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ABSTRACT

The shape of inflated fabric cylinders subject to wind load-
ing was studied. A smeall deflection analysis and a large deflection
analysis with a simplified pressure distribution were carriedvout.
The results of a model study were compared with a direct numerical

integration.
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INTRODUCTION

In this study, a number of aspects of inflated structures
have been examined. The equilibrium equations have been derived
in the natural or intrinsic coordinates of the membrane, in carte-
sian coordinates, and also in polar coordinates., A small deflec-
tion analysis has been carried out and a method of solution for a
certain pressure distribution has been developed. For large deflec-
tions, an approximate shape determination has been made possible us-
ing a simplified pressure distribution. A numerical method was de-
veloped as an extension of this method and the results of this cal-
culaﬁion have been compared favorably with the results from the
model that was built to find the shape of the membrahe under various
conditions., The vibration or flutter of this model at low internal
‘pressures in an airstream was investigated to find the conditions
at which it occﬁrred. A literature survey has been done on recent

work in inflatable structures and included as an appendix,




CHAPTER 1
BASIC EQUATIONS

In this chapter, the equilibrium equations for the membrane
will be derived in several coordinate systems. The forms of the pres-
sure distribution that will be used are given at the end of this chap-
ter,

It was assumed that the inflated structure is a cylinder and
that all loading is berpendicular to the axis of this cylinder so
that the problem can be treated in two dimensions. The 'skin' of
the structure has been considered as a weightless membrane which has
no flexural stiffness. It will be shown that for the pressure assump~-
tions used, the membrane may be treated as being inextensional. This
leaves the problem in the form that will be considered. The forces
on an element are the tensile membrane force, the normal préssure,

and the tangential loading.

Intrinsic Goordinates

The natural or 'intrinsic' coordinates for the membrane are
arc length 's', and the rotation of the tangent '6' (see fig, 1).
If the relation between these two is specified, then the shape is
defined.,

It is convenient to consider equilibrium in two particular

directions: parallel to the tangent at the midpoint of the element,




and perpendicular to that tangent. In future, for brevity, these
directions will be referred to as the tangential and normal directions
respectively. 4ll loads and forces are to be taken as being per unit

length in the direction of the axis of the cylinder unless specified

otherwise,
Consider the tangential direction. Equating the sum of the
forces in the tangential direction to zero gives:
TCOS%?—(T*ST} cos§ie~- Fsgs = 0 (1)

where: T is the tensile load in the membrané at the

left hé.nd end of the element,
§6is the arc through which the tangent to the
curve rotates in the length,
§Tis the change in tensile load in the tength,
FS is the tangential load per unit area of the membrane,

and &S is the arc length of the element.

This can be rewritten as:
§T cos§2§ + Fg §8 =0 (2)
If § s is allowed to become infinitesimally small, then &6 will approach

zero and cos sSiQ will approach one. This gives:

i1 = F
S s s
~ In the limit, this becomes

g_T = -F_ (3)
= )

In the normal direction, the equilibrium equation is:

Tsin%Q +(T+8T) sin- P &s =0 (%)
where all symbols are as before and P is the normal pressure difference
across the membrane., For small angles, sin%g B %{e and then:




75 +1t% L $STSe -P Ss =0 (5)

Ignoring the third term which is the product of two differentials and

is thus very small leaves:

T §6 - P &s = 0O
or: $e =P
§s T

In the limit, as & s approaches zero, § © approaches _dO to give:
s ds
® =P (6)

ds T
The intrinsic coordinates give the simplest equilibrium equa-

tions. They are suitable for studying the effect of the variables but
they are not the most convenient for the purposes of analysis because
it is not possible ﬁo locate a point in space without performing an in-
tegration to obtain its 'x' and 'y! coordinates. The equations of
equilibrium will also be derived fdr cartesian and polar coordinates

since these are usually easier to work with,

Cartesian Coordinates
In cartesian coordinates, the equilibrium of the membrane elem-

ent will be considered along the 'x' and 'y! coordinate axes (see fig.

2). The 'x' direction will be considered fifst. The equilibrium equation

0= T cosf@ =P sin(& - _S_ZQ ) §s-(T + §T) cos (9+§2—?) - F §s cos
+ 86
(6~ 82 )
(7
where tan® = dy and other symbols have the same meaning as before,

dx
Expanding and rearranging some terms gives:




T cos@- T cos O cossO+T sin® sinsf - §T cos © cos §6 +
74T sin © sindé - P sin@cosdfs> - P cosOsinsf §s -
-F S§s cos & cossf + F §s sin® sinse= © (8)
s 2 8 2

If Js is made small, then §€ becomes small and then sin §6 approaches

86  and cosé® approaches one. Making these substitutions in (8) and
ignoring as vanishingly small all products of two small quantities gives:
T sin680¢ - 8T cos -P sin® §s - Fsés cosé =0 (9)

Dividing by §s cos® gives:

Ttano §6 - §T -~ Ptand -F = 0O
s §s s
In the limit as § s approaches zero, $0. becomes do and §T
, §s ds $s
becomes dT giving:
ds __
Ttang d - Ptang -F -+ (g = o0 (10)
ds S ds
Now:
©-o/e 5 L= /g
ds dx/ dx ds ax dx
tan @ = dy ds = 1, (_clx)l 3 (11)
dx dx dx
and @:L(tan’lgy)z d2 Ly (&
dx dx dx dx dx
Substituting (11) into (10) gives:
a5, a
T dy dx - dx -Pdy -F_=0
dx g__z 2\32 .Q-X 2 \'2 dx g
(l*(dx)> ,(1 M (dx) )
(12)

Equating forces in the 'y' direction to zero gives:




TsinG + P §s cos (g + §6) ~(T + §T) sin (6 +86) -
Z
-F_ §ssin (6+ 4£2) = 0 (13)
S
Using the same method of simplification as was used for the equili-

brium in the 'x' direction gives the equations:

P-dltan® -T g0 - F tan® = O (1)
ds ds s '
and: d2 daf  dy
T dx dx dx -P + FS dy =0
(h(éz)z)’/z ds dx
_ ax ax (15)

which correspond to (10) and (12).
Equations (12) and (15) cannot easily be dealt with because of
the powers of derivatives that occur. From (3) it can be seen that if Fs

= 0, then dT = 0, i.e, the tension is constant,
ds

Substituting this condition into either (12) or (15) gives:

& 22 |
2y - 0
de2/(l,,(%yx)) P- O (16)

which is the differential equation for a membrane if shear forces on it

can be neglected and only the pressure need be considered. This équation
is still not readily solved to find the complete solution y{x) which des-
- cribes the shape of the strmeture. It turns out to be useful to have the
equilibrium equation expressed in polar coordinates for the small deflec-

tion analysis.,

Polar Coordinates

In polar coordinates the variables representing the coordinates
are taken as E and ¢ . Consider first the radial equilibrium of the

element shown in fig, 3. The equilibrium equation is:




PSs sin (¢+§_19)-Fsé‘s cos (p+92) + T cos (p+ ) -

(T +8T) cos (SD+S$D—§%”):O (17)
where @ and 9/ are the angles shown in fig, 3 and the other vari-
ables are as defined earlier. Expand (17) to get: |

P §s sing cosé2+P §s cosp sin%‘z’ -FS §s cosg

cos%ﬂ + F §s sine sinsfg + T cos e cos%‘z - T sine
S

sind¥ - (T+§7T) cosg cosép cos%f + sin @ sindép

cosé}” (T + §T) - (T «§T) cos ¢ sindp sin & -
~(T 8§ T) sin@ cosdp sin®¥= o0 (19
If 8§ s is small, then the angles &% and Sy will. be small and the
substitutions: sinde = dp 3 sindy =8% 3 cosép = 1; and
cos'dy = 1 are valid. Ignoring all terms with more than one small
quantity and collecting similar terms leaves:
P §s sine - Fs §s cosp - 8T cosp + TsinP
S -8y ) = O
Divide by dpcos @ .

P tan @ 63;7' - Fs ss~- 8T Ttanp(%g_ -1) =0

Sv &Y
(19
As 8§y approaches zero, then the ratios: ss 3 4T ; and §o
Sy v sy
approach the derivatives: ds ; dT ; d@ respectively,
dy d¥ dy
Now:
r ' -1
tangp = - dr S0 = tan -
and  do = <r r -Q)/(r2+(g)1) (20)
ay Wi W .

2 A
also: ds = fr + (Q
dy . d

Substituting (20) into (19) after taking the limit gives:




) ’ %271}1-(7/? ( \ (21)

2 2
r dr
+ (d«//)
2 2 /2 2 ‘
or:Pr(r+(_¢g) + F _gi_;r+_c1_r_')7‘]+
dy s 4y av
2 2 2
4T dr r+_c_i__rJ+Tr d2r-—2g;r_'-r):0 (22)
d¥ dp d/l/) dyp* dy

In the tangential direction, the eguilibrium condition is:
T sin (Pr&Y - (T+ &T) sin (¢+§¢~§239_Fsss sin(¢+§£)+
+P 8 cos (g jfg ) =0 (23)
Expanding (23) gives:
. 6 . s - s . ) s
T sinpcos & T cos ¢ sindy (T+ 8 T) sin @ sin g smé)_jf-
~(T « §T) sin ¢ cos §p cos_S%’—(T+ST) cos @ sin §@
cosﬁzi”f(T ¢« § T) cos ¢ cos §p sind¥ - F $s sin @ cos$
..Fs $s cos @ sin%i" +P & s cosp cosdp-P 8ssing
sindg= 0 ‘ (24)
If 8y is small, then §s aad 8¢ will be small and in the limit:
sin §=6%; sindp=- 8p ; cosép= cos § = 1. If these are sub-
stituted and second order terms are neglected, then the equation:
T cos pé§y ~8T sing - T cospsp- F §s sing - P §s cosg =0
results, Dividing by - dycosp gives:
(s 1 T % Fo83 ¢ ps - 25)
(5 )1-88__ mp v TG tangt Py 0 (25)
Letting Sy approach zero and substituting for the derivatives as before

gives:




r gfg -2 (gif - r2 5 2 2
T dyt & - 4T+ _x - (r +(§;)‘)
2 . (QE 2 dy dr ay:
r &v, &y
- F r
-P S = 0 (26)
ar
d
which can be rearranged to:
T g_r{(r d2r -2 (511 2—r2) -r ﬂ(rz_,, gz)-(P_d_r -
ay d dv ay ay d¢
2 2y~ ‘
—rFs)(r + 4r ) = 0 , (27)
dy

If the tangential loading can be neglected, and only a normal pressure

remains, then (22) and (27) can be simplified to:

' 2
P (rz . 93)2)3Q;_ T ( r d%r - 2 (dr)z - ) =0 (28)
dw dy* ay

if r £ O,

The Pressure Loading

The equilibrium equations have now been derived. It is neces-
sary to know the pressure distribution in order to solve for the shape.
Iy i§ theoretically possible to find the pressure distribution around
‘an arbitrary shape by mappiﬁg the shape onto another shape for which the
flow is known and determining the separation poiht by means of boundary
layer theory, but it turns out to be prohibitively difficuit. Instead of
calcuiating the pressure distribution, it has been assumed that the pres-
sure distribution is known and that it can be expressed as a Fourier ser-
ies. Three pressure distributions are shown in fig., 17. Two were experi-
mentally determined by Roshko, the other was found from a model described

in chapter 4.




It has been assumed that the shear force is negligible. This
means that the tension is constant by equation (3). Since the ten-
sion is constant, the elongation can be calculated beforehand and

the arc length corrected. When this has been done, the elongation

need not be considered afterwards so the problem can be treated as
an inextensible one,

In order to solve the problem, some simplification is still
necessary because it is not possible to find a closed solution to

equations (16) or (28) when a Ffourier series is substitubed for the

pressure P, Two different simplifying assumptions have been used.,
In the first method, it has been assumed that the pressure can be
represented by a Fourier series of which the first term which is a
constant is the largest and the other terms are much smaller, In

this case, the membrane takes on a nearly circular shape and the small

perturbation can be calculated after the differential equation has
been modified. This is the small deflection analysis of éhapter 2.

A second approach is to approximate the pressure by a number of
regions of constant pressure with sharp Jumps between them, In a re-

gion where the pressure is constant, the curvature is constant and so the

shape is circular. In chapter 3 a pressure distribution consisting of

 two of these regions has been used.




CHAPTER II

SMALL DEFLECTION ANALYSIS

In this chapter, asmethod of solution for the shape of the
membrane is given for small deflections from the no-wind shape,
~ This restriction makes it possible to simplify the differential

equation so that it can be solved.

The no-wind condition will be ezamined Tirst. It has been
stated that the tension T is a constant for the cases that will be
considered. If there is no wind, then the pressure P is also a con-

stant and equation (16) can be written as:

oy ’ ,
dy ) d = constant, (29)
(l+(dx) /E—x% :
Since the left hand side of (29) is the radius of curvature, the
curve is a circular arc. If the arc length is chosen to be 7/2 times

the base, then the membrane will be a semicircle,

Let the semicircle be disturbed by a wind such that the change

in pressure difference across the membrane AP QV’) is small enough com-
pared with the total pressure difference P,
In polar coordinates, the no-wind shape can be described by r =

a, a constant if the origin is chosen correctly. The disturbed shape

can then be described by r = a+¢ where & 1is the change in radius
and is a function of < . Let AP be such that & will be small. Then
(QQSZ will be small compared with r2 and then equation (28) can be ap-

dy
proximated by:




P rd 4 T ( r &Pr -1 > = 0 (30)
%
The substitutions: r = ase ; P = P_+ AP may be made. Since £ is

small, r # O and so it may be divided out,
A .
(P,+AP) (a+e) +T(_g% -(a &) =0 (31)
Dividing by T and rearranging

2
(a+e) <3;3 (a+€) -1) AP (a*e)”, %3_7;_ =0 (32

Consider fig. 5. The tension T in the membrane can be found by
a sumnation of forces in the vertical direction, If PO and AP are so
chosen that AF has an average value of zero, then it can be seen that
a small perturbation AP will not alter the tension substantially. In

(32) put AP = 0 and €= { to find the initial tension.

T=z a P (33)
)
Putting this value into (32) gives
(ave) ( P, (a-c) _1)+ 8P (a.e )+
e =%
5 )
da~é& = 0
dp?
which gives:
2 2 2
AP (a" ¢ 2aeg + €9+ 47¢ = 0
Er ——
Z Po‘ d?
Ignoring & leaves:
% +g(1 . 2082 ) = _ alAp (34)
d P P

o o]
In the case of potential flow, the pressure distribution due to

the air flow over a circular cylinder is of the form: c¢c+ d cos 2% .
Since the cos 27V term is also a major part of the actual pressure dis-
tribution, this is the form of pressure distribution that will be consi-

dered for this analysis. Putting P = -d cos 2¢ since the constant 'c!




can be included in the larger constant term P‘O gives:
%+ (1-2d cos 2y )€ = ad cos 2y (35)
d%;z

First Solution of The Reduced Equation

Putting equation (35) into the standard form of the Mathieu

equation gives:
%x%g + (& - 2q cos 2x) y = r(x) (36)
where:

y=E3;x=43; g=d; a=1; and r(x) S ad cos 24 .

Since a = 1, this is an unstable case of the Mathieu equation
according to fig. 4. Take the general solution of equation (36)
to be of form:
RERFACESRNCOEFAE
where yl(x) and yz(x) are independant solutions of the reduced dif-
ferential equation and yp(x) is a particular integral. Take 7, to

be of form:

v, = e ¢ (x,07) (37)
and let:
_ 2 -3
a=1 +qfl+q f21-q f3 +oeee QBS)
3
/u:qgl+q2<32+q g g+ e (39)
- s 2 3
P = sin (X-0)+ q by tgq hzfq h3-|—... (L0}

where fi’ 855 and h, are functions of g and hi is also a function
i

of x. Put eguations (37), (38), (39), and (40) into the homogeneous

differential equation corresponding to eguation (36). Select the co-
efficients f, g, and h so that there is no term in cos (x = g) in ¢
and so that the term in sin (x -@) has the coefficient one. When

these operations have been performed and the terms have been rearranged
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to a convenient form, the three series above become:

a=1l- gcosze+] 3,2 (-1 + 3 cos40‘) y 1 q3 cos 20 +

L 4
L 1 - 11 cos 4O -ll 1l cos 2 - 13 cos 607+
T f§ 3 ) 7 (9 128 )
¢ qé (-— 893 , 9181 cos ko~ 35 cos 8T) = .ue. (lpl)
8192 27 516 1,
A= -—% q sin 20~ ng sin 20~ - ;zgl* sin A0 -
128 lOZg
_ g% (137sin 20 - 9 sin 60°)x 6 (337 sin4g- 15 sin 807 )t....
5096 9 2 1638, 27 L (42)

¢: sin (x -0 + S3 sin (3x -Q7) + Ss sin (5 x—G‘)+S7 sin
- (7X —q—)+oooo+

cos (7Tx =0 )*.u.s (43)

t+ C cos (3 x-9)+C_ cos (5x =C) +C7
3 5

= =9 4 jf cos 20 - _zz_ (=145 cos 4a)+ 2:1’ €74 cos 20+ o .
CO 512 3 0% 9
7 cos 6T )te..n

=¢° . g3 +ql‘ (<155 , 82 cos 4w ) - ....
5 192  Tis2 1,096 5, ' 27

5 =- 31-3[* COS 20 = ...
7 égig 19152

S, 2% —... | )

9 737280

- 2 : 3

C.= _39° sin20 -3¢’ sin 40 g ( 274sin 20’“+9 sin 607) ...
3 6k, 512 10%6 79 |
C.= -74° sin 20 11 g% singoe ...

5 230, 2761,8 |

C - 1+

rp = sin 26— - ...
T 3256 |

The parameter 0" can be found from equation (41). If an approximation
is sufficient, then the terms in cos 60~ and cos 89~ can be ignored, cos 4o~

can be expanded in terms of cos 2¢ leaving a quadratic equation in\cés 203




_ﬂf (L-1 9,2) cos?20"- q(1 - -:-L—Clz) cos 20 465
L 68 _ 64 1536

2 _ ‘
qh-%q+1-a-o (45)
If greater accuracy is required, an iterative scheme can be used to

include the terms in cos 69~ and cos 8o .,

Second Solution of the Reduced Eguation
The second .solution of the homogeneous equation can be found
by putting -¢ fore+: 'alis an even function of ¢ and #t is an odd func-

tion of ©, This means that « will change sign but have the same ab-

solute value while 'a' is unaffected. The coefficients of the series
for ¢ must be recalculated, however, since they are not all even or

odd,

The Particular Integral
The particular solution can be found by the method of varia-
tion of parameters. McLachlan-gives the particular integral as:
T z- 1 G r r @) au -3 Of 5w r @ o 6)
= - b'd ) r - X r u
p- 2 59 Tph v, ¥y , »
¢ _
where r(x) is the right hand side of the differential equation (43), y ,

1
and y2 are two independent solutions of the homogeneous equation, and -02

= ¥ _ 1] . . . N
: yzyl y‘.Lyf2 which is invarient.
The complete solution of the differential equation (43) is now:

y=Ay(x) + By (0)ry, (%)

N

where A and B are arbitrary constants which must be selected to force
the boundary conditions. The conditions in this case are the requirenents
that both ends are restrained and so the deflection at each end is zero,

It should be noted that x is not the independent variable,i?l:-.is.




Returning to the original variables the shape can now be written
as:

E(0) = A‘yl(6)+By2(6)+yp(6)

I
|
i
H

i
i




CHAPTER IIT
SIMPLIFIED PRESSURE DISTRIBUTION

In the previous chapter, the shape of the membrane was examined
for the case where the pressure distribution is the sum of a large
constant value and a small variable component of any type. In this
chapter, the case of large deflectidns and pressure variations is
considered. The simplification in this chapter is the requirement
that the pressure distribution be made up of regions of constant pres-
sure with jumps between them., Specifically, preésure distributions
similar to the one shown in fig. 7 which give rise to.shapes like fig.
6 will be considered.

.In order to specify the pressure distribution everywhere in
fig. 7, three parameters must be known: Pl’ k = Pl/Pz, and either
@ Oret. These specify the magnitude of the pressure distribution,
the relative size of the two constant pressure regions, and the loca-

tion of the change in pressure. Pl’ P_ and P are shown on fig. 7 as

2
the two pressures that act on the membrane, and the fraction of arc

length from the leading edge to the jump in pressure. The last value
« 1is the angle of the normal to the membrane at the jump in pressure

measured as shown in fig, 6 which can be used instead of £

Equation (16) can be rearranged to:
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2

(1 +ﬁ%§ )1&

The left hand side is the curvature of the membrane and the right hand

(47)

side is a constant in a region where the pressure is constant. The cur-
vature is thus constant in the region being considered and the radius
of curvature is T/P. It can be seen that the'differenﬂial equation
will still be satisfied if P is altered as long as the ratio T/P is
constant. For a given shape, if the pressure everywhere is doubled,
and the tension is also doubled, then the differential equation is
still satisfied. It can be seen that the magnitude of the pressure
is not significant since the tension is a dependent variable. This
leaves only two parameters that must be specified to fix the pressure:
one to give the relative magnitude of the two pressures acting, and
one to locate the position of the jump.

In order to be able to describe the shape fully, the centers
of the arcs must be located. The variables required to do this are:
e, d, and .. With « and d the line of centers BD can be found.

1

With the angle 6., the center Cl can be located on this line and then

l)
the first arc AB may be drawn. The second center 02 may be found
readily since two points on the arc B and C are known and the center
is known to lie on BD. Once the center has been found, the second
arc BC can be drawn.

Since it is not possible to find x, d, and 6, by an explicit
formula in a closed form solution, the problem has been solved by cal-
culating the values k, «, and d for a number of values of = and 61.'

The problem has been normalized by letting the base length be a con-

sbant 10 units. The results of these calculations have been plotted in
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figs. 9 to 15. It is only necessary to use two or three of these
figures in many cases but more have been included for flexibility
and so the interaction of the variables may be seen, If for example,

k and < are given, then 4 and @l must be found, Fig, 10 is used to

find 6., and then either fig, 9 or fig. 11 can be used to find d.

l,
If k and g are given, then «=, 61,

can be done by using figs. 12 and 13 to get d and 61 or fig., 13 to

and d must all be found. This

ge£ 61 and then fig. 14 to get d.
Fig, 8 shows how the shape may be drawn for the particular

case o= 60° (1,047 radians), k = 0.5. From fig. 10, 6, = 1.9

1
radians (or 109°), and from fig. 11, d = 6.45. Fig, 8b shows a
family of curves with f&= 0.5 which approximate the inflation shapes.
The method of calculation will now be described., The vari-
ables that must be related are:
6,, ©_ the angles subtended by arcs AB and BC,
r  the radii or curvature of the two arcs,’
X the angle that the line of centers makes
with the horizontal.
B the fraction of arc length at which the
pressure changes,
A the arc length of the membrane,
s the length of the base of the structure,
d the distance AD in fig. 6.
The base léngth 's! is given by:

-) (48)

s = T, cos.(77 - &, ) (rl - r2) cose. + r,, cos (62
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The arc length is:
= ' - &}
4 r, Gl r, , (49)
The fact that both ends of the membrane are fixed to the base at the

same elevation is expressed by:

rlsin (M - & = el) + 1-2s:'Ln(62 -t) - (i;l - r2) sinx= 0 (50)

An added restriction is the fact that the membrane is to be a semi-

circle if both pressures are equal so:

/= Ts_ (51)
= |

Rearranging (50) gives:

-r =1, [sin (62 ) + sin;Jf [sin (717 ~x = 91) - sinoc](SZ)
Substituting (51) and (52) into (49) gives:
_'_r_Tz_s = r262 - rz@z[sin (62 ->) + gine ]l[sin (M - & - el) - sinu] (53)
Substituting (52} into (48) gives:

sin (82 —o) + sin°<)
§ Ser {sin (m - = 61) - sine/(cos (77 — -~ 61)4 cos})+r2 (cos (82 -t

2
- cos ) (54)
Multiply (53) by 2/, equating the resulting expression for s to the right

hand side of (54) and multiplying both sides by sin (7 - & - 67) - sinx

gives:

- 91[ sin (92 -¢) s:i.ng+ 62 [_sin (M - = el) - sineﬁ] s
- T [ cos (T —ex - 61) + cosa][sin (62 -o)+ sina] +
N 7_; [cos (82 —) - cos«][sin (77 - & = 61) - sinuj (55)

The right hand side can be multiplied out and some terms cancel

to give:




6, sin (62 - o) + gin))- eé (sin (77~ - el) - sina) =

_’T_g cos Sl sin 92+ sin el cos 92 - sin el - sin ©

5 (56)

If 61 and <« are selected, 62 can be found by ite_ra.fion using the resi-
dual of eguation (56).

The other parameters may be found as follows: Let i;!l take on any

arbitrary value such as one. From (52) r can be found. Using equation
2

(43) allows 's' to be calculated. This will not be the normalized value

but now rl, r2', and s can be scaled to make s the correct value. From
fig. 6 by the law of sines,
d=r sinel/sin“
, 1
which allows 'd' to be calculated. The pressure ratiork = Pl/? 5 is
the reciprocal of the ratio rl/rz, and ﬁ‘-‘- rlel/,( where /is the arc
length from (51).

A listing of the program used to calculate the points for the

graphs is included in appendix 4,




CHAPTER IV
EXPERIMENTAL RESULTS AND CONCLUSIONS

In order to gain some appreciation of the magnitude of the de-
flections and of the behaviour of inflated structures, a small model
was sebt up as showﬁ in fig. 20. The wind tunnel was 30 inches in dia-
ﬁeter and the model had a 24 by 52 inch base. The length of the plas-
tic film that was used as a membrane was adjusted so that the model was
a semi~circular cylinder when inflated with no wind blowing past it,

Figs. 21 to 24 show the model in various stages of inflation
in an airstream. The air velocity was not uniform across the tunnel
so that accurate measﬁrements were not possible but the inflatibn pro-
cess can be seen quite well in figs. 21 and 22. The dark lines of the
model are a one inch square grid and each line is slightly more inflated
than the one below it. The exact shape at any stage of inflation will
probably not be identical ﬁo these since there will be disturbing forces
in the membrane due to the fact that the model was not actualiy a true
cylinder but these figures indicate what sort of shapes the membrane«takes.,
Due to the low pressures required to inflate the membrane, it was not
possible to give the inflation pressure more accurately than to say it wWas
of the order of a tenth of an inch of water and the air velocity was about
L0 feet per second. The last picture was takén with a much higher inflation

pressure,
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For a number of conditions, the shape of the membrane was
found by using a frame with sliding pins that could be adjusted
to just contact the plastic. When all the pins had been adjusted,

the frame was moved and the coordinates at each point were re-

corded., With these coordinates, the curves in fig. 16 were drawn.

An approximate pressure distribution was measured for the high velo-
city case and has been plotted in fig. 17. For comparison, the pres-
sure distribution around a circular eylinder at roughly the same Hey-

nolds number and also at the Reynolds number that would be encountered

with a full size building have been ineluded from Hoshko.

An undesirable phenomenon that was encountered during the ex-
periment was the vibration of the membrane at certain pfessures of in-
flation and certain velocities. The vibration occurred when the mem—
brane had the shapes shown in fig, 19 d and e. The range of pressures

at which vibration was found was measured for a number of wind velocities

and plotted in fig. 18. There are three regions in this figure: an inter-
mittent forced vibration at low velocities and relatively high pressures
which changed its amplitude considerably, large vibration of the membrane

that occurred with only one of the three types of plastic, and a similar

vibration that occurred for two types of plastic. The type of plastié
has an influence on the damping since for the third type of plastic, it
was not possible to find a resonant condition, Because of the limita~

tions of the equipment it was not considered advisable to proceed with

the investigation of this vibration since it was felt that it was necessary
to gain more information from experiment before a theoretical study could

be.begun., It seems likely that the defects of the apparatus may have had




a great influence on the vibration.

Two approximations to the shape of an inflated cylinder under
wind loading have been described. Each of these requires that the
pressure distribution around the cylinder be known and places a res-—
triction on the pressure. The two step pressure distribution can be
generalized to any reasonable number of steps. In this case, it is
best to work with a different approach. The membrane can be divided
into any number of regions. ZEach of these is assumed to have a con-
stant pressure acting on it and so is a circular arc. Calculations are
begun at one end by assuming a tension and an initial slope and adding
the regions of the membrane onelywne so that the slope is continuous
and without jumps. If the tension and initial slope have been assumed
correctly, then the final region will end at the correct point. If this
is not the case, then the tension must be corrected to give the correct
base length and the initial angle must be corrected to rotate the entire
shape so that the base comes to lie at the correct angle. This method
does not allow a study to be made of the behaviour of the shape the
way that has been done in the chapter on the simplified pressure distri-
bution, but it is a general method that will give the shape for any
pressure distribution.

This method has been developed into a program included in appen-

dis A and was applied to the problem of finding the shape that the membrane

takes at the high speed flow case shown in fig, 16. This case was chosen

since it was the only one for which the pressure distribution was measured,

The computed shape is shown as the heavy line in fig. 16. The discrepancy
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between measured and calculated shapes is a horizontal shift of about
one eighth of an inch. This could be due to some errors in the pres-
sure distribution but is probably due to an error in the measurement

of the shape of the lower ends of the curve, The lower ends of the

curve were the least accurate because of the flexibility of the pins
used for measuring the shape. The actual end point was found for only
one end and the base length was used to find the other. An error of

an’eighth of an inch could have been made in the determination of the

horizontal position of these ends.
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Flg. 8 Construction of s:.mpllfled shapa from grdphs.
a) method of construction. b) series of shapes with
¢=0.5 and varylng X. - | .
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. Appendix A Computer Progrems .

Program for 81mpl ified pressure analysis

11

10 .
13

A

OO0 A oo o

FIND TWO VALUES CF THE RESIDUAL T0 START THE ITERATION FOR THETAZ

RUOW = RESID(THETAL,TLOW,ALPHA,SIGN)
U IF(TLOW + 941)16,13,13

. ITER = ITER + 1
‘IF{ITER.LT«2G) GO 7O 8

- IF NONE OF THE ABOVE TESTS IS SATISFIED, AND BOTH RHIGH AND RLDWJI

[
C o

DIMENSION FAILT(SN0),FAILA(90C)
LOGICAL EN

.NCARD =1

READ(S 1024,END =T7)RR1, IhCR SIGN
WRITE(6,101)

NLINE =1

K=1
NLOW =1

IF{SIGN. LT.:.) NLCW = .15
DO 15 I = 1,31,2

DO 15 J = NLOWs31,INCR’

Rl = RR1 ' R R o o
THETAL = 1 / 1C. * SIGN S I T e R !
ALPHA = J / 10, ' ' = ' )

THIGH = 2.5
IF(SIGN«LTeNe) THIGH = I / 10. + 1.0

CRLOW = D,

RHIGH = RESID(THETAL, THIGH,ALPHA,SIGN)

U IF(REIGH.GT<Me) GO TO 10

RLOW
TLOW

RHIGH
THIGH

1]

‘THIGH = THIGH + C.5

IF(THIGH «GT«641G0 T3 16

 60.TO 11 | | e e
CIF(RLOW «LTeGe) GO TO 14 SR .

TLOW = THIGH ~ £.5

IF(RLOW.LT.0.) GG TO 14
IF(SIGN,LTa04 o AND, TLON.LT.,.S-THETAI) GO TO 16
TLOW = TLOW - 0.5 e

ITER =9

"START OF THE ITERATICN LOOP

TNEXT. = TLOW ={(THIGH - TLOW) / (RHIGH - RLOH) * RLON

ITERATION NUMBER EXCEEDS 20

GO T0 6

RNEXT = RESID(TPETAI TNEXT,ALPHA SIGN)
TEST FOR CONVERGENCE

- IF{ABS(RNEXT)oLT4s0C)C1)GO TO 6 .- C o A

PUT TLOW = TNEXT IF RNEXT IS NEGATIVE. . ‘ , e
CIF(RNEXToLTeCee ANDLABS(RNEXT)e LTe ABS{RLOW) ) GO ro % : R
SET THIGH = TNEXT IF RNEXT IS POSITIVE. : I

IF(RNEXTeGTeCoe ANDo ABS{RNEXT )6 LT4 ABS(RHIGH) }GO TO 5

ARE OF THE CORRECT SIGN, USE THE AVERAGE OF THE TWO VALUES o :

OF THIGH AND TLOW. o : e i
TF(RLOWeLT e 06 e ANDeRHIGHSGT (e} GO TO 12 ' N T
FAILTI(K) = THETAL T P
FAILA(K) = ALPHA C T O
K=K+1 , o o o s
60.T0 15 o e _
THE CORRECTIONS TO THIGH AND TLOW FGLLGH v R A :
TLOW = TNEXT _ T P
RLOW = RNEXT T o
GO TO 2 . e e PR e
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a7

!

_7
101

102
103
104
105

1106 .
107

C IF(NLINE.LE.28) GO TO 15

', WRITE(6,105)

12

THIGH = TNEXT N A -
RHIGH = RNEXT sa o U N
GO TO 2 )
TNEXT = THIGH + TLOW / 2.

RNEXT = RESIC(TRETALl,TNEXT, ALPHA,SIGNI

IF(RNEXT) 4,6,5 . .
THE PROCESS HAS CONVERCEDv FIND THE SHAPE NOCM.
- THETA2 = TNEXT :
COSAl = COS(THETALl + ALPHA)

.- SINA = SIN(ALPHA) b LT ',véé*-

COSA COS(ALPHA)

SINAL SIN(ALPHA + THETAl)

R2 = Rl #¥(SINA -~ SINALl) / (SIN(THETAZ2- ALPHA) + SXNA)

BASE = -Rl % CCSAl + {Rl =~ R2) * CDSA + RZ * CUS(THETA2 - ALPHA)
Rl = Rl * 10, / BASE

- R2 = R2 * 10 / BASE

8ASE = 10.
ARC = Rl * THETAl + R2 * THETA2
D = Rl * SIN(THETAL) / SINA

X1 = =R1 * C0OSAl

- X2 = X1 ¢+ (R1-R2) * COSA
Y1l = =Rl #* SINAl

. ¥2 = Y1 + (R1-R2) * SINA

BETA = Rl * THETAl / ARC

R2R1 = R2 / R1

~EN =oFALSE.

IF(JeEQ.31) EN =4TRUE
OIF(NCARD.LT.495)WRITE(7,106)THETA1 ALPHA,THETAZ,RZ DqBETA R2ZR14EN,
INCARD

NCARD = NCARD + 1

. OWMRITE(6+104)R1,THETALyALPHA, THETAZ,RZ ARC'BASE yDvBETAoRZle:

C1X1,Y1eX2,Y2
CNLINE = NLINE + 1

NLINE = 1 _ S _ - S
WRITE(6,101) R S .

 CONTINUE e

K=K-1 R

DO 17 T = 1,K,4 : B i : '
OWRITE(6,103) FAILT(I),FAILA(I),FAILT(I+1).FAILA(I+1),FAILT(I+2) FA
LILALI+2) ,FAILT(I43) ,FAILA(I+3)

60 TO 1 pn e e e .
WRITE (6,107 )NCARD R e e

CALL EXIT ‘ |

OFORMAT('1 SHAPE OF MEMBRANE WITH STMPLIFIED -PRESSURE LOADING /
1 '0 Rl THETA 1  ALPHA THETA' 2 = R2 L 'S

2 D . BETA K=R2/R1 X1 Y1 - X2 Y2 *)
FORMAT(FS.O,IS'FS.O] o ’ e
FORMAT(' *,4(2F8:2,6%X))

FORMAT('91,15F8,3) ' - T o
OFORMAT(*1 THE FOLLOWING CASES DID NOT- WORK * /70 THETA 1 ALPHA = .
1 - THETA 1 ALPHA THETA 1 ALPHA THETA 1 ALPHA')

FORMAT(8F945,L2,16) » . ' : :

FORMAT('O',ICXy'kCARDS'.I6)

_END :

FUNCTION RESID(THETAl, THETAZ.ALPHA SIGN)
0Bl = SIN(THETA2)* COS{ALPHA) = SINCALPHA) * COS{THETA2) + SIN(ALPHp

. LAY

0B2 = SIN(THETAL}) % COS(ALPHA) + CGS(TFETAI) * SIN(ALPHA) -~ SIN(ALP
1HA) :
0B3 = COS{THETA2)} * SIN(THETAl) + COS(THETAI) x SIN(THETAZ)- SIN{TH
IETAI) - SIN(THETA2) .
RESID ={THETA1l * Bl - THETAZ * 82 + 1 5767963 * B3) * SIGN
RETURN
e

-
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Program for generalized numerical solution of the shape

IeLtc

CUT RUEAL%G{A=1,1=7)
AR .‘;"}1'

e wTHOA ) POGEF (20 )y XELR1) 3 YIT ALY DRI, DTIA )
Crova 14 T T45,NaKC S,y PLOKF

: CrsixX)y = 0eas{x)
: SINEXY = O5EM(X)
ARSIX) = OARS(X)
ATGNEX) = DATAN{X)
SOCT(N) = DSTT(X)
Call TRAPS{ L1 41 10,31 ,7)
1 ANIT (A, )

RITAL{S 910 Let NOI=1G) PINT NPKES ¢ NTERMS o NARCSyBASE 4y ARC
‘ CEAG(S 2 PINT )y 122 yNPRES)
i METTE(A119) PINTBASE ZARC
i Ae IV 118V (PIN(T )y I=1,MPRES)
: T = MTIEMS o+ 1
CALL FAPCASIPIN,NPETSNT s PCOEF )
WETTE(A 3 IAM(PCOIF(T )y I=1oNT)
TAL = 0L % BASF
DINT = PINT - PCOFF(Y)
O 21 = 2,MT :

2 PCALF(I=1) = PCAEF(]}
T = PINT * RAST™ / 2.0
AN3 = ARC / BASE
1TED = ¢
M1 = NARCS + 1
nL o= APC / NARCS
X(1) = =RA3G / 2,
Y{1) = &, .
ANGLE = 1,5707563
3 THETA = £NGLT
: ITER = ITFR + 2
| NN 4 ] = Y, NARCS
§ PPES = PINT - Q(1)
: TF(PRISLLT,1o48=3¢) GG TO 1)
: R = T / PRES
i ITHETA =-DL / R
CX = X(I)++ R = SIM{THITA)
CY = Y(I) = % % COS(THETA) '
THTTA = THITA = DTHSTA
X(T+43) = CX - & = SIN(THETA)
, Y(I+1) = CY + F * COS (THETA)
( GNTO 4
1] X(T+1) = X(1) 4 DL.¥ COS(THETAY
Y(I+2) = Y(I) + DL 7 SIN(THETA)
4 CONTINGE )
' CHIFD = SERTOIXINII=X(I1H%2 + (Y(NI)=Y({i))3¥2)
SRR = CHOSD - RASE
IF(ABSIEPR) = TIL) 64645
5 T = T % BASK / CHORD

ANGLE = ENMGLT = ATAN(Y(NZ)/Z(X{NY)=X{Y)})
IF(ITR=-18)73,5,3 :

s TF(ERS(Y(RIII L. TOLY 6O T 7
ANGLL = ANGLT = ATANIY(NII/Z (X(NII=X{1)))
IFIITZRLLTLI7Y 6O TR 2

7 N AL = LWNARCS .

© 314705927 / NARCS

THOTA = 1

DX = X(I41) ¢ AASL / 2, COS(THETA)

DY = Y{I+1) = BAST / 24 % SIN{THITA)
OT(I) = £X % SIN(TAFTA) + DY * CAS(THETA)
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A DXL 2=DX 7 CHS(THETA) + 9Y % SIN(THETA)
ATTTE (S, 0L ) PTIUT g RASE g ARCy AR, ITFR, T
ATTTOA 20 ) IXUT) g YD)y I=1, M)
RITT0A5 12 a Ty "ot g (LF (11 DT () 431=1 9y NARCS)
O ATHC R COARTLIRS MAY NOT ALLOW EXPRUSSIONS IN QUTPUT LISTS
ON# OTHUR C1IPTLERS MAY NOCT ALLOW EXPRESSIONS IN QUTPUT LISTS

S0 TN N

a APTTE (A2 ) PINTyRASU yARC, AR TTER,T
AUITO Sy 2V 0T )y Y (1) I=2 4N )
e T

i CALL =XIT

1 FAORMATIFY 554311 0L92F10a5)

.2 FOCMAT(SFY 4 5)

109 FOPMAT(YIY)

1IN FEAMAT(C PINT 0,5
i

PYOITED 1,0, 0 TR

13c69 % BASE 1,615,464 ARC '4G13,6,' ANR 1,513, 6,
STON Y4613, 6)

t FORMATLOND Vg {AaXe WX L2Xy P Y 20X/ /(4 Y4 2513.6493X) 1))
2 FORMATLICTGLAXy Y EADTAL Y95 Xy "TANGINTIAL 95X)/7/{4( 142G13,643X)))
3 FORMAT(L ' 450,13 )

4 FORMAT (YO PINT 14,6523, 65%  B3ASE ',G12.6,!
5 FORMAT (Y0 PurSSHRE AS SUPPLIFDIY /(Y 4,96
A BFORMAT(YC THD CICFFICIFNTS 2F THE FOURIE
1Y %,38613,80)
ZND

ARC LENGTH *4G13.6)
13,4))
R PRESSURE SERIES ART:v/

FUNCTIOM Q(T)
IMPLICIT REAL*R{A~-H,0~7})
COMMIAN NTERY4S,MNARCSPCOEF(20)
Cns(x) = NCAS(X)
Q = 0,
X = {I=-s5) * 3,1415627 / NARCS
D 2 J = 1,NTTRMYS
§ 2 A= 0 +PCOET(J) = COSIX = J)
: RETURN
END

SUSPUNT INE FUIRCOS (PoNy/NTERMS,COEF)
IMPLICIT AREAL#BLA-H,0-2)
e
C==== THIT SHRTOJTING CALCULATUS THE FOURIFR COEFICITNTS FOPR A FUNCTION
: Cmwmm= MBI 0N THE TNTECVAL P0 ,PIY THE FUUCTIUN IS P WITH N
% Cm=== 2OINTSy THE FIRST AT ( AND THE LAST AT Plo  THY COEFFICIFNTS ARE
C==== STOETY TN COFE AND THRE D Ate NTFEMS OF THIM, NOTS THAT THt
Co—== CXPMSTOR TS & dALF pANGe o XPANSTON TN CISINT TERMS ONLY,
Commmm IHTOSWATI IS 208RT 8y MELNS OF STMPSONIS 11730 AND *3/8' PULFS

T —

DIUCUSTHN PUINY G COFF(NT 2# M)

COSEX) = NCAs{x)
Cmm=m= MG THECHUGH TH™ LROP THAT STARTS HEKE FIOR EACH COSFFICIENT,

: A0 L T = 1 ¢NTH321S

COBFE(I)Y = )

AT IGHT = 1,
Commm= THIS LINP DTS THE INTEGRATION

AN 2 4 =1 4 N -
i 35418927 % (I=3) / (N=1)

)
= CNTE(I) + P(J) % COS{X) # WEIGHT
Co=== STLIOT THT CIRE LT WOIGHTING FACTOR FOR THL NEXT TERM OF THS S,

Fu=15ToL2,2) 50 T 3 : :

IF({N=1 6T 4,00 N=JeE053) AN WF IGHT 500 %0 ) GO TD &

IF(=J,6T52) GO T 4




TF{N=.6To1) GO TN &

TE(NSIRHT 4, 49.4) GO TO 7

WOIOHT = 71,1325 )

G TN

ATIGHT = 4

s TOHh 2

AFIOHT = 2,

GG TN 2

ARIGHT = 2,128 '
G TR 2

AFIGHT = 3,175

GU T 2

ASIGHT = 1,
CONTIIUS

COTF(I) = CALF(D)
IF{TIa®0Y) COCFLT)
CONT INUF

RETURN

ZND

*Z2a [/ 2a /1 (N=1)
= CCEF(I) / 2o
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APFENDIX B
HISTCRICAL BACKGROUND AND LITERATURE SURVEY

In recent years, temporary and portable buildings have been
investigated in some detail. One type of building that is very well
suited to this application is the air supvorted building. This has
become a feasible structure with the use of modern materials. The re-
quirements for a material are difficult to meet: airtightness, flexi-
bility, good durability, resistance to creep, and the ability to re-
tain these properties at whatever temperatures the structure is used.

Many materials satisfy some of these requirements, but few are

satisfactory. Fabrics, especially the natural ones are not sufficiently

airtight. Rubber can be used to make a fabric airtight but it deterior-

ates quickly. Metals and foils are airtight but cannot withstand the
repeated flexing that is encountered with normal wina loading. Synthe-
tics are best suited for these structures. The fabrics available can
be coated with a durable layer of plastic or neoprene which makes them
sufficiently-airtight. These fabrics are also lighter than the natural
fabrics which allows lower inflation pressures and thus simplifies the
problems of entry and exit.

In most cases,.inflatable structures are not suitable for use

as permanent structures. They are limited to single story construction,

they require inflation equipment to keep them up, and they give little

resistance to heat loss so that they are expensive to heat. They are,
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however, suited for temporary applications where their light weight,
portability, and low initial cost can offset the additional costs of
heating, and the need for inflation, Since setup is very easy, they
are often used for buildings that must be moved.

Inflated buildings can be grouped into three types depending
on the location of the pressurized air. In the first type, the air
is contained in small tubes at up to 100 psi. These tubes become rigid
and act as a frame which supports the covering material which resembl es
a tent, In the second, the structure has a double wall, the air is con-
tained between these two walls which are held together by regularly
spaced cords. In the third type, the entire interior of the structure
is pressurized. This is the type that will be discussed here. It is
the simplest form of air suprorted structure and requires the lowest
pressure to support it. The vressure must be contained at the entrance
by the use of some form of airlock such as a revolving door, or simply
two doors with suitable closers,

The second and third types of buildings are more interesting
than the first in connection with this study so they will be examined
in some detail. In.the second type, the air pressure must be great
enough to suéport the weight of both layers of fabric as well as re-
sisting any external loads. The entire wall may be considered as a beam,
in which the fabric can take only tension and the air will only provide
compression. Failure will occur when the bending moment is great enough
to make the tensile force in one membrane zero.

The éir in the third type of structure can support it if the in-
ternal pressure is greater than or equal to the weight of the fabric,

If an external load is applied, then the pressure must be increased by
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the magnitude of the load. If, however, the load is applied only to a
small area, and it is not objectional to have a large deformation, then
the membrane may be allowed to distribute the load and the pressure can

be reduced.

The idea of using air pressure to support a structure was appar-
ently introduced by Dr. Fredrick William Lanchester, an English engineer
and: researcher, In his patents of 1917, he proposed the use of a large

shallow inflated dome for a field hospital. He planned and prepared a

model, but the structure was never built,

In 1942, Herbert H., Stevens designed a factory that was to have
an air supported roof. He proposed to make a shallow inverted saucer
shaped roof about 1200 feet in diameter and 60 feet high. The roof
material was to be 18 gauge steel with a layer of an insulating board
and a tar and felt protecting cover and was to be supported by an in-
ternal pressure of 0,06 psi. This factory was not built either.

The first structure that was built was made and was built by
Walter Bird who started to work on prototypes around 1946. He went
into commercial production around 1956, but by that time had built a

number of structures. Since that time, many buildings have been built

by a number of firms. Some of these will be mentioned to indicate the
uses that have been made of inflatable structures.
The first building to be erected was a radome built for the US

government in 1949. It is necessary to protect radar equipment from the

weather in far northern sites but the protective covering should inter-
fere as little as possible with the radar. Fabrics are good for this
application and air is a suitable method of supporting the fabric that has

a minimum of interference with the electromagnetic waves.

A swimming pool cover and a tennis court anver (100,160) are fairly

typical of the use made of many inflatable strucﬁures. These two domes are
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used at a school to make it possible to use these facilities all year
round at a much lower cost than with a conventional building.

These structures have been used to advantage for the sheltering
of construction sites. In the Bast Kootenay area of B.C. a large dome
has been used to shelter crews assembling a large dragline in winter
which was possible in spite of low temperatures and snow. In England,
an inflated dome has been used to shelter the installation of trans-
formers from rain to avoid corrosion. In order to reduce the size of
the bubble, long cones were fitted to it and cables were passed through
the vertices for hoisting so that the‘crane did not have to be inside
the structure.

Another application for inflated structures is a small dam. In
1956, N, M, Imbertson devised this type of dam and since 1957 Firestone
Co. has been producing the Imbertson Fabridam. It is only used for
low dams since the stresses rise as‘the water height rises. The<iams have
been made 15 to 20 feet high and higher dams are anticipated. These dams
are supported by filling with water although air could be used as well.
In case of sudden freeze up, they can be heated to protect them from

damage.

Descriptive Literature

As mentioned in the introduction, many uses have been found for
air supported structures. In the first part of this survey, references
to these applications will be 1isted. Most of these articles are not
technical but descriptive. They serve to show bhe uses to which these
structures may be and have been puﬁ.

Pearson (91) has given a history of inflatable structures and
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has summed up what has been done so far. OStevens (118) described a
proposal for an air supported roof for a factory which was never
built but is one of the first plans of its kind. Inflated frame
buildings are described in three anticles (150, 152,.153). These
buildings are now commercially available with up to 60 foot spans
and in units 120 feet long. Inflated buildings and structures from
here on are taken as refering to buildings in which the entire inter-
ior«is pressurized,

A French company has been producing inflated buildings for
sports activities and other applications that are described in a
French article (157). Some buildings and also some other applica-
tions of inflated structures such as furniture, storage tanks for
liquids, etc. have been described and illustrated in two articles
(145, 151). Two articles in Engineering (146, 148) show an appli-
cabion for air supported buildings and discuss some of the factors
that must be taken into account when a building of this type is be~
ing designed. For example, the decision of what height to select is
determined by the needs of the application, but it is affected by the
fact that for relatively high structures the wind has more effect while
for low structures, the stresses will be much higher if a given over-
pressure is applied. Roland (10l) shows a number of uses for inflat-
able structures in an article, Otto and Stomeyer (89) give a good dis-
cussion of inflatable buildings and include a number of applications.
Otto (87) has a thorough discussion of inflated buildings and other
structures in a large chapter of a book. Allison (1) describes air
supported buildings and also double wall structures that have the pres-

surizing air only between the two walls and buildings that can stand by
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themselves but are inflated during severe wind conditions to stabilize
them. Tesch (122) describes the uses of inflated houses and buildings
that have been used in Sweden, He discusses their advantages and dis-
advantages and describes the construction details. Rawlings (96) dis-
cusses the use of metal plates for the membranes of inflated structures
for storage tanks and roofs. Williams (133) describes the basics of
air supported buildings and discusses their:.use in agricultural appli-
cations. |

Some particular buildings have been described specifically in
various articles. The possibility of using them for food storage has
been considered (141). Two buildings that have been used for sports ac-
tivities in a school in Litchfield, Conn. have been described in (160)
and by Robertson (100). Two good descriptions of the Atomic Znergy
Pavilion used throughout South America are given by Otto (88) and Alli-
son (2). A radio and television pavilion in Zurope has been illustrated
in (142). & large auditorium and display center (144) that was used to

promote air travel has a 100 foot diameter and five foot thick walls.

This building was not pressurized internally, only the walls were inflated.

A Californie municipality used an aluminum coated vinyl-nylon roof to cover

its water reservour (162) which is supporﬁed by air pressure,

A number of inflatable structures have been used to protect con-
struction sites. A coal mining site in British Columbia was sheltéred
by a large dome so that construction could proceed through the winter on
a large dragline that was being assembled (147). A similar building was

used in Scotland to cover a factory extension (149) and in Holstein (161)

to cover the site where houses were being built. A large stockpile of potash

was stored inside an inflatable warehouse in St. Paul (159). For this type
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of application, there is no need to keep the roof inflated except
during the loading and unloading operations. Jump (53) describes
the use of an inflated tent to shelter a transformer while it is
being erected in Great Britain. This tent speeds the erection con-
siderably since the weather is not a factor to reckon with (158),
An army field hospital (155) wifh tubular air cells has been de-
veloped., & gas turbine is used to support and to power the building
according to Sterrett (117). Monego (80) and Mayer (76) describe
the work done by military and NASA workers in the field of expand-

able structures,

Technical Literature

A considerable number of theoretical papers have been writ-
ten on the subject of membranes and inflatable structures in recent
vears. A survey of these was done as part of this project. Habip (41)
has reviewed a number of papers in this field that are not widely dis-
tributed or indexed and so they have been included in this survey for
completeness., He notés that another survey has been done recently on
expandable structures in space by Evans (29).

Leonard (61, 62) has studied the behaviour of inflated shells

of revolution, and Forster and Schlusser (35, 36) have found the stresses

and displacements of a spherical dome subjected to wind loads. The load

that was used was taken from a bullding code,
Parisi (90) describes the use of inflatable cushions for crash
protection in automobiles, and Kemmerer et al. (55) analyse this use

in more detail.




53

The vibration and other dynamic deflections of membranes
with various loadings and many shapes has been examined by a number
of researchers. The vibratign of a flat membrane has been studied
by many of these. Weidman (131) studied the flutter of panels in a
supersonic flow, Johns (49) has examined the flutter and divergence
of panels for the subsonic and supersonic cases. Olcer (86) gives a general
solution to the equation of a vibreting membrane, Sharp (110) gives a trans-
form solution, and Leitner (67) discusses the vibration of a circular mem-
5rane as do Boyd (18) and Li et al. (68). Huffington discusses the vibra-
tion of membrane foils (47) and Mason (75) analyses the L-membrane problem,
There are more papers on the vibration of flat membranes but only a samp-
ling has been given since they do not concern the results in this thesis.
The object in including them was to indicate that work has been done in
this field.

The vibration of shells has been studied by using the membrane
theory of shells. FRoss (102) has found the membrane frequencies for a
spherical shell, Hwang (48) has examined the more general axisymmetric
shell, McIvor and Popelar (79) examined the dynamic stability of a shallow
cylindrical shell and Ariaratnam and Sankar (8) have studied the dynamic
snap through of shallow arches. Armenakas (7) discusses the accuracy of
some dynamic shell theories,

Another shape that has been studied is the toroid., Leipins (66)
has analysed them using a linearized theory.

The dynamics of inflatable structures has been examined by Leonard

(63) and by Burggraf (19). The equations of motion of inflatable plates

with moderately large deflections have been given by Bernstein (15).
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fost of the above works were analytical in their approach.
Some experimental results are included in the following papers. Stroud
(120) has done static and vibration tests on inflatable plates.
Jouriles (50) has done some torsion tests on fabric cylinders. Syn-
thetic fabric cylinders have been tested by Loudenslager and Weth
(70), and Slivka has done further tests on fabric structures (113).
A nurber of tests on inflatable metal fabric structures have been sum~
marized (156). These include bending, torsion, and combined loading
on cylinders and plates. The decay of vibrations in an inflatable air-
foil has been reported by Folks and Cross (34); Nickola (84) applied
the loire method to the measurement of the deflection ¢f thin membranes,

The fabriecs used for these structures have been studied both ex~
perimentally and analytically. Assaf (9) has discussed the types of
fabrics being used. Williams and Goodman (134) investigated the mater—
ials to be used for a toroidal space structure. ©Shearing strains in
fabrics were analysed by Costakos and Topping (23). Hoffman and Topping
(44,) analysed the interlaminar shearing stresses. Leonard (65) studied the
shear stiffneés of fabrics. Houmard (45) studied the effect of internal
pressure on the torsional stiffness of fabric cylinders, Jouriles (52)
measured the strains in fabric strips cyclically loaded and Topping (127)
discussed the biaxial stress problem ih fabrics, Cross and Madder (24)
reviewed both theoretical and test data on fabrics. Davidson (25) and
HMader (72) have both analysed the biaxial problem theoretically and Mader
included some experimental work. Popper (94) has given rupture criteria
for some biaxial loading conditions. Zendre and Deaton (140) tested the
stiffness of stressed fabrics, Baker and Mikolajewski (12) considered the
anisotropy of inflatable wing fabrics under biaxial stress, Backer et

al. (11) have investigated the relationship between the structural geometry




55

of a fabric and its properties.

The elementary mechanics and equations of equilibrium for in-
flatable structures have been investigated by various authors under
a number of conditions. Wright (136) has analysed various configura~
tions with rather complex shapes bub using simple loadings. Trostel
(87) has summarized membrane theory inecluding an approximation for
wind and snow loads for a simplified load on a spherical dome. Auge
(10) has fourd the necessary aﬁd sufficient equilibrium conditions in
tensor form for membranes, Simmonds (112) has given general equations
of equilibrium and some solutions for uniform centrifugal loadings.

Fang (30) has developed a nonlinear theory of elastically orthotropic
inflatable shells and has applied it to the axisymmetrical deformation
of shells of revolubtion. Hiderman and Bukhin (16) developed a small
deflection theory for a membrane shell constructed of netting with a
filler that has no.rigidity and extensible fibers. Leonard (64) has
given a general discussion of inflatable structures including material
rroperties, buckling and collapse loads, deflections, vibration fre-
quencies, and a linear theory of inflatable plates.

The study of large deformations in membrane shells and inflated
bodies has been done by a number of workers. Solodilov (114) has studied
the large deflections of a circular membrane attached to a deformable ring
at its edge. Sherbourne and Lennox (111) have studied the large deflec-
tions of annular membranes, while Wilson and Slock (135) have worked on
the deformation of a pressurized strip. Basuli (14) has studied the
deflection of a certain cylindrical panel., Ross has calculated the large
deflections of an inflated cylindrical tent (103). Rossettos (105)
has analysed the large deflections of shallow spherical shells assympto-

tically. The large deflections of a membrane shell loaded by liquid pres—
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sure have been studied (154). The deformations of a locally loaded
shallow spherical membrane have been found by Piechocki (92); and
Marketos (74) has analysed the wrinkling of a spherical membrane,

Goldberg (39) has analysed the more general problem of the large

deformations of a rotationally symmetric membrane by linearizing the
large deflections while Flugge and Chou (33) have examined the large
deformations of a torus using a material that obeys Hooke's law,

Grigor'ev (40) has examined the equilibrium of a membrane shell of

revolution at large deflections. Moskowitz (81l) has analysed the

large deformations of fabric structures.

Schlecter (107) and Stein and Hedgepeth (116) have examined
the conditions of wrinkling and have analysed membranes that are
wrinkled,

Because many of the problems that are found do not have
closed form solutions and many of the results are in the form of
infinite series or else are approximations, numerical methods have
been applied to the solution of membrane problems. Hart-Smith and
Crisp (42) give a numerical solution for the large elastic deforma-

tions of thin rubber membranes. Archer (6) uses a finite differ-

ence methodto integrate Reissner's equations for the non-linear
equations of shells of revolution. Halnins and Lestingi (54) use
a type of numerical solution to analyse the elastic shell of revo-

Iution., He deals with the bending of the shells. Oden and Kubitza

(85) use a finite element method to analyse the deformation of inflat-
able structures that are made of fabrics with a number of different

constitutive relations, Andreeva (4) has solved the large deformation
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of a corrugated membrene numerically,

The stresses in membranes have been dealt with by Ames (3) for
the axisymmetrical case and by Forster and Schlusser (35) for wind
loads on a sphere, Ilias (28) has studied the problem of finding the
stresses when the displacement boundary conditions are given.

Yen (137) superimposed the deflections from a small perturbation
on the large deflections obtainedAbykhighly pressurizing a sphere. Wilde
§132) examined the problem of designing an unstrained shape so that the
specified final shape is obtained,

The characteristics of a membrane which has one or more holes have
been studied by some workers., Vyas (95) used iteration and conformal
mapping to analyse the effect of cutouts; Piechcki (93) examined the
case where the hole is filled with a solid plug which would simulate the
effect of doorways in the structure; and Cherepanov (20) examined the
buckling of a membrane with ﬁoles under tension.

A number of reports deals with the deflections of membranes where
one of the principal factors is the materiall's properties. MacFadden
(71) describes the design and tests of a polypropylene balloon. Hart-
Smith (43) inflated a flat rubber or mylar film to get a paraboloid.
Foster (37) calculates the deformations of axisymmetric membranes made of
Neo-Hookean materials, and L. Lomen (69) studied the instability due to
thinning of the material walls of a sphere when inflated,

Some of the work done on shells can be applied to membranes since
the membrane theory of shells is often used. Van Dyke (129) has studied
a shell that is similar to the shapes used for some air supported stric-

tures, Narayanaswami (83) discussed the nonlinear membrane problem of
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shells of revolution, and Reissner (97) worked on the finite inex—
tensional deformations of shallow elastic shells with particular
emphasis on the boundary conditions,

Rossettos (104) has examined a case for deep membranes of

revolution which have nonlinear behaviour near the edges. Sujata
(121) has discussed some features of framework stabilized inflatable
structures. Schindler (108) has studied foldability. Donnel (27)

has analysed the application of concentrated loads on inflatable struc—

tures by the use of a catenary curtain. Foster has studied the infla-

tion of a plane circular membrane (38). Zagieboylo (139) has studied
the effect of shock waves on inflatable structures and the effect of
the structure on the wave inside it.

Some work has been done on particular applications. Waslton
(130) discussed the design and analysis of tires as reinforced mem—
branes. Kuby (58) applied a nonlinear membrane theory to pressure
vessels in order to analyse the end caps of a cylindrical vessel with-
out using the conventional discontinuity stresses. Deaton and Zendre
(26) compared the stiffness of air filled structures to that of similar

ones filled with a foam. Bird (17) discussed several aspects of the use

of inflated domes for radomes. He summarized the results of up to two
years of use on three radomes that were built. Anwar (5) analyses the
use of air filled and water filled fabric dams. He examines the static

case as well as the dynamic cases where there is water flowing over the

dam,
The inflation of a toroidal membrane has been analysed by Sanders

and Liepins (106), Murthy and Kiusalaas (€2), and by Kydoniefs and Spencer
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(59). Reissner (99) has studied the bending of toroidal membranes
but see the review of his paper in #Applied Mechanics Reviews vol., 17.
review 3763 about errors in the paper. Schuerch and Schindler (109)

have examined the problem of folding in connection with toroidal shells,

Fernandez—Sintes (32) and Fernandez-Sintes and Nachbar (31) have worked
on the related problem of finding the deformations in a highly elastic

thin membrane subjected to uniform ring loads.

Another particular application that has recéived some attention

is the inflated beam. Barton and Topping (13) have studied beams,

Comer and Levy (21) have studied cylindrical cantilever beams. Kova-
levsky and Rish (56) have studied fabric cylinders under various load-
ing conditions. Reissner and Weinitschke (98) have examined finite pure
bepding of circular cylinders. Jouriles and Johnson (51) have tested
fabric cylinders. OCorneliussen and Shiels (22) have studied the stabil-
ity of cantilever beams. Topping (128) has calculated the shear deflec-
tions and buckling characteristics of inflated members including the ef-
fect of the beam edges. Topping (123) has also examined the resistance
of partially wrinkled cylinders to bending and shear loads, prismatic

inflatable members, and the wrinkling and collapse of fabric cylinders

in bending. The last of these is also considered by Topping and Chuper-
koff (124). The applicability of deep wrinkler theory in assessing

maximum bending moments of cylindrical beams has been investigated (143).

: Eliptical beams have been analysed by Hader (73); tapered cylinders

by Kovalevsky and Rish (57); and uniformly loaded wings have been studied
by Topping et al. (126).
An éxtension of inflatable beams is the inflatable panel. Inflat-

able panels consist of two layers of fabric separated by air under pressure
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pressure and held together by drop cords at regular intervals.

Stein (115) has examined inflatable panels. Houtz (46) has studied
the buckling.of panels in bending, Yurick and Marketos (138) have
calculated the strains in a panel due to the inflation pressure.
McComb (77) has developed a linear theory of elastic behaviour of
plates and Stoffmacher (119) has given the nonlinear equilibrium equa-
tions and boundary conditions for plates with nonlinear strain-displace-
ment relations. Topping and Marketos (125) have studied the effect of
hysteresis and creep on the bending strength of panels; HcComb and
Leonard (78) have studied the effects of using slanted drop cords bet-
ween the two membranes in order to increase the shear rigidity. Kyser
(60) has studied the large deformations of a plate made up of an array

of contiguous tubes,
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