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ABSTRACT

FREE DATTICES GENERATED BY
PARTYATLY ORDERED SETLS

by Harry Lakser

Tet P be a partislly ordered set. FL(P) is the
free lattice generated by P preserving existing binary
join and meet in P . A quasi-order is constructed on the
lattice polynomials over P in terms of certain ideals
and dual ideals of P 3 under the induced partial order
+the quotient set is the lattice FL(P) . A characterization
of TFL(P) is derived and a generalization of a theorem of
Sorkin on the extension of isotone maps is proved.

7 and 7 are families of finite subsets of P
such that every element of #] has a least upper bound in
P and every element of 7 has a greatest lower bound in
P. FL(P ;M,7) , a generalization of TFL(P) , is the
free lattice generated by P preserving joins of elements
of 7 and meets of elements of N . The results on
PL(P) are extended to FL(P ; 7, 7N) . As an applicatiom
certain results of R.A. Dean on completely free lattices
are derived.

The resul®s concerning FL(P) and FL(P ; 7, 1) are
applied to solve the word problem for free products of

lattices, partially ordered free products of lattices, and



iiid

semalgamated free products where the =zmalgamated sublatitice

A lattice L generated by a partially ordered set P
is said to admit canonical representations if every element
of T can be vepresented by a polynomial over P of
shortest length which is unique up to commu.tativity and
associativity. Those free products and partially ordered
free products of lattices that admit canonical representa-

tions are characterized.




The construction of free universal algebras was first

accomplished by G. Birkhoff (see [7], Chapter 4). Birk-
hoffts construction essentially defines, in a highly
non-effective manner, a congruence relation on the élgebra
of polynomials over the genervating set. Whitman [lOJ

!

ree lattice generated by a

3

analysed the structure of the
totally uvnordered set; he defined a gquasi-order on the
lattice polynomials in an effective manner and thus was
able to give an effective comstruction of the congruence
relation yielding the free lattice. Among his conclusions
was the result that every element of the free lattice can
be represented by a polynomial of shortest length which

is unique up to commutativity and associativity, that is,
that the free lattice admits canonic¢al representations.

In his analysis of the problem of embedding lattices

in complemented lattices, Dilworth [4] had occasion %o

discuss the lattices TFL(P) and CF(P) generated by a
partially ordered set P . To construct FL(P) he defined
a gquasi-order on the lattice polynomials in an inductive

manner, which entailed knowing the gquasi-order on a lower

level on the polynomials and not Jjust on P j thus
effectiveness was lost. OFf more import to our work, he had

occasion to introduce certain elements of the generating



set, the lower and upper covers, in a very special situ-
ation. These covers were further exploited by Chen and

Gratzer f23 in their extension of Dilworth's results on

embedding lattices in complemented lattices.

In [3] Dean completely analysed CF(P) and, general-
izing Whitman's method, he showed that CF(P) admits
canonical representations.

In [3a] Dean constructed TFL(P) and a generalization
FL(P ; M,71) , the free lattice preserving more general sup
and inf in P , in terms of certain ideals and dual idedls
of P . Our construction of these lattices is essentially
that of Dean; however,; we use the resulfs of Theorems T
and 9 of Dean's paper to define the quasi-order that
yields these lattices. This approach adheres more closely
to the "cover" approach mentioned above; covers are now
ideals and dual ideals of P , rather than elements.

For didactic reasons it was thought best to divide

this work into two parts—-one treating FL(P) and the

other treafing PL(P ;7%,72) . Consequently all sections
relating to (7%,72)' concepts are marked with an

asterisk (*); it is recommended that the reader omit these - -
sections at first reading.

| A special case of FL(P) is the free product of

lattices. Sorkin [9] discussed free products of lattices

and solved the problem of which are finite sets. One of



vi
the tools he used was the fact that isotone maps--and not
necessarily lattice homomorphisms—--from the factors to a
lattice can be extended to an isotone map from the free
product to the lattice. He also presented an example
showing that the free product does not always admit
canonical representations.

In Chapter I of this work we present the basic material
' needed in the analysis of FL(P) and FL(P 37, 7) ; most
of these results are well-known, although assignment of
specific references can be rather difficult.

In Chapter II we present the construction of FL(P)
essentially due to Dean [3a]. We characterize FL(P) and,
as an application of these methods, we present a generaligz-
ation of Sorkin's theorem on the extension of isotone
maps. In Chapter III +these results are extended to
FL(P ;7ﬁ,77) o We apply these resulits to derive the
results of Dean [3] concerning CF(P) .

In Chapter IV the results of Chapters II and III are
specialized:to free products, amalgamated free products,
and the concépt we chose to call partially ordered free
products. In these cases the upper and lower covers -

- reduce to elements of the factors.

Chapter VI summarizes the results of this work in the

context of the "word problem”.

And now a word on notations The lattice-theoretie
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notation is explainéd in the text. Set-theoretic notation
is standard; we need only mention that set union and
intersection are denoted by LJ, F‘ while — 3 ~ are used
for "join" and "meet" of lattice polynomials. Set
difference is denoted A - B . The symbol C is used both
for the concept "subset" and for the guasi-order defined
on the lattice polynomials; there will be no danger of
confusion. MNaps are written on the left; thus fg 1is g
followed by £ .

The theorems and definitions are numbered consecutive-
ly in each chapter. In referring to a theorem, definition,
or section the chapter number is given only if that theoren,
definition, or section is in a chapter other than the one
in which the reference is made. Thus, for example,

"Temma 5" refers to Lemma 5 of that chapter while

"Definition 3.2" refers to Definition 2 of Chapter 111,
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CHAPTER I

INTRODUCTORY CONCEPTS

1. Posets and lattices.

A relational system (.P H <> with a binary rela-

tion g is said to be a partially ordered set (pose}) if
the following three properties hold:
1) Reflexive, for all x €P, x< x ;

2) Antisymmetric, for all x, y € P, if x <y

and y< x then x =3y 3
3) Transitive, for all x, ¥y, 2 €P, if x <y

snd y<< z then x £ 2.

The relation <« is said to be a partial order. The state-

nent x £y is often also written y >x. If xK ¥y
and x +y we write x < y.

If, in addition, the property

4) for 2ll x, y € P either LYy or yg£X ;3

holds then the order < is said to be a total order and

P is said %o be a chain.

A binery relation & that is reflexive and trans-—
itive, but not necessarily antisymmetric, is said to be a

gquasi-order. Iemma 1 on p. 21 of [11 states:

1. Iemma. In any quasi-ordered set (S ;_C’:‘> define

X~y when xCy and yC x. Then:




(1) -~ is an equivalence relation on S 3

(ii) if E and F are two equivalence classes for
~, then xXCy either forno x €RB, y &€F or for all
x€ E, y€TF; |

(iii) the quotient set S/v is a poset if & K T

is defined to mean that xCy for some x € E, y é F.

If (P ;&) is a poset, A a subset of P, and

x € P, then x is said to be an upper bound of A if

x2a for all a €& A, x is said to be the least upper

bound of A, denoted by sup A (or supp A if the poset
P is to be stressed) if
(i) x 1is an upper bound of A j
(ii) if y is an upper bound of A then x £ 7y.

The concepts of lower bound and greatest lower bound,

denoted inf A, are dual to the above. It is clear from
the definition that if sup A (and dually inf A ) exists

it is uniques

A lattice L is a poset in which every set consist-—
ing of a pair of elements has a least upper bound and a
greatest lower bound. We denote sup {x, y} by V¥,
"Jjoin", and inf {x, y} by x ANy, "meet". It is to be

stressed that in this work Vv and A are used only in

- a lattice, i.e. when all pairs have a sup and an inf.

A lattice T can also be thdught of as an algebra




with two binary operationé, V and /N , satisfying:

1) forall x€ 5L, XVX=%XAX-=2x%;

2) forall x,y €L, X Vy=yVzx and
XAY =y AX;

3) forall x,y,2 €L, xVv(iyVvaz)=((xvVy) Vs
and xA (yA 2) = (xAYIAN 33

4) for all x, y€ L, xV (xAy) =xA(xVvy) =x.
The connection between these two approaches to a lattice
is provided by:

x€ ¥ 1is equivalent t0 XV Yy =y which is equi-

valent to x Ay = x ([ p. 8).

A lattice T may or may not have a greatest element
and a least element; if I has both a greatest and a least
element it is said to be bounded . Any lattice L may be
embedded in a bounded lattice Lb. To construct Lb from
L we adjoin two symbols O and 1 %o I Lb = L[J{O, is.
The partial order on Lb is that defined on L along
with the requirement that 1 > x for all x € L° and
0L x forall x € Lb. Thus, for all x € Lb,
1Vv=1, I1AX =X, 0 Qfx = X , OANxX =0,

We should like to point out that even if I is bounded
Lb consists of two more elements than T ; the reason
for this approach is %o preserve a degree of effective-

ness in certain constructions, because for an arbitrary

lattice I there is no algorithm to decide whether or



not I is bounded;

If T 1is a poset such that all subsets have a sup

and an inf then T 1is said to be a complete latiice. By

the method of "completion by cuts", [i] p. 126

2. Lemma. Any lattice L can be embedded as a

sublattice of a complete lattice IL*.

Finally we mention a metatheorem, the principle of

duality:

Principle of duality. Any theorem about a poset

remains true if 4; is replaced by > and sup and inf

are interchanged.

The prineciple of duality will be referred to rather freque~
ently in the sequel in order to reduce the length of

proofs.

2. Ideals, homomorphisms, hereditary sets, and isotone mans,

Let P ; £) De a poset.

3. Definition. a) A subset I of P is said to

be an ideal of P if:
(1) x €I and y<x imply y €71 ;
(ii) x, y €I and sup {x, y} exists imply

sup {x, y} €I



D) A subset D of P is s3id to be a dual ideal

of P if:
\ (i) x€ D and y >x imply y € D ;
(ii) x, y € D and inf {x, y} exists imply
inf {X, j} € D.

We observe that -P itself is always an ideal and a dual
ideal. Also, since the empty set @ satisfies the con-
ditions vacuously, it will also be considered to be an
ideal and a dual ideal even if P is a lattice. For

lattices this differs from the usual convention.

4. Temma. If (In| XN €A ) is a family of ideals
(resop. dual ideals) of P then 'fW(le XNeAN) is an
ideal (resp. dusl ideal) of P.

Proof: We prove the lemma for the case of ideals
and invoke the principle of duality to establish the
result for dual ideals.

(1) Tet x € (W XN e A ) and let y £ x. For
each AN€N x ¢ I, and thus y € I). Consequently
v € [JI A €eND. |
| (1i) Tet =x, y € [J(ILy N € AN ) and let sup {x, y}
exist. Then, for each Aeé AN\, =x, y € I, and so
sup {X, vy € I,. Thus sup {x, y} ¢ (1(IA,*A e N\ ).

Thus f](Ik] A€ N) is an ideal and the lemma is
established. |




Lemma 4 implies that the ideals and dual ideals of
P form closure systems (Moore families, in the termino-

logy of {1]). Thus ([1] p. 112):

5. Lemma. The ideals (resp. dual ideals) of a poset
P form a complete lattice under set inclusion .« IT
(Ikl NE/N ) is a family of ideals (resp. dual ideals)
then inf (I, I NEN) = ﬂ(IA | NEN) and

sup (IAl NEA) = (W(JfJ is an ideal (dual ideal) and E&IAQQJﬁ.

6. Definition. a) Tor each x € P +the set

(x] = {yly g‘x} is said to be the principal ideal

generated by x .
b) For each x € P +the set [x) = {yly >/x} is

salid to be the principal duasl ideal generated by x .

To Jjustify this definition it should be noted thate

7. Lemma. (x] is an ideal of P and is the set
intersection of all ideals containing xl; [k) is a dual
ideal of P and is the set intersection of all dual ideals
containing x .

Proof: By condition a)(i) of Definition 3 every
ideal of P containing x includes (x] .

(1) Tet y €(x] , i.e. y¢x, andlet z v .

Then zgx , and so =z € (x] .
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(ii) Tet vy, z € (x] and let sup {y, z} exisdt.
Since y, z £ x ‘then sup {y, Z’S & x. Thus sup {y, z} &€ (x].

Consequently the lemma is established for (x| and,

by duelity, the lemma also holds for [x).

8. Definition. An ideal (resp. dual ideal) I is

said to be a pseudo-principal ideal (resp. dual ideal)

~of P if it can be obtained by teking a finite sequence

of binary joins and meets of principal ideals (resp.

principal dual ideals).

The pseudo-principal ideals (resp. pseudo—-principal dual
ideals) are a sublattice of the latticevof all ideals
(resp. dual ideals) and could be described as the éub—
lattice generated by the principal ideals (resp. prin-

cipal dual ideals).

The concepts of ideal and dual ideal can be weakened

by regquiring only that order be preserved. This leads to

the concept of hereditaxry setse.

9. Definition; A subset I of P is szid to be

a heréditary subset (resp. dual hereditary subset) of P

if x€I, y<£x (resp. ¥ 2 x) imply yv € I for all

X, y € P.

.Every ideal of P is clearly a hereditary subset,

and duslly. The set (x] is the smallest hereditary



subset containing x and fx) is the smallest dual
hereditary subset containing x. The families of here-
ditery subsets and dual hereditary subsets of P are
again lattices, but in this case

sup (I,\\ N €A) = U(I,\‘ X\ € /\‘)
whenever (le N €/N\) is a family of hereditary (resp.
dual hereditary) éubseﬁs of P. Thus the sets of here-
ditary and duvual hereditary subsets of P are distributive
lattices, and, indeed, sublattices of the lattice of all
subsets of P. We recall that s distributive lattice is
one where one, and hence both, of the following properties
hold:

1) forall x,¥, 2 €L xA(yV z) (xAN JIVIxAz) s

]

(xvyIN(XV 3).

‘2) for 2all x, 7, 2 €L xv (y A\ z)

As in the case of ideals, one can define pseudo-
principal hereditary and dual here&itary'sefs. A case of
interest in the sequel is when sup {x, y} and inf {x, y}

exist only when x and y are comparazble, i.e. when

either x <y or y< x. In this case the concepts of

‘ideal and hereditary set coincide, and dually.

10. Definition; A mapping f : P> L, where I 1is

a lattice, is said to be a homomorphism if

(i) x, y € P and sup {x, y} exists imply

£( sup fx, y}) = I(x) v £(y) 3



and
(ii) x, y € P and inf {x, y} exists imply
£( inf {x, y}) = £(x) A £(y) .

If P 1is also a lattice this concept agrees with that of

"lattice homomorphism".
A weaker situation is:

11. Definition. A mapping f : P+ L , I a lattice,

is said to be an isotone map if x, y €P, x££y imply

f(x) £ £(y).

Of course, the concept of "isotone map" is meaningful even

if I 4is a poset, not necessarily a lattice.

3. Free lattices;

Lattices of various degrees of freemess were discussed

by Whitmen [10] and [11], Dilworth [4], and Dean [3],[3a].

12. Definitionm.(Whitman [10] ). The free lsttice om

mn generators consists of a set X of cardinality m a

lattice denoted TFL(aw'), 2nd a set injection

- Pz FL(mv) such that

(i) ?(X) generates TFL(aw) ;

(i1) 4if I dis a lattice and fo is a set mapping

f, ¢+ X > L then there is a lattice homomorphism
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£ : PL{Ay) —> I such that £ = £, .

13. Definition (Dilworth [4]). The free lattice

generated by a poset P comsists of a lattice denoted
FL(P) and an injective homonorphism (]0: P < FL(P) such
that

(i) (ID(P)" generates FL(P) ;

(ii) given any lettice L and homomorphism
f : P+ 1L +there is a lattice homomorphism

(o]
f ¢« FL(P) = I such that f(‘U = fo .

14, Definition (Dilworth [4]). The completely free

lattice generated by a poset P consists of a lattice

denoted CF(P) and an isotone injection (P P = CF(P)
such that

(1) (P(P) generates CF(PR) ;

(ii) given a lattice I and an isotone map
fo ¢ P> 1L there is a lattice homomorphism
f : OF(P) —> L such that £Q = £, .

Certain special cases of FL(P) wil be discussed

in the sequel. Iet (E,\l X €/\) Ye a family of mutually
disjoint lattices indexed by a set A. Then U(L,\] AeN)
can be regarded as a poset P where éup {X, y} and
inf {X, y} exist if and only if x, y € I, for some
NeN; thus x«y if and only if x, y € Ly for some
AEAN and <y in that Ly. In this case FIL(P) is
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said to be the free product of the lattices (I,] A€ A).

An glternative definition is:

15. Definition. If (Tx] N €A ) is an indexed

family of lattices then the free oroduct of the lattices

(L/\i NéN ) consists of a lattice I and an indexed
family ( q);\l NEA) of lattice injections Gy: Iy > I
~such that

(i) U( (P’\(I’i}\)l A EN) genera‘tes L s

(ii) ’given any lattice L' and lattice homomorphisms
£, 0t Iy 5 L' , N€/\, there is a latbtice homomorphism
f : L L' such for each ANEA f&o,\ = £y .

The concept Qf free product of lattices can be extended

in two directions., The first isce

16. _Definitiom. ILet (Ly| A€ A ) Dbe an indexed

family of lattices, let W be a lattice, and for each A€

let \{'J;\: M - L>\ be a lattice injection. The gmalgamated

free product of the (L;\l MNEN) over M consists of a

lattice I and lattice injections (PA: Ly=>1 such that
for each A, p € A 30,\ %\: (i’,‘* %, satisfying:

(1) [J¢ ()D’\(L,\)l NeA) generates I

(ii) given any lattice I' and lattice homomorphisms
£y, ¢ Dy > T' such thet for N, ¢y = £, then
there is a lettice homomorphism £ : L - L' such that

f(}‘)\z.f)\.
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The concept of amalgamated free product, as well as
that of free product, is gquite general and properly belongs
to the field of universal algebra. An alternative
generalization of the concept of free product is peculiar
to lattice theory. Let the indexing set /\ be a poset.
Tet P = [J(Ly| Ae/N). A psrtial order « is defined
on P Dby:

(1) if =x, y €Iy, Ae N\, then x <y if and only
if x4£&y in Ly ;

(ii) if ,\'—%:/(A; x € L, and y ¢ Ly then x{y
if and only if A<pm. |
However, if =x, ¥y are incomparable sup Ex; y} and
inf {X, y} wil be considered only if x and ¥y are in the
ssme lattice. With this restriction on sup and inf FL(P)

is called the partially ordered free product of the

Bxample 1. Tet /\ be the poset depicted in
o Fig. 1. TLet Lc have a smallest
element w. Then if x € LA
a b y.E»Lb w is the least upper bound
Fig. 1 of x and y. However, by the above

convention, sup {X, y} will not

exist,

An alternative approach to partially ordered Tree
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products is provided by:

17. Definition. Let /\ be a poset and (L] AcN)

be a femily of lattices indexed by A. The partizlly

ordered free product of the (LAi N€eN) consists of a
lattice L and lattice injections ?A: LA-é L such that
if A< 9x) < G(y) for a1l x € Ly, ¥ € In,
satisfying:

(i) lJ(LxI MNE N) sgenerates I ;

(ii) given a lattice I' and iattice homomorphisms

'—b

Ly »I*' such that if A< fA(X) é'gﬁ(y) for all
€ LIy, Y€ %43 then there is a lattice homomorphism

X
f : L 31" such that f%: £, for all ve N,

*4, (W, )=structures.

The concepts of 7{-ideals, 7[~dual ideals, (%,H)-
morphisms, and FL(P; mu7z) serve both as unifying con-
cepts and generalizations of the ideas outlined in Sections

2 and 3. (See Dean [3a].)

18. Definition. Let <P ;&) be a poset. An

(M )-structure on P consists of two families M, N
of finite non-empty subsets of P such that
(i) & é7n implies that sup A exists ;
and

(ii) A €W  implies that inf A exists.
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A generalization of both ideal and hereditary subset

is provided Dby:

19. Definition. a) A subset I of P is said to be

an J{-ideal of P if
(i) x €I and y<x imply y €1 ;
(i1) ACTI 2nd A e imply sup A € I.
b) A subset D of P is said to be an }]-dual ideal

of P if
(i) x €D and y >x imply y € D
(i) ACD and A€ imply inf A € D,

If 7” consists of 2ll pairs X, ¥ € P such that
sup {x, y} exists and Y consists of all pairs X, Y EP
such that inf [X, y} exists then the concept of T ~ideal
(resp. N =cual ideal) agrees with that of ideal (resp.
dual ideal). If W = Y] =@ +then 7W]-ideals are here=-
ditary subsets, and dually.'

As for ideals we find that:

20. Lemma. If (I | N € A) is a femily of W|-ideals
(resp. 7l—dua1‘ideals) of P then [j(IA | A6 A) is an
M ~ideal (resp. 7{-dual ideal).

Proof: The proof of a) is presenfed; that of D)
follows by duality.

That IW(IXI Ae€/N) is hereditary follows exactly
as in Temma 4. Tet A €7 and A;g;‘7(IA | xeA).
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Then for each )\ € /\ AC Ty, and so sup A € Iy. Thus

sup & € [UTy] NeA).
Thus [7(le NeA) is an J-ideal of P.

Thus the 7ﬁ~ideals and 7[-dusl ideals form closure sys—
tems and the snalogue of Lemma 5 holds.

Of interest in the sequel is:

21, Lemma, ZIet M, N consist only of chains., If
(I, ] A€ AY is a femily of V|-ideals (resp. 7l-dual
ideals) +then
sup (Iy] MeA) = [Ja@yl Aen).
Proof: This is clear since in this event W]-ideals

are identical with hereditary subsets, and dually.

As in the case of ideals, (x] is an.7ﬁ~ideal, the
smallest 7f-ideal containing x, and dually for [x).

Pseudo-principal Zﬂ—ideals and pseuvdo-pdrincipal 7{~dual

- ideals are defined in the obvious manner.

The concepts of isotone map and homomorphism can be
integrated and generalized in the same manner. TLet P

be a poset and let I be a lattice.

22, Definition. A map f : P> I is said to be an

(7%,7?)-mofphism if the following three properties are

satisfied:
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(i) f is isotoney
(ii) A €7 implies that \/F(4) = f(sup A) ;
(iii) A€ 7]  implies that Af(4) = f(inf A) .

If M= 1 =9 then an (7], 7])-morphism is an
isotone map. If 7] comsists of all pairs in P with
a sup and 5W consists of 2ll pairs in P with an inf

then an (7% ,7])-morphism is a homomorphism.

The various free lattices of Sectionm 3 can be con-

sidered as special cases of TFL(P ; M, 7):

23, Definitiom. The (7], M)=free lattice generated

by a poset P with an (7,7 )-structure consists of a

y]

lattice FL(P ; W, 7)) and an (%, HY=~injection
9P — FL(P ; ¥, 7)
such that
(1) (?(P) generates TL(P ; W, ) ;
(ii) given a lattice I and an (7,7 )-morphism
f :P~-L , there is a lattice homomorphism

0
f : FL(P 3 M,N) — L such that :f? = £,

If M= =g then FL(P ; W, 7]) =CF(P) . If N
consists of all pairs in P with a sup and 71 of all
pairs in P with an inf then FL(P ;3 7,7) = FL(P) .

We should stress that TFL(P : 27,7() is more than

‘just & vnification of the concepts of FL(P) and CF(P);
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both partislly ordered free products and emelgamated free
products are forms of neither FL(P) mnor CF(P) and yet,
as will be evident in Chapter IV, they are special cases
of FL(P ; M, N). Nor need M, 7% consist solely of

pairs:

Example 2, TLet P be the latitice

e depicted in Fig. 2. Then

of exactly the set {a, b, cf

| then FL(P ; W, 7) 4is the
‘ quotient lattice of FL(3)®
Pig, 2 - under +the lattice congruence

e(1, avbvVve) where a, b, ¢
generate FL(3). 6(x, y) denotes the smallest congruence

relation identifying the elements X, Je.

We close this chapter by observing that all of the

concepts presented here can also be defined if MM, N

inelude infinite subsets of P. Ve exclude this case from

our discussion because it would cause difficulties in the

construction of FL(P ;3 M, 7) .

FL(P) = P and. CF(P) = PL(3) ",
a b e 1f N =g and | consists
\:’




CHAPTER IT
FL(P)

'In this chapter the construction of FL(P) adue to
Dean [331 is presented. FL(P) is characterized and a
generaligation of a result of Sorkin [9} on the extension

of isotone maps is proved.

1. Iattice polynomials and covers.

et X Dbe a set. A lattice polynomial is an expres--

sion involving elemgnts of X and two binary operation
symbols « and ,ﬂ\; Tach lattice polynomial A 1is assigned
a length 1(a), +the number of occurences of elements of
X in the polynomial.. A technical definition of a lattice
polynomial is presented by mathematical induction on the
length:

1. Definition. (i) If x € X +then x is a poly-

nomial of length 1, that is, A(x) = 1.

(ii) If A and B are polynomials of length ll’
£2 then A~ B is a polynomial of length jl + 12’ i.e.
lae B) = Ja) + I(B) .

(iii) If A and B are polynomials of length Xl,
{, then A.~B is a polynomial of length B+ Pz, i.e.

f(a~B) = l(a) + [(B) .
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(Definition 1 continued)

The only lattice polynomials are those that can be
obtained in a finite number of steps from (i), (ii), and
(iii).

The set df lattice polynomials on X 1is denoted by

W(X).

2. Lemma. If A € W(X) +then A(A) > 1 and
A(a) =1 if and only if A € X.

Now let P Dbe a poset. With each polynomisl A
is associated a pseudo-principal ideal of P, A, the

lower cover of A, and a pseudo-principal dual ideal Kg

the upper cover of A. These are defined inductively:

3a) Definition. (i) If f(A) =1, i.e. A € B,

then A = (A], +the principal ideal of P generated by A.

(ii) If A = Aj— A

o then A = ig\/i]; y the ideal

join in P,
(111) If A=A ~A) then A=A, A\ A , the ideal
meet in P.

The upper cover is defined in a dual manner:

3b) Defimition. (i) If I(A) =1 +then X = [A),

the principal dual ideal of P generated by A.
(ii) If A = A A; ‘then E=EZ N ‘A‘l , the dual
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ideal mee%t.
(iii) If A = Aj~ A, then i = Ko\/ ’A‘l , the dual

ideal join.

Intuitively, elements of W(P) represent elements of
FL(P). A is the set of all elements of P bounded above
by A and, dually, A is the set of all elements of P
- bounded below by A,

4., Temma. If A EW(P) and x €A, y &L +then
x L Ve
Proof: The proof proceeds by induction om {(4).
(1) If {(A) =1 +then A € P, Thus A = (A] and
K = [A). Consequently x< A and A< y. Thus x< .
(ii) TNow let n > 1 and let the conclusian of the
theorem hold for all polynomials of length < n. Let
A{A) = n. Thus either A = Ay~ Ay or A=A ~A where
,Z(Ao) < n and ,Q(Al) £ n,
If A:onAl then é_::AO\/Al and

—

AzKO/\Kl=KOﬂ'§l. Let y € A ; thus yéXO and
v € Kl . Then, by induction, for all z €A , z <.
Thus A C(y] and, similarly, Alg_:_(y]. By Lemma 1.7

(y] 4is an ideal. Thus 4 = AN A C (y]. Consequently

if x € A then x (¥-

o 1 the result follows by the principle
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of duvality.

Thus, by induction, the lemma follows.

5. Coroll., a) If A€ W(P) and x € & +then
A C(x].
b) ITf A €W(P) and x €A then i Clx).

2. Construction of FL(P).

An equivalence relation is defined on W(P) s Where
P is a poset. We show that the equivalence classes form
a lattice and that this lattice is PL(P). The first
step 1s the construction of a quasi—ordei‘ Q; on W(P) ,
a generalization of the technigue of Whitnan [lO], Dil-
worth [4], and Chen and GrEtzer [Z].

6. Definition. If A, B € W(P) , set AC B if i%

follows from the rules (1) to (6) belows:

(1) A=3;

(2) Zll3+ 4 ;

3) A= A, A, where Al CB and AlC;B s
(4) A= Ay~4& vhere A C B or A, C 3B ;
(5) B =3B ._B; where AC h or AGB; ;
(6) B=3B ..B; where AC B, and AgBl s

7. Lemma. If A, B € W(P) and AC B then
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Proof: The proof of a) is presented; that of b)
follows by duality.

The proof is by induction on X(A) + UB) , which is
> 2. If ACB Tollows by rule (1) then the result is
clear. Thus it may be assumed that A & B does not fol-
low by (1). |

If {(A) + UB) =2 then AC B nust follow by rule
(2). Thus EMVB & @ . Tet x € ENB . By Coroll. 5
AC (x] and, since x € B and B is an ideal, (x] C B
Thus AC3B .

Now let {(A) + ¥B) =n > 2 , and assume that the
conclusion of the lemma holds for all A, B € W(P) such
that 1(a) + ¥B) <n .

If AC B follows by rule (2) then the conclusion
follows as above.

If AC B follows by rule (3), that is, A = A —A

1
A, B and A B, then Ay & B since

2a) + 4(B) L (4) + [(B) . Similarly A, C B and, since

B is an ideal, A = AV A CB .

If ACB follows by rule (4) then A = = A ~Ay

and, say, AOCB . Since {(4,)) + {(B) <n then A C B

_.9_

_‘._-

Thus A = \ lg__ CcCB
B

If AC follows by rule (5) then B = B, By

and, say, AC B . Since (a) + )’f(BO) <n then ACB
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If AC B follows by rule (6) then B = B, ~By ,

AC BO y and AC Bl .« Thus by the inductive hypothesis
- C = =
A3 o LC3y . Tmo ASTM% =B A% =D

Thus, by induction, if A CB then AC 3B and,
dually, B CE.

Using the result of this lemma we proves

8. Lemma. The relation C on W(P) is a quasi-
order; that is, C is reflexive and transitive.

Proof: That C is reflexive follows from rule (1).

The transitivity of (C 1is established by induction
on {(A) + {(B) + C) >3 5 Where ACB and BCC .
If either ACB or BCC follows by rule (1) the re-

sult that A C C 1is clear; thus in the proof it will be

assumed that neither AC B mnor B CC follows by rule (1).
et ACB and BEZC , and let 4) + U3B) + l¢) = 3.

Then {(4) = AB) = YC) =1 . Thus A CB follows by
rule (2), i.e. AfIB4+ g . Since BCC, B CC by
Lemma 7. Thus Kﬂg_:{:gf , and so A CC by rule (2).
Now we may assume that A CC if A CB and
BCC and f(A) + UB) + l(c) <n .
'Lef ACB and BLC , and let
) + UB) + AC) =n .
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If AC B follows by rule (2) then, proceeding as
above, AL C . If BCC by rule (2) the dual argument
establishes that A CC .

If ACB follows by rule (3) then A = A0-/A1 ’
AL B, and Al-__C_B . Since
LA + 4B) + L(e) < {a) + I(B) + Ic)
then A (C C . Similarly, AC C . Thus, by rule (3),
ACC .

If AC B follows by rule (4) then A = ]
and, say, AO(;; B . Thus, by the inductive hypothesis, -
A GC and consequently, by rule (4), ACC .

" If B CC follows by rule (5) or (-6) the argument
is the dual to the above. Thus only two cases remain:

B=BOVB ACB by rule (5), and B CC by rule (3);

l ¢
and, dually, B = B —~3B; , ACB by rule (6), and
B CC by rule (4).

If B=BOVB ACB by rule (5), and BCC

1 R/
by rule (3) +then ACB, , say, and B, C C, B CC.
Thus, since f(A) + ,Q(BO) + (e <n, ACC .

The other case is the dual.

Thus if A, B, C €W(P) where AC B, B CC then

ACC . Thus & is transitive also, and so (C is a

guagi-order.

Thu‘s, by Lemma 1.1, there is an equivalence relation

~ on W(P) where A ~B if and only if AC B and
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BC A . For each ‘A € W(P) +he equivalence class of A
modulo -~ is denoted <A>. Thus W(P)/. is a poset
with a partial order £ defined by:
For all A, B €W(P) <A £ <B) if and only if
ACB .

9. ZLemma. W(P)/~ is a lattice under &£ ; for each

Ay B EW(P) <O V <B) = <A—B) and Y A B = A3 .

Proof: By rules (1) and (5) of Definition 6
ACAB and B&SAL_B . Thus <4 € <A~—3B) and
B £ {4 B) ; that is, <A B) is an upper bound of
{w, &%}. | |

Now let C EW(P) and <A L), B £ ). Thus
ACC and BCC ; thus, by rule (3) of Definition 6,

A BCC ; i.e. <A_B)y L£40).

e

Thus <{A~_—B) is the least upper bound of {{A),CB)} .

The second half of the conclusion follows by the

principle of duality.
Now we show that P is embedded in W(P)/o .

10, Lemma. If A, B €P then ACB in W(P)
if and only if A KB in P .

Proof: Let AC B ; then ACB . Thus (Al C (8
and so A € (B}, that is, A< B .

Conversely, if A B +then B € [A) =X and
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ond B € (Bl =B ; thus BEENB . Tus Ef1B s g

and so ACB .

11, Iemma. a) If A, B éP and sup {A, B} exists
then sup {A, Bj ~A_ 3B .

b) If A, B €P and inf {A, B} exists then
inf {A, By ~ A—~B . -

Proof: The proof of a) is .preseni':ed; that of Db)
follows by duality. _

In P, A sup {4, B} and B < sup {A, B}. Thus
by Lemma 10 A Csup fA, BY and BC sup {A, Bf. Con-
sequently, by rule (3) of Definition 6,

A—3B Csup {A, B}.
Now A—B =AV3B and A€ A, BEB; thus

A, B €AV 3B and, by hypothesis, sup {A, B} exists.
Since AV B is an ideal of P sup {A, BJ€ A_-B = AV3B.

Also sup {A, B} € Sup (&, B} ; thus
sup (A, By (JA—3B 4 4.

Consequently, by rule (2), sup {4, B} CA—3B .

Thus sup {4, By~ A— B .

12. Definition. A map (F: P —» W(P)/~ is defined;

if A € P +then ({)(A) = (A,

13. Lemma. (?: P — W(P)A is an injective

homomorphism; that is, CP is 1-1 and preserves existing
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sup and inf.

Proof: (i) crf is injective:

Let A, B € P and ®(a) = (f(B) . Thus <A) = (B)
and so ACB and B&A , Thus, by Lemma 10, A< B
and B <A . Thus @(A) = ?(B) impliés that A =3B .

(i1) TLet A, B € P and let sup {A, B} exist.
Then

(‘D(A)\/(P(B) = MHVE® = A _B) =(up {4, B}): (F(sup{A, BY).

(1ii) If A, B €P and inf {A, B} exists then

this case is the dual of (ii).

Thus we have established the lemms.

Now we need only show that the pair ( ?, W(P)/~ )
satisfies the universal happing property for TFL(P) .
Let I Ybe a lattice and let fo ¢t P=+TLT be a homo-
morphism. We define amap F : W(P) = T by induction
-on the length of the elements of W(P) :
(i) if R(A) =1, i.e. A € P, then F(A) = £,(4) ;
(11) if A=A <4 |

1 ‘then P(A) = F(AO) \% F(Al) s

(iii) if A = A ~ A ‘then F(A) = F(AO) /\F(Al) .

14, Lemma. TLet x € P and A € W(P) .

a) If x € A then £ (x) < F(a) .

b) If x € & +then £,(x) 2 F(4) .

Proof: Since b) is the dual of a), only a) need be

proved. The proof proceeds by induction on f(4) .
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If {(A) =1 then A € P and so A = (Al. Thus
x £ A and thus £, (x) £ S (A) = P(A) . (A homomorphism
is clearly isotone.)
Now let J[(A) =n >1 and assume a) to be true for
21l polynomials of length < n . Since A(A) > 1, either
A = A~ Al or A = Ao’_\Al for some A, Ay € w(P)

If A = AO/\A

1 then _A_:ﬁgni and thus Xéi&g

and x € 4) . Since A(a)), (4) <n, £ (x) LF(4)

et
and T (x) F(Al) o« Thus f (x) I‘(A )/\F(A) F(A)
A =

If A — A, let

1
I ={rerlz(y)< F(A )\/F(Al)}

We first show that I is an 1deal of P. If y €I

and z <y then fo(z) Sfo(y) gF(Ao) VF(Al) , and

so z €I . If Vo1 ¥q €T and sup {yo, yl} exists

~then f (su.p {y , yljg) = fo(yo) \/fo(yl) and

£.(rg) SF(A) VFR)) , £ (y)) F(a)V Fa Thus

1)
sup {yo, yl} €I, and so I is an ideal of P .

Since l(AO) < n , whenever x € A,

f (x) F(A ) < I‘(A ) VF(A ) .

Thus Ao(_f'__ I and, similarly, Al_C_ I . Since I is an
ideal, A = Ao\/ A CT . Thus if x €A “then

f (x) F(A )VF(Al) = F(4) ,

Thus the lemma is established.
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15. Lemma. If A, B €W(P) and AC B then
P(a) S F(B) .

Proof: The proof proeeeds by induction on
La) + iB) 2 2. |

If J(A) + W(B) =2 +then A, B €P . Thus ACSB
implies that A &£ B (Lemma 10). Thus fO(A) £ fO(B)
and so, by the definition of F , F(A) L F(B) .
| Now let {(A) + I(B) =n » 2 and let the conclusion
| hold for all pairs whose lengths add to an integer {1 .
A CB must follow from one of the rules of Definition 6.

If ACB follows from rule (1) the result is clear.

If ACB follows from rule (2), i.e. if E{iB & # ,
then there is an x € P such that x &€ 4L, x €& B .
| Thus, by Demma 14, F(A) Sfo(x) < P(B) . Thus
F(4) < F(B) . |

If ACB follows from rule (3) then A = A ~ 4y ,
ACB, A, CTB. since (a) + AB)<n, F(a,) & F(B)
and, similarly, F(Al)é F(B) . Thus

- F(A) = F(A)) V F(4,) L F(B) .

If ACB follows from rule (4) then A = A ~A;
and, say, AOC_:_ B . Thus, by the inductive hypothesis,
F(AO) £ F(B) 3 so

P(A) = F(A)) ~NF(47) € F(a)) < F(B) .

The dual arguments apply if the qﬁasi-—inequality

follows by rule (5) or (6).
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Thus if A C B then F(A)L F(B) .

16. Coroll. If A, B €W(P) and A ~3B then
F(a) = F(B) .

Thus we can define a map
f: WP/ —1
by | '
f(<A>) = F(A) for all A € W(P) .

17. Lemma. f : W(P)A — L is a lattice homomor-~
phism and fqn: fo .
Proof: W(P)/~ is a lattice by Lemma 9. The map *
is well=defined by Coroll. 16. Also
(W v <®) = £(&A—B)) = F(A—B) = F(A) v F(B)
= £({&Y) V £({B)) ,
and dually.
Thus f” is a lattice hOmomorphism.
Now let A €P . Then ?(A) = <A) 3 thus
fq)(A) = £(<&)) = F(4) = £,(4) . Thus £ = £, .

Thus the proof is complete.

Since P clearly generates W(P)/~ Temma 17 shows

that:

18. Theorem (Dean [3a]). The pair ( ?, W(P)/~) is
the free lattice generated by the poset P and S0
W(P)/~ = FL(P) .
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3. Characterization of FL(P) .

Let L bYe a lattice generated by a poset P . A
problem of some interest is that of finding necesssry and .
sufficient conditions on L so that I Ybe isomorphic to
FL(P) . Dean solved the corresponding problem for CF(P)
([3], Theorem 6, and Chapter III of this work)., In
Theorem 7 of the above reference Dean states a sufficient
condition for I to be TFL(P) ,‘provided that L 1is a
sublattice of a completely free lattices however; his
condition implies that FL(P) is isomorphic to CF(P)

([3] Theorem 4) and so does not contribute +to the problem
beyond his result for CF(P) . In this section the prob-
lem is solved, modulo the structure of the pseudo-principal

ideals and pseudo-principal dual ideals of P .

19. Theorem. ILet L Ybe a lattice generated by a
gubset P . If P is regarded as a poset under the
partial order induced by I +then there is a lattice
isomorphism {;om I onto TFL(P) extending CP: P =+ FL(P)
if and only if the following two conditions hold:

(i) a) for all x, y €L such that (x1 N\ P ana
(y1 NP are ideals of P

xvyllle = (NI (NP,
the ideal join in P , and dually
b) for all x, y €L such that [x){1P and
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[y)f} P are dual ideals of P 4
[x A y)ﬂP = ([x)ﬂ P)\lj/([y}n P) ,
the dual ideal join in P 3
(ii) given Xy Xqs Vg1 Tq € L such that
Xo/\xl<yovyl ’ Xo/\Xl¢yi v Xy {yov I1 s i(:{O, lj’
then there is a p € P such that
XO/\Xlgp<yo\/ ¥y

20, Coroll. Condition (i) implies that, for all
xeL , (x] Np is a pseudo-principal ideal of P and

'[x) MNr is a pseudo=principal dvual ideal of P .

Throuvghout the proof of this theoren (x] (and dually
[x)) denotes the set of 211y in L such that y < x
(dqually, y 2 x) and not just those elements in P .

Pirst the necessity of +the vconditions is established.
L may be taken as W(P)/~ if we identify P and (F(P) .

Three lemmas are proved:

21, Lemma. If A € W(P) then
a) (WINP=4a, ana » [eNNP=X.
Proof: The proof of a) is presented, and b) follows
by duality. |
Let pE((A)]ﬂP. Thus p L <A) and so pC 4 .
Thus, by Lemma 7, p CA , that is, p € A . Thus
“wlflrga. |
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Now let p €A . Thus, since p€ P, PNAEF .
Consequently p& A , that is, p £ €AY . Thus
p € (MNP andso acC(w]Ne.

Thus A = (W1 P .

22, Lemma. If A, Ay € W(P) then

a) (ayvap] N = ((aylN 2\ ((aplf »)
and

b) [y Adap) e = (a2 y ([an e .

Proof: Part a) is proved; part b) follows dually.
\ -
(apy vapl e = (a,—aylNe |
Ao\"’Al by Lemma 21,

P
LVh

((<ax1 N 2INT ((xap1 N )

. i

again by Lemma 21.
Lemma 22 establishes the necessity of condition (i).

23. Lemma., TLet A, Ay, B, By €W(P) and let
=N

ay Aay 8By VKBY , 4y Aap L4BY , and
<Ai> %(B& \V4 <B1> , i€ {o, l} . Then there is a p € P
such that <A> A<AD <p LBy VvV <BY .

Proof: Since <AO} A (Al> L <B0§ vV (Bl) then
A —~A CB By in W(P) . However, for i € {0, 1} ,
AO "“Ald;Ei and Ai@ BovBl e Thus the above relation

must be derived by an application of rule (2) of Definition 6.
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Thus A <A ﬂBQ o By + 8 . ILet
D EK:.«AlﬂBOV» By ; thus A ~A ﬂg 4+ 4, and so

Ao ~ Al Tp.
Similarly p QBO By .
Thus

By ANap <p By VLB .
Thus we have established the necessity of the conditions.

To establish the sufficiency several lemmas are stated.
Let fo ¢t P->1L De the embedding of P in L ¢ that

is, for all x €P , fo(x) = x .

24. Lemma, For all x €P
a) (x]1 [1P is an ideal of P ;3
) [x) [1P is a dual ideal of P .

Proof: Thig is clear since (x] ﬂP = x and

=) (lp=x%.

25. Lemma. Condition (i) implies that f,: P+ L
is a homomorphism.
Proof: Let x, y €P 2and let sup {x, y} existe.
Then x v'y L sup {x, y} . Thus
fo(sup {x, ¥} ) £,(x) V£ (¥) .
By Lemma 24 and condition (i) a)
xvylle = (NN,

and so (x\v y] (1P is an ideal of P . Since
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x, vy €(xvyl{lp, sup{x, y}é(x\/y]ﬂ:?. Thus
sup{;, y} £xXVvy, and so fo(sup{?, y3) = fO(x) \/fo(y) .
This argument and the duval imply the truth of this

lemma..

Consequently we have amap F : W(P) - L extending
f, such that the corresponding map f : FPL(P) - L is a
lattice homomorphism. The map £ is clearly onto since

P generates L . The injectivity of f follows from:

26, Lemma. Condition (i) implies that for all
AewE) a) A= (FW]MNP ana v) Z=[ranile.
Proof: Part a) is proved and part b) follows by dualiity.
The proof proceeds by induction on J(A) .
If [(a) =1 then A €P and so F(A) = £ (A) = A .
s A= (Al flPp = (r)INE.
Now let =1 > 1 and assume that the result is true
for all lattice polynomials of length <n . Let ,K(A,) =N ,

If A = AO —~A then

1 ~ : ,
(el = @) ATl = @)l (@Ea)] . s

~J

(real N2 = (F(a,)] Ne N (F(ay)] B
= A ﬂ A

A §
= A simee (4, Uap) <n.

If A=A A then (r(a)] = (F(a,) Vv F(a)] .

1
since WA,), .?(Al) <n

(F(a ) Ne = A, and  (F(4))] Ne- Ay
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Thus (F(Aoﬂi]IP and (F(Alj}(w P are ideals of P and

s0, by condition (i) a),

] e = ()] N2 (el e .
Thus
(] M2 = 4 Fa, = 2.

Since F 1is surjective this lemma also esteblishes

' Coroll. 20.

27. Lemma. Tet A €W(P) and x € P .

a) If x F(A) then xC A in W(P)

b) if x PF(A) then ACx in W(P) .

Proof: Part b) is the dual of a) and thus we give
only the proof of a).

If x LF(A) then x € (F(a)] NP and thus x € £ .

Twus EIVA + # and the result follows.
Now we state the crucial lemmas

28, ILemma. If A, B € W(P) and F(A) <F(B) then
ACB. - ~

Proof: The proof proceeds by induction on (&) + {(B).

If f(A) + {(B) = 2 +the result is clear.

Iet n > 2 and let the conclusion hold for all poly-

nomials whose lengths add to an integer <n . Iet

A) + B) =n .
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If A E€P or B &P then Lemma 27 establishes the
result.

If A=A Ay then F(A) = F(Ao) v F(Al) < F(B) .

1
Thus, for i € {0, 1} , PF(4;) <F(B) and Aay) + 1(B) <n;
A, &B and so A B,
If B = B:‘O/\B]_ the duval argument applies.
The only remaining case is when A = Ao ﬁ\Al and
B = Eo\../Bl . In this case
F(A) = F(a) AT(a)) K TF(B)V F(B) = F(B) .
If there is an i € {0, 1} such that P(4;) < F(B)
then, by induction, A; C B and thus A &B .
The dual argument applies if therev is an i€ {O, l} :
such that F(4) SF(Bi) .
Orx the other hand, if for all i € {0, 1j
F(a,) AF(4) $F(B;) and F(a) {F(EB) v EE) then
condition (ii) implies that there is a p € P suc\ki that
F(A)) AF(A)) <2 SF(B,) vV F(BY) .
By Lemma 27 it follows that ACp&CB . Thus ACB.

29. Coroll. F(A) = F(B) implies that A~3B .

Thus £ dis injective and so 1.1 PL(P) is

1

an isomorphism. Clearly £~ extends (P . Consequently

the proof of Theorem 19 is complete.

Conditions (i) a), (i) D), and (ii) are independent;
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we exhibit two examples to illustrate this. It may be

noted that in both exsmples Corell. 20 holds.

et L Db

0]

the lattice depicted in

!
<

Bxanple 1.

£
ot

7 ig. 1. Let P ={a, b, c§ . P

O\\\ generates L . Condition (i) a) fails

a . .
: C in ‘this case:

(b][] P = {b% and (c]{w P = {c} R

b y
both of which are ideals. Thus
X ((b]fw ?)\/'((CJ{XZP) = {b, c% . How-
Fig. 1 ever, since b Ve =2 ,

(v Vel r‘P = {a, b,»c} . The other
conditions hold.

The dual of this lattice is omne where only (i) b)

fails.
Examnle 2. Iet L Ybe the lattice depicted in
v Fig, 2, Tet P =1a, b, ¢, 4§ . P
Q\\\ generates I . Condition (ii) failss
a © bVvad=2z=aAc . Thus
N & a AebVvVid, aAc %;b ’
a Ne %;d s a %;b\J d, c %;b va,
b d and = é P .
The other conditions hold for I .
X
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Example 3.

Fig. 3

given a poset P

provided.
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This is an example to show that (ii)
may hold and Coroll. 20 a) may fail.
Let P = {a, b, c} » Then
(y][j P = {a, b} and sup {a, b} = ¢ 3
thus  (y] (1P is not an ideal.
In the dual lattice Coroll. 20 b)

fails.

A question related to the result in Theorem 19 iss
and a subset Q of P , what intrinsiec
conditions on P and Q are necessary and sufficient
for the lattice generated by Q in FL(P) +to be isomor-

FL(Q) ? A partial answer to this questiom is

L

Let P be a poset and let Q CP . We denote by Q)

We denote by H(Q)
ideals of P defined duaslly. As above, qKP) in FL(P)

30, Theoren.

the set of pseudo-principal ideals of P which are
obtained by taking joins and meets of a finite sequence

of principal ideals of P generated by elements of Q .

the set of pseudo-principal dual

is identified with P

Let the following conditions hold:

(i) a) Porall I,J € Hq), if I/1Q and
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g1 Q are ideals in Q then
avaNae = cNYenNo,
| . and
b) for all I,Jd € AQ), if I(1q ana
J{1Q are dual ideals in Q +then
CVnNe = cNaYeNY ;

(ii) given Iyo I € 4(Q) , D D, € 2(Q) such

0?
 that, for each i € {0, 1},

T, vipNo =4 , o, o) N1, =4 , ana

(1,01y) (1 (0 FD)) & ¢
then _

(1, 1) N, dopNae + 4.
Then there is an isomorphism from I , the sublattice of
FL(P) generated by Q , onto FL(Q) . The restriction
of this isomorphism to Q is @Q : Q - FL(Q) .

Proof: We show that the conditions of Theorem 19
obtain.-

Iet %,y €T and let (x]f)l Q and (y]fw Q Ybe
ideals of Q . By applying Coroll. 20 o FL(P) ,
(x]fw P, (y]fﬁ\P are pseudo-pfincipal ideals of P and,
since Q generates. L,

(xI N2, 12 € &) .

mow (x]1 N2Ma=(x1(1a ana (1N »Na = 111 o,
and so are ideals of Q .‘ Thus, by condition (i) of our

theoren
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(= N® & IN®] Ne = (1N YN .
Since, by Theorem 19,
(x vyl e = (1 N2 (y1 N2
we find that A
(xvylfle = (=N VI Na .
Thus condition (i) a) of Theorem 19 holds for I .
The truth of (i) b) is established in a dual manner.
Now let Xor X159 Vo ¥q €L, Xy A Xq gyovyl y
Xiﬁtyovyl , Xo/\xl¢yi for all i € {o, 1} .
Then there is a p € P such that
o NX <P <yo\/yl °
Thus  [x, Ax) 1y =4 end vy vrd N [x) =8
for all i € {0, 1} and
[, Axp) 1) (3, vyl]ﬁP + 7.

Thus, applying Theorem 19 to FL(P) , ¢

(=) N2 & () N e Nrg N

il
=

(o N ¥ o1 No] Nepg Ney

for all i € {O, 1} s and

(g M2 ¥ (o N V) N e & (xpNe)] s 0.

Thus

[(va (\m\/((ylj neyj (1] [xo>ﬂP>\l'?<[xl>ﬂP>]ﬂQ + g,

that is,
[Xo/\xl)ﬂP ﬂ(yo\/yll Nz Nq + g,
that is, [x| /\xl)ﬂ ( Yo v 11 e + 4.

g
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Thus there is a q € Q such that

xo/\xl\<q\<yo\/yl .
Applying Theorem 19 to L , our result follows.

4. Sorkin's theorem.

Sorkin [9] proved a rather surprising result: if LA s
AEN , and L are lattices and, for each A E A\ ,
:k : Lx -+ L is an isotone map--but not necessarily a
lattice homomorphism--then the f , AE N, can be
extended to an isotone map from the free product of the
:Lk to L . In this section é generalization of this
result is proved. The proof_is much simpler than Sorkin's,
even though he considered only a special case of our re-
sult.

Let L be a lattice and let L* be the completion

of L . We consider I as a subset of IL¥* .

31. Theorem. Let P be a poset and fo : P> L
be an isotone map. Then there is a map f : FL(P) = L*
such that f(? = fo satisfying:

(1) ‘£ is isotones

(ii) if f, Dpreserves all existing sup (resp. inf)

of pairs in P +then f preserves join (resp. meet) in

FL(P) 3
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(1ii) if each non-empty pseudo-principal ideal of P
is a set union of finitely many principal ideals, and
dually, then In(f) €L .
Proof: For each A € W(P) define g?(A) = \/fo(_A_)
and ?{A) = /\fO(K) . Define PF : W(P) - IL* inductively
on [(a) :

(1) if L(a) =1, i.e. A E P, then F(4) = £ _(4) ;

o

(2) if A=A A then

1
F(a) = Q(A) v F(A)) v F(Al) ;

(3) if A=A ~4A; then

1
F(4) =Ep(A) NF(A ) ATF(4) .

32, Iemma. a) If x € A then fo(x)gF(A) .
b) If x €L then £ (x)2>TF4) .

Proof: Part a) is proved; b) follows dually.

We proceed by induction on Ly .

1f Q(A) =1 +then A € P ; thus if x € A then

x A and so £ (x) gfo(A) = F(A) , since f_ is

isotone.
Now assume that n > 1 and that the result holds for
a1l A € W(P) such that AL(A) <n . Iet A(A) =n ; then

either A = Ao \zAl or A = Ao.r\Al o

If A=A A then x €A implies £,(x) €r (4) .

1
Thus fo(x)ég(A)gg(A) Vv E(a) V() = F(a) .

If A=A ~A; then é:iqﬂfl. If x €A
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then =x € Al and x € A4 . Thus, by the inductive
hypothesis-,— o

£, (x) S P(4,) end £,(x) £ F(44) .

If y €4 then x y (Lemma 4). Thus fo(x) <fo(y);
thus £ (x) Lz for all =z Efo(K) . Consequently f_(x)
is a lower bound of fo(K) s that is,

fo(x) < /\fo(K) = (?(A) .

Consequently fo(x) \<F(AO) R fo(x) QF(AI) , and

£,(x) < ?(A) . Ts £ (x) {F(4) .

33. Coroll. TFor all A € W(P)
Q(A) L A c’P‘(A) .

We now state the crucial lemmas

34, Lemma. If A, B €W(P) and A &B then
F(4A) {F(B) .

Proof: The proof is by induction on La) + L(B) .
A €B must be derived by rules (1) to (6) of Definition 6.
If A = B the result is clear; thus we heed only consider
rules (2) through (6), and we may assume that A $ B .

If A(A) + JB) =2 then A CB must be derived by
rule (2); thus there is an x € P such that x € Iﬂ_]_B_ .
Thus, by Lemma 32, F(4) <fo(x) L P(B) , and the result
follows.

Now assume that A(a) + f(B) =n > 2.
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If ACB is derived through rule (2) the proof is
identical with that presented above.
If ACB is derived by rule (3) then A = AV Ay,
A §;33 , and Al Cs . Thus, by the inductive hypothesis,
F(4,) L F(B) and F(4)) <F(B) . Since ACB then, by
Lemma 7, A €B ; thus £ (&) &£ (B) and so
Vi (4) < V£ (B) . Thus gi)_(A) \<q3(13) £ F(B)
Coroll. 33. Thus
F(A) = @(a) v E(a)) VF(4;) <T(B)
If A CB is derived by rule (4) then A = A ~A;
and, say, A/ C B . By the inductive hypothesis,
F(A,)) {F(B) . Thus
F(a) = @(A) ANE(a)) NF(A) S F(a,) L F(B)
The dual arguments apply if A ©B follows from
rule (5) or (6).

Thus the lemma is proved.

From the above lemma we conclude that A ~ B implies
that F(4A) = F(B) . Thus we can define a map |
f : FL(P) =+ L* by £(LA>) = F(A) for all A EW(P) . If
<A>, <B> €FL(P) and <A> < <B> then A & B ; thus
F(A) L F(B) , that is, £(<4)) L£(<B>) . Thus £ is
isotone. TFrom the definition of F on polynomials of

length 1 it is clear that fq)z fo . Thus (i) follows.

35. Lemma. If for all x, y € P such that sup {X3 y}
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exists fo(sup {z, ¥v1) = fo(x) v'fo(y) then for all
F(4) VvV F(B) .
Proof: We observe that {x ifo(x)-g F(A)‘V'F(B)} is

A, B €W(P) F(4-—B)

]

an ideal of P . By Lemma 32 this ideal includes A and

B and so includes ArB . Thus if z €f_ (A\/B) then

z LF(4) vV F(B) ; that is, gP(A « B) L F(4) vV F(B) 2and so
F(A < B) = F(A) VF(B) .

This lemma and the dual establish (ii).

To establish (iii) we consider the lattice P

of
Section 1l.1. Under the convention that \/ﬂ = 0 and
Ag =1, 08, EP’(A) €1 for all A €W(P) . Now we
need only observe that 0 <F(A) <1 for all A € w(P) ;
thus 0 and 1 are never images under F and thus T

maps to L .

It was observed by Professor Gratzer that part (i) of
Theorem 31 holds in a more general situation:

Let K Ye any lattice of which P is a subset. Then
there is an isotone f : K - L¥*¥ extending fo . We can

define f by f(x) = V&o((x] r\P) for all x €K .,



# OHAPTRER 11X
FL(P 5 W, )

Tn this chapter the results of Chapter II are
extended to FL(P 3 #,7) . As an application of this
extension we derive the results of Dean [3] concerning

CF(P) .

1. PP : W ).

Tet P be a poset and let there be an ( 7, )=
structure defined on P . With each A € W(P) we assoc-—
iate a pseudo-principal ‘M-ideal A and a pseuds=principal

#-dual ideal A as in Definition 2.3:

1. Definition. (i) If A € P then A = (A] and

E=1[a) ;

(ii) i:.‘ A=A ~— Ay then é:ivﬁ , the
M~ideal join in P , and & = Ko AK}. , the 7(-duval
idesl meet in P 3

(iii) 4if A = A —4A; ‘then A=A AA , the

ot

o

W~ideal meet in P , and & = Ko\/ﬂl , the 7l =dual

ideal join in P .

Since, for any x € P, (x] dis an 7i-ideal of P
and [x) is an 7-dual ideal of P Temma 2.4 and its
corollary remain true in the ( M, 71)=case.

The guasi-order (C on W(P) is defined in the



( %F 7)-case exactly as in Definition 2.6, except that A

and B refer to (7}, 7f)=covers.

2.

followg from rules (1) to (6) bvelow:

Definition.

(1) == ;

(2) ENB &4 ;
(3) A = AOvAl
(4) A = Ao"‘Al
(5) B =3B,—3B;
(6) B = B, —By
The fact

as in Chapter

defined on W(P):

3.

only if A CB

W(P)/~
we can define the map (F: P - W(P)/~
for all A €P .,
proof of injectivity is identical with that in Chapter IT.
The proof that (F is an ( M, 7 )~morphism follows if we

replace Lemma 2.11 by:

4.

Definitiomn.

Temma, .«

That

a) If {XO, ceosy an1} C P and

If A, B €W(P)

where
where
where

where

that C 1is a quasi-order follows exactly

II and so -the equivalence relation

If A, B € W(P)
and B CA .

is a lattice exactly as in Chapter II and

? is isotone is clear, and the

set A CB

-0

w0

then A ~ 3B

where ?(A) = (A)
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{Xgs eees X, 1} € M then

sup {x , ..., x, 3~ (""(Xo"xl)v"‘vxn—Z) - X, q -

0’
b) If (x5 o0 X, 1§ &P and {Xo, ceey X, FEM

then

inf {x_ 5 «ees %, 3}~ (""(Xo"‘Xl)’\""’\xn-Q)’\xn—l .
Proofs The proof of a) proceeds exactly as that

presented in Temma 2.11. Rule (3) must be applied several

o times and we must observe that

(...(xovxl)v...vxn_z)vxn_l = fQ.\/‘" \/xn_l;

since fxo, ceoy Xn_.l'f (_:__’_{_9_ Voo Vxn-l aﬁd

{XO’ LRCIE I Xn-l.k e ‘m 9
sup {xo, ceoy Xn—-l} € -119_\/... VX, 7

——C——c—

The proof that the pair ('({), W(P)/~ ) satisfies
the universal mapping property for TFL(P 75 7, 1) proceec’is
exactly as 1n Chapter II. We need only observe that if .L'
vis a lattice and f  : P> L 1is an (. My 7} )-morphism then
the set _

I = {yerls(y) KFA) VEADE, A, 4 €WE),
is an M-ideal of P , and dually.

5. Theorem (Dean [3a]). The pair (?, W(P)/~ ) is
the (7], 7])-free lattice generated by P , and so
W(P)/~ =TFL(P ;M7N) .

The characterization of FL(P ; M, 7N) is provided by:
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.

Tice generated by a

6. Theorem. Let L be a lat
subset P . If P is regarded as a poset under the
partial order induced by I then there is a lattice
isomorphism from L onto FL(P ; %, 7}) extending
(P: P - FL(P ; %, 77) if and only if the following two
conditions hold:

(i) a) for all x, y € L such that (x] NP ana
(] ﬂ P are 7J[-ideals of P

(xvylNe = (N2 (1 MNe),
the 7-ideal join in P , and dvually

b) for all x,y ¢ L such that [x) ﬂ P and

[v) VP are fl-dual ideals of P

Faye = (WNO2IT () Ne),
the [ -dual ideal join in P 3

(ii) given Xy» %1y Jor ¥ €L such that |
Xo/\Xl<yoVyl A R] *{yi ] {yovyl ! ie{O,l} »
then there is a p € P such that

X, ANE LD LY,V Ty .

7. Coroll. Condition (i) implies that, for all
x €L, (x] N? isa pseudo-principal M-ideal of P
and [x)[]P is a pseudo-principal HN-dual ideal of P .

The proof proceeds exactly as that of Theorem 2.19,.
We need only observe that condition (i) implies that the

injection £  : P L is an ( 5, N)=morphism:
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Let {XO, cooy Xn«l} €7 . For each i < mn-l1
(Xi]r)P is an 7]-ideal. Applying condition (i) a)
repeatedly,

P P

(Xo \ e vxnml]ﬂP = ((XO] ﬂP)\/ .,..\/((xn_l]ﬂl?)

and
P P
(Koo woes %y b CGed (T2 oo T (11 2) 5
thus
P P
sup{xo, coos Xn_l} € ((XO] ﬂ P) N/ .,.\/((Xn___l] ﬂ P)
and so

suD {XO, N Xnml} \gxo\/.,. VX, ;1 -

The reverse inequality is obvious. The dual argument

applies if {xo, ceasg Xnai} € N .
A useful corollery t0 Theorem 6 is:

8. Theorem. a) If the lattice of 7jj-ideals of P
is distributive then condition (i) a) of Theorem 6 can be
replaced by

(if) a) for all Koy esey X, 7 €P |

P P
(x, vooo v, 1002 = (x1N2VG ... &=, 1112 .

b) If the lattice of 7 -dual ideals of P is distri-
butive then condition (i) b) of Theorem 6 can be replaced
by

(i*) b) for all Xgs eeoos Xy 7 EP

(o A e Ax )12 = () DY o (e, e
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Proof: e prove a); Tthe truth of b) follows dually.

st that (i') a) implies that (X](w P

(]
(e}
DJ
0
o
.43
<
D
)
l_l
]
n

Let {XO, vosy X b EWL  , and let

then (xo-v e M’Xnml] C (x] . Thus
(I NN T (1 VD) = Gy v oeee v ) V2
o x1{12
and
fxgr veen 3 C (g N2 T (1 V),
an #]-ideal. Consequently
sapgxo, aso,-xnwi} € ((Xoj[j P)§3 ,,,§§'((Xn“1]vr]P)
and so supixo, ceos Xnal} é.(xjfw P .
Now we must prove that
xvy1Ne = (@ N7 (10w
for all x, y €L . Since P geuerates L the elements
of I can be represented by labitice polymomiszls over P .
Yore formally, we define a map F : W(P) - L inductively
on the length of elements of W(P) s -
(1) if A €P then T(A) = A ;
(2) if A = A_~~A; then P(a)

O
(3) if A = Aofw»A

F(A)) v F(4) ;5
F(A ) NE(4))

I

then F(A)

H

1
Since P generates I F is surjective.

Thus we need only show that A, B € W(P) implies
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r) vE®] N2 = (el 23 el .

%e proceed by induetion on A(a) + L(B) .

If f(a) + A(B) =2 +then A, B €P and so the
result follows directly from condition (i') a).

Let n > 2 aﬁd assume that the result holds for all
polynomials whose lengths =dd to an integer less than n .
Tet (&) + M(B) =n . Then, by the construction of (P ,

~ we can find polynomials Ay veos A, 5, By ooy B

o’ s-1
in W(P) such that
P(A) = F(a))V ... VF(A_ ),
ay) + ooe + o) = Aa)
and
F(B) = F(B,) vV ... VF(B__;) ,
2B + ... + R(B ;) = M(B) .
For each meaningful index i either Ai £€P or
A, =X ~Y, X, Y € W(P) , and BiéP or By =X.~Y,
X, Y EW(P) . (Note that r or s may very well be
equal to 1 .)
If A, €P for all i {r-1 and B, €P for all
j < s-1 +hen, by condition (i') a)
(F(2) ve@lNe = (Fa) v... vR(a__ ) VEB) V... VE(B__ )]
P
' P P P
= (e ) ey T (a,_INe) & (@)1 e ...

e aEe ) Ney
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(P v .. vra, N e & (re) v vee e
(eI N 2T EeE] N .

Otherwise assume for the sake of simplicity that

Il

il

A =D ~C, . Then
F(a) = {r(c) /\F(DO)} VP(A) V..o VE(A__]) ,
and, since ,Q(A ) + .. ,@(A 1) <n,
FW]Ne = {((r(c >1l”‘ A o] 2R ((rapINe) &
@ ((F(Ar__l)] Nz .
Tet G = (v0o(Cyw b))~ oo wA o)A
and D = (Loo(Djwby) e coo A S) A 4
Then, by the distributivity of the ¥#e=ideals and the
inductive hypothesis,
W] Ne=@e] NeyA @] N .
Thus
(N2 (@l = {(Eells) ¥ el A
Al e & (@l Ne}
by distributivity. Now A(¢) + {(B) < n and
D) + 1(B) <n . Thus, by the inductive hypothesis,
(@l N 2y (@) N e
=) veE] NeEoveel Ne,
noting that /J.} =M. However,
F(4) v F(B) < (F(C) \/P(B)) A (F(D) V F(B)) .
Thus
(r(a) v @] 12 Corl 0 )& (@@l N e .

But, since (F(A) v P NP is an M-ideal
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((r)] N2 F (@] Ne) Ceu v el ile.

Thus the theorem is proved.

It may be noted that the proof of the theorem holds
true wider the seemingly weaker condition that the lattice,
denoted temporarily by M , of pseudo-principal 7?Zaidea1‘s
be distributive. However this is illusory; +the lattice of
all T/Z-;ideals of P 1is isomorphic to the lattice of ideals
of the lattice M and so is distributive if W is ([1],
p. 129). A dual statement clearly holds for the ﬂ»dua]_.

ideals,

Now let P De a poset and let Q €P . In attempting
to generalige Theorem 2.30 to the (71, 71 )-case we note
that an (77, ﬂ)ms’cmcmre is tied +to the specific poset
considered. Thus if P has an ( 7, 7 )-structure it is
meaningless to consider FL(Q ;3 7, 7) unless Q =P ..
However, if we let %' and 7' be defined on Q ,
then the theorem can be stated. As in Chapter II we let
&(Q) denote the set of those pseudo-principal 7-ideals
of P obtained by taking a finite sequence of joins and
meets of principal 7l-ideals of P generated by elements
of Q . The dual concept is denoted by J(Q) . We denote
the join of %-ideals or 7-dual ideals of P by V ,
and the join of 7}'-ideals or ﬁ'~dua1 ideals of Q by
Y . | ;




9. Theorem. TLet the following conditions hold:

(i) a) For all I, J € {(q) , if IﬂQ and
Iﬂ Q are 7W'~ideals of Q then -

avHNe = cNaaYeNae ,

| and |
b) for all I, J € 0(Q) , if IflQ ana

J r}Q are 7('=duval ideals of Q +then

avnfle = aNoyeNo ;

(ii) given I, I; € d(e) , D
that, for each i € {0, 1},

(IO\P/I]_) ﬂDi =g , (DO@DI) ﬂ’Ii =g , and

(1, &1 (1o, D)) + &

or Dy € J0Q) such

then
P P . ,
.1 N, FopNesrg.
Then there is an isomorphism from L , the sublattice of
FL(P ;3 W, 7]) generated by Q , onto TFL(Q s 7 7Y 5 the
restriction of this isomorphism to Q is

% : Q= FL(Q ;%Y -

The proof of this theorem is a word-for-word duplicate
of that of Theorem 2,30,

It should be noted that the only relation between
the ( 7, 71)~structure on P and the ( 7', 7')-structure
on Q is that postulated in the two conditions of the
theorem. Thus, for example, let 7' = 7' =8 , and let

ﬁg be the set of all pairs in P that have a sup, and
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-4

he

oy

7 the set of all pairs in P that have an ints
theoren provides a condition for the latitice 1in PL(P)

generated by Q To De isomorphic to CF(Q) .

An intveresting question isr given two structures

&

&

o s ﬁ%) cand (7 Wl) on a poset P , when will

the ( %, 7,)~free lattice be isomorphic to the ( 7y, 7y)-
free lattice? The answer is provided in the following

theorem and its corollary.

10. Theovem. Consider ( ?o , FL(P 5 7., ﬂo)) and
( ?1 , FL(P ; ﬁa, ﬁl)), There is a latbice homomorphism
£ U W T,) v FEE 5 Tps )
such that T ?o = ?l if and only if every pseudo-
principal ﬁamideal is an ﬁ%aideal and, dvally, every
pseudo-principal ‘ﬂlmdual ideal is an ﬂ%mdual ideal.
Proof: We first prove the “if" part. By the universal
mapping property for PL(P ﬁ%,'ﬁo)‘ (Definition 1.23)
we peed only show that ?l ig an ( ﬁ%, ?%)wmorphism.
Since (?l is an ( 7, Wl)mmorphism it is clearly
isotone
Let {xb, O,G,Axnml} € M, end let
X = sup {Xb, cons Xnmlz’ Since (?1(Xi) £ %Hﬂx) for
each i< n-1, ([91(XO) V oo V(’f)l(xn_l) <(Pl(x) .
By Coroll. 7 applied to FL(P j 7, 7;) the set

I = 97Ny (x) v een V01000 N @)
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is a pseudd—principal 7/Zl~ideal of P ; thus, by the
condition of the theorem, I is an W]O—ideal of P .
Since {Xo’ cees Xn—l} € M, and {Xo’ ceey X,V QI

X = sup {xo, ooy Xn-l} €I .
This implies that @l(x) < %_(Xo)v ces V(Pl(xn—l) .
Thus (}Jl(x) = (Pl(xo) V oeeo V(Pl(xn_l) .

This fact and the dual, along with the isotonicity
Cof 971, imply that 9')1 is an (77{0, ﬂo)—morphism and so

the existence of f follows.

Now we prove the "only if" part. Let
£ 2 FL(P 5 Wys N,) — FL(P 5 7y, 74)

be a lattice homomorphism such that £ 300 = (101 ;s let

I be a pseudo-principal W]l—ideal of P . By the

construction of FL(P ; 7, 7;) there is a

y € FL(P 5 %, %y) such that ¢,(I) = (y] N %(P) .

Tet {xo, cees Xn—l} €M, > {x-o, ooy x, P ET,
and let x = sup {Xo" ey X, 7% o Then (fl(xi) £y for
each i g n-1 ; thus (i?l(xo) V oeoo V%_(xn._l) £7 .

Since (fl = f 7}0 and f is a lattice homomorphism

£( go(x) v ..o \/?’)O(Xn_l))‘ £y .

Since {xc;, eeey X, 1% € 7, and ¢, is an (77{0; N,)-
norphism, ?o(xo)v cee V%(xn-l) = (Po(x) . Thus
(Pl(x) =T S[)o(x) £y and, by the definition of y , x €1I.
Thus I is an %-ideal.
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This result and its dual establish the "only if"
part.
Thus the proof of the theorem is complete.

We should like to remark that every pseudo-principal

7ﬂl—ideal need not be a pseudo-principal %Q~idea1.

Indeed, if W% = ‘ﬂo =g, 7 consists of all pairs

in P with a sup and ‘ﬁ1> of all psirs with an inf, then
FL(P 5 %ys 7,) = CF(P) eand FL(P ;5 %y, 7,) = FL(P) . The
theorem then states the well-known relation between

CF(P) and TFL(P) . We note that an ﬂ%—ideal is a
hereditary set and clearly every pseudo-principal ideal

of P 1is a hereditary set. However, as the following
eiample illustrates, it need not be a pseudo-principal

hereditary set.

Example 1. Let the poéet P , depicted in Fig. 1,
au,?' | Q b consist of the elements a_, by, 2y
f ’n ! b, c;, 1i=0,1, ... . The partial
bn order is as indicated in Fig. 1.

For any non-negative integers i, j

by sup {ai, bj} = ¢, , where k is the

greater of i, j . Thus P is the

ideal join of (ay] and (bw] and

Fig. 1

so0 is a pseudo-principal ideal. How-

ever P is not a pseudo-principal hereditary set.
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11. Corecll. There is a lattice isomorphisnm (onto)
f : FL(P 5 Mys 720) — PL(P ;'7721, ‘721) such that
f ?0 = (Pl if and only if every pseudo-principal iﬂ%«ideal
is an 7ﬂl~idea1 and conversely for pseudo=principal
7ﬁ1«ideals, and, dually, every pseudo-principal ‘ﬁgndual
ideal is an f%ludual ideal and conversely for pseudo-
principal Zaudual ideals.

Proof: Ve need only observe that if

£ 2 FL(P 5 7,5 7)) — FL(P 5 7y, 724)

and g+ FL(P 37y, Nq) — FL(P 5 7, 7,)
are lattice homomorphisms such that £ ?o = ?l and
8¢y = @, then fg is the identity restricted to gﬂl(P)
and gf is the identity.restricted to ?O(P) s since
?O(P) and ?&(P) are generating sets of the respective
lattices fg and gf are the identity maps. Thus they

are inverses of each other, and the result follows.

In conclusion, we remark that the Sorkin theoren,
Theorem 2.31, remains true for FL(P 3 M, 7.) with the
obvious proviso that ideals are réplaced by M-ideals and
dually. Part (ii) should be replaced by

(ii) if £, @reserves sup of all sets in 74 (resp.
inf of all sets in 7 ) then f preserves join (resp.
meet) in FL(P ;M,71) .

The'proof is an obvious analogy of that presented in

Section 2.4.
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2., Completely free lattices.

As a simple application of the results in Section 1
we derive the main results concerning CF(P) in the paper
of Dean [3]. We note that CF(P) is just FL(P ; @4, #)
aﬁd that the concept of H-ideal (resp. ﬁ-—dual ideal)
coincides with the concept of hereditary subset (resp.
dual hereditary subset). @F-ideal and F-dual ideal join

"~ is set union (Temma 1.21).

12. Theorem. In the construc‘bion of CF(P) from
W(P) zrule (2) of Definition 2 can be replaced by:

(2*) A, BEP and AKB.

_fE_:t_‘_é_o_:_f‘_: If A, B €P then X n_@_ﬁ# # is equivalent
to A <B . |

We need only show that if J(A) + [(B) > 2 and
/1B + 4 then the result AC B can be obtained by
applications of rules (1), (2'), (3), (4), (5), (6).
This is done by induction on f(4) + A(B)

If A=A < A then ACB implies that A C B,

1

A, € B and, by induction, A, CB, 4 C B can be

obtained by replacing rule (2) by rule (2'). Then AC B
follows by applying rule (3). The dual argument applies
if B = Bor\Bl °
. If A=A A then E=X UZXE andsoﬁ
(IOUI)HB#Qf,thatls,oneofI B, IﬂB‘
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is non-empty, say Xon B+ @ . Then A, & B and so
A CB can be derived by applying rule (4).
| The dual argument applies if B = Bo‘”’Bi .

Thus we have established Dean's construction of

CF(P) ([3], Definition 1).

13. Theorem.( [3], Theorem 4). TFL(P) and CF(P)
are identical if and only if P has the following two
properties:

(i) given x, y, 2 €EP, 2z = sup {x, y} if and
only if 2z =X or z=Yy ,

and dually

(ii) given x, y, 2z €P , 3 = inf {x, y} if and
only if z =x or 2=y . -

Proof: It is clear that ideals of P are hereditary
subsets and dﬁally. Thus, in view of Coroll.ll, we need
only show that condition (i) is equivalent +o the require-—
ment that all pseudo-principal hereditary subsets be ideals.
A dual requirement holds for condition (ii).

Assume that all pseudo-principal hereditary subsets
are ideals and let 2z = sup {x, y§ . Since the join of
hereditary subsets is set union, the pseudo-principal
hereditary subset (x] U (y] is an ideal, and
{=, y}g_(x]U (y1 . Thus =z € (x] U (y] 2nd so z x
or z VY . But, clearly, x Lz and y\<.z ; thus
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Z =X Oor % =Y , and so condition (i) holds.

Now assume that condition (i) holds. ITet I be a
hereditary sﬁbset of P clearly x €I and y < x
imply that y €I . Tet x, y €I and let sup {x, y}
exist. By condition (i) either sup {x, y} = x or
sup {x, y} =y ;3 that is, sup {x, y} €I . Thus every
hereditary subset is an ideal.

Consequently the theorem is proved.

14. Theorem. Let L %be a lattice generated by a
subset P . If P is regarded as a poset under the partial
 order induced by L there is a lattice isomorphism from
L onto CF(P) extending (P ¢ P> CF(P) 4if and only if
the following two conditions hold:

(i) a) for all x, Xy wee9 X, 7 €P

x g Xy V oeee VX, 4 implies that x gxi for some
i Ln-1, and dually,

b) for all x, Koy eeey Xy q €P
X 2%y Neeo AXy 4 implies that x 2 x, for some
ign-1

(ii) given Xys X1y Tos Tq €L, X, ”\Xifé T,V ¥
implies that either X, A Xy s.yi or x; < Yo,V ¥, for
some i € {O, 1} o

Proof: The lattice of hereditary subsets (resp. dual

hereditary subsets) of P is a subiattice of the lattice
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of all subsets of P and so is distributive. Thus we
need only show that our condition (i) is equivalent to
condition (i') of Theorem 8, specialized to FL(P ; &, &£ ) ,
and that our condition (ii) is equivalent to condition
(ii) of Theorenm 6.
Condition (i) a) of our theorem is equivalenf to the

requirement that

(3 NP U ..o |JUxy_q2 12

for all Xo9 cees Xy 9 €P ; this is equivalent to condition

(Xov coe VXn—-l] ﬂP

(i') a) of Theorem 8 because \P/ = |J for hereditary sets.
The dual establishes the equivalence of conditions (i) b)
and (i') b).

We note that our condition (ii) is stronger than
condition (ii) of Theorem 6. Thus we need only show that
our condition (ii) holds if L is CF(P) .

Since CF(‘P) = FL(P ; &4, #) condition (ii) of
Theorem 6 holds. Thus if X, N\ Xq d};yi and Xy { Yo V¥
for all i € {0, 1} and if x  Ax; ¥, Vy; then
[x, nx) (1 (v vy 3 NP+ F . Thus

o Ax) N {gd M® Y Nef + g
and so either [x A X;) N (vl # 8 or
[xo A xl) N (yl] + § , which contradicts the hypothesis
that x /\Xl 43{1 . This contradiction establishes
condition (ii) of our theorem.

Thus the proof is complete.
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15. Coroll. ([3], Theorem 6). Let T be a subset
of CF(P) and let IL(T) %be the sublattice of CF(P)
generated ﬁy T . A necessary and sufficient condition
that L(T) be isomorphic to GCF(Q) , where Q is a poset
isomorphic to T , is that, for any +t, to’ ceey tn_l eET,
Tt Vv Vt, ; implies that & §;ti' for some i mn-1,
and dually.

Proof: We need only observe that condition (ii) of
Theorem 14 holds in L(T) because it holds in CF(P)
and L(T) is a sublattice of CF(P) .

In the same vein we can answer a question left
uvnanswered by Dean:

16. Coroll. Let Q be a subset of GF(P) . Then
L(Q) , the sublattice of CF(P) generated by Q , is
isomorphic to FL(Q) if and only if, for all x, y € L(Q) ,
(x vyl1Na= (TN (1 MNa) ana
EAavNe= =N Yan Na .

Proof: We apply Theorem 6, noting that condition (ii)

holds vacuously because IL(Q) C CF(P) .



CHAPTER IV
FREE PRODUCTS

We apply the results of the previous two chapters to
free products, par%ially ordered free products, and a
special case of amalgamated free product. For a partially
ordered set in general there is no direct way of finding
joins of ideals and dual ideals nor of distinguishing
which are pseudo-principal. For the special cases discussed
in this chapter, however, there is an explicit algorithm,
in . terms of the lattice structure of the factors, that

resolves these questions.

1. Free productse..

Let /\ be an indexing set and let (Ly| ANEA) be
a family of mutually disjoint lattices. As outlined inm
Section 1.3, the set P = |J(I, | AeA) can be considered
to be a poset; if x, y €P we say that x y in P
if and only if there is a A€/ such that x, y € Iy
and x £y in L, . Consequently if x € Ly, ¥y E€ LH‘;
A,f&El\, then sup {x, y} (resp. inf {x, y}) exists if
and only if }\=lx , in which case sup {x, yt =x VYy
(resp. inf {x, y§ =x Ay ) in L. The free product of
the lattices (I, | Xe€A) is ( ?, FL(P) ) . The
restriction of P to LA is denoted by ?A and is a

lattice injection. Unless there is danger of confusion
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we denote lattice join and meet in FL(P) and in each
LA by the same symbols VvV and A . We first establish
the structure of the pseudo-principal ideals and dual
ideals of P . As throughout this work the empty set,

even in a lattice, is treated as an ideal and a dual ideal.

1. Lemma. If (I, ] xeA) 1is a family of sets
such that for each XeA I, 1s an ideal (resp. dual ideal)
of L, then U(IA l NEAN) is an ideal (resp. dual
ideal) of P . |

Proof: Tet each I, , A€ A , be an ideal of Ty .

(i) Tet x,y €2, y € |J(I | xeA) ,and x5 .
Then there is a A€/\ such that y € I, € Ly . Thus |
x € Ly and, since I, is an ideal of Iy , x €T, .
Consequently x € LJ(I; I »eA) .

(ii) Tet x, y € LJ(IX | ANeA) and let sup {x, y}
exist; then there is a A €A such that x, y € L, and
sup {x, ¥y} = xv y . Since the I, are mutually disjoint
so are the I, ; thus x, y € I, and so xVvy GIAQI.

Thus | J(I, | A€A) is an ideal of P . The prim-

ciple of duality establishes the result for dual ideals.

2. Lemnma. If I is an ideal (resp. dual ideal) of
P and ANE/N then I N L, is an ideal (resp. dual ideal)
of Ly o | |

Proof: ILet I be an ideal of P .
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(1) TLet xéIﬂLA , ¥ €Ly, and y<x . Then
y €1 and so y € I‘W Ly -
(ii) Tet x, ¥y € 1 Ly . Then x, y €I and
xvy=sup {x, y} €I, that is, xVy €1 r]LA .
Tms I L, is an ideal of Ly . The dual argument

of course also applies.

3. Lemma. Let I, J be ideals (resp. dual ideals)
of P . For each ME N

avaNo, =@M Velln)
(The right-hand side refers to ideal join in Ly o)

Proof: Tet I, 3 be ideals of P . I VJ is an
ideal of P and so (I‘J;J)(w L) is an ideal of Ly .
Since both Il} Ly, and’ Jf\ L, are ideals of L, included
in (1va) 1Ly, aNVeElny cava N, .

To prove containment ix the other direction we observe
that the set I, 1is an ideal of L, for each NEA .

Thus by Lemma 1 the set |

o= (N vENo)) U UmdesA)
ig an ideal of P . Since I = UJ(I r]LH| }xéﬁ\) , and
similarly for J , I,.JQ_ZI' . Thus IVJ CI* and so

(I va) Ly crfls, = Nz V1)
The dual argument establishes the result for dual ideals.

4, Lemma. If I is a pseudo-principal ideal (resp.

pseudo-principal dual ideal) of P then
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(1) IrﬁYLA = @ for all but a finite number of AEA

(ii) if 1) L, + 4 then I r\LA is a principal
ideal (resp. principal dual ideal) of P .

Proof: FPor any ideals I, J of P and ) €N
(TADNoy = @Nz) A L) . this fact, along
with the result of Lemma 3 establishes (ii); we need only
observe that in a lattice pseudo-principal ideals and dual
ideals are principal.

Part (i) follows from the observation that if x € L, ,
A€ N\, then, in P, (x] ﬂle=¢ if uo# A\ and from
the fact that pseudo-principal ideals are obtained from

a finite sequence of principal ideals.

As before, we consider the set W(P) of polynomials
over P . With each A € W(P) we assiciate a pair of
elements of L, , for each A € N, provided they exist,

which we call the MA-covers of A .

5. Definition. a) If XEA and A[lL, + § then

the generator of the principal ideal Aiﬁ\LA of I, 1is
denoted by Ax , and is said to be the lower A-cover of
A if élﬂ\pk = # we say that the lower M\-cover of A
does not exist.

) If AEN and 4k Ly + # then the generator of
the prineipal dual ideal 0 Iy of L, is denoted by
A

ZI* and is said to be the upper A-cover of A ; if
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A ﬂLA = § then we say that the upper N\-cover of A does

not exist.

Intuitively, each A &€ W(P) represents an element
<A> of FL(P) and if {x €I, |x <&} £+ 4 then &,
exists and A, = sup (x € I,  x € <&>) . The dual state-

ment holds for A .

6. Coroll. A = \J((&,1]A, exists) and
U([Kk) | 2% exists) .

Proof: This follows from the observation that

w|
i

P= |J(z, | NEN) and thus if I &P then
1= Jalls, | Aen) .

We now describe an élgorithm'that can be used to find

A, and X for each MNEA s, AE WP .
7. Lemma. (i) If A €P and A € L, then
A, = I = A and _A_# , Y  are undefined for M o# A .

(ii) If A, B, C €W(P) , A=BwC and ANEN

then E* is defined if and only if B and G exist,

and KX = §>\V EA °
A, 1is defined if and only if at least one of By, C,
exists; A, = B, 1if only B, exists; A, =C, if only

Cy exists; A, =3B ,v G, if both B, and C, exist.
(ii3) If A, B, C €W(P) , A =B ~C and XEAN

then A, is defined if and only if B, and C, exist,
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DN

is defined if and only if at least one of ﬁx, (o

=X =X =X ) =N N
exists; A =B if only B exists; A = C if only

- —_ - e N -
Cx exists; A> = Bx/\ Ox if both B and C>\ exist.

|

Proof: This follows from Lemma 3. We need only
observe that if L is a lattice and x, y € I then
(xl v (y] = (xvyl and (z] A(yl = (x Ayl . The Gual
facts also hold: [x)v [y) = [x Ay) and

D Aly) =Ixvy).

8. TLemma. If A, f.LE/\ s, A€ W(P) , and Ay s i
exist then A = o |

Proof: Ay € A, I € T . thus, by Temma 2.4,
Ay < i, A, €Ty end it e Ly ; thus, by the defin-

ition of the partial order on P , we conclude that )\=ik .

A special case of some interest in the sequel occurs

when the free peoduct of two lattices is considered.

9. ILemma. Let I[N =2, N=1{0, 11+  Then for
each A € W(P) exactly one of the following four

possibilities holds:

(1) IAO , &° exist and A, , it

(11) A, , Il exist and A,

(1ii) A, A exist and A, &

do not existg
E° do not exists
do not exisgts

(iv) E° , ' exist and A, A; do not exist.
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Proof: These four conditiovns are clearly mutually
exclusive., 3By Lemma 8 the first part of each condition
implies the second. Thus we nsed only show that for each
A EW(P) +the first part of at least one of these four
conditions holds. We proceed by induction on the length
of the elements of W(P).

If A €W(P) and f{(A) =1 then either A €L  or

A €L, and so, by Lemma 7, either (i) or (ii) holds.

1
Tet n > 1 and asssume that the lemma is true for all

lattice polynomials of length < n . Tet A € W(P) and
La) =n .

If A=B_C and A, does not exist then, Dby
Lemma 7, neither B, mnor (., -exists. Since LBY< n,
ﬁ(C) £ n , the conclusion of our lemma can be applied %o

1 1

B and C , and we find that B~ and € exist; thus

' exists. A similar argument shows that if A, does
not exist then A° exists. Thus A must satisfy at least
one of the four conditions of our lemma.

If A =B ~C the dual argument establishes the

result.

This result cannot be extended to those cases where

IAE > 2 s

Exemple 1. Let N = _{0, 1, 2} andvfor each AEN

let L) be the trivial lattice: Ly = {ax} . Then
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(ao — al)- - (aO Aaz) N’ (alx\ a2)

has neither lower covers nor upper covers.

10. ZLemma. If A, B € W(P) +then Xﬂg:{: g if and
=X
only if there is a= A&/ such that 4 , B, are defined
* g By -
Proof: If & ﬂ§ + #§ +then there is a AEN =and an

and A

x € Ly such that x € A, x € B . Thus, by Lemma 4,

A" x By ; that is, K\< By, -

If I, B, are defined and ?ng By them, since

A"e A, By, €% and so _‘B-AEKD_B_, Thus Kﬂg:}‘:ﬁ.
11. Lemma. Tet A, B € W(P) and A C©B . Then for
each MEA

v

a) if A, exists then 3B, exists and A
b) if B exists then A existe and i

AN AN
W W

PR
b

N

Proof: By Lemma 2.7 ACB . Thus A{1Ty Nz, .

.

iN
I

Since A an + g, B ﬂLA + g and part a) follows.

Part b) is dual to a) a2nd so the lemma is established.

12, Thecrem. The gquagsi-order C on W(P) satisfies:

If A, BE€ W(P) them AC B if and only if it fol-
lows from one of the Tollowing conditions: |

(1) A =383

(2) there is & AE/\ such that L7, B, exist and

A
K<§>\§
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— (o o
(3) A = Aj~ Ay vwhere A CB and A{ & B ;
(4) A = A, ~ Ay vhere AL C© B or A S3B ;
(5) B = BO - Bl where A C Bo or A ‘Q B, 3

(6) B =3B, ~B; where ACB, and ACB .
The relation ~ on W(P) , where A ~ B if and only

if ACB and B CA , is an equivalence relation and

7(P)/~  is a lattice. TFor each A € /\ +the mapping

({)/\ : Ly, = W(P)/~ , where if x € Ly then ({),\(X) = <X ,

is a lattice embedding. The system ( (PA, NEN 5 W(P)/~ )

is the free produet of the (L, | NEA) .

Proof: This follows directly from Theorem 2.18 and

Lemma 10.

13. Coroll. Iet /N De a subset of /\ such that
ANEN - AN implies that Iy is a chain. Then rule (2)
of Theorem 12 may be replaced by

(2') a) +there is a AE/N' such that Kx, By exist
and X)\‘\< By 3 or

b) there is a N€/\ such that A, B € Ly and
A LB,

Proof: This result is similar to Theorem 3.12 . We
need only show that if A, B € W(P) and A & B +then thig
fact can be derived from successive applications of rules
(1), (2*), (3), (4), (5), (6). We proceed by mathematical
induction on [(a) + {(B) .

1f fa) + [(B) =2 then AC B derives by rule (2') b).
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Tet J(A) + {(B) =n >2 and let the result be true
for any two polynomials the sum of whose lengths is less
than n . If M) + I(B) =n and A ©3B then, in view
of +he induction hypothesis, we need only show that this |
quasi-inequality can be derived by a single application
of one of the rules (1), (2'), (3), &c. from polynomial
inequalities of shorter length. Thus we need only consider
the case where Kx.g B, and A € N- N .

If A=CwD, C,DEWP) , 0or B=C~D them
A CB can be derived by an application of rule (3) or (6)
regpectively. V ’

If B =C_D +then at least one of g%, Q>\, say g>\,
exists or both g% and D exist. In the former case

A
B, =G, and in the latter case 3B, = CyV §>\; since L,
is a chain _QA\/Q):_Q}\ or _Il>\, say C, - Thus in
either case X>V( ¢, end, since f(a) + J(C) <n and
A ©B can be derived from A ©C by using rule (5), the
result holds.

The case where A = C ~D is dual to the above.

Thus the corollary is established.
We now state the characterization of the free product:

14. Theorem. Tet I be a lattice and let (Ly | NEN
be a family of sublattices of 1L whose set union generates

L . There is a lattice isomorphism from L onto the free
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product of (Iy | NE/) extending each (PX if and only
if the following three conditions hold:

(i) given X,}x eN, x €Ly, ¥ € LF“’ then x { ¥
implies that )= F°;

(ii) a) given x €Ly, ¥, 2 €L , then x ¥y V 2 ,
x%:y ’ X{z imply that there are y', z' € L, such
that y' ¥ z'<z and xgy'\/z; , and dually

| b) given x €Ly, ¥, 3 GL'), then X ) ¥ A2 ,
x};y ’ X,};Z imply that there are y', 2z' 6L>\ such
that y'}y, z'}z and x 2> y' Nz' ;‘

(iii) given =x_, X9, Too ¥y éiL ,‘then
Xo AT KTV I s Xo AXp Ty o X L TV L
i € {o, 1} , imply that there is a A€/ and a 3z € Ly
such that X, Axlgzgyo\)yl. '

Proofr This is an application of Theorem 2.19 to the
case of the free product of lattices. Conditlon (i) is
equivalent to the fact that the set union of the Ly as a
subset of L is isomorphic to the poset P defining the
free product. -

In view of Coroll. 2.20 condition (ii)is equivalent
to condition (i) of Theorem 2.19. We need only observe
that if I, J are ideals of a lattice and X‘¢:I, d  then
x €I v Jd if and only if there are X €I, x ]
such that X <:xo\/ X1 9 and the dual fact for dual ideals.

Condition (iii) is just a restatement of condition (ii)
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of T}leorem 2,18,

As an application of our methods we prove a special
case of 2 theorem of Jénsson [8]. Jbnsson's result, hold-
ing for certain algebras of which lattices are a special

case, is proved in an entirely different manner.

15. Lemma. Let (Ly | A€/\) be a family of mutually
disjoint lattices. For each AE/N let My be a sublat-
tice of Ly . If I is the free product of (L>\|A€/\)
then the sublattice of I generated by {j(mx | NEA)  is
isomorphic to the free product of the family (MA IxNEN) .

Proof: We apply Theorem 2.30. Denote the principal
ideal of L, generated by x € Ly by (x]%\, and the
dual concevnt by [X)% . Let P = LJCLkl NEN) and
Q = {J(Mk [N €E€N) . In view of Temmas 1, 2, and 3
condition (i) a) of Thecrem 2.30 is equivalent to:

(i') a) for all I, J € &(Q) , anda X\ € A\, if
1 (lu,, 3[1u, ave idesls in M, then

{x Nz vENot Ny, = @ Nmy) v @ Nuy
the join on the right being that of ideals of MA .

Using Temmas 2, 3, and 4, if I € {&(Q) and
I F]L% + # then there is an x € My such that
{1 Iy = (x]x . Condition (i') a) needs verification only
i 11y + 4, gy &8 . mus 1(1ny = (1 ,
JﬂLA = (yl, , = y €M, . Clearly I Nu, , g ﬂM)\
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are ideals of M)\ ’

M) v @1y = xvyl, , ana
) v @ N = (xv vl N,

since X, ¥, X VY €M>‘ o Thus we have established condi-

tion (i') a).
The dual argument establishes condition {i) b) of
Theorem 2.30.

To establish condition (ii) let I,s I45 D,y Dy be as

1’ 1
in Theorem 2.30 (ii). Then there is a X E/\ such that

(1, V1) N, Io) Nny 44 .
However, Io{?/ll € L(Q) and DO\P/'Dl »6 J(Q) and clear~
1y neither is disjoint from ]3>\.,, Thus, as above, there
are X, y € My such that

(1,91 N1y = (x1,, (0, D )ﬂLA- i),
Thus y x and so

(1, ¥ 1) (Vo o) Nuy 44,

and condition (ii) is established.

16, Theorem. Tet |Al >1 and let ( %\’ NENs L)
be the free product of (I‘A L' NEN) . Tet N EN.
L - [ J¢ ({)}\(L%) | NEN) is a sublattice of L if and only
if Ly 1is a chain for each MNEN .,

Proof: Tet L, be a chain for each NEN . We
need only show that given x, y €1 - U( (P)\(LA)‘\ A EN_)

then neither x VY nor x Ay can be elements of
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CP/\(L>‘) sy ANEN . It is convenient to identify (PA(L%)

and Ly .

Let xVvy=2 €L, where Ly is a chain. Applying
Theorem 14, z X or =z gy ;s for otherwise there would
be x', y' €Ly, x'x, y' vy an z Lx'Vy,
which, sihce Ly isva chain, implies that = <X' 6r
z Ly' . Since x,y 2z, 2z =% or 2z =y . Thus if
x Vy €Ly either x €Ly or y €Ly .

The dual argument holds for x AY .

To prove the converse let Ly , AEN , not be a
chain., Then there are distinct elements x, y, 2z € Ly
such that x vy =z . Since |Al>1 there is a [+ EN
distinet from A . Tet da € LIU” and consider the polynom-
ials A = (xwd) ~z2, B=(yod).~2z2 in W(P) . By

Lemma 7, sz'B'k:z, Ay =3, _B.x:y. Since Kz>‘$_j_{_>\,.

B + By then neither A nor B represent elements of
L}\ . In view of Temma 8 they cannot represent elements of

Ly ,U# A . Thus &), <BY €T~ |JUQy(T) [ NEN) .

Since A Cz, B C2z we conclude that A B C 2z .

A

Now 2" =2 and A~B=xVy=2%3 thus 2z CA_B

A
and so z-~A B . Thus <AY V B> £ (]0>\(L>\) . Thus the

converse ig established.

Finally we note that, by Lemmas 1 and 4, every non-

empty pseudo-principal ideal (resp. pseudo-principal dual




ideal) of P is a set union of finitely many principal
ideals (resp. principal dual ideals) of P . Thus, by
Theorem 2.31:

17. Theorem (Sorkin [9]). If (I, | AEA) is a
family of lattices, Ly a lattice, and, for each  AEA,
£, : Ly =+ 1L is an isotone map, then there is an isotone
map f from the free product of (I »l NEN)Y o .L?
Fsuch that f(PA = f, for each AEN .

*¥2, Partially ordered free products;

Let the indexing set /\ be a poset and let (Ty [ 2eA)
be a family of pairwise disjoint lattices. As outlined in
Section 1.3, the set P:_- U(I’A | NéAN) can be considered
to be a poset; if x, y €Ly, then x ¥y in P if and
only if x <y in Iy , and if x € Ly , yéL,u,

AN # mw, then xy in P if and only if AL @ . If
we let the families M and 7 consist of all pairs

X, ¥y € P such that x, ¥y are elements of the same lattice
L, then FL(P ;7,7) 1is the partially ordered free
product of the (Ly | XeA) . As in Section 1, we define

A\ =covers.

18. Lemma. TLet (Iy | M€A) be a family of sets
such that I, &L, for each AE/\ . Then U(I)\ I AEAN)
is an M-ideal (resp. 7 -dual ideal) of P if and only if:




81

(1) I, dis an ideal (resp. dual ideal) of L, for
each AEAN ;

(ii) if I, $# # and /“<>‘ (resp. /A>‘/\ ) then
I}_L = L',L .

Proof: We consider the case of 7{-ideals and invoke
the principle of duality in the case of N-dual ideals.

Let I = U(IA | Ne/ \) %be an J{-ideal of P .,
Since # is always an ideal we need only consider the
case when Iy # § . If x €I, and y €Ly, vy{x,
then y<x in P ; thus y €I and so y €I, . If
X, y €I, then, since x, y € Ly, {x, y} €M . Thus
X Vy = sup {x, y} €I ; consequently #\/y € Iy . Thus
| I, is an ideal of Ly and condition (i) is verified.

Let /t,c'()\, Iy %8 , and x € Tyu. There is a
y €Iy, and so x Ky in P ; thus x €I and so I,u=1r/4-
Consequently condition (ii) is verified.

To prove the converse assume that conditions (i) and
(ii) hold; we show that I is an 7f-ideal. Tet x € I ,
x €Ly, 2nd let y<x. Thus x €I, . If y € L,
then, since Iy is an ideal of Ly , y €Iy, &I . If
y ¢VLA then y € Ly where p < A and, by condition (ii),
y EI}L CI. Thus x €I and y<x imply y €I .

et %,y €I, {x, y} € . Then there is a AEN
such that x, y € Ly . Thus X, ¥ 'E I, and, by condition
(1), sup {x, y3 =xVy €I, €I . Thus I is an
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19. Iemma. Let I, J Dbe 7{-idezals (resp. 7 -dual
ideals) of P . TFor each AEN

Tva)No, = @y vEeNoy .

Proof: The proof duplicates that of Temma 3. Ve
need only observe that the only difficulty occurs when
(I F}LA) vacal Ly) # Iy . In this case the set I
of Lemma 3 can be replaced by the 7 -ideal

fx Ny v @Ml | (U pAS

20, ILemma. If I is a pseudo-principal M-ideal
(resp. pseudo-principal 7l-cual ideal) of P then

(i) I f}LA =@ or L for all but a finite number
of XN EN

(i1) ir 1] Ly *+ @, Ly then I N Ly 1is a principal

ideal (resp. principal dual ideal) of L .

The proof is an obvious generalization of that of

- Lemma 4.

Tn Temma 18 we note that for an A €W(P) , NE A,
it is possible for A[]Ly & # and yet for A [Ty not
to be principal. Indeed, A need not be a set union of
finitely many principal 7]-ideals. The dual observations

hold for XK..
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EBxample 2, - Let A bve the lattice depicted in
d

Fig. 1. Let x €L y E L, » and

a ,
let I’c have no greatest element.

a b
Then X~y = Lc . Consequently
o X ~Y is not a finite union of
Pig. 1 principal W-ideals, nor is

X ~Y ﬂ I’c a principal ideal of Lc .

In order to define A-covers we introduce the lattices
L'g\ . For each A € W(P) and AEAN, Ay and ™ y if

they exist, will be elements of ILJ .

2l. Definition. (i) If A €P and A € Ly then-

Ay = Y i Ay exists if and only if Iug)\ and
Au=1 if <A EF exists if and only if L PA  and
iF-o0 ir MIA

(ii) If A, B, C EW(P) , A=BwC, and NEA
then XA is defined if and only if B> and T exist
and T = By 3.

Ay is defined if and only if at least one of B, ,
9_)\ exists; Ay =B, if only By exists; A, =C, if

only G, exists; Ay = E%V €, 1if both exist.

(iii) If A, B, C EW(P) , A =3B .~C , and NEA
then A, is defined if and only if By and C, exist
and A}\ = Ek/\ _C_;A °-

I* is defined if and only if at least one of ’B’A, gt




. =N mN L. A - D ) S,
exists; A" = B if only B exlgstsy A = C if only
m">\ - ¥ ""'1\\ “"’\\ “°>\ Lo S - )

C existsy A" =B A C if vpoth exist.

22. Coroll. a) Tor each A € W(P) , Ay € Ly for
only finitely many NEA.
b) TFor each A € W(P) , L € Ly for only finitely

many AE N .

23. TIemma. Tet AEAN, A € W(P) .
(i) It mA‘_’ﬂL/\ .;’:Qf, L)\ then g}._ﬂLA is the prin-

cipal ideal of L, generated by A, ; if X ﬂLA g, L

-
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(ii) If A ﬂLl\ = Ly and I, is not a principal
ideal of Ly then A,=1 €I} ; if Z[1D, = Iy end
Ly 1is not a principal dual ideal of Ly, +then
N=o0€ 1l .

(iii) If ;_a_ﬂ Ly =@ then A, is undefined; if
il Ly = @ then I is undefined.

(iv) If A ﬂ Iy =L, and L, is a prinéipal ideal
of Ly them Ay =1E¢ LE\ or A, 1is the greatest element
of Ty 3 if E{1Ly = Iy and L, is a principal dnal
ideal of Ly then it-o0 ¢ I};\ or K™ is the least
element of TIiy o

Proof: This is a straight-forward calculation, using

Lemma 19 snd Definition 21.
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As an illustration of part (iv):

Example 3. Let /\ be the poset depicted in Fig. 2.

For each A€ /N let L, = {ak} .

€

Then guﬂLA=L>\ for all AEN 3

[~

as = a, and Be, =1 1if A<w.

e S SN U
=N

Fig, 2

24. Lemma. If N\, w€N, A€ WEP) , and a, , T¥
exist then /\glu, .

 Proof: By TLemma 23 éﬂLA & g and IﬂLH#ﬁ .
Tet x ¢ AHLX s V€ KﬂLi,L; by Temma 2.4 in the (¥, 77)
case x ¥ and so, by definition of the partial order om
P, A} .
25. Lemma. a) If A €L, , B, C €W(P) ,
ACBoC, AEB, ana A dc then BeyC, €L, , and
A< Bag, -
b) If B~C CA, BEA, and c &A then
ST ¢ L,, and 'B'“/‘{“é'*g A . '

_ g;g_g;_ ¢ We prove a) and invoke duality in the case of

b).

Because of the hypotheses Kﬂ_j@__\:__c_ £+ 4 . Thus there
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is a faLE/\ such that KHMHLH%—.KJ . Since
KﬂLt;,#Qf, f~’~>/>\ . Thus, by Lemma 18, Mﬂm*ﬁ.
Thus Bx~C, exists. If ‘Z_@__\__{;Q)\= 1  then either E)\

li
[

(The only case not immediately

_C_,‘_X ;3 by the definition of I;':g\

or kal,say ___l§>\

obvious is By~r Cy = By

vV

either By or C, =1 .) Then B ﬂL,\ = I, =and so

EN B+ 4, that is, A CB , contradicting the hypothesis
of the lemma. Thus B =G, €L, and, clearly, ALB ~ Cyo

This argument and the dual establish the lemma.

26. Lemma. If A, B, C, DEWP), A ~B CCvD,
A~B&c, D, and 4, BLC D, then there is a AEN
such that K< € Ly and C.rD, €Ly, and |

T<B' S D, - |

Proofs ‘By the definition of the gquasi-order on W(P)

E<BlceD44d.
Thus there is a NEN such that
r~s5Neconln, ¢+ 4.

Thus A r\B)‘, G~ D, exist and, as in the .proof of

Lemma 25, AABX:{:O, CvD/\:{:l. As in the proof

A

of Lemma 10 it follows that A ~ B < C D)\ .

We observe also:

27. TIemma. If A, B €EW(P) and ASB, NEN
then ‘
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< By 3
4

a) 1if Ay exists then B, exists, and A,
A

o

N — —
») if B exists then A" exists, and X

In view of Lemmas 25 and 26, Theorem 12 still holds in
the case of partially ordered free products; we replace
condition (2) by:

(2) there is a NEN such e Ly s By€ Ins
and I K B, -
ﬁe should like to point out that one could very well dis-
pence with the requirement that e + 0, B, #1; this,
however, would entaii investigating infinitely many upper
and lower A-covers in order to determine whether or not
A CB . In the approach we chose to follow this determin-

ation is effective, in view of Coroll. 22.

We observe that, with the obvious modification,
Coroll. 13 holds in the case of partially ordered free

products.

Theorem 14 holds if we replace its condition (i) Dby:
(i) given A, I,Lé/\, x €Ly, ¥ €Ly then ¥
implies that >\< e

Lemma 15 holds with no change in the statement of the
result. The proof in our present case proceeds exactly as
the proof given, provided that one observes that if

I, 7 € &(Q) anda I[)Iy =Ty then I[l1y =M, and so
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(N v @) Ny = aNu) v eN) .
Parenthetically, it may be remarked that the method of
Jénsson [8] alluded to in the discussion of Lemma 15 does

not apply to this case.

Theorem 16 also holds in our case. We need oniy
observe that, in the notation of “I_‘heo:cem 16, ?i'k =0 if
it exigts and -(-i-)\ = 1 if it exists. Thus the upper and
iower A=covers of A and B are as given in Theorem 16,

Furthermore, since A, By + 1 and 'A'>‘, 7 + 0 , neither

A nor B can be equivalent to an element of Ly, V +’)\

Since pseudo-principal 7 -ideals need not be finite
set unions of principal M-ideals, and dually, it is some=

what surprising that the equivalent of Theorem 17 holds:

28. Theorem. ILet /\ be a poset, (Ly | Ne A\) a
family of lattices, and L a lattice. If for each MNENA
there is an isotone map f, : Iy + L such that A <}J-
implies £, (x) K fl"‘(y) for all x € Ly, ¥y € Liv then
there is an isotone map f from the partially ordered
free product of (Ly | NEAN) 1o I ; for each AEN
NEENE

Proof: Define f : P+ L by £ (x) = £y(x) if
'x € Ly, . Then f, is isotone. Referring to the proof of

Theorem 2.31 in the (71, N )=case, we need only show that
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F(A) €L for all A E€W(P) . Ve observe that if
A =B C +then »

F(a) = V(£ (4)) [ 4, 4 1) VE(EB) vE©) .
This holds because Ay =1 implies that either B, or
9_>\= 1, say By, =1. Thus _A_ﬂLx:_]_S_ﬂL)‘ and so if
X € A nLk then £ (x) { F(B) { F(B) v P(C) . Since
{ NN | Ay exists and A, + 11 is finite then F(4) € T
provided that F(B), F(C) € L .

A dual argument applies if A = B ~C .

Consequently an inductive argument establishes the

theoren.,

M

*3., Anmalgamated free prbduc‘ts.

As in Definition 1.16 let Ty, NEAN , I "Dbe
lattices and let ’\]U)\: M -+ Ly be a lattice injection for
each AXE AN . Matters will be greatly simplified if M
is thought of as a sublattice of each L. s and thus
A f e implies I‘Aﬂ Ll”‘ =M . With this convention in
mind let P = [J(Iy | AEA) . We define a partial order
on P . Let \<)\ denote the partial order on L>\ . Since
M is a sublattice of Ly for each ANEN , if x, y €M
and A, H,G/\ then x (, ¥ if and only if =x gthy . TLet -
X, ¥y €EP ;3 if there is a AEN such x, y € Ly then we
define x { y if and only if X, ¥ 3 if x € Iy,
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Y € L,y N & p-, then we define x £y if and only if

there is a 2z € M such that x é)\z and z QuY .

29.- Lemma. The relation { is well-defined and is
a partial order on P . TFor each  XEN, ék is the
restriction of  to Ly .

Proof: To show that g is well=defined let M\ I.A ’
x €Ly and x EL/““ et y €Ly . Since x €N
X \<,\Zl<y Yy g € M, if and only if x £,y . This
and the dual argument show that & is well-defined.

Now we show that < is a partial order.

1) ( is clearly reflexive.

2) Let x € Ly , yELH,and x<y, y&x . If

N\ o= x then clearly x =y . If Nz = then there are

Zqy %o € M such that
Ky Py ¥ Spzp X
Thus 24 \</uzz and so 1<>\ 5> » Thus, since <>\ is

anﬁisymme‘tric, X = 2q Zy e Thus x <‘uyg,,_x and so
=y . Consequently < is antisymmetric. -
3) TLet x €Ly, y€ILy, z €L, and x Ly <z .
If M+ }u. y  f4 + y ‘then there are Zqs Zp € M such that
X < <1J_y Z gyz .
Thus 2, él‘" 5 and so 2y , . Thus X<y 2%, y2 o
Consequently x 2z . If )\ = j& or M= Y similar

arguments hold. Thus ( is transitive.
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Consequently <§ is a partial order on P and, from
the definition,  restricted to L, is <>\°

Thus we have proved the lemma.

We now define an ( Jj, 7)-structure on P-5 7, 7
consist of all pairs {x, y} such that there is a MNEN,
X, ¥y €Ly . It is clear that FL(P ; 7, 7) is the free
product of (LA | A€ \) amalgamated by M .

We first extend Lemma 15 to amalgamated free products.

30. Theorem. For each A€/ 1let MA be a lattice
such that M C M, (;_L)\ . Then the sublattice of the
amglgamated free product of the (LA | N€EN) generated
by L)(Mk | € /\) is isomorphic to the free product of
(m, I NEA) amalgamated by M . |

We note that the free product of the (MA I XeEN)

must be amalgamated by the same sublattice as the

Example-é, Let P %be the poset depicted in
c e Fig. 3. ZLet |
L, = {a, by, ¢, d} H
b a L, = {a, &, e} 3
M = {a, at .
a In L , the free product of ,Lo and'

Fig. 3
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c Ll amalgamated by M, b Ve =c¢ Ve
c=bwvd, d Ve = e and thus
b e cve=bvdve=bVe.
Tet Moz{a, b, c¥ 3
a Ml—_-{a, el 3
Fig. 4 N = {a} .

Then in L' , the free product of Mo
and Ml amalgama’ced by N, bDveFcvve . Thus the
sublattice of L generated by Mo UM1 is not isomorphic
to L' .

We prove Theorem 30 by applying Theorem 3.9. Tet
P = U(LA | AEN) as above and let Q = U(MA I A€ENY .
Tet mM's N' consist of all pairs {x, y§ ©Q such that
there isa ANEA, %,y €L, . Then FL(Q ; ', 7') is
the free product of (M, | ANEN ) amalgamated by oM.

We analyse the structure of 7|-ideals in &(Q) and
invoke the principle of duality in the case vof N-dual
ideals of A(Q) .

31. Lemma. If I is an 7J-ideal of P then I [1Q
is an IR'-ideal of Q . .

Proofs T ﬂ Q is clearly a hereditary subset of Q .

o

Let {X, y}é’ﬂl‘ R x,yEIﬂQ, Thus x,yEM/\,/\é/\.

Then x, ¥ €L, end so x Vy € IDMA s thus
sup, x, yy €1 MNaq .
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Given an 7'-ideal I of Q we define the set

(I] Crp; (1] =V{X€P1X<Y for some yEI}.

32, Lemma. If I dis an 7'-ideal of Q then (I]
is an 7-ideal of P . ‘
Proof: (I] is clearly a hereditary subset of P .
Let {x, ¥y} €E M, x, 7€ (I] . Thus there is a )€ A\,
X, ¥y €Ly and there are x', y' €I, x«x', y<¥y' .
If x', y' € My ‘then {x', y'} € M and so
xvyx'vy €I, If x' €My, y' €Mp, A+,
then x  x' ‘and there is a 2z €M such that
y'<)‘z<lu_y';thus z €I and so xvz €I and |
xXVy <>\x\/z o Similarly if x' € M, , y' € M/u, As
gV ‘distinct, then there are zy, z, €M such that
X \<>\ Zlév x'
7 L3 %o S’
Thus 2., z, € I and so zi\/z2 €I and _x\/y ézl\/z?
Thus in each of these cases x vy € (I] .

Consequently (I] is an M~ideal of P .

33. Lemma. If I, d are 7'-ideals of Q then
(T Q] = (] AT . |
Proof: Since, for all 7 , W -ideal meet is set
intersection we need only prove that (I [] J] = (1] ﬂ (71 .
Clearly (I ﬂ J] C (I] ﬂ (3] .
Iet x € (I] ﬂ(J] s then there are vy €I, z €4
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such that x {y, 2 . If x €Ly, ¥ € Lu, z €L, and
A3 B A%V then there are y', z' € M such that
x 7 <i“‘y and x {yz' {y% - Thus y' €I, z' €J
and so y' Nz' €1 ﬂJ ;vconsequently x € (I ﬂJ] .

Similaxr ai‘guments, as presented in the proof of
Lemma 32, apply to the other cases in which x <Ky, 2 .

Thus (I] ﬂ (3] C (1 ﬂ J] , and so the lemma is
”established.

34, Temma. If I € &(Q) #hen I = (xflQ].

Proof: Clearly (I ﬂ Q] C I ;3 thus we need only show
that I C(I[1Q] . In view of the definition of Q)
an inductive argument applies.

If I is a principal 7/]-ideal of P generated by an
element of Q +then clearly I C (I ﬂQ] since I[]Q
is the prineipal p'-ideal of Q generated by the same

element.

et TC(I[1Q] and 7 € [1q]l . Then

iascaNedpelal = @NOANAGCNO] by Temma 33..

mms T/ C(@ 1o Tal = (xpnNal.
Also I C (I (1 Ql C (1 \P/J) Mol ana similarly
sca¥oNel . mus 1$sc@¥Nel.
Consequently I C (I nQ] for all I € JQ(Q) , and

the lemma follows.

35, Lemma. If I, d € L(Q) then
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aEn e = aNoYeE Ny .
Proof: Since I (1Q, 3/1eaC (XY 3 Nq and since
(I 3) N is an M'-ideal,
claoveNacadnNag.
To prove containment in the other direction we note
that, since I, J € Q) ,
I = (I N Ql C((z (1q) Nacalk Q)] , and similarly,
sc o\ (JﬂQ)]
tms IVIC(INYENO].
Clearly I = (I] ﬂ Q for all jp'-ideals I of Q.
Thus (I\/J)[1Q C caNaYeN . |

Thus the lemma is established.

Lemma 35 and its dual establish condition (i) of

Theorem 3.9,

36. Lemma. Tet I € &(Q) , D € 4(Q) and let
11D+ g . T™en 11DNa 4.

Proof: By Lemma 34 and its dual I = (IﬂQ] and
- DPNQ where "[ )" is dusl to "( 1" . Thus

xellllpNa) ¢ 4.

Let x € (IﬂQ]ﬂfDﬂQ) ; then there are y, z € Q
such that zéImQ, yéDﬂQ,a.nd vy <x< 2z . Thus
y<2 , and thus y EIﬂQ . Consequently

11olq-= (;ﬂQ)ﬂ(DﬂQ) L 4.
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Lemme 36 implies condition (ii) of Theorem 3.9 and

thus Theorem 30 is established.

Parenthetically it may be observed that the method of
Jonsson [8] alluded to with respect to Lemma 15 is also

applicable to Theorem 30.

For.amalgamated free products in general upper and

| lower A-covers cannot be defined. However they can be
defined if the amalgamated sublattice M has finite length
n-1. We recall that a poset has length n -1 if and
only if there is a chain in the poset with n distinct
elements and no chain of'the poset has mbre than n
distinct elements ([1] P- 5). In the remainder of this

section M will be assumed to have length n - 1 .,

35. Lemma. If I dis an 7-ideal (resp. 7/=dual
ideal) of P and I[IM & ¢ then I [IM is a principal
ideal (resp. principal dual ideal) of W .

Proof: If I is an Jf-ideal then, as in Lemma 31,
I r)M is an ideal of M . Since M has finite length,
every non-empty subset of M has a maximal element; thus
I r]M is principal;

The dual argument applies if I iszul‘ﬂ-dual ideal,

36.. Definition. a) If x €P and (x][|u + 4
then the generator of (2J M is Genoted by co(x) s if



97
(=] ﬂM = @ +then co(x) is undezfined.
) If x €P and [x) (u + § then the generator
of [x)[1M is denoted by C (x) 5 if [x) Nwu = # +then

c (x) is undefined.

37. Coroll. If x €L, ¥ QLF 5 }\ézl.c and
x £y then Co(x), co(y) are defined and

x € C(x) e () 7 -

We now proceed to analyse the stucture of pseudo-
principal 7{-ideals and %][-dual ideals. As above, if
x & LA then (x] and (X]k are respectively the
principal ideal generated by x in P and in LA s and

dually.

38. ILemma. a) If x € L, ‘then (x] ﬂ Iy = (X]A
and (x] ﬂLf"‘= (co(x)])u s F#A , if co(x) is defined;
(x] ﬂ Ly, = g, f £, if ¢ (x) is undefined.

b) If x ¢ L, then [X)HLX = [x), and
[x) ﬂL’M = [co(x))F - $X , if C_(x) is defined;

[x) ﬂ Lfi =g, T A, if Co(x) is undefined.

Proof: Part b) is dual to a) and thus we need only
prove a). _

Clearly (x] ﬂ Ly = (x]> . If p# )\ and
(x] ﬂLF 4 @ then there is a y € Ly such that y £x .
By the definition of the order < , (x] (M + 4 ; thus
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co(x) exists and, by Coroll. 37, (x] ﬂLF = <Co(X)]/~& .
Since co(x) ¢ LI“ for all /.Lé/\ then (x] ﬂL}"‘ = (CO(X)],“

if co(x) exists.

39. Lemma. Let A'C/\ and let (x, | NéA') e a
family of mutually incomparable elements of P suéh that
x, € L, for each AEAN . Then

a) JU=x1 | X€A") is an Jj-ideal of P if and only
if A, N,é)\' and co(xk) exists imply co(XX) g‘x# :

b) LJ([kk) | NEA') is an N -dual ideal of P if
and only if )\,}&gg/\° and GO(XA) exists imply
CO(XA) > Xy, .

Proof: DPart b) follows from a) by the principle of
duality.

Iet I = U((X,\] | NEAN') be an %j-ideal of P and
let ),/A é/«f and let co(xk) exist. Then
co(xA), X € LF and co(xA), x, €1 ; thus
CO(X>)‘J Xy €I and so there is a veA' such that
co(XA)V XF_\<XV . Since Xy £ xy then w=y ; thus
co(x,\) V4 X, \<XF and so eo(x)) gx# .

To prove the converse let x, y € I and {x, y} €7 ;
then ‘bheré is a A such that x, y € L, and I vEN!
such that xgx)u » ¥YLE, . If X%y then Co(xf‘)
exists and x co(gy) . Since ‘co(xﬂ)~< x,, then

co(xf“) Vy<z. (This is true because if A + v then
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¥y €y e,(x)) <, %, and so
¢o(Z) v T oo (xw) Ve (x) €, %y L)
Since X Vy SACO(X/“) vy then x vy €E(x, €I . If
A = =V then clearly xVy € (xy] €I .
Clearly I is a hereditary subset of P .

Thus I is an 7%~ideal, and the lemma is proved.

40. Lemma. Let x € L, , yéL}u,.
(1) If A=p then (x][1(s] = (xAy] and, aualny,
Ny = &kvy . |
(i) If A4 then
a) (x] ﬂ (y] is non-empty if and only if at
least one of co(x), co(y) existsy if only co(x) exists
then (x] ﬂ(y] = (co(x)'/\ y] and similarly if only e, (¥)
exists then (x] ﬂ (y] = (x /\co(y)] s if both cs(x),
¢, (y) exist then (x] NGl = = Aco(y)] Ueg(=) Ayl s
b)  [x) m [¥) is non-empty if and only if at
least one of Co(x), Co(y) exists; if only CO(X) exists
then [x) ﬂ[y) = [y v CO(X)) and similarly if only Co(y)
exists then [x)[)[y) = [z Ve (y)) 5 if both Co(x);
Co(y) exist then [x) N [v) = [z V Co(y)) U [CO(X) vy .
Proof: (i) is clear.
We prove (ii) a). By the definition of the partial
order on P , if v(x] N (y] 4 § +then one of c,(x), co(‘y)

exists. If co(y) exists then co(y) gy. Thus
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x /\co(y) £ %, ¥y 3 conseguently (x /\co(y)] C (x] ﬂ(y] .

Tet co(x) not exist and let z €(x1[1(y] . Thus 2z  x

AN

and, since co(x) does not exist, z €L, . Since =z <y
then =z gco(y) . Thus 2z x /\co(y) .  Thus
x1{1GT = (= A, (]

A similar argument applies if only co(x) exists.

If both éxist then, in view of the above argument, we
" need only show that (x] r](yjﬁz (x /\co(y)][vj(co(x) Aylo.
Tet z € (x] r)(y] ; thus zg x, y and 3z € L, where
v XN Oor ViFM, say Vi A . Then 3z K co(x) and
z ¥ 3 consequently 2z ( co(x) ANY , as above. Thus

(x] N G] € (x Ay (9] U (e (=) A ¥l .

Applying the principle of duality, (ii) b) is estab=

lished, and so the lemma is proved.

We now proceed to describe the join of pseudo=principal

M -ideals.,

41. Definition. If M\, F,e/\ and A:j:/bL then we
define elements ci(x, ), Cé(x, y) € Ly » c?(y, x),
ci(y, x) € L, for each x € Ly , y €Ly and each integer
i20., ,

a) eg(x, y) =x and ck(y, x) =y ; if cg(x, y) o,
cg(y; x) are defined and co(cg(y, x)) does not exist
: PN A . .
then el ;(x, y) = ci(x, y) ; if co(cg(y, x)) exists

then c:{\+1(x, y) = c_i-_(x, y) vco(ci“(y, x)) .
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el (v, x) is defined similarly.
i+ltd?
b) Cg(x, y) = x and Cﬁ(y, x) =y ; if C%(x, y) ,
Cf(y, X) are defined and CO(CJ."f(y, x)) does not exist
A . .
then Ciil(x, V) =vCi(x, y) 3 if Co(Cf(y, x)) exists

p) !
then €2, (x, 7) = 6}(x, ¥) A ¢ (¢i(z, x)) .

p - . .
Gi+l(y, x) is defined similarly.

— We recall that the integer n - 1 is the length of

the lattice M .

42. Lemma. Let A% 2nd let x ¢ Ly , vy € T
Then
a) if co(cg(y, %)) exists then
co(cg(y, x)) £ c;\l(x, y)
b) if CO(Cg(y, %)) exists then
C(chy, %)) yolx, ¥) .
Proof: We prove a) and use the principle of duality
to establish b).
If neither co(x) nor co(y) exist then cg(y‘, X) =y
and there is naething to prove. |
Thus we may assume that, say, CO(X), exists, Since
co(x) < cg‘:(x, y) and co(x) gc';(y, x) for all i > o0,
co(cé(x, ¥)) and co(c';(y, x)) exist. Tet
X, = co(x), co(y), or co(x) Vco(y) » whichever applies;
if i >0 let x; = co(cj’}(x, v)) \/co(c;‘(y, X)) . Then

Xy ;.., anM and xog xlg ese gxn . Sipce the length



102
of M is n -1, thereisa j, 0 (j<n, such that
Xj = Eyuq e If j >0 then

x5 = o5(e30x, ¥)) Ve (ehily, 0) Loy (x, 3), oy, =) .

Thus, since X €M, e gco(c§\+l(x, y)) QXj_'_l and
x5 gco(caﬁl(y, x)) (Xj”_ . Thus

co(c;ﬂ(x, y)) = x5 < ca'-‘il(y, x)
and 00(6‘3’+l(y, x)) = x4 <cj>‘+l(x, y) .

Thus, applying the inductive definition of cj%‘ ’ cg_" ’

A A
¢ (x, ¥) = c’a\rl(x, y) and c’n(y, x) = cg‘+l(y, x) ; consequ-
ently co(cg(y, x)) \<CI)1\(X, y) .

A similar argument applies if j = O , and so the

lemma is proved.

43. Lemma. Tet x €Ly , ¥ € Lyc . Then
a) if ) =« then (x] vyl = (xvy] , and if
At then (x] V(3] = (e(x, M1 Yy, )] ;
b) if A= then [x)V [y) = [x Ay) , and if
N#p then [x)V [y) = [cMx, v)) Uk, =) .
Proof: Part b) is the dual of a), and thus we need
prove only a).
It >‘=fA’ the result is clear.
If A:H,g then, by Lemmas 39 and 42,
-(ci‘l(x, )] U(c';(y, x)] is an M~-ideal of P ; since
X \gcf‘l(x, v) . ¥ <c§(y, x) then _
(x] v (71 € (eplx, )] (J(ehty, 0] .



103
To prove containment in the other direction we observe
that, for 211 i >0 , oi>‘+l(x, v) {ci‘(x, vV cff(y, x) ,
and similarly for c__{:_l(y, X) 3 since cé(x, v) =x ,
cg(y, x) =y we find that c;(x, y) € (x] V(y] and
cg(y, x) € (x] V(y] . Thus
(ex(x, M1 J(ly, 0] <=1V (51,

and we have established +the lemnma.
Applying Lemmas 40 and 43:

44. Lemma. If N is of finite length then every
non-empty pseudo-principal %j-ideal (resp. pseudo-principal
N -dual ideal) is a set union of a finite number of

bPrincipal 7-ideals (resp. principal J{-dual ideals).
By Lemma 38:

45. Lemma. If M is of finite length and I is a
Pseudo=-principal 7%-ideal (resp. pseudo-principal 7 -dual
ideal) of P then |

(i) I ﬂL)\ is either empty or principal in ]3)\ for
each )\EN ; . |

(i1) for all but a finite number of (A, }u) € ANXNA,
I ﬂLA =1 n I'/“‘ and is generated by an element of N .

Thus, as in Definition 5, we can define upper and

1owei‘ A—covers for each A € W(P) .
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46, Definition. Tet A € W(P) .

a) If XNEN and A (}LA + # +then the generator of
the principal ideal A [\L, of I, , denoted 4, , is said
to be the lower M\-cover of A 3 if A (]LA = § +then we

say that the lower M\-cover of A does not exist.

p) If NEAN eand X (\LA + @ then the generator of
the principal Qual ideal X (1T, of L, , denoted %>, is
said to be the wpper h-cover of A ; if X (1L, = § +then

we say that the upper M\-cover of A does not exist.

4T7. Coroll. Ay €L, - ¥ for only finitely many

NE/N , and dually; if Ay, A, €M then A, = Ay, and

[vi.
dually.

As in Lemma 7 we can describe an algorithm to deter-
mine A, and E* for each NE/\ and A EW(P) . Ve
observe that if M, ﬁaé/\ and A, , co(éﬂ> exist then
co(ép) < A, . Thus, by Lemma 40, if 4, B €W(P) and
C = A~3B then QX exists if and only if A, , B, exist
and O, = 43 A By - |

Similarly we observe that if C = A_B then QA
exists if and only if at least one of A, , B, exists.
To describe C, we observe that Aus EP‘E Lu - M for
only finitely many fi;, ««., Pr € N\ distinet from N\

thus we can define Tqy eecey X such that for each i

X, exists if and only if at least ome of A, ., B
* T T
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S - — g A -
exists and x; = "A'f*~ ’ ‘]'3‘;“*' y or A vV ;_@/u_ y whichever
1 1 S 1

applies; Then
— AN XA
Cy = cn(...cn(cn(xo, Xl), X2) cooy xr)
where x_ = —A-A’ -}-3-)\’- or A/\v -EA s whichever applies. The

dual case also applies; the dual of X5 is

X, = Kh, 'B'f‘i, or EFEA BM s whichever applies, and
X, = &%, §>‘, or X>‘/\T3'>\ . Thus:

48. TIemma. (i) If A € L, then ;A_,\z‘?i)‘-_—A;

Ay p + N\ , exists if and only if cO(A) exists and in
this event Aus= co(A) s EM, M ¥ A s exists if and only
if G (A) exists and in this event A = C (1) .

(ii) If A, B, C EW(P) , AEN , and A =B._¢@

then L7 exists if and only if B>, 8 exist and in

this event :A_.‘\ = §>‘V 5% .
Ay, exists if and only if at least one of By _Q/\
exists and in this event
- oA A aX '
A = Cn(“"cn(cn(xo’ xl), xz) ....,'Xr) .

(iii) If A, B, C €EW(P) , NEN , and A = B ~C

then A, exists if and only if Bys» €, exist and in this
event _1_3¢_A=__B_>\/\_Q>\°
TN exists if and only if a+% least one of 'Z'B'k, g

exists and in this event

TA _ Al N A
AN = cn(...cn(cn(xo, Xl), X5) ceey Xr) .
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49. Temma. If A, B € W(P) then E[IB + 4 if and

A

only if there is a A€ /\ such that % < By-
B

Proof: Since € I and B, € the condition is
sufficient.

If Xﬂg £ # +then there is a2 A€ /A such that
Kﬂ_}iﬂ]})\#ﬂ_, that is, [K*)ﬂ(gg £ 4 5 thus

Thus Theorem 12 holds in this case:

50. Theorem. Let M be of finite length. The quasi-
order & on W(P) satisfies:
If A, B €W(P) then AC B if and only if it follows

from one of the following conditions:

(1) A=3B;

(2) there is a A€/ such that X, B, exist and
< B,

(3) A= A~ Ay vhere A CB and A S B ;.

(4) A = A ,~A; vhere AOC_-'._ B or Alg B

(5) B = BovBl where AQBO or A(;Bl :

(6) B = B,—~3B, where AC 3B and ACB.

‘The relation ~ on W(P) , where A ~ B if and only
if ACB and B €A, is an equivalence relation and
W(P)/~ is a latfice. For each A€ /A  the mapping
~(P?\: In = W(P)/~ , defined as (P;\(x) =(x) if x € Lx,
is a lattice embedding. If x €M then (FA(X) = (PP(X)
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for all A, faé/\ . The system ( (PX’ AEN 5 W(P) /o )
is the free product of (Iy | €N ) amalgamated by M .

Coroll. 13 also holds in the present case. Ve observe
that if A, B, C € Ww(P) , if Ly 1is a chain, and if
A" BrC, then X% L%, or A7ge (%), 1Ligr.

Now x, =B, or (C, , whichever is greater; thus if

i < x, then AGCB or AGC. If IX < Co(Xi) then
e {%; « If Lu; is not a chain them |
A , 4 .\ |
BN =y <§_},cﬁ s thus L' ¢ (X7 gB\/C/ui Ty
not a chain. If Iy, is a chain then x, _]_37&1 or C e
end so K1 Lc (ZM <B or C 3 thus AC3B or

¢] “ﬁi “Fi

A CC . The dual argument applies if B0 < A4, -

Because the join of pseudo-principal 7/-ideals and
M -dual ideals is rather complicated, Theorem 3.6 is the

simplest characterization of amalgamated free products..
Theorem 16 generalizes as:

51. Theorem. ILet INl >1 and let ( 30,\, MNEAN ;s 1)
be the free product of (L, | ANEN) amalgemated by the
lattice M of finite length. Tet A'CA  and let Ty
be a chain for each NEA' . Then

D= JO oI -1 Aenn)

is a sublattice of L .,
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Proof: Let A4, B €W(RP) , AEAN , ¢ €Ly, -M,
and let A B ~C . It suffices t0 show that A ~0 or
B ~C .
Since A —~B &C then A, BCC . Also ¢ CAL_TB.
1f, say, C CA then C ~A . Otherwise C CA~_B

must follow by rule (2). By Coroll. 13 in our case there

.._..._..ﬂ...}»&‘

is a lj,E/\" N such that G A_B Since

e . M
and so <G EL{*; since C € Ly, N+ [« 5 this implies
that C € M , contradicting our assumption about C .
Thus either A ~C or B~ .

The above argument and its dual establish +the theorenm,

We note that I - U( (F/\(L)z ‘ AEN')  is not always
a sublattice of I :
Example 5. Iet A= {a, b} and let =x, y be

unrelated elements of I‘a such that xVy =2z . ILet
Lb be a chain and let La ﬂ Lb = {z} . If L 1is the
free product of L, end L, =amalgamated by {2z} +then

X,yéL-—Lb,'but X\/yéL-Lb.

By Theorem 2.31 and Temms 44 Sorkin's theorem applies

to amalgamated free products:

52. Theorem. Let (T [ NEA) 1ve a family of
lattices and let M %be a sublattice of finite length of
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LA for each ,Xé,& . Let L be a lattice, and for each
AEN let fy : Iy, +L be an isotone map such that the
restrictions of all £y, , M€ N, to M are equal. Then
there is an isotone map f from the free product of the
(L, | X€N) amalgamated by M +o L ; for each \ € A

f dis an extension of f,\ o



CHAPTER V
CANONICAL REPRESENTATIONS

In this chapter’the results of Chapter IV are applied
to solve the problem of canonical representations for free

products and partially ordered free products.

1. Introductory concepts.

Let I be a lattice generated by a poset P . As in
Section 2.2 there is a unique mapping F : W(P) - L
extending the embedding of P in L . If A € W(P) ,

x €L , and F(A) = x then we say that A represents X

in W(P) . Since every element of W(P) has finite length

we can say that A € W(P) is a minimal representation of
x €L if

(i) P(A) = x 3

(ii) 4if F(B) = x then A(B) > L(a) .
To define the concept of canonical representation we must
define the concept of two polynomials over P being
equivalent up to commutativity and associativity. This
concept is defined by induction on the length of polynom-

ials,

1. Definition. If A, B € W(P) +hen A is said to

be equivalent to B up to commutativity and associativity,

denoted A = B, if one of the following holds:
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(1) A(a) = {(B) =1 and A =3B ;

(ii) there are A Ayy A, € W(P) such that

07
A = (A0~v/Al)~v’A2 y B = Al »/(Al\/-Az) ; or, dually,

A = (Ao/"\Al) A B = AO f\(Al /\AZ)

o

2

(iii) there are A, Ay, B , By € W(P) such that

0’
AOEBO ’ AlEBl and A:AouAl or AlvAo ’
B = Bo \./Bl or BlvBo s or, dually, A = AO/—\AI or
Alr—\A N B = BO/\B]. or Bl/\BO °
2. Coroll. (i) Tor all Ay Ay, B, By é.w(P)_,

L
AO vAl £ BO 4’\:81 o

(ii) If A, B, C €W(P) and A =B_C then A
can be written as Aj Ay ..o AL o, Ay € 7(P) ,
where, for each 1 , either A, €P or A, =B, ~C; .
This representation is unique up to a permutation of the
integers 0, 1, veoy I = 1 |

(iii) If A, B, C €W(P) and A =B .~C then A
can be written as AO A e ~A. 1 Ay € w(P) ,
where, for each 1 , elther A, €P or A; =B, —Cy .
This representation is unique up to a permutation of the

integers O, 1, ceoy, T = 1 &

It is clear that = 1is an equivalence relation and
is preserved under . and ,~. It also is clear that if

A =B then F(A) = P(B) .
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3. Definition. If x €L then x is said to admit

canonical representations in W(P) if, for any two minimal

representations A, B of x, A =B . Ve say that L

admits canonical representations in W(P) if x admits

canonical representations in W(P) for all x €1 .

A problem of some interest is that of determining
when FL(P) or TFL(P ; #,7/) admits canonical represent-—

ations in W(P) . In general this is a rather involved

problem. A special case ise

4. Lemma.(Dean [3], Theorem 5, CGoroll. 1, p. 245).

CF(P) admits canonical representations in W(P) .

We now state several lemmas contributing to the problem
of canonical representations in FL(P) . If A € W(P)
is a minimal representation of <A> in FL(P) then A

is said to be a minimal polynomial.

5. Temma. If A, B €W(P) , A~B, and A[1B ¢+ 4
then there is an x € P such that A vB ~x .

Proof: Since B C A then, by Lemma 2.7, B CA .
Thus Kﬂé#ﬁ;let XEKH_A_. Then AC x ©A , and

so x ~A .,

6. Lemma. ILet A, Ay, B, By € W(P) and let

l’
AO vAl ’ BO /\Bl be minimal polynomials. Then
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Al — Ay + B, r\Bl .
Proof: Assume that onAl ~BO/\B1 . Since both

are minimal X(AO) + ﬂ(Al) = J?(BO) + 1(331) .

Now AOVAIQ BOABl and so, for each i € {0, 1%} ,

A, QBO/-\B and Ao\/Al C_Z'._Bi .

i 1

Also BO ,\Bl - Ao" Al . By Lemma 5, since AO vAl,
Bo ABl are minimal representations, this quasi-inequality
is not derived by rule (2) of Definition 2.6; thus either
rule (4) or rule (5) applies. Rule (4) implies that there
is an 1 € {0, 1} such that B, C A ~~A; . Thus

A, —4A; ~B; and, since JL(Bi) < .Q(on Al) , then

Ao \/Al is not minimal. The dual argument applies if

rule (5) is involved. Thus the proof is complete.

7. Lemma. Let A, B €W(P) , A ~3B , both being
minimal polynomials. Tet

AEAO\/ooa V-A-r-l, I‘>l,
where each A, € P or is of the form C.~D ; let

B =B w oo v B s >1,

s-17
where each Bj € P or is of the form E ~F . TFor each
i {r-1, if X(Ai) > 1 +then there is a j  s-1 such
that A, NBj and I(Ai) = .E(Bj) , and conversely for each

j £s-1 .

]

Proofs Ai CB By~ «eo '\/Bs_l . By the hypothesis

on Ai and by Pefinition 2.6 one of the following three
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cagses nmust hold:

(1) there is a Jj { s-1 such that A, SBJ. :

(ii) A; = C ~D and, say, © CB;
If case (ii) holds then, since A cc,

.A (_-—: AO\J ° o @ \/A_i_l \_/C \./.A.i+l “~’ o oo \/Ar-l QB gA ®
Thus on e V‘A‘i-lVCVAi+1V coe VAr—l ~ A , contra-
dicting the minimality of A , since f(C) < ,((Ai) .

If case (iii) holds then let x € Kiﬂ B ; then

C x €B

& o T
3 = hus

~ oo0e \-/A CB (;A-, aﬂd

A
AgAO\/ e 6 0 \JAi_l\/Xx/A‘ r_l__.

i+l

so A v-;- vAi_leuAi

0 l\/ L) VAI‘-.l ~ A ° Since

+

X(Ai) > 1 +this also contradicts the minimality of A .
Thus case (i) applies. ITf ,E(Bj) ' _Q(Ai) then

Angv o o0 vAimlquvAi_*.l\_/o‘.vAr_l QB g.A.’
again contradicting the minimality of A . Thus
»((Bj) P .g(Ai) . Consequently X(Bj) > 1 and, as for A, ,
there is a %k érfl such that Bj C A, and /Q(Ak) > ,Q(Bj).
If k $ i then, since A Q_Ak ’

A-NAO\./eoo VAi“"l\/Ai'*'l\/ o e e ‘—/Ar_l 9
again contradicting the minimality of A . Thus k = i
and so Aig_ ]3j *—Ai , that is , Ai ~Bj . Since
1) > A(ay) ena f(a)) Py then A(ay) = UBy) .

Thus thé proof is complete.
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2. Cenonical representations in free products.

-Sorkin [9] presented an example illustrating that in
general the free product of lattices need not admit canon-
ical representations. We first extend this result.

Tet IAl >1 and let (L, | A€ N) be a family of
mutually disjoint lattices. As in Chapter IV let
P = U(L)\ | N€A) . Iet L be the free product of the
(T, | A€ AN) . We make continual use of the results of
Section 4.1, especially Lemmg 4.11. We remind the reader
that A ~« B implies that A and B have identical upper

and lower covers, by this lemma.

8. ILemma. If there isa ANE€A and x, y, w € Iy
such that x and y are incomparable and x Vy < Ww
(or, dually, x Ay > w) then L does not admit canonical
representations in W(P) . |

Proof: Tet fL# A and let 4 € LF" Tet
XVy =2 € LA’ z <w . Ve consider the polynomials
A=x_((yed)~w) , B=z_((y—a) ~w) . Then
L(A) = X(B) =4 and A EB.

Using the algorithm of Lemma 4.7: Ay =B, =2 j;
B = w s Ay, By Ku, B” 4o not exist if V4 N .

We note first that A ~B . Since x { z then A CB;
since Ay, =2 then z&A andso BCA . Thus A ~B.

We now show that A is minimal.



Let A~C, C €WP) . Since A, + L then C, T

and thus A(C) >1 . Let [I(C) =2. If C=a<b,
a, b in different lattices, then C, and T camnot
both exist. A similar situation is C = a ~b . Thus

L(c) > 2.

If [(C) = 3 +then there are two cases; C = C,C

or C = Co /\Cl o
Case 1. C=C_ —Cy , i(co) =2 and Gy €P:
Since 5>‘ exists then Cl € L, and Co = a~b wher

say, 2 €Ly thus b €L,, ¥ #X . Since A, = 3z

1
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€,

1

X

then G, =2 . Thus C=(a b))z, a €Ly, b ELy,

YV E A
Since ACC, (y-d) ~w C(a ~b)_2z .

(y vd)f\wxz W {z = C, and C, is undefined for
y * X . Thus the above gquasi-inequality cannot derive
through rule (2) of Theorem 4.12. Thus there are four
possibilities:
a) (o) ~wl iz
) (yod) ~wCa~D

wo

) vy—dad Cla~D)w—z

%0

X -
In a) (y-—d) ~w =w and zx=z ; thus, by

Lemma 4.11, case a) is impossible.

Similarly, in b) (y —4d) ~w, =y and a~b

A
undefined; thus case b) is impossible.

is
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Inc) 4 C(a~b)z . Since d, =4 and

(a ~D) Z 4 is undefined, this case is also impossible.

Case d) also cannot hold since Wy = w ,

(2 ~b) —2z,=2 and W@Z .
Thus Case 1 cannot hold.
Case 2. C = C,~Cy » l(co) =2 and C€; €P :

Thus C = (a D) ~C; , a, b, Oy € P . Since C, exists

0161‘}\ and, say, a €Ly ; thus D €L,, Vi \.

g™ = w implies that C; =w . Thus C = (a2 D) —~w .
Now C CA ; since O = w and A, = 2 the quasi-

inequality cannot be obtained by rule (2). Thus one of

the following four situations must hold:

a) CCx

b) CC(yod) ~w;
c) a<b CA ;

) wCa.

X o

IN

Case a) implies that C, = z

Case b) implies that z = C, Fed)~w, =7 .

aN

Case c) implies, since a . b.

(
K

b , that A, exists.

A4
|

Case d) implies that 2z = A,

Thug Case 2 cannot hold. A

Consequently f(C) >4 and so A and B are minimal.
Thus L does not admit canonical representations.

The "dual argument applies if x and y are incompér-—

able and XAy >w . Thus the lemma is established.
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9. Lemma. Let A,#6/\y A%}, end let Ly, Lp

not be chains. Then I does not admit canonical

representations in W(P) .

Proof: Let x, y €L, Dbe incomparable and let

dl, d, € Lf‘ be incomparable. Tet x VY =12 and

2

d, A d2 =d . We consider the polynomials

1

Then [{(A) = {(B) =5 and A £ B.
Using the algorithm im Lemma 4.7
A =3B, =2 3

=X T O=A

A =B, =43

..I.L .._1.1. H

A,, B, are undefined for V¥ % A, pos

TV, BY are undefined for all VEN ,

We note first that A~ B . Since x z then

A =X

N

B A . Thus A ~B.,

N

B; since z" =z and Ay =z then z & A and so

We now show that A and B are minimal polynomials.

et A~C, CE W(P) . Since A Thas no upper

covers then A(C) 2 2 .

If f(¢) =2 thenm C*a.~b, a, b €P , since

C has no upper covers.

Otherwise, since (4 = z and C =4, C=24a.

I.A.
Thus (¥« &) —~(¥y —d,) Cz_d4 . Since

(y — dl) ~ (7 — d2) has no upper covers then either

a) '(yvdi);QZVd, i=1 or 2,
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or

) (y wd)) ~(y—d,) &2z or a.

Case a) implies that a; = yvdilug Z d#= a,

contradicting the incomparability of dl and (12 .

Case b) is also impossible since (y le) ~ (y \_,dz)
has both a lower MA-cover and a lower p—cover.

Thus L(C) »3 .

If 1(C) = 3 then either C =C —C; or C =C ~C
If C = Co’\cl then either C_ = or Gy € P and S0 C
would have an upper cover. Consequently C = Co -~ Cl and,
say, C; =c¢c €P . If C o =awb, a,b € P , then,
gince C cannot be equivalent to a shorter polynomial bf
the above argument, then a,lb, ¢ are in three different
lattices and so C would have three lower covers. Thus
¢C=(a~b)o_c, a,b,c €P. Since Cy=2, ¢ =2 .
However, a and b must lie in different lattices and
thus _Q/J. would not exist. This contradiction indicates
that L(C) > 3 .

If L(C) = 4 +then there are two cases; C = C,~Cq
and C = Co /\cl .

Case 1. C = C,—~Cy : Since A CC +then
(y — dl) ~ (y d2) C C . Since (y vdl) ~(y — dz) has
no upper covers either

a) y—d, &c, i=1 or 2,

or
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b) (yvdl) /-\(y\,dZ) C_Co , say.
Case a) implies that a4 £ C,_ =4a , which contradicts
d <‘di .

In case b) C_, C exists, and so {(C) > 1.
A B ) o

}L

Now Co + E~F ; for ,F.(Co) £ 3 and so either A(E) =1
or J(F) =1, and thus C, would have an upper cover, |
which is impossible since (y — dl) ~ (y < d2) has none.

Thus C, =E_F ; thus C=E_F_C Since A(C) = 4

1 -
we may assume that AE) =2 ., The previous discussion

has shown that C cannot be eguivalent to a polynbmial 6f
shorter lengths; since C has only two lower covers
E=a.~b, a, b €P. Since [(C) =4 , then F, C; € P ;

since Q_k = 2 d "it follows that

y Cp=

C=(a~b)o(zod).
Thus, since y . d. € C 1is impossible as above, either

a) (y —«8;) ~(y—4d,) Sa~b,

or

b) (yod) ~(yody) Sz —a.

Case a) is impossible since a ~b has upper covers
and (y\/dl) ~(y vdz) does not.

Case b) implies that either

(1) vo d; Cz—ad for some i ; taking lower

’U.—covers we get the contradictj.on di < d;
or ©(4i) (y\/dl) ,\(y\/d?_) €C z or 4, which is

impossible since both 2z and 4 have upper covers and
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(y le) ~ (¥ ud2) does not.

Thus Case 1 cannot hold.

Case 2. C = CO,\CJ_ ¢ Since C €A and C has no
upper covers one of the following four must hold:

a) CCx

b) C C(y «d)) ~(y—4d,) 3

c) C, C A

) ¢ cA.

Case a) implies that 'é'k exists, and thus it canno%
hold.

Case b) implies that z = C, £y and so cannot hold.

Since A EC QCO, C, cases c) and 4) imply that A
is equivalent to a polynomial of length <4, of which the
previous discussion has disposed. Thus Case 2 cannot hold.

Consequently [(C) 35 and thus A, B are minimal,

Thus the proof is complete.

10. Temma. Tet A, Pas IJ.Z be distinct elements of
/A and let Ly not be a chain. Then L does not admit
canonical representations in W(P) .
Proof: Let x, y € Ly be incomparable, and let
dlé Lf‘l 5 dzé I‘Pz . Let TVy=2. As in the proof
of Lemma 9, let
fexo (o) ~Fedy)) , B=zw((zod) ~yody)).
As in Temma 9 A ~B . Also £(A) = £(B) and 4 %3B.
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We observe that

1>

X=;§A=Z;

y» B, are undefined for all V# A ;
Y, BY are undefined for all »Y €N .

i

b

We show that A, B are minimal polynomials. TLet
A~C, C €WP) . Since A has no ujpper covers
L) 2.
If {(C) =2 then C4+a~b, a, b €P, since
C has no upper covers. Similarly, since C has only one
lower cover, C+ac_b, a, b€ P . Thus AL(C) >3 .
If f(C) =3 +then either C = C, ACl or

C = Co «— C The former situation is impossible since

1 -
E(Co) or ,E(Gl) =1 and so C would have an upper
cover. Thus C = C . C; and, say, C,=c € P . Since
C has only one lower cover then C,=a~b, a,b €p,
and c¢ € Ly . In order that C have no upper X-cover
a, b ¢L>\. Now A C C 3 thus
(y )l ~(Fwdy)) Sla~d)we.

Since (y vdl) ~(y < d2) has no upper covers the above
guasi-inequality cannot follow by using rule (2) of
Theorem 4.12. Thus one of the following three holds:

a) (yvdl)f\(y\/dz) Ce s

b) (7—d;) ~(y—d,) Ca~b;

c) there is an i € {O, 1§ such that y —d; Cc.

Both ¢ and a.~b have upper covers and so neither a)
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nor b) can hold. Since ¥ —d; hes ‘a lower jr;~cover
and C does not, ¢) cannot hold. Thus [(C) > 4 .

If 1(C) = 4 +there are two cases; C = C,— Gy

1 L
Cage 1. C = Co' G ¢ Since (), exists we may

S e and C = Co'ﬂ‘c

assume that Co exists. Since C has no other lower -
~=A

covers either ﬂ(Co) =1 or ,Q(Co) =3 . If ,@(Co) =3

then, since Co can have no other lower covers,

C
0

il

a (e ~f) where a €Ly, e, £ €P ; then

Cl =b €P and, since C has only a lower A ~cover,

b € Ly . In this event, however, C ~(awVv b) v (e ~7F)
and so A would be eguivalent to a polynomial of length

3, an eventuality that the previous discussion rejects.

Thus [(C)) # 3 and so G, =a € Iy . Thus £(C;) = 3

and, in view of the above discussion, Cl b /\C2 9
b €P , and .@(02) =2. Thus C=a (b G, .
..... Consequently (y le) ~{y d2) Caold~ 02) , an
eventuality thatv can be rejected exactly as the situation
when C = (a ~Db)e_c, a, b, ¢ £€P , was rejected above.
Thus Case 1 cannot hold.
Case 2. C = Cé/"\ Gl ¢ This case is disposed of
exactly as it was in Lemma 9.
Consequently [f(C) > 5 and so, since 2(a) =5 N

A and B are minimal. Since A # B the lemma follows.
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If L, is a chain for each ANEAN then I = CF(P) ;

thus, by Lemma 4,

11. Lemma (Sorkin [9]). If L, is a chain for all
ANEN  then the free product of (Iy | AEA ) admits

canonical representations in W( [J(Iy | AEA)) .

If [Nl =1 ,say A= {A} , then the free product of

}(LA | NéAN) 1is I, and so every element can be repres-

ented by a uvnique polynomial of lengfh 1 5 thus Ly

admits canonical representations in W(Ly) .

There is only one case not considered above. This is
the case where h\f: 2 , say N = {A,}L} ’ LfL is a chain,
and Lk is not 2 chain but the join of any two incomparable
elements is maximal in L, and the meet of any two incom-
parable elements is minimal in Ly, . Thus L 1is Q'b
where Q is the disjoint union of unrelated chains. We
show that in this case the free product does admit

canonical representations. We recall that 1 1is the

greatest element of Qb and O is the smallest. As usual,

12. Iemma. In the above notation, if A € W(P) and
éfk does not exist them A &1 and, dually, if EH does

not exist then 0 ©A . If _.A:}A exists then A C 1\/5,,_

and if A/ exists then 0 ~E cCa .
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Progf: Ve need only consider A the results for

,“L;
% follow by the principle of duwality.
It “A;}J“ does not exist then, by Lemma 4.9, 3\‘.)\ existss

then A CE 1 andso AC1.

Now assume that "él“‘ exists. We prove that
AC 1o 4, by induction on fa) .

If f(A) =1 +then A = A g_lvAfA..

7
Tet A(A) =n >1 and let the result hold for any
polynomial shorter than n .
If A =3B ~C then ‘E/"’“ and g_IA exist, by Lemma 4.7.

Since B and C are shorter than A +then B glugf,_,

cClo 9_% . Since LiJL is a chain we may assume that
;@Fgg_% - Thus A, = E‘F‘ by Demma 4.7; thus B & l\./;{\._‘&

and so AC_;BC:]_\/“{&_%.
If A =3B.-C then we may assume that either only
B exists or both 3B,, C exist. If C does not exist
..k-.}L .._,.i/’ .‘_ﬁ,i,L - .,_‘lL
then, as proved above, C C 1 . By the inductive hypothesis
BC1_3B,=1 A, 3 thus B C&Z 1A, . If both
N R 2 ~ ._}A. H ~ w_[}g 0
"Pif“ glu exist then, by the inductive hypothesis,
Iz H

BC1._3B8,C ?L\/:lj._l/L and CCl\/Q,F €l A thus

I -
L=BUCGlud,.

Thus the lemma is proved.

13. Lempa. The free product of Ly and Ly admits

canonical representations.
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Proof: Assume that the lemma is félse. Then there
is a smallest integer n such that there are A, B cw(p) ,
{(a) =(B) =n, A~B, AEB, and A, B are mini-
;;;;;; mal polynomials,
If n=1 +then A, B &€P 3 thus A ~ B implies that
A =B . Consequently n > 1.
By Lemma 6, A = AO~VIA1 and B = Bj ~B; , or vice
versa, is impossible.
In view of the principle of dvality we may assume that

AEAOV aaovA BEBO&JQoo \JBS“]_’ I‘,S>l,

r-l ’?
where each Ai is an element of P or is of the form
¢ ~D , and similarly for each Bj o

If for each i £ r-~1 +there is a J & s-=1 such that

Ay N'Bj , ﬁ(Ai) = ﬁ(Bj) , and conversely for each igs-1 ,
then, by the minimality of A and B , j is uniquely
determined by i , and conversely. Thus there are mappings
£ : {0, euuy v-13 = {0, ..., s-1] and

e e {0, vou, s-13 — {0, 0., =13

L such that A, “’Bf(i) for each i L r=l1 and Bj‘m'Ag(j)

for each j £ s-1 . If g(£(i)) + i +then, since

Ai ~ Ag(f(i)) 9 A.N .A-O\/ o0 0 \/.A.i“l\/ Ai“‘l\/ ¢ o 0 VAI""‘]. 9
,,,,,, contradicting the minimality of A. Thus for each
i r-1 g(£(i)) = i and, similarly, for each Jj £ s-1
(g(i)) =3 . Mmus r =8 and f, g are permutations

of {0, ..., r~1} . By the minimality of n ,
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Ay = By(yy since fag) = ,Q,(Bf(i)) . Thus A =3B,
contradicting the assumption about A, B .

Consegquently, in view of Lemma 7, we may assume with-

out loss of generality that ﬂ(Ao) =1.

If A ELH then, since A C B and LI,L is a chain,
we apply Coroll. 4.13 and find a Jj £ s-1 such that

VAOC_:_B. . If ,E(Bj) =1 then A B, ; thus B, eLV.

J J
and, using Coroll. 4.13 and proceeding as in Lemma 7, we

J

find that Ao = B. . Thus the above argument would apply.
If ,E(Bj) > 1 +then there is an 1 ¢ r-1 such that .

Bj ~ A, and f,(Ai) = ,@(Bj) >1 . Thus i 4 0 and

AO < Ai ; consequently A ~ Al v ees N Ar-l , again

contradicting the minimality of A .
Thus we may assume that A, € Ly end that A ¢ Bj

for all j {s-1 . Since A C3B, By exists and

AL By o Tow A {.].B.ZLA for all j  s-1 since

AOQBj . Since, for any x, y €L, , XVYy=%xX,5 or 1
we may assume, without loss of generali’cy, that

B, Vv By =1. Ve may assume that B € Ly , for if

Oy 7 =

B;), Bl ¢ Ly then, by the above arguments, there are

i, ¥ ¥ 0 such that B C_:_Ai and BlC_ Ay 3 since
5o,V B1, then AO_C_ Bo"?l g‘-AiVAk and so

A ~ A cee uAI,__'l, contradicting the minimality of A -.

1
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Consequently B, €L, . Since 1= B, —« By

luBlg_BovBl. Since B0<1 then BovBlgl\/Bl.
Thus

By Lemma 12, either Blﬁz.l or B, exists and

— -

1§ lvi#. If Bl(;_l then B, o By ~1, contradict-

| ing the minimality of B . If By S 1. B, then, since
| e

B, 1,

Thus BO‘V’B1‘V 1\“’B1 $ since Bl ’ Bl exist then

‘ —= A R

.Q(Bl) > 1 , again contradicting the minimality of B .
Thus our original assumptions about A and B
cannot all hold.
Consequently the free product admits canonical

representations.
The results of this section can be summarized as:

14. Theorem. The free product of the lattices
| (LAI ANE /_\) admits canonical representations if and only”
if at least one of the following holds:

(1) IN =1

(ii) all L, are chains;

(11i) Nl =2, saj A= {X F} R Lf" i.s a chain,
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and L = Qb where Q 1s the disjoint union of unrelated

chains.

¥3, Canonical representations in partially ordered free

products. ’
Let /\ be a poset and let (LAI A€/\) be a family
i . of lattices indexed by A. P denotes the poset intro-
duced in Section 4.2. Let the partially ordered free
product of the (LXI AE/AN) Dbe denoted by IL . By the
discussion in Section 4.2 the calculations in Lemmas 8, 9
and 10 apply to partially ordered free products.

If there are two incomparable A, V.é/\ and if Ly
contains two incomparable elements Whése join is not
maximal in L, , or whose meet is not minimal in Ly,
them the calculations of Lemma 8 apply; thus L does not
admit canonical representations. A similar situation
occurs if 1X,fx are incomparable, Lk is not a chain,
and there is a v € /A such that v<A , y-{./u, or
S 5 v};/& ; the w of Lemma 8 can be taken as an
element of L .

If there are three mutually incomparable A,}L, vEN
such that LA is not a chain then the calculations

presented in Lemma 9 show that I does not admit canonical

representations in W(P) .
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If A, ¢ are incomparable in N ana Ty s LF‘ are
not chains then, as in Lemma 10, L does not admit
canonical representations. ‘

If L is a chain for all A €A then, by Lemma 4,
L admits canonical representations.

There is only one case left to consider:

For each AEN, if Ly is not a chain then either

(1) for all VEN either VY2A or v A

or

(ii) L, is of the form ° , Q a disjoint union of
incomparable chains, /< = {}Lélk o A are incomparable}
is a chain, L, is a chain for all /uE/\' , and V> A
(resp. v <A) and ILLe A implies that V> [t (resp.
V<)

To dispose of this situation let I be a chain and
let (Pi] i € I) be a family of posets such that, for
each i €1, P, has an (7ﬂi,‘ﬁi)~structure. Let
P=[J(p;| i €I) ©be a poset such that o

(i) if =, ¥y éPi then x Ly in P if and only
if ng in Pi H ‘

(i1)- if x €2, , ¥ €Pj s, i%j, then x <y
if and oniy if i <j .

We define 7 = LJ(?ni lie1), N = [J('”il i € I) as
the structure on P .

There is a natural embedding of W(Pi) in W(P) for
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each i €I . By an abuse of nota‘tibn _j_x_i denotes the
(7)’Zi, ﬁi)-lower cover of A in Pi and A its

( %, /1)-lower cover in P , and dually.

15. Lemma. If A€ W(Pi) sy 1 €I , then

a) afle, =4, ena _A_ﬂPj:,@ if § >

v) Efle, =7 ana KﬂPj:_QS it 5 <i .

Proof: A simple inductive argument will do. We need
only observe that if J, K are W -ideals of P such that
J N P, , K ﬂPi are 7/?i-ideals of P, then

(v ) N p, = (3N (x Me,)
Where \37 denotes join of ?ﬂiuideals ofA Pi and \/ denotes

join of 7-ideals of P .

The dvual sitwation, of course, holds for 72-_dual ideals,

16. Coroll. The quasi-order on W(P) defined by
( My 7)) restricted to W(Pi) is the quasi-order on W(Pi)
defined by (')Izi, 721) .

Proof: TIn view of Definition 3.2 we need only show
that if A, B €W(P,) , i €I , then A(1B ¢ # if and
only if E (13, + 4.

clearly E'[1B; + # implies that A(1B £ 4 .

Now let Iﬂ§ + § ; then there isa j €I such
that Kﬂ_)@_ﬂPj + @ . Thus Kﬂ}?j + ¢ and gﬂPj 1 6.

By Lemma 15 j = i and so Kiﬂ§i+¢.

Thus the corollary follows.
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17. ZLemma. If A €W(P;) , B EW(Pj) ) aﬁd i<j
then A CB in W(P) .

Proof: Ve establish this lemma by induction on
I(ay + {B) . 1 A(a) + &(B) = 2 +then A € P, , BE P,
and so A KB thus ACB . '

If B=C~D, ¢, D € W(Pj) , then, by induction,
ACc CB.
| If B=CA~AD, C,DE W(Pj) , then, by induction,

ACC,Ds; thus AC B .

The duval arguments work for A .

18. Temma. If A € W(P) is minimal then there is
an i €I such that A € W(Pi) .

Proof: We proceed by induction on JACS I

1t f(A) = 1 the result is clear.

If A=BwC then B, C are minimal in W(P) . By
induction there are i, j €I such that B € W(Pi) R
cC € W(Pj) . If i 4 j then, since I is a chain, we may
assume that i <j . Thus, by Lemma 17, B &€ C and so
A ~C, contfadicting the minimality of A . Thus i = J
and so A €W(PR;) .

The dual argument holds if A = B AC .

Thus the lemma follows.

19. Theorem. ITf l‘«‘L(}?i s 7/{1,' 7Zi) admits canonical

representations in W(Pi) for each 1 €I , I a chain,
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then FL(P ; 7}, 7l) admits canonical representations in
w(P) .

Proof: Let A, B €W(P) bve minimal and let A ~3B ,
LAY = {(B) . By Lemma 18 there are i, j € I such that
A€ W(Pi) , B €& W(Pj) .

If i+ j we may assume that i < j. Then .A(a) =

= L(B) >1 and so, by Lemma 5, Eﬂgx_ + 4 . However

B CA . Applying Definition 3.2, if B = B, - By ‘then

1
B, C A Dbut B, € W(Pj) and so, by Lemma 17, AQBO .
.Thus A ~ Bo , contradicting the minimality of A .
If B = B, ~By and B € A, say, then, as above,
A ~B o * The dvual arguments hold in the other two cases.
Thus i = j and, by Coroll. 16, A ~B in W(Pi) .
Thus A =3B .

Thus the theorem is proved.
Thus

20. Theorem. The partially ordered free product of
the family of lattices (in NEN ) admits canonical
representations if and only if either all L}\ are chains,
or for each AE/\ 'such that T, is not a chain either

(i) for each l,&é/\ either }Ag}\ or /&})\;

or
(ii) Ly 1is of the form QP s Q a disjoint unioﬁ of

incomparable chains, /\' = { il’é /\l )\, V' incomparable }
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] .
is a chain, Lf’” is a chain for all /ué/\ , and Y >\
t
(resp. V <A ) and }LE/\ imply U>/u (resp. vy </,¢ ).
Proof: We apply Theorem 19 and Theorem 14.
We define an equivalence relation = on Ne: N= ,x,

if and only if there is no vVEN sy Ly mnot a chain,

strictly between A\ and M- By conditions (i) and (ii)

= 1s an equivalence relation and preserves the partial

order onn AN. Tet I =A/=; I is a chain under the
induced partial order. TFor each 1 é I let

p, = J(@, | Aei ) . Tet 7y, 71; be the sets of all
pairs in the same I_’A for all /\Ei °

If I, is a chain for a1l A€i then
FL(Pi 3 Wy ?Zi) = CF(Pi) and so admits canonical
representations.

If there is a A€i such that Ly 1is not a chain
then, by conditions (i) and (ii), either P, = Ly and so
FL(Pi H ‘75§_, ‘723._) admits canonical representations, or Iy
is of the form Qb and Pi = I’AUM where
M = U(LPL’}.L,/\ incomparable) . In the latter case N
is a chain and so TFL(E; ; 7/[1, '7Zi) is identical with the
free product of T, and M . Thus, by Theorem 14,

FL(P; ; s s ‘7Zi) admits canonical representations.

Applying Theorem 19 the result follows.



CHAPTER VI
SUMHARY AND CONCLUSIQNS

The main results of this dissertation are best described

~in terms of the concept of the word problem. The word

problem is applicable to any universal algebra, but here
we shall restrict our discussion to lattices. The ususl
formulation of the word problem is (see Evans [5] and [6],
and Gratzer [7], Chapter 4, in each of which the word
problem is stated for universal algebras)s

cooy A B

Let AO, B be lattice polynomials

rel? Tl

on the finite set S = {Xo’ coag Xn“l} . Given any two

07

lattice polynomials A, B on S , find an algorithm %o
decide, whenever I is g lafﬁice and By eees By 5 € L
satisfy the relations

Ai(ao, co oy anal) = Bi(ao, ceey an=l) for all
i  r-1 , whether or not
07 e anml) .
If C € w(S) +then C(ao, sony an«l) dénotes the

A(ao, ceos an_l) = B(a

element F(C) € L where F is defined as F(Xi) = a;
for all ig<n-1, F(X_Y) =7X) v FY), and
F(XAY) = F(X) A F(Y) for all X, Y € W(S) .

For lattices the above problem was solved in the

affirmative by Evans [5] .

It is natural +to attempt to extend the problem to
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either an infinite set S or an infinite number of
relations. The major drawback to such an approach is that
in general one would have no effectivé way to determine
whether or not a specific infinite set of elements satisfies
a specific infinite set of identities.

For the word problem, in view of the nature of free—
ness; one need only consider the "most free" lattice
génerated by S satisfying the relations Ai = Bi for
2all i Lr-1 . Thus a satisfactory approach to these
difficulties is to let S be a poset P and to let the
set of relations be all relations compatible with some
(ﬁz,?f)wstrucﬁure on P . This leads %o the problem of
determining whether or not two polynomials A, B € W(P)
represent the same element of FL(P 3%, 7%7) . If P is
infinite the aforementioned difficulties still remain.

However one can discuss the word problem modulo a given

mathematical structure on P :
Given A, B € W(P) , is there an algorithm that
reduces the problem of whether or not A, B represent
the same element of FL(P ; 7, 7/) +to a problem regarding
the given mathematical structure on P 2
With this point of view Section 2.2 provides a
solution to the word problem for FL(P) modulo the
structure of the pseudo-prinecipal idéais and pseudo-principal

dual ideals as subsets of P . Similarly the discussion
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in Section 3.1 solves the word problem for FL(P 5 71, 71)
modulo the structure of the Pseuvdo-prinecipal ?¢~ideals
and the pseudo-principal 7/ -dual ideals as subsets of P .,

The discussion in Chapter IV solves the word problem
for the free product of lattices modulo their lattice
structure, and that for partially ordered free products
modulo the lattice structure of the factors and the partial
order on the indexing set.

Chapter IV also shows +that the word problem for the
free product of lattices amalgamated by a lattice M of
finite length is solvable modulo the lattice structure
of the factors and the partial maps c, and Co « If the
amalgamated lattice M is finite then the question of
whether or not co(x), Co(x) exist for some element
of a factor and, if either exists, what it is, is effectively
computable. Thus if M ig finite the word bProblem for the
amalgamated free product is solvable modulo the lattice

structure of the factors;

We conclude by mentioning two problems that are left

open in this study.

Problem 1. Can our resulis be extended to infinitary
lattice operat10ns~ that is, what can one say about

FL(P s, 7)) it My N contain infinite subsets of P ¢
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Problem 2. Can the results of Chapter V be extended

t0 arbitrary posets? That is, find necessary and sufficient

conditions on P so that FL(P) (or FL(P ; %@j%) )

admits canonical representations.



3a.
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