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A useful design tool is developed for a bundle conductor or a single conductor of an electrical

transmission line by using a three-degree-of-freedom, hybrid model. The model is adaptable

because it incorpolates numerical mode shapes determined by employing the finite element

technique to form lelevant matrices. On the other hand, it is quite computationally efflcient

because analytical expressions are used to investigate the initiation and steady-state arnpli-

tudes of galloping. The model accommodates not only intelactions of the vertical, horizontal

and torsional movements but also non-linear aerodynamic loads, a non-uniform ice geometry,

and distributed and discrete galloping control devices that cannot be considered in existing

analytical modeis. By neglecting the sub-span motions between the conductors, a bundle is

modelled as an equivalent single conductor so that the initiation conditions for galloping, peli-

odic and quasi-periodic states and their stability conditions are considered by taking advantage

of previous achievements for a single conductor. Numerical examples are presented to assess

the accuracy of the results obtained flom the model in compalison with analogous data from

a more sophisticated flnite element analysis. Parametric studies ale reported for limit cycle

amplitudes with variations of the criticaÌ wind speed, wind speed above the critical wind speed,

static tension and span length. Finally, the model is used to assess the effects of a hybrid,

control damper to alleviate galloping by changing its parameters and providing guidelines for

its application.

Abstract
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1.1- Background

Overhead electrical transmission lines consist of single or bundled conductors. Electr.ical

power utilities are often fãced with rvind-induced conductor motion in the form of aeolian vi-

bration, conductor gallop and wake-inducecl oscillation. Wake-induced oscillation, which is

peculiar to bundled corrductols, atises from the shielding effect by winclwarcl subconcluctor-s on

Ieeward ones. Its frequency range is about 0.15 to I0Hz and the maximum amplitucle approxi-

mates 80 multiples of the conductor's diameter. Aeolian vibration ancl concluctor galloping ar-e

observed on single as well as bundled conductols. Aeolian viblation is causecl by an alter-nating

pressure unbalance which is cleated by the alternate shedding of wind-inclucecl vorti<;es florn

the top and bottom sides of the conductor. The amplitucle of aeolian vibration can be up 1,o

the order of the conductor-'s diametel' at a high (10 to 100H2) frequency. Compared to aeolian

vibration, galloping is characterized by a lor,v fi'equenc,y (0.1 to 3Hz), lalge amplitucle (b to 300

multiples of the conductor-'s diameter), self-excited oscillation. It is produced by aerodynamic

instabilities which stem fì'om asymmetry in a conductor,s cross section clue to ice accretion or,

more rarely, from the stranding of the conductor itself.

Different behaviors of these thlee motions produce different types of d.amage to tlansmission

line svstem. Galloping is considered because its large amplitucle of motion incluces high dvnamic

loads. Damage caused by galloping usually occut's in approximately 1 to 48 hours if vibrations

ar-e sustained compared to a longer 3 month to more than 20 yeal periocl when aeolian vitrration

prevails. Galloping cannot only brealc conductor strands, but it can clamage clampers, tie-wires,

insulator pins, suspension hardwal'e) crossarm haldr,vale, poles ancl towers. In acldition, folced

I
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Chapter 1 - Introduction

outages caused by galloping result in loss of revenue and sometimes in other costs associated

with reestablishing service. These penalties are generally considered to be greater than those

from direct damage to lines. Therefore, this thesis is limited only to galloping.

7.2 Literature review

A theoretical investigation of galloping can be categorized generally as analytical or nu-

merical, r'egaldless of the conûguration of the conductors. Analytical techniques provide global

trends while numerical approaches are rised to study speciflc interactions. Although the present

theoretical studies give a fundamental knowledge for understanding the galloping of transmis-

sion lines, additional work is needed to establish an adaptable modeì which can accomrtrodate

galloping control devices and be used to analyze the effects of a system's parameters. The

scope of this literature sulvey emphasizes representative achievements of analytical methods

and numerical simulations as well as the control of galloping.

7.2.I Analytical methods

An analytical approach may include studies on the initiation of galloping or the resulting

limit cycle amplitude. Usually, the initiation conditions for galloping are obtained by linearizing

the nonLinear equations of motion near the conductor's static proflle. In 1932, Den Hartog

ploposed an analytical single degree-of-freedom (DOF) model for galloping of a transmission

line 11]. His model suggested that galloping may be initiated if the drag coefficient is less than

the negative slope of the lift coefficient with lespect to the rclative aerodynamic angle of attack.

The Den Har-tog criterion, which only considels the vertical motion of a conductor, has been used

widely. However, according to freld observations [2], this simplest model neglects the importance

of a conductor's torsional motion. It has been suggested that the twist of a conductor plays an

impoltant roie in the initiation of galloping [3, 4, 5, 6,7. 8, 9]. Some researchers emphasized

that, according to wind tunnel experiments [5], the galloping of a naturaliy iced line is caused by

a self-excited torsional motion rather than by a Den Hartog type of instability. Furthermore, a
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horizontal motion, when coupled to a vertical (ptunge) movement, can initiate vertical galloping

[10, 11, 12]. A recent analysis has extended the simple theory to combined vertical, horizontal

and torsional motions in order to determine the initiation of galloping [13, 14, 15]. In addition,

several initiation studies also showed the use of geometric stability diagrams to assess the

effectiveness of a system's parameters on the initiation of galloping [3, 16, 17, 18, 19].

The galioping amplitudes, frequencies and relative phase differences between vibrating com-

ponents need to be determined if a transmission line's static equilibrium position is found to be

unstable. Perturbation methods are usually used to find closed form solutions for periodic and

quasi-periodic motions. For example, a Fourier series residual approximation was employed

to determine the pulely vertical, unimodal galloping amplitude [20], an asymptotic method

was considered to give a closed form fol a nonresonance 121], a time average technique was

adapted to obtain analytical solutions of both an internal lesonance and a nonresonance for

the combined 'r,ertical and torsional motions l22l or vertical, torsional and holizontal viblations

[13, 14, 15]. Other analy'tical approaches, such as the decomposition of the nonlinear equations

of motion [23], the generalized Galelkin method [24], the describing function method [25], have

been also applied to galloping. Moreover, the stability conditions of limit cycles can be derived

by bifurcation techniques [tS, tf].

Bundle conductors have been used widely due to their economical large current -carrying

capacity [2]. However, they gallop more easily than a single conductor. Most previous analytical

studies of bundle conductols have been limited to a plannar con-fi.guration [12, 26,27,28,291.

Atthough a 3DOF, analytical model has been formulated recently for a bundle conductor [30], a

tedious time integration proceciule was aciopted and the aerodynamic forces were over simplified

by their linearization. Until now, no analytical model (which includes analytical solutions for

both an internal resonance and a nomesonance, initiation conditions and the stability of limit

cycles) are available fol a bundle conductor. On the other hand, an analytical approach can

give global trends but it may ovelly simplifv practical issues. For example, an analytical model

cannot accommodate practically important non-uniformities arising, say, from icing variations
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or localized control devices like airflow spoilers or detuning pendulums [13, 15].

1,.2.2 Numerical simulation

Most numerical schemes are based on the discretization of the dynamic equilibrium equa-

tions. The frnite element (FE) method has been often used to approximate spatial variables

[31,32,33]. Howevel, a numerically simulated growth to an eventual periodic state (often

associated with galloping) requires disadvantageously protracted computations because trans-

mission lines are vely lightly damped at low frequencies. In addition, the existence of a periodic

state is not known a prioli so that computations may be fruitless. Especially, it is impractical

for a numerical simulation to efficiently compute the effects of design changes caused by pa-

rameters like the static tension, the span length and the number of conductors in a bundle or

the result of a gleater wind speed.

Very few references have obtained the high computational efficiency needed for a numer-

ical galloping simulation. Compared with traditional FB techniques) a FE model formulated

recently for a single conductor can gleatly reduce computer time by selecting the initial (time)

conditions [13, 34]. It considered both internal ïesonance and nonresonance as well as stabil-

ity analysis by using time average method. The model has been extended to a twin bundle

conductor [35] . However, this approach presupposed that an approximate limit cycle may be

obtained from a previous analytical solution.

I.2.3 Galloping control

The final objective in studying the galloping of iced, electrical transmission lines is to con-

trol the galloping itself. A variety of methods are currently in use or under field evaluation

fol protecting lines against galloping ol its side effects. They include ice melting, incleased

clearances between conductors, interphase spacers) aerodynamic drag dampers, wind dampers,

airflow spoilers and detuning pendulums.

The pr-otection measure that was utilized ealliest was the removal of ice, or preventing its
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f'ormation, by heating conductors electrically [36, 37]. Early applications of this methocl were

apparently aimed at preventing failules due to the additional weight of ice on conductors, ancl

faults resulting from the contact between phases or a phase and a ground wire when the sudden

release of ice from a span caused "sleet jump". Galloping prevention by using ice melting has

been the primary objective during the last several decad.es. However, there is conflict between

ploviding enough resistance in the conductors to permit effective heating for melting the ice,

on the one hand, and minimizing of year-round system losses on the other.

Increased clearances between phases and between phases and ground wires are applied

widely to alleviate outages caused by galloping. The approach is based on determining limit

cvcle amplitudes (galloping ellipses) [38, 39] and experience to guide the clearance of transmis-

sion lines. Actuallv, an increased clearance cannot prevent galloping; it .just passivelv lessens

the darnage produced bv outages.

Some utilities often use interphase spacers to plevent phase-to.phase contacts. The device

rn'otlts effectively by restraining the relative motion between phases at the points in the spa,n

where the devices are located. Thus a line's galloping motion is forced into a mode in which

flashovers are much less likely 140,4I,42]. Interphase spacers also do not eliminate galloping.

In fact, they can result in an ice shape that makes a conductor mole pïone to gaìlop as the

interphase spacers prevent the free lotation of the conductor uncler the eccentric weight of the

growing ice deposit.

Aerodynamic drag dampers augment the damping effect of a conductor's aerodynamic clrag

and, thus, they narrow the conditions under which lift forces may supply enough enelgy to

sustain galloping. Although most, analyses o{ the eflectiveness of drag damping are based upon

the Den Hartog mechanism, such dampers may have beneficial effects even when a torsional

motion of the conductor is involved [42, 43, 44).

Detuning pendulums are aimed at controlling torsional motions rvith the object of reclucing

the incidence or intensity of galloping. Extensive field work has been done on this device

in l,lorth America [27,40,41,42,45]. In general, a bare conductor has a high ratio of its
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lowest torsional to vertical (plunge) natural fi-equencies. This frequency ratio can be reduced

substantially by the aerodynamic moment acting on an iced conductor and by the "inverted

pendulum effect" of the weight of the accreted ice. The attached pendulums counteract these

effects and keep the tolsional frequencies of the span well above the natural frequencies of

the one-, tlvo-, and three- Ioop, predominantly veltical modes. It was reported that detuning

pendulums may reduce the average motion of a single as well as two and four conductol bundle

lines during fleezing rain events in Nolth America [47,42,45]. Although detuning pendulums

are used widely by utilities in North America, they cannot completely control galloping. One

Ìeason is that gailoping may not be only dominated by a torsional movement.

Other control devices, like airflow spoiiels 127,40,421 and wind dampers l27l etc., have not

been used widely by utilities due to their limited effectiveness. It is very difficult to control the

galloping of transmission lines because they have very light damping and they are exposed to

all atmospheric conditions. Many researchers are trying to find a new device that effectively

alleviates all types of galloping. Expelimental development of such a device is very expensive.

It is more cost effective to initially establish a computer model to assess the effectiveness of a

new device before experiments ale pelformed.

1.3 Objectives of this project

As stated in the previous section, an analytical approach cannot handle variations of struc-

tural damping and icing along a span while a numerical simulation needs disadvantageously

protracted computations. lrleither a purely numerical nor a purely analytical approach seems

capable of conveniently describing galloping. An appropriate combination of these two methods

is aÌrnost certainly required. One of the objectives of this thesis is to develop an adaptable but

still computationally efficient, 3DOF modei that uses FE mode shapes instead of their analyt-

ical countelparts. These mode shapes are then rxed in conjunction with analytical expressions

[i3, 15] to investigate the initiation and steady-state amplitude of galloping. The final model

cannot only handle non-uniform icing variations aìong a span but it can also accommodate
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IocaLized control devices for a single conductor as well as a brildle having any number of con-

ductors. The other objective is to develop a potential control device, a hybrid damper (HD),

to alleviate the galloping and propose guidelines for the selection of its parameters.

1.4 Organization of thesis

This thesis is organized as follows. Chapter 1 gives a general description of the vibratiorrs

of a transmission line. The literatule survey emphasizes analytical methods and numerical

simulations as well as galloping control. The objectives and organization of this thesis are also

given in this chapter. Chapter 2 reviews the mathematicaì method for galloping. General steps

in studying galloping are presented for the initiation of galloping, limit cycles and their stability.

Chapter 3 develops a 3DOF hybrid model that can handle a non-uniform variation of ice and

accommodate control devices like an airflow spoiler or detuning pendulum. The model, which

is based on previous achievement 113, 151, includes the initiation conditions of galloping and

analytical solutions of both internai resonance and nonresonance for a single conductor and a

bundle having any number of conductors . Examples are given not only to compare the results

from the FE model but also to analyze the effects of design parameters like the static tension,

the span length and the number of conductors in a bundle or a greater wind speed. Chapter

4 uses the modified 3DOF model to analyze the effects of the hybrid damper's parameters on

gailoping so that an optimum design can be assessed. Finally, conclusions ar-e given in Chapter

5.



2.7 fntroduction

Transmission lines are lightly damped and susceptible to low frequency, large amplitude

vibrations when aelodynamic loads act on them. The equation of motion used. to descr-ibe

the svstem are nonlinear due to the nonlinear aerodynamic forces. Protracted computation

is needed if conventional time integration is used to find a solution. One reason is that the

existence of a periodic solution is not known in advance and numerical simulation over a shor.t

time cannot display the complete pictule of low frequency galloping. In addition, it is imprac-

tical to use time integration if a parameter analysis is required for the design of new [nes and

vibration control. Therefore, a method to substantially save computational time is definitely

recommended.

A time average approach is one that transfers equations dependent on time to time-indepenclent

algebraic equations. Consequently, computational effort is reduced gleatly [13, 14, 15, 22]. Not

onlv can the periodic solutions of these equations be obtained conveniently but their stability

conditions can also be given to detelmine whether the vibration amplitude will be sustained.

,, l^r^-.^..-:-- ^^--^+:^-- ^-l ¿L-:-- --t--1!4.2 svvçl rrrrrË Equ4LrurlÞ <1,11(I ürrcrr sult-lLlofl

MATHEMATICAL METHOD

Chapter 2

The equations of motion for a lrtr DoF system generally have the form [13]

M.i+Cq+Kq:F

where M, C and K ale the N x ly' structural mass, damping and stiffiress matrices, r'espectively,

and F is the extelnal load vector'. q is the generalized dispiacement vector. The system

8

(2.1)
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clescribed by equation (2.1) corresponds to an electric transmission line and it is autonomous

and weakly nonlinear. Equation (2.1) can be transferred to a canonical form by using the

traditional principal coordinate theory so that

The 4¿ and. a¿ are the ith principal coordinate and eigenvalue of the corresponding linear,

undamped system (for which e : 0), respectively. The term e-F], which represents the nonlinear

aeroclynamic and damping forces, ur" orá", e (e ( 1) in compalison to the inertial and elastic

f'or-ces. In order to yield closed form periodic solutions, the Krylov-Bogoliubov (I{B) technique

is applied to the modif,ed equations

ie*wi'r¡o:eF¿l(rî"-r?)no, i:1,2,"',N (2'3)

insteadof equation (2.2). The u)* areunknown and la.,i -r? l: o(e). Assumeperiodicsolutions

of the form

rlt i ullrlt: eF¿(ry,T2,"' ,TL,it,iz,"' ,nrn) l,m 1 N'

where

ú¿(¿) : ait + ór(t). Q.5)

A¿(ú) and dt¿(t) arcthe zth amplitude and phase, respectively. Differentiate equation (2.4) with

respect to ú and let the amplitude and phase be chosen such that

and

n¿(t) : A¿(ú) cos ú¿(ú)

(2.2)

Then diffe¡entiate equation (2.6) again and substitute the resulting equation and equation Q.a)

into equation (2.3) to ploduce

ni(t) : -A¿(t)ai sinV¿(ú)

,,i¿(t)"o' ü¿(¿) - At(t)ót(t)sin ú¿(ú) : Q.

aolt¡"ln q/i(¿) + At(t)ót(t)cos ù¿(ú) : (r? - r;')eoçt¡cos I[¿(r) - eF¿'

(2.4)

(2.6)

(2.7)

(2.8)
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By employing the KB method and algebraically manipulating equations (2.7) and (2.8). the

following equations can be obtained

and

where

ai A¿(t): 
,ti;o_ + lr'ft(ú)sin vi(t)dt ,i :1,2, . ..,N

The slowly varying functions, A¿(t) and ó¿(t) are effectively treated as constants in equations

(2.9) and (2.10) when integrations are performed with respect to time, ú. The A¿, ó¿ and. al
can be found by letting Ao: ón:0 in equations (2.9) and (2.10). Equation (2.4) gives the

corresponding periodic and quasipeliodic solutions.

2.3 Initiation of galloping and stability of lirnit cycles

ai A¡(t)$¿: #* + lr'Ê¿(ú)cos 
vi(t)dt

n:@?-,i')'n,-eF¿.

The initiation of galloping depends on the stability of the static equilibrium con-figuration

of a transmission line. Gaiioping is initiated if a static con-flguration is unstable. The stabitity

analysis is performed by linearizing equation (2.1), which is rewritten as

10

where

C, and K., are the linear terms produced from F. Fs in equation (2.12) represents higher

order terms of the aerodynamic loads. The charactelistic matrix can be obtained from equation

(2.12) as f46l

(2.e)

M.i+Cr,q+I{rq:Fn

(2.11)

[orS." I

[ -v-tx, -tyr-lC¿

(2.r2)

(2.13)

(2.14)
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where 0 and I are the l/ x l/ null and identity matrices, respectively. Galloping (i.e. the

static confguration is unstable) occuls if at least one of the eigenvalues of S".r, À, has a positive

t'eal part. The stability conditions can be found bv applying the Routh-Hurwitz criteria to the

characteristic polynomial

det(S""-ÀE) :g

where E is the unit matrix of size 2N x 2N.

The stability of the steady states can be determined by the Jacobian matrix, J, from

equations (2.9) and (2.10). J has elements given by

where m is the numbel of internally resonant modes. Similarly, the stability conditions of

the limit cycles can be obtained by applying the Routh-Hurwitz criter.ion to the following

c;haracteristic polvnomi al

t ô4,r¿,i: a4
,Lr:q+L,r oet

t..-ôó¡ur,l - Al
r..-ôó,
"z,t - ôót

i.,i < N

Limit cycles are stable if all the real parts of the norLzeÌo eigenvalues of equation (2.IT) ar-e

negative.

i { N, j : N +1, I :7,2,...,n-L

i,> N +1, j < N, I :7,2,..-,ffi

'i : N +1, .j :N+k, l,k :7,2,...,m

11

(2.15)

det(J - ÀE) :0.

(2.16)

(2.17)



3.1 Introduction

As stated in Chaptel 1, a 3DOF hybrid model is developed in this chapter by extending

the approach used for a single conductor [13, 15] to a bundle configuration having any number'

of conductors. This model modifies the model used for a single conductor to accommodate

non-uniform icing as well as control devices by adopting FE mode shapes.

Although an arbitrary number of conductors is considered, the particular example of a twin

conductor bundle is illustrated in Fig.3.1 for simplicity. Fig.3.1(a) presents the static positions

of the two conductors that are produced by the conductors' weights and tensions as well as

by the steady (side) wind and the weight of accreted ice. A typical cross-section of the ith

iced conductor (where i:I,2 for the twin bundle) is shown in Fig.3.1(b). Physical rigid spacers

joining the conductors ale illustrated as solid lines. Weightless, rigid flctitioìrs spacers are

introduced that periodically join the conductors to ensure that they essentially move together

(i.e. the bulk motion constraint). Of course such spacers, which are represented in Fig.3.1(a)

by dashed lines, are not needed for a single conductor. The refelence curve for the bundle is

considered to go through the mass center of each closs section of the bundle, as indicated in

Fig.3.1(a). On the other hand, adjacent spans are always idealized, as for the single conductor.

by equivalent linear springs. Therefore, the principal difference between the single and bundle

conductor approaches is the advancement of fi.ctitious spacers and a reference curve for a bundie

conÍgulation.

The hybrid model malies the following assumptions in order to extend the single conductor

formulation to a bundle conductor.

12
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1. Ineltial and damping forces in the longitudinal direction, as well as the lotation of

individual conductors about this direction) are negìected.

2. A line's sag-to-span latio is small.

3. The rotation of the bundle about the refelence cuïve is small so that the linearized theor5'

can be employed and spacers are rigid.

4. No more than one mode per global direction is considered simultaneously.

5. The relative motions between the conductors of a bundle are neglected and the longitu-

dinal motions of each of the conductors are presumed to be identical.

Items I, 2 and 5 are the commonly made assumptions for the bulk motion of a bundle. The

third item is reasonable in many cases because a bundle's torsional stiffness is much greater

than that of a single conductor so that large rotations happen rarely. Item 4, on the other

hand, presumes that the larger torsional stiflness of a bundle hardly changes the negligible

coupling that is assumed for the single conductor for modes acting in the same direction. These

simplifying assumptions are used next to formulate the hybrid model.

3.2 Displacement relationship

The dynamic displacement at an arbitrary point ( 
", 

y, 
" ) 

of anv one conductor in a bundle

is measured from that point's static position. It is given by

1tld

X,Y and Z are the global coordinates iliustrated in Fig.3.1(a) while r,g and z are the local

coordinates shown in Fig.3.1(b). The latter are off-set fi'om the global cooldinates and their

oligin is located on the reference culve at the left support. ux,,t)y and u2 are the global

displacements at (t, g, 
") and instant t. Their dilection is indicated by the corresponding suffix.

On the other hand, s is the intrinsic cooldinate which indicates the distance that a cross section

ux(s,U, z,t)

uv(s,'y, z,t)

uz(s,!/, z,t)

U (s, t)

V(s,t) - z@(s,t)

W (s,t) * gO(s, ú)

(3.1)
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of the bundle is from the reference curve's origin. U , V and W are the global displacements of

any point of the reference culve in the X, Y and Z direclions, respectively. @ is the rotation

of the bundle about the reference curve and it is assumed to be small. If only one mode is

considered in each direction, then [/, V, W and O can t¡e expressed as

The q¿ and.fi, where 'i:'t;,'u,u),0, ale generalized coordinates and the associated mode shapes

provided by the FE model, respectively. (See Section 3.4.) Furthermore) the displacements of

the center of the ith conductor in the bundle, U¿,V andW¿, are described bv

U(s,t)

V(s,t)

W(s,t)

@(s, ú)

q,'(t).f 
"(")

q,(t) f,(")

q.(t) f -(")

qe(t)feG)

Hele r'¿ is the distance between the leference curve and the center of the ith bare conductor

at the bundle's cross section of interest. MoLeoveL, 9¿o is the initial clockwise angle of this

conductor fi'om the positive direction of the gr axis, as illustrated in Fig.3.1(b).

3.3 Equations of rnotion

U¿(s,y, z,t)

V¿(s,y, z,t)

W¿(s,'g, z.t)

74

The equations of motion of the bundle are found by employing the conventional variational

plinciple [47], i.e.

V(s,t) - r¿ sin d¿sO(s, ú)

W(s,t) f r¿ cos d¿s@(s, ú)

whele T¡ç andV" are the total kinetic and strain energies, respectively. Wn, is the work done by

the nonconservative forces and ó indicates the fi.rst order variation. By negiecting the inertial

(3.2)

[,' orr, - v")d't * I'," 6wn"d't: o

(3.3)

(3.4)
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effects in the longitudinal direction, l¿ is given by

rr:; 
1"" Io,p@T 

+ tu2r)dAd.s *|iW"r
where L is the total length of a line in a span; p is the mass density of the iced bundle conductols'

total cross-sectional area, A7; ms¡ arrd 15¡ are the mass and the mass moment of inertia of the

kth spacer, respectively; s¡ is the intrinsic coordinate of the kth spacer's intersection with the

reference curve; p is the number of spacers; and a dot superscript indicates differentiation with

respect to time, t. The variation of the strain enelgy for a bundle's bulk motion, óV", can be

obtained by summing the strain energies of each of its conductors [15,48], i.e.

6vs:i [^t roróe"e" -t- B7(6e,e6 I e"6e6) * GJ6eeee *T6e, r M¡6e6)¿d,s , (3.6). ,Jo'¿= I

Suffix i in equation (3.6) represents the ith conductor again and n is the total number of

conductols in a bundle. e" is the Lagrangian strain of the ith conductor, along s, such that

V'(tr,t) + rn"¡W2(+,t) -l 1"¡@2(s¡, t)] (3.5)

ðr ôu¡ , ô'g 0V¡ , ðz ôW¡ 7,,ôuy ,z ,0V¿,2 , ,ôWi,2,,": ô, A, ta" a" -a" a" -trt\ * J -(a"J -r-( 
As / J'

On the other hand, the torsional strain of a conductor, e6, can be expressed as

eo(s) q:P

7 in equation (3.6) is the static tension in each conductor, M¿ is a conductor's initial internal

twisting moment that resists the extelnal moment caused by an eccentric ice weight, A and GJ

are the closs sectional area and the torsional rigidity of a bare conductor, respectively, E is the

modulus of elasticity and B7 replesents an axial-torsionai coupling [491.

The variation of the viltual wolk is described by

15

Fo,

the

F" and F6 are the aerodynamic loads (per unit span length of the bundle) which act at

reference curve in Í,he g, z and d directions, respectively. C. is an experimentally found

6wn": 
lo'Fo{ùu, * F"(s)6w + Fo(s)ó@l ds - 6{c[.q" .

(3.7)

(3.8)

(3.e)
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damping matrix that takes the form

'n'here 0s is the 1 x 3 null matrix.

aIe

cy:2ar(um11,

aa (i:'g,z,e) and {¿ (i: A,2,0) ate, respectively, the bundle's undamped, uncoupled natural

frequencies and the measured damping ratios associated with the uncoupled vibrations in the

direction indicated by a subscript. m¿¿ (i, : I,2,3) are the elements of the matrix M defined

in equation (3.14). Finally, qo in equation (3.9) is defined by

ú : (q, q') uhere qr : (q, q- qr) (3.12)

Substituting equations (3.5) through (3.12) into equation (3.4) yields the equations of motion

AS

lo
Co.:l

loT

On the other

0s

C

hand,

c22 :2t't"{"m22, cag :2ag(grngg

the elements of the diagonal matrix C

where Mo and Ko ale a 4 x 4 mass matrix and stiffiress matrix, respectively.

form

Io o, IMol 
I

Lo" Ml

L6

and the non-zero elements of M and I(" are given more conveniently in the Appendlx A.

The aerodynamic load vector, F", in equation (3.13) is found at the refelence culve fi'om

aerodynamic data rneasured at the centers of the individual conductors of a bundle. It is

represented as

(3.10)

MoäolCoq,o*Kr,go:Fo

(3.11)

The components of FT : (Fo F" Fe) are expressed conventionally as nonlinear functions of the

¡n'ind's angle of attack a, the conductor's diameter d, side wind speed U", and the density of

(3.13)

Mo takes the

Fl : (o F")

(3.14)

(3.15)
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air, pair. In an analogous fashion to a single conductor, they are approximated in section 4.3

of Appendix A as cubic polynomials in a where

by assuming that

and approximating the characteristic radius 113) by dl2. The major difference for a bundle

conductor is that [he refelence curve is used to deflne o rather than the single conductor

itself. See, for example, Fig.3.2. It is assumed, for simplicity, that the aerodynamic interactions

between the different conductors of a bundle are negligible. This assumption appears intuitively

more leasonable for wider separations of the conductor'. For exampie, it seems increasingly

plar:sible when the separation between the conductors of a twin bundle is enlarged beyond ten

conductor diameters [50]. Then the aerodynamic forces and moments measuled for an individual

conductor can be merely summed at the refelence curve. Details of the basic aerodynamic

loads consider-ed here are given in reference [15]. They corlespond to the single iced conductor

illustrated in Fig.3. 1(b).

The equations of motion for the condensed 3DOF system are obtained from equation (3.13)

by partitioning Ko so that

dVa:O- - O-2U, U.

øn-'{}1o*1,=ftø*f

t7

Bv eliminating the terms associated with the axial displacements, equation (3.13) becomes

(3.16)

rvhere

(3.17)

3.4 Finite element model

Ko:

A FE model established in this section not only provides the necessary mode shapes for the

lcn K2

KzT Ks

M.i+Cq+Kq:F

I(: Ke - K2rk1;7K2.

(3.18)

(3.1e)

(3.20)
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hybrid model but also extends the twin bundle [35] method to a bundle having any number of

conductols. Consider, next, a bundle consisting of n conductors. Each conductor is considered

to have no nodes. The jth nodes of all the conductors are assumed to be connected either by

a physicai or a ficticious, rigid spaceî. In the FE formulation, the relevant mass) stiffiaess and

damping matrices as well as the nodal force vector are formulated for each conductor of the

bundle. These equations are tlansformed to the reference curve with the help of the physical

or' ficticious rigid spacers.

All but two of the assumptions used to develop the hybrid model are utilized in the FE

modelling of a bundle conductor. The exceptions avoid the neglect of the longitudinal inertias

and the assumption of solely a single mode acting in a specifled direction. Details of the FB

formu-lation have been given pleviously for a single conductor [51]. As before, a conductol is

represented by employing three node, isoparametric cable elements. After forming the equations

of motion f'ol' each conductor, tlansforming them to the leference curve and assemblíng the

matrices, the final equations take the form

where

18

lMl{q} + tcl{4} + lNl{q} : {r}

lMl

lcl :

lKl

and

n

T
i:I

T1t
i.:L

'n

Ð
i:I

¡r@f¡mQ)1[r{rl1 + ÍM"]

¡r(á)f ¡c@1¡rØ1

¡r@( ¡6u) l[r{tr1

{r}

{q}

{q¡}' : Q:ù ,r}u ,*}ù'oii))

(3.21)

(3.22)
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,lU,ulU 
^naWli) 

are the global displacements of node j of the reference curve and Ojo) t th"

rotation of the bundie about the reference curve. The ll[(z)1, [C(¿)] and IXU'11, i:1,2,...,'tu,

are respectively the mass, damping and stiffness matrices of size 4n, x 4no. {f{tli is the

corresponding load vector of size 4n, x l. The construction of these matrices is given in

refelence [51]. ["(c)] is a 4 x 4 transformation matrix whose non-zero elements ale fi1 :?l22:

Tn : Tq+:1,T2+: r¿cos0¿6, and 73a : r¿sin9¡o. Again, r¿ is the distance between the

reference curve and the center of the ith bare conductor and á¿o is the initial clockwise angle of

this conductor as viewed from the positive direction of the g axis. See Fig.3.1(b). If the Delta

function, ó"¡, is denoted by

then the diagonal mass matrix , lM"l, in equation (3.22), which represents the contribution fiom

the phvsical spacers' inertias, can be written as

( 0 f'or a massless, fictitious spacer introduced at node j-(-,u s.'l \
I t for a physical spacer having an end at node j

The diagonal matrix [M"¡] is given bv

lM,l:

19

6"1 M"1

0 6"2 M"z 0

0

0

where rms¡ and 15¡ are the mass of the physical spacer and its mass moment of inertia about

the reference curve at node j, respectively. Note that the mode shapes, T"G), ,f"(t), /-(s) and

0 ó.r(",o-r) M"(nr-

0

,fs(s) in equation (3.2) are taken in the discretized form as

(f u, f,,l-, fe) : (Uo.vi,wi,@i7

lM"À:

msj000
,msj00

007nsi0
00OI"i

0

0

0

Msnp

(3.23)

1)

6"n,

(3.24)

(3.25)

(3.26)
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3.5 Stability analysis and limit cycles

Steps involved in the stabiìity analysis of the static confguration and the determination of

the limit cycles are detailed in reference [15] for the hybrid model or in reference [34] for the

FE model. Hence, only a brief description is given here.

The first step in detelmining the feasibility of galloping is to investigate whether the initial

equilibrium solution (IBS) of the ünearized form of equation (3.19) or (3.21) is stable. The

charactelistic polynomial corresponding to equation (3.19) or (3.21) can be obtained by using

the sa¡ne approach in deriving equations (2.72), (2.14) and (2.15). If all the eigenvalues of the

the resulting characteristic polynomial have negative leal parts, then the static configuration

is asymptoticaily stable and a f'urther analysis is not required. If, however, at least one of the

eigenvalues crosses the real axis (a critical point) when a parameter changes, say an increasing

wind speed U", Lhen the IES becomes unstable and galloping may be initiated. The critical

wind speed, Ur,,, is the vaiue at which the IES just becomes unstable. Once the IES becomes

unstable, new equilibrium states or dynamic motions, which ale peliodic or quasi-periodic, may

emeÌge frorn the critical point. (Note that chaotic states are not investigated.) Perturbation

techniques ale employed to study the dynamic motions and to flnd the limit cycles' amplitudes.

The clelivation of the limit c),cles and their sl,ability conditions was summalized in Chapter 2.

Explicit expressions to determine the IES and the limit cycles' amplitudes are given in reference

[15] for the hybrid model. On the other hand, a step-by-step procedure is given in referenc:e

l34l for computing the dynamic motion using FE model.

3.6 Numerical results

20

In this section, natural frequencies and limit cycles of the line with ice shape C11 [50] are

used to make a comparison between the hybrid model and FE model for diffelent conductor

con-frgulations. A trend analysis is important for engineers due to certain key parameters so

that numerical results focus on the effects of a bundle's parameters like the horizontai tension
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of a conductor, span length, structural damping, critical wind speed and wind speed above

critical wind speed.

The examples considered here assume that all conductors in the bundle ar-e identical. Fur-

thermore, the iced conductors have simple end supports which permit longitudinal degrees of

freedom so that a more realistic interaction can be accommodated between adjacent spans. Ice

accumulations on the conductors, whose asymmetry may causes the conductors' instability, are

obtained from a single conductor sample placed in a freezing rain simulator [50]. The resulting

(C11) cross-section is illustrated in Figure 3.1(b). It resembles the D form used tladitionally

to induce galloping in field trials [4]. This particular ice formation is assumed to be accreted

identically on each conductor. In other words, variations in the ice shape that could arise fi'om

one conductor paltially shielding another conductor from the wind are ignored for simplicity.

The wind speed is also presumed to be constant along the span.

3.6.1 Natural frequencies and limit cycles

Limit cycle amplitudes, mainly the components in the verticai and horizontal directions,

are important in avoiding an electrical flashover- or the clashing of conductors. They are re-

lated not onlv to the aerodynamic loads but also to the natulal frequencies of the conductors.

In particular, natural fi'equencies determine if an internal resonance happens which, in turn,

crucially affects the dynamic behavior of the conductors. An internal resonance occurs when

the ratio of at least two of the natulal frequencies is close to a ratio of two positive integers.

The parameters in Table 3.1 are selected so that the lowest horizontal mode participates in an

internai Ìesonance. in this tabie, 1 is the centroicial inertial moment of the bare conductor; eo

and e" represent the eccentricity in the y and z directions, respectively. A¿"" is a total cross

sectional area of the iced conductol and m is the corresponding mass per unit length. Table

3.2 gives a comparison of the lowest thn'ee natural frequencies of various bu¡dles and a single

conductor in plunge (vertical), swingback (horizontal) and torsion that are predicted by the

hybrid and FE models. The finite element model has 21 nodes along the reference curve where

2T
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numbers 1 and 21 replesent the left and right supports, respectively, and 19 fi.ctitious spacers

are always used for all bundle configurations.

Table 3.2 indicates that the percentage diffelences between the natural frequencies pro-

d.uced by the hybrid and FE models are within an acceptable 7Vo, The natulal frequencies

corresponding to a plunge (vertical) or swingback (horizontal) motion are almost the same for

a given number of loops per span? regardless of the number of concluctors. This behavior occurs

because the mass and stiflness in these di¡ections change almost identically with an increasing

number of conductors. The torsional frequencies, on the other hand, decrease noticeably as

more conductors are added because the change in the moment of ineltia is greatel than that

for the stiffness. Identical trends have also t'een observed from existing bundle models [5, 30].

The hybrid and Énite element rnodels are employed to investigate the dynamic iimit cvcle

amplitudes. From a practical viewpoint, one through three loops per span are usually considered

in North America because they are most frequent for galloping [2]. The examples in this papel',

howevel, only give the mid-span and quarter span lesults for one and two loops per span

galloping, respectively, because the limit cycle amplitudes for the three loops per span case

are invariably much smaller. The initial placements of the different tundle confi.gurations are

shown in Fig.3.2. The corresponding aerodynamic coefficients, a¿i, are given in Table 3.3 for'

7stati.:400 and 0"¿o¿¿":2700. Only data for single conductor is shown in Table 3.3 because

the bundle conductors are invariably stable w]hen 0"¿o¿¡" : 2700 ' Both the hybrid and finite

element models predict that, regardless of the nurnber of conductors in a bundle, the initial

equilibrium state is unstable at the assumed 4m/s wind speed (i.e. ttre stability criterion is first

violated i15]). A 1:1:0 (ø., i a": Øe) lesonant gaiioping occurs in a one loop per span motion

for the single as well as for the bundle conductors. In addition, a 1:1:1 resonant galloping can

occu¡ but only for a two loops per span motion of the bundle conductors. Figs.3.3(a) and

(b) compare the resulting butk motion limit cycles for one and two loops per span motions,

respectively. The resuLts from the hybrid model agree with the FE predictions. The A, and

,4, used in this figule colrespond to the vertical and holizontal limit cycle amplitudes for the

22
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single conductor or the reference culve of a bundle. It can been seen from Fig.3.3(a) that the

vertical amplitudes for the one loop per span case are invariably comparable in magnitude.

They are much greater than the horizontal displacements for the bundle conductors so that the

plunge motion dominates the one loop per span galloping for the bundles. Therefore, it is not

sulprising that a predominantiy vertical conductor motion has a high percentage of occurrence

in the ûeld 12]. On the other hand, Fig.3.3(b) suggests that the horizontal motion is comparable

or lat'ger in magnitude to that of the plunge for a two loops per span oscillation. Therefole, the

horizontal motion should not be neglected in such cases.

3.6.2 Critical and higher wind speed trends

Two static angles of attack, ?static: 400 or 2700, are selected to illustrate that the clas-

sical Den Hartog criterion, which depends only upon the aerodynamic characteristics of the

conductols, does not necessarily give the initiation of galloping. According to this criterion,

an instability occurs wihen ffi -fCp 10. C1 anð. Cp are purely the aerodynamic lift and

dt'ag coefficients, respectively, which are deflned in the Appendix A. The previously considered

single and bundie conductors are used again to determine how the ensuring dynamic limit cy-

cle amplitude changes with the critical wind speed and an increasing steady side wind speecl

beyond this critical value.

Figure 3.4 shows the var-iation in the reduced critical wind speed, Ú"": (J""f f Lr, and

the nonclimensional limit cycle amplitude, A : 
J-A'zy+ Æf so, al the static angle of attack

?static:400. (N-ote that this particular angle is illustrated in both Figs.3.1(b) and 3.2.) The

.f is taken as the lowest ay,Ihe predominantly vertical naturai frequency; ,L, is the horizontal

span length; and so is the static sag at a line's mid-span. The figure indicates that Á invariably

<i.ecleases as Ú,, increases, immaterial of the number of loops per span and regardless of the

number of conductors in a bundle. However, the single conductor always has the lowest À at

a given Ùr". On the other hand, the vertical amplitude, Ar, always dominates A in Fig.3.a(a)

while -4" is the principaÌ component of A in Fig.3. (b). Fig.3.5 presents analogous results to

¿,)
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Fig.3. (a) for 0"¿o¿¿, : 2700. Only data for the single conductor is shown in Fig.3.5 because

the bundle conductors are invariably stable when 7s¡s¿¡c : 2700. The major difference from

Fig.3. (a) is that the Den Hartog criterion is satisfied no longer for the single conductor. (Table

3 indicates that ffi * C¡ is negative at ïs¡o¿¿":400 but positive aÍ, 05¿¿¿i¿:2700.) Despite

this difference, the single conductor remains unstable - otherwise there wouid be no limit cycle

amplitudes in Fig.3.5! Clearly, the simple Den Hartog criterion is not always appücable. On

the other hand, À decreases again with increasing(1"", albeit more rapidly at the lowest U"".

Figs.3.6 and 3.7 give the changes in the component nondimensional limit cycle amplitud.es,

Ão and A", as the steady wind speed rises above the reduced critical wind speed , Ù"", for

?static :2700 and 400, respectively. In these figures, the static horizontal tension is H:30kN,

the span length is tr" : 126m while Ù": U,l,f L,, Ão: Arl"o and, A": A"lso.The wind

speed, U", varies from a steady 4 mf s to a steady 6 mf s. Not surprisingly, both A, and, A"

always grow as ()" and, hence, the wind's energy input to a line increases. As befole, ,4,

is invariably much larger than Ã, for one loop per span galloping but this trend is r:sually

Ieversed for two loops per span. 'Ihe single conductor is the exception in the latter situation

because the internal resonance and, hence, the coupling between the torsional and vertical or

horizontal movements does not change. On the other hand, when galloping occuïs) the number

of conductors in a bundle hardly affects Ão and, Ã".

3.6.3 Tlends for static horizontal tension and span length

24

The effects on Ao and A, of increasing the nondimensional static horizontal tension, 11 :
IJ l^-- ^-) --^- r^--,!r- T Lnfl11/ur,¿LLrr ùp¿lulcrrBtlL,L'x/.5a. a,r'eglvelìrnrIgS'ó'öanoó.y)fespeclfvely, IoTAs¿¿¡¡6:4U-. nel'e

tu is the total weight of a bare conductor in one span. Both Ão and Ã" ínvariably tend to grow

as either H or L,f so increases. The single loop per span case (Figs.3.8(a) and 3.9(a)) is little

different to the comparable situation observed in Fig.3.7(a) for increasingÙ". However, unlike

before, the twin bundle has somewhat smaller Ão and .Ã." than the triple and quad bundles

in two loops per span galloping, especially for enlarged ¡¡. tnis difference is likely caused by
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the different torsional coupling to these components that arise from the appreciably smaller

rotation of the twin bundle at higher Ë1.

3.7 Concluding rernarks

A flexible and computationally efficient design tool is developed fol bundle conductors. It

can still be used for a single conductor. Software based on this model can be run instantaneously

on a peÌsonal computel so that it makes a practically required parametric analysis possible. In

addition, numerical results for a particular ice shape suggest that the ratio of the limit cycle

amplitude to the mid-span's static sag invariably decreases as the critical wind speed ral;io

increases, regardless of the nurnber of loops per span considered or the number of conductors in

a bundle. It also r:sually grows as the nondimensional side wind speed (above the critical value)'

holizontal tension or span length increase - again, immaterial of the number of conductols. Den

Hartog's criterion for the initiation of galloping is shown to be overly simplified.

25
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Pa¡ameter

d (m)

E (Nlmz

GJ (lrl rr2 /rad)

I (kg m)

H (l'Ð

e" (mm)

Table 3.1 Iced Cll Ii

e- (mm)

Data

A,"n

4.79033* 10r0

0.0286

(ntmz )

Number of
conductors

0.3334* 10-3

101

ne

30000

Table 3.2 Com

2.05

No, of
loons/soan

Parameter

-0.63

I
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4.L Introduction

As introduced in Section 1.2.3, there is no control device that is suitable for all atmospheric

conditiorrs or all kinds of galloping. A detuning pendulum is the most popular control device

used in lttrorth America. It can adjust the torsional frequencies of a conductor to avoid the strong

coupling between the vertical and torsional movements. However, the detuning pendulum makes

no contribution to the structural damping which is very important to alleviate galloping. Several

transmission lines have been observed to still undergo galloping, in some circumstances, even

though detuning pendulums have been installed on them. Thus, it is difficult to develop a

control device that can prevent galloping for all conditions. One reason is that the galloping

mechanisms are not understood completelv. HoweveL, it is always beneflcial if the structural

damping of a line can be increased by adding a control device. Indeed, it could be cost effective

to increase an existing transmission line's structural damping by adding a passive device so

that the height of towers and conductor clearances could be reduced. A hybrid damper (HD)

has potential in this area. A HD consists of a rigid link, spring and a liquid dampel, as

shown in Fig.4.1. The end of the rigid link is fixed at a conductor and the other is hinged at a

container containing the liquid. The natural rotational fi'equency of the HD can be tuned by the

equivalent twist spring. Therefore, the conductor's motion is partially converted to a rotation

of the liquid container so that the liquid sloshes back and forth between the container's ends to

provide structural damping. The liquid container is modelled by a large rveight for a detuning

pendulurn. In this chapter, the previous computer software has been modified to accommodate

HDs and, thus, test their effectiveness in alieviating galloping. The hybrid model is still used
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to describe the motion of a tlansmission line with simplified HDs. All the assumptions used

previou.sly for this the model are also applied here.

The equations of motion for the transmission line with HDs, as well as a parametric analvsis

of involving HDs are given in the following sections.

4.2 Equations of rnotion

A HD is mounted so that it is perpendicular to a conductor. Let nrn and B¿ be the number

of hybrid dampers and the rotation of the zth hybrid damper about its pivot point, respectivelv.

(See Fig.4.1.) B¡ can be expressed as

if only one mode shape is retained for each global variable V,W and @. In equation (4-I), þr¡

Þut¡ and. Þe, ure the ith HD's modes colresponding to T|ne'¡tr, z and á directions, respectively. qu,

q.,, and q6 have been defined in equation (3.2). The total kinetic enelgy, T¡., of alI'nrn hyblid

dampers is

1fl^
:ro : i I{-r, l.f3 G,) q3 r.fl"(",¿-

1.: I

A¡: þuoQu I þ,,nQ- I þe¿Qo

where nr¿., R¿r, r"n and. Ion ate the ith HD's mass, radius of gyration, the distance between its

mass centel and pivot point and the moment of mass inertia about the pivot point' respectively.

s¿ is tire zth HD's natulal coordinate. .fu, f- and, fs have been used in equation (3'2). The

valiation in the potential enersv o[ the hvbrid dampel's. 6V¿. is given by_____o/ - _

nm

36

) È- + n3, ¡ r' ( s ) 4| - 2 Ra, f - G o) .f e ( t ù 4- qe - 2 r, 
n f , þ ¿) þ ¿ q,l + 1., P? j,

rvhere kB., is the equivalent torsional spring constant of the ith hybrid damper and the I is the

g¡ayitational constant. If the linear viscous damping is assumed (Fa, o p¿ where lran is the

clamping force of the ith HD), the variation corresponding to the work done by the damping

6vd : l{*a,s Ran feGù qe -t kpo B¿6 B¿},
;-1

(4.1)

(4.2)

(4.3)
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forces of the HDs is

where cpn is the damping coefficient of the ith hybrid damper. The overall equations of motion

that include the HDs can be obtained by inserting equations (4.1) through ( . ) into the corïe-

sponding equations (3.5), (3.6) and (3.9) used in the hybrid model without any control device.

Then

hybrid damper

where

6Wd:Ð"8,þn6l3o
i:1

and

Må:

Må.i, tC'oío*Klqo:Po

M, C and Ko are the same as the matrices used in equations (3.14), (3.10) and (3.18), respec-

tively. qo is defi.ned in equation (3.i2). 03 is still the 1x 3 null matrix. li4¿,C¿ and K¿ are

contlibutions from the hyblid dampers. Details are given more conveniently in Appendix B.

4.3 Numerical results

t;
0s

M-lM¿ l

ÐiJ'

K,o:"".lå :: ]

Results from parametr-ic analyses of hybrid dampers are given in this section. Two main

parameters of a HD are selected to test their effect on galloping. One is the darnper's natural

undamped. frequency, u)d,. ar'd. the other is its damping ratio, {¿. Here a¿ : ,[ffi "na
(¿: cpf2m¿a¿. The corresponding results for a completely untreated line and one having

detuning pendulums (DP), i.e. a "Leference" control device which has been used for many

years) are given fol comparison. The examples are given for a single conductor and for one or

two loop motions pel span. The line's unexplained physical parametels and the aerodynamic

coeffi.cients f'or C11 are listed in Tables 3.1 and 3.3. Parameters for the DP are selected according

CL

(4.4)

Io
L"

0g

C+C¿

(4.5)

(4.6)

(4.7)
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to Ontario Hydro's guidelines [54]. The weight and radius of gyration of DP rxed here are TIkg

and 0.145m, respectively.

4.3.7 Effects of HD's natural frequency

In Figs.4.2 and 4.3, À represents the ratio of the conductor's natural frequenc5' in plunge to

the HD's natural frequency, i.e. À : ,alra. Ao arrd,Ar, which were defined in section 3-6.2, are

the non-dimensional limit cycle amplitudes in the vertical and horizontal directions, respectively.

U"" is the non-dimensional critical wind speed which was defined in section 3.6.2. Fig.4.2

corresponds to a line with one HD located at its mid-span. The line undergoes one loop per

span galloping before the HD is added. This figure gives the non-dimensional clitical wind speed

and limit cycle amplitude for different À and {¿. It can be seen that, when À : 1 (i.e. the HD's

natural frequency equals the lowest natural fi'equency of the line in the vertical direction). the

critical wind speed increases most noticeably and the ensuing limit cycle amplitude decreases,

especially at a larger (¿. Indeed, the greater rotation of the HD when À : 1 leads to larger

damping due to a largel l3ur in equation (8.9). Moreover, the different slopes of these curves,

which correspond to diffelent À, illustrate the effectiveness of the HD's damping. On the other

lrand, Tables 4.1 and 4.2 as well as Fig.4.2 indicate that the detuning effects of a DP or a HD

are not significant when {¿ : 0 compared to the untreated line. (Actually, a hybrid damper

corresponds to a conventional DP when {¿ : 0.) The two loops/span galloping case is not given

because the HD or DP is located exactly at mid-span, i.e. at the node of the second mode, so

that they are both ineffective.

Fig.4.3 shows one ot'two loops peÌ span galioping for a line \Mith 3 HDs which are located

at f,L", $L" and. tL,, tespectively. This HD arrangement is consistent with Ontario Hy-

dro's guidelines about a DP arrangement. The natural frequency of the HD near the line's

mid-span is adjusted to be equal to the lowest natural frequency of the conductor in plunge

(without any HDs). The natural frequencies of the two remaining HDs, howevet, are tuned to

this conductor's second natural plunge frequency. This approach is to alleviate galloping that
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corresponds to either a one- or two-loop per span situation. Tiren the damping effect of a given

HD intuitively glows as lhe HD's rotation increases for a given frequency and amplitude of

the conductor's motion. Tables 4.1 and 4.3 as well as Figs.4.3(a) and (b) show that the HDs

have alrnost the same eft'ect as the DPs at {¿ : 0 for one loop per span galloping. Flowever,

the solution corresponding to the asymmetrical mode is very sensitive to the non-symmetlical

arrangement, as shown in Fig.4.3(c) and (c1) as well as Table 4.4. The line with HDs raises

the limit cycle amplitudes, cornpaled ¡n'ith the untreated or treated line with DPs, except for

,4, when À : 0.9 or 1.1. Table 4.4 indicates that the tolsional coupling is involved much more

when À : 1 for two loops pel span galloping. This greater coupling leads to a change in the

phase differences between the line's mor¡ements in the three directions so that the ratio of the

limit cycle amplitudes in the vertical and holizontal dilections rnay be changed significantl¡,.

Therefore, galloping in the as)¡mmetrical mode is sensitive to the HDs' arlangement and the

selection of their natural fi'equencies.

4.3.2 Effects of HD's damping ratio

Fig.4.2 presents the non-dimensional criticai wind speed and limit cycle amplitude fol dif-

ferent damping ratios of a HD. It is seen that the convergence rate of stability is fastest when

À:1. The line becomes stable when {¿ > 0.7%(^:1) and €,d,> r%(^:1.1). on the other

hand, the curve for' À : 0.9 is so flat that the conductor is still unstable when {¿ is incleased to

4%. (Also see Tabie 4.2.) Ttris behaviol occuls because the dissipation of energy is not so effi-

cient when the rotation of the HD is very small for À I 1. A similal situation appearc in Fig.4.3

:- --.L:^L ^-- l^ ^-^- -^ll^-:--- -, - ------ :-- ¿l- - ---, r: 1 ,l: L: ml L Ilr.1 w.ulL;rl UrrU ruuP Pcr ùPail BalluPlrrt ucL;ul5 .rlt rrte vel rlcai ulf ecrloil. tlte collvefgetÌce f'ates lol'

all curves presented in Figs.4.3(a) and (b) are slowel than those in Fig.4.2 despite thlee HDs.

This is not surplising because two hybrid dampers which are far from a line's mid-span have

natural frequencies not tuned to the lolvest natural frequency of the conductor. The remainíng

HD is not located at the point that has maximum displacement even though its frequency is

equal to the lowest natulal fi'equency of the line. Thus, these thlee HDs cannot contribute
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iarger damping to the system due to a smaller Þru in equation (8.9). Figs.4.3(c) and (d) give

the results for trvo loops per span galloping. The curve for A, corresponding to À : 1.0 is the

steepest and the conductor tends to be stable at {¿ : 2Vo, although the limit cycle amplitude

is laiger at {, : 0. Moreover, the system becomes stable at (o: 370 f.or À : 0.9, which does

not happen in Figs.4.2, 4.3(a) or (b). The reason is that two off-center, hybrid dampers play a

role while only one does in Figs.4.2, a.3(a) or (b) so that the energy input into the system is

dissipated more efficiently.

4.4 Concluding remarks

A model with hybrid dampers (HDs) is developed to assess their effectiveness. A hybrid

damper's rotational frequency should be adjusted to correspond. to a conductor's lowest natural

frequency in either one loop or two loops per span plunge. Furthermore, the selection of the

location of the HD depends upon the galloping mode to be alleviated. The numerical examples

show that HDs with a 3Vo Í,o 4Vo damping ratio can effectively alleviate galloping or even make it

become stable. Moreover, HDs display their greater potential for controlling galloping compared

with DPs. The hybrid model can be used to optimize the design of a HD and provide guideiines

for its application on a transmission line. In future, parametric studies should be conducted to

optimize the number, location and parameters of HDs to alieviate galloping.
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Table 4.1. Results for the untreated line and the line having one or three
detuning pendulums

SpanlengthL: 200m
Mass of each pendulum: 1lkg
Location of one pendulum: [* /2
Locations of three pendulums'. L^ 14, 5L^ l12,

One loop per span

Critical wind speed (m/s)

Horizontal Tension H: 30kN
IVind speed U,.9mls
u",on" = 4Oo

2L^ 13

Av (m)

Untreated

A' (m)

2.647

4L

fu (dee )

One Pendulum
Detuning Pendulum

0.621

Two loops per span

0 069

2 160

Critical wind speed (m/s)

Three
Pendulum

0 564

6.203

0 087

2 753

Av (m)

Untreated

0 779

4 770

A, (m)

2 294

tu (dee )

0 082

One Pendulum
Detunins

0 016

I 896

0.225

2 224

Pendulum
Three

Pendulum

0 010

7 836

0 t07

3.372

7 242

0 024

0.253

9.058
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Table 4.2 Results for the line having one hybrid damper

6 : 0 , 0.006, 0.01, 0.02, and 0.04

Span length t* : 200m
Mass of hybrid damper: 5kg

Location of hybrid damper'.I-*/2

One loop per span

Critical wind speed
(n/Ð

E

0 000

Av (*)

0.006
0 010

Horizontal Tension H: 30kN
Wind speed U=.9m/s

d"ron" = 400

Values of

0 020

42

0 040

090

0 000

2.161

A, (m)

0.006

2.350

he frequency ratio r¡"/ coe¿

0.010

2.485

0.020

2.860

0 040

3.826

1.00

0 000

0 500

2.t83

Ae (deg )

0 006

0.490

4 742

0 010

Stable

0 482

0.020

0.462

Stable

0 040

Stable

0.410

110

0 000

0.075

0.525

2.158

0 006

0 072

0 370

2.732

0 069

0 010

Stable

3.227

0.020

0 063

Srable

Stable

0 049

0 040

Stable

Srable

7.055

0 085

0 504

6.817

0 042

0 469

6 647

Stable

0.440

Stable

6.169

Stable

Stable

4 959

Srable

7.027

0.083

3.835

0.072

Stable

0 063

Stable

Stable

Stable

Stable
7.021
6 274

5.634

Stable

Stable
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Table 4.3 Results for the line having three hybrid dampers
and undergoing one loop per span gatloping

€ = 0 , 0.006, 0.01, 0.02 and 0.04

Span length [* : 200m Horizontal Tension H: 30kN
Mass of each hybrid damper: 5kg Wind speed U,.9mls
Locations of hybrid dampers: L^ 14, 5L^l12,2L^13 d,,on. = 40o

One loop per span

Critical wind speed
(n/Ð

e

0.000

Av (-)

0 006

0.010

Values of

0 020

43

0.040

0.90

0 000

2 748

A, (m)

0 006

2.897

he frequency ratio co"/ co6¿

0.010

2 997

0.020

3.251

0 040

3.774

1.00

0 000

0 834

tu (dee )

2.758

0,006

0.822

3.837

0 010

0.815

4.420

0 020

0 795

6.451

0.040

Stable

0 753

110

0 000

0 834

0 08r

2.743

0 006

0 079

0.748

3 438

0 079

0 010

0.699

3.924

0 020

0 076

0 503

5.255

Stable

0.071

0.040

9 067

2 638

0 093

0.824

2.s95

0 081

0 771

2 565

0 732

0 074

0.049

2.490

0.616

Stable

Stable

2.328

2.626

0.083
0 076

2.294
2 r08

0 071

0 057

r.410
Stable

Stable

2.655
2 447
2 294
1.853

Srable
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Table 4.4 Results for the line having three hybrid dampers
and undergoing fwo loops per span galloping

€ = 0 , 0.006, 0.01, 0.02 and 0.04

Span length [^ : 200m Horizontal Tension H. 30kN
Mass of each hybrid damper: 5kg Wind speed IJ,,9m/s
Locations of hybrid dampers: I-* 14, 5L^l12,2L*/3 a.",on" = 4Oo

Two loops per span

Critical wind speed
("/Ð

E

0 000

Av (m)

0 006

0 010

Values of

0.020
0 040

0.90

44

3 088

0 000

A, (m)

0.006

3.743

he freouencv ra

0 010

4.204
5 472

0 020

0 040

9.135

1.00

0 000

0 550

2.969

Ae (deg )

0 510

0 006

5.343

io o. / roo¿

0 010

0.481

6.187

0 020

0.397

7.845

0.040

Stable

9 s87

110

0.245

0 000

0 192

3.1 19

0.225

0.006

0 191

4.625

0 2r0

0.010

0

5 780

185

0 169

0 020

0.147

10

Stable

Stable

26.797

0 040

160

3 141

0 538

L033

2 883

0.902

0.447

2.697

0 835

0.37r

2 168

0.612

Stable

Stable

Stable

Stable

7 264

0.2t1

6 123

0.170
0 138

5.568

Stable

3 916

Stable

Stable

3 065

2 486

2.013
Stable

Stable
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Rigid link ---->

Figure 4.1. Showing (a) a transmission line having hybrid dampers,
and (b) conceptual details of a hybrid damper.
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A generalized 3DOF hybrid model has been deveioped to describe the motions of an iced

single or bundle conductor for which interactions between the vertical, horizontal and torsional

motions are allowed. This model is an extension to a bundle conductor of a previous single

conductor model but stili includes closed-form expressions for the initiation stability, limit

cycles and theil stability conditions. In addition, the hybrid model couples FE mode shapes to

analytical expressions so that the model can handle practical spatial variations of nonunif'orm

icing and stluctural damping. It is impossible for a general analytical model to consider such

cases. f[umerical exarnples have shown that the hybrid model generates results that agree with

those of a FE model which has also been extended to a bundle having any numbel of conductors.

A parametric analysis is required for the design of a new transmission line. The quite

effrcient hybrid model can economically compute the effects of design changes in parameters

like the static tension, the span length and numbel of conductors in a bundle or the result of a

greater wind speed. It makes possible the optimum selection of parameters.

The frnal objective in studying the galloping of an electrical transmission line is to control the

galloping itself. The hybrid model accornmodates control devices like airflow spoilers, detuning

pendulurus and h.¿brid dampers. Consequently, it can be used to investigate the effects of these

control devices on galloping and provide guidelines for their design.

Computer soft,,vare has been developed on the basis of the hybid model. It saves substan-

tiai computational time compared with the time integration methods used in many analytical

modeis. It can give predictions almost instantenously on a personal computer because explicit

Chapter 5

CONCLUSIONS
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Chapter 5 - Conclusions

expressions are used. Moreover, it conveniently provides inital (guess) values for the FE soft-

ware. Therefore, the hybrid model can be used as an effective tool for a galloping analysis and

the design of an electrical transmission line.
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4.1 Mass matrix, M

The representative elements, m¿j (ò, j : I,2, 3), of the symmetrical mass matrix, M, that

appear in equation (3.14) are

¡Lr P

nlrr l^ L pdAflds+\m"7,fl(s) ,JO J Ar k:1
fLr P

rn22 : l^ L pd,A.fflds +lm"¡.fl(s¡) , (4.1)
JO J Ar k:I
fLr P

-r3 J" Jo,c(u' + "2)aa¡r2a" + t l"of|þù, (A.2)
ft:1

¡[, r
?'r43 -l I pzd,Af,Jed,s (,{.3)

Jo JA,

and

rn2s: [tIssd,Af.fsds. (A'.4)
Jo JA,

ELEMENTS OF M, Ko and F

Appendix A

L.2 Stiffness rnatrix, Ko

The representative elements, K¿¡ (i, j : I,2,3,4), of the symmetrical stiffness matrix, Ka,

in equation (3.13) are obtained by summing on each conductor fr (k : 1 - n) as

K )ì ,,0 [" pop.,.f ,."f ¡."d,s -.rr2Ki"u*', å 
ur lo' ffr,".f ,,"0,'tL, ?-"';l' 'o't' 

,',r"" n

+rnfçan)r [^' p,r,,"etd,s - rut or [" *fo."e*a,Et Jo ft:l Jo Or

*"u É uo [^' ff;,,"e*as t 2n¡Br¡" [^' .f+,"et d.s

n:-t Jo olr r-iJo
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where

*",(Ð ur lo' ffÊ,",\a,+ ¡{aøl* lo" erra,)

+K"(.f?Q) + f:(L))

D¡j: (AE)r

D¿¡: BT

and

Dij (GJ)r

" ô.f¿ n 0*
Jz,s - -Ã-r PI - ã-ros ds

f or all i and, j other than 4 ,

fori:4orj:4,i,+j,

Íor i,: j :4 
,

tn r)\ ,ôg 0z'
\þ2,þs):(^,^ ), þq:Ios os

Moreover,
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Qn

Q*

Qzn

þsQtn - 7zQz*,

rk cos 9nof+p,

r¡, sin 0¡s f a,r.

TL2: I,
Io

(4.5)

x:j:4

otheru'ise ,

^:{

Hete, e, j :1,2,3,4 represent i, j : u,u,tu,0 for convenience; .É1 is the horizontal component of

a conductor's static tension, 7; and K¿"",which is the stiflness due to the eccentric ice, is [16]

1 ¿ <8, j:4 l, i:2, j:4
ns:(

0 otheru'ise, IO otheru,ise,

l, i.:r, j:4 lt z:j:4ne:{ nr:l
t o otherwise, t O otheruise.

rLB : I
I

f. i:j:1,2,

0 otheru'ise,

(A.6)

Ki". : 
/rt rlo,ssdA)sflds .

(A.7)

(A.8)

(A.e)



Appendix A - Elements of M, Ko and F

Furthermore, K, is the stiffness due to the static coupling of the span of interest with its

adjacent spans and insulator strings It is given by [52, 53]

J- t2=(AP4Ì_ +ry! + Yl (A.10)K*: L,(ffi+'k-2h)'
tr" is the horizontal distance between adjacent towersl pst is the total vertical load per unit

length of the ith conductor whereas W¡ and L¿ àïe the total weight and length of the insulator

string, r'espectively.

4.3 Aerodynarnic load, F

The elements of the aerodynamic load vectot, F, used in equation (3.15) are

,o:To"*u?dca, (4.11)

r. : |o"*u:dc" (,t.12)

and

where
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Fr:Tr"*u!a2cg

ca

c"

C6

and

fue(Aara' + Aora'2 I Aouo's) ,

A"ro' I A"rd'2 I A"ua'3 ,

Aero' + Ae"o'' * Aouo'3 ,

DrL
.f"e-1! f,frd",I' Jo

d fue
ee - Oae - i:q,:afe

The aerodynamic coefficients, a¿¡, ale obtained by curve-fi.tting expelimental, quasi-steady wind

loads in the neighborhood of the initially twisted conductor's profile sustained by the moment

(1.' :

rL
¡u¡ : 

Jn 
a¿¡.frr+'ds 'i : y, 2,0, j : 1,2,3

(A.13)

(A.14)

(A.i5)

(A.16)

(A.17)
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arising from the eccentric ice weight [50]. The lift and drag coefficients, C¿ and Cp, respectively,

are given by

and

Ct : Ca cGS G - C" sina

Co:CosinalC'cosa.
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8.1" Mass matrix, M¿

The representative elements, man¡ (i, j : I,2,3), of the symmetric mass matrix,

ffidtt i,{*o,lf\(rn) - 2r"ufu(s1,)þ,ul + Iouþ?o} ,

r":

n1.d.zz l{-orf?"(s7') + I.rBlu} ,

r;:
ffid.æ : l{*aoh2r.fe2("ù + Iouþâu} ,

T:
ffidtz \7Iou/roÞ-u - rrl¿or¿o.fr("t)þ.uj 

,

T:
ffidro : \u"rBroBtu - rrl¿or¿o.fr(tn)þeoj ,

,b:1

and

fLñ

ffid'z l{I'uB-uBtt"-m,t¡Rd.t,.f.(tòfe!ù}
&:1

ELEMENTS OF }l4¿, K¿ and C¿

Appendix B

8.2 Stiffiress rnatrix, K¿

The representative elements, k¿¡

appears in equation (4.7) are

1.,, : i kBu\\u

and

M¿, aIe

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

b-l

TLm

rrr: ÐkBoþ2-u
À:1

(i', j : 1,2,3), of the symmetrical stiffness matrix, K¿,

'll'¡

krr: Ðkpoþuuþ-u
Ir:7

TLrt

kr, : Dkpoþ-uþer
K:I

rLm

krs : I kBuB,oÞeo

rr. : Ð{k øuþ\u + maogRat"}
I1:1

(8.6)
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Appendix B - Elements of }t'4¿, K¿ and C¿

8.3 Damping matrix, C¿

The diagonal damping matrix, C¿, is constructed by neglecting the damping coupling in

different directio¡rs. Its elements can be expressed as

cd.tt : Ð"Brþ3u ctlzz : Ð"8r0".r

,Ttr6 fla

t-_1

TLm

cd.ez : Ð"urlâ,
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