A Constraint Based Interactive Frequent Pattern
Mining Algorithm for Large Databases

by

Tariqul Hoque

A thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Manitoba
Winnipeg, Manitoba, Canada

March 2007

Copyright (©) 2007 by Tariqul Hoque



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

ek

COPYRIGHT PERMISSION

A Constraint Based Interactive Frequent Pattern
Mining Algorithm for Large Databases

BY
Tariqul Hoque

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

Master of Science

Tariqul Hoque © 2007

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.



Thesis advisor Author

Dr. Carson K. Leung Tariqul Hoque

A Constraint Based Interactive Frequent Pattern Mining

Algorithm for Large Databases

Abstract

Over the past decade, many frequent-pattern mining algorithms have been developed.
However, many of them rely on the availability of large memory. Their performance
degrades if the available memory is limited because of the overhead and extra 1/0
costs. Moreover, among the algorithms that mine large databases, many of them
do not provide users control over the mining process through the use of constraints.
Constraint based mining is very important because it encourages users focus on only
those patterns that are interesting to the users. Furthermore, among the algorithms
that handle user constraints, many of them do not allow users to interactively change
the mining parameters during the mining process. As mining is usually an iterative
process, it is important to have an algorithm that supports constraint based mining
and allows users to interactively mine large databases.

In this thesis, we design and implement a constraint based interactive mining
algorithm, named Inverted Matriz++, that uses a disk based data structure called
inverted matriz for mining frequent patterns from large databases and constructs a
conditional tree called COFI*-tree for each frequent item from the inverted matrix.
Our algorithm facilitates constraint based mining and interactive mining from large
databases. Experimental results show the efficiency of our algorithm in constrained

interactive mining from large databases.

i



Acknowledgements

First of all, I express my profound gratitude to Dr. Carson K. Leung, my research
supervisor. This thesis could not have been written and completed without Dr. Leung,
who not only served as my research supervisor but also encouraged and guided me
throughout my academic program.

I also thank my fellow research members for their valuable investigative questions
and suggestions regarding my thesis work. Special thanks to my thesis examination
committee members (Dr. Jeffrey E. Diamond and Dr. Pourang P. Irani) and the
chair of my thesis defence (Dr. Peter C. J. Graham). I also thank members of the
Graduate Studies Committee in Department of Computer Science for their useful
comments and suggestions on my thesis proposal.

I deeply appreciate the financial support from my research supervisor (Dr. Leung),
TRLabs Winnipeg and my parents. Without their financial support, I would not be
able to start and continue my M.Sc. study at the University of Manitoba.

Finally, thanks to my family members for their constant support and perseverance
to accomplish this endeavor. I also wish to thank my wife (Jobaida Begum) for

unwavering support and pushing me to achieve this milestone in my life and career.

Tariqur HOQUE
B.S., North South University, Bangladesh, 2001

The University of Manitoba
March 2007

i1



To my parents who always dream about my better future.

v



Table of Contents

Abstract . . . . . . ...
Acknowledgements . . . . .. .0,
Dedication . . . . . .. . ...

Related Work

2.1 The Mining Framework . . . . . . . .. ... ... ...
2.1.1 The Apriori Based Framework . . . . .. .. ... . ... . ..
2.1.2 The FP-Tree Based Framework . . . . .. .. .. ... .. ..

2.2 Mining Large Databases . . . .. . ... ... ... ... .. ... .
221 Anlnverted Matrix . . . . . .. ...
222 ACOFL-Tree . . .. . . . .. ... .. ... .,
2.2.3 Existing Techniques to Overcome Memory Limitation . . . . .

2.3 Interactive Mining . . . . . . .. .. ...

2.4 Constraint Based Mining . . . . . .. . ... ..
241 Constraints . . . . .. ..
2.4.2 Constraint Based Algorithms . . . . . . ... .. ... .. .

2.5 Discussion . . . .. ...

2.6 Summary ... ...,

Constraint Based Interactive Mining System

3.1 Our Proposed Tree Structure: A COFI*-Tree . . ... ... ... . .
3.2 Constraint Based Mining: How Our Proposed Inverted Matrix++ Al-
gorithm Handles Constraints with COFI*-trees? . . . . . . .. . . . .
3.21 Mining Succinct Anti-monotone Constraints . . . . . . . . . .



A5

Table of Contents

3.2.2  Mining Succinct Non-anti-monotone Constraints . . . . . . . . 34
3.2.3 Mining the Anti-monotone Non-succinet Constraint . . . . . . 35

3.3 Interactive Mining: How Our Proposed Inverted Matrix++ Algorithm
Handles Changes of the Support Threshold? . . . . . . . .. .. . .. 35
3.3.1 Handling an Increase of the Minimum Support Threshold . . . 36
3.3.2 Handling a Decrease of the Minimum Support Threshold . . . 37
34 Summary ... ..., 39
4 Experimental Results 41
4.1 Experimental Setup . . . . .. ... ... 41
4.2 Experiment Set 1: Testing the Execution Time and the Scalability . . 45
4.3 Experiment Set 2: Testing the Effect of Constraints on Execution Time 49
4.4 Experiment Set 3: Testing the Effect of Interactive Mining . . . . . . 53
4.5 Experiment Set 4: Testing the Applicability for Mining Large Databases 55
4.6 Summary .. ... 56
5 Conclusions and Future Work 58
5.1 Conclusions . . . . .. .. ... 58
5.2 Puture Work . . . . ... 59

Bibliography 61



List of Tables

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

Transaction database . . . . . . . . . ... ... ... 3
Sets of candidate itemsets . . . . . . ... .. ... ... ... ... . 3
List of frequent itemsets (with minsup=50%). . . . . . ... ... .. 3
Sample database TDB . . . . . .. .. .. . . ... ... ... ... . 14
The inverted matrix for T1. . . . . . . . . . .. . . ... ... ... . 14
The inverted matrix for TDB . . . . . . . . . . . . .. ... ... .. 14
Sub transactions . . ... ... 15
Comparison of different algorithms . . . . . . . . ... .. ... ... 25
A sample database TDB . . . . . . ... . .. .. ... ... ... . . 29
The sorted database . . . . .. .. .. ... .. ... ... .. .. 29
Aninverted matrix . . . . ... ... 29
The auxiliary information about items . . . . . . . ... ... ... . 29

vil



List of Figures

21
2.2

3.1
3.2

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

COFl-tree foritem B . . . . . . . . . . . ..
COFI-tree foritemn A . . . . . . . . . . .

COFT*-tree for item A from inverted matrix in Table 3.3 . . . . . ..
COFI*~trees foritems Aand B . . . . . . . .. ... ... ... ...

Runtime with respect to minimum support with the IBM dataset
Runtime with respect to minimum support with the UCI mushroom
dataset . . . . . . .

Changing the selectivity for SAM constraints . . . . . . . ... ... .
Changing the selectivity for SUC constraints . . . . . .. ... . ...
Experiments with different AM constraints . . . . .. . . ... . ...
Interactive mining with an increasing minsup . . . . . ... ... ...
Interactive mining with a decreasing minsup . . . . . ... . .. ...

4.10 Runtime for mining large datasets . . . . . . . . ... ... ... ...

viil



Chapter 1

Introduction

Nowadays, most organizations have their own databases. These organizations
are usually interested in manipulating these large databases to retrieve valuable in-
formation so that they can make decisions based on the retrieved information. An
objective of data mining is to discover important or potentially useful but previ-
ously unknown patterns from a large amount of data, which help make predictions
[Dun03, HK06, TSKO06).

In general, transaction databases consist of a collection of transactions, where
each transaction represents a set of items (aka an itemset) purchased by a customer.
Association rules [AIS93, KMR*94] show how the presence of one item implies the
presence of other items in the same transaction. In other words, association rules
reveal relationships among items. A popular example used in the area of data mining
is that researchers found an interesting association rule “customers who buy beer also
buy diapers”.

The task of mining association rules is to generate all association rules from a



2 Chapter 1: Introduction

transaction database TDB. Let I = {1y, 10,...... ,im} be a set of items. T is a transac-
tion where T" C . T contains itemsets X and Y, where X C I, Y C Jand X C T,
Y CTand XNY = 0. Then, the rule “X = Y is returned to the user if it satisfies
two conditions: (i) X U Y satisfies the minimum support threshold (minsup), and

(ii) “X = Y satisfies the minimum confidence threshold (minconf). Here,

The number of transactions containing all items in X and Y
The number of transactions in TDB
The number of transactions containing all items in X and Y
The number of transactions containing all items in X

support = and

confidence =
In other words, the support is the probability of having X UY in TDB, and the
confidence is the conditional probability of finding ¥ having found X [AS94].

Association rule mining [AIS93, AS94| can be divided into two basic steps as
follows. The first step is to find all frequent itemsets that satisfy a minimum support
threshold, and the second step is to generate all interesting association rules. To get
a better understanding of these two steps, let us consider a brief illustrative example

below.

Ixample 1.1 Consider the transaction database shown in Table 1.1. There are four
transactions with five items A, B, C, D, and E. We count the support of all candidate
itemsets (Table 1.2) by scanning all 4 transactions in the database. If the minimum
support threshold is 50%, then we find all the frequent itemsets listed in Table 1.3.
The support of {A} is 75% (i.e., 3/4) since item A occurs in 3 out of 4 transactions.
We check for all itemsets shown in Table 1.2, and find that only itemsets {A}, {D},

{E}, and {A, E} are frequent (i.c., they satisfy the minimum support threshold).



Chapter 1: Introduction 3

Table 1.1: Transaction database

Transaction-1D | Itemsets
T1 {ABE}
T2 {AE}
T3 {A,D}
T4 {C,D}

Table 1.2: Sets of candidate itemsets

Cardinality | #Itemsets Candidate Itemsets
i 5 {A}{B}ICL{D}L.{F}
2 10 {A.B}{A,C} {AD},{AE},{B,C},
{B,D} {B.E}.{C,D} {C,E}.{D,E}
3 10 {A,B,C},{A,B,D}.{A.B,E},{A,C,D},{A,CE},
{A.D,E}.{B,C,D},{B,C,E},{B,D,E},{C,D,E}
4 5 {A.B,C,D} {A.B,D,E},{AB,CE},
{A,CDE}{B,C,D,E}
5 1 {A,B,CD,E}

Table 1.3: List of frequent itemsets (with minsup=50%)

Frequent Itemsets | Support
{A} 75%
{D} 50%
{E} 50%
{AE} 50%

Recall that association rule mining can be divided into two basic steps. In the
first step (which is known as frequent pattern mining), for n items in the domain,
we find frequent itemsets from O(2") candidate itemsets by computing the frequency
of these candidate itemsets. For instance, in Example 1.1, we generate a total of
31 candidate itemsets (as shown in Table 1.2) for five items (namely, A, B, C, D, and
E) in the domain. In the second step of association rule mining (which is known as

rule generation), for p frequent itemsets found in the first step, we generate O(p?)



4 Chapter 1: Introduction

possible antecedent-consequence pairs for the rules “Antecedent = Consequence”.
Among these rules, we return those satisfying the user-defined confidence thresh-
old. For instance, in Example 1.1, for four frequent itemsets (namely, {A}, {D},
{E}, {AE} shown in Table 1.3), we can generate rules such as “{4} = {F}” and
“{E} = {A}". Hence, among the two steps in association rule mining, the first step
is computationally more expensive than the second step. Frequent pattern mining is
used not only for association rule mining but also for other data mining tasks (e.g., for
mining correlations [BMS97], sequences [AS95], maximal and closed patterns [GZ04],
and causality [SBMU98]. Therefore, frequent pattern mining is an important research
task in data mining, and my M.Sec. research lies in frequent pattern mining.

Over the past decades, data miners have focused on the first step so as to find
techniques to reduce the computation of this step. In the early years, most stud-
ies (e.g., algorithms like DHP [PCY95], Partition [SON95], Sampling [ZPL0O96], and
DIC [BMUT97]) used the Apriori framework. To speed up the mining process, the
FP-growth algorithm [HPY00] was proposed, which is based on a novel tree struc-
ture called Frequent Pattern tree (FPtree) [HPY00] that captures the content of the
database.

In general, the above mentioned algorithms find frequent patterns satisfying the
minimum support threshold. The question is: What is the appropriate value for mini-
mum support threshold? It is not an easy question to answer because appropriateness
depends on the expectation of the user. Sometimes, the user may not even know what
value is appropriate. Consequently, setting the threshold too high results in too few

itemsets; setting it too low results in too many itemsets. Therefore, the user usually



[}

Chapter 1: Introduction

needs to execute the mining algorithms for a number of times. Finding frequent pat-
terns from scratch multiple times (each with a different threshold) can be expensive.
To solve this problem, researchers introduce interactive mining [Hid99, Leu04],
where the user can modify the mining parameter (e.g., the minimum support thresh-
old) during the mining process based on the feedback provided by the system. Carma
[Hid99] and iCFP [Leu04] are examples of interactive mining algorithms.

Even with an appropriate value for the minimum support threshold, the system
may return a number of frequent patterns, out of which only a tiny fraction is inter-
esting to the user. This calls for constraint based mining [NLHP98, LLN03]. In
constraint based mining, users are allowed to focus the mining, where user can specify
the pattern to be mined according to their intention using some restrictions. These
restrictions are formally called constraints. For example, if the user is interested in
finding itemsets of type “snack” and the price of each item in the itemsets is less than
$10, then he has to specify some constraints in addition to the support and confi-
dence thresholds. Two classes of widely used constraints are succinct constraints and
anti-monotone constraints. Some algorithms have been developed to facilitate the
rules. CAP [NLHP98], FIC [PHLO01], FPS [LLN02], and iCFP [Leu04] are examples
of these constraint based mining algorithms.

Many of the above mentioned algorithms assume that there exists sufficient main
memory space. Such an assumption is not too unrealistic in many cases due to the
current trend that modern computing moves towards computers with large amounts of
main memory (say, with gigabytes of memory) [EZ03b]. However, there are sifuations

where the available memory is limited. One needs to bear in mind that, although



6 Chapter 1: Introduction

the amount of available memory keeps increasing, the volume of available data to be
gathered and stored in the memory (e.g., data from the Internet, satellites, and other
sources) can even grow faster. The volume is doubling every 18 months. This massive
growth of database size may surpass the growth of hardware technology. When facing
these situations (where the available memory is limited, i.e., there does not exist
suflicient memory space), many of the above mentioned algorithms may encounter
problems. For example, El-Hajj and Zatane [EZ03a] reported that, when using a
733 MHz machine with a RAM of 256 MB, (a) the Apriori algorithm [AS94] was
unable to mine databases with 5 million transactions (which required about 550 MB
of space) and (b) the FP-growth algorithm [HPY00] was unable to mine databases
with more than 5 million transactions when using a minimum support threshold of
0.01% and 100,000 items in the domain. However, in many data mining applications,
it is not unusunal to analyze large databases with more than 5 million transactions.
When facing these large databases, some researchers proposed the use of auxiliary
data structures such as the inverted matriz ([EZ03a] and the co-occurrence frequent-
item tree (COFI-tree) [EZ03a, EZ03b, EZ04]. These auxiliary structures are designed
to deal with limited memory, and require less in-memory space than the transaction
database or the FP-trees (which capture the content of the database). However, the
algorithm that uses these auwiliary structures does not support interactive mining or
constraint based mining. To support mining large databases, we have identified the
following research questions: Can one use the inverted matrix and the COFI-tree
(i.e., the auxiliary structures designed for mining from large databases) to support

constraint based mining so that users could specify their interest via the use of con-



Chapter 1: Introduction 7

straints? Can one use these auxiliary structures to support interactive mining in
such a way that users could change the mining parameter (specifically, the support

threshold) during the mining process?

1.1 Contributions

This thesis work is motivated by the above mentioned questions. We answer all
of these questions in this thesis. We propose a memory-efficient mining technique to

support constraint-based mining and interactive mining. Our thesis statement is:

We develop an algorithm for constraint based interactive frequent pattern

mining that can mine large dafabases.

Specifically, we focus our attention on the following aspects:

o Constraint based mining (e.g., how to find itemsets that satisfy the user

specified constraints?),

¢ Interactive mining (e.g., how to find itemsets when users can change the

minimum support threshold during the mining process?), and

¢ Mining large databases (e.g., how to use the inverted matrix and the COFI-

tree to find itemsets from large databases, especially when memory is limited?).

To handle large databases, we propose a tree structure called COFI*-tree, which is
similar but not identical to the COFI-tree. For instance, the COFI*-tree does not
require to store extra information (e.g., participation value used in COFI-tree) for

mining the tree.



8 Chapter 1: Introduction

In addition, we also propose an algorithm, called Inverted Matrix++, which
uses both the inverted matrix and the COFI*-tree. It is designed to support constraint

based mining with interactive mining from large databases.

1.2 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, some background materials and related work are presented. We
describe the concepts, properties and classes of constraint mining. We also discuss
some key frameworks of frequent pattern mining (Apriori and F P-tree), and describe
some existing algorithms for constraint based mining, interactive mining and large
database mining. We also elaborately describe two data structures: the inverted
matrix (that we adopt for our system to support mining large databases) and the
COFI-tree.

In Chapter 3, the methodology of our research work is described. We propose a
projected FP-tree based data structure, called COFI*-tree. We also describe methods
of pushing the constraints inside the mining process according to their properties and
constraint classes. We also highlight the interactive mining feature of our proposed
Inverted Matrix-++ algorithm.

Experimental results on both synthetic and real-life datasets are presented in
Chapter 4. The results show the efficiency of our proposed Inverted Matrix++ algo-
rithm.

Finally, we conclude our thesis and propose some ideas for future work in Chap-

ter 5.



Chapter 2

Related Work

This chapter describes some related work and background information on frequent
pattern mining that helps readers understand our thesis problem. Section 2.1 dis-
cusses two major frameworks: the Apriori framework [AS94] and the FP-tree frame-
work [HPY00], which are widely used and adopted as the basis of other algorithms
for mining frequent patterns. While the Apriori-based algorithms (e.g., the Parti-
tion algorithm) and the FP-tree based algorithms (e.g., the FP-growth algorithm)
are efficient in mining frequent itemsets from many databases, their performance
degrades when the database is too large to fit into the available memory. Hence,
we discuss in Section 2.2 how some previous algorithms (e.g., the Inverted Matrix
algorithm [EZ03a] that uses the inverted matrix (Section 2.2.1) and the COFI-tree
(Section 2.2.2)) handle the situation where the database is large. While these algo-
rithms (i.e., Inverted Matrix) are efficient in mining large databases, they have not
yet supported interactive mining or constraint based mining. In this chapter, we also

present some relevant interactive and constraint based mining algorithms including a



10 Chapter 2: Related Work

brief introduction on “constraints”.

2.1 The Mining Framework

In the literature, the two major frameworks that are used widely for developing
frequent pattern mining algorithms are: the Apriori framework [AS94] and the FP-
tree framework [HPY00]. The Apriori was developed in 1994, whereas a tree based
mining method IP-tree in 2000 to speed up the mining process. Since most of the
frequent pattern mining algorithms were developed based on either the Apriori frame-
work or the FP-tree framework, we like to briefly discuss these two frameworks in the

next two sections (2.1.1 and 2.1.2).

2.1.1 The Apriori Based Framework

The Apriori [AS94] is known as the classic algorithm in the family of frequent
pattern mining algorithms. A very nice property of the Apriori algorithm is that
“if an itemset is frequent, then all its subsets are also frequent”. Suppose that the
support of itemset {A, B} is 3. If itemset {A, B} is frequent, then both {A} and
{B} are also frequent because the support of each of the itemsets is at least 3. The
Apriori algorithm uses a generate-and-test approach. To elaborate, the algorithm first
determines all candidate itemsets, and then tests these candidate itemsets against the
database to find out whether they are frequent or not. With the Apriori property,
the algorithm does not have to generate all possible combinations of items in the
database. It prunes a significant number of candidate itemsets that are below the

minimum support threshold. In the first pass of the algorithm, it scans the database



Chapter 2: Related Work 11

and computes all frequent 1-itemsets (i.e., itemsets of size 1). The algorithm does the

following for passes k > 1:

“It generates candidate k-itemsets using the frequent itemsets found in the
previous pass. Then, it scans the database and counts the local supports
of those candidate itemsets. After that, it outputs frequent k-itemsets.

Then, it starts the next pass” [AS94].

This process is iterative, and it terminates when no more frequent itemsets can be
generated. This is a candidate generate-and-test approach.

Note that the Apriori algorithm can be considered as a foundation to many algo-
rithms including the Dynamic Hashing and Pruning (DHP) [PCY95], the Partition al-
gorithm [SON95], the Sampling algorithm [ZPLO96], the Dynamic Itemset Counting
algorithm (DIC) [BMUT97], and the Segment Support Map (SSM) {LLN00, LNM02)
based algorithm. However, the candidate generate-and-test process is a bottleneck
of these algorithms. Let us consider a database with 100,000 different items and
10 million transactions. In the worst case, the Apriori algorithm may need to gen-
erate O(2'0%9) candidate itemsets. This algorithm may not be able to mine this
large database because of the following reasons: It takes a very long time to com-
plete the task, and it needs huge memory to generate a huge number of candidate
itemsets. The Apriori algorithm also suffers from the problems of the repeated 1/0
scans for scanning the database and the high computational cost for the candidate
generate-and-test approach.

The DHP algorithm [PCY95] uses a hash table to shrink the number of candidates

by pre-computing the approximate support. The algorithm also trims the transac-



12 Chapter 2: Related Work

tions that do not contain any frequent items. Though this Apriori based algorithm
reduces some candidates, it still generates a huge number of candidates. The Sam-
pling algorithm [ZPLO96] takes a small sample of the database, and it determines
all the frequent itemsets based on the sample. The accuracy of the result heavily
depends on the quality of sample. The SSM [LLN00, LNMO02] divides the database
mmto a number of non-overlapping segments to count and store the support of each
singleton itemset in each segment. It speeds up the performance of the Apriori algo-
rithm by reducing the number of candidates. The problem with this method is that
it can only deal with singleton itemsets. All of these Apriori based algorithms try to

improve performance, but they still generate candidate itemsets.

2.1.2 The FP-Tree Based Framework

To avoid generating a huge number of candidate itemsets, Han et al. [HPY00)
proposed a FP-tree based algorithm called FP-growth. The algorithm is based on
an FP-tree, which is a compact memory based tree structure representing frequent
patterns.

The algorithm first scans the whole database to determine frequent 1-itemsets
(singleton frequeﬁt itemsets, i.e., {A}, {B}, {C}, etc.). Then, it sorts the frequent
items in descending frequency order. It scans the database once again, and constructs
the FP-tree. The FP-tree consists of all frequent items. Therefore, there is no need
to generate any candidates since it represents frequent patterns.

The FP-tree framework is advantageous over the Apriori in a sense that it avoids

generating huge number of candidate itemsets. The FP-tree based algorithms are



Chapter 2: Related Work 13

significantly faster than the Apriori based algorithms. However, FP-tree based algo-
rithms assume that tree structures (an FP-tree representing the transaction database
TDB and conditional trees for subsets of TDB}) fit into the main memory [HPY00].

‘This assumption may not hold when the algorithms deal with large databases.

2.2 Mining Large Databases

In this section, we discuss some of the existing methods that take care of the
memory limitation problem. These methods support mining large databases. Before
describing the memory efficient techniques, let us have an overview of some related

data structures (an inverted matrix, a COFI-tree).

2.2.1 An Inverted Matrix

An inverted matriz [EZ03a) captures the content of a transaction database.
In contrast with the usual transaction database (where items in a transaction are
stored in one row), m items in a transaction are stored over m rows in an inverted
matrix. Each row of the inverted matrix stores IDs of the transactions in which the
items occur; each entry in the inverted matrix points to the next item on the same
transaction. More precisely, each pointer consis-ts of two elements: the first element
points to the address of a row of the matrix and the second element indicates the
address of a column of the matrix. In Example 2.1, we show a sample database in

Table 2.1 and the inverted matrix for this database in Table 2.3.



14 Chapter 2: Related Work

Table 2.1: Sample database TDB

TID | Jtemsets
T1 | {A, B, C, D}

T2 | {B, D}
T3 [{B, C, D)
T4 [{A, C, D)

Table 2.2: The inverted matrix for T1

Loc | Index
1 1 (A2) | (2,1)
2 (B,3) | (3,1)
3 (C3) | (4,1)
4 | (DA4) | (8,0)

Table 2.3: The inverted matrix for TDB

Loc | Index
1 (A2) | (2,1) | (3,3)
2 ( 3) [ 3.1) | (4,2) | (3,3)
3 1 (C3) | (4,1) | (4,3) | (4.4)
4 (D,4) (@, 8) | (0,0) | (0,8) | (B,0)

Example 2.1 There are four items A, B, C, and D in the sample database (Ta-
ble 2.1). To construct an inverted matriz for this database, the database is scanned
to find the frequency of each item. Then, the database is scanned again, and items
in each row are sorted in ascending frequency order. At the same time, the column
“Index” of the inverted matriz is filled with each item and s frequency. The first
row in Teble 2.1 contains items A, B, C, and D. Item A is located in line 1 in the
inverted matriz and has e link to the first empty slot of the array of item B, since B
47,'3 the next item after A. Therefore, entry (2, 1) is added to the first slot of the array
of tem A. Thus, entries (3, 1) and (4, 1) are added to the first slots of items B and

C, respectively. For item D, a null entry (B,0) is added since there is no more items



Chapter 2: Related Work 15

after D. This results in Table 2.2.
Similarly, the same method can be applied to each of the remaining rows in the
database. This results in the inverted matriz (shown in Table 2.3), which captures the

content of the database shown in Table 2.1.

2.2.2 A COFI-Tree

A co-occurrence frequent-item tree (COFI-tree) [EZ03a, EZ03b, EZ04] is
a compact memory based data structure. A branch in the COFI-tree can represent
one or more transactions in a database; a node of the tree represents an item. In
this tree structure, each parent node may have more than one child nodes; however, a
child node has exactly one parent node. At each node, we store both its frequency and
its participation value. Since the participation value is irrelevant to the remainder of
this thesis, we do not describe it further.

A COFl-tree represents sub-transactions for a particular item. Suppose that we
have the database in Table 2.1, and we want to construct a COFI-tree for item B.
Then, sub-transactions for B are shown in Table 2.4. In other words, the sub-
transactions for B include all the transactions containing B (i.e., T1, T2, and T3).
Each sub-transaction for B only contains B and items that rank behind B (i.e., C and
D).

Table 2.4: Sub transactions

{B,C, D}
{B, D}
{B,C,DJ




16 Chapter 2: Related Work

The first row in the sub-transaction (T1) for B contains items B, C, and D. Hence,
we get a tree branch with three nodes: B, C, and D with their frequency all set to 1.
Then, we have items B and D in the second row (T2), and this leads to a new child
D for B. The frequency of B is then incremented to 2, and the frequency of the new
node D is set to 1. For T3, we increment nodes B, C and D in the left branch so that

their frequencies are 3, 2 and 2 respectively. The final tree is shown in Figure 2.1.

Figure 2.1: COFl-tree for item B

2.2.3 Existing Techniques to Overcome Memory Limitation

Recall that, when the transaction database (or the FP-tree capturing the content
of the database) is so large that the available memory space is insufficient to hold the
database or the FP-tree, many of the Apriori-based or FP-tree based algorithms may
encounter problems. For example, El-Hajj and Zaiane [EZ03a) reported that, using
a machine with a RAM of 256MB, (a} the Apriori algorithm [AS94] was unable to
mine databases with 5 million transactions (which required about 550MB of space)

and (b) the FP-growth algorithm [HPY00] was unable to mine databases with more



Chapter 2: Related Work ' 17

than 5 million transactions when using a minimum support threshold of 0.01% and
100,000 items in the domain.

To handle large databases (with insufficient memory space), several out-of-memory
techniques can be applied. For example, when the entire database does not fit into
the main memory, an Apriori-based algorithm called the Partition algorithm [SON95]
divides the database into local partitions in such a way that each partition can fit
into the main memory. The algorithin then finds all locally frequent itemsets in each
local partition, and then scans the whble database once again to get globally frequent
itemsets. Consequently, this Partition algorithm incurs lots of 1/0Os.

For tree-based algorithms, if an FP-tree is too large to fit in the main memory,
then one can store the tree in the disk and to recursively partition and project the
tree [HPY00]. When forming projections, the entire tree is read. As a result, lots of
1/0s are incurred.

Besides the above two algorithms, one of the recently developed algorithms called
Inverted Matrix algorithm [EZ03a] further reduces the I/O cost. This disk-based
algorithm is based on the frequent conditional pattern concept. There are two phases
in this algorithm. In the first phase, a disk-based data structure, called the in-
verted matriz, is generated. In the second phase, the inverted matrix is mined us-
ing a compact memory based data structure called co-occurrence frequent-item tree
(COFI-Tree) [EZ03a, EZ03b, EZ04]. The inverted matrix captures the content of the
transaction database. The algorithm first reads sub-transactions directly from the
disk-resident inverted matrix. It then builds an individual memory-resident tree for

each frequent item in the database. Each tree is mined independently, and is deleted



18 Chapter 2: Related Work

as soon as it is mined.
To gain a deeper understanding of the Inverted Matrix algorithm [EZ03a], let us

consider the following example {Example 2.2).

Example 2.2 Let us revisit Example 2.1. If the minimum support threshold is 2, then
the first frequent item is A. Its first entry is (2, 1) indicating that the item represented
by column 1 of row 2 (item B) is the item immediately after A in a transaction in
the original database. Similarly, the entry in (2,1) is (3,1), which indicates that the
item represented by column 1 of row 3 (item C) is the item immediately after {A,
B}. Then, the entry in (3,1) is (4,1), which indicates that the item represented by
column I of row 4 (item D) is the item immediately after {A, B, C}. Finally, the
entry in (4,1} is (B,8), which indicates that no more item after {A, B, C, D}. Hence,
we get the transaction {A, B, C, D} and a tree branch with nodes A, B, C, and D

with frequency set to 1 (Figure 2.2(a)).

(b)

Figure 2.2: COFl-tree for item A

We then apply a similar procedure by following the link in the second entry of A,

which points to (3,8), which then points to (4,4) and (0,0) afterwards. This link leads



Chapter 2: Related Work 19

to another tree branch A-C-D (Figure 2.2(b)). The frequency of A is incremented to
2 and the frequency of the new nodes C and D is set to 1. This conditional tree for
A is completed since A has no more entry left.

After getting the complete tree, the algorithm finds all the possible frequent itemsets
containing A: {A}, {A,C}, {4,D}, and {A,C,D}.

The same process is done for items B, C, and D. Thus, the algorithm finds all the

frequent itemsets.

The following are some of the advantages of using the inverted matrix:

¢ The inverted matrix captures the content of the transaction database. Although
inverted matrix does not represent the content in a compressed form (vs. FP-
trees that represents the content in a compressed form), it is easier to access
the content from the inverted matrix than FP-trees because one does not need

to “uncompress” the information in the matrix.

¢ Rows are arranged in ascending frequent order of items. One can easily retrieve
frequent items and skip infrequent items. In Example 2.1, if the minimum
support threshold is set to 3, one can easily skip Row 1 (which represents the
infrequent item A). Similarly, if the threshold is set to 4, one can easily skip

Rows 1 to 3 (which represents the infrequent items A, B, and C).

e When constructing a COFI-tree for an item X, one only needs to retrieve those
rows of the inverted matrix that are relevant for the construction. In other

words, one does not need to scan the whole matrix. This saves 1/0s.

The major advantage of using COFI-tree is that it requires less memory. Note that



20 Chapter 2: Related Work

both the FP-tree and the COFl-tree are stored in the memory. However, each COFI-
tree, which is usually much smaller than the FP-tree (because the COFI-tree is ba-
sically the conditional FP-tree} is mined independently, and is deleted as soon as it
is mined. Therefore, the Inverted Matrix algorithm [EZ03a| (which uses COFI-trees)
requires less memory space than the FP-growth algorithm (which uses FP-trees).
However, while the Inverted Matrix algorithm [EZ03a] mines large databases, it
does not support interactive mining or constraint based mining. We will show in the
next chapter, how our propose algorithm uses the inverted matrix and a modified
COFl-tree for interactive constraint based mining of frequent itemsets from large

databases.

2.3 Interactive Mining

To support interactive mining, Hidber [Hid99] proposed the Carma algorithm,
which provides the user with continuous feedback on frequent set computation so
that the user can observe the mining progress continuously and can interactively
change the minimum support during the runtime of the algorithm. However, like the
Inverted Matrix algorithm, Carma also does not handle constraint based mining.

To support interactive constraint based mining, Leung [Leu04] proposed the iCFP
system, which allows the user to modify the mining parameters (e.g., the minimum
support threshold) during the mining process based on the feedback provided by the
system. However, this system used FP-trees. In other words, it has not yet used the

inverted matrix or COFI-trees (which were designed for handling large databases).



Chapter 2: Related Work 21

2.4 Constraint Based Mining

Even with an appropriate value for the minimum support threshold, mining algo-
rithms may return a number of frequent patterns, out of which only a tiny fraction

is interesting to the user. This calls for constraint based mining [NLHP98, LLN03].

2.4.1 Constraints

Constraints can be classified into overlapping classes depending on their proper-
ties. These classes include anti-monotone constraints, succinet constraints, and some

other classes of constraints.

Definition 2.1 (Anti-monotone Constraints [NLHP98]) A constraint Cum is

anti-monotone if whenever an itemset S violates Cyrp, 50 does any superset of S. (1

For example, Co;, = S.Price < 100 is an anti-monotone constraint, because any
superset of S violating Cyy, (e.g., containing any item with Price > $100) also violates

Com.

Definition 2.2 (Succinct Constraints [NLHP98]) Let Item denote the set of
domain items. Succinctness is defined in several steps, as follows: Define SAT¢
(Item) to be the set of itemsets that satisfy the constraint C. With respect to the
lattice space consisting of all itemsets, SATc (Item) represents the pruned space (i.e.,

the solution space) consisting of those itemsets satisfying C.

(a) An dtemset I C Item is a succinct set if it can be expressed as a,(Item) for
some selection predicates p, where o is the selection operator (as in relational

algebra).



22 Chapter 2: Related Work

(b) SP C 2I**™ s a succinct powerset if there is a fired number of succinct sets
Item,, ..., Itemy, C Item, such that SP can be expressed in terms of the power-

sets of Item,, ..., Itemy, using union and minus.

(c) A constraint C is succinct provided SATc(Item) is a succinct powerset. [J

These overlapping classes of constraints are interesting because they have some
nice properties that help optimize the mining process. For example, a majority of
constraints are succinct. Moreover, for every succinct constraint C, there is a “for-
mula” (called a member generating function (MGF)) that can generate precisely all
those itemsets satisfying C. Hence, a succinct constraint can simply operate in a
generate-only environment (by using an MGF), rather than in a generate-and-test
environment. In other words, one does not need to generate lots of itemsets, test
them, and then exclude those violating the constraints. Instead, one can easily enu-
merate (by using the MGF) all and only those itemsets that satisfy the succinct
constraint. This explains why we focus on the succinct constraints in this thesis.

As an example, the constraint “min(S.Price) > 10” is succinct. Its pruned space
(i.e., solution space) can be expressed as 2°Price210(tem)  Ttemgets satisfying this suc-
cinct constraint can be generated using the MGF {X[X C gpices10(Jtem), X # 0},
which generates all and only those itemsets comprising of items whose price is greater
than or equal to 10. The succinct constraint “min(S.Price) > 10" is also anti-
monotone. If the price of at least one item in the itemset S is less than 10, then the
itemset does not satisfy the constraint. All supersets of this itemset also contain the
invalid item having the price less than 10. Therefore, all supersets of such an invalid

itemset are also invalid.



Chapter 2: Related Work 23

So far, we have mentioned that succinct constraints and anti-monotone constraints
are interesting due to their nice properties [NLHP98]. Now, let us briefly discuss the

following cases:

1. Succinct and anti-monotone constraints:
For example, the constraint “max(S.Price) < 20” is succinct since an MGF
{X|X C 0price<ao({tem), X # @} can be applied to generate itemsets, where
the price of each item in the itemset is less than or equal to $20. The constraint
is also anti-monotone because if the price of at least one item in the itemset is
greater than $20, then such an itemset does not satisfy the constraint and all
supersets of this itemset also contain the invalid item (with price greater than

$20). Therefore, all supersets of such an invalid itemset are also invalid.

2. Succinct but not anti-monotone constraints:
For example, the constraint “maz(S.Price) > 20" is succinct. It means that
the valid itemset must contain at least one item with price greater than or equal
to §20. The MGF is {XUY'|X C gprice<ao{ltem), X #0,Y C Opricesa0(Item)}.
However, it is not anti-monotone because a superset of an invalid itemset S (say,
all items in S are of price less than $20) may be valid (e.g.., adding an item of

price 830 to S to form such a superset).

3. Anti-monotone but not succinct constraints:
For example, the constraint “sum(S.Price) < 100” is anti-monotone but not
succinct, because all supersets of an invalid itemset (i.e., having the total price
greater than $100) are invalid. The constraint is not succinct because there is

1o MGF to enumerate all and only those itemsets that satisfy the constraint.



24 Chapter 2: Related Work

4. Constraints that are neither succinct nor anti-monotone:
For example, the constraint “sum(S.Price) > 100" is not anti-monotone and

not succinct.

2.4.2 Constraint Based Algorithms

CAP [NLHP98], FIC [PHLO01], FPS [LLN02|, and iCFP [Leu04] are examples of
constraint-based mining algorithms. The CAP algorithm [NLHP98] is an Apriori
based algorithm framework. It exploits the property of constraints and pushes them
inside the frequent itemset computation. For a class of constraints called the succinct
and the anti-monotone constraints, CAP performs additional tests along with the
frequency tests. The FIC, FPS, and iCFP are FP-tree based algorithms. All the
above mentioned algorithms facilitate constraint based mining. However, they were
not designed to effectively mine from very large databases. Hence, there is a need of
an algorithm that can take care of the memory problem and can interactively mine

constrained frequent itemsets from large databases.

2.5 Discussion

In this thesis, we develop a constraint based interactive frequent pattern mining
for very large databases. Table 2.5 shows the key differences between my algorithm
and some existing algorithms. The key difference is that my algorithm is able to
interactively (i.e., where users can change the support threshold during the mining
process) find frequent itemsets satisfying the user specified constraints from very large

databases.



Chapter 2: Related Work 25

Table 2.5: Comparison of different algorithms

Apriori, | CAP, | Carma | iCFP | Inverted | Inverted
FP-growth | FIC, Matrix | Matrix++
FPS
Mining large X X X X v Vv
databases

Constraint based X Vv X v X v
mining

Interactive X X V4 Vv X Vv
mining

2.6 Summary

The Apriori framework [AS94] and the FP-tree framework [HPY00] are the two
widely used frameworks for mining frequent patterns. The Apriori based algorithm
suffers from the problems of the repeated 1/O scans of the database and the high
computational cost for the candidate generate-and-test approach. On the other hand,
the I'P-tree based algorithm avoids generating candidate itemsets. Hence, they are
generally faster than Apriori based algorithms.

However, I'P-tree based algorithms assume that the tree structure (an FP-tree rep-
resenting the transaction database (TDB) and conditional trees for subsets of TDB)
fits into the main memory [HPY00]. This assumption may not hold when the algo-
rithms deal with large databases. Therefore, both the Apriori based algorithms and
the FP-tree based algorithms may not be too efficient when mining large databases.

To take care of the memory limitation problem and to handle large databases,
an inverted matrix (a disk based data structure) and a COFI-tree (a memory based
data structure} were proposed. The COFI-tree has the same nice properties as the

conditional FP-tree. However, we can build a COFI-tree from the inverted matrix



26 Chapter 2: Related Work

instead of from the original databases. In other words, the original databases are not
needed. While the Inverted Matrix algorithm, which used inverted matrix, deals with
mining from large databases, it does not support interactive mining or constraint-
based mining.

On the other hand, some algorithms (e.g., Carma) support interactive mining by
providing the user with continuous feedback on frequent itemset computation so that
the user can monitor the mining progress continuously and can interactively change
the minimum support during the runtime of the algorithm. However, they do not
handle constraints. For constraint based mining algorithms (e.g., CAP, FIC, FPS),
users are allowed to focus the mining by specifying the pattern to be mined using some
restrictions called constraints. However, many of them do not support interactive
mining. Fortunately, there are algorithms (e.g., iCFP) that support both interactive
mining and constraint based mining. However, they have not yet designed to handle
large databases. Hence, there is a demand for a frequent pattern mining algorithm
that can efficiently mine large databases and also support interactive mining as well
as constraint based mining. In this research, we design and develop a mining system

for this purpose.



Chapter 3

Constraint Based Interactive

Mining System

In the previous chapter, we reviewed some existing work; in this chapter, we start
describing our new work. To elaborate, we describe our proposed Inverted Matrix++
algorithm. The algorithm uses two structures: an existing disk based data structure
called an inverted matrix and our newly proposed memory based tree structure called
a COFI*-tree. The resulting mining algorithm can handle constraints (constraint
based mining) and changes of the minimum support threshold during the mining

process (interactive mining), and it can find frequent itemsets from large databases.

3.1 Our Proposed Tree Structure: A COFI*-Tree

Recall from Section 2.1.2 that FP-tree [HPY00] is constructed from the database

to keep all the frequent items. While mining from the FP-tree, the FP-tree algorithms

27



28 Chapter 3: Constraint Based Interactive Mining System

build a projected tree (also known as conditional tree) for all the frequent items in
the FP-tree. However, by using an inverted matrix [EZ03a], one can directly build
the projected tree for all the items found in the matrix. Each conditional tree built
from the inverted matrix represents sub-transactions for a particular item. Therefore,
branches in the tree contain co-occurrences of the frequent items. Our mining algo-
rithm constructs memory efficient tree based data structure, called COFI*-tree, for all
the walid (i.e., satisfying both the minsup and the constraints) frequent items. Note
that the key difference between COFI-tre-es and COFT*-trees are as follows. COFI-
trees keep all frequent items, and each node contains both frequency and participating
value. As mentioned in Chapter 2 that the participation value is irrelevant to the
remainder of this thesis, we do not describe it further. In other words, COFI*-trees
keep only frequent walid items, and each node contains only its frequency (but not
the participation value).

There are three major parts in our mining procedure:
1. Handling constraints (determining valid items to build COFI*-trees).
2. Constructing COFI*-tree for valid items.

3. Mining COFT*-tree.

Example 3.1 Consider the database TDB shown in Table 3.1. It consists of five
transactions end siz wems (A, B, C, D, E, and F). Our mining procedure then sorts
the items in each transaction in the ascending order of the frequency of each item
(Table 3.2). Afterwards, our algorithm builds an inverted matriz (Table 3.3). Given

some auziliary information (Table 3.4} about the price of each item, we can easily



Chapter 3: Constraint Based Interactive Mining System

29

identify valid items.

Table 3.1: A sample database TDB

TID | Itemsets

Tl |B,C,D

T2 }A,B,C,D,E F
T3 | A, B, D E

T4 |A,C, D

Ts |C, D

Table 3.2: The sorted database

TID j Itemsets

T1 | B,C,D

T2 |F,E, A B, C D
T3 |E, A B, D

T4 | A C,D

T | C,D

Table 3.3: An inverted matrix

[ Loc | Index |

1 | (F1) | (21)

2 | (E2) | (3.1) ] (32)

3 1 (A3) 1 (42) ] (4.3) | (53)

4 | (B3) || (5,1) | (52) | (6,3)

5 | (C4) | (61)](62) | (64) ] (6.5)

6 | (Ds5) | 0.9)](9,0) (0,0 | ©.9) ][00
Table 3.4: The auxiliary informmation about items
Item | A| B|C|D}|E]|F
Price | 10 |20 | 5 | 22| 15| 27

After reviewing the first part of our mining process, let us consider the second

part below.



30 Chapter 3: Constraint Based Interactive Mining System

Example 3.2 Reconsider the database TDB in Table 3.1. Let minsup be 3. Then,
we show how our mining procedure constructs {and mines) a COFI*-tree for a valid
item A. The first entry (4, 2) for the item A (note that 4 and 2 are row and column
indices respectively) in the array for item A indicates that the item in row J (item
B) is the item after item A in a transaction in the original database. Hence, we can
follow the link (4,2), which indicates the entry in column 2 of row 4. The value in
(4,2) is (5,2) indicating that the neat item is in row 5 (i.e., item C). Similarly, the
value in (5,2) is (6,2) indicating that the next item is in row 6 (i.e., item D); the
value tn (6,2) is (0,0) indicating that no more item after D.

Therefore, we get the transaction {A, B, C, D} and a tree branch with nodes A,
B, C, and D with frequency set to 1 (Figure 3.1(a)). Note that this tree is a projection
tree for item A that includes all the co-occurrences of item A.

We then apply a similar procedure by following the link in the second entry of A:
(4,3) - (6,3) - (B,0), which gives A-B-D (Figure 3.1(b)). The frequency of node A
s tncremented to 2. Then, the frequency of node B is also incremented to 2. Since
C 15 the only child of B in the current COFI*-tree, our mining procedure adds D as
another child of B. The frequency of the node D is set to 1.

Again, we start following the third entry for item A (5,8) - (6,4) - (0,0), which
gives A-C-D. The frequency of node A is incremented to 3. The mining procedure
adds C' as another child of A, and D is the child of C (i.e., a branch with nodes C
and D, where the frequency of both of the nodes are set to 1, is created). Now, the
COFI*-tree (Figure 3.1(c)) for item A is completed since A has no more entry left in

the inverted matric.



Chapter 3: Constraint Based Interactive Mining System 31

) o
& O
&
@

(a) (b)

{c)

Figure 3.1: COFI*-tree for item A from inverted matrix in Table 3.3

After constructing a COFI*-tree for item A, our algorithm finds all the possible
Jrequent itemsets containing A: {A}, {A,C}, {A,D}, and {A,C,D}. Then, the algo-

rithm carries out similar steps for COFI*-trees for other items, and finds all frequent

sl



32 Chapter 3: Constraint Based Interactive Mining System

itemsets: {A}, {C}, {D}, {A,C}, {4,D}, {C,D}, and {A,C,D}.

3.2 Constraint Based Mining: How Our Proposed
Inverted Matrix++ Algorithm Handles Con-

straints with COFI*-trees?

We analyze the constraints and push them inside the mining process. We handle
anti-monotone and/or succinct constraints. For constraints that are neither anti-
monotone nor succinct, we induce these constraints into weaker anti-monotone or

succinct constraints.

3.2.1 Mining Succinct Anti-monotone Constraints

All frequent itemsets that satisfy the succinct anti-monotone (SAM) con-
straint must contain only the valid items. For example, constraint “maz(S.Price) <
20” indicates that a valid itemset must contain only those items that have price less
than or equal to 20. Therefore, we only need to identify all the valid items at the
beginning of the mining process. We do not need to construct any COFI*-tree for
the invalid items. Our COFI*-trees also keep only valid items (i.e., satisfying both
the frequency threshold and constraints). Therefore, we do not need any constraint
checking in the mining phase. Here, the frequency test is required only to determine
all the valid frequent itemsets. Let us consider Example 3.3 to see the mining process

for SAM constraints.



Chapter 3: Constraint Based Interactive Mining System 33

Example 3.3 Let us use the database shown in Table 3.1. The price of each item
s shown in Table 3.4. We assume that the minsup is 3 and the SAM constraint is
“max(S.Price) < 207. From Table 3.3, we note that items A, B, C and E satisfy
the constraint. With minsup=3, items A, B, and C and D are frequent. Hence, only
items A, B and C satisfy both the minsup and the constraint “maz(S.Price) < 207
Therefore, we construct the COFI*-tree only for these items. The COFI*-tree for A
includes only the valid items A, B and C; the COFI*-tree for B includes only the
valid items B and C. We do not need to construct any COFI*-tree for C as it is the
“last” valid item. All these COFI*-trees are built from the inverted matriz (Table 3.3).
Figure 3.2 shows an example. Hemsets mined from these COFI*-trees contain all and

only those valid items.

(a) (b)

Figure 3.2: COFT*-trees for items A and B



34 Chapter 3: Constraint Based Interactive Mining System

3.2.2 Mining Succinct Non-anti-monotone Constraints

All frequent itemsets that satisfy the succinct non-anti-monotone (SUC)
constraint must contain some mandatory items and may contain some optional
items. With the MGF of the SUC constraint, we find some mandatory items that
have to be present in the valid itemsets. For example, the MGF for constraint
“max(S.Price) 2 20”7 is {X UYI[X C oprices20(ftem}, X # 0,Y C 0pricecan(Item)},
where X is the mandatory part (which means all the valid itemsets must contain
at least one item having price greater than or equal to 20). Therefore, we con-
struct COFI*-trees only for each mandatory item that is frequent. We also construct
COFI*-trees for any frequent optional item 7 if there exists a frequent mandatory
item located below Z in the inverted matrix. The root of the tree for an optional item
contains a particular optional item, and the tree nodes are mandatory items or other
optional items. All these trees are mined, and all the frequent itemsets are generated

by computing the support of the itemsets.

Example 3.4 Let the minsup be 1 and the succinct constraint be “maz(S.Price) >
257, From Table 3.4, items E and F are mandatory, and items A, B, C and D are
optional. We construct COFI*-trees for mandatory items E aend F, but how about
COFI*-trees for optional items? Since there is no mandatory item located below any
of the optional items in the inverted matriz, we do not construct COFI*-trees for

those optional items.



Chapter 3: Constraint Based Interactive Mining System 35

3.2.3 Mining the Anti-monotone Non-succinct Constraint

For example, the constraint “sum(S.Price) < 100” is anti-monotone but not
succinct, because all supersets of an invalid itemset (i.e., having the total price greater
than 3100) are invalid. The constraint is not succinct because there is no MGF to
enumerate all and only those itemsets that satisfy the constraint. If constraints
are not succinct, then there is no way to predetermine the valid itemsets. So, our
algorithm continues checking and pruning the itemsets for satisfying anti-monotone
non-succinct (AM) constraints while mining the trees. The algorithm constructs
COFT*-trees for all the valid (respect to the minsup) items. While generating itemsets
from a branch of the COFI*-tree, our algorithm does not generate any superset with
the invalid (respect to the constraints) itemsets. The algorithm starts analyzing the
patterns from the leaves of a tree. Whenever it finds an invalid pattern, it stops

generating supersets of that pattern in that branch and starts with another branch.

3.3 Interactive Mining: How Our Proposed In-
verted Matrix++4 Algorithm Handles Changes

of the Support Threshold?

So far, we have shown how we handle constraints. In this section, we explain how
an inverted matrix can facilitate interactive mining. Specifically, how an inverted
matrix can be used to handle situations where users interactively change the support

threshold (a mining parameter) during the mining process.



36 Chapter 3: Constraint Based Interactive Mining System

3.3.1 Handling an Increase of the Minimum Support Thresh-

old

Recall that it is not easy to find an appropriate value for the minimum support
threshold. If the value is set too high, just a few itemsets (and may be no itemsets)
are returned. If the value is set too low, very large number of itemsets is returned.
Hence, mining is supposed to be an interactive process. To enable the user to find
an appropriate minimum support threshold value, interactive mining is desired. The
question here is: How to handle the change of the support threshold? A naijve ap-
proach is to halt the current mining process (which uses the old support threshold},
discard all itemsets satisfying the old threshold, and re-mine itemsets from scratch
using the new support threshold. While this approach is correct, it is not efficient.
This situation is worsened if the change occurs near the end of the mining process.
Lots of computation is wasted.

The user can increase or decrease the support threshold to make the change of
minsup during the mining process. When the user increases the support threshold,
itemsets satisfying the new threshold are subsets of itemsets satisfying the old thresh-
old. Therefore, discarding the itemsets satisfying the old threshold and re-computing
the itemsets satisfying the new threshold is a waste of computation.

Instead, our proposed Inverted Matrix++ algorithm handles the increase of the
minimum support threshold (minsup) as follows. If the user increases the threshold,
we skip constructing COFI*-trees for items (in the inverted matrix) having frequency
value between the old and the new thresholds. For example, with the inverted matrix

in Table 3.3 and the minsup changing from 2 to 3, we skip constructing the COFI*-



Chapter 3: Constraint Based Interactive Mining System 37

tree for item E {which have a frequency of 2 that no longer satisfies the new threshold)
because any itemsets that can be mined from this COFI*-tree for item E contains
E itself (an item which is no longer frequent w.r.t. the new minsup). Any itemset
containing any infrequent item is infrequent (i.e., will not satisfy the new minsup).
Similarly, when minsup is changed from 2 to 4, we skip constructing the COFI*-trees
for items A, B, E (which have frequencies < 4 and hence, no longer satisfies the new
threshold). Since rows in the inverted matrix are arranged in ascending frequency
order of items, it is easy to determine which items to be skipped. This deals with the
“unprocessed” items in the inverted matrix, but how about the “processed” items?
Itemsets mined from the COFI*-trees of the “processed” items satisfy the old minsup.
This means that some itemsets satisfy the new minsup, and some do not. Hence, our
proposed algorithm performs a post-processing step to check all processed itemsets
to ensure that each of them satisfies the new minsup (and filter out those satisfying
the old minsup but not the new minsup).

To summarize, the key steps of handling an increase of minsup are: (1) skip
constructing COFIT*-trees for items not satisfying the new minsup, and (2) perform a
post-processing step to discard the “processed” itemsets that satisfy the old minsup

but not the new minsup.

3.3.2 Handling a Decrease of the Minimum Support Thresh-

old

The previous section (Section 3.3.1) showed how we handle an increase of minsup.

Thus, for a decrease of minsup, we know that itemsets satisfying the new threshold are



38 Chapter 3: Constraint Based Interactive Mining System

supersets of itemsets satisfying the old threshold. Hence, all “processed” itemsets that
satisfy the old minsup are guaranteed to satisfy the new minsup. We do not need to
perform any post-processing step or to discard any “processed” itemsets. However,
as itemsets satisfying the new minsup are supersets of itemsets satisfying the old
minsup, the question is: How to find the “delta” itemsets (i.e., itemsets satisfying the
new minsup but not the old minsup)?

When the user decreases minsup, we can halt the current mining process {which
uses the old minsup) and resume it with the new minsup. In addition, we construct
COFT*-trees for items satisfying the new minsup but not the old minsup. These trees
help to find the “delta” itemsets. For example, when users change the minsup from
3 to 2 after processing COFI*-trees for items A and B in Table 3.3, we construct
COFT*-trees for item E (which finds itemsets {E}, {A, E}, {B, E}, {D, E}, {A, B,
E}, {A, D, E}, {B, D, E} and {A, B, D, E} satisfying the new minsup of 2).

On the surface, the above appears to be a good solution. However, a careful
analysis reveals that we still miss some itemsets (e.g., {B, C}, {B, C, D}). Why?
The reason is that when we process the COFI*-trees from items B and C, we use the
old minsup of 3. At that time, itemsets {B, C} and {B, C, D} do not satisfy the old
minsup of 3. After the change in minsup, the new minsup becomes 2. Hence, these
two itemsets satisfy the new minsup. However, the trees have been processed (before
the change)!

In order to solve this problem, we introduce an additional parameter called Pre-
Minsup (where PreMinsup < minsup}. This parameter is set by the user. During the

mining process, our proposed algorithm finds itemsets satisfying PreMinsup (instead



Chapter 3: Constraint Based Interactive Mining System 39

of minsup). Hence, when returning itemsets to the user, we only return those satis-
fying minsup (among those satisfying PreMinsup). When users change the minsup
during the mining process, there are two cases. If the new minsup > PreMinsup,
we just need to use the new minsup when returning the answer (i.e., itemsets satis-
fying the new minsup). Otherwise (i.e., if the new minsup < PreMinsup, we need
to reconstruct COFT*-trees for the “processed” items. Let us reconsider the above
example, with PreMinsup=2 < minsup=3, we find itemsets {B, C} and {B, C, D}
when processing COFI*-trees for items B and C.

To summarize, the key steps of handling a decrease of minsup are: (1) continue
the mining process but with the new minsup, (2) construct COFI*-trees for “delta”
items (i.e., items satisfying new minsup but not the old minsup), and (3) reconstruct
COFT*-trees and re-mine itemsets for the “processed” items if the new minsup <

PreMinsup.

3.4 Summary

In this chapter, we described our new work-—the Inverted Matrix+-+ algorithm—
an algorithm for constraint based interactive frequent pattern mining that can mine
large databases. The algorithm uses two structures: (i) an inverted matrix (a disk
based data structure) and (ii) a COFI*-tree (our newly proposed memory based tree
structure). The resulting mining algorithm allows the user to specify constraints, and
handle constraints by pushing them in the mining process when finding itemsets that
(satisfy the constraints. Moreover, our algorithm also allows the user to change the

minimum support threshold. When the threshold is changed, our algorithm does not



40 Chapter 3: Constraint Based Interactive Mining System

need to find frequent itemsets from scratch. In other words, our proposed Inverted
Matrix++ algorithm provides the user with constraint based mining and interactive

mining, and it can find frequent itemsets from large databases.



Chapter 4

Experimental Results

This chapter presents the experimental results for our Inverted Matrix++ algo-
rithm. We conducted four different sets of experiments and compared our developed
Inverted Matrix++ algorithm with some existing algorithms. We used both synthetic

and real-life data in the experiments.

4.1 Experimental Setup

We implemented the algorithms using the C programming language and analyzed
the performance for large synthetic databases. We generated our sample synthetic
datasets by using the IBM synthetic data generator {AS94]. We also used some real-
life databases from the University of California - Irvine (UCI) Machine Learning De-
pository [BM98]. These testing databases are considered as the benchmark datasets
in our research field. We implemented our algorithm and ran our experiment on a

Pentium-1V machine with 2GHz processor, 512MB memory, and 30GB hard drive.

41



42 Chapter 4: Experimental Results

Since our goal is to provide constraint mining technique for large databases, our
experiments were performed on the IBM datasets ranging from 1 million to 10 million
(e.g., 1M, 5M, and 10M) transactions each containing an average of at least a dozen of
items with a domain of approximately 1,000 items. From the UCI Machine Learning
Repository, we used the mushroom dataset, which contains 137 distinct domain items
and each transaction is of a fix length of 22 items.

To evaluate the effectiveness of our proposed Inverted Matrix++ algorithm, we
first compared it with the Inverted Matrix algorithm {EZ04] in the experiment. We
ran the Inverted Matrix algorithm to find all frequent itemsets and then conducted
a post-processing step to check if the frequent patterns satisfy the constraints. In
contrast, our proposed algorithm pre-pruned the itemsets that do not satisfy the
constraints. Here, our question was: How much can we gain from pre-pruning instead
of post-pruning? We picked the existing Inverted Matrix algorithm for comparison
because it also used the inverted matrix (a disk based data structure). Evaluation
results show the effectiveness of the constraint based mining aspect of our Inverted
Matrix++ algorithm.

In addition, we also compared our algorithm with the FPS algorithm [LLN02],
which is an FP-tree based algorithm. Note that it is also a constraint based algorithm.
The key difference between this algorithm and our proposed algorithm is the use of
different data/tree structures: The former uses FP-trees, whereas the latter uses the
inverted matrix and the COFI*-trees. Evaluation results show the applicability and
effectiveness of our Inverted Matrix++ algorithm in handling large databases.

Furthermore, we also compared the results of the proposed algorithm using con-

[



Chapter 4: Ezperimental Results 43

straints of other selectivity. All algorithms then gave the same results (i.e., the same
set of valid frequent itemsets from large real world databases), though some of them
took a longer time than the others.

Various forms of tests were conducted on the sample datasets to determine the
execution time, scalability, and memory occupancy. In particular, we conducted the

following experiments:

1. In our first set of experiments, we conducted the following experiments to test

runtime and scalability of our algorithms when it mines large databases:

(a) We varied the support threshold from 0.01% to 1%. The higher the support

threshold, the higher was the number of frequent itemsets returned.

(b} We also varied the size of the database from 1M to 10M. We studied the

runtimes of those executions.

2. In the second set of experiments, we tested the applicability of our proposed
algorithm (by observing whether or not the above algorithms can mine from
large databases). In other words, we wanted to see if the algorithm be able to
return all and only those valid itemsets. Qur proposed algorithm is expected to
be able to deal with large databases. In addition, we also measured the runtimes
(i.e., the total CPU and I/O time) of our algorithm. Since our algorithm skips
infrequent items and it does not need to build the entire tree (i.e., it does not
require extensive memory space), it is expected to be well-suited to mine large

databases.

3. In the third set of experiments, we measured the amount of required computa-



44

Chapter 4: Ezperimental Results

tion (i.e., to count the occurrences of constraint checking and support count-
ing). Our algorithm pre-prunes the itemsets according to the user constraint
by exploring the property of constraints (succinct anti-monotone constraints,
succinct non-anti-monotone constraints, and anti-monotone non-succinct con-
straint) and by using an inverted matrix. Hence, our algorithm is expected to

require less constraint checking and support counting.

. In our fourth set of experiments, we also compared our proposed algorithm with

the following algorithm:

¢ Rerun Inverted Matrix+-, where we first ran Inverted Matrix++ for
a user-specified minimum support threshold, and then halted the program
during the execution and reran Inverted Matrix++ with a different mini-

mum support threshold.

¢ Rerun FPS, where we first ran the FPS algorithm [LLN02] for a user-
specified minimum support threshold, and then halted and reran FPS from

scratch with a different minimum support threshold.

Our proposed algorithm is expected to be faster than FPS because our algo-
rithm does not start from scratch whenever users change the support threshold.
Evaluation results show the effectiveness of the interactive mining aspect of our

algorithm.



Chapter 4: Experimental Resulls 45

4.2 Experiment Set 1: Testing the Execution Time

and the Scalability

In this first set of experiments, we focused on the effect on execution time of the
tree building and mining. Here, both synthetic data (IBM dataset) and real life data

from UCI data repository (mushroom data) were used to perform the experiment.

Experiment 4.1 (Testing with different minsup & the IBM dataset) In this
experiment, if the user increased the minsup, then fewer items satisfied the minsup.
Hence, fewer items would be selected. Therefore, it is expected that, if we increased
the minsup, the total mining time would also be reduced. The graph in Figure 4.1
shows the effects on execution time with respect to the minsup on the IBM dataset
(1000K transactions). In the graph, we show the total runtime for our Inverted Ma-
trix-++ algorithm and the breakdown (the runtime for building COFT*-trees and the

runtime for mining COFI*-trees). The graph agrees with the expectation (i.e., the

350

-+ COFI* Mine
360 « COFI* Tree Build
-+ Inverted Matrix++

33
25¢ !
\"'\
200 - K .

150 1

Run time in seconds

100 A

50 47,

- S G U

¢ 0.1 0.2 0.3 0.4 0.5
Minimum suppor (%)

Figure 4.1: Runtime with respect to minimum support with the IBM dataset (Ex-
periment 4.1)



46 Chapter 4: Experimental Results

execution time decreased with the increase of the minsup). In Figure 4.1, there is a
high execution time with a low minsup of 0.01% and a quick dive in execution time
with a minsup of at least 0.1%. The reason for the steep slope is that the number of
frequent itemsets increased exponentially with the decrease of the minsup. We no-
ticed that the time required for tree building was much less then the time required for
mining the trees. Therefore, the trend of the total time of the execution depended on
the mining time. Besides, the time required for building an inverted matrix did not
change with different minsup. The reason is that the construction of the inverted ma-
trix did not consider the minsup as parameters, and it stored all items in transactions

irrespective of their frequencies.

Experiment 4.2 (Testing with different minsup & the mushroom dataset)

160

140 4 - COFI* Mine
-~ COFI* Tree Build

120 4

100 4
80 - \\

6 p\

40

Run time in seconds

20 S

1 2 3 4 5 6 7 8 9 10
Minimum support {%)

Figure 4.2: Runtime with respect to minimum support with the UCI mushroom
dataset (Experiment 4.2)



Chepter 4: Exzperimental Results 47

The graph in Figure 4.2 shows the effects on execution time with respect to minsup on
the mushroom dataset. In Figure 4.2, the graph is less smooth than that of Figure 4.1.
The bumps occurred because the items in the mushroom dataset were not uniformly

distributed as in case of the synthetic IBM dataset.

Experiment 4.3 (Testing with different sizes of the IBM dataset) In this ex-
periment, we tested the scalability of our Inverted Matrix+-+ algorithm in terms of
the change in data size. Here, we used the IBM dataset (i.e., 100K, 200K, ..., 1000K).
Unlike the previous experiment, we changed the size of the datasets and kept the
minsup constant at 0.01% for IBM dataset. The execution time increased with the
increase of data size and showed a linear scale-up.

250

—— Inverted Matrix++

200 4

160

100

Runtime in seconds

50

0 T T T T Y T T T
100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

Number of Transactions

Figure 4.3: Runtime w.r.t. the size of the IBM data dataset (Experiment 4.3)

The graph in Figure 4.3 shows the effects on execution time with respect to the
data size on the IBM dataset. We plotted the graph for the total runtime of the

Inverted Matrix++. In Figure 4.3, we can see a gradual increase of the execution



48 Chapter 4: Experimental Results

time with the increase of the dataset size.

Experiment 4.4 (Testing with different sizes of the mushroom dataset) In
this experiment, we tested the scalability of our Inverted Matrix+-+ algorithm in
terms of the change in data size. Here, we varied the portions of the UCI mushroom
dataset (i.e., 1K, 2K, ..., 8K} to be used in the experiment. We kept the minsup
constant at 10% for UCI dataset.

140

—— Inverted Malrix++
120

. \/_\/

el
L=]

=2
o

AN

Run time in seconds

e
(=]
L

\

h
o

0

1000 2000 3000 4000 5000 6000 7000 8000
Number of Transactions

Figure 4.4: Runtime w.r.t. the size of the UCI dataset (Experiment 4.4)

The graphs in Figure 4.3 and Figure 4.4 show the effects on execution time with
respect to the data size on IBM dataset and on UCI mushroom dataset respectively.
We have plotted graphs for the total timing of the Inverted Matrix++. In Figure 4.3,
we can see a gradual increase of the execution time with the increase of the dataset
size. Figure 4.4 shows an interesting outcome. The non-uniform distribution of items
in the dataset is the main reason behind this cutcome. The bumps on the graphs

are clearly shown with the increase in data size. Furthermore, there was an decrease



Chapter 4: Fxperimental Results 49

on execution time instead of increase with respect to data size. The reason for this
trend of execution time is the distribution of frequent itemsets in the dataset. We
have already mentioned that the results on a dataset with uniform distribution would
most likely show the linear scalability. We also found that there was an decrease
on the number of frequent itemsets instead of increase with respect to data size.
Furthermore, the mining time shown in Figure 4.4 appeared to be proportional to
the number of output frequent itemsets. This implies that the trend is due to the
uneven distribution of frequent itemsets in the mushroom dataset which is effecting
the mining time. However, Figure 4.3 where the IBM synthetic datasets with uniform
distribution of items are used shows that the Inverted Matrix++4 execution time

linearly scales with the increasing data size.

4.3 Experiment Set 2: Testing the Effect of Con-
straints on Execution Time

In the second set of experiments, we evaluated our constraint based rule mining
technique. Here, we compared (a) the FPS algorithm [LLN02] and (b) the Inverted
Matrix algorithm [EZ04] followed by a post-processing step (for checking every fre-
quent 1temset to see if it satisfies the user-defined constraints) with our proposed
Inverted Matrix-++ algorithm. In the experiments, we fixed the minimum support
threshold to 0.1%. We used the IBM dataset that contains 1000K transactions. We
varied the type of constraints (SAM, SUC, AM) and the selectivity of the constraints.

A constraint with p% selectivity means that p% of distinct items are selected (i.e.,



50 Chapter 4: Ezxperimental Results

satisfying the constraint) for mining. Therefore, the higher the selectivity, the higher
was the expected number of itemsets to be returned (and the longer would be the

expected execution time).

Experiment 4.5 (SAM constraints) For this experiment, we selected the SAM
(succinct and anti-monotone} constraint with selectivity ranging from 10% to 100%.
We observed from Figure 4.5 that if the selectivity is lower, the gain is higher. The
gain is significant (the reduction in execution time gained by our Inverted Matrix-++
algorithm was almost 3 times) when compared with Inverted Matrix followed by the
post-processing step when the selectivity is low (10% to 50%). The trend of the graphs
for FPS and Inverted Matrix++ was similar though the Inverted Matrix++ algorithm
outperformed FPS for low selectivity of the SAM constraint. The gap between the
runtimes of the two algorithms decreased with the increase in the selectivity. We

noticed that the runtime of our algorithm was slightly higher than the runtime of

160

Run time in seconds

—+— Inverted Matrix++
20 4 -»— Inverted Matrix with post processing
-+ FPS

10 20 30 40 50 60 70 80 90 100
Selactivity (%)

Figure 4.5: Changing the selectivity for SAM constraints (Experiment 4.5)



Chapter 4: Ezperimental Results 51

the F'PS algorithm when the selectivity was 90% or above. This is because we need
extra checks when reading the transaction from the inverted matrix. This overhead is
lowered when more and more items are discarded. Therefore, the gap increased with
decrease in selectivity. The results clearly highlighted the power of constraint based

mining.

Experiment 4.6 (SUC constraints) In this experiment, we evaluated constraint
based mining with SUC (succinct but not anti-monotone) constraints. Here, we had
the similar experimental setup as the previous experiment (the experiment with SAM
constraint). The result in Figure 4.6 shows a significant gain of using our proposed
Inverted Matrix++ algorithm when compared with using Inverted Matrix plus the
post processing step, when the selectivity is lower (less then 25% selectivity). This is
because the pruning power for the non-anti-monotone constraint is less strict than the

antl-monotone constraint. In the previous experiment (involving SAM constraint),

160

140

120 A

Py
o
f=]

80 -

80 47

Run time in seconds

—— Inverted Malrix++
-=— Inverted Matrix with post processing
-+ FPS

40 3

20

0 T T T T T T T T
10 20 30 40 50 60 70 80 80 100
Selectivity (%)

Figure 4.6: Changing the selectivity for SUC constraints (Experiment 4.6)



52 Chapter 4: Experimental Results

we achieved greater degree of pruning because the SAM constraint involves only the
mandatory group whereas the SUC constraint involves both mandatory and optional
groups. Recall from the algorithm described in Chapter 3 that for the SAM constraint,
we only need to build the COFI*-tree for the mandatory item. On the other hand, for
the SUC constraint, we need to build COFI*-tree for all the items regardless of being
mandatory or optional. Hence, we only achieved greater gain for SUC constraint
when we have lower selectivity. This is reflected in the results (comparing the graphs
shown in Figure 4.5 and Figure 4.6) that with the same p% (30% to 70%) of selectivity
the execution time for the SUC constraint was about twice than the execution time
for the SAM constraint.

Though the ex'perimental results show that the SAM constraint was more power-
ful than the SUC constraint, our Inverted Matrix++ algorithm showed better per-
formance in both cases (SAM and SUC constraints) when compared with the two
algorithms. Thus, the application of both constraints not only successfully enhanced
the performance of the large database mining but also output frequent itemsets that

are interested to the users.

Experiment 4.7 (AM constraints) For this experiment, we evaluated the effect
of constraints on the execution time when the anti-monotone non-succinct (AM) con-
straint is used. However, we did not vary the selectivity. To find items satisfying the
AM constraints, our algorithm continues checking and pruning the itemsets for satisfy-
ing anti-monotone non-succinct (AM) constraints while mining the COFI*-trees. We
cannot ignore any item while building COFI*-tree. So, rather than varying the selec-

tivity, we used different constraints (e.g., sum(S.Price) < 50, sum(S.Price) < 100,



Chapter 4: Experimental Results 53

160

140 -
L 120 Dinve{ted
g Matrix++
8 100
[l
wn
£ 80 4
E Olnverted
T 60 Matrix with
ES post

40 1 pracessing

20

o

50 100 150
Sum({S.Price)<......

Figure 4.7: Experiments with different AM constraints (Experiment 4.7)

sum(S.Price) < 150). Figure 4.7 shows that our algorithm Inverted Matrix++ out-

performed the Inverted Matrix algorithm.

4.4 Experiment Set 3: Testing the Effect of Inter-
active Mining

In this experiment, we tested the effect of interactive mining. Recall that the user
can increase or decrease the support threshold to make the change of the minsup
during the mining process. Therefore, regarding the change to the support threshold,
there are two types: (1) increasing the minsup and (2) decreasing the minsup. We

performed different experiments for these two types of minsup changes.

Experiment 4.8 (Increasing the minsup) We ran our algorithm using the IBM
dataset with 1M transactions. To test the effect of interactively increasing the minsup,

we first executed our Inverted Matrix++ algorithm with minsup=0.1%, and then



54 Chapter 4: Experimental Results

increased the minsup so that the new minsup became 0.2%, 0.3%, and 0.4%. We
compared our algorithm with FPS and Inverted Matrix (w/o interactive mining).
Figure 4.8 shows the experimental result.

250

O Inverted Matrix++
Inverted Matrix++ (without interactive mining)

200 -

150

100 A

Run time in seconds

50

0.2 0.3

Increased New minsup {%)

Figure 4.8: Interactive mining with an increasing minsup (Experiment 4.8)

Experiment 4.9 (Decreasing the minsup) To test the effect of interactively de-
creasing the minsup, we executed our algorithm with minsup=0./% and then de-
creased the minsup so that the new minsup became 0.3%, 0.2%, and 0.1%. Figure 4.9
shows the experimental result.

To handle the problem of decreasing the minsup, we used the PreMinsup to find all
the frequent itemsets though the itemsets satisfying the actual minsup were returned.
For this reason, we need to generate more itemsets, which require extra time to
find valid itemsets with the new minsup from the already generated itemsets using

PreMinsup.



Chapter 4: Ezperimental Results 55

250
Oinverted Matrix++
Inverted Matrix++ (without interactive mining)
w
T
s
g 150
n
£
a
£ 100 -
o
3
&
50 4
0

0.1 02

Decreased New minsup (%)

Figure 4.9: Interactive mining with a decreasing minsup (Experiment 4.9)
4.5 Experiment Set 4: Testing the Applicability
for Mining Large Databases

Experiment 4.10 (Runtime for mining large databases) For this experiment,
we ran our Inverted Matrix++ algorithm using large datasets with 1M, 5M, and
10M transactions. The minsup was 0.01%. Our algorithm efficiently mined all of
the datasets. We also ran the FPS algorithm using the same datasets. Figure 4.10
clearly shows that our algorithm outperformed FPS. The successful execution shows

the applicability of our constraint based interactive large database mining algorithm.



56 Chapter 4: Experimental Resulis

2500
DInverted Matrix++
2000 1 OFPS
w
hel
[ =4
8 1500
[
w
£
£
S 1000 A
j
3
o
500 -
0 T

™ 5M 10M
Number of Transactions

Figure 4.10: Runtime for mining large datasets (Experiment 4.10)

Experiment 4.11 (Memory space for mining large databases) We also mea-
sured the memory usage of the COFI*-tree and compared it with the FP-trees used
in the FPS algorithm. The FP-tree captures all the frequent items and the associated
transactions. On the other hand, the COFI*-tree captures the co-occurrences of a
frequent items at a time. This explains why the FP-tree occupied more memory than
the COFI*-tree. In the experiment, we found that the average memory usage for

COFT*-tree was always less than that of FP-tree.

4.6 Summary

In this chapter, we showed our experimental results. We went through four dif-
ferent sets of experiments. In our first set, we tested runtime and scalability of our

proposed Inverted Matrix++ algorithm when it mined large databases. The results



Chapter 4: Fxperimental Results 57

showed that the runtime (including the time required for building COFI*-trees and
mining) decreased when the minsup increased. Our algorithm generally scaled up
linearly w.r.t. the size of the dataset. In the second set, we measured the amount
of required computation (i.e., to analyze the occurrences of constraint checking and
support counting). The results showed the effectiveness of constraint mining of ours
(when compared with FPS and Inverted Matrix plus post-processing step). Run-
times were proportional to the selectivity of constraints. In our third experiment set,
we applied the interactive mining technique. The results showed the effectiveness of
interactive mining of ours when users changed the minsup. Finally, we tested the
applicability of our proposed algorithm. The results showed our proposed Inverted
Matrix++ algorithm took a reasonable amount of runtime and memory space when

mining large databases.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Over the past decade, many frequent-pattern mining algorithms have been de-
veloped. However, many of them rely on the availability of large memory. Their
performance degrades if the available memory is limited because of the overhead and
extra I/O costs. Moreover, among the algorithms that mine large databases, many
of them do not provide users control over the mining process through the use of con-
straints. Constraint based mining is very important because it encourages users focus
on only those patterns that are interesting to the users. Furthermore, among the algo-
rithms that handle user constraints, many of them do not allow users to interactively
change the mining parameters during the mining process. As mining is usually an
iterative process, it is important to have an algorithm that supports constraint based
mining and allows users to interactively mine large databases.

In this thesis, we developed the Inverted Matrix++ algorithm—an algorithm for



Chapter §: Conclusions and Future Work 59

constraint based interactive frequent pattern mining that can mine large databases.
Specifically, our algorithm pushes the user specified constraints in the mining process
when finding itemsets that satisfy the constraints. The algorithm allows the user
to change the minimum support threshold. When the threshold is changed, our
algorithm does not need to find frequent itemsets from scratch. In addition, we
proposed a new memory based tree structure called a COFI*-tree and used a disk
based data structure called an inverted matrix in our algorithm for interactive mining
from large databases.

Experimental results on both synthetic and real-life datasets showed the follow-
ing. The runtime (including the time required for building COFI*-trees and mining)
decreased when the minsup increased. Our algorithm generally scaled up linearly
w.r.t. the size of the dataset. Our algorithm was effective in handling user specified
constraints. Runtimes were proportional to the selectivity of constraints. The algo-
rithm was also effective in handling user changes of the minimum support threshold.
Moreover, our proposed Inverted Matrix++ algorithm took a reasonable amount of

runtime and memory space when mining large databases.

5.2 Future Work

Our Inverted Matrix++ algorithm handles succinct and/or anti-monotone con-
straints effectively. To improve our proposed Inverted Matrix++ algorithm, we plan
to directly handle those constraints that are neither succinet nor anti-monotone (e.g.,.
the constraint “sum(S.Price) > 1007, which finds all the itemsets where the total

price of the items in each itemset is greater than $100).



60 Chapter 5: Conclusions and Future Work

We also plan to develop a parallel version of our proposed Inverted Matrix++
algorithm. For example, the COFI*-tree for one valid item from an inverted matrix
is independent of another item. We could improve the runtime by implementing a
parallel version and obtain the benefits of parallel computation.

Furthermore, given that our proposed Inverted Matrix++ algorithin was designed
to provide users with constraint based interactive frequent pattern mining from large
databases, we also plan to extend it as follows. First, we would like to apply our
algorithm to find frequent patterns from large real-life databases such as large amounts
of health surveillance data. Second, we would like to make use of these frequent
patterns to detect anomalies. To elaborate, any patterns that are deviated from the
frequent patterns returned by our algorithm are likely to be anomalies. Third, we
would like to modify our Inverted Matrix++ algorithm so that it could directly mine

for abnormal patterns from these large health surveillance databases.



Bibliography

|AIS93]

[AS94)

[AS95]

(BMO8]

[BMS97}

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proc. ACM SIGMOD, pages

207-216, 1993.

R. Agrawal and R. Srikant. Fast algorithm for mining association rules.

In Proc. VLDE, pages 487-499, 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. IEEFE

ICDFE, pages 3—-14, 1995.

C. L. Blake and C. J. Merz. UCI repository of machine learn-
ing databases, 1998. Department of Information and Com-
puter Science, University of California, Irvine, CA, USA,

www.ics.uci.edu/~mlearn/MLRepository.html.

S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: gener-
alizing association rules to correlation. In Proc. ACM SIGMOD, pages

265-276, 1997.

[BMUTY7] S. Brin, R. Motwani, J. Ullman, and D. Tsur. Dynamic itemset counting

61



62

Bibliography

[Dun03]

[EZ03a)

[EZ03b)]

[EZ04]

(GZ04]

[Hid99)]

[HK06)

[HPY00]

and implication rules for market basket data. In Proc. ACM SIGMOD,

pages 250—-264, 1997.

M. Dunham. Data Mining: Introductory and Advanced Topics. Prentice

Hall, 2003.

M. El-Hajj and O. R. Zalane. Inverted matrix: efficient discovery of
frequent items in large datasets in the context of interactive mining. In

Proc. ACM SIGKDD, pages 109-118, 2003.

M. El-Hajj and O. R. Zaiane. Non recursive generation of frequent k-
itemsets from frequent pattern tree representations. In Proc. DaWakK,

pages 371-380, 2003.

M. El-Hajj and O. R. Zalane. COFI approach for mining frequent itemsets

revisited. In Proc. DMKD, pages 70-75, 2004.

G. Grahne and J. Zhu. Mining frequent itemsets from secondary memory.

In Proc. IEEE ICDM, pages 91-98, 2004.

C. Hidber. Online association rule mining. In Proc. ACM SIGMOD, pages

145-156, 1999.

J. Han and M. Kamber. Data Mining: Concepts and Technigues. Morgan

Kaufman, San Francisco, CA, USA, 2006.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In Proc. ACM SIGMOD, pages 1-12, 2000.



Bibliography 63

[KMR*94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. Verkamo.

[Leu0d)

[LLNOO]

[LLN02]

[LLNO3]

[LNM02]

[NLHP93]

[PCY95]

Finding interesting rules from large sets of discovered association rules.

In Proc. CIKM, pages 401-408, 1994.

C. K.-S. Leung. Interactive constrained frequent-pattern mining system.

In Proc. IDEAS, pages 49-58, 2004.

L. V. 5. Lakshmanan, C. K.-S. Leung, and R. T. Ng. The segment sup-
port map: scalable mining for frequent itemsets. SIGKDD Explorations,

2(2):21-27, 2000.

C. K.-S. Leung, L. V. S. Lakshmanan, and R. T. Ng. Exploiting succinct

contraints in FP-tree. SIGKDD Ezplorations, 4(1):40-49, 2002.

L. V. S. Lakshmanan, C. K.-S. Leung, and R. T. Ng. Efficient dynamic

mining of constrained frequent sets. ACM TODS, 28(4):337-389, 2003.

C. K.-5. Leung, R. T. Ng, and H. Mannila. OSSM: a segmentation ap-
proach to optimize frequency counting. In Proc. IEEE ICDE, pages 583~

592, 2002.

R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In

Proc. ACM SIGMOD, pages 13-24, 1998.

J. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for

mining association rules. In Proc. ACM SIGMOD, pages 175-186, 1995,



64

Bibliography

[PHLO1]

[SBMU9S]

[SONY5)

[TSKO06]

[ZPLO96)

J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with

convertible constraints. In Proc. IEEE ICDE, pages 433-442, 2001.

C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques

for mining causal structures. In Proc. VLDB, pages 594-605, 1998.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large database. In Proc. VLDB, pages 432-444,

1995.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Addison-Wesley, Boston, MA, USA, 2006.

M. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling
for data mining of association rules. Technical report 617, Computer

Science Department, University of Rochester, NY, USA, 1996.



