DEesIGN, IMPLEMENTATION AND
PERFORMANCE ANALYSIS OF A DISTRIBUTED
ENTERPRISE PATIENT LOCATION SYSTEM FOR REGIONAL
HEALTHCARE DATA NETWORKS

Lai Fong Ellen Cheung

A dissertation submitted in partial fulfillment of the

requirements for the degree of
Master of Science

Department of Electrical and Computer Engineering

FFaculty of Graduate Studies
University of Manitoba

Copyright (©) 2003 by Lai Fong Ellen Cheung

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
gk

COPYRIGHT PERMISSION PAGE

DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS OF A
DISTRIBUTED ENTERPRISE PATIENT LOCATION SYSTEM FOR REGIONAL
HEALTHCARE DATA NETWORKS

BY

LAI FONG ELLEN CHEUNG

A Thesis/Practicum submitted te the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

LAI FONG ELLEN CHEUNG®© 2003

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

Abstract

Medical images are traditionally printed, stored, and retrieved using films. Due to
the management process of film their utilization significantly affects healthcare delivery,
so Picture Archiving and Communication Systems (PACSs) are introduced to replace
film. Nowadays, PACS have become increasingly important in the hospital enterprise
because of its many of advantages. Many hospitals employ a PACS or several PACSs to
assist healthcare delivery. Although each of these PACSs worked effectively for each of
the radiology departments and hospitals using them, patient medical data is not inte-
grated with other PACSs residing at different departments of a hospital and/or remote
hospitals. Patients often utilize the services of several hospitals so patient’s medical im-
ages must be integrated from the independent PACSs when needed. Most importantly,
patient data that is generated and stored at different PACSs must be made available in
a timely and easily accessible way to be useful from a medical perspective.

In this thesis, a patient location system (PLS) is designed to maintain the meta-
information of the location of patient’s medical images. The PLS is meant to be used by
the underlying distributed health system to integrate and access patient data from differ-
ent PACSs in a timely fashion. The aim is to provide an efficient and high performance
PLS. In this thesis, three PLS configurations are implemented with relational and hier-
archical database models for the storage and management of the location information.
We also implemented the PLS services using centralized and distributed approaches. Fi-
nally, the performance of the three PLS configurations is tested to identify the best PLS
configuration. The experimental results show that among the three PLS configurations,
the distributed PLS with relational directory model provides the best PLS configuration.

i1

Acknowledgements

First, I would like to express my gratitude to St. Boniface General Hospital Research
Centre (SBRC), University of Manitoba - Department of Radiology, and TR.Labs, Win-
nipeg, for providing an excellent research environment to do the necessary work and
financial support.

What I know today about the process of research, I learned from Dr. Jose A. Rueda,
Director of TR Labs, Winnipeg, Dr. Ken Barker, the head of Computer Science depart-
ment, University of Calgary, and Mr. Sergio Camorlinga, Chief Software Architect, St.
Boniface General Hospital Research Centre (SBRC). The completion of this thesis is
possible only because of their generous guidance and support.

I am deeply indebted to both of my advisors, Dr. Jose A. Rueda and Dr. Ken Barker, for
their immense motivation, guidance, encouragement, and stimulating advice throughout
the time it took me to achieve this work. Thanks to Dr. Rueda for encouraging me
in my research and provided me with a lot of valuable advices throughout the research.
Thanks are due to Dr. Barker for his constant encouragement and being there, especially
I would never forget his rule of thumb - “Keep it simple stupid (KXISS)” and all his instant
email replies which provided me a lot of valuable comments on my work. I extend my
sincere gratitude and appreciation to Mr. Sergio Camorlinga, whose support, constant
encouragement, and insightful suggestion were vital for the research. I especially thanks
to Sergio for the help extended to me when I approached him and the valuable discussion
that I had with him during the course of research.

I would also like to thank my thesis examining committee, comprising Dr. Jose A. Rueda
and Dr. Steve Onyshko from Electrical and Computer Engineering Department, Univer-
sity of Manitoba, Dr. Ken Barker from Computer Science Department, University of
Calgary, and Alan F. Graves, the Director of Advanced Optical Network Products from
Nortel Networks Advanced Technology Investments Group, for evaluating this thesis dis-
sertation.

Special thanks go to Mrs. Alice Rueda and Jeff Diamond for their constructive com-
ments provided on the preliminary version of this thesis. I also would like to thank all
my friends and students at TR Labs for their help, discussion, support, and friendship.

I am grateful to my husband Nelson for the inspiration and moral support he provided
throughout my research, his patience was tested to the utmost by a long pericd of sepa-
ration, and his love enabled me to complete this work. Particularly, I would like to share
this moment of happiness with my family and best friends, especially Maggie Lam, Susan
Wong, Ken Cheng, and their families.

Finally, I would like to thank my God without Him nothing is possible.

il

Contents

1 Introduction

1.1 Picture Archiving and Communication System
1.2 Health Distributed Archiving System
1.3 Motivations and Objectives
1.4 Location System | .
1.5 Summary of the Performance Analysis
1.6 Summary and Contributions of the Thesis

1.6.1 Contributions of the Thesis

1.7 Organization of the Thesis

2 Literature Survey
2.1 Location Services L
2.2 Middleware Technologies
2.21 Remote Procedure Call
2.2.2 Remote Method Invocations

2.2.3 Object Request Broker

3 Patient Location System

3.1 System Architectures

iv

[N T = L B &) S-S

10
10

11
12
18
18
20
21

23

3.1.1 Centralized PLS Architecture

3.1.2 Distributed PLS Architecture
3.2 Directory Models L
3.2.1 Relational PLS Directory
3.2.2 Hierarchical PLS Directory

4 The Implementation of PLS Prototypes

4.1 The PLS Components
411 ThePLSClients
4.1.1.1 DataProducerso oL

4.1.1.2 Data Consumers

4.1.2 ThePLS Servers e
41.2.1 NodeServers

4.1.2.2 Directory Servers L.

4.2 Simulation Tool
4.2.1 Graphical User Interface
4.2.1.1 A Selection Frame

4.2.1.2 A Parameter Frame for Simulating Lookup Requests . .

4.2.1.3 A Parameter Frame for Simulating Update Requests

4214 Master Schedulero
4.2.2 Node Schedulers

5 Performance Study

5.1 Performance Metrices L.
5.1.1 Transaction Response Time
5.1.2 Throughput

5.2 Study Methodology

36
37
37
39
40
41
41
42
42
43
43

45
48
49

5.2.1
5.2.2
5.2.3
524
5.2.5

Simulation Types
Hardware and Software Configurations
Simulation Procedures

Assumptions. L

Simulation Parameters '

5.3 Experimental Results and Analysis

5.3.1

5.3.2

A Performance Study on CPLS-R and CPLS-L Configurations . .
5.3.1.1 Interactions Involve Lookup-only Operations
5.3.1.2 Interactions Involve Update-only Operations
5.3.1.3 Interactions Involve Lookup and Update Operations

5.3.1.4 The Throughput of CPLS-R and CPLS-L,
5.3.1.5 Summary of CPLS-R and CPLS-L Performance Study .
A Performance Study on CPLS-R and DPLS-R. Configurations . .
5.3.2.1 Interactions Involve Lookup-Only Operations
5.3.2.2 Interactions Involve Update-Only Operations
5.3.2.3 Interactions Involve Lookup and Update Operations

5.3.2.4 The Throughput of CPLS-R and DPLS-R
5.3.2.5 Summary of CPLS-R and DPLS-R Performance Study .

6 Conclusions and Future Directions

0.1 Ideas for Future Research,

References

vi

85
88

91

List of Tables

4.1
4.2

5.1
5.2

An example of patient distribution defined for simulation “X” 48
An example of studies distribution defined for simulation “X” 48
The definitions of transaction response time 53
Hardware/software configurations of processing nodes for PLS simulations 57

Vil

List of Figures

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

5.3

Centralized PLS located at hospital 2 of the HDAS node 26
The interaction between client, server, and directory server in PLS 27
Distributed PLS in HDAS 28
An Entity-Relationship diagram of DICOM database and centralized PLS

divectory 33

An organization of hierarchical PLS directory based on the DIT structure 34

A data producer process 39
A data consumer process L L 40
A selection frame for defining a simulation type 43
A parameter frame for setting up lookup request simulation 44
A parameter frame for setting up update request simulation 46
Patient distributions represented in a Venn diagram 47
A master scheduler process L. 49
The PLS transaction response times collected at different layers 54
A conception view of the simulation model when testing centralized PLS

architecture. L 60
The DSPTs of the CPLS-R and CPLS-L for handling “get-hosts-list” re-

quests in LO simulations 64

viii

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

The DSPTs of the CPLS-R and CPLS-L for handling update requests in
UO simulations
The DSPTs of the CPLS-R and CPLS-L in LU simulations. (a) DSPTs for
handling “get-hosts-list” lookup requests. (b} DSPTs for handling update
requests. © .. L L L
The throughput of the CPLS-R and CPLS-L in LU simulations. (a) Num-
ber of data consumer routines per hour. (b) Number of data producer
routines per hour. L L L
The TRTs-Ns of the CPLS-R and DPLS-R for handling “get-hosts-list”
lookup requests in LO simulations
The DSPTs and SDCTs of the CPLS-R and DPLS-R for handling “get-
hosts-list” lookup requests in LO simulations
The DSPT reported by each processing node of the DPLS-R and the DSPT
of CPLS-R configurations for handling “get-hosts-list” lookup requests in
LO simulations
The TRTs-Ns of the CPLS-R and DPLS-R for handling update requests
in UO simulations
The DSPTs and SDCTs of the CPLS-R and DPLS-R for handling update
requests in UO simulations
The DSPTs and SDCTs of the CPLS-R and DPLS-R. for handling “get-
hosts-list” lookup requests in LU simulations
The DSPTs and SDCTs of the CPLS-R and DPLS-R. for handling update
requests in LU simulations
The throughput of the CPLS-R and DPLS-R in LU simulations. (a) Num-
ber of data consumer routines per hour. (b) Number of data producer

routines per hour. L

1x

Acronyms

API
CORBA
CPLS-L
CPLS-R
CPR
CSCT
CcT
DBMS
DICOM
DIMSE
DIT
DPLS-R
DSPT
EHCR
HDAS
HIS
HL7
GUI
IDL
10D
ISIS
JNDI

Application Programming Interface

Common Object Request Broker Architecture
Centralized PLS with a LDAP-based Directory
Centralized PLS with a Relational Directory
Computerized Patient Record

Client/Node Server Communication Time
Communication Time

Database Management System

Digital Imaging and Communication In Medicine
DICOM Message Service Element

Directory Information Tree

Distributed PLS with a Relational Directory
Directory Server Processing Time

Electronic Health Care Record

Health Distributed Archiving System
Hospital Information System

Health Level 7

Graphical User Interface

Interface Definition Language

Information Object Definition

Interactive System for Image Selection

Java Naming and Directory Interface

IVM
LDAP
LO
LU
MPI
NSPT
ORB
PHC
PHCC
PID
PIDS
PLS
PMR
PT
RIS
RM
RMI
RPC
SBRC
SCP
scu
SDCT
SOP
SQL
TRT
TRT-C
TRT-NS
UDP
UID
Uo

Java Virtual Machine

Lightweight Directory Access Protocol
Lookup-Only Simulations

Lookup and Update Simulations

Master Patient Index

Node Server Processing Time

Object Request Broker

Primary Health Care

Patient Health Care Centre

Patient Identifier

Person Identification Server

Patient Location System

Patient Meta-Record

Processing Time

Radiology Information System

Roaming Manager

Remote Method Invocation

Remote Procedure Call

St. Boniface General Hospital Research Centre
Service Class Provider

Service Class User

Node Server/Directory Communication Time
Service Object Pair

Structure Query Language

Transaction Response Time

Transaction Response Time - Client
Transaction Response Time - Node Server
User Datagram Protocol

Unique Identifier

Update-Only Simulations

xi

Chapter 1

Introduction

Medical images are key assets that provide a means for healthcare professionals to eval-
uate patient diagnosis and treatments, conduct research of underlying diseases, facilitate
residents training programs, etc. Traditionally, medical images are captured, printed,
and stored using films. Film utilization is inefficient because images must be physically
stored and manually retrieved, which significantly affects the speed of healthcare deliv-
ery. This also introduces costs for storing, delivering, and managing films in terms of
both capital resources and people. To speed up healthcare delivery and reduce oper-
ation costs, digital imaging and digital image management system are used to replace
radiographic films. This transition changes the operations and diagnostic procedures of
radiology departments. Digital imaging enables medical images generated from a variety
of radiologic imaging modalities such as Computer Tomography, Magnetic Resonance,
Computer Radiography, Ultrasound, etc. to be digitized and made available for online
viewing on computer workstations. Digital image management system also called pic-
ture archiving and commaunication system (PACS) is designed to facilitate the integration
and distribution of digital images and image related data from various diagnostic imaging

modalities in a radiology department.

CHAPTER 1. INTRODUCTION 2
1.1 Picture Archiving and Communication System

A PACS is a computer system composed of several subsystems. These subsystems include
a data acquisition system, PACS controller system, archive system and display system.
A data acquisition system consists of acquisition computers used to acquire image data
from radiologic devices. Once the data acquisition system has acquired the image data, it
converts the image data from the vendor specific format to a PACS standard format for
storage and transmission. The formatted image data will then be delivered to the PACS
controller system and/or display system for storage and/or interpretation. The PACS
controller system is the PACS engine that controls the data flow within the PACS. The
PACS engine consists of two components: the database server(s) and archive system,
responsible for updating patient’s records and storing related image data sent from the
acquisition system. It also services requests from the display system. The archive system
provides short, medium, and long term storage devices for storing images and patient
related information. Finally, the display system consists of a set of display workstations
for displaying images and assists users in interpreting images along with relevant data.
These subsystems are interconnected with various network facilities to ensure digital
images and image related data are available to multiple imaging departments so it is
efficiently stored and retrieved throughout a hospital. A PACS also interfaces with other
medical information systems. For example, it interfaces with the hospital information
system (HIS) and the radiology information system (RIS) to acquire important data such
as patient information, examination schedules, and study types for effective operations

[Hua99)].

The components of healthcare information systems such as PACS, RIS, and HIS vary

with computer applications, platforms, imaging modalities, and vendors. Therefore, two

CHAPTER 1. INTRODUCTION 3

standards have been proposed and used to deal with the heterogeneous textual data and
medical images among these components. These two standards are health level 7 (HLT7)

and digitel imaging and communication in medicine (DICOM).

HL7 is a standard used to handle the heterogeneous textual data formats of different
computer applications from different vendors in a hospital environment. The goal of the
HL7 is to simplify the interoperability problems by standardizing the data format and the
protocol for exchanging key textual data among healthcare information systems [Hua99].
While DICOM provides guidelines on how ifnage data can be formatted and exchanged.
DICOM introduces the concept of an information object that is used to define and de-
scribe the contents of images, studies, reports, etc. Information objects are entities or a
collection of entities defined using the DICOM information object definition (I0OD) model.
IOD is an object-oriented abstract model used to represent a real world entity such as
a patient, study, image, etc. There are two groups of IODs. One IOD that represents
a single real world entity is called a normalized IOD. A second 10D combines multiple
normalized I0Ds and is called a composite IOD. Each IOD consists a set of attributes
that describe a single piece of information about the entity when it is created. Attributes
may include patient name, image identifier, study unique identifier, study date, modality
type, etc. I0Ds permit objects to be defined precisely and to be used by heterogeneous
medical imaging applications. An information object is uniquely identified through an
entity-relationship model. DICOM also defines different service classes that are used for
exchanging information objects between computer applications and perform operations
on these objects. There are two roles defined in DICOM. A machine that issues a service
request is called service class user (SCU). A machine that receives the SCU requests and
performs operations on the information objects is called a service class provider (SCP).

A service and object form a fundamental DICOM unit called service object pair (SOP).

CHAPTER 1. INTRODUCTION 4

Services are requested through a set of DICOM message service elements (DIMSEs). A
DIMSE describes the SCU requests and functions to be carried out by the SCP on the
information objects. The goal of the DICOM standard is to facilitate interoperability
and to integrate disparate medical images and related data generated from a variety of

modalities and manufacturers [Che01].

1.2 Health Distributed Archiving System

There are many advantages of introducing PACS to the traditional film-based approach
in radiology and medicine. These include reduced film costs, storage, and reduce the
liability for misplacing films. PACS also facilitates the diagnostic process as technicians
and radiologists require less time spent on image acquisition, delivery, reading, diagnosis,
writing reports, etc. From the advantages provided by PACS, it becomes a critical com-
ponent in any healthcare enterprise. Many hospitals employ a PACS or several PACSs to
assist healthcare delivery. A PACS can be either simple (small-scale) or complex (large-
scale) depending on the applications and the needs of a hospital. A simple PACS may
consist of an image acquisition device with a digitizer connected to a display workstation.
The display workstation has a database management system for storing image data. A
complex PACS may be a hospital-wide PACS that integrates independent PACSs resid-
ing at several imaging departments inside a hospital. However, given the distributed
nature of any healthcare industry and the reality that patients often utilize the services
of several hospitals, the integration of PACSs should not be limited to those collocated
in a single hospital. A PACS can also be extended to multiple PACSs residing at several
remote hospitals inside or outside of a specific health region. In addition, the PACS
networks at different hospitals need to be interconnected to share radiology medical im-

ages and related patient data. In response to these necessities, a distributed computing

CHAPTER 1. INTRODUCTION 5

system called health distributed archiving system (HDAS) has been proposed and is cur-
rently being developed at the St. Boniface General Hospital Research Centre {SBRC)
[CBO1]. The main objective of the HDAS is to provide a common layer for the inte-
gration, transmission, storage, and retrieval of medical images and related patient data
scattered/distributed at different PACSs throughout regional hospitals that consists of

two or more facilities (e.g. Winnipeg health region has nine hospitals).

1.3 Motivations and Objectives

The first mission of the HDAS has been to integrate radiology components of different
health regions. Establishing a common layer in different health regions results in several
challenges and issues that the HDAS must overcome. One of the challenges is to efficiently
and effectively access, integrate, and share patient’s medical images and related data. In
particular, data that is being generated, distributed, and stored at different radiology
departments across several remote hospitals must be managed correctly. For example,
consider a radiologist who reads newly acquired images of a particular patient in front of
a display workstation. For diagnostic purpose, the radiologist may wish to compare the
newly acquired images with the patient’s previous images that are possibly spread across
several remote systems residing at different hospitals. Assume that hospitals within a
health region are interconnected by a network facility. One way of locating the patient’s
previous images is broadcast a message that contains patient’s information to all systems
inside the health region. Upon receiving the message, each system is required to check
whether it has images related to that patient. If so, the system responds to the calling
system by sending a message indicating that some images associated with that patient
are found. Once all messages from all systems have been received, the calling system

returns a list to the radiologist. The radiologist will then select one or more images from

CHAPTER 1. INTRODUCTION 8

the list and subsequently obtain all images. The major drawback of this approach is
inefficient as the network grows and the number of users increases within the hospital
region. The network bandwidth is wasted by messages seeking to locate images and
related patient data. Users may have to wait a longer time due to the lookup operation
at each system. This has motivated the development of a patient location system (PLS)
to track and locate where patient’s images and their related generated data have been
stored. The PLS is a critical component of the HDAS. It provides information that is
necessary and subsequently used by other components of the HDAS to respond to user
requests in a timely fashion. To provide an efficient and effective PLS, its architecture
and the defined database scheme for the storage and management of location information

are critical.

The objective of this thesis is to design, implement, and characterize the performance
of different architectures and database schemes for the efficiently tracking and locating
image related data to support the delivery of HDAS services for regional healthcare data

networks.

1.4 Location System

A location system is a facility that manages information about the locations of objects
and performs operations on the information. In general, a location system comprises two

main components: a direcfory and a directory service.

A directory is a database designed for storing information about objects that exist in a
system. An object can be practically anything, depending on the domain in which it is

administrated. For example, an object can be an employee of a company, a service or a

CHAPTER 1. INTRODUCTION 7

device of a computer system. It can also be a directory, a mailbox, or a department of
an organization unit. Objects in a directory are identified through their names. Names
offer a convenient mechanism for accessing objects in a system. A name can be a human-
readable name tailored to be used by humans, a non-reusable unique name (identifier),
or an address that provides an access point where a particular object can be contacted
[Tan02]. In addition to the name, each object is typically associated with a set of at-
tributes. The attributes to be stored in the directory are different from one context to
another, which defines explicitly the purpose and the use of information needed by the
system. The set of attributes, for example, may include the telephone numbers of a user
or resources and services provided by systems [Nov03]. It could also be the location or
Internet address of a Web page server. An attribute carries a list of data repositories
[Ord93], a service available in an open environment [Bbv95], and a set of forwarding
pointers for keeping track of the current location of migrating agents in a mobile com-

munication system [Mor02].

Names and attributes can be organized in many different ways, depending on the data
model used and the directory’s implementation. Access to objects and their associated
attributes also depends on the directory implementation. A directory can be imple-
mented as a set of flat files, relational tables, or hierarchical trees [Shi00]. When a
directory is implemented using a relational data model, information may be stored in
one or more pre-defined tables and accessed with Structure Query Language (SQL) ma-
nipulation language. On the other hand, a Lightweight Directory Access Protocol (LDAP)
based directory, which organizes information hierarchically in a tree structure called Di-
rectory Information Tree (DIT) and can be accessed through the LDAP manipulation

language [Fit97].

CHAPTER 1. INTRODUCTION 8

Objects in a directory can be accessed and manipulated through names and their as-
sociated attributes. Directories are usually accessed using a client/server model. The
standard rule used to access a directory is called an access protocol. In the previous ex-
amples, SQL and LDAP are access protocols that describe how objects can be accessed
from the relational tables and DIT, respectively. A process that performs operations and
accesses to any information stored in a directory is called a directory server. A process
that requests a service from a directory server is called a client. The operations offered
by a directory server to its clients are collectively referred to as the directory service.
Basic directory operations include store, lookup, update, search, delete, and so on. For
example, looking up or searching directory information can be done as follows: a client
sends a lookup/search request that contains the name of an object or a search criterion
expressed in terms of a set of attributes to the directory server. Upon receiving the
client’s request, the directory server accesses the directory, performs lookup/search op-

erations, and returns results to the client.

Because of the directory service is tightly associated with a directory and implemented
by means of a directory server, the directory service is sometimes referred to a “direc-
tory”. A directory can be implemented either centralized or distributed. A directory is
centralized if there is only one directory and the directory server is located at a single
node (computer) of a computer network. On the other hand, a directory is distributed
if some of its data are spread across several nodes and is implemented with multiple
directory servers interconnected through a computer network. In addition, each direc-
tory server is autonomous and capable of executing some local operations on its data.
A directory server may also participate in the execution of some global operations that
require accessing data at several nodes. Information contained in a distributed directory

can be partitioned, replicated, or a combination of both, to several nodes to improve the

CHAPTER 1. INTRODUCTION 9

performance and the availability of the directory.

1.5 Summary of the Performance Analysis

Performance is a standard way of measuring the design decisions made on a system. In
a large-scale system, no matter if it is centralized or distributed, the performance of the
system is especially critical. There are many performance measures that can be used to
evaluate the performance of a system. Performance characteristics, such as response time
and throughput, play an important role in defining the quality of a system, particularly in
large-scale system with multiple components that spread across several locations. For the
PLS to be truly effective and to have a high performance, it must be demonstrated that it
can provide services with its users with low response time. Moreover, it must be capable
of handling extensive workload without substantially degrading the system throughput.
Response time is a major concern from the radiologists’ perspective as they often expect
services to take place almost instantly to facilitate their daily diagnoses. Additionally,
HDAS is expected to have large numbers of users utilizing its services in the near future.
Thus, the throughput of the PLS is important, especially aimed at providing location
support to large-scale systems such as HDAS. For these reasons, the response time and

the throughput of the PLS are the major performance measures considered in this thesis.

1.6 Summary and Contributions of the Thesis

One of the major challenges of the HDAS is to efficiently and effectively access, integrate,
and share patient’s medical images and related data. In particular, the data generated,
distributed, and stored at different radiology departments across several remote hospitals.

This thesis presents a design for a PLS with centralized and distributed approaches

CHAPTER 1. INTRODUCTION 10

for tracking and locating patients’ medical images and their related generated data to
support the delivery of HDAS services. The system’s directory will be designed using
relational and LDAP based (i.e. hierarchical tree structure) data model. The prototypes
of various system architectures are implemented. In addition to these, a simulation model

is developed to conduct the performance analysis on various system architectures.

1.6.1 Contributions of the Thesis

In this thesis, the emphasis is on the performance analysis of the PLS. The results of the
performance analysis provide insight on the combined effect of the database scheme and
the architecture used to design the system. Results can also be used as a building block
to develop a suitable database model for the storage and management of DICOM images

and related patient data.

1.7 Organization of the Thesis

The balance of the thesis is organized as follows. Chapter 2 provides a survey on vari-
ous location services specifically used in hospital environment and different middleware
technologies used in distributed computing systems. Chapter 3 describes the PLS archi-
tectures and directory designs. The implementation details of various components of a
PLS and the performance simulation model are given in Chapter 4. Chapter 5 presents
the performance analysis details and discusses the experimental results of the perfor-
mance of various PLS configurations. Finally, Chapter 6 provides the conclusion of the

thesis and discusses the future directions of the PLS.

Chapter 2

Literature Survey

Many approaches have been proposed and discussed in the literature concerning how to
deal with location and identification of patients and their related medical information in
a hospital environment. The main objective of a location service/system is to provide
users with fast access to objects that may generate, store, and/or be distributed to var-
ious sites interconnected through network facilities. In Section 2.1, we overview some

existing approaches applied to the healthcare domain.

As mentioned in Section 1.4, directories are generally implemented using the client/server
model. If a location system is intended for a distributed system with a small number
of entities and users are restricted to a local area network, it is often feasible to imple-
ment the location system using the centralized approach. However, in enterprise-wide
distributed system with many entities residing at geographically dispersed sites inter-
connected through network facilities, the implementation of a location system may also
need to be distributed. In such a setting, the distributed location system is necessary to
interoperate with other components, applications, and systems in distributed heteroge-

neous environment. A distributed system incorporated a middleware technology into the

11

CHAPTER 2. LITERATURE SURVEY 12

client/server architecture aimed at improving interoperability, flexibility, and maintain-
ability of the system. In the past few years, many middleware technologies have emerged
aimed at simplifying and facilitating the development of applications for distributed sys-

tem. In Section 2.2, we will overview some of these technologies.

2.1 Location Services

A framework proposed [Gsm00] attempts to improve the diagnostic processes of regional
and national patient health care centres (PHCCs) in the primary health care (PHC) en-
vironment. It adopts the Common Object Request Broker Architecture (CORBA) and
web-based (Intranet/Internet) technologies to support distributed access to electronic
health care records (EHCRs). The framework focuses on the EHCRs being generated
and distributed at several remote PHCCs. Each PHCC is associated with a HIS respon-
sible for maintaining a database, which stores all locally registered KHCRs. It is assumed
that each patient’s EHCR will register at the PHCC located near the location where the
patient lives and subsequently become the local PHCC for storing the patient’s EHCRs.
Since patients may visit several remote PHCCs scattered throughout different regions,
the concept of roaming EHCR (R-EHCR) is introduced. A R-EHCR is created from the
EHCR, as the patient visits a new PHCC, possibly located at a remote region. Each
region’s HIS is required to maintain a cache database that stores the patients’ R-EHCR.
To facilitate the location of patient’s EHCRs or R-EHCRs, the framework also intro-
duced a centralized entity called the roaming manager (RM). The RM is responsible for
maintaining a global master EIICR index of all EHCRs (i.e. the locations of all HISs).
To locate EHCR or R-EHCR in a timely way, the global master EHCR index is cached
at each HIS and updated in a specific period of time. Locating a patient’s EHCR or

R-EHCR is done in the following manner. When a patient visits a remote PHCC, the re-

CHAPTER 2. LITERATURE SURVEY 13

mote HIS lookups its locally cached index to identify the location of the patient’s EHCR.
Once specific location information is obtained, the remote HIS gets a copy of the EHCR
from that specific location and subsequently stores it in the local R-EHCR cache. After
the EHCR is obtained, the HIS then notifies the RM to update the location information
of the R-EHCR. The cached EHCR (R-EHCR) will remain at the remote PHCC and be
deleted after a specific period of time. However, if a patient keeps visiting the remote
PHCC, the master EHCR will be deleted from its local PHCC and the remote cached
R-EHCR will then become the patient’s master EHCR. If transferred, the HIS contacts
the RM and updates the EHCR location information. However, the authors [Gsm00] did
not provide specific details on how and which database model was adopted to implement,

the global master EHCR. index.

The PACS database described by Trayser [Tra94] maintains image and radiological ex-
amination data associated with patients. The PACS database does not contain clinical
data but only that used to describe images. Clinical data and patient associated infor-
mation such as patient identification, medical history, and the sequence of radiological
examinations are handled by the HIS core database. The HIS core database provides an
access point for the RIS to obtain patients’ demographics and clinical data associated
with patients. The PACS database in turn interfaces to the RIS to mange patients’
digital images. The main function of the PACS database is to provide a directory of
all digital images obtained from different imaging modalities and subsequently delivering
these images to several display severs for interpretation. The PACS database is imple-
mented using the INGRES relational database management system. The directory is in
turn implemented using several relational tables, which include patient table, examina-
tion tables, and a set of image description tables. The patient table is the main table of

the PACS database as it contains patient identification entries. Each patient identifica-

CHAPTER 2. LITERATURE SURVEY 14

tion entry is linked to a set of examination tables, which in turn are linked to a set of
images description tables. The patient table is linked to the HIS core database as well
for referencing patients’ master entries. In addition to these tables, the PACS database
also maintains an update list to record the locations of all duplicated files that are being
distributed to different display servers throughout the hospital. The update list is used
to facilitate the cleanup (removing necessary images) at display servers. Users access
to the PACS database is through a computer application called Interactive System for
Image Selection (ISIS), which acts as a browser of the PACS directory and a transfer

operator for digital images.

Tsiknakis et al. [Tsi95] describe the patient meta-record (PMR) concept that provides
a unified way to access computerized patient record (CPR) segments maintained at dif-
ferent healthcare institutions scattered throughout a hospital region. The PMR stores
meta-information about patients and provides the information source for accessing a pa-
tient’s CPR. Meta-information includes the type, location, date of generation, means of
access, etc. that can be used to access patient CPR segments local to a healthcare in-
stitution. A CPR segment includes several information objects that are used to describe
a patient’s diagnostic study, examinations performed on a single modality, primary or
follow-up interpretations, and the results of diagnostic examinations. Information ob-
jects are organized in a way that follows the information object model described in the
DICOM 3.0 standard. CPR segments are organized hierarchically in a tree structure
database (CPR directory) local to the healthcare institution. Access to a CPR segment
of a given patient is achieved through a CPR directory server, which uses the information
contained in the PMR and the LDAP directory access protocol. There are several CPR
directory servers distributed across the healthcare network to provide directory services

for healthcare institutions. Asynchronous messages are broadcasted regularly among the

CHAPTER 2. LITERATURE SURVEY 15

CPR directory servers to keep their CPR directories consistency. The PMR concept is
further extended and used in a domain-specific framework [Lei97]. The proposed frame-
work integrates heterogeneous healthcare information systems that are widely distributed
and in an attempt to establish a distributed telemedicine services environment. It uses
the PMR concept as well as standard directory services to facilitate services provided for
data mediation, distributed directory access, and workflow management among various
heterogeneous healthcare information systems. The PMR and the distributed directory
services are also used to form the concept of a virtual patient record by integrating
CPR segments maintained by those systems. Information contained in the extended
PMR includes the meta-information about the information systems involved (informa-
tion structures and their semantics), the locations of service objects, and healthcare data.
The CPR directory is implemented using the X.500 directory model and accessed through
directory servers using the LDAP access protocol. The framework also made use of the
CORBA, a distributed computing technology to integrate, store, discover, and advertise

information about object services.

Forslund et al. [For98| introduced a collaborative environment in which multiple users
at different locations can simultaneously access, view, edit, and interpret patient data.
The main purpose of the collaborative environment is to allow interactive consultations
and timely communication among healthcare providers (e.g. physicians), patients, and
insurers, who are possibly located at different healthcare facilities across a wide-area net-
work in different healthcare domains. The collaborative environment was implemented
on a system called TeleMed. The TeleMed system is developed based on the virtual pa-
tient record concept. The virtual patient record concept is introduced to handle various
data formats and data structures of information systems involved in a collaborative con-

sultation. For various reasons, a patient’s medical records might scattered at different

CHAPTER 2. LITERATURE SURVEY 16

healthcare facilities, possibly across national or international boundary. The virtual pa-
tient record concept provides users with a unified view to patient’s medical information
maintained at different healthcare facilities. A virtual patient record for a given patient
is created on demand from collaborating healthcare institutions when required. Forslund
et al. [For96], argue that fast and securely identify patients as well as their healthcare
providers are major factors affecting the feasibility of the virtual patient record concept.
For these reasons, the master patient index (MPI) is used to identify patients and their
respective healthcare providers in a timely and secure way. The MPI consists of two
components: (1) unique names used to uniquely identify patients and (2) pointers used
to point to the locations where patients’ medical information can be found [Kil97]. MPI
provides a linkage to distributed heterogeneous systems that constitute an interactive
consultation. Information for creating MPI consists of patient demographics such as
name, gender, date of birth, and so on that can be used to identify a patient and his/her
disparate medical records. A patient or a healthcare provider is identified by means of a
person identification server (PIDS) [For98]. The PIDS is one of the components of the
TeleMed system. However, the authors do not specify how the PIDS accesses the MPI

to locate patient medical information.

Zisman [Zis98] proposes a distributed information discovery system to support location
and identification of medical data related to users’ requests. It also supports data ac-
cess among heterogeneous autonomous databases that were created and administrated
at different departments in a hospital environment. The main objective of the system is
to limit information discovery to a group of database systems called a federation, which
either contains data relevant to the user’s request or information related to a database
system that possibly holds the requested data. A federated database systems is formed

when a set of database systems wish to share and exchange data with each other. The

CHAPTER 2. LITERATURE SURVEY 17

creation of a federation is based on the shared data of each database system as well as
users and applications that are authorized to access the shared data. Within a federation,
database systems interoperate to provide functions for processing users’ requests, locating
requested data, and performing query translations. A database system in one federation
can also participate in other federations when needed. A federation is further divided
into a second level with groups based on the type of the shared data contributed by the
participating databases. This second level is used to limit and facilitate the search during
the information discovery process. Additionally, each database system consists of a set of
additional structures to facilitate interoperability between heterogeneous databases for
each federation where the database system is participating. LOCute is one of the addi-
tional structures used to locate each database system. The main function of the LOCate
is to record the contents and the locations of different database systems to support data
location and data distribution. Information contains “the names of the groups of the re-
lated federation and specialized terms” that are organized hierarchically in the LOCate
structure. Specialized terms are used to reference related database systems to provide
support for users during an information discovery process. Terms are defined based on
the local schema of a database system and the instances of participated databases. A
term is selected based on the interests of users and applications as well as data shared by
each database system. Due to the process of defining and administrating terms is com-
plex, human assistance is required to define and validate terms. Further, the hierarchical
structure of the LOCate is changed as the results of any addition, modification, and
removal of databases to the information discovery system. Therefore, a tool is provided
to construct LOCate interactively with the coordinator of a related federation and the
participating database systems. The information discovery system also implemented an

algorithm to facilitate dynamic construction of LOCate hierarchy.

CHAPTER 2. LITERATURE SURVEY 18
2.2 Middleware Technologies

By using middleware technology the client/server model has improved the interoperabil-
ity, portability, and flexibility of a distributed system. Middleware technology is designed
to provide connectivity between applications, programs, or processes. It manages com-
munication and data exchange between components in distributed systems. It supports
heterogeneous applications to interact and communicate with each other, without regard
to the languages, platforms, and locations. Therefore, developing distributed comput-
ing systems using middleware technology supports interoperability across languages and
platforms, as well as enhancing maintainability and adaptability of the system. In the
past few years, many middleware technologies have been developed and proposed to
simplify the development of applications for distributed system. The most widely used
middleware technologies include Remote Procedure Call (RPC), Remote Method Invoca-
tion (RMI), and Object Request Broker (ORB), among others. These technologies have
been widely adopted for implementing object-based systems in general. Each of these

technologies is briefly reviewed in this section.

2.2.1 Remote Procedure Call

The Remote Procedure Call (RPC) is designed to handle communications between pro-
cesses (programs) residing at separate machines interconnected through a computer net-
work. The basic idea of the RPC is to allow a client component of a distributed system
to make a procedure call to a server regardless of location, platform, or operating system.
The idea behind RPC is to hide the remote execution from the client application and
make the remote procedure look like a local procedure call. A remote procedure call
is achieved by exchanging messages between the client’s implementation (client stub)

and the server’s implementation (server stub). The client and server stubs are served as

CHAPTER 2. LITERATURE SURVEY 19

“drivers” to transmit requests between client and remote procedures. Stubs are used for
marshalling, delivering, and unmarshalling messages between a client and remote proce-
dures. A message delivered by the client stub contains the client’s request, the name of
the remote procedure, and the necessary parameters. The message sent from the server
stub contains the server’s reply to the remote procedure call. In RPC, stubs are generated
using the Interface Definition Language (IDL), which contains the interfaces for remote
procedure calls. An interface consists of a set of procedures or methods implemented by
a server for its clients. The IDL is a declaration language, which describes the procedures
or methods that can be called over the network and the information that can be passed
to and from those procedures or methods. When utilizing RPC, the client and server
stubs must agree on the RPC protocol. The RPC protocol determines the message for-
mat to be used for marshalling parameters and results of a procedure call, encoding rules

for representing simple data structures, and the transport protocol for message exchange.

The main advantage of the RPC is that it increases the interoperability and access
transparency of a system by allowing a client to employ a procedure call to access a
server located at a remote system. The interfaces defined in IDIL enable RPCs to in-
teroperate between applications written in different languages. Most RPC employ the
synchronous request-reply mechanism, which involves blocking of the client until the
server replies to its request. The advantage of this mechanism is that it can be used to
guard against overloading a network. However, this mechanism also has disadvantage,
as it requires the client and the server to always be available and operational. Since
most RPC implementations provide poor support for objects references, they make RPC
less attractive when implementing applications in distributed object-based systems as

compared to other middleware technologies [Tan02].

CHAPTER 2. LITERATURE SURVEY 20

2.2.2 Remote Method Invocations

Instead of supporting transparent access to remote procedures, Remote Method Invo-
cation (RMI) focuses on object method invocations in the object-oriented paradigm. It
applies the RPC concept to make remote objects accessible through their object interface.
Unlike RPC, object interfaces are defined using the same object-oriented language as the
one for creating the remote object. In RMI, a server is responsible for creating remote
objects and making them available for their clients by registering them with a bootstrap
naming facility called the RMJ registry. A client can make a call on a remote object that
resides on a different machine once it obtains a reference to the remote object. Obtaining
references to remote objects can be achieved either by looking up remote objects in the
RMI registry or by receiving references as parameters or return values. Similar to the
RPC, interfaces are compiled to produce the client’s proxy (client stub) and the server’s
skeleton (server stub). However, the message delivered by the proxy involves method

invocations rather than procedure calls.

Objects can be passed as parameters or returned as values using RMI by a remote method
call between components in a distributed system. Objects can be passed by value or by
reference. When an object is passed by value, a copy of the object is created and passed
along with the method invocation provided the object is serializable. When an object is
passed by reference, the object’s proxy implementation and the necessary classes will be
downloaded to the client’s address space for method invocations. Once the proxy of a
remote object has been loaded into the client’s address space, the client can then use the
proxy to make any method invocations to the object locally. In RMI, local objects are
usually passed by value, whereas remote objects are passed by reference. The dynamic

class and stub downloading is an essential feature of RMI. This approach allows devel-

CHAPTER 2. LITERATURE SURVEY 21

opers to build a variety of proxies, which avoid the need to make remote invocations in
certain cases. This also facilitates software distribution and ease of maintenance because
classes and stubs can be loaded dynamically on demand when needed and do not need
to be preinstall on client machines. Since RMI adopts the RPC mechanism for method
invocations, a client is blocked until it received a response. One of the disadvantages of
RMI is that all objects (interfaces) that constitute the distributed system are assumed
written in the same language. Thus, RMI is limited to a single-language environment
and does not allow interactions with objects written in different languages. Therefore,
RMI is not well suited for implementing a large-scale distributed system that involves

heterogeneous components [Sun95, Sut97, Tan02, Wal98§].

2.2.3 Object Request Broker

Similar to the RMI, Object Request Broker (ORB) is designed to handle communication
between clients and objects in the object-oriented paradigm. Unlike RMI, ORB supports
communication and data exchange between objects regardless of platforms, software,
and vendors. The main idea of ORB is to promote interoperability of heterogeneous
distributed systems and portability across different programming languages, platforms,
and ORB implementations. The basic functions of ORB include locating and activating
remote objects, marshalling and unmarshalling parameters and results, and establishing
communication between clients and objects. Most ORB products generally offer a direc-
tory of services, which help in locating and establishing communication between clients

and services [Tan02].

ORB is the core communication infrastructure of any CORBA distributed system. CORBA

is a specification of a standard architecture, which allows different vendors to develop

CHAPTER 2. LITERATURE SURVEY 22

ORB products. It can be thought of as architecture for integrating diverse applications.
All objects and services are defined in the CORBA IDL. Static stubs and skeletons are
generated at compile time by an IDL compiler. Section 2.2.1 explains how IDL is used
to describe the methods that can be called over the network and the information that
can be passed to and from those procedures or methods. CORBA also defines mappings
from IDL to all supported programming languages such as C++ or Java. In CORBA,
a method can be declared as a one-way operation that makes method invocation unidi-
rectional without returning a result or success acknowledgement to the sender. This is
an advantage for the client, as it is not blocked until the competition of the operation.
Many CORBA compliant systems support a dynamic invocation interface that allows
dynamic request generation [Inp00]. This is useful when the client has no compile time
knowledge about the interfaces it is accessing. CORBA also provides specifications for
implementing CORBA compliant services such as naming, collection, transaction, query
services, etc. In CORBA, flexibility is obtained by using object adapters (e.g. Basic Ob-
ject Adapter and Portable Ohject Adapter) to associate an object implementation with
an OBR that de-multiplexes and dispatches the requests [Inp00]. A CORBA system
typically consists of a collection of CORBA services, which are considered fundamental
for building interoperable and portable distributed applications [Tan02]. There are a
number of ORB/CORBA products available including Java IDL, Java RMI over IIOP,

VisiBroker® for Java, etc.

This thesis uses the VisiBroker® for Java developed by the Borland Software Corporation
to implement the location system because of its robustness [Che02]. The ORB of the
VisiBroker® for Java is fully compliant with the CORBA 2.3 specification. It provides
various services to facilitate the development of distributed applications. These services

include naming, distributed directory, location, service discovery services, etc.

Chapter 3

Patient Location System

The goal of a patient location system (PLS) is to provide an efficient mechanism for
tracking and locating a patient’s images and their related generated data. In particular
any data that are being stored and/or distributed to various nodes (sites) interconnected
through network facilities. The PLS is one of the critical components of the HDAS. The
PLS is primarily used to provide information that is necessary and subsequently used by

other components of the HDAS to provide users with timely services.

The PLS is designed using the client/server model with the use of VisiBroker® for Java
(i.e. ORB product) that enables communication between clients and servers. In the
client/server model, a client is a process that requests a service from a server by sending
it a request. A server is a process that provides (implements) specific service(s) for its
clients. Client applications usually manage the front-end (user-interface) portion of a
system and facilitate interactions between users and other parts of a system. Servers, on
the other hand, provide the back-end processing of a system such as managing shared
resources, maintaining and protecting persistent data, providing application services, and

so on. Depending on the system configuration, a client and server may reside both on

23

CHAPTER 3. PATIENT LOCATION SYSTEM 24

a single machine or separate machines that may be located at different nodes. In the
former case, the communication between a client and a server is typically done over a

network even though they both reside on a single computer.

There are many different ways to organize clients and servers in a system. The client/server
model can be organized as two-tier architecture, three-tier (multi-tier) architecture, and
multi-tier architecture with middleware technology, to narrow a few models. An archi-
tecture in turn can be centralized, distributed, or a combination thereof that facilitate
the connections between users and shared resources. The distinction between these ar-
chitectures is based on the distribution of system processing, functions, data, and/or
control. This thesis presents two PLS designs that adopt the centralized and distributed
approaches. The performance of the two architectures is studied in terms of system
transaction response time and throughput. Both PLS designs are implemented using
Java technology because of its simplicity, openness, and portability. According to Java
documentation, Java based application can run on any platform provided that the ma-
chine used for running the application has a Jave Virtual Machine (JVM). Java also
provides a variety of application programming interfaces (APIs) and utility packages to

facilitate the system development process.

3.1 System Architectures

To provide an efficient tracking and locating mechanisin, two PLS architectures: central-
ized and distributed have already been designhed based on the distribution of the directory
and the directory service that performs operations on that directory. The centralized PLS
is designed to provide a single directory for all processing nodes (hospitals) within the

hospital environment. On the other hand, the distributed PLS contains multiple directo-

CHAPTER 3. PATIENT LOCATION SYSTEM 25

ries; each directory contains the information stored at one node. This chapter describes
the components that constitute the two PLS architectures. The corresponding directory

design is given in Section 3.2.

3.1.1 Centralized PLS Architecture

The centralized architecture is considered a baseline model for implementing the PLS.
In the centralized PLS, the directory is maintained centrally at one of the processing
nodes within the HDAS. The PLS directory contains information that is linked to a set
of DICOM databases. A DICOM databases is used to hold metadata about patient im-
ages. In this architecture, the directory service is provided through a single directory
server, which resides at one of the processing nodes across the system. The directory
server is responsible for performing update and lookup operations on the information
contained in the PLS directory. In addition to the directory server, there exist several
components that constitute the PLS. These components include clients, node servers,

ORB, and database management systems.

A client represents an entity (a user or an imaging modality) that belongs to the health
domain or another component of HDAS. A node server is responsible for invoking ser-
vices (objects) that are made available to its clients. An object invocation is based on
the request sent from a client. An object is referred to a servant that offers an imple-
mentation of a specific service (e.g. updates the metadata of a patient’s record, obtains
the location of DICOM database(s) associated with a patient’s record, efc.) invoked by
clients. A servant may contact the directory server on behalf of a client when needed.
The communication between a client and a servant is handled through the ORB. Finally,

a database management system (DBMS) is a software component that provides a storage

CHAPTER 3. PATIENT LOCATION SYSTEM 26

Data Producers Data Producers Data Producers
{Imaging Modalities) ({Imaging Modalities) (imaging Modatities)

Display ! ,/ Display
Workstations Workstaticns

Data Consumers Data Consumers Data Consumers
(Healthcare professionals) (Healthcare professionals) {Healthcare professionals)

Figure 3.1: Centralized PLS located at hospital 2 of the HDAS node

mechanism and performs operations (e.g. queries, updates, etc.) on data items that
are being stored in a database. Within the PLS (centralized or distributed), DICOM
databases are implemented using the IBM® DB2® Enterprise Extended Edition (EEE)

relational DBMS. Figure 3.1 shows the conceptual view of the centralized PLS.

The interactions between the components in the centralized PLS can be described using
the following example: assume a client at one of the processing nodes within the PLS
needs to update the metadata of newly acquired images of a patient. To make an update
request, the client first uses the ORB bound to a servant (i.e. object) that implements an
update service residing in the local node server. Upon receiving the client’s bind request,
the ORB locates the node server and obtains the reference to the update servant. When

the ORB successfully obtained a reference to the update servant, it returns the reference

CHAPTER 3. PATIENT LOCATION SYSTEM 27

ClENT e = = == o e e e e e e e e e

Update
metadata
request

Return reply
o request

Processing Processing

Node request reply
Server " e e e e e s e
Update Return reply
location to request
request .
Processing
Directory request
SerVer woee e e

Figure 3.2: The interaction between client, server, and directory server in PLS

back to the client and establishes a connection between the client and the servant. When
the client holds the reference, it invokes the methods implemented by the servant. The
servant then contacts the DBMS of the local DICOM database, which will then update
the metadata of a patient’s record on behalf of the servant. When the metadata of the
patient’s images is successfully stored in the local DICOM database, the update servant
generates an update request to the directory server. Upon receiving the servant’s request,
the directory server updates the location information (i.e. the network address of a node
where the DICOM database resides} of the patient and then sends a reply message back
to the servant. Finally, the servant processes the reply sent from the directory server and
subsequently sends its reply back to the client. The interaction between the client, server,
and the directory server is depicted in Figure 3.2'. The interaction between components
to perform lookup request is the same as the update request except that the client may
go to one or more nodes to request the metadata of a particular patient after receiving a

response from the local node server.

1For simplicity, the ORB, servant, and the DBMS are not shown in the figure.

CHAPTER 3. PATIENT LOCATION SYSTEM 28

Data Producers Data Producers Data Producers
{Imaging Modalities) {imaging Modalities) (imaging Modalities}

HDAS

. Hospital N
\ S
¥ - a
Display ¥ Display Display

Woerkstations Workstations Workstations

Data Consumers Data Consumers
(Healthcare professionals) {Healthcare professionals) ({Healthcare professionals)

Figure 3.3: Distributed PLS in HDAS

3.1.2 Distributed PLS Architecture

The distributed PLS is similar to the centralized PLS except that each processing node
maintains its own directory, which is subsequently replicated to other nodes to form a
system-wide directory service. In addition, each node has a directory server that per-
forms update and lookup operations on location information stored in the local directory.
Interactions between components are similar to that of the centralized PLS, with the only
difference being that the servants of a node server will contact its local directory server
to perform directory operations. Figure 3.3 shows the conceptual view of the distributed

PLS within the HDAS.

In addition to performing update and lookup operations, the directory server at each node

CHAPTER 3. PATIENT LOCATION SYSTEM 29

must update the replicated location information at other directory server nodes regularly
(i.e. an interval that is appropriate for system consolidation). The main purpose of repli-
cation is to improve the data availability, accessibility, and reliability of the distributed
PLS. There are many advantages to having data replicated at multiple nodes. These
include reducing single points of failure and protecting data against corruption as the
availability and the accessibility of data increase. Replication also increases the reliability
of the system because the PLS allows user access to data continuously even when some
of the nodes are not operational. Furthermore, local queries can be distributed to nearby
nodes to achieve better load balance, which in turn improves the overall performance
of the PLS. However, replication poses the problem of maintaining consistency among
replicated directories. This is because the content of an individual directory is changed
whenever an update (insertion, modification, and deletion) operation is performed on the
replicated data. Therefore, whenever an update operation is performed on any replica,
the update has to be propagated to all replicas to ensure global consistency across the

system.

To design an update propagation strategy for the distributed PLS, we need to specify
what data has to be transferred as an update (entire content or semantic), where update
propagation should be initiated (push or pull), and when an update needs to be trans-
mitted (immediate or eventual) [Gra96, Sai0l, Wie00]. In the distributed PLS, we adopt
the push-based and lazy replication approaches to apply updates among replicas across
the system. Push-based approach states that each replica (node) has the responsibility
for pushing pending updates to other replicas (nodes) [Sai0Ol]. Lazy replication focuses
on data availability and maintains a high degree of data accessibility. Lazy replication
allows temporary inconsistencies among replicas because of the assumption that all repli-

cas will eventually be updated. Therefore, whenever an update operation is performed

CHAPTER 3. PATIENT LOCATION SYSTEM 30

on any one of the replicas, the update operation is not propagated immediately to other
replicas. Instead, update operations are propagated to other replicas eventually to reflect

the changes [Gra96, Sai0l, Tan02, Wie00].

The propagation of update operation in the distributed PLS is done as follows: when-
ever a directory server receives an update request, it updates the local directory and
pushes the data to an update buffer. An update buffer is used to store new updates
(i.e. the patient identifiers). Each local directory server is required to propagate (push)
updates that are being stored in the buffer to other remote directory servers regularly
to reflect the changes. When a remote directory server has received the updates, these
updates are reflected in the local directory accordingly. This guarantees that all local di-
rectories (replicas) within the system will eventually become consistent. As this research
focuses on studying the performance of different PLS architectures, all components are
assumed within the distributed PLS so they are reachable and operational at the time the
performance simulation takes place. Therefore, issues related to recovery from network

partitioning, hardware or software failures are not addressed in this thesis.

3.2 Directory Models

A directory is a database, which stores information about objects that exist in a system.
A database is a structured collection of data related to those objects. Objects can be
virtually anything depending on the purpose of a database. For example, a database may
be created for storing information about employees in an organization. Information could
be a set of attributes (e.g. names, employee numbers, salaries, etc.) that can be used to
uniquely identify an employee. From the PLS perspective, objects are referred to patient

information stored in one or more DICOM databases located at different locations in

CHAPTER 3. PATIENT LOCATION SYSTEM 31

the hospital network. Data contained in a database are usually organized in way that
can be easily accessed, managed, and updated. There are many data models proposed
for organizing data in a database. The two most commonly used are the relational and

hierarchical tree data models.

In the relational data model, data are organized into one or more predefined tables called
relational tables. A relational table consists of one or more rows and columns. Each row
represents a unique instance of data for the attributes defined by the columns [OV91].
Relational tables are related through a set of attributes. In the hierarchical tree data
model, data are organized in a hierarchical tree structure. A hierarchical tree such as the
DIT described contains a collection of entries [Fit97, How95, How96]. Each entry rep-
resents some types of objects and is composed of one or more attributes. Each attribute
has a type and may have one or more associated values. The attribute type determines
the syntax of an attribute, which in turn determines how data will be compared with the
values contained in a query. A set of attributes is referred to an object class. An object
class controls a set of mandatory and optional attributes contained in an entry. An entry
type is used to determine which attributes are mandatory attributes and optional. En-
tries are typically arranged in the DIT follow a geographical and organizational structure

but is not limited to such an organization.

In the PLS, the DICOM database is created based on the relational data model and
implemented using IBM® DB2® EEE relational DBMS. A DICOM database stores the
metadata of patients’ images and their associated attributes. The database is designed
with an assumption that a master patient index mechanism already exists in the hospi-
tal network. Each DICOM database contains several relational tables, which includes a

patient table, a study table, and a series table. The patient table stores identifiers that

CHAPTER 3. PATIENT LOCATION SYSTEM 32

are used to uniquely identify patients in a hospital. A study table consists of identifiers
that uniquely identify a particular study of a patient. Finally, the series table contains

identifiers that uniquely identify a particular series of a study.

The PLS directory in turn stores the network addresses of machines where the DICOM
data for a particular patient exists. The PLS directory consists of patient and hospital
identifiers. Patient identifiers contained in the directory are used to link to the patient
table contained in a DICOM database. In the following sections, we present two PLS di-
rectory designs based on the relational and DIT hierarchical tree data models as described

previously.

3.2.1 Relational PLS Directory

The relational PLS directory contains one relational table called Host. The Host table
consists of two attributes: patient identifiers and hospital identifiers. A patient identifier
(PID) is a unique identification number generated by the master patient index mechanism
when a patient is registered at one of the hospitals interconnected to the hospital network.
A hospital identifier is a network address of a machine where the DICOM database resides.
The Host table has a relationship with the patient table of a DICOM database. PIDs
contained in the PLS directory are indexed to the PIDs contained in one or more DICOM
databases. The backend data store for the relational PLS directory is provided with the
IBM® DB2® EEE relational DBMS. A directory server interfaces with the DBMS when
performing directory operations on the relational PLS directory. Access to the relational
PLS is through the SQL query language. Figure 3.4 shows the entity-relationship of the
relational PLS directory and a DICOM database.

CHAPTER 3. PATIENT LOCATION SYSTEM 33

DICOM database PLS Directory
1 N
Patient has Host

1
@ Legend:
N Refationship

Entity

Series

oo

Attribute

Figure 3.4; An Entity-Relationship diagram of DICOM database and centralized PLS

directory

We assume that each hospital has a DICOM database that holds a metadata of patients’
images. When a patient has new images, the metadata of the images will be stored in the
DICOM database that resides at a hospital where the patient’s images are acquired. Fol-
lowing this, the PID of a patient along with the hospital identifier will be stored /updated
in the PLS directory. In this way, the PLS provides users {e.g. radiclogists) with fast
access to patient’s DICOM data even though some of the DICOM data might have been

stored in one or more DICOM databases at different hospitals.

3.2.2 Hierarchical PLS Directory

The hierarchical PLS directory is designed based on the DIT structure as described
previously. The hierarchical PLS directory consists of one or more entries. The top-level

entry contained in the PLS directory hierarchy is the root entry named Patient. The root

CHAPTER 3. PATIENT LOCATION SYSTEM 34

PID_1 attributes

o=Patient
Host_IP =
123.233.23.1,
123.161.22.34,
123.172.22.11
cn=PID_1 cn=PID_2 cn=PID_3 cn =PID_N

Host_IP =
123.161.22.34
123.172.22.11

PID_2 attributes

Figure 3.5: An organization of hierarchical PLS directory based on the DIT structure

entry always exists in the PLS directory hierarchy and is associated with one or more
entries. Each entry under the root entry represents a patient who has been registered
at a hospital interconnected to the hospital network. Each entry is uniquely identified
by a PID and consists of one or more attributes. Each attribute represents a hospital
identifier that indicates the location of a DICOM database. PIDs are indexed to the
PIDs contained in one or more DICOM databases. The update operation is similar to
the relational PLS directory except that when an entry for a particular patient already
exists in the hierarchy, the new hospital identifier is simply added to that entry as an

attribute. Figure 3.5 shows the hierarchical PLS directory.

The directory service for the hierarchical PLS directory is provided through a stand-
alone LDAP server called Slapd [Oag02]. Slapd is developed by the OpenLDAP® that
is aimed at supporting LDAP based directory service. According to the documentation,
Slapd can run on many different UNIX-like platforms and supports LDAP over both

IPv4 and IPvG protocols. The backend data store for the hierarchical PLS directory is

CHAPTER 3. PATIENT LOCATION SYSTEM 35

the Lightweight DBM called ldbm that is shipped with the OpenLDAP. Interfaces be-
tween the directory server and the Slapd are implemented using the Java API called Jave
Naming and Directory Interface (JNDI), which is aimed at supporting Java applications

to interface with a variety of naming and directory services [LS01].

This thesis focuses on studying the performance of a PLS when different architectures
and directory models applied to the implementation of the system. This is accomplished
to reveal the combined effect, the advantages, and the disadvantages of different system
designs. The PLS configurations under study include: centralized PLS architecture with
a relational directory (CPLS-R), centralized PLS architecture with a LDAP-based (i.e.
hierarchical) directory (CPLS-L), and distributed PLS architecture with a relational di-
rectory (DPLS-R). The end result of the performance study will be used to identify the
best PLS configuration that is suitable for implementing a patient locating mechanism

in a large-scale distributed hospital environment.

Chapter 4

The Implementation of PLS

Prototypes

This research focuses on studying and characterizing the performance of three different
PLS configurations: a centralized PLS architecture with a relational directory (CPLS-R)},
a centralized PLS architecture with a LDAP-based directory (CPLS-L), and a distributed
PLS architecture with a relational directory (DPLS-R). The performance evaluation of
various PLS configurations are measured in terms of system transaction response times
and throughput. To study the performance of these configurations, a simulation tool is
designed and implemented specifically for modeling the lookup and update operations

on patient data from digital imaging departments within a hospital environment.

In this chapter, we first provide the details of how clients are modeled within the PLS. We
then specify the functions of a node server and a directory server. Finally, we present the
implementation of a simulation tool that is designed specifically for simulating various

update and lookup requests in the PLS being tested.

36

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 37
4.1 The PLS Components

The PLS, whether it is centralized or distributed, is made up of several components,
which include clients, node servers, a directory server(s}), ORB, and a DBMS. Chapter
3 presented two PLS architectures and directory models, and discussed the interactions
between clients, node servers, and directory servers. This section provides details of how
clients are modeled to represent digital imaging modalities and radiologists in a radiology
department. We also describe the functions (i.e. services) provided by node servers and

directory servers that constitute the PLS.

4.1.1 The PLS Clients

In PLS, two types of clients are defined to emulate digital imaging modalities and the radi-
ologists of a radiology department in a hospital environment. Digital imaging modalities
and radiologists are modeled as data producers and consumers, respectively. Requests
from data producers and consumers are simulated based on typical work practices of
a radiology department described elsewhere [Lun99, WL01]. The radiology work prac-
ticed from the workflow perspective can be summarized as a sequence of generic activities
[WLO01]. These activities encompass a variety of services and functions provided by sev-
eral components in a hospital environment. These components include HIS, RIS, PACS,
and different types of digital imaging modalities that facilitate the overall patient exam-

ination and diagnosis process.

Lundberg [Lun99] described that for a particular patient examination, the sequence of
activities starts with a request sent from a department (e.g. clinical ward, outpatient
unit, etc.) to the radiology department. After receiving a request, a staff (i.e. secretary)

at the radiology department registers the examination request by entering the patient

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 38

information such as name, ID, date of birth, the name of referring clinician, type of
radiological study, etc. into the RIS database. The patient name and the ID are then
put into a work list to make it easier for a radiologist to identify a patient, fetch his/her
data, etc. Following this, the secretary schedules the examination by reserving an exam-
ination room for the patient according to the type of a study, a radiographer, etc. Exam
scheduling also triggers automatic prefetching of previous medical images that may be
relevant to the current study from the PACS long-term archive to be displayed at the
workstation for interpretation. Prefetching previous images usually occurs after midnight
the night before the study occurs. When the patient arrives at the examination room, the
radiographer positions the patient, calibrates the imaging modality (based on the type
of study) and then acquires images. When acquisition has finished, the newly acquired
images are directly stored into the PACS short-term archives using a standardized data

exchange protocol (e.g. DICOM).

In the diagnostic area, radiologists interpret patient studies by reading and comparing
new images with previous images (if available) in front of a group of display worksta-
tions. In general, a radiologist starts diagnosis by first clicking the patient name in the
work list and checks the name and ID provided in a written request list. Following this,
the diagnostic process starts including fetching patient’s data, reading and/or comparing
images, efc. After the diagnosis has finished interpretation, a report of a given patient
is transcribed. The radiologist “signs off” the transcribed report, which subsequently
returns to the requesting department. The radiologist starts a new diagnosis process by
clicking a patient name in the work list and a sequence of activities described previously
starts again. Based on the workflow aspect of a radiology department, the clients: data

producers and data consumers of PLS are modeled as described below.

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 39

Sends performance Yes No
information to the

Wait (system Gets a PID from

Y

local node scheduler calibration time}) the list
A 4
Gets a response Sends a patient Generates study
from < record 10 the local « UIDs and series
a node server node server UIDs for the PID

Figure 4.1: A data producer process

4,1.1.1 Data Producers

Figure 4.1 shows a data producer process that emulates an imaging modality in a hospital
environment. Data producers are used to simulate update requests within a PLS. Each
data producer is responsible for generating a set of metadata associated with each PID to
be stored by a node server on its local DICOM database. We refer to the set of metadata
associated with a PID as a patient record. Each patient record may have one or more
unique identifiers called study UIDs. A study UID is used to identify a patient’s study
for a given examination. Each study may contain one or more series identified by a set
of unqiue identifiers called series UIDs. A series UID is used to identify a series of study
UID. A series contains a set of images of a patient. In PLS performance simulations,
a data producer only generates a set of study UIDs and series UIDs for each patient
record without any medical image. The total number of patient records generated by
each producer varies, depending on how patients (i.e. PIDs) are being distributed across
the hospital network. An update operation from a data producer is accomplished as

follows: when a data producer has generated a record of a given PID, it sends an update

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 40

Gels a list of PiDs
Start from lecal node
server

Sends performance Yes No
infermalicn to local
node scheduler

Think and selecls a
PiD from the fist

Yes

No
End ofPID ?

k. h 4

Gets a list of study UIDs 12:!1!;‘35 nad G?{:?oi:]c;ﬁfg:\on
£nd of this No associaled with the PID |«) ‘— . "
» location ? from DICOM dalabase [ocal:on' from associaled wilh
ocalion ¢ the tist the PID
A 4
Think and selecls Gets a lisi of series Think and selecis
serigs UIDs from € UIDs associated [« a study UID from (<
the series list wilh the study UID the studies list

Figure 4.2: A data consumer process

request to its local node server. The local node server performs an update operation on its
local DICOM database and then sends an update request to the directory server. Upon
receiving the node server’s request, a directory server updates the location information

of the DICOM database where the metadata of the patient resides.

4,1.1.2 Data Consumers

Figure 4.2 shows a data consumer process representing a radiologist who accesses a
patient’s record by issuing a sequence of lookup requests to the local node server. A data
consumer accesses particular patient’s record as follows: a data consumer first generates a
lookup request to a local server to obtain a list of all available PIDs. The node server will

then issue a lookup request to the directory server, which performs a lookup operation

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 41

on the directory and returns a list of all PIDs to the node server. When the node server
has received a list of PIDs, it returns the list to the data consumer. The data consumer
then selects a PID from the list and sends a location lookup request to the local node
server. When the local server receives a PID from the data consumer, it sends a location
lookup request to the directory server. The directory server performs a location lookup
operation on the directory and returns a list of locations to the node server. The list
contains locations where associated DICOM databases can be found. The node server
returns the list of locations from the directory server to the data consumer. Finally,
the data consumer selects some studies (i.e. study UIDs) and series (i.e. series UlDs)

associated with a given PID from one or more locations contained in the list.

4.1.2 The PLS Servers

The PLS consists of two types of servers: node servers and directory server(s). Each
processing node (i.e. site) has a node server that is responsible for performing operations
on the metadata stored in its local DICOM database that is requesting services from a
directory server when needed. A directory server is responsible for managing a directory

and performing lookup and update operations on the directory.

4.1.2.1 Node Servers

A node server process is responsible for performing lookup and update operations on
metadata stored in local DICOM database. When a node server starts, it registers its
services (lookup and update implementations) with a directory service provided from the
VisiBroker® through the ORB and waits for client requests. A node server also acts as
a client which requests services from a directory server on behalf of a data producer or

consumer when needed.

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 42

4.1.2.2 Directory Servers

A directory server is a process that performs update and lookup operations on the in-
formation contained in the directory. When performing update/lookup operations, a
directory server interfaces with a relational DBMS where the relational directory model
is used. A directory server interfaces with Slapd (a stand-alone LDAP server) to perform
update/lookup operations when the hierarhical (i.e. LDAP-based) directory is used. In
the distributed PLS, a directory server is also required to replicate its local directory
information to other remote directory servers regularly so each directory server is aware

of all patients and the locations of patients’ metadata within the distributed PLS.

Performance metrics are measured and collected at the client side of a PLS when during
the performance simulations. The tool for simulating clients and collecting these metrics

is described in the next section.

4.2 Simulation Tool

Different PLS configurations are simulated and the performance characteristics of these
configurations are collected using a simulation tool. The simulation tool is designed
specifically for simulating update and lookup requests issued by varying the number of
data producers and consumers within the PLS under test. The simulation tool consists
of several modules: a graphical user interface (GUI), a master scheduler, and a group
of node schedulers. These modules are provided for setting up simulation parameters,
delivering parameters to each processing node, and collecting performance characteristics

at each processing node in an experiment.

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 43

—Tési Type Chosser=

‘Select one of the follouing types to siwiiate test .

‘Tsslfy‘ps uptiunis:-_:--f L TR T
 Simiale Data Consomers Only
: - Simpla%eDalai’roéil;e{spnt; Lo e

- Simulite o Data Consumers arig Dala Producers”

; Howfn;n'fgm'gsfo‘rlhis}ypa‘oft's's!‘ e Iit{ R

Figure 4.3: A selection frame for defining a simulation type

4.2.1 Graphical User Interface

A graphical user interface (GUI) is the entry point of a PLS simulation. The GUI only
occurs at one of the processing nodes within a PLS and provides a variety of options to
define a set of simulation parameters for an experiment. Options are contained in several
input frames including a selection frame and two parameter frames. These frames are
used to define the type of events (i.e. update and/or lookup events) to be simulated
in a particular simulation, provide options to setup a set of simulation parameters, and

validate those parameters for each simulation.

4.2.1.1 A Selection Frame

A selection frame (see Figure 4.3) is provided to define what type of events (update

and/or lookup requests) are to be simulated at each processing node within a PLS. It

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 44

‘Data’Consumers Tesl™

FAll'in the FLelds bilou Co 34t the paraneters for this i

t'l-;';amsiegs_' i e
i’f{bmb‘éf_of dsta consumers aleachnede o T
‘Numbgréfpaﬁenls;upsu_medj:é;esc}l cqﬁ;uggr: s
:Nuﬂ’i.!?érB!EXiI’n;Epﬁspfﬁﬁ‘d_péi.piiiiéﬁél‘: :
1 Nuriber of serios con#uinedéeréxa:ﬁ:‘

“Peicentags oflacalsceess per dets consumar: -7

Percénfagaofremol access par datacosumers /.

Figure 4.4: A parameter frame for setting up lookup request simulation

also defines how many repeated experiments will be performed with the same set of input
parameters. The selection frame provides three simulation options, which include: data
consumers (simulate lookup requests only), data producers (simulate update requests
only), and data consumers and producers (simulate update and lookup requests). Once
the type of a simulation is determined, a corresponding parameter frame appears to

define a set of input parameters for a simulation.

4.2.1.2 A Parameter Frame for Simulating Lookup Requests

A parameter frame shown in Figure 4.4 is provided to define a set of parameters for
simulating lookup requests (data consumers) to a PLS. This parameter frame contains
a set of input fields for specifying how many data consumers will be invoked at each

processing node within the PLS, the total number of patient records (i.e. PIDs) to

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 45

be requested by each data consumer, the total number of studies (i.e. study UIDs}
contained in a patient record, and the total number of series (i.e. series UIDs) contained
in a study. It also provides options to specify the percentage of local and remote patient
records consumed by each data consumer to capture the event when a patient may
have several records at one or several processing nodes. We consider a data consumer’s
request local when all metadata associated with a given PID is stored at only one location
and that location is the same as where the data consumer currently resided. Although
the percentage of local and remote requests is defined for each data consumer before a
simulation, the total number of local and remote is automatically adjusted in some cases.
This occurs may be due to the total number of PIDs is not an integer and/or remote
requests defined for each data consumer is less than one. For example, assume that
each data consumer requests five patient records and the percentage of local and remote
requests defined for each data consumer is 90 and 10 percent, respectively. Based on the
defined local and remote request ratios, each consumer will consume 4.5 PIDs locally and
0.5 PIDs remotely. Since the total number of PIDs for remote requests is not an integer,
the total number of remote requests is automatically rounded to the nearest integer when
defining testing parameters for the simulation. In addition, each data consumer should go
to at least one remote site(s) to obtain patient’s data to address the fact that requested
patient data may not available locally. Therefore, in this example, when a simulation
starts, each data consumer will randomly select four patient records from its local node

server and one patient record from a remote node(s).

4.2.1.3 A Parameter Frame for Simulating Update Requests

Figure 4.5 shows a parameter frame for defining a set of simulation parameters for sim-
ulating update requests (data producers) to a PLS system. This frame contains a set of

input fields for specifying how many data producers will be invoked at each processing

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 46

Data Prodtceis Test

Fill'in the :figld: he10§ bo aé;:l;h;‘:x‘p:y:ﬁmp parsasters

Paramieleis o S SR]
héqrhbe:o[da!aipmﬁﬁce«s sl esch node Br e T
; Tolal‘numbémfpaﬁen!sgeﬁ’emkd umpéﬂr:; ! 4100

: ‘R@iriqb;faféﬁmspgréach%éﬁenﬁ‘ . 120 o

Nuriber of serias pereachexami: L0000

diNemaDiagam - m
[D T T

S Bﬁ;ho . ‘:% :‘,
A

CTelalion %

Figure 4.5: A parameter frame for setting up update request simulation

node within the PLS. It also defines the total number of patient records (i.e. PIDs)
that will be generated globally by the total number of data producers within a PLS.
Additionally, it defines the total number of studies (i.e. study UIDs) contained in each
patient record and the total number of series (i.e. series UIDs) contained in each study.
Moreover, an option is provided to adjust patient distribution across multiple processing
nodes to address the event where patients utilize services at several different hospitals.
To illustrate this option, assume a PLS only consists of three processing nodes intercon-
nected to share patient data. By using a Venn diagram, the total number of patients in a

hospital environment will be distributed to seven different areas as shown in Figure 4.6.

For a particular simulation “X” patients (i.e. PIDs) may be distributed among three

processing nodes as follows:

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 47

Node 2

An area represents all studies
associated with a patient are
generated and stored at Node 1.

— An area reprasents 34% of a patient's
studies is generated and stored at
Node 1, 33% of the patient's studies is
generated and stored at Node 2, and
33% of the patient's studies is
generated and stored at Node 3.

An area represents 50% of a patient's
studies is generated and stored at
Node 1 and 50% of the patient's Node 3
studies is generated and stored at
Node 3

Figure 4.6: Patient distributions represented in a Venn diagram

¢ Distribute 25% of the total patients to areas labeled as R1 and R3.

¢ Distribute 156% of the total patients to area labeled as R7.

¢ Distribute 10% of the total patients to areas labeled as R2, R4, and R6.
e Distribute 5% of the total patients to area labeled as R5.

Assume that parameters for simulation “X” are being defined as follows:

¢ Total number of data producers will be invoked at each node: 20 data produc-

ers/node

Total number of patient records will be generated globally: 100 patient records.

Total number of studies per each patient records: 20 studies/patient

Total number of series per each study: 5 series/study
Patient Distribution: R1=25%, R2=25%, R3=15%, R4=10%, R5=10%, R6=10%,
R7=5%

Thus, a set of parameters to be delivered to each processing node within a PLS for a

simulation “X” will be the parameters illustrated in Table 4.1 and Table 4.2.

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 48
Table 4.1: An example of patient distribution defined for simulation “X”

Nede No. of PIDs No. of PIDs No. of PIDs No. of PIDs No. of PIDs No. of PIDs No. of PIDs Total No. of
distributed distributed distributed distributed distributed distributed distributed PIDs will be
to Ri te R2 to R3 to R4 to R5 to R6 to RY generated at

cach node

1 25 10 10 5 50

2 25 10 10 5 50

3 15 10 10 bt 45

Table 4.2: An example of studies distribution defined for simulation “X”

Node Ne. of No. of No. of No. of No. of No. of No. of Totat No. of
studies studies studies studies studies studies studics studies witt
distributed distributed distributed distributed distributed distributed distributed be
to R1 to R2 to R3 to R4 to R5 to R6 to R7 generated at

each node

1 500 100 100 35 735

2 500 100 100 35 735

3 300 100 100 30 530

Once a set of simulation parameters have been defined for each processing node, the

GUI invokes a master scheduler.

A master scheduler will then deliver the simulation

parameters to each processing node within a PLS. Upon receiving a set of simulation

parameters from the master scheduler, a node scheduler at each processing node will

further distribute the parameters (number of PIDs and study UIDs) among a group of

data producers.

4,2,1.4 Master Scheduler

The master scheduler shown in Figure 4.7 is a component embedded in the GUI. It con-

trols each simulation and is responsible for delivering simulation parameters assigned by

CHAPTER 4. THE IMPLEMENTATION OF PLS PROTOTYPES 49

Delivers simuiation
parameters {0
processing nodes

Is simulation
finished?

Result handier
is
Invoked?

parameters have
been setup at all
processing nodes

Yes

Invokes result
nandler

Stere results

3

Ciear &!l databases
and directories

No
' Starts simulation
Are_z :_;1II nodes at each processing
finished?
node

Yes

Figure 4.7: A master scheduler process

the GUI to each processing node within the PLS. Once parameters have been setup at
each node, it instructs the node scheduler at each node to invoke a group of clients (data
consumers and/or data producers) according to the assigned parameters. It also collects

results from each node scheduler.

4.2.2 Node Schedulers

Bach processing node has a scheduler responsible for invoking a group of clients to sim-
ulate update and/or lookup requests to the node server based on the simulation param-
eters. A node scheduler returns the performance information to the master scheduler

when all of its clients have finished their assigned tasks.

Chapter 5

Performance Study

This research focuses on studying the performance of different PLS configurations to
reveal the advantages and disadvantages of different system designs. The end result of
this study will be used to identify the best PLS configuration that is suitable for imple-
menting a patient locating mechanism in a large-scale distributed hospital environment.
Three PLS prototypes were implemented and tested under various loads to study their
performance. The PLS performance characteristics are captured by varying the update
and/or lookup requests (i.e. different number of data producers and consumers) to the
system. The performance of each PLS configuration is measured in terms of two perfor-
mance metrics: transaction response times and throughput. In this chapter, we first give
the definitions of the two performance metrics. We then describe the performance study
methodology. Finally, we present the experimental results of different PLS prototypes
and analyze the results by comparing their performance in terms of transaction response

times and throughput.

5.1 Performance Metrices

The performance of a PLS is measured in term of system transaction response time and

throughput. These performance metrics are commonly used to measure the quality of

50

CHAPTER 5. PERFORMANCE STUDY 51

a system in a complex environment where a mixture of read and write transactions are
intensive [TPCO02]. The transaction response time of a PLS is critical because it indi-
cates the waiting time the client expects when requesting service from the PLS. In the
hospital environment, the PLS must be able to locate the patient’s data quickly because
radiologists are often expecting medical images to be made available almost instantly
and to be accessible at all times, wherever and whenever necessary to facilitate their
diagnostic process. In addition to this requirement, the growing role of PACS in the
healthcare domain suggests that the PLS must be able to handle large numbers of user
requests from other components within the hospital network. For these reasons, the PLS,
no matter if it is centralized or distributed, must be able to provide services to its clients
with low response time and be capable of handling extensive load without substantial
degradation in system throughput. The definitions of a transaction response time and

throughput used in this thesis are given in the following sections.

5.1.1 Transaction Response Time

As discussed in Section 4.1.1.1 and 4.1.1.2, a client’s request (update or lookup) involves
sending a request to a node server who performs operations on its local DICOM database.
In some cases, a node server acts as a client that requests service(s) from a directory server
when the client’s request involves an update or lookup operation on the directory. Upon
receiving a request from a node server, a directory server performs operations on the
directory and returns a reply to the node server. Finally, the node server processes the
directory server’s reply and then sends its reply back to the client. Thus, a request from
a client (i.e. data consumer or producer) initiates a sequence of messages transmitting
between a client and a node server and/or a directory server. The client’s request also

initiates one or more operations performed by a node server and/or a directory server.

CHAPTER 5. PERFORMANCE STUDY 52

The term transaction defined in this thesis is a request initiated by a data producer
or a data consumer that generates one or more update and/or lookup operations on a
database/directory. An update request issued by a data producer consists of updating
the metadata of a patient record. The metadata consists of a PID, a set of study UlDs
for the PID, and a set of series UIDs of each study UID. An update request from a data
producer also initiates an update request from a node server to the directory server. The
update request from a node server to the directory server includes updating the PID of a
patient record and the location where the metadata of a PID has been stored. A lookup
request issued by a data consumer includes one or more read operations performed on a
database and/or directory. As illustrated in Figure 4.2, there are many types of lookup
requests. These include retrieving a list of available PIDs (i.e. get-patients-list), get a list
of study UIDs associated with a given PID (i.e. get-studies-list), get a list of series UIDs
associated with a given study UID (i.e. get-series-list), and get a list of locations where
the metadata of a PID can be found (i.e. get-hosts-list). Similar to the update request,
a lookup request such as get-PIDs-list and get-hosts-list also initiates a lookup request
sent from a node server to the directory server. Therefore, a reply from a node server to
the client’s request (i.e. update request, get-PIDs-list, or get-hosts-list) depends on the
reply sent from a directory server. A iransaction response time (TRT) is the amount of

time required to perform a client’s transaction.

The TRT indicates the time a client expects to wait when requesting a service from
a server. Clients of a node server are data consumers and data producers. Clients of
a directory server are node servers residing at different processing nodes. The TRT is
similar to the transaction response time defined by Transaction Processing Performance
Council et al. [TPC02] except that the TRT defined in this thesis encompasses two main

parts: communication time {CT) and processing time (PT) per request. The reason is

CHAPTER 5. PERFORMANCE STUDY

Table 5.1: The definitions of transaction response time

Performance Metrics

Descriptions

Client/Node Server
(CSCT)

communication

time

The amount of time spent on transmitting a
request and response between a client and a

node server.

(SDCT)

Node Server/Directory communication time

The amount of time spent on transmitting a
request and response between a node server

and a directory server.

Node Server processing time (NSPT)

The amount of time a node server spent on
performing update or query operations on lo-
cal DICOM database. This time may include
the amount of time spent on processing a re-
sponse from a directory server when directory

operation(s) is involved.

Directory Server processing time (DSPT)

The amount of time a directory server spent
on performing update or lockup operation(s)

on the directory.

{(TRT-NS)

Transaction response time - Node Server

Sum of SDCT and DSPT

Transaction response time - Client (TRT-C)

Sum of CSCT and NSPT or Sum of CSCT,
NSPT, and TRT-NS

53

to identify the limiting factor(s) of a PLS. The CT is the time used for transmitting

a request/respond between a client (i.e. a data consumer, a data producer, or a node

server) and a server (i.e. a node server or a directory server). The PT is the time a server

(i.e. a node server or a directory server) uses to perform update or lookup operations

on the database/directory. These metrics are summarized in Table 5.1 and illustrated in

Figure 5.1.

CHAPTER 5. PERFORMANCE STUDY 54

ClEM s — = - = - oo o oo o e —

CSCT dor CSCT for
transmitting a NSPT fPf NSPT for transmitting a
request processing processing respond
request from a respond from a
Node client directory server
T e
SDCT for SDCT for
processing a
Directory fequest
Server T e

Figure 5.1: The PLS transaction response times collected at different layers

5.1.2 Throughput

Figure 4.1 and 4.2 illustrate requests issued by each client (data consumer or data pro-
ducer) in a well structured way that emulates the behaviour of radiologist or imaging
modality in the healthcare domain. The request pattern of each client consists of sending
a request to a node server followed by a sleep phase in a range between 5 and 15 seconds.
The sleep phase incorporated between the completion of one request and the submission
of the next takes into account the dynamic data access behaviour of a radiologist (i.e.
data consumer) or the time spent on calibrating a modality (i.e. data producer) for each
patient’s examination. Instead of measuring a transaction execution rate, the through-
put of a PLS measures how many data consumer and/or data producer routines can be
handled by a PLS per hour with each imaging modality (or radiologist) has a request
pattern similiar to the one shown in Figure 4.1 (or 4.2). Parham [Par00] states that
“When examining PACS systems it is important to look closely at how fast the system
under consideration allows the radiologists to step through the typical workflow process”.

As such, the throughput of a PLS is collected by measuring the total number of clients

CHAPTER 5. PERFORMANCE STUDY 55

existing in a processing node of the PLS divided by the total elapsed time those clients

spent on updating or looking up patient records.

5.2 Study Methodology

The PLS configurations under study are: centralized PLS architecture with a relational
directory (CPLS-R), centralized PLS architecture with a LDAP-based (i.e. hierarchi-
cal) directory (CPLS-L), and distributed PLS architecture with a relational directory
(DPLS-R). The difference between the CPLS-R and CPLS-L is the database model used
for implementing the directory. The difference between the CPLS-R and DPLS-R is the
way the directory service is implemented. This thesis compares the performance of differ-
ent PLS designs from two perspectives: the architecture and the directory designs. Thus,
PLS configurations are compared from two standpoints: (1) the same PLS architecture
with different directory designs; and (2) different architectures with the same directory

design.

5.2.1 Simulation Types

The TRTs and throughput of a PLS configuration were captured by a set of simulations.
In the simulations, two parameters: the total number of participating data consumers
and/or data producers that represent different lookup/update loads in a PLS are varied.
For each simulation, the experiment is repeated 10 times. Each simulation is classified
as one of the three simulation types. Simulation types are defined according to the

database/directory operations and are described as follows:

¢ Lookup-only simulations (LO): simulations contain varying number of lookup op-

CHAPTER 5. PERFORMANCE STUDY 56

erations in the PLS being tested. A simulation of this type does not consist of
any update operation. Each simulation consists of the same number of data con-
sumers invoked at each processing node existing in the PLS. Data consumers are
used to simulate lookup requests on DICOM databases and directory/directories.
The number of data consumers participated in a simulation is varied from one
simulation to another simulation.

o Update-only simulations (UO): simulations contain varying number of update op-
erations in the PLS being tested. A simulation of this type does not consist of any
lookup operation. Each simulation consists of the same number of data produec-
ers invoked at each processing node existing in the PLS. Data producers are used
to simulate update requests on DICOM databases and divectory/dirvectories. The
number of data producers participated in a simulation is varied from one simulation
to another simulation.

o Lookup and Update simulations (LUY}: simulations contain varying number of lookup
and update operations in the PLS being tested. Each simulation consists of the
same number of data consumers and producers at each processing node existing
in the PLS. Data consumers and producers are used to simulate variable lookup
and update requests on DICOM databases and directory/directories. The number
of data consumers and producers participated in a simulation is varied from one

simulation to another.

5.2.2 Hardware and Software Configurations

Three workstations (i.e. processing nodes) are used to implement and study the per-
formance of PLS prototypes. The reason for using three processing nodes is to simulate

typical work practices of radiology departments across three major hospitals in Winnipeg

CHAPTER 5. PERFORMANCE STUDY 57

health region. Therefore, each PLS configuration is studied on three different nodes,
which represent the three major hospitals in the Winnipeg health region. We anticipated
that the results of the performance study can provide an estimate on the performance of
the PLS for the entire Winnipeg health region. All processing nodes with approximately
the same hardware and software configurations (see Table 5.2). Processing nodes are
interconnected by means of a dedicated 100 Mbits/sec Ethernet to eliminate any “noise”
that may be caused by other applications. Each processing node has VisiBroker® for
Java (i.e. ORB product), IBM® DB2® EEE relational DBMS version 7.2, and a stand-

alone LDAP server (i.e. Slapd).

Table 5.2: Hardware/software configurations of processing nodes for PLS simulations

Hardware/software | Node 1 Node 2 Node 3

Central processing unit (CPU) Pentium III Pentium III Pentium III

CPU speed 500 MHz 450 MHz 600 MHz

Total physical memory (RAM) 192 MByte 256 MByte 192 MByte
Operating system Red Hat Linux 7.0 | Red Hat Linux 7.0 | Red Hat Linux 7.0

One node server and the same number of clients are invoked at each processing node
when a simulation is executed. At each processing node, clients and a node server are
concurrently running on the same node. In addition, the ORB'’s directory service called
“osagent” is also invoked at each processing node to locate, register, and un-register
services {i.e. lookup, update, and replication services) provided from node servers and
directory server(s)!. When a server (i.e. a node server or a directory server) starts; the

server’s ORB first locates an osagent through a User Datagram Protocol (UDP) broadcast

1VisiBroker® also provides a Naming Service for registering and locating object implementations

CHAPTER 5. PERFORMANCE STUDY 58

message” and then registers the server’s services with the osagent. When a client makes
a request, the client’s ORB contacts the osagent to locate the desired service. According
to VisiBroker® documentation, if more than one osagent running on different hosts (i.e.
computers) in the client’s local network, the first osagent response to the ORB’s UDP

message is used to obtain server’s object references.

In the case of centralized PLS configurations (i.e., the CPLS-R and CPLS-L) only one
directory server is invoked at one of the processing nodes. While, in DPLS-R configura-
tion, each processing node has a directory server running on it. In CPLS-L configuration,
the Slapd LDAP server is also running on a node where the directory server is invoked.
Testing parameters for each simulation are defined by means of a simulation tool. The
simulation tool occurs at one of the processing nodes to input a set of parameters for each
simulation, deliver inputs to each processing node, and receive results from those nodes.
Each processing node has a node scheduler responsible for receiving a set of simulation

parameters assigned and distributed by the master scheduler.

5.2.3 Simulation Procedures

The procedures for setting up a simulation to collect the performance measures of the
CPLS-R configuration is as follows: a node scheduler, a node server, and an osagent are
started at each processing node (i.e. processing node 1, 2, and 3). A directory server
and the simulation tool are started at processing node 3. When all components {ex-

cepts the clients) are started, a set of simulation parameters is entered into a simulation

2The UDP broadcast scheme is the default scheme for locating osagents in the network. An alternative
approach can also be used to locate osagents. This includes configuring the IP address of an osagent as
a runtime parameter, system’s environment variable, or in a file,

CHAPTER 5. PERFORMANCE STUDY 59

tool according to the selected simulation type (i.e. LO, UO, or LU). The simulation
parameters for each processing node is assigned and distributed by a master scheduler
to each node scheduler. The tasks assigned to an individual client (a data consumer or
data producer) are allocated based on a subset of simulation parameters assigned by its
local node scheduler. When all parameters are set at each processing node, the master

scheduler instructs each node scheduler to start a simulation.

When a node scheduler receives the master scheduler’s instruction, it generates a set of
clients by spawning threads according to the defined simulation type and parameters. In
each request, a client captures the performance metrics (i.e. the TRT-C and throughput)
when it has received the node server’s response. A node server captures the TRTs-NS
when making a request from a directory server. Each client sends a notification to the
node scheduler when all of its tasks have finished. A client’s notification contains the
total elapsed time and a set of TRTs (i.e. a set of TRT-C and TRT-NS) collected when
performing the assigned tasks. When a node scheduler received notifications from all of
its local clients, it sends the average TRTs and throughput to the master scheduler. A
new experiment starts when the master scheduler recorded the average TRTs and the
throughput of the current experiment from all of the node schedulers. A simulation is

stopped when all of the experiments have finished.

Figure 5.2 illustrates the interactions between the GUI, the master scheduler, node sched-
ulers, node servers, and a directory server when experimented with the centralized PLS
architecture. Figure 5.2 also indicates the locations where the performance metrics were
collected during the simulation. This model is also used for testing the distributed PLS
architecture except that a directory server is invoked at every processing node. The

procedures for setting up a simulation to collect the performance metrics of the CPLS-L

CHAPTER 5. PERFORMANCE STUDY 60

Legend

Cij - Data consumer or Data producer
Gur TRTs-C - TRTs measured at client's side
’ TRTs-NS - TRTs measured at node server's side

¥

Aggregale resuits ' Master
from all nodes Scheduleri
\
\\\
—_—
—_ T ey :
Aggregate TRTsand | Node | Node | Node !
Throughtput from clients Scheduler | Schedulerzj Scheduler , ;

Measure and collect
TRTs-C and /C c
throughtput \“j ‘\ 2 4

Measure and collect
TRTs-NS

s SN, SSS Y
| Directory |
| Server |

Figure 5.2: A conception view of the simulation model when testing centralized PLS

architecture.

configuration is similar to the CPLS-R except that the Slapd LDAP server is also in-
voked at processing node 3. The difference between the CPLS-R and DPLS-R is that a

directory server is invoked at every processing node.

5.2.4 Assumptions

The main purpose of this study is to find the optimal PLS configuration by compar-
ing the system performance, thus, all components at each processing node are assumed
operational in the PLS being tested. Therefore, issue related to recovery from hard-

ware/software failures and network partitioning is not considered in this study. In addi-

CHAPTER 5. PERFORMANCE STUDY 61

tion, clients (i.e. data consumers and producers) invoked at a specific node only contact
its local node server when performing requests such as update patient records, get PIDs
lists, and get host lists. In some cases, a data consumer will contact other remote node
server(s) to get a list of study UIDs for a PID and a set of series UIDs for a specific
study UID when the location(s) of the metadata is identified. Each PID is unique and
used to identify a patient existing in the PLS. The total number of PIDs and the PIDs
distributed among the processing nodes are fixed in all simulations. The portion of the
total PIDs distributed to processing node 1 and 3 are the same, while processing node 2
has fewer PIDs compared to node 1 and 3. The reason is to take into account that some

hospitals may have more patients than the others for various reasons.

5.2.5 Simulation Parameters

The dependent parameters of each simulation are TRTs and throughput. The indepen-
dent parameter(s) for the LO type simulations is/are the number of data consumers
invoked at each processing node. While the independent parameter for the UO type sim-
ulations is the number of data producers invoked at each processing node. Finally, the
independent parameter for the LU simulations is the number of data consumers and pro-
ducers invoked at each processing node. According to Mr. Sergio Camorlinga at SBRC,
radiologists usually work in a group of 5 to 10 in the department and there are 3 to 5
imaging devices per modality type. For example, there are about 11 different types of
imaging modalities currently installed at St. Boniface General Hospital. Therefore, the
independent parameter (i.e. data consumer or producer) is varied in the range between

5 and 50 clients in this study.

Parameters defined for the LO type simulations are as follows:

CHAPTER 5. PERFORMANCE STUDY 62

o Number of PIDs consumed by each data consumer: 10 PIDs

e Number of study UIDs consumed per each PID: 5 study UIDs

Number of series UIDs consumed per each study UID: 5 series UIDs

Percentage of PIDs consumed at a single node (local): 90%

Percentage of PIDs consumed at multiple nodes (remote): 10%
Parameters defined for the UO type simulations are as follows:

o Number of PIDs generated globally for each experiment: 100 PIDs

o Number of study UlDs associated with each PID: 10 study UIDs

¢ Number of series UIDs associated with each study UID: 10 series UIDs

PIDs Distribution: R1=256%, R2=25%, R3=15%, R4=10%, R5=10%, R6=10%,

R7=5% of the total PIDs

For each LO simulation, the percentage of local and remote requests defined for each data
consumer is 90 and 10 percent, respectively. The values of these two parameters consid-
ered for the simulations are based on the statistics (i.e., radiologists accessing patients’
data locally as well as globally) given by Dr. Blake McClarty at SBRC. Parameters de-
fined for the LU type simulations are the combination of parameters defined for the LO
and UO types. In addition, a set of PIDs and its distribution are predefined following
the UO type simulations before the LO type simulations take place. In the simulations,
patient distribution (i.e. PIDs) is fixed in each PLS configuration. When testing the

DPLS-R configuration, the replication time is set to two minutes between replications.

5.3 Experimental Results and Analysis

All simulations are performed to capture the TRTs and the throughput of different PLS

prototypes. As described in Section 5.1.1, a reply from a node server to a client’s request

CHAPTER 5. PERFORMANCE STUDY 63

such as to update a patient record, get-PIDs-list, or get-hosts-list is dependent on the
reply sent from a directory server to a node server. Therefore, the performance of differ-
ent PLS configurations (i.e. CPLS-R, CPLS-L, and DPLS-R) is compared based on the
TRT-NS and throughput.

5.3.1 A Performance Study on CPLS-R and CPLS-L Configu-
rations

This section presents the performance comparison between the CPLS-R and CPLS-L
configurations. Both configurations used the centralized architecture but differ in the
database model used for implementing the directory. The performance study of these
two configurations is therefore based on their processing time (i.e. DSPT) for han-
dling clients’ lookup and/or update requests. Section 5.3.1.1 through 5.3.1.3 present the
DSPTs of the two configurations collected during the LO, UO, and LU simulations. The

throughputs of the two configurations are presented in Section 5.3.1.4.

5.3.1.1 Interactions Involve Lookup-only Operations

Figure 5.3 shows the DSPTs for the CPLS-R. and CPLS-L configurations when systems
only involve data consumer interactions. Recall that when a data consumer at a spe-
cific processing node looks up the location information of the metadata of a patient
(i.e. PID), the node server issues lookup requests to the directory server. The DSPTs
presented in Figure 5.3 measure the CPLS-R and CPLS-L configurations when handling
data consumers’ lookup requests on the locations of patients’ metadata (i.e. get-hosts-list
requests). The DSPTs of the two configurations are collected during the LO simulations.
In the figure, each value on the horizontal axis corresponds to the number of concurrent

data consumers invoked at each processing node. The vertical axis shows the average

CHAPTER 5. PERFORMANCE STUDY 64

¢.03 T T T T T T

s

0.025

g

=

[N
T
1

CPLS-R
cALS-L b

DSPT per request [second]
s 2
2 @

0.005 -

0 1 I 1 L I I
0 10 20 30 40 50 60 70

Number of data consumers

Figure 5.3: The DSPTs of the CPLS-R and CPLS-L for handling “get-hosts-list” requests
in LO simulations

time® (measured in second) per request when a system handling data consumers’ get-
hosts-list requests. The vertical bars at each value in a figure represents the confidence

interval that ranges from x-¢ to x+o.

The DSPTs shown in Figure 5.3 indicate the CPLS-L configuration offers a better per-
formance than the CPLS-R when processing “get-hosts-list” lookup operations on the
directory. Both configurations performed well and no significant performance degrada-
tion is observed as the number of concurrent data consumers increases in the system. In
the range of 5 to 50 data consumers existing at each processing node, the mean DSPT of
the CPLS-L is about 10 milliseconds per each get-hosts-list request with variance around

0.13 microseconds. In the same range, the mena DSPT of the CPLS-R is approximately

3Time is calculated by summing the times reported by all processing nodes divided by the total
number of directory server existing in the system.

CHAPTER 5. PERFORMANCE STUDY 65

0.2 ¥ T T T

e
=
T
L

o
o
T
i

o
L
1

o

S

o
1.

o

(=3

o
T

DSPT per request [second]
< - ¢
Il

<
f=
(=)

o
—o—
——

—a—i
o
;
I—-C}—(
—i—
=2l
——
o)
)
r
¢
s

o

(=]

=
T

o
&
N
:
o
o
=
i
b
i3

(=]

1
[} 10 20 30 40 50 60 70
Number of data producers

Figure 5.4: The DSPTs of the CPLS-R and CPLS-L for handling update requests in UO
simulations

12 milliseconds per get-hosts-list request with variance around 0.03 microseconds. For 5
to 50 data consumers, the mean processing time of the CPLS-L is approximately 17%
(per request) faster than the CPLS-R when searching data on the directory. Although
this processing time difference seems small, the CPLS-L can perform 20% (i.e. 60000
get-hosts-list requests) more requests (per hour) than the CPLS-R provided all hardware
and software configurations and system parameters remain the same. This result shows
the hierarchical directory model offers an advantage on lookup operations over the rela-

tional directory model when a system only involves data consumer interactions.

5.3.1.2 Interactions Involve Update-only Operations

Figure 5.4 presents the DSPTs of the CPLS-R and CPLS-L configurations when the
systems only involve data producer interactions. The DSPTs shown in Figure 5.4 mea-

sure the performance of the CPLS-R and CPLS-L when handling data producers’ update

CHAPTER 5. PERFORMANCE STUDY G6

requests (i.e. updates the metadata of patient records and the location information of
those records). Recall that when a data producer updates the metadata of a patient
(i.e. PID} at a specific processing node, the node server issues an update request to the

directory server.

Figure 5.4 shows the performance of the two configurations diverges when performing
updates to the directory. Figure 5.4 also shows that the performance of the CPLS-R is
better than the CPLS-L when performing update operations to the directory. For the
range of 5 to 50 data producers invoked at each processing node in the system, the mean
DSPT of the CPLS-L and CPLS-R are about 65 and 23 milliseconds (per each update
request), respectively. In this range, the overall DSPT of the CPLS-L is 2.8 times higher
than the CPSL-R when updating data to the directory. This indicates the hierarchical

directory model only offers an advantage on searching data but is poor on updating data.

The reason this result occurred is the update method used in the CPLS-L is different
from the one used in the CPLS-R. In both configurations, update to data (i.e. PID
together with its location) is ignored if data already exists in the directory. In CPLS-L,
updates to location information in the directory may involve modification operations if
an entry (i.e. a PID) has already been inserted under the root entry and the data (i.e. the
location) does not exist in that entry. In CPLS-R, a new row (i.e. a PID and its location)
is inserted in the “Host” relational table if the PID together with the location informa-
tion does not exist in the table. Therefore, the time difference between the two updates
methods depend on the performance of the DB2® DBMS server and the OpenLDAP®
Slapd server when performing updates to the directory. The reason for implementing
the update method in different ways is the hierarchical data model supports multiple

attributes in an entry, while the relational data model does not. This also indicates why

CHAPTER 5. PERFORMANCE STUDY 67

the relational directory model requires more processing time on searching data than the
hierarchical directory model. Thus, the processing time of a directory server depends on
the size (i.e. number of entries) of the directory. Figure 5.4 also indicates the processing
time needed for performing an update is more than the time needed for performing a
lookup request. The implication of this result is that if the system has many more up-
dates than lookups then the client of the CPLS-L may have to wait much longer time

than the client of the CPLS-R configuration.

5.3.1.3 Interactions Involve Lookup and Update Operations

Figure 5.5(a) and 5.5(b) present the results of the CPLS-R and CPLS-L configurations
collected during the LU simulations*. Figure 5.5(a) shows the DSPTs of the two config-
urations when handling lookup requests {i.e. get-hosts-list requests) in an environment
where interactions involve both data consumers and producers. Figure 5.5(b) shows the
DSPTs of the two configurations when handling data producers’ update requests in the

same environment.

Figure 5.5(a) shows the DSPTs (per get-hosts-list request) of the two configurations are
approximately the same when a few clients (i.e. in the range of 10 to 20 clients per
each type) participate in the system (e.g. approximately 12 milliseconds at 10). At 25
clients (per type), the DSPT of the CPLS-L is 17% (i.e. 2 milliseconds) higher than the
DSPT of the CPLS-R when processing a get-hosts-list request. This result indicates the
CPLS-L cannot maintain its performance advantage on lookup requests (see Figure 5.3)

when a system involves both lookup and updates operations. When 5 to 50 clients (per

4In LU simulations, the horizontal axis in each figure indicates the same number of data consumers
and producers are invoked at each processing node within a PLS. For example, a value of 50 indicates
that 50 data consumers and 50 data producers are invoked at each processing node within a PLS.

CHAPTER 5. PERFORMANCE STUDY

0.05

0.045

DSPT per request [second]
==
IS
wn

CPLS-L
CPLS-R

1 1 1 1 1 1

10 20 30 40 50 60
Number of data consumers and data producers

(a)

70

DSPT per request {second]
® o o o o S o o
™ (&) I o o -~ o L] s
T T T T T > - T

o
T

CPLS-L

i - CPLS-R

+

1 1 1

£l
10 20 30 40 50 60
Number of data consumers and data producers

(b)

70

68

Figure 5.5: The DSPTs of the CPLS-R and CPLS-L in LU simulations. (a) DSPTs for

handling “get-hosts-list” lookup requests. (b) DSPTs for handling update requests.

CHAPTER 5. PERFORMANCE STUDY 69

type) participate at each processing node in the system, the overall mean DSPT (per get-
hosts-list request) of the CPLS-R is approximately 12.5 milliseconds and the variance is
around 0.14 microseconds. These results indicate the CPLS-R performs consistently well
and maintains its performance on processing lookup requests even in a mixed environ-

ment.

Figure 5.5(b) shows the DSPTs of the two configurations when processing update requests
in a mixed environment. The DSPT (per update request) of the CPLS-L increases with
the number of concurrent clients. In the region of 5 to 40 data consumers and producers
participating at each node in the system, the DSPT (per update request) of the CPLS-L
increases about 314% (i.e. 265 milliseconds). At 50, the DSPT (per update request) of
the CPLS-L is about 14 times higher than the CPLS-R. This indicates that a client of
the CPLS-L in a mixed environment has to wait much longer time than the client of the
CPLS-R when requesting update services from the directory server. This result clearly
indicates the scalability problem of the CPLS-L configuration when handling both lookup
and update operations in an environment where interactions involve data consumers and
producers. By contrast, the CPLS-R performs consistently well and maintains its per-

formance even in a mixed environment.

Figure 5.5(a) and 5.5(b} show the processing times of the CPLS-L in a mixed environ-
ment (i.e. involve both data consumers and data producers interactions) increases with
the increasing number of concurrent clients, even though both systems have a central-
ized architecture, Figure 5.5(a) and 5.5(b) clearly indicate the performance differences
between the two systems when using different data models for implementing the PLS
directory. These results show a distinct advantage when using the relational directory

data model for the PLS system. These results are very important because the PLS is

CHAPTER 5. PERFORMANCE STUDY 70

meant for an environment where interactions involve both data consumers and producers.

5.3.1.4 The Throughput of CPLS-R and CPLS-L

Figure 5.6{a) and 5.6(b) show the throughput of the CPLS-R and CPLS-L configurations
captured during the LU simulations. The horizontal axis corresponds to the number of
concurrent data consumers and producers invoked at each processing node. The vertical
axis shows the throughput (i.e. data consumer or producer routines per hour) of both
systems in a mixed environment. The throughput of a system is calculated by summing

all the throughput reported from each processing node in the system.

The throughput reported by a node is measured by using the total number of clients (i.e.
data consumers or producers) existing in a processing node divided by the total elapsed
time of those clients spent on updating or looking up patient records. In this way, the
total number of data consumer routines per hour of a PLS should maintain approxi-
mately the same level, if the system has maintained its performance. This is because the
total task for each data consumer is approximately the same but differ in the “think”
times chosen by each data consumer incorporated in its request routines. As described in
Section 5.1.2, each client has a random sleep time in a range of 5 to 15 seconds between
the completion of one request and the submission of the next. The sleep time chosen
by each client is random, which may be different from one request to another request
and/or one client to another client®. In addition to this, each data consumer randomly
selects a PID from the list of available PIDs in the system before executes its request

routine. Therefore, a data consumer may go to one or more nodes to obtain a list of

5Because the random sleep times selected by each client is varied so the throughput measured at one
point may have a small difference at another point.

CHAPTER 5. PERFORMANCE STUDY 71

8

2]
o
T
1

[~]
o
T
!

n
E
T
1

B

&
T

CPLS-R

5.
T CPLS-L

Throughput [data consumer routines/hour]
ey N
D [+

wt

L
T
!

-
]
T
!

i El 1 1
i0 20 30 40 50 60 70
Number of data censumers and data producers

()

(=]
(=]

450 T T T T T T

400 .

[~

o

=]
T
!

[~]
3

CPLS-R T

CPLS-L

Throughput [data producer routines/hour]

501 b

0 1 1 1 1 1
0 10 20 30 40 50 60 70

Nurmber of data consumers and data producers

(b)

Figure 5.6: The throughput of the CPLS-R and CPLS-L in LU simulations. (a) Number
of data consumer routines per hour. (b) Number of data producer routines per hour.

CHAPTER 5. PERFORMANCE STUDY 72

study UIDs and series UIDs, which depends on the chosen PIDs. Conversely, the total
number of data producer routines per hour of a PLS should increase with the increasing
number of data producers participated at each processing node. This occurs because the
total PIDs distributed across the three nodes is fixed in each simulation so the total task
assigned to each node is shared® among the total number of data producers existing in
the node. Thus, the task assigned to a data producer becomes less as the total number
of data producers increases at a node. The total number of data producer routines per
hour will converge to a point when the task assigned to most of the data producers is

approximately the same (i.e. one update request).

Figure 5.6(a) shows the throughput captured by a set of data consumers when executing
lookup request routines in the CPLS-R and CPLS-L configurations. Figure 5.6(a) shows
the highest throughput of the two configurations is obtained when a few clients (i.e. 5
data consumers and producers at each node) participated in the system and is around
18 data consumer routines per hour. However, the performance of CPLS-L starts to
degrade as the number of clients (per type) increased in the system (e.g. starts degrade
after 15). This result indicates the CPLS-L could have a potential scalability problem
when a large number of lookup and update requests are involved in the system. At 50, the
overall throughput of the CPLS-L is decreased about 7%. On the other hand, the overall
throughput of the CPLS-R is maintained at an approximately the same level even when a
large number of clients are added to the system. This result indicates the CPLS-R could
maintain its quality of service and could scale well in an environment where lookups and
updates are intensive. Figure 5.6(b) indicates the CPLS-R can handle many more data

producer routines (per howr) than the CPLS-L. At 50, the CPLS-R can handle about

5The total task per node is not evenly assigned to the data producers existing in the node.

CHAPTER 5. PERFORMANCE STUDY 73

296 data producer routines per hour, which is about 55% higher than the CPLS-L in a

mixed environment.

5.3.1.5 Summary of CPLS-R and CPLS-L Performance Study

The CPLS-R outperforms the CPLS-L configuration when an environment involves data
consumer and producer interactions. The processing times shown in Figure 5.5 indi-
cates the CPLS-R maintained its performance when operations involve both lookups
and updates to the directory. The throughput shown in Figure 5.6 further indicates the
CPLS-R could maintain its quality of service even in an environment where lookups and
updates are intensive. With the same architecture, results shown in Figure 5.3 through
5.6 indicate that the relational directory model is more suitable than the hierarchical (i.e.

LDAP-based tree structure) directory model for the implementation of the PLS directory.

5.3.2 A Performance Study on CPLS-R and DPLS-R Configu-
rations

This section presents the performance comparison between the CPLS-R and DPLS-R
configurations. Both configurations used the relational directory models to implementing
the PLS directory but differ in the system architecture. Section 5.3.2.1 presents the
performance comparison of these configurations when simulations were LO type (i.e.
all clients in the PLS were data consumers). Section 5.3.2.2 shows the performance
comparison of these configurations when simulations were UO type (i.e. all clients in the
PLS were data producers). Section 5.3.2.3 presents the performance results of the two
configurations, which are collected during the LU simulations (i.e. both data consumers
and producers were participated in the PLS being test). The throughput of the two

configurations is presented in Section 5.3.2.4.

CHAPTER 5. PERFORMANCE STUDY 74

0.07 T T T T T T

0.06[-

o o
2 &
T T
1 1,

TRT-NS per request [second]
¢ o

(=1

(3

o

(=1

L]
T

CPLS-R

Boood. §§§§§§§§ DPLS-R

0 ' I L L L L
Q¢ 10 20 30 40 50 &0 70

Number of data consumers

Figure 5.7: The TRTs-Ns of the CPLS-R and DPLS-R for handling “get-hosts-list”
lookup requests in LO simulations

5.3.2.1 Interactions Involve Lookup-Only Operations

Figure 5.7 and Figure 5.8 show the performance results of the CPLS-R and DPLS-R
configurations captured during the LO simulations’. The transaction response times (i.e.
TRTs-NS) presented in Figure 5.7 shows the performance of the two configurations when
performing lookup operations on the locations of patients’ metadata (i.e. get-hosts-list
requests). Figure 5.8 presents the DSPTs and SDCTs that constitute the TRTs-NS re-

ported in Figure 5.7.

The TRTs-NS reported in Figure 5.7 indicate the DPLS-R can provide a significant
faster response to its client’s request compared to the CPLS-R. When 5 to 50 data con-

sumers exist at each processing node, the mean TRT-NS (per directory server) of the

"Directory replication is not simulated in the LO simulations

CHAPTER 5. PERFORMANCE STUDY 75

0.03 T T T T ' '
0.025} i
2 o0o2f
8
[ir}
A
w
g
go015} |
&
g
: DSPT (CPLS-R)
E oorr
~ - ~~],__%5.{,_}—-{>-<} SDCT {GPLS-R}
0,005} T l
SOOI S BN JRTOOL . SR -.--a DSPT (DPLS-R)
SDCT (DPLS-R}
0 . v v ' '

1
[+ 10 20 30 40 50 60 70
Number of data consumers

Figure 5.8: The DSPTs and SDCTs of the CPLS-R and DPLS-R for handling “get-hosts-
list” lookup requests in LO simulations

DPLS-R is about 6 milliseconds with variance around 0.3 microseconds when handling
a get-hosts-list request. In the same range, the mean TRT-NS of the CPLS-R is around
19 milliseconds with variance approximately 1.0 microsecond per get-hosts-list request.
This result shows that the directory server of the DPLS-R is about 3.2 times faster than
the CPLS-R when performing location lookup operation. This result is expected because
the directory service of the DPLS-R is shared among three directory servers. During the
simulations, both configurations maintained their performance and no significant perfor-
mance degradation is observed as the number of concurrent data consumers increases in

the system.

Figure 5.8 presents the DSPTs and the SDCTs of the two configurations when process-
ing “get-hosts-list” lookup operations on the directory. The DSPTs shown in Figure 5.8

indicate that both systems spend more time on directory processing than transmitting

CHAPTER 5. PERFORMANCE STUDY 76

0.03 ;
0.025} |
2 ooz}
o
QO
@
2,
@
2
00151
@
=
@
[=3
o e ——O—0— OO0 4 o oeer PSR
& oo
& o
0.005 DSPT (DPLS-A) -1
O- -~ o~ 0 - °'*-~0—-~o--—c>—#-o--_o_m_o DSPT (DPLS-R) -3
B0 e Be D @ 2 2 1 a0 —O DSPT (DPLS-R) -2
0) L .)) .
0 10 20 a0 40 50 60 20

MNumber of data consumers

Figure 5.9: The DSPT reported by each processing node of the DPLS-R and the DSPT
of CPLS-R configurations for handling “get-hosts-list” lookup requests in LO simulations

requests and responses between the node server and the directory server. In the DPLS-R
configuration, the mean DSPT is approximately 33% higher than the mean SDCT of the
system. However, the mean DSPT of the CPLS-R is about 54% higher than the mean
SDCT of the system. Observe that the mean DSPT of the DPLS-R configuration is only
about 2.4 times {(e.g. less than 3 times)} faster than the CPLS-R when performing lookup
operations on the directory. The DSPT of the DPLS-R should at least 3 times faster than
the CPLS-R when processing a lookup request. The reason is due to the simulator (i.e.
the simulation GUI) being invoked at one of the processing nodes during the simulations
for collecting results sent from other nodes. Figure 5.9 shows the DSPT reported by
each node that constitutes the DSPT of the DPLS-R configuration®. Figure 5.9 shows
the mean DSPT of processing node 3 is about 33% higher than the DSPT obtained from

processing node 1. The mean DSPT of processing node 1 is about 4% higher than the

8For simplicity, confident interval is not shown in the figure.

CHAPTER 5. PERFORMANCE STUDY 77

o1 T T

g

=1

[=]

=
T

CPLS-R

TRT-NS per request [second]
=3
o
wm

o o
o o
[@
T T

[=]
(=]
2
v
+H
KH
K
(g]
v
(3721
=
o
o
n
[
i
e
I

(=]

0 10 20 30 40 50 60 70
Number of data producers

Figure 5.10: The TRTs-Ns of the CPLS-R and DPLS-R for handling update requests in
UO simulations

DSPT obtained from processing node 2. These results indicate the simulator did affect

the DSPT of the DPSL-R configuration.

5.3.2.2 Interactions Involve Update-Only Operations

This section reports on the performance study of the CPLS-R and DPLS-R configura-
tions when the system only involves data producer interactions. In the DPLS-R, each
directory server is also required to replicate its new updates to other directory servers
every two minutes. Figure 5.10 shows the TRTs-NS of the two configurations when data

producers update the metadata of patient records.

Again, the TRTs-NS shown in Figure 5.10 also deinonstrates the advantage of the DPLS-
R when the system only involves data producer interactions. When 5 to 50 data con-

sumers exist at each processing node, the mean TRT-NS (per directory server) of the

CHAPTER 5. PERFORMANCE STUDY 78

0.1 T T T T T T

0.09+

0081 —

2

o

2
T
L

e
o
&
T
1

Time per request [second]
=} o
2 I3
1 1

o

o

@
T

DSPT (CPLS-R)

=4

=

)
T

SOCT (CPLS-R)

=4
o
T

4 DSPT(DPLS-R)
| SOCT (DPLS-R)

30 40 50 60 70
Number of data producers

(=]

(=]
i
N
<@

Figure 5.11: The DSPTs and SDCTs of the CPLS-R and DPLS-R. for handling update
requests in UO simulations

DPLS-R is about 10 milliseconds with variance around (0.9 microseconds per update re-
quest. In the same range, the mean TRT-NS of the CPLS-R is about 37 milliseconds with
variance approximately 2 microseconds. The performance gain of the DPSL-R system is

3.7 times faster than the CPLS-R. when performing an update request.

Figure 5.11 presents the DSPTs and the SDCTs of the CPLS-R and DPLS-R config-
urations when processing update operations on the directory. It can be observed in
Figure 5.11 that the DSPTs of the two systems are also higher than their corresponding
SDCTs. In DPLS-R. configuration, the mean DSPT of the system in the range of 5 to 50
data producers at each processing node is about 6 milliseconds with variance around 0.2
microseconds. The mean DSPT of the CPLS-R in the same range is approximately 23
milliseconds and the variance is around 0.9 microseconds per update request. Although

each directory server in the DPLS-R has more respounsibility (i.e. data replication) than

CHAPTER 5. PERFORMANCE STUDY 79

the CPLS-R directory server, the mean DSPT of the DPLS-R configuration is about 3.8
times faster (per update request) than the CPLS-R when performing update operations
on the directory. These results show that the DPLS-R performs better than the CPLS-
R. Observe also that the DSPT of the CPLS-R is slightly increased with the number of
data producers participate in the system. When comparing the DSPT at 50 with the
DSPT at 5, the DSPT of the CPLS-R is increased by 11%. On the other hand, the
DSPTs of the DPLS-R at these two values are approximately the same (i.e. about 6
milliseconds). Based on this observation, the DSPT of the CPLS-R would increase with
additional clients. This could be further investigated by comparing the performance of

the two systems in a mixed environment.

5.3.2.3 Interactions Involve Lookup and Update Operations

Figure 5.12 and 5.13 present the performance results of the CPLS-R and DPLS-R config-
urations when data consumers and producers simultaneously participate in the system.
Figure 5.12 shows the DSPTs and SDCTs of the two systems when handling lookup
requests (i.e. get-hosts-list requests). Figure 5.13 presents the DSPTs and the SDCTs
of the two systems when handling data producers’ update requests in the same environ-

ment. These results were collected during the LU simulations.

Figure 5.12 shows the DSPTs and SDCTs of the CPLS-R and DPLS-R configurations
when handling “get-hosts-list” lookup requests in an environment where interactions in-
volve data consumers and producers. The DSPTs of the two systems are higher than
their SDCTs per lookup request. When 5 to 50 clients (per type) exist at each processing
node, the mean DSPT (per directory server) of the DPLS-R is about 3.7 milliseconds

with variance around 0.07 microseconds per get-hosts-list request. In the same range,

CHAPTER 5. PERFORMANCE STUDY

0.03

0.025

Tirme per request {second]
g s
o n

o
2
T

0.005+

DSPT (CPLS-R}

SDCT (CPLS-R)

DSPT (DPLS-R)
SDCT (DPLS-R)

1] 1 i
20 30 40 50 60
Number of data consumers and data producers

70

80

Figure 5.12: The DSPTs and SDCTs of the CPLS-R and DPLS-R for handling “get-
hosts-list” lookup requests in LU simulations

Q.1

Time per request [second]

o o o o [o o
2 2 3 3 % 2 2
T T T T T T T

=4

o

)
T

0.01 -

DSPT (CPLS-R)

SOCT (CPLS-R)
DSPT {DPLS-R)
SDCT (DPLS-R)

30 60
Number of data consumers and data producers

70

Figure 5.13: The DSPTs and SDCTs of the CPLS-R and DPLS-R for handling update

requests in LU simulations

CHAPTER 5. PERFORMANCE STUDY 81

the mean DSPT of the CPLS-R is about 12.5 milliseconds with variance around 0.13
microseconds. The DSPT performance gain of the DPLS-R system is 3.4 times faster
than the CPLS-R when performing a get-hosts-list request in a mixed environment. Both
CPLS-R and DPLS-R perform consistently well and no performance degradation is ob-
served during the LU simulations. When comparing the mean DSPT per get-hosts-list
request obtained from the LO simulations with the mean DSPT obtained from the LU
simulations, both systems maintain their performance even in a mixed environment (i.e.
the mean DSPT of the DPLS-R is about 3.4 milliseconds and the mean DSPT of the

CPLS-R is about 11.7 milliseconds during the LO simulations).

However, we observed that the DSPT of the CPLS-R per update request shown in Fig-
ure 5.13 is noticeably changed (i.e. from 20 to 50) as the number of concurrent clients
participate in the system. In the range of 5 to 50 clients (per type at each processing
node) participated in the system, the mean DSPT of the CPLS-R is about 29 millisec-
onds with variance around 34 microseconds per update request in a mixed environment.
By contrast, the DPLS-R. performs consistently well and maintains its performance even
when the number of concurrent clients increases in the system. The mean DSPT of
the DPLS-R is about 8 milliseconds with variance around 0.7 microseconds per update
request. At point 25, the DSPT of the CPLS-R is about 25 milliseconds, which is ap-
proximately 3.4 times higher than the value obtained in the DPLS-R (i.e. the DSPT of
the DPLS-R is about 7.2 milliseconds at 25). When the number of concurrent clients
participating in each processing node increased from 25 to 50, the DSPT of the CPLS-R
is increased about 48.7% (i.e. increased 12 milliseconds), while the DSPT of the DPLS-R
is increased about 29% (i.e. increased 2 milliseconds) per update request. This result
indicates the DSPT of the two systems increases as the number of clients increases in

the system. However, the increasing rate of change of the DSPT in the CPLS-R. is much

CHAPTER 5. PERFORMANCE STUDY 82

faster than the DPLS-R per update request. Although the DSPT of the DPLS-R. in-
creases as the number of clients increases in the system, the change is small compared
to the CPLS-R. The DSPT of the DPLS-R increases because of the need to support
data replication, so more processing time is required. This result shows that the CPLS-L
would potentially face the scalability problem with increasing number of clients in the
system. This also confirms the observation from the last section (Section 5.3.2.2) when

discussing the performance results of the two systems collected from the UQO simulation.

5.3.2.4 The Throughput of CPLS-R and DPLS-R

Figure 5.14(a) and 5.14(b) illustrates the throughput (i.e. data consumer or producer
routines per hour) of the CPLS-R and DPLS-R configurations captured during the LU
simulations. Again, the total number of data consumer routines per hour of a PLS should
maintain approximately the same level if the system has maintained its performance
during the simulations. The total number of data producer routines per hour of a PLS
should increase as the number of data producers participating in each processing node
increases. As shown in Figure 5.14(a) and 5.14(b), the throughput of the two systems
are approximately the same. In the DPLS-R configuration, the node server layer is also
implemented using a centralized approach and only the directory service is distributed
so the overall throughput of a PLS also depends on the node server components of the
system. It should be noted that the tasks performed by each node server are more than
the tasks performed by each directory server at a node. As such, the performance gain of
the DPLS-R obtained from the directory server layer is not noticeable when measuring

the throughput of the system.

Figure 5.14(a) shows the throughput captured by a set of data consumers when exe-

CHAPTER 5. PERFORMANCE STUDY 83

o
=]
T

1

28]
=2
¥

|

n
Y
T

L

n
N
T

!

n
=]
T

i

Throughput [data consumer routines/hour]

18} = =
—F—%3%-— s —F—%—% &3 CPIS-AOPLS-R
16 !
14 1 1 1 1 1 1
0 10 20 k'] 40 50 60 70
Number of data consumers and data producers
(a)
450 T . T T T v
4001 b

[

<]

=3
T
1

&y

i=1

(=]
T

CPLS-R, DPLS-R

g &

Throughput [data producer routines/hour]
I
(=]

j=1
=)
T

[4)
=]
¥

!

1 1 1] 1
0 10 20 30 49 50 60 70
Number of data consumers and data producers

(b)

Figure 5.14: The throughput of the CPLS-R and DPLS-R in LU simulations. (a) Number
of data consumer routines per hour. (b) Number of data producer routines per hour.

CHAPTER 5. PERFORMANCE STUDY 34

cuting their lookup request routines in the CPLS-R and DPLS-R configurations. As
shown in Figure 5.14(a), the overall throughput of the two configurations is about 18
data consumer routines per hour. Figure 5.14(b) shows the throughput captured by a
set of data producers when executing their update request routines in the CPLS-R and
DPLS-R configurations. The throughput of the two systems increased as the number of
data producers participating in each node increase. The results show that both configu-

rations perform consistently well without significant performance degradation is observed.

5.3.2.5 Summary of CPLS-R and DPLS-R Performance Study

The DPLS-R outperforms the CPLS-R configuration when measuring the transaction
response time at the node server layer. In the layer between the node server and the
directory server, the overall performance gain of the DPLS-R. is at least 3 times faster
than the CPLS-R when processing lookup and update requests. The results shown in
Figure 5.13 indicate the processing time of the two systems increase as the number of
clients increases in the system. However, the rate of change of the DSPT in the CPLS-
R is much faster than the DPLS-R per update request, so the CPLS-R would face the
scalability problem in a mixed environment when the total number of data consumers and
producers increases in the system. The DPLS-R in the directory server layer is performed
consistently well even through each directory server needs to support data replication.
The throughput of the CPLS-R and the DPLS-R are approximately the same because
the node server layer of the two systems is the same. The overall throughput of the
DPLS-R would be higher than the CPLS-R if more than one node server is invoked at

each node for processing clients’ requests.

Chapter 6

Conclusions and Future Directions

The introduction of a PACS is to provide a better approach than the traditional film-
based approach to acquisition, storage, delivery, retrieval, and management of patient
medical images and data throughout the hospital. From the advantages provided by
PACS, it has become increasingly important in the healthcare enterprise. PACS also
directly and indirectly facilitates the workflow of various hospital components (e.g. ra-
diology information system, health information system, etc.) in a number of different
ways. Today, many hospitals make use of a PACS (or several PACSs) aimed to improve
the efficiency of healthcare delivery as well as reduce the hospital operational costs due
to the inefficient film-based management process. Although each of these PACSs worked
effectively for each of the radiology departments and hospitals, patient medical data is
not integrated with other PACSs residing at different departments of a hospital and/or
remote hospitals. Patients often utilize the services of several hospitals so patient med-
ical images and related data must be integrated and accessed significantly faster than
the independent PACSs when needed. In response to this necessity, HDAS, a distributed
computing system, is proposed and currently being developed at the SBRC. The main
objective of the HDAS is to provide a virtual layer for the efficient integration, trans-
mission, storage, and retrieval of medical images and patient data. In particular, data

generated and stored at different PACSs residing at different hospitals inside or outside

85

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 86

of a specific health region. Several challenges have been identified when developing the
HDAS. These challenges include integrating and managing different PACSs across sev-
eral hospitals and/or health regions, effectively locating and identifying the locations of
medical data that might have been stored at multiple PACSs when needed, protecting

data from unauthorized users, among others.

This research aims at providing a high performance patient data locating mechanism,
PLS, to support the delivery of HDAS services. The PLS is a critical component of the
HDAS. It provides information that is necessary and subsequently used by other com-
ponents of HDAS in respond to user requests in a timely fashion. The core components
of the PLS are its directory and directory services. The PLS directory is designed to
store and manage the location information of patient’s medical images and related data.
The PLS directory service is designed to provide update and lookup operations on the

directory.

In this thesis, three PLS configurations have been designed, prototyped, and tested to
find the best configuration among them. These PLS configurations either differs in the
database model (i.e. relational or hierarchical tree structure) used for implementing the
directory or the architecture (i.e. centralized or distributed} used for providing the direc-
tory service. The PLS configurations have been designed, prototyped and tested in this
thesis including the centralized PLS architecture with a relational directory {CPLS-R),
the centralized PLS architecture with a LDAP-based {i.e. hierarchical tree structure}
directory (CPLS-L), and the distributed PLS architecture with a relational directory
(DPLS-R). This aim is to find the best PLS configuration among these three configura-
tions by studying their performance in different simulated environment. A PLS perfor-

mance is measured through system transaction response times and throughput collected

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 87

from different simulating environment. Transaction response time indicates the time a
user expects when requesting services from the HDAS component that uses the PLS ser-
vices. It measures the time a PLS spent on transmitting and performing a user’s request
in a simulating environment. A PLS throughput measures how many routines per hour

the PLS can handle in a simulating environment.

From one set of results obtained during various simulations, it is observed that for the
same architecture (i.e. centralized architecture), the performance of a PLS is different
when using relational or hierarchical tree database models to implement the PLS direc-
tory. The simulation results show that the PLS using the relational directory model (i.e.
CPLS-R) outperforms the one using the LDAP-based directory model (i.e. CPLS-L)
when an environment involve both update and lookup interactions. In the same environ-
ment, results also indicate the CPLS-L configuration has a significant performance degra-
dation as the number of users increased in the system. This indicates the LDAP-based
directory model has a scalability problem when using the same system architecture in an
environment where both update and lookup operations are intensive. On the other hand,
the CPLS-R configuration performed consistently well and maintained its performance
even when the environment invole large number of lookup and update operations. Based
on this observation, we conclude that the relational directory model is more suitable than
the hierarchical directory model for the implementation of the PLS directory. However,
a marked performance gain in the system transaction response time is observed when
the relational directory model is applied to the distributed architecture (i.e. DPLS-R).
The overall performance (i.e. TRTs measured at the node server layer) of the DPLS-R is
better than the CPLS-R when processing lookup and update requests in any simulated
environment. Therefore, the distributed architecture with a relational directory model

is the best PLS configuration among all PLS configurations studied in this thesis. The

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 88

performance study presented is important as the PLS is meant to be used by the HDAS
to make patient data timely even when it might have been stored at different PACSs re-
siding at remote hospitals. The PLS performance is important because accessing images
in a timely way is a major concern to healthcare professionals that utilize the HDAS
services. This thesis can also be used as a building block to develop a suitable database

model for the storage and management of DICOM images and related patient data.

6.1 Ideas for Future Research

This work can be extended and further investigated in several ways. Some of the possible

directions envisioned are listed here:

e In this thesis, each simulation is repreated 10 times. The reason for choosing
10 repeated experiments is to evaluate various PLS configurations as well as the
methodology used to perform the PLS performance study. We anticipated that a
further study is required to insure the degree of confidence of each experiment. In
addition, the independent parameter (i.e. data consumers/producers) chosen for
the PLS performance study is varied between 5 and 50 to simulate three major
hospitals in Winnipeg health region. We expected that results could be similar to
those presented in this thesis even with additional processing nodes and clients. In
the future, a performance analysis can be conducted to evaluate the distributed
PLS and validate the results presented when it is implemented and deployed in the

regional healthcare data network.

¢ In the distributed PLS, we have used the push-based and lazy replication approach

to propagate changes made on the data in each directory to other directories. This

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 89

is accomplished to ensure replicated directories are globally consistent across the
PLS. Gray [Gra96] describes a lazy replication approach that may cause global
serialization and instability problems to the system. This is because changes on
replicas are not immediately update at each replica node. Therefore, it may lead
to or even further diverge the directory of each node from the other nodes if fail-
ure occur when updates are propagating through the network or when performing
update operations. In addition, each node propagates (pushes) its update buffter
to the other nodes almost simultaneously during the simulations. This update al-
gorithm may lead to network congestion as the number of processing nodes grow.
Therefore, an efficient data synchronization algorithm and replication algorithm are
required to further research in the future and then apply to the distributed PLS.
Once a new update algorithm and/or replication algorithm applied to the system,
a performance study can also be conducted to compare the performance with the

current system.

e In this thesis, the emphasis is on finding the best PLS configuration among all
configurations by measuring their performance under a good operation environ-
ment (i.e. without any hardware/software or network partitioning occur) so issues
related to recovery from failure are not addressed. However, hardware/software
or network partitioning failure is uncommon in our daily practice so an intelligent
recovery component is required to automatically recover from failures without se-
riously affecting the overall system performance. Hence, the PLS should maintain
its performance to some extent even if failure occurs in some components of the
system. Recovery from faults is an important issue in any distributed system so it

requires further research in the future.

¢ Finally, an interceptor component could be added to the distributed PLS to monitor

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 90

a directory server’s activities at each processing site. When a directory server at
a specific processing node is overloaded (i.e. beyond its workload threshold), the
interceptor at that processing node can delivery some load to other idle directory

servers to achieve load balancing across the distributed PLS.

References

[Bbv95]

[CBO1]

[Che01]

[Che02]

[Fit97]

[For96]

A. Beitz, M. Bearman, and A. Vogel, “Service Location in an Open Distributed
Environment,” 2nd International Workshop on Services in Distributed and Net-

work Environment, June 1995, pp. 28—40.

S. Camorlinga and K. Barker, “HDAS: Health Distributed Archiving System,”
Technical Report: MITR200101A, St. Boniface General Hospital Research Cen-
tre, Winnipeg, MB, Canada, May 2001.

E. Cheung, S. Camorlinga, K. Barker, and J. A. Rueda, “A Preliminary HDAS
Global Database Architecture Designs,” Technical Report: MITR200112A, St.
Boniface General Hospital Research Centre, Winnipeg, MB, Canada, December
2001.

E. Cheung, S. Camorlinga, K. Barker, and J. A. Rueda, “Distributed Tech-
nologies Analysis,” Technical Report: MITR200203A, St. Boniface General
Hospital Research Centre, Winnipeg, MB, Canada, March 2002.

S. Fitzgerald, 1. Foster, C. Kesselman, G. V. Laszewski, W. Smith, and S.
Tuecke, “A Directory Service for Configuring High-Performance Distributed
Computations,” Proceedings of the 6th IEEE Symposium on High Performance
Distributed Computing, IEEE Computer Society Press, 1997, pp. 365-375.

D. W. Forslund, R. L. Phillips, D. G. Kilman, and J. L. Cook, “Experiences
with a Distributed Virtual patient Record System,” Proceedings of the 1996
American Medical Informatics Association Annual Fall Symposium (Washing-
ton, D.C.), (J. Cimino, Ed. American Medical Inforamtics Assocf., Hanley &
belfus), October 1996, pp. 483-487.

91

REFERENCES 92

[For9g]

[Gra96]

[Gsm00]

[How95]

[How96]

[Hua99]

[Inp00]

[Ki197]

[LS01]

[Lei97]

D. W. Forslund, J. E. George, E. M. Gavrilov, and T. E. Weymouth,
“Distributed Telemedicine Using High-Performance Computing Over the In-
ternet,” High Performance Distributed Computing, 1998. (Available at:
http://tmed.openemed.net/OpenEMed / TeleMed).

J. Gary, P. Helland, P. O’Neil, and D. Shasha, “The Dangers of Replication and
a Solution,” Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, June 1996, pp. 173-182.

M. Grammatikou, F. Stamatelopoulos, and B. Maglaris, “Distributed Informa-
tion System Architecture For Primary Health Care,” Proceedings of the MIE
2000 Conference, (Germany), 2000.

T. A. Howes, “The Lightweight Directory Access Protocol: X.500 Lite,” Center
for Information Technology Integration, University of Michigan, July 1995.

T. A. Howes, “An X.500 and LDAP Database: Design and Implementation,”
1996. (Available at: http://www.umich.edu/ dirsves/ldap/doc).

H. K. Huang, PACS:Basic Principles and Applications, Wiley-Liss, Inc., 605
Third Avenue, New York, USA, 1999.

VisiBroker for Java — Programmer’s Guide, Inprise Corporation, 100 Enter-
prise Way Scotts Valley, CA 95066-3249, 2000.

D. G. Kilman and D. W. Forslund, “An International Collaborator Based on
Virtual Patient Records,” Communications of the ACM, Vol. 40, No. 8, August
1997, pp. 110-117.

R. Lee and S. Seligman, JNDI API Tutorial and Reference: Building Directory-
Enabled Java Applications, Addison-Wesley Publication Company, MA, USA,
June 2000.

E. Leisch, S. Sartzetakis, M. Tsiknakis, and S.C. Orphanoudakis, “A Frame-
work for the Integration of Distributed Autonomous Healthcare Information
Systems,” Medical Informatics, Special Issues, Vol. 22, No. 4, 1997, pp. 325-
335.

REFERENCES 93

[Lun99]

[Mor02]

[Nov03]

[OV91]

[Oag02]

[Ord93]

[Pax00]

[Sai01]

[Shi00]

[Sun93|

[Sut97]

N. Lundberg, “Impacts of PACS on Radiological Work,” Proceeding of the
International ACM SIGGROUP Conference on Supporting Group Work, 1999,
pp. 168-178.

L. Moreau, “A Fault-Tolerant Directory Service for Mobile Agents Based on
Forwarding Pointers,” Proceedings of the 17th ACM Symposium on Applied
Computing (SAC’2002) — Track on Agents, Interactions, Mobility and Systems,
2002, p. 93.

“Novell eDirectory Detailed View,” Novell, Inc., 2003. (Available at:
http://www.novell.com/products/edirectory /details.html).

M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, Sec-
ond Edition, Prentice Hall, Inc., Upper Saddle River, New Jersey, USA, 1991.

The OpenLDAP Foundation, Redwood City, California, USA, OpenLDAP 2.1
Administrator’s Guide, 2002.

J. Ordille and B.Miller, “Distributed Active Catalogs and Meta-Data Caching
in Descriptive Name Services,” Processding of the 13th International Confer-

ence on Distributed Computing Systems, 1993, pp. 120-129.

J. E. Parham, “Find the Best PACS for Your Needs,” CR & PACS Insights &
Images, Spring 2000.

Y. Saito, “Consistency Management in Optimistic Replication Algorithms,”
June 2001. {Avaialble at: http://www.hpl.hp.com/personal).

S.S.B. Shi, E. Stokes, D. Byrne, C.F. Corn, D. Bachmann, and T. Jones, “An
Enterprise Directory Solution with DB2,” IBM System Journal, Vol. 39, No. 2,
2000, pp. 360-382.

“White Paper: Java Remote Method Invocation - Distributed Com-
puting for Java,” Sun Microsystems, Inc., 1995-2003. (Available at:

http://java.sun.com/marketing/collateral /javarmi.html).

D. Sutherland, “RMI and Java Distributed Computing,” JavaSoft, A Business

Unit of Sun Microsystems, Inc., November 1997.

REFERENCES 94

[TPC02} “TPC Benchmark C: Standard Specification, Revision 5.1,” Transaction Pro-

[Tan02]

[Tra94]

[Tsi95]

[WLO1]

[Walog]

[Wie00]

[Zis98]

cessing Performance Council (TPC), December 2002,

A. S. Tanenbaum and M. V. Steen, Distributed Systems Principles and
Paradigms, Prentice Hall, Inc., Upper Saddle River, New Jersey, USA, 2002.

G. Trayser, “Interactive System for Image Selection,” Digital Imaging unit,
Center of Medical Informatics, University Hospital of Geneva, 1994. (Available
at: http://www.expasy.org/UIN/htmll/projects/isis/isis.hitml).

M. Tsiknakis, C. Chronaki, S. Kostomanolakis, and S.C. Orphanoudakis, “The
Regional Health Telematics System of Crete,” Proceedings of the Health Telem-
atics ‘95 Conference, (Naples, Italy), July 1995, pp. 553-558.

T. Wendler and C. Loef, “Workflow Management - Intergration Technology for
Efficient Radiology,” Medica Mundi, Vol. 45, No. 4, November 2001, pp. 41-48.

J. Waldo, “Remote Procedure Calls and Java Remote Method Invocation,”
IEEE Concurrency, July—-September 1998, pp. 5-7.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understand-
ing Replication in Databases and Distributed Systems,” Proceedings of 20th
International Conference on Distributed Computing Systems(ICDCS’2000),
(Taipei, Taiwan, R.O.C.), IEEE Computer Society Technical Committee on
Distributed Processing, 2000, pp. 264-274.

A. Zisman, Information Discovery for Interoperable Autonomous Database Sys-
tems, PhD thesis, Imperial College of Science, Technology and Medicine, Uni-
versity of London, London, UK, 1998.

