG2			RC	62
2126	c	391		2.1 NGW OF OFEAF RAPIDS	PG2			RC	82
2127	C	385		WEST OF ROAO TO MCVEIGM	PG7	73		RC	82
2128	$\bar{C}$	394		WEST OFP.R. 139	PG7	73		RC	82
2130	c	487		15.0 KM W. OFP.T.M 163 (N. JCT.)	PG4			RC	36
2131	C	482		SOUTH OFP.T.H. ${ }^{\text {S }}$	PG6		92	RC	75

Table D-1 (continued)

Son.	Dion	How. No.	Hary. $A R$	Lacemon	A WW TPG	Naw Control $50 n$.	Sask Control Sur.	Otd TPG	$\begin{gathered} \text { Ola Controf } \\ \text { Sin. } \\ \hline \end{gathered}$
2132	c	10		MORTH OFP.R © 3 A	PG2	68		$T$	66
2133	C	304		WEST OFPR CIETB	PG6			$T$	32
2135	C	426		NORTH OFFP.T.A. 2	PG1	47		UC	47
2137	C	317		Q.0 VOW W. OFP P.T.M. 11	PG3	75		RC	75
2130	C	229		ESST OFP.TA 17	PG5	4		$T$	75
2139	C	6		QORMRCFSSK RIV, BRIDGE	PGZ			$T$	82
2140	C	6		SOUTH OF WRITMN RNER	PG2			1	82
2142	C	39		WEST OFP.T.M ${ }^{\text {d }}$	PG2			RC	8
2143	C	238		E OFS. SCT.P.T.H.	PGI	3		1	3
2145	C	53		STEINBACH-1.4KME OF HESPELERST.	TOWN			UC	14
2147	c	300		W. OFM. JCT. P.T.M. ESO $^{\text {a }}$	PGI			UC	6
2149	C	221		WEST OFP.R. 334	PG9	51		UC	2
2150	C	230		SOUTH OFP.TH,	PGT	3		0 C	3
2151	C	391		W. OF THOMPSONARPORT ACCESS	PG2			RC	82
2153	C	373		SOUTH OF SIPMESKKAKERD.	PG5			RC	82
2153	C	279		EAST OFP PR ESTE	P63		7	RC	36
2155	C	568		HORTH OFP.R 2275	PG5		7	RES	
2157	C	568		SHELWOUTH-W. OFPR. EMAR	PG3			Res	4
2150	C	258		1.4TME OFP.T.H. ${ }^{\text {P }}$	PG4	20		RC	
21601	C	270		MORTH OFP.T.H. 1	PG4	24		RC	24
2161	C	347		IWEST OFP.T.A 22	PG2	40		$T$	
2162	C	$4 \times 3$		1.4CWW OFPR \#30	PG4	56		RC	21
2169	C	528		6.8 KMS. OFP.T.H. ${ }^{\text {a }}$	PGA			R	35
2105	C	419		WEST OFPR R ET8	PG8			RC	75
2100	C	415		3.1 NOME OFP.T.M. 13	PG5			$t$	81
2167	C	227		EAST OFF.R. 430	PG2	81		T	$\frac{81}{16}$
216	C	320		SOUTH OFP.R. 328	PG4			RES	5
2169	C	304		W. OF WAMPPGOW LAKEACCESS RO.	PGI	48		UC	48
2170	C	241		SOUTH OFP.T.L.	PG1			$T$	48
2171	C	305		E OFF S. JCT. OF P.R B 30	${ }_{\text {PG2 }}$			RC	83
2172	C	311		WEST OFPR R 216	PGA	12		RC	8
2173	C	216		NORTH OF P.T.L. ${ }^{\text {S }}$ S2	PGA	58		T	
2779	$\stackrel{C}{C}$	256		SOUTH OFP.T.H. ${ }^{\text {W }}$ W	PGA	58		RES	58
2175	C	305		WEST OFP.T.M. AC 10	PG6			RES	36
2178	c	305			PGS				36
217	C	210			PGA	14		RC	12
2178	C	210		C.OKCIN. OFP.R. 311	PGA	12		RC	12
2180	C	212		MORTH OFP.R ${ }^{\text {SOI }}$	PG4	12		RCS	12
2151	C	502		SOUTHOFP.R ${ }^{\text {S }}$ N 13	PG5	12		RCS	
2782	C	313		EAST OF P.T.H. D11 EAST OF MARCISSE ACCESS	PGS	4		RC	93
2183	C	231		EEST OF NURCISSE ACCESS	PGR	4		r	75
2185	C	434		SOUTH OF P.T.K. 3 ST. LEON ACCESS	PGA			RC	
2187	C	431		150UTH OF P.T.H. 1.6 EM	PGG	4		RC	75
2180	C	242		1.6 KME OF W. JCT. P.T.A. \#16	PGA	24		RC	24
2189	C	202		120 KM M OF MINNEDOSA BEACH	PGA	28		RC	24
2180	C	355		[EAST OF P.T.M. ${ }^{\text {W }} 10$	PGA	28		RC	24
2991	C	355		WEST OFP.T.R 10	$\mathrm{PG}^{\text {Pa }}$	80		T	24
2192	c	579		WEST OFP.T.H. 63 WEST OF E J.T. P.T.H. 10	PG7	72		RCS	90
2193	C	291		WEST OF E SCT. P.T.H. 10 NORTH OFP.R. 205	PG7	63		RCS	38
2194	C	75		NORTH OFP.R :R205	PG2	63		RC	14
2195	c	248		SOUTH OFP.R ROLS	PGA			RC	35
2198	C	246		3.5 COMS OF P.R 2005	PGA			RC	35
2197	C	334		SOUTH OF P.T.L. 1	PG1	47		UC	47
2196	C	262		STURGEON ROMD-S OFPR R21	PGA	24		UC	
2199	C	202		NORTHO'FPR GA07	PGI	3			
2200	6	391		IN. OF SUMTANTEE RNV.	PG2			RC	82
2201	C	10		MORIH OF REPAP ROMD	PG7	72		RC	
2202	C	272		24KMS. OFDUCKEAY	PG6			RES	76
2203	C	276		SOUTH OFP.R ES23	PG6			RC	75
22041	C	209		WESTOFPR MASO	PG3			T	32
2205	C	591		EAST OFP.T.L. 103	PG4	41			
2208	C	278		M. OFIGMOSOTA ACCESS ${ }^{\text {a }}$.	PG7			R	75
2211	C	256		H. OFN SCT. P.R. 235	PG2	21		$\bigcirc$	58
2214	5	240		20.110 .5 S. Of P.R. 0331	PG4			RC	
2216	C	245		W. OFW. JCT. P.R M 240	PGA			RC	35
2217	C	422		SOUTH OFP.R E0S	PGA			RC	35
2219	C	630		ST. MALO DMA-E OF P.T.M. 39	PG4	67		RC	67
2220	6	508		WEST OFP.T.H. ${ }^{\text {NOT }}$	PG\%	16		$T$	87
2221	C	416		NORTH OFPR SHE	PG2	14		RC	
2222	$\bar{C}$	302		2.4KAS. OFPT.H PT	PGW	14		RC	12
2223	C	600		KISSISSING LAKER RO-NL OF P.T.E. 10	TOWm			RC	
2226	C	800		ATMAPAP. RD. - W. OFP.T.H \$10	TOWN			RC	
2225	C	600		NWAEWLAKERO.W. OFP.T.M. 10	TOWN			RC	
2228	c	800		MITCHEL LAKERD.-E OFP.T.H. P10	rown			RC	
2227	C	628		REPAP ROAD-E OF P.T.H. 10	rown			RC	
2228	C	640		WALLACE LAKE-N. OFP.R. ${ }^{\text {S }}$ SOA	TOWN			RC	
2229	C	642		WANIPMOW WLKE - N. OF P.R 3 304	TOWN			RC	
2230	C	800		STEELZABETHACCESSS OF PTH23	TOWN			RC	
2231	C	605		ROCKLAKE-S. OFPR.R. E253	TOWN			RC	
2232	c	600		PLEASATTPONT-W. OF-P.R. 255	TOWN			RC	
2234	C	030		MORGATE-E OF P.T.H-ES	TOWH			RC	
2235	6	637		THMEERTON-N OFFPT.H LSS	TOWN			RC	
2236	C	636		TUTMEL W. OF P.T.H. WS $^{\text {S }}$	TOWN			RC	
2239	6	605		BGGISLANDLAKE-E OFP.T.M. 10	TOWN			RC	
2841	C	39		GYLES BEACH - N. OFP.T.A.	PG2			RC	
2242	C	39		REEOLAKE-N. Of P.T.M. 139	PG7	72		RC	

Table D-1 (continued)

Sts	Dion	Hery. No.	Hwy. A	Location	Now TPG	New Control SLin	Susk Contel Sen. ${ }^{\wedge}$	Old TPG	Oid Comitror Sin
2247	C	633		THOMPSON AIRPORT-NE OFFP.R - 3391	TOWM			RC	
224	C	618		FAIRFORD-E OFP.TM ${ }^{\text {d }}$	TOWN			RC	
2245	C	234		S. OF PINE DOCK ACCESS ROAD	PG6	4		TS	
2209	C	645		PINEDOCK-E OF P.R CR34	TOWN			IS	
2247	C	547		WESTOFPR PAR	PG8		92	RES	41
2240	C	800		PLESSSRD. WPG. NL OFP.T.H.E1	TOWN			UC	
2249	c	401		WORTH OFP.R ESA	PG2	60		RC	75
2251	C	66		WEST OFPR. CXS $^{\text {a }}$	PG3	60		T	16
2253	C	250		NORTHOFPR M70	PG3	98		RC	90
2254	C	270			PG3	93		RC	75
22581	C	45		EASTOFP.P.T. E. 1	PG2			RC	24
2257	C	250		NORTH CFP.R. 253	PGA	28		RC	24
2250	c	353		WEST OFP.R.	PG2	79		RC	
22350	c	353		Q.4NOW. OFP.R CRE4	FG2	79		RC	
2200	C	236		SOUTH OF EALIORAL	PG2	18		$T$	2
2262	c	203		WESTOFP.R 1216	PG5			$T$	
2203	C	26		SOUTH OFP.R 1200	PGA			AC	35
2205	c	210		EAST OFP.R. ${ }^{\text {CROO}}$	PGi	8		UC	8
2206	C	240		WEST OFP.T.M. 130	PGI	8		UC	8
2208	c	501		W. OF STE GENEVEVEACCESSRD.	PGS	12		RC	13
22001	C	302			PG4	14		RC	12
2271	C	15		ATE BDAY. LGD OF REYMORDS	PG3	13		T5	61
2272	C	15		T.0 KMW. OFPT.H. ${ }^{\text {dit }}$	PG3	13		IS	69
2273	c	304		0.4 KAIS. OFP.T.H. ${ }^{\text {IT }}$	PGS	53		RC	75
2275	C	245		WEST OFFP.T.M. ${ }^{\text {B }}$ S	PG4			RC	58
2276	C	281		WEST OF P.R M260	PG2	83		RCS	
2279	C	60		EAST Of P.T.M 10	PGZ			TS	72
2200	c	60		WEST OFP.R. 227	PG2			IS	12
2281	c	327		NORTH OFP P.T.M $\mathrm{Br}^{3}$	PG7	72		RC	
2222	c	60			PG2			15	72
2283	c	435		WEST OFP.R. ${ }^{214}$	PG5	12		RC	12
2284	C	435		EASTOFP.T.M. ${ }^{-12}$	PGS	12		RC	12
2205	C	509		W. OFP.T.R. S $^{\text {S }}$ (CILL ROAD)	PGA	67		RC	67
2208	C	525		ESST OFP.R WOB	PG6			RES	
2287	c	308		NORTH OFP P.R ${ }^{\text {P325}}$	PG3	74		RES	93
2236	c	800		PEICAN FAPIDSTR-E OFPTH. 10	TOWN			RC	
2291	C	355		EAST OF P.T.R. 103	PG4	28		RC	90
2293	$\bar{L}$	200		NORTH OFPR M391	PG7	73		RC	82
2294	$\bar{C}$	384		MOOSE LAKERD. -S. OF P.R R287	PG7	72		RC	
2295	c	373		1.6 TOM S. OF JENPEG	PGS			RC	82
2296	6	800		RUTİANLUKERD. 32 KME E OFP.R W39	TOWN			RC	
2299	C	800		NORTKSTAR RO - N. OF P.T.H.E10	TOWN			RC	
2300	C	287		E OFP.R 334	PG7	73		RCS	
2301	C	75		EASTOFP.T.H. 29	PG2	63		T	14
2302	C	246			PGA			RC	35
2303	c	688		RUSSELL-E OFP.T.M. 13	TOW			RC	
2304	C	219		E OF NUCLEAR RESEARCH ROAD	PG5	93		RC	93
2305	C	212		EAST OF P.T.M ${ }^{\text {S }}$ S 9	PGI	67		UC	67
2306	C	320			PGA	68		UC	67
2308	C	334		WEST OFDCMAIN	PG1	47		UC	47
2309	C	332		NORTH OFP.R M 205	PG4			RC	35
2310	C	332		SOUTHOFPRTR05	PG4			RC	35
2312	6	532		MORTH OF P.T.H. W23	PG4	58		RC	58
2315	C	44		SOTH CFP.T.H. ${ }^{\text {S }}$ S	PGA	50		$T$	
2396	C	446		SOUTH OFP P.T.H. ${ }^{\text {S } 23}$	P-A	58		$r$	58
2317	C	3		E OFS S DELORANEACCESS ROAD	PG4	56		RC	58
2320	C	202		SOUTH OFP.R 185	PG3	96		RC	24
2323	$\bar{C}$	588		T0.0 KMN. OFP.R MSO4	PG5			RC	75
2325	$\bar{C}$	800		THE PAS VCUMIPHREVILEROE OF P.T.H, 110	TOWN			RC	
2326	C	800		THEPAS VIC-D-A RO-S. OFP.R.E203	TOWH			RC	
2327	C	000		THE PAS VC-YOUNGSPT. RD-W. OFP.T.M. \#10	TOWN			RC	
2328	c	800		THEPAS VIC-YOUNGSFT. RD-W. OFD-8 RD.	TOMN			RC	
2329	c	8		NORTH OFPP.T.M. ${ }^{\text {P/ } 27}$	PG1	1		UC	1
23301	C	242		3.6 RUS. OFP.T.K. 2	PG2	45		RC	58
23311	C	245		EAST OFP.T.M. OM $^{\text {a }}$	PG4			RC	50
2332	C	305		W. OFN. JCT. OFP.R 330	PG2	63		$T$	81
$2 \times 33$	C	305		EASTOFP.R. 248	PG2	63		$T$	89
2336	C	305		WEST OF P.R. 224	PG2	63		T	81
2335	6	205		W. OFE JCT. P.R. ${ }^{\text {B32 }}$	PG4			RC	35
2336	C	513		1.0 KMW. Of ANMMA EAY	PGA			RC	0
2339	C	400		NORTH OFP.R. MGS	PGA			RC	36
2340	C	338		SOUTH OFPP.R S305	PGA			T	
2349	C	205		S.OMME OFTHEPAS	PG7	13		R	31
2342	c	415		EAST OFP.R AR2	PG4			T-S	51
2343	C	304		MORTH OFPP.R. MSA	PG8	76		RES	56
2344	C	304		SOUTH OFP.R.ETA	PG6	76		RES	56
2375	C	314		EAST OF P.R ESO4	PG6			RC	33
2347	C	200		MORTH OF P.R. 220	PG2	63		R	4
2349	C	241		$3.0 \mathrm{KOMN.OFP.T.M.11}$	PG1	4.		UC	48
2352	6	430		SOUTH OFP.T.E ${ }^{\text {ce }}$	PG4			RC	81
2353	C	26		WESTOFPR 1330	PG2	89		RC	81
2353	C	600		THE PAS VIC-UMPYREVILE RD.3 KM E OF P.T.H. \#10	TOWM			RC	
2359	6	241		EAST OFPR. 124	PGI	48		UC	48
2360	C	617		FLOOOMAYINLETRD, - E OF TURNGULL DRIVE	TOWN			U	
2301	C	607		FLOOOWAYINLTRD-W OF ST. MARYSRD.	TOWN			UC	
2302	C	329		EAST OF PR. ${ }^{3} 28$	${ }^{\text {PG5 }}$			RC	16
2363	C	329		WEST OFP.R. W320	PGS			RC	16

Table D-1 (continued)

Sin	Oin	Hwy. Na	Hary.   AR.	Lection	New TPG	Nam Centrol Sm.	Sask Control $\sin ^{\wedge}$	Ond TPG	Old Controt Sts.
2308	C	317		WEST OFP.T.H. 39	PG3	75		RCS	
2371	c	210		0.7 KMN. OF SEIVE RIVER EAJDGE	PG4	14		RC	12
2372	C	481		WEST OF CRANE RIVER BRIDGE	PGS			RC	75
2373	c	451		14.0 KM ME OFP P.R. 278	PG2	60		RC	75
2374	C	364		WEST OFP.R AMA	PG6			$T$	32
2375	C	241		E OFE JCT. P.R E334	F'G1	47		UC	47
2376	C	200		COKMN OFPRR 301	PG2			RC	62
2377	C	200		N OF SPLIT LAKERES ACCESS	PG2			RC	82
2376	C	52		WEST OFFITCAELL	PGS	14		RC	14
2380	C	251		EAST OFPP.R SELSA	PG2	40		T	56
2361	C	318		2010 EAST OFP.R - 210	PG4	14		RC	8
2385	c	435		ERST OFPPT.M. ${ }^{\text {O }}$ S0	PGS	12		RCS	
2387	c	500		SOUTH OF P.T.M. 12	PG8	76		RC	76
2300	c	512			PG4	56		RC	25
230	C	52		1.0 KM SOUTH OFP.T.M. 17	PG4	58		RC	25
2381	c	350		EASTOFP.R. ${ }^{\text {P76 }}$	PG2	60		7	
2392	C	350		WEST OFP.R ${ }^{\text {A }} 76$	PG2	60		$T$	
2303	c	350		EAST OFP.T.M. 16	PG4	28		$T$	
2304	C	491		WEST OFPR 1362	PG4	32		T	32
2388	C	218		NORTTH OF P.R Ezai	PGA	14		RC	35
2397	C	242		5.0 NOM SOUTH OFFP.T.H. 16	PG2	46		RC	58
2390	C	3.7		EAST OF CMILDS LAKE CAIP GROUND	PG6			RC	41
2400	C	307			PG6			RC	41
2401	C	3.7		2010 WEST OFP.R. 394	PG5			RC	41
24031	C	5.7		WEST OFP.R P208	PGA			RC	38
2406	C	328		5.0 KMWEST OF PROULX CREEX	PG2	60		RC	60
2407	C	328		15.0 KM WEST OFP.T.M. WS	PG2	60		RC	60
2000	C	334		SOUTH OFP.R M27	PGI	47		UC	47
2409	C	334		NORTH OF P.T.A. P2 2	PG1	47		UC	47
2410	C	427		3.0 KM WEST OFP.R. W3M	PG1	47		UC	
2413	C	593		Q.OKME OFP.R.	PG4	41		RC	41
2494	C	59		SOUTK OFP.R. ${ }^{\text {a }} 12$	PG5	78		RC	78
2415	C	612			T0.mi			RC	
2477	c	415		Q.0 KGM WEST OFPP.T.H. $\overline{7} 7$	PG4			$T$	81
2418	c	604		ANGUSVILE-EAST OFFP.T.M MAS	TOWN			RC	
2420	C	237		WEST OFP.T.H. ${ }^{\text {a }}$	PG2	60		RC	75
2427	C	237		O.8. MCE OF LAME MANTIOEA	PG2	60		RC	75
2425	C	10		1.0 KMN. OF S. JCT. P.T.H. E1QA(FLIN FLOM)	PG7	72		RCS	72
2426	C	800		HERB LAME LANDING RD.-0.6 KM N OFF PTH. R39	TOWN			RCS	
2427	C	331		WOOSELAKERD. - T0.010 S.E. OFP.R. E227	PG7	72		RCS	
2420	C	297		$4.0 \mathrm{KOMS}$. OF CORMORANT	PG7	73		RCS	
2429	C	800		CROSS LAKE RLD. - NE OF P.R. 2373	TOWN			RCS	
2431	C	373		SOUTH OF WHISKEY JACKJCT.	PG5			RC	82
2433	C	381		WEST OFP.R $\mathbf{2 6 0}$	PG7	72		RC	82
2434	C	391		WEST OF MOTIE LAKE	PG2			RC	82
2435	c	391		EAST OF HUGHES RIVER	FG2			RC	82
2430	C	397		SOUTH OF RAILWAY CROSSING	PG7	73		RC	82
2437	C	280			P'G7	73		RC	82
2438	C	200		WEST OFP.R. $\mathbf{C 2 9 0}$	PG7	73		RC	82
2439	C	290		EAST OF P.R 260	PG7	72		RC	36
2440	C	290		WEST OF SUNDANCE	PG7	72		RC	36
2441	C	290		EAST OF RADISSON CONV. STIN	PG7	73		RC	82
2492	C	280		EAST OF GLUAM (N ACC RD.)	PG7	73		RC	82
244	C	9		1.6 FOM SOUTH OF PETERSFIELD	PGS	4		8 C	75
2445	C	222		SOUTH OF P.R M329	PGG	4		RES	
24061	C	15		WEST OFPR R207	PG1			UC	64
2440	C	302		MORTH OFP P.T.H. 12	PGA	14		RC	12
2498	C	302		SOUTH OFFP.R. 1303	PG4	14		RC	12
2450	C	354		ERST OFP.R ${ }^{2} 550$	PG3	98		RC	90
2451	C	354		ATLTILESNSK. RNVER	PG3	96		RC	90
2452	C	800		MALURD RO. N OF P.R R32B	TOWN			RC	
2453	C	$4 \%$		WEST OF JCT. P. R Mas	PG4			RC	38
2454	C	364		EAST OFP.T.H.ERO	PGE			T	32
2455	C	800		BROADUNDRD. - 1.4 KM E OFP.R.R3O4	TOWN			RES	
2057	c	12		NORTH OFFP. R O210	PG4	14		RC	34
2458	C	20	A	WEST OF S. JCT. P.T.M. $2 \times 0$	PGA	32		RC	
2459	$\bar{C}$	20	A	WEST OF M. JCT. P.T.M. 220	PGA	32		RC	75
2430	C	23		EAST OFP.T.M ES	PG4	50		$T$	66
2461	c	23		WEST OF P.T.M. ${ }^{\text {S }}$	PGA	58		7	66
2402	C	50		SOUTH OFPR W317	PG6	78		RES	78
2463	c	83		S. OFE JCT. P.T.H. 1	PG2	40		T	40
2434	c	5		N. OFS. JCT.P.T.H. ${ }^{\text {S }}$	PGA	32		RC	32
2465	c	5		W. OF S JCT. P.T.M.	PGA	32		RC	32
2406	C	5		EOFN.JCT.P.T.H. ${ }^{\text {CS }}$	PG4	32		RC	32
2407	C	474		WOFTH OFPP.T.H. 24	PGA	28		RC	90
2488	c	800		GRANDON-VCTORIA AVE E OF 17THST.EASI	TOWN			UC	
2468	c	800		BRANDON-VCTORIA AVE E OF HYDRO STENMPLANT	TOWN			UC	
2470	c	458		2.5 KMW OFP.T.H. 110	PG4	24		RC	24
2472	C	328		$16 \mathrm{MME} \mathrm{OFP.R} \mathrm{EZ76}$	PGS			$\overline{\text { AC }}$	
2473	c	210		EAST OFP.T.M. 12	PG4	14		RC	12
2474	C	632			TOWN			RC	
2475	C	616		GIML-E Of P.T.H. B $^{\text {a }}$	TOWN			RCS	
2476	${ }^{5}$	307		SOUTH OF RENNJE RIVER	PGS	93		RES	93
2477	c	270		22 KMAS OFS. JCT. P.T.A. ${ }^{\text {Wa }}$	PG2	43		RC	
2478	c	458		S. OFWK. SCT. P.R. 253	PGA	58		RC	621
2479	C	338		SOUTH OFP.R. 245	PGA			T	35
2480	C	549		SHELUMOTH-E OFASSINIEOTNE RIVER	PG3			QES	41

Table D-1 (continued)

Sun	Din	thay. No.	Hay. AlL	Location	New TPG	New Controf Stn.	Sask Contsol StriA	Ore TPG	Oid Control 5 5n.
2401	C	520		NORTH OFP, R W211	PG5	12		RC	93
2462	C	520		SOUTH OFP.R. ${ }^{\text {c313 }}$	PGS	12		RC	93
24.3	C	220		NORTH OFFP.T.H. ${ }^{\text {Wa }} 7$	PG7	1		UC	1
2404	C	233		2.3 KM WEST OFP.T.H P17	PG5			RC	
24.7	C	213		WEST OFP.T.M. 812	PGT	77		UC	7
246	C	213		EAST OFPPR C212	PG1	77		UC	77
2400	C	42		WEST OF GLENCAIRN	PG2	49		T	24
2490	C	800		ILEDES CHENESTMUN RDEOFESA WOFH0S	TOWN			RC	
2489	C	405		4.8 KCMEAST OFP.T.H. 130	PG1	8		RC	
2482	C	373		1.6 KMA OF ROSSVILLE SCT. - NORMAY HOUSE	PG5			RC	62
2403	C	373		NLOF ARPORT TERMINAL - NORWAY HOUSE	PG5			RC	8
2494	C	351		S. OFS SCT.P.R. 10	PGA	28		RC	90
2405	C	210			PGA	14		RC	
2496	C	481		WORTH OFP.T.H.ES	PG2	60		RC	75
2497	C	59		NORTH OFFP.T.A. ${ }^{\text {a }}$	PG6	78		$T$	76
2488	c	4		WEST OFP. T.A. ${ }^{\text {So }}$	PG2	67		$T$	
2498	C	4		WEST OFP.R. 500	PG2	67		T	
2500	C	4			PG2	67		$T$	
2501	C	233		SOUTTH OFP.R. ${ }^{\text {W325 }}$	PG2	60		RC	
2502	c	303		WEST OFP.R. W302	PG4	14		RC	14
2503	C	17		2.0 KMW. OFP.P.T.H. 3	PGB	4		T	18
2504	C	448		SOUTH CFFPR 3343	PG4	56		$T$	58
2508	C	302		10.O NOM N. OF P.T.H. 015	PG4	14		RC	12
2507	C	440		WEST OFP.T.H. ${ }^{\text {P10 }}$	PG2	21		$T$	56
2508	C	401			PG2	60		RC	75
2509	C	334		NORTT OF HEADINGLEY	PG1	47		UC	47
2510	C	340		NORTH OFF P.R 1253	PGA	50		RCS	
2591	C	10		W. OFF E JCT. P.T.H. E10	PG7	72		RCS	72
2512	C	477		WEST OFP.T.R WS	PG2	43		T	24
2514	C	475		EAST OFP.T.H. ${ }^{\text {a }} 1$	PG4	28		$T$	
2515	C	331		WEST OF P.T.H. 813	PGA	58		RC	8 !
2516	C	530		NORTTH OFP.T.H. ${ }^{\text {CP }}$	PG4	58		RC	
2517	C	453		EAST OFP.T.H. W1O	PG4	56		$T$	24
2570	C	403		WEST OFP.T.R M12	PG5			T	
2519	C	403		EAST OFP.R. 2216	PGS			$T$	
2520	C	50			PG2	83		RC	49
2521	c	23		EAST OFP.R. 244	PGA	58		T	14
2522	C	83		NORTH OF P.T.H. 48	FGA			RC	36
2523	C	32		M OFS. JCT OFP.R 201	PG4			RC	35
2524	C	23		ERST OFP.T.H. 22	PGA	58		T	68
2525	C	10		NORTH OFP.R ${ }^{\text {P63 }}$	$\mathrm{PG}{ }^{3}$	96		TS	38
2526	C	3		WEST OFP.T.H. ${ }^{\text {P14 }}$	PGA			RC	
2527	C	206		SOUTH OFP.R. ${ }^{\text {dit }}$	PGS	78		WC	77
2526	C	6		NORTİ OFP.R :M15	PG3	60		IS	4
2529	c	24		MEST OFP.R. 2250	PG6	28		T	78
2530	C	23		EAST OFP.R 1330	PG4			$T$	14
2531	C	5		EAST OF P.T.H. 10	PG2	49		$T$	49
2535	C	2		E OFEJCTP.R. ${ }^{\text {P42 }}$	PG2	66		$T$	46
2533	C	470		EAST Of P.R S 5	PG3	98		RCS	
2534	C	506		NORTH OF P.R P670	PG2	43		RC	
2535	6	373		SOUTTH OF SEA ISUAND FERRY	PG5			RCS	
2536	C	240		EAST OF ESST JUNCTIONP. R. E227	PG5				
2537	C	21		REINFEEO-SOUTH OF- P.T.M. 14	TOWN				
2536	C	591		SCHANZENFELO-WEST OFP.T.H. 132	PG4	41			
2539	C	83			PG2	60			
2540	C	63		NORTH OF P.T.H. ${ }^{\text {W }}$ S7	FG2	80			
2541	C	10		N. OF N. JCT P.T.H. TOA (ETHELAERT)	PG2	84			
2542	C	10		NORTH OFP.R E271	PG2	84			
2543	C	2		20 KOW WEST OFP.T.A. WS	PG2	63			
2544	c	1		E OFE JCT.P.R. EAB	PG4	24			
2545	C	1		W. OF W. JCT. P.R ECO	PGA	24			
2546	C	457		WEST OF P.R MOB	PG4	24			
2547	C	355		EXST OFFP.R. $\mathrm{NaS}^{50}$	PG4	20			
2540	C	5		WEST OFP.T.H. $0^{100}$	PG4	32			
2549	c	250			PG2	43			
2551	C	304		EAST OFPP.T.A. 12	PG6	78			
2552	C	9		EAST OFP.R. 257	PG2				
2553	C	247		1.6 KMI EAST OF P.R. 1330	PG1	51			
2554	$\bar{C}$	247		0.5 N0M WEST OFP.R 0330	PG1	51			
2535	C	247		3.2 KOM WEST OFP.R M330	PG1	51			
2538	C	330		N. OFFS.JCT. P.R. 1247	PG2	63			
5001	c	30		ALTOTA -S. Of S. JCT. P.R. $\mathrm{W}_{2} 01$	TOWN			$T$	48
5002.	C	30		ALTONA - N. Of S. JCT. P.R. 2201	TOWN			$T$	48
50031	C	201		ALTONA - W. OF P.T. H. W30	TOWN			RC	35
5005	c	201		ALTONA - ATRALLAOADCROSSING	TOWN			RC	35
5013	C	50		ANMRANTH - SOUTH OFP.R WZ:1	TOWN			RC	49
5015	C	50		AMAPANTH - NORTH OFP.R.	TOWN			RC	49
5023	c	320			TOMN			RC	16
5025	C	69		AREORG-W. OFP.R WE36	TOMN			TS	4
5029	C	6		ASHERN-S. OF N. JCT. P.R. B $^{2} 25$	TOWN			$T$	16
5030	C	325		ASHERN - E. OFP.T.M. ${ }_{\text {\% }}$	TOWN			RC	60
5036	C	6		ASHERN - N. OF R. JCT. P.R. 3325	TOWN			$T$	18
5041	C	605		AUSTIN-S.W. OFP.T.H.E T	TOWN			RC	
5042	C	605		AUSTIN-0.2 KM EAST OFP.T.M. ${ }^{\text {S }}$	TOWN			RC	
5049	C	215		BEAUSEKOUR - 2.2 KMW . OF P.R 302	TOWN			RC	12
5050	C	801		BEAUSEJOUR - N. Of P.R. 215	TOWN			RC	
5051	C	215		GEAUSEJOUR - 1.3 KMW. OF P.R. 302	TOWN			RC	12

Table D-1 (continued)

Son.	Dran	Hamy. No.	they. AR	Locmen	Now TPG	New Control Sirn	Sask Control Strn.	Ond TPG	Old Control Sis.
5055	C	44		REAUSEJOUR-NOFP.R 215	rown			RC	12
5080	C	16			TOWN			T	80
5070	C	478			TOWM			T	90
505	C	42		BIRTLE -S. OFW. JCT. P.T.M. ${ }^{103}$	TOWN			RC	90
5009	C	42		BRRTLE-W. OF E JCT. P.T.H. WG	Towns			RC	90
5063	C	10		BOSSSEVAN - N OF-PREMA3	TOWN			$T$	21
50 c \%	C	10		BOSSSEVAN-S. OF P.R. Mas	TOMN			$T$	21
5087	C	43		BOSSSEVIIN - E OF P.T.H.	TOWN			RC	21
5107	C	200		OOMSHM -0.3 KOM E OF P.T.A. ETOAT RLWM	TOMN			RC	30
5118	C	10		ERANCON-S OFPR 3 M RICHEONDAV	TOMIT			UC	66
5120	C	10		BRANOON - N OF PR 3MA RICHNOMOAV	rown			UC	60
5121	C	610		BRANOON-EAST OFP.T.H. 10	TOWN			UC	
5122	C	610		BRANOCN-S. OFP.T.K.ETA	TOMN			UC	
5123	C	1	A	Biandoin - N. Of VICTORUA AVE	TOWN			UC	24
5124	C	7	A	EgMTOON-W. OFFIRSTST.S.	TONW			UC	24
5125	c	10		CRANOON-5. OFP.T.R \#IA	TOWN			UC	68
5127	6	10		ERUNDON-M. OFP.T.R. HA $^{\text {a }}$	TOWN			$0 \cdot$	24
5132	C	10		BRANDON-SOUTH OFP.R.E430 (S.6)	TOWN			UC	24
5139	C	459		BRKNDON-W. OFP.T.F. 10	TOWN			UC	24
5135	C	1	A	EMNTDOM-S. OFP.R. EA57	TOWN			UC	24
5138	C	457		ERANDON-E OFP.T.H. MA	TOWN			UC	24
5137	C	1	A	ERANDON-R. OFP.R. Wh5	YOMN			UC	24
5139	C	1		BRANDON-W OF E JCT. P.T.R E10	TOWN			UC	24
5191	$\stackrel{C}{C}$	1		ERANDON-E OFW. JCT. P.T.M.ET0	TONW			UC	24
5153	C	612		CARGERRY-N. OFP.T. ${ }^{\text {C35 }}$	TOMN			RC	
5157	C	351		CARBEERRY-W. OFFP.T.M. ${ }^{\text {S }}$ S	Town			RC	79
5164	C	3		CARMTN-EAST OFP.T.H. 13	TOWN			RC	35
5185	C	13		CARMAN-NL OFP.T.H. ${ }^{\text {P }}$	TOWN			RC	89
5160	$\bar{C}$	245		CARTIAN-W. OFPPT.H. W $^{\text {a }}$	TOWN			RC	58
5187	c	3		CAPMAN-SOUTH OFFP.T.M. 13	TOWN			RC	35
5174	c	3		CRYSTALCTTY-N OFN. ACCESSROAD	TOWN			RC	621
5175	C	616			TOWN			RC	
5177	C	616		CRYSTAL CITY-M. OFP.T.H. OAL $^{\text {a }}$	TOWM			RC	
5187	C	10		IN. OF CRANEERRY PORTAGE	Town	72		T	72
5198	c	610		OARLNGFORD-N. OF P.T.M. S $^{\text {S }}$	TOWN			RC	
5205	c	5	A	DAUPHIN-AT VERSIULIONT RIVER	TOWN			WC	32
5207	C	5	A	DAUPTIN-S OFRNLWAY $X$-NG	TOWN			UC	32
52081	$\bar{C}$	20	A	DAUPHIN-N. OF FIFTH AVE NORTH	TOWN			UC	
5218	c	618		DECORINE-NOFPTH 3	TOWN			RC	
5218	C	618		DELORANE-S OF RALLWAY XING	TOWN			RC	
5220	C	610		DELORAINE-WEST OF MOUNTAINST.	TOWN			RC	
5222	$\bar{C}$	618		DELORAINE - E OFP.T.H. ${ }^{3}$	TOWM			RC	
5229	c	200		DOMINOW CTTY-N. OF W. JCT, P.R. 201	TOWN			RC	35
5234	$\bar{C}$	604		DOMANTON CITY-E OF PR200	TOWN			RC	
5240	C	240		EUE-SOUTH OF P.T.F. E1	TOWN			RC	
5247	c	621		ELKHORN-W. OFP.T.H. ${ }^{\text {P }}$	TOWN			RC	
5251	C	258		ELKHORN-S. OF P.I.H. ${ }^{\text {IT }}$	TOWN			T	56
5255	C	45		ELPHINSTONE -W. OFP.R.	rown			RC	90
5257	C	45		ELPHINSTONE-E OFP.R RSA	TOWM			RC	90
5270	c	200		EMERSOH - N. OF P.T.M. 75	TOWH			RC	35
5276	6			ERCKSON-N. OF OLDPPT.M. 130	TOWN			RC	
5282	C	623		EAICKSON-W. OF P.T.H. 10	TOWN			RC	
5290	C	10		ETHELBERT-0.6 KM S. OFP.R S209	TOWI			RC	36
5299	C	10		ETHELBERT-0.8 KM W. OF P.R W209	TOWM			RC	36
5307	C	10		FLINFLON-N OFS. JCT. P.T.H. EIOA	TOWN	72		RC	72
5313	c	10		FLN FLON -0.3 Km N. OFW. WCT. P.T.M.	TOWN			RC	72
5320	C	10		FINN FLON-ROSS LAKE ERIDGE	TOWN			RC	72
5322	c	291		FINFIOM-S OFP.T.H.	TOWN			RC	30
5323	C	10	A	FUNFLOM-E OF GREEMST.	TOWH			RC	72
5334	C	5		GLEERT PLANS - W. OF W JCT. P.R 274	TOWN			RC	32
5338	C	5		GLLSERT PLANS-E OFW JCT. P.R E274	TOWN			AC	32
5337	C	274		GILEERT PLANS - N. OFW. JCT. P.T.H. BS $^{\text {S }}$	TOWN			T	32
5341	C	9		GIMU-S. OF S ACCESS ROAO (CENTREST)	TOWN			RC	1
5312	C	9		GML- M OFS. ACCESSROAD (CENIRESD	Town			RC	-
5343	C	616		GIML-E OF'S.JCT.P.T.H. 6	TOWN			RC	
5352	C	615		GLADSTONE-N OFP.T.K. 16	TOWN			RC	
5362	c	2		GLENEORO - W. OF ACCESS ROAO	TOWN			RC	68
5304	C	627		GLENEORO-S. OF P.T.M. E2 $^{\text {a }}$	TOWN			RC	
5373	C	462		GLENELM-S. OFPR 8201	TOWM			T	24
5377	C	615		GPAND PAPIDS - S OFPP.T.M. 6	TOWN			RC	
5334	C	306		GRRNOVIEW-N. OF RLWY X-SING	TOWN			RC	32
5305	C	617		GRANDUEW-N.E OFP.T.H. ${ }^{\text {W }}$	TOWN			RC	
5385	C	30		GRETNA-S. OF N. ACCESS ROAO	TOWN			RC	48
5398	C	820		GRETMA - W. OF N. JCT. P.T.M 330	Town			RC	
5401	C	205		GRUNTHAL - 0.3 KTMS. OF WAINST.	TOWN			RC	35
5404	c	205		GRUNTHAL-W. OF CHURCH AVE.	TOWN			RC	35
5406	C	21		MAMOTA-0.5MAN OFP.R	Town			RC	78
5417	c	634		HARTNEY-N OF PTH 21	TOMN			RC	
5423	C	634		HARTNEY-E OFP.T.H. BZ $^{\text {P }}$	TOWN			RC	
5427	C	635		HORLAND-S. OFP.T.M. 12	TOWN			RC	
5429	C	635		HOLAND-W. OF P.T.H. SM	TOMN			RC	
5431	C	2		HOLLAND-WEST OF P.T.M. MA	TONW			RC	58
5434	C	629		KELWOOD-E OF P.T.H. $\mathrm{W}^{5}$	TOWN			RC	
5440	C	630		CULARNEY - N. OF PTH M ${ }^{\text {a }}$	TOMN			RC	
5441	C	638		MLLARNEY - NOF PTH 3	TOWN			RC	
5443	C	10		KILARNEY - S OF PARK ST.	TOWN	66		$T$	66
5446	C	638		KILIARNEY-S. OF FINLAY ST.	TOWN			RC	

Table D-1 (continued)

Ster	Dirn	May. No.	Hay. Alt	Locmion	Now TPG	$\begin{gathered} \text { New Control } \\ \quad \text { Sen. } \\ \hline \end{gathered}$	Sest Contro! Str.a	On TPG	Ola Control Sn.
5497	C	633		CILARNEY- K OF FINLAYST	TOWN			R'	
5488	C	633		RILLARNEY-E OF BROADWAYAVE	TOMN			RC	
5150	C	3		KLLARMEY - E OF ACCESS RKAO	TOWN			RC	50
5451	c	502			TOWN			RC	5
545	C	502		UCDUEONAET-0.2k N OFFIRSTST.	TOMN			RC	
5436	C	18		LACOU EOMET-S OFACCESS ROAD	TOMN			RC	12
5198	C	50		LANGRUTH-asin S. OFPP.R Rev6	TOWN			RC	43
5474	C	618		LORETTE-ATSEINERTVER ERIDGE	TOMN			RC	
5475	C	207		LORETTE-0.5 IM E OFACCESS ROAD	TOMN			RC	
5677	c	418		LUNOAR-ERST OFPPT.M	TOWN			RC	81
5479	C	631		LTMWR-E OFP.T.M.	TOWN			RC	
5400	c	633		MACGREGOR - WEST OFACCESSROAD	rown			RC	
5009	c	635		WANITOU-NORTA OFP.T.M.E3	TOWN			RC	
55008	c	50		WCCREARY-E OFPT.RES	Tomin			RC	49
5509	C	625		MCCREARY - S OF P.T.H. ${ }^{\text {ES }}$	TOWN			RC	
5518	C	644		MEUTA-W OFP.T.A M ${ }^{\text {N }}$	TOMN			RC	
5523	c	644		MEITA-MOFPR MMS	TOWN			RC	
55231	C	037		MAWM-SOUTH OF NORTONAVE	TOWN			RC	
55530	C	637		LCAMA-E OFP.R K33	TOWN			RC	
5537	C	303		DINTONUS-SOUTH OFP.T.H. 10	TOWN			RC	36
5539	C	628		TMNTTONS-W. OFP.R ESES	TOWN			RC	
5576	c	16		TINNEDOSA - AT MTNMKEDOSA RIVER	TOTN			RC	90
5539	C	3		MORDEN-S OF P.T.M.	TOWN			U	
5580	C	63		TOORDEN-W OFFOURTEENTHST.	TOWN			UC	621
5581	C	432		MORDEN-0.3 KOM S. OF P.T.H. E3	TOWM			UC	
5509	C	75		WORRIS-N. OF S. JCT. P.T.M. 23	TOWN			$T$	31
5570	C	75		WORRIS -S OF JMESST (NOFPTH 23)	TOWN			T	14
5572	c	23		LKORRAS -W. OF P.T.H. 775	TOWN			7	14
5574	C	5		NEEPAWM-W OF WOUNTANMAVE.	TOWN			RC	24
5577	C	608		NEEPAWM-N OFPP.T.M $\$ 16$	TOMN			RC	
5581	C	699		NEEPAWA - $K$ OF CPR CROSSING	TOMN			RC	
5589	${ }_{C}$	5		NEEPAWA-EAST OF MOUNTAIN	TOMN			RC	24
559	C	245		MOTRE DME DELOURDES-W. OF P.R.24	TOWN			RC	58
5503	C	655		OAKBURN-W. OFP.T.H. $R 1$	TOWN			RC	
5628	C	643		QUKVILE-E OFP.T.H. 13	TOWN			RC	
583	C	632		OCARE RIVER-E OF P.T.M. \#20	TOWN			RC	
5853	C	658		PILOT MOUND-WOFPTH3	TOW			RC	
5373	C	271		PINE RIVER-E OFFTH 10	TOWN			RC	32
5883	C	308		PLUM COULEE-N OFP.T.H. 14	TOWN			RC	35
5867	C	$6 \cdot 6$		PLUM COULEE-EAST OFFPTM 14	TOWN			RC	
5693	C	240		PORTAGE LAPRARIE-S. OF P.T.H. ITA	TOWN			UC	35
5697	c	240			TOWN			UC	35
5689	C	1	A	PCRTAGELS PRAIRE-E OF THIRD ST. W.	TOMN			U'	24
5701	C	1	A	PORTAGELA PRAMRIE-E OF THROST.E	TOWN			UC	81
5710	C	24		RAPID CITY - ${ }^{\text {O }}$ UTTLESASKATCHEWIANRIVER	Town			7	78
5719	C	682		RESTON-S. OFF P.T.H. $\mathrm{R}^{\text {P }}$	TOWN			RC	
5720	C	632		RESTON - S OFFP.T.H. 12	rown			RC	
5739	C	683		RIVERS - S. OF SECONDAVE	TOWN			RC	
5738	C	250		RIVERS - M. OF P.T.M. 125	TOWN			RC	24
5741	C	651		RIVERTON-E OFP.T.H. ${ }^{\text {d }}$	TOWN			RC	
5753	C	634		ROBUN - N.W. OF W. JCT. P.T.R. ${ }^{\text {IS }}$	TOWN			RC	
5758	C	634		ROBUN - N OF E JCT. P.T.H. ES	TOWM			RC	
5780	C	5		ROSUN - W. OF E JCT. P.T.H. WR3 $^{\text {a }}$	TOWN			RC	41
5767	C	652		ROLAND - N. OF S. JCT.P.T.H. ${ }^{\text {a }}$ (23	TOWN			RC	
5774	C	652		ROLAND-E. OF N. JCT. P.T.M. 23	TOWN			RC	
5700	C	006		ROSSEUFR - W. OF P.T.M. MS	TOWN			RC	
5785	C	234		ROSSEURN-S OFPTH4S	TOWN			$T$	90
5790	C	68		RUSSEL-N. OF P.T.H. 16	TOWN			RC	
5799	C	689		SANDY LAKE - N. OFPP.T.H. 245	TOWN			RC	
5602	C	45		SANDY LAKE-W. OFP.R. 2250	TOWN			RC	90
51919	C	632		STE ANNE-MW. OFP.R 210	TOWN			RC	
$5 \times 20$	C	210		STE ANME-SW. OFACCESS ROAD \% 622	TOWN			RC	12
5831	C	2		ST. CLAUDE-W. OFP.R.R40	TOWN			$T$	48
5039	C	246		ST. JEAN BMPTSTE-E OFP.T.H. 715	TOWN			RC	35
5053	C	629		ST. MALO-W. OFFP.T.M. $\mathrm{S}_{\text {S }}$	TOMNT			RC	
5059	C	59		ST. MALO-S. Of ACCESS ROAD	TOWN			RC	14
5871	C	278		STE ROSE-N OFP.T.M WS	TOWN			RC	75
5881	C	506		EAST SELLIRK - N. OF P.R 2812	TOWN			UC	67
58.2	C	212		EAST SELKIRK-N. OF P.REZOA	TOWN	67		UC	67
56.6	c	204		EAST SEIKIRK-E OF P.R.E212	TOWN			UC	77
5086	C	9		SELKAK-E OF RLWY CROSSING	TOWN	3		UC	3
5887	C	320		SELKAKK-N. OFMORRISAVE	TOWN			UC	67
54.97	C	204		SEIGRK-W. END SELKRK ERIDGE	TONM			UC	77
5890	C	9	A	SELGREX-N OFPACFICAVE	TOWN	3		UC	3
5037	C	670		SHOMLLAKE-E OFP.T.M. MR	TOWN			RC	
5939	C	22		SOURIS - S. OFPP.T.H. ${ }^{\text {d }}$	TOWN			RC	
5942	C	2		SOURIS - WEST OFP.T.M. P2	TOWN			T	40
5943	C	2		SOURIS - EAST OFP.T.M. 122	TOWN			7	40
5997	C	12		STEINBACH - S OF P.T.M $1{ }^{1} 32$	TOWN			UC	14
5948	C	12		STEINEACH - N, OFP.T.H. HS $^{\text {S }}$	TOWN			UC	14
5953	C	52		STENEACH-E OFP.T.H. 12	TOWN			UC	14
5954	C	52		STENEMCH-W. OFP.T.M.	TOWN			UC	14
5961	C	67		STONEWALL-S. OF N. JCT. P.R 1236	Town			$T$	16
5934	C	604		STONEWAL - W. OFPP.T.T.	TOWN			RC	
5869	C	605		STONY WOUNTAN-EAST OF P.T.M. M 7	TOWN			RC	

Table D-1 (continued)

Stor.	Dirn	Hoy. No.	Hary.   Ale	Lociton	Now TPG	$\begin{aligned} & \text { New Contret } \\ & \text { Sen. } \\ & \hline \end{aligned}$	Sask Control Ster.A	Old TPG	Off Controf Sin.
5073	c	678		STRATHCLAR-W. OFP.T.H. $\quad 16$	TOWN			RC	
5978	C	354		STRATHCLAR-S. OFPP.T.M. P16	TOWM			RC	90
509	C	63		SWAN RIVER - W. OF P.T.H. M10A	TOWN			RC	36
5895	C	10		SWCAN RIVER - N. OFP P.T.M. 03	TOWN			RC	32
5093	C	63		TEULON-S. OF P.T.H. ${ }^{\text {M }}$ IT	TOWN			RC	
6000	c	10		TMEPAS-S. OF TMARDST.	TOWN			TS	72
6001	C	205		THEPAS-W. OFROSSAVE	TOWN	73		RC	73
6013	C	381		THOMPSON-S. OF THOTPSOM DRVE SOUTH	TOWN			RC	82
6014	C	391		THOM SOM- N. OF THOMPSOM DRIVE SOUTH	TONM			RC	82
6016	C	391		THOMPSOM - 5 . OF THOMPSOM DRIVE NOFTH	TOWM			RC	82
6017	C	391		THOMPSOM-N. OF THONPSOM DRIVE NORTH	TOWN			RC	82
6021	C	670		TREHERIE-S. OF W. JCT. P.T.H. 2	TOWW			RC	
6027	C	670		TREFHERINE-S. OF E JGT. P.T.M. 2	TOWN			RC	
6032	C	257		VRDEN-W OFACCESSROAD	TOWN			RC	58
6035	C	257		VIRDEN-E OF SEVENTH AVE,	TOWN			RC	58
6030	C	678		VRDEN-S.W. OF SEVENTHAVE	TOWM			RC	
6039	6	678		IVRDEN-S.E OF KINGST.	TOWN			RC	
8091	c	676		WIRDEN-S.W. OFP.T.H. H	TOWN			RC	
6045	C	250		VROEN - N OFP.T.H. PI $^{\text {I }}$	TOWN			RC	24
6050	C	638		WMEOWDEN-W OF LAKEST.	Town			RC	
6052	C	679		WARREN - E OFPTH 6	TOWW			RC	
6054	C	671		WARREN-WOFPTH6	TOWN			RC	
6061	C	601		WAWINESA-S. OF-P.R. SMA	TOWN			RC	
6030	C	673		WINCLER - MAIN ST. S OFFTHIL	TOWN			UC	
6089	C	32		WINUKLER - CENTENNIAL ST. SOUTH OF PTH 14	TOWN			UC	35
6078	C	672		WHNMPEG BEACH - E OF S JCT. P.R E232	TOWN			RC	
6081	C	672		WINAPEG BEACH-W. OF RLW $\times$-SING	TOWN			RC	
6087	C	640		MMMIPESOSIS-E. OFFP.T.E. EZO	TOWN			RC	
6102	c	1		ALEANDER-E OFP.R. 2250	TOWN			7	62
6109	C	601		ALSXANOER-S. OFP.T.L. 1	TOWN			RC	
8109	C	250		ALECANDER - N. OFPP.T.H. \#i	Town			RC	24
6110	C	1		ALEANDER - W. OFP.R W250	TOWN			$T$	62
6127	C	45		ANGUSVILLE-E OFPR.ET78	TOWN			RC	90
6120	c	476		ANGUSVILE-N. OFFP.T.H. 1 A5	TOWN			T	90
6129	C	45		ANGUSVILE-W. OFP.R -	TOWM			RC	90
6320	C	614		CARTWRIGHT - N OFP.T.M. ${ }^{\text {W }}$ S	TOWN			RC	
6336	c	9		SOUTH OF CLANDEEOYE	TOWN			RC	75
6379	c	342		CTPRESS RIVER-S. OF P.T.H. 2	TOWN			$\stackrel{T}{5}$	58
6380	c	1		DOUGUS-E OFP.R. 1340	TOWN			15	79
6419	C	15			TOWN			UC	64
6421	C	206		DUGALD-S. OF P.T.M. ETS	TOWN			RC	12
6422	c	15		DUGALD-E OFP.R 2206	TOMN			UC	64
6428	c	619		DUNREA - N. OFPP.T.H. ${ }^{23}$	TOWN			RC	
6479	c	613		EMCREEK-E OFP.T.M. ${ }^{\text {P13 }}$	TOMN			RC	
6482	c	613		EM CREEK - W. Of GuOrs ST.	TOMN			RC	
65011	C	68		ERIKSOALE-EAST OFP PT.H. W3	SOWN			T	16
65031	C	417		ERIKSDALE-W. OFP.T.M 10	TOWN			RES	78
6518	c	800		FALCONLAKE-SOUTH OFP.T.H. 1	TOWN			RES	
6553	C	625		FOXWARREN-S. OFP P.T.R. 918	TOWN			RC	
6593	C	608		GARSON - W. OF E JCT. P.T.H. MA	TOTMN			RC	
6800	c	600		GARSON-E OF W. JCT. P.T.M. PA	TOWN			RC	
6601	C	608		GARSON-S. OF CENTERJCT. P.T.H. MA	TOXN			RC	
6809	c	615		GLAOSTONE-E OF P.T.R.ETG	TOMN			RC	
6866	C	629			TOWN			RC	
6671	C	321		GROSSEISLE-E OFPP.T.H. 6	TOWN			RC	1
687	C	621		GROSSEISLE-SE OFPP.T.H. 0	TOWN			RC	
6679	C	622		GUNTON-W. OF P.T.H. 7	TOMN			RC	
6706	C	623		HAYWOOO-EAST OF GOVK RD. ALIOWANCE	TOMN			RC	
6712	C	623			TOWN			RC	
6756	C	627		HOCAFELO-WEST OFPP.T.ME E32	TOWN			RC	
6780	c	405		ILE DES CNENES - E OF P.T.H. 139	TOWN			RC	
67801	c	612		LLEDES CHENES - W. OF STE ANNES ROAD	TOWM			RC	
6801	C	620		INGLIS -S. OFP.R W	TOWN			RC	
6627	c	27		KENTON-S. OFP.R D25	TOWN			$T$	78
6839	c	637		KENTON-S. OFP.R-1258	TOWN			RC	
6805	C	317		LACOUBONNET-0.6 ROIS. OFPP.T.H. 11	TOWN			RC	75
6957	C	230		LOCKPORT - SOUTH OF P T.H. ${ }^{\text {a/4 }}$	TOWN	3		UC	3
6959	C	4		LOCICPORT - WEST OF LOCKPORT BRILGE	TOWN			$T$	
69.2	6	204		LOCKPORT+S. OFP.T.M. TA	TOWN			UC	77
6978	C	23		LOWE FARM-WEST OFP.RE 332	TOWN			T	12
7005	C	242		MACEREGOR -	TOWN			$T$	58
7010	C	033		MACGREGOR-5OUTH OFP.T.H. ©	TOWN			RC	
7057	C	64		WRLAPOUS. E. OF P.T.M. 23	TOW:			RC	
7003	c	043		MCAULEY W. OFP.T.H. 41	TOMN			RC	
7129	C	645		MINIOTA-E OFFP.T.H ${ }^{\text {M }}$ O3	TOWN			RC	
7128	C	645		MINTOTA- W. OF P.T.A. W. 3	TOWN			RC	
714	c	627		MOOSEHORN-EAST OFP.T.A. OS	TOMN			RC	
7168	c	847		MPPINKA-EOFP.R. 1452 (S.ACCESS)	TOWN			RC	
7170	c	647		NAPINKA-E OFP.R A 52 (N, ACCESS	TOWN			RC	
7212	C	250		NEWOALE-W. OFP.T.H. 16	TOWN			RC	
7217	C	250		NEWDALE-S. OFP.T.M. 16	TOWN			RC	24
724	c	653		OAK UNKE-SOUTH OF P.T.H. \#1	TOWN			RC	
7249	c	853		OAKLAKE-WEST OF ATHAVENUE	Town			RC	
7202	c	654		OAK RIVER - NORTTH OF WCNINMETST	TOWN			RC	
7209	c	623		OTTERSURNE-W. OF GOVT. RD. ALLCE.	TOWN			RC	
7230	C	024		PETERSFIE1O-E OF-P.T.M. ${ }^{\text {W }}$	TOWN			RC	
7286	C	657		PIERSON-S OFP.T.H. 3	TOWN			RC	

Table D-1 (continued)

Stor	Oirn	Hory. Na.	tway. All	Leention	New TPG	$\begin{gathered} \text { Now Contros } \\ \sin \end{gathered}$	Sesk Control Sm.n	OM TPG	$\begin{gathered} \text { Orecontrol } \\ \operatorname{Sin}^{2} \end{gathered}$
7305	C	659		PIPESTOME-S. OFP.T.M. 2	TOWN			RC	
7358	c	302		RICHER - N OF EAWSON RINAO	Town			RC	12
7489	c	$05 \%$		SANFORD-NW. OFP.R R247	TOWN			RC	
7516	c	679		STOMEY-E OFP.R. 3352	TOWN			RC	
7304	c	2		STRREUCK-E Of P.R TM3	TOWN			T	48
7614	c	687		SWMM LTKE-N. OFP.T.H. 223	TOWN			RC	
706	c	600		WASTAOM-E OFPR PZST	TOWN			FC	
7714	c	613		WHITEMOUTH-N. OF S. JCT. P.T.H. M1T	TOWN			RC	
7719	C	613			TOWN			RC	
7729	c	674		WOOOLANSS-E OF RLWY X-SING	TOWN			RC	
7732	C	674		WOODLNOS-S OFP.R.	TOWN			RC	

## APPENDIX E

## Cluster Analysis Results

## Results of Cluster Analysis

The following program shows the SAS program code used for performing cluster analysis on the permanent counter data based on its' monthly traffic patterns. This program requires the input variables to be the 12 monthly factors for each permanent counter for grouping.

```
DATA MGROUP;
 INFILE 'C:\SAS\SASDATA\CM95MAD'.PRN' LRECL=200;
 INPUT STNNO $ ML M2 M3 M4 M5 M6 M7 M8 M9 M10 MII MI2;
 CARDS;
PROC PRINT DATA=MGROUP;
PROC CLUSTER METHOD=WARD;
 VAR MI M2 M3 M4 M5 M6 M7 M8 M9 M1O MII MI2;
 ID STNNO;
PROC TREE HORIZONTAL SPACES=2;
 ID STNNO;
RUN;
```

(The output from this program is shown below).


76	S3	SIO	2	0.000165	0.998643
75	M8	M28	2	0.000188	0.998455
74	M32	539	2	0.000203	0.998252
73	CL76	S5		0.000219	0.998033
72	CL75	M14	3	0.000264	0.997768
71	M9	S2	2	0.000285	0.997483
70	SII	CL83	3	0.000319	0.997164
69	M67	M68	2	0.000345	0.996819
68	M56	534	2	0.000355	0.996465
67	M24	M81	2	0.000360	0.996105
66	CL71	CL79	5	0.000393	0.995712
65	CL74	544	3	0.000409	0.995303
64	M13	M96	2	0.000412	0.994891
63	CL77	M60	3	0.000419	0.994472
62	M12	M78	2	0.00043 I	0.994041
61	CL8O	515	3	0.000468	0.993573
60	CL66	CL 73	8	0.000492	0.993081
59	M59	542	2	0.000494	0.992587
58	M21	M72	2	0.000518	0.992069
57	M97	S9I	2	0.000519	0.991550
56	M40	59	2	0.000535	0.991015
55	CL84	CL67	4	0.000577	0.990438
54	M51	CL, 59	3	0.000590	0.989848
53	M84	CLI8	3	0.000597	0.989251
52	CL60	M66	9	0.000628	0.988623
51	M46	CL70	4	0.000639	0.987985
50	M7	CL68	3	0.000659	0.987325
49	CL65	545	4	0.000677	0.986648
48	M43	CL85	3	0.000726	0.985922
47	S18	S21	2	0.000802	0.985120
46	M94	S46	2	0.000803	0.984317
45	CL61	536	4	0.000821	0.983496
44	CL52	513	10	0.000832	0.982654
43	M75	CL5 57	3	0.000905	0.981758
42	CL63	CL. 55	7	0.000941	0.980817
41	CL54	543	4	0.000979	0.979838
40	CL50	CL72	6	0.001004	0.978834
39	CL49	516	5	0.001400	0.977434
38	CL81	M80	3	0.001427	0.976007
37	CL51	M58	5	0.001456	0.974551
36	CL62	CL43	5	0.001501	0.973050
35	M47	57	2	0.001508	0.971542
34	CL56	Cu48	5	0.001707	0.969835
33	CL40	CL45	10	0.001723	0.968112
32	CL37	CL53	8	0.001909	0.966203
31	CL64	M74	3	0.002073	0.964130
30	CL4I	M83	5	0.002089	0.962041
29	CL38	S8	4	0.002403	0.959638
28	CL42	CL39	12	0.002532	0.957107
27	M76	CL46	3	0.002610	0.954496
26	M73	CL4 7	3	0.002766	0.951730
25	CLI30	517	6	0.003002	0.948728
24	CL. 36	M93	6	0.003495	0.945233
23	M16	CL32	9	0.003500	0.941733
22	CL25	540	7	0.003800	0.937933
21	CL35	CL. 69	4	0.003919	0.934014
20	CL.33	CL44	20	0.003934	0.930080
19	CL23	CL34	14	0.004654	0.925426
18	CL28	CL20	32	0.004724	0.920703
17	CL24	CL58	8	0.005869	0.914833
16	CL21	M63	5	0.006542	0.908291
15	CL31	CL26	6	0.006558	0.901733
14	CL19	CL29	18	0.010809	0.890925
13	CL18	CL22	39	0.011545	0.879379
12	CLI4	CL16	23	0.012931	0.866449
11	CLI7	M65	9	0.017101	0.849347
10	M4	CL. 27	4	0.018519	0.830829


9	CLIO	CLI5	10	0.022065	0.808764
8	CLI 13	S74	40	0.023013	0.785750
7	CL9	592	11	0.027868	0.757883
6	CLII	571	10	0.034974	0.722908
5	CL6	CL12	33	0.045785	0.677123
4	CL7	547	12	0.049733	0.627390
3	CL8	S14	41	0.058013	0.569377
2	CLe3	CLS	74	0.108896	0.460481
I	CL2	CL4	86	0.460481	0.000000

