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ABSTRACT

The Boundary Element Method (BEM) is shown to be a viable
mechanism for the solution of field problems posed in integral form. It
allows parametric representation of surfaces and sources to high fidelityv,
with the use of expansion functions derived from the Lagrange interpola-
tion scheme. A variational solution is obtained using the Rayleigh-~Ritz
technique to construct a minimizing sequence that is guaranteed to con-
verge in eneigy. The parallel of the variationally derived system of
equations to that obtained from a direct application of Galerkin's method
is discussed. A novel numerical scheme, fully automated to cater for
Green's function singularities over arbitrarily-shaped contours or boun-—
daries, is described in detail. Source singularities due to geometry —
corners or edges — are treated by using a trial function of the appre-
priate form and order. An added flexibility is provided by the abiliry
to tailor-design Gauss quadratures to obtain optimal precision with mini-
mim sampling. Exemplary treatments to electrostatic, interface, and
electromagnetic scattering problems are discussed. Qualitative and where
possible, quantitative comparisons are made with the moment method

(pulse expansion, point-matching) solution.
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I. INTRODUCTION

Integral formulations of static and time-harmonic boundary
value problems involve a general class of linear Fredholm integrals
with singular kernels. The mathematical conditions for existence of
solutions to such equations are well documented in the literature (e.g.,
Stakgold (1967) and Zabreyko et af (1975)). A Fredholm second kind inte-
gral is expressible as

b
f kix|x'] f(x")dx' - Mx) = g(x) [1.1]
a

where f 1s defined everywhere on the interval [a,b] which may be in-
finite, and k[x]x'] may be an unbounded function of x and x'. The
first kind integral results when A vanishes. Provided XA is not an

eigenvalue, [1.1] will have a unique solution if the kernel k[x|x'] is

square-integrable, L.e.,

lx|? = Jb Jb ‘k[x!x']lzdxdx' < [1.2]

a a

thus signifying a bounded operator, and g(x) has a finite norm

b 1.
el = [J lg(x)]2dx]? < « [1.3]
a

Classical methods of solution to [1.1] include: wvariational,
perturbation, complex variable, iterated kernels, and asymptotic tech-
niques (Noble, 1971a), which attempted to generate closed-form solutions
in terms of standard mathematical functions. The dependence of such
solutions on problem geometry and boundary conditions necessarily limits

their scope of application. With the introduction of the digital computer,



a class of numerical schemes broadly classified as moment methods
(Harrington, 1968) rapidly gained significance. The theoretical concepts
necessary for a discussion of numerical-solution methodology include
prior knowledge of linear function spaces and operators (e.g., Stakgold
(1979)). With a minimum of mathematical rigour, consider the general

statement of an integral equation problem
Kf = ¢ [1.4]

where K 1is a linear operator, f the unknown function that lies in
its domain, and g the known excitation in its range. Allow f to be

expressed as

f = I anfn [1.3]
n

such that an are linearly independent expansion functions, and fn the
collection of unknowns. A residual error term indicative of the accuracy

of representation in [1.5] is given by

s
N
e

e = g [Kan] fn - g [

using the linearity of K. A set of linearly independent weights LA
also called testing functions, is now selected to produce a projection of

the error term on its space as
< > = < - < > .
w o, e E wm,[Kan] >fn W 8 [1.7]
where the angular brackets denote an inner product defined by
<u, v> = j uv® df [1.8]

and the asterisk signifies conjugate in the event u and v are complex.



By setting the left-hand side of [1.7] to zero, the physical significance
is that the set wm minimizes the error term and the moment method ex-

pression

I<w, [Ka)>f = <u,g> [1.9]

(Harrington, 1968) results. The choice of testing functions v is seen
to indicate specializations of [1.9]. The Galerkin method ensues if
WS e, and the least-squares approximation if W= Kun (Stakgold,
1967).

The most popular implementation of [1.9] involves sub-domain
bases for subsectional collocation — pulse expansion and Dirac delta
functions for testing (point~-matching). This is without doubt the eas-
iest to implement and economically the cheapest to use, since only one
integration need be performed as the boundary conditions are relaxed so
that they are now matched only at discrete points (the geometric centre
of collocation sections). A similar version — the method ¢f subatcas
was used by Reitan & Higgins (1951) for the calculation of capacitances.
Early practitioners include Andreasen (1965), Oshiro & Su (1963),
Harrington (1968) and Richmond (1969) in electromagnetics; and Noble
(1971b) and Jaswon & Symm (1977) in electrostatics and potential theory.
Quite remarkable precision has been reported especially by Burke & Poggio
(1977) on NEC, an industrially available NUMERICAL ELECTROMAGNETIC CODE,
notwithstanding the crude, discontinuous planar-patch approximation.

The numerical solution of integral equation field problems re-
quires: (i) accurate representation of both geometry and sources; and
(ii) precise approximation to the integral operation. With regard to the

former, the earlier planar-patch schemes exhibit immediate geometrical



modelling error for surfaces with curvature. Increasing N, the number
of planar patches, would only improve results to a point, after which,
round-off error predominates and a rapidly vanishing determinant
leads tomatrix ill-conditioning. Furthermore, with the crude integration
scheme used (as in NEC), the numerical solution will never approach the
exact since off-diagonal entries are not exact in the limit of increas-
ing N (Harrington, 1968). Cruse (1974) reported improved field solu-
tion on assigning linear variation of sources over planar patches.
McDonald ef af (1974) implemented the Rayleigh-Ritz variational formu-
lation that converged in energy — a theoretical guarantee that was
lacking in the traditional moment method solution, though at a cost of
increased overhead for matrix fill. Lachat (1975) and later Lachat &
Watson (1976) and Nedelec (1976) were the pioneers in the use of para-
metric representations for sources and geometry. Jeng (1977) used high-
order Lagrange interpolation for both sources and geometry in conjunction
with a variational method for solution. This isoéarametric (both sources
and geometry modelled to same degree) implementation was seen to produce
either, better accuracy with the same number of variables, or comparable
precision with a lesser number of variables when compared to the point-
matching scheme, at least for static field problems. More importantlyv,
the solution was observed to be less dependent on the disposition of
sampling positions.

In the numerical approximation to the integral operation with
Gauss quadratures, the integrand is expressed as a polynomial and treated
in exact fashion. Due to inefficient use of quadrature formulas, it is
not uncommon to have a major portion of CPU time devoted exclusively to
this operation. The resort to analytical integration, partly as a mea-

sure for the reduction of overhead, but also for the attainment of



Cauchy principal values for the kernel singularity, is geometry dependent
and restricts accuracy to planar surfaces. The work to be reported here-
in concerns the Boundary Element Method (BEM), an algorithmic package
that has some basic similarities in solution methodology to that of Jeng
(1977). ©Notable features incorporated into the code include an automated
numerical scheme to handle Greén's function singularities on arbitrarily
shaped boundaries, and the facility to tailor-design quadratures to obtain
optimal precision with minimal sampling.

Chapter 11 will involve a comprehensive account of the BEM al-
gorithm. A detailed discussion on the crucial aspects of kernel singul-
arities and their treatment by the BEM algorithm will be carried out in
Chapter I1I. While the intent is to illustrate the viability of the BEM
as a high-order, self-consistent numerical code for field problems, the
attempt to discriminate between alternative formulations of the same
problem is also stressed. The family of BEM codes include MANBEP-2DS
(Lean & Wexler, 1980), MANBEP-3D (Lean & Wexler, 1979a) and cother attend-
ent versions designed to cater for electrostatic field, permeable media
magnetic, and time~harmonic electromagnetic scattering problems which
are the subject of discussion in Chapters IV, V and VI, respectively.

In particular, the coverage of Chapters IV and V may be extended to in-
clude the dual problems of magnetostatic fields and electrostatic inter-

faces.



I1I. THE BEM ALGORITHM

The BEM has the capability to model arbitrary-shaped boundaries
through a piecewise assembly of parametric, non-planar boundary elements
(collocation sections). Sub-domain basis (expansion) functions of appre-
priate order are used in conjunction with specified node-point coordinates
to attain very precise geometrical definition. Intra-element source
variation is handled by the same type of basis functions so that use of
the same order results in an J{séoparamefnic scheme. By extension, supe<-
parametaic and subparametric would mean a higher fidelity in geometrical
representation than source variation and vice versa (Wexler, 1980). Each
element in n-dimensional global space is linked by a mapping to a standard
simplex in £ocal n-1 space. This scheme leads to algorithmic simpli-
cityand a consequent reduction in overhead since expansion functions and
quadrature data need to be specified only once on the simplex.

Problem discretization is via the Rayleigh-Ritz procedure on
the variational functional which can be shown to result in a form identi-
cal to Galerkin's method. In the accumulation of matrix entries, Gauss
quadratures (Stroud & Secrest, 1966) of appropriate order and form are
solicited for precise integration over each element. In particular,
singularities introduced through the use of Green's functions and their
derivatives are handled accurately by a fully automated numerical scheme.
Source singularities due to geometry ({.e., edges or corners) may be
treated by attaching the form of the limiting behaviour to the Gauss
quadrature weight function whereby the zeros of the resultant polynomial |
would take into account the discontinuity. By tailoring Gauss quadratures

for the relevant application, required precision can be attained with



minimal sampling. A welcomed consequence of these innovative treatments
is that matrix diagonal strength is enhanced, thus further ensuring the
well-conditioning of the matrix.

The integral equation-generated matrix is usually dense thus
precluding the use of sparse matrix routines at least in the present form.
The chosen mode of matrix solution is triangularization which is of order
N® but still three times more efficient than matrix inversion (Miller &
Poggio, 1978). Depending on application — as in reanalysis — it may be
more economical to store the matrix in inverted form. Solution through
iteration is of order N? but requires total reanalysis whenever the ex-

citation function is changed.

2.1 The Variational Functional

For the integral equation posed in [1.4], an energy product may
be defined by < f, g > which is assumed to conform to the axioms apper-
taining to the scalar product of functions. If operator K is real and

self-adjoint, 4L.e.

< Ku, v> = <u, Kv > [2.1]

for all wu, v in the domain of K, then the solution of [1.4] occurs at

the stationary point of the quadratic functional

F(f) = <Kf, £f>~-2<1f, g> [

[p]

.

o
[a—

and if K 1is also positive-definite, 4£.e.

<Kf, £> > 0 [

(3%}

Lo

o)
o

for all f # 0 and vanishes only when £ = 0, then the stationary point



corresponds to a minimum of F (Mikhlin, 1964). The requirement [2.1]
means that the Fredholm kernel is symmetric and K is the Hilbert-Schmidt
operator. The positive-definiteness of X implies uniqueness of solution.
A physical interpretation of <f,g> the energy product, is that energy
must be expended in giving a displacement f to the system. Furthermore,

if operator K is also positive-bounded-below, L.¢.
< Kf, £f> > v? ﬂ £)°? [2.3b]

where || £ ]| is the norm or scalar measure of displacement £, and v
is a positive constant, then this means convergence in the mean as well.
This form of convergence implies that the norm of the difference between
the nth term of the series approximation and the exact solution vanishes
in the limit as n =+ o,

The Rayleigh-Ritz procedure is a method of constructing a mini-
mizing scaquence that seeks a minimum for F. The sequence ;n has to sa-
tisfy two conditions: (i) it must be complefe in energy; and (ii) it
must be linearly independent. Condition (i) is satisfied if f can be
approximated by a linear combination of a finite number of coordinate
functions o (from [1.5]), to an arbitrary degree of precision. The
second condition is met when 1, G2, seees Qn are identically zero for

f = 0. Rewriting [1.5] in matrix notation as

£ o= QT T

£ = fo | [2.4]

where underlining bars denote column vector and T matrix transpose,

the first derivative of [2.2] with respect to f 1is

o
Ut
[

T
= 2<qa,Kr >f-2¢<q,g?> [

cvlo)
Frn|tr



Since K is positive-definite ({.e., <Kf, f > > 0), then f is a
minimizing sequence that converges in energy to a minimum of F. The re-
sulting system of Rayleigh-~Ritz equations are obtained by enforcing sta-

tionarity of {2.5], thus

T
<a, Ko >f = <q, g> [2.6]

A direct application of Galerkin's method to [1.9] is seen to produce
[2.6].

In the event that K is complex andnon~self-adjoint (as in the
Helmholtz wave operator), the same equivalence as above is shown to ex-
ist (Jeng & Wexler, 1978). Hence, the use of [2.6] is not restricted to
the conditions of its derivation. From an application standpoint, it is
easier to apply Galerkin's method directly rather than follow through with
the preceeding derivation which would require definition of a scalar en-
ergy product of the form < J « E> or <J < H >, recognised as a
neaction or coupling between the source and the field (Thiele, 1973). 1In
fact, Galerkin's method can also be applied when no variational principle
is available (Stakgold, 1967).

The proof of convergence for Fredholm integral equations exists
if [1.2] and [1.3] are augmented by f having a finite norm (as in [1.3D).
Application of the Bubnov-Galerkin method (which is a generalization of
the Rayleigh-Ritz method), which requires the expression Kf - g = 0 to

be orthogonal to the set of coordinate functions an, will result in

convergence in the mean (Mikhlin, 1964).
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2.2 Parametric Representation of Surfaces and Sources

The BEM is capable of addressing both two- and three-dimensional
field problems. As such, two sets of modelling strategies exist and
should be discussed in parallel although they originated from the same
basic philosophy. Boundary surfaces (or contours in two-dimensions) are
represented parametrically by triangular (or line) elements which are
referred to the standard element in fLocal 7 -n (or ) space. Sub-domain
expansion functions ai are defined in fLocaf coordinates for intra-
element interpolation of node-point values. The set oy take on values

j 1l at node i

o, = [2.7]
[ 0 at all other nodes

with i running over designated node numbers according to a {focal node
numbering scheme (Figures 2.2 and 2.4). At all other locations within
the simplex, the set of Qi's sum to unity. The functions defined by
[2.7] originated from the use of Lagrange interpolation (Wexler, 1980).
Beginning with the linear (n=1) interpolants: L1;, L and Li; ex-
pansion functions for higher degrees of approximation (n>1) are gener-
ated from their product forms subject to the constraint [2.7]. Tables
2.1 and 2.2 show the expressions for o for two-and three-dimensional
applications, respectively. The degree n of approximation is related

to the number m of interpolation nodes so that the two-dimensional

expression is
m = n+1 [2.8]
The corresponding relation in three-dimensions is

n = —21-(n+l) @ + 2) [2.9]
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—> X

y
&
g8
(a) | O (b)
Fig, 2.1: The l-dimensinal simplex
(a) Local ¢ space; and
(b) global x-y plane
2 | 3 4 2
@ 9 @ & —© -
n=1, m=2 n=3, m=4
I 3 2 I 3 4 5 2
@ & —® e—e—e —e——=6
n=2, m=3 n=4,m=5
FIG. 2.2: Local node numbering scheme for l-dimensional

simplex



12

[ =Const
7= Const

(a)

FIG. 2.3: The 2-dimensional simplex
(a) XLocal r-n space; and
(b) global x-y-z space

3¢
n={, m=3

FIG. 2.4: Local node numbering scheme for 2-dimensional
simplex
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TABLE 2.1: Expansion functions ai(g)
Ly=1-7 3 Llx=2¢
n=1 n=2 n=3 n=4
L Li@L-1) LiGL-1GL-2) ¢ Lyl - 1) (4ly - 2) (4L, - 3)
L, L,y(2Ls-1) % L, (3L, - 1) (3L - 2) -é- Ly (4Ls = 1) (4L - 2) (4Ls = 3)
4111, 2 LaLp(3Ly - 1) ’?; LyLy (4L, = 1) (41, = 2)
2— L,L; (3L, - 1) 4 LiLy (4L - 1) (41, - 1)
—2— Lo, (4L, = 1) (41, - 2)
TABLE 2.2: Expansion functions ai(;, )
Ly=n 53 Ly=1-C-n ;5 Lz=1
i n=1 n=2 n=3
1 L, L1 (2L, - 1) 2 Ly (3L) - 1) (3L, - 2)
2 L, L, (2L, = 1) > 12(3L - 1) (3L; - 2)
3 L, Ls(2Ls-1) 3 L3(3Ls=1)(3L; - 2)
4 4111, % LiL,(3L; - 1)
5 4L,Ls §L1L2(3L2 - 1)
6 4LsL, §L2L3(3L2 -1
7 % 1,L3(3L3;~1)
8 2 LsL, (3Ls - 1)
9 2 Lyl (3L, - 1)
10 27L1L,Ls
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where the m represents the number of bivariate polynomial coefficients
a; for the specified degree n. For example, the n=2 bivariate poly-

nomial representation for the independent variable f resembles
f(z;’ ﬂ) = ap + alz.z + azﬂ + a3C2 + aL,(;n + asnz [2.10]

One could proceed to enforce [2.10] at the indicated node positions in

Figure 2.4 to obtain
f = Aa [2.11]

where the column vector of f{ are the node-point values. Inversion of

A would result in
a = A'f [2.12]

when the a can be individually expanded and substituted into [2.10].

A subsequent rearrangement would result in the form

£, n) = ng [

N

.13]

where

T _
a = [lzng?ignn?]al [2.14]

is as derived from Lagrange interpolation considerations. Equations
[2.10] to [2.14] are only meant for illustration since expansion functions
ai are not generated in this manner because matrix A is of Vandermondé
type and is unstable to invert.

Global positions (%, y, z) may now be expressed in terms of

vertex node coordinates as
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m
. ui(c, n X, 3 y = i.i ai(c, n) y, 3

b
fi
[ el =

N
]
o~y

ai(c, n) z; [2.15]

i=1

For the two-dimensional case, the 2z spatial dependence of 0y should be
dropped. Each element in gfobaf space is the result of a mapping from the
simplex. The Jacobian that defines this mapping is obtained from an ex-
pression for the differential area (or length). Figures 2.1 and 2.3 show
the respective simplexes and their transformed positions. Differential

changes in position due to corresponding changes within the simplex for

the three-dimensional case results in

(=5
»

dri(D) = Frdari+grdri+gidk [2.16]
and
dT, (n) = %ﬁ an i+ %ﬁ-dn j+ %ﬁ-dn k [2.17]

so that the differential area on the parametric surface is given by

ds = dr; x dr, [2.18]

The Jacobian is then calculated from the preceeding equations as

= 2
Jo= /2 e M2, + M2, [2.19]

where Mij are the minors of
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I T P
Aij = 3N s aﬂ [2.20]
1 1 1

taken along the bottom row. In two-dimensions, the incremental vector in

the x~y plane is

—--_Bﬁr”\ E_Y.r/\ s
dr = 3z dz i + 3L dz 3 [2.21]

with incremental length equal to the Jacobian, or

2 2
J = w/(3§) + & [2.22]
o5 g
2.3 Logistics of Matrix Fill

Equation [2.6] is restated in integral form over a surface as
! 1 T 1] ]
J a(s) j k[s|s'] a (s')ds'ds £ = f a(s)g ds [2.23]

to better appreciate the mechanism of evaluation of matrix entries. The
left-hand side of [2.23] involves a double surface integral with the in-
ner portion running over source coordinates. Remembering that the under-
lining bar denotes column vector, this term produces a square matrix §.
Denoting the right-hand side term as b, [2.23] can now be written in a

more easily recognised form as
sf = b [2.24]

where S is commonly called the system matrix, b the excitation, and

f the response.
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In the BEM, Gauss quadratures generated from the product rule
are used for integration. The quadrature data is defined over the stand-
ard simplex with sampling locations mapped into the gfobaf frame only for
the explicit purpose of evaluating the kernel k[s]s']. Otherwise, all
integrations are performed on the simplex thus eliminating the need for
local operations on each element. Matrix accumulation is carried out on
a pen element basis so that the order of each subsystem matrix is m
(from Section 2.2). The kernel is non-singular provided s # s', 4L.e.,
accumulation is not affected on the self-element. Hence, no special
treatment is accorded this operation. For the case s = s', Green's
function singularity is reflected in the numerical algorithm as division
by zero as the quadrature points coincide. McDonald (1975) and Jeng
(1977) used an addi{tion-subtraction technique whereby the kernel is re-
written as the summation of two terms — one, a regularised form of the
original kernel which is handled numerically, and the other, an extracted
singularity which can be analytically integrated. Lean ef af (1979b)
improved on the technique by taking into account the limit of the first
form as s = s', a step which was neglected by the two previous research-
ers probably due to an oversight. Specifically, the mean value theorem

is invoked to allow s' to be expressed as

s' = s+ 8§ [2.25]

where § represents an infinitesimal spatial shift along either the [

or 1n directions, and

o(s +68) - a(s) . oo
£ [2.26]

H
Q
%}
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In the limit as s + s', the form of the three-dimensional free-space
Green's function (4m8)”! when used with the result of [2.26)] produces
the finite quantity

le;-g% ds' [2.27]

as contribution.

Although this scheme is exact for flat surfaces, it requires
care and deliberation for the manual (analytic) portion of the procedure.
Also, the expressions so derived are dependent on the specific kernel
treated. For curved surface application, the element is divided into a
number of flattened inscribed sections over which the procedure is indiv-
idually applied. From an engineering standpoint, this fragmentation
scheme is intuitively acceptable and should improve the quality of re-
sults. Mathematically however, the question of convergence, if any, has
yet to be answered. A novel method of confronting this problem is the

subject of the next Chapter.
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ITI. TREATMENT OF KERNEL SINGULARITIES

The main difficulty encountered in integral equation solution
lies in the numerical approximation to the integration process for singu-
lar kernels. This singularity is a direct consequence of Green's function
when T = ;', {.e., where the observer and source locations coincide.

In avoiding this difficulty by merely ignoring the discontinuity (e¢.g.,
Oshiro & Su, 1965), matrix conditioning generally deteriorates due to a
loss in diagonal strength. The use of a dodge whereby the integration
is performed to within the near vicinity of the singularity, is ineffect-
ual (Acton, 1970) compared to the algorithmic improvisations required.
Furthermore, the effect of the singularity becomes increasingly pronounced
as r > r' so that artificial truncation of the interval lacks in mathe-
matical substantiation and finesse.

Conventional methods of addressing this crucial issue include
complex variable transforms, analytic integration over ${£at intervals
(Jeng, 1977), and the evaluation of Cauchy principal values (Lachat &
Watson, 1976). Being analytic, these techniques are unavoidably problem
geometry dependent, thus restricting their widespread application. With
few exceptions, their usage entailstediousmanipulations that contribute
to both core length and overhead. Traditional ideas have shied away
from a totally numerical approach and in fact have suggested low-order
trapezoidal and Romberg rules as alternatives (Poggio & Miller, 1973)
mainly because of the expected prohibitive cost of integration. The
reason for this adverse reaction is clear if we consider the indiscrimi-
nate use of the Gauss-Legendre quadrature of weight function unity which

is designed for the integration of regular functions. Theoretically,
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this would require an infinite number of samplin: points for acceptable
precision. Also, for optimal solution compatibility, it is difficult to
justify the use of a high-order integration scheme when collocation in~
volves constant pulse patches. With the advent of high-order schemes,
the numerical alternative should be viable, especially when Gauss quadra-
tures can be tailored to obtain optimal precision with minimal sampling.
Such a scheme will be discussed in the following subsection.

Field discontinuities due to geometry — edges or corners —
where source densities go rapidly to infinity, is of secondary importance
with respect to integral equation solution. However, the proper model-
ling of this behaviour will accelerate convergence besides improving
the precision of computed near-~field quantities. From an algorithmic
standpoint, this measure will introduce another singularity into the ker-
nel for elements adjacent to a re~entrant corner. The manner in which
the BEM algorithm addresses this problem will be discussed at length in

subsequent subsections.

3.1 Numerical Integration with Gauss Quadratures

The numerical approximation to a definite (or indefinite) inte-

gral takes the form

[
N~

b
f wx) f(x) dx

. Ai f(Xi) [3.1]
a i

0

where the choice of weight function w(x) specifies a unique polynomial

sequence defined by

Pn(x) = x" +a Xn-—l + ... * ai;x + ag [3.2]

that satisfies the orthogonality condition
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b
f w(x) Pn(x) Pg(x) dx = 0 ; n#F L , n > % [3.3]
a

Provided w(x) > 0 in the interval [a, b], the roots of Pn(x) are
real and are the sampling locations X with corresponding weight coef-
ficients Ai‘ The derivation of orthogonal polynomials may be carried

out in a straightforward fashion. Consider the independent set

Ui = {1, x, %%, .... x , x7} [3.4]

The quadrature formula has degree of precision or exactness m if it is
exact whenever f(x) in [3.1] is a polynomial of degree < m; and is not
exact for f(x) = xm-+l (Stroud & Secrest, 1966). Then n points and

coefficients may be found to make [3.1]) exact for all polynomials of de-
gree < Z2n-1, From the independent set Ui’ a set of orthogonal poly-

nomials Vi is generated through the use of the Gram-Schmidt orthogon-

alization procedure where the qth polynomial is given by

qg-1 <Vi’U >
Ve = U - 1 —_4 g [3.5]
d T 5=y SV V>

and inner product (or projection) is defined by
b
<V., U > = J w(x) Vi Uq dx [3.6]
a

Orthogonal polynomials most frequently encountered include
the Gauss-Legendre, Gauss-Chebyschev, Gauss-Hermite and Gauss-Laguerre
types. Aside from the last two, the others belong to a broader classi-

fication —the Gauss-Jacobi family. The general expression for w(x) 1is

vix) = 1-0%Q+x0f 5 a8 s o1 [3.7]



22

where the choice o = 8 = 0 identifies the Gauss-Legendre weight of

w(x) = 1; and o= B —'%, the Gauss~-Chebyschev (first kind) weight of

w(x) = (1 - xz)_%. This generalization of the weight is a definite ad-
vantage towards the systematic generation of quadrature formulas on an
automatic basis.

The prepcnderance of weight functions as exemplified by the
general nature of [3.7] has to signify specializations of quadrature
forms to some degree. Undoubtedly, the use of certain weight functions
may be preferred for certain integrands. This fact suggests that some
guidelines should be established to help in the selection of an optimal
quadrature scheme given a particular integrand. To begin with, one may
broadly classify weight functions into two categories: the types that
are regular in [a, b]; and those singular at end-points a and/or b.
Returning to equation [3.1], the integrand can collectively be expressed

as

F(x) = wx) &) [3.8]

where F(x) is the actual function to be integrated and f(x), the modi-
fied form depending on the choice of w(x). In the event F(x) is in-
herently singular in [a, b], w(x) dicdeally can be chosen to contain the
form of the discontinuity thus leaving f(x) to be regular. Figures

3.1, 3.2 and 3.3 illustrate the relative precision attainable for three
different integrands using quadrature data generated from a few selections
for weight functions. 1In particular, Figure 3.1 involves the integration

of a logarithmic function identical to that of the two-dimensional Poisson

1.

Green's function. Figure 3.2 concerns a function that behaves as r °
at one end-point — identical to the edge singularity of a corner with a

re-~entrant angle of 27. From a closer inspection, the following
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inferences may be made:

(1)

(ii)

(iid)

(iv)

Depending on the form of F(x), w(x) should be chosen such

that f(x) remains regular in [a, b] to obtain best accu-
racy withminimum sampling. Ideally, if w(x) can be chosen

to equal F(x), then £(x) would be independent of sampling
location and the integration procedure is reduced to a summation

of weights Ai thus eliminating one source of error.

If F(x) 1is singular at one or both end-points, then w(x)
should be selected to contain the form of the singularity thus
leaving f(x) regular or at least more weakly singular. By
extension, the case when F(x) 1is singular within the region
ofkintegration can be handled by subsectioning followed by two
repetitive applicatione of the quadrature whilst retaining the

form of the singularity in each transformation.

Besides the general guidelines laid out in (i) and (ii), the
form of F(x) and f£(x) should always be visually checked
for compatibility. In general, £f(x) should always be a
beften function to work with than F(x). Figure 3.3 shows the
degradation of results due to the unfortunate choice of

w(x) = 1-x for F(x) =1 thus fixing f(x) = (1-x)"}, a

form worse off than F(x).

In subsequent applications, the integrand F(x) will include
the Jacobian of transformation arising from any physical depar-
ture from the region over which the quadrature was defined.
This alteration adds another degree of flexibility to the op-

timal selection of w(x).
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FIG. 3.3: Numerical integration of a regular function

3.2 Implementation for Green's Function Singularity

Singularities of Green's functions for static fields in two-

and three-dimensions (logarithmic and r~! behaviour), are treated

by essentially the same sectioning philosophy. Denote the inner integral
on the left-hand side of [2.23] as H(s) so that the System matrix is

given by

S = j a(s) H(s) ds [3.9]
and H(s) by
T
H(s) = fk[s]s'] a (s') ds' [3.10]

The Gauss-Legendre quadrature is selected for integration over the unprimed
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variable. For accumulations of S other than on the self-element, H(s)
is regular and the same quadrature scheme is used for integration over
the primed variable as well. Over the sel§-efement the appropriate sec-

tioning procedure applies.

3.2.1 Two-Dimensional Scheme

The selg-efement is sectioned into two about the singular lo-
cation p; which is a collocation point of the outer (unprimed) inte-
gral in £ocal ¢ space (Figure 3.4). Since the form of the kernel
singularity is logarithmic, a quadrature scheme with weight w(g) = -fnZ
is chosen for this application based on the guidelines established in
the previous section. The quadrature data thus generated is then oper-
ated on by two linear transformations T; and T,, subject to the con-

straint that the behaviour of the weight function be preserved. Trans-

formations T; and T, are given by

(I -p)z+py 5 melpy, 1] [3.11]

3
=t
Il

and

T, @ my P1(l - 2) 5 mel0, py] [3.12]

and in effect, they position the quadrature so that P 1is approached on
both sides logarithmically. The intervals [0, p1] and [p,, 1] span-
ned by m, and m,, respectively, are then reassembled as shown in
Figure 3.4 where the net result is the construction of a special set of
quadrature data that will integrate a logarithmic singularity at p,.

The condition that the logarithmic form be retained in the limit of ap-

proaching p; is easily verified by observing the weighting functions
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FIG. 3.4: BEM sectioning scheme for logarithmic singularity
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wim) = -tn (LR [3.13)
and
w(m,) = -=4n [EAGETE&] [3.14]

A consequence of the transformations is that the quadrature weights are
now scaled by the factors (1 -p,) and Py (0 <p;, < 1) for T, and
Toy respectively.

The explicit expression for the kernel of [3.10] is

1

v ins'-s'[ assuming the integral operator is bounded. In the

nomenclature of the preceeding section, F(s') 1is now given by

F(s') = (_xT(s') [-élﬂ-ﬁnfs - s'|] [3.15]

so that for mefp;, 1], the integrand is

£1(s") = o R(s) (3.16]
and for mye[0, p,],
f2(s') = LAs F(s") [3-27)

with the understanding that expansion functions o are evaluated at the
transformed positions m; and m,, and weights w(m,;) and w(m,) given
in [3.13] and [3.14] are evaluated at the same location. No mathematical
cancellation is performed; rather f,(s') and f,(s') are hegubarised
in the sense that both numerator and denominator have the same limiting
behaviour. The disposition of the sampling positions generated from this
Particular weight function takes into account the expected singular be-

haviour.
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The inherent merit of this scheme is that it is defined on the
simplex so that the form of the singularity is preserved regardless of
the actual size or shape of the global element. The built-in transform-
ations T; and T, guarantee this invariance. Another point to be
Stressed is that good precision is usually attained with lower orders of
quadrature than that for the unprimed variable. From experience, the

optimal order is approximately given by
1
ng = 3o, +1 [3.18]

where ng is the order for the Gauss-Legendre quadrature prescribed for
the unprimed variable,

The corresponding time-harmonic Green's function is a Hankel
function of zero order and second kind (ejwt time-dependence) which
has the same logarithmic singularity of the imaginary component for
vanishing arguments. To integrate this kernel, the same sectioning philo-
sophy 1is applied. However, the argument ismultiplied by the wave number
k so that in using the polynomial expansions of Abramovitz & Stegun
(1968), a frequency criteria is necessary. Gauss quadrature with weight
function w(z) = -ng is used only when kt > 3 vwhere kt is the trans-
verse component of wave number. Otherwise, the Gauss-Legendre quadrature
is applied. This measure ensures that the Hankel function expansion
for small arguments (ktr > 3) when used, will confine r within the
interval [0, 1] within which w(Z) 1is defined.

Normal derivatives of the above functions are relatively well-
behaved since the cosine of the angle included by outward normal o,

and spatial vector (r - ') vanishes as s + g', This situation is
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reminiscent of the discussion of [3.16] and [3.17]. Hence, the quadrature
specified by w(Z) = 1 is appropriate. Even in this application, the
sectioning methodology is effective in that the quadratures are oriented

in the proper directions, 4.e., approaching p; in the prescribed manner.

3.2.2 Three-Dimensional Scheme

The success of the three-dimensional scheme is dependent on a
Jacobian of transformation to provide the moderating effect for the r~!

singularity. Gauss quadrature for surface integration is conveniently

generated by an application of the product rule. Consider the expression

11
[ f wixy) w(xy) f dx,dx, [3.19]
o ‘o
which represents the integration of a function f with quadrature gen-
erated from product forms of the one~dimensional rules defined on [0, 1].

Applying a transformation

L = x
[3.20]
n o= x(1-x)
to [3.19], and choosing w(x;) = w(xy) = 1 results in
[
f ————— dndz [3.21]
1 - 9N

0 0

From [3.21] and [3.19], the integration of a function f on the simplex

is given by

1 f1-g 1 [1
j J f dndg = [ f f[1-17] dxydx, [

0 0 0 0

(U]

%]
o

[—
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where [1 - ¢] 1is the Jacobian of transformation. The vertex of r =1
is formed by collapsing the right edge of the unit-square over which the
product rule is generated. As a consequence, the sampling positions
within the simplex appear to be fanning from this vertex. The term

[l - z] wvanishes as ¢+ 1, a property that may be used to advantage.

Since the free-space Green's function has 1 ° behaviour, the
limiting effect of the Jacobian could be used as a moderating influence
if the fanning point is aligned with the point at which r vanishes.
Figure 3.5 shows a flat triangular element in space over which is simu-
lated a function with r ! singularity at the third vertex. The pre-
cision obtained using three sets of test rules are compared against the
analytically obtained value of 1.177 in Figure 3.6. Test rules 1 and
2 correspond to Jeng (1977), and that advocated in [3.22], respectively.
Comparing the number of sampling points (400 to 9) to obtain two-deci-
mal precision, the superiority of the present technique is unquestion-
able. Test rule 3 is obtained from Stroud & Secrest (1966) and included
as a matter of interest. As expected, it produces results intermediate
between those of 1 and 2. The orientation dependence of this technique
is verified in Figure 3.7.

The success of this technique is wholly dependent on the
triangular geometry of the simplex. As sampling points are interior to
it, three triangular subsections sharing a common fanning vertex at
(Z, n) = (p, q) have to be addressed. The Gauss-Legendre quadrature

scheme generated over the simplex, is mapped into each subsection by the

transformations
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The boundary element singular at vertex #3
(a) in gfobal x~y-z space, and
(b) in fLocal r-n space
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T,: Ny = n+qg
[3.23]
1 = pi
Ts: Nz = gt
[3.24]
2 = r(p=-1)-n+1
and
Tg: mn3 = z(@g=-1)-n+1
[3.25]
L3 = n + pZ

which ensures that vertex (p, q) is the ganning location. The weights
Ai are now scaled by p, q and (1 - p - q), respectively where

0 <p, g <1. The explicit expression for F(s') is now

F(s') = gT(s’) Z%Tg;%—gTT [3.26]

so that the integrand for the region tranformed by [3.23] is given as

f,(s') = F(s") [1-%} [3.27]
that by [3.24] as
f,(s') = F(s") [1—%2—] [3.28]

and that by [3.25] as

f3(sl) = F(s") {(C3 '; ?3)(p’+(g)+ CI)] [3.29]

The general statements of the previous subsection are equally wvalid in
this discussion. Figure 3.8 shows pictorially the BEM sectioning scheme

outlined so far. Again, no mathematical cancellation is performed. Each
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of equations [3.27], [3.28] and [3.29] is seen to be finite in the limit
of vanishing r.

This scheme may be extended for use in the time-harmonic case
since the term exp[—jk]; - ;'|] tends to unity as T > r'. Provided
the kernel is not overly oscillatory, the Gauss-Legendre quadrature form-
ula will give good precision. For high frequencies, special quadratures
with cos kx and sin kx weights may be generated by the Gram-Schmidt

procedure outlined in Section 3.1.

3.3 Implementation for Geometric Singularity

Other factors that contribute to aberrations in field solution
include: incompatibility of boundary conditions at common edges or points;
and abrupt changes in direction of boundary surfaces or contours that
lead to infinite values of the derivative of the field. The latter form
arises wholly from geometrical considerations and frequently causes a
situation where the integrand is singular but the integral finite. Inter-
polatory polynomials, no matter how high their order, cannot be expected
to represent the field in the vicinity of the singular point as accurat-
ely as desired — mathematically because the set of polynomial functions
is not complete for this task. Hence, convergence is usually slow and
at times even erratic depending on the degree of modelling and the method
of solution. The prediction of singular behaviour is dependent on expan-
sions of the solution near corners and jumps in boundary conditions. In
general, to accelerate convergence, special functions are required to
approximate the discontinuous behaviour of the field.

Explicit forms and orders of singularity are obtainable in
closed form from two-dimensional analyses of geometries where separation

of variables may be invoked. For the static field case with the Laplacian
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operator -V? acting on potential ¢, the leading term of the infinite

. . . . d -V .
series expansion of normal derivative 90 behaves as r °, with r

on
being the distance from the corner and v = (1 - %) where 6 is the

re-entrant angle (Figure 3.9). This term is proportional to surface

charge density ¢ which is singular as r - 0 whenever 7 < & < 27,

Hence edges and right-angled corners would have orders r’l/z and r—l/3,
respectively.
FIG. 3.9: Geometrical corner of re-entrant angle &

Traditional practise has been to rely on conformal trans-—
formation to ameliorate the geometrical discontinuity. An improved num-

erical method is to introduce terms in r " into the regular interpolatory

polynomials either by addition or multiplication. The additive procedure
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operates by adding a separate variational parameter that contains the
form of the singularity, to the regular univariate polynomial currently

used as a trial function, 4{.e.,

n . a
o(z) = % at4+-—nFl [3.30]

\Y
0 -2
where (b - 7) describes the distance from the corner, n the degree
of approximation, Vv the form of the singularity, and ay the unknown
coefficients of the trial function.
Another alternative is tomultiply each term of the univariate

polynomial by the form of the singularity to obtain

Ci
a, ——— [3.31]

o(z) = .
ot k-

™~

i

resulting in one less variable for the same degree of interpolation.
Normalization of these trial functions in the context of the BEM, is
achieved by defining the polynomic set over the unit interval [0, 1]
described by the spatial variable . Each application of the scheme
would require only a spatial transformation of quadrature points together
with a sizing of the weights to suit the dimension b. 1In fact, for the
scheme given by [3.31], a Gauss quadrature formula with weight function
(1 - ;)‘v could be generated to obtain optimal precision with minimal
sampling. Hence, the remaining portion of the integrand is regular and
may be computed in a straight-forward manner. Using these techniques,
the different orders of singularity described over the range: 7 < & < 27

may be accurately handled.
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The same methodology may be extended for use over parametric
surfaces where field discontinuities at any one or all edges may be
handled by judicious choice of combinations of quadrature formulas to
form the product rule. This tailoring of quadrature rules to cater for
singularities to the integrand is a powerful tool that has yet to be ex-
ploited for field solution. A corresponding analysis on time-harmonic
fields would result in asymptotic forms that resemble Bessel functions

of non-integer order which could possibly be treated in like manner.
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IV, ELECTROSTATIC FIELD PROBLEMS

Problems in this context include those that require the solution
of Laplace's or Poisson's equation subject to Dirichlet and/or Neumann
boundary conditions. Integral equation formulations in terms of boundary
sources are compact, and particularly attractive for open~region problems.
Included in this chapter is a discussion on the relative merits of cer-
tain formulations, and sample applications of the BEM to some classical

problems in potential theory.

4.1 Integral Formulations

From scalar potential theory, harmonic functions ¢ may be
represented by simple-layer or double-layer (dipole) potentials thus
giving rise to the class of Fredholm integrals. A function is harmonic
if it is continuous, differentiable to second order, and satisfies Laplace's
equation everywhere (Jaswon & Symm, 1977). By definition, Green's func-
tion G[;I;'} is harmonic everywhere except at the source-point where

r=r' so that it formally satisfies the Poisson equation
-V2 G[T|T'] = S8(r - 1") [4.1]

Another alternative formulation may be obtained directly from Green's
formula where the harmonic function is represented as a superposition of
both the above source-types. The following discussion has particular
relevance to the Dirichlet problem. Neumann and mixed boundary value

problems are catered for by extension.
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4,1.1 Simple-Layer Kernel

This potential ¢ 1is due to a distribution of simple charges

0 on a surface S, not necessarily closed, such that

o(r) = Elg J Glr|s'l o(s') ds'" ; TeS+R [4.2]
S

where G is the appropriate Green's function that ensures a bounded solu-
tion for ¢; r the observer location; €y the permittivity of free-
space; and s' the surface over which ¢ is distributed. From [4.27,
potential ¢ 1is continuous across boundary S. However, normal derive-

tives (flux) are discontinuous by an amount proportional to the charge

spread over it, AL.e.

3¢
- - OS) [4.3]
S

The above relation is obtained from summing the normal derivatives of
[4.2] taken in opposing directions. As a consequence, [4.2] may now be

rewritten as
- h(g"' -
o(f) = —JG[rfs']%(nS,—lds' . Tes+r (4.4
S

If S 1is closed, and a Dirichlet boundary condition ¢(s) = g(s) pre-

scribed, the exterior Dirichlet problem is posed as

1 J G[E[s'] o(s') ds' = g(s) [4.5]
€p S

which is a Fredholm integral of the first kind. The variational/Galerkin

formulation of [4.5] is given by




Jg(s) g(s) ds [4.6]
S

j a(s) 1 f Gls|s'] aT(s') ds'ds ©
S S
which is solved for 0(s'). Potential ¢ everywhere is then computed
from [4.2]. 1In the event that g(s) is independent of position, then

¢ everywhere interior to S has the value g(s) as well by the inter-

ior Dirichlet existence theorem.

4,1.2 Double-Layer Kernel

The potential ¢ due to a distribution of double-laver (di-

pole) charges u on S is given by

€0 an'

o) = ¥L-J 3GIxls'] | vy 4o [4.7]
S

where the normal derivative of G with respect to the primed variable
denotes the direction of dipole moment. For clarity, consider Figure
4.1 where two equal and opposing charges gq of mégnitude ]%} and sepa-
ration h are made to straddle boundary §S. The potential F resulting
from this arrangement has to satisfy the Poisson equation

S(r = {x' + hphH) - 8(xr - T"

_o2
V°F o

where F 1is defined along the lines of G.
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FIG, 4.1: Dipole configuration

In the limit as h =+ 0, |g| > » so that [qh| = 1. Hence, the limit~-
ing configuration of [4.8] is that of a dipole of axis P oriented in

the direction of f such that

_V2F = ~dg—,5(5 - [4.9]

and F 1is seen to be the double-layer kernel of [4.7].

Potential ¢ is harmonic everywhere in R except on S

where the integral jumps by an amount %ﬁf) s AeCo,
0

o(s) = ifﬂ;—%s;}.i'iu(s') ds' —%(f’()—) [4.10]

€0
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which is a Fredholm second kind integral. From physical considerations,

the relation

0(s) = - £ [£.11]

can be established (Jaswon & Symm, 1977) to enable [4.7] to be rewritten

as

b

¢(r) = J-—-£L§—— ¢(s') ds' s r ¢S [4.12]

a form that specifies ¢ everywhere with respect to potential on the

boundary. The Galerkin formulation of [4.10] subject to the condition

¢(s) = g(s), 1is

I a(s) ——-J EELEJE—-— T(s 'y ds'ds u - J a{s) aT(s) —;;-ds uo= j a(s) g(s)ds
S €0 Jg Tt T 20 7 s~

o

[4.13]
which is solved for u(s'). Then ¢ everywhere is computed from [4.7].
For the explicit purpose of specifying ¢ in R, a shorter route is to
use the expression [4.12] directly assuming ¢(s') is known. For the
special case g(s) 1is constant on S, ¢ in the interior has the value
g(s) while in the exterior region, ¢ is identically zero. In crossing

each layer of charges, ¢ jumps by :$§El

4.1.3 Green's Theorem Representation

Consider the two point-form equations that symbolize the elec-

trostatic field problem

_vzq:) - O [4'14]

and -V? G[r|r'] = 8(r-T") [4.15]



Application of the divergence theorem to the form resulting from the

subtraction of scalar products G x [4.14] from ¢ x [4.15] results in

0@ = v | forr|s') LD ey Yy por g
S

where

Yy = < -1 reR [4.17)

is as defined in Stakgold (1968). The negative signs in [4.17] are due
to the assigned direction of surface normals — directed into Re for
the exterior problem., The physical implication of vy = 0 is that G
in [4.15] is harmonic since Tt is outside the region of interest.
Finally, the reason for vy = -2 in S is because the surface is assumed
to obey a Liapunov condition (defined in the context of Zabrevko ¢t al
(1975) and Jaswon & Symm (1977)). Part of the requirements for this con-
dition is that the surface be smooth and possess a tangent plane and nor-
mal (not necessarily a curvature), at each point. Thus for abrupt changes
in boundary description, the actual value of Y (at that point) should
be -2m (or -47m) divided by the re-entrant angle & (or solid angle
spanned by the re-entrant corner in three-dimensions). However, this re-
quirement is usually relaxed in engineering practise with very little
penalty to solution accuracy.

Equation [4.16] permits ¢ everywhere to be specified in terms

L
of boundary data ¢(s') and §%£§r23 where one or the other is usually

a known quantity. For the exterior Dirichlet problem under consideration,

[4.16] with vy = -2 and ¢(s) = g(s) gives
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[orslor1 252 qor - [26Lelel) gior) g0 - 8B g,
S S

with the accompanying Galerkin formulation

3
f a(s) j Gls|s"] gT(s‘) ds'ds 31-19—, = - J a(s) 5—%5—)— ds
S s S

A\
* j a(s) J et ol ey ases
S

ol

[4.19]

Once é%%— is ascertained, [4.16] is used with the appropriate Y to

compute ¢ everywhere., On examining equations [4.4] and [4.12] in con-
junction with [4.16]}, it is clear that the potential ¢ in Re given by
the Green's Theorem representation, is identical to that obtained from a

linear combination of the simple and double-layered potentials. Thus,
o(r) = o (1) - ¢, () 5 TS [4.20]

where ¢S and @d represent the potentials obtained from [4.4] and
[4.12], respectively.

The form utilizing the simple-layered potential is traditionally
preferred mainly because its system matrix is more economical to gener-
ate. Furthermore, ¢ and its derivatives in R, may be computed with-
out much regard to the singularity of G except when the point of eval-
uation is inordinately close to the boundary S. The double-layered po-
tential formulation has the advantage of being a Fredholm second kind
integral which is mathematically preferred due to its better-behaved
kernel. Because of the additional term to be considered in matrix accumu-

lation, thus constitutes an added expense when compared to the former
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scheme. For the particular case of the constant Dirichlet boundary, this
form is not practical for implementation due to its lack of field definpi-
tion in R. 1In the case of the Green's Theorem formulation, more CPU
time is required to compute not only the excitation function prior to
solution, but also the potential ¢ in R. Precision attainable is
comparable with that of the simple-layer formulation and thus does not
indicate any advantage except for the situation when mixed boundary con-
ditions need be considered. Also, equation {4.16] is a function of vy
so that in ¢ computation, special verification software is required to

ascertain if r € S or R. As such, [4.16] is not as freely applicable

as [4.2].

4.2 The Strip Capacitor Problem

Consider the capacitive arrangement of two identical infinitely-
long, parallel conducting strips charged to a potential difference of
2 volts (Figure 4.2). Using quarter-plane symmetry, the problem is re-

duced to solving

é% f Gm[sis'] o(s') ds' = 1 [

I~
3]
’_J

—

in the positive gquadrant, where Gm is the modified form of the two-

dimensional free-space Green's function and is given by

[Gox)2+ (=32 ) [P (v =y
[x+x") 2+ (+y) 2 x-x")2+(y+y')?]
[4.22]

1
T R
Gm[X’YIX sy ] = o n {

Charge density ¢ is singular at the open edge with an expected form

-1
r °. The capacitance and potential at the field point (x,y) = %?, 10)

are respectively given as 18.72 pF/m (positive quadrant alone) and
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FIG. 4,2:

FIG. 4,.3:

b

= X

Strip capacitor assembly

Equipotentials around plate
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0.1124 wvolts by McDonald et af (1974) from a rigorous analysis. The
authors used singular trial functions to model charge behaviour, and an
addition-subtraction technique to isolate four singular integrands aris-
ing from both the charge and Green's function singularities. Each of
these singular integrands were then integrated analytically. The primary
motivation in addressing this specific example now, is to test those
numerical tools developed in Chapter III. Accordingly, the analysis is

carried out with the following objectives in mind:

(1) solve the problem variationally, treating only Green's
function singularity using the procedure outlined in
Subsection 3.2.1. Charge behaviour is modelled by the

univariate polynomial expansion

N
o{x) = I a, x [4.23]

(ii) as in (i), with the additional treatment of charge sin-
-1
gularity by multiplying the form (1 - x) ° into the

polynomial expansion for o, J.e.,

£~
[
I~
[}

N
o(x) = ——m0- I a, x [

so that every variational parameter is modulated; and,

(iii) as in (i) and (ii) but by adding in a term with the form

-1
2

1-x 7 4.e.,

N 3 a,
o(x) = T a, x +-—>*t1 [4.25]

o /1 - x

For each of [4.23] to [4.25], N represents the order of the approxima-

ting polynomial. In particular, for (ii), a quadrature formula with
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-1
29

-1
2

(1 - %) as weight (L.e., o = B =0 for the Gauss-Jacobi weights
of [3.7]) is used for integration with respect to the unprimed variable.
Over the sefg-element the kernel is doubly-singular, and can only be
treated analytically. In this numerical application, even with the bene-
fit of a cosine substitution, the malady remained — the transformed

-1
weights beingmuitiplied by a (1 - x°) ° term. With the understanding

that variationally, convergence in energy is guaranteed, only the loga-

i
2

rithmic singularity is formally addressed in this analysis; the r
singularity is compensated for only by an increase in quadrature order,
With increasing quadrature the value of the functional should minimize to
the expected solution., One justification for this choice is that unlike
the Green's function which is singular everywhere on the strip, the
(1 - x)_]/2 form is singular only at the edge. Thus less emphasis may be
placed on this localized effect.

The results of using [4.23] as trial functions are shown in
Figure 4.4 and Table 4.1, 1In particular, the set of results for the
single pulse (N = 0) case is superior to those of McDonald et al (1974)
who obtained values of 17.72 pf/m and 0.1063 for capacitance and po-
tential, respectively. It should be pointed out that the tabulated quan-
tities are converged values meaning that no further improvement can be
had after the specified quadrature order. The exact results are obtained
with a quartic approximation though charge profile (Figure 4.4), is far
from the expected behaviour. This is because capacitance is numerically

equal to the magnitude of the functional, and hence shares the accuracy

of the energy-convergent solution.
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TABLE 4.1: Strip capacitor; o(x) = I *
i=0
order of number of order of capacitance ¢(ég 10)
polynomial unknowns guadrature pF/m i
0 1 2 18.03 .1083
1 2 2 18.51 <1111
2 3 3 18.70 .1122
3 4 5 18.71 1123
4 5 8 18.72 L1124
TABLE 4.2: Strip capacitor; o(x) = —20
v 1-x
order of weight capacitance ¢(£Q 10)
quadrature function pF/m 9°
15 1 18.73 1124
8 —1 19.02 L1141
Yy 1 -x
N . a
X
TABLE 4.3: Strip capacitor; o(x) = I g _frl
i=0 vV 1 - x
order of number of order of capacitance ¢(§9 10)
polynomial unknowns quadrature pF/m ?
- 1 8 19.02 L1141
0 2 11 18.72 1124
1 3 11 18.72 L1124
2 4 11 18.72 1124
3 5 11 18.72 L1124
4 6 11 18.72 L1124
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With the charge behaviour modelled as in [4.24], results show

that the N = 0 approximation, {.e,

o(x) = —0— [4.26]
/1 -x

produces the same accuracy as higher-ordered forms. In particular, two
quadrature rules were implemented for integration with respect to the
unprimed variable. Table 4.2 shows the computed values using the respec-~
tive weight functions. The first set are for results closest to the ex-
pected values and the second, the converged values using a quadrature
rule that takes into account the singular form (1 - X)_%. This latter
set is expected to be the more accurate since the quadrature is tailored
explicitly for use. 1In fact, the functional for the first set is seen
to converge beyond the tabulated quadrature order of 15, and in the
limit, approach the value for the second set.

Finally, the results using [4.25] for charge distribution are
shown in Table 4.3. The case indicating [4.26] corresponds to the first
row and is meant for comparison purposes. The remaining rows, represent-
ing increasing orders of the polynomial, showidentical converged results.

Obviously, little improvement in precision is gained beyond the approx-

imation which represents

a,

_— [4.27]
v 1-x

O(X) = apg +

It appears that the appropriate form of the approximating func-
tion for o, should be that of [4.25] so that in the solution process,
the variational parameters have the flexibility to attain values that

would collectively produce the optimal field solution. Multinlying each
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parameter by the expected form of the singularity, is probably functionally
restrictive thus constraining the solution to converge on the erroneous
value, Besides, the form of [4.24] may not be complefe in the sense of being

a proper trial function for this problem. To appreciate this point, con-
sider the analytic solution of Laplace's equation in polar coordinates

(Decretion, 1972)

520 00 | 320
2 979 oL L9 _
0t mgt T o o 0 [4.28]

Equation [4.28] is separable into a system of Sturm-Liouville equations

which may be solved for the general solution

o0
o(r, 6) = ) [asrs sin s8 + bsrs cos s@] [4.29]
S:—OO

where the summation extends over values of s to be determined. The nor-

mal derivative along the edge of the cormer is given bv

39 1
r

8% 1
on T

Q)’O)
D]

(o]
z [sasrS cos sb - sbsrS sin s5] [4.30]

- OO

s

Enforcement of the boundary conditions that

(r, 6 =0) = &(r, 6=6) = 1 [4.31]
in eguation [4.29] results in the requirement

s = %.ﬂ [4.32]

where k is an integer, and § the re-entrant angle. Hence, the expres-

sion for charge resembles
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G = - g %53 - T b, (k %) r(k 57 Y sin (k g—)e [4.33]

k=0
whose k = 1 term contains the form of the charge singularity if ¢ = 27,
Higher order terms are regular in r thus indicating that the approxima-
ting form of [4.25] is more appropriate.

Charge profiles for both [4.26] and [4.27] requiring 1 and 2
unknowns respectively, are plotted in Figure 4.5 and should be compared
against the N = 4 curve in Figure 4.4 which involves 5 unknowns,
Obviously the latter should not be used if charge distribution data is
p

required. For the same accuracy using pulse-expansion, McDonald ef a&

(1974) required 50 unknowns. Thus two inferences become clear: —

(i) for the same accuracy with less unknowns, a fewer number of
collocation sections with higher-order source interpolation is

preferred to a large number of pulse expansion sections; and

(ii) 4if the form of the singularity is known, it should be added
to the polynomial trial function as an extra term so that if
the smooth portion of the function is not required, it may

be duly penalized by the variational procedure,
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4,3 The Exterior Dirichlet Problem

This example is intended to illustrate the equivalence of the
three types of integral formulations derived in Section 4.1. In particu-
lar, consider the exterior problem posed by an equipotential circular
boundary of radius a, charged to a potential of 1 volt. The two-

dimensional free-space Green's function is given by

thus indicating a potential that goes to infinity as r - ;'] - x,
Hathematically, this situation arises because operator K is not posi-
tive definite. But K can be made so by adding to [4.34] a positive con-
stant, 4.e.

GIFIT'] = =5 n'T - F'] + 5 fn|T, - T [4.35]

where the reference point r, can be chosen quite far away to make the

second term of [4.35] approximately constant. The physical effect of

this manipulation is to regularize the potential behaviour so that it

vanishes logarithmically as |r| - ];R
In the case of a circular cylinder of radius «, the exact
values for the potentials are widely known and may be evaluated from the

expression

[
%fé-[~2n a + 4n R] ; r < a
o >

¢(r) = < [4.36]

sgﬁ% [-%n r + &n R] ; r > a
, Z
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where R = ]r - r'], and Op 1is an assumed simple-layer, uniform

R

charge distribution on the cylinder. Setting r = a and enforcing

o{r = a) = 1, [4.36] gives the relation

Ooa - 1 [
o) Zn R - fn a

4.37)

or which when substituted into the right-hand side of [4.36], now gives

¢(xr) = < [4.38]

fn R-4nrx .
n R - 2n a ’ -

For the purpose of numerical computation, the coordinates of

r, are chosen to be (XR, yR) = (10%, 10%), thus making R = 10°/2.
In particular, a is set at unity. Using quarter-plane symmetry, the

modified Green's function [4.35] now resembles

N R =___1_ vy 2 121”5__]:_ ot 2 , N2
Glx,y|x",y'] 5p mlx2x")" + (y2y")°] + oo Al (e £ x")7 4 (yz2¥")7]

[4.39]
which may be expanded into four terms, one for each quadrant. The BEM
model is just one quartic element comprising 5 nodes. Denoting ¢;, C:
and ¢3 to be the respective potentials computed from the solutions of
[4.6], [4.13] and [4.19], the numerically calculated values for different
values of r are shown in Table 4.4. Incremental values of r are given

by Ar = .3278.
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TABLE 4.4: Potentials - Exterior Dirichlet Problem

Exact

T ¢ P ¢3 P1-0d2 ¢

Ar 1.0003 1.0000 . 0003 .0003 1.0

1.0 . 9996 1.0000 .9992 - 1.0

LAr .9629 .0 .9629 . 9629 .9627
6AY .9070 .0 .9070 .9070 .9068
8Ar .8673 .0 .8673 .8673 .867;_J

Within the cylinder, the exact solution is best calculated
from the double-layer (¢;) kernel expression [4.7]. It is interesting
to note that for ¢z, the condition that vy = 0 from [4.17] is not im-
posed but the computed value is seen to be vanishingly small and equal
to a linear combination of ¢; and ¢, as defined in equation [4.207.
For the exterjor potentials, very good correlation is evident from ob-

servation of the bottom three rows of colummns 2, 4, 5 and 6.

B Sl

FIG, 4.6: BEM model of circular cylinder -
positive quadrant
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4.4 Capacitance of Conducting Solids

In the static field problem, the functional has special
significance at the solution point. Consider equation [2.2] where the
first term of the first scalar product, namely Kf, is the potential ¢
on S. The product of potential and charge integrated over surface §,
yields the potential energy of the system. Correspondingly, the second
inner product yields twice the energy. From an energy point of view,
this is the exact parallel of the variationally formulated partial dif-
ferential equation functional (Wexler, 1980). Based on this energy con-
cept, the electrostatic capacitance of the system may be readily obtained.

In matrix notation, the functional

Fo= £ Sf-2f b [4.40]

reduces to

at the minimum. Thus evaluation of functional magnitude requires merely
the multiplication of a row and a column matrix. For conducting bodies,
this magnitude is twice the electrostatic energy so that with an equi-
potential boundary, the capacitance C of the system will be given di-
rectly by
F
c = ‘L-zl [4.42]
24
The capacitances of a sphere, prolate spheroid, and cube are

calculated using equation [4.42]. With one-eighth symmetry, the respec-

tive BEM models need be developed only in the positive octant. The
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modified Green's function is given by

1 i { - ~l__ 1 1
G[x,y,z]x s¥',2'] = lm{[(xix')?- ¥ (yry')2 + (ziZV)z"g--’

[4.43]

where the right-hand side incorporates eight terms to account for image
symmetry. With the exception of the cube, exact values for capacitance
are available for the two conic surfaces. In particular, for a unit

sphere, the value is 4megy or 111,26 pF whilst the expression for the

prolate spheroid is

3

8meo(a® - b?)

P o Pl [4.44]
Ma T (a? - bD)E

from Van Bladel (1964) where a and b are the semi-major and semi-
minor axes. With a =2 and b = 1, equation [4.44] returns a value

of 146.33 pF. Table 4.5 shows some results obtained using a few BEM

models,
TABLE 4.5: Capacitances of Spheroids
degree of number of number of order of capacitance

interpolation elements nodes quadrature pF

sphere 3 1 10 4 111.21
2 4 15 4 112.07+%

prolate 3 1 10 4 145,14
spheroid 2 14 39 3 146.34%

The asterisk * represents results previously published in Lean et al
(1979b). An addition-subtraction method was used to cater for Green's

function singularity. Thus, the analytic integration was performed on
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four fLattened patches representing each curved element. This ad hoc
procedure caused the minimum of the functional to overshoot, hence, pro-
ducing values of capacitance larger than the exact. Since the number of
operations for matrix fill goes up as the square of the number of ele-
ments, the difference between computation times for rows 1 and 3 (also

2 and 4) is considerable. The present BEM model for the sphere uses a
cubic element that allows two-digit accuracy in geometrical representa-
tion. Also, the new scheme for handling Green's function singularity is
implemented to obtain less than .05% error in calculated capacitance.
The prolate spheroid shows .8% error; considerably more than the sphere.
This is because with the cubic interpolation scheme, there exists some
arbitrariness in the positioning of the interior node (Mitchell & Wait,
1977). This flexibility can be used to advantage — by shifting this
node towards the elongated region or no4e in order to obtain better sur-
face description. Thus, this value of capacitance can no doubt be im-
proved.

Of special interest is the capacitance for a unit cube which
was originally computed by Reitan & Higgins (1951) using their method ¢f
subareas — a method very similar to the pulse-expansion point-matching
technique. Their value of .6555 e.s.u. 1is well within their predicted
upper and lower bounds, {.e., .6221 < C < ,7106 e.s.u. Table 4.6 shows

some results using a few BEM models.



TABLE 4.6: Capacitances of a Cube

*previously published in Lean ef af (1979b)

degree of number of  number of Order of Capacitanz;mj
interpolation elements nodes quadrature pF esu
1 6 7 4 72.94 .6556
2 6 19 5 73.00 . 6561
3 6 37 5 73.13 .6573
1 12 10 4 73.12 .6572
2 12 31 4 73.19 L6578
2 12 31 4 73.03% .6564

The first three rows cof Table 4.6 show a monotonic improvement
in computed capacitance in going to higher-order interpolation. Rows 5
and 6 are for a refined BEM model involving 12 elements. In comparing
rows 3 and 4, it is obvious that 12 linear elements involving 10 unknowns
have almost the same precision as 6 cubic elements with 37 unknowns. This
means that a model with fewer high-order elements may not necessarily be
better than another with more lower-order elements if the source discon-
tinuities due to geometry — edges and corners — are not formally addres-

sed. 1In any event the surface charge behaviour will not be accurate,

4.5 Sensitivity Study of a Metallic Body in a Finite Conducting

Media

The physical problem configuration consists of a metallic body
submerged in the ground, with a pair of injection-withdrawal electrodes
at which electrical currents are caused to flow. The motivation for

this simulation stems from the desire to monitor air-earth interface
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potentials due to an arbitrarily positioned electrode-pair. Resulting
changes in surface potentials caused by the presence; and subsequently,
orientation, size and depth of the object, all contribute sensitivity in-
formation that may be used as a pioil data for any subsequent computa-
tional stage.

To simulate this problem on a computer, the chosen model is
that of a prolate spheroid with 8 cubic elements. An array of electrodes
are located on the surface of the earth, assumed to be homogeneous with
finite conductivity « (Figure 4.7). Using half-plane symmetry (about
x-z plane), where d is the depth of the origin below the surface, the

Green's function is given by

G [x,y,z|x',y',2"'] = 1 1
m! T BT WlG-x)7 % (7-y )2+ (z-2)0 )2
+ 1 y [4.45)
4Tl (x=-x")2 + (y+y'=2d)? + (z-2z")?)%s
At the air-earth interface, two boundary conditions must hold — except

at current injection and withdrawal sites, potential ¢ is continuous,
X o 3¢ . .

and its derivative 3, Zere everywhere. Assuming only the static or
low frequency case, the effects of displacement currents can be neglected.
Also, the metallic body is very highly conducting in comparison to the
surrounding media so that it may be assumed to be an equipotential sur-
face. Thus, one need consider only the dual electrostatic problem posed
by a constant Dirichlet boundary under the influence of two point charges

As a result, the actual expression that needs to be solved, is

%-J;Gm[sls'] o(s')ds' = g - %f'{G[sI;l] - G[Sl;z]} [4.46)

where O represents the surface charges and q, the magnitude of the

point charges located at r; and r;. The accompanying factor of 2
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accounts for half-plane symmetry. Parameter K may then be interpreted as
a scaling factor., Equation [4.46] is derived from the simple-layer formu-
lation of [4.2]. The value of g corresponds to a Dirichlet boundary

on the metallic object which may be conveniently set to zero since any non-
zero value may be seen as a constant off-set. A polynomial (cubic) expan-
sion, point-matching method is used for the solution of [4.46]. 1In match-
ing only at element vertices, the Green's function singularity is not direc-
tly addressed. The surface potential maps of Figures 4.9 and 4.10 are for

K = .00l mhos/m and are reminiscent of those obtained using resistivity
methods in geophysics (¢.g., Telford et al (1976)). TFigure 4.8 shows a
4x 4 electrode-grid placed at the interface at which poteﬁtials are eval-
vated and referenced to electrode 17. In particular, the injection and
withdrawl sites are marked + and -, respectively. Figure 4.9 corres-
ponds to a pure-dipole field due to the absence of the buried object. With
the prolate spheroid centered in the grid and oriented length~wise horiz-
ontally across the page, the resultant inclinationlof the equipotentials in
Figure 4.10 is produced. The waviness of the plots are a consequence of

the coarse grid used for graphical interpolation. Although this application
is an idealization of the physical problem, nevertheless it provided rele-
vant quantitative data that gave an indication of the relative potential

changes to be expected.
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V. INTERFACE PROBLEMS IN MAGNETOSTATICS

A typical example of such a problem is that of the perturbation
of a uniform magnetostatic field by a permeable body (Figure 5.1). Let
ﬁi and ﬁe be unit normals directed into and out of the permeable body.
Also, let material constants be u; and U, for the interior and ex-
terior regions, respectively. From linearity of Maxwell's equations, one
may consider an equivalent problem posed by the superposition of the
applied field in Re’ and the perturbation field due to a polarization
source distribution on S. This source distribution is a direct conse-
quence of the interface condition and vanishes when u; = y,. Thus,
signifying ﬁ, ﬁa and ﬁm to be the total, applied and perturbation

fields respectively, then
H = H +1 [5.1]

and in particular if ¢a and ¢m are Laplacian in all R, then the to-
tal potential 5 will be given by the algebraic summation of the cor-

responding scalar potentials, or

w

.

3]
o

o) = ¢ () +¢_(T) [

where H is given by
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Hq

FIG., 5.1: Interface problem geometry

5.1 Integral Formulations for Scalar Potentials

The wide selection of boundary sources to suit the problem gives
rise to at least three formulations that may be used. The following subsec-
tions discuss tneir origins and relative merits when M=%yt for free-space,

and y; =vy, where u 1is the relative permeability.

5.1.1 Simple~-Layver Kernel

This formulation is derived from the use of a distribution of
simple-layer polarization charges 0(s) on S. The perturbation poten-—

tial ¢m everywhere in R is given by
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¢m(§) = ;%LG[EIS'] o(s")ds’ [5.4]

where G 1is singular on S andrequires special handling. The boundary

conditions on § require that both

and Ui §§1‘+ Ha ég& = 0 [5.6]

be satisfied. Since ¢m is harmonic in R and continuous across S,
condition [5.5] is satisfied when ¢a = ¢a on S (which is obvious).
1 2

For flux continuity, consider the Neumann formulations of [5.4] taken

along ﬁi and ﬁe such that

30 (s)
_m 1 [ 3G[s|s'] vyaer _ 0(s) .
Bni UO_L Bni o0(s')ds 0 [5.7]
and
a¢m2(5) = ;L f aG[S S'] O(S')dS' - O(S) [5 8]
Bne Ho Jg 8ne ATES :

on S where the last term of each of the above expressions represents the
jump in flux in crossing the boundary. Expanding [5.6] into component
form, dividing throughout by Uy, and recognizing that the normal deriva-
tive of ¢a1 and ¢a2 are identical, the result is the simplified in-

terface condition

8¢ Jo) 9¢
m; my _ 2 5

m. T hn G- D3 [5.9]
1 e e

H
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Substituting equations [5.7] and [5.8] into [5.9] and noting that the
normal derivative of G in the ﬁi and ﬁe directions sum to zero,

the following expression in terms of o on S

W+ 1)Jls) | [5.10]

1 | 3G[s|s’] ' '
J o(s')ds’ + (0 = 1) 2uy  an

Lo on
is obtained where subscripts have been dropped with the understanding
that normals are directed along ﬁe. The right-hand side of [5.10] re-
presents the normal component of the applied field and is computed from

= —-— o e = -u—-—i
Han = n V@a [5.11]

This formulation is seen to be well-behaved even when u -+ o, Once
0(s) is known, @m everywhere may be computed from {5.4] and E from

[5.2].

5.1.2 Double-Layer Kernel in Terms of Partial Interface Potentials

This formulation expresses perturbation potential ¢m every-
where in R as a function of its values on S. Equations [4.16] and

[4.17] may be used to obtain the following two equations

- - 8¢) - v _

6., (@) = J;{G[r]s'] a;ﬁl - o §9%§$§—l} ds' 3 TeR [5.12
- - L 3G[E]s'] -

¢m2(r) = —fS{G[rls'] e ¢m2 Ao }ds' 3 re R, [5.13]

the negative sign in the latter being due to the assigned normal being
directed into R_. With reS (L.e., |y|=2), adding [5.13] to the

product of u and [5.12] gives
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3¢

Fo, () +¢. ()] = ]S [u —5;"1—1-5%2—] Gls|s'1ds" —JS e, =¢_ ] Clels] 4o
[5.14]
Interface conditions demand that ¢m1 = ¢m2 on S and [5.9] must hold.
Therefore, [5.14] simplifies to
Lség%iﬁﬁll ¢m(S')ds' + ES t i; ¢m§S) = JSG[SIS']HandS'
[5.15]

which retains the form of [5.10] except for the right-hand side which is
considerably more involved. Compugationof (ﬂn using ecuations [5.12] and
[5.13]requires determination of 7;? on S. This requirement could be
removed by eliminating the flux term, a procedure justified by the fact
that ¢m(s) alone is sufficient to define ¢m everywhere in R. The
steps in elimination involve writing [5.12] and [5.13] in each region

and massaging them into a form that allows [5.9] to be invoked for sim-

plification. The end result is given by

o (T) = (L;—il L{G[Eis'man(s') -6 (s i%%,si} ds' 3 TeR

m) i
[5.16]

and

ot = Tlat vy _ ' 3G[r s'] v . =

¢m2(r) = (p-1) L;{G[rls ]Han(s ) ¢m(5 ) . } ds ; T ER
[5.17]

two equations differing by a factor u~! Denoting ¢;(;) as

v T = ] ] 1 L) T ! 1 -

¢ (x) = (-1 L {G[r|s ]Han(s ) — ¢ (1) —G—%!,—S—]}ds ; T eR +R,

TES

[5.18]
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the total potential 5 everywhere is given by

- - . -
¢_(x) + ¢ (r) 5 T ER
¢() = < o () +¢6 () 5 Tes [5.19]
- 1., ] -
6, + 581 5 Fer
5.1.3 Double-Layer Kernel in Terms of Total Interface Potentials

This formulation in terms of ¢ leads to a more compact ex~-
pression than the previous. Consider ¢a which is harmonic in Ri and
specifically satisfies Laplace's equation (since ¢a originates in Re).

Then Green's Theorem may be invoked to write

¢ (s) 3¢ (S') ¥
z = f {cls|s'] —f—— - ¢_(s") B—G%%J,S—]—}ds' [5.20]
S

on S. Multiplying [5.20] by (u - 1) and rearranging it into a form

comparable with [5.15], the result is

BG[S'S'] i ¥ (U - l) - [ '
(v - 1) Jg——~§#r——-¢a(s Yds' + " ¢a(s) = -(y - 1) jSG[S|S ]Hands
[5.21]
Adding [5.15] to [5.21] and rearranging, the resultant expression
8GIs[s") %/ vyqor o W+ 1) G(s) _ 1 .
fs an' ¢(S )dS + (U - l) 2 (U - l) @a(s) [3'22]

~

is the formulation in terms of total potentials ¢ on S. Once ¢ is
ascertained, equation [5.20] written in Ri or Re could be used in

conjunction with [5.16] or [5.17] to obtain the compact expression
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9,(x) + ¢ () ; ToeR
6(E) = < [5.23]
So,@ L en@ 5 Tew
where
%(?) = -(u -1 L SG[arn‘s'] b(s"yds' ; T ¢ R, TR,
r¢s [5.24]

The equations derived in [5.10], [5.15] and [5.22] are three
formulations of the same problem in terms of second kind Fredholm inte-
grals with fairly well-behaved kernels. By replacing ﬁ% by Mn’ the
normal component of equivalent magnetization sources, the matrix of
[5.10] is seen to be the transpose of [5.15] and [5.22]. The most no-
ticeable difference is in the excitation function where [5.10] and [5.22]
are simple and compact. In the case of [5.15] a double-surface integral
has to be evaluated. Besides additional time in matrix fill, the ker-
nel also requires special treatment since G is singular on S. Con-
sequently, this formulation is not a viable alternative. The main dif-
ference between [5.10] and [5.22] lies in the computation of & once
the equations have been solved for boundary sources. With the former,
the expression for ¢ is valid everywhere without reservation but the
same cannot be said for the latter. As such, numerical inconsistencies
with respect to sign changes may arise for T close to the interface.
The formulation in terms of ¢, on S has another disadvantage when it
comes to field determination. From inspection of [5.18], ¢m(;) is

dependent on the product of y with the difference between two small

values (Jeng, 1977). 1In the limit as p - «, the error in ¢m
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computation is magnified especially for the exterior fields. The interior
expression is more stable due to the added factor of T

The choice of which of [5.10] or [5.22] to implement depends
on the parameter of interest. If interface potentials are important,
then [5.22] would be preferred since é is the independent variable.

But if field definition within R is paramount, then [5.10] would be a

better choice due to the continuity of ¢ across S.

5.2 Permeable Square Cylinder in a Uniform H-Field

This example entails a two-dimensional analysis of a square,
permeable cylinder oriented as shown in Figure 5.2. The uniform ﬁa-
field is directed along the positive y=-axis by setting ¢a = -y, Using
quarter-plane symmetry, only the fourth quadrant need to be addressed.
However, to take advantage of the symmetric Green's function of [4.22],
the problem is actually solved in the positive quadrant. The desired
results are then obtained with a change in polarity.

Galerkin's method is applied individually to equations [5.10],
[5.15] and [5.22] to solve this problem. Each of these ecuations is
seen to be of the second kind with a well-behaved kernel. In particular,

the normal derivative of Green's function is

A |
oG _ A .V = - 1 cos(n, T r')

an 27

— [5.25]
|r -]
which is finite in the limit as r » r' since the argument of the cosine

function tends to =. As a result, only the Gauss~Legendre weight need

e

be used for integration over the primed variable,
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FIG, 5.2: Square permeable cylinder in uniform B-field

(a) (b)
FIG. 5.3: Potential contours in uniform magnetic field
(a) ¥ = 10;
(b) v = 100;

(c) v 1000
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The BEM model consists of 4 cubic elements involving 13 unknowns.,
Denoting the formulations of [5.10], [5.15] and [5.22] by F;, F, and
F3; respectively, the potential 5 computed at coordinate positions

(0, -1) and (0, -2.5), are compared in Table 5.1 for different values

of .
TABLE 5.1: Computed potentials 5
-$(0, -1) -4(0, =2.5)

u Fy F, Fj F Fa Fy

1 1.0 1.0 1.0 2.5 2.5 2.5

2 .649 . 649 .648 2.332 2.332 2.332
10 .175 L1174 .173 2.074 2.070 2.074
10°? .208 x 107!} .199x 107!} .188x107Y  1.979  1.929 1.979
103 .383x 1072 .293 x 1077 .190x107%  1.968  1.457  1.968

For the situation u = 1, the interface does not exist, L.e.,
Fy and F,; have only the trivial solution for Mn and ¢m, respect~
ively. F3 has the solution 5 = ¢a as expected. Therefore, the exact
values of 5(0, -1) and 5(0, -2.5) are returned in the first row. As
¥ 1is increased, the results for F, in the exterior region, deterio-
rate in comparison to Fy, and Fs3. Also, 5 computed close to the
boundary § have negative signs especially for large u. This discre-
pancy is due to the formulation [5.18] used to recover @m. As u - oo,
the H-field in the cylinder tends to zero so that for [5.18] to hold

true, very precise field cancellation is required between the applied

and polarization components.,
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Potentials on the surface are more aptly computed by F; since
& is the independent variable. F, requires the summation of @m and
¢a on S, The difference in the results of F, and F; is attributed
to the inaccuracy of solution of ¢m —— the errors being introduced in
the computation of the excitation vector. Of the three, F; idis the
least accurate in terms of surface potentials due to the crude recovery
scheme used. Theoretically [5.4] is singular on S, so that a section-
ing philosophy in line with that described in Chapter III is required to
ensure that the observation point in question is approached in the proper
manner. However, the usefulness of such a scheme is difficult to just-
ify especially when F3 could be used so effectively. 1In comparing the
accuracy of computed exterior E, no difference can be detected between
Fy and Fi. Thus, this observation reiterates the theoretical claim
that F, 1is more viable in terms of computational economy. No special
software is needed to determine the location of the observation point
since [5.4] is freely applicable everywhere except on §. Equipotential

plots of ¢ computed using F; and 7-point quadrature are shown in

Figure 5.3 previously reported in Lean & Wexler (1981b).

5.3 A Two-Dimensional Formulation for Vector Potentials

A vector formulated problem is posed by a current coil radiat-
ing through a permeable body into free-space. In the case of a magnetic
recording head where the length is much greater than cross-section dimen-
sions, a two-dimensional analysis is preferred. Coupled with the fact
that head geometry and configuration frequently facilitate usage of
rotational symmetry, most practical problems in this context are adequat-

ely handled with a two-dimensional analysis. As such, the following
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derivation is for the z-component of magnetic vector potential Az and
its field effects.

Again citing linearity of Maxwell's equations, the effect of a
current coil radiating through a permeable body into air, may be simu-
lated by the superposition of (a) the current coil alone radiating in
air; and (b) a distribution of magnetic sources that hugs the geometry
of the body. The component of vector potential A due to a z-directed
current density is given by

Aj(?) = g J G[E]R‘] JZ(R')dR' ;i reR; +R,

\]

—
w
.
[R]
(@2

[

where R', R; and R, denote conductor cross—-section, head cross-
section and free space, respectively. Using a simple-layer kernel formu-
lation for the sources, the following equation may be written separately

for R and R,

(U]
°
R
~J
")

AT = ‘L GIF|s'] M_(s")ds' {

where Mt denotes the tangential component of the magnetization on S

~

caused by Btan due to the current source. The total potential AZ is

then given by

(W3]

o
o
[

ARG =A@+ A @ [

Interface conditions on S require continuity of normal component of

B (=Vx A) and tangential component of H (= ﬁ), or

T | b

Z) Z2
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and 1 zy _ 1 "z
on 5o [5.30]

Enforcement of [5.30] with u = ﬁl leads to the reduced interface con-
2

dition
aAf aAf2 BAi
1 -+ = - —_=
dn, L W=D on [5.31]
i e e

where subscripts denote directions of normals. Substituting the approp-
riate normal derivatives of [5.27] into the above and rearranging, the

result is

J BG[S S'] M (S')dS' + (1 + U) I‘It(S) — - iA_._(S_>.
on t

N

T 3 [5.32]

a second kind Fredholm integral in terms of Mt(s). The excitation is

provided by the current coil and is computed from

J
8A" (s) '
-z - Ho j QELS%B—l JZ(R‘)dR' ; s €S [5.33]

on .

Once [5.32] is solved, Zz everywhere is calculated from [5.26], [5.27]
and [5.28]. 1In practice, the parameters of interest to engineers are
the downtrack (BX) and vertical (By) fields since they are intimately
linked to magnetic recording processes. BX and —By are in turn, the
derivatives of [5.28] with respect to the y and x wvariables. 1In
particular, BX and B are given by

BAT(E)  3AL(T)

B (r) = 5y + 3y [5.34]

aAg(E) BAg(;) ]
- ox  0ox [5.35]

d B (T
an y(r)
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These derivatives may be carried within the integral since they
are with respect to the unprimed variables. As a consequence, the algor-
ithm is neat and compact when compared to a partial differential equation

solution where node interpolation is necessary.

5.4 The Magnetic Recording Head Problem

Equation [5.32] is solved using Galerkin's method for the mag-

netization sources Mt' The Green's function used is given by

1

GITIT'] = - o= im|T -7+ = ot - T [5.36]

where the last term on the right-hand side is included for the same rea-
son as in Section 4.3. The BEM models of the conductor and head cross—
section are shown in Figure 5.4. A constant current density of

? flows in the conductor which is modelled by 4 linear

.03A/micron
triangular elements. The vector potentials due to the conductor are com-
puted using l6-point quadrature over each element. A basic configuration
for the head cross-section is the 8 element model of Figure 5.4(c), with
the facility to increase the degree of interpolation from a linear (8
nodes) to a quartic (32 nodes) approximation. Figures 5.5 and 5.6 show
the calculated vertical and downtrack fields at distances of .5, 1, 2,
and 4 microns beneath the head. The bumps in each curve at approximi-
tely ]xl = 2 micron are not observed until a cubic approximation is
used. This is expected due to the rapid undulation of the field.

In the calculation of vector potential due to magnetization
sources using [5.27], a logarithmic singularity is evident on the head

boundary. However, in this analysis, no special scheme is specially used

to acknowledge the singularity. Three-dimensional representations of
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FIG. 5.4: Magnetic recording head:
(a) cross-section;
(b) BEM model of conductor; and
(c) BEM model of head cross-section
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the vector potentials are shown in Figure 5.7. The isometric view
pertains to the head oriented with the open-end facing inwards. 1In Fig-
ure 5,7(a), the undulations observed correspond to the periphery of the
head. 1It appears that the crude recovery scheme used for AS on the
head lead to the imprecision alluded to in a previous example (Section
5.2). Increasing the quadrature order is seen to ameliorate the problem
though not handling it explicitly. Since BX and By fields, which
are independent of the companion term in [5.36], are of primary interest,
this scheme will be the most economical and versatile to use. A suit-
able formulation can be derived using the concept of Section 5.1.3 if
AZ on the head boundary is to be determined accurately.

Figures 5.7(b) and (c) show the vector potentials due to the
current coil alone, and the resultant total potentials due to both (a)
and (b). The features of Figure 5.7(a) are retained in (c) because of
the observed order of magnitude difference in their values. Each of the
plots are done separately, each with a different scaling factor built
into an interpolation algorithm that confines the plot within the screen
of the Tektronix 4013 DVST. Thus, this essentially makes it difficult

to visually sum (a) and (b) to obtain (c).
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VI. ELECTROMAGNETIC SCATTERING PROBLEMS

The time-harmonic response of electromagnetic waves in the
presence of a scatterer depends on the configuration and material con-
stitution of the object; the propagation frequency, polarization, and
angle of incidence of the impinging field; and the far—-field observation
angle. Classical solutions involving expansions of cylindrical (two-
dimensional), spherical and spheroidal wave functions, exist only for a
limited class of geometries where separation of variables may be prac-
ticed. 1In the low-frequency or Rayfedigh fegion, analytic solutions are
obtained in the form of convergent power series expansions (Kleinman,
1965). At high-frequencies, asymptotic techniques such as Ray or Phys-
ical Optics (PO), Geometrical Optics (GO) (Koujoumjian, 1966), and the
Geometrical Theory of Diffraction (GTD) (Keller, 1962), are necessary.
Corresponding techniques for the transition or 4esonance range include
modal expansion (e¢.g., Garbacz, 1965), and conformal transforms (Shafai,
1969).

With the advent of the digital computer came the numerical
modes of solution (Mei & Van Bladel, 1963) — based on moment methods
(Harrington, 1968) with modelling strategy tackled on two fronts: wire-
grid and solid-surface techniques. Undoubtedly, the modelling of an-
tenna configurations as wire-like radiating structures precipitated the
use of the wire-grid approximation (Richmond, 1966). Its application
to solid-surface geometries seem a natural extension and does work well
at sufficiently low frequencies when grid-length is short compared to
the wavelength (Lin & Richmond, 1975). The other alternative was init-

ially dintroduced as patch collocation.
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Traditional preference has been to use the electric field
integral equation (EFIE) for wire structures and the magnetic field inte-
gral equation (MFIE) for solid surfaces. Part of the reason for the
first preference is because the MFIE kernel has a term involving the
vector product of surface current js with the gradient of the Green's
function V'G so that difficulties arise when the included angle be-
comes small. The EFIE is ideally suited since the axial currents are
assumed and constrained to flow along the wire. However, the strongly
singular kernel has been a deterent to many practitioners in this area.
The MFIE has a better-behaved kernel but is prone to internal resonance
problems and deteriorates as a viable alternative for scatterers of van-
ishing volume due to geometrical factors in the integrand. One technique
for coping with the interior resonance problem is to apply the extended
boundary condition (EBC) of Waterman (1965, 1973) involving vector eigen-
function expansions of the Helmholtz equation. Other recent contribu-
tions and improvements to the EBC include Al-Badwaihy & Yen (1975), and
Morita (1979). A second method involves the coupling of the MFIE to the
EFIE (Mitzner, 1968) to effectively suppress the resonance effect. An-
other alternative is the artificial suppression of interior resonances
by setting some points in the interior to have vanishing fields, thus
constraining the system of linear equations to have the trivial solution
within. One disadvantage is in the arbitrarities of such a constraint
— the null locations must coincide in position with a non-zero value of
the resonating mode in order for the technique to work. Thus, prior
knowledge of modal locations are necessary in this application. A final

method involves the method of modal expansions previously alluded to.
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The size of the integral equation-generated matrix that can be
accomodated on a computer, limits the dimension of the scatterer in terms
of the wavelength of the illuminating field. This core limitation dic-
tates the number of variables that can be effectively handled at any fre-
quency. Hybrid techniques that incorporate the GID with traditional mom-
ent methods (Burnside et al, 1975; Thiele & Newhouse, 1975) have met with
some success. Any scheme that leads to economy with respect to the num-
ber of variables, will be a definite asset. This study will be concerned
with the scattering of electromagnetic waves from perfectly conducting

boundaries,

6.1 Two-Dimensional Integral Formulations

Maxwell's equations in space-time domain may be restated in the

space-frequency domain with suppressed ejwt time dependence. The E

and H field wave equations for a source-free media

VxVxE-EKE = 0
[6.1]
VxVxH-Kk?H = 0
reduce to
(V2 + k%) E = 0
[6.2]
(VZ+k*)H = 0
for a divergenceless region with wave number k = g pe = 2m/A. Defining

in general terms Y(r) and G[;{;'] to be two potential functions in R

that satisfy the wave equations
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(V2 + k%) ¥(x) = 0 [6.3]
where Y(r) » 0 as |T] »
and (V2 + k%) G[r]r'] = -6(r - ") [6.4]
where Gir|r'] » 0 as T -] > =

subject to the boundary condition

lim r[g% + 3ky] = 0 [6.5]

Tr +©

the scalar form of Green's Theorem may be invoked to obtain

- - (s’ 3G[rls'
VE = v f forr]s') 24— yery BlilelDyagr g6
S+ S
(o]

given that Y 1is the factor defined in [4.17]. From the radiation
(Sommerfeld) condition, the incident field wl (plane wave in the clas-
sical radar problem) is the accumulated effect on the boundary at infin-
ity S_. Since total field ¢(¥) = y'(¥) + y°(¥), the scattered field

is given by

s - - oy (s’ 3G[r]s" -
Vv (r) = - [ {G[r]|s'] "%é;rl - w(S')‘““L%ig‘l}ds' ; T €R
S [6.7]
The remaining portion of this section will be concerned with
the two-dimensional problem where the z-component of the field is invar-
iant in that direction. For oblique plane wave incidence, the incident

field is given by
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jksinB(xcosdy + ysing,) Jjkcost:z
e

V(x,7,2) = A,sind e [6.8]

where ©6 and ¢y are the elevation and azimuthal angles, respectively
(Figure 6.1). Denoting the transverse component of the wave number as
kt = k sinf = v k? - k; where kz = k cosB, and evaluating on the

z = 0 plane, [6.8] reduces to

jkt(xcos¢0 + ysindyg)

U (x,7,0) = A, sinf e [6.9)
6.1.1 THM Wave Incidence
This case is obtained by setting w(;) = Ez(§) in equations

[6.6] and [6.7]. Thus

. oE - ]
E (F) = —Y{E;(;) - J [6lrls'] 5% - E, Efﬂggéilqu'} [6.10]
S

Enforcing the boundary condition that Etan vanish on S and setting

oE
z . .
= = JuneJ, = quoH¢I [6.11]
S S
results in the Fredholm integral of the first kind

k

_t (2) P | i ' - i 9

7 JSHO (kt!r x'|) 3, (s") ds' = E, (s) [6.12]

in Jz, the longitudinal component of current density. Implicit in

[6.12] is the Green's function defined by

Glr|T'] = {% 1) & |T-1] [6.13)
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and the normalization of E; to unity with respect to free-space

impedance 1. Once Jz is known, the scattered field is obtained from

k
Ez(?) = - 7} £3H§2> (k[T - s']) J, (s') ds' [6.14]

and hence the total field Ez by the expression

E (D) = Ei(z) +E () [6.15]

An alternative form of [6.12] can be obtained by starting from

the normal derivative of [6.10] on S thereby resulting in

K2 3Ed (s)
-—jf.LHfz)G%!;—;'[)cosGL ;—;')Jz(sﬁds'ﬁ-%'ﬂ% J (s) = "—%T”
[6.16]

with a better behaved kernel (Bolomey & Tabbara, 1973). Far-field quan-

tities are computed using the asymptotic expansion of the Hankel function

~

: -jk_r jk_ £ o "
2
B! )k, e T [6.17]
k. r->w t
t
In particular, the radar cross~section (RCS) denoted by OTM is defined
as
s -
B2
OTM(¢) = lim 271 g [6.18]
T+ [Ez(r)]2

so that using [6.17] for the kernel of [6.14], the eventual form is

. [o3 ° "'
kt Jkt r T
[l e

Oy (9) = ZoinZt J,(s")ds"]? [6.19]

dependent only on bistatic angle ¢.
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6.1.2 TE Wave Incidence

This mode of incidence corresponds to setting w(;) = Hz(§) in

equations [6.6] and [6.7], 4.e.

. oH
B, = - y{B @) - J [Glx|s'] 5=F - H_ ———EJE—-Jd '} [6.20]
S
oH
Enforcing the boundary condition that 7;? = —waOE¢ =0 on S8, and
setting J¢ = - Hz(s), [6.20] simplifies to

Ike 5 () = 1 o
(k lr - l) cos(n, r-r 'Y J.(s")ds' + —-J (s) = - H (s)
4 S ¢ ol z
[6.21]
a Fredholm integral of the second kind for J¢, the transverse component
of current density. Once J¢> is ascertained, the scattered field is
calculated from
S - jk (2) -
H(r) = — (k ]r-—s'l) cos(, r-s") J (s')ds' [6.22]
z 4 S ¢
and hence total field Hz from
B (D) = w@ +85E 3 rer [6.23]
2 2 ” 5 .2
except on S where Hz is given by
H(s) = 2[H.(s) + H(s)] [6.24)
z z z

Using the asymptotic form of the first order Hankel function

1

— -jk.r jk, T - T
Hfz)(ktr) - Y 2] hi ,t e °© [6.

ktr + oo ﬂktr

[N
(W]
—
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the scattering cross-section defined as

) |2
o..(d) = 1lim 27r — [6.26]
TE r o IH;-(I_)IZ

is now expressible as

kt jkt T e rt
= oY, 0 v vy2
OTE(¢) 4oin?6 PL e (n' e 1) J¢(S yds'] [6.27]
6.2 Scattering from the Perfectly Conducting Circular Cylinder

The integral formulations given in equations [6.12] and [6.21]
representing TM and TE incidences respectively, are solved using
Galerkin's method for a circular cylinder of radius da. The kernel of
[6.12] has a logarithmic singularity of the imaginary component and is
treated in the manner described in Subsection 3.2.1. As for that of

' so that a Gauss-

[6.21], the kernel is finite in the limit as s + s
Legendre quadrature is used for integration with respect to the present var-
iable. Portions of the results that follow have previously been published
in Lean & Wexler (1981a).

The BEM model used is shown in Figure 6.2 and consists of 4
quartic elements totalling 16 unknowns. With source symmetry, this prob-
lem can actually be solved with 9 variables. Figures 6.3 and 6.4 show
the induced surface currents and radar cross-sections for both TE and
TM normal (8 = 90°) incidences at ka = 1.6 using 6-point quadrature.
They exhibit almost no deviation from the results published by Oshiro &

Su (1965). For the explicit purpose of output-data verification, special
attention is paid to the issues pertaining to: (i) low-frequency per-
formance; (ii) upper-frequency limitation; and (iii) near and far-field

computation,
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FIG. 6.1: Scatterer problem geometry

4 quartic elements
16 nodes

FIG. 6.2: BEM model of cylinder - first quadrant
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FIG. 6.4: Polar plot of bistatic cross-section
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cylinders

(1)

Analytic expressions for radar cross-sections of circular

are given by Mullin et af (1965) as

» Obtained analytically from small argument series expansion,

20,3 4
Tk’a
Orp (9) 2 [1 + 2 cos¢]? [6.28]
and
2
L 1
0. () — [ 5 ] [6.29]
™ N e T ok 4 (gniKRpye
4 2 2
where v = 0.5772 is Euler's constant, ¢ the bistatic angle, and «
the radius. Table 6.1 shows the monostatic (¢ = and forward (¢ = Q)
scattering cross-sections for ka between .005 and .2 (250 KHz -
10 MHz).
TABLE 6.1: Monostatic o(m) and forward o(0)
Scattering cross-sections for TE
and TM mode incidences
ANALYTIC NUMERICAL 1
ka ]
O Opg (0 Opp (M| Oy (0) | oy (M) O (0) O () /
-005 1 62.109 | .2776 x107° | .3084 x 10™° | 62.173 62.207 | .2776 x 1075 | . 3086 x 10™¢
.05 16.247 [ 12776 x 1072 | .3084 x 103 16.031 | 16.539 | .2775 x 10~2 03147 x10™°
.1 11.867 | .2221 %1071 | .2468 x 1072 11.349 | 12.495 | ,2211 x 10! .2618 x 1072
LfZ 9.064 | .1777 <1974 x 1071 7.989 1 10.459 | .1728 .2293x 1071

As expected, at lower frequencies,

the analytical and numerical results

compare exceptionally well, especially for the TE

case,

The expression

[6.29] is independent of aspect angle so that at low frequencies, it
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resembles a line source radiating evenly in all directions. Inspection
of columns 2, 5 and 6shows correspondence to almost one decimal-place at
ka = .005. 1In fact, towards lower frequencies, the trend indicates dimi-
nishing ditfferences between the analytic and computed results. The pro-
bable cause for this behaviour is the singularity of the first kind ker-
nel. Hence, the alternative formulation of [6.16] should produce a bet-

ter match.

(11) Upper_frequency limitation

The maximum frequency that this particular model can effectively
handle, is ascertained by monitoring the behaviour of output observables
with increasing ka. These observables are: matrix condition number
and determinant; surface current profile; interior fields; and surface
fields (TM case). 1In particular, a total-pivoting strategy is implemen-
ted for linear equation solution so that the condition number is estimated
from the ratio of the largest to the smallest pivot. From experience,
the Galerkin-generated matrix is well~conditioned so that this quantity
is quite invariant over the frequency range of operation except at
eigenfrequencies of the interior problem. Any departure from the pre-
dicted behaviour other than at resonance is checked for overall solution
compatibility. For this model, maximum ka = 6.4 or a BEM element size
of 1.6) and a sampling interval of .4)X. Figures 6.5 and 6.6 represent
the variation of normalized monostatic and forward scattering cross-
sections with ka. The results of Figure 6.6 correspond almost exactly
with those of Bowman et af (1969). Aberrations in the TE plot in Figure
6.5 occur at the TM propagation mode frequencies of the circular wave-
guide and is seen to worsen at the upper portion of the frequency band.

This observation is not predicted by the analytic results of Mullin ¢t
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98

al (1965), and serves as an indication that the integral H-field solution
is prone to interior resonances. At higher frequencies, both TE and

TM results are seen to approach the GO 1limit as predicted by theory.

(111) Near and far-field computation

Any departures of surface current distribution from the exact,
would be manifested in the computation of scattered near-fields. Hence,
near~-field quantities offer a good gauge as to the precision of sclution
of the independent variable. For purposes of comparison, equation [6.16]
which is the second kind integral for TM incidence, is solved by Galerkin's
method. Figures 6.7(a) and 6.7(b) show the total fields evaluated on the
wave trajectory that bisects the circular cylinder at ka = 3.832 re-
presenting the TM;;/TE,; mode degeneracies of the circular waveguide.
The solid lines indicate the BEM solution whose exterior fields coincide
with the exact. The dashed lines are results obtained by Bolomey &
Tabbara (1973) using a pulse-expansion, point-matching technique and in-
volving approximately 40 variables. Clearly, the BEM calculated interior
fields are closer to theory in that they are relatively smaller in mag-
nitude. Although not explicitly shown, the surface current distributions
computed from two matrix solution strategies by Bolomey & Tabbara (1973),
are quite different from those shown in Figure 6.7. The BEM calculated
currents are in fact, in quite close agreement with the exact. It does
appear that the BEM may be a better technique for near-field computation.

Far-fields are usually less affected due to spatial separation
and the fact that integration is inherently a smoofthing operation. Com-
puted RCS patterns in Figure 6.4 and also Figures 6.5 and 6.6, bear this

out.
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One important question at this juncture, pertains to the
effectiveness of this particular BEM model and its adequacy to handle
source variation. Figure 6.8 shows the transverse currents induced on
the cylinder circumference for the cases: & quadratic elements; 4 cubic
elements; 4 quartic elements (the present model); and 8 quartic elements.
In comparing the curves for the last two models, it is clear that not
much is gained in the way of accuracy in going from 16 to 32 variables.
Therefore, the extra 2207 more CPU time (1.5 seconds to 3.3 seconds)
for the latter case, is difficult to justify. One interesting point to
note is that this doubling of the number of unknowns lead to a doubling
in the upper~frequency limit as well.

The precision in operator approximation, is usually reflected
in the requirement of quadrature data. Good approximations quite often
lead to good accuracy with minimum orders of quadrature., Figure 6.9
illustrates the dependence of the variational functional, matrix condition
number and determinant on quadrature order for TM (first kind integral)
and TE cases, respectively. Each functional is the magnitude of the
neaction between the surface currents and the incident field, 4.e.,
<J, Ei > and < J

z z ¢’

of energy or power. Essentially, they behave as in electrostatic problems

H; > (Harrington, 1961) so that they have units

in regard to convergence. Two points of interest are obvious from in-
spection of the curves: (i) 6-point quadrature is sufficient to integrate
a quartic expansion of sources (including the kernel); and (ii) the
H-field formulation is better conditioned than the first kind integral as
is evidenced from the behaviour of matrix condition number and determin-

ant with quadrature.
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With regard to matrix conditioning, Figures 6.10 and 6.11 are
plots of the same three parameters with increasing ka. Again, the
better-behaved second kind kernel giving rise to a better-conditioned
matrix is evident. Except at frequencies that correspond to the indi-
cated propagating modes of the circular waveguide, the matrix is well-
conditioned over the range of workable frequencies. The very narrow peak
indicating a large condition number and a corresponding vanishing deter-
minant, is a good indication of the accuracy of the algorithm. In com-
parison, the pulse-expansion, point matching technique exhibits no such
information. From the low-end of the frequency range to the high, con-
dition number is seen to decrease monotonically whilst matrix determin-
ant increases in the same manner. Their behaviour is quite insensitive
to the eigen frequencies for the interior problem.

The minimum sampling rate of this technique is of the order of
5 times per wavelength (Poggio & Miller, 1973). This means that collo~-
cation section size is .2A. For the BEM model, ka = 6.4 with 16 nodes
implies a node separationof .4A or one-half the number of variables com-
pared to the former. Interms of the number of operations for matrix fill
where each operation is a point-to-point accumulation, one would require

2

n? n? 2
s

and np ng for the BEM and the pulse expansion techniques re-

spectively — N, np and ng being in order, the number of BEM ele-
ments (4), the number of collocation sections (=32), and the order of
quadrature integration (6 for the BEM). Since the number of pulse-
sections is approximately 8 times that of the BEM model, even if ng =1

for the former and ng = 6 for the latter, it would still require more

operations to fill the pulse expansion-generated matrix.
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6.3 Three-Dimensional Integral Formulations

A vector formulation in three-dimensions, can be obtained from
utilization of the equations in {6.2] in conjunction with a scalar free-

space Green's function given by

cJik[r - T

o el
Glr|r'] W [6.30]
where [6.30] satisfies the inhomogeneous Helmholtz equation
VxVxG[r|r'] 8 -k%[r]r'] 3 = -6(r-71") 2 [6.31]

given that 4 is an arbitrary unit vector. Applying the vector form of

Green's Theorem, and simplifying, the result is

YJ {@@')XVXGEI§]§-Gﬁly]ﬁxVx@(§)}°ﬁds
S+5S_ [6.32]

-1
o
M
i

where @(;) is either ﬁ(;) or E(;).

6.3.1 Magnetic Field Integral Equation (MFIE)

This formulation of the vector integral equation, is specified

by setting @(;) = ﬁ(;). Enforcing the boundary conditions that normal

magnetic and tangential electric fields vanish on S, A.e.

ju D
jao)

(res) = 0
[6.33]

(res'y = 0

=3
kg
tri

and using Yy = -2 on S, equation [6.32] is simplified to
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n x f J(s') x V'G[s!s']ds' - JS;) = -0 x ﬁl(s) [6.34]
S
where the equivalent source notation
J = AxH [6.35]

has been incorporated into the simplification. The expression V'G is

the gradient of Green's function in source coordinates and is civen hv

SiklT -

4m|T - '3

VG = (r - 1") (1 + jkjr - *']) [6.36]

Equation [6.35] is a vector second kind integral that may be solved for

surface currents J. The scattered field ﬁs(;) is then evaluated from
%) = f J(s') x V'G[r|s']ds’ [6.37)]
S
and the total field expressed as
J— —i-— - -
H(r) = H (r) + H (r) [6.38]

For the computation of far-field quantities, the asymptotic form of V'G

is obtained by neglecting phase factors. Thus,

ed® T [6.39)]

V'GIE]E'] ¢ dk

retaining only terms in r '. This equation when substituted in [6.37]

gives the scattered far-field
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e—Jkr
4mr

£oex

J {jk J(s) x T} R [6.40]
s

5 (T) =

r o™

The RCS is dependent on elevation and azimuthal angles © and ¢

respectively (Figure 6.11), and is given by the expression

66, ¢) = 1im 4mr2 LB L2 [6.41]
T —+ |H1|2

which simplifies to the form

08, 6) = o= [J {3k 3(s") x £} &3F
S

In particular, the E- and H-plane RCS are obtained by specifying ¢ = 0

(x-z plane) and 6 = %’ (y-z plane), respectively.

6.3.2 Electric Field Integral Equation (EFIE)

The electric field equivalent of [6.34] is specified by setting
@(;) = E(T). Again, enforcing the conditions of [6.33] on S, the re-
sultant EFIE expression simplifies to

1
Jjwe

A x J {-k2J(s") Gls|s'] + v J(s') V'CG[s|s"1}ds' = @ x E (s)
S
[6.43]
where V; is a surface divergence operator in source coordinates. Equa-
tion [6.43] is a vector first kind integral in J. The scattered field

ES(;) is computed from

E5(r) = —J;{jwp J(s') - $%~Vé e J(s') V'G[r|s']}ds'  [6.44]
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FIG. 6.11: Scatterer problem geometry

8 cubic elements
38 nodes

FIG. 6.12: BEM model of sphere - positive octant
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Using the asymptotic form of [6.39], the far-field is obtained as

4Tr

E% (%) = fe e f (G + 3" 2 -3} 35T 7T agt (6,45
T >® S

Following [6.41], the RCS is mathematically given by

G(8, ¢) = lim 4nr? J—f—l—L [6.46]
oo 1512

which is simplified to give

~

jk ¥ - T

o8, ¢) = j%’[j Jk{(F = J(s")) T - J(s")} e ' ds']
S

2

[6.47]

where E- and H-plane RCS are as defined for the MFIE case.

6.4 Scattering from the Perfectly Conducting Sphere

The MFIE of [6.34] is implemented to solve this problem using
Galerkin's method. Due to the nature of the problem, only surface cur-
rents can flow where J(s) accounts for the jump discontinuity in mag-
netic field encountered in crossing this surface. As such, J need only
be specified in terms of a pair of orthogonal surface vectors to fully
describe the problem., The integral formulation [6.34] can then be re-
solved into two scalar equations involving 2N unknowns (e.g., Oshiro &
Su (1965)). This resolution scheme runs into problems in the treatment
of angular geometries — creases and edges, especially when higher-order
interpolation involving node-point values, are used. The notable excep-
tion is pulse-expansion for sources where the independent variable is
solicited only at the patch-centroid. As a result, the present BEM code

is specified in cartesian coordinates involving 3N unknowns. It is
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felt that with the efficient use of quadrature data, acceptable precision
may be obtainable without placing too heavy demands on solution time.

The BEM model of the sphere consist of 8 cubic elements involv-
ing 38 nodes, each with 3 degrees of freedom (Figure 6.12). Without
resorting to symmetry, a total of 114 unknowns are required. The cubic
element has precision in surface modelling, to two decimal places. With
quarter-space symmetry (as in Oshiro & Su (1965)), a total of 16 nodes
and 48 variables would be sufficient.

On resolving the discretized version of [6.34] into component

forms, the resulting matrix assembly may be given by

S;+ A S, S3 -°-Tx 1_)1
Sy Sg+A Sg gy _]22 [6.48]
S+ Sg Sgq +A_ JZ E3

where gx’ J and gz are column vectors of the respective component

of current density. The sub-matrices denoted Si resemble
T o , .
5., = a(s) Ki a (s') ds'ds ; i = 1, 2, ..., 9 [6.49]
S S

where Ki are the respective kernels given by
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Ky = n,(s) —%3.— +n_(s) 585'—

Kz = mmy(®) éﬁ%

Ky = = nz(s) ég%

Ko = -0 (o) o

Ko = 0,0 g () o [6.50]
K¢ = =mn_(s) aBy_G‘

Ky = = (s) 5or

Ke = - n,(s) 52_35;7

Kg = nx(s) g%%-+ ny(s) g%%

Along the main diagonal, the additional square-matrix A is due to the

vector second kind integral and is given bv
A = - J-% a(s) o (s) ds [6.51]

Finally, the excitation vector is formed from the stacking of the res-

pective X,V and =z components and represented as
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- - i - i

b, = Lg(S) {ny(S) H (s) - n (s) Hy(s)}ds

b, = - Lsg(s) {nz(s) Hi(s) - n_(s) Hi(s)}ds [6.52]
- - i - i

by = L;g(s) {nx(s) Hy(s) ny(S) HX(S)}dS

Of the nine kernels shown in [6.50] only the three forms

resulting from the taking of first derivatives of G with respect to

]

X5y

\] ]

and z are unique. Hence, for integration over the source co-
ordinates, only three function evaluations are required followed by a
multiplication with the appropriate normal component. This manner of
accumulating the system matrix enmasse reduces fill-time by at least
three times when compared to the more obvious block-by-block scheme.

The kernels of [6.50) can be shown to behave as

—ikd . .
e ik -jkd ]
Zra Y um © [6.53]

in the limit of vanishing d. The first term of [6.53] is the free-
space Green's function and thus has r ! behaviour. The remaining term
is superposed on the first and is seen to cause a cosine modulation of
the imaginary term. Provided [6.53] is not overly oscillatory over the
interval of integration, the numerical scheme outlined in Subsection
3.2.2 will be effective. As k =+ 0, the Poisson Green's function is seen
to appear in [6.53].

Finally, the incident field is assumed to be a plane wave (TEM)

with linear polarization in the x-direction and propagating along the

positive z-axis. Thus, the incident field resembles
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i e—sz

=i- 2
H( = §H [6.54]

The calculated E-~ and H-plane current magnitudes for ka = 1.7
are shown in Figure 6.13(a). The solid and dashed lines correspond to
plots of exact results published in King & Wu (1959). This particular
set of data is obtained using the 38 node model involving 114 unknowns
and 16-point quadrature over each element. Inspection of Figure 6.13(a)
shows that the H-plane current magnitudes are in closer agreement with
the exact, especially in the area away from the centers of the illumin-
ated and shadow regions. The discrepancy in E-plane data may be due to
the higher-order current variation and the inability of the interpolation
scheme to follow this behaviour. A 36-point quadrature produced the
plots of Figure 6.13(b), showing overall improvement. Execution time re-

quirements are given in Table 6.2.

TABLE 6.2: Timing Requirement for Scattering

Calculation
Execution . .
Order of time Matrix fill Surface
quadrature CPU seconds time (%) area
4 58 78 12.5422
6 200 88 12.5424

* All computations performed on the University of Manitoba
AMDAHL 470 V7 system.

The calculated values for surface area offer an indication of
the fidelity in geometrical representation. For a unit sphere, the exact
value is 47 or 12.5664 which when compared to the last column in
Table 6.2, show less than .2% error in overall surface description.

More importantly, the only difference between the two tabulated values is
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FIG. 6.13:
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E- and H-plane current magnitudes for
(a) NG 43 and
(b) NG 6
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in the fourth decimal place. This means that a cubic element is sufficient
to model one octant of a sphere. However, an increase in quadrature order
is seen to be necessary for better solution accuracy. Probably a fifth
order quadrature would have sufficed except that the element has an inter-
nal node at the centroid, thus running into numerical inaccuracies when
the center point of the quadrature grid approaches this node.

Analogous to the two-dimensional example, the total H-field
magnitudes are computed along a wave trajectory passing through the cen-
ter of the sphere. Figure 6.14 shows the expected nulling of interior
fields using 16-point quadrature. The sinusoid in front of the sphere is
reminiscent of a standing wave effect caused by an obstacle. Plots of
normalized E- and H-plane bistatic cross-sections for a few values of
ka are illustrated in Figure 6.15. These results are generated using
the lower-order quadrature scheme and are comparable to those given in
King & Wu (1959). This better agreement in scattering cross-section than
in current distribution, is a natural consequence of the enengy method.
Convergence in this regard implies that energy-related parameters will en-
joy better precision.

The upper frequency for this model may be assumed to be at about
ka = 3.5. This means approximately 2 elements/A? or a surface area to
node ratio of .12)X%. Compared to a suggested collocation patch area
(Burke & Poggio, 1977) of .04)%, or a sampling rate of 25/+°, the BEM
model shows a reduction by a factor of 3 in the number of unknowns.
Again, denoting n_, np and ng to be the number of BEM elements, pulsef
expansion patches, and order of quadrature, respectively; the number of
operations (point-to-point accumulation) required for matrix fill is

2

n 4
S

g

n for the former, and n; né for the latter. Even though np is
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FIG. 6.14:

Computed near-field
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FIG. 6.15: Normalized E- and H-plane bistatic
cross—-sections
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quite a bit larger than N, the order of quadrature for the BEM model
goes up as the fourth power. Hence, quite a bit more CPU time is needed
by this particular model.

One obvious way to cut down on the computation time, is to in~
troduce -% symmetry, thus reducing treatment to one element and 10 nodes.
This would effectively reduce the number of operations by a factor of 64,
Another saving could be realized by resolving J on S into two sur-
face components (especially for the sphere), thus requiring only 20 un-
knowns. To improve on source interpolation, the choice is between going
to a quartic element, and using two lower-order elements in place of just
one.

The main drawback of the present interpolation scheme, not
really felt in two~dimensions, is the requirement for more unknowns for
increasing orders of interpolation. For up to a linear variation, this
scheme is definitely viable since all nodes are shared by at least two
or more elements. Succeeding orders need interior nodes whose data con-
tribute to this one element only. Hence, any algorithm that allows the
usage of information from exterior nodes, especially for high-order in-
terpolation, and yetremains sufficiently flexible for general application,

would be advantageous for three-dimensional problems.
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VII. CONCLUSION

The scope of this thesis has been the solution of field
problems posed in boundary integral form. The introduction of the dig-
ital computer a few decades ago has rekindled renewed interest in this
mode of sclution and done much to spur development of efficient numer-
ical algorithms to fill the void separating this and the sophisticated
mathematics that has been the norm of partial differential equation (pde)
problem solution. 1In this regard, the BEM algorithm is proving to be a
creditable proponent. Of special significance is the fact that it orig-
inated from an extension of the finite element method (FEM) (originally
developed to address pde formulated problems), to integral equation prob-
lems. When compared to the pde scheme of things, it offers certain in-
trinsic advantages. Principal among them is the reduction of problem
dimension by one since it seeks a boundary representation for any pre-
scribed problem region. One immediate spin-off is reflected in the size
of the system matrix which is very much smaller (although dense) than that
of the pde counterpart for the same problem. Also, the amount of input
data is minimal compared to the volume of data normally required for a
pde analysis using the FEM or finite-difference techniques.

Another advantage is that boundary conditions are built into
the formulation thus making for algorithmic simplicity and compactness.
Because of the boundedness of the operator, the integral formulation has
a natural ability to model open region problems physically where field
effects vanish asymptotically in the proper manner. In contrast, all pde
solution schemes can handle only a finite region of space, thus calling

for artificial truncation of problem boundaries. An added bonus lies



120

in the better accuracy normally observed, a trait due to the integration
process being a 4moothing operation.

One frequently cited disadvantage is its inability to cater for
inhomogeneous media. This is due in part to the decision to retain the
flexibility for treating arbitrarily shaped surfaces with general bound-
ary conditions; an ability made possible only through the exclusive use
of the free-space Green's function. The alternative is to devise problem-
dependent Green's functions — a procedure that may sometimes be more in-
volved than the actual problem itself. For problems that involve volu-
metric sources and even anisotropy, the integral equation formulation mav
still be the more viable alternative. However, material inhomogeneous
and nonlinearities are better handled by the partial differential oper~
ator. Hence, for complete field definition, an artificial boundary may
be created to isolate a finite region within which a partial differential
solution is sought. Exterior to this boundary, an integral equation me-
thod may be applicable with consequent tie-in at the common interface.

An example of this hybrid solution scheme is the mutually constrained
picture~g§rame technique of McDonald & Wexler (1980) where the exterior
integral formulation is used to compute constraint equations that serve
as the boundary conditions for the interior partial differential region.
Another example is the unimoment method of Mei (1974), where the interior
problem is solved using finite-differences involving a shocting methed,
or a Ricatti transformation for the generation of trial function pairs.
The exterior solution is then expanded by cylindrical or spherical har-
monics with unknown coefficients and matched at the interface, thus re-
quiring the solution of a system of 4N 1linear equations. Other tech-

niques that require the mechanical coupling of individual system matrices
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are detailed in Kelly ef al (1979) and Shaw (1978). One conceivable area
for future work could be the automated algorithmic (and geometric) coup~
ling of the BEM to the FEM along the lines of McDonald & Wexler (1980).
An immediate improvement would be the savings incurred in deleting the
layer of finite elements representing the region (homogeneous) of over-
lap of the £wo solution schemes. This simplification is made possible by
the capability to address Green's function singularity at the common in-
terface, in a direct manner.

Another detriment to the choice of integral equations for
field solution is the kernel singularity. Inappropriate attempts to
handle the singular kernels (or totally ignoring them), will lead to matrix
ill-conditioning especially for increasingly large matrices. In a well-
conditioned system, the solution is described by hyperplanes that inter-
sect at 90° (Wexler, 1969) so that the intersection is relatively in-
sensitive to round-off error. As matrix conditioning deteriorates, the
included angles decrease to the point of instability. The ability to
identify and numerically treat singularities in a manner previously out-
lined, will ameliorate this traditional problem area.

One obvious characteristic of the integral equation formulation,
is the denseness of the matrix due to mutual interaction of all source
points. For the moment, the BEM uses a triangularization procedure
which although of order Na, is still three times more efficient than
inversion. At high frequencies where problem dimensions may be many
wavelengths long, or even where problem geometry may be very large, such
a practice may not be practical or even possible due to core limitations.
For the situation that the matrix size may be accomodated on the compu-

ter, the practice of suppressing altogether smallish off-diagonal terms



122

to obtain some measure of sparseness, is crude at best and needs to be
justified on an individual basis. A more elegant manner for obtaining
sparsity using subsectioning of problem regions, is discussed in Wexler
(1979). This scheme is derived from a method of tearing - diakopiics -
where problem solution is accomplished by treating individual component
parts and their interactions in sequence (e.g., Happ (1974)). This
problem forms another basis for future work with the BEM to handle elec-
tromagnetically large structures. An alternative strategy involves matrix
iterative procedures that require only N? operations. The disadvantage
lies in the total re-analysis required for every new set of excitation
functions. This differs from the previous technique where part or all of
the system matrix may be inverted and stored in factored form for use in
re-analysis. For extremely large problems, the matrix may be segmented
and treated sequentially as in the proghessive numerical methoed of
Shoamanesh & Shafai (1976).

In summary, Chapters II and III have provided some salient
features of the BEM that shows it to be a generalized numerical code
capable of addressing a wide range of engineering problems. Although
exemplary problems in subsequent chapters have been drawn from the elec-
trical discipline, its application is by no means restricted in this
sense. The successful treatments of static, interface, and time-harmonic
problems in Chapters IV, V and VI respectively, attest to its versatility.
In particular, the treatment of Green's function singularity is seen to
be adequate as is apparent from the low-order quadratures required. Thig
treatment is not exact in the sense of faithfully duplicating function
behaviour except in the vicinity of the singularity. Such a scheme may

not be possible given the arbitrariness in selection of element sizes.
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Therefore, the main objective is to concentrate on the localized
behaviour instead. From experience, results have indicated that at times,
the order of quadrature for the selff-element may be adequate, but overall
accuracy is hindered by the low orders of quadrature chosen for surround-
ing elements.

From a purely economical point of view, the present BEM algor-
ithm may not be as viable as the pulse-expansion, point-matching tech-
nique (e€.g., NEC) for three-dimensional problems. This is because the
number of independent variables increases as the order of interpolation,
thus pushing up processing time per element. One immediate improvement
in this regard would be to redefine a new set of interpolation functions
for sources, where mid-side and internal nodal data may be stored at ver-
tex positions in the form of derivative information (e.g., spline inter-
polation (Coons, 1974)). 1In essence, fewer variables would be required
to specify the same problem. The Lagrange interpolation scheme could
still be retained for surface modelling, depending on the precision of
the new interpolation scheme. Another alternative would be to implement
a polynomial expansion, point-matching scheme with accompanying treatment
of Green's function singularities at vertex nodes. The resulting number
of operations would then be proportional to the square of the quadrature
order né (rather than n; as before), and would be in the same range
as that required by NEC. However, it has the added capability for ac-
curate surface representation as well, The main underlying advantage of
the BEM algorithm is the use of Galerkin's method, which ensures the
stability of the matrix. Especially when working in a less well-defined
area, the assurance that the matrix will be well-behaved means one less

source of aggravation in problem solution.
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