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Abstract

A useful design tool is developed for a bundle conductor or a single conductor of an electrical
transmission line by using a three-degree-of-freedom, hybrid model. The model is adaptable
because it incorporates numerical mode shapes determined by employing the finite element
technique to form relevant matrices. On the other hand, it is quite computationally efficient
because analytical expressions are used to investigate the initiation and steady-state ampli-
tudes of galloping. The model accommodates not only interactions of the vertical, horizontal
and torsional movements but also non-linear aerodynamic loads, a non-uniform ice geometry,
and distributed and discrete galloping control devices that cannot be considered in existing
analytical models. By neglecting the sub-span motions between the conductors, a bundle is
modelled as an equivalent single conductor so that the initiation conditions for galloping, peri-
odic and quasi-periodic states and their stability conditions are considered by taking advantage
of previous achievements for a single conductor. Numerical examples are presented to assess
the accuracy of the results obtained from the model in comparison with analogous data from
a more sophisticated finite element analysis. Parametric studies are reported for limit cycle
amplitudes with variations of the critical wind speed, wind speed above the critical wind speed,
static tension and span length. Finally, the model is used to assess the effects of a hybrid,
control damper to alleviate galloping by changing its parameters and providing guidelines for

its application.
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Chapter 1

INTRODUCTION

1.1 Background

Overhead electrical transmission lines consist of single or bundled conductors. Electrical
power utilities are often faced with wind-induced conductor motion in the form of aeolian vi-
bration, conductor gallop and wake-induced oscillation. Wake-induced oscillation, which is
peculiar to bundled conductors, arises from the shielding effect by windward subconductors on
leeward ones. Its frequency range is about 0.15 to 10 Hz and the maximum amplitude approxi-
mates 80 multiples of the conductor’s diameter. Aeolian vibration and conductor galloping are
observed on single as well as bundled conductors. Aeolian vibration is caused by an alternating
pressure unbalance which is created by the alternate shedding of wind-induced vortices from
the top and bottom sides of the conductor. The amplitude of aeolian vibration can be up to
the order of the conductor’s diameter at a high (10 to 100Hz) frequency. Compared to aeolian
vibration, galloping is characterized by a low frequency (0.1 to 3Hz), large amplitude (5 to 300
multiples of the conductor’s diameter), self-excited oscillation. It is produced by aerodynamic
instabilities which stem from asymmetry in a conductor’s cross section due to ice accretion or,
more rarely, from the stranding of the conductor itself.

Different behaviors of these three motions produce different types of damage to transmission
line system. Galloping is considered because its large amplitude of motion induces high dynamic
loads. Damage caused by galloping usually occurs in approximately 1 to 48 hours if vibrations
are sustained compared to a longer 3 month to more than 20 year period when aeolian vibration
prevails. Galloping cannot only break conductor strands, but it can damage dampers, tie-wires,

insulator pins, suspension hardware, crossarm hardware, poles and towers. In addition, forced
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outages caused by galloping result in loss of revenue and sometimes in other costs associated
with reestablishing service. These penalties are generally considered to be greater than those

from direct damage to lines. Therefore, this thesis is limited only to galloping.

1.2 Literature review

A theoretical investigation of galloping can be categorized generally as analytical or nu-
merical, regardless of the configuration of the conductors. Analytical techniques provide global
trends while numerical approaches are used to study specific interactions. Although the present
theoretical studies give a fundamental knowledge for understanding the galloping of transmis-
sion lines, additional work is needed to establish an adaptable model which can accommodate
galloping control devices and be used to analyze the effects of a system’s parameters. The
scope of this literature survey emphasizes representative achievements of analytical methods

and numerical simulations as well as the control of galloping.

1.2.1 Analytical methods

An analytical approach may include studies on the initiation of galloping or the resulting
limit cycle amplitude. Usually, the initiation conditions for galloping are obtained by linearizing
the nonlinear equations of motion near the conductor’s static profile. In 1932, Den Hartog
proposed an analytical single degree-of-freedom (DOF') model for galloping of a transmission
line [1]. His model suggested that galloping may be initiated if the drag coefficient is less than
the negative slope of the lift coefficient with respect to the relative aerodynamic angle of attack.
The Den Hartog criterion, which only considers the vertical motion of a conductor, has been used
widely. However, according to field observations [2], this simplest model neglects the importance
of a conductor’s torsional motion. It has been suggested that the twist of a conductor plays an
important role in the initiation of galloping (3, 4, 5, 6, 7, 8, 9]. Some researchers emphasized
that, according to wind tunnel experiments [5], the galloping of a naturally iced line is caused by

a self-excited torsional motion rather than by a Den Hartog type of instability. Furthermore, a
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horizontal motion, when coupled to a vertical (plunge) movement, can initiate vertical galloping
(10, 11, 12]. A recent analysis has extended the simple theory to combined vertical, horizontal
and torsional motions in order to determine the initiation of galloping [13, 14, 15]. In addition,
several initiation studies also showed the use of geometric stability diagrams to assess the
effectiveness of a system’s parameters on the initiation of galloping (3, 16, 17, 18, 19].

The galloping amplitudes, frequencies and relative phase differences between vibrating com-
ponents need to be determined if a transmission line’s static equilibrium position is found to be
unstable. Perturbation methods are usually used to find closed form solutions for periodic and
quasi-periodic motions. For example, a Fourier series residual approximation was employed
to determine the purely vertical, unimodal galloping amplitude [20], an asymptotic method
was considered to give a closed form for a nonresonance [21], a time average technique was
adapted to obtain analytical solutions of both an internal resonance and a nonresonance for
the combined vertical and torsional motions [22] or vertical, torsional and horizontal vibrations
[13, 14, 15]. Other analytical approaches, such as the decomposition of the nonlinear equations
of motion [23], the generalized Galerkin method [24], the describing function method [25], have
been also applied to galloping. Moreover, the stability conditions of limit cycles can be derived
by bifurcation techniques [13, 15].

Bundle conductors have been used widely due to their economical large current -carrying
capacity [2]. However, they gallop more easily than a single conductor. Most previous analytical
studies of bundle conductors have been limited to a plannar configuration [12, 26, 27, 28, 29|.
Although a 3DOF, analytical model has been formulated recently for a bundle conductor [30], a
tedious time integration procedure was adopted and the aerodynamic forces were over simplified
by their linearization. Until now, no analytical model (which includes analytical solutions for
both an internal resonance and a nonresonance, initiation conditions and the stability of limit
cycles) are available for a bundle conductor. On the other hand, an analytical approach can
give global trends but it may overly simplify practical issues. For example, an analytical model

cannot accommodate practically important non-uniformities arising, say, from icing variations
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or localized control devices like airflow spoilers or detuning pendulums [13, 15].

1.2.2 Numerical simulation

Most numerical schemes are based on the discretization of the dynamic equilibrium equa-
tions. The finite element (FE) method has been often used to approximate spatial variables
[31, 32, 33]. However, a numerically simulated growth to an eventual periodic state (often
associated with galloping) requires disadvantageously protracted computations because trans-
mission lines are very lightly damped at low frequencies. In addition, the existence of a periodic
state is not known a priori so that computations may be fruitless. Especially, it is impractical
for a numerical simulation to efficiently compute the effects of design changes caused by pa-
rameters like the static tension, the span length and the number of conductors in a bundle or
the result of a greater wind speed.

Very few references have obtained the high corﬁputational efficiency needed for a numer-
ical galloping simulation. Compared with traditional FE techniques, a FE model formulated
recently for a single conductor can greatly reduce computer time by selecting the initial (time)
conditions [13, 34]. It considered both internal resonance and nonresonance as well as stabil-
ity analysis by using time average method. The model has been extended to a twin bundle
conductor [35] . However, this approach presupposed that an approximate limit cycle may be

obtained from a previous analytical solution.

1.2.3 Galloping control

The final objective in studying the galloping of iced, electrical transmission lines is to con-
trol the galloping itself. A variety of methods are currently in use or under field evaluation
for protecting lines against galloping or its side effects. They include ice melting, increased
clearances between conductors, interphase spacers, aerodynamic drag dampers, wind dampers,
airflow spoilers and detuning pendulums.

The protection measure that was utilized earliest was the removal of ice, or preventing its
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formation, by heating conductors electrically [36, 37]. Early applications of this method were
apparently aimed at preventing failures due to the additional weight of ice on conductors, and
faults resulting from the contact between phases or a phase and a ground wire when the sudden
release of ice from a span caused “sleet jump”. Galloping prevention by using ice melting has
been the primary objective during the last several decades. However, there is conflict between
providing enough resistance in the conductors to permit effective heating for melting the ice,
on the one hand, and minimizing of year-round system losses on the other.

Increased clearances between phases and between phases and ground wires are applied
widely to alleviate outages caused by galloping. The approach is based on determining limit
cycle amplitudes (galloping ellipses) [38, 39] and experience to guide the clearance of transmis-
sion lines. Actually, an increased clearance cannot prevent galloping; it just passively lessens
the damage produced by outages.

Some utilities often use interphase spacers to prevent phase-to-phase contacts. The device
works effectively by restraining the relative motion between phases at the points in the span
where the devices are located. Thus a line’s galloping motion is forced into a mode in which
flashovers are much less likely [40, 41, 42]. Interphase spacers also do not eliminate galloping.
In fact, they can result in an ice shape that makes a conductor more prone to gallop as the
interphase spacers prevent the free rotation of the conductor under the eccentric weight of the
growing ice deposit.

Aerodynamic drag dampers augment the damping effect of a conductor’s aerodynamic drag
and, thus, they narrow the conditions under which lift forces may supply enough energy to
sustain galloping. Although most analyses of the effectiveness of drag damping are based upon
the Den Hartog mechanism, such dampers may have beneficial effects even when a torsional
motion of the conductor is involved [42, 43, 44].

Detuning pendulums are aimed at controlling torsional motions with the object of reducing
the incidence or intensity of galloping. Extensive field work has been done on this device

in North America [27, 40, 41, 42, 45]. In general, a bare conductor has a high ratio of its
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lowest torsional to vertical (plunge) natural frequencies. This frequency ratio can be reduced
substantially by the aerodynamic moment acting on an iced conductor and by the “inverted
pendulum effect” of the weight of the accreted ice. The attached pendulums counteract these
effects and keep the torsional frequencies of the span well above the natural frequencies of
the one-, two-, and three- loop, predominantly vertical modes. It was reported that detuning
pendulums may reduce the average motion of a single as well as two and four conductor bundle
lines during freezing rain events in North America [41, 42, 45]. Although detuning pendulums
are used widely by utilities in North America, they cannot completely control galloping. One
reason is that galloping may not be only dominated by a torsional movement.

Other control devices, like airflow spoilers [27, 40, 42] and wind dampers [27] etc., have not
been used widely by utilities due to their limited effectiveness. It is very difficult to control the
galloping of transmission lines because they have very light damping and they are exposed to
all atmospheric conditions. Many researchers are trying to find a new device that effectively
alleviates all types of galloping. Experimental development of such a device is very expensive.
It is more cost effective to initially establish a computer model to assess the effectiveness of a

new device before experiments are performed.

1.3 Objectives of this project

As stated in the previous section, an analytical approach cannot handle variations of struc-
tural damping and icing along a span while a numerical simulation needs disadvantageously
protracted computations. Neither a purely numerical nor a purely analytical approach seems
capable of conveniently describing galloping. An appropriate combination of these two methods
is almost certainly required. One of the objectives of this thesis is to develop an adaptable but
still computationally efficient, 3DOF model that uses FE mode shapes instead of their analyt-
ical counterparts. These mode shapes are then used in conjunction with analytical expressions
[13, 15] to investigate the initiation and steady-state amplitude of galloping. The final model

cannot only handle non-uniform icing variations along a span but it can also accommodate
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localized control devices for a single conductor as well as a bundle having any number of con-
ductors. The other objective is to develop a potential control device, a hybrid damper (HD),

to alleviate the galloping and propose guidelines for the selection of its parameters.

1.4 Organization of thesis

This thesis is organized as follows. Chapter 1 gives a general description of the vibrations
of a transmission line. The literature survey emphasizes analytical methods and numerical
simulations as well as galloping control. The objectives and organization of this thesis are also
given in this chapter. Chapter 2 reviews the mathematical method for galloping. General steps
in studying galloping are presented for the initiation of galloping, limit cycles and their stability.
Chapter 3 develops a 3DOF hybrid model that can handle a non-uniform variation of ice and
accommodate control devices like an airflow spoiler or detuning pendulum. The model, which
is based on previous achievement [13, 15], includes the initiation conditions of galloping and
analytical solutions of both internal resonance and nonresonance for a single conductor and a
bundle having any number of conductors . Examples are given not only to compare the results
from the FE model but also to analyze the effects of design parameters like the static tension,
the span length and the number of conductors in a bundle or a greater wind speed. Chapter
4 uses the modified 3DOF model to analyze the effects of the hybrid damper’s parameters on
galloping so that an optimum design can be assessed. Finally, conclusions are given in Chapter

5.



Chapter 2

MATHEMATICAL METHOD

. 2.1 Introduction

Transmission lines are lightly damped and susceptible to low frequency, large amplitude
vibrations when aerodynamic loads act on them. The equation of motion used to describe
the system are nonlinear due to the nonlinear aerodynamic forces. Protracted computation
is needed if conventional time integration is used to find a solution. One reason is that the
existence of a periodic solution is not known in advance and numerical simulation over a short
time cannot display the complete picture of low frequency galloping. In addition, it is imprac-
tical to use time integration if a parameter analysis is required for the design of new lines and
vibration control. Therefore, a method to substantially save computational time is definitely
recommended.

A time average approach is one that transfers equations dependent on time to time-independent
algebraic equations. Consequently, computational effort is reduced greatly [13, 14, 15, 22]. Not
only can the periodic solutions of these equations be obtained conveniently but their stability

conditions can also be given to determine whether the vibration amplitude will be sustained.

2.2 Governing equations and their solution
The equations of motion for a N DOF system generally have the form [13]
Mg+Cq+Kg=F (2.1)

where M, C and K are the N x N structural mass, damping and stiffness matrices, respectively,

and F is the external load vector. q is the generalized displacement vector. The system
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described by equation (2.1) corresponds to an electric transmission line and it is autonomous
and weakly nonlinear. Equation (2.1) can be transferred to a canonical form by using the

traditional principal coordinate theory so that
771+w1,2771:€E(771>7727577177717772’~77m) lamSN (22)

The 7; and w; are the ith principal coordinate and eigenvalue of the corresponding linear,
undamped system (for which € = 0), respectively. The term eF;, which represents the nonlinear
aerodynamic and damping forces, are oréler e (e < 1) in comparison to the inertial and elastic
forces. In order to yield closed form periodic solutions, the Krylov-Bogoliubov (KB) technique

is applied to the modified equations
i+ wtn = eF + (W —wdm,  i=12,...,N (2.3)

instead of equation (2.2). The w* are unknown and | wf —w? |= O(¢). Assume periodic solutions

of the form

n:(t) = A;i(t) cos ¥;(1) (2.4)

where

Ui(t) = wit + ¢s(t)- (2.5)

As(t) and ¢;(t) are the ith amplitude and phase, respectively. Differentiate equation (2.4) with

respect to ¢t and let the amplitude and phase be chosen such that
ni(t) = — A (t)w; sin ¥;(2) (2.6)

and

A;(t) cos U;(t) — A (t) s (t) sin ¥;(t) = 0. (2.7)

Then differentiate equation (2.6) again and substitute the resulting equation and equation (2.4)

into equation (2.3) to produce

Ai(t) sin U;(t) 4+ Ai(t)hi(t) cos Ui(t) = (w? — wa)Ai(t) cos ¥,(t) — eF;. (2.8)
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By employing the KB method and algebraically manipulating equations (2.7) and (2.8), the

following equations can be obtained

. T
wiAi(t) = lim i/ Ri(t)sinUs(t)dt i =1,2,--- N (2.9)
T—oo T Jo
and
. 1 /T
w! Ai(t)ds = lim -T-/ Ri(t)cos Us(t)dt  i=1,2,--- N (2.10)
where
Ri = (W} — w )i — eFy. (2.11)

The slowly varying functions, A;(¢) and ¢;(t) are effectively treated as constants in equations
(2.9) and (2.10) when integrations are performed with respect to time, t. The A;, ¢; and wy
can be found by letting A; = ¢; = 0 in equations (2.9) and (2.10). Equation (2.4) gives the

corresponding periodic and quasiperiodic solutions.

2.3 Initiation of galloping and stability of limit cycles

The initiation of galloping depends on the stability of the static equilibrium configuration
of a transmission line. Galloping is initiated if a static configuration is unstable. The stability

analysis is performed by linearizing equation (2.1), which is rewritten as
Mg +Crgq+Krq =Fy (2.12)
where
CrL=C-Cy Ky =K -K,. (2.13)

C, and K, are the linear terms produced from F. Fy in equation (2.12) represents higher
order terms of the aerodynamic loads. The characteristic matrix can be obtained from equation

(2.12) as [46]

Scs = (214)
-M~1K; -M-1C,
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where O and I are the N x N null and identity matrices, respectively. Galloping (i.e. the
static configuration is unstable) occurs if at least one of the eigenvalues of Ses, A, has a positive
real part. The stability conditions can be found by applying the Routh-Hurwitz criteria to the
characteristic polynomial

where E is the unit matrix of size 2N x 2N.
The stability of the steady states can be determined by the Jacobian matrix, J, from

equations (2.9) and (2.10). J has elements given by

Ji,jzg—i’? 1,7 <N
8A; N P —
5, 1<N, =N+, 1=1,2,---,m (2.16)

Jy=2 i=N4l j=N+k Lk=12,m

=~
&,
|

where m is the number of internally resonant modes. Similarly, the stability conditions of
the limit cycles can be obtained by applying the Routh-Hurwitz criterion to the following
characteristic polynomial

det(J — AE) = 0. (2.17)

Limit cycles are stable if all the real parts of the nonzero eigenvalues of equation (2.17) are

negative.



Chapter 3

HYBRID MODEL

3.1 Introduction

As stated in Chapter 1, a 3DOF hybrid model is developed in this chapter by extending
the approach used for a single conductor {13, 15] to a bundle configuration having any number
of conductors. This model modifies the model used for a single conductor to accommodate
non-uniform icing as well as control devices by adopting FE mode shapes.

Although an arbitrary number of conductors is considered, the particular example of a twin
conductor bundle is illustrated in Fig.3.1 for simplicity. Fig.3.1(a) presents the static positions
of the two conductors that are produced by the conductors’ weights and tensions as well as
by the steady (side) wind and the weight of accreted ice. A typical cross-section of the ith
iced conductor (where i=1,2 for the twin bundle) is shown in Fig.3.1(b). Physical rigid spacers
joining the conductors are illustrated as solid lines. Weightless, rigid fictitious spacers are
introduced that periodically join the conductors to ensure that they essentially move together
(i.e. the bulk motion constraint). Of course such spacers, which are represented in Fig.3.1(a)
by dashed lines, are not needed for a single conductor. The reference curve for the bundle is
considered to go through the mass center of each cross section of the bundle, as indicated in
Fig.3.1(a). On the other hand, adjacent spans are always idealized, as for the single conductor,
by equivalent linear springs. Therefore, the principal difference between the single and bundle
conductor approaches is the advancement of fictitious spacers and a reference curve for a bundle
configuration.

The hybrid model makes the following assumptions in order to extend the single conductor

formulation to a bundle conductor.

12
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1. Inmertial and damping forces in the longitudinal direction, as well as the rotation of
individual conductors about this direction, are neglected.

2. A line’s sag-to-span ratio is small.

3. The rotation of the bundle about the reference curve is small so that the linearized theory
can be employed and spacers are rigid.

4. No more than one mode per global direction is considered simultaneously.

5. The relative motions between the conductors of a bundle are neglected and the longitu-
dinal motions of each of the conductors are presumed to be identical.

Items 1, 2 and 5 are the commonly made assumptions for the bulk motion of a bundle. The

third item is reasonable in many cases because a bundle’s torsional stiffness is much greater
than that of a single conductor so that large rotations happen rarely. Item 4, on the other
hand, presumes that the larger torsional stiffness of a bundle hardly changes the negligible
coupling that is assumed for the single conductor for modes acting in the same direction. These

simplifying assumptions are used next to formulate the hybrid model.

3.2 Displacement relationship

The dynamic displacement at an arbitrary point (s, y, z ) of any one conductor in a bundle

is measured from that point’s static position. It is given by

U'X(Svy7z7t) = U('57 t)
vy(s,y,2,t) = V(s t)— 20(s,t) (3.1)
wZ(S;yyzat) = W(Sat) +y@(8,t) -

X,Y and Z are the global coordinates illustrated in Fig.3.1(a) while z,y and z are the local
coordinates shown in Fig.3.1(b). The latter are off-set from the global coordinates and their
origin is located on the reference curve at the left support. ux, vy and wyz are the global
displacements at (s,y, z) and instant ¢. Their direction is indicated by the corresponding suffix.

On the other hand, s is the intrinsic coordinate which indicates the distance that a cross section
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of the bundle is from the reference curve’s origin. U, V and W are the global displacements of
any point of the reference curve in the X, Y and Z directions, respectively. © is the rotation
of the bundle about the reference curve and it is assumed to be small. If only one mode is

considered in each direction, then U, V, W and © can be expressed as

U(S,‘If) = QU(t)fu(S)
V(S’t) = QU(t)fu(S)
W(st) = qu(t)fuls) (3:2)
O(s,t) = ga(t)fo(s) -
The ¢; and f;, where ¢ = u, v, w, 8, are generalized coordinates and the associated mode shapes

provided by the FE model, respectively. (See Section 3.4.) Furthermore, the displacements of

the center of the ith conductor in the bundle, U;, V; and W, are described by

Ui(s,y,z,t) = U($7yzzvt)
Vi(s,y, z,t) = V(s,t) —r;8in6;00(s,t) k (3.3)
Wi(s,y,z,t) = W(s,t)+ ricos0;00(s,t) .

Here r; is the distance between the reference curve and the center of the ith bare conductor
at the bundle’s cross section of interest. Moreover, ;¢ is the initial clockwise angle of this

conductor from the positive direction of the y axis, as illustrated in Fig.3.1(b).

3.3 Equations of motion

The equations of motion of the bundle are found by employing the conventional variational
principle [47], i.e.
to to
(T, — Vs)dt + OWpedt =0 (3.4)

ty 13}
where T} and V; are the total kinetic and strain energies, respectively. W, is the work done by

the nonconservative forces and ¢ indicates the first order variation. By neglecting the inertial
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effects in the longitudinal direction, T} is given by

12
2/ / P(”Y +wz JdAds + 2 Z MgV 2 (s, t) + M W2(sg, t) + Lp©% (s, 1)) (3.5)

where L is the total length of a line in a span; p is the mass density of the iced bundle conductors’
total cross-sectional area, Ar; msr and I are the mass and the mass moment of inertia of the
kth spacer, respectively; sg is the intrinsic coordinate of the kth spacer’s intersection with the
reference curve; p is the number of spacers; and a dot superscript indicates differentiation with
respect to time, t. The variation of the strain energy for a bundle’s bulk motion, §V;, can be

obtained by summing the strain energies of each of its conductors [15, 48], i.e
n L
6V = Z/ [AEéeses + Br(beseg + esbeg) + GJbegeg + Thes + Mibeglids . (3.6)
— Jo

Suffix 7 in equation (3.6) represents the ith conductor again and n is the total number of

conductors in a bundle. ¢; is the Lagrangian strain of the ith conductor, along s, such that

dzduxy OyoV; 0z0W; 1 0Oux oV; 2 oW,

ds Os +5$— Os +£ Os 5{( Os )2+(85) ( Os ) (3.7)

€g =

On the other hand, the torsional strain of a conductor, €y, can be expressed as

eg(s) = 8(323). (3.8)

T in equation (3.6) is the static tension in each conductor, M; is a conductor’s initial internal
twisting moment that resists the external moment caused by an eccentric ice weight, A and GJ
are the cross sectional area and the torsional rigidity of a bare conductor, respectively, E is the
modulus of elasticity and Bt represents an axial-torsional coupling [49].

The variation of the virtual work is described by
L
W = / (Fy(s)5V + Fu(s)6W + Fy(s)60)ds — 6q7 CTda . (3.9)
0

Fy, F, and Fy are the aerodynamic loads (per unit span length of the bundle) which act at

the reference curve in the y, z and @ directions, respectively. C, is an experimentally found
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damping matrix that takes the form

0 Os
C, = (3.10)
03 C
where Oz is the 1 x 3 null matrix. On the other hand, the elements of the diagonal matrix C

are
c11 = 2wy§ymi1,  Coe = 2w,€;maa, €33 = 2wplgmas . (3.11)

wi (i=1y,2,0) and & (i =y, z,0) are, respectively, the bundle’s undamped, uncoupled natural
frequencies and the measured damping ratios associated with the uncoupled vibrations in the
direction indicated by a subscript. my; (i = 1,2,3) are the elements of the matrix M defined
in equation (3.14). Finally, q, in equation (3.9) is defined by

T

ai = (@da’)

where qf = (20 qw g9)- (3.12)

Substituting equations (3.5) through (3.12) into equation (3.4) yields the equations of motion

as

M4, + Cac.la +Kiq, = F, (3.13)

where M, and K, are a 4 x 4 mass matrix and stiffness matrix, respectively. M, takes the
form
M, — | O (3.14)
of M
and the non-zero elements of M and K, are given more conveniently in the Appendix A.
The aerodynamic load vector, Fa, in equation (3.13) is found at the reference curve from
aerodynamic data measured at the centers of the individual conductors of a bundle. It is
represented as
FF = (0F7T). (3.15)
The components of FT = (F, F, Fy) are expressed conventionally as nonlinear functions of the

wind’s angle of attack «, the conductor’s diameter d, side wind speed U,, and the density of
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air, pgir- In an analogous fashion to a single conductor, they are approximated in section A.3

of Appendix A as cubic polynomials in a where

d . V
= _— @ - .
e 5T, A (3.16)
by assuming that
d .V d ..V
=1 .
tan (2Uz@+ UZ) 2UZ®+ T (3.17)

and approximating the characteristic radius [13] by d/2. The major difference for a bundle
conductor is that the reference curve is used to define « rather than the single conductor
itself. See, for example, Fig.3.2. It is assumed, for simplicity, that the aerodynamic interactions
between the different conductors of a bundle are negligible. This assumption appears intuitively
more reasonable for wider separations of the conductor. For example, it seems increasingly
plausible when the separation between the conductors of a twin bundle is enlarged beyond ten
conductor diameters [50]. Then the aerodynamic forces and moments measured for an individual
conductor can be merely summed at the reference curve. Details of the basic aerodynamic
loads considered here are given in reference [15]. They correspond to the single iced conductor
illustrated in Fig.3.1(b).

The equations of motion for the condensed 3DOF system are obtained from equation (3.13)

by partitioning K, so that

K
K, = | 2. (3.18)

K:© Kj

By eliminating the terms associated with the axial displacements, equation (3.13) becomes
Mg+Cq+Kq=F (3.19)

where

K=K;s—- Ky k; K. (3.20)

3.4 Finite element model

A FE model established in this section not only provides the necessary mode shapes for the
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hybrid model but also extends the twin bundle [35] method to a bundle having any number of
conductors. Consider, next, a bundle consisting of n conductors. Each conductor is considered
to have n, nodes. The jth nodes of all the conductors are assumed to be connected either by
a physical or a ficticious, rigid spacer. In the FE formulation, the relevant mass, stiffness and
damping matrices as well as the nodal force vector are formulated for each conductor of the
bundle. These equations are transformed to the reference curve with the help of the physical
or ficticious rigid spacers.

All but two of the assumptions used to develop the hybrid model are utilized in the FE
modelling of a bundle conductor. The exceptions avoid the neglect of the longitudinal inertias
and the assumption of solely a single mode acting in a specified direction. Details of the FE
formulation have been given previously for a single conductor [51]. As before, a conductor is
represented by employing three node, isoparametric cable elements. After forming the equations
of motion for each conductor, transforming them to the reference curve and assembling the

matrices, the final equations take the form

[M{g} +[C{q} + [K{q} = {F} (3.21)
where
M) = f;[T@JT[M(”nT@] + (M
A = S e
&
K = Y [TOF KOO (3.22)
&
(F} = Y [TOF (7O
{g} = z{:{ql}T {@2}", A}
and

{qJ}T (U(i) V(l) W(l) @(1))
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U J@, Vj(i) and Wj(i) are the global displacements of node j of the reference curve and G)y) is the
rotation of the bundle about the reference curve. The [M®], [C®] and [K®], i = 1,2,...,n,
are respectively the mass, damping and stiffness matrices of size 4n, x 4n,. {F(i)} is the
corresponding load vector of size 4n, x 1. The construction of these matrices is given in
reference [51]. [T¥] is a 4 x 4 transformation matrix whose non-zero elements are T}; = Thy =
T3 = Tyg = 1,154 = r;co868;, and T34 = r;sinbyg. Again, r; is the distance between the
reference curve and the center of the ith bare conductor and 8;g is the initial clockwise angle of

this conductor as viewed from the positive direction of the y axis. See Fig.3.1(b). If the Delta

function, é;, is denoted by

‘ 0 for a massless, fictitious spacer introduced at node j
0sj = (3.23)
1 for a physical spacer having an end at node j

then the diagonal mass matrix, [M;], in equation (3.22), which represents the contribution from

the physical spacers’ inertias, can be written as

[ 8s1 Mgy 0 0 ]
0 b My O 0
|M;] = (3.24)
0 0 bstn,—1) Ms(n,-1) 0
0 0 Osnp Msn,, |
The diagonal matrix [M;] is given by
(my; 0 0 0
0 my 0 0
[Ms;] = (3.25)
0 0 msy O
0 0 0 I

where mg; and I; are the mass of the physical spacer and its mass moment of inertia about
the reference curve at node j, respectively. Note that the mode shapes, f,(s), fu(s), fw(s) and

fa(s) in equation (3.2) are taken in the discretized form as

(fus fo Fwr o) = (U, V!, W, ©) (3.26)
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3.5 Stability analysis and limit cycles

Steps involved in the stability analysis of the static configuration and the determination of
the limit cycles are detailed in reference [15] for the hybrid model or in reference [34] for the
FE model. Hence, only a brief description is given here.

The first step in determining the feasibility of galloping is to investigate whether the initial
equilibrium solution (IES) of the linearized form of equation (3.19) or (3.21) is stable. The
characteristic polynomial corresponding to equation (3.19) or (3.21) can be obtained by using
the same approach in deriving equations (2.12), (2.14) and (2.15). If all the eigenvalues of the
the resulting characteristic polynomial have negative real parts, then the static configuration
is asymptotically stable and a further analysis is not required. If, however, at least one of the
eigenvalues crosses the real axis (a critical point) when a parameter changes, say an increasing
wind speed U, then the IES becomes unstable and galloping may be initiated. The critical
wind speed, Uy, is the value at which the IES just becomes unstable. Once the IES becomes
unstable, new equilibrium states or dynamic motions, which are periodic or quasi-periodic, may
emerge from the critical point. (Note that chaotic states are not investigated.) Perturbation
techniques are employed to study the dynamic motions and to find the limit cycles’ amplitudes.
The derivation of the limit cycles and their stability conditions was summarized in Chapter 2.
Explicit expressions to determine the IES and the limit cycles’ amplitudes are given in reference
[15] for the hybrid model. On the other hand, a step-by-step procedure is given in reference

[34] for computing the dynamic motion using FE model.

3.6 Numerical results

In this section, natural frequencies and limit cycles of the line with ice shape C11 [50] are
used to make a comparison between the hybrid model and FE model for different conductor
configurations. A trend analysis is important for engineers due to certain key parameters so

that numerical results focus on the effects of a bundle’s parameters like the horizontal tension
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of a conductor, span length, structural damping, critical wind speed and wind speed above
critical wind speed.

The examples considered here assume that all conductors in the bundle are identical. Fur-
thermore, the iced conductors have simple end supports which permit longitudinal degrees of
freedom so that a more realistic interaction can be accommodated between adjacent spans. Ice
accumulations on the conductors, whose asymmetry may causes the conductors’ instability, are
obtained from a single conductor sample placed in a freezing rain simulator [50]. The resulting
(C11) cross—section is illustrated in Figure 3.1(b). It resembles the D form used traditionally
to induce galloping in field trials [4]. This particular ice formation is assumed to be accreted
identically on each conductor. In other words, variations in the ice shape that could arise from
one conductor partially shielding another conductor from the wind are ignored for simplicity.

The wind speed is also presumed to be constant along the span.

3.6.1 Natural frequencies and limit cycles

Limit cycle amplitudes, mainly the components in the vertical and horizontal directions,
are important in avoiding an electrical flashover or the clashing of conductors. They are re-
lated not only to the aerodynamic loads but also to the natural frequencies of the conductors.
In particular, natural frequencies determine if an internal resonance happens which, in turn,
crucially affects the dynamic behavior of the conductors. An internal resonance occurs when
the ratio of at least two of the natural frequencies is close to a ratio of two positive integers.
The parameters in Table 3.1 are selected so that the lowest horizontal mode participates in an
internal resonance. In this table, I is the centroidal inertial moment of the bare conductor; e,
and e, represent the eccentricity in the y and z directions, respectively. A;. is a total cross
sectional area of the iced conductor and m is the corresponding mass per unit length. Table
3.2 gives a comparison of the lowest three natural frequencies of various bundles and a single
conductor in plunge (vertical), swingback (horizontal) and torsion that are predicted by the

hybrid and FE models. The finite element model has 21 nodes along the reference curve where
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numbers 1 and 21 represent the left and right supports, respectively, and 19 fictitious spacers
are always used for all bundle configurations.

Table 3.2 indicates that the percentage differences between the natural frequencies pro-
duced by the hybrid and FE models are within an acceptable 1%, The natural frequencies
corresponding to a plunge (vertical) or swingback (horizontal) motion are almost the same for
a given number of loops per span, regardless of the number of conductors. This behavior occurs
because the mass and stiffness in these directions change almost identically with an increasing
number of conductors. The torsional frequencies, on the other hand, decrease noticeably as
more conductors are added because the change in the moment of inertia is greater than that
for the stiffness. Identical trends have also been observed from existing bundle models [5, 30].

The hybrid and finite element models are employed to investigate the dynamic limit cycle
amplitudes. From a practical viewpoint, one through three loops per span are usually considered
in North America because they are most frequent for galloping [2]. The examples in this paper,
however, only give the mid-span and quarter span results for one and two loops per span
galloping, respectively, because the limit cycle amplitudes for the three loops per span case
are invariably much smaller. The initial placements of the different bundle configurations are
shown in Fig.3.2. The corresponding aerodynamic coefficients, as;, are given in Table 3.3 for
Ostaric = 40° and B0 = 270°. Only data for single conductor is shown in Table 3.3 because
the bundle conductors are invariably stable when 8gqtic = 270°. Both the hybrid and finite
element models predict that, regardless of the number of conductors in a bundle, the initial
equilibrium state is unstable at the assumed 4m/s wind speed (i.e. the stability criterion is first
violated [15]). A 1:1:0 (w, : w, : wp) resonant galloping occurs in a one loop per span motion
for the single as well as for the bundle conductors. In addition, a 1:1:1 resonant galloping can
occur but only for a two loops per span motion of the bundle conductors. Figs.3.3(a) and
(b) compare the resulting bulk motion limit cycles for one and two loops per span motions,
respectively. The results from the hybrid model agree with the FE predictions. The A, and

A, used in this figure correspond to the vertical and horizontal limit cycle amplitudes for the
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single conductor or the reference curve of a bundle. It can been seen from Fig.3.3(2a) that the
vertical amplitudes for the one loop per span case are invariably comparable in magnitude.
They are much greater than the horizontal displacements for the bundle conductors so that the
plunge motion dominates the one loop per span galloping for the bundles. Therefore, it is not
surprising that a predominantly vertical conductor motion has a high percentage of occurrence
in the field [2]. On the other hand, Fig.3.3(b) suggests that the horizontal motion is comparable
or larger in magnitude to that of the plunge for a two loops per span oscillation. Therefore, the

horizontal motion should not be neglected in such cases.

3.6.2 Critical and higher wind speed trends

Two static angles of attack, Ogarie = 40° or 2700, are selected to illustrate that the clas-
sical Den Hartog criterion, which depends only upon the aerodynamic characteristics of the
conductors, does not necessarily give the initiation of galloping. According to this criterion,
an instability occurs when %%é + Cp < 0. Cf, and Cp are purely the aerodynamic lift and
drag coefficients, respectively, which are defined in the Appendix A. The previously considered
single and bundle conductors are used again to determine how the ensuring dynamic limit cy-
cle amplitude changes with the critical wind speed and an increasing steady side wind speed
beyond this critical value.

Figure 3.4 shows the variation in the reduced critical wind speed, Use = Use /fLz, and
the nondimensional limit cycle amplitude, A = /A2 + A2/s,, at the static angle of attack
Ostatic = 40°. (Note that this particular angle is illustrated in both Figs.3.1(b) and 3.2.) The
f is taken as the lowest wy, the predominantly vertical natural frequency; L, is the horizontal
span length; and s, is the static sag at a line’s mid-span. The figure indicates that A invariably
decreases as U, increases, immaterial of the number of loops per span and regardless of the
number of conductors in a bundle. However, the single conductor always has the lowest A at
a given U,.. On the other hand, the vertical amplitude, Ay, always dominates A in Fig.3.4(a)

while A, is the principal component of A in Fig.3.4(b). Fig.3.5 presents analogous results to
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Fig.3.4(a) for Ostetie = 270°. Only data for the single conductor is shown in Fig.3.5 because
the bundle conductors are invariably stable when 8sigtic = 270°. The major difference from
Fig.3.4(a) is that the Den Hartog criterion is satisfied no longer for the single conductor. (Table
3 indicates that %% + Cp is negative at 544, = 40° but positive at Gspgrie = 270°.) Despite
this difference, the single conductor remains unstable - otherwise there would be no limit cycle
amplitudes in Fig.3.5! Clearly, the simple Den Hartog criterion is not always applicable. On
the other hand, A decreases again with increasing U,., albeit more rapidly at the lowest U,,.
Figs.3.6 and 3.7 give the changes in the component nondimensional limit cycle amplitudes,
fly and A,, as the steady wind speed rises above the reduced critical wind speed, U,, for
Ostaric = 2700 and 409, respectively. In these figures, the static horizontal tension is H=30kN,
the span length is L, = 126m while U, = U./f Ly, Ay = Ay/sq and A, = A,/s,. The wind
speed, U,, varies from a steady 4 m/s to a steady 6 m/s. Not surprisingly, both fly and A,
always grow as U, and, hence, the wind’s energy input to a line increases. As before, A,
is invariably much larger than A, for one loop per span galloping but this trend is usually
reversed for two loops per span. The single conductor is the exception in the latter situation
because the internal resonance and, hence, the coupling between the torsional and vertical or
horizontal movements does not change. On the other hand, when galloping occurs, the number

of conductors in a bundle hardly affects fly and A,.

3.6.3 Trends for static horizontal tension and span length

The effects on f_ly and A, of increasing the nondimensional static horizontal tension, H =
H/w, and span length, L, /s,, are given in Figs.3.8 and 3.9, respectively, for Ogqtic = 40°. Here
w is the total weight of a bare conductor in one span. Both Ay and A, invariably tend to grow
as either H or Ly /s, increases. The single loop per span case (Figs.3.8(a) and 3.9(a)) is little
different to the comparable situation observed in Fig.3.7(a) for increasing U,. However, unlike
before, the twin bundle has somewhat smaller f_ly and A, than the triple and quad bundles

in two loops per span galloping, especially for enlarged H. This difference is likely caused by
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the different torsional coupling to these components that arise from the appreciably smaller

rotation of the twin bundle at higher H.

3.7 Concluding remarks

A flexible and computationally efficient design tool is developed for bundle conductors. It
can still be used for a single conductor. Software based on this model can be run instantaneously
on a personal computer so that it makes a practically required parametric analysis possible. In
addition, numerical results for a particular ice shape suggest that the ratio of the limit cycle
amplitude to the mid-span’s static sag invariably decreases as the critical wind speed ratio
increases, regardless of the number of loops per span considered or the number of conductors in
a bundle. It also usually grows as the nondimensional side wind speed (above the critical value),
horizontal tension or span length increase - again, immaterial of the number of conductors. Den

Hartog’s criterion for the initiation of galloping is shown to be overly simplified.
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Table 3.1 Iced C11 line properties

26

Parameter Data Parameter Data
d (m) 0.0286 A (mm?) 423.24
E (N/m*) 4.78033*10"° m (kg/m) 2.379
GJ (N m? /rad) 101 & & 0.515*107°
I (kg m) 0.3334%1073 & 0.308
H@) 30000 I, (m) 0.2355
e, (mm) 2.05 L. (m) 125.88
e, (mm) -0.63 Loir (kg/m>) 1.2929
Aige (mm*) 594.48 U, (m/s) 4.0
Table 3.2 Comparison of natural frequencies (Lx=126m, H=30kN)
No. of 1 ) 3
Number of loops/span
conductors Natural
frequencies @, w, P w, o, @y o, o, @y
Hz)
1 HM 0.482 | 0.445 | 1.091 | 0.891 | 0.892 | 4.003 | 1.337 | 1.339 | 6.384
FM 0482 | 0.444 | 1.090 | 0.891 | 0.891 | 4.003 | 1.339 | 1.337 | 6.385
2 HM 048210443 10635 0.892 | 0.893 | 1.174 | 1.341 | 1.347 | 1.737
FM 0482 | 0446 | 0.635 | 0.892 | 0.892 | 1.174 | 1.340 | 1.339 | 1.737
3 HM 0.482 | 0.443 | 0.555 | 0.892 | 0.893 | 1.062 | 1.341 | 1.347 | 1.581
FM 0.481 | 0.446 | 0.555 | 0.891 | 0.892 | 1.062 | 1.340 | 1.338 | 1.581
4 HM 0481 1] 0.443 | 0.553 | 0.892 | 0.893 | 1.060 | 1.341 | 1.347 | 1.578
FM 0.481 | 0.446 | 0.553 | 0.891 | 0.892 | 1.060 | 1.340 | 1.338 | 1.578
HM—-hybrid model FM-—finite element model
Table 3.3 Aerodynamic coefficients for C11
Number of Coefficients at & =0° and G,,,,, = 40°
conductors in -
bundle ! Ay as Ag
1 -0.1667 0.8605 -0.7272
Single conductor 2 -4.0547 0.8325 0.2935
3 8.3581 1.7815 5.9704
1 -0.3335 1.7210 -1.4543
) 2 -8.1094 1.6650 0.5869
3 16.7162 3.5631 11.9408
1 -0.5003 2.5815 -2.1815
3 2 -12.1614 2.4975 0.8804
3 25.0743 5.3447 179112
1 -0.6670 3.4420 -2.9086
4 2 -16.2188 3.3300 1.1738
3 33.4324 7.1262 23.8816
Coefficients at 8,,,,, =270°
. 1 0.9423 1.3186 -0.8567
Singl 1
ingle conductor 2 20,9245 33.2000 0.9026
3 2.6352 -13.0623 -0.2333
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Figure 3.1. Showing (a) the bulk modelling of a twin bundle conductor, and (b)
the cross section of the ith iced conductor.
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Figure 3.2. The initial arrangement of iced C11 conductors in (a) a twin
bundle, (b) triple bundle and (c) quad bundle configuration.
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Figure 3.3 Limit cycle obtained at (a) the mid-span (1 loop/span) and (b) quarter-span
(2 loops/span) for (i) a single conductor, (i) twin bundle, (iii) triple bundle, and

(iv) a quad bundle. ( Span length Lx=125.88m, horizontal static tension H=30 kN,
side wind speed Uz=4m/s, a =0° and 6, =40°)
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Figure 3.4. Limit cycle amplitude ratio, A , at different critical wind speed ratios,

U, for (a) 1 loop/span and (b) 2 loops/span galloping (,,,, =40°,a=0").

+ Number of conductors (in a bundle). I Stable at higher values of U, .
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Figure 3.5. Limit cycle amplitude ratio, A , at different critical wind speed

ratios, ﬁzc, for 1 loop/span galloping of the single conductor. (6, =270°)
0.8 0.8
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Figure 3.6. Limit cycle amplitude ratios, Ky and KZ, at different wind speed
ratios, U,, for 1 loop/span galloping of the single conductor. (6,,.=270%).
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Figure 3.7. Limit cycle amplitude ratios, A, and A,, at different wind speed
ratios, U, for (a) 1 loop/span galloping and (b) 2 loops/span galloping.
+ Notation as in Figure 3.4. (¢ =0, 0,,,, = 40°)
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Figure 3.9. Limit cycle amplitude ratios, Ky and Kz, at various span length
ratios, L_/s,, for (a) 1 loop/span galloping (b) 2 loops/span galloping.
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Chapter 4

GALLOPING CONTROL: HYBRID DAMPER

4.1 Introduction

As introduced in Section 1.2.3, there is no control device that is suitable for all atmospheric
conditions or all kinds of galloping. A detuning pendulum is the most popular control device
used in North America. It can adjust the torsional frequencies of a conductor to avoid the strong
coupling between the vertical and torsional movements. However, the detuning pendulum makes
no contribution to the structural damping which is very important to alleviate galloping. Several
transmission lines have been observed to still undergo galloping, in some circumstances, even
though detuning pendulums have been installed on them. Thus, it is difficult to develop a
control device that can prevent galloping for all conditions. One reason is that the galloping
mechanisms are not understood completely. However, it is always beneficial if the structural
damping of a line can be increased by adding a control device. Indeed, it could be cost effective
to increase an existing transmission line’s structural damping by adding a passive device so
that the height of towers and conductor clearances could be reduced. A hybrid damper (HD)
has potential in this area. A HD consists of a rigid link, spring and a liquid damper, as
shown in Fig.4.1. The end of the rigid link is fixed at a conductor and the other is hinged at a
container containing the liquid. The natural rotational frequency of the HD can be tuned by the
equivalent twist spring. Therefore, the conductor’s motion is partially converted to a rotation
of the liquid container so that the liquid sloshes back and forth between the container’s ends to
provide structural damping. The liquid container is modelled by a large weight for a detuning
pendulum. In this chapter, the previous computer software has been modified to accommodate

HDs and, thus, test their effectiveness in alleviating galloping. The hybrid model is still used
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to describe the motion of a transmission line with simplified HDs. All the assumptions used
previously for this the model are also applied here.
The equations of motion for the transmission line with HDs, as well as a parametric analysis

of involving HDs are given in the following sections.

4.2 Equations of motion

A HD is mounted so that it is perpendicular to a conductor. Let n,, and 3; be the number
of hybrid dampers and the rotation of the ith hybrid damper about its pivot point, respectively.

(See Fig.4.1.) f; can be expressed as

Bi = ﬁviQU + ﬁwiQw + ﬁGi ge (41)

if only one mode shape is retained for each global variable V, W and ©. In equation (4.1), By,
Buw; and By, are the ith HD’s modes corresponding to the y, z and 9 directions, respectively. gy,
¢w and gp have been defined in equation (3.2). The total kinetic energy, Ty, of all n,, hybrid

dampers is

nm
Ty = %;{mdi [F2(5:) 32+ 12 (8:)d3 +R3, f3 ()63~ 2Ra, fuw(5:) fo(5:) Guwdo—2re; fo(s) Bidol+ Lo, B2},
i
(4.2)
where myq,, Ra,, Te; and I, are the ith HD’s mass, radius of gyration, the distance between its
mass center and pivot point and the moment of mass inertia about the pivot point, respectively.
s; is the ith HD’s natural coordinate. f,, f, and fp have been used in equation (3.2). The
variation in the potential energy of the hybrid dampers, 6Vg, is given by
Nm,
8Va =Y {ma,gRa; fo(si)q0 + kg, Bi6Bi}, (4.3)
i=1
where kg, is the equivalent torsional spring constant of the ¢th hybrid damper and the g is the

gravitational constant. If the linear viscous damping is assumed (Fq, ﬂz where Fy, is the

damping force of the sth HD), the variation corresponding to the work done by the damping
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forces of the HDs is
§Wa =" ca.B:68; (4.4)
i=1
where cg; is the damping coefficient of the ith hybrid damper. The overall equations of motion

that include the HDs can be obtained by inserting equations (4.1) through (4.4) into the corre-

sponding equations (3.5), (3.6) and (3.9) used in the hybrid model without any control device.

Then
M;4, + C4a + Kpqo = F4 (4.5)
where
0 0 0 0
M, = ’ , C, = ’ (4.6)
and
0 0
K =K, + o (4.7)
07 Ky

M, C and K, are the same as the matrices used in equations (3.14), (3.10) and (3.18), respec-
tively. q, is defined in equation (3.12). Oz is still the 1 x 3 null matrix. My, Cy and K, are

contributions from the hybrid dampers. Details are given more conveniently in Appendix B.

4.3 Numerical results

Results from parametric analyses of hybrid dampers are given in this section. Two main
parameters of a HD are selected to test their effect on galloping. One is the damper’s natural
undamped frequency, wy, and the other is its damping ratio, &;. Here wq = y/kg/l, and
€4 = cg/2mgw,y. The corresponding results for a completely untreated line and one having
detuning pendulums (DP), i.e. a “reference” control device which has been used for many
years, are given for comparison. The examples are given for a single conductor and for one or
two loop motions per span. The line’s unexplained physical parameters and the aerodynamic

coefficients for C11 are listed in Tables 3.1 and 3.3. Parameters for the DP are selected according
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to Ontario Hydro’s guidelines [54]. The weight and radius of gyration of DP used here are 11kg

and 0.145m, respectively.

4.3.1 Effects of HD’s natural frequency

In Figs.4.2 and 4.3, X represents the ratio of the conductor’s natural frequency in plunge to
the HD’s natural frequency, i.e. A = wy/wy. f_ly and A,, which were defined in section 3.6.2, are
the non-dimensional limit cycle amplitudes in the vertical and horizontal directions, respectively.
U, is the non-dimensional critical wind speed which was defined in section 3.6.2. Fig.4.2
corresponds to a line with one HD located at its mid-span. The line undergoes one loop per
span galloping before the HD is added. This figure gives the non-dimensional critical wind speed
and limit cycle amplitude for different A and £;. It can be seen that, when A = 1 (i.e. the HD’s
natural frequency equals the lowest natural frequency of the line in the vertical direction), the
critical wind speed increases most noticeably and the ensuing limit cycle amplitude decreases,
especially at a larger &;. Indeed, the greater rotation of the HD when A = 1 leads to larger
damping due to a larger f,, in equation (B.9). Moreover, the different slopes of these curves,
which correspond to different A, illustrate the effectiveness of the HD’s damping. On the other
hand, Tables 4.1 and 4.2 as well as Fig.4.2 indicate that the detuning effects of a DP or a HD
are not significant when £; = 0 compared to the untreated line. (Actually, a hybrid damper
corresponds to a conventional DP when £; = 0.) The two loops/span galloping case is not given
because the HD or DP is located exactly at mid-span, i.e. at the node of the second mode, so
that they are both ineffective.

Fig.4.3 shows one or two loops per span galloping for a line with 3 HDs which are located

L, %Lz and %—Lz, respectively. This HD arrangement is consistent with Ontario Hy-

at %
dro’s guidelines about a DP arrangement. The natural frequency of the HD near the line’s
mid-span is adjusted to be equal to the lowest natural frequency of the conductor in plunge
(without any HDs). The natural frequencies of the two remaining HDs, however, are tuned to

this conductor’s second natural plunge frequency. This approach is to alleviate galloping that
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corresponds to either a one- or two-loop per span situation. Then the damping effect of a given
HD intuitively grows as the HD’s rotation increases for a given frequency and amplitude of
the conductor’s motion. Tables 4.1 and 4.3 as well as Figs.4.3(a) and (b) show that the HDs
have almost the same effect as the DPs at £; = O for one loop per span galloping. However,
the solution corresponding to the asymmetrical mode is very sensitive to the non-symmetrical
arrangement, as shown in Fig.4.3(c) and (d) as well as Table 4.4. The line with HDs raises
the limit cycle amplitudes, compared with the untreated or treated line with DPs, except for
A, when A = 0.9 or 1.1. Table 4.4 indicates that the torsional coupling is involved much more
when A =1 for two loops per span galloping. This greater coupling leads to a change in the
phase differences between the line’s movements in the three directions so that the ratio of the
limit cycle amplitudes in the vertical and horizontal directions may be changed significantly.
Therefore, galloping in the asymmetrical mode is sensitive to the HDs’ arrangement and the

selection of their natural frequencies.

4.3.2 Effects of HD’s damping ratio

Fig.4.2 presents the non-dimensional critical wind speed and limit cycle amplitude for dif-
ferent damping ratios of a HD. It is seen that the convergence rate of stability is fastest when
A = 1. The line becomes stable when &; > 0.7%(X\ = 1) and &; > 1%()\ = 1.1). On the other
hand, the curve for A = 0.9 is so flat that the conductor is still unstable when &, is increased to
4%. (Also see Table 4.2.) This behavior occurs because the dissipation of energy is not so effi-
cient when the rotation of the HD is very small for A # 1. A similar situation appears in Fig.4.3
in which one loop per span galloping occurs in the vertical direction. The convergence rates for
all curves presented in Figs.4.3(a) and (b) are slower than those in Fig.4.2 despite three HDs.
This is not surprising because two hybrid dampers which are far from a line’s mid-span have
natural frequencies not tuned to the lowest natural frequency of the conductor. The remaining
HD is not located at the point that has maximum displacement even though its frequency is

equal to the lowest natural frequency of the line. Thus, these three HDs cannot contribute



Chapter 4 - Galloping control: hybrid damper 40

larger damping to the system due to a smaller §,, in equation (B.9). Figs.4.3(c) and (d) give
the results for two loops per span galloping. The curve for A, corresponding to A = 1.0 is the
steepest and the conductor tends to be stable at £; = 2%, although the limit cycle amplitude
is larger at §; = 0. Moreover, the system becomes stable at £; = 3% for A = 0.9, which does
not happen in Figs.4.2, 4.3(a) or (b). The reason is that two off-center, hybrid dampers play a
role while only one does in Figs.4.2, 4.3(a) or (b) so that the energy input into the system is

dissipated more efficiently.

4.4 Concluding remarks

A model with hybrid dampers (HDs) is developed to assess their effectiveness. A hybrid
damper’s rotational frequency should be adjusted to corresbond to a conductor’s lowest natural
frequency in either one loop or two loops per span plunge. Furthermore, the selection of the
location of the HD depends upon the galloping mode to be alleviated. The numerical examples
show that HDs with a 3% to 4% damping ratio can effectively alleviate galloping or even make it
become stable. Moreover, HDs display their greater potential for controlling galloping compared
with DPs. The hybrid model can be used to optimize the design of a HD and provide guidelines
for its application on a transmission line. In future, parametric studies should be conducted to

optimize the number, location and parameters of HDs to alleviate galloping.
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Table 4.1. Results for the untreated line and the line having one or three

Span length Ly : 200m

Mass of each pendulum: 11kg
Location of one pendulum: L, /2

detuning pendulums

Horizontal Tension H: 30kN

Wind speed U,. 9m/s

a., . =40°

static

Locations of three pendulums: Li/4,5L,/12, 2L, /3

Detuning Pendulum

Ag (deg.)

One loop per span Untreated One Pendulum | Three
' Pendulum
Critical wind speed (m/s) 2.647 2.160 2.753
Ay (m) 0.621 0.564 0.779
Az (m) 0.069 0.087 0.082
Ag (deg.) 6.203 4.770 1.896
Detuning Pendulum
Two loops per span Untreated One Pendulum Three
Pendulum
Critical wind speed (m/s) 2.294 2.224 3.372
Ay (m) 0.016 0.010 0.024
Az (m) 0.225 0.107 0.253
7.836 7.242 9.058
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Table 4.2 Results for the line having one hybrid damper

€ =0,0.006,0.01,0.02, and 0.04

Span length L, : 200m Horizontal Tension H: 30kN
Mass of hybrid damper: Skg Wind speed U,. 9m/s
Location of hybrid damper: L, /2 Qe = 40°
One loop per span € Values of the frequency ratio @,/ ®eq
‘ 0.90 1.00 1.10
0.000 2.161 2.183 2.158
Critical wind speed 0.006 2.350 4.742 2.732
(m/s) 0.010 2.485 Stable 3.227
0.020 2.860 Stable Stable
0.040 3.826 Stable Stable
0.000 0.500 0.525 0.504
0.006 0.490 0.370 0.469
Ay (m) 0.010 0.482 Stable 0.440
0.020 0.462 Stable Stable
0.040 0.410 Stable Stable
0.000 0.075 0.085 0.083
0.006 0.072 0.042 0.072
Az (m) 0.010 0.069 Stable 0.063
0.020 0.063 Stable Stable
0.040 0.049 Stable Stable
0.000 7.055 7.027 7.021
0.006 6.817 3.835 6.274
Ag (deg.) 0.010 6.647 Stable 5.634
0.020 6.169 Stable Stable
0.040 4.959 Stable Stable
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Table 4.3 Results for the line having three hybrid dampers
and undergoing one loop per span galloping

&€ =0 ,0.006,0.01,0.02 and 0.04

SpanlengthL,: 200m . Horizontal Tension H: 30kN
Mass of each hybrid damper: Skg Wind speed U,. 9m/s
Locations of hybrid dampers: Ly /4, 5L,/12, 2L,/3  a,,, =40°
One loop per span € Values of the frequency ratio ®,/ @eq
0.90 1.00 1.10
0.000 2.748 2.758 2.743
Critical wind speed 0.006 2.897 3.837 3.438
(m/s) 0.010 2.997 4.420 3.924
0.020 3.251 6.451 5.255
0.040 3.774 Stable 9.067
0.000 0.834 0.834 0.824
0.006 0.822 0.748 0.771
Ay (m) 0.010 0.815 0.699 0.732
0.020 0.795 0.503 0.616
0.040 0.753 Stable Stable
0.000 0.081 0.093 0.083
0.006 0.079 0.081 0.076
Az (m) 0.010 0.079 0.074 0.071
0.020 0.076 0.049 0.057
0.040 0.071 Stable Stable
0.000 2.638 2.626 2.655
0.006 2.595 2.294 2.447
Ag (deg.) 0.010 2.565 2.108 2.294
0.020 2.490 1.410 1.853
0.040 2328 Stable Stable
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Table 4.4 Results for the line having three hybrid dampers
and undergoing two loops per span galloping

& =0 ,0.006,0.01, 0.02 and 0.04

Span length L, : 200m Horizontal Tension H: 30kN
Mass of each hybrid damper: 5kg Wind speed U,. 9m/s
Locations of hybrid dampers: L /4, 5L,/12,2L/3  a,,,, = 40°
Two loops per span € Values of the frequency ratio ®y/ ®ed
0.90 1.00 1.10
_ 0.000 3.088 2.969 3.119
Critical wind speed - 0.006 3.743 5.343 4.625
(m/s) 0.010 4.204 6.187 5.780
0.020 5472 7.845 10.160
0.040 9.135 9.587 26.797
0.000 0.550 0.192 0.538
0.006 0.510 0.191 0.447
Ay (m) 0.010 0.481 0.185 0.371
0.020 0.397 0.147 Stable
0.040 Stable Stable Stable
0.000 0.245 1.033 0.211
0.006 0.225 0.902 0.170
A, (m) 0.010 0.210 0.835 0.138
0.020 0.169 0.612 Stable
0.040 Stable Stable Stable
0.000 3.141 7.264 3.065
0.006 2.883 6.123 2.486
Ap (deg.) 0.010 2.697 5.568 2.013
0.020 2.168 3916 Stable
0.040 Stable Stable Stable
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Figure 4.1. Showing (a) a transmission line having hybrid dampers,
and (b) conceptual details of a hybrid damper.
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Figure 4.2. Showing U_, Ky and A, for different & . One hybrid damper is located

at the mid-span and 1 loop per span galloping may occur. H=30kN, Lx=200m and
Uz=%nvs.
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Chapter 5

CONCLUSIONS

A generalized 3DOF hybrid model has been developed to describe the motions of an iced
single or bundle conductor for which interactions between the vertical, horizontal and torsional
motions are allowed. This model is an extension to a bundle conductor of a previous single
conductor model but still includes closed-form expressions for the initiation stability, limit
cycles and their stability conditions. In addition, the hybrid model couples FE mode shapes to
analytical expressions so that the model can handle practical spatial variations of nonuniform
icing and structural damping. It is impossible for a general analytical model to consider such
cases. Numerical examples have shown that the hybrid model generates results that agree with
those of a FE model which has also been extended to a bundle having any number of conductors.

A parametric analysis is required for the design of a new transmission line. The quite
efficient hybrid model can economically compute the effects of design changes in parameters
like the static tension, the span length and number of conductors in a bundle or the result of a
greater wind speed. It makes possible the optimum selection of parameters.

The final objective in studying the galloping of an electrical transmission line is to control the
galloping itself. The hybrid model accommodates control devices like airflow spoilers, detuning
pendulums and hybrid dampers. Consequently, it can be used to investigate the effects of these
control devices on galloping and provide guidelines for their design.

Computer software has been developed on the basis of the hybid model. It saves substan-
tial computational time compared with the time integration methods used in many analytical

models. It can give predictions almost instantenously on a personal computer because explicit
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expressions are used. Moreover, it conveniently provides inital (guess) values for the FE soft-
ware. Therefore, the hybrid model can be used as an effective tool for a galloping analysis and

the design of an electrical transmission line.



References

[1] J. P. Den Hartog (1932). “Transmission line vibration due to sleet.” AIEE Transactions,
Vol. 51, pp. 1074 — 1076.

[2] Transmission Line Reference Book (1979). “Wind - induced conductor motion.” EPRI,
Palo Alto, California.

[3] P. Yu, A. H. Shah and N. Popplewell (1992). “Initially coupled galloping of iced conduc-
tors.” Journal of Applied Mechanics, ASME 59 (1), 140 — 145.

[4] A.T.Edwards and A. Madeyski (1956). “Progress report on the investigation of galloping
of transmission line conductors.” Trans. AIEE, 75(3), 666 — 686.

[5] O. Nigol and O. G. Buchan (1981). “Conductor galloping : Torsional mechanism — Parts
[ and IL” Tr. IEEE, PAS - 96 (2), 699 - 720.

[6] J. J. Ratkowski (1963). “Experiments with galloping spans.” IEEE Trans. PAS, Vol. 82,
661 — 667.

[7] J. Chadha (1974). “A study of the mechanisms of conductor galloping and its control.”
Ontario Hydro Research Division Report, No.74 — 212 — k.

[8] C. B. Rawlin (1991). “Galloping stability of a single conductor with electricity research
laboratories’ wet snow shape 2.” Alcoa Conductor Products Company, Tech Note No. 29.

[9] R. D. Blevins and W. D. Iwan (1974). “The galloping response of a two-degree-of-freedom
system.” ASME, Journal of Applied Mechanics, 41, 1113 — 1118.

[10] D. A. Davis, D. J. W. Richards and R. A. Scriven (1963). “Investigation of conductor
oscillations on the 275 kV crossing over the rivers Severn and Wye.” Proc. IEE, Vol.
110(1), 205 - 219.

(11] A. Simpson (1965). “Aerodynamic instability of long-Span transmission lines,” Proc. IEE,
Vol. 112(2), 315 — 324.

[12] K.F. Jones (1992). “Coupled vertical and horizontal galloping.” Journal of Engineering
Mechanics, ASCF, 118(1), 92 - 107.

|13] Manitoba Hydro (1992). “Modelling of conductor galloping.” Canadian FElectrical Associ-
ation Report, Vol I & II, Project No. 321 T 672, Montreal, Canada.

[14] Manitoba Hydro (1995). “Modelling of conductor galloping.” Canadian FElectrical Associ-
ation Report, Phase II, Project No. 321 T 672A, Montreal, Canada.

50



References 51

[15] P. Yu, Y. M. Desai, A. H. Shah and N. Popplewell (1993). “Three-degree-of-freedom model
for galloping, (Part I and I1).” Journal of Engineering Mechanics, ASCE, 119 (12), 2405 —
2448.

[16] P. C. M. Gortemaker (1984). “Galloping conductors and evaluation of the effectiveness of
inspan dampers.” Kema Science and Technical Reports, Netherlands, 2(4), 27 - 39.

[17] P. Yu, N. Popplewell and A. H. Shah (1991). “A geometrical approach assessing instability
trends for galloping.” Journal of Applied Mechanics, 58(3), 784 — 791.

[18] P. Yu, N. Popplewell and A. H. Shah (1995). “Instability trends of inertially coupled
galloping, part I: initiation.” Journal of Sound and Vibration, 183(4), 679 — 691.

[19] P. Yu, N. Popplewell and A. H. Shah (1995). “Instability trends of inertially coupled
galloping, partll: periodic vibrations.” Journal of Sound and Vibration, 183(4), 697 — 691.

[20] A. S. Richardson, Jr. (1988). “Bluff body aerodynamics.” ASCE, Journal of Structural
FEngineering. Vol. 112(7), 1723 — 1726.

[21] W. T. Vanhorssen (1987). “Asymptotics for a system of nonlinearly coupled wave equations
with an application to the galloping oscillation of overhead transmission lines.” Technische
Hogeschool Delft, Netherland, Rept. No. REPT — 87 — 78.

[22] Y. M. Desai (1991). “Modelling of planar transmission line galloping.” Ph.D Thesis, Uni-
versity of Manitoba.

[23] G. Adomian (1987). “Nonlinear oscillations in physical system.” Mathematics and Com-
puters in Simulation, Vol. 29, 784 — 791.

[24] G. Chen (1987). “Applications of a generalized Galerkin’s method to non-linear oscillations
of two-degree-of-freedom system.” Journal of Sound Vibration. Vol. 119(2), 225 — 242.

[25] G.S. Byun and R. L. Egbert (1991). “Two-degree-of-freedom analysis of power line gallop-
ing by describing function method.” FElectric power System Research, 21(3), 187 — 193.

[26] A.S. Richardson, Jr. (1981). “Dynamic analysis of lightly iced conductor galloping in two
degrees of freedom.” Proc. IEEE, 128 (Pt. C)(4), 211 — 218.

[27] A. S. Richardson (1991). “A study of galloping conductors on a 230KV transmission line.”
FElectric Power System Research, 21, 43 — 55.

(28] R. D. Blevins (1990). “Flow — induced vibration (2nd edition).” Van Nostrand Reinhold
Co., New York.

[29] Y. Nakamura (1980). “Galloping of bundled power line conductors.” Journal of Sound and
Vibration, Vol.73, No.3, 363 — 377.

[30] W. Jianwei (1996). “Large vibrations of overhead electrical lines.” Ph.D Thesis, Universite
De Liege, Belgium.



References 52

[31] A. Simpson (1974). “Determination of the natural frequencies of multiconductor overhead
transmission lines.” Journal of Sound and Vibration, Vol.20, No.4, 417 — 449.

[32] G. Diana, F. Cheli, A. Manenti, P. Nicolini and F. Tavano (1990). “Oscillation of bundle
conductors in overhead lines due to turbulent wind.” IEEE Transaction on Power Delivery,
5(4), 1910 - 1919.

[33] K. E. Gawronski (1977). “Non-linear galloping of bundle-conductor transmission lines.”
Ph.D Thesis, Clarkson College of Technology.

[34] Y. M. Desai, P. Yu, N. Popplewell and A. H. Shah (1996). “Perturbation-based finite
element analyses of transmission line galloping.” Journal of Sound and Vibration, 191(4),
469 — 489.

[35] M. Liao (1996). “Galloping of bundle transmission lines.” Ph.D Thesis, University of Man-
itoba, Winnipeg, Canada.

[36] A. N. Shealy, K. L. Althouse and R. N. Youtz (1952). “Forty-two years’ experience com-
bating sleet accumulations.” AIEE Transactions, Vol.52, 621 — 628.

[37] J. E. Clem (1930). “Currents required to remove conductor ’sleet’.” Electrical World, De-
cember 6, 1053 — 1056.

[38] A. E. Davison (1939). “Ice-coated electrical conductor.” Bulletin, Hydro-Electric Power
Commission of Ontario, Vol.26, No.9, September, 271 — 280.

[39] K. Anjo, S. Yamasaki, Y. Matsubayashi, Y. Nakayama, A. Otsuki and T. Fujimura (1974).
“An experimental study of bundle conductor galloping on the Kasatori-Yama test line for
bulk power transmission.” CIGRE Report, 22 — 04.

[40] C. J. Pon (1988). “Control of distribution line galloping.” Canadian Electrical Association
Report, No. 133 — T — 386, Toronto, Canada.

[41] C. J. Pon and D. G. Harvard (1990). “Field trials of galloping control devices for bundle
conductor lines.” Canadian Electrical Association Report, No. 133 — T — 386, Toronto,
Canada.

[42] D. G. Harvard and C. J. Pon (1990). “Use of detuning pendulums for control of galloping
of single conductor and two and four conductor transmission lines.” Transactions of the
5th Int. Workshop on the Atmospheric Icing of Structures, Tokyo, Japan.

[43] A.S. Richardson (1962). “Galloping conductors-progress toward a practical solution of the
problem.” FEI Bulletin, Vol.30, No.5.

[44] A. S. Richardson, Jr. (1968). “Design and performance of an aerodynamic anti-galloping
device.” IEEE Conference Paper, C68670 — PWR.



References 53

[45] D. G. Harvard, C. J. Pon and J. C. Pohlman (1986). “Reduction of tower head dimensions
through galloping controls.” Proc. of the 8th Int. Workshop on the Atmospheric Icing of
Structures, Vancouver, Canada, 441 — 449.

[46] P. Hagedorn (1982). “Non-linear oscillations.” Clarendon Press, Oxford.
[47] R. W. Clough and J. Penzien (1975). “Dynamics of structures.” McGraw - Hill, New York.

[48] Y. M. Desai, N. Popplewell, A. H. Shah and D. N. Buragohain (1988). “Geometric nonlinear
static analysis of cable supported structures.” Computers and Structures, 29(6), 1001 —
1009.

[49] K.G. Mcconnell and C. N. Chang (1986). “A study of the axial-torsional coupling effect
on a sagged transmission line.” Ezperimental Mechanics, 26(4),324 — 329.

[50] P. Stumpf (1994). “Determination of aerodynamic forces for iced single and twin—bundled
conductors.” M. Sc. Thesis, University of Manitoba, Winnipeg, Canada.

[51] Y. M. Desai, P. Yu, N. Popplewell and A. H. Shah (1995). “Finite element modelling of
transmission line galloping.” Computers and Structures, Vol.57, No.3, 469 — 489.

[52] A.S. Veletsos and G. R. Darbre (1983). “Dynamic stiffness of parabolic cables.” Interna-
tional Journal of Earthquake Engineering and Structural Dynamics, 11, 367 — 401.

[53] R. K. Mathur, A. H. Shah, P. G. S. Trainor and N. Popplewell (1987). “Dynamics of a
guyed transmission tower system.” IEEE, Trans. PWRD, Power Delivery, 2(3), 908 - 916.

[54] D. G. Havard (1978). “Galloping control by detuning.” Progress Report No. 1, Ontario
Hydro, Canada.



Appendix A

ELEMENTS OF M, K, and F

A.1 Mass matrix, M

The representative elements, m;-j (4,7 = 1,2,3), of the symmetrical mass matrix, M, that

appear in equation (3.14) are

L P
my = / / pdAfeds + > maef2(se) |
o Jar =

L p
moy = // pdAff,ds-Fstk.fq%(Sk)v (A1)
0 Ap k=1
L . P
mas = // p(y2+z‘)dAf92dS+ZIskfg(3k)v (A-2)
0 JAr k==1
L
my = = [ [ paddf,eds (4.3)
0 JAp
and
L .
Moy = / / pydAfufods . (A-4)
0 At

A.2 Stiffness matrix, K,

The representative elements, K;; (i,7 = 1,2,3,4), of the symmetrical stiffness matrix, K,
in equation (3.13) are obtained by summing on each conductor k (k =1 ~ n) as

. " L " L 8s
Kij = >, Dij/ BiBifisfisds —noKice +n3 Y Hi | 2= fisfssds
k=1 0 k=1 0 Oz

n L n L as
+n4 ) (AE)x / BifisQrds —ns Y Hy 5g e Qards
k=1 0 k=1 0 o
= L 9s “. L
+ng > _ Hy 55 is@kds + 2nr Br > / Ja,sQrds
k=1 YO ©OF k=170
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n Ly n L
+n2(3 Hy / 55 f2r2ds + 3 (AE), / Q2ds)
k=1 J0 9T k=1 0

+Kx(f2(0) + £2(L)) (A.5)
where
D;; = (AE); for all i and j other than 4 ,
D;; = By fori=4orj=4,1+#7j,
Di; = (GJ)y, fori=j=4,
df; ox Oy Oz
fi,s = 58—’ 51 = _8—87 <1827/63> = ('5%7 %)7 184 =1 ) (A6)
and
Qr = B3Qix — F2Qax,
Qe = 71ecosbrofas,
Qo = rpsinbrofas. (A7)
Moreover,
1 i=353=4 1 i=5=1,2,3
Ng = ng =
0 otherwise , 0 otherwise,
1 ¢ <3, =4 1 i=2, =4
g = ns =
0 otherwise , 0 otherwise ,
1 =3, 7=4 1 i=75=4
ng = / Ny — (AS)
0 otherwise , 0 otherwise .

Here, 4,5 = 1,2, 3,4 represent ¢, j = u, v, w, § for convenience; H is the horizontal component of

a conductor’s static tension, T'; and K., which is the stiffness due to the eccentric ice, is [16]

L
Kee = [ (] pudA)gfids (A.9)
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Furthermore, K, is the stiffness due to the static coupling of the span of interest with its

adjacent spans and insulator strings It is given by [52, 53]

K, = : 4 . A.10

’ ;(12LH;°’ + (AE)ipgiLi L; 2Li) ( )
L is the horizontal distance between adjacent towers; py; is the total vertical load per unit
length of the ith conductor whereas W; and L; are the total weight and length of the insulator

string, respectively.

A.3 Aerodynamic load, F

The elements of the aerodynamic load vector, F, used in equation (3.15) are

Fy = 5purU2dC, (A11)
F. = SpurU2dC, (A.12)
and
Fo = 5panU2d°Cy (A.13)
where
Cy = foo(Ay o + Aygo/2 + Aysa'?’) ,
C, = Ana + Ana® + 4,07,
Cy = Apa + A(;Qof2 + Agga’?’ , (A.14)
Jug = % £ ’ fofods (A.15)
o = g — 2?]2 Go — fUigqﬁ = afy (A.16)
and
Aij = /OL aifitlds  i=y,26, j=1,2,3. (A.17)

The aerodynamic coefficients, a;;, are obtained by curve-fitting experimental, quasi-steady wind

loads in the neighborhood of the initially twisted conductor’s profile sustained by the moment
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arising from the eccentric ice weight [50]. The lift and drag coefficients, Cr, and Cp, respectively,
are given by

Cp =Cycosa—C;,sina (A.18)

and

Cp = Cysina+ C; cosa. (A.19)



Appendix B

ELEMENTS OF My, Ky and Cy

B.1 Mass matrix, My

The representative elements, ma,; (1,7 = 1,2, 3), of the symmetric mass matrix, My, are

My =S, [2(s8) — 2y folsi) o] + L2}
k=1

Mo
Mdy, = Z{mdk-fi%(sk) +I0k165}k} )
k=1

mdBS = Z{m(ikR%fg(sk) =+ Iokﬂgk} )
k=1

Mdy, = zm:{Iokﬂvkﬂwk - mdkrckfv(sk)ﬁwk} )

k=1

Mgy = Zm{Iok/B’Uk/ng - mdkrck.fv(sk)ﬁek} 3

k=1

and

Mgy = i{fokﬁwkﬁek—mddekfw(Sk)fa(Sk)}-

k=1

B.2 Stiffness matrix, Ky

(B.1)
(B.2)
(B.3)
(B.4)

(B.5)

(B.6)

The representative elements, k;; (1,7 = 1,2, 3), of the symmetrical stiffness matrix, K, which

appears in equation (4.7) are

Nom N Nn
k=) kg lo k2= kpBubu, Fkiz= ks,Bu.bs,
j=1

k=1 k=1

and
Nm

Nm Nm
koo =) kg Bh, k= kg Bubs sz =D {ks.Bi +magRa.} .
k=1

k=1 k=1
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(B.7)

(B.8)
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B.3 Damping matrix, C,

The diagonal damping matrix, Cy, is constructed by neglecting the damping coupling in

different directions. Its elements can be expressed as

N Nm Nm
.2 2 2
Cdyy = Zcﬁkﬂvk Cdyy = Z cﬁkﬁwk Cdzz = Z Cﬁkﬁek . (B.Q)
k=1 k=1 k=1



