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ABSTRACT
Rheumatoid arthritis (RA) is a chronic disease characterized by an overactive immune
system and joint inflammation. Population-based administrative health data (AHD) are
widely used for RA outcomes research and surveillance. However, AHD may not
completely capture all cases of RA in the population. Capture-recapture (CR) methods
have been proposed to describe the completeness of AHD for estimating disease
population size, but AHD may not conform to the assumptions that underlie CR models.
A Monte Carlo simulation study was used to investigate the effects of violations of the
assumptions for two-source CR methods: dependence between data sources and
heterogeneity of capture probabilities. We compared the Chapman estimator and an
estimator based on the multinomial logistic regression model (MLRM) to study relative
bias (RB), coverage probability (CP) of 95% confidence intervals, width of 95%
confidence intervals (WCI), and root-mean-square-error (RMSE) in prevalence estimates.
The effects of misspecification of the MLRM were also investigated. In addition, the
Chapman and MLRM estimators were used to estimate RA prevalence using AHD data
from Saskatchewan, Canada. Population sizes were consistently underestimated for CR
methods when the assumptions were violated. The estimated population size for both of
the estimators did not differ substantially except for the RMSE values. Parameter
estimates became biased when the MLRM model was misspecified, but there was little
impact on population size estimates. In conclusion, CR methods are recommended to
reduce bias in prevalence estimates based on AHDS. Because these methods may be
sensitive to assumption violations, researchers should consider potential dependence

between data sources. As well, sufficient overlap in the cases captured by each data



source (e.g., 50% of the cases are captured by both data sources) or balanced capture
probability in each data source is needed to effectively implement these methods.

Researchers who estimate population size using CR methods in AHDs should favour the

MLRM estimator over the Chapman estimator.
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CHAPTER 1 INTRODUCTION
1.1 Background

Rheumatoid arthritis (RA) is a chronic disease characterized by an overactive
immune system and joint inflammation. It is associated with recurrent periods of pain,
fatigue, and stiffness, as well as progressive functional disability. It affects approximately
one percent of the Canadian population (Toronto Western Research Institute, 2010). The
causes of RA are unknown, but risk factors include socioeconomic status (SES), sex,
geography, and ethnicity (Barton et al., 2011; Gabriel, 2001; Michaud & Wolfe, 2007,
Waltz, Kriegel, & Van't Pad Bosch, 1998).

The Arthritis Alliance of Canada (Bombardier, Hawker, & Mosher, 2011)
estimated that more than 272,000 people were living with RA in 2010, which is 0.9% of
the Canadian adult population. This number is expected to increase to 549,218 (i.e., 1.3%
of the Canadian adult population) over the next 30 years as the population ages. By 2040,
the number of new cases of RA in Canada is predicted to be about 23,732, up from
17,916 cases in 2010 (Bombardier et al., 2011).

RA prevalence has been reported to vary internationally (Rasch, Hirsch, Paulose-
Ram, & Hochberg, 2003; Toronto Western Research Institute, 2010). Prevalence is
estimated to be higher in Australia and lower in Sub-Saharan Africa (Shapira, Agmon-
Levin, & Shoenfeld, 2010). In the USA, RA prevalence was estimated to range from
2.03% to 2.72% among respondents 60 years and older based on data from the National
Health and Nutrition Examination Survey from 1988 to 1994 (Simard & Mittleman,

2007). Data from the UK’s Norfolk Arthritis Registry suggested that the adult population
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(i.e., 18+ years) in that region had an estimated RA prevalence of about 0.81%
(Symmons et al., 2002).

RA not only impacts the individual, but also the health care system. RA is
associated with a number of comorbid conditions such as depression, cardiovascular
disease, and cancer, which can adversely affect patients’ quality of life and need for
health care treatment (Michaud & Wolfe, 2007). Disease modifying antirheumatic drugs
(DMARDs) and biologic therapies, which are commonly used to treat patients with RA,
are expensive. It is currently estimated that RA drives more than $2 billion in direct
health care costs in Canada (Bombardier et al., 2011). If severe RA cases could be
avoided, Bombardier et al. (2011) also estimated that $5.1 billion could be saved in
cumulative direct health care costs and over $33.7 billion could be saved in cumulative
productivity losses over 30 years in Canada.

Given the impact on the individual and the health care system, epidemiologic
studies about RA prevalence and incidence are important to provide an indication of both
the overall and relative burden of the disease. In Canada, the two main sources of
population-based data for RA epidemiologic studies are national survey data from such
sources as the Canadian Community Health Survey (CCHS) and administrative health
data (AHD). Both sources of data have their strengths and limitations. Given the low
prevalence of RA in the population, national survey data, which are based on samples of
the population, are likely to produce less precise estimates than AHD. As well, previous
research has shown that the CCHS tends to result in substantially over-estimated

prevalence of RA (L. Lix et al., 2006), possibly because of the manner in which the
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questions about arthritis are worded. As a result, the self-report question in CCHS (e.g.,
cycle 1.1) was not effective in distinguishing different forms of arthritis, including RA.

AHD also have some limitations for estimating RA prevalence and incidence. For
example, hospital data had a low sensitivity of 23% when compared with rheumatologist-
reported diagnosis and a single physician visit had a specificity of only 60% for
ascertaining disease cases (Widdifield et al., 2013). In addition, sensitivity only ranged
from 5.0% to 11.3% for RA algorithms applied to AHD (L. Lix et al., 2006), when using
survey data (i.e., CCHS) as the reference standard although the results may be influenced
by the choice of a gold standard. Thus, AHD could result in biased estimates of
prevalence and incidence, with low sensitivity to detect true positive cases being of
particular concern.

Methods to adjust for less-than-perfect sensitivity and specificity of AHD include
the use of model-based prediction algorithms (L. M. Lix, Yogendran, Leslie, et al., 2008),
bias-corrected prevalence or incidence estimates (Manuel, Rosella, & Stukel, 2010),
latent class analysis techniques (Bernatsky et al., 2011), and capture-recapture (CR)
methods (Hook & Regal, 1995). None of these methods is without limitations and each
make assumptions about the characteristics of the data and the underlying statistical
model.

CR methods can be used to describe the completeness of AHD for estimating
disease population size. They have been used in a number of epidemiologic studies for
this purpose (Yip et al., 1995). However, two assumptions of some CR methods,
independence of data sources and homogeneity of capture probabilities, are unlikely to be

satisfied in practice. Ascertainment in different AHDs may not be independent; for
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example, the probability of being identified as a case in physician billing records may be
associated with the probability of being captured in prescription drug records. And this
would be a violation of the assumption of independence of data sources. As well, capture
probabilities may not be consistent (i.e., homogeneous) for all individuals in the
population, and may be associated with such characteristics such as age, sex, and the
presence of co-morbid conditions.
1.2 Research Purpose and Objectives

The overall purpose of this research was to apply CR methods to estimate the
completeness of AHD for ascertaining RA prevalence. CR methods were chosen for this
study because they have not previously, to the best of our knowledge, been applied to
estimate RA prevalence, even though they have been applied to other chronic diseases
such as cancer (McClish & Penberthy, 2004), diabetes (Giarrizzo, Pezzotti, Silvestri, &
Di Lallo, 2007), and stroke (Tilling, Sterne, & Wolfe, 2001) and to AHD in other
jurisdictions. In order to know the validity of prevalence estimates from CR methods, we
also conducted a Monte Carlo simulation study, to investigate the effect of dependence
amongst data sources and heterogeneity of capture probability on estimates of population
size.
1.2.1 Research Objective 1: To Compare Population Size Estimates from
Conventional and Model-based CR Methods

We compared the completeness of AHD for ascertaining RA prevalence using CR
models with and without adjustment for measured covariates. The Chapman estimator
and an estimator based on the multinomial logistic regression models (MLRM) were used

in both a Monte Carlo simulation study and a numeric example to estimate prevalence.

-4 -
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1.2.2 Research Objective 2: To Explore the Effects of Model Misspecification for the
Model-based CR Method

We compared bias in the estimates of completeness of AHD for ascertaining RA
prevalence using CR models that were and were not misspecified due to unmeasured
covariates. The effects of misspecification were investigated through a Monte Carlo
simulation study.
1.3 Thesis Organization

This thesis focuses on epidemiologic methods in chronic disease surveillance. In
Chapter 2 we present relevant background on each of the following major topics: 1)
Population-based chronic disease prevalence estimation methods, 2) Accuracy of case
ascertainment algorithms for chronic disease in AHD, 3) Methods to address bias in
prevalence estimates of chronic disease in AHD, 4) CR methods, and 5) Monte Carlo
simulation studies about CR methods. Chapter 3 presents the CR methods, describes the
dataset to be used for RA prevalence estimates in a numeric example and provides
detailed information on the simulation and modelling techniques to compare CR
methods. Chapter 4 presents results and analysis from the Monte Carlo simulation study
and the numeric example. We finish the thesis with discussion of the key findings and

conclusions.
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CHAPTER 2 LITERATURE REVIEW

This review provides background information about population-based chronic
disease prevalence estimation methods from health survey and AHD. The review then
moves on to discuss sensitivity and specificity of AHD for chronic disease case
ascertainment. Next, methods to address diagnostic bias and prevalence estimates for
chronic disease in AHD are reviewed. CR methods are discussed in detail, including their
history, assumptions, and underlying statistical models. Finally, Monte Carlo simulation
studies about CR methods are reviewed.

2.1 Population-based Chronic Disease Prevalence Estimation Methods

There are two main population-based data sources used in RA epidemiologic and
health outcomes research in Canada: health surveys and AHD. Health surveys require the
participants’ subjective judgment of their health and recall of past health events. The
accuracy of the participants’ answers to specific questions may be affected by various
factors. Responses may vary according to the method of data collection, the precise
phrasing of the questions, and the respondents’ understanding of their health and disease
(Young, 2005). It is relatively easy to produce health indicators from survey data.

In Canada, for example, the CCHS is a key source of data for RA research and
surveillance (Statistics Canada, 2013). The CCHS is conducted by Statistics Canada to
provide cross-sectional self-reported information about health determinants, health status,
and health system utilization for populations in 133 health regions across Canada
(Manitoba Centre for Health Policy, 2007; Statistics Canada, 2009). The CCHS initiative
began in 2000 with its main goals being “the provision of population-level information

on health determinants, health status and health system utilization” (Health Canada,
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2012). There is an annual component on general health; a component about specific
health topics is also conducted every two to three years.

AHD are collected by governments for administrative purposes, such as keeping
track of the population eligible for health benefits, paying doctors, or funding hospitals.
Examples of AHD are hospital abstracts, physician billing claims, and prescription drug
records (Spasoff, 1995). Wenneberg and Gittelsohn published one of the first articles
using AHD to describe variations in health care use in the United States (Wennberg &
Gittelsohn, 1973). Since then, applications of AHD for epidemiologic and health
outcomes research have become increasingly common. AHD are cost-effective and time-
effective to use for research and surveillance because they are routinely collected. At the
same time, AHD can usually be accessed without patient-specific consent, which can
reduce selection bias (Suissa & Garbe, 2007). They contain consistent elements, can be
accessed in a timely manner, and provide information about large cohorts (Virnig &
McBean, 2001).

Reliability about precision of the information found in population-based data have
been addressed by many researchers (e.g., Virnig & McBean (2001)). AHD and survey
data may not always produce consistent results. Study which compared chronic disease
case ascertainment between the CCHS (cycle 1.1) and AHD has been shown (L. M. Lix,
Yogendran, Shaw, et al., 2008). Agreement was high for diabetes and hypertension but
low for arthritis. For example, algorithms based on only one physician claims contact had
a Cohen’s kappa coefficient of 0.69 with 95% Cls of (0.68, 0.69) for diabetes and 0.64
with 95% Cls of (0.64, 0.64) for hypertension. However, it was only 0.27 with 95% Cls

of (0.26, 0.27) for arthritis. It has been argued that the non-life-threatening nature of
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arthritis may result in it being over reported in surveys, but underreported in AHD,
contributing to the lack of agreement between the two data sources (Kriegsman, Penninx,
Van Eijk, Boeke, & Deeg, 1996). Like arthritis, RA also had a poor agreement between
AHD and survey data with a Cohen’s kappa coefficient of 0.17 for the algorithm based
on one or more AHD (L. Lix et al., 2006). The lack of agreement between survey and
administrative data for all forms of arthritis, including RA, may be attributed to the
wording of the survey questions, self-report bias, or sampling bias in survey data or due
to diagnostic misclassification in AHD (Wunsch, Harrison, & Rowan, 2005).

2.2 Accuracy of Case Ascertainment Algorithms for Chronic Diseases in AHD

The International Classification of Diseases (ICD) developed by the World Health
Organization is typically used to assign diagnosis codes in AHD. The accuracy of the
diagnostic codes can be assessed by comparing them with a reference standard. Medical
records are frequently used as a reference standard for AHD, although self-report survey
data and clinical registries can also be used (Virnig & McBean, 2001).

Several studies have examined the accuracy of diagnosis codes for case
ascertainment in AHDs for such chronic conditions as diabetes and hypertension. For
example, Hebert et al. compared self-reported diabetes from the Medicare Current
Beneficiary Survey with diagnoses of diabetes in Medicare administrative data. Using
self-reported diabetes status as the reference standard, they found that in order to get
adequate sensitivity (>=70%), specificity (97.5%), researchers should combine
information from different types of Medicare claim files, use two years of data to identify
cases, and require at least two diagnoses of diabetes among claims involving ambulatory

care (Hebert et al., 1999).
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One study proposed using a logistic regression model to quantify the probability
that a person has kidney disease from multiple markers of the disease (Van Walraven et
al., 2010). Without available data for a “gold standard”, they developed an accurate and
well-calibrated multivariable model that demonstrates the probability that a particular
patient in an AHD has kidney disease. They found that the sensitivity of a kidney disease
diagnostic code for true kidney disease was very low at 38%. However, the specificity
was very high (i.e., 98.9%). The study concluded that multiple variables can be combined
to quantify the probability that a person has a particular disease. A multivariable model
can significantly increase the accuracy of disease identification in AHD.

A few studies have examined the accuracy of ICD codes for RA within AHD. A
retrospective chart abstraction study was conducted for a random sample of patients seen
in Ontario rheumatology clinics (Widdifield et al., 2013). Using the medical records at
each rheumatologist’s clinic and charts as the reference standard, these patients were
identified in combinations of RA-coded physician billings and primary and secondary
hospital discharge diagnoses (using ICD-9 and ICD-10 diagnosis codes 714 and MO05-
MO6 respectively), and prescription drug claims (for glucocorticoids, DMARDs, and
biologic agents). Overall, Widdifield et al. (2013) found that physician billing claims had
sensitivity ranging from 94% to 100% while hospital records had a sensitivity of only
23%. Specificity and positive predictive value (PPV) were moderate (e.g., 60% and 55%
respectively for only one contact in physician billing claims) to excellent (e.g., 96% and
76% respectively for one contact in hospital records) and increased when multiple
general practitioner (GP) billing claims or specialist billing claims were used to ascertain

cases (e.g., 80% for contacting a specialist within one year). RA prescription drug claims

-9-
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slightly decreased sensitivity, but also slightly increased specificity and PPV. The
addition of hospital data to physician billing claims had little impact on sensitivity or
PPV.

The accuracy of an ICD-9 diagnosis for RA (i.e., ICD-9 code 714) was
investigated in a Veterans Administrative (VA) hospital database from the USA (Singh,
Holmgren, & Noorbaloochi, 2004). Using chart documentation of RA diagnosis by a
rheumatologist on at least two visits at least six weeks apart as the reference standard,
Singh et al. (2004) found that this diagnosis code had 100% sensitivity, but specificity
was only 55%. The addition of a positive laboratory test for rheumatoid factor and a
DMARD prescription for a hospital diagnosis significantly improved specificity to
between 83% and 97% and PPV increased to between 81% and 97%, although sensitivity
dropped to between 76% and 88%.

Using the CCHS as the reference standard, Lix et al. (2006) proposed a number of
algorithms for ascertaining cases of RA in AHD. For these algorithms, sensitivity ranged
from 5.0% to 11.3%. The highest sensitivity was for a five-year algorithm based on one
or more physician billing claims. Specificity was near 100% for all algorithms. The PPV
of an RA ranged from 55.9% to 80.6% and the negative predictive value (NPV) was
approximately 92%.

2.3 Methods to Estimate Chronic Disease Prevalence in AHD

Several methods have been proposed to estimate chronic disease prevalence in
AHD when sensitivity and specificity of disease diagnosis codes are less than perfect.
Manuel et al. (2010) proposed adjusting disease prevalence estimates using sensitivity

and specificity estimates from validation studies in order to improve the accuracy of

-10 -
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prevalence estimates. They calculated the potential percentage of misclassified cases, that
is false positive cases and false negative cases, based on estimates of sensitivity and
specific. They focused on the incidence and prevalence of diabetes for Ontario using the
Ontario Diabetes Database (Lipscombe & Hux, 2007), which ascertains cases of diabetes
using ICD diagnoses in hospital records and physician billing claims. After Manuel et al.
(2010) applied validation study estimates of sensitivity and specificity to the Ontario
data, the estimated unbiased prevalence of diabetes in 2005 was 7.2%. This number was
19% lower than the estimate in the original study that did not account for sensitivity and
specificity when estimating disease prevalence (8.9%).

Bernatsky et al. (2011) proposed using Bayesian latent class models to deal with
under-ascertainment of cases of systemic autoimmune rheumatic diseases (SARDS) in
AHD. This methodology identifies disease clusters (i.e., disease present/absent) from
imperfect markers of disease status and prior information about the sensitivity and
specificity of each of the imperfect markers of disease which do not assume the existence
of a gold standard. Bayesian methods assume that “unknown values for a parameter have
probability distributions”. Bernatsky et al. (2011) set prior inputs for the Bayesian model
based on the previous research. The total prevalence was between 2 to 3 per 1,000 cases.
The highest prevalence was seen among women who were 45 years older. The estimated
SARDs prevalence by using the Bayesian latent class models was very close to the
existing North American estimates by using other data sources such as population survey
(Bernatsky et al., 2009; Helmick et al., 2008; Kabasakal et al., 2006).

Lix et al. (2008) proposed classification models, including logistic regression

models and non-parametric classification trees, to develop model-based case

-11 -
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ascertainment methods that use multiple disease indicators to ascertain osteoporosis
cases. The logistic regression performs well when data were characterized by linear
associations between the disease markers and the probability of being a case. The
nonparametric classification methodology is based on recursive partitioning, which forms
homogeneous subgroups in the data. Prevalence estimates from the logistic regression
models (i.e., 12.35%) were higher than the estimate from the non-parametric
classification trees (i.e., 7.61%) among Manitoba women 50+ years. Compared to other
population-based studies, the estimated prevalence of osteoporosis was around 12%
which suggests that the logistic regression models produced closer osteoporosis
prevalence estimates to those found in the literature (Yang et al., 2006).

2.4 Capture-Recapture Methods

2.4.1 History

Capture-recapture (CR) methods have also been proposed to estimate the
completeness of AHD for both acute and chronic disease prevalence estimation (McClish
& Penberthy, 2004; Peragallo, Urbano, Lista, Sarnicola, & Vecchione, 2011). CR
methods have been used in a number of epidemiologic studies to estimate or adjust for
incomplete case ascertainment, by using information on the amount of overlaps in lists of
cases identified from distinct sources (Hook & Regal, 1995).

CR methods and models were initially applied in biological studies about the size
of fish and wildlife populations, in which a sample of wildlife was captured and tagged,
then another sample was taken; the re-captured animals were counted and used to
estimate total population size. These techniques were later extended to population health

research involving record linkage (Yip et al., 1995) for diseases such as cancer
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(Schmidtmann, 2008), tuberculosis (van hest et al., 2007), diabetes (Giarrizzo et al.,
2007), HIV (Bernillon, Lievre, Pillonel, Laporte, & Costagliola, 2000), and tuberculosis
(Tilling et al., 2001), to estimate completeness of various data sources including AHD.
2.4.2 Assumptions

The assumptions underlying conventional CR techniques are that the population is
closed (i.e., individuals who migrate or who otherwise do not have complete health
insurance coverage are not included), individuals can be uniquely identified, the
probability of capture is homogeneous for all individuals in the population, and captures
are independent, conditional on the data source (Hook & Regal, 1995). These
assumptions may not be satisfied in AHD (Young, 2005), particularly the assumptions of
conditional independence of the data sources and homogeneity of capture probabilities.
The likelihood of being captured in one data source may increase the likelihood of
capture in another data source. For example, severe cases are more likely to be captured
by different sources than less severe cases which lead to positive dependence of case
ascertainment. Patient characteristics, including socio-demographic variables and
measures of disease severity, may be associated with the likelihood of disease case
ascertainment in AHD. However, AHD often contain sparse information on variables that
may be associated with the likelihood of capture. While socio-demographic variables
such as age, sex, and residence location are often available in the data, measures of
disease severity are noticeably absent.
2.4.3 Conventional Method

We can subdivide CR methods into two-source and multiple-source methods,

based on the number of data sources used to estimate population size. The conventional
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method for two sources is based on a two-by-two contingency table. One may estimate
either the number of missed cases or the size of the complete population using the
method initially proposed by Peterson and Lincoln (Lincoln, 1930; Petersen, 1896), and
further refined for the sparse cell size problem by Chapman (Chapman, 1951). In this
thesis, we used the Chapman estimator as a representative of the conventional CR
method. The Chapman estimator is based on the well-known maximum likelihood
estimators which assume independence of ascertainment by both data sources. Peragallo
et al. (2011) used the Chapman estimator to estimate the cancer incidence from cancer
diagnosis data in military hospitals and unit infirmaries. They concluded that the
estimated incidence of cancer by Chapman’s estimator was generally lower than expected
which may due to the positive dependence between the data sources.
2.4.4 Model-based Approach

To address violations of the assumptions of conventional CR method, a number of
statistical models have been proposed (Tilling & Sterne, 1999). One solution that is
relatively straight-forward for epidemiologists and surveillance staff to implement is to
adopt a CR regression model in which the probability of capture is modeled as a function
of covariates that may be associated with heterogeneity of capture probability. The
MLRM have been proposed for the two-source CR problems (Alho, 1990). One can
relate the characteristics of disease cases to their probability of being captured by each
source using the MLRM. However, lack of conditional independence between data
sources still remains in applications to AHD by using the MLRM (McClish & Penberthy,

2004).

-14 -

Capture-Recapture Models through Monte Carlo Simulation Studies



McClish & Penberthy (2004) proposed CR techniques, including the MLRM
estimator applied to hospital discharge and cancer registry administrative data to estimate
the missing number of breast, lung, colorectal, and prostate cancer cases. The MLRM
incorporated covariates such as demographic variables, whether or not the hospital had a
cancer program that was certified by the American College of Surgeons, and whether or
not the patient had surgery as initial treatment for his/her cancer. McClish & Penberthy
(2004) concluded that the MLRM can improve the estimate of the number of cancer
cases, compared to only counting the number of cases from individual data sources. They
also found that demographic variables alone did not account for much of the
heterogeneity in capture probabilities. However, the MLRM allows multiple covariates to
be taken into account simultaneously.

In multiple-source CR methods, log-linear methods can be used (Hook & Regal,
1995). The use of log-linear models (e.g., using Poisson regression) makes two major
assumptions about the capture probabilities. First of all, the capture probabilities for
different data sources are not all dependent. Secondly, the capture probability of a source
is assumed to be homogeneous for each individual in the population (Tilling & Sterne,
1999). The methods also make the same assumptions of multi-source independence of
ascertainment of individuals and variable catchability. It may be difficult to satisfy these
assumptions. Hook & Regal (1995) suggested that one way to enhance the plausibility of
these assumptions was “the use of as many sources and as many qualitatively different
types of sources as possible”. By specifying dependencies at one level, and then invoking
heterogeneity to additional parameters for each of levels might be acceptable to control

violations of assumption in log-liner models (Yip et al., 1995). An alternative way for
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reducing heterogeneity is to consider stratified analysis as Yip et al. (1995) demonstrated.
To be more precise, investigator should consider stratifying the population of interest by
known factors such as demographic variables across different strata. However, Tilling &
Sterne (1999) proposed that the increase in stratification has an impact on modeling
dependence within strata.

2.5 Monte Carlo Simulation Studies about CR Methods

Monte Carlo simulation studies are defined as “random experiments on a
computer” (Kroese, Taimre, & Botev, 2013). Monte Carlo methods are computational
algorithms that rely on repeated random sampling to obtain numerical results. The
methods were created during the Second World War for the development of the atomic
bomb, and since then, they are widely used in science, engineering, finance, and
statistics.

Several simulation studies had been conducted to evaluate the performance of CR
methods (Alho, 1990; Tilling & Sterne, 1999; Wittes, 1972). The measures that have
been used to evaluate performance include mean/mean estimated population size, mean
standard deviation, and coverage probability. Wittes (1972) suggested that Chapman’s
estimator for population size in two-source CR method was unbiased when the sum of the
sample sizes from the capture and recapture was no less than the unknown population
size. He assumed the cases being captured for twice had a hypergeometric distribution.
This indicated that the overlapping cases between two data sources were really high.
Wittes (1972) concluded that the estimated population size had unacceptably large

negative bias when the number of re-captured cases was small.
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Alho (1990) introduced the logistic regression algorithms accounting for
population heterogeneity in estimating population size. He allowed different capture
probabilities across individuals and across capture times. The resulting regression
parameter estimates can be used to estimate the proportion of the population missed,
assuming that the population has the same covariate distribution as the sample. And he
also compared the variance estimates between conventional method and the logistic
regression algorithms. He examined both the asymptotic and finite-sample properties of
the proposed estimator. And his results suggested that the model can be widely used
when required covariate information existed.

Tilling & Sterne (1999) compared the MLRM and the log-linear model estimating
population size. They particularly looked into the effects of covariates on the log-linear
model and the MLRM. Bootstrap methods were used to derive the variance for the
estimate of population size. They concluded that for CR data without covariates or with
categorical covariates, the log-linear model was equivalent to the logit model in terms of
performance. When there was dependence between the data sources, the estimated
population sizes can be seriously biased. Including covariates in CR methods can reduce
the bias in estimating population size. However, the distribution of the covariates may not
always be the same in the observed and unobserved segments of the population, which
may further bias the estimates of population size according to what Alho (1990)
proposed.

2.6 Summary
In summary, RA is a chronic inflammatory disease that affects quality of life and

health care utilization. Population-based AHD are widely used for RA surveillance, as
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well as health outcomes and service utilization research. However, a limitation of these
databases is that they may not capture all RA cases in the population (Singh et al., 2004).
CR methods represent one approach to estimate completeness of capture. However, the
assumptions of CR models, which include independence of data sources and
homogeneity of capture probabilities, might not be satisfied in AHD. The two- source
conventional CR method and the model-based CR method were proposed in several
literatures. However, few studies have simultaneously considered the two main
assumptions of CR methods and the effect of model misspecification on prevalence
estimates. This study applied CR methods in both simulation and numeric example to
evaluate the performance of conventional method and the model-based approach and to
examine the effect of model misspecification through the model-based approach CR

method.
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CHAPTER 3 METHODS
3.1 Two-source CR Models

To achieve the research objectives, we conducted a simulation study about two-
source CR methods, given that it is not possible to investigate the potential biasing effects
of assumption violations and unmeasured covariates in real-world data. As well, CR
models were applied to estimate completeness of AHD for calculating RA prevalence
using an existing dataset from Saskatchewan, Canada.

The definition of “sources” in epidemiologic studies for CR methods is different
from that used in animal ecology studies, which the latter usually has a natural temporal
ordering. In our research, the two-source CR model is applied to two different AHD
sources: physician billing claims and hospital discharge abstracts. Accordingly, there are
three possible combinations of these sources from which cases can be ascertained:
physician billing claims only, hospital discharge abstracts only, and both data sources.
The number of cases missed from both sources is estimated.

3.1.1 Chapman Estimator

Table 3.1 shows the structure of the data and the formulas to estimate the number
of missed cases by using the conventional two-source CR method. Let S; and S; be the
total number of cases identified by each source, and a be the cases captured by both
sources. The unknown number of cases missed by both sources (X) is to be estimated.
Using the maximum likelihood estimator (MLE), the probability of being captured by
both data sources is the product of the probability of being captured in Source 1 and

Source 2. Accordingly,
= () @) = ssame ®
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and the probability of being missed by both data sources is

S =x/(a+b+c+x). )

Table 3.1 AHD structure for two-source CR problem

Diagnosis in Source 1

Yes No Total
a b _
Diagnosis in Yes S2=a+b
Source 2 No c x
Total Si=a+c N=a+b+c+x
Estimated values Maximum likelihood estimator
(MLE)
Unobserved cell: x bc/a
Completeness of Source 1 a/(a + b)
Completeness of Source 2 a/(a + ¢)
Total population: N a+ b+ c+ (bc/a)

An adjustment was suggested by Chapman (1951) to reduce the effects of small
sample bias on the MLE (Hook & Regal, 1995). Using the Chapman method, the
estimated total population is

N=a+b+c+(o), 3)
The estimated number of missed cases is
X=bc/(a+1), 4)

and the 95% confidence intervals (95% Cls) of the estimated total population size N is

(a+b+1)x(a+c+1)xbx*c
(a+1)2+(a+2)

95% Cl = N + 1.96\/ (5)

3.1.2 MLRM Estimator
The MLRM estimator for estimating completeness in CR studies was first

proposed by Sanathanan (Sanathanan, 1972) and later extended by Alho (1990). Define
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indicator variables Y;; and Y;,, and m;, fori = 1,2, ..., N, where N is the unknown

population size as defined in Table 3.1. Denote

V. = {1, if the ith individual is captured in data source j only,j = 1, 2;
ij

1o, otherwise;

_— {1, if the ith individual is captured by both data sources;
i

0, otherwise.

Letn;; = Y;; + my, M; = Y;; + Y;; + m;, and define for the ith individual the

probability of being captured in the jth data source as p;; = E[nij]. Then p;1, = E[m;],

where p;1, = pi1P;2 IS the probability of being captured by both sources. By assuming

that the probabilities of being captured are conditionally independent for the ith

individual, we can define the model.

Let XiTj be the value of the covariates associated with the ith individual in the jth

data source where " is the transpose operator, X;; = (1, Xi11,, Xi1x) " Xiz =

(1I XiZly o ;XiZh)T- Then

(Yir, iz, my, 1 — M) ~Mult(1; piy (1 — piz), (1 — pin )iz, Pirzs Poi)s
where p;o = 1 — (pi1 + iz + Pi12) 1S the probability that the ith individual is not

identified in either data source. Let B; = (Bjo, "+, Bjx) " be the vectors of parameters

associated with the covariates, and
Pij
log(—’) =B; X/}

1-pyj

Then p;;is predicted from equation 7 by

(6)

(7)

(8)
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Once the MLRM is fitted to the data and the probability of being captured for
each observed patient is calculated, the sum of the reciprocal of these probabilities gives

an estimate of the total population size, N, that is,
=5 1 .
N = ZMi=1(1_ﬁ_ )'l' = 1ﬂ'“ﬁN1 (9)
10

where p;, is the probability of being missed by all sources, and can be estimated as

A 1
Pio = eBiXiny (14eP2iz)

(10)

The MLRM estimator can account for observable population heterogeneity in the
capture probabilities. In other words, the characteristics of the captured individuals are
used to explain their probabilities of capture.

The asymptotic variance of N can be derived from a proposed estimator (Sekar &

Deming, 1949):
v, = o (11)
This estimator does not account for the variability in the cases that are not
captured. Alho (1990) presented an approximation to the unconditional variance which
can be thought of as a generalization of V;introduced by Sekar & Deming (1949). The
unconditional variance estimator derived below can allow us to present unconditional
confidence intervals for N under population heterogeneity even though a conditional
likelihood was used in the estimation of 8, where @ is a conditional maximum likelihood
estimator.
Let ¥(0) = (¥,(0),,¥,5(0))7, and then
V(0) = -XT¥(0). (12)

The formula for the estimator V, of the conditional asymptotic variance is
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v, = 9(9) X(XTWX) ' X¥(d), (13)
where W = cov(Y|M), and we defined M = (My, -, My)", Y = (Ny1, -+, Nyn»

Nap,+, Nan)
Estimating the probability of being missed by both data sources gives the

estimator V5, which can be written as

Vs = Bwm1 ooy (14)

Combining the results, we can get the unconditional estimator of var(N) to be
Vo=V, + V3. (15)

3.2 Simulation Study

A Monte Carlo simulation study was undertaken to evaluate the performance of
CR methods for estimating population size. The CR model proposed by Chapman (1951)
was compared to the MLRM proposed by Alho (1990).
3.2.1 Data Generation

The Bernoulli distribution is used to describe experiments with dichotomous
outcome variables (Kroese et al., 2013). The data for the simulation study were generated
from a multivariate Bernoulli distribution, which allows manipulation of the magnitude
of dependence between the variables. Specifically the random-variate vector Y; =
(Y;1,Y:2) T was generated from a multivariate Bernoulli distribution with parameters
E(Y)) = (pin,piz)"and Corr(Y;) = p;7(j,j° = 1,2) using the algorithm proposed by
Emrich and Marion (Emrich & Piedmonte, 1991). The correlation matrix of multivariate

normal data is used to produce binary vectors having the desired correlation.
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In our study, p = p;, had values of 0.0, 0.05, 0.1, 0.3, and 0.5 to investigate the
effects of independence and increasing amounts of dependence between the data sources.
To introduce heterogeneity into the capture probabilities, we adopted the following

disease model when generating the data:

1

Pij= ——5xv:
T re ®Xp

(16)

where X;; = (1, X;1, X2, Xij3) " are the covariate vectors for the ith individual and the
jth dataset and B; = (Bjo, Bj1, Bj2, Bj3) " are the vectors of model parameters. In this
simulation, we assumed that X;;; was a continuous and normally distributed covariate
with parameters p; and o denoting the mean and variance, respectively, and

Xij, and X;;3 were binary variables with parameters B, B; and pg,, pg, denoting the
number of disease cases and corresponding event probabilities, respectively. The
covariates were independently generated with X;;; ~N(0,1) and X;,, X;;3~Bern(1,0.5).
The parameters of the population disease model were selected in order to investigate a
range of capture probability values. Misspecification of the MLRM across the seven
scenarios was evaluated by replacing X;; = (1, X;j1, X;j2, Xij3) 7 by Xi; = (1, (X{;; +
Xii1))", where X;;, X/, ~N(0,1), and by assuming that only X;;; was observed in the
misspecified model. Accordingly, B;- = (ﬁjo,ﬁjl)T is the vector of model parameters for

the jth dataset.

Three disease population sizes were considered with prevalence of 1%, 5%, and
10% in a population of 10,000. The completeness of each data source for capturing
observed disease cases was manipulated, to look at the effect of unbalanced and balanced

combinations of capture probabilities between two data sources. Different combinations
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of capture probabilities between the two data sources resulted in different combinations
of the vector of model parameters. Table 3.2 summarizes the relationships between the
capture probability values and the vector of parameters. All our simulations were for the
case of positive correlation between the data sources. Since a negative correlation is also
a possibility, we conducted additional simulations under Scenario 1, Scenario 3, and

Scenario 7 with a correlation of -0.10.
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3.2.2 Statistical Analysis of Simulated Data

Two population size estimation methods were applied to each set of generated
data: (a) Method 1: Chapman estimator (e.g., Chapman (1951)), which assumes
homogeneity of capture probability and conditional independence of data sources, (b)
Method 2: MLRM estimator with X;; = (1, X;j1, X2, Xij3) " as covariates. In the model
misspecification simulations, two models were applied to each set of generated data: (a)
MLRM estimator with X;; = (1, (X{;; + X;};))" as covariates (b) Method 3: MLRM
estimator with X{; = (1,X/;,)" as the sole covariate.
3.2.3 Measures of Model Performance

The estimated population size was computed for each combination of simulation
conditions. Measures of relative bias (RB), coverage probability (CP) of 95% confidence

intervals, width of the 95% Cls (WCI), and root-mean-square-error (RMSE) (Brittain &

Bohning, 2009) were computed for each combination of simulation conditions and each

replication. We defined RB = (NAN;N) x 100, where N is the estimated population size and

N is the true population size; positive values indicate population size is overestimated,
while negative values indicate underestimation. CP is the percentage of simulation
replications in which the 95% CI captures the true population size. WCI is the difference
between the lower and upper bounds of the 95% CI. RMSE is defined as the square root

of the mean square error of an estimator 8 with respect to an estimated parameter 6,

which is RMSE(9) = \/MSE(@) = \/E((@ — 6)2).

The Newton—Raphson method was used to estimate the coefficients of the

covariates in the MLRM estimator and the RMSE was calculated for each set of
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estimated coefficients between correctly-specified and misspecified models. Let f(f) be
a well-behaved function, and let ¢ be a root of the equation f(8) = 0 (Ypma, 1995). The

Newton-Raphson algorithm uses an iterative process to estimate parameters. If 3, is the

f(Bn)

current estimate, then the next estimate f,,,, is given by B+, = B, — i

3.2.4 Simulation Organization

A total of 210 combinations of conditions were simulated. For each combination
of conditions 1,000 replications were performed. For each replication the following steps
were undertaken: (a) a set of data was generated (i.e., sampled) from the population with
known characteristics using Scenario 1 to 7 to generate the data, (b) the proposed
Chapman and MLRM estimators were applied to the data to estimate population size, and
(c) each measure of model performance was computed. RB, WCI, and RMSE values
were averaged across the 1,000 replications.

To investigate the effect of model misspecification on the MLRM estimators, we
conducted simulations for conditions in which population disease prevalence was 10%
(estimates were stable in large disease prevalence).We only examined Scenarios 1, 3, and
7 for the model misspecification conditions because they represent the scenarios of
homogeneous capture probabilities, minimal heterogeneous capture probabilities, and
moderate heterogeneous capture probabilities, respectively. We also conducted
simulations where the correlation value was -0.10 because this is the most commonly
used correlation value among previous simulation studies (Tilling & Sterne, 1999).

The simulation study was conducted using SAS/IML (Interactive Matrix

Language) software version 9.3 (SAS Institute Inc, 2004), SAS/IML Studio (SAS
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Institute Inc, 2013), and the R Project for Statistical Computing (The R Project for
Statistical Computing, 2014).
3.3 Numeric Example
3.3.1 Study Design and Data Sources

Both the Chapman and MLRM estimators were applied to an existing dataset
from the province of Saskatchewan, Canada. This dataset was originally created to
compare estimates of RA and SARDs which include Systemic Lupus Erythematosus
(SLE), Sjogren’s syndrome (SjS), Systemic Sclerosis (SSc), Polymyositis (PM) and
Dermatomyositis (DM) across multiple Canadian provinces and territories over a ten-year
period (1998-2007) (Bernatsky et al., 2011).

Saskatchewan has a population of approximately 1.0 million according to the
2011 Statistics Canada Census (Statistics Canada, 2012). Like all Canadian provinces,
Saskatchewan has a system of universal health care. All hospital records and virtually all
physician billing records are captured for residents who are eligible to receive health
insurance benefits. Individuals not eligible to receive provincial benefits include inmates
in federal prisons, members of the national police service, and veterans, who represent
about 1% of the population. Registered Indians, who represent about 9% of the
population, do not receive provincial prescription drug benefits.

The two data sources that were used in this study to ascertain RA cases are
hospital separation abstracts and physician billing claims, both of which are available in
all provinces and territories in Canada. Thus, the methods that are developed here can be

generalized to AHD from other jurisdictions in Canada.

-29-

Capture-Recapture Models through Monte Carlo Simulation Studies



Hospital discharge abstracts are completed upon discharge from an acute care
facility and contain information on diagnosis and procedure codes, admission and
discharge dates, length of stay, and service type (inpatient, day surgery, and outpatient).
In Saskatchewan, prior to April 1, 2001, diagnoses were based on the International
Classification of Diseases, 9th Revision (ICD-9). For hospital separations with a
discharge date up to March 31, 1999, up to 3 diagnosis fields could be reported. For
hospital separations with a discharge date from April 1, 1999 to March 31, 2001, up to 16
diagnoses could be reported. As of April 1, 2001, hospital discharge abstracts were
changed to include 25 diagnosis codes based on the International Classification of
Diseases and Related Health Problems, 10" Revision, Canada (ICD-10-CA).

Physicians who are paid on a fee-for-service basis submit billing claims to the
provincial health ministry for payment purposes. A single diagnosis is recorded on each
claim using three-digit International Classification of Diseases, 9" Revision (ICD-9)
codes. Physicians can also submit claims for administrative purposes only (i.e., as a
record of services provided) on alternate payment plans which are known as “shadow
billing” (Manitoba Centre for Health Policy, 2008).

The population registration file was also used in this study; it captures dates of
health insurance coverage, as well as information about demographic characteristics and
location of residence. This data source was used to define covariates for the CR models.
All data sources can be anonymously linked via a unique personal health number.

Cases of RA were identified using ICD-10-CA codes M05 and M06 and ICD-9
code 714. Individuals less than 19 years of age were excluded, to maintain a focus on the

adult population. Data were available from January 1, 1998 to December 31, 2007 for
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case ascertainment. Each case was assigned to a fiscal year by index date, which is the
date of the first physician billing clam or hospital separation record with an RA diagnosis
during the study period. The literature suggests that at least five years of AHD are
required to obtain accurate incidence and prevalence estimates for other forms of arthritis
(Bernatsky et al., 2009; Ng, Bernatsky, & Rahme, 2013; Ward, 2013) ; we have elected
to use all data from the entire ten years of study data for RA to calculate the period
prevalence.

A variable was created to identify the ascertainment source for each subject in the
AHD as follows: diagnosis in hospital discharge abstracts only, diagnosis in physician
billing claims only, and diagnoses in both data sources. Demographic variables available
in the dataset that were used to describe the cohort and that may be associated with
heterogeneity of capture probability include sex, age at time of first healthcare contact
with RA diagnosis, and region of residence (e.g., urban area such as Saskatoon and
Regina census metropolitan areas, rural area such as Lloydminster, Moose Jaw, and
Prince Albert). Other diagnoses and measures of co-morbidity are not available in the
provided data set.
3.3.2 Data Analysis

Both the Chapman and MLRM estimators were used to estimate the size of the
RA population size in Saskatchewan. Model fit was assessed for the MLRM containing
different sets of covariates (e.g., main effects only versus main and interaction effects) by
using penalized measures of the log of the likelihood function, including the Akaike
Information Criterion (Akaike, 1974), and the Bayesian-Schwarz Information Criterion

(Schwarz, 1978). As well, the likelihood ratio test (LRT) which asymptotically follows a
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¥ distribution was used to test the difference in fit for competing models with different
sets of covariates.
3.4 Ethical Considerations

This study is part of a larger study that has already received ethical approval from
the University of Saskatchewan, which is compliant with the Tri-Council Policy
statement on Ethical Conduct for Research Involving Humans (see Appendix B). The
University of Manitoba Health Research Ethics Board approved the request on

continuing to use the same ethical approval for the thesis (see Appendix B).
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CHAPTER 4 RESULTS

This chapter starts with the results from the simulation study to compare
performance of the two CR methods using RB, CP, WCI, and RMSE. Next, the effects of
model misspecification on the performance of the MLRM are described. This chapter
concludes with a comparison of the two CR methods using data from the numeric
example.

4.1 Monte Carlo Simulation Results
4.1.1 Comparison of the Chapman and MLRM Estimators

Table 4.1 presents results for RB in the estimated population size. When the
assumptions of independence and homogeneity were satisfied (Scenario 1, correlation =
0), both the Chapman estimator N and the MLRM estimator N’ produced RB estimates
that were close to zero across all disease prevalence cases. When the data sources were
independent, both of the estimators produced smaller RB values than when the data
sources were dependent. However, one exception was that the estimated RB values from
the MLRM estimator N’ became unstable and unpredictable when the data sources were
independent and disease prevalence was low (1%).

Under all of the scenarios, the estimators N and N’ were negatively biased when
correlation existed between the two data sources. The estimates became more biased as
the amount of correlation increased. For example, under Scenario 1 (disease prevalence =
10%) which was the homogeneous capture-probability case, the estimated RB values
were close to 0 for both estimators. However, when the correlation increased to 0.5, the
estimated RB values became increasingly negatively biased to -5.34%. Overall, the mean

estimated RB values across all the scenarios were 0.00% and 0.69% respectively for the
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Chapman and MLRM estimator when there was no correlation (disease prevalence =
5%). When the correlation increased to 0.3, the mean estimated RB values were -23.88%
and -23.84% respectively for N (ranging from -47.24% to -3.23%) and N’ (ranging from
-47.18% to -3.23%).

As the data departed from the assumption of homogeneity of capture probability
(Scenarios 4 and 7), the estimated population sizes became more biased for both
estimators. The mean estimated RB values averaged across all the correlations in
Scenario 1 and disease prevalence = 5% were the same (-1.23%) for the Chapman and
MLRM estimator when the capture probabilities were homogeneous. The mean estimated
RB values were -20.75% and -19.72% respectively for the two estimators N and N’ in
Scenario 4 (the capture probabilities were extreme heterogeneous) when the data were
averaged across all correlation conditions.

When the assumptions of homogeneity of capture probability and independence
of data sources were both violated, the estimated population sizes were more biased for
both estimators. For example, from Scenario 1 to Scenario 4 (prevalence = 10%,
correlation = 0.1) the estimated RB values were negatively biased from approximately -
1.13% to -23.00% for both estimators. Note that for Scenarios 2, 3, 4, and 7, the
estimated RB of population size could not be predicted when correlation was 0.5.

Disease prevalence also impacted the estimates when there was no correlation
between the data sources. For example, the estimated RB values became unstable under
Scenario 4 and Scenario 7 for the MLRM estimator when there was no correlation and
low disease prevalence (1%). However, when the correlation value was minimal (e.g.,

0.05, 0.1) and the capture probabilities were extremely heterogeneous (Scenario 7), the
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MLRM estimator produced smaller RB values compared to the Chapman estimator when
the disease prevalence was small (1%). Higher disease prevalence produced estimated
RB values which were closer to zero for both of the estimators N and N'. Overall, the
estimated RB values were similar for the two estimators under different disease
prevalence conditions when correlation existed between the data sources.

Table 4.2 contains results for the CP values. The CP values for both of the
estimators were close to the nominal level of coverage (95%) when there was no
correlation between the data sources under some scenarios (Scenario 1, disease
prevalence = 5%; Scenario 3, disease prevalence = 10%). The estimated CP values were
closest to the nominal level of coverage for all conditions with no correlation compared
to conditions when correlation existed between the data sources. When the assumption of
homogeneity of capture probability was satisfied, both estimators produced almost the
same CP values (Scenario 1).

As the correlation increased, the CP values decreased dramatically for both of the
estimators. Most of the estimated CP values were 0 when the correlation was 0.3. For
example, the estimated CP was 92% under Scenario 1 when the data sources were
independent (disease prevalence = 1%). And the estimated CP dropped to 2% when the
correlation increased to 0.5 (Scenario 1, disease prevalence = 1%). Overall, the mean
estimated CPs across all the scenarios were 93.29% and 94.24% respectively for the
Chapman estimator (ranging from 89.90% to 95.20%, median = 93.30%) and the MLRM
estimator (ranging from 93.00% to 95.30%, median = 94.30%) when there was no
correlation (disease prevalence = 5%). At the same time, as the correlation increased to

0.3, the mean estimated CP values were 0.04% for both estimators.
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When the assumption of homogeneity of capture probability was violated, the
MLRM estimator N’, produced better CP estimates than the Chapman estimator, N
(Scenario 4 and Scenario 7). For example, under Scenario 4, the estimated CP was
91.90% for the MLRM estimator compared to 83.90% for the Chapman estimator
(disease prevalence = 1%, correlation = 0). Overall, the mean estimated CP values across
all the correlations in Scenario 1 (disease prevalence = 5%) were 51.30% and 51.40% for
the Chapman estimator and the MLRM estimator respectively when the capture
probabilities were homogeneous. At the same time, the mean estimated CPs were 43.68%
and 46.65% respectively for the two estimators N and N’ in Scenario 4 when the capture
probabilities were extremely heterogeneous.

Disease prevalence seemed to impact on the estimated CP as correlation
increased. As disease prevalence and correlation increased, the estimated CP values were
further away from the nominal level of coverage (95%). For example, under Scenario 1
(correlation = 0.1), the estimated CP was almost 70.00% for both estimators when
disease prevalence was 1%; this dropped to 37.00% and 15.00% respectively when
disease prevalence was 5% and 10%. A disease prevalence of 1% produced larger CP
values than a higher disease prevalence when there was correlation between data sources
for both estimators. As disease prevalence increased when both of the dependence and
homogeneity assumptions were violated, the estimated CP values were close to 0. Under
Scenario 2, 3, 4, and 7 where the capture probabilities were heterogeneous, the CP values
could not be estimated when the correlation between data sources was 0.5.

Table 4.3 contains the results for WCI values. The estimated Cls were wider

when there was no correlation than when there was correlation between the data sources;
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this result was found for both estimators. For example, under Scenario 1 (disease
prevalence = 1%), the estimated Cls were 4.25 and 4.33 for each estimator respectively
when the data sources were independent; the estimate Cls were only approximately 2.00
when the correlation was 0.5. Overall, the mean estimated WClIs across all the scenarios
were 113.55 and 119.94 for the Chapman (ranging from 9.89 to 260.86) and MLRM
estimators (ranging from 9.91 to 281.35, median = 89.58), respectively when there was
no correlation (disease prevalence = 5%). As the correlation increased to 0.3, the mean
estimated WCls were 24.30 and 24.82, respectively, for the two estimators N (ranging
from 6.51 to 49.70, median = 27.24) and N’ (ranging from 6.53 to 50.38, median =
28.44).

The estimated Cls were wider for both of the estimators when the assumption of
homogeneity was violated (Scenario 4 and Scenario 7) than when it was not violated.
Overall, the mean estimated WCls across all the correlations in Scenario 1 (disease
prevalence = 5%) were 8.60 respectively for the Chapman estimator and the MLRM
estimator when the capture probabilities were homogeneous. At the same time, the mean
estimated WCls were 154.76 and 165.14 respectively for the two estimators N and N’ in
Scenario 4 when the capture probabilities were extremely heterogeneous. Moreover, the
estimated Cls were slightly wider for the MLRM estimator compared to the Chapman
estimator when the capture probabilities were heterogeneous. For example, under
Scenario 4 (disease prevalence = 1%, correlation = 0), the estimated Cls were 273.34 for
the MLRM estimator and 104.66 for the Chapman estimator.

As disease prevalence increased, the confidence intervals became wider for all

scenarios. For example, the mean estimated WCls across all the correlations in Scenario
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1 (disease prevalence = 1%) were 36.24 and 41.26, respectively, for the Chapman
estimator and MLRM estimator. However, the mean estimated WCls increased to 116.42
and 117.51 respectively for N and N’ under the same scenario when the disease
prevalence increased to 10%. The WCI values could not be predicted when the
correlation was 0.5 for Scenario 2, 3, 4, and 7.

Although the estimated RB, CP, and WCI were similar for the two estimators N
and N’, the Chapman estimator N resulted in increased difference between the estimated
population and the true disease population for many conditions, as measured by RMSE
(Table 4.4). Under all scenarios, the RMSE of the MLRM estimator N stayed stable as
correlation and prevalence of disease increased. For example, under Scenario 1 (disease
prevalence = 1%), the estimated average RMSE was approximately 10.00 across all the
correlated cases for the MLRM estimator N’. However, the RMSE of the Chapman
estimator N increased significantly as the correlation increased. For example, under
Scenario 1 (i.e., prevalence = 1%), the estimated RMSE was 1.30 when the two data
sources were independent, and it increased to 33.10 as the correlation increased to 0.5 for
the Chapman estimator N.

The smallest RMSE was observed for Scenario 1 with disease prevalence of 1%
when the data sources were independent. Overall, the mean estimated RMSEs across all
the scenarios were 1655.49 and 42.51 respectively for the Chapman estimator (ranging
from 6.60 to 5256.30, median = 497.40) and the MLRM estimator (ranging from 22.20 to
80.00, median = 32.00) when there was no correlation (disease prevalence = 5%). At the
same time, as the correlation increased to 0.3 where all the scenarios can converge, the

mean estimated RMSEs were 21948.43 and 123.15 respectively for the two estimators N
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(ranging from 281.90 to 55988.30, median = 13766.40) and N’ (ranging from 27.20 to
236.40, median = 118.00).

When the assumption of homogeneity was violated, the estimated RMSE became
larger, especially for the Chapman estimator N. For example, the estimated RMSE was
10.10 under Scenario 1 (disease prevalence = 1%, correlation = 0.1) and it increased to
34.50 under Scenario 4 for the MLRM estimator N'. It increased from 3.30 to 900.60 for
the Chapman estimator N under the same scenario. As disease prevalence increased, the
estimated RMSE for both estimators increased. The mean estimated RMSEs across all
the correlations in Scenario 1 (disease prevalence = 5%) were 86.68 and 23.30,
respectively, for the Chapman estimator and the MLRM estimator when the capture
probabilities were homogeneous. At the same time, the mean estimated RMSEs were
20479.25 and 128.56 respectively for the two estimators N and N’ in Scenario 4 when the

capture probabilities were extremely heterogeneous.
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Table 4.5 contains the results from the simulations when the correlation value was
-0.1. In general, the presence of negative source dependence resulted in overestimation of
the population size for both of the CR estimators. Under Scenario 1, in which the
assumption of homogeneity of capture probabilities was satisfied, both estimators N and
N’ produced RB values that were slightly larger than 0. For this same scenario, CP values
were 1.80% and 1.70%, respectively for the two estimators. The WCI was similar
between the two estimators. The RMSE was larger in the conventional estimator N
compared to the MLRM estimator N'. As the data departed more from the assumption of
homogeneity of capture probability the RB values were more biased and always
overestimated the total population size (Scenario 7). As well, the 95% Cls became wider,
and the RMSE became larger. However, the CP values increased to the nominal level as
heterogeneity existed in capture probabilities (i.e., Scenario 1 vs. Scenario 7).
Table 4.5 Performance of Chapman estimator N and MLRM estimator N’ when disease

prevalence = 10% and correlation = -0.10

MetAhod Scenario 1* | Scenario 3 | Scenario 7
REOO | g 1w | s | s
PO | g | im | e | e
wor | § | B ma e

Note: *For description of scenarios, see Table 3.2; “RB is the relative bias; °CP is the
percentage of replications in which the 95% CI captures the true population size; “WCl is
the difference between the lower and upper bounds of the 95% CI; >RMSE is the root-

mean-square-error.
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Figure 4.1 shows the average estimated population size with 95% Cls across
disease prevalence conditions for the Chapman and MLRM estimators. We compared
Scenario 1 and Scenario 6 because Scenario 1 represents homogeneity in capture
probabilities and Scenario 6 represents moderate heterogeneity in capture probabilities.
Furthermore, both scenarios converged when the correlation was 0.5. The average 95%
Cls did not differ between the two estimators across each of the scenario.

When the two data sources were independent, both of the estimators produced
wider 95% Cls. When the assumption of independence of data sources was violated, both
of the estimators produced narrower 95% Cls. For Scenario 1, when the assumption of
homogeneity was met, all the cases with various correlations had the narrowest 95% Cls
of estimated population size across all disease prevalence conditions. For Scenario 6,
when the assumption of homogeneity was violated, all the estimated population sizes had

much wider 95% ClIs compared to those in Scenario 1.
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4.1.2 Effects of Model Misspecification for the MLRM

The results found in Table 4.6 show the effect of model misspecification on
performance of the MLRM for estimating population size. The estimated population size
did not differ for the correctly-specified model and misspecified model in terms of RB,
CP, WCI, and RMSE across the scenarios. However, model misspecification resulted in
biased parameter estimates.

Under Scenario 1 the population parameters were $;; = 0.01 and ,; = —0.03.
When the model was correctly specified, we obtained average estimates of 3;; = 0.01
and f,; = —0.03 with RMSE values of 0.09 and 0.05, respectively, when there was no
correlation between the data sources. Under the misspecified model for Scenario 1, the
average estimates were ;; = 0.001 and ,; = —0.03 with RMSE values of 0.13 and
0.07, respectively, when there was no correlation. When the correlation increased, both of
the parameter estimates became slightly biased for the correctly specified model and the
misspecified model for both £,; and ,,. However, the parameter estimates were similar
for the independence case and the dependence case. The RMSE values were similar for
the two estimated coefficient values when the correlation increased.

Under Scenario 7 the population parameters were 5;; = —0.03 and ;, = 0.03.
When the model was correctly specified, the coefficient estimates were equivalent to
their parameter values and the RMSE values were 0.11 and 0.08, respectively, when there
was no correlation between the data sources. Under the misspecified model, the estimated
coefficients were similar to their corresponding parameters but the RMSE values were
0.16 and 0.12, respectively, when there was no correlation. As the correlation increased,
both of the parameter estimates became more biased for both the correctly specified and
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the misspecified model for 3;,. However, 3,, did not seem to be affected as the
correlation increased for both the correctly-specified model and the misspecified model
because the estimated coefficient value remained stable and the RMSE didn’t change,
either.

Across all scenarios, when the assumption of independence was violated, the
estimated parameters became increasingly biased for both the correctly-specified model
and the misspecified model. For example, the RMSE for f3;, increased as correlation
increased. However, there was no difference between the RMSE for the correctly-
specified model and the misspecified model as correlation increased for each single
scenario for f8,,.When the assumption of homogeneity was violated, the estimated
parameters became more biased for both the correctly-specified model and the
misspecified model. For example, the RMSE for 3,,was higher for Scenario 7 (the
heterogeneous case) compared to Scenario 1 (the homogeneous case). There was no
difference between the RMSE for the correctly-specified model and the misspecified
model as correlation increased for each scenario. However, the RMSE for 3,, increased

slightly for Scenario 7 compared to Scenario 1.
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4.2 Numeric Example

Table 4.7 contains some descriptive results for the RA dataset. There were a total
of 19,290 RA cases (19+ years) identified in the Saskatchewan population during the 10-
year period from 1998 to 2007. Overall, 83.3% of cases were identified from diagnosis
codes in physician billing claims only, 4.1% of cases were identified from diagnosis
codes in hospital separation abstracts only, and 12.6% of cases were identified from
diagnosis codes in both data sources. Females (67.0%) were more likely to be found in all
of the data sources compared to males (33.0%). People 35 years and older (90.0%) were
more likely to be captured in all of the data sources compared to people who were
younger (9.96%). As well, cases that lived in urban areas (63.9%) were more likely to be
captured in all of the data sources compared to those who live in rural areas (36.1%).

Male patients were more likely to be ascertained in physician data (34.1%)
compared to hospital data (29.3%) and both data sources (27.0%). Female were more
likely to be ascertained in hospital data (70.7%) compared to physician data (65.9%).
People who were aged 19 to 54 were more likely to be ascertained in physician data
(47.1%) than hospital data (18.1%). People who were 55 to 74 years old were more likely
to be ascertained in both data sources (45.7%) than physician data only (34.9%) or in
hospital data only (32.8%). People who were 75 years and older were more likely to be
ascertained in hospital data only (49.1%) compared to physician data only (18.1%). In
terms of the residence, RA cases were ascertained almost equally in three data sources
not only for those who lived in the urban area but also for those who lived in the rural

area.

-50-

Capture-Recapture Models through Monte Carlo Simulation Studies



Table 4.7 Frequency (%) of RA cases captured in diagnosis codes from AHD by

demographic variables and data source

Data Source
Variable Physician data  Hospital data  Both sources
only (83.3) only (4.1) (12.6)
Sex Male 5484 (34.1) 235 (29.3) 655 (27.0)
Female 10584 (65.9) 563 (70.7) 1769 (73.0)
19-34 1719 (10.7) 39 (4.9) 163 (6.7)
Age Group 35-54 5847 (36.4) 105 (13.2) 577 (23.8)
55-74 5601 (34.9) 262 (32.8) 1107 (45.7)
>=75 2901 (18.1) 392 (49.1) 577 (23.8)
Residence Urban 10145 (63.1) 518 (64.9) 1665 (68.7)
Rural 5923 (36.9) 280 (35.1) 759 (31.3)
Total 16068 798 2424

Table 4.8 shows the distribution of RA cases across the study years by data
source. Most RA cases were ascertained from physician billing claims in each study year.
Since we only identified RA cases starting from the index year of 1998, there were more
RA cases ascertained in that year for both data sources. Beginning in 2004, hospital
discharge abstracts only and both data sources captured almost the same number of RA
cases.

Table 4.8 Frequency (%) of RA cases captured in diagnosis codes from AHD across

index year and data source

Index year Physician data only Hospital dataonly  Both sources  Total

1998 2911 (65.4) 161 (3.5) 1389 (31.1) 4461
1999 1678 (79.1) 128 (6.4) 320 (155) 2126
2000 1652 (85.1) 85 (4.0) 204 (10.9) 1941
2001 1464 (86.4) 89 (5.7) 136 (7.9) 1689
2002 1437 (90.0) 69 (4.0) 103 (6.0) 1609
2003 1467 (90.5) 61 (3.6) 89 (5.9) 1617
2004 1446 (91.5) 67 (4.9) 64 (3.6) 1577
2005 1354 (92.0) 50 (4.0) 51 (4.0) 1455
2006 1343 (94.6) 47 (2.7) 43 (2.7) 1433
2007 1316 (95.8) 41 (2.8) 25 (1.4) 1382
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Table 4.9 contains model fit statistics and parameter estimates for the MLRM
estimator for different sets of covariates. The following models were fit to the data: a)
Model 1: sex, age group, residence; 2) Model 2: sex, age group, residence, sex*age
group; 3) Model 3: sex, age group, residence, age group*residence; 4) Model 4: sex, age
group, residence, sex*residence. We only use the two-way interactions because three-
way interactions could not always be fit to the data because of sparse cell sizes. The
reference category for the dependent variable is being captured in the physician billing
claims. The reference categories for the independent variables are male, less than 35
years old and rural residence.

Identification of the optimal model based on fit statistics suggests that only very
small improvements in AIC are achieved when interaction effects are added to the model
(Model 2). As well, there are few differences in model fit statistics amongst the models
with different interaction terms. For the BIC, the main effects model (Model 1) has the
best fit. The likelihood ratio test statistics were less than 0.01 in size when the main
effects model was compared to models that contained interaction effects. The residence
variable was found not to be significant at the 5% level for hospital discharge abstracts
for all models.

The total number of RA cases identified from the data without using a CR method
was 19290. By using the Chapman estimator, we estimated the population size to be
24577 (95% ClI: 24123, 25031), an increase of 27.4%. In contrast, using the MLRM
estimator for the main effects model, we estimated the population size to be 20118 (95%
Cl: 19664, 20572), an increase of 4.3%. To calculate period prevalence, we used the

2006 Statistics Canada Census data (>=19 years) as the denominator from the province of
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Saskatchewan (Statistics Canada, 2012). The estimated RA prevalence was 2.76% when
prevalence was based on the number of cases captured in hospital and physician claims
only, 3.52% for the Chapman estimator, and 2.88% for the MLRM estimator.

Table 4.9 Model fit statistics and parameter estimates (standard errors) from the MLRM

estimator with different sets of covariates

Model
1! 2° 3° 4"

Model fit AIC 203005 202959 203000  20299.6
. BIC 203949 204375 204416  20409.7
2LogL 202765  20259.9 202640 202716

A ; 229 277 223 223

Bintercept1 (0.08) (0.18) (0.10) (0.08)

A -3.99 -3.97 408 3.92

Binterceptz (0.17) (0.31) (0.23) (0.18)

_ 031 10.93 031 0.23

Bsexi (0.04) (0.20) (0.04) (0.05)

Parameter = 0.18 0.15 0.18 -0.08

estimates Bsexz (0.08) (0.36) (0.08) (0.10)

(Standard = -0.58 -1.09 -5.2 0.58

errors) Bage1 (0.08) (0.18) (0.10) (0.08)

A 0.79 0.77 0.89 0.79

Bage: (0.17) (0.31) (0.23) (0.17)

_ 0.19 0.19 0.33 037

Presidence1 (0.04) (0.04) (0.16) (0.08)

_ 10.03 10.03 0.19 0.23

Presidencez (0.08) (0.08) (0.32) (0.14)

Bintercept1 <0.01 <0.01 <0.01 <0.01

Binterceptz <0.01 <0.01 <0.01 <0.01

Beext <0.01 <0.01 <0.01 <0.01

_ Beors 0.02 0.67 0.02 0.39

Pr < ChiSq Bage1 <0.01 <0.01 <0.01 <0.01

Bagez <0.01 0.01 <0.01 <0.01

Bresidencer <0.01 <0.01 0.03 <0.01

Brecidences 0.69 0.69 0.57 0.11

T Model 1: sex, age group, residence; > Model 2: sex, age group, residence, sex*age
group;® Model 3 sex, age group, residence, age group*residence; * Model 4: sex, age
group, residence, sex"‘residence.s[?interceptl represents the constant for physician billing
claims.
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CHAPTER 5 DISCUSSION AND CONCLUSIONS
5.1 Summary

In this study, we investigated the performance of the Chapman estimator and the
MLRM estimator for population size in the two-source CR problem under data-analytic
conditions characterized by dependence between data sources and heterogeneity of
capture probabilities, which are likely to arise when AHD are used to estimate chronic
disease prevalence in AHD. We conducted both a Monte Carlo simulation study and a
numeric example. In addition, the effect of model misspecification was examined for the
MLRM estimator. We chose to focus on the Chapman estimator and the MLRM
estimator because these two estimators are the most commonly used CR methods from
the literature (Alho, 1990; Tilling & Sterne, 1999).

Under scenarios in which the two data sources were not correlated, the Chapman
estimator slightly underestimated the population size and the MLRM estimator slightly
overestimated the population size, but the amount of bias in these estimators was small.
Under scenarios in which the data sources were correlated, both of the CR methods
underestimated the population size and became more biased as the amount of correlation
increased. However, the estimates were almost the same for both of the CR methods
when correlation existed.

CP values were closest to the nominal level of coverage (i.e., 95%) when there
was no correlation and became increasingly smaller as correlation increased. Overall,
both of the CR methods produced almost the same estimates in terms of RB, CP, and
W(CI for each combination of the investigated simulation conditions. However, the

RMSE increased dramatically for the Chapman estimator when correlation increased
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from 0.0 to 0.5 compared to the MLRM estimator, which produced similar estimates of
RMSE across all combinations of simulation conditions.

When the capture probabilities were heterogeneous, both of the estimators N and
N’ produced larger RB, wider confidence intervals, and larger RMSE compared to the
homogeneous case. For example, Scenario 1 (the homogeneous case) resulted in the
smallest RB, larger CP, closest WCI, and smallest RMSE among all scenarios for both
estimators. However, the MLRM estimator produced better CP values than the Chapman
estimator when capture probabilities were heterogeneous.

Model misspecification did not result in differences in terms of the performance
of the MLRM estimates. However, as expected, the parameter estimates were biased in
the misspecified model compared to the correctly-specified model. This is partly
consistent with the work of Alho (1990)’s. Alho (1990) proposed that the misspecified
model would perform worse than the original model in the main simulation study.
However, he did not directly compare estimates from the misspecified model and the
correctly-specified model.

Our simulations were primarily conducted with positive correlation between the
captures. Since a negative correlation is also a possibility, we also investigated selected
condition in which the correlation was negative. Our results showed that both of the
estimators overestimated the population size when the correlation was negative. And this
overestimation could be extreme when the capture probabilities were heterogeneous. At
the same time, the estimated Cls of the population size became wider, and RMSE value

became larger when capture probabilities were heterogeneous. However, one exception
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was that CP values were closer to the nominal coverage when capture probabilities were
heterogeneous and data sources were negatively dependent.

Computing times were similar and efficient for each scenario (i.e., approximately
three hours). The MLRM estimator N took a slightly longer time to produce compared to
the Chapman estimator N. As the correlation increased, both of the estimators took a
longer time to compute.

The estimated RA prevalence was slightly higher in the MLRM estimator than the
crude estimate when we applied the CR estimators to the numeric example from
Saskatchewan. The Chapman estimator was larger than the RA prevalence estimate than
the MLRM estimator. There was no difference among models including various
covariates in terms of the population size estimates under the MLRM estimator but the
parameter estimates did differ at 5% level for model specifications. However, the RA
prevalence based the CR methods in the numeric example may be biased according to the
simulation study. Regardless of the unmeasurable correlation between the two data
sources, we had 4.1% RA cases being ascertained in hospital data only and only 12.6% of
cases were captured in both data sources. The amount of overlap between the data
sources may have affected the estimates of RA prevalence.

Our simulation results show some similarities with results from previous research.
Wittes (1972) proposed that Chapman’s estimator was unbiased when the assumption of
homogeneity of capture probabilities was satisfied. Alho (1990) proposed that the
classical CR method (see equation 1) underestimated population size while the MLRM
estimator overestimated population size when there was correlation between two data

sources. When the assumption of homogeneity was violated, the estimates were more
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biased for both of the estimators. We got similar estimates for RB, CP, and WCI for both
the Chapman and the MLRM estimator. Alho (1990) proposed that the conditional
estimate of is asymptotically equivalent to the MLE estimator (the Chapman estimator)
which was also proposed by Sanathanan (1972). Tilling & Sterne (1999) also found that
the estimated Cls narrowed as positive correlation increased. Our research is also
consistent with the literature (Brenner, 1995) in terms of that CR methods in two
dependent sources underestimate the population size if the two sources are positively
dependent, and overestimate the population size if the two sources are negatively
dependent. However, none of the above research considered the violations of
independence of data sources and homogeneity of capture probabilities simultaneously,
which make our study unique.
5.2 Strength and Limitations

Our study has a number of strengths. First of all, we explored various
combinations of source dependence and homogeneous/heterogeneous capture
probabilities. The method that we used to generate the binary correlated data is very
important in illustrating the assumption of independence between data sources. We
investigated correlation values ranging from -0.1 to 0.5, although not all the combinations
of simulation conditions could be investigated when the correlation between data sources
was 0.5. Compared to previous simulation studies in the literature, our study has the
advantage of choosing not only a wider range but also larger values of correlation
between data sources (Tilling & Sterne, 1999). Also, we introduced observable variability

in capture probabilities via covariate effects which allowed us to examine the violations
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of the assumption of homogeneity of capture probabilities. The capture probabilities that
we used were ranging from homogeneous one to extreme heterogeneous one.

Secondly, we used two-source CR methods in our study because physician billing
claims and hospital discharge abstracts are the most common AHD in Canadian
provinces. Three or more sources can also be used in CR problems, so researchers might
also consider CR methods for multiple AHD. Thirdly, we manipulated the number of
disease cases (i.e., prevalence) in the simulation study to investigate the effect of sparsity
in disease cases on the performance of CR methods. Fourthly, we considered
misspecification of the MLRM to explore the covariate effects closely. We not only
looked at the performance of CR methods including covariate effects but also looked at
the model misspecification effects. Finally, we applied the CR methods in a numeric
example to demonstrate its application in real-world data.

This study also has some limitations. Firstly, we used a conditional variance
estimate, which Alho (1990) proposed, to estimate the confidence interval for the MLRM
estimate of population size. The literature suggests that the conditional variance estimate
will be similar to the variance estimate for Chapman’s method (Alho, 1990; Sanathanan,
1972); we might also have used an empirical bootstrap technique for estimating the
variance. The bootstrap estimator might produce narrower confidence intervals. It
involves generating an empirical distribution for the estimated population size by
randomly sampling with replacement from the original dataset, estimating N in each
random sample, and repeating this process multiple times. In general, at least 1000
bootstrap samples are recommended to attain good precision (Efron & Tibshirani, 1994).

The empirical values from these bootstrap samples are rank-ordered from smallest to
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largest and the 2.5™ percentile and 97.5™ percentiles of the distribution are used to
approximate the lower and upper bounds of the 95% CI. However, Tilling & Sterne
(1999) found that the coverage of the bootstrap confidence interval was consistently
lower than the nominal coverage of 95%.

In addition, we only had a limited set of covariates available in our numeric
example. This limited our analysis in terms of model specification when estimating
population size. However, according to both our simulation study and numeric example,
the results suggest that model misspecification does not have a large biasing effect on
population size.

5.3 Conclusions and Future Work

In conclusion, we have compared the Chapman estimator and the MLRM
estimator to estimate population size from two AHD sources. We introduced dependence
of captures and heterogeneity of capture probabilities in a simulation study
simultaneously. One of the key assumptions of CR methods is the independence of data
sources, which is often violated in real-world data. As a result, researchers who wish to
use CR methods for both of the estimators should be careful when negative source
dependence is of concern because CR methods will overestimate the population sizes.
Other than that, CR methods could be valuable to correct for underascertainment of cases
even if positive source dependence exists.

Furthermore, researchers should have sufficient overlap (e.g., 50% of the cases
are captured by both data sources) between the data sources when using CR methods for
estimating population size in order to minimize heterogeneity of capture probabilities.

Researchers should also consider linking multiple data sources such as AHD and survey
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data, or different sources of AHD when using CR methods. Two data sources may result
in a sparse number of cases in one data source (e.g., hospital discharge abstracts) for rare
conditions such as RA. AHD such as prescription drug data can also be linked to
physician billing claims for identifying rare conditions such as RA. However, validations
studies of sensitivity and specificity in identifying diseases need to be conducted before
applying CR methods. For example, prescription drug data may lack in specificity in
identifying RA which may not be an ideal data source for estimating RA prevalence.

When we compared the two estimators, the MLRM estimator produced better CP
values and smaller RMSE values than the Chapman estimator when the capture
probabilities were heterogeneous. According to our results, missing covariates did not
impact on the prevalence estimates in the MLRM estimator. Given these research
findings, researchers who wish to estimate the size of chronic disease populations using
two AHD should adopt the MLRM estimator instead of the Chapman estimator when
covariate information is available in the data.

Although direct testing of the assumptions of CR models, especially the
assumption of independence of data sources, is not possible, Brenner (1995) suggested
that for the application of CR methods to epidemiologic monitoring of disease,
information about the healthcare contact behavior of individuals with a specific design
can often provide insights about the likely direction and magnitude of correlation. For
example, more severe cases, residence within the registration area, and easy access to
medical care can lead to positive dependence of between data sources. Negative
dependence will exist when case ascertainment by different sources may be “mutually

exclusive” (Brenner, 1995). This arises when different hospitals are used as separate
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sources for case ascertainment under CR models and patients are more likely to be treated
in one hospital than another. Brenner (1995) also suggested that negative dependence
may exist between sources such as pathology and hematology laboratory results for
ascertaining malignancies such as leukemia and lymphomas, because these sources are
less common for advanced cancers with poorer prognosis.

Brenner (1995) suggested several strategies may help to minimize the degree of
dependence between data sources such as the definition of sources, stratified analyses,
and using three sources of case ascertainment. In terms of choosing the best sources like
AHD to be included in the CR models, we found that we need to consider both the
percentage of overlap of the data sources and potential correlation. For RA, using
physician billing claims and hospital discharge abstracts may lead to a positive
dependence for ascertaining RA because severe patients may be referred to a
rheumatologist or be hospitalized. However, since we had so few cases identified in
hospital discharge abstracts only, the percentage of overlapping cases was extremely low,
which affects the accuracy of estimation. Other AHDs might be used for case
ascertainment, such as prescription drug data.

Our future work should compare different methods for deriving confidence
intervals for CR methods. For example, a non-parametric approach could be used to be
compared with the conditional variance estimator that we adopted. At the same time, we
should also consider including validation values in our simulation study to check the
performance of CR methods in prevalence and incidence estimates. Because this would
be more appropriate in the real-world data. Finally, we could conduct additional

simulation studies to examine the performance of three-source CR methods.
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APPENDIX: R PROGRAMS
Two sample programs are provided for the Chapman estimator and the MLRM

estimator in applications of simulated data.

Completeness of Rheumatoid Arthritis Prevalence Estimates from Administrative Health
Databases: Comparison of Capture-Recapture Models

Copyright(c) 2014 by Yao Nie

Programmer: Yao Nie
Date: 2014.04.17
Scenario: 1

If you have further request, you can send email to: niey@myumanitoba.ca

1 Chapman Estimator

Proc IML ;

**Specify simulation parameters**

nsim = 1000 ; *Number of simulations*

correlation = 0 ; *Correlation value*

alpha=0.05;

**Specify counters for population estimators**
N_True=j(nsim,1) ; *True disease population size*
CH_N=j(nsim,1) ; *Estimated disease population size*

V_CH1=j(nsim,1) ;
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V_CH2=j(nsim,1) ;

V_CH=j(nsim,1) ; *Variance of estimated disease population size*

Bound_CH=j(nsim,2) ; *Lower and Upper bounds of estimated disease population size*

Coverage_CH=j(nsim,1) ; *Coverage probability of estimated disease population size*

WCI_CH=j(nsim,1) ; *Width of 95% confidence intervals of estimated disease

population size*

**Main body of Monte Carlo simulation** ;
doj=1tonsim;

submit / R;

#Generate correlated binary data
install.packages('mvtBinaryEP")
library(mvtBinaryEP)

#Total number of observations in the dataset
n = 10000

#Specify the coefficient values

beta0l = 2.21

betall =-0.035

beta21 = 0.043

beta31=-0.069

beta02 = 2.17

betal2 = 0.01

beta22 = -0.043

beta32=0.0297
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beta03 = -25

betal3 = 0.5

beta23 =0

beta33=10

#Specify counters for population estimators
y = NULL

x1=NULL

x2 = NULL

d=NULL

p=NULL

for (iin 1:n)

{

#Specify the disease prevalence = 1%
di = rbinom(1, 1, 0.1)

#Create true diseased population status
if (di ==1){

#Generate two sets of a continuous covariate and two binary covariates
xill =rnorm(1, mean =0, sd = 1)

xi21 = rbinom(1,1,0.5)

xi31 = rbinom(1,1,0.5)

xi12 = rnorm(1, mean =0, sd = 1)

Xi22 = rbinom(1,1,0.5)

xi32 = rbinom(1,1,0.5)
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pil =

exp(betaOl+betall*xill+beta21*xi21+beta31*xi31)/(1+exp(beta0l+betall*xill+beta2

1*xi21+beta31*xi31))

pi2 =

exp(beta02+betal2*xil2+beta22*xi22+beta32*xi32)/(1+exp(beta02+betal2*xil2+beta2

2*Xi22+beta32*xi32))
#Specify correlations between the data sources
mu = c(pil, pi2)
R=c¢(1,0,0,1)
R = matrix(R, ncol=2)
ep0 = ep(mu=mu, R=R, nRep=1, seed=NULL)
y0 = ep0%y
¥
#Create the rest of the true population
else {
xill =rnorm(1, mean =0, sd = 1)
xi21 = rbinom(1,1,0.5)
xi31 = rbinom(1,1,0.5)
xi12 = rnorm(1, mean =0, sd = 1)
Xi22 = rbinom(1,1,0.5)
xi32 =rbinom(1,1,0.5)

pil=0
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pi2 =
exp(beta03+betal3*xill+beta23*xi21+beta33*xi31)/(1+exp(beta03+betal3*xill+beta2
3*xi21+beta33*xi31))

yil=0

yi2 = rbinom(1,1,pi2)

y0 = c(yil, yi2)
pi = c(pil,pi2)
¥

xil =c(1, xill, xi21, xi31)
xi2 = ¢(1, xil12, xi22, xi32)
x1 = rbind(x1, xil)
X2 = rbind(x2, xi2)
y = rbind(y,y0)
d = rbind(d, di)
p = rbind(p,pi)
¥
#Counts the total number of diseased individual from the true population in data source
1 only
n10=0
for (iin 1:n){
if (y[i,1]==1 & y[i,2]==0)
{n10=n10+1

¥
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}

#Counts the total number of diseased individual from the true population in data source

2 only
n01=0
for (i in 1:n){
if (y[i,1]==0 & y[i,2]==1)
{n01=n01+1
}
¥

#Counts the total number of diseased individual from the true population in both data

sources

n11=0

for (iin 1:n){

if (y[i,1]==1 & y[i,2]==1)
{n11=n11+1

}

¥

endsubmit;

**Import matrix from R**

run ImportMatrixFromR(n10,'n10%;
run ImportMatrixFromR(n01,'n01");
run ImportMatrixFromR(n11,'n11");

run ImportMatrixFromR(d,'d");
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**Calculate the true diseased population size**
N_True[j,]=sum(d) ;
**Chapman estimator for the estimated population size**

CH_NI[j,J=(n10+n11+1)*(n01+n11+1)/(n11+1)-1 ;

**Chapman estimator for measures of performance for the estimated population size**

V_CH1[j,]=(n10+n11+1)*(n01+n11+1)*n10*n01 ;
V_CH2[},]=(n11+1)*(n11+1)*(n11+2) ;

V_CH[j,]=V_CHL1][j,)/V_CH2[j ];
Bound_CH][j,1]=CH_N[j,]+(-Probit(1-alpha/2))*sqrt(\V_CHI[j.]) ;
Bound_CH]Jj,2]=CH_N[j,]+(Probit(1-alpha/2))*sqrt(V_CHIj.]) ;
Coverage_CH][j,]=(Bound_CH]Jj,1]<=N_True[j,])*(Bound_CH]Jj,2]>=N_True[j,]) ;
WCI_CH]Ij,]=Bound_CH][j,2]-Bound_CH]j,1] ;

end ;

**Calculate the average of true diseased population size**
Mean_N=N_True[:,];

**Calculate the average of true diseased population size**
Mean_CH_N=CH_NI:,];

**Calculate the average measures of performance for Chapman estimator**
RB_CH=(Mean_CH_N-Mean_N)/Mean_N ;

CP_CH=Coverage_CHI:,];

Mean_WCI_CH=WCI_CH[.,];

Mean_Bound_CH= Bound_CHI:,];

MSE_CH_N=sum((CH_N-N_True)##2)/nsim;
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**Combine results**
Result_CH=nsim||correlation||Mean_N||Mean_CH_N||[RB_CHJ||CP_CH||Mean_WCI_CH]|
Mean_Bound_CH|MSE_CH_N;

**Print out results**

Print Result CH ;
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2 MLRM Estimator

Proc IML ;

**Specify simulation parameters**

nsim = 1000 ; *Number of simulations*

correlation = 0 ; *Correlation value*

alpha =0.05;

**Specify counters for population estimators**

N_True=j(nsim,1) ; *True disease population size*

ML3_Theta=j(nsim,8) ;

ML3_N=j(nsim,1) ; *Estimated disease population size*

ML3_V=j(nsim,1) ; *Variance of estimated disease population size*
Bound_ML3=j(nsim,2) ; *Lower and Upper bounds of estimated disease population
size*

Coverage_ML3=j(nsim,1) ; *Coverage probability of estimated disease population size*
WCI_ML3=j(nsim,1) ; *Width of 95% confidence intervals of estimated disease
population size*

ML3_beta01_est=j(nsim,1) ; *Estimated parameters from MLEM estimator*

ML3 betall est=j(nsim,1);

ML3 beta2l_est=j(nsim,1) ;

ML3 beta31_est=j(nsim,1) ;

ML3_beta02_est=j(nsim,1) ;

ML3 betal? est=j(nsim,1) ;

ML3 beta22_est=j(nsim,1) ;
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ML3_beta32_est=j(nsim,1) ;
**Main body of Monte Carlo simulation**
doj=1tonsim;

submit / R;

#Generate correlated binary data
install.packages('mvtBinaryEP")
library(mvtBinaryEP)

#Total number of observations in the dataset
n = 10000

#Specify the coefficient values
beta0l = 2.21

betall =-0.035

beta2l = 0.043

beta31=-0.069

beta02 = 2.17

betal2 = 0.01

beta22 = -0.043

beta32= 0.0297

beta03 = -25

betal3 =0.5

beta23 =0

beta33=0

y=NULL
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x1=NULL

x2 = NULL

d =NULL

p=NULL

for (iin 1:n)

{

#Specify the disease prevalence = 1%

di = rbinom(1, 1, 0.1)

#Create true diseased population status

if (di ==1){

#Generate two sets of a continuous covariate and two binary covariates
xill = rnorm(1, mean =0, sd = 1)

Xi21 = rbinom(1,1,0.5)

xi31 = rbinom(1,1,0.5)

Xi12 = rnorm(1, mean =0, sd = 1)

Xi22 = rbinom(1,1,0.5)

xi32 = rbinom(1,1,0.5)

pil =
exp(beta0l+betall*xill+beta21*xi21+beta31*xi31)/(1+exp(beta0l+betall*xill+beta2
1*xi21+beta31*xi31))

pi2 =
exp(beta02+betal2*xil2+beta22*xi22+beta32*xi32)/(1+exp(beta02+betal2*xil2+beta2

2*Xi22+beta32*xi32))
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#Specify correlations between the data sources
mu = c(pil, pi2)

R=c¢(1,0,0,1)

R = matrix(R, ncol=2)

ep0 = ep(mu=mu, R=R, nRep=1, seed=NULL)
y0 = ep0$y

¥

#Create the rest of the true population

else {

xill =rnorm(1, mean =0, sd = 1)

xi21 = rbinom(1,1,0.5)

xi31 = rbinom(1,1,0.5)

xi12 = rnorm(1, mean =0, sd = 1)

xi22 =rbinom(1,1,0.5)

xi32 = rbinom(1,1,0.5)

pil=0

pi2 =

exp(beta03+betal3*xill+beta23*xi21+beta33*xi31)/(1+exp(beta03+betal3*xill+beta2

3*xi21+beta33*xi31))
yil=0
yi2 = rbinom(1,1,pi2)

y0 = c(yil, yi2)
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pi = c(pil,pi2)

¥

xil =c(1, xill, xi21, xi31)

xi2 = ¢(1, xil2, xi22, xi32)

x1 = rbind(x1, xil)

x2 = rbind(x2, xi2)

y = rbind(y,y0)

d = rbind(d, di)

p = rbind(p,pi)

¥

endsubmit;

**Import matrix from R**

run ImportMatrixFromR(beta01,'beta01’);
run ImportMatrixFromR(betall,'betall’);
run ImportMatrixFromR(beta21,'beta21’);
run ImportMatrixFromR(beta31,'beta31’);
run ImportMatrixFromR(beta02,'beta02');
run ImportMatrixFromR(betal2,'betal?’);
run ImportMatrixFromR(beta22,'beta22");
run ImportMatrixFromR(beta32,'beta32’);
run ImportMatrixFromR(x1,'x1);

run ImportMatrixFromR(x2,'x2");

run ImportMatrixFromR(y,'y");
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run ImportMatrixFromR(d,'d");

run ImportMatrixFromR(p,'p";

z = ylldlix1]x2llp;

**Calculate the true diseased population size**
N_True[j,]=sum(d) ;

create a from z;

append from z;

delete all where (col1=0 & col2=0);

purge;

usea;

read all into obs;

close g;

**Reshape matrix from a different dimensions**
ones=shape(1,nrow(obs),1);
Zeros=shape(0,nrow(obs),1);
Y1=0bs[,{1}];Y2=0bs[,{2}];
X1=0nes||obs[,{5}]|[obs[,{6}]|lobs[.{7}];
X2=0nes||obs[,{9}]|lobs[,{10}]l|obs[,{11}];
**Specify the initial values for newton raphson iteration**
b={2.21,-0.04,0.04,-0.07,2.17,0.01,-0.04,0.03};
max_iter = 10;

n_iter = 1;

diff = 1;
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tolerance = 1e-8;

**Parameter estimates from newton raphson iteration**

do while (( diff > tolerance)& (n_iter<max_iter)) ;

b1=b[{12 3 4}];b2=b[{56 7 8}];

EY1=(exp(X1*bl)+exp(X1*b1l+X2*b2))/(exp(X1*bl)+exp(X2*b2)+exp(X1*bl+X2*b2

);

EY2=(exp(X2*b2)+exp(X1*b1+X2*b2))/(exp(X1*bl)+exp(X2*b2)+exp(X1*bl+X2*b2

);

VY1=(1-exp(X1*bl)/(1+exp(X1*bl))/
(1-1/((L+exp(X1*b1))#(1+exp(X2*b2)))))#
(exp(X1*b1)/(1+exp(X1*bl))/
(1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))));

VY2=(1-exp(X2*b2)/(1+exp(X2*b2))/
(1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))))#
(exp(X2*b2)/(1+exp(X2*b2))/
(1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))));

Cov_Y1Y2=(1-1/(1-1/((1+exp(X1*b1))#(L+exp(X2*b2)))))#
(eXp(XL1*b1+X2*b2)/((1+exp(X1*b1))#(1+exp(X2*b2)))/
(1-1/((1+exp(X1*b1))#(1+exp(X2*b2)))));

EY=EY1//EY2;

Y=Y1//Y2;

X=block(X1",X2");

W=(Diag(VY1)||Diag(Cov_Y1Y2))//(Diag(Cov_Y1Y2)||Diag(VY2));
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Cov_T=(X*W*X");

Score_T=X*(Y-EY),

Pre_b=b;

b=pre_b+solve(Cov_T,Score_T);

diff = sgrt(sum((b-Pre_b)##2));

n_iter = n_iter + 1;

end;

**Estimate probabiliy of being missed by both data sources**
phi=1-1/((1+ exp(X1*b1))# (1+ exp(X2*b2)));
**MLRM estimator for the estimated population size**
ML3_NI[j,]=sum(1/phi) ;

ML3 Theta[j,]=b ;

ML3_beta01_est[j,] = b1[1];

ML3_betall est[j,] = b1[2];

ML3_beta21_est[j,] = b1[3];

ML3_beta31_est[j,] = b1[4];

ML3_beta02_est[j,] = b2[1];

ML3_betal2_est[j,] = b2[2];

ML3_beta22_est[j,] = b2[3];

ML3_beta32_est[j,] = b2[4];

**MLRM estimator for the variance of estimated population size**
VB=Inv(X*W*X");

Thil=exp(X1*b1)#(1+exp(X2*b2))/(exp(X1*bl)+exp(X2*b2)+exp(X1*bl+X2*b2))##2;

- 86 -

Capture-Recapture Models through Monte Carlo Simulation Studies



Thi2=exp(X2*b2)#(1+exp(X1*bl))/(exp(X1*bl)+exp(X2*b2)+exp(X1*bl+X2*b2))##2;
Thi=Thil//Thi2;

V2=(Thi*X")*VB*(Thi"*X")";

V3=sum((1-phi)/(phi##2));

V0=V2+V3;

alpha=0.05;

**MLRM estimator for measures of performance for the estimated population size**
Bound_ML3][j,1]=sqrt(\VV0)*(-Probit(1-alpha/2))+ ML3_N[j,1];
Bound_ML3[j,2]=sqrt(\V0)*(Probit(1-alpha/2))+ ML3_N[j,1];

Coverage_ML3Jj,]=( Bound_ML3[j,1]<=N_True[j,])#( Bound_ML3[},2]>=N_Truel[j,]);
WCI_ML3[j,]= Bound_ML3][j,2]-Bound_ML3][j,1];

end ;

**Calculate the average of true diseased population size**

Mean_N=N_True[:,];

**Calculate the average of true diseased population size**
Mean_ML3_N=ML3_N[:,];

**Calculate the average measures of performance for MLRM estimator**
RB_ML3=(Mean_ML3_N-Mean_N)/Mean_N ;

CP_ML3=Coverage_ML3[:,];

Mean_WCI_ML3=WCI_ML3[;,];

Mean_Bound_ML3= Bound_ML3[: ];
RMSE_ML3_N=sqgrt(sum((ML3_N-Mean_N)##2)/nsim);

**Measures of performance for parameter estimates**
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RMSE_ML3_beta01=sqrt(sum((ML3_beta01_est-beta01)##2)/nsim);

RMSE_ML3 betall=sqrt(sum((ML3_betall est-betall)##2)/nsim);
RMSE_ML3_beta21=sqrt(sum((ML3_beta21_est-beta21)##2)/nsim);
RMSE_ML3_beta31=sqrt(sum((ML3_beta31_est-beta31)##2)/nsim);
RMSE_ML3_beta02=sqrt(sum((ML3_beta02_est-beta02)##2)/nsim);
RMSE_ML3_betal2=sqrt(sum((ML3_betal?2_ est-betal2)##2)/nsim);
RMSE_ML3_beta22=sqrt(sum((ML3_beta22_est-beta22)##2)/nsim);
RMSE_ML3_beta32=sqrt(sum((ML3_beta32_est-beta32)##2)/nsim);

Mean_ML3_Theta = ML3_Theta[:,] ;

**Combine results**
Result_ML3=nsiml||correlation||Mean_N||Mean_ML3_N|[RB_ML3||CP_ML3||Mean_WC
|_ML3||Mean_Bound_ML3||IRMSE_ML3_N|[Mean_ML3_Theta||RMSE_ML3_beta01||R
MSE_ML3_betall||RMSE_ML3_beta21|[RMSE_ML3_beta31||RMSE_ML3_beta02|R
MSE_ML3 betal?||RMSE_ML3 beta22||RMSE_ML3_beta32 ;

**Print out results**

Print Result ML3 ;

quit ;
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