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ABSTRACT

A mathematical mo¡phology based algorithm was developed and tested for

disconnecting the conjoint kernel regions in an image of touching grains. The algorithm

found a marker for each grain present in the image. It constructed the image of

disconnected kernels by growing the markers within the boundaries of the kernels in the

original image with a logic which prevented the merging of the neighbouring regions.

The logic was implemented via a sequential thickening operation. The algorithm was

tested on the images of the touching kernels of hard red spring (HRS) wheat, durum

wheat, barley, oats, and rye. Random touching patterns of the kernels were used in

testing the algorithm. The algorithm was successful in disconnecting 95Vo HRS wheat

and durum wheat, 94Vo barley,897o rye, and 797o oats conjoint kernel regions.

The kernels used for a touching grains image were separated physically and

another image of the kernels was acquired. A feature measurement routine was developed

to compute the area, perimeter, length, width, maximum and minimum radii, rectangular

aspect ratio, thinness ratio, radius ratio, area ratio, and the ratio of mean to standard

deviation of all the radii of a kernel. Except for the area of oats, the change in the

geometrical features of the software-separated kemels from the corresponding features of

the physically-separated kernels was less than or equal to the variation between the

tolerance limits of the measurement system. Hard red spring wheat was successfully

discriminated from durum wheat and other cereal grains using the geometrical features

of the software-separated kernels. An overall classification success of 93.37o was

(i)



achieved in a five-way classification among HRS wheat, durum wheat, barley, oats, and

rye. Only 1 .7o/o additional kernels were correctly classified when the features from the

physically-separated kernels were used.

(ii)
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CHAPTER 1.: INTRODUCTION

There is a growing interest in applying machine vision technology to develop a

fast, accurate, and automatic system for information acquisition on the content and quality

of a grain sample. The term machine vision embodies the process in which a physical

image sensor (instead of the human eye) is used to acquire images of given objects and

dedicated computing hardware (instead of the human brain) is used to analyze the images

with the objective of performing a pre-defined visual task. The important reasons behind

the enhanced interest in utilizing machine vision technology for grain sample analysis are

the increased awareness of the benefits of an automatic inspection system, the superior

performance of microprocessors, and the continued lowering of electronics cost. Machine

vision inspection is already in commercial use in automotive, electronics, and other

industries. Many of the industrial objects are of defined size, shape, color, and texture.

Agricultural or biological objects, on the other hand, are of variable size, shape, color,

and texture. It is, therefore, more challenging to adapt machine vision technology to the

plethora of inspection tasks in the agri-food sector (Tillet, 1990; Kranzler, 1985; Sarkar,

1986).

The important applications of machine vision to the grain industry include the

design and development of an objective, fast, and reliable grain grading system and the

on-line monitoring of grain in continuous flow at delivery points such as a terminal

elevator. Grading decisions on grains and other agricultural products, by and large,

require visual inspection of the product sample by trained personnel. Inspection tasks are



repetitive in nature and, in some cases, are performed in an uncomfortable environment.

Fatigue of personnel is, therefore, likely. Despite training, the grading decisions are

inherently subjective and are influenced by the individual experience of an inspector.

Human visual inspection is prone to erors in applying the numerous grading criteria

consistently (Kohler, 1991). An automatic visual inspection system which can apply the

grading specifications consistently, objectively, and without fatigue will be an invaluable

tool for the grain industry.

Fast and accurate information on the contents of a grain sample can be used to

increase the efficiency of most grain handling operations (such as grain unloading,

cleaning, binning, and shipping) at a terminal elevator. For example, such information

can be used to optimize the selection and adjustment of the cleaning machines. This

would lead to increased cleaning throughput and enhanced recovery of salvageable grains.

Use of machine-vision-guided controls and robotics can lead to complete automation of

modern terminal elevators. Efforts in this direction are underway at Prince Rupert Grain

Ltd., a modern terminal elevator on the west coast of Canada.

The machine vision system was found to be more precise and efficient in

measuring the dimensions of seeds than trained human inspectors working with a

microscope (Churchill et al., i990). Certain cracks and blemishes on a kernel surface

may not be easily detected by human visual inspection but algorithms can be developed

to detect them by machine vision (Kim et al.,1989,1990; Paulsen et al., 1989). Another

advantage of machine vision inspection is that it can make use of the radiometric

infonnation from outside the visible band of the electromagnetic spectrum. For example,



soft x-ray images can be used to gain information on internal anatomical changes (Bulley

et al., i984) and quality of grain. Imaging techniques which use energy other than

electromagnetic radiation, such as nuclear magnetic resonance (NMR) imaging, can also

be used. The NMR imaging technology, however, is expensive and its use in the grain

industry is not economically feasible at this time.

The development of a machine vision inspection system for a given application

begins with the initial research to examine the specific problems involved in the

application, usually in a laboratory setting. At this stage, the application specific

algorithms can be developed using a general purpose computer. The on-line inspection

in the f,reld or industrial setting may, however, require the use of hard-wired logic or

special purpose computing architecture to achieve inspection at a realistic speed

(Marchant, 1985).

Wheat is the major crop of Canada and contributes significantly to the economy

of prairie provinces of Canada. A machine-vision-based wheat grading and monitoring

system is awaited by the grain industry of Canada and other wheat producing western

nations. Several researchers (Neuman et al., 1987,1989a, 1989b; Sapirstein and Bushuk,

1989; Sapirstein et a1.,1987; Kohler, 1991; Symons and Fulcher, 1988a, 1988b; Chen et

al., 1989; Thomson and Pomeranz, 7997; Myers and Edsall, 1989; Barker et al., 1992a,

I992b, 1992c, 1992d; Keefe, 1992; Keefe and Draper, 1986; Zayas et al., 1985, 1986,

1989) have applied digital image analysis and statistical pattem recognition techniques to

test whether certain decisions required in grading wheat can be successfully made using

machine vision. One of the constraints in these studies was that the grain feature



extraction algorithms required the kernels to be presented to the camera in a scattercd or

non-touching manner or one kernel at a time. This was necessary because two or more

kernels which were touching resulted in an image in which regions corresponding to the

kernels (hereafter called kernel regions; not to be confused with different anatomical parts

of a kernel) joined together making the feature measurement on an individual kernel

region impossible. An algorithm which can disconnect the merged kemel regions (in a

sense that pixels joining the two kernel regions are removed) will facilitate the practical

implementation of automatic grain feature measurements on multiple kernels. In

practice, a sample presentation device, such as a vibrating bed, may be required to present

the kernels in a single-kernel-deep layer. An automatic grain grading or monitoring

system is expected to possess the capability of identifying the individual kernels when

the kernel regions are joined. This is possible if conjoint kernel regions are disconnected.

To my knowledge, an algorithm to disconnect conjoint regions of touching grain kernels

has not been reported.

It was shown by Chermant et al. (1981) that "watershed" algorithm could

disconnect the conjoint circular or approximately circular regions. It was, therefore,

hypothesized that the watershed algorithm could be modified to disconnect the conjoint

grain kernel regions if the kernels are of approximately convex shape. It was further

hypothesized that the geometrical features of the disconnected kernels can be used in the

discrimination of different grain species using statistical pattern recognition techniques.

The objectives of my thesis research were (i) to develop and implement an

algorithm to disconnect the conjoint regions of touching grain kernels and to test the



effectiveness of the algorithm on hard red spring (HRS) wheat, durum wheat, barley, oats,

and rye kernels; (ii) to develop software for feature measurements on grain kemels (the

features of interest were: area, pefimeter, length, width, maximum and minimum radii,

thinness ratio, rectangular aspect ratio, radius ratio, and ratio of mean to standard

deviation of all the radii); (iii) to test the integrity of the features after software separation

of kemels (i.e. after disconnecting the touching kernels using the algorithm developed for

objective (i)); and (iv) to test the discriminating ability of the geometrical features of

software separated kernels for the classification of HRS wheat from durum wheat, barley,

oats, and rye.



CHAPTER 2: REVIE\ry OF LITERATURE

2.1 Background

The application of automated visual inspection (AVI) to the grain industry is a

new development. A machine vision system especially tailored to grain grading and

monitoring tasks is not available commercially and many of the special needs and

problems in applying AVI to these visual inspection tasks have yet to be solved. The

research effort in this area, however, has grown rapidly and substantially in the past eight

to nine years. Determining the potential of the geometrical, gray level, and color features

to classify different grain species, class, variety, damage status, and impurities using

statistical pattern recognition techniques has been the main focus of the reported research.

This chapter briefly reviews the results of the research in applying the AVI to grain

grading. Knowledge of digital image processing and computer vision is fundamental to

AVI. A very brief introduction to this subject is included at the beginning.

This thesis is a study on the software approach to separate or disconnect the

touching kernel regions. The study depends heavily on the image transforms from the

discipline of binary mathematical morphology. Thus a detailed introduction to binary

mathematical morphology is included.

2.2lntroduction to Digital Image Processing and Computer Vision

An image is a two dimensional (2-D) function generated by sensing the

radiometric information from a scene. A scene is a collection of three dimensional (3-D)

object(s) with some geometrical arrangement and governed by the physical laws of nature.
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The image is represented by a function f(x,y) where arguments x,y are spatial coordinates

and f is the intensity or gray level at (x,y) for a gray-tone image. In a color image, f is

a vector with three components representing hue, saturation, and intensity or red, blue,

and green. The extension of the concepts and techniques developed for gray-tone images

to color images may not be trivial.

In most cases the functional form of f(x,y) is unknown on a global basis (it may

be possible to approximate it for a limited range of x,y) which presents much difficulty

in algorithm development because there is a lack of underlying mathematical rigor.

In practice the image function, f, has a finite range of values and the arguments

x,y have finite extent and they all must be quantized. Quantization is essential for

computer processing of the image data. The discrete version of f(x,y) is called a digital

image.

Digital image processing and computer vision deal with developing the models

underlying the images and with the design and analysis of algorithms which, based on

image models, give useful and usually application-dependent results.

The models and algorithms can be broadly categorized into three groups: image

pre-processing, image analysis, and image understanding. The image pre-processing aims

at enhancing the image quality either for a better (subjective) interpretation of the image

by a human or for making the image more suitable for subsequent steps in computer

processing. Noise removal using median filter or frame averaging, contrast enhancement

by histogram equalization or histogram specification, image smoothing using a low-pass

filter, edge enhancement using unsharp masking or gradient operators (high-pass filtering)
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are some typical operations used in image pre-processing. The concepts involved in the

image pre-processing are closely related with those in signal processing. An image is a

2-D signal, therefore, the concepts of 2-D signal transformations are required.

Image analysis concerns with the segmentation and low-level description of the

image. The objective in the segmentation process is to group pixels to form higher-level

regional image structures which after subsequent processing may lead to meaningful

interpretations. A typical application example where segmentation is an essential

processing step is in the discrimination of the objects from the background. Schalkoff

(1989) commented that the success of the segmentation algorithm often determines the

success or failure of the overall image analysis algorithm. In many cases further

segmentation of the ah'eady segmented image regions may be required to reach the

desired correspondence between the segmented image regions and the objects they

represent. There are several approaches to image segmentation. Thresholding, region

growing, splitting and merging, template matching, and edge detection are some

examples. A good summary on segmentation can be found inZenzo (i983), Pratt (1991,

pp.597-623), Gonzalez and Woods (1992,pp.413-478), and Haralick and Shapiro (1992,

pp. 509-550).

Subsequent to segmentation, it may be desirable to describe the segmented set of

pixels. Description may be based on only the boundary pixels or may involve

computations based on all the pixels of a region. Regional geometric properties,

frequency characteristics, intensity statistics (for example, co-occurence matrix) or other

regional features can be used for description. Ideally the description should be invariant



to changes in position, scale, and rotation. A summary and general discussion on image

analysis is given by Rosenfeld (1984).

Image understanding involves image-based knowledge manipulation, including

procedural or rule-based manipulation of image data, 3-D modelling and hierarchical

image analysis. A great amount of non-image-related knowledge underlying the scene

representation may have to be used in image understanding.

Comprehensive coverage of the subject of digital image processing and computer

vision can be found in Gonzalez and Woods (1992), Haralick and Shapiro (1992), Jähne

(1991), Jain (i989), Schalkoff (1989), Ballard and Brown (1982), and Rosenfeld and Kak

(1982).

2.3 Introduction to Binary Mathematical Morphology

The word, "morphology" generally refers to the study of forms and structure. The

word is used in this sense in the thesis to refer to shape and size of objects. In computer

vision, the word "morphology" or "mathematical morphology" refers to specific

methodologies of image analysis to study the structure of images using the concepts and

theories from random set theory and integral geometry.

The basic approach in mathematical morphology is to study the unknown structure

of an image based on its spatial relationship to a simple image of pre-defined structure.

The simple image is called a structuring element or a morphological kernel.

The language of mathematical morphology is that of set theory. A binary digital

image is represented as a subset of the 2-D integer plane, 7J. A binary image is

composed of white and black pixels. As a convention, let white pixels be the pixels of
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the foreground or pixels that are rroNrr and black pixels be the pixels of the background

or pixels that are rrOITìrr. This convention is used throughout the thesis. A set may be

defined to include only the foreground pixels or only the background pixels of an image.

A gray-scale image is represented as a subset of 3-D integer space where the third

dimension corresponds to the gray value of a pixel. Color and time varying components

of an image can be represented by sets of higher dimensions.

2.3.1 Basic Operations

Morphological image transforms make extensive use of set-theoretic operations.

Before introducing the morphological transforms, brief definitions of important set-

theoretic operations are presented.

Translation of a set A by a vector xinZz, denoted A*, is defined as:

A*:A*x:{a+xl VaeA} (2.r)

where x is a vector from a fixed and specified origin to a given point. In most cases, it

is the foreground that contains the information of the image. Therefore, set A is used to

represent the pixels that are rrONrr or the foreground pixels of an image A. The plus sign

in Eq. 2.1 refers to vector addition. The translation of an image, therefore, causes shifting

of all foreground pixels of the image by a given length and along a specified direction.

A* is called the translate of A by x.

Reflection of a set A, denoted Â, is defined as:

Â:{*lx:-â,VaeA} (2.2)

Reflection, therefore, rotates all the points in the image by 180' with respect to a

specified origin.
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2.3.1.1 Dilation and Erosion

Dilation and erosion are the two basic morphological transforms. All other

transforms arc based on these two.

Dilation of a set A by a structuring element B, denoted A@8, is defîned as:

AOB : {* I X : â+ b, V aeA, V beB) (2.3)

The shape, size, and origin of the structuring element are pre-defined. Let set A

represent the pixels that are rroNrr in an image A. The vector addition of all foreground

points in the image A with all the points of the structuring element B has an effect of

expanding the foreground regions of the image A. For example, given a set A : {(1,i),

(2,1), (3,I), (1,2), (2,2)\ and a structuring element B : {(0,0), (1,0)}, the dilation yields,

A@B : {(1,1), (2,r), (3,1), (4,1), (l,z), (2,2), (3,2)} thus expanding ser A by rwo

additional points.

An alternative definition of dilation is:

AOB = (A)¡ (2.4)

The definition in Eq. 2.4 states that dilation of set A with B is a union of all the

translates of set A with all the points of set B.

Erosion of a set A with set B, denoted AOB, is defined as:

AOB:{*l@)-cA} (2.s)

In words, F;q.2.5 states that erosion of a set A with set B yields a set of points

such that the translate of set B with any of the points in the set AOB is contained in set

A. In other words, at each point of the eroded set, AOB, set B fits in set A. For non-

U
beB
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trivial cases, erosion shrinks the foreground regions of an image. For example, erosion

of set A:{(i,1), (2,1), (3,1), (1,2), (2,2)} with set B:{(0,0), (1,0)}, gives the eroded set

AoB:{(1, 1), (2,r), (1,2)>.

An alternative definition of erosion is:

AOB = (A)-r (2.6)

where -b is the point b after it is rotated by 180' about the origin.

Detailed description of erosion and dilation transforms and their mathematical

properties canbe found in Serra (1982, pp. a3-50), Haralick et al. (1987), Haralick and

Shapiro (1992, pp. 158-167), and Heijmans and Ronse (1990).

2.3.2 Opening and Closing

Opening of a set A by set B, denoted AoB, is defined as:

AoB:(AoB)@B (2.7)

Opening tends to remove sharp thin peaks and small islands, smooth contours, and

break narrow isthmuses. An alternative definition of opening is:

AoB:u{(s)- l(B)-cA} (2.8)

Equation 2.8 shows the fitting property of the opening transform. Union of all the

translates of set B which fit in set A, constitute AoB.

Closing of set A by set B, denoted A.B, is defined as:

A.B:(A@B)oB (2.e)

Closing tends to fTll small holes and sharp thin gulfs, and fuse narrow breaks. An

important geometric property of the closing transform is that a point x belongs to A.B,

n
beB
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if and only if, all translates of B containing x have at least one point common with set

A. Graphical illustrations of opening, closing, dilation, and erosion can be found in

Haralick and Shapiro (1992, pp. 174-185), Haralick et al. (1987), Sena (1982, pp. 50-53)

and McDonald and Chen (1990a).

Opening and closing are idempotent operations. That is, after a set A is opened

or closed with set B, subsequent opening or closing by set B does not change the result

of either operation. Also, AoB is a subset of set A (i.e. opening is antiextensive) and set

A is a subset of A.B (i.e. closing is extensive). These properties play an important role

when these operations are used in an image processing algorithm.

2.3.3 Hit-or-Miss Transform, Thinning, and Thickening

The hit-or-miss transfonn uses a mixed structuring element (also called compact

structuring element) B made up of a pair of structuring elements B, and Br. For non-

trivial results, B, and B, must be disjoint, and the origin should belong to one of them.

The hit-or-miss transform of set A by a mixed structuring element B:(Br,Br, denoted

A@8, is defined as:

A@B:(AoB,)[ì(A"oBr) (2.10)

Hiçor-miss transform, therefore, gives a set of points x such that B, translated by

x fits in the set A and B, translated by x fits in the complement of the set A,

simultaneously. In other words, hit-or-miss transform is a set of points at which B, hits

the set A and B, misses the set A. The transform probes the spatial relationship of the

foreground pixels to the background pixels relative to the structuring element pair.
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Thinning of a set A by mixed structuring element B, denoted A8B, is defined as:

A8B:At(A@B)

Thickening, denoted AOB, is defined as:

(2.tr)

AOB:AU(A@B) (2.r2)

For non-trivial results, the origin must belong to Br for thinning and to B, for

thickening. Thinning and thickening yield useful results when the operation is performed

sequentially as described below. Sequential operation is denoted by enclosing the

structuring element in braces. Sequential thinning, denoted A8{B}, is represented as:

a I in) : (((...((AAB')88'?)..)88")...) (2.r3)

where Br, 82,...8" are all mixed strucfuring elements such that any one of them can be

obtained by rotating the other.

For a mixed structuring element defined on a 3x3 window of a square lattice, there

are eight possible rotations. The image A is thinned with Bt and its output with B2 and

so on, until thinning with B" is complete, i.e. the entire sequential operation of thinning

with Br, 8t,...8" is repeated until no further changes occur.

Sequential thickening of an image does not converge and can fill the entire image

frame. In practice, the result of sequential thickening after each pass with 81, 82,...8" is

often intersected with another set, C. The intersection operation does not let the

sequential thickening result to grow beyond the set C. Sequential thickening followed by

an intersection with another set is called conditional sequential thickening.

Details on hit-or-miss transform, thinning, and thickening can be found in Serra

(1982, pp.390-394) and Haralick and Shapiro (1992, pp. 168-173).
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2.3,4 Choice of Structuring Element

The results desired by morphological operations and algorithms dictate the choice

of the structuring element. For example, erosion by a small disc (say, of three pixel

diameter) can clean the isolated noise points and smooth the contours whereas erosion by

a larger disc (say, of twenty five pixel diameter) can remove the entire foreground.

A general discussion on the choice of the structuring element can be found in

Sena (1982 , pp. 57-59). Serra (1982 , pp. 392)also described a set of mixed structuring

elements and named them Golay's alphabets. These structuring elements were especially

designed to give useful results when used in hitor-miss transform, sequential thinning,

and sequential thickening. Sena (1982), however, used a hexagonal grid which makes

the interpretation difficult (Giardina and Dougherty, 1988). In the thesis, I have used the

equivalent of Golay's alphabets for a square grid.

2.3.5 Applications in Agriculture

The usefulness of mathematical-morphology-based image transforms and

algorithms in machine vision related applications in agriculture is demonstrated by

McDonald and Chen (1990a). Com kemel size distribution, plant leaf identification, and

texture analysis of marbling in beef longissimus dorsi muscle using simple morphological

operations and algorithms were shown. The authors commented that many machine

vision related applications can be addressed using a small set of basic operators. In

another study, McDonald and Chen (1990b) developed algorithms to separate muscle

tissues connected to beef carcass ribeye. The algorithms did not perform well for
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separating connected wheat kernel regions (Dr. T.P. McDonald: personal communication,

1992).

From an application viewpoint, morphological transfoffns can be implemented in

parallel architecfure for real time analysis (Haralick et al., 1987; McCubbery and

Lougheed, 1985; Kimmel et a1., 1985). Another advantage of morphological transforms

is that they are global in scope (McDonald and Chen, 1990a) and do not require isolation

of objects in an image before their analysis.

2.4 Automated Grain Sample Analysis

2.4.1Potential for Objective Wheat Grading

A substantial body of literature is available on the use of digital image processing

and computer vision techniques for deriving characteristics or features of grains, and

subsequent classification analysis using statistical pattem recognition (Neuman et al.,

1987,1989a, 1989b; Sapirstein and Bushuk,1989; Sapirstein et al., 1987; Kohler, l99I;

Symons and Fulcher, 1988a, 1988b; Chen et al., 1989; Thomson and Pomeranz, l99I;

Myers and Edsall, 1989; Barker et al., 1992a,1992b, 1992c, ï992d; Keefe, 1992; Keefe

and Draper, 1986; Brogan and Edison,1974;Zayas et al., 1985, 1986, 1989). From a

grain grading viewpoint, a classification task dealt within any one study was a small

subset of various classification decisions required in grain grading. Primary and export

grade determinants for Canada Western Red Spring (CWRS) wheat are given in Appendix

A. Tolerances for other cereal grains in export grades of CWRS wheat are 0.47o for

grade 1,0.757o for grade 2, and l.25Vo for grade 3 (Canadian Grain Commission, 1987).

The export grade tolerances for wheat of contrasting classes are 0.3Vo for grade I, I.57o
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for grade 2, and 2.57o for grade 3. Similarly export grade tolerances for hard red spring

(HRS) wheat of varieties lower than 'Neepawa' (a HRS wheat cultivar considered the

standard for milling and baking characteristics) are also very low (1.5, 3.0, and 5.07o

wheat of other classes and varieties permitted for grade l, 2, and 3, respectively).

Tolerances for damaged kernels are extremely low. Because of these tight tolerances, an

objective grain grading system based on digital imaging and pattern recognition must

strive to achieve a near perfect classification of sound HRS wheat kernels from other

cereal grains (such as barley, rye, and oats), wheat of other classes (such as hard red

winter, soft white winter, and amber durum), wheat of varieties lower in quality to a pre-

determined standard variety, impurities (such as stones and earth pellets), and damaged

kernels. Also, the method of sample presentation to the camera should be practically

implementable.

The most promising results for objective determination of other cereal grains in

wheat were reported by Sapirstein and Bushuk (1989). For a sample size of more than

1000 kernels, 99Vo of HRS wheat were coffectly identified using a linear discriminant

ñlnction and assuming Gaussian patterns. It is worth mentioning that a large sample size

(1000 or more kemels) is essential if the estimated error of misclassification is expected

to be close to the rrtruerr error (Duda and Hart, 1973, pp.73-76). Out of 900 kernels of

other cereal grains, 27o were misclassified as HRS wheat. For wheat versus other cereal

grains, the classification results using plan-form geometrical features were similar to the

results when mean reflectance feature (measured via mean gray level) was added. Adding

mean reflectance, however, improved the classification of oats from787o to 95Vo. In a
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previous study, Sapirstein et al. (1987) obtained a near perfect classification among HRS

wheat, barley, oats, and rye using a sample size of 580 kernels. Backlighting was used

for easy and accurate segmentation of images. Plan-form size and shape features were

used in the classification model. In both studies, grain samples were prepared from

pedigreed seed samples and, therefore, may have contained less variability than expected

in commercial grain samples.

Chen et al. (1989) used additional features from the depth profile of kernels,

measured using a laser range finder, for the classification of other cereal grains. A

sample size of 850 kernels was used. They reported 167o misclassification of rye kernels

as wheat. This level of misclassification is not satisfactory. Also, 67o of hulless barley

were misclassified as wheat. Higher errors for rye may have occurred because the feature

selection was based on minimizing the classification error between wheat of two different

classes. Differences in classification results among different studies suggest that any

classification scheme must be thoroughly tested on commercial grain samples to confirm

its reliability. Sample presentation for laser scanning was tedious. The kernels were

positioned manually, one at a time, under the fixed laser scanning line, once crease down

and then crease up. Such sample presentation may be difficult, if not impossible, to

automate. Thomson and Pomeranz (199I) improved the instrumentation of Chen et al.

(1989) to obtain a3-D profile of a grain in one laser scan.

Chen et al. (1989) also reported misclassifications of 8-I27o among wheat of

different classes artd 20-267o among wheat of different cultivars within the same class.

There were, however, no misclassifications of dent com, flint com, sorghum, soybean, and
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wild oats. Export tolerance for wild oats in CWRS wheat is very low at 0.05c/o for grade

l,2,and 3 (Appendix A). Ability to identify them with 1007o accuracy is required for

meeting the current grading criteria. Neuman et al. (1987) used plan-form size and shape

features obtained using backlighting to discriminate among wheat of different classes and

wheat of different cultivars within the same class. Using a sample size of 672 kemels,

no misclassifications were found for CWRS and Canada Amber Durum Wheat (CADW).

These two wheat classes are the most important in Canada accounting for 90Vo of wheat

production in western Canada n 1992 (Canadian Grain Commission,1992). There were,

however, substantial misclassifications (up to 43o/o) among Canada Utility (CU), Canada

Prairie Spring (CPS), Canada Western Red Winter (CWRW), and Canada Western Soft

White Spring (CWSWS) wheat classes. Misclassifications among various cultivars of a

single wheat class were greater. Erro¡s ranged from 8Vo for cultivar 'Neepawa' to 85Vo

for cultivar 'Columbus'. The authors suggest that features of anatomical parts of the

kernels, such as size and shape of germ area, cheek and brush shape, and depth and width

of crease, may be essential for varietal identification. The higher classification success

reported by Zayas et al. (1986) in pairwise discrimination between wheat of certain

cultivars from two different classes may be due to a very low sample size of 10 kernels.

"True" error of misclassification of up to ïVo can occur if no errors are made in a sample

size of 50 (Duda and Hart, 1973, pp.73-76). Symons and Fulcher (1988a) conducted a

study similar to Neuman et al. (1987) for Eastern Canadian wheat classes and varieties.

Shape and size features derived from backlit images were used. For a sample size of 225

kernels, they found that94Vo of soft white winter (SWW) wheat were correctly classified
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using a 4-way classification among S\ry'W, hard red winter (HRW), hard red spring

originated from Europe (HRS_E), and hard red spring wheat originated from western

Canada (HRS_W). Sixteen percent of HRS_trV were confused as HRW. The HRS_W

sample was comprised of cultivars 'Katepwa'and'Columbus'. These cultivars were also

included in the study by Neuman et al. (1987). HRW wheat cultivars used by Symons

and Fulcher (1988a) were different from HRW cultivars used by Neuman et al. (1987).

It can be mentioned again that Neuman et al. (1987) found no confusion between HRS

and HRW wheat classes. Such comparisons suggest that there is a need for a large data-

base to develop a robust classifier.

Symons and Fulcher (1988a) also experienced the inadequacy of the plan-form size

and shape features for discriminating among different cultivars of a wheat class. For

three of the wheat cultivars of SWW, correct classifications of less than 607o werc

reported. In a subsequent study, Symons and Fulcher (1988b) used additional features

derived from the bran layer and crease from the image of transverse section of kernels

to aid in classification among different cultivars of the SWW class. Classification results

were unsatisfactory with enors of more than 50Vo. Myers and Edsall (1989) also used

additional features derived from the side view of the kernels to improve the classification

among Australian wheat varieties. Errors up to 22Vo were reported. Barker et al. (1992a,

1992b, 1992c, 1992d) used features derived from the contour of a wheat kernel positioned

in a fixed orientation to discriminate among Australian wheat varieties. Overall correct

classification among eight varieties was less than 657o.
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Another problem when using plan-form geometrical features was reported by

Zayas et al. (1989). The study on classification of weeds and stone from wheat found

that I27o of the stone pieces were confused as wheat kernels. It is expected that the

addition of color and grayJevel based featurcs will improve the identification of stones.

The use of color features for discrimination among wheat of different classes and

cultivars was tried by Neuman et al. (1989b). Red, green, and blue values were used as

discriminating features. The results were unsatisfactory with errors ranging from l0 to

667o.

Sapirstein and Bushuk (1989) studied the vitreosity of durum wheat by taking the

image of transilluminated kernels and specifying the frequency distribution of gray level.

They found 957o correlation between vitreosity computed by digital image processing

method and replicated official grain inspection of hard vitreous kernels. They also found

a good linear relationship (correlation coefficient : 0.88) between grain hardness

(measured in particle size index or PSI) predicted by computed vitreosity and the

measured PSI score.

Features baséd on whole kernel size, shape, and color, and features of anatomical

parts of a kernel may be essential to meet current grading criteria. An interesting

alternative approach to objective wheat grading may be to find a completely new set of

grading factors which can be easily administered by machine-vision-based grading. Work

reported by Kohler (1991) suggests that variabilities of size, shape, and reflectance

features derived from kernels of a sample can serve as important grading factors. Cargo

samples of CWRS grades l, 2, and 3 were successfully classified using the mean and
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variance of the features as quantitative classification variables (Kohler, 1991). On carlot

samples, however, only grades i and 3 could be successfully discriminated from each

other.

2.4,2 Potential for Automated Grain Monitoring

Unlike grain grading, tolerances in grain monitorÌng can be relaxed. An

approximate knowledge on the contents of small and large seeds (such as canola, mustard,

peas, beans, domestic buckwheat, wild oats) and roughage (such as threshed wheat heads,

stones) in a wheat sample can help in automatically selecting an optimum cleaning

strategy thereby increasing the cleaning throughput.

It is known that different grains of similar shape and size can be classified with

more than 90o/o acc'wacy. Hehn and Sokhansanj (1990) found 99o/o conect classification

between canola and mustard seeds. This and the results cited in section 2.4.1 suggest that

classification of small and large seeds in wheat or barley samples can be achieved by

AVI.

2.4.3 Sample Presentation

The presentation of grain kernels in the field of view (FOV) of an image sensor

was manually controlled in all of the studies cited in section 2.4.I and 2.4.2. Especially,

it was ensured that kemels did not touch one another. An automated grain grading or

grain monitoring system would, however, require an automated seed presentation device.

Few studies have been reported on automating a sample presentation system.

Casady and Paulsen (1989) developed an automated corn kernel positioning device

for machine vision analysis. The device used a vibratory bowl feeder coupled with a
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gating arrangement. An optical sensor at the gating arrangement controlled the metering

of single kernels onto a conveyor belt. The system worked well for singulating sound

corn kemels. Ni et al. (1993) used the mechanism of Casady and Paulsen (1989) to place

the kernels onto a rotating transparent table. A strobe light was used to time the image

capture. The system worked at a throughput rate of 12 kernels/min and was 977o

successful in singulating corn kernels. It was suggested by Casady (1987) that the

vibratory bowl feeding mechanism would not work for wheat and other small grains. The

device was not tested for more realistic grain samples containing grains of more than one

species.

Craig (1993) developed a seed singulation mechanism using a vacuum drum with

rows of radially directed orifices at the drum surface. The seeds were held at the orifices

by vacuum as the drum rotated through a grain sample. An air blast was applied to

remove seeds which were not tightly held, thus improving the singulation. A positive

pressure was later applied to remove the seeds and scavenge the orifices. The device was

tested on samples of wheat, barley, lentils, and canola. The device worked well for

singulating wheat, barley, lentils, and canola. Singulation success was 89 to 947o for

wheat and 78 to 8l7o for barley. A failure in singulation occurred when more than one

kernel or no kernel appeared on a single orifice. The major drawback of the device was

that it was biased towards small seeds. In a mixed sample of wheat and canola with 57o

canola, the device picked 23Vo canola. Design and development of an improved seed

presentation device is currently under progress at the Department of Agricultural

Engineering, University of Manitoba.
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Development of software to carry out feature measurements on the touching

kernels (Shatadal et al., 1992, 1993) would help in the design of the sample presentation

device. The requirement of the device would then be limited to presenting the kernels

in a one-kernel-layer thickness.
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CHAPTER 3 : DISCONNECT ALGORITHM

3.1 Introduction

An image of touching wheat kemels is shown in Fig. 3.1. The kernel regions in

the image are connected to one another by narrow and small isthmuses or bridges. In

developing the disconnect algorithm, the objective was to break the isthmuses without

distorting or changing the shape and size of the individual kernel regions.

Sen'a (1982, pp. 415-416) described an algorithm, known as watershed

segmentation, which could disconnect conjoint circular regions with short and narrow

isthmuses (Chermant et al., 1981; Lantuéjoul, 1980). The watershed segmentation did not

work for disconnecting conjoint kernel regions because of inherent concavities in the

kernel shapes and the unpredictable manner in which an isthmus could be formed. I used

the logic of the watershed segmentation and added heuristics to arrive at the disconnect

algorithm. A separate description of the watershed segmentation is not included here

because it is a subset of the disconnect algorithm. Instead, references are made wherever

a step or equation used in the disconnect algorithm is the same as or similar to a step or

equation in the watershed segmentation.

The image shown in Fig.3.1 is used as an example for showing the image

processing steps of the disconnect algorithm.
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Fig. 3.1. An image of touching wheat kernels, X(0).
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3.2 Algorithm

3.2.1 Step 1: Progressive Erosion

The image of touching kemels (Fig. 3.1), X(0), is eroded by progressively larger

disc structuring elements, D(i), (the disc structuring elements are digital circles) giving

a family of set X(i) (Eq. 3.1):

x(Ð : x(O)oD(Ð (3.1)

i: 1,2,3,4.....m,m+1

Erosion is stopped when the eroded image reduces to a null set, Ø. That is, X(m + 1)

: Ø. T\e null image contains only the background pixels or pixels that are ''OFF¡'.

Erosion by a disc shrinks the foreground components in the image by tuming

trolryrr or removing the pixels from the periphery of the components. Figure 3.2 shows

the erosions of the image, X(0), with disc structuring elements of 5, 9, 14, 16, 7'l and 18

pixel diameter. Those pixels of a region are removed where the structuring element does

not completely fit in the region. As illustrated by Fig. 3.2, erosion with progressively

larger discs removes progressively larger areas leaving only the more distant pixels from

the original boundary of the regions. The isthmuses are broken before any one kernel

region completely disappears. The inherent concavities on the kemel shape, however,

leads to breaking of some of the kernel regions themselves. For the image X(0), shown

in Fig 3.1, the value of m was 18. That is, the image X(0) when eroded by a disc of 19

pixel diameter reduced to a null image. The components which appeff in eroded set X(i-

1) but disappear in the subsequent eroded set X(i), are called ultimately eroded

components or UEC. The UECs, therefore, are the most distant pixel(s) from the
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Fíg.3.2. Erosions of image X(0). (a) - X(s); (b) - X(9); (c) - X(la); (d) -
x(16); (e) - x(17); (Ð - x(l8).
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boundary of a kernel region in the original image. For an image containing kernels of

similar shapes and sizes, disappearing of components dudng progressive erosion occurs

in the last few erosions with bigger discs (Fig 3.2). The image of X(i8) (Fig. 3.2 f)

shows the UECs derived from the kernel regions of X(0) at which a disc of eighteen pixel

diameter could fit.

The progressive erosion (Eq. 3.1) is the same in the watershed segmentation. In

the watershed algorithm, each UEC represents a centre or marker for each convex region

in the original image and the image of disconnected convex regions is constructed by

growing these markers with a logic which prevents joining of already disconnected

growing regions. For the images of touching kernels, however, one kernel region can

yield more than one UEC (Fig. 3.2). lf the UECs are not merged, growing them with the

logic which prevents joining of neighbouring expanding components would lead to

bisected kernels in the final image of disconnected kernels.

In the disconnect algorithm, the UECs are dilated with the objective of merging

the UECs derived from a single kernel region. The UECs appearing in the last eroded

set, X(m), are dilated (F,q.3.2):

Y(0) : x(m)@D(lr) (3.2)

where D(11) is a disc of 11 pixel diameter.

Dilation with relatively larger discs improves the chances of merging UECs

derived from a single kemel region but increases the risk of merging UECs from two or

more neighbouring kernel regions. Trials on several images of touching HRS wheat,

barley, durum, rye, and oat kernels revealed that dilation with an eleven pixel diameter
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in Eq. 3.2 was optimum. Figure 3.3 depicts Y(0). The dilated UECs serve as markers

in the disconnect algorithm.

3.2.2 Step 2: Sequential Thickening

The logic which grows the markers but prevents the neighbouring expanding

components from joining together is implemented via sequential thickening operation with

mixed structuring element, L: (L" Lr). On a square grid the mixed structuring element

for thickening is

a2Q2Q2

ù

a1

Q2

Ql

ú

Ql

where 0,s belong to L,, Qrs to Lr, and x are "don't care" locations. That is, only those

pixels are included in the hit-or-miss transform of an image with the mixed structuring

element, L, where simultaneously the L, locations hit the foreground of the image andL,

locations miss the foreground. There are no restrictions on the "don't care" locations.

The origin of the mixed structuring element, L, is located at the centre and, therefore,

belongs to Lr. For sequential thickening, the above configuration of the structuring

element, L, and its seven other rotations on the grid are used. The result of thickening

is the union of the input image and its hit-or-miss transform.

The conditional sequential thickening of Y(i-l) is limited to growing it within

X(m-i) and is given by:
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Fig. 3.3. Image of Y(0).
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s(i) : Y(i - l)O{lyìx(m - Ð

i: 1,2,3,4.....m

(3.3)

Equation 3.3 grows the components in Y(i-l) to the size they were in X(m-i)

without allowing them to join one another. The conditional sequential thickening is

stopped when S(i) converges. The image of Y(i-l) for an incremented value of i is

obtained after steps 2 to 7 are implemented. The steps 3 to 7 are described in sections

3.2.2 to 3.2.7.

The sequential thickening adds those background pixels to the set Y(i-i) where

0,s fit in the background and the 0rs fit in the foreground. In other words, an "OFF"

pixel can be turned rrONrr as a result of thickening with mixed structuring element, L, if

from eight of its neighbours at least three neighbours as defined by 0, locations are I'ON''

and at least three other neighbours as defined by 0, locations are "OFF". Pixels satisfying

this criterion can only occur at the interface of foreground components with the

background. The logic thus imposed in growing the components prevents their merger.

The image S(1) is shown in Fig. 3.4. The conditional sequential thickening operation of

E,q.3.3 is the same as given in the watershed segmentation (Serra, L982, pp. 415-416).

3.2.3 Step 3: Pruning of Dendrites

As was noted earlier, the criterion for an rrOFF'pixel to turn "ON" as a result of

thickening with structuring element, L, was that at least three of its eight neighbours must

be "OFF" and three others must be rroNrr. The thickening criterion may not be met at

certain pixel pattems along a single-pixel-thick protrusions or dendrites of one or more

components in S(i). For example, two pixels in a dendrite which are connected
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Fig.3.4.Image of S(1).
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diagonally present such a pattern. The dendrites in S(i) are, therefore, removed or pruned

by sequential thinning of S(i) with mixed shucturing element E:(E,, Er):

r(i) : s(Ða{E}

where structuring element, E, is given by:

(3.4)

8l

e2

where e, locations belong to 8,, e, locations belong to E,2, and the origin is at the centre.

The interpretation of the subscripts is the same as it was for the mixed structuring

element, L. That is, only those pixels of the input image are included in its hit-or-miss

transform with the structuring element, E:(E,, Er), where simultaneously E, locations hit

the foreground of the image and E locations miss the foreground. The thinning operation

gives the set difference of the input image with its hit-or-miss transform. Thinning,

therefore, removes those pixels of the input image where e,s fit in the foreground and ers

fit in the background. For sequential thinning, the above configuration of structuring

element, E, and its seven other rotations on the grid are used. The image T(1) is shown

in Fig. 3.5. Note that the dendrite appearing in S(1) is removed in T(1) (Figs. 3.4 and

3.s).

3.2.4 Step 4: Dilation of Small Components

Thickening around certain small pixel patterns (e.9. four pixels arranged to form

a 2x2 square pattern) is not possible. Such small components can occur in image T(i).

Q¡

e2

e2

Q2

81

e2

82
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Fig. 3.5. Image of T(1).
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Small components are, therefore, located (Eq. 3.5) and replaced in the image after dilating

them by a small disc (Eq. 3.6). The size of the small disc depends on the cunent value

of i. For values of i less than 12, a disc of eight pixel diameter is used; for other i values

a disc of five pixel diameter is used.

w(Ð : r(i) / I(r(Ðop(3))@{D(3)} n r(Ðl (3.s)

where P(3) is a three pixel long and one pixel thick structuring element. The origin of

P(3) is located on the middle pixel. The sequential dilation within T(i) is performed until

it converges.

u(Ð : r(i)u(w(Ð@o(s)) (3.6)

The opening of T(i) with P(3) removes components in which P(3) can not entirely

fit. Opening with P(3) ensures removal of all such patterns which are not suitable for

thickening. Sequential dilation on the result of opening within T(i) on the right hand side

(R.H.S.) of Eq. 3.5 restores any component made smaller by opening to its size and shape

in T(Ð. W(i), therefore, contains components which were removed by opening. The

image U(1) is shown in Fig. 3.6.

Let the k,n erosion in Eq. 3.1 represent the erosion step which gives the UECs for

a given kernel region. A single kemel region may split into more than one component

in the k,¡, (k-l),r,, or (k-2)* erosion step. If split components are not merged, the logic of

the sequential thickening (Eq. 3.3) would cause sectioning of a single kernel region into

more than one region. The merging of components which split in the ku, erosion is

attempted by dilating the UECs. The merging of components which split in the (k-l),n

or (k-2)* erosion can occur as a result of step 4, as a result of step 3 and 4 combined, or
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Fig. 3.6. Image of U(1).
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as a result of step 5 described in section 3.2.5. Generally, the components split from a

single kernel region in (k-l),n or (k-2),n erosion are small (i.e. 2x2 pixel pattem or

smaller) or they are made small by pruning the dendrites (Eq. 3.4). Such small

components are detected (Eq. 3.5) and dilated (Eq. 3.6). Dilation of small components

tends to merge split components from a single kemel region. In some cases, dilation of

the UECs may fail to merge split components from a single kemel but steps 3 and 4 may

merge them.

3.2.5 Step 5: Adding DendrÍtes

To further reduce the risk of bisecting a kernel region, the dendrites removed by

pruning (Eq. 3.a) are dilated and placed back in the image (F;q.3.l).

Q(Ð : u(i) u t( s(i) / r(i) ) @ o(z) l (3.7)

Figure 3.7 (a) shows the components split from a single kernel region in the (k- 1 )r,

erosion. Split components became far apart after a dendrite is removed (Fig.3.7 (b)) and

could not be merged as a result of step a (Fig. 3.7(c)). Figure 3.7(d) shows the result of

adding the dilated dendrite. The components were merged in Fig. 3.7(d). Adding dilated

dendrites, however, increases the risk of merging the neighbouring kernel regions which

were disconnected as a consequence of progressive erosion. To reduce the risk of

merging the neighbouring kernel regions, F,q.3.7 is used for i values less than 10.

3.2.6 Step 6: Finding UECs

Various kernel regions in the image of touching kernels may be of different sizes.

Upon progressive erosion (Eq. 3.1), therefore, different regions may completely erode or

disappear at different stages of erosion. Equation 3.8 finds the UECs that disappeared in
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Fig. 3.7. Effect of adding the dilated dendrite. (a) - Split components; (b) -
Components after pruning the dendrites; (c) - After small components
are dilated; (d) - Components merge after adding the dilated dendrite.
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the (m-i+l),n erosion. These components are added to Q(Ð after they are appropriately

dilated (Eq. 3.9).

v(Ð : x(m-i) t[y(i - 1)@{D(3)) fl x(m - i)] (3.8)

(3.e)R(i) : Q(Ðu(v(ÐoD(Ð)

Sequential dilation of Y(i-l) within X(m-i) brings the components in it to their

size in X(m-i). Taking the set difference (Eq. 3.8), therefore, gives those components

which are present in X(m-i) but not in Y(i-l). Figure 3.8 shows V(1), the UECs which

disappeared in the m,,, erosion. Note that the components appearing in V(1) (Fig. 3.8) are

those which appear in X(i7) but disappear in X(l8) (Fig. 3.2). Figure 3.9 shows R(1).

The disc structuring element used for dilating the UECs in Eq. 3.8 is reduced in

size with increasing value of i. For i : I to 4 a disc of eleven pixel diameter is used.

Thesizeisreducedtoaninepixeldiscfori:5to9; asevenpixeldiscfori:10toi4;

and a five pixel diameter disc for i > 14. Such a scheme of dilating the UECs with lower

size disc with increasing i is used to reduce the risk of merging the neighbouring

components as a consequence of dilation. In the watershed segmentation, the UECs are

not dilated.

3.2.7 Step 7: Eliminating the Corners

If a corner pixel of one block of pixels is connected diagonally to a corner pixel

of another block of pixels (Fig. 3.10(a)), thickening around such corner pixels is not

possible (Fig. 3.10(b)). The corner locations are, therefore, eliminated by locating and

dilating them (Eq. 3.10).

y(Ð : R(Ð u I <etil @ c') u etÐ @ c')) @ D(3)l
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Fig. 3.8. Image of V(1).

4l



Fig. 3.9. Image of R(1).
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Fig. 3.10. Effect of eliminating the corners. (a) - Corner between two block of
pixels; (b) - Sequential thickening of the image in (a); (c) - Corner
is eliminated by locating and dilating them; (d) - Sequential thickening
of the image in (c).
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where Gr is a mixed structuring element as given below and G2 is obtained by rotating

Gr on the grid.

8z 8r

Subscripts have their usual meaning. That is, only those pixels are included in the

hitor-miss transform where g, locations hit the foreground and gr locations miss the

foreground simultaneously. Figure 3.10(c) shows the result of locating and dilating the

corner location. Thickening can then take place without any problem (Fig. 3.10(d)).

The image of Y(1) is the same as the image of R(1) because there were no corners

in the R(1) (Fig. 3.11).

Steps 2 to J are repeated until Y(m) is obtained. The steps of the algorithm are

further illustrated in Fig. 3.12(a) to 3.12(k). Note that sequential thickening does not

permit merging of components (Fig. 3.I2(b) and Fig. 3.12()). Note also the merger of

components split from a single kernel using step 4 (Fig. 3.12(c) and Fig. 3.12(e)).

3.2.8 Step 8: Removing the Notches

Preliminary trials showed that Y(m) separates the touching kernel regions but

some kemels tend to have small notches or line segments extending from the boundary

of the kernel towards the inside of the component (Fig. 3.12(k)). To remove the notches,

thinning with the mixed structuring element F, is performed on the complement of the

image:

z: -(-Y(n)A{F})

8r Ez
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Fig. 3.1i. Image of Y(1).

45



Fig.3.l2. Steps of the disconnect algorithm. (a) - Y(2); (b) - y(2)O{L}; (c) -
s(3); (d) - r(3); (e) - u(3); (Ð Q(3). contd..
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Fí9.3.12. Steps of the disconnect algorithm. (g) - R(3); (h) - Y(3); (i) - Y(17);
û) - Y(17)o{r}; (k) - Y(l8).
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where the mixed structuring element F is given by:

*f2f2

fr fi 12

>k f2 f2

The * are the "don't care" locations. In using the rotations of the above configuration of

the structuring element F for sequential thinning, the "don't care" locations are replaced

by f, locations when the two f, locations are diagonally connected.

Z is the resulting image of the separated kernels (Fig. 3.13).
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Fig. 3.13. Image of disconnected kernels, Z.
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CHAPTER 4: MATERIALS AND METHODS

4.L Vision Hardware

A 3 chip CCD (charge coupled device) color camera (Model DXC-30004, SONY)

was used to acquire images. A zoom lens (VCL-1012 BY) of l0-120 mm focal length

was fitted in the camera. The camera was mounted on a stand (Model m3, Bencher Inc.,

Chicago,IL.) which provided easy vertical movement and a stable support for the camera.

The camera was connected to a camera control unit (Model CCU-M3, SONY). The iris

was selectable to manual or automatic mode. The option of the manual iris control was

used to achieve repeatability in the experiments. The automatic gain control of the

camera was disabled. The camera was white balanced before each imaging session.

The red (R), green, (G), and Blue (B) video signals from the camera control unit

(cctr) were converted to a24 bit color digital image by a frame grabber board (Model DT

287I, Data Translation Inc., Molboro, MA). The frame grabber board was installed on

an expansion slot of a personal computer (Model 80386, UNISYS). The frame grabber

could convert the R,G,B color signal to hue (H), saturation (S), and intensity (I), signal

in the real time. The frame grabber had three separate 8-bit A/D (analog to digital)

converters and four 5I2x5I2x8 bit frame buffers. The programs to control the frame

grabber were written in C programming language using the aurora subroutine library

(Aurora, Data T¡anslation Inc., Molboro, MA). Only the intensity buffer was saved for

further analysis. Image analysis was carried out on a workstation (model

SPARCSTATION 2, Sun Microsystems, fnc., Mountain View, CA).
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4.2 Sample Illumination

Uniform diffuse backlighting was used in all the experiments. Backlighting was

preferred for easy and accurate segmentation of the grain kernels from the background.

Four screw-based 100 W tungsten filament bulbs ananged in a ring configuration served

as the illumination source. The ring-lamp was suspended below the object plane. The

light passed through an opal acrylic plate via a centre cut window of 0.11 m diameter.

A voltage regulator (Sola Canada Inc.) controlled the voltage to the lamps within t0.5 V.

A variac was used to change the illumination level by changing the voltage to the lamps.

The illumination level was calibrated by repeatedly digitizing a small and fixed region of

interest on the image of an opal acrylic plate and simultaneously changing the voltage to

the lamps until the mean value of the region hit a pre-selected target value of 230.

4.3 Grain Samples

Grain samples of hard red spring (HRS) wheat (Grade i Canada 'Western Red

Spring), durum wheat (Grade i Canada Western Amber Durum), barley (Special Select

Malt barley), rye (Grade 1), and oats (Grade 1) used in the experiments were obtained

from the Grain Inspection Division of the Canadian Grain Commission (Winnipeg, MB).

4.4 Experiment 1: The Precision

One typical kemel of each of HRS wheat, barley, durum, oats, and rye were

selected for the precision experiment. Repeated backlit images of the same kernel were

taken. The kernel orientation in repeated images of the same kernel was random. The

randomness was ensured by dropping the kernel on the viewing plate. If a kemel

bounced off the field of view (FOV), it was repositioned manually in the FOV. Care was
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taken not to disturb the orientation of the kernel while moving it manually. Fifty five

images of the same kernel of a HRS wheat and 65 images of the same barley, durum, oat,

and rye kernels were taken. An image of a Canadian quarter coin was also acquired for

the spatial calibration of the images. Feature measurements on these kernels were

performed using the same software settings.

4.5 Experiment 2: Testing the Disconnect Algorithm

Samples of each cereal grain were reduced in size by Boerner divider. The

Boerner divider maintains randomness in dividing a grain sample. Foreign or severely

damaged kemels were removed before placing the kernels for image acquisition. The

kernels were randomly dropped through a 30 mm diameter and 30 mm long tube over a

viewing plate. Twenty to twenty five kernels were used for a single image. The viewing

plate was tapped to bring any overlapping kernels to a one-kernel-thick layer. The

kernels that were not close to any other kernel were made to touch at least one other

kernel. In the image of touching kemels, however, a few kernels were not connected to

other kemels. Care was taken not to disturb the random configuration of the kernels

while moving any individual kemel. An image of the touching kernels was acquired and

saved. The kernels were then manually separated without disturbing the orientation of

the kemels. Despite the care, reorientation of some of the kernels could have occurred

unintentionally. An image of the manually separated kernels was also acquired at the

same hardware settings.

4.6Image Analysis

The thresholded images of the touching kernels were first processed by the
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disconnect algorithm described in Chapter 3 to disconnect the conjoint kernel regions.

The disconnected kernel regions thus obtained are hereafter referred to as software-

separated kernels. The term "physically-separated" is used to refer to kernels in the image

of the manually separated kemels. All of the images of the software-separated kernels

and the physically-separated kernels were labelled and the features of all of the kernels

were extracted using the same software settings. Image analysis algorithms used for the

feature extraction are described in Chapter 5.
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CHAPTER 5: IMAGE ANALYSIS

5.1 Primary Segmentation

The objective in the primary segmentation of any acquired image of grains was

to group together pixels participating in the background separately from the pixels

participating in grain kernel regions. The images were acquired in a controlled

environment and were free from noise and other aberrations. A global thresholding

worked well as the primary segmentation technique for all the images. The thresholding

operation assigned a value of zero (black) to all pixels which were above the threshold

and a value of 255 (white) to pixels below the threshold. It was expected that pixels

corresponding to touching kernels would merge forming an isthmus or bridge between

touching kernel regions after primary segmentation. The thresholded images of the

touching kernel images were, therefore, further segmented using the disconnect algorithm

described in Chapter 3.

5.2 Region Labelling

The group of pixels obtained after segmentation did not possess any identity.

Region labelling was performed to assign a unique label or an identifier to each kemel

in the segmented image of physically-separated kernels and disconnected image of the

touching kernels. All the features of a kernel were identified with the label value of the

kernel in the image.

The region labelling algorithm scanned the segmented image once from the top-

left to the bottom-right. Initially, all the pixels had no label. The first unlabelled pixel,
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(i,j), was assigned a unique label value. The same label value was propagated to those

8-neighbours of pixel (ij) which possessed the same pixel value as that of (ij). Eight

neighbours of each of the previous neighbours were examined in succession and those

with the same pixel value as that of (ij) received the same label value as that of (ij).

The propagation of the same label value continued until no more neighbouring pixels with

the same pixel value as that of (ij) could be found. The scan of the image resumed until

another unlabelled pixel was encountered. Haralick and Shapiro (1992, pp. 28-48)

describe this and the other region labelling algorithms.

Each 8-connected component received a unique label in one scan of the image.

Regions with only one pixel were considered isolated noise points and were, therefore,

removed. The output image from the labelling routine is, hereafter, referred to as a

labelled image.

5.3 Feature Extraction

5.3.1 Boundary Tracking

A boundary tracking algorithm is essential to the calculation of the important

features such as perimeter and length of major principal axis. The boundary of a region

can be either 8-connected or 4-connected. Pixels of a region which have at least one of

their 4-neighbours in the background constitute an 8-connected boundary of the region.

A 4-connected boundary of a region is a set of pixels of the region which have at least

one of their 8-neighbours in the background. The 8-connected boundary was used for all

the images.

The boundary of a labelled component is followed as soon as the first transition
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from the background pixel to the first non-zero labelled pixel is encountered in a row by

row scan of the labelled image from the top-left to the bottom right. The boundary

tracking of the component is completed and the scan of the image resumes until another

non-zero labelled pixel is encountered.

For any component with a non-zero label, the boundary tracking begins by

numbering the 8-neighbours of the first encountered pixel of the component (say, i,j).

The pixel (ij) is the first pixel of the boundary. The numbering of neighbours starts with

the pixel on the left of (ij) and proceeds in the counterclockwise direction. Let the

neighbours be numbered as Ro, R1, ....., Rr. The first non-zero neighbour pixel with the

same label value as that of (ij), R,, becomes the next pixel of the boundary and the

neighbour R,-, becomes the next R0. The neighbours are again marked in a

counterclockwise direction starting with Ro. The process is repeated until the first two

boundary pixels are revisited in a sequence. The boundary tracking algorithm is taken

from Rosenfeld and Kak (1982, pp. 220-223).

5.3.2 Area and Perimeter

The area of a component was calculated by counting the number of pixels in the

component. The perimeter was calculated by adding the Euclidean distances (hereafter

referred to as distances) between all the successive pairs of pixels in the boundary of the

component.

5.3.3 Centroid and Angle of OrientatÍon

The centroid, (l,t), of a region, 9t is given by:
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The angle of orientation, 0, of a region, 91, is given by:

g=16o-t¡- :-Pt,t-J

¿ jLz,o-]Lo,z

(s.1)

(s.2)

(s.3)

(s.4)

where po.o is the (p,q) order central moment of the region and is defined as:

ve,q= E t<*-*YO-y>ol
(x,y)eS

The above definitions of the centroid, the angle of orientation, and the central

moments are taken from Jain (i989, pp.392399.

The solution of Eq. 5.3 can give either the orientation of the major principal axis

or the orientation of the minor principal axis.

5.3.4 Length and Width

The length of the major principal axis of a region and the width of the minimum

bounding rectangle were used to represent the length and the width of a grain kernel. To

measure the length and the width, the coordinates of the boundary pixels of the region

were transformed as below:
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¿=(x-x)cosO +þ-y)sinO (s.s)

B = -(x -r)sin0 + (y -y)cosO (s.6)

The coordinates (c, Þ), therefore, were the coordinates of the boundary pixels

when the origin was at the centroid and the cr axis was along the angle 0. The distances

between the crossing points of the boundary pixels (cr,p) with the axis cr : 0 (say; 0,) and

with the axis p : 0 (say, 0r) were determined. The greater of the two distances, [, and

02, wâs the length of the major principal axis.

The distance between two boundary pixels for which the value of cr were

maximum and minimum (say, w,) and the distance between pixels of maximum and

minimum F (say, wr) were determined. The shorter of the two distances, wr and wr, was

the width of the minimum bounding rectangle.

The radii were computed as the distances between the boundary pixels and the

centroid. Maximum and minimum radii, length, width, area, and perimeter were used as

the size features.

5.3.5 Shape Features

All the shape features were derived from the size features. They are defined as:

Thinness *oo _ (Perimeter)2 (s.7)
Area
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Re c tangular Asp e ct Røtio = y!-g: !
width

Areø Røtio - QnnethxWidth)
Area

(s.8)

(s.e)

(s.10)

(s.11)

Rndius Røtio=
MaximumRadius

MinimumRødius

H Ratio=lt
o

I

where p, and or are the mean and the standard deviation of all the radä (i.e. distances of

all the pixels on the boundary from the centroid) of a kernel region.

H ratio is a shape feature that was not used in previous studies on grain shapes.

It is, however, a useful feature because it increases monotonically as a shape becomes

more circular and is independent of orientation and size of a component (Haralick and

Shapiro, 1992). It was expected that H ratio of HRS wheat kernels would be greater than

that of durum wheat, barley, oats, and rye.
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CHAPTER 6: RESULTS AND DISCUSSION

6.1 Effectiveness of the Disconnect Algorithm

Images of the touching kernels of HRS wheat, durum, barley, oats, and rye wero

processed with the disconnect algorithm. In total, 30 images of HRS wheat containing

746 touclting or connected kernels, 20 images of durum containing 391 touching kernels,

19 images of barley containing 376 touching kemels, 15 images of oats containing 286

touching kernels, and 20 images of rye containing 393 touching kernels were used for

testing the effectiveness of the disconnect algorithm in disjoining the connected kernel

regions. Some of the typical results of the disconnect algorithm for HRS wheat, durum,

barley, oats, and rye are illustrated in Figs. 6.1-6.10. A repository of software-separated

kernel images is given in Appendix B. Any disconnected kernel region which was not

bisected or visibly distorted by improper placement of the separation lines was considered

successfully disconnected. The success rate in disjoining the connected kernel regions,

measured as a percent of the number of kernel regions successfully disconnected out of

a given total number of kernel regions that were connected, was 957o for HRS wheat and

durum, 947o for barley, 79Vo for rye, and TlVo for oats.

6.1.1 Influence of Threshold

The thresholded images of the touching kemels were the input to the disconnect

algorithm. Durum kernels were relatively translucent and therefore, a high threshold of

180 was required for their proper segmentation. The threshold of 180 was selected

subjectively by examining the images and histograms of the durum wheat images. Most
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Fig. 6.1. Example of (a) touching and þ)
kernels of HRS wheat.

software-separated
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Fig.6.2. Example of (a) touching and (b)
kernels of HRS wheat.

software-separated
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Fig. 6.3. Example of (a) touching and (b) software-separated kernels of durum
wheat.
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Fig. 6.4. Example of (a) touching and (b) software-separated kernels of durum
wheat.
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Fig. 6.5. Example of (a) touching and (b) software-separated
kernels of barley.

65



Fig. 6.6. Example of (a) touching and (b) softwa¡e-separated
kernels of barley.
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Fig. 6.7. Example of (a) touching and (b)
kernels of rye.

software-separated
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Fig. 6.8. Example of (a) touching and (b) software-separated
kernels of rye.
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Fig. 6.9. Example of (a) touching and (b) software-separated
kernels of oats; two of the kernels were not separated.
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Fig. 6.10. Example of (a) touching and (b) software-separated
kernels of oats; two of the kernels were not separated.
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images of other grains were also segmented at threshold of 180. Two images of oats

were thresholded at 190 and one at 175 because they were not properly segmented at 180.

One reason for the poor performance of the disconnect algorithm on the touching

images of rye and oats was the combined effect of their slender shape and the use of high

thresholds for their primary segmentation. At high thresholds, several pixels at the

isthmus between kemel regions became part of the isthmus when, in fact, they belong to

the background. Use of a lower threshold can make the isthmus short and narrow.

Conjoint kernels can be more easily disconnected if the isthmus is short and narrow. A

bigger isthmus may not be broken by the disconnect algorithm, especially if the kernels

are slender in shape (such as kernels of rye and oats). The kernels of rye and oats are

opaque and it was possible to segment them at lower thresholds. Success rate in

disjoining kernel regions improved to 79Vo (from TIVo) for oats and 89Vo (from797o) for

rye when lower thresholds in the range of 110 to 140 were used.

6.1.2 Limitations of the Disconnect Algorithm

In the disconnect algorithm, heuristics was added (such as dilating the UECs,

adding the dilated dendrite) to reduce the chances of bisecting a kernel. This, however,

could not be done without increasing the risk of leaving some kemels connected. The

important limitation of the disconnect algorithm, therefore, was that a few of the conjoint

kernels could not be disconnected (Figs. 6.9-6.12).

As was noted earlier, the area of an isthmus joining the kernel regions affects the

performance of the disconnect algorithm. This influence can be explained based on the

mechanism of the algorithm. The underlying logic for breaking of an isthmus is that
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Fig. 6.11. Example of (a) touching and 0) software-separated
kernels; two of the kernels were not separated.
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Fig. 6.12. Example of (a) touching and (b) software-separated kernels; two of the
kernels were not separated.
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upon successive erosions of an image of the touching kernels with progressively larger

discs (Eq. 3.I), a stage of erosion comes when a disc does not fit in the isthmus area

joining two or more kernel regions but fits in the kernel regions joined at the isthmus.

Kernels could not be disconnected if the condition of the minimum diameter or the

minimum disc fitting space in the isthmus was not met. In such a case, the region made

of conjoint kemels yielded a single UEC corresponding to the isthmus. This is illustrated

by Fig. 6.13. Notice that a single UEC was obtained for a conjoint kernel region in

which two thin rye kemels were touching each other lengthwise (Fig. 6.i3).

A more frequent cause for failure in disconnecting kernels was that a bigger

isthmus area biased the location of the UECs towards it. In other words, the UECs of

kernel region occurred not near the centres of the regions but rather near the centre of the

isthmus (Fig. 6.13). Such biased UECs of the two kernels wele close to one another and

merged upon dilation (Eq. 3.2 and 3.9). Figure 6.13(c,d) show the biased UECs of the

kernels in two conjoint regions where kernels could not be disconnected.

In a few cases, adding the dendrite after its dilation (Eq. 3.7) and subsequent

elimination of corner locations using Eq. 3.10 also caused merging of the components

which were otherwise disconnected. This is illustrated in Fig. 6.14. Notice that

components (indicated by anows) were separated before the addition of the dilated

dendrites (Fig. 6.1a(a)).

Another limitation of the algorithm was that the separation line, in some cases,

was placed within a kemel region rather than at the isthmus (Fig.6.i5). This happened

because the narrowest section across which a minimum disc did not fit occurred within
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Fig.6.13. Failure in software-separation due to long isthmus (a) - Touching
kernels; (b) - Kernels after software-separation; (c) - Uttimately eroded
components (UECs) of the kernels which could not be separated; (d) -
UEC locations superimposed on image in (b) as black pixels.
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Fig. 6.14. Failure in software-separation due to addition of dilated dendrites and
subsequent elimination of comers. (a) - Two of the components are
separate before adding the dendrite; (b) - Components after adding the
dilated dendrites; (c) - The two components merged after eliminating
the corners.
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Fig. 6.15. Improper placement of the separarion lines. (a) - Touching and (b) -
Separated kernels of oats.
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a kernel region. This was a problem, especially, when a thin tip of an oat kernel was

touching another kernel.

6.2 Precision of the Measured Features

The geometrical feature data from repeated images of a single kemel (Experiment

1) of each grain type (HRS wheat, barley, durum, oats, and rye) were used to determine

the tolerance limits of precision of each of the features for each of the grains. For a

normal distribution of measurements with an unknown mean ìr and an unknown standard

deviation o, tolerance limits are given by x + k.s, where k is determined so that there is

100.^flo confidence that the given limit contains at least l-a proportion of the

measurements (Walpole and Myers,I9J8,pp.220-221) where x and s are the sample

mean and standard deviation, respectively. The value of k depends on ,r¿, cx, and the

sample size, and can be obtained from statistical tables (Walpole and Myers, 1978, pp.

520-521). The variation between the upper and lower tolerance limits is given by 2k.s.

The values of 2k.s for y: 0.99 and ct : 0.05 were calculated for all the features of all

the five grain types based on the data from repeated images of the same kernels. These

values of 2k.s werenamedTo.ssco.os variation and are given in Table 6.1. The values of

To.ssco.os variation were used as a guiding limit when comparing the differences of features

between the software-separated and the physically-separated kernels.

The means and coefficient of variations of all the features for each of the

types are given in Appendix C.

6.3 Geometrical Features of the Software-Separated Kernels

The usefulness of the disconnect algorithm in disjoining the conjoint kernel

gram
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Table 6.1. Comparison of variation in repeated measurements on the same kernels to the differences between the software-
separated and the physically-separated kernels.

Features

Length (mm)

Area(mm2)

Perimeter(mm)

Width(mm)

Min. Rad. (mm)

Max. Rad. (mm)

Thinness Ratio

Rectangular
Aspect Ratio

Radius Ratio

H Ratio

Area Ratio

HRS Wheat

0.79

0.98

0.88

0.6s

0.30

0.20

1.48

0.42

0.4r

2.r7

0.18

Experiment 1: Precision

To.ssoo.os Variation

Durum Barley Oats

0.55 0.50 0.92

2.06 r.70 0.93

r.23 1.56 2.69

0.38 0.46 0.44

0.23 0.21 O.r7

0.20 0.2r 0.37

r.99 2.78 5.51

0.26 032 0.7r

0.45 0.39 0.82

0.36 0. i6 0.15

0.i8 0.22 0.22

Rye

0.48

0.84

r.29

0.35

0.19

0.23

2.90

0.45

0.63

0.28

0.18

Experiment 2: Software Separation

HRS Wheat

0.40

0.84

0.59

0.33

0.1.7

0.15

t.I7

0.20

0.26

0.68

0.r7

To.ssoo.os Difference

Durum Barley Oats Rye

0.37 0.42 0.71 0.35

0.91 0.94 r.20 0.84

0.77 0.84 1.65 0.83

0.27 0.29 0.24 0.29

0.18 0.15 0.16 0.14

0.r7 0.2t 0.29 0.22

1.35 r.73 2.74 2.06

0.18 0.24 0.4t 0.38

0.4r 0.40 0.65 0.52

0.27 0.r4 0.15 0.23

0.r4 0.13 0.t2 0.16
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regions rests on the assumption that the shape or size related features do not change

considerably from their true values. A true value of a feature, in this context, is a value

derived from the image when kernel(s) were not touching one another.

The labelled images of the software-separated and the physically-separated kernels

were visually compared to attach consistent labels to the same kernel in the software-

separated and the physically-separated images. Visual comparison of labelled images was

essential because feature data of a kemel were identified by its label value whereas the

label values of the same kernel in the software-separated image and the physically-

separated image were not the same.

The mean and the standard deviation of the difference in the features between the

physically-separated and the software-separated kernels were used to calculate the

tolerance limits, X¿¡n t k.so,r, for y:0.99 and cr : 0.05 for all the eleven features of the

five types of grains. For each of the grain type, at least 100 randomly selected kernel

data were used in calculating the mean, xdirr, and the standard deviation, s,riff, of the

difference in the measured features. The bigger of the two values, x¿i* * k.su,r, and the

absolute value of xo,r, - k.so,rr, was named lo.sso..os difference. It can be interpreted as the

limiting value for the absolute difference in a feature between the physically-separated

and the software-separated kernels so that there is 997o confidence that the absolute

difference in a feature for at teast 957o of the kemels would be equal to or less than the

limiting value. The To.nno[..., difference values for HRS wheat, durum, barley, oats, and

rye are given in Table 6.1. It is noteworthy that except for the area of oats, the To.ssc[..0s

difference of all other features for all the grain types were approximately equal to or less
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than the To.ssc'.os variation in the precision data (Table 6.1). Software separation, thus,

does not distort or change the geometrical features of HRS wheat, durum, barley, oats,

and rye beyond the tolerance limits of precision.

Table 6.2 shows the percent of kernels for which a feature change after software-

separation was more than To.qsc[..', variation based on the precision data. Note that the

change in the features was prominent for more kernels of oats, rye, and barley than the

kernels of HRS wheat or durum (Table 6.2).

6.4 Pattern ClassÍfication in the Software-separated Kernels

The ultimate use of the feature data set is in pattern classification. To assess the

pattern classification capability of the geometrical features from the software-separated

kernels, procedure DISCRIM of SAS (1990) was used to classify the kernels into the

categories of HRS wheat, durum, barley, oats, and rye. All the eleven features mentioned

in Table 6.1, were used in the classification. The kernel regions that were visibly

distorted due to improper placement of the separation lines and those which could not be

disconnected were not used for the classification. A non-parametric probability density

estimation (vizk-nearest neighbour) was used because the normality assumption does not

hold for oats kemel population (Symmons and Fulcher, 1988c). The classification was

based on the Bayes decision rule which classifies an entity (represented by its pattern

vector) to a class for which the entity has maximum a posteriori probability (Hand, 1981,

Pp. 4-6; Duda and Hart, 1973, pp. 10-20). The confusion matrix for a cross validation

or leave-one-out classification is given in Table 6.3.
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Table 6.2. Percent of kernels for which a feature changed more than the To.ssc['.0s Variation.

Lengfh

Area

Perimeter

width

Minimum Radius

Maximum Radius

Thinness Ratio

Rect. Aspect Ratio

Radius Ratio

H Ratio

Area Ratio

HRS wheat

0

2

0

0

0

0

0

0

0

0

3

0

1

0

0

0

0

0

2

i
1

Barley

1

0

0

0

0

J

0

1

5

0

0

2

I
0

0

J

1

0

0

2

2

0

Rye

1

J

0

I

1

J

0

2

2

2

J
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Table 6.3. Confusion matrix for the software-separated kernels.

Categories (to)-,
(from)J

HRS
Wheat

Durum Barley Oats Rye

HRS Wheat (n:424)

Durum (n:2a0)

Barley (n:260)

Oats (n:217)

Rye (n:317)

225 4
(93.77o)

9 239
(91.97o)

2 11

414
(91.60/0)

2

1

0

7

0

0

10

189 15
(87.17o)

2 293
(92.4%o)

In the leave-one-out classification, one sample, at a time, is classified and the

remaining n-l samples serve as a training set. Among commonly used methods of error

estimation in classification, the leave-one-out method yields the most unbiased estimate

of the expected true error (Hand, 1981, pp. 186-190). It avoids drastically dividing the

available data into training and test sets, while maintaining an independence between them

(Fukunaga and Hayes, 1989).

The overall correct classification for all the five grain categories together was

93.3Vo. Except for the oats, the classification of software-separated kernels was

satisfactory $able 6.3). The lack of discriminatory power of the geometrical features

alone for the classification of oats was reported by Sapirstein and Bushuk (1989).

Sapirstein and Bushuk (1989) found that the addition of the mean gray level feature of

grains improved the classification of oats. It is expected that addition of gray-level or
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color dependent features will improve the classification of software-separated kernels,

especially because such features would not be affected by the disconnect algorithm.

From a wheat grading perspective, a 3-way classification among HRS wheat,

durum, and other cereals is more important. For the 3-way classification, correct

classification for HRS wheat and durum remained the same as before. The other cereal

class (including barley, oats, and rye together in one class) was correctly classified with

96.37o success. The overall correct classification into three categories was also 96.37o

(Table 6.3).

The classification of the physically-separated kernels into the categories of HRS

wheat, durum, barley, oats, and rye using non parametric classification (k nearest

neighbour estimation) with the leave-one-out method is given in Table 6.4. The overall

correct classification achieved was95.}Vo. Thus, 1.7%ô additional kernels were correctly

classified for the physically-separated kernels when compared to the classification of the

software-separated kernels. Most of the additional misclassifications of the software-

separated kemels occurred for oats and rye kemels (Tables 6.3 and 6.4).

Another approach to calculate the additional misclassification caused by the

software-separation is to treat the physically-separated kernels as a taining set and the

software-separated kernels as a test set. As was mentioned above, the overall correct

classification for the physically-separated kernels was 95.}Vo. The classification results

for the software-separated kernels in this case is given in Table 6.5. The overall conect

classification in this case was 93.37o, the same as that obtained with the leave-one-out

method for the software-separated kernels.
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HRS wheat (n:424) 418 5 0 0 1

(98.5o/o)

Durum(n:za$ 2 221 4 0 7
(94.57o)

Barley (n:260) 1 5 241 10 3
(e2.6)

oats(n:217) 0 I 6 t97 13

(90.77o)

Rye(n:317) g 4 3 5 302
(95.27o)

Table 6.4. Confusion matrix for the physically-separated kernels.

Categories (to)-* HRS Durum Barley Oats Rye
(from)I Wheat

Table 6.5. Confusion matrix for the software-separated kernels when they are
treated as a test set.

Categories (to)-, HRS Durum Barley Oats Rye
(from)l Wheat

HRS wheat (n:424) 416 6 0 0 2
(98.t%o)

Durum(n:240) I 229 3 0 7
(95.47o)

Barley(n:260) I 6 241 6 6
(92.67o)

oars (n:217) 0 3 tl 183 20
(84.3Vo)

Rye(n:317) 5 14 3 3 292
(92.17o)
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In an n-dimensional feature space, the pattern classes (classification categories)

form n-dimensional hyperclouds. A sample which occurs in the vicinity of the boundaries

between two or more hyperclouds is a most likely candidate for the misclassification.

Only those changes in the features subsequent to the software-separation which would

bring a sample's feature vector from inside of its pattern's hypercloud to the surface, can

cause additional misclassification. In this respect, a small change in a feature vector

which is already near the surface of its pattern's hypercloud can be more detrimental than

a relatively large change in the feature vector which is deep inside the pattern's

hypercloud. Also, a small change which pulls a pattern to the surface of its hypercloud

is more serious compared to a relatively large change which pulls the pattern towards the

centre of the hypercloud.

Results presented in Tables 6.1 to 6.5 demonstrate that the geometrical features

of the software-separated kemels were not distorted and can be successfully used in

discriminating HRS wheat from durum and other cereal grains.
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CHAPTER 7: CONCLUSIONS

Feature measurement and classification of grain when the imaged samples contain

touching kernels may be essential for automated grain sample analysis. In this study a

mathematical morphology based algorithm was developed for disconnecting the conjoint

regions in the image of touching kernels. A grain feature extraction routine was also

developed to measure the area, perimeter, length, width, maximum and minimum radii,

rectangular aspect ratio, thinness ratio, radius ratio, area ratio, and the ratio of the mean

to the standard deviation of all the radii. The study shows that the software-separated

kernels retain their geometrical features and can be successfully used in classification of

cereal grains used in the present study. The following specific conclusions can be drawn:

t. The algorithm was successful in disconnecting 95o/o HRS and durum wheat, 94Vo

barley, 897o rye, and797o oats conjoint kernel regions.

Except for the area of oats, the change in the features of the software-separated

kernels from the corresponding feature values of the physically-separated kernels

was less than or equal to the variation within tolerance limits of the measurement

system.

Hard red spring wheat was discriminated from durum and other cereal grains with

97.6Vo success using the geometrical features of the software-separated kernels.

The overall classification success of 93.37o was achieved in a five-way

classification of the software-separated grains among HRS and durum wheat,

barley, oats, and rye. A very few additional kemers (r.77o) were correctly

2.

-1-

4.
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classified for the physically-separated grains.
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CHAPTER 8: CONTRIBUTION TO KNOWLEDGE

A general solution to the image segmentation problem containing touching objects

has not been reported in the published literature. In this research a heuristic algorithm

was developed for the segmentation of touching grain images. The aim of the algorithm

was to disconnect the conjoint kernel regions in the image. A strict convexity for the

touching objects was not assumed. The algorithm, therefore, can be used in the

segmentation of touching patterns of other objects of approximately convex shape if the

radius of the largest circle fitting inside the connected regions when the circle is translated

to the centre of the isthmus joining the objects is smaller than the radii of the largest

circles fitting in the objects.

It was demonstrated that the software-separated kernels preserved their geometrical

features. The design requircments for a grain sample presentation device can be

simplified based on the knowledge from this research. Especially, presentation of

multiple kemels to the camera will be possible so long as kernels do not overlap.
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CHAPTER 9: RECOMMENDATIONS FOR F.UTURE RESEARCH

The effectiveness of the disconnect algorithm developed in this study is affected

by the size of the isthmus joining two or more kernel regions. Investigation into the

image segmentation techniques should be made with the objective of reducing the length,

width, or both of the isthmus.

The classification of the software-separated kernels should be retried after adding

the color and gray level dependent features in the pattern vector.

Wheat and other cereal grains found as inseparable foreign material in wheat

samples were sfudied. To arrive at a broad based conclusion, however, the disconnect

algorithm should be tested for other small and large seeds found in commercial grades

of wheat and barley.

Implementation of the disconnect algorithm in specialized image processing

computer architecture (such as Nr array processor) to achieve realistic speed and a sample

presentation device which can present the grains in a single-kernel-layer to the camera's

field of view are essential for automation of grain sample analysis. Work in both these

areas is needed.
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Appendix A

Primary and Export Grade Determinants for red spring wheat (Canada \{estern)
(Source: Officiat Grain Grading Guide (1987), Canadian Grain Commission, Winnipeg)
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Appendix B

A Repository of Software-separated Kernel Images



Fr€. B1: Example of (a) touch-irg and (b) separated
kernels of llHS wheat

B-1



Fr€. B2: Exarnpfe of (a)

kernels of tlRË

touch-iry änd (b) separated
wheat

B-2



Frå. B3: Example of (a)

kernels of llHS

touch-i-ru and (b) separated
wheat

B-3



Frg. B4: Exampfe of (a) toucÏ:-ing and (b) separated
kernels of FIRS wheat

B-4



Fr€. B5: Exarnple of (a)

kernels of llRS

(b) separatedtouchiry and

wheat

B-5



Fr€. Bfi: Example of (a)

kernels of llRS

touch-fug and (b) separated
wheat

B-6



Fl€. B7: Exampfe of (a) touch-j¡g and (b) separated
kerneLs of tlRS wheat

B_T



Fr€. BB: E¡rample of (a) touch-j¡g and (b) separated
kernels of FIHË r*rheat

B-B



Fr€. B9: Example of (a)

kernels of tlRS

touch-iry and (b) separated
rr¡heat

B-g



Fr€. Elû: Exanrpfe of (a) touchi:u and (b) separated
kernels of FIHS wheat

B-1 0



Fr€. 811 : Exarnple of (a) touchiry änd (b) separated
kerneLs of tlRS wheat

B-1 1



Fr€- 812: Exarnple of (a) touch-i¡g and (b) separated
kernels of llHË wheat

B-1 2



Fr€- 813: Exampl-e of (a) touch-i¡g and (b) separated
kernels of tlHË wheat

B-13



Fr€- 814: Example of (a) touch-iru and (b) separated
kernels of llRË wheat

B-14



Fr€. 815: Example of (a) touch-i¡g and (b) separated
kernels of tlRS wheat

B-15



Fr€. 816: Exarnpfe of (a) touch-ire and (b) separated
kernels of llHS wheat

B-16



Fr€. 817: Example of (a) touch-i¡g and (b) separated
kernels of llRS wheat

B-i?



Fr€. 818: Example of (a) touclr-iïs änd (b) separated
kernels of llRS wheat

B_18



t'r€- 819: Example of (a) touch-iff and (b) separated
kernels of llRS wheat

B-19



Fr€. B2û: Exarnple of (a)

kernels of llHË

touch-iry and (b) separated
wheat

B-20



F:e get: Exarnple of (a) touclriff ând (b) separated
kernels of IIRS wheat

B-21



Fr€- 822: Exampfe nf (a)

kernels af HRS

touchiïs ånd (b) separated
rllheat

B-22



Fjg. 823: E:ranrple of (a)

kernels of llRS

touchjry and (b) separated
wheat

B-23



Fr€. 24: Exampfe of (a)

kernels of HRS

touchiry and (b) separated
t+heat

B-24



t'r€. 825: Example of (a)

kernels of HRS

(b) separatedtouch-iry and
rqheat

B-25



Fr€. 826: Exarnple of (a) touch-iry and (b) separated
kernels of llRS rryheat

B-16



Fr€- B2T: Exampfe of (a)

kernels of tlRS

touchj¡g and (b) separated
wheat

B-27



Flg' BZB: Exampl-e of (a) touch-iry and (b) separated
kernels of durum

B-28



Fr€. 829: Example of (a) touch-iry and (b) separated
kernels of dr.:rum

B-ä9



Fig- E3t: Exarnple of (a) touchfuu and (b) separated
kerneLs of dr¡rum

B-3t



Frå- 31: Exampl-e of (a) touchïu and (b) separated
kernels of dr_rum

B-31



Frå. 832: Example of (a) touchi¡g and (b) separated
kernels of drnun

B-32



Fr¡,- 833: Exarnple of (a) touchiïs änd (b) sepalated
kernels of drnum

B-33



Frg- 834: Exanrple of (a) touchi¡g and (b) separated
kernels of druun

B-34



Fre. 835: Exarnpfe of (a) touching and (b) separated
kernels of durum

B-35



Fjg. 836. Example of (a) touchirs and (b) separatedkernels of durutrr.

B-36



Fr€. 837. Exarnpfe of (a) touchirs and (b) separated
kernels of dururu

E-37



Frs. B3B. Exainple of (a) touch-iru and (b) separated
kernels of dt.lruru

B-38



Fr€. 839. Exarnple of (a) touchi¡g and (b) separated

kernels of dururu

B-39



Fr€. B-40 Example of (a) touch-ins and (b) separated
kernels of dururu

B-40



Fr€. B-41. Exampl-e of (a) touchi¡g and (b) separated
kernels of dr¡ruru

B-41



t'r€. B-42. Example of (a) touch-iru and (b) separated
kernels of dururu

E-42



Frå. 43. Exampl-e of (a) touclri:u and (b) separated
kernels of dururu

ia

B-43



Fr€- 844. Exampfe of touchi¡g (a) and (b) separated
kernels of dr.rulu

B-44



Fr€. 845. Example of (a) touclri¡g and (b) separated

kernels of dururu

B-45



Frå. 846. Example of (a) touchi¡g and (b) separated

kernels of barfey.

B-46



Fi€, 847. Exampfe of (a) touch-i:u and (b)

kernels of barfeR
separated

B-47



Frs. B4B. Example of
kernels of

(a) toucLri¡u and (b)

barlen

separated

B-48



Frg. B4g. Exarnpl-e of (a) touchi¡g and (b) separated

kernels of barleR

B-49



Frg. B5û. Example of (a) touch-iry and (b)

kernels of barfey.
separated

B-50



Fr€. 851. Exarnple of (a) touch-iru and (b) separated
kernels of barleR

E-51



Fr€. 852, Exampl-e of (a) touchj¡s and (b)

kernels of barfeR
separated

B-52



Frå. 853. Example of (a) touchi¡g and (b) separated
kernels of barley.

B-53



Flg. 854. Example of (a) touch-i¡g and
kernels of barleF

(b) separated

B-54



Frg. 855. Exampfe of (a) touchiru and (b)

kernels of barfeR
separated

B-55



Frg. 856. Exarnple of (a) touch-hs ând (b) separated
kernels of barleR



Frs. B5?. Exarnpl-e of (a) touch-i¡g and (b)

kernels of barley.

separated

B-57



Fr€. B5B. Exarnple of (a) touch-i¡u and (b)

kernels of barleR
separated



Fr€. 859. Example of (a) touchjrg and (b) separated

kernels of barl-ey.

B-59



Fr€. 860. Example of (a) touch-i¡g and (b) separated

kerneLs of barfeR

B-60



Frg. 861. Exanple of (a) touch-i¡g and (b) separated

kernels of barley.

B-61



Frg. 862. Exarnple of (a) touchiff and (b)

kernels of barley.

B-62

separated



Fr€. 863- Exampfe of (a)

kernels of rye.
touchiry and (b) separated

B-63



Fr€. B-64. Exampfe of (a)

kernels of rye.
touchiry and (b) separated

B-64



Fr€, 865. Exarnpfe of (a)

kernels of rye,

touch-iry and (b) separated

B-fi5



Fr€. 866. Exampl-e of (a) touclrirg and (b) separated

kernels of rye.

t- t-1-f_UU



t'r€. B6?. Exanrple of (a) touch-ins änd (b) separated

kernels of rye.

B-67



Fr€. B6S, Example of (a) touch-irs and (b) separated

kernels of rye.

B_fi8



Fr€. 869, Exampfe of (a) touch-i-ru and (b) separated

kernels of rye.

B-69



t'r€. BTt. Exampl-e of (a) touch-iff and (b) separated

kernels of rye.

B-7t



Fr€. 871. E:rample of (a) touch-iïs and (b) separated

kernels of rye.

B-71



Fr€. BTZ* Exampfe of (a) touch-iru and

kernels of rye-

B-72

(b) separated



Fr€. 873. Exampfe of (a) touch-i¡g and (b) separated

kernels of rye.

B-73



Fr€- ET4, Example of (a) touch-irg and (b) separated

kernels of rye-

B-74



Fr€, 875- Exarnple of (a) touch-i¡s and (b) separated

kernels of rye.

B-75



Frs. 876- Exarnple of (a) touchj¡g and (b) separated

kerneLs of rye,

B_T6



Fl€. BTT. Example of (a) touchiru and (b)

kernels of rye.

separated

B_77



Fr€. B?8. Exarnpfe of (a) touchins and (b)

kerneLs of rye.

separated



Fi€. 879- Exampfe of (a) touchi¡g and (b) separated

kernels of rye.

B_Tg



Frg. BBt. Example of (a) touch-i¡s and (b)

kernels of oats.
separated

B-BO



Frå. BB1. Exampfe of (a) touch-iïs and (b) separated
kernels of oats.

B-81



Fr€- BB2. Example of (a) touch-iry and (b) separated
kernels of oats.

B-82



Fr€. BB3- Example of (a) touch-ing and (b) separated
kerneLs of oats.

B_83



Fi€. BB4. Example of (a) touch_i¡s and (b)
kernels of oats.

separated

B-84



Frg, BB5. Exanpfe of (a) touch-i¡g and (b) separated
kernels of oats.

B-85



Fi€. BB6. Example of (a) touch-iry and (b) separated
kernels of oats.

B-86



Fr€. BB?. Example of (a) touchi¡g and (b) separated
kernels of oats"

B_87



Fr€. BBB. Exarnple of (a) touching and (b) separated
kernels of oats.

B_BB



Frg- BBg- Example of (a) touch-j¡s and (b)
kernels of oats.

B-89

separated



Fi€. B9ü. Exarnple of (a) touclri¡g and (b) separated
kernels of oats.

B-St



Fr€- Bg1. Exarnple of (a) touch-i¡g and (b) separated
kernels of oats.

B-91



Appendix C

Results from the Experiment 1: Precision



Table Cl. Mean values of the features from Experiment L: precision.

Features

Length (mm)

Area (mm2)

Perimeter (mm)

Width (mm)

Min. Radius (mm)

Max. Radius (mm)

Thinness Ratio

Rect. Aspect Ratio

Radius Ratio

H Ratio

Area Ratio

HRS wheat

5.83

L6

15.23

3.80

r.62

2.93

14.15

1.54

1.81

5.64

r.37

1.90

20

r8.62

3.46

r.44

3.94

17.49

2.28

2.73

3.28

t.39

Barley

r0.02

25

23.38

3.75

1.60

5.08

21.75

2.67

3.16

2.78

r.52

12.35

25

27.t5

2.85

T.I7

6.36

29.77

4.34

5.43

2.20

r.44

Rye

7.49

t4

16.77

2.58

1.05

3.87

20.77

2.89

3.69

2.67

t.44

c-1



Table C2. Coefficient of Variation (7o)* valaes of the features from Experiment 1: Precision.

Features

Lengttr

Area

Perimeter

widrh

Minimum Radius

Maximum Radius

Thinness Ratio

Rect. Aspect Ratio

Radius Ratio

H Ratio

Area Ratio

HRS wheat

2.67

1.18

L.T3

3.39

3.6r

1.34

2.06

s.35

4.42

7.57

2.55

Durum

t.42

2.10

t.33

)))

3.19

r.04

2.30

2.34

3.34

2.24

2.58

x Coefficient of Variation : (Standard Devation / Mean) x 100

Barley

r.02

r.37

1.35

2.51

2.60

0.83

2.58

2.39

2.52

t.14

2.87

Oats

1.49

0.76

r.99

3.07

2.87

r.t6

5.t5

3.32

2.52

r.37

3.r3

Rye

r.29

r.25

1.56

2.13

3.16

1.18

2.82

3.16

3.47

2.r4

2.50

c-2


