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ASSTRACT

The Boundary Element Method (BEM) is shor^'n to be a viable

mechanism for the solution of field problems posed in integral forrn. It

allows Parametric representation of surfaces and sources to high fidelit1,

with rhe use of expansion functions derived from the Lagrange interpola-

tion scheme. A variational solution is obtained using the Rayleigh-Ritz

technique to construct a minimizing sequence that is guaranËeed to con-

verge in enelt$tJ. The parallel of the variationally deríved system of

equations to that obtaíned from a dírect applicatÍon of Galerkin's method

is discussed. A novel- numericaL scheme, fu1ly automated !o cater for

Greents function singularities over arbitrarily-shaped contours or boun-

daríes, is described in deËair. source singularities due to geometry --
corners or edges 

- 
are treated by using a trial function of the apprcF_

priate form and order. An added flexibifity is provÍded by the ability

to tailor-design Gauss quadratures to obLain optimal precision with minj-

mim sampling. Exemplary treatments to elect.rostat.ic, Ínterface, and

elecËromagnetic scatLering problems are discussed, Qualitative and rvhere

possible, quantitalíve comparisons are made with the momenË method

(pu1se expansion, point-matching) solution.
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INTRODUCT]ON

Integral formulations of static and tíme-harmonic boundary

value problems involve a general class of linear Fredholm integrals

with singular kernels. The mathematÍcal conditions for exisËence of

sofutÍons t.o such equations are well documented in the literature (e-.g.,

Stakgold (1967) and Zabreyko et. 0.'t- (J975)). A Fredholm second kind inte-

gral is expressible as

T.

g (x) [1.1]

where f is defined every'where on Ëhe interval [a,b] which may be in-

finite, and k[xlxt] may be an unbounded function of x and x'. The

first kind integrar results when L vanishes. provided À is not an

eigenvalue, [1.1] will have a unique solurion if rhe kernel k[xlx'] is

square-integrable , i. p-. ,

Il u,*,*', r(x')dx' - Àr(x)

ll r ll'

thus signÍfying a

It¡"lx'l

bounded operator

'd*d*'

and g (x) has a finile norm

LË [1.2]

ll eü [1.3]

Classical methods of solution to If.f1 include: variational,

perturbation, couplex variabl-e, iterated kernels, and asymptotÍc tech-

niques (Noble, 197la), which attempÊed to generate closed-form solutions

in terms of standard mathematical functions. The dependence of such

solutÍons on problem geometry and boundary condiËions necessaril.v 1inir.

their scope of application. With Ëhe introductíon of the digital compurer,

rb
I lrll ls(x)¡'d*f'
)a
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a class of numerical schemes broadly classified as moment meËhods

(Harrington, 1968) rapidly gained significance. The theoretical conceprs

necessary for a discussion of numerical solution methodology include

prior knowledge of linear functÍon spaces and operators (ø"9", Stakgold

(1979)) " With a minimum of mathematical rigour, consider the general

statenent of an Í-ntegral equation problem

Kf ll.4l

where K is a linear operator, f the unk¡ovm function that lies in

it.s domain, and g the knor¿n excitation in its range. Al1ow f to be

expressed as

such that o are linearly independent expansion functions, Ðd f thenn
colLection of unkno\tns. A residual- error term indicative of the accurac\

of representatÍon j-n I1.5] is given by

f = Iaf
n nn [1.5]

[1.6]

using the línearity of K. A set of linearly independenË weights wm,

also ca11ed testing functions, is now selected to produce a projection of

Ëhe error term on its space as

( i,v*, e ) = Ì 
. w*rlKcrr] tfr, - . rrn, g > il.7]

where the angular brackets denote an inner product defÍned by

[1.8]

ugaËe in the event u and v are cornplex.

(u,v) = J""*on

and the asterisk signifies conj



I ( r.¡_, [Ko_J > f
n In n- n

(Harrington, 1968) results" The

Eo indicate specializations of t

I,Jmm'

1967 ) .

and rhe leasË-squares

The most popular implementation of t1.9] invofves sub-domain

bases for subsectional collocation 
- 

pulse expansion and Dirac delta

functions for testing (point-matching). This is without doubt the eas-

iesÈ to Ímplement and economically the cheapest to use, since on11'one

integration need be performed as the boundary conditions are relaxed so

that they are nolr ma.tche-d only at discrete p()L",.t/s (the geometric centre

of collocation sections). A similar version 
- 

the meflutd ctd auba-"co"s

was used by Reitan & Higgins (1951) for Èhe calculation of capacitances.

Early practitíoners include Andreasen (1965), Oshiro & Su (1965),

Harrington (1968) and Richmond (1969) in elecrromagnetics; and Noble

(1971b) and Jaswon & Symm (I977) in electrostatics and potenrial theory.

Quite remarkable precisÍon has been reported especially by Burke E Poggio

(7977) on NEC, an Índustrially available NUI'ÍERICAI ELECTROI'IAGNETIC CODE,

not\,rithstanding the crude, discontinuous planar-patch approximation.

The numeríca1 solution of integral equaËion field problems re-

quires: (i) accurate representation of both geometry and sources; and

(ii) precise approximation to the integraÌ operation. With regard to the

formerr the earlier planar-patch schemes exhibit immediaËe geometrical

3

zero, the physÍca1 significance

term and the moment method ex-

By settíng Èhe

is Ëhat the set

pression

left-hand side of tl.71 ro

r¡r minimizes the error
m

t"t'g>

choice of testing

f.91. The Galerkin

approximation if \,J

[1.e]

\r i s seen
m

functions

method ensues if

= Kry_ (Stakgold,mn
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nodelling error for surfaces with curvature. Increasing N, the number

of planar patches, would only improve results to a point, after which,

round-off error predominates and a rapidly vanishing determinant.

leadsÈomatrix ill-conditioning. Furthermore, wiËh the crude integration

scheme used (as in NEC), the numerical solution will never approach the

e-xfr.ùt since off-diagonal entries are not exact in the linrit of increas-

ing N (Harrington, 1968)" Cruse (I974) reported improved field sol-u-

tion on assigning linear variation of sources over planar patches.

McDonald e,t aI (I974) implemented the Rayleigh-RÍrz variaËíonal formu-

latíon that converged in energy 
- 

a theoretícal guarantee that was

lacking in the traditional moment rnethod solution, though at a cost of

increased overhead for matrix fi1l. Lachat (1975) and later Lachat &

l,Iatson (1976) and Nedelec (7976) were the pioneers in the use of para-

metríc representations for sources and geometry. Jeng (r977) used high-

order Lagrange interpolation for both sources and, geometry in conjunction

r¿ith a variaËiona1 method for solutÍon. This isoparametric (both sources

and geometry rnodelled to same degree) implemenËation was seen to produce

either, better accuracy wiÈh the same number of variables, or comparabie

precision wiÈh a lesser number of variables when compared Eo the point-

matching scheme, at least for sËatic field problems. More importantll',

the solution ¡,¡as observed to be less dependent on the disposition of

sampling positions.

In the

Gauss quadratures

ín exact fashion.

numerical approxiuration to the integral operation with

a polynomial- and treated, the integrand Í-s expressed as

Due to Ínefficient use of quadrature formulas, it is

not unconmon to have a major portion of CPU time devoted exclusivelv Ëo

this operation. The resort to analytical incegration, partly as a mea-

sure for th¡, reducÈion of overhead, but also for Èhe attainment of



Cauchy princípa1 values for the kernel singularity, is geometry dependent

and restrict.s accuracy to planar surfaces. The r¡ork to be reported here-

in concerns the Boundary Element Method (BEM), an algorithmic package

that has some basic similarities in solutÍon methodology Eo that of Jeng

(I977). Notable features incorporated Ínto Ehe code include an automated

numerical scheme to handle Greents function singularities on arbÍtrarily

shaped boundaries, anrl the facility to tailor-desÍgn quadratures to obtain

optimal precÍsion wíth minÍma1 sampling.

ChapËer II will involve a comprehensive account of the BEll al-

goriEhm. A detailed discussíon on the crucial aspects of kernel singul*

arities and their ÈreatmenE by the BEl.t algorithm will be carried our in

Chapter III" i{hile the intent is to illustrate the viabiliry of the BE}i

as a high-order, self-consistent numerical code for field problems, the

attempt to discriminate between alternative formulations of the same

problem is also sËressed. The family of BElf codes include MAIiBEP-2DS

(Lean & Wexler, 1980), MANBEP-3D (Lean & l¿Jexler, I979a) and other attenC-

ent versions designed to caÈer for efecËrostatic field, permeabl-e media

magnetic, and time-harmonic electromagnetic scattering problems r'rhich

are the subject of discussion in Chapters IV, V and VI, respectivel,v.

In partÍcular, the coverage of Chapters IV and V may be extended to in-

clude the dual problems of magnetostatic fields and electrostaric inter-

faces.



6

II THE BEM ALGORITHI'I

The BEM has the capability Èo model arbÍtrary-shaped boundaries

through a pÍecewise assembly of parametric, non-planar boundary elements

(collocation sections). Sub-domain basís (expansÍon) functions of apprc-

priateorder are used in conjunction with specified node-point coordinates

to attain very PrecÍse geometrical definition. Intra-element source

variatÍon is handled by the same type of basis functions so that use of

the same order results in an Lsc¡la.rtane.t.t¿c scheme. B-v extension, óLr¡,.¿",-

pa'TarnQi/1ic and LubpalLane,Ûúc would mean a higher f idelity in geometrical

rePresentatÍon than source variation and vice versa (t{exler, 1980). Each

element in n-dimensional gLobaL space is l-Ínked by a mappÍng to a stanciard

símplex in Local n-1 space. This scheme leads to algorithmic simpli-

cityand a consequent reduction in overhead since expansion functions and

quadrature data need to be speeified only once on the simplex.

Problem discretization is via the Rayleigh-Ritz procedure on

the variational functional which can be shovm to result Ín a form identi-

cal to Galerkints method. fn Èhe accumul-ation of matrix entries, Gauss

quadratures (Stroud & Secrest, 1966) of appropriate order and form are

solicited for precise integration over each element. rn particuJ-ar,

singulariEÍes introduced through the use of Green's functions and their

derivatives are handled accurately by a fu11y auÈomated numericaf scheme.

source singularities due Èo geornetry (i.e., edges or corners) ma1'be

treated by attaching the form of the limiting behaviour to the Gauss

quadrature weight function wherebv the zeros of the resultant pol)'no¡nial

would take into account the dísconrrr,I'rrrr. By tailoríng Gauss quacratures

for the relevant application, requÍred precisÍon can be attained uith



minimal sampling. A welcomed consequence of these innovative treatments

is that matrix diagonal strength is enhanced, thu; furEher ensuring the

well-condítioning of the matrÍx.

The integral equation-generated rnatrix is usually dense thus

precluding the use of sparse narrix routines at least in the presen! forn'.r .

The chosen mode of matrix solutÍon is Lriangularízatíon which is of order

N3 but still three times more efficient than matrix inversion (l'Ii11er t

Poggio, 1978). Depending on application 
- 

as in reanal-ysis 
- 

it ma1'be

more economj-ca1 to store the matrix in inverted form. Solution through

iteration is of order N2 but requires total reanalysis whenever the ex-

citation function is changed.

2.7 The \¡ariational Functional-

For Èhe integral equation posed in

be defined by 4 f, g > which is assumed to

Ëaining to the scalar product of functions.

se 1f -ad j oÍnË , .r-. e"

( Ku, v ) ( u, Kv )

t1.4], an energy product ma,v

conform to the axioms apper-

If operator K is real and

[2.1]

of [1.4] occurs at

l-') .)l
ta.-l

l. t^ Il-.)é)

point

for all u, v in the dourain of K, then the solution

the stationary poinE of the quadratic functíonal-

F(f) <Kfrf>-2<frB)

and if is also posiÈive-defÍníte, i.e"

< Kf , f > 0

for all f # O and vanishes only when t-r- 0, then the stationar)'
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corresponds to a urinimum of F (Mikhlin" L964). The requirernent [2.]l

means Ëhat the Fredholm kernel Ís symmetric and K is the Hilbert-Schmidt

operator. The positive-definiËeness of K implies unigueness of solution.

A physical interpretation of <f,g> the energy product, is that energy

musE be expended in giving a displacement f to the system. Furthermore,

if operator K is also positive-bounded-be1ow, ..t-.A.

v2 flrll '< Kf , f > ì [2"3b]

where ll f ll is the norm or scalar measure of displacement f, anC 't

ís a positive constant, then this means convergence in the meati as r.'efl.

Thís form of convergence implÍes that the norm of the difference between

the nth term of the series approximation and the exact sol-ution va¡ishes

in the l-iu'rit as n -> æ"

The Rayleigh-Ritz procedure is a method of constructíng a mini-

nizir-rg sc(-t u('ncc that se eks a ninlmun for F. The sequenc" ,,n has to sa-

tisf )' t\n'o conditions: (i) it must be cctm¡tt-efØ in energy; and (ii) it

must be linearly independent. condition (í) is sarÍsfied if f can be

approximated by a linear combination of a finice number of coordinate

functions û (from [1.5]), to an arbitrary degree of precision. Then

second condition is met when otr oz, .c.., ûn are identicai-ly zero for

f = 0. Rewriting 11.5] in matrÍx notation as

r¡here underlining bars denote column vecÈor and

the first derivative of [2.2] wiÈh respecr to

12.41

T matrix transpose,

- T- :ll=0't=t0'

I is

T
Kû

ot
=dt 2.9, !-2.9,9> 12.51
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Since K is positive-definire (í"e. u < ffi, f

uLinimizing sequence that converges ín e-nUtgtJ to a minimum of F. The re-

sulting system of Rayleigh-Ritz equations are obtained by enforcing sra-

Èionarity of [2.5], thus

4 û,r Kg t9,g>>f
1.2 .6)

A direct application of Galerkinrs method to [1.9] is seen to produce

Í2.61.

In the event thaL K is complexandnon-self-adjoint (as in the

Helmholtz wave operaËor), Èhe same equivalence as above Ís shor^m to ex-

Íst (Jeng & l{exler, 1978). Hence, the use of 1,2"61 is not restricted to

the conditions of its derivaËion. From an application standpoint, it is

easier Èo apply Galerkinrs method directly rather than fol1ow through with

the preceeding derivation whích would require definition of a scal-ar en-

ergyproductofÈheform <J Ët or .J"Ft, recognisedasa

\eacfi1t1 or coupling between the source and the fierd (Thie1e, rg73). rn

facË, Galerkinrs method can also be applied when no variational principle

is available (Stakgold, 1967).

The proof of convergence for Fredholm integral equatíons exists

if [1.2] and 11.31 are augmented by f having a finire norm (as in tl.3l).

Application of rhe Bubnov-Galerkin meËhod (which is a generalization of

the Rayleigh-Ritz method), which requires the expression Kf - g = g to

be orthogonal to the set of coordinaÈe functions orr, wirl- result in

convergence in the n¿an (Mikhlin, 1964).
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2"2 _ ParameËric _Representation of Surfaces and Sources

The BEM is capable of addressing both tr¡o- and three-dimensÍonal

field problems. As such, t\¡/o sets of modellíng strategies exist and

should be discussed in para11el although they originated from the same

basic philosophy. Boundary surfaces (or contours in Èr¿o-dimensions) are

represented parametrically by triangular (or line) elements which are

referred to the standard element in L-occtl- 6 - n (or Ç) space. sub-domaÍn

expansion functions oi are defined in I-oeal coordinates for intra-

element interpolation of node-point values. The set o. take on values

G.
]-

I'
=¿

lo

at node i

at all other nodes
Í2"7 )

of approximation is related

that the two-dimensional

t2. 81

with i running over designated node numbers according to a LrLca.L node

numberÍng scheme (Figures 2.2 and 2.4). At all, other locaÈions r^;ithin

the sÍmprex, the set of oi t 

" 
sum to unit-v. The f unctions def ined b1

12.7) originated from the use of Lagrange interpolation (Wex1er, l980).

Beginning with the linear (n = 1) interpolants: Lt, Lz and L: i e>:-

pansion functions for higher degrees of approximation (n > 1) are gener-

aËed from their product forms subjecÈ to the constraint 12.ll. Tables

2.1 and 2.2 show the expressions for o= for two-and three-dimensional-

applieaÈions, respectively. The degree

t.o the number m of interpolation nodes

expression is

n*1

The correspondÍng relation in three-dimensions is

n

SO

m = *.b* 1) (n + 2) Í2.e1
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o

Fig. 2.I:

(a)

The l-dimensinal simplex
(a) Lc.,ca-t- L space; and
(b) gf-c:ba,L x-y plane

ñ= 2u rR= 3

Local node
sirnplex

3

ñ=3, rn= 4

3 452wæ
n=40 ffi=5

4

3

fl=1, m=2

l'1G. 2.2: numbering scherne for l--dimensional
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Const

1= Consl

(a)

The 2-dimensional simplex
(a) LtcaL f-¡ space; and
(b) g[-oba.t, x-y-z space

FIG.2"3:

?. sg
fl =lo rrì=3

?53
n=2, ffi=6

2673
n=3, m= lO

T

¡ l

4

5

Local node numbering scheme for 2-dimensional
simplex

r

FIG. 2.42
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1

2

3

4

5

L1

L2

TABLE 2.1:

Lr (2Lr - 1)

Lz(ZLz - I)

4L TL2

TABI,E 2"2:

Expans ion

l_1Ll - a - g

funcEions o'. (¿)
t'"

.1-7gL2-9

å tr,rt, - 1) (3L r - 2)

* tr rtt, - r) (3L2 - 2)

ï trtr(3Lr - 1)

I "rtr 
(3Lz - 1)

I
ã Lr (4Lr - 1) (4L1 - 2) (/.Lr - 3)

I r, Gr-. - r) (4L2 - 2) (AL2 - 3)b -'
Ê,

ã t,t, (4Lt - 1) (4Lr - 2)

4 LrLz (4L: - 1) (4L2 - 1)

* .rt t( Lz - r) (4L2 - 2)3'

Expansion functions o, (l,

Lr = I i Lz = 1-L-n ;

fl\

L3 - =

Í n=l n=2 --1It - J

I

2

3

4

q

6

7

L1

L2

L3

Lr (2L1 - 1)

L2(2L2 - I)

L3(2L¡ - 1)

4LtLz

4L2L3

4L3L1

å t,,3Lr - 1) (3Lr - 2)

I trrtt,- t) (312 - 2)

å t,,rt¡ - 1) (3L3 - 2)

Ï. trtr(3Lr - 1)

l tr"r(3L2 - 1)

I trt: (3Lz - t)

2 t,t (3L. - 1)2'

tr t"r (3L¡ - 1)

Z trtr (311 - t1

27LyL2L3

8

9

10

i n=1 n=2
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where the In represents Ëhe number of bivariate polynomíal coefficients

.í for the specified degree n. f'or example, the n=2 bivariate poly-

nomial representalion for the Índependent variable f resembles

ae * a7Ç * a2l * urÇ'* aq6n * ^rr,' [2.10]f (q, n)

One could proceed to enforce [2.10] aE the indicaÈed node positions in

Fígure 2,4 to obÈain

hd

when the a can be indÍvidua1ly

[2 . 11]

are the node-point vafues. Inversion of

I-

where the column vector of

A r¡ould result in

¿I 12 . r2l

expanded and substituted into [2.10].

resul-t in the formA subsequent rearrangement would

f (e, n) [2.13]

where

[1 i n L2 Ln n2] A-t 12 . tîl

is as derÍved from Lagrange inËerpolation considerations. EquatÍons

[2.10] to 12.I4] are only meant for illustration since expansion functions

oi are noË generated in this manner because matrix A is of Vandermondé

Ëype and is unstable to invert.

G1oba1 positions (x, y, z) may now be expressed in terms of

vertex node coordinates as

f

T.= ût
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IDln
x = I- oi_((, n) "i ; y = I_ oi_(L, n) y, ;

f =I 1=-L

m

z = or(6, n) tí
f-f

For the two-dimensional case e the z spatial dependence of oi should be

dropped. Each element in gL-obo-.t- space is the result of a mapping from the

simplex" The Jacobian that defines Èhis mapping is obtained from an ex-

pression for the differential area (or length). Figures 2.1 and 2.3 show

the respecEive simplexes and their transformed positions. Differential

changes in position due to correspondÍng changes r¡ithin the simplex for

the three-dimensional case resulEs in

[2. 15 ]

[2.re)

and

dir(Ç) = +¿e î*So, l*$a:r. 12.161dr ' òt d=

dlz(n) = # on î.#an l*fr an i l?.rt )

so that the differential area on the parametríc surface is given by

¡l ':os = dr1 x dr2 [2.1S]

The Jacobian is then calculated from the preceeding equations as

r-ffi ' --3t "32 --33

where M.. are the minors of
r-J
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âxî;øç

âx;-
dn

1

ðy
ðç

ây
ân

1

òz-:-
òr,

àz-:-
dnr.J

taken along the

the x-y plane

bottom row.

ís

12.201

In two-dÍmensions, the incremental vector in

l) ?t ld; -A¿
oq

wilh incremental length equal to the Jacobianu or

<*r' * r*r'
o 2 0Ç

di j

I ) )) 1

2.3 Logistícs of Matrix Fill

Ín integral .form over a surface as

kIs I s'] gT(s')ds'ds I of")g ds
J- 12.231

to better appreciate the mechanism of evaluation of matrÍx entries. The

left-hand side of 12.23] involves a double surface integral with the in-

ner portion running over source coordÍnates. Remembe¡ing that the under-

lining bar denotes column vector, this term produces a square matrix S.

Denoting the right-hand side term as

more easily recognised form as

Þ, 12.23) can nold be written in a

where S is commonly

t the response.

Þ

[2 .241

the excitaEion, and

Equation

I *r"r I)- J

12.6) is restated

t_I_

sf = Þ

ca11ed t.he sysEen matríx,
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In the BEM, Gauss quadratures generated from the product rule

are used for integraËion. The quadrature data is defíned over the s¡and-

ard símplex with sampling locations mapped inÈo Ëhe globa-L frame only for

the explicit purpose of evaluating the kernel kIsls']" Otherwise, all

integrations are performed on the símp1ex thus eliminating Èhe need for

1ocal oPerations on each element. Matrix accumulation ís carried out on

a pØfL e-LemUtt basj-s so Èhat Ëhe order of each subsystem matrix is m

(from Section 2"2)" The kernel is non-singular provided s I s', í.ø.,

accumulation is noE af fected on the ,5ø{-d-øLenenÍ" Hence, no special

treatment ís accorded thís operation. For the case s = sr, Greents

functi.on singularity is reflect.ed in the numerical algorithm as division

by zero as the quadrature points coincide. McDonald (1975) and Jeng

(1977) used an addi-tion-^ubthn"clion tecbnique whereby the kernel is re-

r¿ritten as the sunmation of two terms 
- 

one, a regularised form of the

original kernel which is handled numerÍcally, and the other, an extracted

singularity which can be analytically integrared. Lean e.t aX- (1979b)

Ímproved on lhe technique by taking into account the limit of the first

form as s + sr, a step which was neglected by the two previous research-

ers probably due to an oversight. Specif Ícall,v, the mean val-ue theorem

is invoked to al1ow s I to be expressed as

SI s*ð 12 .25 l

where 6 represents an

or ¡ directions, and

infinitesirnal spatial shift along eíther the

âo;-
dS

o(s+6)-o(s)

srst
[2 .26 ]



In the lirnit as s * sr r

Greenrs function (4rtô)-

the fínite quantity

the form of the

v¡hen used with

l8

t.hree-dimensional f ree-space

the result of [2"26] produces

dsr 12.21 l
^ ^fÞrb

as contribuËion.

Although this scheme is exact for flat surfaces, it requires

care and deliberafion for the manual (analytic) portion of the procedure.

A1so, the expressions so derived are dependent on the specific kernel

treated. For curved surface application, the element is divided Ínto a

number of flattened inscribed sections over which the procedure is indiv-

ídually applied. From an engineering standpoint, this fragrnentation

scheme is Íntuitively acceptable and should improve the quality of re-

su1ts. Mathematically however, the question of convergence, if any, has

yet to be answered. A novel method of confronting this problem is the

subject of the next Chapter.

irâo
J4"4"



19

11I. TREATMENT OF KERNEL SINGULARITIES

The main difficulty encountered in integral equatíon sofution

lies in the numerical approxÍmation to the integration process for singu-

lar kernels" This singularity is a direcÈ consequence of Green's function

when i = It, í.¿., where the observer and source locations coincide.

In avoiding this difficulty by merely ignoring rhe discontínuity (¿.9.,

Oshiro & Su, 1965) o matrÍx conditioning generally deteriorates due to a

loss in diagonal strength. The use of a dodge whereby the integration

is performed to within the near vicinity of the sÍngularitl', is ineffect-

ual (Acton, 1970) compared to the algorithmic improvisations required.

Furthermore, the effect of the singulariÈybecomes increasingly pronounced

as i * i' so that artificÍal truncation of the interval lacks in mathe-

ma t ir:a1 substanËiaËion and finesse.

Conventional methods of addressing this crucial j-ssue inclucie

complex variable transforms, analytic integration over d{-a,.t tntervals

(Jeng, I9l7), and the evaluation of Cauchy principal values (l-echat &

Watson, I9l6). Being analytic, these Èechniques are unavoidably probtei::

geometry dependent, thus restricting their widespread application. h'itir

few exceptions, their usage entails te<l ior:s manipulat ions that contribute

to both core length and overhead. Traditional ideas have shied ar,'a_v

from a totally numerical approach and in fact have suggested low-order

trapezoidal and Romberg rules as al-ternatives (Poggio & I'fi 1ler, 197 3)

mainly because of the expected prohibitive cost of integration. The

reason for this adverse reaction is clear if we consider the indiscrimí-

nate use of the Gauss-Legendre quadrature of weight functíon unity which

is designed for the integraÈion of regular functions. Theoreticalll',
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this ¡vou1d require an ínfinite number of samplin; :ioints for acceptable

precision. Also, for optimal solutíon compatibility, Ít is difficult to

justify Lhe use of a high-order integration scheme when collocaÈion in-

volves constant pulse paËches. l^lith the advent of high-order schemes,

Èhe numerical alternative should be viable, especially when Gauss quadra-

tures can be tailored Eo obËain optimal precision with minimal sampling.

Such a scheme will be discussed in the following subsection.

Field discontinuities due to geomeËry 
- 

edges or corners 
-

where source densiËies go rapidly to infinity, is of secondary importance

with respect to integral equation soluÈion. However, the proper modef-

ling of this behaviour r^;i11 acceleraÈe convergence besides improving

the precísion of computed near-field quantities. From an algorithmic

standpoint, this measure will introduce another singularity into the ker-

nel for elements adjacent to a re-entrant corner. The manner in which

the BEll algorithm addresses this problem will be discussed at length in

subsequent subsections.

3.1 Numerical Tnlegration wÍth Gauss Quadratures

The numerical approximation to a definiÈe (or indefinite) inte-

gral takes the form

weíght function w(x)

[¡'l-]

specÍfies a unique polynomialwhere Ëhe choice

sequence defined

rr, (x)

Èhar satisfies

t v¡ (x) f (x) dx
n
I A. f(x.)

1 1'
l-=U

of

by

Èhe

ñ-1
* arr_, x" - + .... + a1x * as

orthogonaliry condit.ion

[3.:1
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w(x) Pr.,(x) pn(x) dx _Jô.niLon>t" t3. 31

Provided w(x) ì 0 in the inËerval [", b], rhe roors of
real and are the sampling locaËions *í r¿ith corresponding
ficients 4.. The derivation of orthogonal polynomials may

out ín a straightforward fashion. consider the independent

Pr., (x) are

weight coef-

be carrieci

êô f

U.
1 {1, x, x2, m-1 m.x ' xJ I3.a¡

L

The quadrature formula has degree of precÍsÍon or exactness m if it is
exact whenever f(x) in t:"r] is a polynomial 0f degree 5 *; and is not
exact for f(x) = *m*1 (stroud & secrest , 1966). Then n points and
coefficients may be found to make I3.r1 exact for arr_ polynomiafs of de_
gree < 2n - 1. From the Índependent set ui, a set of orthogonal poly_
nomi-als vr- is generated through the use of the Gram-schmidt orrhogon_
alization procedure where the qth polynomÍa1 is given by

¡b_t- 
)^

V.
1 t3.sl

and inner product (or projection) is defined by

< V.. UL' q w(x) V. U dx1q t:. 41

Orthogonal polynomials most frequently encountered include
the Gauss-Legendre, Gauss-chebyschev, Gauss-Hermite and Gauss_Laguerre

Ëypes. Aside fron the last two, the others belong to a broader crassi_
fication 

-the 
Gauss-JacobÍ famÍly. The general expression for rv(x) ís

w(x) (t - x)o 1r * "¡8 0'ß -1 [3.t1
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v¡here Èhe choice o = ß = 0 Ídentifies the Gauss-Legendre weight of

w(x) = 1' and o = ß = -+, the Gauss-Chebyschev (first kind) weight of
" -1^w(x) = (1 - x') '" This generalization of the weight is a definÍte ad-

vantage towards the systematic generation of quadrature formulas on an

automatíc basis.

The preponderance of weighr functions as exemplified by the

general nature of 1,3.71 has to signify specíalizatíons of quadrarure

forms to some degree" Undoubtedly, the use of certain weight functÍons

may be preferred for certain inËegrands. This fact suggests that some

guidelines should be established to help in the selection of an optimal

quadrature scheme gÍven a particular integrand. To begin with, one ma-y

broadly classify weight functions into two categories: the types that

are regurar in [a, b]; and those singular aE end-poinËs a and/or b.

ReÈurning !o equation [3.f1, the integrand can collectível,v be expressed

dÞ

F (x) w (x) f (x) l:.s1

where F(x) is the actual function to be inËegrated and f(x), rhe modj-

fied form depending on Èhe choice of w(x). In the evenr. F(x) is in-

herently singurar Ín [a, b], w(x) icea111' can be chosen to contain the

form of the dÍscontinuity thus leaving f(x) to be regular. Figures

3.1, 3.2 and 3.3 illustrate the relative precision attainable for three

different integrands using quadraËure data generated from a few selections

for weight functions. In particular, Figure 3.1 involves Èhe integration

of a logariÈhrnic funcËion identical to that of the two-dimensional Poisson

Greenrs function. Figure 3.2 concerns a function that behaves as t-"

at one end-poÍnt 
- 

identÍca1 to the edge singularity of a corner r,'ith a

re-entrant angle of 2¡. From a closer ínspection, Ëhe following
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inferences may be made:

(ii )

Depending on Ëhe form of F(x), w(x) should be chosen such

that f(x) remains regular in [a, b] to obtain best accu-

racywithminimum sampling. Ideally, if w(x) can be chosen

Ëo equal F(x), then f(x) would be independent of sarnpling

location and the integration procedure is reduced to a sumrnation

of weight" Ai Ehus elÍminating one source of error.

If F(x) is singular at one or both end-points, then w(x)

should be selected fo contain the form of the singularity thus

leaving f (x) regular or at least more weakly singular. B_v

extension, the case when F(x) is singular within the region

of integration can be handled by subsectionÍng followed by two

repetitive applications of the quadrature whil_st retaining the

form of Èhe singularity in each Ëransformation.

Besides the general guidelines l-aid out j-n (i) and (ii), rhe

form of F(x) and f(x) should always be visually checked

for compatibility. In general, f(x) should always be a

bettøn function to work wirh Ehan F(x). Figure 3.3 shows the

degradation of results due to the unfortunate choice of

w(x) = 1-* for F(x) = 1 thus fixing f (x) = (1 -*)-r, a

form worse off than F(x).

In subsequent applicaÈions , Ëhe integran.l F (x) r.¡i11 Ínclude

the Jacobian of transformation arisÍng from any physical depar-

Èure from the region over which the quadrature was defined.

This alteration adds anoÈher degree of flexibility to the op-

timal selection of w(x).

(iii )

(Ív)

(i)
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FIG. 3.1: Numerical integratíon of logarithmic singularity
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¡'IG . 3.2: Numerical inËegration of
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FIG. 3.3: Numerical integration of a regular function

singularities of Green's funcËions for static fields i-n two_
and three-dimensions (logarithmic and r-l behaviour), are treated
by essentially the same sectioning philosophy. DenoËe the Ínner integral
on the l-eft-hand síde of [2.23] as H(s) so Ehat the sysrem marrix is
given by

and H(s) by

H(s)

0.9977 (2O)(Stow)

t.oooo (2 )

t3.el

[:. ro;

the unprimed

/ n,", H(s) ¿s

/ut"l"' I gT{r') ds I

The Gauss-Legendre quadrature is selected for integration over



variable. For accumulations of S

is regular and the same quadrature

the primed variable as wel1. Over

tioning procedure applÍes.

¿o

other than on the .søLd-e.Lømenf., H(s)

scheme is used for integration over

tlae ¿e,Ló-¿.L¿mutf rhe appropriare sec-

3.2 "L T\¡o-Dimensional Sche¡ne

fhe ,sel-d-e,Len¿nt is sectÍoned into two about the singul-ar l-o-

caËion pl whieh is a collocation poinË of the outer (unprimed) inte-

gral in fuea[- 6 space (FÍgure 3.4). since rhe form of the kerne]-

singularity is logarlthmic, a quadrature scheme with weight w(i) = -l"n;

is chosen for this application based on the guidelines established in

the previous section. The quadrature data thus generated is then oper-

aËed on by two linear transformations T1 and Tz" subject to the con-

straint that the behaviour of the weight function be preserved. Trans-

formations Ti and T2 are given by

T1 | Illr (1 - pi)L + pr mlE Ipl, 1] [ 3. 11]

and

T2!m2 pr(1 - 6) m2e[0, pt] [3. ]2 l

and in effect, they position the quadrature so that pi is approachecl on

both sides logarithnically. The inrervals [0, pl ] and [pl, 1] span-

ned by îì2 and El, respectÍvery, are Ëhen reassembled as shou,n in

Figure 3.4 where the net result is the construcLion of a special set oí

quadrature data thaÈ r,¡i11 integrate a logarithmic singularity at pr,

The condíÈion that the logarithmic form be retained in the limÍt of ap-

proachíng Pl is easily verifÍed by observing the weighting functions
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FIG. 3.4: BEM sectioning scheme for logarithmic singularitl,
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and

w (ml)

Þr (m2 )

A consequence of the transformations is that
now scaled by the factors (1 _ p I ) and p I

T z, respectively.

The explÍcit expression for
'l

- ù L"i" - "'l assuming rhe inregral
nomenclature of Ëhe preceeding section

[3.13j

I? rz.rrJ.r+l

the quadrature weights are

(0 < pr < 1) for Tl and

-.8,n [1' - P' Ia - Pl'

-[n ¡Pr - nzt
Pr

the kernel of [3.10] is
operator Ís bounded. ln the

, F (s t ) Ís now given bv

F(s') gr("') r- * .e.n js - s, I l [3.15]

so that for mle [p¡, 1], Ëhe integrand is

F(s')fr(s')
[:. ro I

and for m2e[0, pr],

f z (s' ) F(s')
[3.r;1

with the understanding that expansion functions o are evaluated at the
transformed positions m¡ and D2, and weights w(m1 ) and w(mr) given
in [3.13] and [3.14] are evaluated at the same _l_ocation. No mathematÍcal
cancellation is performed; rather fr(s,) and fr(s,) are negu!øtllød.
in the sense that both numerator and denominator have the same lÍmiting
behaviour' The disposition of the sampling positions generated from this
partieular weight function takes inËo account the expected singular be_
havi our.
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The inherenË merit of this scheme is that it is defined on the
simplex so that the form of the singularity Ís preserved regardress of
the actual size or shape of the gToba.(- element. The buíft_in transform_
ations Tt and T2 guarantee this invariance. AnoÈher poinË to be

stressed Ís that good precision Ís usually attained with lor.¡er orders of
quadrature than that for Èhe unprimed variable. From experience, the
optimal order is approximately given by

+1
[3.rs1

r¿here tg is the order for the Gauss-Legendre quadrature prescribed for
the unprirned variable.

The corresponding time-harmonic Greenrs function is a Hankel
function of zero order and second kind (.jrË tlme_dependence) which
has the same logarÍthmic singularíty of the imaginary component for
vanishing arguments' To íntegrate this kernel, the same sectioning philo-
sophf is applied. However, the argument ismultipried by Ehe wave number
k so that in using the polynomial expansions of Abramovitz & Stegun
(1968), a frequency criteria is necessary. Gauss quadrature ¡¿ith weight
function w(a) = -gn6 is used only when k, , 3 where ka is the rrans_
verse componenl of r¡ave number. oËherwise, the Gauss-Legendre quadrature
is applied. This rneasure ensures that the Hankef function expansion
for small arguments (ktr r 3) when used, will confine r within the
inÈerval [0, 1] within which w(6) is defined.

Normal derivatives of Èhe above functions are relativeJ.y werl-
behaved since the cosine of the angre incruded by outr./ard normal â,
and spatial vector (i - ;r¡ vanishes as s + s,. This situation is

1
rl -s ?"o



30

rerrliniscenË of the discussion of [3.16] and [3.r2¡" Hence, the quadrature

specified by w(6) = 1 is appropriate, Even in this application, rhe

sectioning methodology is effective in that the quadratures are oriented

in the proper directions, i.e., approaching pr in the prescribed manner"

11.) Three-Dimensional Scheme

The success of the three-dimensional scheme is dependent on a

JacobÍan of transformation Eo provide t.he moderating effect for the r-l

si-ngularity. Gauss quadrature for surface integration is convenientl,v

generated by an application of the product rule. Consider the expression

\^I(xl) r,¡(x2) f dxidx2 l? 10ì
LJ. LJ )fl

which represents the integration of a function f

eraÈed from product forms of the one-dimensional

Applying a transformation

(1 - xr)

to [3.]9], and choosing !r(xj) = w(xz) = 1 results in

with quadrature gen-

rules defined on [0, 1]

[3.20]
, - Àl

rl - ^2

I'

rl rr= 
Jo ),

fr

.l,

l,-r, 1

J. r 
1r - ,, drd; [3. 21]

[3.19], the inregration of a function on the simplexFrom [3.2I] and

is given by

I r-e
./, r dndr f [1 - Ç] dx1dx2 [3.22]
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ç¡here [r - e] is the Jacobian of transformation. The vertex of 6 = 1

is forrned by collapsing the right edge of the unit-square over which the

product rule is generated. As a consequence, the sampling positions

within the simplex appear to be danning from this vertex" The term

[1 - ç] vanishes as e u r, a property thaL may be used to advanrage.

since the free-space Greents function has r-l behaviour, the

lirniting effect of the JacobÍan could be used as a moderating influence

if the {awúng point is aligned with the poinr ar which r vanishes.

Figure 3.5 shows a flaL triangular element in space over which is sinu-

lated a functÍon with r-1 singularity at the third vertex. The pre-

cision obtained using three sets of test rules are compared against the

analytically obtained value of I.I77 in Figure 3.6. Test rules 1 and

2 correspond to Jeng (r977), and that advocated in 13.221, respecrivel.v.

comparing the number of sampling poÍnts (400 to 9) to obtain tr,ro-deqi_

nal precision, the superiority of the present techníque is unquestion-

ab1e" Test rul-e 3 is obtained from Stroud & Secrest (1966) and inc1uded

as a matter of interest. As expected, it produces results intermediate

beËr¿een those of 1 and 2. The orientatíon dependence of this technique

is verified in Figure 3.7.

The success of this technique is who11y dependent on the

trÍangular geomeËry of the simplex. As samplíng points are interior to

it, three triangular subsections sharing a conmon dartruLng vertex ar

(E' rl) f (p, q) have to be addressed. The Gauss-Legendre quadrature

scheme generaEed over the simplex, is mapped into each subsection by the

t rans format ions
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¡1.

L2.

and

Tg:

which ensures t.hat

A. are nov¡ scaled
l_

oÍp,e<1. The

- 1) - n + 1

-1)-r+1
p;

(p, q) is the

and (1-p-

expression for

dantúng location.

q), respectively

F(st) is now

[3.23]

l3 .24)

f 
" 

1: I
L).L) |

The weights

whe re

t3 .261

given as

qErì I

1t

l-ì r

rì g

r-

n+

P1

c6

6(P

Ç(q

n+

vertex

by P, q

expl icít

T
û' (s' )F(s')

so that Èhe integrand tranformed by [3.23] isfor Ëhe region

F(s') tr - ful
p

f : (s')

that by [3.24] as

f z (s') F(s') f1 - lf

and that by [3.25] as

f¡(s') F(s') t
(es+r:)-(p+ s)l1- (p+q)

The general statements of the prevÍous subsection are

Ëhis discussion. Figure 3.8 shows pictorially the BEl,l

outlined so far. Again, no mathematical cancellation

ß.2t1

[3. 28 ]

[3.2e)

equally vaIÍd in

sectioning schene

is performed. Each
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eguations [3"27], [3.28] and [3"29] is seen ro be finire in rhe limir

vanishing r.

This scheme may be extended for use in the time-harmonic case

since the term expl-jtli - i'11 rends ro uniry as î -n i'. provided

the kernel is not overly oscillatory, the Gauss-Legendre quadraËure forr,r-

u1a wí11 give good precísion. For high frequencies, special quadratures

with cos kx and sin kx weights rnay be generated by the Gram-Schmidt

procedure outlined in Section 3,1.

Other factors ÈhaÈ contribute to aberrations ín field solution

include: incompatibility of boundary conditíons at colTtrnon edges or points;

and abrupt changes ín direction of boundary surfaces or contours that

lead to infinite values of the derivative of the field. The latter form

arises who11y from geometrícal- considerations and frequently causes a

situaÈÍon v¡here the integrand is singular but the integral finire. Inter-

polatory polynomials, no matter how high theír order, cannot be expected

to represenË the field in the vicinity of the singular point as accurat-

e1y as desired 
- 

rnathematically because the set of polynomial functions

is not c1mpLefe for this task. Hence, convergence is usually slow and

at Èimes even erratic depending on the degree of modelling and the method

of solution" The predicÈion of singular behaviour is dependent on expan-

sions of the solution near corners and jumps in boundary conditíons. In

generalr to accelerate convergence, special functions are required to

approximate the discontinuous behaviour of the field.

Explicit forms and orders of singutarj-ty are obtainable in

closed form from two-dirnensional analyses of geometries where separation

of variables may be invoked. For the static field case with the Laplacian

Implementation for Geometric Sinsularit
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operator -V2 acting on potentÍal ó, Ëhe leading term of the infÍnite

serÍes expansion of normal deriv âó -vative ¡; behaves as r -e with T

being the disËance from the corner and v = (1 - Ë) where 6 is rhe

re-entranË angle (Figure 3.9). This term is proportional to surface

charge density o which is singular as r -+ 0 whenever n < ô < 2l,.

Hence edges and right-angled corners would have orders r-Il2 and r-I/3,

respectivel-y.

FIG. 3.9: Geometrical corner of re-entrant angl_e ô

Traditional practise has been to rely on conformal trans-

formation to ameliorate Èhe geornetrical discontinuíty.

erical- method is to introduce terms in r-v into the

polynomials either by addítion or rnultiplication. The

An improved num-

regular inÈerpolatorY

additive procedure
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oPerates by adding a separate variational parameter that contains the

form of the síngulariry, Èo the regular univariate polynomial currently

used as a trial functÍon, i.Ø.,

[3. 3o ]

where (b - 6) describes Ehe distance from the corner, n the degree

of approximatÍon, v the form of the singularity, and ^í Ëhe unknor.'n

coefficients of the Ërial function.

Another alternative is tomultÍp1y each term of the univariate

polynomial by the forrn of the singularity to obtain

na-o(l) = r arer + =I+
i=0 - (b-L)"

o(L) = I arL
i=o t (¡ - L)u

[3. 31]

resulting in one less variable for the same degree of interpolation.

Normal-izaËion of these Ërial functions Ín the context of the BEII, is

achieved by definÍng the polynomic set over the unit interval [0, r]

described by the spatial variable C. Each applicati-on of the schene

would requÍre only a spatÍ41 transformation of quadraÈure points together

with a sizing of the weights to suiÈ the dimensíon b. rn fact, for the

scheme given by [3.31], a Gauss quadrature formula r¡ith weight funcrion

(f - 4)-v could be generated to obÈain optimal precision with minimat

sampling. Hence, the remaining portion of the integrand is regular anci

may be computed in a straight-forward manner. Using these techniques,

the different orders of singularity described over Ëhe range: r < 6 < 2t¡

may be accurately handled.
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The same methodology nay be extended for use over parametric

surfaces where field discontinuities at any one or all edges may be

handled by judicious choice of combinations of quadrature formulas to

form the product rule. This tailoring of quadralure rules to cater for

singularities to the integrand is a powerful tool that has yet to be ex-

ploited for field solution. A corresponding analysis on time-harmonic

fields would result in asymptotic forms that resemble Bessel functions

of non-ínteger order which could possÍb1y be treated in like manner.
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IV" ELECTROSTATIC FIELD PROBLEMS

Problems in this conËext include those that require Ëhe solution

of Laplacets or Poisson's equation subject to Dirichlet anò/or Neumann

boundary conditions. Integral equation formulations in terms of boundary

sources are compact, and particularly attractive for open-region problems.

Included in this chapter is a discussion on the relative merÍts of cer-

tain formulations, and sample applications of the BElf to some cl-assicaf

problems in potential theory.

4.1 InËegral FormulaËions

From scalar potential theory, harmonic functions Q may be

rePresented by sirnple-layer or double-layer (dipole) potentÍals thus

giving rÍse to the class of Fredholm integrafs. A funcËion is harmonic

if ÍÈ is continuous, differentiable to second order, and saEisfies Laplacers

equation everywhere (Jaswon & symm, 7977). By definition, Greenrs func-

tion Gt;l;'] is harmonic ever;'where except ar the source-point where

i = ?t so Ehat it formally satisfies the Poísson equation

[4.1]

Another alternative formulation may be obtained directly from Greenrs

formula v¡here the harmonic function is represented as a superposition of

both the above source-types. The following dÍscussion has particular

relevance to the DÍrichlet problem. Neumann and mixed boundary value

problems are catered for by extension.

-v2ctili'l = ô(;-i')
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4 "I.I SÍmpl_e:Laye r Kernel

This potential ô is due Eo a dÍsr

surface S, not necessarily closed,

ô (;) ctils'l o(s') ds?

ona

ribution of

such that

ieS+R

reS+R

t ion

AS

sÍrnp1e charges

l4 .21

t4.31

1r
I,o Js

where G is the appropriate Greenrs functÍon that ensures a bounded sofu-

tion for ó; ; the observer locaÈion; ee the permittivity of free-

space; and s' the surface over r¡hich o is distributed. From 14.21,

potential 0 is continuous across boundary S. However, normal derj-v¿-

tives (flux) are discontinuous by an amount proportional to the charge

spread over it, i.¿"

The above relatíon is obtained from summÍng the normal derivatives of

1,4.21 taken Í.n opposing directions. As a consequence, 14.2] may now be

rerorri.tten as

Aa I

_ Jl
änl

ls

Q (r)

o(s)
e9

- l tiTl'' l 5'ì) u'' 14.4)

0(s) = g(s) pre-If S is cl-osed, and a Dirichlet boundary condi

scribed, the exterior Dirichlet problem is posed

Ctils'l o(s') ds' e(s)
1l'_tLo Js

t4.51

The varíational/GaIe rkin¡.¡hich is a Fredholn

formulation of [4.5J

integral of the first kind.

is given by



q:

which is solved for o(st ). Potential Q every'where is Ëhen computed

from [4.2]. In the event that g(s) is independenr of posirion, then

Q everl'where inEerior to S has Ëhe val-ue g(s) as well by the inter-

ior Diríchlet existence theorem.

4"L.2 Double-Layer Kernel

The potential Q due to a distribution of double-la1'er (di-

pole) charges il on S is given by

c[sls'J gT{"') ds'd" g = f gf"l g(s)
- J^-

5

I ac t-i l,s' I u (s, ) ds,
i. ânt H \o

t s(s) 1r
TJ, ds 14.6)

14.7l

variab l-e

Fi gure

and sepa-

resulting

t4.81

o(;)

where the normal derÍvative of G with respect Ëo the primed

denotes the direction of dipole moment. For clarity, consider

4.f where two equal and opposing charges q of magnirude l*l
raf:jon h are made to straddle boundary S" The potential F

from this arrangement has to saËisfy the Poisson equatl-on

-v2 r ô(; - {;' + hÊi) - ô(; -;')

where is defíned along the lines of G.

1
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q'

FIG. 4.1: Dipole configuraÈion

In the limit as

ing configuration

the direction of

h * o, lql * - so that lqi.l =

of t4.81 is that of a dipole of

fi such Ëhat

1. Hence, Èhe limit-

axis ô oriented 1n

l4.elo2n
-V ¡

d

dnl o(i - i')

and F is seen to be the double-layer kernel of [4.7).

Potential 0 is harmonic everywhere in R except on

r¡here the integral jumps by an amounË ++ , í.e",

_ u(s)
L¿O

1

eo
ó(s) l**'+ p(s') ds' [4. ]0l



kind integral. From physical

ô(s) _ u(s)
eo

be established (Jaswon & Symm, 1977) to

ö (r)
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considerations,

[4.11]

enable 14.71 to be rewrirten

whÍch Ís a Fredholm second

the relation

a form that specifies d

boundary. The Galerkin

0(s) = g(s), is

_ f aclil_s'l ..,-- JrË o(s') ds' ; r t s 14.r2l

everywhere with respect to potential on tire

formul-ation of [4.10] subject to the condition

[4.14]

[4. 15 ]

can

AS

)ds
L.1 lac["]*'l T ( .. T. f Ijrn,',;Jrffi--¿g'('') dsrds u -.Jrg(') g'(s) 7frds u = j.=,', r(s

[4.13]

which is solved for u(s'). Then Q ever¡vhere Ís computed from 14.71.

For the explicit purpose of specifyÍng 0 Ín R, a shorter route is to

use the expression [4.r2] directly assuming ö(st) is knoç'n. For the

special case g(s) ís constant on s, 0 in the interíor has the value

g(s) while in the exterior region, S is identically zero. In crossing

each layer of charges, Ç jumps by *P

4.r.3 Green I s Theorem Representation

Consider the Èwo point-form equations that. symboj-ize Èhe elec-

trostatic field problem

-v'0 = Q

-v2 c ti li' I ô(; - ;')and
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Ëhe dÍvergence t.heorem to the form resulting from the

scalar products G x ï4.141 from þ x [4"L5] results in

0(il = vf rc
,S

0 ie R.
l_

-1 ie n
e

-¿ r e 5

til''l - o(s'l !9p] d", [4.16]

where

14 .17 )

is as defined in Stakgold (1968). The negative signs in [4.I7] are due

to the assigned dÍrection of surface norrnals 
- 

directed into R" for

Èhe exËerior problern, The physical implication of y = 0 is that G

in [4.15] is harmonic since i is outside the regíon of interest.

Finally, Ëhe reason for y -- -2 in S is because the surface is assumed

to obey a Liapunov condition (defined in the contexL of Zabreyko at 0.L

(7975) and Jaswon & Syurm (1977)). Part of the requirements for this con-

dÍtion is that Ëhe surface be smooth and possess a tangent plane and nor-

nal- (not necessarily a curvature), at each point. Thus for abrupt changes

in boundary description, the actual value of y (at that point) should

be -2r (or -4tt) divided by the re-entrant angle ô (or solid angle

spanned by the re-enlrant corner in Èhree-dimensions). Hov;ever, this re-

quirernent ís usually relaxed ín engineering practise with very little

penalty to soluÈion accuracy.

Equation [4.L6] permits Q every'where to be specified in terms

of boundary data 6(s') and 4S), where one or rhe other is usuall1,

a knor,'n quantity. 
'For 

ahu 
"*rutît 

orrr"nreÈ problem under consideraiion,

14.16l with \ = -2 and ô(s) = g(s) gives

I
I

I

Y
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g(s) [rlr']
âô

) ds'ds ffi

[4.18]

gT("') ds'ds g

[4.1e]

I
JS

cfs ls' ì S) a"' I,!9HPJ g(s') ds' 1Ð

with the accompanying GalerkÍn formulation

f.
JSIrq

ot (r' _t- -J,

I
l
5

I+l
Je

c¿ (s )
e(s)
-- 

ot

o.(s)

À .1.

Once ff is ascerÈained, [4"16] is used wiËh the appropriate y
dn

compuEe Q everywhere. On exanining equatÍons llr.41 and 14.I2l

junction with t4.161, ít is clear that the porential 0 in *"

the Greenrs Theorem representation, Ís identicaf to that obtained

linear combinaËion of the simple and double-layered potentials.

ó(r) Q" (i; - Od (;) ,ls

to

in con-

given b1'

from a

Thus,

[4.20]

where ôs and 0d represent Ëhe potentials obtained from [4.4] and

Í4.I21, respectively.

The form utilizing the simple-layered potentÍa1 is traditionall_v

preferred rnainly because its system matrix is more economical Ëo gener-

aÈe. Furthermore, Q and its derivatives in R, rna.v be computed wÍth-

out much regard Ëo the singularity of G except when the point of eval-

uation is Ínordinately close to the boundary S. The double-layered po*

tential formufation has the advantage of being a Fredholm second kind

integral ¡¿hich is mathemaÈical1y preferred due to its better-behaved

kernel. Because of the additional term Ëo be considered in matrix accumir-

lation, Ëhus constituËes an added expense when compared to the former
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scheme" For Ëhe Particular case of the constant Dirichlef boundary, this

form is not practical for implementation due to its lack of field defini-

tion in R. In the case of the Greenf s Theorem formulation, rnore Cpi_l

tirne is required to compute not only the excitation functÍon prior to

solution, but also the potential ö in R. PrecisÍon attainable is

comparable wiEh that of the simple-layer formulation and thus does not

indicate any advantage except for the situation when mÍxed boundary con-

ditions need be considered. Also, equation L4"L6] is a function of y

so that Ín

ascerEain if

as l4 .21"

in the positive quadrant, where Go, Ís

dimensional free-space Greents function

Charge density o is singular at
_1-

r '. The capacitance andpotentlal

are respectively given as 18.72

computation, special verifÍcation softuare is required to

e S or R. As such, [4.16] is not as freely applicabler

4.2 The Stríp Capacitor Problem

Consider the capacitive arrangement of two Ídentical infinitely-

long, parallel conducting strips charged to a poÈential difference of

2 volts (Figure 4.2). Using quarter-pIane synrnetry, the problem is re-

duced to solving

c*[sls'] o(s') dsr
1l

-t
-Iuo J

c

cr[x,ylx',y'] = -f lr,{

[4.21]

the moCified form of the two-

and is gíven b.v

14.221

the open edge with an expected form

at the field poinr (x,y) = (+, tO)

pF/m (positive quadrant alone) and
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FIG. 4.2: SËrip capacÍtor assemblv

4.5

4.5

FIG. 4.3: Equipotentials around plate
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0,Ll-24 vo1Ës by McDonaId ef a,L G974) from a rÍgorous analysis. The

authors used singular trÍal functions to model charge behaviour, and an

a"dd),tic;n-'subÍna.c,ti-o,2 technique to isolate four singular integrands aris-

ing frour both the charge and Greents function singularities. Each of

Èhese singular integrands r^tere then integraÈed analytically. The primary

motivation in addressing thÍs specific example noiv, is to test those

numerical tools developed in chapter rrr" Accordingly, the analysÍs is

carried out with the follorving objectives in mind:

(1J solve the problem variationally, treaEing only Green's

function singularity using the procedure outlined in

SubsectÍon 3.2.1. Charge behaviour Ís modelled by the

univariate polynomial expansion

(ii)

(iii)

For each of 14.23)

t ing polynomial .

o (x)

'n-x

(i) and (ii) but
_1,

x) '', i.ø.,
N

o(x) = ¡ a.
i=0 I

N

I a. x
l_1=U

by adding in

14 .231

charge sin-

into the

14.24)

is modulated; and,

a term with the form

o (x)
N

I a. x
1¿-u

as in (i), with the addirional treatment

gularity by multiplying the form (t - x)

polynomial expansion for Õ, í. ¿. ,

of
l.

so that every variational parameter

as ln

(1 -

to

In

-a1 N+1
/--._-y J_-x

Í4.251

[4.25], N represents

particular, for (ii), a

the order of the approxirr;a-

quadrature formula with
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_12 1(1 - x)'t as weight (í.e.o a = - |, ß = 0 for the Gauss-Jacobi weights

of t3.7]) is used for integraEion with respect to the unprimed variab1e.

Over Èhe ae,Ld-e,Lenenf the kernel is doubly-singular, and can only be

treated analytically. In this numerical applicaËion, even with the bene-

fit of a cosine substiËution, the malady remained 
- 

the transformed

weights beinginuitiplied by a (7 - *z¡-'z term. with the undersrandÍn3

that variationallye convergence in ¿nerLgtJ is guaranteed, only the loga-

rithmic singularÍry is formalty addressed in this analysis; the t-tt

singularity is compensated for only by an íncrease in quadrature order.

l^lÍth increasing quadrature the value of the functÍonal should minimize to

t.he expected solution. One justification for this choice is that unl-ike

the Greenf s function which is singular every\¡/here on the strip, the
1,

(1 - x) ' form is singular only at the edge. Thus less emphasis may be

placed on this localized effect"

The results of usÍng [4"23] as trial functions are shown in

Figure 4.4 and Table 4"1. In particular, the set of resufts for the

single pulse (N = 0) case is superior Eo those of }fcDonaId et al (1974)

who obtained val-ues of 17.72 pf./n and 0.1063 for capacitance and po-

tential, resPectively" It should be pointed ouË that the Èabulated quan-

títies are c1nvehg¿d values meaning that no further improvement can be

had after the specified quadrature order. The exact results are obtained

wíth a quartic approximation though charge profile (Figure 4.4), is far

from the expected behaviour. This ís because capacitance is numerically

equal to the magnitude of the funcËiona1, and hence shares the accuracv

of the energy-convergent solution.
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TA3LE 4"1: Strip capacitor;
N

o(x) = I a.x
í=0 l-

".0";):"' ö (Xq, 10)
order of

polynomi a1

0

1

2

3

4

order of
polynomia 1

0

I
2

3

4

number of
unknov¡ns

1

2

3

4

5

order of
quadrature

2

2

3

5

I

.1083

.1111

"TT22

.1123

. TI24

.IL24

.II24

"LI24
.II24

18. 03

18. 51

18"70

18.71

r8"72

TABLE 4.2: Strip capacítor; d / r, ì 
-

-7-Y-L_X

TABLE 4.3: Strip capacÍËor;
\ll\'
-lO(x) = ¿ a.x

i=0 1

ân' r tr

r;-r/-L-X

. 1141

.712ú

number of
unknowns

I
2

3

4

5

6

order of
quadrature

caPacitance *tf, ro)
P¡ /m

oo

11

11

11

11

11

19.02

r8.7 2

I8"72

18.7 2

18.72

r8 "72

order of
quad ra ture

we i ght
fun c t ion

capacitance
pFlm

LO
ó (_=, t0)

Y

15

8

1

1

18.73

79"02

II24

1141

'Il-*



I^liËh

that the lrl =

the charge behaviour model-led

0 approximatÍon , i. e.

E'):

as in [4.24)" resulËs show

14.27 )

o (x) a0

/-r- x
14 .26)

Produces the sarne accuracy as hÍgher-ordered forms. In particular, tr^ro

quadrature rules were implemented for integration wÍth respect to the

unprÍmed variable" Table 4.2 shows the compuÈed values using the respec-

tive weight functÍons. The first set are for results closest to the ex-

pected values and the second, Èhe converged values using a quadrature

rule that takes Ínto account the singular form (1 - *)-%. This latrer

seË Ís expected Èo be the more accurate since the quadrature is taifored

explÍcitly for use. In facË, the functional for the first set is seen

to converge beyond the tabulated quadrature order of 15, and in the

1imit, approach the value for the second set.

Fina11y, the resulÊs using Í4.25] for charge distribution are

shown in Table 4.3" The case indicaÈing [a.26] corresponds to the first

row and is meant for comparÍson purposes. The remaining rovrs, repïesent*

ing increasing orders of the polynomial, showidentical convercged results.

Obviously, 1ittIe improvement in precision is gained beyond the approx-

imation which represents

o (x) ârâo*-
,Ir-x

It appears that the approprÍate form of the approximating func-

tion for Õ, shouÌd be that of Í4.25] so that in the solution process,

the variational parameters have the flexibility to attain values that

would coll-ectively produce the opËimal field sofution. Ilultiolfing each
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ParameËer by the expected form of Èhe singularity, is probably functionally

restríctive thus constraÍning the solution Ëo converge on the erroneous

valueo Besides, the form of. l4.24lnay not be clmpLQ-t¿ in the sense of being

a ProPer Ëria1 function for this problem. To appreciate this poinË, con-

sider the analytic solution of Laplacers equation in polar coordinates

(DecretÍon, I972)

Equation [4.28] is

r"¡hich may be solved

separable j-nto a system of

for the general solution

[4 .28]

Sturm-Liouville equations

l2x \å)Ovdp 4y_l^t^
öT. dT

¡2 x,otlr'
òe¿

0 (r, 0)

where the summation extends over

nal derÍvatÍve along the edge of

s0 * b r- cos s?]e 14.2e)

s sin sûl I4.301

[4.31]

t4 .32)

Hence, the expres-

æ

T

s=-æ
.SIa.r s1n

val-ues of

the corner 1S

to be determined. The nor-

given bv

ôÕ lDÕ 1
ðn r â0 r

æ
ç

b--w

.Slsa r
S

s0-sbr
S

Enforcement of the boundary conditions that

0(r, 0 = 0) Õ(r, 0 = 6)

in equation 14.291 results in the requirement

\rhere k is an

sion for charge

integer, and

resembles

cos

k
Þ--1 il

ô

the re-entrant ang1e.
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I(k+-1)
1T. Ò

^) ra)'

ô0Õ _ _ eo â., = ; e¡ bu(k
k=0

sin {r }) 0 [4.33]

whose k = 1 Ëerm contains the form of the charge singularity if ô = 2;.

Higher order terms are regular Ín r thus Índicating that Ëhe approxirn¿-

tÍng form of [4"25] is nore appropriate.

Charge profiles for both 14.261 and 14.271 requiring I and 2

unknowns respectively, are plotted in Figure 4"5 and should be compared

against Ehe N = 4 curve in Figure 4.4 which ínvolves 5 unknor¡ns.

Obviously the latter should not be used if charge distribution data is

required" For the same accuracy usíng pulse-expansion, McDonalà Qi ü-t

(I974) required 50 unknor¡ns. Thus two inferences become clear: 
-

(i) for rhe same accuracy with less unknor,JTrs, a fewer number of

collocation sections with higher-order source interpolation ís

preferred to a large number of pulse expansion sections; and

(ii) Íf the form of the singularity ís knov¡n, ir should be added

to the poll.nomiaf trial function as an extra term so that if

the smooth portÍon of the function is not required, it ma1'

be duly penalized by the variatíonal procedure.
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4.3 The Exterior Dirichlet Problern

This example is intended to illustrate the equivalence of the

t.hree Ëypes of íntegral formulaËions derived in Section 4"I. In paz-trcu-

lar, consider the exterÍor problem posed by an equipotential circular

boundary of radius 0., charged to a potential of 1 vo1f. The two-

dimension¿1 free-space Greenfs function is given by

1G[ilr'] = -*eni i-i'i l4 .341

thus indicating a potentía1 that goes to Ínfiniry as l; - ;'l - q,.

ìlathematically, this situation arÍses because operator K is not posi-

tíve definite. But K can be made so b1'adding to 14.3/+l a positive con-

slant , í, ¿.

ct;l;'l = -*!,nti-i'l**u"l;*-;'l t4.351

where the reference point tR can be chosen quite far awal' to make the

second term of [4.35] approximately constant." The ph1'sica1 effect of

this manipulation is to regularize the potentÍal behaviour so that it

vanishes logarithmically as lil * li*1.

In the case of a cÍrcular cylinder of radius cL, the exact

values for the potentials are widely knoç"n and may be evaluated from the

expression

[4.36)
ona¡-.Q.nr+!.nRl ; r>a

c^

ç(r) = (



57

vrhere R= l?*-i'1, and

charge distribution on the

0(r = a) = 1, [4.36] gives

Õoa
Ês

or which when

lnR-.Q.na

Oo is an assumed

cylinder. Setting

the relation

simple-1ayer, uniform

r=a andenforcing

I /, îf r
[r.J/l

the right-hand side of [4"36], now givesÍn to

I

9nR-.Q.nr
.tnR-.Q,na

ó(r)

For the

;-- are chosen to
K

In particular, a

modified Greenrs

subsÈituted

I
rÍa

r>a

[4. 38 ]

purpose of numerÍca1 computation, the coordinates of

be (x*, lp) = (103, 103), thus making R = 103,Þ.

is set at unity. Using quarter-p1ane symmetry, the

function [4.35] now resembles

G [x,y l"' ,yt ] * u"[(xtx')t + (yty'¡z1ti * I
=-'l-Í, .8.n[(x* t x';2 + (y*: s'¡:

I /, 20l

which may be expanded into four terms, one for each quadrant. The BEll

model is just one quartic element comprising 5 nodes. Denoting Çi, Ç:

and Ó¡ Èo be the respective poLentials compuËed from the solutions of

1,4.61, [4.13] and [4.19], Ehe numerically cal-culated values for different

values of r are shor*"n in Table 4.4. Incrementaf val-ues of r are given

by Ar = .3278"

t1
J
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TASLE 4.4: Potentials - Exterior Dirichlet Problem

Âr

1"0

4Lr

6Ar

8Ar

1. 0003

" 9996

"9629

.907 0

.867 3

1. 0000

1. 0000

"0

.0

.0

0003

9992

9629

907 0

867 3

. 0003

9629

907 0

867 3

1.0

1.0

.9627

.9068

.867 I

WiËhin the cylinder, the exact solution is best calcufated

from the double-layer (82) kernel expression Ia.7]. It is inreresring

Ëo not.e that for ös, the condition fhat y = 0 from L4.17] is not im-

posed but the computed value is seen to be vanishingly smal1 and equal

to a linear combinaËion of Ql a¡d þz as defined in equatÍon L4.201.

For the exterior potentía1s, very good correlation is evident from ob-

servation of the bottom three rows of columns 2, 4r 5 and 6.

BEM nodel of circular cylinder
positive quadrant

Exact
Av

v

2

FIG.4.6z
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4.4 Capacitance of Conducting_Solids

In the static field problem, the functional has special

significance at the soluÈion point" ConsÍder equation 12.2) where the

first term of the first scalar product, namely Kf, is the potential g

on S. The product of potential and charge integrated over surface S,

yields Èhe potential energy of the system. Correspondingly, the second

inner product yields twice the energy. From an energy point of view,

this is the exact parallel of the variationally formulated partial dif-

ferentía1 equation functional (Wexler, 1980). Based on this energy con-

cepte the electrostatic capacitance of the system may be readily obtained.

In matrix noÈation, the functional

s! - 2!r

The capacitances of a sphere,

calculated using equation 14.42]. t^ritt¡

tive BEM models need be developed only

[4.40]

14 .421

prolate spheroid, and cube are

one-eighth symmetry, the respec-

in the positive octant. The

f'=tT

F = -fÏb

Þ

reduces Ëo

[4.4r]

at the mÍnimum. Thus evaluaËion of functional magnitude requires merel-v

the rnultiplication of a row and a column matrix. For conducting bodies,

this magnÍtude is twice the electrostatic energy so that with an equi-

potential boundary, the capacitance C of the system will be given di-

rec tl1' by

lrt
-2ó
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rnodif ied Green I s

G[x,y," l*t ,!t ,zt ] [(xtx';z a (yly')'+ (ztz')')'¿ [4 .43]

where the right-hand sÍde Íncorporates eight Lerms to account for image

syrünetry. With Èhe exception of the cube, exact values for capacitance

are available for the two conic surfaces. In particular, for a unit

sphere, Ëhe value is Ares or 111.26 pF whilst the expression for the

prolate spheroid is

function is gÍven by

1r
4T

1,

8':co(a' - b')'
æ
,v-n t --------;--;--:--;-:-l; I'a - (a' - b')-2'

l4 .44)

from Van BladeI (1964)

minor axes. With a =

where a and b are the semi-major and semi-

2 anð b = 1, equation [4"44] returns a value

4.5 shor"s some resufËs obtained using a few BEI1

TABLE 4.5: Capacitances of Spheroids

of 146.33 pF.

models.

Table

degree of
int e rpo 1 at Íon

J

2

3

2

number of
elements

1

4

1

T4

number of
node s

10

15

10

39

order of
quadra ture

4

4

4

J

capacitance
pF

111 . 21

7r2 .07';,

145,14

146.34x

The asterisk * represents results previously published in Lean et a1

(1979b). An add"i-tion-'SubtrLac.tí0iz rnethod was used to cater for Green's

function singularity. Thus, the analytic integration was performed on

sphere

prolate
sphe roid
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four $LcttfØnØd patches representing each curved element. 'thís o.d. hoc

procedure caused the minimum of the functional to overshoot, hence, pro-

ducing values of capacitance larger than the exact. Since the number of

operations for matrix fill goes up as Ehe square of the number of eIe-

ments, the difference between comput.ation tÍmes for rows 1 and 3 (also

2 anà 4) Ís considerable. The present BELI model for the sphere uses a

cubic element that aIlo\.JS tv¡o-digít accuracy in geometrical representa-

tion. A1so, the new scheme for handling Greenrs functÍon singularity is

implemented to obtain less than .052 error in calculated capacitance.

The prolate spheroid shows .82 error; considerably more than the sphere.

This is because with the cubic interpolatÍon scheme, Ëhere exists some

arbitrariness in the positÍoning of the interÍor node (Ifítchell & I^JaÍt,

I977). This flexibilíty can be used to advantage 
- 

by shiftÍng rhis

node towards the elongated region or 110^2 in order to obtain better sur-

face description. Thus, this vafue of capaciËance can no doubt be i¡n-

proved.

0f special interest is the capacitance for a unit cube i.¡hich

was originally computed by Reitan & Higgins (1951) using rheir mCÍhud u'[

,5ub0-)Le-a'5 
- 

a method very similar to the pulse-expansion point-rnatching

technique. TheÍr value of ,6555 e.s.u. is well within theÍr predicted

upper and lower bounds, i.¿., ,622I < C < .7l_06 e.s.u. Table 4.6 shows

some results using a few BEM models.
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TABLE 4.6: Capacitances of a Cube

:l previously published in Lean ef aL (1979b)

degree of
interpolation

number of
elements

number of
nodes

Order of
quadrature

Capaci t ance
esu

The first three rons of Table 4.6 shor¿ a monotonic improvement

in computed capacitance in going to higher-order interpolation. Rows 5

and 6 are for a refined BEll model involving 12 elements. In comparing

rows 3 and 4, it is obvious that 12 1ínear elements involving 10 unknoruns

have al-most the same precísion as 6 cubic elements r¡ith 37 unknor.'ns. Tlris

means that a model with fewer high-order elements may not necessaril,v be

better than another with more lower-order elements if the source discon-

tinuities due to geometry 
- 

edges and corners 
- 

are not formally addres-

sed. In any event the surface charge behaviour will- not be accurate.

4.5 Sensitivíty Study of a Metallic Body in a Finíte ConductÍng

Media

The physical problem configuration consists of a metallic body

subrnerged in the ground, with a pair of injection-withdra¡.¡a1 electrodes

at r¡hich electrical currents are caused to flow. The motivation for

this simulation stems frorn Ëhe desire to monitor air-earth interface

1

2

3

1

2

2

6

6

6

T2

I2

L2

7

19

37

10

31

31

4

5

5

4

4

4

7 2.94 . 6556

73" 00 .656r

73.13 .657 3

73.12 .6572

73"19 .6578

73. 03''. .6564
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potentials due Ëo an arbitrarity positíoned electrode-pair. Resulting

changes in surface potentials caused by the presence; and subsequently,

orientation, size and depth of the object, all contribute sensitivity in-

formation that may be used as 0- prLLon-i data for any subsequent computa-

Êional stage.

To siurulate Ehis problem on a computer, the chosen model is

that of a prolate spheroid r¡ith 8 cubic elements, An array of electrodes

are located on the surface of the earËh, assumed to be homogeneous with

finite conductivity r (Figure 4.7). Using half-p1ane symmetry (about

x-z plane), where d is the depth of the orÍgin below the surface, the

Greenrs function is given bv

G,oIx,y ,rl*t ,yt ,zt f 4n[(x-x')z + (y-y')'+ (z-z')'lti

4ri[(x-x')2 + (y+y'-2à)2 + (z-z')2fii 14 .451

At Èhe air-earth interface, t\{o boundary conditions must hold 
- 

except

at current ínjection and withdrar¡aI sites, poËential ó is continuous,

and its derívatÍ âÔve d, zero e\¡er1.*'here. Assuming only the static or

low frequency case, the effects of dÍsplacement currents can be neglected

Also, the rnetallíc body is very highly conductÍng in comparison to the

surrounding media so that ít may be assumed to be an equipotential sur-

face. Thus, one need consider only the dual electrostatic problem posed

by a constant Dirichlet boundary under the influence of two point char3es

As a result, the actual expression that needs to be solved, is

c - + {c¡s li,l - cls l;21}-K

+

where

poinE c

I [ . [sls'
" is m. ¡

O represents

harges located

I o(s')ds'

the surface charges and Q, the magnitude

at îl and lr" The accompanyÍng factor

of

of

14.46)

the

2
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O ELECTBÛDTS

EÊRTH

FIG. 4.7: Simulatíon problem geometry

O
i3

o
lq

c
1q

e
!a-

c
12

o
I

O
rl

O
1t

O
1

O
3

c
6

O
2

c
I

o
5

o
r0

I ÃY

hr
lx

O
I
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FI G. 4.9: Surface potentials - without object

FIG. 4.10: Surface potentials - with object
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accounts for half-plane slmnetry. Paraneter K üay then be interpreted as

a scaling facÈor. Equation [4"46] is derived from Ëhe simple-1ayer form¡-

lation of [4.2]. The value of g corresponds to a Diríchlet boundary

on the netallic object which nay be conveniently set to zero since any non-

zero value may be seen as a constant off-set. A polynonial (cubic) expan-

sion, point-matching ¡nethod is used for t.he solution of L4.461. In match-

ing only at element vertÍces, the Green's function singularity is not direc-

t1y addressed. The surface potentía1 roaps of Figures 4.9 and 4.10 are for

K = .001 mhos/m and are reminiscent of those obtained using resistlviËy

methods in geophysics (L.9., Telford 8.t aL (1976)). Figure 4.8 shows a

4x4 electrode-grÍd placed aË the interface aÈ which potentials are eval--

uated and referenced to electrode 17. In particular, the injection and

r,¡ithdraurl sítes are marked r and - s respectively. Figure 4.9 corres-

ponds Èo a pure-dipole fÍeld due to the absence of the buried object. l,Jith

the prolate spheroid centered in the grid and oriented length-wise horiz-

ontally across Ëhe page, the resultant inclínation of the equipotentiafs in

Figure 4.10 is produced. The waviness of the plots are a consequence of

the coarse grid used for graphical interpolation. Although this application

ís an idealization of the physical problem, nevertheless it provided rele-

vant quantitative data that gave an indication of the relatíve potential

changes to be expected.
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V. INTERT'ACE PROBLEI"IS IN MAGNETOSTATICS

A typical example of such a problem is that of the perturbation

of a uniform magnetostatic field by a permeable body (Figure 5.1). Let

âi and fiu be unit normals directed into and out of the permeable bod¡'.

Also, leË material constants be Ur and Uz for the interior and ex-

terÍor regions, respectively. From linearity of Maxruellrs equations, one

may consider an equivalent problem posed by the superposition of the

applied fíe1d in R", and the perturbation fíeld due to a polarization

source distribuËion on S. This source distribution ís a direct conse-

quence of the interface condÍtíon and vanishes when !t = Uz. Thus,

signifying H, Ha and H,n to be the total, applied and perturbation

fields respectively, Ëhen

H = H +Ham ls.ll

and in particular if 4,a and So, are Laplacian in all R, then the to-

Ëal potential Q will be given by the algebraic summation of Èhe cor-

responding scalar potentials, or

Ofil = ô.(;)+Oo'(i)

where fr i." gíven by

l5 .21

fr = -võ [5.3]



68

JHO

FIG. 5.1: Interface problem geometry

E1 Integral Formulations for Scalar Potentials

The wide selectÍon of boundary sources to suiE the problem gíves

rise to at least t.hree fornulaÈions that may be used. The fotlowing subsec-

tions discuss Lneir origins and relative merits when ]12 = iir for free-space,

and Ur = !!ç where U is the relative permeability.

5. 1. 1 Simple-Layer Kern_e1

This formulation is derived from the use of a distribution of

simple-layer polarizatíon charges o(s) on S. The perturbaËion poren-

tial 0rû everywhere Ín R is given by

R¡ 'pt
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ô (r)'m
7l

=-l uo Js
ctils'l o(s')ds' t5.a1

S andrequires special handling. The boundarl'

rhat both

where G is singular on

conditions on S require

0r tq, q.l

and ls.ol

be satisfíed" Since 0n is harmonÍc in R and contj-nuous across S,

condition tS.Sl is satisfied when ô., = 0., on S (which is obvious).

For flui continuiËy, consider the Neumann formulations of [5"4] taken

alons ñ. and fi such that
e

-^

u,+qr*u,lÞ - odn. dnIe

1r
uo Js

a+, (s )ml--ð*
l_

and

Aô (s)
n2
A"

e

where the last term of

jump in flux in crossing the

form, dÍvidÍng throughout by

tÍve of 0", and þ^, are

terface condition

15.71

ðó(u- t)#
e

âcþls'l o(s,)ds, - o(s)
dn_. ZVo

1

* [*#Ï o(s')ds' - #P ts.s1

each of the above expressions reÐresents the

boundary. Expanding [5.6] inËo componenr

l.lo, and recognizing that the normal deriv¿-

identical, Èhe result is the simplified ín-

aó âô'Inr 'mr
tt _ ¿-
H^ dn. dn1e

ts. el
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Substituting equaËions [5"7] and [5.8] inro

normal derivative of G in Èhe fii and â"

the following exoression in terms of o on

[5.9] and notÍng rhar rhe

directÍons sum to zero,

S

an

This formulation

o (s) is known,

[5.2) "

1S

ô'm

Is.11]

æ. Once

and Ç from

5"r-2 Double-Layer Kernel in Terms of Partial rnterface potentials

This formulation expresses perËurbaËion potential

where j-n R as a function of its values on S. Equations

[4.L7 ] ray be used to obrain the foll_owÍng two equations

o (;)ml

orn2 (;)

the negative sign in the

direcred into *". LIiEh

product of U and [5.12]

f c ti l'' , 'r*#'

{c¡î1"' , I1î,'

, Aciils'1.-0 #jds'mr dn'

, âc l.i ls' l._ A - L- r- r t J^tV À r i UÞ'm, dn '

t
_t'

is

latter being due to

ie s (i.¿,, lyl

give s

ieR

the assigned normal

= 2), adding [5.13]

* Jr*uJo o(s')ds¡ . *++ *

v0
o\!

-ð"

seen to be well-behaved even when U ->

everywhere may be computed from [5.4]

Is.10]

is obtained where subscripEs have been dropped with the understanding

that normals are directed along âe. The right-hand síde of 15.10] re-

Presents the normal component of the applied field and is computed from

d everv-'m

[4.16] and

r e R. I5.1:l
1-

Is.13]e

being

to the
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*tro (s) + ó (s) l¿ lI.tt m2

¡âóâó
= I [r, 'E] 

- 
'm2ì

- I LP ðnt ðn'r,S
c Is I s' ]ds'

rôtm2

0 (s)
m

-ltuô -o
lmlû2.S

ðcIsls']
dsr3nt

[5. 14 ]

hold.Interface conditions denand that

Therefore, [5.14] sinplifies to

l_

'm] and [5.9] must

l*Hål ó*(s')ds'! + fr++ I
is

cIsls']Han J^lu5

Is.rs1

which is

[5.12] and

could be

the fact

R. The

re gion

for sim-

e R.
1

[5.16]

LI\
e

ls.17l

*R 
'e

wìrich retaj-ns the form of [5.10] except f or the right-hand side

considerably more involved. Compu^tation of 0* using ecuatÍons
do

[5.13]requires determinaEion of # on S. ThÍs requirement

removed by eliminating the flux term, a procedure justified by

that Qr(s) alone is sufficient t.o define 0m everywhere in

steps in ef imi.nation involve wríti-ng [5. 12 ] and [5.13 ] in each

and massagi-ng them into a form thaË allows t5.9] to be Ínvoked

plification. The end result ís given by

(r) (u - 1) | tn,=t ^rru ¡,-r\ - a t^t. âG[rlst]-l :^r
ï Jrt.ttlr'lHr.,(s') - 0*(s') -=;ì-r ds'

and

0,2 (;) = (p - t, f, {cl; ls'lHan(s') - 0*(s', !9åI#l} ds'

túro equations differing by a factor u l Denoting 4;(;) as

;i

t!

1) |,S
: r e R.'1

i¿s

o;(;) (u- ic¡ils' lHan(s' ) - ôr(s' I 4$fllu"'

[5. 18 ]
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the Èotal potenÈial 0 ever¡rwhere is given by

ien
e

re5

ien.
a

I=(

I

0 (r)

ör(r) +

ôr(s) +

ó. (i) +

0;(;)

0r(s)

i *;,",

t

t

t

[5.1e]

5.1"3 Double:Layer Kernel in Terurs of Total Interf_ace Potentials

This formulation in terms of õ tea¿s to a more compact ex-

pression than the previous. Consider 0a which is harmonic in

specifically satisfies Laplace's equation (since Qa originates

Then Greents Theorem may be invoked to write

0 (s)
a

R.
1

in

and

R ).

on s. Multíplying [5.20] by (p - 1)

comparable r¿ith [5.15], the result is

Is.zo1

and rearranging it into a form

J r.r"l',r 
1#] - ó,(s,r !!fl-e-Ila"'

(u - rl I ðtL'-l¡'l 0-(s,)ds'+ (u: r) ó (s) = -(u - 1) l.trlr,lH ds,\r 
iS ðnt 'a' 2 Ya\r/ 

JS-'-' - an

Is. 21]

Adding [5.15] to 15.2Il a¡d rearranging, the resulranr expression

[**" õ(",)¿,' * {f** I I
(r-l - Ð ca(s) l-< trl

L ) . LL J

is the formulation in terms of total potentials

ascertained, equation [5.20] written in Ri or

conjunction wÍth [5.16] or [5.17] to obtain the

õ on S. once ;

R could be used in
e

compact expression

1S
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-L
u

I
u

I=<

t

oa(;) + aåt;> ien
e

i e n.
1

Is.23]

v¡here

ô(r)

o'(;)
m

O(rl+'a

i e n +R.e1

1 F t [s.24]

The equations derÍved in [5.10], [5.15] and 15.221 are three

formulations of the same problem in terms of second kind Fredholm inte-

grals with fairly well-behaved kernels. By replacíng 
* 

by 11 , the

nornal conponent of equivalent magnetization sources, the matrix of

[5.10] is seen Ëo be the transpose of [5"15] and 15.221. The most no-

ticeable difference Ís in the excitation function where [5.10] and 15.221

are simple and compact" In the case of [5.15] a double-surface integral

has to be evaluated. Besides additional time in matrix fil1, the ker-

nel also requÍres special treatment since G is singular on S. Con-

sequenÈ1y, thÍs formulaÈion is not a viable alternative. The main dif-

ference between t5.fO¡ and 15.22] lies in the computation of I on""

the equatÍons have been solved for boundary sources. i,JiËh the former,

the expression for 0,n is valid everywhere wÍthout reservatÍon but the

same cannot be said for the latter. As such, numerical inconsistencÍes

with respect to sign changes may arÍse for ; close to the interface.

The formulaËion in terms of 0m on S has another disadvantage when il

comes to field deËerminarion. From ínspecrion of [5.18], ô*(i) is

dependent on the product of p with the difference between two smal-l

values (Jeng, 1977). In the limit as U + -, the error in Om

-(u - "H+þ1",¡a,,
1) |,S
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eomputation is nagnified especially for the exterior fields. The interior

expression is more stable due to the added factor of U-].

The choice of which of [5.10] or [5.22] to implement depends

on the parameEer of interest. If ínterface potentials are important,

then L5.22] would be preferred since õ is the independent variable.

But if field definÍtion within R ís paramount, then [5.10] would be a

better choice due to the continuÍty of Q across S.

qt Permeable Square Cylinder in a Uniform H-Fie1d

This example entails a two-dimensÍonal analysis of a square,

perneable cylinder oriented as shor,¡n in Figure 5.2. The uníform Hr-

field is directed along the posÍtive y-axis by setting 0u = -y. Using

quarÈer-plane synrneËry, only the fourth quadrant need to be addressed.

However, to take advantage of the syrnmetric Greenfs function of [4.22],

the problem is actually solved in the posiËÍve quadrant. The desired

results are then obtained with a change in polarity.

Galerkinrs method is applied individually to equations [5.10]

[5,15] and [5.22] to solve this problem. Each of these equations 1s

seen Èo be of the second kind with awell-behaved kernel. In particular,

the normal derivatíve of Greenrs funcËion is

db
=

än
VG _ 1 cos(fi" r - rr) rq ?\l

.- LJ. L¿ )Ltt 
lt - t'l

as i * it since the argument of the cosine

result, only the Gauss-Legendre weight need

the primed variable.

which is

func tion

be used

finite in the limit

tends to +. As a
¿

for integration over
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DTfr ( 1.¡ IU. ) " L . Square permeable cylinder in uniform H-tiet¿

(a)

FIG. 5.3:

(b)

Potentía1 contours in uniform
(a) u = 10;
(b) u = 100i
(c) u = looo

(c)

magnetic field
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The BEM rrodel consísts of 4 cubic elements involving 13 unknou,ns.

Denoting the formularions of [5.10], [5"15] and 15"ZZl by Fr, Fz and

F3 respectivery, the potential $ "orprrted at coordinate positions

(0, -1) and (0, -2"5), are compared in Table 5.1 for different val-ues

of u.

TABLE 5.1: Compured potenrials õ

For the sítuation þ = 1, the interface does not exist, i.c-,
F1 and F2 have only the trivial sofution for M' and Çr, respect_

ive1y. F3 has the solution õ = Q. as expecËed. Therefore, the exact

values of 0(0, -1) a¡d 0(0, -2.5) are rerurned in the firsr roç.. As

u is increased, the results for F2 in the exterior region, deterio-
rate in comparison to F1 and F¡ . A1so, $ "onp,.,ted close to the

boundary S have negative sígns especially for large u. This discrr
Dancyis due to the forrnulation [5.18] used to recove, óo.,. As U * -,

the E-field in the cylinder tends t,o zero so rhar for [5.1g] to hold

true' very precise field cancellation is requíred between the applied

and polarizatÍon components.

Fi

1.0

" 649

.17 5

.208 x 10-1

.383 x 10-2

-õ(0, -1)

F2

1.0

.649

.174

"199 x 10-l

"293 x 70-2

-õ(0, -2.5)

Fl Fz F.I
1

2

F3

1.0

" 648

.17 3

.188x10-l

.190 x 10-2

2"5 2.5

1 111 a aaa1. JJL L¡ JJL

2.070 2.07 4

't o?o r o?o
L. ) I t

r"457 1.968

,)(

¿. JJ¿

2.074

I.97 9

1"968

10

102

103
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Potentials on the surface are more aptly computed by F3 since

0 Ís the independent variable. F2 requires the summation of Om and

ô on S. The difference in the results of F) and F3 is attributed,a

to the inaccuracy of solution of 0m - 
the errors beÍng introduced in

Ëhe computation of the excitation vector. of the three, Fl is the

least accurate in terms of surface potentials due to lhe crude recovery

scheme used. Theoretically [5.4] is síngular on s, so that a section-

ing philosophy in line with that described in Chapter III is required ro

ensure that t.he observation poinË in question is approached in the proper

manner. However, the usefulness of such a scheme is difficult to just-

ify especially when F3 could be used so effectively. rn comparing the

accuracy of computed exteríor õ, ro dÍfference can be detected betr¡een

F1 and F3. Thus, this observaËion reiterates the theoretical cl-aim

that F1 is more viable in terms of computational- economy. No special

software is needed to determine the location of the observation point

since 15.41 is freely applicable everywhere except on s. Equipotential

plots of S computed using F1 and 7-poínt quadrature are shoun in

Figure J.J previously reported in Lean & Wexler (1981b).

5.3 A Two-Dimensional Formulation for Vector poËentÍa1s

A vector formulated problem is posed by a current coil radiat-

ing through a permeable body into free-space. In the case of a magnetic

recording head where Èhe length is much greater than cross-section dimen-

sions, a two-dÍmensional analysis is preferred. Coupled with Ëhe fact

that head geometry and configuralion frequently facilitate usage of

rotational symneËry, most practical problems in this context are adequat-

ely handled with a two-dimensional anarysis. As such, Ëhe following
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derivation Ís for the z-component of magnetic vector potential A

its field effects.

reRl*R2

and

[5.26]

[5 .2t 1

S

t5. 28l

of

Again citing lÍnearÍty of Maxr¿ellrs equatíons, the effect of a

current coil radiating through a permeable body into air, mây be simu-

lated by the superposition of (a) the current coil al-one radiating in

air; and (b) a distribution of magnetic sources that hugs the geometry

of the body. The component of vector potential Ã due to a z-ðirected

current density is given by

where Rt, R1 and R2 denote conducEor cross-section, head cross-

section and free space, respectively. Using a simple-1ayer kernel formu-

latÍon for the sources, the following equati-on may be written separately

for R1 and R2

'f-
A" (r)

z

t_
uo I cIr ln'] J_ (R')dR'

J- r L
-t\.

M.-A (r)
z

I _.
I cItlr']u_(s')ds'
JgL

where }la denotes the tangential component of the magnetization on

caused by Brun due to the current source. The total potential

then given by

1SA

z(l)
T-M-

A" (r) + A"(r)z 7'

Interface conditions on S

E(=VxÃ) andrangenrial

require conËinuity

component of H (

normal component

E), or

of
1

u

A_A
Zt [5.2e]
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and

Enforcement of [5.30] with

dition

I
lz

I
Þl

äAz!
ân

aã
z2

än

u = Ïi leads

Is"30]

to the reduced ínterface con-

aeM aeM
Z1 Zt+ìt-

ân. ' F ðn
l_e

AAJ
(u - r) ^-¿dn

e

where subscripts denote directions of normals. Substituting the approp-

ríate normal derivaËives of 15"27] into the above and rearrangÍng, the

result is

I'f (s )t aeJ (s )
z
A"

Is.31]

[5. 32 ]
I
I

5

**l! M.(s,)ds, + l+-l$

än

Once 15.321 is solved, Á. everywhere Ís

and [5.28]. In practice, the parameters

the dov¡nÈrack (B*) and vertical (By)

linked to magnetic recordÍng processes.

derivatives of [5.28] with respecË to the

parti-cular, B* and t, are given by

cal cufat ed

of interest

fields since

B and -Bxy
y and x

B (r)x' [5. 34 ]

[5.35]

M- M-
ãA'l (r ) ôA^'(r )zz

=---;-T------F-dy dy

âAM(;) AAJ (;)z' ' z'- --ñ- - --T;-

. laclsln'l ,Þo l--ffJ_(R')dRr ; se S
JRt dn z

a second kind Fredholm

provided by the current

integral in Ëerms of

coil and is computed

The excitation is

Is.33]

from 15.26), 15.27 l

to engineers are

they are intlmatell'

are in turn, the

variables. fn

M (s)t'
from

^^J,df\ (s,z"

and B (r) =v' ')
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These derivatives may be carried within the integral since they

are with resPect to the unprimed varÍables. As a consequence, the algor-

ithm is neat and comPact when compared to a partial differential equation

solution where node interpolation is necessary.

5.4 The Magnetic R.ecording H_ead problem

Equation L5"321 is solved using Galerkinrs merhod

netization sources Mt" The Green?s function used is given

fo

by

r the mag-

Is. 36 ]
ci;l;'l - * n"l; - ;'l o * r.nli* - ;'l

where the last term on the right-hand sÍde is included for the same rea-

son as in Section 4.3" The BEM models of the conductor and head cross-

section are shown in Fígure 5.4. A constant current density of

.034/nicron2 flows in Ehe conductor which is nodel-led by 4 linear

triangular elements" The vector potentiafs due to the conductor are coi¡-

puted using 16-point quadrature over each element. A basic confÍguration

for the head cross-section is the I element model of Figure 5.4(c), with

the facÍlity to increase the degree of inËerpolation from a linear (B

nodes) to a quarti-c (32 nodes) approxÍmaËion. Figures 5.5 and 5.6 shoç,

the calculated vertical and dornmtrack f Íe1ds ar distances of . 5 , 1, 2,

and 4 mÍcrons beneath the head" The bumps in each curve at approxin:-

tely l"l - 2 micron are not observed until- a cubic approximation is

used. This is expected due to the rapid undulation of the fierd.

In the calculaÈion of vector potential due to magnetizatíon

sources using [5.27], a logarithmic síngurarity is evidenË on the head

boundary. However, in thÍs analysis, no special schene is specially used

to acknowledge the singularity. Three-dimensional representatÍons of



81

þa

Conductor

Permolloy

Node number

Element number

@

6
(b )

FIG.5.4z

(o )

(c)

Magnetic recording head:
(a) cross-section;
(b) BEM model of conductor; and
(c) BEM model of head cross-section

45
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FIc. 5 "7 z Three-dinens ional
rePresentation of
vector potential
Â.

(a) due to
magne t ization
source

(b) due Ëo
current conductor

(c) due to sr¡m
of (a) and (b)



84

the vector poËentials are shov¡n in Figure 5.7" The isometric view

pertaÍns to the head oriented with the open-end facing inwards. In Fig-

ure 5.7(a), the undulations observed correspond to the periphery of the

head. IÈ appears that the crude recovery scheme used for AY on the
z

head lead to the imprecision alluded to in a previous example (Section

5.2). Increasing Ëhe quadrature order is seen to ameliorate the problern

though noÈ handlíng iË explicitJ-y. Since B* and t, fields, whlch

are independent of the companion term in [5.36], are of primary interest,

this scherne will be the most economical and versatile Ëo use. A suit-

able formulation can be derived using the concept of Section 5.1"3 if

A on the head boundary is to be determined accurately.z'
Figures 5.7(b) and (c) show Èhe vector potentials due to the

current coil a1one, and the resultant total potentials due to both (a)

and (b). The feaÈures of Figure 5.7(a) are retained in (c) because of

the observed order of magnitude difference in theÍr values. Each of the

plots are done separately, each with a different scal-ing factor built

into an interpolation algorithm that confines the plot within the screen

of the Tektronix 4013 DVST. Thus, this essentially makes it difficult

Èo visually sum (a) and (b) to obtain (c).
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VI. ELECTROMAGNETIC SCATTERING PROBLEMS

The time-harmonic response of electromagnetic Ìdaves in the

presence of a scatEerer depends on the configuration and material con-

stitution of the object; the propagation frequency, polarization, and

angle of incÍdence of the impinging field; and the far-field observarion

angle" Classical solutions involving expansions of cylindrical (tr"o-

dimensional), spherical and spheroidal wave functions, exist only for a

limited class of geometries where separation of variables may be prac-

ticed. In the low-frequency or RaqLeigh negíon, analytic solutions are

obtained in the form of convergent power series expansions (Kleinman,

1965). AE high-frequencies, asymptotic technÍques such as Ray or phys-

ical Optics (P0), Geometrical 0ptics (G0) (Koujoumjian, 1966), and Ëhe

Geometrical Theory of Diffraction (GTD) (Ke1ler, 1962), are necessary.

CorrespondÍng techniques for the transiËion or tLØ'S7na-nce range ínclude

modal expansion (Ø.9., Garbacz, 1965), and conformal transforms (Shafal,

7969) .

WiËh the advent of the dÍgitaI computer came the numerical-

modes of solutÍon (l.lei & van Bladel, 1963) 
- 

based on moment methods

(Harríngton, 1968) with modelli-ng strat.egy tackled on tv/o f ronts: r¡ire-

grid and solid-surface techniques. undoubtedly, the modelling of an-

tenna configurations as wire-like radiaËing structures precipitated the

use of t.he wire-grid approximation (Richmond, 1966). Its application

to solid-surface geometries seem a natural extensÍon and does work well

at sufficiently 1ow frequencies when grid-length is short compared ro

the wavelength (Lin & Richmond , 1975). The other alternative \ras init-

ially introduced as patch collocation.
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Traditional preference has been to use the electric field

integral equaEion (EFIE) for wire structures and the magnetic field inte-

gral equatíon (MFrE) for solid surfaces. Part of the reason for the

first preference is because the MFIE kernel has a term involvÍng the

vecËor producE of surface current i, with the gradienË of the Green's

funcÈion VrG so that difficulties arise when Èhe included angle be-

comes sma1l. The EFIE is ideall-y suited since the axial currents are

assumed and constrained to flow along the wÍre. However, the strongry

singular kernel has been a deterent Ëo üany practitÍoners in this area.

The IßIE has a betËer-behaved kernel but is prone to ínternal resonance

problems and deteriorates as a viable alternative for scatterers of van-

ishing volume due to geornetrl-cal factors in the íntegrand. One technique

for coping with the interior resonance problem Ís to apply the exËended

boundary condiÈion (EBC) of Waterman (1965, I9l3) involving vector eigen-

functÍon expansions of the Helmholtz equatÍon. Other recent contribu-

Èions and Ímprovements to the EBC ínclude Al-Badwaíhy & yen (1975), and

Ilorita (1979). A second method involves the coupling of the I'IFIE to the

EFIE (l'fitzner, 1968) to ef f ectively suppress Ehe resonance ef f ecr. An-

other alternative is the artificial suppression of interior resonances

by setting some points ín the ínÈerÍor to have vanishing fields, thus

constraining the systeue of linear equations t-o have the trÍvial solution

within. One disadvantage i-s in the arbiËrarities of such a constraint

- 
the null locations must coincide in posÍtion with a non-zero value of

the resonating rnode in order for the Ëechnique to work. Thus, prior

knowledge of modal locations are necessary in this applicatÍon. A final

method involves the method of modal expansions previously alluded to.
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The síze of the integral equation-generated matrix that can be

accomodated on a comPuter, limits the dimensíon of the scatterer in terms

of the wavelengËh of the illumÍnating field. This core limitation dic-

tates the number of variables that can be effectively handled at any fre-
quency. Hybrid techniques that incorporate the GTD with traditional mom-

ent methods (Burnside et al, I975; Thiele & Newhouse, 1975) have met r¡ith

some success" Any scheme that leads to economy with respect to the nurn-

ber of variables, will be a definite asseL. ThÍs study will be concerned

t¡ith the scattering of electromagnetic r^7aves from perfectly conducËing

boundaries.

6.1 T\¡o-DimensÍona1 Integ-ra1 Formulations

Maxu'ellrs equatÍons in space-time domain may be restated

space-frequency domaÍn with suppressed .jt.,'lt time dependence. The

and H field r,Jave equations for a source-free media

VxVxE-k'E

VxVxfr-t2E
[6.1]

reduce to

(v2 + k2)

[6.21
1V2 + k2¡

for a divergenceless region with wave number k = r¡rl$ = 2n/T. Def ining

Ín general Eerms V(;) and ct;l;'l ro be rwo porential funcrions in R

thaÈ satisfy the wave eguations

in the

E

0

0

0

0

E

H



(v2 + t') rl,(i)

where r!(i) * o

and

whe re

subject to

(v2 + k2) Gii li'l

ct;l;'l -o o AS

the boundary condition

l;l * -

-ô(; -

l; -

rt)

i'l * -

88

t6":l

t6.a¡

t6.51lim '¡fr + 3r.r¡1
r-+æ

the scalar form of Greenrs Theorem may be invoked to obtain

ü(r)

æ

given that y is the factor

(Sommerfeld) condition, the

sical- radar problem) ís the

ity S_. Since total field

is given by

I- Y)
S+S

{c ¡? 1 
,' l +S) - ú (s' r !9f!¡-f to, ' 16. 61

defined in 14.l-7l. From the radj.ation

incident field ljri (plane wave in the cl-as-

accumulated effect on the boundary at infin-
- i-

ú(i) = r.l,t (î) + lrs (;) , rhe scarrered f ietd

c-

ü" (r) - / *.ril,,l .}$) - ú(s,r refffla,' ; i e n

1,6.i l

The remaining portion of thÍs section will be concerned with

Èhe tvro-dimensional problem where the z-component of the field is invar-

íant in that direction. For oblique plane wave incidence, the incidenl

fíeld is given by
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where

(Figure

k =14
E

z=0

i
ü-(x"y"z) Assino .jksinO(xcosQq + ysinÔs) 

"jkcoset Io.a]

0 and Ôo are the elevatÍon and azj.muthal angles, respectively

6.1). Denoting the transverse component of the wave number as

sinO = /-FZ-:-FT r¿here k = k cos0, and evaluating on thezz
p1ane, [6"8] reduces to

rl,t (*,y, o)

6.1.1 Tl"1 Wave Incidence

This case is obtained

[6. 6 ] and 1,6 "7l. Thus

nr(r)

Enforcing the

jkr(xcosOs * ysinÇs)
As sinO e -

¡i (")
z

l6.el

on and setting

[6. 11 ]

16 . r2l

by setting r|,(;) = E-(;) in equarionsz''

-y{r.ítir - J r.r;1"', * - u, !9H¡-I1a,'} 16.rol

boundary condition that Ea"r, vanish

jr¡poJ .--ì= J ttJU o H*l
el¡\

resufts in the Fredholm integral of the first kind

dL
z

dn'

cr;l;'l

rr(') (kr l; - ;' l¡ .rr(s') ds,

in J., the longítudinal component of current

[6.I2] ís the Greenîs function defined by

k1rl
zJs

density. Implicit in

=j
4

ri') (krl; -;'l) [6. 13 ]



and the normalÍzation

impedance n. Once J

q-

E- (r)
z

A¡ alternative

t.he normal derivaÈive of

90

_io, to unity with respect to free_space

ís known, the scattered fÍeld is obtained from

of

z

1-K

-L- -4 t
and hence the total field by the expression

E (;)z' ' E'(r) +z''

rÍ') (kr l; - ,, i) J, (s,) ds,

q_

E- (r)

[6. ]4l

[6. 15 ]

obtained by startíng froin

resulting in

form of [6.l-2] can be

[6.10] on S rhereby

T
2

-)
k' Irl

--l 4l ,S

(2\
Hì' ' (kr lt - t' l¡ cos (fi, r-r') J (s')ds'+

z'

1r1 ¡ - roL (s,jk* J- (s) = ---Z-
on

[6. 16l

with a

tities

better behaved kernel

are computed using the

(z )
H"' ' (k r)u.t

kr-+æt

(Bolomey & Tabbara, Ig73).

asymptotic expansion of the

I-ar-field quan-

Hankel funct ion

r--;-l--
/¿1y _:- etTk r

-jk_r jk ?Lt rt
[6.]71

In

d5

parËicular, the radar cross_section (RCS) denored by otu Ís defined

o*(0) lEl ri) I 
,

[6. 18 ]

so that using [6.17] for the kernel of 16.14l, the eventuaf form is

or¡l(Ó)

dependent only on

lim 2rr
r-+æ ¡El r?r I '

r jk-î.i'
t]r" ' Jr(s')dr,l,

bistatic angle ó.

[6.7e)
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6.r"2 TE Wave fncidence

This ¡node of incidence

equations [6.6] and t6"11, í.¿.

corresponds to setting rf (r) = Hz (;) 1n

t

,1'1
jk- rLI

-t
4l ,S

H lr)z'
-l- ytH- (r)

z

AH

ictils'l ;-? - H'dnz

Enforcing t.he boundary

setting JO=-Hr(s),

âH
condition chat -=3 = -ir¡e .E = 0dn " "Q

[6"20] sÍmplifies ro

a Fredholm

of current

c al c ulate d

integral

densÍty.

f rom

H (r)
z

jk- r
LI_l aJ, Hf ')fr.. l;-s'l) cos(â, i-",) JÇ(s')ds, 16.22)

fromand hence total field

H (r)z' '

except on where

tt, (s)

Ht (;) + Hs (;)

z[ut (s) +

Usíng the asymptotic forn of

is given by

HS(S)]

the first order Hankel function

r e R [6.33]

16.24)

fzlHì ' (k*r) ----------------)
' k.r -+ æ

E

/ zi .-jkttt"kFJ oe
jkr

4!!#to''l r6.20l

c and

J ls)
4'' - Ht (.)

z

[6 .2r)

of the second kind for ,Q, the transverse component

Once J, is ascertained, the scattered fielcj is0

r o rl
16.251
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the scatterÍng cross-section defined as

o-- (ó) =
T-b,

is now expressÍble as

lHl ril | 'tim 2¡r __i_
r-+æ lulrill, 16 .261

(â' , i) -l* (s' ) ds' I 
2

L6 .27 )

orE (ó)
kt

4sin20

ik
Le

î " i'
ri

JS

Lrerrb B.t-ven r_n equaEtons Lb.IZJ and L6.2Il
representing Tl'l and TE incidences respectivelye are solved using
Galerkints method for a circular cylinder of radius q. The kerner of
16.12] has a logarithmic singularity of the imaginary component and is
Ëreated 1n the manner described in subsection 3.2.r. As for that of
[6.211, the kerne]- is finite in the rimit as s +. sr so that a Gauss_

Legendre quadrature is used for integration with respect to the present var-
iable' PorÈions of the results that follow have previously been published
in Lean & Wexler (t9g1a) 

"

The BEM moder used is shoi',n in Figure 6.2 and consists of 4

quartic elements totalling 16 unknowns. with source symmetry, this prob_

l-em can actually be so]ved with 9 variables. Figures 6.3 and 6.4 show

the induced surface currenËs and radar cross-sections for both TE and

TM normar (0 = 90o) incidences at ka = 1.6 using 6-point quadrature.
They exhibit alnost no deviation from the results published by oshÍro 6

su (1965)' For the explicÍt purpose of output-data verification, special
attention is paid to the issues perÈaining to: (i) l0w-frequency per_

formance; (ii) upper-frequency limitation; and (iii) near and far_fierd
computation.

CÍrcular Cylinder
The integral formulations given in equatÍ-ons [6.12] and tO.
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FIG. 6.1: Scatterer problem geometry

4 quorfie elements

16 nodes

FIG. 6.2: BEII model of cylinder - first quadrant
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FIG. 6.4: Polar plot of bistatic cross-section
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(i) _Lgy:Ire_qgelsy_egrJg¡lelgs

Analytic expressions for radar cross-sections of circufar
cylinders, obtained analytically from smal1 argument series expansion,
are gÍven by Mullin ei a.t- (1965) as

*2t-3' 4oru(Ö) II + 2 cosQ], [6.281

and

_2
orn,(o) = T- t l [6.2e1Y- +4+ 2\'intfi + ttntïll,

where \ = 0"5772 is Eulerfs constant, o the bistaËic angle, and (t

the radius. Table 6.1- shows rhe monostaric (0 = r) and forward (ç = 0)
scattering cross-sections for ka between .005 and .2 (250 KHz _

I0 }fttz).

TABLE 6.1: Ifonostaric o(n) and forward o(0)scattering cross_sections for TEand TM mode incidences

As expected, at lower freguencies, the anarytical and numericar results
comPare exceptionally we11, especially for the TE case. The expression
[6'29] is independent of aspect angre so that at low frequencies, it

ka
ANALYTIC_---__-_ì-

l___¡-or'r I otu,o, I or, (ir)

NUMERICAL

or"(o) j or"(ri) o-- (0) I c-- 1;¡lL I -TE

005

05

1

2

62.r09

16 .247

11.867

9 .06L

2776 x I0-s
2776 x I0-2
222I x IO-1

7777

3084 x 10-6

3084 x 10- 3

2468 x I0-2
1974 x 10- l

62.r7 3

16. 031

rr.349
7.989

62.207

16. 539

72.495

10.459

2776xIO-s

2775 x IO-2

2211 x 10- l

77 28

. 3086 x lO- 6

.3147 x 10-3

.2618 x lO-2
trO"-,r^-l

. LL / J A lV
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resembles a line source radiating evenly in all directÍons. Inspection

of columns 2" 5 and 6shows correspondence to almost one decimal-p1ace at

ka = .005. In fact, to\rards lower frequencies, Ëhe Ërend indicaËes dimi-

nishing ditferences between the analytic and computed results. The pro-

bable cause for this behaviour is the singularity of the first kind ker-

ne1" Hence, the alternative formulation of 16.L6] should produce a bet-

ter match.

( i i ) !eeer-Ireg:ug!9y-11p1!g!]9r

The maximum frequency that this particular model can effectivel-y

handle, ís ascertained by monítorÍng the behaviour of output observables

with increasing ka. These observables are: rnatrÍx condition number

and determinant; surface current profile; interior fields; and surface

fields (TM case). In partícular, a Èotal-pivoting strategy is implernen-

Èed for linear equation sol-ution so Ehat the cond,ition number is estirnated

from the ratio of the largest to the smallest pivot. From experience,

the Galerkin-generated matrix Ís r¿e11-conditioned so that this quantity

ís quite invariant over the frequency range of operation except at

eigenfrequencies of the interior problem. Any departure from the pre-

dÍcted behaviour oËher than at resonance is checked for overall sol-utÍon

compatibility. For Ehis model, maximum ka = 6.4 or a BEM element sj-ze

of 1.6À and a sampling interval of .4À. FÍgures 6.5 and 6.6 represent

the variation of normalized monostatíc and forward scaÈtering cross-

sections r¡ith ka. The results of Figure 6.6 correspond almost exactly

with those of Bowman e-t a-(- (1969). Aberrations in the TE plot in Figure

6.5 occur at the T!1 propagation mode frequencies of rhe circular \rave-

guide and is seen to worsen at the upper porËion of the frequency band.

This observation is noË predicted by the analytic results of Mullin Ct
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a,[- (1965) o and serves as an indication that the integral -H-f ield solution

is prone to inEerior resonances, At higher frequencies, both TE and

TM results are seerr to approach the G0 limit as predicted by theory.

(iii) Near and far-fíe1d computation

Any departures of surface current distribution from the exact,

would be nanifested in the computation of scattered near-fields. Hence,

near-field quantíties offer a good gauge as to the precÍsion of solution

of the independent variable. For purposes of comparison, equation [6.16]

whÍch is the second kind integral for Tlf incídence, is solved by Galerkinrs

method. Figures 6.7(a) and 6.7(b) show the total fields evaluated on the

wave trajectory that bisects the circular cylinder at ka = 3" 832 re-

presentj-ng the Tllrt/TEc1 mode degeneracies of the circular waveguide.

The solid lines indicate the BEII solution whose exterior fields coincíde

with the exact. The dashed lines are results obtaíned by Bolomey &

Tabbara (I973) using a pulse-expansion, poínt-matching technique and in-

volving approximately 40 variables. C1ear1y, the BEPI calculated interior

fields are closer to theory in that they are relatively sma1ler in mag-

nÍtude. Although not explicitly shown, the surface current distributíons

computed from two matrix solution strategÍes by Bolomey & Tabbara (1973),

are quite different fror. rhose shown in Figure 6.7. The BEII calculated

currents are in fact, in quite close agreement with the exact. It does

appear that the B*l rnay be a beËter technique for near-field computation.

Far-fields are usually less affected due to spatial separation

and the fact that integration is inherently a 
^mc)otlruLng 

operation. Com-

puted RCS patterns in Figure 6.4 and also Figures 6.5 and 6.6, bear this

out.
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Surface currents and near-field for:
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One irrportant question at this juncture, perÈains to the

effectiveness of this particular BEM model and its adequacy to handle

source variation. Figure 6.8 shows the transverse currents induced on

the cylinder círcumference for the cases: 4 quadratic elements; 4 cubic

elements; 4 quartic elements (the present model); and 8 quartic elements.

In comparing the curves for the last two models, it is clear Èhat not

much is gained in the way of accuracy in going from 16 to 32 variables.

Therefore, the exËra 22oz more cPU time (1.5 seconds to 3.3 seconds)

for the latter case, is difficul-t to justify. One inreresËing poinr to

note is that this doubling of the number of unknou'ns lead to a doubling

in the upper-frequency limit as well.

The precision in operator approximaËion, is usually reflected

in the requirement of quadrature data. Good approximations quite often

lead to good accuracy with minimum orders of quadrature. Figure 6.9

illustraÈesthe dependence of Ëhe variational functional, matrix condition

number and determinant on quadrature order for Tl'l (first kind inËegral)

and TE cases, respectively. Each functional is the magnitude of the

)L\nc-ti7n beËween the surface currenËs and Èhe incident fie1d, i.e.,
i'< J, Et t and < J^, H] > (Harríngton,1961) so that they have unirsz' z Q' --z

of energy or Power. Essentially, they behave as in electrostatíc problerns

in regard to convergence. T\¿o points of interest are obvious from in-

sPection of the curves: (i) 6-point quadrature is sufficíent to integrate

a quartic expansion of sources (including the kernel); and (ii) the

E-fi"f¿ formulaÈion is better conditioned than Ëhe first kind integral as

is evidenced from the behaviour of rnatri-x condition number and determin-

ant wÍth quadrature.
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With regard to aatrix conditioning, Figures 6.10 and 6.11- are

plots of fhe sane three paraneËers with increasing ka" Again, the

better-behaved second kÍnd kernel giving rise to a better-conditioned

matrix is evidenË. Except at frequencies that correspond to the indÍ-

cated propagaËing modes of the circular waveguide, the matrix is well-

conditÍoned over the range of workable frequencíes. The very narreçr peak

indicating a large condiEion number and a corresPonding vanishing deter-

minant, is a good indication of the accuracy of the algorithm. In com-

parison, the pulse-expansÍonu point matching technique exhibíts no such

information. From the low-end of the frequency range to the high' con-

dition numbe¡ is seen to decrease monotonically whÍlst matrix determÍn-

ant increases in the same manner. Their behaviour ís quite insensitive

to the eigen frequencies for the interior problem.

The minimum sampling rate of rhis technique is of the order of

5 times per vTavelength (Poggio & Ifiller, I973). This means that collo-

cation section size is .D,. For the BEll model-, ka = 6.4 wÍth 16 nodes

implíesanode eeparationof .4À or one-half the number of varÍables com-

pared to the former. In terms of the number of operations for matrix fill

r¡here each operation is a poínt-to-point accumulatÍon, one woul-d require

n2 n2 and n2 n for the BEM and the pulse expansion techniques re-
sgpg

spectively 
- 

Ds, rp and tg being in order, the number of BElf e1e-

ments (4), the number of collocatíon sections (=32), and the order of

quadrature integration (6 for the BEM). Since the number of pulse-

sections is approximately B times that of the BElf model, even if n, = 1

for the former and 'g = 6 for the laËter, it would stilI require more

operations to fill the pulse expansíon-generated matrix.
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6"3 Three-Dimensional Integ,ral Formulations

A vector formulation in three-dimensions, can be obtained from

utilization of the equations in 16.21 in conjunctÍon with a scalar free-

space Greenfs function given by

-ikl; - i'l
e"r I

anl; - r'l [6. 30 ]

where [6.30] satisfies the inhomogeneous Helmho:tz equation

vxVxctili'lâ-i.2ctili'l à = -o(i-i')â t6.3tl

given that â i,s an arbitrary unít vector" Applying the vector form of

Greenrs Theorem, and sirnplifying, the result is

where Vt;¡ is eirher Htil or Efî1.

6.3.L Magnetic Field fntegral EquatÍon (MFIE)

16.32)

ThÍs formulation of the vector inÈegra1 equaËion, is specífied

by settinc ü(;) = H(i). Enforcing the boundary conditions that normal

magnetic and tangential- electric fields vanish on S, í.e.

cl;l;'l =

t-rt' â -- Y I {',1,(s') xVxG[il"']â - cl;lr'lâxVx-rj,(s')] .â ¿s
)
crcJT D

fi.H(ie s) = o

âxË(ies') = Q

and using ^,( = -2 on S, equation [6.32] is simptÍf ied to

[6.33]
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^__¿_.-nxH (s) [6. 34 ]fi * |' J(r') x v'G[sls']as'
is

where the equivalent source notation

fi"8 [6. 35 ]

has been íncorporated into the simplificatÍon. The expressi.on VrG is

the gradient of GreenIs function in source coordinates and is Eiven l-r'

T-

rl^ (i - i')
-ikl; - i'le-r I

41lr-:-r|l- (1 +jtli-î'l;

Equation [ 6. 35 ] is

surface currents

H(r)

retaining

gives the

vector second

The scattered

kind integral
-a -field H- (r)

16.361

be solved for

evaluated fromj.
that may

is then

-c -H" (r) i (r' ) x V'G [i I s' ]ds'

and the total field expressed as

=t
is

L6 .3i )

[6.38]

form of V'G

t6. 3e l

-i - -ê -H'(r) + H"(r)

For the computation of far-field

is obtained by neglecËing phase

- 
t-

VrG [r lri ]

li - ;'l *-

quantities, the asymptotic

factors. Thus ,

-i kr
^ ik e '.*' ik î r'

Hrl I

only terms in r-ì.

scaËtered far-fieId

This equatÍon r¿hen substit.uted in 16.37 )



-c 
_

H" (r) I

l¡_o_

The RCS is dependent

respectively (Figure

-'ikre-
4"t

on elevaÈion

6.11), and is

{jk i(s) x î}

and azimuthal

given by the

angles 0 and

expression

I
JS

¡ -"
-'lR r'r'e

r07

[6. 40 ]

[6.41]

c=0

o (0, ô)

which simplÍfíes to

o (0, 0)

In particular, Ëhe

(x-z plane) and 0

1im on.r lfrt l 
t

r-+æ lHtl,

the form

and H-plane RCS

(y-z plane),

are obtained by specifying

respectively.

I
4r

t_
t'J, trk J (sr) ik r . r'x rJ e- ds']2 [6.42)

E-

_17
2

$ n * i t-u'l(s') G[rl''] * v;' i("') v'c[sls']]ds'
J urc J5

6.3.2 Electric Field f"tegtaf ¡q"atlon (Ð

The electric field eguivalent of [6.34)

Vti¡ = Ë<il. Again, enforcing the conditions of

sultant EFIE expression simplifies to

where V: is a surface divergence operator
S

tion [6"43] Ís a vector first kind integral

=S,-,E- (r) is computed from

t_
-J, {:'u J (s')

is specified by setting

[6.33] on S, the re-

L (S)

[6 . /.+31

source coordinates. Equa-

l. The scattered field

=nx

l-n

t_fi

i
(¡eË" (rl vå " i(s') v'c[ils'] ]ds' L6.ltl
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FIG. 6.11: Scatterer problem geometry

I
3B

e ubic e lemenf s

nodes

FIG. 6.I2:. BEM model of sphere - positive ocranr
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Using the asymptotic form of [6.39], the far-field is obtained as

Ë= rit Il¡-+-
ik -ikr

4Tr
j (r'ir

5

(î"J(s'))î-

Following [6"4I], the RCS is mathematically given by

o(e" 0)
. -c . ^I ?¿ | I, ) lL II1m 4TT'*
r -a r cr-+æ lF l'' t- |

16. 461

which is simplified to give

o (0, 0) jk{(î . i('')) î - i(s,)} ejk î ' i' ds,l:

Í6.47

where E- and H-plane RCS are as defined for the MFIE case.

6.4 ScatterÍng frorn the Perfectl)' Conducting Sphere

The MFIE of 16.341 is implemented to solve this problem using

Galerkin I s rnethod. Due to the natì.lre of the problem, only surf ace cur-

renls can flow where i(=) accounts for the jump discontinuity in mag-

netic field encountered in crossing this surface. As such, J need onl,v

be specified in terms of a pair of orthogonal surface vectors to fulll'

describe the problem. The integral formulation [6"34] can then be re-

solved into two scalar equations ínvolving 2N unknov¡ns (¿.9., Oshiro &

Su (1965) ). This resolution scheme runs into problems in the treatment

of angular geomeEries 
- 

creases and edges, especiatly when higher-order

interpolation involving node-point values, are used. The notable excep-

tion is pulse-expansion for sources where the independent variable i.s

solicited only at the patch-centroÍd. As a result, the present BEI1 code

ís specified in cartesian coordinat.es involving 3N unknoin'ns. It is

_ 1 ,l
4¡', t l\
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felt that with the efficient use of quadrature datae accePtable precision

may be obtainable v¡íthout placing Ëoo heavy demands on solution time.

The BEM model of the sphere consisË of B cubic elements involv-

ing 38 nodes, each wÍth 3 degrees of freedom (Fígure 6.L2). Withour

resorting to synmetry, a tolal of l-I4 unknowns are required. The cubic

element has precision in surface mode1lÍng, to tr^ro decimal places. l\'1th

quarter-space synmetry (as in Oshiro & Su (1965)), a total of 16 nodes

and 48 varÍables v¡ou1d be sufficient"

0n resolving the discretízed version of 16"34] into component

forms, the resulting matrix assembly may be gÍven by

S3

S6

se +A

i6.481

I [s"l t;" 
-l

lL;:lL;r
l-s, +A s,
I

I sa s5-FA
I
I c- c^
L ¿/ JU

where J J and J are column vectors of-x' -v -z
of current aensity. The sub-matrices denoted

) ds'ds

Èhe respeclive component

S. resemble
1

1, 2, . c., I [6.49]= let'l f *, st{'',S ,S
S.

1

¡¡here K. are
l_

Ehe respective kernels given by



\^ ^^oG d(,K¡ = ry(s) A/ + nz(s) àr:

Kr = -11 (sli9L\z ..y.", 
âxt

Kg = -nr(t)#

Kç = -r*(r)#

Ac âcK5 = n.(r)#or*(r)#

Ks = -n.(")#

Kz ('l i9x dz'

Ke = -n--(sl j9y ozl

.âGâGKg = r*(s) Ax, + nr(sl ¡¡

111

[6. 50 ]

Along the rnain diagonal, the additional square-matrix A is due to the

vector second kind integral and is given bv

t6. si l

Finally, the excitation vector is formed from the stacking of Èhe res-

pectivc X, y and z components and represented as

l'tA I * *(s) oT(s) ds
lL
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[6. s2 ]

Of Ehe nine kernels shown in [6.50] only the three forms

resulting from the taking of first derivatives of G with respect to

xt, yt and z' are unique. Hence, for integration over the source co-

ordinates, only three function evaluations are required followed by a

mulriplication r¡ith the appropriate normaf componenË. This manner of

accumulating the system matrix ZrLmLSóØ reduces fÍll-time by at least

three times when compared to the more obvious bLocÍ¿-br4-bLoeh. scheme.

þi = - in,", inr(s) tti(.) - nr(s) Hi(s)Ì¿s- Js-

bz = - I o (rl {n (r) tli (s) - n (s) Hi (") }¿"
JS- z x x z

þa = - J *,=, {n*(s) H} Cs) - 'y Crl Hi(s) }¿s
,S

The kernels of [6.50] can be shown to behave as

-i kde J--- 'ik -ikd

-+L

And 4ä
[6.53]

in the lÍmit of vanishing d. The first term of [6.53] is the free-

space Greenfs function and thus has r-1 behaviour. The remaining term

is superposed on the first and is seen to cause a cosine modulation of

the imaginary rerm. Provided [6.53] is not overly oscillatory over the

interval of integraÈion, the numerical scheme outlined in Subsection

3.2.2 will be effective. As k + 0, the Poisson Greenrs funcEion 1s seen

to appear in [6.53].

Fina1ly, the incident field is assumed to be a plane wave (TElí)

with linear polarization in the x-direction and propagating along the

positive z-axis. Thus, the incident field resembles
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The calculated E- and H-plane current magnitudes for ka = 1.7

are shov¡n in Figure 6.13(a). The solid and dashed lines correspond to

plots of exact results published in King & i^lu (1959). This particular

set of data is obtained usíng the 38 node model involving 114 unknor,ns

and l6-poÍnt quadrature over each element. Inspection of Figure 6.13(a)

shows that the H-plane current magnÍtudes are in closer agreement with

Èhe exact, especially Ín the area away f rom tl're centers of the itlu¡nin-

aËed and shadow regions" The discrepancy in E-p1ane data may be due to

the higher-order currenË variation and Èhe inability of the interpolation

scheme to follow this behaviour. A 36-point quadrature produced the

plots of Figure 6.13(b), showing overall ímprovement. Execution time re-

quirements are given in Table 6.2.

TABLE 6.2: Timing RequÍrement for Scattering
Cal culat ion

All computations performed on the Universiry of }lanitoba
AMDAHL 470 V7 system.

The calculated values for surface area offer an Índication of

the fidelÍty in geometrical representation. For a unit sphere, the exact

value is 4r or L2"5664 which when compared to the lasÈ column in

Table 6.2, show less than .2'/. error in overall surface description.

l'lore importanË1y, the only difference between the two tabul-ated values is

Order of
quadrature

Execution
time*

CPU seconds

ì{at rix f i11
tÍme (Z)

Surface
dLËd

4

6

58

200

78

88

12 " 5422

12.5424
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in the fourth decimal place. This means that a cubic element is sufficient

to nodel one octant of a sphere. However, an increase in quadrature order

is seen Eo be necessary for beËter solution accuracy. Probably a fifth

order quadrature would have sufficed except that the element. has an inter-

nal node aE the centroÍd, thus running into numerical inaccuracies when

the center point of the quadrature grid approaches this node.

Analogous to the two-dirnensional example, Ëhe total tf-flut¿

magnitudes are computed along a vtave Ërajectory passing through the cen-

ter of the sphere. Figure 6.14 shows the expected nulling of interÍor

fields usíng 16-point quadrature. The sinusoíd Ín front of the sphere is

reminiscenË of a sta¡ding wave effect caused by an obstacle. Pl-ots of

normalized E- and H-plane bistatic cross-sections for a few values of

ka are íllustrated in Figure 6.15. These results are generated using

Èhe lower-order quadrature scheme and are comparable to those given in

King & hru (1959). This better agreement in scattering cross-section than

in current distribution, is a natural consequence of tlne e-rLetLgl method.

Convergence in this regard impliesthat energ\'-related parameters wil-I en-

joy better precision.

The upper frequency for this mode1 rnay be assumed to be at about

ka = 3.5. This means approximately 2 elements/À2 or a surface area to

node ratÍo of .I2^2. compared to a suggesËed collocation patch area

(Burke & Poggío, 1977) of "04x2, or a sampling rare of 251¡:', the BE)1

nodel shows a reduction by a factor of 3 in the number of unknorrrìs.

Again, denotinB ns, rp and rg Eo be the number of BEM elements, pulse-

expansion patches, and order of quadrature, respectively; the number of

operations (poínt-to-point accumulation) required for matrix fill is

ni nl for the former, and nl nl for Èhe latËer. Even though n_ iss g --P --c "P
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quíLe a bit larger than Ds, Èhe order of quadrature for the BEI'í model

goes uP as the fourEh power. Hence, quite a bit rnore CPU time is needed

by this particular model.

One obvious way Èo cuË down on the computation time, Ís to in-
1

troduce ; syrlrnetry, Èhus reducing treatment to one element and 10 nodes.ð'
This would effectively reduce the number of operations by a factor of 64.

Another saving could be realized by resolving i on S into t\^ro sur-

face components (especially for the sphere), thus requirÍng onl.v 20 un-

knor¡ns. To improve on source interpolation, the choice Ís between going

to a quarËic element, and using two l-ower-order elements in place of just

one.

The main drawback of the present inËerpolation scheme, not

really f elt ín trto-dinensions, is the requirement f or more unknor^"ns f or

increasing orders of interpolation. For up to a linear variati-on, this

scheme is definitely viabl-e since al-l- nodes are shared by at least tr¡o

or more elements. Succeeding orders need interior nodes whose data con-

tribute to Ehis one erement on1y. Hence, âDy algorithm that allows the

usage of Ínformatj-on from exterior nodes, especially for high-order j-n-

terpolation, and yetremains sufficientl-y flexible for general application,

would be advantageous for Ëhree-dimensional problems.
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VII. CONCLUSION

The scope of this thesis has been the solution of field

problems posed in boundary integral form. The introduction of the dig-

ítal computer a few decades ago has rekindled renewed interest in this

mode of solution and done much to spur development of efficÍent numer*

ical algorithms to fill the void separating this and the sophistÍcated

mathematics Ehat has been the norm of partial differential equatÍon (pde)

problern solution. In this regard, the BEII algorithm is proving to be a

creditable proponent" Of special sígnificance is the fact Ehar it orig-

inated from an extension of the finite element method (FEl'1) (originally

developed to address pde formulated problems), to Íntegral equation prob-

lems. When compared to the pde scheme of things, it offers certain in-

trinsic advantages. Principal among them is the reduction of problem

dimension by one since it seeks a boundary representation for any pre-

scribed problem region. One insnedÍate spin-off is reflected in the size

of the system matrix which is very much smaller (although dense) than that

of the pde counterpart for t.he same problem. Also, the amount of input

data is minimal- compared to the volume of data normally requÍred for a

pde analysis using the FEM or finite-difference techniques.

Another advantage is that boundary conditions are built into

the formulation thus making for algorithmic simplicity and compactness.

Because of the boundedness of Ëhe operator, the integral formulation has

a natural ability to model open region problems physically where field

effects vanish asymptotically in the proper manner. In contrast, all pde

solution schemes can handle only a finite region of space, thus calling

for artificía1 truncation of problem boundaries. An added bonus lies
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in the betËer accuracy normally observed, a trait due to Ëhe integration

process beirrg a 6mooÍ.luL,4g operation.

One frequently cited disadvantage is íts inability to cater for
inhomogeneous media. This is due in part to the decision to retain the

flexibility for treating arbítrarily shaped surfaces with general bound-

ary conditÍons; an ability nade possible only through the excfusive.use

of the free-space Greenîs function. The alternatÍve is to devise problem-

dependent Greenrs functions 
- 

a procedure that may someÈimes be more in-

volved than the actuaf problem irself. For problems that involve volu-

metrj"c sources and even anisotropy, the integral equatÍon formulation mav

still be the more víabl-e alternative. Howevere materiaf ínhomogeneous

and nonlinearities are beËter handled by the partial differential oper-

ator' Hence, for comPlete fíeld definition, an artifÍcial boundary may

be created to isolate a finite region wÍthin which a partial differential

solution is sought. Exterior to this boundary, an integral- equation me-

thod may be applícab1e with consequent tÍe-in at the common interface.

An example of thÍs hybrid solution scheme is the mutualJ-y constrained

pic.tate-dnane technj-que of McDonald & l^lexler (1980) where rhe exrerior

íntegral formulation is used to compute constraint equations Ehat serve

as the boundary conditions for Èhe interior partía1 differential region.

Another example is the unimomenf ne.thctd of llei (I974), where rhe inrerior

problem is solved using finíte-dif ferences involving a ,shc.toÍ.ín! meffuid,

or a Ricatti transformatÍon for Èhe generation of trial function pairs.

The exterior solution is then expanded by cylindrical or spherical har-

monics with unknown coefficients and matched al the interface, thus re-

quiring the solution of a system of 4N 1ínear equations. other tech-

niques that require the mechanical coupling of Índividual system matrices
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are detailed ín Kel1y 8,Í a,L (1979) and Shaw (1978). One conceivable area

for future l¡ork could be the automated algorithmic (and geometric) coup-

ling of the BÐ"1 to the FEM along Ehe lines of McDonald & wexler (1990).

An immediate improvement v¡ould be the savings incurred in del-eting the

Iayer of finite elements representing the region (homogeneous) of over-

1ap of the two solution schemes. This simplification is made possible by

the capability to address Greenrs function singularity at the common in-

terface, in a direct manner.

Another detriment to the choice of integral equations for

field solution is Ëhe kernel singularity. rnappropriate attempts to

handle the singular kernels (or toËally ignorÍng them), will lead to matrix

i11-conditioning especially for increasingly large matrices. In a well-

conditioned system, the solution is described by hyperplanes that inter-

sect at 90o (Wexler, 1969) so that the inËersection is relatível-v in*

sensítive to round-off error. As matrix conditÍoning deteriorates, the

included angles decrease to the point of instabilíty. The ability to

identify and numerically treat singularities in a manner prevíous11'out-

1íned, wilI ameliorate lhis traditional problem area.

One obvious characteristic of the integral equation formulation,

is the denseness of the matrix due to mutual interaclÍon of alt source

poinËs. For the moment, the BEM uses a triangurarizatÍon procedure

which although of order Nt, is stÍ11 rhree times more efficient than

inversion. At high frequencies r¡here problem dimensions may be many

wavelengths 1ong, or even where problem geometry may be very 1arge, such

a Practice rnay not be practical or even possible due to core limitations"

For the situation that the matrix size may be accomodated on the compu-

ter' the practice of suppressing altogether smallish off-diagonal terms
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to obEaÍn some ltÊasure of sparseness, Ís crude at best and needs to be

justified on an individual basis. A more elegant manner for obtaining

sparsity using subsectioning of problem regions, Ís discussed in l{exler

(1979). This scheme is derived from a method of tearing - d,Lal¿o¡ti),c,s -
where problem solutíon is accomplished by treating individual component

parts and their inreracrions in sequence (e.9., Happ eg74)). This

problem forms another basis for future work with Èhe BEM to handle elec-

tromagnetically large structures. An alternative strategy involves matrix

iteratÍve procedures that require only N2 operations. The disadvantage

l-íes in the total, re-analysis required for every new set of excitation

functions. ThÍs differs from the previous technique where part or alf of

Èhe syst.em natrix nay be inverted and stored in factored form for use ín

re-analysis. For extremely large problems, the matrix may be segi-,rented

and treated sequentially as in the prL()gtLe,S^ive nwneLíca{- metlrcd of

Shoamanesh & Shafai (1976).

rn summary, chapters rr and rrr have provided some safi-ent

features of the BEI'I that shows it to be a generalized numerical code

capable of addressing a wide range of engineering problems. Although

exemplary problems in subsequent chapters have been drawn from the elec-

trical discipline, its application is by no means restricted in this

sense. The successful treatments of static, interface, and time-harmonic

problems in Chapters IV, V and VI respectively, attest to its versatility.

In particular, the Èreatment of Greenrs function singularity is seen to

be adequate as is apparent from the low-order quadratures required. This

treatment is not ¿xac.t in the sense of faithfully duplicating function

behaviour except in the vÍcÍnity of the sÍngularity. Such a scheme may

not be possible given the arbiÈrariness in selection of e]ement sizes.
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Thereforeo the nain objective is to concentrate on the focalized

behaviour instead. From experience, resulLs have indj-cated that at times,

the order of quadrature for tlne 'set-d-e,L¿m¿nt may be adequate, bur overalf

accuracy is hindered by the low orders of quadrature chosen for surround-

ing elements.

From a purely economical point of view, the present BEI'I algor-

ithm may not be as viable as the pulse-expansion, point-matching tech-

nique (e-.9.0 NEC) for three-dimensional problems. This ís because the

number of independent variables increases as the order of interpolation,

thus pushing up processing EÍme per element. One irnmediate improvement

in this regard r¡oul-d be to redefine a nelr set of interpolation functions

for sources, where mid-side and internal nodal data may be stored at ver-

tex positíons in the form of derivative information (¿.g., spline inter-

polation (coons, r974)). rn essence, fewer variables would be required

to specify the same problem. The Lagrange interpolation scheme coufd

sti1l be retained for surface modelling, dependÍng on the precision of

the new Ínterpolation scheme. Another alternative would be to implement

a polynomial expansion, point-matching scheme with accompanying treatment

of Greenrs function singularities aÈ vertex nodes. The resulting number

of operatÍons would then be proporËiona1 to the square of the quadrature

order 
"] 

(rather than n1 as before), and would be in the same rangeC -C

as that required by NEC. However, it has the added capabÍlity for ac-

curate surface rePresenËation as we11. The main underlying advantage of

the BEM algoriEhrn is the use of Garerkinfs method, which ensures the

stabilÍÈy of the rnatrix. EspecÍally when workÍng Ín a less well-defined

areat the assurance that the matrix will be well-behaved means one less

source of aggravation in problem solution.
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