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ABSTRACT

The central topic for this thesis is modelling and control of robot manipulators.

Akinematic analysis is presented, based on the Denavit-Hartenberg representation.
As a result of this analysis, some important expressions are developed that are later applied in the
dynamical modelling of robot manipulators. Important properties of the model , which are exploited
in control system analysis are presented.

An original proof is presented for the stability of the so called PD plus computed
feedforward compensation controller, that has shown to have excellent performance in experiments.

A new stable PD-type adaptive control law is presented, for independent—joint con-
trol of manipulators, with parametric uncertainties in the actuators. We show in simulations that this
controller has a very good performance and no case was founded in which the parameters were not

identified.
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0. INTRODUCTION.

INTRODUCTION.

There are several disciplines involved in the study of robotics, namely mechanical
engineering, computer science, electronics, mathematics, physics and control engineering[3]. This
work has been written from the point of view of control engineering. In order to design a control
system that will accomplish a desired task with the use of a robot manipulator, we need a design-spe-
cific controlier [1,2,3,4,16]. From the theoretical point of view, it is very important to have access
tothe model of the manipulator we are dealing with. This is the first motivation for the study of robot
dynamics. There are several approaches that can be used to develop useful expressions for the dy-
namics of the robot. From all these techniques for modelling, the Fuler-Lagrange approach [4,16)
provides us with a model with some very useful properties [4,9,16] that allow us touse powerful tools
for the analysis of the closed-loop system, for instance functional analysis [5] and Lyapunov’s stabil-
fty theories [12,17]. This model have been developed in the past years and it have been used to design
control algorithms, from PD~type [1,7,11,13] to adaptive [4,6,8,14,15], based primarily on those

properties.

THE PROBLEM.

There are several experimental results confirming the theory of robot controllers.
Particularly, the PD plus computed feedforward compensation controller has been used in experi-
ments with excelent results, unfortunately no stability proof has been presented. We develop the
proof in this document.

‘The motivation that originated these kinds of controllers is that, although recent
technological advances and reducing costs in the field of digital electronics, have permitted the em-
ployment of microprocessor-based equipment, with high speed and powerful computations, in con-
trol of robot manipulators, it is of great interest the use of control techniques that include a reduced

number of operations to be done on-line. Among these control techniques are computed feedfor-
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ward and PD plus computed feedforward. The main advantage of these controllersis that all the feed-
forward terms can be calculated off-line.

In[11}a PD controller with cancellation of gravity was proposed, using a precom-
puted feedforward gravity compensation. It was shown that the closed-loop system is stable. The
PD plus computed feedforward controlier [1] is an extension of this work, in which a precomputed
compensation is introduced in the system for the overall dynamics of the robot.

Feedforward is a technique in control theory [1,17] that allows us to deal with prob-
lems of additive perturbations in the input and parametric uncertainties in the model. Feedforward
refers to the addition of precomputed terms to the control action at input of the plant. This technique
gives some very good results in adaptive control. A good example is presented here, where an adap-
tive feedforward compensation has been added to a PD-type controller.

Electric motors are one of the most used energy source in low power industriat appli-
catons. We present the analysis of a controller for direct current motors (DC motors), to be used as
actuators in robot manipulator joints, where we need great precision in the following of trajectory
specifications. Brushless motors that emulate via a power electronic interface, the linear transfer
function of a DC motor, are widely applied in industrial robots. We are interested in those cases in
robotics, in which independent joint control is enough to satisfy conirol objectives.

There exists a great variety of commercial electronic equipment for DC motors, des-
ignated to the applications of velocity regulation, and in less scale for position regulation. This is
due to the fact that in the majority of the industrial applications, DC motors are used in tasks that in-
volve motion at constant velocity. However, there are applications in which velocity regulation or
positionregulation is not enough to satisfy certain specifications of motion. Applications in robotics
are a typical examples, where it is required for the manipulator to follow time-varying trajectories
of position and velocity. Electronic equipment for these kinds of applications is practically absent
in the market, due to the lack of economic feasability.

Although commercial equipment can be successfully used to regulate velocity and
sometimes regulate position, they cannot be satisfactorily used inrobotics. In this situation, the con-
troller must be specifically designed for the model that characterizes the dynamical behaviour of the
system. The situation could be still more complex, when the parameters of the model are difficult

to be quantified, of openly unknown. The study of this case was the motive for the development of
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the present analysis. We use the model of a DC motor presented in [10]. There are three previous
solutions to deal with this problem, presented in

a) State Feedback Controller with Adaptive Compensation [6],

b) PD Controller with Adaptive Compensation {14,15], and

¢) Adaptive Computed Torque Controller {8].

The simplest of these controllers is the state feedback controller with adaptive com-
pensation. A disadvantage of this controller is that, it is conditioned to an adequate selection of v,
The type of reference functions g,(} is also restricted. In the last two controllers this does not hap-
pen, but they are much more complex. We propose a simple controller that satisfies the control ob-
jective. Although, we do not show convergence of the parametric error to zero, we found in all our
simulations, that it does,

This approach is interesting from the application point of view, because we can add
the compensation to an existing proportional-derivative controller.

‘The simulations presented here were made using the simulation package for nonlin-

ear systems SIMNON [128].
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ORGANIZATION.

The document is organized as follows.

In order to make the document self-contained, it was decided to include a first chap-
ter with some well-known mathematical results, thatare widely used in the analysis or robot control
systems. We use this concepts throughout the whole document.  In this Chapter 1, we present
some important properties from linear algebra, that we will need in the development of the dynamical
model of the manipulator in Chapters 2 and 3. 'We also present some basic concepts and theorems
related to Lyapunov stability analysis. At the end of the chapter, we include some definitions about
certain important normed spaces, that we use to prove convergence of control algorithms. After a
review of important mathematical results, we present adetailed development of the dynamical mod-
el of arobot, since this is the starting point for the understanding of its properties and also for the study
of problems like robots with fiexible links and joints.

Kinematics of manipulators is a starting point for adynamical analysis. Thus, it was
decided to include a basic kinematic analysis in Chapter 2. We start by introducing some general
material about homogeneous transformations. Wedescribe the kind of robot manipulator we are con-
sidering, and its kinematic configuration, considering positions, velocities, and accelerations. The
forward and inverse kinematic problems are alsostated. The mainresult of the chapter is the develop-
ment of the expressions for the Jacobian matrix. Atthe end of the chapter, we present some remarks
about singularities, and the inverse velocity and acceleration problems.

A good understanding in the dynamics of the manipulators is essential for the analy-
sis of their control systems, that will lead it to perform tasks in the real world. After careful review
of the existing literature, the author selected the most important issues related to robot manipulator
modeling and elected to put them together in a clear and compact form in Chapter 3. Again, this
chapter starts with some general considerations, that have to be well understood, since they are the
basis for the development of the dynamical model that is required in the design of robot manipulator
control algorithms. We present the dynamical model of arobot manipulator of n degrees of freedom.
We introduce the development of the Euler-Lagrange equation of motion, for a system of particles
with constraints of motion. We find expressions for the kinetic and potential energy, which we use

todefine the Lagrangian of the system. Then, we consider the robot manipulator to be a system with
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constraints of motion of the form described before. This enables us to apply the Euler-Lagrange
equation of motion in the development of its dynamical model. With particular expressions for the
kinetic and potential energy, we form the Lagrangian of the manipulator, and finally, its equation of
motion. At the end of the chapter we mention some important properties of this model.

In Chapter 4, we present the analysis of two motion controllers for robot manipula-
tors: computed feedforward and PD plus computed feedforward, The latter has shown to have an
excelent performance inexperiments [1]. However, no analysis was presented, We study existence
and uniqueness of equilibrium points, stability and achievement of the control objective for the over-
all control system. The chapter is organized as follows. In Section 4.2, we present the dynamical
model of a robot manipulator with n degrees of freedom (dof), rigid links, and ideal actuators. Using
some important properties of the model, we rewrite the dynamical equation in terms of the state vec-
tor. Then, the problem formulation is stated in Section4.3. The analysis of the computed feedfor-
ward controller is presented in section 4.4. In Section 4.5, we present the analysis of the PD plus
computed feedforward controller. We present simulation results in Section 4.6, for the manipulater
of one degree of freedom (dof). 'We give some conclusions in Section 4.7, and the references are
listed at the end of the chapter.

In Chapter 5, we present the design of an adaptive controller for direct current mo-
tors, with parametric uncertainties, that can be applied torobot manipulators. We show stability and
achievement of the control objective for the overall control system. The chapter is organized as fol-
lows. In Section 5.2, we present the dynamical model] of a DC motor controlled by armature. In
Section 5.3, we state the control problem. In Section 5.4, we mention some previous reported solu-
tions. We present the control and adaptation algorithms, and the stability analysis in Section 5.5.

In Section 3.6, we present some simulation results. We give some conclusions in Section 5.7, and
the references are listed at the end of the document.

Thereader interested in kinematics with a good background in linear algebra can di-
rectly to Chapter 2. For a more detailed discussion see{3,17]. Thereader interested in the dynamics
of therobot can go directly to Chapter 3. The reader interested in control only and with a good knowl-
edge of Lyapunov theory will not have problenss to understand Chapters 4 and 5, however we recom-

mend to read the review in Chapter 1.
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Chagpter 1. Preliminaries

1. PRELIMINARIES.

In this chapter we present some important properties from linear algebra, that we will
need in the development of the dynamical model of the manipulator in Chapters 2 and 3. We also
present some basic concepts and theorems related to Lyapunov stability analysis. Atthe end of the
chapter, we include some definitions about certain important normed spaces, that we use {0 prove

convergence of control algorithms,

1.1 LINEAR ALGEBRA.,

We present some basic concepts of linear algebra, that we will use in this work.
First, we denote the set of real numbers as R, and the set of real vectors as R™. We are going to work
in the vector space (R™"R), which denotes the vector space of all real nxn matrices, over the field
of the real numbers, with the conventional matrix addition and scalar muitiplication. Itis wellknown
that the real numbeis form a field with the standard addition and multiplication. From the definition
of vector space, we have that (R™",R) is closed, associative, distributive and commutative under ma-
trix addition and multiplication, and there exist the elements O and 1in R, and 0 and I in R™7, called
the zero and the identity.  We also use the subset (R*R) of (R"™",R), whichis closed, and therefore,
asubspace under vector addition and scalar multiplication. We uselowercase boldfaceletters toindi-
cate vectors in R", and uppercase letters to denote matrix. All the vectors are assumed to be column

vectors, unless otherwise stated. Then, the notation x € R*, means
X
X2

x=1] | x;, €R

The Euclidean norm of a vector is defined as

x| = (F+a3+ -+ 2212 = <x,x>12
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The inner product of two vectors in R" is defined as
T
SXY> =Xy =00 0yt Xy,

With these two operations, the subspace (R"R) becomes an inner product space. The outer product

of two vectors in R” is defined as

Xi¥1 "t X1¥n
X2¥1 't KXo
xyT _ ] i
Xn¥1 " Ay

The inner product and the outer product are related by

<xy> =xTy = Tr(xy")

Where the function Tr(.) denotes the trace of a matrix, and it is defined as the sum of the diagonal
elements of the matrix. The following definitions will be quite important in our analysis.

Def. Orthogonal matrix. The square matrix A=(a;;)€ R™"is said to be an orthogo-
nal matrix if and only if ATA=/J.

Consider the orthogonal matrix R=[r; ry r;]7e R | where r,e RS, for i=1,2.3.

Then, the following relationships follow from the definition
ol =l = frsff =1

<rIp> = <rr> = <ry,r> =0

Def. Symmetric matrix. A square matrix A=(a;)€ R™"is 5aid to be symmetric if
it is equal to its transpose, i.e. A=A7, in other words @=aj;.

Def. Positive definite matrix. LetA=(ay)e R™" and A’=A. Then, A is called posi-
tive definite matrix if and only if x’Ax > 0, for every n-dimensional real column vector {x; x» ...
%170,

Anuseful inequality presented in [3](pp. 161)isx’Ax = A, (AX'x > 0, where
Amin{A) is the minimum eigenvalue of A,

The following theorem guarantees the existence of the inverse of a positive definite

matrix.
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Theorem 1.1 ([3] pp. 163) Areal symmetric matrix is positive definite if and only
if A=PTP, where P is nonsingular.

1t follows that since P is nonsingular, det{ P)+0, then
det(A)=det(PTP)=de(PT)det(P)+0.

Def. Skew symmetric matrix, A square matrix A=(a;)is said to be skew symmetric
if it is equal to the additive inverse of its ranspose, i.e. A=-A7, in other words a;=-a;.

Let us consider the set of all 3x3 skew symmetric matrices. Let S be a 3x3 skew

symmetric matrix. By definition we have that

sT+8=0
or

Sj,'+S;j=O, i,j=1,2,3

Consider f=i, then 5;=0, for /=1,2,3, Thus S has the following form

0 -85 &
S=1 5 0 -5 (i.1)
— 89 83 0

Then, for a given vector a={a, a; as] T we can define a skew symmetric matrix S(a) as

0 - a; dp
S(a) = [#3] 0 —ds (12)
—-dz ds 0

which will be quite important in the kinematic analysis of a manipuiator. The operator S(a) is linear,

that is

S(xa 4+ yb) = x5(a) + ¥5(b) (1.3)

for scalars x and y. Also for any vector b, we have

axbs ~ asby
S(ab =axb =] asb;-abs (1.4)
ayby - azh,

where axb denotes the cross product.  This property will be used often.

Consider the vectors a,be R?, and the orthogonal matrix Re R**3, then
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R(axb) = Ra x Rb (1.5
which only holds for orthogonal matrices.

From the last two equations. We can write

RS(@R™D = R(a X RTb) = (Ra) x (RR'D) = (Ra) x b = S(Ra)b (1.6)

Consider now, that the orthogonal matrix R is a function of a single variable x, Since

R(x) is orthogonal, we have
R@R(x) =1
Taking the derivative, we get

%R(x) RT(x) + R(® de—RT =0

We define the matrix S as

S = —;—XR(x) RT(x)

its transpose is given by

ST = R(x) iRT
dx

Now, substituting S and §7 into the above equation, we get

S+8 =0

In other words the matrix S is skew symmetric. From the definition of §, we multiply both sides by

R(x)to get

d
- R(x} = SR(x 1.7
o (x) ) (1.7
This equation will be very important in later chapters.
A final note in linear algebra is the following relation to obtain the determinant of

a partitioned matrix, into square matrices of the same size, that is
det[é }B)} = det(A) det(D - CA™'B) (1.8)

In the next section we present some basic concepts and theorems related to Lyapu-

nov stability theory, which are important in the stability analysis of control systems.
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1.2 STABILITY IN THE SENSE OF LYAPUNOYV.

Lyapunov stability theory is a very important tool for the stability analysis of control
systems. This theory deals with the study of the stability properties of the equilibrium of differential
equations. In the following we present the basic definitions of stability, and some important theo-
rems, where we refer the reader to [4] for the proofs. We asume that the system is described by

the vector differential equation

x(H) = f(t,x(1)) (1.9

where x() € R" and f: R, x R" — R". 'We assume that the function f is such that the the differential

equation (1.9) has a unique solution.

Equilibrium definitions.
Def. Equilibrium. The vector x, € R” is said to be an equilibrium point of the
systerm (1.9) at time £, if

x(r) = f(t,x,) = 0, V=1,

Without loss of generality we assume that the the vector x,=0 is the equilibrium point
of the system (1.9), since we can always move the origin of the coordinate system of the state space.
Def. Stable equilibrium. The equilibrium point x,=0 at time £, of the system (1.9)

is said to be stable at time £, if, for each > 0, there exists a & > 0 such that

Ixt) | <6 = |x@le  Viz1,

In other words, the equilibrium of the system (1.9) is stable if for each circle of ra-
diuse centered in the equilibrium, we can keep the states trajectories inside for >0, whenever the
trajectory at time £, starts inside another circle of radius 6, centered at the equilibrium. If we start
the system in the equilibrium, the state trajectory is a single point, the equilibrium. This is true for
every equilibrium. Equivalently, f=0 implies that the derivative of x is zero, which implies that there
is no motion of the state.

Lemma 1.1 ([41pp.139) Suppose the equilibrium point 0 at time #, of the system
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(1.9) is stable at some time #,>7,. Then 0 is also a stable equilibrium point at all timez & {1,,4].
This lemma says that a stable equilibrium is always a stable equilibrium.
Def. Asymptotically stable equilibrium. The equilibrium point x,=0 at time 7, of
the system (1.9) is said to be asymptotically stable at time 1, if it is stable, and there exists a number

9, > 0 such that

[ x@)|| <8 = [|x( =0 ast—

In other words, the equilibrium of the system (1.9) is asymptotically stable if it is
stable, and the state trajectory converges to the equilibrium, whenever we start the system inside a
circle of radius 4,.

Def. Globally asymptotically stable equilibrium. The equilibrium point x,=0 at
time 7, of the system (9) is said to be globally asymptotically stable at time I, if itis stable, and it

is attractive for every x, € R", thatis

[x®|—=0 ast~- e, Vx, € R"

In other words, the equilibrium of the system (1.9) is globally asymptotically stable
regardless of theinitial condition of the state trajectory, it always converges tothe equilibrium. From
this definition we can see that an equilibrinm has to be unique to be globally asymptotically stable,
since by definition, if there were another equilibrium and we start the system in one of them , the

system will stay there, hence it will not converge always to the origin.

Functions.

The following definitions about functions are very important in Lyapunov stability
theory.

Def. Function of class K. A continuous function w: R — R is said to belong to
class K if

(i) w is nondecreasing.
(i) w(®) =0, and
iy wix) > 0, Vx> 0.
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Def. Locally positive definite function. A continuous function V:R, x R" = R
is said to be a locally positive definite function, if there exists a function w of class K, such that
HVve) =0, V=0

(i) V(1,0) = w(| x|)), for all x belonging to a ball
B, ={x: |x|=<r} r>0

Lemma 1.2 ([4]pp. 142) A continuous function W : R" — R is said to be locally

positive definite function if and only if

(H W) =0
(i WX)>0 Vx = 0
belonging to a ball B,, r> 0.

Def. Positive definite function. A continuous function V: R. x R" — R is said to
be a positive definite function, if there exists a function w of ¢class ¥, such that

OVedh =0, V=0
(i) V(1,0) = w(|x|), Vx € R

(ifi) w(p) = ® as p—> w

Lemmal.3 ([4]pp. 142) A continuous function W : R* — R issaid tobe positive

definite function if and only if

W) =0
M wWX)>0, Vx =0

(iiiy W(x) = = as | x [~ o, uniformly in x

Lemmal.4 ([4]pp. 143) Acontinuous function V: R, x R" — R is alocally posi-
tive definite function if and only if there exist a locally positive definite function W: R" — B such

that

Vi,x) = W(x), V=0, VxE€ B, r>0
where B, is a ball in R".

" Lemma 1.5 ([4] pp. 143) A continuous function V'R, x R" =R isa positive

definite function if and only if there exist a positive definite function W : R" — R such that
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V(t,x) = W), Vi= 0, ¥x € R"

Def. Decrescent function. A continuous function V: R, x R" — R is said to be
a decrescent function, if there exists a function w of class K, such that

Viex) = w(|x

), Vi=z 0, VxE B, r>0
where B, is a ball in R™.

In other words, the function Vis decrescent if for each pin an interval (0,r), we have

sup sup V(t,x) < o
fxfzp 120
Lyapunov direct method.
There are two methods in Lyapunov'’s stability theory, the so called indirect and di-
rect methods, or first and second methods. The first method allows us to draw conclusions about a
nonlinear system by studing the behaviour of alinear system, which is the linearization of the nonlin-
car around the equilibrium point. The second method is based on the use of theorems that provide
sufficient conditions for stability of nonlinear system. In this work we are interested in the second
method. We shall now present some important theorems.
Theorem 1.2 Stability. ([4] pp. 148) The equilibrium point 0 at time ¢, of (1.9)

is stable if there exists a continuously differentiable locally positive definite function

V(,x) . R, x R" — R such that

Vix) =0, Vi= 1o, VXE B, r>0
where B, is a ball in R",

In other words if we can find alocally positive definite function or a positive definite
function of ¢ and x, such that its derivative with respect to time is less or equal than O, for all 1 >1,,
then the equilibrium of the system (1.9} is stable.

Theorem 1.3 Global asymptotic stability. ([4] pp. 154) The equilibrium point

0 at ime 7, of (1.9) is asymptotically stable if there exists a continuously differentiable positive defi-

nite function V{#,x): R, x R"-> R and a function w of class K such that

Vi, x) < -w(l| x

D, Viz 1 VxER
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Equivalently, the equilibrium of the system (1.9) is globally asumptotically stable
ifwe can find a positive definite function of t and x such that the negative of its derivative with respect
totime is a positive definite function itself. Inother words, if the derivativeis O only at the equilibri-
um x=0 and it is negative everywhere else.

Notice thatthese are only sufficient conditions, therefore if we cannot find a suitable
function V, we cannot conclude anything,

Def. Lyapunov candidate function. A Lyapunov candidate function is a positive
definite function.

Def. Lyapunov function. A Lyapunov function is a positive definite function and
the negative of its derivative with respect to time is also a positive definite function.

Another important theorem that can be applied under certain special conditions is
stated after the following definition.

Def. Autonomous system. The system of differential equations (1.9) is said to be

autonomous if f does not depend explicitly on ¢, thatis

x = f(x), =0

Theorem 1.4 (La Salle) Autonomous systems. ([5] pp. 9) Suppose that the sys-

tem (1.9) is autonomous. Supposethat V(x) : R* — R isa continuous differentiable positive definite

function and V(x) s 0, ¥x € R". Define the set

S ={s€R”:V(s) =O}

If $=fs), s € § has as a unique solution s=0, then the origin is a globally asymptotically stable

equilibrium of the system (1.9).

Notice that in this theorem we do notrequire - I}(x) to be apositive definite function

10 guarantee global asymptotic stability of the equilibrium.
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1.3 L, SPACES.

In this section we state the definitions of certain normed spaces, that we will use
when proving convergence of the state variables of a closed-loop control system.

Def. Set of measure zero. A set § of real numbers is said to be of measure zero,
if § contains either a finite or a countably infinite number of elements.

Def. Mesurable function. A function f}: R - R is said to be measurable if it
is continuous everywhere except on a set of measure zero.

Def. Space L.. The space Ly is defined as the set of all measurable functions

9 [0, =) — R, such that

J IfHP dt <

Another important space is the set of all bounded functions, presented next.

Def, Space L. . The space L. is defined as the set of all measurable functions
A3 10, =) — R, such that

ess sup it < «

EE 0, )

Where essentially bounded means bounded except on a set of measure zero.

Def. Uniformly continuous function. A function f9: R, — R,, is said to be uni-
formly continuous if £9 € L%, and f(-) e L.

In this chapter we have presented some important properties, definitions, and theo-

rems that we will recall in later chapters.

10
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Chapter 2. Kinematics

2. KINEMATICS OF MANIPULATORS.

In this chapter we present the kinematic analysis of a robot manipulator. We start
by introducing some general material about homogeneous transformations. We describe the kind
of robot manipulator we are considering, and its kinematic configuration, considering positions, ve-
locities, and accelerations. The forward and inverse kinematic problems are also stated. The main
result of the chapter is the development of the expressions for the Jacobian matrix. At the end of
the chapter, we present some remarks about singularities, and the inverse velocity and acceleration

problems.

2.1 ROTATIONS.

Our first problem of kinematics is how to describe the position of a body in terms
of a reference coordinate system.

1t is well known that a given vector p;, that represents the distance from the origin
of a coordinate system (X;,y;,Z;) to the point p, can be referred to another system (Xo.¥o.Zo) by means
of a homogeneous transformation. This is a matrix that multiplies a vector and gives as a result the
image of that vector in the new coordinate frame. Let us consider two coordinate systems that coin-
cide in their origin, but one of them is rotated with respect to the other, say that (X1,¥1,Z1) is rotated
with respect to (X, ¥e,Zo). The rotation matrix that relates the frame 1 with the frame 0 is given in
terms of the unit vectors of the two systems (iy,jo.Ko) and (i1,j;,k;) as follows

iy cio il Ky clo

IR, = .51 “Jo .ji Jo ki vjo
5 'ko 3 'ko kl 'ko

where R, indicates the rotation matrix, such that when multiplied by a vector in the frame 1 gives
as a result the representation of the vector in the frame 0. This matrix is obtained from the fact that

acomponent of a vector can be represented as follows, since p,and p; arerepresentations of the same

12
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Vector p
Pox = Po o = P1io = p1x i1 "lp + Py bl + P12 Ky
Poy = Po'Jo = P1 ‘o = P1x 11 "jo + Py 31 Jo + 21 K1 tjo
Po: = Po ko = p1 ko = pr1x i) 'k, + Py J1 ke + pi; Ky kg
that is
Po = 'R, p1 2.0
or
.. Pox ?l ?o .il 'io k; 'go L. Pix
[io do ko] Poy | =] hiJo J1°Jo KiJo [ir 1 kl] Py
Poz i; 'k Ji ko ki K, Piz

By the same procedure, we can write the components of p; in terms of the compo-

nents of p, and get p; = “R; p,, where

foii Joth ko
‘Ri =11 Joji Koy
1 'kl Jo ‘k1 ko 'kl

Notice that

. r il lo ?1 .]o i1 'k
("R = Ji-lo JiJo Ji ko
K tis ki -jo ki 'k,

OR]

Also p, = 'R, p; = 'R, (°Ripo) = 'R,°Rip,, hence 'R, = (°R;)"!, and the orthogonal-
ity of a rotation matrix follows from

°Ry = ('R = ('R

It is also possible to represent the vector p, in the system 1, by using the inverse transformation ‘).
which always exists. If the two frames coincide, the rotation marrix is the identity matrix.
If p,is the representation of a vector p, in the frame 1, where p, is in the frame 2,

then the representation of p; in the frame 0 is a composition of the rotations 'R, and 2R, that is

Po ='R, 2R py

13
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We can extend this result by induction to the case of » rotations by the following composition

Po = 1R0 2R1 "R Pxn (2.2)

It is also possible to rotate a frame around a fixed axis represented in that frame. We are not going
to make use of this kind of rotation, because we can always compute the rotation matrix from the unit
vectors, once the system has been rotated, and then we can calculate the axis and the angle from this

matrix as follows

® = cos”

TrHR) -1 + -1
i r( ) =cos—1(’"11 r222+r33 )

1 T3 — a3

= ; ri3—rs
]

Zsin ryy —ri2

where kisthe vector given in terms of the original frame. These formulas can be foundin [3] (pp.43).
A rotation matrix can also be represented in terms of the Euler angles (6,4,y). These
are not very easy to calculate, but they areused. The procedure of rotating a coordinate system with
this method is as follows: firstrotate the z axis 0 angles, then rotate the y axis ¢ angles, and then the
X axis y angles. In the last two steps we keep the previous rotations.
Another way of representing a rotation matrix by means of angles is by the use of
the so called roll, pitch and yaw angles. The procedure is similar to that described with the Enler

angles except that the rotations are performed in reverse order.

2.2 HOMOGENEOUS TRANSFORMATIONS.

Let us present some material about homogeneous transformations. Consider a
frame ¢ attached to the center of mass of a body, and an inertial frame /, and the orthogonal rotational

matrix “R;, from the frame ¢ to the frame /, This matrix satisfies the following relation

()" = (“Ri)T | @.3)

14
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The condition for this equation to hold is that °R; be nonsingular, i.e. it is possible to make bidirection-

al transformations

‘Ri=("R)" =('R)T 24

The general homogeneous transformation is of the form

Ny Sy Oy dx

e _ |My Sy gy dy) _fmsa °d| _ IR “d;
T = ‘{000 1’]‘[0'1 (25)

n; s, a, d;

0001
where n, s, and a represent the direction of the positive x., y., and z. axes with respect to the inertial
frame i, and °d; represents the vector from the origin of the inertial frame, to the origin of the frame
inthe center of mass. “R;is the rotation matrix, while “d; is the translation vector. Provided that R;

is orthogonal, it is easy to show that its inverse is given by

CR? __CR?"Cdi (26)
It is clear that

where I is the 4x4 identity matrix.
In order to perform a homogeneous transformation, we have to add the fourth com-

ponent o any vector, as follows

We can call this form the homogeneous representation of a vector. For example, if we want to shift
the vector p;, from the inertial frame to the frame in the center of mass, that is located a distance x,

on the x axis without any rotation, we have

100 x,
o _lo1070
Ti=1001 0
000 1

which is the translation matrix from cto i, Tts inverse, that gives the translation from i to ¢, is

15
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[TC e (CTE)—E =

coo—
OO -Oo
oO—0o
oo
a &

It is easy to verify that for a given vector p;=[x,y,z]”, we have

X+ X,
Pec = iTc pi = ::
1
and that
X
pi= Tip. = Z
1

Notice that the composition of translation vectors is just the sum of them, referred

to the same frame by the rotation, that is

ndo =1d0+ 1R02d1 + 4 n—lRon -1

2.3 TRANSFORMATION OF LINEAR VELOCITIES.

Let us now talk about transformations of velocity vectors. We know from prelimi-

naries, that an orthogonal matrix has the following derivative with respect to time

R(r) = 8z) R(s) 2.7)

where S(f) is a skew symmetric matrix given by

St = RO RHT 2.8)

This matrix can be represented as S(w) for a unique vector w [31 (pp. 53) (see preliminaries for de-
tails), where w is the angular velocity of arotating coordinate system with respect to a fixed one,

we have for some vector p that is

Siwip = wxp (2.9)

16
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Time-invarying case.
Let p; be a constant vector, consider that frame 1 is rotated with respect to the frame
0, and let p, to be the image of p;. in such a way that we obtain p, by means of arotational matrix

R(1), that is p,=°Rp:. Let us differentiate p, with respect to time, that is

Po = 'R, py (2.10)

since p; is constant. We know that R is an orthogonal mairix, thus by substituting (2.7) into (2.10)

we have

Po = S(w} R p, = S(w) p, =wxp, (2.11)

where we have assumed that R means !R,(#). Thus, the linear velocity of the point p in the frame
0 is given by the cross product of the angular velocity of the frame 1, and the position vector of p

in the frame O.

Time-varying case.
Consider now that a frame c is in motion with respect to a frame /. In this case the

transformation is a function of ¢, as follows

(2.12)

Recall thatthe homogeneous transformation requires a homogeneous representation of a vector, Let

us consider the vector itself in the following manner

Po = lRo(f) p: + ldo(t) (2.13)

The rate of change of the position vector p, with respect to time, is given by its velocity, that is

Po = 'Ryt pr + 'dy() (2.14)

By substituting (2.7) and (2.9) into (2.14), we have

Po = W x 'RJt) p1 + °vy (2.15)

17
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where lv, =! do is the velocity of the origin of the moving frame with respect to the fixed one.
°Rip, is the vector from the origin of the moving frame to the exeme of p;, expressed in the fixed
frame. Itcanbe viewed as theradivs of therotation of the point p (extreme of p,), with angular veloc-
ity w, around the origin of the moving frame at each instant of time. Let us say that r='R.p;, and
rewrite (2.15) as

P, = ‘v, +wxr (2.16)

Then, the velocity vector of the point p with respect to a moving frame 1, and with position vector
r, can be expressed as the sum of the linear velocity of the origin of 1 with respect to 0, plus a compo-
nent due to the relative rotation of 1 with respect to 0.

If p; s a time-varying vector, we modify (2.16) as

Po= 'Vvo+wxr+ 'R, Py 2.17)

where !R,p; is the rate of change of p; expressed in the fixed frame 0.

Multiple frames.
Let us consider the case in which we have more than two frames, say three. Let us

say that p, is the representation of p; in the frame 1, that is

po = 'R, (le P2+ 2dz)+ tdoli]

Now by substituting the derivative of this equation with respect to time into (2.17) we get

Po = 'vo+ 'w, xr, + °R, (2v11 + 2w, x%r; + 2R, ]52)
or

Bo !

2

If

1V0+ ER02V1+ W, Xll'o-l" ORI W X2T1+ 2R1 [52

We can extend this result by induction for the case of n frames, as follows

o= 'vo+ IR 2V + 4 ™R, v, + (2.18)
Tw, x'rp + °Ry 2wy x2rp + 0+ "R, Pw X g + "Ry " Par
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2.4 TRANSFORMATION OF ACCELERATIONS.

Time-invarying case.
It is also possible to express the acceleration of a point p in 2 moving coordinate

frame, in terms of a fixed frame. Let us obtain this relation by differentiating (2.16)

fo=la,+Wxr+wxr (2.19)

where 'a, =1V, =1d, isthe acceleration of the origin of the moving frame with respect to the in-

ertial frame. Recall that r=Rp,, then
now using (2.7) and (2.9) we have

.and we can rewrite (2.19) as

Po='ag+Wwxr+wx(wxr

In other words, thereflected acceleration of a constant vector p; has three components. Thesocalled
transverse acceleration w x r, the so called centripetal acceleration wx(wxr), directed towards the

axis of rotation, and the linear acceleration of the origin of the moving frame 'a,,.

Time-invarying case,

If p1 is a time-varying vector, we now differentiate (2.17) to get

Bo='a, +Wxr+wxr+Rp +Rp,
The last term is equal to

}éﬁl =SR151 =WXR]51
aiso since r=Rp,

l!-_-}épi'{-Riii =SRp1+Rp‘1 =WXI'+R}51
and

wxr:wx(wxr)+wa;51
finally

fia=a+v%xr+wx(wxr)+2wa]31 (2.20)
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where a = Rp; +'a,. Theterm 2w x Rp; is called the Coriolis acceleration.

2.5 TRANSFORMATIN OF ANGULAR VELOCITIES.

Let us consider the composition of two rotation matrices, say 2R,=2R; 'R,, and let us

differentiate this with respect to time, that is

1R, =1R,?R, + 'R, 2R, (2.21)

Let us consider the first term. By using (2.7) and (2.9), it can be modified into

1R, 2Ry = S(w,) 'R, 2R, = S('w,) ’R, (2.22)
Now, the second term can be modified by using RS(a)R7=S(Ra) (see preliminaries for details), and
the orthogonality of R, that is

"R, 2Ry ='R, SCw)) 2Ry =R, SCw)) 'R, + 'R, 2R,

2.23)
= SCR,2w) 1R, 2R = S('R,2w)) 2R, (

Substituting (2.22) and (2.23) into (2.21) yields

Ro = SC2wo) 2R, = [SCw,) + SCR,2wp)] 2R,

Using the linearity of §(a) we have

2w, =tw, +1R, 2w,

This equation represents the composition of rotations of angular velocities, when we have two

frames. We can extend this result by induction to the case of n frames as follows

"wo =1w, + 1R 2wy + 2R, wy + -+ IR e (2.24)
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2.6 KINEMATICS OF MANIPULATORS.

General considerations.

All the material described before can be applied to the kinematic analysis of robot
manipulators. Thekind of robot manipulator that we are considering in this work is an open kinemat-
ic chain, composed of rigid links and joints. We represent the motion of the manipulator by joint
variables, that are angles in the case of revolute joints, or displacements in the case of sliding joints.

We also call the latter prismatic joints.

The revolute joints are found more often in applications. A good reasen for this
could be that for a straight line workspace, a revolute joint can be the size of the workspace adding
the two links together, while the sliding joint has to be at least twice the size of the workspace.

We consider that every joint has only one degree of freedom, that means that it only
has one joint variable. In the case of joints with two or more degrees of freedom, we can consider
them as two or more different joints each with one degree of freedom.

Let us introduce some conventions (see Figure 1 on page 32). Consider arobot with
n+1 links. We number them from O to n, where the link 0 is its base. The links are connected by
the joints, we number them from 1 ton. We attach frames to the starting points of the links, such that
any motion of the link / will remain as a nonmotion with respect to the same frame /. 'We denote the
joint variables as g;, where i is the number of the joint. These joint variables are real scalars. We
attach the inertial frame to the base, and the other » frames to each link. Hence, the joint variable
tis referred to the frame i-1.  We have a homogeneous transformation matrix between each pair of
links. This matrix is a function of the joint variables. This transformation has the following two

properties as we said before

iTz’ =] -1 Ti = (iTi-I) -1

In general, all the equations are valid for an n degrees of freedom robot maniputator,
However, itis common to find applications with 6 degrees of freedom, of which 3 are for positioning
a hand, and 3 for its orientation. This hand is called the end-effector, and from the practical point
of view is the mostimportant point of the manipulator. The manipulator performs tasks like grasping,

welding, etc. depending on the kind of end-effector that is being used.
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The coordinates of the end-effector with respect to the inertial frame, are given by

the homogeneous transformation # of the form

where "R, is acomposition of rotation matrices, and *d, is a composition of translation vectors. Also

every transformation between adjacent links is of the same form, that is

iH., = [ i%m ic}i-lj[
where { is the number of the joint.
If we need a transformation between frames that are not adjacent, we use composi-
tion of rotations and translations.
We already know that the composition of rotations is given by their product, while

the composition of translations is given by

id; ='d; +71 R d, (2.25)

Depending on the particular configuration of a manipulator, we will have different
kinematic representations.

The geometric structure of a manipulator can be represented in different ways. One
of the most used is the Denavit-Hartenberg representation, in which we start determining the axis of
the joint variable, that we assign to be the z axis, for each joint. Then, we establish the base frame
by assigning conveniently x and y to form a right-hand coordinate system. We assign the rest of the
coordinate frames in the same way. We then create a table of certain important link parameters that
describe its geometry. And finally, we build the n homogeneous transformations. In the case of
prismatic joints, we assign the origin of the frame in the beginning of the sliding part. Thus the pris-
matic link / will have a frame with parallel axes to the frame i-1. Thatis all we are going to say about
the Denavit-Hartenberg representation, since we are interested in general descriptions of manipula-

tors.
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2.7 POSITION.

During the motion planning process, we have two major objectives in performing
akinematic analysis of a manipulator. First, we want to be able to find the end-effector, given some
Joint variable values, and second, we want to find the joint variables, that will put the end-effector
in a desired position. The first of these problems is called the forward kinematic problem, while the

second is called the inverse kinematic problem.

Forward kinematics.

The first problem can be solved once we have the homogeneous transformation from
the end--effector tothe base. The position and orientation of the end-effector is given by the compo-
sition of homogeneous transformations of each pair of links. Then, the problemisto find the transfor-
mations of each pair of links, muitiply them together, and substitute the given values of the Jjoint
variables. Recall that each homogeneous transformation between a pair of links, depends only on
one joint variable. The problem can be simplified, by choosing an adequate representation, like the
Denavit-Hartenberg, In this problem we always have a solution, that is determined simply by

straight forward evaluation of the equations.

Inverse kinematics.

The problem is to find a solution to the following equation

"To = H

where "7, is the composition of homogeneous transformations of each pair of links, from the link n
to the base, interms of the joint variables, for a manipulator of n degrees of freedom. H is the trans-
formation that represents the position and orientation of the end—effector, with respect to the inertial
frame, where its position is given by "d,,, and its orientation by "R, Thisresultsin 16 nonlinear equa-
tions, due to the fact that "7, and H are 4x4 matrices. Notice that the bottom row of them is the vector
{0,0,0,1] (see (2.7)), this simplifies the problem. Actually, we have to solve 12 algebraic equations
that are nonlinear in general, since dependence on the joint variables appears in terms of sines and

cosines,
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In the inverse kinematic problem, we could have more than one solution or none at
all. We areinterested in finding a closed-form solution of the equations, instead of a numerical one,
sothat the trajectory generation system can quickly provide the trajectory, for the controller to follow.

The inverse kinematic problem is, in general, adifficult one, where we have to con-
sider workspace constraints (nonholonomic, see chapter 3 for definition), as well as actuator or link
constraints. However, in the case of manipulators with 6 degrees of freedom, from which 3 are for
position and 3 for orientation, the problem can be reduced to the solution of the so called inverse posi-
tion kinematic problem, and the inverse orientation kinematic problem. There exists some algo-
rithms to solve the inverse kinematic problem for this kind of robot. A general solution has not been

reported, however, there is a huge amount of research in the area of optimal trajectory generation,

that is basically an optimal solution for the inverse kinematic problem.

2.8 VELOCITY.

We now consider velocities. As we described before, we can have transformations
of velocities between frames. In the case of robot manipulators there is a special way to represent
transformation of velocities. We use a 6x# matrix called the Jacobian of the manipulator, in which
we put together the ransformations for linear and angular velocities. We want to represent these ve-

locities in terms of joint velocities. Suppose that we want the linear and angular velocities of the
end-effector in terms of q , the derivative of the joint variables. We need expressions of the form
Vo = J,

"w, = J,

Le  Da

where J, and J,, are 3xn mairices. Notice that

4 » .
v, = vid1+ gz + S onn

4 [ [
"W, = Juidy +Jwada + + Jordn

where J,; and J,,; are the column vectors of the matrices J, and.J,,, so that the Jacobian matrices for

link 7 are given by
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J(I
JP

{ D DD ]
[Jm JO g2 o]

where the column vectors are set to be 0 for />, because the motion of link #, only depends on joints

1toi. We write the equations together as

where

is called the Jacobian. In other words, the Jacobian relates infinitesimal joint displacements dq to
infinitesimal end-effector displacements dx, wherex = ["v, "w,}’, thatis

dx =.J dq

Recall that the linear velocity of the end-effector is given by

v, ="d,

where "d, is the transformation vector from the joint » to the inertial frame.,

The angular velocity of the end-effector is represented by

S("w,) ="R, ("R,)T

where "R, is the rotation matrix from the joint » to the inertial frame.

Angular velocity.
Let us consider the angular velocity of the link / with respect to the link /-1, we can

expressit as

‘Wi =4 k
where k is a unit vector in the z axis of the frame /-1, and ¢ is the ith revolute joint variable, Recall
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that the joint variables are scalar quantities, and ‘w,.; isa vector with the same direction as the z
axis. We mentioned before that there are some conventions in the selection of the coordinate frames
ateach joint. Inthiscase we say that the z axis is the rotation axis of the link /~1. Notice that in order
to express the position g; of joint / with respect to the frame i~1, we use a homogeneous transforma-
tion that includes rotation and translation, and hence when we talk about angular velocity the constant
terms added to the positions are eliminated (see (2.24)), that is, only the rotations affect the represen-
tations of an angular velocity with respect to another frame.

Notice that in the last equation we are building a vector in the z;_; axis with magni-
tude equal to §;. Thus, different angular velocities of the link / with respect to the link i-1, will be
vectors having the same direction but different magnitude.

In the case of sliding joints, the relative angular velocity is zero, because the motion
does not depend on an angle.

The angular velocity of the end-effector with respect to the base is a composition
of relative angular velocities of each pair of links. We have to consider the case of sliding joints with
w;=0separately, because ourlast equation could give an erroneous result using the value of q'r corre-
sponding to the linear displacement. Then, we introduce a constant oy, that takes the value 0 when
the joint/is a sliding joint, and I when itis arevolute one. From (2.24) we now have the equation

"W, = aydik + axdy 'RK + 4 gy IRk

since the g;'s are scallars. Equivalently

n
W, = zaiQizi—l = [0.’120 o 'anzn—l] g
i=]
where

_ } O | prismatic joints
@@=y

revolute joints

and

ze1 =Rk (2.26)

It is clear that z=k={0,0,11T. We now have the value of J,, of the Jacobian as

Io =gz, -anzn_l] (2.27)
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Linear velocity.
Now, let us consider the linear velocity of the end-effector. Its value is equal to the

change with respect to time of the wranslation vector from the end-effector to the base, that is

¢ = 0'd,, é'd, 07d,y |,
HVO =ﬂﬁo=zcs oqiz d e nl q

i=1 6 Qi d qi d 4n
Then J, is
ald, 0 "d,
I, = (2.28)
d qi ‘5 qn

We can generate the ith column of the Jacobian by keeping all the joints fixed except the ith , which

we move at unit velocity gi=1.

Particular case.

Letus try to find a more simple and systematic expression for J,, by restricting the
kind of manipulator we are dealing with. Consider that cur manipulator has its axis x; intersecting
its axis z;_; (see figure 2). In this case, the vector from the origin of the frame i1 to the origin of
the frame ¢, i.e. ‘d;_;, is given by

id;-l =dk + g; iR,'.1i

where 4, represents the distance along the z;_; axis, from the origin of i-1 to the intersection with x;,
a; is the distance along the x; axis from its origin to the intersection with z;_;, and k and i are unit
vectors. The parameters 4; and ; come from the Denavit-Hartenberg representation, and 4, is the
joint variable when the joint i~1 is prismatic. We refer the vector a;i to the frame i-1 by multiplying
itby R.;. Notice that whenever we talk about unit vectors, we do not need to specify the frame,
because they are all the same magnitude directed towards the axis in any frame. However, we must
be careful when werotate or translate them, we have to multiply them by the corresponding transfor-
mation matrix.

Letuskeep all the joints fixed except the ith. Differentiating the composition of translations, we have

[ [—1 A
d, =" R, "dig
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N .
The only component in the compositionis 1R, d,_; , because all the others remain constant.

Prismatic joints,
In a prismatic joint /, 'R;_; is independent of g;=d;, and a; is 2 constant, Thus, we

have by using above equations and (2.26)

nd, = FiR,idyy = FIR(d k) = d; IRk =dziy = zid;

Also by using the chain rule

' d"d, ,
n d, = 0 ;
0 P q
Hence, since ;= d; is a scalar, we have
47d
° = Zi (2.29)
o q;

This formula is used to calculate the coefficients of the Jacobian, that corresponds to linear velocities

in prismatic joints.

Revolute joints.
Let us consider now revolute joints. The vector from the origin of the inertial frame

to the origin of the end-effector’s frame is given by

nd, ="td, +~IR," di; (2.30)
from which

"do -4, =R, "y 231)

In the case that only the ith joint is actuated, the vector ©!d,and the matrix R, re-

main constant. Now, differentiating (2.30) with respect to time yields

nd, =R, "d, (2.32)

The vector "d;_; is generated when the /th joint rotates around the axis Zi_1, A8 We

said before. Consider "d;; = "Rip, wherepistherepresentation of ”d’H intheframen. Then

by using (2.11)
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"diy = wxTd.

Since the angular velocity of the link / is given by w; = 4K, and that the joint variables are scalars,
we get

"diy = gk x "dyy (2.33)
Substituting (2.33) into (2.32) yields

which is equal to

» P .
"d, = g i Rk x ™! R,"di
Since R is orthogonal. Recalling (2.26) and using (2.31), we can rewrite this as

., : , 3 ]
ndo = giz;.1 X (1_1 d, . do) = -5-%- ndg(}[

1

by the chain rule. Therefore,

% =gy x (1, -7l d,) (2.34)
This equation represents the ith column of J, for revolute joints.

Jacobian.
Now, by substituting (2.29) or (2.34), for prismatic joints or revolute Jjoints respec-
tively, into (2.28) we can calculate the ith columns of J,, while (2.27) gives the value of J,. This

1s valid only for the specific configuration that we are considering. Then we have for prismatic joints

i
Ji = [jw] - Zf—I] (2.35)

|
<

and for revolute joints

(2.36)

g
I
———y
e
[
1
La
R
-
=
[»9
=3
|
T
[~
S

where J; is the ith column of the Jacobian., Dependence on q is easily seen from these equations,

because as defined in (2.26), z depends on R, that depends on q, and d also depends on q, Hence
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Jis afunction of q. Let us write J(q).
We can now calculate the Jacobian of any manipulator that fills our requirements.
Notice that z is a rotated unit vector, that we can take from the first three rows of the third column
of the homogeneous transformation 7, (see (2.26)). The elements "d, and +'d, are the first three
elements of the fourth column of the transformations T, and ~7, respectively.
The procedure that has been just described is used to compute the velocity of any
point of the manipulator in motion. Let us remember, however, that the homogeneous transforma-

tion, and therefore the Jacobian, depend on the specific manipulator’s configuration.

2.9 ACCELERATION.

We can derive a relation between the joint velocities and accelerations by differen-
tiating the Jacobian. Letus call x the vector of linear and angular velocities of the left-hand side

of equation of the Jacobian, that is

x=| Vol rr@4 (2.37)

where x is a vector with 6 elements representing the 3 components of the linear velocity and the 3
components of the angular velocity. By differentiating (2.37), we can obtain a relation between joimt

accelerations, and linear and angular accelerations of the end—effector. That is

i " d #
x-ﬂ®q+aﬂmq

Singularifies.
Suppose that we want to calculate the joint velocities given X . Thisinverse velocity
problem can then be solved for the six degrees of freedom manipulator, by solveing the following

equation for §

"AQ)q = % (2.38)
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which has a unique solution if and only if the Jacobian is a nonsingular matrix.

For manipulators with fewer than six links or for redundant manipulators, the does
not haveinverse, since it is not a square matrix. We canmake a full-rank ractorization of the Jacobian
of the form J=EF, where E is the matrix of the p linearly independen colums of J, and F is the matrix

of the g linearly independent rows of the reduced echelon form of J [4] (pp. 96). This factorization

is not unique. The Moore-Penrose inverse of J is given by J* = F*E*, where F* = FUFFTY !, a

right inverse of F, and E* = (E"E)~'E7, aleft inverse of E. Thus,

q ="J{q)x

However, the joint variables calculated by this equation may not be attainable.

When for some point g the Jacobian is a singular matrix, i.e, det(J(g))=0, we say that
g 1s a singular point of the manipulator. Notice that J can only be singular for manipulators with 6
dof (degrees of freedom). These singular points correspond to configurations from which certain
directions of motion may be unattainable. Sometimes they represent limits of the manipulator work-
space, that is, the points of maximum reach, or points that are unreachable. At singularities, the ma-
nipulator would not be able to apply any force over an object with the end-effector. Also there may
exist different solutions for the inverse problem at singularities,

If det(J(g))*#0 then the joint accelerations are given by

. af, 4 )
q =J(g) (x dtf(q) q

It is important to determine the singularities of a manipulator in order to determine
whether or not a solution exists for a certain given task that we want the manipulator to perform.

When controlling a manipulator, the planning system will provide the controller
with references to follow, once the inverse problems have been solved.

We will use the Jacobian in the development of the dynamical model of the manipu-

lator in the next chapter.
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Yi
link 2

?/ 4
7) f4 joint 3
23 /85 z

Link 1

base (link 0) Figure 1. A robot manipulator. (from [3] pp. 65)

0

Figure 2. A special case. (from [3] pp. 67)
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Chepter 3. Dynamics

3. DYNAMICS OF MANIPULATORS.

In this chapter we develop the dynamical model of a robot manipulator of n degrees
of freedom. We start with the development of the Euler-Lagrange equation of motion, for a system
of particles with constraints of motion. We find expressions for the kinetic and potential energy,
which we use to define the Lagrangian of the system. Then, we consider the robot manipulator to
be a system with constraints of motion of the form described before. This enables us to apply the
Euler-Lagrange equation of motion in the development of its dynamical model. With particular
expressions for the kinetic and potential energy, we form the Lagrangian of the manipulator, and fi-
nally, its equation of motion. At the end of the chapter we mention some important properties of

this model.

3.1 THE EULER-LAGRANGE EQUATION OF MOTION.

Systems of particles.

The Euler-Lagrange equation describes the evolution of a mechanical system sub-
Jectto holonomic constraints, when these constraint forces satisfy the principle of virtual work. The
method presented here is based on the principle of virtual displacements.

Consider a system of & particles, with coordinates ri, Iy, ... .. Ifthese particles are
free to move without any restriction, we can easily describe their motion by Newton’s second law.

If their motion is now constrained in some fashion, we must consider the constraint forces as well

as the externally applied forces. The constraint forces are the forces present in the system, that make
the constraint motion hold.

Letus consider a system of 2 particles, in order to illustrate the role of the constraint
forces. Suppose that the 2 particles are joined by a massless rigid wire of length /. This wire causes

that the following constraint between the two coordinates is satisfied

iri - =1 =(r - 11, - Y2> 2 = [(Fl -1’ (ry - 1'2)} 12
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or

-7 (r -1y =P (3.1

If we apply external forces tothe particles, they will experiment not only these forces
but also the force exerted by the wire. In order to analyze the motion of the two particles, we have
twooptions: a) we could calculate the constraint force due to each set of external forces, b) we could
try to determine the motion of the system without any knowledge of the explicit value of the con-
straint forces at all. These are two approaches in deriving the dynamica! equation of motion of a
robot manipulator. The firstapproach is the Newton-Euler formulation and the second is the Lagran-
gian formulation. The Newton-Euler formulation is derived by the use of Newton’s second law of
motion, which incorporates forces and moments acting on the particles, including constraint forces
due to the coupling. Thus, additional arithmetic operations are required, in order to obtain explicit
relations between external forces and displacements. Inthe Lagrangian formulation, weuserelations
in terms of work and energy in a generalized coordinate frame. Then, all the constraint forces are
eliminated. The resulting equations express in a closed-form, the relations between the external
forces and the displacements. The derivation of these equations is simpler than in the Newton-Euler
formulation, and itis systematic. Those are the reasons that motivated the use of the Lagrangian for-
mulation in this analysis of systems of particles, with constraints of motion. This technique will

be applied later in the dynamical analysis of a robot manipulator, in which we want to express the
joint displacements in terms of the torques applied. In the following we will derive the Lagrange’s
equation of motion. First, we introduce some terminology.

Def. Holonomic constraint. A constraint on the k coordinates ry,ro, .. ryiscatled

holonomic if it is an equality constraint of the form

81{1'1, F3, ""rk) = 03 i=1,2,"‘,l

where the g;’s are the / equations, representing / constraints in the coordinates. In the example of the
two particles the function g; is

gr=lr-rnf-1=0

In order to illustrate a nonholonomic constraint, consider a particle inside a sphere
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of radius x, centered at the origin of the coordinate system. The motion of the particle is uncon-
strained, as long as the particle remains away from the wall of the sphere. It will experiment the con-
straint force, when it comes into contact with the wall. The constraintin the coordinate of this particle
ig

brf <x

gr=rl-x<0

Thus, the constraint is nonholonomic, because g, is not extrictly equal to zero,

In the case of robot manipulators, the holonomic constraints in the joints are due to
the links, while the nonholonomic ones are due to actuator saturation limits, and the workspace, for
example. Workspace constraints usually are not considered in the dynamical analysis, however, they
are used in generating the trajectory of motion of the manipulator. This is done by a higher stage in
the hierarchy of the controller, in the trajectory generation algorithm, that solves the inverse kinemat-
ic problem.

A system with / holonomic constraints, may be viewed as having / fewer degrees of
freedom, than the unconstrained system. In this case we can express the coordinates of the k particles
interms of n generalized coordinates q, g, ..., q,, where n=k-I. The coordinates of the particles are

then expressed as

n=r{qnLq " .q), =12k (3.2)

where the vectors g; are linearly independent.

In the case of an infinite number of particles with constraints, we can use a general-
ized coordinate system. Consider for example, a rigid body that consists of many particles. When
the body is in motion, the distances between the particles remain the same. In this case only six coor-
dinates are sufficient, to completely specify the coordinates of any particlein the body. We need three
to specify position, and three to specify orientation. The same applies to robot manipulators. A ma-
nipulator with more than six degrees of freedom is called redundant, This kind of manipulator is used
when dealing with workspace constraints, such as walls. In the rest of the analysis we assume that

the number of particles is finite.
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Def. Virfual displacement. A virtual displacement is an infinitesimal displace-
ment consistent with the holonomic constrainis.

Consider again the example of the two particles constrained by (3.1). Suppose that
Ar; and Ar, are infinitesimal displacements. The modified coordinates must satisfy this constraint.

Then, we have

(r;+Ar; -1y~ Arp) 7 (1 +Ar;-r2- Ary) = P
Expanding the product we have

(-7 (Ary-Ar) + (Ar; - Ar) 7 (rj-rp) + (Ar - Arp) 7 (Ar-Arp) =0

where we have used the fact that (3.1) still holds. Letus neglect the quadratic terms in Ar and Ars,
and get

(ry-t) 7 (Ar;-Arp) =0 (3.3)

If the infinitesimal displacements Ar; and Ar satisfy this equation, so that (3.1) holds, Ar; and Ar;
are virtual displacements for this example.
A differential displacement of a coordinater, withrespect tothe generalized coordi-

nates satisfying (3.3) (i.e. a virtual displacement) is

n

or:
Arp= Y ST Ay i=1,2,003k 3.4
— dg;
J=1
where Aqy, ... , Ag, are differential displacements of the generalized coordinates. This equation is
familiar, if for example, we think about a differential of a function f{x,y), where in our case the func-

tionis Ari{gi, ..., Gn).

Forces.

Now, suppose that the system is in equilibrium, this means that every particle is in
equilibrium, then the total force acting on each particle is zero. This implies that the work done by
each set of virtual displacements on a particle is zero. Thetotal work in the system of k particles done

by any set of virtual displacements is also zero, that is
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k
> F Ar =0 (3.5)
i=1
where F; is the total force on particle ;. This force is the sum of the external force f; and the constraint
force ff-“) . We show now, that the constraint forces between a pair of particles, directed along the

radial vector connecting the two particles is zero.
Consider once again the example of the two particles with (3.1) as a constraint. The
constraint force is exerted by the rigid massless wire, along the radial vector connecting the two par-

ticles. The force exerted on particle 1 by the wire is

£ = ¢ (r-1m)

where c is 2 magnitude and (r;-r3) indicates the direction of the force. There exists a reaction force
onparticle 2 exerted by the wire, that is equal in magnitude to f(f) , but with an opposite direction (law
of action and reaction), that is

£y = - ¢ (r;-1))

The work done by the constraint forces with virtual displacements Ar; and Ar, is

N Ary + (B Ary= o(r - A - c(r; - 1A = o(r; - r)(Ar) - Ary)

This product s zero, because Ar; and Ar, are virtual displacements and therefore satisfy (3.3). Then,
there is not any work done by the radial constraint forces on the system. We now assume that all the
constraint forces between each pair of links are radial, so that

[4
D ET A =0

i=1

Therefore, the total work in the system done by the F;’s is
k k k k
D FTAr = > fAr + > (A, = > {TAr; = 0 (3.6)
i=1 j=1

i=1 i=1

i=

This equation does not involve any constraint forces, only known external forces, it expresses the

principle of virtual work, which is stated as follows:
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Principle of virtual work. The work done by external forces corresponding to any
set of virtual displacements is zero.

We can use this principle when the constraint forces do not produce any work. This
is the case of rigid bodies in motion, where rigidity is the only constraint. In other words, the distance
between any pair of particles in the body must remain constant, while the body is in motion. This
is equivalent to an infinite number of constraints of the form (3.1). In some situations like motion
in the presence of magnetic fields, the principle of virtual work does not hold. However, in the rest
of the analysis we assume that it does.

In (3.6) we cannot say that every f; is zero itself, because the virtual displacements
Ar; are not independent. 'The f;’s will be zero, if the work is done with virtual displacements of the
generalized coordinates. Before we do this, let us consider systems that are not in equilibrium. We
now state D’ Alambert’s principle:

D’Alamberts’s principle. In a system that is not in equilibrium, if we introduce

a fictitious additional force — p; on particle / for each i, where p; is the momentum of the particle
i, then each particle will be in equilibrium.
Now, wereplace F; by F;-p; in(3.5), thatis

k
> (Fi-p) Ar; =0

i=1
As before, we discard the constraint forces using the principle of virtual work, then

k k
DA - D T Ar = 0 3.7

i=1
In the following we are going to look for substitutions of both summations for others, in terms of ener-
gy. We start with the first summation. Let us express now each Ar; in terms of the corresponding

virtual displacements of generalized coordinates as in (3.4). The virtual work done by the forces f;

is given by

k n
D fiAr = Z Z Tar‘ Agi = Y W Ag; (3.8)
=1

=1 jel j=1
where
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W = i gl
’ i=1 ‘ 9g;
is called the jth generalized force.

The second summation in (3.7) can be written as

k k
DBl Ar = Y mi TAr; = Z Z 6” qu (3.9)
i=] i=}

=1 j=1
provided that p; = mj"; .

Let us take a look at the following derivative

613 : k d | dr;
m.!r.! '_'”I““ ilzi —1 =
g dt i t 2 qj gm dt 5(}’1
we rewrite this as
k k k
dr; d or; d [ dr;
o T i : T i s T i
my; i — = — | my;t — | - mr't —| — 3.10)
g (56]1 ; dt 6%’ ; ! dt 6qj

Now, let us differentiate (3.2) with respect to time

" ér
z]g“ g = v (3.11)

where v; is the linear velocity of the particle / with respect to the generalized coordinate frame. By

differentiating it with respect to ¢; we get

qﬁqh 64,-

k k k
7 OF; d 7 OV; dv;
§= rrz q, §= ar 1 6 -1 - E miv?ﬂéql- (3.12)
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Energies.
We define the kinetic energy of the system as

K = z —~ Vi Ty,

1=l

Let us differentiate X' with respect to ¢;
4 1 6 -,
~—,_K=§—2~m 6qv vl+z——mv z"’”aqj

Since the inner product is commutative. Also we see that (3.12) can be written in terms of X as

k
dr; d 4 d
H’t,'f"; T2 = — —,—-K - —K (313)
Substitution of (3.13) into (3.9) yields
k “fd )
5T Ar; = — —K - —K lAg; 14
> hTan =yl — 55K "5k |29 (3.14)

i=1 J=1
Finally, we substitute (3.8) and (3.14) into (3.7) to get
i "ld 6 b
¥Ag - >~ —K-—K| =0
e P dt dg; dq;
or
k
d o ]
D= K- K- Wt Ag =0
1 dr dg; 541' /

If we remember that the virtual displacements of the generalized coordinates are linear independent,

we conclude that each term in this equation is zero, that is

d ¢ 0
— K -—K=W, j=12--, ,
i 355 " 3q W n (3.15)

We can now define the generalized force, as the difference of an externally applied generalized force

v and another due 1o a potential field V(g). The value of this force in terms of Vig)is
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y = 5V
Iy 39 @

then

)
V=1 - EEV(Q)

V{q) is called the potential energy. Substituting above into (3.15} yields

LI IV AP I
dt 5qj dqj 5‘1;‘
or
d o 4
—_— K - —(K - = T: 3.16
ar oq gk (3.16)
Lagrangian,

The Lagrangian of asystem is defined to be the difference between the kinetic ener-

gy and the potential enerpy

L=K-V 3.1
Notice that
(5' L = dl K
5611 a%f

because V is a function of g only.

Eguation of motion.
We use the last two equations to rewrite (3.16) as follows
d o 0

L

2L~ L=t j=1,2--,
dt og og 7 "

This equation holds for j=1,2, ... n, where n is the number of generalized coordinates. Thus we can
write the eguation in vectorial form as

d o )

—_ ] e = .

dr 44 aq ’ (3.18)
where the dimension of 1, g, and ¢ is equal 10 the mumber of degrees of freedom of the system.

Equation (3.18) is called the Euler-Lagrange equation of motion. It will be used

to derive the dynamical model of the general configuration of the robot manipulator.
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3.2 KINETIC ENERGY.

The Euler-Lagrange dynamical equation is very useful when the Lagrangian is
known. Inorderto apply this method to the case of robot manipulators, we need to calculate expres-
sions for the kinetic and potential energies. We are going to explore these expressions in the follow-
ing analysis.

Suppose that we have an object made of a continuum of particles. This object has
density of mass . Let B denote the region of the three-dimensional space occupied by the body.

We also use B to denote a range of integrals. The total mass of the object is

m = J o(x,y,72) dxdydz
B

The kinetic energy of the body is given by

1
K== j Vi, 3, 2V, y, 2)0(x, v, 2) dxdydz = -;—J viv dm (3.19)
B B

where dm denotes the infinitesimal mass of the body in (x,y,z).
When the body is in motion, different parts of it will move at different velocities.

Let us consider the center of mass of the object with coordinates (x..y,.z.), defined by

1 ! 1
xc=—dem yc=—jydm . =— 1 z dm
m g nmjgn

Let us express these equations in a more compact form in terms of r, the coordinate vector of a point

in the body. We have

I, = ——I r dm (3.20)
B

In other words, the vector r¢ given by (3.20), is the position of the center of mass with respect to the

reference frame. An alternative representation is

J {re-rydm =0
B

The velocity of a particle in the body with respect to an inertial frame, is given by
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the sum of the linear velocity of the center of mass, plus the relative linear velocity of the body with

respect to the center of mass, that is

V = V. + WXr (3.2

where v, is the linear velocity of the center of mass, wxr is the linear velocity of the particle, r is the
vector from the center of mass to the particle, and w is the angular velocity of the particle with respect
tothe center of mass. We can also express this equation with respect to a moving coordinate frame
attached to the center of mass. We can do this by multiplying by a homogeneous transformation °7;,
that represents a transformation of coordinates from the frame in the center of mass ¢ to the inertial
frame i,

When we are talking about position vectors, that are transformed into a new frame,
we consider that these vectors are rotated and translated, but when we differentiate them with respect
to time to get velocity vectors, that correspond to changes in position, all the translational terms are
eliminated, because they represent constants added to the coordinates. Then, we only consider the
rotational effect of the transformations in the analysis of velocity vectors.

In ordertorefer (3.21) to the moving frame, we multiply it by arotational matrix R},
where R is the rotational transformation from the frame in the center of mass, 1o the inertial frame,

As we saw before R is orthogonal, then we have

R'(ve + wxr) = RTv, + R"W) x Rr)

We notice that when we calculate the kinetic energy, it does not matter in which frame the velocity
vectors arereferred to, because the magnitude of a vector is not affected by any homogeneous trans-
formation. Let us assume that (3.21) is expressed in terms of the moving frame, and that the cross
product wxr is expressed by the product of a matrix S(w) and r, using the property that for any vector

p, S(a)p=axp, where S(a) is a skew symmetric matrix (see preliminaries). We can write

vV = V. + S(wr
and S(w) is defined by

0 -w, Wy
Swy =] w. o -w, {(3.22)
-Wy Wy o
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where w=[wy wy w,], and by definition S(w)’=-S(w). Substituting v into (3.19) yields

1
K = EJ (ve + SwIr) 7 (v + S(wir) dim
B
we expand now this equation by using the property (AB)’=B7A7, we have
(3.23)
|
K= 1 viv, dm + 1 f viS(w)r dm + 1 [ riS(w)v, dm + = J ' S(w) S(w)r dm
2 s 2 /3 2 | 2 )5

We are going to take a look at each of these four terms separately. We say that K=K, +Kp+K3+K,
where each K; corresponds to each of the terms of K in (3.23).
Inthe firstterm, letus assumethat v, is independent of the integration variable, there-

fore we can move it outside of the integral, that is

1
Ky = Em viv,
Notice that this expression is the kinetic energy of a particle of mass m, located at the center of mass,
and moving with a velocity v.. This term is called the translational part of the kinetic energy.

The second term is

Ky = %V{ S(w) JB rdm=90
Recall that we are considering that all the vectors in equation {3.21) are referred to the moving frame,
By definition of the center of mass, the vector from the reference coordinate frame to the center of
mass r. is given by (3.20). Inthis case this vector must be zero, because the reference frame has its
origin at the center of mass itself. Then, the integral in (3.24) must be zero, hence K5=0,

Similarly,
i T T.
Ky =— | r'dm Swv, =0
2/
Let us rewrite the fourth term K4 using the facts that, for any two marices A and B,

Tr(AB)=Tr(BA), and that for any two vectors a and b, a’b=Tr(ab”), where 7r stands for the trace of

amatrix, and it is equal to the sum of the elements in its diagonal {see preliminaries for details), then
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we have
K = — ] SEORT(SWI) dim = — J Tr[(S(w)r)(S(w)r)T} dm
2)g 2ip
= %IB Tr[S(w)rrTS(w)T] dm = %Trl:S(w) JB rrldm S(w)T
Let us define the matrix D as
szdm J xydm szdm
D= [ rrldm = [xydm Jyzdm J yzdm
B
J xzdm f yzdm J'zzdm

and substitute into K,

Ky = -;—Tr[S(W)TD S(w)'

Now, by substituting the value of S(w) given by (3.22) and D into K4, we have

( r ' ‘
J Xdm J'xydm szdm

1 0 -W, W 0 -w, Wy
Ky = E-Tr W, 0 —w, nydm ] y2dm fyzdm W, o0 W
- ypy W, o - Wy Wy [a)

j xzdn j yzdm fzzdrrz
L 3 J

Now, by multiplying, expanding the race, and grouping, we get

J(y2 +22dm - nydm - J xzdm
- nydm J % +2%dm - Jyzdm wy o=

- —szdm —Jyzdm J(x2+y2)dmj

K4=

[ E—

1
E[Wx Wy W,

where / is called the inertia matrix. Kj is called the rotational part of the kinetic energy.

Now, substituting the values of K| ,K,,K3, and K, again into (3.23), we get a familiar

expression for the kinetic energy
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1 1
K = Emv;{vc + WQ—:WTIW

The firstterm of this formula, is the contribution of the linear motion of the body to the kinetic energy,
while the second, is the contribution of the angular motion of the body around itself. Hence this
equation represents the overall kinetic energy of the body. The two terms represent energy, then it
does not matter in which coordinate frame we calculate them. As we mentioned before, the vector
v, can be affected in a transformation of coordinates, only by the rotational part. Remember that in
the above analysis we considered v, referred to the center of mass, but since v, v, is the square of
the magnitude of the vector v, it does not matter which frame the vector is expressed. The value
of w and 7 depend on the coordinate frame to which they are referred, however, we know that the
product w’/w remains the same, no matter which coordinate frame the vectors are referred to [4] (pp.
140), since it represents energy. We calculate 7 with respect to the center of mass, in order to make
the development more simple. The angular velocity must be calculated with respect to the same

frame,

3.3 POTENTIAL ENERGY.

We consider arigid body, where the only source of potential energy is gravity. The
potential energy of a particle in the body, located at r from the base of the object and with mass dm,

is given by

dv = g'rdm

where g is the gravity vector expressed in the base frame. Hence the overall potential energy of the

body is given by

V= j glrdm = g’ J rdm
B B

Recall the definition of the center of mass giveninequation (3.20). Wethen write the potential energy

as
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V = mg'r,

In the next section we apply the results of this section and the last one, to develop

expressions for the manipulator’s energies.

3.4 MANIPULATOR’S ENERGIES.

Kinetic energy.

Let us consider now the manipulator with n1links. As we saw before, the linear and
angular velocities of any point can be expressed in terms of the joint variables by a Jacobian matrix,
and the derivative of the joint variables. We called these joint variables the generalized coordinates
of the manipulator. They represent the number of degrees of freedom.

We can express the linear velocity of the center of mass of the link 7 by

Ve = -fvc,-(q} é

where J,,, isthe Jacobian matrix corresponding totheithlink. Inasimilar way, we have the follow-

ing relation for the angular velocity of the link /

we ="'R] 1, (@4

Recall that the rotation matrix is orthogonal, then F1RT represents the inverse of the rotation from
g i rep

the frame / to the frame i-1. 'We need to introduce this rotation matrix because, as we said before,
the angular velocity was expressed in terms of the frame /-1, and in this case we want the angular
velocity of the center of mass of link 7, with respect to all the joint displacements, to be represented
inits own frame. Remember that the angular velocity of the link /, due to the rotation of link / and
represented in the frame i is zero. For the manipulator that we are considering, the overall kinetic

energy is equal to the sum of the kinetic energies of each link, that is

K =

8| -

n

T
Z[m,-vdvc,- + W I,»ch}
i=1
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Now, by substituting v,; and w;; into K, we obtain the expression for the overall kinetic energy of the

manipulator in terms of the joint variables

n

K =2 2l @7 @) + (7R Je @A TR T ()

i=1
by eliminating parenthesis

1 n
- 52[ i, (T (@4 + G (@ TTRLQ) [ TR T S (@]

We cantake q’ and q out from the summation and get

q" Y [ @' (@ + T @ TR L RAQ T ()]

i=1

m|»—

We can see that the summation is only a function of the joint variable vector g, and depends on the
kinematic configuration of the manipulator. Letus call H(q) this summation, We rewrite the above

as

K = —~d"H(q)q (3.24)

S l

where

n

H@) = D [mi @7 (@) + 1@ “IR(Q IR T (@] (B.25)
i=1
Notice that the first term in the summation is a symmetric positive definite matrix, because my; is al-
ways positive and the product of the Jacobian matrix by its transpose yields a symmetric square form.
Also the second term is a symmetric positive definite matrix, where the inertia matrix J; is always
positive definite, and the overall product is a symmetric square form. Thus, the sum of positive defi-
nite matrices leads to a positive definute matrix. Hence, H(q) is a symmetric positive definite matrix.
This agrees with the fact that the kinetic energy is positive, unless the system is at rest. Itis aconven-
tionto call H(q) the inertia matrix of the manipulator, or the inertia tensor of the manipulator. Strictly

speaking H(q) is a matrix based on individual inertia tensors.

49



Chapter 3. Dynamics

Potential energy
The expression for the potential energy of the manipulator is in general a sum of

terms of the form giveninsection 3.3. Notice that because r; is a function of the joint coordinates,
the overall potential energy is only a functionof q. Itisaconventiontodenote V(q) the overall poten-
tial energy of the manipulator, that is

n

V@ =g > ram

=1
wherer; is the coordinate of the center of mass of the link 7, and the inner product g”r;, is the projec-
tion of the position of the center of mass of the link, into the vertical axis, in other words, its height

with respect to the base.

3.5 DYNAMICAL MODEL.,

Lagrangian.
Let us find now the Euler-Lagrange equation of motion of a manipulator, for which

the kinetic energy is given by (3.24) and the potential energy is V(q). The Lagrangian is given by

1, .
L=K-V==4Haqq- V@

Let us write K as a summation, and substitute it into the Lagrangian

n

L= 2> digad - V@

i=l j=!

Jid; + ézz hoyd; + =00 + énzhnjéj - V(@
j= j=1

[

*
41
J

i
[0
o

Now, we have to calculate the terms of the Euler-Lagrange equation of motion givenin (3.18). Let

us start with the first term. The partial derivative of L with respect to g is
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a
EL = Z miQ)d; + Zq,hﬂ(q
j=1

The first term is for k=i and the second for j=k, but since there are 1 of these terms, we can write it
in terms of j from 1 to n, and since H(q) is symmetric, i.e. hyj=h;, we get
6 1 n n
L =23 2hf@d; = > hif@)d; (3.26)
0, 2 j=1

=
In order to visualize this, consider as an example a 3 degrees of freedom manipulator, then

1 [ . - . . L4 4 L L * 'l L3
L= 5(41]111%1 + q12g2 + @11ads + gali g + Galtaaga + dahiags

+q3l13191 + G3haaga + gahssgs) - V(Q)

and

)

“5‘“.—11 = (29’;’111 + hiads + hisds + ahayy + Gahay)
g1 2
o) 1

3-_1‘ = —(gia + gy + 2‘?2’?22 + hsds + gshsa)
7y} 2
o] 1

——L = —{g1h13 + §ohas + h31d; + F3ada + 2h33ds)

Qs
)
)

[\

but because h;=h;;, we have

1 S ;
6q1 = —2~(2q1h11 + 24000 + 243hy3) = 2 hd;
4 1 :
o0 L = (2q1h21 + 2qahs + 2gahys) = Z hayd
6 1 v . by : b
o 5{2q,h31 + 240130 + 243hg3) = Z h3q

Now, let us differentiate (3.26) with respect to time

d o
dt 0y oa k= zh’v(% + Z hk;(q)qf (3.27)

Notice that

d =9
Lohda) = E Z ha
dr LJ(Q) - (sq:' Wi
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by the chain rule. Substituting into (3.27)

d é n

—f¢=zmm+zz—%@%
dt dq; =

=] =1
where the change in the order of the summations gives the same result.

Now, the second term of the Euler-Lagrange equation, is the partial derivative of L
with respect to gz,

n

1< ) E)
—L = —h 1 - —W
6qu 22 E 7 uAQ) qig; b0 (@

j=1 j:l

We can write now the Euler-Lagrange equation using the last two equations as

(3.28)
Z h(Q)g; + z Z A;(Q) L9 ~—h{@ | 4.4; - "é—V(Q) =T, k=12 .n
Pt 5?3: Oy
Notice that
n n
22 3. @i = ZX—W@%—EZ %@%
i=1 j_l j=1 sl i=] j= 1
1 non 6 ,
z > T Q) + — Q) )4ig;
i=1 J=i ( ’ (sqf ’
Hence, the second term of (3.28) is
hd a & 1
22 7 @ - ﬁm qid; = ZZ %@+ Mm o 1@ | 44
i=l j=1 i=] j=1
Z z —'Ctji(Q) QJQJ (329)
=1 j.....

where the elements ¢y are called the Christoffel symbols of the first kind. Note that because the Sym-

metry of H(q), we have that c;z=¢;z. Hence, we only have to calculate half of them

It is a convention to call g(q) the partial derivative of the potential energy with re-
spect to g, that is

52



Chapter 3. Dynamics

d
glq) = . V(g (3.30)
di

Let us substitute the last two expressions into the Euler-Lagrange equation of mo-

tion (3.28), that is

D hAQE + DD @) didy - 8K =T, k=1,2--.n
j=l i=1 _}'=1
Now, defining ¢;(q) as

n (5 ,
(@ = > Qi = 2 Z f:@(q) * 5 B @ = 5@ | di (3.31)
i=1 =1 j=1
we can write the n Euler-Lagrange equations, in a vectorial form as

H(Qg + C(q,9)q + g(q) =~ (3.32)

which is the dynamical model of arigid robot manipulator with n degrees of freedom. Any configura-
tion of arobot manipulator without regard to its geometry, the number of degrees of freedom, or the
kind of joints, will always have a dynamical model of this form.

As we said before H(q) is called the inertia matrix. C(q, ) is called the centrifugal
and Coriolis forces matrix, where the terms of the type 42 , correspond to centrifugal forces directed
along the radius of rotation of the joint /, and the terms of the type é,-c}j , Tor i#f, correspond to Coriolis

forces. Remember that when we were talking about rotations of acceleration vectors, we described
the acceleration that those forces produce. The vector g(q) is called the gravity forces vector, This

is the model that we are going to control in later chapters.

3.6 PROPERTIES.

Letus mention some properties of the model (3.32). Consider the derivative of H{(q)

with respect to time.  Using the chain rule, we have that the kjth element of h"(q) 1s given by
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n

s 4
Ry = > —hdq)g;
A;(Q) gl: 6q,~ kj(q)qt
Recall that C(q, q) can be written in terms of a matrix that depends only on q, multiplied by the vec-

torq, by the definition of the terms ¢, given in (3.31), that is

C(q, 9 = Cg)q

where C(q) is the matrix of the elements ¢;. It is easy to see from this equation, that C(q.0)=0.

Let us subtract the term  2¢4(q, ) from h(q) , and see what happens. We have

n

1 o) , o) )] a4 .
@) - 2c(q) = > Sghmq)qf - Ehkﬂq) + X%hk,-(q) - —(Ehf,{q) ¢

i=1
~f o d
= 2| shi@ - s—hut@) ) 4
Let us do the same the with the jkth element, to get

. , n a4
hi(q) - 2e3(q.q) = z(%hm(fl) ~ d—q:hﬁ(Q)) i
; .

=1

. Since H(q) is symmetric, we have that fy;=h;, hence

I;kf(q) - 204(q,q) = “(’;jk(Q) - chk(q,d))

In other words, the matrix H(q) - 2C(q.q) ,is skew symmetric. 'This property leads to the following
resuit

x[H(g) - 2C(q.@)x = 0 (3.33)

where xis any vector [4] (pp. 143). This property will be very useful in the stability analysis of clo-
sed-loop robot maniputator control systems.

A very important property of the model (3.32) is that it is linear in the parameters.
We are not going to prove this, but the reader is referred to [4] (pp.301). This means that, although

the equation of motion is not linear, the parameters of interest such as link masses, moments of inertia,
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and so forth, appear as coefficients of known functions of the joint variables. If we define each coeffi-

cient as a separate parameter, we have a linear realtionship, and we can write the equation as

HQ4 + C(g. 94 + g@ = ¥Y@.¢.90 =1 (3.34)

where ¥(q,q, ) is an nxr matrix of known functions, and © is anr-dimensional vector of parame-

ters. The property is the key feature of robot manipulators that has been used to design adaptive con-
trol algorithms,

In H(q), dependence on q, is always in the form of sines and cosines of 6;, because
it depends on the Jacobian, that depends itself in the homogeneous transformation. Since the func-

tions sine and cosine are bounded for any value of q, H(q) is bounded above and below, that is

al < H(q) =< fI (3.35)

for some positive scalars aand B, a< p, where the relation is in the sense of positive definite matrices
Blep.12.

Since H(q) is a square symmetric positive definite matrix, and for manipulators iner-
1ia cannot be zero, its inverse exists (see preliminaries).

Now, suppose that we know the structure of the manipulator’s model given by

(3.32). Consider that the Lagrangian is given by

L = —d"K(q)q - P(q)

ra—

where K(q) is an inertia matrix and P(q) is the potential energy. In fact the first term is the kinetic

energy. Let us build the Euler-Lagrange equation of motion, as follows

0 .
34 L = K(q)q

as we stated in (3.26). Also

é . .
7 aqL = K(@)q + K(9)§

and
d 1 d d
—I = —-a'"l —FKi i~ —P
34 291 5 @ Jq 39 (@
Thus, the equation of motion is
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u . 3 . o)
K@) + [K(q) - %QT(EK@)) Q- 5op@ =

If we compare this with the model given by (3.32), we can conclude that H(q) is actually the inertia

matrix, i.e. H(q)=K(q), [31 (pp. 11). Also

. 1. 8 ,
C(q.4) = H(g) - EqT(gaH(q))q

We can also write C(q,q) as [3] (pp. 13)

Ca:d) = A(Q)|dd] + B(Q)|¢?]

where A(q) is an nxn(n-1)/2 matrix of Coriolis coefficients, [¢q| is an n(n-1)/2x1 matrix of joint ve-

locity products, given by
[ci(i] = [E!lciZ (iI(i3 v (in—]q'n}r

£2

B(q) is an nxn matrix of centrifugal coefficients, and [q ] is an nx1 vector given by

GRCR

About the vector g(q), we can only say that it has a bound independent of the value
of g, since dependence on q appears only in terms of sine and cosine functions, in the numerators of
its elements [3] (pp. 14).

Itis also possible to develop a model considering friction, unmodeled dynamics, ex-
ternal disturbances, and flexible links. However, in this work we only consider the model developed
with our assumptions. In Chapter 6 some references are mentioned about adaptive controllers, that

solve certain kinds of problems of model uncertainties.
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4, PD PLUS COMPUTED FEEDFORWARD
CONTROLLER

Inthis chapter we present the analysis of two motion controllers for robot manipula-
tors: computed feedforward and PD plus computed feedforward. The latter has shown to have an
exelent performance in experiments {1]. However, no analysis was presented. We study existence
and uniqueness of equilibrium points, stability and achievement of the control objective for the over-

all control system.

4.1 INTRODUCTION.

The motivation that originated these kinds of controllers is that, although recent
technological advances and reducing costs in the field of digital electronics, have permitted the em-
ployment of microprocessor-based equipment, with high speed and powerful computations, in con-
trol of robot manipulators, it is of great interest the use of control techniques that include a reduced
number of operations to be done on-line. Among these control techniques are computed feedfor-
ward and PD plus computed feedforward. The main advantage of these controllers is that all the feed-
forward terms can be calculated off-line.

In [5] a PD controller with cancellation of gravity was proposed, using a precom-
puted feedforward gravity compensation. It was shown that the closed-loop system is stable. The
PD plus computed feedforward is an extension of this work, in which a precomputed compensation
is introduced in the system for the overall dynamics of the robot.

The chapter is organized as follows. In Section4.2, we present the dynamical model
of arobot manipulator with » degrees of freedom (dof), rigid links, and ideal actuators. Using some
important properties of the model, we rewrite the dynamical equation in terms of the state vector.

Then, the problem formulation is stated in Section 4.3. The analysis of the computed feedforward

controller is presented insection4.4. InSection4.5, we present the analysis of the PD phus computed
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feedforward controller. We present simulation results in Section 4.6, for the manipulator of one de-
gree of freedom (dof). We give some conclusions in Section 4.7, and the references are listed at
the end of the chapter.

The mainresult that we found, is that, although the computed feedforward controller
seems to be a natural way to control the robot manipulator in closed-loop, it presents multiple equilib-
rium points, that vary according o the selection of g,(#), the desired positions vector, and it cannot
be satisfactorily used to control amanipulator. We can eliminate this problem by adding a PD. Now,
the system is stable, and the control objective is satisfied. We found an explanation for the good

performance of this controller presented in {1].

4.2 DYNAMICAL MODEL.

We consider a robot manipulator to be an open kinematic chain, of n dof, with rigid
links, ideal actuators, and without friction on the joints. The dynamical model of the manipulator
is obtained by the use of the Euler-Lagrange equation of motion, defined in terms of kinetic and po-

tential energies. It has been shown that the model has the following form

HQ{ + C(q.9)q + g(q) =1 (4.1}

where q is the nx1 vector of joint variables, 7 is the vector of applied joint torques (or forces). H(q)
1s an nxn matrix called the inertia matrix, defined in terms of the Jacobian, mass, inertia, and geometry
of the manipulator. H(q) is a positive definite matrix, therefore its inverse exists. C(q, §) is the
nxn matrix of centripetal and Coriolis terms, defined in terms of the variations of the inertia proper-
ties, with respect to the joint displacements and velocities. g(q) is the n1x1 vector of gravitational
forces, defined in terms of the variations of the potential energy with respect to the joint displace-

ments.
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Properties.
1) The matrix I:I(q) - 2C(q,q) is skew symmetric , hence
x'(H(Q) - 2C(g, d)x = 0 “.2)
2) The matrices H(q), C(g.q), and the vector g(q), are bounded above and below.
4.3 PROBLEM FORMUILATION.

The control problem is stated as follows. Given the bounded vectorial functions
q.(5), 440, and G4, representing desired positions, velocities, and accelerations of the joint vari-

ables, find a vector T as afunction of time, such that the joint positions, velocities, and accelerations
of the manipulator follow the given ones with precision. 1n other words, we want to determine 7,

in such a way that

lim q@®) =0

t—w

where q(f) is the vector of position errors defined as
40 = qu(») - g1
It suffices toshow that G(r) — 0 , to guarantee that §(7) — ¢u(*) , and (&) — Gu(?.
So this is our objective.

Usually, those desired values of gqu(#), %), and {7, areprovided by a higher

stage called the trajectory generation system. We do not expect that the controller will perform deriv-

atives, therefore we need the three values to be provided.

4.4 COMPUTED FEEDFORWARD CONTROLLER.

This is one of the most elementary model-based control strategies, that can be used.

We have to consider that the model of the robot is perfecly known, that is, the matrices H(q),
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C(q,q), and the vector g(q). We are interested in this kind of controller, because once

q4(0, cid(r), and ,(r) areknown, the implementation is fairly straight forward. We can calculate

thecontrol action T from (1), just by substituting these values. In other words, we calculate H{qy),

C(qq, Ga)» and the vector g(qy) offline. Then, we can generate the values of 7 to be applied.
Notice that this is an open-loop controller, and in consequence we have all the disad-

vantages of an open-loop control system. The block diagram is shown in Figure 1 on page 68.

The behaviour of the system is obtained by replacing t from (4.1), with its precom-
puted value. Let us express this open-loop equation in terms of the state vector [§ &}T, as follows

(4.3)

d [qa)] _ 4 )
dt| 4]~ | H@ {(H(@) - H@a)da + (C(a, &) - C(aq. 40)ds - C(@. DG + £(q) - 2(qa)}

where q = qg— 4. This equation represents an ordinary nonlinear nonautonomous differential
equation. It is clear that the origin [§ §}7 = 0 is an equilibrium. By definition of equilibrium, if

q(0) = q4(0), and 4(0) = G.(0), then G{n =0, forall 7 = 0.

However, this equilibrium is in general not unique, and it is difficult to guarantee
that the initial conditions are identically equal to the desired initial conditions. Then, what can we
say about the behaviour of q(#) and §(£)? The answer to this question could come from the stability
analysis of the equilibrium points. Itis possible that the system has multiple equilibrium points, then
we can discard the option of global asymptotic stability. So we can only expect local asymptotic or
exponential stability properties. In order to determine these, we will need more specific information
about a particular configuration of a manipulator, and with different configurations we can have dif-
ferent behaviours.

For simplicity, we present an example of the computed feedforward controller with
a one degree of freedom manipulator, in other words, a pendulum. This kind of manipulator is exten-

sively used in experiments for control, and particularly in robotics.
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Feedforward control of a pendulum.
Consider an ideal pendulum with length /, mass m concentrated in its exireme, ex-
posed to the gravity force g. We can use the Euler-Lagrange equation of motion to represent its dy-

namical model. This model is given by

ml*§ + mglsin(g) =7 4.4
which has the form (1), with

H(g) =ml, Clg.¢) =0, g(g) = mglsin(g)
The open-loop state equation is

d[aw] _ 1 49
dz[é(r)] ™| lmstsinta) - mgisinia) 3)

Clearly, the origin is an equilibrium, and so is [§ 417 = [2n7 0]7, for n € Z.
Consider the particular case in which g;(f)=0. Now, the state space representation,
is the equation of a free pendulum, given by

afan]_| 40
ar [éw}‘ -2 sin(@) (4.6)

Notice that the equilibrium points are now [§ é]T = [nz 0}7, which means that we have more equi-

libriums. Itis easy to show that the origin is a stable equilibrium, but it is not asymptotically stable,
and the equilibriums corresponding to n odd are unstable [3].

With this example, we show that the feedforward controller cannot satisfy even po-
sition objectives. For this reason, this open-loop controller is not satisfactorily used in practice,
However, it may beapplicable to some special cases, butso far wedonothave a general result to prove
that it will always work.

We state that despite of its well reasoning foundation and ease of implementation,
it is not successfully applicable to the control problem of robot manipulators.

From the practical point of view, it is of great interest to include as less a reduced
number of operations in real-time, when implementing a controller, this motivates the inclusion of

the precomputed terms. In [6] a PD controller plus a gravity term was suggested. In [S] a modifica-
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tion was made to itin order to include precomputed terms. The PD controller plus computed feedfor-
ward is a generalization of this controller, that has shown {17 to perform well. We now discuss its

performance.

4.5 PD PLUS COMPUTED FEEDFORWARD CONTROLLER,

The feedforward controller is modified by the addition of a proportional-derivative

term (PD), as follows

T = H(ga)Gs + C(qa, dada + a2 + K4 + K. 4.7)

where K, = K >0, andK, =K > 0, are nxn positive definite matrices of position and velocity

gains, The proportional-derivative term closes the loop, providing anexplicit feedback of q and §.
InFigure 2 the block diagram of this controller is presented. Thisis a generalization of the PD con-
troller plus precomputed gravity compensation presented in [5), since it includes feedforward com-
pensation for the overall dynamics of therobot. The experimental results presented in[1] have shown
that this controller has an excellent performance, comparable to the quite more complex computed
torque controller. These results are surprising because of the relative easiness of the control law.
Unfortunately, the stability analysis is not presented, and to the knowledge of the author, it has not
been reported before. In the following analysis, we conclude that the good performance obtained,
is due to a high proportional gain K, in the closed-loop.

The closed-loop behaviour is obtained by replacing 7 in the equation of the robot

(4.1) with the controller. Let us express it in terms of the state vector, that is

4 { 40 4 @s)

at d(t)]= H{(H - H)lia +(C - Cda - C4+ g - g4~ Ko - K,

where we have removed the arguments, in order to abreviate notation (H; means H(g,), and 50 on).
Notice that the origin is an equilibrium. Using the same reasoning as [5], we propose the following

function
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t

V(6.9 = %(ciTHd +4'Qq) +§'ga+ J |q[(Ha~ H)a +(Ca- Cla-gf - Fda]ts  49)

(2]

where Q=QT=KP>O. Itis easy to check that this function vanishes at the equilibrium, and it is positive
otherwise , as long as the entries on Q are large enough. V{4, g, (i) dominates the function
- £ 1 1 P4 ~ -
Wi(q. q) = E(CITHQ +CfquQQ)
where ) >0isa small enough constant.  Notice that W;(q, c'i) is a positive definite function.

Vit q, c’i) is also dominated by the function

R4 1 2 * - ~
Wa(q, §) = S{q'HG +226"Q4)

for a3 > 0 isalargeenough constant. W(g, 6]) is alsoa positivedefinite function. Hence V(¢, §, ci)
is a positive definite function (see preliminaries), it is decrescent, and we propose it as a Lyapunov

candidate function,

Differentiating V with respect to time, evaluating along the state trajectories, and
using the property that H(q) - 2C(q, q) is skew symmetric, we get

Vg9 =-4dKG < 0 (4.10)

This implies that the equilibrium is stable in the sense of Lyapunov, and V(t, q, (i) is a Lyapunov
function. We use the following two lemmas to prove that the control objective is satisfied.

Lemma 4.1  [9] (pp. 232 fact 4)
Let f:R,— R IffE L] and f € L7, then f(f) — 0 as ¢ — .

Lemma4.2 [4] (lemma 2.2)

Consider the continuous and differentiable functions x:R, — R™,  and
f: Ry = R,. Define the function V: R™! — R,, givenby

Vit xhn = x(0TKx®) + ) = 0
where K; & R™" is a symmetric positive definite matrix. If there exists a function z ; R, — U,
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where U is a subspace of R”, of dimension p(=< m), such that the derivative of V with respect to
time satisfies

V(%) = —z()TKyz(f) = 0
where K; =KI >0, then

a x&I7
by fe&E L,
) z€IL

These lemmas imply that §,§ € L%, § € L%, and

lim 4 = 0

o]

where x = [§ 417,

t .
K, = %[%g] o = Lxr{ggd Cd(ic Hd"_H] éj + ey ds
and K,=K,.
We claim that a large enough K,=Q, always exists since all the quantities are
bounded and it is reasonable to think that g (), 4.(?), and §u(?) are bounded.
We are not able to conclude that the equilibrium is asymptotically stable by the use
of LaSalles’s theorem, as suggested in [5], because V is nonautonomous. In [6], it is shown that the

Matrosov's theorem could be used to guarantee the global asymptotic stability of the origin.

We show that the control objective is satisfied by showing that q(f) convergestoa

constant, and this constant is the zero vector. Consider éi(r) =0, if §(#) is a constant, itmustbe a
solution of the closed loop system. We calculated the solution by an iterative method, and it Tesulted
tobe zero, for different functions qu(£). We conjecture that, in general, the equilibrium is unique when
the desired position vector is not a constant, and it does not converge to a constant.

We present the following example, for the manipulator of one dof, in order to illus-

trate our conjecture.
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PD plus feedforward control of a pendulum.

Consider again the model of the ideal pendulum. The closed-loop system is given

by

a4 [q;(r)],_ . at all
at| 40| ™ | —(msisin(a - 3) - metsingg) - Kpq-K,d) | 41D

Clearly, the origin is an equilibrium. If g;(7) is a constant, we could have additional equilibrizms

[§ 47 = [s 0JF, where sis the solution of

K,s + mglsin(gy) - sin(gy - §)) = 0 4.12)

It is interesting to observe the upper bound of Isl, that is

! amgl
I = 1- 28 Sin(ga) - sin(ga- ) | = 8

4.13
K, K, (4.13)

Notice that if K, — ¢, then Ist — 0. Consider now the following Lyapunov candidate function

T

- 1 2 ” \ . - 2z . - - . N
V649 =5 (P& + K, + mglgsin(qa) + f mglgsin(q - qa) - mglgdacos(ga) ds  (4.14)

Q

whichis positive definited for K, large enough, since itis dominated by the positive definite function

. on 1 : .
Wi(d,q) = -E(ml’zqr2 +a1Kpd)

and it dominates the positive definite function

' 1 .
Wald.§) =~ (mPF + ek,

where ay, a3 > 0, are alarge enough constant, and a small enough constant respectively. This also
indicates that V(z, d,d) is a decrescent function. Its derivative with respect to time is given by

V(t,d,4) = -K,F < 0 (4.15)

Hence, the origin is stable, and V(z, 4, cj'r) is a Lyapunov function. Itfollows from lemmas 4.1 and

4.2, that

66



Chapter 4. PD+Feedforward

lim §() = 0

1—w

Considering this limit, and the state equation, we claim that the next equationhas a unigue solution
g=0

K,g + mgl(sin(gy) - sin(qz - §)) = 0 (4.16)

We used an iterative method to find a solution of this equation, for different func-

tions g, (?) that does not converge to a constant, and different large enough values of K;. We found

thatin all cases § — 0 as ¢t — o, satisfying the control objective.

4.6 SIMULATION RESULTS.

We present simulations of the PD controller plus computed feedforward with a pen-

dulum . The parameters of the pendulum were m=1, /=1, and g=10.

InFigure 3, we considered g,(#) = w/2. Thedesign parameters were K,=1/10, and
K,=1. Theinitial conditions were ¢(0) = -3.43, and ¢(0) = 0. Inthe graph it is shown that g(7)
does not converge to g,(f), but itdoes to 69.44. Noticethat [ 417 = [- 67.87 0)7, isan equilibrium
andthat Isl = 67.87 = 2mgl/K, = 200. Noticethat, although the syétem started near the origin, and

it past it, it did not converge to it. Also notice that the structure of the controller is identical to that
proposed in [5]. We conclude that this value of K, s not large enough.

In Figure 4, we considered the same situation, except that we set K,=10. Now thar
K, has been increased, the control objective is satisfied. Itcan be seen that the origin is the equilibri-
um.

InFigure 5, the same values for the constants and initial conditions were used, except
that this time the input is gz(f)=sin(r). Again, as in figure 3, g(#) does not convergeto gz(1), but the
position error does to a value around 6.3. Although this value is not a constant, the systermn regulates.

In Figure 6, we finally increased the value of the proportional gain. We used K,=5,
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which is large enough for the position and velocity errors to converge to the origin.

From these results we conclude that a reason for the good performance of this con-

troller presented in [1), is the selection of a large enough K,,.
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4.7 CONCLUSIONS.

In this work we studied the computed feedforward and the PD plus computed feed-
forward controllers for robot manipulators. We found that the computed feedforward controller is
notconvenient for the conirol of manipulators, since itis not capable to guarantee even a pure position
objective.

From the analysis of the PD plus computed feedforward, we conjecture that, the clo-
sed-loop system has a unique equilibrium when the vector of desired positions is not a constant, and
we show that the origin of the state space of the closed-loop system is stable for large enough values
of K,,. This selection guarantees convergence of the velocity and position errors, However, itis still

necessary to find a lower bound for K,.
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5. PD PLUS ADAPTIVE FEEDFORWARD
COMPENSATION CONTROLLER

In this document we present the design of an adaptive controller for direct current
motors, with parametric uncertainties, that can be applied to robot manipulators, We show stability

and achievement of the control objective for the overall control system.

5.1 INTRODUCTION.

Electric motors are one of the most used energy source inlow power industrial appli-
cations. Inthischapter, we present the analysis of a controller for direct current motors (DC motors),
to be used as actuators in robot manipulator joints, where we need great precision in the following
of trajectory specifications. Brushless motors that emulate via a power electronic interface, the lin-
ear transfer function of a DC motor, are widely applied in industrial robots. We are interested in those
cases in robotics, in which independent joint control is enough to satisfy control objectives.

There exists a great variety of commercial electronic equipment for DC motors, des-
ignated to the applications of velocity regulation, and in less scale for position regulation. This is
due to the fact that in the majority of the industrial applications, DC motors are used in tasks that in-
volve motion at constant velocity. However, there are applications in which velocity regulation or
positionregulation is not enough to satisfy certain specifications of motion. Applications inrobotics
are a typical example, where it is required for the manipulator to follow time-varying trajectories
of position and velocity. Electronic equipment for these kinds of applications is practically absent
in the market, due to the lack of economic feasability, because of the limited number of applications,
but not as a result of the lack of knowledge nor the actual state of the technology.

Although commercial equipment can be successfully used to regulate velocity and
sometimes regulate position, they cannot be satisfactorily used inrobotics. In this situation, the con-

troller must be specifically designed for the model that characterizes the dynamical behaviour of the
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system. The situation could be still more complex, when the parameters of the model are difficult
to be quantified, of openly unknown. The study of this case was the motive for the development of
the present analysis.

This approach is interesting from the application point of view, because we can add
the compensation to an existing proportional-derivative controller.

The chapter is organized as follows. InSection 5.2, we present the dynamical model
of a DC motor controlled by armature. In Section 5.3, we state the control problem. In Section 5.4,
we mention some previous reported solutions, We present the control and adaptation algorithms,
and the stability analysis in Section 5.5. In Section 5.6, we present some simulation results. We give

some conclusions in Section 5.7, and the references are listed at the end of the document.

5.2 DYNAMICAL MODEL.

A classic description of a direct current motor controlled by armature, is given by
the following equations [5]
J4() + f@(n) = Kd()
Li(ty + RI(t) + e() = ()
Kpg(t) = e()

where g{7) is the angular position of axis, v(¢) is the armature voltage, I(f) is the armature current, ()
is the induced voltage, J is the inertia of the rotor, fis the friction coefficient, K;, K, R, and L are
electric parameters of the motor,

Neglecting the armature inductance L, considering the armature w(7) as input, and

the angular position g(¥) as output, we get

K
qt) = mv(t) (5.1)

where p is the differential operator, thus p=d/dt, and

K

K=s——">0
Rf'l"KbKj
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JR

Notice that K and 7 depend on the inertia J and the friction coefficientf. It happensin applications
of direct current motors, that the inertia is partially unknown, because it depends on the load con-
nected to the motor. Also the friction coefficient varies according to the maintenance and lubrication

of the motor. In this work we suppose that K and 7 are unknown constants.

5.3 PROBLEM FORMULATION.

Consider the model of a direct current motor, where the parameters K and ¢ are un-
known constants. Given a function g,(#), withderivatives of first and second order, called the desired
angular position, we have to design a controller thatprovides v(?) insucha way that the position error

will converge to zero, that is

lim g =0

= w0

where 4(r) is the vector of position errors defined as

4y = g/t - q(1)

It suffices to show that 4(r) — 0, to guaraniee that §(2) — §f) ,and §(t) — §A0).
So this is our objective.

We do not expect that the controller will perform derivatives of the inputsignal, then
we consider that the values of g;(£), 4,(¢), and §Lf), canbe provided to the controller. The most
simple way of doing this is by the use of a reference model, where we specify a stable second order
transfer function G(p), withrelative degree of 2. Theinputis areference function g,(?), and the output

is gy(1) , that is

b,
q4(t) = G(p) q(1) = mqr(ﬂ

or equivalently
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dlgun]| _ Gald)
dt [ fidm} - [boqr(r) ~ Aoqall) - alc}d(t)] (5.2

In Figure 1 a block diagram is shown.
We also consider that the position g(f) and the velocity §(#) are measurable. The

control problem stated, can be solved by designing an adaptive controller with trajectory following
objective, for alinear second order plant with relative degree of 2, and unknown constant parameters.

We now present some solutions that have been previously reported.

54 LITERATURE REVIEW.

State feedback controller with adaptive compensation [2].

The structure of the controller is the following

W) = Kpg(t) - Kog(t) + 614a(0) +624u(1)
61 = ¥4
6, = ydng()

where y > 0 is the adaptation gain, K, and K, are design positive constants, called the position
and velocity gains. The analysis presented shows thatif y is small enough, and g,(z) does not have

high frequency components, the control objective is satisfied. However, this controller present para-

metric overflow in regulation.

PD controller with adaptive compensation (8,51,
This strategy is based on a robot controller. In the application to direct current mo-

tors, it results to be
V) = Kpd() + K4 + 01(F0) +A4(D) + 02(dD) +A4(D)
81 = y(EAD +AJONIW) +A4(D)
B2 = (gD +AGONGD +A4(D)

where K,, K,, v, and A are design positiveconstants. It was shown thatthe closed~loop adaptive

78



Chapter 5. PD+Adaptive Compensation

system is stable and satisfies the control objective. However, the structure is quite complex, and a

large number of on-line computations are required.

Adaptive computed torque controller [3].
This controlleris fundamented on the controller proposed in [3], for motion control

of robot manipulators. 'When we apply it to DC motors, it is reduced to

v() = 61[Kpg(t) + Kd(®) + Guld)] + 624(0)

6, = Y50 + Kd(®) + Kpl(O))v
b, = ya(iw

P 1 [ .
& + ET(K”"(’) + Kpd(0)

p+A

Vo=

where K,, K,, 7, and 4 are design positive constants. As in the other controllers, it was shown

that the closed-loop adaptive system is stable and the control objective is satisfied. Notice that the

structure is still quite complex.

5.5 PD PLUS ADAPTIVE FEEDFORWARD COMPENSATION.

Of above controllers, the most simple is the state feedback controller with adaptive
compensation. A disadvantage of this controller is that, it is conditioned to an adequate selection
of y, and the type of reference functions g,(?) is also restricted. In the last two controllers this does
not happen, but they are much more complex. In this section we propose a simple controller that
satisfies the control objective. Although, we do not show convergence of the parametric error to
zero, we found in simulations, that it does.

We consider .that a minimum value of X is known, say K,,;;, and alsc a maximum

value of T is known, say T,.c. In practice this is not restrictive,

The structure of the proposed controller is

v() = K,GQt) + Kg(t) + 014(t) + Badiu(t) (5.3)
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61 = ydu0{d0) +4a(0) (5.4)
b1 = yd0{d +14() (5.5)

where K,, K,, and y, are designpositiveconstants. Weselect £ insuch a way that the following

inequality is satisfied
I'1'1'18.)(

The selected value of A satisfies

0<i< 1*;% .7)
which implies that

0 < {(I1+KK, ~ Al
also

0 < (1+KKM - 1A% + KK, (5.8)

since K and K, are positive.
The block diagram that represents the closed-loop system for the proposed control-
leris shownin Figure 2. Notice that if g,(#} is constant, this controller is reduced to the proportional

plus velocity feedback controller given by

v(n) = Kpg(n) - Kg()

for whichitis well known [10] that satisfies the control objective, and itis exponentially stable. Also

it is robust against additive perturbations in the input or in the output.

We define the parametric error ) € R? as

5 - él(t) _ 91 - l/K
60 = | 59 = [02—‘5 /K] 5.9

Notice that because K and 7 are constants, 8 D)= 6 ; and G:z(t) = 6'2, The closed-loop state equa-

tion is given by
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40 o dad
alany _ '_((1 +KKv)Cf?+KKp¢7+K(91éd+92§d)) (5.10)
dt | 01(0) vda(g+Ag)

G.(0) yc'jd{cz] +Ag)

which is a nonautonomous differential equation, that has one equilibrium in the origin.

Consider the following Lyapunov candidate function

V(3.4.6) = —;-{r(q!+lcj)2 + (KK, +A(1 +KK,) -TA%)@ + %éfé] (5.11)

‘It is easy to check that V{(g, c} é) is a positive definite function, and it is also decrescent [10]. Tts

derivative with respect to time is given by

V(4,4.6) = -(1+KK, -t)§® - AKK,d» = 0 (5.12)

which guarantees that the equilibrium is stable, and V(g, r;; #) is a Lyapunov function. Thus, since

it is decrescent, positive definite, and also radially unbounded, its arguments g, G, and & are
bounded, that is

4,6 € Lo, 6 €L (5.13)

On the other hand, we can obtain the following relation from (13)

<]

d(s)*ds + AKK, f d(s)’ds (5.14)

0

oo

v(40.40).60)) = A +KK,-1) j

o

which implies that q,cj € L,. We now present the following lemma.
Lemma 5.1  [9] (pp. 232)

Letf:R,—»R. IffE€L,andfE L, then fit) = 0 as t — .
This lemma guarantees that

lim §(f) = O

> w

It has been shown that the control objective is satisfied.
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5.6 SIMULATION RESULTS.

‘We now present simulation results of the proposed adaptive scheme . The numeric

values of the parameters of the motor were 7=0.1 and K=1. The initial conditions were
G0)y=2, §0)=0, 6,(0) =2, and 8,(0)=2. The parameters of the controller were K,=1/4,
Ky=1,y=1/2, and A = 10. Notice thatA satisfies (7)

1+ KK,

0<4d < = 20
The desired trajectory is gz (f)=sin(?).

In Figure 3, both ¢(7) and g;(f) are shown. Notice that by =100, g(#) has converged
to ga(D).

In Figure 4, it can be seen that the position error vanishes.

We present the state trajectory in figure 5. Notice that it converges to zero.

Although in this analysis we did not prove that the parametric error vanishes, we

have evidence provided by the simulation, to conclude thatitdoes. Notice that both él(t) and 65(2)
converge to zero.
With this simulations, we show that this controller satisfies the control objective,
thus it can be successfully applied to control DC motors that have (5.1) as dynramical model.
We have built an analog electronic card to implement this controller, and we found
that it is valuable.to have a compensation that can be added to an existing PD controller for DC mo-

tors. These experimental results are not presented in this document.
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5.7 CONCLUSIONS.

In this work we studied the control problem for DC motors with parametric uncer-
tainties, for position and velocity specifications. We have proposed a PD with an adaptive feedfor-
ward compensation, which guarantees stability and achievement of the control objective.

The design of the controller requires the values of some parametric bounds of the
motor, which are easy to obtain in practice, from the technical specification of the motor

Simulation results were presented, showing that the algorithm performs well.

‘We have proposed a relatively simple compensation for PD controllers for DC mo-

tors, that can be easily added to an existing controller,

85



Chaprer 5. PDtAdaptive Compensation

REFERENCES.

[1] Desoer, C., Vidyasagar, M., Feedback Systems: Input-Output Properties, Acade-
mic Press, New York, 1975,

2] Kelly, R., ” A Linear-State Feedback plus Adaptive Feedforward Control for DC
Servo-Motors”, IEEE Trans. on Industrial Electronics, vol. IE-34, no. 2, May,
1987.

(3] Kelly, R., " Adaptive Computed Torque plus Compensation Control for Robot
Manipulators”, Mechanism and Machine Theory, vol. 25, no 2, 1990.

[4] Kelly, R, Rueda, A., Alcorta, E., "PD Controller plus Adaptive Feedforward Com-
pensation for Direct Current Motors”, Proceedings of the 3rd International Con-
ference on Advances on Comunications and Control, Victoria, Canada, October,

1991, (pp. to be anounced).

[5] Kuo, B., Automatic Control Systems, 4th edition, Prentice Hall, New York, 1982.

[6] Narendra, K., Annaswamy, A., Stable Adaptive Systems, Prentice Hall, New York,
1989.

[71 Sastry, S., Bodson. M., Adaptive Control, Stability, Convergence and Robustness,

Prentice Hall, New Jersey, 1989.

[8] Slotine, J., Li., W,, "On the Adaptive Control of Robot Manipulators”, The Interna-
tional Journal of Robotics Research, vol. 6, No. 3, Fall, 1987.

9] Slotine, J., Li., W., "Adaptive Manipulator Control: a Case of Study”, IEEE Trans-

actions on Automatic Control, vol. 33, no. 11, November 1988,

86



FINAL CONCLUSIONS
AND FUTURE RESEARCH

In this work, the basic issues concerning the modelling and control of robot manipu-
lators have been presented. Our efforts resulted in putting together several important results in a clear
and compact manner.  First of all, we introduce some mathematical tools that are important in our
analysis. Then, a kinematic analysis has been described, in where we developed expressions for the
Jacobian. A detailed dynamic analysis has been presented, ending up with the dynamical model of
arobot manipulator of n degrees of freedom. Some important properties useful in control were also
studied. Future research will be done in the area of motion planning and flexible links.

It has been been shown that the PD plus computed feedforward controller is stable
under certain conditions, that we found by studying the closed-loop equation and the behaviour of
its equilibrium points. We showed that the trajectory following objective is satisfied. We confirmed
our theoretical results with simulations using a manipulator of one degree of freedom.  We will oy
to solve the problem of force control objective in future work.

A new PD-type adaptive controller has been proposed for independent-joint control
of robot manipulators. We showed that this controller has a more simple structure than previous re-
ported controllers of the same type. We solved the problem of parametric uncertainties in the model
of the actuator, when this actuator is a direct current motor or a direct drive motor. From our simula-
tions we found that in every case the parameters of the motor were identified. Future work will be
done trying to solve the problem of time-varying parameters, using adaptive control.

New techniques like fuzzy controllers and neural networks identifiers will be also
studied in future work, as an attemp to provided alternative solutions to those previously reported

using conventional techniques.
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