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Abstract

Biomedical data such as those acquired from magnetic resonance (MR) spectrometers often

have the characteristics of high dimensionality and small sample size. These two character-

istics make the classification of such data difficult. Hierarchical clustering produces robust

clustering results, especially when working on small size high-dimensional datasets. The

goal of this research is to investigate the effectiveness of hierarchical clustering in the clas-

sification of high-dimensional biomedical data. In order to achieve the above goal, a new

classification method and a new dimension reduction method, which use hierarchical clus-

tering, were developed in this research. These methods were tested using MR spectra and

the results were benchmarked against linear discriminant analysis.

V1



Chapter L

Introduction

L.L Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy (MRS) [9] is concemed with the behaviour of atomic

nuclei and their interaction with electromagnetic radiation. Certain nuclei, for example

those of lH 
thydrogen), 13C (carbon) and 31P (phosphorus) resonate when exposed to elec-

tromagnetic radiation at a particular frequency. This frequency is dependent on the type

of nucleus and also on the intensity of the surrounding magnetic field. The use of MRS

in medicine allows us to see what is going on inside the body without carrying out inva-

sive surgery or inserting optical instruments. MRS is not unique in this; there are other

techniques for imaging the body such as X-rays and ultrasound. However, unlike other

methods, MRS makes it possible not only to visualize anatomical structure, but also to

investigate physiological function. The extra dimensions of information offered by MRS

and also the fact that the technique has no known harmful effects makes it a unique and

powerful imaging technique for clinical medicine.

MRS l9l, first developed in the 1940's, is based on the fact that a nucleus will resonate

at a slightly different frequency depending on its molecular environment. Exploiting the

interaction between an extemal homogeneous magnetic field and a nucleus that possesses
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spin, MRS is a spectroscopic modality that is reliable and versatile. Combined with ro-

bust classification strategies, MRS is specifically useful in the classification of biomedical

spectra such as those acquired from the human brain.

Magnetic resonance (MR) spectra may contain unwanted artifacts as the tissue being

examined will not be homogeneous. These artifacts together with a low signal-to-noise

ratio may make identification and measurement of the metabolites that are present in the

tissue difficult. The fact that MR spectra carry information on a large number of metabolites

presents the non-trivial problem of how to extract and classify this information. Besides

high dimensionality, MR spectra often suffer from small sample size. These two character-

istics present serious challenges for the classification and interpretation of such spectra. In

my thesis, I address this problem using hierarchical clustering methods.

1.2 Pattern ClassificationApproach

Pattern classification [14] is a discipline devoted to extracting context from data by identi-

fying meaningful patterns. Pattern classification may be broken down into supervised and

unsupervised methods. Unsupervised methods attempt to group similar patterns together

typically using some type of distance measure. Supervised methods, which require that

each pattern has an associated class (or group) label, attempt to predict the class to which

a pattern belongs. A supervised pattern classification method, linear discriminant analy-

sis (LDA) and an unsupervised pattern method, hierarchical clustering, were used in this

thesis.

LDAL26l, a computationally simple analysis technique, which assumes data normality

and equal covariance matrices for the different classes, is often applied to MR spectra

classifi cation problems.
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Hierarchical clustering is one of the most widely used clustering methods for separating

individual items into groups. Ward's method is believed to produce the best clustering

results among the various hierarchical clustering methods.

L.3 Scopira

Scopira [5], developed for analyzing high-dimensional biomedical data, is an open frame-

work running in Linux for numerical algorithm module development, execution and inter-

action. Scopira allows new modules, data types and functions to integrate smoothly with

existing systems. Developers can quickly build their algorithm modules with Scopira's

powerful template library and simplified programming interface. Some Scopira modules

were developed in this research.

1.4 Thesis Structure

My thesis analyzes the suitability of hierarchical clustering in biomedical spectra classi-

fication problems. I first present a supervised Ward's method and then introduce a new

dimension reduction method using hierarchical clustering. These approaches were tested

using MR spectra with LDA as a benchmark.

Following the introduction section, the subsequent sections of the thesis are organized

as follows. Section 2 describes the concept and use of MR spectroscopy. Section 3 in-

troduces the Scopira software developed by the National Research Council's Institute for

Biodiagnostics. Section 4 briefly describes pattern classification, hierarchical clustering,

LDA and dimensionality reduction. Section 5 presents the main research approaches in

this thesis. Section 6 summarizes system development and the experiment results. Finally,

Section 7 offers concluding remarks.



Chapter 2

Magnetic Resonance Spectroscopy

An MR signal is produced by inducing nuclei of interest to resonate by exposing them

to a pulse of radiation at their resonance frequency, and then allowing the nuclei to relax

when they will release radiation at this same frequency. Figure 2.1 shows the process of

the target nuclei transfer from a lower energy state, where radiation can be absorbed, to a

higher energy state, where radiation may be released.

__Þ

Figure 2.1: Nucleus transfer from lower to higher energy state

MRS is based on the theory that atomic nuclei are surrounded by a cloud of electrons,

which slightly shield the nucleus from any external magnetic field. Figure 2.2 illustrates

this effect, where B is the externally applied magnetic fietd and e is the electron cloud

that produces a magnetic field and generates the small field shift. Because the strength of
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the resulting signal will depend on the number of nuclei present, it can be used to give

a measure of the proportion of nuclei in a sample. As the structure of the electron cloud

is specific to an individual molecule or compound, the magnitude of this screening effect

is also a characteristic of the chemical environment of individual nuclei. The resonant

frequency is proportional to the magnetic field that it experiences and will be determined

not only by the extemally applied magnetic field, but also by the small field shift generated

by the electron cloud. This shift in frequency is called the chemical shift. It should be noted

that chemical shift is a very small effect, usually expressed in parts per million of the main

frequency.

Magnetic field produred
by circulating electrnn

Figure 2.2: Shielding effect of electron's magnetic field against the external field, B.

MRS provides information on the types of metabolites present in tissue. It also pro-

vides a means of measuring these metabolites. In addition to giving information about the

concentrations of specific metabolites, MRS provides information about the intracellular

environment of the metabolites. MRS is widely employed as a research tool and a nonin-

vasively diagnostic method. As MRS noninvasively monitors disease biochemistry, it can

provide important new information for the clinician.

E



2.1 Clinical Uses of MR Spectroscopy

The potential of MRS for biology was understood initially during the time it was developed

in the 1940's, but experiments were limited in scope by the relatively poor quatity of the in-

strumentation that was then availabte. With the development of high-field superconducting

magnets in the late 1960's together with the emergence of Fourier-based enhancements, it

became possible to use MRS to study proteins and other biological molecules. This led to

the realisation that MRS might have extensive applications in the study of the metabolism

of living systems [11]. Figure 2.3 gles an example of a lH (hydrogen) MR spectrum ac-

quired at 37"C on a 437 MHz MR spectrometer, which can be used for the detection and

diagnosis of pathological tissue, e.g. brain tumors.

MR sígnol, 15:54:40 UI 11/25,/96
Frequency resolution O.O13 Hz-
Mecsured sìqnol bondwidth O.ô175 Hz-
Sî9nol/noise- 19 dB.

üø-ø5c

-þ-ø+o

o_ø.ø3

!u
9ø-øz
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O

E

Pø.øt

,ø6

ø4

.ø3

ø2

,ø1
ô-
E
<ø-øØ' 91.

Figure 2.3: Example of a lH MR spectrum

One of the main areas in which MRS shows great potential as a clinical tool is in the di-

agnosis and treatment of cancer. Both 31P and lH spectra show different metabolite patterns

according to the type of tumours. It has been shown that MRS can be successfully used to

discriminate between different types of human brain tumours and between normal tissue

and tumours with 99Vo success compared withTlVo pre-operative diagnosis for the same
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patients that was based on all the available clinical information including CT, MRI and an-

giography MRI U6l. MRS is also useful for the evaluation of metabolic myopathies. 3iP

MRS is already used at a number of medical centres to determine the presence of metabolic

myopathies from elevated inorganic phosphate peaks in resting muscle [33]. Figure 2.4, an

MR image of a two-dimensional slice of a human brain, shows regions of normal (N) tissue

and tumors (T). Figure 2.5(i) shows typical MR spectra of the tumours and Figure 2.5(11)

shows typical MR spectra of normal tissue.

Figure 2.4: MR image of a human brain depicting normal tissue (N) and tumors (T).

Figure 2.5: Typical human brain MR spectra of
Figure2.4.

normal tissue (i) and tumors (ii) from
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MRS has also been shown to be useful in the diagnosis and grading of prostate can-

cer. Investigators studying responses to therapy in animals have found that the 3iP spec-

trum changes in response to therapy often before there is a noticeable decrease in tumour

size l2ll.

Another example of a potential application of MRS is in the treatment of epilepsy.

MRS is already used in some medical centres to identify the focus of seizures before brain

surgery. Currently EEG and other scanning methods do not provide accurate localization

information in the majority of cases, but it has been shown that 31P and 1H MR spectra

provide additional information that may avoid the use of invasive depth electrodes [23].

2.2 Problems wÍth MR Spectral Analysis

One of the great advantages of MRS for medical applications is that it allows us to obtain

information about the metabolic composition of living tissues i,n si,tu. On the other hand,

the fact that MRS signals are obtained i,n s'itu presents considerable difficulties, both with

acquiring the signals and extracting the context. It is impossible to control all the conditions

of an investigation, which may cause the signal to contain unwanted artifacts. For example,

artifacts are introduced by the movement of the patient, which effectively changes the sam-

ple that contributes to the MR signal. Another potential problem is that, while it may be

possible to focus on a specific region, it is often not possible to focus on a specific tissue.

Because the size of the smallest region that can at present be examined effectively by MRS

is approximately 2 cm3, it is likely that signal acquired from any region will include other

signals in addition to those from the required tissue. [3].

Another problem concerns the low sensitivity of the MR signal t311. The sensitivity,

which can be expressed in terms of the signal-to-noise ratio of the spectrum, is dependent
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on several factors. These include the strength of the applied field, the design and perfor-

mance of the MR instruments and the time taken to accumulate the data. One of the main

factors that accounts for the low sensitivity of MR is that the interaction between the nu-

clei and the magnetic field is weak, that is, the amount of energy absorbed is low. This

means that the amount of energy released is also low leading to a weak signal. Because

of the limitations imposed on acquiring a signal from a living subject, the signal-to-noise

ratio is generally lower for data acquired i,n ui,uo. The low signal-to-noise ratio cannot be

improved using averaging techniques because of the short experimental times required for

patient comfort.

Baseline distortion is another problem which may affect quantification of MRS data.

One factor which can alter the shape of the baseline is the presence of metabolites with large

peaks that have broad humps that spread the sides of these peaks. This distorts the signal

by moving the contributions of other metabolites away from the baseline and towards the

sides of the bumps. This problem particularly affects kidney, liver and tumour 31P spectra,

where a broad hump of signals from immobile phosphates underlies the spectrum [2].

Another factor which will affect spectral analysis methods is that while in principle,

MRS spectra should have Lorentzian U7l peaks, the peaks observed from spectra obtained

i'n ui'uo are often not of this ideal shape. This may be due to magnetic field inhomogeneity,

magnetic susceptibility and other problems.



Chapter 3

Scopira

Scopira [5], developed for analyzing high-dimensional biomedical data, is an open frame-

work for algorithm module development, execution and interaction. Used for biomedical

data analysis, Scopira permits new modules, data types and functions to integrate smoothly

with existing systems. Developers can quickly build their algorithm modules with Scopira's

powerful template library and simplified programming interface. A Scopira map may con-

tain input, output and algorithm modules. Figure 3.1 shows a typical Scopira map that

contains 12 modules.

Scopira possesses a hierarchical, objected-oriented, data type tree, where each node

represents one data type. Any two data types are considered to be compatible when these

two data types are identical or when one is an ancestor of the other. A new data type can

be added to the system by registering this data type in the Scopira data tree. After being

assigned a base data type, Scopira can then operate on all descendants ofthis base data type

automatically. Relying on the Scopira data tree to exchange data, developers can focus on

designing the algorithm kernel of a new module. As an algorithm organizer, Scopira allows

experienced data analysts to put multiple algorithm modules and their connections together

to form an algorithm module network. Some Scopira modules were created and used in

this research.

10



11

Figure 3.1: A typical Scopira map

3.L Core Design

The Scopira architecture can be divided into three large software components: the engine

core, the user interface (front ends), and the back end computation kits (See Figure 3.2).

The engine core is the central hub of Scopira. It is responsible for loading, main-

taining and executing different modules within maps. The engine has three run-time se-

lectable event schedulers used to determine module execution (possibly in parallel). The

single-thread scheduler runs events sequentially using only one system thread per process.

The multi-thread scheduler attempts to maximize a multi-processor machine by paralleling

module execution. The network-aware scheduler manages a cluster of multiple machines,

connected via a network, each with any number of processors. This scheduler may partition

a map over these network nodes transparently, without requiring any special programming
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by the module developer.

The engine core manages module kits. A kit may contain any number of module ker-

nels, micro functions, data types and graphical proponents. Kits are implemented as shared

code libraries, dynamically loaded at run-time and selected by the user.

Finally, the front ends interact with the engine through its exposed, object-oriented

interface. The interactive visual map editor and scripting systems both use this interface to

manipulate and execute maps. Custom front ends may be built in a straight forward manner

with no need to rebuild any part of Scopira.

Front Ends

visual front end script front end

engine core

cluster network scheduler

multi-threaded scheduler

Algor

f
I
I
I
I
I

f

general kit. pattern kit

other kits.

Figure 3.2: Scopira architecture layout
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3.2 Fortable

Scopira follows standard software engineering methods to maximize code portability. Plat-

form dependent code tike the thread and network communication systems are encapsulated

within objects. Any changei required to these systems for new platforms or compilers need

only be made to these objects.

The external routines used by the Scopira engine core and standard kits are those pro-

vided by the Standard C++ library and the system level C libraries. Because of this, it is

quite straightforward to port the engine core and kits to other platforms.

The visual front end depends on the GTK+ [15] graphical user interface library. The

script front end uses GUILE/Scheme [6]. Both GTK+ and GUILE are portable to all UNIX

platforms. To maintain clean, portable code throughout the various development phases of

the project, Scopira is routinely compiled and tested under various compilers. Currently,

this list includes GNU C++ and Intel C++.

3.3 Generic Programming and Parallelism

Scopira follows the C++ use of generic templates to achieve performance gains. In-lining

and specialized instantiations of constructs give the exact objects without the need for in-

direction, common base classes, or using the same simple data types. For instance, with

generic classes, developers are not forced to work with double types when they want the

smaller float types.

Scopira supports parallel execution at the inter- and intra-module levels. At the inter-

module level, Scopira transparently schedules and executes modules simultaneously. Scopira

does this by selecting a combination of modules to execute from the current run queue that

would maximize the current state of free processors. All this is done transparently to the
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module developer.

At the intra-module level, Scopira provides an MPI-like interface that allows modules

to request and use multiple processors within the context of their execution. This allows

modules to be parallelized without having to be broken up into smaller units. Through

both levels, Scopira constantly maintains and monitors the amount of processing resources,

constantly attempting to maximize computational performance.



Chapter 4

Pattern Classification

Pattern classification [14] is a discipline devoted to extracting context from data by identi-

fying meaningful patterns. A pattern (or sample) can be represented by an ordered set of

nvariables(orfeatures)denotedbyavectorr:1rt,r2,...,r^leXCRn,whereXis

the input feature (pattern) space. Each pattern r belongs to one (and only one) of k classes,

denoted as A e y C {1, 2, ...,k}, where Y is the output class space. Pattern classification

may be regarded as a (mapping) function f , X - Y, which maps (predicts) an output

class label, y, for a sample, x.

With supervised pattern classification, we have a sample set I/, which consists of ly'

pairs of samples and class labels (u, y):

v : {(*t,a'),. .. , (r", g")} (4.0.1)

The sample set is separated into a training set and a validation set. We first build a classifi-

cation function based on the information obtained from the training set and then apply this

function to a validation set, which is used to validate its accuracy.

In unsupervised classification, class labels are not used during the training phase; rather

we separate the input pattern space X into k groups (or clusters) using only the information

contained in the input patterns. Only after the groups have been identified are the class

labels subsequently used to assess the performance of the unsupervised method.

15
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4.1 Cluster analysis

Cluster analysis [1], a pattern analysis method used for sorting a set of samples (patterns)

into groups or clusters, may be used for classification. Each cluster may have a particular

property. The degree of similarity is high between samples in the same cluster and low

between samples from different clusters. The main objective of cluster analysis is to orga-

nize data into meaningful structures. To accomplish this objective, hierarchical clustering,

a specific type of cluster analysis, classify samples into groups of nested classes.

Cluster analysis is a tool of discovery. It may reveal associations and structure in data

which, though not previously evident, nevertheless are sensible and useful once found.

The results of cluster analysis may contribute to the definition of a formal classification

scheme, such as a taxonomy for related animals, insects or plants; or suggest statistical

models with which to describe populations; or indicate rules for assigning new cases to

classes for identification and diagnostic purposes; or provide measures of definition, size

and change in what previously were only broad concepts; or find exemplars to represent

classes.

4.1.1 GeneralProcedure

The two key steps within cluster analysis are the measurement of distances between objects

and the grouping of the objects based upon the resultant distances (linkages). The distances

provide for a measure of similarity between objects and may be measured in a variety of

ways, such as Euclidean and Manhattan distances. The criteria used to then link (group)

the features may also be undertaken in a variety of manners. Linkages are based upon

how the association between groups is measured. For example, simple linkage or nearest

neighbor distance measures the distance to the nearest object in a group. While furthest
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neighbor linkage or complete linkage measures the distance between furthest objects. Both

linkages are based upon single data values within groups, whereas the average between-

group linkage is based upon the distance from all objects in a group.

4.L.2 Various Cluster Analysis Techniques

Cluster analysis techniques may be hierarchical, i.e, the resultant classification has an in-

creasing number of nested classes, resembling a phylogenetic classification. Others, such

as k-means clustering ll4) arc non-hierarchical, where one must specify the number of

clusters (k) into which the data are to be grouped. At the end of the analysis, the data will

be split between k clusters. In this clustering procedure, only the final cluster membership

for each case is presented.

Clustering techniques can also be grouped as divisive or agglomerative. A divisive

method begins with all cases in one cluster. This cluster is gradually broken down into

smaller and smaller clusters. Agglomerative techniques start with (usually) single member

clusters. These are gradually fused until one large cluster is formed.

4.1.3 HierarchicalClustering

In the hierarchical clustering [14] procedure, a series of partitions take place, which run

from ly' clusters each containing a single pattern to a single cluster containing all 1/ par

terns.

Given a data set of l/ samples to be analyzed, hierarchical clustering f,rst constructs a

l/xl/ similarity matrix. For example, we may construct such a similarity matrix based on

the Euclidean distance [1] between these .ð/ samples:
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dn dzt ...du,
dtz dzz ...duz

dt¡v dzn ...dx¡,t

where d¿¡ is the Euclidean distance between samples r' and rr

Oo,:

The subsequent hierarchical clustering steps are:

(4.1.1)

Assign /y' samples to ly' clusters. Each cluster contains one and only one sample.

Find the most similar pair of clusters and merge them into a single cluster. Here, two

clusters are reduced and one new cluster is created.

For example, given a similarity matrix based on Euclidean distance, lf wehave d¿¡ 1

doo , f or aII p I q andp,q 3 N,then cluster Ci and cluster Ci are the most similar

pair of clusters. We may then delete Ci and Ci and add a new cluster çn+l.

/1n+7 _ Ci+Cj
(4.r.2)

3. Compute similarities between the new cluster and each of the old clusters, and update

the similarity matrix.

4. Repeat steps 2 and 3 until all samples are clustered into a single cluster of size ly'.

4.1.4 Ward's method

Ward's method [32] is a hierarchical method that enables clustering by assessing group

variances. The group with the smallest increase in variance with the iterative inclusion of a

1.

2.
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sample will receive the sample. Ward's is a popular default linkage that produces compact

groups of well distributed size. Ward's method is one of the best solutions in hierarchical

clustering. In this research, our new classification methods will be created based on Ward's

method. The key to Ward's method is the way it finds the most similar pair of clusters. In

step 2, Ward's method calculates an error sum of squares (ES.S) [13] between each pair of

clusters and merges the pair of clusters that give the minimum E,S,S.

A similarity matrix based on ,Ð,5,S is:

€SS11 €5521

€5512 €5522

... €SS¡¿1

... eSSN2

where ess¿i is the error sum of squares between samples ri and ri'.

€ s s ¿¡ : (r,r - 
ri 

; 
dr), 

+ . . . + (rï - 
tï !, rL 

7, + @, - ?i 
;d, 

y + . . . + (rr^ - 
rï lrrL 

¡z

(4.r.3)

4.1.5 DistanceMeasures

Hierarchical clustering uses the dissimilarities or distances between objects when forming

the clusters. Three main distance measures [14] are typically used: Euclidean distance,

Squared Euclidean distance and Manhattan distance (See Figure 4.1).

Euclidean distance: It is the geometric distance in the multidimensional space. Euclid-

ean distance is computed as:

(4.1.4)

Squared Euclidean distance: By squaring the standard Euclidean distance, progres-

sively greater weight is placed on objects that are further apart. This distance is computed
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d,y : (rt - aù2 i I (rn - an)' (4.1.5)

Manhattan distance: This distance is simply the average difference across dimen-

sions. In this measure, the effect of single large difference (outliers) is dampened. Manhat-

tan distance is computed as:

d,s : lx\ - gtl * .. . * lr. - A"l (4.t.6)

Y

t
Ix4

Manhattan

Figure 4.1: Typical distance measures

4.2 BayesianPattern Classification

The major role of discriminant analysis is to define rules for classifying samples into one

of several classes. If the samples are represented by vectors in n-dimensional space, each

object can be thought of as a point in this n-dimensional space.

In supervised classification, the formulation of a classification rule corresponds to an

explicit or implicit construction of a boundary surface between the k classes in the training

set so that the classes become as well separated as possible. Figure 4.2 illustrates two

subspaces that may serve as class boundaries for a 3-class 2-dimensional dataset; clearly,

the subspace on the right produces a more discriminatory boundary than the one on the

left. We assume that each sample in the training set can be classified into one class with no

measure of doubt. But many application problems cannot satisfy this assumption. So most

v

/

,/

Ëuclidean
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statistical discriminant methods, such as Bayesian [29] methods, use probabitity theory to

estimate the possibility of a sample belonging to a certain class. The Bayesian decision

rule is:

d¿(r) : P(rly¿)P(yi), i:7,...,k (4.2.1\

where P(y¿) is the probability that sample, x, belongs to class a¡. P(rlaù is the conditional

density function defining the probability that x belongs to y¿, given that y¿ is the case. If

do(r) > d¡(r) for all j I i, then x is assigned the class label,y¿.

The most important part in this decision function is to estimate the densities P(rly¿)

from the training data. But this estimation is difficult when the dimension of the number of

features is large.

3*class feature data

ö " 4¡-a4e

.;ê"õf ^ ;
.., e¡er{oo

OE

Figure 4.2: Three class two-dimensional dataset with two subspaces as possible discrimi-
nation boundaries.

4.3 Linear Discriminant Analysis

Some assumptions about the nature of the conditional probabilities can successfully sim-

plify the estimation of P(rlg¿). In one-dimensional data analysis, one often assumes a

\". 
| 

"". 

oo 

"{\ I *',""- f-,,$. *_¡____F_

*or=r \- ,"r besr
1D subspace \ ..........' 

1D subspsce
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univariate norrnal distribution. The normal distribution's probability function is:

1 -('-ul2
I'lf l: 

-€ 

2o2

o\/277

P("lao):ffi

(4.3.1)

where ¡l is the mean value or expected value and o is the variance value or standard devra-

tion.

Similarly, for n-dimensional data, it is assumed that the densities P(rlù are multivari-

ate normal distributions. The multivariate normal density functions are of the form:

(ii)(Ð

(4.3.2)

where ¡r¿ is the mean vector or expected value vector andC¿ is the n-dimensional covariance

matrix. Figure 4.3 shows 2-dimensional (i) and 3-dimensional (ii) plots of the normal

distribution function.

Figure 4.3: Two-dimensional (i) and three-dimensional (ii) plots of the normal distribution
function.

Because of the exponential nafure of the multivariate normal density function P(*lA),

it is more convenient to work with the natural logarithm of the Bayesian decision function.

In other words, we may transfer the decision function d¿(r) : P(rly¿)P(y¿) to:

do(X) : lnlP (rla¿) P (ao)l : ln P (rla ¿) + tn P (a o). (4.3.3)
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Substituting equation 4.3.2into equation 4.3.3 yields

do(x) :tnP(a¿)- 
f, t" ," _ 

TLn lc.l -|tf, - po)'Co,(, - t o)1.

Since the term f In 2zr does not depend on i, equation 4.3.4 can be simplified to:

dn(x) :tnP(u¿)- |r" p"l-l;X" - tti)rCir@ - po)1. Ø.3.s)

Equation 4.3.5 may be rewritten as:

do(X) : tL P(ai) - *r"p,l - )*'cn'* + rrC;l ¡.to - |uTc;, ui. Ø.3.6)

Now, we may assume that all covariance matrices are equal, C¿ : C for i : 1, ..., k, then

-|tnlc,l- |rrc;tr is equal ro -ålnlCl - |rrc-tr, which does nor depend on z.

Finally, the decision function is simplified to:

do(x) : rn P(a¿) + rr c-l ¡to - |uTc-t uo.

(4.3.4)

(4.3.7)

This equation is called the linear discriminant function [26]. The Bayesian classification

method based on this linear discriminant function is known as LDA.

LDA [26] is used as a benchmark for the proposed new classification method. The main

idea of LDA is to find a transformation matrix that maximizes the ratio of overall variance

to within class variance. The overall variance or total scatter measures the average diversity

of all data, and the within class variance or the within scatter measures the average diversity

of the data that belong to the same class. Figure 4.4 gives examples of good (i) and bad (ii)

separation.

Assuming the conditional density P("lao) is a multivariate normal distribution and all

class covariance matrices are equal, LDA produces optimal linear decision boundaries.

Define the class discriminant function:

do(X) : In P (a¿) + rr C-t ¡.t n - f;rT 
C- ,, (4.3.8)
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Figure 4.4: Good (i) and bad (ii) class separation

where C-l is the inverse of the covariance matrix and ¡-t¿ is the mean for g¿. A sample r

will be assigned fo Ai, if do(X) yields the smallest value for all discriminant functions.

Computing C-1 is unproblematic when the number of variables is small. However,

biomedical data, such as MR spectra, often possess high dimensionality (many features),

which can lead to an ill-conditioned matrix. So, before applying LDA to biomedical spec-

tra, we must first reduce the dimensionality of the input (feature). In this dimension reduc-

tion procedure, the risk of information loss always exists.

4.4 Reduction of Dimensionality

Reduction of dimensionality is a key problem in biomedical data classification, particularly

in cases where the number of variables is high compared with the number of samples.

Most classification methods depend on a certain ratio of samples to variables; normally

the number of variables should be no more than one third the number of samples [20].

Procedures that are sound in low-dimensional spaces can become completely impractical

in a space of 100 or more dimensions [7].

Methods for reduction of dimensionality fall into two categories. In the first category

are methods that aim to describe the data more succinctly, that is to express the data as
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concisely as possible with minimum loss of information. These methods do not rely on

prior knowledge of class membership of subsets but attempt to remove irrelevant informa-

tion by transforming the original data into a new set of variables. The second category of

methods attempt to reduce the number of variables by selecting the best set of features for

discrimination. In this case, knowledge of the class membership of the data are typically

used.

4"5 Related Work

In order to give a complete description of research related to this thesis, this section ap-

proaches the discussion on related work from three directions. First, I give a description of

dimension reduction methods used in MR spectra analysis. Second, I show some studies

that use LDA in MR spectra classification. Finally, I describe research that use clustering

methods in biomedical data analysis.

Principal component analysis (PCA) [14] is one of the most commonly used statistical

method for reduction of dimensionality. PCA operates by transforming the original fea-

tures into a new set of uncorrelated variables called principal components (PC's). These

new variables are linear combinations of the original features derived in decreasing order

of importance. The first PC accounts for the most variance in the original data. Howells et

al. [18] used PCA to reduce the original 16,000 data points of a MR data set to 15 PC's.

These 15 PC's, which accounted for 95Vo of the variance in the data set, were used as in-

put to a neural network classification method with good results. However, a disadvantage

of PCA is, in some cases, principal components may not be able to provide the best fea-

tures for classification, because the PC's are ordered by variance and not by discriminatory

power.
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The averaging method is the most popular dimension reduction strategy. For instance,

given an input feature space size of 1000, we can set an averaging window of 10 to average

1000 features to 100 features. Hagberg et al. [16] combined dimension reduction methods,

such as the averaging method with LDA to classify brain tumours on the basis of metabolite

measurements. The averaging method is relatively simple in computation. Howeve¡ when

10 features are compressed into 1 feature, some useful information is unavoidably lost.

Feature selection is concerned with choosing the best features to use in the classification

method. Fukunaga et al. [10] combined feature selection method with LDA in biomedical

data classification. Finding the best subset of rn features out of n may be carried out by

evaluating a criterion of class separability for all possible combinations of the rn features.

However, the calculation of Cff combinations becomes prohibitively expensive for even

fairly small values of n and m. On the other hand, most of the traditional methods [10]

[28] of feature selection assume a small number of features and may not be of much help

for data such as MR spectra which have a very large number of features.

Different from the above dimension reduction method, the proposed new dimension re-

duction method using clustering may cause less information loss than the averaging method

and give a better computation performance than the common feature selection method.

LDA is often used in MR spectra classification. Preul et al. [25] used LDA to classify

glial brain tumours on the basis of metabolite measurement. In this study, tumours were

divided into three grades on the basis ofbiopsy data and clear separation was obtained be-

tween the three groups. The research group from the National Research Council's Institute

for Biodiagnostics in Winnipeg has used LDA in a number of studies using MR spectra

data. Results have shown that LDA can be used to successfully classify 1H MR spectra of

various diseases such as thyroid neoplasms [30] and human brain neoplasms [24].

All the above research combined LDA with some external feature reduction methods in
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biomedical data analysis. This research endeavors to find a new supervised pattern classi-

fication method with its own feature reduction procedure for high dimensional biomedical

data classification.

Hierarchical clustering is the most widely used method for the analysis of patterns

of gene expression. By grouping unknown genes with the similar structure, hierarchical

clustering is very helpful in gene categoization. Eisen et al. [8] and Iyer et al. [19] have

applied these techniques to the study of gene expression patterns. Gartland et al. ll2l
applied cluster analysis to MR spectra of samples from a variety of induced toxic states

in rats. Hierarchical cluster analysis was used as an inductive method of analyzing the

intensities of 16 metabolites obtained from these spectra. The cluster results showed that

some of the different toxins formed a discrete cluster. Howells et al. [17] have used cluster

analysis fo categonze MR spectra obtained from perchloric acid extracts of normal and

tumorous tissue in rats. The clustering results showed a partial separation of samples into

groups representing the different tissue types.

However, in all of the above research, hierarchical clustering were used as an unsuper-

vised classification method. Different from the above methods, our approach involves a

supervised hierarchical clustering method.



Chapter 5

Research Methods and Material

5.L Problem Statement

The success of using LDA in biomedical data classifrcation is based on two assumptions.

The conditional densities P(rly¿) are multivariate normal distributions and all covariance

matrices are equal. Although many biomedical datasets can satisfy these two assumptions,

there are still some exceptions. In equation 4.3.8, C-r can always be found only when the

number of samples is much larger than number of features. However, biomedical datasets,

such as MR spectra, often have the characteristics of high dimensionality and small sample

size. So, before applying LDA to biomedical datasets, we must first reduce the dimension-

ality of the feature space. In this dimension reduction procedure, the risk of information

loss always exists.

This research endeavors to find a new supervised pattem classification method in high

dimensional data classification area, especially for those cases which can not be success-

fully analyzed by LDA.

Although some common feature reduction methods, such as the averaging method,

are simple in computation, the risk of information loss is high when using these kinds

of dimension reduction methods. On the other hand, the feature selection method may

28
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provide a minimum loss of information, but this method is quite expensive in computation

time.

My thesis introduces a new dimension reduction method reduces both information loss

and computation complexity.

5.2 Proposed Solution

Based on finding the mlntmum error sum of squares, Ward's method can successfully be

used in unsupervised high-dimensional data classification problems without any previous

assumptions or restrictions. In this research, a new supervised pattern classification strategy

and a new dimension reduction method using hierarchical clustering were build based on

Ward's method.

5.2.1 Supervised Ward's Method

Suppose there are c classes of samples in the training set. The basic classification routine

for our supervised Wa¡d's method (SW) is as follows (See Figure 5.1):

1. Separate each class of samples in the training set into rn clusters using Ward's method

to obtain n'L x c clusters of patterns.

Calculate each cluster's centroid. Given a cluster C containing j samples: rr, t2

. . . ri . the cluster's centroid C""n is

C"n: r1+n2*.'.lrj
(s.2.r)

3. For each sample in the validation set, calculate the Euclidean distance from this sam-

ple to the n-L x c cluster centroids. In other words, for each sample, we construct a

distance vector ofsize m x c.

2.
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4. Label each sample to a predicted class based on the minimal Euclidean distance

between this sample and those n'L x c cluster centroid. A sample, ri, wrll be labeled

as class s if

d¡pld¿n, pÇs, e:I,...,n1 xc (s.2.2)

where p and q are cluster centroids and p is derived from the cluster in class s.

After getting the predicted class labels for all the samples in the validation set, we

can then compare the predicted class label with the actual class label for each sample

in the validation set and calculate the classification accuracy.

Decrease the value of m down to 1 and repeat steps 1 to 5 to find the optimal classi-

fication accuracy.

r---
I
I
I
I
I

Figure 5.1: Supervised Ward's Method

5.2.2 Dimension Reduction Method using Clustering

The intent of this method is to significantly reduce the dimensionality of the feature space

by replacing the original features with distances between samples and a set of cluster cen-

troids. This should, in general, simplify the classification task for the underlying classifier

5.

6.

Decrense rn ilorirr,ib
l tofrul the gptirinl
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(for instance, LDA). Given a feature space size of g with e classes of samples in the training

set, our dimension reduction method using hierarchical clustering based on Ward's method

(DRW) is as follows:

1. Separate each class of samples in the training set into / clusters using Ward's method.

Then we get e x / clusters of samples.

2- Calc;rflate each cluster's centroid. Given a cluster C containing I samples: rr, trz

-..r¿. fhe cluster's centroid C""ris:

C".n
rr+12l...lrt

(s.2.3)

3. For each sample in the validation set, calculate the Euclidean distance from this sam-

ple to those e x / cluster centroids. For each sample, we construct a distance vector

of size e x f . In other words, we transform the feature space size of g into size of

exf,whereexf<g.

5.3 MR Spectra

In order to verify this new classification method's performance, we used two groups of

biomedical datasets in our experiments: 206 MR spectra of human brain neoplasms [27]

and 444 MR spectra of yeasts 1221. All data were lH MR spectra acquired at 37"C on a

360 MHz MR spectrometer.

5.3.1 Yeast

Yeasts are unicellar fungi that use the characteristics of the cell, ascospore and colony.

They are found on the skin surfaces and in the intestinal tracts of warm-blooded aniamals,
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where they may live symbiotically or as parasties. The common yeast infection is typi-

cally Candidiasis and is caused by the yeast-like fungus Candida albicans. In addition to

being the causative agent in vaginal yeast infections, Candida is also a cause ofdiaper rash

and thrush of the mouth and throat 1221. The identification of closely related species or

subspecies of yeasts is problematic.

The MR spectra of yeasts consisted of 5 different species of yeasts. A total of 444 spec-

tra containing 1500 features were divided into five classes, according to the corresponding

Candida species: 104 albicans, 91 glabrata, 81 krusei, 93 parapsilosis, and 75 tropicalis.

A250 sample training set was randomly selected from the spectra, containing 50 samples

from each class. The validation set contained the remaining I94 samples. Figure 5.2 show

the plots of the MR spectra of yeast with the original 1500 features (i) and 150 averaged

features using a window size of 10 (iÐ.

1500 features 150 features

Figure 5.2: MR spectra of yeast species

5.3.2 Human Brain Neoplasms

A neoplasm or tumor, is a confined mass of abnormal tissue that proliferates rapidly and

without cessation. Tumors involving the central nervous system are classified according to

the type of cells and the location of the tumor. Tumors are considered primary brain tumors

(b)(a)



JJ

if they originate in the central nervous system, or secondary brain tumors if they originate

elsewhere and cells of the tumor migrate to the central nervous system. A tumor is benign

if it is slow gtowing, and malignant if it is rapidly growing and readily invades surrounding

brain tissue. About 24,000 primary brain tumors and an even larger number of secondary

brain tumors are diagnosed in United States each year. Meningiomas and astrocytomas are

two common primary tumors.

The MR spectra of human brain neoplasms consisted of 2 different human brain neo-

plasms and one group of control samples of non-tumorous brain tissue from patients with

epilepsy. A total of 206 spectra containing 550 features were divided into three classes: 95

meningiomas, 74 astrocytomas and 3l control samples (epilepsy). An 80 sample training

set contained 29 meningioma, 31 astrocytoma and 20 epilepsy . The validation set con-

tained the remaining 126 samples and was not used during the training phase. Figure 5.3

are the MR spectra plots of human brain neoplasms with the original 550 features (i) and

55 averaged features using a window size of 10 (iÐ. This MR spectra contains too much

noise, so we rotate the plots to display it clearly.

550 features 55 features

Figure 5.3: MR spectra of human brain neoplasms with the original 550 features (i) and 55
averaged features (ii).

(b)
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5.4 Evaluation

The first part of the evaluation is to compare the performance of DRW with the averaging

method. For a given MR dataset, I first use LDA with the averaging method and then LDA

with the DRW. The second part of the evaluation is to make a comparison between SW and

LDA. Both of these methods were applied to the selected MR datasets.

We anticipate that SW will have greater classification accuracy than LDA in some cases

and the DRW using clustering is superior to the averaging in most cases.



Chapter 6

Results and Discussion

6.L System Development

L Algorithm design: A hierarchical clustering algorithm was developed based on

Ward's method [34]. This algorithm was first implemented in a separate C++ pro-

gram using the GNU C++ compiler. Algorithm 1, gives the pseudocode for the

Ward's method used in this research.

Algorithm L Ward's clustering method

l: Form a cluster for each item
2: Until merge into one cluster do
3: Pick arbitrary cluster as Current Cluster,
4: Found = False;
5: Until not Found do
6: find the closest neighbor cluster to Current Cluster;
z: if they are reciprocal nearest neighbors then
8: Merge them;
9: Found = Thue,

10: else

l1: Change Current Cluster to its nearest neighbor;
12: end if
13: end-do
14: end-do

35
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2. Algorithm Test:

Some synthetic two dimensional data sets were used to test if this algorithm can

successfully distinguish simple clusters. The 200 x 2 data set labelled as two-long-

narrow-distribution-circles contains one thick circle with size of i00 x 2 and the other

100 x 2 long narrow circle. In the experiment, when the number of clusters is set to 5,

Ward's method can clearly distinguish all 5 circles. Figure 6.1 shows the clustering

results ranging from2 to 5 clusters for this data set.

The 150 x 2 data set labelled as variable-sized-circles contains one dense circle with

size of 50 x 2 and several sparse circles that ranging from 10 x 2 to 30 x 2 in

size. Starting with 4 clusters, our algorithm can easily determine the corresponding

number of circles based on the distance measurement. Figure 6.2 gives the clustering

results from 4 to 7 clusters for this data set.

The 150 x2 data set labelled as two-concentric-circles contains two 75 x 2 concentric

circles. When the number of clusters is set to 2, our algorithm correctly predict the

class labels. Figure 6.3 presents the clustering results ranged from2 to 5 clusters for

this data set.

The test results show that this algorithm generates reasonable clustering results for

all synthetic data sets. Some MATLAB programs were developed for creating these

two dimensional data sets and analyzing their clustering results.

3. Scopira module development: The second phase was to implement the hierarchical

clustering algorithm in Scopira [5]. Some Scopira modules were developed based on

the above C++ program.

In order to take advantage of Ward's method, three modules were created: the Ward's

engine module used to generate the intermediate dafa for the data generating model
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Figure 6.1: Clustering results for two long narrow distributions

and the tree map module; the data generating module used to generate clustering

results based on the intermediate data; and the tree map module used to display a

complete hierarchical cluster tree based on the intermediate data.

Figure 6.4 is a Scopira map of Ward's method. This map gives the clustering partition

matrix and cluster centroids as outputs. In Figure 6.5, the ward-tree-rnap shows a

hierarchical tree. Users can redraw this tree by changing the number of clusters.

4. Methods implementation: In the third phase of my research, the supervised Ward's

method (SW) and the dimension reduction method using clustering (DRW) were
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Figure 6.2: Clustering results for variable sized circles

implemented using MATLAB [4]. The MATLAB signal processing toolbox was

used in this phase.

6.2 Results using Various Distance Metrics

In the experiment using the MR spectra of human brain neoplasms, SW with Euclidean

distance produced a classification accuracy of 77.\Vo (see Table 6.1). SW with Squared

Euclidean distance gave an accuracy of 78.6Vo (see Table 6.2). While Manhattan distance
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4 clusters 5 clusters

Figure 6.3: Clustering results for two concentric circles

gave an accuracy of 76.2Vo (see Table 6.3). Figure 6.6 is a summary cha¡t of these classifi-

cation results.

In the experiment of yeast-candidiasis, SW with Euclidean distance produced a classi-

fication accuracy o178.9Vo (see Table 6.4). SW with Squared Euclidean distance gave an

accuracy o179.97o (see Thble 6.5). While Manhattan distance gave an accuracy of 77.3Vo

(see Table 6.6). Figure 6.7 shows a chart that compares these classification results.

From the above results, we found the Squared Euclidean distance gives better accuracy

compared to the other distance measures. So, in the rest of our experiments, we exclusively

use this distance measure.
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Figure 6.4: Ward map implemented in Scopira
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6.3 Results using Original Features

V/e first apply LDA without any feature reduction method and SW to both datasets using

all of the original features. In the experiment with human brain neoplasms, using all 550

features, LDA produced a classification accuracy of 57.9Vo (see Täble 6.7). While SW had

an accuracy of 78.6Vo (see Table 6.1). Figure 6.8 compares the classification results in a

chart.

In the experimeni of yeast-candidiasis, using all 1500 features, LDA could not produce
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Figure 6.6: Human brain neoplasm classification results using SW with different distance
measures.
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Figure 6.7: Yeast species classification results using SW with different distance measures.

a classification result due to the high dimensionality of the feature space. On the other

hand, S'W had an accuracy of 79.97o (see Table 6.8).

From the above results, we find that without feature reduction methods, LDA can not

give proper classification results for datasets that have high dimensionality, while SW can

produce reasonable classification results.
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Figure 6.8: Human brain neoplasms results using original features

6.4 Feature Averaging yersus Feature Clustering

In these experiments, DRW is compared against standard feature averaging. The confusion

matrices generated for both feature reduction methods are listed in Table 6.9-6.12.

In the experiment with human brain neoplasms, averaging the 550 input features to

55 features, LDA produced a classification accuracy of 77.8Vo (see Table 6.9). On the

other hand, DRW produced an accuracy of 83.3Vo (see Table 6.10). Figurc 6.9 plots the

classification results using both methods.
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Figure 6.9: Human brain neoplasms results using feature averaging and DRW



43

In the experiment of yeast-candidiasis, averaging 1500 input features to 100 features,

LDA produced a classification result with the accuracy of 89.7Vo (see Table 6.11). In this

case, DRW produced the same classification results (see Täble 6.12). Figure 6.10 compares

the results of both methods.

Figure 6.10: Yeast species results using feature averaging and DRW

6.5 DRw and Human Brain Neoplasms Misclassifications

Using DRW we have seen that the overall classification accuracy increased by 7.IVo com-

pared to standard feature averaging (83.370 versus 77 .8Vo). Moreover, with DRW, the clas-

sification errors were more conservative. DRW never misclassified ME or AS spectra (ab-

normal tissue) as EP ( normal tissue) and 2 of the 17 EP samples were misclassified as AS.

With standard feature averaging, on the other hand, 10 of the 109 abnormal tissue samples

were misclassified as normal while 1 of the EP samples was misclassified as abnormal.

Obviously, it is better to misclassify a type of tumor as another type of tumor rather than

normal tissue. We may define the false normals and abnormals rate, .Fio, as the percentage

of misclassified normals and abnormals. In the case of standard averaging, Fno is 8.7Vo,

while, with DRW, flo was only l.6Vo.
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A conservative misclassification rate, that is, small Fno, is especially important in bio-

medical data analysis, which further justifies the use of DRW in this domain.
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Table 6.1:
Human Brain Neoplasms: SW with Euclidean

77.\Vo ME EP AS
ME (66)

EP (17)

AS (43)

78.\Vo
94.lVo
69.8Vo

52212
016 1

5830

Table6.2:
Human Brain Neoplasms: SW with Squared Euclidean

78.6Vo ME EP AS
ME (66)

EP (17)

AS (43)

17.37o

88.2Vo

76.7Vo

51 015
0152
4033

Table 6.3:
Human Brain Neoplasms: SW with Manhattan

76.27o ME EP AS
ME (66)

EP (17)

AS (43)

75.8Vo

I00.jVo
67.47o

50013
0t70
t3129
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Table 6.4:

Yeast Species: SW with Euclidean

AL (s4)
GL (41)

KR (31)

PA (43)

TR (2s)

AL (s4)
GL (41)

KR (31)

PA (43)

rR (2s)

66.7Vo

78.IVo
80.7%o

83.7Vo

96.j%o

66.7%
78.t%
87.lVo
83.17o

96.07o

Table 6.5:
Yeast Species: SW with Squared Euclidean

AL
36

1

0

5

0

GL:I
32

J

0

1

KR
0

6

25

0

0

PA

0

0

0

36

0

TR
i0
2

J

2

24

TR
10

2
õJ

2

24

PA

0

0

0

36

0

KR
0

6

27

0

0

GL
s

32

1

0

1
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Täble 6.6:

Yeast Species: SW with Manhattan

77.37o AL GL KR PA TR
AL (s4)
GL (41)

KR (3i)
PA (43)

rR (2s)

AL (s4)
GL (4i)
KR (31)

PA (43)

rR (2s)

66.7Vo

73.ZVo

80.7Vo

83.7Vo

92.07o

3680010
330602
032503
500362
020023

Table 6.7:

Human Brain Neoplasms: LDA

57.9Vo

ME (66)

EP (17)

AS (43)

57.6%
58.8Vo

58.r%

Table 6.8:

YeastSpecies: SW

l9.9Vo AL GL KR PA TR
3680010
132602
012703
500362
010024

52212
016 1

s830

66.77o

78.lVo
8t.t%
83.7Vo

96.0%

Täble 6.9:
Human Brain Neoplasms: LDA with Averaging

77.87o ME EP AS Acc
ME (66)

EP (17)

AS (43)

78.8Vo

94.IVo
69.8Vo

ASn
J

25

EP

8

10

7
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Table 6.10:
Human Brain Neoplasms: LDA with DRW

83.37o ME EP AS
-17.37o

88.ZVo

90.7Vo

Table 6.1 1:

Yeast Species: LDA with Feature Averaging

AL GL KR PA TR

51 015
0152
4039

AL (s4)
GL (41)
KR (31)

PA (43)

rR (2s)

AL (s4)
GL (41)
KR (31)

PA (43)

TR (2s)

4601i6
038201
05232r
00042 1

000025

85.ZVo

92.1Vo

74.ZVo

97.77o

l00.jVo

Table 6.12:
Yeast Species: LDA with DRW

Acc
85.2Vo

92.1Vo

74.27o

97.77o

100.07o

ME (66)

EP (17)

AS (43)

TR
6

i
I
1

25

PA

T
0

2

42
0

KR
1

2

23

0

0

GL

-0

38

5

0

0



Chapter 7

Conclusion

This research yields a new classification method and a new dimension reduction method

which constitute my thesis. Contributions to the study of biomedical data classif,cation

include the dimension reduction method using clustering (DRW) and the supervised Ward's

method (SW).

1. Dimension Reduction Method Using Clustering (DRW)

o reduces information loss compared to other dimension reduction methods, such

as feature averaging.

o combined with LDA, increases classification accuracy, especially when applied

to human brain neoplasm MR spectra.

2. Supervised Ward's Method (SW)

o apply hierarchical clustering method for supervised classification.

e develop a new classification method.

Our experiment results show that SW can produce stable and acceptable classification

results. In real-world classification problems, SW is more suitable for those cases that can

not be successfully classified by LDA.
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DRW generated results at least as good as the feature averaging method. In the case

of the human brain neoplasm spectra, DRW produced significantly improved classification

accuracy with more conservative misclassifications.

We also compared the performance of three main distance measures using MR spectra

with Ward's method. The experiments showed that the Squared Euclidean distance is more

suitable to be used with Ward's method in MR spectra analysis.

A research paper based on the proposed research has been presented at 2004 IEEE

Canadian Conference on Electrical and Computer Engineering [35]. I expect that future

results will be published in an international journal on biomedical informatics.



Bibtiography

[1] Michael R. Anderberg, Cluster analysis for applications, ch.6, Academic Press, New

York, 1973.

l2l E. Raymond Andrew, Graeme Bydder, John Griffiths, and Peter Styles, Clinical mag-

netic resonance imaging and spectroscopy, ch. 4, JohnWiley and Sons, New York,

1990.

t3l J. L. Bock, Nmr in clinical chemistry where do we stand?, Clinical Chemistry 40

(1994), no. 7, I2I5-12I7 .

[4] Eugene N. Bruce, Biomedical signal processing and signal modeling, ch. 3, John

Wiley & Sons, Weinheim,2001.

[5] Aleksander B. Demko, Nicolino J.Pizzi, and Ray L. Somorjai, Scopira: A system

for the analysis of biomedical data, Proceedings of IEEE Canadian Conference on

Electrical and Computer Engineering (Winnipeg, Canada), 12 May-15 May 2002,

pp. 1093-i098.

[6] David Drysdale, Tutorial introduction to gutle,2000.

[7] Richard O. Duda and Peter E. Hart, Pattern classification and scene analysis, ch.2,

Wiley, New York, 1973.

51



52

[8] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein, Cluster

analysis and display of genome-wide expression patterns, Proceedings of the National

Academy of Sciences of the United States of America 95 (1998), no.25, 14863-

14868.

[9] Horst Friebolin, Basic one- and two-dimensional NMR spectroscopy, ch. 4, wiley-

VCH, New York, 1998.

[10] Alvin K. Fukunaga, Introduction to slatistical pattern recognition, ch. 2, Academic

Press, Boston, 1990.

[11] David G. Gadian, Nuclear magnetic resonance and its applications to living systems,

ch. 3, Oxford: Clarendon Press, second edition, 1995.

[12] K.P. Gartland, C.R. Beddell, J.c. Lindon, and J.K. Nicholson, Application of pattern

recognition methods to the analysis and classificatton of toxicological data derived

from proton nuclear magnetic resonance spectroscopy of urine, Molecular Pharma-

cology 39 (1991), no. 5,629-642.

[13] Karl Frederich Gauss, Theory of the combination of obserttations least subject to er-

rors, part one, part two, supplement, ch.1, Society for Industrial and Applied Math-

ematics, Philadelphia, 1995.

[14] Allan D. Gordon, Classffication: Methods of the exploratory analysis of multivariate

data, ch.5, Chapman and Hall, New York, 1981.

[15] Arthur Grifnth, Gnome/gtk+ programming bible, ch.4, Hungry Minds, 2000.

[16] Gisela Hagberg, Allessandro P. Burlina, Irina Mader, Werner Roser, Ernst W. Radue,

and Joachim Seelig, In ai,uo proton MR spectroscopy of human gliomas: Definition



53

of m e t ab o li c c o o rdinat e s fo r mult ï dim en s i o nal c I as s ifi c at io n, Magnetic Resonance in

Medicine 34 (1995), no.2,242-252.

[17] Sian L. Howells, Richard J. Maxwell, and John R. Griffiths, Classification of tumour

1H NMR spectra by pattern recognition, NMR in Biomedicine 5 (1992),59-64.

[18] Sian L. Howells, Richard J. Maxwell, A. C. Peet, and John R. Griffiths, An investi-

gation of tumor 7H nuclear magnetic resonance spectra by the application of chemo-

metric techntques, Magnetic Resonance in Medicine 28 (1992),214-236.

[i9] Vishwanath R. Iyer, Michael B. Eisen, Douglas T. Ross, Greg Schuler, Troy Moore,

Jeffrey C. F. Lee, Jeffrey M. Trent, Louis M. Staudt, James Hudson Jr., Mark S.

Boguski, Deval Lashkari, Dari Shalon, David Botstein, and Patrick O. Brown, The

transcriptional program in the response of human fibroblasts to serum, Science 283

(t999),83-87.

[20] Bruce R. Kowalski and Svante Wold, Handbook of statistics, ch. 5, North Holland

Publishing Company, Amsterdam, 1982.

l21l M. O. Leach, The physics of medical imaging, ch. 4, Institute of Physics Publishing,

Bristol, 3rd edition, 1992.

[22] Robert K. Mortimer, Rebecca Contopoulou, and John King, Genetic and physical

maps of saccharomyces cerevisiae, Yeast 8 (1992),817-902.

[23] William Negendank, Studies of human tumours by MRS: A revtew, NMR in Biomedi-

cine (1992), no. 5, 303324.

l24l A. Nikulin, K. M. Briere, L. Friesen, I.C.P. Smith, and R. L. Somorjai, Genetic

algorithm-guided optimal atÍribute selection: A novel preprocessor for classifying



54

MR spectra, Proceedings of Society for Magnetic Resonance in Medicine (Nice,

France), 19 August-25 August 1995, pp. 1940-1948.

t25] M. C. Preul, Z. Caramanos, D.L. Collins, J-G. Villemure, W. Feindel, and D.L.

Arnold, Linear discriminant analysis based on proton MR spectroscopic imaging

of human brain tumours improves pre-operative diagnosis, Proceedings of the 2nd

Meeting of the Society of Magnetic Resonance (San Francisco, United States), 10

August-i5 August 1994, pp. I25-I31.

[26] Alvin C. Rencher, Methods of multivariate analysis, ch. 5, Wiley, New York, 1995.

l27l Búan Ross and Stefan Bluml, Magnetic resonance spectroscopy of the human brain,

The Anatomical Record 265 (2001),54-84.

[28] David W. Scott, Multivariate Density Estimation: Theory, Practice, and Vsualiza-

tion, ch.4, Wiley, New York, 1992.

t29l G.A.F Seber, Multivariate observations, ch.3, Wiley, New York, 1984.

[30] Ray L. Somorjai, Alexander E. Nikulin, Nicolino J. Pizzi, Dick Jackson, Gordon

Scarth, Brion Dolenko, Heather Gordon, Peter Russell, Cynthia L. Lean, Leigh Del-

bridge, Carolyn E. Mountford, and Ian C. P. Smith, Computerized consensus diagno-

sis: AclassificationstrategyfortherobustanalysisofMRspectra.I.applicationtolH

spectra of thyroid neoplasms, Magnetic Resonance in Medicine 33 (1995), 257-263.

[3i] Alberto Spisni, Magnetic resonance spectroscopy in biology and medicine, ch. 4,

Pergamon Press, New York, 1992.

l32l Joe H. Ward, Hierarchical grouping to optimize an objective function, American Sta-

tistical Association Journal 58 (1963), no. 301, 23Ç244.



55

[33] Michael W. Weiner, Clinical applications of mr spectoscopy and spectroscopic imag-

ing,Proceedings of rhe 2nd Annual Meeting of the SMR (1994),1g5_190.

[34] David Wishart, An algorithm for hierarchical classfficatio,rz, Biometrics 18 (1969),

no.256, 165-170.

[35] Hu Yang and Nicolino J.Pizzi, Biomedical data classification using hierarchical clus-

tering, Proceedings of the IEEE Canadian Conference on Electrical and Computer

Engineering (Niagara Falls, Canad a), 02 May -05 May 2004, pp. 1 86 1- I 864.


