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ABSTRACT

The central topic for this thesis is modelling and control of robot manipulators.

A kinematic aralysis is presented, based on the Denavit-Hafienberg representation.

As a resul¡ of this analysis, some importa¡t expressions are developed that are later applie.d in the

dynamical modelling ofrobot marupulators. Importantproperties of themodel, whrch areexploited

in control system analysis are presented.

An original proof is presented for the stability of the so called pD plus computed

feedforward compensation controller, that has shown to have excellent performalce in experimenß.

A new stable PD-type adaptive control law is presented, for independent-joint con-

tlol ofmanipulators, with parâmetric uncertainties ìn the actuators. We show in simulations that this

controller has a very good performance and no case was founded in which the pa.rameters were not

identified.
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O.INTRODUCTION.

INTRODUCTION.

There are several disciphnes involved in the study ofrobotics, namely mecharucal

engineering, computer science, electronics, mathematics, physics and conEol engineering[3]. This

\ ork has been written from the point of view of control engineering. In order to design a control

system that will accomplish a desired task with tlle use of a robot mampulator, we need a design spe-

ciñc conEoller [1,2,3,4,16]. From the theoretical poínt of vie\Ã/, itis very important to have access

to the model of the manipulator we are dealing with. This is the first motivation for the study ofrobot

dynamics. There are several approaches that can be used to develop usefi-rl expressions for the dy-

namics of the robot- From all these techniques for modelling, the Euler-Lagrange approach [4, 1 6]

provides us with a model with some very useful propenies [4,9,16] that alow us tousepowerful tools

for the analysis of the closed-loop system, for instalce functional analysis [5] and Lyapunov's stabil-

ity theories [12,17]. This model have been developed in the past years and it have beenusedto design

control algorithms, from PD-rype 11,'7,11,I31to adaprive [4,6,8,14,15], bæed primarily on those

properties.

THEPROBLEM.

There a¡e several experímental results confirming the theory of robot controllers.

Particularly, the PD plus computed feedforward compensation controller has been used in experi-

ments with excelent results, unfortunateÌy no stability proof has been presenæd. We develop the

proof in this document.

The motivation that originated these kinds of controllers is that, although re.ent

technological adva¡ces and reducing cosß in the field of digital electronics, have permitted tle em-

ployment ofmicroprocessor-based equipment, with high speed and powerful computafions, in con-

trol of robot manipulators, it is of great interest the use of contol techniques that ìnclude a red.uced

number of operations to be done on-line. Among these control techmques are computed feedfor-



war d and PD plus computed fe€dforwa¡d. The marn advantage ofthese controllers is that all thefeÆd-

forwa¡d terms can be calculated off-line.

In [11] aPD controller with cancellation of gravity was proposed, using aprecom-

puted feedforward gravity compensation. It was shown that the closed-loop system is stable. The

PD plus computed feedforward controller [1] is an extension of this work, in which a precornputed

compensation is introduced in the system for the overall dynamics of the robot.

Feedforward is a technique in conEol theory [1,17] that allows us to deal withprob-

lems of additive perturbatlons in the input and parametric uncertainties in the model. Feedforwa¡d

refers to the addition ofprecomputed terms to the conûol action at input oftheplant. This technique

gives some very good results in adaptive control. A good example is present€d here, where an adap-

tive feedforward compensation has been added to a PD-type conÍoller.

Electric motors are one ofthe most used energy source in low power industrial appli-

cations. We present the analysis of a conEoller for dfect current motors (DC motors), to be used as

actuators in robot mampulator joints, where we need great precision in the following of Íajectory

specifications. Brushless motors that emulate via a power electronic interface, the linear tra¡sfer

function of a DC moto¡ are widely applied in industrial robot¡. We a¡e interested in those cases in

robotics, in which independent joint control is enough to satisfy conüo1 objectives.

There exists a great vadety of commercial elecû onic equipment for DC motors, des-

ignated to the applications of velocity regulation, and in less scale for position regulation. This is

due to the fac¡ that in the majority ofthe indusüial applications, DC morors are used in tasks that in-

volve motion at constant veiocity. However, there a.re applications in which velocity regulation or

position regulation is not enough to satisfy certain specifications ofmouon. Applications in robotlcs

are a typical examples, where it is required for the manipulator to follow time-varying trajectories

of position and velocity. ElecÍonic equrpment for these krnds of applications is practica.lly absent

rn the ma¡ket, due to the lack of economic feasability.

Although commercial equipment can be successfirlly used to regulate velocity and

sometimes regulate positlon, they can¡ot be satlsfactorily used inrobotics. In this situation, the con-

troller must be specifically designed for the model that chffacterizes the dynamical behaviou¡ of the

system. The situation could be strll more complex, when tie parameters of the model are difficult

to be quanüfied, of openly unklown. The study of this case vr'as the mouve fo¡ the development of



the present analysis. We use the model of aDC motor presented in [10]. There are three previous

solutions to deal with th,rs problem, present€d in

a) State Feedback Controller with Adaptrve Compensation [6],

b) PD ConEoÌler with Adaptive Compensation [14,15], and

c) Adaptive Computed Torque Conüoller [8].

The simplest of these controllers is the state feedback controller with adaptive com-

pensation. A disadvantage of thrs conEoller is that, it is conditioned to an adequate selection of y.

The type of reference functions qd(/) is also resÍicted. In the last two controllers fhis does not hap-

pen, but they are much more complex. We propose a simple controller that satisfies the control ob-

jectìve. A1though, we do not show convergence ofthe parametric error to zero, we found in all our

simulations, tiat it does.

This approach is interesting from the applicæion point ofview, because we can add

the compensation to an existing proportional-derivative controller.

The simulations presented here were made using the simulation package for nontin-

ear systems SIMNON [18].

viii



ORGANIZATION.

The document is organized as follows.

In order to make the document self-contained, it was decided to include a first chap-

ter with some well-known mathernatical results, that a"re widely used in the analysis or robot control

systems. We use this concepts throughout the whole document. In this Chapter 1, we present

some important properties from linear algebra, that we will need in the development ofthe dynamical

model of the maûpulæor in chapters 2 and 3. we also present some basic concepts and theorems

related to Lyapunov stability analysis. At the end ofthe chaprer, we include some defirutions abour

certain important normed spaces, that we use to prove convergence of control algorithms. Afær a

review of important mathematical results, wepresent adetailed development ofthe dynamical mod-

eI ofarobot, since thls is the starting point for the u ndersta¡di ng ofiß propertres and a.lso for the study

of problems like robots with flexible links and joints.

Kinematics of ma pulators is a starting pointfor a dynarnical anatysis. Thus, it'¡/as

decided to include a basic krnematic analysis in chapter 2. we stårt by introducing some genera]

material abouthomogeneous Íansformations. Wedescribet¡ekind ofrobotmanipulator we are con-

sidering, and its kinematic configuration, consideling positions, velocities, and accelerations. The

fo¡ward and inversekinematicproblems are also stated. The mainresult ofthe chapter is thedevelop-

ment ofthe expressions for the Jacobia¡ matrix. At the end ofthe chapter, we present some remarks

about singula-nties, and the inverse velocity and acceleradon problems.

A good understanding inthedynamics ofthe manipulators is essentialforthe analy-

sis of their control systems, that will lead it to perform tasks in the real world. After carefrrl review

of the existing literature, the author selected the most importa¡t issues related to robot manipulator

modelling and elected ro put them together in a clea¡ and compact form in Chapter 3. Again, this

chapter star-ts with some general considerations, that have to be well understood, since they are the

basis for the development of tle dynantcal model that is required in the design of robot mampulator

control aigorithms. we present the dynamical model ofarobot manipulator ofn degrees offre€dom.

we introduce the development of the Euler-Lagrange equation of motion, for a system of panicles

with constrarnts of mouon. we find expressions for the krnetic and potential energy, which we use

to define the Lagrangian ofthe system. Then, we consrder therobot manipulator to be asystemwith



consfaints of motion of the form described before. This enables us to apply the Euler-Lagrange

equation of motion in the developmenr of iß dynamical model. With paÍiculaÌ expressions for the

kinetic and potential energy, we form the Lagangian ofthe manipulator, and finally, its equation of

motion. Af the end of the chapter we mention some important properties of ttns model.

In Chapter 4, we present the analysis of two motion conûollers for robot manipula-

tors: computed feedforwa¡d and PD plus computed feedforward. The latter has shown to have an

excelent performance in experimenß [ 1] . Howeve¡ no analysis was presented. we study existence

and uniqueness of equilibrium points, st¿bility and achievement of the conÍol objectiveforthe over,

all conÍol sysæm. The chapter is organized as folÌows. In secuon 4.2, we present the dynamical

model ofa robot marupulator with n degre€s offreedom (doQ, rigid links, and ideal actuators. using

some impofiant properties of the model, we rewnte the dynamical equation in t€rms of the state vec-

tor. Then, the problem formulation is stâted in section4.3. The analysis of the comput€d feedfor-

ward controller is presented in section 4.4. In section 4.5, we present the analysìs of the pD plus

computed feedforward conûoller. We present simulation results in Section 4.6, for the manipulator

of one degree of fteedom (doÐ. we give some conclusions in section 4.7, and the references are

listed at the end of the chapter.

In Chapter 5 , we present the design of an adaptive controller for dire¿t clÌIïent mo-

tors, with parametric uncertainties, that can be applied torobot manipulators. we show stability and

achievement ofthe contol objective for the overall control system. The chapter is organized as fol-

lows. In Section 5.2, we present the dynamical model of a DC motor conÍolled by armature. In

section5.3, we state the control problem. Insection5.4, we mention some previous reported solu-

tions. We present the confol and adaptation algorithms, and the stability analysis in Section 5.5.

In section 5.6, we present some simulation results. we give some conclusions in section5.7, and

the references a.re listed at the end of the document.

The reader interested in kinematics with â good background in linear algebra can di_

rectly to chapter 2. For a more detailed discussion see [3,17]. The reader interested in the dynamics

ofthe robot can go directlyto chapær 3. The reader interested in conrrol only and with agood knowl-

edge ofLyapunov theory will not have problems to underst¿nd chapters 4 and 5, however we recom-

mend to read the review in Chapter 1.
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Chapler I

1. PRELIMINARTES.

In this châpter we present some import¿nt properties from linear algebra, that we will

need in tle development of ùe dynamical model of the manipulæor in Chapters 2 and 3. We also

present some basic concepts and fheorems related to Lyapunov stability analysis. At the end of the

chapter, we include some defínitions about cert¿in important normed spaces, that we use to prove

convergence of confol algorithms.

1.1 LINEAR ALGEBRA.

We present some basic concepts of linear algebra, that we will use in this work.

First, we denote the set ofre¿l numbers as R, and the set ofreal ve€tors as R1 We aregoing to work

in the vector space (R d',R), whrch denotes the vector space of all real nxn mafices, over the field

ofthe real numbers, with the conventional matnx addition and scalar multiphcation. Itis wellknown

thar tle real numbers form afie1d with the standard addiuon a¡d multiplicafion. From the defirution

ofvector space, we havethat(R^',R) is closed, ass ociative, distributive and commutative under ma-

Íix additíon and multiplication, and there exist the elements 0 and 1 in R, and 0 and I in R'd', called

the zero and the identity. We also use the subset (R1R) of (R'"',R), which is closed, and therefore,

asubspace under vector addition and scala.r multiplication. We use lowercase boldfaceletters to indi-

cat€ vectors in R1 and uppercase ieuers to denote matrix. AII the vectors are assumed to be column

vecto¡s. unless otherwise stafed. Then, the notâtion x e R', means

.r¡€R

'fhe Euclidean nonz of a vector is defined as

lLlrll =(r? +t+ "'+ *,)tl' = 1x,x2 t/2



Chapter 1.

T'he ittner product of ¡,vo vectors in R' is defined as

< x,y > = xry = ¡r} * x2J2 4 "'+ xnlu

With these two opera.tions, the subspace (R",R) becomes al innerproducf spa(,e. The outer produd

of two vectors in R' is defined æ

The inner product and the outer product are related by

<x,Y> = xry = I{xYI)

Where the function ?(.) denoæs the trace of a matrix, and it is def,ned as the sum of the diagonal

elements of tle manix. The following definitions will be quite important in our analysis.

Def. Orthogonal matrix. The square ¡¡¡a¡-¡¡ A=(a4)€ Rdnis saíd to bean orthogo-

nal matrix if a¡d only if ,4 rA=L

Consider the orthogonal marix R=[rr 12 13]kR3'3 , where r¡e Rlú, for i=1,2,3.

Then, the following relationslups follow from the defirution

llrlll = llr,lJ = ll13ll = 1

(f1,12> = <rl,r3) = (rz,f¡> = 0

Def. Symmetric matrix. A square rn¿¡1¡ ,{=(a4)€ R^n is said to be symmet-ic if
it is equal to its Eaûspose, i.e. .A=,4r, in other words ¿i=ali.

Def. positive definite matrix. L€tÁ=(dr)€ R^,', and,4 ?:A. Then, A is calledposi-

tive definite matrix if and onJy ifxlAx > 0, for every l-dimensional real column vector [Ì1.ïz ...

x,lrÐ.

An useful inequatity presented in [3] (pp. 161)isxrÁx = l.io(Á)xrx > 0, where

,1,-¡n(A) is the mirumurn eigenvalue of A.

The following theo.rem guara¡tees the existence of the inverse of a positive definite

matrix.
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Theorem 1.1 ([3] pp. 163) Areai symmetric mafix is posìtive definite if and only

if A=PTP, where P is nonsingular.

It follor¡/s that since P is nonsingular, delP)4, then

d e t (A) =d e t( P r P ) = d e t(P r) d e î (P) 4.
Def, Skew symmetric matrix, A square man-ixá=(dt) is said to bsskewsymmetric

if it is equal to fhe additive inverse of its ranspose, i.e. A=-,4î, in other wotds aij=-aji.

Iæt us consider tle set of all 3x3 skew symmetric matrices. Iæt S be a 3x3 skew

symmetic matrix. By definition we have that

Sr+S=0
OI

Ð1 + sü = O, i,i = 1'2,3

Consider j=i, then s¡¡=6, for i=l,2,3. Thus S has the follovring form

fo -r' r, Is=lsr 0 -s3 I (l.l)
L-rr rt 0 l

Then, for a given ,r¡ls¡ v=fa1e a:l r, we can define a skew symmefic ma.n:ix S(a) æ

I o -o, o. 1
S(a) = | ar 0' -;, I (t.2)

L-o, ot 0 I

which will be quiæ important in the kínemanc analysis of a manipulator. The operator S(a) is linear,

thât is

S(.ra +Yb) = :S(a) + YS(b)

for scala¡s xandy. Also for any vector b, we have

(1.3)

(1.4)

where axb denotes the cross product. This property will be used often.

Consider the vectors a,b€ R3, and the orthogonal maFix R€ R3x3, then

s(a)b=a -r=lg-Z:lr:f
la7b2- a2b1 

.



,R(axb) = Ra x Rb (1.5)

wh-rch only holds for orthogonal maûices.

From the Ìast two equations. We can wrjte

RS(a)Rrb = n(a x R¡b) = (Ra) x (ARrb) = (Ra) xb = S(Ra)b (1.6)

Consider now, that the orthogonal matrixR is afunction of a single variable.x. Since

R(.r) is orthogonal, we have

R(x)Rr(x) = I
Taking the derivatve, we get

4R(*) Rttr) + R(x,l9Rr = od.x dx

We define the manix S as

s = aR(t) Rt(r)
llX

its tanspose is given by

sr = n(¡l 4nra,f
Now, substituting S and Srinto the above equafion, we get

S+Sr=0

In other words the matrix S is skew symmetric. From the defimuon ofS, we multiply both sides by

À(.x) to get

a*(r)=,,", (1.7)¿x ''
This equation wdl be very imponant in la.ter chapteß.

A final note in linear algebra is the following relation to obtain the determinant of

a partitioned matnx, into square matrices of the same size, that is

r1
d.tl 1{l=det(A)det(D-CA)B) (1.8)

LC D]

In the next section we present some basic concepts and tleorems related to Lyapu-

nov stabiiity theory which are important in the stability analysis of confrol sysæms.
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1,2 STABILITY IN THE SENSE OF LYAPUNOV.

Lyapunov stability theory is avery i mp ortant tool for the stabiüÍy analysis ofconÍo1

sysæms. Thrs theory deals wrth the snÌdy of the stabiüty properties of the equilibrium of drfferential

equations. In the following we present the basic definitions of ståbility, and some import¿nr theo-

rems, \¡r'here we refer the reader to [4] for the proofs. We asume that the syst€m is described by

the vector differential equafion

*(¡) = f(¡, x(Ð) (1.9)

where x(r) € R' and f : Rr x R' * ,R'. We assume rha¡ the function f is such that the the differential

equation (1.9) has a unique solution.

E quilibrium deft.nìrto ns.

Def. Equilibrium. The vector x, € R" ìs sald to be an equilibrium point of the

sysæm (1.9) at time ¡o, if

Í1t¡ = ¡1¡,*,¡ : O, Yt >. t"

Without loss ofgenerality we assume that the the vector xo=O is the equttibrium poinl

of the system (1.9), since we can always move the origín ofthe coo¡dinate system ofthe state space.

Def. Stable equilibrium. The equilibrium point¡o=0 attime fo ofrhe sysrem (1.9)

is said to be st¿b1e at time to if, for each €> 0, there exisß a ð > 0 such that

ll *(¿) ll < ð =+ ll x(r) ll< r Vt :. to

In orher words, the equ ibrium ofthe sysrem (1.9) is stable iffor each circle of ra-

diusr centered in the equilibrium, we can keep the states trajectones inside for f>0, whenever the

trajectory at time to st¡rß inside another c[cleofradius ó, centered at the equilibrium. If we start

the system in the equilibrium,.the state tajectory is a single point, the equilibrium. This is true for

every equilibnum. Equivalently, f=0 implies that the derivative of x is zero, which imphes that there

is no molion of the state.

Iæmma l.I (tal pp.139) Suppose the equilbrium poinr 0 ardmeroof the sysrem
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(1.9) is sr¿ble at sometime rl>ro. Then 0 is also a stable equilibrium point ar all timer € [r,,,r].
This lemma says that a stable equilibrium is always a stable equilibrium.

Def. Asymptotically stâble equilibrium. The equilibrium point ro=0 at time lo of

[he system (1.9) is sard to b€ asymptotically stable at time /o if it is stabte, and there exists a number

ór>0suchthat

ll x(¿) ll < ð1 + ll x(r) ll..- 0 as r...à æ

In other wo¡ds, the equ rbnum of the system (1.9) is asymptoricarly sr¿bre if it is
stable, and the state tajectory converges to the equilibnum, whenever we sta¡t ùe svstem inside a

circle of radius ðr.

Def, Globally asymptotically stable equilibrium. The equílibrium point xo=S ¿¡

time /o of the system (9) is said to be globaly asymprotically st¿ble at dme /", if ir is stable. and ir
is atEacdve for every x, e R,, that is

ll x(¡) ll"- o aS I ---r cô Vx, € Rn

In other words, the equilibrium of the system (1.9) is globary as).rnptoticaly stable

regardless of the initial condition of the state traje4lory, it always converges to the equilibnum. From

this definirron we can se€ rhat an equilibrium has to be u que to be globaly asymptoricaliy stable,

since by definitron, if there were another equ ibrium and we sErt the system in one of them , the

system will stay there, hence it wÌIl not converge always to the ongin.

Functians.

theory.

class K if

The following definitions about functions a¡e very importanr in Lyapunov stabiÌiry

Def. Function of class 1{. A continuous function w :.R - R is said to belong rc

(l) u, is nondecreasing.

(tt) rp(O) = 0, an¿

(üi) w(x) > 0. V¡> 0.
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Def. Locally positive definite function. A continuous function V: R. x R, - R

is sard to be a locaily positive definit€ function, if there exists a function le of class K, such that

(t) Y(r' 0) = 0, V/ > 0

(ü) V(t,o) > w(ll x ll), for all x betonging ro a batl

r. = {x: ll x ll< r}, r>0

l-eríma 1.2 (lalpp.l,aÐ A continuous funcrion II¡:R,-R is said to be locally

positive definite function if and only if

(Ð !Y(0) = o

(ü)W(X)>O, Vx * 0

belonging to a ball 8,, r> 0.

Def. Positive definite function. A conûnuous function y : R_ x ¡? - R is sard to

be a positve definite function, if there exisß a function w of class K, such that

(Ð Y(t'O) = 0, V¡ > 0

(ii) v(t,o) ¿ ,(l x lD, Vx e R'

(iii) w(p) --à cc as p ---' cD

Lemma 1.3 (lal pp, A2) Aconrinuous funcrion W:R, -R issaidrobe posirive

defirute function if and only if

(Ð !Y(0) = o

(ti) W(X)>O, V x + 0

(iii) W(x) - - * ll x ll-* -, uniformly in x

Lemma 1.4 (tal pp. 1a3) A conrinuous funcrion y:R_ x R, -,R is alocally posi_

tive definite function if and only íf there exist a locally positive definiæ funcnon W : R, - ,? such

that

V(1, x) > W(x), Vt > 0, Vx e 8,, r > 0
where B, is a ball in R".

Lemma 1.5 (tal pp. 1a3) A continuous flrncrion y: R. x ,? - R is a posirive

defirute funcdon if and only if there exisr a positive definite function I7 : À, - ,R such thæ



Y(t, x) > I(x), V/ > 0, Vx e R'

Def. Decrescent funct¡on. A continuous function y:R- x ,R'-,R is said fo be

a de¿rescent function, íf there exists a function w of class K, such that

Y(r, x) < w(ll x ll), Vr > 0, Vx e 8,, r> o
where B," is a ball in Rn

In other words, the function yis decrescent iffor eåchp in an interval (0,r), we have

sup sup V(1, x) < -
\xßp t>o

Ly apunov direct mc tho d,

There a¡e two methods in Lyapunov's st¿bility theory, the so called indirect and di-

rect methods, or first and second methods. The first method allows us to draw conclusions about a

nonlinear system by studing the behavi our ofalinear system, which is the linearization of the nonlin-

ear around the equilibrium point. The second method is based on the use of theorems that provide

sufñcient conditions for stabiliry of nonlinear system. In this work we a¡e interested in the second

method. We shall now present some importa¡t theorems.

Theorem 1.2 Stability. (tal pp. 148) The equilibrium point 0 at time r. of (1.9)

is stable if there exists a continuously differentiable locally positive deñnite function

V(t, x) :rR. x R'- R such tlìat

i1t,x¡ - 0, Vr > ro, Vx € 8,, r > 0
where B. is a ball in R'.

In otle¡ words if wecanfind a locally positive definit€ function or apositive definite

function of / and x, such that its derivaûve with respect to tlme is less or equal than 0, for all / >ro,

then tle equilibrium ofthe system (1.9) is stable.

Theorem 1.3 Global asymptotic ståbility. (tal pp. l5a) The equilibrium point

0 at time ,o of(1.9) is asymptoticaliy stable ifthere exists a continuously differentiable positive defi-

rute function V(¡, x) : R- x R' - ,R and a function of class K such that

í'1t,*¡ . - p(l x ll), Vr - ro, Vx € R"
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EquivalentJy, fte equilibrium of the system (1.9) is globaly asumptolcally st¿ble

if we can find apositive definite function of t and x suchr¡at the negativeofits derivæive withrespect

ro time is apositive definite function itself. In other words, if the derivativeis 0 only attheequilibri-

um x=0 and it is negative everywhere e1se.

Notice that these are only sufficient conditions, therefore if we carurot find a suit¿ble

function V, we caûrot conclude anything.

Def. Lyapunov candidate function. A Lyapunov candidare function is a positive

definite function.

Def. Lyapunov function. A Lyapunov function is a positíve definite function and

the negative of its derivative with respect to time is also a positive defirute function

Another important theorem that can be applied under certarn special conditions is

staæd after the following definition.

Def. Autonomous system. The system of differential equations ( 1.9) is said to be

autonomous if f does not depend explicidy on /, that is

* = f(x), t>0

Theorem 1.4 (La Salle) Autonomous systems. ([5] pp. 9) Suppose that the sys-

tem (1.9) is autonomous. Supposethat V(x) :R'- R isa continuous differentrabie posiûve definite

function and t71*¡ . g, vx € R'. Define the set

S={reR":vrs¡=O}

If ri =ls), s € S has as a unique solution s=0, then the origin is a globally asymptotically st¿ble

equilibrium of the system (1.9).

Nodce that in thìs rheorem we do not requi¡e - ú(") to be apositrve definiæ function

to guarantee global asymptotic stability of the equilibnum.
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1.3 LP SPACES,

In this section we state the defimtions of certain normed spaces, tha! we v/i1l use

when proving convergence of the stâte va¡iables of a closed-loop control system.

Def, Set of meåsure zero. A set S of ¡ea] numbers is said to be of measure zero,

if 
^S 

contajns either a finite or a countably lnfimte number of elements.

Def. Mesurable function. Afunctionfl):R*R issaidtob€ measurable if it

is continuous everywhere except on a set of me¿sure zero.

Def. Space L2. The space Z2 is deñned as the set of all measurable functions

.():t0,-)--R, such that

f6

I tfr¡t2 dt < *t.' '

Another import¿nt space is the set of all bounded functions, presented next.

Def, Space L. , The space L- is defined as the set of all measurable functions

Í): [0, -) -./?, such that

ess sup !Î(t)l < co

¡Ef0.d)

Where essentially bounded means bounded except on a set of measure zero.

Def. Uniformly continuous function. A funcuon ¡( ) : R. * À,, is said to be uni-

fornly continuous if Í) e I:L, and h) e 4.
In this chapt€r we have presented some imponant properues, definitions, and theo-

rems that we Ìvill recall in lâfer chapters-

10
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Chapter 2

2. KINEMATTCS OF MANIPULATORS.

In this chaprcr we present the kinematic analysis of a robot manipulator. We start

by inÍoducing some general material about homogeneous Eansformations. We describ€ the krnd

ofrobot mampulator we a-re considering, and its kinematic configurafion, considenng posìtions, ve-

locities, a¡d accelerations. The forwa¡d and inverse kinematic problems are also stated. The maín

result of the chapter is the development of tlìe expressions for the Jacobian mal¡ix. At the end of

the chapter, we present some remarks about singularitles, and the inverse velocity and acceleration

problems.

2.1 ROTATIONS.

Our first problem of kinematics is how to desc¡ibe the position of a body in terms

of a reference coordinate system.

It is well known that a given vector pt, that represents the distance fTom the origin

ofa coordinate system (xr,y1,z1) to the point p, can be referred to another system (xo,yo,zo) bymeans

of a homogeneous trarsformation. Tlns is a maÍix that multiplies a vector and gives as a result the

image ofthat vector in the new coordinate frame. Let us considertwo coordinate systems that coin-

cide in their origin, but one of rhem is rotafed wirh respecr ro the otler, say thât (xl,y1,zr) is ror¿ted

with respect to (x.,y.,2J. The rotation matix thar relates tìe frame I with the frame 0 is given in

terms of the unit vectors of the two syst€ms (Ljo,k") and (i1jr,kl) as follows

where rRo indicæes the rotaton mafix, such trat when multiplied by a vector in the frame 1 gives

as a result the representation of the vector in the frame 0. Thrs matnx is obt¡rned from the fact that

acomponent ofa vector ca¡ berepresented as follows, since po ald p1 are representad ons of the same

f ¡,.L j,.L rr,.Ll
'R, = | i,.j. jr.j. kr.j. I

Li,.t" j, .k" kr.k.J



Châpte¡ 2.

vecior p

that is

or

pox = po.L = pt .L = p1, if io + pry jr .io + p1, k1 .io

Poy = Po 'io = Pr 'io = pr' ir 'io + pr) j1 'j. + pr, kr 'j.
po, = po.k. = pl .ko = pr" i¡ .ko + p1n j1 .ko + p1, k1 .ko

p" = IR, pr (2. i)

rii u1 lf;]=llt l,j, fr ¡] ¡',,,-,r 
[íil]

By the same procedure, we can wdte the components of p1 in terms of the compo-

nents ofpo and get pl = oR1 po, where

f L .¡, .i. .i, k" .i, I,Rr = I L .jr j"'j, k. .jr I

LL'ki i. 't<' h. .t'J

Notice that

f ¡, .L i, ..i. i, .k" I
('Âo)t = I j, 'L j, .j. jr .k. I = 'n,

Lkr 
.i" kr .j. L, .k.l

Also po = tR, p, = tRo (orR,po) = lRooRipr, hence t,Ro = (oRl)-1, and the onhogonal-

ity of a rotation matrix follows from

oR, = (rRo)r = (,Ro)-t.

It is also possible to represent the vector po in the syst€m 1, by asing the inverse transformation 0R1.

which always exisß. If the two frames coincide, the roÞtion matrix is the identity mafix.

lf p I is the representation of a vector p2 in the frame 1, where p2 ís in the frame 2,

then the repres€nt¿tion of p2 in ¡he frame 0 is a composition of the ¡otations ko and 2R,, that is

Po = 
tRo t,Ì, 

P,
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We can extend thrs result by induction to the case of n rot¿tions by the foilowing composition

p. =1À, 2Rt "' 'R,-:.pn t1 1\

It is also possible to rotat€ a framg around a fixed axis represented in thæ frame. We are not going

to make use ofthis kind of rot¿tion, because we can always cornpute the rotation matrix from theunit

vectors, once the system has been rotated, and then we can calculaæ the axis and the angle from this

maÍix as follows

" = -.-,('9 -' ) 
= "",'1..g.-.¡

, f ,rr- rrrf
k = =-- I ¡r¡ _rsr Izsto ltt' -t'iJ

where k is the vector given in terms ofthe original frame. These formulas can be found in t3l (pp.43)

A rotation maûix can also be represented in terms ofthe Euler angles (0,0,v). These

are not very easy to calculate, but they are used. The procedure ofror¿dng a coordinate system with

this method is as follo\rys: first rotate the z axis 0 angles, then rotaæ the y axis O a¡gles, and then the

x axis y algles. In the last two stÊps we keep the previous rotations.

Another way of representing a rotation mafix by means of angles ìs by the use of

the so called roll, pitch and ya\¡/ angles. The procedure is simiiar to that describ€d wirh the Euler

a¡gles except that the rotations are performed in reverse o¡der.

2 2 HO MOGE N EOU S TRAN SF ORMAT ION S.

Iæt us present some material about homogeneous bansformations. Consjder a

frame c attached to the center of mass of a body, and an inenial ftame i, and the o(hogonal rotational

ma.rix ?¡, from the frame c to the frame l. This matrix satisfies the following relation

(.n,)-i = (.n,¡r (2.3)
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The condition for thrs equatron to hold is tlat ?¡ be nonsingular, i.e. it is possible to make bidirection-

al transformations

"Ri=(¡R.)-'=('^.).

The general homogeneous t¡ansformation is of the form

(2.4)

',,=W,y yï)=r
Lo o o rl

'd,l -rl-
. a,l
r'J

l.n,
I o'

nsa
000

(2.6)= 
l"r'

(2.5)

where n, s, a¡d a represent the direction of the positive x., y", and z. axes with respect to the inertial

frame i, and cd¡ represents the vector ftom the ongin ofthe inertra.l frame, to the origin of the fiame

inthecenter ofmass. 3i is the rotation mafix, while cdiis the Íanslation vector Provided that dR¡

is onhogonal, it is easy to show that its inverse is given by

'r, = ('r,)' "^i".']

ft is clear thâÎ

'T¡ = I
where 1 is the 4x4 identity matrix.

In order to perforrn a homogeneous transformation, we have to add the fourth com-

ponent to any vector, as follows

r_Ip = l9'l' Lr.l

We can call thrs form the homogeneous representation of a vector For example, if we want to shift

the vector pj, from the inertial frame to the frame in the center of mass, thaI is located a distance xo

on the x axis \¡/ithout any rotafion, we have

whrch is the translation maFix f¡om c to i. Its inverse, that gives the translatton from j to c, js

15
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r,=(,r,) ,=lå :i í1
Looo rJ

It is easy to verify that for a gíven vector p¡=[x,y,z]r, we have

f,r + xJ
I

þ"=ir,p,=l I I

LíJ
ând that

f¡l
p¡="r¡r.=lll

LrJ

Notíce that the composition of ta¡slafion vectors is just the sum of them, referred

to the same frame by the rotatron, that is

'do =rdo + rRo2d1 +..-+ "-1 Rondn-t

2.3 TRANSFO RMATION OF LIN EAR VELOCITIES.

Iæt us now t¿lk aboùt transformations of velocity vectors. We know from prehmi-

oa¡ies, that an onhogonal maÍix has the following derivative with respe¡r ro rime

d(r) = s(4 R(4 e.7\

where S(r) is a skew symmetric ma.trix given by

s(4 -- Ék) n(¡)r

This mat¡ix can be represented as s(w) for a unique vector w [3] (pp. 53) (see prelimina¡ies for de-

tails), where w is the angular velocify of a rotating coordrnate system with respect to a fixed one,

we have for some vector p that is

S(w)p =ç¡p (2.s)

(2.8)
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Time-invarying case.

Iæt p1 be a const¿n!vector, considerthat frame 1 is rotated with respect to the frame

0, andler potobethe image of pr, insuch a '.vay that we obtårn po by means of arotdional maFix

R(1), thar is p¿=?1p1. Let us differenûate po with respect to tlme, that is

Éo = 1Ro 
Pr (2.r0)

since pr is constant. We lalow that R is an orthogonal maEix, [hus by substituting (2.7) íîlo (2.1,0)

we have

d, = s(w) R pr =S(w) po =wxpo (2.11)

where we have assumed that R means 1Ro(¡).

0 is given by the cross product of the angular

in the frame 0.

Time-varyìng case.

Thus, the linear velocity of the point p ín tle frame

velocity of the frame 1, and the posiúon vector of p

(2.14)

Consider now that a frame c is in motion with respect to a frame i. In this cæe the

Íansformation is a function of ¡, as follows

rl
.Hf,) =l'n/¡) '¿f,) | ,r.rr,L"',l

Recall that the homogeneous transformation requires a homogeneous representation ofa vector. [Æt

us consider the vector itself in the following manner

po = tRo(d pr + tdo(r) (2.13)

The rate of change of the position vector po with respect to time, is given by its velocity, that is

É, = 'd,(4 p' + 'tilr)

By subsututrng (2.7) and (2.9) into (2.14), we have

Éo = wxIRo(t) p1 + ov¡

11

(2.15)
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where 1 v, = I do is the velocity of the origin of the moving frame with respect to the fixed one.

oRlpl is the vector fiom the origin of the moving frame to the extreme of p¡, expressed in the ñxed

frame. Itcan be viewed as theradius oftherotafion ofthepointp (extreme ofpr), with angùlarveloc-

ity w' around the origin of the moving frame at each instant of time. Iæt us say tbat r=lRopr, and

rewriæ (2.15) as

Éo=lv,+wxr (2.16)

Then, the velocity vecto¡ of the point p with respect to a moving ftame 1, and with position vector

r, can be expressed as the sum ofthe linear velocity ofthe origin of 1 with respect to 0, plus a compo-

nent due to the relative rotâtion of 1 with respect to 0.

If p1 is a time-varying vector, \ emodify (2.1ó) as

po= 1vr+wxr+ lRo lir

where 1 R,¡i ¡ is the rare of change of p ¡ expressed in the fixed frame 0.

Muhþle frames.

I-et us consider the case in which we have more than two frames, say three. Iæt us

say that p1 is the representation of p2 in the frame 1, that is

po = lRo ('*, p, * 2ar 
) + ta,(r)

Now by substituting the derivative of tlus equæion with respe¡t to rime inro (2.17) \ e get

lo = rvo+ 1wox1r,+'R1 (2v11 + 2w1 xzrr+ 2R, fr)

Éo = lvo + lRo2v1 + lwo xlro + 'R1 2w1 x2f1 + 2Rrrt2

We can extend this result by inductlori for the case of n frames, as follows

'Éo = lvo + 1Rr2v1 +..'+ n-lRo nvn-, + (2.18)
lwrxlrr+ ',R1 2w1 x2r1 +...+ "-lRo 'wn-1 x'rr-1 + nRo"fn-t

(2.77)

l8
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2.4 TRANSFORMATION OF ACCELERATIONS,

Kinatnãlics

Time-ínvarying case.

Ir is also possible to express the acceieration of a point p in a moving coordinate

frame, in t€rms of a fixed frame. I€t us obtain this relation by differentiating (2.16)

íjo = tao+rïxr+wxf (2.19)

where lao = 1t, = 1å, js the acceleration ofthe ongin ofthe moving frame with respect to the in-

ertial frame. Recall rhat r--Rp r, then

f = ,{pr
now using (2.7) and (2.9) wehave

i = S(w) Rpr =wxr
and we can rewrite (2.i9) as

iio = lao + \,í' x r + * * (* *.)

In other words, the reflected acceleration ofaconstant vêctor p t has tlree components. The so called

transverse acceleration ¡i x r, the so called centripeml acceleration wx(wxr), directed fowards the

axis of rotation, and the linea¡ acceleration of the origin ofthe moving frame tao.

Time-invarying case.

If p1 is a time-varying vector, we now differenti ate (2.17) to Eet

iio = lao + r,í, x r +w x l + nfl, +É¡í,
The last term is eqùal to

¡åÉt =sRÉr =wxRÉr
also since r=Rpl

f = lipt * Aór = ,S Rp1 +R¡i¡ =wxr+ÃÉr
and

wxÍ =wx (wxr) +wxA¡í1

Ëo = a+rïxr+w* (**") +2wxRf¡ e.zÌ)

t9

finaIly
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where a = Rfl1 + 1a,. The ferm 2w x R¡í1 is called the Coriolis acceleration.

2.5 TRANSFORMATIN OF ANGULAR VEI,OCITIES.

Iæt us consider the composition of two rotafion matrices, say 2Ro=2¡, t¡o, un¿ 1", u,

differentiate this with respect to time, that is

t ño = ' 
hoz R, + 1 Ro2 É, e.zl)

læt us consider the fi¡st term. By using (2.7) añ (2.9), it ca¡ be modified into

'ft.z Rt =,s(lwo) rR,2ñ, = s(lw,) 2R, (2.22)

Now, rhe second term can be modified by using RS(a)Rts(Ra) (se€ preliminaries for details), a¡d

the orthogonality ofR, rhat is

1Ro2ñ, 
= 

lR, s(2wr) rR, =tRo s(2w1) 1Ào +1.Ro2R¡

= s(rRo2wr) 1Ro2R, = sllRo2w,¡2Ro Q'23)

Substituting (2.22) and (2.23) inta (2.21) yields

2ñ, = S(2wo)2R, = [s¡lw,) + s(rRo2w1)] 2À,

Using the lineariry of S(a) we have

'*o =t no + lR,2w¡

Thís equation represents ùe composition of rotations of angula-r velocities, when we have two

frames. We can extend this result by induction to the case of r frames as follows

nwo = lwo + lRo 2w1 +2Ro2w, + ,.. +n-r Rorwr_1 e,U¡

20
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2.6 KINEMATICS OF MANIPULATORS.

G e neral c o nside røtio n s.

Al1 the material described before ca¡ be applied to the kinematic analysis ofrobot

marupulators. The kind ofrobot manipulator that we are considering in this v/ork is an open kinemat-

ic chain, composed of rigid links and joinrs. We represenr the motion of the marupulator by joint

variables, that are angles in the cæe ofrevolute joints, or displacements in the case of sliding joints.

We also call the lafier prismaûc jo¡nLs.

The revolute joints are found more oft€n in applications. A good reason for thìs

could be that for a sEa.lght line workspace, a revoiute joint can be the size of the workspace adding

the two links together, while the slidíng joint has to be at least twice the size of the workspace.

We consider that every joint has only one degree offreedon?, that means that it only

has one joint variable. In the case ofjoints with two or more degrees of freedom, we can consider

them as two or more different joinß each with one degree of freedom.

I¡t us introduce some conventions (see Figue 1 on page 32). Consider arobotwith

n+1 links. we number them from 0 to n, where the link 0 is its base. The links are connected by

the joinrs, we number t¡em from 1 to n. we attach ftames to the sÞrring points of thelinks, such thar

any motion of the link i will remain as a nonmotion with respect to the same frame i. we denote the

joint va.riables as q¡, where I is the numbe¡ ofthe joint. These joint variables are real scalars. we

attach the inertial fiame to the base, and the othe¡ n frames to each link. Hence, the joint variable

i is refered to the frame l-1. vy'e have a homogeneous transformation matrix between each parr of

links. This matrix is a function of the joint variables. This Íansformation has tle following two

propenies as we said before

'T¡=I ''t = ('t-,) -,

In general, an the equations are valid for an x degrees of freedom robot manipurator.

However, itis common tofind applications with 6 degre€s offreedom, of which 3 are for posiuoning

a hand, and 3 for its orient¿tron. This hand is calleÅthe end-effector, a¡d from the practicat point

of view is the mostimportantpoint of the manipulator. The manipulato¡ performs tasks like grasping,

welding, etc. depending on rhe kind of end-effector rhat is being used.
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The coordinates of the end-effector \,vith respect to the inenial frame, are given by

the homogeneous transformafion H of the form

". -1"R.'d.f"' - L 0 r j

wherenRo is acomposition ofrotation matrices, and ndois a composition oftranslaton vectors. Also

every transformation between adjacent links is of the same form, that is

'¡l,-, =l't' '1"']

where i is the number of the joint.

If we need a tralsformation between frames that are not adjacent, we use composi_

tion of rotations and Eanslations.

We aJready know that rhe composirion of rorations is given by their product, while

the composition of translations is given by

i d- =r'1 d, +i-t R¡j dj_t (2.2s)

Depending on the p¿¡ticular configuration of a manjpuiator, we will have different

kinematic representations.

The geometric strucûüe ofa manipulator can be represented in different ways. One

ofthe most used is the Denavit-Ha¡tenberg represent¿tion, in which we sta¡t determimng the axis of

thejoint vadable, that we assign to be the z axis, for eachjoint. Then, we establish the base frame

by assigrung conveniendy x andy to form â ríght-hand coordinat€ system. we assign the rest of the

coordinate frames in the same way. We then create a t¿ble of cenarn important link parameters that

describe iß geometry. And finally, we build the n homogeneous Íansformations. In the case of

prismatcjoinrs, we assign the origin of the frame inrhe beginning ofthe slìding parr. Thus thepns-

matic link i will have a frame wirh pa¡'a]lel axes to the fiame i- 1. Thatis all we are going tosay about

the Denavit-Hartenberg representation, since we are interest€d in general descripfions of manipula-

tors.
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2.7 POSITION.

During the motion planning process, we have two major objectives in pedorming

a kinematic aûalysis of a manipuluor. First, we wa¡t t obe abreto|indfhe end-effector, given some

joint variable vâlues, and second, we want to find the joint variables, that will put the end-effector

in a desired position. The fi¡st of these problems is called the forwa¡d krnematic problem, whlle the

seaond is called the inverse kinematic problem.

Forward kín¿matics.

Thefirstproblem can be solved once we have the homogeneous transformation from

the end*effe€¡or to the base. The position and orientation ofthe end-effector is given by the cornpo-

sition ofhomogeneous transformations ofeach pair oflinks. Then, theproblem is to find the tra¡sfor-

mations of each pair of línks, mulriply tlem togerher, and subsrirute the given values of rhe joint

va¡iables. Recall that each homogeneous tra¡sformation between a parr of links, depends only on

onejoint variable. The problem can be simplified, by choosing an adequate represent¿tion, like the

Denavit-Ha¡ænberg, In this problem we always have ¿ solution, that is determined simpiy by

straight forward eva.luation of the equations.

Inverse kinematics.

The problem is to find a solution to the following equatron

nTo=H

where n?o is the composition ofhomogeneous transformations of each pa,I of li¡ks, from the link n

to îhe base, in terms ofthejoint va¡lables, for a manpulator ofn de$ees offreedom. li is the trans-

formation that represenß the posibon and orientation of tle end-effector, with respect to the inenial

frame, where its position is given by tco, and its orienÉtion by .R.. This results in 16 nonlinear equa-

trons, dueto the fact that nro and Il are 4x4 mat¡ices. Notice thaf the bottomrow offhem is the vector

[0'0,0,1] (see (2.7)), this simplifies the problem. Actually, we have to solve 12 algebraic equations

thaf are nonlinear in generar, since dependence on the joint vanables appea¡s in terms of sines and

cosines.
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In the inverse kinematic problem, we could hâve mo¡e than one solution or none at

all. We are interested in ñndíng a closed-form solution ofthe equations, instead of a numerica.l one,

so that the ûajectory generation systemca¡ quicklyprovide the ûajectory, for the conÍoller to follow.

The inverse kinemafic problem is, in general, adifFrcult one, where we haveto con-

sider workspace constraints (nonholonomic, see chapler 3 for definiûon), as well as actuator or link

constraints. Howeve¡ in the case of manipulators with 6 degrees of freedom, from which 3 are for

position and 3 for orientahon, the problem can be reduced tothe solution of the so called inversepos!

tion kinemadc problem, and the inverse orientation kinematic problem. There exists some algo-

riùms to solve the inverse kinemafic problem for this kind of robot. A general solution has nor been

reported, however, there is a huge amount of research jn the a¡ea of optimal fajectory generation,

that is basically an optimal solution for the inverse kinematic problem.

2,8 VELOCITY.

We now consider velocities. As we described before, we can have Íansformations

of velocities between frames. In the case of robot manipulators tlere is a special way to represent

ta¡sformation of velocities. We use a6xn matrix called the Jacobiatt of the manipulator, in which

we put together the üansformatjons for linea.r and angula¡ velocities. We want to represent these ve-

locities in terms of joint velocities. Suppose that we want the linear and angular velocities of the

end-effec¡or in terms of ci , the derivatrve of the joint va¡iables. we need expressions of the form

"vo=JvQ

'w"=J.ú
whe¡e,I, a¡d "I. a¡e 3xn matrices. Notice t¡at

'vo = J¡ât + J"zdz+ "'+J,,d^

"wo = Jntát+Jwzà2+ "'+J*¡in

where ¿l and 'I,r'l a¡e the column vectors of tåe matnces "I,, and ,I,,, so that the Jacobian matices for

link I are given by
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r,=[1?rt fl,.."]
fi =1t,.fl, ÍiÌ," .")

where the column vectors are set to be 0 forþ,, because the motion oflink l, only depends onjoints

1 to i. We write the equations together as

where

is ca-lled the Jacobian. In other words, rhe Jacobian relates infrdtesimal joint displacemenß dq to

infinitesimal end-effector displacements dx, where x = ["vo ¿ wr]?, thæ is

dx=Jdq

Recall that the hnear velocity of the end-effector is given by

noo 
=' åo

where ndo is the transformation vector from thejoint n to the inertial frame.

The aagular velocity ofthe end-effector is represented by

s( "w,¡ ='É, ( '¡,) r

where ?o is the rotation matrix from the joint n to the inertial frame.

Angular velocþ.

I_€t us consider tle anguiar velocity of the tink i with respect to the link l_ I , we can

express it as

iw¡1 = Q¡k

where k is aunitvector in thez axis of the frame i-I, and 4¡ is the ith revolutejoint variable. Recall

i'*'] 
= ',u

l¡"'l
" = lt-l
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that thejoint variables are scalar quantities, and rw¡_1 is avector with the same direction asthez

axis. We mentioned before that there are some conventions in the selection ofthe coordinaæ f¡ames

ateachjoint. Inthis casewe sayt¡atthez axis is the rotation axis ofthelinki*1. Notice that in order

to express thepositionqi ofjoint i with respect to the frame i-1, vr'euse a homogeneous transforma-

tion that includes rotauon and trarìsiation, and hence when we talk about angular velocity the constant

terms added to the positions are eliminafú (see (2.24)), that is, only the rotafions affect the represen-

tåtions of an angula.r velocity with respect to another frame.

Notice that in the last equation we a-re building a vector in the z¡_1 axis with magni-

tude equal to d¡ . Thus, different angular velocities of the link i with respect to the link i- 1, will be

vectors having the same direcÍion but different magnitude.

In the case of slidìng joints, the relative angular velocity is zero, because the motion

does not depend on an algle.

The angular velocity of the end-effe¿tor with respect ro tÌìe base is a composition

ofrelauve angular velocities ofeach pair oflinks. We have to consider the case of sliding joints with

w,=0 separatelf because our last equation could give an erroneous result using the value of d cone-

sponding to the linear displacement. Then, we inÍoduce a consta¡t cç, that takes the value 0 when

the joint i is a sliding joint, and I when it is a revolute one. From (2.24) we now have the equadon

"wo = atdtk + c2Q2t Rok + .'.+ anQnn-l Rok
since the ø's a¡e scalla¡s. Equivalently

"wo = !o,q,r,-, = lctø. 
.. .o,r,-r) 

4

where

",={
prismatic ¡oints I
revolute joints 

J

0t
1f

and

It is clear that zo=k=[0,0,1]r

"¡-t = 
i-l Rok

We now have the value of -/- of the Jacobian as

J* = lc¡zo 
...a,2,-t]

(2.26)
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Linear velocity,

Now,let us consider the lineü velocity ofthe end-effector. Its value is equa.l tothe

change with respect to time of the tanslation vector fiom the end-effector to the base, that is

Then -¡, is ,l* ï#] (2.28)

We can generate the irh column of the Jacobia¡ by ke€ping all the joints fixed except fhe ith , which

we move at uût velocity ø=1.

Particular case.

I-et us ty to find a more simple and systematic expression for "¡,, by restrictng the

kind of manipuluor we are dealing with. Consider that our manipulator has its axis xj intersecting

its axís z¡-1 (see figure 2). In this case, the vector from the origin ofthe fiame i-1 to the origin of

the frame i, i.e. rdj-/, is given by

id¡-t = d¡k I a¡iR¡- j

where d¡ represents the distance along the z¡_1 axis, fiom the origin of i- 1 to the intersection with 4,

di is the distance along the & axis fiom iß origin to tlle intersection with 4_r, and k a¡d i are unít

vectors. The pararneters d¡ ald a¡ come from the Denavit-Hartenberg representation, and d¡ is the

joint variable when rhe joinr i-1 is prismaûc. We refer rhe vector ¿li ro the frame i- 1 by multiplying

it by 'Rl-l. Notice that whenever we talk about unit vectors, we do not ne€d to specify the fïame,

because they are all the same maglnûide direct€d to\¡/ards the axis in any frame. However, we must

be ca¡efi:l when we rot¿te or translat€ them, we have to multiply them by the corresponding Ía¡sfor-

mation matrix.

Iæt us keep all thejoints fixed exceptthe lth. Dfferentiæing the composition ofûanslafions, we have

n io = r'-t ¡, I i,_,
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The only component in the composition is

Kircnútics

'tl Ro i d,-1 , because all tle others remarn constant.

Prismøtit joints.

In a prismatic joint i, hí-r is independent of qi=di, and a¡ is a constant. Thus, we

have by using above equarions nd (2.26)

nåo = ,-,*o,å,-, = ,-tRo(å, k) = ¿rIR.k = åiz¡_t = zi_tå¡

Also by using the chain rule

"d, =

Hence, since à¡ = il¡ ¡s a scala¡, we have

ð'd, ,

an, a'

This formula is used to calculate the coefficients of the Jacobian, that corresponds to linea¡ velocities

in prismatic joints.

Revolute joints.

Iæt us consider now revolutejoints. The vector from the origin ofthe inertial frame

to the origin of the end-effector's frame is given by

ô,do
ô qi

" d, = 
,-t do + ,-i Ro , dt_t

'do - t-t ¿o = i-l Ro n d,.-l

(2.29)

(2.30)

(2.3r)

i I do and the matrix ho re-

frorn whicb

In the case that only the irhjoint is actuated, the vector

main const¿nt. Now, differentiating (2.30) with respect to ume yields

, do = 
,-1¡o n j,._, (2.32)

The vector ,' d¡_' is generated when the ith joint rotates around the axis zj_r, as we

sard before. considff 'dr-i = "¡,-ro, where p is therepresentation of , d,.-1 intheframen. Then

by using (2.11)

ta



"d,-1 = 1Y, ¡n¿,-t

since the angular velociry ofrhelink i is given by w¡=dtr{, and that rhejoint va¡iables a¡e scala¡s,

\¡/e gef

,d,_, = d¡ x ,d,._1 (2.33)
Substiûrrng (2.33) inro (2.32) yields

which is equal ro

'åo ='-t*. (ø,k x ,ar-r)

"å. = 4 i-r*" k x l-1¡o,d,.-1

Since-R is orthogonal. Recalling (2.26) and using (2.31), we can rewrite this as

Chapter 2.

by the chain ruie. Therefo¡e

Kiwtn!1tics

(2.34)

(2.35)

(2.36)

nåo 
= Q¡,¡-y * ("tdo -,'r¿J = *,0"n,

ò^å^
-E/ =:t-' x (rrdo -Èrdo)

This equation represenß the ith column ofJ,. for revolute joints.

Jacobian.

Now, by substituring (2.29) or (2.34), for prismatic joinrs or revolutejoints respec-

tiyely, into (2.28) we can calculare rhe irh columns of"r", while (2.27) gives the value ofJ,'. This

is valid only for the specific confrguration ¡hat we a¡e considering. Then we have for prismaticjoins

and fo¡ revoiuûe joints

n=fí;:l =f,a'l

, =1,:,1= 
f"'.'. 

{;i,-"'+)]

where -Ii is the iú column of the Jacobian. Dependence on q is easily seen from these equations,

because as defined in (2.26), z depends onR, ¡hat depends on q, and d also depends on q, Hence
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"I is a funcnon of q. Iæt us write "¡(q).

We can now calculafe the Jacobian of any manipulator that fills our requirements.

Notice that zj is a rotated unit ve¿tor, that we can take from the ftrst rh¡ee rows of the fhird column

of tle homogeneous Ía¡sformation 7o (se€ (2.26). The elemenB tdo and Èldo are the first thre€

elements of the fourth colum¡ of the tansforrnations io and Èlfo respectively.

The procedure that has been just described is used to compute the velocity of a¡y

point ofthe manipulator in moúon. I-et us remember, however, that the homogeneous transforma-

tion, and therefore the Jacobian, depend on the specific mampulator's configuration.

2.9 ACCELERATION.

We can derive a relation between the joint velocities and accelerations by differen-

fiating the Jacobian. Letus call x the vector of linear and angular velocities of the left*hand side

of equation of the Jacobian, rhat is

. = 
lt*t] 

= .r.(q) 
<i (2.37)

where x is a vector with 6 elements representing the 3 components of the linear velocity and the 3

components ofthe angular velocity. By differendaring (2.37), weca¡ obrain a relarion betwe€njoinr

accelerations, and hnear and anguÌar accelerations of the end-effector. That is

d_ï=J(q){+}"r1ql<i

Singularilies.

Suppose thatwe want to calculatethejoint velocities given Í. This inverse velocity

problem can then be solved for the six degrees of frerdom mampulator, by solveing the following

equation for d

'/,(q)d = i
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which has a unique soiution if and oniy if the Jacobian is a nonsingular matrix.

For rnanipulators with fewer than six links or for redundant manipulafors, the does

not haveinverse, since it is not a square matrix. We can make afiIl-rankractonzation oftleJacobian

ofthe form -I=ðF, where E is the mamx of thep rineariy independen colums ofJ, andFis the matrix

ofthe q linearly independent ro\¡r's of thereduced echelon form of,r [4] (pp.96). This factorizafion

is not unique. The Moore-Penrose inverse of -/ is given by J+ = F+Ë+, where I¡* = Fr(Fl¡r)a , a

right inverse ofF, a¡d .E+ = ({ÐaEr, aleft inverse of.E. Thus,

q = 
n¿(q)*x

However, the joint variables calculared by this equation may nor be afiainable.

When for somepoint q theJacobian is a singular maûix ,í.e. de(J(q))=e,y¿e say that

q is a singular point of the manipulator Nodce thatJcan only be singular for manipuiarors with 6

dof (degrees of freedom). These singular poinß correspond to configuræions fiom which cena.in

direcuons ofmotion may be unattåinable. sometimes they represent limiß of the maflpurator work-

space' thaf is, the points of maximum reach, or points that are unreachable. At singularities, the ma-

nipulator would not be able ro apply any force over an object with the end-effe4tor. Also there may

exist different solutions for the inverse problem ar singulariries.

lf det(J(q))â rhen rhe joìnr acceleraüons are given by

d = r(qt' l- - 4rrn, .¡)
\dtl

It is import¿nt to detÊrmine the singurarities of a mampulator in order to delermine

whether or not a solution exists for a certain given task trat we wa¡t tle manipulator to perform.

when controÌling a manipuræor, the pranning system w r provide the controner

with references to follow, once the inverse problems bave been solved.

we w l use the Jacobian in the deveropment of the dynamical model of f¡e manipu-

lafor in the next chapter.
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Chapter 3. Dlnomics

3. DYNAMICS OF MANIPULATORS.

In this chapter \¡/e develop the dynamical model of a robot manipulator ofn degrees

offreedom. we st¿rt with the development oft¡e Euler-Lagrange equation ofmotion, for a system

of particles with consÍaints of motion. we find expressions fo¡ the kinetic and poænual energy,

which we use to define the Lagrangian of the system. Then, we consider the robot manipulator to

be a system with consûaints of morion of the form described before. This enables us to appty the

Euler-Lagrange equati on of motion in the development of its dynamical model. with particular

expressions for the kinetic and potential energy, we form the Lagrangian ofthe manipulator, and fi-

nally, its equation of motion. At the end of the chapter we rnention some important propenies of

this mode1.

3.1 THE EULER-LAGRANGE EQUATION OF MOTION.

Systems of partìcles.

The Euler-Lagrange equation describes the evolution of a mechanical system sub_

ject to holonomic constraints, when these constraint forces satisfy the principle of virtua.l work. The

method presented here is based on the principle of vrtual displacements.

Consider a system ofÈpanicles, with coordinates rt, 12,...,ri. Ifthese particles a¡e

fiee to move wiûrout any resEiction, we can eæily describe their moûon by Newton's second law.

If their morion is now constrained in some fashion, we must consider the constraint forces as well

as lhe externally applied forces. The constrain! forces are the forces present in the system, that make

the consúaint motion hold.

Iæt us consider a system of 2 particles, in order to illustrate the role oftheconstraint

forces. suppose that the 2 paÍrcles arejoined by amasslessrigid wire oflength /. TTus wirecauses

that the following constraint betwe€n the two coordinates is satisfied

ll ., _.rll =¡=(r, _ rz,rt _ rr)r/z = [{r, 
_.r). {r1 _ rr¡]r/z
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or

(rr - rz)r (r1 - 12¡ = ¡z (3.1)

If\ e apply external forces to the particles, they \¡/ill experiment not only these forces

but also the force exerted by the wire. In order to a¡alyze the motion of the two particles, we have

t\ryo options: a) we could calculatethe constraint force due to eåch set ofextemal forces, b) wecould

try to determine the modon of the syst€m without any knowledge of the explicit value of the con-

sfaint forces at all. These are two approaches in deriving the dynamical equafion of motion of a

robot manipulator. The first approach is tlle Newton-Euler formulafion and the second is the Lagran-

gian formulation. The Newton-Euler formulation is derived by the use of NeMon's second iaw of

moton, which incorporates forces and moments actíng on the p¿-rlcles, including constraint forces

due to the coupling. Thus, additional arithmedc operæions are required, in order to obtain explicit

relations between extemal forces and dispiacements. In theLagrangian formulation, weuserelations

in terms of work and energy in a generalized coordinate frame. Then, all the consÍaint forces arc

eliminated. The resulting equations express in a closed-form, the reiatlorls between the external

forces and the displacements. The derivation ofthese equations is simpler than in the Newton*Euler

formulation, and itis systematic. Those are the reasons that motivated theuse of the Lagrangian for-

mulation in this analysis of systems of particles, with constraints of motion. Thrs te€h¡rque will

be applied later in the dynamical analysis of a robot marupulator, in vr'hich we vr'anr to express the

joint displacements in terms of the torques applied. In the following we will derive the Lagrange's

equation of motion. First, we intoduce some ærminology.

Def, Holonomic constraint. A constraint on the È coordinates 11, 12, ... ,rr is called

holonomic if it is an equality constraint of the form

glr.t, rz, ... , r¡.) = 0, i = 1,2,... ,l

wheretheg¡'s are the i equauons, representing / consfaints inthe coordinates. In the example of tle

two particles the function g, is

sr=ll rr -r2ll-t =g

ln order to illusffate a nonholonomic constaint, consider a partrcle inside a sphere
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of radius .r, cenrcred at the origin of the coordinate system. The motion of the particle js uncon-

strained, as long as the paficle remains away from the wall ofthe sphere. It will experiment the con-

straint force, when it comes into contact with the wall. The constraint i n the coordinate ofthrs pa¡ticle

is

ll .ll . r

sr = il rll - r < 0

Thus, the consÍaint is nonholonomìc, because g1 is not extrictly equ al to zero.

In the case ofrobot manipulators, the holonomic const¡aints in thejoints a¡e due to

the links, whrle the nonholonomic ones a¡e due to acû]ator saturation limiß, and the workspace, for

example. workspace constrainß usually are not considered in the dynamical analysis, however, they

are used in generadng the Íajectory of morion of the manipulator. This is done by a higher stage in

thehierarchy ofthe controller, i n the Eajectory generauon algorithm, that solves the inversekinemat-

ic problem.

A system with t holonomic consfiaints, may be viewed as having / fewer degrees of

freedom, than theunconstrained systÊm. In this case we can express the coo¡dinafes oftheÈpafiicles

interms of n generalized coordinaîes qr,q2,..- , qn,wheren=k-1. The coordinates ofthe particles are

then expressed as

r¡ = \ (qt,qz, ".,q,), i=1,2,...,k (3.2)

where the vectors q¡ are linearly independent.

In the case ofa¡ inirute number ofpanicres witl consrainß, we can use a generar-

ized coordinate system. conside¡ for exampie, a rigid body that consists of many pa-rticles. vr'hen

the body is in motion, the distances between the particles remain the same. In this case onÌy six coor-

dinates a¡e sufficient, to completely specif] the coordinares ofanyparticle in the body. we need tlree

to speciõ/ posiûon, and three to specify orientation. The same applies to robot manipulators. A ma_

rupulator with morethan six degrees offreedom is called redundant. This kind of manipúator is used

when dealing with workspace consfiaints, such as wa.lls. In the re$ of the analysis we assume that

the nurnber of particles is finite.

JÕ



Def. Virtual displacement. A virtual displacement is an inf nitesimal displace-

ment consistent with the holonor¡uc constaints.

Consider again the example of the nvo particles constralned by (3'1). Suppose that

Âr1 and Âr2 are infiniæsimal dispiacements. The modified coordinates must satisfy thts consÍalnl

Then, we have

(r1 + Àr1 -12- Lr) r (r1 +Àr1 -rz- Llù = 12

Expanding the product we have

(rr -rz) r (Ár1 -Àr2) + (Arr-^r2)' (rr-rr) + (Àr1 -Ar2)r (Ar1 - Ar2) = Q

where we have used the fact that (3.1) still holds. Let us neglect the quadratic terms inÂr1 and Àr2.

a¡d get

(rr -rz) r (Âr1 -Àr2) = Q (3.3)

If the infiûtesimal displacements Arr and Ârz saúsfu ths equation, so thal (3.1) holds, Arr a¡d Árz

are virhral displacements for this example.

A differenti al d isplacernent of a coordinate r, wi th respect to the generalized coordi-

nares satisfying (3.3) (i.e. a virnral displacement) is

¡r, = F3 Âø,. i=1.2."..k
= 

Òqi
(3.4)

where Aq1, ... , Aqn are differential displacements of the generalized coordinates. This equation is

familiar, if for exarnple, we think about a drfferenual of a functionfx,y), where in our cæe tlle func-

tion is Aü(qr,... , q").

Forces.

Now, suppose that the system is in equilibrium, this means that every particle is in

equitibrium, then the total force acling on e¿ch particle is zero. This implies that the work done by

each set of virtuai displacements on a panicle is zero. The tot¿l workinthe sysæm of /rpamcles done

by any set of virtual displacements is also zero, tha! is
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(3.5)

whereR isthe total force on particle i. This force is the sum ofthe external force fi and the constrajnt

lorce (") . We show now, rhat the consÍaint forces between a pair ofpafticles, directed along tle

radia.l vgctor connecting the two particles is zero.

Consider once again the example ofthe two parncles wirh (3.1) as a constrainr. The

constraint force is exerted by the rigid massless wire, along the radial vector connecting thetwo pa.r-

ticles. The force exerted on pafticle 1 by the wire is

f,) = t (.r-.r)

where c is a magnitude and (rr-r2) indicates the direction of the force. There exists areaction force

on pafticle 2 exerted by the wire, rhar is equal in magnitudeto {') , but with an opposite direction (law

of action and reaction), that is

t) =-"('r-'r)

The work done by lhe constraint forces with vimral displacements 
^rl 

and 
^r2 

is

(ff))t ¡., + 1ff)¡r Lrr= c(rr - r2)^rl * c(r1 -r2)Âr2 = c(rr - rt(^rr - 
^r2)

Thisproduct is zero, because Ar1 andÁr2 are vimtal displacemenß and therefore saûsfy (3.3). Then,

there is not any work done by the radial constraint forces on the system. we now assume that all the

constraint forces between each parr of links are radial, so that

k

I(4"))t ¡", = o
i=l

Therefore, the total work in the system done by the F¡'s is

k

lnf t'
l(L

= )rlar, * ){d,)).a.,
k

=1ft.'=o (3.6)

Tlns equation does not involve any constraint forces, only known external forces, iÍ expresses tle
principle of vrrual work, which is stated as follows:
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Principle of virtual work. The work done by external forces corresponding to any

set of virtual displacemeffs is zero.

We can use this principle when the consfraint forces do not produce any work. This

is the case ofrigid bodies in motion, where rigidity is the only constraint. In other words, the distance

between any pair of particles in the body must remain constânt, while the body is in motion. This

is equivalent to an infinite number of consfaints of the form (3.1). In some situations like motion

in the presence of magnetic ñelds, the principle ofvirtual work does not hold. However, in the rest

of the analysis we assume that it does.

In (3.6) we cannot say thar every f¡ is zero itself, becaxse the virtual displacements

Ari are not independent. The fi's will be zero, if the work is done with vlrtual displacements ofthe

generalized coordinates. Before we do this,letus consider systems that ârenotin equ ibrium. We

now state D'Alambert's principle:

D'Alamberts's principle. In a system that is not in equilibrium, if \¡/e introduce

a fictitious additional force -¡i¡ on panicle I for each l, where pÌ is the momentum of rhe particle

i, then each pa.rticle will be in equilibrium.

Now, we replace F¡ by F¡ - d¡ in (3.5), that is

t
l(Fi-d)r lr' = o

As before, we discard the consfraint forces using the principle of virtual work, then

)tf m' IËl ¡', = o (3;7)

Inthe following wearegoingto look forsubstitutions ofboth summations for olhers, in terms of ener-

gy. We start wiùr the first summation. Let us express now each Ár¡ in terms of rlle corresponding

virtual displacemetrts of generalized coordinales as in (3.4). The virual work done by the forces f¡

is given by

kl:n"
Ifl¡r, = ITrl9! ¡o,

ullt =>*, on,

where
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*, = Étl#
r=l

is caued thejth generalized fo¡ce.

The second summæion in (3.7) can be written as

kkLn

IÉl ¡., = im¡í¡r Lr¡ =2f -,¡'!on, (3.e)
i=l ,=r t=t ¡=i Òqj ''

provided that pi = m¡Í ¡ .

Iæt us øke a look at the following derivative

! of 
,i,, *f =i^,n,,g. f ",n,.+lpl\ -t m]dtl" òsj) fr '' òsj ,1 " atlaø¡]

we rewrite this as

Z-,,,,8 = I_*l-r,, E]- i,,,r,*l+] (3 10)

Now, iet us differentiate (3.2) r¡/ith respect to time

' d .1 órr.ri = nri = ).= Q¡ =v¡ (3.11)AI 
-- 

Òot '
/=l

where vi is the linear velocity of the particle i \ryith respect to the generatized coordinate frame. By

differentiating ir with respect to Q¡we gel

ðð_:_ vi = :_r;
òqj ' òqj '

læt us differentiaæ the righr-ha¡d side wirh respecr to time and let us use (3.11), thaf is

qlr,, I _óí¡_agar,, Sóh,. óvi

"Lt* l= òt, = on *L,un,n' 
= 

Èunp*n, 
=,

Now, by substituting fiom the last three equarions into (3.10) we get an importznt expression

' 
i,*,,,,y =i,+l^,r31 - i,,,øp (312),Z òqj ,jùL " ò4¡ I ,1 ,', ðq, \J'r''
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Energies.

We define the klnetic ene¡gy of the system as

t-
r = ) j,l¡vfv,

i=I -
Iæt us differentiar€ K wíth respect to 4;

ò.. år ó . år -ò 3 -ð
o+r = 

àZ^'uA,vi 
v¡ + fim¡v' ,"' = lnt!fi;vt

Since the irurer product is commutatíve. AIso we see that (3.12) can be written ín terms of K as

å .,-òr, d ò ¿) tniri'--- = -= -:--K - -:-K (3.13)
,z Òqj dr Òqj Òqj

Substihrtion of (3.13) inro (3.9) yields

ll¿ ó d, ìtl, *- - 
òqiK 

- viJ 
^si 

= o

If we remember that the viÍual displacemenß of the generalized coordinates arelinear independent,

we conclude that each ærm in thrs equation is zero, that is

dò ò

* ò4* - òqjK =vj' i=1'2'"',n (3'15)

We can now def,lne the generalized force, as the difference ofan externally appiied generalized force

9 and anorher due to a potential field y(q). The value of tlis force in ærms of V(q) is

i¡,,o,, =;(lg'- g'\o q¡ (314\,; ãyat o, urt I

Finally, we substitute (3.8) and (3.14) into (3 .7) fo gef

f.*,*, ål*h_ +r]=,
OI
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then

because Y is a function of q only.

Equatian of motion.

We use the last two equations to rewriæ (3.16) as follows

dò ô--- 
-t 

--L= f ô --- -
dt ò4J" òqjL - L¡' r - "L'

Thts equation holds forj=1,2,... n, where nis the number of generalized coordinat€s. Thus wecan

write the equation in vectorial form as

dò á

- -:-=L ---L = r i3.18.¡dt ò4 ðq

where the dimension of -r,4, and q is equal to the number of degrees of freedorn of the system.

Equation (3.18) is called the Euler-Lagrange e4uation of motion. Itwrll beused

to derive the dynarnical model of the general configuration of the robot maûipulator.

¡,. = lvrq¡, Òqj

v¡=r¡ -!v@)
oqj

V(q) is called the potential energy. Substituting above into (3.15) yields

d ò.. ó.. ð,.
* ô4* - òqK = 'j - òsiv

or

4 I* - !r*-, = ", (3.16)
dt ÒQ¡ Òqj

Lagrangian.

The Lagrangian of a system is defined to be the difference between the kinetic ener-

gy and the potential energy

L=K_v (3.17)
Notice that

óð_L= _Kô* ôqi
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3.2 KINETIC ENERGY.

DJnanics

The Euler-Lagrange dynamical equation is very useful when the Lagrangian is

known. In order to apply this rnethod to the case ofrobot manipulators, we neæd to calculafe expres-

sions for the krnetic and potential energies. We are going to explore tlese expressions in the follow-

ing analysis.

Suppose that we have an object made of a continuum of parucles. This object hæ

densiry of mass o. l,et B denote the region of the ti¡ee-dimensional space occupied by the body.

We also use B to denote a range of integrals. The tot¿l mass of the object is

m=[otx.y,z¡dxdydz
Jn

The kinetic energy of the body is given by

r =:[ vrl.y.z\v(x.y.zþ(x.y.z¡ dxdydz = ![ nr" ar, (3.19)
2 Js L rB

where dtn denotes the inñnitesimal mass of the body in (x,y,z).

When the body is in motion, different paÍs of it will move at different velocities.

l,€t us consider the center of mass ofthe object wirh coordinares (4,y",4), defined by

*,=1[ra,, y.=LI va,, ,.=![ ,*,' ìn)s '' m|s'-- " ,, l^'-"

[,et us express these e4uations in a more compact form ìn terms ofr, the coordinate vector ofapoint

in the body. We have

(3.20),.=L[ ,a*
m Js

In other words, the vector rc given by (3.20), is the position of t¡e center of mass with respect ro tbe

reference frame. An alternative represent¿tion is

[ <r.-r¡ ¿n =o
Jn

The velocity of a paÍicle in the body with ¡espect to an inerdal frame, is given by
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the sum of ùe linear velocity of the center of mass, plus the relative linear veÌocity ofthe body with

respect to the cenrcr of mass, that is

v =vc+wxr (3.21)

where vc is the linear velocity of the center of mass, wxr is the linea¡ velocity of the particle, r is the

ve€tor ÍÌom the center of mass to the pafticie, and w is the angular velocity ofthe particle with respect

to the center of mass. we can also express this equation r,vith respect to a moving coordin¿te frame

attåched to the center of mass. we can do this by multiplying by a homogeneous Íansformatíon ?,
that represents a úansformation of coordinat€s from the frame in the center of mass c to thg inertia.l

frame i.

Wlen we are talking about position vectors, that are fia¡sformed into a new ftame,

we consider that these vectors are rotated a¡d Eanslated, but when we differentiate them with respect

to time ¡o get velocity vectors, that correspond to changes in position, a1l the translational terms are

eliminated, because they represent const¿nts added to the coordinafes. Then, we only consider the

rotational effect of the Íansformations in the analysis of velocity vectors.

In order to refer (3.21) tothemoving frame, wemuluply irby a rotaûonal mau:ixR-1,

\¡/here R is the rotational transformation from the frame in the center of mass, to the inenial frame.

As we saw before R is orthogonal, t¡en we have

Rr(v" + wxr) = Rrv. + (Rrw) x (Rrr)

'we notice that when we calculate the krnetic energy, it does not matrer in wfuch flame the velocity

vectors a¡e referred to, because the magnirude of a vector is not affected by any homogeneous Íans-

formation. Let us assume rha.t (3.21) is expressed in terms of the moving frame, and that the cross

product wxr is expressed by the product ofa marix,s(w) and r, using the property that for any vector

p, ,S(a)p=¿¡p, where S(a) is a skew symmetic mafix (see preliminaries). We can write

v=v.+S(w)r
and S(w) is defined by

raz

o- ill¿s(w) = (3.22)
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1arþs¡s y=[wx wywJr, and by definition S(w)7=-S(w). Substiruring v into (3.19) yields

1(* = ã1o t". 
* t,w)rl ' (v. + S(w)r' ¿i¡

we expand now this equation by using the prope¡fy (Ats)r=BrAr, we haye

* = ll,,r", o. * |[,"irr*v o^ * ]l,tr(w)rv, dm* JJ"..st*l,sr n,, ol,t'"'

We are going to take a look at each of tlese fou-r terms separately. We say that K=K1+K2+K3+Ka,

where each K¡ conesponds to each of the terms of K in (3.23).

Inthe firstterm,let us æsume that v. is independent ofthe integræion variabÌe, there_

fore we can move it oufside of the integral, that is

Kt vTv.

Notice fhat this expression is the kinetic energy of a panicle of mass rll, located at the center of mass,

and moving with a velocity v". This rerm is called the ranslæional pan of the kinetic energy.

The second term is

l- r
K2= ^v', Stw) | rdrr =0¿ )n

Re¡all tìat we a¡e considering that all the ve¡tors in equation (3.21) are refened tothe moving frame.

By definition of the center of mass, tle vecto¡ from the ¡eference coordinate frame to the center of

mass r. is given by (3.20). In this case this ve¡tor must be zero, because the reference frame has its

origin at the center of mâss itself. Then, the integral in (3.24) must Lre zero, hence K2=Q.

Similarly,

rrùn sçw¡rv, = ç

I€t us rew'ite the fourth term Ka using ùre facts that, for any two maûices A and B,

T\(AB)=T.(BA), and rhat for any two vecrors a and b, arb =Tr(abr), where rr sÞnds for the Eace of

a maüix, and it is equal to the sum of the elements iniß diagonat (see prelimrnaries for deøils), then

1

2

*, =;1"

45
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we have

"* = jJ <t<"lr)r(,s(w)r) a* =|lrr{a(w)r)(s(w)r)¡ld,n

= å/".'[r,*,* 
rsm¡l an = ]r,lo*,/". uo, n*r]

IÆt us define the matix D as

o = [,,,,a. a:':l¡î:l;:,',fl
ll*., l"* l,'*]

and substitute into K4,

r, = *rr[sr*¡'b s<*l']

Now, by subsriruÌing rhe value of .t(w) given by (3.22) and D into Ka,, we have

I lf*o* [r^, [**,] I
r^=+"llr, t: t!^]1J,"^'l,n*'¡,*'ll 

r, t: r']l
t -L)**,, 

Jva,n 1,,a,,]- - 
l

Now, by multíplying, expanding the trace, and grouping, we get

lfc.rr* [ro. - [ *0, f
r^ = +l*^*, *;lt - ¡,o*, l,J,n,,to,,llr* lf;l] 

= t*-
l,ll-* _lno. I,i.n,*l

where 1 is called the inenia matrix. ir4 is caüed the rot¿tional part of the kinetic energy.

Now, subsrituting rhe values of-Kl rK2 K3, and Ka againinto (3.23), we get a familiar

expression for fte krnenc energy
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K= + lwïw
2

The flrs!term ofthts formula" is the conu-rbution ofthe hnear motion oft¡e body to the krnetic energy,

wlule the second, is the contribution of the angular motion of the body around itself. Hence thjs

equafion represents the overall kinetic energy of the body. The two terrns represent energy, then it

does not mafter in which coo¡dinate frame we calculate them. As we mentioned before, tle vector

v, can be affected in a ûansformation ofcoordinates, only by the ror"tional part. Remember ùatin

the above analysis we considered vc referred to the center of mass, but since v"t" is the square of

the magnitude of the vector v¿, it does not mafiEr whrch frame the vector is expressed. The value

of w and 1 depend on the coordinate frame to which tley are referred, however, we know that tìe

product wTiw remains the same, no matter which coordinate frame the vectors are referred to t4l (pp.

140), since it represents energy. We calculate 1 with respect to the center of mæs, in order to make

the development more simple. The angular velocity must be calculated witlì respert to the same

frame.

3.3 POTENTIAL ENERGY.

We consider a rigid body, where the only source ofpoæntial energy is gravity. The

potential energy of a particle in the body, located at r from the base ofthe object and wirh mass dnr.

is given by

¿y = grrdm

where g is tlre gravity vector expressed in the base f¡ame. Hence the ove¡all potenuat energy of the

body is given by

v=lre,ra,r=crlura,,

Recall the definition ofthe center ofmass givenin equation (3.20). we then wnte rhe poænual energy

as

!.nTn -2"



= mgrrc

In tle next section we apply the results of this section and the Iæt one, to develop

expressjons for the manipulator's energies.

3.4 M A N I P U LATOR'S ENERG/ES.

Kinetk energy.

Iætus consider no\À' the manipuìator with nlinks. As we saw before, thelinear and

angular velocities of any point car be expressed in terms of the joint variables by a Jacobian mafix,

and the derivative ofthejoint variables. We called these joint variables the generalized coordinates

of the manpulator. They represent the number of degrees of freedom.

We can express the linear velocity of the center of mass ofthe link I by

v"¡ = ./".1q) <i

where -/u", is the Jacobian matrix corresponding to the ith link. In a similar way, we have the follow-

ing relation for the angular velocity of the link i

w.¿ ='-1R| ./.",(q)d

RecaII that the rotation marix is orthogonal, then t-1Rf represents the inverse of rhe rotation from

fhe ftame i to the frame i- 1 . We ne€d to introduce thrs rotation mafix because, as we said before,

the angular velocity was expressed in ærms of the frame i- 1 , and in this case we want the angular

velocity of the center of mass oflínk ¡, with respect to all the joint displacements, to be represented

in its own frarne. Remember that the angular velocíty of the iink i, due to the rotation of link i and

represented in the ftame i is zero. For the manipulator that we are considering, the overall kinetic

energy is equal to the sum ofthe kinetic energies of each link, that is

13.
K =;/lrn¡v',.,v,i + w:, I,wc¡l



Now by substinnng vcr and wri into K, we obtarn the expression for the overall kinetíc energy ofthe

mampulator in terms of the joint variables

K = +>.L^,u,,,rqt{)rt-r".rqlqr 
+ ( '.r^r.r"",rqr{)rr¡1 "Rl r-.,(q),í)l

by elimrnating parenthesis

x = !i¡^,lrt,,(q)?",(Ðd + QrJ*"(q)ri-t R¡(q) ¡, ''n(Ð r-¡*,(Ð,i]
z?ot ''

We can take Qr and Q out ftom the summation and get

.. 1.,årK = ;d' LL-,I,,G)'¡,",G) + J*",(q)î È1Ri(q) 1j ¡1Rlq) t"¡,".,(d] .i

We cân see that the summation is only a funcrion of the joint vanable vector q, aad depends on the

kinematic configuration ofthe marupulator. Letus call t1(q) this summation. We rewnte the above

as

ChÂpler 3

whe¡e

K= Ii'r<rta (3.24)

(3.25)H@ = il*J"",(q)?".,(q) + ./",.,(q)r¿-1R(q) r, t1n¡q¡ r,r,'.,1q¡]

Notice that the first term in the summation is a symmetric positive definite matix, because m¡ is al-

ways positive and the product of the Jacobian matrix by its Íanspose yields a symmetric square form.

Also the second term is a symmetric positive definite mat¡ix, where tbe inerua matrix /¡ is always

positive defimte, and the overall product is a symmefic square form. Thus, the sum ofpositive defi-

niæ matrices leads to apositive defimtematrix. Hence, É(q) is a symmetnc positlve defirute matrix.

This agrees with the fact thaf the klneuc energy is positive, urìless the system is at rest. It is a conven-

tion to call H(q) the inertiamatrix of the manipulator, orthe inertiatensor oftìe manipulator Strictly

speaking ä(q) is a matrix based on individual inenia rensors.
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Potenfial energy

The expressíon for the potential energy of the manipulator is in general a sum of

terms of the form given in secúon 3.3. Notice that because rci is a function ofthe joint coordinates,

the overa.ll po¡ential energy is only afunctionof q. Itis a convention to denote y(q) the overall poten-

tial energy of the manpulator, that ìs

vlq¡ = grir,¡ m¡
l=1

wherercj is the coordinate of the cente¡ of mass of the ünk i, and tÏe imer product grr"¡, is theprojec-

tion of the posiûon of the cenær of mass of the link, into the vertical axis, in other words, its height

with respect to the base.

3.5 DYNAMICAL MODEL.

Lagrangian,

[,et us find now fle Euler-Lagrange equatjon of motion ofa manipulator, for which

the kinerc ene¡gy is given by (3.24) and rhe porenriat energy is y(q). The Lagrangian is given by

L = K -v = ].if+<ol.i - vrol

Iæt us write K as a summation, and substitute it into the Lagrangian

.=+Éfd,n,,<q)ãj-v(q\

,/ n n \
, il a,li,Å, + dzZhz¡ã¡ + ...+ Q,\n,¡,í¡ I - vrqr

'\ i=t i=t j. /

Now, we have to calculafe the terms of the Euler-Lagrange equæion of motion given in (3.19). Iæt

us start with the first term. The paÍial derivanve ofl with respect to rj¿ is

50



, -/, , \ò tr- - I
," L = -l Lh*/C\4¡ + /ø¡tt¡rtil IoQ* ,\Ã H I

The first term is for t=l and the second forJ=t, but since there a¡e n of these terms, we ca¡ w¡ite it

interms oflfrom lton,andsince H(q) is symmebic,i.e. lqj=ltji, we get

ó lå 3
^^ 

L =;L2hrlq\Q¡ = lhalqtQ¡ ß.26)vqk ' j=t j=l

In order to visualiz€ this, consider as an example a 3 degre€s of fre€dom manipulator, then

1L = r( Q fi ¡ fi ¡ + Q th pQ2 + Q ¡h¡4 + Q2h21fi + Q2h22Q2 + Q2hyfi3

+ Q3h3yQ1 + fufu2Q2 + fu\4fu) - V(q)
and

ô1
òqL = ;(2q ú11 + h ¡2Q2 + h3Q3 + Q2h2¡ + Q3fuy)

ðl
6^L = ,\arhn+ 

h21Q, +2Q2h22+ hvfu + Qtnrr)

ól
ò q3L = t\á ú ß + Q2h¡ + fu 1Q 1 + h32Q2 + 2fu3fu)

but because å¡=lgi, we have

ôl
òqtL = ;(Urhtt + zözhn+ 2d3h tt) = | nr'|t

ð1 3

òqrL = ;\2sthn 
+2å2h22+2d3h2) = 2ntÅ,

ðr3
òq3L = ;124tu1 

+ 242/o2+2ú.'o') = 2 n''ù'

Now, let us differcntiare (3.26) wirh respecr to time

d ò 3 !\¿
* òdrL = LnrlÐ'i¡ + /¡n4q\4¡ ß'21)

No¡ice that

d :-ò
;h¡dq) = ) -¡-1+¡d¡
ar - i- ôo¡ "



by the chain rule. Substihrring inro (3.27)

d ð 3 33,i
d,òô^L = Lh*lqö¡ * à1 ¿^hr'<q'à'|,

where the change in the order of the summatio¡ts gives the same resull

Now' the second t€rm of the Euler-Lagrange equation, is the partral derivæive oft
with respect to q¿,

ó t3å ó ô

*t = ,Èàò*oto) 4'ãi - fi;vrtt

We can write now the Euler-Lagrange equæion using the last two equa.tions as

,, , "/ \ (3'28)

ä,ruo,o, 
- 

ää(*u,r,<tt 
- f,f;n,<q)) u,u, - *,,o, = ,r. k= r,2,... .n

Notice that

ÉÉ3r^¡0,¿,a,=f i!n,sta,â, ++ ð ' ""?.f-un" Ã,loq, lfiaok,ttteiø¡

= +äzft' "''o' 
* f, ' r r'')a'd'

Hence, tle second ærm of (3.28) is

åå(rï,r" - +h,^*) tr, = 
?,à+(hor^o, 

* 
horro, 

- hn^o,) u,n,

= 1ài",¡,rct òd¡ ß.2s)¡=l l=l

where the elements ctr a.re called the chrismffel symbols ofthe first kind. Note that because the sym_

meüy of ¡1(q), we have that c4k= cjik. Hence, we only have to calculæe half of tlem.

Ir is a convenrion to call gr (q) the partial denvaüve of the potenria] energy with re-

spect to q¡, thai is



Let us substitute the last two expressions into the Euler-Lagrange equalion of mo-

tion (3.28), that is

st(o = +v(q)
oqk

\-,.u\-\-
Ln*fqtq¡ + L Lc¡¡úql qiqj - Sklq) = tr,.
j=t i=t j=1

Now, defining crj(q) as

c*¡(9t = L c¡¡*(9)Q¡ =

(3.30)

(3.31)

k=7,2,"',n

ää+(#,,,^tt 
+ 

f,n,rq¡ 
- ho^o,) n,

we cân write the n Euler-Lagrange equations, in a vectorial form as

a(q)d+C(q,<Dd+B(a)=r (3.32)

which is the dynamrcal model ofarigid robotmanipulator with n degrees offreedom. Any configura-

tion of arobot manipulator without regæd to its geometry, the number ofdegrees of freedom, or the

kind ofjoinß, will always have a dynamical model of thrs form.

Aswesaid beforei/(q) is calted the inerria marix. C(q,d) is caled rhe cenrifugal

and coriotis fo¡ces matrix, where the terms ofthe type ri'f , correspond to centrifugal forces directed

along the radius ofrotation ofthejoint i, and the terms of the type Qþ¡ ,for i+j,correspond toCoriolis

forces. Remember that when we were talking about rot¿tions of acceleration vectors, we described

the acceleration that those forces produce. The vector g(q) is called the gravity forces vector. This

is the model thaf we are going to control in laler chapters.

3.6 PROPERTIES.

l,et us mention some propenies ofthemodel (3.32). Conside¡ the derivative ofÈ(q)

with respecr to rime. Using the chain rute, we have rhat rhe ¿jrh element of fi(q) is given by
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hdq) = >.=hrlq\ài
-¡=t 

oq¡

Recall that C(q, {) can be wriüen in terms of a maÊnx that depends only on q, multiplied by the vec-

tor <i , by the definition of rhe rerms c¿;, given in (3.3i), rhat is

c(q,<i) = c(q)ti

where C(q) is the mat¡ix of the elements crj. It is easy to see from this equation, fhat C(q,0)=0.

Iæt us subtracr rh e ærm 2c¡¡(q,8) tomåE(e), and se€ whar happens. We have

ì4q¡-zc¡¡1q¡ = ä{*r^*u, - (#rur, * hor,,o, fir*) ,,}

./ ^ \
= å(#t'' fior''o>)a'

I-et us do the same the with the J¿'th elemenf, to get

Dynamics

h¡r(t) - 2c¡r(q,!) =

Since tl(q) is symmetric, we have that /4¡--lz¿, hence

úgq¡ - zc¡¡1q,q) = -(4¡ql - zcir4,ú))

In other words, rhe matrix rilq¡ - zc(c, q, is skew symmeric. This property leads ro rhe following

result

*'(É(q)-zc(q,{))x=o (3.33)

where x is any vecror [4] (pp. 143). This propeny will be very useftrl in the stability analysis ofclo-

sed-loop robot manipulator control systems.

A very important property of the model (3.32) is tha¡ it is linear in the parameters.

we are not going to prove this, but the reader is refened to [4] (pp.301). This me¿ns that, although

the equatìon of motion is notlinear, the parameters ofinte¡estsuch as linkmasses, moments ofinertia.
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and so forth, appear as coefficients ofknown functions ofthejoint variables. Ifwe define each coeffi.

cient as a sepârate parametÊ,r, we b¿ve a linea¡ realtionship, and we can wriæ the equalion as

H(q)d + c(q,¡i)ri + g(Q = r(q,ri,tfo = z (3.34)

where f(q,{,{) isannxr matrix of known functions, ald @ is an r-dimension¿l vector of parame-

ters. The property is the key feature ofrobot manipulators that has been used to design ad¿ptive con-

rol algoritlms.

In ¡1(q), dependence on q, is always in the form ofsines a¡d cosines of0¡, because

it depends on the Jacobial, that depends itself in the homogeneous transformafion. Since the func-

fions sine and cosine a¡e bounded fo¡ any value of q, ä(q) is bounded above and below, that is

aI<H(q)<þI (3.35)

for somepositve scala¡s c( and P, c< þ, where the relation is in the sense ofpositive defin1te matrices

t3l (pp.12).

SinceI(q) is asquare symmetric positivedefirute ma.fix, and for manípr. ators iner-

fia cannot be zero, its inverse exists (see preliminaries).

Now suppose that we know the sructure of the marupulator's model given by

(3.32). Consider that the Lagrangian is given by

where K(q) is an inenia maüix and P(q) is the poten[al energy. In fact the first t€rm is the kjnetic

energy. læt us build the Euler-Lagrange equæion of motion, as follows

as we stated in (3.26). Also

and

*'= *tox

**t =ri1q¡{ + r1q¡{

r=làrx<t>d-r<tl

å'=;u(å",,)s - å"",
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Dynamics

K(q)ü + 
1",, ;r'(å"")]r - *",0, = "

If we compare this with the model given by (3.32), we can conclude rlar ä(q) is acr'rally rhe inerria

marrix, i.e. ¡I(q)=r(q), t3l (pp. 11). A]so

c(q.ô = ,i 0, - la.l3",o,)c
' \oo I

We can also wrire C(q, tÐ as t3l (pp. 13)

c(q, ri) = aqq¡lri4l + a1q¡[ri'z]

where.4(q) is an nxn(n- l)p marix of Coriolis coefficients, [(rj] is ar n(n-l)/2x 1 matrix ofjoinr ve-

locity products, given by

r.i,ÍJ = [.i,.i, ,i,,i, ... .i*,.Íf'

B(q) is an nxn matrix of centrifugal coefficients, ano [dr] is annxl vecror given by

t 'rl I ,¡ '¡ .¡lr
tq-l = lci qr ...$l

About tle vector g(q), we can only say rhat it has a bound iDdependent of the value

of q, since dependence on q appears only in terms of sine and cosine funcúons, in the numerators of

its elements t3l (pp. 14).

Itis alsopossible to deverop a model considering friction, unmodered dynamics, ex-

ternal disturbances, and flexible links. However, in this work we only consider the model developed

with our assumptions. In Chapær 6 some references a¡e mentioned about adaptive conûollers, that

solve cenarn kinds of probiems of model uncertaíndes.
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ChÂpte¡ 4 PD+FeedÍoraarl

4. PD PLUS COMPUTED FEEDFORWÄRD

CONTROLLER

In this chapter wepresentthe analysis of two motion conlrollers for robot manipula-

tors: computed feedforward and PD plus computed feedforward. The latter has shown to have an

exelent performance in experiments [1]. However, no analysis was presented. we study exrstence

and uniqueness of equilibrium points, stability and achievement of the control objective for the over-

all control sys¡em.

4.1 INTRODUCTION.

The motivation that originated these krnds of controllers is that, although recent

technological ¿dvances and reducing costs in the field of digital elecûonics, have permitted the em-

plo).ment of microprocessor-based equipmenl with high speed and powerful computations, in con-

Fol of robot manipulators, it is of great interest the use ofconEol techniques that include a reduced

number of operations to be done on-line. Among these control techniques are computed feedfor-

ward and PD plus computed fe€dforwa¡d. The marn advaltage ofthese controllers is that all rhe feed-

forwa¡d terms ca¡ be câlculated off-line.

In [5] a PD contoller with cancellation of gravity was proposed, using a precom_

puted fe€dforwa¡d gravity compensation. It was shown that the cÌosed-loop system is ståble. The

PD plus computed feedforwa¡d is an extension ofthis work, in which a precomputed compensation

is infoduced in the sysrem for the overall dynamics of the robot.

The chaprcr is organized as follows. In Section4.2, wepresentthe dynamical model

ofarobot manipulator with n degrees offre€dom (doÐ, rigid links, and ideal actuafors. using some

important properties of the model, v/e rewrite the dynamical equation in terms of the state vector.

Then, the problem formulation is stated in Section 4.3. The analysis of the computed feedforward

controller is presented in secnon 4.4. InSectíon4.5, wepresent the analysis of thepDplus computed
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feedforwa¡d conroller. We present sirnulation results in Secuon 4.6, fo¡ the manipulator of one de-

gree of freedom (doÐ. We give some conclusions in Section 4.7, a¡d the references are listed at

the end of the chapter.

The main result that we found, is that, although the computÊd feedforward conÍoller

seems to b€ a natural way to control therobot manipulatorinclosed-ioop, itpresents multiple equíli b-

num poins, that vary according to the selectlon of q¿(l), the desired positiorìs vector, and it cannot

be satisfactorily used tocontrol a manipulafor. Wecan eliminare rhis problem by adding apD. Now,

the system is stable, and the conÍol objective is satisfied. We found an explanafion for the good

performance of this controller presented in Ul.

4.2 DYNAMICAL MODEL,

We consider a robot manipulator to be an open kinematic chain, of n dof, with rigid

Iinks, ideal actuators, and without fTiction on the joints. The dynarnical model of the manipulator

is obtajned by the use ofthe Euler-Lagrange equation ofmonon, defined in ærms of krnetic and po-

tential energies. It has been shown that rhe model has the following form

I¡(q)ci + C(q, Ð<i + c(q) = z (4.1)

\¡r'here q is the nxl vector ofjoint variables, r is the vector of appliedjoint torques (or forces). ¡1(q)

is an nxn matrix called the inertla matrix, defined in terms oftheJacobjan, mass, inertia, and geometry

of the manipuiator. t1(q) is a positive definite matrix, therefore its inverse exisfs. C(q, ô is tlìe

nxn matrix of ceffiipetal and Coriolis terms, deñned in terms of the va¡iations of the ínenia proper-

ties, with respect to the joint displacements and velocities. g(q) is the nx1 vector of graviurional

forces. defined in rerms of rhe va¡iations of the potenÞal energy witl respect to the joint displace-

ments.
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Properties.

PD1.FeedJor anl

(4.2)

1) The marix É(Ð - zc(q, rÐ is skew symmetric , hence

xr(É1q¡ - zclq, <i¡)x = o

2) The marices ä(q), C(q, Ö, and the vector g(q), are bounded above and below.

4.3 PROBLEM FORMULATION.

The connol problem is sÞted as foliows. Given the bounded vectorial functions

qdT,4Át), and dlÐ, representing desired positions, velocities, and accelerations ofthejoint vari-

abies, find a vector z as afunctionof ûme, such that thejointpositions, velocities, and accelerations

of the manipulator follow the given ones with precision. In other words, we v¿ant to determine r ,

in such a way that

,t1m 
ti{t) = O

where q(/) is the vector of position enors defined æ

q(1)=qd(r)-q(/)

It sufhces to show that q(r) --- 0 , to guarante€that ((f --- <i¿(t),and E(/) --- ü,/(1)

So this is our objective.

Usually, úrose desued values of qÁt), âÁt), and {¿(l), are provided by a hrgher

st¿ge called the tajectory generation system. We do not expectthat thecontroller will perform deriv-

atives, therefore we need the three values to be provided.

4.4 CO M PUTE D F EE DF O RWND C O NTROLLE R,

This is one of the most elementary model-based control strategies, that can be used.

We have to consider that the model of the robot is perfectly kno\¡/n, that is, the matrices I/(q),
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C(q, ri), and the vector g(q). We a¡e interested in thjs kind of controller, because once

gd(ù, ÅdØ, and d¿(¡) a¡e known, the implementation is fâ[ly strarght forward. We can calculate

the controi acÍion Í from (1), just by substituting these values. In other words, we calculate ¡1(e),

C(gd,4ò, and the vector g(q¿) offline. Then, we can generare the values of r to be applied.

Notice th at this is a¡ open-loop conEoller, and inconsequencewe have all the disad-

vantages of an open-loop conEol system. The block diagram is shown in Figure I on page 68.

The behaviou ofthe system is obtained by replacing u from (4.1), \¡/ith its precom-

pute.d value. IÆtus express this open-loop eçation in terms of the statÊ vector t{ dlÎ, as folows

a I qr¡l -f {r,r
ã | ôt"J - 

| 
øtor'{(øtor - H(qd))ü + (c(q, q) - c(q¿, iJ)4¿ - c(q

(4.3)

I
tlrri+grqr-c(qd)Ì_l

where q = qr- q. This equation represents an ordina-ry nonlinear nonautonomous differential

equation. It is clea¡ that the origin [8 d]Î=O is an equilibnum. By definiûon ofequ ibrium, íf

q(0) = q¿(0), a¡d 4(0) = qd(0), then 4(f) = 0, for a.11 ¡ . 0.

However, this equilibrium is in general not uruque, and it is difficuit to guarante€

that the ininal conditions a¡e ldentrcally equal to the desired initia-l conditions. Then, what can we

say about the behaviour of q(/) and q(fx The answer to fhis question couÌd come from the stability

analysis of the equilibrium points. It is possible that the system has mulriple equilibrium points, then

we can disca¡d the option of global asymptotic st¿bility. So we can only expect local asymptotic or

expongntial st¿bitty properties. In orderto determine these, we will need more speciñc information

about a particular configuration ofa manpulator, and with different configu¡ations we can have dif-

ferent behaviours.

For simplicity, we present an example of the computed feedforward controller with

a one degree offreedom manipulator, in otherwords, apendulum. This kind ofmanipulæoris exten-

sively used in experiments for control, and paÍicularly in robotics.
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Feedforwørd control of a pendulum.

Consider an ideal pendulum with length /, mass m concenÍated in iß extreme, ex-

posed tô the gravity force g. We can use the Euler-Laga¡ge equation of motion to represent its dy-

namical model. Thrs model is given by

which has the form (1), with

The open-loop state equation is

nlzìj + mgl sín(q) =t

H(q) = nP, C@,q) = O, s@) = mstsit(q)

*luÍ?,1 =l#, r, ::l -",s,.,n1a,¡) ]

(4.4)

(4.5)

Clearly, the origin is an equilibrium, andsois [4 à]r =[2n1t O]r, fot neZ.

Consider the particula¡ case in which qd(t)=O. Now, tle state space representation,

is fhe equation of a free pendulum, given by

a I a<ol
nlàtnl= (4.6)

Notice that the equilibrium points ar e now lq 81r = [n¡¡ 0]r, which means that we have more equi-

libriums. It is easy ro show that the origin is a st¿ble equihbnum, but it is not asymptorically stable,

and the equilibriums corresponding to n odd are unsrable [3].

With this example, we show that the fe€dforwa¡d controller cannot sansfy even po_

sition objectives. For this reason, tlis open-loop conÍoller is not satisfactorily used in practice.

Ho\¡/ever, it may be applicable to some specia-lcases, but so far wedo nothave a general result to prove

that it will always work.

We st¿te that despite of its well re¿somng foundæion and ease of implementation,

it is not successfully applicable to the control problem of robot manipulators.

From the practical point of view, it is of gre¿t interes¡ to include as less a reduced

number of operations in real-time, when implemenring a coffioller, thís motivates the inclusion of

theprecomputed terms. In [6] a PD conÍoller plus a gravity term was suggested. In [5] amodifica-

I +xt"'1
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tlon was made to it in order to include precomputed terms. The pD confoller plus computed feedfor-

ward is a generalization of rfus contoller, that has shown [1] to perform well. we now discuss its

performance.

4.5 PD PLUS COMPUTED FEEDFORWARD CONTROLLER,

The feedforward controller is modified by the addition of a proporfionallerivæive

term (PD), as follows

t = H(qòd¿ + C(q¿ÅÒ|à + g(qd) + KoQ + K,Q (4.7)

where K,= rf,>o, anar"=Kf >0, are nxz positive definíte mafices of position and velociry

gains. Theproportional-derivative term closes theloop, providing anexplicit feedback of q and (.

In Figue 2 the block diagram of tlis conÍoller is presented. Tlus is a generalization ofthe pD con-

troller plus precomputed gravity compensation presented in [5], since it includes feedforwa¡d com-

pensation for the overall dynamics oftherobot. The experimental results presenæd in [1] haveshown

that this confroller has an excellent performance, comparable to the quite more compiex computed

torque conÍoller. These resulß are surprisíng because of tle relative easiness of the conûol iaw

unfortunately, the stability analysis is not presented, and to the k¡owledge of the author, it has not

been reported before. In the follo,,ving analysis, we conclude that the good performance obtalned.

is due to a high proporrionâl gain Iç in the closed-Ìoop.

The closed-loop behaviour is obtained by repracing r in the equation of the robot

(4.i) with the confoller. Iæt us express it in terms of the stat€ vector, that is

(4.8)

where \¡/e have removed the argumenß, in order to abrevíat€ notation (¡1¿, means ¡(q), and so on).

Notice that rhe origin is an equrlibrium. using the same reasoning as [5], we propose the following

function
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, r,.- - rt.
v(¡.q,ð =i(.i.a,i *,i.O.i) *q'so*J,l.it{( H¿-H)ij¿+lc¿-c)to-el_Arula, @.s)

whefeQ=QLIÇ>0. It is easy to checkthat rhrs funcrion vanishes at the equdtbrium, and it is positive

otherwìse, as long as the entries on Q æe large enough. V(r, Q, d) dominates the frrnction

, 1,,-. ^wr(Q. Ð = ;(q,Hq 
+arq,Qq)

where a1 > 0 is a small enough constant. Notice that wr(q, ð is a positive definite functlon.

V(r, q, ð is also dominated by rhe function

. 1,,- ^wlq, Ð = f (Q'ad +azQ,Qri)

fora2>0 is a large enough constant. Wr(q, ti¡ is also apositive definite function. Hence V(r,d,d)

is a positive definite function (see preliminaries), it is decrescent, and we propose it as a Lyapunov

candidate function.

Differentiating V with respect to time, evaluating along the state trâjectones, and

using the property tltat nçq¡ - ZClq,ti) is skew symmetric, we get

úf¿q,til =-<irr"ri < o (4.10)

This impües that the equilibrium is srable in rhe sense of Lyapunov, and v(/, q, ai) is a Lyapunov

function. we use the following two lemmas to prove that tre conûol objective is satisfied.

Lemma 4. 1 191 @p . 232 fact 4)

Iæt f :R*-R'. If Í € Ll and ie ¿å, tneo f(/)-0 as /- c..

Lemma 4.2 l4l Qemma2.Z)

Conside¡ the continuous and differentiable fu¡ctions x: R+ - ¡¡-, and

/: R* - R*. Deñne the funcdon V . R'¡+l + R*, given by

V(¡, x,, = x(l)rKrx(l) + i14 = O

where K1 € R/,M is a symmeu:ic posirive definite matrix. If there exis¡s a function z : R+ ---à U,
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\ryhere U is a subspâce of R', of dimension p(<

time satisfies

Y(t,x,¡ =

P D+F eed,foruad

m), sucb thât t¡e derivæive of V wirh ¡espect to

- z(t)rK2z(t) < o

where K2 = Kt > 0, then

x€.LE

Í€.L_
z¿L2

These lemnas imply that q, d € Li, afi

where x=lq Elr,

Kr= +{ads

and K2=K.

We clatm that a large enough Iç=e, always exists since all the quanrities are

bounded and iris reasonable to rhink rhar qlÐ, dlr), and cilr) æe bounded.

We a¡e not able to conclude t}lat the equilibrium is asymptotically stable by the use

of Lasalles's theorem, as suggested in [5], because v is nonâutonomous. In [6],itisshownthatthe

MaEosov's theorem could b€ used to guarantee the gtobal asymptotrc stability of the origin.

We show that the conuol objective is satisfied by showing rhar q(r) converges to a

constant, and this constant is the zero vector. Consider ti(Ð = O, ii q(l) is a const¿nt, it musr be a

solution oftheciosed loop system. We calculated the solution by an iterative method, and it resulted

to be zero, for differentfunctions q(/). we conjecu:re thât, ingenerâl, the equirbnum is uniquewhen

the desired position vector is not a consta¡t, and it does not converge to a const¿nt.

We present úe following example, for the manipulator of one dof, in order to illus_

trate our conjecn:re.

a)

b)

c)

LL, qe

,i<tl = olim

+lSå] re) = I'.{1",.,,. ",,"] l,ii]
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Consider again the model ofthe idealpendulum. The closed_loop systemis given

by

¿laø1 L qtn I
;lâi,;)= 

lfil*r',,"rn¿ 
- Q) - mstsn(q¿)-Kpd- KJ)l (4 rl)

ChÂpter4.

PD plus feedforward control oJ a pendulum,

Kos + mgl(sin(q¿) - sin(q¿ - ø)) = 0

It is interesting to observe the upper bound of lrl, that is

P D+ F eedfôr|,ad

(4.12)

clearly, the origin is an equilibrium. If qd(/) is a constant, we could have additional equilibriums

lq qlr = ft 017, where ¡ is the solution of

(4.13)

(4.15)

Hence, the origin is srable, al1d V(t, q, q) is eLyapunov ñrnction. It follows from lemmas 4.1 a¡d

4.2, fhat

rsr < t -fffsin( +a\ - stn(q¿ - qt), = T

Notice fhat if K, - * , then Isl * 0. consider now the following Lyapunov candidate function

vç.q.à)=:Øt'z42+Kpd)+mst\sin(q¿\+lr mstQsin@-q¿\-mstQQ¿cos(q¿t ds (4.14)

which is positrve deñnited for Ç large enough, since itis dominated by the positive defirute function

wß.Ð =+ØPqz +atKoQz)

a¡d it dominat€s the positive definit€ function

w,(4. 4) = +@P 
¿i' * orrÇ4')

whete dbcrz > 0, are a læge enough constant, and a small enough consta re-spectively. This also

i¡dicates nat vçt, E, q¡ is a decrescent frmction. Its derivative wirh respect ro dme is given by

iç,q,q>=-x's'=o
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lim q(f) = 6
l+@

Considering this limit, and the state equation, we claim that the next equationhas a uruque solution

q=0

KrQ+ngt(sin(q¿)-sin(qd-A)) =0 (4.16)

'We 
used an iterative method to ñnd a solution of this gquation, for different func-

tions qd(t) that does not converge to a corlst¿nt, and different large enough values of Kp. We found

that in all cases 4 - 0 as ¡ "- "o, satrsfying the control objective.

4.6 SI MU LATION RES U LTS.

We present simulatíons of the PD conroller plus computed fe€dforward with a pen-

dulum . The parameters of the pendulum were rn=l, /=1, and g=10.

In Figure 3, we considered qfit) =n/2. T.he design parameters werelÇ=1/10, and

K,=1. The initial conditions were S(0)= -3. 3, and 4(0)=0. In the graph it is shown that q(r)

does not converge to q¿,(l), but it does to 69.44. Noúce rh u. LQ qlr = Í- 67 .87 c|lr, is an equrìrbnum

and that lsl = 67.87 < 2mgl/Ko= 200. Notice that, although tlìe system started neaf theorigin, and

it past it, it did not converge to it. Also notice that the structure of the controller is identical to that

proposed in [5]. We conclude that this value of Kp is not la¡ge enough.

In Figure 4, we considered the same situatlon, except tlìat we setlç=10. Now that

Ç has been increæed, the control objective is satisfied. Itcan b€ seen rhaf the origin is theequiiibr!

um.

InFigure5, the same values for tlte consrqnt( ard initial conditions were used, except

thar this time the inpur ís q¿,(/)=stn(f). Again, as in figure 3, q(r) does not converge to qd(r), bur the

positionerror does to a value around 6.3. Although this value is not a constanl the system regulates.

In Figure 6, we finally increased the value ofûre propornonal garn. We used ç=5,
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which is large enough for the position and velocity enors to conve¡ge to the origin.

From t¡ese resulß we conclude that a reason for t¡e good performance ofthis con-

üoller presented in [1], is rhe selection of a large enough Iç.

Figure L Feedforward Controller.

Figure 2. PD plus Feedfonward Controller.
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4,7 CONCLUSIONS,

In this work we studied the computed feedforward and the PD plus computed feed-

forwa¡d controlie¡s for robot manipulators. We found that t¡e computed feedforward cont¡oller is

not c onvenient for the control of manipulators, since it i s not cap able to gu a-rant€e even a pure positi on

objective.

From the analysis of the PD plus compuæd feedforward, we conjectue that, the clo-

sed-loop sysæm has a unique equilibrium when the ve¿tor ofdesired positions is not a constanq and

we show that the origin of the staæ space of the closed-loop system is stable for large enough values

ofÇ. This selection guarantees convergence ofthe velocity and position enors. However, jtis still

necessary to find a lower bound for Ç.
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5. PD PLUS ADAPTIVE FEEDFORWARD

COMPENSATION CONTROLLER

In this document we present the design of an adaptive connoller for direct current

motors, with parametnc uncenainties, that can be applied to robot manipulators. We sho\ry stabil.lty

a¡d achievement of the confol objective for the overall control system.

5.1 INTRODUCTION.

Electric motors are one ofthe mostused energy source inlow power indusu:ial appli-

canons. Inthis chapter, we present the analysis ofaconfoller for direct cunent motors (DC motors),

to be used as actuators in robot manipulator joinß, where we need great precision in the following

of Íajectory specifications. Brushless motors that emulate via apower elecÍonic interface, the lin-

ea.r tÍa¡sfer function of aDC motor, æe widely applied in indusuial robots. We a¡e interested in those

cases in robotics, in which independent joint confol is enough to sadsry conrol objecúves.

There exists a great variety of commercial elertroruc equipment for DC motors, des-

ignafed to the applications of velocity regulation, and in less scale for position regulation. Ths js

due to the fac! that in the majority ofthe industrial applicaúons, DC motors are used in tasks that in-

volve motion at constant velocity. Hoìvever, there are apptications in which velocity regulation or

positionregulaûon is not enough to satsfy cerørn specifications of motion. Applicæions inrobotics

are a typical exarnple, where it is required for the manipulator to follow time-varying trajectones

ofposjtion and velocity. Elecûoruc equipment for these kinds of applicdions is pracncally absent

in the market, dueto the lack ofeconomic feasabiiity, becarse of the limited number ofapplications,

but not as a result of the lack of knowledge nor the acrual st¿te of the rechology.

Alrhough commercial equipment can be successfully used to regulate velocity and

sometimes regulate position, they cannot be satisfactorily used inrobotics. In this siruation, the con-

troller mus! be specifically designed for tle model that characterjzes rhe dynamical behaviou¡ of the
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system. The situation could be still more complex, when the parameters of the model are difficult

to be quanûfied, of openiy unkrown. The study of thls case was the motive for the development of

the present analysis.

This approach is interestíng from the application point ofview, becalse we can add

tìe compensation to an existing proportional-derjvative controller.

The chapter is organized as follows. In Section 5 . 2, we present the dynamical model

of aDC motor conuolled by armanfe. In Section 5.3, we state the control problem. In Section 5.4,

we mention some previous reported solutions. We present the contol and adaptatron algorithms,

and the stabilíty analysis in section 5.5. In Sectjon 5.6, wepresen¡some simulation results. wegive

some conclusions in Se¡tion 5.7, and the references a¡e lisæd at the end of the document.

5.2 DYNAMICAL MODEL.

A classic description of a di¡ect cu¡rent motor controlled by armatuIe, is given by

tlle following equadons [5]

J¿iØ+fdØ=Krt(t)

u(¡)+n¡(¡) +e(t)=y(r)
K6QQ) = ¿1¡¡

where q(t) is the algular positlon of axis, v(r) is the armature voltage, (/) is the armature currenq e(r)

is the induced voltage, "/ is the inerria of the rotor, /is the friction coefñcient, K, IÇ, R, and L are

electric parameters of the motor.

Neglecting the armature inductånce L, considering the armature v(t) as input, a¡d

the angula¡ position q(t) as output, \¡/e get

a(ô = 
K 

v(ô' p(tp + 1)

where p is the differential operator, thvs p--dldt, and

K= Kt to
R/+ K¿K¡

(5.1)
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,= Æ to
R/+ K6K;

Noticethat K and r depend onthe inenia "¡ and rhe fÌiction coefficient/. It bappens in applications

of direat current motors, that tìe inertia is panialy unkno.¡/n, because it depends on the load con-

nect€d to the motor. Also the frictron coefficient va¡ies according to the maintenance and lubrication

of [he motor. In this work we suppose that K and z a¡e unkno\¡/n consta¡ts.

5.3 P RO B LEM F ORMU LATIO N.

Consider the model of â direct current motor, where the parameters K and z are un-

known constants. Given afunctionq¿(l), withderivatives offirst a¡d second order, called thedesired

angular position, we have to design acontrolier thatprovides v(t) in such a way thattheposition eûor

will converge to zero, that is

lim 4(¡) = o
l-Ø

v¿here E(t) is the vector of position enors define.d as

q(t)=qd(t)-q(t)

Ir suffices ro show that q(t) - 0 , to guaranree th af à(t) --- d,,Ø ,and iØ - ddØ.

So this is our objective.

We do not expect that the confrolier will perform derivatives of tìe input signal, then

we consider thal the values ofq¿(t), d¿G), and äll), can be provided to the controlter. The most

simple way of doing this is by the use of a reference model, where \¡/e specify a stable second order

transfer functioncþ), wiùr relative d eEree of z. The inputis a reference functron 4r(/), and the ouput

is q,r(r) , that is

h
Sdtt) = C\p) q,(t) = ; .:9 q,\t)p-+aú)+ao-

or equivalently
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In Figure 1 a block diagram is shown.

We also consider thatthe position q(/) and the velocity á(/) are measurable. The

conûoi problem stâted, can be solved by designing an adaptive conÍol1er \ryith ûajectory following

objective, for a hnear second order planr wiú relafive degree of2, andunknown constå¡t parameters.

We now present some solutions that have been previously reported.

5.4 LITERATURE REVIEW.

Støte feedback controller with adaptive compensation [2].

The structure of the controller is the following

v(t) = Kpq(t)-K"4(1) + 0údç)+02dd1)

01 = yQ¿Q)Q(t)

a2 = yqd\Î)q\t)

where 7 > 0 is the adaptation garn, K, and K, are design posiüve constants, called the position

a¡d velocity gains. The analysis presented shows thatif y is small enough, and q,/(r) does not have

hrgh frequency components, the coûtrol objectiveis satisfied. However, this conûollerpresent para-

metric overflow in regulation.

PD controller v,ilh adøptive compensatinn 18,91.

Thrs strategy is bæed on a ¡obot conftoller. In the application to direct current mo-

tors, it results to be

v(t) = KeqQ) + xìi?) +0{¿id@+1áØ) +02GÁt)+Aq(î))

å, = y1?j1(l + t8Ø)ø(Ð + rq(t))

é, = y1Qo1t¡ + lq?ÐglQ) + A q(t))

whereKo, ,(". y. and,i, are design positiveconstants. It was shown tìat the closed*loop adaptive

P D + Adap ri rc C onpe ß atio t1

¿ løaol =l à¡¡ _ , ....| e.z)al íau, ) - lboqr1\ - aoqd(tt - afi¡4 )
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systÊm is stable and satisfies the control objective. HoweveI, the structure is quite complex, ald a

large number of on-line computauons are required.

Adaptive compute¿l tnrque controller l3l'

Thiscoffiollerisfundamentedonthecoffiollerproposedin[3],formotionconEol

of robot manipulators. When we apply it to DC motors, it is reduced to

v(t) = orlvoqç¡ + rcii1) + ìí.of + 024(t)

é, = y(401t¡ + x,qlt¡ + xoì4{ù)v

ë2 = yq(t)v

" = J=qØ * |-("øtrl + Koøtt))p+^' p+A

where Kp, K,, y, and,l are design positve constants As jnthe other contollers, it was shown

that the closed-loop adaptive system is st¿ble a¡d the control objective is satisfied. Notice that the

structure is still quite complex.

5.5 PD PLI]S ADAPTIVE FEEDFORWARD COMPENSATION,

Of above confollers, the most simple is the state fe€dback controller with adaptive

compensation. A disadvanøge of rhis controller is that, it is conditioned to an adequate selection

ofy, and the type ofreference functions qd(/) is also restricted. In the last two controllers this does

not happen, but tley are much more complex. In this section we propose a símple contoller fhat

safisfies the control objective. Although, we do not show convergence of the paramefric error to

zero, we found in simulations, that it does

We consider that a minimum value of K is known, say Çin, and also a maximum

value of r is known, say z.o. In practice this is not resEictive.

The sructure of the proposed connoller is

v(t) = 4qç¡, + x,ij(t) + 01á.<t) + 02¿idç)
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The selected value of .l sausfies

which implies that

also

à, = y3o1¡(Q1t7+tq1¡)

è, = y 4oç¡(,41t¡ + s,qç¡)

,,=[;;le] =lr,-ft1

(5.4)

(5.5)

where Kr, K", andy, are design positrve constånts. Weselect I in such away that the following

inequality is satisfied

0 < (1 + KK" - ztr)i

0 < (1 + KK"[ - tJ.2 + KK, (5.8)

since K a¡d K,, are positive.

The block díagram that rçresents the cloSed-loop system for the proposed connol-

ler is shown in Fígure 2. Notice that if q,'(f) is constant, this conÍoller is reduced to the proponional

plus velocity feedback controller given by

v(t)=xoq1¡¡-*nrr,

for wluch it is well known [ 10] that satishes the conEol objective, and it is exponentially st¿ble. Also

it ìs robust agarnst addiuve perturbafions in the input or in the output.

We define the parametric enor 6(l) € R2 as

(5.6)

(5.7)

(5.e)

Notrce that because K and z are constants, erç¡=þ, nl O21t¡ =ér. The closed-loop state equa-

tion is given by
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(5.10)

which is a nonaufonomous differential equaûon, that has one equilibrium in the origil'

Consider the following Lyapunov candidate filnctron

v@,å,Ð = ïl,la.^u1' + (rro+.r1t +xx"¡-ù2)42 -irnl (5.11)

Itis easy to check that VG,å,Ð is a positive defiruæ function, anditís also decrescent [10]. Its

derivative with respect to time is given by

Í<s,å,Ð = -(r+KK,-,)ã2 - ).KKpq2 - o 6:2)

which guarantees that ùe equilibrium is stable, andV(4,ij'O¡ is a Lyapunov function. Thus, since

it is decrescent, positive definite, and also radially unbounded, its arguments q, fi, na 0 we

bounded, that is

q,fier*, oer2- (5.13)

On the otìer hand, we can obtarn the folÌowing relation from (13)

/ . - \ 1". " ("
v(arol.árol.dtol) = it*xx" -tt't ), õafas + lxxo), 4lù2as (5.14)

which implies that S,S e I". We now present the following lemma-

Lemrna 5.1 19) (pp.232)

Let/: R+ - R. If /e roe¡rld j e ¿-, then l(t) +0 aß t+ Ø'

Tlns ielnma guarantees that

lim {(l) = 6
1+ú

It has been shown t¡at the confiol objective is sæisfied

d'a'ål= I lt,, *xx.¡a * y: ø * *,e,40 * a,,¡0,¡]
ol3;l3j =l' 

ïv,ffi:i1l l
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5.6 SIMULATION RESULTS.

P D + Ada p I fu e C omp e nsa t io n

We now present simulation results ofthe proposed adaptive scheme . The numeric

values of the parameters of the motor were r=0.1 and K=1. The initial conditions were

4Q) = z, 4(0) = 0, o t(o) = z, nd 0r1o¡ = 2. The parameters of tlìe conûoller were Kp=714,

K,=1, y = 1/2, nd )' = 1,0. Notice thar¿ satisfies (7)

o <¿ < 1+K' 
=zo

The desired Íajectory is qd(t)=sin(/).

InFigure3, borhq(1) and qd(f) are shown. Noricethar by ¡=100, q(/) has converged

fo qd(t).

In Figure 4, it can be seen that the position error vanishes.

We present the state Eajectory in figue 5. Nottce that it converges to zero.

Although in this analysis we did not prove that the paramefic enor vanishes, we

have evidence provided by the simulation, to conclude thar it does. Nobce rhar borh O rlr¡ anA O 2qt1

converge to zero.

With this simulations, we show flat this controller satisfies the control objective,

thus it can be successfrfly applied to conEol DC motors thar have (5.1) as dynamical model.

We have built an analog ele€Eonic card to implement this controller, a¡d we found

that it is valuable.to have a compensation that can be added to an existing pD conÍoller for Dc mo-

tors. Thgse experimental results are nol presented in this document.
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qd

qd

qcl

Figure L Reference Model

Figure 2. Block Diagram.
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Figure 3. Position and. Reference

Figure 4. Position Error
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rü
Fígure 6. Parametric Error.

5.7 CONCLUSIONS.

In this work we studied the coDtol problem for DC motors with parameÍ'ic uncer-

rainties, for position and velocity sperifications. We have pro'posed a PD \¡/ith arì adaptive feedfor-

l¿i¡a¡d compensation which gùarante€s st¿bility and achievement of the control objecEve.

The design of tÏe controller requires tle values ofsome parameû:ic bounds of the

motor, which are eåsy to obtain i! practice, from the te¡hnical specrfrcatron of the motor

Simulation results were presented, showilg that the algorithn performs well.

We have proposed a relatívely simple compensation for PD conroilers for DC mo-

tors, that câ¡ be eåsily added to an existing controller.

'V VV \,^,,'.'nl-..-
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FINAL CONCLUSIONS

AND FUTURE RESEARCH

In this work, the basic issues concerning the modelling and control of robot manipu-

lators have beenpresented. Our efforts resulted inputting together several importaritresults in aclear

and compact manner First of all, we inÍoduce some mathematical tools that are imponant in our

ana.lysis. Then, a krnernatic analysis has been described, in where we developed expressions for the

Jacobian. A detailed dynamic analysis has been presented, ending up with the dynamical model of

a robot manipulator of n degrees offreedom. Some imponant propertres usef,ìlin control were also

studied. Future resea¡ch will be done in the a¡ea of motion planrxng and flexible links.

It has been been shown that the PD plus computed feedforward controller is stable

under cert¿in conditions, that we found by studying the closed-loop equation and the behaviour of

its equìlibrium points. we showed that the rrajectory following objective is satisfied. we confirmed

our theoretical results with simulations using a manipulator of one degree of freedom. we \¡/i11 ûl
to solve the problem of force control objective in future work.

A new PD-type adaptive controller has been proposed for independent-joint control

ofrobot manipulators. We showed that this controller has a more simple structure than previous re-

ported conûollers ofthe same type. We solved theproblem ofparametric uncenainties in the modeL

ofthe actuator, when this actuator is a direct current motor or a direct drive motor. From our simula-

tions we found that in every case the parameters of the motor were identrfied. Future work will be

done trying to solve the problem of time-va.ryíng pajameters, using adaptive confiol.

New techniques like fuzzy controllers and neural networks identifiers wiil be atso

studied in future work, as an affemp to provided alternative solutions to those previously reported

using conventional techniques.
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