
A Constraint Based Interactive Fbequent Pattern
Mining Algorithm for Large Databases

by

Tariqul Hoque

A thesis submitted to the Faculty of Graduate Studies of

The Univelsity of Manitoba

in paltial fulfillment of the requirements for- the degree of

Master of Science

Department of Computel Science

The UnivelsitS, of l\4anitoba

\4rinnipeg, N4anitoba, Canada

l\,f alch 2007

Copyright @ 2007 by Tariqul Hoque

THE UNIVERSITY OF MANITOBA

FACULTY OF GRÄDUATE STT,JDIES
****'¡

COPYRIGHT PERMISSION

A Constraint Based Interactive X'requent Pattern
Mining Algorithm for Large Databases

BY

Tariqul Hoque

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

Masþr of Science

Tariqul Hoque @ 2007

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc, to publish an abstract of this thesis/practicum,

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyúght owner.

Thesis advisor'

Dr. Carson K, Leung

Author

Tariqul Hoque

A Constraint Based Interactive Fbequent Pattern Mining

Algorithm for Large Databases

Abstract
Ovel the past decade, man)¡ fÌequeIìt-pattern mining algolithrns have been developed.

Horvever, many of them rely on the availability of lar.ge metnory. Their per.formance

deglades if the available memoly is limited because of the overhead and extra I/O

costs. X4oreover', among the algorithms that mine large databases, many of them

do not plovide users control ovel the mining process tht'ough the use of constraints.

Constlaint based rrining is very important because it encourages users focus on only

those patterns that are intelesting to the users. Further.more, among the algorithms

that handle user constraints, many of them do not allot' users to interactively change

the rnining paÌameters duling the mining process. As mining is usually an iteÌative

process, it is important to have an algorithm that supports constrai,nt based mtnzng

and allorvs useß lo ¿nteractiaely mine large d,atabases.

In this thesis, rve design and implement a constrâint based interactive mining

algolithm, named Inuerted, Matr¿î++, that uses a disk based data str.uctr¡re called

inuerted matrix for mining frequent patterns from large databases and constructs a

conditional tree called COFI*-tree fol each fi.equent item fr.om the inver.ted matrix.

Our algorithm facilitates constraint based mining and interactive mining from large

databases. Experimental results shorv the efficiency of our algorithm itr constrained

interactive mining from lalge databases.

Acknowledgements

Filst of all, I express my profound gratitude to Dl. Carson I(. Leung, my research

supervisor'. This thesis could not have been rvritten and completed without Dr. Leung,

l'ho not only served as my research supervisor.but also encouraged and guided me

throughout my academic program.

I aìso thank my fellol' research members for their.vaìuable investigative questions

and suggestions legarding my thesis ivork. Special thanks to my thesis examination

conmittee members (Dr. Jeffley E. Diamond and Dr'. Pourang P. h.ani) and the

chaìr of my thesis defence (Dr. Peter C. J. Gr.aham). I also thank membels of the

Gladuate Studies Committee in Depar.tment of Computer Science for their useful

comments and suggestions on my thesis proposal.

I deeply appreciate the financial sr:pport fiom my resear.ch supervisor. (Dr.. Leung),

TRLabs \4¡innipeg and my parents. Without their' financial suppoÌt, I rvould not be

able to start and continue my M.Sc. study at the Univer.sity of Manitoba.

Finally, thanks to my famil¡, members for theil constant suppor.t and perseveÌance

to accomplish this endeavor. I also rvish to thank my wife (Jobaida Begum) for.

unwavering support and pushìng me to achieve this milestone in my life and career.

TARIQUL HoQUE
8.S., Nolth South University, Bangladesh, 2001

The Unruersity of Manitoba
March 2007

lll

To mg parents who always dream about mg better future

Table of Contents

Abstlact
Acknorvledgements
Dedication
Table of Contents
List of Tables
List of Figules .

Introduction
1.1 Contributions
1.2 Thesis Olganization.

Related Work
2.1 The 4ining Framervork

2.1.1 The Aplioli Based Framervork
2.7.2 The FP-T!ee Based Framewor.k

2.2 Mining Lalge Databases
2.2.1 An Invelted lvlatr.ix .

2.2.2 A COFI-Tl'ee
2.2.3 Existing Techniques to Overcome Memory Linitation
lnteractive N4ining
Constraint Based Mining
2.4.7 Constraints
2.4.2 Constraint Based Algolithms

2.5 Discussion
2.6 Surnmary

Constraint Based Interactive Mining System
3.i Our Ploposed Tl'ee Structure: A COFIx-Ttee
3.2 Constraint Based Mining: Horv Our Proposed Inverted l\4atrix** AI

golithm Handles Constraints with COFIx-tlees?
3.2.7 Mining Succinct Anti-monotone Constraints

ii
iii
IV

vii
viii

1

8

z.J
2.4

I
10

10

I2
13

13

15

1f)

20

27

21

24

24

27
27

32

Table of Contents

3.2.2 Mining Succìnct Non-anti-monotone Constrâints
3.2.3 Mining the Anti-monotone Non-succinct Constraint

3.3 lnteractive l\4ining: Horv Oul Proposed Inverted Matrix** Algorithm
Handles Changes of the Suppolt Threshold?
3.3.1 Handling an lncrease of the l\4inimum Support Threshold .

3.3.2 Handling a Declease of the Minimum Support Threshold
3.4 Summary

Experimental Results
4.7 Experimental Setup
4.2 Experiment Set i: Testing tìre Executìon Time and the Scalability .

4.3 Ðxperiment Set 2: Testing the Effect of Constraints on Execution Time
4.4 Experiment Set 3: Testing the Effect of Inter.active Mining
4.5 Experiment Set 4: Testing the Applicability for. Mining Lar.ge Databases
4.6 Summary

5 Conclusions and lbture Work
5.1 Conclusions
5.2 Fbtule Wolk

Bibliography

34
Jð

a<

óo
.l/

39

41
41

45
49

56

58
58

59

61

List of Tables

T\'ansaction database
Sets of candidate itemsets
List of frequent itemsets (ivith minsup:5O%)

Sample database TDB
The invelted matrix for T1 .

The invelted matlix for TDB
Sub transactions
Comparison of diflelent algolithms

A sample database TDB
The sorted database
An invelted matlix
The auxilialy info¡mation about items

1.1

7.2

1.3

2.7

2.2

2.4

3.1
¿t. ¿

3.4

J

I4
I4
14

15

29

29
to
to

List of Figures

2.I COFI-tree fo¡ item B

2.2 COFI-tree for item A

3.1 COFI*-tree fol item A flom inverted matlix in Table 3.3
3.2 COFI+-tlees for items A anrì R

16

18

4.1 Runtime l'ith respect to minimum support tvith the IBN4 dataset 45
4.2 Runtime with lespect to minimur¡ suppolt with the UCI mushroom

dataset . 46
4.3 Runtime rv.r'.t. tìre size of the IB\,1 data dataset 47
4.4 Runtime u'.r.t. the size of the UCI dataset 48
4.5 Changing the selectivity fol SAlt4 constraints 50
4.6 Changing the selectivity fol SUC constrâints 51
4.7 Expeliments rvith different AM constraints 53
4.8 Interactive mining rvith an incleasing minsup. 54
4.9 Intelactive mining with a decreasing minsup 55
4.10 Runtime for mining lalge datasets 56

vllt

Chapter 1

Introduction

Norvadays, most organizations have their orvn databases. These olganizations

ale usually intelested in manipulating these lalge databases to retrieve valuable in-

formation so that they can make decisions based on the retr.ieved information. An

objective of data mining is to discover inportânt ol potentially useful but pr.evi-

ously unknorvn patterns from a large amount of data, r,r'hich help make predictions

{Dun03, Hl(06, T5I(061.

In genelal, transaction databases consist of a collection of transactions, rvhere

each transaction represents a set of items (aka an i,temset) purchased by a customer.

Association rules [AIS93, Kl4R+94] shorv hou' the presence of one item implies the

pÌesence of other items in the same transaction. In other. rvolds, association rules

leveal relationships among items. A popular.example used in the ar.ea of data mining

is that lesearchers found an intelesting association rule "customers who buy beer also

buy diapels" .

The task of mining association ¡ules is to generate all association rules from a

Cltapter I : Introduction

transaction database TDB. Let J : {ii,i2,......,i^} be a set of items. ? is a transac-

tion rvhere T C I. T contains itemsets X and Y, rvhere X C I,Y c l and X Ç?,

Y C 7 and X ltY : Ø. Then, the lule "X + Y" is returned to the user if it satisfies

tu'o conditions: (i) X U y satisfies the minimum sr.rpport threshold (minsup), and

(ii) "X =+ Y" satisfies the minimum confidence threshold (minconf). Here,

The number of transactions containino all items in X and YsuPIJur r = ano

^^-cr _- The number o.ltrang0,c!!9n!,99n!g¿n'¿ng lll items in X and Y
'l he number of transactions contaxning all i,temi ll T

In other words, the suppolt is the probability of having X U y in TDB, and the

confidence is the conditional probability of finding Y having found X [AS94].

Association rule mining {AIS93, AS94] can be divided into tlvo basic steps as

folloivs. The first step is to find all flequent itemsets that satisfy a minimum support

threshold, and the second step is to genelate all interesting association rules. To get

a better understanding of these two steps, let us considel a brief illustrative exatnple

belorv.

Example 7.1 Conszder the transacti,on d,atal¡ase shown in Table 1 .1. There are four

transactions with Jr.ae items A, B, C, D, and E. We count tlle support oJ all candi.date

i,temsets (Table 1.2) by scanning all f transacti.ons in the database. IJ the min¿mum

support threslnkl i.s 50%, then we lind all the frcquent itemsets li.sted i.n Table 1.3.

The supporl of {A} i.s 75% (i.e., S/y') sánce'item A occurs in 3 out of I transactions.

We check for all itemsets shown 'in Table 1.2, and. fi.nd. that only i.temsets {A}, {D},

{E}, and, {A, E} are frequent (i.e., they sati.sfy the m'in'imum suppo,tl threshotd).

Chapter 1: Introduction 3

Table 1.1: Tì'ansaction database

Tþansaction-ID Itemsets
T1
'12
T3
T4

14,8,!l
{A,E}
{A,D}
{C,D}

Table 1.3: List of fi'equent itemsets (rvith minsup:5Ql¡)
Flequent Itemsets Support

{A}
iD]
{E}

{A,E}

75Ya

50%
50%
507

Recall that association mle mining can be divided into tivo basic steps. In the

fir'st step (rvhich is knorvn as frequent pattern mining), for ¿ items in tlie domain,

rve find flequent itemsets flom O(2') candidate itemsets by computing the frequency

of these candidate itemsets. For instance, in Example 1.1, rve generate a total of

31 candidate itemsets (as shown in Table 1.2) for five items (namely, A, B, C, D, and

E) in the domain. In the second step of association rule mining (which is known as

rule generation), fol p frequent itemsets found in the first step, rve generate O(p2)

Table 1.2: Sets of candidate itemsets

Cardinalitv #ltemsets Candidate Itemsets
5 {A},{B},{C},{D},{E}

2 t0 {A,B},{A,c},{A,D},{A,E},{B,c},
{B,D},{B,E},{c,D},{c,E},{D,Et

3 10 iA,B,Lrj,tA,ts,Dj,{A,B,El,tA,c,D},{A,c,E},
{A,D,B},{B,C,D},{B,C,E},{B,D,E},{C,D,El

4 tA,B,c,D],{A,B,D,E},{A,B,c,E},
{A,C,D,E},{B,C,D,E}

5 1A,B,C,D,EÌ

Chapter I : Introduction

possible antecedent-consequence pairs for the rules " Antecedent + Consequence,,.

Among these rules, rve return those satisfying the user--defined confidence thresh-

old. For instance, in Example 1.1, for four fr.equent itemsets (namely, {A}, {D},

{E}, {A,E} shorvn in Table 1.3), $'e can geneÌate rules such as ,,{4} + {E}" and

"{t} + {,4}". Hence, among the two steps in association ruìe mining, the fir.st step

is computationaLly more ezpensiue than the second step. Flequent pattern mining is

used not only fol association lule mining but also for.other data mining tasks (e.g., for.

mining collelations [BN4S97], sequences [4595], maximal and closed patterns [G204],

and causality ISBN4U98]. Therefole, frequent pattern mining is an impor.tant research

task in data mining, and my N4.Sc. research lies in frequent patteÌn mining.

Ovel the past decades, data minels have focused on the first step so as to find

techniques to Ìeduce the computation of this step. ln the early years, most stud-

ies (e.g., algolithms like DHP [PCY95], Paltition [SON95], Sampling [ZPLO96], and

DIC [BMUT97]) used the Aprioli frameivork. To speed up the mining process, the

FP-glorvth algorithm IHPY00] rvas proposed, ivìrich is based on a novel tree struc-

ture called trbequent Pattern tree (FPtree) [HPY00] that captures the content of the

d atabase.

In genelal, the above mentioned algolithms find frequent patterns satisfying the

minimum suppolt threshold. The question is: What is the appropr.iate value for.mini-

munr support thleshold? It is not an easy question to ânswet because appropriateness

depends on the expectation ofthe user. Sometimes, the user may not even knorv tvhat

valr:e is appropliate. Consequently, setting the threshold too high results in too ferv

itemsets; setting it too loiv ¡esults in too many itemsets. Ther.efore, the user usually

Chapter 1: Introduction

needs to execute the mining algorithms for a number of times. Finding frequent pat_

te.ns from sc.atch multiple tirnes (each rvith a different threshold) can be expensive.

To solve this problem, researcher.s introduce interactive mining [Hid99, Leu04],

where the user can modify the mining par.ameter (e.g., the minimum support thr.esh-

old) during the mining process based on the feedback provirìed by the system. Carma

[Hid99] and iCFP [Leu04] are examples of inter.acrive mining algorithrrs.

Even rvith an appropriate value for the minimum suppor.t tìrreshold, the system

rnay retuÌn a number of frequent patterns, out of rvhich only a tiny fr.action is inter-

esting to the user. This calls for constraint based mining [NLHP98, LLN03]. In

constraint based mining, users âre allorved to focus the mining, rvhere user can specify

the pattern to be mined according to their intention using some restlictions. These

restrictions ale folmally called constra'infs. For example, if the usel is interested in

findìng itemsets of type "snack" and the price of each item in the itemsets is less than

$10, then he has to specify some constraints in addition to the support and confi-

dence thlesholds. Trvo classes of rvidely used constraints are succinct constra,¿nts and

ant'i-monotone constraints. Some algorithms have been developed to faciìitate the

lules. CAP {NLHP98], FIC [PHL01], FPS [LLN02], and iCFP [Leu04] ar.e examples

of these constt'aint based mining algorithms.

lvf an1, 6¡ ¡1r" above mentioned algor.ithms assume that there exists sufficzent main

memory space. Such an assumption is not too unrealistic 'in many c¿ses due to the

cun'ent trend that modern computing moves torvards computers with lalge amounts of

main memory (say, rvith gigabytes of rremor.y) [ÐZ03bl. However, the¡e are situations

rvhere the available memory is limited. One needs to bear in mind that, although

Chapter I : Introduction

the amount of available memory keeps incleasing, the volume of available data to be

gathered and stored in the memory (e.g., data fr.om the Internet, satellites, and other.

sources) can even glorv faster. The volume is doubling ever.y 18 months. This massive

gloivth of database size may surpass the groivth of hardwar.e technology. When facing

these situations (rvhere the available men.ìoly is limited, i.e.. there does not exist

sumcient memory space), many of the above mentioned algor.ithms may encounter

problems. For example, El-Hajj and Zzäane [EZ03a] reported that, t'hen using a

733 N4Hz machine rvith a RAM of 256 MB, (a) the Apr.ior.i algolirhm {4594] rvas

unable to mine databases rvith 5 million transactions (which requir.ed about 550 MB

of space) and (b) the FP-gro*'th algorithm IHPYO0] was unable to rnine databases

rvith mole than 5 million transactions when using a minimum support thr.eshold of

0.01% and 100,000 items in the domain. Horvever, in many data mining applications,

it is not unusual to analyze large databases rvith more than 5 million tr.ansactions.

\4lhen facing these large databases, sorne researchers proposed the use of ar.rxiliar.y

data structules such as the 'inaerted, matrix [EZ03a] and the co-occzmence frequent-

átem tree (COFl-tree) [EZ03a, EZ03b, EZ04]. These auxiliary structures ar.e designed

to deal ivith limited memoly, and require less in-memory space than the tÌansaction

database ol the FP-trees (rvhich capture the content of the database) . Howeuer, the

algorithm that uses these auxiliary sttwctures d,oes nol suppori interactiue m,in'ing or

constraint based, mining. To suppolt mining large databases, rve have identified the

follorving research questions: Can one use the inverted matrix and the COFI-tree

(i.e., the auxiliary stt'uctures designed fol mining fr.om large databases) to support

constÌaint based mining so that use¡s could specify their interest via the use of con-

Chapter 1: Introduction

straints? Can one use these auxiliary structures to suppot.t interactive mining in

such a way that users could change the mining patâmeter (specifically, the suppor.t

threshold) during the mining process?

1.1 Contributions

This thesis rvork is motivated by the above mentioned questions. \4ie ansrver all

of these questions in this thesis. \\¡e pt'opöse a memor.y-efficient mining technique to

suppolt constraint-based mining and intet'active mining. Our. thesis statement is:

\4¡e develop an algolithm fot constra'int based, interactiue fì'equent pattern

mining that can mine Large databases.

Specifically, rve focus our attention on the follorving aspects:

Constraint based mining (e.g., horv to find itemsets that satisfy the use¡

specified constlaints?),

o Interactive mining (e.g., horv to find itemsets s'hen users can change the

minimum suppoll thleshold duling the mining pr.ocess?), and

o Mining large databases (e.g., horv to use the inverted matrix and the COFI-

tlee to find itenrsets from lalge databases, especially s'hen mernory is limitecl?).

To handle lalge databases, we propose a tree structuÌe called COFI*-tree, rvhich is

similar but not identical to the COFI-tree. For instance, the COFIx-tree does not

lequire to store extra information (e.g., par.ticipation value used in COFI-tr.ee) for

mining the tree.

Chapter 1: Introducti,on

In addition, ive also propose an algorithm, called Inverted Matrix**, rvhich

uses both the invelted matlix and the COFI*-tree. It is designed to support constraint

based mining rvith intelactive mining frorn large databases.

1.2 Thesis Organization

The lest of this thesis is organized as follorvs.

In Chapter 2, some backglound tnaterials and r.elated rvor.k are presented. We

describe the concepts, propelties and classes of constraint mining. We also discuss

some key fi'ametvolks of flequent pattern mining (Apr.iori and FP-tree), and descr.ibe

some existing algorithms for constraint based rnining, interactive mining and large

database mining. We also elabolateÌ1, describe two data structuÌes: the inver.ted

matrix (that rve adopt fol our. system to support mining lalge databases) and the

COFI-tlee.

In Chapter' 3, the methodology of our research rvork is descr.ibed. We propose a

projected FP-tree based data structìrre, called COFI*-tr.ee. We also describe rnethods

of pushing the constraints inside the mining process accor.ding to their. properties and

constraint classes. \4¡e also highlight the interactive mining featur.e of our proposed

lnvelted Matlix++ algorithrr.

Expelimental results on both synthetic and r.eal-life dâtasets are presented in

Chapter 4. The lesults show the efficiency of our pr.oposed Inver.ted Matrix+-l- algo-

rithrn.

Finally, rve conclude our thesis and propose some ideas for future rvork in Chap-

ter'5.

Chapter 2

Related
.Work

This chaptel describes some related.rvork and backgr.ound infor.mation on fr.equent

pattern mining that helps readels understand our thesis problem. Section 2.1 dis-

cusses two major frameworks: the Apriori flamervork [AS9] and the Fp-tr.ee frame-

rvolk [HPY00], which ale ividely used and adopted as the basis of other. aìgorithms

for mining frequent pattelns. While the Apr.ior.i-based algor.ithms (e.g., the Par.ti-

tion algorithm) and the FP-tree based algor.ithms (e.g., the FP-gr.orvth algorithm)

are efficient in rnining flequent itemsets from many databases, their perfor.mance

degrades rvhen the database is too large to fit into the available memory. Hence,

rve discuss in Section 2.2 hosv some previor.rs algorithms (e.g., the Inver-ted lr4atlix

algorithrn [Ð203a] that uses the inverted matrix (Section 2.2.7) and the COFI-tr.ee

(Section 2.2.2)) handle the situation rvhere the database is lar.ge. While these algo-

rithms (i.e., Inve¡ted Matrix) are efficient in mining lar.ge databases, they have not

yet supported interactive mining ol constraint based mining. In this chapter., rve also

present some ¡elevant interactive and constr.aint based mining algorithms including a

10 Chapter 2: Related Work

brief intloduction on "constlaints".

2.I The Mining Flamework

In the literature, the trvo major flames'olks that ar.e used rvidely for developing

fieqr:ent patteln mining algorithms are: the Apriori frameivork [ASga] and the Fp-

tree fra¡nervork {HPY0O]. Tbe Aplioli rvas developed in 1g94, rvher.eas a tree based

rnining method FP-tlee in 2000 to speed up the mining process. Since most of the

frequent pattern mining algorithms were developed based on either.the Apr.ior.i fiame-

rvork or the FP-tree fiamervork, rve like to br.iefly discuss these two framewor.ks in the

next two sections (2.1.1 and 2.7.2).

2.1.7 The Apriori Based FYamework

The Apriori [AS9] is knorvn as the classic algor.ithm in the family of fi-eqr.rent

patteÌn mining algorithms. A very nice propet'ty of the Apr-ior.i algor.ithm is that

"if an itemset is flequent, then all its subsets are also frequent',. Suppose that the

suppolt of itemset {4, B} is 3. lf itemset {4, B} is frequent, then both {A} and

{B} are also frequent because the sr.rppor.t of each of the itemsets is at least 3. The

Apliori algolithr¡ uses a generate-and-test approach. To elaborate, the algorithm fir.st

determines all candidate itetnsets, and then tests these candidate itemsets against the

database to find out q'hether they are frequent or not. With the Apr.iori propet'ty,

the algorithm does not have to generate all possible combinations of items in the

database. It prunes a significant number. of candidate itemsets that are belorv the

minimum suppoÌt threshold. In the first pass of the algorithm, it scans the database

Chapter 2: ReLated Work

and computes all frequent 1-itemsets (i.e., itemsets ofsize 1). The aìgorithm does the

follorving for passes À > 1:

"lt genelates candidate k-itemsets using the fr.equent itemsets found in the

previous pass. Then, it scans the dâtabase and counts the local supports

of those candidate itemsets. After. that, it outputs frequent È-itemsets.

Then, it stalts the next pass" [ASg4].

This plocess is iterative, and it terminates l'hen no mole frequent itemsets can be

genelated. This is a candidate genelate-and-test appr.oach.

Note that the Apriori algolithm can be consider.ed as a foundation to many algo-

lithms including the Dynamic Hashing and Pruning (DHP) [PCYgbl, the Partition al-

golithrn [SON95], the Sampling algorithm [ZPLO96], the Dynamic Itemset Counting

algolithm (DIC) [BX4UT97], and the Segment Support lvtap (SSM) [LLN00, LNM02]

based algolithm. Horvever, the candidate generate-and-test pt'ocess is a bottleneck

of these algorithms. Let us consider a database rvith 100,000 difler.ent items and

10 million tlansactions. In the ivorst case, the Apr.iori algor.ithm may need to gen-

erate O(2r00'000) candidate itemsets. This algor.ithm may not be able to mine this

lalge database because of the follorving r-easons: It takes a very long time to com-

plete the task, and it needs huge memory to generate a huge number. of candidate

itemsets. The Aprioli algorithm also suffers from the pr.oblems of the repeated I/O

scans for scanning the database and the high computational cost for the candidate

generate-and-test approach.

The DHP algorithm [PCY95] uses a hash table to shrink the number of candidates

by pre-computing the approximate support. The algorithm also trims the transac-

11

L¿ Chapter 2: Related Work

tions that do not contain any frequent items. Though this Apriori based algor.ithm

reduces some candidates, it still generates a huge number of candidates. The Sam-

pling algolithm [ZPLO96] takes a small sample of the database, and it deter.mines

all the frequent itemsets based on the sample. The accuracy of the result heavily

depends on the quality of sampìe. The SSM [LLN00, LNM02] divides the darabase

into a numbe¡ of non-overlapping segrrents to count and store the suppor.t of each

singleton itemset in each segment. It speeds up the perfor.rnance of the Apliori algo-

rithm by reducing the numbel of candidates. The problem rvith this method is that

it can only deal rvith singleton itemsets. All of these Aprior.i based algorithms try to

implove performance, but they still genelate candidate itemsets.

2.1.2 The FP-Tlee Based FYamework

To avoid generating a huge number of candidate itemsets, Han et al. [HPY00]

ploposed a FP-t¡ee based algorithm caìled FP-glorvth. The algorithm is based on

an FP-tlee, r,hich is â compact memoÌy based tree stÌucture representing frequent

patteÌns.

The algolithm fi¡st scans the ivhole database to determine frequent l-itemsets

(singleton frequent itemsets, i.e., {A}, {B}, {C}, etc.). Then, it sorts the frequenr

items in descending flequency order'. It scans the database once again, and constructs

the FP-tree. The FP-tree consists of all frequent items. Ther.efor.e, there is no need

to generate any candidates since it represents flequent patterns.

The FP-tree framervork is advantageous over the Apriori in a sense that it avoids

generating huge number of candidate itemsets. The FP-tree based algorithms are

Chapter 2: Related Work

significantly faster than the Aprioli based algor.ithms. Hotvevel, FP-tree based algo-

rithms assume that tree structut'es (an FP-tree replesenting the transaction database

TDB and conditional trees for subsets of TDB) fit into the main memor.y [Hpy00].

This assumption may not hold rvhen the algorithms deal ivith ìarge databases.

2.2 Mining Large Databases

In this section, rve discuss some of the existing methods that take care of the

memoly limitation problem. These methods support mining large databases. Before

describing the memoly efficient techniques, let us have an overview of some related

dâta structures (an inverted matÌix, a COFI-tr.ee).

2.2.7 An Inverted Matrix

An i,naerted, rnatrir lEZ03a] captures the content of a transaction database.

In contrast rvith the usual tlansaction database (wher.e items in a transaction are

stored in one roiv), m items in a transaction ar.e stored over- m Ìows in an inverted

matrix. Each rorl, of the inverted matrix stot'es IDs of the ttansactions in ivhich the

items occur'; each entry in the invet'ted matrix points to the next item on the same

transaction. l\4ore plecisely, each pointel consists of trvo elements: the first element

points to the address of a rorv of the matr.ix and the second element indicates the

address of a column of the r¡atrix. In Example 2.1, rve shorv a sample database in

Table 2.1 and the inveÌted matrix for this database in Table 2.3.

l3

74 Chapter 2: Relaterl Work

Table 2.1: Sample database TDB

TID ltemsets
T1 A, B, C, D}
'r2 B, D}
't'3 B,C,D

4 A,C,D

"lable 2.2: The invelted matlix fol T1

Loc Index
4,2) (2,r

2 ö,J (3,1

3 (4.1)

4 D,4 lØ,Ø)

Table 2.3: The invelted matrix for TDB

Loc lndex
I 4,2) (2,r) (3,3)
2 ts,3) (3.1) (4,2) (3,3

:t (4,1 (4.3) (4,4

D,4 (Ø,Ø) lØ,Ø) lw,v) (Ø,Ø)

Example 2.! There are four i.tems A, B, C, and D in the sample d,atabase (Ta-

ble 2.1). To const¡'uct an inueried rnatrb for thzs d,atabase, tl¿e d,atabase is scanned

to Jind, the lrequencE of each i,tem. Tlrcn, the database is scanned, again, and items

'in each ¡ow are soried in ascending Jrequency ord,er. At the same time, the colurnn

"lndef' of tl¿e znuerted matrh is filled with each item and zts frequency. The first

row in Table 2.1 contains'ttems A, B, C, and D. Item A is located in line f in the

i,naerl,ed, matrir and has a l,inlc to the first empty slot of the arrag of item B, stnce B

'is the next item after A. ThereJore, entry (2, 1) is add,ed, to the first slot of the array

of i.tem A. Thus, entries (3, 1) and (1, 1) are ad.d.ed. to the Jirst slots of items B and,

C, respect'iaeLy. For item D, a null entrV (Ø,Ø) is added, since tl¿ere is no more'items

Chapter 2: Related Work

afler D. This results '¿n Table 2.2.

SimiLarly, the same method, can be appli,ed to each of the remaining rous in the

d,atabase. This results in the inue¡ted matrir (shown i.n Table 2.3), whi,ch ca,ptures the

content of the d,atabase shown in Table 2.1.

2.2.2 A COFI-Tþee

A co-occumence frequent-item he.e (COFI-tree) [EZ03a, EZ03b, EZ\a] is

a compact memoly based data structure. A branch in the COFI-tree can ÌepÌesent

one or more transactions in a database; a node of the tree Ìepresents an item. In

this tlee structure, each parent node may have more than one child nodes; hotvever, a

child node has exactly one pat'ent node. At each node, we stot e both its frequency and

ils partzcipation ualue. Since the palticipation value is ilrelevant to the remainder of

this thesis, lr'e do not describe it fulther.

A COFI-tree represents sub-tlansactions fol a particular. item. Suppose that rve

have the database in Table 2.1, and we lvant to construct a COFI-tree for item B.

Then, sub-transactions fol B ale shown in Table 2.4. In other ivolds, the sub-

trarìsactions for B include all the transactions containing B (i.e., T1, T2, and T3).

Each sub-transaction for B only contains B and items that rank behind B (i.e., C and

D).

Table 2-4: Sub transactions

16 Chapter 2: ReLated Work

The first rorv in the sub-transaction (T1) foL B contains items B, C, and D. Hence,

we get a tree branch rvith three nodes: B, C, and D rvith their frequency all set to 1.

Then, we have items B and D in the second row (T2), and this leads to a net' child

D fol B. The fiequency of B is then incremented to 2, and the frequency of the nerv

node D is set to 1. For T3, u'e increrrent nodes B, C and D in the left branch so that

theil frequencies ale 3, 2 and 2 r'espectively. The final tree is shorvn in Figure 2.1.

Figule 2.1: COFI-tlee for item B

2.2.3 Existing Techniques to Overcome Memory Limitation

Recall that, rvhen the transaction database (ol the FP-tree captur.ing the content

of the database) is so lalge that the available memory space is insufficient to hold the

database or the FP-tree, rrany of the Apliori-based or FP-tree based algorithms may

encounter problems. For example, El-Hajj and Zaiane [EZ03a] r'eported that, using

a machine rvith a RAM of 256MB, (a) the Apriori algorithm [4594] t'as unable to

mine databases rvith 5 million transactions (rvhich lequired about 550NIB of space)

and (b) the FP-grorvth algorithm [HPYO0] rvas unable to mine databases rvith more

Chapter 2: Related Work 77

than 5 million trânsactions when using a minimum suppolt threshold of 0.01% and

100,000 items in the domain.

To handle large databases (rvith insufficient memor¡, sp¿ss), several out-of-memory

techniques can be applied. For example, ivhen the entire database does not fit into

the main menory, an Apriori-based algorithrn called the Partition algor-ithm [SONgSl

divides the database into locaì partitions in such a u'ay that each partition can fit

into the main rnenrory. The algorithm then finds all locally flequent itemsets in each

local paltition, and then scans the rvhole database once again to get gìobally frequent

itemsets. Consequently, this Paltition algolithm inculs lots of I/Os.

Fol tlee-based algolithms, if an FP-tree is too large to fit in the main memory,

then one can store the tlee in the disk and to recursir.eì¡, partition and project the

tree [HPY00]. When folming plojections, the entile tree is read. As a result, lots of

I/Os are inculred.

Besides the above trvo algorithms, one of tlie recently developed algorithms called

Inverted Matrix algorithm [EZ03a] fLrlthel reduces the I/O cost. This disk-based

algolithm is based on the frequent conditionaì pattern concept. There are trvo phases

in this algolithm. In the fir'st phase, a disk-based data stmctule, called the zn-

uerted, matrb. is generated. In the second phase, the inverted nratrix is mined us-

ing a corrpact memory based data structut'e called co-occurrence frequent-item tree

(COFI-Tree) [EZ03a, EZ03b, EZ04]. The inverted matrix captuÌes the content of the

tlansaction database. The algolithm first reads sub-transactions directly from the

disk-resident invelted matlix. It then builds an individual memoly-r'esident tree for

each fiequent item in the database. Each tree is mined independently, and is deleted

18 Chapter 2: Related Work

as soon as it is mined.

To gain a deeper understanding of the Inverted Matlix algorithm [EZ03a], let us

consider the follorving example (Example 2.2).

Example 2.2 Let us reuistt Example 2.1 . If the min'imun suppori threshold zs 2, then

the f,rst frequent ztem'is A. Its first entry i.s (2, 1) indicating thal the item represented

by column 1 of row 2 (i.tem B) 'is the àtem immediately after A in a transact'ion in

the original d.atabase. SimilarLy, the entry in (2,1) is (3,1), which ind,icates that the

'item represented, by column 1 of row 3 (i.tem C) is the item irnmediately after {A,

Bj. Then, the entry in (3,1) i.s (1,1), which indi,cates that the itern represented. by

column 1 of row I (item D) i,s the i.tetn i.mmed,iately after {A, B, C). FinaLty, the

entry in (1,1) ls (Ø,Ø), whi.ch indi.cates that no more i.tem after {A, B, C, D}. Hence,

we get the transaction 1A, B, C, Dj and a tree branch wzth nod,es A, B, C, and, D

with frequency set to 1 (Figure 2.2(a)).

,r
7.\tt',,Í

\ D:t ,/
(¡ì)

Figure 2.2: COFI-tree fol item A

We then apply a stmi,Lar procedure by following the lìnk in the second, entry of A,

which points to (3,3), whi,ch then po¿nts to (l,l and, (Ø,Ø) afterutards. Thás ti,nk leads

tt{

G'),--t
(Ð

o)

Chapter 2: ReLated Work

to another tree branch A-C-D (Fi.gutre 2.2(b)). The frequencg of A'is i,ncremented to

2 and, the frequency of the new nodes C and D i,s set to 1. Thts condi,ti,onal trce for

A is compLeted, since A has no ,rnore entry left.

Afler getti,ng the complete tree, the algorithm finds all the possible frequent ,itemsets

containins A: \A\, {.e,Q, {A,D}, and {A,C,D}

The satne process'is done for items B, C, and D. Thus, the algorithm finds all the

frequent itemsets.

The follorving âre some of the advantages of using the inverted matr.ix:

o The invelted matrix captures the content of the transaction database. Although

inverted matrix does not represent the content in a compr.essed for.m (vs. FP-

trees that repÌesents the content in a compressed form), it is easier to âccess

the content from the inverted matrix than FP-tlees because one does not need

to "uncompress" the information in the matlix.

. Rows are auanged in ascending frequent order.of items. One can easily retr.ieve

frequent items and skip infrequent items. In Exarnple 2.1, if the minimum

suppolt thleshold is set to 3, one can easily skip Rorv 1 (rvhich leplesents the

infrequent item A). Similarìy, if the thleshold is set to 4, one can easily skip

Rows 1 to 3 (rvhich Ìepresents the infrequent items A, B, and C).

o When constructing a COFI-tlee for an item X, one only needs to retr.ieve those

rows of the inverted matrix that ale relevant fol' the construction. In other

words, one does not need to scan the rvhole matlix. This saves I/Os.

The major advantage of using COFI-tree is that it requires less memot'y. Note that

19

20 Chapter 2: Related Work

both the FP-tree and the COFI-tree are stored in the memory. Horvever, each COFI-

tree, which is usually much smaller than the FP-tlee (because the COFI-tree is ba-

sicaìly the conditional FP-tlee) is mined independently, and is deleted as soon as it

is mined. Therefore, the Invelted Matrix algorithm [EZ03a] (rvhich uses COFI-trees)

requiles less memoÌy space than the FP-growth algolithm (tvhich uses FP-tlees).

Horvever, rvhile the Inverted l\4atrix algolithm [EZ03a] mines lalge databases, it

does not support interactive mining ot'constt'aint based mining. We rvill show in the

next chapter', horv our propose algoliihm uses the inverted matrix and a modified

COFI-tree for interactive constraint based mining of frequent itemsets fr.om large

databases.

2.3 Interactive Mining

To suppolt interactive mining, Hidber' [Hid99] proposed the Carma algolithm,

rvhich provides the user ivith continuous feedback on fiequent set computation so

that the useÌ can obselve the mining progless continuously and can interactively

change the minimum support duling the runtime of the algolithm. Horvever', like the

Invelted \4atlix algolithm, Carma also does not handle constraint based mining.

To suppolt interactive constÌaint based mining, Leung ILeu04] proposed the iCFP

system, rvhich allorvs the user-to modify the mining parameters (e.g., the minimum

suppolt thleshold) during the mining process based on the feedback provided by the

system. Hoivever, this system used FP-trees. In othel rvolds, it has not yet used the

inverted matrix or COFI-trees (rvhich rvere designed for handling large databases).

Chapter 2: Related Work

2.4 Constraint Based Mining

Even with an appropliate value for the minimum suppor.t threshold, mining algo-

rithms may Ìeturn a numbel of fi'equent patterns, out of rvhich only a tiny fr.action

is interesting to the useÌ. This calls for constraint based mining [NLHPg8, LLN03].

2.4.1 Constraints

Const¡'aints can be classified into overlapping classes depending on their ploper-

ties. These classes include anti-monotone constraints, succinct constraints, and some

other classes of constÌaints.

Definition 2.1 (Antlmonotone Constraints [NLHP9S]) A constraint Co* r,s

anti-monotone if wheneuer an itemsel S aiolates Co , so does any superset oJ S. O

For example, C"^ : S.Price < 100 is an anti-monotone constraint, because any

supemet of S violating C,- (e e , containing any item wilh Price > $100) also violates

c.-.

Deffnition 2.2 (Succinct Constraints INLHP9B]) Let ltem denote the set oJ

d,omain'items. Succi.nctness is detined,in seaeral steps, as fotLows: Def,ne SAT7

(ltem) to be the set of i,temsets that satisfy the constra'int C. With respect to the

lattt ce space consisting of all itemsets, SAT¿ (ltem) represents the pruned space (i.e.,

the solution space) consi.sting oJ those itemsets satisfying C.

(a) An i.temset I C ltem'is a succ'inct set,if it can be enpressed, as or(Item) for

sotne select'ion predicates p, uhere o is the select'ion operator (as i,n relati,onal

algebra).

27

22 Chapler 2: Related, Work

(b) SP ç 2It' is a succinct pouerset if there is a fixed number oÍ succinct sets

Item1,...,Item¡ C ltem, sucl¿ that SP can be expressed,'¿n ternts of the power-

sets of ltem1,...,ltem¡ using union and m'¿nus.

(c) A constra,int C is succinct prouided, SATç(ltem) is a succ,inct powerset. D

These overlapping classes of constraints âre inteÌesting because they have some

nice propelties that help optimize the mining plocess. For example, a majority of

constra'ints are succ'inct. Moreover, for every succinct constt'aint C, ther.e is a ,,for-

mula" (called a member genelating function (MGF)) that can gener.ate pr.ecisely all

those itemsets satisfying C. Hence, a succinct constt.aint can simplS, operate in a

generate-only environment (by using an MGF), r.ather than in a gener.ate-and-test

envilonment. In othet' rvords, one does not need to generate lots of itemsets, test

them, and then exclude those violating the constraints. Instead, one can easily enu-

melate (by using the N4GF) all and only those itemsets that satisfy the succinct

constraint. This explains rvhy we focus on the succinct constr.aints in this thesis.

As an example, the constraint "min(S.Price) > 10" is succinct. Its pr.uned space

(i.e., solution space) can be expressed as 20p,icc>rcUtem). Itemsets satisfying this sLrc-

cinct constrâint can be generated using the N,fGF {XlX Ç o p,¡"";,rc(ltem), X + Ø},

rvhich generates all and only those itemsets compr.ising of items rvhose price is greater

than or equal to 10. The succinct constraint "m,in(S.Price) > 10" is also anti-

monotone. If the price of at least one item in the itemset S is less than 10, then the

itemset does not satísfy the constraint. AII super.sets of this itemset also contain the

invalid item having the price less than 10. Therefore, all supersets of such an invalid

itemset are also invalid.

Chapter 2: Related Work 2Z

So far', l'e have mentioned that succinct constraints and anti-monotone constraints

are interesting due to their nice properties [NLHP98]. Norv, let us briefly discuss the

follorving cases:

1. Succinct and anti,-monotone constraints..

Fol example, the constlaint "max(S.Price) < 20" is succinct since an À4GF

\XlX ç o p,¡ua2s(ltem), X I Øj can be applied to generate itemsets, rvhere

the price of each item in the iternset is less than or equal to $20. The consttaitìt

is also anti-monotone because if the price of at least one item in the itemset is

gl'eateÌ than $20, then such an itemset does not satisfy the constr.aint and all

supersets of this itemset also contain the invalid item (rvith price greater than

$20). Therefore, all supelsets ofsuch an invalid itemset a¡e also invalid.

2. Succ¡,nct but not ant'i-monotone constraints..

For example, the constraint "max(S.Price) > 20" is succinct. It means that

the valid itemset tnust contain at least one item rvith price gleater than or.equal

to $20. The\4GFis {XuYlX C oe,r"4zo(l tem), X I Ø,y Ç o p,¡""r2s(I tem)} .

Horvever, it is not anti-mo¡rotone because a superset of an invalid iternset S (say,

all items in S ale of plice less than $20) may be valid (e.g.., adding an item of

price $30 to S to form such a superset).

3. Anti-monolone but not succ,inct constraints:

For example, the constraint "sum(S.Price) < 100" is anti-monotone but not

succinct, because all supersets of an invalid itemset (i.e., having the total price

greater than $100) are invalid. The consttâint is not succinct because there is

no MGF to enumerate all and only those itemsets that satisfy the constraint_

24 Chapter 2: ReLated. Work

4. Constrainls that are neither succinct nor ant'¿-monotone:

Fol example, the constraint "sum(S.Price) > 100" is not anti-monotone and

not succinct.

2.4.2 Constraint Based Algorithms

CAP [NLHP98], FIC IPHLO1I, FPS [LLN02], and iCFP [Leu04] ar.e examptes of

constraint-based mining algor.ithms. The CAP algor.ithm [NLHpgS] is an Apr.ioÌi

based algolithm framervolk. It exploits the pr.opertl, of constraints and pushes them

inside the fi'equent itemset computation. For a class of constraints called the succinct

and the anti-monotone constraints, CAP performs additional tests along rvith the

frequency tests. The FIC, FPS, and iCFP ar.e FP-tree based algorithms. All the

above mentioned algolithms facilitate constraint based mining. Horvever., they rver.e

not designed to effectively mine from very lalge databases. Hence, there is a need of

an algorithm that can take care of the memory problem and can interactively rnine

constrained frequent itemsets from large databases.

2.5 Discussion

In this thesis, rve develop a constraint based inter.active frequent patter.n mining

for very large databases. Table 2.5 shorvs the key diflerences betiveen my algor.ithm

and some existing algorithms. The key diflerence is that my algorithm is able to

interactively (i.e., u'hele users can change the support thr.eshold during the mining

process) find flequent itemsets satisfying the user specified const¡aints from very large

databases.

Chapter 2: Related, Work

Table 2.5: Compalison of diflerent algorithrns
Apriori,

FP-groivth
UAI',
FIC,
FPS

UaÌma iCFP lnvelted
Matrix

lnveì'Ied
lVlatrix*-|

Mining lalge
databases

X X x

Constraint based
minins

X x

lnteractive
rnining

X X

2.6 Summary

The Apriori flamel'olk [4594] and the FP-tree frame*'ork [HPY00] are the trl'o

rvidely used fiamervorks for mining frequent patterns. The Apr.ior.i based algorithm

suffers from the ploblems of the repeated I/O scans of the database ând the high

computational cost fol the candidate generate-and-test apploach. On the other.hand,

the FP-tree based algorithm avoids generating candidate itemsets. Hence, they are

genelally faster than Apliori based algorithms.

Horvever', FP-tlee based algorithrns assume that the tree stÌìrctuÌe (an FP-tree r.ep-

resenting the transaction database (TDB) and conditionâl trees for subsets of TDB)

fìts into tlie main memory [HPY00]. This assumption may not hoìd rvhen the algo-

lithms deal rvith large databases. Thelefole, both the Apr.ior.i based algor.ithms and

the FP-tlee based algolithms may not be too efficient rvhen mining large databases.

To take care of the memory limitation problem and to handle latge databases,

an inverted matrix (a disk based data stlucture) and a COFI-tree (a rnemor.y based

data structule) s'ere proposed. The COFI-tree has the same nice properties as tlie

conditional FP-tlee. Horvever, rve can build a COFI-tree fi.om the inve¡ted matrix

26 Chapter 2: Related. Work

instead of flom the oliginal databases. In other. ivords, the original databases are not

needed. While the Invelted N4atlix algorithm, rvhich used inver.ted matrix, deals rvith

mining from large databases, it does not suppor.t inter.active mining or constraint-

based rnining.

On the other hand, some algorithms (e.g., Car.ma) suppot.t interactive mining by

providing the user u'ith continuous feedback on frequent itemset computâtion so that

the usel can monitol the rnining pÌogress contini¡ously and can interactively change

the minimum support during the runtirne of the algorithm. However, they do not

handle constlaints. Fol constÌaint based mining algor.ithms (e.g., CAP, FIC, FPS),

usels are allorved to focus the mining by specifying the patter.n to be mined using some

restrictions called constlaints. Horvever, many of them do not support interactive

mining. Fortunately. thele are aìgorìthms (e.g., iCFP) that support both inter.active

mining and constlaint based rnining. Horvever, they have not yet designed to handle

large databases. Hence, there is a demand fol a frequent patter.n mining algorithm

that can efficiently mine large databases and also suppor.t interactive mining as ivell

as constraint based mining. In this lesealch, rve design and develop a mining system

fol this pulpose.

Mining

Chapter 3

Constraint Based fnteractive

System

In the previous chapter', rve revierved some existing rvor.k; in this chapter', we staÌt

desclibing our ne\\¡ rvork. To elabolate, rve describe oul proposed Inverted N4atrixf*

algorithm. The algorithm uses two stÌuctures: ân existing disk based data structur.e

called an invelted matrix and oul neu'ly proposed memory based tree sttucture called

a COFIx-tree. The lesulting mining algolithm can handle constraints (constraint

based mining) and changes of the minimum sr.rppor.t thleshold during the mining

plocess (intelactive mining), and it can find flequent itemsets from latge databases.

3.L Our Proposed Tþee Structure: A COFIx-TYee

Recall fi'om Section 2.1.2 that FP-tree [HPY00] is constructed from the database

to keep all the frequent items- While mining from the FP-tr.ee, the FP-tree algorithms

28 Chapter 3: Constraznt Based Interacti,ae Mi,ning S}stem

build a projected tree (also knorvn as conditional tree) for all the fr.equent items in

the FP-tlee. Horvever, by using an invelted matrix [EZ03a], one can dir.ectly build

the plojected tree for all the items found in the matrix. Each conditional t¡ee built

flom the invelted matrix replesents sub-transactions fol a particulal item. Therefor.e,

branches in the tree contain co-occutrences of the frequent items. Oul mining algo-

rithm constructs memory efficient tr.ee based data structur.e, called COFI*-tree, for all

the uaLid (i.e., satisf),ing both the m,insup and the constraints) frequent items. Note

that the key difference betrveen COFI-trees and COFI*-trees are as lolloivs. COFI-

trees keep all frequent items, and each node contains both frequency and par.ticipating

value. As mentioned in chapter 2 that the participation value is irrelevant to tlie

remainder of this thesis, rve do not describe it further.. In othel rvords, COFI*-trees

keep only flequent ualid items, and each node contains only its fr.equency (but not

the participation value).

There are three major parts in our mining procedure:

1. Handling constraints (determining valid items to build CoFlx-trees).

2. Constructing COFIx-tree for valid items.

3. N4ining COFI*-tree.

Example 3.1 Consider the database TDB shoun in Table 5.1. It consists of Jiue

transactions and si,t i,tems (A, B, C, D, E, and F). Our mi,ni,ng proced,ure then sorts

the items 'in each transaction in the ascendi,ng order of the frequency of each item

(Table 3.2). Afterutard,s, our algorithtn build,s an inaer.ted, matrir (Tabte S.S). Giaen

sorne auúli,ary i,nformation (Table 3.1) about the pr¿ce oÍ each .itern, ue can eas,ily

Chapter 3: Constraint Based Interactiue Mini,ng System

identify aalid. ìtems .

Table 3.1: A sample database TDB

III] Itemsets
'1'1 TJ, U, IJ
'1'2 A,B,C,D,E,F
't'3 A B.D.E
I'4 A C.D
l'5 U,U

Table 3.2: The solted database

TID Itemsets
T] B, U, IJ
T2 F,E,A,B.C,D
T3 E,A,B,D
T4 A,C,D
T5 C,D

Table 3.4: The auxilialy information about items

After revierving the first part of our mining process, let us conside¡ the second

palt below.

Table 3.3: An invelted matrix

Loc Index
¡',1

2 8,2 3,1 (3,2)
4,3 4,3) (5,3

4 8.3 5.t J,Z) tD,ó
5 c.4 5,1 (6,4 (6,5)

6 D,5) 0,v tx,a lw,v) (Ø,Ø) \w,0)

ttem A IJ C t) F

Price l0 2rJ 5 22 l5 27

30 Chapter 3: Constraint Based Interactiue Mzning SAstem

Example 3.2 Reconsid,er the database TDB in Table 3.1. Let mznsup be 3. Then,

ue show hou our rnining proced,ure constructs (and, mines) a COFI*-tree for a ualid,

item A. The first entry Q, 2) for the i.tern A (nole that I and.2 are row and column

'indices respecti,uelE) in the arrag for item A indicates that the item in rou I þtem

B) is the item afier item A in a transacti,on tn the original database. Hence, we can

follow the lznk (1,2), uhich ind.icaLes the entryin column 2 of row y'. The ualue in

U,2) is (5,2) indicating that the neú i.tem is zn row 5 (i.e., item C). Similarly, the

ualue in (5,2) is (6,2) i.nd.icati,ng that the neú i,tem zs zn row 6 (i,.e., item D); the

ualue i.n (6,2) is (Ø,Ø) indlcating that no more ztem afler D.

Therefore, we get the transo,cti.on 1A, B, C, D) and a tree branclt wzth nod,es A,

B, C, and D wi,th frequency set to 1 (Figure 3.1(a)). Note that this tree is a projection

tree for item A that incLud,es all the co-occunences oJ i,tem A.

We then appLA a similar proced,ure by folloui.ng the link in the second entry of A:

U,3) (6,3) - (Ø,Ø), whi,ch siaes A-B-D (Fisure 3.1(b)). The frequency of nod.e A

i,s incremented to 2. Then, the frequency of node B is also incremented to 2. Since

C i.s th,e only child, of B in tlrc current COFI*-tree, our m'ining proced,ure adds D as

another chzld of B. The frequencg of the nod,e D is set to 1.

Again, we start folLowi,ng the tlùrd entry Jor item A (5,3) (6,4) - 0,Ø), uhi.ch

giaes A-C-D. The frequency of node A ,is 'incremented, to 3. The mining ptoced,ure

ad,ds C as another child oJ A, and D is the child of C (i.e., a branch uith nod,es C

and D, where the frequency of both of the nodes are set to 1, ts created). Now, the

COFI*-tree (F'igure 3.1(c)) for i.tem A is cornpleted si,nce A has no more entry teft in

the inaerted matrix.

Chapter 3: Constraint Based Interactiue Mi,ning System

A:1

B:1

C:1

D:1

(b)(u)

(c)

Figule 3.1: COFI*-tree for item A flom inverted matrix in Table 3.3

After constractzng a COFI*-tree Jor item A, our algorithm f,nd.s all the possible

Jrequent 'itemsets containing A: {A}, IA,C}, {A,D}, and {A,C,D}. Then, the algo-

nthm carries out sirn'ilar steps for CoFlx-trees for other items, and find,s all frequent

32 Chapter 3: Constraznt Based Inleracti,ue Mining S\stem

itemsets: {A}, {C}, {D}, {A,c}, {A,D}, {C,D}, and {A,c,D}.

3.2 Constraint Based Mining: How Our Proposed

Inverted Matrix** Algorithm Handles Con-

straints with COFIx-trees?

We analyze the constraints and push them inside the rnining plocess. \À/e handle

antimonotone and/or succinct constraints. For constlaints that are neithe¡ anti-

monotone nor succinct, rve induce these constraints into tveaker anti-rnonotone or

succinct constraints.

3.2.! Mining Succinct Anti-monotone Constraints

All frequent itemsets that satisfy the succinct anti-monotone (SAM) con-

straint mzsf contain only the valid items. For example, constraint "mox(S.Price) <

20" indicates that a valid itemset must contain only those items that have price less

than or equal to 20. Thelefore, we only need to identify all the valid items at the

beginning of the mining process. We do not need to cotìstì'uct any COFI*-tree for.

the invalid items. Our COFIx-tlees also keep only valid items (i.e., satisfying both

the flequency thleshold and constraints). Thelefore, tve do not need any constraint

checking in the mining phase. Here, the fi'equency test is required only to determine

all the valid frequent itemsets. Let us consider Example 3.3 to see the mining process

fo¡ SAM constraints.

Chapter 3: Constra'tnt Based Interactiue Mining Systetn

Example 3.3 Let us use the database shoun in Table 3.1. The price o! each item

'is shoun i,n Table 3 4. We assume that the minsup is 3 and the SAM constra'int is

'lnax(S.Price) < 20" . From Table 3.3, we note that ztems A, B, C and E satisfy

the constraint. With minsup:S, items A, B, and C and, D are frequent. Hence, onlg

ztems A, B and C satisfy both the minsup and the constraint 'çmat(S.Price) < 20,,.

Therefore, we construct the COFI*-tree only for these items. The COFI*-tree lor A

includes only the aalzd items A, B and C; the COFI*-tree for B zncludes only the

ualid, items B and C. We do not need, to construct any COFI*-tree for C as ,it.ts the

"lasl" aalid. item. All these COFI*-trees are bui.lt from the inuerLed matrir (Table S.S).

Fzgure 3.2 shows an erample. Itemsets mined fi'om these COFI*-ttces contai,n all and

onlg those aal'¿d ztems.

(u)

Figule 3.2: COFI*-trees for items A and B

.1.)

(b)

34 Chapter 3: Constraznl, Based Interactiue Mining Sllstem

3,2.2 Mining Succinct Non-anti-monotone Constraints

All frequent itemsets that satisfy the succinct non-anti-monotone (SUC)

constraint r¿zs¿ contain sorne mandatory items and may contain some optional

items. With the lt4GF of the SUC constt'aint, rve find some mandator.y items that

have to be present in the valid itemsets. For. example, the l\4GF for constraint

"max(S.Price) > 20" is {X UYIX Ç op,¡u>zo(ltem),X + Ø,Y Ç op,¡"".2o(ltem)},

rvhere X is the mandatoly part (rvhich means all the valid itemsets must contain

at least one item having price greater. than or equal to 20). Ther.efore, we con-

stluct COFlx-trees only fol each mandator)¡ item that is frequent. We also construct

COFlx-tlees fol any frequent optional item Z if there exists a frequent mandatory

item located belorv Z in the inverted matlix. The r.oot of the tree for.an optional item

contains a particular optional item, and tlie tree nodes are mandatory items or.othe¡

optional items. All these trees ale mined, and all the flequent itemsets are generated

by computing the support of the itemsets.

Example 3.4 Let th,e m,insup be 1 and the succi,nct constmi,nt be '\rnar(S. Price) >

25". From Table 3.1, items E and F are mandatory, and ztems A, B, C and. D are

optzonal. We construct COFI+-trees for mandatory ttems E and, F, but how about

COFI*-trees for opti,onal items? Sznce there,is no mandatory item located beLow any

of th,e optional items in the i,nueried, mattix, we d,o not construct COFI*-trees for

those optional ttems.

Chapter 3: Constraint Based Interactiae Mining System

3,2,3 Mining the Anti-monotone Non-succinct Constraint

For example, the constraint "sum(S.Práce) < 100" is anti-monotone but not

succinct, because all supeÌsets of an invalid itemset (i.e., having the total price greater

than $100) a¡e invaìid. The constlaint is not succinct because there is no li4GF to

enumerate all and only those itemsets that satisfy the constraint. If constraints

are not succinct, then there is no way to predetelrline the valid itemsets. So, our

algolithm continues checking and pluning the itemsets fol satisfying anti-monotone

non-succinct (AM) constraints rvhile mining the tr.ees. The algor.ithrn constl.ucts

COFI*-trees for all the valid (respect to the minsup) items. While generating itemsets

fi'om a branch of the COFI*-tree, oul algolithm does not genet'ate any sr:perset ivith

the invalicl (r'espect to the constlaints) itemsets. The algorithm starts analyzing the

patterns fronr the leaves of a tree. Whenevel it finds an invalid pattern, it stops

generating supersets of that pattern in that branch and starts rvith another branch.

3.3 Interactive Mining: How Our Proposed In-

verted Matrix** Algorithm Handles Changes

of the Support Threshold?

So far, ive have shorvn hol' ive handle constraints. In this section, rve explain hotv

an invelted matrix can facilitate interactive mining. Specifically, horv an inverted

matrix can be used to handle situations where users interactively change the support

threshold (a mining parameter) during the mining process.

36 Chapter 3: Constrai.nt Based Interactiue Mining System

3.3.1 Handling an Increase of the Minimum Support Thresh-

old

Recall that it is not easy to find an appropriate value for the minimum support

thleshold. If the value is set too high, just a few itemsets (and rray be no itemsets)

are leturned. If the value is set too lorv, very ìalge number. of itemsets is retulned.

Hence, mining is supposed to be an interactive process. To enable the user to find

an applopriate minimum suppolt thleshold ralue, interactive mining is desir.ed. The

question here is: Horv to handle the change of the support thr.eshoìd? A naiïe ap-

ploach is to halt the cuÌì'ent mining plocess (rvhich uses the old suppor.t thr.eshold),

discard all itemsets satisfying the old thleshold, and re-mine itemsets fiom scr.atch

using the new suppoÌt thleshold. While this approach is correct, it is not efficient.

This situation is rvorsened if the change occut's near the end of the mining pr.ocess.

Lots of computation is rvasted.

The user can increase ol decrease the support threshold to make the change of

rrinsup duling the mining process. When the usel increases the suppor.t threshold,

i,temsets sati,sfyi,ng the neu threshold are stLbsets of itemsets sati,sfgi,ng the oltl tl¿resh-

old. Therefole, discalding the itemsets satisfying the old thr.eshold and re-computing

the itemsets satisfying the nerv threshold is a rvaste of computation.

Instead, our proposed Invelted Matlix*f algolithm handles the increase of the

minimum support threshold (minsup) as follorvs. If the user increases the threshold,

rve skip constructing COFlx-tlees fol items (in the inverted matrix) having fiequency

value betrveen the old and the nerv thresholds. Fol exampìe, rvith the inverted matrix

in Table 3.3 and the minsup changing lrom 2 to 3, we skip constructing the COFI*-

Chapter 3: Constraznt Based Interactiue Mining System

tree for item E (ivhich have a frequency of 2 that no longel satisfies the new threshold)

because any itemsets that can be mined flom this COFI*-tr.ee for. item Ð contains

E itself (an item rvhich is no ìonger frequent rv.r.t. the nerv minsup). Any itemset

containing any infrequent item is infrequent (i.e., rvill not satisfy the new minsup).

Similarly, rl'hen minsup is changed from 2 to 4, rve skip constÌucting the C0Flx-trees

for items A, B, E (tvhich ìrave frequencies < 4 and hence, no longer satisfies the nerv

thleshold). Sìnce roivs in the invelted matlix are arranged in ascending frequency

ordel of items, it is easy to determine rvhich items to be skipped. This deals tvith the

"unprocessed" items in the invelted matrix, but horv about the "processed" items?

Itemsets mined fi'om the COFlx-trees of the "processed" items satisfy the old minsup.

This means that some itemsets satisfy the nerv minsup, and some do not. Hence, our

proposed algolithm pelfolms a post-plocessing step to check all processed itemsets

to ensure that each of them satisfies the nerv minsr.rp (and filter. out those satisfying

the old minsup but not the nerv minsup).

To summarize, the key steps of handling an increase of minsup ar.e: (1) skip

constructing COFlx-trees for items not satisfying the nerv minsup, and (2) pelfor.m a

post-plocessing step to discald the "plocessed" itemsets that satisfy the oìd minsup

but not the nerv minsup.

3.3.2 Handling a Decrease of the Minimum Support Thresh-

old

The previous section (Section 3.3.1) shorved horv we handle an increase of minsup.

Thus, for a decrease of minsup, tve knorv lhal i,temsels satisîAi,ng the new threshold are

38 Chapter 3: Constraznt Based, Interactzae Mzning S1¡stem

supersets of i,temsets satisfying the old, threshold Hence, all "processed" itemsets that

satisfy the old minsup are guaranteed to satisfy the neiv minsup. We do not need to

perform any post-pÌocessing step or to discard any "processed" itemsets. Horvever,

âs itemsets satisfying the neu, minsup are supel'sets of itemsets satisfying the old

minsup, the question is: How to find the "delta" itemsets (i.e., itemsets satìsfying the

nerv minsup but not the old minsup)?

When the usel decleases rninsup, rve can halt the culrent mining plocess (ivìrich

uses the old minsup) and resume it ivith the nerv minsup. In addition, we construct

COFlx-tlees fol items satisfying the nerv minsup but not the old minsup. These trees

help to find the "delta" itemsets. For example, rvhen usels change the minsup flom

3 to 2 after processing COFI*-tlees for items A and B in Table 3.3, s'e constluct

C0Flx-trees for item E (rvhich finds itemsets {E}, {4, E}, {B, E}, {D, E}, {4, B,

E), {4, D, E}, {B, D, E} and {4, B, D, E} satisfying the ne¡v minsup of 2).

On the sulface, the above appears to be a good solution. Horvever, a careful

analysis reveals that ive still miss some itemsets (e.g, {8, C}, iB, C, D}). Why?

The leason is that when we process the COFI*-trees from items B and C, rve use the

old minsup of 3. At that time, itemsets {8, C} and {8, C, D} do not satisfy the old

minsup of 3. Aftel the change in minsup, the nerv minsup becomes 2. Hence, these

trvo itemsets satisfy the net' minsup. Horvever, the trees have been plocessed (befole

the change)!

In order to solve this ploblem, rve intloduce an additional parâmeter called Pre-

lVfinsup (rvhere Pletrfinsup < minsup). This parameter is set by the user. During the

mining process, our proposed algolithm finds itemsets satisrying PreMinsup (instead

Chapter 3: Constraznt Based. Interactiue Mining System

of minsup). Hence, rvhen returning itemsets to the user, l'e only return those satis-

fying minsup (among those satisfying PreN4insup). When users change the minsup

during the mining plocess, there are two cases. If the new minsup) PreMinsup,

rve just need to use the nerv rrinsup I'hen leturning the ansrver (i.e., itemsets satis-

fying the nerv minsup). Othelt'ise (i.e., if the new minsup < Pr.elVlinsup, tve need

to reconstruct COFIx-tlees for the "processed" items. Let us reconsider the above

example, rvith PÌeMinsup:2 < minsup:3, s'e find itemsets {8, C} and {8, C, D}

rvhen processing COFI*-trees for items B and C.

To summarize, the key steps of handling a declease of minsup are: (l) continue

the mining process but ivith the netv minsup, (2) construct COFIx-tr.ees for. "delta',

items (i.e., items satisfying nerv minsup but not the old minsup), and (3) reconstruct

COFIx-trees and r+mine itemsets for the "processed" items if the nerv minsup <

PreMinsup.

3.4 Summary

In this chapter, rve desclibed our new rvork-the lnverted N,fatrix-l* algorithm

an algorithm for constra,int based interactioe frequent pattern mining that can mine

large d,atabases. The algolithm uses two stÌuctut'es: (i) an inver.ted matrix (a disk

based data structure) and (ii) a COFI*-tlee (our nervly pr.oposed memory based tree

structure). The resulting mining algorithrn alloivs the user to specify constraints, and

handle constraints by pushing them in the mining process rvhen finding itemsets that

(satisfy the constraints. Moreover, our algolithm also allorvs the user to change the

minimum support threshold. When the threshold is changed, ouÌ.algorithm does not

39

Chapter 3: Constraint Based Interactzue Mintng System

need to find frequent itemsets from scratch. In othe¡ rvords, out proposed Inver.ted

lVlatrix+* algorithm plovides the user rvith constraint based mining and interactive

mining, and it can find frequent itemsets from large databases.

Chapter 4

Experimental Results

This chaptel presents the experimental lesults for our Inverted Matrix++ algo-

rithm. \4¡e conducted four difle¡ent sets of experiments and compared our developed

I¡iverted l\4atrix** algorithlrr rvith some existing algor.ithms. We used both synthetic

and real-life data in the experiments.

4.L Experimental Setup

We implernented the algolithms using the C pr.ogr.amming language and analyzed

the pelformance for lalge synthetic databases. We generated our. sample synthetic

datasets by using the IBN4 synthetic data generator [AS9a]. We also used some real-

life databases flom the Univelsity of Caìifornia - Irvine (UCI) Machine Learning De-

pository [8M98]. These testing databases are considered as the benchmark datasets

in our resealch field. We implemented oul algolithm and ran our experiment on a

Pentium-IV machine with 2GHz pÌocessol', 512M8 memory, and 30GB hard drive.

42 Chapter l: Ezperimental Results

Since our goal is to provide constlaint mining technique for lalge databases, our'

experiments rvere performed on the IBM datasets langing fi'om I million to 10 nlillion

(e.g., 1M, 5M, and 10M) tlansactions each containing an average of at least a dozen of

items with a domain of apploximately 1,000 items. Florn the UCI \4achine Learning

Repository, rve used the mushroom dataset, r,hich contains 137 distinct domain items

and each transaction is of a fix length of 22 items.

To evaluate the effectiveness of our ploposed Invelted Ì\4atrix** algoritlim, rve

first compared it rvith the Inverted Matlix algolithm [EZ)a) in the experiment. \4/e

lan the Inverted N4atlix algorithm to find all frequent itemsets and then conducted

a post-plocessing step to check if the fi'equent patterns satisfy the constraints. In

contrast, ouÌ ploposed algorithrn pre-pruried the itemsets that do not satisfy the

constraints. Here, oul question rvas: Horv much can rve gain from ple-pluning instead

of post-pruning? We picked the existing Invelted À,latlix aìgorithm for comparison

because it also used the inverted matÌix (a disk based data stlucture). Evaluation

lesults shorv the effectiveness of the constraint based mining aspect of oul Inverted

It,latlix** algorithm.

In addition, rve also compaled our algorithrr with the FPS algorithm [LLN02],

rvhich is an FP-tlee based algorithm. Note that it is also a constraint basecl algolithm.

The key dillelence between this algolithm and our pÌoposed algolithm is the use of

different data/tlee structures: The formel uses FP-trees, rvhereas the latter uses tìre

invelted matrix and the COFI*-t¡ees. Evaluation lesults show the applicability and

effectiveness of oul lnverted Matrix++ algorithm in handling lalge databases.

F\r'thermore, rve also compa.red the lesults of the ploposed algorithm using con-

Chapter l: Erperimental Results

straints of other selectivity. All algorithms then gave the same results (i.e., the same

set of valid frequent itemsets from large real rvorld databases), though some of them

took a longer time than the othels.

Various forms of tests rvere conducted on the sample datasets to determine the

execution tirne, scalability, and memory occupancy. In particular', rl'e conducted the

follol'ing expeliments:

1. In our first set of experiments, we conducted the follorving experiments to test

runtime and scalability of oul algorithrns rvhen it mines large databases:

(a) \4re varied the suppolt th¡eshold from 0.01% to 1%. The higher the suppor.t

threshold, the highel was the number of flequent itemsets retur.ned.

(b) \4¡e also varied the size of the database from 1\4 to 101\,f. We studied the

luntirnes of those executions.

2. In the second set of experiments, rve tested the applicability of oul proposed

algolithm (by obselving rvhether or not the above algorithms can mine f¡om

lalge databases). In othel u'ords, rve rvanted to see if the algorithm be abìe to

return alì and only those valid itemsets. Oul ploposed algolithm is expected to

be able to deal ivith lalge databases. In addition, rve also measured the luntimes

(i.e., the total CPU and I/O time) of our algorithm. Since our algorithm skips

infi'equent items and it does not need to build the entire tree (i.e., it does not

require extensive memoly space), it is expected to be rvell-suited to mine large

databases.

In the third set of expeliments, rve measured the amount of required computa-

43

44 Chapter l: Experimental Results

tion (i.e., to count the occurrences of constraint checking and support count-

ing). Our algolithm pre-prunes the itemsets according to the user constraint

by exploring the ploperty of constraints (succinct anti-monotone constraints,

succinct non-anti-monotone constraints, and anti-monotone non-succinct con-

straint) and by using an inverted rratrix. Hence, our algorithm is expected to

require less constÌaint checking and support counting.

4. In our fourth set of experiments, rve also compaled oul proposed algorithm rvith

the follorving algolithm:

o Rerun Inverted Matrix**, g'here rve first lan Inverted Matr.ix++ fo¡

a user-specified minimum support thleshold, and then halted the progtam

during the execution and reran Inverted Ìvlâtrix++ rvith a differ.ent mini-

mum suppolt thleshold.

¡ Rerun FPS, ivhere rve first ran the FPS algolithm [LLN02] fol a user.-

specified r¡inimum support thleshold, and then halted and relan FPS fi.om

scratch rvith a different minimum suppolt thleshold.

Our ploposed algolithrn is expected to be faster than FPS because our algo-

rithm does not start from scratch rvhenever users change the suppolt threshold.

Evaluation lesults shotv the eflectiveness of the interactive mining aspect of our

algolithm.

Chapler l: Expenmental Results

4.2 Experiment Set 1-: Testing the Execution Time

and the Scalability

In this fir'st set of experiments, rve focused on the effect on execution time of the

tree building and mining. Hele, both synthetic data (IBNI dataset) and r.eal life data

florn UCi data repositor'¡, (mushroom data) rvere used to per.form the experiment.

Experiment 4.1 (Testing with different minsup & the IBM dataset) In this

experiment, if the user increased the minsup, then fe$'el iterns satisfied the minsup.

Hence, fervel items would be selected. Therefole, it is expected that, if rve incr.eased

the minsup, the total mining time would also be reduced. The gr.aph in Figur.e 4.1

shows the effects on execution time rvith respect to tlie nrinsup on the IBM dataset

(10001(tlansactions). In the glaph, rve shorv the total runtime for our Inverted 4a-

tlix*f algorithm and the bleakdorvn (the luntime for.building COFI*-tr.ees and the

runtime for mining COFI*-tlees). The graph aglees I'ith the expectation (i.e., the

* COFI' M¡ne. COFI' Tree Bu¡ld
- lnverled Melrix++

0.2 0.3

MÌñimum supÞor {?ô)

Figure 4.1: Runtime rvith respect to minimum support rvith the IBM dataset (Ex-
periment 4.1)

45

350

300

ø 250

$ zoo
.E

E 150

t roo

50

0

46 Chapter 4: Erperimental Results

execution time decreased rvith the increase of the minsup). In Figur.e 4.1, there is a

high execution time rvith a lorv minsup of 0.01% and a quick dive in execution time

with a minsup of at least 0.1%. The reason for the steep slope is that the number of

fi'equent itemsets increased exponentially rvith the decrease of the minsup. We no-

ticed that the time lequiled for tlee building rvas rnuch less then the time required for

mining the trees. Therefore, the trend of the total time of the execution depended on

the mining tirne. Besides, the time lequiled for building an inverted matr.ix did not

change rvith different minsup. The reason is that the construction of the inverted ma.

trix did not consider the minsup âs parametel's, and it stored all items in tlansactions

irrespective of their frequencies.

Experiment 4.2 (Testing with different minsup & the mushroom dataset)

160

140

120

100

EO

60

40

20

0

Figure 4.2: Runtime with
dataset (Experiment 4.2)

* COFI' M¡ne
-- COFI' Tree Build

34567A
lì!iniñum suppon i%)

respect to minimum support with the UCI mushroom

Chapter l: Erperimental ResuLts

The graph in Figure 4.2 shows the effects on execution time ivith respect to minsup on

the mushloom dataset. In Figule 4.2, the glaph is less smooth than that of Figur.e 4.1.

The bumps occurred because the items in the mushroom dataset ivere not unifor.mly

distributed as in case of the svnthetic IBI\,1 dataset.

Experiment 4.3 (Testing with different sizes of the IBM dataset) In this ex

periment, rve tested the scalability of or¡r' Inverted l\4atrixl.* algor.ithm in terms of

the change in data size. Hele, rve used the IBN4 dataset (i.e., 100K, 200K, ..., 1000K).

Unlike the plevious expeliment, we changed the size of the datasets and kept the

minsup constant at 0.01% for IBN4 dataset. The execution time increased tvith the

increase of data size and shorved a linear scale-up.

* lnverted Matr¡x+l

300K 400K 500K 600K 700K 800K

Nutnb6rot Tla¡sactions

Figure 4.3: Runtime w.r'.t. the size of the IBM data dataset (Experiment 4.3)

The graph in Figure 4.3 shorvs the effects on execution time rvith r.espect to the

data size on the IBN4 dataset. We plotted the glaph for the total runtime of the

Inverted Matrix**. In Figure 4.3, we can see a gradual increase of the execution

47

200

81so

.E

È 100

50

0]-
100x

48 Cl¿apter 4: Eryerimental Results

time rvith the increase of the dataset size.

Experiment 4.4 (Testing with different sizes of the mushroom dataset) in

this experiment, rve tested the scalability of our. Inverted Matrix*f algolithm in

teì'ms of the change in data size. Here, rve varied the portions of the UCI mushroom

dataset (i.e., 7K,2K, ...,8K) to be used in the experiment. We kept the minsup

constant at t0% fol UCI dataset.

140

120

100

80

60

40

20

0

.E

.E

* lnverted N¡elrix++

1000 3000 4000 5000 6000
Numbêr ol TE¡s6ctiôns

Figure 4.4: Runtime rv.r.t. the size of the UCI dataset (Exper.iment 4.4)

The glaphs in Figure 4.3 and Figure 4.4 shoiv tìre ellects on execution time rvith

respect to the data size on IB\4 dataset and on UCI mushloom dataset r.espectively.

We have plotted graphs for the total timing of the Inverted Matr.ix+*. In Figur.e 4.3,

we can see a gradual increase of the execution time rvith the increase of the dataset

size. Figule 4.4 shows an intelesting outcome. The non-uniform distr.ibution of items

in the dataset is the main reason behind this outcome. The bumps on the graphs

are clearly shorvn ivith the increase in data size. F\rthermore, there rvas an decrease

Chapter 1r: Erperimental Results

on execution time instead of increase with respect to data size. The r.eason for this

trend of execution time is the distribution of flequent itemsets in the dataset. We

have already mentioned that the results on a dataset rvith unifolm distribution rvould

most likely show the lineal scaìability. We also found that thele rvas an decr.ease

on the number of frequent itetnsets instead of increase with t.espect to data size.

Rrrthermore, the mining tìme shorvn in Figur.e 4.4 appear.ed to be proportional to

the numbel of output frequent itemsets. This implies that the trend is due to the

uneven distlibution of fÌeqrìent itenlsets in the mushroom dataset rvhich is effecting

the mining time. Horvever, Figule 4.3 rvhere the IBN,I synthetic datasets rvith uniforrn

distribution of items al'e used shol's that the Inver.ted N4atr.ix** execution time

linearly scales rvith the incleasing data size.

4.3 Experiment Set 2: Testing the Effect of Con-

straints on Execution Time

In the second set of experiments, u,e evaluated our constraint based r.ule mining

technique. Here, rve compared (a) the FPS algor.ithm [LLN02] and (b) the Inver.ted

Matlix algolithm [E204] follorved by a post-processing step (for checking every fre-

quent itemset to see if it satisfies the ilser'-defined constraints) rvith our proposed

Inverted li4atlix** algolithm. ln the experiments, rve fìxed the minimurl suppor.t

threshold to 0.1%. We used the IBN4 dataset that contains 10001(transactions. We

valied the type of constlaints (SAlt4, SUC, AN,f) and the selectivity ofthe constraints.

A constraint with p% selectivity means that p% of distinct items are selected (i.e.,

49

50 Chapter y': Erpenmental Resulls

satisfying the constraint) for mining. Thelefole, the higher the selectivity, the higher

rvas the expected numbel of itemsets to be leturned (and the longer rvould be the

expected execution time).

Experiment 4.5 (SAM constraints) Fol this experiment, rve selected the SAÀ4

(succinct and anti-monotone) constraint rvith selectivity langing fi'om I0% lo I00%.

We observed flom Figule 4.5 that if the selectivity is lorver', the gain is higher'. The

gain is significant (the reduction in execution time gained by our Inverted N4atrix**

algolithm rvas ahnost 3 times) when compaled with lnvelted Matlix folloived by the

post-processing step rvhen the selectivity is lorv (10% to 50%). The tlend of the graphs

fol FPS and Invelted l\4atrix** rvas similar though the Invelted Matrix** algolithm

outperformed FPS for lol' selectivity of the SAM constraint. The gap betrveen the

runtimes of the trvo algolithrrs decreased tvith the inclease in the selectivity. We

noticed that the runtime of oul algorithm rvas sìightl1, higher than the luntime of

160

140

120

100

80

60

40

20

0

!

.ç

.E

+ lnverled Matrix++
-- lnverted M¿trix w¡th post processing
-* FPS

40 50 60 70

S€lêclìvrly (90)

Figule 4.5: Changing the selectivity for SAM constraints (Experiment 4.5)

Chapter l: Experimental Results

the FPS algolithm when the selectivity rvas g0% or above. This is because rve need

extra checks rvhen reading the transaction flom the invelted matrix. This over.head ìs

lowered rvhen more and more items are discarded. Therefole, the gap increased ivith

decrease in selectivity. The results clearly highlighted the porver of constraint based

mining.

Experiment 4.6 (SUC constraints) In this experiment, rve evaluated constraint

based mining rvith SUC (succinct but not anti-monotone) constraints. Here, rve had

the similal expelimental setup as the previor.rs experiment (the exper.iment q'ith SAI\4

constraint). The lesult in Figule 4.6 shows a significant gain of using our ploposed

Invelted lVfatrix** algolithm u'hen compared rvith using lnverted N4atr.ix plus the

post processing step, u'hen the selectivity is lorver (less then 25Vo selectivity). This is

because the pruning porver fol the non-anti-monotone constr.aint is less strict than the

anti-monotone constraint. In the previous experiment (involving SAI\4 constr.aint),

51

160

140

120

100

80

60

40

20

0

'õ
E

lnverted Matr¡x++
lnverted Malrìx wilh post processing

* FPS

40 50 60 70

Ssl€ctivity {%)

Figure 4.6: Changing the selectivity for SUC constraints (Experiment 4.6)

õz Chapter l: Experimental Results

rve achieved greater degree of pruning because the SAI\4 constraint involves only the

mandatory group rvhereas the SUC constÌaint involves both mandator'5, and optional

gloups. Recall flom the algolithm described in Chapter'3 that for the SAi\4 constraint,

rve only need to build the COFIx-tree fol the mandatorl,item. On the other hand, for

the SUC constraint, rve need to build COFI*-tree for all the items r.egar.dless of being

mandatoÌy ol optional. Hence, we only achieved gleater gain for SUC constÌaint

rvhen s'e have lorver selectivity. This is reflected in the lesults (comparing the graphs

slrorvn in Figure 4.5 and Figule 4.6) that rvith the sarre p% (30% to 70%) of selectivity

the execution time fol the SUC constraint rvas about trvice than the execution time

fol the SAI\4 constraint.

Though the experimental results shorv that the SAN4 constraint \\'as utore power-

ful than the SUC constlaint, our Invelted N4atrix** algolithm shori,ed better per-

formance in both cases (SAM and SUC constlaints) rvhen compared s'ith the trvo

algolithms. Thus, the application of both constraints not only successfully enhanced

the perfolmance of the lalge database mining but also output frequent itenlsets that

are interested to the usels.

Experiment 4.7 (AM constraints) For this expeliment, rve evaluated the eflect

of constlaints on the execution time rvhen the anti-monotone non-succinct (AIr4) con-

stlaint is used. HoweveÌ, rve did not valy the selectivity. To find items satisfying the

AN4 constraints, oul algorithm continues checking and pluning the itemsets fol satisfy-

ing anti,-monotone non-succinct (AM) consttaints rvhile rnining the COFI*-trees. We

cannot ignore any item rvhile building COFI*-tree. So, r'athel than var'¡,ing the selec-

tivity, we used different constraints (e.g., sum(S.Price) < 50, sum(S.Price) < 700,

Chapter y': Experimental Results

160

140

120

3 100

Ê

:60
40

20

0

Figule 4.7: Experiments with differ.ent AN4 constr.aints (Experiment 4.2)

sum(S.Pri.ce) < 150). Figur.e 4.7 shorvs that our. aìgor.ithm Inverted N4atrix++ out-

performed the Inverted À4atlix algoiithm.

4.4 Experiment Set 3: Testing the Effect of Inter-

active Mining

in this experirnent, ive tested the effect of inter.active mining. Recall that the user

can increase or dec¡ease the support thleshold to make the change of the minsup

duling the mining process. Therefore, regalding the change to the suppor.t threshold,

there ale tivo types: (1) increasing the minsup and (2) clecreasing the minsup. We

perforrned diffelent expeliments for these two types of minsup changes.

Experiment 4.8 (Increasing the minsup) We ran our algorithm using the IBM

dataset rvith 1M transactions. To test the effect of interactively increasing the minsup,

we first executed our Invelted Matrix** algorithm wjlh minsup:O.l%, and then

54 Chapter l: Erperimental Results

increased the rninsup so that the nerv minsup became 0.2%, 0.3%, and 0.4%. We

compared our algorithm tvith FPS and Inverted Matrix (iv/o interactive mining).

Pigure 4.8 shorvs the expelimental result.

Figule 4.8: Interactive mining rvith an increasing ninsup (Experiment 4.8)

Experiment 4.9 (Decreasing the minsup) To test the effect of inter.actively de-

creasing the minsup, rve executed our algolithm with mi,nsup=0.4% and, then de-

creased the minsup so that the new minsup became 0.3%, 0.27o, and 0.1%. Figure 4.9

shorvs the experimental lesuìt.

To handle the problem of decleasing the minsup, rve used the PreMi,nsup to find all

the flequent itemsets though the itemsets satisfying the actual minsup ivere ¡eturned.

For this reâson, we need to generate more itemsets, rvhich r.equire extra time to

find valid itemsets rvith the nerv minsup from the already generated itemsets using

PreMinsup.

tr lnveded Malrix++
E lnverled Mâlrix++ (without inle¡aclive m¡ning)

Chapter y': ExperimentaL Results

tl lnverted Matrix++
B lnverted Malrix++ (w¡thout interact¡ve min¡ng)
Il FPS

Figure 4.9: InteÌactive mining rvith a decreasing minsup (Expeliment 4.9)

4.5 Experiment Set 4: Testing the Applicability

for Mining Large Databases

Experiment 4.10 (Runtime for mining large databases) Folthis experiment,

1ve ran ouì lnvelted N4atrix** algolithm r.rsing lalge datasets rvith ll\,1, 5j\4, and

10\4 transactions. 'Ihe minsup rvas 0.01%. Our algolithm efficiently mìned all of

the datasets. We also ran the FPS algorithm using the same datasets. Figule 4.10

clearly shols that our algolithm outpelformed FPS. The successful execution shorvs

the applicability of our constraint based interactive lalge database mining algolithm.

56 Chapter J: ExperimentaL Results

fl lnverted Matr¡x++

tr FPS

Figure 4.10: Runtime fol mining large datasets (Expeliment 4.10)

Experiment 4.11 (Memory space for mining large databases) \Ve also mea-

sured the memory usage of the COFIx-tr.ee and compared it rvith the FP-tr.ees used

in the FPS algolithm. The FP-tree captuÌes all the flequent items and the associated

transactions. On the othel hand, the COFIx-tlee captures the co-occurrences of a

frequent items at a time. This explains rvhy the FP-tlee occupied more memor.y than

the COFIx-tree. In the experiment, s'e found that the avet'age memot'y usage for

COFI*-tlee rvas ahvays less than that of FP-tlee.

4.6 Summary

In this chapter, rve shorved our expelimental results. We ivent through four dif-

ferent sets of experiments. In our first set, rve tested luntime and scalability of our

proposed Inverted Matlix*f algorithm rvhen it mined large databases. The results

Chapter y': Erperimental Results

shorved that the runtime (including the time requiled for building COFI*-trees and

mining) decleased rvhen the minsup increased. Our algolithm gener.ally scaled up

linearly rv.r.t. the size of the dataset. In the second set, we measured the amount

of lequired computation (i.e., to analyze the occurrences of constraint checking and

suppolt counting). The results shoived the eflectiveness of constr.aint mining of ours

(ir'hen cornpaled with FPS and Invelted N4atrix plus post-processing step). Run-

times $'ere propoltional to the selectivity of constraints. In our. thir.d experiment set,

l'e applied the interactive mining technique. The lesults shorved the effectiveness of

interactive mining of ouls rvhen users changed the minsup. Finally, rve tested the

applicability of our ploposed algorithm. The lesults shorved our proposed Inverted

Ì\,latÌix++ algorithm took a leasonable amount of runtime and memory space rvhen

mining large databases.

57

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Over the past decade, many flequent-pattern mining algor.ithms have been de-

veloped. Horvever, many of them rely on the availability of large memor.y. Their.

performance degrades if the available memoÌy is limited because of the overhead and

extla I/O costs. Ì\4oreover, among the algorithms that mine lar.ge databases, many

of them do not plovide users control over the mining process thr.ough the use of con-

straints. Constlaint based mining is very important because it encourages users focus

on only those patteÌns that are interesting to the users. F\rthermore, âmong the algo-

rithms that handle user constraints, many of them do not allow users to inteÌactively

change the mining parameters during the mining process. As mining is usually an

iterative process, it is important to have an algorithm that supports constra'int based,

mznzng and allows users to i,nteracti,uelg mine large d,atabases.

In this thesis, rve developed the Inverted l4atrix++ algorithm-an algor.ithm for

58

Chapter 5: Conclusions and Futu¡'e. Work

constrai,nt based interacl,iue fi'equent pattern mining that can m\ne large databases.

Specifically, oul algorithm pushes the user specified constraints in the mining process

rvhen finding itemsets that satisfy the constt'aints. The algorithm allotvs the user

to change the minimum support threshold. When the threshold is changed, our

algorithm does not need to find frequent itenìsets from scratch. In addition, rve

ploposed a new memory based tlee structure called a COFIx-tree and used a disk

based data structure called an inverted matrix in our algolithm for intelactive mining

flom large databases.

Expelimental results on both synthetic and real-life datasets shorved the follorv-

ing. The mntime (including the time requiled for building COFIx-tlees and mining)

decreased rvhen the minsup increased. Oul algorithm genelally scaled up linearly

rv.r.t. tlie size of the dataset. Our algorithm rvas effective in handling user. specified

constÌaints. Runtimes were propoltional to the selectivity of constraints. The algo-

rithm '*'as also effective in handling user changes of the minimum support threshold.

Moreover, oul ploposed Inverted 4atÌix++ algolithm took a reasonable amount of

Ìuntime and memory space rvhen mining lalge databases.

6.2 Fhture Work

Our Inverted Matrix** algorithm handles succinct and/or anti-monotone con-

stlaints effectively. To improve our proposed Inverted Matrix** algor.ithm, rve plan

to directly handle those constraints that ale neither succinct nor anti-monotone (e.g.,

the constraint " sum(S. Pri,ce) > 100", rvhich finds all the itemsets rvhere the total

price of the items in each itemset is greater than $100).

59

60 Cìt apter 5: Conclusions and Future Work

We also plan to develop a parallel version of our proposed Inverted Mãtrix++

algolithm. For example, the COFIx-tree fol one valid item from an inverted matrix

is independent of another item. We could improve the luntime by implementing a

palallel velsion and obtain the benefits of palallel computation.

F\rthelmore, given that our ploposed Invelted Matrix** algorithrr rvas designed

to plovide usels rvith constÌaint based intelactive frequent patteln mining flom lar.ge

databases, rve also plan to extend it as follorvs. First, rve ivould ìike to apply our'

algorithm to find frequent patteÌ'ns from lalge real-life databases such as Iarge amounts

of health surveillance data. Second, rve would like to make use of these frequent

patterns to detect anomalies. To elaborate, any patterns that are deviated from the

frequent patterns returned by our algolithm are likely to be anomalies. Thir.d, we

rvonld like to modify our Inverted N4atrix++ algolithrn so that it could dtrectly mine

for abnormal pâttelns from these large health surveillance databases.

Bibliography

[AIS93] R. Aglarval, T. Imielinski, and A. Srvami. N4ining association rules be-

tween sets of items in lalge databases. In Proc. ACM SIGMOD, pages

207-276, 1.993.

lASe4l

IASe5]

R. Aglarval and R. Srikant. Fast algorithm for mining association rules.

In Proc. VLDB, pages 487-499, 1994.

R. Aglarvaì and R. Slikant. lVlining sequential pattelns. In Proc. IEEE

ICDE, pages 3 14, 1995.

[8N498] C. L. Blake and C. J. \4e¡2. UCI repository of machine lealn-

ing databases, 1998. Department of Information and Com-

pìrter Science, Univelsity of Caìifornia, Iruine, CA, USA,

wr¿v. ics. uci. edu/-nl earn/MlRepository . htnI.

[BMS97] S. Brin, R. Motrvani, and C. Silvelstein. Beyond malket basket: gener-

aìizing association lules to correlation. In Proc. ACM SIGMOD, pages

265-276, L9g7.

[BMUT97] S. Blin, R. Motrvani, J. Ullman, and D. Tsur'. Dynamic itemset counting

61

62 Bi,blioqraphu

and implication rules for market basket data. In Proc. ACM SIGMOD,

pages 255 264,7997.

[Dun03] lvl. Dunham. Data Mining: Introductory and Ad.uanced Topics. Plentice

Ha]I,2003.

[EZ03a] N4. El-Hajj and O. R. Zaïane. Inverted matrix: efficient discovely of

frequent items in large datasets in the context of interactive mining. In

Proc. ACM SIGKDD, pages 109-118,2003.

[Ð203b] M. El-Hajj and O. R. Zaïane. Non recursive generation of frequent k-

itemsets fi'om frequent pattern tlee representâtions. In Proc. DaWaK,

pages 371-380, 2003.

[F'204] IVL El-Hajj and O. R. Zai'ane. COFI approach for mining frequent itemsets

levisited. In Proc. DMKD, pages 70-75.2004.

lGZ14l G. Glahne and J. Zhu. Mining frequent itemsets from secondary memoly.

In Proc. IEEE ICDM, pages 9l-98, 2004.

[Hid99] C. Hidber. Online association rule mining. In Proc. ACM SIGMOD, pages

145-156, 1999.

[HK06] J. Han and N4. I(amber. Data Mining: Concepts and Techniques. lt4organ

Kaufman, San F\'ancisco, CA, USA, 2006.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining flequent patterns ivithout candidate

generation. In Proc. ACM SIGMOD, pages 1-12,2000.

Bibl'iogmphy

[KMR+94] M. I(lemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. Velkamo.

Finding interesting rules flom large sets of discot'ered association rules.

In Proc. CII(M, pages 401-408, i994.

ILeu04] C,

In

I(.-S. Leung. Interactive constrained frequent-pattern mining s¡,s¡qm

Proc. IDEAS, pages 49-58,2004.

[LLN00] L. V. S. Lakshrnanan, C. K.-S. Leung, and R. T. Ng. The segment sup-

port map: scalable mining for flequent itemsets. SIGKDD Explorations,

2(2):21 27,2000.

[LLN02] C. K.-S. Leung, L. V. S. Lakshrnanan, and R. T. Ng. Exploiting succinct

contraints in FP-tlee. S I G I(D D Etploratzons, aQ):40-49, 2002.

[LLN03] L. V. S. Lakshmanan, C. I(.-S. Leung, and R. T. Ng. Efficient dynamic

mining of constrained fi'equent sets. ACM TODS, 28(4):337-389, 2003.

[LN\402] C. K.-S. Leung, R. T. Ng, and H. lvlannila. OSSM: a segmentation ap-

proach to optimize frequency counting. In Proc. IEEE 1CDE, pages 583-

592,2002.

[NLHP98] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratoll,

mining and pluning optirnizations of constrained associations r.ules. In

Proc. ACM SIGMOD, pages 13-24, 1998.

[PCY95] J. Paik, Nl.-S. Chen, and P. S. Yu. An effective hash-based algor.ithm for.

mining association Ìules. ln Proc. ACM SIGMOD, pages 175-186, 1995.

63

64 Biblioqraphu

[PHL01] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining flequent itemsets rvith

conve¡tible constrâints. In Proc. IEEE ICDE, pages 433-442, 2001.

ISBMU98] C. Siìverstein, S. Brin, R. Mot¡r'ani, and J. Ullman. Scalable techniques

for mining causal structures. In Proc. VLDB, pages 594-605, 1998.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algolithm for'

mining association rules in lalge database. In P¡oc. VLDB, pages 432 444,

1995.

[TSI<06] P.-N. Tan, N4. Steinbach, and V. Kumar. Introduction to Data Mining.

Addison-Wesley, Boston, lvf A, USA,2006.

[ZPLO96] l\4. Zaki, S. Parthasarathy, \4/. Li, and N4. Ogihara. Evaluation of sampling

for data mining of association rules. Technical lepolt 617, Cornputel

Science Depaltment, University of Rochester, NY, USA, 1996.

