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Abstract

Electrohydraulic servo actuatols are used extensively in industry due to their high payload

capability, high durability, rapid response, and high power-to-weight ratio. In this thesis, a

switching contact task control scheme is designed for hydraulic actuators. The control scheme

essentially consists of three distinct control laws for asymptotic position regulation in free space

motion, impact suppression during transition from free to constrained motion, and asymptotic

force regulation in the sustained-contact period of motion, all in the presence of acftrator,s dry
fi'iction as well as viscous friction and Stribeck effect.

At the control design stage, the extension of Lyapunov stability theory to nonsmooth systems

based on Filippov's solution theory is employed to derive the control laws for various modes of
operation of a hydraulic actuator interacting with a non-moving environment. None of the

controllers require exact knowledge of the actuator friction, servovalve dynamics, environment

stiffness, or hydraulic parameters for the control action as in most practical cases such

knowledge is not available. For an actuator with initially centered piston that travels within the

mid-point vicinity of the cylinder, the theoretical Lyapunov stability of each phase of motion is

studied considering nonlinear hydraulic functions, servovalve dynamics, complete discontinuo's

model of actuator friction, and realistic impaclcontact dynamics (if present) modeled by Hertz
contact theory. The performance of each individual controller is then tested through experiments

on a fully instrumented hydraulic test rig and their practicality and effectiveness in real

operations is verified.

Combination of the three control schemes yields a so-called "switching contact task control

scheme"' The most important but difficult part of analyzing such a nonsmooth system is the

stability analysis. Although Lyapunov stability theory is the basis in deriving the individual

control laws at the design stage, switchings between control laws during the complete contact

task necessitates an overall stability analysis for the complete task. Removing the dynamic

modeling assumptions of the design stage and generalizing the system dynamics by allowing the

fuil stroke piston travel comes with the price of adding extreme difficulty in deriving the

Lyapunov functions for the overall non-smooth system. Therefore, in this thesis, a systematic

approach is developed for stability analysis of the overall contact task using the concept of
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Lyapunov exponents. Since Lyapunov exponents have been initially introduced to analyze
smooth dynamical systems, their application to nonsmooth systems involves a number of issues
that need special consideration. Solution analysis, linearization at the instants of discontinuity,
existence of Lyapunov exponents, and stability of numerical computations are among such
important issues that did not exist in the conventional applications of Lyapunov exponents on
smooth dynamic systems. These issues are thoroughly addressed using a combination of various
existing theorems and algorithms and the resulting methodology has laid a solid framework for
stability analysis of switching systems with capability of being extended to other nonsmooth
engineering problems.
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Chapter 1

Introduction

Motivation

Due to their high force, high durability, high power-to-weight ratios and rapid responses,

electrohydraulic actuators play an important role in the development of manipulators for

inspection, maintenance and assembly tasks conducted in marine missions, material testing

equipments, oil and gas surveys, telerobotic operations, as well as military applications. An

essential issue in such applications is proper interaction between the manipulator and the

environment, commonly known as "contact task". The manipulator should be able to follow a

free space trajectory and make a stable contact with the environment while the energy of impact

is dissipated and the desired contact force is achieved (Payandeh, 1996). A particular example of

a robotic contact task is the remote operation of underwater hydraulic manipulators for

inspection, maintenance, or assembly. An inspection probe used to track around a weld to detect

any cracks, or, the mating of underwater connector and socket arrangements, require both free-

space position control and sustained-contact force control with high accuracy (Dunni gan et al.,

1996). Accomplishing such tasks generally consists of three operational modes: free-space

motion, sustained-contact motion, and the transition between the two called the impact mode.

1.1
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The intermediate phase of motion is of particular importance as operators normally do not have
enough time to control the impacts from driving an otherwise stable controller into instability
and preventing serious damages to both the manipulator and the environment (Dururigan et al.,
1996)' They are only aware that the end-effector has hit an object when the slave manipulator is
no longer spatially correspondent with the master arm. Employing an automatic control scheme
that could control the position, possible impacts, and the force applied to the environment would
reduce the burden on the operator and increase the likelihood of successfully completing the task
with the minimum cost. The general requirement for the design of such a contact task controller
is threefold (Fig' 1.1): (l) the capability of moving the manipularor to its desired position in case

of no contact with an environment (free-space motion), (il) the capability to accomplish a stable
contact transition upon contact with an unexpected environment þhase-transition or impact
mode), and (iii) the capability to follow the desired contact force after sustained contact is
established (constrained-motion).

Free-space motion

Phase-transition motion

Constrained motion

Fig. 1.1 Phases of the implement's motion.

Designing such a switching contact task control strategy for hydraulic actuators interacting with
non-moving environments is the main motivation of this research. Including hydraulic actuation

and dry friction dynamics in the model of the system and releasing the restrictive modeling

assumptions (such as bounce-less contact assumption in Niksefat et al., 2001) rules out the

previous attempts on the contact task stability analysis. It is, therefore, imperative to conduct a
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rigorous stability analysis despite existence of hydraulic actuation nonlinearities, actuator
friction, switching controllers, ffid characteristics of realistic impact/contact models in the

resulting non-smooth system.

1"2 f-,iterature Review

When the manipulator's implement transfers between different modes of operation, the model of
the system undergoes substantial changes that make planning and control difflrcult to achieve.

Impedance control (Heinrichs et al., 1997; Bilodeau and Papadopoulos, 199g; Ha et a1.,2000;
Kazerooni et al', i990) provides a unified control structuïe for all various modes of operation
with no need for switching between control laws. However, there are a number of drawbacks
rendering the algorithm vulnerable in realistic applications (Marth et al., 1994; Vukobratovic,
1997). Firstly, impedance control technique is best applicable for contact tasks where the
environment model can be sufficiently described by a linear equation. Secondly, force tracking
with impedance control is achieved through tracking of virtual position, and therefore, contact

force tracking is only possible if the exact environment model is previously known or identified
on-line. Thirdly, the measured interaction force is always present in the control algorithm and the

non-zero noisy measured force can corrupt the control performance when the implement is in
free-space.

To overcome the above drawbacks, an alternative approach is to divide the overall motion into
different operation modes and employ a different control law in each phase of motion (Mills and

Lokhorst, I993a, 1993b; Volpe and Khosla , 7993a, 1993b; Marth et al., Igg3, Igg4; Tam et al.,

1996; Wu and Payandeh, 1999; Brogliato et al., 1997;Pagilla and Yu, 2001; Niksefat et al.,

200I; Hyde and Cutkosky, 1993; Seraji et al., 1996). Switching between the controllers is based

on the detection of discrete events (such as detection of the first non-zero force) reported by

sensors. The first switching at the beginning of the transition phase is where the implement

makes its first contact with the environment. This mode of motion lasts until the implement

establishes a stable stationary contact with the environment exerting minimal force on it. Then,

the control scheme switches again to follow the desired contact force.

Most of the existing literature on switching contact task control design is directed towards
electrically actuated systems. Unlike their electrical counte{parts, hydraulica-lly actuated systems
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exhibit highly complicated characteristics arising from factors such as pressure-flow relationship
in the valve, compressibility of hydraulic fluid, saturation in servovalve, backlash in mounting
the cylinder body and rod, deadband in the valve, asymmetric actuation, hysteresis effect
resulting from electromagnetic characteristics of the torque motor controlling the spool valve,
and friction in the hydraulic cylinder that not only degrades the behavior of hydraulic control
systems, but also makes the stability analysis of the resulting nonlinear system a challenging
problem. Even if the spool valve dynamics are ignored, the control signal drives the derivative of
the actuator torque (not the torque itself) which is not desirable for precise control. Moreover, the

operating conditions of hydraulic actuators are subject to change and employing linear control
design methods for hydraulically actuated systems cannot provide a satisfactory performance

over the overall range of operating conditions.

The recent work of Niksefat et at. (2001) is the only rigorous theoretical and experimental

attempt in designing a stable switching contact task controller that allows a hydraulic actuator to
follow a desired position in free-space motion and, upon contact with an unknown environment,

switches to the contact mode of motion to exert a desired force. The work, however, resorts to
several restrictive assumptions in dynamic modeling of the system that are not easy to guarantee

in practical applications: (i) once the actuator comes in contact with the environment, it will
maintain its contact until force regulation is completed, (ii) the actuator's dry friction is

negligible, (iii) the piston is initially centered in the cylinder and is restricted to travel only
within the mid-point vicinity of the cylinder during the overall motion. Direct switching from
free-space control law to the constrained-motion control law without first damping the possible

impacts may lead to severe repeated impacts (Pagilla and Yu, 2001) driving an otherwise stable

controller into instability. Also, hydraulic actuators operate under high supply pïessures and tight
sealing is required to prevent them from internal leakage, leading to considerable dry friction in
the system. Such friction effects may cause instability during position or force feedback control

(Lischinsky et al., 1999). Therefore, it is imperative to design a more advanced switching contact

control scheme that: (i) employs an intermediate impact control scheme to regulate the possible

transitory impacts as a result of bouncing on initial contact and rests the implement before

switching to the constrained-motion control scheme, (iz) is capable of co¡nteracting dry friction
and accomplishing asymptotic position control, impact regulation and contact-force control, and,

(iiz) leads to a stabie control system regardless of the piston's initiat location and its travel stroke
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during the contact task. In the subsequent sub-sections of this chapter, the previous works on
each of these tluee improving aspects are explained.

1.2.1 Impact (Phase Transition) Control

Even within the general context of contact task control design, only a few recent studies have
dealt with the transition mode as a separate mode of motion with special treatment. Brogliato and
orhant (1998) demonstrated the global asymptotic conveïgence of a one-degree of freedom pD-
type controlled system colliding with a spring-like environment. Tornamb e (1999) proved the
asymptotic stability of continuous control laws (based on only position and velocity feedback)
designed for bringing the implement to a steady-state configuration in contact with the
environment' Pagilla and Yu (2001) proposed separate control laws for free trajectory tracking,
constrained motion and the transition phase between the two and experimentally studied the
performances of the system in slodfast collisions. Xu et al. (2000) incorporated joint
acceleration and velocity feedbacks into a classical integral force control to suppress the impact
bouncing' Tarn et aI' (1996) used an acceleration feedback to control the transient force response
and to reduce the peak impulsive force caused by the transient force.

All above studies are directed at electrically driven manipulators. V/ithin the context of
hydraulically actuated systems, no control scheme has yet been reported for impact control of an
implement colliding with an environment. Consequently, the control schemes developed in the
future chapters are the first attempts in introducing effective nonlinear control schemes that
could regulate impacts of a hydraulic actuator during the transition phase from free-space to
constrained motion.

l-2.2 tr'riction compensating positionÆorce control

Hydraulic actuatot's friction consumes a large part of actuation force and produces a jerky
starting motion due to Stribeck effect (exponential decrease in friction after the stiction force is
surmounted). Typical effors caused by actuator friction include steady-state errors (caused by dry
friction) and tracking lags (caused by viscous friction) (Canudas de Wit et al., 1991). This
necessitates special consideration for reducing or compensating friction during the system,s
position/force control.
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Within the context of friction compensation techniques, Armstrong-Helouvry et al. (Igg4)
conducted an extensive survey and divided the techniques into two major non-model-based and

model-based categories. Model-based methods are distinguished from non-model-based methods
in that they are based on the knowledge of friction model. Since (l) the physical nature of friction
is such that it can be rarely determined a priori with the accwacy required for cancellation, and,

(ii) the amount of friction often changes with time and often depends on numerous factors that

are challenging to estimate or measure, most model-based methods entail on-line estimation of
the friction using observers (Canudas de Wit et aL,l99l,l9g5,1997; kmstrong-Helouvry et al.,

1994; Friedland and Park, 1992; Amin et al. 1997). Non-modeled compensation techniques such

as high gain control laws, dither (injection of an additional high frequency noise), impulsive

control, and joint torque control have also their own limitations (see Canudas de Wit et al., 1991,

for details)' An effective alternative approach for friction compensation has been to employ
Lyapunov's direct method to develop a nonlinear discontinuous compensation technique and

stabilize a one-DOF system at the desired position (Southward et al., 1991). This thesis follows
the latter idea for friction compensation during the position/force control. The following sub-

sections provide a complete description of the earlier related works in the literature.

Position Control

Recent experimental comparison of ten different position control schemes shows that the

nonlinear schemes achieve a higher accuracy compared to the controllers directly based on linear

models (Bonchis et a1.,2002). This is due to the highly nonlinear characteristics of hydraulic

systems. Most of the recent studies on position control of hydrauli cally acÍuated systems are

focused on advanced nonlinear control theories such as feedback linearization (Vossoughi and

Donath,1995), adaptive control (Yao et aL,2000; Sirouspour and Salcudean, 2001 ;Tafazoli et al.,

1998; Lischinsky et a7., 1999), variable structure control (Hwang and Lan, lgg4), and direct

Lyapunov-based control (Sohl and Bobrow, 1999; Niksefat et al., 2001). However, not all of the

above studies considered stick-slip (dry) friction that is a major disturbance in hydraulic

cylinders and compensating it could improve the positioning performance (Bonchis et at.,2002).

'With 
respect to the previous relevant work on position regulation of hydraulically actuated

systems in the presence of actuator dry friction, Lischinsky et al. (1999) used a noniinear pl-type

controiler as the inner torque loop of an outer position control scheme. Neglecting the valve
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dynamics, they provided the stability proof of the position control system. Tafazoliet al. (199g)
established an adaptive friction compensation technique by combining observer-based friction
estimation with an acceleration feedback control. However, no theoretical stability analysis was
provided' Yao et al. (2000) included the dynamics of the servovalve and proposed a

discontinuous adaptive robust controller supported by a rigorous stability proof for position
tracking. In case of position regulation, however, compiete stability analysis was not provided;
nor did they provide a solution analysis of their resulting nonsmooth system. Sohl and Bobrow
(1999) obtained a nonlinear control law using Lyapunov stability analysis. Their control law
required knowledge of valve coefftcients, fluid bulk modulus, and Coulomb friction, whose

values may change during the position control process.

Force Control

Studies that have addressed the issue of actuator's dry friction in force control of hydraulically
actuated systems can be grouped into two categories. The first category includes studies that
have used force control in combination with another friction compensating position control
scheme (Ha et a1.,2000; sohl and Bobrow, 1999; Nguyen et a1.,20a0; Honegger and corke,
2001; Lischinsky et al., 1999). Ha et al. (2000) proposed a sliding mode controller for impedance

control of excavators. With an observer-based compensation for actuator friction, they employed

sliding mode control to implement the target impedance. Sohl and Bobrow (Iggg) introduced a

Lyapunov-like force control scheme for exponential convergence of hydraulic applied force to
the desired force' The controller accounts for friction effects only in the inner position tracking
loop and requires the estimates of system parameters (valve coefficient and fluid bulk modulus).

Similarly, a control scheme was introduced by Nguyen et al. (2000) based on sliding mode

control approach, and the load pressure tracking error (and not the actual net force considering

friction effects) was guaranteed to converge to zero asymptotically. Honegger and Corke (2001)

and Lischinsky et al' (1999), developed cascaded control schemes where a motion controller

compensates the friction effects and a cascaded force controller controls the internal states

(pressures) of hydraulic actuators without accounting for the friction effects.

The second category of works included dry friction in their theoretical and/or experimental

analysis with no attempt to reduce its degrading effects (Alleyne and Hedrick, 1995; Heinrichs et

al., 1997; Laval et al., 1996; Zyada et aI., 2002). Among them, the works of Heinrichs et al.



Introduction

(1997), and Laval et al. (1996) were based on the linearized model of hydraulic firnctions which
has serious drawbacks with respect to the robust performance of the control system over a wide
range of frequencies (Vossoughi and Donath,l995). Alleyne and Hedrick (1995) developed a

sliding control law coupled with an adaptation scheme for force tracking of a quarter car active
suspension system. Using Barbalat's Lemma, they proved the asymptotic convergence of the
load pressure to its desired value which is not always proportional to the desired force if the
actuator friction is not negligible. Zyada et al. (2002) proposed a ruie_base fuzzy compensating
model to reduce actuator's friction effects in the force control. The method is based on learning
rules from measured inpuloutput data and heuristic rules from experience. Force control in all
above studies lacks an important issue of friction compensation that has a great role in the

controllabiiity, accuracy, and repeatability of motion. Recently, Alleyne and Liu (2000) proposed

a Lyapunov-based force control scheme with some practical means for friction cancellation.

However, they did not include the friction cancellation in the system's stability analysis as the

non-differentiable terms in the dry friction model were not compatible with the assumptions in
their Lyapunov stability analysis.

1.2.3 Stability Analysis of Switching Control Systems

The issue of contact stability can be approached from different point of views (Brogliato, 1999):

. study conditions that guarantee no rebound after the first contact;

o relax the bounceless conditions by studying the conditions that ensure Lyapunov stability
of the system without guaranteeing that the actuator's tip will never take off the

environment's surface.

When the environment stiffness grows unbounded, bounceless conditions are impossible to

obtain using finite force control with non-zero contact velocity (Brogliato, Iggg). Therefore, in
order to conduct a unified realistic stability analysis that applies to both compliant and rigid
models, in this research we shall seek the second viewpoint of stability analysis for contact task

control analysis.

Some of the main factors affecting the stable contact task control of a manipulator colliding with
an environment are interaction forces, approach velocity, and response time of both the

manipulator and the force sensors. For switching contact control systems, existence of switchings

in the control scheme results in an overall nonsmooth system which no longer has the desirable
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uniformity of an impedance control scheme. Solution and stability analysis of such systems using
classical techniques are questionable since the fundamental assumptions of conventional solution
theories, known as the Lipschitz-continuous requirement, are violated. With respect to classical
solution theories, one cannot even define a solution, much less discuss its existence, uniqueness

and stability. Furthermore, applicability of the conventional Lyapunov's stability theory, initially
developed for smooth systems with a unique solution is questionable.

Due to the existence of the above challenges, many studies on switching contact task control
have implicitly addressed the issue of stability via simulations and./or experiments (Volpe and

Khosla, 1993a, 1993b; Marth et al., 1993;Pagilla and Yu, 2001; Hyde and Cutkosky, 1993;

Seraji et al., 1996)' In other studies which include rigorous theoretical stability analyses, the

main approach for stability analysis is extending the Lyapunov stability theory to nonsmooth

systems (Peleties and DeCarlo, 1993, Tam et al., 1996; Mills and Lokhorst, 1993a, 1993b;
Brogliato et al., 1997;Wu and Sepehri,2000; Wu and Payandeh, |999;Niksefat et al., 200I).
Among them the work by Brogliato et al. (1997) is the only study thar provides Lyapunovlike
stability analysis of a three-stage (free-space, impact transition, and sustained contact) control

system, and the work reported by Niksefat et ai.. (2001) is the only work that includes hydraulic
actuation in the analysis.

Deriving Lyapunov functions for switching contact task control systems requires heavy

mathematical machinery and has obliged many researchers to resort to some restrictive and

sometimes uruealistic modeling assumptions that may greatly reduce the generality of the

analysis or its practical applications. In Peleties and DeCarlo (1993) and Tam et al. (l 996), it
was assumed that the system is comprised of linear subsystems in each region of motion - an

assumption which is not realistic for the highly nonlinear hydraulic systems. Mills and Lokhorst
(I993a,1993b) assumed that the exact knowledge of the manipulator and environment kinematic

and dynamic parameters are available. Brogliato et al. (1997) assumed impulsive impact with
zero deformation in colliding bodies. Finally, the prooß presented in Wu and Sepehri (2000),

Wu and Payandeh (1999) and Niksefat et al. (2001) are only valid under the assumption of no

rebound as well as no energy dissipation between implement and environment after the initial
contact. In other words, they neglected the major impact dynamics effects (bourcings and energy

dissipations) in the analysis during the critical transition period from free-space to constrained

motion.
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1.3 Objectives and Scope of This Thesis

The primary objective of the present research is the design, theoretical stability analysis, and

experimental verification of a switching contact task control scheme for hydraulic actuators in

the presence of friction. The control scheme will essentially be the combination of three distinct

control laws that are individually designed for asymptotic desired position regulation in the free

space motion, impact suppression and stable transition from free to constrained motion, and

asymptotic desired force regulation during the sustained-contact period of motion, all in the

presence ofactuator's dry and viscous frictions.

Compared to the earlier studies, the development of Lyapunov-based position and force

regulation controllers have the advantage of being asymptotically convergent to the desired set-

point despite the existence of actuator friction and without having the complexity of control

methods that need friction observers. Moreover, designing an impact control scheme is the first

work in its kind to effectively regulate impacts of a hydraulic actuator during the transition phase

from free to constrained motion. Rigorous theoretical analysis and extensive experimental

verification on a hydraulic test rig will provide the solid foundation for the controllers'

practicality and effectiveness in real applications.

Due to the existence of at least two switchings (free-to-impact and impact-to-contact control) in

the overall combined switching contact control scheme, the resulting control system is a

nonsmooth dynamical system where finding a composite Lyapunov function for it is extremely

difficult, if not impossibie. Furthermore, the combined overall contact task control system

inherits some undesirable modeling assumptions that, although acceptable in the control design

stage, reduce the generality of the control scheme's application. Hence, the secondary objective

of this thesis is to introduce a systematic approach for a more thorough stability analysis of such

a switching control system using the concept of Lyapunov exponents. In that regard, crucial

issues such as solution analysis of nonlinear and linearized systems, linearization of nonlinear

equations at the instants of discontinuity, existence of Lyapunov exponents for nonsmooth

systems, and stability of numerical computations, will be thoroughly investigated using various

existing theorems and techniques. The approach will also establish a solid framework for

stability analysis of other nonsmooth engineering problems. The theoretical results will be

fi,uther implemented in practical exp eriments.

10



Chapter 2

Theoretical Prelirnin aries

2.1 Filippov's Solution Theory

One of the earliest and conceptually straightforward approaches which has been often used in the

solution analysis of non-smooth systems is the Filippov's solution theory (1960, 1979 and 19gg).

In his work, a new definition of solution to differential equations with discontinuous terms was

given which is referred to here as Filippov's solution, and theorems were proven for existence,

uniqueness and continuity dependence on the initial conditions.

2.1.1 Definition of Filippov's Solution

Consider the vector differential equation

i=f(x,t) (2.1)

where f :.R' x Ã -+ R' is measurable and essentially locally bounded. The solution to equation

(2.1) was given by Filippov (1960) as follows:

Dqfinitton I: A vector function x(r), defined on the interval (tt,t2), is called a solution of

equation (2.1) if it is absolutely continuous and if for almost all t e (tr,tr) and for arbitrary

á > 0 the vector dx(t) I dt belongs to the smallest convex closed set (of n-dimensional space)

1t
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containing all the values of the vector function f(t,x'), when x' ranges over almost all of the

á -neighborhood of the point x(r) in the space of x (with r fixed), i.e., the entire neighborhood

except for a set of measure zero. In the notation adopted above,

l2

dx(r) 
e F{f (t,x(/))}

dt

F {f(t,x(Ð)} = ôá,0 À p N=0 * tçt,nç*çt), á) _ ¡/)

(2.2)

where

(2.3)

and co refers to the convex hull of a set. N are the sets of Lebesgue measure zero.

Remarlrs

(i) The content of Filippov's solution is that the tangent vector to a solution, where it exists,

must lie in the convex closure of the limiting values of the vector field in progressively

smaller neighborhoods around the solution point. The above definition aliows us to
exclude sets of zero measure. This tech¡ical detail allows solutions to be defined at points

even where the vector field itself is not defined, such as at the interface of two regions in a
piecewise defined vector field.

(2) Definition 1 is quite general, that is, it includes more general classes of discontinuous

differential equations than those with a piecewise continuous controller. Definition 1 is

referred to as a Filippov's solution in this report and the solutions satisling the classical

solution theories are referred to as conventional solutions.

(3) Filippov's solution theory is useful in engineering problems because Filippov,s solutions

are limits of solutions with the right-hand side averaged over smaller and smaller

neighborhoods. Thus, it is expected that the Filippov's trajectories of non-smooth systems

will be close to the true trajectories (Paden and Sastry, lggl).

Comparis on with conventional solutions

Suppose that for tr1t1t, the graph of the vector function x(/) extends inside the region in

which the right-hand side of equation (2.1) is continuous with respectfo (t,x). In order that x(r)

be a solution to equatio n (2.1) in the sense of definition 1 for these values of r, it is necessary and

suff,rcient that it be a solution to this equation in the usual sense , i.e., that over the entire interval

(t,tr) it has a derivative equal to f (t,x).
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2.1.2 Theorem on the Existence and continuation of a solution

Let the right-hand side of equation (2.1) be measurablet and bounded in a region o . Then for an
arbitrary initial condition x(ro)=ø, where (to,n)eÇ), a solution of equation (2.1) exists
satisfuing the above initial conditions which is also continuable on the interval (Filippov, lgsg).

2.1.3 Theorems on the uniqueness of the sorutions

The theorems of the uniqueness of the solution were developed separately for the cases where
the discontinuity surfacel is a single surface and the case where the discontinuity surface is the
intersection of several discontinuity surfaces.

For the case of single discontinuity surface ,S := {x : s(x) = 0}, the region O is divided into

domains c¿- and ç)* which are defined as c)- : {x : s(x) < 0} and c)* = {x : s(x) > 0},
respectively' Functions f - and f * are defined as the right-hand sides of the dynamic equation

(2'r) in the regions Q- and Ç)+ which are measurable and bounded. Let the functions { be

continuous with respectto x1,...,x, in f)- and f)*, and let there exist limiting values of the

functions f, when system states approach to an arbitrary point on the surface S from domain f)-
toÇ)*'Vectorhisdefinedash=f*-f-atallpointsofthediscontinuitysurface,s. 

Inaddition,
å" is defìned as the projection of h on the normal to the discontinuity surface ,s. If it is found

that h, < 0, then in the domain Q for the system (2.1) we have the uniqueness and continuous

dependence of the solution on the initial conditions. Furthermore, if we have ffr > 0 and fñ > 0

(or f$ < 0 and fÑ < 0 ) at all points of S, the solution goes through,S and has only one point in
conÌmon with,S (Filippov, 1960).

For the case where the discontinuity surface is the

f), are projected on the z-dimensional state space

intersection of several surfaces, the regions

regions Si , j:I,2,...,r. The smooth surfaces

l3

Ï A probability measure for a bounded region assigns normegative numbers to anJ set in the region and is countablyadditive, i'e', given any countable famiiy of dir¡int ¡nono"u".ruppinlj r"h inthe region; the meâsurs of the ùnioñ, of these sets is the sum of the measures óf th" s.ts.f In this thesis the general discontinuity manifold is refer¡ed to as a surface.
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bounding the Sj will be denoted bV S,3, where mislhe dimension and i is the number of the

surfaces. For each x e S/ , the intersection of discontinuity surfaces, set K,l(/, x) is defrned as

K!(t,x): F,' (t,x) n{¡(x) (2.4)

where F,tçt,x¡ = F(t,x) and P,'(*) is the set of all vectors paralleled to the /-dimensional

surface S/ at the point on the discontinuity surface including the null vector. H!(t,x¡ is the set

of vectors of K!Q,x) tangent to s/ at the point on the edge (boundary) of ,s/.

Forthe case of intersecting discontinuity surface ,S,1, Theorem 1 of Filippov (Ig7g) stated that

for /, < t <t, in O, 1) each solution of (2.1) goes from one set ,S/ into another only a finite

number of times, 2) there is uniqueness of the solution up to the boundary in each S/, and, 3)

each S/ possesses one of the following two properties: a) for all ,S/ abutting S/ the sets

H Ï (t,x) are empty for all x e S,1 , b) only one of these sets is non-empty and K!Q,x) is empty.

Then, equation (2.1) has the property of unique solution.

2.2 Theory of the caratheodory Differential Equations

If the z-dimensional vector-valued function f(x,r) is discontinuous in / and continuous in x, one

can use the concept of Lebesgue integral as the basis of the theory of the Caratheodory

differential equations and obtain the definition of a solution to the equation * = f (x,t) (Filippov,

1988). The function f(x,r) is assumed to saris$r the following conditions:

C øratheodory Condítions :

In the domain D of the (x,r)-space, let

1) the function f(x,/) be defined and continuous in x for almosf all t;

2) the function f(x,f) be measurable in / for eachx;

3) lrlx,r¡<m(/)1, the function m(r) being summable (on each finite interval if t is not

bounded in the domain D).
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The equatior *=f(x,t), wherex is a scalar or a vector and the function f satisfies the above

Caratheodory conditions is called the Caratheodory equation, A function x(r) defined on an open

or closed interval I is called a solution of the Caratheodory condition if it is absolutely

continuous on each closed interval [", B]- 1 and satisfies this equation almost everywhere,

Lemma (Filippov, 1988): Let the function f (x,t) satisfli the Caratheodory conditions and let the
function x(t) (a < t < b) be measwable. Then the composite function f (x(t),t)is measwable.

Theorem (Filippov, 1988): consider a linear system in the vector notation

*=A(r)x+b(/) (2.s)

Let all the elements of the matrix A(/) and the vector-valued function b(r) be summable on each

segment contained in the interval (",F).Then for ro.(o,Þ) the solution of system (2.5) with

arbitrary initial conditions x(tl):.r, exists on the whole interval (cr, B)and is unique.

2.3 Nonsmooth Lyapunov Stability Theory

Although Lyapunov's direct method was originally developed for smooth nonlinear systems
(Slotine and Li, 1991), its extension to nonsmooth systems based on Filippov,s solution theory
(V/u et al', I998a; Shevitz and Paden, 1994) has provided the theoretical foundation for proper

stability analysis of nonsmooth systems. The result is a theory applicable to systems with
switches, for which Lyapunov functions are only piecewise smooth. There are two options when
deriving a Lyapunov flinction for a nonsmooth system. One is the construction of a nonsmooth

Lyaprinov function (Shevitz and Paden, 1994; Wu and Sepehri, 2000), and the second option is
to derive a smooth Lyapunov function (Wu et al., I998a). Similar to smooth dynamic systems,

the lack of a general constructive method for derivation of the Lyapunov function for any

particular system is the main challenge when analyzing the stability of nonsmooth systems. In
the case of nonsmooth Lyapunov functions, examination of the sign of the Lyap'nov function
derivative on a discontinuity surface is an additional burden. This must be done by estimating the

sign of each element of a convex set, which is the intersection of a large number of convex sets

containing elements related to Clarke's generalized gradient and Filippov's differential inclusion
(Shevitz and Paden, 1994). However, this requires heavy mathematical machinery and may
become unmanageable for large systems or when the discontinuity surface is the intersection of

15
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several surfaces. on the other hand, the advantage of deriving a smooth

avoidance of the cumbersome mathematical efforts in the estimation of
section, theorems on nonsmooth Lyapunov stability theory are presented.

Let * :f(x,t) be essentially

0 e K[/](0,/) in a region

Lyapunov function is

its derivative. In this

locally bounded and

O-þ.R'llltll."l"{tlt, =r.*}. Also, let v:R'xR -+R be a regular$ tunction satisfiiing

v(O,r):O,and 0. r(lrlD <v(x,r)< q(lrll) for x * 0in p for some 4, v,e crass K. Then

\ 7@fl < 0 in p impliesx(r)=fl is auniformly srable solution.

2) If in addition, there exists a class K functions l?(.) in p with the property Vçx,t¡< -w(x) < 0

then the solution x(r) = 0 is uniformly asymptotically stable.

Theorem 2 (.LaSqlle\ (Shevitz and Paden. 1gg4\: Let O be a compact set such that every

Filippov solution to the autonomous system * = f(x), x(0) = x(to) starting in O is unique and

remains in f) for all r>/0. Let V:e--+R be a time independent regular function such that

v < 0 for all , .7 (if 7 is the empty set then this is trivially satisfied). Define
| -:-l

S = tt e O l0 e Z i. Then every trajectory in Ç) converges to the largest invariant set, M, in the

closure of ,S.

Theorem 3 (Wu et al. 1998a\: Consider a nonsmooth system described by *=f(xrt). Let

Z e R* be a Lyapunov function of such a system for which x e R' is a unique Filippov

solution. Under conditions that V is continuous, positive and definite and V (the first-order
derivative of V with respect to time) is continuous, negative and at least semi-definite, the

Filippov solution to the system is stable in the sense of Lyapunov.

E 
-f (*,t) : R' x .rR -+ A is called regular if

1) for all v, the usual one-sided directional derivative f,(x : v) exisits,

2) forallu, f'(x:v)=l1x:v) wherethegeneralizedderivative f@:v) isdefinedas

f@ :v¡ = limsup f0 +n)- f(Y)
y+x,rJo t

Note that examples of regular functions include smooth functions and firnctions that can be w¡iften as the
pointwise maximum of a set of smooth fi:nctions such as llxll .
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2.4 The Concept of Lyapunov Exponents

One important tool in categori zing a system's long-term behavior (or stabilify) is the concept of
Lyapunov exponents. They have been previously employed in the area of robotics to study the

stability (Ravishankar and Ghosal, 1999; V/u et al. 2001) and conrrollability (Grune 199g) of
smooth dynamical systems. Lyapunov exponents, z, (i:1,...,n), are defined as the average

exponential rates of divergence or convergence of nearby orbits in the phase plane and can be

considered as the growth rate of the length of each linearized vector over a long period of time

(note that lim can be replaced by lim sup inproving the existence of exponents):

17

1. ,= hml,,, li¿'' ctll.I ì--¡'llax,1r,¡ll (i =1,.'.,n) (2.6)

In (2.6), ll¿t' Aill ana llax, (ro )ll denote the length of the lth principal axis of the infinitesimal

n-dimensional hyperellipsoid at final and initial times, t and, ts, respectively, and the existence of
the lim can be proved using the Oseledet's multiplicative ergodic theorem (Oseledec, 1968).

If certain non-generic cases with non-hyperbolic attractors are ignored, the signs of the

spectrum** of Lyapunov exponents (+, 0, -) can be used to infer the kind of steady-state behavior

(equilibrium point, limit cycle, quasi-periodic, or chaotic) the system will ultimately show

(Bockman, I99I) and determine the stability of quasi-periodic and chaotic behavior as well as

that of equilibrium points and periodic solutions (Parker and Chua, 1989). A stable steady state

associated with an attracting fixed point has negative Lyapunov exponents and a stable periodic

state associated with an attracting periodic orbit has one zero and other negative Lyapunov

exponents. Similarly, a stable quasiperiodic (superposition of periodic) attractor with k
frequencies has Æ zero Lyapunov exponents and the rest are negative (Eckmann and Ruelle,

1985). In a one-dimensional system (Medio and Lines, 2001):

- If the orbit of n0 converges to a stable periodic orbit, Z(xo) < 0.

- If the orbit of xo is an unstable periodic orbit, Z(xo) > 0.

** 
Here, the specrum of Lyapunov exponents refers to the complete set of ¡z Lyapunov exponents associated with an
n-dimensional phase space.
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- If the orbit of xo is not periodic or asymptotically periodic (but bounded) and )"(x) > 0 ,

then the orbit is chaotic.

- If the orbit of .rç0 converges to a quasiperiodic (aperiodic, nonchaotic) orbit, Å.(x) = g .

- If the orbit of xo converges to a periodic orbit that is nonhyperbolic (at bifurcation

Points) )"(xo)=9.

Conversely, it is possible to deduce from the negativity of the Lyapunov exponents that the

ergodiclr measrrell describes a steady or a period state (Eckmann and Ruelle, 1935). For a

continuous-time dynamical system with all non-zero Lyapunov exponents, if all Lyapunov

exponents are negative, the system has an attracting fixed point. For a continuous-time

dynamical system with all but one negative Lyapunov exponents, the system either has a fixed

point or an attracting periodic orbit (when 1f 0 ). In a two-dimensional system:

1- 0 , 1r.10 : the system will have fixed points or an attracting period orbit.

2 r, 0 , 2 z= 0 : the system will have fixed points or a repelling period orbit.

)", and )", both nonvanishing: the system will have ahyperbolic f,rxedpoint. Depending on

thesign of 2, and ).z,the fixedpointcanbeattractingorstable (2,<0,i:1,2),repellingor

unstable (2 ,> 0 , i:I,2), or saddle type (1,< 0 and l r> 0).

In three or more dimensional systems, an orbit with a positive Lyapunov exponent may be

thought of as chaotic or with sensitive dependence on initial conditions provided that the

trajectory is bounded and is not converging to an unstable periodic orbit or other limit set (fixed

point) on which the dynamics is simple (Stuart and Humphries, i998; Nusse and Yorke, 1998).

Chaotic orbits never converge to a stable fixed point or periodic point, but exhibits sustained

instability while remaining forever in a bounded region of the state space. In other words, a

discrete or continuous-time dynamical system is chaotic if its typical orbits are aperiodic,

bounded, and such that nearby orbits separate fast in time (Medio and Lines, 2001). One or

IT If an invariant probability measure may not be decomposable into several different pieces, each of which again
.. invariant, the measure is said to be indecomposable of ergodic.
fl Within the context of Ergodic Theory (whièh says that the time ayera1e equals a space average), the weight with

which the space average has to be taken is an invariant measure, p' , ãrd satisfies the equation

p\f-t@)]= p'(E),/ > 0 where E is the subset of points of R- ana |-tçn¡ is the set obrained by evolving each

t8

of the points in E backwards during time I @ckmarur and Ruelle, 1985),
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another (but not all) of the above properties may be found in nonchaotic systems as well. For
example, a linear system characterized by a unique unstable fixed point will have aperiodic
orbits separating exponentially fast but they will not be bounded. Also, quasi-periodic systems
will have aperiodic, bounded solutions but not separating orbits.

It may be useful to note that the notions of sensitive dependence on initial conditions and
divergence of nearby trajectories are meaningful and useful only for those systems that are
bounded and have attractors defined as a final state space point, curve, area, and so on that a
number of distinct trajectories would eventually approach in state space (Thompson and Stewart,
2002)' To illustrate these issues in a counterexample, imagine a ball perched precariously at the
unstable equilibrium point at the top of a hill surrounded by an infinite plane surface. This
situation displays sensitive dependence on initial conditions since the path that the ball takes
depends sensitively on how it is disturbed and pushed away from the top of the hill. If the hill
and plane are frictionless, then the ball keeps rolling forever, and there are no bounded

trajeciories. If friction is present, then the ball eventually stops rolling at some point determined
by the direction and size of the initial "push". Each final state is associated with a particular
initial condition. There is no attracting region of the state space, which pulls in trajectories from
some finite basin of attraction (Hilborn, 2000). In other words, sensitive dependence on initial
conditions doesnot imply positive Lyapunov exponents (Demir and Kocak,200l).

Expliting the fact that Lyapunov exponents measure the rate of contraction or expansion, they
can be used as a simple criterion to distinguish between conservative and dissipative systems

QGpitaniak, 2000). fo, f ,f,= 0 the volume of a solution in phase space is conserved and in
i=l

this case we have a conservative system. In dissipative systems, the phase is contracted with

| 
^, 

.0, i.e., at least one Lyapunov exponent is negative, the sum of all exponents is negative,
i=1

and witl have an attractor (Wolf et al, 1985). For f 
^, 

,0, the system is expanding and may
t=l

never reach any attractor.

Although the above discussion is mainly based on the previous works on smooth dynamic

systems, recent results of Kuntz (2000) have provided a positive ans\ryeï to the question of

19
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whether Lyapunov exponents can correctly reflect the dynamical behavior of a non-smooth

system such as the pendulum with dry friction. The work serves as a hint that for predictions of
the dynamics, one can "rely" on Lyapunov exponents also in nonsmooth dynamical systems

(Kunrz,2000).

2.4.1 Oseledet's Noncommutative Ergodic Theorem

For smooth dynamical systems, a powerful tool to prove the exisren ce of .tr,: l1l 
thJl3t'Í)]1,

.@ t ll¿',tr,lll
(i =\.-.,n) in (2.6) is given by Oseledet's multiplicative ergotic theorem (Oseledec, 1968):

Let Xbe a measure space with normalized measure p on which a classical dynamical system in

def,rned' For example X could be a Euclidean space, with the dynamical system defined by the

equation

20

d*(r) 
= f(x)

dr
(2.7)

(2.8)

where f(x) is a smooth vector function. Let Tjdenote the state at time r of the dynamical system

which at time 0 was at x. This yields the flow {T']}. The tangent space at x is mapped onto the

tangent space at T'x by the differential (dT'),, the linear part at x of the nonlinear map T, ,

where n0¡) is the matrix corresponding to (dr'),. A function R(r¡) satisfliing the following

relation is called a multiplicative cocycle with respect to the dynamical system {T'}:

R(r+s , x): R(r , T'x) R(s , x)

For example, the fundamental matrix n(r¡) of the system of linear differential equations is a

multiplicative cocycle.

We shall consider only cocycles R for which

_sul, 
h.llR-,'(o,r)ll e tJçx,¡t¡ (2.e)

Multiplicative Ergodic Theorem

If condition (2.9) is satisfied, then for p-almost all x Lyapunov characteristic numbers (or

Lyapunov characteristic exponents) of all orders, Sn(r,eo; R) , defined as



Theoretical Preliminaries

S"(x,ek;nl = ,ftgå ln).(ek ,R (r,x)) (2.10)r+to 
l/l

exist, where 
"o is a subspace generated by an orthogonal set €7,ê2,...,€¡ in R* and

2("0 ,R (r,x)) is the coefficient of expansion in the Æ-dimensional direction ek loseledec, 1968).

Particularly, for a system of linear differential equations

dy

dt
= a(T'x)y

21

(2.t1)

where the measurable matrix function a(x) satisfies

ll"(')ll e Içx,p7 (2.12)

one can prove the regularity and existence of characteristic numbers using Tonelli's theorem

(Oseledec, 1968). In this proof, R(r,x)is, for almost all x, a continuous function of r and is

differentiable for almost all r. However, it is valid even if R(r,x) is piecewise continuous

function of ¡. Further details are available in (Oseledec, 1968).

2.4.2 Calculation of Lyapunov Exponents for Smooth Dynamic Systems

Since, in general, it is almost impossible to determine the Lyapunov exponents of complicated

systems analytically, they often have to be calculated numerically (Kunze, 2000). To calculate

the exponents using discrete QR algorithm, the fiducial trajectory is created by integrating the

nonlinear equations of motion for some post-transient initial conditions. Simultaneously, the

linearized equations of motion are integrated for n different initial conditions defining an

arbitrarily oriented frame of n orthonormal vectors anchored to the fiducial trajectory (Wolf et

al., 1985). This leads to the following set of combined nonlinear and linearized equations (Parker

and Chua, 1989):

[*l I rr*>)
\r,l= \oror,l Q'13)

where ry, is called the state transition matrix of the linearized system òx(t¡:V,ôxo and the

variational equation W, = F(t)V, is a matrix-valued time-varying linear differential equation
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derived by linearization of the nonlinear vectoï field along the trajectory x(t). The Jacobi an F(t)
is defined as

F(t)=Ll
ôx'lr=rçt¡

(2.t4)

where l is the identityand the initial conditions for numerical integration, *. f
t

matrix.

Lyapunov exponents are calculated by following the evolution of the area of the hyperellipsoid

spannedby {äxr,...,ôxn} viaseparatelyfollowingtheevolutions of åx,,òx2,..., õxnusingan

integration method. Note that ôx(t) may be interpreted in two ways (Parker and Chua, 1989): as

an infinitesimal perturbation of the original nonlinear system or as a vector-valued solution of the

lineafized system.

The problem that may occur, however, is that õx,(t) ,ôxr(t), ..., or òx,(t) may tend to align as

t -+æ. This alignment makes the calculations unreliable (Parker and Chua, 1989). To resolve

the problem, õx7,ôx2,..., ðxn are reorthonormalized at each integration step. This is done by

including the Gram-Schmidt Reorthonormalization (GSR) scheme in the calculation procedure.

Gram-Schmidt reorthonormalization generates an orthonormal set {u,,...,u,} of n vectors with

the property that {u,,...,ø,} spaos the same subspace as {ð*,,...,ôx,} for i:7,...,n.

Figure 2.1 shows the geometrical interpretation of the orthonormalization for äxrG) and òxrß)

(lFI,.. .,K and K is the number of integration steps), i.e, their orthogonal ization into uf) and v$)

normalization into uf) a:rñ uf . Tne vector uju) is equal to ärr(n), and the vector uf) is a

normalized version of uf). The facto, (ô*r@,r,n') tr the length of the orthogonal projection of

äxr(k) onto ,ju).Nor*alizationo¡ uf, yietds the orthonormal vector ¡¿f) arñthe area of the

hyperellipsoid spanned by {&rtu',d'rrG)} is

x(/,) ì _ l",l
V,GòJ_ I ' f

vorume {ò*lu),ô*,(-,}= lþf,li llrr-,ii (2.1s)
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n,)
ôxrft) - u{t')

Fig. 2.1 Orthonormalizationoftwo vectors âxrG)and ö*r(u) .

The above approach for calculating Lyapunov exponents for ODEs is not directly applicable to

experimental data as the linear system is not available (Wolf et al. 1985). Experimental data

typically consist of discrete measurements of a single observable. The well-known technique of
phase space reconstruction with delay coordinated makes it possible to obtain an afttractor from

such a time series whose Lyapunov spectrum is identical to that of the original attractor (Wolf et

al. 1985)' Wolf et al. (1985) developed a method for estimation of Lyapunov exponents for such

a reconstructed attractor. The approach involves working in a reconstructed allractor, examining

orbital divergence on length scales that a¡e always as small as possible, ffid using an

approximate GSR procedure in the reconstructed phase space as necessary. For more details,

interested readers are reffered to (Wolf et al., 1985).

2.4.3 DemonstrativeExample

The above procedure of calculating Lyapunov exponents in smooth systems is demonstrated on

the simple three-dimensional Lorenz system with the following dynamic equations (Parker and

Chua, 1989):

=a(xr+xr)
= xr(c - xs) - xz

= xrx, - bx,

(2.16)

where a, b, and c are constants.

From (2.14), the linearized equations of motion are:

ulÐ,,,'(ô*,(u) ,r,

{,,

,i"f I a a Tflw,, Vn V,,f
v,,l=lr-, -l -r,11w.,,, v),, ;,:^l
w,,) I *, xt -u )Lr,, vsz w,,)

lù:
t,:
lVzt

Vn

V,,

V,,

(2.17)
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To start the calculations, let ôx, , õxr, and õx, be three linearly independent vectors anchored to

the fiducial trajectory of the above three dimensional system atx. The initial perturbationvector

is âxo =(öx,,õxr,äxr)and the arbitrary initial states xo=(xto,xzo,x3n)belong to the basin of

attraction of the attractor under study.

Define ôxr(o):=äx, and u,Q):=ax,lllax,ll. Likewise, define ôxrsand urs withrespect to õx2,

and, äxr(o) and ur(o) with respect to dxr. Also, define x(o):-x, and x(u):- ,çxtk-t)¡ for

lFI,.'.,K where y isthe solution of original nonlinear equation x: -f (x). Calculation of the

Lyapunov exponentsZ, (i:1"'3) evolves by step-by-step integrating the variational equation

(2.17)from z,(o) (i : 1...3) with the time-srep of hseconds.

At the f,rrst step:

(2.18)

To find all th¡ee Lyapunov exponents, the set of three linearly independent perturbation vectors

dx, is repeatedly integrated and orthonormalized.

At the Æth step, the perlurbation equations are

[r"rn' := òx(h; ulk-r), r(k-r); 7 y,,çyka)¡u,ß'|)

lu*r'u' := õx(h; urß-') ,xG-r)) i= r¡,,çrçß{)¡ur$t)

Lr"rto' := ôx(h; urß-l) , *{x't)):= ty(xßÐ)rr(u")

and the orthonormalization equations are

24

lU*,"' := ðx(h;u,Q) ,xQ)7:: Vt(xQ))utQ)

7U*r"' := òx(h; ur(o) , *to)¡'= yt,çx@¡urq)

frtrt" '.= õx(h; ur(o) , y(0)7'= t¡t,7x@¡urg)

vÍo) = äxr(u)

Lt,(k) i="f'/llri-'ll
,f) = öxrcì -(u*rn',r,'u')u,'u'
Itr(n) :=rf'lllrf'll
,f) = ö* r(u) -(rrrn', u,n') u,n' - (rrrtn',,rn 

) 
orn

u,$) :="f'/ll"f'll

(2.1e)

(2.20)
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At the ßh stage, the orthonormalization produces three vectors {ur, v z,v 3} and for the K chosen

large enough, the exponents are:

^'" o!rÐ,tll"'-'ll

^,=#Ð,*ll",n'll

^'=]*1''{l"n'll

(2.2r)
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2.4.4 Calculation of I-yapunov Exponents for Systems with Discontinuities

Region2: i=fr(x),x(t,)=x(tn) : tt1t<tz

The variation equation in each smooth region of motion is obtained by linearizing

(2.23) before and after /, :

One of the major requirements in calculation of the variational equation is linearizability of the

original state-space equations. This introduces a major problem in calculation of Lyapunov

exponents for systems with discontinuity. The problem is addressed by Muller (1995) and Kunze

(2000) who have generalized the calculation procedure to systems with discontinuity. The

extension is based on normal linearization of dynamic equations in smooth regions of motion

supplemented by transition conditions at the instant of discontinuities:

Let the vector x:(xt,.i.,xn) denote the states of the original nonlinear system. The nonlinear

system behaves smoothly before (region 1) and after (region 2) the first discontinuity instant, /,.

The equations of motion in each region of motion are as follows:

Regionl : * = .f ,(x) , x(to) = xo ; to 1t<tt (2.22)

(2.23)

(2.22) and

Regionl : õx = Ft(t) ôx , òx(to) - ðxo ) to <t<tt

, tt 1t<tz

(2.24)

(2.2s)Region2 : õi: FzG) ôx , õx(t,) = ôx,

where Fr(t) and FzG) are Jacobians defined as:

F,(r)=#1.=., , r,f,> = !+lox' lr=r(,)
(2.26)
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Muller (1995) and Kunze (2000) proved that, instead of linearizing the nonlinear equations at
discontinuity instant, the variational equations can be evaluated using the indicator function,
h(x) , and the transition function, g(x) , both defined based on the physical behavior of the

system' The indicator function is at least one time continuousiy differentiable function and
determines the instant of the discontinuity. The transition function describes the transition
conditions of system states at each instant of discontinuity. It relates the values of the system
states just after and just before the discontinuity instant and can be defined using the physical
cha¡acterists of each system. The general form of the va¡iational equations of motion at the
instant of discontinuity, /, , is (Muller,l995;Kunze, 2000):

öx* = G,(x-)òx- +le ,6-¡¡,(x_) - ¡rç*.¡l-!ß)9L-- H t@)-f ,(x-)
(2,27)

where H ,(x-) = WI and, G ,(x- ) = +91 are the Jacobians of the indicatorox' lx=x(rr_ ) ôx' lr=r(,,_)

function fu(x) and the transition condition g¡(x), and plus and minus signs denote the values just
after (t,.) and before (tt_) the discontinuity instant, respectivery.

If the system trajectory retums to the original region at the discontinuity instant t:t2, the
transition condition of the linearized equations is:

ôx* = Gr(x_)õx_ +lCrçx_¡¡rç*_ ) - -f ,(*)l H,(x_)ôx_
(2.28)I\4+)J 

H 2(;-)i;(; _)

with the Jacobian matrices H ,andG, similarly derived as H ,and?, .

Equations (2.22-2'28) represent the generalized method of calculating the variational equation
and can be used to calculate the Lyapunov exponents of the systems with discontinuity (Muller,
tees).

2.4.5 Calculation of the Basin of Attraction

The basin of attraction of the system can be numerically determined by adopting the algorithm
developed by Nusse and Yorke (1998). First, the region of interest is divided into a number of
grid boxes where the grid box at the origin of the state-space (also called ,center box,) contains
the stable equilibrium point. Next, the size of neighboring grid boxes are chosen and each

neighboring box is tested for the following conditions: (i) the trajectory, starting from the

26
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neighboring grid box, must enter the center box within a specifrc time perio d Ts; (ii) the
trajectory, once having entered the center box, remains there ever after. If the above two
conditions hold, the neighboring grid box belongs to the same basin of attraction.

2.5 Mickens' Nonstandard DiscretizationTechnique

In order to reduce numerical instabilities while calculating numerical solutions of dynamic

systems, Mickens (2002) introduced a framework for nonstandard finite difference discretization

(NSF^) of nonlinear differential equations which is essentially discrete representation of the

system constructed according to the following rules:

Rule l. The orders of the discretized derivatives should be equal to the orders of the

corresponding derivatives of the differential equations. If the orders of the discretized

derivatives aÍe larger than those of the differential equation, spurious solutions

(convergence to false steady-state) and scheme-dependent (contrived) numerical

instabilities would occtr.

Rule 2. Discrete representations for derivatives must, in general, have nontrivial denominator

functions- For example, the discrete first derivative of the continuous equation

dx

* = f {*) in nonstandard scheme takes the form:

27

dx x(k+t) _ x(k)

dt - - øØî)
where

ø(h, R. ) ='- t:^ o

R

The value of R- is determined as the maximum value of R, :

.¿R* =max{lR, l;i =7,2,..1}

(2.2e)

(2.30)

(2.31)

where R, is defined as

R, = 
dfl

' dxl,-r,,> Q.32)
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and {t(') ;i =I,2,..1} is the set of the system,s fixed points.

Thus' 0 < ø(h,R.) '*| and the function ó canbe interpreted as a .,renormalized,, 
or

"rescaled" time step-size such that its value is never larger than the smallest time scale

of the system T. = I.
R

Rule 3' Noniinear terms should, in general, be replaced by nonlocal discrete representations. For
example, the term x' cart be represented by xT+t) xG) or even 2e@¡z - *(k+t) r(k) .

Rule 4' special conditions that hold for the solutions of the differential equations should also
hold for the solution of the finite difference scheme. For example, for many dynamical
systems a condition of positivity holds for the dependent variable. If the numerical
scheme leads to solutions that can violate this condition, then numerical instabilities will
eliminate any possibility of obtaining meaningful results.

2'6 Convergence of the Computed solutions of Discontinuous
Differential Equations to the Exact solution

Filippov (2001) has shown that in order to perform approximate computations of differential
equations with discontinuous right-hand sides, one can use the well-known approximate Runge-
Kutta (of any order) without entering the arrangements of the lines and surfaces of discontinuity
into the computer program.

Suppose the following conditions are fulfilled:

1) The differentiar equation and the initial condition

28

dx

-=f(t,x), x(to)=xo, (to,xo) e G Q.33)

are defined in the bounded domain G of the space t, x (t e Rr, x € Rn, n> l).The vector_
firnction f is bounded. The domain G consists of a finite number of domains G;,
i:r,2,' ",q iî each of which the function f is continuous, and the sets M of measure zero
are the closures of the sets of discontinuify points.
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Each of the domains G¡ satisfies the condition y from(Filippov, 19gg; sec.6), i.e., for

almost all r the section of the boundary of the domain G¡ by the plane t:const. coincides

with the boundary of the section of the domain G¡ by this plane.

At each point (/, x) e M the vector-function f must assume a value equal to the limit, as

k -+ æ, of the values f(r{t),x(k))with respect to any sequence

(rc),ttl) -> (t,x)consisting of points of discontinuity of the function f (or for (t,x)€M
the value f (t,x) must belong to the least convex set which contains these limits).

In order to compute an approximate solution of (2.33) on the interval brJ, +rrl,we take

a lattice t(') =to+ih,i=7,2,...,N (Nh:t¡), and consequently calculate the values x(¡)

of the approximate solution a the points r¡ with the use of some method so that

x(D -x(i-r) +hfa,f(t*þ,h,rli-r,j)¡ , tu) =¡(i-r) *¡
j=l

where all o¡,þ¡. þ,1], dtr...*do =1, lxti"':l -r,'",1 <cmh. The

d¡,Þ¡,c,kand the technique of finding the points x(i-r,) are determined by

method, m =suplflinG.

Euler's method and the methods of Runge-Kutta of any order satisfy these conditions (Filippov,

200r).

Theorem (Filippov,2001): If the solutionx(/) of problem (2.33) inthe sense of definition 1 in

Section 2.LI fot toltlto+tr exists and is unique (and is also unique on any smaller interval

VoJo+/],/ <tr), then the approximate solution obtained by method (2.34) exists, for a

sufficiently small h, on the same interval and, as h-> 0, converges uniformly to x(r) on this

interval, including the cases where the solution x(Ð has sections of sliding mode, which pass

along the line or surface of discontinuity of the function f.

According to the above theory, an approximate solution is proven to converge to the exact one as

the mesh width of the iattice decreases.

2)

3)

4)

(2.34)

numbers

the chosen



Chapter 3

I)escription of the System [Jnder Study

3.1 Experimental Test Station

The experimental test rig is shown in Fig. 3.1. The hydraulic circuit consists of an actuator

controlled by a Moog D765 high-performance, closed-center nozzle-fl,apper servovalve, mounted

on a reinforced steel table. The power supply is capable of supplying filtered fluid at a maximum

pressure of 3000 psi. The actuator has an annulus area of 0.98 in2 and a 24 in stroke. The

servovalve can flow 8.98 Gallons/min at 3000 psi and has a rise time of 2 ms. It uses a

mechanical feedback spring with a linear variable differential transformer (LVDT) that measures

the position of the spool. The LVDT output (and hence the position of the valve spool) can also

be monitored and recorded. Two Ashcroft transducers with a 0-3000 psi range and a full-scale

accuracy of +0.5o/o relay fluid pressure information at the supply and return ports of the

servovalve. Two Sensotech-FPG transducers with a range of 0-3000 psi and a full-scale acclrracy

of +0.Io/o measure the fluid pressure at the actuator chambers. A rotary encoder with a resolution

of 1024 counts/revolution (linear resolution of 0.0015 ln) establishes the relative position of the

actuator.
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Force Sensor Metal Environment

(.. 'Wooden Environment

Fig. 3.1 Schematic of the experimental test rig.

Aluminum sheet and wooden plate, bolted to an l-beam mounted to the test station base, are used

to represent the environment with different stiffnesses. An S-beam type load cell detects and

measures the contact force befween the actuator and the environment. To further enhance the

point contact between the actuator end-point and the environment, a spherical surface is attached

to the end-point of the actuator. This makes the actual configuration of contact similar to the

Hertz contact model (Timoshenko and Goodier, 1970), which assumes a point contact between

the manipulator tip and the environment surface.

Iï iã ìif Lì ìî í:iri
j i .;: tii i¡1 1;i I .:r

liÌ-"-r:-i-r,:¡j": i <;-l

Power Supply
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The data acquisition system is comprised of a personal computer responsible to control the

servovalve. A DAS-16F inpuloutput board is installed in the PC and is capable of monitoring 16

single-ended analog to digital input channels and supporting 2 channels of digital to analog

outputs. All sensor outputs are directed to the appropriate I/O board with the exception of the

position encoder, which is supported by an independent Metrabyte M5312 quadrature

incremental encoder card.

3.2 MathematicalModels

Complete mathematical modeling of the hydraulic actuator interacting with the non-moving

environment is described below.

3.2.1 Itrydraulic Actuator Dynamic Equations

The system is composed of a double-ended horizontal hydraulic actuator heading towards the

desired position, xo",,bvt coming in contact with a non-moving unexpected environment (Fig.

3.2).The equation of motion of the

mi=A(P,-P")-Fr-F,,,
system is described by the following equation:

where x is the piston position, .Fy is the friction

(3.1)

force, Frn is the environment reaction force,

Free-space motion

Impact transition

t Sus t aine d-contact motìon

32

Xsp

F}

Fig. 3.2 Actuator-environment configuration.
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and Pr and Po are the forward (input) and return (output) chamber pressures. Parameters m and A

are the mass of actuator's moving parts and piston area, respectively.

Assuming that the pressure in each chamber is everywhere the same and does not saturate or

cavitate, fluid velocities in the chambers are small so that minor losses are negligible, internal

(cross-port) and external (tine to case drain) Ieakages are negligible, line phenomena are absent,

and temperature and density are constant, the continuity equations of oil flow through the

cylinder yields (Merritt ,1967):

o =dV,(x) *V,(x) dP,
o,- dt - p ¿t Q.2a)

- eo :4I+ *v"(x) dP'

dr P dt Q'2b)

where 8, md Q" arc forward and retum flows, respectively. For valves with square-edged

matched and symmetric orifice areas, pressure changes with time can be rearranged as (Merritt ,

te67):

o=#(-A*+fi,0**,0 
)

o"=#(^r-f,0,*,, 
)

where the function sign (x,o) is defined as:

sign(x,o> :{*', ll*',l t 

r';r*=oo

(3.3a)

(3.3b)

(3.4)

In equations (3.2) and (3.3), x,, is the spool displacement, P, and P" arc the supply and return

pressures across the valve, p is the effective bulk modulus of the hydraulic fluid, w is the orifice

area gradierrt, p is the hydraulic fluid density, and c¿ is the orifice coeffrcient of discharge that

accounts for the fact that the jet formed from the flow through the orifice is smaller than the

actual orifice due to turbulent flow (Dunnigan et aL, 1996). V¡(x) and Vo(x) arc the volumes of
the fluid trapped at the sides of the actuator which could be expressed as:

V,(x) =V, + Aõx

V"(*):V" - A6x

(3.5)

(3.6)
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where V, andVoaretheinitialfluidvolumestrappedineachsìdeofthepiston and, õx:x-x0
is the piston displacement from its initial position xo .

Although the dynamics between the spool displacement, xro, and the input volta¡ê, il, is best

modeled as a third-order system (Menitt, 1967), experimental and simulation studies have

revealed that the real pole of the two-stage servovalve model dominates the servovalve response

and the higher frequency dynamics of the valve can be ignored for applications operating below

200 Hz and (Alleyne,1996). Thus, the reduced-order model is a first order system with the same

real pole as follows:

. I k',
Xro = --Xro 1-U

LL

where kro and r arc valve gain and time constant, respectively.

Combining equations (3.i) to (3.7) yields the following state-space model for the

system under study:

hydraulic

(3.7)

X:V

-.. _ A(P,- P") Ff F",,

mmm
Þ :i+*|- n" * ^p,o**,,. 1' v, * A6xl . lito***l- z-+ sign(x'o)t- 

) )

þ =:-Ê--( o,- 8".*' Io vo-A6x[ lV'o*'"tT+sign(x'o)["' --,-))
. 1 k.,o

Xro = --Xro l-Ll'TT

(3.8)

In many position (Yao et al., 200I; Hwang and Lan, 1994) and force control (Alleyne and

Hedrick, 1995;Liu and Alleyne, 2000) applications, a simplified model is employed that is based

on assumptions without which the analysis becomes much involved and the results are quite

diffrcult to interpret. The simplified model is derived as follows (Menitt ,1967):

Assume that the piston is centered (xo : ll2) such that the volumes of the fluid trapped at the

sides of the actuator are equal, i.e.

V, =Vo =Vo (3.e)
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Experience has shown that stability problems are more acute when the piston is centered so that

the assumption of equal chamber volumes should be conservative (MerriIl , 196l). Obviously,

the sum of the two volumes is constant and independent of piston position. Therefore,

V, :V,(x) +V"(r) =V, +V" :2Yo

where Z, is the total volume of fluid under compression in both chambers.

(3.10)

Because there is no direct connection between the chambers, a continuous flow through the

cylinder is achieved only if the volume of one chamber steadily increases while the other

chamber volume decreases with piston displacement. This is physically possible because when

the cylinder fills with fluid, the trapped fluid is transported to the other chamber where it

empties. Hence, the time derivatives of (3.5) and (3.6) are given by

dV,(x) , dx dV"(x)

dt dt dt

and represent the steady-state flow to and from the cylinder, respectively.

Defrning 8, =g+ and substituting (3.5), (3.6), and (3.11) into (3.2) yields:UpL2

(3.11)
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Q, + g, t ( av,(x) , v,(x) dP, dv"(x) v"(x) dP"\vt= , =rl dt' B dr- dt - p d,)

=!(ro\*vo +:!õx dP' 
-(o - 

A6x dP-'l=r, 
+!o^d(P' - 

P") ¡ 16: 
d(P' ! p") 

(3.t2)
2[ dt p dt p dt) 2B dt 2p dt

i.e,

o, = Ai * !s- ¡', * A6x d(P' + P")
PL 2p" 2p dt

where Pt, : P, - P, is the load pressure. Let us now examine the last term on the right in (3.13).

This term may be neglected by assuming that I,l,Al<<fro or by differentiating equations

D tÞ P -Pp. -"1-'r and P" =r' --r',whichareassumedtobeapplicable,to show that+*dP,i =0-'2o2dtdt

(Menitt ,1967). Therefore, (3.13) can now be simplified as

o, = Ai*loi,,
-L ^a 

LLp

(3.13)

(3.r4)
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Finally, for ideal critical center valves with matched and symmetrical orifices and rectangular

36

ports where Q, =5x,,
4P

P, - sign(x*)P, , the simplified form pressure-time changes ts:

(3.15)

where the constant C =V,laB is the hydraulic compliance.

Equation (3.15) is the simplified form of equations (3.3) and will be used as the system's

dynamic model at the control design stage to make the Lyapunov stability analysis manageable.

Thus, the model of the hydraulic system during control design stage is:

(3.16)

Note that models (3.8) and (3.16) do not incorporate the dead-zone nonlinearities caused by

possible spool valve overlap. Leakage flow across the actuator's piston is also neglected since it

inherently has stabilizing effect by providing damping for hydraulic resonant mode (Vossoughi

and Donath, 1995). For the double-rod cylinder under investigation, directional nonlinearity is

not an issue and the servovalve saturation nonlinearity can be prevented if the valve is never

allowed to saturate.

Due to its fewer number of system states, the simplified model (3.16) is appealing for control

design using Lyapunov direct method. Numerical stability analysis of the overall contact task

control system using the concept of Lyapunov exponents, however, will be conducted using the

complete state space equations (3.8) which is valid for the system's full-stroke motion.

3.2.2 Friction Model

Tustin's F riction Model

It is well known that the major components of friction are Coulomb force, viscous force,

I

þ, : +l - Ax +fu!,,," cl. Jp

X=V
. AP, Ft' F"",-"v

mmm/
Þ, = +l - A* +2!*,0,CI 

JP
. 1 k,o
Xro=--Xrot-U

'tî

- sign(x,r)P,

_l
- stsn(x,)Pt 

)
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Stribeck effects and position dependent forces (Song et al., 1998). However, experiments carried

out in industrial manipulators have shown that position dependence is relatively weak and can be

neglected for most purposes (Canudas de Wit et al., 1991). Low velocity experiments have also

conf,rrmed Tustin's discontinuous friction model which includes Coulomb/static force, viscous

force, and Stribeck effects. The model is widely used in many general (Canudas de Wit et al.,

1991) as well as hydraulic (Laval et al., 1996) control systems:

F, =Vr+ (Fs - Frle-@"")' lsgn(i) + d* (3.17)

In (3.17), i is the actuator velocity, F. is the Coulomb friction, 4 it the stiction force (the

force needed to start the motion), and d is the viscous friction coefficient. Stribeck effect is

characTerized by e-Gl'")' where v, is a threshold velocity where the downward bend in friction

appears after the stiction (breakaway) force is surmounted. When the system is at rest, the static

friction ( F, sgn(O) ) is opposite to the applied force and can acquire any value in the range of

[-Fr,Fr]. This opposing static friction increases with the increase in the net external force until

it reaches the breakaway force, Fs, where the piston starts to slide and the friction drops due to

Stribeck effect. The function sgn(i) is thus defined as

[sgn(*)={'/ltl} : x+o

lsgn(i). þt,t] : .i = o
(3.18)

Note that sgn(0)::0 is not a right choice since it only implies zero friction during the sticking

phase of motion. A typicat plot of friction force (3.17) with velocity is depicted in Fig. 3.3'

E roo

c.9 zoo
o.E

LL
100

Fig. 3.3 Typical friction force-velocity relation in Tustin's friction model.
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LuGre's Friction Model

The continuous LuGïe friction model (Canudas de Wit et al. 1995) is a recently developed model

and is able to capture stick-slip friction effects at microscopic level, presliding displacements due

to spring-like behavior of surface asperities, frictional lag due to hysteresis, and the varying

break-away force depending on the rate of the external force (Canudas de Wit et al. 1995). The

model is being used in both general (Vedagarbha et al. 1999) and hydraulic (Lischinsky et al.

1999; Owen et al., 2003) applications. By visualizingthe friction between two surfaces as two

bodies that make contact though elastic bristles (Fig. 3.4), the resisting friction force upon

applying the external force is modeled as the deflections of thousands of bristles whose average

is denoted by z(t). Movement will continue to be resisted by bristles until the bond between the

asperities breaks or asperities are sheared.

__t_____>

Fig. 3.4 Friction thought as contact between bristles.

The force required to break the bonds are defined as the static friction,ft. The mathematical

model of the above approach to friction can be described by the following equations:

tv
r<----
I

(3.1e)

(3.20)

where o'o and ot are the bristle-spring and bristle-damping constants. Parameters Fs , Fc, d,

and v" characterize the static, Coulomb, viscous, and Stribeck friction effects, respectively. The

other two parameters øo and ot caî be considered as the stiffness and damping coefficients of

the microscopic deformations of z and can be used to interpret stiction.

The internal state, z, introduced by the LuGre's model is not measurable and the two parameters

oo and ot are hard to estimate. Therefore, friction compensating control design procedures
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using the above friction model utilize friction observers. When the control scheme is available,

however, the continuity of the model is a great advantage in conducting numerical analyses and,

in particular, calculating the system's Lyapunov exponents for stability analysis of the control

system.

Throughout this thesis, the above two friction models, widely used in the literature, are employed

to model actuator friction. The trends of the results of the two models are previously reported to

be similar. LuGre model is continuous and captures a variety of behaviors, such as pre-sliding

displacement, hysteresis effect, stick-slip motion, and varying break-away force. The price paid

for such a versatile model is that it is a six-parameter model. Tustin's model is simpler than

LuGre model as it uses four parameters only. The model, however, is discontinuous and is more

suitable for Lyapunov-based control design as it has less number of states and state dependent

terms. For stability analysis using numerical calculation of Lyapunov exponents, continuity of

the LuGre friction model is a great advantage and the additional state introduced to the dynamic

model by this friction model is also accommodable by this numerical procedure.

3.2.3 Implement-Environmentlnteraction Model

Interaction between an implement and an environment, cornmonly referred to as impact or

contact, is a dynamic phenomenon and is very difflrcult to model realistically. As a result of

implement-environment interactions, a portion of the original kinetic energy is converted into

strain energy within the interacting parts in the form of deformation. Some fraction of the strain

energy is reconverted back into the kinetic energy of the detaching parts, whereas the remainder

of the energy is trapped within the system in the form of exciting various modes of vibration

and/or is dissipated as energy of plastic deformation. Impact is a complex physical phenomenon

which occurs when two or more bodies collide with each other in a very brief duration and

involves development of high force levels, rapid dissipation of energy, and large accelerations

and decelerations (Gilardi and Sharf, 2002). Contact is a more ambiguous term that is frequently

used interchangeably with impact. Here, we use the latter term to describe situations where the

impiement is in touch with a nonmoving environment. Consequently, the sustained-contact phase

of contact task is assumed to be the period when the implement never loses its touch with the

environment until the desired contact force is achieved.
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In general, two different modeling categodes can be distinguished for implement-environment

interactions (impact/contact): rigid modelling (Pagilla and Yu,2001; Brogliato et a1.,7997,

Brogliato and Orhant, 1998; Brogliato, 1999; Tarn et al., 1996; Zheng and Hemami, 1985), and

compliant modelling (Payandeh,1996; V/u and Payandeh, 1999; Niksefat et a1.,2001; Mills,

1990; Vukobratovic et a1.,2001; Kazerooni et al., 1990; Eppinger and Seering, 1987; Gilardi and

Sharf, 2002; Fujita and Hattori, 1980; Hunt and Crossley, 1975). Rigid body models are mostly

used to model the impacts and compliant models are used for both impact and sustained-contact

modeling. Selection of the implement-environment model is particularly crucial for the choice of
the control algorithm. For example, Yousef-Toumi and Gutz (1994) showed that an integral

force feedback helps in stabilizing impacts when the environment is suffrciently rigid, whereas

Volpe and Khosla (1993b) showed that the same control scheme is not suitable for flexible

environments. Aside from clearly rigid environments made of hard materials (stone, iron) and

clearly flexible ones, some other environments might be considered to belong to one class or the

other one depending on the task, masses of the bodies that collide, accuracy of the

measurements, actuators limits, etc. (Brogliato, 1999). The main features of each modeling

category are discussed next.

Rigid body collision is defined as a phenomenon that occurs when the colliding bodies show

"sufficiently small" deformation so that they are geometrically rigid at a global observation scale

(Brogliato, 1999). In this case, collision is modeled as an instantaneous phenomena and the

arising contact force depends on the configuration of the bodies at the instant of impact, their

velocities before impact, and the coefficient of restitution (Lin et al., 1995). Therefore, effects

such as elastic or inelastic deformation of the implement or environment would not be modeled

in the dynamic equations. Rigid modeling allows simplification of the dynamical contactlimpact

problem, but at the same time involves some deep mathematical issues related to existence,

uniqueness and stability analysis of problems with unilateral constraints, or nonsmooth dynamics

(Brogliato, 1999). Furthermore, uncertainties of the rigid body collision coeffrcients, difficulty in

modeling the transition period to and from sustained contact, unrealistic negligence of surface

compliance, and the practical need to consider actual contact forces rather than impulsive

approximations, are among other problems associated with the rigid body modeling approach

(Marhefka and Orin, 1996). Such modeling is also not easily extendible to impacts involving

multiple bodies and multiple contact points (Gilardi and Sharf 2002).
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Compliant models recognize the compliance of the implement and/or environment. Two of the

main compliant approaches are the spring-damper model and the Hertz model. Spring-damper

models have been used in various forms such as single spring, combination of spring-damper or

a complete second-order mass-spring-damper system. The presence of compliance increases the

effectiveness of the controller to maintain contact with the environment at various approach

velocities (Payandeh, 1995) and allows the controller to accomplish fast force regulation at post-

impact stage (Payandeh, 1996). On the other hand, spring-damper models exhibit the following

drawbacks (Gilardi and Sharf, 2002):

" Because of the parallel spring-damper configuration, the contact force at the beginning of

impact is discontinuous;

. As the objects are separating, i.e., the indentation tends to zero, their relative velocity tends

to be negative leading to a negative force holding the objects together;

" It does not accommodate the impact velocity in the model.

Although the spring-damper model is not physically realistic, its simplicity has made it a popular

choice. It provides a reasonable method of capturing the energy dissipation associated with the

normal forces without explicitly considering plastic deformation issues (Gilardi and Sharf,

2002). The model has been fuither improved (Mills and Nguyen,1992) to provide a continuous

contact force at the moments of contact and separation by adding a compliant "skin" to the

original mass-spring-damper model.

The second'approach in compliant modeling of implement-environment interactions is the

nonlinear Hertz contact model. According to this model, the implement and the non-moving

environment are not connected even during the contact period and the contact force develops due

to the local deformations of the implement and the environment surfaces during a finite

measurable time. Consequently, the Hertz contact model is capable of incorporating realistic

bouncings and local elastic deformations in the analysis. The original Hertz model has been

introduced by assuming: (Ð frictionless and point contact, (ii) elastic deformations are

concentrated in the vicinity of the contact arc4 (iii) elastic wave motion is neglected, and (iv) the

total mass of each body moves with the velocity of its mass centre. However, the model can be

augmented to account for plastic deformation (by introducing hysteresis in the contact force law)

or friction (Gilardi and Sharf, 2002). Energy dissipation has also been included in the extensions

4l
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of the model and recent theoretical and experimental studies have confirmed that such extension
is a good representative of the real behavior of the system during both impact and sustained-
contact phases of motion and can offer the highest modeling fidelity for complicated contact
bodies and arbitrary constrained motions (Van Vliet et al., 2002; Marhefka and Orin, 1999;
Gilardi and Sharf, 2002).In this thesis, the Hertz contact model is employed to model impact and
sustained-contact motion between the implement and the environment.

Original Hertz Model

the originalHertz contact moder is expressed as follows (Timoshenko

and Sharf 2002):

(x-xrrr>0)
otherwise Q21)

where Í",u is the position of the environment and, n and H areconstants that depend on material

and geometric properties of the colliding bodies and are determined using elastopiastic theory.
The index ¡¿ is often close to one and depends on the surface geometry of the contact. For sphere

on sphere contact under elastic conditions, z is equal to 312. For contact between perfectly flat
surfaces, at least ideally, the area of the zone of contact doesnot chage during the time of contact
and n:7 (linear) would apply. For parallel cylinders in longitudinal contact along a narro\il zone
on either side of a line, an index z between 1 and 1.5 is expected to to match the conditions fairly
well (Hunt and Crossley,1975).

Fig. 3.5 Implement-environment configuration

For a spherical end-effector pressed into a plane surface (Timoshenko and Goodier, 1970):

(3.22)
48182 Ji
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With reference to Fig. 3.5,

and Goodier, I97 0; Gilardi

F _l ,f*-x",u)' ;,env_l 
o ;

H_
3(¿,(1 -ri)+ n,(t-u')
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where Er,E,D,D?are the Young's modulus and Poisson's ratio of the two colliding bodies, and

r is the radius of implement's contact surface.

Since the above model does not account for the energy dissipation, it is most suitable for force

regulation during the low velocity post-impact period of motion (Gilardi and Sharf, 2002).

Hertz-Type Contact Model

To account for energy dissipations during higher velocity impacts and retain the advantages of

the Hertz model, the extension of the Hertz model has been introduced which is also continuous

and, therefore, complies with the inherently continuous behavior of implements during collisions

(Gilardi and Sharf, 2002; Fujita and Hattori, 1980; Hunt and Crossley, I9l5). According to this

model, the condition of contact/non-contact is defined by both relative displacement and relative

velocity and the contact force is derived from production of the original Hertzian restoring force

and a damping term. For the case of collision between the implement with spherical tip and a flat

environment, the Hertz-fype impact force is (Fujita and Hattori, 1980):

43

(3.23)

where x is the implement's velocity. The term'l+p*'accounts for the energy dissipation

caused by collision where the nonnegative damping parameter p (s/m) denotes the energy loss

that comes from the motion difference in the acceleration and deceleration during collision

(Shoji et al., 1991). The value of p is selected so that the following experimentally obtained

equation applies between the approach velocity at the instant of touching the environment, is,

and the coefficient of restitution, e, (Fujita and Hattori, 1980):

F _Jtr* pi)H(x-x,,,)' ; (x-x"n )0)&(1 +pi>0)
'env- 

[ o ) otherwise

,= t. -lr*tl*o{- e+e)pi:o\pxo ¡ pxo )
(3.24)

Experimental results of the relation between coefficient of restitution and approach velocity of a

typical steel ball collision is depicted in Fig. 3.6 (Fujita and Hattori, 1980).
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Fig.3.6 Typical experimental results of steel balls collision (Takafumi and Hattori, 1980).

According to this figure, the coefficient of restitution for the contacts starting with zero approach

velocity is one which is in agreement with (3.24) regardless of the value ofp. Therefore, for low

velocity interactions, the original Hertz model (3.21) is adequate to model the implement-

environment interactions (p:0) and the more general model (3.23) can be simplified to (3.21).

3.2.4 SystemParameters

The parameters of the mathematical model comprised of equations (3.8), (3.I7), (3.19) and

(3.23) are required for numerical simulations as well as calculation of Lyapunov exponents.

Some of the required parameters can be extracted from the manufacturer's catalogues and the

rest can be measured through parameter identification experiments. The parameter values of the

system shown in Fig. 3.1 are tabulated in Table 3.1 and will be used in Chapter 8 for the overall

system's stability analysis.
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Table 3.1 Test station parameters.

Parameters related to the hydraulic actuator dynamics

m (tb) 26.46 þ (psi) 99930

A (tn2) 0.9812 w (in) 0.8169

p çtbf in31 0.0306 k,r(inlV) 0.001s98

cd 0.6 t (1/s) 0.002

V,,," (in3) r.305908 I (in) 23.89

Fricti on r el at e d par ameter s

Fc(tb) 247.3 Fs(tb) 314.7

oo(lb lin) 57.1 v,(inls) 23.62

or(lb s I in) 0.57r d,or(lb lin) 1.998

Envir onment r el ate d p ar ameter s

e 0.6 n 1.5

H,,,or(lbltnts) 213004 H *""d (lbf ints) 81 901



Chapter 4

Position Control Design for Free-Space

Motion

4.1 Introduction

As detailed in Chapter one, previous studies on position control of hydraulic actuators are either

with no rigorous theoretical analysis (Tafazoli et al., 1998) or with an analysis that neglects the

servovalve dynamics (Lischinsky et al., 1999), neglects the actuator dry friction Q.triksefat et al,

2001), is not extendible to position regulation (Yao et al., 2000), or, requires knowledge of

system parameters for control action (Sohl and Bobrow, 1999). In this chapter, the above

shortcomings are addressed by designing a position regulation control scheme that does not

require the exact knowledge of system parameters. Furthermore, the effects of actuator dry

friction, nonlinear hydraulic functions, and servovalve dynamics are included in the theoretical

analyses by combining equations (3.16), (3.11), and (3.23) as follows Qrlote that F,nu:O at all

times dwing free-space motion):
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m /
¿ =lf -A*+?dw'r: CI o"* 

¡¡r,,
.1k"^

xro = --Xro l3Lt
'¿T

41

(4.1)

where the functionsign and sgn aïe as defined in (3.a) and (3.1g):

sign(x ,") = {' - ll' 'rl ; x ,o + o

t u ; x,o=o

Jsgn(*) ={.llrlì' : *+o
l.sgn(i).þt,tl : .i:0

In the following sections, the analysis starts with first including dry friction effects in the control
system introduced by Niksefat et al. (2001) and rigorously proving the global asymptotic
convergence of the entire system's states towards the system's equilibria. Inclusion of dry
friction in the analysis, however, results in steady-state error in the actuator position. To
eliminate the steady-state position erïors, in the next step, a Lyapunov-based nonlinear friction
compensation technique is designed for the asymptotic position regulation of the hydraulic
actuator in the presence of actuator's dry friction. Using similar state feedbacks and same

number of control gains, the new control system is proven to converge to system equilibria with
no steady-state position error. Due to the discontinuity of the controller, the control system is
nonsmooth. Therefore, existence, continuation and uniqueness of Filippov's solution of the

system are, first, investigated. The extension of Lyapunov stability theory to nonsmooth systems

is then employed to guarantee the global asymptotic convergence of the entire system,s states

towards the equilibria' The major challenge in using Lyapunov's second method is that there is
no constructive rule on constructing a Lyapunov function for any particular nonlinear control
system. Particularly, finding the Lyapunov function for the hydraulic system shown in (a.1)
requires thorough mathematical manipulations and several trial adjustments in both the system,s

control law and Lyapunov function. Inspired by the results reported in Niksefat et al. (2001), the

scalar functions introduced in Chapters 4,5, and 6 of this thesis are derived as a result of
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extensive mathematical efforts in the form of recursive manipulation of the control law and the

Lyapunov function candidates.

4.2 Fosition Control without Friction Compensation

The position control algorithm introduced by Niksefat et al. (2001) is as follows:

u : -(K oP, + K,(x - r o,))r[F; stgn(* ì 4 (4.2)

where K, and K, are positive constant gains. In the presence of only viscous friction (i.e.,

Ft = &), the stability analysis of the system's unique equilibrium point,

êee . (r'" - x¿u,,it" ,Pi ,*',')' = (0,0,0,0)r was conducted by Niksefat et al. (200i) fNote (.)""

denotes the steady-state value of (.)]. Here, dry friction is also included in the model of the

system and the stability of the position control system is revisited.

Defining êt=x-xdes, €z=i:, €3=Pr,and €4=x,p,equations(4.1)and (4.2)arecombinedand

the error-state equations of motion are derived as follows:
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,' - Á " -lF, 
+ (F, - Fr)r-þ,ß)'frgn(rr) + d r,

€z: 
-€l --mm
,( n1,, 

-l

è" = ll - Ae" *2!ro^F, - t¡rnfrò% 
|' CI ' ^lp )

èo = -Leo -l{u ,r, + K,e,

The equilibrium of the system, Êerr ("i',t)',ei,ri)' is obtained by equating the right-hand

side of (4.3) to zero:

rs KoFrsgn(0)_|- KoF, KoF, 1et =- K- A =l- nZ'K-7 l
ei =o

(4.3)

(4.4)

It follows from (4.4) that decreasing K, f K, decreases the band on the steady-state position

error, ei. However, as will be detailed in the stability analysis (Section 4.2.2), KolK, can not

¿j, = 4, sgn(o) 
= [-q q I' A I A'A l

eå'=o

- sign(eo) e,
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be chosen arbitrarily small. Before continuing with stability analysis, note that the discontinuous

friction model and the discontinuous nature of the control law have resulted in a nonsmooth

control system. Filippov's solution concept is used to first investigate the solution of the system.

4.2.1 SolutionAnalysis

With reference to (4.3), the discontinuity surface of the control system is one of the following

three surfaces:

Surface I

Surface 2

Surface 3

Sf :={e:er=0&.eo+0}

Sj := {e : e2 + 0 &, eo = Q¡

Sr2:={e:er=0&,eo=Q¡ (4.s)

The subscript and superscript denote the number of the discontinuity surfaces and their

dimension, respectively. Surface ,Sr'z is the intersection of surfaces ^Sf and Sj. fne conditions

for existence and continuity of the Filippov's solution, such as right-hand sides of (4.3) are

measurable and bounded, are all satisfied. Thus, the existence and continuity of the solutions are

guaranteed. To study the uniqueness of Filippov's solution on the discontinuity surface Sf , the

solution region is divided into two pafs: Ç)* := {",rr> 0} and Ç)- := {e,r, <o}. rne normal to

this surface, Nr, is:

N,=(o 1 o o)'

Following the procedure outlined in Section 2.3.7, we have

tr
frr, =Nr.hr:-2's <0'm

where h1 is defined as h, -f¡ -f, at all points of the discontinuity surface ,Sf and ff and f,+

are defined as the right-hand sides of the dynamic equations (a.3) in the regions f)- and C)* .

Since Z" <0, according to Lemma 7 in Fiiippov (1979), the uniqueness of the Filippov's

solution for equations (4.3) is guaranteed. The solution analysis on ,Sj can be analyzed in the

same manner and is not repeated here. Similar to the analysis presented in Section 4.3.2, the

solution analysis on Sr'z requires extensive mathematical manipulations and is not presented.

(4.6)

(4.7)
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4.2.2 Stability Analysis

With respect to equation (4.3), the smooth positive definite regular function Zis derived as

v = =r.r7'cr r.(+*r,l *3ri*!ri * -1c'wA -ei (4.8)2(KpA-K,C)( C -') 2C-' 2-3 Zk,p"[pC(KoA-K,C)

which is positive as long as (K oA- K,C) > 0 . This condition implies

Ko c
K, A

Note that K 
o lK, can not be equal to CIA as it makes the function Zindefinite, The derivative

of V in the continuous regions is

' = ç*¡:ffi.t,Ë *" 
)'olP' 

- sign(eo)e'
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(4.e)

- sign(eo)e,

(4.10)

Thus, the convex set described in (4.11) contains only

write:

(4.1 1)

as the solution trajectory approaches Sf from both

(4.r2)

(4.r3)

element which is negative and we

cowA
e',

c owA 
-.o2Té¿,

k*C,l p (KrA- K,C)

* 
lr,(ur, -[+ . (F, - F,1e-G,t*")']sgnqr,¡ + d e,). å[- Ae, + 

#, ^ ln=;øOn)

* "'o*A ,;rr(-!r^-\(urrr+K,e,k,rJpC(KoA-K,C) ( î r

=_(F,*(F,-Fr)ri",tÐ')rr"r_Lrl_ ,urA 
o?c t"zt c"2 k,ec,F(K,A- K,c)"0

which is continuous and negative semi-definite. On the discontinuity surface, Sf , we have

Z(e e ,Sf ) e cofVsi- ,Vsi- I

. -3+ . -3-
where V" and Vo' are the limit values of Z

sides:

Vsl. =Lim",-o*V =

vsl- =rim""-o-V =

k,ec^[p (K pA- K,C)

P,
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cdwAZ(eeSf¡=- 2
e, (4.r4)

(4. i 5)

n,oC^[p çX eA- K,C)

Equations (4. 10) and (a.la) show that V is negative and continuous on discontinuity surface Sf .

Similarly the derivatives of the Lyapunov function on Sj and 
^Sr'? 

can be proven to include only

negative or zelo elements. Thus, we conclude that V is negative semi-definite throughout the

solution region including the discontinuity surfaces. Therefore, according to the extended

LaSalle's invariance principle to non-smooth systems (Theorem 2 in Section2.3), every solution

trajectory in f) globally converges to the largest invariant set, M, in the closure of R, which is

the set of all points where V(e) = 0. Next, we prove that the largest invariant set, M, contains

only points that belong to the set e"o = Gi,O,rî,O)r with e,* and ei defined in (a.a). This can

be proven by contradiction. Assuming that M contains a point other than eeq, equation (4.3)

implies e, * 0 and/or èo + 0, which will result in e, + 0 and/or e4 + 0. This contradicts the fact

that M is the largest invariant set in R, Thus, e, and e3 can only have values shown in (4.4) and

it is proven that every solution trajectory in Q will converge to the largest invariant set M

containing only the equilibria. Furthermore, combination of (a.$ and (4.9) yields the following

band for the system's steady-state position error:

,i =[-(i.,)+,(1.)+]
where s is an infinitesimally small positive number.

In summary, for the hydraulic actuator with dry friction, the controller (4.2) brings the system

trajectories to the equilibria described by @$. The system, however, will experience steady-

state position error which would at least be within the range shown in (4.15).

4.2.3 Experimental Verification

Experiments weÍe conducted on the test rig explained in Chapter 3 to demonstrate the theoretical

conclusions drawn in the previous section. The first experiment was to bring the actuator to the

desired position xd", =8 in. The control gains, K, and Kr, were chosen such that
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?=i=h, 
which leads to the smallest steady-state position effor band fsee (4.15)].

Considering the system parameters shown in Table 3.1, the control gains were chosen as

K,:0'7V f psttlztn and' Ko:8x10-6rt lor,t'' to prevent the input signal saturation at the extïeme
measurable limits of motion with the supply pressure of p,:2000 psi. The above values of
control gains and system parameters (Table 3.1) were further inserted into equati on (4.4)which
determined the bands of steady-state position and load pressure errors as ei . þ 0.oz6,o .026l
in and "î . [- 32I,321] psi. Note that the choice of control gains does not affect the bounds of
steady-state load pressure erïor.

Figure 4:1 shows the experimental response of the system. Both steady-state position and load
pressure error bounds are shown as dash- double dotted lines. The plots clearly demonstrate the
convergence of the system trajectory to the equilibria given by (4.4), i.e., both position and load
pressure responses remain within the bounds, while control signal as well as valve spool
displacement both converge to zero.

The second experiment was conducted to observe the performance of the control scheme when
the controi gain ratio, K, I K,, was set to be two times greater than before. Increasing the gain

ratio can be done by either increasing K o or decreasing K, . Dotted lines in Fig. 4.2illustrate the

systemresponsewhen K*:0.05 v f psttlztn anddashedlinesdenotetheresponseof thesystem

with Kr=16x10-6 v f psfl'. As expected, in both cases the system trajectories converge to the

equilibria denoted in @'Q which is consistant with the theoretical analysis proving that in the
presence of dry friction, the control scheme @.2) is capable of bringing the actuator to the
vicinity of the desired position with a predictable steady-state error band. Note that the steady-

state position error band increases with the increase of the rctio K 
o f K, .
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4.3 Friction Compensating Position Control

4.3.1 Control Design

Although the control scheme proposed by Niksefat et al. (2001) is stilt effective for position

control in the presence of dry friction, it is not capable of position regulation with no steady-state

error. Inspired by the study conducted by Southward et al. (1991), in this section, a nonlinear

friction compensation technique is designed that is capable of the asymptotic position regulation

despite actuatot's dry friction. Following the Lyapunov stability theory (detailed in Section

4.3.3) the position control law is proposed as follows:

, = -(x olrrlsígn(x,r) + K,(x - *0,,¡),[F, - ,igrr(*Ð I (4.16)

where Ko and K, arc positive constant gains.

Compared to the controller (4.2), the above control scheme will be proven to be able to eliminate

steady-state position error without requiring additional state feedback or control parameter or

introduction of additional discontinuity surface to the dynamic system. Substituting (4.16) into
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(4.1) and defining the error states as €t=x-xdes, €z=i, €3:pr, and

following enor-space model for the system:

e, =e^tz

è, = 
i r, -lF, 

+ (F, - Fòe-G'tù'fsgn("r) + d e,

mm

èo =-l"o -lt*rle,lsign(eo)+ K.e,

^ss F" sgn(O)
e1"A
ei =0

system can be er, = (0,0,er",0)t where

n*_Fsssn(o).|-_4 4 I" A -L A'A 
I

P, - sign(eo)e,

The equilibrium point for the above system is obtained by equating the right-hand side of (.I7)
to zero: ,s

gl*:o
ei :o

(4.18)

where F, sgn(O) . [- Fr, { ] represents the static friction at the equilibrium point. Depending on

the magnitude and direction of the net force applied to the actuator, the equilibrium point of the

,Sf :={e t€r=Q&.eo+0}

Sj:={e:er*0&.eo=Q¡

,Sr2 := {e : e2 :0 &, eo = g¡

€4 = x,p, yields the

(4.17)

(4.1e)

Hence, despite friction effects, the equilibria of the system are always where the actuator follows

the desired position asymptoticaIIy, i.e., er* = x" - xd,, = 0 .

4.3.2 Solution Analysis

With reference to (4.I7), the discontinuity surface of the system is one of the following three

surfaces:

Surface I

Surface 2

Surface 3

_l
- sign(e)e, 

)

(4.20)
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Existence and continuation of Filippov's solution

Let the region f) = Ra x R and let D be an arbitrary compact set in O. The right-hand sides of
equations (4.17) are defined everywhere in Ç), and are bounded by B(r). Let B(t):L, which is

obviously integrable on D. Furthermore, each term of the right-hand sides of (4.17) is

measurable. Thus, the right-hand sides of equations @.I7) satisfli condition B of the Filippov's

solution theory (Filippov, 1960) and we have the local existence of a solution which is

continuable on lt o,t rJ.

Uniqueness of Filippov's solution

The vector-valued function of the right-hand sides of equations (4.17) is continuous up to the

discontinuity surfaces and the discontinuity surfaces are smooth and independent of time r.
Therefore, conditions A, B and C of Filippov's solution theory (Filippov, lglg) are satisfied.

Next, the analysis of the uniqueness of Filippov's solution must be carried out for each

discontinuity surface. The uniqueness analysis for the surface ^Sf is similar to the analysis

conducted in Section 4.2.1 and is not repeated.

To prove the uniqueness of Filippov's solution on the discontinuity surface ,S;, O. and f)- are

defined as Ç)* := {e: eo > 0} and C)- := {": eo <0} and the normal to this surface, N, , is:

*,:l.g
I det

+t-+Pl'=(ooor),ôr, ôn, ôeo )
(4.2r)

Defining the vector functions f/ and ff as the right-hand sides of the dynamic equations (4.17)

in the regions Ç)* and O-, projection of h, =tï -f, on the normal to the discontinuity

surface, Nr, is

hr, N,.h, =-k*\'l"lUp, -%.Jp,.r, ) by(Jp, -% -,tp, +%) Ø.22)

According to (4.22), when Kolrrlrlx,rrl, hr,.0 and according to Lemma 7 in Filippov

(1979), the uniqueness of the Filippov's solution for equations (4.17) is guaranteed. For

nniqueness analysis when K olrrl.lK,trl , the projections of fr+ and r, abng N, are derived as

ti, = -?(x ol,,l+ K,e,



(4.23)
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r;, = -?Ç x oln,l+ K,e,

sinceKrlerl<lx,erl,{+.zz)impliesrhat ffr, >0 & f;, >0 when e, <0 and fd, <0 & f;, <0

when e, > 0. Therefore, according to Lemma 9 of Filippov (1960), the solution goes through the

discontinuity surface .Sj with an isolated point.

The uniqueness of the Filippov's solution to the nonsmooth dynamic system shown in $.17)
when the discontinuity surface is the intersection surface sf :={e :er=o &.eo =0} is presented

next.

The solution region fJ is divided into four regions described as follows:

Sf :={e:er>0&.eo>0} , Sro :={e:er>0& ,0.0}
,Sro:={e:er<0&.eo>0} , Sno :={e:er<O& ,o <0} Ø.24)

The above regions are bounded by smooth surfaces denoted by ,s,o as follows:

Sf := {e ;€r =Q &.eo >0}, .S;,={e:rr =0 &. ro <0}, Sr, := {e:er > 0 &. eo =0}

Sf :={e:er<O&eo=g} , ,SÍ :={":er=0&.eo=0} Ø.25)
where superscript p is the dimension of the surface and the subscript i is the number of the

swface' With respect to Filippov (1979), we first find the vectors parallel to thep-dimensional

tangent to ,Sl at point e e S/ :

. (',:',) (', -^") (', ',1 14 -,, Ip,'=Il o I ol=11 o I p:=tl 7z I o,:tl 72 
|"-c, I4-%l "-11d,-r,l .':c, 

Iv,-r,l '';=ql¿,_r,l
[¿ )u,* 

-luo 
),,.0 

'['o')"* -['o')u*o

(r, -,,1 f ã, - e,l f d, :,,1 l. __,, I,:=J-l', I Pj=!l ã2 | p..=ll 72 I p,:rl e2 
|^'-c, lvr-erl '"-qldr-rrl "=crlvr-erl ,t'=c, 

lzrlrrl[ ¿ )er, [ ¿ )r1 I ,r' )r,r3 "1" 
,^" )r,rt



(4.26)
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Ptt

-r, I

:, I

o')

,l''
=-['

AF.
-o --lmm

are positive

(4.27)

where ã is on the p-dimensional surface tangential to

denominator constants. Now, we calculate Filippov's differe

l('ll_ilF,':ro|, #"'+ ll "t':-1f- 

?u,'n,.'-,,'r,,u*=)l 
' F| =co

t('ll
ll 4,,-L lFi=coll * o* ll , Fl=*

f[- ? C. e, r K ole,l)lF, 4 ))

0
AF"
-o 

----!Jmm
0

L

-2(K-r, + K,le^l
T"

0Ar"
-€t 

* -':-mm
0

-!t-(x,r, + K,lerl
t

0
L

-þ(K,r, - K,lr,
T

0
AF._ e1 + _-_:_

0
I,

-2(K,rr-K"ln.
1' ''

=COrI

{

,[

It

Fro

ri _t
Frt = t'l

Fr' : ro

0
A -F"
-€tl¿mm

0

-l{uu,+ x,l,,l),f r,4

P, !e.

P, +e,

denotes the closure of the convex hull.wherc co
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To prove the uniqueness of the solution on ,sf , we need to prove that there is right-sided

uniqueness up to the boundary of .Sl and one and only one of sets Ki, = F,, 
^p,- is non_empty

fTheorem 1 in Filippov (1979)]. The right-sided uniqueness of the solution onthe intersection
surface s,'? can be directly proven based on the definition given in Filippov (1g7g).For the initial
value "=(ri' ,0,r'{',0)r,theerror-stateequationbecomesQrlote: e(/)isonthesurface.Sf):

èt :0
A

e, = !' ,''' -
m

èz=0

4 sen(O)

(4.28)

èo = -LoK:":' ,F
T

In general, the righrhand sides of @.28) are non-zero, and therefore, at the subsequent time
instant, e, and/ot e4 are not zero, i.e,, the solution trajectory moves away from sf . rnis means

only one point of the solution trajectory is on Sf and the solution is unique on this discontinuity

surface. If the right-hand sides of (4.2g) remain zero, we have er=€4=0 at all time. The

solution in this case would be e(r) :(0,r,!urgn(0),ol . Therefore, in both cases the Filippov\' r-"')
solution is unique on 

^Sf 
.

'We 
next prove that one and only one of the sets Kï = F,, 

^p,' is non_empty. The proof is

based on the property of a convex set in normal linear spaces, i.e., if two points belong to a
convex set, every point on the segment connecting these two points also belongs to the same

convex set' Note that since all of the first and third elements of the points belonging to Ki arc
zero, the analysis is limited to the two-dimensional investigation of the second element (x) and
the forth elements (y) of each set. For the system studied in this thesis, the emptiness of sets K/ ,

Kl çi:|,..,4) and Kl are proven according the following rules:

1) If the signs of the state variable in the vector of sets F,a arcthe same as those of pf , then

X! isnon-empty. Otherwise, K,a is empty.
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Two vectors in sets {3 represent two points in oxy plane with x and y as axes and o as

the origin. In order to prove that Kl, for example, is non-empty, we need to prove that

the segment connecting two points has an intersection with y and such an intersection is

on the positive x axis fNote: Pf has the form of (4 - er,O,ã, - erdo)? where 4 >0)].

Four vectors in set ,f2 form a simplex in oxy plane. Since Pf is a null set, to prove that

,Kf is non-empty, we should first determine the intersections of the segments connecting

any two points with x and y axes and then find at least two intersections on either x or y

axes which are on two sides of the origin o or on the origin. Otherwise Kl is empty.

The rest of the proof is developed based on the relationship between 
A 

rr , lu , K,e, andmm
K rlrrl. Physically, the stick friction, 4 , ir neveï greater than the net applied force, l¿rrl Thus,

we do not consider cases where llu.l.Fr. The remaining possible cases are:

Case I: lArrl, F, & lx,n,l, K rlrrl

In this 
"ur", 

4rr* & *" of the same sign and so are K,erT K olerl . fne segments connectingmm
any two points in sets F,3 and {2 cannot intersect with either x or y axes. One and only one of

K! çi:I,..,4) is non-empty and all other sets are empty.

Case 2: l¿rrl, F, & lx,t,l= Kolrrl

Again 4rr t& *" of the same sign. Here, one and only one of the sets Kj or K3o is non-mm
empty and the rest of the sets are empty.

Case 3: llrrl: F, & lX,trl, K oltrl

In this case, one and only one of Kf or Kl is a non-empty set and the rest of the sets are empty.

Case 4: I¿rrl= F, & lx,r,l< K rlrrl

By observin1 F,' and Pi, it is seen that all sets Kf and K! (i:7,..,4) are empty and the only

nonempty set is Kf .

2)

3)
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In the above analysis, the properties of sets Kj' were discussed and it was found that one and

only one of the sets Ki is empty in each possible case. Empty Kï means empty Hi' where

Hi is the set of the vectors of Ki at the point on the edge (boundary) of S,l (see Filippov,

1979). Thus, according to Theorem 1 in Filippov (I979),the uniqueness of the solution to (4.17)

is verified when the discontinuity is the intersection of two surfaces Sf and .Sj.

4.3.3 Stability Analysis

Let vbe the following smooth positive definite regular function:

(4.2e)

where ¿ is an arbitrary small positive constant. The derivative of the above function is

, =(+.,,)ffi u o JF; rignç, 0¡ r, * l u,(n", -[+ . (F, - F,¡e-G,Ð,],gnq,, ¡ * a,,))

" 
r. ( c,w ,--------l. r l- 

Ae, + 
#,'J¿ - sisn(eort' 

)

t cowA ,^(-lr^ -9@,le,lsign(e^) + K.e,
U L

^2 u(r, *(F, - Fr¡e-GÞ)'),, e de;--YL \-r -c/- tþrl-;ri

".. 
( AK^, I

- ,Gl, tt l"tol- (e +7)e'eo 
)'11 

- sign(e) e,

According to (4.30), in order to have negative semi-definite V ,the foliowing condition must be

imposed on the control gain ratio:

Ko G+1)c
K,A

Note that since 0 < á << 1, equation (4.31) implies that the lower limit on the control gain ratio,

K r lK, , is Cf A. However, it ca¡not be equal to CIA as it would not provide a negative semi-

difinite Z.

k,oK,.lp c2

cowA

k,oK,^[P c'

- sign(e)e,

(4.30)

(4.31)
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Equation (4'30) denotes that V is continuous and negative semi-definite throughout the solution

region except for the discontinuity surfaces ,ç,', ^S; and .Sf . On the discontinuity surface, ,Sf :

V(e e S,') . colvsi- ,[isi- I (4.32)

where Vsi- and Vti- ate the limit values of V asa solution trajectory approaches 
^Sf from both

sides:

l)rl' :li-uu*o* ¡ - -e 
(p, + (p, - pr)e-G'tù'\Þrl- 

f ,:

(4.33)

Equations (4.33) imply that the convex set described in (4.32) only contains one negative

element. Thus,

v(ees,') = -e(F, 
+(P, - Fò'-@tù'lÞrl-f 

,: (4.34)

Similar proof can be given for the derivatives of the Lyapunov function on Sj and 
^Sl.

Therefore, V is negative semi-definite throughout the solution region including the discontinuity

surfaces. Consequently, according to the extended LaSalle's invariance principle to nonsmooth

systems, every solution trajectory in O globally converges to the largest invariant set, M, as

/ -) co fsee theorem 2 in Section 2.3]. Following the similar contradiction-based analysis

explained in Section 4.2.2, it can be proved that this largest invariant set, M, contains only the

points that belong to the system's equilibria e", =(0,0,e.,",0)t with er,, defined in (4.1g). In other

words, the control system (4.I7) is guaranteed to be capable of completely counteracting friction
effects and achieving asymptotic position regulation with no steady-state error in spite of
actuator dry friction,

It is important to show that although the system equilibria (4.18) was derived from the simplified

state space model (4.1), it is also the equilibria of the more complete model (3.8). Defining the

errorstates ãs er=x-xd"r, €2=x, €3=P,, eo:Poand, €s=xrp,thecontrollaw(4.1 6)andthe

friction model (3.17) are combined with (3.8) resulting in the following erïor state model

(F",' = 0):
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(4.3s)

(4.36)

The system's equilibria are derived by equating the right-hand sides of the system to zero:

ei=o
ei =o

ei -ei
¿j':o

_{sgn(O)_[ F, r, Iqr---- |A L A'Al

Thus, the equilibria of the more complete dynamic model is the same as the one for the

simplified model proven to be convergent.

4.3.4 Experimental Verification

Experiments were conducted on the electrohydraulic actuator explained in Chapter 3 to show

that the proposed control scheme can effectively counteract frictional effects and achieve the

desire position asymptotically. In all experiments, the actuator accelerated from rest to the

desired position xd", = 8 f¡¿ under controller (4.16). The first experiment was performed using the

ratio of the control guin ! =1*¿ which is slightly greater ,n^ | and, rhus, in the srability
K, A - -Q----r o------ --'^^ 

A

region fsee (4.31)]. The control gains for the new sets of tests are chosen the same as the ones

used in the controller (4.2): K":0.7 V f psttlztn and Ko:8x10-6 V f pst t' . These values do not

saturate the actuator at the extreme measurable limits of motion when the supply pressure is

P':2000 psl. Figure 4.3 shows the response of the system. The position ïesponse of the system

demonstrates asymptotic convergence of the system trajectory to the desired position and verifies

the friction compensation capability of the proposed controller in a hydraulic actuator. The small

position error in this figure is observed to be 0.0014 inwlttchis within the resoiution of encoder
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measurements (0.0015 in) and cannot be detected by the controller. Figure 4.3 also conf,rrms that

the steady-state load pressure is within the range denoted in (4.1g), i.e., fzzt,lzt f p*.

In order to observe the performance of the control scheme with control gains that place the ratio

KrlK. greater than the one used, the second set of experiments with the same position

regulation task was setup with K 
o I K, twice as big as before. Increasing the gain ratio can be

done by either decreasing K' or increasing Kr. Figure 4.4 illustrates the system response when Ç
was halved and Fig. 4.5 shows the response when Ko was doubled. It is seen that in both cases,

the proposed control system convergences to the desired position, asymptotically. Figures 4.4

and 4.5 also illustrate that decreasing Ç results in a slower response with larger rise time and

increasing Ko dampens the system response, yet the response is asymptotically converging to the

desired position. Both steady-state pressure errors are in agreement with the expected steady-

state load pressure error from theory, i.e., ei .l-ZZt,lZll psi (see 4.lg).
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Chapter 5

lmpact Control Design for Contact

Transition

5.1 Introduction

Stabilization of manipulators during the transition from free-space motion to constraint motion is

essential in contact task control design and has not been previously addressed for hydraulically

actuated implements colliding with the environment. Nonlinear hydraulic functions, the

nonlinear impact model, and the variable operating conditions in the hydraulically actuated

systems rules out the linear control design methods and necessitates development of high-

performance nonlinear control schemes. Friction is another inevitable problem in hydraulic

actuators degrading the system's performance and making precise control diffrcult to achieve.

This chapter presents the design, theoretical analysis and experimental evaluation of Lyapunov-

based control schemes to regulate the possible impacts of a hydraulic actuator that comes in

contact with a nonmoving environment. The model of the hydraulic system used for control

design is the one shown in (3.16) and is combined with the Tustin's friction model (3.17) and

Hertz-type impact dynamics (3.23) to represent the complete dynamics of the system in the

presence of friction effects and reaction forces arising from a non-moving environment:

68
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(s.1a)

(5.1b)

(s.1c)
(r-xu,,>0)&(1+px>0)

otherwise

- sign(x,)P,

r¡ _ fCr * pi)H(x - x,n,)n ;

'eny- 
| O ;

X=V
. AP, Ff F"",

-,,v

mmm/
P. =lf -A*+cow
"=õ[ 

o** 
¡¡*',

. I k",
Xro : --Xro l-Ll

LL

sign(x,o) = 
{'*/l'"I 

"
fsgn(;ü) ={,llrl\ : i+o
f sgn(x). þi,t] : i=o

F, =V, + (Fs - Fr¡e1*t"l þsn(;) + a;

where

xrr+0
xro:0

The impact control schemes are designed to, upon sensing a nonzero force, position the actuator

at the location where the force was sensed; exerting minimal force on a non-moving

environment. First, a nonlinear control scheme is designed for an ideal hydraulic actuator that

exhibits negligible dry friction. Working with both hard and soft environments and with various

approach velocities, theoretical and experimental results confirm that the proposed controller

could effectively stabilize the actuator during the transition phase. Next, actuator dry friction is

included in the dynamic model of the system and a second Lyapunov-based nonlinear control

scheme is designed for impact suppression. Despite being successful in stabilizing the implement

in the presence of actuator friction, the control scheme is shown to be ineffective in

counteracting dry friction effects and produces steady-state position erïor. Finally, the position

controller designed in Chapter 4 is examined for the purpose of impact control dwing the

transition phase. Therefore, the solution and stability analyses are reproduced towards the new

goal of guaranteed asymptotic impact control (with no steady-state error) of hydraulic actuators

coming in contact with unexpected environments.
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All three control schemes require similar state feedbacks and the same number of control gains.

No knowledge of the impact dynamics, friction effects, servovalve dynamics, or hydraulic

parameters is required for control action. Continuous measurement of contact force or

implement's velocity is also not required during the short period of impact, making the control

schemes desirable for practical purposes. Furthermote, due to the discontinuity of all three

control schemes, the control systems are nonsmooth. Therefore, solution and stability analyses of

the system are studied using Filippov's solution theories (Filippov, 1960, 1979) and the

extension of Lyapunov stability theory to nonsmooth systems (Wu et al., 1998a; Shevitz and

Paden, T994). The control schemes are then experimentally evaluated to verify their practicality

and effectiveness in collisions with hard and soft environments and with various approach

velocities.

5.2 Impact Control Design for Hydraulic Actuators without Dry

F riction

5.2.1 Control Design

Inspired by the previous studies of Brogliato and Orhant (1998) and Tomambe (1999), the

control design starts with employing the following PD-type controller to regulate the contact

transition phase in the presence of possible impacts:

f = -K,(* - xo",) - K"i 6'2)

where/is the control signal aÍrd xo,, is the desired position of the implement.K' and Ku are

positive control gains. Since the control goal is to rest the implement on the surface of the

environment, xd^ is taken as the location of the environment, xrn,, which, in case of an

unknown environment, is the recorded position of the implement when the f,rrst non-zero force is

sensed. Within the context of hydraulic applications, the control signal is provided by the

actuator fotce, APr. Therefore

AP, = -K,(* - X,,,) - K"i (5'3)

Since the system is assumed to have negligible dry friction, the only existing friction force is the

viscous friction (F¡ = dx). Thus, differentiating (5.3) and combining the result with (5.1a) gives

the following relation for spool displacement:
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X,, (5.4)

Due to the fact that the dynamics of the servovalve are much faster than the dynamics of other

system components, it is reasonable to, at least for control design purposes, assume that the spool

displacemerrt, xsp, is proportional to the valve input voltage, z; (Bilodeau and Papadopoulos,

1998) [For stability analysis, however, the full dynamics of the servovalve will be included in the

analysis]:

,= ' ( 'J'\k,o\mAcow )

,=t('Jo)
k*\mAcdw )

- AK,PL + K,K,(x - x"n,) *(-*U, + K"d - *l),

,:t (llo)
k*\mAcdw )

- AK,P, + K,K,(x - x 
",u) 

*(- **, + K,d + -+)( f: ft A - *,,,r)

- AK,PL + K,F,,, *(-*U, + K,d. *+)-

^t¡, - t¡rr<r-n
(5.s)

Furthermore, it is not realistic to assume that the interaction force 4," is measurable and can be

compensated for during the short transition phase (Brogliato and Orhant, 1998). The force sensor

frequency may even show considerable vibrations that deviate the force measurements (Chiu and

Lee, 1996). Therefore, considering the fact that every environment has a certain amount of

stiffness, K,, the interaction force is approximated by its relation to position in the controller

design procedure, i.e, F",, : K,(x - x"nu). This will modiff the control law to:

(5.6)

Furthermore, since the actuator velocity changes very quickly during collision, velocity feedback

in the control law of high stiffness collisions yields to practical drawbacks. To circumvent this

drawback, an important improvement would be to only use measured position in the control

algorithm (Tornambe,1996). Therefore, Equation (5.3) is substituted in (5.6) to eliminate the

velocity feedback:

P, - sigrdx,)P,

P, - sign(x,)P,

The above equation can be rearranged as:

(s.7)
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-KrPr-Kr@-x,,,)
P, - sign(x,o)P,

where K * and K, arc the final controller gains:

u, = +(ffi)?"" * 
[- 

mK. + K,d + -#)+)

K x : +(ffi\[- "' + K,d . -+)?-'"',)

KrP, - Xrl*- x",,lsign(x,o)

JP, - sign(x,r)P,

Following the Lyapunov stability theory discussed in the next section, we need to restrict the

sign of the second term of (5.8) to guarantee the convergence of the control system to its
equilibrium point. The final expression for the control law is, therefore:

(s.8)

(s e)

(5.10)

(s. 1 1)

Note that, in practice, (P, - sign(x,o)Pr) is seldom zero since lf, I is seldom close to P". In the

rare cases that it becomes zero (e.g. due to noise), it will be set to a small positive number to

avoid the problem of dividing by zero [a similar approach as in (Liu and Alleyne, 2000)]. The

existence of pressure feedback in the control law is, in fact, useful for damping out the resonance

of the hydraulic cylinder and achieving a higher bandwidth (Tafazoli et al., 1998).

Substituting (5.10) into (5,i) and defining the effor states as

e: (er,€2,€3,en)' = (x - x"nu,*,P¡,x,o)r yields the following error space equations of motion:

èt=€z
,Ad€z=-€3--e.

mm/
è.:LI-Ae.+" cl "\
. I k,o
€4 = --€q -l:

TT

F,n,
z--

m

!ro^fr-t"dr)r)
^lP )
- Kre, - K,lerlsign(eo)

^lP, - 
trg,(ù%

where F"nu in error space is defined as:

tr :J{t* per)He,n ; (et>o)&(1 +per>o)
- env 

f. O i otherwise
(s.r2)
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The equilibriumpoint of the above system is obtained by equating the righrhand side of (5.11)

to zero: e"o : (0,0,0,0)r .

Before studying the stability of the above nonsmooth system, the f,irst step is the solution

analysis.

5.2.2 Solution Analysis

The discontinuity surface of the system described in (5.1 1) is

,S={.:eo=Q\ (5.13)

The equilibrium point, Eer (0,0,0,0)r, is the point where the actuator position is on the surface

of the environment and the spool displacement, r.r, is on the discontinuity surface. The

discontinuity surface, S, divides the solution domain,Ç), into two regions: f)- :={e:eo <0} and

f)*:= {e:eo>O}. fhe right-hand sides of the equations in (5.11) are defined everywhere in f),
and are measurable and bounded. Therefore, equations (5.11) satisfy condition B of Filippov's

solution theory. Thus, by Theorems 4 and 5 of Filippov (1960), the local existence and continuity

of a solution is established.

Next, weprove the uniqueness of the solution. Since the right-hand sides of equations (5.11) are

continuous before and after the discontinuity surface, and the discontinuity surface, S, is smooth

and independent of time, conditions A, B and C of Filippov's solution theory are satisfied

(Filippov, 1979). Following the procedure introduced in Filippov (1960), the vector functions f +

and f- are defined as:

73

f*=

e2

A d F".,,

-e3--e2- 
ç"'

mmm/_llf c,w I ^-*l-¿rr+i!-eo^lp,-r, I f- =
L\ 

^lP )
k,o .- Kre, - K*lerl
r 

^tP,-%

e2

A d F"",,

-o -mmm
l( c.w .-l
*l - ¿t, +i!!eorlr, + e. | (5.14)
t[ 

^!P )
k,o .- Kre, + K*lerl
r 

^lP'. 
q

For all points on the discontinuity surface, ,S, the vector h is defined as
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h=f+-f--

0

0

0

k,o ( - urr, - K*lrrl - Krrr+K"le,l)

-

r [ ^lP,-", ^tPJ% )
which is along with the normal to the discontinuity surface, N :(0,0,0,1)r. Therefore,

lK rnrl.lK r",l , the scalar , h* , calatlated as

(s.1 s)

t-
r- nrp
lN =-

r

(s. i 6)

is negative and the uniqueness of the Filippov solution is guaranteed (Lemma 7 in (Filippov,

I9l9)). For lK ,erlrlK *rrl , the projections of f + and f - along N are

s+ -k,p -Kpet-K*lrrl_-:
T .JP, _ E,

-Krer+Krlerl
(s.17)

Jn+%

The above equation implies that the signs of both f$ and f[ only depend on the sign of - Kpe,

and are always the same. Thus, it follows from Lemma 9 of Filippov (1960) that the system has a

unique solution.

5.2.3 Stability Analysis

To study the stability of the system shown in (5.11), in this section, we invoke to the extended

LaSalle's invariance principle to nonsmooth systems (Theorem 2 in Section2.3) and guarantee

the convergence of the solutions trajectories to the system's equilibrium point.

Let V be the following piecewise-defined regular function (lrtrote that regular functions include

smooth functions and functions which can be written as the pointwise maximum of a set of
smooth f,rnctions):

l ^r,C z rcrwP, 2

l tr- +-ez'* ---:-------:-e^- ; (ee',)

':) 
- m' 

^lPk'oK'm-' lqn n+t z C t TC,wP.
I -e, 

- *€z- +" e"' +-)J!-ll-:-s^2 ; (ee flr)
15*t 

¿ m' 
"lpk,oKrm

(s. 1 8)
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where f)r = {e: ¿r < 0} and e)2 : {e: e, > 0 } are the subsets of Ç) representing noncontact and

contact regions of motion, respectively. Although (5.I2) shows that transition between

noncontactandcontactregionsof motiondependsonthetwoconditionson e, and (l+per),
the condition on (I + p e, ) does not really contribute to the judgment of non-contact to contact

state change and the state changes are judged by only the sign of displacement state enor (Shoji

et al., i991). This is due to the fact that the coeff,icient of restitution is always positive and

according to (3.24), for any positive approach velocity, p is normally a positive small value.

Thus, when F",, changes from a zeto to a nonzero value due to an impact occurrence, the

condition (1+ p e, > 0) is always satisf,red. Conversely, the only case where the condition

(l+ pe, > 0) can be lost while (e, > 0) is when the control force is larger relative to the impact

force and is applied to the direction of the environment reaction force. This case is also not likely

to happen in rigid collisions with fast approach velocity and is excluded from the Lyapunov

stability analysis (It can, however, be included in the overall system's stability analysis using the

concept of Lyapunov exponents). Therefore, f), and f), represent the noncontact and contact

regions of motion and the function v in (5.i 8) is a continuous function.

Differentiating (5 . I 8) with respect ro time and substituting (5 . 1 l ) into it, yields:

2d , 2c,w
-t --:,-e re om mlp

1^
P;trgrf,ù% -{(rrro

m^!P

P,

P, - sigrde)e,
- 

2cawP, 
,oz

m''lP k,rK,

V_

_ 2crwKrP,

*^lþ k,rK,
lerleosigrdeo)

2pH n+t z 2d ., 2crw
--el eZ --€Z i 

-:€3€om m m^lp

; (eeO,)

2cowP, - 2
vt

m,,f p k*K,

P, - sigr{e)e,

P, - sigfle)e,

2cow
--€.ê,t)+

mlP

Knowing that the load pressure is never greater than the

the contact region (Qr), V is continuous and negative

2cowK*P, lerleosigrdeo)
(e e Or)

(5.1e)

supply pressure (lrrl. P") and e, > 0 in

semi-definite throughout the solution

P, - sigrde)e,
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region except for the discontinuity surface, S. On the discontinuity surface, S, we have:

vçe e S) e colVs. ,Vt- I (s.zO)

where Vs. and Vt'are the limit values of V as a solution trajectory approaches S from both

sides:

/o

l-?!,,' ; (eeo,)
Zs.=lim ,V=) Y-,e,+o*' I 2pH n 2 Zd

l-'et ez --ez2 ; (e e er)
lmm
(z¿,

zs- = rim ù )-;:; 
(e e Q')

' --^^-e,+o_ . 
l_rrU ,r,rr, _2d ,r, ; (e e f)r)lmm

Equations (5.2I) imply that the convex set described in (5.20) only contains one

element. Thus, on the discontinuity surface, we have

lzd 2

. l- ez' ; (eeO,)
v(ees)=i 

_fou -,^, 2d ^,€r' -----¿r' ' (e e Qr)
lmm

(s.21a)

(s.21b)

negative

(s.22)

Based on the above analysis, we can conclude that V is negative semi-definite in the entire

contact and noncontact regions of motion as well as on the discontinuity surface, S. Therefore,

according to the extended LaSalle's invariance principle to nonsmooth systems (Theorem 2 in

Section 2.3), every solution trajectory in f) converges to the largest invariant set, M, as r -+ co.

This largest invariant set, M, is further proven to contain only the equilibrium point,

e,o =(0,0,0,0)r. This can be proven by contradiction: Let R be the set of all points within the

solution region f) whereV =0. According to (5.19), V =0 requires that for all the points in R,

€z =0 and eo:0. Thus, both e, and eo ate zero. Let M be the largest invariant set in R and

contain apointwhere at least one of the error states, et or % is not zero. The second and forth

equationsof (5.11)implythatif anyof etor % isnotzero,theneither er+0 andlor èo*0.

This necessitates the solution trajectory to immediately move out of the set R and certainly out of
set M, which contradicts the initial assumption that M is the largest invariant set in R. Thus, we

can conclude that both e, = 0 and €s = 0 and the largest invariant set M can only contains the



Conlrol Design for Contact Transition

equilibrium point e"o : (0,0,0,0)r , i.e., every solution trajectory in O will only converge to the

equilibrium poirrt eeq = (0,0,0,0)r .

5.3 Impact control Design for Actu ator with Dry Friction

Despite being successful in stabilizing the impacts and resting the implement on the surface of
the environment, the theoretical analysis provided in the previous section remains questionable

in the presence of actuator dry friction. In this section, a Lyapunov-based controller is developed

for impact control in the presence of actuator's dry friction.

5.3.1 Control Design

The feedback control scheme is designed based on the Lyapunov direct method (detailed in

Section 5.3.3):

K oPrP, + K,(x - x,,,)(P, - sign(x,r) Pr)
(s.23)

P, - sign(x*) P,

where Ko and K, are positive constant gains and sign(x,r)is as def,rned in (3.4). Note that in

practice, ( P" - sign (x,o)P, ) is seldom zero and in the rare cases that it becomes zero (e.g., due to

any noise), it will be set to a small positive number to avoid the problem of large control output

(Liu and Alleyne, 2000).

With respect to (5.23), the new control law has the following characteristics:

ù It does not require the interaction force or actuator velocity as feedback;

iÐ Measurements of the actuator position, hydraulic line pressures, supply pressure and the

knowledge about the direction of the valve spool displacement are the only required

parameters for the control scheme;

iiÙ No knowledge of the environmental characteristics or actuator friction is required for the

control action.

Defining the error states e=(e,e2,€3,e0)' =(x-x",,,i,P,x,0)r and combining (5.23) with

(5.1) constitutes the error state equations of motion:
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m
.A
€" = --¿^t cz
- eÀ

o :---L-

t

+!{,rr;æn 
m

9tP
k,o(i<'oP,r, + K,er(P" - sign(eo ) ,, ))

where F"nu is defined as:

tr =J{r*per)Her' ; (et>o)&(1 +per>o)
-env 

I o ; otherwise

where

; ln@i')' ; ¿i>o
It :¿'env 

I o ; e,*<o

(s.24)

(s.2s)

(s.26)

(s.2t)

The equilibrium point of the above system is obtained by equating its right-hand side to zero:

lnî =ot-
) 

U ni - Fs sgn(O) - F",, =0

leì'=o
[""ri+K,ei=Q

:+

rs Ko F,sgn(0)*F",,
tKrA

ei =0

,.* :$jgr(o)jä'A
eì'=o

The term 4 rgn (0) . [- F, , F, ] represents the static friction at the equilibrium point. Therefore,

depending upon the magnitude and direction of the net external force, the equilibrium point of

the system could be every point e,o = (ei,0,ei,0)r with

(s.28)

From (5.26),if theactuatorstopswithnooontactwiththeenvironment, e'r'<0 and F",u=0.

t K"F- I t F. l
Thus, ri = 

L- Ë;O) 
uñ ef . 

Lo, 
j-1. Consequently, decreasing K o/K, would result in
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a decrease in the bounds on ei' values. On the other hand, if the actuator remains at rest while in

contact with the environment, ¿i" > 0 and F",, = H (e'r')'. Substituting these equations in (5.26)

yields:

79

K, -,, H (ei')'-\"'- A 
: ,Ç sen(O)

(5.2e)

Inspecting (5.29), it can be shown that the bound on ei values is related to Kof K,.For

example, for n:I or n:2, the ranges of ei" in the contact region are:

N:I:

n:2: AK,fKp (s.30)

n the actuatorIt is observed that decreasing K r lK, would reduce the bound on

is in contact with environment.

The above discussion concludes that choosing a small KolK, can effectively counteract

frictional effects (by reducing the band of steady-state position error) and locate the actuator end-

effector in a close vicinity of the surface of the environment. However, as will be seen next,

restrictions imposed by Lyapunov stability analysis prevents choosing the ratio arbitrarily small.

It may also be useful to note that in the absence of actuator dry friction, the equilibrium point of

the system would bê the unique point e"o =(0,0,0,0)r, i.e., the equilibrium point would be

exactly on the surface of the environment.

Due to the discontinuity of the friction model, i.e., the'sgn' firnction in (5.1b) and the control

law, i.e., ' sign' Íìmction in (5.23), the resulting system described by (5.2$ is nonsmooth. In the

next section, we outline the proof of the existence, uniqueness and continuation of Filippov's

solution for such a nonsmooth system.

5.3.2 Solution Analysis

With respectto (5.24), the control system under study has the following discontinuity surfaces:

n:'.[0. 4 
']

cì =1"'tt i,lx,¡xr)

_ AK,I
", )l

r ei values whe

Surface I Sf :={e:er=0&.eo+0}
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Surface 2

Surface 3

Sj:={e'.ez+0&,eo=g¡

Sr2:={e'.€z=0&.eo=gy (s.31)

where the superscripts and subscripts denote the dimension and the number of the discontinuity

surfaces, respectively. The surface Sr'z is the intersection of surfaces ^Si and .Sj .

Existence and continuation of Filippov's solution

Let region Ç): ,Ra x R and let D be an arbitrary compact set in Q. The right-hand sides of

equations (5.24) are defined everywhere in f), and are bounded by B(t).Let B(t)=L, which is

obviously integrable on D. Furthermore, each term of the right-hand sides of (5.24) is

measurable. Thus, the right-hand sides of equations (5.2Q satisfu condition B of Filippov's

solution theory (Filippov, 1960) and we have the local existence of a solution which is

continuous onlto,trl.

Uniqueness of Filippov's solution

The vector-valued function of the right-hand sides of equations (5.24) is continuous up to the

discontinuity surfaces and the discontinuity surfaces are smooth and independent of time r.

Therefore, conditions A, B and C of Filippov's solution theory (Filippov, 1979) are satisf,ied. The

discontinuity surface Si divides the solution region into two parts: Ç)* := {e: e, > 0} and

Ç)- := {e,r, <O}. fne normal to this surface, N,, is:

*,={+++S}=loroo}'' lôt, ô", ôe, ôeo ) 
t

Similar to the analysis in Section 4.2.I, is can be shown that

F
ftr, = N, ,ht = -2:-t- <0

where h, = fr* - f, at all points of the discontinuity surface Sf and ff and f,+ are defined as

the right-hand sides of the dynamic equations (5.24) in the regions Q- and Ç)*. Thus, the

uniqueness of the Filippov's solution for ,Sf is guaranteed (Lemma 7 in (Filippov, 1979)). The

uniqueness analysis for ,Sj can be done in a similar way. The uniqueness analayis for the

(s.32)

(5.3 3)
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intersection surface Sr2 can be conducted following a similar procedure as in Sectio n 4.3.2 and is

not detailed.

5.3.3 StabilityAnalysis

To study the system stability, two smooth positive regular functions are constructed for contact

and noncontact phases of motion. Each function guarantees the convergence of the system

trajectories to the system's largest invariant set, proven to contain only the points belonging to its

equilibria' Combination of both functions results in a continuous composite regular function for

the overall system.

Noncontact Region: In the noncontact region of motion, the following regular function Z, is
defined:

v _ Koc' (Ar, lt 1 -*c or_ tcowA 
^z

" 
= 2*(KJ - K-c) [Ë*"' j * r'; * *'; *ffi'î

which is positive definite under the following condition:

Ko C

K, A

The derivative of Z, is

tr cowA

-

k*.1 p m(K rA- K,C)

(s.34)

(s.35)

which is continuous and negative semi-definite throughout the noncontact region.

ContactRegion: Inthecontactregionwhere (r,>0) and (1 -tpez>O),thefollowingpositive

def,rnite regular function is introduced [Note tnat 2t 9l'
K, A'

K,c2 ( 'qe, l' 1v"==-#l -.r+e. l+-e:*9-n?* rcowA er.+ H 
n!*,' 2m(KoA-K,C)\ C ') 2 ' 2m-' z*k*Jp(Xr¿_K,C)-o ' (r+l)m"l

Differentiating the above fi.rnction yields:

(s.37)
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ù, =- (,r.
cowA

k,o"lþ m(K rA - K,C)

k,oKoelleol

(5.3 8)

which is continuous and negative semi-definite in the contact region.

Combination of (5,34) and (5.37) constructs the overall composite regular function, Z

lV : noncontact
V :1 " (5.39)

lV" ; contact

Following similar discussion outlined in Section 5.2.3 (and under similar assumption of e, = Q a¡

all contacts and separations), the above composite function Z is continuous throughout the

solution region. The derivative of Z is determined from V, and. lt, that were shown to be

continuous and negative semi-definite throughout the solution region except for the discontinuity

surfaces [see (5.36) and (5.38)]. On the discontinuity surface, ,Sf :

V(eeS,'). co¡Vsi. ,lisl- I (5.40)

where Vsi. and. Vsi- are the limit values of V as a solution trajectory approaches Sf from both

sides:

f_ (o. + t4 - q)e-tq¡"r') t. t _d .z
vsl. :ßmv:) ct l"2l c"' \Y : 

:11'í. 
: 
I _4r¿ui _V, + (F, - F)n+",tù' \VS_Lr:
I * C t¿t C ¿

| -(F, 
* @, - ròra"t'")' \ 

ru ^r - I- u?

vsl- :lllmv =) Ç t ¿t 9 ..,

l*Ct"ztc"'

; noncontact
(s.41)

; contact

: noncontact
(s.42)

; contact

Equations (5.41) and (5.a1imply that the convex set described by (5.a0) only contains negative

elements and we have

z(ee^sf ) :-r[-ou ulri -(F, 
*(F, - !r)'1"'tù')þ)-*ui,-(r, *@, -:r)¿,'r' ì2\ I

L m-ur', -r t'zt-¿ 2-+Þrl-i':l
(s.43)
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Similar approach can be used to derive the derivative of V on Sl and Sr'z and we can now

conclude that V is negative semi-definite in the entire contact and noncontact regions of motion

as well as on the discontinuity surfaces. Thus, it follows from the extended LaSalle's invariance

principle for nonsmooth systems fTheorem 2 in Section2.3l that every solution trajectory in f)
converges to the largest invariant set, M, as I -) "o. Using similar contradiction method as in

Section 4.2.2, it can further be proven that this largest invariant set, M, contains only the

equilibria. This concludes proving that, subject to the condition KolK,>ClA, the control

system (5.24) is guaranteed to converge to the system's equilibria.

Remarks

l) According to (5.28) and (5.30), in order to decrease the steady-state position error, KolK,

must be kept as small as possible. Therefore, the smallest possible range of the system's

steady-state position error in the presence of dry friction is imposed by (5.35) and would be

when K r lK, = ClA. By knowing an estimate of the hydraulic compliance , C, andthe piston

area, A, (and not the exact values) one could decide on control gains that would produce

smallest position error bounds without jeopardizing the stability.

il) When the actuator has negligible dry friction, the only discontinuity surface ,S = {":eo : g} It

due to the controller discontinuity and the system has the unique equilibrium point

e"o = (0,0,0,0)t . lo this case, (5.39) would be the system's positive-definite Lyapunov

function with the derivative:

cowA

V_
k*J p*(KpA-K,q

noncontact

contact
k,r^lþm(KoA-K,q

which is negative and semi-definite. A similar analysis to what explained above proves that V

is also negative on discontinuity surface S. Therefore, based on the theorem 3 in Section2.3,

the equilibrium point of the system is asymptotically stable subject to the condition (5.35).

(s.44)
cowA
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5.3.4 Experimental Verification

Experiments were conducted on the electrohydraulic test rig explained in Section 3.1 to

demonstrate the theoretical results in practice. In all experiments, the actuator accelerated from

free space given a step input control signal and struck the environment. When the force

transducer senses a nonzero force, its corresponding position measured by the encoder is taken as

the position of the environment surface. Control is then switched to the control law (5.23) with

the goal of stabilizing the actuator on the surface of the environment.

The first set of experiments was performed to study the behavior of the controller in collisions

with hard or soft non-moving environments, resembled by metal sheet and wooden plate,

respectively. The second set of experiments was to observe the performance of the controller at

low or high approach velocities.

Supply pressure of P":2960 psl was used in each experiment and the sampling time of the

system was *2ms. Knowing the parameters of the system from Table 3.1, the control gains were

chosen as K,:1.3 f f n^[pu and Ko:7.4x10-s Vllltf which satisfied (5.35). Given the

approximate theoretical values of H:3.32x106 bf lt^[i"' for aluminum sheet and

l/:0.84x10u ru¡ f 
t¡7 for the wooden plate, the steady-state position and load pressure erïors

were theoretically calculated to be within the range of ei.f :.S*tO-',L45x10-t) rn

,î . [- ß5325f psi for the metal sheet, and ,i = [-3.5x10-3 ,2.4x10-3] ,"

rî . [- 223325f psi for the wooded plate (see (5.28)-(5.30) for calculation of the bounds).

Figures 5.1 and 5.3 show the responses when the actuator hits the two types of environments

with low (3.0 irls) and high (8.5 irls) approach velocities. These results clearly demonstrate that

the proposed controller is capable of stabilizing the actuator in the vicinity close to the surface of

the environment regardless of the stiffness of the environment and the magnitude of the approach

velocity. The close-up responses of the states during the steady-state period are shown in Figs.

5.2 arñ 5.4 and illustrate the small steady-state errors in actuator position with respect to the

exact wooden (W) and metallic (M) environment locations. When the actuator settles in free

space ( e,* < 0 ), the corresponding steady-state load pressure error is positive ( ei > 0 ), and vice

versa. These observations are in-line with, and validate the theoretical derivations and show that

84
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and
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the bounds on the steady-state errors are limited to those derived above analytically. Fig. 5.5

shows the frequency profile of the spool displacement for the high velocity impact with the

wooden plate calculated from the experimental data. It validates the previous modeling

assumption in Chapter 3 that the dominant frequencies are well below the 200 Hz threshold

needed for the first-order approximation of servovalve dynamics (Alleyne, 1996).

50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

F'ig. 5.5 Frequency profile of control signal.

89

(¡)õ
.E O.B

E-
E

å 06
G)

.N
$E 0.4
L
oz

0.2



Impact Control Design for Contact Transition

5.4 Friction Compensating Impact Control

5.4.1 Description of the Control System

Despite being successful in stabilizing the implement in the presence of actuator friction, the

control scheme developed in Section 5.3 did not counteract actuator's dry friction and ended up

with steady-state position error. As a remedy, in the present section, the solution and stability

analyses of the friction compensating position control scheme introduced in Section 4.3 is

examined towards the new goal of guaranteed asymptotic impact control with no position steady-

state error. Substituting the desired position, xdes, with the environment location,x"," (recorded

on the onset of the first impact), the controller (4.16) is re-stated as follows:

u : -(K olPrlsign(x ,o) + K ,(x - * 
",,ù,tp= tU"fUn (s.4s)

where Ko and K, are positive constant gains. Although this controller was initially designed for

position control, it enjoys all the positive features that are appropriate for impact control and

explained in Section 5.3.1.

Defining the error states e=(er2€21€3,e0)' =(x-x"nu,ic,P,x,r)r and substituting (5.45) into

(5.1) constitutes the error space equations of motion:

èt:€z , \

, --1. _(F, + (F, - Fr)r-6tù')ssn(rr)+ de, _Fu,,e2 --e3mmm
.Ac,w
è^ =-!€, ¡-3)eo.tp, -tArttò|, c , C^lp

(s.46)

where

(

D _J(t*per)He,n ;
renv- l -l0',

(e, > 0) & (1+ pez > 0)

otherwise
(s.47)

The equitibrium of the above system, e"o = (e'l ,eî ,ei ,rî)' , is obtained by equating the right-

hand side of $.a\ to zero:

- sigrde)e,
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-0
-0
_ F, sgn(O)

A
-0

(s.48)

(s.4e)

(5.50)

Equation (5.48) implies that, subject to proving the system's stability (which would be the

subject of next sections), the equilibria of the system with dry friction is where the implement is

exactly on the surface of the environment (with no steady-state error). In the absence of actuator

dry friction, the system equilibria would change into the unique equilibrium point

e"n : (0,0,0,0)?.

Due to the discontinuities caused by the control law and the employed model of friction, the

existence, uniqueness and continuation of Filippov's solution for the nonsmooth system

described by (5.a6) should first be investigated.

5.4.2 Solution Analysis

The discontinuity surfaces of the system (5.46) are the following three surfaces:

Sf :={e'.êz=0&.eo+0}

,Sj := {e '. e2 + 0 &- eo = g¡

Sr2:={e'.€z=0&,eo=g¡

The conditions for existence and continuity of the Filippov's solution, such as right-hand sides of

(5.46) be measurable and bounded, are all satisfied. Those equations also satisfi condition B of

the Filippov's solution theory (Filippov, 1960) and we have the local existence of a solution

which is continuable on [ro, /r J .

To study the uniqueness of Filippov's solution for the first discontinuity surface, Sf , the solution

region is divided into Ç)* p{e:e., > 0} and Ç)- := {"rr, <O}. fne normal to this surface, N,, is:

Surface I

Surface 2

Surface 3

*,=lg
I det

ggSl'=(oroo)'
ôr, õe, ôen )
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Defining the vector functions f1 and f, as the limiting values of the right-hand sides of (5.46)

in C)* and O- as the solution trajectory approaches ,Sr3, the projection of

f.ol
l-r&lh,:fr*-fi = I ^* f on N, forallpointsonthediscontinuitysurface sl ("r=0)is:l0rr^ll0 )

Få",:N,.hr=-21L<0 (5.51)

Therefore, according to Lemma 7 of Filippov (1960), the uniqueness of the Filippov's solution

for ^Sf is guaranteed.

To prove the uniqueness of Filippov's solution onthe discontinuity surface ,Sj, ç). and f)- are

defined as f)* :={e:eo >0} and Ç)-:= {"tro.O}. nefining fr. and ff as the right-hand sides

of the dynamic equations (5.46) in the regions Ç)" and f)-, the projections of fj and ff along

N, are:

,i, = -+(x olr,l+ K.e,

r;, = -?( x,l,,l+ K,e,\t¡, u
Also, for all the points on the discontinuity surface S] (ro

on N^ =(ut; as; as: asi l' _,
' [ ôr, ô,i Ë ;*) 

: (o'o'o'1)'' is obtained as

h,, N, .h, - -k,,\|"1 u1 -% +.,1F, a)-byur, -% - ^tr*4)

(s.s2)

= 0 ), the projection of h, = f{ -f;

(5.s3)

According to (5.53), when K olrrlrlK,rrl, hr, .0 and Lemma 7 in Filippov (r979),guarantees

the uniqueness of the Filippov's solution for .sj. when Koltrl.lK,trl, {s.sz) can be used ro

showthat f,{, >0 & fñ, t0 when er10 and fj, <0 & f*,.0 when ert}. Therefore, in

this case Lemma 9 of Filippov (1960) guaranteed that the solution goes through the discontinuity

surface Sj with an isolated point.
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The solution analysis on the Sf 1i.e., the intersection of the surfaces Sf and Sj) requires a

similar mathematical machinery as in Section 4.3.2 and,is ommited from the analysis.

5.4.3 StabilityAnalysis

For position regulation task in free-space motion, stability of the hydraulic system under control

scheme (5.45) was discussed in Section 4 without including any environmental reaction force in
the analyses. In impact control application, however, the system interacts with an environment

and system stability should be revisited considering the effects of environment impacts. In this

section, two positive smooth regular functions are constructed for contact and noncontact phases

of motion, each guaranteeing the convergence of the system trajectories to the system's largest

invariant set that only contains the points belonging to system's equilibria.

Noncontøct Region: In the noncontact region, F"nu = 0 and the following positive definite

smooth regular function Vn is defrned ( a is an arbitrary small positive constant 0 < a << 1):

," = +(+ *,,) * # "i * ;,: . ffifu;"t
The derivative of V,withrespect to time is

v, = _:4_, _t (F, +(F, - F,)e4%t\)' ) 
ÞS_! e 

ffi(æþ,e 
ol_ @ +t) e,e o

,"=:(+*,,) *#,:*!,?*
zk,pK,J pCz

(s.5s)

With respect to (5.55), lr is continuous and negative semi-definite throughout the noncontact

region of motion subject to the following condition imposed on the selected control gain ratio:

K, , (t+t)C
IL' A

i.e., the lower limit on the control gain ratio, K o lK, ,is Cf A.

Contøct Region: In the contact region where F"n,#0 and er)O, positive definite smooth

regular function is introduced as

(s.54)

(5.56)

rcowA

P,-sigrde)e,

Differentiating the above function yields:

oz- tH 
on*r"o ' (n+l)C"'

(s.s7)
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v : co*A s _e (1+(4-+þ1qt,"t')d_t!¿ 
_,,- kffiCa---ft-l+l C.2- lqe 

^l 
- (e +r) q, 

^)rE 
-, u" r, æ - T ¿*

,0. ('a4
-l4p\ctl

(5.58)

which is continuous and negative semi-definite in the contact region as long as condition (5.56)
is in effect.

Combination of (5.54) and (5.57) constitutes the overall composite regular function, V, for the
system interacting with the environment:

r, ff, ; noncontacty =<' - 
lV" ; contact (5'59)

As explained in Secti on 5.2.3, the only case where the condition (1 + p ez ) 0) can be lost while

( e, > 0 ) is when the control force is larger relatively to the impact force and is applied to the

direction of the environment reaction force. Excluding this rare case from the analysis results in a
continuous composite function, V. The derivative of V canbe obtained by combining (5.55) and

(5'58) and is continuous and negative semi-definite throughout the solution region except for the

discontinuity surfaces. On the discontinuity surface, .gf :

V(e eS,') . co¡Ysi- ,lisi- I

where Vsi. and Vsi- arethe limit values of V asa solution trajectory approaches

sides:

(5.60)

Sf from both

Vs?- =limV =
e, -)0+

VsÌ =limV =
e"-+0-

cowA

k,oK,J Pc2
cowA

k,rxsa

cowA

k,oK,"!þ c2

cowA

.¡ c,w (AK, 
,,î - ffi1ftÞ,, ^l 

- (e + t) e,e o

,, - ffi(ftÞ*,| - (e + r) e,e o

; nonconlacl

contact

(5.61)

,, -ffi(æþ,eol-@ +1>,,,^)J n -,,r, rrn ; noncontacÍ

z caw(AKr, \-
't -ffili{|z+|- @ +t¡ e,e^ 

),[{ 
- sig,4ù % ; contact

(s.62)

- sign(e) e,

- sign(e) e,

k,oK,^!þ c2
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Equations (5'61) and (5.62) imply that the convex set described in (5.60) only contains one

element which, considering (5.56), is negative. Thus, on the discontinuity surface Sf :

P,-sign(eo)e, <0 (5.63)

Similarly, it can be proven that, on the discontinuity surfaces .sj and ,sj, the convex set of Z
only contains negative and/or zero elements, respectively:

(s.64)

(s.6s)

v çe e gl =¿l-' (4 * @, -rò 
¿a' n' \ 

løl - f d - + n*,-, 
(4 * @, 

-n) 
¿ø t' )' \ 

øt - f e]

Z(ee.9r2¡=6

Therefore, V is negative semi-definite in the entire contact and noncontact regions of motion as

well as on the discontinuity surface, .S,', ,s; and sr'z . we can now conclude that according to the

extended LaSalle's invariance principle to nonsmooth systems (Theorem 2 in Sectio n2.3),every
solution trajectory in f) converges to the largest inva¡iant set, M, as / -+ oo. A contradiction
analysis similar to what is conducted in Sections 5.2.3, would further prove that the system,s

largest invariant set, M, contains only the points that belong to equilibria, e"o=(0,0,ri,g)t,

F" ssnfO)
where ei" =--t---:--:-:-' This completes the proof that, in the event of unexpected collisions, the

control scheme given in (5.a5) places the hydraulic actuator on the surface of the non-moving
environment with no steady-state error in the presence of actuator dry friction.

Before proceeding to the experimental verification, it is useful to note that the equilibria of the
system (5.46) that was proved to be convergent would still be the system equilibria if the more
complete model (3'8) was used for d}'namic modeling. This is shown by first defining the error
states €t=x-xe,u, €z=*, €3= P,, eo =Po and, €s=x,p andsubstitutingthecontrollaw(5.45)

and the friction model (3.17) into (3.8):
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(s.66)

r
E _J(l+per)He,' ;
'env-\ L0;

where

(¿, > 0) & (1+ pe, > 0)

otherwise
(s.67)

To obtain the system's equilibria, the right-hand sides of (5.66) are equated to zero:

gr* =o
ei =0

eî _ e,j _ F' sgn(o) . [_ 4, ålA L A'Al
¿i =o

(s.68)

Equations (5.48) and (5.68) indicate that the equilibria of the more complete dynamic model is

the same as the one for the simplified model proven to be convergent.

5.4.4 Experimental Verification

The theoretical results obtained in the previous sections are further verified through similar

experimental test as in Section5.3.4 where the actuator accelerated from free space given a step

input control signal and struck the environment. Upon sensing a nonzero force for the first time,

this position \ryas taken as the position of the environment surface and the proposed control law

(5.45) was activated to stabilizethe actuator on the surface of the environment. Contrary to the

control scheme (5.23) which showed a steady-state error in the resting position of the end-

effector, the experimental results using the control law (5.45) are shown to be free of steady-state

position error despite the existence of dry friction in the hydraulic actuator.

Two fast (8.5 in/s) and slow (3.0 irls) approach velocities were examined and the hard and soft

impacts were simulated by metal and wooden environments. The control gains were chosen as
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K':0'8 V f psitl2in and Ko:10-s V f pr¡tt', which do not saturate the input signal at the extreme

measurable limits of motion with the supply pressure of p":26gg psi. For the system with the
parameters listed in Table 3.1, the steady-state load pressure effor, equation (5.4g), is estimated

to be within ei = l-ZZt,lZtl pst.

Figures 5'6 and 5.8 show the experimental responses of the system when the actuator hits the two
types of environments with low (3.0 in/s) and high (s.5 in/s) approach velocities. They
demonstrate that the controller is capable of impact suppression and stabilizing the actuator
regardless of the environment stiffness and the approach velocity. The close-up responses 5.7
and 5.9 illustrate the convergence of the system trajectory to the equilibria given in (5.4g). They
particularly show that the end-effector is being rested on the surface of the environment (dash-
dotted line) with no steady-state position errors despite the existence of dry friction in the
hydraulic actuator. The load pressures, however, exhibit a steady-state error that is within the

theoretically derived bounds (dash-double dotted lines) of ei =l- 321,3211 psi.



Impact Control Design for Contact Transition 98

.c
X

â
U'
o_

J
fL

15.2

15.1
__\

\ Location of Environment

1 000

0

-1 000

400

-o<>
è 200
o

tL

0

5

¿o
J

-5

0.005

ci>^
ou

X

-0.005
4 4.05 4.1 4.15 4.2 4.25

Time (s)

Fig. 5.6 Low velocity impact response (3.0 in/s); 
- 

Metal, ----'Wood.



Impact Control Design for Contact Transition

^,- 
Location of Environment

lc. l¿

^ 15.1 18c
3
X

15.116

15.114

400

â 200
ct)
o_

:0
fL

-200

-400

0.0005

-0.0005

i'j

40

-o
7zo

c
o

LL

0

0.2

:0
:l

-0.2

c
o0
Ø

X
i,.Lì,r iJ.nlìo. lr,*,i,v¡, - rr,l, -, r.r .r - i.'^rt^".".',', ¿.\*l ^ ¡,i", -/"rY-)

4.2

Fig. 5.7

4.3 4.4 4.5
Time (s)

Close-up of responses in Fig. 5.6.

4.1
4.6



Impact Control Design for Contact Transition t00

I

I
I

\ Location of Environment

c
X

ã
Ø
o_
J

0-

-oi=
co

L

15.2

15.1

1 000

0

-1 000

400

200

0

5

,'\ _'.'",

T ,,.,

1.75 1.8 1 .85 1.9 1.95 2

Time (s)

5.8 High velocity impact response (8.5 in/s);- Metal V/ood.

f,

c
oø

X

_Ã

0.005

-0.005



Impact Control Design for Contact Transition l0l

c
X

15.132

15.13

15.128

15.126

0.2

¿-n
=

-0.2

Location of Environm .nt/

400

: 200
U)
o-
:0
fL

-200

-400

40
Ê
_o: ,20

c
o

TL

0

ct?
â0

X

0.0005

-0.0005

2

Fig. 5.9

2.1 2.2 2.3

Time (s)

Close-up of responses in Fig. 5.8.

::-t:ti.ti:

:: 'j
I

ii$;

1.9 2.4



Chapter 6

Force Control Design for Sustained-Contact

Motion

6.L Introduction

Published work on force controlitracking of hydraulic control systems with rigorous stability

analysis in the presence of actuator friction either did not include friction in the control design

and stability analysis or, only included viscous friction and neglected actuator's dry friction. In

this chapter, a Lyapunov-based force control scheme is designed for asymptotic force regulation

of a hydraulic actuator in spite of actuator's dry friction. The actuator dynamics is modeled using

equation (3.16) which includes the effects of actuator friction, environment reaction force,

nonlinear hydraulic functions, and servovalve dynamics in the anaiysis:

it.:v
. A P, Ff Fu,,
v=-

mmm
p, = +( - Ai +cow ,,,1t - ru,rr-n)u[ 4P
. 1 k,o
Xro=--X"ol-U

'd'C þþ

(6.1)

t02
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In (6.I), \ is the friction force modeled by the Tustin's friction model (3.I7) and F"n, is the

contact force modeled in (3.23):

l .,'uI
Ft =LF, +(fs - Fr\e-r'r"r Jsgn(x)+di 6.2)

tr :J{t* p*)H(x-xnn,)n ; (x-x",u}0)&(1 +pi>0)'env 
I O ; otherwise

where

sign(x,,1= 
{'*/1"'l ',

Jsgn(*)={-llol].: i+0
lsgn(*)=þt,t] : ;L:0

xrp+0
*ro=0

Since the sustained-contact motion is the last part of the overall contact task which starts when

the impacts are dissipated and the implement is rested on the surface of environment, the original

Hertz contact model (3.2r) can be used for environment reaction modeling:

F"n, ={ 'o 
- x"n,)' ; (x - x"n ) o)

LU;otherwise6'4)

Combination of (6.1) to (6.a) constitutes the following state-state model of the system:

(6.s)

6.2 Control Design

The goal of the force control

Using the Lyapunov stability

follows:

(6.3)

the desired force, Fo", , on the environment.

Section 6.4), the control law is introduced as

. 1 k,o
Xro=--Xrot-U

'TT

scheme is to exert

method (detailed in

i:=v

i = 
A p, _lp, + (p, - r)e-Gtù'1sgn(*) + d * _ F",,

v -- mmm
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, = -(*,1r, +lsign(x,) 
+ K ¡(F,* - F,"¡)rÇ- ,ir,çu¡ r, (6.6)

where Ko and K¡ arc positive constant gains

With respect to equation (6.6), the measurements of the contact force (sensed by the force

sensor), hydraulic line pressures, supply pressure and the knowledge about the direction of the

valve spool displacement are the only requirements of the proposed control scheme. No exact

knowledge about the environmental characteristics, friction nature, or hydraulic parameters is

required for the control action.

Before finding the system's equilibria, the error state vector, e=(er,€2,€3,e0)r is defined as

€t=x-(*un,+6), er:x, €z-Pr-%, ro=Jr,, where á isthelocalelasticdeformationof

actuator end-point and/or environment lrn"ún. *r*or exerts the desired contact force on the

environment (see Fig. 6.1):

Fcn rdesþ'- ""' (6.7)
H

Fig. 6.1 Steady-state implement conf,rguration in contact mode.

Combining (6.5) and (6.6) with the above definition of error states constitutes the following

error-state model of the system:

(6.8)
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where F",, is the simplified contact force (6.4) expressed in the effor space:

tr _[nçer+6¡' : (et+â>0)
-cnv 

I O ; otherwise

The equilibria of the system shown in (6.8), e.o : (e,*, e)' ,ei ,ei')r, is obtained by equating the

right hand sides of (6.8) to zero:

¿i'=o
ei=o
_ss F, sgn(O)
e"'A
ei =0

(6.e)

(6.10)

(6.11)

(6.r2)

Note that e,* = 0 indicates that F",, = Fa",.

The equilibria of the system is, thus, every point e.o = (0,0, ei,0)z with

-rs {sgn(O) [-nnl' A -L A'A _l

Equations (6'10) imply that, if proven to be stable (the subject of Section 6.3), the proposed

control system could effectively counteract frictional effects and follow the desired force

asymptotically (ei" = 0 or Fun, = Fo,).Inthe absence of the actuator dry friction, the system has a

unique equilibrium point e"o = (0,0,0,0)r.

Before studying the stability of the system, Filippov's solution concept is used to investigate the

solution of the nonsmooth system shown in (6.8).

6.3 Solution Analysis

According to (6.8), the discontinuity surface of the system is one of the following three surfaces:

Surface I

Surface 2

Surface 3

^Sf :={e ier=0&,eo+0}

Sj :={e:er+0&eo=g¡

Sr2:={e i€r=Q&eo=g7

where the superscripts and subscripts denote the dimension and the number of the discontinuity

surfaces, respectively. Note that the surface Sj is the intersection of surfaces .Sf and .Sj .
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Exßtence and continuation of Fíþpov,s solution

Let region Ç) : Ra x R and let D be an arbitrary compact set in e. The right-hand sides of
equations (6.8) are defined everywhere in Ç), and are bounded by B(t). Let B(t):L. which is
obviously integrable on D. FurtheÍnoïe, each term of the right-hand sides of (6.g) is measurable.
Thus, the right-hand sides of equations (6.s) satisfu condition B of Filippov,s solution theory
(Filippov, 1960) and we have the local existence of a solution which is continuous on lt o,t ¡) .

Uniqueness of Filþpov's solution

The vector-valued function of the right-hand sides of equations (6.s) is continuous up to the
discontinuity surfaces and the discontinuity surfaces are smooth and independent of time r.
Therefore, conditions A, B and C of Filippov's solution theory (Filippov, rgTg) are satisfied.
Next, the analysis of the uniqueness of Filippov's solution is carried out for each discontinuity
surface.

We start with studying the uniqueness of Filippov's solution for the discontinuity surface Sf .

This discontinuity surface divides the solution region into two regions: Ç)*:= {e:er>g} and

o- := {",", <o}. Following the procedure introduced in (Filippov, 1960),the vector functions

f,* and f,- are defined as the limiting values of the right-hand sides of effor space equations (6.g)

in Q* and f¿-.Forallpointson Sf (er=0),thevector h, =fi -ff isconstructedas

hr=
(6.13)

106

[,'*]

t:'l
which is along with the normal to the discontinuity surface, N, : (0,1,0,0)r. The

defined as the projection of h, on Nr, is calculated as

F
år, = N, .hr : -2^ s <0

m

scalaÍ, h*,,

Thus, according to Lemma 7 of Filippov (1960), the uniqueness of the Filippov,s solution for
equationi (6.S1 is guaranteed

(6.14)
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To prove the uniqueness of Filippov's solution on the discontinuity surface ^S;, ç)* and f)- are

defined as Ç)* :={e:en >0} and f)-:= {",u0 <O}. Oef,rning fr* and ff as the right-hand sides

of the dynamic equations (6.8) in the regions f)* and f)-, the projections of fr* and ff along

N, are:

fJ, = -9 @ rlrrl* K f(F"* - Fo,))

t07

T

f ;, = -UÇ x ,lerl+ K r(F",u - Fo"))

Also, for all the points on the discontinuity surface Sl (ro =0), the projection of h, =fl -f;

on N, =(+ + + +l' = (0,0,0,1),, is obrained as" \ôr, ôr, ôr, ôeo )

k,oK¡(F",,- Fo,,) 
^

-A

I

(6.16)

where A : 
^l 
fle, ++ rp -,t p¡øq-+ r;ø

According to (6.16), when Kolrrlrlt<r{r*,-Fo,)|, hr,.0 and according to Lemma 7 of

Filippov (1960), the sysrem has a unique solution. when Krlrrl<lKr{F",,-Fo")|. (6.15)

implies that f,i, >0 & f*, >0 when Kr(F*,-Fo,)<0 and f,i,.0 & fñ, <0 when

Kr(F"*-Fou,) >0. Therefore, Lemmag of Filippov (1960) guarantees the uniqueness of the

solution.

The solution analysis on the Sr'z (the intersection of the surfaces ,Sf and ,Sj ) requires heavier

mathematical machinery and is omitted from the analysis.

6.4 Stability Analysis

Analytical stability of the proposed control system using Lyapunov stability theory is now

investigated. In particular, the extension of LaSalle's invariance principle to nonsmooth systems

is empioyed to prove that all the solution trajectories converge to the equilibria. in the absence of

(6. r s)

"'-["'.+)

",*[r,.+)
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actuator dry friction, the control system is shown to be asymptotically stable. In order to make

the Lyapunov stability analysis manageable (being able to prove that V is negative semi-

definite), the value of n in contact force model (6.4) is assumed to be one. For the overall

stability analysis using the concept of Lyapunov exponents (Section 8), howevel, n canhave any

value depending on the geometry of the colliding bodies.

Let V be the positive definite smooth regular function introduced for the nonsmooth system

given in (6.8):

, H(Ae, l' €m.¡ € t TC,wA " tH
'=;l't+et) + 2c,;*í,:.ffie|+:--:-el G:7)

where s is an infinitesimally small positive number. Differentiating (6.17) with respect to time

r0B

and substituting (6.a) into it, yields (n=I):

t = -!!,t - ffi(tfi|,*,| - (" * H) e,eo

l- - sign(eo,[,,* +)
_r(o, *(r, -or)r^r,'r'\ro r_ cowA 

^2c 
-t",t-¡7¡77et

(6.18)

which would be negative semi-definite if the following condition is imposed on the control gain

ratio when choosing the control gains:

K, _(t+H)C
-l
Kr A

Thus, the lower limit on the control gain ratio, I , r, !! Equation (6.18) with the condition
lt;" A

(6.19) denotes that V is continuous and negative semi-definite throughout the solution region

except for the discontinuity surfaces S,', Sj and ,Sr2 . On the discontinuity surface, Sf , we have:

Z(ee ,Sf )eco¡Ysl.,/si-J rc.20)

where Vsi. and Vsì- are the limit values of V asa solution trajectory approaches Sf from both

sides:

(6.1e)
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vsl- :lia"r-o* v =-

Vtl- =lim",-o-V =

cowA

kßÆe
cowA

k,oK, J P c'
(6.21)

Thus, by implementing the condition (6.19) on the control gains, the convex set described in

(6.20) only contains one negative element:

@
(6.22)

set of V only contains one

v(e es,,) = rffi,, -ffi(t{1,,,,1-("* H)e,eo

Similarly, on the discontinuity surfaces Sj and ,Sr2 the convex

element, which is negative andzero, respectively:

' )' , ed zv(eesj) = -"\F' 
*(F' - Fò'-@t'")'

C 'lezl- C "
V(eeSÍ)=O

Equations (6.18) and (6.23) to (6.24) imply that V is negative semi-definite in the entire regions

of motion as well as on the discontinuity surfaces. According to the extended LaSalle's

invariance principle to nonsmooth systems (Theorem 2 in Section 2.3), every solution trajectory

in Q converges to the largest invariant set, M, as I -+ oo . We next prove that this largest

invariant set, M, contains only the equilibria 
""0=(0,0,ri,0)t 

where ej" is defined in (6.1i).

This is proven by contradiction:

Let R be the set of all points within the solution region f) where V =0 . With respect to (6.18),

V:0 requiresthatforallthepointsinR, e, =0 and êq=0. Thus,both è, and èo arezerc.Let

M be the largest invariant set in R and contain a point where either e, + 0 and/or e, is not equal

to ei described by (6.1 1). According to equations (6.8), this will result in either è, + 0 and/or

èo+0 which necessitates the solution trajectory to immediately move out of the set R and

certainly set M. This contradicts with the initial assumption that M is the largest invariant set in

R. Therefore, el can only be equal to zero and % can only be equâl to ei described in (6.11),

(6.23)

(6.24)
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i'e'' every solution trajectory in fJ will converge to the largest invariant set M that only contains
the system's equilibria.

According to the above analysis, when the conditior, 5 H c
u, ' A it satisfied, the control scheme

proposed in (6'6) is guaranteed to perform asymptotic force regulation with no steady-state effor
despite the actuator's dry friction. v/hen the actuator has negligible dry friction, the only
discontinuity surface (due to the controller discontinuity) is ,S ..= {e : eo = 0} and the system (6.g)

has the unique equilibrium point e,o = (0,0,0,0)r. In that case, the function zdescribed by (6.17)
would be the system's positive-definite Lyapunov function with the following derivative

t.¡ crwA z c¿w(AK,, lmv -- u ei -:-ø:;¡ 
-lqe]_("* 

H)ereo l,'/¿ 
_ sign(eo)frr*3?l rc.25)k,oKrJpc'"^ CJ-plc\, ,V \ A)

which is negative and semi-definite subject to satis$zing inequality (6.19). Similar to the analysis
of the system with dry friction, it can be proven that v is also negative on the discontinuity
surface, 's' Therefore, based on the theorem3 in Section 2.3,theequilibrium point of the system
is asymptotically stable.

Remarks

Ð It should be noted that the exact values of f1, c and A are not required for control
action' However, knowing their rough estimates is required to draw the line where the
control gains should be chosen. The value of the piston area, A, can be taken from
manufacturer's specifications. The environment stiffness, H, can be over-estimated
from the knowledge of possible stiffnesses of colliding bodies. The hydraulic
compliance, C, can be determined using any parameter identification scheme (Sepehri
et al., 1994).

iÐ It is also useful to note that the equilibria of the system (6.8) that was proved to be
convergent would still be the system equilibria if the more complete model (3.g) was
used for dynamic modeling' This is shown by first defining the error states
€t =x-(x"nu+6), er=x, €s= P,, eo = Po and', €s =x,p and substitutingthe control

law (6.6) and the friction model (3.17) into (3.g):

110
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where

r] fn@,+õ)' ; (er+ä>o)¡"'=f o ; otherwise

To obtain the system's equilibria, the right-hand sides of (6.26) are equated fo zero:

ef =0
e)'=o

eî -e';'-Fo"
A

eï'=0

(6.27)

Equations (6.10) and (6.27) indicate that the equilibria of the moÍe complete dynamic

model are the same as the one for the simplified model proven to be convergent.

6.5 Experimental VerifTcation

To observe the performance of the proposed force control scheme through interactions with

different environments and determine its capability in regulating various desired forces, several

sets of experiments were performed. Metal sheet and wooden plate were used to represent

different environmental stiffnesses. For each environment, two tests were conducted for desired

forces of 250 lbf arñ 500 lbf. In all experiments, the actuator motion started from where it was in

touch with the environment surface. In order to choose proper control gains that fulfill condition

(6.19) needed to guarantee the convergence of the system trajectories to the system's equilibria,

an estimate of A, C, and H is required. With respect to the system parameters given in Table 3.1,

_Frsgn(0)_[ 4 Frl
=r----lA I A'A)
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A :0.9812 in2 and C : + is calculated to be 7.14x10-s in3 f psr. Since exerting 500 lbf on the
4p

test rig's environment results in both manipulator-environment local deformations as well as

slight bending in the environment's I-beam support, the value of environment stiffiress are

experimentally measured to be H, = 6000 lbf lin and H* = 3000 lbf ltn, respectively. The

control gains were, therefore, selected according to (6.19) as K¡4x70-s VftO¡^fpstana

Ko:7 .ïxtOó f f ,[pti' . The supply pressure in each experiment was P":2000 psi and the sampling

time of the system was =2ms. The steady-state load pressure does not depend on the environment

stiffness or the choice of control gains [See (6.11)] and for the system with parameters tabulated

in Table 3.1 is expected to be within the following range:

112

,î .l F*, -315. rr", + 315 
-l

' L 0.e8 0.e8 J
(6.28)

Figures 6.2 and 6.3 show the system response when the actuator is in contact with va¡ious

environments following the desired force of F¿,,:250 lbf. The force response of the system

demonstrates the asymptotic convergence of the system trajectory to the desired force and

verifies the friction compensation capability of the force control scheme proposed for hydraulic

actuators. Note that the steady-state force error is observed to be within + 10 lbf of the desired

force which is acceptable considering the resolution of measurements. Figure 6.3 also confirms

that the steady-state load pressure is within the range denoted in (6.23) ,i.e., ei =[-øl ,577]

psi.

Figures 6.4 and 6.5 show the response when the actuator follows the desired force of F¿,,:500

lbf. These results also demonstrate that the proposed control scheme is stable and capable of

regulating the desired force without steady-state error (the slight steady-state eTïor is believed to

be due to measurement resolutions and small deadband in the spool valve). Moreover, the

steady-state load pressure error is within the bounds derived in (6.28) analyticalty, i.e.,

tî:[i89,ß2] psi. All experimental observations are inline with, and verify the theoretical

derivations outlined earlier.
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Chapter 7

Stability Analysis of Switching Control

Systerns {Ising the Concept of l,yapunov

Exponents

7 "l Introduction

Existence of at ieast two switchings between controllers (free-space to impact mode and impact

mode to sustained-contact mode) in the overall contact task control results in an overall

nonsmooth system. Employing the extension of Lyapunov stability theory to nonsmooth systems

and finding the appropriate composite Lyapunov function for the general task is extremely

difficult, if not impossible. Therefore, many studies have resorted to some restrictive

assumptions such as those discussed in Section I.2.3. To achieve a more generalized stability

analysis of switching control systems with fewer restrictive assumptions, the concept of
Lyapunov exponents is now adopted for the complete analysis of the qualitative behavior of the

system.

Implementing the concept of Lyapunov exponents on dynamical systems with discontinuities

entails several fundamental issues that should be thoroughly addressed. The first intrinsic issue is
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the solution analysis of both the original nonlinear and the linearized systems that are used in the

calculation process. Since the fundamental assumptions of conventional solution theories

(Lipschitz continuity) are violated as a result of the system discontinuity, the solution concept is

questionable. The second issue is to determine whether Lyapunov exponents exist when / -) oo,

and, if they do exist, how a suitable finite time limit can be found to terminate the caiculation
process. Lineatization of nonlinear equations on the discontinuity surface is the third problem

associated with systems with discontinuities. Since the purpose of calculating Lyapunov

exponents is to investigate the stability of the system based on the signs of the exponents (see

Section 2'4), suppression of numerical instabilities that may arise in numerical computations is

of significant importance. Therefore, the fourth issue is the numerical stability and the

convergence of the numerical results toward the exact Lyapunov exponents. In addition,

Lyapunov exponents should be calculated over a sufficiently long period of time wrtil the system

reaches a steady state. Hence, the efficiency of the calculations in terms of computation time is to

be considered.

Using previously developed theorems and techniques, the systematic framework established in
this thesis addresses the above issues within the context of switching contact task control

applications. First, the solution analyses of both nonlinear and,linearized system of equations are

conducted using Filippov's solution theories and the theory of Caratheodory differential

equations (Filippov, 1988). Next, appropriate theorems (Kunze, 2000) are invoked to study the

existence of Lyapunov exponents for such non-smooth control systems. The problem of
linearizing the nonlinear equations on discontinuity surface is addressed by resorting to the

works of Kunze (2000) and Muller (1995) in which the conventional calculation procedure by

V/olf et al. (1985) has been extended to systems with discontinuities. To address the issue of
numerical instabilities, a nonstandard finite difference discretization scheme (NSF^) based on

the framework of Mickens (2002) is constructed for both noncontact.and contact regions of
motion. The scheme admits large step-sizes in comparison to other commonly used standard

techniques such as the explicit Euler and Runge-Kutta methods (Mickens and Gumel,2002) and,,

thus, enhances the reliability of numerical computations. It was shown that this calculation

procedure is particularly appropriate for the calculation of Lyap¿nov exponents in discontinuous

control systems (Sekhavat et al. 2003). The event-driven simulation algorithm is chosen for



Stabiliry Analysis of switching conrrol systems using the concept of L

numerical simulations and the contact or separation time instants are determined by
implementing the so-called step back procedure (Brogliato et al., 2002).

In this Chapter, the above systematic procedure is exemplified with a typical contact task control
system' The example is taken from the work by Wu and Payandeh (lggg) where a simple
implement is'aimed to reach a desired position and later switches to follow a desired contact
force' Using the extended Lyapunov's direct method, this problem has been proven to be stable
under the bounce-less contact assumption with an environment modeled as a simple linear
spring' Employing the more realistic Hertz-type model of contact allows multiple impacts as a
result of bouncing on initial contact and rules out the previous stability analysis. Therefore, the
example is chosen to demonstrate the applicability of the proposed systematic procedure in
determining the system stability using the concept of Lyapunov exponents.

7.2 Description of a Typicar switching control System

The system is a single degree of freedom implement aimed to reach a desired position, x¿r,,while
there exists an immovable environment on its way (Fig. 7.1). Upon collision with the
environment, the goal is to regulate the contact force towards the desired contact force. The
equation of motion is described by the following differential equation:

Fig. 7.1 Implement-environment configuration.

rt-Furr=mI
(7.1a)

where x is tlle position of the implement's end-point , m is the mass of the implement, u is the
control signal that acts as a force on the implement, and F"nu is the contact force as described by

(3.23):
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tr : J{t* p*)H(x-x",,)n ; (x-x,n,}0)&(l + p*>0)'env 
I O ; otherwise

, =[ - Ko@-xou)- Y,,* i Funu=o

lFo,, - Y,,i K r(F*" - Fo,,) ; Fu,u+ 0

state-space model of the system:

fx.
*=.fi (r)=1 _Uo (*,_*o^)_\*,

lmm

t,,
* = .rz,', = 

t_'+., ø)rc+ p*,)u(xt _x,n.), _ po",)

The equilibrium point (x,o) of (7.3) is a point in the contact region where

/ c \l/'
xt = x"n,.lÊ) (or F"n, = Fo",)'

(7.1b)

The discontinuous control algorithm (Wu and Payandeh, 1999) consists of two control laws for

free-space and constrained modes of motion. The free-space control law is to bring the

implement to the desired position, x¿rr. Upon contact with the environment, the second control

law is activated to regulate the contact force and to follow the desired force, F¿"r:

(noncontact)

(contact)
(7.2)

In (7.2), K r, K,, , Krand K,, ate the positive gains.

Defining x:{x,il' ={rr,*r}r as the state vectors, equations (7.1) and,(7.2) yield the following

(noncontact)

(contact)

(7.3)

xz=O and

The switching control system described bV Q.3) is non-smooth. A main preliminary before

proceeding with the system stability analysis using the concept of Lyapunov exponents, is to

prove that the switching system has a unique continuous solution (Kunze, 2000).

7.3 Solution Analysis

Existence ønd continuøtion of Filippov's solution

Consider region Ç) = .R2 x A and let D be an arbitrary compact set in f) . The right-hand sides of
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(7.3) arc defined everywhere in Ç), and are bounded by, say, L.Let A(t¡ = Z which is integrable

on D. Furthennore, each term of the right-hand sides of (7.3) is measurable. Therefore, equations

(7.3) satisfy basic conditions of Filippov's solution theory and according to Theorems 8 and 9

fSection 7 of (Filippov, 1988)], we have the local existence of a solution which is continuous on

fto,t 11.

Uniqueness of Filippov's solution

Discontinuities of the system occur at instants of contact and separation. Contact happens when

both conditions x, -x",,)0andxrr-llp are in effect fsee equation (2.23)], and separation

occurs when any of them is violated. Thus, we have the following three discontinuity surfaces:

Surface 1 Si :: {(r, ,xr): x, - x",u = 0 &. x, +lf p > 0\

Surface 2 ^Sl := {(x, ,xr): x, +lf p :0 & x,, - x"n, > 0\

Surface 3 ^Sl:= {(x,,xr):xr+lf p=0 & x,,-xun,=0\ (7.4)

where the superscripts and subscripts denote the dimension and the number of the discontinuity

surface, respectively. The right-hand sides of equations (7.3) arc continuous in both regions of
motion and all discontinuity surfaces (7.4) arc smooth and independent of time. We start with

proving the uniqueness of the solution with respect to the discontinuity surfaceS].

The discontinuity surface Sl divides the solution domain fJ into two regions:

Ç)-:= {(rr,rr):xr+Ilp>O & ,,-*"n, <0}

Ç)* := {@r,*r): x, +If p > 0 & x, - x",, > 0\

The vector functions f,* and ff are defined as the limiting values of the right-hand sides of the

state-space equations (7.3) in regions f)* and f)- as the solution trajectory approaches the

discontinuity surface 
^Sf 

. Considering the factthat on ,Sl, (", - x",,)=0, the normal to this

surface, denoted by N, , is:

Ias] 1x,,x,¡l
l-l

N.=l ô\ L:ftl"' - I âsl(x, ,*) l: lol Q'6)

l.ô" J

Thus, the projections of fi and ff along the normal to the discontinuity surface, ,S,1, are:

(7.s)
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f,i, = fi .Nr : :cz

fn, : fi .Nr = fz

As is seen, f.d, and f*, always have the same signs. Thus, the solution is unique

through an isolated point on the discontinuity surface (Lemma 9 of Filippov (1960)).

Ku,

(7.7)

and passes

Similarly, onthe second discontinuity surface, Sl, we have xr+\f p=0. Thus, the normal to

this surface, N, is:

las)g,,x,¡)

*, = ] ^^y, ,f = {?} (7 8)
| ôsl1x,,x,¡ [ LtJ

lak )

and the projections of fr* and ff along N, are:

fri, = fr- 'Nz = ,r*@F0",
m

f*, =fi.Nz = -*'(*r-xo^)-Kvt xz'mm (7.e)

Consideringthefactthaton Sj,wehave xr=-If p and (x, -xau)<0,therighthandsidesof

(7.9) are always positive and we have f$, >0 and fn, t0. Thus, according to Lemma 9 of

(Filippov, 1960), the uniqueness of the solution on Sj is also guaranteed. Uniqueness analysis

for the third discontinuity surface, 
^Sr0, 

which is actually a unique point at the intersection of the

two surfaces S] and ,Sl is trivial.

7.4 Stability Analysis

Calculation of Lyapunov exponents is used for stability analysis of the above switching control

system. For the second-order system (7.3), the largest Lyapunov exponent of the system being

negative proves that the system has an asymptotically stable equilibrium point. First, the

calculation procedure explained in Section 2.4.2 is used for the smooth parts of motion. Next, the

extended calculation method stated in Section 2.4.4 is adopted to generalize the method to the

switching systems.
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7.4.1 variational Equations for smooth parts of Motion

According to section 2.4.2, in order to calculate the system,s Lyapunov

variational equation w, = F(t)v, of the linearized system åx(t):v, ðxo is

integrated with the original nonlinear equations. For the system shown in
determined as [see (2.26)]:

lo 1l
F(r¡ = F,(t) =l x, K", 

It-; -;)

exponents, the

simultaneously

(7.3), r'(r) is

(noncontact)

(contact)

lo
F(t)=Prç¡¡=l_ 3(K' +1), \ / .. \,-r K,,- \'/ '¿\-) 

l--;;$+Px')H\*'-*"")'-' -;
I

(K, +1)
--",,Y]

- **,)')r^

p H(*,

(7.10)

in smooth regions before and after discontinuityThus, the variational equations of motion

instants are:

Vt =Vzt

Vn = Vzz

fx, Kl--v,,-av^.lmm
vu =] 3(K, +l) ,. \,./ \r_r ( x". (K, +1) t(t+ pxr)n(r, - r",")' Vtt +l

I ¿* lm m

(noncontact)

(contact)

(noncontact)
fx, Kl-Jv,r-av,

vz, =1 i*, *DT

l- * yl+ pxr)H6,-**")'-' ,,r*(-+
(K. +l) . ì
Y p u (r, - *,*)' lvr, (contact)m )-

(7.r1)

7.4.2 Extension to Switching Control Systems

Application of the calculation procedure explained in Section 2.4.2 to the switching control

systems entails several issues such as the solution concept of the linearized system, linearization

of the nonlinear equations on the discontinuity surface, existence of the exponents as the limit
stated in equation (2.6), and the numerical stability and convergence of the results to the exact

Lyapunov exponents. In the following subsections, the theorems and methods of addressing

these issues are discussed in systematic detail. They include the theory of Caratheodory
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differential equations (Section 2.2), the extension of Oseledet's Multiplicative Ergodic to

nonsmooth systems (Section 2.4.1), the method of calculating Lyapunov exponents at nonsmooth

instants of motion (Section 2.4.4), and application of the nonstandard finite difference

discretization scheme (Section 2.5) to enhance the validity and eff,rciency of computations.

Solution Analysis of the Variational Equation

The right-hand sides of the system shown in (7.11) are piecewise continuous in r. Definition of a

solution for such systems can be obtained using the concept of the Lebesgue integral which is the

basis of the theory of the Caratheodory differential equations (Section 2.2) andthe existence and

uniqueness of such a solution can be outlined accordingly. Since all the elements of the matrix

F(r) in (7.10) are summable on each segment contained in the interval fto,t¡J, according to the

Theorem outlined in Section 2.2 (Filippov, 1988), the solution of (7.11) with arbitrary initial

condition V,Go) = V,o(t elto,t rl) exists on the whole interval Lt0,t rf and is unique.

Note that every solution in the sense of Caratheodory is a solution in the sense of Filippov and

vise versa (Filippov, 1988) and the solution analysis of the linearized system is compatible with

the solution analysis in Section 7.3 for the original nonlinear system using Filippov theories.

Existence of Lyapunov Exponents

In order to actually relate the )" , (i:7,..,n) to the long-term behavior (or stability) of the system,

the lim,-. in (2.6) should exist. A general powerful tool to prove the existence of the lim,-. in

(2.6) is given by Oseledet's Multiplicative Ergodic Theorem (MET) (Oseledec, 1968) explained

in Section 2.4.1. Since in switching control system (7.3) the semi-flow ça : [0,cofxfr2 -+ fr2 is no

longer smooth with respect to x, the cocycle (the linear pafi atx of the nonlinear maps) for such a

non-smooth system should be first defined. Kunze (2000) has proven that under certain

conditions, one could obtain a complete description of the cocycle corresponding to non-smooth

semi-flows fTheorem 4.1.i in (Kunze, 2000)] and the integrability conditions in MET are

satisf,red (Corollary 4.1.8). He has also introduced the additional conditions required for the

existence of a "good" set G of initial values x, where such a cocycle can be defined, i.e., for the

trajectories starting in xo, the cocycle can be constructed meaningfully (Corollary 4.1.3 and

Theorem 4.1.2). Such theorems provide the theoretical foundation for applying the MET to prove
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the existence of Lyapunov exponents in non-smooth systems. Validity of their required

conditions has been rigorously verified for the second-order pendulum with dry friction (Kunze,

2000) and can be intuitively verified for the system under study. The details of the mathematical

proof on the validity of the conditions are beyond the scope of this study. Interested readers are

referred to Section 4.2.2 in (Kunze, 2000). Theorem 4.1.1 of (Kunze, 2000) implies that a

canonical cocycle lives on a set G c R2 of "good" initial values and according to the Oseledet's

Multiplicative Ergodic Theorem, the existence of the Lyapunov exponents is guaranteed.

Calculation of Lyapunov Exponents at Discontinuous rnstants of Motion

With respect to (7.3), the nonlinear equations of motion are not linearizable at switching instants

from free-space to constrained-motion and vice-versa. Therefore, the original method of

numerical calculations (Section 2.4.2) is no longer adequate for calculation of Lyapunov

exponents of the system under study. The extension of the calcuiation procedure to nonsmooth

systems was first explained in (Muller, 1995) and then re-confirmed in (Kunze,2000). The

method explained in Section 2.4.4 is based on supplementing the linearization of dynamic

equations by transition conditions at the instant of discontinuity. The supplementary conditions

require the knowledge of appropriate transition and indicator functions deflined based on the

physical behavior of the system (see Section 2.4.4).

The contact task control system described by (1.3) undergoes discontinuities at discrete time

instants f¡ (l is the number of discontinuity instants) by switching from one region to another

region of motion and behaves smoothly otherwise. Since the Hertz-type contact model (3.23) is

continuous, we have:

x(/r* ): Síx(t., ))= x( r,- )

x(t2* ): gz(x(tz- )): x( rr- )

where "+" and "-" signs denote the time just after and before contact and

and t, respectively. Since being in contact or separating is judged based

with respectto (7 .1b), the indicator functions fu(x) and h2@) arc defined as:

; (xz +11 p >0)

; (xt - x",u ) 0)

125

(1.12)

(1.r3)

separation instants /,

on the contact force,

lx.r-xunr=oht(x): ttz@):\*., 
+rf p = Q

(1.r4)
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where both x7 and x2 are evaluated at each discontinuity instant, /¡. Subsequently, Jacobians of 97,

Sz, ht and h2 are (see Section 2.4.4):

H t(*
(x, +11 p >0)
(xr-x"r,>o)

(7.1s)-)= H,,, 
'= {lf Tl :

Substituting (7.3), (7.15) and (7.16) into (2.27) and (2.28) yields the transition conditions of the

linearized equations at instants of discontinuities.

7 .4.3 }tlumerical Integration

Except for a few special cases, Lyapunov exponents cannot be calculated exactly and in most

cases one should resort to numerical computations (Medio and Lines, 2001). To construct a

suitable finite difference scheme for (7.3) and (7.11), we resort to the nonstandard finite-

difference discretization framework (Mickens,2002). The goal is to reduce the possibility of

numerical instabilities and to enhance the computational reliability of the procedure for

calculating Lyapunov exponents over large periods of time. It is shown that in comparison to the

standard fourth-order Runge-Kutta method, calculating Lyapunov exponents of switching control

systems using the nonstandard finite difference discretization scheme provides numericaliy

stable results with a larger critical integration step-size and less computation time (Sekhavat et

a1.,2003). Thus, the method is meritorious for stability analysis of switching control systems

using Lyapunov exponents.

The first step in constructing the scheme is to approximate the derivatives by their respective

forward-difference approximations and manipulate the right-hand sides as follows:

G,(x')= o,Cr-) = 
[å I

-(fr+l) -(k)
^'t -rtt _--(k)

--¡.â

h¿

,(k+r) -,(k) l-\tGY' -*,",)-Ít*nu'*2*2_)mtry
h - 

I-+ r(k+t) -Wlt, + px\k*,)¡H(,Í*, - *,,,), - Fo,,)

(7.16)

(noncontacl¡

(contact)

(7.17a)
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wli'-v{!' ,¿,

^_ 
=V)t.

w[5'-vÍi) (k\
, -.Y1ah

I u" 
,Í? -K' ,;1',v5\) -vlo,) l;v *h =l-t:Pft+ 

p,[o))n(*:, -*,..)*' r:r .(-* -(K'P e n6y, -,,,,)n

-\w5\,
m

(noncontacî)

,/t\' (contact)

(noncontact)

("¡a

where *:o) =x,(t), ,:'*" =x,(to+h), Wf, =V/uQk)

above equations can further be

Noncontact mode

rÍo*t) : x[k) ¡¡r(*)

-*"n,)n-'r,r9 l-L
\m

rearranged as

Contact mode

"Ío*t) 
: xfk) ¡¡y(t)

x:o*t) =

,to) -Y6f, -*o^)

r+K"h
m

+ hvlï),/Í!u)

,/r$')

,/:!)

: ,/t[f)

= v[!)

,/rti)

+hwl?
Koh

,/'Í!)

v5!") =

K., h1+ ''
m

,/tt? -Koh w[t'
m
Kh1+ "'

m

,/rtÏ')

,/':t)

,/r:ï) -!f#(r+ p *[o))u (., , - *","1-' v[],

r*r"!.9#pu|l,, -,"..y

,/r:? -3(Kt 
+t)h 

(t+ p x[o))u(.y, - r",")'-' ,y{!)2m\
r+K"'h *(Kt +r)h p u6lo, - *","Ymm

(7.18)

Note that although the NSFA method is implicit by construction, the difference equations (7.18)

enable the solution to be computed explicitly. Also, difference equations (7.1S) have the same

order as the differential equations (7.3) and (7.11) and the fixed point of (7.18) is the critical

(K, +l)

(7.flb)

and vlf*' =t//ü(tk +h) (ij:r,2). The

p n (r[o' - *",,)')rti.t) (contact)

*[o) +@! Fo,, -(x, 
+ùn 

u@{o) - x",u),mm

mm

v{fu) =vrÍ!) *twli)
v{:*') =,lr[!) +hvli)
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point of the original dynamical system (7.3). These features reduce the possibility of introducing

spurious or other numerical instabilities associated with unequal orders of differential and

difference equations or dissimilar characteristics of differential and difference schemes

(Mickens,2002).

Another key issue in numerical integration of switching control systems is to determine the time

that contact or separation occurs. For the motion that starts in free-space at time t¡a

(*Gò-x",,s0 or 1+pi(to)<0), the contact made within QoJo*r) could be observed when

(*(to.r) - x",, > 0 and 1+ p*(to.r) t 0). This can be numerically detected only if the time-step is

small enough (Brogliato et al., 2002). Therefore, we adopt the so-called step back procedure

(Brogliato et a1.,2002; Taylor and Kebede, 1997) into our switching control system as follows:

Stepl: Equations in contact or noncontact region are integrated. Each integrated point is

considered as a "ttial" point until the switching condition (7.1b) is checked. If no

switching occurs, the point is "accepted".

Step 2: When switching from contact to noncontact or vice versa is detected, the trial point is

discarded and an iterative procedure is initiated with half of the previous integration

step-size (hl2) until either switching does not occur or the trajectory is on the

discontinuity surface (with the machine accuracy of 10-ls s). The model does not

switch during this step.

Step 3: On the discontinuity surface, nonlinear and linearized equations of motion are

switched to the equations of the second region. The transition condition of the

linearized equations is calculated from (2.27) or (2.28) after substituting (7.3), (7.15)

and (7 .16) in them.

Step 4: Normal integration with the preset integration step-size, å, proceeds.

7 "4.4 Stability

The numerical results of Lyapunov exponent calculations are used to discuss the stability of the

switching contact task control system described in (7.3).

System Parameters

The spectrum of the Lyapunov exponents is calculated for a 0.252Kg implement with steel tip
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colliding with a steel environment. The implement moves from the initial position, xi:I m, in

free-space toward the desired position, xd,,:\.15 m. Upon collision with the environment located

at x"ru:7.03 m, the controller brings the implement into a stable contact with the environment

with the desired contact force of Fdrr:l N. For steel on steel collisiofl, Hrtrrt= z.osxro'r[$]
\m' )

and the coefficient of restitution is assumed to be e:0.6. Thus, from (3.24):

0.975
P=- .

xo

129

(t.te)

The noncontact control gains are selected as Kr:5000 N/m and Ku,:100 Ns/m whichprovides

an approach velocity of =Q.(6 m/s at the time of the first collision with the environment. The

integration step-size is chosen as å:i0-8 s.

Truncating the Calculation Time to a Finite Inter-val

Although theoretically Lyapunov exponents are calculated as / -+ co, in practice, we need to

determine the exponents on a finite time interval. Truncation of time to a finite interval is an

important issue. Recently, Grune (2000) proved that, for linear flows, the finite time exponential

growth rates for some fìxed time, T, uniformly converge to the uniform exponential spectrum.

Since the uniform exponential spectrum can be interpreted as an extension of Lyapunov

exponents (Grune, 2000), this proposition provides the theoretical background to terminate the

exponent calculations after a finite time T. For choosing the appropriate T,fhe strategy used in

other studies with apparent success is to compute the exponents on progressively longer time

intervals, while monitoring the variation in the results obtained. Convergence is declared if these

variations are sufficiently low (Dieci and Van Vleck, 2002).In the present work, we adopt the

same criteria in calculations of Lyapunov exponents. The range of force control gains are chosen

as 10. ¡u, .100 Ns/m and 600 . K, .1000. The results showed that the largest Lyapunov

exponent changes between 0.8 and I second is less than0.25 o/o.The results for typical gains

(Kt,K,,) = (600,10), (600,100), (1000,10) and (i000,100) are depicted in Fig. 7.2. Thus, in all

simulations the spectrum of Lyapunov exponents is calculated for 1 s.
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Convergence to the Exact Solution and Stability

A crucial issue of the numerical solution to discontinuous differential equations is to prove that

the numerical results converge to the true solution of the system. The matter becomes even more

importært when it comes to deciding on the stability of the systems based on numerically

calculated Lyapunov exponents. Filippov has recently proven (Section 2.6) that if Filippov's

solution of a discontinuous system exists and is unique, the approximate solution obtained using

a Runge-Kutta method with suff,rciently small integration step-size (å) exists, and as h -+ 0,

converges uniformly to the exact solution. Therefore, in order to illustrate the uniform

convergence of the results obtained from the nonstandard finite difference ( NSFA ) scheme to

the exact solution, numerical results are compared with the results of the fourth-order Runge-

Kutta (RK4) method with sufficiently low step-size. Figures 7.3 and 7.4 show the largest

Lyapunov exponent for the system with gains K,, = 100 Nsf m, K,, 50 Nsf m, KÍ : 800 and

Ko:5700 N/m using NSFA and RK4 schemes with two step-sizes, 10-8 s and 10-e s. These

figures show that, as h deueases, the largest Lyapunov exponent computed by the NSF^ method
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approaches to the one calculated using RK4 which itself is proven to converge to the exact

solution (Filippov, 2001). Being assured from the convergence of the numerical results to the

exact solution and based on the result that the largest Lyapunov exponent is negative (see Figs.

7 .3 and 7 .4), it can be concluded that the attractor of the system is a stable equilibrium point. In

other words, the above chosen control gains would result in a stable switching contact task

control system.

To further demonstrate that the system trajectories converge to xro where the implement is in

stationary contact (x = 0) with the environment following the contact force of 7 N (Fd,, = lN),

the nonlinear responses of the system are shown in Figs. 7.5 and 7.6. These figures not only

demonstrate the convergence of the trajectories to the equilibrium point, but also illustrate that

when contact with the environment is lost due to bouncing, contact is re-established until the

desired contact force is achieved.

7.4.5 Basin of Attraction

As stated in Section 2.4.5, although Lyapunov exponents are calculated along a single solution

trajectory, they have the same values for all trajectories in the same basin of attraction. To study

the basin of attraction of the above system, the algorithm in (l.iusse and York, 1998) is employed

(see Section2.4.5). The region f :={x,*; 0,5 <x<Im & 0.0<* <0.9mls } is divided into

gridboxesneighboringthecenterboxwithsizesof 0.05m and0.lm/sforxand i,respectively.

Extensive simulations revealed that the state trajectories from all the neighboring grid boxes

enter the center box and stay thereafter. Thus, we conclude that the region, f , is a part of the

basin of attraction and our previous discussions and observations on stability are valid for this

region. Note that this region is not necessarily the entire basin of attraction. Finding a larger

stability region is important, but is beyond the scope of this research.

7.4.6 Lyapunov Exponents and the Overall Convergence/Divergence Rate

Since the absolute values of Lyapunov exponents measure the rate of exponential

convergence/divergence of two initially close trajectories, they have been used to compare the

convergence rate of different smooth control systems to the equilibrium point (Wu et al., 2001).

The more negative the largest exponent is, the faster the solution converges to the equilibrium
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point. However, Figs 7.7 and 1.8 reveal that this is not always the case for switching

systems. Comparing the responses of systems with Ko:6300 N/m and Ko =9100 N/m (Fig. 7.7)

shows that the system with the higher Ko converges to the equilibrium point faster. On the other

hand, the corresponding largest Lyapunov exponents are -143740 l/s for Ko:6300 N/m and, -

35950 l/s for Kr:9100 N/m, respectively. Thus, the system with less negative largest Lyapunov

exponent has a higher convergence rate to the stable equilibrium point. To explain the

controversy, the close-up of the largest Lyapunov exponents is shown in Fig. 7.8. This figure

shows that when the system is experiencing impacts, it is still in the transient period of motion.

After the impact phase is completed, the convergence rate of the system with more negative

largest Lyapunov exponent (Kp:6300) exceeds the convergence rate of the system with less

negative largest Lyapunov exponent (Kp:9100). A closer look at the inset of Fig. 7.7 confirms

that after completion of the impact period (starting at points A and B), the system with more

negative largest Lyapunov exponent (Kr:6300) converges faster and with less number of
oscillations to the equilibrium point. This observation brings us to the important conclusion

that the value of the largest Lyapunov exponent is not a measure of overall convergence rate as

for smooth systems, but it can be a measure of the convergence rate only during the remaining

continuous period of response after the discontinuous period is completed.

7.4.7 Sensitivity Analysis Using Lyapunov Exponents

Lyapunov exponents can also assist in studying the effect of different control gains and system

parameters on the stability of the switching control systems. To study the stability and robustness

of the system with respect to different force control gains, the largest Lyapunov exponents of the

system having the same position control gains are calculated with K,, increased from I 0 Ns/m to

I00 Ns/m with increments of I0 Ns/m and K¡ increased from 600 to 1000 with increments of 50

(see Fig. 7 .9). The fact that the largest Lyapunov exponent is always negative indicates that the

system stability is not sensitive to the changes in these control gains.

In addition to the control gains and system parameters, the effect of the approach velocity on the

system stability may also be of great interest. Therefore, as another example of using Lyapunov

exponents for sensitivity analysis, we study the effect of various approach velocities before the

first impact on the system stability. This is accomplished by fixing the force control gains

Ku,=50 Ns/m andKT:800 as well as the velocity gain Ku,:I00 Ns/m and changing the position
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Fig. 7.9 Bifurcation diagram of the largest Lyapunov exponent.
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controller ga;.n K, in each simulation. Fig.7.10 shows the largest negative Lyapunov exponents

obtained by changing K, from 3500 N/m to 9900 N/m incrementally, which corresponds to

approach velocities between 3.5 m/s and 7 .5 m/s. According to this figure, the equilibrium point

of the system is always asymptotically stable for the above approach velocities. Such an

observation is useful in practical applications for setting the appropriate range of implement

speed that would guarantee the stability of the system in case of unexpected collisions.

As it was explained in Section J .4.6, the largest Lyapunov exponent in Fig. 7.10 is not a measure

for comparing the overall convergence rates of the system with various approach velocities.

Specifically, the jump in the value of the largest Lyapunov exponent around the approach

velocity of 5'49 m/s (çtoint II) is due to the fact that after the impact period, the system conveïges

to the equilibrium point faster than the system with any other approach velocity within the above

range. To further verify this phenomenon, the implement position responses pertaining to the

cases (I), (II) and (III) (see Fig.7.10) are illustrated in Fig.7.11. Comparing the convergence

rates of the system from points A, B, C to the equilibrium point in this figure demonstrates that

the fastest convergence is from point B to the equilibrium point which belongs to the system Ii
that has the largest negative Lyapunov exponent.
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Chapter I

Overall Stability Analysis of Hydraulic

Actuator's Switching Contact Controller

8.1 Introduction

The individually designed control laws in Chapters 4,5, and 6 for different operation phases of

contact task control are now combined into an overall switching contact task control scheme for

hydraulic actuators. The overall scheme is capable of: (1) asymptotic desired position regulation

in free space, (2) ímpact suppression and stable transition from free to constrained motion and,

(3) asymptotic desired force regulation in sustained-contact motion of hydraulic actuators with

friction. The impact control scheme is used for the first time to fill the gap of damping the

undesirable impacts and dissipating the impact energy that could drive the whole system

unstable. The position and force control schemes are capable of asymptotic set-point regulation

in the presence of actuator friction without having the complexity of sliding mode or adaptive

control techniques.

Existence of at least two switchings in the control scheme (free-space to impact mode, and

impact to sustained-contact mode) results in an overall nonsmooth system. Although stability of

the actuator motion under each individual controller has been addressed in previous chapters,

stability of the overall system that experiences switchings between the controllers is an open

t39
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issue. Finding an overall Lyapunov function for the overall task is extremely diff,rcult, if not

impossible. In this chapter, the Lyapunov-exponent-based framework outlined in Chapter 7 is
employed for rigorous stability analysis of the overall contact task control scheme of the

hydraulic actuator. If numerical artifacts are under control, calculation of Lyapunov exponents

provides a solid insight of the overall stability of the system without imposing the restrictive

assumptions commonly required in order to construct a Lyapunov function for direct Lyapunov

stability analysis.

Employing the concept of Lyapunov exponents for stability analysis not only allows the system

to have numerous switches between different phases of motion, but also facilitates the following

modifications on the dynamic model and control laws to enhance and.ior generalize the

performance and applicability of the control system:

1) In order to make the Lyapunov stability analysis manageable, the three distinct control

laws introduced in Chapters 4, 5, and 6 were designed using the simplified hydraulic

model based on assumptions of (i) the piston is initially centered in the cylinder, and, (ii)
the whole motion occurs within the mid-point vicinity of the cylinder. These assumptions

that are necessary for Lyapunov-based control design, can be released when the system

stability is being studied using the concept of Lyapunov exponents.

2) Implementation of the discontinuous terms in the controllers developed in Chapters 4 to 6

ineachphase of motion [see (4.16), (5.45), and (6.6)] may cause undesirable chattering

in the control signal. The chatterings are removed by replacing the discontinuous slþ
functions in the control laws with smooth hypertangent functions with the price of
weakening the previously conducted stability analysis. Stability analysis using the

concept of Lyapunov exponents provides solid stability results for the modified system.

8.2 Combined Contact Task Control System

The dynamic model used for the overall contact task control employs the general hydraulic

pressure-flow equations as follows:

140
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(P' - P")

m

p
V, + A(x (8. 1)

p
4-¿@

i,o --x^_ +

In studying the contact task stability of hydraulic systems, in general, and their stability analysis

using Lyapunov exponents, in particular, a good friction model for the actuator friction and a

realistic impacVcontact model that represents the real behavior of the system during impact

transition and sustained-contact periods of motion are among the most important factors

contributing to the true judgment of the system stability. Hertz-type contact model (equation

3.23) and the original Hertz model (equation 3.21) used in individual development of control

schemes will also be used in the overall task's stability analysis using the concept of Lyapunov

exponents:

lQ+ nÐn(x-x,,,)' ; (x-x",, )0) & (1 + p*>0) & (io + 0)

F",,=1 ,f*-x,n,)n ; (x-x"n,)0)&(xo=0)

[ 0 ; otherwise

and xo is the implement approach velocity or the velocity at the instant when the contact force

increases from a constantly zero value to a non-zero value.

Employing the approach of Lyapunov exponents allows for replacing the previously employed

discontinuous Tustin friction model with the continuous.LuGre model [equations (3.19) and

(3.20)l whose continuity complies with the continuous behavior of friction and the calculation

procedure of Lyapunov exponents.

Fr:ooz+orà+di

x:
.ú-

b_1i -

Po=

m

_(
,) [

rJ

'- r,r

F
_ ---:

lt

-xo)

-xo
k",
:L
î

+

-
o

1
t

tV

4

i-

,

=

=

(8.2)

o,l*l

(8.3)

(8.4)
4 +(4 -Fr¡e-Gt"')'

Note that introduction of the bristle deflections as a new immeasurable state variable in this

model adds to the order of the entire system dynamics. This was not desirable for contool design
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in Chapters 4 to 6 using Lyapunov stability analysis but can be accomodated when using the

concept of Lyapunov exponents.

The overall contact task control algorithm is intended to be capable o1 (i) asymptotic position

regulation in the free-space, (il) asymptotic impact control upon collision with an unknown

environment by resting the hydraulic actuator on the surface of the environment recorded upon

the onset of impact and, (iii) asymptotic desired force regulation when the impact oscillations are

dissipated. Therefore, the control scheme is constructed by combining the three Lyapunov-based

control laws previously designed in Chapters 4 to 6 and switching from one to the other based on

the control task:

a) Free-space position control:

u, : -lK o,lr, - r"þEn(r,o) + K,,(* - ro,))tlp, - sign(x,r)(p, - p")

b) Impact control:
lt'\

u, : -\K r,lr, - qþtgn(r,o) + K,,(* - *,,)N P, - sign(x,)(P, - 1)

c) Constrained motion force control:

( I F I \
,, : -[Ko. lf - 

r" -]ls4n('",) + K r(F"* - Fr") )W
where Koo, K,r, Kr,, K,,, Kor,and K, arepositiveconstantcontrolgains.

(8.s)

Implementation of the above discontinuous control scheme may cause undesirabie chattering in

the control signal. Therefore, when a discontinuous controller is implemented, the discontinuous

terms are replaced with continuous functions (Southward et al., 1991; Slotine and Li, 1991;

Corless, 1993). Replacing the discontinuous sr'gn functions with hypertangent fi.rnctions leads to

the following form of control algorithm:

a) Free-space position control:

tt tr-
up = -\Ko,lP,- p"ltanh(ør,r) + K,,(x-r*)NP, -tanh(ax,r)(P, - P")

b) Impact control:

c) Constrained motion force control:
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( t F ru, = -1K,. 
lf - 

r" -+ltanh(ax,r) + K t(F",, - Fr",))@ (8.6)

where a is a finite positive large constant.

The switching from position control to impact control happens when the implement,s force
sensor senses the first nonzero force. The switching from impact to sustained-contact mode of
motion occurs when the implement is stopped on the surface of the environment
(x=x"n, &' x=0 &' x=0). If during the sustained-contact period of motion, the contact
with the environment is inadvertently lost (x - x",, < 0), the control scheme switches back to the
impact control law and rests the implement on the environment surface and then switches back to
the force control law to follow the desired contact force. This leads to the following flowchart as
the control algorithm:

uP

Yes
=0\env

No

uI

\:-/ i
\

-J_-h-

:Y
'" env ,

Y.
I Yes

N'.

F

No F =0' ES

env

Fig. 8.1 The control switching's logic.
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Combining equation (8.1) to (8.4) and (8.6), and defining the sysrem states

x:(xt)xzrx3rx4rx5,xu)r whero Jú,: x, x2:x, xr:P, , xo=Po, xs=xrp, and, xu=2,

state-space equations of motion are now constituted as follows:

it=€z

aoxe
ool*rl

AS

the

A(x, -xo)
m

l* o-,""
) Fo,,

* o., 

[", F, + (F, - Fr¡s-61ù' 
""s

i=f(x):
ß(

:_______Lt_t.-
V, + A(x, -xo)[

/
:--J-[ A,^
Vo - A(x, - xo) [

1 k,o
- --xs +:7't

1î

x2=

+--"J

x6

x4

is

x6

f{t+ n*r)H(x, - x,nu)' ; (xt

1 U(r, - x,,,)n t

Io;

ool*rl

>0) &. (x)

-0)

(8.7a)

(8.7b)

-x2
% +(r, -F"7e-6t'")'

where

F"ru =

- x"nu 20) &. (I+ px,
(x, - x"n, >0) &. (x,

otherwise

É0)

(8.7c)

and xit is the implement velocity at the last time instant when the implement position was on the

surface of the environment, x = xrnu.

In the presence of the environment, the equilibúa (x,o) of the above nonsmooth system are those

points in the contact region that satisfu the following conditions:

-tanhQxr)(x, -xq)
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xj'=o
A(xì'-)c;') -ooxi - Fo", =0
xi =0

--ss ( Fo",\''
.x.t =[,, J 

*x",,

(8.8)

In the absence of the environment, however, the system will never switch to impact or force

control laws and the equilibrium of the system would be the same range of points obtained in
Chapter 4.

The preliminary step before proceeding with the system stability analysis using the concept of
Lyapunov exponents is to prove that the switching system has a unique continuous solution.

8.3 Solution Analysis

Exßtence and contínuation of Fiþpov's solution

Let region Ç)=À6xÌ and let D be an arbitrary compact set in O. The right-hand sides of
equations (8.7) are def,rned everywhere in Ç), and are bounded by B(t). Let B(r)=2, which is

obviously integrable on D. Furthermore, each term of the right-hand sides of (8.7) is measurable.

Thus, the right-hand sides of equations (8.7) satisfu condition B of Filippov's solution theory

(Filippov, 1960) and according to Theorems 4 and 5 developed by Filippov (1960), we have the

local existence of a solution which is continuous on [/, ,trf as t, -+ æ.

aniqueness of Filippov's solution

Discontinuities of the system occur at instants of free-space to impact mode switching and also

switchings between impact and contact modes of motion. Since at the time of the system's only

switch from free-space to impact mode of motion, x, + lf p > 0, the first discontinuity surface is

defined as:

Surface I

Note that in this case the controller switches from u, to u, .

The second discontinuity surface is where the system switches from impact to contact phase of
motion after the implement has rested on the surface of the environment:

Sf := {(x, ,x2,x3,x4,x5,x6) t xt - x"nu :0 , x, > 0} (8.e)
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Surface 2 Sra :={(x,,x2,x3,x4,x5,xu):x, -xrru =0 &. x, =0 &, iz =0} (A.fOl

If the system re-enters the free-space when the contact control law is in effect, the control would
switch back to impact control law and, therefore, experiences discontinuity. This can be detected

by monitoring the contact force (8.7b) and if F,n, changes from a positive number to zero,

command the control to switch back to impact mode. Therefore, the discontinuity surface of this
case (uo to z, ) is

Surface 3 Sj :: ftx, 2x27x3,x4,x5rx6) 1 xt - x"r, =0, x, < o) (8.11)

Note that the superscripts and subscripts in (8.9), (8.10) and (8.11) denote the dimension and the
number of the discontinuity surface, respectively. Clearly, the vector-valued function of the
right-hand sides of equations (8.s) is continuous up to the discontinuity surfaces and the
discontinuity surfaces are smooth and independent of time. Therefore, conditions A, B and C of
Filippov's solution theory (Filippov, 1979) are satisfied. Next, the analysis of the uniqueness of
Filippov's solution must be carried out Io] each discontinuity surface. Here, we only show the

detailed analysis for 
^Sf 

.

The solution region is divided by the surface sf into two parts: n)* := {r: *, _ x",, }0} and

Ç)- := {* : ,, - x",, 1O}. fne normal to this surface, denoted by N, , is:

(8.12)

The vector functions fr. and ff are defined as the limiting values of the right-hand sides of state

space equations in f)* and f)-:

*, = ls 9{ as,' ôs,5 ôsr5 9l' = t, o o o o o).' [ôr, ôr, A\ ô*o Axs fuu)-\r v v v
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xr=xz

oox6 + 
',(., -

_ A(x, - xo) _
m

x6=x2

i_
)e

V.
Fc

oo

% +(r' 'u)* 
.,'*'

-(rr/,")'
x2

*"
J

m
p

fi=
x,.

ts
P" - tanh( t)(xt - xo)

ool*rl

@"

, _A(xr-xo)¿t2 --=.---
m

-r"r I'ol*zl

4 * Cr, - Fr¡el',nr 
xs 

)+ 
ozxzoox6 + rr(r, -

_(I+ pxr)H(x,-x",,)'

(8. I 3)

The projections of f,. and ff along the normal to the discontinuity surface, N, , are:
f,i, = fi .Nr = rz

fñ, : fi .Nr : xz
(8. i4)

It can be seen that fi > 0&f; > 0 when x, )0 and f,- < O&fi < 0 when xz 10. Therefore,

according to Lemma 9 of Filippov (1960), the solution goes through the discontinuity surface
with an isolated point and we have uniqueness and continuous dependence of solution on the
initial conditions. When the discontinuity surface (8.11) is met at the time of switching from
contact back to impact phase of motion, the2nd and 5th equations of (g.7a) will be changed
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according to (8.7b) and (8.7c) and it can be similarly pïoven that the system has a unique

solution.

8.4 Stability Analysis

In this section, the methodology introduced in Chapter 7 is invoked for stability analysis of the

switching control system (8.7) using the concept of Lyapunov exponents. First, variational

equations of smooth parts of the motion are obtained. Next, methods of addressing the

nonsmoothness problems are applied and the issues of solution analysis, existence of exponents,

linearization at nonsmooth instants, and computational stability and efficiency are addressed in
detail.

8.4.1 Variational Equations for Smooth Parts of Motion

With respect to the method explained in Section 2.4.2, the variational equation

vt = F(t)w, (8.1 5)

should be integrated simultaneous with the original nonlinear equation (8.7). The Jacobian

matrix F(t) in (8.15) can only be derived for the smooth parts of motion, i.e., parts with no

switching between control laws and no sharp edge introduced to the system because of the

absolute value function. In such smooth parts of motion, the Jacobian r'(r) is obtained by

substituting (8.7) in (2.14) as follows:

F'(r)=

m

øØn-Çx,s,) pA

0

&o

t
&Øn-Çx,so)

vo'
t-
tu"o

-&z4sT

0

1

otg2+o2+Hpgl

V,

pA

c,Å*'l

A

m

0

qA+l

0

0

Ç þs,
V,

Ç þso

0
ooqlnl

-q +-----------:-r

2V, gt

0
V'o

0
o,o( .élgl4Ð \ 'n 

r^

"[o' 2su )+þ-ry)
00

_V'o
k,o

-8sT

orlnl
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where

v,(x,) = V,

Vo(x,) =lt-"

6
Cr: ^la co

\p
gr(xr) = F,

+ A(x, - xo)

- A(x, - xo)

w

+ (4 - Fr¡e-G't'")'

g z (x r, x a) :, - 
o rx us ign(x r) -2o 

ox ulx rlx, (F, - Fr) e-G' l' ")'

8t (u, g, )'
tn o (Þ tÞ \gr(x,x,): 

l57I. 
+ sign(xrrlt+-rr)

lp p ( or+p"l
B¿(xt,xs) = lt;+ 

sign(xrrlr, - --)

8s(\,xr,xo,xr) =

-(f r,lrt - ,oltanhçaxr) + K,,(x, - *o"))

-@ o,l*, - r ol tanh(øx, ) + K,, (*, - * *"))

-(u,,1*, - *- - ?l'*@ x,) + K,(H (xr - X 
"rr)'

u =uP

u=ut

u =up

;

I

-Fo,)l i
I

Eø(xz,xo,xr)=@

lX o,stgn(xt - x+)tanh(axr) gu ;

Et(xs1x42x5) = 
lK o,sign(x, - xo)tarh(axr) gø i

lK o,sign(xt - xq - Fd,, f A)tarlh(axr) gu ;

I 
oK o,lr, - *ol(t -,uoh' (*r)) ;

Bs(xt,x4,x5) = laK o,l*r - *ol(t - rr"rr' @)) ;

loK r,lr, - *o - Fo",lAlþ- tanh2 @)) ;

g n (x, x r, x +, x s) = g o p 
^ 
* a(x' - x )(t - tanh' (ax ))g' * I

,8ó6 , 2gu 
__ 

u

u=uP

u =ul
u=uF

u=uP

u=uI
u=uF
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g,o (xl, 
"r, = 

{

nH(I+ px)(\ - x",,)'-'
m

nH (x, - *nnu)n-'

; (xt-x",,20) & (1 * pxz >0) & (x) +0)

(r,-x",u >0)&(xå =0)
otherwise

m
0

8,, (r,, = 
{,a 

- x"n,)' , 

,

I u.,
gr2(rr) = j K,,

lnKrH(x, -x"n,)'-'

(*, - *",, > 0) & (I+ px, > 0) & (x:, + 0)

otherwise

) u=up

, u=ul

, U=Up

(8.16)

Substituting (8.16) into (8.15) constitutes the system's variational equations in the smooth parts

of motion.

8.4.2 Analysis of the Overall Nonsmooth Motion

Following a similar procedwe as in Sectio n 7 .4.2, in order to calculate the Lyapunov exponents

of the overall switching contact task control system, issues including the solution concept of the

linearized system, linearization of the nonlinear equations on the discontinuity surface, existence

of the exponents as the limit stated in(2.6), and the numerical stability and convergence of the

results to the exact Lyapunov exponents should be addressed. In the following subsections, the

theorems and methods introduced in Chapter 7 are used to address these issues in detail.

Solution Analysis of the Variational Equation

Withrespectto (8.15) and (8.16), the right-hand sides of the linearized equations of motion are

piecewise continuous in r. Following the theory of the Caratheodory differential equations

(Section 2.2), the existence and uniqueness of the solution can be outlined accordingly. Since all

the elements of the matrix F(r) in (8.16) are summable on each segment contained in the interval

Ito,t¡), the solution of (8.15) with arbitrary initial condition V,G) =W,o(t elto,tl) exists on

the whole interval fto,t ff and is unique (see the Theorem in Section 2.2).
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Existence of Lyapunov Exponents

Similar to the discussion in Section J.4.2, the Kunze's extension theorems on existence of the

lim,-- in (2.6) are the theoretical foundation for applying the Oseledet's Multiplicative Ergodic

Theorem (MET) for the existence proof of Lyapunov exponents in non-smooth systems.

Conditions (41)-(,48) of Theorem 4.1.1 (Kunze, 2000) can be verified for the system under

study and the details of the mathematical proof are beyond the scope of this study. Condition

(49) requires that there exist functions h¡ where hr--\ indicate the next switching to a different

manifold of motion and the trajectory does not arrive at h¡=0 tangentially. Introducing such

indicator functions for different switching cases of the system shown in (8.7) is the topic of the

next section. The theorem 4.i.1 and Corollary 4.1.8 of (Kunze,2000) provide the required basis

on which a measurable cocycle can be defined and the existence of the Lyapunov exponents

established.

calculation of Lyapunov Exponents at Nonsmooth Instants of Motion

With respect to (8.7), the nonlinear equations of motion are not linearizable at the following

instants:

ù switching the control law from free-space to impact mode of motion,

iÐ switching the control law between impact mode and constrained mode of motion,

iiÐ xz=0,

iv) xs :0 
,

Ð xs - xq = 0 (within constrained region this condition will be x, - xo - Fo",lA = 0)

Therefore, it is imperative to resort to the extension method of the calculating the variational

equation as explained in Section2.4.4. For the system under our study with continuous contact

model and friction models, the states evolve continuously in time and the Jacobian of the

transition condition, G, is always the identity matrix, 1616. Thus, equation (2.27) simplifies to:

öx* : òx- +lf ,@-) - l,{*-)73J)!!- (8.17)

where -f, ^d .f , æe the nonlinear equations of motion before and after the nonsmooth instant

tr, and the plus and minus signs characterize the right and left-sided limits, respectively. The

l5l
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matrices H(x-) and G(x-) are the Jacobians of the indicator function, h(x), and the transition

condition g(x) as defined in Section 2.4.4. Careful examination of the dynamic model (8.7)

manifests that the right-hand sides of the nonlinear equations of motion do not experience

discontinuity when there is no control switching. In other words, in the last three of the above

cases of nonsmoothness, (iii)-(v), .f t = .f , = f and equation (8.17) yields:

Òx' = Òx (8. 1 8)

Consequently, we only need to define indicator functions for cases (i) and (ll) where we have

nonsmoothness due to switching between the control laws during transits between various modes

of motion.

The definition of the indicator fi.rnctions h(x) for the first two cases (switchings between the

control laws) is based on the physical motion. The control scheme switches from free-space to

impact mode of motion upon detecting the first nonzero impact force (3.23). The second

condition in (3.23), i.e., (1 + pi > 0) , is always satisfied as p is always positive and, before the

first impact, the implement approaches the environment with a positive velocity. Hence, the

indicator function for the switching between free-space to impact mode of motion is the only

condition that determines the first impact:

h,(*) := xt - x,,u = 0

The Jacobiffi H,(x-)for this transitional case is:

õh,(x\l
H ,(x-): ""t\:/l : (1,0,0,0,0,0).r \ ' ôx, lx=x1r, ¡

(8.1 e)

(8.20)

V/hen the impact mode is completed, the implement rests on the surface of the environment with

zero velociv Gr=0) and acceleration (*z=0). Therefore, the indicator function and its

Jacobian for switching from impact to contact mode of motion are constituted as follows:

h,(x):=l(,: *(*,)')=

152

i(.t .(^ rxs - x,) - c ox s -',(., *,)-r*,-(r+ px,)H(x,
ool*rl _",,","J 

J=o
(8.21)

4 +(f, -Frye-(+tù'
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(

l-rnøt*f,6)Qi 
-r",)'-'x, xr-*n(q;ì+or+Hp{,) , mxrA , -mgA , 0 ,

Note that *2, Ft, g, md grr tre previously defined in (8.7) and (8.16).

If the system loses the contact while the sustained-contact controller is in effect, the control

algorithm switches back to the impact control law and, therefore, introduces discontinuity to the

system equations. This case of nonsmoothness is also detected using the same ( and H,

indicated in (8.19) and (8.20).

8.4.3 Numerical DiscretizationScheme

Since the purpose of calculating Lyapunov exponents is to investigate the stability of the system

based on the signs of the exponents, suppression of numerical instabilities induced through

numerical discretization of the original differential equation is of significant importance. As

explained in Section 7.4.3, the nonstandard finite-difference (NSFA) discretization scheme

(Section 2.5) has shown to be capable of enhancing the efficiency of computations and

particularly effective for the calculation of Lyapunov exponents in discontinuous control systems

(Sekhavat et al., 2003). Therefore, in this section, the nonstandard finite difference scheme is

constructed for both nonlinear and linear equations of motion. The scheme for nonlinear

equations is obtained by substituting the forward-difference approximations,

r _ x(t o*, + rP) - x(t o), for the derivatives:
a

-*klo, lddl
[ 8, ))

(8.22)
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xfk*t) - *tt')

,to)

+ g *tu)

*91 u@\0, -rto))-oox[o) +*\
oolx\o)l*[o)

4 + (r, - Fòe-GtÐ l""Y
- Hg,r("Í" )J

xto*') =

m

rjo*t) : *\o) +
V, + A("Ío' -

þç

þç

-(k+l) _ uG) L
- 

&) I++
V" -,açxft

t+9
L

*[o) + rp rto)

,[o) +Qk'o ,'o'
T

,io*') =

xto*') =

1+
ç o,lrLr'l

r. +(¡, -F)e|{r'l'"Y

where x,fk) = x¡(tt), t,fo*t) = x¡(tt + ç) (i:L.6), and

U=

(y,,F{'

\ur,l*Y'

[",.l't
-', 

= i'
xf(

u=u^

u=ut

u=üF

8n

(8.23)

The derivatives of the linearized variational equations are similarly replaced with their forward-

difference approximations and rearanged according to the nonstandard discretization ruies

(Section 2.5):
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w[!) + a ,/rtf)

wtrf) + l(r:rrr) * ¿,/!!) - ¿v[i)-',[,- ì#J',t']
o, + H pgff)

,or*[o) s!o))

t+L(o,
m'

(
p Al- Axtk,

sf'*
6+l-

\pw

wÍ!." =

Vlo,"' =

)

v{!'-ffiw5i'.frff#rt,,rr.rl-

y(tc) 
fQc)

wt!"' =

wlo,u' =

wcd

r
6_ t-

\p
T:,

(
Þ tl,axlr)

,rr.rl

w[!,*ry( sÍ!,s[o,w{!,

., , e p co*l*[o)l
l-l--

^lzp 
rtlkt r;r't

- 
[rt' 

- ffi '^*r*['\)v[i'* [rÍ" 
. 
#,*nr*;r' t)v;y')

V[u,.t' =

w[0,"'=

r+k'oQ g[o)
I

v't!'*ç s.o'

, . ç orl*50'l
t-r .øôl

(8.24)

where i:1..6. The above NSF^ scheme is implicit by construction, but explicit by

implementation. Also, difference equations (8.23) and (8.24) have the same order as the

differential equations (8.7) and (8.16). These features reduce the possibility of introducing

spurious solutions or other numerical instabilities associated with inconsistent orders of

differential and difference equations or dissimilar characteristics of differential and difference

schemes (Mickens, 2002).

8.4.4 Stability

In this section the numerical results of Lyapunov exponent calculations are presented and used to
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discuss the stability of the switching control system (8.7). The motion of the hydraulic actuator

starts from the initial position xo = 0 in under controller z" fsee (8.6)] and proceeds toward the

desired position, xo",:19 irz until colliding with the environment. Upon unexpected collision

with the environment, the control action switches to the impact control law u, fsee (8.6)] to

suppress the impacts and rest the hydraulic actuator on the surface of the environment, recorded

to be x",,:I5 in on the onset impact. When the impact oscillations are dissipated, the control

scheme switches to the force control law z. fsee (8 6)] to exert the desired force of Fd,,: 500 tb

on the environment. During this period of motion, if the contact with the environment is

inadvertently lost, the control scheme switches back to the impact control law u, until the

implement rests on the environment surface and then switches to the force control law u, to

follow the desired contact force.

System parameters

In order to resemble a true practical case, the system parameters used in calculation program are

chosen as the parameters of the real hydraulic test rig listed in Table 3.1. The supply pressure is

2000 psi as before and value of a in tarh(ax) is chosen as 10000. Other control parameters used

in numerical calculations are tabulated in Table 8.1 and are almost the same as the values in

individual experimental analyses except for the position control gains. The position control gains

are adjusted as the desired position is changed from 8 in in Chapter 4 to 19 in and the new

position control values result in a period of free-space motion that is comparable to the periods of

impact and sustained-contact modes of motion.

Table 8.1 Controller parameters.

K rV f tbJ psi) 4 xl0-s K,,Q/ f in^fpsi) 0.4

K ,,V f ^[pti')
2x70-s

r< r,(v f ^[psi'¡
8 xl0-s

x ,, çrt f ^[psi'¡
3 xl0-5 K,,(r/ f in{Ñ) 0.02

Since the convergence proof of the control laws in each phase of motion (Chapters 4, 5, and 6)

were proven to be contingent upon satisfaction of inequalities (4.31), (5.56), and (6.i9), the

control gains are selected so that they satisfu such relations.
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Stability Results

To determine the stability of the dynamic system (8.7) with parameters shown in Tables 3.1 and

8.1, the spectrum of Lyapunov exponents are calculated through simultaneous integration of
nonlinear and linearized equations (8.23) and (S.24) and inserting their results into (2.6). At
instants of discontinuity, equation (8.17) substitutes the linearized equations (8.24) and the

required firnctions -f,, .fr, and H are chosen from (8.7) and (5.20)l(8.22) depending on the

regions of motion before and after the discontinuity. Numerical results for wooden and metal

environments ate presented in Table 8.2 and clearly show that the system does not show chaotic

behavior. Therefore, discontinuous switchings between various control schemes, employing the

general pressure-flow equations (8.1) instead of restrictive load pressure equation (3.16), and

replacing nonsmooth sign functions in control laws with smooth hypertangent firnctions, all have

no effect in driving the overall switching contact task control scheme unstable.

Table 8.2 Spectrum of Lyapunov Exponents

).1 ),2 t"
J

24 )"s )"6

wood 0.00 0.00 -61.58 -61.60 -131.5s -427.32

metal 0.00 0.00 -33.28 -33.31 -201.8s -3s1.20

In orderto interpretthe physical meaning of the results, equations (8.7) are revisited. According

to these equations, the system will eventually have fixed values for xi , xI , xj", but the values

of xi , xj', or xj' are not fixed. In other words, the system has a set of equilibrium points

(equilibria) where three of the six variables of the system can have various values, two of which,

say xi and x'f , can arbitrary change and the third one, rå", derives from

A(xì' -xi)-ooxi -F0,,:0. Therefore, any two trajectories of the nonlinear system with

infinitesimal difference in their initial conditions may eventually converge to two distinct

equilibrium points both belonging to the system's equilibria (8.8). Consequently, the steady-state

lengths of ll¿r, ftlll in two directions as t -+ co fsee (2.6)] stays at a constant non-zero value

leading to zero Lyapunov exponents. This conclusion is in line with numerical calculation of
Lyapunov exponents shown in Table 8.2.
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Truncating the Calculation Time to a Finite Interval

Although Lyapunov exponents are theoretically determined as / -+.o, in numerical calculations

of Lyapunov exponents, we need to determine the exponents on a finite time interval. Section
7.4'4 explained the strategy used in other studies to choose the truncation time. This strategy is
particularly effective for systems with negative or positive largest Lyapunov exponent (systems

with stable equilibrium points, or chaotic systems). In those cases, small fluctuations of the

largest Lyapunov exponent after the truncation time do not change the negative or positive sign

of the largest exponent and consequently the judgment on system's long-term behavior. When
the largest Lyapunov exponent of the system is zero, however, calculations should be continued
long enough to ensure the system's largest exponent does not change afterwards.

Extensive calculations for the system with parameters shown in Tables 3.1 and g.1 has shown
that after 5000 seconds of calculations with step-size of 0.0001 seconds, the spectrum of
Lyapunov exponents reach their steady-state values with three points of decimal accuracy. This

is shown in Figs. 8.2 where the spectrum of Lyapunov exponents for contact on the wooden

environment is illustrated. Similar results were obtained for contact with metal environment.
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Fig. 8.2 Spectrum of Lyapunov exponents.
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Convergence to the exact solution

An important issue in numerical approximation of discontinuous differential equations is to
ensure that the numerical results are free of numerical artifacts and truly approximate the

dynamic behavior of the system. Two different measures are considered to ensure the validity of
the results and authenticity of the conclusions of the stability analysis of the system. Firstly, the

spectrum of Lyapunov exponents for the wooden environment is calculated using smaller step-

sizes of 0.000001 seconds. Results are given in Table 8.3 and a¡e in good agreement with

previous values given in Table 8.2.

The next important measure of computational stability is to compare the results obtained using

NSF^ with a typical result obtained using another numerical integrator. Here we calculate the

spectrum of Lyapunov exponents using the fixed step fourth-order Runge-Kutta method. This

choice is based on the recently proven theorem stating that if Filippov's solution of a

discontinuous system exist and is unique, the approximate solution obtained using Runge-Kutta

method exists, for a sufficiently small step-size (h), and as h-+0, converges uniformly to the

exact solution (see Section 2.6).

Table 8.3 spectrum of Lyapunov Exponents for z:0.000001 s and z:5000 s.

),1 1"2 7/L^
J )"4 )"s )"6

wood 0.00 0.00 -75.12 -75.14 -125.45 -458.24

Table 8.4 illustrates the values of Lyapunov exponents calculated using the Runge-Kutta

integration scheme with simiiar ft:0.0001 s. They are also in good agreement with the results of

NSFA (Table 8.2) considering the fact that the Runge-Kutta has four times more accuracy in

calculations.

Table 8.4 Spectrum of Lyapunov Exponents using RK4 with h:0.0001s and Z=5000 s.

.2" I )"2 /t3 4
tl- , )"s 1"6

wood 0.00 0.00 -80.12 -80.1 6 -85.22 -488.66

Theoretical results are also complemented with test experiments to complete the solid foundation

for implementing the proposed contact task control scheme on hydraulic actuators with friction.
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8"5 Experimental Verification

Experiments were conducted on the electrohydraulic test rig described in Section (3.1) to observe

the performance of the overall contact task control in practice. The task was to have the

hydraulic actuator start from rest under controller u, (8.6a), and proceed toward the desired

position, xo,,:19 in whlle there exists an environment on its way to the desired position. Upon

collision with the environment (Fu,,)F,,n = 5lbf ) and recording the location of the

environment as x"n,:15 in, the impact control 7aw u, (8.6b) is activated until the impact

oscillations are dissipated and the implement has rested on the environment surface for a

minimum specified time t^,n=2.5s [i.e., (lrrl<e &. l*r1." &. lxr-x",,1<e) and

(t-tr,o )f,n)]. Then control scheme switches to the force control law u, (8.6c) to exert the

desired force of Fo,,: 500 Ib on the environment. In case of losing contact during the sustained-

contact period of motion (* < *",,), the control scheme switches back to the impact control law

u, untll the implement rests on the environment surface and then switches back to u, to follow

the desired contact force. Schematic of the control switching plan is illustrated in Fig, 8.3.

Force control

Position control

i Impact control 
i

ll

Time(s)

Fig. 8.3 Control scheme switching plan.

Metal sheet and wooden plate bolted to an l-beam were used to represent different environmental

stiffüess. The control gains were selected according to Table 8.1 and comply with equations

(4'3I), (5.56), and (6.19) obtained through theoretical analysis to guarantee the convergence of
the system trajectories to the equilibria. The supply pressure of pr:2ggO psi was used in each

experiment and the sampling time of the system was *2ms.
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Figures 8.4 to 8.7 illustrate the responses for the above two types of environments. They confirm

the previous theoretical stability analysis of the switching system and certifli that the proposed

controi scheme in this thesis is capable of suppressing impact oscillations and asymptotic force

regulation (without steady-state error) within the constrained phase of motion.

To fuither demonstrate that the system trajectories converge to xro when the Lyapunov exponents

are numerically calculated a typical simulation response of is shown in Fig. 8.8. The figure

demonstrates the convergence of the system trajectories to an equilibrium point belonging to the

system's equilibria.

r61
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Chapter 9

Concluding Remarks

The contributions of this thesis are in two main areas: control design and stability analysis.

1) Control Design

The extension of Lyapunov stability theory to nonsmooth systems based on Filippov's solution

theory was used to derive a switching contact task control scheme for hydraulic actuators with

friction. The control scheme essentially consists of three distinct control laws for asymptotic

regulation of the desired position in free space motion, impact suppression and stable transition

from free to constrained motion, and as5tmptotic regulation of the desired force in the sustained-

contact period of motion, all in the presence of actuator's dry friction.

None of the controllers require any exact knowledge of the actuator friction, servovalve

dynamics, environment stiffness, or hydraulic parameter for control action as in most practical

cases such knowledge is not available. Compared with the previous relevant studies, the

Lyapunov-based position and force regulation controllers have the advantage of being

asymptotically convergent to the desired set-point, despite the hexistence of dry friction effects

and without having the complexity of other control methods or the need for friction observers.

The controller developed for the impact phase, is the first work in its kind for effectively
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regulating impacts of a hydraulic actuator during the transition phase from free to constrained

motion. It does not require continuous force or velocity feedback as they are diff,rcult to be

determined during the short transition phase.

Individual theoretical stability of all three controllers were thoroughly investigated considering

nonlinear hydraulic functions, servovalve dynamics, complete model of actuator friction, and

realistic impacVcontact dynamics (if applicable) in the analysis. Employing the nonlinear Hertz'

type contact model in the impact control system's stability analysis recognizes the realistic

bounces, local elastic deformations and energy dissipations in the analysis. The model, used for

both impact and sustained contact dynamics, is continuous and complies with the inherently

continuous behavior of manipulators during collisions. All three controllers were individually

tested experimentally on a hydraulic test rig to verify their practicality and effectiveness in real

applications.

2) Stabitity Analysis

Although during the control design procedure each individual control law was shown to be

convergent, existence of at least two switchings (free-to-impact and impact-to-contact control) in

the overall combined switching contact control scheme results in an overall nonsmooth system

for which stability analysis is not trivial. Finding a Lyapunov function for such a nonsmooth

system is extremely difficult, if not impossible. In this thesis, a systematic procedure was

developed for stability analysis of such a switching control system using the concept of

Lyapunov exponents. Employing the concept of Lyapunov exponents for stability analysis not

only allows the system to have switchings between different phases of motion, but also facilitates

utilizing a more general dynamic model and modifying the control laws to remove undesirable

chatterings in the control signal.

Application of the concept of Lyapunov exponents to dynamical systems with discontinuities

entails several fundamental issues that were thoroughly investigated in this thesis. These issues

included solution analysis of nonlinear and linearized systems, Iinearization of nonlinear

equations at the instants of discontinuity, existence of Lyapunov exponents for nonsmooth

systems, and stability of numerical computations. For complicated systems with practical

relevance, it is in general almost impossible to determine the Lyapunov exponents analytically

and they often have to be calculated numerically. Therefore, suppression of numerical
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instabilities and convergence of the numerical results toward the exact Lyapunov exponents is of

signif,rcant importance in judging the stability of the system based on the signs of the exponents.

Using previously developed theorems and techniques, the present work introduced a systematic

framework to thoroughly address the above issues within the context of switching contact task

control of hydraulic actuators. The solution analyses of both nonlinear and linearized system of

equations were conducted using Filippov's solution theories and the theory of Caratheodory

differential equations. Appropriate theorems were then employed to study the existence of

Lyapunov exponents for such non-smooth control systems. The problem of linearizing the

nonlinear equations on discontinuity surface was addressed by resorting to the works of Kunze

(2000) and Muller (1995) in which the conventional calculation procedure by Wolf et al. (1985)

is extended to systems with discontinuities. To address the issue of numerical instabilities, a

nonstandard finite difference discretization scheme was constructed for both noncontact and

contact regions of motion. The scheme enhances the efficiency of computations by providing

results with step-sizes larger than those of other commonly used techniques. Thus, it is

particularly appropriate for the calculation of Lyapunov exponents in discontinuous control

systems.

The new methodology of studying the stability of switching control systems was first illustrated

on a typical switching contact task control system without including hydraulic actuation. It was

shown that under the conditions of existence and uniqueness of Filippov's solution, the method

of Lyapunov exponents provides a rigorous stability proof for the switching contact task control

system if numerical artifacts are under control. Finally the constructed framework was

implemented for the overall stability analysis of the contact control of hydraulic actuator under

the switching control scheme designed earlier. It was shown that the system would not exhibit

chaotic behavior regardless of the environment stiffness. Theoretical results were complemented

with test experiments to complete the solid foundation for implementation of the proposed

contact task control scheme for hydraulic actuators with friction.

This work could be extended on the following subjects. Firstly, the model of the environment,

currently assumed to be nonmoving, can be extended to a moving environment with a separate

dynamics that is being excited upon the first impact. Secondly, it would be instructive to design

Lyapunov-based control schemes using the original hydraulic equations without imposing

t69
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assumptions on the piston initial position and

mathematical study can be placed on proving

switching control system.

range of movements. Thirdly, a more rigorous

the existence of Lyapunov exponents for the
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