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ABSTRACT

In this thesis, the variational method is used to determine
an upper bound to the ground state energy of a system of a positron
and a negative hydrogen ion. Two trial wave functions are used and
the better one of the two is employed in obtaining the lifetime
of the system against two photon pair annihilation of the positron
with an electron from the ground state of the system. The thesis
also includes short discussions of the variational method and the

geometry of the system under consideratione.
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CHAPTER I

INTRODUCTION

The object of this investigation is to determine, theoretically,
the nature of the interaction of a positron with a negative hydrogen
ion, in the absence of an external field. More specifically, it is the
purpose of this study (1) to calculate an upper bound to the energy and
the wave function of a positron -~ negative hydrogen ion system in the
ground state; (2) to determine the mean lifetime of this system against
two photon annihilation of a positron - electron pair from the ground

state,

The interaction of positrons with matter has been the subject
of previous investigations by Aynumber of workers, such as Wheeler,
Hylleraas, Ore, De Benedetti and others. The discovery of positive
electrons, which were predicted by Dirac?'s theory, was immediately
followed by a series of investigations in order to prove that these
particles exhibited the properties predicted by Dirac's theory. This was
accomplished by observing experimentally the creation of a positron -
electron pair by § - rays from radiocactive sources. The reverse process,
where an electron - positron pair annihilate with the emission of ¥ - rays,
was also investigated.l In the latter process, just before annihilation
ocecurs, an electron - positron pair may form a stable, hydrogen-like two

particle system or atom. The existence of this quasi-stable system was

v s 2
first suggested by S. Mohorovicic. This system was given the name

1 1. J. Thibaud, Physical Reviev, 58:861, 1940.
2 3, Mohorovicic, Astron. Nacht., 253:94, 1934.
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"positronium” by Ruark. When positronium is formed, its quantum states
are similar to those of hydrogen, the main difference being that the
reduced mass of positronium is about one half that of the hydrogen atom.
The effect of this is that the energies of the positronium states are-
about one half the'energies of the cofreSponding hydrogen states, while

the linear dimensions of the wave functions are about twice as large.

It is possible that positfonium is formed in an excited n #0
state, In such a state it survives long enocugh to emit a line of the
characteristic optical spectrum in its transition or transitions to one
of the ground states: the spins parallel 13s triplet or orthopositronium
or the spins antiparallel 11s singlet or parapositronium, from which it
annihilates. These two states differ substantially in their annihilation
properties, because of the existence of selection rules which prevent
the annihilation of the 3S state with the emission of two ¥ - rayse. The
annihilation of an electron - positron pair from the singlet spin state
occurs mainly as two photon annihilation, while that from the triplet
spin state as three photon annihilation.> From the point of view of
perturbation theory, the two photon annihilation is a second order process
while three photon annihilation is a third order process. Thus pair
annihilation through the higher order, three photon process is less
likely to occur than through two photon annihilation. Also, the lower

order process has a shorter lifetime; that is the lifetime of singlet

3 De Benedetti and Corben, Annual Reve of luc. Scil., 4:191, 1954.
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positronium s ‘2, = £2SX 1o secCs., while for triplet positronium it
is JZ}r:= IIIS'/'tlr , for annihilation from the ground state.” The
anninilation rates of both singlet and triplet positronium have also been

obtained experimentally.>?

The system of one positron and one electron is not the only PO =

sible bound system involving the positfon, It has been shown thebretically
that systems consisting of two positrons and an electron or two electrons
and & positron also have small positive binding energies against
dissoclation into any of their constituent partsaé The binding of the
positron to certain atoms, ions or molecules has also been considered.
The Investigation of these latter systems is particularly interesting in
that it sheds new light upon the interaction of positrons with gases and
solids. The annihilation rates of an electon-positron pair in such atemic
systems are substantially different from the annihilation rates of free

positronium,’

The dynamical stability of the system of a positron and & negative
hydrogen ion has been theoretically established by A. Ore.8 Ore shows that

such a system posesses a positive binding energy of at least 07 eV

b A, Ore and J. L. Powell, Physical Review, 75:1696, 1949,

5 M, Deutch, Progress in Nuclear Physies, 3:141, 1953,

6 J. A. Wheeler, Ann. 1. V. Acade ScLl.,k2:219, 1946.

7 De Benedetti and Corben, Ann. Reve of MNuc. Sci., 4:191, 1954,

8 A, Ore, University of Bergen Yearbook No. 5, Bergen, Norway, 1952.
Ee Hylleraas, Physical Review, 71:491. 1947,
Eo Hylleraas and A. Ore, Physical Review, 71:493, 1947.
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against dissociation into a positronium atom and a hydrogen atom. The
availability of alkali hydrides commercially has led, recently, to some
experimental investigation of the interaction of the positron with the
negative hydrogen ion.? In this thesis, the biﬁding of the positron to
the negative hydrogen ion is established with a higher binding energy
than that obtained by Ore, and also the two photon annihilation rate of
an electron-positron pair out of the gromd state of such a system is
calculated, The natural extention of this work is the computation of the
angular cérrelation of the photons from positron amnihilation in the
system of a positron and a negative hydrogen ion. This work is at present
being carried out, under the direction of Dr. S, M. Neamtan, by G.
Oczkowski and the investigator. The corresponding experimertal messurments
of the angular correlation of the photons from pair annihilation in the
system of a positron and a negaﬁive hydrogen ion have already been
obtained.10 The parallel problem of the interactioﬁ of a positron with
a helium atom was investigated by G. Oczkowski and is reported in his

thesis, 11

9 A. T. Stewart and R. H, March, Physical Review, 122:75, 1961,

10 1bid,

11 ¢, Oczkowski, The svstem of a positron and a helium atom, a thesis
submitted to the Department of Mathematical Physics of the University
of Manitoba in partial fullfilment of the requirements for the degree
of Master of Science.
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CHAPTER II
THE VARIATIONAL METHOD

There are relatively few physical systems, which obey the laws
of quantum mechanics, for which Schrodingerts equation is capable of
exact solution. In the majority of physical cases approximation methods
have to be used to solve Schrodinger's equation. If for a given problem
there exists a related prgblem capable of exact solution one may use
perturbation methods for obtaining an approximate solution. Another
useful approximation method is the so called WKB approximation method
which requires that Schrodinger's equation for the problem be separable,
A very useful method, which does not require a solvable related problem
or a separable Schrodinger equation, is the variational method.l ITet &
be the Hamiltonian operator of a physical system and }Q~ the orthonormal
eigenfunctions of this operator. Consider any function ¥ in the Hilbert
space associated with the physical system; we have:

¥ = %} CL-fﬂ‘-

o= & g (o) = I
A= DG RE

Thus the expected average of the Hamiltonian for the system in the state 2 d

is: ) i ’fijﬁlfjfj_ _ (/Afi ;?:(a.//?Q.)
W= “ryy) (¥, ¥)

1 The variational method was first used by Lord Rayleigh in
1873: Theory of Sound,Vol. 1, Sece. 88




where as usually, (gé/ (‘() - 5 CP‘;\C dr
r

where represe‘n’os all the configuration space of the physical system.
That is, (¥ )<y = ( %Ci‘Pi,i‘;c"HKPc)

=X el (4, HY)
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let €, be the smallest eigenvalue, then:
CHI (v y) 2 ZIGlE,
@ o> Fr

But L)
(1Y) = (¢ T o)

= i;Q‘?; (¢, 9;)

Eo

Y HY)

= Z ¢, * y ~(-.Jv . °

7 l Ll 17 ('\\’; W) o

, wHY) .

Hence *-‘—C N\ 1s an upper bound to the ground state energy of the

physical system, and 4 is an approximation to the wave function of the

G

ground state, L)

when Y= , the ground state
wave function of the system. The better ¥ approximates the ground
state wave function of the physical system, the closer the upper bound

approximates the actual value of the ground state energy of the physical

system.

An upper bound to the first excited state energy of the system
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is obtained by choosing a trial wave function Y which is orthogonal
to ¢, in the sense that (¥, LQaX = O, so that Y = 47: <Y,

with (o =0 . Thus in equation @ :

[ ] 2 -
S 1¢|* &
iy = &

(Y, )

Replacing all the E - by &, we get:
. ’ .
> el
CH) 2 & — F

(¥
since (o= O and €, does not enter into the sum. If ¥ is orthogonal
to the ground state wave function then (:?5223 is an upper bound to the

!

energy of the first excited state and % is then an approximation to

the first excited state wave function.

In certain cases it i3 possible to choose a trial wave function

¥ , to be orthogonal to the ground state wave function ?L of the
system, without the explicit knowledge of the ground state wave function

y@ o Thus, for example, if the ground state of a two electron system
is a singlet spin state so that %1 is a spatially symmetric function
of the electron coordinates, then if the first excitsd state is a triplet
spin state, 4 may be choosen orthogonal to fﬂ simply by taking it
to be a spatially antisymmetric function. To be able to determine an
upper bound to a first excited state in other cases, the explicit
knowledge of the form of the ground state wave function would be required,

so that the trilal function could be chosen orthogonal to it.

In the majority of problems, one is not merely interested in
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ovbtaining just any upper bound to the eigenvalue of Schrodingerts equation
for the system, but usually the goal is to obtain an upper bound which
is not far removed fram the actual value of the energy level. By choosing
the trial wave function to be a function of a set of variable scalar
parameters, Y’=~¥’(*§P;§n- ) » the upper bound to the energy level is
obtained as a function of these parameters:

Ky = flp7.)
The minimization of <{H) with respect to these variable parameters yields
the least upper bound to the energy level, for the particular type of
trial function chosen » If the upper bound turns out to be very close to
the acpual energy level, then the corresponding trial wave function may
be a good approximation to the actual wave function of the state under

congideration.

The choice of the trial function is usually severely restricted

by the fact that the integrations, which enter into the evaluation of

("l’, H'\l’) s cannot be worked out explicitly, or for that
matter carried far enough to facilitate numerical computation. In

certain cases it may be possible to choose the trial function of the

form Y= /{qﬂ,?,’) »A/Z») » where part of it, f(‘f,ﬁf';) is an
explicit function of variable scalar parameters and all the coordinates

of the system except ?’ » while the functional dependence on the
coordinate 7 is not specified. The problem is then reduced to one of lower
order ;, that is, the variational problem is replaced by an equivalent

differential equation, which is then solved numericallygz Finally, the

2 For a discussion and application of this method see: G Oczkowski, Ope citoe
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nature of the physical problem may guide one to a choice of functional

dependence on certain coordinates,

As an example, let us consider a trial function for a system of
two electrons and one positron:(Geometry and coordinates defined in the

diagram, )

r <

ef

P3

—

e

The fact that for an electron-positron system the ground state wave
L
. = 14,
function is ~ & » where ¢ 1is the interparticle distance and o
the first Bohr radius of the hydrogen atom, suggests for our trial function

a dependence on the coordinates # and "3 of the form:

~ (<0 +B%)
v o~
where o« and @ are variable scalar parameters. Furthermore, the fact
that the probability of the two electrons being at’the same point in
} 8

space is zero, ( that is, ¥X = 0 is impossible) might lead one to choose

a dependence on f#, such that W fzo)<o,
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CHAPTER IIT

THE SYSTEM OF FOUR CHARGED PARTICLES IN THE ABSENCE OF AN EXTERNAL FIZID

The computation of an upper bound to the energy of the ground state
of a system of a positron and a negative hydrogen ion requires a thorough
knowledge of the geometry of the system. Consider a system of four
particles - a nucleus of charge Ze, two electrons and a positron, in the

absence of any external field:

e-
ry 2
.Z‘, -~ +
te c
A
"\
4 s
e -

Choose an origin of coordinates at the position of the nucleus. We are
concerned with only the relative motion of the four particles, as it is
orily the internal motion and structure of the system which determines
the state of the system. Since the mass of the nucleus is much larger
than the masses of the electrons and the posibron, we shall neglect its

motion and treat it as fixed,

The first thing one must decide upon is the choice of a coordinate
system, Thisvis in part dictated by the choice of trial wave function,
which will be introduced in the next chapter. The configuration of the
gystem is completely specified by the specification of the six interpare

ticle distances, which specify the relative positions of the particlés,
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and a set of three angles, which specify the orientation of the system
as a whole in space. Let ¢, £, 1, be the position vectors of the
positron and the electrons respectively and let f, = | 2 -2, s

Na= 10-01 and p,= [0 -C] . Theset %, B, %5, %, %
and Y, of interparticle distances will be the generalized coordinates
of the system, if the irrelevent orientation of the system in space is
suppressed. This choice of generalized coordinates is by no means the
only method of specifying the relative configuration of the system, but
it is the one which best satisfies the three conditions: (1) The
Hamiltonian of the system may be expressed as a reasonable function of
these coordinates, so that it does not complicate excessively the integ-
rations involved in (¥ HY) . (2) Tﬁe element of volume of configuration
space may be ﬁritten as a simple expression involving as many of these
lenghts as possible ( and any other géneralized coordinates to make a
total of six). (3) The trial function for the system may be reasonably
chosen in terms of the interparticle distances. The first of these three
conditions, especially, imposes a severe restriction on the type of
coordinate system which may be used. For example, in the configuration
of the system, the coordinate lenght ¢, may be replaced by an angle
%3 » which is the angle between X X%, and X xC€ . Though in terms
of this set of coordinates it was found‘possible‘to write down the element
of volume of configuration space, it was not possible to write down the

Hamiltonian of the system and still do the integrations entering into

<HY

As mentioned above, the configuration of the system is completely
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specified by the set of six coordinates, j; , which zpecify the relative
positions of the particles, and the set of three angles, £l , which
specify the orientation of the system in space ( with respeet to some
fixed axis in space ). The wave function of the system in its ground
state ( that is, with zero angular momentum ) will not depend upori the
orientation of the system in space; that is, ¥= 4%7}) » The Hamiltonian
of the system in the absence of an external ficld is also independent of
the orientation of the system in space: /{=JHY;J . Hence, after the
integration over the set of angle coordinates 4L , the problem reduces

to the form:

¢T) Hiy) W) d g

Hp =
5 Y%s) ) dg
1 g

where J; represents the offective element of volume of configuration

'y,

gpace., Thus, as far as the computation of {H) i concerned, the set of
three angles L, which specify the orientation of the svstem in space,

may pe neglecteds,

1

Conglder apgain the system of four partlcles, with origin at the
48 R el T ; T L [y v Yo w3 I
position of the fixed nucleus. Let &L, L, 23, be the position vectors

of the positron and the two electrong, where r|§(2’,, Y:, f,) ard
L. =("M, Y, %, with rezpect to a cartesian coordinate svstem fixed in
2 1 41 )

space, Lot .!'35 ('I:‘, 93, ‘(3) s in spherical polar coordinates, where the

vector ¥, has been chosen as the polar axis, and the azimuthal anele is
t




meagured from the plane of £ and £

L 9) 2

o (% 4. 2,)

5 (Y_’l) (75/25)

The element of volume of configuration space is J-"‘ d?e, 0(31'3 °
let (“e e, (P) be the iulu:' angles which specify the orientation of :

the "triangle® defined by the vectors ¥ and ¥y, with respect to the

fixed Cartesian coordinate system. Then,
43¢, die 2 dx dy, d=, dx, dy, A=,
%,, < ?
J (" "' Tder) o de da, dvdedg

K
= N v;, 44»\9 dv, dv, de, d ¥ de d¢

1 ,
where W, = ( Lol . tiow, dl’;‘, =% JH,J(P, where ;5 ~ €8y o thay

3 H

ig ci"‘ = Yy J s JY’: where ‘3 =2, .(‘,‘ o But f.‘;* ';ti";"{'l'}."j [
*:*"-, ) * rel ~— 9 1 Y o} """3 - '
therefore 2 f,'s = 4';‘/; _51‘(?'; gnd | 2&3"‘? s V" (,3 . S0 that

AT « vy o 0, dndg do do.dby 49, dime dvde LY

2y 4 dn diy 46, diy dYs

1 see Appendix I: vlome,q‘o of Velume of Confisuration Space for -
the system of a Positron and a Negative Hydr ogen Tom




and where % is defined as the angle between f| k¥, and ¢, x{

The Hamiltonian of the system is

£ _2 _ Lo L)
He -&(V*+029*) e 2 (%-%-% -4 )

-L V* vV

L 1 4

25, 2 .
axr b o9 v 73t for (‘=123

AW
vhere K = tr M : mass of the electron, £ : charge of the
electron, Z

and where

(x,', %' p ?,') for (a2 3. o For a well behaved
function 4 , uging the divergence theorem, we obbtain
' R
jwvw dr S(V«v) dr
Teo T

where T,. stands for all configuration space. Hence, as far as the

il

computation of ¢H) for the system is concerned

© O (¥HY) = —A-Swwdr rE vad'r

S(W)"J'r P SvW*dr

ror e 4&»( ’ 2, ,‘ ﬂ;, Q;, 1;5 > Since

ws
H
m~~
S
<+
<
P
'Y
N
hadlnd
—~
o

= [(nexg 4 (4amg)® e amr)e]
f_(x, )+ (Ys-4)* + (23- )" ]
= [(X5-%)? f(f; xq.) + (- 8)? l

x]
1]

~
o
0

we obtain :2

2 See Appendix IT: The Square of the Gradient of the
Configuration Space,
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; 2P 2Y aregiont IV oy wteny-at , 2¥ 2% Gttt

()

o, Tha. T oamag T ond Ma Mz o G

L20 AP preniogt LV 0¥ Rt 06T PY op af e -y
2 k3 2 2 -

42V 29 02e42ont L 29 9V GG -0 2% 2% Ay d s T

313 3 36 21 20, 3 Vs I %, Mis 2

Z. -z _ a1, L

ver(H-F-G-ww? E) v

Thuz, in the computation of (H) . H "P is equivalent to the above forma
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CHAPTER TV

THEs GROUND STATE ENERGY OF THZ SYSTEM OF A POSITRON AND A NEGATIVE

HYDROGEN ION

The system of a positron and a negative hydrogen ion is stable
i1f there exists a state of the system with an energy which is lower than
the sum of the energies of the constituent parts into which the system
might dissociate. The system of a positron and a negative hydrogen ion
gan dissocliate in a number of different ways: It can dissoeiate into its
four constituent particles, into a positron and a negative hydrogen ion,
into a positronium atom and a hydrogen atom, etce The total energy of
a free positron and a free negative hydrogen ion in the ground state is
simply the energy of the negative hydrogen ion, which is -, p5s572 T4, °
"[‘he gum of the energies of the free positronium and hydrogen atoms is
=S :{it s if both are in their ground states. Clearly, the most
favourable mode of dissociation of the systen of a positron and a
negative hydrogen ion is into a positronium atom and a hydrogen atome
If the energy of the system E(H?c*)(ﬁff—;; then the system is stable
against any mode of dissoeiation, and if E(W3re*) D -1 s 2%?, then the
system is unstable and dissociates spontaneously into a positronium atom

and a hydrogen atoms

a2
The fact that the most favourable mode of dissoecistion of the
system is into a positronium atom and a hydrogen atom suggests that if
the system is bound at all, then it probably resembles most closely a

positronium atom loosely bound to a hydrogen atam. With this in mind
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and assuming that the system in its ground state is singlet with regard
Lo the two electrons, we take as our first trial wave function for the

system the space gymmetric function of the electron coordinates
NCORY TR A1) —(TH 4B FXN)

¢:€ + < ‘=‘#‘Lf4)3

where the coordinste system used is defined in the d:"tagr'am:l

electron

7 pos:t rown
Nvuclevs 0 ¢

3 electron

Since the element of volume /$ does not contain the coordinate Y
explicitly while the Hamiltonian deoes, it is necessary to choose :'}_, - o
50 as to be able to compute (H) o To facilitate the computation of the
term (¢ ) we have to take 'g,%() since "é:, when expressed as

a function of the other lenghts and an angle, is not explicitly integrable,

Sinece ,‘Z_é =z O éQ =0
? g

= ~0(¢1 -1"¢3 g’,éé: ‘?‘ﬁz""(é

N N\S1LRN BV
T Y

i - 'Jirf: -p &

[]

A

v

making use of the above stated symmetry of @ , the average of the

L gece also Chapter TI.
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Hamiltonlan may be written: (f’ ”¢ where
(t¢) »

((p,H¢) = f[l(ﬂzflﬁzf' 9'2) (¢u¢t) + 4 K1/¢" ¢")

LR 4»3>+2~P(¢=§ 14
(g - £V 0] e[ (4 ol
c2 (b b) v (0 % 45) 22 (o, & &) +47 (b, 4 ¢,)

+a /b, 4 &) -2(¢:.,Jn—¢¢) -2 (4, % 4s) “1(¢11J¢;¢;)]

(&,8) = 2 (4, 4) « 2 (&, 43)

All these inner products are integrals of the type
o

ij,,,m,a) fale,p> v dr

where A, B, ¢ , D are parameters and &, 4, <, d ,» P are integers,

e X
and where - (Ax+ l?g) . 4
.L!u’(ﬁ B) = , gc*% o(zalocz
o \r-xi
Hence <H> - Ji_‘]f (x87) + £ B (N,P.") 3
C (a,87)

where ./’(' 6(, B, r), _B&,ﬁ, 7’) » f (r, /Id are homogeneous functions of

degree of homogeneity of =7, =8, and -9 respectively. Thus

) _9_(__2_ Jf’//,’&;d It ¢ -'ﬁ(llé__c_)
<H>- K ip(’z‘)c) * uﬂio(lldlcj

where b= 'ﬁ— , €= -;Z: o Thus the minimization of (H)with respect to

o

see Appendix III: Table of Integrals.

See Appendix IV: Evaluation of (M) using the trial function
— (4T + e +70y) -(rmpc,rdr;)

< + &

W
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one of the parameters, & , may be carried out directly:

M 2x o £ 8 _
36 K e * ol °
« = — B Ks?

The minimization with respect to the other two parameters was carried
out rxmne)r'icallyA with the following results:
CHPuine = = «37636 KEY = - 15050, =

for

n

.1298 kgt = L2596 -

[ 4
A 2529 Ket* o L5088 4
r = L5086 Ke® = L0172 &

where 1’5 is the ionization energy of the hydrogen atom and is the
most commonly used unit of atomic energy, while &, is the radius of the
first Bohr orbit of the hydrogen atom and which is the most commonly

used unit of atomic length. The sum of the energies of the hydrogen

2
atom and the positronium atom is E,=- LS EE'; s Where the mass of
(4

the nucleus of the hydrogen atom is taken to be infinitely largee Thus

X2

g - (EHNE (- 150000 + 1.50504 ) o

° (dﬁ¢) et 5
= L00504 qa. = 06827 eVe
Qo

This shows that a system consisting of a positron and a negative hydrogen

ion can exdst in a bound state with a binding energy of at least .07 eV,

b e numerical computations were carried out on the Bendix G-150
computer of the University of Manitoba Computation Centre.

> This agrees with the result obtained by A. Ore: Physical Review,
83:665, 1951,




_(KVyt Bl Tt ) - (ﬁ‘ﬁl-pﬂs"ﬂ‘,fyﬁ‘) R0
ir ¥= & re is chosen ag thé

trial wave function, it is still possible to perform all the necessary

integrations. As with the previous funetion, Ay (.l‘,, L, f;) = ‘\P(f,,i‘,, -ft)

3 v _ .2_(_2 - Q._‘E - - d"" '_"r"P
o T T 1 ’
— - CA 4 = -~ -I‘P M = —-S‘q’”
‘%%- ARLA I+ A A T >
NY
Thus <”> = "fﬂ”")} where (4{-)’ Hq’) = J’-{ [1("575"#'*2‘")(":,7:)

, alay +287 )%, %) *ZP‘V(AP" {"" o f‘i f"l’,_)

rl!- V',_ (3

PO (N[ R 1) e (W (B v b -2 L)
+ué’(w,,{.g.i.+% P v )t s -2 1) ]

-~ az[_zz{wb ) t22 (*4;) (%) +2 (‘ﬂ.{ﬁ"if,} “Pz)
b ) N 81 el <]

and ('(Ij"V) = 2 (,‘Pg} "6) + 2 (4'(4., 4’()3)

Following the same procedure as with the previous furction, we obt&in:é

< H ?w'm.

n

L
- 1516832 &=

24,

for o = 2220 '
p = oly72 'é-o
T = 1,024 .
$ - 0844, f{,

© 3ee Appendix V: ivaluation of (H) for the trial wave function
< (x0y Bllyt 7T+ §0g) -(wfé‘q,tu;f—pc,)
c

+ €




H
Hence €, - (4ny)
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U
= - 1.500000 + 1.516832 —_—
= ,016832 2a.
= 0227799 eV,

Thus, the binding energy of the system of a positron and a negative

hydrogen ion against dissociation into a positronium atom and a

hydrogen atom is at least .228 eV.
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CHAPTER V

THE MeAN LIFETIME OF A SYSTEM OF A POSITRON AND A WEGATIVE HYDROGEN IOW

AGAINST TWO PHOTON ANNIHILATION FROM THE GROUND STATE OF THE SYSTEM

The lifetime, T, ofa positron against two photon annihilation
in a2 medium for which the density of electrons at the position of the po=
sitron s @ , is given byl

2
L o= TH L

2
where fp = met is the classical radius of the electron. This result
represents an average over the initial spin states of an electron
positron pair. If the initial state of the pair is definitely known to

be singlet then the arnihilation rate becomes
2
7 = 47 0t pe,

since in the above case the pair is in a triplet spin state for three
quarters of the time, from which two photon anninilation cannot oceure? !
For the case of two photon annihilation of an electron-positron pair
from & system of a positron and a negative hydrogen ion in its pground
state, the wave function of the initial state is given by

X(3,8) = W(33)5(33)
where #(23) is the symmetric space function of the system, symmetric with
respect. to the electrons 2 and 3. Since thé total wave function must be
antisymmetric with respect to the interchange of the two like formions

2 and 3, then the spin function $(Z3) must be antisymmetrice 5(2,3);~\§(3/1),

3

1 Jauch and Rohrlich, Theory of Photons and ¥lectrons, Pe 2696
2 Chapter I, page 2,
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IrY, ﬁ are the normalized single electron spin functions, then an anw
tisymmetric spin function of the system is

$(,3) = 7=[ %06y BGY - pG2) «(3) | %)
For definitness let us assume that the positron annihilates with electron

2, then to determine the contribution to the annihilation rate, we write

$(43) = Z ) BB ac) ~ L4 [da)pa)w(u) () xG) - & #[«(.\p«)-%)m)}«o]
= §043) - L5, (43) - L §;(23)

We note that of these three spin states only fj(l,.?) a '{L-L' (_o((l)(?(l)ﬁ(l)a((z)]a(éj
is a normalized, singlet spin function and the probability of the
electron-positron pair being in this singlet state is the square of the
coeficient of 5;(:,;) in the above equation. Thus the pair will be in the
singlet state one quarter of the time. Hence, since two photon annihilation
occurs only out of the singlet state, the lifetime for two photon pair
‘annihilation out of the ground state of a system of a pesitron and a

negative hydrogen ion is given by

~L. —
r = g (smntec)

Purthermore, this annihilation process, of a positron annihilating with an
electron bound to a nucleus, in the lowest crder is a second order
process, with a net conservation of energy and momentum, for which a

typical Feynman diagram is: ,

’P} .g’
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The annihilation with either of the electrons is not affeeted by the
other, and since there are two electrons, with equal electron densities

at the position of the positron, the amnihilation rate finally becomes:

,2_ - 1 <4 4T ° € AW ':, (’
Using the same notation as in Chapter IV, the density of electrons at

the position of the positron, in the system of a positron and a negative

hydrogen ion , is given by:

= (2 33 371-2' S!q)(&:!‘)'cl))za,?’
( (—: 6 773 _S'q’[-fufn o3y

where Jz, is the element of volume of configuration space of the four

particle system; introduced in chapter 177 as J 7: L J; ‘{JZ‘Q
and S dT, = 16 o3 ({% . The symbol dr , 1s an element of volume
o

for a three particle configuration:

In this case 17;.- d3n Jgfz . Let L E ("ua, ‘P) ( in spherical
polar coordinates) relative to a polar axis fixed in space, and let
Y, E[l‘zla(' g) relative to X, as the polar axis. Therefore
LTy = N2oinedp Lo dy n* uma dadp
= 020 atmoc dpdn dee L0 5

where J—Qs = MUmb Jec{fd’ﬁ .
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Hence 54('7; = 9T AT where = PGEama A0 dv, o x
' Ly 2 ' ‘
But 3 Ny = '}"-r ';,1"'2'7'; e ol o therefore .U,’za",', = qumhad«,
that is  Am & L& = f:zr{:h and 1?"'}’({"} JCJQJ(},
‘ .

. .
TR DISL L (1) _ (v dhratrpn,)
Using Ye e + < .

as the unnormalized state function of the system in the ground state

( with values of the parameters as determined in Chapter IV ), we obtain3

. « 0629785
(o[“,b)r/‘f) - "'".".aos

hence T = 4,941 10710 sec, Thus the mean 1ifetime of the system of a -

positron and a negative hydrogen ion against two photon annihilation
from the ground state is about four times as long as that of free singlet
positronium in the llS state, for which the lifetime is about 1l.25 10-10

SECoh

3 Appendix V4 The Density of flectrons at the Position of the
Positron in a System of a Positron and a Negative Hydrogen Ion in its
Ground State.

b De Benedetti and Corben, ope cite, pe 196
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CHAPTER VI
CONCLUSIONS

The following facts about the interaction of the positron with
the negative hydrogen ion have been established: The system can exist in
a bound state for short periods of time,subject to pair annihilation of thg
positron with one of the electrons. The ground state energy of the bound
system Eo & - 1,516832 ( atomic units of energy ), that is a
binding energy of at least ,228 eV against its most favourable mode of
dissociation into a hydrogen atom and a positronium atom., Thus the

binding is strong enough to ensure stability against dissociation due to

thermal collisions with other systems. The ground state function of the

system can be approximated by the wave function

a (KOt Bt TV +80s) ~(rr+ 30 4 k0 +p0s)
Y= fw9y| < rF e
where o = .220 @
p = alA‘72 ’é—;
¥ =102,

£ = 084k oo

Using this approximation for the wave function of the ground state of
the system, the lifetime of the system against two photon annihilation
of the positron with either of the two electrons is found to bes

T = L4941 10719 sec.
This is about four times the lifetime of free positronium againset two

photon annihilation out of the singlet ground state. In order to improve
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these results further, the investigator, together with G. Oczkowski and
under the direction of Dre. S. M. Neamtan, is investigating the problem

using for a trial wave function

X = (1+ ot 0 t)[ e-(‘MM‘H%JM)
- 13

2
The Q3 term has been introduced to take account of the mutual repulsion

(1480 s any + Bfs)
+ C

of the two electrons in the system., Also, since G;Lcan be expressed as

a relatively simple funetion of the other coordinates, all the integrals
involved in (‘f’f‘k) can be explicitly evaluated. Recent improvements

in the methods of determining lower bounds to eigenvaluesl may make it
possible for one to caleculate a lower bound to the ground state energy

of the system of a positron and a negative hydrogen ion, and in conjunction
with the upper bognd to determine more closely the ground state energy

of the system.

1 N. Bazley, Lower Bounds for Ligenvalues, Phys. Reve, 120144, 1960
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APPENDIX T

SLEMUHT OF VOLUME CF CONFIGURATION SPACH FOR THE SYSTEM OF A POSTTRON

AND A NEGATIVE HYDHOGEN IOH

Congider the configuration of the system as deflined in Chapter
III, p. 13. We wish to evaluate

J/x.L,x Yy i)

LA ) Yooy

whers  f, = ( % TARL ) and L, = (7‘:, Ye,%2) . To establish
a relation between the set of coordinates 4, y,, 7, %, J,_, Z, and

2

](._Li‘_%_'._z-_‘;&__;) = j(fr‘l' 2, X z?L) j(i_fz;lﬁ)ﬂe

¢,_'\V9L? v v e V\'}_Q;’WB!(

the set 6, €, ¢, 6 # 6, Y, we write

where X is the angle between ..f: and .[‘2 » and where
x, = n MY Um O
di = -0, €crr ¥ +mo

. Z, = #eme
X, = GMME HnY X 45 Hm K(eoh ¥ oo f- eaoe,u'«cgu'n'wj
Yq = \gmxe eon W con X +4M>mu(—m~pmp,mem¢mw)

e
2, = (meﬂme /wu(p + L ean ¥ esd

Thus, working out the six by six determinant of partial derivatives and
collecting terms, we obtain:

<MLL) = 0% am xam e
nv X ye ?é’ ‘

)




and
J( = .Q-—Xf— —_ GL
V‘f’(h*{ng) PAKY A X 0
as fr = fregt - any e X
Therefore
X 2 3 .
J( : ‘) fer, 4Hmeé
Yo

29
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APPUNDIY II

THE SQUARE OF THE GRADIENT OF THH CONFIGURATION SPACE

We have Y = /(1 S

(F¥)" = G9) + (W) + (B9
where VL!{): %L*%i +%%L‘~ for

X
2yt t) o
and where Y::(I‘ Y. "‘i‘) for ¢ =4,2, 3

b;‘z) "‘S,YZ‘S) and we wish to obtain

L = [’ z’ 3
2 2 q%

g; = [(x;rj) 7 - )+ G -2y) ] for ¢¥=123 and (#J

where ¥y = lfn "‘f,‘, .

af, !

Wow V‘q)" %%"_V":-}ﬂvf:,_ +%—¥-V,ﬁ3

and similarly for z Y and Vg Y o 3ince V, V: - ""f;.‘“ s
\
V' ';L = :.f.i:_ﬁ.. ,and 74 (;3 = _-E';_"_—Q. , we obtain:
e ' s
v £ v L£-Ys 4¥ L -L
V, Y= 26 9 * 9%, Y * AN N3
3imilarly Ty 225 _(7_}1 T P RNCA 4 .C,r-ﬂ
s in g AN A 12
¢ po-n oY -1
Y = 29 £y 2% =3 =l 4 4 3 =2
V’ 2Y3‘ 5 > ? 3 M3 243 A

Squaring these we obtain:

(qu,)z = (%%)1 +_27£)7' 4(231}1 4+ 2 %\ﬂ/_ IY (e to(t




31

(’14.{“'—{"'
n %




APPENDIX IIT

TABLE OF INTEGRALS

oo 41 .
- (ar, + 1)
10t = g S e e dyde
o (r-q|
-4 -ar
ao(“z“): —I‘L(e‘ _Qq) T= at-4°

__g,\ -—ar
o
(0’5)___ e 20 + =< __r.._-‘*.-f_.
to T

o;(‘ﬁ‘) = Lf:w{r— Ze'] 4—3_::‘“‘[-’5—8-']

T T I

-—@-P -an
«(Q/I’) = 1__@-__ M—Xﬁ'—"'] +;2_§-_ &_g_V“* ?OJ"
T T It T T Tt

- 4r -ar
&o(a,l) e € [!ﬂ'} —-..:Z__.:( + 1< [_V.z__ 4ar _ 3az+£]
I

l

) -
/oz(";(’) = Ae ”[V\z_ 41-»*_,__!1; 4___;;_] s g__e___w[~§_é"_3._]
! T T T

g2

fu (a,t)
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£ _ dbr
I r* * Ual® | 22
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APPENDIX IV

—((G+BIATE) (1 s phyear, )
EVATUATION OF (M) USING THE TRIAL FUNCTION @ 3 e

- kA (apy) + <t P@asr)
& (v 8,7)

Rlopy) = atetsgrert) § szp) [ Gno) s

+ 4«1/50}:(««5 By dr 1918 ;fu("‘”/ ﬁ)jo(dﬂjp) dr

_ paSfo(urrlp)[{%(wr,p)+ﬁ2(«n;,9)Jlr; +_gf S[/]o(w'rlaj —/1@7/3) 2%‘%
‘é_l. ('cf"(w;ﬂ) c2de ij [ﬁ (1228) + /(zwzp) - r/ (2 zp)jl :,(Zro)a{f‘

+ 1ﬁ¥§(/h(a’+rﬂ) f/l(mrp) /(N«I‘Y’ﬁ)}f (a’n’,p) dr

~ «ty2p? y? 4 169(7[(0“74 + 7&‘>’)ﬁ+/75‘+)) Ji % 7@+r)[3 +,8J
g’ o) g Crvper)

i[(m—r)l 4 7(«4?’)(3 +(32] |+ 27
(a+7)B (arp+7)?

A+T




B(WB’)’) - jf (zro)f(zuzﬁ) c(r‘ —zzjj(zazp)j (zra)cfr‘

[ <]

o § e s 4 -2 o) f090)

o

+12~Sﬁ'(1o§1¢){f”(17;0) —‘%L —4%& ‘{i,(qnjp)jm(an;p) c{ﬁ .

L=

—4 Sf,(aﬂ’;z / (erp) dv 4 zS{:(wf,p 47";

<0

L2 S ‘{”(1“,2”'} f,.(zﬂ;o) Jv‘gz + 15‘ {'l(ur)an) ﬂ, (F,P)irz%"

2 -
= 32(1) 2 (dﬂ‘)’ﬁ_ ,/,;Z (a’+ﬁ¢7‘)2 ¢ (e¢) (x+7 i‘ﬁ)

(u2-7)¢ 4GP (arpr1) 34y
_(g")(d 1384 Bz) + a(z-fja(Tf-rz _ Z(O‘*T)f-ﬁ
f(d'ﬂjz 7342ﬁz f(.x—f’)’).s/} gq’z)’l ¢ (qﬂr)g

@) B (arpt7) 2(2) B @rr) (arper)? 3(x+pB+7)?

XB(2413Y) - _‘{(3(2&~+3'f) + X (p+27)
4 (a+7)°73 (a%p)* G ()P 4 L g2)° 4 7))} T x*p1)?
+ _B( o(+z~r) y Alg) (a17)p (3E-2) . _I6 (or+7)*
¢ (a+7)} 73( 5') (¢ rB+7) 2 (x% r’)‘ /62("‘ z,,rz)r
49 ( 20a37] 2+3%) — 1282 _ 572(ar7) 4 43 33,_(,“,) ﬂ11

AG+7) /dl~r2)4 (=74 g3 (x*-vY)} 1) arr)? p‘(aw}z@l ry)?




‘\p’v
26

f’(cv,,g)f)’) = 2 j f., /xw)xgz)ﬁ, (270)dr,

+ 15 fnl(d—f‘f) g) c(r“

4

= _I + £ l' (@) & 767V + 176009 B4 7078 ﬂ‘]
§ ()’ («+7)383 (arp+7)7
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APPENDIX V

Sl Bl TO380) (i S cantpry)
VAIUE OF (W) FOR THE TRIAL FUNCTION € v e ,

A e, 1 8) 2 Bl )
Cla8,7)

O

wprd) o wrrnagiaafi[xr . er  af
‘7% Iﬁl ’ 8(:2’ﬁ:)1(§"3’)1 (‘3+J’)3 +(o(-nﬂz :(cxn)3

(r J 2 'rf X
2( axrv)} +(P+7)3 ¥ ?25% (p.rf’}" * B+M)* ,(a?f)l * (DHT')")

@
+2°‘J-3~(7-—7 + 2 f)

- g2 (;ff)l ((sz)’ (@ +7)* B @+

(?dﬁ'rf -1 { 1 i X
+(dz'(5¢X7’z»d”) ( X+ p+7 * p+y +.x-pa’)

l (v + 2p8) L) + 7Ca73(3: 8] + 1260V (0rd)* + T6rndiprd) s (V]
' (x+7)? (B+8)3 (arpr 7475)’

+ 8[(u+r)1+ 2(a+7) ® (p+4) +(B"5’)z]_ B+’ L 2 (vt o«f)
T @) prd) (arpeved)’ e+9)? @+ ) (prS)

+

ad 16’%5’1{ X 16 «_ , X }

‘+;—?o<2.r2)’(p 2_p2)* pr-8 | (4d)? R —(@w)‘ (vrd)*
; 247 (32+8%) I S T } . {-3__51 _ar
(a(""‘r’)(i%* - fe7 Atd  arf 213 (7+6)3  @+8)3

_xp_ _ XL PIC N O LA S S
(p+7)3 (xn?)’} +°(l"’2{(/“”)"+ Gr+d)* +(a+(5)"-(d+f)‘}
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APPENDIX VI

THE DENSITY OF BLECTRONS AT THi POSITION OF THE POSTITRON

L1

IN A SYSTEM OF

A POSTTRON AND A NECATIVE HYDROGEN TON T ITS GROUND STATE

As stated in Chapter V, p. 24, the density of electrons at the

pogition of the positron is given by

o () ¥l
e T SI*P(:.,:.,_CB)}IJ%

where Slq’(r,,r,, r,)l‘aq = é6,p,1,d) | which is worked out in

Appendix Y and where o

s

Slw(.r.,.t,,r,Ht = Sf !" (27, 28)n d¥, +Se ! (2¢2p) 1 d7;

[+
oD

[ it S + J’ - ZYI
= et Lo (@+7)3  (yr5?Y(xed)?
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+S.ze “ 3 (47, p4d) G dr,

* (rr 8 asr)?
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