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If two communication partners wish to engage in a private conversation across a public

channel, they need to encrypt their messages to prevent an eavesdropper from discovering

the contents of their conversation. To achieve this, the two parties must first agree on a

common cryptographic key. Such a key cannot be distributed across an open channel, as

this would enable an adversary to obtain the key and thus decrypt all communicated

information. The problem of key exchange can be overcome in two ways. The partners can

employ a public-key cryptosystem, i.e. use different keys for encryption and decryption,

where the encryption key is publicly known and the decryption key is known only ro the

decrypter. Alternatively, they can communicate a sequence of messages according to a

specific protocol that allow them to agree on a common key without revealing it to an

opponent. This dissertation offers solutions to both approaches.

The first part of this thesis presents a generalization of several existing public-key

cryptosystems. The difficulty of breaking the new scheme is equivalent to the problem of

factoring a large integer, a task believed to be very difficult. This information regarding the

security of the scheme represents an improvement over the well-known RSA public-key

system. We describe the number theoretic fundamentals, present the algorithms required

for the system together with their computational complexity, analyze the scheme's security,

and finally discuss an implementation.

All conventional protocols for key exchange rely strongly on the structure of a group.

Recently, for the first time, a modification of the standard protocol was suggested which

does not use a group, but is based instead on the infrasrructure of a real quadratic field.

This loss of srn¡cture in the underlying set may increase the security of the scheme over that

of previously known protocols. Pa¡t II of this thesis inrroduces the specifics of the new

protocol. As before, we give the necessary number theoretic background, describe the

algorithms and their complexity, present a complete approximation and error analysis,

briefly discuss the security, and conclude with some computational results.
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The following sets and strucrures are frequently used.

Symbol Description

Z

a
R

C

K,L
GF(q)

[r*c

s[x]
GLz(S)

G

rMt

Ring of rational integers

Field of rationals

Field of real numbers

Field of complex numbers

Al gebraic number fields

Finite field of q elements

Multiplicative group F-{0} of any field F
Ring of polynomials in.r with coeff,rcients in S (S any ring)
Ring of non-singular n x n matnces over a ring S

Any group

Cardinality of a ser M

For a given algebraic number field K, we use the following notation.

Sltmbol Description

O Maximal order

T

P

9t

cr(K)
a,b,c,tr
p,q
n = qK:e)

,'

t
r
ol, ... , o¿

rll,.-.,Ir
A

R

h

Set of integral ideals

Set of principal integral ideals

Set of reduced principal ideals

Class group

Ideals

Prime ideals

Degree of K over Q
Number of real conjugate mappings

Number of complex conjugate mappings, s * 2t = n
Unitrank,r=s*f - 1

Conjugate mappings

(for n = s =2, o' denotes the conjugate of a)
Fundamental units (for r = 1, write rll = rl)
Field discriminant

Regulator

Class number, h= lcl(K)l

IX



Slmbol Descríption

e

7r, v

N(cr)

Tr(cr)

c[

L(a)

Any unit

Primes in O

The following special symbols occur frequently:

n

Norm of s e K, N(cr) = {-[o¡(cr)
¿=l

n

Trace of cr e K, Tr(o) =!o¡(cr)
i=l

Notatíon Descrintion

Complex conjugate a - bi of u.= a + bí e C
The least positive rational integer in an ideal a,

L(a) = min{an?g}

a-b
c[=Þ

alb

anll b

l-o)
la1
Ne(¿)

a and b are equivalent ideals

s and B are associates (cr, Ê e O)

¿ is a divisor of b

The following abbreviations and acronyms are used.

(used for rational integers, integers, and integral ideals)

¿u is the exact power of a dividing å

the floor of a e R
the ceiling of ¿ e R
the integer nearest to a e R., Ne(a) =LolrJ

AbbreviationlAcronlm Meaning

CCA Chosen Ciphertext Attack

COA Cipherrext Only Anack

CPA

DES

DLP

ERH

KPA

PKC

RSA

UFD

The symbol ü denotes the end of a proof or algorithm, or the end of a theorem or lemma
whose proof is omitted.

X

Chosen Plaintext Attack

Data Encryption S tandard

Discrete l-ogarithm hoblem
Extended Riemann Hypothesis

Known Plaintext Attack

Public-Key Cryptosystem

Rivest- S hamir-Adleman cryptosysrem

Unique Factorization Domain
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3..i. Kx¡tnoda¡afåom to Cnyptoåogy

The art of cryptology consists of the combined art of cryptography and cryptanalysis.

Cryptography (Greek, rpuntó(: hidden, fpú$avr ro write) provides secure

communication over insecure channels while cryptanalysis provides the means of

breaking into these communications. Historically, cryptology has been almost exclusively

of interest to the military and diplomats. However, this changed drastically with the

invention and widespread use of computers. Today, vast amounts of information are

transmitted over telephone lines, distributed across computer networks, or stored in

electronic data banks by individuals, private companies, government agencies, and

academic institutions. Much of this information is intended for the eyes of certain

designated recipients only, and its disclosure to unauthorized individuals may be harmful,

sometimes even to the point of posing a threat to national security. The need for privacy

in sharing sensitive data across public-access systems lead to civilian cryptology.

Cryptography and cryptanalysis are engaged in an on-going race that is as old as the idea

of "disguising" one's messages, which in turn may well go back to the idea of writing

itself. For a detailed history of cryptology, see Kahn [Ka67].

1.X.n Fnivate-Key Cryptosysterns

Most of the material presented in Section 1.1 can be found in any cryptography text, such

as Denning fDe83l or Brassard [8188].

The classic scenario of a cryptographic session consists of two communication partners

(n'aditionally called Alice and Bob in the world of non-classical cryptologic research),

who wish to engage in a private conversation across a public channel, usually any kind of

high speed data rransmission line. We will only consider the case where Alice (the

sender) transmits a piece of confidential information to Bob (the receíver); if Bob wants

I



to reply, the same procedure is applied with reversed roles, i.e. Bob becomes the sender

and Alice the receiver.

To send a message M, also called the plaintext or cleartexr, Alice uses a cípher to encrypt

or encipher the message, i.e. she applies a transformation that renders the plaintext

unintelligible to anyone but the intended recipient. She thus obtains a ciphertext or

cryptogram C, which she communicates over the insecure channel to Bob. Upon

receiving C, Bob decrypts or deciphers it, i.e. he converts it back to its original form.l

Both encryption and decryption are performed by means of a key K, which the two

communication partners need to aglee upon ahead of time and which must not be

revealed to anyone else. Only individuals who know the key are able to encipher and

decipher messages.

An unauthorized individual tapping the communication line in an attempt to recover

plaintext from intercepted ciphertext is referred to variously as a crypmnalyst, a.dversary,

or opponenr. The cryptanalyst's ultimate goal is to retrieve a cleartext message or even the

key, but he may be content with recovering partial information about either. If he is

successful, the cipher is considered broken. An opponent may pose a passive threat by

simply eavesdropping on a conversation, or an active threat by injecting information into

a channel, thus altering the transmined ciphertext. The latter problem can be overcome if
the communication partners can authenticate their messages.

The scenario described in the previous two pamgraphs is called a one-key or private-key

cryptosystem(short for cryptographic system).Figure 1.1 below shows the scheme of a

one-key cryptosystem.

1 Some works on cryptography distinguish between deciphermenr as the recoyery of the plaintext by ttre

intended recipient, and decryptior¡ as the same process attempted by an unauthorized individual. V/e will

not make this distinction.

2



Sender

C = EtúM

Formally, a private-key cryptosystem consists of a plaintext message space M, ã

ciphertext space C, akey space ft, and a family (Eòxe4of encryption transformations

with domain fivt and range C, such that each encryption funcúon Ex (K e *J has a left

inverse Dy: C è M,i.e. Dr(E¡ç(M)) = M for each M e îv{.In addition, the system should

be both practical and secure, i.e. it must satisfy the following requirements:

Practicality:

l. For all K e K, E6 andD6 should be easy to compure.

2. All keys should be small.

Security:

3. The secrecy of the system should depend entirely on the key K, not on the

encryption/decryption methods E X, D K.

4. For any K e (, given the encryption algorithm E6 and a ciphertext C =

Eill/Í), M e tu{, it should be infeasible to recover M or K

Clearly, these are not mathematically rigorous requirements. Usually, we will associate

with any cryptosystem a security par¿Lmeter P e Z>0. Then requirement 1 states that the

computation time for encryption and decryption is polynomial in log P, and condition 2

implies that the number of bits in the binary representation of any key be polynomial in

1

Receiver

Figure 1.1



log P. Requirement 4 can be formalized to mean that there is no polynomial-time

algorithm (in log P) to deduce M or K from Ey and C. In particular, the key space {
needs to be sufficiently large to prevent a cryptanalytic attack by exhaustive key search.

From condition 3, we see that it is possible to publicize the enciphering and deciphering

algorithms, i.e. their operations on M and K and C and K, respectively, without

compromising the security of the scheme, as long as the key K is kept secret. In

particular, the scheme must h secure against its own designer.

This somewhat more formal framework enables us to define cryptogaphy as the

application of transformations (ciphers) to information to effect the concealment

(encryption) of that information. Cryptanalysis is the process by which an unauthorized

interceptor of a cryptogram determines either its corresponding plaintext without prior

knowledge of the key, or the key used in obtaining this ciphertext.

A very simple example of a private-key cryptosystem is the Caesar cipher, in which each

letter is replaced by a letter which occurs a f,ixed number K of positions beyond it in the

alphabet, with "wrap-around" if necessary.2 More specifically, first the position P of a

plaintext letter in the alphabet is determined, where A corresponds to 0, B to 1, etc., down

to Z corresponding to 25. Then the position Z of the encrypted letter is obtained by

computing Z = P + K (mod 26), 0 < Z < zs,where K is the number of positions skipped. Z

uniquely identifies the ciphertext letter. As an example, consider the plaintext HAL, the

computer's name in the well-known motion picture Space Odyssey 2001 .If we choose

K: I,IIAL encrypts to the familiar acronym IBM.

V/e distinguish between three different levels of cryptanalytic attack on a cr)?rosystem.

Cíphertext OnIy Auack (COA): The cryptanalyst is in possession of a number of distinct

cryptograms enciphered under the same key and attempts to infer the key or, if this is

impossible, find as many of the plaintexts corresponding to the cryptogr¿Lms as possible.

2 According to Suetonius tSu65, Julius 56, p.4zl,this cipher was used by Julius Caesa¡ with K = 3.
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Known Plaíntext Attack (KPA): The cryptanalyst is in possession of a number of distinct

pairs of plaintext and corresponding ciphertexts, all encrypted under the same key. He

attempts to infer the key or, if this is impossible, f,rnd the plaintext corresponding to some

new ciphertext.

Chosen Plaíntext Attack (CPA): The cryptanalyst chooses a number of distinct plaintexts

and is given the corresponding ciphertexts, all encrypted under the same key. He attempts

to infer the key or, if this is impossible, find the plaintext corresponding to some new

ciphertext.

A COA is often successful if partial information about the plaintext is available to the

cryptanalyst, such as redundancy in language (frequently occurring letters, sequences of

letters, or words) which is reflected in the cryptogram. Our example of the Caesar cipher

easily succumbs to such an attack. A KPA could be mounted if partial content of the

plaintext is known. For example, an opponent could be intercepting a remote login

message which he knows to contain the word LOCIN and the user's id. Encrypted

programs are particularly vulnerable to this kind of attack because of a limited number of

frequently occurring reserved words, such as BEGIN, END, IF, THEN, $HILE, etc. As

an example for a CPA, assume that an adversary has partial read/write access to a system.

He can implant changes into the system and observe the resulting changes in the stored

ciphertext. This information may be used to mount an attack on the part of the system that

he is not authorized to access. A CPA presents the most favourable circumstances to a

cryptanalyst. Hence, a cryptosystem needs to be designed to be secure against this kind of

attack.

There are two notions of security for a cryptosystem. A system is unconditíonally secure

if a cryptanalyst cannot gain enough information to break it, while it is computation"ally

secure if he does not have sufficient resources (computing time and power).

Unconditionally secure systems provide perfect secrecy, i.e. regardless of how much

ciphertext is intercepted, it will never provide enough infonnation to deduce the plaintext



uniquely. Such systems are mathematically unbreakable in the sense that the probability

that a cleartext M wassent (in .n".ypt.O form) is the same as the probability that M was

transmitted, given that a cryptogram C was intercepted. An example of an

unconditionally secure system is the one-time pad, in which any key is used only once

and is bitwise XORed with the plaintext.

Unfortunately, such systems require the key space to be at least as large as the message

space (Shannon tsh49l). This means essentially that a key must be at leasr as long as the

plaintext and that each key may be used no more than once. As a result, unconditionally

secure systems are highly impractical. In fact, most available ciphers are theoretically

breakable after intercepting only a few hund¡ed bits of ciphertext, but the computational

requirements needed to extract plaintext are beyond all available resources. This leads to

the notion of computational security. A cryptosystem is computationally secure if it
cannot be broken by systematic cryptanalysis with available resources under favourable

conditions for an opponent (CPA).

Most available one-key ciphers use substitutions, transpositions, or both in their

encryption algorithms. A substítutíon cipher is one in which each letter of plaintext is

replaced by a character of ciphertext taken from one (or possibly several different)

ciphertext alphabet(s). The Caesar cipher discussed earlier represents an example of such

a cipher. ln a ffansposition cípher, the plaintext characters are rearranged (permuted)

according to a specif,rc algorithm and key. For example, the cleartext could be arranged in

a matrix of K columns (where K is the key), and the rows of the matrix represent the

cryptogram.

Unfortunately, ciphers based on either substitution or transposition reflect redundancies

in the language and a¡e thus vulnerable to statistical attacks using frequency counts of

letters, digrams, trigrams (consecutive pairs and triples of letters, respectively), and

commonly occurring words. However, combining both substitution and transposition in a

single cipher will foil such attacks [Sha9]. The well-known Data Encryption Standard
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(DES) [NBS77] is based on this idea. DES was designed by IBM in the early 1970's and

is widely used in commercial applications. So far, it remains unbroken.

The main problem arising from one-key cryptosystems is that of key distribution. How

can a key generated by the encrypter (or a third paffy) be safely communicated to the

decrypter (or all participants)? One possibility is to send the key along a secure channel.

However, such channels often tend to be slow and hard to come by (after all, if the

communication partners had a fast and secure channel available to them, they need not

employ a cryptosystem!). Examples of a secure channel a¡e a trusted courier or a personal

meeting of the participants. Clearly, this approach is too cumbersome and inefficient,

particularly if two individuals in geographically distant sites need to communicate

frequently and wish to use a new key for each session for reasons of security. In the

1970's, Diffie and Hellman proposed two different solutions to the problem of secure key

distribution. The first approach suggests using different keys for encryption and

decryption, thus eliminating the need fo¡ distributing the same key to different users. This

lead to the discovery of public-key cryptosystems '|D}l76l which will be discussed in the

next section. The other solution proposed the exchange of partial information about the

key across a public channel in a way that both partners can agree on a common key while

an eavesdropper cannot gain any knowledge about this key from the intercepted

information. This seemingly impossible goal was first achieved by the Dffie-Hellman key

exchange protocol tDH76l and a different approach was independently suggested by

Merkle [Me78]. Both these schemes will be briefly discussed in Section 1.1.4.

å"n"2 Fublic-Key Cryptosystenrs

The main difference between a public-key cryptosystem @KC) and a private-key scheme

is that the sender and receiver use different keys, where the enciphering key is publicly

known, while the deciphering key is known only to the decrypter. More specifically,

every user generates a pair of keys Ks, Kp, where Kr, the decryption key, is kept secret,



and Kp, the encryption key, is publicized.3 If Alice wishes to send a private message to

Bob, she obtains his public key, encrypts the plaintext under this key, and nansmits the

ciphertext to Bob. Upon receiving the cryptogram, Bob uses his secret key to decipher it

and recover Alice's original message. An eavesdropper tapping the line can intercept the

ciphertext and obtain Bob's public key, but cannot recover the corresponding plaintext

without knowledge of Bob's secret key. Furtherrnore, he should be unable to infer any

information about Bob's secret key from the cryptogram and Bob's public key. The

scheme of a PKC is given in Figure 1.2.

Sender

Formally, a PKC consists of a plaintext message space M, a ciphertext space Ç a public-

key space (p, a secret-key space f(, and pairs of functions Eyr: M+cand Dyr: c+ tot,

where Kp e &, Ks e fG, such that k, ir the left-inverse of Eyr,i.e. D X"(Ercp(M)) = M

for all M e tut. Again, the system is required to be both practical and secure and must

satisfy the following conditions.

Receiver

3 The enctyption key could k published, together with tt¡e user's name, on an electronic bulletin board or a

key directory, úre analogue of a phone book.

oô

Figure 1.2



Practicality:

1. For all Kp e %,Kre øG E6o and D6, should be easy to compute.

2. All public keys should be small.

Security:

3. Given a public key Kp, the encryption algorithm E6o, and a ciphertext

C = EXrGrt). it should be infeasible to recover M or the secret key Kr.

Here the tenns "easy to compute", "small ", and "infeasible" can again be formalized with

respect to a security parameter P.

Note that a cryptanalyst can easily create the circumstances of a KPA or a CPA, since the

recipient's encryption key and algorithm are public. Hence, we define a new level of

attack for PKC's:

Chosen Ciphertext attack (CCA): The cryptanalyst chooses a number of distinct

ciphertexts, all generated through encr)?tion under the same public key, and obtains the

corresponding plaintexts. He attempts to infer the secret key or produce an efficient

algorithm for simulating decryption under the secret key or, if both these tasks are

impossible, find the plaintext corresponding to some new ciphertext.

At the heart of public-key cryptography lies the notion of a one-way and a trapdoor one-

way function. Informally, a one-woy functíon is a function which is easy to compute and

hard to invert, and a trapdoor one-woy functíon is a function which is easy to compute

and hard to invert unless some inside information is available, in which case the function

is also easy to invert. Somewhat more formally, a one-way function is a function f: X ->
I satisfying the following two conditions.

1. For all x e X,f@) is hard ro compure.

2. For almost all y e Y, if there exists x e X such that/(x) = y, then it is hard to

compute .r.

An example for the use of a one-way function in cryptography is the safe storage of

passwords. Instead of storing the password s P 1, P2, ... of all users in the clear, we store
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f(Pt),f(Pz), ... , where/is a one-way function. To log on, a user id í and a password P¡

are entered. The system computes,f(P¡), looks up the user id i in the password file, and

compares/(P) with the password entry corresponding to id i. If the two match, the user

may access the system, otherwise access is denied.

It is unknown whether one-,way functions exist; in fact a proof of their existence (or non-

existence!) would settle the famous "F = F*lF' question (Grollman & Sellman tGS$8l).

However, we have a number of candidates for one-way functions, i.e. functions which are

easy to compute, but no efficient algorithm for their inversion is known. Two such

candidates are integer multiplication and modular exponentiation for a f,rxed base. V/hile

it requires one arithmetic operation to multiply two integers, the number of arithmetic

operations required for the fastest general factoring technique is subexponential in the

number of bits of the integer to be factored. The difficulty of factoring is discussed in

more detail in Section 2.1. Simila¡ly, given m e Zr0, a e [0, ... , tît-l ], it takes no more

than 2log n multiplications and 2log n reductions (mod m) to compute b = an (mod rn),

0 < b<m-l (seeAlgorithm 2.1 in Section2.l). However, given me z>0 and a,be

{1,...,m-11 suchthat an=b (modrn)forsome ne Z>O,thediscretelogarithmproblem

(DLP) of finding n is generally very difficult. More details on the DLP can be found in

Section 8.2.

Clearly, one-way functions cannot be used for encryption, since even the intended

recipient of a message would not be able to extract plaintext that has been enciphered

using a one-way function. But if the decrypter were given certain trapdoor ínformatíon

which enabled him to invert the one-way function quickly, then such a function is a good

candidate to be used for a PKC. A trapdoor one-way function is a funcrionf: X + I such

that the following holds.

1. For all x e X,f@) is easy to compure.

10



2. For almost all y e Y, if there exists ¡ e X such thatf(-r) = y, then it is hard to

compute x, unless some special information / used in the design of/is known. In

this case, there exists a function g¡ such that g¡(y) = r is easy to compute.

Note that the encryption transfonnation E6o of a PKC constitutes a trapdoor one-way

function. Here, the special information l is the secret key Kr, and the inverse function g¡is

the decryption transformation Dç.

A candidate for a trapdoor one-way function is squaring modulo a Blum integer, i.e. an

integer m=pq which is the product of two distinct primesp, q = 3 (mod 4). For ae Z>0,

b = a2 (mod m) can be computed in one multiplication and reduction step, whereas

extracting an integer square Íoot a (mod rn) of b (mod m) (provided one exists) is

generally infeasible without extra information. However, if the factors p and q of m are

given as trapdoor information, then the following procedure finds a (mod m) using no

more than a multiple of log2 rn arithmetic operations (we assume that there exists a square

rootr e Z such thatx2: å (mod z)).
Èl g+l

1. Compute u:b 4 (modp), O<u<p-l,andy =b 4 (modq),05v<q-l

2. Find ae Z such thata= a (mod p),a=v (mod q),O<aSm, usingtheChinese

Remainder Theorem.
( p+lg È1 p-l

v/ehave a2=u2=[a + ) :-u2 :b26= 7p-16= å(modp),sincebyEuler'srheorem

r,P-l :- 1 (mod p). Similarly, a2 = å (mod q),hence a2 = b (mod n).

Another example of a candidate for a trapdoor one-way function is modular

exponentiation for a fixed exponent. As mentioned before, b = an (mod m) can be

computed quickly, but no efficient algorithm is known to extract an n-th root of b (mod

¡lt) (provided one exists), unless the factorization of rn is given as trapdoor information, in

which case the n-th root can be computed in a multiple of log m steps. This trapdoor one-

way function is the basis for the RSA public-key system discussed in Section 2.1.
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PKC's have the advantage of eliminating the problem of key distribution. Their main

disadvantage is the fact that they tend to be much slower than most one-key

cryptosystems; for example, a secure hardware implementation of the RSA system is

approximately 1000 times slower than a DES chip. Consequently, many practical

applications use a hybríd system. These systems employ a PKC to communicate a private

key for a one-key cryptogmphic session, and a private-key system is used for subsequent

data exchange.

1.1.3 ÐigitalSignatures

A digital signature is the crypto$aphic equivalent of a written signature, i.e. a means by

which a recipient of a message can verify the identity of the sender. If Alice sends a

digitally signed message to Bob, he not only knows that the message was signed by none

other than Alice, but he can also convince any third party of this. A digital signature must

satisfy three conditions:

1. Nobody but the sender can generate the signature.

2. The receiver can easily verify the signature.

3. If the sender should disavow signing a message, it must be possible for any judge

or third parry to resolve a dispute arising between sender and receiver.

A PKC provides signature capability if tu{ = C and if for any pair Kp, K, of keys, the

property EXo(DXr(fuÐ) = M holds for any message gv{. To sign a (non-confidential)

message M, Alice uses her secret key Kr to compute S = DK"(fuÐ. She sends M along with

S and her identity to Bob. Bob establishes the sender's identity to be that of Alice, uses

Alice's public encryption key Kp to compute fu = EXp6), and declares the signarure valid

ifM=M.

Now assume that Alice wishes to send confidential information to Bob and he in turn

wants to be sure that none other than Alice sent the information. Alice generates a

signature S = D ¡(M) using her secret key. Then she uses Bob's public key to compute I =
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Es(M).She sends T and her identity to Bob. From the identity tag, Bob identiflres Alice as

the sender, decrypts T to get S = Dg(Ð, and finally recovers Alice's original message M =

Ee(S) by encrypting the signature under her public key.

Digital signatures can also be used to foil an attempt of impersonation by an opponent.

Suppose a tamperer generates a random "signature" 
^1, computes the "message" M =

Dn(S), and transmits M, S, and Alice's identity to Bob. Bob validates the signature by

computing EñM) = S and is lead to believe that Alice sent and signed M. Internal

redundancy exposes this attack - Bob will notice that M is a meaningless message - but if
the message being sent was supposed to be random (say, a key for a private-key

cryptographic session), the tamperer will have succeeded. To prevent this attack, Alice

could sign her message M with S =D¡l(l(M)) instead of .S = Dt(M\ where/is a public

one-way function. To validate the signature, Bob computes Ea(S) andf(M).If the two are

the same, the signature is valid and the message must have come from Alice.

1.X.4 Key Exchange

PKC's prcsent one solution to the problem of safe key distribution. Secure key exchange

is another approach. Suppose two communication partners wish to engage in a private-

key cryptographic conversation, but have no secure channel available to communicate a

key. In 1976, Diffie and Hellman [DH76] introduced the following cryptographíc

protocol (i.e. an algorithm for communications between different parties) which allows

both partners to agree on a common key without revealing it to an eavesdropper.

1. Alice and Bob publicly agree on a large prime p and a prímítive root g (mod p),

i.e. a generator of the multiplicative group of residues a (mod p) where p I a.

2. Alice generates a random integer a e U, ...,p-2). She computes x = ga (modp),

7 < x < p-'1,, and transmits x to Bob.

3. Bob generates a random integer b e U, ... , p-21. He compures y = gb (mod p),

7 < y < p-7, and transmits y to Alice.
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4. Alicecomputes K=yo (modp), 1<KSp-l.

5. Bob computes K=¡å (mod p\, | < K < p-1.

Note that ab : gab: ya (mod p), so Alice and Bob indeed generate the same key. The

protocol requires one round of communication and the quantities transmitted require no

more than log p bandwidth. Furthermore, all powers can be computed in at most 2log p

multiplications and 2logp reductions (modp).

An opponent tapping the line can obtain p,g,x, andy, but does not knowa orå. No

efficient method for retrieving K without knowledge of a or b is known. If the

cryptanalyst has a fast algorithm which for any z e Z>0 and primitive roor S (mod p)

computes ceZ>0 suchthat gc=z (modp) oTc=logrz inthefinitefieldGF(p)of p

elements, then the key exchange protocol is broken. This is the already mentioned

discrete logarithm problem which will be discussed in more detail in Section 8.2.

A different approach to secure key distribution without the use of a drivate channel was

introduced by Merkle [Me78]. Here, two parties decide on a common key by exchanging

a number of puzzles. The cryptanalyric cost of this scheme grows as n2, where n is the

cost to the legitimate users, hence the system is secure for n sufficiently large. However,

the protocol requires large bandwidth, since n potential keys need to be communicated

before one key can be agreed upon. In fact, Merkle points out that the high transmission

overhead prevents his scheme from being practical.

1"1"5 Organisation of the Thesis

This thesis presents two cryptographic schemes that are based on the algebra and

arithmetic in certain number theoretic strucrures. Part I (Chapters 2-7) discusses public-

key cryptography based on modular exponentiation. V/e review previous work in Chapter

2, summarize the required mathematical ideas in Chapter 3, and introduce a new modular

exponentiation-based cryptosystem in Chapter 4. The security of our scheme is analyzed

in Chapter 5, and the algorithms used in our system are discussed in detail in Chapter 6.
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Part I concludes with three specific cases and some computational results given in

Chapter 7.

Fart II (Chapters 8-13) of this dissertation introduces a new key exchange protocol.

Chapter 8 presents the general Diffie-Hellman protocol and possible approaches for

breaking it. In Chapter 9, we discuss the mathematical basis for the new protocol. The

main algorithms of the new scheme are given in Chapter 10 and the problem of

establishing a unique key is solved in Chapter 1 1. The fînal protocol is inrroduced in

Chapter 11 as well; we point out that this is the first Diffie-Hellman prorocol that does

not require a group structure. Chapter 12 analyzes the schemr'r r""*ity. We discuss our

implementation and give some numerical examples in Chapter 13.

The dissertation concludes with some final remarks and a brief overview of open

problems arising f¡om our previous discussions in Chapter 14.

In the remainder of this Chapter, we will review some well-known mathematical facts

that are repeatedly used throughout this document, and give a brief introduction to

algebraic number theory.

&"2 Somae Wasåcs

We will briefly review a few basic and well-known mathematical facts and tools which

we will use repeatedly throughout this dissertation.

4"2"1 Cornplexity

The performance of an algorithm is described in terrns of its computational time and

space requirements. Since all our procedures will be performing integer arithemtic, we

will measure the time of an algorithm in terms of the number of basic integer arithmetic

operations performed; these include addition, subtraction, multiplication, division, and

comparison of two integers. We will not consider the computation time each such
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operation requires. Hence when referring to the time complexity of an algorithm, we

mean the total number of integer operations performed. The space complexiry of an

algorithm is the size of its largest input throughout the computation, i.e. the number of

bits in its largest input number, or the storage required by this number.

We will only be concerned with the asymptotic behaviour of the time and space

complexity of an algorithm. Recall that if/, g:'f.>0 + R>0 are two functions, we say that

/(n) is big-Oh of g(n) and write/(n) = O(g(n)) if there exist ng e Z>0 and c e R.>0 such

that for all n > nO, l@) < cg(n). V/e say that/(n) = QG(n)) if there exist ng e Z>0 and

c e R>0 such that /( n) > cg(n) for all n > no.In general, our algorithms will have both

time and space complexity O((log P)É) where k > 1 (k = I most of the time) and P is a

parameter given by the cardinality of the mathematical structure underlying our

algorithm.

3,.2.2 Fernrat's f.iftle Theorern

In 1640, Fermat made the following observation (today referred to as his "Little

Theorem"):

Ifpis aprime,then øâl:1 (mod p)forany ae Z such thatp! a.

This statement is an immediate consequence of the fact that GF(p)* = GF(p)-{0} is a

cyclic multiplicative group, where CF(p) is the fînite field of p elements. It is not to be

confused with Fermat's well-known "(Last) Theorem" regarding the existence of

soluúons (x,y, z) e Z3 of the equatioÍtÍn *yn = zn (n e ør0).

4"2"3 Extended EuctrÍdean Algorithm

It is well-known that we can compute the greatest comon divisor (gcd) d = gcd(a, b) of

two integers a, b (b > 0) by performing repeated division with remainder

a=qgþ+r¡
b = q¡1+ 12,

17=qfz+13,

0 S 11<b,

01rz4rl,
O 113 4rZ,
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untilweobtain tn-l=Qnrn* r¡al Suchthatrn..l =0,inwhichcaserr¡ =gcd(a,å).Then

n = O(log max(lal, b)) (see for example [Kn81, p. 3a3l) and atl numbers computed by the

algorithm require at most O(log max I lal, å ]) bits of storage.

By substituting backwa¡ds from tn = rn-2 - Qn-tn-l = rn-Z - Qn¡tn-3 - Qn-2rn-2) = ..., w€

can obtain a representation of the gcd as a linear combination of a and b, i.e. we can find

x, y e Z such that gcd(¿, h) = xa + yh, in time O(log max {bl, b} ). This prc}cess is called

the Extended Euclídcan Al gor ithrn.

lf k, m e Z are relatively prime, we can use the Extended Euclidean Algorithm to find x,

y e 7' such that xk+ym = 1 = gcd(fr,2). Then xk=7 (modrn). Hence if we assume thatk

< rn, then we can find the inverse.r (mod m) of k (mod rn) in time O(log m), and requiring

space O(logm).

X,.2.4 ChineseRemainder"fheorern

The Chinese Remainder Theorem is used to solve systems of simultaneous linear

congruences. Suppose rrl, ... , tqt n E Z>0 are pairwise relatively prime and

m = mtnt2"'t?t¡. V/e wish to find a solution -r (mod m) (x e 7.) of the system of

congn¡ences

x= at (mod mt),

x = a2 (mú m2),

x = an (mad mr).

For 1 < í 3 n, we first frnd e¡such that t#r= 1 (mod rn¡), using the Extended Euclidean

n
Algorithm, and set x¡-- e#¡ Then x¡ = 1 (mod mi), xi= 0 (mod m¡) for j * i. Set ,=¿7*o

(mod rn). Clearly, ¡ is our desired solution and can be found im time O(1og rn) (assuming

that the number of congruences n is bounded), and requiring space ooog m).
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3."3 åxatnoductåox¡ to ^Aågehnañe Ns.¡r¡aher T'åaeony

Most of this material can be found in any introductory algebraic number theory text (see

for example Stewart & Tall [ST79, Chapters 2,4,5,9, 10.1, and l2l).

[.3.X Algebraic Number F'ields

Denote by Q the field of rationals, 7, the ring of rational integers, R the field of real

numbers, and C the field of complex numbers. For any ring S, we let St¡l be the ring of

polynomials in¡with coefficients in S.læt 0 e C and let Í(x)=xn * an-1yn-r +...+ a0 €

Qt¡l be a monic irreducible polynomial with rational coefficients such that/(Q) = 0 and

n = deg(f(x)) is minimal. Then we say that 0 is algebraic over Q. The ser K = Q(0)

= Q + Qg + Q02 +"' + QSn-l is a subfield of C and a vector space of dimension n over

Q for which the powers l, 0, ... On-l form a basis. We call E{ an algebraíc nwnberfield of

degree n = dirrÞK = (K:Q) over Q./(x) is called a generating polynomíal for K. If f, is

any subfield of K containing Q, then K is also a vector space over X-, i.e. an algebraic

number field of degree (K:L) = dimtK = ffiover [-.

Denote by O the set of all cr e K such that there exists a monic polynomial g@) e Zlxl

such that g(cr) = 0. O is an integral domaín in K, i.e. a cornmutative ring with no ze¡o

divisors and multiplicative identity l; and O is a Z-lattice of rank n,i.e. there exist ol1,

(ù2.,...,(on € KsuchthatO = [ú)1,...,o¿] -Zctll+7.oy2+... + T.ønando)1,gn,...,{D¿is

a Q-basis of K. V/e call co1, (Ð,, ..., o¿ ân íntegral basís of K and 0 the maximal ord,er or

the ring of integers in K. K is the quntíent Jîeld of O, i.e. every o e K can be written as c

= Þfl where Ê y= CI and y* O.Furthermore O n Q =¿.

Let 0 = 0r,02,...,0n b€ all the zeros of/(x).The f,reld homomorphisms o¡: K -+ c
defined by o;(0) = 0¿ (1 < í < n) are the conjugate mappíngs of K, and for any ø e K, the

numbers o;(a) (0 < i S n) are called the conjugates of cr. After reordering the 0¡ if
necessafy, rwe may assume that o1, ... , o., a¡e the real conjtgate mappings, i.e. o¡(K) c R,

for 0 < i ( s, and o5a1, o5¡, ... 
" 

o.r+rn ora¡ are the complexconjugate mappings, i.e. o¡(K)
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g! R for s+l < í S s+r (here o¡(a) =o¡(a) fors+l < i <s+r, whereþdenotes the complex

conjugaæ of B forany p€ K).Thens +2t=n-Ift =0, i.e. s=n, then wecall K atotally

real field: in the case where.s = 0, i.e. n = 2r, K is said to betotally complex. K is a

normal extension of Q if0l, 02, ..., 0n e K and hence o(K) ç K and olC}) E O for

1 < i < n. In this case, the conjugate mappings generate a group of order n, the Galoís

group of K over Q. If K is normal over Q, then K is a normal extension over any subfield

L of K containing Q. The Galois group of K over [, consists of all those conjugate

mappings which leave each elemement in E fixed. The order of the Galois group of K

over l, is ([,:Q).

Let c¿ e K. We define N(cr) = ffior,rr, to be the norm ofa and T(cr) = 
,$o,fo¡ 

to be the

trace of cr. Then N(K), Tr(K) c Q and N(0), Tr(O) çZForthenrnore N(clÊ) = N(cr)N(F)

and Tr(¿cr + bþ) = aTr(cr) + åTr(F) for 0,, F e K and a,b e Q. Note that for a totally

complex field K, N(a) = [tf¡(cr¡tz> 0 for any u e K.

The díscriminant L of K is the quantity Å = (det [o;(oli)r¡t,...,n7)2 e z, where o,l, ... , crrn

is any integral basis of K. A is independent of the choice of the integral basis and is thus

aninvariantof K.Forcre O,the (element)discrimínantof crorthe (lattíce)díscrímínant

of z[a) = z + 7.u. +.. + v.an-r is defined to be d(a) = d(z[a]) = (der ¡or(cri)i¡r, ...,,J)2.

Then d(cr) = I(a)2a where /(ø) = (o : ztcrl) is the index of ø, i.e. the index of z[cr] in o,

or the cardinality of the factor nng tlV.[ul. Hence A is divides the discriminant of any

element cr e Û. If/(.r) e &[x] is a polynomial without multiple zeros such that/(a) = Q,
n(n-1\

then d(s) = Cl) 2 dA, where d(f) = N(/'(0)) is rhe (polynomial) d,íscriminant of f(x)

and/'(ø) is the derivative of/(;r) atx = cr
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nå.2 Units and Frirnes

There are two special kinds of elemens in every algebraic number field, namely units and

primes. Fortwo elements a, Þ e t, Þ +0, we say that þdívides cr, written Ê lcr, if there

exists Te O such that ÞT = a.

A numbere e O such thate I I (i.e. e is a divisorof 1 in t) iscalled a unitin K. Ifeis a

unitin K, then e-l is a unitin Kas well. e e O is a unitif and only if N(e) =+1.

Theorer¡¡ 1.1: There exists a set of independent units Tll, ... , Tlr such that every unit e has

auniquerepresentation e = Çtlfl --- 'tlretwhere €b...,ere E,and ( is arootof unity in

K.qt,... , î, is called asetof fundarnental units of K. Here r=.r + t - 7. r is called the

unit rank of K and is an invariant of K. A

Here, the term "independent" means that the equation qtel ... \r€, =-l has no solutions

(et, ... , er) € Zr.In the case where r = 7,then we will always fix r1 = fl1 to be the unique

fundamental unit exceeding l. Note that r1-1, -î-1, and { are also fundamental units

satisfying 0 < n-l < 1, -l < -n-l < 0, and -î < -1.

If wedefine /¿(cr) =log lolcr)l for I <í<sand /¡(a) =lodlo¡(cr)P) fors+l <í<s+rfor

anyü€ K-{0},thenthervecrors(/1(r1r),..., /.(qj)) (1 <j<r)can be shown tobe

linearly independent over the reals R. The quanrity p = ldet t/¡(qJ)l¿; = l, ... , .l is called

the regulator of K. R is independent of the choice of the system of fundamental units and

is hence another invariant of K.

If cr,p e O are such thato=eÊforsome unit e, thes and B are said tobeassocíates,

and we write Cr - P. It is easy to see that the relation - is an equivalence relation on 0.

Aprímein o is an elementæe o such thatif n lop, thenrc lcrorr lp forany o, F e o.

Every non-zero o e O can be written as a product of prime powers in O, but contrary to

the case of prime decomposition in Z, this representation need not be unique. For
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example, the number 21 in the field Qf.f¡l has two decompositions 2l = 3.7

= (l+2{-Ð(1-2./-Ð into primes, none of which are pairwise associates.

1"3"3 {deals

A subset a of 0 is an (íntegral 0,-)ídeal in K if both a+a and Oa are subsets of O. Any

integral ideal a is a Z-sublattice of CI of rank n; if cr¡, ... ,&ne 0 is a Z-basis of a, write

a = [crl, ... , crn]. Denote by { the set of integral ideals in K. A subset b of K is a

(fractíonal {}-)ideal in K if b = oâ where a is a non-zero integral ideal in K and

0+ae K.Foranyfractional ideal b, theseth'l = {cr e Klcrb is an integral idealin K}

isafractionalidealin K. If wedefineab= {aF lGe a, Þe b}, then the fractionalideals

form an Abelian gloup under multiplication with idenúty O, and the integral ideals I form

a semi-group.

If ø1, ... , ak e K, then the set Ocr¡ +.. + Oø¿ is a fractional ideal in K which is said to

be generated by ol, ... , cr¿; write a = (c[], ... , c[¿). a is an integral ideal if and only if
crl,... ,ukê O. If b = (Ft,...,Þ/), then ab = (ø¡Þr I I <i <k,l S j <I). Any idealcanbe

shown to require no more than two generators. An ideal a = (cr) = of with a single

generator is called principal.If a, p e O, then (cr) = (Ê) if and only if cr= F. In particular,

O = (e) for any unit e. The set of fractional principal ideals is a subgroup of the group of

fractional ideals, and the set F of integral principal ideals is a sub-semigroup of the semi-

group Ï of integral ideals.

The norm of an integral a is defined to be the cardinality l0/al of the facror ring O/a. The

ideal nonn is multiplicative, i.e. N(ab) = N(a)N(h) for any two integral ideals a, b in 0.
If a = (cr) is principal (a e 0), then N(a) = lN(cr)|.

V/e say that an integral ideal a divídes an integral ideal b, written a I h, if there is an

integral ideal c such that &c = b, or equivalently, if b e a. We write a I cr instead of

a I (cr), cr e O, a e I. cr=P (mod a) is defined tomean a I s- p fora, Þ e 0, a e I.
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Two integral ideals a, b are equivalent if there exist non-zero ø, p e O such that

(a)a = (Þ)h, orequivalently, if there exists a non-zeroTe K such that s = (y)b; write

a - b. This equivalence relation partitions the set of integral ideals into a set of

equivalence classes which form a finite group under multiplication, called the c/¿ss group

Cl(K) of K. The class group is exactly the factor group l/P. fne order å of Cl(K) is called

the c/ass nurnber of E{.

There are special representatives called reduced ideals in each ideal class. The idea of

ideal reduction evolved out of the reduction theory for binary quadratic forms. It seems

that reduced ideals were first mentioned by Berwick tBe28l for quadratic fields, later by

Smadja [Sm73] for cubic fields, and finally by Williams [Wi85aJ. For a fractional ideal a,

we define m(a) = {m e V,*l ma çO} and L(a) = min[& e Za I k e m(a)a]. When a is an

integral ideal, \pe get m(a) = 1 and L(a) = minfa ô Z+), i.e. L(a) is the leasr positive

rational integer in a. An integral ideal a is said tobe primítive if it has no rational integer

divisors except 1, i.e. if k e Z is such that (t) I a, then k = l.A number0 * a e a is a

minimwnin a if thereis no p e a such that lo¡(p)l< lo¡(a)lfor0 <i <s+r.

Definition X"2:

minimum in a.

The number of reduced ideals in O is finite and each ideal equivalence class contains at

least one reduced ideal. Denote by fr E F the set of reduced principal ideals in K. S need

not be a group, since it is generally not closed under ideal multiplication.

Anintegralidealpiscalledprimeifplabimpliesplaorplbforanypairofintegral

ideals a, h. It is easily shown that a principal integral ideal is prime if and only if its
generator is a prime in O.

Any non-zero integral ideal a has a unique representation (up to order) as a product of
prime ideal powers. In particular, for every prime p e z, the ideal (p) in 0 has a unique
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factorization (p) = pter ..- pret where the p¡ are prime ideals. The factor ring Op, = Ø/p¡

is a finite field and a vector space over the finite field GF(p) of p elements. Denote byfr

the degree of Oo, over GF(p),i.e.f¡ = dim crø)Oø* .

Theorer¡¡ 1.3: Let p & a rational prime and let (Ð = pf | -- W€r be the unique prime

ideal factorization of the ideal (p) in t. Let f¡ = (Op¡GF(p)). Then p satisfies the

decomposítíon law

If K is a normal extension over Q, thenfi =... =f, and e1=... = €¡, so the decomposition

law reducesto rOe¡fo=n. A rational prime for which ei> I for some í is said to be

ramifted.It can be shown that the ramified primes are exactly the prime divisors of Å.

r
Lef¡= n. *

i=1

Theorern x.4: Let f(x) e Q[.x] be monic and irreducible, 0 a zero of ÍØ), and let p be a

rational prime such that pl I(g), the index of 0. læt/(x) = g1@)e1...gr[x)e, (mod p) be the

unique decomposition of flx) into monic, modulo p irreducible polynomials. Then the

prime ideal factorization and decomposition law of (p) ue given bV (p) = plel ... We, and
r

, = 
,?1rt, 

where/¡' = deg@;(.r)), and Ði= (p, gr(e)) for f e {1, ... , r}. E

If p is any prime ideal, then p îtZ = pZ for some prime p,hence there exists a unique

rational primep such that p lp.l*,tf = (O/p:GF(p)), i.e. tt/pl = pf.fhen N(p) = f.lt
a = Plu l "'Psu" is the unique prime ideal factorization of a non-zero integral ideal a, then

N(a) = N(pr)'1...ru(pr)'".

A field K has class number 1 if and only if every ideal is principal. In this case the prime

ideals are exactly those ideals whose generaror is a prime in O. If (ø) = (nùet ... (tç)e, is

the unique prime ideal decomposition of an integral ideal (c) (0 # G. e 0), then it follows

that cr = n1€l "' frr€, and this representation is unique up to order and unit factors. In this
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case we say that the maximal order is a Unique Factorízation Domain (UFD). Thus the

fields of class number I are exactly those whose ring of integers is a UFD.

n3.4 EuclideanDivisio¡¡

Let Ð be an integral domain. As forrings of integers, we define an element ä e Ð-{0} to

beadivisorof a e Ð (åla)if thereexistsce Ð such that bc=a. A unit isagainadivisor

of 1, and two elements a, b e Ð are associates (a = b) if a = eb fora unit e.

AEuclídean functíon is a mapping f Ð-tOl + 30 such that the following two

conditions hold.

i) lf a I b, then/(a) Sf(b) for any a, b e Ð-[0],

ii) For My e,be X)-{0),thereexist g,re Dsuchthata -qb+randr=0or/(r) <l(b).

D is said to be Euclídean (for the function f) if a Euclidean function /exists for D. The

process of frnding q and r is called Euclidean dívisíon. For example, Z is Euclidean for

the identity, and Euclidean division in Z is simply division with remainder.

There is a variety of algebraic number fields whose ring of integers is Euclidean for the

absolute value of the norm lNl. If K is an algebraic number field with maximal order O,

then it is easy to prove, using the fact that the norm is multiplicative, that O is Euclidean

for the absolute value of the norm lNl if and only if for any r e K, there exists y e 0 such

that lN(-r - y)l < 1. If t is Euclidean for lNl, then O is a UFD.

For any integral domain Ð and elements e,b e Ð, we call a number d e W a greatest

comïnndivisor (gcd) of aandbif dla,dlb,and forany doe W such that dgla,d,glb,

we have dTl d.It is easy to see that d is unique up to multiplication by a unit. a and.b arc

said to be relatively prime if gcd(a, b) - L For any a, b e Ð, d - gcd(a, å) can be found

using the Euclídean Algorithm, i.e. by applying repeated Euclidean division

a=qgb+r¡
b = qy1+ 12,

rl=q7r2+13,

rt = 0 or flr1) <f(b),

12=0 or f(r2) <,f(rr),

13=0 or /(r¡) <f!z),
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until we obtain rn-l=Tnrn* r¿.ul such thatrnal =0. Then rn- gcd(a, å), and as forthe

Euclidean Algorithm in 3,, it follows that n = o(log maxffia), fþ)l), and all numbers -r

computed by the algorithm satisfy/(-r) S max[fla),f(b)|.
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2"1 T'he R.S,& P¿nb[ia-Key Cnyptosystexm

The most widely used and tested PKC is the RSA system, named after its designers Rivest,

Shamir, and Adleman [RSA78]. It is commercially available and is used by botl¡ the private

sector and the US Government. The mathematical basis for this scheme is the problem of

factoring - while it is easy to multiply two primes p, q,it apperirs to be very hard to extract

the factors p, q from a given product N = pQ.

Before presenting the details of RSA, we require the following definition. For any integer

^ðy', we define Euler's totient function Q(N) to be the number of residues a (mod M) such

that a is relatively prime to N. If N is a prime, then clearly 0(N) = ly'-l. If N = pq is the

product of two distinct primes p,q, then all the elements ¿ e {0, l, ... , ¡/-1} are

relatively prime toNexcept for0, thep-l multiples of q, and the q-l multiples ifp. Hence

0(M) = pq - (r + (p-1) + (q-1)) = @-l)(q-t).

2"n.1 Key Generation, Encryption, and Ðecryption

To generate a pair Kp, Kr of RSA keys, the designer chooses two distinct odd large primes

p, q.(ln [RSA78], it is suggested that p and q be roughly 100 decimal digits each to make

the scheme sufficiently secure. For more details on prime generation, see Section2.l.3).

Set l/ = pq, then 0(M) =(p- l Xq- 1). Next, the designer selects a random integer ø such that

0 < e < l/ and gcd(e,0(M)) = 1. He solves the congruence ed = 1 (mod 0(M) for d e 7.,

0 < d < N, using the Extended Euclidean Algorithm. The public key is the pair Ko =

[N, e), the secret key is K5 = {d}. À/ is the modulus and e and d are the encryptíon and

decryption exponents, respectively, of the scheme. The primes p and q are discarded once

the keys are generated. The size of the public key is bounded by 2log N.
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Henceforth, we assume that our text which we wish to encrypt is represented numerically.

This could be achieved by assigning a two digit integer to each character (A = 0, B = l,

... , Z = 25, with further numbers for special characters and possibly lower case letters),

or by associating with each character the binary value used to for its internal computer

representation (i.e. the character's ASCII or EBCDIC code). We then divide our plaintext

into numerical blocks M bounded by the modulus, i.e. 0 < M <N, and neat each of these

blocks separately with regards to encryption and decryption.

We may further assume that any such message block M is relatively prime to l/. For

suppose that gcd(M,¡ú) >-1, then since 0 < M <N, gcd(M,i/) must be p or q. The

probability P of this event is ] + += +if p and q are ofapproximately equal size. Hencepq{/V

for l/ suff,rciently large, we have P < 10-100, a quantity which is obviously negligibly

smalll.

If a senderAlice wishes to encrypt a message M,0 <M <N,under RSA, and transmit it to

a receiver Bob, she first obtains Bob's public key Kp = {N, e}. She computes

EXp(lø) = C, where C = ¡4e (modN) and 0 < C < N, and sends C to Bob. Bob can

decrypt the ciphertext C, using his secret key K5 = {dl, by calculating D6r(C\=M',

where M' : Cd (mod 
^D 

and 0 < M' <N. Then it follows that M' = M from the following

theorem due to Euler which is a generalization of Fermat's Little Theorenr

T'heoner¡r 2.1 (Euler): fi M, N e Z>-0 are such that gcd(M, ly') = 1, then Mþ(N) = 1

(md Ð.
Proof: The residues a (mod M) such that gcd(a, M) = 1 form a multiplicative group G of

order Q(l/) with identity 1 (mod M¡. Since M (mod l/) e G, we musr ¡¿ye ¿4lGl = Mqç'Ð

: 1 (mod l/). A

I For comparison, the eslimated number of hydrogen atoms in our galaxy is 1068 (Smith & Jacobs [SJ73,
p. 5371.
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Corollany: Let ed: I (mod 00U)). If C =¡4e (mod M), then Cd = M (mod M).

Proof: l*t ed= 1 + ¿O(M), k e 7.. T\en Cd - pled 
= Mt+WQÐ = m(ntÞØÐ)k = V (mod l/)

by Euler's Theorem. B

The Corollary implies DfrGr<o(M)) = M for any message M.Since Efo(Dfr(C)) = C

also holds for any ciphertext C, RSA can h used as a signature scheme as well.

To perform RSA encryption and decryption efficiently, the following well-known

exponentiation æchnique (see for example Knuth [Kn8l, pp. z+alf.]) can be used.

Atgoríthnt 2.1:For M,N, n e Ø,0,0 <M <N, compute X = Mn (mod M),0 <X <zu.

1. Obtain the binarydecomposition n =[b, Zr-i of n, b¡ e {0,1 ), å0 = l.

2. Set X <- M.

3. Forí=ltordo
Set X + X2 (mod l/), 0 < X <¡/.

If b¡= l, then set X e- XM (mod M), 0 < X < N. E

Clearly, no input of this algorithm requires more that O(logM) bits of storage, and the time

complexity of the method is O(r)=O(log n), so since e, d<N. the time and space

complexity of RSA encryption and decryption is O(log M).

2"1"2 SecarriÉy

The security of RSA is at most as hard as factoring the modulus. For if a cryptanalyst

knows p and q, he can easily compute 0(¡/) = (p-1)(q-1) and obtain the secrer key by

solving the congruence ed = 1 (mod 0(M)) using the Extended Euclidean Algorithm. In

fact, to find the secret key d, it suffices to know $(M). However, knowledge of Q(M) is

equivalent to knowledge of the factorization of /ú.
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l,ern¡na 2.2: I.e,t N = pQ.Given i/ and S(M), the factors p and q of N can be computed in

constant time.

Proof: Since 0(M) = (p - 1)(q - 1) = N - p - q + l,we have p + q = N - 0(M) + 1. I-et å =

ryThenp*4=2bædPQ=N,hencepand4mustbeequaltotherootsb*

^{62 - ¡¡ ç¡ the quadratic equation x2 - 2bx +N = 0. n

In fact, even recovenng d will enable an adversary to factor i/. For if d is known , then ed-

1 is a multiple of Q(l/), and Miller IMi86l shows how knowledge of such a multiple

enables an adversary to factor l/. Hence recovering the secret key is equivalent to factoring

¡/.

No way of breaking RSA is known other than retrieving the secret key. It is unknown

whether breaking RSA is equivalent in difficulty to the factoring of ly', i.e. whether

plaintext messages can be retrieved illegitimately, without factoring l/. Both exhaustive key

sea¡ch and factoring l/ are infeasible if N is sufficiently large.

The difficulty of an attack on RSA by factoring depends on the complexity of the factoring

technique used. No polynomal-time algorithm for factoring is known; furthermore, it is not

known whether such an algorithm exists. The best known general purpose factoring

algorithms (Morrison & Brillhan [MB75], Pomerance [Po85], Coppersmith, odlyzko &

Schroeppel [COS86], Seysen [Se87], Lenstra [I-e87], Lenstra & Pomerance lLW2l) all

haveatypicalcomputationtimeofL(M¡c+a(l),whereL(M)=exp(@

and c > 1. The function ¿(M)c+o(l) is subexponential in log i/, since (log M)e < L(M¡c+o1t¡

< l/ for any k e Z>0 if l/ is sufficiently large. The asymptotic complexity of any of these

procedures cannot be proved rigorously, but is based on heuristic arguments, except for the

method in [LP92], where the bound is a rigorous one for the expected running time. In

[Le87], Lenstra introduced a method using elliptic curves whose time complexity is

L(P¡2+o1t¡, where P is the largest prime factor of l/, with a space requirement of O(log M)
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(as opposed to a polynomial in l(M) for all other methods); this reduces to L(M) in the

case where N = pQ and p and q are approximately the same size.

Recently,an¿,(M)c+o(l))factoringmethod,where¿,(M)=,-(@

was developed by Lenstra, Lenstra, Manasse, and Pollard [LLMP9O] for numbers of the

formN=ne+swherez,s)0andsmall. Itiscalledthenut¡tberfieldsieveandhasbeen

generalized to factor arbitrary integers by Buhler, Lenstra, and Pomerance [BLP93].

Pollard tPo75l gaveamethodforfindingafactorof l/havingcomplexity ObfP\ whereP

is the smallest prime factor of l/. He also developed a practical method for discovering a

prime divisor P of l/ when P-l has only small prime factors lPo7{l, and Williams

extended his technique to the case where P+l has only small prime divisors twi82].

Hence, primes p, q such that any one of p-1, p+|, q-l, q+l has only small prime factors

should be avoided.

The ninth Fermat number 229 + 1, a 155 digit number, was factored in June 1990 by

Lenstra, lænstra, Manasse, and Polla¡d [LLMP93], using the number field sieve. It took a

total of four months of computing time on a distributed network of workstations plus one

supercomputer. Factoring a 200 digit number is still far beyond our present computational

technology, and presumably this will not change for some time.

2.n.3 Ct¡oice of Saf'e Farar¡aetens

In their original paper [RSA78], the authors suggested generating random integers of

approximately 1@ digits and testing them for primality using the Solovay & Strassen test

[SS77] to find primes p,q.However, it should be pointed out that it is possible to

illegitimately retrieve plaintext messages and thus break RSA without factoring the

modulus, if the primes p, q or the encryption exponent e are chosen carelessly.

As pointed out above, some factoring methods are quite eff,rcient if one of the primes is

chosen relatively small, hence p and q should be roughly of the same size. On the other

hand, a difference of squares factoring attack is successful if lp-ql is too small. If y =ff,
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,=ry, then N =y2 -x2.rf l-xl is known to be small, sayr <B e z>0,then a linear

search through the values of x = I,2, ..., B will yield a non-trivial factorization of

t/ = (y-xX)+x), if a value of x is found such that N - x2 is a perfect square. Furthermore,

Lehmer tlâ}Tlprovedthatif lp-ql<21[Ñ,thenp uñq can be found directly from rhe

continued fraction expansion of {N. For other factoring attacks, see Schnorr [Sc83b].

In addition, 5 = gcdþ-1., q-l) should be small. Let the leasr common multiple of p-1 and

q-tbe ¡,(N), then Q(Àf = ôÀ(1Ð.The decryption exponent also satisfies the congruence

ed = 7 (mod ì'(N)), so if ô is large, then À(l/) is small compared to Q(N), and it will be

easy to find d using the molulus À(1Ð.

It can be shown @eMillo et al [DDDHL83, p.47]) that any exponenr ¿ will leave at least

nine messages unchanged when used for encryption, but a bad choice of e leaves up to half

the messages unconcealed (Blakley & Blakley [BBl79], Blakley & Borosh [BBo79], Smit]r

& Palmer tSP79l). The number of unconcealed messages can be kept to a minimum if both

primes arechosen tobesafe,i.e.p- ip'+ r forsome ie z>0 even andp'is a large prime

(similarly for q); this guarantees that both p-1 and q-l have ar leasr one large factor. In

addition, we should ensure that p+1 and q+l also have at least one large factor each. For

efficient techniques for choosing suitable primes see Gordon [Gog5].

Cycling attacks using repeated encryption have been studied by Simmons & Norris

lSN77l, Herlestam [He78], Rivest [Ri78], [Ri79], Williams & Schmid [WS79], Berkovitz

[8e82], and Jamnig [Ja88], but such attacks can be foiled by choosing rhe primes to be

doubly-safe, i.e. p = ip' + 1 for some i e z>0 even and p' is safe; again simil arly for q.

There a¡e also successful attacks for small exponents. In [DDDHLS3, pp. 5gf.], it is
shown how in the case where e = 2 a plaintext M can easily be rerrieved if it is encrypted

under two different moduli, and how two message which differ in only a few bits can be

recovered if they are enciphered using the same modulus. Hasted [Ha86] showed that for
any given encryption exponent, sending more than 

tß+ 
linearly related messages
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encr)?ted under different moduli is insecure. Finally, V/iener fWig0l introduced an attack

which is based on the continued fraction expansion of fr e Q and is successful if d < 1Æ'.

To foil these attacks, ¿ should be chosen to exceed the larger of p and q and d should be

suffrciently large.

2"ß,.4 fu{odifications of RS,4

Many modifications have been suggested for RSA. The scheme has ken modifîed to be

used in structures other than the multiplicative group of residues a (mod l/) where

gcd(a,M) = I (see Ecker [Ec83J, or the extensions of RSA to matrix rings by Varadharajan

lva85l and Chuang & Dunham [CD91]). K¡avitz & Reed KR82l suggesred replacing the

primes p, q by ineducible binary polynomialsp(¡), q(x). Mueller & Noebauer [MN$l] and

Lidl & Mueller [LM84] proposed substituting the polynomiat/(x) = ¡¿ (mod M) by more

complicated functions, and recently, the use of Lucas sequences was suggested for an

RSAlike scheme (Smith [Sm93], Smith & Iænnon tSL93l).

Pohlig & Hellman [PH78] developed a secret-key cryptosystem similar to RSA. Here,

instead of a composite number l/, a prime modulus is used, and the exponents e and, d are

both kept secret as the private key. The security of this scheme depends on the difficulty of

extracting discrete logarithms (mod p) (see Section 8.2, part tr).

2"2 Rahåaaus Sågxaata'rne Saåaexsae

Our analysis in the previous section leaves two open questions with regard to the security

of RSA.

. How difficult is factoring the modulus?

" How difficult is bneaking RSA?

The answers to both these questions ile unknown. Howsver, the problem of factoring has

been known and studied for centuries, and up to now no polynomial-time factoring

algorithm has been found, nor has the question of the existence of such an algorithm been
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answered. Factoring is widely believed to be hard, and for our purposes, we will be

content to share this belief.

The situation with respect to the second problem is more hopeful. lVhile we cannot give an

answer to the question of RSA's security, it is nevertheless possible to modify RSA to

obtain a PKC whose security is equivalenr to the diff,rculty of factoring its modulus. This is

achieved essentially by replacing the encryption exponent e by Le, where L is a small

prime. The receiver, upon decrypting C = Mle (mod M) using decryption exponent d,

obtains not M, but ML, and needs to extract },-th roots of ML in order to retrieve the

original message M. This results in a L-fold ambiguity for the value of M. While a message

with internal redundancy (such as English text) can easily be distinguished, the ambiguity

causes a problem if the plaintext is random, such as a key for a single-key cryptographic

session. So the encrypter needs to provide information indicating the correct root of ML n
the decrypter.

The idea of raising a text to the l.-th power before transmission, and exü'acting l,-th roots

upon receipt was first introduced by Rabin [Ra79] for the case 1. = 2. His system is a

signature scheme, in which the signature S to a message M is essentially any one of the

four square roots of ¡42 (mod lú), so here the ambiguity does not cause a problem.

Specifically, a person wishing to sign a message selects two distinct odd large primesp, q,

computes N =pq, and chooses arandom integerb such that0 <b<l/and gcd(b,M) = 1.

l/ and b a¡e made public. To sign a message M,0 < M < N, the signer computes a solution

^s,0 <s <¡y', of the congruence.l'(,s'+ b)=M (modM), i.e. aroot s' of the congruence

x2 + bx - f¡¡f - 0 (mod //). To verify the signature S', the receiver computes

V'=.S'(.S'+å) (modM),0 < y<¡/. The signature is valid if V= M.If we ser,S = t'o|z
(mod¡/) and v=tr/+ Çf^^^0,0<s, y<¡y', then themessage M is signed with s

such that 52 = M (mod //) and verification is done by computing V : 52 (mod M) and

checking whether V = M. (Here, *,. U if å is even, and l= * (mod I/) where 2t= I

(mod M), if b is odd.)
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To compute a square root .S (mod t/), the signer computes x, ! € Z such that x2 = M

(mod p) and y2: M (mod q). Since .S = tx (mod p), S = Ð (mod q), the Chinese

Remainder Theorem yields four different possibilities for S, anyone of which may be used

as a signature to M.
Èl

lf p= 3 (mod 4), then x=M a (modp) is a squarerootof M (modp) as pointed outin

Section l.l.2.If p = I (mod 4), then one can use the methods by ShanksÆonelli (Shanks

lsh73l, Dickson [Di66, p.215]) or Lehmer/cipotta (Lehmer [Le69J, fDi66, p. 21g]) to

compute a square root x (mod p). Rabin also gives an O(log p) probabilistic algorithm for

finding x (mod p). Hence we can sign messages in time O(log M) and verify signatures in

constant time.

Clearly, amessage M can only be signed if M=52(modM) hasasolurion S e Z.Thisis

the case if and only if the two congruences .r2 = M (mod p) and y2 = M (mod 4) have

solutions, i.e. if and only if M is a quadratíc residuc (both (mod p) and (mod q) (opposite:

qtndratíc rcn-residue). There is an efficient algorithm for checking whether or not x e Øis

a quadratic residue (mod p) by computing its Icgendre syntbol.

ÐefÏnition 2.3: Let p e z be a prime and let a e Z. We define the Legendre ,*"r(ò

of a over p as follows.

If ne 30andn

racobi symbot (#)"dover ,^,G)=W G,Í, -

6)
=Pl

( 1 ,f ¿ is a quadratic residue (mod p)
= j -J if a is a quadratic non-residue (mod p)t 0 if p I a

ã-er¡r¡na 2"4:Lætp e 3. be a prime and a, b e

", "'pr', is the unique prime factorization of n, then we deflrne the

,(*)=6w)
Ø.Then the following holds.
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" 6) 
= 

G) 
ir a= b (modp)

',(;) =(-,ft ü

So 52=M (modM) has a solution Sif and onlyif (ry\=(Y\=1.If amessage Mis such' \p) \q) 
e

*"t (f)= -1 or (i)= -1, then Rabin suggests appending a random string U to M to

obtain M',0 < M' <iy', and checking whether (,ù = (tò= l. Since the number of

quadratic residues (mod p) is equal to the number of quadratic non-residues (mod p)

(namely f), on" expects to find M' such tr'ut l4l = (+\= I afrer four trials at a\p) \q)
random string u. An o(logp)procedure for evaluatr"t(òLs given in Section 7.1.

The security of this signature scheme can be shown to be equivalent to the difficulty of

factoring l/ as follows. Suppose an adversary is able to extract a square root S' (mod M) of

a message M (mod N) signed with signature S. If S' = .S (mod N) or .S' = -S (mod N),

then no knowledge is gained. However, if S't S, -S (mod N), i.e. S' = .S (mod p) and

,S'= -S (mod q) or S'= -S (mod p) and .S'= S (mod q), then it follows from S'2 = M = 52

(mod l/) that N I (S' - SXS' + S), l/IS' - S, and NIS' +.S. Hence S' - S is a multiple of

p or q, so computing gcd(S' - S, M) = p o14 will reveal the factorization of N. Hence an

algorithm for extracting signatures requiring time T(N) will factor l/ in time

T(M) + O(logM¡ with a 50 percent likelihood.

Unfortunately, any constructive proof of the equivalence of breaking the scheme and

factoring its modulus, such as the one above, gives rise to a chosen message anack.This is

an attack by which a cryptanalyst can bneak the scheme if he is in possession of a particular

message of his choice and the corresponding signature (a similar chosen ciphertext attack

can be mounted on the cryptosystems discussed below, see Chapter 5). Suppose an

adversary generates a random integer .S' and computes M = S'2 (mod M). He then asks the

signer to sign M and reveal the corresponding signarure.S to him. If S # S', -S' (mod i/),
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then the attacker can factor l/ and the system is broken. As indicated above, this attack has

a 50 percent chance of success.

Rabin poins out that his scheme can k extended to the cubic case where signarures S must

satisfy s3 = rxf(mod M). Here, each messa ge M has nine possible signatures.

2"3 Pu.ah[åa-Key Systeams Eqeeåvaåemt 6o F acûorixeg

Since Rabin's scheme, a number of PKCs based on modular exponentiation have been

designed whose security is equivalent to the problem of factoring the system's modulus.

Williams was the first to incorporate Rabin's idea of squaring and extracting square roots

into a cryptosystem. In Williams [V/i80], he introduced a quadratic scheme which is

generalized in Williams [Wi86]. A cubic system is also given in [Wi86]. Both these

schemes will be discussed in more detail in Chapter 7. Harn and Kiesler [HK89l presenred

a different modification of Rabin's scheme which identifies the correct squarc root in the

encryption and decryption algorithms.

A different extension of [Wi80] to the cubic case was recenrly presented by l-oxton, Bird,

Khoo, and Seberry [LKBS92]. In their sysrem, encryption and decryption employ

a¡ithmetic in the quadratic field Q({:3) rather than the rational integers. Finally, another

quadratic scheme is given in [v/i85b] (see also Salomaa [Sa90, pp. 159-1661). Here,

encr)?tion and decryprion are performed in the quadratic freld e(r/Z) where c e Z is

chosen such that , = -6) (mod a) and q = ft) 
(mod 4). The system twiSsbl is the only

one which does not place any restrictions on the primes p and q (other than that they both

be odd primes).

Chapters 3-7 of this dissertation present an RSA-like PKC which can be used as a

quadratic and a cubic variant as well as with prime exponents exceeding 3 (see also

Scheidler & Williams [Sw92l). The scheme is a generulization of Williams' extended

quadratic and cubic schemes [Wi86]. Like all the previous sysrems, it solves the problem

of ambiguity in the decryption and its security is equivalenr ro the difficulty of factoring its
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modulus. Chapter 3 discusses the mathematical preliminaries, namely the algebra of

cyclotomic fields. The system itself is given in Chapter 4 and its security is analyzed in

Chapter 5. Chapter 6 presents in more detail the algorithms required for key generation,

encryption, and decryption. In particular, \rye give methods for Euclidean division in

cyclotomic fields, a generalization of the well-known division with remainder in Z, and for

the evaluation of residue symbols - these represent an extension of Legend¡e and Jacobi

symbols to prime exponents other than 2. Finally, Chapter 7 discusses the quadratic and

cubic case as well as, for the first time for a modular exponentiation-based system, the

quintic case.

As mentioned before, all of the schemes discussed above address and solve the ambiguity

problem in decryption. This can be done in two ways. The information required for the

decrypter to distinguish the correctly deciphered message can be either given in the

decryption algorithm as done in [Wi80] and ILKBS92f, or transmitted together with the

ciphertext, as done in [Wi86], [Wi85b], and our scheme.

Finally, it should be noted that for any system of this kind, there is a price to be paid for the

additional information regarding its security over rhat of RSA.

' All schemes, with the exception of [Wi85bl, need to place certain restrictions on the

primes P, Q, ffid thus on the modulus N. It is conceivable, though unlikely, that a

modulus N = PQ of this special form is easier to factor than an arbitrary product of

two distinct primes.

' The mechanisms for key generation, encryption, and decryption are more

complicated than those for RSA and require more computation. However, the

overall asymptotic complexity is the same as that of RSA, namely o(log M).

" The public key is larger than an RSA public key, up to twice as large (4log N bits

rather than 2log l/ bits in the quintic case).

' As mentioned in the discussion of Rabin's signature scheme, the proof of the

equivalence of breaking the system to the problem of factoring its modulus is

3B



constructive and can hence be used to mount a chosen ciphertext attack, similar to

the chosen message anack against Rabin's scheme. However, a decrypter can foil

such an attack by preventing any potential adversary from obtaining the decrypted

message conesponding to a ciphertext of the adversary's choice.

It should be noted that ourobservations in Sections 2.1.3 and2.l.4 regarding factoring

and the choice of safe paramters also apply to the cryptosystems discussed in this section.
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3. åxa6nød¿na6åøxa 6o Cyeåotøxaaåa F'åeåds

Much of this material can be found in Washington [V/a82, Chapters 1 &.z].Iæt ], e Zk, a

prime and let ( = C & a primitive ),-th root of uníry,i.e. ( e C such that ( * I and

(À = l. Then/r(x) =!+=¡À-l + "'+x + I is the polynomial with rational coefficients

Î.- I
and minimal degree such that fLG) =0. In factfl(.r)= [l(r-(t), so the powers (i

(1 sr<À-1)of(areexactlythezerosof"ñ(.r).ThefieldK=Q(()generatedby(iscalled

a cyclotomic field; its degree over Q is À-1, and.ñ(¡) is a generating polynomial for K-

It can be shown (see [V/a82, Proposition 1.2, pp. lff.]) that the powers (t (t < í < ].-l) of

( form an integral basis of K, so Ø =3,Ç +...+ Z,Çx-l =T.tÇl.If À = 2, then ( = -1 and

K= Q, so assume À à 3 for the remainder of this section. The conjugate mappings of K are

givenbyo¡(()=(ifor1<i<1.-l,soKisatotallycomplexfield. ItfollowsthatN(c)>0

for all cr e K. Note that the last conjugate mapping oÀ-l is exactly the compex conjugation

( -t (-l on K. Since (te X for I <i<À-1, Kis anormalextension overQ whoseGalois

group is isomorphic to the cyclic group GF(},)* = GF(I) - {0} of order }.-1.

Any unit e e O has a unique reprentation e = t("î lel .., qret where €, €1,... ,€7€. 7,,

0 <e < À-1, and î1,... ,1'1, iS a set of fundamental units in K. Since the number s of real

conjugate mappings is zero, it follows ttrat r =T, and the unit rank of K is , =8.

Henceforth, let ol = 1-(. Then co-l = -5 where o = þtç, u *.
lu i=l

I-e¡nn¡a 3"1: N(ro) = ),.

LJ
Proof, N(co) = Åtrft-E'l =fi(1) = î,. *

L_L
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Lernrna 3.2: The discriminant of K is Â = ,-rr*?r^-r.
(À-1XÀ-2)

Proof: Since (K:Q) = l.-1, we have Å = (-1) 2 a(fX@)). Ir[ow

so"rr,(() = H ^::;=" =NL-z,using the

previous lemma. The rest follows from the fact that î,-2 is odd. *

I-ernrna 33 (Decomposítion of ratíonal prímes ín O):I'etp be a rational prime.

4 r-(,.If p =À, thenp = soÀ-l where r = 
L{rr, 

r, -- i 
is a unit for I S i < À-1, and ol is a

prime. \f p*î.,then (p)=pl ...þrpwhere fp=ord(p (mod[)) =minfn e Z+l pn=l
\-t

(mod X.)) andro=T.

Proof:Assume P =L.By Iæmma 3.1,^"= N(ol) = rol-le where e is given as above. Since

N(l-(Ð = N(1-ç) for any i, it is clear that ,r#is a unit for 1 I i < î.-1. To prove that'r-ç
<¡isaprime,assumethatpisaprimeidealsuchthatplî".ThenplorandhencepÀ-llî,.

By the decomposition law, we must have (À) - pÀ-1, so in the decomposition law

ep=\.-7,fp=rp = 1, so N(p) = À. Suppose (ol) = pq where q is an integral ideal. Then

1, = N(ol) = N(p)N(q) = ÀN(q) and hence N(q) = 1, Q = O, and p = (ro). It follows that ol

must be a prime.

Now suppose that p +L, then p is not ramified by Lemma 3.2, hence by Theorem 1.3,

(p)= pr "'Prp. Let p e {pr,...,Þrol, i.e. p lp. Then fp=(t/p:GF(p)) and the field

O/p is a normal extension over GF(p) whose Galois group is a cyclic group generated by

the Frobeníus automorphismxp, charactenzed by tp(cr) = qP (mod p) for all cr e 0. In

particular, rp(Ç) = (P (mod p). Ler m = ord(p (mod À)), i.e.p^: I (mod Î.) and m e Ø>0

I-1
is minimal. Then (rp)*(Ç)=Çp*:( (modp),andif s=,&",(t€ 0, a¡e Ø for

41



l"- I
1 < i < À-1, we have (rp)m(o) = f,a¡ ßpYGY = cr (mod p). Hence (rpY is the identity on' i=l

O/p, and since rn is minimal, we must havem = ord(tp) =/r. From the decomposition

- À-l"lavt,rO= 
fi. U

Corollary A:p= I (mod À) + (p) = pt...pI-I, so ep=fp=1,îp = À-1.

Proof : Clear from p = 1 (mod À) <+ ord(p (mod À¡¡ = 1. E¡

Corollany 2:Letp #ì". Then N(p) : I (mod 1,) for any prime ideal divisor p of p.

Proof: Clear from N(p) = dn andfp= ord(p (mod À)). tr

Corollany 3: Letoe 0, crt0, and letpbe aprimeideal such that pf cr. Then sN(p)-l=

I (mod p).

Proof: If p = (ol), then N(p) = À. Now co = 1-( l1-Çi, hence (i = t :- CLi (mod ol) for

1<i<î"-l,andbyFermat'slittletheorem, a?r:a(modî,)forall ae z,.sincee, lfr)rrt

I < i < À-1, it follows that (p + T)À = ÞÀ + 1l (mod co) for all p, y e 0. Let

o =þto,6,e n,. rhen 
"^ = 

[þ1,(,1=
Assume now that p * (o).Then if to is the Frobenius automorphism generating the Galois

group of tlp over GF(p), we have o= {nço,'¡ = ofp = c¿N(p) (mod p). A

Corollaries 2 and 3 of læmma 3.3 enable us to define for any ideal a in 0 a multiplicative

mapping K -+ C as follows.

Ðefinitío¡r 3"4: læt ø e o and let p be a prime ideal in t. Then we define

À-1

:,,
f=1

to,xçu 

=fr,Ç'= cr (mod or).
l=
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r^..r Ioif p lø,lgl=i Ne):lLpJ 
Iqo tf p /cr,where 0 < k< À-l and cr À : (É (mod p).

[Ë] tt called the h-th residue syntbolof cr over p. For any non-zero integral ideal a, we

0".,"r[;] = ffit;J"', *h.r" u = dlnfi is the unique prime ideal ractori zation(up to

order) ofa. B

For À = 2, the residue symbl is simply the Legendre and Jacobi symbol as defined in

Definition 2.3.

å,ernrna 3.5: Let ø, F e t - {0} and let a, b be non-zero integral ideals in o.

u [i] = [*] ir a = Ê (mod a),

"[#]=[*][PJ
o[*,] =l*l[uJ

Proof: By the definition of the residue symbl for composite denominators, there is nothing

to prove for c), and it suffices to prove a) and b) for any prime ideal divisor of a. Let p be
N(pl-l ry(p}l

such a divisor. Then c : F (md a) implies cr = Þ (mod p), so ø ^ = Þ À (mod p)
f^t ¡Rt FI(n):L Nl,Ð:_L ry(Ð:f

andhencel:OJ=LtJSimilarly,(crB) À =G À p À (modp),therefore

['Ê-]=tËltfil n

Ðefinition 3.6: Let cr e 0 and B e O-[0]. rhen we derine 
[Ë] 

=i-lJ E

43



Note that this definition implies 
[Ë] 

= 
[-U ] "r 

associates p, p'. For primes r, we have

N(æ)-l

N(r) = r.r(tæ>), hence 
LUJ 

= " 
L (mod æ).

We will see in the next chapter that our cryptosystem requires an algorithm for evaluating

ì,-th residue symbols without factoring the denominator. Such an algorithm is only known

for the case where the denominator of the residue symbol is an integer, rather than an

integral ideal, as in the previous definition. In fact, currently we even require that O be

Euclidean for the norn. This reduces our system to the cases where À < 11.

{,ernr¡ra 3.7:

a) 2SL<19 <+ OisaUFD.

b) 2 <X < ll + O is Euclidean for the norm N.

Proof. for a) see Masley & Montgomery [MM76]; for b) see lænstra tIÆ751. ü

It is not known whether û is Euclidean in the cases l. = 13, 17, 79 (Lenstra þe7gD.
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&" A New ffaabååe-Key Cx'ypfæsysÉexæa

Letp,q e Z be rational primes such that p=q = 1 (modÀ)and p,q* 1 (mod ¡2¡. Set

N =pÇandl=@n, ,where 0(M) = (p-l)(q-l).Let ee 7'>0, gcd(e,S(1Ð = l. Since Àf,f

and gcd(e,fl = 1, the congn¡ence )'¿d:- 1 (modfl has a solution de 7,.

From Corollary 1 to Lemma 3.3, we obtain the unique prime ideal factorizations

(p) = pl...pl_l , (q) = ql...qÀ_l forp and q, respectively. Let p e {p1,..., pÀ_l},

q e {qr,... , qÀ-l}, so N(p) =p, N(q) = Q, and N(pq) =¡¿.

Let r e Z>0 æsuch that gcd(r-l, M) = 1, fr= l(mod M), *O[-rJ = t. In Section 6.2,

we will prove that r exists and give an algorithm for Frnding it.

Lemrna o.t'[.J * r, 
[r-o]+ 

r.

Proof: Since gcd(r-l,M) = 1, wehave rt 1 (modp), hence r* 1 (mod F). On the other

hand, rL=7 (modl/), hence plplrL-|= (r-lXr-()...(r-(À-t¡, soplr-Çi for some

í e I l, ... , ],-l ]. rherefor. [-:l = :+ = (,0* (mod p), and since X 11¡.we haveLpJ ¿ \----- r /' ---- )" "

[Ë] 
. t [i]* I ronows n"'" [fr] = r. B

Just as the RSA scheme is based on Euler's theorem, a similar theorem gives rise to our

cryptosystem.

T'heore¡m 4.2: Let X e Z,gcd(X, l/) = 1, [å] = t. Then Xf = rn(mod N) for some

n e [0, ... , À-1].
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proof:t',FJ = (t, [;] = q, 0< i < tr-r, t s i< À-r. Since 
lraoJ 

= [r.J = r, we have

[u*] = (t', [tJ = ÇL-i.rh"n ,f = [tJ = Ç (mod p) and ,T =[.J = (-i (mod q). Derine

Ll-n
ne 3- such that jn=fr (mod I)and 01n11,-1. Then çf :Çn=7L (mod p), so, after

raising this congruence to the power (@-ÐlJ)-l (mod 1.), we get ç*: rn (mod p).
_c:l-n _t\ .u4_ o-1.

Similarly, V=iT" (mod q) and (-î- : ¡n (mod q). Therefore Xf=[ar]t :-çT = r,

(mod p) and x/= HF = (,-*- ¡n (mod q), hence xf = rn(mod pq). It follows that

Xf - rn € pq n Z -- pqL, so X/= rz (mod M). A

Conollany:If Z =¡ir (mod M), then Zd = rkx (mod M) for some È e [0, ..., ],-1 ].

Proof:LetÀ"ed = 1 + lf,le V,,and let n be as in Theorem 4.2. Set &= nl (mod l.),

0 < ¿ S À_1. Then 7d¿¡çÀ.zd=yt+tf =Xry¡ôt _\ynt =Xrk (mod N). e

Vy'e are now ready to present our scheme.

Key Generatíon:

1. Choose two large primes p, q where p = q= 1 (mod L),p, q+ I (mod À2).

2. Find prime ideals W I p, q I 4. Compure pq.

3. Set l/ = pQ,f =(P-l)(q-l)
L2

4. Chose e e 7.,0 <e <l/, gcd(e, 0(M)) = 1.

5. Solve the congru ence 7'¿d: 1 (modÍ for d,0 < d < N.

6. Find S e Z such that0 <S <i/and fÅl = ¿1,-r
LpqJ - =

7 . Set the public key to Kp = ír,.S, ly', e] and the secrer key to ft = {dl.
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As in RSA, the secret key d in Step 5 is computed using the Extended Euclidean Algorithm

to find d,xe Z such thatlted+xf =1=gcd(A.e,"f) and can be found in time O(logM),

requiring space O(log/V) for each input

In Step 6, we merely require [trJ. 1; the specification [*J = (À-l **", to simpliff our

arithmetic. In order to find s, generate a random integer T and compure [å] = (t for some

k e {0, ... , },-1 ). If & = 0, try another 7, otherwise set S = TI (mod M), 0 < S < N,

where kl = -l(mod À) and 1 s I< 1.-1. Then [f-J = [-3J' - rkt - rL-l"'""LpqJ-Lpql -' -b

Algorithms for findinE r,þ, q, and pq and for evaluating residue symbols are given in

Chapter 6. Note that our public key is up to twice as large as an RSA key (4log l{ bits),

although .l can usually be chosen small, resulting in a key size of approximately 3log(M)

bits (50 percent larger than an RSA key).

Encryption:I-etM e 2,0 <M <l/be a message, gcd(M,M) = 1. Encrypt M as follows:

l. oeterminef y)= 
Çm for some r¿ € (0, ... , À-l ).Lpql ¿ -- -'

2. Compute M0=y5m (modN),M¡=riMT (modl/) such that 0<M¡ <lVI for

0<i<1,-1.

3. Sort the M¿ in ascending order to obtain fuo o ... o fux-twhere lû0, ... , û x-rl =

{M0,...,M¡,-tl. (Note that all the M¡ are pairwise distinct.) Find n such that

0 < n < ì,-1 and Mo= fun.

4. Compute C=MoM (modM),0<C<¡/.

5. Transmit {C,m,nl.

Decryptíon: Upon receiving lC,m, nl:

1. Compute t-O=Cd (modM), L¡=r{4(modM) such that 0<L¡<l/for0<¡'<À-1.

2. Sort the L; in ascendingorderto obtain âo o ... .f-x-t where {to, ... , ÊÀ-l} =

lLO, ... , LL-t }. Find È such that 0 < & < À-1 and Lp=f,n.
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3.

4.

Compute 5-l (mod M). (This need only be done once for each modulus M).

^^Compute M: S-mLk (mod Ð such that 0 < M < ¡/.

^H.ermrna 4.3:M =M.

Proof: For all ¡ e {0,...,1.-1}, we have M¡X= C (mod i/) for0 S i <À-1, and

t*rJ = [iJt t#J t#Jm =çmç{L-|)m = t, hence arr M¡ satisfy the requirements for

Theorem 4.2 and its Corollary. It follows that for 0 < i < À"-1: L¡= riL1= yiçd

: i+i (mod À)¿4g -- M¡+j (mod t) (mod M) for some j, where all subscripts are taken to be

between 0 and À-1. Hence (Lo, ... , L^"-ll = {Mo, ... , M?r-l }, and after sorting, we get

^^-^^^Li=M¡for 0<i<1.-1. Therefore M0=Mn--Ln=Lp,andfînally Ãrl = S-m7o= S-mM0=

M (mod M). Since 0 < M, fu .ru,we have fu = M. Q

Lemma 4.3 implies that decryption is inverse to encr)?tion. The security of our scheme is

discussed in the next chapter, and efficient algorithms are given in Chapter 6.
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5, Seaaax'å6y

In order to prove that breaking our scheme is as difficult as factoring i/, we first require

three lemmas which are generalizations of results in [Wi86].

l-er¡rrna 5.X: Let Y e V.. Then there exists for any ie [0,..., ],-l) an integerX¡ such

that x¿)' = vr (mod M) and [*t] = (,[å]

Proof:Letie {0,...,},-1} and letie Z besuch rnrr["a] =ç.By Læmma 4.1, we can

chose 7 e { 1, ... , I- I } . Let k¡ e Z be such that jk¡ = i (mod À). By the Chinese

Remainder Theorem, there exists X¡ e Z such that X¡= rkiY (mod p) and Xj = Ir (mod 4).

rhen x¡À = rÀ (mod M) and [trJ = t#] tJ = [åï' t#] tä] = uk¡[*t*] = q, 
[¿rJ "

Ï.ernma 5.2:LetYeZ such that gcd(I,,N)=l andletm,ne [0,...,À-l]. If
C=Y)' (modM) and 0 <C <N, then thereexists a unique M e 2,0<M <iy', such that

encrypting M under key Ko = [r, S, l/, e] yields {C, m, nl.

Proof: Since gcd(e,Q(/Ð) = 1, there exists g e Z be such that ge = 1 (mod 0(M)).By the

previous lemma, there exists Xe Z suchthatXÀ= (ÏB)À(mod ¡/).*[å] = 1. For

0 < i s À-1, define x¡= rix (mod N), 0 <x¡ < ¡/ . sort the x¡ in ascending order,

-^4^^
obtainingXg <... <XÀ-t, where {XO, ..., X^._1 } = {XO, ..., XL¡}, and let & be such

^that X¿ =xn. set M : s-mxk(mod M), 0 < M < l/. we need to prove that encrypnng M

under Kp yields {C, m, nl.

Step 1,[#-]=[trJ* t*.-Ï [#*] = Ç-(tu-t)m =Çm.

Step 2: M0=MSm:-X¿ (mod N),M¡: Xkri=Xi+k(modÀ)(mod M),0<M¡<l/for0<

t < À-1, where the subscript f+È (mod 1,) is taken to be between 0 and À-r.
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Step 3: Since {Mo, ... , M}"-r)= [Xo, ... , XÀ-l ), we have fu, =k,(0 S t S À-l) after

sorting. Furthermo re M g - X k =k n = fu n.

Step 4: MoM -- Xp)'e = Xk :Yleg =Y\ = C (mod N), using Euler's Theorem.

Hence encrypting M under key Kp gives fc,m, n). Since decrypting (c, m, n) under

& = {d} yields M, M musr also be unique. A

l-er¡rr¡¡a 5.3: If X,Y e Z,Xt'= yÀ lmod t/), and [å] . 
[rå], then gcd(X -riy, N¡ = p

Proof:XL -yL= ff -f(X -rÐ...6 -rL-tÐ= 0(modl/). Assume thatX -riY=0
(mod M) for some f e {0, ... , À-1}. Then X:- iy (mod pq), hence [trJ = [-rJ' [#J =

[*t-] t" contradiction ouÍ assumption. so there must exisr i e [0, ... , À-l ] such that

X - fY = 0 (modp) and X - iY * 0 (mod 4). But then gcd(X - rtY,l'l¡ =p. U

Theorern 5.4: If Á is an algorithm which, given any cipher {C, m,n} will fînd the

corresponding plaintext M, then the following algorithm will factor N:

1. Find Y e Zsuch that0 < f cI/and[trJ- 1 (notethatSis a possiblechoicefor].).

2. Put C:YL (modAD,0<Ccly', and select any m,ne {0,...,À-l}.
3. Use .4 to decrypt lC, m, n), obtaining M.

4. Put M0=*¿4r5m (mod ¡/), X = Mye (mod M).

5. For 0 < i < À-1, compute gcd(x - toY,ll) until a nontrivial factor is found.

Proof,,M in step 3 is unique by Lemma 3.2. since[#n] = (t#] [#--]'i = 1ÇmÇ(L-t)m¡e

: t, [å]* 1, and X)r= C= yÀ qmod M), by Lemma 5.3 we musr have gcd(X - iy,rd)

- p for some í € [0, ... , À-1]. t]
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Theorem 5.4 states that breaking the scheme is equivalent in difficulty to factoring the

modulus ly'; hence, unless it is significantly easier to factor a number N = pg such that p =

q = 1 (mod ì,) and p, q + 1(mod À2), compared to factoring the product I/ = pq for

arbinary primes p, q, our system is secure, assuming that factoring is a hard problem.

Unfortunately, the algorithm given in Theorem 5.4 can be used to mount a chosen

ciphertext attack similar to the chosen message attack which can be mounted against

Rabin's scheme tWi8Ol. Any constructive method for proving that the security of a

cryptosystem is equivalent to factoring the modulus makes the system wlnerable to such an

attack. ,{n attacker need only generate I/ and the cipher {,C, m, n} as in Theorem 5.4. Then

he must convince his opponent to decrypt the triple {C, m, n} and reveal the corresponding

message M.By computing X and factoring N as in Theorem 5.4, he can then find the

secret key d.

If A is such that it can only decrypt a fraction f of afl messages, then wç expect to be able

to find M and procede as above after k trials at a value of I.
Finally, as pointed out in [Wi86], revealing r does not seem to compromise the security of

the system. By Lemma 5.3, an adversary could factor l/ if he found a À-th root of unity

X (mod M) such thil 
[¿LeJ 

+ l. But this conesponds to the case C = I in Theorem 5.4, so,

unless the number I represents a special case, the problem of flrnding X is equivalent in

difficulty to factoring N.
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6. T'åee Aågonå&&axaas

As for RSA, we wish the overall complexity of our system to be O(log M).The key to our

scheme is a fast method for evaluating the residue symbol ly'. 
LpqJ 

for a messa$e M, since the

efficiency of such a methd determines the overall effrciency of the encryption. CfearfV,fffi

needs to be computed without factoring the denominator, as the knowledge of p or q

would lead to the discovery of p and q, and would hence enable an adversary to break the

system.

In addition, in order to generate our keys efficiently, we require fast methods for

performing the following three tasks:

1. Given p,q, ftndprimeideals p lp, q lq (orintegerprimes rlp,rylq).
2. Find pq (or æy).

3. Given p and q,find,r such that gcd(r-I, Ð = l, rÀ = 1 (mod M), and [-rJ = t.

6"K Fnåmee Kdeaå Ðtvåsors eÃgd Xnategen Pnåsme Ðåvtsons

of'R.atñ@meå Pnåx¡aes

Ã,ernrna 6.1:Iæt pe z be aprime such thatp:1 (mod Î,) andletae Zbeaprimitive

À-th root of unity (mod p), Then any b e Ø is a primitive î,-th root of unity (modp) if and

only if b = ai (mod p) for somei e (1, ..., ¡"-1 ì.

Proof:lf be E,b=ø 1møp) forsomej€ {1,..., À-l}, then clearlyb* I (mod ùand
t = ar\= I (mod p). The polynomia I h@) =#has at most î,- 1 distinct roots (mod p),

all of which are primitive À-th roots of unity (mod p), Since the powers a/ (mod p), 7 < j <

î.-1, are all distinct roots offl(-r) (mod p), they musr represent all the primitive l.-rh roots

of unity (mod p). G
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[-ernrna 6.2:Letp e Z& aprime such thatp = I (mod ],).If a is a primitive À-throotof

unity (mod p), then (p) = pr...pX-1 where Vi = (p,Ç-ai¡ for I < i < À-1.

Proof:Consider the generating polynomiat.Â(¡) = HO 
- (t) for K. The zeros of /r(¡)

(mod p) are exactly the primitive },-th roots of unity (mod p), and by læmma 6.1, these are

À-1
exactly the powers of a (mod p). soñ(¡) = II¡i(r) (mod p), where g¡(x) = x - ai. By

Theorem 1.4, (p)= pl...pl.-l and p¡ = (p, g¡(Ç)) = (p, Ç-ai)for I < i < 1.-1. E

Theorenir 6.3: Let p e Z be a prime such that p = I (mod l,). Under the assumption of

the Extended Riemann Hypothesis @RH), a prime ideal divisor W of p can b found in time

O({loS p)3), but most likely in time O(logp),using no more than O(logp) bits of srorage

at each point in the algorittrm.

Proof: By Lemma 6.2,p and arepresent p uniquely, soif a is chosen such that O.oap,
then all inputs are boundedby p. To compute a,ftnd a },-th non-residue v (mod p),i.e.
p-l p-l

vL * 1 (modp), and set¿=v I (modp), where we can choose 2< aSp-I. Since the

À-th residues (modp) form a proper multiplicative subgroup of GF(p)-{0}, by a theorem

of Bach [8a90], the least positive î.-th non-¡esidue n (modp) satisfies n <2log(p)z,

assuming ERH. Hence we can find v in O((logp)2) steps, although we expecr to find one

much faster (in fact, in constant time) by trial as there a¡e 
(1'-1Xp-l) 

possible values for y
L

between 1 andp-l(there are only* n-* residues (mod p) in this range). Once we have'ì,

found v, a can be computed in time O(logp) using fast modular exponentiation. ü

Lermr¡ra 6"4:r-etp e z be aprime such that p=l (modÀ) and let W=(p,(-a). Then

lp, Ç-a, (Ç-a)2, ... , (Ç-a)x-2¡ is a Z-basis for p.

Proof: l-et a = lp,Ç-a, (Ç-a)2, ... , (Ç-a)X-21. Wr wish to prove a = F.
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We f,ust show that a is an ideal. Clearly, a + a c a holds, so it suffices to show Oa ç a.

Since a + a ç a,T.a ça, and any c e O is aT.-lineør combination of the powers of (, it

sufficestoshow(tuEaforl <i<À-l,forwhichinturnitissufFrcienttoproveþca.

Letftr(¡) =#and g(x) = f¡(x+a).Since B(¡) e T.lxl isa monic polynomial of degree

Î._l and 0 =,fi,(() = g(Ç_a), we

L-2
(Ç-ùL-t =fu ,G- o)i' Furthermore,

((-ø¡r-t is a Z-linear combination of p and (Ç-a)i (1 < t < À-1) and is hence in a. Since

Ç(e-o)t = ((-a)t+l +a(Ç-a)i for 1l i<L-2, we see thatÇ(Ç-a)ie a for 1< i<^"-2.

Furthermore, þ = ap + p!-a) e a, so (a ç a.

To see that p = a, we fîrst observe that P, (-a, (Ç-a\2, ... , (Ç-a)L-, = p, so & c p. Now

Oa ç a, in particular Op c a and O((-a) Ç &, and since a + a Ç a, it follows that

p=Op+O((-a)ca+aca. ü

see that there exist d0, ... , a¡-2 e Z such that

as = g(0) = fXvl) =#= 0 (mod p). Therefore

X,emma 6.5: Let p,Q = 1 (mod I), ¡/ =pq.Letp = (p,Ç-a) and q= (q,Ç-b) be prime

ideal divisors of p and q, respectively, according to Lemma 6.2. If c e Z is such that

c = ¿ (mod Ð andc = b (mod q), then pq = (l/, (-c).

Proof: Ð = (p, (-c), q = (q,Ç-c) by definition of c. Ideal multiplication yields

pQ = (I/, p(Ç-c), q(Ç-c), (l-c)2). Let a = (l/, (-c). We need ro show that a = pq.

Since y'y' e a, p(Ç-c), q(Ç-c) e V.a ça, and (Ç-t), = (Ç-c)(Ç-c) e Oa = a, we immediately

see pq e a. For the other inclusion a c pq, it suffices to prove l/ e pq and (-c e pq. To

seethat (-r= pq, note that sincegcd(p,Q)=l,there exist x,! € Zsuchrhatxp 4yq =1,

hence Ç-c = xp(Ç-c) + yq(Ç-c) e pq. E

Conotåany 1: [1ú, Ç-c, (Ç-ç)2, ... , ((-c)À-2] is a Z-basis for pq.

Proof:The proof is very similar to the proof of Lemma 6.4. Let a = P{, Ç-c, (Ç-c)2, ... ,

(Ç-c¡1.-21. To show that a is an ideal, if suffices again ro prove Çu ç u. I-et h@) =#
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and g(x) =f¡(x+c).As before, we can conclude that ((-c)À-r =fo;{(-c)i for some

a0,...,a?\-2e Zandd¡=g(0) =hG)=#.Now since c=a (modp) and c=b (mod

q), it follows that ag = 0 (mod P) and 40 = 0 (mod 4), so 40 = 0 (mod M). Using the same

reasoning as in the proof of Lemma 6.4,we conclude that (a Ç a and tl¡at a = pq. E

Corollany 2: The product ideal pq can be computed from p and q using O(log ¡vr)

a¡ithmetic operations on inputs requiring O0og M¡ bits of storage.

Proof: c is computed using the Extended Euclidean Algorithm. B

If î, < 19, then 0 is a UFD by Lemma 3.7, hence we can use prime elements instead of

prime ideals in our system. In this case, all ideals are principal. If ¡r e O is a prime divisor

of a rational prime p : 1 (mod l.), then the ideal (æ) is a prime ideal divisor of p,so (æ) =

(p, Ç -a) for some primitive ì.-th root of unity a (mod p) as in Iæmma 6.2. Hence to find æ,

it suffices to find a generator of the principal ideal p = (p,Ç-a). We will present two

methods for finding n. The first method is a modification of the algorithm for principal

ideal testing described in Buchmann & Williams [BV/87a], [BW87b]. The second method

uses Euclidean division and thus requires that O be Euclidean, i.e. 1, < 1 1. Assume

henceforth that î, < 19.

Algoritlun6.l:Forp = 1(modÀ),À< 19, findaprimeæe CI such thatn lp.

1. Find a prime ideal divisor p = (p, Ç-a) of p as in tæmma 6.2.

2. Compute the set X = {(s r), ..., (crl) } of all reduced ideals in 0.

3. Computeareduced ideal a - p and cre O such thatp = (a,)a.

4. Find i € {1, ... , l} such that a = (c¡¿). Set ¡r = crcri. B
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Tl¡eonen¡ 6.6: Algorithm 6.1 generates a prime divisor n of p using O(l + logp)

arithmetic oprations on inputs requiring OQoS p) bits of storage.

Proof: Since O e S, a in Step 3 exists and a = (a¡) for some i e {1, ..., /}. Then

p = (a)a = (crcrj), so ?r = clc[i must be a prime divisor of p.

By Theorem 6.3, Step 1 requires O0ogp) binary operations on inputs bunded byp. From

Buchmann [Bu87a], it follows that all numbers generated in Step 2 are polynomially

bounded by the absolute value of the discriminant of K, i.e. by ll;l =LL-z, and the number

of binary operations required is O(Ð. By [BW87b], the complexity of Step 3 is given by

O(tog lltsll l^l) where B is the transformation matrix obtained by expressing aZ,basis of p

in terms of an integral basis of K and ll8ll = maxflb4l). Furthermore, all inputs require

space O(log p).By Lemma 6.4, the numbers p, (Ç-a)i (1 < t <^.-2) form a Z-basis of p. If

we choose the powers (Ç-a)i (0 < t s7,-2) as an integral basis of K as in the proof of

Lemma 6.2, then B =lb¡jl¡j =0,...,X-2 where bo1=p,bii = l for 1 <i<L-2, and

b¡j = 0 for í * j, hence llBll = p, and the computation time required by Step 3 is O(log p).

Finally, Step 4 performs a linear search requiring O(logl) comparisons. B

Conollary: If c is as in Lemma 6.5, then a generator p of the ideal (N, (-c) can be found

in time O(l + log N) and requiring space O(log M). n

In general, I = O(R) where R is the regulator of K @uchmann [Bu87b]), so / could be very

large and Algorithm 6.1 need not be polynomial in the size of p. For À = 2 and À = 3, we

have / = 1, and computations by Buchmann & Williams [BW87a], [BW87b] show that the

same is true for 1" = 5 and î, = 7. Consequently, the complexity of Algorithm 6.1 is

O(log p) for À, <7 . For 1 1 < 1, < 19, the number of reduced ideats in Cì is unknown.

There is a much simpler method for computing n. However, in order for this algorithm to

be practical, we require the ring of integers 0 to be Euclidean.
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[,emn¡a6.7:Ifp=1(modÀ).AnyprimedivisorrofpinOsatisfî€sr=Ecd(p,Ç-a)for

some primitive À+h ræt of unity a (mod p).

Proof:I,.et a be any primitive î"-th root of unity (mod p). By I-emma 6.2, p ='Ítt...lÍX-l

where (æ¡)= (p,Ç-ai)forl <i<Î.-1.Letí€ {1,...,À-1}be fîxed. Clearly, r¡lpand,

n¡l Ç-ai. Now suppose that õ is a divisor of both p and (-ai. We want to show that ô I æ¡.

Since Ç= o¡ (mod æ¡), we have n¡l Ç-ai and æ¡ ! Ç-oi for j * i, implying æ¡! Ç-ai for j + i.

Now õ I Ç-oi,so æ7X õ forj * i, hence ô I #= æi. It follows that n¡ - gcd@, Ç-ai). *
I lo;
t*t

Corollany tr: If l, < 11, then an integer prime divisor æ of a rational prime p = 1 (mod L)

can be found in O(log p) arithmetic operations and the norms of all numbers computed

throughout the algorithm are bounded by a polynomial inp.

Proof : Vy'e use the Euclidean Algorithm to find n. To prove the complexity result, it

suffices to show that log(N ((-a)) = O(logp). To see rhis, note that N((-ø) =ffir,-ø,

=Sr, <^-aL-: <Lpì'-r

Corollany 2: A prime divisor p of l/ can be found in time O(log M) and the norms of all

numbers computed throughout the algorithm are bounded by a polynomial in IV.

Proof: Find rs = gcd(p,(-c), V - Ecd(q,(-c), where c is as in Lemma 6.5. Ser p = æV.

Clearly p I ¡/ and p I (-c. Suppose ô I ¡/, ô I (-c. Then ô I I/ = 7rl...¡rt -ltyl...VÀ-l where

(rÐ= (e,Ç-C),(V;)= (q,Ç-ci)forl StSî"-l.Fromtheproof of Lemma6.T,weseerhar

n¡l Ç-c,V¡l Ç-c for 2 <t < 1.-1, so ô I æl\r¡r - p. Hence p - gcd(N,Ç-t).The time and

space bunds are clear from the previous corollary. B

, using a<p. n
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The public key Kp = (r,^S,l/, e) describes the ideal pq completely by læmma 6.5. In the

case where we employ prime elements, the encrypter needs to find a generator p = rn[ of

pq as precomputation. Alternatively, Kp could k modified to be KO = [f, S, ct, ... , cL-¡,

L.t
e) where r=þiÇi.

6"2 Roots ofl {.lmüty (naaod M}
Our next task is to generate a primitive Î,-th root of unity r (mod ¡Ð, 0 < r 4 N, such that

gcd(r-l, M) = 1 *o [ff = r.

Algorítlun6.2;Givenp,Ç= I (mod L),p,q t 1(mod \.2),W=(p,l-a),q=(q,(-b), find

reØsuchthat

Ð 2 < r 1N-1, ü) gcd(r-l, M) = l,
üÐ rL = 7 (md M), iv) l+l = t.' Lpq-l

l. Solve qx=l (modp), py:-l (modq)forr, ye 7-l <¡< p,l Sy<q.

2. Set r: qxaL-r + pyb (mod M), 2 < r <N-1. B

Theone¡n 6"8: Algorithm 6.2 generates r such that conditions i) - iv) hold im time

O(log M) and computes only numbers requiring O(logM) birs of storage.

Proof: We have a=Ç (mod p), so aÀ-l: (1,-l (mod p), and b=Ç (mod q). Then

r : aÌ\-l * 1 (modp) and r = b *1 (mod q), hence gcd(r-l, M) = 1. In particular, r * l, so

2<r<l/-1. Furthernore, r)'=a?"= 1 (modp) and rL=b7"= 1 (mod q), so rÀ= 1 (mod

M). Finaily, 
[r.-*] = [Ë]t' [å] = 6À-r( = 1.

The congruences in Step 1 are solved using the Extended Euclidean Algorithm, so Step 1

performs o(log max {p, ql) arithmetic operations on numbers bunded by max{p,ql.

Step 2 can ba done in constant time and all numbers are bounded by I/. n
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If we replace the ideals p, q in Algorithm 6.2 by prime divisors æ, ly of p and q,

respectively, then condition iv) changes -[tr] = 1. Since æ and ry were obtained from

ideals Ð = (p,Ç-a) and q= (q, (-b) using Algorithm 6.1 or the Euclidean Algorithm in O,

we can use the same algorithm.

The following lemma shows that one element r e Z satisfying conditions i) - iv) of

Algorithm 6.2 determines the rest of them.

Lernma 6.9: Let p,qe Z beprimes such thatp,q= 1 (mod L),p,Ç# 1 (mod À2), and

let r be as in Algorithm 6.2. Then s e Z satisfies conditions i) - iv) in Algorithm 6.2 if and

only if s=ri (modM),0 <s <iy', for some ie {1,..., À-1}.

Proof: Clearly, if s=¡i(modð/)forsome í€ {1,...,À-1}, then sÀ= 1(modl/) and

[å]= 1. Also,ifp ls-1, then 1=s=l (modp) in contradiction toLemma 6.1 (similarly

for q),so gcd(s-l,M) = 1.

Now suppose s € Z is such that s satisfies the conditions of Algorithm 6.2. By Lemma

6.1, s = rí (mod p), s: r/ (mod q) for some i, je {1, ... , À-1}. Then 1 =lål
LPqJ

= [å]' [äJ = [-rJ' [.-J 
t 

= [äT 
t r"' 

[.J 
* r by r.emma 2.r, so we musr have ]. ri-i,

and s = rr (mod M). n

6"3 R.esåd¿ae Syxaahoås

Let cr e 0 and let a be an integral ideal in 0. It is unknown if or how the À-th residue

symbol [î] .* be evaluated without finding the prime ideal factorization of a. Hence we

will only discuss the computation of residue symbolsl*'l for cr, B e 0 , P * 0., 
LÞI
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Furthermore, we will assume that o and p are relatively prime, since this holds for the

residue symbols ¡Ål ana [I4l *nirh need to b computed in our cryptosystem.' Læ1rl L¡nrrl

Our algorithm for the evaluation of À-th residue symbols is based on the properties given in

l,emma 3.5, together with the law of reciprocity plus its complementaries which were first

introduced by Kummer ([Ku75], see also Smith [Sm65]). Iæt ], e 7.be any prime and set

ol = 1-(. Recall that for T € K, Y = o¡,-l (T) denotes the complex conjugaæ of y.

Ðefinitior¡ 6.10: Let cr e O. G is said tot:r-primary if one of the following holds.

a) Case ìt = 2: cr : 1 (mod 4).

b) ([Ku75, p. 350], [Sm65, p. 1 18]) Case 1, > 3: there exists B e Z such that

i) a*0 (mod co) ii) a=A (mod o¡2) iiÐ cr,o:32 lmod 1,). E

¡.-1 x.-1
Lernrna 6.Xn: Let o =Xo¡(te O and b=Za¡e Z.Then Tr(a) = -b and Tr(a(i) =,'_ 1 ,'_ 1

I-L L_L

aL-í)'- b for j e { 1, ... , À-1), so Tr(a(.t) = -b (mod À) forT e

î,- I
j e {1, ... , }"-1}. Tr(crÇ) =Ão, Tr((i+;¡ - aç-jTr(l) + Y.o, frlçto;) = aç-j ô-t¡ - }ait=L i*L-j i*ìt-j

= aL-jL - b. ü

¡.-1 À-1 À-1
Le¡¡rr¡¡a 6.L2: Leto =Eo¡(i, b = }ai, 6 = lía¡.Then the following holds:

i=l j=l i=l

a) cr = 0 (mod co) <+ b = 0 (mod À).

b) a=b (mod coP) <+ c = 0 (mod î,).

[0, ... , I-1 ].

-1 forl <i<À-1. Let
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ì.-1 1"-1

Proof:s=þ¡(l-tl,=,åo¿(1 - ico) =b -ct¡ (mod ro2) and cr=å (mod to). Hence

cr=0 (mod ro) eb= 0 (mod o) ê ro lb<+ N(o¡) lN(b) <+ ì. lår-l ëb= 0 (mod î,).

Similarly a=b (mod o:2) ë c:0 (mod CI) ë c = 0 (mod À). D

Lemma 6.12 shows that the number I in the defînition of a primary number for À > 3 is

l"- I
B = b = Lai. Furthermore, it provides a practical method for checking conditions i) and ii)

.'_ 1,-l

of the definition. A practical test for condition iii) depends on the field, i.e on the value of

À.

[-ernrna 6.13: If o, F e O a¡e primary, then so is crp.

Proof:Clear for À = 2. Assume ì, > 3. Then, since o is a prime and a' P * 0 (mod or), we

have øp * 0 (mod o¡). If cr = å(cr) (mod a:2) and P = ä(P) (mod o:2), then øp = b(a)b(þ)

(mod c¡2) and (crÞXaÊ) = (acrXÊþ)=uçs¡zb$)z = (¿fcr)a(F))2 {*ø f). D

Lernrna 6.X4: Everyse 0 suchthata#0(mod ol) has a primary associate.

Furthermore, if p, Ê' . O are primary associates, then B = p'eÀ for some unit e e t.
Proof.If î, = 2, then the condition s * 0 (mod ol) implies that cr is odd, hence either ø = I

(mod 4) or -o: 1 (mod 4). Furthermore, if Þ = tÊ' and P, Ê'= I (mod 4), then B = Ê'=

Þ'(tt)2. For 1" > 3 the lemma is proved in [Ku75 ,pp.349-351]. n

We will give explicit algorithms for obtaining a primary associate for a given number in ttre

cases À = 2,3 and 5 in Chapter 7.
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Theone¡m 6.XS (Kunrner's Law of Recíprocity [Ku75, pp. 345ff.1, [Sm65, pp. 12Of.]):

lær 7r, ry k two distinct primary primes in o. rhen 
[tJ 

= [tJ 
B

Conollary: I-et cr, F. O be relatively prime and primary. Then 
[Ë] 

= 
IUJ

Proof: Clear from Lemma 3.5 b) and c). B

In addition to the law of reciprocity, Kummer gave formulae for the residue symbols of ol

and of a unit over a primary prime ([Ku75, pp. 485ff.], [Sm65, pp. l2lff.l). These are

called complementaríes to the reciprocity law and can be shown to hold for composite

numbers as well. The following two complemetaries can k easily proven.

Lemr¡ra 6.16:Letru beaprimaryprime. **[i] = 1 and[:] = (Ë where 0 < & <].-t

and È = 
x(nIl 

(mod l,).
L

Proof: The complementary for ( follows immediately from the definition of the residue

symbol. For the complementary for *1, note thar N(r) is odd, hence ry94 is even and.T
N(n)-l

(r1) À -1. ü

conollany:tætpe obeprimary.tn."[T] = I and[å] =(Èwhere0<k<].-t and

¿ = 
N(Ê)-t (mod À).

ì.

Proof: It suffices to show the Corollary for B - rny where æ and V are primary primes. By

Lemma 3.5 c) 
[#r] = 

t=J ti] = t. we have L2t (N(n)-1XN(v)-r) = N(^+r) - N(æ) -
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N(v) + r, so "ît= 
*F. Y (mod r.)

o<¿<À-1,¿=ryt(modÀ). ü

The idea for our residue symbol algorithm is as follows. Iæt cr, Þ e O-(0) be relatively

prime. By Lemma 6.14, there exists a primary associate F'of Ê.Then from Defintion 3.6,

[ËJ 
= 

[Ë] 
*, c'f ¡e the exact polver of o¡ dividing cr, i.e. oÉ tt a. Again by Læmma 6.14,

we can write cr = eo/y where e is a unit, ot X T, and y is primary. Then by the law of

reciprocity,[*J = 
[o"] 

= 
["r] ["rJ- [T] 

*n",. 
["uJ 

*. 
[*J 

*" 
" 

evaruated directry,

using the complementaries, and we can repeat this procedure for the residue *-o"t[[].

This gives rise to the following algorithm.

*.[#] =[:] [f] =(Éwhere

Algorithm ó.3: For c, Þ e O-{0} relatively prime, compure .1

0<s<1,-1.

Sets=0.l.
)

3.

Find a primary associate F'of F.

Find / e o such tr," 
["U,] 

= 
[Ëi 

and N(/) < N(p').

{ Eliminatefactors otl

a) SetÈ=0.

b) Whíle Tr(f) = 0 (mod 7ù do

sett'eI =(-y).lblgt, k+k+ t.
ú) lui=l

( Make { primary |

Find a unit e such that f = ET and T is primary.

4.

5.

su.n tr,ut[Ë] = ,",
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6. Use the complementaries to find i, j € {0, ... , l.-1} such *.,[*J = ,', [ñ] = O.

Set s e- s + Éi +j (mod À), 0 < s < Î,-1.

I/N(y) = l, then

use the complementaries to find / e {0, ... " À-1} such *", 
[AU,] 

= er,

set.r (- s + / (mod I), 0 < s < 1"-1,

7.

Theorem 6.n7: Algorithm 6.3 terminates after a finite number of iterations and computes
Irll

theresidue symboll:l= (t,0 <s S l.-1.
LÞI

Proof: By Lemmas 6.l l and 6.12, we have c,:É tt y <+ ÀÉ ll Tr(f), so after Step 4, we have

y'+ 0 (mod co). The primary associate f of f in Step 5 exists by Lemma 6.14. Then

lel = Í-4-llAl = lglo lgl l¿l = r*.rfÞ'1, hence we need to add ík+j tos as done in
LpJ 

-Lp'JLp'J -Lp'J 
Lp'lLp:l 

:'- 
L ïr

Step 6, and (in the case where N(y) > 1) replace cr by Þ' and p' by y as done in Step 7,

after which the procedure is repeated. Now N(Ð = N(y) e V,{ and since the norm strictly

decreases each time Step 3 is executed, we must eventually have N(y) = 1, so 
[Ët] 

= (l "*

be computed from the complementaries, and adding / to s yields the final value of s. B

In order to compute l:l 
"r 

a unit e as required in Steps 6 andT of Algorithm 6.3, we write
Lpl

e =XÇ^\rll...nirwhere 0 < m< À-1, iv e ?.for 1 < v ( r, [nl, ..., îr] is a system of

fundamentalunitsinK,andr=0ifÀ"=2,r=ÇifÀ>3. Ifthecomplementariesforthe

set G (- Þ', 0'<- y. Goto step 3. B
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fundamentalunitsuogio.nby 
[i] =Çeu(þ),0<¿r(F) <].-1, forve (1,..., r], then

NrB)-r é
by ræmma r t. 

[u9] 
=e:* 

*['"v$]v.

Theorertr 6.tr.8: If each individual step of Algorithm 6.3 can be performed in constant

time, then Algorithm 6.3 performs O(log N(P)) arithmetic operations on inputs whose

norrns are bounded by max [N(o), N(P)].

Proof: The space bound is clear since the initial values of cr and p have norrn at least as

large as the norms of any of the numbers subsequently computed by the algorithm.

Suppose that N(T) = 1 after å iterations of Steps 3 - 7 of the algorithm. [æt the loop in step

4 be executed m¡¡times in iteration p (l s p < h).Since each individual step only requires

constant time, the total number of arithmetic operations performed in å iterations is

o(h + mt + ... + mn).r"t [(8> l)be an upper bound on the *tio 19 in Step 3. Since
N(p')

division by ot reduces the norrn by a factor of À, N(p') is reduced by a factor of at least

Q)tl"t, in the p-th iteration of Steps 3 - 7, hence å iterations reduce N(P) by a factor of at

least th¡m1*"'*mþ.It follows that Qh¡m1+"'*mþ < N(P') = N(Ê), so the overall

complexity of Algorithm 4.3 is O(h * m1 * ... + *n) = O(log N(P)). n

If n, ry are prime divisors of p, q = I (mod î,), respectively, as in our cryptosystem, then

under the conditions of Theorem 6.18, the residue symbols¡J-l for a partial key.S and
LTrvJ

[5 *r any message.ltf using modulus N = pgcan k compured in time O(logN(¡r]¡)) =
Lrnrj

O(log$, and all norms are bounded by N.

In order for Theorem 6.18 to hold, we need to find constant time procedures for Steps 2,

3,5,6, andT of Algorithm 6.3, Furthermore, it is clear that Algorithm 6.3 converges more
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rapidly for small ratios Y, hence we will also seek to maximize the value of p whose
N(p')

reciprocal bounds this ratio.

6,4 Ðwa!ådeæsa Ðåvåsüon¡

Let ¡ e K. Recall that Euclidean division yields y € O such that N(¡ - y) < l. For A" = 2,

Euclidean division reduces to division with remainder, modified to allow for negative

divisors. For ¡ e Q, set y = kJ, or alternatively, y = Ne(¡). Her€, [-tJ d*notts the largest

ineger not exceeding -r and Ne(x) denotes the integer nearest to x, i.e. Ne(¡) = bt+;.

Then 0 <x-y < I fory = LtJ, and lx-yl =I^ry = Ne(¡).

Assume that l, > 3 for the remainder of this section. We will find a simple sufficient

l.- 1

condition guaranteeingN(x-y)< l.Let r=ZtiÇi € K,zr€ Q for 1< í<L-L Define

ì.- I
llzlll = lz; and llzll2=

.'_ Iß-l

X.erncr¡a 6.19: Tr(zi) =Lllzllzz - llzllp.
1- 11- l

Proof,, Tr(zi) = U fi z,z,Tr((i- i )={X -t¡fr2? rlt))+ } \z,z,rr1( - i ¡
i=rj=l i-l i=rj*i

À-1

2"''l=l

Corox [a ry : rrl7V) s À"llzll22.

= (L -t)Zt? - Z Ytp¡ -Lllzllzz - Z Zt,t,= Lllzllzl - llzllf.g
i=l i=lj+i i=lj=l

r.emrma 6.20: N(z) 
= [}fl[a

1-r h -1

z-1 1-l

)"-t1-r
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Proof,, Using the arithmetic-geomenic mean inequality, we obtain

N(z)2 = 
[H*,,,1 

= 
H,", 

(òtz <[+þ'",,',,,f = [YI-'.
Since N(z) > 0 for all z € K, we can extract square roots in this inequality. e

cororrany: N(z) . (r+ ,o,rrf . E

Hence we obtain a Euclidean division method if we can find for any r e K, y e 0 such

that llx-yll2.nF

6.4.1 Ðirect Ðuclidear¡ Ðivisio¡¡

x-1
Letx=Þ,(t,rtc Q for 1<i<î.-1. An obvious approach is to set}l¡=Ne(¡¡). Then

,'_ 1t- I

lx¡ - y¡l. f, h"n"" llx - yll22 =+ and by rhe Corollary to Lemma 6.20, we have

N(¡ - y) 
= Ê)T Hence this will yield Euclidean division only for À = 3, and we obtain

the bound rue - y) < 
å.

6.4.2 {Jspensky's E¡¡clidea¡¡ Ðivisior¡

Uspensky ([us09], see also þa691, pp.228-231) inu'oduced a Euclidean division method

for the case À = 5. We will present his method for arbitrary odd Î,. For 0 < í < Î,-1, let

A¡=LrrG(-t)J. rnrn it follows that Tr(x(-i) = A¡+ ô¡ where 0 < õ¡ < I for 0 < i < À-1.

From Lemma 6.1t, x¡=f{t.f"e-) - Tr(.r)) =Io, - Ao+ö; - ôo) for 1 < i < }"-t; hence

we obtain

(L-r I L 1. Ll À_r Lr
o = 

t,är 
+ rr(x)J= 

,ä 
( Àx¡ +rr(x)) =år'e6-,1 --,.$i *Aur,
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î"- 1

so þ¡ € [0, ... , À.- 1 ].
¡=(,

If ð; =0 forall íe [0,..., À-1], then s€t];= Ne(.r¡) andy = bl,(,e O. Then the fact
,'_ 1t-l

thatÀ isodd, togetherwith Àr¡ -A¡-Ase T,and lx¡-y/ <f impties Àl¡¡-y¡l =Y*
Lt¡ - y¡l =*for 1 < i < î,-1, hence in this case by the Corollary to Lemma 6.20:

N(¡_y)=(,irF,

yielding the bounds N(x-y) 
=å 

*r 1" = 3, N(x-y) s f; ror À = 5, and a bound exceeding I

forÀ27.

If õ¿>0forsomeke {0,...,}"-l}, then setni =A¡-AO (mod },) such rhat ln¡l =Ta.

r < i < À-r. Then 0 
À-1 k'l î'-1 &rl î'-l Ll

=¡#, *,àu, = ,ì,(o 
¡ - A o) *,àur = ,\i, 

*,àur (mod r).

Suppose nj=}forsomeje {0,...,L-21. Then setagainyi=Ne(¡¡)(1 < j<},-1) and

1"- 1

r = þri(r. Clearly Lr¡-yl=|ro, 1 < i <1,-1. Furtherïnore, since n; = 0, we have

loroo, 
e r. and 

I fur-ur, I 

. i. r1, 
t rn.r r, =LØrAo)and rr; - yjt --Nurø, 

" 
^f.

Now suppose that n¡+0 for all i e [l,... , ]"-1]. Then we must have n¡ = nkfor some

i,ke [1,..., À.-1] ,i <k,for otherwise {n1 ,...,n,.-r, =l+, -+,... , UJunO

0=

x

Ll-i
= 

þ,,rnot 
- QÇt - x¡ÇL-i

Î"- 1

0 <åð¡ < À. In this
t=O

Lr À-l
fu¡orxÇt- x¡YU +

l=X+l-j l=l

TJ L-T+ ),1';or-r - gÇt =þr(r,
l=L+l-j
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and set ll=Ne(Xl) for 1</<I-1, v =fu,Çr,y =UY.Again we have Wt-Yl <|"nA

since n '= nÉ, we r,u"t | Ø¡ - A*) e V, and 
f fS; 

- Srl

follows that xk-j=xk-xj =f ,o *-Aj)* f fAo -ô;), so yk-j= tnroo-47) and

1

lXk-j -V¡jl.l. Hence x-y =Aø - I") has its &-th coefficient bounded in absolute value

Uy I and all other coeff,rcients by j.'ì,

From the Corollary to Lemma 6.20,we obtain for the case ô¿ > 0 for some È:

I l"-l

N(¡_y).1# F.#)]",
which yields the following bounds:

1?
1. = 3: N(¡ - y) < fi. Computing the norm directly yields a slightly better bound of

N(¡ - y) = (xr - yù2 - (xt - y ù(xz - yz) + (xz - yz)2 . h " *" + = #
î. = 5: N(¡ - y) . PY =624!

\sOJ 
- 6400'

For À ) 7, we obtain a bound exceeding 1, so this algorithm will not yield Euclidean

division.

"i"|. sin", t < k-i< î.-l-i, it

6.4.3 Kurnrner's Euctridean Divisior¡

An algorithm given by Kummer ([Ku75, p. 871), details given by Itæ79]) for the case

1" = 5 slightly improves Uspensky's bounds. It uses a slightly stronger version of Lemma

6.19. For reasons of symmetry, we will rcpresent field elements as linear combinations of

all 1" roots of unity l, Ç, ..., çl'-1 (note that this representation is not unique anymore). Iæt

1"- 1

t = fuiÇie K, z¡ e Q for0 < i < À-1.

[,ermr¡¡a 6.2n:Letc e R. ThenTr(zVl = lhtfr, - c)2 -(\it, r)T.t<) [,{ )



I- 1 tL-l v À- 1 1,- 1 tL-t V
Proof: n,å,', - c)2 

[,tJ', 
-',.1 =rk,' - 2a.c,Ijr " (Lc)z -[,är -x')

= 
^þt,, 

(\'r,Ï =Tlzv),where the last equality follows using the same reasoning as inffi' [¡1'./
the proof of Iæmma 6.19. E

Using læmma 6.20, we obtain the following

conottany: Let c e R. rhen N(z) < 

[#H,r, ',rf 
B

l"- 1

Nowletr=&¡(t€ K,¡¡e Q for0<i<1.-1. For0<i<À-1, set y¡=Lx¡J.Then

I-t ì"-1

,=þi(ie O andif z=x-r=[ri(t,then 0<zi<lforie 10,...,],-1]. Let

zmax=maxfz¿ l0 < i < À-1) and z¡1¡¡ = min (z¡10< i <]"-1]. If znr¿¡q - zmin=-4, *"n
7'"'

there existj, & e {0, ..., À-1 } such that lz¡ - z¡l 3f. O*,..*ise let i be such that z¡= zmax.

Replace z¡by z¡1, i.e. replac e zby z-Çi andybyy+Çie O. Then ,in""$ l zmax - zmin
ì,

< l,wefrurr"-f ((zmax- 1) -z*in <0, so again we havefound j,ke [0,...,À-1] such'7,
thatlz¡-zkl<f. ruo* rct, =iik. Then lz¡- cl-lzt-a=þr¡- z¡l 3land for

íæ Lj,&),wehavelz¡ -rt<l{r¡-zl+lz¡-zpl)<1.If lz¡-cl>},tf,"nreplacingz;by

one of z¡1 or z¡+7, i.e. again replacing z by one of z-Çi or z+Çi and y by one of y+(i or y-Çi

will achiev elz¡ - cl 
= 

j. fro- the Corollary to Lemma 6.20, we get

[ À-t

N(x-r,=L¿ F"#\"
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which yields N(¡ - Ð =*for l. = 3, N(x - y) < 6f =tmfor À = 5, and again a

bound larger than 1 for À 2 7.

6"4"4 ã-enstna's Ðuclidea¡¡ Ðivisiore

In [-e75], Lenstra proves that if ( is a primitive m-th root of unity (m e Zn¡ such that

m*76,m*24, and g(m) < 10, then K =Q(() is Euclidean for the norrn. Since his

results can be used as the basis for a Euclidean division algorithm, we will repeat some of

the ideas here.

I-et K be an algebraic number field of degree n over Q. We deflrne Kp to be the W-algebra

f'=a I
K@qR., i.e. if cr¡,..., G, is aQ-basis of K, then KR ='{ )a¡ai 1 a¡ e R for 1< í S nlLã' )

is an integral domain and a vector space of dimension n over R. All conjugate mappings

o¡:K -+ C have canonical extensions o¡:Kp + C (1 (i<¿).For¡€ KR, definep(x)

=$fo¡6r)12. Then !r:Kn + R. is a positive quadratic form on the R-vector space Kp. The

fundamental domaín Fp with respect to O is Fp = {x e Kn I p(¡) < p(¡-y) for all y€ 0}.

l-ern¡na 6.22: Fp + t = Kn.

Proof Lensu'a [-e92]: We only need to prove Kn E Fg + 0. It is possible to choose an

R.-basis Þr, ..., Þn of Kp such that ifx= $orp, e Kn (a¡e R for 1 ( í < n),then ¡r(x)

f-
= 

,slrr.set 
lxl = d fol.Then 

p(r)= tlrtP is the square of the Euclidean norm of ¡

with respect to the basis p1,..., Þr.Nowxe Fn if and only if lkll < lk-yllforally e t,
i.e. if and only if ¡ is at least as close to 0 with rcspect to ll.ll as to any other point in 0.
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Letx e KR.Since O is a lattice in Kg, there exists apointy€ 0 which isclosesttox,

i.e. ltr-yll is minimal. Then¡-y has0 as itsclosest latticepoint, sor-) e Fn.Hence if

we set z =x-y, then x= z+ywhere ze Fp andye O. D

Conollary: IfF =Fn n K = {¡ e K l p(¡) <p(¡-y) for ally € 0}, then F' + 0 = K. ú

Lenrrna 6"23:Letx e K and lety e 0 such that p(¡-y) is minimal. Then x -y e F.

Proof: We need to show that pr(.r-y) < W@-y +a) forall ue 0. Let we Ø and let

v =! - u e t. Since p(x -y) is minimal, we have tt(x -y) Sp(x- v) = p(¡-y + u). ß

Now let K be a cyclotomic field generated by am-th primitive root of unity (m e Z>3).

Then p(z) =Tr(n) forany ze K. Let¡e K. If wecan chooseyG C) such thatp(¡-y) is

sufficiently small, then Lemma 6.20 provides an upper bound on N(x - y), and the

previous lemma shows thatring elements r¿ with z=x - a e F arc possible candidates for

y.l-et m =ì'be a prime. Lenstra shows in [Le75l that in this case lt(z) <Ç 
^, ^tÀ-l î.-l

z e F'. From Lemma 6.20, we obtain N(z) < (H)t = Ë)t for z e F, yielding the

followingvaluesforaboundBonN(x -y):Q=Jfo, À"=3,O=Ifor I = 5,Q =**,
À" =7,and finally, Q, = 7for À = 1 1.

Lenstra does not provide an explicit algorithm for generating for ¡ e K a ring element

y e 0 such that tt(x - y) is minimal. We will show that there are only À possible candidates

fory, all of which can be easily computed from x.

í-e¡¡nr¡ra 6"24:Let al, ... , e¡

bn= Qn- l. If dn- at > 1, then

Proof: ful = (a1+t)z.W,

e R., c1

fot"Ë"?
JL

2 + (ar-1)2 =Lo¡z + 2(at
tr=l

=aifor2<í<n-7,b1

_.&

- en* D <Ya¡2. ü
,=1t-l

=al+1,



Le¡nxrxa 6.25: Let¡e K andletye O such thatF(x-y¡ is minimal. Let z=x-!

kl
=fu2¡ÇILi where z0<"'32^.-t Then zl.-t - z0<1.
rËl

hl
Proof: Set y' = y - (tl0 + (trx-r € 0, z' = z + (Fo - (ÞÀ-r = N - !' , i.e z' =futlçtti

where zi'=zi forl < i<?L-2,20'=20+l,z¡-1'=zÀ,-l - l. Suppose zl-l -20>1.
l.-1 À-1 ¡.-l l.-1

Then-fz¿' = 
i?'4and 

by Lemma 6.24 
kP 

t&,,. Using Læmma 6.21 with c = 0, we

obtain lt(z') < ¡r(z), contradicting the minimality of p(z). B

Theore¡¡r 6.26:I-etr=$i(t € K, z¿' - xi Lr¡Jror0<i<À-1. Let zi=zlLiwhere

o<zo

y e 0 is suchthatp(x-l) is minimal, then¡ -y=7&) for some&e {0,..., À-1}.

Proof:Letye o be such that p(r¡¿) is minimal where w=x-y. set, =,$rrr(i e CI,

L+
thenx =u+z(0)= !*,,e,so14/-z(0)e O.Hence if *=hw¡ÇLLi,then w¡ -zi=n¡e Ø

t={

forall ie {0,..., },-1l.lf z¡=zjandni<nj forsome icj, then swap i andi to obtain

n¡2 n¡. This does not change the order of the zy (0 S v < î,-1).

Let 0 < i <i <1"-1. Then 0 lz¡ - z¡ < 1, hence wi-wjSnj- ni<7 +wi- w;. Now since

¡t(w) is minimal, by Lemma 6.25,we must have lw¡-w¡l ( 1, so -1 Sn¡-n¿42or

nj - n¡e {-1, 0, I }. Suppose nj} ni,then n; - ni = 7 and z¿< tjby our renumþring of the

zy hence wj = nj + zj > n¡ + 7 * z¡ = w¡ + 7 in conÍ'adiction to lw¡ - w¡l I 1. Therefore

n¡ S n¡.It follows that n; - n¡ e {0, -1 } and 0 > ry-ng
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that n; - n0 =0 for í <È and nj - ng = -l

wi= zi+ n0 - I for i > &. Hence

kt kl* =L(*¡+ns)(tti +þ(w¡+no-l[tU =j=0 i=k

&=l

= z<o) * ) .tp¡ - z&). ü
@J

id)

Conollary ; 7&) çF' for 0 <& < L-1, hence tt(x - y) =+. B

The previous theorem and its corollary give rise to the following Euclidean division

algorithm.

for¡)&. Then wi=zi +n6for í<k and

H,',*,¡Eru +S* ¡Çtti +øo-uHçP¡

Algoríthm6.4:Givenr= $ie,e K, findy c O such thatx-y e F.

l.

)

3.

î"-l 1"-1

For0<i<I-1 ser]¡=b¡lan¿ zi'--xi-y¡. set ,=fu1Çí,y =äyi(i

Sort the z;' in non-descending order, i.e. let zi = zlti and 0 3 zg3 z1 <... 3 zt -t.

white p(z) >Ç *

sety €- y - (tto, z e z+ (tto.

sort the z¿ in non-descending order, i.e. set

t = t0, ZO = Zl, ... Z'lu-z= ZL-¡, ZÀ,-l = f * 1. B

Clearly y € 0 in each step. By Theorem 6.26 and its Corollary, the algorithm terminates

l.- 1

after at most À iterations of step 3, after which we will have added I(t = 0 to the value of
tq'

z in step l. Hence this algorithm produces y € 0 such that N(r - y) < I in constant time.
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6.4.5 Summary

We summarizethe bounds obtained for the four Euclidean division algorithms given in the

previous four subsections in the following table.

Alporitfun

Dilect

Uspensky

Kummer

L=3

[ænstra

5
4
l9
î6

À=5

ll
ú

6T

À" =7

I
1

fl7Y
(80 J

À-

I
4

ll

ð

n I
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ry. 3'åae €&ses ão = æu 3, ffi

As mentioned in Section 2.3, Williams described a quadratic and a cubic scheme [Wi80],

w/i861. Both schemes are slightly more restrictive than our system, since they require

p = l+L (mod À2), q = l-^" (mod î'z¡ instead of the weaker conditions imposed on p and

4 by our scheme. Then/: -1 (mod 1,), hence{l e Z.i.et e e 7, be as in Chapter 2, and,
ÌL

letde 7,,0<d<N satisfy ,¿=tl(mod 0(M)). Again, we let r, V€ 0 be primes such.T
that æ lp,t1l q. Finally, let re Z such,h",$-f = 0 (mod N). ForÀ = 2, we have

r = N-l and by l-emma 2.4 c) (#)= (-1)+. T = l. For 7r" = 3,we will see in Section

p-r , q:l
T,Zthatitiseasytocompute reZsuchthatr=((modr,y).rhenfå] = ç3 

- 3 - 1.

The encryption and decryption algorithm a¡e based on a slightly different consequence of

Theorem 4.2.

Conotlany to Tt¡eorem 4.2:LetX e 7,, gcd(X,ðy') = 1, and[t*] =

(mod l/), then Zd = rkx (mod M) for some k e {0, ... , X,-l }.

Proof: Let ed =+ + /0(l/), I e Z. By Theorem 4.2, Xf = rk (mod"ì,

k e {0, ... , X.-1} and by Euler's Theorem X0(N) : 1 (mod N). Then

¡/+l+À10(N) = yky (mod ¡/). E

7 "k T'ãee c&se A" = 2

This case is a modification of the generalized version of V/illiams'quadratic system t1vi80l

described in [Wi86]. Here we havep =q=3 (mod 4),n=p,W=Q,y=¡y'- 1, andthe

residue symbol reduces to the Jacobi symbol described in Definition2.3. To generate a

l.IfZ=XLe

N) for some

7d : yt,ed =

76



key, we need to find a quadratic non-residue ^f of l/ such that 0 <.ç < ñ/. The public key is

then Ko = {^S, ¡/, ei and its size is bounded by 3log(^¡) at worst and 2log(M) if S is small,

in which case Ko has the same size as an RSA public key. If we specify p = 3 (mod 8),

g = 7 (mod 8) as done in [Wi80], then the key generator can always use S = 2, since

(3\=-1. In this case, .S need not be specified as part of the public key, so Ko has the
wq)

same form as an RSA key.

To encrypt a messag e M,o < M <N, rMt'
we compu," (.yJ = *1. Then Ms = M if the plus

sign holds, M0= MS (mod M),0 < Mg<¡/, if the minus sign holds, and M1=lt{ - M0.

The bit n determines if M6 is the larger or the smaller of the two and could alærnatively grve

the parity of Mç as pointed out in twi86l (note that Ms is even if and only if Mr is dd).

Recall that p is said to be primary if p = 1 (mod 4). In this case, we have the quadratic law

of reciproctO (rt) = (òand the well-known quadratic comolement"ti.*ël = 1 and

^ Lr 
\p) \p)

(ò=G1) 4 , so Algorithm 6.3 reduces to the following standard algorithm forcomputing

lægendre symbols.

AtgorittunT.I:Forcr, Þ e Z, p odd, gcd(ø, Ê) = I, compure f:l= ô = *1.
l.p./

1. Setô=1.

2. Set P <- -p if p = 3 (mod 4).

3. Use division with remainderto find ye Z such that u=y (mod g) and y< lpl

4. I Eliminatefactors of 2 |

a) Set i +- 0.

b) While y is even do

sety<-l,tntot.

c) 1/ i is odd andþ = 5 (mod 8) then

Set ô <- -ô
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5. IfY=lthen

The algorithm terminates when T= tl. Step 2 insures that p is primary. For Step 4 c), note

that p = 5 (mod 8) if and only if f tr odd, in which ."r, f) = -1. Since each step of
[p/

Algorithm 7.1 requires only constant time, the complexity of this algorithm is O(log lÞl) by

Theorem 6.18. For a more detailed worst-case analysis of this and two other algorithms for

computing Jacobi symbols see Shallit IShgOl.

Set ø ê p, B <- y. Goto step 2. ü

ry.Z Tåae c&se fu = 3

1"2"A Modificatior¡ of Williams' Scheme

A modified version of this case is discussed in [Wi86]. The cubic scheme is more

complicated than the quadratic case, since the cryptosystem requires arithmetic in the

quadratic field K= Q(() = A(./:3) generated by a cube root of unity ( = - | X t1f,3

However, since the unit rank of K is T =0, the algorithms are much simpler than for

higher order cases. We have p = q= 1 (mod 3), and p, q +1 (md 9), hence p, q = 4,7

(mod 9). Let n = otÇ + azÇ2,V = btl + bzÇzbe prime divisors in 0 of p and q,

respectively. Then N = ct2 - clcy + c22 where TV = ctÇ + cyÇz.

It is possible to find a primitive cube root of unity (mod M) such that gcd(r-l, M) = I and

l-Ll = I directly from æ and ry without using Algorithm 6.2. Flence r need not be
LTrvJ

specified in the public key, and only needs to be computed once for each pair of keys Kp,

Kr (recall that the same is true for 5-t lmod Ð).

Algorithm 7.2: From 7Í, = atÇ+oZÇ2, V = Þt Ç+bz(z, compute r such that 2l r ( ¡y',

gcd(r-l, Ä/) = l, r3 = 1 (mod M), and l¿l = f .' 
LtnYJ
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If p=q (mod 9),then

solve r :- -atoz-| (mod p), , =- -6n6t-1 (mod q), 2 4 r < N-1,

else

compute ct = aZb2- aZbl - a1b2, c2= a1b1 - aZbt - aþ2.

Setr= -c1c2-r (modM),2<r<N-1. E

l-er¡erna 7.1: Algorithm 7.2 computes r satisfying all the conditions specified in the

Algorithm in time O(log M), with all inputs bounded by N.

Proof, The complexity specifications are clear since all the inverses (mod p), (mod q), and

(mod M) are computed using the Extended Euclidean Algorithm, and r can then be found in

constant time in the case where p * q (mod 9), and in time O(log M) using the Chinese

Remainder Theorem if p = q (mod 9).

A short calculation shows that p = atz - apz * aZZ, q = bP - btbZ + b22, nV = ctÇ + c4Çz,

N = clL - ctcz + c22. Suppose that p I ø1, then p I az2 = p + ala2 - a12, hence p I a2,

implying thecontradiction p2lp.Hence pl atpl a2. Similarly ql h,q X b2, úd p, q I ct,

p, q Y c2. So all the inverses in the algorithm exist.

Suppose ñrst thatp : 4 (mod 9). Then + =Ç *0 (mod 3), so +. r* =0 (mod 3).

If r= 1 (modp), then at=-aT(modp), soplal+a2. Since p=(afta2)Z - ataZ,itfollows

thatp la1a2,sop la1 orpl a2in contradiction toourpreviousobservation. Sor* I (mod

p), r * 1 (mod q), implying gcd (r-1, M) = I and 2 4 r <I/. Now n = azÇ(atay-r +(), *o

,=-ataz-r: ( (mod æ) and r3=| (mod rc). Similarly, w =btÇ2(Ç2 +bftbz(¡, hence

r = -þ2þr'r: (2 (mod ry) and 13 = | (mod V). It follows that 13 = 1 (mod M) and [-I-l =
1",{rj

f rlf r1z p:l- 
+ 2q:l-

L;lL;l =(3 3 -1

Nowassumep+q (mod 9), tr,enÇ =-+# 0 (mod 3), so +.+=0 (md 3). rf

r= 1 (modp), then ct=-cZ (modp), sop lc¡+c2, implying plclorplcZas aboveand

resulting in a contradiction. Hence r# 1 tmod p), r 4 I (mod q), implying again



gcd(r-l, M) = 1 and2ÍitÏ-;Now æty =czËkvz-r +Ç2), so r= ( (*ø rcry), so r3 =l
(modÐana[¿l=(3 - 3 -1. E

LrVJ

ã.enrnra 7.2;Letu.=atÇ+azÇ2 e O. Then cr is primary if and only if at=a2* 0

(mod 3).

Proof: Assume that cr is primary. Suppose that a1 = 0 (mod 3), then 0 = c(ø) = 2az (md

3), so a2=O (mod 3), contradictory to al + a2*0 (mod 3). So a¡ * 0 (mod 3). Similarly,

az+O (mod 3). From ar + a2t 0 (mod 3), it follows that a1 * -az (mod 3) , so at= az* 0

(mod 3).

Now let al = az * 0 (mod 3). By Definition 6.10 and Lemma 6.12, we need to prove dl +

az*O (mod 3), a1 + 2a2: 0 (mod 3), and o,a= (q + az)2 (mod 3). Since a1= s2= *l
(mod 3), we have at + aZ= tl * 0 (mod 3) and a1 + 2a2: at - a2= 0 (mod 3). Finally,

crø=N(ø) = a12- a1a2+a22=alL+Zaßz*a22:@1+a2)z (mod 3). B

l-ernma 7.3: læt a= atÇ+ aZÇT e O such that ø1 + aZ# 0 (mod 3). Then one of o, (G,

Ç2ø.is primary.

Proof: u. = atÇ + a2e2, uÇ = atÇz * e2= -azÇ + @t - aùÇ2, aÇ2 = at+ azÇ = (a2 - aùç -

atÇ2.1ç at, az# 0 (mod 3), then since a1 + az+0 (md 3), we must have at= azÉ 0 (mod

3), so by Lemma '1.2, a is primary. lf a1= 0 (mod 3), then aZ* 0 (mod 3), hence cr( is

primary. Finally, rf a2= 0 (mod 3), then at *0 (mod 3), so cr(2 is primary. ü

The law of reciprocity plus complementaries in K were first stated by Jacobi [Ja46] and

explicitly proved by Eisenstein þi44al, tEi44bl.

ã-ersuna 7"4:I-etæ,Vbe primaryprimes, n=alÇ+ a2e2,at=aZ= 1 (mod 3). Then

a) lsl = lvl
LvJ L',J
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b) [""]=t,
N(n)-l l+a1-Za2

c) 
[tJ= Ç--3-=ÇT,

arl
d) [el= e-3- D

LfiI

CorolEany: læmma 7.4 holds if æ and \t are replaced by composite primary integers. *

This corollary enables us to compute cubic residue symbols as follows.

Algorithm 7.3:Forcr, Þ e O, Tr(p) * 0 (mod 3), gcd(cr,0) = t, evaluareIUJ = ,t,

0<s<2.

1. Sets=0.

2. Find a primary associate þ' = btÇ + b2Ç2 of þ.

3. Use Euclidean division to find ^t -- cß o tzÇz e O such that y = cr (mod Þ') and

N(y) < N(P').

4. (Factorout@] Setí=0.

While ct + c2:0 (mod 3) do

SetleL,íni+1.
(D

5. {Factorow(l Setj=9.

If c1= 0 (mod 3) rhen

seti = 1

If c2= 0 (mod 3) then

seti =2'

Set y <- Çy.
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6. Sets + s + t! _ .l+bt2bz(mod 3), 0 <s <2.

If ^t + *1, then

íf c1= -1 (mod 3) then

set T {- -T

set cr ê F', Ê' <- ^¡. Goto step 3. ü

7.

The algorithm halts when y is a primary unit, i.e. when y = +1. For the computation of s in

Step 6, we observe that i is the power of o¡ contained in l whereasy is the power of ( that y

needs to be multiplied by to make it primary. The change of the sign of yin Step 7 does not

change the residue symbol, rt*" 
[Ë] 

= 
[]1J 

by Lemma 7.4b).

7 .2.2 .4 Different Scheme

Recently, l.oxton et al [LKBS92] presented a different cubic cryptosysrem which is an

extension of V/illiams' quadratic scheme tWi8Ol to the case l. = 3. Field elements are

writæn as a rational linear combination of I and ( = N-f +il3). The designer generares rwo

primes n,\+t€ O such that ru= I +6( (mod 9) and V= 5 +6( (mod 9), i.e. n andVare
primary.Thenp =N(æ)=7 (mod9) andq=N(V):4 (mod9), hence/ =ØWÐ= -t

(mod 3). If we s€r p =-æry and N(p)=N, rhen[:] = I and[rt] =(. rhe encryprion

exponent is 3e where e e U, ... , N) such that gcd(e,0(¡/)) = l, and the decryption

exponent is d e {1, ... , l/} where \ed =ff(mod 0(M)). The public and privare keys are

Kp= [e, p) and K', = {d}.

Define thefundnmental regíon Awíthrespecttopas A = hp ly= c¡+ctÇ;cg,c1e R;0<

c0, c1 1l ). Then every Þ e 0 is congruent (mod p) to exactly one element cr e A which

can be obtained as follows. write , =Þ= F = x0 + x1( = K, N,0, xre e. set y¡ =LriJ,
p

zi=xi-yi(í = 0, 1), y =y0+ytÇ,2=20+ ztÇ, and g = zp. Then F =xp =yp + cr where
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G € ^A and y € 0. Ser &{ =,4 u (,4 w ÇzX.F{ can be thought of as a hexagon-shaped

area in the compex plane with center 0 and corner points p, (l+()p, (p, -p, Ç2p, and,

-(p, and A is the rhombus-shaped subset of E{ with corners 0, p, (1+()p, and (p (see

Figure 7.1).

The message space øl is obtained as follows. Let p e O and find p'e ,4 such that

Þ'= Þ (mod p). Set Þ" = toÞ' r 1, so o yp". Letlq = l^,O < m < 2. Set
LpJ

Er(Þ) - t3-mp", so or lEr(F)."0[4(Ðl = 1. The message space fdis defined to beLpl
M=IM e A I EúM) € F{}.

To encrypt M e M, compute Ms--Et@)-r3-m(aM + 1) wherrfeUttl - (m'' ""-'-L p J-b"-'
0 < m < 2. Then find C e A such that C = Ez(Mù = Mg3e (md p). The ciphertext is

C=82(81(M)).To decipher C, thereceiverfirst obtainsMl e A such thatMl=Dz(C):

6d (mod p). Then M0= ÇkM1 (mod p) for some k € [0, l, zl.It is easy to identify the

three points in F{ that are congruent to M 1 (mod p), exactly one of which" say x, is a

A

Figure 7.1

FX
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multiple of o. Then we must have X =El (M). Suppose olll X, then ser Dr(X) =

o-l1o-tx - 1) = M, so M = D{Dz(A).

Any algorithm A which finds the plaintext ð4 conesponding to a cryptogram C can be

shown to give rise to a probabilistic polynomial-time algorithm for factoring N requiring on

average a bounded numbr of applications of .4.

ry ß T'Bae case À, = 5

7 "3"1 Quintic R.estdue Symbols

This is the smallest case with non-zero unit rank. Here, the unit rank is + = 1, so we have

one fundamental unit \ = -((2 + (3). Hence every unit e in K has a unique representation €

=t?n¿wh ere j,ke zando sjs4. If we choose ( =e*p elthen r¡ J-irEt r.

For this case, we require Algorithms 6.1 - 6.3 in all their generality, i.e. there are no simple

methods for finding a fifth primitive root of unity (mod l/) or prime divisors in O of

rational primes, as in the previous two cases. We will again give an explicit version of

Algorithm 6.3 to compute quintic residue symbols.

læt cr = 
,*rtte 

O, c¡ e 7. forl < i < 4. Defîne the following quantities:

a = a(a) - al - a.z - a3 + a,4,

b = b(a) = at + az+ a3 * a4= -Tr(a),

c = c(a) = at + 2az + 3a3 + 4a4,

d = d(u) - a.t - 2a2+ Zal - aq

Note that b and c are defined as in Section 6-3.

l-e¡¡r¡na 7.5: l,et ø e O be such thar cr = 0 (mod ol) and s"=b (mod ro2). Then o;s.= b2

(mod 5) if and only if a:0 (mod 5).
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Proof: An easy calculation shows 5 = ol4e where e = (( + D2Ç2 is a unit. Furthermore

or=l-(a=-(aoand

cr + cr = (a1+ a4')(ç+Ça) + (az+ a3)(Ç2+ (3¡ = a(Ç+ Ç4) - (az+ at) = a(Ç" ç\ 4.
From a=b (mod ro2)ando=õ,weobtain a=b (mod o¡2), hence ola llo -b)(q,-b).

Assume that orr:62 (mod 5). Then, since 2-l = -2 (mod 5) and 5 - of

0 =(a -ÐtA-b)=orr-b(a+ø) + b?=b2-UÏoG + (4) - 2(a - b\f +ú

= øfzb - a(Ç 6 Ç\ + 2(a - Ðf = ab(2 - Ç - ç\= -abÇaç¡p(mod 5).

Since colb and (a is a unit, we have c¡2 ld, so a = 0 (mod 5).

Conversely, assume ø = 0 (mod 5). Then cr + s = -L=2å(mod 5), thus 0 -: (c - b\(a - b)

=c¿d, _b(a+ù+U2 =crg_ ¿2 lmod 5). A

Lemma 7.5 together with Lemma 6.12 gives rise to a practical test for a number to be

primary as follows.

Corollary: ø e O is primary if and only if

a) b#0(mod5),

b) c=0(mod5),

c) a=0(mod5). A

Let cr e O. If Tr(cr) # 0 (mod 5), then by Lemma 6.74, u. has a primary associate. The

following is a practical method for finding such an associate in constant time.

X.e¡m¡na 7"6:Let ee Obe such that Tr(cr) *0 (mod 5). Then cr has a primary associare

of the form cr' = U\ku. where 0 <i, k < 4.

é,
P roof,, Let ø = b.o¡Çi. We have b = b(u) # 0 (mod 5). Then aÇ = b + (c+j b)a (mod o:2),

!=l

soby Lemma 6.11,b(o;Ç¡=b*0 (mod 5) and c(s.Q):- c+jb (mod 5) for0 <j<4. Since
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one of c+jb (0 < j < 4) must be divisible by 5, we have found an associate of s such that

conditions a) and b) of the Corollary to Læmma 7.5 hold.

Assume now b * 0 (mod 5) and c = 0 (mod 5). Let sj = ani (0 <j < 4). e sraightforward

calculation yields crl = crÍl = (aZ-aq)Ç + (a2+a3-a4)Ç2 + @2+a3-aùç3 + @Z-aùÇa and q2 =

q + 1, hence a¡ = a¡-2\2 : aj-Z\ + aj-2 = crj-t + u¡-Z for 2 < i < 4. If we let
a-b

n ==Z: = -(aZ+ a3), then

a(s¿) -- a,

a(e1)=fi*e, a(0';ù=2n*e, a(%)=3n+?a.

Furthermore, since Tl= -2 (mod ol2), it follows that b(cry) = (Z\¡ib # 0 (mod 5) and

c(a¡)= C2\tc = 0 (mod 5), so all the cr; satisfy conditions a) and b) of the Corollary to

Lemma 7.5.

We need to prove that one of the a¡ (0 <i < 4) satisfies a(ø;) = 0 (mod 5) and is hence

primary. ll a= 0 (mod 5), then a¿ is primary and if ¿ = 0 (mod 5), then cr1 is primary. So

suppose now that an+ 0 (mod 5). Then if a = -n (mod 5), then cr2 is primary, if a = -2n

(mod 5), then a3 is primary, and if a = n (mod 5), then cra is primary. The only remaining

case is a = 2n (mod 5), in which case 0 = a - 2n= b (mod 5), a contradiction. Hence we

have found the required primary associate of cr. U

a(sù = (az-aq) - (a2+a3-q) - @2+a3-a) + (a3-a) = -(a2+a3) = n,

For the evaluation of quintic residue symbols, we require complementaries for r1 and ol.

These were explicitly stated by Williams [Wi76l). We summarize all quintic

complementaries here.

[,emrma 7"7:Let fi, V be two distinct primary primes in 0. Then

rnr 
_ [vla) 

LtJ 
= 

L-"J'

b) [#] =',
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Furthermore, if n=fo,Çi, N(¡)=p= 1 (mod 5), and å*e Z is such that

c) [tJ=(ÏE

bb*=l(mod 5), then

d) l{ = Ç4db*,
Lnl

e) [gl= ,+ønqrot!' 
LnJ

Conollany: Lemma 7.7 holds if æ and V are replaced by composite primary integers. Q

In order to perform Step 7 of Algorithm 6.3 in constant time, we need to be able to

determine ff-l O"t"Ot, for a primary unit e. Since \= -2(mod co2), r¡ is primary, whereas (
LPJ '

is not primary.Hence if e is a primary unit, then we must have e = tni for some í e Z.Let
é,

, = Lo¡!. An easy proof using induction on f shows that in this case al = @ and a2 = a3,
J=l

hence e = at(Ç+la¡ + a2çÇ2+ç, = -59 *ry./S. Rs usual, def,rne the Lucas and

F ibo nac c i nu¡nb er s, respectively, by

L0 =2, Lt = 7, Li+2= L¡a1 * L¡ (i > 0),

F0 = 0, Fl = 1, Fío2.= F¡a1+ F¡ (t > 0).

It is well-known thatrlv=(1_å!5Ì =å (Lv +Fu{5) forv ) 0, hence if e =tqi for

i > 0, then -(ø1 + aZ) - lL¡ and a1 - a2 = tF¿. Now Lio4= L; (mod 5) and F¡a2g= F¡

(mod 5), and the pairs (L; (mod 5), F¡ (mod 5)) (0 < t < 19) are exacrly the pairs (m, n)

(1 < m < 4, 0 3 n <4). Since by Lemma 7.7 b),the sign of e dæs not affect the value of

Iel
Lpl, 

*tr gives rise to the following constanr time algorithm.

.tr
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Algorítttrn 7.4:For, =f,o¡qe O a primary unit, p e O-[0], find i ,u.f, tnut ftl lnlt
J=t marY unit' þ e u-[t 

LpJ 
= 

LpJ

l. Compute a table containing the triples (i, L¡ (mod 5) F¡ (mod 5)) for 0 < i < 19.

(This table need only be computed once and can k re-used for any subsequent

quintic residue symbol computation.)

2. Return je {0,...,19} such that -(at+a2)=L¡ (mod 5), at -a2=Fr.(mod 5).

3. Set j=j(mod5), 0< j<4. E

We are now able to present our algorithm to evaluate the quintic residue symbol.

Algorithm 7.5:Forcr, Þ e O-{0}, Tr(Ê) * 0 (mod 5), gcd(ø, 0) = l, evaluareIUJ = ,t,

0Ss<4.

1. Sets=0.

2. Find a primary associate F'of F.

3. Compute N(p).

4. Use Euclidean division to find T€ t such that T= s. (mod Þ') and N(y) < N(P').

5. Compute b=b(þ) (mod 5), b" =b'l(mod 5),

c = c(p) (mod 25), d- d(F) (mod 5).

6. I Factor out @] Set i = 0.

While b(y)= 0 (mod 5) da

Seryê1,iu-i*1.
ú)

7 . ( Facror out (l SetT: -c(^Ðb"(y) (mod 5), 0 <i < 4. Ser ^{ + yÇt.

8. I Factor out rl I Compute a(1) (mod 5). Set k = 0.

rf aQ) * 0 (mod 5), then

compute 
"1r¡ 

-:@p = -az(y) - a3g)(mod 5).
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If aQ) =-n(T) (mod 5), thensetk=2.

Il a(y) = -2n(T) (mod 5), then set k = 3.

If aQ) = n(y) (mod 5), then set k = 4.

Set y <- yqÈ.

e. Setsesoi(+4.!* ¡lI(Ê)11, ) ëqÌ1 -4kdb* (mod5),0<s<4.

10. Compute N(l).

// N(y) > l, rhen

Set s ê Þ', F'<- y. Goto S,tep 4.

If 0 = n(T) (mod 5), then set ¡t = l.

use Argori thml.4to find / such trr" 
[Ë] 

= 
[tJ'

Sets+ s+4db"l (mod5)0<s<4. E

For the computation of s in Step 9, note again that i is the power of ol contained in y,

whereas i and È are the powers of ( and q, respectively, which l needs to be mulriplied by

to obtain c(^Ð = 0 (mod 5) and a(^Ð = 0 (mod 5). Hence we need to add the appropriate

multiple of i given by læmma 7.7 to s while subtracting the correct multiples ofj and È.

7 .3"2 Computationaß Results

We implemented a number of our algorithms for the quintic case. Our programs were

written in C language using the GNU multiple precision integer arithmetic library

(Granlund tGrgll) and were run on a DECStation 50@. We wrote routines for the

following algorithms.

" Uspensky's Euclidean division method descr-ibed in Section 6.4.2.

" Kummer's Euclidean division method described in Section 6.4.3.

I-enstra's Euclidean division method described in Section 6.4.4.
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, Finding a prime divisor of a rational prime p = 1 (mod 5) using the gcd method

described in læmma 6.7.

' The Residue Symbol Algorithm 7.5, including Algorithm7.4.

, Key generation, encryption, and decryption.

We now present some of our computational results.

Príme Dívísors

Here, we used all three Euclidean division methods to compute prime divisors of rational

primes p = 1 (mod 5). Despite the different upper bounds on the quotient of the norms of

the remainder and the divisor given in Section 6.4, all three algorithms performed

essentially the same. In particular, even though lænstra's methd gives a better bound than

Uspensky's and Kummer's methods, it does not seem to run significantly faster in general.

Vy'e ran the different gcd algorithms on three primes of approximately 100, 140, and 150

decimal digits, respectively. Each of the three algorithms produced a different prime divisor

for each prime. The table below presents the results of our computation. Column I gives

the rational prime p whose prime divisor fi \pe computed and column 2 states the number of

digits of the largest coefficient a¡ of æ, where rE = atÇ+a2Ç2+alÇ3+a+Ça (rhe other

coefficients of rc were always within a factor of 10 in absolute value of la¡l). Column 3

specifies the Euclidean division algorithm used and columns 4 and 5 contain rhe number of

Euclidean divisions performed and the CPU time (in seconds) required by the

corresponding prime divisor computation.
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p

10lm + 2911

Ltogle la¡lJ + 1

10140 + 2691

26

26

Eucl. Div. AIe

26

Uspenskv

1gls0 + 771

36

Kummer

37

[ænstra

# Eucl. Div.

39

Usoenskv

Resídue Symbols

We computed the quintic residue symbol[Ë] 
". 

two pairs of integers cr, Ê e O whose

residue symbols are 2 and 1, respectively. Both numerator and denominator of the fint pair

had coefficients of 25 digits, for the second pair the number of digits of each coefficient

was 50. Again, we give the number of Euclidean divisions performed and the computation

time in seconds required for each of the three Euclidean division methods. As before, all

three methds performed quite similarly.

39

Kummer

145

38

[-enstra

t39

CPU time (secs)

40

Usnenskv

134

Kummer

185

Lenstra

2.5

195

2.4

r86

2.4

202

5.7

210

5.7

198

5.7

7.4

7.3

7.3
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# dieits / coeff.

25

Eucl. Div. Ale.

Usoenskv

Kummer

The Cryptosystem

50

[.enstra

Since we were mainly interested in encryption and decryption speeds (rather than

generating a secure key for practical purposes), we did not attempt to Frnd primes which are

considered safe according to the criteria in Section 2.1.Instead, we used the following

procedure to generate a modulus N of n digits.

# Eucl. Div.

Usoenskv

Kummer

6l

[ænstra

56

CPU time (secs)

Choose a starting value / = {N (we used I = túnlù). Find the smallesr odd integer fr

57

satisfying k> I, k: 1 (mod 5), È + I (mod 25) (in our case p = 1$nn|+l I). È is the first

candidate for a prime divisor of l/. Trial-divide k by a few small primes (we used the first

12 primes except 2 and 5, i.e. 3,7, ll, 13, 19, 23, 29, 31, 37, 4l). If & has no small

prime divisor, apply a simple probabilistic primality test to Ë, such as the base å Fermat

test, which computes/ = bk-l (mod k) 0, </< k-l.If f = 1, rhen & satisfies Fermat's little

theorem with base å and is hence a base b probable primc. Since the primatity test is quite

time-consuming, we generally apply no more than two rounds of the test (with b =2 and,

b = 3). In the unlikely event where we obtain a pseudo-príme (i.e. a composite number

which passes the probabilistic test) after our trial division and primality testing præedures,

our enciphering and deciphering routines will produce random results, if the pseudo-prime

is used as one factor of the modulus. Hence this situation will easily be detected after a few

119

0.3

r33

0.3

115

0.3

1.2

t.2

t.l
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test encryptions and decryptions. For our implementation, we used two rounds of a built-in

Fermat primality test routine which was part of the GNU mp library.

If & fails either the trial division or the primality test, repeat the procedure with &+50 (the

next odd number É' such that &': 1 (mod 5) and k'+ 1(mod 25)). Once a probabilistic

prime p is found, repeat the process, starting with p+50 as the first candidate for q.

To find an encryption exponent ¿, we simply used the built-in GNU mp random number

generator to f,rnd a random positive integer e' of a specified size (Usually e' <ly' and e'=

Ð. Then we computed õ = gcd(e', O0Ð). S.r, =å unless ô exceeds a certain bound (say
Ò

ô > 1020), in which case we try again with e'+1.

Our implementation is much slower than a commercial RSA implementation for several

reasons. Most importantly, it is entirely done in software, whereas many RSA applications

have hardware available for their modular exponentiation. Furtherrnore, the residue synbol

computation required for each cryptogram reduces the encryption speed of our system

relative to RSA. This is also the reason why the rate of decipherment of our scheme is

noticeably faster than the rate of encipherment. Finally, we were not able to optimize our

multi-precision integer arithmetic routines mathematically or computationally, since they

were third party software.

Vy'e conclude with two computational examples using moduli of approximately 1@ and 2@

digits, respectively. \ile give the parameters for the enciphermenVdeciphefinent keys and

the corresponding encryption and decryption rates (ct, ... , c4 are the coefficients of
é

rV = Lc¡Çi).,'_ 1a-l

Example / (101 digit mdulus):

p = fQ50 +961,

r = 84931 547 665997 521 50M136846r 46321568421 68287 7 9 1540
5085 52625448 855097 27 2360209 t 6307 1257 12929 69827 7 223

4=fQ50+7M1, n/ = t01m + 2402.10s0 + 1384801,

93
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S = 4O96

c t = - 19 13696241 597 8924892222019
cz = -42386550 I 7 I 45 5517 2(n I $89
cz = -38328646m I 6 I 82434829 467 87
c ¿ = - 1034054259858 9099 I 6089 67 92

e = 8 I 227 99249 I 33 50 I 59 5240 5 420 53 5 53 4223326 59 67 | 97 4240 6
97 3 602W043 5 t 337 23W83 I 9 M2 57 5 | | 5 | 39 66440 1 68 2 5

d = 38348577 02001905 1 m54259297 07 26808059234324350439
06786 r I l 90 l 9655 t87 587 66358990594 I 13557 623t9672201

Key generation tíme: 2.9 seonds

Encryption rate: 55 characters/second (438 bitVsecond)

Decryptíonrate: 127 characte¡s/second (1014 bitVsecond)

Example 2 (199 digit modulus):

p = lQ99 +711,

r = 19841 667 17 363 1 8905 7 6222801 1 7 I 500689 5 &530/7 83 583 49
403 17 6639 637 7 28 t2s3 68 8 I 5 040 I 95 67 6 I 5 I t t 442887 807 822
7 64550 l 8 8 4s 488367 286 I 853934 I 0 I I 56828 3UÐ3 30 I 3 7 41 43
90235t41262692727622786912548954003875tW2392398

S = 4096

c 1 = -JJ $Q{3 3 3 8 1 896664 808 27 612322963 3 800844 82537 47 7 9 62065
cz= 13024836430830317 6t6632901 358 I 3387 57 407 688634701424
ct = 7 5341929622621 43ffi427 093232597 65177 55M59M289547 38
c q = 67 3 41 I 9028 1067 3 I 23 492 5207 042 19 43 4618383 4999 8 9 I I I I 46

e = 30 60249 497 4337 37 8 1 97 I 8809 63032 I 6409 530262243 1 08 5 4 I
597 8 &t7 98 0 1 020 I 7 9 39 67 338698 5 I 5 877 5037 I 7 I 3 505 02849
39 824/. t 57 3 69 432 5 t 822 53 804289 447 449 57 91 28 4 t 0242 | 89 4
260 r 05 890 5 t29 6052927 3031 6607 041 1893 1 4666605

d = 57 @3 40825 821 49 1 47 9 53297 5 5246327 607 3 69 5 49 43 5 623247
54457 842319295 | 547 066935197 0659526587 7 53233M1 9585
23 t s9 03 12837 M t 5 48 592269 2 53 49 57 9 3W 493 s 49 87 835 I 8 6 I
to437 07 306420521 443 1 46236469 401 8452380520768 1 3

Key generation time: 22 seconds

Encryptíon rate: 23 characters/second (183 bitVsecond)

Decryptíon rate: 38 characters/second (3O7 bitVsecond)

q = lQ99 +2191,

(26 digits each)

(96 digits)

(99 digits)

¡/ = 101e8 + Z902.tgee + 1557801,

(198 dieits)

(51 digits each)

(193 digits)
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ffi. Key ffixaKaeø?ge KJsåxag þ-åøaå6e Gm"æaxps

S.X. Tåae Ðåffãe-&åeåXx¡aaxa Key Ðxahaxrge Pno$øaoå

The first algorithm for exchanging a secret key across a public channel was given by Diffie

and Hellman. The original version of their protocol given in [DH76l has already been

outlined in Section 1.1.4. We will now repeat the scheme in more generality. Suppose that

two communication partners Alice and Bob wish to establish a key for a private-key

cryptographic conversation without making use of a secure channel. Then they perform the

following steps.

1. Alice and Bob agree on a finite multiplicative group G of order N = lGl and an

element g € G. Both G and g can be made public.

2. Alice generates a random integer ae {1,...,/V} and computes x=ga. She

transmits x to Bob, but keeps a secret.

3. Bob generates a random integer ä e {1,..., i/} and computes y =gå. He

transmits y to Alice, but keeps b secret.

4. From a andy, Alice computes k =f = gba.

5. From b and¡, Bob computes k =f - gab.

After the protocol has been executed, both parties are in possession of the same group

element È, which can then be used to obtain their common key in whatever manner they

have agreed upon ahead of time (e.g., for a DES key, k could be associated with a bit

string s in some fashion, and the high order 56 bits of S represent the DES key).

The protocol requires one round of communication. Generally, the group should be chosen

in such a way that its elements can be represented in binary, where each element requires

no more than O(log M) bits of storage, so that the bandwidth of the communication channel
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can be bounded by O(log M). Then the computational cost for each party is O(log M), since

both parmers must perform two exponentiations involving exponents bunded by l/.

For key distribution between multiple users, each user i generates a random number

aie ll, ... , i/), computes .ri = gøi, and stores x¡ in a public directory. Now if Alice

wishes to exchange a key with Bob, she recalls her secret number ¿E which she used for

her directory entry .rA = ga\,looks up Bob's enüy rB in the directory, and sends rBaA to

Bob. Similarly, Bob looks up Alice's entry -xA and transmits x6aB to Alice. This reduces

the computational effort for each user to OQogM) per key exchange.

The original version of the protocol given in [DH76] used G = GF(p)*. Since then,

numerous other groups have been suggested to serve as the basis for a Diffie-Hellman-like

key exchange scheme, such as

i) the multiplicative goup of an arbitrary finite field,

ä) the group of inverrible nx n matrices over GF(p) (Odoni, Varadharajan & Sanders

lovsS4l),

üi) the group of integers (md n) relatively to n, where n is the product of two primes

(Shmuely [Sh85], McCurley [Mc88]),

iv) the group of points on an elliptic curye over a finite f,reld (Miller [Mi86l, Kobliø

lKosTbl),

v)

vi)

groups associated with hyperelliptic curves (Koblitz [Ko90], [Ko88]),

the class group of an imaginary quadratic field (Buchmann & Williams [BV/88a],

Buchmann, Dtillmann & V/illiams [BDV/901).

In order to break the scheme, an adversary needs to be able to infer k = gab from G, g,

x = ga, and y = gå, without knowledge of a or b. A cryptanalyst could achieve this if he

were able to compute for any z e G the discrete logaríthm or índex of z in G, i.e. an

integer c e {0,... ,¡/-1} such that z = gc,in time polynomial in log i/. It is unknown

whether breaking the Diffie-Hellman protocol is equivalent in difficulry to solving the

discrete logarithm problem CDLP), regardless of the choice of group.
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8"2 The Wåsarete K.oganüthx¡s Proh[ex¡ra

For a comprehensive survey of algorithms for solving the DLP, see Odlyzko [Od84] and

McCurley [Mc90]. Henceforth, assume that G is a finite multiplicative group of order iy',

and that I € G is a fixed element in G. We wish to find, for an arbitrary element z e G

which is not the identity 16 of G, the index c =logrz, i.e. the unique power c €

{1, ... N-l} such that gc = 2.

I "2 "1 Ðeterrninistic Algoni$h¡ns

The most direct approach to determining discrete logarithms in G is to precompute a table

of the powers gt (1 < i < N-l) of g and find the index of any group element by table look-

up. Clearly, this is infeasible, since the table requires i/-2 group operations and storage of

lú-1 entries.

We can improve the running time to O(^/Nlog M) arithmetic operations and reduce the

storage requirement to O(r/-N) table entries by employing Shanks' "baby step-giant step"

idea (Knuth [Kn73, pp. 9, 575-576]. Set rn = [{/Vl to be the least integer above {N.

Shanks' method makes use of the fact that every discrete logarithm c e { l, ... , i/- I } can

be written as c = qm - rwhere 0 S r < m and 1 S q 3rn. Assume that we can quickly

enumerate the group elements gl, ... , BN, i.e. there exists an easily computable function

"f: G -+ {1,..., .M}.To find logrz, compute the sets S = [(i S)lS¡=zgi,0<i< m] and,

T= {(í, S)l S¡=g^i,0 <i<m} (note thatlneed only be computed once whereas Smust

be recomputed for each logarithm). S and r require storage of a total of o(m) = o({-zu)

group elements and can be generared using O(^/N log M) arithmetic operarions (O({F)

exponentiations). Sort S and T according to the second coordinate of each element. This

requires O({tr log M) comparisons. Now scan S and T until two elements s = (r, S;) e S

and f = (ø,5)e T are found that match in their second coordinate. Then gj=zgr and

gj=gm4,hencez-gmq'r.
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A more practical algorithm was given by Pollard [Po78]. It's running time can be

heuristically estimated to be similar to that of the previous method, while the space required

seems to be much smaller. In the fust stage of the algorithm, we find integers s and f such

that zs = gt.In order to do this, we partition G into three sets ^Sl, 52, 53 of approximately

equal size. Set r0 = lG and compute a sequence r0, rl, ..., where

This defines a sequence of integers a¡andå¡ such thatx; =*igbi, which can easily be

shown to satisfy the following recurrences: d0 = å0 = 0,

( .-
lzx¡if x¡e 51

rr+t = jx¡z it x¡ e 52

lg¡¡ if x¡ e 53

where all remainders (mod N) are taken to be between 0 and i/-1. If the sequence (¡Ð>o

were to behave like a random sequence - a reasonable assumption if the sets S¡, 52, 
^S3 

are

chosen randomty - then we should expect thar there exisrs i e [0, ... L¡.f¡gjl such that

Íi = rùi, and we can find i by computing the 6-tuples (x¡, a¡, b¡, x2¡, aZ¡ bZù recursively.

If x¡= x2¡,then zs = gt is satisfied with s = ai- a4i (mod M) and Í= bU- b¡ (mod 
^0.

Let d = gcd(s, l/). Then the Extended Euclidean Algorithm yields u, v e Z such that

d=us +v^ly', hence zs = gt implies d- gut.If d= 1, then logrz =ar (mod M), otherwise

d > I and we must have d I ut. Extracting d-th roots from the identity 7d - gut yields
ut+iN

z = g d for some ie {1, ... dl,so we can check this last equation for í= 0, 1,...,

until the correct value of í is found, in which case we have found logrz. Note that if s were

a random residue (md M), then we expect d to k small most of the time.

The last algorithm to be discussed in this section is due to Pohlig and Hellman [PH78],

who credit its earlier independent discovery to Silver. It is very efFrcient if i/ is smooth,i.e.

e

€

€

(r > 0).

e

€

e

(i > 0),
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if N has only small prime factorsl. I-et i/ - pfl...prer be the unique prime factorization of

zu. It suffices to find the index of z modulo each piei 0 < i < r); using the Chinese

Remainder Theorem, we can then combine the indices modulopfi to f,rnd the index of z in

G in time O(r log M).

Letp e {pt...,prl,pe llN (e>1), and letc= logrz (mod p\,0 < c < pe-We compute

çl
thep-ary representation c = r{ipt, 

0 < b¡ < p-l for i e {0, ..., e-71 as follows. Set

ru

T = gP. From logrz = c + þe for some k e Z, it follows that

N alon.,
for M e Z, hence zP = gP e6

frczr, =ff * Nkpe-t -f, ofuv,',

N

i = 0, 1, ..., until we obtain b0 = i such that ^f = ,p . (,A,lternatively, we could use the baby

step-giant step method to search for the correct po*é. of y. This would reduce the running

time of the algorithm while increasing the storage space as well as introducing some

precomputation.)

\f e > 2, then determine b1 as follows. Compute h = g-l = gN-l and z1 = zhb\. Then again
N N bON Nbt

Ät.
p2 

toggz

= g p =PO. To hnd åg, we compute zp and Ti for

Nbo

t
before, we compute zlP' and search through the powers of y to find å¡ .lf e 2 3, we set 22

NN

=¡!

+ kee-t)=*ff o

ffi.

= zthPbt, compute ,f3 , undgenerate powers of 7 until we find b2 such that fz = ,f .

bf . m)"rt e z,hence rrû = rû, Ê -- r o =ft, and as

N

Continuing in this fashion, we can find b3, ... , be-t.This process is performed for all p;

(1 < i < r). Pohlig and Hellman show that there is a time-memory û'ade-off that can be

M)

ry

I Pohlig and Hellman hrst introduced their algorithm using the group G = GF(p)n of orderp-l. Recall that

Pollard gave a fast method for factoring an integer N when lü-1 is smooth tPo75l. This is only one of a

numbr of parallels between the problems of factoring and extracting discreæ logarithms.
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exploired ro resulr in a running time ", ,[r&r¡(tog ñ/ +p¡l-ô¡11+log p;ôi¡)J o*o

operations, using 

{t., " å t,.o,uoJbits of memory, and requiring a precomputation

/Ët,u,tog p¿ôi o rog ul1.,=T )
[1,..., r].

of

te

8.2"2 T'tre lndex CaXcr¡lus fulethod

In contrast to the previous techniques, this algorithm is probabilistic rather than

deterministic. It is quite similar to the factor base factoring method by Monison & Brillhan

[N{875]. The basic ideas are due to'Western & Miller [WM68], although the approach first

appeared in the work of Kraitchik ([Kr22], pp. 119-123,lKr2{l, pp. 69-70, 216-2671)

and Cunningham (see [WM68]). The actual algorithm was introduced independently by

Adleman [4d79], Merkle [Me79], and Pollard [Po78l.

The method consists of two stages; a precomputation stage, in which a database of certain

discrete logarithms in G is generated, and a second stage, in which the logarithm of an

arbitrary group element is determined using this database. During the precomputation

phase, we collect identities of the -rrn trtr¡ ii - gti,where at, ..., a¡ is a set of f,rxed
J=L

elementsin G (the/actorbase) ands;l,...,JiB,f¡e [0,...,zu-l] fori=0, l,...These
B

relations give rise to a set of linear congruences .If¡l logra¡ = r; (mod l/), in which the
J=I

unknowns are the logga¡ (1 <i < B). We solve this system of congruences, thus creating

our database of known logarithms. Note that this stage need only k performed once.

group operations, where õ; e R, 0 < ô¡ < 1 for
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To compute a particular index logrz (z e G), we construct an identity of the form

-B-B
LIq"¡ = zge in G, whence it follows that logrz = Zg¡ logsa¡ - e (mod M). Usually, this
J=l J=l

process takes considerably less time than the first stage of ttre algorithm.

Clearly, this rough outline of the algorithm leaves many questions unanswered. First, it is

not at all obvious how to efficiently construct relations of the forr Jftq" ij = gt¡and in fact,

there are only a few groups for which it is known how to generate such identities.

Secondly, the number B of factor base elemen,tft, ... , dB must ba chosen carefully. In

order to solve the system of linear congruenceilf¡ logra¡ = r¡ (mod ¡/) (t = 0, 1, ...)

uniquely forlogra¡ (1 <i ( B), we require a sufficient number of congnrences (at least B).

If B were chosen too large, then it would be diff,rcult to find enough factor relations, and in

addition, the effort of solving the linear system of congruences would be considerable. On

the other hand, if B were picked too small, then it is unlikely that a "t)æical" group element

would factor over our factor base. The optimal choice of B requires a sophisticated analysis

of probabilities.

We will now give more details with regard to the method and its complexity for some

specif,rc groups.

The case G = GF(p)*: Here the factor base consists of the flrst B primes pl, ... , pB. To

generate the relations for stage one, we choose a random integer re {1,...,p-l } and

compute r=gt (modp),0<r<p.V/ethentrytofactorrover {pt...,pBl,saybyusing

trial division. If r factors over our base, then we are successful in obtaining a factor

relation. To compute an index logrz in GFþ)*, pick a random integer e, compute

r=zge (modp),0 < r < p,andsee if r factors as a product of p1, ...,pB.If r = Wfr,
B

then logrz = 2g¡logsp¡ - e (mod p-1). More details
t=l

lKo87al.

of this case are given in Koblitz
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The running time of this algorithm is subexponential in logp and is comparable to the time

required for factoring an integer of magnitude p. Initially, the complexity was analyzed to
3^-+o( 

r )
be L(p¡2+o(1) for stage one and L(p)z for stage rwo, where L(p) =

exp(./lõg plog rogT). Pomerance [Po87] improved this estimate Lç¡{z+a(l), and this

is the smallest asymptotic bound that is rigorously proved for GF(p)*. Coppersmith,

Odlyzko, and Schroeppel tCOSS6l described three index calculus algorithms whose

running time they heuristically estimate to be L(p)l+o(l) for the precomputation and

^1+o(l)L(p)" for the index computation. Recent results by Gordon [Go93a] suggest that a

technique similar to the number field sieve for factoring large integers could be used for

computing discrete logarithms over GFþ)*, resulting in a method with heuristic

complexity L'(p)rwhere L'(p') =".p(ffig L"-l
The case G = GF(pu), p a Íîxed small príme: For details, see again [Ko87al. It is well-

known that GFlpn) is isomorphic to the residue ring GF(p)lxllf@), where/(-r) e GF(p)t¡l

is any irreducible polynomial of degree n, so if we fix/(x), then any element in GF(pt) can

be represented uniquely as a polynomial in GF(p)[¡] of degree at most n-l .ln particular, g

= g(¡) e GF(p)[x]. In this case, the factor base is usually chosen to consist of all monic

irreducible polynomials over GF(p) of degree ( ra, where m < n is chosen such that the

size B of the factor base is optimal. It is possible to significantly improve the complexity of

this case over that of the case G = GF(p)*. This is due to the fact that factoring

polynomials is much easier than factoring integers (see for example Berlekamp's method

[8e70]). The first subexponential DLP algorithm for GF(prn) @ fixed) was given by

Hellman and Reyneri fHR83l. The running time for the specific case GF(2n) (often a

popular choice for cryptographic schemes, since the arithmetic in this field can be nicely

implemented in hardware) was analyzed by Blake et al [BFMV84] and in detail by Odlyzko

[Od84l. Coppersmith's heuristic arguments for GFþn) suggest a running trme of L'jpn¡c =
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The case G = GF(pn),ne 7>0¡ixed: Here, the special case n =2was analyzed by

ElGamal [El85a]. Lovorn gave a subexponential method for solving the DLP if
log p < n0.98 lLog2l. Recently, Gordon announced that there exisrs a L'(pn¡c algorithm for

computing indices in Gf(pn¡ (n fîxed), which again uses the technique of the number field

sieve [Go93b].

Finally, we point out that the fust subexponential algorithm for computing algorithms over

an arbitrary finite fîeld GFþ,) (p any prime, n e 2,0) is due to Adleman and Demarrais

[4D93].

The case G = Cl(Q({-¿)): Let K be the held generated by the square root of -D where D e

V.>0 is squarefree. Then K has a generating polynomial /(-r) = xZ+D, hence (K:Q) = 2. E{

is called an imaginary quadratic field.The discriminant of K is Â = !"D,where
oL

I r ir D = 2,3 (mod 4),o=tt if D: i (mod4).

The DLP in the class group Cl(K) of K can be stated as follows. If [g], [z] e Cl(K) are

two ideal classes (g, z ideals in K) such that [z] = [g]c, or equivale ntly, z- gc for some

c e { 1, ... , h}, find c. Here h = lCl(K)l denotes the class number of K. Note that this case

differs from all the previous ones in that the order h of the goup is not known a priori.

The index calculus method can be used to find the invariants of Cl(K) (Hafner & McCurley

[HM89], McCurley [Mc89], Cohen, Diazy Diaz &. Olivier tCDOg2l) as well as solve the

DLP in Cl(K) (Buchmann & williams [BW90b], Mccurley [McB9], Buchmann &

Düllmann tBDg1l). In fact, the precomputation stage is the same for both problems. The

method is described in terms of binary quadratic forms in [HM89] and [Mc89]. For our

purposes, \¡/e use the language of ideals in the field as in [BW90b] and [BD9l].

Before we present the index calculus method in Cl(K), let us state an observation. Let p be

a rational prime such that the Legendre symbol 
Cn)= 

l. Then the decomposition of p in K

is þ) = pp', where p' is the conjugate ideal of p. In particular, (p)p' = p-l and hence p' -
p-1. Under certain Extended Riemann Hypotheses (ERH), it can be shown that Cl(K) is
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generated by the ideal classes [pl], ... , [pa], where p¡ is either of the prime ideals dividing

pi andp¡ is the Ëth rational prime such that (ri)= 1 and p; < C(log lÅl¡2 ¡o, some constant

C > 0 (a value of C is given by Bach [8a90]). The factor base is B = {[pl], ... , [pr] ].

The algorithm differs fom the previous methods in that we compute relations of the form
_L
-[.ltp¡tt = [(l)], i.e. the right-hand side is the identity in Cl(K) rather than a power of the
i=l

class [g]. More formally, consider the group homomorphism Õ: ZB -> Cl(K) given by

(Þ(sr, ... , så) = 
$rPr'r. 

Any element in the kernel F{ of Õ gives rise to a factor relation.

Furthermore, E{ is a sublattice of V.B, and since Õ is surjective, it follows that the factor

group T,B|EX is isomorphic to Cl(K) under (Þ.

It can be shown that the box x = {(xl, ..., xB) e W I 0 sx¿< lÅl for I < i <B} contains

a basis of E{. To find a relation over the factor base B, or equivalently, a vector in Eã,

generate a random vector (¡1, ... , xB) e X. Then compute a reduced ideal a' in the class

of & = ,Ût* 
a' can be computed in time O(log lÂl); for details see Williams [\tr/i85a].2

Next, we compute the norm N(a') and attempt to factor it over the primes pt, ... , pn.If

we are successful, then [a'] = [a] factors completely over B, or more exactly, we have

found a representation a' = ftUr;nizi, where p¡pl = Ø¡) and yizi =0 for 1 S i < B. It

follows that (1) - a(a')-l - 
}]OO" 

zili, hence we have found a facror relation and

(x1+21-yt, ... ,xB+zB-yB) e E{.

2lt can be shown (see, for example, tBW88a, Theorem 2.71) thatthere are at most two reduced ideals in

each ideal class. This is not true for real quadratic fields, where there is usually a very large number of

reduced ideals in each class. Hence this method fails for real quadratic fields, unless it is modified to identi$

a particularreduced ideal, see Section 12.1
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Suppose we have found a basis €1, ... eB of H. Then the class number å of K is the

determinantdetGtT, ... , qBT). Funhennore, any system dl, ... , d.ke F{ containing h

linearly independent vectors generates a sublattice J of FI of finite index 1H:"T), and the

determinant h' of the lattice, which can be found using Hermite reduction, is a multiple of

lz, namely h' = h(kÃ:J). Hence the class number can be computed as follows. V/e frst find

an approximation h* of /¿ such that h < hà' < 2å, using the analytic class number formula.

This can be done in time O(log lAl) (for details, see [Mc89]). Next, we successively

generate factorrelations as described above, and add the corresponding vector ofexponents

to.T (initially, .I = Ø). After each relation, we compute the determinant h'of all the vectors

in.î (initially, h' = 0). If 1u:J) is finite and, h' ( å, then h'= h and we are finished,

otherwise generate the next relation. The running time of this algorithm is ¿(l^l){-2+o(1).

McCurley shows how the second stage of the index calculus method can be used to solve

any instance of the DLP in Cl(K) in time L(lAl)l+a(t) þAcS9l. Buchmann and Düllmann

tBD9ll illustrate how knowledge of the structure of the class group can reduce the running

time as follows. At the end of the class number computation, .l contains a basis e I , ... , ej
of F{. computing the smith normal form s = diag(N1,...,N/, 1,..., 1) of the basis

yields an identity of the form S = u-l(glT, ... , eBT)v where s, (J,v are nonsingular

matrices, i.e. S, U,V e GLr(Z),and N¡ > l for 1 < i < I. Let U = lu¡jl¡j=1,...¡ and
B

g-t -[uijl¡j=t,...,8.\f T¡=ffip¡uij (1 <t</), then Cl(K) = <[yl]> x...x <[y¿]> and
j=L

ord([yJ) = /y'i for 1 < i < /. Hence the Smith norrrial form computation of a basis of F{

I
yields the invariants of Cl(K) in time L(l$l)^,p+o(l). Furthermore, since p¡ =Wyilìj

j=1

(1 < i <B),arepresentation of any element in Cl(K) as a product of powers of the classes

of p1, ..- ,pB yields a representation in terrns of the classes of yl, ... ,Tt.It should be

pointed out that the Cohen-Lenstra heuristics ICLS4bl imply that / = 1, i.e. Cl(K) is cyclic,

in over 97 .15 Vo of all cases.
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To solve zc -Eforc (g,z idealsin K), generate arandom (x1,... ,xB)e X. Compute the

ideal a = gfte,*, and f,rnd a reduced ideal a'in [a]. Attempt to factor a'over the factor

base B. In case of success, we obrain u,= fr p¡lipizi,yizi --0 for 1 < i < B. Hence

* - u'to,*, - 
,3e 

lrzrxi,whence we obtain a relation s - ftW; Simitarly, we fînd

" - {fr*,. 
Then (1) - gcv-t - firtn-j,, 

hence we can find c by solving the system of

simultaneous congn¡ences cj¡ = ft¡ (mod ¡/j) (1 < i < /) for c, using a generalized Chinese

Remainder Theorem. Buchmann and Düllmann show that given the structure of Cl(K), the

solution c of gc - z,canbe computed in time Z1tnyl*'(t).

It should finally be noted that even though the complexity of the index calculus methd is

noticably better than exponential, all the above algorithms a¡e still compleæly impractical if
the underlying structure is large. For example, with current technology, it would be

impossible to compute in reasonable time an arbitrary discrete logarithm in a finite field

GF(q) where q has approximately 2OC digits. Hence, cryptographic schemes based on the

DLP appear to be quite secure.

E.2 " 3 Othen Schernes {Jsing Ðiscrete n ogarithnas

From the observations in the previous section, it follows that the original Diffre-Hellman

key exchange protocol in GF(p)* can be broken in subexponential time. The same is true

for all its extensions to arbitrary finite fields and for the variation using the class group of

an imaginary quadratic field [BW88a]. The scheme using matrix rings over GF(p)

proposed by Odoni et al [OVS84] can be shown to be no more secure than the original

Diffie-Hellman scheme, since discrete logarithms in is underlying group can & computed

by calculating logarithms in extension fields of GF(p) (see [&84]).
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Any system using the group of residues relatively prime to an integer n which is the

prduct of two primes ([Sh85], Mc88l) can be shown to be at least as difficult to b'reak as

it is to factor n. Hence this variation has the advantage of remaining secure if either

factoring or the DLP in Galois fields GF(p) remain inü'actable, and may thus provide

additional secudty over the original Diffie-Hellman scherne.

Finally, the best known algorithms for solving the DLP in the group of points on an elliptic

curve over a finite field GF(q) as well as the curves of higher genus discussed in [Ko90]

and used in the scheme [Ko88] are only those algorithms that work in arbinary finite

groups presented in Section 8.2.1, with one exception. If the elliptic curve is

supersíngular,i.e. the orderof the corresponding group G is q+ I - rwhere ris a multiple

of the characteristic of GF(q), then Menezes, Okamoto and Vanstone have shown that

there is a probabilistic polynomial-time algorithm (in log q) for reducing the DLP in G to

the DLP in an extension field GF(q¿) of GF(q) tMOVgll. Hence the DLP in these groups

is probabilistically subxponential.

There are a number of other cryptographic systems which use exponentiation in a f,rnite

field GF(q), and whose security is consequently based on the DLP in GF(q).We give a

brief overview of the most well-known ones.

The Pohltg-Hellman scheme [PH78]: This private-key cryptosystem was already

mentioned in Section 2.7.4 and is very simila¡ to RSA. The secret key is a pair of integers

e, d e {1, ..., p-l} such that ed= I (modp-l). A message M is encrypted as C = Me

(mod p), and a cryptogram is deciphered as M :6d (mod p). Any fast DLP algorithm in

GF(p)* will break this system.

The Massey-Omura cryptosystem (Massey [Ma83], Wah & V/ang [fVWSal): Here, any

finite field GF(q) can be used. Everyuseri secretly chooses an integer eie (,1,...,q-11

relatively prime to q-1, and computes d¡ € { 1, ... , q-l } such that e¡d¡ = I (mod q-I).If

Alice wishes to send a message M to Bob, she computes.r = MeA (nú q-1) and ü'ansmits

x to Bob. Bob computes y = fB = MeAeB (mod q-l) and sends y back to Alice. .Alice now
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forms z = yd|: MeB (mod q-1) and transmits z to Bob, who finally computes

4s =M (mod q-1). Here, as usual, all remainders are taken to be between 1 and q-1. Note

that this scheme requires no key exchange, but 1.5 rounds of communication per message.

Furthermore, caution is advised in its use, since it is extremely vulnerable to an

impersonation attack. A cryptanalyst C intercepting x = MeA (mod q-1) could send

yt : Me^ec (mod 4-1) back to Alice. Alice, thinking that C is Bob, returns z'= MêC

(mod q-l) to C, who could then read ruf = &c (md q-1). Hence all messages should be

authenticated in this system.

The EIGa¡nal cryptosystem[El85b]: This public-key system also makes use of arithmetic in

an arbitrary finite field GF(q). All users publicly agree on q and an elemenr g e GF(q).

User i's secret and public keys are a random integer aie {1,..., q-21 and the element

gat e GF(q), respectively. In order for Alice to send a message M e CF(q) to Bob, she

chooses a random k e Z>0,looks up Bob's public key gaB, and sends the pair

@k, føgag\ to Bob (i.e. the message M is "masked" by gaB andthe "clue" to unmask M is

gË, but the clue is only useful to Bob, since only he knows ag). To retrieve M, Bob

computes x=(gk¡ag andMgankx-l =M. Note that this system requires twice the

bandwidth of all the previous schemes.

The ElGamal sigrnrure scheme [El85b]: This scheme uses GF(p)* as the underlying g'oup.

The prime p and a primitive root I (mod p) are agreed upon ahead of time by all parries.

Then each user f secretly generates a random integer ai e I l, ... , p-l ) and publishes

xi: gai (modp), 0 <¡¿ <p.To sign a message M e (1, ... , p-11, Alice secrerly chooses

a random integer È e {1, ... ,p-2} such that gcd(&, p-l) = 1, and compures r= gk

(modp),0<r<p. Then shefindsse {1, ..."p-21 such that M =alr +&s (modp-l).

Then gM : ga¡r+ks = x1rrs (mod p). The signature S of M is the pair S = (r, s), and ,S can

easily be verified by computing both r6rvs (mod p) and gM (mod p) and comparing rhe

two. To forge a signature, a cryptanalyst must find r=ge (modp) and s=(M -a6)þI
(mod p-1) without knowledge of Ë and a4. This signature scheme has recently been
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proposed for a US national standard by the National Institute of Standards and Technology

(Nrsr).

Schnorr's identificatìon scheme [Sc90]: This scheme, intended to b employed on smart

cards, can be used to prove one's identify, and is based in the DLF in a subgroup of

GF(p)*. V/e fust require the establishment of a trusted key authentication cenû'e (KAC) for

the registration of public keys. The KAC initially chooses primes p arrd q such that q I p-|,

an element g e GF(p)* of order q, and its own private and public keys for a signature

scheme of its choicë. p, Q, and the KAC's public key are made public. Any user wanting to

register with the KAC chooses a secret integer s e [l, ... , Q!, computes v = g-s (mod p),

and submits v along with some identification to the KAC. The KAC verifies the users

identification and generates an identification string / and a signature S of the pair (/, v).

If Peggy (the prover) wishes to prove her identity to Vic (the verffier), she flrrst chooses a

random integer re {1,...,q1and computesr=gt (modp) (this need only be done once

and ¡ can be reused for subsequent proofs of identity). Peggy now sends her identification

string 1, her public key v, the KAC's signature ^f of (/, v), and ¡ to Vic. Vic verifies the

validity of Peggy's public key v by checking the signature .S. He then chooses a random

integer c e I I , ... , 2t] (the chatlenge) and sends c to Peggy (here, t e 7,>0 is a security

parameter which should be chosen appropriately to make the scheme sufficiently secure and

at the s¿rme time efficient). Peggy returns the value y = r+sc (mod q) to Vic. Finally, Vic

computes z = gJvc (mod p). If z -- x, he believes that Peggy is indeed who she claims she

is. An improved version of this scheme was recently given by Brickell and McCurley

lBMe2l.

&.3 Key Ðxeãaaxage Wåfå?@ååË e Gnoaap SfneeeÉaane

An important issue concerning the design of cryptographic schemes is the problem of

whether the internal structure of the underlying mathematical set may give rise to
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cryptanalytic attacks. For example, it may be possible for an adversary to exploit the

sb-ucture of the key space in order to drastically reduce the computational effort of an

exhaustive key search or mount an attack which would not be successful if a less stn¡ctured

set were used as a key space. The Diffie-Hellman protocol is based on the arithmetic in a

very stn¡ctured set, namely a group. Hence the question arises of whether the full structffe

of a group is really essential for conducting this kind of key exchange. A close look at the

scheme reveals that we really only require a set G with a multiplicative operation such that

the following holds:

Ð G is closed under the operation.

iÐ From their respective computations, Gb)o *d W)b, the two parties need to be able

to agree on a common key.

In the case where G is a group, i) is satisfied by definition and ii) holds because

7gb¡a = Go)b by associativity. Our question can now be rephrased as follows: is there a set

satisfying conditions i) and ii), which can be used as the basis of a Diff,re-Hellman-like key

exchange protocol that is both secure and efficient?

The answer to this question is yes. The first and so far the only example for such a set was

given by Buchmann and Williams [BW90a]. In abandoning the group stn¡cture, their

scheme not only introduces a cryptographically (and quite unexpected) idea, but also

employs a mathematically interesting concept which is due to Shanks, namely the

ínfrastructure of a real quadratic field [Sh72]. The Buchmann-Williams scheme uses as key

space the set of reduced principal ideals of such a field. There is a price to pay for giving up

the group structure. The algorithms of the new scheme are more complicated and

computationally more involved than the Diffie-Hellman protocol, and in fact, the overall

complexity increases from linear to quadratic. In addition, the scheme requires more

bandwidth and an additional round of communication, although in the second round, each

pafiy f'ansmits at most one bit, and in almost all cases, only one of the partners needs to

send the bit.
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The basic ideas of the scheme are merely sketched in [BW90a]. Very few mathematical

details are given and no computational aspects are discussed. More details of the protocol

can be found in Scheidler, Buchmann & \Villiams ISB\I/931. In the following five

chapters, we will review the idea of the scheme, give all the necessary algorithms, provide

a detailed approximation calculus, and discuss our implementation of the protocol. Chapter

9 presents the concept of infrastructure of a real quadratic field and how it can be used for

key exchange. In Chapter 10, we introduce the main algorithms underlying the protocol

and discuss implementation issues. Chapter 11 addresses the problem of establishing a

unique common key and gives the details of the protocol. Part II of the thesis concludes

with a brief analysis the scheme's security in Chapter 12 and a d.iscussion of our computer

implementation as well as some numerical examples in Chapter 13.
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9.3. &,ed¿aaed Fnüraaåpaå Kdea[s axad Ðåstaraaes

For the basics about real quadratic fields, we refer the reader to Cohn [Co62] or Hua

tHu82l. For the material about ideals and their reduction, see Williams [Wi85a] and

Williams & Wunderlich [WW87].

Iæt be a positive sqarefree rational integer. By adjoining the square root Ø to the rationals

Q, *e obtain areal quadratíc fíeldKC =Q({D). 4 generating polynomial for K is

f(x) = * - D, hence (K:Q) = 2. As in Section 8.2.2, we def,rne

g={t if D=2,3 (mod4)
t2 if þ=- I (mod4)

and we set o o-l + r/De 
K. Then the maximal order of K is O = Z[al]. Since Ø and

o

-{D are the roots of/(x) -- x2 - D, K has two conjugate mappings, given by o'r({D) = ^[D
(the identity) and oz(f,Ð = -{D. Furthermore, since ^lD, -^lD e R, we see that K is a

totally real field, i.e. s = 2 andr= 0. For any cr = x +y{DeK (x, y € Q), we will denote

its algebraic conjugate by c' = oz(cr) = x - y.,[D. Then we have Tr(cr) = o+g[' = ?-x and

N(O) = cf,cf,'= x2 - y2D.

Thediscriminantof Kisgiven byÂ= LÞ.rro*s = 2 and r = 0, it follows that the unit
o

rank of K is r = 1, hence we have a unique fundamental unit q > l. R = log q is the

regulator of K.

It can be shown that every ideal a in 0 hasa z-basis {a,b+ccol, i.e. a =la,b +co],

where a, b, c e Z.Here a, b, andc are unique, 0 < b < a, c I b, c I a, ac I N(b +cco), and

a =L(a\, the least positive raional integer in a. a is primitive if and only if c = 7. The unit

ideal can be written as 0 = [1, o¡], i.e. a= c = 7,b =0.
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Recall that for any integral ideal a, an integer a e a-{0} is called a minimum in a if there

exists no p e e-[0] such that lpl < løl and lB'l < lcr'|. If a is a minimum in a, then -c is a

minimum in a as well, so henceforth we will require minima to be positive. Clearly, I is a

minimum in O. There is an iærative procedure which enables us to generate the sequence of

all the minima in O such that I = pl < It2<IB <... (see [Wi85a" pp. 630f.]). The method

essentially computes the continued fraction expansion of o¡; details are given in the next

section.Sincer¡ isaminimuminOandn>l,itfollowsthat¡r¡a1 -qforsome/e7,>0,

and in fact¡t¡a¡n¡-ttirl* forall je Z>0,me Ø such that j+ml > l. If D is chosen

appropriaæly (see Section 12.2), then / might b as large as O({Dlog log D).

From Definition 1.2, we recall that an integral ideal a is said to be reduced if a is primitive

and L(a) is a minimum in a. If a is reduced, then L(a) . ff The set S of all reduced

principal ideals in O consists of exactly those ideals which ¿¡re generated by a minimum in

O. Thus the iterative algorithm for generating the ordered sequence (trl);¡o gives rise to a

procedure for computing an ordered sequence 11 = (1), tr2, F3, ... of reduced principal

ideals. Since Vj+ml=p.íÍl^, it follows that r7+rzt =rjforall je 7,>0,m e Z such that

i+ml > 1. Hence the sequence (qþo is purely periodic with period length /. If we set

M = [1 = pt, þ2,..., p/], i.e. M consists of all rhe minima p € O such that 1 < [r <rl,

then wecan writeS= [r;=(pj) lp;e M] = {(1) --tl,î2,...,n/},soS isf,rniteandof

cardinality /.

V/e wish to make S the key space of a Diffie-Hellman key exchange protocol. The most

obvious approach to setting up such a scheme is for all parties to publicly agree on a real

quadratic field K and aminimum p € &l.Then g = (p) is areduced ideal in K. Now each

party generates a positive integer a and computes the ideal gf =(pd) (a should k bunded

by /, but since we generally do not know /, we can simply choose a suitable bound B for

a). At this point the protocol fails, since gø need not þ reduced.

We will see in the next section that it is possible to obtain a reduced principal ideal n from

ga in O(log D) arithmetic operations. This gives rise to an operation * ("multiply &
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reduce"), under which fr is closed. Hence we can attempt to save our previous approach as

follows. Alice generates a random a e U, ... , B), computes ga and a reduced ideal n4

equivalent to ga, which she sends to Bob. Similarly, Bob generates a random

b e {1, ... , Bl, and transmits an ideal ry obtained from gå to Alice. From rB and a, Alice

computes ngø and from this a reduced ideal k6. Similarly, Bob frnds a reduced ideal kg

f¡om b and 14. At this point, our scheme fails once again, since in general k4 * kg, and in

fact there is no connection or common feature between k4 and kg, other ttran that they are

both reduced principal ideals.

To overcome this second obstacle, we need to provide a means for locating ideals in S in

such a way that the two parties can identify a unique reduced ideal at the end of their

respective computations. In order to do this, we assæiaæ with each reduced ideal r; = ([r¡),

F¡ a minimum in t, a dístance õ¡ = log Pj.l Then ô¡ is a strictly monotonically increasing

function, i.e. ð;+t t ô; 0 e Z'0).Furthermore, lve can define the distance between a

reduced ideal r; and a real numberx as ô(r;, ¡) = ô.1 - x.2T}¡re unique reduced principal ideal

closest to x is the r e S such that lô(r, x)l is minimal.

We can now attempt a third approach to key exchange in S. Alice generates a and

computes and sends to Bob the reduced principal ideal a closest to a, i.e. lô(a, a)l is

minimal. Similarly, Bob provides Alice with the ideal b closest to his secrer å. From b and

a, Alice computes the ideal Br closest to ba. Likewise, Bob uses å and a to f,rnd the ideal k

closet to ab. Then both parties have generated the same key ideal.

This version of the protocol is successful in theory, but causes a problem in practice.

Distances are irrational numbers and need to be rationally approximated. As we will see

later on, the uncertainty in our approximation prevent us from knowing for x e R. the

I This definition agrees with the distance definition given in Sæphens & Williams [Sw89l, but differs

from the one in [Wi85a] and [WW87)by an addirive ærm of log L(r).

2 This def,tnition differs from the one in [BW90a] in is sign.
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unique ideal n e S closest to.r. However, we can identify two possible candidates for r.

Let i be the unique positive integer such that ô7 S -x < õ7+t. If r'¡ = (F7) where õ; = log ¡r¡,

then we call r¡ the ideal closest to the left of -r and denote it by n-(-r). Similarly, if
F"¡it = (ttl+l) where ô7il = log pl+t, then [it = n+(r) is the ideal closest to the right of x.

Clearly, the ideal closest to ¡ is either r-(.r) or n+(¡). For any.r e R, we will k able to

generate an ideal which is either n-(x) or n+(¡).

Now we are able to present our final and functioning version of a protocol for key

exchange in S. D (and thus K) is agreed upon publicly ahead of time. Alice secretly

chooses a positive integer a andcomputes a reduced ideal a e {n-(a), no(a)} and a rational

approximation ô1a, a) of its distance ô(a, a) from a. She sends both the ideal a and its

approximate distance &r, o) from ø to Bob. Similarly, Bob secretly chooses b e Ø>o and,

determines a reduced ideal b e In-(b), n+(b)] and an approximation â(b, b) of õ(b, b). He

transmits both b an¿ 8(n, b) to Alice. From b, ô6, á) and a, Alicecomputes a reduced

ideal ka e $-(ab), r+(ab)\. Likewise, Bob determines from 
", 

81", a) and å a reduced

ideal kg e [n-(ab), r+Gab)]. ha and ks need not be the same ideal; in fact, the two parties

do not know whether they computed the same ideal. However, the exchange of at most

two more bits of information will enable them to agree on a common key ideal

ke (r-(ab),v¡(ab)1.

Two problems arise from this scheme:

1. Given a number a, how to f,rnd an ideal a e {n-(a), n+(¿)}. More generally, given a ¡eal

number a, an ideal b e {n-(b), n+(å)}, and ô(b, b), how to find k¡ e {n-(a b), na@b)l

2. How do the communication partners detect whether or not kE = kg and, in case

å<4 É kg, how do they agree on a cornmon key ideal Ar.

The arithmetic and algorithms to solve the f,rst problem will be given in the next section

and in Chapter 10. Chapter 11 presents a solution to the ambiguity problem of the key

ideal.
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9"2 ädeaå Anåt&axmetña

Let a = [L(a), b + co] be any primitive ideal. If we æt I -L(a)o, P = bo + o - l, then a

can be writren as a = lA , ryllwhere p, I e Z. Then o I e and L(a) I N(ä+ol)lo' o I
implies oQ I D - P2.In this fashion, every primitive ideal a can be associated with a pair

(P, Q) of rational integer cofficíents. For the unit ideal 0, we have P = o - 1, Q = c.

As mentioned earlier, there is a connection between ideal arithmetic and the theory of

continued fractions. As in Section 1.3, denote by F the set of integral principal ideals. Let

" = [3' "#] e F be primitive. If we set Qs = Q,, Po= P, 00 =$@, uno

expand Q'p into a continued fraction as described in Algorithm 9.1 below, then we obtain a

sequence of primitive principal ideals az, a3,... where 
^, 

=lØl-&.1 " {Dl (i e zro¡.fo' o J

We call a7+l the ríght neíghhour and (in the case where i>2) a¡-r the left neíghbour of a¡.

If a¡ =a is reduced, then al =tr&forsome ke ZÃ,aj=tk+j-t isreduced forall j> 1, and

the sequence (a;)t<;<¡ will generate all the ideals in S. In this case, we can compute

reduced principal ideals by starting at any n¡ (i 2 &) and generating Fi+I, ri+2, ..., or,

applying the recursion "backwards" as in Algorithmg.2,Fi-l,vi-2,..., Fl (forthe latter

sequence, we require i > È+1). In the case where a1 is not reduced, this method will yield a

reduced ideal after O(logD) iterations. Hence, the continued fraction algorithm allows us to

step through fr in either direction and to quickly find for any primitive principal ideal an

equivalent reduced one. The algorithm is given in [WW87] and operates as follows. Let

d =l\[D).

Algorttlun 9.1 (Continued fraction algorithm, forward):

Inpur, Anyprimitive ideat u=lQ, P:-!2] 
= n.

[o' o, .l

Output:A sequence of primitive ideals &1, ã2,... in F, where 
", =l+
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Algorithm: Set

qi-t =L!o#), P¡=qi-te¡-r-P¡-r,

seta; =1T,"-f ].** a7i1 =viai where vi

Algoritlm 92 (Continued fraction algorithm, backward):

Input: Any n;e s, r¡ =lT,Pilf 
] 

,, = 
,,.

Output: The sequence of ideals Yi-t,ri-Z,... , Fl = 0, where r, =lT, "# ]
(1 <i <Ð.

D-P¡ntZ lPi+t +dl
Atgorittun: Oj:-qi-, qj = LTJ, P¡ = qjQj - P¡+t (i = i-2,... , l).

Set r¡ =lØ-, -Pi.:^lo 
I 1 = 'i 

o=Ð 
,, .uv, r"/ -L o, o l. 

rnen r;=Qi'r;+l where 0i=; = T(t <i<Ð. E

Theorern 9.1 a) Let a =lQ ,Pl"lõ-1
[o o j* t primitive principal ideal and let a¡, a2, ...be

the sequence computed by Algorithm 9.1. If 0 < QO <rlD, then for alli > 1:

i) a¡ e S; if k> 1 is such that a1 = r¿, then aJ = n&*j-1.

ü) qj>l,0.Pj <^/D, o<Qj<z^lD.
t P¡-.,1o

äi) -1 .1,=-q-.0.
iv) qj -L:A#J, so the expressions for q¡ in Algorithms 9.1 and 9.2 are

equivalenL

b) Let r, = [? , "-j-Ïfg ] 
. *, (í > z)and let ri-;, îi-2,... be rhe sequence

computed by Algorithmg.2.If 0 < Q¡-z<{-p, then for all I <j S Ël:

i) r7 e S, ô; = ô7+r + log lgit = ô7+l - log hyi.t.

ä) Qj-t21,0 < Pj-t o{D, o'<ej_t <Z^{D.

Po=P, Qo=

8j=
Q,
D - P.;2

Q¡-t

-Ð-P¡8j-t

Ç = 1,2, ...).

(/>1).*
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äi) -1 .0i. , =I#P oo.

Proof: a) For i) - iii), see [Wi85a,p. 6321. iv) is proved in ['WV/87, Lemma 6.iJ.

b) It is easy to see that therecursion formulaeof Algorithms 9.1 and 9.2are the same.

Hence if we use Algorithm 9.1, starting with trl = O, i.e.QO = o, P0 = o-1, to compute a

sequence vt,î2,.... Fi, then Algorithm 9.2, starting at ri, computes exactly the sequence

r"j, ... , n¡. This implies ii), iii), and the fact that r; e fr for I Sj < i.l. The second part of
i) follows from r'7= Qi.ry+l and S¡=ü*t I <i <t-1. B

The gain in distance in one step and in nvo consecutive steps of Algorithm 9.1 is bounded.

Theonern 9"2:l.e,t a1 be as in Theorem 9.1. Then for all j ) 1:

a) ø¡ < lyi+rl < qj + l.

b) Y'¡+tty'¡ > 2.

c) I "+< Vir . {Ã.
1^

Proof:Leti > 1. rhen v"r+r + n, =@# + ei =ø-t#* =W= 0; = 
*!r..

a) By Theorem g.l a) iii), 1 aJ-<0. Then vi+r + nt =limplies -t .v.,+r + qj <0,

hence Qj < -Y'j+t = lVi+rl < q¡ + l.

b) tyi+rvi=l-QN'j=1+ qjl\t'jl > 1+ l=2by Theoremg.l a)ii)& iii).

c) lryi'l = W.+= {; by Theorem 9.1 a) ii), and tyi.t = -Vi,-r = qj-r -

= qj-1+ --1- > I + * Ot Theorem 9.1 a) ii) and the previous resulr. B- vj_r !¡

By the Gauss-Kuz'min law (see for example Khinchin [Kh64, pp. 92f.1), for almost all

continued fracrions, a partial quotient q occurs with probability logz(l . 
@.# _ ù
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Hence, we expect qj to æ small in most cases, for example qj = I in 41.5%, Q¡ < 10 in

87.4% of all cases.

Let a1 be a primitive principal ideal and let e^ (m e Z'0) be generated from a¡ using

Algorithm 9.1. Then âm=l'mãrwhere 0r = 1 ,Lm=H-- It follows that for any fîxed

i e Z>0 and j ) i, we have a¡ =9*¡. If we set (nz =' o'j

(m> l),then for 1 <i < i, we have 
^¡ 

=lr^r.

In the special case where al = 11 = (l), i.e. a* = tm,we have (0'r) = ãm = tm= (lrrz),

and in fact ¡t^ = lO'rnl. The following lemma summarizes some properties of and gives a

simple recurrence relation for 0p, Ç^(m> l).

[,ermrn¡a 9.3: For all m > l:

a) 0m+2 = -Q¡nï¡na1* 0¡n,

b) lO'm+ll> le'ml > 1,

c) sgn(O'r) = (-1)m-1

Proof: We have 0m+2 -- vm+lvm9m. From the proof of the previous theorem, 'Vm+tym =

-Qm\lÍm + 1, whence follows the recurrence relation for 0^a2. Similarly, we show $,,+t$rz

= Qmþm + l, which yields the recurrence relation for Ç^a2. Now lO'm+ll = lrf',,llQ'rzl and

by Theorem 9.1 a) iii), we have 1 > -f-, hence l0'ro1l> l0'rl. We show
Itlt'*l

sgn(O'r) = (-l)rn-l by induction on m.V/e have 0'l = 1 > 0,8'2 = V'l = -etlf <O

by Theorem 9.1 a) ii), and for m) 0, using the induction hypothesis for m+l and,m:

8'm+2=-Qm(l)mlø'm+11 + (-1)m-1 lg'^l = (-l)m(q^10',n+ll+ l0'rl). The rest of the

lemma follows from the identity Ç = +. D
gm

#,,...(r = r.Çm=Flq-

Çm+2=QmÇm+t+Ç^.

lÇ'^+tl<lÇ'ml< l.

sgn(('.) = (-l)m-1.
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In order to find for any x e R a reduced ideal n¡ e {n-(x), no(x)}, we could use Algorithm

9.1, starting at r.1 = (1), to generate a sequence of reduced ideals n2, n3,... with distances

&z = log 10'21, ô3= log 10'31, ... , until we obtain n¡ such that ô¡ <¡ < ôt+1. However, since

lvil < 2t[D for / > I by Theorem 9.2 c), each step advances us O(log D) in distance, hence

this will require exponential computation time if ¡ is polynomial in D. We need to move

through S at a much more rapid pace. To achieve this, we make use of Shanks'

í nfr as truc rure idea ( tsh72l ).

We impose an operation * ("multiply & reduce") in S as follows. If n¡, r¡ are reduced

principal ideals with respective distances ô;, ô;, then n¡ * ur* is a reduced principal ideal n,

suchthatôm=ôi+ô;,i.e.m=i+j.Nowifwewanttof,rndareducedprincipalidealn¡

such that ôl <¡ < ðlol, where x is polynomial in D, we start with a reduced ideal n¡ with

small õ¡ = O(log D).r¡ can be obtained using Algorithm 9.1 on n1 = (l). We then compute

îj=rio ri*. * riwhere the numberof termsis n =f. ntrn ô7= nõ¡ =f, and it can be
õ¿

shown that a few applications of either Algorithm 9.1 or Algorithm 9.2, starting at r;, will

yield r¡. If we adopt the fast exponentiation technique as describ€d in Algorithm 2.1, we

can compute r'¡ using O(log n) = O(log D) applications of ,r, hence this method is much

faster than the single step method, provided the operation x of two ideals can be done in

time O(log D) and the computation of r¡ from rj requires at mosr O(log D) iterations of

either one of Algorithms 9.1 or 9.2.

In order to define * more formally, consider ideal multiplication as given in Section 1.3.

Let r¡, r; e S. If we set c = Í'itrj, then c = (y) where log y = ô¡ + ô1, hence, c would give

us exactly our required distance. Unforrunately, c need not be reduced. However, by using

the reduction technique described in [WW87] (details will be given in Algorithm 9.4), we

can compute a fixed reduced ideal n,, which we define to be îi * tj such that

ôrz = õi + õ; + e where lel = O(log D), so lel is usually very small relative ro õ¡, õi. îm c6l

be generated as follows. If we set âl = c and apply the continued fraction algorithm as

given in Algorithm 9.1 to the prduct ideal c = at O(log D) times, then we obtain an ideal
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a¿ which is reduced, i.e. ap = Fnz for some m e 7'>O. Since ideal multiplication requires

time O(log D),r¡ * rj can in fact be computed in time OQogD).

The algorithm for ideal multiplication, which is basically Shanks' modification to Gauss'

composition algorithm for quadratic forms, computes for two primitive ideals

a1 = [a¡ b1+{Dl, ãZ = la¡, b2+al the product ideal â3 = ta3, å3+ot], where a3 = alay and

bz = h (mod a1), bl = bz (mod ¿Ð (a3 need not be primitive). The method is described in

[Wi85a, p. ûa] and in detail in [SW89, p. 6241. We will describe the latter version (the

factor U is extracted to ensure that the pnrduct ideal c is primitive).

Algoríthn 9.3 (Ideal multiplication):

rnput:', =[?, t-ï@ 
],,, 

= l+,"-# ] " 
n (í, j > t).

Output: ce Fprimitive, U e Z>0 such that riîj=(Jc.

Atgoríthm: t) Solve %o ,, *%o ,, = y = t.dff, Tfor 
x1 ,y1,y e Z.

z) Solve 'ut{ar, + yt¡ = i[J = *{ "-#, y 
) 

for xz, !2, I] e Ø.

3) seto=W.

set x = !zxtr7-t-Pi.ù ".Påf(-oa +)
Set P = P i-t .+ (mod O). Gf (l =1, then set x2 = 0, yz= l.)

setc=lQ.P.{D-l ü
looJ

4)

s)

T'heore¡n 9.4: If ri, rj are such that the coeficients Q¡-1, Q¡+Pi;, P;-t satisfy the bounds

in Theorem 9.1 a) ii) and iii). Then Algorithm 9.3 performs Oflog D) arithmetic operations

on numbers requiring O(log D) bits of storage.

Proof: Qt-t, Q¡-t, Pi-1, P¡,1 = OblD), hence all numbers throughout the algorithm are

bounded by O(D). Our algorithm performs a fixed number of arithmetic operations plus

two applications of the Extended Euclidean Algorithm to solve the linear diophantine
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equations. The number of arithmetic operations performed by the Extended Euclidean

Algorithm is logarithmic in its largest input number. ü

The algorithm for reducing the product of two reduced ideals is simply the continued

fraction algorithm as given in Algorithm 9.1, applied to the product ideal a number of

times. The method is discussed in detail in [WV/87].

Al g or i t lvn 9 .4 (Ideal Reduction ) :

Input:a1 eFwherr 1 lo P+tiDl'
r al = e = Urfi = 

L]' " -l 
is comRuted by Algorithm 9.3.

output:a¿=0,Éales,0¿=(-1)É-lrysuchthatBk-2,G*.zeZúandk>2.

Algoritlm: l) Set p'g =Q,P'0=P,B-Z=l,B-l =0.

2) Repeat, starting atj = 1:

compute 8'¡-7, Q'¡, Pi'as in Algorithm 9.1

set Bj-l = q'¡-18¡-Z + B¡-S

untílo3Q'¡3d.

3) Compute one more quadruple (Ç'¡-t, Q'¡, P'¡, B7-t) as in Step 2.

4) 5"¡ ¿ =i+1, ãk=lQ'k-t,P-t-t:9 l, uo = (-l )*-r 
G *-z -!r-z"l D

Lo'oQ'o'
where G k-2 = P'k-tB *-Z + Q' ¡-18 p-3. å

As soon as 8' jis obtained such that o <Q'jSd,theideal a¿ =lq!-l-,Lo
reduced, so &¿ = r^for some rn e ØÑ. The exna iteration in Sæp 3 of the algorithm is to

ensure that the bounds 0 < P'¿-t < ./D, 0 < ?'t-t < 2^lD of Theorem 9.1 are satisfied.

(Note that we write Pi'-r, Qi'-r instead of P¡-t, Ø-t to indicate that these are the coff,rcients

of an ideal a; which is not reduced fori < &-1. This notation is not to be confused with the

notation o' e K which denotes the conjugate of cr).

P'k-r + {D I .lrsoJ
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X-emrr¡¡a 9.5: Let c,B¡(-2 <t < k-2), Gp-2,8k,ek bo as in Algorithm 9.4. Then

0 < ts¡ < Bi+l "# (2 s í < k-4), B*-z < (q'k-z + tff, G*-z < 3.,1 Dn*-2.

Proof:0 < B¡ < Bi+l is clear from the recursion since all q'i> | for i > I by Theorem 9.1

a) ii). From Theorem 4.2 in [SW89l, we get 8k4.ff fn" bound îor Bp-2 follows

from the recursion. The inequality for G¡r-2can be obtained using the bounds onPl-1,

Q'k-t in Theorem 9.1 a) ii) (it is at this point that we need the exr'a iteration in Step 3 of

Algorithm 9.4). m

T'l¡eoren¡ 9.6: If , = þ,n¡ where the coeffîcients of r; and r; satisfy the bounds of

Theorem 9.4, then Algorithm 9.4 performs OQog D) arithmetic operations on numbers of

O(log D) bits.

Proof: From Algorithm 9.3, we

lØo, 
r]a:-'lD.l. ,, uo = lq!-r-,Lo o J L o

and Corollary 4.1.1in tSW89l that lP'¿l<./D * Q'0,18'íl< Q'g for 0 < i < k-2. Theorem

9.1 a) ii) yields P'k-t,Q'k-t=OdD). From Lemma 9.5, we obtain B¡=O({O)

(-2<i<k-3)andB¡-2<(q,k-2+1)Bp-3=61p32¡,sinceq,p-2¿w=o(D),

and G = gçp2¡. (ndeed, by the Gauss-Kuz'min law, q'¡r-2will be small most of the time,

so generally, we havelP'p-21= O(^lD), Bk-Z= O(F), Gk-Z= O(D)). Hence all numbers

in the algorithm are by a fixed power of D. By [WW87, Corollary 4.2.1], rhe maximum

number of iterations is 
{oS ^at 

= O(logD). E

T'heore¡m 9.7:Let * = fi*,n¡where 
yi,rj areas in Theore m9.4and let a¿ be the reduced

ideal computed from c = al using Algorithm 9.4.If &k=rm,then ô, = ôi + õ;+ e where

lel=logD+O(I).

have Q'0 = O(D), P'O= O(D) where c = al =
P'k-l + ./D I

o)'
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proof,,we have From Algorithm 9.3: e's =W,* # = e#ffiu. since

Step 3 of Algorith mg.4ensures that È 2 2, we have B¡n-2> t, ,o$ ,e*#Ñ,

# -o rrom r-emma o.s:S < r0,¿r "z¿t-zWrñ, =*# < 4(q,t_z+ r) =

o(D).set e = log#, then lel = logD + o(1).If n¡= (pÐ, rF Gg), and if a¿ = ym=(ILm),

then nr = 0'&c =þroj.,so Fm =lþtipi, hence ône= log þm =t.reP) =

e+õ¡+ô;. ü

Let.r, y € R. Our next goal is to compute efficiently from ideals ri € {r_(lr), n..(x)} and

r';e [n-(y), n+(])] an ideal rne {n-(x+y), ra(x+y)}.To achieve this, we first compute
1c = ¡tit¡ and a reduced ideal rr such that ôn = õ¡ + õ;+ t, ltl = log D + O(1), in time

O(log D), using Algorithms 9.3 and 9.4. Then ô(r., x+y) - õm - x - y -- ô(n¡, ¡) +

õ(r;, /) + e, and nr need not yet be our correct ideal rn. Hortirever, trn can be computed

from r¿ using one of Algorithms 9.1 or 9.2.It remains to be shown that this requires no

more than O(log D) iterations of either of these algorithms. We prove this result and

discuss the details of the algorithm in ttre next section.
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ß. &. 3. Pneå å x¡añmax'å es f'on tãa e ãxea på ema euatatåox¡

Since the evaluation of logarithms is computationally expensive and hence to be avoided,

we inu'oduce exponenfial distances. If r; = (F;) is any reduced ideal with distance ô;, then

define its exponential distance as simply rôi = trj. Similady, if ¡ e R>0, we define

ì,(r;, x) = sür;, x) = Vje-x.

As indicated before, distances are generally irrational numbers, which need to be rationally

approximated in our algorithms. More specifically, we approximate a distance ì,(n, -r) e R

by î,(n, ¡) e Q with a frxed precísíon of p bits, i.e. we write

1'(r,¡) =S9,'2p

where M(r, x) e 7,{. V/e define the reiative enor

P(n, x) = 
-&L+'À(r, .r)

We denote by Ê(¡) the ideal actually computed by our algorithm, so we always have

f1,r¡ e {n-(x), n+(x)}. For abbreviarion, let }.(¡) = },(Ê(¡), ¡), î,(.r) = t(Ê(r), ,, =ry,
e¡¡¡ = &Ð.

À(x)

The following lemma is an immediate consequence of Theorem 9.2 a) and c).

Len'¡rna 10.n: Letx e R and let j > 0 be such that n-(.r) = r;, nç(x) = Fj+1.
1

ù q j-;n < À(r-(.r), r) < I < î,(r¡(r), x) < q¡-1+ t.

b) ì.(n-(x), r) t *, À(na(x), ¡l < ú.
{¿

Proof: We have ra(.r) = Vin-(¡). The inequlities },(n_(x), x) S 1 < À(n+(¡), ¡) are clear. If
we show À(na(r), -r) < hyil and î"(n-(x), ¡) > j, tfren the Lemma follows immediately

t\ril
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from Theoremg.2 a) and c). From Theorem 9.1 b) i) pj+r = tvi'lttj.Now À(n+(.x),¡) =

It¡+p-x = lV' jlpje-'= tryi'lÀ(r-(x), ¡) < lyi'l and À(n-(-r), 
", +9't *. *

Iur'rl h¡r'rl'Y J' 'Y J'

For our implementation, we need to define a number of constants and state their properties.

I,er, B e Z>2 be an upper bound on the secretly chosen exponents c, å such that I is

polynomial bounded in D. Set

d* =fzp^|n1,

Y =f e-l?Pl,

Also recall that d= L¿J and Â = + is the discriminant of K. For our computation, we
6¿

require

2p >3072"d82,

i.e. our precision is polynomial in D. For example, if a, å are bounded by d = L{DJ, we
1_

must carry fiJçOz¡ bits of precision; a bound of LTDJ on a and b requires a precision of

O(D) bits, etc. Furthermore, y will be a lower bound for all our approximate distances

M(a,;r) throughout our protæol. Then the following inequalities hold.

-1x= | + 
2p-l'

-=G+-J

Lernrna 10.2: a)T> 1.

ç)X+2-P< f +j- <A.-g." 2.p-¿

e) s7 <l o+' 
'/¿

-18 = I * 47d,
I

¡=gtefl.

Proof: a) Clearly g <2.y> S-I?P >zp-l > l.

b) Clearfroml> l and ,-i=å> I sincey> 1 bya).

c)x+2-P =t"#"$ =t.#< I + 
þ.r.provetheinequality I + þo^,

notetrrat(t . *--ùtu"= (, .hf''#<exp 
tr"ùsinceros(r.+)'#

b) K >1.

al xz(r . h)<.,1N 
< e3.

n(+z:416<r+å.'l-grz-P {¿
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forx > 1, it follows that log(S) ,-#r-*ArW So A1 682 =g > exp (*rr1
- /, 1 tl6B2'[' " ,Pa)

d)Wehavey.N;ol,soy- 1 <\unar nå < I + I 
=I I 2p y_l

*,(t "h)<ß.Toprove K<A6,weobservethat 1-fl > t-#

follows that K <

Now0q | = ¡t-l -2¡t-2- l,sodivisionby zàp-3weobtain o.h_ #-# ,,

1 < 1 + # h L* 
- t Ð :z = (t h\' . 

#-ùrhererore rã"' * #
and Ã- < (t

'l17=(r

" #_rf <a6 by c).

. #d = 1 + h "W{i} @. Now O = G ) = 35 and ï* a
= # =;îdror 2<í <7.Sog7 < I + h.m=r "ffi= r + ffi
Now 4d >Z(d+l) > z^lD >ü, ro g7 < t * Jfr+< t + -L,

zzog",[L 
' ff.

ÐwefirsrobservethatB= 1+ h=t *#=#,hence r^ =ffiT <2.ttfolows that

D(e-t)- s4>zp(s-t)-z=ffi-trt%trf'-z>%!-2=62> t, hence s2p - s4 >

t + ?!,ors(l - s3z-p) > 2-p +1. rherefore t " ffi ^d+## < s7 <t + l-{Ã

by e). ü

hence
I -T-t

andg<2,soit

using t +¡<* ttkt < 1.

Afr,.Z T'ãae,&ågor'åÉåamas

our first algorithm in this section takes rwo input ideals Ê1.r¡ e {n-(x), r+(x)} and

ê(y) * {n-(y), n+(y)l (x,y e R) and computes É(x+y) e [n-(x+y), na(x+y)]. The
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second algorithm computes from a positive integer m andÊ(.r) e {n-(x), n+(¡)} an ideal

þ@x) e {n-(mx), n+(mx)}.

Algorittvn I0.I: Input; Ê1x¡, Ê0) = S, M(x), M(y) (x, y e R) such that

i) M(¡), M(y) > y,

iÐ Ê(¡) e {n-(r), n+(x)}, ÊO). {r-(y), r+(y)},

üi) s-l s p(n)p(y) < s.

Ou.Eut: ê(¡+y) e S such that fl(,r+y) e {n-(¡+y), r",-(x+y)}, M(x+y) > y.

Algorithm:

r. compute u e z>0,.=[?,"_bY 
]. o,* = þelâ0) usinsAlgorithme.3.

2. Set a1 = c and compure uo=lQxt e fi, 0¿ = (-1 y-$t-z-J¿-z''[D----r----e 
IO' O ]--"vÆ-\¡'' Q'0

such that EÈ = 0'Éc and G¡-2, Bç22 0, using Algorithm 9.4.

(Then uo=þg¡FrÐ andek=îm=1ry,r--a;flfor some m e zr0¡
[o o I

3. Setr =f zuffi,è=#r, L=r$trrttrrl.

4. a) If 1 < L < 93, then {Case I}

set Ê(¡ +y) = r^,M(x+l,) = I lrø"ortrrll =f nr7

Ð ff L < l, then {Case 2)

compute Qm-y, Pm, Q^wing Algorithm 9.1

setr*=?P,rm+t =rt#Ël
repeaf, starling at j = *a2'

compute ø¡-2, P¡-t 0;-r, using Algorithm 9.1, and T¡ = ø¡_ZT¡_¡T¡_Z

untit r¡ 2! > r¡-t

set n = j, P(x + y; = n¿, M(x + y) = ffiorruil =Y ry1
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c) If L> g3' then {case 3l 
î e^-tu a ¿*¡p-rl T p 

^-ûp 
+ d*a

setr* - ).P - t, rm-r =l ffi I =i ffi I

repeat, starting at j =*-2'
compute Qj, qj, P;, using Algorithm 9.2 andT¡ = øjf¡+1+ T¡+Z

until T¡-t > L?I >T¡

sat n = j,Ê(¡ + y) = în,M(-r +, =lffir¡ltcylf =l ffi1. "

TÛ¡eoren'¡ x0"3: Algorithm 10.1 compures Ê(x+y¡ and M(x+y) such that Ê(¡+y) e

{r-(x+y), n1(x+y)} and M(.r+y) à y.

Proof: Once we have computed the product ideal a1 = c in Step 1 and from a1 a reduced

ideal a¿ =tm, we need to step through fr in the appropriate direction, starting at r',??, to

movecloseto-r+yandobtain Ê(x+y¡ =tnê {n-(.r+y), r*(x+y)}. To sèe thar nn is indeed

the correct ideal, it suffices to show that 1"(nn-1, ¡+y) < I < î.(rra1, x+y).

Since )"(a¿, x+y) = #^*rtt), we see ttrat ô and L are approximations for l0 ¿l and

X(ak,x +y), respectively. For simplicity, let 0 = l0'¿1, G =Gk-2,8 -- Bk_z,g=e'g.We

first prove

Proofof(l): 23PA =

Now 23pX = 23p + z2p+r and 22p > 3g722¿28t, ,fflr2d¡z ,-ff\o, 
"in""

n = ('lD)2 < (d+t¡z s Qô2. Furthermore, Step 3 of Algorithm 9.4 guaranrees that k> Z,

soB >Bo> 1 andG >P-*¡B> 1. rhereçor"22p+l ä=ry"#rLffÍ " t

ry"#tt@ 
= 

rro @åW < r < 2zp 
GD

. r2oG2p 
+ B@"ID + D+ I = z3p0 +z2pïø+ t.

0<ô<10.

O:oI
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and triviall y 22e+ry > 22p$ . t, rottows thar T < 23pø + zzøfi+ t

a 2zn+t$= 23p0 ¡ 22p+tg = 23px0,so (l) holds.

we also have 
4.L@, x+y) < L.

proof or (2): À(a¿, r+v) = 
gunor^t 

, = #H = ã#po), so since x. < s bv

tæmma 10.2 c): 4.4 <--J-< I(a¿, x+y) sL < t.s' s"x gxp@)pU) sp(¡)p(y)

The bounds on 1.(a¿,x+y) show thatourthree cases 1<L< g3,L<l,L>g3 correspond

to }.(nr, x+y) = 1, À(nr,¡+y) < 1, ì.(r.,r+y) > 1, respectively. For each case, we need

to show M(nr, x+y) >yand l(nr-l ,x+y) < I < L(rn+l,r+y).
case I:Here we tau" { < x(nr, x+y) s g3, so by Theorem 9.2 c)and Lemm a r0.2 e):

ô

)'(rm-tx+y) = ?v(r^,r+y)hy'r-1 1-t a gl(t * -1-¡t < 94 < I andl. !¡J
I(¡'m+l , x+y) = l\t'mlì'(rm, x+y¡ > (l * +!-3 > g4 > 1.tt^{ 

fn1Hence r, e [n-(x+y), n..(x+y)]. Furthermore, M(x+yt> | f, l=t.

Case 2: Here À(rr, x+y) < 1, so we need to compute right neighbours of r^ in order to

increase distance and move closer ro r+y. Note that if r;= 
#^, 

rhen fii, un

approximation for 
l#l = 

,t$*',, 
(i>- m)and this expression increases as i increases.

< Z3pg o 2zontBy

Hence, if T¡ =T7, tn"n t =#L= l#l L(n^, x+y) =ì.(r;, x+y). v/e have

(2)

Proof of (3) by induction on j. The case j =misü =Tm<y?P.For j =m+1, we have

,lffil < ?!t 4r' ^t 
.P4#Ï 3 rm+t :#i+ r < 

oÊ#! .,
= ?l\trt'ml . #+ I < ?Plty'*l + 2 = yvPh|^l = X2{ffl

l#l =#'l#l (Ì>m)
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From ræmma e.3 a) andc), it rorowstr," lffl = rrlHl " l#1, 
hence, since an

q j > 1 for i ) m, (3) follows trivially from the linear recursion for T¡.

I e" I ß'jtlp grjL tNow l.(r;, r+y) = lúl 
L(r^,r+y) = d^,T6 for all i )- m, so from (3),

(1), the end condition of the repeat loop in Sæp 4 b), and condition iii) of Algorithm 10.1:

r(n¿-l ,x+v)= WiW*< l.l.t.l*= l andasincase 1:

hence nn e I n-(-r + y), n."(x + y) ]. Furrhermore M(¡ + ,> ,f 4X - ^t.

Case 3: In this final case L(r^,¡+y) > 1, so we need to compute left neighbours of n, in

order to decrease distance and move closer to x+y.Here, if nj =*¿¡, then $ i, un

approximation for l#l = liîl = 
$,*,,, 

(i <m), and

decreases. Hence, if Tn= L?], then 1 =4 =Tn-
'We show by induction on7 (i =m,m-1,...):

;l#l -#-l#l (<m,

Proof of (4): V/e have Xù = ?! + 2, *T = ?l -L.

Therefore, since I .2,4 <2p-1, =Tm4?P,whencefollows the case"¡ = m.For j -- m-l:
x

ïlHl =ï'r' *-,, =W s rm-t .'# .,
F*-pP+'[D?P+l"-ffi+ 1=*;r,*_r,"¡fiot

<?rlt\t'm-tt +1-\tr*', I \
x\ m-lt - 6* 2)

,rf "z

Ç-lt
l'r l

this

e'^l
e'rl

expression increases as j

L(r 
^, 

x+y) = À(rr, x+y).

(4\
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<1/tl'm-rt+ l - iT#J
= ?rlt\t' m-rL o r - I (r . #r)< Ttt{ 

^-tL 
+ r - I (r . #r)

< :zt\t'*-r' o t - ! (t . #)= ??ttr m-r, = *lfil,
using {D < ?P-2 for the last inequaliry. Now from Lemma 9.3 a) and c), we obtain

tÇ'i*zt=-QlÇ'i+tt+tÇ'it,hence l#l =rtlHl" l#l (Ì <m-z),so4 "'. l#l
satisfy the same recursion. Hence the above inequalities follow since all qj>- 1 for j < m-2.

Now,forallj<m:A.(n¡'x+y)=l*l}"(r^,x+y)=Wl,#,,o;soasinthe

previous case:

=?P\y'm-ll+ 1- 72Pm-1 +2tlD - |

X Q.m-Z

^ , lÇ'mlTn-l g LZp 1À(rr¡-l' x*Y) = 
lc' *rl?] ã 4-lsp6Þo)

r(rn+r ,x+y¡>(t 1 .lÇ'*lrno Lzp 1 'tl L.r.{={r93 r t,
[ 

. 
Gj tÇ:'t'?P 6T^ silÌn ..¿"'i-* s¿ x¿ o

hence Ê(x +y) e {n-(r +y), n¡(-r+y)}, and again, M(x +rl =[Zl -,. ü

T'heorer¡n n0"4: lf Ê(x), Ê0) = fi are such that the bounds of Theorem 9.4 and the

conditions of Algorithm 10.1 hold, then Algorithm 4 performs O(log D) arithmetic
operations on inputs requiring p +2log D+O(l)bits of storage ar worsr anO p{fog D+O(l)

in almost all cases.In particular, M(-r+y) = O(?l.lD) in the worsr case and M(x+y) = O(2p)

almost always.

Proof: By Theorem 9.4, computing c takes O(log D) arithmetic operations on numbers

bounded by O(D). By Theorem 9.6, the same is true for the computation of n*. By

Theorem 9.1, in obtaining Ê(x+y) from Er, all coeffrcients computed by the neighbouring

algorithm areboundedbr O(l\D). So we only need to prove that în=þ(x+y) can be
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obtained from nr in OQogD) iterations (i.e.ln-ml = O(log D)) and that the maximum value

of 4' is bunded by OQIÙZ) at worst nd O(?]dÐ in almost all cases. From the proof of

Theorem 9.7, w er,ro, 
¡Luu 

. fi . +@ol) where q is as in Theorem 9.7 . Bylæmma 10. I

a): À(¡) <q'+1, À(y) <q"+l for some partial quotients Q',q" generated by the continued

fraction algorithm. This, together with condition iii) of Algorithm 10.1 and the inequalities

L> s# , r#þ¿urd L o rvþt >p(v)À(x)Î,g) yields the rollowing bounds on r:

-+ <L<4yg2@+t)(q'+1)(q"+1). (5)
4g.lD

Distinguish btweerr the same three cases as in Algorithm 10.1.

Case I:M(;r+y) =l T1< lwrzl.There is nothing else to prove.

Case 2: From Theorem 9.2b), (5), and the terminating condition of the repeat loop in Step

4 b) of Algorithm l0.l: 4g,,[D , l, r'#2p l o',,| l i=h" -

zn-m <32g2P. So n - m= O(loED).
)D

Now 7n- I <i.'2p+2g^[-D andTn < (qn-Z + 1)Tr-1 < @n-2 + l)g2p+2Ø. From

Theorem 9.2, qn-za ff-, and qn-2is almost always small by the Gauss-Kuz'min law, so

by Theorem 9.2 a) and c) Tn-t = O(!D) at worst and Tn- 1 = O(2p{D\ almost always.

Finaly M(.r+y) =f ,nn-rotþfl<l(qn-zo DTrì.

Case 3:Here 4yg2(q+l)(q'+1Xq"+1) , rr* = l*
2m-n < (+7gz1q+t)(q'+l)(q"+D)'= op+¡in the worst case and o(1) in almosr all cases.

Hence m-n = O(log D) and m-n = O(l) almost always.

Now In-1 is the largest value computed in the recursion. Tn-t < (qna1+l)Tn < (qro¡lþ?!
< 4x,g2(q+1)(q'+1)(q"+l)(qno1+l)2p, so agun Tn-1= O(?]Dz) ar worsr and Tn_1 = A(T)

in almost all cases.

Finany +"*#.*#J

=lffl =ffi*',' 'zT'"

, so M(x+yl 
= f rnnor . rtf,]. u
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Algorítlun 10.2: Input; ê(¡) e S forr e R, M(x), m e

Ouqut: þ(^r), M(mr).

Algoríthm: 1. Obtain the binary decomposition m =få, 2r-í of m, bíe [0,1], å0 = 1.

2. Set Ê(zg) = Ê(¡).

Forí=ltordo3.

a) C;ompute Þ(22¡-),M2Qz¡-l using Algorithm 10.1.

set Ê(z¿ = þ(Zzi-t), M(zÐ =M(2zi-ù.

$If b¡= I then compute Ê(z;+x), M(z¡+x) using,{lgorithm 10.1.

Set Ê(z) = þ(zí+x), M(zÐ = M(zi+x).

4. Set þ@Ð = Þçzr),M(mx) = M(zr). A

g>0.

This algorithm is the analogue of the exponentiation technique given in Algorithm2.l.

From Algorithm 10.1, it is clear that if g-1 S p(z¡-ùz < g after Step 3 a) and

g-1 < p(22¡-l)p(¡) < g after Step 3 b) in each iteration of the algorithm, we have M(zÐ > y

and f,(z) e (r-(z¡), n+(z¿)Ì (1 < í S r).

Theoneì¡! n0.5: Let m e Z'0,r e R, and let Ê(-r) satisfy the bounds of Theorem 9.4.

Furthermore, assume that conditions i). iii) of Algorithm 10.1 are satisfied for each

application of Algorithm 10.1 in Step 3 of Algorithm 10.2. If m is polynomially bounded

by D, then Algorithm 10.2 performs O((log O¡2¡ arittrmetic operations on inputs of size

O(tosD).

Proof: By Theorem 10.4, since p = O(log D), all numþrs have input size OQogD). Step I

of Algorithm 10.2 takes O(r) = O(log rn) operations and this is O(log D) if m is

polynomially bounded by D.Steps 2 and 4 take O(1) operations. For each iterarion, Steps

3 a) and 3 b) each perform O(log D) operations. So the number of operations needed for

Step 3 is O(r log D) = O((log D\. ú
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Now that we have presented all the required algorithms for our protæol, two more

problems remain to be solved:

1. Both communication partners need to start with an initial ideal such that conditions i) -

iii) of Algorithm 10.1 are satisfied throughout the protocol, i.e. for each iteration of

Algorithm 10.1.

2. Algorithm 10.2 computes one of wo possible ideals. The two partners need not obtain

the same ideal from Algorithm 10.2 and must be able to agree on a common unique

key.

These two problems will be solved in Section 10.3 and Chapter 11, respectively.

1{},3 Enx'or ,&xnaåysås

[,ernma X0.6: Let x, y , Ê1x¡, Êúr), n¿(¡), M(]) be as in Algorithm 10.1. Then

proor:Assume M(¡), -r, ji'í,:i: iïi;f,:ilil {n-(y), n¡g)} and

s-1, < p(¡)p(y) < s. 
ê

proof: case r:p(x+y) = þ+ = 

qqto'tt' 
= 

gp,rror) > p(¡)p(y).L(r*¡+y) 
þfrl^,r,

p(x+y). hiT:] " ' ' < p(¡)p(y) (1 .-r-1-l= oo,oo,ft, . 
"=t=rò:¿rxll,ol tt nþ.u>î,o> 

1

= 
pr'po& t " h)< pr'rpo)x(l " 

t*)o pr'rpþ)x2(r " *)
< r/-fp1.r¡p(y) bV (l) in Theorem 10.3 and Lemma 10.2 d).
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rrëo

case 2:p(¡+y) = 5r--¡+Ð , |#olo'NO'A /ê -rrr\ I nr I ^,v\Ánr^t!,t 
l"nlg
lçlzrt'ru'r

P(r+Y¡ o
fixe>xo) + z-P

. or,roof[x . hl_#l)<p(¡)p(y) x? . #)
< OØl1>yz(t " *)< {Ã'p(¡)p(y) by (1) and (3) in Theorem 10.3, the ending

condition in the repeat loop in Step 4 b) of Algorithm 10.1, and læmma 10.2 d).

case 3:p(¡+v) = m' ffi=I+,| ff-l 
p(x¡ps, > p(x)p(v)'

l#lþo,n,,,

=p(x)p(y)þt*t* .

p(¡+y) <

< p(¡)p(y)3[r . frl*l). oo,or r*0.r#)< p(¡)p(y) *r(, . #)
< r/-f<p1x¡p(y) by (l), (4), Step 4 c) of Algorithm 10.1, and Lemma 10.2 d). ß

T'treorex¡r X0.7: Let m e Ø, I <m 1B,x e R, Ê(¡) e {n-(x), n+(¡)}, M(x) > yand let

fl(x¡ = la , 
r-l-7Þ 

I U" ,o"t, that Qand P satisfy the boundary condirions in Theorem
looJ-

9.1 a) ii) and iii). If
1l

s-EÍ<p(¡)=(fuy,

r37
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then M(z;)>yand ÞQ)e {r-(z¡), r+(z¡)} throughout Algorithm t0.2 (1 < i<r). In

particular, M(n¿r) 2y,Þ1mx) e lr-(mx), ra(rnx)], and

min( 1, p@)Zm-l ) < p(rnx) ( max {1, p(x)2m-l 1gm-t.

Proof: LetUg =max[1, p(¡)] > 1,LO =min[1, p(¡)) ( l, and 21 1m42r+1. Define

Then U¡a1 2 Ui> I since K > l,and L;a1 l\ S l. V/e prove by induction on i:

ui = ug2i+l- r62i-1, L¡ =yr,2i+1-1, (0 s i < r).

uj+l = KlJslJ¡2,

Proof of (7): The case i = 0 is clear. Assume that i > I and show (7) for l+1 using (6) for í.

ui*l = KUsu¡2 = Kuo(uo2i+t-1*2i-1r2 =gol+212i+t-l6l+2(2i-t) =yozi+2-lgzi+t-1

Li*l = | or ¡2 =la(L2ior-l)2 =141+2ç2i+t-\ =ynzi+21.

Setting i = r, wo get U¡ - U02t* lg2r-1 <IJg2m-lym-1 < U0æ- lyB-l. If UO = 1 then
314:Ð

lJr<-ya-t 4¿6(8-l) =t 8Bz <g by Lemma 10.2 d). If Ug = p(¡), then Ur<
p@)B-tyn-r <#KB-r =g. So in either case U¡ ( g for 0 < i < r.

Lr+1 = W?

Similarly, Lr =Lg2r+t-l >142m-l >LO2B-1. If I4 = 1, then Lr21> g-1, and if
[,¡¡ = p(r), then L, > p@¡28-l > g-1, so in either case L¡ à g-l for0 < i < r. We have

L¡Sp(z¡)<U¡ (O<i<r). (8)

Froof of (8) by induction on i: The case i = 0 is to < p (x) < Uo and p(zo) = p(¡). Assume

now that i > 0. From the induction hypothesis for i, (6) and Theorem 10.6, we obtain:

case å;a1 = 0: p(z¿a1¡ = p(22¡)> pQù22L? 2 Li+1 since [4 < 1.

pþ¡+ù < {K p(z¡)Z <.'[KU? S Uj+1 since K > 1, U6 > 1.

(0<t<r-1). (6)

case b¡a1 = 1: p(z¡¡1) = p(zzi+x)> pþù2 p(zO) > L¡2tq= Li+1.

From (8), it follows thatt4zm-t 
= 
t, < p(zr) = p(mx). U, . go2m-l 6m-t.

Next we prove that

L¡ < p(z¡-ù2 < Ur and (if b¡ = l)L¡ < p(22¡-t\p@) s U¡

(7)

p(z;+t) < {K pQz¡)p(x) < Kp(t¡)Z p(zO) < KU /UO = Ui+1.
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Then it follows thatg-1 <pkn)z <g after Step 3 a) and g-r sp(22¡-l)p(¡) <g after Step 3

b) in each iteration of Algorithm 10.2, hence M(z¡) > Tand Þ(z¡) e Íno(zi), n-(zÐ) for 1 < í
( r, and from the r-th iteration þ(mx) e {r-(mx), n+(¡n¡)} and M(m¡) 2 T.

Proof of (9): Again, we use induction on i. For simplicity, we let p(z_l) = l.

The case i = 0yields Lo<1S Ug and Lo<p@)SUo. Now assume that ourclaim holds

for i 2 I and prove it for i+l. Then from (6), (8), and Theorem 10.6:

Linl = L¡zLo < Liz < p/ùz S U i2 3 KU¡ZUy = (J i+t,and in the case where bi+t = l:

Li*t = L¡zLo s p(z¡)zp(x) < p(22¿)p(¡) < {r(p( zù2p(x) <.'lKu ¡2u0 < u ¡*t. ü

Tl¡eorer¡r l0.E: Let a,b e 7,, I < a,b < B, c eR and let Ê(c) = 19, "-*E I *[ooJ
such that P(c) e {r-(c), n+(c)}, M(c) 2T,A-1 <p(c) (4, and Q and p satisfy the

boundary conditions in Theorem 9.1 a) ii) and iii). Then M(abc)>^¡, Pqabc¡ e [r_(abc),

ra@bc)), and g-1 < p@bc) < g. Here Plauc¡ is obtained by applying Argorithm r0.2 to

Ê(c) an¿ å to compute Ê1bc¡, then applying Algorithm 10.2 to Ê(åc) and a.

Proof: we want to apply Theorem 10.7 first to Ê(c) and b, then to þþÒ and a. Hence we

first need to show that g-?-B:1< p(c) =(#.Y-. To prove these inequalities, observe
$(u- r' 

8B-7

that by Lemma 10.2 d): ¿2ß-ty}-r a ¿?ß-t¡6(B-t¡ = ¡88-7 = g16B2 ( g, so ¡28-r . å:f
1

(.q, hence gM < Á-l < p(c) < A <

þ(Uc) e (r-(bc), r+(bc)1, and min {1, p(c)2b-l ¡ g p(bc) < max( 1, pçc¡2b-1¡fb-1.We

know that the coefficients of Ê(åc) satisfîes the boundary conditions of Theorem 9.1, so
11

ontv s-28-T < p@c) 
= (fuY remains to be proven.

1

Assume first that p(c) > 1, rhen from our above result p(bc) > 1 > g-TB-1. From Iæmma

10.2 d), we get g = ArcBz > ¡aB26zn2 2 ¡(28-1)2XZB(B-I) = çA2B-1KB-1¡28-168-1, so
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I
p(hc) 3 pþ)zb'|vu'r < p@)28'1yB-r < ¡2&-tvi-t . 

k+,f-I. 
No* consider the case

B-r 2B-r

p(c) < l. Then p(bc) >- p@)zb-r 2 p@)ml > ¿-(28-r) = g- 
t6}z , g- 

(48-2)2 
o ,-# *U

from g > Ar2B2 > KzBz > KLB(B-t) = y(B-r)(2ß-1)¡çB-1, we obrain p(bc) < Kb-1< KB-l <
I

(+ ,Y". If follows once again from Theorem 10.7 thatW(abc¡>^¡,Þ@hc) e lr-(abc),
\xt-t 1

ra@bc)), and min{ 1, p(bgZa-l¡ s pçabc) s max[ 1, p(b)2a-1 ¡Ka-1 and .

We finally need to show that 91 3p(abc) < S.p(bc) > I implies p(abc) 2 I > g-1, p@bc) <

p(b)2a-tYa-t < p(bc)B'tgB-t ,#rut't = g. [n the case where pØc\ a l, it follows rhar

3(B-l)
p(abc)2 p(b$?-a-r > p@c)2ß-t 2 g-l and p(abc) < Ka-r < KB-r < ¡6(8-1) = g 882 < g. E

n-ennrna tr0.9: Let n = (p) =l ?, 
P-ll 2 l. g where r is obtained from o by[o' o J

applying Algorithm 9.1 to t a few times (at least once). Ser c = log lpl, Ê1c¡ = ç,

M(c) = ?P.Then Ê(c) an¿ M(c) satisfy the conditions of Theorem 10.8.

Proof: P and B satisfy the boundary conditions in Theorem 9.1 a) ii) and iii). Since À(n, c)

=lltle-c = 1, we have n e {r_(c), n+(c)}. Furthermore M(c) =?P2}, so p(c) = l. B

Now if both communication partners start on an initial ideal 0(c) generated as described in

Lemma 10.9, they can obtain their respective final ideals þ@Uc) such that M(abc)2^¡,

8-1 < p@bc) (8, and the conditions of Algorithms 10.1 and 10.2 as well as those for

Theorems 10.4 - 10.8 are satisfied throughout their entire computation. Given the above

bounds on the relative enor p(abc), we show in the next chapter that the parties are able to

agree on a common unique key.
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ã1"3. Soüvüxag tåae .&x¡mhügu'aåty Pnohåerna

Before resolving the ambiguity in the ideal computed in the protæol, we need a method for

computing fromÞ@bc) not only its neighbouring ideals as done in Algorithms 9.1 and9.2,

but also their approximate distances.

Algorítlvn 1 1.1 (Neighbouring):

Input: r; e S, M(rj, x) (x e R, j > 2).

Output: r/+1, V'-1 e S, M(1'a1,.r), M(r';-1, r).

Algorítlm: Compute rj+l using Algorithm 9.1 and ry-l using Algorithm 9.2. Compute

rational approximationsS;,67-t of lryll and l0]-tl, respectively, as follows. Define

t=s*P where 
I o if p¡-1 <d,

t={Ltogr(2d+ l)J ir P¡-1 = d.

Set û, -2PP 
j + d* ¡ á - ztr¡-l 

where 7t =f zt.tej-t-, ô;- t = ffi, 
where â =lzt''{ol' co-pute M(r;+l ,x) =

[Sr'nn1ny , x)..|, M(r"l- t, x) =[ô¡-1M(r¡ , r¡.l. B

l-er¡rrna n1"1: Let-r e R, ri_l e S, so, ri, r/+l e S. Then

p(rj ,r) < p(r/îl , r) =-4jl\p(rj , x).t - M(ryt t, x)-

Furtherrnore, if t is as in Algorithm 11.1, then t < p +logrd + 2.

proof:-Û¿ = 
ei+ z'|Ë > 1. similarl" ôr-t 

='-ã 
- 

'i-t ,- r." hfil Pi +,lD - - tqi'-rl .,[D - P¡-t

v/ <P¡+.'lD!_.¿-p=1+lvi'l Pjo.'lO 2nQ¡ + {-Ð
< 1 + 2-P, since P; à 0, {D > l.
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$+ .z 
t 
L^lo-- 

pi-t 
+ r. rf p¡-1 < d, then ^!o - p¡-t> 1, so þtq)'-rl 

- {D - Pj-t ztdD - P¡-ù 'r-' - F' s¡v¡' Yv ' r-r 
.- Si.-rt

< 1+ 2-t=t +Z-P.rrPj-t-d, then ?i+ls2r, so {-a-P¡-t=#W=ffir-
I - 1 

= 
2-s. usins .E < d+1. and 

ô¡-l 
<6 " t"Tãï1>2-s' using Ð <a 

roi.-rr

p(r¡+r,r)=ffi# 
= #ffi >p(ri,x)and

o(r'¡r,, . ffi;fi#< (r + z-P)p(r¡,") offi , ro

o(r7-+r, ',(t -qf,;t)< (l + z-P)p(r¡, x) and

l+2-Pp(ri+l,x) < 
I _ M ñ;tTp(ri,¡).

Repacing j+l by j-l,Vi'bV 0i'-r, and Û; OO ô7,-1, we can use exactly the same arithmeric to

prove p(r/-l, r) ) p(r¡, x) and p(r.1.-t, x) <-#J\p(rj, x).' | - M(r;_ 1, x)-

lf Pj-I cd, then.r =0, so f = r. ffP¡-l--d,thenzt-l <?Å+l implies 2s-2 <d,since2s-2

is even for s > 3 and at most 1 for s 32,and?l+l is odd and at least 3. It follows that

2s<M andt<logz($d)+p.Q

1a ! =l+2-P.
2t-s

Denote by r(-r) the reduced ideal closest to x, i.e.lõ(n(-r),.r)l < lô(n, x)l for any reduced

principal ideal n + n(¡). Let ì.0(¡) = À(r(x), ¡); analogously, we define MO(x), tO(r),

po(x). Then n(x) e { n-(x), n+(¡) }, so Algorithm 10. 1 computes either n(x+y) or one of its

neighbours; similarly, Algorithm 10.2 generaæs r(nx) or one of its neighbours.

Our protocol will be such that Alice and Bob are either both able to determin e r(abc) or, if
this is impossible, they will both obtain ra@bc). The next two lemmas give the details of

resolving the ambiguity problem.

[,er¡rn¡a AA"2:I-etxe R andg-1 <p(x)<g. If g-1 <î.(r)<g,rhen g-2<M@)<e2.

142



Proof: For brevity omit the argument ¡. If õ = ô(¡) = õ(Ê(¡), ¡), then by def,rnition

lõ01 S lô1, which gives four cases, depending on the signs of fo and õ:

1)À.>[o>1. z)L<l=t. 3)À.>lrt. 4)À<Ào<r.
^o ^o

Suppose first l.g 3 g-2, so 14 < 1.

If À< l then fromcase4:â.= pÀ<pÀO <gg-2=g-1 whichisacontradiction.

If l" > 1 then from case 3: 1. > pl t S-l S2- g which is again a contradiction.
Àg

Suppose now that M> g2, so À0 > 1.

If À < I then from case 2: 1. < pl o gg-2 =g-1, again a contradiction.
Á.0

If î, > 1 then from case 1: l. > plg > S-l S2 = g, contradiction. E

l-er¡¡xna lX.3: Let a, b, c, Ê(c), nn(c) be as in Theorem 10.8.

If \O@bc) 2 g2 or M@bc) I g-2 thrn þ(øc) = n+(abc).

If g-2 <M(øc) < 92 then {abc)can be determined from þ@bc).

Proof: Again omit the argument abc for brevity. If À0 > g2 or M < g-2, then by ræmma

11.2:î,>g (we cannor have î, <g-1, since A, =M2-p>-T2-p >g-l). It follows that
A

l.=1>gg-1=1,soÊ=F+.
p

Nowlet g-2<?tOog2.FromTheorem 10.8:g-1 <pSgandÊ e In-, r+], so r =Êorn
is one of the neighbours of f,. Therefore by Iæmma 1 1.1: p < p0 < iffi t
Now Mg =XON = p0X0W > pLO2? > g-1g-22p = g-3?p, so 1 - MO-l > I - g32-p and

#ffi "##. Hence s-3 < pto < p0À0 < #ffipb < ffi tr.

Since pOÀO = 1.g, on" can determine an ideal a which is either Ê or a neighbour of Ê such

thatg-3.t(u,abc)<#ffi83andP(p(a,abc)<ffip.Ifn=\,awhere

v€K*,thentryt - h =Àgp(u'abc)- g-lp-o )-7:p4l=o-L
L(^*t*)= N@ubr) " t+?-e Å¿a+TõF"1"+

| - s3z-P " Uo
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and lryr o rrt#fu =l#< 1 + !*, urins Lemma 10.2 f).From rheorem

O ? ^\ i+ f^ll^.". +1ro+ o - - i. +L^:l^^I ^l^-^^+ +^ -L^ Tl/.L vr, rf rvr¡vwù Lttct @ - ! lù utv ruçd,r vruùçùa Lv ut-rL. á

Now assume that either of the communication partners computes a final ideal þ@bc) with

distance M(abc).He/She then determines the ideal's two neighbours and their respective

distances. If among these three ideals there is one, say a, which satisfies 4 oføg., abc) <
gJ

+##,then b = r(úc) from the proof of the previous lemma. Otherwise, by the same

lemma, we must have Àg(ba c) < g-2 or\4@ac)> g2 and hence þ@tc) = r+(abc).V/ith this

f,rnal observation, we are able to present the entire protæol.

AA"2 T'ãae F'åNaaå Fnotoeoå

l. Alice and Bob agree on D , an ideal n e S (obtained by applying Algorithm 9.1 to the

ideal o =[t, "jt@ lon" ormore times), and a bound B e v.>2.They compureLoJ
p =f logz(3072d8\1and M(c) =?-P according to Lemma 10.9 where c = Iog l¡rl, r =
(p), i.e. n = Ê(c). D, r, and B can be made public.

2. Alice secretly chooses a e (1, ..., Bland from Ê1c¡ computes Ê(ac) =lZo,Pd¿- Ifo' o l
and M(ac), using Algorithm 10.2. she sends the triple (pt, en,M(ac)) to Bob.

3. Bob secretly chooses b e {1, ..., Bl and from 01c) computes Ê(åc) =lØ,P-Ü {D- Ifo' o J

and M(åc), using Algorithm 10.2. He sends the tripre (ps, es,M(äc)) to Alice.

4. From #(ac), M(ac), and b, Bob compu tes þ(bac) and its two neighbours as well as their

approximate distances (i.e. M values) using Algorithms 10.2 and 11.1.If he finds

among theseanideala such that{ < M(a, 6*¡ offi,then a =n(bac).In this

case he sends '0' back to Alice. If he cannot find such an ideal, then he has computed

ra(bac).In this case he sends '1' to Alice.
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5. From þ(bc), M(äc), and a,Alice compures þ@bc),M(abc) using Algorithm 10.2. If she

received '0' from Bob, then she computes the neighbours of Ê(abc) and their

approximate distances and attempts to compute r(abc).If successful, she sends '0'

back to Bob. The corrunon key is then r(aåc). Otherwise the ideal þ(atc) she compured

is rç(abc). In this case she sends '1' to Bob. If Alice received '1' from Bob, then he

was unable to determine úbac) in which case the ideal Þ(abc) computed by Alice is

ra@bc). This is then the key.

6. If Bob sent '1', then the ideal Þçbac) = r+(bac) is the key. If Bob sent and received '0',

then the ideal a he computed in Step 4 is the key. If Bob sent '0' and received '1.', then

Alice was unable to determine r(abc). The key is then the ideal þþac) = r+(bac) initially

computed by Bob.

Note that if Bob sends '1', Alice need not reply. Altogether:

Bob

sends

The actual key is the bit string given by the binary representafion of the coeff,rcients of the

key ideal (or any substring thereof).

sends '0'

t1'

sends '0'

no reply necessary

Alíce

sends '1'

sends '0'

Key ídeal

r*fubc\

ra@bc)

r(abc\
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î2"& T'he Ðüsenefe K-,oganitåema Prohãexm åxa gT

A cryptanalyst can break our protocol if he is able to determine {r-(abc), r+(abc)I, given D,

c, and the precision parameteÍ p, but without knowing a orb. This can be achieved by

solving the problem of f,rnding for any ¡ e R>0 one of n-(x), na(-r). If n_(¡) = r¡ (i 2l),
then ô(r-(¡), ¡) = õj - t, so this problem is equivalent to the problem of finding for any

x e R>0 a positive integer j such that õ; (¡ 4 ô.¡+t. We can formulate the díscrete

logaríthm problem in S as follows: for any given r'.; e S, find its distance õr..

Any fast algorithm for solving the DLP in S gives rise to an efficient algorithm for

breaking our scheme. Suppose an eavesdropper can quickly solve any instance of the DLP.

To break the protocol, he intercepts fl(ac) = r'7 and compures its distance õ7. Then U{*9 =
2p

î"@c) = ìu(ac)= exp(ôj-¿c)qe for some È e v, (recallthat q is the fun¿u-"ntal unit of K).

Therefore, ¿ is an integer close to r-t(u, - logryff + t n)where R is the regulator of

K. More specifically , g-1 <p@c) <g impties 
lot 

- õ¡ + Iog 
^P 

- k Rl 
=,o* 

g. since

R is usually larger than ac (see next section), ft will tend to be quite small; thus an

adversary can retrieve a in a few trials for k values. Similarly, he can find å and hence the

key ideal.

Since ôr = log tf for 17 = (F7) e fr, the DLP in S is equivalent to the problem of fînding,

for any reduced principal ideal rJ, a generator pj. Until recently, the fastest known

algorithm for solving this problem was due to Buchmann and V/illiams [BW88b] and has a

rigorous complexity bound of O(r/R-¿o(l)¡, which can be as large as O(¿ff) if D is chosen

appropriately. An index calculus method is sketched in [BW90b] and panially discussed in

more detail in [CDO92]. It is an extension of the DLP algorithm for imaginary quadratic

fields. For its discussion, we will use the same notation as in Section 8.2.2 (here, B
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denotes the cardinality of rhe factor base E = {[pl],..., tpal], not the bound on the

exponents in out protocol).

..
As pointed out before, there are many reduced ideals in the principal class, so we need to

associate with each reduced principal ideal a fixed generator in our computation. Instead of

using the sublattice El of zB ofall x = (¡1, ... , xB) e ZB such that ftniri - (l), we

defineanewsublattice of ZB xR asF{'= {(xl, ...,xl,logløl) e ZB xR. I (x1,...,x8)
.B

€ FI, a e Ko, flp,q = (u.)). So we identify with each vector in f{ a generaror of thel=l

conesponding principal ideal. The determinant of F{'is åR, and in [CDO92], it is shown

how the computation of a generating system and a basis of F{'can yield the structure of the

class group, the class number, and the regulator of K. In fact, the same transformations as

in the imaginary case are performed, except that they are now carried out on vectors of B+l

coordinates.

To find a generator of a reduced principal ideal r, find a random vector (¡1, ... , xB, xB+t)

such that 1 3 x¡ S Â for í e ( 1 , ... , B+l )) and compute a reduced ideal n' in the class of

u = nftofi; say (cr)r'= â, (f, e K*. Here, the last coordinate r3.r-¡ randomizes the choice

of tr'. As before, we attempt to factor r' over B, obtaining in case of success a

representation r'= ftn;xp ', = fi¡,zip¡lizi, 
where yizi =0 for 1 < i < B. Then

ß_
¡'' = cr-la = ,r-trå 

{p,ri, 
so

hence if we set vi= zryixifor I < í <B,ttrrn ftniuj- (l), so v = (yr, ... "vB) eFã. Let

I'1,...,9'¡+l beabasisof F{'anddefineejc F{tokthevectorconsistingof thefirstB

coordinatesof e'; (1 < i <B). Then e1, ... , €j is a basis of Ff,, and we can express v in

, = oo'frp i-xi - ofllf ,o,zrvrxi,
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terrns of this basis; write v

v = (vl ,...,u8, vB+t) e F{'. Now e¡pa1 is the logarithm of a generator of the ideal

fivf u,say ei3+r = tos ta¡t where 
fr*r= 

(a¡) (1 < i < B). Thus

B
= lt¡e¡

i=l

yielding the following identity of ideals:

B
(exp(vr+l)) = ffi14¡¡È; =

¿=l

exp(v'a1) - exp (,*n,o.r)= ,Û"-o(È¡ 
log lø;l¡ = ftto¡tr;,

B
, kl, ... , kB ê Z.If v1+l =}k¡eiß+t, then

j=l

hence n = ofþ,zip¡v¡ =? ,furi 
exp(vaç11)*o we have found a generaror of n. The

complexity of this method appears to be the same as that of the imaginary case, assuming

ERH as usual.

The details for generating relations over the factor base and determining the structure of

Cl(K) as well as an implementation of the first stage of the index calculus method are given

in [CDO92]. As a numerical example, we mention that the computation for A = 10a0+1 (a

discriminant far too small to guarantee security in our scheme) took 8.3 hours on a

sparcStation 2. For large values of D, this method is totally impractical.

It should be pointed out that a fast algorithm for solving the DLP can be used to find the

regulator R of K quickly, see [BW90a] and [BW90bl. By a result of Schoof [Sc83a], we

know that if it is possible to find R quickly, then D can be factored quickly. Thus the DLP

in K = Q(./D) is at least as difficult as factoring D. Finally, no method for breaking our

scheme is known other than solving the DLP and exhaustive sea¡ch.

BBB
TtrTlof'ß, = [ïprui,
i=r j=l j=l
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To prevent an exhaustive key search attack, we need to ensure that the number I of reduced

principal ideals in K is suffîciently large. Since I = l0',+1,=rÚ,*r'r . (fi-)r uy

Theorem 9.2 c),we have R = log \.+log Â, and

lower bound on R.

Consider the analytic class number formula for real quadratic fields
where L(1, X) is defined as follows. The Kronecker symbol ¡ of K is

Jacobi symbl (A) t"r any odd priT, p, ser X Ø) =f4) n*r,"r.orr,

Recall for this definition that Â = 0, 1 (mod 4). For any n e Z>0 with unique prime

factorization n = pr€|"'pr€r, set 1(n) = x(pl)et...N@r)er. Then for any s e c,

L(s, N)= [tCU is the Dirichlet L-series corresponding to the K¡onecker symbol X. By
n> I

therefore t, ]\.Hence we require a
log Â

expect that / > 
q ü 

, and we need to bound å from above.' n loglog^'- -

2hR = L(l,y){î,,
an extension of the

set

No rigorous lower bound for å is known. Gauss conjectured that h = I for infinitely many

real quadratic fields, and his conjecture remains open. Hortrever, the heuristics of Cohen

and l,enstra [CL84a], [CL84bl suggest that the odd part of l¿ is small with high probabiliry.

V/hile a rigorous proof of this result unfortunately remains unknown, there is strong

numerical evidence in support of the Cohen-Iænsn-a heuristics.

8),
8).

C
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Let h* be the odd part of the class number, i.e. h - zmh* where m> 0 and h* is odd. We

will attempt to bound h*.L-et Cb(K) be the subgroup of Cl(K) of order lr*. As in [CLB4a,

p.291, we define

w(n)= Y J&d lAu(G)''
G up to isomorphism

where G is any finite group and Aut(G) denotes the group of automorphisms of G. The

heuristics in [CL84bl imply that for any goup G, the probabiliry that Clo(K) is isomorphic
1

to G is 2'¡çú\uren for some constant cl > 0 (the explicit value of c1 is given in

[CL84bl). Then the probability that lz* = n for some odd n e Zñ is

k(hx=n)=^ X ã#"rcn=*ry* 
"o,T¿ì"lorphiún

Using the identities of Theorem 3.2 in [CL84a, pp. 29f .] and a technique analogous to the

one employed in Landau [La36], we can prove that !w(n)= cl logx + ,z * O(þ-\
:'Å^ 

- \x )

where c2> 0 is a constant that can be explicitly evaluated. Finally, partial summation yields

x*=|ooffi,
n>x

n odd

hence, Pr(h*>x) = fi " "(ttr), 
and it follows that å* is small with high probability.

Now it is known (see forexample ICo62l) that h isodd if D =p,D =2p,orD =ptpz
where p is any odd prime and p1, p2 are primes congruent to 3 (mod 4). More cases of
values of D for which the even part of the class number can be bounded are given in

Kaplan lKa76l. Thus by selecting such a D value which is large, we expec that it would be

most unlikely that / . == Ø. t < 
@ 

say. This renders the likelihood of

success of a search technique to be very slight indeed.
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3.3.ß. ûptårmåøatÅøva

Consider the bounds on the value of L in each of the three cases of Algorithm 10.1. From
(5) in theproof of rheorem l0.4,weobtain 1<¿<93 in case 1,=L,^ <L < I in case 2,' 4g"lD

and 1 < L <4yg2@+l)(q'+l)(q"+1) in case 3. Hence we expect case 1 ro oacur very

rarely, since it not only leaves an extremely nalrow range for possible values of L, but also

corresponds to a very unlikely event, namely having found Ê1-r+y¡ immediately after the

reduction step. Case 3 is expected to occur slightly more often, and case 2 should occur

almost always, since it permits a very large range of L values. Our computations verify this

observation. In all our examples, case 1 was never encountered, case 3 occurred very

rarely (at most once per application of Algorithm 10.2), and case 2 occurred almost all the

time.

In addition, we expect the number of iterations of Algorithmg.2 in case 3 to be small, since

it was Proven to be O(1) almost always. Again, our examples confirm this; in fact,

Algorithm 9.2 was never called more than twice, even for our largest discriminants which

were approximately 200 digits.

Considering the fact that in addition to the O(logD) calls in Algorithm 10.1, Algorithm 9.1

is also applied O(log D) times for each ideal reduction, we see f¡om the above rema¡ks that

Algorithm 9.1 is used very frequently throughout our protocol. Hence, we focused out

optimization efforts on this part of our computation and used the following modif,red

version of the continued fraction algorithm which is due to Tenner (see fWWBTl) in our

implementation. rær a = la, 
PlÆf|k 

a primitive principar ideat. setfo'oJ
P0=P, Q0=Q,

Pg+ d* rg = qo}o+ rs, (i.e. qo =L:#
o-r=#, ro= { ?ii|?î,

tqJ *a ro= Po + d + ro - qoeo),
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and forj > 0:

f0 if Q¡+t > 0,
t¡+l= {r if e¡*i.0, " 

Fiol+d+i¡+l=e¡+tZ¡+t+r¡+r,
I P;-t +d+t;-t I

(i.e. qj+t = ryffi und r¡+t=p¡+t + d + tj+t - a¡+te¡+ù.

This mdification, though not as intuitive as the familiar version of the continued fraction

algorithm, represents a signif,rcant speed-up and can be used for both Algorithms 9.4 and

10. 1. It is particularly useful if division with remainder is a single operation as was the case

in our multiprecise arithmetic package, since q7a1 and r7*+t a¡e computed in one step. It cuts

down the number of divisions and multiplications by half (i.e. frorn 2 to 1 per step) and

merely intrduces one extra addition if the ideals are reduced.

ß.3"2 Compaatatåomaå R.es¿aBts

We implemented our protocol in C language, using a multipre.ir" ìn,rg"r arithmetic

package written by Stephens [St89]. At the time, the only machine available to us was a

DEC MicroVAX. Tests show that a more modern environment (such as the hardware and

software used for the implementation of our cryptosystem presented in Part I) yields

computation times which are approximately 100 times faster than those achieved by the

MicroVAX. This estimate was obtained by extensively running Tenner's continued fraction

algorithm on both the MicroVAX and the DECStation 5M.
In all our examples, we encountered the simple case of the protocol where Bob and Alice

both compute r4(abc) and only Bob needs to send his bit 1. Again, \¡/e expect this, since

the bounds given in Step 4 of the protocol leave an exn'emely nÍurow range forM(a, abc)

and force M(a, abc) to be very close to 2P.

V/e will give three numerical examples. The computations were done in two fields whose

discriminants are Mersenne primes (i.e. D = Â = 2! - | for some prime p). From Section

12.2, it follows that both fields have odd class number. The first example used a

P¡+l=d+t¡-r¡, Q.¡+t = Qj-t - a¡{P¡+t - P¡)'
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discriminant of 33 digits (by no means secure enough for practical purposes) and was run

with an exponent of order {D; ¡t" other two computations \ilere done in a field with a 183

digit discriminant and were performed on two exponents of order !Ø <^ size which we

consider sufficiently secure for such a large discriminant) and Ø, respectively. Our

exponents were simply random integers. The computation times are given in the following

table.

Discriminant Å =D

# dieits in D

Size ofexponent

# dieits in exponent

order of precision

approx. # dieits of precision

CPU time, MicroVAX

CPU time, DECStation 5ü)0 (estimated)

2t07-1

33

^ID

2@7-l

16

D3n

183

4-ID

50

3.3 minutes

26Ð7-l

45

2 seconds

183

D

^lD

183

4l minutes

91

25 seconds

D312

275

97 minutes

58 seconds
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In Part I of this dissertation, we presented a public-key cryptosystem using arithmetic in

cyclotomic fields of degree I-1, where À is a prime. The scheme's security is equivalent to

the difficulty of factoring the modulus. The scheme employs a Euclidean division

algorithm, which in turn is used for computing integer prime divisors of rational primes

and computing residue symbols in the field. We gave details for the cases 1. = 2,3, and 5.

A number of problems remain unsolved. While the Euclidean division algorithm as well as

the gcd method for f,rnding prime divisors of rational primes can be used for the cases X, = 7

and À = 1 l. the residue symbol computation becomes more complicated, due to the fact that

there is more than one independent fundamental unit (two such units for À = 7 and four for

l, = 11). The complexity of the other prime divisor method (Algorithm 6.1) depends on the

number / of reduced (principal) ideals in the field. If / is bounded, then the algorithm is

linear in log p, where p is the rational prime whose divisor we wish to compute. As pointed

out in Section 6.1, computations show that I=lif Ì,"<7. These computations have not

been carried for the cases 11 < l, < 19. We conjecture that in these cases, / is small;

possibly/=1aswell.

with respect to residue symbols, it is unknown how ro compurelË] 
"r 

s, Þ e o- t 0 ]

efficiently without making use of Euclidean division; nor do we know how to 
"uufuu,r[f,]

for cr e O-t0ì and a non-zero integral ideal a in O effîciently. In fact, it appears that the

only known method is factoring the denominator and computing the residue symbol for

each individual prime factor. The Euclidean division approach will fail for À > 23; the

question of whether or not the cases )" = 73, 17, and 19 yield rings of integers which are

Euclidean remains open.

Finally, it may be possible to extend the approach by V/illiams twi80l and Loxton et al

lLKBSg2l to fields with À > 5.
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Part tr of the thesis presented a key exchange protocol based on the infrastructure of a real

quadratic field. The scheme is the f,rrst and so far the only version of a Diffie-Hellman

protocol which does not require a group structurc. It remains to be seen whether there are

other sets which are suitable for Diffie-Hellman key exchange, but which are not groups.

As with all the previous Diffie-Hellman protocols, the only known way of breaking our

scheme (other than exhaustive key search, which appears to be infeasible if our pafttmeters

are chosen with ca¡e) is to solve the discrete logarithm in the underlying stn¡cture. The DLP

in the set S of reduced principal ideals in a real quadratic field K is essentially the problem

of finding for each ideal a e fr a generator. It appears that an index calculus approach

similar to the one used for determining the structure of the class group and the regulator of

K can be used for solving the DLP. As usual, this method is subexponenrial in the size of

the discriminant of K. The DLP can be shown to be at least as difFrcult as the problem of

factoring the discriminant of K. Since the question of whether the DLP is equivalent in

difficulty to breaking the scheme remains unanswered, it is unknown whether the security

of the protæol is equivalent to the problem of factoring the field discriminant.
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