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ABSTRACT 

Rheumatoid arthritis (RA) is a chronic disease characterized by an overactive immune 

system and joint inflammation. Population-based administrative health data (AHD) are 

widely used for RA outcomes research and surveillance. However, AHD may not 

completely capture all cases of RA in the population. Capture-recapture (CR) methods 

have been proposed to describe the completeness of AHD for estimating disease 

population size, but AHD may not conform to the assumptions that underlie CR models. 

A Monte Carlo simulation study was used to investigate the effects of violations of the 

assumptions for two-source CR methods: dependence between data sources and 

heterogeneity of capture probabilities. We compared the Chapman estimator and an 

estimator based on the multinomial logistic regression model (MLRM) to study relative 

bias (RB), coverage probability (CP) of 95% confidence intervals, width of 95% 

confidence intervals (WCI), and root-mean-square-error (RMSE) in prevalence estimates. 

The effects of misspecification of the MLRM were also investigated. In addition, the 

Chapman and MLRM estimators were used to estimate RA prevalence using AHD data 

from Saskatchewan, Canada. Population sizes were consistently underestimated for CR 

methods when the assumptions were violated. The estimated population size for both of 

the estimators did not differ substantially except for the RMSE values. Parameter 

estimates became biased when the MLRM model was misspecified, but there was little 

impact on population size estimates. In conclusion, CR methods are recommended to 

reduce bias in prevalence estimates based on AHDS. Because these methods may be 

sensitive to assumption violations, researchers should consider potential dependence 

between data sources. As well, sufficient overlap in the cases captured by each data 



 

ii 
 

source (e.g., 50% of the cases are captured by both data sources) or balanced capture 

probability in each data source is needed to effectively implement these methods. 

Researchers who estimate population size using CR methods in AHDs should favour the 

MLRM estimator over the Chapman estimator. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Rheumatoid arthritis (RA) is a chronic disease characterized by an overactive 

immune system and joint inflammation. It is associated with recurrent periods of pain, 

fatigue, and stiffness, as well as progressive functional disability. It affects approximately 

one percent of the Canadian population (Toronto Western Research Institute, 2010). The 

causes of RA are unknown, but risk factors include socioeconomic status (SES), sex, 

geography, and ethnicity (Barton et al., 2011; Gabriel, 2001; Michaud & Wolfe, 2007; 

Waltz, Kriegel, & Van't Pad Bosch, 1998).  

The Arthritis Alliance of Canada (Bombardier, Hawker, & Mosher, 2011) 

estimated that more than 272,000 people were living with RA in 2010, which is 0.9% of 

the Canadian adult population. This number is expected to increase to 549,218 (i.e., 1.3% 

of the Canadian adult population) over the next 30 years as the population ages. By 2040, 

the number of new cases of RA in Canada is predicted to be about 23,732, up from 

17,916 cases in 2010 (Bombardier et al., 2011). 

RA prevalence has been reported to vary internationally (Rasch, Hirsch, Paulose-

Ram, & Hochberg, 2003; Toronto Western Research Institute, 2010). Prevalence is 

estimated to be higher in Australia and lower in Sub-Saharan Africa (Shapira, Agmon-

Levin, & Shoenfeld, 2010). In the USA, RA prevalence was estimated to range from 

2.03% to 2.72% among respondents 60 years and older based on data from the National 

Health and Nutrition Examination Survey from 1988 to 1994 (Simard & Mittleman, 

2007). Data from the UK’s Norfolk Arthritis Registry suggested that the adult population 
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(i.e., 18+ years) in that region had an estimated RA prevalence of about 0.81% 

(Symmons et al., 2002).  

RA not only impacts the individual, but also the health care system. RA is 

associated with a number of comorbid conditions such as depression, cardiovascular 

disease, and cancer, which can adversely affect patients’ quality of life and need for 

health care treatment (Michaud & Wolfe, 2007). Disease modifying antirheumatic drugs 

(DMARDs) and biologic therapies, which are commonly used to treat patients with RA, 

are expensive. It is currently estimated that RA drives more than $2 billion in direct 

health care costs in Canada (Bombardier et al., 2011). If severe RA cases could be 

avoided, Bombardier et al. (2011) also estimated that $5.1 billion could be saved in 

cumulative direct health care costs and over $33.7 billion could be saved in cumulative 

productivity losses over 30 years in Canada. 

Given the impact on the individual and the health care system, epidemiologic 

studies about RA prevalence and incidence are important to provide an indication of both 

the overall and relative burden of the disease. In Canada, the two main sources of 

population-based data for RA epidemiologic studies are national survey data from such 

sources as the Canadian Community Health Survey (CCHS) and administrative health 

data (AHD). Both sources of data have their strengths and limitations. Given the low 

prevalence of RA in the population, national survey data, which are based on samples of 

the population, are likely to produce less precise estimates than AHD. As well, previous 

research has shown that the CCHS tends to result in substantially over-estimated 

prevalence of RA (L. Lix et al., 2006), possibly because of the manner in which the 
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questions about arthritis are worded. As a result, the self-report question in CCHS (e.g., 

cycle 1.1) was not effective in distinguishing different forms of arthritis, including RA.  

AHD also have some limitations for estimating RA prevalence and incidence. For 

example, hospital data had a low sensitivity of 23% when compared with rheumatologist-

reported diagnosis and a single physician visit had a specificity of only 60% for 

ascertaining disease cases (Widdifield et al., 2013). In addition, sensitivity only ranged 

from 5.0% to 11.3% for RA algorithms applied to AHD (L. Lix et al., 2006), when using 

survey data (i.e., CCHS) as the reference standard although the results may be influenced 

by the choice of a gold standard. Thus, AHD could result in biased estimates of 

prevalence and incidence, with low sensitivity to detect true positive cases being of 

particular concern. 

Methods to adjust for less-than-perfect sensitivity and specificity of AHD include 

the use of model-based prediction algorithms (L. M. Lix, Yogendran, Leslie, et al., 2008), 

bias-corrected prevalence or incidence estimates (Manuel, Rosella, & Stukel, 2010), 

latent class analysis techniques (Bernatsky et al., 2011), and capture-recapture (CR) 

methods (Hook & Regal, 1995). None of these methods is without limitations and each 

make assumptions about the characteristics of the data and the underlying statistical 

model.  

CR methods can be used to describe the completeness of AHD for estimating 

disease population size. They have been used in a number of epidemiologic studies for 

this purpose (Yip et al., 1995). However, two assumptions of some CR methods, 

independence of data sources and homogeneity of capture probabilities, are unlikely to be 

satisfied in practice. Ascertainment in different AHDs may not be independent; for 
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example, the probability of being identified as a case in physician billing records may be 

associated with the probability of being captured in prescription drug records. And this 

would be a violation of the assumption of independence of data sources. As well, capture 

probabilities may not be consistent (i.e., homogeneous) for all individuals in the 

population, and may be associated with such characteristics such as age, sex, and the 

presence of co-morbid conditions.  

1.2 Research Purpose and Objectives 

The overall purpose of this research was to apply CR methods to estimate the 

completeness of AHD for ascertaining RA prevalence. CR methods were chosen for this 

study because they have not previously, to the best of our knowledge, been applied to 

estimate RA prevalence, even though they have been applied to other chronic diseases 

such as cancer (McClish & Penberthy, 2004), diabetes (Giarrizzo, Pezzotti, Silvestri, & 

Di Lallo, 2007), and stroke (Tilling, Sterne, & Wolfe, 2001) and to AHD in other 

jurisdictions. In order to know the validity of prevalence estimates from CR methods, we 

also conducted a Monte Carlo simulation study, to investigate the effect of dependence 

amongst data sources and heterogeneity of capture probability on estimates of population 

size. 

1.2.1 Research Objective 1: To Compare Population Size Estimates from 

Conventional and Model-based CR Methods 

We compared the completeness of AHD for ascertaining RA prevalence using CR 

models with and without adjustment for measured covariates. The Chapman estimator 

and an estimator based on the multinomial logistic regression models (MLRM) were used 

in both a Monte Carlo simulation study and a numeric example to estimate prevalence. 
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1.2.2 Research Objective 2: To Explore the Effects of Model Misspecification for the 

Model-based CR Method 

We compared bias in the estimates of completeness of AHD for ascertaining RA 

prevalence using CR models that were and were not misspecified due to unmeasured 

covariates. The effects of misspecification were investigated through a Monte Carlo 

simulation study. 

1.3 Thesis Organization 

This thesis focuses on epidemiologic methods in chronic disease surveillance. In 

Chapter 2 we present relevant background on each of the following major topics: 1) 

Population-based chronic disease prevalence estimation methods, 2) Accuracy of case 

ascertainment algorithms for chronic disease in AHD, 3) Methods to address bias in 

prevalence estimates of chronic disease in AHD, 4) CR methods, and 5) Monte Carlo 

simulation studies about CR methods. Chapter 3 presents the CR methods, describes the 

dataset to be used for RA prevalence estimates in a numeric example and provides 

detailed information on the simulation and modelling techniques to compare CR 

methods. Chapter 4 presents results and analysis from the Monte Carlo simulation study 

and the numeric example. We finish the thesis with discussion of the key findings and 

conclusions. 
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CHAPTER 2 LITERATURE REVIEW 

This review provides background information about population-based chronic 

disease prevalence estimation methods from health survey and AHD. The review then 

moves on to discuss sensitivity and specificity of AHD for chronic disease case 

ascertainment. Next, methods to address diagnostic bias and prevalence estimates for 

chronic disease in AHD are reviewed. CR methods are discussed in detail, including their 

history, assumptions, and underlying statistical models. Finally, Monte Carlo simulation 

studies about CR methods are reviewed. 

2.1 Population-based Chronic Disease Prevalence Estimation Methods 

There are two main population-based data sources used in RA epidemiologic and 

health outcomes research in Canada: health surveys and AHD. Health surveys require the 

participants’ subjective judgment of their health and recall of past health events. The 

accuracy of the participants’ answers to specific questions may be affected by various 

factors. Responses may vary according to the method of data collection, the precise 

phrasing of the questions, and the respondents’ understanding of their health and disease 

(Young, 2005). It is relatively easy to produce health indicators from survey data. 

In Canada, for example, the CCHS is a key source of data for RA research and 

surveillance (Statistics Canada, 2013). The CCHS is conducted by Statistics Canada to 

provide cross-sectional self-reported information about health determinants, health status, 

and health system utilization for populations in 133 health regions across Canada 

(Manitoba Centre for Health Policy, 2007; Statistics Canada, 2009). The CCHS initiative 

began in 2000 with its main goals being “the provision of population-level information 

on health determinants, health status and health system utilization” (Health Canada, 
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2012). There is an annual component on general health; a component about specific 

health topics is also conducted every two to three years. 

AHD are collected by governments for administrative purposes, such as keeping 

track of the population eligible for health benefits, paying doctors, or funding hospitals. 

Examples of AHD are hospital abstracts, physician billing claims, and prescription drug 

records (Spasoff, 1995). Wenneberg and Gittelsohn published one of the first articles 

using AHD to describe variations in health care use in the United States (Wennberg & 

Gittelsohn, 1973). Since then, applications of AHD for epidemiologic and health 

outcomes research have become increasingly common. AHD are cost-effective and time-

effective to use for research and surveillance because they are routinely collected. At the 

same time, AHD can usually be accessed without patient-specific consent, which can 

reduce selection bias (Suissa & Garbe, 2007). They contain consistent elements, can be 

accessed in a timely manner, and provide information about large cohorts (Virnig & 

McBean, 2001). 

Reliability about precision of the information found in population-based data have 

been addressed by many researchers (e.g., Virnig & McBean (2001)). AHD and survey 

data may not always produce consistent results. Study which compared chronic disease 

case ascertainment between the CCHS (cycle 1.1) and AHD has been shown (L. M. Lix, 

Yogendran, Shaw, et al., 2008). Agreement was high for diabetes and hypertension but 

low for arthritis. For example, algorithms based on only one physician claims contact had 

a Cohen’s kappa coefficient of 0.69 with 95% CIs of (0.68, 0.69) for diabetes and 0.64 

with 95% CIs of (0.64, 0.64) for hypertension. However, it was only 0.27 with 95% CIs 

of (0.26, 0.27) for arthritis. It has been argued that the non-life-threatening nature of 
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arthritis may result in it being over reported in surveys, but underreported in AHD, 

contributing to the lack of agreement between the two data sources (Kriegsman, Penninx, 

Van Eijk, Boeke, & Deeg, 1996). Like arthritis, RA also had a poor agreement between 

AHD and survey data with a Cohen’s kappa coefficient of 0.17 for the algorithm based 

on one or more AHD (L. Lix et al., 2006). The lack of agreement between survey and 

administrative data for all forms of arthritis, including RA, may be attributed to the 

wording of the survey questions, self-report bias, or sampling bias in survey data or due 

to diagnostic misclassification in AHD (Wunsch, Harrison, & Rowan, 2005).  

2.2 Accuracy of Case Ascertainment Algorithms for Chronic Diseases in AHD 

The International Classification of Diseases (ICD) developed by the World Health 

Organization is typically used to assign diagnosis codes in AHD. The accuracy of the 

diagnostic codes can be assessed by comparing them with a reference standard. Medical 

records are frequently used as a reference standard for AHD, although self-report survey 

data and clinical registries can also be used (Virnig & McBean, 2001).  

Several studies have examined the accuracy of diagnosis codes for case 

ascertainment in AHDs for such chronic conditions as diabetes and hypertension. For 

example, Hebert et al. compared self-reported diabetes from the Medicare Current 

Beneficiary Survey with diagnoses of diabetes in Medicare administrative data. Using 

self-reported diabetes status as the reference standard, they found that in order to get 

adequate sensitivity (>=70%), specificity (97.5%), researchers should combine 

information from different types of Medicare claim files, use two years of data to identify 

cases, and require at least two diagnoses of diabetes among claims involving ambulatory 

care (Hebert et al., 1999).  
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One study proposed using a logistic regression model to quantify the probability 

that a person has kidney disease from multiple markers of the disease (Van Walraven et 

al., 2010). Without available data for a “gold standard”, they developed an accurate and 

well-calibrated multivariable model that demonstrates the probability that a particular 

patient in an AHD has kidney disease. They found that the sensitivity of a kidney disease 

diagnostic code for true kidney disease was very low at 38%. However, the specificity 

was very high (i.e., 98.9%). The study concluded that multiple variables can be combined 

to quantify the probability that a person has a particular disease. A multivariable model 

can significantly increase the accuracy of disease identification in AHD.     

A few studies have examined the accuracy of ICD codes for RA within AHD. A 

retrospective chart abstraction study was conducted for a random sample of patients seen 

in Ontario rheumatology clinics (Widdifield et al., 2013). Using the medical records at 

each rheumatologist’s clinic and charts as the reference standard, these patients were 

identified in combinations of RA-coded physician billings and primary and secondary 

hospital discharge diagnoses (using ICD-9 and ICD-10 diagnosis codes 714 and M05-

M06 respectively), and prescription drug claims (for glucocorticoids, DMARDs, and 

biologic agents). Overall, Widdifield et al. (2013) found that physician billing claims had 

sensitivity ranging from 94% to 100% while hospital records had a sensitivity of only 

23%. Specificity and positive predictive value (PPV) were moderate (e.g., 60% and 55% 

respectively for only one contact in physician billing claims) to excellent (e.g., 96% and 

76% respectively for one contact in hospital records) and increased when multiple 

general practitioner (GP) billing claims or specialist billing claims were used to ascertain 

cases (e.g., 80% for contacting a specialist within one year). RA prescription drug claims 



  

- 10 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

slightly decreased sensitivity, but also slightly increased specificity and PPV. The 

addition of hospital data to physician billing claims had little impact on sensitivity or 

PPV. 

The accuracy of an ICD-9 diagnosis for RA (i.e., ICD-9 code 714) was 

investigated in a Veterans Administrative (VA) hospital database from the USA (Singh, 

Holmgren, & Noorbaloochi, 2004). Using chart documentation of RA diagnosis by a 

rheumatologist on at least two visits at least six weeks apart as the reference standard, 

Singh et al. (2004) found that this diagnosis code had 100% sensitivity, but specificity 

was only 55%. The addition of a positive laboratory test for rheumatoid factor and a 

DMARD prescription for a hospital diagnosis significantly improved specificity to 

between 83% and 97% and PPV increased to between 81% and 97%, although sensitivity 

dropped to between 76% and 88%. 

Using the CCHS as the reference standard, Lix et al. (2006) proposed a number of 

algorithms for ascertaining cases of RA in AHD. For these algorithms, sensitivity ranged 

from 5.0% to 11.3%. The highest sensitivity was for a five-year algorithm based on one 

or more physician billing claims. Specificity was near 100% for all algorithms. The PPV 

of an RA ranged from 55.9% to 80.6% and the negative predictive value (NPV) was 

approximately 92%. 

2.3 Methods to Estimate Chronic Disease Prevalence in AHD 

Several methods have been proposed to estimate chronic disease prevalence in 

AHD when sensitivity and specificity of disease diagnosis codes are less than perfect. 

Manuel et al. (2010) proposed adjusting disease prevalence estimates using sensitivity 

and specificity estimates from validation studies in order to improve the accuracy of 



  

- 11 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

prevalence estimates. They calculated the potential percentage of misclassified cases, that 

is false positive cases and false negative cases, based on estimates of sensitivity and 

specific. They focused on the incidence and prevalence of diabetes for Ontario using the 

Ontario Diabetes Database (Lipscombe & Hux, 2007), which ascertains cases of diabetes 

using ICD diagnoses in hospital records and physician billing claims. After Manuel et al. 

(2010) applied validation study estimates of sensitivity and specificity to the Ontario 

data, the estimated unbiased prevalence of diabetes in 2005 was 7.2%. This number was 

19% lower than the estimate in the original study that did not account for sensitivity and 

specificity when estimating disease prevalence (8.9%).  

Bernatsky et al. (2011) proposed using Bayesian latent class models to deal with 

under-ascertainment of cases of systemic autoimmune rheumatic diseases (SARDs) in 

AHD. This methodology identifies disease clusters (i.e., disease present/absent) from 

imperfect markers of disease status and prior information about the sensitivity and 

specificity of each of the imperfect markers of disease which do not assume the existence 

of a gold standard. Bayesian methods assume that “unknown values for a parameter have 

probability distributions”. Bernatsky et al. (2011) set prior inputs for the Bayesian model 

based on the previous research. The total prevalence was between 2 to 3 per 1,000 cases. 

The highest prevalence was seen among women who were 45 years older. The estimated 

SARDs prevalence by using the Bayesian latent class models was very close to the 

existing North American estimates by using other data sources such as population survey 

(Bernatsky et al., 2009; Helmick et al., 2008; Kabasakal et al., 2006). 

Lix et al. (2008) proposed classification models, including logistic regression 

models and non-parametric classification trees, to develop model-based case 
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ascertainment methods that use multiple disease indicators to ascertain osteoporosis 

cases. The logistic regression performs well when data were characterized by linear 

associations between the disease markers and the probability of being a case. The 

nonparametric classification methodology is based on recursive partitioning, which forms 

homogeneous subgroups in the data. Prevalence estimates from the logistic regression 

models (i.e., 12.35%) were higher than the estimate from the non-parametric 

classification trees (i.e., 7.61%) among Manitoba women 50+ years. Compared to other 

population-based studies, the estimated prevalence of osteoporosis was around 12% 

which suggests that the logistic regression models produced closer osteoporosis 

prevalence estimates to those found in the literature (Yang et al., 2006). 

2.4 Capture-Recapture Methods 

2.4.1 History 

Capture-recapture (CR) methods have also been proposed to estimate the 

completeness of AHD for both acute and chronic disease prevalence estimation (McClish 

& Penberthy, 2004; Peragallo, Urbano, Lista, Sarnicola, & Vecchione, 2011). CR 

methods have been used in a number of epidemiologic studies to estimate or adjust for 

incomplete case ascertainment, by using information on the amount of overlaps in lists of 

cases identified from distinct sources (Hook & Regal, 1995).  

CR methods and models were initially applied in biological studies about the size 

of fish and wildlife populations, in which a sample of wildlife was captured and tagged, 

then another sample was taken; the re-captured animals were counted and used to 

estimate total population size. These techniques were later extended to population health 

research involving record linkage (Yip et al., 1995) for diseases such as cancer 
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(Schmidtmann, 2008), tuberculosis (van hest et al., 2007), diabetes (Giarrizzo et al., 

2007), HIV (Bernillon, Lievre, Pillonel, Laporte, & Costagliola, 2000), and tuberculosis 

(Tilling et al., 2001), to estimate completeness of various data sources including AHD. 

2.4.2 Assumptions 

The assumptions underlying conventional CR techniques are that the population is 

closed (i.e., individuals who migrate or who otherwise do not have complete health 

insurance coverage are not included), individuals can be uniquely identified, the 

probability of capture is homogeneous for all individuals in the population, and captures 

are independent, conditional on the data source (Hook & Regal, 1995). These 

assumptions may not be satisfied in AHD (Young, 2005), particularly the assumptions of 

conditional independence of the data sources and homogeneity of capture probabilities. 

The likelihood of being captured in one data source may increase the likelihood of 

capture in another data source. For example, severe cases are more likely to be captured 

by different sources than less severe cases which lead to positive dependence of case 

ascertainment. Patient characteristics, including socio-demographic variables and 

measures of disease severity, may be associated with the likelihood of disease case 

ascertainment in AHD. However, AHD often contain sparse information on variables that 

may be associated with the likelihood of capture. While socio-demographic variables 

such as age, sex, and residence location are often available in the data, measures of 

disease severity are noticeably absent.  

2.4.3 Conventional Method 

We can subdivide CR methods into two-source and multiple-source methods, 

based on the number of data sources used to estimate population size. The conventional 
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method for two sources is based on a two-by-two contingency table. One may estimate 

either the number of missed cases or the size of the complete population using the 

method initially proposed by Peterson and Lincoln (Lincoln, 1930; Petersen, 1896), and 

further refined for the sparse cell size problem by Chapman (Chapman, 1951). In this 

thesis, we used the Chapman estimator as a representative of the conventional CR 

method. The Chapman estimator is based on the well-known maximum likelihood 

estimators which assume independence of ascertainment by both data sources. Peragallo 

et al. (2011) used the Chapman estimator to estimate the cancer incidence from cancer 

diagnosis data in military hospitals and unit infirmaries. They concluded that the 

estimated incidence of cancer by Chapman’s estimator was generally lower than expected 

which may due to the positive dependence between the data sources. 

2.4.4 Model-based Approach 

To address violations of the assumptions of conventional CR method, a number of 

statistical models have been proposed (Tilling & Sterne, 1999). One solution that is 

relatively straight-forward for epidemiologists and surveillance staff to implement is to 

adopt a CR regression model in which the probability of capture is modeled as a function 

of covariates that may be associated with heterogeneity of capture probability. The 

MLRM have been proposed for the two-source CR problems (Alho, 1990). One can 

relate the characteristics of disease cases to their probability of being captured by each 

source using the MLRM. However, lack of conditional independence between data 

sources still remains in applications to AHD by using the MLRM (McClish & Penberthy, 

2004).  
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McClish & Penberthy (2004) proposed CR techniques, including the MLRM 

estimator applied to hospital discharge and cancer registry administrative data to estimate 

the missing number of breast, lung, colorectal, and prostate cancer cases. The MLRM 

incorporated covariates such as demographic variables, whether or not the hospital had a 

cancer program that was certified by the American College of Surgeons, and whether or 

not the patient had surgery as initial treatment for his/her cancer. McClish & Penberthy 

(2004) concluded that the MLRM can improve the estimate of the number of cancer 

cases, compared to only counting the number of cases from individual data sources. They 

also found that demographic variables alone did not account for much of the 

heterogeneity in capture probabilities. However, the MLRM allows multiple covariates to 

be taken into account simultaneously.  

In multiple-source CR methods, log-linear methods can be used (Hook & Regal, 

1995). The use of log-linear models (e.g., using Poisson regression) makes two major 

assumptions about the capture probabilities. First of all, the capture probabilities for 

different data sources are not all dependent. Secondly, the capture probability of a source 

is assumed to be homogeneous for each individual in the population (Tilling & Sterne, 

1999). The methods also make the same assumptions of multi-source independence of 

ascertainment of individuals and variable catchability. It may be difficult to satisfy these 

assumptions. Hook & Regal (1995) suggested that one way to enhance the plausibility of 

these assumptions was “the use of as many sources and as many qualitatively different 

types of sources as possible”. By specifying dependencies at one level, and then invoking 

heterogeneity to additional parameters for each of levels might be acceptable to control 

violations of assumption in log-liner models (Yip et al., 1995). An alternative way for 
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reducing heterogeneity is to consider stratified analysis as Yip et al. (1995) demonstrated. 

To be more precise, investigator should consider stratifying the population of interest by 

known factors such as demographic variables across different strata. However, Tilling & 

Sterne (1999) proposed that the increase in stratification has an impact on modeling 

dependence within strata.  

2.5 Monte Carlo Simulation Studies about CR Methods 

Monte Carlo simulation studies are defined as “random experiments on a 

computer” (Kroese, Taimre, & Botev, 2013). Monte Carlo methods are computational 

algorithms that rely on repeated random sampling to obtain numerical results. The 

methods were created during the Second World War for the development of the atomic 

bomb, and since then, they are widely used in science, engineering, finance, and 

statistics.  

Several simulation studies had been conducted to evaluate the performance of CR 

methods (Alho, 1990; Tilling & Sterne, 1999; Wittes, 1972). The measures that have 

been used to evaluate performance include mean/mean estimated population size, mean 

standard deviation, and coverage probability. Wittes (1972) suggested that Chapman’s 

estimator for population size in two-source CR method was unbiased when the sum of the 

sample sizes from the capture and recapture was no less than the unknown population 

size. He assumed the cases being captured for twice had a hypergeometric distribution. 

This indicated that the overlapping cases between two data sources were really high. 

Wittes (1972) concluded that the estimated population size had unacceptably large 

negative bias when the number of re-captured cases was small.  
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Alho (1990) introduced the logistic regression algorithms accounting for 

population heterogeneity in estimating population size. He allowed different capture 

probabilities across individuals and across capture times. The resulting regression 

parameter estimates can be used to estimate the proportion of the population missed, 

assuming that the population has the same covariate distribution as the sample. And he 

also compared the variance estimates between conventional method and the logistic 

regression algorithms. He examined both the asymptotic and finite-sample properties of 

the proposed estimator. And his results suggested that the model can be widely used 

when required covariate information existed.  

Tilling & Sterne (1999) compared the MLRM and the log-linear model estimating 

population size. They particularly looked into the effects of covariates on the log-linear 

model and the MLRM. Bootstrap methods were used to derive the variance for the 

estimate of population size. They concluded that for CR data without covariates or with 

categorical covariates, the log-linear model was equivalent to the logit model in terms of 

performance. When there was dependence between the data sources, the estimated 

population sizes can be seriously biased. Including covariates in CR methods can reduce 

the bias in estimating population size. However, the distribution of the covariates may not 

always be the same in the observed and unobserved segments of the population, which 

may further bias the estimates of population size according to what Alho (1990) 

proposed. 

2.6 Summary 

In summary, RA is a chronic inflammatory disease that affects quality of life and 

health care utilization. Population-based AHD are widely used for RA surveillance, as 
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well as health outcomes and service utilization research. However, a limitation of these 

databases is that they may not capture all RA cases in the population (Singh et al., 2004). 

CR methods represent one approach to estimate completeness of capture. However, the 

assumptions of CR models, which include independence of data sources and 

homogeneity of capture probabilities, might not be satisfied in AHD. The two- source 

conventional CR method and the model-based CR method were proposed in several 

literatures. However, few studies have simultaneously considered the two main 

assumptions of CR methods and the effect of model misspecification on prevalence 

estimates. This study applied CR methods in both simulation and numeric example to 

evaluate the performance of conventional method and the model-based approach and to 

examine the effect of model misspecification through the model-based approach CR 

method. 
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CHAPTER 3 METHODS 

3.1 Two-source CR Models 

To achieve the research objectives, we conducted a simulation study about two-

source CR methods, given that it is not possible to investigate the potential biasing effects 

of assumption violations and unmeasured covariates in real-world data. As well, CR 

models were applied to estimate completeness of AHD for calculating RA prevalence 

using an existing dataset from Saskatchewan, Canada.  

The definition of “sources” in epidemiologic studies for CR methods is different 

from that used in animal ecology studies, which the latter usually has a natural temporal 

ordering. In our research, the two-source CR model is applied to two different AHD 

sources: physician billing claims and hospital discharge abstracts. Accordingly, there are 

three possible combinations of these sources from which cases can be ascertained: 

physician billing claims only, hospital discharge abstracts only, and both data sources. 

The number of cases missed from both sources is estimated.  

3.1.1 Chapman Estimator 

Table 3.1 shows the structure of the data and the formulas to estimate the number 

of missed cases by using the conventional two-source CR method. Let S1 and S2 be the 

total number of cases identified by each source, and a be the cases captured by both 

sources. The unknown number of cases missed by both sources (x) is to be estimated. 

Using the maximum likelihood estimator (MLE), the probability of being captured by 

both data sources is the product of the probability of being captured in Source 1 and 

Source 2. Accordingly,  

 

 
 (

  

 
) (

  

 
)           ,                                               (1) 
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and the probability of being missed by both data sources is  

 

 
            .                                                  (2) 

Table 3.1 AHD structure for two-source CR problem 

Diagnosis in Source 1 

Diagnosis in  

Source 2 

 Yes No Total 

Yes 
               

No 
    

 

Total                               

Estimated values 
Maximum likelihood estimator 

(MLE) 

Unobserved cell:  ̂ 

Completeness of Source 1 

Completeness of Source 2 

Total population:  ̂ 

     
          
          

                   

 

An adjustment was suggested by Chapman (1951) to reduce the effects of small 

sample bias on the MLE (Hook & Regal, 1995). Using the Chapman method, the 

estimated total population is 

 ̂         
  

   
 ,                                                 (3) 

The estimated number of missed cases is 

 ̂          ,                                                   (4) 

and the 95% confidence intervals (95% CIs) of the estimated total population size  ̂ is  

        ̂      √
                   

            
.                                     (5) 

3.1.2 MLRM Estimator  

The MLRM estimator for estimating completeness in CR studies was first 

proposed by Sanathanan (Sanathanan, 1972) and later extended by Alho (1990). Define 
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indicator variables            , and   , for          , where   is the unknown 

population size as defined in Table 3.1. Denote 

    {
                                                                
            

 

   {
                                                         
            

 

Let                          , and define for the ith individual the 

probability of being captured in the jth data source as      [   ]. Then           , 

where             is the probability of being captured by both sources. By assuming 

that the probabilities of being captured are conditionally independent for the ith 

individual, we can define the model.  

Let    
   be the value of the covariates associated with the ith individual in the jth 

data source where 
T is the transpose operator,                     ;     

                . Then 

                                                                          ,         (6)                    

where                      is the probability that the ith individual is not 

identified in either data source. Let                 be the vectors of parameters 

associated with the covariates, and  

   (
   

     
)        

  .                                           (7) 

Then  ̂  is predicted from equation 7 by 

 ̂   
 

 ̂   ̂  
 

 

   
 ̂   ̂  

  .                                                    (8) 
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Once the MLRM is fitted to the data and the probability of being captured for 

each observed patient is calculated, the sum of the reciprocal of these probabilities gives 

an estimate of the total population size,  ̂, that is,   

             ̂  ∑  
 

   ̂  
             ,                                       (9) 

where  ̂   is the probability of being missed by all sources, and can be estimated as 

 ̂   
 

     ̂  ̂        ̂  ̂   
.                                           (10) 

The MLRM estimator can account for observable population heterogeneity in the 

capture probabilities. In other words, the characteristics of the captured individuals are 

used to explain their probabilities of capture.  

The asymptotic variance of  ̂ can be derived from a proposed estimator (Sekar & 

Deming, 1949): 

   
               

  .                                                (11) 

This estimator does not account for the variability in the cases that are not 

captured. Alho (1990) presented an approximation to the unconditional variance which 

can be thought of as a generalization of   introduced by Sekar & Deming (1949). The 

unconditional variance estimator derived below can allow us to present unconditional 

confidence intervals for   under population heterogeneity even though a conditional 

likelihood was used in the estimation of  , where   is a conditional maximum likelihood 

estimator. 

Let                       , and then 

                                                                (12) 

The formula for the estimator    of the conditional asymptotic variance is 
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    ( ̂)
 

 (   ̂ )
  

   ( ̂)                                           (13) 

where  ̂          , and we defined             ,              

           .  

Estimating the probability of being missed by both data sources gives the 

estimator   , which can be written as 

   ∑
   

                                                                 (14) 

Combining the results, we can get the unconditional estimator of      ̂  to be 

                                                               (15)   

3.2 Simulation Study 

A Monte Carlo simulation study was undertaken to evaluate the performance of 

CR methods for estimating population size. The CR model proposed by Chapman (1951) 

was compared to the MLRM proposed by Alho (1990). 

3.2.1 Data Generation 

The Bernoulli distribution is used to describe experiments with dichotomous 

outcome variables (Kroese et al., 2013). The data for the simulation study were generated 

from a multivariate Bernoulli distribution, which allows manipulation of the magnitude 

of dependence between the variables. Specifically the random-variate vector    

            was generated from a multivariate Bernoulli distribution with parameters 

                 and                            using the algorithm proposed by 

Emrich and Marion (Emrich & Piedmonte, 1991). The correlation matrix of multivariate 

normal data is used to produce binary vectors having the desired correlation.  
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In our study,       had values of 0.0, 0.05, 0.1, 0.3, and 0.5 to investigate the 

effects of independence and increasing amounts of dependence between the data sources.  

To introduce heterogeneity into the capture probabilities, we adopted the following 

disease model when generating the data: 

    
 

   
        

  
 .                                                (16) 

where                         are the covariate vectors for the ith individual and the 

jth dataset and                       are the vectors of model parameters. In this 

simulation, we assumed that      was a continuous and normally distributed covariate 

with parameters    and   
  denoting the mean and variance, respectively, and 

              were binary variables with parameters       and    
    

 denoting the 

number of disease cases and corresponding event probabilities, respectively. The 

covariates were independently generated with             and                      . 

The parameters of the population disease model  were selected in order to investigate a 

range of capture probability values. Misspecification of the MLRM across the seven 

scenarios was evaluated by replacing                         by    
          

  

    
     , where     

      
         , and by assuming that only     

  was observed in the 

misspecified model. Accordingly,   
             is the vector of model parameters for 

the jth dataset. 

Three disease population sizes were considered with prevalence of 1%, 5%, and 

10% in a population of 10,000. The completeness of each data source for capturing 

observed disease cases was manipulated, to look at the effect of unbalanced and balanced 

combinations of capture probabilities between two data sources. Different combinations 
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of capture probabilities between the two data sources resulted in different combinations 

of the vector of model parameters. Table 3.2 summarizes the relationships between the 

capture probability values and the vector of parameters. All our simulations were for the 

case of positive correlation between the data sources. Since a negative correlation is also 

a possibility, we conducted additional simulations under Scenario 1, Scenario 3, and 

Scenario 7 with a correlation of -0.10. 
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3.2.2 Statistical Analysis of Simulated Data 

Two population size estimation methods were applied to each set of generated 

data: (a) Method 1: Chapman estimator (e.g., Chapman (1951)), which assumes 

homogeneity of capture probability and conditional independence of data sources, (b) 

Method 2: MLRM estimator with                         as covariates. In the model 

misspecification simulations, two models were applied to each set of generated data: (a) 

MLRM estimator with    
          

      
      as covariates (b) Method 3: MLRM 

estimator with    
          

    as the sole covariate.     

3.2.3 Measures of Model Performance 

The estimated population size was computed for each combination of simulation 

conditions. Measures of relative bias (RB), coverage probability (CP) of 95% confidence 

intervals, width of the 95% CIs (WCI), and root-mean-square-error (RMSE) (Brittain & 

Böhning, 2009) were computed for each combination of simulation conditions and each 

replication. We defined    
  ̂   

 
    , where  ̂ is the estimated population size and 

  is the true population size; positive values indicate population size is overestimated, 

while negative values indicate underestimation. CP is the percentage of simulation 

replications in which the 95% CI captures the true population size. WCI is the difference 

between the lower and upper bounds of the 95% CI. RMSE is defined as the square root 

of the mean square error of an estimator  ̂ with respect to an estimated parameter  , 

which is     ( ̂)  √     ̂  √    ̂      . 

The Newton–Raphson method was used to estimate the coefficients of the 

covariates in the MLRM estimator and the RMSE was calculated for each set of 
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estimated coefficients between correctly-specified and misspecified models. Let      be 

a well-behaved function, and let   be a root of the equation        (Ypma, 1995). The 

Newton-Raphson algorithm uses an iterative process to estimate parameters. If  ̂  is the 

current estimate, then the next estimate  ̂    is given by  ̂     ̂  
   ̂  

    ̂  
. 

3.2.4 Simulation Organization 

A total of 210 combinations of conditions were simulated. For each combination 

of conditions 1,000 replications were performed. For each replication the following steps 

were undertaken: (a) a set of data was generated (i.e., sampled) from the population with 

known characteristics using Scenario 1 to 7 to generate the data, (b) the proposed 

Chapman and MLRM estimators were applied to the data to estimate population size, and 

(c) each measure of model performance was computed.  RB, WCI, and RMSE values 

were averaged across the 1,000 replications.  

To investigate the effect of model misspecification on the MLRM estimators, we 

conducted simulations for conditions in which population disease prevalence was 10% 

(estimates were stable in large disease prevalence).We only examined Scenarios 1, 3, and 

7 for the model misspecification conditions because they represent the scenarios of 

homogeneous capture probabilities, minimal heterogeneous capture probabilities, and 

moderate heterogeneous capture probabilities, respectively. We also conducted 

simulations where the correlation value was -0.10 because this is the most commonly 

used correlation value among previous simulation studies (Tilling & Sterne, 1999).  

The simulation study was conducted using SAS/IML (Interactive Matrix 

Language) software version 9.3 (SAS Institute Inc, 2004), SAS/IML Studio (SAS 
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Institute Inc, 2013), and the R Project for Statistical Computing (The R Project for 

Statistical Computing, 2014). 

3.3 Numeric Example 

3.3.1 Study Design and Data Sources 

Both the Chapman and MLRM estimators were applied to an existing dataset 

from the province of Saskatchewan, Canada. This dataset was originally created to 

compare estimates of RA and SARDs which include Systemic Lupus Erythematosus 

(SLE), Sjögren’s syndrome (SjS), Systemic Sclerosis (SSc), Polymyositis (PM) and 

Dermatomyositis (DM) across multiple Canadian provinces and territories over a ten-year 

period (1998-2007) (Bernatsky et al., 2011).  

Saskatchewan has a population of approximately 1.0 million according to the 

2011 Statistics Canada Census (Statistics Canada, 2012). Like all Canadian provinces, 

Saskatchewan has a system of universal health care. All hospital records and virtually all 

physician billing records are captured for residents who are eligible to receive health 

insurance benefits. Individuals not eligible to receive provincial benefits include inmates 

in federal prisons, members of the national police service, and veterans, who represent 

about 1% of the population. Registered Indians, who represent about 9% of the 

population, do not receive provincial prescription drug benefits. 

The two data sources that were used in this study to ascertain RA cases are 

hospital separation abstracts and physician billing claims, both of which are available in 

all provinces and territories in Canada. Thus, the methods that are developed here can be 

generalized to AHD from other jurisdictions in Canada.  
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Hospital discharge abstracts are completed upon discharge from an acute care 

facility and contain information on diagnosis and procedure codes, admission and 

discharge dates, length of stay, and service type (inpatient, day surgery, and outpatient). 

In Saskatchewan, prior to April 1, 2001, diagnoses were based on the International 

Classification of Diseases, 9th Revision (ICD-9). For hospital separations with a 

discharge date up to March 31, 1999, up to 3 diagnosis fields could be reported. For 

hospital separations with a discharge date from April 1, 1999 to March 31, 2001, up to 16 

diagnoses could be reported. As of April 1, 2001, hospital discharge abstracts were 

changed to include 25 diagnosis codes based on the International Classification of 

Diseases and Related Health Problems, 10
th

 Revision, Canada (ICD-10-CA). 

Physicians who are paid on a fee-for-service basis submit billing claims to the 

provincial health ministry for payment purposes. A single diagnosis is recorded on each 

claim using three-digit International Classification of Diseases, 9
th

 Revision (ICD-9) 

codes. Physicians can also submit claims for administrative purposes only (i.e., as a 

record of services provided) on alternate payment plans which are known as “shadow 

billing” (Manitoba Centre for Health Policy, 2008). 

The population registration file was also used in this study; it captures dates of 

health insurance coverage, as well as information about demographic characteristics and 

location of residence. This data source was used to define covariates for the CR models. 

All data sources can be anonymously linked via a unique personal health number. 

Cases of RA were identified using ICD-10-CA codes M05 and M06 and ICD-9 

code 714. Individuals less than 19 years of age were excluded, to maintain a focus on the 

adult population. Data were available from January 1, 1998 to December 31, 2007 for 

http://mchp-appserv.cpe.umanitoba.ca/viewDefinition.php?definitionID=102796
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case ascertainment. Each case was assigned to a fiscal year by index date, which is the 

date of the first physician billing clam or hospital separation record with an RA diagnosis 

during the study period. The literature suggests that at least five years of AHD are 

required to obtain accurate incidence and prevalence estimates for other forms of arthritis 

(Bernatsky et al., 2009; Ng, Bernatsky, & Rahme, 2013; Ward, 2013) ; we have elected 

to use all data from the entire ten years of study data for RA to calculate the period 

prevalence.  

A variable was created to identify the ascertainment source for each subject in the 

AHD as follows: diagnosis in hospital discharge abstracts only, diagnosis in physician 

billing claims only, and diagnoses in both data sources. Demographic variables available 

in the dataset that were used to describe the cohort and that may be associated with 

heterogeneity of capture probability include sex, age at time of first healthcare contact 

with RA diagnosis, and region of residence (e.g., urban area such as Saskatoon and 

Regina census metropolitan areas, rural area such as Lloydminster, Moose Jaw, and 

Prince Albert). Other diagnoses and measures of co-morbidity are not available in the 

provided data set.  

3.3.2 Data Analysis 

Both the Chapman and MLRM estimators were used to estimate the size of the 

RA population size in Saskatchewan. Model fit was assessed for the MLRM containing 

different sets of covariates (e.g., main effects only versus main and interaction effects) by 

using penalized measures of the log of the likelihood function, including the Akaike 

Information Criterion (Akaike, 1974), and the Bayesian-Schwarz Information Criterion 

(Schwarz, 1978). As well, the likelihood ratio test (LRT) which asymptotically follows a 
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χ
2
 distribution was used to test the difference in fit for competing models with different 

sets of covariates. 

3.4 Ethical Considerations 

This study is part of a larger study that has already received ethical approval from 

the University of Saskatchewan, which is compliant with the Tri-Council Policy 

statement on Ethical Conduct for Research Involving Humans (see Appendix B). The 

University of Manitoba Health Research Ethics Board approved the request on 

continuing to use the same ethical approval for the thesis (see Appendix B). 
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CHAPTER 4 RESULTS 

This chapter starts with the results from the simulation study to compare 

performance of the two CR methods using RB, CP, WCI, and RMSE. Next, the effects of 

model misspecification on the performance of the MLRM are described. This chapter 

concludes with a comparison of the two CR methods using data from the numeric 

example. 

4.1 Monte Carlo Simulation Results 

4.1.1 Comparison of the Chapman and MLRM Estimators  

Table 4.1 presents results for RB in the estimated population size. When the 

assumptions of independence and homogeneity were satisfied (Scenario 1, correlation = 

0), both the Chapman estimator  ̂ and the MLRM estimator  ̂  produced RB estimates 

that were close to zero across all disease prevalence cases. When the data sources were 

independent, both of the estimators produced smaller RB values than when the data 

sources were dependent. However, one exception was that the estimated RB values from 

the MLRM estimator  ̂  became unstable and unpredictable when the data sources were 

independent and disease prevalence was low (1%).   

Under all of the scenarios, the estimators  ̂ and  ̂  were negatively biased when 

correlation existed between the two data sources. The estimates became more biased as 

the amount of correlation increased. For example, under Scenario 1 (disease prevalence = 

10%) which was the homogeneous capture-probability case, the estimated RB values 

were close to 0 for both estimators. However, when the correlation increased to 0.5, the 

estimated RB values became increasingly negatively biased to -5.34%.  Overall, the mean 

estimated RB values across all the scenarios were 0.00% and 0.69% respectively for the 
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Chapman and MLRM estimator when there was no correlation (disease prevalence = 

5%). When the correlation increased to 0.3, the mean estimated RB values were -23.88% 

and -23.84% respectively for  ̂ (ranging from -47.24% to -3.23%) and  ̂  (ranging from 

-47.18% to -3.23%). 

As the data departed from the assumption of homogeneity of capture probability 

(Scenarios 4 and 7), the estimated population sizes became more biased for both 

estimators. The mean estimated RB values averaged across all the correlations in 

Scenario 1 and disease prevalence = 5% were the same (-1.23%) for the Chapman and 

MLRM estimator when the capture probabilities were homogeneous. The mean estimated 

RB values were -20.75% and -19.72% respectively for the two estimators  ̂ and  ̂  in 

Scenario 4 (the capture probabilities were extreme heterogeneous) when the data were 

averaged across all correlation conditions. 

When the assumptions of homogeneity of capture probability and independence 

of data sources were both violated, the estimated population sizes were more biased for 

both estimators. For example, from Scenario 1 to Scenario 4 (prevalence = 10%, 

correlation = 0.1) the estimated RB values were negatively biased from approximately -

1.13% to -23.00% for both estimators. Note that for Scenarios 2, 3, 4, and 7, the 

estimated RB of population size could not be predicted when correlation was 0.5. 

Disease prevalence also impacted the estimates when there was no correlation 

between the data sources. For example, the estimated RB values became unstable under 

Scenario 4 and Scenario 7 for the MLRM estimator when there was no correlation and 

low disease prevalence (1%). However, when the correlation value was minimal (e.g., 

0.05, 0.1) and the capture probabilities were extremely heterogeneous (Scenario 7), the 



  

- 35 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

MLRM estimator produced smaller RB values compared to the Chapman estimator when 

the disease prevalence was small (1%).  Higher disease prevalence produced estimated 

RB values which were closer to zero for both of the estimators  ̂ and  ̂ . Overall, the 

estimated RB values were similar for the two estimators under different disease 

prevalence conditions when correlation existed between the data sources. 

Table 4.2 contains results for the CP values. The CP values for both of the 

estimators were close to the nominal level of coverage (95%) when there was no 

correlation between the data sources under some scenarios (Scenario 1, disease 

prevalence = 5%; Scenario 3, disease prevalence = 10%). The estimated CP values were 

closest to the nominal level of coverage for all conditions with no correlation compared 

to conditions when correlation existed between the data sources. When the assumption of 

homogeneity of capture probability was satisfied, both estimators produced almost the 

same CP values (Scenario 1).  

As the correlation increased, the CP values decreased dramatically for both of the 

estimators. Most of the estimated CP values were 0 when the correlation was 0.3. For 

example, the estimated CP was 92% under Scenario 1 when the data sources were 

independent (disease prevalence = 1%). And the estimated CP dropped to 2% when the 

correlation increased to 0.5 (Scenario 1, disease prevalence = 1%). Overall, the mean 

estimated CPs across all the scenarios were 93.29% and 94.24% respectively for the 

Chapman estimator (ranging from 89.90% to 95.20%, median = 93.30%) and the MLRM 

estimator (ranging from 93.00% to 95.30%, median = 94.30%) when there was no 

correlation (disease prevalence = 5%). At the same time, as the correlation increased to 

0.3, the mean estimated CP values were 0.04% for both estimators. 
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When the assumption of homogeneity of capture probability was violated, the 

MLRM estimator  ̂ , produced better CP estimates than the Chapman estimator,  ̂ 

(Scenario 4 and Scenario 7). For example, under Scenario 4, the estimated CP was 

91.90% for the MLRM estimator compared to 83.90% for the Chapman estimator 

(disease prevalence = 1%, correlation = 0). Overall, the mean estimated CP values across 

all the correlations in Scenario 1 (disease prevalence = 5%) were 51.30% and 51.40% for 

the Chapman estimator and the MLRM estimator respectively when the capture 

probabilities were homogeneous. At the same time, the mean estimated CPs were 43.68% 

and 46.65% respectively for the two estimators  ̂ and  ̂  in Scenario 4 when the capture 

probabilities were extremely heterogeneous. 

Disease prevalence seemed to impact on the estimated CP as correlation 

increased. As disease prevalence and correlation increased, the estimated CP values were 

further away from the nominal level of coverage (95%). For example, under Scenario 1 

(correlation = 0.1), the estimated CP was almost 70.00% for both estimators when 

disease prevalence was 1%; this dropped to 37.00% and 15.00% respectively when 

disease prevalence was 5% and 10%. A disease prevalence of 1% produced larger CP 

values than a higher disease prevalence when there was correlation between data sources 

for both estimators. As disease prevalence increased when both of the dependence and 

homogeneity assumptions were violated, the estimated CP values were close to 0. Under 

Scenario 2, 3, 4, and 7 where the capture probabilities were heterogeneous, the CP values 

could not be estimated when the correlation between data sources was 0.5. 

Table 4.3 contains the results for WCI values. The estimated CIs were wider 

when there was no correlation than when there was correlation between the data sources; 



  

- 37 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

this result was found for both estimators. For example, under Scenario 1 (disease 

prevalence = 1%), the estimated CIs were 4.25 and 4.33 for each estimator respectively 

when the data sources were independent; the estimate CIs were only approximately 2.00 

when the correlation was 0.5. Overall, the mean estimated WCIs across all the scenarios 

were 113.55 and 119.94 for the Chapman (ranging from 9.89 to 260.86) and MLRM 

estimators (ranging from 9.91 to 281.35, median = 89.58), respectively when there was 

no correlation (disease prevalence = 5%). As the correlation increased to 0.3, the mean 

estimated WCIs were 24.30 and 24.82, respectively, for the two estimators  ̂ (ranging 

from 6.51 to 49.70, median = 27.24) and  ̂  (ranging from 6.53 to 50.38, median = 

28.44). 

The estimated CIs were wider for both of the estimators when the assumption of 

homogeneity was violated (Scenario 4 and Scenario 7) than when it was not violated. 

Overall, the mean estimated WCIs across all the correlations in Scenario 1 (disease 

prevalence = 5%) were 8.60 respectively for the Chapman estimator and the MLRM 

estimator when the capture probabilities were homogeneous. At the same time, the mean 

estimated WCIs were 154.76 and 165.14 respectively for the two estimators  ̂ and  ̂  in 

Scenario 4 when the capture probabilities were extremely heterogeneous.  Moreover, the 

estimated CIs were slightly wider for the MLRM estimator compared to the Chapman 

estimator when the capture probabilities were heterogeneous. For example, under 

Scenario 4 (disease prevalence = 1%, correlation = 0), the estimated CIs were 273.34 for 

the MLRM estimator and 104.66 for the Chapman estimator. 

As disease prevalence increased, the confidence intervals became wider for all 

scenarios. For example, the mean estimated WCIs across all the correlations in Scenario 
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1 (disease prevalence = 1%) were 36.24 and 41.26, respectively, for the Chapman 

estimator and MLRM estimator. However, the mean estimated WCIs increased to 116.42 

and 117.51 respectively for  ̂ and  ̂  under the same scenario when the disease 

prevalence increased to 10%. The WCI values could not be predicted when the 

correlation was 0.5 for Scenario 2, 3, 4, and 7. 

Although the estimated RB, CP, and WCI were similar for the two estimators  ̂ 

and  ̂ , the Chapman estimator  ̂ resulted in increased difference between the estimated 

population and the true disease population for many conditions, as measured by RMSE 

(Table 4.4). Under all scenarios, the RMSE of the MLRM estimator  ̂  stayed stable as 

correlation and prevalence of disease increased. For example, under Scenario 1 (disease 

prevalence = 1%), the estimated average RMSE was approximately 10.00 across all the 

correlated cases for the MLRM estimator  ̂ . However, the RMSE of the Chapman 

estimator  ̂ increased significantly as the correlation increased. For example, under 

Scenario 1 (i.e., prevalence = 1%), the estimated RMSE was 1.30 when the two data 

sources were independent, and it increased to 33.10 as the correlation increased to 0.5 for 

the Chapman estimator  ̂.  

The smallest RMSE was observed for Scenario 1 with disease prevalence of 1% 

when the data sources were independent. Overall, the mean estimated RMSEs across all 

the scenarios were 1655.49 and 42.51 respectively for the Chapman estimator (ranging 

from 6.60 to 5256.30, median = 497.40) and the MLRM estimator (ranging from 22.20 to 

80.00, median = 32.00) when there was no correlation (disease prevalence = 5%). At the 

same time, as the correlation increased to 0.3 where all the scenarios can converge, the 

mean estimated RMSEs were 21948.43 and 123.15 respectively for the two estimators  ̂ 
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(ranging from 281.90 to 55988.30, median = 13766.40) and  ̂  (ranging from 27.20 to 

236.40, median = 118.00). 

When the assumption of homogeneity was violated, the estimated RMSE became 

larger, especially for the Chapman estimator  ̂. For example, the estimated RMSE was 

10.10 under Scenario 1 (disease prevalence = 1%, correlation = 0.1) and it increased to 

34.50 under Scenario 4 for the MLRM estimator  ̂ . It increased from 3.30 to 900.60 for 

the Chapman estimator  ̂ under the same scenario. As disease prevalence increased, the 

estimated RMSE for both estimators increased. The mean estimated RMSEs across all 

the correlations in Scenario 1 (disease prevalence = 5%) were 86.68 and 23.30, 

respectively, for the Chapman estimator and the MLRM estimator when the capture 

probabilities were homogeneous. At the same time, the mean estimated RMSEs were 

20479.25 and 128.56 respectively for the two estimators  ̂ and  ̂  in Scenario 4 when the 

capture probabilities were extremely heterogeneous.
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Table 4.5 contains the results from the simulations when the correlation value was 

-0.1. In general, the presence of negative source dependence resulted in overestimation of 

the population size for both of the CR estimators. Under Scenario 1, in which the 

assumption of homogeneity of capture probabilities was satisfied, both estimators  ̂ and 

 ̂  produced RB values that were slightly larger than 0. For this same scenario, CP values 

were 1.80% and 1.70%, respectively for the two estimators. The WCI was similar 

between the two estimators. The RMSE was larger in the conventional estimator  ̂ 

compared to the MLRM estimator  ̂ . As the data departed more from the assumption of 

homogeneity of capture probability the RB values were more biased and always 

overestimated the total population size (Scenario 7). As well, the 95% CIs became wider, 

and the RMSE became larger.  However, the CP values increased to the nominal level as 

heterogeneity existed in capture probabilities (i.e., Scenario 1 vs. Scenario 7).  

Table 4.5 Performance of Chapman estimator   ̂ and MLRM estimator  ̂  when disease 

prevalence = 10% and correlation = -0.10 

 Method Scenario 1
1
 Scenario 3 Scenario 7 

RB
2 

(%) 
 ̂ 1.15 3.50 41.99 

 ̂  1.15 3.51 44.53 

CP
3 

(%) 
 ̂ 1.80 17.00 27.80 

 ̂  1.70 16.70 25.80 

WCI
4
 

 ̂ 15.65 50.81 715.96 

 ̂  15.68 50.97 754.90 

RMSE
5
 

 ̂ 136.46 1371.64 212177.57 

 ̂  33.15 49.13 490.16 

Note: 
1
For description of scenarios, see Table 3.2; 

2
RB is the relative bias; 

3
CP is the 

percentage of replications in which the 95% CI captures the true population size; 
4
WCI is 

the difference between the lower and upper bounds of the 95% CI; 
5
RMSE is the root-

mean-square-error. 
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Figure 4.1 shows the average estimated population size with 95% CIs across 

disease prevalence conditions for the Chapman and MLRM estimators. We compared 

Scenario 1 and Scenario 6 because Scenario 1 represents homogeneity in capture 

probabilities and Scenario 6 represents moderate heterogeneity in capture probabilities. 

Furthermore, both scenarios converged when the correlation was 0.5. The average 95% 

CIs did not differ between the two estimators across each of the scenario. 

When the two data sources were independent, both of the estimators produced 

wider 95% CIs. When the assumption of independence of data sources was violated, both 

of the estimators produced narrower 95% CIs.  For Scenario 1, when the assumption of 

homogeneity was met, all the cases with various correlations had the narrowest 95% CIs 

of estimated population size across all disease prevalence conditions. For Scenario 6, 

when the assumption of homogeneity was violated, all the estimated population sizes had 

much wider 95% CIs compared to those in Scenario 1. 
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4.1.2 Effects of Model Misspecification for the MLRM  

The results found in Table 4.6 show the effect of model misspecification on 

performance of the MLRM for estimating population size. The estimated population size 

did not differ for the correctly-specified model and misspecified model in terms of RB, 

CP, WCI, and RMSE across the scenarios. However, model misspecification resulted in 

biased parameter estimates.  

Under Scenario 1 the population parameters were          and          . 

When the model was correctly specified, we obtained average estimates of  ̂        

and  ̂         with RMSE values of 0.09 and 0.05, respectively, when there was no 

correlation between the data sources. Under the misspecified model for Scenario 1, the 

average estimates were  ̂         and  ̂         with RMSE values of 0.13 and 

0.07, respectively, when there was no correlation. When the correlation increased, both of 

the parameter estimates became slightly biased for the correctly specified model and the 

misspecified model for both  ̂   and  ̂  . However, the parameter estimates were similar 

for the independence case and the dependence case. The RMSE values were similar for 

the two estimated coefficient values when the correlation increased. 

Under Scenario 7 the population parameters were           and         . 

When the model was correctly specified, the coefficient estimates were equivalent to 

their parameter values and the RMSE values were 0.11 and 0.08, respectively, when there 

was no correlation between the data sources. Under the misspecified model, the estimated 

coefficients were similar to their corresponding parameters but the RMSE values were 

0.16 and 0.12, respectively, when there was no correlation. As the correlation increased, 

both of the parameter estimates became more biased for both the correctly specified and 
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the misspecified model for  ̂  . However,  ̂   did not seem to be affected as the 

correlation increased for both the correctly-specified model and the misspecified model 

because the estimated coefficient value remained stable and the RMSE didn’t change, 

either. 

Across all scenarios, when the assumption of independence was violated, the 

estimated parameters became increasingly biased for both the correctly-specified model 

and the misspecified model. For example, the RMSE for  ̂   increased as correlation 

increased. However, there was no difference between the RMSE for the correctly-

specified model and the misspecified model as correlation increased for each single 

scenario for  ̂  .When the assumption of homogeneity was violated, the estimated 

parameters became more biased for both the correctly-specified model and the 

misspecified model. For example, the RMSE for  ̂  was higher for Scenario 7 (the 

heterogeneous case) compared to Scenario 1 (the homogeneous case). There was no 

difference between the RMSE for the correctly-specified model and the misspecified 

model as correlation increased for each scenario. However, the RMSE for  ̂   increased 

slightly for Scenario 7 compared to Scenario 1. 
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4.2 Numeric Example  

Table 4.7 contains some descriptive results for the RA dataset. There were a total 

of 19,290 RA cases (19+ years) identified in the Saskatchewan population during the 10-

year period from 1998 to 2007. Overall, 83.3% of cases were identified from diagnosis 

codes in physician billing claims only, 4.1% of cases were identified from diagnosis 

codes in hospital separation abstracts only, and 12.6% of cases were identified from 

diagnosis codes in both data sources. Females (67.0%) were more likely to be found in all 

of the data sources compared to males (33.0%). People 35 years and older (90.0%) were 

more likely to be captured in all of the data sources compared to people who were 

younger (9.96%). As well, cases that lived in urban areas (63.9%) were more likely to be 

captured in all of the data sources compared to those who live in rural areas (36.1%).    

Male patients were more likely to be ascertained in physician data (34.1%) 

compared to hospital data (29.3%) and both data sources (27.0%). Female were more 

likely to be ascertained in hospital data (70.7%) compared to physician data (65.9%). 

People who were aged 19 to 54 were more likely to be ascertained in physician data 

(47.1%) than hospital data (18.1%). People who were 55 to 74 years old were more likely 

to be ascertained in both data sources (45.7%) than physician data only (34.9%) or in 

hospital data only (32.8%). People who were 75 years and older were more likely to be 

ascertained in hospital data only (49.1%) compared to physician data only (18.1%). In 

terms of the residence, RA cases were ascertained almost equally in three data sources 

not only for those who lived in the urban area but also for those who lived in the rural 

area. 



  

- 51 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

Table 4.7 Frequency (%) of RA cases captured in diagnosis codes from AHD by 

demographic variables and data source 

   Data Source  

Variable  Physician data 

only (83.3) 

Hospital data 

only (4.1) 

Both sources 

(12.6) 

Sex 
Male 5484 (34.1) 235 (29.3) 655 (27.0) 

Female 10584 (65.9) 563 (70.7) 1769 (73.0) 

Age Group 

19-34 1719 (10.7) 39 (4.9) 163 (6.7) 

35-54 5847 (36.4) 105 (13.2) 577 (23.8) 

55-74 5601 (34.9) 262 (32.8) 1107 (45.7) 

>=75 2901 (18.1) 392 (49.1) 577 (23.8) 

Residence 
Urban 10145 (63.1) 518 (64.9) 1665 (68.7) 

Rural 5923 (36.9) 280 (35.1) 759 (31.3) 

Total  16068 798 2424 

 

Table 4.8 shows the distribution of RA cases across the study years by data 

source. Most RA cases were ascertained from physician billing claims in each study year. 

Since we only identified RA cases starting from the index year of 1998, there were more 

RA cases ascertained in that year for both data sources. Beginning in 2004, hospital 

discharge abstracts only and both data sources captured almost the same number of RA 

cases. 

Table 4.8 Frequency (%) of RA cases captured in diagnosis codes from AHD across 

index year and data source 

Index year Physician data only Hospital data only Both sources Total 

1998 2911 (65.4) 161 (3.5) 1389 (31.1) 4461 

1999 1678 (79.1) 128 (6.4) 320 (15.5) 2126 

2000 1652 (85.1) 85 (4.0) 204 (10.9) 1941 

2001 1464 (86.4) 89 (5.7) 136 (7.9) 1689 

2002 1437 (90.0) 69 (4.0) 103 (6.0) 1609 

2003 1467 (90.5) 61 (3.6) 89 (5.9) 1617 

2004 1446 (91.5) 67 (4.9) 64 (3.6) 1577 

2005 1354 (92.0) 50 (4.0) 51 (4.0) 1455 

2006 1343 (94.6) 47 (2.7) 43 (2.7) 1433 

2007 1316 (95.8) 41 (2.8) 25 (1.4) 1382 
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Table 4.9 contains model fit statistics and parameter estimates for the MLRM 

estimator for different sets of covariates. The following models were fit to the data: a) 

Model 1: sex, age group, residence; 2) Model 2: sex, age group, residence, sex*age 

group; 3) Model 3: sex, age group, residence, age group*residence; 4) Model 4: sex, age 

group, residence, sex*residence. We only use the two-way interactions because three-

way interactions could not always be fit to the data because of sparse cell sizes. The 

reference category for the dependent variable is being captured in the physician billing 

claims. The reference categories for the independent variables are male, less than 35 

years old and rural residence. 

 Identification of the optimal model based on fit statistics suggests that only very 

small improvements in AIC are achieved when interaction effects are added to the model 

(Model 2). As well, there are few differences in model fit statistics amongst the models 

with different interaction terms. For the BIC, the main effects model (Model 1) has the 

best fit. The likelihood ratio test statistics were less than 0.01 in size when the main 

effects model was compared to models that contained interaction effects. The residence 

variable was found not to be significant at the 5% level for hospital discharge abstracts 

for all models.  

The total number of RA cases identified from the data without using a CR method 

was 19290. By using the Chapman estimator, we estimated the population size to be 

24577 (95% CI: 24123, 25031), an increase of 27.4%. In contrast, using the MLRM 

estimator for the main effects model, we estimated the population size to be 20118 (95% 

CI: 19664, 20572), an increase of 4.3%. To calculate period prevalence, we used the 

2006 Statistics Canada Census data (>=19 years) as the denominator from the province of 
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Saskatchewan (Statistics Canada, 2012). The estimated RA prevalence was 2.76% when 

prevalence was based on the number of cases captured in hospital and physician claims 

only, 3.52% for the Chapman estimator, and 2.88% for the MLRM estimator.  

Table 4.9 Model fit statistics and parameter estimates (standard errors) from the MLRM 

estimator with different sets of covariates 

 
Model 

1
1
 2

2
 3

3
 4

4
 

Model fit 

statistics 

AIC 20300.5 20295.9 20300.0 20299.6 

BIC 20394.9 20437.5 20441.6 20409.7 

-2LogL 20276.5 20259.9 20264.0 20271.6 

Parameter 

estimates 

(Standard 

errors) 

 ̂          
5
 

2.29 

(0.08) 

2.77 

(0.18) 

2.23 

(0.10) 

-2.23 

(0.08) 

 ̂           
-3.99 

(0.17) 

-3.97 

(0.31) 

-4.08 

(0.23) 

3.92 

(0.18) 

 ̂     
-0.31 

(0.04) 

-0.93 

(0.20) 

-0.31 

(0.04) 

0.23 

(0.05) 

 ̂     
0.18 

(0.08) 

0.15 

(0.36) 

0.18 

(0.08) 

-0.08 

(0.10) 

 ̂     
-0.58 

(0.08) 

-1.09 

(0.18) 

-5.2 

(0.10) 

0.58 

(0.08) 

 ̂     
0.79 

(0.17) 

0.77 

(0.31) 

0.89 

(0.23) 

-0.79 

(0.17) 

 ̂           
0.19 

(0.04) 

0.19 

(0.04) 

0.33 

(0.16) 

-0.37 

(0.08) 

 ̂           
-0.03 

(0.08) 

-0.03 

(0.08) 

0.19 

(0.32) 

0.23 

(0.14) 

Pr < ChiSq 

 ̂           <0.01 <0.01 <0.01 <0.01 

 ̂           <0.01 <0.01 <0.01 <0.01 

 ̂     <0.01 <0.01 <0.01 <0.01 

 ̂     0.02 0.67 0.02 0.39 

 ̂     <0.01 <0.01 <0.01 <0.01 

 ̂     <0.01 0.01 <0.01 <0.01 

 ̂           <0.01 <0.01 0.03 <0.01 

 ̂           0.69 0.69 0.57 0.11 
1
 Model 1: sex, age group, residence; 

2
 Model 2: sex, age group, residence, sex*age 

group;
3
 Model 3 sex, age group, residence, age group*residence;  

4
 Model 4: sex, age 

group, residence, sex*residence.
5            represents the constant for physician billing 

claims. 
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CHAPTER 5 DISCUSSION AND CONCLUSIONS 

5.1 Summary 

In this study, we investigated the performance of the Chapman estimator and the 

MLRM estimator for population size in the two-source CR problem under data-analytic 

conditions characterized by dependence between data sources and heterogeneity of 

capture probabilities, which are likely to arise when AHD are used to estimate chronic 

disease prevalence in AHD. We conducted both a Monte Carlo simulation study and a 

numeric example. In addition, the effect of model misspecification was examined for the 

MLRM estimator. We chose to focus on the Chapman estimator and the MLRM 

estimator because these two estimators are the most commonly used CR methods from 

the literature (Alho, 1990; Tilling & Sterne, 1999). 

Under scenarios in which the two data sources were not correlated, the Chapman 

estimator slightly underestimated the population size and the MLRM estimator slightly 

overestimated the population size, but the amount of bias in these estimators was small. 

Under scenarios in which the data sources were correlated, both of the CR methods 

underestimated the population size and became more biased as the amount of correlation 

increased. However, the estimates were almost the same for both of the CR methods 

when correlation existed.  

CP values were closest to the nominal level of coverage (i.e., 95%) when there 

was no correlation and became increasingly smaller as correlation increased. Overall, 

both of the CR methods produced almost the same estimates in terms of RB, CP, and 

WCI for each combination of the investigated simulation conditions. However, the 

RMSE increased dramatically for the Chapman estimator when correlation increased 
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from 0.0 to 0.5 compared to the MLRM estimator, which produced similar estimates of 

RMSE across all combinations of simulation conditions.  

When the capture probabilities were heterogeneous, both of the estimators  ̂ and 

 ̂  produced larger RB, wider confidence intervals, and larger RMSE compared to the 

homogeneous case. For example, Scenario 1 (the homogeneous case) resulted in the 

smallest RB, larger CP, closest WCI, and smallest RMSE among all scenarios for both 

estimators. However, the MLRM estimator produced better CP values than the Chapman 

estimator when capture probabilities were heterogeneous. 

Model misspecification did not result in differences in terms of the performance 

of the MLRM estimates. However, as expected, the parameter estimates were biased in 

the misspecified model compared to the correctly-specified model. This is partly 

consistent with the work of Alho (1990)’s. Alho (1990) proposed that the misspecified 

model would perform worse than the original model in the main simulation study. 

However, he did not directly compare estimates from the misspecified model and the 

correctly-specified model. 

Our simulations were primarily conducted with positive correlation between the 

captures. Since a negative correlation is also a possibility, we also investigated selected 

condition in which the correlation was negative. Our results showed that both of the 

estimators overestimated the population size when the correlation was negative. And this 

overestimation could be extreme when the capture probabilities were heterogeneous. At 

the same time, the estimated CIs of the population size became wider, and RMSE value 

became larger when capture probabilities were heterogeneous. However, one exception 
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was that CP values were closer to the nominal coverage when capture probabilities were 

heterogeneous and data sources were negatively dependent. 

Computing times were similar and efficient for each scenario (i.e., approximately 

three hours). The MLRM estimator  ̂  took a slightly longer time to produce compared to 

the Chapman estimator  ̂. As the correlation increased, both of the estimators took a 

longer time to compute. 

The estimated RA prevalence was slightly higher in the MLRM estimator than the 

crude estimate when we applied the CR estimators to the numeric example from 

Saskatchewan. The Chapman estimator was larger than the RA prevalence estimate than 

the MLRM estimator. There was no difference among models including various 

covariates in terms of the population size estimates under the MLRM estimator but the 

parameter estimates did differ at 5% level for model specifications. However, the RA 

prevalence based the CR methods in the numeric example may be biased according to the 

simulation study. Regardless of the unmeasurable correlation between the two data 

sources, we had 4.1% RA cases being ascertained in hospital data only and only 12.6% of 

cases were captured in both data sources. The amount of overlap between the data 

sources may have affected the estimates of RA prevalence.  

Our simulation results show some similarities with results from previous research. 

Wittes (1972) proposed that Chapman’s estimator was unbiased when the assumption of 

homogeneity of capture probabilities was satisfied. Alho (1990) proposed that the 

classical CR method (see equation 1) underestimated population size while the MLRM 

estimator overestimated population size when there was correlation between two data 

sources. When the assumption of homogeneity was violated, the estimates were more 
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biased for both of the estimators. We got similar estimates for RB, CP, and WCI for both 

the Chapman and the MLRM estimator. Alho (1990) proposed that the conditional 

estimate of is asymptotically equivalent to the MLE estimator (the Chapman estimator) 

which was also proposed by Sanathanan (1972). Tilling & Sterne (1999) also found that 

the estimated CIs narrowed as positive correlation increased. Our research is also 

consistent with the literature (Brenner, 1995) in terms of that CR methods in two 

dependent sources underestimate the population size if the two sources are positively 

dependent, and overestimate the population size if the two sources are negatively 

dependent. However, none of the above research considered the violations of 

independence of data sources and homogeneity of capture probabilities simultaneously, 

which make our study unique. 

5.2 Strength and Limitations 

Our study has a number of strengths. First of all, we explored various 

combinations of source dependence and homogeneous/heterogeneous capture 

probabilities. The method that we used to generate the binary correlated data is very 

important in illustrating the assumption of independence between data sources. We 

investigated correlation values ranging from -0.1 to 0.5, although not all the combinations 

of simulation conditions could be investigated when the correlation between data sources 

was 0.5. Compared to previous simulation studies in the literature, our study has the 

advantage of choosing not only a wider range but also larger values of correlation 

between data sources (Tilling & Sterne, 1999). Also, we introduced observable variability 

in capture probabilities via covariate effects which allowed us to examine the violations 
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of the assumption of homogeneity of capture probabilities. The capture probabilities that 

we used were ranging from homogeneous one to extreme heterogeneous one. 

Secondly, we used two-source CR methods in our study because physician billing 

claims and hospital discharge abstracts are the most common AHD in Canadian 

provinces. Three or more sources can also be used in CR problems, so researchers might 

also consider CR methods for multiple AHD. Thirdly, we manipulated the number of 

disease cases (i.e., prevalence) in the simulation study to investigate the effect of sparsity 

in disease cases on the performance of CR methods. Fourthly, we considered 

misspecification of the MLRM to explore the covariate effects closely. We not only 

looked at the performance of CR methods including covariate effects but also looked at 

the model misspecification effects. Finally, we applied the CR methods in a numeric 

example to demonstrate its application in real-world data. 

This study also has some limitations. Firstly, we used a conditional variance 

estimate, which Alho (1990) proposed, to estimate the confidence interval for the MLRM 

estimate of population size. The literature suggests that the conditional variance estimate 

will be similar to the variance estimate for Chapman’s method (Alho, 1990; Sanathanan, 

1972); we might also have used an empirical bootstrap technique for estimating the 

variance. The bootstrap estimator might produce narrower confidence intervals. It 

involves generating an empirical distribution for the estimated population size by 

randomly sampling with replacement from the original dataset, estimating  ̂ in each 

random sample, and repeating this process multiple times. In general, at least 1000 

bootstrap samples are recommended to attain good precision (Efron & Tibshirani, 1994). 

The empirical values from these bootstrap samples are rank-ordered from smallest to 
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largest and the 2.5
th

 percentile and 97.5
th

 percentiles of the distribution are used to 

approximate the lower and upper bounds of the 95% CI. However, Tilling & Sterne 

(1999) found that the coverage of the bootstrap confidence interval was consistently 

lower than the nominal coverage of 95%.  

In addition, we only had a limited set of covariates available in our numeric 

example. This limited our analysis in terms of model specification when estimating 

population size. However, according to both our simulation study and numeric example, 

the results suggest that model misspecification does not have a large biasing effect on 

population size. 

5.3 Conclusions and Future Work 

In conclusion, we have compared the Chapman estimator and the MLRM 

estimator to estimate population size from two AHD sources. We introduced dependence 

of captures and heterogeneity of capture probabilities in a simulation study 

simultaneously. One of the key assumptions of CR methods is the independence of data 

sources, which is often violated in real-world data. As a result, researchers who wish to 

use CR methods for both of the estimators should be careful when negative source 

dependence is of concern because CR methods will overestimate the population sizes. 

Other than that, CR methods could be valuable to correct for underascertainment of cases 

even if positive source dependence exists.  

Furthermore, researchers should have sufficient overlap (e.g., 50% of the cases 

are captured by both data sources) between the data sources when using CR methods for 

estimating population size in order to minimize heterogeneity of capture probabilities. 

Researchers should also consider linking multiple data sources such as AHD and survey 
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data, or different sources of AHD when using CR methods. Two data sources may result 

in a sparse number of cases in one data source (e.g., hospital discharge abstracts) for rare 

conditions such as RA. AHD such as prescription drug data can also be linked to 

physician billing claims for identifying rare conditions such as RA. However, validations 

studies of sensitivity and specificity in identifying diseases need to be conducted before 

applying CR methods. For example, prescription drug data may lack in specificity in 

identifying RA which may not be an ideal data source for estimating RA prevalence. 

When we compared the two estimators, the MLRM estimator produced better CP 

values and smaller RMSE values than the Chapman estimator when the capture 

probabilities were heterogeneous. According to our results, missing covariates did not 

impact on the prevalence estimates in the MLRM estimator. Given these research 

findings, researchers who wish to estimate the size of chronic disease populations using 

two AHD should adopt the MLRM estimator instead of the Chapman estimator when 

covariate information is available in the data.  

Although direct testing of the assumptions of CR models, especially the 

assumption of independence of data sources, is not possible, Brenner (1995) suggested 

that for the application of CR methods to epidemiologic monitoring of disease, 

information about the healthcare contact behavior of individuals with a specific design 

can often provide insights about the likely direction and magnitude of correlation. For 

example, more severe cases, residence within the registration area, and easy access to 

medical care can lead to positive dependence of between data sources. Negative 

dependence will exist when case ascertainment by different sources may be “mutually 

exclusive” (Brenner, 1995). This arises when different hospitals are used as separate 
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sources for case ascertainment under CR models and patients are more likely to be treated 

in one hospital than another. Brenner (1995) also suggested that negative dependence 

may exist between sources such as pathology and hematology laboratory results for 

ascertaining malignancies such as leukemia and lymphomas, because these sources are 

less common for advanced cancers with poorer prognosis. 

Brenner (1995) suggested several strategies may help to minimize the degree of 

dependence between data sources such as the definition of sources, stratified analyses, 

and using three sources of case ascertainment. In terms of choosing the best sources like 

AHD to be included in the CR models, we found that we need to consider both the 

percentage of overlap of the data sources and potential correlation. For RA, using 

physician billing claims and hospital discharge abstracts may lead to a positive 

dependence for ascertaining RA because severe patients may be referred to a 

rheumatologist or be hospitalized. However, since we had so few cases identified in 

hospital discharge abstracts only, the percentage of overlapping cases was extremely low, 

which affects the accuracy of estimation. Other AHDs might be used for case 

ascertainment, such as prescription drug data. 

Our future work should compare different methods for deriving confidence 

intervals for CR methods. For example, a non-parametric approach could be used to be 

compared with the conditional variance estimator that we adopted. At the same time, we 

should also consider including validation values in our simulation study to check the 

performance of CR methods in prevalence and incidence estimates. Because this would 

be more appropriate in the real-world data. Finally, we could conduct additional 

simulation studies to examine the performance of three-source CR methods. 
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APPENDIX: R PROGRAMS 

Two sample programs are provided for the Chapman estimator and the MLRM 

estimator in applications of simulated data. 

/*-------------------------------------------------------------------------------------------------------*/ 

Completeness of Rheumatoid Arthritis Prevalence Estimates from Administrative Health 

Databases: Comparison of Capture-Recapture Models  

Copyright(c) 2014 by Yao Nie 

/*-------------------------------------------------------------------------------------------------------*/ 

Programmer: Yao Nie  

Date: 2014.04.17  

Scenario: 1   

If you have further request, you can send email to: niey@myumanitoba.ca              

/*-------------------------------------------------------------------------------------------------------*/ 

1 Chapman Estimator 

Proc IML ; 

**Specify simulation parameters**  

nsim = 1000 ; *Number of simulations*  

correlation = 0 ; *Correlation value*  

alpha = 0.05 ;  

**Specify counters for population estimators**  

N_True=j(nsim,1) ; *True disease population size*  

CH_N=j(nsim,1) ; *Estimated disease population size*  

V_CH1=j(nsim,1)  ; 
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V_CH2=j(nsim,1) ; 

V_CH=j(nsim,1)  ; *Variance of estimated disease population size*  

Bound_CH=j(nsim,2)  ; *Lower and Upper bounds of estimated disease population size* 

Coverage_CH=j(nsim,1) ; *Coverage probability of estimated disease population size* 

WCI_CH=j(nsim,1) ; *Width of 95% confidence intervals of estimated disease 

population size*  

**Main body of Monte Carlo simulation** ; 

do j =1 to nsim ; 

submit / R; 

 #Generate correlated binary data 

 install.packages('mvtBinaryEP') 

 library(mvtBinaryEP) 

 #Total number of observations in the dataset 

 n = 10000 

 #Specify the coefficient values 

 beta01 = 2.21   

 beta11 = -0.035 

 beta21 = 0.043    

 beta31= -0.069 

 beta02 =  2.17  

 beta12 =  0.01 

 beta22 = -0.043 

 beta32= 0.0297 
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 beta03 = -25 

 beta13 = 0.5 

 beta23 = 0 

 beta33= 0 

 #Specify counters for population estimators 

 y = NULL 

 x1 = NULL 

 x2 = NULL 

 d = NULL 

 p = NULL 

 for (i in 1:n) 

 { 

  #Specify the disease prevalence = 1% 

 di = rbinom(1, 1, 0.1) 

  #Create true diseased population status 

 if (di == 1){ 

 #Generate two sets of a continuous covariate and two binary covariates 

 xi11 = rnorm(1, mean = 0, sd = 1) 

 xi21 = rbinom(1,1,0.5) 

 xi31 = rbinom(1,1,0.5) 

 xi12 = rnorm(1, mean = 0, sd = 1) 

 xi22 = rbinom(1,1,0.5) 

 xi32 = rbinom(1,1,0.5) 
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 pi1 = 

exp(beta01+beta11*xi11+beta21*xi21+beta31*xi31)/(1+exp(beta01+beta11*xi11+beta2

1*xi21+beta31*xi31)) 

 pi2 = 

exp(beta02+beta12*xi12+beta22*xi22+beta32*xi32)/(1+exp(beta02+beta12*xi12+beta2

2*xi22+beta32*xi32)) 

  #Specify correlations between the data sources 

 mu = c(pi1, pi2) 

 R = c(1, 0, 0, 1) 

 R = matrix(R, ncol=2) 

 ep0 = ep(mu=mu, R=R, nRep=1, seed=NULL)  

 y0 = ep0$y 

 }  

 #Create the rest of the true population  

 else { 

 xi11 = rnorm(1, mean = 0, sd = 1) 

 xi21 = rbinom(1,1,0.5) 

 xi31 = rbinom(1,1,0.5) 

 xi12 = rnorm(1, mean = 0, sd = 1) 

 xi22 = rbinom(1,1,0.5) 

 xi32 = rbinom(1,1,0.5) 

 pi1 = 0 
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 pi2 = 

exp(beta03+beta13*xi11+beta23*xi21+beta33*xi31)/(1+exp(beta03+beta13*xi11+beta2

3*xi21+beta33*xi31)) 

 yi1 = 0 

 yi2 = rbinom(1,1,pi2) 

 y0 = c(yi1, yi2) 

 pi = c(pi1,pi2) 

 } 

 xi1 = c(1, xi11, xi21, xi31) 

 xi2 = c(1, xi12, xi22, xi32) 

 x1 = rbind(x1, xi1) 

 x2 = rbind(x2, xi2) 

 y = rbind(y,y0) 

 d = rbind(d, di) 

 p = rbind(p,pi) 

 } 

 #Counts the total number of diseased individual from the true population in data source 

1 only 

  n10=0 

 for (i in 1:n){ 

 if (y[i,1]==1 & y[i,2]==0) 

  {n10=n10+1 

  } 
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 } 

 #Counts the total number of diseased individual from the true population in data source 

2 only 

 n01=0 

 for (i in 1:n){ 

 if (y[i,1]==0 & y[i,2]==1) 

  {n01=n01+1 

  } 

 } 

 #Counts the total number of diseased individual from the true population in both data 

sources 

 n11=0 

 for (i in 1:n){ 

 if (y[i,1]==1 & y[i,2]==1) 

  {n11=n11+1 

  } 

 } 

endsubmit; 

**Import matrix from R**  

run ImportMatrixFromR(n10,'n10'); 

run ImportMatrixFromR(n01,'n01'); 

run ImportMatrixFromR(n11,'n11'); 

run ImportMatrixFromR(d,'d'); 
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**Calculate the true diseased population size**  

N_True[j,]=sum(d) ; 

**Chapman estimator for the estimated population size**  

CH_N[j,]=(n10+n11+1)*(n01+n11+1)/(n11+1)-1 ; 

**Chapman estimator for measures of performance for the estimated population size**  

V_CH1[j,]=(n10+n11+1)*(n01+n11+1)*n10*n01 ; 

V_CH2[j,]=(n11+1)*(n11+1)*(n11+2) ; 

V_CH[j,]=V_CH1[j,]/V_CH2[j,] ; 

Bound_CH[j,1]=CH_N[j,]+(-Probit(1-alpha/2))*sqrt(V_CH[j,]) ; 

Bound_CH[j,2]=CH_N[j,]+(Probit(1-alpha/2))*sqrt(V_CH[j,]) ; 

Coverage_CH[j,]=(Bound_CH[j,1]<=N_True[j,])*(Bound_CH[j,2]>=N_True[j,]) ; 

WCI_CH[j,]=Bound_CH[j,2]-Bound_CH[j,1] ; 

end ; 

**Calculate the average of true diseased population size**  

Mean_N=N_True[:,]; 

**Calculate the average of true diseased population size**  

Mean_CH_N=CH_N[:,]; 

**Calculate the average measures of performance for Chapman estimator**  

RB_CH=(Mean_CH_N-Mean_N)/Mean_N ; 

CP_CH=Coverage_CH[:,]; 

Mean_WCI_CH=WCI_CH[:,]; 

Mean_Bound_CH= Bound_CH[:,]; 

MSE_CH_N=sum((CH_N-N_True)##2)/nsim; 
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**Combine results**  

Result_CH=nsim||correlation||Mean_N||Mean_CH_N||RB_CH||CP_CH||Mean_WCI_CH||

Mean_Bound_CH||MSE_CH_N;  

**Print out results**  

Print Result_CH ; 
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2 MLRM Estimator 

Proc IML ; 

**Specify simulation parameters**  

nsim = 1000 ; *Number of simulations*  

correlation = 0 ; *Correlation value*  

alpha = 0.05 ; 

**Specify counters for population estimators**  

N_True=j(nsim,1) ; *True disease population size*  

ML3_Theta=j(nsim,8) ; 

ML3_N=j(nsim,1) ; *Estimated disease population size*  

ML3_V=j(nsim,1) ; *Variance of estimated disease population size*  

Bound_ML3=j(nsim,2) ; *Lower and Upper bounds of estimated disease population 

size*  

Coverage_ML3=j(nsim,1) ; *Coverage probability of estimated disease population size*  

WCI_ML3=j(nsim,1) ; *Width of 95% confidence intervals of estimated disease 

population size*  

ML3_beta01_est=j(nsim,1) ; *Estimated parameters from MLEM estimator*  

ML3_beta11_est=j(nsim,1) ; 

ML3_beta21_est=j(nsim,1) ; 

ML3_beta31_est=j(nsim,1) ; 

ML3_beta02_est=j(nsim,1) ; 

ML3_beta12_est=j(nsim,1) ; 

ML3_beta22_est=j(nsim,1) ; 
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ML3_beta32_est=j(nsim,1) ; 

**Main body of Monte Carlo simulation**  

do j =1 to nsim ; 

submit / R; 

 #Generate correlated binary data 

 install.packages('mvtBinaryEP') 

 library(mvtBinaryEP) 

 #Total number of observations in the dataset 

 n = 10000 

 #Specify the coefficient values 

 beta01 = 2.21   

 beta11 = -0.035 

 beta21 = 0.043    

 beta31= -0.069 

 beta02 =  2.17  

 beta12 =  0.01 

 beta22 = -0.043 

 beta32= 0.0297 

 beta03 = -25 

 beta13 = 0.5 

 beta23 = 0 

 beta33= 0 

 y = NULL 
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 x1 = NULL 

 x2 = NULL 

 d = NULL 

 p = NULL 

 for (i in 1:n) 

 { 

 #Specify the disease prevalence = 1% 

 di = rbinom(1, 1, 0.1) 

 #Create true diseased population status 

 if (di == 1){ 

 #Generate two sets of a continuous covariate and two binary covariates 

 xi11 = rnorm(1, mean = 0, sd = 1) 

 xi21 = rbinom(1,1,0.5) 

 xi31 = rbinom(1,1,0.5) 

 xi12 = rnorm(1, mean = 0, sd = 1) 

 xi22 = rbinom(1,1,0.5) 

 xi32 = rbinom(1,1,0.5) 

 pi1 = 

exp(beta01+beta11*xi11+beta21*xi21+beta31*xi31)/(1+exp(beta01+beta11*xi11+beta2

1*xi21+beta31*xi31)) 

 pi2 = 

exp(beta02+beta12*xi12+beta22*xi22+beta32*xi32)/(1+exp(beta02+beta12*xi12+beta2

2*xi22+beta32*xi32)) 



  

- 82 - 

Capture-Recapture Models through Monte Carlo Simulation Studies 

 

 #Specify correlations between the data sources 

 mu = c(pi1, pi2) 

 R = c(1, 0, 0, 1) 

 R = matrix(R, ncol=2) 

 ep0 = ep(mu=mu, R=R, nRep=1, seed=NULL)  

 y0 = ep0$y 

 } 

 #Create the rest of the true population  

 else { 

 xi11 = rnorm(1, mean = 0, sd = 1) 

 xi21 = rbinom(1,1,0.5) 

 xi31 = rbinom(1,1,0.5) 

 xi12 = rnorm(1, mean = 0, sd = 1) 

 xi22 = rbinom(1,1,0.5) 

 xi32 = rbinom(1,1,0.5) 

 pi1 = 0 

 pi2 = 

exp(beta03+beta13*xi11+beta23*xi21+beta33*xi31)/(1+exp(beta03+beta13*xi11+beta2

3*xi21+beta33*xi31)) 

 yi1 = 0 

 yi2 = rbinom(1,1,pi2) 

 y0 = c(yi1, yi2) 
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 pi = c(pi1,pi2) 

 } 

 xi1 = c(1, xi11, xi21, xi31) 

 xi2 = c(1, xi12, xi22, xi32) 

 x1 = rbind(x1, xi1) 

 x2 = rbind(x2, xi2) 

 y = rbind(y,y0) 

 d = rbind(d, di) 

 p = rbind(p,pi) 

 } 

endsubmit; 

**Import matrix from R**  

run ImportMatrixFromR(beta01,'beta01'); 

run ImportMatrixFromR(beta11,'beta11'); 

run ImportMatrixFromR(beta21,'beta21'); 

run ImportMatrixFromR(beta31,'beta31'); 

run ImportMatrixFromR(beta02,'beta02'); 

run ImportMatrixFromR(beta12,'beta12'); 

run ImportMatrixFromR(beta22,'beta22'); 

run ImportMatrixFromR(beta32,'beta32'); 

run ImportMatrixFromR(x1,'x1'); 

run ImportMatrixFromR(x2,'x2'); 

run ImportMatrixFromR(y,'y'); 
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run ImportMatrixFromR(d,'d'); 

run ImportMatrixFromR(p,'p'); 

z = y||d||x1||x2||p; 

**Calculate the true diseased population size**  

N_True[j,]=sum(d) ; 

create a from z; 

append from z; 

delete all where (col1=0 & col2=0); 

purge; 

use a ; 

read all into obs; 

close a; 

**Reshape matrix from a different dimensions**  

ones=shape(1,nrow(obs),1); 

Zeros=shape(0,nrow(obs),1); 

Y1=obs[,{1}];Y2=obs[,{2}]; 

X1=Ones||obs[,{5}]||obs[,{6}]||obs[,{7}]; 

X2=Ones||obs[,{9}]||obs[,{10}]||obs[,{11}]; 

**Specify the initial values for newton raphson iteration**  

b={2.21,-0.04,0.04,-0.07,2.17,0.01,-0.04,0.03}; 

max_iter = 10; 

n_iter = 1; 

diff = 1; 
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tolerance = 1e-8; 

**Parameter estimates from newton raphson iteration**  

do while (( diff > tolerance)& (n_iter<max_iter)) ; 

b1=b[{1 2 3 4}];b2=b[{5 6 7 8}]; 

EY1=(exp(X1*b1)+exp(X1*b1+X2*b2))/(exp(X1*b1)+exp(X2*b2)+exp(X1*b1+X2*b2

));  

EY2=(exp(X2*b2)+exp(X1*b1+X2*b2))/(exp(X1*b1)+exp(X2*b2)+exp(X1*b1+X2*b2

)); 

VY1=(1-exp(X1*b1)/(1+exp(X1*b1))/  

    (1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))))# 

    (exp(X1*b1)/(1+exp(X1*b1))/ 

    (1-1/((1+exp(X1*b1))#(1+exp(X2*b2))))); 

VY2=(1-exp(X2*b2)/(1+exp(X2*b2))/ 

    (1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))))# 

    (exp(X2*b2)/(1+exp(X2*b2))/ 

    (1-1/((1+exp(X1*b1))#(1+exp(X2*b2))))); 

Cov_Y1Y2=(1-1/(1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))))# 

    (exp(X1*b1+X2*b2)/((1+exp(X1*b1))#(1+exp(X2*b2)))/ 

    (1-1/((1+exp(X1*b1))#(1+exp(X2*b2))))); 

EY=EY1//EY2; 

Y=Y1//Y2; 

X=block(X1`,X2`); 

W=(Diag(VY1)||Diag(Cov_Y1Y2))//(Diag(Cov_Y1Y2)||Diag(VY2)); 
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Cov_T=(X*W*X`); 

Score_T=X*(Y-EY); 

Pre_b=b; 

b=pre_b+solve(Cov_T,Score_T); 

diff = sqrt(sum((b-Pre_b)##2)); 

n_iter = n_iter + 1; 

end; 

**Estimate probabiliy of being missed by both data sources**  

phi=1-1/((1+ exp(X1*b1))# (1+ exp(X2*b2)));  

**MLRM estimator for the estimated population size**  

ML3_N[j,]=sum(1/phi) ; 

ML3_Theta[j,] = b `; 

ML3_beta01_est[j,] = b1[1]; 

ML3_beta11_est[j,] = b1[2]; 

ML3_beta21_est[j,] = b1[3]; 

ML3_beta31_est[j,] = b1[4]; 

ML3_beta02_est[j,] = b2[1]; 

ML3_beta12_est[j,] = b2[2]; 

ML3_beta22_est[j,] = b2[3]; 

ML3_beta32_est[j,] = b2[4]; 

**MLRM estimator for the variance of estimated population size**  

VB=Inv(X*W*X`); 

Thi1=exp(X1*b1)#(1+exp(X2*b2))/(exp(X1*b1)+exp(X2*b2)+exp(X1*b1+X2*b2))##2; 
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Thi2=exp(X2*b2)#(1+exp(X1*b1))/(exp(X1*b1)+exp(X2*b2)+exp(X1*b1+X2*b2))##2; 

Thi=Thi1//Thi2; 

V2=(Thi`*X`)*VB*(Thi`*X`)`; 

V3=sum((1-phi)/(phi##2)); 

V0=V2+V3; 

alpha=0.05; 

**MLRM estimator for measures of performance for the estimated population size**  

Bound_ML3[j,1]=sqrt(V0)*(-Probit(1-alpha/2))+ ML3_N[j,1]; 

Bound_ML3[j,2]=sqrt(V0)*(Probit(1-alpha/2))+ ML3_N[j,1]; 

Coverage_ML3[j,]=( Bound_ML3[j,1]<=N_True[j,])#( Bound_ML3[j,2]>=N_True[j,]); 

WCI_ML3[j,]= Bound_ML3[j,2]-Bound_ML3[j,1]; 

end ; 

**Calculate the average of true diseased population size**  

Mean_N=N_True[:,]; 

**Calculate the average of true diseased population size**  

Mean_ML3_N=ML3_N[:,]; 

**Calculate the average measures of performance for MLRM estimator**  

RB_ML3=(Mean_ML3_N-Mean_N)/Mean_N ; 

CP_ML3=Coverage_ML3[:,]; 

Mean_WCI_ML3=WCI_ML3[:,]; 

Mean_Bound_ML3= Bound_ML3[:,]; 

RMSE_ML3_N=sqrt(sum((ML3_N-Mean_N)##2)/nsim); 

**Measures of performance for parameter estimates**  
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RMSE_ML3_beta01=sqrt(sum((ML3_beta01_est-beta01)##2)/nsim); 

RMSE_ML3_beta11=sqrt(sum((ML3_beta11_est-beta11)##2)/nsim); 

RMSE_ML3_beta21=sqrt(sum((ML3_beta21_est-beta21)##2)/nsim); 

RMSE_ML3_beta31=sqrt(sum((ML3_beta31_est-beta31)##2)/nsim); 

RMSE_ML3_beta02=sqrt(sum((ML3_beta02_est-beta02)##2)/nsim); 

RMSE_ML3_beta12=sqrt(sum((ML3_beta12_est-beta12)##2)/nsim); 

RMSE_ML3_beta22=sqrt(sum((ML3_beta22_est-beta22)##2)/nsim); 

RMSE_ML3_beta32=sqrt(sum((ML3_beta32_est-beta32)##2)/nsim); 

Mean_ML3_Theta = ML3_Theta[:,] ; 

**Combine results**  

Result_ML3=nsim||correlation||Mean_N||Mean_ML3_N||RB_ML3||CP_ML3||Mean_WC

I_ML3||Mean_Bound_ML3||RMSE_ML3_N||Mean_ML3_Theta||RMSE_ML3_beta01||R

MSE_ML3_beta11||RMSE_ML3_beta21||RMSE_ML3_beta31||RMSE_ML3_beta02||R

MSE_ML3_beta12||RMSE_ML3_beta22||RMSE_ML3_beta32 ; 

**Print out results**  

Print Result_ML3 ; 

quit ; 
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