

1968

YOUNG YOONKOL KANG

BY

MASTER OF SCIENCE IN ENGINEERING

THE DEGREE OF

AS A REQUISITE TO OBTAINING

THE UNIVERSITY OF MANITOBA

THE FACULTY OF GRADUATE STUDIES

PRESENTED TO

A THESIS

CONCRETE SINGLE LAYER PANELS AND SANDWICH PANELS

THE BEHAVIOUR OF REINFORCED

<u>SYNOPSIS</u>

This thesis gives the result of an investigation of reinforced concrete single layer panels and sandwich panels subject to axial compression and lateral loads.

Panel proportions, reinforcing and ultimate concrete strength in the panels were investigated. Approximate relationships of load-deflection and load-strain were also investigated. The various failure patterns for both single layer panels and sandwich panels were observed.

It is hoped that the results which have been obtained will be helpful in practical application.

ACKNOWLEDGEMENTS

The author hereby expresses his sense of deep gratitute to Professor R. Lazar, Department of Civil Engineering, University of Manitoba, for his helpful guidance throughout the duration of the laboratory experimental work and the preparation of this thesis. Appreciation is expressed for helpful suggestions received from Drs. H. C. Cohen and B. Thadani, Department of Civil Engineering, University of Manitoba.

The author is highly obliged to Professor A. J. Carlson, Assistant Dean, Faculty of Engineering, and Dr. A. Lansdown, Head, Department of Civil Engineering, University of Manitoba, without whose kindness, guidance, and encouragement this study could not have been completed. He is also obliged to the Canadian Prestressed Concretc Institute who supported this investigation.

The author is indebted to C. S. Juvet, Ottawa, and Y. S. Kang, Korea, for helping his studies.

|--|

	PAGE
SYNOPSIS	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
1. PART ONE: GENERAL INTRODUCTION	l
2. PART TWO: DEVELOPMENT OF REINFORCED CONCRETE SANDWICH	7
PANELS	
3. PART THREE: EXPERIMENTAL PROGRAM AND PROCEDURE	19
3.1. DESCRIPTION OF TEST PANELS	20
3.2. MATERIALS	22
3.3. FABRICATION OF SPECIMENS	27
3.4. TESTING PROCEDURE	30
4. PART FOUR: DISCUSSION OF OBSERVATIONS	35
4.1. GENERAL BEHAVIOUR	36
4.2. INDIVIDUAL INVESTIGATION	44
4.3. PREDICTION OF LOAD CARRYING ABILITIES OF THE PANELS	104
AND MATHEMATICAL RELATIONS	
4.4. CONCLUSIONS	109
5. PART FIVE: APPENDICES	111
APPENDIX A: STRAIN_LOAD READING	112
APPENDIX B: DEFELECTION_LOAD READING	132
APPENDIX C: SOME RELEVANT FORMULAE	133
APPENDIX D: NOTATION	140

BIBLIOGRAPHY.

GENERAL INTRODUCTION

This thesis is based upon an investigation regarding the behaviour of precast reinforced concrete single layer and sandwich panels.

In recent years precast reinforced concrete sandwich panels are usually favored for one-story industrial buildings.

A few years ago the sandwich wall panels which consisted of two concrete face plates and four side plates reinforced with wire fabric, and a layer of insulation between were used by the Metropolitan Winnipeg Sewage Treatment Plant project, Winnipeg, Manitoba. After the construction of the precast concrete building, many cracks appeared on the sandwich panels as shown in Plate no. 1. When the author visited the plant, he observed the cracks and got interested in doing some research on sandwich panels. That was the beginning of this research project.

The precast reinforced concrete sandwich panel consists of two reinforced concrete face plates and four narrow concrete side plates reinforced with plain steel bars around a layer of Styrofoam insulation core between the plates as shown in Figure 2.

The function of the insulation core is to stabilize the surrounding thin plates, as a wood form during the pouring of the concrete into the casting frame.

Fig. 1. SINGLE LAYER PANEL

Fig. 2. SANDWICH PANEL

Precast reinforced concrete sandwich panels have a high stiffness factor at the edges of panels. These stiffer panels are relatively new, but have become an important feature of the construction industry.

The ordinary reinforced concrete construction involves

concreting on site and requires money, time and labour to form, pour, cure, and strip. It crowds valuable space, and involves delay to other work which may have to be held up until site concreting operations are completed. There is always the possibility of unforeseen delay due to unexpected inclement weather, which can completely defeat the scheduled plans of construction.

Relatively lighter, stronger, and good insulated sandwich panels can be mass-cast under good plant conditions. It is also easy to erect and maintain such units made of sandwich panels. Attractive surfaces may be obtained by the manufacturer, such as exposed aggregate or three dimensional patterns. Therefore the newly developed precast concrete sandwich panels are becoming more popular in the building industry.

The shortage of housing at present and the potential at the same time of increased production through prefablication are likely to lead to some rapid reconsideration of structural sandwich panel design.

The application of this new and untried method of construction to housing raises many questions related directly to design, material selection, fablication methods, strength, and durability.

PLATE No. 3. Face Plate after Casting.

Ś

PLATE No. 2. Face Plate Reinforcement in Position.

PLATE No. 1. Cracked Sandwich Panel of Metropolitan Winnipeg Sewage Treatment Plant. The object of this thesis is to investigate certain problems concerned with the application of this new method in the concrete sandwich panels, namely, relationships between the axial compressive load carrying abilities, panel proportions, reinforcing, and strength of the sandwich panels compared with those of the single layer panels.

PART THO

DEVELOPMENTS OF REINFORCED CONCRETE

SANDWICH PANEL

Concrete sandwich panels have a great future for the reasons mentioned in the general introduction to this thesis. It has a history more than a hundred years old, though the interest shown in its use has not been very consistent.¹

The concrete sandwich principle was applied, perhaps for the first time, in 1849 by William Fairbairn in experimenting with bridge design. The materials used were laminated wood for decking and concrete as a composite beam.

In 1906 the engineers in the United States examined the possibilities of constructing sandwich concrete walls.

In 1933 in Sweden a sandwich panel of light weight concrete five in. thick and bonded to dense in situ concrete was made. A 5/8 in. thick lime cement mortar was then plastered on the outside of the lightweight concrete block as shown in Figure 3. The

Fig. 3.

Swedish Sandwich Wall.

success. In the United States, on the other hand, in cold storage work the cement plastering was one inch thick on the inside face or the cold face as shown in Figure 4.

experiment was a

In 1946 in the United States E.I. du Pont de Nemours Co.

constructed for industrial buildings with sandwich walls which used cored gypsum filler block as the insulation material.

Some four decades ago, an efficient sandwich panel² composed of metal facings and a plywood core was produced commercially. After that

honeycomb cored plywood sandwich panels have been developed by the Forest Prducts Laboratory, Department of Agriculture, in the United States.

There had been some metal faced sandwich constructions³ but it was only after World War I that this type of construction aroused great interest. Most of the metal faced sandwich constructions are applied to aircraft and missiles. The metals used in this construction are aluminum alloys, titanum, steels, etc.

In 1951 S. B. Roberts reported the construction of a sandwich panel of 6 x 10 ft. It consisted of a 2-in. layer of cellular glass insulation and two wire mesh reinforced slabs.

In the same year the archtectural firm of Shaw, Metz, and Dorio, of Chicago, designed an outstanding sandwich panel as

lightweight precast insulation was $l_2^{\frac{1}{2}}$ in. thick using chemical

In 1952 P. M. Grennan² reported the development of the mineralized wood chip sandwich panel in the United States. Each panel was 8 x 8 ft and composed of two outer walls of regular concrete l_{4}^{3} " thick reinforced with 4 x 4 -10/10 wire mesh.

shown in Fig. 5.

Fig. 5. Sandwich-type precast wall panel.

mineralized wood chips as aggregate as shown in Fig. 6. Edges of the panel were tongue-and-groove joints. Panels were assembled with a one inch wide impervious rubber strip inserted at the center of all joints.

Fig. 6. Sandwich Panel

In 1953 Arsham Amirikian⁶ reported the $22!-5\frac{1}{2}" \ge 23!-7\frac{1}{2}"$ precast concrete sandwich panel which was obtained by placing a

Fig. 7. Foam Glass Sandwich Panel. layer of form glass block insulation between two slabs concrete to form a laminated element as shown in Figure 7.

Early studies in the concrete sandwich slab construction and sandwich walls were made by F. T. Collins in 1954. Vermiculite sandwich panels were tested for several years by him. The verniculite was placed in a plastic state on the fresh lower layer of regular concrete, and a two inches top layer of regular concrete placed on the vermiculite layer as soon as it has set sufficiently to carry the top layer. The concrete shells are attached by 1 in. sinusoidal shear reinforcing spaced vertically with a maximum 4 ft. center to center This panel design spacing. is shown in Figure 8. In

Fig. 8. Virmiculite Sandwich Panel

his opinion the ideal design for precast sandwich panel is one which consists of prestressed outer shells. This design is not economical for smaller panels but suitable for large two and three storey buildings. The design is shown in Fig. 9. The two examples of open-face sandwich

construction and one of the true tilt-up sandwich wall panels were also reported by him. In the open-face type, the wall consists of just two layers of material, a hard outer layer and the second a soft insulation layer. Design of the open -face wall panels is shown in Figs. 10 and 11. The recently

Fig. 10. Open-face Sandwich Panel. Fig. 11. Open-face Sandwich Panel.

developed true tilt-up sandwich wall panel in Sweden is composed of two inches outer shells of regular dense concrete with four inches of expanded shale concrete between as shown in Fig. 12. and metal ties between the outer shells were also used.

In 1959 V. F. Leabu⁷ tested insulated sandwich panels and measured variation in color, inefficient heat transmission factor, and bulging of panels. The temperature gradient through four different types of precast concrete panels measured for a temperature range of 10° F outside to 70° F inside are shown in Fig. 13. The sandwich panel with its highly efficient insulation shows the greatest temperature differential and regular concrete panel the least.

Fig. 13. Temperature Gradient.

ድ

In 1965 D. W. Pfeifer and J.A. Hanson tested 31 concrete sandwich panels under uniform flexural loading. A specimen size of 3 x 5-ft was chosen and the over all thickness of the panels varied from $2\frac{1}{4}$ to 6 in. The shells of most panels contained a single layer of 2 x 2 - 14/14 welded wire fabric. Only two panels were reinforced 6 x 6 - 8/8 welded wire fabric. The majority of the sandwich panels contained three types of metal shear connectors between the concrete shells as shown in Fig. 14. The insulating materials used between the

concrete shells were a foamed polyurethane plastic, foamed polystyrene plastic, glass fiber, foamed glass, and autoclaved cellular concrete. Two inches thick insulation has been used for the greater number of sandwich panels. The panels with foamed glass insulation combined with metal shear connectors performed as well as, or better than, those with plastic or glass fiber cores. Panels containing autoclaved cellular concrete cores, even though fabricated without shear connectors, exhibited moment resistance and deflection stiffness generally superior to all other types of panels. This improved behaviour was ascribed to the higher modulus of elasticity of the cellular It was recognized that the insulation values of these concrete. different core materials would vary, depending on their unit weight and moisture content. Closer mesh spacing of the welded wire reinforcement in the shells was effective in reducing deflection under the applied flexural loads.

In 1966 Preco Division of BACM Limited, Winnipeg, Manitoba, made precast sandwich panels for Stoney Mountain Penitentiary. The typical panel was 7 x 15 ft. and was composed of two outer shells with $l\frac{1}{2}$ in. of rigid insulation between. One shell was 5 in. thick and made of regular dense concrete reinforced with 4 x 4 -4/4 welded wire fabric, and the other shell was $l\frac{1}{2}$ in. thick with 4 x 4 -10/10 fabric. The panel had #10-gauge galvanized wire shear connectors with a 2 ft. 8 in. center-to -center spacing vertically between two shells.

In 1967 Schell Industries Limited, Woodstock, Ontario, constructed exposed aggregate sandwich panels for a warehouse project at London, Ontario. This exposed aggregate panel was 22'-6" x 10' -0" x 6 in. thick, and composed of two outer shells of regular dense concrete with two in. of Styrospan insulation between, as shown in Figure 14a.

PART THREE

EXPERIMENTAL PROGRAM AND PROCEDURE

3.1. DESCRIPTION OF TEST PANELS

The specimens of the experimental panels were of two general types - single layer and sandwich panels.

A. Single Layer Panels

The single layer panels were eight in number. The thickness of the panels varied from one to two inches, the width from twelve to eighteen, and the length from twenty four to sixty. The ratio of reinforcement area to effective section area of concrete in the panels ranged from 0.32 to 0.53 % with 6 x 6 - 10/10 welded wire fabric. The concrete compressive strength varied from 5100 psi. to 5980 psi. at age of 28 days.

B. Sandwich Panels

The sandwich panels tested were eleven in number. The over-all thickness of the sandwich panels varied from five to six inches, the width from eighteen to twenty four, and the length from forty eight to sixty. One inch thick face shells were employed for all specimens of the panels. All panels had insulating cores the thickness of which varied from three to four inches. The ratio of reinforcement area to effective section area of concrete in the panels ranged from 0.5 to 1.5 % with steel bars 3/16 and 1/8 in. in diameter.

The concrete compressive strength varied from 4900 to 5970 psi at age of 28 days.

Both single layer and sandwich panels were generally tested about fifty days after concrete was poured into the forms. Electric strain gages, SR-4 type A-3-S6, were mounted on all panels to measure strains on the concrete surface and to observe mode of failure of concrete. The arrangement of the SR-4 strain gages on the concrete faces of the panels varied in the tests (see Section 4.2.).

3.2. MATERIALS

CONCRETE

High early strength portland cement Class III was used in the concrete mix with a small amount of "neutralized vinsol resin" to improve workability and plasticity. The maximum size of aggregate was 3/4 in. The mix proportions were chosen by the weigh-scale method for batching as shown in Table (1). Paraffin paper molds, six inches in diameter by twelve inches long, with base plates, were used for casting concrete cylinders. Four cylinders were made for each batch. Typical compression stress-strain curve from direct compression tests on six inches by twelve inches cylinders are shown in Fig. 15.

REINFORCEMENT

A. Single layer Panels

The single layer panels were reinforced with $6 \ge 10/10$ welded wire fabric conforming to ASTM A185. The welded wire had an average ultimate strength of approximately 76 ksi and an average minimum yield strength of approximately 62 ksi.

B. Sandwich Panels

The concrete outer shells of sandwich panels were reinforced with steel bars 3/16 and 1/8 in. in diameter. The steel wires had an average ultimate strength of approximately 70 and

TABLE (1)	Mix design	for 3	cu	ft	Batch	
-----------	------------	-------	----	----	-------	--

		Mix A		Mix B		Mix C		Mix D	
Cement		58.0	lbs	63.0	lbs	67.0	lbs	72.0	lbs
water		32.7	lbs	34.0	lbs	37.0	lbs	37.2	lbs
	3/4"	53.6	lbs	234.0	lbs	-			
Coarse Aggregate	1/2"	176.0	lbs	-		150.0	lbs	160.0	lbs
Fine		120.0	lbs	138.0	lbs	150.0	lbs	142.0	lbs
A. E. A.		0.59	ΟZ	0.67	OZ	0.60	oz	0.62	oz
Average Con Strength fr Compression 6 by 12 in at age of 2	npression rom Direct n Tests on Cylinder 28 days	5100	psi.	5980	psi	4900	psi	5970	psi
Specimen		#1, #2 and #7	∶ , #3,	#4, #5, and #8	#6 ,	#12, #1 #14, #1 #16, ar	13, 15, nd #17	#9, #10 #18, ar	nd $\#19$

TABLE (2) Heat Transmission

Construction Features	Thermal Conductivity Btu/SF/hr/in/ ^o F	Total Thickness In.	Heat Transmission Btu/SF/hr/°F		
Reinforced Concrete	12.0	2.0	24.0		
Styrofoam Insulation		3.0	•72		
at 40 °F mean temperature	•24	4.0	•96		

79 ksi, and an average minimum yield strength of approximately. 67 and 71 ksi. Typical stress-strain curve for 3/16 in. in diameter tension steel wires are as shown in Fig. 16.

INSULATION

Sandwich Panels

The rigid boards of Syrofoam insulation were used as a core of sandwich panels throughout the test. The sandwich panel specimens of over-all thickness of five and six inches used three and four inches thick insulation rigid boards. The maximum operating temperature of Styrofoam insulation for continuous use was 165° F average and thermal conductivity of the insulation was 0.24 Btu per Hr per sq ft per deg F per in. at mean temperature of 40 $^{\circ}$ F. The over-all coefficient of heat transmission is given in Table (2). Average density of insulation boads was 2.5 pcf and water absorption Typical compression stress was less than 0.25 % by volume. -strein curve from direct compression tests on 2 x 2 in. square - 4 in. long are shown in Fig. 17. The tensile strength of the Styrofoam insulation was tested by 2 tests on concrete-Styrofoam -concrete sandwich specimens in direct tension. Average tensile strength-strain curve from direct tension tests is shown in Figure 17a.

3.3. FABRICATION OF SPECIMENS

A. Single layer Panels

The reinforcement of 6 x 6 - 10/10 welded wire fabric was cut properly before it was placed in the oiled forms for casting. The panels were cast in horizontal position. Horizontal casting may cause in practice a differential in strength across the cross section of the panels but it was not possible to cast vertically relatively very narrow panels. The panels were cast in forms built from plywood nailed together. Spacers were used to keep the wire meshes centered in the forms. A predetermined weight of concrete was mixed in a three cubic foot mixer, poured, and vibrated internally for proper panel thickness.

B. Sandwich Panels

The sandwich panels were cast in oiled plywood forms. Reinforcing wires were connected with steel wire #16-gage Then the reinforcement for shell reinforcement of the panels. of the bottom shell were positioned with spacers in the forms The procedure of preparing concrete as shown in Plate 2. mixture, pouring, and vibrating was the same as the one described above in the case of single layer panels. After the bottom concrete shell had reached its initial set (Plate 3.), the insulation was placed as shown in Plate 4. The reinforcement of the upper shell was then positioned on the insulation. The reinforcement for the top shell was tied to the reinforcement

for the bottom shell as shown in Plate 5, and the concrete was then poured and vibrated.

Both panels were moist-cured under cotton cloth for seven days at the room temperature and the forms were then stripped. The panels were left to air dry in the room until tests were held.

PLATE No. 5. Rear Plate Reinforcement on Styrofoam Insulation in Position.

PLATE No. 6. Single Layer Panel in Riehle Hydraulic Testing Machine of Sixty kips.

3.4. TESTING PROCEDURE

A. Single Layer Panels

Three single layer panels were tested in a 60,000 lbs capacity Riehle hydraulic testing machine. A view of the machine during the test of a panel is shown in Plate 6. The load was applied through plywood at the top and bottom of the panels and it was applied in increments of 2,000 lbs. The other panels were tested in a 200,000 lbs capacity testing frame. The loads were applied by hydraulic jack with gage as shown in The smallest graduation represented approximately Plate 7. 4,000 lbs of axial load (the gage was graduated 200 psi). Before the testing, 200,000 lbs loading jack with gage was calibrated in the Reihle strength testing machine as shown in Figure 18. During the loading, thin plywoods were provided at the ends of the specimens for the uniaxial loading (Fig. 19).

B. Sandwich Panels

All sandwich panels were subjected to uniaxial loads in a 200,000 lbs capacity testing frame as described above in the case of single layer panels. Some panels were loaded with combined axial and lateral loads. For lateral loading, testing frame was fabricated with $3" \times 2^3/8"$ I 5.7 lbs/lf I beams and steel bars $\frac{1}{2}$ in. in diameter. This lateral load was applied by a

Fig. 19. Testing Arrangement in 200,000 lbs Testing Frame. indicator model P-350 as shown in Plates 8 A sketch of and 9. the testing in a 200,000 lbs capacity testing frame for the uniaxial load is given in Figure 19. The concrete strains of both the

panels were measured with SR-4 type A-3-S6 strain gages and the dial gages were also provided for deflections and lateral movements of the panels. The locations of the gages are shown in the detailed drawing for each panel (Section 4.2.).

For strain measuring Budd

PLATE No. 9. Front View of 20 kips Lateral Loading Frame with Hydraulic Jack.

PLATE No. 8. Rear View of Testing Frame of 20 kips for Lateral Load.

PLATE No. 7. Panel in Testing Frame of 200 kips with A-110 Digital Strain Indicator.

model A-110 digital strain indicator was used as shown in Plates 6 and 7. All dial gages were removed when a strain reached approximately 0.002 in/in. The relationships of the load to deflection and the load to strain to failure were measured is shown in Appendices A and B. Each increment of loads was maintained for a period sufficient to read the strains and deflections. After failure, the crack patterns of each panel were observed. The panel was removed from the loading machine or frame and was then photographed.

PART FOUR

DISCUSSION OF OBSERVATIONS

ę

4.1. GENERAL BEHAVIOUR

Table (3) shows a summary of the test results for eight single layer panels and six sandwich panels based on the axial load tests, and for five sandwich panels based on the tests of axial and lateral loads combined.

The author's original intention in this research work was to apply axial loads only on the panels. The available equipment had an axial load capacity of 200 kips which was insufficient to produce failure in some sandwich panels. Therefore lateral load was applied in addition to the axial load to observe the failure patterns of those panels.

All panels were loaded to ultimate failure except specimen WCB 22.1.5.24.48- 12 which was cracked by being dropped through mishandling.

The strain distribution on the panels was measured until ultimate load was attained as shown in Appendix A.

The lateral deflections of the center of the panels due to axial loads were recorded and are shown in Appendix B.

A. Single layer Panels

The variations of the ultimate load capacity of the single layer panels were due to differences in concrete compression strength and slenderness ratio. The panel proportions, length,

TABLE (3) SUPPLARE OF LESE RESULTS

SPECIMEN NUMBER	GROSS DIMENSION	L/r	Ag	A _s '	p	fy	fł	fcu	f _{cu/f}	₽ _o	Pu actual	P _{L actual}	Pu actual	REMARK
	txbxL (in)	$L/(I/A_g)$	(sq-in)	(sq-in)	(100/A _s /	Ag)(ksi)	(psi)	(psi)		(kips)	(kips)	(kips)	Po	
WCB 11.1.12.24- 1	1 x 12 x 24	84.5	12	0.055	0.460	62.0	5100	3 850	0.76	55.2	46.2	-	0.836	
WCB 11.1.12.30- 2	1 x 12 x 30	105.6	12	0.055	0.460	62.0	5100	2950	0.58	55.2	35•4	-	0.642	
WCB 11.1.12.36- 3	1 x 12 x 36	126.8	12	0.055	0.460	62.0	5100	2920	0.57	55.2	35.0	-	0.633	
WCB 11.1.13.48- 4	2 x 13 x 48	83.3	26	0.083	0.320	62.0	5980	4080	0.68	136.9	106.0	-	0.774	
WCB 12.2.13.42-5	2 x 13 x 42	72.8	26	0.138.	0.530	62.0	5980	3820	0.64	140.0	99.2	-	0.708	
WCB 12.2.13.48-6	2 x 13 x 48	83.3	26	0.138	0.530	62.0	5980	4060	0.68	140 .0	105.4		0.753	
WCB 12.2.18.60- 7	2 x 18 x 60	104.0	36	0.165	0.460	62.0	5100	3430	0.67	165.5	123.6	-	0.746	
WCB 12.2.18.60- 8	2 x 18 x 60	104.0	36	0.165	0.460	62.0	5980	4090	0.68	192.2	147.4	-	0.767	
WCB 22.1.5.18.48- 9	5 x 18 x 48	25.26	42	0.210	0.500	69.5	5970	4190	0.70	226.7	176.0	-	0.776	-
WCB 22.1.5.18.48-10	5 x 18 x 48	25.26	42	0.420	1.000	69.5	5970	4400	0.74	240.2	184.8	-	0.768	
WCB 22.1.5.18.48-11	5 x 18 x 48	25.26	42	0.630	1.500	67.0	5970	3480	0.58	252.1	146.0	_	0.580	
WCB 22.1.5.24.48-12	5 x 24 x 48	25.44	57	0.235	0.500	69.5	4900	3510	0.72	256.0	200.4	-	0.782	
WCB 22.1.5.24.48-13	5 x 24 x 48	25.44	57	0.570	1.000	69.5	4900	2460	0.50	274.6	140.0	0.25	0.511	
WCB 22.1.5.24.48-14	5 x 24 x 48	25.44	57	0.855	1.500	67.0	4900	3510	0.72	291.1	·200 . 0	5.00	0.687	
WCB 22.1.6.24.48-15	6 x 24 x 48	20.80	60	0.300	0.500	69.5	4900	3340	0.68	269.5	200.0	16.00	0.742	
WCB 22.1.6.24.48-16	6 x 24 x 48	20.80	60	.0.600	1.000	67.0	4900	3340	0.58	287.6	200.0	20.00	0.696	
WCB 22.1.6.24.48-17	6 x 24 x 48	20.42	56	0.340	1.500	67.0	4900	3070	0.63	286.0	172.0	0.050	0.602	
WCB 22.1.6.18.60-18	6 x 18 x 60	25.74	44	0.220	0.500	69.5	5970	4180	0.70	237.4	184.0	-	0.776	•
WCB 22.1.6.18.60-19	6 x 18 x 60	25.74	44	0.440	l.000	67.0	5970	3710	0.62	250.5	163.0	-	0.652	

width, and thickness, influenced the lateral deflection and the average ultimate concrete stress due to the axial load. Thin panels showed a greater lateral deflection than thicker panels as shown in Fig. 20.

Raising of the slenderness ratio brought about a corresponding decrease in the average ultimate concrete stress in the specimen and an increase of the width of the specimen caused a corresponding increase of this stress (Table 3).

The first visible crack of panels appeared at around nine -tenths of the ultimate load.

The panels had two different modes of failure. The first possible mode of failure is characterized by a panel buckling failure as shown in Plates 10, 11, 12, and 13. Due to the buckling of the panels a brittle failure suddenly resulted in the concrete compression block and this brittle failure occurred as soon as the first visible cracking was observed. These cracks rapidly spread along the horizontal lines of the middle part of the panels. The maximum deflection due to axial load occurred in the plane of symmetry near the center of the panel. This is so because the thin ends of a panel could be easily rotated which caused buckling of the panel, as shown in Fig. 21. In the discussion of the bending at the center of a slender panel

under the action of an eccentric load due to deflection, the

tension may be neglected at the ultimate load because it is very small in comparison with the compression in the panel as the panel was previously compressed by axial load. Therefore the panel failed by crushing of the concrete of the compression edge due to combined bending and axial compression at the center.

The second possible mode of failure involves the panels cracking diagonally under the shearing stress. Immediately after the ultimate load

is reached, panels fail with a diagonal shearing of the concrete at the top of the panel. This failure is like a cone-shaped failure of standard compression concrete cylinders as shown in Plates 14, 15, 16, and 17. The reason for the second possible mode of failure seems to be due to these specimens being thicker and wider than the specimens in the first possible mode of failure. When single layer panels started to buckle due to uniformly applied axial load, the edges of the upper and lower ends of the

Fig. 21. Single Layer Panel under Axial Load. panel resisted rotation of the ends. At the upper end of the panel, the clamped WF beam in the loading frame (Fig. 19) remained fixed. But the head of the loading frame hydraulic jack at the

Fig. 22. Single Layer Panel under Uniaxial Compression. Fig. 23. Single Layer Panel under edgewise compression.

lower end of the panel allowed a very small angle of rotation of the movable WF beam in the loading frame during the buckling of the panel. Therefore, at the same time, very small amount of lateral movement of the hydraulic jack occurred due to transverse component of rotational force at the lower end of the panel. Then the load

distribution on the panel changed from the loads as shown in Fig. 22. to the loads as shown in Fig. 23. and the intensity of the compressive edge load at the top of the panel increased until the edge started to collapse.

B. Sandwich Panels

The tests show that compression sandwich panel failure is a function of concrete strength and panel proportions. Steel area is not an important function as long as the steel bars are appropriately placed in the panel. As shown in Appendix B, we can see that the lateral deflections at the center of sandwich panels due to axial loads are much smaller than of single layer panels. Very slender one inch thick individual face plates of the panels showed very high average ultimate concrete compressive stress in comparison with the one inch thick single layer panels. The first visible crack in the sandwich panels appeared at around one-quater to one-half of the ultimate load.

The sandwich panels also had two different modes of failure. The first possible mode of failure in the sandwich panels is similar to the second mode of failure in the single layer panels which has been described above with the longitudinal splitting of the concrete on the weak plane along the vertical lines at the side plates of the panels (Plates 18, 19, 20, 27, and 28).

The other mode of failure is associated with cracking, splitting, and bending due to combined axial and lateral loads. The higher

combined stresses due to axial and lateral loads on the sandwich panel are in effect longitudinal compressive and shearing stresses acting on the section between the insulation core and the concrete The friction resistance between the faces of the face plate. core and plate is negligible. Also, compressive and shearing stresses of the Styrofoam insulation core between concrete face plates are very small in comparison with the stresses of concrete face plates and almost do not affect the strength of the sandwich In this case the longitudinal shear strength due to panels. combined loads is wholly dependent on the shear resistance of horizontal bars and concrete thickness of the narrow side plates in the sandwich panel, but these bars in the side plates are not well enough embedded in the concrete to develop bond against over a considerable length of steel. Hence the longitudinal splitting of the concrete on the weak plane along the vertical lines of the edges of the insulation core faces can be closely associated with diagonal tension and flexural cracks.

4.2. INDIVIDUAL INVESTIGATION

1. SPECIMEN WCB 11.1.12.24-1

As shown in Plate 10, compression falure by buckling resulted in the panel. As the compressive strain was raised on the compression face (back side of the panel), a corresponding increase in the axial load occurred. Near the ultimate load, the strain at the center of the panel (Figure 24, gage no. 9) increased sharply to the value of 0.002448 in/in, as is shown in Figure 26. The compressive strain on the face side increased continuously under increasing load until the load reached 30,000 lbs. and in the range from 30,000 lbs to 40,000 lbs no apparent strain change was observed. Beyond the 40 kips load value, the compressive strain decreased, and at the load of 40,200 lbs, tensile strain of 0,0004 in/in was measured at the center of the panel (Figure 24, gage no. 5). Because this tensile strain is very small in comparison with the compressive strain, the steel could not have developed any tensile stress as it was located at the center of the concrete section. . The ratio of an average concrete stress in the panel to its standard concrete cylinder strength is 3850 to 5100 psi, or 76 % (Table 3). The center deflection of the panel increased under increasing axial load and measured to be 0.23 in. at the load of 30 kips (Figure 20), so that a moment of 6.9 in-kips was developed at the center due to the load of 30 kips.

2. SPECIMEN WCB 11.1.12.30- 2

This panel failed in compression by buckling as shown in Figure

27 and Plate 11.

The compressive strains on the rear compression face of the panel increased continuously under increasing axial load. At the center the strain increased very rapidly near the ultimate load. The final failure was caused by this rapid increase of the concrete compression On the face plate of the panel the compressive strains at the center. increased continuously near the top of the panel under increasing load until it reached 30 kips. Beyond a load of 30 kips, the strains decreased a little (Fig. 27, gage nos. 1, 2, and 3). The tensile strains increased near the bottom of the panel under increasing load up to about 15 kips, and in the range from 15 kips to near the ultimate load, no apparent strain changes were observed (Fig. 27, gage nos. 7, 8, and 9). At the center of the panel no apparent strains were observed below the load of 30 kips, but small amounts of rapid increases of tensile strains were observed in the load range from 30 kips to the ultimate load (Fig. 27, gage nos. 4, 5, and 6).

An average concrete stress of 2950 psi was found at the ultimate load of 35,200 lbs in the panel. The ratio of an average concrete stress of the panel to its standard concrete cylinder strength is 58 % (Table 3).

The center deflection of the panel increased sharply under increasing axial load and was 0.25 in. for a load of 25 kips (Fig. 20), so that a moment of 6.25 in-kips was developed at the center due to the axial load of 25 kips.

3. SPECIMEN WCB 11.1.12.36-3

As shown in Plate 12, compression failure by buckling resulted

PLATE No. 10. View of Panel WCB 11.1.12.24- 1 after Failure.

PLATE No. 10a. Enlarged View of Failure of WCB 11.1.12.24-1.

PLATE No. 11. View of Panel WCB 11.1.12.30- 2 after Failure.

PLATE No. 11a. Enlarged View of Failure of WCB 11.1.12.30- 2.

in the panel.

On the compression face, near face of the panel, the compressive strains increased under increasing axial load and near the center of the panel (Figure 30, gage no. 12), a very rapid increase of the strain was measured (0.001624 at the load of 35,000 lbs) before the concrete failed. This rapid increase of the concrete compression in the panel near the ultimate load brought on the final failure, as shown in Fig. 30.

On the front face of the panel in Plate 12, the compressive strains increased under increasing load, and in the load range from 20,000 lbs to 30,000 lbs, no apparent strain changes were observed in the upper and central regions of the panel. Beyond a load of 40,000 lbs these compressive strains, except at both end parts of the panel, decreased under increasing load. Near the ultimate load, a tensile strain of .000286 was measured at the center (gage no. 4).

An average concrete stress of 2920 psi was found at the ultimate load of 35,000 lbs in the panel. The ratio of an average concrete stress of the panel to its standard concrete cylinder strength is 57% (Table 3).

The center deflection of the panel increased more sharply than the others under increasing axial load and was measured at 0.24 in. for a load of 20,000 lbs (Figure 20), so that a moment of 4.8 in-kips was developed at the center due to axial load of 20 kips.

4. SPECIMEN WCB 11.2.13.48-4

The mode of failure for this panel was a typical compression

failure by buckling, as shown in Plate 13. Observed strains on the compression and tension concrete faces at the center of the panel are presented in Figure 31. As the strain on the compression face of the panel was raised, a corresponding increase in the axial load occurred. Near failure the compressive strain increased rapidly to the value of 0.002280, and concrete crushing was evident, spreading horizontally near Thèn final failure was caused by crushing the middle of the panel. The strain of the concrete at the compression face of the specimen. on the tension face of the panel increased gradually under increasing axial load and was measured at the value of 0.000454 for a load of The steel could not have developed any tensile stress 97,610 lbs. This measured as it was located at the center of the concrete section. tensile strain is very small in comparison with the compressive strain near the ultimate load.

An average concrete stress in the panel was computed as 4080 psi for an ultimate load of 106 kips, and the ratio of an average concrete stress of the panel to its standard concrete cylinder strength was 68 \$ (Table 3).

The center deflection of the panel increased gradually under increasing axial load having a value of 0.102 in. at the load of 64,690 lbs (Figure 20), so that a moment of 6.6 in-kips was developed at the center due to an axial load of 64,690 lbs.

5. SPECIMEN WCB 12.2.13.42-5

As shown in Plate 14 and Figure 34, the concrete panel failure resulted from compression. On the face side of the panel, the

Fig. 29. STRAIN GAUGE LOCATIONS OF WCB 11.2.13.48- 4.

花

PLATE No. 12. View of Panel WCB 11.1.12.36- 3 after Failure.

PLATE No. 12a. Enlarged View of Failure of WCB 11.12.36 - 3.

PLATE No. 13. View of Panel WCB 11.1.13.48- 4 after Failure.

PLATE No. 13a. Enlarged View of Failure of WCB 11.1.13.48 - 4.

compressive strain increased gradually under increasing load until a load of about 80 kips was reached, and beyond this, the strain increased very rapidly. The compressive strain of 0.00292 was measured at a load of 97,610 lbs. The concrete compression failure in the panel was caused by crushing of the corner region at the upper end of the panel. This in turn was due to some rotational movement at the end towards the compression edge before the concrete reached its ultimate compressive strain. In other words, this final failure was caused by a very rapid increase of the compressive strain in the concrete under gradually increased axial load. On the rear face of the panel in Plate 14, no significant compressive strain was measured as shown in Figure 34.

An average concrete stress of 3,820 psi at the ultimate load of 99,200 lbs was determined, and the ratio of an average concrete stress of the panel to its standard concrete cylinder strength was $64 \notin$ (Table 3).

The center deflection of the panel increased gradually under increasing axial load and was measured at 0.094 in. for a load of 64,690 lbs (Fig. 20). So that a moment of 6.07 in-kips was developed at the center of the panel due to the load of 64,690 lbs.

6. SPECIMEN WCB 12.2.13.48-6

Panel WCB 12.2.13.48-6 is an example of compression failure as shown in Plate 15 and Figure 35.

On the face side of the panel in Plate 15, the compressive strain increased gradually under increasing load until a load of about 80 kips was reached and beyond this, the strain increased very rapidly as shown

in Figure 35. Near failure, compression cracks were developed, spreading diagonally near the upper part on the face side of the panel. These were caused by the rapid increase of the concrete strain, and final failure caused by crushing of the concrete. The concrete compressive strain at the face side was measured at 0.002183 for a load of 97,610 lbs.

On the back side of the panel, no significant compressive strain was observed. An average concrete stress in the panel was computed as 4060 psi for an ultimate load of 105,400 lbs and the ratio of an average concrete stress of the panel to its standard concrete cylinder strength was 68 %. This neglects the stress due to moment.

The center deflection of the panel increased gradually under increasing axial load. Near failure, very large deformation took place practically without any increase in load until the concrete failed, and the compression steel buckled. The center deflection of the panel measured 0.102 in. at the load of 81,630 lbs (Figure 20), so that a moment of 8.33 in-kips at the center was developed due to an axial load of 81,630 lbs.

7. SPECIMEN WCB 12.2.18.60-7

As shown in Plate 16, the panel failed in compression at the upper end. This panel was tested with a large number of SR-4 gages attached to the face of the panel. The distribution of strains on the panel faces is given in Figure 38. A general trend of increasing strains exists from both ends towards the center near the ultimate load. As shown in Figure 38, the attachment of SR-4 strain gage no. 14 was

Fig. 32. STRAIN GAUGE LOCATIONS OF WCB 12.2.13.42- 5.

Fig. 33. STRAIN GAUGE LOCATIONS OF WCB 12.2.13.48- 6.

PLATE NO. 14. View of Panel WCB 12.2.13.42- 5 after Failure.

PLATE No. 14a. Enlarged View of Failure of WCB 12.2.13.42 - 5.

PLATE No. 15. View of Panel WCB 12.2.13.48- 6 after Failure.

PLATE No. 15a. Enlarged View of Failure of WCB 12.2.13.48 - 6.

quite imperfect as indicated by the erratic strain record. As the strain on the compression face of the panel was raised, a corresponding increase in the axial load occured. Near the ultimate load, the compressive strain was measured at the value of 0.00214 at the center. Near failure, due to buckling at the center and lateral movement at the lower end of the panel, edgewise compression occured at the upper end (Figure 23) by the reason mentioned above in Part 4.1. Then compression cracks spreading horizontally across the top part of the panel were developed and the final failure was caused by crushing of the concrete at the top of the panel. However, no significant strain on the rear face of the panel in Plate 16 was observed. An average concrete stress of 3430 psi was found at the ultimate load of 123.6 kips. The ratio of an average concrete stress to its standard concrete cylinder strength is 67% (Table 3).

The deflection at the center of the panel increased gradually under increasing axial load and near failure, very large deformation took place before the concrete failed as shown in Figure 20. The center deflection of 0.266 in. was measured at a load of 97,610 lbs, so that a moment of 25.96 in-kips was developed at the center of the panel due to an axial load of 97,610 lbs.

8. SPECIMEN WCB 12.2.18.60-8

Compression failure resulted in the panel, as shown in Plate 17. This panel was tested with ten SR-4 gages attached to the face side and three to the back side of the panel. All strains increased in compression under increasing load and the distribution of strains is

19-01-7.7 Dara Sawa 1966 Max Lano P. 123.⁶ K 12.2.18.6 · DATE JEPT. 1966 MAX. LOAD P. 123.6 N PLATE No. 16a. Enlarged View of Failure of WCB 12.2.18.60 - 7. PLATE No. 16. View of Panel WCB 12.2.18.60- 7 after Failure. Date Sept. 1966 Max Low R. 147.4 K DATE SEPT. 1966 MAX. LOAD P. 147.4 K PLATE No. 17. View of Panel WCB 12.2.18.60-8 after Failure. View of Panel

PLATE No. 17a. Enlarged View of Failure of WCB 12.2.18.60 - 8.

given in Figure 39. It is noticed that a general trend of increasing strains exists from the top towards the bottom of the face side plate. On the back side of the panel, the compressive strains increased similarly from the top to the bottom of the panel under increasing load. At the load of 133,200 lbs the maximum compressive strains were measured to be of 0.001148 at the face side and 0.000620 at the back side of the panel. The final failure was caused by crushing of the edge of the concrete at the top of the face side due to the reason that was described above in the investigation of the specimen WCB-12.2.18.60-7.

An average concrete stress of 4090 psi was found at the ultimate load of 147.4 kips in the panel. The ratio of an average concrete stress of the panel to its standard concrete cylinder strength is 68% (Table 3).

The center deflection of the panel due to axial load increased gradually under increasing load and was measured at the value of 0.05 in. at a load of 72,940 lbs (Figure 20), so that a moment of 3.65 inkips occured at the center due to an axial load of 72,940 lbs.

9. SPECIMEN WCB 22.1.5.18.48-9

This panel is an example of tension failure of horizontal reinforcement due to splitting of the side plate as shown in Plate 18. This panel was tested with sixteen 56.4 gages attached to the four faces of the panel, i.e., eight gages horizontally and eight gages vertically as shown in Figure 40. All horizontal strain gages indicated tensile strains and all the vertical ones compression. The distribution of strains on the faces of the panel is given in

At the center of the panel, no apparent horizontal tensile Figure 42. strains were observed before the panel reached the final failure. The vertical compressive strains increased continuously under increasing load except gage no. 2 on the back face plate of the panel in Plate 18. Near failure, the concentrated compressive strain at the center of the face plate was released rapidly due to a rapid increase of horizontal elongations at the top (gage no. 1) and at the bottom (gage no. 16). Then all compressive strains at the center of the panel approached the But these strains were not similar values near the ultimate load. important factors in panel failure because these measured values at the failure were very small in comparison with the concrete ultimate strain. At the top of the panel, there was no significant increase in the vertical compressive strains under increasing load. On the right side of the panel, horizontal tensile strain (gage no. 16) also increased gradually until a load of about 120 kips was reached. Beyond the load of 120 kips, the tensile strain on the side plate rapidly increased until the load was of about 150 kips when longitudinal splitting of the concrete appeared along the vertical edge line of the insulation core. At the same time, very high compressive strain of 0.0021 in/in (gage no. 13) at the load of 160,970 lbs on the same side of the panel affected the split concrete. Then the final failure was caused by the crushing of the concrete at the side of the panel after the concrete split, and the steel in the side concrete reached An average concrete compressive stress of 4190 psi was found yielding. in the panel at the ultimate load of 176,000 lbs. The ratio of an average concrete compressive stress of the panel to its standard concrete cylinder strength is 70 % (Table 3). The deflection at the center of

Fig. 40. STRAIN GAUGE LOCATIONS OF WCB 22.1.5.18.48- 9.

PLATE No. 18. View of Panel WCB 22.1.5.18.48-9 after Failure

PLATE No. 18a. Enlarged View of Failure of WCB 22.1.5.18.48- 9.

PLATE No. 19. View of Panel WCB 22.1.5.18.48-10 after Failure.

PLATE No. 19a. Enlarged View of Failure of WCB 22.1.5.18.48-10.

the back face plate of the panel in Plate 18 was not observed until the load of 14,000 lbs was applied. Beyond this load, the center deflection increased gradually under increasing load. The center deflection of

Fig. 44. Center Section of Specimen WCB 22.1.5.18.48-10 after Loading. 0.022 in. was measured at the load of 89,610 lbs (Figure 20).

10. SPECIMEN WCB 22.1.5.18.48-10 This panel is an example of tension failure of horizontal reinforcement as shown in Plate 19 and was tested with twelve SR-4 strain gages attached to the four faces of the panel, i.e., six gages horizontally and six gages vertically as shown in Figure 41. On the front face plate of the panel in Plate 19, the tensile strain (gage no. 1) increased gradually

under increasing load until a load of 100,000 lbs was reached, and beyond that load, the tensile strain increased rapidly until the load reached near the ultimate load as shown in Figure 43. The final failure was caused by the yielding of the steel at the top of the front face plate due to increasing concave deformation at the center of the panel, from the face side towards the insulation core, and due to the increasing of the lateral movement at the lower end of the panel, under increasing load

as shown in Figure 44. Near the ultimate load, the tensile strains of 0.00301 in/in at the upper part (gage no. 1), and of 0.00193 in/in at the lower part (gage no. 3), on the front face were measured. The compressive strain at the center of the panel (gage no. 2) was only of the value of 0.0006 in/in. Most horizontal strains showed considerable increase in tension under increasing load, and the bottom strain gage no. 9 on the rear face plate indicated the compressive strain, i.e., 0.000472 in/in at the ultimate load of 176,500 lbs. The center deflection at the rear face plate in Plate 19 increased very gradually under increasing load and the deflection measured was 0.029 in. at the load of 121,200 lbs. An average concrete stress of 4400 psi was found in the panel at the ultimate load of 184,800 lbs. The ratio of an average concrete compressive stress of the panel to its standard concrete cylinder strength is 74% (Table 3).

11. SPECIMEN WCB 22.1.5.18.48-11

This panel failed in tension as shown in Plate 20, and was tested with twelve SR-4 strain gages attached to the four faces of the panel, i.e., six horizontally and six vertically as shown in Figure 45. At the upper part of the panel in Plate 20, no apparent vertical changes wore observed but the horizontal tensile strains on the face plate and the side plate (gage nos. 3 and 6) increased very rapidly under increasing load. Near the ultimate load, longitudinal splitting of the concrete appeared along the vertical edge line of the insulation core after the steel in the side plate at the upper part of the panel reached yielding. The final failure was caused by sudden crushing of

The concrete horizontally across the upper part of the panel. Then the vertical compression steel reached yielding and buckled. At the middle part of the panel, no apparent horizontal tensile strains were observed, and the vertical compressive strains increased continuously under increasing load (gage nes. 8 and 11). At the lower part of the panel, the vertical tensile strains (gage nos. 1 and 7) and the horizontal compressive strain (gage no. 10) increased under increasing load, but these strains were not important factors. Concave deformation at the center of the right side plate in Plate 20 occurred towards the insulation core due to axial load. The deflection at the center increased under increasing load until the load of 49,070 lbs was reached, and beyond that load it decreased as shown in Figure 20. Near failure, a very small degree of the concave deformation was observed, and no convex deformation at the center of the side plate was observed until the concrete failed. An average concrete compressive stress of 3,480 psi was found in the panel at the ultimate load of 146,000 lbs. The ratio of an average concrete stress to its standard concrete cylinder strength is 58 % (Table 3).

12. SPECIMEN WCB 22.1.5.24.48-12

This panel was tested with twelve SR-4 strain gages attached to the four faces of the panel, i.e., six horizontally and six vertically as shown in Figure 46. At the upper part of the panel in Plate 21, no apparent vertical and horizontal strains were observed except on gage no. 10 at the side plate of the panel. This strain on the side plate increased very rapidly beyond the applied load of 40,000 lbs. Visible

Fig. 45. STRAIN GAUGE LOCATIONS OF WCB 22.1.5.18.48- 11.

Fig. 46. STRAIN GAUGE LOCATIONS OF WCB 22.1.5.24.48- 12.

PLATE No. 20. View of Panel WCB 22.1.5.18.48-11 after Failure.

PLATE No. 20a. Enlarged View of Failure of WCB 22.1.5.18 48-11.

PLATE No. 21. View of Panel WCB 22.1.5.24.48-12 after Failure.

PLATE No. 21a. Panel WCB 22.1.5.24.48 - 12 in Testing Frame before Loading.

longitudinal cracks appeared on the side plate near the load of 100,000 lbs, and at the same time, horizontal tensile reinforcement in the side Near the load of 120,000 lbs, major cracks extendplate was yielding. ing horizontally across the upper part of the panel developed as shown Near the load of 200 kips, longitudinal splitting of the in Plate 21. concrete appeared along the vertical edge line of the insulation core after the steel in the side plate of the panel yielded. The tensile strain of 0.00557 in/in was indicated at the upper side plate due to splitting of the concrete at a load of 193,960 lbs. As mentioned above in Section 4.1., the available equipment had an axial load capacity of 200 kips only which was insufficient to produce the final failure in this Before the lateral load could be applied to observe the final panel. failure, the panel broke due to mishandling. At the center of the panel vertical compressive strain increased continuously under increasing load but the compressive strain of 0.00083 in/in at a load of 193,960 lbs (gage no. 8) may be considered negligible in comparison with the tensile strain on the side plate (gage no.10). The center deflection at the rear face plate increased very gradually under increasing load due to axial load, and the deflection measured was 0.007 in. at a load of 121,200 An average concrete compressive stress of 3,510 psi was found in lbs. The ratio of an average concrete stress the panel at a load of 200 kips. of the panel to its standard concrete cylinder strength is 72 % (Table 3).

13. SPECIMEN WCB 22.1.5.24.48-13

This panel is an example of tension failure at the top of the side plate as shown in Plate 22. The panel was tested with fourteen SR-4

strain gages attached to two faces, i.e., nine gages vertically on the face plate and five gages (2 horizontally and 3 vertically) on the side plate as shown in Figure 50. This panel was provided with lateral loading frame and hydraulic jack to apply lateral load in addition to an

Figure 49. Development of a Diagonal Tension Crack.

axial load of 200 kips as shown in Plates 8 and 9. The distribution of strains on the concrete faces of the panel is given in Figure 52. No apparent compressive strain and tensile strain were observed except, in the upper region of the side plate (gage nos. 10 and 11). Until an axial load of about 50,000 lbs was reached, no lateral movement at the lower end of the panel were observed. Beyond this load, the hydraulic jack in the lateral loading

frame indicated lateral load without pumping of this jack, due to a deflection of the face plate and a lateral movement at the lower end of the panel. As soon as the lateral load was found, the hydraulic jack pressure was released, and the lateral load became zero. The vertical tensile strain (gage no. 11) and horizontal compressive strain

(gage no. 10) increased continuously under increasing axial load at the top of the side plate until it reached near the ultimate load due to the reason mentioned above (Figure 49). Near failure, a sudden decrease of the compressive strain and a rapid increase of the tensile strain under increasing axial load were observed. The lateral load of 0.25 kips was measured when the panel failed. The final failure caused by the tension cracks diagonally, splitting of the side concrete plate longitudinally, and crushing of the concrete horizontally at the top of the panel (Plate 22). An average concrete compressive stress in the panel was computed as 2460 psi for an axial load of 140 kips, and the ratio of an average concrete compressive stress of the panel to its standard concrete cylinder strength was 50% (Table 3). The low ratio of 50% was due to the lateral movement at the lower end of the panel and the lateral load on the lower precompressed specimen. No apparent deflection at the center of the face plate was observed until an axial load of about 80,000 lbs was reached, and beyond it, a rapid increase of the center deflection was observed due to combined axial and lateral load (Figure 20).

14. SPECIMEN WCB 22.1.5.24.48-14

The mode of failure for this panel was a typical second mode of failure in the sandwich panel which has been described above in Part 4.1. The panel was tested with eleven SR-4 strain gages attached to two faces vertically, i.e., nine gages on the face plate and two gages on the side plate, as shown in Figure 51. The distribution of strains on the concrete faces of the panel is shown in Figure 53. It should

83

Fig. 51. STRAIN GAUGE LOCATIONS OF WCB 22.1.5.24.48- 14.

٠,

....

PLATE NO. 22. View of Panel WCB 22.1.5.24.48-13 after Failure.

PLATE No. 22a. Enlarged View of Failure of WCB 22.1.5.24.48-13.

PLATE No. 23. View of Panel WCB 22.1.5.24.48-14 after Failure.

PLATE No. 23a. Enlarged View of Failure of WCB 22.1.5.24.48-14.

be noticed that all strain gages showed the tensile strain except gage no. 2 at the center in the upper region of the face plate under Most compressive strain at the upper side of the panel axial load. (gage no. 10) was observed to increase significantly until an axial Under combined axial and lateral loads, load of 200 kips was reached. no tensile strain appeared on the gage and no apparent strain changes were observed until a lateral load of 4,000 lbs was applied in addition to the axial load of 200,000 lbs. The final failure was caused by the crushing of the highly precompressed concrete at the top of the side plate due to the combined load and the lateral movement at the This failure is associated with longitudinal splitting, lower end. diagonal tension cracks, and flexural cracks due to combined axial The deflection at the center of the face plate and lateral loads. increased very gradually under increasing axial load until an axial load of 97.610 lbs was reached. For this load the deflection was of 0.012 in. (Figure 20). For an axial load of 200 kips, the average concrete compressive stress in the panel was found to be 3510 psi, and for combined axial and lateral loads of 200 and 5 kips respectively, the average maximum extreme fiber compressive stress was computed as The ratios of these compressive stresses of the panel to 4180 psi. the standard concrete cylinder strength are 72 and 85 % respectively.

15. SPECIMEN WCB 22.1.6.24.48-15

This panel is an example of the second mode of failure in the sandwich panel which has been mentioned in Section 4.1. and as shown in Plate 24. For this panel test, ten SR-4 strain gages were attached

vertically to two faces of the panel as shown in Figure 54. Figure 56 shows graphically the amount of strain observed in the panel during the loading. In the central regions of the panel, these compressive strains generally increased continuously under increasing axial load until an axial load of 200 kips was reached, and when the lateral load was applied in addition to the axial load of 200 kips, these compressive strains decreased. Especially at the side plate of the panel, the tensile strain (gage no. 9) appeared, and near failure, this strain increased very rapidly under increasing lateral load in addition to the axial load of 200 kips. In the upper regions of the panel, a small degree of tensile strain appeared on the face plate when first loaded, and the compressive strain on the side plate increased under increasing axial load. Near an axial load of 200 kips, these strains at the upper part of the panel became compressive strains. During the lateral loading in addition to the axial load of 200 kips, no apparent strain changes were observed. In the lower regions of the panel, as the compressive strains were raised, a corresponding increase in the axial load occured. When lateral load was applied, no apparent strain changes were observed at the face plate but near failure, a rapid increase of the tensile strain was observed at the side plate (gage no. 10). This rapid increase of the tensile strain at the side plate of the panel brought about a great deformation of the panel, and the final failure was associated with the concrete crushing, bond splitting, diagonal tension cracks, and flexural cracks due to combined axial and lateral loads. No apparent center deflection at the face plate was observed

PLATE No. 24. View of Panel WCB 22.1.6.24.48-15 after Failure.

PLATE No. 24a. Enlarged View of Failure of WCB 22.1.6.24.48-15.

PLATE No. 25. View of Panel WCB 22.1.6.24.48-16 after Failure.

PLATE No. 25a. Panel WCB 22.1.6.24.48 - 16 in Testing Frame after Failure.

until an axial load of 105,040 lbs was applied as shown in Figure 20. For an axial load of 200 kips the average concrete compressive stress in the panel was computed as 3340 psi, and for combined axial and lateral loads of 200 and 16 kips respectively, the maximum extreme fibre compressive stress was found to be 4990 psi in the panel. The ratios of these compressive stresses of the panel to its standard concrete cylinder strength are 68 and 102% respectively.

16. SPECIMEN WCB 22.1.6.24.43-16

As shown in Plate 25, this panel failure is associated with the concrete crushing, splitting, diagonal tension cracks, and flexural cracks. It is an example of the second mode failure of the sandwich panel, described in Part 4.1. Fifteen SR-4 strain gages were attached to the panel faces, i.e., twelve vertically and three horizontally as shown in Figure 55. Load - Strain curves have been plotted for this panel as shown in Figure 57. In the upper regions of the panel, no significant vertical strains were observed but beyond an axial load of about 140 kips, a rapid increase of the horizontal tensile strain was observed (gage no. 10) under increasing load. This rapid increase of the tensile strain brought on the concrete splitting at the upper side plate. Under an increase of the lateral load, in addition to an axial load of 200 kips, the longitudinal splitting of the side plate concrete extended along the vertical edge line of the insulation core from the top towards the lower side. In the central regions of the panel, all compressive strains increased gradually under increasing load until an axial load of 200 kips was reached, and all strains decreased after

lateral load was applied in addition to the axial load of 200 kips. Near failure, the rapid increase of horizontal tensile strain at the side plate (gage no. 13) is similar to the increase of the horizontal strain at the center of side plate in the specimen WCB 22.1.6.24.48-15. Yielding in reinforcement followed, and crushing of the concrete at the side plate took place after a great increase in deformation without any increase in load. In 'the lower regions of the panel, no considerable change of the compressive strain was observed when the lateral load was applied in addition to the axial load of 200 kips. For the axial load of 200 kips, an average concrete compressive stress of 3340 psi was found, and for combined axial and lateral loads of 200 and 20 kips respectively, the maximum extreme fibre compressive stress in the panel was computed as 5400 psi. The ratios of these compressive stresses of the panel to its standard concrete cylinder strength are 68 and 110% respectively. No apparent center deflection of the face plate of the panel was observed until an axial load of about 81 kips was reached (Figure 20).

17. SPECIMEN WCB 22.1.6.24.48-17

This panel was tested with fifteen SR-4 strain gages attached to two faces of the panel, i.e., nine gages on the face plate and six gages on the side plate as shown in Figure 58. The strain distribution on the concrete faces of the panel is shown in Figure 60. At the upper part of the panel (lower part of the panel in Plate 26), no apparent strains were observed on the face plate but on the side plate, the vertical compressive strain increased continuously under increasing axial load.

.

PLATE No. 26. View of Panel WCB 22.1.6.24.48-17 after Failure.

PLATE No. 26a. Enlarged View of Failure of WCB 22.1.6.24.48-17.

PLATE No. 27. View of Panel WCB 22.1.6.24.48-18 after Failure.

PLATE No. 27a. Enlarged View of Failure of WCB 22.1.6.18.60-18.

Especially, the horizontal tensile strain on the side plate increased very rapidly beyond a load of about 40 kips (gage no. 10). Near a load of 90 kips, longitudinal splitting appeared at the top of the side plate, and near failure, its horizontal tensile strain of 0.00311 in/in was measured. At the central part of the panel, all vertical compressive strains increased continuously under increasing load, and increasing rate of the side plate strain was about twice as much as the face plate strain. Almost no horizontal strain was observed at the central part of the side plate. At the lower part of the panel (upper part of the panel in Plate 26), no apparent strains were observed before the panel failed. At an ultimate axial load of 172 kips, longitudinal splitting at the side plate in the upper region of the panel extended rapidly, and at the same time, a great lateral movement at the bottom of the panel occurred. Then suddenly the Budd strain indicator for the lateral loading hydraulic jack indicated a lateral load of 0.05 kips, and the final failure of the panel occurred as shown in Plate 26. This mode of failure is similar to the mode of failure of the Specimen 22.1.5.24.48-13. A very small center deflection at the face plate was observed until an axial load of about 81 kips was reached as shown in Figure 20. The average concrete compressive stress of 3370 psi was found for an axial load of 172 kips, and the ratio of the average concrete stress of the panel to its standard concrete cylinder strength is 63%.

18. SPECIMEN WCB 22.1.6.18.60-18

This panel was tested with twelve SR-4 strain gages attached to

the four faces of the panel, i.e., six gages horizontally and six gages vertically, as shown in Figure 59. In the lower regions of the panel, the tensile strain (gage no. 12) at the side plate increased very rapidly under increasing load until a load of 152,720 lbs was applied, and longitudinal splitting of the concrete appeared from the top towards the lower side. At the same time, a great lateral movement at the lower end of the panel occurred, and the tensile strain of 0.001982 in/in at a load of 152,720 lbs started to decrease under increasing load, as shown in Figure 61. Then the final failure was caused by crushing of the concrete in the corner regions at the upper part of the panel, as shown in Plate 27. At the center of the panel, vertical compressive strains (gage nos. 2 and 5) increased continuously under increasing load, but these strains did not become factors of considerable importance in the failure of the panel. In the other regions, no apparent strains were observed. An average concrete compressive stress of 4180 psi was found in the panel at the ultimate load of 184 kips. The ratio of an average concrete stress of the panel to its standard concrete cylinder strength is 70%. The deflection at the center of the face plate in Plate 27 increased gradually under increasing load, but no apparent deflection was observed until an axial load of about 30 kips was applied. The center deflection at the face plate was measured at 0.041 in. for a load of 81,630 lbs.

19. SPECIMEN WCB 22.1.6.18.60-19

This panel was tested with six SR-4 strain gages attached to two faces vertically, i.e., three on the face plate and three on the side

Fig. 62. STRAIN GAUGE LOCATIONS OF WCB 22.1.6.18.60- 19.

PLATE No. 28. Front View of WCB 22.1.6.18.60- 19 after Failure.

PLATE No. 28A. Side View of WCB 22.1.6.18.60- 19 after Failure.

plate as shown in Figure 62. In the central regions of the panel, the compressive strains (gage nos. 2 and 5) increased considerably under increasing load as shown in Figure 63. No apparent compressive and tensile strains were observed in the lower regions of the panel, Plate 28. In the upper regions of the panel, the compressive strain (gage no. 1) increased very sharply under increasing load at the face plate, and near the ultimate load, the compressive strain of 0.00296 in/in was measured. Beyond a load of 45 kips, compression cracks extending horizontally across the upper face plate developed, and longitudinal splitting of the side plate concrete appeared from the top. The tensile strain which had increased rapidly before the load reached 97,610 lbs, started decreasing sharply beyond that load due to a rapid increase of lateral movement at the lower end of the panel towards the front, and due to the widening of the longitudinal splitting of the concrete at the top of the side plate. The final failure was caused by the crushing of the concrete at the upper part of the panel after the compression steel in the face plate reached yielding. Then compression steel buckled without increase in load after failure of the concrete in compression took place. Convex deformation was observed at the face plate due to axial load, and the center deflection of 0.024 in. was measured at a load of 81,630 lbs (Figure 20). An average concrete compressive stress in the panel was computed as 3710 psi for an ultimate load of 163 kips. The ratio of an average concrete stress of the panel to its standard concrete cylinder strength is 62%.

4.3. THE PREDICTION OF LOAD CARRYING ABILITIES OF THE PANELS AND MATHEMATICAL RELATIONS.

ULTIMATE LOAD CAPACITY OF THE PANELS.

(a) SINGLE LAYER PANEL

The prediction of load carrying abilities for the single layer panel is estimated as for a wide rectangular column.

Since about 1930, a very large research project on columns was carried out at the University of Illinois. (9, 10) These tests indicated that if the concrete approached its ultimate strength before the steel reached its elastic limit, the increased deformation of the concrete near its maximum stress forced the steel stress to build up more rapidly. Thus, a column reached what might be called its yield-point only when the load became equal to approximately 85 % of the ultimate strength of the concrete (as measured by standard cylinder tests) plus the yield-point strength of the longitudinal steel.

The ultimate load for the short column, axially loaded, was discussed in the preceding section expressed as:

 $\bar{P}_{o} = .85 f_{o}^{\dagger} A_{o} + f_{y} A_{s}$

or

$$\tilde{P}_{o} = .85 f_{c}^{\dagger} (A_{g} - A_{s}) + f_{y} A_{s} \qquad (4.1)$$

But the 1963 ACI Code¹³ states that strength reductions for length of compression members depend upon column lengths, radiuses of gyration, and terminal joint conditions. The Code allows for long column action by introducing a reduction factor which is applied to the short column
capacity. It is necessary to revise the strength equation given to:

$$\bar{P}_{u} = R \bar{P}_{o}$$
(4.2)

$$P_{u} = (1.13 - 0.004 \text{ L/r})(0.85 \text{ f}_{c}^{t} \text{ A}_{c} + \text{f}_{y} \text{ A}_{st}) \qquad (4.3)$$

(b) SANDWICH PANELS

The ultimate load carrying abilities for the sandwich panels are estimated as though they are hollow rectangular tied columns as shown in Figure C-2.

By using the equations of (4.1) and (4.2), the following equation for the ultimate load of the sandwich panels, axially loaded, is obtained:

$$P_{u} = (1.26 - 0.004 \frac{t}{t!} \frac{L}{r})(0.85 f_{c}^{!} A_{c} + f_{y} A_{st}) \quad (4.4)$$

But some of the sandwich panels are applied the lateral load in addition to the axial load because two hundred kips. of maximum allowed axial load of the frame is not enough to fail them. For these panels, it is assumed that a section is controlled by compression because eccentricity of axial load at the end of the member, measured from the plastic centroid of the panel section, is relatively much smaller than the eccentricity of the balanced load $\bar{P}_{\rm b}$ measured from the plastic centroid of panel section. For this assumption the ultimate load of panels is given:

$$\overline{P}_{u} = \frac{\overline{P}_{o}}{1 + ((\overline{P}_{o} / \overline{P}_{o}) - 1) e/e_{b}}$$
(4.5)

or

$$e = (\overline{P}_{o}/\overline{P}_{u}) - 1 e_{b}$$

$$(\overline{P}_{o}/\overline{P}_{b}) - 1 \qquad (4.6)$$

In estimating the bending of a slender sandwich panel under the action of an eccentric load, Fig. 64, the moment due to an eccentricity of load is equivalent to $\overline{P}_u \cdot e$. Then it is assumed that such an axial load with the bending moment, $\overline{P}_L \cdot L/4$, at the middle of the panel as shown in Fig. 65, is equivalent to an eccentric load.

Fig. 64. Eccentric Load

Fig. 65. Combined Axial and Lateral Loads

 \overline{P}_{u} e, as shown in Fig. 64; so that

 $\overline{P}_{u} \cdot e = \overline{P}_{L} \cdot L/4$

(4.7)

Substituting equation (4.6) in this equation, we obtain

$$\overline{P}_{u} = \frac{(\overline{P}_{o}/\overline{P}_{u} - 1) e_{b}}{(\overline{P}_{o}/\overline{P}_{b} - 1)} = \overline{P}_{L*L/4}$$
(4.8)

or

$$\overline{P}_{L} = \frac{4 (\overline{P}_{o}/\overline{P}_{u} - 1) eb \overline{P}_{u}}{(\overline{P}_{o}/\overline{P}_{b} - 1) L}$$

$$(4.9)$$

 \overline{P}_{b} and e_{b} in this equation can be obtained from Appendix C-2. Phil M. Ferguson¹¹ states that strength reduction factor, R¹, for an eccentric loaded long column depends upon the ratio of $\overline{P}_{u}/\overline{P}_{b}$ and R. Then the equation (4.8) will be:

$$\overline{P}_{u} = R' \left[\overline{P}_{o} - \frac{\overline{P}_{L} \cdot L}{4} \frac{(\overline{P}_{o}/\overline{P}_{b} - 1)}{\overline{P}_{b}} \right]$$
(4.10)

 $\bar{P}_{u} = \left(1 - \frac{\bar{P}_{u}}{\bar{P}_{b}} (1 - R)\right) \left(\bar{P}_{o} - \frac{\bar{P}_{L} \cdot L}{4} \frac{(\bar{P}_{o} / \bar{P}_{b} - 1)}{e_{b}}\right)$ (4.11)

where

or

108

 $R^{!} = 1 - \frac{\bar{P}_{u}}{\bar{P}_{b}} (1 - R)$

4.4. CONCLUSIONS

The following conclusions are based on the result of this investigation:

This study shows that very high average concrete compressive strength in the sandwich panels was found. The two concrete side plates containing a styrofoam insulation core between have been shown to be an important factor for obtaining greater values of stiffness and resisting shear strength in the sandwich panel. Therefore, precast concrete sandwich panels may be considered better for the purposes of resisting heat transfer and bearing load than ordinary dense concrete panels for one story buildings.

The concrete face plate thickness of one inch may be realistic in practice if proper shear connectors or concrete ribs are used longitudinally between two face plates.

Axially loaded sandwich panels resist very high bending stress. However, when initially lateral load is applied on the sandwich panels they can not carry much of the axial load due to lateral deformation of the panels.

The most important findings have been summarized in Section 4.1.

The behaviour of single layer and sandwich reinforced concrete panels for bearing load can be predicted approximately as though they were wide and hollow rectangular columns. The prediction of

the ultimate strength of the panels appears possible only by means of empirical relationships. The expressions of reduction factor, R, for ultimate axial loads on the panels suggested in Section 4.3. have been revised a number of times during the investigations.

The author believes that this study has produced interesting results concerning a basic concept in precast concrete buildings, and that further study and experimentation would yield profitable improvements.

Further research work which could be undertaken to assess for concrete sandwich panel construction would be as follows:

- a. Axial and eccentric load carrying abilities of full scale panels in combination with lateral load
- b. Comparison of structure behaviour on secondary stress effects of reinforced and prestressed concrete sandwich panels
- e. Panel behaviour under periods of freezing and thawing of the exterior panel face and various moisture conditions
 d. Heat transfer characteristic under freezing and thawing cycles
- e. Fire retarding characteristic of thin walled concrete sandwich panels with various commercial insulations.

ì

APPENDICES

APPENDIX A STRAIN/LOAD READING

WCB-11-1-12-24-1 LOAD (1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10
0 2000 4000 6000 8000 10000 12000 14000 16000 20000 22000 24000 26000 26000 26000 30000 32000 34000 36000 38000 40000 2000000 20000 20000 20000 20000 20000 20000 2	0 -87 -164 -235 -393 -4702 -393 -4702 -557928 -4707 -557928 -66554 -662882 -5555 -66556 -662882 -5555 -66556 -66282 -5555 -420 -5555 -420 -5555 -420 -5555 -420 -5555 -420 -5555 -420 -5555 -420 -5555 -420 -5555 -5555 -5555 -5555 -5555 -5555 -5555 -5555 -5555 -555555	-42 -82 -1696 -2278 -2278 -3387 -339156 -4350 -44382 -44888 -44888 -4488 -4	0 -53 -115 -28 -37 -28 -37 -447 -28 -37 -447 -55 -567 -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	0 -34 -72 -129 -216 -216 -216 -216 -216 -258 -358 -358 -358 -4356 -4356 -430 -4430 -4430 -4430 -4430 -4430 -4430 -260 -260 -4430 -260 -260 -250 -250 -355 -445 -445 -445 -250 -250 -250 -250 -250 -250 -250 -25	0 -10 -27 -99 -128 -128 -158 -214 -246 -214 -246 -214 -246 -214 -246 -288 -327 -358 -358 -358 -3290 -240 -140 -140 -140 -140 -10 -27 -99 -158 -329 -358 -329 -356 -240 -240 -240 -240 -240 -240 -240 -240	0 -26 -110 -157 -2241 -227 -227 -227 -227 -227 -227 -227 -22	0 +4 +6 -11 -39 -655 -130 -150 -172 -2240 -2252 -2262 -2262 -2262 -2264 -2252 -2264 -2252 -2264 -2252 -2264 -2254 -2254 -2254 -2254 -254 -254 -254	0 +4 -12 -26 -46 -72 -102 -136 -176 -222 -268 -318 -371 -426 -556 -628 -720 -4866 -628 -720 -820 -934 -1070 -1240 -1240 -1786	0 -26 -58 -110 -139 -170 -252 -299 -395 -390 -574 -5746 -732 -948 -12462 -12462 -12462 -12462 -12462 -12462 -12462 -12462 -2448	0 -48 -103 -137 -174 -212 -246 -288 -380 -428 -380 -478 -584 -584 -584 -584 -712 -788 -584 -644 -7188 -874 -1076 -1198 -1344 -1514 -1800

WCB-11-1-12-30-2 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10	11	12
0 2000 4000 6000 8000 10000 12000 14000 16000 20000 22000 24000 26000 28000 30000 32000 34000 35000	0 -39 -156 -2278 -3391 -479 -5148 -5794 -5794 -5008 -502 -470	0 -54 -113 -168 -227 -319 -356 -397 -444 -4682 -502 -400 -400 -400	0 -78 -153 -216 -276 -327 -375 -415 -415 -415 -447 -478 -5222 -5320 -5320 -438 -406 -406	0 12 12 12 12 14 16 226 348 64 78 104 144 222 814 992	0 -15 -27 -376 -556 -556 -5486 -5486 -5486 -22 -5486 -22 -5486 -26 -26 -26 -26 -2562 -26 -26 -2562 -26 -2562 -26 -26 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	$\begin{array}{c} 0 \\ -36 \\ -72 \\ -96 \\ -118 \\ -131 \\ -140 \\ -145 \\ -148 \\ -148 \\ -148 \\ -148 \\ -144 \\ -132 \\ -100 \\ -92 \\ -60 \\ -4 \\ 190 \\ 416 \\ 644 \end{array}$	0 31 73 119 180 241 289 322 337 346 344 334 344 320 300 272 232 168 128	0 36 88 127 176 212 268 312 346 370 382 394 394 394 394 394 392 394 394 394 394 394 394 394 394 394 394	0 6 40 78 119 155 183 208 232 245 260 260 260 254 244 210 168 136	$\begin{array}{c} 0 \\ -2 \\ -2 \\ -2 \\ -18 \\ -20 \\ -40 \\ -64 \\ -97 \\ -134 \\ -180 \\ -232 \\ -352 \\ -352 \\ -428 \\ -516 \\ -704 \\ -824 \\ -872 \end{array}$	0 -36 -90 -147 -212 -282 -360 -434 -513 -603 -696 -924 -1042 -1042 -1184 -1364 -1752 -2160 -2440	0 -75 -171 -278 -390 -560 -627 -725 -820 -916 -1012 -1104 -1276 -1360 -1416 -1546 -1546 -1630

WCB-11-1-12-36-3 LOAD(1bs) - STRAIN(micro in/in)

Axial Load	Gauge 1	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12
0 2000 4000 6000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000	0 10 20 18 -14 -36 -64 -98 -135 -174 -218 -260 -298 -336 -378 -412 -436	0 -3 -22 -50 -80 -111 -143 -178 -216 -258 -297 -334 -368 -396 -408 -420 -420 -376	0 -19 -23 -42 -64 -81 -100 -120 -142 -162 -184 -202 -214 -208 -214 -208 -192 -154 -56	- 12 - 29 - 48 - 64 - 98 - 118 - 134 - 153 - 167 - 177 - 181 - 176 - 154 - 116 - 154 - 116 - 144 104	0 -16 -36 -54 -94 -111 -130 -148 -165 -180 -194 -198 -196 -144 -78 60	0 -27 -60 -92 -125 -184 -214 -214 -214 -2146 -278 -308 -372 -372 -364 -328 -328 -248	0 -27 -56 -82 -112 -145 -168 -228 -2588 -2588 -2588 -318 -366 -378 -3668 -378 -378 -378 -378 -378 -378 -338	0 -24 -52 -764 -104 -139 -164 -200 -223 -313 -354 -354 -354 -354 -354 -354 -354 -35	0 -11 -26 -42 -60 -82 -107 -140 -178 -220 -269 -320 -378 -439 -588 -588 -588 -680 -790	0 -52 -101 -146 -198 -256 -308 -362 -416 -473 -530 -596 -668 -754 -856 -978 -1140 -1372	$\begin{array}{c} & & & \\ & -39 \\ & -87 \\ & -130 \\ & -169 \\ & -217 \\ & -267 \\ & -317 \\ & -370 \\ & -426 \\ & -486 \\ & -550 \\ & -486 \\ & -550 \\ & -624 \\ & -706 \\ & -814 \\ & -950 \\ & -1140 \\ & -1424 \end{array}$	0 52 47 28 -34 -74 -122 -154 -201 -304 -361 -422 -364 -364 -564 -780
35000	-448	-336	22	286	196	172	-298	-574	-872	-1542	-1624	-034

LOAD(lbs) - STRAIN(micro in/in)

	WCB-11	-2-13-48-4	WCB-12	-2-13-48-5	WCB-12	-2-13-48-6
Axial Load	Gauge 1	Gauge 2	Gauge 1	Gauge 2	Gauge 1	Gauge 2
0	0	0	0	0	0	0
9720	-67	20	- 38	-34	-48	-20
21900	-211	42	-120	108	-108	-52
29300	-312	47	-188	-180	-162	84
41300	-471	49	-310	-334	-248	-132
49070	-599	52	-410	-408	-332	-171
61100	-791	62	-580	-476	-443	-223
68800	-926	72	-682	-508	-542	-248
81630	-1238	126	-860	-540	-782	-294
89610	- 1582	196	-1480	- 520	-1230	-294
97610	-2280	454	-2930	-210	-2183	-186

2115

. .

WCB-12-2-18-60-7

LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12	Gauge 13	Gauge 14
Load	1	2	3		· 0	0	0	0	õ	0	0	О Ц	0	0 2
0 9720	0 2	0 -7	-10	-14	-16 -110	-10 -90	-16 -113	-16 -1 <u>3</u> 6	-26 -154	-18 -130	-23 -23	-14 -26	-5 -8	43 80
17430 25750	-10 -16	-54 -96	-09 -127 182	-170 -245	-205	-172 -254	-216 -311	-261 -373	-292 -420	-250	-60 -91	-40 -64	-15 -28	106 122
33570 41300	-20 -31	-132 -181	-250	-331 -411	-395	-350	-420 -516	-499 -610	-550 -674	-578 -684	-122 -169	-89 -120	-46 -73	122 114
49070 57000	-15 -13	-274	-377	-493 -564	-584 -669	-533 -612	-623 -710	-712 -826	-913 -1068	-769	-212	-146 -174	-92 -112	108 108
64690 72940	-24 -24	-378	-508 -604	-659 -784	-789 -940	-730 -876	-832 -986	-1120	-1222	-992 -1080	-336 -406	-196 -214	-118 -130	106 94
81630 89610	-60 -78	-522 -638	-684 -808	-884 -1048	-1068 -1280	-1000	-1112	-1464	-1540	-1198	-488 -560	-204 -168	-96	124
105040	-102	-736	-958 -1205	-1256 -1624	-1556 -2140	-1484 -2030	-2110	-2140	-2120	-1336	-608	-24	212	210
113120		-			· · · · · · ·			1. A				1111 - E	· · · ·	

WCB-12-2-18-60-8 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge	Gauge 12	lauge
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 133200	$ \begin{array}{r} 0\\ -2\\ -2\\ -3\\ -6\\ -10\\ -14\\ -30\\ -44\\ -64\\ -64\\ -86\\ -106\\ -124\\ -138\\ -150\\ -168\\ -208\\ -224 \end{array} $	0 0 -1 -2 -6 -14 -42 -72 -98 -130 -164 -204 -232 -258 -292 -332 -410 -446	0 -4 -20 -45 -91 -138 -196 -260 -316 -382 -456 -530 -592 -652 -728 -812 -916 -972	0 -4 -25 -60 -108 -152 -203 -257 -304 -356 -414 -471 -520 -570 -628 -692 -758 -796	0 -18 -40 -88 -146 -197 -256 -316 -370 -427 -492 -557 -638 -676 -746 -824 -900 -944	0 -8 -47 -97 -156 -205 -264 -324 -374 -432 -494 -544 -664 -734 -820 -902 -960	0 -10 -67 -134 -208 -269 -334 -401 -455 -516 -586 -652 -718 -792 -868 -952 -1036 -1084	0 -66 -136 -219 -268 -330 -396 -396 -396 -574 -652 -718 -786 -862 -948 -1036 -1096	0 -8 -76 -156 -239 -306 -376 -444 -506 -569 -645 -726 -726 -798 -876 -952 -1020 -1100 -1148	0 -7 -74 -150 -224 -288 -354 -416 -468 -525 -592 -662 -728 -728 -794 -864 -936 -1010 -1052	0 -6 -48 -66 -82 -103 -123 -148 -175 -208 -245 -282 -320 -360 -408 -456 -528 -584	$\begin{array}{c} 0 \\ -17 \\ -64 \\ -110 \\ -137 \\ -166 \\ -202 \\ -242 \\ -272 \\ -300 \\ -329 \\ -361 \\ -404 \\ -432 \\ -460 \\ -488 \\ -500 \\ -532 \end{array}$	0 -2 -6 -15 -33 -60 -97 -142 -190 -245 -299 -354 -492 -596 -620

.

WCB-22-1-5-18-48-9 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 136490 144200 152720 160970	0 3 22 56 79 87 96 110 124 158 288 384 476 548 638 726 944 1350 1472 1620	0 -2 -40 -98 -152 -207 -263 -318 -376 -428 -376 -428 -376 -428 -592 -640 -592 -684 -736 -784 -736 -784 -1340 -1984 -1064	0 1 9 225 355 58 792 104 116 136 148 196 216 236 264 360 360	0 -28 -74 -97 -132 -159 -212 -262 -348 -410 -464 -536 -584 -686 -752 -864 -944 -1100	0 3 14 19 24 41 65 88 108 126 144 158 126 144 156 200 218 242 268 268	0 -4 -20 -60 -98 -139 -238 -295 -3394 -394 -394 -394 -540 -580 -580 -692 -748 -892 -892 -952	0 1 4 138 28 28 54 82 560 24 48 66 66 66 55 36	0 -5 -20 -64 -114 -184 -258 -312 -364 -428 -544 -488 -544 -604 -640 -660 -684 -710 -726 -752 -800 -760	0 -4 -20 -44 -60 -81 -102 -126 -152 -180 -210 -235 -272 -295 -350 -374 -398 -420 -448 -460	0 -1 -13 -31 -51 -74 -104 -131 -160 -196 -236 -280 -316 -360 -404 -448 -560 -612 -700 -756	0 2 4 6 8 10 12 16 22 28 36 44 52 60 72 86 96 128 116 152	0 29 64 94 123 120 100 86 74 64 50 438 30 18 -8 -72	0 -50 -229 -378 -540 -682 -812 -1036 -1176 -1300 -1420 -1500 -1568 -1634 -1700 -1568 -1634 -1768 -1634 -1768 -1834 -1960 -2080 -2100	0 -32 -76 -116 -162 -212 -261 -312 -360 -420 -480 -530 -636 -696 -748 -808 -872 -920	0 1 6 14 18 24 30 34 44 48 52 60 66 72 80 88 96 106 112 132 112	

نچ² د

WCB-22-1-5-18-48-10 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10	11	12
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 136490 144200 152720 160970 168380 176500	0 24 23 40 86 135 170 254 322 490 628 938 1548 1764 2020 2640 2830 2640 2830 2640 2830 2640 2380 2640 2830 2640 2830 2640 2830 2640 2830 2640 2830 2640 2830 2640 2830 2640 2830 200	-4 -18 -22 -36 -556 -102 -130 -108 -2298 -2298 -3712 -4522 -4522 -5564 -600	0 2 16 126 128 218 247 3105 492 5783 9046 10566 1316 1470 1620 1840 1840 1840 1840 1840 1840 1840 1840 1840 1930	0 -2 -3 -16 -34 -12 -2362 -2862 -368 -448 -448 -548 -448 -572 -6012 -652 -652 -652 -652 -652 -652 -652 -752	0 -26 -582 -1582 -1592 -1592 -1592 -2726 -366 -366 -366 -366 -4598 -4598 -5594 -2664 -2726 -2664 -2726 -2759 -2726 -2759	$\begin{array}{c} -3 \\ -31 \\ -58 \\ -79 \\ -116 \\ -147 \\ -163 \\ -120 \\ -132 \\ -120 \\ -118 \\ -114 \\ -100 \\ -93 \\ -98 \\ -56 \\ -16 \\ 64 \\ 108 \\ 112 \\ 124 \end{array}$	0 26 126 1252 36996 552 5925 5925 5925 5925 6590 7750 816 838 855	0 -1 124 -37 52 78 102 158 1899 2382 144 3348 300 428 448	-10 -48 -90 -118 -149 -149 -149 -155 -2881 -376 -376 -376 -376 -376 -378 -378 -378 -378 -3796 -4360 -470 -472	$\begin{array}{c} 0\\ 6\\ 16\\ 28\\ 49\\ 82\\ 110\\ 133\\ 152\\ 148\\ 1226\\ 294\\ 584\\ 7902\\ 1004\\ 932\\ 1004\\ 932\\ 866\\ 820\end{array}$	01860480480667666246898 12223334467666246898	$\begin{array}{c} 0\\ 18\\ 32\\ 48\\ 77\\ 104\\ 122\\ 142\\ 1502\\ 178\\ 199\\ 220\\ 246\\ 278\\ 294\\ 2568\\ 294\\ 2568\\ 294\\ 304\end{array}$

WCB-22-1-5-18-48-11	LOAD(lbs)	- STRAIN(micro ir	ı/in)
---------------------	-----------	-----------	----------	-------

Axial Load	Gauge . 1	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge
0	0	0	0	0	0	0	0	0	0	0	0	0
9720	1	l	34	13	4	14	1	-19	38	-32	-16	-20
17430	2	2	273	33	12	111	2	-58	127	-147	-50	-84
25750	12	4	1198	40	18	628	36	-92	176	-258	-90	-180
33570	76	8	1254	52	20	812	60	-128	188	-348	-128	-230
41300	202	8	1412	64	55	996	92	-172	200	-498	-170	-276
49070	332	10	1692	70	24	1104	94	-220	208	-592	-220	-296
57000	544	16	2070	76	24	1128	116	-264	216	-656	-268	-288
64690	704	16	2280	80	24	1168	204	-308	216	-724	-304	-288
72940	792	24	2510	80	24	1360	272	-368	216	-784	-360	-248
81630	880	32	2720	80	24	1610	400	-416	180	-848	-412	-248
89610	952	36	2896	88	24	2166	752	-480	144	-904	-472	-248
97610	982	40	3030	104	24	2490	808	-528	88	-956	-524	-248
105040	1020	40	3210	104	24	2730	848	-584	44	-1014	-568	-248
113120	1020	44	3310	112	32	2890	856	-648	12	-1032	-624	-248
121200	1044	48	3440	112	4 4	2890	848	-704	-32	-1080	-680	-248
128820	1048	58	3440	124	40	3810	828	-736	-68	-1120	-712	-232
136490	1080	70	3430	140	40	4100	820	-790	-120	-1140	-740	-250
144200	1090	.50	3140	160	40	3130	800	-780	-140	-1150	-750	-140

WCB-22-1-5-24-48-12 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	l	2	3	4	5	6	7	8	9	10	11	12
Load 9720 17430 25750 33570 41300 49030 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 136490 144200 152720 160970 168380 176500	$ \begin{array}{c} 1 \\ $	2 0 4 10 132 358 2 9 140 157 2 2 2 2 2 2 2 2 2 2 2 2 2	3 10 43 125 104 760 52 560 562 568 668 668 668 560 560 562 668 668 668 560 560 560 560 560 560 560 560	4 0 -5 -120 -182 -208 -216 -210 -190 -186 -148 -144 -128 -124 -124 -124 -124 -124 -124 -124 -124 -124 -120 -80 -72 -60 -40 -40	5 -12 -38 -67 -98 -130 -162 -2373 -3380 -2273 -3380 -4472 -4472 -5144 -6660 -6600 -6600	$\begin{array}{c} & & & \\ & & & \\ & & -10 \\ & & -16 \\ & & -19 \\ & & -29 \\ & & -44 \\ & & -49 \\ & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & -58 \\ & & & & & -58 \\ & & & & & -58 \\ & & & & & -58 \\ & & & & & -58 \\ & & & & & -58 \\ & & & & & & -58 \\ & & & & & & -58 \\ & & & & & & & -58 \\ & & & & & & & -58 \\ & & & & & & & -58 \\ & & & & & & & & -58 \\ & & & & & & & & -58 \\ & & & & & & & & & -58 \\ & & & & & & & & & & -58 \\ & & & & & & & & & & & & & & & & & & $	7 4 36 46 46 91 147 170 196 214 220 224 226 220 220 240 220 220 220 220 220	8 -18 -29 -49 -72 -198 -126 -196 -156 -156 -231 -262 -332 -304 -332 -372 -408 -488 -576 -640 -630 -720 -720 -720 -720 -720 -720 -720 -198 -156 -156 -156 -150 -720 -730 -740 -	9 0 8 32 60 9 9 9 9 9 9 9 9 9 9 9 9 9	$ \begin{array}{c} 0\\ 0\\ 10\\ 38\\ 72\\ 118\\ 196\\ 410\\ 674\\ 962\\ 1176\\ 1240\\ 1524\\ 2080\\ 2390\\ 2710\\ 2910\\ 3370\\ 3590\\ 3910\\ 4260\\ 4580\\ 4730 \end{array} $	$ \begin{array}{c} 11\\ 0\\ 4\\ 16\\ 28\\ 36\\ 40\\ 42\\ 42\\ 42\\ 46\\ 51\\ 88\\ 96\\ 104\\ 108\\ 104\\ 108\\ 104\\ 108\\ 104\\ 108\\ 112\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$	12 0 -2 -10 -21 -24 -29 -26 -21 -16 -8 2 16 12 8 8 12 16 20 24 24 20 10 0 0
184920	100	240	20	-40	-720	-230	240	-740	-100	4980	100	-20
193960	120	280	60	0	-740	-270	260	-830	-240	5570	190	-40

WCB-22-1-5-24-48-13 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 136490 140000	0 1 6 10 18 21 30 36 42 49 60 60 56 230 24 36 60	0 2 3 58 12 50 68 95 121 152 189 234 228 240 288 318 344 372	0 2 4 0 -6 4 16 18 4 -16 -44 -56 -68 -96 -112 -120 -106 -106	$\begin{array}{c} 0 \\ -1 \\ -6 \\ -14 \\ -24 \\ -36 \\ -50 \\ -72 \\ -94 \\ -114 \\ -144 \\ -170 \\ -202 \\ -236 \\ -266 \\ -306 \\ -368 \\ -300 \\ -368 \\ -300 \end{array}$	$\begin{array}{r} 0 \\ -5 \\ -24 \\ -43 \\ -65 \\ -85 \\ -110 \\ -136 \\ -166 \\ -197 \\ -233 \\ -272 \\ -302 \\ -342 \\ -376 \\ -468 \\ -524 \\ -534 \end{array}$	$\begin{array}{c} 0 \\ -1 \\ -25 \\ -43 \\ -66 \\ -92 \\ -122 \\ -146 \\ -180 \\ -208 \\ -248 \\ -288 \\ -320 \\ -364 \\ -404 \\ -448 \\ -448 \\ -548 \\ -746 \end{array}$	$\begin{array}{c} 0 \\ 6 \\ 19 \\ 23 \\ 26 \\ 18 \\ -14 \\ -33 \\ -56 \\ -82 \\ -104 \\ -130 \\ -158 \\ -200 \\ -224 \\ -262 \\ -306 \\ -320 \\ -392 \end{array}$	0 2 -5 -3 -20 -94 -135 -184 -234 -398 -398 -398 -398 -398 -570 -636 -690 -800	$\begin{array}{c} 0 \\ -11 \\ -44 \\ -72 \\ -106 \\ -151 \\ -207 \\ -246 \\ -320 \\ -363 \\ -404 \\ -492 \\ -568 \\ -568 \\ -606 \\ -648 \\ -678 \end{array}$	0 18 42 62 98 169 225 332 400 478 530 632 758 888 1074 1341 1656 2123	$\begin{array}{c} & & & \\ & -18 \\ & -85 \\ & -145 \\ & -222 \\ & -300 \\ & -384 \\ & -468 \\ & -580 \\ & -694 \\ & -694 \\ & -694 \\ & -694 \\ & -814 \\ & -918 \\ & -998 \\ & -1084 \\ & -1148 \\ & -1216 \\ & -1282 \\ & -1304 \\ & -1038 \end{array}$	0 8 24 39 55 70 84 96 108 123 137 150 162 168 176 180 176 178 154	$\begin{array}{c} & & & \\ & -5 \\ & -27 \\ & -45 \\ & -68 \\ & -92 \\ & -118 \\ & -140 \\ & -168 \\ & -194 \\ & -222 \\ & -251 \\ & -274 \\ & -328 \\ & -396 \\ & -396 \\ & -408 \\ & -396 \end{array}$	0 -6 -36 -59 -104 -155 -208 -256 -304 -350 -400 -445 -488 -538 -578 -624 -672 -708 -740

WCB-22-1-5-24-48-14 LOAD(1bs) - STRAIN(micro in/in)

Axial Load	Gauge 1	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 113120 121200 128820 136490 144200 152720 160970 168380 176500 184920	$\begin{array}{c} 0 \\ -11 \\ -24 \\ -36 \\ -44 \\ -50 \\ -60 \\ -89 \\ -110 \\ -132 \\ -156 \\ -184 \\ -2132 \\ -278 \\ -2272 \\ -3422 \\ -3422 \\ -3428 \\ -488 \\ -674 \\ -736 \\ -800 \\ -806 \\ -802 \\ -800 \\ -802 \\ -800 \\ -802 \\ -800 \\ $	-7 +6 18 47 97 25 34 29 72 34 25 34 20 20 14 8 44 44 43 68 02 50 14 8 95 20 8 4 20 8 95 20 8 4 25 20 8 4 25 20 17 25 20 17 25 20 20 20 20 20 20 20 20 20 20 20 20 20	-4 -10 -8 -16 -24 -35 -68 -152 -183 -218 -238 -269 -322 -279 -322 -322 -350 -412 -444 -478 -555	-4 -19 -38 -62 -19 -190 -238 -360 -150 -238 -318 -368 -430 -430 -548 -548 -6526 -766 -878 -944 -1004	-8 -36 -63 -100 -140 -188 -232 -320 -370 -423 -472 -550 -672 -736 -672 -784 -904 -956 -1080 -1130	0 -12 -42 -65 -101 -136 -165 -211 -256 -392 -466 -392 -466 -392 -466 -5838 -748 -5838 -778 -7783 -7783 -7783 -8850 -7780 -8850 -8850 -8850 -8850 -7780 -8850 -8850 -8850 -7780 -8850 -8850 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -8850 -7780 -8850 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -7780 -8850 -8850 -7780 -8850 -8850 -7780 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -8850 -77780 -777780 -77770 -777000 -777000 -77700 -7770000 -77700000000	0 -3 0 -15 -33 -56 -128 -128 -128 -169 -1956 -2280 -2804 -3364 -33646 -4366 -466 -566	$\begin{array}{c} 0 \\ -4 \\ -6 \\ -4 \\ 0 \\ -2 \\ -7 \\ -19 \\ -30 \\ -53 \\ -118 \\ -139 \\ -178 \\ -198 \\ -296 \\ -374 \\ -462 \\ -374 \\ -462 \\ -556 \\ -668 \\ -668 \end{array}$	0 -20 -68 -93 -137 -181 -224 -262 -306 -345 -380 -431 -470 -516 -539 -600 -638 -686 -726 -770 -836 -888 -888 -936 -960	0 -12 -75 -144 -299 -386 -484 -594 -672 -746 -805 -902 -930 -1062 -1120 -1184 -1360 -1348 -1436 -1512 -1604 -1688	0 -14 -51 -76 -133 -180 -2254 -286 -321 -356 -392 -418 -462 -534 -560 -592 -6522 -684 -726 -738
200000	-944	-62	-558	-1028	-1148	- 892	-572	-688	-970	-1736	-742

Lateral	Gauge										
Load	1	2	3	4	5	6	7	8	9	10	11
500	-956	-62	-548	-1020	-1148	-878	-576	-712	-982	-1822	-744
1000	-966	-68	-544	-996	-1130	-854	-572	-720	-980	-1844	-748
2000	-964	-80	-544	-952	-1116	-814	-574	-732	-984	-1844	-756
3000	-970	-88	-544	-912	-1060	-774	-580	-748	-984	-1852	-770
4000	-988	-108	-556	-874	-1032	-742	-588	-772	-988	-1880	-804
					•						

WCB-22-1-6-24-48-15 LOAD(1bs) - STRAIN(micro in/in)

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	1	2	3	4	5	6	7	8	9	10
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105040 13120 128820 136490 144200 152720 160970 168380 176500 184920 193960 200000	$\begin{array}{c} 0 \\ 4 \\ 58 \\ 146 \\ 244 \\ 314 \\ 362 \\ 394 \\ 422 \\ 440 \\ 462 \\ 429 \\ 252 \\ 211 \\ 174 \\ 121 \\ 860 \\ -32 \\ -74 \\ -116 \\ -208 \\ -240 \end{array}$	$ \begin{array}{r} 0 \\ 6 \\ 27 \\ 43 \\ 61 \\ 53 \\ 61 \\ 53 \\ -8 \\ 54 \\ -926 \\ -9$	0 -4 -8 -12 -20 -37 -66 -98 -131 -178 -2272 -314 -3594 -4712 -3554 -4712 -4712 -5514 -6524 -7554 -7512 -866 -898	0 -14 -38 -64 -91 -122 -154 -190 -228 -258 -299 -339 -353 -381 -412 -441 -478 -588 -588 -588 -588 -588 -588 -588 -664 -700 -744 -786 -812	0 -45 -74 -118 -149 -188 -268 -348 -348 -3902 -428 -348 -3902 -428 -459 -459 -459 -5932 -5932 -6668 -778 -7782 -8852 -7782	0 4 15 364 100 874 40 895 -166 -2858 -166 -2858 -166 -247 -2816 -356 -3588 -4708 -4708 -588 -588 -588 -624 -588 -624 -588 -624 -588 -624 -624 -624 -624 -588 -624 -624 -624 -624 -624 -624 -624 -624 -624 -624 -624 -624 -624 -6258 -624 -6258 -624 -6258 -624 -62588 -6258 -6258 -6258 -6258 -6	$ \begin{array}{c} 0 \\ 4 \\ 13 \\ 32 \\ 50 \\ 78 \\ 100 \\ 110 \\ 114 \\ 84 \\ 64 \\ -38 \\ -72 \\ -118 \\ -254 \\ -300 \\ -358 \\ -406 \\ -522 \\ -592 \\ -666 \\ -720 \\ \end{array} $	0 -22 -126 -221 -289 -360 -441 -518 -574 -626 -684 -738 -785 -836 -884 -930 -984 -1016 -1050 -1088 -1128 -1268 -1320 -1358	0 -22 -54 -88 -124 -156 -193 -228 -266 -301 -339 -378 -419 -459 -489 -566 -600 -636 -674 -712 -752 -792 -828 -866 -890	-44 -82 -116 -154 -155 -2254 -23796 -2482 -558764 -714 -74866 -7144 -74866 -8848 -918 -2866 -2866 -2866 -2746 -2256 -2256 -2256 -2256 -2558764 -2558764 -2748 -2558764 -2748 -2558764 -2748 -2558764 -27486 -2558764 -27486 -2558764 -27486 -2558764 -27486 -27486 -2558764 -27486 -2558764 -27486 -28888 -2918 -288888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -28888 -288888 -28888 -28888 -28888 -28888 -288888 -28888 -288888 -28888 -28888 -28888 -288888 -288888 -2888

Lateral	Gauge									
Load	1	2	3	4	5	6	7	8	9	10
3000	-282	-700	-828	-772	-816	-622	-804	-1374	-810	-834
6000	-316	-674	-736	-704	-744	-600	-868	-1404	-734	-760
9000	-368	-672	-644	-640	-676	-592	-960	-1520	-664	-704
12000	-408	-638	-472	-562	-566	-576	-996	-1556	-374	-420
15000	-484	-648	-208	-460	-408	-570	-1076	-1682	932	820

WCB-22-1-6-24-48-16 LOAD(1bs) - STRAIN(micro in/in)

Axial Load	Gauge l	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12	Gauge 13	Gauge 14	Gauge 15
0	0	0	0	. 0	0	0	о ^н О	Q	0	0	0	0	0	0	0
9720	2	4	6	-4	-10	-6	6	10	. 10	0	-12	10.	-8	-2	-2
17430	36	63	29	-22	-29	-30	24	34	, 11	-3	-65	10	-30	-0	-16
25750	134	161	74	-47	-48	-54	16	54	7	-6	-129		-50	-0	- 32
33570	160	197	60	-71	-66	-78	-11	3/8	- 34	-10	-192	18	-04	-1	-73
41300	156	208	34	-100	-84	-112	- 39	105	-50	-0	-220	20	-13/	7	-102
49070	152	216	-6	-130	-102	-150	-19	130	-105	3/I	-201 -206	22	-164	14	-126
57000	148	240	-42	-100	-120	-197	-174	ユンZ 1 圧圧	-160	51	-324	23	-193	22	-152
64690	140	251	-100	-200	-154	-230	-224	164	-292	70	-355	23	-222	28	-178
72940	120	200	-160	-298	-160	-326	-274	169	-226	88	-394	26	-252	32	- 198
80610	200	296	-204	-346	-168	-372	-313	162	-251	113	-426	26	-284	38	-216
97610	84	324	-246	-390	-179	-416	-354	155	-274	134	-451	26	-314	44	-233
105040	70	347	-294	-427	-199	-456	-386	144	-293	155	-476	28	-342	49	-250
113120	55	376	-347	-470	-219	-498	-420	126	-314	186	-498	. 28	-374	56	-268
121200	40	404	-400	-510	-239	-542	-453	102	-334	224	-516	32	-404	64	-282
128820	26	428	-448	- 552	-266	-583	-482	73	-350	264	-540	30	-431	69	-301
136490	9	453	-498	-594	-302	-625	-515	44	-372	398	-552	40 10	-400	24	-320
144200	-4	468	-546	-632	-330	-664	-544	20	- 390	5/3	-5/0	40)(Q	-490	86	-356
152720	-20	. 484	-606	-678	-370	-712	-5/0	- <u>3</u> 0 70	-410	100	-600	40 53	-553	00 Q5	-374
160970	-36	486	-664	-725	-407	- 701	-620	-118	-451	1072	-652	62	-584	98	-388
168380	-52	488	-724	-//0	-434	-862	-052	-110	-500	1278	-680	72	-638	110	-412
176500	-70	290	- 194	-022	-470	-002	-696	-280	-528	1516	-698	84	-650	112	-412
104920	-110	171	-052	-072	-570	-964	-720	-360	-558	1736	-720	92	-678	120	-446
773300	-128	468	-958	-960	-600	-996	-738	-438	-576	1882	-722	96	-696	120	-456

			•												
Lateral Load	Gauge 1	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12	Gauge 13	Gauge 14	Gauge 15
3000 6000 9000 12000 15000 18000 20000	-124 -128 -128 -112 -100 -88 -144	432 400 352 272 212 144 -40	-965 -952 -936 -928 -896 -876 -872	-888 -792 -708 -600 -480 -308 -8	-560 -504 -448 -376 -288 -184 96	-936 -864 -792 -692 -596 -460 -192	-728 -712 -688 -672 -688 -672 -688 -664	-520 -592 -680 -748 -808 -880 -908	-568 -548 -544 -528 -520 -524 -480	2110 2140 2170 2190 2210 2220 2470	-696 -688 -684 -696 -672 -696 -696	56 12 -40 -40 -72 -124 96	-664 -624 -572 -520 -432 -164	120 120 144 148 148 148 144 204	-472 -496 -532 -560 -600 -656 -784

128

그는 것 같은 것은 것이 있는 것은 것을 가지 않는 것을 가지 않는 것을 했다.

WCB-22-1-6-24-48-17

LOAD(lbs) - STRAIN(micro in/in)

			-										•		
Axial Load	Gauge 1	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12	Gauge 13	Gauge 14	Gauge 15
											_	_		· · · ·	
0	0 D	0	0	0	0	0	Q	Q	Õ	0	0	0	0	0	0
9720	-4	16	-3	-8	-18	-10	-36	- 8	-6	4	-10	0	-3	2	0
17430	-7	26	-9	· - 18	-29	-41	-102	28	-12	30	-89	0	-28	2	 32
25750	-1Ò	58	-14	-26	-50	-86	-68	.63	-47	86	-182	7	-56	10	-70
33570	-26	86	-23	-38	-72	-122	-70	88	-93	183	-298	12	-84	_ 26	-102
41300	-45	148	-22	-55	-92	-170	-21	88	-138	333	-433	8	-120	36	-139
49070	-68	217	-19	-77	-114	-214	-28	78	-168	578	-560	0	-156	42	-158
57000	-94	279	-25	-104	-136	-252	-32	64	-190	658	-680	2	-186	46	-182
64600	-118	372	-19	-131	-160	-292	-ĕo	48	-207	916	-782	0	-218	50	-208
72040	-164	426	-24	-170	-196	-340	-164	16.	-228	1184	-920	0	-256	60	-240
81620	-20/1	15h	-28	-208	-222	-392	-212	-12	-244	1388	-1000	Ō	-288	70	-268
80610	-204	ר <u>ר</u> אא א	-16	-245	-222	-434	-436	-36	-264	1568	-1070	Õ	-318	74	-296
09010	-244	150	-10	-274	-236	-480	-412	-56	-276	1750	-1138	-2	-350	· 80	-320
97010	-200	452	- 10	-210	-256	-520	-400	-72	-296	1980	-1216	ō	-492	100	-328
105040	-312	440	-16	- 212	-200	-560	-372	-06	-316	2150	-1264	-4	-412	104	-356
113120	- 354	450	-10	- 344	-292	-500	_2/2	-10/	-330	2350	-1330	-8	-452	104	-376
151500	-3/0	444	- / 0	-3/2	- 312	-010	- 344	-104	- 352	2550	-138/	-11	-480	201	-305
128820	-420	430	-04	-400	- 330	-040	-212	-140	-300	2500	-1/156	-8	-501	110	-416
136490	-448	° 424	-120	-440	-3/2	- 724	-200	-100	- 392 haf	2050	-1450	0	-540	120	-410
144200	-480	412	-164	-476	-404	-752	-240	-1/0	-410	2790	-1520	0	-540	120	-452
152720	-508	392	-208	-520	-440	-800	-212	- 104	-432	-2950	-15/0	0	-210	152	-400
160970	-528	392	-224	-528	-452	-816	-200	-184	-440	2970	-1596	U O	-592	144	-4/2
168380	-568	376	-272	-588	-488	-864	-200	-136	-432	3110	-1640	0	-030	192	-504

WCB-22-1-6-18-60-18 LOAD(1bs) - STRAIN(micro in/in)

	Axial Load	Gauge l	Gauge 2	Gauge 3	Gauge 4	Gauge 5	Gauge 6	Gauge 7	Gauge 8	Gauge 9	Gauge 10	Gauge 11	Gauge 12
	0	0	0	0	0	0	0	0	0	0	Õ	0	0
1	9720	2	2	0	1	1	2	4	· 0	4	-28	2	2
	25750	50	-54	182	-0	- 30	-23	108	0	50	50	10	18
	23750	145	-168	260	-10	-100	16	112	10 17	126	108	10	42
	41300	200	-236	297	- 9	-]4]	25	92	24	168	144	27	118
	49070	228	-295	330	30	-181	22	<u>89</u>	29	57	40	32	178
	57000	240	-352	360	43	-223	16	96	34	26	10	36	284
	64690	230	-403	378	48	-266	14	100	43	24	12	43	404
	72940	216	-458	380	52	-311	6	106	. 55	31	12	50	556
	81630	204	-522	306	42	-368	-19	102	66	35	10	60	802
	07610	200	-505	2/2	5 4 4 5 h	-413	-31	102	0) 88	52	30 26	00	1004
ר	05040	212	-652	240	24 60	-450	-50	110	00	.70	. 30	01	1/180
	13120	204	-708	166	84	-556	-92	88	108	76	54	88	1622
]	21200	164	-758	124	108	-610	-112	84	120	88	54	100	1712
]	128820	152	-802	- 90	120	-656	-128	88	132	94	72	108	1824
]	.36490	104	-852	52	152	-704	-146	96	140	104	60	112	1942
נ	44200	92	-900	44	186	-758	-172	108	148	112	88	124	1978
1	60070	84 61	-960	8	188	-804	-200	104	168	140	72	144	1982
ב . ר י	68380	60	-1008	-12	104	-010	-210	00 88	1 (Z 1 R)i	144		148	1954
ר רי	76500	56	-1032	-48	184	-892	-240	224	184	152	100	120	1632

WCB-22-1-

-6-18-60-19	LOAD
-------------	------

Axial	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Load	l	2	3	4	5	6
0 9720 17430 25750 33570 41300 49070 57000 64690 72940 81630 89610 97610 105049 113120 121200 128820 136490 144200 152720 160970	$\begin{array}{c} -36 \\ -76 \\ -230 \\ -560 \\ -960 \\ -1290 \\ -1540 \\ -1780 \\ -2000 \\ -2170 \\ -2310 \\ -2430 \\ -2430 \\ -2560 \\ -2600 \\ -2770 \\ -2830 \\ -2860 \\ -2900 \\ -2920 \\ -2960 \end{array}$	$\begin{array}{c} 0 \\ -40 \\ -92 \\ -120 \\ -180 \\ -220 \\ -250 \\ -300 \\ -330 \\ -360 \\ -410 \\ -450 \\ -480 \\ -520 \\ -560 \\ -610 \\ -660 \\ -670 \\ -690 \\ -700 \\ -730 \end{array}$	$\begin{array}{c} 0 \\ 14 \\ 64 \\ 150 \\ 210 \\ 300 \\ 220 \\ 220 \\ 230 \\ 220 \\ 230 \\ 220 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 190 \\ 180 \\ 180 \\ 180 \\ 180 \\ 160 \\ 160 \end{array}$	$\begin{array}{c} 0\\ 13\\ 66\\ 190\\ 370\\ 490\\ 640\\ 770\\ 920\\ 1120\\ 1720\\ 2350\\ 2800\\ 1060\\ 710\\ 420\\ 310\\ 260\\ 180\\ 120\\ 40\end{array}$	$\begin{array}{c} 0 \\ -45 \\ -88 \\ -140 \\ -170 \\ -220 \\ -280 \\ -340 \\ -390 \\ -460 \\ -500 \\ -560 \\ -610 \\ -660 \\ -690 \\ -740 \\ -790 \\ -820 \\ -850 \\ -870 \\ -900 \end{array}$	$\begin{array}{r} 0 \\ -34 \\ -68 \\ -80 \\ -100 \\ -120 \\ -150 \\ -160 \\ -180 \\ -200 \\ -240 \\ -270 \\ -290 \\ -320 \\ -340 \\ -390 \\ -420 \\ -430 \\ -460 \\ -470 \\ -480 \end{array}$

APPENDIX B DEFLECTION/LOAD READING

LATERAL DEFLECTIONS OF CENTERS DUE TO AXIAL LOAD IN INCHES

	Axial Load (lbs)	WCB 1	WCB 2	WCB 3	WCB 4	WCB 5	WCB 6	WCB 7	WCB 8	WCB 9	WCB 10	WCB 11	WCB 12	WCB 13	WCB 14	WCB 15	WCB 16	WCB 17	WCB 18	WCB 19
	0 1000 5000	.0 .01 .04	.Q .01 .05	.0 .01	.0	.0	.0	.0	.0	•0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
	10000 15000 20000	.06 .08 .11	.09 .12 .16	.09 .16 .24	.001 .007	.000	.000 .009	.001 .012	.000	.000 .005	.000	.000 .006	.000	.000	.001 .003	.001	.001	•000 •002	.000	.001
	30000	·15 ·23	.25		.021	.018	.014	.021	.004	.004	.001	.010	.001	.003	.005	.006	.002	.003	.009	.016
1 1 1	33570 41300 57000 64690 72940 81630 89610 97610 97610 113120 121200		•		.032 .043 .067 .082 .102	.029 .037 .054 .069 .094	.020 .024 .036 .042 .061 .084 .102	.033 .049 .058 .064 .068 .090 .114 .133 .266	.019 .024 .035 .039 .044 .050	.010 .011 .013 .013 .017 .020 .021 .022	.002 .003 .012 .018 .020 .021 .023 .026 .027 .028 .029	.012 .013 .014 .014 .011 .009 .008 .005 .004 .004 .003 .001	.004 .005 .004 .005 .006 .006 .006 .006 .008 .008 .008	.004 .004 .005 .006 .006 .007 .012 .024 .032 .038 .038	.005 .004 .001 .002 .003 .004 .006 .008 .010 .012	.002 .001 .002 .001 .000 .001 .001 .002 .004 .005	.003 .006 .003 .003 .004 .006 .007	.004 .003 .001 .002 .001 .004 .008	.016 .020 .022 .025 .026 .032 .041	.015 .016 .016 .014 .016 .020 .024

Remark

132

Side Panel

APPENDIX C SOME RELEVANT FORMULA

C- 1. THE ULTIMATE LOAD CAPACITY OF BALANCED RECTANGULAR MEMBER

Since W. Ritter presented the theory of parabolic stress distribution in 1899, many studies of inelastic concrete stress distribution in flexural members based on the parabolic stress distribution have been done.

The author assumes that the stress-strain relation for the flexural analysis of the balanced member due to flexural load may be expressed as shown in Figure C-1, and that stress distribution pattern at failure in compression is m degree parabola {Figure C-1, (b)}. Then for a rectangular member of depth d and width b:

$\mathbf{y} = \mathbf{k} \mathbf{f}_{\mathbf{c}}^{\mathbf{m}}$:
$\overline{\mathbf{c}} / \mathbf{b} = \int_{\mathbf{c}}^{\mathbf{c}} \mathbf{f} d\mathbf{v}$	

(C.1)

Figure C-1. Balanced Member. (a) Strains. (b) Stresses and Forces.

From equations (C.1) and (C.2),

$$\vec{c}_{b} = m b c f_{c}^{1}/(1 + m)$$
(C.3)

 $y_{o} = (1 + m)c/(1 + 2m)$

If it is assumed that width of rectangular stress block is $k_3 f_c^{\prime} = .85 f_c^{\prime}$, the resultant compression for balanced rectangular member may be obtained as follows:

$$\ddot{C}_{b} = .85 f_{c}^{\prime} 2(c - y_{o})b$$

Substitute equation (C.3) into this expression,

$$m c f'_{c} / (1 + m) = .85 \times 2 f'_{c} c (1 - \frac{1 + m}{1 + 2m})$$

k3

Hence,

(C.4)

Since

$$\int_{0}^{C} \mathbf{f}_{c} \, dy = \mathbf{k}_{1} c \mathbf{k}_{3} \mathbf{f}_{c}^{i}$$
$$m c \mathbf{f}_{c}^{i} / (1 + m) = c \mathbf{f}_{c}^{i} \mathbf{k}_{1}$$

$$k_1 = 0.824$$

(C.5)

where an accepted value for $k_3 = 0.85$

Therefore

$$k_1 k_3 = 0.824 \times 0.85 \neq 0.7$$

Since

$$k_2 = k_1 / 2$$

 $k_2 = 0.412$

These values, $k_1 k_3$ and k_2 , are plotted on Figure C-2. Einvind Hognestad¹² presented a study of the ultimate strength of columns in 1957. Figure C-2 shows values of $k_1 k_3$ and k_2 of Hognestad's, ACI Code-1963, and the author's findings from the assumption of mth parabola for concrete stress distribution.

(0.6)

According to ACI Code Art. 1503 g-1963, the fraction factor k_1 shall be taken as .85 for strengths up to 4000 psi and shall be reduced continuously at a rate of .05 for each 1000 psi of strength in excess 4000 psi.

From equation (C.5) the following equations may be derived:

$$jd = d - \frac{1}{2}a$$
 (C.7)

$$\bar{c}_{b} = \left(f_{u} d / (f_{u} + f_{y} / E_{s}) \right) \times .7 f_{c}^{\dagger} b \qquad (C.8)$$

Since $\overline{T}_{b} = \overline{C}_{b}$,

$$\overline{M}_{b} = .7 f_{c}^{\prime} j c b d$$
 (C.9

where

c = $\left(\xi_u / (\xi_u + f_y / E_s) \right) \times d$

C-2. THE ULTIMATE LOAD CAPACITY AND ITS ECCENTRICITY FOR BALANCED SANDWICH PANEL

As shown in Figure C-3, the balanced load and its eccentricity for sandwich panels are calculated as for hollow rectangular tied columns:

$$c = f_{u} d/(f_{u} + f_{y}/E_{s})$$

$$f_{s1} = f_{y}/E_{s}$$

$$f_{s2} = f_{s1}(d_{2} + \frac{1}{2}t - c)/(d - c)$$

$$f_{s1}^{i} = f_{u}(c - d^{i})/c$$

$$f_{s2}^{i} = f_{u}(c - \frac{1}{2}t + d_{2})/c$$

$$\bar{c}_{s1} = A_{s1}^{i}(f_{y} f_{s1}^{i}/f_{s1} - .85 f_{c}^{i})$$
(C.10)
$$\bar{c}_{s2} = A_{s2}^{i}(f_{y} f_{s2}^{i}/f_{s1} - .85 f_{c}^{i})$$
(C.11)

These values take account of concrete displaced by steel, then

$$\bar{\mathbf{T}}_{sl} = \mathbf{A}_{sl} \mathbf{f}_{y} \tag{C.12}$$

$$\bar{\mathbf{T}}_{s2} = \mathbf{A}_{s2} \mathbf{E}_{s} \mathbf{\ell}_{s2}$$
(C.13)

From C-1 may be obtained :

$$\bar{c}_{c} = .85 f'_{c}(a b - a b_{1} + 2b_{1} d')$$
 (C.14)

where

$$a' = \frac{1}{2}t - \frac{4 b_1 d^2 + (b - b_1)a^2}{4 b_1 d! + 2a(b - b_1)}$$
(C.15)

when

. and

 $\epsilon_{sl} \leq \epsilon_{sl}$

 $\epsilon'_{s2} \leq \epsilon_{s1},$ $\epsilon'_{s2} \leq \epsilon_{s1}.$

All internal forces in the sandwich panel, \overline{C}_c , \overline{C}_{sl} , \overline{C}_{s2} , \overline{T}_{sl} , and \overline{T}_{s2} , are in equilibrium with \overline{P}_b as shown in Figure C.3, then

 $\bar{P}_{b} = \bar{C}_{c} + \bar{C}_{s1} + \bar{C}_{s2} - \bar{T}_{s1} - \bar{T}_{s2}$ (C.16)

$$e_{b} = \frac{\bar{c}_{c} a' + (\bar{c}_{s1} + \bar{T}_{s1})d_{1} + (\bar{c}_{s2} + \bar{T}_{s2})d_{2}}{\bar{P}_{b}}$$
(C.17)

APPENDIX D NOTATION

Some of the letter symbols have been defined in this thesis when they are introduced. The common symbols used are listed here for easy reference:

- A = area
- A_c = net area of concrete
- A_{g} = gross area of concrete
- As = area of longitudinal reinforcement
- a = kl c = depth of equivalent rectangular stress block
- b = panel width
- C = compressive force
- C = internal force in compression concrete
- C_s = internal force in compression reinforcement
- c = distance from extreme compression fiber to centroid of tension reinforcement
- E_c = modulus of elasticity for concrete
- E_f = Young's modulus
- E = reduced modulus of elasticity
- E_s = modulus of elasticity for steel
- Et = tangent modulus of elasticity
- e = eccentricity of the resultant load on a panel, measured from the gravity axis
- e_b = maximum permissible eccentricity of \bar{P}_b
- $f_c = concrete stress$
- f_s = stress in tension reinforcement
fy = yield-point stress for steel

fcu	=	average ultimate concrete compressive stress due to axial load
f¦	=	compressive strength of standard concrete cylinder
fcu	=	maximum ultimate concrete stress in extreme fiber due to
		combined axial and lateral loads
G	Ξ	shear modulus of elasticity
I.	5	moment of inertia of concrete panel section
jd	Ξ	arm between \overline{T} and \overline{C} internal forces
k	=	numerical factor
kl	=	ratio of average stress to maximum stress in flexural member
k ₂	Ξ	ratio of depth to resultant of compressive stress and depth
		to neutral axis
k3	E2	ratio of maximum compressive stress to cylinder strength
L	=	panel length
'n	Ξ	ratio of modulus of elasticity of steel to that of concrete
Po	=	axial load capacity of actual member
Pu	Ξ	axial load capacity of panel
₽ _b	Ξ	ultimate load of eccentrically loaded panel at simultaneous
	.*	crushing of concrete and yielding of tension reinforcement
\bar{P}_L	=	ultimate load of laterally loaded panel in addition to axial
	•	load
₽ ₀	=	ultimate load of axially loaded panel when eccentricity is zero
Pu	1	ultimate load of axially loaded panel
р	Ξ	A_{s}/A_{g}
R	=	reduction factor

141

- r = radius of gyration
- T = tensile force
- T_s = internal force in tension reinforcement
- t = over-all depth of panel section '
- t_c = thickness of insulation core
- t' = face plate thickness of sandwich panel
- w = weight of concrete
- f_u = ultimate strain in concrete
- f_s = strain in reinforcement

BIBLIOGRAPHY

- 1. Collins, F. Thomas; "Precast Concrete Sandwich Panels for Tilt-up Construction," ACI Journal, Oct. 1954, Proc. Vol.
- 2. Anderson, L. O. and Wood, L. W.: "Performance of Sandwich Panels in FPL Experimental Unit," U S Forest Service Research Paper FPL 12, May 1964.
- 3. Plavtema, F. F.: "Sandwich Construction, the Bending and Buckling of Sandwich Beams, Plates and Shells," John Wiley and Sons, Ins., 1966.
- 4. Roberts, S. B.: "Sandwich Walls Precast for Pulp Mill," Eng. News -Record, Feb. 1951.
- 5. Grennan, P. M.: "Precast Sandwich Wall makes Costs Tumble," Eng. News-Record, Jan. 1952.
- 6. Amirikian, A.: "Promising Future predicted for Precast Thin-Shell Construction," ASCE Civil Eng., Mag. Vol. 23, Aug. 1963.
- 7. Leabu, V. F.: "Problems and Performance of Precast Concrete Wall Panels," ACI Journal, Oct. 1959, Proc. Vol. 56.
- Pfeifer, D. W. and Hanson, J. A.: "Precast Concrete Wall Panels, Flexural Stiffness of Sandwich Panels," Port. Cem. Ass. Dev. Dept. Bull. D 99, 1965.
- Richart, F. E. and Brown, R. L.: "An Investigation of Reinforced Concrete Columns," Univ. of Ill. Eng. Exp. Sta. Bull. No. 267, 1934.

143

- 10. Hognestad, E.: "A Study of Combined Bending and Axial Load in Reinforced Concrete Members," Univ. of Ill. Eng. Exp. Sta. Bull. No. 399, 1951.
- 11. Ferguson, Phil M.: "Reinforced Concrete Fundamentals," second edition, John Wiley & Sons, Inc., 1965, pp. 436.
- 12. Hognestad, E.: "Confirmation of Inelastic Stress Distribution in Concrete," Proceedings ASCE, Vol. 83, Paper No. 1189, March 1957, pp. 2 - 8.
- 13. ACI Standard 318-63: "Building Code Requirements for Reinforced Concrete," American Concrete Institute, June 1963.