DYNAMIC ROBOT CONTROL AND PART LOADING
IN A FLEXIBLE MANUFACTURING CELL

BY

LINDA LEILA HATHOUT

A Thesis Submitted to the Faculty of Graduate Studies
In Partial Fulfilment of the Requirements for a Degree of

Master of Science

Department of Mechanical and Industrial Engineering
University of Manitoba
Winnipeg Manitoba

© Copyright by Linda Leila Hathout November 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et

services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre référence

Cur file Notre réfdrence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the [’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-56128-3

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

L2222

COPYRIGHT PERMISSION PAGE

Dynamic Robot Control and Part Loading in a Flexible Manufacturing Cell

BY

Linda Leila Hathout

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

LINDA LEILA HATHOUT © 2000

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

Abstract

This project focuses on the dynamic scheduling and control aspects of a flexible
manufacturing cell (FMC) having a single robot to move parts to be processed. One issue
rarely addressed in the literature on FMC optimization is the relationship between the
optimal intra-cell, or robot move sequence and the type, quantity and the order of parts in
the batch scheduled for production. If all parts have the same due date and the order of
servicing the parts can be changed, then the sequence of robot moves should not be fixed
but, rather, the moves should be determined by the properties of the batch and the
properties of the FMC. The dynamic scheduling of robot moves and part sequencing for

this scenario has not been investigated previously.

The objective of this project is to develop a computer program to control and optimize
the throughput of parts by considering the overall system'’s properties in a working FMC.
Software is created to control the robot and to dynamically make decisions. In particular,
real time robot control decisions are made during production by continuously polling the
FMC’s status to obtain information from sensors. The software then bases decisions to
move the robot based on the system’s current status. The software’s computational time
is minimal, so that processing is in real time. The software also allows for simulation and
experimentation with the control variables of the FMC. This latter aspect allows the user
the ability to adjust the decision support systems for faster batch throughput times. The
program facilitates greater flexibility in the utilization of a FMC while still taking full

advantage of its capacity.

Acknowledgments

I would like to thank Dr. S. Balakrishnan and Dr. N. Popplewell for their excellent input
and time. I also greatly appreciate the time and patience of Terri Willard, Patrick Oliver

and Jon Crocker. Thank you for being my sounding board and for your technical

expertise.

Dedication

This work is dedicated to my mom, Angele Hathout. She believed in me, encouraged me
and supported me throughout my engineering studies. Her confidence in me gave me no

choice but to be confident in myself.

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figure

List of Tables

1. Introduction
1.1. The Flexible Manufacturing Environment
1.2. Objective
2. Literature Review
2.1. Cyclic Robot Movement in a FMC
2.2. Flow Shop Approach to FMC Scheduling
2.3. Modelling FMC Scheduling
2.4. Sequencing and Loading
2.5. Summary of Literature Review
3. Organization and Layout of the FMC System
3.1. Flexible Manufacturing Cell
3.2. Control Program and Simulation Software
3.3. Hierarchy of Decisions to Move Robot
4. Analysis and Experiments
4.1. On-line Dynamic Controlled FMC
4.2. Concurrent Processing
4.3. Load Versus Unload Prioritisation
4 4. Analysis of Buffer Size

4.5. Sequential Versus Non-sequential Processing

4.6. Loading Sequence of Parts
Conclusion

Further Work

References

N

s<FTE=

11
12
13
15
16
17
19
19
22
33
41
4]
42
47
50
52
53
58
61
62

Tables

Table 1 Batch Order 1.1

Table 2.a Time history of sequential loading
Table 2.b Time history sequential unloading
Table 3.2 Time history non-sequential loading
Table 3.b Time history non-sequential unloading
Table4 Batch Order 2.1

Table § Batch Order 2.2

Table6 Batch Order2.3

Table 7 Batch Order 2.4

Table 8 Batch Order 2.5

Table 9 Summary 2

Table 10 Batch Order 3.1

Table 11 Machining time data

Table 12.a Effect of buffers on sequential processing
Table 12.b Effect of buffers on non-sequential processing
Table 13 Batch Order3.1

Table 14 Batch Order 3.2

Table 15 Batch Order 3.3

Table 16 Batch Order 3.4

Table 17 Summary 3

Table 18 Load sequence

Note for the following tables the letter in front of the
table number indicates the appendix where the table is located.

Table E1 Load verses Unload Data

Table F1 ~ Unload Priority Sequential Processing Data
Table F2 Load Priority Sequential Processing Data
Table F3 Unload Sequential Processing Data
Table F4 Load Non-sequential Processing Data
Table G1 Batch Order 3.1 Non-sequential Data
Table G2 Batch Order 3.2 Non-sequential Data
Table G3 Batch Order 3.3 Non-sequential Data
Table G4 Batch Order 3.4 Sequential Data

Table G5 Batch Order 3.1 Sequential Data

Table G6 Batch Order 3.2 Sequential Data

Table G7 Batch Order 3.3 Sequential Data

Table G8 Batch Order 3.4 Sequential Data

Table G9 Summary of Data for Load Sequence

34
36
36
39
39
43

45
45
45
48
49
51
51
33
33
53
34
54
57

69
72
73
74
75
7
78
79
80
81
82
83
84
85

Figures

Figure |
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 11
Figure 11
Figure 12
Figure 13

Cell layout

Main screen

Batch order screen

Input of robot move times screen
Station information screen

Part sequencing information screen
Heuristics selection screen

Run parameters screen

Statistics screen

Job matrix

Matrix example

Effect of machining time on load and unload rules
Highlight machining time effect

Figure 14.a Effect of buffers on sequential processing

Figure 14.b

Effect of buffers on non-sequential processing

Note for the following tables the letter in front of the
table number indicates the appendix where the table is located.

Figure Al
Figure C1
Figure D1
Figure E1
Figure E2
Figure F1
Figure F2
Figure F3
Figure F4

Photograph of FMC

Logic ladder

Flow chart

Load versus unload

Load versus unload detail

Unload Priority Sequential Processing
Load Priority Sequential Processing
Unload Priority Non-sequential Processing
Load Priority Non-sequential Processing

Appendices

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Layout of Flexible Manufacturing Cell
Robot program

PLC program

Program flow chart

Data for load/unload comparison

Data for buffer size comparison

Data for sequence versus non-sequential
and loading sequence study

19
22
23
23
24
25
25
26
27
29
30
48
49
50
51

67
68
69
70
72
73
74
75

65
67
68
69
71
76

1. Introduction to the Flexible Manufacturing Environment

The importance of flexibility in manufacturing is becoming more and more critical in the
current highly competitive marketplace. Customer demands are becoming increasingly
individualistic, leading to a greater variation in the products, which in turn could mean a
variation in the process. A competitive edge requires manufacturers to address individual
customer demands and reduce the manufacturing cycle time while cutting production
costs. As computing speeds increase and the cost of robots decreases, optimization is
becoming not only possible, but essential. A flexible manufacturing system (FMS) is an
ideal place to take full advantage of flexible automation for catering to small-lot, multi-

product batch production.

In the proceeding section a brief overview of flexible manufacturing will be given to
better ground developments of this problem. Following which, the thesis’s objective will

be stated.

1.1. The Flexible Manufacturing Environment

A FMS is defined as consisting “of machines where production operations are performed,
linked by a material handling system, all under central computer control” (Buzacott &
Shanthikumar, 1980). The material handling system provides the flexibility to allow the

parts to follow a variety of routings. In a FMS, production and assembly processes may

exist at varied states of automation; what makes the manufacturing process flexible is the

ability to rapidly change the system to accommodate multiple product objectives.

There are four stages of decision making for FMS, as identified by Stecke (1985):
namely, the design, planning, scheduling and control stages. At the planning phase,
considerations include part type selection, process planning, machine grouping,
determining production ratios, batching of parts, scheduling of batches, allocation of
pallets and fixtures, and allocation of operations and tools among machines. A flexible
manufacturing cell (FMC) is one aspect of the manufacturing process found in some
FMSs. FMCs are affected by all the previously mentioned factors. They are also
affected by the scheduling and control of the parts in the system. Ideally, FMCs are the

most automated and dynamic processes of the system.

A manufacturing cell is the most flexible of computer integrated manufacturing systems
and it is best suited for low-volume, high-variety production. A manufacturing cell is a
cluster of machines or processes that are located in close proximity and dedicated to the
manufacturing of a family of parts. The parts are similar in their processing
requirements, such as operations, tolerances, and machine tool capacities. In many cells,
robots are the primary material handling systems used for part loading and unloading.
Robots are seen as the archetypes of flexible automation. The scheduling problem at the
cell level is characterised by a short lead time, dynamically changing environments, the

versatility of the machines, and the need for real time decision making.

Cell level scheduling needs to be:

1. responsive to changing environments;

2. flexible in accommodating different scheduling needs; and

3. intelligent for scheduling decision support.
To further break down the problem at the FMC level, there are five major subgroups of
factors regulating the functionality of a cell. They are; FMS production factors, material
input factors, material handling factors, workstation equipment factors and layout factors.

Please note the factors bulleted below with an arrow are considered in this work.

FMS production factors

> diversity of parts manufactured by the cell;

» the sequence of processing a job/part (engineering design dependent),

» flexibility of the cell verses efficiency of the cell; and

¢ manufacturing priorities; throughput, job deadlines, or other objective such as

optimizing the use of machinery with a given hourly cost.

Material input factors

» different types of material input, how many different core parts the cell can handle;
» the number of different part types arriving in batches;

¢ part queue priority;

¢ infinite queue of material input versus batches of parts;

¢ different part types that arrive randomly and require job identification at the cell; and

¢ material input requirements at subassembly machines.

Material handling factors

L

L 4

robot, automated guided vehicles(AGV), and humans;

type of gripper used, and the number of different grippers necessary;
single gripper/holder versus dual or multiple grippers /holders;
speed of loading/unloading and movement;

smart material handling systems, e.g. force sensors; and

safe operating speed that minimizes the pick-up and placement errors.

Work station equipment

>

>

the number of stations/machines in the cell;

number of part holders, fixtures or buffers at each station;

fixturing issues, including the number of different part shapes that can be handled
simultaneously by a machine;

position of buffer, in front or behind the machine;

whether concurrent loading/unloading and machining is possible;

machine maintenance times and frequency and machine breakdown frequency;

degree of interruption for online or offline maintenance;

whether an operation can be done on more than one machine, machine flexibility; and
the number of operations or programs which can be performed at a machine; can

different programs be called on a part to part basis or a batch to batch basis?

Layout

> travel time versus operation time;

¢ location of material supply and exit with respect to machine stations; and

¢ safe access to machines for online maintenance while the cell is working.

The greatest challenge in implementing a FMC is the timing and interdependency of all
the components of the cell as well as the integration of a wide variety of often conflicting
objectives. To run an individual cell, there is usually a control computer that can be used
to simultaneously control many processes or pieces of equipment. This computer
communicates directly with the process or equipment controllers for online control. The
computer takes, as input, pertinent information about the process parameters and uses this
input according to the programmed control [ogic in order to make decisions about how to
set various outputs. In the most sophisticated FMCs, the online computer has complete
control of the process, forming a closed control loop, which requires no human

intervention except for maybe dealing with unforeseen developments.

Because of the complexity of FMSs, simulations are often used to ensure that a FMC is

operating optimally to meet the objectives of the FMS. Simulations are beneficial in

optimizing a FMC’s utilization for the following reasons. They are:

¢ simulations do not need explicit mathematical functions to relate variables;

o they can represent complex systems in order for management to get a “feel” for the
real system;

¢ simulations can compress or expand time for test purposes;

¢ they are useful in observing phenomenon and developing management predictions.

With this environment in mind, this thesis focuses on the sequencing of robot moves and
sequencing of parts in a FMS. The study examines an approach to dynamic part and
robot move sequencing for a FMC by using a dynamic hierarchical decision making
strategy. Not all the variables mentioned previously are addressed fully. However, this
work will create a generic FMC environment which can look at questions of buffer size,
number of machines, machining times, robot move times, part processing requirements,
part loading orders, and the impact of non-sequential processing. Future studies can

incorporate variables not considered. The scenario examined is expanded upon next.

1.2.0bjective

The objective of this study is to develop a dynamic hierarchical decision making structure
for part sequencing and intelligent intra-cell robot movement in order to increase
throughput, without human supervision, for varying, multi-product batches. Because
there are so many system variables, it is important to refine the problem’s scope yet still

provide a system that is sufficiently generic to apply to various FMC situations.

Here, the flexible manufacturing system’s objective is to reduce lead time, that is the time
between the customer placing an order and the completion of that order. In the scenario
considered, individual orders consist of requests for multiple products, which are
processed during a period of sales. All products should be delivered within the same time
span. The processing required at the FMC level involves several machining stations that
can perform their operations irrespective of whether a previous operation has been
performed. Hence, the machine processes that each part needs to go through can be done
non-sequentially. Needless to say, machines must be structured to meet this type of
flexibility. For example, different part shapes must be accommodated using flexible

fixturing.

Parts enter the cell as a batch. The batch can consist of parts which:
1. are identical even though they may require different processing in order to become

different products; or

2. are different due to different processes at other cells, yet such parts share a need for

at least one of the machining processes available at the particular cell considered.

In either case, the sequencing of parts for processing, as well as the necessary robot
moves within the cell, have to be addressed. The only difference is that, in the first case,
the parts do not need to be distinguished upon entry into the system. In the second case,

the parts need to be identified and sorted - perhaps by having more than one input buffer.

The machines in the cell all perform unique operations (e.g. milling, drilling, deburring
etc.). It is possible that they perform part-specific operations in which each part type
needing a specific machine can call up one of several programs that have been pre-
programmed into the machine controller. However, for simplicity, each machine
performs one unique operation on all parts that require this operation. This means that
the machining process at each machine is the same throughout each batch, but it is
distinct from the other machining processes. Each machine has room for one part to be
machined at a given time. There is a buffer behind each machine that automatically
reloads the machine once the part currently at the machine has been removed. A sensor
is located at each of these machines and provides feedback to a control computer to
indicate that the machining process is underway or has been completed. Breakdowns of
machines are assumed to be infrequent. They are not considered to be an issue in this

work.

An experimental, computer integrated cell was developed to test different control
strategies. In this cell, an articulated robot with five degrees of freedom performs the
task of material handling. The robot has one gripper. Its “pick and place™ operations are
performed at relatively high speeds, each around 0.5 seconds. Parts considered are not
exceptionally heavy and the buffers and fixtures are designed to correct minor
inaccuracies in a part’s position. Parts are placed initially in the input buffer. When a
part has undergone all the required operations, it is moved from the FMC to an output
buffer. Compared to the time taken to pick up and place the parts, the movement of the
robot is sufficiently fast that most of its move times between stations are roughly equal

(i.e. about 5.0 seconds).

Given this scenario, the problem is one of dynamically sequencing both parts and robot
moves without operator intervention. The purpose is to develop a better understanding of
how the batch manufacturing time can be reduced by exploring generally occurring batch

production situations. This is achieved bearing in mind the following objectives;

e to develop a functional, computer controlled FMC;

¢ to examine whether concurrently processing various parts is beneficial;
¢ to develop a robot movement decision hierarchy;

¢ to examine the effects of load versus unload part prioritizing;

e to examine the effects of various buffer sizes;

o to test the effect of sequential and non-sequential part processing; and

¢ to determine the influence of part sequencing on the batch throughput.

The objectives of the last four items is really to identify general trends and not to define

hard set rules.

Having stated the objectives and provided a background of the environment from which
this work arises, the next section summarizes the body of research that deals with aspects
of the optimization of this type of FMC. The focus is on the tools and methodologies
proposed previously. Subsequent to the literature review, a description is given of the
FMC used and an overview of the software developed. The last section provides details

of the experiments and analyses conducted.

10

2. Literature Review

The literature search examines research dealing with aspects of optimization in FMCs
that reduce the parts’ lead time. The specific questions involve sequencing a robot’s
movement and part loading in a FMC. The problem of sequencing parts and robot moves
are addressed in many different fields including computer science, applied mathematics,
management and manufacturing/industrial engineering. The applied mathematical
approach, in general, is to develop analytically the relationship between different
variables that can be solved using branch and bound algorithms or “travelling salesman
problem” solving tools, with the objective of finding the optimal cyclic robot movement
in a FMC. Most management work in this area has focussed on decision hierarchy
questions at the FMS level and cost reduction issues related to reducing product lateness.
The focus of management research is on developing general heuristics for quick
implementation in flow shop environments. The computer science interest is generally in
the modelling of such problems. It has lead to the development of FMC models using
petri net modelling frameworks and applying object oriented approaches to FMC
modelling. Engineering efforts at improving FMCs has resulted in continuous
improvements in automation, quality, and maintainability as well as increasing the
efficiency of these cells. Production engineering work in this area is limited to
documentation of case specific, process improvements achieved through alterations in
current production flow sequences or different part prioritization hierarchies. The next

four sections examines the progress made by using these different approaches.

11

2.1. Cyclic Robot Movement in a FMC

Robot movement and part scheduling questions are known to be NP-hard making them
computationally intensive and challenging to solve. Sethi et al (1992) examine a FMC
problem and determine the optimal cyclic robot move sequence for manufacturing a
batch of parts in the shortest time. However, their solution is limited to a flow line
manufacturing system where parts have to visit all the three stations considered and the
solutions are based on cyclic scheduling. Sethi et al expand the cyclic scheduling to look
at multi-part type problems involving two machines. They develope empirical formulas
for the cycle times in order to solve the problem of sequencing different part types for a
given sequence of robot moves for two machines. Sethi et al state that their problem-
solving technique becomes cumbersome when the number of machines is more than two,
and when multiple part types are processed. Kamoun et al (1993) examine an optimal
cyclic pattern for one part type and three machines. Chen et al (1997) study a multi-part
type production problem on four machines by using a branch and bound technique. Their
technique is to first find an optimal robot cycle, and then choose a part sequence that
produces the lowest cycle time. Some success is achieved when adapting their heuristics
and algorithms to three machines. However, they conclude that further investigation is

required to adapt the same solution to larger size problems.

The previous work concerns the analysis of optimal scheduling for deterministic cycles of
one or a few parts through a FMC. The solutions are limited, in terms of both the number

of machines or the complexity of the parts handled, and the order of the parts that the

12

resulting NP-hard equations can be solved. For example, in Chen et al (1997), the
assumption is that all the parts need to visit all the stations. This assumption is not
realistic in a truly flexible systems. Another disadvantage of using a fixed robot program
arises when there is a minor system change or a machine breakdown. The robot
controller will be unable, then, to negotiate the new environment and a system shutdown
will result. From this review, the need becomes clear for developing a real-time

scheduling system for a dynamic environment.

2.2. Flow Shop Approach to FMC Scheduling

A more dynamic part sequencing solution than that developed so far, requires that robot
movements not be predetermined completely, rather, they should be structured to be
responsive to changing system needs. Niemi and Davies (1989) develop a simulation of
such a dynamic FMC optimization control system for two machines. They also test
different movement control logic. However, no generalizable results are found. Such a
case is also presented by Yang-Byung (1990). In this study, the optimal robot’s service
movement is examined in a robot-centred FMC. Here, five unique part types are
processed in a FMC where each part has a unique set of process requirements in a
specified order and requires a specific time on each machine. Several different robot
service movement decision rules are tested. The best results are produced when the robot
first services the part with the shortest remaining process time. In this case, the parts
arrive randomly at the cell and the make-span (the time to produce one part) can be

optimized.

13

King (1993) looks at the case of a two-machine cell, with buffers at each machine, for
processing a batch of parts needing different processing times on each machine. The
objective is to determine the optimal sequence of robot moves to minimize the make-span
of the batch. King found that a branch and bound technique becomes ineffective as the
number of parts increases past ten. The approach taken was to treat the problem as an
open flow shop. This type of open flow shop problems deal with non-pre-emptive shop
scheduling that, addresses part move routing. It usually has the objective of minimizing
the makespan of a part. Moreover, a part’s route is not given in advance although a
predetermined processing time is know at each machine. Routes are determined by
queues in front of machines and by the remaining process requirements. Rebaine and
Strusevich (1999) consider the question of two-machine, open shop scheduling with parts
having different transportation times. They develop a linear time algorithm that can find

the optimal schedule in such a flow shop scenario.

The research reviewed so far does not handle well the scenario under consideration (i.e.
batches with parts having multiple, and varying machining requirements). Most
documented objectives are to achieve a reduced makespan for a single part or to reduce
the cost of late parts. The heuristic mles examined in these papers can be generally
applied when developing a robot move decision hierarchy within an FMC. However,
their applicability to a dynamic cell environment is not easy and it has not been

researched fully.

14

2.3. Modelling FMC Scheduling

There has been much work in modelling FMCs by using advanced simulation and
modelling tools. The application of a Timed Place Petri-Net (TPPN) or a Coloured Petri
Net (CPN) has proven most useful. A Petri net model consists of places (graphically
represented as circles) and transitions (graphically represented as bars) connected via a
set of directed arcs. Places may contain tokens (represented by dots inside a circle)
which move through the network (i.e. from place to place) according to certain rules.
Cheng et al (1994) used a TPPN for solving resource allocation questions in a FMS.
They look at a job shop scenario using automated guided vehicles (AGV) and apply a
heuristic search method to determine the near optimal schedule of part processing. More
related to the question at hand, Yalcin and Boucher (1999) use CPN to solve a FMC
problem with alternative machining and alternative part sequencing. Both these papers

prove that Petri nets can be used as an effective modelling tool.

Another approach presented to FMC simulation is using object oriented (O0) modelling
to create open-ended simulation software for flexible manufacturing. Like Petri net
modelling, the object oriented approach focuses on object definition and actions
occurring during state transitions. Lin et al (1994) demonstrate how OO can be used in

such a manner.

15

In these modelling studies, the focus is on the tools themselves with very little concern
for a tool’s experimental implementation or experiments using the tools to gain insight
into better robot move rules. The assumption in these papers of an infinite incoming
buffer also leads to the objective of optimizing the makespan of a part rather than a batch

of parts.

The framework developed by Petri net modelling, adapted to address FMC questions,
serves as a useful example of a type of information architecture for any modelling
software. The reviewed papers dealing with Petri nets serve as an example of how a net
can be structured to handle time and place data related to objects moving through a
model. These ideas prove to be valuable in developing simulation software. This is
equally true for observations made about how to implement object oriented coding for

flexible, manufacturing related simulations.

2.4. Sequencing and Loading

Thus far, the focus has been on sequencing part movements using a robot-controlled,
decision-making strategy, given that the parts are in the FMC. Yet, if parts come in
batches, it is possible to select the order that the parts are produced. While many
management articles deal with this question in relation to due dates and minimizing late
costs, they do not address the situation where all parts have the same due date so that the
optimization objective changes. In cases where the part loading sequence can be

changed, most flexible production plans solve the loading problem first and then

16

separately select a fixed cyclical robot move schedule based on the loading results
(Moreno & Ding, 1993). As demonstrated by Moreno and Ding, concurrently selecting
and sequencing jobs in an FMS proves far more effective. While their method is not

transferable to the FMC, the idea should be.

In most of the literature surveyed, sequential processing is generally assumed. However,
Kumar and Li (1994) look at the optimal assembly time for a printed circuit board (PCB)
assembly where the sequence of operations is not critical. Their paper attempts to solve
the problem of the robots movement as a “travelling salesman” problem. This scenario
relates closely to the one presented here. However, the authors present an optimal

solution for the manufacturing of just one type of PCB.

It was confirmed from the literature that concurrent loading and robot move decision-
making is preferable in a dynamic FMC environment. In a specific PCB case, the
implementation of non-sequential processing takes fuller advantage of the available

machine capacity and results in a significant reduced throughput time.

2.5. Summary of Literature Review

The techniques employed to develop models for the design and operation of a FMS at
various decision levels are: computer simulations, deterministic combinatorial scheduling
techniques, queuing networks, petri nets and hierarchical control. These techniques can

be classified further into FMS optimization through combinatorial methods or

17

optimization through heuristic rules (Chen 1990). Chen proposes a compromise, which
produces optimal cycles, based on an evaluation of profiles of the parts. This solution is
acceptable provided there is a limited degree of variation of batches, part profiles, and the
FMC’s composition. There is also a trade-off, within such an optimization solution,
between finding an optimal schedule that will reduce the processing time, and the cost of

waiting while the control computer searches for the optimal sequence.

The approach used here in the development of the control program and simulation
incorporates ideas from the structure proposed by prior research using Petri net modelling
and object oriented programming. The methodology for implementing the robot
movement decision hierarchy also partially stems from these approaches. The hierarchy
of decisions attempts to concurrently select parts for loading into the system and to
sequence robot moves based on the current status of the overall system. Based on the
review, the effect of variables like buffers, as well as the number of parts contained in

them, loading part orders, and non-sequential processing merit further investigation.

The software and FMC layout design developed in this thesis incorporate several ideas
generated as a result of the literature review. The software and hardware is designed to
answer issues related to optimizing the batch size, number of parts and to identify
sequencing aspects that have not been thoroughly explored previously. What follows is a
brief description of the FMC used to implement online testing of the control program and

an overview is given of the program’s structure.

3. Organization and Layout of FMC System

The flexible manufacturing system designed for this project consists of a flexible
manufacturing cell and a control computer that runs specially designed software. A
detailed description of the cell is given next, followed by an explanation of how the
software functions. To emphasise how this software works to produce a batch of parts, a
detailed step-by-step description is given of state changes in the cell. These details
highlight the robot move decision structure, implemented within the software, and give

comparisons between different heuristics.

3.1. Flexible Manufacturing Cell

Stations 1-4 with byili-
in buffers —>

Figure 1. FMC layout

A general description of the FMC set-up was given in the Introduction. (See also the
schematic shown in Appendix A) This section provides more details of the FMC

located in the Computer Integrated Manufacturing and Automation Laboratory at the

19

University of Manitoba. The cell consists of an “Asea” articulated robot with five
degrees of freedom that is used for material handling. The gripper is a suction cup
located at the end of the robot’s arm. There are four processing or machining stations,
each with a gravity feed buffer which can hold up to five parts. (See Figure 1) A
machine, and the buffer behind it, is occasionally called a station when the location of
both is being referenced. The processing or machining times in the cell are simulated
through timers in a programmable logic controller (PLC) which are triggered through
limit switches located at the bottom of each of the four buffers. The logic developed for
the programmable logic control can be found in Appendix B. There is one input buffer
for parts entering the cell and a drop-off location for the finished parts. The robot
controller has 14 unique, pre-set programs that are controlied by a master program. This
master program responds to commands from the input/output board of the personal

computer. An outline of this program can be found in Appendix C.

The IBM compatible computer has an I/Q board that reads the status of the timers in the
PLC and the status of the switches at the processing stations. The latter indicate whether
each station is occupied. The I/O board aiso monitors an input bit that is set high when
the robot is performing a task and low when the robot is available. Based on this
information, the software determines what the robot’s next move should be and sets the
corresponding output bit on the I/O bdard to high. The master program for the robot
controller reads the status of the input bit, which controls the use of one of fourteen
subprograms. The subprograms correspond to different tasks that the robot is required to

perform.

20

3.2. FMC Controller and Simulation Software

A single program written in C++ controls the FMC both in an on-line, real time
environment as well as in an off-line simulation. The program is written to test the effect
of different variables on the total throughput. Once the appropriate variables have been
entered into the program, the simulation is started. The program makes decisions as to
which task to perform next based on input criteria, the decision hierarchy, FMC variables
and the existing feedback from the FMC. Further details are given in the following

sections.

Before providing details on how the program logic works, it is important to understand
how the program works from an operational perspective. The screenshot shown in
Figure 2 presents the program’s main window when a simulation is running. The next set
of screenshots (Figures 3 and 4) show the program windows that allow the user to set
FMC variables and select the type of test to run. The second screen (Figure 3) allows the
user to input the part processing requirements and the quantity of each part to be made in
the batch. The third screen (Figure 4) allows the user to define the movement times
between each station (labelled 1-5). In addition, the times from the input to each station,
as well as those from the individual stations to the output can be defined. In the
experimental flexible manufacturing cell used, the movement times between each

location are invariably S +/- 1 seconds.

21

Monitors the machining

. These three queues indicate
requirements of the parts :
currently in the cel. Counter time versus which machine station is
actual clock time. most in demand, which
station has an almost

These values indicate the status of the
Jive machines respectively. 0 means
unoccupied, 1 implies a part is being
machined and 2 means there is a part
occupying the machine.

finished part, and which
This line indicates the station has a finished part.
part being processed The last two queues are
and the machines it listed from left 1o right in
still needs to visit. order of the oldest to the
most recent.

1

‘ sequence

the tobot is maving to 3
The number of jobs left = 6
qstation2 31 45

qaimost 30000

qdone 20000

parttype=2 process req=01100

Time 15 real tlme 3

the station state is:02100
number of parts at each stationisi0 1100
state of cach station imeris:0 0500
number of parts left:11 20000

curmrent process requirements: 12100

o 2 - 2 In the screen display, different

colours are used to represent

; different states. The five numbered
1 Robot 5 boxes are the machines. The
circles behind them are buffers. If

~
0 - the stations are occupied they turn
red. Blue means the machine is

Parts to be unoccupied, Red means it is
machined divided In/out crl_rrentLv machining and ye.llow
Z bnﬂérs indicates that the machining
in part types. process is complete but there is still
a part at the machine. Black
indicates the machine station is not

the sequence is:123 456
used currently.

This line is the current priority of
part types for loading.

Figure 2. Main screen

2

batch order

Each unique set of machining] D
processes is called by a part numbel o) ien Number -

number. In this screen the = Newhpat “4%5 9 's

machine number each part has to ::::12 2 PNTTT

B s | FSE—] rrRRT
Paths | W
PathtS [n [
Pati? [o

The checks indicate
which stations the part \f

has to visit. TS~
——a—

Figure 3. Batch order screen

robot move times

/\ Enter robot move times RN
e B E
For simulations, the move .
times between individual ::_'12 3 1o
locations can be set n3 i::: —
manually. The numbers ind i bod
correspond to machines and n5 S-eut

the “in” and “out” E
correspond to the loading }g 24
and unloading buffers. 1:‘ 25

15 [§

23 5

Figure 4. Input of robot move times screen

The next input screen (Figure S) allows the user to set the number of buffers at each
station and the processing time required at each station. In the experimental FMC, the
station processing times are simulated through programmable logic controller timers
which allow each processing time to be varied. In a field FMS, all these operational

variables could be set automatically via a local area network that oversees all operations.

stiation information

/“\\
The machining time . -
as well as the :::::12 - L
number of buffers at daiork3 [L R

each station can bé dationtd
set. \Sm'ﬂ—“s/M_

Figure 5. Station information screen

The next two screens (Figures 6 and 7) provide the operator with control over the
simulation variables. The sequence screen (Figure 6) allows the operator to test a specific
order of parts to be loaded into the cell. Here, it is also possible to choose between
processing each part in a sequential or a non-sequential manner. The heuristic screen
(Figure 7) allows for the selection between two robot movement priorities: loading versus

unloading.

pl

Toggle between

sequential and/ \

non-sequential
processing.

User specified order
of loading parts into

the system.
\-_—-——‘

Gleckbufqtmnsemid -
Pl pocessrs]

Befine the erder parts ars to be
presented te the FMC.

—> DB RMEEREO

Toggle between
load and unload

priony \

Figure 6. Part sequencing information screen

levstie]
—
|

Select a rule for movement priarity of rebet.

o
c

Priortize (or loading parts ints the system.
Priotize for unioading paits owt of the system.

-7

Figure 7, Heuristic selection screen

The run screen (Figure 8) allows the operator to choose the type of test to be run. The

choices are to run a batch of parts through the FMC, to run a simulation quickly on the

computer, to run a simulation on the computer in real time, or to run a simulation by

stepping through each individual robot move by clicking the mouse button. There are

also two other options needed to perform multiple tests. The first is an option to test all

the possible sequences that a batch containing parts with different machining

25

requirements could have. The second option allows the operator to run a series of tests in

which consecutive tests have machining times all incremented by five seconds.

Allows the program to control
the robot.

This runs a simulation
based on the actual robot
move fimes and machining

This allows the user to step
through each robot move by
clicking on the mouse
button. It can be done on
{ine or off-line.

This runs only for /__

experiential purposes, the
same batch using different

|2

vV V¥ Vv
>0 O 0O a 7

Run FMC

simulation using the real times _

Step through
Run various pait
loading sequences

Run process time
incremenied tests

loading sequences each
time.

This experintent runs the
same batch with the
machine times
incremented by 5 seconds
each run to a maximum of
100 seconds.

Figure 8. Run screen

At the end of each program, statistics are shown (Figure 9) that indicate each station’s

utilization, its occupied and free times. There are also statistics on the (arithmetic)

average makespan of each part. The user is also provided with the option, at the end of

each test, to save data in a user-defined file. An example of the data’s output format is

given in Appendix G. When multiple tests are conducted, data is filed automatically in a

pre-specified file. All variables related to the given test are also included in this file.

26

The batch took 1010 minutes to complete.

the average residence time of part type 1, s 730/5 =146.0 seconds

the average residence time of pant type 2, is 795/5 =159.0 seconds

the average residence time of part type 3, is 975/5 =195.0 seconds Statistics on the
the average residence time of part type 4, is 1000/5 =200.0 seconds «— time each part
the average residence time of part type S, is 945/5 =189.0 seconds spends in the cell.
the average residence time of part type 6, is 1330/5 =266.0 seconds

The percent of total process time to tatal time and idie time to total time at cach station was.
station#1 time used = 37.12% time idle = 52.97%, time free = 9.90%

station#2 time used = 61.88%, time idle = 29.20%, time free = 8.91%¢ __ Stafisticson
station#3 time used = 49.50%, time idle = 38.61%, time free = 11.68% machine usage.
station®4 time used = 37.12%. ime idle = 50.99%, time free = 11.88%

station#5 time used = 0.0%, time idle = 0.05%, time free = 100.0%

station utilization graph.

Histogram of machine use. The
dark bars indicates machine
€———— utilization and light bars
indicates the idle time.

Figure 9. Statistics screen

Now a brief description will be given on how this program works. Once the simulation
has started, the program enters a condition based program loop, which continues until all
specified parts have been made. There are two types of cycles that the user may choose -
the first type prioritises loading parts into the system, the second prioritises unloading.

Appendix D gives a schematic of the simulation cycle.

One of four actions is taken during each cycle: load, shift part from one station to the
next, unload, or move the robot and wait at the next station needing unloading or shift a
part to its next operation. The order in which these choices are presented depends on

27

whether the unload or load priority is selected. The unload priority first looks at the
option of unloading a part. If this is not possible, then it considers shifting a part from
one station to the next. If shifting is not an option, then it may load a part. If all else is
impossible the final choice is to move the robot to a station that has almost finished
machining and waiting. The load priority first looks at the option of loading a part, then
shifting a part from one station to the next, then unloading, and lastly the moving and

waiting command is considered.

During each cycle, the program’s clock is incremented by the total time it takes for the
robot to move. When the move and wait action is called, the clock is incremented by the
time it takes the robot to move pius the time remaining for processing the part at the
station to which the robot moves. As the main clock is incremented, the timers
(representing the appropriate machining times) corresponding to the stations processing
parts are decremented. There are also two queues, the ‘done station’ queue and the
‘almost done station’ or ‘working station’ queue. These queues keep track of which part
is done first and which parts are to be done next. In the case of a station finishing
processing when the clock is incremented, the station number gets added to the ‘done
station queue’, and that station number is removed from the working station queue. For
example, if the ‘working station queue’ indicates that machine 3 is done machining first,
followed by stations ! and 4, the working queue is 314. If machine 2 is holding a
finished part, the ‘done’ queue is 2. If the timer is incremented by an amount which is
equal or more than the time required to finish machining the part at machine 3, then the

done queue is 23 and the working queue becomes 14.

28

Each part moving through the system is entered in a matrix. (See Figure 10.) An
individual part has an identification number and nine variables of information defined
when the part enters the system. The first five variables are Boolean variables that
identify the stations that a particular part needs to visit. (Note that these variables could
also be turned into integer variables and used to store unique machining times for each
station.) As the part visits each station for processing, the integer value representing the
status changes, binary numbers 0 and 1 are used to represent the state. The sixth variable
monitors how many stations that the robot still has to visit by reading the binary number
created by the first five Boolean variables. For example, if the first five variables
describing a part are [0,1,1,0,1], then the sixth variable is 2+4+16=22. If the third
operation is complete, the sixth variable is 18. The seventh variable indicates the part
number, which would be used if the part needs to be unloaded to a part-specific buffer.
The eighth variable gives the current station at which the part is located. The ninth
variable indicates whether the part is in transition (i.e. held by the robot), in a buffer,
being worked on, waiting for unloading or is out of the system. Each of these states has a
number affiliated to it. There is also a buffer matrix that keeps track of the part queues at

each station. Figure 11 provides a graphical representation of these matrices.

Current
9 location of

@1 @1 O @n @D @) Q-7 06 (©3I) the part.

These variables inycare if there PX‘ This indicates whether

number

Onevectorin __3) 1 2 3 4 8§ 6 171 8§

part matrix.

are machining requirements for the part is in a buffer=0,
machines I-3. | means there is a - being worked on=1,
requirement while 0 means there is fm:';}“:‘ ; sum of tlze " waiting to be
not or the machining process has fve Gigis dimary numoe unloaded=2 or in
created by the first five i
been completed variables. transition=3.
Figure 10. Job matrix

29

Job[3]

—_—) OO O e e

Job[5]

“e

Machine #1

o
o-—-&;o-—-— —

Timer{1]=10
Station[1]=1
Buffer{1)[0}=3
Buffer{1][1]=5
Buffer(11121=0

Job[1] g Jobia) [0
0 0
1 1
0 1
12 0
8
Q /s Oﬁ :
3
O(U@ 0
Job[2]
O @ O
Machine #2 Machine #3
Timer{2]=0 Timer{3}=0 Machine #4
Station[2]=0 Station[3]=2
Bufferf2)[0}=0 Buffer3]j0}=! Timer4]=15
Buffer{2](1]1=0 Buffer{3)(1]=4 Station{4]=1
Buffer[2]{2]=0 Buffer(31121=0 Buffer[4][0]=2
BufTer{4](1]=0
Buffer{41121=0

Vectors = DoneQueue[2,0,00] | | WorkQueue[4,1,00] | [MachineReq(3,0,3,4] |

Figure 11. Matrix example

Of the four operations that can be performed in each cycle, the load operation is the most

complicated. The load operation triggers a subroutine that determines whether there is

any part that can enter the system. The primary requirements for loading a part into the

cell is the availability of space to load the part onto a required machine, or into a limited

capacity buffer. The program has been developed to accommodate two types of part

processing, sequential and non-sequential processing. The loading rules for both these

processes are the same. However, when parts are loaded sequentially, the option of

which part to choose is more restricted. The following paragraph explains the hierarchy

of the part selection priorities.

30

_—L fh 0D D e o O =

In the sequential case, a part can be loaded only if the first machine in the series of
machines that the part needs to go to is free. Given that there may be more than one part
that is a suitable candidate for loading, there is an order of priority for selecting a part.
The first priority is given to the first part in the order of feasible parts which needs the
currently least occupied station (e.g. a station having the fewest waiting parts). If there is
more than one station with the fewest parts (e.g. two stations that are occupied by one
part while the other stations have two or more), priority goes to the station that is most in
demand by the parts in the current batch. If no clear priority is found, then the same

search is performed for stations that have one more occupancy.

The process of part selection for the non-sequential case goes through the same order of
priorities as in the previously defined sequential process. However, in this case, a part is
a candidate providing one of its machining requirements is met. There are two additional
criteria in the case of non-sequential processing. The part to be loaded, after having met
all the other requirements, must go through a conflict check. The conflict check is a
subroutine that ensures that, if a part is loaded into the system, it will not cause a
blockage to the further processing of parts. For example, consider a situation when two
parts of the same type need to visit two machines, and both machines have no buffers. If
the parts are loaded consecutively on machines 1 and 2, there is no way for either part to
proceed to the other station. This scenario is defined as a conflict situation, which needs

to be avoided or resolved.

3l

The other unique feature of non-sequential loading is that the cell can be loaded to
capacity. This feature means that all the free buffer space in the cell can be loaded in
such a way that no process is in conflict. This is not desirable because it tends to reduce
the number of options available for the movement of parts and it usually leaves only cne
free buffer space for manoeuvring. Consequently, the total batch time is increased
greatly. This situation does not arise in sequential processing. However, capping current
machining requirements of parts in the system by making it a part loading condition,
solves the problem of insufficient manoeuvring room. The limit is set based on the
number of buffers at each station plus two. Hence, the number of parts, requiring a
particular machine, permitted to enter into the cell, is fixed at the number of buffers at
that machining station plus two. For example: if there are two buffers at each of three
stations, then the current requirements of the parts in the cell cannot be more than four
requests for processing on machine 1, four requests on machine 2, and four requests on

machine 3.

The choice of setting the cap at the number of buffers plus two was determined based on
numerical experimentation performed by using an exhaustive search algorithm. Values
greater or less than two proved to be unsatisfactory. The first arrangement, where no cap
was imposed, allowed the cell to be loaded to its maximum capacity. This arrangement
made it possible to load the cell to the point where any additional part would completely
block the system. It made shifting parts difficult and led to the conclusion that loading
the system to maximum capacity resulted in buffers being used more as storage locations
than temporary transfer points. The chosen cap of the number of buffers plus two
provided the best compromise between overloading the system and switching to an

kY

unload always rule, regardless of the number of buffers. In conclusion, to benefit from

the buffers, the time spent by parts in the buffers should be minimal.

The shift load, and unload routines are the other places in the program in which a part
selection hierarchy is used. In both cases a decision needs to be made as to which of ‘x’
number of finished parts is to be unloaded or shifted first. Here, again, priority is given
to the parts at a station that is in high demand. If demand among stations with finished
parts is equal, then the “done parts queue’ is referred to, in order to see which part will be
finished first. Based on these criteria, a decision is made as to which part to unload next.
In the case of shifting a part from station to station, the same two criteria are examined.
First, the part being shifted can be shifted only to a station that has free buffer space.

Second, a conflict check is performed in the case of non-sequential processing.

3.3. Hierarchy of Decisions te Robot Move

Having stated the basic criteria for making decisions regarding robot moves and part
selection rules, this section provides a clear understanding of how these decisions affect
the batch processing time. This section also demonstrates the differences between the
loading and unloading rules, as well as the non-sequential and sequential loading rules.
The differences are demonstrated in four step-by-step analyses of state changes in one
particular robot loading and sequencing example. There are three kinds of parts to be
processed, parts A, B and C as shown in Table 1. The robot’s move times are each 5

seconds and there is one buffer at each station.

33

Station | Station 2 Station 3 Station 4
Part Number
Type Produced Machine Machine Machine Machine
time 15s timelSs time 1S s time 15s
A 2 X X
B 2 X X
C 2 X X

Table 1. Batch order 1.1

The next two tables provide a step by step account of the processing of this batch of parts
through the FMC. The objective is to highlight the difference between the robot's
movements chosen when an unload priority is used versus those when the load priority is
used to process parts sequentially. For example, part B needs to visit station 2 before

proceeding to station 3.

The notation used to describe the station changes is as follows;

¢ L indicates that the robot has gone to the input buffer, taken a new part and deposited
it at a station.

¢ U indicates that the robot has picked up a part and dropped it off at the system’s out
buffer.

¢ S indicates that the robot has picked-up a part and dropped it off at a station.

¢ Parts are identified by a part letter followed by a number to indicate which specific
one of a part type is being referenced (e.g. Al or A2),

¢ A station, S, and its affiliated buffers, are designated by the notation Sxy. The y

indicates what buffer position the part has taken at station x. Moreover y=0 implies

34

that the part at a station is currently being machined or that machining at station x has
finished on this part.

¢ If there is no letter in front of a part name but a station identified after the part, then
the part has shifted up one place in the buffer space. For example if a part B number 3
(B3) was loaded on station 3 buffer 2 (S32) and the part at station 3 buffer 0 (S30)
was unloaded, then part B3 would move to $31.

¢ ‘Done’ means the part has completed processing at a station.

Tables 2.a and 2.b present the experimental results of both a numerically simulated
sequential loading and unloading run. The ‘time’ column gives the time that the action in
the ‘robot action’ column was finished. The ‘other actions’ column indicates if any other
action occurred at that time, such as a part has been finished machining or has moved
from one buffer space to another. The ‘machine req’ (machining requirements) column
has four numbers. A given number represents the number of processing requirements at
each station that is needed by all the parts currently in the system. This information is
used to decide which parts enter the cell next. Values in ‘machine req’ only change when
a part no longer needs to be machined at a station and it is no longer occupying that
station. The last column shows the done queue, which indicates the order in which the

stations have finished their machining jobs.

35

Time |Robot |Other Machine Done Time | Robot |(Other (Machine |Done
(s) |action |actions |Req queue (s) |action jactions |req gquene
5 L B1-820 0110 0000 5 L B1-520 0110 0000
15 L Ci-830 0121 000D 15 |LCl1-830 0121 0000
20 Bl done {0121 2000 20 B1 done (0121 2000
25 |L Al-S10 1221 2000 25 JLAL-SI0 1221 0000
30 Cl done {1221 2300 30 C1 done 1221 2300
35 |LB2-S21 1331 2300 35 [SBI-§31 1121 3000
40 Al done [133] 2310 40 Al done [1121 3100
45 |L C2-831 1342 2310 40 B1-§30 [1121 3100
55 L A2-S1t 2442 2310 45 |SCI1-840 1111 1000
60 C2-830 |2432 2310 55 |S Al-820 |B1 done j0111 3000
65 (SCI-C40 2432 2100 60 Cl1 done (0111 3400
70 B2-S20 (2332 2100 65 [UBI 0101} 4000
75 1S B2-831 |C2 done [2332 1300 75 Al done {0101 4200
75 B1-S30 42322 1300 75 |UCL 0100 2000
80 |SC2-841 |Cl done |2322 1400 80 |UAl 0000 0000
85 B2 done {2322 1420 90 L B1.§20 0110 0000
85 A2S10 (1322 4200 95 L C1-830 0121 0000
90 |5 Al-S21 |Bl done |1322 4230 100 Bl done [0121 2000
90 Al-S20 11222 4230 105 |L A1-S10 1221 0000
95 |SB2-831 1222 4300 110 C1 done {1221 2300
100 C2 840 (1221 3000 115 |SB1-831 1121 3000
105 |[UCl A2 done |1221 3100 120 Al done |1121 3100
105 Al done {1221 3120 120 B1-S30 (1121 3100
115 |S A2-S21 |C2 done [0221 3240 125 S C1-840 1111 1000
120 B2-830 [0211 3240 130 |[S A1-820 |Bl done [O111 3000
125 [UBI 0211 2400 135 Cl done (0111 3400
130 A2-820 0111 2400 145 |[UBI1 0101 4000
135 (U Al B2 done {0111 4300 155 Al done |010] 4200
145 |[UC2 A2 done |0110 3200 160 [(UCL 0100 2000
155 |UB2 0100 2000 165 |UAL 0000 0000
165 |C A2 0000 0000
Table 2.a Time history of Table 2.b Time history of
sequential loading sequential unloading

The two examples differ only in the priority rule used for the robot’s moves. Sequential
loading always loads parts if there is place to load a part. If not, the computer considers
part shifts and, if this is also not possible, then the computer considers unloading parts. In
sequential unioading, the hierarchy of robot actions is the reverse - first the possibility of
unloading a part is considered, then shifting a part, and then loading parts. These two
cases produce sequences of events that are different even though the total batch time is

36

the same. The robot’s move time forms the bottleneck in these examples. Examining the
‘done queue’ list shows this. If it tends to have one or more parts waiting, it is because

the robot cannot keep up with the demand for its action.

Once the first level of decision making is determined (whether to load, shift unload or
wait), the second level of decision making comes into play. Here the program decides
which part is to be loaded, shifted or unloaded. The flow chart in Appendix D lists the
order of priority at this point. The order in which parts are loaded is determined by the
batch demand for a machine and whether space is available in the FMC for a new part.
To explain the term batch demand for a machine, consider 50 unprocessed parts of which
30 require machine 3, 20 require machine 4 and 10 require machine 2. Given this batch,
the control program first checks if there is a part which can be loaded on machine 3; if
not, it checks if there is a part which needs machine 4 and then machine 2. In this
example, the machines most in demand are 3 and 4. Hence, they are loaded first by parts

that require them, in this case part B and part C.

One important decision that has to be made in this model is whether or not to continue to
adhere to a set of rules or to make special conditions for unique cases. For example, if
the robot has just loaded the buffer of one station with a part and the part being machined
at that station is finished, it may be beneficial to take advantage of the robot’s position to
shift that part (such as at time 35 in the load example of Table 2.a, given in bold lettering)
rather than addressing the next part in the queue according to the hierarchy set out.

Through experimentation, it is determined that the benefit of implementing such a policy

37

is limited to cases where the robot’s move time is the bottleneck. Otherwise imposing

such a policy is no longer beneficial; rather, it increases the batch throughput time.

The non-sequential unload example given in Table 3.b shows a case in which no unload,
shift or load operations are possible. Hence, the robot moves to the station that would
first be done machining a part and then the robot waits for the next required action. At
time 150 seconds (see bold lettering), the robot is at station 3 and, at this station, no more
parts are to be machined nor are there any more parts to be loaded. By checking another
queue in the program, called the ‘working queue’, the program knows ahead of time that
station 4 is the next station with a completed part and, hence, the robot moves to station 4
and waits to perform the next task. This kind of “look ahead” feature reduces the robot’s
movement time by having it take advantage of “free time” to move to another location.
The robot arrives at station 4 at time 155 seconds and waits 5 seconds for the part to be
finished, as opposed to waiting until the part is finished before moving to station 4, By
taking advantage of the “look ahead” feature the 5 seconds required to move from station

to station is saved.

In the sequential load examples given in Table 2.a, the order in which parts are loaded is
B C AB C A and all the parts are loaded immediately, meaning the first six robot actions
load parts into the cell. In the non-sequential load example shown in Table 3.a, the load
order is A B A C C and only after two shifts occur is the final part B loaded. The reason
that the order is different is because two parts can be loaded immediately on station 2,

namely parts A and B. However, if there is a restriction requiring the parts to be

38

processed in order, then part A cannot start on station 2. It is also important to observe
that the non-sequential loading cannot immediately load all six parts because, in this case,
if the last part B is added then further movement is blocked. This situation does not

occur in sequential loading.

Time| Robat | Other | Machine | Done Time| Robot | Other | Machine | Done
(s) | action | Actions| req |queue {s) | action | Actions| req |queue
5 |L Al-820 1100 | 0000 5 |[L Al-S20 1100 | 0000
15 |L B1-830 1210 | 0000 15 |L B1-8§30 1210 | 0000
20 Aldone] 1210 | 2000 20 Aldone| 1210 | 2000
25 |L A2-810 2310 | 2000 25 |L A2-S10 2310 | 2000
30 Bldone| 2310 | 2300 30 Bldone| 2310 | 2300
35 |LCl1-S40 2321 2300 35 IS Al-S11 2210 | 3000
40 A2done| 2321 | 2310 40 Al done{ 2210 | 3100
45 |L C2-S31 2332 | 2310 45 |SB1-S20 2200 1000
50 Cldone| 2332 | 2314 50 Al-S10 | 2200 1000
55 [S Al-Sl1 2232 | 3140 55 [S A2-S11 1200 | 0000
60 C2-830 | 2222 1400 60 Bl done| 1200 { 2000
65 |S B1-S20 2222 1400 65 |LB2-S20| Al done| 1310 | 2100
75 |L B2-S31{C2done| 2332 1430 70 A2-S820] 1310 | 2100
75 B2-§30 [2332 1400 75 UBI 1210 1000
80 |SC2-S41{Bldone| 2322 1420 80 B2 done| 1210 1300
85 AlSI0! 1322 | 4200 15 UAl |A2done} 0210 1320
90 |S A2-S21[B2done{ 1322 | 4230 95 UA2 0110 | 3000
95 C2-840 | 1322 | 2300 105 | S B2-820 0100 | 0000
100 |SC1-S31|Al done| 1321 2310 115 |L C1-830 0L1l | 0000
105 A2-§20 | 1321 3100 120 B2 donef Ol11 | 2000
110 UBl |C2done| 1221 3140 125 |L C2-840 0122 | 2000
115 C1-S30 | 1221 | 1400 130 Cldone| 0122 | 2300
120 [SB2-S21[A2done| 1211 | 1420 133| UB2 0022 | 3000
125 B2-820 | 1211 4000 140 C2done| 0022 | 3400
130 | UA2 |[Cldone| 1111 4300 145 |SC1-541) C1-840 | 0012 | 4000
135 | UAl |[Bldone| 0111 4320 150 |S C2-30 0011 | 0000
145 | UC2 0110 | 3200 160 Cldone| 0011 | 4000
155 UCl 0100 | 2000 165| UClL |C2done| 0010 { 3000
165 CB2 0000 | 0000 175 U2 0000 | 0000
Table 3.a Time history of non- Table 3.b Time history of non-

sequential loading sequential unloading

39

The next significant point about non-sequentially loading the parts is that there is a
possibility to stifle movement in the FMC by overloading it with parts. If all the parts in a
batch need to visit three machines and six of the parts are loaded, for example, the
number of free buffer spaces for manoceuvring is limited. Suppose, a part on machine 3
needs to go to station 2. However, the part at machine 2 is waiting for a place at station 1
to become available. So, instead of having the flexibility to select an efficient solution,
the system is left to choose whatever option is left. This problem does not exist with the
sequential processing because the bottleneck machine naturally regulates the cell’s
capacity. In the non-sequential situation, therefore, an additional condition is added to
the load rule that restricts the number of parts that need a specific machine to two. Two
is more than the number of parts that can be accommodated at the station buffers. In the
non-sequential load example (Table 3.a), part B2 is not loaded at 55 seconds. Part B2 is
loaded only when both the machining requirements for machines 2 and 3 (both of which
part B needs) by the parts currently in the cell are less than three (See column 4 of Table

3.a.). If there were two buffers, this number would be four.

This section has provided an overview of the software developed to handle dynamic
FMC control problems on-line or off-line for simulation purposes. The key
programming decisions have been outlined as well as the overall system’s structure.
The last part of this section provided severai examples of batch production runs to
highlight the nuances between the various rules. The next section describes various
aspects related to the implementation of the proposed cell control strategy. This will
allow a clearer understanding of the complexity of the robot’s control as well as part

loading issues.

40

4. Experiments and Analysis

The first experiment is to verify the functionality of the software and hardware for
controlling the robot and responding to FMC conditions. Once verified, questions
concerning loading and the robot’s movement can be examined. The experiments, to be
conducted by using the simulation software, are broad in scope and place minimal
restrictions on any FMC condition. The intent behind the design of this software is that it
can be used to perform similar experiments in both an industrial and a laboratory setting.
Keeping in mind that variables in a specific industrial FMC are generally more restricted.
For example, in industry, the variability amongst batches would be known as would be
the processing times and number of machines in the cell. With this information, a tighter
picture of the flexibility required by the cell would allow improvements in the sequencing
of parts, in addition to the fine-tuning of the control program for specific situations. The
present studies serve to provide an idea of the improvements that the software can afford,

both through its implementation and its capacity as a simulation tool.

4.1. On-line Dynamic Control of a FMC

The first experiment is intended to verify the functionality of the on-line FMC control
system. This proved to be successful. All robot movements corresponded appropriately
to the programmed decision structures. Feedback loops from the system also functioned
appropriately. They caused the robot to wait until the machining operations were

completed before initiating the pick-up of parts.

41

To compare the throughput timing results from the simulations with those of the actual
system, each individual robot sub-program is run and timed manually. The times are
entered into the simulation, and the total simulated processing time are compared with
the actual processing time. The results show a minor discrepancy between the two times.
For a short test run, the discrepancy is around £5% of the simulated time. This variation
can be attributed to both the imprecision in the timing of the robot’s sub-programs and
the processor speed of the robot’s controller which requires roughly half a second (it
varied slightly) to poll the input information from the computer controller. This is a
typical situation of stand-alone controllers whose hardware details are proprietary and

cannot be controlled or monitored.

To conclude, the on-line robot controller software, with FMC sensor feedback, does
accomplish the desired goal of creating a computer controlled robot that responds to the
status of a FMC. To achieve a more accurate representation of the FMC during
simulation would require recording the robot’s movement times to an accuracy of one

tenth of a second. However, no additional results of significance would be gained.

4.2. Concurrent Processing

The next test compares the results of individually processing part types (all part As then
all part Bs) versus concurrently processing parts. The significance of concurrent

processing over non-concurrent processing seems to be influenced greatly by the total

42

order and the process that each part type has to undergo. Hence, the benefit of concurrent
processing is composition dependent. The following three examples corroborate this
assertion. The load priority is used in all cases, the processing machines invariably have
no buffers, and the robot’s movement between positions is always assumed to take 5

seconds.

If each part type in batch order 2.1 (given in Table 4) is processed individually, the total
processing time is 545+1045+845+745=3180 seconds. In comparison, the total
throughput for the same forty parts produced concurrently is 1085 seconds. Batch order
2.1 is an extreme case in which each part has only one process requirement. Producing
all of one part type at a time resulted in three idle machines. The batch throughput time
becomes the process time of each part on a specified station plus the time for the robot to

load, and unload the part. Hence, the concurrent processing of the parts proves to be very

beneficial and reduces the throughput time by almost a third.

Part Number Station 1 Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 40 s Time 90s Time 70 s Time 60 s
A 10 X
B 10 X
C 10 X
D 10 X

Table 4. Batch order 2.1
If each part type in batch order 2.2 (Table S) is processed individually, the total
processing time is 1145*4=4580 seconds. The total throughput time for the same forty
parts produced concurrently is 4395 seconds. This case is the opposite of case 1, that is

all the parts, although they may still be unique, need to visit the same three stations.

43

Concurrent processing of parts has very little effect in this case. The minor improvement
shown is due to the fact that concurrently processing the four part types can be done

without interruption caused by the completion of all part A’s and starting the next batch

of part B’s.
Part | Number Station 1 Station 2 Station 3 Station 4

Type | Produced Machine Machine Machine Machine
Time 40 s Time 90 s Time 70 s Time 60 s

A 10 X X X

B 10 X X X

C 10 X X X

D 10 X X X

Table 5. Batch order 2.2
If each part type is processed individually, as in batch order 2.3 (Table 6), the total
processing time is 1090+1120+1145+1165=4520 seconds. The total throughput for the
same forty parts produced concurrently is 4310 seconds. This example is a more realistic
model of the types of parts that would be sent for processing in a FMS. In this case, parts
need at least a couple of the machining processes in the FMC. Here, concurrently

processing parts results in a 5% improvement.

Part | Number Station | Station 2 Station 3 Station 4

Type | Produced Machine Machine Machine Machine
Time 40 s Time 90 s Time 70 s Time 60 s

A 10 X X

B 10 X X

C 10 X X X

D 10 X X X

Data from the next two tests are compared with those for batch order 2.3. The objective is

to demonstrate the effect of changing the machining times on the throughput times for

Table 6. Batch order 2.3

both concurrent and individual part type processing. For batch order 2.4 (Table 7), the

processing times are halved. In this case, the total time for processing forty parts is

620+630+690+685=2630 seconds. The time it took to concurrently process the parts is

2530 seconds.

Part | Number Station 1 Station 2 Station 3 Station 4

Type | Produced Machine Machine Machine Machine
Time 20 s Time45s Time 35s Time 30 s

A 10 X X

B 10 X X

C 10 X X X

D 10 X X X

Table 7. Batch order 2.4

In the last batch order 2.5 (Table 8), the process times are halved again. Process by parts

has a total process time of 380+387+452+450=1669 seconds. The total throughput for the

same forty parts produced concurrently is 1638 seconds.

Part | Number Station 1 Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 10 s Time22s Time 17s Time 15s
A 10 X X
B 10 X X
C 10 X X X
D 10 X X X
Table 8. Batch Order 2.5
The next table summarizes the results of batch order 2.3, 2.4 and 2.5.
Case | Total machining Total Total % % decrease |% decrease for
time required (s)| throughput time| Throughput |improvement| for part concurrent
(s) by part |time(s) concurrent throughput | throughput
2.3 7100 4520 4310 4.65 ————
24 3550 2630 2530 3.80 41.8 41.3
2.5 1740 1669 1638 1.86 36.5 353

Table9. Summary 2

45

This table demonstrates the effect of reducing the batch processing time requirements.
There are two trends related to the ‘total machining requirements’ of a batch. The first
shows that, as the total batch processing time is reduced, the closer the total throughput to
the total machining requirements. It should be noted that, when processing one part type
at a time with no buffers, the robot’s total move time is 700 seconds. As the processing is
completed more quickly, the robot is in greater demand compared to when the robot's
moves occur while all the machines are busy machining parts. Reducing the machining
time leaves the stations idle while the robot is moving. Essentially the robot becomes the
bottleneck. Hence, even though the total machining requirement in batch order 2.4 is half
that for batch order 2.3, the total reduction in throughput is less than 50%. (See the
“percent decrease by parts” columns given in Table 9.) The change is even less from
case 4 to 5. This observation is true for both the concurrent processing and by processing
by part. The other observable trend is the influence of the processing time on the
improvements afforded by concurrent processing. Column 4 of the table indicates a clear
reduction of benefits brought through concurrent processing as the ratio of the processing

to robot move times reduces.

What these experiments show is that the ability to concurrently process parts with
different processing requirements in the same FMC reduces the throughput time of the
batch in comparison to processing all one part type followed by another part type.
Hence, the ability to dynamically respond to different part processing requests and FMC
conditions takes fuller advantage of the capacity of a FMC over a fixed robot move cycle

for processing one part type at a time.

It can also be argued that developing fixed cycles for a combination of part types would
produce a superior batch throughput to that afforded by separately processing single part
types. However, the flexibility that this dynamic response allows would still produce

better results. Proof of this assertion is beyond the scope of this work.

4.3. Load versus Unload Prioritization

The previous section provided a detailed example of a complete batch production. The
machine time for all stations was 15 seconds. This section will look at the effect of
increasing the machining time while the robot’s move time stays at 5 seconds for all
inter-cell movements. The objective is to observe the effect of changing the ratio of the
machining to robot move times on the total production time under the following,

individually applied conditions.

—

. The robot prioritizes unloading parts; parts are processed sequentially; or

o

the robot prioritizes loading parts; parts are processed sequentially; or

W

the robot prioritizes unloading parts; parts are processed non sequentially; or

b

the robot prioritizes loading parts; parts are processed sequentially.

In all four cases the 15 parts defined in Table 10 are to be produced. The simulation
software ran a series of tests starting with all machining times set to 5 seconds. This time
was incremented by 5 seconds for each subsequent test. The number of buffers at each

station was always two.

LY

Part | Number Station 1 Station 2 Station 3 Station 4
Type | Produced |[Machine Time | Machine Time | Machine Time | Machine Time
5-100s 5-100s 5-100s 5-100s
A 5 X X
B 5 X X
C 5 X X

Table 10. Batch order 3.1
Additional data for these tests and relevant graphical representation of results is given
more conveniently in Appendix E. A summary of the results are shown in the graph

below, as well as in Table 11.

1250 f

1180 / //(4

1080
. P
: Ay
E 850 —&— loed nonsequertial
% —8—uriced norsequertid
@ 730 —A—kerd seq ertidl
g 650 ——uricad seuartid

580

4&.

m 1] t] Voo 1 1] LI A L] 1

COPPPPPOPP
Machining Time(s)

Figure 12. Effect of machining time on load and unioad rules

43

Machining [non- sequentinl

. oquential —o— load nonsequential
UmeS) el Unioad [foad waload I:'Z'Z'iﬂm"""
5[405 425 425 430 - unload sequentai
10| 415 445 425 445 700
15| 415 a40| 420 420 875
20| 410 4s0| 445 410 850 .
25| 425 455| 455 440 625 /
30| 460 465| 495 465| | @ 800 k
35| 475 455] 520 455 /!
40| 495 480 se65 50| 575 F/ A
as| s:0 5100 610 eos] |z S50 77
50| 50 s6s| 655 s8] |8 525 X7

55| 615 600[710 610‘ & 500
60| 660 645 765 710

65| 705 695| 820 75| |‘© 450 -
70| 755 45| 875 825 |F 425
75| 805 795| 930 875 400 -
80 855 845| 990 930 375
85| 905 895 1050 985 350 o
0 ool By § 10 15 20 25 30 35 40 45 50
100{1055 1045| 1230 1150| Machining Time(s)
Table 11. Machining time data Figure 13. Highlight machining time effect

The results shown in Table 11 indicate that, in both the sequential and non-sequential
cases, prioritizing the unload results in a lower total batch time than prioritizing the
loading when the ratio of the machining and robot move times is about six or more. This
test also indicates that non-sequential processing of parts is faster than sequential process.
When the average machining time is less than about six times the robot’s move time,
there seems to be no observable pattern. This trend is shown in Figure 13, (Note the

results given in Figure 12 for 0-30 seconds are plotted on a larger scale in Figure 13).

The observations made about this particular experiment are generally applicable. For all
variations in batch sizes and part requirements, the unload priority gives a lower total
time than when the load is prioritized. This observation holds true regardless of the

number of buffers or parts. What cannot be generalized is at what ratio of the average

49

machining time to robot move time does the system become stable (i.e. achieves a
constant relationship). Thus far, it has been observed that, for the parameters used in
these simulation studies, all batch simulations become stable under a machining to robot

move time ratio of around 10:1.

4.4 Analysis of Buffer Size

This section will examine the effects of buffer size on the batch processing time. Here
again four tests will be conducted in order to understand the impact of the buffer sizes for
both non-sequential and sequential unloading. The same batch order employed in the
previous experiment will be used and, as in the previous cases, 15 parts will be
manufactured with the machining time incremented progressively by 5 seconds from S to

100 seconds.

1700
15§00
- 1300
H
——Dbuffers=0
= 1100 ——buffers=1
s —dr—hufferss2
E 900 —tt—bylfers=3
g —fp—=Dhuffers=4
- —@—buffers=5
700 ey y ffe 7826
500 ‘l
300 4 v —pas ey -
@ 2 H L p P LS P
Machine Time(s)

Figure 14.a Effect of buffers on sequential processing

50

1700

1500
3 1300
é —@——buflors=0

1100 =8 buflere=1
ﬁ =i buflers=2
b1 00 === huffers=3
é § —i—buffers=4
3 —@—buflersss
2 w0 ~—4——buflers=6

500

300 et ey

D8 PP PP SN PP
Machining Time (s)

Figure 14,b Effect of buffers on non-sequential processing

Unload always non-sequential Unload always sequential
O T b S S O S A - O
SR B R IE IR BIE IR IR IEIEIE R
SEZ |2 |3 |3 |7 |F|F (388 |2 [| | (7 |3
5| 445| 4251 425| 425| 425| 425] 425 445| 430| 430| 4301 430\ 430] 430

10[450] 445] 445] 445[445| 445 445 450] 445 445] 445] 445] 445| 445
15| 443] 440 440] 440f 440| 440| 440 4451 420| 420] 4201 4201 420} 420
20| 465] 4507 450] 450 450| 450 450F 20} 470{ 410] 410] 410 410 410} 410
25| S515] 455| 455 455 455] 455| 455 25| 525 440| 440| 440] 440 440| 440
30| 565 460| 465| 465 465| 465 465F 30{ 570| 490] 465| 465| 465 465 465
35| 675] 480| 455] 4551 455 455 455 35] 615] 470| 455| 455 455| 455] 455
40| 740| 485| 480] 475| 475] 475 475| 40{ 675] S510] 530! 500 500 500| 500
45| 805| 575 510] 515 S15| 515 515| 45| 735] 550| 605[505 505 S0S5| 505
50| 870 625| 565] 560 S560| 560| 560| 50| 795| 605] 580, 560| 560| 560| 560
55| 935 675 600} 595 600| 600 600 55| 855{ 655| 610 590 595| 595| 595
60| 1000] 730] 645] 635] 645] 645] 645] 60} 915] 705 710; 730] 670] 650] 650
65| 1065] 785) 695 690| 685| 690] 690 65| 975; 760| 775 765| 720| 700| 700
70| 1130 840| 745 735 735| 735| 735 70| 1035 B815] 82S5; 810 760} 740| 740
75) 1195] 895 795] 790| 780] 780| 780 75| 1095] 870{ 875 870/ 800] 795| 795

840

890

n © w| Time

80) 1260 950| 845| 840| 825| 825| 825 80| 1155 925{ 930| 920 825; 825
85} 1325] 1005| 895| 890| 880 880] 880| 85| 1215{ 980 985 975 875} 875
90{ 1350] 1060] 945| 940] 925{ 925] 925 90| 1275| 1035] 1040| 1040 950/ 930| 930
95| 1455f 1115} 995 990| 980 9801 980] 95| 1335| 1090) 1095 1105{ 995; 980| 980
100] 15201 1170 1045| 1040 1030] 1025] 1025] 100| 1395| 1145| 1150] 1155| 1040| 1025] 1025

Table 12.a Effect of buffers on Table 12.b Effect of buffers on
non-sequential processing sequential processing

51

From Figures 14.a and 14.b, as well as Tables 12.a and 12.b (taken from Appendix F), it
would appear that no significant improvement is produced by increasing the buffer size to
more than two in the non-sequential case and more than four in the sequential case. The
sequential example shows that having more buffers in the FMC ensures that stations past
the bottleneck have less chance of remaining idle. In both examples, since there are only

15 parts in the batch, this inevitably decreases the need for buffers.

The data given in Table 12 also shows that the point where more buffers become
beneficial is related directly to the average machining time. For example, in the non-
sequential case it is only after the average machining time is greater then 65 seconds that
there is a benefit to having four rather than three buffers. In the analogous sequential case
there is a benefit after 60 seconds. In both cases, as the ratio of robot move time to
machining time increases, the more the robot sits idle. If extra buffers are available, the
robot can take advantage of this idle time to fill the buffers with parts. This ensures that
when a part is removed from a machine there is always a new part immediately available
for machining. By decreasing machine idle time, the total batch throughput is also

decreased.

4.5 Sequential versus Non-sequential Processing

The next experiment further examines the difference between non-sequential and
sequential part processing. Four different batch orders are tested. The composition of

each order is intended to examine the effect of having different bottleneck machines in

52

the cell. All the orders demand equal machining times and each station has two buffers.
In all tests, 40 parts are processed (10 of each part type A,B,C,D). Moreover, each part
has the same total machining time requirements for all cases, although these requirements
are not necessarily on the same machines for each case. In the four different cases
considered, each specific machine requires 90 seconds to machine a part. However, the
machines may have different total machining demands (meaning machine 1 processes 20

parts while machine 2 processes 30 parts). The details of the batch requirements are

given in the tables below.

Part Number Station 1 Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 90 s Time 90 s Time 90 s Time 90 s
A 10 X X
B 10 X X
C 10 X X
D 10 X X X
Table 13. Batch order 3.1
Part Number Station | Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 90 s Time 90 s Time 90 s Time 90s
A 10 X X
B 10 X X
C 10 X X
D 10 X X X
Table 14. Batch order 3.2
Part Number Station 1 Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 90 s Time 90 s Time 90 § Time 90 5
A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Table 15. Batch order 3.3

53

Part Number Station 1 Station 2 Station 3 Station 4
Type | Produced Machine Machine Machine Machine
Time 90 s Time 90 s Time 90 s Time 90 s
A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Table 16. Batch order 3.4

The results for the four batch orders are summarized in Table 17. What is clear from this
table is that non-sequential processing is always faster than sequential processing.
However, what needs to be explained is the noticeable variation in the throughput times
given that all the batch cases have the same total machining time. Through
experimentation, these variations have been attributed to the location of the bottleneck
machine. Indeed, the batch requirements were chosen specifically to demonstrate this
effect. In all cases, three of the machines are required to machine 20 parts while the
fourth is required to machine 30 parts. Clearly the machine with the additional load

corresponds to the bottleneck. (The batch orders from example 3.1 to 3.4 each have a

different machine forming the bottleneck).

Batch | Non-sequential | Sequential

Order seconds Seconds
3.1 2710 2900
32 2710 3030
33 2790 3035
34 2790 3010

Table 17. Summary 3
From the results shown in Table 17, it would seem that non-sequential processing is
slightly faster if the bottleneck machines are used first in the process. However, given that

the processing is non-sequential, the machine order should, intuitively, not influence the

54

results. This first observation indeed turns out to be incorrect. The reason for the
variation in the batch times will be explored further in the next experiment, which links

the part loading order to this throughput variation.

In regard to the throughput times of sequential processing, this example indicates that the
location of the bottleneck machine should hardly affect the batch’s throughput time.
Through further experimentation (in the next section), it has been found that the loading
order of the parts (more to follow), as well as the location of the bottleneck machine, does
affect the total throughput time. The next experiment will demonstrate that, in the
sequential case, when all the different orders parts can be introduced into the system, the
throughput times are greater, on average, when the bottleneck machine is at the front of
the queue of machines. Moreover, the throughput time decreases as the bottleneck

machine progresses to the end of this queue.

4.6 Load Sequence of Parts

The last experiment will address the issue of the loading sequence of parts. As it stands,
the program is capable of searching the parts that remain to be processed in order to find
a suitable fit with the current state of the FMC. For example, if three machines are busy
and the fourth machine is idle, the program searches the parts remaining to be processed
to see if any part requires machining at the free station. Consequently, the order of parts
introduced to the system is superseded by the requirements of the cell. However, in most

cases, several parts may need the machines that are currently free or have free buffer

55

space. This situation is where the ‘search order’ that the program uses for checking the
remaining part types for loading suitability becomes critical. Until now, all the parts
were processed in the same order that they entered the system (i.e. A,B,C,D). Indeed,
there is no obvious reason for selecting one part over another, or pairing parts in a

specific manner.

This test will examine how alternative loading sequences of parts affects the total
throughput of a batch. Using the same scenarios presented in the previous experiment in
section 4.5, 24 individual but different experiments were conducted. Each experiment
involved a different loading sequence. The 24 experiments were conducted by using both
the sequential and non-sequential rules. The results are presented in the table below.

Complete results can be found in Appendix G.

The first, most observable result from Table 18 is that there is a marked variation in the
batch throughput time that clearly depends on the order of the loading sequence. In the
case of non-sequential processing, this variation is around 1% while, in the sequential
case, variations are between 1.6 and 7.8%. This lower variability supports the
conclusions given in section 4.5 that non-sequential processing is more beneficial than
sequential processing. Lower batch throughput times are also obtained consistently by
using non-sequential processing. This difference is also indicated by the average
processing times listed at the bottom of Table 18. Furthermore it is clear that the best

non-sequential results do not correspond to the best sequential results.

56

Non-sequential (results in seconds) Sequential

Sequence| case 1 | case2 | case3 | case 4 Sequence| case 1 | Case 2 | case 3 | case 4
1234000 T | 2790 | 279%0 1234000] 2900 | I | 3035 | 2935
1243000 2725 | 2725 | 2805 | 2805 1243000| 2900 | N | 3035 | 2935
1324000, EN0 [HI@ | 2770 | 2770 1324000 2900 | JH | 3035 | 2935
1342000! XN | RN | 2770 | 27170 1342000, TR | W | 3035 | 2935
1423000{ 2725 | 2725] 1423000 B | BB | 3035 | 2935
1432000 NN | NN | 2795 | 2795 1432000 BN | B | 3035 | 2935
2134000 ENIR (BN | BN | BB 2134000| 3470 | [| 3035 | 2935
2143000; 2725 | 2725 | | 8 2143000 3470 | [| 3035 | 2935
2314000, Y (NN | BN | DR 2314000 3470 | HEN | 3035 | 2935
2341000{ 2770 | 2770 | 2725 | 2725 2341000| 3375 | 3130 | [| 2815
2413000(2865 | 2865 | 2725 | 2725 2413000{ 3375 | 3130 | N | 2815
2431000(2865 | 2865 | 2725 | 2725 2431000| 3375 | 3130 | PR | 2815
3124000 B | 2770 | 2170 3124000} 2900 3035 | 2935
3142000 B | 2770 | 2770 3142000 NS | R | 3035 | 2935
3214000 2720 | 2720 | 2725 | 2725 3214000{ 3470 3035 | 2935
3241000| 2780 | 2780 | 2750 | 2750 3241000 3375 | 3130 | EEER
3412000 [0 2785 | 2785 3412000| 3305 | 3130 -
3421000 2715 | 2715 | 2750 | 2750 3421000] 3225 | 3130
4123000| 2785 | 2785 | 2760 | 2760 4123000{ 3305 | 3130
4132000 o] 4132000{ 3305 | 3130]
4213000{ 2795 { 2795 | 2725 | 2725 4213000] 3225 | 3130 i
4231000| 2795 | 2795 | 2725 | 2725 4231000| 3225 | 3130 |
4312000] 4312000 3305 | 3130
4321000] 2720 | 2720 | 2725 | 2725 4321000 3225 | 3130
Highest| 2865 | 2865 | 2805 | 2805 Highest] 3470 3035 | 2935

Y | I | B |

|
8

Standard| 484 | 484 | 314 | 314 Standard] 249.8 970 | 613
Deviation Deviation
Average| 2741.5 | 2741.5 | 2743.8 | 2743.8 Aven‘ge[3180.1 | 3080.3 | 2940.3 | 2875.0

Table 18, Load Sequence
Overall, several patterns are observable in Table 18, such as the interchangeable nature of
part type 1 and 3 in the non-sequential case. However, what has not been determined is
how to predict when a specific loading sequence results in a higher than average
throughput time, or how to select a sequence which would produce the lowest throughput
time. Various hypotheses were perused to correlate the loading patterns and throughput

results but no conclusive pattern was found. This problem requires further investigation.

57

5. Conclusions

The objective of this thesis is to enhance the notion of flexibility in “flexible”
manufacturing cells so that a cell’s utility can be enhanced by using a computer
implemented scheduler. This aim has been achieved by allowing multiple parts to be
processed concurrently without using predetermined cycles of robot movement. The
program developed to control the FMC performs reliably. It provided tools for
dynamically selecting parts and controlling the rabot’s movements to complete complex
batch demands with lower throughput times than is possible by processing one part type
at atime. The other significant contribution was to develop a dynamic manufacturing cell
which could process parts non-sequentially, an issue which has not been addressed

adequately in the literature.

The simulation program, developed in conjunction with the control software, allows users
to experiment with a multitude of variables that exist in the FMC environment prior to
selecting a strategy that best fits a production run. Experiments using this software
demonstrated its potential as a tool for examining different FMC control heuristics, and
the effect of buffers on the throughput as well as part loading order questions. From these
experiments a general understanding of the complexity of this enhanced flexible

environment can be gained.

The first critical issue that the simulation software helped to verify was that, in all cases,

the concurrent processing of parts is more desirable than processing parts in cycles when

58

trying to minimize the batch throughput time. The software also helped to study the
relationship between robot’s move to machining times. When this ratio was low
(between 1:1 and 1:10), the throughput times were less predictable due to the robot’s path
changing. However, it was observed that this relationship became more predictable once
the ratio of the robot’s move to machining times was higher than 1:10. At this point all
robot movements occurred while all the stations were engaged in machining. This

resulted in a steady increase in the throughput time.

The software also helped to confirm that, from the perspective of batch throughput time,
using an ‘unload always’ robot movement rule is consistently superior (albeit marginally)
to a ‘load always’ rule. Numerical simulations also suggested that there was a limit to the
number of buffers that could be added to reduce the throughput time. It was shown that,
after a point, buffers began to work more as a storage device than as dynamic transfer
points. Increasing the number of buffers can enhance the performance of the cell but

excess work in progress in arguably not desirable.

The question of non-sequential processing versus sequential processing was also
examined using the simulation software. The results show that non-sequential processing,
when possible, reduces batch throughput times, thereby increasing the utilization of a
cell. Factors that increase or decrease the significance of this improvement include the
number of machines in the FMC and the location of the “bottle neck machine” or the

machine most in demand in the machining processing cycle.

59

The final set of experiments showed the effect on the batch throughput time of the
sequence in which parts are introduced into the cell. Consideration of sequence in which
parts are introduced proves to be significant depending on the process requirements of the
parts in the batch. An experiment of 24 different part sequences was tested with four
different batch orders of 40 parts. Each batch required a total of 135 minutes of
machining. As a result of the different part orders there was a 1% variation in the batch
throughput time using non-sequential processing, and a 7.8% variation in sequential
processing. Overall, the loading sequence had a greater effect on sequential processing
than that produced by non-sequential processing. However, no easily generalized
patterns were obvious for selecting the sequence that generates the smallest batch
throughput time. Thus far, the only way to determine the best sequence in which to load
part is to simulate all combinations and aliow the software to choose the best part

sequence for a given scenario which can not be done in real time.

6. Further Work

The software has the flexibility to handle a broad range of FMC designs and part
processing possibilities. It would be worth while to find an industrial FMC setting to test
the software. Given a specific situation, the software’s variables could be honed to
specific criteria and the simulation tool could be used better to examine the effects of
different production options such as the machine layout, buffer size, batch size, non-

sequential processing (where possible) and loading sequences of parts.

The question of ‘loading sequence’ of parts has not been answered. Although search
algorithms exist that can find optimal sequences for batch processing, most are only
effective off-line. Furthermore, they require a long processing time or they can handle
only limited conditions. In my opinion, a more robust dynamic solution is required. It is
in this area that a neural network could, perhaps, be used gainfully to identify a weighting

scheme for selecting loading sequences to produce the shortest batch throughput time.

61

7. Reference

BuzacottJ.A.,, Shanthikumar,J.G. (1980) “Models for Understanding Flexible
Manufacturing Systems” Management Science, Vol. 12, No.4 pp 339-349.

ChenH., Chu,C., Proth,J M. (1997) “Sequencing of Parts in Robotic Cells” 7he
International Journal of Flexible Manufacturing Systems, Vol. 9, pp 81-104.

Chen,H.G., Guerrero,H.H. (1990) “Robot Scheduling System for Flexible Manufacturing
Cells” IEEFE International Engineering Management Conference, pp 113-118.

Cheng,C.W., Sun,T.H, Fu,L.C. (1994) “Petri-Net Based Modeling and Scheduling of a
Flexible Manufacturing System” 1994 IEEE, pp 513-517.

Kamoun,H., Hall,N.G., Sriskandarajah,C. (1993) “Scheduling in Robotic Cells:
Heuristics and Cell Design”, Working Paper 93-07, University of Toronto.

King,R.E., Hodgson,T.J., Chafee, F. W. (1993) “Robot Task Scheduling in a Flexible
Manufacturing Cell” JIE Transactions Vol. 25, No.2 pp 80-87.

Kumar,R., Li,H., (1994). “Assembly Time Optimization of PCB Assembly”
Proceedings of the American Control Conference Baltimore Maryland pp 306-310, June.

LinL., Wakabayashi, M., AdigaS, (1994) “Object-Oriented Modeling and
Implementation of Control Software for a Robotic Flexible Manufacturing Cell” Robotics
& Computer-Integrated Manufacturing Vol. 11, No.1 pp 1-12.

Moreno,A.A., Ding,F.Y. (1993) “A Constructive Heuristic Algorithm for Concurrently
Selecting and Sequencing Jobs in an FMS” Environment International Journal of
Production Research Vol. 31, No.5 pp 1157-1169.

Niemi,E., Davies,B.J. (1989) “Simulation of An Optimizing FMS-Cell Control System”
Robotics & Computer-Integrated Manufacturing, Vol. 5, No.2/3 pp 229-234.

Park,Y.B., (1994) “Optimizing Robot’s Service Movement In A Robot-Centered FMC”
Computers & Industrial Engineering Vol. 27, No.1-4 pp47-50.

62

Rebaine,D., Strusevich,V.A. (1999) “Two Machine Open Shop Scheduling with Special
Transportation Times” Journal of the Operational Research Society Vol. 50, pp 756-
764.

Stecke,K.E. (1985) “Design, Planning, Scheduling, and Control Problems of Flexible
Manufacturing Systems” Annals of Operations Research 3, pp 3-12

Sethi,S.P., Sriskandarajah,C., Sorger,G., Blazewicz,J., Kubiak,W. (1992) “Sequencing of
Parts and Robot Moves in a Robotic Cell” The International Journal of Flexible
Manufacturing Systems, Vol. 4, pp 331-358.

Singh,N., (1996) Systems Approach to Computer-Integrated Design and Manufacturing
John Wiley & Sons, Inc New York.

Yalcin,A., Boucher,T.0., (1999) “An Architecture for Flexible Manufacturing Cells
With Alternative Machining and Alternative Sequencing” JEEE Transactions on
Robotics and Automations, Vol. 15, No.6 pp 1126-1130.

Wemmerlov,U., Hyer,NL.,, (1997) “Research issues in Cellular Manufacturing”
International Journal of Production Research, Vol. 25, pp 13-431.

63

1£°)

HAddIEdO
104804

VNS L
TOHINOD

S¥344ng

d4 1 IOHINOOD

——@O w-_.-:ﬂow.ﬁ:-ﬂz Q—nmﬂo—h— .*Av ~=°~hﬂw.—--no----------.-o..o..oc.-o < %m—U=0n—a—<

Appendix Bcccere0.... ROboOt program

This is the main robot control program. It loops continuously during operation.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

Velocity 1000-2000 mm/sec (This sets the minimum and maximum movement speed)
Robot coordinates (This sets the movement's frame of reference)

Tool center point 0 (Indicates the robot's point of reference)

Frame 0 (This sets the work envelop)

Jump to line 200 if input 1 is high
Jump to line 220 if input 2 is high
Jump to line 240 if input 3 is high
Jump to line 260 if input 4 is high
Jump to line 280 if input S is high
Jump to line 300 if input 6 is high
Jump to line 320 if input 7 is high
Jump to line 340 if input 8 is high
Jump to line 360 if input 9 is high
Jump to line 380 if input 10 is high
Jump to line 400 if input 11 is high
Jump to line 420 if input 12 is high
Jump to line 440 if input 13 is high
Jump to line 460 if input 14 is high
Call program 21

Jump to line 540

Call program 22

Jump to line 540

Call program 23

Jump to line 540

Call program 24

Jump to line 540

Call program 25

Jump to line 540

Call program 26

Jump to line 540

Call program 27

Jump to line 540

Call program 28

Jump to line 540

Call program 29

Jump to line 540

Call program 30

Jump to line 540

Call program 31

Jump to line 540

Call program 32

Jump to line 540

Call program 33

(These jump-to statements are prompied by
the control program)

(The call command allows this program to run
another program from within the main program)

450 Jump to line 540

460 Call program 34

470 Jump to line 540

480 Reset output 1 (If no call is made, the internal variable is reset)
490 Return (The program returns (o the beginning)

The following is an example of one of the 14 programs called from within the main
program,

10 Velocity 1000-2000 mm/sec (Same setup parameters as in the

20 Robot coordinates main program)

30 Tool center point 0

40 FrameO

50 Setoutput 1 high (This ensures no other message is set before this routine is completed)
60 Move to xxyyzz (Preset location)

70 Move to xxyyzz at 20% velocity fine (Slows down for delicate placement)
80 Turn off gripper (Part is released)

90 Move to xxyyzz at 20% velocity fine (Robot slowly retracts)

100 Move to xxyyzz

120 Return (Program returns to main program)

The following is a description of the function of each called program.

Program 21 goes to the input buffer and picks a new part and returns it to a central
position.

Program 22 goes from the central position with a part and releases it at the output buffer.
Program 23 goes from the central position with a part and releases it at the top of the
buffer at station #1 and returns to the central location.

Program 24 goes from the central position with a part and releases it at the top of the
buffer at station #2 and returns to the central location.

Program 25 goes from the central position with a part and releases it at the top of the
buffer at station #3 and returns to the central focation.

Program 26 goes from the central position with a part and releases it at the top of the
buffer at station #4 and returns to the central location.

Program 27 moves from the central to just above station #1.

Program 28 moves from the central to just above station #2.

Program 29 moves from the central to just above station #3.

Program 30 moves from the central to just above station #4.

Program 31 precedes program 27, it picks up the part at station #1 and retums to the
home position.

Program 32 precedes program 28, it picks up the part at station #2 and returns to the
home position.

Program 33 precedes program 29, it picks up the part at station #3 and returns to the
home position.

Program 34 precedes program 30, it picks up the part at station #4 and returns to the
home position.

Appendix Ccocveeeanee.. PLC program
Logic Ladder

Inputs from limit switches at the processing stations lacated at the bottom of each buffer;
At station #1 the limit switch 00103 goes high when the station is occupied.
At station #2 the limit switch 00102 goes high when the station is occupied.
At station #3 the limit switch 00101 goes high when the station is occupied.
At station #4 the limit switch 00100 goes high when the station is occupied.

The outputs from the PLC to the [/Q board connected to the PC are based on the status of
4 timers.

An output becomes high only when a timer (started by a switch at on of the stations) has
been on for a pre-set number of seconds.

Timer T1, which is associated to switch 00100 sets output 10000 or 0 high

Timer T2, which is associated to switch 00101 sets output 10001 or 1 high

Timer T3, which is associated to switch 00102 sets output 16002 or 2 high

Timer T4, which is associated to switch 00103 sets output 10003 or 3 high

00100

10000

00101

10001

00102

10002

00103

T
CECRIORS

10003

Figure C1 Logic ladder

67

89

PaYOaYD BIB SAYOUMS SNOLBA BY)
jo smejs ay) Bujuuns s} DN Byl 51
snejsJayng e

sjuswasnnbas yed o

sonanp e

Jaunoopewly e

:a)epdn saAow 10qoy

ueyd moj4 g einbyd4

(Buipeot} Buiznuougd sjdwex3z) peysn moj4 wesboad

ssadoud
131nbas xau ay) aq Isnw)|

oU jenuanbas si Buissaooid j » ssaoud Isuy ay) aq isnwi
ssasoxd sped ‘lejuanbas s) Buissaoosd) o

painbay pau ay) aq jsnw Joyio 2 PIJUOD OU sped
¥ {Bliuanbas st Buissanoid) o N M._m”._ﬂ._m:ﬂwh .we_:co) * 19410)M SISIXE PIJUOD OU =

syed) sak ved ay) YoIum uopels © Kyoedeo vopiels
43410 YUM SISIXD PIPUoI O« je ackds Jaynq SIS 1oy} e Pa30Xa Jou Sa0p Ped Mol e
‘Buiuyorw saxnbes :SUOPUOD ‘suojupuod
ued ayl ysiym uopels suop ped 18Iy ‘2 sapio ped o) Buptoooe ‘g

e 18 aoeds Jaynqg (Guipeojun 4 - sjuawannbas sjuawauinboas ss9001d
JaYe ISIX3 ||IM JO) SISIXO aIaly) e auop ped 1)y ‘2 sseooid 1saybiy 159yBiYy yum aujyoew g
‘suopuod sjuawainbas UM suigoRwW 18 ped -y sued i1sea) yum uopels °|
auop ped sy ‘| ssaooud ysaybyy ; “Kjoug Koud

:Auoug UM auiyoeuws ye ped -y j
Hiwoud -uoneys uoness e o} yed
. S .mw_hw; pue yed -ssanosd MBU je || SPEo| pue uofiels _oM.BE PUE SUO[IPUCD UonE}s
® .mopwu..“mﬁﬂa”ww._ uvoa_u“ e Pa1eIdwoD sey yoiym auo je Buiuiyoew paysiul pue Equ,._:cﬂ_ sseooid
: yed e |82 8y} WoJj SA0WaY sey yoym yed e saye) S}l Uo peseq ued e o9|es
_ I _ |
L1IVM 3AON avoiINn Z avOo1 L3HS avol

I,

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

a xipuaddy

Appendix E Ceeecnevuenns Data for Unload Versus Load Comparison

Condition: Two Buffers, 15 Parts

machining time

90

nonsequential

load
unload

nonsequential

load

sequentially
unload

sequentially

2a
o

415
410
425
460
475
495
530
570
615
660
705
755
805
855
905
955

95| 1005
100] 1055

425
445
440
450
455
465
455
480
510
565
600
645
695
745
795
845

s
ouo

445
455
495
520
565
610
655
710
765
820
875
930
990

895 1050
945 1110
995 1170
1045 1230

430

445
420
410
440
465
455
530
605
580
610
710
775
825
875
930|
985
1040
1095

Total Batch Time(s)

1300 -

Load Versus Unload

1250
1200 =
1150
1100 A,
1050
1000
950 ﬁ;f —&—|0ad nonsequential
900
850 ‘7‘ =i~ unload nonsequential
800
750 —&r—|oad sequentially
700
650 =3¢ unload sequentially
600
550
500 -
450
400
350
300 +—+——7—7—r+T1T " T T+
© P P & & & &

Machining Time(s)

1150]

Table E1 Load Versus Unload

Figure E1 Load versus unfoad

69

02

j1ejep peojun SNSIOA peo_ Z3 9.nb14

(s)own) Bujupyory
G9 09 GS 0S GY O GE 0€ 62 0C SL 0L S

Ajlequanbas peojun —m— ;/ G/.S
Alenuanbas peo|—— 009 p

fenuenbasuou peojun —— G29
{enuenbesuou peo|—a—| | 0G9 =

ews) Buiyoew —e— G/l9

]/ 002

77 GClL

7 06,

v 7 GlLL

7 008

gl8

0S8

Hejyeg

peojun SNSIap peo

Appendix Fcceeeune reasons Data for Buffer Analysis

This file contains 4 worksheets

The objective of this study, as explained in section 5.3, is to examine the effects
of buffers on the batch throughput time.

The four experiments conducted tested the batch throughput time, with
incrementing machining time from 5-100 seconds with 0,1,2,3,4,5,6 buffers.

The four different scenarios tested where; unloading priority sequential

processing, loading priority sequential processing, unloading priority
nonsequential processing, and loading priority nonsequential processing.

4l

Machining Unload Priority Sequential Processing
Time(s) [buffers=0 {buffers=1 [buffers=2 |buffers=3 |buffers=4 |buffers=5 |buffers=6
5 445 430 430 430 430 430 430
10 450 445 445 445 445 445 445
15 445 420 420 420} 420 420 420
20 470 410} 410 410 410] 410 410
25 525 440 440 440 440 440 440
30 570 490 485 485 485 485 465
35 615 470 455 455 455 455 455
40 875 510 530| 500] 500 500 500
45 735 550 805 505 505 505 505
50 795 605 580 560 560 560 560
55 855 655 610] 590 595 595 595
60 915 705 T10{ 730| 670 850 850
65 975 760 775 765 720 700| 700
70 1035 815 825 810 760] 740 740
75 1095 870 875 870 800) 795 795
80 1155 925 930 920 840 825 825
85 1215 980 985 975 890| 875 875
90 1275 1035 1040 1040 gs0] 930 930
95 1335 1080 1085 1105 995 980 980
100 1395 1145 1150 1155 1040] 1025 1025
Table F1 Unload Priority Sequential Processing Data
Buffer Comparison
Unload Priority Sequential Processing
1700
1500
= 1300 ~—Dbutfers =0
E ~@—butfers =1
E 1100 —at— buffers =2
§ 900 ——buffers =3
§ —p—buffers =4
e 700 S —e—buffers=5
500 - —t— b uffers =6
300 L2 T N] + LR S S 3 ey T LM S SR BN Sl S o
@8 P H PSP P
Machine Time(s)

Figure F1 Unload Priority Sequential Processing

72

Machining Load Priority Sequential Processing
Time (s) [buffers=0 buffers=1 buffers=2 buffers=3 buffers=4 buffers=5 buffers=6

S 445 435 425 425 425| 425 425
10 445 435 425| 425 420) 415 415
15 455 435 420 430 405| 400| 400
20 515 445 445 445 445 375 375
25 575 450 455 450 445 385 395
30 845 495 495} 495 4685 435 435
35 715 525 520| 515 490 480 480

40 785 555 585| 545 §35 525 5§25
45 855 615 810 $90 $80| 570 570
S0 925 680| 855 835 825 615 615
55 995 745 710 685 870| 660| 660
60 1065 810] 785 735§ 715 705 705
65 1135 875 820 785 760| 750 750

70 1205 940| 875 835 805 795 785
75 1275 1005 930 885 850| 840 840
80 1345 1070 990 935 895 885 885
85 1415 1135 1050 285 940| 930 830
90 1485 1200 1110 103§ 985 975 975

95 1555 1265 170 1085 1030] ~ 1020 1020
100 1625 1330 1230 1135 1075 1065 1065
Table F2 Load Priority Sequential Processing Data

Buffer Comparison
Load Priority Sequential Processing

1800

1600
w 1400 ~—o—Dbuffers=0
g 1200 —a—buffers=1
E 1000 —a—buffers=2
8 ——Dbuffers=3
3 800 | |—m—buffers=4
3 600 —e—buffers=5
= 400 | ——buffers=6

200

0

wn e D wn wn [12] 0 n \n
- N (3] < g © [(-] [}
Machining Time(s)

Table F2 Load Priority Sequential Processing

73

Machine Unload Priority Nonsequential Processing
Time (s) [buffers=0 buffers=1 buffers=2 buffers=3 buffers=4 buffers=5 buffers=6

5 445 425 425 425 425 425 425
10 450 445 445 445 445 445 445
15 445 440 440 440 440| 440| 440
20 485 450} 450 450 450| 450] 450
25 515 455 455 455 455 455 455
30 S65 480| 465 485 485| 465 485
35 875 480 455 455 455 455 455
40 740 485 480 475 475 475 475
45 805 575 510 515 515 515 515
50 870 625 565 560 580 580| 560
55 935 875 600 595 600} 00| 600
60 1000 730 645 635 645 845 645
65 1085 785 6985 890 885 690| 690
70 1130 840| 745 735 735 735 735
75 1195 895 785 790} 780 780} 780

80 1260 950| 845 840 825 825 825
85 1325 1005 895 850} 880 880 880
90 1390 1080 945 40| 825 925 925
95 1455 1115 995 890| 880 980 980
100 1520 1170 1045 1040 1030] 1025 1025
Table F3 Unload Priority Non-sequential Processing Data

Buffer Comparison
Load Priority Nonsequential Processing

1700

1500 o] |—¢—buffers=0
) A | e buters=
2'13& ers=1
-,g 1100 —4— puffers=2
£ 900 —%— buffers=3
= 500 A —e— buffers=5

m 1 L} L] L] L] L] T T 1 1 13 T L L} L] Ll Ll T +

CR PP PEOSP
Machining Time(s)

Figure F3 Unload Priority Non-sequential Processing

74

Machining Load Priority Nonsequential Processing
Time buffers=0 buffers=1 buffers=2 buffers=3 buffers=4 buffers=5 buffers=6
5 445 405 405 410 420| 420 420

10 445 405 415 410] 440 425 425
15 455 410 415 430 435 415 415
20 510 450 410 430 435 435 435
25 565 485 425 430 435 435 435
30 635 495 480 445 440 450 450
35 705 550 475 450! 470 470 470
40 775 810] 495 510| 495 525 525
45 845 e70[530 530} 535 555 555
50 915 735 570 575 575 585 585

55 985 800 815 615 820 830 630
60 1055 865 680| 855 665 875 675
65 1125 930 705 700 710 720 720

70 1195 995 755 745| 755 785 765
75 1265 1060 805 790 800 810 810
80 1335 1125 855 840 845 855 855
85 1405 1190 905 890] 890 900 800
90 1475 1255 955 940 835 945| 945
95 1545 1320 1005 890 980 990 990

100 1615 1385 1055 1040 1030 1035 1035
Table F4 Load Priority Non-sequential Processing Data

Buffer Comparison
Load Priority Nonsequential Processing
1700
1500
< 1300 .i —e—buffers=0
v —a—buffers=1
E 1100 ~—a&— buffers=22
£ =
% 900 ——buffers=3
@ —x—buffers=4
§ 700 —e—Dbuffers=5
——buffers=6
500 A
300 A S | Sun 1 L 4 T ¥ T 13 LI L4 L L} L | L]
S0P PP PSP P
Machining Time(s}

Figure F4 Load Priority Non-sequential Processing

75

Appendix Gccccveisnsaens Data for sequential vs nonsequential and load
sequence study

This file contains 9 worksheets

Batch order 3.1,3.2,3.3,3.4 refer to the batch order specified in section 5.4.

Four different cases were run using 24 different part loading sequences under the
sequential(seq) and nonsequential (ns) part pracessing conditions using prioritizing

unloading only.

The data is summarized in the worksheet-titled Summary of Data for Different Load
Sequences.

76

The day of the experiment was: 29 9 2000

The fime of the experiment was: 10:51:17.23

Batch order 3,1 non-sequential data

heuristic used for robot move prioritization 2 (untoad)

parts were loaded sequentailly/nonsequentially 0/1 1

station 1 processing time 90 buffers 2

station2 processing time 90 buffers 2

station 3 processing time 90 buffers 2

station4 processing time 90 buffers 2
10 Parttype 1 needed to be processed on the following stations 1 1 0 0 0
10 Parttype2 needed to be processed on the following stations 0 1 1)] 0
10 Parttype 3 needed to be processed on the following stations o 0 1 1 0
10 Parttype 4 needed to be processed on the following stations 1 1 0 1 0

station utilization idle time free time part1 part2 part3 partd
st sth) StH1 stN2 sSt¥2 sSt¥2 st#3 st#3 ste3 st#d st#4 steq4 [total residence timespart

sequence part order total run

number free free utiliz time
1 0 10 1800 125 785 1800 140 4668 2710
2 O 251800 85 840 1800 680 B45] 416 362 4555 466.5 2725
3] 1324000 1800 55 855 2700 O 10 1800 70 840 1800 75 835 4035 367 440 467.5| 2710
4] 1342000] 1800 75 835 2700 0 10 1800 145 765 1800 _ 75 835| 4035 372 440 472 2710
5| 1423000] 1800 155 770 2700 O 25 1800 80 845 1800 75 B50] 416 364 4555 4515 2725
6] 1432000] 1800 225 685 2700 0 10 1800 70 B840 1800 55 855] 443.5 309 434.5 4735 2710
7] 2134000] 1800 205 705 2700 0 10 1800 120 790 1800 120 790] 408 359 405 474.5 2710
8] 2143000 1800 220 705 2700 0 25 1800 55 870 1800 65 860] 431.5 355 407 466 2725
8] 2314000] 1800 205 705 2700 0 10 1800 120" 790 1800 120 790] 408 350 405 4r4.5| 2710
10| 2341000] 1800 165 805 2700 60 10 1800 115 855 1800 115 855| 415 380 _ 400 5245 2770
11] 2413000] 1800 260 805 2700 140 25 1800 35 1030 1800 75 990] 4235 357 3795 537 2665
12] 2431000] 1800 260 805 2700 140 25 1800 35 1030 1800 75 ©00| 423.6 357 379.5 537 2665
13[3124000] 1800 55 855 2700 O 10 1800 70 840 1800 75 635] 4035 367 440 467.5 2710
14_{ 3142000] 1800 75 835 2700 O 10 1800 145 765 1800 75 835] 4035 372 440 472 2710
15 3214000 1600 315 6052700 0 20 1800 60 660 1800 135 765 435 346 4135 480 2720
16] 3241000] 1800 125 855 2700 70 10 1800 55 925 1800 105 8675 385 350 3915 522 2780
17] 3412000 1800 145 _ 765 2700 0 10 1800 200 710 1800 210 700 396.5 386 435 506 2710
18] 3421000 1800 405 510 2700 5 10 1800 40 675 1800 55 800] 4955 381 343.5 5355 2715
19] " 4123000] 1800 55 930 2700 60 25 1800 685 900 1800 30 055 351 373 407.5 472 2785
20] 4132000] 1800 300 610 2700 0 10 1800 100 810 1800 40 B870] 463 370 424.5 460.5 2710
21| 4213000 1800 55 940 2700 70 25 1800 90 905 1800 30 965] 362 253 3925 479] 2785
22[4231000 1800 56 940 2700 70 25 1800 90 805 1800 30 965| 362 353 3925 479] 2795
23] 4312000] 1800 300 610 2700 0 10 1800 100 810 1800 40 870| 463 370 4245 4605 2710
24] 4321000 1800 60 860 2700 10 10 1800 55 865 1800 OO0 830 364 366 430 4695 2720

Table G1 Batch order 3.1 non-sequential data
77

8L
ejep [epuanbas-uou Z'g Jopio yojeg £ ejqel

ozLe S'60y OtV S'SPE +O€ JoEB 06 ©008BL 598 S5 008L OL OL 002 098 09 008 locoLzer ve
oLLe S'09F SPZy S69¢ £9b 08 O 008L OL8B O0L 0OBL OL O 00/Z 019 00¢ 008l |oooZiey ez
§6.2 6l SZ6C €SE 2ot G96 OE 008BL S06 06 00BL SZ 0. 00/Z Ov6 GS 008L |OOOLEZY |Zz
662 6l SZ6E ESE Z9E S96 Ot _008L S06 06 008l SZ 0L 00LZ O¥6 SS 008L |OOOELZY ¥4
oLz S09P S'PZy G6OE Eop 0/8 O 0081 OL8 00 O0OBL OL O 0042 019 _00e 008L Jooozely oz
£8.2 Sy S0 ElE LSE G656 0€ 00BL 006 S8 008 ST 09 00/ OE6 SS 008L |OOOEZLY |6l
stie GGES SEFPE SDBE GS'S6F (098 GS 00BL S8 OF QOBL OL S 00.Z 0LS Sov 008l |oooizve [sL
oLz 906 SEY GSBE G'96E J00L OLZ 008L OLL 00Z 008, OL O 00/Z S9._ Sti__008L Jooozite 24
082 ZTS __ S'L6E SBFE SBE Gl8 SOb _008BL _S26 SS O008L OL 0L 00/Z SS8 Szl 008l l000LPZE [
ozle 68y SELF OPE SEP G8. SEL 008L 098 09 GOBL OZ O 00:2 so9 SiLe 0084 |ooovize Sl
oLe Ly Obb Cle GeOb |SEB SL 008L S9L Skl 00BL OL O 002 S€8 SZ 008L |00OZHLE pL
oLz S'lgy obb 498 SEOF |SE@ G2 00BL Ob8 OL O08L OL O 00/Z SS8 SS 008l |ooovZie et
6982 LEG S6l€_LGE SEZh 066 S. 008L OEOL SE 008BL SZ OVl 00/Z SOB 09Z 008L |0OOLEVZ |z
[114 186 G6/6 IS Ge2r 066 S/ 008L OEOL SE 00BL SZ OFL O0DLZ SO8 09Z 008L |000ELPZ Lb
0L1Z S'¥TS 00V S'6L€_ Si¥ 669 GLL 008L SS8 SIL 0GBL OL 09 00/ SO9 S9i 008L JOOOLYEZ IOt
0Lz S'vlb _ SOb G'8SE 80 06. 0ZL 008L 062 OZ4 008k DL O 00iZ S0. SOZ 008l loooviez |8
SziT 99y I0b GS€ G'ler 1098 SO 00BL 0J8 SS 006l SZ O 0042 S0. o0zZz o008l |ooocwiZz |e
oL Sviy SOb G'8SE 6OV 06/ OZL 00BL 06. OZL 0OBL OL O 00/2 _S0. soz 008t |ooovElZ l
0LLZ G'ELr S¥EF GBOE GEPP [SGH S5 00BL ObB 0. OOBL OL O 00/Z S89 SZZ 008L j000Zckl 9
ezLE Sl StGh GEOE Bib Sbe 0 S
oLz ZLy Obb ZIE SEOP 0 [
[T SIOF Oby 106 Sty 0 €
ST S'g9y GGG S'L9E OLY 0 4
0122 S'86y 99b S'Lie_ Z8E lozz 0 L

sw @34 AsSng zZiyn a9y jequinu

uns jejoy yedmwy oouepisa) B0} IS bMIS PMS EMIS EMS CMS ZS TS THS AMS IMs s iepio yed eousnbes

pued cped zZued | ped awl)} 894 sLuy o|p) uogeZRN UoNE}S

0 L o I suonejs Buimojio} oy} uo passesosd oq o) pepeau adA) ued ot
0 1 L o 0 suopejs Guimoio) ay) uo passecoid aq o) papeau ¢ adA) Led ol
0 0 Lol 0 suojies 6uimolio) 8y uo passacold aq o) papaau Z adky ued 0L
o 0 V! 1 suopne}s 6uimojio} ay) uo passadosd aq o) papasu | @df) ped 0L

2 sJaYnqg 06 owp Buisseooid ¢ uoels

rA s194nq 06 oawnp 6uissacoid ¢ uoness

Z sJaynqg 06 awn Bujssaocoid Z uoye)s

ré siolng 06 awp Buissasord } uoiels

L L/0 Alfeituanbasuouy/Ajjiejuanbas papeo) elam sped

{peojun) z uonezpuoisd eAow joqol 40 pasn djjspnsay

ejep jepuanbas-uou z'¢ Jopio yojeg

LL'EEL0 LY ‘Sem Juapadxe ayt Jo awny oy

0002 6 62 :sem Juawyiadxa ay} jo Lep ay|

The day of the experiment was; 29 9 2000

The time of the experiment was: 11:11:50.09

Batch order 3.3 non-sequential data

heuristic used for robot move prioritization 2 {unload)

parts were loaded sequentallly/nonsequentially 0/1 1

station 1 processing time 90 buffers 2

station 2 processing time 80 buffers 2

station 3 processing time 90 buffers 2

station4 processing time 90 buffers 2
10 Part type 1 needed to be processed on the following stations 1 1 0 0 0
10 Part type 2 needed to be processed on the following stations 0 1 1 1] Q
10 Part type 3 needed to be processed on the following stations 0 0 1 1 0
10 Pant type 4 needed to be processed on the following stations 1 0 1 1 0

station utilization idle time free time part1 part2 pat3 part4

sequence partorder [sth1 stF1 st stE2 st#2 stB2 sSH3 sStE3 stE3 st#4 sted4 sted [total residence timespart total run

number utiliz_busy free utiliz busy free utiliz busy free ufiliz busy free time
1] 12340001 1800 90 900 1800 45 845 2700 70 20 416800 190 800] 396 338 461 4625 2790
2] 1243000] 1800 45 960 1800 85 920 2700 95 10 1800 S50 955 377 357 _367 5085 2805
3] 1324000] 1800 75 895 1800 35 9352700 60 10 1800 265 705 3715 372 5035 463.5 2770
4] 1342000[1800 75 895 1800 35 935 2700 60 10 1800 265 7O05] 371.5 372 503.5 4635 2770
5| 1423000] 1800 80 &20 1800 60 850 2700 0 10 1800 150 760] 439.5 3683 461 476 2710
6] 1432000] 1800 105 690 1600 100 895 2700 B85 10 1800 230 765] 387.5 393 420 5125 2795
7] _2134000] 1800 145 765 180D 60 B850 2700 0 10 1800 110 BOD| 437.5 345 3585 4725 2710
8] 2143000] 1800 55 855 1800 110 800 2700 0 10 1800 225 685] 4385 345 4305 480 2710
8] 2314000] 1800 145 765 1800 60 850 2700 0 10 1800 110 800] 437.5 345 3565 472.5 2710
10] 2341000] 1800 95 830 1800 50 875 2700 0 25 1800 225 700 415 337 4435 4675 2725
1] 2413000] 1800 110 815 1800 75 850 2700 0 25 1800 165 760] 4665 366 4385 479.5 2728
12] 2431000t 1800 110 815 1800 75 850 2700 0 25 1800 185_ 760] 466.5 366 4385 479.5 2725
13] 3124000] 1800 75 895 1800 35 935 2700 60 10 1800 265 705| 3715 372 503.5 463.5] 2770
14| 3142000 1800 75 895 1800 35 935 2700 60 10 1800 265 705] 371.5 372 503.5 4635 2770
15] 3214000] 1800 95 830 1800 40 885 2700 15 10 1800 140 785] 3885 352 448 461.5 2725
16] 3241000} 1800 100 850 1800 65 885 2700 15 35 1800 150 800} 459 365 4305 476 2750
17] _3412000[1600 75 B10 1800 85 900 2700 65 20 1800 200 785] 4215 378 452 480.5 2785
18] 3421000| 1800 100 B850 1800 65 885 2700 15 35 1800 150 800] 459 365 4305 476 2750
19] 4123000{ 1800 120 840 1800 35 9252700 S0 10 1800 75 885] 3875 387 3695 5035 2760
20] 4132000] 1800 145 765 1800 90 820 2700 0 10 1800 150 760] 420.5 362 437 501.5 2710
21] 4213000] 18600 135 790 1800 115 810 2700 D 25 1800 65 860 401.5 342 380 5015 2725
22 4231000' 1800 135 790 1800 115 810 2700 0 25 1800 €5 860] 401.5 342 360 501.5 2725
23| 4312000} 1800 145 765 1800 80 820 2700 0 10 1800 150 760] 4205 362 437 5015 2710
24] 4321000] 1800 65 880 1800 115 810 2700 0 25 1800 330 S585] 4135 377 448 529 2725

Table G4 Batch order 3.3 non-sequential data

79

The day of the experiment was: 29 9 2000

heuristic used for robot move prioritization 2 (unload)

parts were loaded sequentailly/nonsequentially 0/1 1

station 1 processing time 90 buffers 2

station2 processing time 90 buffers 2

station 3 processing time 90 buffers 2

station4 processing time 90 Luffers 2
10 Part type 1 needed to be processed on the following stations 1
10 Part type 2 needed to be processed on the following stations 0
10 Part type 3 needed to be processed on the following stations 0
10 Part type 4 needed to be processed on the following stations 1

station utilization ldle time free time

00 aa

The time of the experiment was: 11:27:25.20

2w00
-k O

part 1

Batch order 3.4 non-sequential data

(=R =N~}

part2 part3 part4

sequence partorder [st#1 st#1 sSt#] st#2 st#2 st#2 sl st stE3 st#d4 sted sti4 [total residence time/part total run time
number il free
12340001 1800 S0 900 1800 45 ©45 1800 180 800 2700 20 398 3355 461 4625 2780
1243000] 1800 45 960 1800 B85 920 1800 50 955 2700 O5 10| 377 356.5 367 508.5
13240001 1800 75 805 1800 35 035 1800 265 705 2700 60 10| 371.5 372 503.5 483.5

75 895 1800 35 935 1800 265 705 2700

60

10] 3715

ONQLI\AQN-B
-
&
g

105 890 1800 100 895 1800 230 765 2700 . 363 420 5125
145 765 1800 60 850 1800 110 800 2700 0 10] 4375 3445 35685 4725

2605

2770

2770

2710

2795

2710

55855 1800 110 600 1800 225 685 2700 O 430.5 2710

o] 2314000 1800 145 765 1800 60 650 1800 110 800 2700 O 10| 437.5 344.5 3565 4725 2710
10| 2341000] 1800 05 &30 1800 50 875 1800 225 700 2700 O 25| 415 337 443.5 467.5 2725
112413000 I::woo:ﬁ[o: 815 1800 75 650 1800 165 760 2700 0 25| 4665 366 436.5 479.5 2725
12| 2431000/ 1800110 815 1800 75 850 1800 165 760 2700 _ O 25| 4665 _ 366 4365 479.5 2725
13[_3124000] 180075 895 1800__ 35 935 1800265 705 2700 60 10| 371.5 372 503.5_ 463.5 2770
14| 3142000] 1800 75 855 1800 35 935 1800 265 705 2700 60 10| 371.56 372 5035 4635 2770
15| 3214000] 180095 630 1800 40 885 1800 140 785 2700 15 10| 380.5 351.5 _ 446 4615 2725
16]__3241000] 1800100 850 1800 65 885 1800 150 800 2700 15 35| 450 3645 4305 476 2750
17| _3412000] 1600 75 970 1800 65 000 1800 200 765 2700 65 20| 421.5 3755 452 4805 2785
18] 3421000] 1800 100850 1800__ 65 885 1800 150 800 2700 15 35 450 364.5 4305 476 2750
18] _4123000] 1800120 B840 1800 35 925 1800 75 885 2700 50 10| 387.5 366.5 360.5 503.5 2760
20| 4132000 1800145 765 180090 620 1800 150 760 2700 O 10| 420.5 362 _ 437 5015 2710
21| 4213000 1800 __135 760 1800115 610 1600 _ 65 860 2700 0 25| 401.5 _ 342 _ 360 501.5 27125
22| _4231000] 1800 135 700 1800 115 €10 1800 65 860 2700 0 25| 401.5 342 360 501.5 2725
23] 4912000] 1800 145 765 1800 90 820 1800 150 760 2700 O 10| 4205 _ 362 _ 437_501.5 2710
24| _4321000] 1800 65 860 1800 115 810 1800 330 595 2700 O 25| 4135 377 448 529 2795

Table G4 Batch order 3.4 non-sequential data

80

The day of the experiment was; 29 9 2000 The time of the experiment was: 11:37:34.04 Batch order 3.1 sequential data

heuristic used for robot move prioritization 2 (untoad)

parts were loaded sequentailly/nonsequentially 0/1 0

station 1 processing time 90 buffers 2

station2 processing time 90 buffers 2

station3 processing time 90 buffers 2

station4 processing time 90 buffers 2
10 Part type 1 needed to be processed on the following stations 1 1 0 o 0
10 Part type 2 needed to be processed on the following stations 1 0 1 0 0
10 Parttype 3 needed to be processed on the following stations 0 0 1 1 0
10 Part type 4 needed to be processed on the following stations 1 1 0 1 0

station utilization idle time free time part1 part2 part3 part4

sequence |partorder |st#1 Sl st SN2 StH2 st#2 stEd st#3 stE3 strd stkd sted total residence time/part

number utiliz busy free utiliz busy free utiliz busy free utiliz busy free
1] 1234000 2700 0 200 1800 5 1085 1800 20 1080 1800 5 1095] 333.5 380 3385 452
2] 1243000 2700 0 200 1800 5 1085 1800 20 1080 1800 5 1095] 3335 3680 3385 452
3] 1324000 2700 0 200 1800 5 1085 1800 20 1080 1800 5 1085| 333.5 380 338.5 452)
4] 1342000] 2700 0 105 1800 S5 1000 1800 15 980 1800 20 985] 333 3575 3385 4545
5] 1423000] 2700 0 105 1800 5 1000 1800 15 990 1800 20 985! 333 357.5 3385 4545
6 1432000' 2700 0 105 1800 5 1000 1800 15 9980 1800 20 885] 333 3575 3385 4545
7] 2134000f 2700 570 200 1800 0 1670 1800 0 1670 1800 35 1635 390 86385 338.5 4525
8] 2143000] 2700 570 200 1800 0 1670 1800 0 1870 1800 35 1635 380 6385 3385 4525
9] 2314000] 2700 570 200 1800 0 1870 1800 0 1670 1800 35 1635 380 6385 3365 4525
10] 2341000] 2700 570 105 1800 0 1575 1800 0 1575 1800 5 1540] 360 6385 38 827
111 2413000 2700 570 105 1800 0 1575 1800 0 1575 1800 35 1540] 360 6385 346 627
12| 2431000] 2700 570 105 1800 0 1575 1800 0 1575 1800 35 1540] 380 B3B5 3468 627
13] 3124000 2700 0 200 1800 5 1085 1800 20 1080 1800 5 10085[3335 360 3385 452
14] 3142000 2700 0 105 1800 5 1000 1800 15 990 1800 20 985 333 3575 3385 4545
15] 3214000] 2700 570 200 1800 0 1670 1800 0 16870 1800 35 1635 390 6385 3365 4525
16] 3241000f 2700 570 105 1800 0 1575 1800 0 1575 1800 35 1540] 360 6385 346 627
17] 3412000] 2700 500 105 1800 665 840 1800 660 845 1800 5 1500} 665 362 6485 855

18] 3421000 2700 420 105 1800 665 760 1800 670 755 1800 5 1420 362 644 6405 855
19] 4123000f 2700 500 105 1800 665 840 1800 660 845 1800 5 1500, 665 362 6485 855]
20] 4132000 2700 500 105 1800 665 840 1800 660 845 1800 5 1500{ 665 382 6485 855
420 105 1800 665 760 1800 670 755 1800 5 1420] 362 644 6485 855
420 105 1800 665 760 1800 670 755 1800 855
2700 500 105 1800 665 840 1800 660 845 1800
2700 420 105 1800 665 760 1800 670 755 1800 5 1420

Table G5 Batch order 3.1 sequential data
a1

21
221 4231000
23] 4312000
24| 4321000

2700

848.,5

352 B44 B485 855

The day of the experiment was: 29 8 2000

The time of the experiment was: 11:49:52 68

Batch order 3.2 sequential data

heuristic used for robot move prioritization 2 (unload)

parts were loaded sequentailly/nonsequentially 0/1

station 1 processing time 90 Buffers 2

station 2 pracessing time 90 Buffers 2

station 3 processing time 90 Buffers 2

station 4 processing time 80 Buffers 2
10 Part type 1 needed 1o be processed on the following stations 1 1 D 0 0
10 Part type 2 needed to be processed on the following stations 0 1 1 1] 0
10 Part type 3 needed to be processed on the following stations 0 0 1 1 0
10 Part type 4 needed to be processed on the following stations 1 1 0 1 0

station utilization idle time free time part1 part2 part3 partd

sequence partorder |st#1 st#1 st#1 st¥2 sti2 st#2 st#3 sSt¥3 SH3 st#4 st#d st#d [total residence time/part total run

aumber i j time
3 678 4285 3325 7385 3030
4 2700 225 105 1800 30 1200 1800 30 1200] 678 4285 3325 73IBS 3030
5| 1423000] 1600 865 385 2700 225 105 1800 30 1200 1800 30 1200] 678 4265 3325 7365 3030
6] 1432000] 1800 865 365 2700 225 105 1800 30 1200 1600 3D 1200] 678 4265 23325 7365 3030
7] 2134000] 1800 665 365 2700 225 105 1800 30 1200 1800 30 1200] 678 4265 3325 7385 3030
8] 2143000(1800 865 385 2700 225 105 1800 30 1200 1800 30 12007 678 4285 3325 736.5 3030
9] _2314000] 1800 865 365 2700 225 105 1800 30 1200 1800 30 1200] 678 4265 3325 7365 3030
10] 2341000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] €75 4605 4365 9565 3130
11] 2413000 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4895 4365 0585 3120
12] 2431000] 1800 1080 270 2700 420 10 1800 155 1175 1800 10 1320] 875 4635 4365 9585 3130
13] 3124000] 1800 865 365 2700 225 105 1800 30 1200 1800 30 1200] 678 4265 3325 7365 3030
14| 3142000] 1800 665 365 2700 225 105 1800 30 1200 1800 ~ 30 1200] 678 4265 3325 7365 3030
15] 3214000] 1800 865 365 2700 225 105 1800 30 1200 1800 30 1200 678 4265 3325 738.5 3030
16 3241000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4695 4385 0565 3130
17§ 3412000 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4695 436.5 9565 3130
18] 34210001 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 468.5 4365 9565 3130
19] 4123000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4605 4365 956.5 3130
20] 4132000{ 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320 675 4695 4365 0565 3130
21] 4213000] 1800 1080 270 2700 420 10 1800 155 1175 1800 10 1320] 675 469.5 4365 956.5 330
22| 4231000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4695 4365 0565 3130
23] 4312000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 4605 4385 0565 3130
24] 4321000] 1800 1060 270 2700 420 10 1800 155 1175 1800 10 1320] 675 469.5 4365 0565 3130

Table G6 Batch order 3.2 sequential data

82

The day of the experiment was: 29 5 2000

The ime of the experiment was: 12:41:20.21

Batch order 3.3 sequential data

heuristic used for robot move priornitization 2 (unioad)
parts were loaded sequentailly/nonsequentailly 0/1 0
station 1 processing time 90 buffers 2
station 2 processing time 90 buffers 2
station 3 processing time 90 buftfers 2
station4 processing time 90 buffers 2
10 Part type 1 needed to be processed on the following stations 1 1 0 0 0
10 Part type 2 needed to be processed on the following stations o 1 1 o 0
10 Part type 3 needed to be processed on the following stations 0 0 1 1 0
10 Part type 4 needed to be processed on the follawing stations 1 0 1 1 0
station utilization idie time free time part1 part2 part3 part4
saquence part order st st#l st#2 stF2 st¥2 st¥3 st stE3 stR4 std ste4 lotal residence time/part total run
number free utiliz bus _ time
3 1324000] 1800 B70 365 1800 490 745 2700 10 325 1800 35 1200] 725.5 525 333 6415 3035
4 1342000] 1800 870 365 1800 400 745 2700 10 325 1800 35 1200] 725.5 5§25 333 8415 3035
5 1423000] 1800 870 365 1600 490 745 2700 10 325 1800 35 1200] 725.5 §25 333 841.5 3035
6 1432000] 1800 870 365 1800 480 745 2700 10 325 1800 35 1200] 725.5 §25 333 6£41.5 3035
7 2134000] 1800 870 365 1800 490 745 2700 10 325 1800 as 1200| 725.5 525 333 641.5 ag3as
B 2143000] 1800 870 365 1800 490 745 2700 10 325 1800 35 1200] 725.5 525 333 6415 3o03s
9 23140001 1800 870 365 1800 490 745 2700 10 325 1800 35 1200} 725.5 §25 333 8415 3035
10 2341000{ 1800 930 115 1800 685 60 2700 0 145 1800 50 995 396 7645 330 8355 2045
11 2413000] 1800 630 115 16800 985 60 2700 0 145 1800 50 ©005] 398 7845 330 B355 2845
12 2431000] 1800 930 115 1800 085 60 2700 0 145 1800 50 905] 396 7645 330 8355 2845
13 31240001 1800 870 365 1800 490 745 2700 10 325 1800 35 1200 725.5 526 333 641.5 035
14 3142000] 1800 870 365 1800 490 745 2700 10 325 1800 35 1200 725.5 525 333 6415 3035
15 3214000] 1800 B70 385 1800 490 745 2700 10 325 1800 35 1200 725.5 525 333 6415 3035
16 3241000{ 1800 830 115 1800 885 60 2700 0 145 1800 50 095 398 7645 330 8355 2845
17 3412000{ 1800 930 115 1800 985 60 2700 0 145 1800 50 085] 396 7645 330 8355 2845
18 3421000} 1800 930 115 1800 985 60 2700 0 145 1800 50 ©985] 23968 7645 330 8355 2845
19 4123000] 1800 930 115 1800 985 60 2700 0 145 1800 50 ©995] 2398 7845 330 8355 2845
20 4132000) 1800 930 115 1800 985 60 2700 0 145 1800 50 995] 396 76845 330 8355 2845
1800 930 115 1800 985 60 2700 0 145 1800 50 995 2396 7645 330 8355 2845
1800 985 60 2700 0 145 1800 50 3906 7645 330 8355 2845
23 4312000} 1800 930 115 1800 085 60 2700 0 145 1800 50 995 398 7645 330 8355 2845
115 1800 085 60 2700 0 145 1800 50 ©85] 398 7645 330 8355 2845

Table G7 Batch order 3.3 sequential data

83

v8

ejep [epuenbes p ¢ J0p10 yeg 8o ejqel

ejep (eppuanbas p'e 19pi0 Yajeg

{peoun} g

Pb'6PIGGIEL (Sem JuaILIadXa By} JO 8w BYL 0002 6 62

SLee leait ooS S0r9 26 GLL 0 00/ 06C SZ. 0OO0BL O/€ SO 008l OGZ SO/ 0081 |oooLZer (¥C
G182 leort oo0s S'0v9 Z6E Gk 0 0042 06 G2 008L O/ SPO 00BL OST S9. 0084 j000TIER (€2
11374 leotL oos S0v9 Z6e 13) 00T 06C STL 008t 0L St9 008L OST SO. 0O08BL loooLezy lzz
SL82 leotL oos sob9 Z6e GLL 0 00/Z 062 SZ! O0RL OJE SO 0081 0GZ 69) 008L loooeizyr |2
SLee l[eoLL oos S'op9 ZT6E SLL 0 0042 062 S2. 008L Ol S¥9 008l OSC S9. 008L looozeiy |02
GL8T jeotr oos S'ov9 _T6E SLL_ 0 00.¢ 06 SZ. O©O0BL 0Ol SO 0081 O0SC S9. 0081 loooeziy |61
11504 leoLs 00S S'0p9 Z6E SLL 0 00/ 06Z SZ! O08L 0/€ SHO 008L OSZ SO, 008L |000LZYE |81
SLeT [eoLl 00S S0v9 <Cet 11 2 00/ 06 SC. 008F Ol SYD 008L OSC S9. 008L loocozire L4
1%:14 E9LL 00S Sore Z6€ E11 Y 00/ 062 SZ/ O0BL O GO 008BL 0SZ S9. 008L [ooOLbZe |9l
SE62 (47 GCES CIS ov9 oce St 004C 060 Sbtr 0OOBL OE. SOF 0081 0€S SO0O 0081 looovize |st
SE62 Z6L SZES 2IS ob0 l0zZZ St 0O0ZZ 060 Skk 0OSL 0L SOF 00BL OES SO0 008L JOOOZHLE bl
GE6T [4:7 GTES IS o9 lozz st 004C 069 Sk 0O08L OE. SO 0OBL O0€ES SO09 0081 looovZie €t
11:14 JESLL 00S S0v9 Z6E Gt O 00/2 062 SZ. O008L O/E GS¥O 008L DSZ S9. 0081 JooolevZ |2l
5182 __[eoLt 00S S'0b9 T6E SLL O 00/C 06 SZL 008l OL€ SPO 0081 OSZ S9.L 0081 loooeivre |11
1314 jeoLL oos SOv9 26 St 0 004Cc 08 Sci OCBL 0L S¥D 008L OST S8, 0081 joooLyez oL
ge6z [26L S26S 2LS o9 022 GL 00/2 069 Gv¢ 008L OEL SOb 00BL OES S09 008L |oooviez |6
SEBT 261 G'ZES 2ZIS gr9 Jozz Si 00{Z 069 Svt 00BL OE. SOF 0OBL OES SO09 008L |00OEVLZ |8
SE62 t4:74 G2eS ZIS b9 lozz _ si 0042 069 Sbv 008BL OEL SO 00BL OES G099 008L |loooveELz 14
SE6C t4:74 S2eS CIS gr9 fozz st 00/ 069 Skt 008L OEL GO 008L OES S09 008L [000ZEpl |9
SE62 (474 G'2eS ZIS ov9 |0z Gi 00/Z 069 Sbkb 008L O£ SOF 008L 0SS S09 008L |000EZbL |S
SE6T (4:7 GTES TIS o¥9 lozz St 00/ 069 Skb 0088 0L SOF 008L OES S09 008L looozvel |b
SE62 1261 GZeS ¢CLS ov9 lozz st 00.Z 069 Sk 008L 0. SOb OO0BL OES S09 0081 jOOOVZEL [€

awn 89 AsnqQ Zijn oai Jaquinu

unJ |8}0) yedewp oouspises e)o)} 1S IS tMIS CHS CMS CMS ZMS Zms Zms Lms L:ms ims| sepioyed] eouenbes

tuved cyped zZyed | ued autp 8aJ) awy) 8|p| uogeZiRN LonEIS

0 L b 0 } suoge)s Bumoo) ey} uo pessesoid aq o) papesu v odA yed oL
0 L 1 (] 0 suofie)s Sumoyio} ey} uo passasoid eq o) papesu € edA yed 01
0 ! 0 i 0 suofiels Bumoio} ey uo passesold eq o} papasu Zedfued oL
0 0 0 L i suofejs Suimoyio} ey) uo passasoid aq o) papasu L edfy ped oL

Z siayng 06 owy Buissesosd ¢ uopels

Z sisyng 08 owp buisseoosd ¢ uopels

Z siayng 06 owyp Buissesoid Z uoners

Z sieyng 06 ewy) 6uissasoid | uopels

0 L/0 AinesuanbasuouyAqiejuanbas papeo| a1am sped

uogjezpuoud @AOW J0QOJ 10§ PASN DSUNBY

‘sem Juawadxe ay) Jo Aep ay|

G8

esuenbes peol 10} gjeQq Jo Asewwing g oqel

582 [ovee 080 [0BLE abeserelG/ evIZ ISLeplZ [ov'LP.Z [or'Lv.Z | ebeiaAe
6219 [p026 [80'1S |og'epZ | uoneineplog’le loc’LlE [sEBy [SEeb uofejaep
5182 Sy8Z |0E£0E G082 wsamolloLzz forze foLie oLl 1S9MO|
GE6C Ge0E [oELe 0.v€ ysoublylsoez [S0BZ |S98C |S98C ysayby|
5182 SP8C ocLe GZZe |ooOLZeEy (S2i2 sz/Z loziz TA%4 000L2E¥
5182 S¥8C ocLe SOEC |000ZLEY [OLLZ oz |ovee oLie 000ZLEY
5182 S8z ocLe gZZe |00OLESY (STl GZlZ |56 S6.2 000LEZY
G182 S¥8Z ocLe GzZe |ooociey (s2LZ GZlZ |s6.iT S6.2 000ELZY
G182 S¥8Z ocLe GOEE |(ooOZELY [OLLC oLz |okLe |okeE 000ZELY
G182 S8z OELE S0EE |000ECLy [09.2 09/Z |s8.L2 G8.2 000EZLY
Gi82Z SY8Z OELE GZze |ooolLZye |06.2 0522 |sKiz (W4 000L2bE
S18Z SHBZ AR G0ee |000ZLPE |G8.2 72& 012 oLz |ooozZive
G182 S8z otLe G/ec |ooOL¥2ZE |0SL2 0s.2 |0l 0822 |oooLpZE
SE€62 GE0E 0£0€ olbe |oOObiZE [SZlZ GZlZ |02l 0z.Z |ooovice
SE€62 SE0E 0€0¢ S08Z |000ZYLE (0442 0.2 |otiZ 022 000zt e
GE6Z Seoe 0coe 006z |ooObZLE 0242 TRN oLLZ 0422 000bZLe
X 74 ¢ T4 (1A R /€€ |ooOLEpZ (5222 GzlZ |soBZ 6962 000LEYT
S182 SHeT OtlE GlE€ |000ELYT STl sZLC |s98Z G982 000ELPT
siez SHaZ ocLe clce |oooLveZ [s222 czlZ loisz 0142 000LPEZ
SE€62 SE0¢ ococ o€ |ooopiez |oizz oLz |0tz 0442 000V LET
G€6Z SE0€E 0£0€ ozve |oooeviZ |oLs2 _ot.u SZLZ SZLZ 000EYLE
SE€62 SEOE 0£0€ ove |oooverZ |oLiZ oLz |owzz oLLZ 000PELS
GE62 GEOE 0€0€ S08Z |ooozZevl [s6l2 seLZ oLz |owse 000ZEPL
SE62 SE0E 0£0e s08Z |ooocZyl [0LLZ oLz [sz2Zz |sZiz 000£ZPL
GE6Z GEOE 0£0e G608z [|ooozvel |02L2 oz oz oz 000ZvelL
GE62 GE0¢ 0€0¢ 006Z |ooovZEL |0222 04.2 _o:.w oLLe ooobzel
GE6Z SE0¢ 0£0¢€ 006Z |000EV¥ZL (G082 G082 |s2lT |sele 000€PZL
GE6T GEOE 0£0E o006z |ooopeEZL 062 06/Z2 |0z 0LZ ooobeZL

pased| g¢eosed| gased | asedasuanbag posed| ¢osed| gzased| | esedlssuanbag

jenusnbos fenyuanbas-uop

asuanbag peo- juasayiq Joj ejeq Jo ewwng

