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Abstract 

The ernerging t echnologies of smart mat erials and structures have found increasing ap pli- 

cations in diverse branches of en,bineering such as civil, aerospace, mechanical, and man- 

ufacturing engineering. Piezoelectric materials are ideal candidates for functional (smart) 

materials, and have been a primary focus of attention in the realization of smart (adaptive) 

structure systems. The use of piezoelectric materials, however, carries a price, due to the 

fact that piezoelectric materials are very brittle and susceptible to fracture. The future de- 

velopment of adaptive structures strongly depends on better understanding of the fracture 

mechanism of piezoelectric materials. Therefore, this thesis presents a theoretical study 

of fracture mechanics of piezoelectric materials. Based on the Literature review, a selected 

set of basic problems related to linear fracture mechanics of plane piezoelectric media are 

examined. 

A comprehensive study of a plane piezoelectric medium with an arbitrarily oriented el- 

liptical void and a straight crack is presented first. A set of complete analytical solutions 

for electroelastic fields around the void and a t  the crack tip are derived for different types of 

electric boundary conditions. I t  is found that solutions based on the special cases of defect 

orientation, Le. defects pa rde l  or perpendicular to the poling direction, cannot be always 

considered as the critical case. A significant influence of crack orientation on the stress 

distribution a t  crack-tip is observed when a crack is under electrical loading or cornbined 

loading with Iarger electric to mechanical load ratio. The influence of an applied electric 

displacement normal to an impermeable crack is analogous to that of an applied electric 

field tangential to a conducting crack. It is s h o m  that the Hao and Shen type electric 

boundary conditions reduce to impermeable or permeable boundary conditions under prac- 

tical situations. A recently reported solution for exact boundary conditions is actually the 

previously b o w n  solution for a permeable crack. 

The branched cracks are then studied as the logical extension of straight cracks. Tt is 

found that branch closure happens for certain cases of branch length, branch angle and 



loading condition. The ranges of branch angles within which a branch is open are much 

larger for mechanical loading than for electnc loading. It is shown that the asymptotic 

electroelastic fields at a branch tip have complex dependence on branch length, branch 

angle, crack orientation and the type of loading. The influence of applied electric loading is 

found to be more complicated and significant than mechanical loading. Numerical results 

indicate that asyrnmetrically branched crack will not simultaneously grow under remote 

tension. 

The issue of fiacture criteria is examined next. A new stress-based criterion and two 

energy-based criteria are proposed to predict crack propagation in piezoelectrics. The salient 

features of proposed criteria are the consideration of fkacture toughness anisotropy and the 

removal of self-similar crack extension assurnption. It is shown that distinctly different 

propagation directions are predicted if isotropic fracture toughness is used. The criteria of 

modified hoop stress intensity factor and modified strain energy release rate suggest that, 

even in a symmetric case (loading and geometry), a crack may branch off from a straight 

pat h, which qualitatively agrees with available experimental findings. 

Findy, a general method of obtaining electroelastic singularities in piezoelectric wedges 

and composite piezoelectric wedges/junctions is successfdy developed as a precursor to 

the study of fracture of multi-material systems. It is found that electric boundary condi- 

tions have a significant effect on the order of singularities for piezoelectric wedges. The 

~ i n ~ l a r i t i e s  of piezoelectric half planes and semi-infinite cracks axe found to be invariant 

with respect to the direction of polarization. Bi-material systems of two piezoelectrics have 

&ronger singularities when compared to piezoelectric - conductor/composite systems. The 

presence of a crack or a debonded interface results in a higher order singularity for two and 

three material systems. 
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Chapter 1 

Introduction 

1.1 General 

Smart materials and structures have found increasing applications in diverse branches of 

engineering (e.9. civil, aerospace, mechanical, and manufacturing engineering). Actuators 

and sensors made of functional (smart) rnaterials are integrated with structural materials in 

srnart structures, and the resultant structures are able to adaptively respond to changes of 

extemal or interna1 parameters analogously to biological systems (Tani, et al, 1998). Popdar 

materials being used for sensors and actuators are piezoelectric materials, magnetostrictive 

materials, shape memory alloys, and optical fi bers. Among al1 t hese materials, piezoelectric 

materials are most widely used because of their fast electromechanical response and low 

power requirements (Jain and Sirkis, 1994). 

There are two basic phenomena which enable piezoelectric materials to qualify as func- 

tional (smart) materials (Figure 1.1). The first phenomenon is known as the direct piezo- 

electric effect which implies that the application of mechanical force or pressure to a piezo- 

electric material produces an electrical charge or voltage (Figures 1.lb and 1 .1~) .  On the 

other hand, the application of an electrical charge or voltage to the material induces strain 

or displacement, which is known as converse piezoelectric effect (Figures l . ld  - 1 - l f ) .  The 

direct and converse piezoelectric effects form the basis for employing piezoelectric materials 

as sensors and actuators, respectively. 

Tani et al (1998) and Sunar and Rao (1999) presented extensive reviews on piezoelectric 

materials and their broad applications in the emerging field of smart structures. For ex- 

ample, in aerospace applications, piezoelectric actuators have been used to manipulate the 
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Figure 1.1: Illustration of piezoelectric effect in a cylinder of PZT material (APC Interna- 
tional Ltd. : Pietoelectric Ceramics and Application Notes). 

blade twists of the helicopter rotors (Chen and Chopra, 1997). In civil infrastructure, the vi- 

bration control of a steel building using large piezoelectric actuators has been demonstrated 

(Kamada, et al, 1997). 

The major concern about using piezoelectric materials is their brittleness and suscep tibil- 

ity to fracture. These materials may experience mechanical failure or dielectric breakdown 

under complex electromechanicai loading. Cornrnercially available piezocerarnics such as 

lead zirconate titanate (PZT) are very brittle. The unavoidable presence of defects dur- 

ing manufacturing processes increases the likelihood of failure of piezoceramic elements. 

There is evidence that the service performance of piezoceramics is hampered by defects or 

anomalies such as voids and cracks. Park et al (1998) experimentally demonstrated that 

damage initiates and grows around interna1 void-like defects. Barsoum (1997) reported that 

fatigue degradation is caused by the presence of cracks. The structural integrity of piezoelec- 

tric ceramics is becoming increasingly important as their use is extended to new bontiers. 

Comprehensive studies about better understanding of fracture behavior and quantitative 

prediction of possible crack extension are imperative for the reliable application of piezo- 

electric materials in adaptive structures technology. Therefore, this thesis aims at  studying 

some basic fracture mechanics problems involving piezoelectric materials. 

A concise review of literature related to the fracture of piezoelectric ceramics is presented 

in the ensuing section in order to define the objectives and the scope of the present study. 



1.2 Literature review 

Voids and Straight cracks 

The study of electroelastic fields around defects in piezoelectric cerarnics has been quite ex- 

tensive in the past decade. By assuming an electrically impermeable boundary, Sosa (1990) 

studied stress concentration around an elliptical hole by extending Lekhnitskii7s complex 

potential functions (Lekhnitskii, 1963). Numerical results were presented to show the piezo- 

electric effect and the dependence of stress and electric fields on defect geometry and applied 

loading. Sosa and Khutoryansky (1996) ret-isited an identical problem by removing the as- 

sumption of an impermeable boundary. There are also several recent studies (e.g. Park 

and Carman, 1997; Zhang et al,  1998; Gao and Fan, 1999) dealing with eliïptic voids. A 

major restriction of these studies is the assumption that the defect axis is either parallel 

or perpendicular to the poling direction. In view of the great likelihood that defects are 

arbitrarily oriented, it is important to develop solutions for such general cases to gain more 

insight. 

A number of researchers examined the problem of impermeable cracks in plane piezo- 

electrics. Sosa (1992) obtained the crack solution by reducing the solution for an elliptical 

void. Sosa (1992) and Suo et a1 (1992) added an electric intensity factor to the well-known 

elastic stress intensity factors. Pak (1992) and Suo et a2 (1992) used the energy release rate 

to study crack problems. Park and Sun (1995a) ernployed Stroh formalism (Stroh, 1962) to 

derive electroelastic fields around a horizontal centre crack. Park and Sun (1995b) performed 

compact tension tests and reported that a positive field along the poling direction reduces 

the fracture load, and a negative one increases it. Using the Vickers indentation, Singh 

and Wang (1995) observed experimental results contrary to the findings of Park and Sun 

(1995b). They found that crack propagation is inhibited under a positive applied electric 

field, and is enhanced under a negative field. In a series of papers, Kumar and Singh (1996, 

1997a, 199713) employed the finite element method to study crack problems and compared 

their results with the experimental results of Singh and Wang (1995). No consensus has 

been reached on the role of an applied electric field. The condition that the crack plane is 

perpendicular to the poling direction is exclusively used in the above studies. 

Codicting views on electric boundary conditions for cracks containing air or vacuum 

are also observed in the literature. Polovinkina and Ulitko (1978) and Mikhailov and Parton 

(1990) used a permeable crack model, which assumes the continuity of electric potential and 

the normal component of electrical displacement across the crack faces. Suo e t  al (1992) 



argued that this condition is not realistic, as there is an electnc potential &op across the 

crack- Deeg (1980) proposed an impermeable crack model, Le-, the vanishing of normal 

electric displacement on the crack faces. Pak (1990) provided arguments for the validity 

of Deeg's model. Dunn (1994), Zhang and Tong (1996) and Zhang et al (1998) examined 

the crack face boundary conditions by studying a n  elliptical void. By taking the limits 

of a void, Zhang and Tong (1996) and Zhang et al (1998) discussed the effects of crack 

geomet l  and pennittivity They found that different limits of governing variables resdt  

in difTerent crack face conditions. Hao and Shen (1994) proposed a new dectric boundary 

condition by considering the electric perrneability of air or vacuum in a crack. Gao and Fan 

(1999) claimed that the solution for a plane crack under exact electric boundary conditions 

is obtained by reducing the solution for a permeable void. 

Apparently, coordinated experimental studies are needed to understand the real electric 

boundaz-y conditions on crack faces and to clan& the role of an applied electric field. I t  is 

noted that past theoretical studies exclusively assumed that a crack is perpendicular/pardel 

to the p o h g  direction or has impermeable crack faces. In addition, the eIectric boundary 

conditions proposed by Hao and Shen (1994) have not been closely examined. Also, it is 

questionable that the crack solution reported by Gao and Fan (1999) is exact. 

Fracture criteria 

Criteria of crack propagation are fundamentally important in the study of fracture me- 

chanics. For linear isotropic elastic matetials, fracture crit eria of maximum stress intensity 

factor, maximum hoop stress and maximum energy release rate resdt  in quite similar frac- 

ture predictions. However, these criteria do not predict similar crack propagation pat hs in 

anisotropic materials (Azhdari and Nemat-Nasser, 1998). The prediction of crack propaga- 

tion in piezoelectric materials is more complicated due to the coupling between mechanical 

and electrical fields. 

According to the co~ventional field intensity factors (Suo et al ,  W E ) ,  the mechanical and 

electrical fields are completely decoupled. Experimental studies indicate a dependence of 

piezoelectric fracture on applied electric field (Park and Sun, 1995b; Singh and Wang, 1995), 

implying that the fracture criterion of stress intensity factor is not feasible for piezoelectrics. 

Some efforts have been made to seek appropriate fracture criteria for impermeable cracks 

in piezoelectrics. The criterion of total energy release rate was employed by Pak (1992), 

whereas the criterion of mechanical (strain) energy release rate was proposed by Park and 

Sun (1995b). The assumption of self-similar crack propagation was used in the above studies. 



However, a crack may deviate from the straight path in piezoelectric solids due to mate- 

rial anisotropy- Using the double torsion testing technique, McHenry and Koepke (1983) 

reported that cracks in symmetric piezoceramic specimen deviate kom straight paths under 

symmetric electric loading. In an a t  temp t to explain experimental observations of crack 

branching (McHenry and Koepke, 1983), Kumar and Singh (1996) ernployed the criterion 

of the maximum hoop stress to examine the crack propagation. In another attempt, Kumar 

and Singh (1997a, 1997b) used the finite element method to calculate the angular distribu- 

tion of the energy release rate, and applied the criterion of maximum energy release rate to 

predict crack propagation. Their results of energy release rate distribution, however, are not 

accurate, and there is a discrepancy betsveen their finite elexnent solutions and the analytical 

solutions reported in the literature (Pak, 1992). Accurate solution for angdar distribution 

of energy release rates has not appeared in the literature. 

It is noted that the above studies only considered the case that the poling direction is 

perpendicular to the crack. Furthermore, the assumption of isotropic fracture toughness in 

piezoelectric materials was exclusively used. However, this assumption is not true. Due to 

t heir anisotropic material propert ies, the fracture toughness in piezoelectrics is expected to 

be orientation dependent, which is confirrned by experimental data (Calderon-Moreno, et 

al, 1997; Pisarenko, et al, 1985; Chen, et al, 1999). 

Branched cracks 

The phenornenon of crack branching is an important aspect of fracture mechanics (Miller and 

Stock, 1989; Kaihaloo and Anderson, 1998). Branched cracks are commonly encountered in 

the fracture of brittle materials. Crack branching may be caused bÿ anti-symmetric loading, 

anisotropic material properties, voids, impurities etc. Polarized ceramics have anisotropic 

mechanical and electric properties. McHenry and Koepke (1983) reported the phenomenon 

of crack branching in piezoelectric ceramics based on their experimental study. Lynch et al 

(1995) observed that an impermeable crack would branch and have a feathered appearance in 

a piezoceramic sample. Although crack branching in elastic materials has been extensivefy 

investigated (Obata, et al, 1989; Azhdari and Nemat-Nasser, 1996; etc), no studies have 

considered branched cracks in piezoelectric solids except for a recent study by Zhu and 

Yang (1999). 

Zhu and Yang (1999) theoretically examined a branched crack in a piezoelectric plane by 

ernploying the Stroh fonnalism combined with dislocation modeling. The electroelastic field 

a t  the branch tip was investigated in terms of field intensity factors under remote mechanical 



or electric loading. Their formulation was validated by checking possible closure of the 

main crack. Considering a crack with an inhitesimal branch, they discussed the possible 

directions of crack branching based on the assumption of isotropic fracture toughness. The 

numerical results showed that a crack tends to propagate dong the self-similar line under 

a tende  stress and a positive electric loading. However, their analysis is restricted to 

the special case of a crack normal to the poling direction. The possible closure of the 

crack branch was not examined, implying invalidity of some of their results. Moreover, the 

assurnption of isotropic fracture toughness is not true for piezoelectrics as stated above. 

Singularities in multi-material systerns 

An adaptive structure generally has several composite wedges and material junctions in- 

volving piezoelectric materials (Figure 1.2). In practical applications, piezoelectric sensors 

or actuators are enbedded in or bonded to a parent structure. In addition, commonly used 

piezoceramic stack actuators also involve some of the material junctions shown in Figure 1.2. 

A complete study of fracture of multi-material systems is beyond the scope of this study. 

However, the knowledge of singularities at mdti-material junctions/wedges is essential in 

the application of linear bacture rnechanics to such systems and composites. A precise un- 

derstanding of electroelastic singularities at  corners of composite piezoelectric wedges and 

junctions is valuable to the optiinum design and failure analysis of piezoceramic actuators 

and adaptive structures. Furthermore, the knowledge of the order of sin,o;ularity can be 

useful in the development of special crack-tip elements for analysis of fracture of bi-material 

actuator systems. 

In the case of piezoelectric media, both stress and electric fields at a sharp corner may 

be singular. This imphes that either local mechanical failure due to stress concentration or 

dielectric faihre due to electric field concentration could take place at a sharp corner. A 

review of literature reveals that a cornprehensive analytical and numerical study of electroe- 

lastic singularities in composite piezoelectric wedges has not yet been reported while there 

have been extensive studies on elastic wedge problems (e .g .  Williams 1952, 1956; Boby 

1968, 1970; Hein and Erdogan, 1971; Dempsey and Sinclair 1979; Delale, 1984; MantiE et al 

1997 and others) . The only studies that have addressed related problems are presented by 

Sosa and Pak (1990) and Kuo and Barnett (1991). These studies examined electroelastic 

singularities at the tip of planar cracks perpendicular to the direction of polarization in 

homogeneous piezoelectrics and bi-material systerns. 
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Figure 1.2: Composite wedges and junctions encountered in adaptive struct mes. 



Objectives and scope 

Based on the above literature review, it is clear that there are still a number of areas related 

to lhear fracture mechanics of piezoelectricity which require h t h e r  attention. Topics such 

as the effect of void orientation and sin,&arities in composite piezoelectric wedges have not 

been considered in the literature. Little knowledge exists on the dependence of fracture 

paxameters on crack orientation and electric boundary conditions. Past studies also show 

codicting observations on some key issues. For example, entirely distinct conclusions, 

supported by both theoretical and experimental studies, have been reported regarding the 

effect of applied electncal field on crack propagation. So far, no consensus has been reached 

on the electric boundary conditions on the crack faces. Previous studies on branched cracks 

and hacture criteria employed irrational assumptions or simplifications. Therefore, there 

exïsts a necessity to  examine several key issues related to kacture of piezoelectrics. 

A theoretical study of piezoelectric materials is presented in this thesis with four main 

objectives. First, a comprehensive study of an arbitrarily oriented elliptical void and a 

straight crack is carried out. Analytical solutions are developed for diEerent types of void 

and crack boundary conditions. The effects of defect orientation and electric boundary 

condition are closely examined. Secondly, the problem of an arbitrarily oriented branched 

crack is studied. The influence of the deviated branch is investigated. The condition for an 

open crack is taken into consideration. Thirdly, the issue of fracture criteria for piezoelectric 

materials is investigated. The commonly used assumption of self-sirnilar crack extension is 

relaxed, and the fracture toughness aoisotropy is taken into consideration. Finally, the 

electroelastic ~ i n ~ l a r i t i e s  a t  the coroer of composite piezoelectric wedges are examined. 

The singularity analysis may appear, a t  hrst glance, to be somewhat independent, but the 

result of this analysis is actuaiiy used in the analysis of branched crack problems. More 

important, the knowledge of singularities is essential when constructing analytical solutions 

for composite piezoelectric systems and in the development of special crack-tip elements for 

finite and boundary element methods. 



Chapter 2 

Arbitrarily Oriented Voids and 

Straight Cracks 

2.1 Infinite Plane with an Elliptical Void 

2.1.1 Basic equations 

Depending on the choice of variables, two sets of constitutive equations are frequently used 

in the literature for piezoelectrics. With stress {a) and electric displacement ( D }  as inde- 

pendent variables, the constitutive equations are 

where {E}, {E) denote strain and electric field vectors, respectively. [s],  (g] and [fi] are 

matrices denoting the elastic constants, piezoelectric constants and dielectric constants, 

respectively. The superscnpt T denotes transpose of a matrix. 

Alternatively, with strain and electric field as the independent variables, 

where [cl, [el and [E] are matrices representing the elastic constants, piezoelectric constants 

and dielectric constants, respectively. 

Note that eqns (2.1) and (2.2) are dependent, and the material constants in these two 

equations are related to each other. A majority of piezoelectric materials used in commercial 

applications are either hexagonally symmetric crystals or polarized ceramics. The properties 

of three piezocerarnics used in this thesis are given in the Appendix A. 
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Figure 2.1: Arbitrarily oriented elliptical void in a piezoelectric plane. 

Consider an  arbitrarily oriented elliptica1 void in a piezoceramic plane, as shown in 

Figure 2.1. The poling direction (2'-axis of the coordinate system x'z') makes angle ,B with 

one axis of the void (r-axis of the system xz) , and ,û is measured hem the z' axis in the 

counter-clockwise direction. Far field mechanical and electric loading are denoted by 
00 00 oz/Zt, ad,, and D i ,  DF (or EF, EF) ,  respectively. Alternatively, the loading can be 

expressed as 02, oz, o,Z and D p ,  D r  (or Ep, E,OO) under the xz system. In the special 

case of p = 0, the problem has been well studied (Sosa, 1991, etc.). 

The constitutive equations of piezoceramics polarized along the 2-axis are identical 

to piezocrystals with hexagonal syrnmetry about the same axis. Assuming plane stress 

(oy1,/, O*,/, o,/,/ = 0, Dy/ = O) or plane strain (q,ry/, eZry/, E ~ ~ ~ I  = 0, Eyr = 0) conditions and 



using the eqn (SA), the following constitutive equations can be obtained. 

where coefficients Gj, bv and &j a.re two-dimensional elastic, piezoelectric and dieIectric 

constants, respectively. These coefficients are functions of defect orientation angle P,  and 

are dilCferent for plane stress and plane strain cases. The invariable proper l  of potential 

energy is used to derive the above relations. 

Now extend Lekhnitskii's formalism (Lekhnitskii, 1963) for elastic solids to piezoelectric 

solids by introducing the following potential function representation- 

It can be  shown that the equilibrium and blaxwell's equations are autornatically sat- 

isfied. The above potential function representation can be considered as an extension of 

Lekhnitskii's representation for elastic solids. Using the strain and electric field compatibil- 

ity equations for piezoelectric solids, the following sixth-order differential equation can be 

derived. 

D1D2D3D4D5D5F = O (2-5) 

d d 
where D, = - - fi-, and pn(n = 1, ,6) are the roots of the characteristic equation 

d t  dx 

O ) ~ ( P )  + &4 = 0 (2-6) 

with 

The roots (p) of eqn (2.6) can be shown to be complex with three conjugate pairs, 

and are generally distinct. Note that eqn (2.6) breaks d o m  if no coupling exists between 



mechanical and electrical fields. Instead, a second degree equation l r ( p )  = O and a fourth 

degree equation 13(p) = O can be obtained for electrostatics and elasticity, respectively. For 

piezoelectric materials, functions I l  (p) , l z (p )  and l3 (p) generally have non-zero values. If 

p' are the roots of the characteristic equation corresponding to a defect oriented along the 

2-axis (Le. ,û = O ) ,  it can be s h o m  that the following relationship exists between p and p'. 

p' cos /3 - sin P 
= cosp + prsin, 

Some useful properties of roots of eqn (2.6) are irnplied from eqn (2.7),  e.g. two identical 

roots corresponding to a particular defect orientation will remain identical for any arbitrary 

orientation. 

Let pl ,  p2 and p3 be the roots with positive imaginary parts. The generd solutions for 

complex functions F ( x ,  z )  and Q(x ,  z )  in eqn (2.4) can be expressed as 

3 3 

F(x ,  2) = 2Re C F n ( h ) ;  Q (z, Z )  = 2 Re 6, 
aFn(&) 

n=l n=1 

where Re denotes the red part of a complex valued quantity, z, = x + fit.: and Sn = 

1 2 ( ~ n ) / z l ( ~ n ) -  

With the aid of the basic relations in linear piezoelectricity (Parton and Kudryavtsev, 

1988), the general solutions for plane piezoelectric problems excluding the corresponding 

rigid body tenns can be obtained as 

where complex function ( p n ( h )  = FA(%) with a prime (') denoting differentiation with 

respect to the corresponding argument, and the complex variables pn, qn, sn and tn are 



given below. 

The general solutions given by eqn (2-9)  are essential to the formulation of subsequent 

problems considered in this thesis. 

2.1.2 Impermeable void 

Assume traction kee and electricaily impermeable conditions on the boundary of the void 

in Figure 2.1. Therefore, 

6- SI -n 3 - = O; Dini = O (i, j = X, z) 

where n (n,, nZ) denote the oubard  unit normal of the void boundary. 

The task now is to determine the three unknown complex functions c p n ( k )  (n = 1 ,2 ,3 )  

in eqn (2.9) by considering the void boundary conditions @en by eqn (2.1 1) and remote 

uniform mechanical and electric loading conditions. 

Construct the complex function p,(n = 1 , 2 , 3 )  in the form of 

where c, are complex constants, and &(%) are holomorphic functions up to infinity with 
(4 complex constants ak . 

With the aid of functions given betow, which map the exterior of an ellipse in the z, 

plane into the exterior of an unit circle in the en plane (Lekhnitskii, 1963), 

a - i k b  a + i k b  1 
z,= en + - 

2 
(2.13) 

2  en 

the functions &(%) and the constants c, can be obtained by applying the relevant boundary 

conditions. 

Omitting 

&(rn) = 

details, the final results are 



where 

Al1 A12 A13 

A21 A22 A23 

A31 A32 A33 

The complex constants c, (n = 1,2,3) can be determined by solving the following 

equation system. 

Note that only five independent equations exist in the eqn (2.18): and one of the six un- 

knowns in c, is set to zero by excluding the corresponding rigid body terms. 

Complex functions c p n ( ~ ) ,  pl(%) are now completely determined as 

The substitution of eqns (2.19) and (2.20) into (2.9) yields the complete solutions for elec- 

troelastic fields around an arbitrarily oriented eiliptical void with the impermeable boundary. 

The closed f o m  solutions derived here are functions of defect orientation ( P ) ,  defect gcom- 

etry (a, b) , far-field loading and material properties (w , bij and di j ) .  The solut ion given by 

Sosa (Sosa, 1991) can be recovered by letting B = 0. 

2.1.3 Permeable void 

Removing the assumption of an impermeable void boundary, the exact solution for an 

arbitrarily orientecl elliptical void (Figure 2.1) is derived in this subsection. To this end, the 

medium inside the void m u t  be taken into consideration, and a two-domain problem needs 

to be solved. The homogeneous domain inside the void may be vacuum or air. The void is 

free of electric charges, and no free charges exist on the piezoelectric-void interface. 



The dielectric medium (air or vacuum) inside the void is governed by Mamvell's equa- 

tion, electrïc constitutive equations and electric field-potential relations. Let E, denote the 

dielectric permittivity of the medium inside the void, then, 

where a superscript u is used to denote quantities associated with the void. 

The general solutions for a dielectric medium governed by eqn (2.21) can be expressed 

as, 

where +(+) is a complex function with = x + iz, Im denotes the imaginary part of a 

complex-valued quantity. 

The following equations hold on the void boundary (i-e. piezoelectric-void interface). 

Note that the continuity requirement of the electric potential is equivalent to that of the 

tangential component of the electric field(Bottcher, 1973). 

The potential functions pn(zn) (n = 1,2,3) in eqn (2.9) and @(zv) in eqn (2.22) are 

determined such that the prescribed boundary conditions are satisfied. The derivation can 

be carried out by following Sosa and Khutoryansky (1996) who considered the special case 

of p = 0. 

Aiternatively, Chen and Lai (1997) showed that the electroelastic field inside a plane 

inhomogeneity is uniform under uniform far-field loading. Let uniform electric fields and 

electric displacements inside the void are denoted by E:, Er and D E ,  D I ,  respectively. Eqn 

(2.24) can be rewritten as 

The problem now reduces to determining the three unknown complex functions cpn(h) 

and two constants DI, DL (or E:, Ez). Construct pn in the form of eqn (2.12) and apply 

the mapping functions of eqn (2.13). The complex functions (o:(zn), complex constants 



G, and constants DI and D: can be obtained by applying far-field loading conditions and 

interface conditions given by eqns (2.23) and (2.25). 

Details of the derivation are omitted for brevity. The results for complex functions 

pn(zn) and p'(k) are given below. 

where Anj (n, j = L,2,3), QI, Q2 are dehned in eqns (2.15)-(2.17), and Q3 is 

The complex constants & (n = 1,2,3) are determined fiom the following equation 

system. 

As in the case of eqn (2.18), one of the six unknowns 

corresponding rigid body terms. 

(2.29) 

in & is set to zero by excluding the 

Electric displacements 02 and D: are determined fiom, 

where 

Substitution of eqns (2.26) and (2.27) into eqn (2.9) yields the complete solution for 

electroelastic fields outside a permeable void. With ~f and D: known, the electroelastic 

solution within the void is also completely known. 

For the special case of an impermeable void boundary, E, = O leads to the vanishing of 

Dr and Dg (or DI and ~ f )  based on eqn (2.22). Therefore, Q3 = Q3 and C, = o, according 

to eqns (2.28) and (2.29), and the solution for an impermeable void is recovered. 
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Figure 2.2: Arbitrarïly oriented crack in a piezoelectric plane. 

2.2 Impermeable crack 

Assume the crack faces in Figure 2.2 are electrically impermeable. Therefore, 

The case for an impermeable crack can be obtained by letting b of an impermeable 

void approach zero. Using eqns (2.17), (2.19) and (2.20), cornplex hinctions y,(%), (on(&) 

reduce to 

It is interesting to note that loading components an and Df are not present in above 

equations. Electroelastic fields in a cracked plane can be obtained by substituting eqns 

(2.32), (2.33) into eqn (2.9). Crack opening displacements (COD) are defined as the jump 

in the displacements dong the crack line ( r  = O).  It can be s h o m  that crack opening 

displacements Au, and AU, are 



To ensure that a crack remains open, the z-component of opening displacements should 

not be negative- Thus, 

In fracture mechanics applications, the electromechanical fields in the vicinity of the 

crack tip are of primary interest. Introduce a polar coorclinate system (r: 8) with the origin 

a t  the right crack tip, a s  s h o m  in Figure 2-2. Then, 

By assuming that r is small in cornparison with the half crack length a, the following 

explicit analytical solutions for crack tip asymp tot ic fields can be ob tained. 

3 3 

u,(r, 8 )  = 6 ~ e  C pnh, Jcos B  + sin O; IL,(T, 8) = 1 qnhn JCOS B  + pn sin O 
n=l 

3 

d(r ,  0) = & ~ e  snh, dcos 8 + pn sin 0 

1 3 1 
3 

ox,(r, O )  = -Re h n d  a,,(r, O )  = -Re h, 
Jz' n=l Jcos 0 + f i  sin 8'  6 n=l Jcos 0 + pn sin 6 

1 
a,, (r, 8) = --Re h n h  

n=l Jcos 8 + f i  sin é 

I 3 1 
3 

E,(r, O) = - - R e x  h s n  - E,(r, 8) = - - - ~ e  hntn 
J2T n=l Jcos 0 + pn sin 0 ' fi n=l JCOS 8 + sin 8 

where 

Eqn (2.37) implies that classical inverse square root type singularity exists for stresses 

and electfic displacements a t  the tip of an impermeable crack irrespective of the orientation 

angle 0. 



If the remote electric loading are electric fields instead of electric displacements, D,Oa i n  

crack solutions given by eqns (2.32)-(2.38) is replaced by, 
1 

Eqn (2.39) indicates that loading 0% and Er may have an effect on the crack solution. 

Along the self-sirnilar plane of the crack (6 = O), the normal and shear components af 

stresses and normal electric displacement are decoupled and 

The conventional intensity factors (Suo et al, 1992) defined a t  the crack tip are 

Crack tip hoop stress is another important parameter in fiacture mechanics. It can b e  

shown that, 

Assuming self-similar crack propagation, the energy release rate can be obtained by 

extending Irwin's concept of crack closure integral for elastic problems ( M n ,  1957). For 

piezoelectric crack problems, mechanical (strain) energy and electrical energy CO-exist d u e  

to the coupling between electric and elastic fields, and the sum of these h o  energies is the 

total energy. Suppose a crack extends by a small amount Sa, the total energy release rate by 

the crack closure integral can be expressed in the following form using the polar coordinate 

system shown in Fig. 2.2. 

where i = x, a for mode II and 1 respectively; x is defined along the crack front; ui(6a - 
x, +T) = ui(ba - x, n) - ui(Ga - x, -T) denotes displacement jump; ai, (2, O) denote stress 

components near the crack tip; D,(x, O) denotes the electric displacement component near  

the crack tip; +(Sa - x, &T) denotes electric potential jump across the crack. 

The first part of the integral in eqa (2.43) corresponds to the mechanical (strain) eaergy 

release rate Gb', and the second part to the electnc energy release rate GE. The to ta l  

energy release rate G = GM + GE. 
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In the case of far-field uniform stresses and electric displacements (02,  OZ, oz and 

Dr, Dr), it can be s h o w  that 

For the special case of poling direction perpendicular to the crack surface (13 = O), Pak 

(1992) obtained the expression of Gr for PZT-5H. Park and Sun (1995b) presented the 

expressions of G?' for PZT-4. It  can be shown that using the material properties @en in 

the Appendix A and setting ,O = 0, eqn (2-44) reduces to 

for PZT-4 and the total energy release rate 

for PZT-5H. Eqns (2.45) and (2.46) are identical (up to the numerical accuracy) to those 

given by Park and Sun (1995b) and Pak (1992), respectively. 

2.3 Conducting crack 

A conducting crack mode1 is suitable when a conducting species migrates on the crack 

surfaces. Assume the crack faces in Fi,pre 2.2 are conducting, which is 

The solution for a conducting crack can be obtained in a manner similar to the case of 

an impermeable crack. A void with the conducting boundary is solved first, and the crack 

solution can then be obtained by letting b approach zero in the void solution. It is found 



that the loading component EF has no influence on a conducting crack. Neglecting the 

detaik for brevity, the final solutions are surnmarized below. 

Crack opening displacements Au, and AuZ are 

where 

To ensure that cracks remain open, 

The conventional intensiw factors defined at  the crack tip are 

Using the polar coordinate system (r, O) in Fig. 2.2: crack tip fields are e4upressed as, 

1 3 

ID,, ~ z } ~  = ---Re C{6npn,  -&}T 
En 

n=l  COS 6 + pn sin 8 

1 
{Ex, E,)~ = --Re x { s n ,  tnlT 

6 n=l JCOS (3 + CLn sin O 

where 



The expression of crack tip hoop stress is found to be identical to eqn (2.42), except 

that should be replaced by &. Assuming self-similar crack propagation, the total energy 

release rate can be expressed in the following form. 

G = lim - ~ 6 a { ~ i z ( ~ , 0 ) u i ( 6 a  - x , * r )  +@(x,O)DZ(6a - 
~ C Z - O  2Sa 

where variables Sa etc are defined under eqn (2.43). 

In the case of far-field uniform stresses and electric displacements (a,l, oz7 ag and 

For the special case of poling direction perpendicular to  the crack surface (P = O), Zhang 

et al (1998) obtained the expression of G for PZT-4 (PZT-4a in the AppendLu A). It can be 

shown that using the material properties given in the Appendix A and setting ,û = 0, eqn 

(2.56) reduces to 

Eqn (2.57) is identical (up to the numerical accuracy) to the resuIt given by Zhang et al 

(1998) where the term eE,CO was neglected. 

2.4 Other crack boundary conditions 

For cracks containing air or vacuum in piezoelectrics, the permeable crack model (Polovink- 

ina and Ulitko, 1978) and the Hao & Shen type crack model (Hao and Shen, 1994) are also 

used in the literature besides the impermeable crack model. No agreement has been reached 

so far on the nature of the crack boundary conditions. The solutions for an impermeable 

crack and a conducting crack have been derived by reducing the solutions for an imperme- 

able void and a conducting void, respectively. The exact void solution has been obtained in 

subsection 2.2.3 by considering a permeable void boundary. A logical question is: can the 

exact crack solution be obtained by reducing the exact void solution? 



In this section, the application of reducing the permeable void solution to the crack 

solution is examined k t .  A tinified formulation for cracks containhg air or vacuum, which 

accounts for three existing types of crack boundary conditions, is then deveioped. 

I t  is a common practice to deduce the solution for a crack kom a void solution by setting 

b = O. Following this practice, setting b = O in eqns (2.26)-(2.30) for a permeable void yields 

Eqns (2.58), (2.59) based on the permeable void solution indicate that remote electric 

loading has no influence on the crack problems. For the special case of ,û = O, Gao and Fan 

(1999) made the same observation by setting b = O in their permeable void solution. They 

concluded that such a solution is exact with respect to electric boundary conditions and 

should be used when solving fracture problems in piezoelectric materials. 

The applicability of above reduction, however, should be examined. In the case of a 

void with impermeable or conducting boundary, such a reduction is reliable since the crack 

boundary conditions are consistent wit h the void boundary conditions. When dealing Fvit h 

a permeable void, such a reduction has to be carefully applied. When Ietting b = 0, the 

medium inside the void physically vanishes, and the original two-domain problem (void case) 

becomes an one-domain problem (crack case). Consequently, the follonring cont inui ties of 

electrical potential and normal electric displacement across the crack faces are automaticab 

established. 

where the superscripts + and - indicate the upper and lower crack surfaces, respectively. 

Cracks described by eqn (2.60) are referred to as permeable cracks in literature. This 

type of crack face electric conditions was initially proposed by Polovinkina and Ulitko (1978). 

In fact, eqn (2.60) implies that a crack has no irnpact on the electric field. Therefore, in 

contrary to Gao and Fan's (1999) conclusion, the crack solution given by eqns (2 -58) and 

(2.59) is not the solution for exact electric boundary conditions. It yields the already known 

solution for a permeable crack as shown in the sequel. 

Zhang and Tong (1996) presented an interesting discussion on reducing void solutions to 

crack solutions. They introduced two dimensionless parameters (functions of crack geometry 

and permittivity) to examine different limiting processes. 1 t was found that permeable 



cracks and impermeable cracks correspond to two different limiting cases. Such a scheme, 

however, is not utilized here. This section aims at closely examining three existing crack 

models including a permeable crack, an  impermeable crack and a Hao and Shen type crack. 

Deeg (1980), Pak (1992) and Suo et al (1992)assumed that crack faces are impermeable? 

2.e. 

Hao and Shen (1994) argued that neither eqns (2.60) nor (2.61) couid avoid being one- 

sided. By considering the electrical permeability of air or  vacuum in a crack, they proposed 

the follonring electnc conditions on crack faces. 

For the special case of E, = O, Le. a medium having zero permittivity, eqn (2.62) reduces 

to the conditions for an  impermeable crack. If potential jump ($+ - 4-) is zero, eqn (2.62) 

reduces to the case of a permeable crack. The influence of crack face conditions expressed 

by eqn (2.62) on fracture parameters is not clear from the analysis given by Hao and Shen 

(1994). Limited numerical results given by them shed little insight into the effects of eqn 

(2.62). 

A unified formulation that accounts for different electric boundary conditions [eqns(2.60) 

- (2.62)] is developed in the ensuing part of this section for an arbitrarily oriented crack 

containing zir or vacuum. This new solution allows the theoretical treatment of cracks in 

piezoelectrics by using a single analysis. The three types of electric boundary conditions 

commonly assume that the normal electric dispIacement is continuous across the crack faces. 

The electric field has been s h o m  uniform (special case of an elliptical void) under uniform 

loading (Chen and Lai, l997). Therefore, 

where DL is a constant. 

Following relations can be obtained by using eqns (2.9), (2.63) and vanishing tractions 

on crack faces. 



where x is dong the crack line (-a 5 x 5 a), and the complex functions cpn(n = 1,2,3) are 

in the form of eqn (2.12). 

Applying the mapping of eqn (2.13), cpn(h) identical to eqn (2.58) are obtained. Crack 

tip fields can be expressed by using the polar coordinate system (r, 8 )  in Fig. 2.2 as, 

1 3 

Cg227 oz27 6 t ~ } ~  =  ex{&, 1, h, 
JZ;: n=l JCOS B + p, sin 0 

l 
{D2> ~ z } ~  = - ~ e  C{6npnn> --6,}T fi n= 1 &os e + pn sin 8 

1 
3 

{&, ~ z } *  = --Re C{sn, tnlT h, 
J2;: TL=I Jcos B + sin B 

where 

Eqn (2.65) implies that classical inverse square root type ~ i n ~ l a r i t y  exists for stresses 

and electric displacements irrespective of the crack orientation angle and the type of electric 

boundary conditions. 

Crack opening displacements (COD) and the jump of electric potential along the crack 

line (-a 5 x 5 a) can be obtained as, 

To ensure that cracks remain open, 

The problem now reduces to determining the constant D:. An additional condition 

other than eqn (2.63) must be considered. Apparently, this condition cornes from eqns 



(2.60), (2.61) and (2.62) for permeable, impermeable and the Hao 96 Shen type cracks, 

respectively. 

For an impermeable crack, substituting D: = O into eqn (2.65) yields the complete 

electroelastic fields. 

For a permeable crack(eqn (2.60)), DI is obtained by vanïshing of the electric potential 

jump expressed by eqn (2.67). The result is identical to D: given by eqn (2.59). Therefore, 

the esact solution claimed by Gao and Fan (1999) is indeed the solution for a permeable 

crack. 

For a Hao & Shen type crack, the following solution for DI c m  be obtained by using 

eqns (2.62) and (2.67). 

Eqns (2.59) and (2.69) show that, in contrast to vanishing D: for impermeable cracks, 

penneable and the Hao and Shen type cracks generaily result in non-zero crack face electric 

displacements. Both far field mechanical and electric loading may contribute to D I .  Note 

that eqn (2.69) is a quadratic of DL (except e, = O), and two real or complex roots may exist. 

On the other hand, D: should be uniquely determined for a aven piezoelectric material and 

applied loading. This issue was not discussed by Hao and Shen (1994). 

Stress intensity factors Kr, KI[ and electric displacement intensity factor KD can be 

expressed as, 

Eqn (2.70) shows that KI and KrI are identical for the three types of electric boundary 

conditions, but KD is different, 

Crack tip hoop stress is found to have the same expression as eqn (2.42), except that 

hn should be replaced by &. Energy release rate on the crack line (13 = 0) can be ob- 

tained by using crack closure integral. In the case of far-field uniform stresses and electric 



ciisplacements (oz, oz, o,O and 05, D r ) ,  

2.5 Nurnerical results and discussion 

In this section, coupled stress and electric fields around an arbitrarily oriented elliptical void 

and at a crack tip are computed using the cIosed form solutions derived earlier. Plane strain 

conditions are used- The condition of crack closure (eqn (2.35), eqn (2.51) or eqn (2.68)) 

is checked during the computation. The effect of crack orientation and electric boundary 

condition on fracture parameters such as hoop stress and energy release rates is discussed. 

The role of an applied electric field is exarnined. PZT-4 and PZT-5H (material properties 

are given in Appendix A) are used in the numerical study. 

2.5.1 Electroelastic fields around a void 

Consider an elliptical void with electrically impermeable boundary and geometry ratio a / b  = 

2 (Figure 2.1). Figure 2.3 shows the electroeIastic field around the boundary of the void due 

to remote tension o?',. The results for two void orientations (,û = O0 and 30°) are shom.  

In the absence of any other known solutions for an arbitrarily oriented elliptical void, the 

analytical solutions obtained in this Chapter are compared with the boundary element based 

solutions (Xu and Rajapakse, 1998). Thirty-two quadratic boundary elements were used 

in the boundary element andysis. The boundary element solutions agree closely with the 

analytical solutions. lii the case of ,û = O", the hoop stresses show symmetry with respect 

to the x and t-axes, whereas the electric dispIacements are symmetric with respect to the 

x-axis and antisymmetric with respect to the z-axis. For 0 = 30°, the hoop stresses and 

electric displacements are no longer symmetric or antisymmetric about the void axes, and 

show a significant dependence on the orientation angle for all values of 8. Quite often 

it has been considered that the critical values of field variables occur when the defects are 



a). hoop stress 

Figure 2.3: Electroelastic field around the boundary of an arbitrarily oriented elliptical hole 
(impermeable boundary) in PZT-4 due to remote tension. 



either parallel or perpendicular to the direction of polarization (P = O0 or  90'). Results 

shown in Fig, 2.3 suggest that this may not be always the case. For example, the maximum 

value of norrnalized electric displacement corresponding to ,B = 30' is 9-2% higher than the 

corresponding value for P = 0°, and is 66.4% higher than the maximum value for P = 90". 

Taking advantage of obtained explicit solutions, the critical values of field variables 

for an arbitrarily oriented elliptical void under applied electromechanical loading can be 

readily searched using a simple computer program. To further examine the dependence 

of void orientation on the electroelastic fields, Fimgme 2.4 presents the maximum values of 

hoop stress (tensile) and hoop electric displacement around the boundary of an elliptical 

void with a /b  = 2 for different 0, under remote mechanical and electric loading. Results 

are shown only for the range of B E Po, 90°], due to symmetry of the field variables with 

respect to the orientation angle. A strong influence of void orientation on the maximum 

field variables is noted. In the case of remote tension in the 2'-direction, the largest value of 

hoop stress occurs a t  9 = O0 when 0 = 0°, and the maximum value of hoop stress decreases 

with increasing B. However, the largest value of electric displacement occurs a t  0 = 40°, 

which is 11.2% higher than the value corresponding to /? = OO. In the case of remote electric 

loading along the negative 2'-axis, the largest value of hoop stress occurs at  ,B = 33O, 

which is 26.6% higher than the value for B = OO. The largest values of maximum hoop 

stress under negative electric loading is slightly higher than the corresponding value under 

positive electric loading. In addition, the maximum hoop stresses remain nearly constant 

for 30° < 0 < 90° under positive electric loading. In contrast, the maximum values of hoop 

electric displacement are identical for both positive and negative electric loadings, and show 

dependence on 0 that is similar to  the trend of the hoop stresses under remote tension. The 

si&cance of void orientation angle is clearly confirmed by the results shown in Fig. 2.4. 

Now consider an elliptical void with permeable boundary. The medium within the 

void is vacuum with E~ = = 8.85 x 1 0 - ~ ~ C ~ / l V r n ~ .  Remote mechanical or electric 

loading are applied along tr-axis. The mâ,uimum stress concentration factors on the void 

boundary are computed for the case 0 = O" and various values of geometry ratio a/b. The 

results corresponding to the impermeable void boundary are also computed for the purpose 

of cornparison. I t  is found that permeable voids and impermeable voids have virtually 

identical results under pure mechanical loading. In the case of electrical loading, results of 

permeable voids and impermeable voids are quite close when a / b  is less than 100. However, 

the two results are significantly different when a/b is larger than 1000. Therefore, if the 

geometry ratio of a vacuum void is larger than 1000, the permeable void mode1 should be 
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Figure 2.4: Maximum values of hoop stress and electric displacement a t  the boundary of an 
elliptical void (impermeable boundary) in PZT-4. 



Figure 2.5: Variation of crack tip hoop stresses under remote tension in PZT-4 (impermeable 
crack). 

used for accurate simulation. The case of ,û # O" is aLso considered, and a similar conclusion 

is reached. Note that Dunn (1994) drew a similar conclusion for antiplane piezoelectric 

problems (p  = 0' or 90') using the equivalent inclusion method. 

2.5.2 Impermeable crack 

Assume the crack boundary in Figure 2.2 is electrically impermeable. Fi,wes 2.5 - 2.8 

present the distributions of crack tip hoop stress under applied mechanical or electrical 

loading. 

Consider the case of pure tensile stress oz applied along the z-axis first. Variation of 

normalized hoop stresses J2r/aae/~z (a is the half crack length, r is the radial distance 

f?om the crack tip) with angle 0 are shown in Figure 2.5. Under symmetric loading, the 

orientation angles ,û = a, p = -a and /3 = 180' - ac (a is arbitrary) yield identical stress 

fields. Therefore, only E [O0, 90°] need be considered in the numerical study. Five different 

orientation angles, ,B= 0°, 30°, 45O, 60°, 90° are considered in the figure. Hoop stress profiles 

at the crack tip show negligible dependence on orientation angle 0. CriticaI hoop stresses 

are always observed at 0 = O0 for aU values of 0. This implies that, under a pure tensile 

stress, based on maximum hoop stress criterion a crack propagates dong the self-similar 



Figure 2.6: Variation of crack tip hoop stresses under remote electric field in PZT-4 (im- 
permeable crack). 

plane regardless of its orientation. Hoop stress is symmetrical with respect to the crack face 

(8 = O) only in the case of p = OO. 

Figure 2.6 shows the variation of normalized hoop stresses J2r/aoBo/- under a pure 

positive electric fieid E,OO dong the z-axis. The requirement of crack opening displacement 

given by eqn (2.35) is found to be satisfied for al1 /? for this loading case. It is found that 

hoop stress distribution depends significantly on the crack orientation. O d y  the case of 

= 0' induces symmetrical hoop stresses with respect to the crack face. Compressive 

hoop stresses are observed for al1 B when ,û = 0°, implying no crack propagation based 

on the criterion of maximum hoop stress. However, for p = 90' hoop stresses are tensile 

for 8 E [180°, 360'1. Tensile crack tip stresses are also observed for al1 values of 0 when 

= 60°. Compressive hoop stresses are noted for ,û = 30' in the range 13 E [lSOO, 360°], and 

for /? = 45' in the range 8 E [180°, 253'1. The critical hoop stresses occur at  8 = 100.7°, 

90°, 281.201 258.2' for P = 30°, 45O, 60° and 90°, respectively. Note that none of these 

critical hoop stresses occur at  8 = 0°, implying that the crack does not extend along a 

straight line based on the maximum stress criterion. Among al1 critical values for different 

orientations, p = 45O has a maximum normalized value of 0.4595. Therefore, the most 

critical case does not correspond to a crack normal to polarization. If the applied electric 



field is negative , the stresses are given by Fig. 2.6 6 t h  an opposite sign. A crack with 

j3 = 60" induces compressive hoop stresses for all values of 9. The critical hoop stresses occur 

at 8 = 78.8"(281.2"), 257.8", 225.3" and 101.8" for ,û = O", 30°, 45" and 90°, respectively. 

Note that the critical hoop stresses for j3 = 45" is very srnall (only 0.0489). A maximum 

critical value of 0.3426 is obtained for 0 = 90". The crack opening displacement (COD) 

defined by eqn (2.35) indicates that crack closure occurs for a negative electric field for ail 

f l  except 0 = 90". Therefore, under pure electric loading, zbitrarily oriented impermeable 

cracks may propagate along different planes or close depending on the crack orientation and 

the direction of applied electric field. 

Figure 2.7 shows the variation of normalized hoop stress a t  the crack tip under combined 

tension and positive electric field. Three dif5erent electric to mechanical load ratios (R = 

E,OO/oZ Vrn/N), i-e. R= 0.2, 1.0, 5.0, are considered. For al1 values of ,û and R, eqn (2.35) 

is satisfied. Syrnmetric hoop stresses about the crack face are observed only in the case of 

p = 0" for all values of R- For srnail values of R (0.2), the hoop stress profile is sirnilar to 

the Fig. 2.5 and critical stresses are noted along the crack plane. The stress distribution bas 

negligible dependence on the orientation angle B. For a unit vaiue of load ratio (R = l.0), a 

strong Muence of crack orientation on the hoop stress distribution is observed. However, 

the effect on critical values of hoop stresses is still weak. The maximum normalized hoop 

stress is 1.0 for 0 = O", 30" and 90° at 8 = OO. Slightly higher values of hoop stresses are 

found for ,û = 45' and 60" a t  O # 0" (1.0004 at B = 1 7 . 3 O  for 0 = 45", 1.009 at 13 = 323.6" for 

f l  = 60"). Compressive hoop stresses are found over a rather Iimited range of 8 for @' = 0°, 

30" and 90'. For larger values of load ratio (R = 5.0 ), a very significant effect of crack 

orientation is observed sirnilar to that noted in Fig. 2.6. Maximum normalized hoop stress 

is equal to 1.0 a t  0 = 0" for ,O = O", and much larger critical normalized hoop stresses are 

found for other values of at 0 # O", i-e. 2.137 for ,û = 30°, 2.603 for = 45", 2.394 for 

0 = 60°, and 1.929 for f l  = 90'. Therefore, under combined tension and positive electric 

field, crack tip fields are controlled by the load ratio R and crack orientation. Once the 

electric field dominates (R >> i), the effect is similar to the case of a pure positive electric 

load. 

Consider the same problem as in Figure 2.7 but with a negative electric field. The 

variation of hoop stress a t  the crack tip is shown in Figure 2.8. Similar to Figure 2.7, 

syrnmetric hoop stresses about the crack face are observed only in the case of = 0". The 

effect of crack orientation on the hoop stress distribution and critical values of hoop stresses 

becomes stronger as the load ratio increases. Based on eqn (2.35), it is interesting to note 



Figure 2.7: Variation of crack tip hoop stresses for combined remote tension and positive 
electric field in PZT-4 (impermeable crack). 



Fiorne 2.8: Variation of crack tip hoop stresses for combined remote tension and negative 
electric fîeld in PZT-4 (impermeable crack). 



Table 2.1: Critical value of load ratio R for crack closure under combined tension and 
negative electric field for a n  impermeable crack. 

that the crack closure occurs for all three R values and five 0 angles in Fig. 2.8 except 

p = 90". A critical value of load ratio R corresponding to crack closure esists for different 

crack orientations. A crack remains open o d y  if load ratio R is less than the critical value. 

Table 2.1 shows the critical values of R obtained by using eqn (2.35) for PZT-4 and PZT-5H 

for combined tension and negative electric field. For both materials, the critical Ioad ratio 

increases as crack orientation angle P becomes larger. The critical load ratio for PZT-4 is 

generally larger than that for PZT-5H. 

The crack tip hoop stress distributioris shown in Fi,ves 2.7 and 2.8 include the results 

for the special case of P = O0 reported in the literature (Pak, 1992; Kurnar and Singh, 1996; 

etc.) With the aid of the finite element method, Kumar and Singh (1996) employed the 

maximum stress criterion to  predict the crack propagation in PZT-5H. Their predictions only 

touched the case of P = O". For the loading conditions of pure tension, pure positive electric 

field or combined tension and positive electric field, current crack propagation predictions 

are identical to those of Kumar and Singh (1996). In the case of combined tension and 

negative electric field, they checked the normal cornponent of crack opening displacements, 

and found that the crack is open for a very low load ratio (R = 0.021) while the crack closure 

occurs for a high load ratio (R = 7.692). This observation is in agreement with Table 2.1. 

In the case of pure negative field, however, they did not check the COD requirement, and 

concluded that a negative field enhances crack growth. Obviously, within the framework of 

linear piezoelectricity, if combined tension and negative electric field close a crack, removing 

tension surely results in crack closure. 
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PZT-SH 

2.5.3 Conducting crack 

Now consider the crack faces in Fig 2.2 are electrically conducting. The hoop stress profile 

at the tip of a conducting crack is examined in this subsection. Five different orientation 

angles, namely ,El= 0°, 30°, 45O, 60°, 90' are considered. 
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Figue 2.9: Variation of crack tip hoop stresses under remote electric field in PZT-4 (con- 
ducting crack). 

In the case of a remote tensile stress, hoop stress profiles are found to be identicai tm 

those of an impermeable crack (Fig. 2.5), showing Little dependence on crack orientatiom 

angle 0. Under a positive applied electric field ET, the crack opening displacement define& 

by eqn (2.51) indicates that crack closure occurs for al1 values of 0 except ,B = O. A crack 

remains open for al1 ,û when a negative electric field EF is applied at far field. The variatiom 

of normalized hoop stress J - U ~ ~ / [ ~ E F ~ ~  for this loading case is shown in Figure 2.9. IL 
is found that crack orientation angles have significant effect on the hoop stress distribution. 

A crack with = 90' induces compressive hoop stresses at the entire area of the crack tip, 

whereas 0 = 30" induces tensile hoop stresses a t  entire crack tip. The critical hoop stresses; 

occur at 6' = 1 0 1 . 2 O ,  280.8', 270.0° and 257.7' for 0 = 0°, 30°, 45" and 60°, respectively. A 

maximum critical value of 0.4552 is obtained for 0 = 45O. Therefore, based on the maximum 

hoop stress criterion, the self-similar crack extension is not expected except when P = 90'. 

The most critical case does not correspond to a crack normal/parallel to the poling direction, 

which is similar to the case of an impermeable crack. 

The case of combined loading is also examined. The crack tip hoop stress distribution 

is controlled by the crack orientation and electric to mechanical Ioad ratio (R = EF/ag 
V m / N ) .  Similar to the case of an impermeable crack, when electric field dominates (large 



Table 2.2: Critical value of load ratio R for crack closure under combined tension and 
positive electric field for a conducting crack. 

values of load ratio R), the effect is similar to the case of a pure electric field. A crack always 

remains open under combined tension and negative electric field EF. Under combined 

tension and positive electric field, a critical value of R corresponding to crack closure exists 

for different crack orientations. A conducting crack remains open only for load ratios that 

are less than the critical values. The critical values of R obtained by using eqn (2.51) for 

PZT-4 and PZT-5H are given in Table 2.2. In contrast to the case of an impermeable crack 

(Table 2.1), the critical load ratio decreases as crack orientation angle ,û becomes larger for 

both PZT-4 and PZT-5H. The critical values for PZT-5H are slightly larger than those for 

P ZT-4. 

2.5.4 Hao and Shen type crack 

Figures 2.10 - 2.13 present numerical results for a Hao and Shen type crack. To gain insight 

into three existing types of electric boundary conditions (Le., impermeable, permeable and 

Hao & Shen type) for cracks containing vacuum, the results for impermeable and permeable 

cracks are also s h o w  in these figures. 

The solution for 0 4  (normal electric displacement on crack faces) obtained fiom eqn 

(2.69) is discussed first. Eqn (2.69) generally has tnro real or complex roots for D!?, while 

only a real value is physically admissible. Numerical studies show that the discriminant 

of eqn (2.69) is positive for aU considered cases. Hence two distinct real roots exist. Let 

root 1 and root 2 denote the roots with positive and negative signs before the discriminant, 

respectively. Table 2.3 presents the two roots (ie. D:) for a crack perpendicular to the poling 

direction, under applied stress DE = l.OkIPa and different applied electric displacements 

(DL = 2.0 x 1 0 - ~ ~ / r n ~ ,  O and -2.0 x 10-~C/rn~) .  For PZT-4, the three cases of electric 

displacement loading result in identical values for root 1 and distinctly different values for 

root 2. It is unlikely that electric loading has no effect on the crack face electric field 

under the boundary condition given by eqn (2.62). This suggests that root 1 may not be 



Table 2.3: Normal electric displacement on crack faces based on eqn (2.69) (P = 0). 

admissible, The resdts for PZT-5H are similar to those of PZT-4. Another et-idence of 

admissibility of root 2 cornes from Hill's boundary element results (Hill, 1997). Under the 

same conditions as in Table 2.3, Hill performed iterations based on eqn (2.62) to cornpute 

DI for a penny shaped crack in PZT-4. The final converged values are unique and are closer 

to root 2 in Table 2.3. Table 2.4 presents the strain energy release rate (G") and the total 

energy release rate (G) for a Hao & Shen type crack in PZT-4 (P = O) under pure mechanical 

loading a,Z(DIPa). It is found that far field tension (including zero) results in non-positive 

G~' and negative G corresponding to root 1. Again, this is physically unrealistic. The case 

of p #  O" ir also examined, and the behavior of roots is similar to that of ,O = O. Therefore, 

it can be concluded that the admissible root of eqn (2.69) is the clne that has a negative 

sign before the discriminant. 

For an open crack, the z-component of crack opening displacements given by eqn (2.68) 

should not be negative. Obviously, for a given far field tensile stress, permeable cracks 

(eqn(2.60)) meet this condition regardless of the value of applied electric field. A Hao 

& Shen type crack is found to be open under an applied electric field or a tensile stress, 

irrespective of electric field direction and crack orientation. An impermeable crack remains 

open under a pure positive electric field, and crack closure occurs under a pure negative 

electric field except B = 90'. Under combined tension and negative electric field, critical 

values of load ratio exist for different crack orientations (Table 2.1). A crack rernains open 

only for load ratios that are less than the critical values. The condition of an open crack is 

satisfied by all cases considered in the ensuing computations. 

Figure 2.10 shows K D / 6  (C'lm2) under varying electnc Beld for different electric 

loading 
( 0; = 1.0 MPa) 

PZT-4 

DP (root 1) 

PZT-SH 

DP (mot 2)  D O  (mot 1) D O  (root 2)  



Table 2.4: Energy release rates based on eqn (2.69) for a crack in PZT-4 (0 = O, E,O"=O). 

boundary conditions and az = 0.6MPa. Three crack orientation angles, i-e. P = 0°, 

30" and 90° in PZT-4 are considered. As expected, KD is independent of eiectric loading 

for a penneable crack. For impermeable cracks, a relatively weak effect of 0 on KD is 

observed, and KD varies linearly with E,OO. When f l  = O0 or 30°, the Hao and Shen type 

cracks and permeable cracks have nearly identical KD, which are significantly different from 

KD of impenneable cracks. When ,û = 90°, impermeable cracks and the Hao and Shen type 

cracks have identical KD, whereas permeable cracks show vanishing KD. 
In the case of the Hao and Shen type cracks, KD corresponding to 0 = 90° is si-bnificantly 

different kom that for # 90'. This behavior is due to the guadratic term Im ~ n = ~  qnAns 

appearing in eqn (2.69). For PZT-4 when 0 = go0, this term is vanishingly smaU. For 

example, the values are 2.214 x 10-~ ,  1.918 x 1oA2, 3.845 x 10-~, 1.932 x 10-~ ,  -6.720 x 

10-l8 for P = 0°, 30°, 80°, 89.5' and 90' respectively. The linear term of eqn (2.69) is 

generally negative. Since the admissible mot is the one that has a negative sign before the 

discriminant, DL r O is obtained for ,O = 90°. As a result, the Hao and Shen type cracks 

based on eqn (2.62) have identical behavior as impermeable cracks. This observation is also 

confirmed by numerical results for energy release rates and hoop stresses given below. 

Figure 2.11 shows the strain energy release rate Gkf /a  (IV/m2) for PZT-4 under varying 

electric field and a,= = O.6M Pa. Five values of crack orientation angle, Le. = 0°, 30°, 

45O, 60' and 90°, are considered. A strong influence of crack orientation on G" is observed. 

For al1 three types of electnc boundary conditions, G" decreases as 0 becornes larger except 



Fi,o;ure 2.10: Variation of electric displacement intensity factor with electric field in PZT-4 
under tensile stress oz = 0.6DIPa for different crack models. 
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Figure 2.11: Variation of strain energy release rate with electric field in PZT-4 under tensile 
stress u,T = O.6MPa for different crack models. 



for an impermeable crack and Er 5 -10kVlm. When applied loading is pure mechanical 

(ET = O), G" is independent of electric boundary conditions for any p. As expected, 

applied electric field has no effect on G~ for a permeable crack. For an impermeable crack, 

GM increases with Er when 0 # 90° and E l  has no effect on GM when B = 90°. The 

dependence of G~ on E r  decreases as f l  increases. Both permeable cracks and the Hao 

and Shen type cracks have nearly identical G" values that are practically independent of 

Er. Strain energy release rate of a crack parallel to the poling direction is independent of 

Eh? and electric boundary conditions. 

Total energy release rate G for a permeable crack is identical to GM shown in Figure 

2.11. G/a for impermeable cracks and the Hao and Shen type cracks based on eqn (2.62) are 

presented in Fig. 2.12. For impermeable cracks, an applied electric field tends to decrease 

G with increasing p. For the Hao and Shen type cracks, an electric field has no effect on 

G when 0 # 90°. Again, the Hao and Shen type cracks and impermeable cracks show 

Wtually identical G values when 0 = 90°. Under pure mechanical loading (ET = O), G 

is independent of electric boundary conditions for any 0. Total energy release rate is not 

symrnetric with respect to E,OO for impermeable cracks when remote tension is non-zero. 

Based on the criterion of strain energy release rate, an increasing f l  generally increases 

the fracture load for al1 three types of electric bounday conditions. An applied electric field 

has no effect on fiacture of impermeable cracks parallel to the poling direction (0 = 90°), 

and permeable and the Hao and Shen type cracks of arbitrary orientations. When -0 + 90a: 

a positive electric field tends to enhance extension of an impermeable crack and a negative 

one tends to retard it. Applying the criterion of total energy release rate, the fracture load 

increases with increasing 0 regardless of electric boundary conditions, which is similar to 

the behaviour of G". For arbitrarily oriented impermeable cracks and the Hao and Shen 

type cracks parallel to the poling direction, both positive and negative electric fields tend to 

impede crack growth. For the Hao and Shen type cracks not parallel to the poling direction, 

an applied electric field h a .  no iduence on their fracture behavior. 

Hoop stress distribution at  a crack tip is also considered. Under pure tensile loading <: 
hoop stress profiles are found to be virtually independent of electric boundary conditions and 

crack orientation angle P. Numerical results are not s h o w  for brevity. Figure 2.13 shows the 

variation of normalized hoop stress J ~ > B e / ~ ~  (N/Vm) under a pure positive electric 

field E,OO in PZT-4. For a permeable crack, a pure electric field has no contribution to hoop 

stress, which is obvious from eqns (2.58) and (2.59). For an impermeable crack, hoop stress 

distribution depends significantly on ,B. Again, a Hao and Shen type crack has practically 



14 1 1 1 1 1 1 1 

........... 

2 -  ./ impermeable Y. .- - 
/ Y -  

- -. p=goO Hao & Shen type' 

Figure 2.12: Variation of total energy release rate with electric field in PZT-4 under tensile 
stress C T ~  = O.6MPa for different crack models. 
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Figure 2.13: Variation of crack tip hoop stresses in PZT-4 under applied positive electric 
field for different crack models. 



same a08 as a permeable crack for # 90°, and has identical 088 as an impermeable crack 

when = 90°. 

Following the criterion of maximum hoop stress, fracture initiation and crack branching 

are generally expected for an impermeable crack, with the exception of the case ,û = OO. For 

a Hao and Shen type crack, crack extension and branching are expected only for the case 

that the crack is paralle1 to the poling direction. The observation that impermeable cracks 

and the Hao and Shen type cracks may deviate from a straight line is consistent with the 

experimental phenomenon of crack skewing (McHenry and Koepke, 1983). 

Conclusions 

The extended Lekhnitskii's formalism is successfuily applied to study piezoelectric plane 

problems with an arbitrarily oriented ellipticd void and a straight crack. Various types of 

void and crack bound- conditions are considered. A set of complete analytical solutions 

for electroelastic fields around the void and at the crack tip are derived in a remarkably 

compact form. Crack closure is taken into consideration in the analysis. Expticit solutions 

for fi-acture parameters such as hoop stress and energy release rates are also obtained. The 

present results can be reduced to special cases of defect orientation (e-g. Sosa, 1991; Pak, 

1992 for defects parallel or perpendicular to the direction of polarization) reported in the 

literature. For arbitrarily oriented cracks containing air or vacuum, a un i f ied  formulation 

accounting for three existing types of electric boundary conditions, namely impermeable, 

permeable and the Hao and Shen type, is developed. 

Numerical results reveal that the defect orientation generally has a significant effect on 

the critical values of hoop stress and electric displacement. Solutions based on ,5 = O", 

90° cannot be always considered as the critical case. It  is found that electric boundary 

conditions practically have no effect on hoop stress profile under pure mechanical loading. 

In the case of an impermeable crack or a conducting- crack under electric loading or corn- 

bined mechanical and electric loading with large values of electric mechanical load ratio, 

a substantial dependence of the crack tip hoop stress on crack orientations is noted. The 

influence of D r  on an impermeable crack is analogous to that of E r  on a conducting crack. 

Applied electric field has no impact on permeable cracks. The fracture behavior of Hao 

and Shen type cracks w-ith ,B # 90° is practically independent of applied electric loading. 

However, for cracks parallel to the poling direction, the Hao &. Shen type cracks behave as 



impermeable cracks. Energy release rates generally decrease with increasing P. Impenne- 

able, permeable and Hao & Shen type cracks have virtually identical energy release rates 

under pure mechanical loading . 

A Iogical extension of thîs chapter is to examine branched cracks in piezoelectric solids, 

whïch is dealt with in the next chapter. 



Chapter 3 

Branched Cracks 

3.1 Dislocation modeling 

In this Chapter, the method of continuously distributed dislocations (Eshelby? et al,  1953; 

Gross, 1982; Zhang and Gross, 1994; Schmidt and Gross, 1997; Seeling and Gross, 1997) is 

extended to piezoelectrics. The extended method is then applied to derive the solution for 

an isolated main crack (Figure 3.1~).  The result in this section is essentiai to the formulation 

of the branched crack problems considered in the ensuing sections. 

Consider an infinite piezoelectric plane polarized in the 2'-direction of the x'z' system, 

as shown in Fiove 3. Id. The poling direction makes angle P with the z-axis of the xz system. 

Assume that a single edge dislocation is located at the point zo(xo, zo). The corresponding 

potentiais cp,(&) can be expressed as (Nemat-Nasser and Hori, 1993), 

where A, are complex constants, 2: = xo + h z o ,  and pn are defined under eqn (2.6). 

Around a loop surrounding the point zO, the stresses and electric displacements are self- 

equilibrated (i-e. zero resultant forces Fz, F, and electricai charge Q), and the displacements 

and electric potential jump are denoted by the extended Bugers vector B = (Bi, Ba: B3)-  

The complex constants A, are determined by the following conditions. 

Using the general solutions for plane piezoelectrics given by eqn (2.9), and eqns (3.1) 
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Figure 3.1: Crack configuration. 



and (3.2), it can be s h o m  that, 

where complex constants hi (n, i = 1,2,3) defined in Appendix B are functions of material 

properties and crack orientation angle. 

The normal and shear stresses, and normal electnc displacement a t  (x, a) due to an edge 

dislocation ai; (xo, zO) can be expressed as, 

The isolated main crack in Figure 3.Ic is now considered. Far field mechanical and 

electrical loading are denoted by a,2, oz, DE and Dr, DF (or Er, ET). Uskg an 

impermeable crack model, the boundary conditions on the main crack faces are: 

The condition for an open crack is, 

Consider the simulation of the main crack by a continuous distributed dislocation field. 

The electroelastic field created by the distributed dislocations and the far field loading shodd 

satise the main crack face boundary conditions of eqn (3.5). Let bi (x) (i = 1,2,3)  denote 

the densities of distributed dislocations along the main crack line. Integration of eqn (3-4) 

along the main crack line and consideration of boundary conditions given by the eqn (3.5) 

result in, 

The solution of eqn (3.7) is, 



where coefficients qij (i, j = 1 ,2 ,3 )  given in Appendix B are functions of material properties 

and crack orientation angle. 

The potential functions F n ( h )  corresponding to an isolated main crack can be de- 

tennined by substituting eqn (3.8) in eqn (3.3) and integrating dong the crack length 

( - a  5 x 5 a ) .  Fn are obtained as, 

where t jn = i/2(kniqij + h 2 q 2 j  + k n ~ q 3 ~ ) ,  ( j ,  n = 1 , 2 , 3 ) .  

With the potential functions known, the electroelastic fields associated with a main crack 

can be readily obtained by using the general solution of eqn (2.9) and adding the far fields. 

The crack opening clisplacements (COD) across the main crack faces can be determined 

For an open crack, 

Using the polar coordinate system (r, w )  defined a t  the right crack tip (Figure 3 . l c ) ,  the 

electroelastic asymptotic fields near the crack tip can be obtained. Crack tip hoop stress, 

shear stress and hoop electric displacement can be expressed as, 

-1 
Du (T, W )  = -Re C Hn6, (COS w + f i  sin w ) V 2  Jz;; n=l 

2 
where H, = -- 

fi ( t l n K I  + t 2 n f i I  + t 3 n K ~ ) ,  and KI,  f i I  and Ko are conventional field 

intensity factors given by eqn (2.41). 

It is noted that the solution for an impermeable crack has been obtained in Chapter 

2 by the approach of coilapsing an arbitrarily oriented ellipsoidal void to a crack. It is 

worth mentioning that the solution obtained in this section and the solution in Chapter 2 



generate identical results according to numerical experiments, although it seems tedious to 

show analytically that the two solutions agree due to the complexity of expressions. 

The conventional K (Kr, Ku, KD) of eqn (2.41) based on crack tip self-similar extension 

shows no electromechanical coupling. On the other hand, Azhdari and Nemat-Nasser (1996) 

used a set of generalized intensity factors based on crack tip hoop and shear stresses for 

anisotropic elastic solids. For piezoelectric crack problems, similar generalized intensity 

factors (hoop stress intensity factor K,,, shear stress intensity factor Krw and hoop electric 

displacement intensity factor Kou) can be defined as 

where a,,, a,, and Du are given in eqn (3.12). 

3.2 Branched crack 

Assuming that the main crack remains open under far-field loading, i-e. eqn (3.6) is satisfied, 

the problem of a branched crack shown in Figure 3.la is formulated in this section. The 

condition for an open branch is verified numerically. 

Referring to Figure 3.la, the branched crack mode1 consists of an arbitrarily oriented 

main crack and a branch initiating £iom the main crack tip at  an angle W .  A Cartesian 

coordinate system (cl 7) and a polar coordinate system ( r ,  v) are defined a t  the tip of the 

crack branch. 

Certain relationship between field quantities corresponding to two different coordinate 

systems can be derived. Such relations are convenient when dealing with coordinate trans- 

formations. For example, referring to Fi,gu.re 3.la, f i ,  bn and cpn in the xz system are 

related to fi,, and @& in the Eq system in the foIIoning manner. 

p, COS w - sin w - 
j&= 1 -I 2 r 

; 6, = 6,; y, = (cos w + pn sin w )  cp, (3.14) 
COSU + pn ~in(2, cos w + pn sin w 

Assuming traction free and electrically impermeable, the boundary conditions of the 

branched crack are: 

oZz = O; arr = O; DZ = 0; on the main crack (3.15) 

0.1 = O; q l = O ;  % = O ;  on the branch (3.16) 

The conditions for an open branched crack are given by 

Auz = a: - u; 2 O (main crack) 

Au, = u; - - 3 O (branch) % 



Figure 3.2: Superposition scheme for a branched crack. 

Employing the dislocation approach described previously for a main crack, the branch 

in Figure 3.2a is also simulated by an unknown distributed dislocation field as shown in 

Figure 3.2b. The main crack face boundary conditions (ie. eqn (3.15)) are violated due to 

the introduction of the dislocation field along the branch line. To satisS. the main crack 

boundary conditions, an additional distributed dislocation wall is built along the main crack 

Iine (Fig. 3-26). Accordingly, the problem shown in Figure 3.2b is decomposed into three 

problems as shown in Figures 3.2c, 3.2d and 3.2e. The problem shown in Figure 3 . 2 ~  

(unbranched crack) was solved in the preceding section. Problems shown in Fiogres 3.2d 

and 3.2e are solved in this section. 

The superposition of problems shown in Figures 3-26 and 3.2e should satisfy the main 



crack boundary conditions. By enforcing this requirement, the densities of distributed dis- 

location field along the main crack line (Figure 3.2d) c m  be expressed in terms of those on 

the branch Line (Figure 3.2e). Consequently, the electroelastic fields for problems s h o w  in 

Figures 3.2d and 3.2e can be expressed in t ems  of dislocation densities on the branch. The 

requirement tbat the resultant electroelastic fields of Figures 3.2c, 3.2d and 3.2e should sat- 

isfy eqn (3.16) yields a system of equations for unknown dislocation densities on the branch 

Une. 

First, consider a plane problem identical to Figure 3.2d, with an edge dislocation B = 

(Bi, B2> B3) located at  an arbitrary point zo(xo, za). Cet the sum of electroelastic fields due 

to the edge dislocation B and distributed clislocations b,'(i = 1,2,3) along main crack line 

satisfy the boundary conditions given by eqn (3.15). Then, using the notation of eqn (3.4), 

Subsequent manipulation of eqn (3.19) using eqn (3.4) leads to: 

The solution of eqn (3.20) can be expressed as, 

where cornplex-valued constants Jij (i, j = 1,2,3) are defined in Appendix B. 

Therefore, when an edge dislocation B exists at an arbitrary point ( x o ,  zo) in an idni te  

plane, the boundary conditions of eqn (3.15) along the main crack line can be satisfied by 

introducing a dislocation field bf (x) along the main crack line. 

Replacing Bi in eqn (3.3) by bz in eqn (3.21), and integrating along the main crack line 

yield the following potential functions corresponding to distributed dislocation field b,'(x). 



where Nkin (k, Z, n = 1,2,3) defined below are functions of material properties, main crack 

orientation, branch angle, and 2:. 

and 

Now conside r the problems in Figures 3.2d and 3.2e. Treat the dislocation field along the 

branch line in Figure 3.2e as a continuous distribution of infinitesimal edge dislocations, Le. 
- 
bk ds = Bk. T h e  corresponding potential functions in Figure 3.2d is obtained by integrating 

eqn (3.22) as, 

Note rio in Nkk in eqn (3.25) are on the branch Line, Le- z: = a t s(cosw + pisinu) 

(O < s < L). 
The following potential functions corresponding to the problem s h o w  in Figure 3.2e are 

obtained by integrating eqn (3.3). 

where z: is defined under eqn (3.25). 

With the a i d  of eqns (2.9) and (3.14), the stress ocn, oVT and electric displacernent D, 
with respect to tthe Jq system can be expressed as, 

where R, = pncosw -sin# and T, = cosw +f i s inu .  

Applying t h e  requirement that the superposition of electroelastic fields in Figures 3 . 2 ~ ~  

3.2d and 3.2e sh.ould satisfy the boundary conditions given by eqn (3.16) along the branch 

line leads to the foliowing system of coupled singular integral equations. 



where m = 1, 2, 3, and MM, Ld and f, are 

L 
{LIB(P, s), L ~ L ( P ,  s ) ,  ~ 3 k ( ~ ,  s ) } ~  = ~ { L T , ,  -T:, 6 z ~ n } ~ k z i ~ k i n ( z i ,  zi") (3-30) 

n=1 
3 

T I  ao T 
= 2 ~ e C { % ~ n 7 - ~ : , 6 n ~ n }  ~ n ( + )  - (3.31) 

n=l 

and FA(+) are obtained fÎom eqn (3.9); DG, DG, and D q  are far field loading in the 57 

system that can be expressed in t e m s  of oz, oz and D r ,  D r ,  and z, = a+p(cosw + 
k s i n w ) ,  (O < p < L). 

The dislocation density hinctions &(s) are singular at the branch knee and the branch 

tip. Extract the singuiadq from the dislocation densities &(s) by introducing Bi(s) as 

After extracting the singularity form eqn (3.28), the t hree unknom dislocation densities 

Bi (i = 1,2,3) can be determined by solving the equation system numerically. A quadrature 

method proposed by Gerasoulis (Gerasoulis, 1982) is used in the present study to solve the 

equation system. It dl be shown in Chapter 5 that the electroelastic sin,darity at the 

knee of the branch is less than 1/2. Therefore the solution of eqn (3.28) is rendered unique 

(Miller and Stock, 1989). 

Once the dislocation densities are known, the electroelastic fields and fracture parameters 

such as the branch tip intensity factors K;, KII and K& can be computed as 

Making use of eqn (3.14), the generalized intensity factors (hoop stress intensity factor 

KU,, shear stress intensity factor K,bv and electric displacement intensity factor K;,), which 

are counterparts of eqn (3.13) for a straight crack, can also be obtained. 

The branch opening displacements and jump in the electric potential can be expressed 

in terms of the dislocation densities bi as (Nemat-Nasser and Hori, 1993) 

For an open branch, it is required that 



3.3 Bifurcated crack 

The problem of a bifurcated crack is considered in this section. The analytical mode1 

consists of a main crack with length 2a along the x-axis and two branches initiating from 

the main crack right tip, as shown in Fio-e 3.lb. Branches 1 and 2 are located along the 

wl-direction with Iength Li and w2-direction with length L2, respectively, and wl ,  wn are 

measured counter-clockwise with respect to the x-axis. Cartesian coordinate systems (Ji, 

ql) is defined at  the branch 1 tip, and system (c2, q2) at the branch 2 tip. 

Assume traction free and electrically impermeable on crack faces. The boundary condi- 

tions of the bifurcated crack are: 

cZz = O; a z z = O ;  Dz=O; 

CEL~,L = 0; qiVi = O; DVL = O; 

cJ&m = 0;  a,, = O; DVa = 0; 

The conditions for an open crack are given by 

AU, = u: - 2 O (main crack) 

A% - - -k - uG. 2 O (branch 1); Au, = u& 

on the main crack (3.36) 

on the branch 1 (3.37) 

on the branch 2 (3 -38) 

u, 3 O (branch 2) (3.39) 

Applying the technique of dislocation modeling, the two branches in Fiove 3.3a is 

simulated by two unknown distributed dislocation fields in Figure 3.3b. Similar to the case 

of a branched crack (Fibwe 3.2), the bifurcated crack is decomposed into four problems 

shown in Figure 3 . 3 ~ ~  3.3d1 3.3e and 3.3f. The solution for the main crack problem in Figure 

3 . 3 ~  is known. 

The problem in Figure 3.3d is now considered. The dislocation field b,' (x) along the main 

crack line is constructed such that the resultant electroelastic fields of Figures 3.3d1 3.3e 

and 3.3f should satise the boundary condition of eqn (3.36) on the main crack faces. The 

results given by eqns (3.21) and (3.22) are recalled here. Treat the dislocation field along 

each branch line in Fiowes 3.3e and 3.3f as a continuous distribution of infinitesimal edge 

dislocations. Integrating eqn (3.22) along the branch I and branch 2 lines, the potential 

functions in Figure 3.3d are obtained as, 

where the first part corresponds to branch 1, and the second part corresponds to branch 2; 
O z k  (i = 1,2,3) are on the branch 1 line, and zyi = a + s(cos w i  + f i  sin wl) (O < s < Li) ; z2i 

(i = 1,2,3) are on the branch 2 line, and z!$ = a + s(cos w2 + f i  sin w2)  (O < s < L2). 



Figure 3.3: Superposition scheme for a bifurcated crack. 



By integrating eqn (3.3), the potential functions corresponding to the problems shom 

in Figures 3.3e and 3.3f are obtained as 

where zyn and zgn (n = 1,2,3) are defined under eqn (3.40). 

Define Ri, = f i  cos wl - sin w i ,  Tl,  = cos wl + ,un sin wl, and R2, = pn cos w2 - sin w2, 

T2, = COS w2 + f i  sin w2, it can be shown that, 

Applying the requirement that the superposition of electroelastic fields in Figures 3 . 3 ~ ~  

3.3d7 3.3e and 3.3f should satidy the boundary conditions given by eqns (3.37) and (3.38) 

along the two branches leads to the following system of coupled singular integral equations. 



In eqns (3.44) and (3.45), FA are obtained from eqn (3.9); O&, ozvl and D,ï are 

far field loadhg in the system, O&, ogI12 and D g  are fa r  field loading in the c2q2 

system; and t ln  = a +  COS q +  sin w i ) ,  (O < p l  < L), q, = a +  COS w2 + sin wz) ,  

(0 < ~ 2  <LI. 
Extract ing the singularity from the dislocation densities by using 

The six non-singular unknown functions Bi and & (i = 1 , 2 , 3 )  can then be determined by 

solving the equation system of eqns (3 .44)  and (3 .45 )  nuniericaLly. The solving scheme is 

similar to the case of the branched crack discussed in the previous section. 

The intensity factors K ~ L ,  K$ and K: at  the branch 1 tip, and K ; ~ ,  KI; and K; at 

the branch 2 tip are 



The branch opening displacements are 

Aul,(,) = - bl (b) del; A ( )  = - 6 )  d l  for branch 1 

For open branch 1, 

and for open branch 2, 

AT+, (s) = Au2= (s) COS w:, - Au2=(s) sin w2 2 O (O 5 s 5 L2) 

3.4 Numerical result s and discussion 

In this section, a selected set of problems are studied to understand the basic fracture 

characteristics of branched cracks in piezoelectrics. Plane strain conditions are assumed. 

The condition for an open main crack is satisfied in al1 examples, and the condition for 

an open branch is checked during computations. PZT-4 (material properties are given in 

Appendix A) is used in the numerical study. 

3.4.1 A branched crack 

The accuracy of present resuits for a branched crack in piezoelectrics is hrst verified by 

comparing with the solutions for a branched crack in an ideal elastic material, Obata et al 

(1 989) examined infinitesimally small branched cracks in plane anisotropic elastic solids with 

following elastic constants: ai3 = a23 = O> a12 = -0.%all, a33 = 2.5all, and a-2 = all/c* 

(c* is constant). Consider a Gctitious piezoeIectric material with same aij  as above, identical 

dielectric constants as PZT-4, and negligible piezoelectric coefficients(bij 2: 10-12). Taking 

L/a = 10-~ and /3 = 0°, the normalized stress intensity factors K;/K, and K:[/K[ are 

shown in Figures 3.4a and 3.4b for various c* values under remote uniforrn tension, where 

Kr denotes the mode 1 stress intensity factor for a straight crack. Close agreement is noted 

c o n h i n g  the accuracy of the present solution scheme. 

The accuracy of present scheme is also conErmed by comparing with the numerical 

results for piezoelectrics with B = O reported by Zhu and Yang (1999). Consider a crack 

with an infinitesimal branch length (L /a  = 10-~) in PZT-4. TaUle 3.1 compares the mode 

1 intensity factor K: /K~  and the electric displacement intensity factor K;/K[ at branch 



I 1 1 1 1 J 1 - c'=1 .O1 : present study 
+ c*=1.01: Obata et al (1 989) - - ce=2.0: present study 
* cG'=2.0: Obata et al (1 989) 

.-. c'=5.0: present study 
O ~ ' 5 . 0 :  Obata et a1 (1 989) 

.- . .  c*=10.0: present study 
Q c*=10.0: Obata et a1 (1 989) 

Figure 3.4: Cornparison of stress intensity factors .a t  the tip of a branched crack in an 
orthotropic elastic solid under remote tension. 



Table 3.1: Comparison of field intensity factors at branch tip in PZT-4 for the special case 
of a branched crack (P = O, L / a  = 10-~). 

I 1 Zhu & Yang (1999) 1 Present Study 1 Zhu & Yang (1999) / Present Study 

loading 
( ~ ~ - = I , D ~ )  -- 

tip computed fiom the present scheme with corresponding results given by Zhu and Yang 

(lggg), where Kr is the stress intençiw factor for a straight crack. A pure tensile loading 

and a combined tensile and positive electric displacement loading are considered. Very good 

agreement is observed in Table 3.1. 

Azhdari and Nemat-Nasser (1996) analyzed crack-brancking in an anisotropic elastic 

soiid by using a straight crack model. They compared the hoop stress intensity factor K,, 
and the shear stress intensity factor Kru at the straight crack tip with KI and K : ~  based on 

the branched crack model. It was found that, in the limiting case of a branched crack with 

an infinitesimal branch length, the difFerences between KS (Kww, Kru) and K~ (KI, K : ~ )  are 

less than 1.0% provided branch angles are between -8O and +8O. For piezoelectric solids, 

Kg (Kwu, I L ,  Ko,) and K~ (K:~ K:~~ KL) contain three intensity factors in each. Setting 

L/a  = 1od6, KS and K~ were compared for different and loading. It is found that under 

pure mechanical or electric loading, the corresponding intensity factors satisk the 1.0% 

w/k 
K ~ I K ,  

l 

@K,  IO-^ cm) 
I 



Table 3.2: Range of branch angles (deg) for an open branch in PZT-4. 

loading 

requirement between the two models for a remarkably wide range of w. For example, when 

0 = 0°, KS and K~ show less than 1.0% difference for -58O 5 w 5 58' and -36O 5 w 5 36O 

for pure tensile and normal electric displacernent loading, respectively. 

The electroelastic fields at a branch tip (Fiove 3.la) are illustrated in Figures 3.5- 

3.8 through intensity factors (K:, K : ~ ,  KI)) and hoop stress intensity factor K&,. These 

parameters reflect the disturbed electroelastic fields due to the presence of a branch. In 

view of practical applications, branch angles in the range [-120°, 120'1 are considered. 

It is important to check the condition for an open branch given by eqn (3.35). The ranges 

of branch angles within which a branch is open are given in Table 3.2 for three different crack 

orientations ( p  = 0°, 30°, -30') under remote mechanical and electric loading. Generally, 

the ranges are larger for mechanical loading than for electric loading. Under mechanical 

loading, a branch is in open mode for all smail branch lengths ( L / a  5 0.01) and Iwl < 120'. 

EIowever, the branch angle range for an open branch becomes smaller with increasing L/a. 

The length of a branch has negligible influence on branch closure under electric loading. 

The branch remains always open for L / a  5 0.5 and Iwl 5 60'. 

Figures 3.5 and 3.6 show the field intensity factors K:, K ; ~  and K; for 0 = O0 under 

remote tension a,T and positive electric displacement Dr, respectively. Four cases of 

branch lengths (L /a  = 0.001, 0.01, 0.1 and 0.5) are considered. The intensity factors in 

Figures 3.5 and 3.6 are normalized by KI and & given in eqn (2.41), respectively. For 
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Figure 3.5: Normalized stress/electric intensity factors at the tip of a branched crack in 
PZT-4 due to remote tension for crack orientation ,û = O and different branch length Lia.  



Figure 3.6: Normalized stress/electrïc intensity factors at the tip of a branched crack in 
PZT-4 due to positive electric displacement for crack orientation /3 = O and different branch 
length L/a.  



both mechanical and electric loading, KI and K; are symmetric with respect to the main 

crack line, whereas K : ~  is antisymmetric. Unlike the case of a straight crack. generally K;, 

K ; ~  and K; a.U have non-zero values. When w = 0" (Le. a branch along the main crack line), 

K ; ~  and K; (Figure 3.5) and K: and K ; ~  (Fi-gure 3.6) vanish codirming the decouphg 

of stress and electric fields at a straight crack tip (Suo et al, 1992). A weak iduence of 

branch length on intensity factors is observed for L/a  5 0.01. Additional results show that 

intensity factors are virtually independent of L/a for Lia  5 0.001. A similar conclusion was 

drawn by Zhu and Yang (1999) while examining K: for varying L/a. 

In the case of mechanical loading, ~ ; ( w  # 0') < K?(W = 0°) and K ~ ( W  f 0') < K;(W = 

O"), whicb mean a deviated branch plays a shielding effect on -Mode 1 stress and electric 

displacement intensity factors for the branch lengths considered in Figure 3.5 (compared 

to self-simila. crack e-utension). For positive values of w ,  a branch has an amplifying effect 

on the Mode II stress intensity factor, while a shielding effect is noted for negative W .  In 

the case of posii;ive electric loading (Figure 3.6), a shielding effect is also observed for the 

electric displacement intensity factor. How-ever the effect on K: and K ; ~  depends on both 

the branch length and branch angle. For example, shielding effects on KI are observed 

mhen L/a 5 0.01 for all w and for L/a = 0.1 when Iwl < 80°, whereas amplifying effects for 

L/a = 0.1 with fwf > 80' and L/a = 0.5. However, branch closure generally happens when 

/w( > 90". Compared to the case of mechanical loading, the dependence of intensity factors 

on L/a and w is more complex under electric loading. 

The case of a main crack not perpendicular to the poling direction (P # O*) is aiso con- 

sidered. As expected, the field intensity factors are no longer symmetric or anti-symmetric 

with respect to the main crack line. In the case of tensile loading, crack orientation has a 

weak influence on K; and K I [ ,  but quite strong influence on K i .  In contrast, crack orien- 

tation has a strong iduence on K; and K ; ~ ,  but a relatively weak influence on K; under 

remote electric displacement loading. Numerical results are not presented here for brevity. 

Setting L/a = 0.01, Figures 3.7 and 3.8 present the normalized hoop stress intensity 

factors ~k/(J?r';;aaz) and K ~ / ( @ E ? )  under remote tension and positive electric field, 

respectîvely. Five cases of branch angles (w = 0°, 30°, 45O, 60" and 90') and three 

values of main crack orientation angles (0 = 0°, 30" and -30") are considered. Based on 

Table 3.2, branch closure occurs for w = 90' and 0 = O0 or 30° under electric loading, The 

corresponding results are not shown in Figure 3.8. In the case of mechanical loading (Figure 

3.7), crack orientation shows weak effect on hoop stress intensity factor. Critical hoop stress 

intensity factors are found a t  u = O0 when w = 0" for al1 values of P, implying the shielding 



Figure 3.7: Variation of branch tip hoop stress intensity factors under remote tension for 
different branch angles and crack orientations (branch length L/a = 0.01). 



Figure 3.8: Variation of branch tip hoop stress intensity factors under positive electric field 
for different branch angles and crack orientations (branch Ieagth L/a = 0.01). 



Table 3.3: Cornparison of stress intensity factors a t  the tip of a symmetrically branched 
crack in an isotropic elastic solid under remote tension (LI = L2 = 2a, wl = -w:! = w) .  

effect of a branch. In the case of electric field loading (Fieme 3.8), the hoop stress intensity 

factors are significantly influenced by the crack orientation and branch angle. A branch may 

play either an a m p w n g  or a shielding effect on the hoop stress intensity factor depending 

on the crack orientation and branch angle. 

(de& 

3.4.2 A bifurcated crack 

In the absence of any known solutions for a bifurcated crack in piezoelectrics, the present 

results are cornpared with two solutions for isotropic elastic solids reported in the literature. 

Theocaris and Ioakimidis (1976) analyzed a symmetrically branched crack in an isotropic 

elastic solid and presented the results for the stress intensity factors. Let wl = -w2 = w,  

Li = L2 = 2a and = O" in Fi,gure 3.lb. Consider a fictitious piezoelectric material wïth 

a13 = a23 = 0, a12 = -0.25all, a33 = 2.5all, a22 = al1/1.001 (a22 = al1 corresponds to 

ideal isotropic case), negligible piezoelectric coefficients(b, = 10-12), and identical dielectric 

constants as PZT-4. The normalized stress intensity factors K;'/KI and K:;/KI at the 

branch 1 tip are shown in Table 3.3 for various branch angle w under remote uniforrn 

tension, where A> denotes the mode 1 stress intensity factor for a straight crack. Close 

agreement is observed confirming the accuracy of the present solution scheme. The problem 

of an asymmetrically branched crack with Lz/a = 0.8 and L2/a = 0.4 (Figure 3.lb) in 

an isotropic elastic solid is considered in Table 3.4. The fictitious piezoelectric material 

described above is used again in the computation. The results for the stress intensity factor 

ratio K;~/K:' at  the branch 1 tip are presented in Table 3.4 for two cases of branch angles, 

dong with the results given by Theocaris (1972) for isotropic elastic solids. Again good 

L 

Theocaris & 
Ioakirnidis (1976) 

Pcesent Smdy Presen t S tudy 
& 

Ioakimidis ( 1976) 



Table 3.4: Comparison of stress intensity factor ratios at the tip of an  asymmetrically 
branched crack in an isotropic elastic solid under remote tension (Lz/a = 0-8, Lz/a = 0.4). 

I I 

I 1 Theocaris (1 972) 1 Present Srudy 

agreement is observed. 

The electroelastic fields a t  branch tips of a bifurcated crack in PST-4 (Fio-e 3.lb) are 

computed in terms of intensity factors (K:, K : ~ ,  K;) . Branch angles (Iwl 1 and lu2 [) in the 

range [O0, 120°] are considered in view of practical applications. The conditions given by eqn 

(3.39) for an open bifurcated crack are checked during the computation, and only results 

sa t ise  these conditions are presented. 

A special case of crack bifurcation in PZT-4, namely the problem of a symrnetrically 

branched crack (wl = -w2 = w and Li = L2 = L in Figure 3.lb), is examined first. Four 

cases of branch lengths (L/a = 0.001, 0.01, 0.1 and 0.5) are considered. I t  is found that 

the trends of branch tip field intensity factors are similar to those of a branched crack. 

The field intensity factors a t  the branch tip of a bifurcated crack are generally smaller than 

those of a branched crack. The field intensity factors for large values of w are dose to 

the corresponding values of a branched crack, which confirms the fact that the interaction 

between the tm-O branches becomes weak. The branch length has a weak effect on intensity 

factors when L/a < 0.01. I t  is noted that, compared to the case of a branched crack, the 

range of branch angle w within which a crack remains open is narrower for a bifurcated 

crack, especially under electrical loading and with a large value of L/a. For example, a 

symmetrically branched crack with LI = L2 = 0 . 0 1 ~  remains open only for Iwl < 30° when 

f i  = 60' under positive electric loading. The details of numerical results are not shown for 

brevity. 

The general case of a bifurcated crack (i.e., the problem of an asymmetrically branched 

crack) is now considered. Let L2/a = 0.1, W I  = 30°, wa = O0 in Figure 3.lb. Figures 3.9 and 

3.10 present the stress intensity factor K; under rernote tension oz and positive electric 

displacement Df, respectively. Three values of crack orientation angles, namely f i  = 0°, 

30' and 90°, are considered. The value of branch length ratio L1/L2 varies from 0.5 to 2.0. 
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Figure 3.9: Stress intençity factors at the tips of an asymmetrically branched crack in PZT-4 
under remote tension for different branch length ratios (Lz/a = 0.1, w i  = 30, wa = O in 
Figure 3.1 b) . 
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Figure 
PZT-4 

3.10: Stress intensity 
under positive electric 
in Figure Xlb). 

factors at the tips of an asymmetrically branched crack in 
field for different branch length ratios ( L a l a  = 0.1, w i  = 30, 



In the case of mechanical loading (Figure 3.9), crack orientation has a negligible S u e n c e  on 

the str9ss intensity factor, but a different crack orientation angle corresponds to a ciifferent 

range of Li/L2 which renders an open crack. The case of P = 90' has the wïdest range of 

LI /L2  while ,B = 30' corresponds to the narrowest range. An open crack is expected for 

all three values of ,B when branch I is longer than branch 2. It is found that, when the 

branch length ratio Li/L2 is larger than 1.2, the stress intensity factor of branch 1 increases 

steadily and that of branch 2 decreases quite fast. The opposite trend is true when the length 

ration Li/L2 is smaller than 1.2. This observation indicates that, if the fracture process 

is controlled by the stress intensity factor, the occurrence of a microscopie branch would 

make the longer branch even longer. Therefore, there is Little chance that h o  branches can 

simultaneously grow. The shorter branch cracks are frequently left behind a main crack. 

In the case of positive electric loading (Figure 3-10)? a crack remains always open for the 

considered range of L1/L2 when ,û = O0 or 30". However, crack closure happens for the 

whole range of L1/L2 when fl  = 90". The trend of the stress intensity factor corresponding 

to ,B = 0" is similar to that in the case of mechanical loading. The case of fl  = 30° is 

dBerent. The trend that a longer branch accompanies a larger value of stress intensity 

factor is observed only in the range of L1/L2 > 1.6. Consider the same problem as in 

Figures 3.9 and 3.10 but with w2 = -15'. The variations of stress intensity are show in 

Figures 3.1 1 and 3.12. A similar conclusion, as in Figures 3.9 and 3.10, is drawn with regard 

to the relation between the stress intensity and the branch length for both mechanical and 

electric loading. 

3.5 Conclusion 

The extended distributed dislocation modeling technique is successfully applied to study 

arbitrarily oriented branched cracks in piezoelectric materials. The branched crack problem 

is reduced to the solution of a system of singular integral equations with dislocation densities 

dong the branch line as unknowns. The condition for an open crack has been taken into 

consideration. 

The validation of the present scheme is confinned by comparing with the results for 

special cases reported in the literature. It is noted that the asymptotic electroelastic fields 

a t  a branch tip have cornplex dependence on branch length, branch angle, crack orientation 

and the type of loading. The influence of applied electric loading is more complicated and 

significant than mechanical loading. The trends of field intensity factors of a branched 
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Figure 3.11: Stress intensity factors at the tips of an asymmetrically branched crack in PZT- 
4 under remote tension for different branch length ratios (L2/a = 0.1, wl = 30, wz = -15 
in Figure 3.lb). 



Figure 3.12: Stress intensity factors at the tips of an asymmetricaily branched crack in 
PZT-4 under positive electric field for different branch length ratios (L2/a = 0.1, w i  = 30, 
w2 = -15 in Figure 3.lb). 



crack are similar to those of a symmetrically branched crack, but a symmetrically branched 

crack has a narrower range of branched angles which render crack open. The results for an 

asyrnmetrically branched crack indicate that, if stress intensity factor is responsible for the 

kacture process, it is unlikely that two branches can simultaneously grow when a bifurcated 

crack is under remote tension or a bifurcated crack perpendicular to the poling direction is 

under electric loading. 



Chapter 4 

Fracture Criteria 

4.1 Fracture toughness anisotropy 

For isotropic rnaterials, a single parameter such as Kfc is adequate to describe fracture 

toughness. In contrast , planes of low fracture resistance exist in anisotropic materials, 

cracks rnay be trapped ont0 such planes even t hough hoop stress or ener,v release rate rnay 

not be maximum on these planes. Polarized ceramics generally have anisotropic material 

properties. Therefore, the orientation dependence of fiact ure toughness in piezoelectric 

ceramics should be considered when dealing with crack propagation. Based on the available 

experirnental results, a simple mode1 is developed in this section to describe the fracture 

toughness aniso tropy in piezoelectric ceramics. 

The critical stress intensity factor Kc is often used in the experimental studies to discuss 

fracture toughness. Fracture toughness of polarized ceramics in directions parallel to the 

poling direction (Ko) and perpendicular to the poling direction (KsO) have been experimen- 

tally measured, as weU as fracture toughness of unpolled ceramics (Calderson-Moreno, etc, 

1997; Pisarenko, etc, 1985; Chen, etc, 1999). Unpolled specimen show isotropic fracture 

toughness, while Ko > KsO is observed for polarized ceramics. The ratio Ko/KSo for a PZT 

(PC4D Type 1 from Morgan Matroc) measured by the indentation method is as large as 

2.69 (Calderson-Moreno, etc, 1997). Pisarenko et al (Pisarenko, etc, 1985) reported that 

KO/hrSO is in the range 1.15 - 2.36 for four different piezoceramics. 

Let Kc(8) denote the fracture toughness along the direction 0 in a piezoceramic (Figure 

4.1), where 8 is measured with respect to the poling direction z'. Due to  material syrnmetry 

about 2, 



piezoelecuic medium! 

Figure 4.1: Illustration of fracture toughness anisotropy 

The general form of Kc(0) can be expressed by (Tan, 1990), 

in piezoelectrics. 

where A, are a set of constants. 

When two principal toughnesses Kc(OO) = Ko and KC(9O0) = Kgo are known, considering 

the two leading terms of eqn (4.2) yields, 

If toughness along a third direction is also known, e.g. KC(45") = K45, considering the first 

three terms of eqn (4.2) gives, 

Eqn (4.3) is used in this study to calculate kacture toughness a t  an arbitrary direction 

when predicting potential fracture propagation in piezoelectrics. Noting that 0 = 90' -w -P 
in Figure 4.1, eqn (4.3) can be expressed as 

Experimental findings (Chen et al, 1999; etc) indicate that fracture toughness of piezo- 

electric solids is not only related to material ânisotropy but also affected by applied stress 

a* and electric field Ewl Le. Kc = Kc(9, uoo, EOQ). Applied loading may cause domain 

reorientation near a crack tip which also contributes to toughness changes. This topic is 

still in its infancy requiring further experimental and t heoretical studies. 



Eqn (4.3) or (4.5) gives the fracture toughness in terms of the critical stress intensiw 

factor at  an arbitrary direction. The critical energy release rate need be quantitatively 

described in a piezoelectric solid, when applying an energy-based criterion. Currently, no 

experirnental data of critical energy release rate Gc are available. In view of the fact that 

energy release rates are quadratic functions of field intensity factors (e-g. eqn ( T U ) ) ,  it is 

assumed that 

rw 2 GZ = k (h,) 

where Gg = GJ0) and K,W = Kc(6) are critical values of ener,gy release rate and stress 

intensity factor (Figure 4.1), respectively; k is a constant in a given material. 

4.2 A stress-based criterion 

Considering the anisotropic behavior of piezoceramics, the criterion of modified hoop stress 

intensity factor is used to predict crack propagation (Azhdari and Nemat-Nasser, 1996). 

Define rnodified hoop stress intensity factor K* as 

where Kww is the hoop stress intensiw factor and K,W is the facture toughness. 

It is assumed that at a pre-existing crack tip, crack growth takes place along the direction 

ûr which renders the modïfied hoop stress intensity factor K*(w)  maximum, and a crack 

propagates when 

Doblare et al (1998) and Gregory and Herakovich (1986) used criteria similar to the eqns 

(4.7) and (4.8) for anisotropic elastic materials. I t  was found that theoretical predictions 

generally agree with experimental results. 

The criterion of modified stress intensity factor is now applied to discuss potential propa- 

gation of a pre-existing impermeable crack in PZT-4 (Appendix A) under applied mechanical 

or electric loading. Both the straight crack model and the branched crack model can be used 

to evaluate the hoop stress intensity factor Ku, required by eqn (4.7). In the later case, a 

vanishingly small branch length should be used, and KI should be used in place of Kwu in 

eqn (4.7). It is assumed that toughness anisotropy ratio Ko/KS0 = 2 in the absence of exper- 

imental data for PZT-4 material used in this study. The assumed value is within the range 



of fracture toughness anisotropy for PZT materials obtained in experiments (Pisarenko, et 

al, 1985). Figures 4.2a and 4.3a, based on the branched crack model, show the variation of 

normalized hoop stress intensity factor ratio K o K * / ( f i a z )  and K o K * / ( f i E f " )  under 

remote tension and positive electric field loading, respectively. In these figures, only results 

corresponding to the ranges of branch angles which satisS. the condition of an open branch 

(eqn (3.35)) are shom. The corresponding results from the straight crack model are s h o m  

in Figures 4.2b and 4.3b. The following observations are dranll from Figures 4.2 and 4.3. 

The modified hoop stress intensity factors based on the branched crack model and 

straight crack model have similar trends. The two models show quite identical results 

for mechanical loading. For electric field loading, the differences are noted in the intensity 

factor ma-pitudes and in the ranges of w for an open branch. However, the two models 

show nearly equal branch angles corresponding to the maximum values of K* for f i  = 0°, 

60" and 90". For example, as shown in Figure 4.3, K* has a maximum value of 0.6222 for 

w = -69" and ,O = 60' based on the branched crack model, while the straight crack model 

shows a maximum value 0.7156 (13% higher) at  w = -71°. 

The requirement of an open branch can only be considered by the branched crack model. 

Incorrect conclusions may be drawn by neglect ing t his requirement , especially under elec tric 

field loading. For example in Fi,gue 4.3, the potential propagation directions are 106" 

and 45O for ,û = 45" based on the straight crack model and the branched crack model, 

respectively. The branched crack model shows branch closure happens when w > 45". In 

addition, the effects of non-singdar stress a,OO, and electric field Er on crack propagation, 

which may significantly affect the crack path stability, can only be discussed by using a 

branched crack model. 

In the case of remote tensile loading, a self-similar crack extension is expected for P = O* 

based on the modified intensity factor criterion. For 0 # O", the crack deviates from the 

straight path. The theoretical branching directions are -2Z0, -32O and -40° for crack 

orientation angles ,B = 30°, 45' and 60°, respectively. The crack could branch into any 

direction belmeen [-31°, 31°] when the poling direction is parallel to the crack line. In 

the case of positive electric field loading, no crack extension is expected when the poling 

direction is perpendicular to the crack line. The theoretical branching angles are 61°, 45", 

-6g0 and -95O for f l  = 30°, 45O, 60" and 90°, respectively. Note even in a symmetric case 

(e.9, remote electric loading perpendicular to the crack and the poling direction parallel to 

the crack), a crack may deviate from the straight extension path- 

Distinctly different branching angles wodd be predicted if the assumption of isotropic 



a) branched crack model 

b) straight crack model 

Figure 4.2: Variation of modified hoop stress intensity factor under remote tension loading 
for different crack orientation angles. 
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Figure 4.3: Variation of modified hoop stress intensiîy factor under positive electric field 
ioading for different crack orientation angles. 



fracture toughness was used in Figures 4.2 and 4.3. For example, the theoretical branching 

direction would be 0' rather than -22' for 0 = 30' under remote tende loading. 

4.3 Angular distribution of energy release rates 

The energy release rate given by eqn (2.44), being based on self-sirnilar crack extension, 

has limited application. In order to properly discuss crack propagation directions using 

energy-based criteria, energy release rates along an arbitrary direction at a crack tip should 

be known. Therefore, this section aims at seeking the angular distribution of energy release 

rates. 

Consider a crack with impermeable boundary (Figure 4.1). Assuming the crack extends 

a small length of L along the w-direction, the total energy release rate can be expressed by 

where a,, (r, w) ,  a,, (r, w )  and D,(r, w )  are the hoop stress, shear stress and hoop electric 

displacement at  the crack tip before branching, and are given by eqns (3.12) or (3.13); Au,, 

Anc and A& are the crack branch opening displacement along the q-direction, c-direction, 

and the jump in the electric potential across the branch faces after branching. 

The solution for a branched crack derived in Chapter Three is used here to evaluate 

A+, AI% and A&. Lmk in eqn (3.30) can be symbolically rewritten as, 

where Zij, 1; are defined in eqn (3.24), and Qmk, Qmk are functions of material constants, 

angles ,B and w. 

Since zp = a + s(cos w + pi sin w) and s = a + p(cos w + sin w), lij in eqn (3.24) can 

be expressed as 

Perform a variable change fi-om [O, L] to [O, 11 using p = PL, and s = b L  on eqn (3.28) 

and related equations. Consider the limiting case of a vanishingly small branch (L -, 0). 

Using L* = 0, eqn (4.11) can be reduced to 



Similarly for l; , 

fi(p), f2(p) and f3(p) in eqn (3.31) represent the shear stress, hoop stress and hoop 

electric displacement around a straight crack under unifonn loading, respectively. At the 

crack tip (r = L -t O), these electroelastic fields can be expressed in their asymptotic form. 

Therefore, 

Using eqns (3.32), (4.lO)-(4.l3), eqn (3.28) can now be rewritten as 

It is seen from eqn (4.15) that density functions Bi(b) are proportional to a. Therefore 

A%, Auc and A 4  are dso proportional to a according to eqns (3.34) and (3.35), and 

intensity factors K:,  KI^ and K; are independent of the length L based on eqn (3.33). 

These conclusions are valid for the limiting case of a vanishingly small branch (L + 0). 

Performing a variable change from [O, L] to [O, 11 on eqn (4.9) and making use of eqn 

(3.13) yield 

Due to the fact that Au?, AuE and A+ are proportional to 

branch, eqn (4.16) can be expressed as, 

fi for a vanishingly small 

Therefore, in the case of a vanishingly small branch, energy release rates (strain, electrical 

and total) are independent of the branch length L. Eqn (4.17) completes the solution for 

angular distribution of energy release rates. The numerical approach of piecewise quadratic 

polynomials proposed by Gerasoulis (1982) is used to evaluate integrals in eqn (4.17). 



Alternatively, energy release rates dong an arbitrary direction a t  a crack tip cari be 

obtained by following a common practice (Azhdari and Nemat-Nasser, 1996). Transforming 

eqn (2.44) to cq system yields, 

- 
where variables &, &, S, and tjn are defined in the J1.l system, corresponding to pn, qn, s, 

and tjn in the xz system; KI, and K; are field intensity factors a t  the branch tip. 

It is noted that eqn (4.18) gives the energy release rates based on an infinitesimal ex- 

tension of an existing infinitesimal small branch, while eqn (4.17) gives the results due to 

the occurrence of branching. A comparison of results calculated by these two approaches is 

made in Table 4.1 through numerical examples. A general pola~ization angle (B = 30') is 

considered. Far field loading are tende  stress oz = 100N/m2 and electric field EL. It is 

found that the total energy release rates from the tTvo different approaches are identical for 

both PZT-4 and PZT-5H. However, this is not the case for the strain energy release rate, 

especially when the ratio of electric to mechanical load is large. For example, the difference 

between two approaches is 20% in PZT-5H when E,OO/a,Z = 5 and w = 45O. Therefore, 

eqn (4.18) based on the comrnon practice is generally not valid, and should not be used 

to calculate energy release rates. In view of this observation, eqn (4.17), corresponding to 

branch nucleation, is used in the ensuing part of this Chapter. 

Kumar and Sigh (1997a, b) used the finite element technique to calculate the angular 

distribution of the energy release rates in piezoelectrics. As reported by themselves, there 

is discrepancy beheen their finite element solutions and the analytical solutions by Pals 

(1992). Taking B = 0' and w = 0°, it is found that the results of present scheme agree with 

Pak (1992). The accuracy of the present scheme is further codrmed by a comparison with 

the solutions for elastic solids reported by Azhdari and Nemat-Nasser (1996). Assume that 

Figure 4.1 shows an elastic medium with material coordinate system x'z', a; (corresponding 

to aij in eqn (2.3)) are material constants with respect to the material system, and f l  denotes 

the orientation of crack with respect to the material axis. According to Azhdari and Nemat- 

Nasser (1996), ai3 = O, ai3 = 0, ai1 = 1/Ell, ah2 = 1/E22 ,  ai3 = 1/&, a;, = -0.25/E22 

and 0 = -6, where Ell, E22, E66 and angle 8 are given in Table 4.2. A fictitious piezoelectric 



Table 4.1: Comparison of energy release rates calculated by eqns (4.17) and (4.18) in PZT-4 
and PZT-5H (oz = 1 0 0 ~ / m * ,  = 30'). 

eqn (4.18) eqn (4.37) 1 eqn (4.18) 1 eqn (4.17) 
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Table 4.2: Comparison of energy release rates G ( w ) / G ( O O )  in orthotropic elastic solid. 
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material with same elastic constants used by Azhdari and Nemat-Nasser (1996), negligible 

piezoelectric coefficient (bij F- 10-~~), and identical dielectric constants as PZT-4 is used. 

The comparison between the two results is made in Table 4.2. Good agreement is observed 

for a variety of material properties, loading conditions and branch angles. 

4.4 Energy-based criteria 

Parallel to eqn (4.7), modified strain energy reiease rate ~ " ( w )  and modified total energy 

release rate N(w) are d e h e d  as 

where G ~ ( u )  and G(u) are an,oular distributions of strain and total energy release rates, 

r e s p e c t i ~ e l ~  

The criterion of modifled strain energy release rate assumes that, a t  a pre-e.uisting crack 

tip, crack growth takes place along the direction a which renders the modified strain energy 

release rate lTM(w) maximum, and a crack propagates when 

Similady, the criterion of modified total energy release rate assumes that crack growth 

takes place dong the direction a which renders H(w)  maximum, and a crack propagates 

when 

It is noted that Azhdari and Nemat-Nasser (1998) suggested an energy-based criterion 

similar to eqns (4.19)-(4.21) for anisotropic elastic materials based on their experimental 

study. 

The proposed fiacture criteria are now applied to discuss potential propagation of a 

pre-existing straight crack in PZT-4, Assuming Ko/KgO = 2, critical fracture energy release 

rate G r  is calculated based on eqns (4.5) and (4.6). Fiegures 4.4 and 4.5 present the variation 

of modified energy-release rates with varying crack branch angles (w )  under mechanical and 

electric loading, respectively. The corresponding results of modified hoop stress intensity 

factor of eqn (4.7) based on the branched crack mode1 are also shown for the purpose of 

cornparison. In these figures, only results corresponding to the ranges of branch angles 

which satisfy the condition of an open branch are shown. 



Assume tensile stress oz = 0.6MPa at far field. Normalized modified strain energy 

release rate H ~ G ~ / U  and modified hoop stress intensity factor K* KO/(J.rrao*) are shom 

in Figures 4.4a and 4.4b1 respectively. Go and Ko are the critical energy release rate and 

critical stress intensity factor dong the poling direction (8 = 0°), respectively. The resdts 

of modifîed total energy release rate are virtually identical to those of strain energy release 

rate, and are therefore not shonm. ft is seen that the modified strain energy release rate 

and hoop stress intensity factor have very similar trends except for the case of /3 = 90". The 

theoretical branching angles based on these two criteria are also close to each other when 

0 + 90°. The potential branching directions, based on the energy based criterion, are - 2 5 O ,  

-37", -48" and +64O for polarization angle ,B = 30°, 45O, 60° and 90°, respectively. A 

self-similar extension is expected for P = 0'. Therefore, in the case of mechanical Loacling, 

the criterion of modified strain ener,qy releâse rate is virtually equivdent to the criterion 

of modified total energy release rate. The theoretical branching angles based on these 

two energy-based criteria are close to those predicted by the stress-based criterion except 

,û = 90°. 

Now consider electric field E,OO = 12KV/m at far field, Normalized modified strain 

energy release rate H " G ~ / ~ ,  modified total energy release rate HGo/a and modified hoop 

stress intensity factor K * K o / ( 6 E L )  are shown in Fi,gures 4.5a, 4.5b and 4 . 5 ~ ~  respec- 

tively. In contrast to the case of mechanical loading, it is found that the results of total 

energy release rate are now totally different from those of strain energy release rate. Nega- 

tive values of total energy release rate are observed for all values of w and P, impIying no 

crack propagation based on the criterion of rnodified total energy release rate. The modified 

strain energy release rate and hoop stress intensity factor have somewhat similar trends, 

but the theoretical branching angles based on these two criteria are quite different. The 

potential branching directions, based on the modified strain ener-gy release rate criterion, 

are &30°, -?O, -48O, -61" and -88" for polarization angles ,û = 0°, 30°, 45O, 60° and 90°, 

respectively. Note that a crack tends to deviate from the straight extension path regardless 

of crack orientation angles. This prediction qualitatively agees the experimental finding 

reported by McHenry and Koepke (1983). 

Distinctly different propagation directions would be predicted if the isotropie fracture 

toughness were used in Figs. 4.4 and 4.5. For example, based on the criterion of strain 

energy release rate, a self-similar crack extension wodd be predicted rather than branching 

dong w = &30° for a crack under electric loading when 0 = 0". 

The cases of combined mechanical and electric loading are considered in Figs. 4.6-4.9. 



Figure 4.4: Variation of modified strain energy releaçe rate and modified hoop stress intensity 
factor at crack tip in PZT-4 under remote tensile stress o~Z = 0.6MPa. 
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Figure 4.5: Variation of modified energy release rates and modified hoop stress intensity 
factor at crack tip in PZT-4 under positive electric field Er = 12KV/m. 



Figs. 4.6 and 4.7 are for modified strain energy release rate ( H ~ ) ,  and Fie .  4.8 and 4.9 

are for modiiied total energy release rate ( H ) .  Constant tende  stress oz = O.6MPa and 

two levels of electric field, Le. E,DO = H2KV/m (Figs. 4.6 and 4.8) and &6OKV/m (Figs. 

4.7 and 4.9), are applied at far field. Three cases of polarization angles, Le. P = 0°, 30' and 

90" are computed. Only results corresponding to the ranges of branch angles which satisfy 

the condition of an open branch are shown. 

Based on the criterion of modified strain energy release rate (Figs. 4.6 and 4.7), a 

positive electric field tends to promote crack propagation and a negative one tends to retard 

crack propagation for all w values when ,û = O0 or 30'. When P = 90°, an electric field can 

either promote or retard crack propagation depending on the direction of electric field and 

branch angle W .  A positive electric field tends to promote crack extension if branch angle 

w < 0, and slow domn or cause crack closure if branch angle w > O. The opposite effect is 

true for a negative electric field. 

If the criterion of total energy release rate is applied (Figs. 4.8 and 4.9), the effect of an 

applied electric field on crack propagation is dramatically dserent . An electric field always 

impedes crack propagation regardless of crack orientation angles, direction of electric fieId 

and branch angles. Crack closure may happen for a nride range of branch angIes when an 

electric field is strong (Figure 4.9). 

Conclusion 

Relaxing the assumption of self-similar crack extension and taking the kacture toughness 

anisotropy into consideration, a new stress-based fkacture criterion and two energy-based 

criteria, namely the criteria of modified hoop stress intensity factor, modified strain en- 

ergy release rate and modXed total energy release rate, are proposed to predict potential 

propagation directions of impermeable cracks in piezoelectric ceramics. 

Numerical results show that distinctly different propagation directions would be pre- 

dicted if the assumption of isotropie fracture toughness were used in both stress and energy- 

based criteria. In the application of modified hoop stress intensity factor, the predicted re- 

sults based on the branch crack model are compared with those based on the straight crack 

model. It is found that the straight crack mode1 may Iead to erroneous conclusions, espe- 

cially in the case of electric loading. It is noted that a crack may branch off from a straight 

path even under symrnetric loading and geometry. Under applied mechanical loading, the 

criteria of modified strain energy release rate and modified total energy release rate are 



Figure 4-6: Variation of modified strain energy release rate a t  crack tip in PZT-4 under 
applied tensile stress = 0.6MPa or electric field E," = &12KV/m. 



Figure 4.7: Variation of modified strain energy release xate a t  crack tip in PZT-4 under 
applied t ende  stress crz = 0.6&fPa or electric field E,OO = &GOKV/m. 



Figure 4.8: Variation of modified total energy release rate at  crack tip in PZT-4 under 
applied tensile stress oz = 0.6MPa or electric field Er = &12KV/m. 



Figure 4.9: Variation of modified total energy release rate at crack tip in PZT-4 under 
applied tensile stress a z  = 0.6MPa or electric field E r  = &GOh'V/m. 
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virtually equivalent, and the two energy-based criteria and the stress-based criterion predict 

similar crack propagation paths. Under applied electrical loadùlg, however, the predicted 

propagation paths by the stress-based criterion are significantly different from those by the 

energy-based criteria. Based on the criterion of strain energy release rate, a crack tends 

to branch off from a straight path regardtess of the polarization angle. Under combined 

mechanical and electric loading, an electric field can either promote or retard crack propa- 

gation depending on the crack branching angle, the polarization angle and the direction of 

applied electric field. 

Currently, no experimental data are available in the literature to check with the theo- 

retical branching directions predicted in this study. Coordinated experimental studies are 

needed to determine the exact nature of fracture toughness anisotropy and a suitable frac- 

ture criterion for piezoelectrics. The present theoretical study complemented with such 

experirnental work is important to advanced engineering applications of piezoelectric mate- 

rials. 



Chapter 5 

Singularit ies in Piezoelectric 

Wedges 

5.1 Governing equations 

Consider a piezoelectric wedge polarized along the direction z', as shom in Figure 5.1- The 

geometry of wedge is defined by the two angles a! and cp with respect to the x-ais.  The 

z-auis of the coordinate system (x, y, z) makes angle with the direction of polarization z' 

of the coordinate system (x', y', 2'). Assuming planar electroelastic fields independent of y 

(y'), the constitutive equations with respect to the (x, y, z )  system can be expressed as eqn 

(2.3). 

Using the extended Lekhnitskii's fonnalism of eqn (2.4) given in Chapter 1, the sixth- 

order differential equation of eqn (2.5) c m  be derived. As noted in Chapter 1, the character- 

istic equation of eqn (2.5) generally have distinct roots. Therefore, the solution of functions 

F and \k in eqn (2.4) c m  be expressed in the following form. 

where z, and 6, are defined under eqn (2.8). 

The functions F,(n = 1, - - - ,6) in eqn (5.1) can be written as power series of k. Since 

this study is focused on singular fields, it is sufficient to consider only the leaùing term of 

the power series. Therefore, 



Figure 5.1: A piezoelectric wedge. 

where X is the power of the leading term and An(n = 1, - - - , 6 )  are arbitras. coefficients. 

It is convenient to introduce a polar coordinate system (r, O )  as s h o w  in Fi,o;ure 5.1 for 

the present class of problems. The following solutions for the complete electroelastic fields ( 

dispkrement zi, electncal potential #, stress oij, electric displacement Di and electric field 

Ei) can be obtained by using eqn (5.2) and basic relations in piezoelectricity (Parton and 

Kudryavtsev 1988). 



where Tn = r(cos 8 + f i  sin O), FL, are roots of eqn (2.6), p,, q, and s, are d e h e d  under eqn 

(2.10), and 

H I n = p n ~ ~ s 8 + q n ~ i n O ;  H 2 , = - p n ~ i n û + q , ~ ~ ~ 8 ;  H3,=sn 

H4n =si119  COS^; Hsn = cos8 +pnsinO; Hsn = -6, 

Hh = (fi COS 8 - sin o ) ~ ;  Hgn = 6,(pn COS 9 - sin 8) (5 -4) 

It is wort h mentioning that eqn (5 -4) can also be obtained by utilizing the correspondence 

between plane piezoelectricity and generalized plane strain in elasticity established recently 

by Chen and Lai (1997). For example, the equations for the displacements and stresses of 

an anisotropic elastic wedge developed by Ting (1986) could be used to derive eqn (5.4) by 

following Chen and Lai (1997). 

Elastic field and electrical field are decoupled in the case of elastic composites or elec- 

trodes, t hus the elasticity t heory is separated from electrostatics. Polyrner based composites 

are anisotropic and non-conducting materids, therefore, the elatic fields are obtained by 

setting the coefficients bij = ci!&- = O in eqn (2.3). The general solutions for displacements 

where r; = r (cos O + pk sin O),  Bn are arbitrary coefficients, and pk (n = 1, , 

roots of the following equation, 

and 

Hi, = cos B + qi  sin 8; HL = -pnsin8 + qhcosO 

(5-5) 

,4) are the 

(5-6) 

(5.7) 

where 

Most conductors used in the adaptive structures are elastic isotropic. The electric field 

inside an ideal conductor is zero leading to a constant potential (Cheston, 1964). The generai 

solutions for isotropic elasticity for the present class of problems are (Williams, 1952), 
+l 

ur = [Cl cos AB - C2 sin A8 - C3 (A - 4k) cos(2 - A) 0 - C4 (A - 41;) sin(2 - X)0] 
%o(X - 1) 

+-l 

ug = [-Ci sin A8 - C2 COS A0 + (2 - X - 4k) (C3 sin(2 - X)0 - C4 cos(2 - X)O)] 
%o(X - 1) 



Table 5.1: Admissible basic boundary conditions on edge surfaces. 

case 1 Mechanical 1 Elecîric 

electrically open 
(00 = 0) 

traction free 
b O g  = Gre = 0 > 
clamped 

(u r  = r i ,  = O ) 
eIec trically open 

( ~ 0  = 0) 

clamped 
(u r  = ue = 0) 

electricatly closed 
( @ = O )  

where Xo and ,q are Lame's constants, k = (Ao + 2po)/2(Xo + po) and C,(n = 1, - - - ,4) are 

arbitrary coefficients. 

Examination of the above general solutions for piezoelectrics, anisotropic com~osi tes  and 

ideal conductors reveals that singular fields exist only if the real part of X is les3 than two. 

Furthermore, the boundedness of displacement or electric potential at the corner of a wedge 

requires the real part of X must be greater than one. Therefore, admissible valmes of X are 

in the range of 

5.2 Characteristic equations 

In this section, the characteristic equations for composite wedges and junctions are estab- 

lished to determine the admissible values of A. Consider a piezoelectric wedge as shom-n in 

Fig. 5.1- Possible boundêry conditions on two radial edges are traction fiee (oes = c r o  = 0) 

or clamped (u, = ue = O) combined with electrically open (Dini = O or Do = O b )  or closed 

(4  = O or Er = O). Electrically open case corresponds to an adjoining medium with zero 

(or negligible) dielectric constants (e-g. vacuum or air), wbereas electrically close-d case cor- 

responds to an adjoining ideal conducting medium (Kuo and Barnett, 1991). As shown 

in Table 5.1, four basic types of boundary conditions can be considered for a boundary of 

a piezoelectric medium. The bounda.ry conditions for an elastic medium are traction free 

(Cree = o;s = O) or clamped (u, = ue = O). The continuities of the tangential comiponent of 



the electric field and the normal component of the electric displacement are demanded at a 

piezoelec tric material interface. 

5.2.1 Piezoelectric wedges 

There are altogether ten possible combinations of boundary conditions for the two edges 

of a piezoelectric wedge. For example, traction free and electrically open on both edges 

(Figure 5.1) yield 

Using eqn (5.3) and eqn (5- 10) or any other admissible boundary conditions, the following 

6 x 6 homogeneous equation system can be established. 

where {A) = (Ai, A2, - - - , A ~ ) ~  is the vector of unknown coefficients in eqn (5.3): [KI is 

the coefficient matrix whose elements are functions of A. 

A non-trivial solution for eqn (5.11) exists if, 

det [K(X)] = O (5.12) 

The determination of admissible values of X from the above characteristic equation is 

usual l  done using a numerical algorithm dthough anal-dical solutions can be obtained for 

a few special cases as shown in a subsequent section. 

5.2.2 Piezoelectrics - conductor/composite wedges and junctions 

Referring to Figure 5.2, material 1 is assumed to be piezoelectric and material 2 an isotropic 

elastic ideal conductor. The following continuity conditions can be established at  the ma- 

t erial interface. 

where superscript p denotes a piezoelectric medium, and e denotes an elastic conductor. 

In addition, a set of admissible boundary conditions on the two outside edges has to be 

considered (Table 5.1). Fbr example, the following boundary conditions can be considered 

on the two outer edges. 



A z 2' (p01 direc.) 1 
Y i 

Figure 5.2: A bi-material system. 

Substitution of eqns (5.3) and (5.8) in eqns (5.13) and (5.14) results in a homogeneous 

system of equations similar to eqn (5.11) for the ten coefficients A,(n = 1,2, - - - ,6)  and 

C,(n = 1, - - - ,4). The admissible values of X is obtained from the corresponding character- 

istic equation. In the case of a bi-material junction, the eqn (5.14) is replaced by a set of 

interface conditions similm to eqn (5.13) corresponding to the other interface. 

In the case of piezoelectric/elastic composite wedges and junctions, the condition d?' = O 

is replaced by D; = O in eqn (5.13) to ensure that the bi-material interface is electrically 

impermeable. 

5.2.3 Two piezoelectric material wedge 

Consider the case of a wedge consisting of two piezoelectric materials as shown in Fig. 5.2. 

The two outer edges ate assumed to be traction free and electrically impermeable. The 

interface and boundary conditions can be expressed as, 

ugl (O) - up (0) = O; (0) - ur (O) = O; q1 (0) - Ey (O) = O; 

4 , $ ( 0 ) - 6 ( 0 ) = 0 ;  <;(O)-G(O)=O; D ~ l ( ~ ) - ~ ~ ( ~ ) = O  

4; (9) = O; < (9) = O D,P1 (p) = O 

G ( a ) = O ;  G- (a )=O;  DP(a )=O (5.15) 

where superscripts pi and pz denotes the piezoelectric medium one and two, respectively. 



The substitution of eqn (5.3) in eqn (5.15) yields a system of homogeneous equa- 

tions similar to eqn (5.11) for the twelve unknown coefficients A e  (n = 1, 27 - - - 6) and 

A r  (n = 1,2, - - - ,6). The admissible values of X are obtained by solving the correspond- 

ing characteristic equation- The above methodology can be directly extended to consider 

piezoelectric bi-material junctions. 

5.2 -4 Multi-material system 

The general procedure to determine the admissible values of X for multi-material wedges 

and junctions is identical to  the bi-material case except for the presence of more than one 

interface. The order of the final equation system [eqn (5.11)] is determined by the number 

and type (elastic, piezoelectric) of the materials. For example, in the case of a three- 

rnaterial wedge with one medium being piezoelectric and the rest elastic materials, a 14 x 

14 homogeneous equation system is obtained. 

5.3 Special cases of half plane and crack 

The special cases of piezoelectric half planes and semi-idnite cracks are analytically exam- 

ined in this section. 

The geometry of a wedge is defined by two angles û: and cp (Fig. 5.1). A half plane can 

be defined by (y, y + T) , and a semi-infinite crack by (7 + T ,  y - T) ,  where the angle ;/ can be 

arbitrary. To study the effect of polarization orientation on the sin,darities of half planes 

and cracks, the angle p can be fixed while keeping y arbitrary. ,B is set to zero without loss 

of generality. Eqn (5.3) can be rewritten in the matrix forrn as, 



in Table 5.1, it is found that combinations 1-1, 2-2, 3-3 and 4r4 all result in the following 

characteristic equation. 

Apparently, no root of eqn (5.17) satisfies the requirement L < Re(X) < 2. Therefore, for 

piezoelectric half planes, no singularities are found for the homogeneous boundaq- condi- 

tions. 

A semi-idnite crack (T ,  -r) in a piezoelectric medium wïth a polarization angle O0 

is considered vithout loss of generality. Consider four homogeneous boundary condition 

combinations of 1-1, 2-2, 3-3 and 4 4 .  They a l l  lead to the foliowing characteristic equation. 

Only one root, X = 1.5, satisfies eqn (5.18) resulting in the classical inverse square root type 

singularity. Kuo and Barnett (1991) employed Stroh's formulation (1962) and obtained the 

same result for a semi-infinite crack in a piezoelectric medium. 

Based on the results by Ting (1986) for general anisotropic elastic wedges, the above 

conclusions can also be drawn by Follonring the correspondence between plane piezoelectricity 

and generalized plane strain in elasticity (Chen and Lai, 1997). In the case of free-clamped 

boundary condition combination for elastic wedges, Ting (1986) showed that, if 6 is an 

order of singularity for a half plane, then 6/2 and (6 - 1)/2 are orders of singularities for 

a semi-infinite crack. It can be easily shown that this conclusion is also applicable to any 

admissible boundary condition combinations for piezoelectric half planes and semi-infinite 

cracks. 

5.4 Numerical results and discussion 

Two polarized piezoceramics, namely PZT-4 and PZT-5, graphite/epoxy composite, and two 

isotropic conductors, aluminurn and nickel, are used in the numerical study. The material 

properties of PZT-4 and PZT-5 are given in the Appendix A, and the material properties 

of the composite and conductors are &en below, 

Aluminum ( Young's rnodulus E and Poisson's ratio v ): E = 68.9GPa, v = 0.25 

Nickel: E=210GPa,  v=0.31 

Graphite/epoxy composite (G is the shear modulus): 

Ezz = 132.8GPaY E,, = 10.76GPa, Eyy = 10.96GPa 



Gzy = 3.61GPa, Gzy = 5.65GPa7 G, = 5.65GPa 

v, = 0.24, v,, = 0.24, vZy = 0-49 

The characteristic equation for a wedge/junction is transcendental and has infinite num- 

ber of roots. The root X can be real or a complex quantity. Numerical experiments show 

that the roots are generally complex for composite systems and real roots exist for some 

cases of piezoelectric wedges. The order of electroelastic singularity is governed by the real 

part of (A - 2). The root of primary interest is the one with the smallest positive real part 

between one and two. The existence of a non-vanishing imaginary part of (A - 2) leads 

to oscillatory singularity (Suo, 1990). All roots meeting the requirement in eqn (11) are 

presented in the numerical study in order to present a complete picture of the nature of sin- 

gularities in composite piezoelectric wedges/junctions. Plain s train conditions are assumed 

throughout the cornputations. A numerical procedure based on Müller's method (Müller, 

1956) is used to search for admissible values of A. 

To verie the accuracy of the numerical procedure, the solutions for piezoelectric bi- 

material wedges are compared with those for isotropic bi-material wedges given by Hein 

and Erdogan (1971) through a limiting process. Referring to Figure 5.2, consider Material 1 

and Material 2 as isotropic ideal elastic materials with Young's moduli E1/E2 = 10/31 and 

Poisson's ratios V I  = 0.22, u2 = 0.30. Hein and Erdogan (1971) presented the solutions for 

two wedges, i-e. a = -p = 90° and a = 90°, cp = -180'. To simulate the above isotropic 

elastic bi-material wedges, set si1 = 3.23 x 10- 'rn2/~,  ,533 = 3.23 x 10-lrn2/lV, slz  = 

-0.97 x 10-lm2/IV, sis = -0.97 x 10-'rn2/~, s44 = 8-39 x 10-lm2/N as elastic constants 

of Material 1; si1 = 10 x 10- 'm2/~,  s lg  = 10 x 10-lm2/N, ~ 1 2  = -2.2 x 10-'rn2/IV, 

si3 = -2.2 x 10-'rn2/lV, ~ 4 4  = 24.4 x 10-lrn2/IV as elastic constants of Material 2. The 

piezoelectric constants gij of the two materials are set to negligible values (g i j  + O) in 

order to simulate ideal elastic behaviour. The solutions are compared in Table 5.2 and good 

agreement is observed. 

5.4.1 Piezoelectric wedges 

Consider a PZT-4 wedge with polarization direction along the t-axis (0 = O in Fig- 5.1). 

Without loss of generality, set p = -a in the numerical study. Figures 5.3a and 5.3b 

show the variation of the order of singularity with the wedge angle 2ar for the homogeneous 

boundary condition combinations 1-1 and 4-4 in Table 5.1, respectively. It is found that al1 

roots are real. The îmo cases considered have singularities only for reentrant wedges, i.e. 

wedge angles between 180' and 360". Two roots exist for al1 wedge angles between 180' and 



a). traction free and electrically open 

b). clamped and electrically closed 

Figure 5.3: Variation of the order of singularity with the wedge angle. 



Table 5.2: Cornparison of roots X for isotropic bi-material wedges (Figure 5.2). 
- - .  

Geometry Present study Hein & Erdogan (197 1) 

360' while a third root appears between 270' and 360°, and 180' and 360" for boundary 

condition combinations 1-1 and 4-4 respectively. An increase in the order of singularity 

is noted with increasing wedge angle. For the limiting case of a semi-infinite crack, two 

of the roots approach the classical value of -0.5. An investigation of wedges with mixed 

boundary conditions in Table 5.1 (e-g. 1-4) shows roots for wedge angles less than 180°, and 

the presence of more than three roots. According to the study of elastic wedges by Mantic 

et al (1997), there are in general two roots for traction free B.C. on both edge surfaces, while 

present study shows combinations 1-1 : 2-2 and 1-2 have three roots. Therefore, piezoelectric 

wedges generally have one or more extra admissible roots compared to the corresponding 

elastic case. 

Three special cases of wedges, namely a right angle (2a = 90°), a half plane (2a = 180') 

and a semi-infinite crack ( 2 6  = 360') are of interest in engineering. The eqn (5.12) is 

numerically unstable for 2a = 360°, and 2a = 359.99" was used in the computations. Table 

5.3 shows the order of singularities (A - 2) corresponding to the ten possible boundary 

condition combinations based on Table 5.1. Numerical results agree with the analytical 

solution presented earlier for boundaxy condition combinations 1-1, 2-2, 3-3 and 4-4 for a 



.Table 5.3: Order of singularities for a right angle wedge, half plane and crack (0 = 0)- 

speciaI wedges B. C .  
combinations right angle halfplane 1 crack 



half plane and a crack- The roots for half planes and cracks in Table 5.3 are valid for all 

possible polarization angles B in view of the earlier Encling that roots are invariant with 

0. Table 5.3 also shows roots for mixed boundary conditions, such as those considered 

by Kuo and Barnett (1991), on the two edge surfaces. The order of singularity for semi- 

infinite cracks is stronger than the classical inverse square root singularity and oscillatory 

type singularities exist for mked boundary conditions. In addition, up to six admissible 

roots may exist for some mixed boundary conditions. At least one of the sin,.;ularities is 

of inverse square root type for half planes with mixed boundaq- conditions and oscillatory 

singularities exist for some cases. Note that the relation between columns 3 and 4 confirms 

the conclusion given eârlier, i-e., if 6 is an order of sin-oularity for a piezoelectric half plane, 

then 6/2 and (6 - 1)/2 are orders of singularities for a semi-infinite crack with identical 

boundary conditions. The cornparison of results between boundary condition combinations 

in Table 5.3 indicates that electrical boundary conditions have a significant influence on the 

order of singularities. In the case of a right angle wedge, singularities exist only for mixed 

boundary conditions. One admissible root was found and the singcrlarib is norrnally weaker 

than that corresponding to a half plane or a crack. No oscillatory type singularities are 

found. 

Figures 5.4 and 5.5 show the effect of polarization orientation (P) on the order of sin- 

gularities for PZT-4 wedges. In Fig. 5.4, the dependence of the order of singularity on ,û is 

examined for two wedge angles 240°, 300" under traction free and electrically open bouildary 

conditions on both edges. Note under the assumed boundary conditions, singularities exist 

only for wedge angles greater than 180". The singularities are identical for orientations fl  
and -p showing symmetry about ,B = O. The singularity corresponding to P = &90° is 

slightly stronger than that corresponding to ,B = O indicating a weak dependence on the 

polarkation orientation. Oscillatory type singularities are not found. The results for right 

angle wedges (20  = 90") with traction kee boundary conditions on one edge surface, i.e. 

combinations 1-3, 1-4, 2-3 and 2-4 in Table 5.1, are shown in Figure 5.5. Oscillatory type 

singularities exist only in the case of combination 2-3. A strong dependence on the polar- 

ization orientation is observed for al1 boundary condition combinations except for 2-4 and 

the roots are symrnetric about ,B = OC. The combination 1-4 shows two roots for IPI > 45' 

and the strongest or weakest singularity exists when the poling direction is along the z- or 

x-suis. An exception occurs for the combination 2-3 resulting in the weakest singularity for 

0 = &50°. 

A study of PZT-5 wedges show that singularities follow trends similar to those in Figs. 



Figure 5.4: Variation of the order of singulariw with the polarization angle for traction hee 
and electrically open wedges. 

Figure 5.5: Variation of the order of singularity with the polarization angle for right angle 
wedges. 



5-3-5.5 and Table 5.3, and the magnitude of roots are dso nearly identical. 

5.4.2 Piezoelectric - conductor wedges and junctions 

The results for PZT-4 - aluminum/nÏckel wedges and junctions are presented in Figures 

5.6 and 5.7. The first case considered (Fig. 5.6a) involves alurninum or nickel ( treated 

as an ideal conductor) quarter plane bonded to a PZT-4 quarter plane. The edges of the 

PZT quarter planes are traction free and electrically open, and traction £ree for conductors- 

Interface conditions are given by eqn (5-13). The polarization orientation ,B is varied from 

180" to -180°. Only one root is observed for aluminum and two for nickel. The sin-darity 

in nickel - PZT wedge is stronger than that in aliiminrim - PZT wedge. The latter system 

has a very weak shgularity with less dependence on P. The infiuence of poling direction 

is more significant in the case of nickel - PZT wedges with 0 = -45O, 135O shotving the 

strongest singularities. In general, the singularity is weaker than the classical inverse square 

root singularim An aliiminrim or nickel wedge bonded to a PZT-4 half plane is considered 

in Figure 5.6b. Setting polarization orientation angle ,û = 0, the effect of wedge angle a is 

investigated. Three roots exist for both nickel and aluminum, and the sinedadies become 

more severe as the wedge angle a increases. The case of an interface crack is obtained when 

a! = 180" and the singularity is found to be stronger than the classical inverse square root 

singularity for both bi-material systems. 

A fully bonded PZT-4 - aluminurn or nickel junction is considered in Figure 5.7a for 

varying angle cr and three poling directions (P = O", 90°, 180"). The results for P = O0 are 

identical to that for p = 180°. No sin,.;ularity exists when a is less than 180" for both 

aluminum and nickel. When a! is larger than 180°, a very weak singularity is noted for 

aluminum - PZT system only for ,O = 90°. The root corresponding to nickel - PZT system 

increases rapidly until a is closer to 240' for the three poling directions. An additional root 

for this system exists for a closer to 270° when 0 = 90'. The singularities are weaker than 

the classical inverse square root singularity. Consider the same bi-rnaterial systems except 

that the interface defined by angle ar is fully debonded and electrically openr as shown in 

Fig. 5.7b. Three roots are found for aluminum, and four for nickel. Singularities exists for 

al1 values of a! considered and are more stronger for both nickel - PZT and alurninum - 

PZT systems when compared to the fully bonded case in Fig. 5.7a. The sinodari@ is also 

stronger than the classical inverse square root singularity for most ar in the case of nickel. 

Based on the results shown in Figs. 5.6 and 5.7, it can be concluded that alurninum-PZT 

systems have weaker singularities in most cases when compared to nickel-PZT systems. The 



Figure 5.6: Variation of the order of singularity for PZT-4 - aluminum (nickel) wedges. 



a). fully bonded junction 

b). debonded interface 

Figure 5.7: Variation of the order of singularity for PZT-4 - alurninum (nickel) junctions. 



same systems are considered with electrically closed boundary conditions on the debonded 

interface and the results are found to follonr trends quite similar to Fig. 5.7b with some 

difference in the magnitude. 

5 -4.3 Piezoelectric - graphite/epoxy wedges and j unct ions: 

The roots of a PZT - Gr./Ep. wedge with traction free and electrically open outer edges 

are shown in Fig. 5.8a. The interface is fully bonded and electrically impermeable. The 

influence of wedge angle a on the order of singularity is investigated, while the polarization 

f l  is set to zero. Generally two roots exist with one over the full range of a, while another 

exists only for a! larger than 80'. The singularities become stronger as the wedge angle a 

increases for both PZT-4 and PZT-5. The roots show negligible dependence on the type 

of piezoelectric material. The case of an interface crack between PZT and Gr./Ep. is 

obtained when a! = 180°, and the singularity is identical to the classical inverse square root 

sin,aularity. A piezoelectric-graphite/epoxy wedge similar to that shown in Fig. 5.6a is also 

considered and the singularities are found very weak (weaker than -0.06) for the range of 8 
shown in Fig. 5.6a. 

A completely bonded PZT - Gr./Ep. composite junction similar to that s h o m  in Figure 

5.7a is examined in the numerical study, no sin,&arities are found for the considered range of 

a. A PZT - Gr/Ep. bi-material junction with a fuily debonded and electrically impermeable 

interface is examined in Fig. 5.8b. The polarization of PZT is set to 0' with the debonded 

interface varied from 90° to 270'. Two roots exist for PZT-5 and three for PZT-4. The roots 

are symmetric about û: = 180° and show strong dependence on a. When a is 180' (interface 

crack), the classical inverse square root type sin=larity is observed for both piezoelectric 

materials. The nonexistence of singularities for a hlly bonded bi-material junction and the 

presence of strong singularities for a debonded junction indicate the importance of interface 

conditions on the stress field near a sharp corner. 

5.4.4 Piezoelectric bi-material systems: 

Bi-material junctions involving PZT-4 and PZT-5 with a debonded interface defined by 

angle a are considered in Figure 5.9. Traction free and electrically open boundary conditions 

are assumed along the debonded interface and full continuity (mechanical and electrical) 

conditions are assumed on the other interface. The influence of a on the singularities is 

investigated for three different polarization orientations (Pl) of PZT-4 and for ,O2 = 0'. 

Three modes of singularities are generally observed and the significance of poling direction 



b). debonded interface 

a 

Figure 5.8: Variation of the order of singularity for PZT-4 - graphite/epoxy systems. 



Figure 5.9: Variation of the order of singularity for PZT-4 - PZT-5 junctions with debonded 
interface. 

,ûl is clearly noted. The singularities are stronger than any of the previously considered cases. 

It is also interesting to note that roots for pl = O* are not identical for Pl = 180'. The 

strongest singularity is noted when the two materials are polarized perpendicular to each 

other and a is greater than 180°. The singularity is relatively weaker when the tn;o materials 

are polarized in the same direction when compared to opposite directions. Furthermore, the 

sin-bularities are symmetric about cr = 180" when the materials are polarized in the same 

or opposite directions- The present case can be considered as a general case of a horizontal 

bi-material crack considered by Kuo and Barnett (1991). It is seen fiom Fig. 5.9 that 

for a horizontal interface crack (a = 180°), the strongest singularity is obtained when the 

two piezoelectric materials are polarized in opposite directions. Therefore the polarization 

orientations of both materials have a significant influence on singular field near the tip 

of an interface crack between two piezoelectric rnaterials. Other admissible homogeneous 

boundary conditions can be considered on the debonded interface and the results are not 

presented here for brevity. 



5.4.5 Three material systems 

Finally, the singularities in three dissimilar matenal systems, namely PZT, nickel and 

Gr./Ep. composite, are considered. Such material systems are encountered in adaptive 

structures, stack actuators, etc. The results are presented in Fig. 5.10 for two systems in- 

volving three materials. The direction of polarization is assumed to be along the z-mis. The 

system shown in Fig. 5.10a has a M y  bonded interface between nickel and graphite/epoxy. 

Nickel - PZT and PZT - graphitelepoxy interfaces are both fully mechanically bonded, and 

electrically closed and impermeable respectively. A crack is assumed in PZT-4 along the 

plane measured by the angle a. The crack faces have traction free and electrically open 

boundary conditions. The numerical results show two to four roots depending on the angle 

a. The singularities are very strong. The singularities corresponding this system in the 

absence of a crack is also shown in Fig. 5.10a. Note the sin,oularities become severe due to 

the presence of the crack. Figure 5.10b shows results for a similar system involving PZT-4, 

PZT-5 and nickel. The crack is assumed to exist in one of the piezoelectric materials and 

a = 180° corresponds to a debonded interface between PZT-4 and PZT-5. Three roots 

are found for the debonded PZT-4/PZT-5 interface case. One to four roots exist when the 

crack is inside the piezoelectric medium depending on the angle a. Note the sin,darities 

are discontinuous across the interface of PZT-4 and PZT-5. Again, the singularities are very 

strong. In the case of fully bonded junction tvithout a crack, the singularity is very weak 

(-0.0078), as shown in the Figure 5.10b. 

5.5 Conclusions 

A general method of obtaining electroelastic ~ i n ~ l a r i t i e s  in piezoelectric wedges and com- 

posite piezoelectric wedges/junctions is successfully developed by extending Williams' eigen- 

function expansion for elastic solids. The formulation is valid for an arbitrary polarization 

orientation. The characteristic equation governing the order of singularity is transcendental 

and the Muller's numerical method (1956) can be used to determine the roots accurately. 

Compared to the corresponding elastic cases, piezoelectric wedges generally have one or 

more extra admissible roots. Electric boundary conditions show a significant effect on the 

order of singularities. The ~ i n ~ l a r i t i e s  of piezoefectric half planes and serni-infinite cracks 

are found to be invariant with respect to the directions of polarization. The polarization 

orientation has a negligible influence on singularities of piezoelectric wedges with identical 

boundary conditions on both surfaces. However, for different boundary conditions on the 
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Figure 5.10: Variation of the order of singularity for three materid systems with a crack in 
piezoelectrics. 



edges, the order of singularities show strong dependence on the polarization angle. 

The singularities are weaker for PZT - aluminum systems when compared to PZT - 

nickel systems. The strongest singularities of P Z T  - graphite/epo'=y systems are -0 -5, which 

corresponds to the case of a horizontal bi-material crack. Fully bonded PZT-graphite/epoxy 

junctioos do not show any singularities. Bi-rnaterial systems of two piezoelectrics have 

stronger singularities t hat also depend significantly on the polarization direction. Two 

piezoelectrics polarized in the same or opposite directions show weaker sùi,oularities when 

compared to bi-material systems with polarizations perpendicular to each other. Three 

material systems with a crack inside a piezoelectric medium have singularities more stronger 

than the classical inverse square root singularity. The presence of a crack or a debonded 

interface result in a much severe sin,darity for both two and three material systems. The 

results presented in this Chapter are usefkl in material selection, optimum design and failure 

analysis of adaptive structures and piezoelectric actuators . The present results are also 

useful to the development of special finite and boundary elements for accurate simulation 

of electroelastic fields at crack tips and sharp corners. 



Chapter 6 

Conclusions and Recommendat ions 

6.1 Major Findings 

The main conclusions of this thesis are summarized in this Chapter. Separate detailed 

conclusions are given at the end of Chapters 2-5 based on the analysis and numerical results 

presented in those Chapters. Following are the major conclusions and findings of the present 

st udy. 

1. The extended Lektinitskii's formalism can be successfully applied to study piezoelectric 

plane problems with an arbitrarily oriented defect (elliptical void or crack). The ana- 

lytical solutions for electroelastic field around an impermeable void and a permeable 

void can be derived in a remarkably compact form. By mathematically reducing an 

elliptical void to a crack, the analytical solutions for electroelastic field at the crack tip 

as well as fracture parameters can be obtained for impermeable and conducting cracks. 

The present results can be reduced to special cases of defect orientation reported pre- 

viously, namely defects parallel or perpendicular to the direction of polarization. 

2. T t  is found that the void orientation has a si,.;nificant effect on the electroelastic field. 

The solutions for special cases, namely voids that are either parallel or perpendicular to 

the direction of polarization, cannot always be considered as the critical case. Numer- 

ical results indicate that the impermeable void model is applicable to most practical 

situations, whereas the more complex permeable void model (exact solution) should 

be used when the medium is subjected to electric loading and the void geometry ratio 

@/a) is larger than 1000. 

3. The orientation of a crack is found to have a negligible influence on the crack-tip 



hoop stress under remote mechanical loading. However, a si ,dcant influence of crack 

orientation is observed under electrical loading or combined loading with larger electric 

to mechanical load ratio. Crack closure may happen depending on the direction of 

applied electric loading and the ratio of electric to mechanical loading. The infiuence 

of an applied electric displacement normal to an impermeable crack is analogous to 

that of an applied electric field tangential to a conducting crack. 

For cracks containing air or vacuum in plane piezoelectric media, a unified formulation 

accounting for three existing electric boundary conditions, namely the impermeable 

crack model, the permeable crack model and the Hao & Shen type crack model, can 

be developed. The three types of cracks practically have identical response under pure 

mechanical loading. Under applied electric loading, the permeable crack model leads 

to the conclusion that electric loading has no influence on crack problems. The Hao 96 

Shen type electric boundary conditions reduce to impermeable or permeable boundary 

conditions under practical situations. It is shown that the applicability of reducing 

the exact void solution to the exact crack solution is questionable. Such a reduction 

results in the solution for a permeable crack instead of a solution corresponding to the 

exact electric boundary condition for a crack as previously claimed by others. 

4. The method of continuously distributed generalized dislocations and Lekhnitskii's 

complex potentials can be successfully applied for analysis of branched crack prob- 

lems. The problems of an impermeable branched crack and an impermeable bifurcated 

crack can be reduced to the solution of a system of singular integral equations. It is 

found that branch closure may happen depending on branch length, branch angle and 

loading condition. The ranges of branch angles within which a branch is open are 

quite larger for mechanical loading than for electric loading. The length of a branch 

has negligible infiuence on branch closure under electric loading. 

In the case of mechanical loading, a deviated branch plays a shielding effect on Mode 

1 stress and electric displacement intensity factors, compared to self-similar crack 

extension. In the case of positive electric loading, a shielding effect is also observed 

for the electric displacement intensity factor. In general, the asymptotic electroelastic 

fields at the branch tip have a comptex dependence on branch length, branch angle, 

crack orientation and the type of loading. The infiuence of appiied electric loading 

is more complicated and significant than the influence of mechanical loading. The 

trends of field intensity factors of a symmetrically branched crack are similar to those 

of a single-branched crack, but a symmetrically branched crack has a narrower range 



of branched angles within which the crack remains open. The numerical results for 

an asymmetrically branched crack indicate that, if a fracture criterion based on stress 

intensity factors is used, it is unlikely that the two branches can simultaneously grow 

when a bifurcated crack is subjected to remote tension. 

5. A new stress-based criterion and two energy-based criteria, namely the critenon of 

modified hoop stress intensity factor, modified strain energy release rate and modified 

total energy release rate, are proposed to predict potential propagation of an imperrne- 

able crack. The salient features of proposed criteria are the consideration of fracture 

toughness anisotropy and removal of self-similar crack extension assumption. A sim- 

ple mode1 is developed to describe the fi-acture toughness anisotropy in piezoelectrics, 

based on available expenmental results. 

Numerical results show that distinctly diEerent propagation directions are predicted 

if isotropic fracture toughness is used for both stress and energy based criteria. The 

modified hoop stress intensity factor and the modified strain energy release rate cri- 

teria indicate that a crack may branch off from a straight path even under s_vmmetric 

loading and geometry, which qualitatively agrees with previously reported experirnen- 

t d  fhdings. Under applied mechanical loading, the criteria of modified strain ener,.y 

release rate and modified total energy release rate are virtually equivalent, and the two 

energy-based critena and the stress-based criterion predict similar crack propagation 

pat hs. Under applied electrical loading, however, the predicted propagation paths by 

the stress-based criterion are significantly different from those by the energy-based cri- 

teria. Based on the criterion of strain energy release rate, a crack tends to branch off 

£rom a straight path regardless of the polarization angle. Under combined mechanical 

and electric loading, an electric field c m  either promote or retard crack propagation 

depending on the branching angle, the direction of polarization and the direction of 

applied electric field. 

6. A general method of obtaining electroelastic singularities in piezoelectric wedges and 

composite piezoelectric wedges/junctions is successfully developed as a precursor to the 

analysis of fracture problems involving multi-material systems. Analytical solutions 

for piezoelectric half-planes and cracks can be obtained for some special boundary 

conditions. The solutions for general cases involving multi-material systems can be 

obtained numericaliy. 

Piezoelectric wedges generally have one or more extra types of singularities, cornpared 



to the corresponding elas tic cases. Elect ric boundary conditions show a significant 

effect on the order of singularities. The singularities of piezoelectric half planes and 

semi-infinite cracks are found to be invariant with respect to the direction of po- 

latization. The polarization orientation has a negligible iduence on sin-larities of 

piezoelectric wedges with identical boundary conditions on both surfaces. However, 

for difFerent boundary conclitions on the edges, the order of singularities shows strong 

dependence on the polarization angle. 

The singularities are weaker for PZT/aluminum wedges when compared to PZT/ nickel 

wedges. A M y  bonded PZT-graphite/epoxy junction does not show any shgularity. 

Bi-material systems of two piezoelectrics have stronger singularities which also depend 

significantly on the polarization direction. Two piezoelectrics polarized in the same or 

opposite directions show weaker singularities when compared to bi-material systems 

with polarizations perpendicular to each other. The presence of a crack or a debonded 

interface results in a higher order singularity for two and three material systems. 

6.2 Recornrnendations for future work 

This following recommendations are made for future work. 

1. Nonlinear effects associated with domain switching at  the crack tip should be ex- 

amined. The switched domains induce incompatible strain uncier the constraint of 

unswitched material, and consequently alter the stress distribution near the crack. 

The fracture toughness may Vary considerably due to domain switching. The con- 

sideration of poly-domain systems in modelling is also important. Research in this 

direction may explain the basis for some conflicting views reported in the literature. 

Furtherrnore, the residual stresses, which are developed during the poling process, 

need to be considered. 

2. Coordinated experiment al studies are needed to understand the real electric boundary 

conditions on crack faces. 

3. The exact nature of fracture toughness anisotropy should be determined. This requires 

both experimental studies and complementary theoretical work. The proposed fracture 

criteria should be experimentally validated. 
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Appendix A 

Material properties 

The properties of three piezoceramics, namely PZT-4 (PZT-4a and PZT-4b), PZT-5 and 

PZT-5H, used in this thesis are given here. PZT-4a and PZT-5H are used in Chapters 2-4, 

and their properties are given in the form of eqn (2.2). P ZT-4b and PZT-5 are used in 

Chapter 5, and their properties are given in the form of eqn (2.1). Pote that PZT-4a and 

PZT-4b are from different sources, and their properties are slightly different. 

PZT-4a (Park and Sun, 1995b): 

cil = 13.9 x 10'ON/m2, cl2 = 7.78 x 10"'N/rn2, cl3 = 7.43 x 1 0 ' ~ ~ / r n ~  

c33 = 11.3 x 10~ON/rn~, CU = 2.56 x 1o1OiV/rn2 

e3i = -6.98C/m2, es3 = 13.84C/m2, el5 = 13.44C/m2 

~ 1 1  = 6-00 x I O - ~ C V / ~ ,  ~ 3 3  = 5.47 x I .o-~cv/~~ 

PZT-4b (Berlincourt et al, 1964): 

si1 = 10.9 x 10- '~rn~/N, s33 = 7.90 x 1 0 - ~ ~ m ~ / 1 \ 5  s12 = -5.42 x 10-12rn2/~ 

s13 = -2.10 x 10-'~rn~/IV, sqq = 19.3 x 10-12rn2/~ 

931 = -11.1 x ~ o - ~ v ~ / N ,  933 =26.1 x ~ o - ~ v ~ / N ,  g l j  =39.4x ~ o - ~ v ~ / N  
Bi1 = 7.66 x 1o7v2/N, >c33 = 8.69 x 1 0 7 v 2 / ~  

PZT-5 (Berlincourt et al, 1964): 

si1 = 14.4 x 10- '~m~/N,  533 = 9-46 x 10-~~rn~/ lV,  SI* = -7.71 x 10-'~rn~/iV 

s13 = -2.98 x 10-12rn2/N, s44 = 25.2 x 1 0 - ~ ~ r n * / ~  

931 = -11.4 x 1 0 - ~ v r n / ~ ,  933 = 24.8 x 10-3Vrn/~,  g15 = 38.2 x 1 0 - ~ ~ r n / N  

811 = 6.53 x 1o7v2/IV, 433 = 6.65 x 107v2/jV 



PZT-SR (Pak, 1992): 

C l 1  = 12.6 x 101°~/rn2, cl2 = 5.5 x 1 0 ~ ~ N / r n ~ ,  ci3 = 5.3 x 101°~/m2 
c33 = 11.7 x 1 0 ~ ~ N / r n ~ ,  CM = 3.53 x 1 0 ~ O ~ / r n ~  

egl = -6.5c/m2, ex3 = 23.3C/m2, el5 = 17.0C/m2 

E l 1  = 151 X LO-~~CV/??Z, ~ 3 3  = 130 X I O - ~ O C V / ~  



Appendix B 

Constants Associated with 

Branched Cracks 

The constants hi (n, i = 1,2,3)  appearing in eqn (3.3) are 

where 

and an overbar denotes the complex conjugate of a cornplex-valued quantity. 

The constants qij (i, j =f 1,2,3) appearing in eqn (3.8) are 



where 

The constants Jij (i, j = 1,2 ,3)  in eqn (3.21) are 

where 




