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ABSTRACT

A mathematical morphology based algorithm was developed and tested for
disconnecting the conjoint kernel regions in an image of touching grains. The algorithm
found a marker for each grain present in the image. It constructed the image of
disconnected kernels by growing the markers within the boundaries of the kernels in the
original image with a logic which prevented the merging of the neighbouring regions.
The logic was implemented via a sequential thickening operation. The algorithm was
tested on the images of the touching kernels of hard red spring (HRS) wheat, durum
wheat, barley, oats, and rye. Random touching patterns of the kernels were used in
testing the algorithm. The algorithm was successful in disconnecting 95% HRS wheat
and durum wheat, 94% barley, 89% rye, and 79% oats conjoint kernel regions.

The kernels used for a touching grains image were separated physically and
another image of the kemnels was acquired. A feature measurement routine was developed
to compute the area, perimeter, length, width, maximum and minimum radii, rectangular
aspect ratio, thinness ratio, radius ratio, area ratio, and the ratio of mean to standard
deviation of all the radii of a kernel. Except for the area of oats, the change in the
geometrical features of the software-separated kernels from the corresponding features of
the physically-separated kernels was less than or equal to the variation between the
tolerance limits of the measurement system. Hard red spring wheat was successfully
discriminated from durum wheat and other cereal grains using the geometrical features

of the software-separated kernels. An overall classification success of 93.3% was

®



achieved in a five-way classification among HRS wheat, durum wheat, barley, oats, and
rye. Only 1.7% additional kernels were correctly classified when the features from the

physically—sepafated kemels were used.

(i)
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CHAPTER 1: INTRODUCTION

There is a growing interest in applying machine vision technology to develop a
fast, accurate, and automatic system for information acquisition on the content and quality
of a grain sample. The term machine vision embodies the process in which a physical
image sensor (instead of the human eye) is used to acquire images of given objects and
dedicated computing hardware (instead of the human brain) is used to analyze the images
with the objective of performing a pre-defined visual task. The important reasons behind
the enhanced interest in utilizing machine vision technology for grain sample analysis are
the increased awareness of the benefits of an automatic inspection system, the superior
performance of microprocessors, and the continued lowering of electronics cost. Machine
vision inspection is already in commercial use in automotive, electronics, and other
industries. Many of the industrial objects are of defined size, shape, color, and texture.

Agricultural or biological objects, on the other hand, are of variable size, shape, color,
and texture. It is, therefore, more challenging to adapt machine vision technology to the
plethora of inspection tasks in the agri-food sector (Tillet, 1990; Kranzler, 1985; Sarkar,
1986).

The important applications of machine vision to the grain industry include the
design and development of an objective, fast, and reliable grain grading system and the
on-line monitoring of grain in continuous flow at delivery points such as a terminal
elevator. Grading decisions on grains and other agricultural products, by and large,

require visual inspection of the product sample by trained personnel. Inspection tasks are



repetitive in nature and, in some cases, are performed in an uncomfortable environment.
Fatigue of personnel is, therefore, likely. Despite training, the grading decisions are
inherently subjective and are influenced by the individual experience of an inspector.
Human visual inspection is prone to errors in applying the numerous grading criteria
consistently (Kohler, 1991). An automatic visual inspection system which can apply the
grading specifications consistently, objectively, and without fatigue will be an invaluable
tool for the grain industry.

Fast and accurate information on the contents of a grain sample can be used to
increase the efficiency of most grain handling operations (such as grain unloading,
cleaning, binning, and shipping) at a terminal elevator. For example, such information
can be used to optimize the selection and adjustment of the cleaning machines. This
would lead to increased cleaning throughput and enhanced recovery of salvageable grains.
Use of machine-vision-guided controls and robotics can lead to complete automation of
modern terminal elevators. Efforts in this direction are underway at Prince Rupert Grain
Ltd., a modern terminal elevator on the west coast of Canada.

The machine vision system was found to be more precise and efficient in
measuring the dimensions of seeds than trained human inspectors working with a
microscope (Churchill et al., 1990). Certain cracks and blemishes on a kernel surface
may not be easily detected by human visual inspection but algorithms can be developed
to detect them by machine vision (Kim et al., 1989, 1990; Paulsen et al., 1989). Another
advantage of machine vision inspection is that it can make use of the radiometric

information from outside the visible band of the electromagnetic spectrum. For example,



soft x-ray images can be used to gain information on internal anatomical changes (Bulley
et al., 1984) and quality of grain. Imaging techniques which use energy other than
electromagnetic radiation, such as nuclear magnetic resonance (NMR) imaging, can also
be used. The NMR imaging technology, however, is expensive and its use in the grain
industry is not economically feasible at this time.

The development of a machine vision inspection system for a given application
begins with the iﬁitial research to examine the specific problems involved in the
application, usually in a laboratory setting. At this stage, the application specific
algorithms can be developed using a general purpose computer. The on-line inspection
in the field or industrial setting may, however, require the use of hard-wired logic or
special purpose computing architecture to achieve inspection at a realistic speed
(Marchant, 1985).

Wheat is the major crop of Canada and contributes significantly to the economy
of prairie provinces of Canada. A machine-vision-based wheat grading and monitoring
system is awaited by the grain industry of Canada and other wheat producing western
nations. Several researchers (Neuman et al., 1987, 1989a, 1989b; Sapirstein and Bushuk,
1989; Sapirstein et al., 1987; Kohler, 1991; Symons and Fulcher, 1988a, 1988b; Chen et
al., 1989; Thomson and Pomeranz, 1991; Myers and Edsall, 1989; Barker et al., 1992a,
1992b, 1992c, 1992d; Keefe, 1992; Keefe and Draper, 1986; Zayas et al., 1985, 1986,
1989) have applied digital image analysis and statistical pattern recognition techniques to
test whether certain decisions required in grading wheat can be successfully made using

machine vision. One of the constraints in these studies was that the grain feature



extraction algorithms required the kernels to be presented to the camera in a scattered or
non-touching manner or one kernel at a time. This was necessary because two or more
kernels which were touching resulted in an image in which fegions corresponding to the
kernels (hereafter called kernel regions; not to be confused with different anatomical parts
of a kernel) joined together making the feature measurement on an individual kernel
region impossible. An algorithm which can disconnect the merged kernel regions (in a
sense that pixels joining the two kernel regions are reméwed) will facilitate the practical
implementation of automatic grain feature measurements on multiple kernels. In
practice, a sample presentation device, such as a vibrating bed, may be required to present
the kernels in a single-kernel-deep layer. An automatic grain grading or monitoring
system is expected to possess the capability of identifying the individual kernels when
the kernel regions are joined. This is possible if conjoint kernel regions are disconnected.
To my knowledge, an algorithm to disconnect conjoint regions of touching grain kernels
has not been reported.

It was shown by Chermant et al. (1981) that "watershed" algorithm could
disconnect the conjoint circular or approximately circular regions. It was, therefore,
hypothesized that the watershed algorithm could be modified to disconnect the conjoint
grain kernel regions if the kernels are of approximately convex shape. It was further
hypothesized that the geometrical features of the disconnected kernels can be used in the
discrimination of different grain species using statistical pattern recognition techniques.

The objectives of my thesis research were (i) to develop and implement an

algorithm to disconnect the conjoint regions of touching grain kernels and to test the



effectiveness of the algorithm on hard red spring (HRS) wheat, durum wheat, barley, oats,
and rye kemels; (ii) to develop software for feature measurements on grain kernels (the
features of interest were: area, perimeter, length, width, maximum and minimum radii,
thinness ratio, rectangular aspect ratio, radius ratio, and ratio of mean to standard
deviation of all the radii); (iii) to test the integrity of the features after software separation
of kernels (i.e. after disconnecting the touching kernels using the algorithm developed for
objective (i)); and (iv) to test the discriminating ability of the geometrical features éf
software separated kernels for the classification of HRS wheat from durum wheat, barley,

oats, and rye.



CHAPTER 2: REVIEW OF LITERATURE

2.1 Background

The application of automated visual inspection (AVI) to the grain industry is a
new development. A machine vision system especially tailored to grain grading and
monitoring tasks is not available commercially z_md many of the special needs and
problems in applying AVI to these visual inspection tasks have yet to be solved. The
research effort in this area, however, has grown rapidly and substantially in the past eight
to nine years. Determining the potential of the geometrical, gray level, and color features
to classify different grain species, class, variety, damage status, and impurities using
statistical pattern recognition techniques has been the main focus of the reported research.
This chapter briefly reviews the results of the research in applying the AVI to grain
grading. Knowledge of digital image processing and computer vision is fundamental to
AVI. A very brief introduction to this subject is included at the beginning.

This thesis is a study on the software approach to separate or disconnect the
touching kernel regions. The study depends heavily on the image transforms from the
discipline of binary mathematical morphology. Thus a detailed introduction to binary
mathematical morphology is included.

2.2 Introduction to Digital Image Processing and Computer Vision

An image is a two dimensional (2-D) function generated by sensing the

radiometric information from a scene. A scene is a collection of three dimensional (3-D)

object(s) with some geometrical arrangement and governed by the physical laws of nature.



The image is represented by a function f(x,y) where arguments x,y are spatial coordinates
and f is the intensity or gray level at (x,y) for a gray-tone image. In a color image, f is
a vector with three components representing hue, saturation, and intensity or red, blue,
and green. The extension of the concepts and techniques developed for gray-tone images
to color images may not be trivial.

In most cases the functional form of f(x,y) is unknown on a global basis (it may
be possible to approximate it for a limited range of x,y) which presents much difficulty
in algorithm development because there is a lack of underlying mathematical rigor.

In practice the image function, f, has a finite range of values and the arguments
X,y have finite extent and they all must be quantized. Quantization is essential for
computer processing of the image data. The discrete version of f(x,y) is called a digital
image.

Digital image processing and computer vision deal with developing the models
underlying the images and with the design and analysis of algorithms which, based on
image models, give useful and usually application-dependent results.

The models and algorithms can be broadly categorized into three groups: image
pre-processing, image analysis, and image understanding. The image pre-processing aims
at enhancing the image quality either for a better (subjective) interpretation of the image
by a human or for making the image more suitable for subsequent steps in computer
processing. Noise removal using median filter or frame averaging, contrast enhancement
by histogram equalization or histogram specification, image smoothing using a low-pass

filter, edge enhancement using unsharp masking or gradient operators (high-pass filtering)



are some typical operations used in image pre-processing. The concepts involved in the
image pre-processing are closely related with those in signal processing. An image is a
2-D signal, therefore, the concepts of 2-D signal transformations are required.

Image analysis concerns with the segmentation and low-level description of the
image. The objective in the segmentation process is to group pixels to form higher-level
regional image structures which after subsequent processing may lead to meaningful
interpretations. A. typical application example where segmentation is an essential
processing step is in the discrimination of the objects from the background. Schalkoff
(1989) commented that the success of the segmentation algorithm often determines the
success or failure.of the overall image analysis algorithm. In many cases further
segmentation of the already segmented image regions may be required to reach the
desired correspondence between the segmented image regions and the objects they
represent. There are several approaches to image segmentation. Thresholding, region
growing, splitting and merging, template matching, and edge detection are some
examples. A good summary on segmentation can be found in Zenzo (1983), Pratt (1991,
pp- 597-623), Gonzalez and Woods (1992, pp. 413-478), and Haralick and Shapiro (1992,
pp. 509-550).

Subsequent to segmentation, it may be desirable to describe the segmented set of
pixels. Description may be based on only the boundary pixels or may involve
computations based on all the pixels of a region. Regional geometric properties,
frequency characteristics, intensity statistics (for example, co-occurrence matrix) or other

regional features can be used for description. Ideally the description should be invarjant



to changes in position, scale, and rotation. A summary and general discussion on image
analysis is given by Rosenfeld (1984).

Image understanding involves image-based knowledge manipulation, including
procedural or rule-based manipulation of image data, 3-D modelling and hierarchical
image analysis. A great amount of non-image-related knowledge underlying the scene
representation may have to be used in image understanding.

Comprehensive coverage of the subject of digital image processing and computer
vision can be found in Gonzalez and Woods (1992), Haralick and Shapiro (1992), Jdhne
(1991), Jain (1989), Schalkoff (1989), Ballard and Brown (1982), and Rosenfeld and Kak
(1982).

2.3 Introduction to Binary Mathematical Morphology

The word, "morphology" generally refers to the study of forms and structure. The
word is used in this sense in the thesis to refer to shape and size of objects. In computer
vision, the word "morphology" or "mathematical morphology" refers to specific
methodologies of image analysis to study the structure of images using the concepts and
theories from random set theory and integral geometry.

The basic approach in mathematical morphology is to study the unknown structure
of an image based on its spatial relationship to a simple image of pre-defined structure.
The simple image is called a structuring element or a morphological kernel.

The language of mathematical morphology is that of set theory. A binary digital
image is represented as a subset of the 2-D integer plane, Z>. A binary image is

composed of white and black pixels. As a convention, let white pixels be the pixels of



the foreground or pixels that are "ON" and black pixels be the pixels of the background
or pixels that are "OFF". This convention is used throughout the thesis. A set may be
defined to include only the foreground pixels or only the background pixels of an image.

A gray-scale image is represented as a subset of 3-D integer space where the third
dimension corresponds to the gray value of a pixel. Color and time varying components
of an image can be represented by sets of higher dimensions.
2.3.1 Basic Operations

Morphological image transforms make extensive use of set-theoretic operations.
Before introducing the morphological transforms, brief definitions of important set-
theoretic operations are presented.

Translation of a set A by a vector x in Z?, denoted A, is defined as:

A, = A +x ={atx| V aeA) 2.1)
where x is a vector from a fixed and specified origin to a given point. In most cases, it
is the foreground that contains the information of the image. Therefore, set A is used to
represent the pixels that are "ON" or the foreground pixels of an image A. The plus sign
in Eq. 2.1 refers to vector addition. The translation of an image, therefore, causes shifting
of all foreground pixels of the image by a given length and along a specified direction.
A, is called the translate of A by x.

Reflection of a set A, denoted A, is defined as:
A ={x|x=-aVaecA (2.2)
Reflection, therefore, rotates all the points in the image by 180° with respect to a

specified origin.

10



2.3.1.1 Dilation and Erosion

Dilation and erosion are the two basic morphological transforms. All other
transforms are based on these two.

Dilation of a set A by a structuring element B, denoted ADB, is defined as:

ABB =& |x=a+b,VaecA, V beB} (2.3)

The shape, size, and origin of the structuring element are pre-defined. Let set A
represent the p.ixels that are "ON" in an image A. The vector addition of all foreground
points in the image A with all the points of the structuring element B has an effect of
expanding the foreground regions of the image A. For example, given a set A = {(1,1),
2,1), (3,1), (1,2), (2,2)} and a structuring element B = {(0,0), (1,0)}, the dilation yields,
A®B = {(1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2)} thus expanding set A by two
additional points.

An alternative definition of dilation is;

A®B = U (A) (2.4)

beB

The definition in Eq. 2.4 states that dilation of set A with B is a union of all the
translates of set A with all the points of set B.
Erosion of a set A with set B, denoted A©OB, is defined as:
AOB = {x | (B), c A} (2.5)
In words, Eq. 2.5 states that erosion of a set A with set B yields a set of points
such that the translate of set B with any of the points in the set AOB is contained in set

A. In other words, at each point of the eroded set, A©B, set B fits in set A. For non-
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trivial cases, erosion shrinks the foreground regions of an image. For example, erosion
of set A={(1,1), (2,1), (3,1), (1,2), (2,2)} with set B={(0,0), (1,0)}, gives the eroded set
AGB={(L,1), (2,1), (1,2)}.

An alternative definition of erosion is:

ACB-=(A), (2.6)

beB

where -b is the point b after it is rotated by 180°'about the origin.

Detailed description of erosion and dilation transforms and their mathematical
properties can be found in Serra (1982, pp. 43-50), Haralick et al. (1987), Haralick and
Shapiro (1992, pp. 158-167), and Heijmans and Ronse (1990).

2.3.2 Opening and Closing

Opening of a set A by set B, denoted AOB, is defined as:

A 0 B = (A©B)®B 2.7)

Opening tends to remove sharp thin peaks and small islands, smooth contours, and
break narrow isthmuses. An alternative definition of opening is:

Ao B=U(B), | B), cAl (2.8)

Equation 2.8 shows the fitting property of the opening transform. Union of all the
translates of set B which fit in set A, constitute AOB.

Closing of set A by set B, denoted A<B, is defined as:

A + B = (ADB)OB (2.9)

Closing tends to fill small holes and sharp thin gulfs, and fuse narrow breaks. An

important geometric property of the closing transform is that a point x belongs to A<B,
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if and only if, all translates of B containing x have at least one point common with set
A. Graphical illustrations of opening, closing, dilation, and erosion can be found in
Haralick and Shapiro (1992, pp. 174-185), Haralick et al. (1987), Serra (1982, pp. 50-53)
and McDonald and Chen (1990a).

Opening and closing are idempotent operations. That is, after a set A is opened
or closed with set B, subsequent opening or closing by set B does not change the result
of either operation. Also, AOB is a subset of set A (i.e. opening is antiextensivej and set
A is a subset of A<B (i.e. closing is extensive). These properties play an important role
when these operations are used in an image processing algorithm.

2.3.3 Hit-or-Miss Transform, Thinning, and Thickening

The hit-or-miss transform uses a mixed structuring element (also called compact
structuring element) B made up of a pair of structuring elements B, and B,. For non-
trivial results, B, and B, must be disjoint, and the origin should belong to one of them.

The hit-or-miss transform of set A by a mixed structuring element B=(B,,B,), denoted
A®B, is defined as:
A®B=(AOB)NA°OB,) (2.10)

Hit-or-miss transform, therefore, gives a set of points x such that B, translated by
x fits in the set A and B, translated by x fits in the complement of the set A,
simultaneously. In other words, hit-or-miss transform is a set of points at which B, hits
the set A and B, misses the set A. The transform probes the spatial relationship of the

foreground pixels to the background pixels relative to the structuring element pair.
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Thinning of a set A by mixed structuring element B, denoted A®B, is defined as:
A®B=A/(A ®B) (2.11)

Thickening, denoted AOB, is defined as:

AOB=-AUA @B) 2.12)

For non-trivial results, the origin must belong to B, for thinning and to B, for
thickening. Thinning and thickening yield useful results when the operation is performed
sequentially as described below. Sequential operation is denoted by enclosing the
structuring element in braces. Sequential thinning, denoted AQ{B}, is represented as:

A ® {B} = (((...(A®B"Y®B?..)®B"...) (2.13)
where B, B%,...B" are all mixed structuring elements such that any one of them can be
obtained by rotating the other.

For a mixed structuring element defined on a 3x3 window of a square lattice, there
are eight possible rotations. The image A is thinned with B' and its output with B and
so on, until thinning with B" is complete, i.e. the entire sequential operation of thinning
with B!, B?,....B" is repeated until no further changes occur.

Sequential thickening of an image does not converge and can fill the entire image
frame. In practice, the result of sequential thickening after each pass with B', B%,...B" is
often intersected with another set, C. The intersection operation does not let the
sequential thickening result to grow beyond the set C. Sequential thickening followed by
an intersection with another set is called conditional sequential thickening.

Details on hit-or-miss transform, thinning, and thickening can be found in Serra

(1982, pp. 390-394) and Haralick and Shapiro (1992, pp. 168-173).
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2.3.4 Choice of Structuring Element

The results desired by morphological operations and algorithms dictate the choice
of the structuring element. For example, erosion by a small disc (say, of three pixel
diameter) can clean the isolated noise points and smooth the contours whereas erosion by
a larger disc (say, of twenty five pixel diameter) can remove the entire foreground.

A general discussion on the choice of the structuring element can be found in
Serra (1982, pp. 57-59). Serra (1982, ‘pp. 392) also described a set of mixed structuring
elements and named them Golay’s alphabets. These structuring elements were especially
designed to give useful results when used in hit-or-miss transform, sequential thinning,
and sequential thickening. Serra (1982), however, used a hexagonal grid which makes
fhe interpretation difficult (Giardina and Dougherty, 1988). In the thesis, I have used the
equivalent of Golay’s alphabets for a square grid.
2.3.5 Applications in Agriculture

The usefulness of mathematical-morphology-based image transforms and
algorithms in machine vision related applications in agriculture is demonstrated by
McDonald and Chen (1990a). Corn kernel size distribution, plant leaf identification, and
texture analysis of marbling in beef longissimus dorsi muscle using simple morphological
operations and algorithms were shown. The authors commented that many machine
vision related applications can be addressed using a small set of basic operators. In
another study, McDonald and Chen (1990b) developed algorithms to separate muscle

tissues connected to beef carcass ribeye. The algorithms did not perform well for
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separating connected wheat kernel regions (Dr. T.P. McDonald: personal communication,
1992).

From an application viewpoint, morphological transforms can be implemented in
parallel architecture for real time analysis (Haralick et al., 1987; McCubbery and
Lougheed, 1985; Kimmel et al., 1985). Another advantage of morphological transforms
is that they are global in scope (McDonald and Chen, 1990a) and do not require isolation
of objects in an image before their analysis. |
2.4 Automated Grain Sample Analysis
2.4.1 Potential for Objective Wheat Grading

A substantial body of literature is available on the use of digital image processing
and computer vision techniques for deriving characteristics or features of grains, and
- subsequent classification analysis using statistical pattern recognition (Neuman et al.,
1987, 1989a, 1989b; Sapirstein and Bushuk, 1989; Sapirstein et al., 1987; Kohler, 1991;
Symons and Fulcher, 1988a, 1988b; Chen et al., 1989; Thomson and Pomeranz, 1991;
Myers and Edsall, 1989; Barker et al., 1992a, 1992b, 1992¢c, 1992d; Keefe, 1992; Keefe
and Draper, 1986; Brogan and Edison, 1974; Zayas et al., 1985, 1986, 1989). From a
grain grading viewpoint, a classification task dealt within any one study was a small
subset of various classification decisions required in grain grading. Primary and export
grade determinants for Canada Western Red Spring (CWRS) wheat are given in Appendix
A. Tolerances for other cereal grains in export grades of CWRS wheat are 0.4% for
grade 1, 0.75% for grade 2, and 1.25% for grade 3 (Canadian Grain Commission, 1987).

The export grade tolerances for wheat of contrasting classes are 0.3% for grade 1, 1.5%
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for grade 2, and 2.5% for grade 3. Similarly export grade tolerances for hard red spring
(HRS) wheat of varieties lower than 'Neepawa’ (a HRS wheat cultivar considered the
standard for milling and baking characteristics) are also very low (1.5, 3.0, and 5.0%
wheat of other classes and varieties permitted for grade 1, 2, and 3, respectively).
Tolerances for damaged kemnels are extremely low. Because of these tight tolerances, an
objective grain grading system based on digital imaging and pattern recognition must
strive to achieve a near perfect classification of sound HRS wheat kernels from other
cereal grains (such as barley, rye, and oats), wheat of other classes (such as hard red
winter, soft white winter, and amber durum), wheat of varieties lower in quality to a pre-
determined standard variety, impurities (such as stones and earth pellets), and damaged
kernels. Also, the method of sample presentation to the camera should be practically
implementable.

The most promising results for objective determination of other cereal grains in
wheat were reported by Sapirstein and Bushuk (1989). For a sample size of more than
1000 kernels, 99% of HRS wheat were correctly identified using a linear discriminant
function and assuming Gaussian patterns. It is worth mentioning that a large sample size
(1000 or more kernels) is essential if the estimated error of misclassification is expected
to be close to the "true" error (Duda and Hart, 1973, pp.73-76). Out of 900 kernels of
other cereal grains, 2% were misclassified as HRS wheat. For wheat versus other cereal
grains, the classification results using plan-form geometrical features were similar to the
results when mean reflectance feature (measured via mean gray level) was added. Adding

mean reflectance, however, improved the classification of oats from 78% to 95%. In a
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previous study, Sapirstein et al. (1987) obtained a near perfect classification among HRS
wheat, barley, oats, and rye using a sample size of 580 kernels. Backlighting was used
for easy and accurate segmentation of images. Plan-form size and shape features were
used in the classification model. In both studies, grain samples were prepared from
pedigreed seed samples and, therefore, may have contained less variability than expected
in commercial grain samples.

Chen et al. (1989) used édditional features from the depth profile of kernels,
measured using a laser range finder, for the classification of other cereal grains. A
sample size of 850 kernels was used. They reported 16% misclassification of rye kernels
as wheat. This level of misclassification is not satisfactory. Also, 6% of hulless barley
were misclassified as wheat. Higher errors for rye may have occurred because the feature
selection was based on minimizing the classification error between wheat of two different
classes. Differences in classification results among different studies suggest that any
classification scheme must be thoroughly tested on commercial grain samples to confirm
its reliability. Sample presentation for laser scanning was tedious. The kernels were
positioned manually, one at a time, under the fixed laser scanning line, once crease down
and then crease up. Such sample presentation may be difficult, if not impossible, to
automate. Thomson and Pomeranz (1991) improved the instrumentation of Chen et al.
(1989) to obtain a 3-D profile of a grain in one laser scan.

Chen et al. (1989) also reported misclassifications of 8-12% among wheat of
different classes and 20-26% among wheat of different cultivars within the same class.

There were, however, no misclassifications of dent corn, flint corn, sorghum, soybean, and
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wild oats. Export tolerance for wild oats in CWRS wheat is very low at 0.05% for grade
1, 2, and 3 (Appendix A). Ability to identify them with 100% accuracy is required for
meeting the current grading criteria. Neuman et al. (1987) used plan-form size and shape
features obtained using backlighting to discriminate among wheat of different classes and
wheat of different cultivars within the same class. Using a sample size of 672 kernels,
no misclassifications were found for CWRS and Canada Amber Durum Wheat (CADW).
These two wheat classes are the most important in Canada accountiﬁg for 90% of wheat
production in western Canada in 1992 (Canadian Grain Commission, 1992). There were,
however, substantial misclassifications (up to 43%) among Canada Utility (CU), Canada
Prairie Spring (CPS), Canada Western Red Winter (CWRW), and Canada Western Soft
White Spring (CWSWS) wheat classes. Misclassifications among various cultivars of a
single wheat class were greater. Errors ranged from 8% for cultivar 'Neepawa’ to 85%
for cultivar ’Columbus’. The authors suggest that features of anatomical parts of the
kernels, such as size and shape of germ area, cheek and brush shape, and depth and width
of crease, may be essential for varietal identification. The higher classification success
reported by Zayas et al. (1986) in pairwise discrimination bet“;een wheat of certain
cultivars from two different classes may be due to a very low sample size of 10 kernels.
"True" error of misclassification of up to 8% can occur if no errors are made in a sample
size of 50 (Duda and Hart, 1973, pp. 73-76). Symons and Fulcher (1988a) conducted a
study similar to Neuman et al. (1987) for Eastern Canadian wheat classes and varieties.
Shape and size features derived from backlit images were used. For a sample size of 225

kernels, they found that 94% of soft white winter (SWW) wheat were correctly classified
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using a 4-way classification among SWW, hard red winter (HRW), hard red spring
originated from Europe (HRS_E), and hard red spring wheat originated from western
Canada (HRS_W). Sixteen percent of HRS_W were confused as HRW. The HRS_W
sample was comprised of cultivars "Katepwa’ and ’Columbus’. These cultivars were also
included in the study by Neuman et al. (1987). HRW wheat cultivars used by Symons
and Fulcher (1988a) were different from HRW cultivars used by Neuman et al. (1987).
It can be mentioned again that Neuman et al. (1987) found no confusion between HRS
and HRW wheat classes. Such comparisons suggest that there is a need for a large data-
base to develop a robust classifier.

Symons and Fulcher (1988a) also experienced the inadequacy of the plan-form size
and shape features for discriminating among different cultivars of a wheat class. For
three of the wheat cultivars of SWW, correct classifications of less than 60% were
reported. In a subsequent study, Symons and Fulcher (1988b) used additional features
derived from the bran layer and crease from the image of transverse section of kernels
to aid in classification among different cultivars of the SWW class. Classification results
were unsatisfactory with errors of more than 50%. Myers and Edsall (1989) also used
additional features derived from the side view of the kernels to improve the classification
among Australian wheat varieties. Errors up to 22% were reported. Barker et al. (1992a,
1992b, 1992¢, 1992d) used features derived from the contour of a wheat kernel positioned
in a fixed orientation to discriminate among Australian wheat varieties. Overall correct

classification among eight varieties was less than 65%.
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Another problem when using plan-form geometrical features was reported by
Zayas et al. (1989). The study on classification of weeds and stone from wheat found
that 12% of the stone pieces were confused as wheat kernels. It is expected that the
addition of color and gray-level based features will improve the identification of stones.

The use of color features for discrimination among wheat of different classes and
cultivars was tried by Neuman et al. (1989b). Red, green, and blue values were used as
discriminating features. The résults were unsatisfactory with errors ranging from 10 to
66%.

Sapirstein and Bushuk (1989) studied the vitreosity of durum wheat by taking the
image of transilluminated kernels and specifying the frequency distribution of gray level.
They found 95% correlation between vitreosity computed by digital image processing
method and replicated official grain inspection of hard vitreous kernels. They also found
a good linear relationship (correlation coefficient = 0.88) between grain hardness
(measured in particle size index or PSI) predicted by computed vitreosity and the
measured PSI score.

Features based on whole kernel size, shape, and color, and features of anatomical
parts of a kernel may be essential to meet current grading criteria. An interesting
alternative approach to objective wheat grading may be to find a completely new set of
grading factors which can be easily administered by machine-vision-based grading. Work
reported by Kohler (1991) suggests that variabilities of size, shape, and reflectance
features derived from kernels of a sample can serve as important grading factors. Cargo

samples of CWRS grades 1, 2, and 3 were successfully classified using the mean and
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variance of the features as quantitative classification variables (Kohler, 1991). On carlot
samples, however, only grades 1 and 3 could be successfully discriminated from each
other.

2.4.2 Potential for Automated Grain Monitoring

Unlike grain grading, tolerances in grain monitoring can be relaxed. An
approximate knowledge on the contents of small and large seeds (such as canola, mustard,
peas, beans, domestic buckwheat, wild oats) and roughage (suéh as threshed wheat heads,
stones) in a wheat sample can help in automatically selecting an optimum cleaning
strategy thereby increasing the cleaning throughput.

It is known that different grains of similar shape and size can be classified with
more than 90% accuracy. Hehn and Sokhansanj (1990) found 99% correct classification
between canola and mustard seeds. This and the results cited in section 2.4.1 suggest that
classification of small and large seeds in wheat or barley samples can be achieved by
AVL
2.4.3 Sample Presentation

The presentation of grain kemels in the field of view (FOV) of an image sensor
was manually controlled in all of the studies cited in section 2.4.1 and 2.4.2. Especially,
it was ensured that kernels did not touch one another. An automated grain grading or
grain monitoring system would, however, require an automated seed presentation device.
Few studies have been reported on automating a sample presentation system.

Casady and Paulsen (1989) developed an automated corn kernel positioning device

for machine vision analysis. The device used a vibratory bowl feeder coupled with a
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gating arrangement. An optical sensor at the gating arrangement controlled the metering
of single kernels onto a conveyor belt. The system worked well for singulating sound
corn kernels. Ni et al. (1993) used the mechanism of Casady and Paulsen (1989) to place
the kernels onto a rotating transparent table. A strobe light was used to time the image
capture. The system worked at a throughput rate of 12 kernels/min and was 97%
successful in singulating corn kemels. It was suggested by Casady (1987) that the
vibratory bowl feeding mechanism would not work for wheat and other small grains. The
device was not tested for more realistic grain samples containing grains of more than one
species.

Craig (1993) developed a seed singulation mechanism using a vacuum drum with
rows of radially directed orifices at the drum surface. The seeds were held at the orifices
by vacuum as the drum rotated through a grain sample. An air blast was applied to
remove seeds which were not tightly held, thus improving the singulation. A positive
pressure was later applied to remove the seeds and scavenge the orifices. The device was
tested on samples of wheat, barley, lentils, and canola. The device worked well for
singulating wheat, barley, lentils, and canola. Singulation success was 89 to 94% for
wheat and 78 to 81% for barley. A failure in singulation occurred when more than one
kernel or no kernel appeared on a single orifice. The major drawback of the device was
that it was biased towards sinall seeds. In a mixed sample of wheat and canola with 5%
canola, the device picked 23% canola. Design and development of an improved seed
presentation device is currently under progress at the Department of Agricultural

Engineering, University of Manitoba.
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Development of software to carry out feature measurements on the touching
kernels (Shatadal et al., 1992, 1993) would help in the design of the sample presentation
device. The requirement of the device would then be limited to presenting the kernels

in a one-kernel-layer thickness.
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CHAPTER 3 : DISCONNECT ALGORITHM

3.1 Introduction

An image of touching wheat kernels is shown in Fig. 3.1. The kernel regions in
the image are connected to one another by narrow and small isthmuses or bridges. In
developing the disconnect algorithm, the objective was to break the isthmuses without
distorting or changing the shape and size of the individual kernel regions.

Serra (1982, pp. 415-416) described an algorithm, known as watershed
segmentation, which could disconnect conjoint circular regions with short and narrow
isthmuses (Chermant et al., 1981; Lantuéjoul, 1980). The watershed segmentation did not
work for disconnecting conjoint kernel regions because of inherent concavities in the
kernel shapes and the unpredictable manner in which an isthmus could be formed. I used
the logic of the watershed segmentation and added heuristics to arrive at the disconnect
algorithm. A separate description of the watershed segmentation is not included here
because it is a subset of the disconnect algorithm. Instead, references are made wherever
a step or equation used in the disconnect algorithm is the same as or similar to a step or
equation in the watershed segmentation.

The image shown in Fig. 3.1 is used as an example for showing the image

processing steps of the disconnect algorithm.
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Fig. 3.1. An image of touching wheat kernels, X(0).
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3.2 Algorithm
3.2.1 Step 1: Progressive Erosion

The image of touching kernels (Fig. 3.1), X(0), is eroded by progressively larger
disc structuring elements, D(i), (the disc structuring elements are digital circles) giving
a family of set X(i) (Eq. 3.1):

X (1) = X(0)OD() 3.
1=1,234...mm+l

Erosion is stopped when the eroded image reduces to a null set, &. That is, X(m + 1)
= (J. The null image contains only the background pixels or pixels that are "OFF".

Erosion by a disc shrinks the foreground components in the image by turning
"OFF" or removing the pixels from the periphery of the components. Figure 3.2 shows
the erosions of the image, X(0), with disc structuring elements of 5, 9, 14, 16, 17 and 18
pixel diameter. Those pixels of a region are removed where the structuring element does
not completely fit in the region. As illustrated by Fig. 3.2, erosion with progressively
larger discs removes progressively larger areas leaving only the more distant pixels from
the original boundary of the regions. The isthmuses are broken before any one kernel
region completely disappears. The inherent concavities on the kernel shape, however,
leads to breaking of some of the kernel regions themselves. For the image X(0), shown
m Fig 3.1, the value of m was 18. That is, the image X(0) when eroded by a disc of 19
pixel diameter reduced to a null image. The components which appear in eroded set X(i-
1) but disappear in the subsequent eroded set X(i), are called ultimately eroded

components or UEC. The UECs, therefore, are the most distant pixel(s) from the
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Fig. 3.2. Erosions of image X(0). (a) - X(5); (b) - X(9); (¢) - X(14); (d) -
X(16); (e) - X(17); (£) - X(183).
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boundary of a kernel region in the original image. For an image containing kernels of
similar shapes and sizes, disappearing of components during progressive erosion occurs
in the last few erosions with bigger discs (Fig 3.2). The image of X(18) (Fig. 3.2 f)
shows the UECs derived from the kernel regions of X(0) at which a disc of eighteen pixel
diameter could fit.

The progressive erosion (Eq. 3.1) is the same in the watershed segmentation. In
the watershed algorithrﬁ, each UEC represents a centre or marker for each convex region
in the original image and the image of disconnected convex regions is constructed by
growing these markers with a logic which prevents joining of already disconnected
growing regions. For the images of touching kernels, however, one kernel region can
yield more than one UEC (Fig. 3.2). If the UECs are not merged, growing them with the
logic which prevents joining of neighbouring expanding components would lead to
bisected kernels in the final image of disconnected kernels.

In the disconnect algorithm, the UECs are dilated with the objective of merging
the UECs derived from a single kernel region. The UECs appearing in the last eroded
set, X(m), are dilated (Eq. 3.2):

Y(0) = X(m)®D(11) 3.2)

where D(11) is a disc of 11 pixel diameter.
| Dilation with relatively larger discs improves the chances of merging UECs
derived from a single kernel region but increases the risk of merging UECs from two or
more neighbouring kernel regions. Trials on several images of touching HRS wheat,

barley, durum, rye, and oat kernels revealed that dilation with an eleven pixel diameter
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in Eq. 3.2 was optimum. Figure 3.3 depicts Y(0). The dilated UECs serve as markers
in the disconnect algorithm.
3.2.2 Step 2: Sequential Thickening

The logic which grows the markers but prevents the neighbouring expanding
components from joining together is implemented via sequential thickening operation with
mixed structuring element, L = (L, L,). On a square grid the mixed structuring element

for thickening is

L L b
*k 02 %k
6 4 4

where {;s belong to L,, {,s to L,, and * are "don’t care" locations. That is, only those
pixels are included in the hit-or-miss transform of an image with the mixed structuring
element, L, where simultaneously the L, locations hit the foreground of the image and L,
locations miss the foreground. There are no restrictions on the "don’t care" locations.
The origin of the mixed structuring element, L, is located at the centre and, therefore,
belongs to L,. For sequential thickening, the above configuration of the structuring
element, L, and its seven other rotations on the grid are used. The result of thickening
is the union of the input image and its hit-or-miss transform.

The conditional sequential thickening of Y(i-1) is limited to growing it within

X(m-i) and is given by:
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Fig. 3.3. Image of Y(0).
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S@i) = Y(i - DO{LNX(m - 1) (3.3)

Equation 3.3 grows the components in Y(i-1) to the size they were in X(m-i)
without allowing them to join one another. The conditional sequential thickening is
stopped when S(i) converges. The image of Y(i-1) for an incremented value of i is
obtained after steps 2 to 7 are implemented. The steps 3 to 7 are described in sections
3.2.2t03.2.7. |

The sequential thickening adds those background pixels to the set Y(i-1) where
{;s fit in the background and the s fit in the foreground. In other words, an "OFF"
pixel can be turned "ON" as a result of thickening with mixed structuring element, L, if
from eight of its neighbours at least three neighbours as defined by ¢, locations are "ON"
and at least three other neighbours as defined by ¢, locations are "OFF". Pixels satisfying
this criterion can only occur at the interface of foreground components with the
background. The logic thus imposed in growing the components prevents their merger.
The image S(1) is shown in Fig. 3.4. The conditional sequential thickening operation of
Eq. 3.3 is the same as given in the watershed segmentation (Serra, 1982, pp. 415-416).
3.2.3 Step 3: Pruning of Dendrites

As was noted earlier, the criterion for an "OFF" pixel to turn "ON" as a result of
thickening with structuring element, L, was that at least three of its eight neighbours must
be "OFF" and three others must be "ON". The thickening criterion may not be met at
certain pixel patterns along a single-pixel-thick protrusions or dendrites of one or more

components in S(i). For example, two pixels in a dendrite which are connected
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Fig. 3.4. Image of S(1).

33



diagonally present such a pattern. The dendrites in S(i) are, therefore, removed or pruned
by sequential thinning of S(i) with mixed structuring element E=(E,, E,):
T@) = SOR{E} (3.4

where structuring element, E, is given by:

e %) e
¢ e ¢
92 92 92

where e, locations belong to E,, e, locations belong to E,, and the origin is at the centre.

The interpretation of the subscripts is the same as it was for the mixed structuring
element, L. That is, only those pixels of the input image are included in its hit-or-miss
transform with the structuring element, E=(E,, E,), where simultaneously E, locations hit
the foreground of the image and E, locations miss the foreground. The thinning operation
gives the set difference of the input image with its hit-or-miss transform. Thinning,
therefore, removes those pixels of the input image where ¢,s fit in the foreground and e,s
fit in the background. For sequential thinning, the above configuration of structuring
element, E, and its seven other rotations on the grid are used. The image T(1) is shown
in Fig. 3.5. Note that the dendrite appearing in S(1) is removed in T(1) (Figs. 3.4 and
3.5).
3.2.4 Step 4: Dilation of Small Components

Thickening around certain small pixel patterns (e.g. four pixels arranged to form

a 2Xx2 square pattern) is not possible. Such small components can occur in image T(i).
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Fig. 3.5. Image of T(1).,
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Small components are, therefore, located (Eq. 3.5) and replaced in the image after dilating
them by a small disc (Eq. 3.6). The size of the small disc depends on the current value
of i. For values of i less than 12, a disc of eight pixel diameter is used; for other i values
a disc of five pixel diameter is used.

W(i) = T() / (T@{)oPG))BD@B)} N T()] 3.5
where P(3) is a three pixel long and one pixel thick structuring element. The origin of
P(3) is located on the middle pixel. The sequential‘ dilation within T(i) is performed until
it converges.

U(i) = TOHUW@EDBD(s)) (3.6)

The opening of T(i) with P(3) removes components in which P(3) can not entirely

fit. Opening with P(3) ensures removal of all such patterns which are not suitable for

thickening. Sequential dilation on the result of opening within T(i) on the right hand side

(R.H.S.) of Eq. 3.5 restores any component made smaller by opening to its size and shape

in T(i). W(), therefore, contains components which were removed by opening. The
image U(1) is shown in Fig. 3.6.

Let the k;, erosion in Eq. 3.1 represent the erosion step which gives the UECs for

a given kernel region. A single kernel region may split into more than one component

in the kg, (k-1),, or (k-2),, erosion step. If split components are not merged, the logic of

the sequential thickening (Eq. 3.3) would cause sectioning of a single kernel region into

more than one region. The merging of components which split in the k, erosion is

attempted by dilating the UECs. The merging of components which split in the (k-1),

or (k-2),, erosion can occur as a result of step 4, as a result of step 3 and 4 combined, or
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Fig. 3.6. Image of U(1).
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as a result of step 5 described in section 3.2.5. Generally, the components split from a
single kernel region in (k-1), or (k-2), erosion are small (i.e. 2x2 pixel pattern or
smaller) or they are made small by pruning the dendrites (Eq. 3.4). Such small
components are detected (Eq. 3.5) and dilated (Eq. 3.6). Dilation of small components
tends to merge split components from a single kernel region. In some cases, dilation of
the UECs may fail to merge split components from a single kernel but steps 3 and 4 may
merge them. |
3.2.5 Step 5: Adding Dendrites

To further reduce the risk of bisecting a kernel region, the dendrites removed by
pruning (Eq. 3.4) are dilated and placed back in the image (Eq. 3.7).

Q@) =U@ UL(SG) /TG ) D D) 3.7

Figure 3.7(a) shows the components split from a single kernel region in the (k-1),,
erosion. Split components became far apart after a dendrite is removed (Fig. 3.7 (b)) and
could not be merged as a result of step 4 (Fig. 3.7(c)). Figure 3.7(d) shows the result of
adding the dilated dendrite. The components were merged in Fig. 3.7(d). Adding dilated
dendrites, however, increases the risk of merging the neighbouring kernel regions which
were disconnected as a consequence of progressive erosion. To reduce the risk of
merging the neighbouring kernel regions, Eq. 3.7 is used for i values less than 10.
3.2.6 Step 6: Finding UECs

Various kernel regions in the image of touching kemnels may be of different sizes.
Upon progressive erosion (Eq. 3.1), therefore, different regions may completely erode or

disappear at different stages of erosion. Equation 3.8 finds the UECs that disappeared in
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Fig. 3.7.  Effect of adding the dilated dendrite. (a) - Split components; (b) -
Components after pruning the dendrites; (c) - After small components
are dilated; (d) - Components merge after adding the dilated dendrite.

39



the (m-i+1),, erosion. These components are added to Q(i) after they are appropriately
dilated (Eq. 3.9).
V(i) = X(m-i) / [Y(@ - DSDE) N X(m - )] (3.8)
R() = QHU(V(HDD(s)) (3.9)
Sequential dilation of Y(i-1) within X(m-i) brings the components in it to their
size in X(m-1). Taking the set difference (Eq. 3.8), therefore, gives those components
which .arc present in X(m-i) but not in Y(i-1). Figure 3.8 shows V(1), the UECs which
disappeared in the m,, erosion. Note that the components appearing in V(1) (Fig. 3.8) are
those which appear in X(17) but disappear in X(18) (Fig. 3.2). Figure 3.9 shows R(1).
The disc structuring element used for dilating the UECs in Eq. 3.8 is reduced in
size with increasing value of i. Fori =1 to 4 a disc of eleven pixel diameter is used.
The size is reduced to a nine pixel disc for i = 5 to 9; a seven pixel disc for i = 10 to 14;
and a five pixel diameter disc for i > 14. Such a scheme of dilating the UECs with lower
size disc with increasing i is used to reduce the risk of merging the neighbouring
components as a consequence of dilation. In the watershed segmentation, the UECs are
not dilated.
3.2.7 Step 7: Eliminating the Corners
If a comner pixel of one block of pixels is connected diagonally to a corner pixel
of another block of pixels (Fig. 3.10(a)), thickening around such corner pixels is not
possible (Fig. 3.10(b)). The comer locations are, therefore, eliminated by locating and
dilating them (Eq. 3.10).

Y@@ = R@) U (RG) ® G") U (R{) ® G») @ D3)! (3.10)
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Fig. 3.8. Image of V(1).
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Fig. 3.9. Image of R(1).
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4

Fig. 3.10. Effect of eliminating the corners. (a) - Corner between two block of
pixels; (b) - Sequential thickening of the image in (a); (c) - Corner
is eliminated by locating and dilating them; (d) - Sequential thickening
of the image in (c).
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where G' is a mixed structuring element as given below and G? is obtained by rotating

G' on the grid.
& &

& &

Subscripts have their usual meaning. That is, only those pixels are included in the
hit-or-miss transform where g, locat‘ions hit the foreground and g, locations miss the
foreground simultaneously. Figure 3.10(c) shows the result of locating and dilating the
corner location. Thickening can then take place without any problem (Fig. 3.10(d)).

The image of Y(1) is the same as the image of R(1) because there were no corners
in the R(1) (Fig. 3.11).

Steps 2 to 7 are repeated until Y(m) is obtained. The steps of the algorithm are
further illustrated in Fig. 3.12(a) to 3.12(k). Note that sequential thickening does not
permit merging of components (Fig. 3.12(b) and Fig. 3.12(j)). Note also the merger of
components split from a single kernel using step 4 (Fig. 3.12(c) and Fig. 3.12(¢e)).

3.2.8 Step 8: Removing the Notches

Preliminary trials showed that Y(m) separates the touching kernel regions but
some kernels tend to have small notches or line segments extending from the boundary
of the kernel towards the inside of the component (Fig. 3.12(k)). To remove the notches,
thinning with the mixed structuring element F, is performed on the complement of the
image:

Z = -(-Y(m)Q{F}) (3.11)
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Fig. 3.11. Image of Y(1).
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Fig. 3.12. Steps of the disconnect algorithm. (a) - Y(2); (b) - Y(2)O{L}; (c) -
3(3); (d) - T(3); (e) - UB); (D) Q(3). contd..
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Fig. 3.12. Steps of the disconnect algorithm. (g) - R(3); (h) - Y(3); (i) - Y(17);
() - YADOLL}; (k) - Y(18).
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where the mixed structuring element F is given by:

* L f
f, £ 5
*h 5

The * are the "don’t care" locations. In using the rotations of the above configuration of
the structuring element F for sequential thinning, the "don’t care" locations are replaced
by f, locations when the two f, locations are diagonally connected.

Z is the resulting image of the separated kemels (Fig. 3.13).
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Fig. 3.13. Image of disconnected kernels, Z.
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CHAPTER 4: MATERIALS AND METHODS

4.1 Vision Hardware

A 3 chip CCD (charge coupled device) color camera (Model DXC-3000A, SONY)
was used fo acquire images. A zoom lens (VCL-1012 BY) of 10-120 mm focal length
was fitted in the camera. The camera was mqunted on a stand (Model m3, Bencher Inc.,
Chicago, IL.) which provided easy vertical movement and a stable support for the camera.
The camera was connected to a camera control unit (Model CCU-M3, SONY). The iris
was selectable to manual or automatic mode. The option of the manual iris control was
used to achieve repeatability in the experiments. The automatic gain control of the
camera was disabled. The camera was white balanced before each imaging session.

The red (R), green, (G), and Blue (B) video signals from the camera control unit
(ccu) were converted to a 24 bit color digital image by a frame grabber board (Model DT
2871, Data Translation Inc., Molboro, MA). The frame grabber board was installed on
an expansion slot of a personal computer (Model 80386, UNISYS). The frame grabber
could convert the R,G,B color signal to hue (H), saturation (S), and intensity (I), signal
in the real time. The frame grabber had three separate 8-bit A/D (analog to digital)
converters and four 512x512x8 bit frame buffers. The programs to control the frame
grabber were written in C programming language using the aurora subroutine library
(Aurora, Data Translation Inc., Molboro, MA). Only the intensity buffer was saved for
further analysis.  Image analysis was carried out on a workstation (model

SPARCSTATION 2, Sun Microsystems, Inc., Mountain View, CA).
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4.2 Sample Illumination

Uniform diffuse backlighting was used in all the experiments. Backlighting was
preferred for easy and accurate segmentation of the grain kernels from the background.
Four screw-based 100 W tungsten filament bulbs arranged in a ring configuration served
as the illumination source. The ring-lamp was suspended below the object plane. The
light passed through an opal acrylic plate via a centre cut window of 0.11 m diameter.
A voltage regulator (Sola Canada Inc.) controlled the voltage to the lamps within iO.S V.
A variac was used to change the illumination level by changing the voltage to the lamps.
The illumination level was calibrated by repeatedly digitizing a small and fixed region of
interest on the image of an opal acrylic plate and simultaneously changing the voltage to
the lamps until the mean value of the region hit a pre-selected target value of 230.
4.3 Grain Samples

Grain samples of hard red spring (HRS) wheat (Grade 1 Canada Western Red
Spring), durum wheat (Grade 1 Canada Western Amber Durum), barley (Special Select
Malt barley), rye (Grade 1), and oats (Grade 1) used in the experiments were obtained
from the Grain Inspection Division of the Canadian Grain Commission (Winnipeg, MB).
4.4 Experiment 1: The Precision

One typical kemnel of each of HRS wheat, barley, durum, oats, and rye were
selected for the precision experiment. Repeated backlit images of the same kernel were
taken. The kernel orientation in repeated images of the same kernel was random. The
randomness was ensured by dropping the kernel on the viewing plate. If a kernel

bounced off the field of view (FOV), it was repositioned manually in the FOV. Care was
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taken not to disturb the orientation of the kernel while moving it manually. Fifty five
images of the same kernel of a HRS wheat and 65 images of the same barley, durum, oat,
and rye kernels were taken. An image of a Canadian quarter coin was also acquired for
the spatial calibration of the images. Feature measurements on these kernels were
performed using the same software settings.
4.5 Experiment 2: Testing the Disconnect Algorithm

Sémples of each cereal grain were reduced in size by Boemer divider. The
Boerner divider maintains randomness in dividing a grain sample. Foreign or severely
damaged kernels were removed before placing the kernels for image acquisition. The
kernels were randomly dropped through a 30 mm diameter and 30 mm long tube over a
viewing plate. Twenty to twenty five kernels were used for a single image. The viewing
plate was tapped to bring any overlapping kernels to a one-kernel-thick layer. The
kernels that were not close to any other kernel were made to touch at least one other
kernel. In the image of touching kernels, however, a few kernels were not connected to
other kernels. Care was taken not to disturb the random configuration of the kernels
while moving any individual kernel. An image of the touching kernels was acquired and
saved. The kernels were then manually separated without disturbing the orientation of
the kernels. Despite the care, reorientation of some of the kemels could have occurred
unintentionally. An image of the manually separated kernels was also acquired at the
same hardware settings.
4.6 Image Analysis

The thresholded images of the touching kernels were first processed by the
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disconnect algorithm described in Chapter 3 to disconnect the conjoint kernel regions.
The disconnected kernel regions thus obtained are hereafter referred to as software-
separated kernels. The term "physically-separated" is used to refer to kernels in the image
of the manually separated kernels. All of the images of the software-separated kernels
and the physically-separated kemels were labelled and the features of all of the kemnels
were extracted using the same software settings. Image analysis algorithms used for the

feature extraction are described in Chapter 5.
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CHAPTER 5: IMAGE ANALYSIS

5.1 Primary Segmentation

The objective in the primary segmentation of any acquired image of grains was
to group together pixels participating in the background separately from the pixels
participating in grain kernel regions. The images were acquired in a controlled
environment and were free from noise and other aberrations. A global thresholding
worked well as the primary segmentation technique for all the images. The thresholding
operation assigned a value of zero (black) to all pixels which were above the threshold
and a value of 255 (white) to pixels below the threshold. It was expected that pixels
corresponding to touching kernels would merge forming an isthmus or bridge between
touching kernel regions after primary segmentation. The thresholded images of the
touching kermnel images were, therefore, further segmented using the disconnect algorithm
described in Chapter 3.
5.2 Region Labelling

The group of pixels obtained after segmentation did not possess any identity.
Region labelling was performed to assign a unique label or an identifier to each kernel
in the segmented image of physically-separated kernels and disconnected image of the
touching kernels. All the features of a kernel were identified with the label value of the
kernel in the image.

The region labelling algorithm scanned the segmented image once from the top-

left to the bottom-right. Initially, all the pixels had no label. The first unlabelled pixel,
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(i,J), was assigned a unique label value. The same label value was propagated to those
8-neighbours of pixel (i,j) which possessed the same pixel value as that of (i,j). Eight
neighbours of each of the previous neighbours were examined in succession and those
with the same pixel value as that of (i,j) received the same label value as that of (i,j).
The propagation of the same label value continued until no more neighbouring pixels with
the same pixel value as that of (i,j) could be found. The scan of the image resumed until
another unlabelled pixel was encountered. Haralick and Shapiro (1992, pp. 28-48)
describe this and the other region labelling algorithms.

Each 8-connected component received a unique label in one scan of the image.
Regions with only one pixel were considered isolated noise points and were, therefore,
removed. The output image from the labelling routine is, hereafter, referred to as a
labelled image.

5.3 Feature Extraction
5.3.1 Boundary Tracking

A boundary tracking -algorithm is essential to the calculation of the important
features such as perimeter and length of major principal axis. The boundary of a region
can be either 8-connected or 4-connected. Pixels of a region which have at least one of
their 4-neighbours in the background constitute an 8-connected boundary of the region.
A 4-connected boundary of a region is a set of pixels of the region which have at least
one of their 8-neighbours in the background. The 8-connected boundary was used for all
the images.

The boundary of a labelled component is followed as soon as the first transition
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from the background pixel to the first non-zero labelled pixel is encountered in a row by
row scan of the labelled image from the top-left to the bottom right. The boundary
tracking of the component is completed and the scan of the image resumes until another
non-zero labelled pixel is encountered.

For any component with a non-zero label, the boundary tracking begins by
numbering the 8-neighbours of the first encountered pixel of the component (say, i,j).
The pixel (1,)) is the ﬁrst pixel of the boundary. The numbering of neighbours starts with
the pixel on the left of (i,j) and proceeds in the counterclockwise direction. Let the
neighbours be numbered as R, Ry, ....., R;. The first non-zero neighbour pixel with the
same label value as that of (i), R;, becomes the next pixel of the boundary and the
neighbour R;, becomes the next R,. The neighbours are again marked in a
counterclockwise direction starting with R,. The process is repeated until the first two
boundary pixels are revisited in a sequence. The boundary tracking algorithm is taken
from Rosenfeld and Kak (1982, pp. 220-223).

5.3.2 Area and Perimeter

The area of a component was calculated by counting the number of pixels in the
component. The perimeter was calculated by adding the Euclidean distances (hereafter
referred to as distances) between all the successive pairs of pixels in the boundary of the
component.

5.3.3 Centroid and Angle of Orientation

The centroid, (X,y), of a region, X is given by:
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PRI S (5.1)

=13y (5.2)

2
=—tan"l[— 2L ] 5.3

where p,  is the (p,q) order central moment of the region and is defined as:

Bog= Y [x-2P-5) (5.4)

xyeR

The above definitions of the centroid, the angle of orientation, and the central
moments are taken from Jain (1989, pp. 392-394).

The solution of Eq. 5.3 can give either the orientation of the major principal axis
or the orientation of the minor principal axis.
5.3.4 Length and Width

The length of the major principal axis of a region and the width of the minimum
bounding rectangle were used to represent the length and the width of a grain kernel. To
measure the length and the width, the coordinates of the boundary pixels of the region

were transformed as below;
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& =(x-X)cosB +(y-y)sing (5-5)
B =—(x~x)sin +(y-y)cosd (5.6)

The coordinates (o, B), therefore, were the coordinates of the boundary pixels
when the origin was at the centroid and the o axis was along the angle 0. The distances
between the crossing points of the boundary pixels (ct,B) with the axis o = 0 (say; ¢,) and
with the axis B = O (say, £,) were determined. The greater of the two distances, ¢, and
¢,, was the length of the major principal axis.

The distance between two boundary pixels for which the value of o were
maximum and minimum (say, w;) and the distance between pixels of maximum and
minimum B (say, w,) were determined. The shorter of the two distances, w, and w,, was
the width of the minimum bounding rectangle.

The radii were computed és the distances between the boundary pixels and the
centroid. Maximum and minimum radii, length, width, area, and perimeter were used as
the size features.

5.3.5 Shape Features
All the shape features were derived from the size features. They are defined as:

(Perimeter)? (5.7)

Thinness Ratio=
Area
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Rectangular Aspect Ratio=Len8"h (5.8)

Width

; 5.9
Area Ratio= (LengthxWidth) (5.9

Area
i ; 5.10
Radius Ra tio:MaxzmumRadzus ( )

MinimumRadius
5.11
H Ratio="r (5-1)
o

where p, and o, are the mean and the standard deviation of all the radii (i.e. distances of
all the pixels on the boundary from the centroid) of a kernel region.

H ratio is a shape feature that was not used in previous studies on grain shapes.
It is, however, a useful feature because it increases monotonically as a shape becomes
more circular and is independent of orientation and size of a component (Haralick and
Shapiro, 1992). It was expected that H ratio of HRS wheat kernels would be greater than

that of durum wheat, barley, oats, and rye.
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CHAPTER 6: RESULTS AND DISCUSSION

6.1 Effectiveness of the Disconnect Algorithm
Images of the touching kernels of HRS wheat, durum, barley, oats, and rye were
processed with the disconnect algorithm. In total, 30 images of HRS wheat containing
' 746 touching or connected kermels, 20 images of durum containing 391 touching kernels,
19 images of barley containing 376 touching kernels, 15 images of oats containing 286
touching kernels, and 20 images of rye containing 393 touching kernels were used for
testing the effectiveness of the disconnect algorithm in disjoining the connected kernel
regions. Some of the typical results of the disconnect algorithm for HRS wheat, durum,
barley, oats, and rye are illustrated in Figs. 6.1-6.10. A repository of software-separated
kernel images is given in Appendix B. Any disconnected kernel region which was not
bisected or visibly distorted by improper placement of the separation lines was considered
successfully disconnected. The success rate in disjoining the connected kernel regions,
measured as a percent of the number of kernel regions successfully disconnected out of
a given total number of kemnel regions that were connected, was 95% for HRS wheat and
durum, 94% for barley, 79% for rye, and 71% for oats.
6.1.1 Influence of Threshold
The thresholded images of the touching kernels were the input to the disconnect
algorithm. Durum kernels were relatively translucent and therefore, a high threshold of
180 was required for their proper segmentation. The threshold of 180 was selected

subjectively by examining the images and histograms of the durum wheat images. Most
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Fig. 6.1. Example of (a) touching and (b) software-separated
kernels of HRS wheat.
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Fig. 6.2. Example of (a) touching and (b) software-separated
kernels of HRS wheat.
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Fig. 6.4. Example of (a) touching and (b) software-separated kernels of durum
wheat. :
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Fig. 6.7. Example of (a) touching and (b) software-separated
kernels of rye.






Fig. 6.9. Example of (a) touching and (b) software-separated
kernels of oats; two of the kernels were not separated.
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Fig. 6.10. Example of (a) touching and (b) software-separated
kernels of oats; two of the kernels were not separated.
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images of other grains were also segmented at threshold of 180. Two images of oats
were thresholded at 190 and one at 175 because they were not properly segmented at 180.

One reason for the poor performance of the disconnect algorithm on the touching
images of rye and oats was the combined effect of their slender shape and the use of high
thresholds for their primary segmentation. At high thresholds, several pixels at the
isthmus between kernel regions became part of the isthmus when, in fact, they belong to
the background. Use of a lower threéhold can make the isthmus short and narrow.
Conjoint kernels can be more easily disconnected if the isthmus is short and narrow. A
bigger isthmus may not be broken by the disconnect algorithm, especially if the kernels
are slender in shape (such as kemels of rye and oats). The kernels of rye and oats are
opaqué and it was possible to segment them at lower thresholds. Success rate in
disjoining kernel regions improved to 79% (from 71%) for oats and 89% (from 79%) for
rye when lower thresholds in the range of 110 to 140 were used.
6.1.2 Limitations of the Disconnect Algorithm

In the disconnect algorithm, heuristics was added (such as dilating the UECs,
adding tﬁe dilated dendrite) to reduce the chances of bisecting a kernel. This, however,
could not be done without increasing the risk of leaving some kernels connected. The
important limitation of the disconnect algorithm, therefore, was that a few of the conjoint
kernels could not be disconnected (Figs. 6.9-6.12).

As was noted earlier, the area of an isthmus joining the kernel regions affects the
performance of the disconnect algorithm. This influence can be explained based on the

mechanism of the algorithm. The underlying logic for breaking of an isthmus is that
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Fig. 6.11. Example of (a) touching and (b) software-separated
kernels; two of the kernels were not separated.
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Fig. 6.12. Example of (a) touching and (b) software-separated kernels; two of the
kernels were not separated.
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upon successive erosions of an image of the touching kernels with progressively larger
discs (Eq. 3.1), a stage of erosion comes when a disc does not fit in the isthmus area
Joining two or more kernel regions but fits in the kernel regions joined at the isthmus.
Kernels could not be disconnected if the condition of the minimum diameter or the
minimum disc fitting space in the isthmus was not met. In such a case, the region made
of conjoint kernels yielded a single UEC corresponding to the isthmus. This is illustrated
by Fig. 6.13. Notice that a single UEC was obtained for a conjoint kernel fegion in
which two thin rye kernels were touching each other lengthwise (Fig. 6.13).

A more frequent cause for failure in disconnecting kernels was that a bigger
isthmus area biased the location of the UECs towards it. In other words, the UECs of
kernel region occurred not near the centres of the regions but rather near the centre of the
isthmus (Fig. 6.13). Such biased UECs of the two kernels were close to one another and
merged upon dilation (Eq. 3.2 and 3.9). Figure 6.13(c,d) show the biased UECs of the
kernels in two conjoint regions where kernels could not be disconnected.

In a few cases, adding the dendrite after its dilation (Eq. 3.7) and subsequent
elimination of corner locations using Eq. 3.10 also caused merging of the components
which were otherwise disconnected. This is illustrated in Fig. 6.14. Notice that
components (indicated by arrows) were separated before the addition of the dilated
dendrites (Fig. 6.14(a)).

Another limitation of the algorithm was that the separation line, in some cases,
was placed within a kemnel region rather than at the isthmus (Fig.6.15). This happened

because the narrowest section across which a minimum disc did not fit occurred within
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Fig. 6.13. Failure in software-separation due to long isthmus (a) - Touching
kernels; (b) - Kernels after software-separation; (c) - Ultimately eroded
components (UECs) of the kernels which could not be separated; (d) -
UEC locations superimposed on image in (b) as black pixels.
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Fig. 6.14. Failure in software-separation due to addition of dilated dendrites and
subsequent elimination of corners. (a) - Two of the components are
separate before adding the dendrite; (b) - Components after adding the
dilated dendrites; (c) - The two components merged after eliminating
the corners.
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Fig. 6.15. Improper placement of the separation lines. (a) - Touching and (b) -
Separated kernels of oats.
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a kernel region. This was a problem, especially, when a thin tip of an oat kernel was
touching another kernel.
6.2 Precision of the Measured Features

The geometrical feature data from repeated images of a single kernel (Experiment
1) of each grain type (HRS wheat, barley, durum, oats, and rye) were used to determine
the tolerance limits of precision of each of the features for each of the grains. For a
norrﬁal distribution of measurements with an unknown mean p and an unknown standard
deviation o, tolerance limits are given by x * k-s, where k is determined so that there is
100.y% confidence that the given limit contains at least 1-o. proportion of the
measurements (Walpole and Myers, 1978, pp. 220-221) where x and s are the sample
mean and standard deviation, respectively. The value of k depends on v, o, and the
sample size, and can be obtained from statistical tables (Walpole and Myers, 1978, pp.
520-521). The variation between the upper and lower tolerance limits is given by 2k-s.
The values of 2k-s for ¥ = 0.99 and o = 0.05 were calculated for all the features of all
the five grain types based on the data from repeated images of the same kernels. These
values of 2k-s were named 7, 4,005 Variation and are given in Table 6.1. The values of
Yoso00s Variation were used as a guiding limit when comparing the differences of features
between the software-separated and the physically-separated kernels.

The means and coefficient of variations of all the features for each of the grain
types are given in Appendix C.
6.3 Geometrical Features of the Software-Separated Kernels

The usefulness of the disconnect algorithm in disjoining the conjoint kernel
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Table 6.1.  Comparison of variation in repeated measurements on the same kernels to the differences between the software-
separated and the physically-separated kernels.

“

Experiment 1: Precision Experiment 2: Software Separation
YoooOo0s Variation Yoos00.0s Difference

Features HRS Wheat Durum Barley Oats < Rye HRS Wheat Durum Barley  Oats Rye
Length (mm) 0.79 0.55 0.50 0.92 0.48 0.40 037  0.42 0.77 0.35
Area(mm?) 0.98 2.06 1.70 0.93 0.84 0.84 0.91 0.94 1.20 0.84
Perimeter(mm) 0.88 1.23 1.56 2.69 1.29 0.59 0.77 0.84 1.65 0.83
Width(mm) 0.65 0.38 0.46 0.44 0.35 0.33 0.27 0.29 0.24 0.29
Min. Rad. (mm) 0.30 0.23 0.21 0.17 0.19 0.17 0.18 0.15 0.16 0.14
Max. Rad. (mm) 0.20 0.20 0.21 0.37 0.23 0.15 0.17 0.21 0.29 0.22
Thinness Ratio 1.48 1.99 2.78 5.51 2.90 1.17 1.35 1.73 2.74 2.06
Rectangular

Aspect Ratio 0.42 0.26 0.32 0.71 0.45 0.20 0.18 0.24 0.41 0.38
Radius Ratio 0.41 0.45 0.39 0.82 0.63 0.26 0.41 0.40 0.65 0.52
H Ratio 2.17 0.36 0.16 0.15 0.28 0.68 0.27 0.14 0.15 0.23
Area Ratio 0.18 0.18 0.22 0.22 0.18 0.17 0.14 0.13 0.12 0.16

“
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regions rests on the assumption that the shape or size related features do not change
considerably from their true values. A true value of a feature, in this context, is a value
derived from the image when kernel(s) were not touching one another.

The labelled images of the software-separated and the physically-separated kernels
were visually compared to attach consistent labels to the same kernel in the software-
separated and the physically-separated images. Visual comparison of labelled images was
essential because feature data of a i(emel were identified by its label value whereas the
label values of the same kernel in the software-separated image and the physically-
separated image were not the same.

The mean and the standard deviation of the difference in the features between the
physically-separated and the software-separated kernels were used to calculate the
tolerance limits, Xq * K-Sy for v = 0.99 and o = 0.05 for all the eleven features of the
five types of grains. For each of the grain type, at least 100 randomly selected kernel
data were used in calculating the mean, X, and the standard deviation, s,;, of the
difference in the measured features. The bigger of the two values, Xy + ks, and the
absolute value of Xy - k-S4, Was named v, 5,0l 05 difference. It can be interpreted as the
limiting value for the absolute difference in a feature between the physically-separated
and the software-separated kernels so that there is 99% confidence that the absolute
difference in a feature for at least 95% of the kernels would be equal to or less than the
limiting value. The 7,,0,,s difference values for HRS wheat, durum, barley, oats, and
rye are given in Table 6.1. It is noteworthy that except for the area of oats, the Y, 450,05

difference of all other features for all the grain types were approximately equal to or less
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than the 7,04, variation in the precision data (Table 6.1). Software separation, thus,
does not distort or change the geometrical features of HRS wheat, durum, barley, oats,
and rye beyond the tolerance limits of precision.

Table 6.2 shows the percent of kernels for which a feature change after software-
separation was more than v, .0, variation based on the precision data. Note that the
change in the features was prominent for more kernels of oats, rye, and barley than the
kernels of HRS wheat or durum (Table 6.2). |
6.4 Pattern Classification in the Software-Separated Kernéls

The ultimate use of the feature data set is in pattern classification. To assess the
pattern classification capability of the geometrical features from the software-separated
kernels, procedure DISCRIM of SAS (1990) was used to classify the kemels into the
categories of HRS wheat, durum, barley, oats, and rye. All the eleven features mentioned
in Table 6.1, were used in the classification. The kernel regions that were visibly
distorted due to improper placement of the separation lines and those which could not be
disconnected were not used for the classification. A non-parametric probability density
estimation (viz k-nearest neighbour) was used because the normality assumption does not
hold for oats kemel population (Symmons and Fulcher, 1988c). The classification was
based on the Bayes decision rule which classifies an entity (represented by its pattern
vector) to a class for which the entity has maximum a posteriori probability (Hand, 1981,
pp. 4-6; Duda and Hart, 1973, pp. 10-20). The confusion matrix for a cross validation

or leave-one-out classification is given in Table 6.3.
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Table 6.2.

Percent of kernels for which a feature changed more than the v, 4,0, ,s Variation.

—
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Table 6.3.  Confusion matrix for the software-separated kernels.

L e

Categories (t0)— HRS Durum Barley Oats Rye
(from)! Wheat
HRS Wheat (n=424) 414 5 0 0 5
(97.6%)
Durum (n=240) 2 225 4 0 9
(93.7%)
~ Barley (n=260) 1 9 239 6 5
(91.9%)
Oats (n=217) 0 2 11 189 15
(87.1%)
Rye (n=317) 7 10 5 2 293
(92.4%)

L e

In the leave-one-out classification, one sample, at a time, is classified and the
remaining n-1 samples serve as a training set. Among commonly used methods of error
estimation in classification, the leave-one-out method yields the most unbiased estimate
of the expected true error (Hand, 1981, pp. 186-190). It avoids drastically dividing the
available data into training and test sets, while maintaining an independence between them
(Fukunaga and Hayes, 1989).

The overall correct classification for all the five grain categories together was
93.3%. Except for the oats, the classification of software-separated kernels was
satisfactory (Table 6.3). The lack of discriminatory power of the geometrical features
alone for the classification of oats was reported by Sapirstein and Bushuk (1989).
Sapirstein and Bushuk (1989) found that the addition of the mean gray level feature of

grains improved the classification of oats. It is expected that addition of gray-level or
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color dependent features will improve the classification of software-separated kernels,
especially because such features would not be affected by the disconnect algorithm.

From a wheat grading perspective, a 3-way classification among HRS wheat,
durum, and other cereals is more important. For the 3-way classification, correct
classification for HRS wheat and durum remained the same as before. The other cereal
class (including barley, oats, and rye together in one class) was correctly classified with
96.3% success. The overall correct ciassiﬁcation into three categories was also 96.3%
(Table 6.3).

The classification of the physically-separated kernels into the categories of HRS
wheat, durum, barley, oats, and rye using non parametric classification (k nearest
neighbour estimation) with the leave-one-out method is given in Table 6.4. The overall
correct classification achieved was 95.0%. Thus, 1.7% additional kernels were correctly
classified for the physically-separated kernels when compared to the classification of the
software-separated kernels. Most of the additional misclassifications of the software-
separated kernels occurred for oats and rye kernels (Tables 6.3 and 6.4).

Another approach to calculate the additional misclassification caused by the
software-separation is to treat the physically-separated kernels as a training set and the
software-separated kernels as a test set. As was mentioned above, the overall correct
classification for the physically-separated kernels was 95.0%. The classification results
for the software-separated kernels in this case is given in Table 6.5. The overall correct
classification in this case was 93.3%, the same as that obtained with the leave-one-out

method for the software-separated kernels.
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Table 6.4.  Confusion matrix for the physically-separated kernels.
L ]

Categories (t0)— HRS Durum Barley Oats Rye

(from)! Wheat

HRS wheat (n=424) 418 5 0 0 1
(98.5%)

Durum (n=240) 2 227 4 0 7

(94.5%)
Barley (n=260) | 5 241 10 ' 3
(92.6)
Oats (n=217) 0 1 6 197 13
(90.7%)
Rye (n=317) 3 4 3 5 302
(95.2%)

Table 6.5.  Confusion matrix for the software-separated kernels when they are
treated as a test set.

Categories (t0)— HRS Durum Barley Oats Rye

(from)} Wheat

HRS wheat (n=424) 416 6 0 0 2
(98.1%)

Durum (n=240) 1 229 3 0 7

(95.4%)
Barley (n=260) 1 6 241 6 6
(92.6%)
Oats (n=217) 0 3 11 183 20
: (84.3%)
Rye (n=317) 5 14 3 3 292
(92.1%)



In an n-dimensional feature space, the pattern classes (classification categories)
form n-dimensional hyperclouds. A sample which occurs in the vicinity of the boundaries
between two or more hyperclouds is a most likely candidate for the misclassification.
Only those changes in the features subsequent to the software-separation which would
bring a sample’s feature vector from inside of its pattern’s hypercloud to the surface, can
cause additional misclassification. In this respect, a small change in a feature vector
which is already near the surface of its pattern’s hypercloud can be more detrimental than
a relatively large change in the feature vector which is deep inside the pattern’s
hypercloud. Also, a small change which pulls a pattern to the surface of its hypercloud
is more serious compared to a relatively large change which pulls the pattern towards the
cenfre of the hypercloud.

Results presented in Tables 6.1 to 6.5 demonstrate that the geometrical features
of the software-separated kemels were not distorted and can be successfully used in

discriminating HRS wheat from durum and other cereal grains.
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CHAPTER 7: CONCLUSIONS

Feature measurement and classification of grain when the imaged samples contain
touching kernels may be essential for automated grain sample analysis. In this study a
mathematical morphology based algorithm was developed for disconnecting the conjoint
regions in the image of touching kernels. A grain feature extraction routine was also
developed to measure the area, perimeter, length, width, maximum and minimum radii,
rectangular aspect ratio, thinness ratio, radius ratio, area ratio, and the ratio of the mean
to the standard deviation of all the radii. The study shows that the software-separated
kernels retain their geometrical features and can be successfully used in classification of
cereal grains used in the present study. The following specific conclusions can be drawn:
1. The algorithm was successful in disconnecting 95% HRS and durum wheat, 94%

barley, 89% rye, and 79% oats conjoint kernel regions.

2. Except for the area of oats, the change in the features of the software-separated
kernels from the corresponding feature values of the physically-separated kernels
was less than or equal to the variation within tolerance limits of the measurement
System.

3. Hard red spring wheat was discriminated from durum and other cereal grains with
97.6% success using the geometrical features of the software-separated kernels.

4. The overall classification success of 93.3% was achieved in a five-way
classification of the software-separated grains among HRS and durum wheat,

barley, oats, and rye. A very few additional kernels (1.7%) were correctly
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classified for the physically-separated grains.
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CHAPTER 8: CONTRIBUTION TO KNOWLEDGE

A general solution to the image segmentation problem containing touching objects
has not been reported in the published literature. In this research a heuristic algorithm
was developed for the segmentation of touching grain images. The aim of the algorithm
was to disconnect the conjoint kernel regions in the image. A strict convexity for the
touching objects was not assumed. The algorithm, therefore, can be used in the
segmentation of touching patterns of other objects of approximately convex shape if the
radius of the largest circle fitting inside the connected regions when the circle is translated
to the centre of the isthmus joining the objects is smaller than the radii of the largest
circles fitting in the objects.

It was demonstrated that the software-separated kernels preserved their geometrical
features. The design requirements for a grain sample presentation device can be
simplified based on the knowledge from this research. Especially, presentation of

multiple kermels to the camera will be possible so long as kemels do not overlap.
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CHAPTER 9: RECOMMENDATIONS FOR FUTURE RESEARCH

The effectiveness of the disconnect algorithm developed in this study is affected
by the size of the isthmus joining two or more kernel regions. Investigation into the
image segmentation techniques should be made with the objective of reducing the length,
width, or both of the isthmus.

The classification of the software-separated kernels should be retried after adding
the color and gray level dependent features in the pattern vector.

Wheat and other cereal grains found as inseparable foreign material in wheat
samples were studied. To arrive at a broad based conclusion, however, the disconnect
algorithm should be tested for other small and large seeds found in commercial grades
of wheat and barley.

'Implementation of the disconnect algorithm in specialized image processing
computer architecture (such as an array processor) to achieve realistic speed and a sample
presentation device which can present the grains in a single-kernel-layer to the camera’s
field of view are essential for automation of grain sample analysis. Work in both these

areas is needed.
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Appendix A

Primary and Export Grade Determinants for red spring wheat (Canada Western)
(Source: Official Grain Grading Guide (1987), Canadian Grain Commission, Winnipeg)



RED SPRING WHEAT (Canada Western) - PRIMARY GRADE DETERMINANTS

Standard of Quality

Haximum Limits of

Wheats of Gther
Foreign Material Classes or Varieties
Hatter
Hinimum Hinimum Other Total Total
Test Hard Than Including Including
Grade Height Vitreous Cereal Cereal Contrasting | Contrasting
Hame kg/hL Variety Kernels Degree of Soundness Grains Grains Classes Classes
Ho. 1 Canada | 75.0 Any variety of red | 65.0% Reasonably well matured, reasonably About 0.75% 1.0% 3.0%
Hestern Red spring wheat equal free from damaged kernels 0.2% ’
Spring to Neepawa
No. 2 Carnada | 72.0 Any variety of red |35.0% Fairly well matured, may be About 1.5% 3.0% 6.0%
Hestern Red spring wheat equal moderately bleached or frost 0.3%
Spring to Neepawa damaged, but reasonably free from
severely damaged kernels
No. 3 Canada | 69.0 Any variety of red |- May be frost damaged, immature or About 3.5% 5.0% 10.0%
Western Red spring wheat equal weathered, but moderately free 0.5%
Spring to Neepawa . from severely damaged kernels
Canada No Any type or variety | No Excluded from other grades of wheat 1.0% 10.0% No Limit
Hestern Minimum of wheat excluding |Minimum on account of light weight or damaged 10.0% amber
Feed amber durum kernels, but shall be reasonably durum only
sweet
Final Canada No. 3 Over 1.0% Over 10.0% Canada Western Feed
Grade HWestern C.M. grade Wheat, | grade Mixed Over 10.0% amber durum
Name Feed Red Sample C.W., | Grain, C.W. grade Wheat, Sample C.W.
Spring Account Wheat Account Admixture
Admixture

A-1




RED

SPRING WHEAT - PRIMARY GRADE DETERMINANTS

Sprouted Binburnt
Total Severe Total
Inct. Mildew | Heated Smudge
Severe Rotted Incl. and
Grade Name Severe | Sprouted | Mouldy Binburnt | Fireburnt Stones Ergot Sclerotinia Smudge Blackpoint
No. 1 C.W. Red Spring| 0.1% 0.5% 2K 0.1% N1l 3K 3K 30K 10.0%
No. 2 C.W. Red Spring] - 1.5% 5K 0.75% Nil 3K 6K 6K 1.0% 20.0%
No. 3 C.W. Red Spring| - 5.0% 10K 2.0% Nil 5K 24K 248K 5.0% 35.0%
Canada Western Feed No Limit 10.0% 10.0% 2.0% 10K 0.25% 0.25% No Limit| No Limit
Final Grade Name Canada Western Over 10.0% grade Over 2.0% grade | Over grade tolerance up to | Over 0.25% grade| Over 0.25% Canada Canada
Feed Wheat, Sample C.W.| Wheat, Sample 2.5% grade Rejected “grade"| Wheat, Sample grade Wheat, | Western | Western
Account Heated C.W. Account Account Stones. Over 2.5% | C.W. Account Sample C.W. Feed Feed
Fireburnt grade Wheat, Sample Ergot Account
Salvage Admixture
EX23
*k Artificial Insect Damage
Grade Shrunken and Broken * Grass | Pink Stain Natural Sawfly | Grasshopper| Dark
Name Shrunken Broken Total Degermed | Green | Kernels | No Residue Stain Midge | Army Worm | Immature
No. 1 C.H. Red Spring| 6.0% 6.0% 7.0% 4.0% 0.75% | 1.5% Nil 0.5% 2.0% 1.0% 1.0%
No. 2 C.W. Red Spring| 10.0% 10.0% 11.0% 7.0% 2.0% 5.0% 5K 2.0% 8.0% 3.0% 2.5%
No. 3 C.W. Red Spring| No Limit 15.0% No Limit 13.0% 10.0% | 10.0% 10K 5.0% 25.0% 8.0% 10.0%
Providing
Broken
Canada Western Feed No Limit 50.0% Tolerances | No No No 2.0% No No No No
Not Limit Limit | Limit Limit Limit Limit Limit
Exceeded
Final Grade Name No. 3 C.W. Over 50.0% Canada Canada | Canada Over 2.0% grade Canada Canada | Canada Canada
Red Spring grade Sample Western Western Western | Wheat, Sample Western Western | Western Western
Broken Grain Feed Feed Feed C.W. Account Feed Feed Feed Feed
Stained Kernels
*Degermed: Tolerances apply to kernels not classed as sprouted.

**Grass Green Kernels: Tolerances are given as a general guide and may be increased or reduced in the judgment of the
inspector after consideration of the overall quality of a sample.
Tolerances are not absolute maximums.
conjunction with the overall quality of the sample.

***Insect Damage:

NOTE:

A-2

THE LETTER "K* IN THESE TABLES REFERS TO KERNEL SIZE PIECES IN 500 GRAMS.

Inspectors must consider the degree of damage in




RED SPRING WHEAT - EXPORT GRADE DETERMINANTS

Commercial Cleanliness Total Foreign Material
Broken | Material through
Grain | 4.5 R.H. and Seeds and Wild Oats
, Thru Roughage Jotal ‘ Other Total
Grade 54 Mineral Sclero- | Cereal | Foreign
Name SSDS | RHGE | ATT T0T LSDS SSDS | W.0. I TOY RHGE | ATT _|Stones | Matter [ Ergot | tinia Grains | Material
No. 1 C.W. 0.30% | 0.05%|0.05% {0.10% |0.10% 0.20% | 0.05% | 0.05% [ 0.20%] 0.05% | 0.10%[0.03% | 0.06% 0.01% | 0.01% 0.40% 0.40%
Red Spring
No. 2 C.W. 0.30% 0.05% { 0.05% [ 0.10% [ 0.10% 0.20% | 0.05% ] 0.05% | 0.20%] 0.05% | 0.10%|0.03% | 0.10% 0.02% | 0.02% 0.75% 0.75%
Red Spring. :
No. 3 C.W. 0.30% | 0.05% [ 0.05% | 0.10% | 0.10% 0.20% [ 0.05% [ 0.05% [ 0.20%] 0.05% | 0.10%]0.06% 0.10% 0.04% | 0.04% 1.25% 1.25%
Red Spring » TR
Canada 0.50% | 0.05% [ 0.10% [ 0.10% [ 0.10% 0.50%{ 0.05% 0.10% [ 0,10%]0.10% | 0.25% 0.10% | 0.10% 5.0% 5.0%
Western FC R i
Feed
Wheats of Other Classes Minimum Tota}
Hard Including
Grade Contrasting Total Including Vitreous Severe i Shrunken and Broken
Name Classes Cont. Classes Kernels Severe | Sprouted’ Bi Shrunken | Broken [ Total
No. 1 C.W. | 0.30% 1.5% 65.0% 0.1% 0.5% 0.05%‘including 6.0% 5.0% 7.0%
Red Spring 1 binburnt kernel
per 1000 g
No. 2 C.¥. 1.5% 3.0% 35.0% 1.5% 0.4% including 10.0% 8.0% 11.0%
Red Spring 4 binburnt kernels
per 1000 g
No. 3 C.W. | 2.5% 5.0% No Minimum 5.0% 1.0% including No Limit { 13.0% No Limit
Red Spring 6 binburnt kernels providing
per 1000 g broken
Canada No Limit No Minimum No Limit 2.5% including No Limit | 50.0% tolerances
Western (10.0% Amber Durum only) .2.5% binburnt kernels not
Feed exceeded
(Vo)
o
gi Y J——




Appendix B

A Repository of Software-Separated Kernel Images



Fig, Bl: Example of (a) touching and (b) separated
kernels of HRS wheat



Fig, B2: Example of (a) touching and (b) separated
kernels of HRS wheat

B-2



Fig, B3: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bb: Example of (a) touching and (b) separated
kernels of HRS wheat

E-5



Fig, B6: Example of (a) touching and (b) separated
kernels of HRS wheat



Fig, B7: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B8: Example of (a) touching and (b) geparated
kernels of HRS wheat
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Fig, B9: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bl0: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bll: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bl2: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B13: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bl4: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B15: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B16: Example of (&) touching and (b) separated
kernels of HRS wheat
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Fig, Bl17: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, Bl8: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B19: Example of (@) touching and (b) separated
kernels of HRS wheat
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Flg. B20: Example of (&) touching and (b) separated
kernels of HRS wheat
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Fig B21: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B22: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B23: Example of (a) touching and (b) separated
kernels of HRS wheat
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Flg, 24: Example of (a) touching and (b) separated
kernels of HRS wheat
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Flg, B2b: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B26: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B27: Example of (a) touching and (b) separated
kernels of HRS wheat
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Fig, B28: Example of (a) touching and (b) separated
kernels of durum
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Fig, B29: Example of (a) touching and (b) separated
kernels of durum

N A



a) touching and (b) separated -
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Flg, 31: Example of (a) touching and (b) separated
kernels of durum
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Fig, B32: Example of (a) touching and (b) separated :
kernels of durum
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Fig, B33: Example of (a) touching and (b) separated
kernels of durum
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Fig, B34: Example of (a) touching and (b) separated
kernels of durum
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Fig, B35: Example of (a) touching and (b) separated
kernels of durum
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Fig, B35, Example of (@ to

uching and (b) Separated
kernels of durum,
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Fig, B37. Example of (a) touching and (b) separated
kernels of durum
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Fig, B38, Example of (a) touching and (b) separated
kernels of durum,
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Fig, B39, Example of (a) touching and (b) separated
kernels of durum,
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Fig, B-41, Ezample of (a) touching and (b} separated
kernels of durum,

B-41



Fig, B-42, Example of (a) touching and (b) separated
kernels of durum,
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Fig, 43, Example of (a) touching and (b) separated
kernels of durum,
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Flz, B44, Example of touching (a) and (b) separated
kernels of durum, -
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Fig, B45, Example of (&) touching and (b) separa ted
kernels of durum,
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Fig, B46, Example of (a) touching and (b) separated
kernels of barley,
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Fig, B47, Example of (a) touching and (b) separated
kernels of barley.
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Fig, B48, Example of (a) touching and (b) separated
kernels of barley,
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Fig, B49, Example of (a) touching and (b) separated

kernels of barley,
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1s of barley,

Fig, B50, Example of (a) touching and (b) separated
kerne
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touching and (b) separated






els of barley.

Fig, B53, Example of (a) touching and (b) separated
kern

553



Fig, B54, Ezample of {(a) touching and (b) separated
kernels of barley.
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Fig, Bb6, Example of (a) touching and (b) separated

kernels of barley,
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Fig, B57, Example of (a) touching and (b) separated
kernels of barley,
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Fig, B58, Example of (a) touching and (b) separated
kernels of barley,
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Fig, B5S, Example of (a) touching and (b) separated

kernels of barley,
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Fig, B60, Example of (a) touching and (b) separated
kernels of barley.
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Fig, B62, Example of (a) touching and (b) separated
kernels of barley.
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Fig, B63, Example of (&) touching and (b) separated
kernels of rve,
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Fig, B-64, Example of (a) touching and (b) separated
kernels of rve,
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Fig, BEb, Example of (&) touching and (b) separated
kernels of rye,
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Fig, B66, Example of (a) touching and (b) separated
kernels of rve,
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Fig, B67., Example of (a) touching and (b) separated
kernels of rve,
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Fig, B6S, Example of (a) touching and (b) separated
kernels of rve,
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Fig, BGY, Example of (a) touching and (b) separated
kernels of rye,
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Fig, B70., Example of (a) touching and (b) separated
kernels of rve,

B-70



Fig, B7l, Example of (a) touching and (b) separated
kernels of rye,
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Fig, B72, Example of (a) touching and (b) separated
kernels of rve,
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Fig, B73, Example of (a) touching and (b) separated

kernels of rve,
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Fig, B74, Example of (a) touching and (b) separated
kernels of rve,
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Fig, B7b, Example of (a) touching and (b) separated
kernels of rye,
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Fig, B76, Example of (a) touching and (b) separated
kernels of rve,
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Fig, B77. Example of (a) touching and (b) geparated
kernels of rve,
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Figz, B78, Example of (a) touching and (b) separated
kernels of rve.
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Fig, B8O, Example of (a) touching and (b) separated
kernels of oats,
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Flg, B8l, Example of (a) touching and (b) separated

kernels of oats,



Fig, B82, Example of (a) touching and (b) separated
kernels of oats,

E-62



Fig, B83, Example of (a) touching and (b) separated
kernels of oats,
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Fig, B84, Example of (a) touching and (b) separated
kern

els of oats,
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Flg, B87. Example of (&) touching and (b) separated
kernels of oats,
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Fig, B88, Example of (a) touching and (b) separated
kernels of oats,
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Fig, B90, Example of (a) touching and (b) separated

els of oats,

kern

E-90






Appendix C

Results from the Experiment 1: Precision




Table C1.  Mean values of the features from Experiment 1: Precision.

“

Features

HRS wheat Durum Barley Oats Rye
Length (mm) 5.83 7.90 10.02 12.35 7.49
Area (mm?) 16 20 25 25 14
Perimeter (mm) 15.23 18.62 23.38 27.15 16.77
Width (mm) 3.80 3.46 3.75 2.85 2.58
Min. Radius (mm) 1.62 1.44 1.60 1.17 1.05
Max. Radius (mm) 2.93 3.94 5.08 6.36 3.87
 Thinness Ratio 14.15 17.49 2175 29.77 20.77
Rect. Aspect Ratio 1.54 2.28 2.67 4.34 2.89
Radius Ratio 1.81 2.73 3.16 5.43 3.69
H Ratio 5.64 3.28 2.78 2.20 2.67
Area Ratio 1.37 1.39 1.52 1.44 1.44

“
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Table C2. Coefficient of Variation (%) values of the features from Experiment 1: Precision.

—

Features HRS wheat Durum Barley Oats Rye
Length 2.67 1.42 1.02 1.49 1.29
Area 1.18 2.10 1.37 0.76 1.25
Perimeter 1.13 1.33 1.35 1.99l 1.56
Width 3.39 222 2.51 3.07 2.73
Minimum Radius 3.61 3.19 2.60 2.87 3.76
Maximum Radius 1.34 1.04 0.83 1.16 1.18
Thinness Ratio 2.06 2.30 2.58 3.73 2.82
Rect. Aspect Ratio 5.35 2.34 2.39 3.32 3.16
Radius Ratio 4.42 3.34 2.52 2.52 3.47
H Ratio 7.57 2.24 1.14 1.37 2.14
Area Ratio 2.55 2.58 2.87 3.13 2.50

“

* Coefficient of Variation = (Standard Devation / Mean) x 100
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