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Abstract

The emerging technologies of smart materials and structures have found increasing appli-
cations in diverse branches of engineering such as civil, aerospace, mechanical, and man-
ufacturing engineering. Piezoelectric materials are ideal candidates for functional (smart)
materials, and have been a primary focus of attention in the realization of smart (adaptive)
structure systems. The use of piezoelectric materials, however, carries a price, due to the
fact that piezoelectric materials are very brittle and susceptible to fracture. The future de-
velopment of adaptive structures strongly depends on better understanding of the fracture
mechanism of piezoelectric materials. Therefore, this thesis presents a theoretical study
of fracture mechanics of piezoelectric materials. Based on the literature review, a selected
set of basic problems related to linear fracture mechanics of plane piezoelectric media are
examined.

A comprehensive study of a plane piezoelectric medium with an arbitrarily oriented el-
liptical void and a straight crack is presented first. A set of complete analytical solutions
for electroelastic fields around the void and at the crack tip are derived for different types of
electric boundary conditions. It is found that solutions based on the special cases of defect
orientation, Z.e. defects parallel or perpendicular to the poling direction, cannot be always
considered as the critical case. A significant influence of crack orientation on the stress
distribution at crack-tip is observed when a crack is under electrical loading or combined
loading with larger electric to mechanical load ratio. The influence of an applied electric
displacement normal to an impermeable crack is analogous to that of an applied electric
field tangential to a conducting crack. It is shown that the Hao and Shen type electric
boundary conditions reduce to impermeable or permeable boundary conditions under prac-
tical situations. A recently reported solution for exact boundary conditions is actually the
previously known solution for a permeable crack.

The branched cracks are then studied as the logical extension of straight cracks. It is

found that branch closure happens for certain cases of branch length, branch angle and
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loading condition. The ranges of branch angles within which a branch is open are much
larger for mechanical loading than for electric loading. It is shown that the asymptotic
electroelastic fields at a branch tip have complex dependence on branch length, branch
angle, crack orientation and the type of loading. The influence of applied electric loading is
found to be more complicated and significant than mechanical loading. Numerical results
indicate that asymmetrically branched crack will not simultaneously grow under remote
tension.

The issue of fracture criteria is examined next. A new stress-based criterion and two
energy-based criteria are proposed to predict crack propagation in piezoelectrics. The salient
features of proposed criteria are the consideration of fracture toughness anisotropy and the
removal of self-similar crack extension assumption. It is shown that distinctly different
propagation directions are predicted if isotropic fracture toughness is used. The criteria of
modified hoop stress intensity factor and modified strain energy release rate suggest that,
even in a symmetric case (loading and geometry), a crack may branch off from a straight
path, which qualitatively agrees with available experimental findings.

Finally, a general method of obtaining electroelastic singularities in piezoelectric wedges
and composite piezoelectric wedges/junctions is successfully developed as a precursor to
the study of fracture of multi-material systems. It is found that electric boundary condi-
tions have a significant effect on the order of singularities for piezoelectric wedges. The
singularities of piezoelectric half planes and semi-infinite cracks are found to be invariant
with respect to the direction of polarization. Bi-material systems of two piezoelectrics have
stronger singularities when compared to piezoelectric - conductor/composite systems. The
presence of a crack or a debonded interface results in a higher order singularity for two and

three material systems.
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Chapter 1

Introduction

1.1 General

Smart materials and structures have found increasing applications in diverse branches of
engineering (e.g. civil, aerospace, mechanical, and manufacturing engineering). Actuators
and sensors made of functional (smart) materials are integrated with structural materials in
smart structures, and the resultant structures are able to adaptively respond to changes of
external or internal parameters analogously to biological systems (Tani, et al, 1998). Popular
materials being used for sensors and actuators are piezoelectric materials, magnetostrictive
materials, shape memory alloys, and optical fibers. Among all these materials, piezoelectric
materials are most widely used because of their fast electromechanical response and low
power requirements (Jain and Sirkis, 1994).

There are two basic phenomena which enable piezoelectric materials to qualify as func-
tional (smart) materials (Figure 1.1). The first phenomenon is known as the direct piezo-
electric effect which implies that the application of mechanical force or pressure to a piezo-
electric material produces an electrical charge or voltage (Figures 1.1b and 1.1c). On the
other hand, the application of an electrical charge or voltage to the material induces strain
or displacement, which is known as converse piezoelectric effect (Figures 1.1d - 1.1f). The
direct and converse piezoelectric effects form the basis for employing piezoelectric materials
as sensors and actuators, respectively.

Tani et al (1998) and Sunar and Rao (1999) presented extensive reviews on piezoelectric
materials and their broad applications in the emerging field of smart structures. For ex-

ample, in aerospace applications, piezoelectric actuators have been used to manipulate the
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Figure 1.1: Illustration of piezoelectric effect in a cylinder of PZT material (APC Interna-
tional Ltd.: Piezoelectric Ceramics and Application Notes).

blade twists of the helicopter rotors (Chen and Chopra, 1997). In civil infrastructure, the vi-
bration control of a steel building using large piezoelectric actuators has been demonstrated
(Kamada, et al, 1997).

The major concern about using piezoelectric materials is their brittleness and susceptibil-
ity to fracture. These materials may experience mechanical failure or dielectric breakdown
under complex electromechanical loading. Commercially available piezoceramics such as
lead zirconate titanate (PZT) are very brittle. The unavoidable presence of defects dur-
ing manufacturing processes increases the likelihood of failure of piezoceramic elements.
There is evidence that the service performance of piezoceramics is hampered by defects or
anomalies such as voids and cracks. Park et al (1998) experimentally demonstrated that
damage initiates and grows around internal void-like defects. Barsoum (1997) reported that
fatigue degradation is caused by the presence of cracks. The structural integrity of piezoelec-
tric ceramics is becoming increasingly important as their use is extended to new frontiers.
Comprehensive studies about better understanding of fracture behavior and quantitative
prediction of possible crack extension are imperative for the reliable application of piezo-
electric materials in adaptive structures technology. Therefore, this thesis aims at studying
some basic fracture mechanics problems involving piezoelectric materials.

A concise review of literature related to the fracture of piezoelectric ceramics is presented

in the ensuing section in order to define the objectives and the scope of the present study.



1.2 Literature review

Voids and Straight cracks

The study of electroelastic fields around defects in piezoelectric ceramics has been quite ex-
tensive in the past decade. By assuming an electrically impermeable boundary, Sosa (1990)
studied stress concentration around an elliptical hole by extending Lekhnitskii’s complex
potential functions (Lekhnitskii, 1963). Numerical results were presented to show the piezo-
electric effect and the dependence of stress and electric fields on defect geometry and applied
loading. Sosa and Khutoryansky (1996) revisited an identical problem by removing the as-
sumption of an impermeable boundary. There are also several recent studies (e.g. Park
and Carman, 1997; Zhang et al, 1998; Gao and Fan, 1999) dealing with elliptic voids. A
major restriction of these studies is the assumption that the defect axis is either parallel
or perpendicular to the poling direction. In view of the great likelihood that defects are
arbitrarily oriented, it is important to develop solutions for such general cases to gain more
insight.

A number of researchers examined the problem of impermeable cracks in plane piezo-
electrics. Sosa {1992) obtained the crack solution by reducing the solution for an elliptical
void. Sosa (1992) and Suo et al (1992) added an electric intensity factor to the well-known
elastic stress intensity factors. Pak (1992) and Suo et al (1992) used the energy release rate
to study crack problems. Park and Sun (1995a) employed Stroh formalism (Stroh, 1962) to
derive electroelastic fields around a horizontal centre crack. Park and Sun (1995b) performed
compact tension tests and reported that a positive field along the poling direction reduces
the fracture load, and a negative one increases it. Using the Vickers indentation, Singh
and Wang (1995) observed experimental results contrary to the findings of Park and Sun
(1995b). They found that crack propagation is inhibited under a positive applied electric
field, and is enhanced under a negative field. In a series of papers, Kumar and Singh (1996,
1997a, 1997b) employed the finite element method to study crack problems and compared
their results with the experimental results of Singh and Wang (1995). No consensus has
been reached on the role of an applied electric field. The condition that the crack plane is
perpendicular to the poling direction is exclusively used in the above studies.

Conflicting views on electric boundary conditions for cracks containing air or vacuum
are also observed in the literature. Polovinkina and Ulitko (1978) and Mikhailov and Parton
(1990) used a permeable crack model, which assumes the continuity of electric potential and

the normal component of electrical displacement across the crack faces. Suo et al (1992)



argued that this condition is not realistic, as there is an electric potential drop across the
crack. Deeg (1980) proposed an impermeable crack model, i.e., the vanishing of normal
electric displacement on the crack faces. Pak (1990) provided arguments for the validity
of Deeg’s model. Dunn (1994), Zhang and Tong (1996) and Zhang et al (1998) examined
the crack face boundary conditions by studying an elliptical void. By taking the limits
of a void, Zhang and Tong (1996) and Zhang et al (1998) discussed the effects of crack
geometry and permittivity. They found that different limits of governing variables result
in different crack face conditions. Hao and Shen (1994) proposed a new clectric boundary
condition by considering the electric permeability of air or vacuum in a crack. Gao and Fan
(1999) claimed that the solution for a plane crack under exact electric boundary conditions
is obtained by reducing the solution for a permeable void.

Apparently, coordinated experimental studies are needed to understand the real electric
boundary conditions on crack faces and to clarify the role of an applied electric field. It is
noted that past theoretical studies exclusively assumed that a crack is perpendicular/parallel
to the poling direction or has impermeable crack faces. In addition, the electric boundary
conditions proposed by Hao and Shen (1994) have not been closely examined. Also, it is

questionable that the crack solution reported by Gao and Fan (1999) is exact.

Fracture criteria

Criteria of crack propagation are fundamentally important in the study of fracture me-
chanics. For linear isotropic elastic materials, fracture criteria of maximum stress intensity
factor, maximum hoop stress and maximum energy release rate result in quite similar frac-
ture predictions. However, these criteria do not predict similar crack propagation paths in
anisotropic materials (Azhdari and Nemat-Nasser, 1998). The prediction of crack propaga-
tion in piezoelectric materials is more complicated due to the coupling between mechanical
and electrical fields.

According to the conventional field intensity factors (Suo et al, 1992), the mechanical and
electrical fields are completely decoupled. Experimental studies indicate a dependence of
piezoelectric fracture on applied electric field (Park and Sun, 1995b; Singh and Wang, 1995),
implying that the fracture criterion of stress intensity factor is not feasible for piezoelectrics.
Some efforts have been made to seek appropriate fracture criteria for impermeable cracks
in piezoelectrics. The criterion of total energy release rate was employed by Pak (1992),
whereas the criterion of mechanical (strain) energy release rate was proposed by Park and

Sun (1995b). The assumption of self-similar crack propagation was used in the above studies.



However, a crack may deviate from the straight path in piezoelectric solids due to mate-
rial anisotropy. Using the double torsion testing technique, McHenry and Koepke (1983)
reported that cracks in symmetric piezoceramic specimen deviate from straight paths under
symmetric electric loading. In an attempt to explain experimental observations of crack
branching (McHenry and Koepke, 1983), Kumar and Singh (1996) employed the criterion
of the maximum hoop stress to examine the crack propagation. In another attempt, Kumar
and Singh (1997a, 1997b) used the finite element method to calculate the angular distribu-
tion of the energy release rate, and applied the criterion of maximum energy release rate to
predict crack propagation. Their results of energy release rate distribution, however, are not
accurate, and there is a discrepancy between their finite element solutions and the analytical
solutions reported in the literature (Pak, 1992). Accurate solution for angular distribution
of energy release rates has not appeared in the literature.

It is noted that the above studies only considered the case that the poling direction is
perpendicular to the crack. Furthermore, the assumption of isotropic fracture toughness in
piezoelectric materials was exclusively used. However, this assumption is not true. Due to
their anisotropic material properties, the fracture toughness in piezoelectrics is expected to
be orientation dependent, which is confirmed by experimental data (Calderon-Moreno, et
al, 1997; Pisarenko, et al, 1985; Chen, et al, 1999).

Branched cracks

The phenomenon of crack branching is an important aspect of fracture mechanics (Miller and
Stock, 1989; Karihaloo and Anderson, 1998). Branched cracks are commonly encountered in
the fracture of brittle materials. Crack branching may be caused by anti-symmetric loading,
anisotropic material properties, voids, impurities eftc. Polarized ceramics have anisotropic
mechanical and electric properties. McHenry and Koepke (1983) reported the phenomenon
of crack branching in piezoelectric ceramics based on their experimental study. Lynch ef al
(1995) observed that an impermeable crack would branch and have a feathered appearance in
a piezoceramic sample. Although crack branching in elastic materials has been extensively
investigated (Obata, et al, 1989; Azhdari and Nemat-Nasser, 1996; etc), no studies have
considered branched cracks in piezoelectric solids except for a recent study by Zhu and
Yang (1999).

Zhu and Yang (1999) theoretically examined a branched crack in a piezoelectric plane by
employing the Stroh formalism combined with dislocation modeling. The electroelastic field

at the branch tip was investigated in terms of field intensity factors under remote mechanical



or electric loading. Their formulation was validated by checking possible closure of the
main crack. Considering a crack with an infinitesimal branch, they discussed the possible
directions of crack branching based on the assumption of isotropic fracture toughness. The
numerical results showed that a crack tends to propagate along the self-similar line under
a tensile stress and a positive electric loading. However, their analysis is restricted to
the special case of a crack normal to the poling direction. The possible closure of the
crack branch was not examined, implying invalidity of some of their results. Moreover, the

assumption of isotropic fracture toughness is not true for piezoelectrics as stated above.

Singularities in multi-material systems

An adaptive structure generally has several composite wedges and material junctions in-
volving piezoelectric materials (Figure 1.2). In practical applications, piezoelectric sensors
or actuators are embedded in or bonded to a parent structure. In addition, commonly used
piezoceramic stack actuators also involve some of the material junctions shown in Figure 1.2.
A complete study of fracture of multi-material systems is beyond the scope of this study.
However, the knowledge of singularities at multi-material junctions/wedges is essential in
the application of linear fracture mechanics to such systems and composites. A precise un-
derstanding of electroelastic singularities at corners of composite piezoelectric wedges and
junctions is valuable to the optimum design and failure analysis of piezoceramic actuators
and adaptive structures. Furthermore, the knowledge of the order of singularity can be
useful in the development of special crack-tip elements for analysis of fracture of bi-material
actuator systems.

In the case of piezoelectric media, both stress and electric fields at a sharp corner may
be singular. This implies that either local mechanical failure due to stress concentration or
dielectric failure due to electric field concentration could take place at a sharp corner. A
review of literature reveals that a comprehensive analytical and numerical study of electroe-
lastic singularities in composite piezoelectric wedges has not yet been reported while there
have been extensive studies on elastic wedge problems (e.g. Williams 1952, 1956; Bogy
1968, 1970; Hein and Erdogan, 1971; Dempsey and Sinclair 1979; Delale, 1984; Manti¢ et al
1997 and others). The only studies that have addressed related problems are presented by
Sosa and Pak (1990) and Kuo and Barnett (1991). These studies examined electroelastic
singularities at the tip of planar cracks perpendicular to the direction of polarization in

homogeneous piezoelectrics and bi-material systems.
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Figure 1.2: Composite wedges and junctions encountered in adaptive structures.



1.3 Objectives and scope

Based on the above literature review, it is clear that there are still a number of areas related
to linear fracture mechanics of piezoelectricity which require further attention. Topics such
as the effect of void orientation and singularities in composite piezoelectric wedges have not
been considered in the literature. Little knowledge exists on the dependence of fracture
parameters on crack orientation and electric boundary conditions. Past studies also show
conflicting observations on some key issues. For example, entirely distinct conclusions,
supported by both theoretical and experimental studies, have been reported regarding the
effect of applied electrical field on crack propagation. So far, no consensus has been reached
on the electric boundary conditions on the crack faces. Previous studies on branched cracks
and fracture criteria employed irrational assumptions or simplifications. Therefore, there
exists a necessity to examine several key issues related to fracture of piezoelectrics.

A theoretical study of piezoelectric materials is presented in this thesis with four main
objectives. First, a comprehensive study of an arbitrarily oriented elliptical void and a
straight crack is carried out. Analytical solutions are developed for different types of void
and crack boundary conditions. The effects of defect orientation and electric boundary
condition are closely examined. Secondly, the problem of an arbitrarily oriented branched
crack is studied. The influence of the deviated branch is investigated. The condition for an
open crack is taken into consideration. Thirdly, the issue of fracture criteria for piezoelectric
materials is investigated. The commonly used assumption of self-similar crack extension is
relaxed, and the fracture toughness anisotropy is taken into consideration. Finally, the
electroelastic singularities at the corner of composite piezoelectric wedges are examined.
The singularity analysis may appear, at first glance, to be somewhat independent, but the
result of this analysis is actually used in the analysis of branched crack problems. More
important, the knowledge of singularities is essential when constructing analytical solutions
for composite piezoelectric systems and in the development of special crack-tip elements for

finite and boundary element methods.



Chapter 2

Arbitrarily Oriented Voids and
Straight Cracks

2.1 Infinite Plane with an Elliptical Void

2.1.1 Basic equations

Depending on the choice of variables, two sets of constitutive equations are frequently used
in the literature for piezoelectrics. With stress {o} and electric displacement {D} as inde-

pendent variables, the constitutive equations are
{e} = [sl{e} + [ {D}: {E} = —[gl{e} + [B{D} (2.1)

where {€}, {E} denote strain and electric field vectors, respectively. [s], [g] and [8] are
matrices denoting the elastic constants, piezoelectric constants and dielectric constants,
respectively. The superscript T denotes transpose of a matrix.

Alternatively, with strain and electric field as the independent variables,
{o} = [d{e} - []"{E}; {D} = [el{e} + [{E} (2.2)

where [c], [e] and [e] are matrices representing the elastic constants, piezoelectric constants
and dielectric constants, respectively.

Note that eqns (2.1) and (2.2) are dependent, and the material constants in these two
equations are related to each other. A majority of piezoelectric materials used in commercial
applications are either hexagonally symmetric crystals or polarized ceramics. The properties

of three piezoceramics used in this thesis are given in the Appendix A.
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Figure 2.1: Arbitrarily oriented elliptical void in a piezoelectric plane.

Consider an arbitrarily oriented elliptical void in a piezoceramic plane, as shown in
Figure 2.1. The poling direction (z’-axis of the coordinate system z’2’) makes angle 8 with
one axis of the void (z-axis of the system zz), and £ is measured from the z’ axis in the
counter-clockwise direction. Far field mechanical and electric loading are denoted by ¢27,,,
Cpoan
expressed as 022, 022, 022 and D2, D (or E2°, EX°) under the zz system. In the special
case of B = 0, the problem has been well studied (Sosa, 1991, etc.).

The constitutive equations of piezoceramics polarized along the z’-axis are identical

0%, and D, D (or EZ, EZ), respectively. Alternatively, the loading can be

to piezocrystals with hexagonal symmetry about the same axis. Assuming plane stress

(Oyryts Ozryr, Oyrzr = 0, Dy = 0) or plane strain (€yry, €274, €2y = 0, Eyr = 0) conditions and
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using the eqn (2.1), the following constitutive equations can be obtained.

€zz = Q110zz + Q1202zz + @130z + 011Dz + b D,

€2z = @120z + @220z + 2302z + 12Dz + 022D

2€r: = Q1302 + 2302z + 3302z + 013D + b23 D

Er = —b1102z — 012022 — 13022 +d11 Dz + d12D:

E; = —b210zz — b290zz — bo30z; + d12Dr +d22 D, (2.3)

where coefficients a;;, b;; and d;; are two-dimensional elastic, piezoelectric and dielectric
constants, respectively. These coefficients are functions of defect orientation angle 3, and
are different for plane stress and plane strain cases. The invariable property of potential
energy is used to derive the above relations.

Now extend Lekhnitskii’s formalism (Lekhnitskii, 1963) for elastic solids to piezoelectric

solids by introducing the following potential function representation.

__PF __oF _&F
T —a'_azz ; zz = 92’ Orz = _8:1:82:’
r ov
Dy = 5z D.= oz (2.4)

It can be shown that the equilibrium and Maxwell’s equations are automatically sat-
isfied. The above potential function representation can be considered as an extension of
Lekhnitskii’s representation for elastic solids. Using the strain and electric field compatibil-

ity equations for piezoelectric solids, the following sixth-order differential equation can be

derived.
D1 DyD3DyDsDsF =0 (2.5)
where D, = % - pn(,%, and pup{n =1,---,6) are the roots of the characteristic equation
L(p)la(p) +13() =0 (2.6)
with

Iy = dnp? — 2diop + dao; Iy = biyp® — (bay + bi3)p2 + (br2 + bog)p — ba2

I3 = ajp* ~ 2a1343 + (2012 + az3)u® — 2a3p + agn

The roots (1) of eqn (2.6) can be shown to be complex with three conjugate pairs,
and are generally distinct. Note that eqn (2.6) breaks down if no coupling exists between
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mechanical and electrical fields. Instead, a second degree equation [1(z) = 0 and a fourth
degree equation [3(x) = 0 can be obtained for electrostatics and elasticity, respectively. For
piezoelectric materials, functions {1(u), l2(x) and l3(u) generally have non-zero values. If
' are the roots of the characteristic equation corresponding to a defect oriented along the
Z/-axis (i-e. 8 = 0), it can be shown that the following relationship exists between p and u'.

’ .
wcosfB —sing
p= — (2.7)
cosB+ u'sinf
Some useful properties of roots of eqn (2.6) are implied from eqn (2.7), e.g. two identical
roots corresponding to a particular defect orientation will remain identical for any arbitrary

orientation.
Let p1, 2 and p3 be the roots with positive imaginary parts. The general solutions for

complex functions F'(z, z) and ¥(z, z) in eqn (2.4) can be expressed as

3 3 8Fn(zn)
F(z,z) =2Re Y _ Fn(z); ¥(x,z) =2Re ) 5,,—-5Zn— (2.8)

n=1 n=1
where Re denotes the real part of a complex valued quantity, 2, = z + pnz, and 6, =

lo(pn) /11 (pn)-
With the aid of the basic relations in linear piezoelectricity (Parton and Kudryavtsev,

1988), the general solutions for plane piezoelectric problems excluding the corresponding

rigid body terms can be obtained as

3 3 3
ur = 2Re z Pren(zn); u, = 2Re Z Gnon(2n); ¢ =2Re Z Snwn(zn)

n=1 n=1 n=1

3 3 3
Ozz = 2Rez#3;¢;1(zn); oz: = 2Re Z @ (2n); Orz = —QReZ pnPn(2n)

n=1 n=1 n=1
3 3
D, = 2Re Z Sntin@n(2zn); D, = —2Re Z bntpn(2n)
n=1 n=1
3 3
Ez=—2Re) sa¥h(zn);  E:=—2Re  tay(zn) (2.9)
n=1 n=1

where complex function ¢n(2n) = Fi(z,) with a prime (‘) denoting differentiation with

respect to the corresponding argument, and the complex variables p,, gn, Sn» and £, are
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given below.

Pn = Q1143 + @12 — @134n + Sn(br1ptn — b21)

@n = (@122 + az2 — ag3pin + Snbiopin — 6nb22)/pim

Sn = b1 + b1a — b13pin — n(di1ptn — di2)

tn = bars + baz — bagpin — 6n{d12ptn — do2) (2.10)

The general solutions given by eqn (2.9) are essential to the formulation of subsequent

problems considered in this thesis.

2.1.2 Impermeable void

Assume traction free and electrically impermeable conditions on the boundary of the void

in Figure 2.1. Therefore,
iy = 0; Di'n,; =0 (’I.,j =2, Z) (2.11)

where n (n, n;) denote the outward unit normal of the void boundary.

The task now is to determine the three unknown complex functions @n(z,) (n = 1,2,3)
in eqn (2.9) by considering the void boundary conditions given by eqn (2.11) and remote
uniform mechanical and electric loading conditions.

Construct the complex function ¢,(n = 1,2, 3) in the form of

oo a,(cn)

Pn(2n) = cnzn +@Q(2n);  with @Q(zn) =D (2.12)
k=0 "7

where ¢, are complex constants, and ¢3(z,) are holomorphic functions up to infinity with
complex constants a,(cn).
With the aid of functions given below, which map the exterior of an ellipse in the z,

plane into the exterior of an unit circle in the &, plane (Lekhnitskii, 1963),

_ a —iupb 3 a+7./.znb_1_ (2.13)
2 2 &
the functions ¢9(z,) and the constants c, can be obtained by applying the relevant boundary
conditions.

Omitting details, the final results are

zn — /2% — (a® + p2b?)
a + tunb

(Alel + An2Q2 + An3Q3); (n = 1! 21 3) (214)

(P?z(zn) =
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where
Ain A A L pod3 — pzbe 62 — 63 p3 —p2
Ay Az Agg| = | pabi—pibs 8 —61 pr—ps (2.15)
A3zr A3z Az 162 — p2by 61— 62 po —
A = py (62 — 63) + pa(63 — 61) + p3(é1 — 62) (2.16)
_ ac | bol _aocgy boZy _aD® bDF
Ql—— ) +1 5 Q2— 9 z 2 3 Q3— 2 4 ) (217)
The complex constants ¢, (n = 1,2,3) can be determined by solving the following
equation system.
3 3
— Z aRe{cn} +ibRe{chun} = Q1; - Z aRe{cnun} + ibRe{cou2} = Q2
n=1L n=1
3
— > aRe{cnbn} + ibRe{cabnpun} = Qs (2.18)

n=1
Note that only five independent equations exist in the eqn (2.18), and one of the six un-
knowns in ¢, is set to zero by excluding the corresponding rigid body terms.

Complex functions @n(zg), ¢’(zn) are now completely determined as

_ Zn — /22 — (a® + p2b?)
(Pn.(zn) = CnZn + (AleI + An2Q2 + An3Q3) @+ b (2-19)
/ = ATI. A An - - ]- - o 2'20
@' (2n) = cn + (An1Q1 + An2Q2 + An3Qs) ~ 3 b{ (21 20 } (2.20)

The substitution of eqns (2.19) and (2.20) into (2.9) yields the complete solutions for elec-
troelastic fields around an arbitrarily oriented elliptical void with the impermeable boundary.
The closed form solutions derived here are functions of defect orientation (8), defect geom-
etry (a, b), far-field loading and material properties (ai;, b;; and d;;). The solution given by
Sosa (Sosa, 1991) can be recovered by letting 8 = 0.

2.1.3 Permeable void

Removing the assumption of an impermeable void boundary, the exact solution for an
arbitrarily oriented elliptical void (Figure 2.1) is derived in this subsection. To this end, the
medium inside the void must be taken into consideration, and a two-domain problem needs
to be solved. The homogeneous domain inside the void may be vacuum or air. The void is

free of electric charges, and no free charges exist on the piezoelectric-void interface.
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The dielectric medium (air or vacuum) inside the void is governed by Maxwell’s equa-
tion, electric constitutive equations and electric field-potential relations. Let &, denote the

dielectric permittivity of the medium inside the void, then,
Di; =0; D} =e,E}; E} = —¢% (2.21)

where a superscript v is used to denote quantities associated with the void.
The general solutions for a dielectric medium governed by eqn (2.21) can be expressed

as,

¢* = 2Im[y(z)]
DY = =2e,Im[y'(z)]; D? = —2e,Re[y(2,)]
E} = =2Im[y/(z,)];  E; = —2Re[¢'(2)] (2.22)

where ¢(z,) is a complex function with z, = z + iz, Im denotes the imaginary part of a

complex-valued quantity.

The following equations hold on the void boundary (i.e. piezoelectric-void interface).

OzgNiz + Ozznz = 0; OzzNz +0zznz =0 (2.23)

Dn = Dg; ¢ =" (2.24)

Note that the continuity requirement of the electric potential is equivalent to that of the
tangential component of the electric field(Bottcher, 1973).

The potential functions ¢n(z,) (n = 1,2,3) in egn (2.9) and ¥(zy) in eqn (2.22) are
determined such that the prescribed boundary conditions are satisfied. The derivation can
be carried out by following Sosa and Khutoryansky (1996) who considered the special case
of g =0.

Alternatively, Chen and Lai (1997) showed that the electroelastic field inside a plane
inhomogeneity is uniform under uniform far-field loading. Let uniform electric fields and
electric displacements inside the void are denoted by E2, E2 and D2, D9, respectively. Eqn

(2.24) can be rewritten as

Dp=D%n,+D%_; ¢=—F%% —E%: (2.25)

zlezs

The problem now reduces to determining the three unknown complex functions ¢n(zn)
and two constants D?, D9 (or E?, E?). Construct ¢, in the form of eqn (2.12) and apply

the mapping functions of eqn (2.13). The complex functions ©8(z,), complex constants
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¢, and constants D2 and D? can be obtained by applying far-field loading conditions and

interface conditions given by eqns (2.23) and (2.25).
Details of the derivation are omitted for brevity. The results for complex functions

wn(zn) and ¢’(2,) are given below.

= VA= @+ BP)

©on(zn) = Enzn + (An1Q1 + An2Q2 + An3Q3) @t ib (2.26)
— 1 Zn
! =c, + (A + A +A —{1— 2.27
"4 (Zn) Cn ( 21Q1 n2@2 n3Q3)a T+ ?.,unb{ \/Z% — (a2 T /.L;'Z,_bz) } ( )
where Apnj (n,7 =1,2,3), Q1, Q2 are defined in eqns (2.15)-(2.17), and Qs is
_ oo _ o D= — DO
Q3 — a‘(DZ Dz) - 7: (DI 2:) (2;28)
2 2
The complex constants &, (n = 1,2,3) are determined from the following equation
system.
3 3
—~ Y " aRe{e,} + ibRe{Capin} = Q1; — > " aRe{Zapun} + ibRe{Ep2} = Q2
n=1 n=1
3 —
— Y aRe{nbn} + ibRe{Cnbnpin} = Qs (2.29)
n=1

As in the case of eqn (2.18), one of the six unknowns in &, is set to zero by excluding the
corresponding rigid body terms.

Electric displacements D¢ and D? are determined from,

aRe{A1} D%+ (bIm{A1} +afey) DS = 2Re{As} + aEX® + aRe{ A1} DX + bIm{A} D
(aIm{A1} ~b/ey) D? —bRe{A1} DY = 2Im{As} +bES® + aIm{A;}D — bRe{A} DY
(2.30)

where

3 3
A = —ZSnAnB? Ap = —~ an(An1Q1 + An2Q2)

n=1 n=1

Substitution of eqns (2.26) and (2.27) into eqn (2.9) yields the complete solution for

electroelastic fields outside a permeable void. With D¢ and D? known, the electroelastic
solution within the void is also completely known.

For the special case of an impermeable void boundary, €, = 0 leads to the vanishing of

D? and D7 (or Dg and D92) based on eqn (2.22). Therefore, Q3 = Q3 and &, = c, according

to eqns (2.28) and (2.29), and the solution for an impermeable void is recovered.
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Figure 2.2: Arbitrarily oriented crack in a piezoelectric plane.
2.2 Impermeable crack

Assume the crack faces in Figure 2.2 are electrically impermeable. Therefore,
ozz = 0; ozz =0; D, =0; (ra<z<a) (2.31)

The case for an impermeable crack can be obtained by letting b of an impermeable

void approach zero. Using eqns (2.17), (2.19) and (2.20), complex functions ¢n(zs), ¢, (2n)

reduce to
1
@n(zn) = cnzn + 5(—An102Z + An2022 + An3DZ%)(2n — V22 — a?) (2.32)
2
1
P(zn) = on + 5(-Am0 R + Anao S + A DF)(L — ) (2:33)
n

It is interesting to note that loading components 23 and D3Z° are not present in above
equations. Electroelastic fields in a cracked plane can be obtained by substituting eqns
(2.32), (2.33) into eqn (2.9). Crack opening displacements (COD) are defined as the jump
in the displacements along the crack line (z = 0). It can be shown that crack opening

displacements Au, and Au, are

3
Aug =2/a? — 22 Im an(—./\.nlagg + Anoo2e + Ap3 D)

n=1

3
Au; =2Va2— 22 ImY  go(—An1052 + An2053 + An3 DY) (2.34)

n=1
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To ensure that a crack remains open, the z-component of opening displacements should

not be negative. Thus,

3
Im " ga(—An10% + An20% + Ans D) >0 (2.35)

n=1
In fracture mechanics applications, the electromechanical fields in the vicinity of the
crack tip are of primary interest. Introduce a polar coordinate system (r, 8) with the origin

at the right crack tip, as shown in Figure 2.2. Then,
zn = a+ r(cos 8 + p, sin 6) with 7>0 (2.36)

By assuming that r is small in comparison with the half crack length a, the following

explicit analytical solutions for crack tip asymptotic fields can be obtained.

3 3
uz(r,8) = V2rRe anh.n Vcos8 + p,sinf;  u.(r,0) = V2rRe Z Gnhn\/cosf + p, sinf

n=1 n=1

3
o(r,0) = \/2rReanh.n V/cos 8 + pi, siné
n=1
R hn 2 1, O hn
,0) = —R ~ v 0z2(r,0) = —R -
Izz(r, 6) Vor e; Vcos 8 + pn, sin 6 oz:(r.9) V2r eZJcosQ+,unsm6

3
Ora(r,6) = —~—=Re S Pt
Ver 4 \/cosO + pnsind

n=1

Da(r 9)=L3e§: Pnpinbn . D (rg) = —— Rei finbn
A V2r i \/cos8 + pnsing’ =0 V2r i Vcos8 + pnsing

1 3 Bns 1 3 hnt
Ex(r,0) = ——=R = ; B r,0) = ———=R nn
=(r.6) Vor e; Vcos @ + py, sin 8 2(r.6) V2r e; vcos 8 + p, sin @
(2.37)
where
hn = Va(An16Z — Aqoo2 — Ap3D®); n=1,2,3 (2.38)

Eqn (2.37) implies that classical inverse square root type singularity exists for stresses
and electric displacements at the tip of an impermeable crack irrespective of the orientation

angle (.
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If the remote electric loading are electric fields instead of electric displacements, DZ° in

crack solutions given by eqns (2.32)-(2.38) is replaced by,

_—_1 oo
D = Ry — [d11E — d12EP + (ba1d11 — bi1di2)ogs + (baadyy — biadia)oge
—diy
+ (b23d11 — bizdi2)oz;] (2.39)

Eqn (2.39) indicates that loading ¢25 and EZ° may have an effect on the crack solution.
Along the self-similar plane of the crack (# = 0), the normal and shear components «of

stresses and normal electric displacement are decoupled and

o) = Yoo on(n0) = Yiom  Dln0)=YDE  (240)

The conventional intensity factors (Suo et al, 1992) defined at the crack tip are
K; =+/ma o3; Kir =+/ma o3; Kp = /ma D (2.431)

Crack tip hoop stress is another important parameter in fracture mechanics. It can be

shown that,

1
oge(r,8) = Wor

Assuming self-similar crack propagation, the energy release rate can be obtained by

3
Re " hn(cos 8 + pun sin §)%/2 (2.42)

n=1

extending Irwin’s concept of crack closure integral for elastic problems (Irwin, 1957). For
piezoelectric crack problems, mechanical (strain) energy and electrical energy co-exist dume
to the coupling between electric and elastic fields, and the sum of these two energies is thue
total energy. Suppose a crack extends by a small amount da, the total energy release rate vy
the crack closure integral can be expressed in the following form using the polar coordinate

system shown in Fig. 2.2.
1 da
G = lim ——/ {oiz(z,0)u;i(6a — z, £7) + D.(z,0)¢(ba — z,£7) }dz (2.43)
sa—0 26a 0

where 7 = z, 2z for mode II and I respectively; z is defined along the crack front; u;(fa —
z,+w) = ui(ba — z, ) — ui(da — z, —m) denotes displacement jump; o;.(z,0) denote stress
components near the crack tip; D.(z,0) denotes the electric displacement component near
the crack tip; ¢(da — z, £7) denotes electric potential jump across the crack.

The first part of the integral in eqn (2.43) corresponds to the mechanical (strain) energy
release rate G, and the second part to the electric energy release rate GEZ. The total

energy release rate G = GM + GZ.
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In the case of far-field uniform stresses and electric displacements (¢, ¢32, 022 and
D2, D), it can be shown that
ra 3 3 3
GM = - [~Im) anAn1(02)? +Im Y prhn2(022)* +Im ) _(gnAn2 — Paln1)oS2o3

n=1 n=1 n=1

3 3
+Im > pnAn3oBDP +Im Y  gaAnzo2 D]

n=Il n=1

3 3 3
Ta
GE = - [-Im Z SnAn10e D + I'm Z SnAnooc3DZ° + Im Z snAng(Dg")z] (2.44)
n=1 n=1 n=1
For the special case of poling direction perpendicular to the crack surface (8 = 0), Pak
(1992) obtained the expression of G; for PZT-5H. Park and Sun (1995b) presented the
expressions of GII” for PZT-4. It can be shown that using the material properties given in

the Appendix A and setting 8 = 0, eqn (2.44) reduces to

GM (522, D) = 12‘3[1.749 x 1071(5%2)2 4+ 2.214 x 10262 D)
wa

5 [2-280 x 1071 (02)2 + 2.221 x 1071052 E (2.45)

G¥ (02, EX) =

zz?

for PZT-4 and the total energy release rate

a

G022, D) = =[2.020 x 10710(622)2 + 2 x 1.605 x 1071022 DX — 5.749 x 103(D)?]

(0]

Gr(c%,EX) = %[2.462 x 10710(0%2)2 + 2 x 4.840 x 107 MoRER — 2.416 x 1077 (EX)?]
(2.46)

for PZT-5H. Eqns (2.45) and (2.46) are identical (up to the numerical accuracy) to those
given by Park and Sun (1995b) and Pak (1992), respectively.

2.3 Conducting crack

A conducting crack model is suitable when a conducting species migrates on the crack

surfaces. Assume the crack faces in Figure 2.2 are conducting, which is
o2z = 0; oz = 0; E.=0; (—a<z<a) (2.47)

The solution for a conducting crack can be obtained in a manner similar to the case of
an impermeable crack. A void with the conducting boundary is solved first, and the crack

solution can then be obtained by letting & approach zero in the void solution. It is found
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that the loading component £2° has no influence on a conducting crack. Neglecting the
details for brevity, the final solutions are summarized below.

Crack opening displacements Au, and Au; are

3
Auy =2vVa?2 — 22 I'm an(—z‘_\nla"z’g + Ap20R + A3 ES)

n=1
3
Au, =2Va2 - 22 Im Y qu(—RKn10 + An20 S + An3 E) (2.48)
n=1
where
A A2 A | [#2s3—Hs2 sp—ss g3 —p
Aoy Az Ass| = K| #mes1—pss s3—s1 pm—ps (2.49)
Az Az Ass H1S2 — 4281 81— 82 po — p1
A = p1(sg — s3) + pa(ss — s1) + p3(s1 — s2) (2.50)

To ensure that cracks remain open,

3
Im Z Gn(—An102 + Ap202 + A3 EX) > 0 (2.51)

n=1

The conventional intensity factors defined at the crack tip are

K =+/ma ocl3; Kir = vma 023; Kg = J/ma EZ (2.52)

zZZ?

Using the polar coordinate system (r,6) in Fig. 2.2, crack tip fields are expressed as,

3
{uz, uz, ¢S}T =V2rRe Z{pn, Gn, .<>‘,.-L}Ti_z.11 \/cos 8 + i, sin 6

n=1

3
1 s h'n.
T = —R 2 1 —Hn T
{0'1:1:: O'zz-:o'z‘z} /_2,,, 82{#,1, ’ } \ﬁzosg'i'.UrnSine

n=1

N _
1 h
T T i
T, Mz == Ontin, =6 i
{D D } 2TR61§—1{ n i n.} \/c0s B + p, Sin 6
3 _
1 hn
AT T 2.
{Er, E.} ,_QTRe:L;:I{S stn} Vcos @ + pi, sin @ (2:53)

where

hn = \/E(Knla”gg — l-\ngofz’ ~An3E); n=12,3 (2.54)
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The expression of crack tip hoop stress is found to be identical to eqn (2.42), except
that h, should be replaced by hy,. Assuming self-similar crack propagation, the total energy
release rate can be expressed in the following form.

Sa

G = lim {oi:(z,0)ui(ba — =, £7) + ¢(z,0)D.(ba — z, ) }dz (2.55)

60.—»0% 0
where variables 6a etc are defined under eqn (2.43).
In the case of far-field uniform stresses and electric displacements (03, 022, 022 and

EZ, EZ),

3 3 3
Ta - - - -
GM = =[~Im Y anhn1(022)? +Im Y pahna(02)? +Im Y (gnhnz — Prhn1)oi2os
n=1 n=1 n=1
3 _ 3
+Im Z PnAn3o o E° + Im Z GnAn3o o B
n=1 n=1
3 3 3
GE = ”2_“ [—Im ) 6,810 BER +Im Y 6phnaoRES +Im Y 6,A03(ESL)?]  (2.56)
n=1 n=1 n=1

For the special case of poling direction perpendicular to the crack surface (3 = 0), Zhang
et al (1998) obtained the expression of G for PZT-4 (PZT-4a in the Appendix A). It can be
shown that using the material properties given in the Appendix A and setting 8 = 0, eqn
(2.56) reduces to

G = a[3.629 x 1071 (022)% +3.40 x 107 1 (02)? 4+ 6.758 x 1079 EXL + 1.197 x 1073(EX)?
(2.57)

Eqn (2.57) is identical (up to the numerical accuracy) to the result given by Zhang et al

(1998) where the term c22F2® was neglected.

2.4 Other crack boundary conditions

For cracks containing air or vacuum in piezoelectrics, the permeable crack model (Polovink-
ina and Ulitko, 1978) and the Hao & Shen type crack model (Hao and Shen, 1994) are also
used in the literature besides the impermeable crack model. No agreement has been reached
so far on the nature of the crack boundary conditions. The solutions for an impermeable
crack and a conducting crack have been derived by reducing the solutions for an imperme-
able void and a conducting void, respectively. The exact void solution has been obtained in
subsection 2.2.3 by considering a permeable void boundary. A logical question is: can the

exact crack solution be obtained by reducing the exact void solution?
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In this section, the application of reducing the permeable void solution to the crack
solution is examined first. A unified formulation for cracks containing air or vacuum, which
accounts for three existing types of crack boundary conditions, is then developed.

It is a common practice to deduce the solution for a crack from a void solution by setting
b = 0. Following this practice, setting b = 0 in eqns (2.26)-(2.30) for a permeable void yields

1
@n(zn) = cnzn — m[Amaiﬁ — An202 — An3(DP — D)(2n — V22 — a?) (2.58)

3

= I Yoney on(—AmoZ + Anaol) | fyoo (2.59)
Eqns (2.58), (2.59) based on the permeable void solution indicate that remote electric
loading has no influence on the crack problems. For the special case of # =0, Gao and Fan
(1999) made the same observation by setting b = 0 in their permeable void solution. They

concluded that such a solution is exact with respect to electric boundary conditions and

D;

should be used when solving fracture problems in piezoelectric materials.

The applicability of above reduction, however, should be examined. In the case of a
void with impermeable or conducting boundary, such a reduction is reliable since the crack
boundary conditions are consistent with the void boundary conditions. When dealing with
a permeable void, such a reduction has to be carefully applied. When letting b = 0, the
medium inside the void physically vanishes, and the original two-domain problem (void case)
becomes an one-domain problem (crack case). Consequently, the following continuities of
electrical potential and normal electric displacement across the crack faces are automatically

established.
Dy =D;; ¢"=¢" (2.60)

where the superscripts + and — indicate the upper and lower crack surfaces, respectively.

Cracks described by eqn (2.60) are referred to as permeable cracks in literature. This
type of crack face electric conditions was initially proposed by Polovinkina and Ulitko (1978).
In fact, eqn (2.60) implies that a crack has no impact on the electric field. Therefore, in
contrary to Gao and Fan’s (1999) conclusion, the crack solution given by eqns (2.58) and
(2.59) is not the solution for exact electric boundary conditions. It yields the already known
solution for a permeable crack as shown in the sequel.

Zhang and Tong (1996) presented an interesting discussion on reducing void solutions to
crack solutions. They introduced two dimensionless parameters (functions of crack geometry

and permittivity) to examine different limiting processes. It was found that permeable
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cracks and impermeable cracks correspond to two different limiting cases. Such a scheme,
however, is not utilized here. This section aims at closely examining three existing crack
models including a permeable crack, an impermeable crack and a Hao and Shen type crack.

Deeg (1980), Pak (1992) and Suo et al (1992)assumed that crack faces are impermeable,

i.e.
D;’ =D, =0 (2.61)

Hao and Shen (1994) argued that neither eqns (2.60) nor (2.61) couid avoid being one-
sided. By considering the electrical permeability of air or vacuum in a crack, they proposed

the following electric conditions on crack faces.
Df =D;; Di(us —uz)=¢eu(¢p” —0") (2.62)

For the special case of €, = 0, i.e. a medium having zero permittivity, eqn (2.62) reduces
to the conditions for an impermeable crack. If potential jump (¢ — ¢~) is zero, ean (2.62)
reduces to the case of a permeable crack. The influence of crack face conditions expressed
by eqn (2.62) on fracture parameters is not clear from the analysis given by Hao and Shen
(1994). Limited numerical results given by them shed little insight into the effects of eqn
(2.62).

A unified formulation that accounts for different electric boundary conditions [eqns(2.60)
- (2.62)] is developed in the ensuing part of this section for an arbitrarily oriented crack
containing air or vacuum. This new solution allows the theoretical treatment of cracks in
piezoelectrics by using a single analysis. The three types of electric boundary conditions
commonly assume that the normal electric displacement is continuous across the crack faces.
The electric field has been shown uniform (special case of an elliptical void) under uniform
loading (Chen and Lai, 1997). Therefore,

D} =D; =D? (2.63)

where DY is a constant.
Following relations can be obtained by using eqns (2.9), (2.63) and vanishing tractions

on crack faces.

3 3
2Re Z vn(z) =0; 2Re Z Unpn(z) =0
n=1

n=1

3
2Re " bnpn(z) = =Dz (2.64)

n=1
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where z is along the crack line (—a < = < a), and the complex functions ¢,(n = 1,2, 3) are
in the form of eqn (2.12).

Applying the mapping of eqn (2.13), ¢n(2,) identical to eqn (2.58) are obtained. Crack
tip fields can be expressed by using the polar coordinate system (r,#) in Fig. 2.2 as,

3
{uz, vz, ¢}T = V2rRe Z{pn, Gn, Sn}TiLn \/cos@ + pi, siné

n=1
; X
1 hn
T = R 2 l - T
{022,022, 022} o e;{“n’ » THn} Vcos @ + i, s

3 ~
1 hn
D., D} = R 2:5 6,37
{D=, D:} Vor en=1{ ntin, —6n} Vcos8 + p, sinf
3 -
1 hn
Er,E:}T = ~—=Re ) {(sn.ta}T 2.65
{Bx, B2} Vor en=l{sn, n} Vv/cos8 + 1, siné ( )
where
hn = Va[An1oR — An2oZ — An3(DP ~DY)]; n=1,2,3 (2.66)

Eqn (2.65) implies that classical inverse square root type singularity exists for stresses
and electric displacements irrespective of the crack orientation angle and the type of electric
boundary conditions.

Crack opening displacements (COD) and the jump of electric potential along the crack

line (—a < z < a) can be obtained as,

3
ut —ul = -2va2 — 22 Im an[Anlagﬁ_ — An2o® — An3(D° — DY)]

n=1
3
uf —u; = —2Va?2—-z2 I'm Z Gn[An1098 — An2033 — An3(DZ° — D?)]
n=1
3
¢t —06” =-2Va2 22 Im Y $a[An10% — An20Z — An3(DS — D9)] (2.67)
n=1

To ensure that cracks remain open,

3
Im Y gn(—An10%2 + An2o 2 + An3 (DX — D2)) 2 0 (2.68)
n=1
The problem now reduces to determining the constant DJ. An additional condition

other than eqn (2.63) must be considered. Apparently, this condition comes from eqns
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(2.60), (2.61) and (2.62) for permeable, impermeable and the Hao & Shen type cracks,
respectively.

For an impermeable crack, substituting DY = O into eqn (2.65) yields the complete
electroelastic fields.

For a permeable crack(eqn (2.60)), D? is obtained by vanishing of the electric potential
jump expressed by eqn (2.67). The result is identical to D2 given by eqn (2.59). Therefore,
the exact solution claimed by Gao and Fan (1999) is indeed the solution for a permeable
crack.

For a Hao & Shen type crack, the following solution for D¢ can be obtained by using
equns (2.62) and (2.67).

ImY 2 5n[An103 ~ An20R — An3(DP — D9)]

€ - 2.69
Y Im Z;’z———l qn[Anlo‘gg — AppoR — An3(D§° — Dg)} ( )

DY =~

Eqns (2.59) and (2.69) show that, in contrast to vanishing D? for impermeable cracks,
permeable and the Hao and Shen type cracks generally result in non-zero crack face electric
displacements. Both far field mechanical and electric loading may contribute to D?. Note
that eqn (2.69) is a quadratic of D? (except €, = 0), and two real or complex roots may exist.
On the other hand, DY should be uniquely determined for a given piezoelectric material and
applied loading. This issue was not discussed by Hao and Shen (1994).

Stress intensity factors K;, K5 and electric displacement intensity factor Kp can be

expressed as,
Kr=+mao®; Kir=+7waocX; Kp=+/ma (DX -DY?) (2.70)

Eqn (2.70) shows that Ky and K are identical for the three types of electric boundary
conditions, but Kp is different.

Crack tip hoop stress is found to have the same expression as eqn (2.42), except that
hn should be replaced by h,. Energy release rate on the crack line (§ = 0) can be ob-
tained by using crack closure integral. In the case of far-field uniform stresses and electric
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displacements (622, 022, 022 and D2°, D),

Ta
GM == Imzqn Ani(o z)2+Iman Ana(o z)2+ImZ(qn n2 — pnin1 )00
n=1 n=1

3
+Im Z Prhn3o2(DP — DY) + Im > _ gnhn3032(D3° — DY)

n=l1 n=1
3 3
GE = % [~Im Y snhmoR(DP — DY) + Im > snhnpo2 (DL — DY)
n=1 n=1
3
+1Im Y spAn3(DP ~ D2)?] (2.71)
n=1

2.5 Numerical results and discussion

In this section, coupled stress and electric fields around an arbitrarily oriented elliptical void
and at a crack tip are computed using the closed form solutions derived earlier. Plane strain
conditions are used. The condition of crack closure (eqn (2.35), eqn (2.51) or eqn (2.68))
is checked during the computation. The effect of crack orientation and electric boundary
condition on fracture parameters such as hoop stress and energy release rates is discussed.
The role of an applied electric field is examined. PZT-4 and PZT-5H (material properties

are given in Appendix A) are used in the numerical study.

2.5.1 Electroelastic fields around a void

Consider an elliptical void with electrically impermeable boundary and geometry ratio a/b =
2 (Figure 2.1). Figure 2.3 shows the electroelastic field around the boundary of the void due
to remote tension ¢%,,. The results for two void orientations (8 = 0° and 30°) are shown.
In the absence of any other known solutions for an arbitrarily oriented elliptical void, the
analytical solutions obtained in this Chapter are compared with the boundary element based
solutions (Xu and Rajapakse, 1998). Thirty-two quadratic boundary elements were used
in the boundary element analysis. The boundary element solutions agree closely with the
analytical solutions. In the case of 8 = 0°, the hoop stresses show symmetry with respect
to the = and z-axes, whereas the electric displacements are symmetric with respect to the
z-axis and antisymmetric with respect to the z-axis. For 8 = 30°, the hoop stresses and
electric displacements are no longer symmetric or antisymmetric about the void axes, and
show a significant dependence on the orientation angle 3 for all values of . Quite often

it has been considered that the critical values of field variables occur when the defects are
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Figure 2.3: Electroelastic field around the boundary of an arbitrarily oriented elliptical hole
(impermeable boundary) in PZT-4 due to remote tension.
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either parallel or perpendicular to the direction of polarization (8 = 0° or 90°). Results
shown in Fig. 2.3 suggest that this may not be always the case. For example, the maximum
value of normalized electric displacement corresponding to 8 = 30° is 9.2% higher than the
corresponding value for # = 0°, and is 66.4% higher than the maximum value for 8 = 90°.

Taking advantage of obtained explicit solutions, the critical values of field variables
for an arbitrarily oriented elliptical void under applied electromechanical loading can be
readily searched using a simple computer program. To further examine the dependence
of void orientation on the electroelastic fields, Figure 2.4 presents the maximum values of
hoop stress (tensile) and hoop electric displacement around the boundary of an elliptical
void with a/b = 2 for different 3, under remote mechanical and electric loading. Results
are shown only for the range of 8 € [0°,90°], due to symmetry of the field variables with
respect to the orientation angle. A strong influence of void orientation on the maximum
field variables is noted. In the case of remote tension in the z’-direction, the largest value of
hoop stress occurs at § = 0° when § = (0°, and the maximum value of hoop stress decreases
with increasing §. However, the largest value of electric displacement occurs at 8 = 40°,
which is 11.2% higher than the value corresponding to 8 = 0°. In the case of remote electric
loading along the negative 2’-axis, the largest value of hoop stress occurs at 8 = 33°,
which is 26.6% higher than the value for 8 = 0°. The largest values of maximum hoop
stress under negative electric loading is slightly higher than the corresponding value under
positive electric loading. In addition, the maximum hoop stresses remain nearly constant
for 30° < B < 90° under positive electric loading. In contrast, the maximum values of hoop
electric displacement are identical for both positive and negative electric loadings, and show
dependence on  that is similar to the trend of the hoop stresses under remote tension. The
significance of void orientation angle 3 is clearly confirmed by the results shown in Fig. 2.4.

Now consider an elliptical void with permeable boundary. The medium within the
void is vacuum with &, = g9 = 8.85 x 10712C?/Nm?2. Remote mechanical or electric
loading are applied along z’-axis. The maximum stress concentration factors on the void
boundary are computed for the case 8 = 0° and various values of geometry ratio a/b. The
results corresponding to the impermeable void boundary are also computed for the purpose
of comparison. It is found that permeable voids and impermeable voids have virtually
identical results under pure mechanical loading. In the case of electrical loading, results of
permeable voids and impermeable voids are quite close when a/b is less than 100. However,
the two results are significantly different when a/b is larger than 1000. Therefore, if the

geometry ratio of a vacuum void is larger than 1000, the permeable void model should be
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Figure 2.4: Maximum values of hoop stress and electric dlisplacement at the boundary of an
elliptical void (impermeable boundary) in PZT-4.
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Figure 2.5: Variation of crack tip hoop stresses under remote tension in PZT-4 (impermeable
crack).

used for accurate simulation. The case of 8 # 0° is also considered, and a similar conclusion
is reached. Note that Dunn (1994) drew a similar conclusion for antiplane piezoelectric

problems (8 = 0° or 90°) using the equivalent inclusion method.

2.5.2 Impermeable crack

Assume the crack boundary in Figure 2.2 is electrically impermeable. Figures 2.5 - 2.8
present the distributions of crack tip hoop stress under applied mechanical or electrical
loading.

Consider the case of pure tensile stress o3y applied along the z-axis first. Variation of
normalized hoop stresses \/27-_/5099 /032 (a is the half crack length, r is the radial distance
from the crack tip) with angle # are shown in Figure 2.5. Under symmetric loading, the
orientation angles 8 = «, 8 = —a and B8 = 180° — a (« is arbitrary) yield identical stress
fields. Therefore, only 3 € [0°, 90°] need be considered in the numerical study. Five different
orientation angles, 8= 0°, 30°, 45°, 60°, 90° are considered in the figure. Hoop stress profiles
at the crack tip show negligible dependence on orientation angle 8. Critical hoop stresses
are always observed at § = (° for all values of 8. This implies that, under a pure tensile

stress, based on maximum hoop stress criterion a crack propagates along the self-similar
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Figure 2.6: Variation of crack tip hoop stresses under remote electric field in PZT-4 (im-
permeable crack).

plane regardless of its orientation. Hoop stress is symmetrical with respect to the crack face
(6 =0) only in the case of 8 = 0°.

Figure 2.6 shows the variation of normalized hoop stresses \/2r/acgg/ES® under a pure
positive electric field EZ° along the z-axis. The requirement of crack opening displacement
given by eqn (2.35) is found to be satisfied for all B8 for this loading case. It is found that
hoop stress distribution depends significantly on the crack orientation. Only the case of
B = 0° induces symmetrical hoop stresses with respect to the crack face. Compressive
hoop stresses are observed for all § when § = 0°, implying no crack propagation based
on the criterion of maximum hoop stress. However, for 8 = 90° hoop stresses are tensile
for § € [180°,360°]. Tensile crack tip stresses are also observed for all values of 8 when
B = 60°. Compressive hoop stresses are noted for 8 = 30° in the range @ € [180°, 360°], and
for B = 45° in the range # € [180°,253°]. The critical hoop stresses occur at # = 100.7°,
90°, 281.2°, 258.2° for B = 30°, 45°, 60° and 90°, respectively. Note that none of these
critical hoop stresses occur at § = 0°, implying that the crack does not extend along a
straight line based on the maximum stress criterion. Among all critical values for different
orientations, 8 = 45° has a maximum normalized value of 0.4595. Therefore, the most

critical case does not correspond to a crack normal to polarization. If the applied electric
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field is negative , the stresses are given by Fig. 2.6 with an opposite sign. A crack with
B = 60° induces compressive hoop stresses for all values of . The critical hoop stresses occur
at 6 = 78.8°(281.2°), 257.8°, 225.3° and 101.8° for 8 = 0°, 30°, 45° and 90°, respectively.
Note that the critical hoop stresses for 8 = 45° is very small (only 0.0489). A maximum
critical value of 0.3426 is obtained for 8 = 90°. The crack opening displacement (COD)
defined by eqn (2.35) indicates that crack closure occurs for a negative electric field for all
B except § = 90°. Therefore, under pure electric loading, arbitrarily oriented impermeable
cracks may propagate along different planes or close depending on the crack orientation and
the direction of applied electric field.

Figure 2.7 shows the variation of normalized hoop stress at the crack tip under combined
tension and positive electric field. Three different electric to mechanical load ratios (R =
EX /a3 Vm/N), i.e. R= 0.2, 1.0, 5.0, are considered. For all values of 8 and R, eqn (2.35)
is satisfied. Symmetric hoop stresses about the crack face are observed only in the case of
B = 0° for all values of R. For small values of R (0.2), the hoop stress profile is similar to
the Fig. 2.5 and critical stresses are noted along the crack plane. The stress distribution has
negligible dependence on the orientation angle 8. For a unit value of load ratio (R = 1.0), a
strong influence of crack orientation on the hoop stress distribution is observed. However,
the effect on critical values of hoop stresses is still weak. The maximum normalized hoop
stress is 1.0 for B = 0°, 30° and 90° at § = 0°. Slightly higher values of hoop stresses are
found for 8 = 45° and 60° at & 7 0° (1.0004 at 8 = 17.3° for § = 45°, 1.009 at 8 = 323.6° for
B = 60°). Compressive hoop stresses are found over a rather limited range of 8 for 8 = 0°,
30° and 90°. For larger values of load ratio (R = 5.0 ), a very significant effect of crack
orientation is observed similar to that noted in Fig. 2.6. Maximum normalized hoop stress
is equal to 1.0 at 8 = 0° for 8 = 0°, and much larger critical normalized hoop stresses are
found for other values of £ at 6 # 0°, Z.e. 2.137 for 8 = 30°, 2.603 for B = 45°, 2.394 for
B = 60°, and 1.929 for # = 90°. Therefore, under combined tension and positive electric
field, crack tip fields are controlled by the load ratio R and crack orientation. Once the
electric field dominates (R >> 1), the effect is similar to the case of a pure positive electric
load.

Consider the same problem as in Figure 2.7 but with a negative electric field. The
variation of hoop stress at the crack tip is shown in Figure 2.8. Similar to Figure 2.7,
symmetric hoop stresses about the crack face are observed only in the case of 8 = 0°. The
effect of crack orientation on the hoop stress distribution and critical values of hoop stresses

becomes stronger as the load ratio increases. Based on eqn (2.35), it is interesting to note
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Figure 2.7: Variation of crack tip hoop stresses for combined remote tension and positive
electric field in PZT-4 (impermeable crack).
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Figure 2.8: Variation of crack tip hoop stresses for combined remote tension and negative
electric field in PZT-4 (impermeable crack).
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Table 2.1: Critical value of load ratio R for crack closure under combined tension and
negative electric field for an impermeable crack.

B (deg) 0 30 45 60 90
PZT-4 0.1026 0.1060 0.1150 0.1420 oo
PZT-SH | 0.0747 0.0817 0.0945 0.1258 oo

that the crack closure occurs for all three R values and five § angles in Fig. 2.8 except
B = 90°. A critical value of load ratio R corresponding to crack closure exists for different
crack orientations. A crack remains open only if load ratio R is less than the critical value.
Table 2.1 shows the critical values of R obtained by using eqn (2.35) for PZT-4 and PZT-5H
for combined tension and negative electric field. For both materials, the critical load ratio
increases as crack orientation angle § becomes larger. The critical load ratio for PZT-4 is
generally larger than that for PZT-5H.

The crack tip hoop stress distributions shown in Figures 2.7 and 2.8 include the results
for the special case of § = 0° reported in the literature (Pak, 1992; Kumar and Singh, 1996;
etc.) With the aid of the finite element method, Kumar and Singh (1996) employed the
maximum stress criterion to predict the crack propagation in PZT-5H. Their predictions only
touched the case of 8 = 0°. For the loading conditions of pure tension, pure positive electric
field or combined tension and positive electric field, current crack propagation predictions
are identical to those of Kumar and Singh (1996). In the case of combined tension and
negative electric field, they checked the normal component of crack opening displacements,
and found that the crack is open for a very low load ratio (R = 0.021) while the crack closure
occurs for a high load ratio (R = 7.692). This observation is in agreement with Table 2.1.
In the case of pure negative field, however, they did not check the COD requirement, and
concluded that a negative field enhances crack growth. Obviously, within the framework of
linear piezoelectricity, if combined tension and negative electric field close a crack, removing

tension surely results in crack closure.

2.5.3 Conducting crack

Now consider the crack faces in Fig 2.2 are electrically conducting. The hoop stress profile
at the tip of a conducting crack is examined in this subsection. Five different orientation

angles, namely 8= 0°, 30°, 45°, 60°, 90° are considered.
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Figure 2.9: Variation of crack tip hoop stresses under remote electric field in PZT-4 (con—
ducting crack).

In the case of a remote tensile stress, hoop stress profiles are found to be identical to
those of an impermeable crack (Fig. 2.5), showing little dependence on crack orientationt
angle 8. Under a positive applied electric field E2°, the crack opening displacement definedt
by eqn (2.51) indicates that crack closure occurs for all values of § except 8 = 0. A craclk
remains open for all 8 when a negative electric field E2° is applied at far field. The variation:
of normalized hoop stress \/2r/acgg/||ES|| for this loading case is shown in Figure 2.9. It
is found that crack orientation angles have significant effect on the hoop stress distribution.
A crack with 8 = 90° induces compressive hoop stresses at the entire area of the crack tip,
whereas # = 30° induces tensile hoop stresses at entire crack tip. The critical hoop stresses:
occur at 8 = 101.2°, 280.8°, 270.0° and 257.7° for 8 = 0°, 30°, 45° and 60°, respectively. A
maximum critical value of 0.4552 is obtained for 8 = 45°. Therefore, based on the maximum
hoop stress criterion, the self-similar crack extension is not expected except when 8 = 90°.
The most critical case does not correspond to a crack normal/parallel to the poling direction,
which is similar to the case of an impermeable crack.

The case of combined loading is also examined. The crack tip hoop stress distribution
is controlled by the crack orientation and electric to mechanical load ratio (R = E2°/033

Vm/N). Similar to the case of an impermeable crack, when electric field dominates (large
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Table 2.2: Critical value of load ratio R for crack closure under combined tension and
positive electric field for a conducting crack.

B (deg) 0 30 45 60 90
PZT-4 oo 02114 | 0.1470 0.1181 | 0.1006
PZT-SH oo 0.2136 | 0.1500 0.1216 | 0.1045

values of load ratio R), the effect is similar to the case of a pure electric field. A crack always
remains open under combined tension and negative electric field E2°. Under combined
tension and positive electric field, a critical value of R corresponding to crack closure exists
for different crack orientations. A conducting crack remains open only for load ratios that
are less than the critical values. The critical values of R obtained by using eqn (2.51) for
PZT-4 and PZT-5H are given in Table 2.2. In contrast to the case of an impermeable crack
(Table 2.1), the critical load ratio decreases as crack orientation angle 8 becomes larger for
both PZT-4 and PZT-5H. The critical values for PZT-5H are slightly larger than those for
PZT-4.

2.5.4 Hao and Shen type crack

Figures 2.10 - 2.13 present numerical results for a Hao and Shen type crack. To gain insight
into three existing types of electric boundary conditions (i.e., impermeable, permeable and
Hao & Shen type) for cracks containing vacuum, the results for impermeable and permeable

cracks are also shown in these figures.

The solution for D? (normal electric displacement on crack faces) obtained from eqn
(2.69) is discussed first. Eqn (2.69) generally has two real or complex roots for D¢, while
only a real value is physically admissible. Numerical studies show that the discriminant
of eqn (2.69) is positive for all considered cases. Hence two distinct real roots exist. Let
root 1 and root 2 denote the roots with positive and negative signs before the discriminant,
respectively. Table 2.3 presents the two roots (i.e. D?) for a crack perpendicular to the poling
direction, under applied stress o2 = 1.0M Pa and different applied electric displacements
(D = 2.0 x 107*C/m?, 0 and —2.0 x 107*C/m?). For PZT-4, the three cases of electric
displacement loading result in identical values for root 1 and distinctly different values for
root 2. It is unlikely that electric loading has no effect on the crack face electric field

under the boundary condition given by eqn (2.62). This suggests that root 1 may not be
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Table 2.3: Normal electric displacement on crack faces based on eqn (2.69) (8 = 0).

_ PZT-4 PZT-SH
loading
(o, = 1.0 MPa) Dz0 (root 1) DZ0 (root 2) DZ0 (root 1) D:O (root 2)
DT = 20x107" 3.598x 107 | -5.173x 107 | 3.241x 107 | ~7.547x 107
DT = 0.0 3.598x 107> | —2460x 107" | 3323x 107 | —2.663x 107
D = -20x107 3.598x 107 | —4.403x 107" | 3322x107 | -4.573x 107"

admissible. The results for PZT-5H are similar to those of PZT-4. Another evidence of
admissibility of root 2 comes from Hill’s boundary element results (Hill, 1997). Under the
same conditions as in Table 2.3, Hill performed iterations based on eqn (2.62) to compute
D? for a penny shaped crack in PZT-4. The final converged values are unique and are closer
to root 2 in Table 2.3. Table 2.4 presents the strain energy release rate (GM) and the total
energy release rate (G) for a Hao & Shen type crack in PZT-4 (8 = 0) under pure mechanical
loading o22(M Pa). It is found that far field tension (including zero) results in non-positive
GM and negative G corresponding to root 1. Again, this is physically unrealistic. The case
of B # 0° it also examined, and the behavior of roots is similar to that of 8 = 0. Therefore,
it can be concluded that the admissible root of eqn (2.69) is the cne that has a negative
sign before the discriminant.

For an open crack, the z-component of crack opening displacements given by eqn (2.68)
should not be negative. Obviously, for a given far field tensile stress, permeable cracks
(eqn(2.60)) meet this condition regardless of the value of applied electric field. A Hao
& Shen type crack is found to be open under an applied electric field or a tensile stress,
irrespective of electric field direction and crack orientation. An impermeable crack remains
open under a pure positive electric field, and crack closure occurs under a pure negative
electric field except 8 = 90°. Under combined tension and negative electric field, critical
values of load ratio exist for different crack orientations (Table 2.1). A crack remains open
only for load ratios that are less than the critical values. The condition of an open crack is
satisfied by all cases considered in the ensuing computations.

Figure 2.10 shows Kp/va (C/m?) under varying electric field for different electric
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Table 2.4: Energy release rates based on eqn (2.69) for a crack in PZT-4 (8 = 0, EZ®=0).

loading MPa) | G (root1) | G (root2) | G (ootl) | G (root2)
oo =00 | 00 0.0 ~1.677x 10> | 0.0
oo =02 | —2431x10° | 1451 ~1.697x 10° | 1.452
oo =05 | -6.078x10° | 9.070 ~1.728 x 10° | 9.070
oo =08 | -9.727x10° | 23217 ~1.759x 10° | 23.224
oo =10 | -1216x10° | 36274 ~1.780x 10° | 36.287

boundary conditions and o3 = 0.6M Pa. Three crack orientation angles, i.e. 8 = 0°,
30° and 90° in PZT-4 are considered. As expected, Kp is independent of electric loading
for a permeable crack. For impermeable cracks, a relatively weak effect of 8 on Kp is
observed, and Kp varies linearly with £2°. When 8 = 0° or 30°, the Hao and Shen type
cracks and permeable cracks have nearly identical Kp, which are significantly different from
Kp of impermeable cracks. When 8 = 90°, impermeable cracks and the Hao and Shen type
cracks have identical Kp, whereas permeable cracks show vanishing Kp.

In the case of the Hao and Shen type cracks, K p corresponding to 8 = 90° is significantly
different from that for 8 7% 90°. This behavior is due to the quadratic term Im mel qnln3
appearing in eqn (2.69). For PZT-4 when # = 90°, this term is vanishingly small. For
example, the values are 2.214 x 1072, 1.918 x 1072, 3.845 x 1073, 1.932 x 10~%, —6.720 x
10718 for B = 0°, 30°, 80°, 89.5° and 90° respectively. The linear term of eqn (2.69) is
generally negative. Since the admissible root is the one that has a negative sign before the
discriminant, Dg =~ 0 is obtained for 8 = 90°. As a result, the Hao and Shen type cracks
based on eqn (2.62) have identical behavior as impermeable cracks. This observation is also
confirmed by numerical results for energy release rates and hoop stresses given below.

Figure 2.11 shows the strain energy release rate G /a (IN/m?2) for PZT-4 under varying
electric field and 032 = 0.6M/ Pa. Five values of crack orientation angle, i.e. 8 = 0°, 30°,
45°, 60° and 90°, are considered. A strong influence of crack orientation on G is observed.

For all three types of electric boundary conditions, GM decreases as 3 becomes larger except
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Figure 2.11: Variation of strain energy release rate with electric field in PZT-4 under tensile

stress o5y = 0.6 M Pa for different crack models.
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for an impermeable crack and E$° < —10kV/m. When applied loading is pure mechanical
(E2® = 0), GM is independent of electric boundary conditions for any 8. As expected,
applied electric field has no effect on GM for a permeable crack. For an impermeable crack,
GM increases with E2° when 3 # 90° and E2 has no effect on GM when 8 = 90°. The
dependence of GM on E2° decreases as 3 increases. Both permeable cracks and the Hao
and Shen type cracks have nearly identical G values that are practically independent of
E2°. Strain energy release rate of a crack parallel to the poling direction is independent of
E2° and electric boundary conditions.

Total energy release rate G for a permeable crack is identical to G* shown in Figure
2.11. G/a for impermeable cracks and the Hao and Shen type cracks based on eqn (2.62) are
presented in Fig. 2.12. For impermeable cracks, an applied electric field tends to decrease
G with increasing 8. For the Hao and Shen type cracks, an electric field has no effect on
G when 8 # 90°. Again, the Hao and Shen type cracks and impermeable cracks show
virtually identical G values when 8 = 90°. Under pure mechanical loading (E® = 0), G
is independent of electric boundary conditions for any 3. Total energy release rate is not
symmetric with respect to £2° for impermeable cracks when remote tension is non-zero.

Based on the criterion of strain energy release rate, an increasing 3 generally increases
the fracture load for all three types of electric boundary conditions. An applied electric field
has no effect on fracture of impermeable cracks parallel to the poling direction (8 = 90°),
and permeable and the Hao and Shen type cracks of arbitrary orientations. When 8 # 90°,
a positive electric field tends to enhance extension of an impermeable crack and a negative
one tends to retard it. Applying the criterion of total energy release rate, the fracture load
increases with increasing (3 regardless of electric boundary conditions, which is similar to
the bebaviour of GM. For arbitrarily oriented impermeable cracks and the Hao and Shen
type cracks parallel to the poling direction, both positive and negative electric fields tend to
impede crack growth. For the Hao and Shen type cracks not parallel to the poling direction,
an applied electric field has no influence on their fracture behavior.

Hoop stress distribution at a crack tip is also considered. Under pure tensile loading o2,
hoop stress profiles are found to be virtually independent of electric boundary conditions and
crack orientation angle 8. Numerical results are not shown for brevity. Figure 2.13 shows the
variation of normalized hoop stress \/2r/acge/ES® (N/Vm) under a pure positive electric
field EZ° in PZT-4. For a permeable crack, a pure electric field has no contribution to hoop
stress, which is obvious from eqns (2.58) and (2.59). For an impermeable crack, hoop stress

distribution depends significantly on 5. Again, a Hao and Shen type crack has practically
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same ogg as a permeable crack for 8 # 90°, and has identical ogy as an impermeable crack
when 8 = 90°.

Following the criterion of maximum hoop stress, fracture initiation and crack branching
are generally expected for an impermeable crack, with the exception of the case § = 0°. For
a Hao and Shen type crack, crack extension and branching are expected only for the case
that the crack is parallel to the poling direction. The observation that impermeable cracks
and the Hao and Shen type cracks may deviate from a straight line is consistent with the

experimental phenomenon of crack skewing (McHenry and Koepke, 1983).

2.6 Conclusions

The extended Lekhnitskii’s formalism is successfully applied to study piezoelectric plane
problems with an arbitrarily oriented elliptical void and a straight crack. Various types of
void and crack boundary conditions are considered. A set of complete analytical solutions
for electroelastic fields around the void and at the crack tip are derived in a remarkably
compact form. Crack closure is taken into consideration in the analysis. Explicit solutions
for fracture parameters such as hoop stress and energy release rates are also obtained. The
present results can be reduced to special cases of defect orientation (e.g. Sosa, 1991; Pak,
1992 for defects parallel or perpendicular to the direction of polarization) reported in the
literature. For arbitrarily oriented cracks containing air or vacuum, a unified formulation
accounting for three existing types of electric boundary conditions, namely impermeable,
permeable and the Hao and Shen type, is developed.

Numerical results reveal that the defect orientation generally has a significant effect on
the critical values of hoop stress and electric displacement. Solutions based on 8 = 0°,
90° cannot be always considered as the critical case. It is found that electric boundary
conditions practically have no effect on hoop stress profile under pure mechanical loading.
In the case of an impermeable crack or a conducting crack under electric loading or com-
bined mechanical and electric loading with large values of electric mechanical load ratio,
a substantial dependence of the crack tip hoop stress on crack orientations is noted. The
influence of DS° on an impermeable crack is analogous to that of E2° on a conducting crack.
Applied electric field has no impact on permeable cracks. The fracture behavior of Hao
and Shen type cracks with 8 # 90° is practically independent of applied electric loading.

However, for cracks parallel to the poling direction, the Hao & Shen type cracks behave as
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impermeable cracks. Energy release rates generally decrease with increasing 4. Imperme-
able, permeable and Hao & Shen type cracks have virtually identical energy release rates

under pure mechanical loading.
A logical extension of this chapter is to examine branched cracks in piezoelectric solids,

which is dealt with in the next chapter.



Chapter 3

Branched Cracks

3.1 Dislocation modeling

In this Chapter, the method of continuously distributed dislocations (Eshelby, et al, 1953;
Gross, 1982; Zhang and Gross, 1994; Schmidt and Gross, 1997; Seeling and Gross, 1997) is
extended to piezoelectrics. The extended method is then applied to derive the solution for
an isolated main crack (Figure 3.1c). The result in this section is essential to the formulation
of the branched crack problems considered in the ensuing sections.

Consider an infinite piezoelectric plane polarized in the z'—direction of the z'z’ system,
as shown in Figure 3.1d. The poling direction makes angle # with the z-axis of the zz system.
Assume that a single edge dislocation is located at the point z°(zo, 29). The corresponding

potentials ¢,(z,) can be expressed as (Nemat-Nasser and Hori, 1993),

onlon) = 3 In(zn = 20) (n=1,23) (31)

i
where A, are complex constants, z2 = zg + unzo, and g, are defined under eqn (2.6).
Around a loop surrounding the point z°, the stresses and electric displacements are self-
equilibrated (i.e. zero resultant forces F;, F, and electrical charge @), and the displacements
and electric potential jump are denoted by the extended Burgers vector B = (B4, Bs, B3).

The complex constants A, are determined by the following conditions.

Fy =0 F,=0; Q=0
uz(2%4) — uz(2°—) = B1; u,(2°+) — u.(2°—) = Ba; ¢(2°+) — #(z°—) = Bs (3.2)

Using the general solutions for plane piezoelectrics given by eqn (2.9), and eqns (3.1)
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and (3.2), it can be shown that,

kn.z
@nlzn) = 222 In(z — 29)
’ N k‘ru i 1
gan.("'ﬂ-)_” D Zn_zg (3-3)

where complex constants k,; (n,7 = 1,2, 3) defined in Appendix B are functions of material
properties and crack orientation angle.
The normal and shear stresses, and normal electric displacement at (z, z) due to an edge
dislocation at (zg, 29) can be expressed as,
. _ 1 3\ kniB; )
oz2{x, 2; 20, 20) = ;Im 2 p—-© ;i oz=z(T, 2520, 20) = ——Im Z — zO

n

kniB;
zn — 29 (3.4)

3
Dz(xr z;$0720) = _%Im Z&"

n=1
The isolated main crack in Figure 3.1c is now considered. Far field mechanical and
electrical loading are denoted by 023, ¢33, 028 and D®, D (or EZ°, EZ°). Using an

impermeable crack model, the boundary conditions on the main crack faces are:
ozz =0; o2z = 0; D.=0 (3.5)
The condition for an open crack is,
Au, =uf —u7 >0 (3.6)

Consider the simulation of the main crack by a continuous distributed dislocation field.
The electroelastic field created by the distributed dislocations and the far field loading should
satisfy the main crack face boundary conditions of eqn (3.5). Let b;(z) (¢ = 1,2, 3) denote
the densities of distributed dislocations along the main crack line. Integration of eqn (3.4)
along the main crack line and consideration of boundary conditions given by the eqn (3.5)

result in,

“Im Z{l —Hn, _'6 }Tkm-b ((Odé""{ O2210z2 Doo}T (37)

2 n=1

The solution of eqn (3.7) is,

00 00 o0 x
; = > + 00, -+— . Z ) ————
bl(m) (qllazz qi20 7~ i3 z ) 1—02 .1,'2 (3'8)
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where coefficients ¢;; (4,7 = 1, 2,3) given in Appendix B are functions of material properties
and crack orientation angle.

The potential functions Fj(z,) corresponding to an isolated main crack can be de-
termined by substituting eqn (3.8) in eqn (3.3) and integrating along the crack length

(—a €< z < a). F, are obtained as,
Fa(zn) = [t1n022 + tonose + t3nD§°]{zn — V22 —a?} (3.9)

where tin = i/Q(knJQIj + kn2Q2j + anQSj): (.71 n=12, 3)~
With the potential functions known, the electroelastic fields associated with a main crack
can be readily obtained by using the general solution of eqn (2.9) and adding the far fields.

The crack opening displacements (COD) across the main crack faces can be determined

as,

3
{Auz, Au}T = 4va2 — 22 I'm Z{pn, @n} T (£1n08 + tono 2 + t3, D) (3.10)

n=1
For an open crack,

3
Im  ga(t1no2 + tonol2 + 3, D) 2 0 (3.11)
n=1
Using the polar coordinate system (7, w) defined at the right crack tip (Figure 3.1c), the
electroelastic asymptotic fields near the crack tip can be obtained. Crack tip hoop stress,

shear stress and hoop electric displacement can be expressed as,

3
Cuw(r,w) = \/%Re > " Hy(cosw + pun sinw)?/?

n=1
Oro(r,w) = ﬁRe > Hp(ptn cosw — sinw)(cosw + pin sinw)/?
n=1
3
Do(rw) = J—z—ere S Hobn(cosw + pin sinw) /2 (3.12)
n=1

where H, = —%(tan[ + t2n K1 + t32. Kp), and K, Kir and Kp are conventional field
intensity factors given by eqn (2.41).

It is noted that the solution for an impermeable crack has been obtained in Chapter
2 by the approach of collapsing an arbitrarily oriented ellipsoidal void to a crack. It is

worth mentioning that the solution obtained in this section and the solution in Chapter 2
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generate identical results according to numerical experiments, although it seems tedious to
show analytically that the two solutions agree due to the complexity of expressions.

The conventional K (K7, K1, Kp) of eqn (2.41) based on crack tip self-similar extension
shows no electromechanical coupling. On the other hand, Azhdari and Nemat-Nasser (1996)
used a set of generalized intensity factors based on crack tip hoop and shear stresses for
anisotropic elastic solids. For piezoelectric crack problems, similar generalized intensity
factors (hoop stress intensity factor K., shear stress intensity factor K., and hoop electric

displacement intensity factor Kp,,) can be defined as
Koo = lin%) V2T Oww; Ky, = lin:(l) V21T Ory; Kp, = lincz) V2rr Dy; (3.13)
T— T— ™

where oy, orw and D, are given in eqn (3.12).

3.2 Branched crack

Assuming that the main crack remains open under far-field loading, i.e. eqn (3.6) is satisfied,
the problem of a branched crack shown in Figure 3.1a is formulated in this section. The
condition for an open branch is verified numerically.

Referring to Figure 3.1a, the branched crack model consists of an arbitrarily oriented
main crack and a branch initiating from the main crack tip at an angle w. A Cartesian
coordinate system (£, 7) and a polar coordinate system (r, v) are defined at the tip of the
crack branch.

Certain relationship between field quantities corresponding to two different coordinate
systems can be derived. Such relations are convenient when dealing with coordinate trans-
formations. For example, referring to Figure 3.la, un, 6, and ¢}, in the zz system are
related to jin, 8, and @, in the &7 system in the following manner.

Un COSwW — sinw = 1 -t . 9 4
= — = —8n; = (cosw sin w 3.14
COSW + finsinw’ " coSw + ppsinw M 0 ( +in Ven  (314)

Assuming traction free and electrically impermeable, the boundary conditions of the

branched crack are:
Ozz = 0; Oz = 0; D, =0; on the main crack (3.15)
oen = 0; oqm =0; Dy, =0; on the branch (3.16)
The conditions for an open branched crack are given by
Au, = u} —u; >0 (main crack) (3.17)

Auy = u,';' —uy; =0 (branch) (3.18)
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Figure 3.2: Superposition scheme for a branched crack.

Employing the dislocation approach described previously for a main crack, the branch
in Figure 3.2a is also simulated by an unknown distributed dislocation field as shown in
Figure 3.2b. The main crack face boundary conditions (i.e. eqn (3.15)) are violated due to
the introduction of the dislocation field along the branch line. To satisfy the main crack
boundary conditions, an additional distributed dislocation wall is built along the main crack
line (Fig. 3.2d). Accordingly, the problem shown in Figure 3.2b is decomposed into three
problems as shown in Figures 3.2¢, 3.2d and 3.2e. The problem shown in Figure 3.2c
(unbranched crack) was solved in the preceding section. Problems shown in Figures 3.2d
and 3.2e are solved in this section.

The superposition of problems shown in Figures 3.2d and 3.2e should satisfy the main
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crack boundary conditions. By enforcing this requirement, the densities of distributed dis-
location field along the main crack line (Figure 3.2d) can be expressed in terms of those on
the branch line (Figure 3.2¢). Consequently, the electroelastic fields for problems shown in
Figures 3.2d and 3.2e can be expressed in terms of dislocation densities on the branch. The
requirement that the resultant electroelastic fields of Figures 3.2c, 3.2d and 3.2e should sat-
isfy eqn (3.16) yields a system of equations for unknown dislocation densities on the branch
line.

First, consider a plane problem identical to Figure 3.2d, with an edge dislocation B =
(Bs, Ba, B3) located at an arbitrary point 2%(zg, z9). Let the sum of electroelastic fields due
to the edge dislocation B and distributed dislocations b7 (i = 1,2, 3) along main crack line

satisfy the boundary conditions given by eqn (3.15). Then, using the notation of eqn (3.4),

a a
/ 022(x,0; ¢, 0)dC + 02:(x, 0; zo, 20) = 0; / 0z2(x,0;¢,0)d( + 0zz(z,0; Z9, 20) =0
—-a

-
a

Dz(x,O; C,O)dC-*—Dz(I, 0;1'0720) =0 (3‘19)

—a

Subsequent manipulation of eqn (3.19) using eqn {3.4) leads to,

3
1 \/ 2.¢2 1
Im {1, ptn, 6n} knsb} (z) = ImZ{l pir, 60 Y T kni By =d¢
n=1 2 v —a n=1 C C - Z
(3.20)
The solution of eqn (3.20) can be expressed as,
202 — a2 202 — g2
bi(z) = 71'\/—( zlfmzknk +«L2Imnz_:1# knk——zg—
3 222 —a?
+ JisIm Y bnknk~———5— | B; (e <z <a) (3.21)
o r—2zn

where complex-valued constants Ji; (¢,7 = 1, 2,3) are defined in Appendix B.

Therefore, when an edge dislocation B exists at an arbitrary point (zq, 20) in an infinite
plane, the boundary conditions of eqn (3.15) along the main crack line can be satisfied by
introducing a dislocation field b} (z) along the main crack line.

Replacing B; in eqn (3.3) by b} in eqn (3.21), and integrating along the main crack line
yield the following potential functions corresponding to distributed dislocation field b7 (z).

1
©nlzn) = _EkniNkin(Zi: 2{) B (3.22)
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where N (k,2,7 =1,2,3) defined below are functions of material properties, main crack

orientation, bramch angle, 2; and 2.

Niin(2i, 22) = Ji1(kiiln1 + korlna + Karlnz — kil — korlho — Eaells)
+ Jio (p1kiklng + pokorlns + paksrlns — B1kuln, — Gakolng — Askarling)
+ Jiz(S1k1kln1 + O2korlns + O3karlng — 1Kk1klsy — Sokorlly — 83karlls) (3.23)

/ 2 5 (7072
Lij = - 5 ( (Z?) —.a" -1); G= - =5 ( (Z?.) < — 1) (3.24)
P L g A
Now conside:r the problems in Figures 3.2d and 3.2e. Treat the dislocation field along the
branch line in F3gure 3.2e as a continuous distribution of infinitesimal edge dislocations, 7.e.
br ds = Bi.. The corresponding potential functions in Figure 3.2d is obtained by integrating
eqn (3.22) as,

and

1 [ -
Gnlenll@ = 3= [ Fomiein(zi, )5e(5) ds (3.25)
0
Note 20 in Ngi in eqn (3.25) are on the branch line, i.e. 2z = a + s(cosw + u;sinw)

(0O<s< ).
The following potential functions corresponding to the problem shown in Figure 3.2e are

obtained by integrating eqn (3.3).

Qon(zn)l(e) = 27_‘_1 / km'b (S) (3.26)

where 20 is defined under eqn (3.25).
With the aidl of eqns (2.9) and (3.14), the stress o¢,, oy, and electric displacement Dy,

with respect to &he £n system can be expressed as,

3
{0en oam, Do}’ =2Re Y {—RaTn, Tz, —62Tn} 0 (20) (3.27)

n=1
where R, = pp, c0osw ~sinw and T, = cosw + un Sinw.
Applying thes requirement that the superposition of electroelastic fields in Figures 3.2¢c,
3.2d and 3.2e sh-ould satisfy the boundary conditions given by eqn (3.16) along the branch
line leads to the following system of coupled singular integral equations.

/ M""b (S) ds + / ZLkak(s) ds = fm (3.28)
=1
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where m =1, 2, 3, and M,;; Ly and fr, are

3
{ Mui, Moy, M3} = %Im > {~Rn, T, —6n} kni (3.29)

n=1

3
1
{L1k(p.5) Lox(p, ), Lak(p, 8)}T = 5—Re Y {RnTn, =I5, 6nTn} kniNiin(21,2])  (3.30)

n=1
{£1(p) f2(p) f3(p)}T = 2ReZ{RnT =T, 60T} Fo(zn) — {085,059, DY (3.31)
n=1

and Fy(z,) are obtained from eqn (3.9); o, opy, and D7° are far field loading in the &n
system that can be expressed in terms of ¢33, 022, 0S% and D$°, DZ°, and z, = a+p(cosw +
pnsinw), (0 < p < L).

The dislocation density functions b;(s) are singular at the branch knee and the branch
tip. Extract the singularity from the dislocation densities b;(s) by introducing B;(s) as

bi(s) = Bi(s)/\/s(L — s) (3.32)

After extracting the singularity form eqn (3.28), the three unknown dislocation densities
B; (i =1,2,3) can be determined by solving the equation system numerically. A quadrature
method proposed by Gerasoulis (Gerasoulis, 1982) is used in the present study to solve the
equation system. It will be shown in Chapter 5 that the electroelastic singularity at the
knee of the branch is less than 1/2. Therefore the solution of eqn (3.28) is rendered unique
(Miller and Stock, 1989).

Once the dislocation densities are known, the electroelastic fields and fracture parameters

such as the branch tip intensity factors K2, K%, and K% can be computed as

3
(K}, K3, KDY =m\/2r /L " { My, Mo, Ms;}T Bi(L) (3.33)

i=1
Making use of eqn (3.14), the generalized intensity factors (hoop stress intensity factor
Kf,v, shear stress intensity factor K,’ZU and electric displacement intensity factor K bDU), which
are counterparts of eqn (3.13) for a straight crack, can also be obtained.
The branch opening displacements and jump in the electric potential can be expressed

in terms of the dislocation densities b; as (Nemat-Nasser and Hori, 1993)

{Aug(s), Auz(s), Ag(s)} = - fL {61(£),52(€), b3(£)} d& (3.34)
For an open branch, it is required that

Auy(s) = Au,(s)cosw — Auz(s)sinw >0 (0<s< L) (3.35)
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3.3 Bifurcated crack

The problem of a bifurcated crack is considered in this section. The analytical model
consists of a main crack with length 2a along the z—axis and two branches initiating from
the main crack right tip, as shown in Figure 3.1b. Branches 1 and 2 are located along the
wi-direction with length L; and ws-direction with length Lo, respectively, and wq, wo are
measured counter-clockwise with respect to the z-axis. Cartesian coordinate systems (],
m) is defined at the branch 1 tip, and system (£s, 772) at the branch 2 tip.

Assume traction free and electrically impermeable on crack faces. The boundary condi-

tions of the bifurcated crack are:

0zz =0; 2z =0; D, =0; on the main crack (3.36)
Oerq = 0; Omm = 0; DT]I. = 0; on the branch 1 (3.37)
Otam = 0; Onene = 0; Dy, = 0; on the branch 2 (3.38)

The conditions for an open crack are given by

Au; = u} —u7 > 0 (main crack)
Aug = uy —uy >0 (branch 1);  Aup, =y, ~uy, >0 (branch 2) (3.39)

Applying the technique of dislocation modeling, the two branches in Figure 3.3a is
simulated by two unknown distributed dislocation fields in Figure 3.3b. Similar to the case
of a branched crack (Figure 3.2), the bifurcated crack is decomposed into four problems
shown in Figure 3.3¢c, 3.3d, 3.3e and 3.3f. The solution for the main crack problem in Figure
3.3c is known.

The problem in Figure 3.3d is now considered. The dislocation field b} (z) along the main
crack line is constructed such that the resultant electroelastic fields of Figures 3.3d, 3.3e
and 3.3f should satisfy the boundary condition of eqn (3.36) on the main crack faces. The
results given by eqns (3.21) and (3.22) are recalled here. Treat the dislocation field along
each branch line in Figures 3.3e and 3.3f as a continuous distribution of infinitesimal edge
dislocations. Integrating eqn (3.22) along the branch 1 and branch 2 lines, the potential
functions in Figure 3.3d are obtained as,

/ 1 o - 1 [l 0s

el =~z | kim0, 20Be(e)es = = [ bncVin(an, Bbu(s)ds (340)
where the first part corresponds to branch 1, and the second part corresponds to branch 2;
2{; (i =1,2,3) are on the branch 1 line, and 2{; = a + s(cosw; + gz sinw;) (0 < s < Ly); 23
(¢ = 1,2, 3) are on the branch 2 line, and 29; = a + s(cosws + p;sinws) (0 < s < La).



58

O (E)

; R
v 1 ]  § (a) ] 1 4 L} (b)
o (E)
[
- b;
= +
L] 1 ] (C)
b;
444444 + s
@ (e) ¢y

Figure 3.3: Superposition scheme for a bifurcated crack.



59

By integrating eqn (3.3), the potential functions corresponding to the problems shown
in Figures 3.3e and 3.3f are obtained as

’ 1 ib;

Pn(zn)le) = Gy o ——:n_:i (3.41)
b

“n(z)lip = 2m/ o i? ds (3.42)

where 29 and 29, (n = 1,2, 3) are defined under eqn (3.40).
Define Ri, = pp cOsw) — sinwy, Tip, = coswi + pn sinwy, and Rg, = i, COSws — Sinws,
T5, = cosws + Ln, Sinws, it can be shown that,

3
{oeiny, Omns» Dy }T = 2Re Z{_RlnTlnv T]?n’ —6nT1n}T‘P;1 (zn)
n=1

3
{tam: Omm, D }T =2Re Y {~RonTon, Ti, —6nTon} wr(2n) (3.43)
n=1
Applying the requirement that the superposition of electroelastic fields in Figures 3.3c,
3.3d, 3.3e and 3.3f should satisfy the boundary conditions given by eqns (3.37) and (3.38)

along the two branches leads to the following system of coupled singular integral equations.

/Ll 3 Dmebi(s) Dimibi(s / Z Emibi(s) ds + _/ ZEmkb‘(s

=1 P17F
+ / e 3 E’l’;"’j‘(s% ds=Fpn (m=1,23) (3.44)
/L2 z szb Prmibi(s) ds +/ l zsszkEc(s) ds + /L2 Zs:émkl;k(.?) ds
= P27° k=1 0 k=1
Y s 0.9

where D;, Eng, Emk, Gmky Fm and Py, Qme, ka: mk, Sm (7:: k=12, 3) are

3
1
{D1i, Dai, D3;}T = —Im > {—Rin,Tin, =60} kni

11.=1

{Erk, Eax, B3 }T =2—ReZ{RlnTm, —T2,. 60T 1n Y kni Niin (214, 23;)
n=1
~ o~ = 1 3
{Ew, B, Ec}T = 5 fte > {RinTin, =T, 62T1n } Kni Niin (216, 25;)

n=1
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{Gk: Gox, Ga}T = —Re Z{ RinTin, T2, ~6nT1n }  kins

n=1

3
{F1, F2, F3}T =2Re Y {RinTin, T2, 6aTin} Fl(21n) — {068,050, D2}

n=1

3
1
{Py:, Py, P3;}T = —Im > {~Ron, Ton, —6n} ks

n=1
3
1
{Q 1k Q2k7 Q3k}T = 'Q;Re Z{R'ZTZTQTL! T2nv 6 T2T|-}Tk’niNkin(z2i’ z?i)
n=1
n A o~ 1 3
{Qlky ng, ng}T = 2_71"Re Z{R2nT2n, —T22n.= 5nT2n}‘TkniNkin(Z2ir Zgi)
n=1

3
~ ~ = 1
{Vik, Vor, Vae} T = —Re > _{~RonTon, T, ~6nTon} ks
n=1
3
{S1, 52,53} =2Re> {RonTon, — T, 6nTon} Fl(z2n) = {022,,0,,, DXYT (3.46)

n=1

In eqns (3.44) and (3.45), F,, are obtained from eqn (3.9); Ogim: Omm and DFY are
far field loading in the &7; system, o'g;n,_,, Opone @nd D72 are far field loading in the &2
system; and 21, = a + p1{cosw) + ppsinw ), (0 < p1 < L), zon, = a + pa(cosws + pn sinws),
0<p2< ).

Extracting the singularity from the dislocation densities by using

bi(s) = Bi(s)/\/s(L1 — s); bi(s) = Bi(s)/\/s(La — s) (3.47)

The six non-singular unknown functions B; and B; (z =1,2,3) can then be determined by
solving the equation system of eqns (3.44) and (3.45) numerically. The solving scheme is
similar to the case of the branched crack discussed in the previous section.

The intensity factors K[[", Kfi} and K% at the branch 1 tip, and K?z, K?'} and Kf:? at
the branch 2 tip are

3
(K2 K%, K3} =n\/2n/Ly» {Dys, Das, Dyi}T Bi(L1)
=1

3
{ng, K?"}, ng }T =w\/2n/Lo Z{Ph', Py, P3i}TBi(L2) (3.48)
=1
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The branch opening displacements are
Aura(s) == [ Bi@) i Auia(s) == [ Ba(6r) dey for branch 1
1 1
Aug (s) = — -/: bi(E2) dSo; Aug,(s) = — /Ls by(£2) d€y  for branch 2 (3.49)
2 2
For open branch 1,
Auy, (s) = Auy (s)coswy — Augz(s)sinw; >0 (0 <s < Ly) (3.50)
and for open branch 2,

Aup,(s) = Aug (s)coswy — Augz(s)sinwy >0 (0 < s < L) (3.51)

3.4 Numerical results and discussion

In this section, a selected set of problems are studied to understand the basic fracture
characteristics of branched cracks in piezoelectrics. Plane strain conditions are assumed.
The condition for an open main crack is satisfied in all examples, and the condition for
an open branch is checked during computations. PZT-4 (material properties are given in

Appendix A) is used in the numerical study.

3.4.1 A branched crack

The accuracy of present results for a branched crack in piezoelectrics is first verified by
comparing with the solutions for a branched crack in an ideal elastic material. Obata et al
(1989) examined infinitesimally small branched cracks in plane anisotropic elastic solids with
following elastic constants: ajz = as3 = 0, ajo = —0.25a11, azz = 2.5a11, and a9 = a11/c*
(¢* is constant). Consider a fictitious piezoelectric material with same a;; as above, identical
dielectric constants as PZT-4, and negligible piezoelectric coefficients(b;; ~ 10712). Taking
L/a = 1078 and B = 0°, the normalized stress intensity factors K’I’/K r and K}’[/K T are
shown in Figures 3.4a and 3.4b for various ¢* values under remote uniform tension, where
K denotes the mode I stress intensity factor for a straight crack. Close agreement is noted
confirming the accuracy of the present solution scheme.

The accuracy of present scheme is also confirmed by comparing with the numerical
results for piezoelectrics with 8 = O reported by Zhu and Yang (1999). Consider a crack
with an infinitesimal branch length (L/e = 107%) in PZT-4. Table 3.1 compares the mode
I intensity factor K f-/ K and the electric displacement intensity factor K% /K at branch
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Figure 3.4: Comparison of stress intensity factors .at the tip of a branched crack in an

orthotropic elastic solid under remote tension.
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Table 3.1: Comparison of field intensity factors at branch tip in PZT-4 for the special case
of a branched crack (8 =0, L/a = 1075).

loading Ki/k, K2/K, (107 C/N)
(o =1, D7) W/
Zhu & Yang (1999) | Present Study | Zhu & Yang (1999) | Present Study
0.1 0.97 0.9720 -0.01 -0.0095
0.2 0.90 0.9017 -0.03 -0.0328
0.3 0.79 0.7884 -0.06 -0.0606
P =0 0.4 0.64 0.6407 -0.09 -0.0872
Q0.5 0.46 0.4640 -0.11 -0.1060
0.6 0.30 0.3012 -0.12 -0.1190
0.1 0.95 0.9529 - 4.950
- 8 0.2 0.83 0.8317 - 4.839
DT = 0.5x10
0.3 0.66 0.6610 - 4.634
04 048 0.4978 - 4.327
0.5 0.33 0.3267 - 3.928
0.6 0.19 0.1919 - 3421

tip computed from the present scheme with corresponding results given by Zhu and Yang
(1999), where K is the stress intensity factor for a straight crack. A pure tensile loading
and a combined tensile and positive electric displacement loading are considered. Very good
agreement is observed in Table 3.1.

Azhdari and Nemat-Nasser (1996) analyzed crack-branching in an anisotropic elastic
solid by using a straight crack model. They compared the hoop stress intensity factor K.,
and the shear stress intensity factor Ky, at the straight crack tip with K% and K, based on
the branched crack model. It was found that, in the limiting case of a branched crack with
an infinitesimal branch length, the differences between K° (K., Kr.) and K? (K}’, K? ;) are
less than 1.0% provided branch angles are between —8° and +8°. For piezoelectric solids,
K* (Kww, Krw, Kpo) and Kt (Kb, K }’I, K,b)) contain three intensity factors in each. Setting
L/a = 1075, K° and K° were compared for different 8 and loading. It is found that under

pure mechanical or electric loading, the corresponding intensity factors satisfy the 1.0%
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Table 3.2: Range of branch angles (deg) for an open branch in PZT-4.

L/a
B loading

0.001 0.01 0.1 0.5

0 (deg) o2 =1 [-120, 120] [-120, 1207 | [-102, 102] [-78, 78]

DI(ED) = 1 [-88, 88] [-89, 89] [-90, 901 [-91, 91]

30 (deg) oo =1 [-120, 120] [-120, 120] | [-107,98] [-79, 80]
DI(ED) = 1 [-117,61] [-117,61] [-117, 60] [-119, 60]

30 (deg) | o= o [-120, 120] | [-120, 120] | [-98,107] | [-80, 79]
pmEy =1 | 6L 171 | [6L, 1171 | [-60,117) | [-60, L19]

requirement between the two models for a remarkably wide range of w. For example, when
B = 0°, K*® and K? show less than 1.0% difference for —58° <w £ 58° and —36° < w < 36°
for pure tensile and normal electric displacement loading, respectively.

The electroelastic fields at a branch tip (Figure 3.la) are illustrated in Figures 3.5-
3.8 through intensity factors (K%, K%, K%) and hoop stress intensity factor K8,. These
parameters reflect the disturbed electroelastic fields due to the presence of a branch. In
view of practical applications, branch angles in the range [—120°,120°] are considered.

It is important to check the condition for an open branch given by eqn (3.35). The ranges
of branch angles within which a branch is open are given in Table 3.2 for three different crack
orientations (8 = 0°, 30°, —30°) under remote mechanical and electric loading. Generally,
the ranges are larger for mechanical loading than for electric loading. Under mechanical
loading, a branch is in open mode for all small branch lengths (L/a < 0.01) and |w| < 120°.
However, the branch angle range for an open branch becomes smaller with increasing L/a.
The length of a branch has negligible influence on branch closure under electric loading.
The branch remains always open for L/a < 0.5 and |w| < 60°.

Figures 3.5 and 3.6 show the field intensity factors K2, K?[ and K% for 8 = 0° under
remote tension o9 and positive electric displacement DZ°, respectively.
branch lengths (L/a = 0.001, 0.01, 0.1 and 0.5) are considered. The intensity factors in
Figures 3.5 and 3.6 are normalized by K and Kp given in eqn (2.41), respectively. For

Four cases of
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Figure 3.5: Normalized stress/electric intensity factors at the tip of a branched crack in
PZT-4 due to remote tension for crack orientation 3 =0 and different branch length L/a.
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Figure 3.6: Normalized stress/electric intensity factors at the tip of a branched crack in
PZT-4 due to positive electric displacement for crack orientation 8 = 0 and different branch

length L/a.
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both mechanical and electric loading, K? and K}, are symmetric with respect to the main
crack line, whereas K?I is antisymmetric. Unlike the case of a straight crack, generally K2,
K%, and K%, all have non-zero values. When w = 0° (i.e. a branch along the main crack line),
K%, and K% (Figure 3.5) and K% and K%, (Figure 3.6) vanish confirming the decoupling
of stress and electric fields at a straight crack tip (Suo et al, 1992). A weak influence of
branch length on intensity factors is observed for L/a < 0.01. Additional results show that
intensity factors are virtually independent of L/a for L/a < 0.001. A similar conclusion was
drawn by Zhu and Yang (1999) while examining K for varying L/a.

In the case of mechanical loading, K%(w # 0°) < K%(w = 0°) and K% (w # 0°) < K& (w =
0°), which mean a deviated branch plays a shielding effect on Mode I stress and electric
displacement intensity factors for the branch lengths considered in Figure 3.5 (compared
to self-similar crack extension). For positive values of w, a branch has an amplifying effect
on the Mode II stress intensity factor, while a shielding effect is noted for negative w. In
the case of positive electric loading (Figure 3.6), a shielding effect is also observed for the
electric displacement intensity factor. However the effect on K% and K%, depends on both
the branch length and branch angle. For example, shielding effects on K}’ are observed
when L/a < 0.01 for all w and for L/a = 0.1 when |w| < 80°, whereas amplifying effects for
L/a = 0.1 with |w| > 80° and L/a = 0.5. However, branch closure generally happens when
|w| > 90°. Compared to the case of mechanical loading, the dependence of intensity factors
on L/a and w is more complex under electric loading.

The case of a main crack not perpendicular to the poling direction (3 7 0°) is also con-
sidered. As expected, the field intensity factors are no longer symmetric or anti-symmetric
with respect to the main crack line. In the case of tensile loading, crack orientation has a
weak influence on K "[’ and K%, but quite strong influence on K% . In contrast, crack orien-
tation has a strong influence on K% and K?;, but a relatively weak influence on K% under
remote electric displacement loading. Numerical results are not presented here for brevity.

Setting L/a = 0.01, Figures 3.7 and 3.8 present the normalized hoop stress intensity
factors K2, /(Vmaocl) and K%, /(,/7aE) under remote tension and positive electric field,
respectively. Five cases of branch angles (w = 0°, 30°, 45°, 60° and 90°) and three
values of main crack orientation angles (8 = 0°, 30° and —30°) are considered. Based on
Table 3.2, branch closure occurs for w = 90° and 8 = 0° or 30° under electric loading. The
corresponding results are not shown in Figure 3.8. In the case of mechanical loading (Figure
3.7), crack orientation shows weak effect on hoop stress intensity factor. Critical hoop stress

intensity factors are found at v = 0° when w = 0° for all values of 3, implying the shielding
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different branch angles and crack orientations (branch length L/a = 0.01).
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Table 3.3: Comparison of stress intensity factors at the tip of a symmetrically branched

crack in an isotropic elastic solid under remote tension (L; = Ly = 2a, w) = —ws = w).
. KJ/K, K" /K,
(deg) valcc_)c?ris & Present Study Tl_1ec3c?ris & Present Study
Ioakimidis (1976) Ioakimidis (1976)

30 0.90 0.90 0.46 0.47
45 0.65 0.65 0.66 0.66
60 0.34 0.34 0.70 0.71
90 -0.11 -0.11 0.39 0.39

effect of a branch. In the case of electric field loading (Figure 3.8), the hoop stress intensity
factors are significantly influenced by the crack orientation and branch angle. A branch may
play either an amplifying or a shielding effect on the hoop stress intensity factor depending

on the crack orientation and branch angle.

3.4.2 A bifurcated crack

In the absence of any known solutions for a bifurcated crack in piezoelectrics, the present
results are compared with two solutions for isotropic elastic solids reported in the literature.

Theocaris and Ioakimidis (1976) analyzed a symmetrically branched crack in an isotropic

elastic solid and presented the results for the stress intensity factors. Let w; = —ws = w,
Ly = Lo = 2a and B = 0° in Figure 3.1b. Consider a fictitious piezoelectric material with
a13 = a3 = 0, a2 = —0.25a131, a3z = 2.5a11, azs = a11/1.001 (a2 = a;; corresponds to

ideal isotropic case), negligible piezoelectric coefficients(b;; =~ 1071?), and identical dielectric
constants as PZT-4. The normalized stress intensity factors K;’l /Kr and K?} /K at the
branch 1 tip are shown in Table 3.3 for various branch angle w under remote uniform
tension, where K| denotes the mode I stress intensity factor for a straight crack. Close
agreement is observed confirming the accuracy of the present solution scheme. The problem
of an asymmetrically branched crack with L;/a = 0.8 and Ly/a = 0.4 (Figure 3.1b) in
an isotropic elastic solid is considered in Table 3.4. The fictitious piezoelectric material
described above is used again in the computation. The results for the stress intensity factor
ratio KIb} / K'I’1 at the branch 1 tip are presented in Table 3.4 for two cases of branch angles,
along with the results given by Theocaris (1972) for isotropic elastic solids. Again good
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Table 3.4: Comparison of stress intensity factor ratios at the tip of an asymmetrically
branched crack in an isotropic elastic solid under remote tension (L;/a = 0.8, La/a = 0.4).

©; ©, K /K]
(deg) (deg)
Theocaris (1972) Present Study
30 0 0.56 0.53
15 0 0.24 0.24

agreement is observed.

The electroelastic fields at branch tips of a bifurcated crack in PZT-4 (Figure 3.1b) are
computed in terms of intensity factors (K%, K%, K%). Branch angles (Jw;| and |ws[) in the
range [0°, 120°] are considered in view of practical applications. The conditions given by eqn
(3.39) for an open bifurcated crack are checked during the computation, and only results
satisfy these conditions are presented.

A special case of crack bifurcation in PZT-4, namely the problem of a symmetrically
branched crack (w; = —ws = w and L; = Ly = L in Figure 3.1b), is examined first. Four
cases of branch lengths (L/a = 0.001, 0.01, 0.1 and 0.5) are considered. It is found that
the trends of branch tip field intensity factors are similar to those of a branched crack.
The field intensity factors at the branch tip of a bifurcated crack are generally smaller than
those of a branched crack. The field intensity factors for large values of w are close to
the corresponding values of a branched crack, which confirms the fact that the interaction
between the two branches becomes weak. The branch length has a weak effect on intensity
factors when L/a < 0.01. It is noted that, compared to the case of a branched crack, the
range of branch angle w within which a crack remains open is narrower for a bifurcated
crack, especially under electrical loading and with a large value of L/a. For example, a
symmetrically branched crack with L) = Ly = 0.01la remains open only for jw| < 30° when
B = 60° under positive electric loading. The details of numerical results are not shown for
brevity.

The general case of a bifurcated crack (i.e., the problem of an asymmetrically branched
crack) is now considered. Let La/a = 0.1, w; = 30°, wy = 0° in Figure 3.1b. Figures 3.9 and
3.10 present the stress intensity factor K? under remote tension o22 and positive electric
displacement DZ°, respectively. Three values of crack orientation angles, namely 8 = 0°,
30° and 90°, are considered. The value of branch length ratio L;/L, varies from 0.5 to 2.0.
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In the case of mechanical loading (Figure 3.9), crack orientation has a negligible influence on
the stress intensity factor, but a different crack orientation angle corresponds to a different
range of L; /Lo which renders an open crack. The case of 8 = 90° has the widest range of
L1/Lo while 8 = 30° corresponds to the narrowest range. An open crack is expected for
all three values of 8 when branch 1 is longer than branch 2. It is found that, when the
branch length ratio L;/Lg is larger than 1.2, the stress intensity factor of branch 1 increases
steadily and that of branch 2 decreases quite fast. The opposite trend is true when the length
ration Li/Ls is smaller than 1.2. This observation indicates that, if the fracture process
is controlled by the stress intensity factor, the occurrence of a microscopic branch would
make the longer branch even longer. Therefore, there is little chance that two branches can
simultaneously grow. The shorter branch cracks are frequently left behind a main crack.
In the case of positive electric loading (Figure 3.10), a crack remains always open for the
considered range of L;/Lo when 8 = 0° or 30°. However, crack closure happens for the
whole range of L; /L2 when 8 = 90°. The trend of the stress intensity factor corresponding
to B = 0° is similar to that in the case of mechanical loading. The case of 8 = 30° is
different. The trend that a longer branch accompanies a larger value of stress intensity
factor is observed only in the range of L1/Ls > 1.6. Consider the same problem as in
Figures 3.9 and 3.10 but with ws = —15°. The variations of stress intensity are shown in
Figures 3.11 and 3.12. A similar conclusion, as in Figures 3.9 and 3.10, is drawn with regard
to the relation between the stress intensity and the branch length for both mechanical and

electric loading.

3.5 Conclusion

The extended distributed dislocation modeling technique is successfully applied to study
arbitrarily oriented branched cracks in piezoelectric materials. The branched crack problem
is reduced to the solution of a system of singular integral equations with dislocation densities
along the branch line as unknowns. The condition for an open crack has been taken into
consideration.

The validation of the present scheme is confirmed by comparing with the results for
special cases reported in the literature. It is noted that the asymptotic electroelastic fields
at a branch tip have complex dependence on branch length, branch angle, crack orientation
and the type of loading. The influence of applied electric loading is more complicated and
significant than mechanical loading. The trends of field intensity factors of a branched
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Figure 3.12: Stress intensity factors at the tips of an asymmetrically branched crack in
PZT-4 under positive electric field for different branch length ratios (La/a = 0.1, w; = 30,

we = —15 in Figure 3.1b).
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crack are similar to those of a symmetrically branched crack, but a symmetrically branched
crack has a narrower range of branched angles which render crack open. The results for an
asymmetrically branched crack indicate that, if stress intensity factor is responsible for the
fracture process, it is unlikely that two branches can simultaneously grow when a bifurcated
crack is under remote tension or a bifurcated crack perpendicular to the poling direction is

under electric loading.



Chapter 4

Fracture Criteria

4.1 Fracture toughness anisotropy

For isotropic materials, a single parameter such as K¢ is adequate to describe fracture
toughness. In contrast, planes of low fracture resistance exist in anisotropic materials,
cracks may be trapped onto such planes even though hoop stress or energy release rate may
not be maximum on these planes. Polarized ceramics generally have anisotropic material
properties. Therefore, the orientation dependence of fracture toughness in piezoelectric
ceramics should be considered when dealing with crack propagation. Based on the available
experimental results, a simple model is developed in this section to describe the fracture
toughness anisotropy in piezoelectric ceramics.

The critical stress intensity factor K, is often used in the experimental studies to discuss
fracture toughness. Fracture toughness of polarized ceramics in directions parallel to the
poling direction (Kj) and perpendicular to the poling direction (Kgg) have been experimen-
tally measured, as well as fracture toughness of unpolled ceramics (Calderson-Moreno, etc,
1997; Pisarenko, efc, 1985; Chen, etc, 1999). Unpolled specimen show isotropic fracture
toughness, while Kq > Kgg is observed for polarized ceramics. The ratio Kg/Kgg for 2 PZT
(PC4D Type 1 from Morgan Matroc) measured by the indentation method is as large as
2.69 (Calderson-Moreno, etc, 1997). Pisarenko et al (Pisarenko, etc, 1985) reported that
Kg/Kqp is in the range 1.15 ~ 2.36 for four different piezoceramics.

Let K.(8) denote the fracture toughness along the direction 8 in a piezoceramic (Figure
4.1), where 6 is measured with respect to the poling direction z’. Due to material symmetry

about 2/,
K6 +7) = K(6);  Ko(—6) = K.(0) (41)

78
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Figure 4.1: Illustration of fracture toughness anisotropy in piezoelectrics.

The general form of K.(#) can be expressed by (Tan, 1990),

K.(8) = Ag — ) _ Ansin®(nf) (4.2)

n=1
where A, are a set of constants.
When two principal toughnesses K.(0°) = Kg and K.(90°) = Kgg are known, considering
the two leading terms of eqn (4.2) yields,

K.(8) = Kocos? 8 + Kgosin? 9 (4.3)

If toughness along a third direction is also known, e.g. K.(45°) = K5, considering the first
three terms of eqn (4.2) gives,

K(6) = Kocos? 0 + Kggsin®8 — 0.5(Kp + Koo — 2Kys) sin®(26) (4.4)

Eqn (4.3) is used in this study to calculate fracture toughness at an arbitrary direction
when predicting potential fracture propagation in piezoelectrics. Noting that 8§ = 90° —w—_3

in Figure 4.1, eqn (4.3) can be expressed as
K¥ = K,(90° — w — 8) = Kosin®(w + 8) + Koo cos?(w + ) (4.5)

Experimental findings (Chen et al, 1999; etc) indicate that fracture toughness of piezo-
electric solids is not only related to material anisotropy but also affected by applied stress
o and electric field E®, i.e. K. = K.(6,0%°,E*). Applied loading may cause domain
reorientation near a crack tip which also contributes to toughness changes. This topic is

still in its infancy requiring further experimental and theoretical studies.
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Eqn (4.3) or (4.5) gives the fracture toughness in terms of the critical stress intensity
factor at an arbitrary direction. The critical energy release rate need be quantitatively
described in a piezoelectric solid, when applying an energy-based criterion. Currently, no
experimental data of critical energy release rate G are available. In view of the fact that
energy release rates are quadratic functions of field intensity factors (e.g. eqn (2.44)), it is

assumed that
GY =k (K¥)? (4.6)

where G¥ = G.(f) and K¥ = K.(6) are critical values of energy release rate and stress

intensity factor (Figure 4.1), respectively; k is a constant in a given material.

4.2 A stress-based criterion

Considering the anisotropic behavior of piezoceramics, the criterion of modified hoop stress
intensity factor is used to predict crack propagation (Azhdari and Nemat-Nasser, 1996).

Define modified hoop stress intensity factor K* as
K*(w) = Ky /KY (4.7)

where K., is the hoop stress intensity factor and K¢ is the facture toughness.
It is assumed that at a pre-existing crack tip, crack growth takes place along the direction
a which renders the modified hoop stress intensity factor K*(w) maximum, and a crack

propagates when
Koo = K2 (4.8)

Doblare et al (1998) and Gregory and Herakovich (1986) used criteria similar to the eqns
(4.7) and (4.8) for anisotropic elastic materials. It was found that theoretical predictions
generally agree with experimental results.

The criterion of modified stress intensity factor is now applied to discuss potential propa-
gation of a pre-existing impermeable crack in PZT-4 (Appendix A) under applied mechanical
or electric loading. Both the straight crack model and the branched crack model can be used
to evaluate the hoop stress intensity factor K, required by eqn (4.7). In the later case, a
vanishingly small branch length should be used, and K ’I’ should be used in place of K, in
eqn (4.7). It is assumed that toughness anisotropy ratio Ko/Kgg = 2 in the absence of exper-

imental data for PZT-4 material used in this study. The assumed value is within the range



81

of fracture toughness anisotropy for PZT materials obtained in experiments (Pisarenko, et
al, 1985). Figures 4.2a and 4.3a, based on the branched crack model, show the variation of
normalized hoop stress intensity factor ratio KoK*/(/7ac2?) and KoK*/(\/maES®) under
remote tension and positive electric field loading, respectively. In these figures, only results
corresponding to the ranges of branch angles which satisfy the condition of an open branch
(eqn (3.35)) are shown. The corresponding results from the straight crack model are shown
in Figures 4.2b and 4.3b. The following observations are drawn from Figures 4.2 and 4.3.

The modified hoop stress intensity factors based on the branched crack model and
straight crack model have similar trends. The two models show quite identical results
for mechanical loading. For electric field loading, the differences are noted in the intensity
factor magnitudes and in the ranges of w for an open branch. However, the two models
show nearly equal branch angles corresponding to the maximum values of K* for 8 = 0°,
60° and 90°. For example, as shown in Figure 4.3, K* has a maximum value of 0.6222 for
w = —69° and B = 60° based on the branched crack model, while the straight crack model
shows a maximum value 0.7156 {13% higher) at w = —71°.

The requirement of an open branch can only be considered by the branched crack model.
Incorrect conclusions may be drawn by neglecting this requirement, especially under electric
field loading. For example in Figure 4.3, the potential propagation directions are 106°
and 45° for B8 = 45° based on the straight crack model and the branched crack model,
respectively. The branched crack model shows branch closure happens when w > 45°. In
addition, the effects of non-singular stress 25 and electric field EZ° on crack propagation,
which may significantly affect the crack path stability, can only be discussed by using a
branched crack model.

In the case of remote tensile loading, a self-similar crack extension is expected for 8 = 0°
based on the modified intensity factor criterion. For 8 7 0°, the crack deviates from the
straight path. The theoretical branching directions are —22°, —32° and —40° for crack
orientation angles 8 = 30°, 45° and 60°, respectively. The crack could branch into any
direction between [—31°,31°] when the poling direction is parallel to the crack line. In
the case of positive electric field loading, no crack extension is expected when the poling
direction is perpendicular to the crack line. The theoretical branching angles are 61°, 45°,
—69° and —95° for 8 = 30°, 45°, 60° and 90°, respectively. Note even in a symmetric case
(e.g. remote electric loading perpendicular to the crack and the poling direction parallel to
the crack), a crack may deviate from the straight extension path.

Distinctly different branching angles would be predicted if the assumption of isotropic
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fracture toughness was used in Figures 4.2 and 4.3. For example, the theoretical branching
direction would be 0° rather than —22° for 8 = 30° under remote tensile loading.

4.3 Angular distribution of energy release rates

The energy release rate given by eqn (2.44), being based on self-similar crack extension,
has limited application. In order to properly discuss crack propagation directions using
energy-based criteria, energy release rates along an arbitrary direction at a crack tip should
be known. Therefore, this section aims at seeking the angular distribution of energy release
rates.

Consider a crack with impermeable boundary (Figure 4.1). Assuming the crack extends

a small length of L along the w-direction, the total energy release rate can be expressed by
1 L
G(w) = E,m%) E/ [Cww (T, W) Aty + 07 (1, w)Aug + Dy (7, w)AP] dr (4.9)
- 0

where o, (T, w), or,(r,w) and D, (r,w) are the hoop stress, shear stress and hoop electric
displacement at the crack tip before branching, and are given by eqns (3.12) or (3.13); Au,,
Aug and A¢ are the crack branch opening displacement along the 7n-direction, &-direction,
and the jump in the electric potential across the branch faces after branching.

The solution for a branched crack derived in Chapter Three is used here to evaluate

Auy, Aug and A¢. Ly in eqn (3.30) can be symbolically rewritten as,
Lk = kal‘ij + Qr*nkl;j (4-10)

where [;;, l;‘j are defined in eqn (3.24), and Qmk, @}, are functions of material constants,
angles 8 and w.
Since 20 = a + s(cosw + pisinw) and z; = a + p(cosw + y;sinw), ;; in eqn (3.24) can

be expressed as

L V8T (sT; + 2a)
lij(p,s) = -1 4.11

() PT: — STj( AT (pT: + 2a) : @i

Perform a variable change from [0, L] to [0, 1] using p = gL, and s = 5L on eqn (3.28)
and related equations. Consider the limiting case of a vanishingly small branch (L — 0).

Using L2 =0, eqn (4.11) can be reduced to

135, 8) = = 10
SN = T AT /3T; + v AT0)

(4.12)
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Similarly for [}; ,

-1.0
l5(6,8) =+ (4.13)
L VALi(\/3T; + VPTy)

fi(p), f2(p) and f3(p) in eqn (3.31) represent the shear stress, hoop stress and hoop
electric displacement around a straight crack under uniform loading, respectively. At the
crack tip (r = L — 0), these electroelastic fields can be expressed in their asymptotic form.

Therefore,

{fl(ﬁ)’ fQ(ﬁ)r f3(ﬁ)}T = —ﬂT{Krwa Ko, KDw} (4.14)

Using eqns (3.32), (4.10)-(4.13), eqn (3.28) can now be rewritten as

/ {Mh, My;, M3:}T B; (S) 1 Z [{Qw, Q2k, Q3 } T Bi(3) +
SEL NG Jo &1 VATH(/3T; +/oTS)
{Q1k ng, Q351 Bi(3) 1 .
— = = ds = ..{KTL‘J7 way KDw}‘ (4-15)
VAT §T; + VBTS) ] V(1 —3) v 2‘”L
It is seen from eqn (4.15) that density functions B;(3) are proportional to v/L. Therefore

Au,, Aug and Ag are also proportional to v/L according to eqns (3.34) and (3.35), and
intensity factors K?, K?I and KbD are independent of the length L based on eqn (3.33).

These conclusions are valid for the limiting case of a vanishingly small branch (L — 0).
Performing a variable change from [0, L] to [0,1] on eqn (4.9) and making use of eqn
(3.13) yield

. 1 1
Glw) = fim, _2_15/0 VorL3

Due to the fact that Au,, Aus and A¢ are proportional to VL for a vanishingly small

(Koo An(3) + KrwOue(3) + KpuAd(8)]Lds (4.16)

branch, eqn (4.16) can be expressed as,

L[ Lk, A0) Aug(8) A90G) ) 45
2v2r Jo VG- Y VL vL VL
Therefore, in the case of a vanishingly small branch, energy release rates (strain, electrical

and total) are independent of the branch length L. Eqn (4.17) completes the solution for

+ Kpeo

angular distribution of energy release rates. The numerical approach of piecewise quadratic

polynomials proposed by Gerasoulis (1982) is used to evaluate integrals in eqn (4.17).
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Alternatively, energy release rates along an arbitrary direction at a crack tip can be
obtained by following a common practice (Azhdari and Nemat-Nasser, 1996). Transforming

eqn (2.44) to £n system yields,

3 3 3
GM(w) =Im ) Gnlin(KD)® +Imy Dabon(Ki)? + Im Y (dnfon + Bufin) KPK)
n=1 n=1 n=1
3 3
+Im Y PalanKPKp +Im > Gatzn KK}
n=1 n=1
3 _ 3 3 g
GE(w) =Imy_ 5ntinKiKp +Im Y St K} KD +ImY  Snlsn(KY) (4.18)
n=1 n=1L n=1

where variables p,, §n, S, and Ejn are defined in the &7 system, corresponding to pn, ¢n, Sn
and t;, in the zz system; K%, K%, and K% are field intensity factors at the branch tip.

It is noted that eqn (4.18) gives the energy release rates based on an infinitesimal ex-
tension of an existing infinitesimal small branch, while eqn (4.17) gives the results due to
the occurrence of branching. A comparison of results calculated by these two approaches is
made in Table 4.1 through numerical examples. A general polarization angle (8 = 30°) is
considered. Far field loading are tensile stress 022 = 100N/m? and electric field ES°. It is
found that the total energy release rates from the two different approaches are identical for
both PZT-4 and PZT-5H. However, this is not the case for the strain energy release rate,
especially when the ratio of electric to mechanical load is large. For example, the difference
between two approaches is 20% in PZT-5H when E3°/022 = 5 and w = 45°. Therefore,
eqn (4.18) based on the common practice is generally not valid, and should not be used
to calculate energy release rates. In view of this observation, eqn (4.17), corresponding to
branch nucleation, is used in the ensuing part of this Chapter.

Kumar and Sigh (1997a, b) used the finite element technique to calculate the angular
distribution of the energy release rates in piezoelectrics. As reported by themselves, there
is discrepancy between their finite element solutions and the analytical solutions by Pak
(1992). Taking 8 = 0° and w = 0°, it is found that the results of present scheme agree with
Pak (1992). The accuracy of the present scheme is further confirmed by a comparison with
the solutions for elastic solids reported by Azhdari and Nemat-Nasser (1996). Assume that
Figure 4.1 shows an elastic medium with material coordinate system z'z’, a}; (corresponding
to a;j in eqn (2.3)) are material constants with respect to the material system, and 3 denotes
the orientation of crack with respect to the material axis. According to Azhdari and Nemat-
Nasser (1996), a3 = 0, aj3 =0, a}; = 1/En, a5 = 1/E29, as3 = 1/Egg, ajy = —0.25/FE9
and 8 = —60, where Fyi1, E, Egs and angle 6 are given in Table 4.2. A fictitious piezoelectric
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Table 4.1: Comparison of energy release rates calculated by eqns (4.17) and (4.18) in PZT-4
and PZT-5H (622 = 100N/m?2, 8 = 30°).

£ /o © GM/a (NIm?) G/a (N/m?)

(Vm/N) eqn (4.18) eqn (4.17) eqn (4.18) eqn (4.17)
02 30° | 7.65x 1077 | 7.69x 1077 | -6.25 x 107%| -6.25 x 107°
— 1.0 45" | 1.50x107% | 1.59x107% | —1.55x 107*| —1.55x 10™*
50 300 | 230%107° | 3.48%x10°° | 4.03x 10| -4.03x 10
50 45" | —7.71x107%] —5.81x 107%| —3.87x 107%| —3.87 x 107>
0.2 30° | 8.03x 1077 | 8.08x 10~ | ~1.24x 107| ~1.24 x 107°
1.0 ° -6 -6 -4 -4

PZT-SH 45 2.08 x 10 2.14x 10 -298x 10 | =298 x 10
5.0 30" | 1.04x107° | 1.10x10™° | —7.88x 107 —7.88 x 10>
590 45" | 4.00x107° | 499x 107° | —7.44x 1073| —7.44 x 107>

Table 4.2: Comparison of energy release rates G(w)/G(0°) in orthotropic elastic solid.

| o R | oz | on| 0 | 0 | Al reen
1 | 1 |04 ] 0 [100] ¢° | _99° 1.510 1.508
I | 2 | 04]100] 0 | _35°| 90 0.190 0.190
I | 20 | 08 | 50 | 50 | _go° | 45° 1.312 1.311
2 | 10 | 04 | 100 | 20 | _35°| _go° 0.805 0.806
8 | 1 | 08| 32| 48 | ¢ | _is0° 0.216 0.216
9 | 1 [ 138] 49 | 100 | »° | _49° 0.779 0.780
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material with same elastic constants used by Azhdari and Nemat-Nasser (1996), negligible
piezoelectric coefficient (b;; &~ 107'2), and identical dielectric constants as PZT-4 is used.
The comparison between the two results is made in Table 4.2. Good agreement is observed

for a variety of material properties, loading conditions and branch angles.

4.4 Energy-based criteria

Parallel to eqn (4.7), modified strain energy release rate H (w) and modified total energy

release rate H(w) are defined as

HI\J — GA/[(W)/GL:
H = G(w)/GY (4.19)

where GM(w) and G(w) are angular distributions of strain and total energy release rates,
respectively.

The criterion of modified strain energy release rate assumes that, at a pre-existing crack
tip, crack growth takes place along the direction a which renders the modified strain energy

release rate H* (w) maximum, and a crack propagates when
GM(a) > G* (4.20)

Similarly, the criterion of modified total energy release rate assumes that crack growth
takes place along the direction o which renders H(w) maximum, and a crack propagates

when
G(a) = GZ (4.21)

It is noted that Azhdari and Nemat-Nasser (1998) suggested an energy-based criterion
similar to eqns (4.19)-(4.21) for anisotropic elastic materials based on their experimental
study.

The proposed fracture criteria are now applied to discuss potential propagation of a
pre-existing straight crack in PZT-4. Assuming Ko/Kgo = 2, critical fracture energy release
rate G¥ is calculated based on eqns (4.5) and (4.6). Figures 4.4 and 4.5 present the variation
of modified energy-release rates with varying crack branch angles (w) under mechanical and
electric loading, respectively. The corresponding results of modified hoop stress intensity
factor of eqn (4.7) based on the branched crack model are also shown for the purpose of
comparison. In these figures, only results corresponding to the ranges of branch angles

which satisfy the condition of an open branch are shown.
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Assume tensile stress o2y = 0.6M Pa at far field. Normalized modified strain energy
release rate HMGg/a and modified hoop stress intensity factor K*Kp/(\/Tac) are shown
in Figures 4.4a and 4.4b, respectively. Ggp and K are the critical energy release rate and
critical stress intensity factor along the poling direction (6 = 0°), respectively. The results
of modified total energy release rate are virtually identical to those of strain energy release
rate, and are therefore not shown. It is seen that the modified strain energy release rate
and hoop stress intensity factor have very similar trends except for the case of 8 = 90°. The
theoretical branching angles based on these two criteria are also close to each other when
B # 90°. The potential branching directions, based on the energy based criterion, are —25°,
—37°, —48° and £64° for polarization angle 8 = 30°, 45°, 60° and 90°, respectively. A
self-similar extension is expected for # = 0°. Therefore, in the case of mechanical loading,
the criterion of modified strain energy release rate is virtually equivalent to the criterion
of modified total energy release rate. The theoretical branching angles based on these
two energy-based criteria are close to those predicted by the stress-based criterion except
£ = 90°.

Now consider electric field ES° = 12KV/m at far field. Normalized modified strain
energy release rate H™Go/a, modified total energy release rate HGg/a and modified hoop
stress intensity factor K*Ko/(/maEZ2®) are shown in Figures 4.5a, 4.5b and 4.5c, respec-
tively. In contrast to the case of mechanical loading, it is found that the resuits of total
energy release rate are now totally different from those of strain energy release rate. Nega-
tive values of total energy release rate are observed for all values of w and 3, implying no
crack propagation based on the criterion of modified total energy release rate. The modified
strain energy release rate and hoop stress intensity factor have somewhat similar trends,
but the theoretical branching angles based on these two criteria are quite different. The
potential branching directions, based on the modified strain energy release rate criterion,
are +30°, —7°, —48°, —61° and —88° for polarization angles 8 = 0°, 30°, 45°, 60° and 90°,
respectively. Note that a crack tends to deviate from the straight extension path regardless
of crack orientation angles. This prediction qualitatively agrees the experimental finding
reported by McHenry and Koepke (1983).

Distinctly different propagation directions would be predicted if the isotropic fracture
toughness were used in Figs. 4.4 and 4.5. For example, based on the criterion of strain
energy release rate, a self-similar crack extension would be predicted rather than branching
along w = £30° for a crack under electric loading when 8 = 0°.

The cases of combined mechanical and electric loading are considered in Figs. 4.6-4.9.
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Figure 4.4: Variation of modified strain energy release rate and modified hoop stress intensity
factor at crack tip in PZT-4 under remote tensile stress o2 = 0.6 M Pa.
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Figure 4.5: Variation of modified energy release rates and modified hoop stress intensity
factor at crack tip in PZT-4 under positive electric field E3° = 12KV/m.
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Figs. 4.6 and 4.7 are for modified strain energy release rate (H*), and Figs. 4.8 and 4.9
are for modified total energy release rate (H). Constant tensile stress 022 = 0.60M/ Pa and
two levels of electric field, i.e. E3° = +£12KV/m (Figs. 4.6 and 4.8) and £60KV/m (Figs.
4.7 and 4.9), are applied at far field. Three cases of polarization angles, i.e. 8 = 0°, 30° and
90° are computed. Only results corresponding to the ranges of branch angles which satisfy
the condition of an open branch are shown.

Based on the criterion of modified strain energy release rate (Figs. 4.6 and 4.7), a
positive electric field tends to promote crack propagation and a negative one tends to retard
crack propagation for all w values when 8 = 0° or 30°. When 8 = 90°, an electric field can
either promote or retard crack propagation depending on the direction of electric field and
branch angle w. A positive electric field tends to promote crack extension if branch angle
w < 0, and slow down or cause crack closure if branch angle w > 0. The opposite effect is
true for a negative electric field.

If the criterion of total energy release rate is applied (Figs. 4.8 and 4.9), the effect of an
applied electric field on crack propagation is dramatically different . An electric field always
impedes crack propagation regardless of crack orientation angles, direction of electric field
and branch angles. Crack closure may happen for a wide range of branch angles when an

electric field is strong (Figure 4.9).

4.5 Conclusion

Relaxing the assumption of self-similar crack extension and taking the fracture toughness
anisotropy into consideration, a new stress-based fracture criterion and two energy-based
criteria, namely the criteria of modified hoop stress intensity factor, modified strain en-
ergy release rate and modified total energy release rate, are proposed to predict potential
propagation directions of impermeable cracks in piezoelectric ceramics.

Numerical results show that distinctly different propagation directions would be pre-
dicted if the assumption of isotropic fracture toughness were used in both stress and energy-
based criteria. In the application of modified hoop stress intensity factor, the predicted re-
sults based on the branch crack model are compared with those based on the straight crack
model. It is found that the straight crack model may lead to erroneous conclusions, espe-
cially in the case of electric loading. It is noted that a crack may branch off from a straight
path even under symmetric loading and geometry. Under applied mechanical loading, the

criteria of modified strain energy release rate and modified total energy release rate are
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Figure 4.6: Variation of modified strain energy release rate at crack tip in PZT-4 under
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Figure 4.7: Variation of modified strain energy release xate at crack tip in PZT-4 under

applied tensile stress o2 = 0.6 M Pa or electric field E$° = 60KV /m.
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Figure 4.8: Variation of modified total energy release rate at crack tip in PZT-4 under
applied tensile stress o3 = 0.6 M Pa or electric field E° = £12KV/m.
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virtually equivalent, and the two energy-based criteria and the stress-based criterion predict
similar crack propagation paths. Under applied electrical loading, however, the predicted
propagation paths by the stress-based criterion are significantly different from those by the
energy-based criteria. Based on the criterion of strain energy release rate, a crack tends
to branch off from a straight path regardless of the polarization angle. Under combined
mechanical and electric loading, an electric field can either promote or retard crack propa-
gation depending on the crack branching angle, the polarization angle and the direction of

applied electric field.
Currently, no experimental data are available in the literature to check with the theo-

retical branching directions predicted in this study. Coordinated experimental studies are
needed to determire the exact nature of fracture toughness anisotropy and a suitable frac-
ture criterion for piezoelectrics. The present theoretical study complemented with such
experimental work is important to advanced engineering applications of piezoelectric mate-

rials.



Chapter 5

Singularities in Piezoelectric

Wedges

5.1 Governing equations

Consider a piezoelectric wedge polarized along the direction 2/, as shown in Figure 5.1. The
geometry of wedge is defined by the two angles a and ¢ with respect to the r-axis. The
z-axis of the coordinate system (z,y. z) makes angle # with the direction of polarization 2’
of the coordinate system (z’,3, 2). Assuming planar electroelastic fields independent of y
('), the constitutive equations with respect to the (z,y, z) system can be expressed as eqn
(2.3).

Using the extended Lekhnitskii’s formalism of eqn (2.4) given in Chapter 1, the sixth-
order differential equation of eqn (2.5) can be derived. As noted in Chapter 1, the character-
istic equation of eqn (2.5) generally have distinct roots. Therefore, the solution of functions

F and ¥ in eqn (2.4) can be expressed in the following form.

6 6
F(z,2) = Fa(zn); U(z,z) = Zan%f) (5.1)
n=1 n=1

where z, and é, are defined under eqn (2.8).
The functions Fi,(n = 1,---,6) in eqn (5.1) can be written as power series of z,. Since
this study is focused on singular fields, it is sufficient to consider only the leading term of

the power series. Therefore,

6 6
F(z,z) = Anz; U(z,z) = ApAnzp™ (5.2)

n=1 n=1

98
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Figure 5.1: A piezoelectric wedge.

where A is the power of the leading term and A,(n = 1,---,6) are arbitrary coefficients.

It is convenient to introduce a polar coordinate system (r, 8) as shown in Figure 5.1 for
the present class of problems. The following solutions for the complete electroelastic fields (
displacement u;, electrical potential ¢, stress oy;, electric displacement D; and electric field

E;) can be obtained by using eqn (5.2) and basic relations in piezoelectricity (Parton and

Kudryavtsev 1988).

6 6 6
Ur = A Z AnHlnrﬁ—l; ug = /\Z Aannrﬁ"l; o= )\Z AnH;;nT‘;}_l

n=1 n=1 n=1

6 6
1 -
Trr = MA—1) D AnHrnra ™% arg = =A(A —1) > AnHpgrp?

n=1 n=1

6
1
80 = “A(A 1) )  AnHsnrp ™!

n=1
6 1 6
Dr =2A=1))  AnHnrp % Do=~AA—1))_ AnHenrp '
n=1 n=1
1 6 6
Er= —-;/\()\ -1 2 AnH:;n'l‘é—l; Eg=XA-1) Z AnH3nH4n7'rl)_2 (5.3)
n=1

n=1
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where r, = r(cos§ + p, sin 8), g, are roots of eqn (2.6), pn, ¢. and s, are defined under eqn
(2.10), and

Hi, =pncosd 4+ g, sinb; Hop, = —ppsinf + g, cos 8; Hs3, = s
Hyn, =sin@ — p, cosb; Hsn, = cos0 + pnsin 6 Hen = —6n
Hyn = (pn cos @ —sin0)2; Hg, = 6n(pincosf —sin8) (5.4)

It is worth mentioning that eqn (5.4) can also be obtained by utilizing the correspondence
between plane piezoelectricity and generalized plane strain in elasticity established recently
by Chen and Lai (1997). For example, the equations for the displacements and stresses of
an anisotropic elastic wedge developed by Ting (1986) could be used to derive eqn (5.4) by
following Chen and Lai (1997).

Elastic field and electrical field are decoupled in the case of elastic composites or elec-
trodes, thus the elasticity theory is separated from electrostatics. Polymer based composites
are anisotropic and non-conducting materials, therefore, the elastic fields are obtained by

setting the coefficients b;; = d;; = 0 in eqn (2.3). The general solutions for displacements

are
4 4
ur = A Z BnH{nr’z—l; ug = A\ Z BpH5 27! (5.5)
n=1 n=1
where 7, = r(cos§ + ul, sin8), B, are arbitrary coefficients, and u/, (n = 1,--- ,4) are the

roots of the following equation,

a1l — 2a13,” + (2a12 + ags)pl, > — 2a03pl, + aze =0 (5.6)
and
Hi, = pl,cosf + g}, sin; 5, = —Dy Sin8 + ¢, cos (5.7)
where
Pl = anpl® + a1z — a1zl @, = (a120,% + aze — agaply) /1ty

Most conductors used in the adaptive structures are elastic isotropic. The electric field
inside an ideal conductor is zero leading to a constant potential (Cheston, 1964). The general

solutions for isotropic elasticity for the present class of problems are (Williams, 1952),

1./\—1

Ur 0 [Crcos A8 — Casin A — C3(A — 4k) cos(2 — A) — Ca( A — 4k) sin(2 — A)4]

~ 2u0(X —
A1

= 5= 1) 0 [-Cisin A — Cacos A8 + (2 — A — 4k)(C3sin(2 — A\)8 — Cycos(2 — A)8)]

(5.8)

Ug
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Table 5.1: Admissible basic boundary conditions on edge surfaces.

case Mechanical Electric
1 traction free electrically open
(049 = G, = 0) (Dg =0)
2 traction free electrically closed
(04 = 0,9 = 0) (¢=0)
3 clamped electrically open
(ur=ue=0) (Da=0)
4 clamped electrically closed
(4, = ug = 0) (¢6=0)

where A\g and pg are Lame’s constants, k = (Ag + 2p0)/2(No + o) and Cr(n=1_--- ,4) are
arbitrary coefficients.

Examination of the above general solutions for piezoelectrics, anisotropic com posites and
ideal conductors reveals that singular fields exist only if the real part of A is less than two.
Furthermore, the boundedness of displacement or electric potential at the corner of a wedge

requires the real part of A must be greater than one. Therefore, admissible valumes of A are

in the range of

1 < Re(\) <2 (5.9)

5.2 Characteristic equations

In this section, the characteristic equations for composite wedges and junctions. are estab-
lished to determine the admissible values of A. Consider a piezoelectric wedge a.s shown in
Fig. 5.1. Possible boundary conditions on two radial edges are traction free (cg9 = or¢ = 0)
or clamped (ur = ug = Q) combined with electrically open (D;n; = 0 or Dy = O¢) or closed
(¢ = 0 or E. = 0). Electrically open case corresponds to an adjoining mediurmm with zero
(or negligible) dielectric constants (e.g. vacuum or air), whereas electrically close-d case cor-
responds to an adjoining ideal conducting medium (Kuo and Barnett, 1991). As shown
in Table 5.1, four basic types of boundary conditions can be considered for a boundary of
a piezoelectric medium. The boundary conditions for an elastic medium are tr=action free

(cg¢ = org = 0) or clamped (u, = ug = 0). The continuities of the tangential cormponent of
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the electric field and the normal component of the electric displacement are demanded at a

piezoelectric material interface.

5.2.1 Piezoelectric wedges

There are altogether ten possible combinations of boundary conditions for the two edges

of a piezoelectric wedge. For example, traction free and electrically open on both edges

(Figure 5.1) yield
oge(c) = org(a) = Dg(a) = 0;  o9a(p) = org(p) = Dg(p) =0 (5.10)
Using eqn (5.3) and eqn (5.10) or any other admissible boundary conditions, the following
6 x 6 homogeneous equation system can be established.
[K1{A} = {0} (5.11)

where {A} = {41, A3, -+, Ag}T is the vector of unknown coefficients in eqn (5.3), [K] is
the coefficient matrix whose elements are functions of A.

A non-trivial solution for eqn (5.11) exists if,
det[K(A\)] =0 (5.12)

The determination of admissible values of A from the above characteristic equation is
usually done using a numerical algorithm although analytical solutions can be obtained for

a few special cases as shown in a subsequent section.

5.2.2 Piezoelectrics — conductor/composite wedges and junctions

Referring to Figure 5.2, material 1 is assumed to be piezoelectric and material 2 an isotropic

elastic ideal conductor. The following continuity conditions can be established at the ma-

terial interface.

uf(0) ~up(0) =0;  2j(0) —u§(0)=0;  4°(0)=0

0pe(0) —a5e(0) = 0;  a25(0) — 075(0) =0 (5.13)
where superscript p denotes a piezoelectric medium, and e denotes an elastic conductor.
In addition, a set of admissible boundary conditions on the two outside edges has to be
considered (Table 5.1). For example, the following boundary conditions can be considered

on the two outer edges.

ohe(p) = ofe(w) = D) =0;  ogg(cr) = o7(a) =0 (5.14)
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Figure 5.2: A bi-material system.

Substitution of eqns (5.3) and (5.8) in eqns (5.13) and (5.14) results in a homogeneous
system of equations similar to eqn (5.11) for the ten coefficients A,(n = 1,2,---,6) and
Cn(n=1,---,4). The admissible values of A is obtained from the corresponding character-
istic equation. In the case of a bi-material junction, the eqn (5.14) is replaced by a set of
interface conditions similar to eqn (5.13) corresponding to the other interface.

In the case of piezoelectric/elastic composite wedges and junctions, the condition ¢ =0
is replaced by Dg = 0 in eqn (5.13) to ensure that the bi-material interface is electrically

impermeable.

5.2.3 Two piezoelectric material wedge

Consider the case of a wedge consisting of two piezoelectric materials as shown in Fig. 5.2.
The two outer edges are assumed to be traction free and electrically impermeable. The

interface and boundary conditions can be expressed as,
uP(0) — uB2(0) = 0; uf' (0) — uh*(0) = 0; E?1(0) — ET2(0) = 05
P5(0) —aB3(0) =0;  o%(0) —0%3(0)=0;  DE(0) — DE*(0) =0
ohe(0) =0;  o%(p)=0;  Df(p)=0
oZi(a) =0;  of3(a)=0; DE(a)=0 (5.15)

where superscripts p; and ps denotes the piezoelectric medium one and two, respectively.
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The substitution of eqn (5.3) in eqn (5.15) yields a system of homogeneous equa-
tions similar to eqn (5.11) for the twelve unknown coefficients AR'(n = 1,2,---,6) and
AR?(n = 1,2,---,6). The admissible values of A are obtained by solving the correspond-
ing characteristic equation. The above methodology can be directly extended to consider

piezoelectric bi-material junctions.

5.2.4 Multi-material system

The general procedure to determine the admissible values of A for multi-material wedges
and junctions is identical to the bi-material case except for the presence of more than one
interface. The order of the final equation system [eqn (5.11)] is determined by the number
and type (elastic, piezoelectric) of the materials. For example, in the case of a three-
material wedge with one medium being piezoelectric and the rest elastic materials, a 14 x

14 homogeneous equation system is obtained.

5.3 Special cases of half plane and crack

The special cases of piezoelectric half planes and semi-infinite cracks are analytically exam-
ined in this section.

The geometry of a wedge is defined by two angles @ and ¢ (Fig. 5.1). A half plane can
be defined by (v, +£7), and a semi-infinite crack by (v+ =, —), where the angle + can be
arbitrary. To study the effect of polarization orientation on the singularities of half planes
and cracks, the angle § can be fixed while keeping ~ arbitrary. 3 is set to zero without loss

of generality. Eqn (5.3) can be rewritten in the matrix form as,

6
u(d) =AY _ Anh

n=1
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in Table 5.1, it is found that combinations 1-1, 2-2, 3-3 and 4-4 all result in the following

characteristic equation.
sinAw =0 (5.17)

Apparently, no root of eqn (5.17) satisfies the requirement 1 < Re(\) < 2. Therefore, for
piezoelectric half planes, no singularities are found for the homogeneous boundary condi-
tions.

A semi-infinite crack (w, -w) in a piezoelectric medium with a polarization angle 0°
is considered without loss of generality. Consider four homogeneous boundary condition

combinations of 1-1, 2-2, 3-3 and 4-4. They all lead to the following characteristic equation.
sin2Aw =0 (5.18)

Only one root, A = 1.5, satisfies eqn (5.18) resulting in the classical inverse square root type
singularity. Kuo and Barnett (1991) employed Stroh’s formulation (1962) and obtained the
same result for a semi-infinite crack in a piezoelectric medium.

Based on the results by Ting (1986) for general anisotropic elastic wedges, the above
conclusions can also be drawn by following the correspondence between plane piezoelectricity
and generalized plane strain in elasticity (Chen and Lai, 1997). In the case of free-clamped
boundary condition combination for elastic wedges, Ting (1986) showed that, if § is an
order of singularity for a half plane, then §/2 and (§ — 1)/2 are orders of singularities for
a semi-infinite crack. It can be easily shown that this conclusion is also applicable to any
admissible boundary condition combinations for piezoelectric half planes and semi-infinite

cracks.

5.4 Numerical results and discussion

Two polarized piezoceramics, namely PZT-4 and PZT-5, graphite/epoxy composite, and two
isotropic conductors, aluminum and nickel, are used in the numerical study. The material
properties of PZT-4 and PZT-5 are given in the Appendix A, and the material properties
of the composite and conductors are given below.
Aluminum ( Young’s modulus E and Poisson’s ratio v ): E = 68.9GPa, v =0.25
Nickel: E =210GPa, v=0.31
Graphite/epoxy composite (G is the shear modulus):

Ezz =132.8GPa, FE.:=10.76GPa, FE,; =10.96GPa
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G.y =3.61GPa, Gzy =5.656GPa, Gr.=5.65GPa

vz, = 0.24, Uzy = 0.24, Vyy = 0.49

The characteristic equation for a wedge/junction is transcendental and has infinite num-
ber of roots. The root A can be real or a complex quantity. Numerical experiments show
that the roots are generally complex for composite systems and real roots exist for some
cases of piezoelectric wedges. The order of electroelastic singularity is governed by the real
part of (A — 2). The root of primary interest is the one with the smallest positive real part
between one and two. The existence of a non-vanishing imaginary part of (A — 2} leads
to oscillatory singularity (Suo, 1990). All roots meeting the requirement in eqn (11) are
presented in the numerical study in order to present a complete picture of the nature of sin-
gularities in composite piezoelectric wedges/junctions. Plain strain conditions are assumed
throughout the computations. A numerical procedure based on Miiller’s method (Miiller,
1956) is used to search for admissible values of A.

To verify the accuracy of the numerical procedure, the solutions for piezoelectric bi-
material wedges are compared with those for isotropic bi-material wedges given by Hein
and Erdogan (1971) through a limiting process. Referring to Figure 5.2, consider Material 1
and Material 2 as isotropic ideal elastic materials with Young’s moduli £,/Fs = 10/31 and
Poisson’s ratios v; = 0.22, vo = 0.30. Hein and Erdogan (1971) presented the solutions for
two wedges, z.e. @ = —@ = 90° and o = 90°, ¢ = —180°. To simulate the above isotropic
elastic bi-material wedges, set s;; = 3.23 x 107'm?/N, s33 = 3.23 x 10~!m2/N, s13 =
—0.97x107'm?/N, s13 = —0.97x 107'm?2/N, s44 = 8.39x 10~ 1m?/N as elastic constants
of Material 1; s;1 = 10 x 10~'m2/N, s33 = 10 x 10~m?2/N, s12 = —2.2 x 10~ Im2/N,
s13 = —2.2 x 1071m2/N, s44 = 24.4 x 10~1m2/N as elastic constants of Material 2. The
piezoelectric constants g;; of the two materials are set to negligible values (g;; — 0) in
order to simulate ideal elastic behaviour. The solutions are compared in Table 5.2 and good

agreement is observed.

5.4.1 Piezoelectric wedges

Consider a PZT-4 wedge with polarization direction along the z-axis (# = 0 in Fig. 5.1).
Without loss of generality, set ¢ = —a in the numerical study. Figures 5.3a and 5.3b
show the variation of the order of singularity with the wedge angle 2« for the homogeneous
boundary condition combinations 1-1 and 4-4 in Table 5.1, respectively. It is found that all
roots are real. The two cases considered have singularities only for reentrant wedges, i.e.

wedge angles between 180° and 360°. T'wo roots exist for all wedge angles between 180° and
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Table 5.2: Comparison of roots A for isotropic bi-material wedges (Figure 5.2).

Geometry Present study Hein & Erdogan (1971)
o=90° 1.9494 1.949
@=—90° 2.8402 +0.2801i 2.840 £0.280i

3.8056 £0.81251
4.8462 +£0.8687i
5.8450 £1.16791

3.800 +£0.800i
4.850 +£0.8501
5.900 £1.150i

o= 900 16474 1.650
1.9751 1.977
~180°
*= 27332 £0.2857i | 2.733 +£0.286i
3.0780 £0.2225 | 3.080 +£0.220i

3.9988 +0.1296i
4.8453 +0.87071
5.0015 £0.1598:1
5.9997 £0.13841i

4.000 +£0.130i
4.850 £0.9501
5.000 £0.130i
6.000 £0.1301

1.6388, 2.3526
3.6474, 4.3526
5.6474

360° while a third root appears between 270° and 360°, and 180° and 360° for boundary
condition combinations 1-1 and 4-4 respectively. An increase in the order of singularity
is noted with increasing wedge angle. For the limiting case of a semi-infinite crack, two
of the roots approach the classical value of -0.5. An investigation of wedges with mixed
boundary conditions in Table 5.1 (e.g. 1-4) shows roots for wedge angles less than 180°, and
the presence of more than three roots. According to the study of elastic wedges by Mantié
et al (1997), there are in general two roots for traction free B.C. on both edge surfaces, while
present study shows combinations 1-1, 2-2 and 1-2 have three roots. Therefore, piezoelectric
wedges generally have one or more extra admissible roots compared to the corresponding
elastic case.

Three special cases of wedges, namely a right angle (2a = 90°), a half plane (2a = 180°)
and a semi-infinite crack (2a = 360°) are of interest in engineering. The eqn (5.12) is
numerically unstable for 2a = 360°, and 2a = 359.99° was used in the computations. Table
5.3 shows the order of singularities (A — 2) corresponding to the ten possible boundary
condition combinations based on Table 5.1. Numerical results agree with the analytical

solution presented earlier for boundary condition combinations 1-1, 2-2, 3-3 and 4-4 for a
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Table 5.3: Order of singularities for a right angle wedge, half plane and crack (8 = 0).

special wedges

B.C.
combinations right angle half plane crack
1-1 (2-2, 3-3, 4-4) / / -0.5000
1-2 -0.0731 -0.5000 -0.7500, -0.5000
-0.2500
1-3 -0.2176 -0.5000 +0.14395i -0.5000
-0.7500 +0.071971
-0.2500 £0.07197i1
1-4 -0.4855 -0.6261 -0.8131, -0.6869
-0.5000 -0.3131, -0.2500
-0.3739 -0.1869, -0.7500
2-3 -0.3445 -0.5000 -0.7500, -0.2500
-0.5000 +£0.22991i -0.7500 +£0.114951
-0.2500 +£0.114951
2-4 -0.3442 -0.5000 £0.04309i -0.5000
-0.7500 +£0.021541
-0.2500 £0.021541
3-4 -0.0416 -0.5000 -0.7500, -0.5000

-0.2500
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half plane and a crack. The roots for half planes and cracks in Table 5.3 are valid for all
possible polarization angles § in view of the earlier finding that roots are invariant with
B. Table 5.3 also shows roots for mixed boundary conditions, such as those considered
by Kuo and Barnett (1991), on the two edge surfaces. The order of singularity for semi-
infinite cracks is stronger than the classical inverse square root singularity and oscillatory
type singularities exist for mixed boundary conditions. In addition, up to six admissible
roots may exist for some mixed boundary conditions. At least one of the singularities is
of inverse square root type for half planes with mixed boundary conditions and oscillatory
singularities exist for some cases. Note that the relation between columns 3 and 4 confirms
the conclusion given earlier, i.e., if § is an order of singularity for a piezoelectric half plane,
then 6/2 and (6 — 1)/2 are orders of singularities for a semi-infinite crack with identical
boundary conditions. The comparison of results between boundary condition combinations
in Table 5.3 indicates that electrical boundary conditions have a significant influerce on the
order of singularities. In the case of a right angle wedge, singularities exist only for mixed
boundary conditions. One admissible root was found and the singularity is normally weaker
than that corresponding to a half plane or a crack. No oscillatory type singularities are
found.

Figures 5.4 and 5.5 show the effect of polarization orientation (3) on the order of sin-
gularities for PZT-4 wedges. In Fig. 5.4, the dependence of the order of singularity on S is
examined for two wedge angles 240°, 300° under traction free and electrically open boundary
conditions on both edges. Note under the assumed boundary conditions, singularities exist
only for wedge angles greater than 180°. The singularities are identical for orientations 3
and —Q8 showing symmetry about 8 = 0. The singularity corresponding to 8 = +90° is
slightly stronger than that corresponding to 8 = 0 indicating a weak dependence on the
polarization orientation. Oscillatory type singularities are not found. The results for right
angle wedges (2o = 90°) with traction free boundary conditions on one edge surface, i.e.
combinations 1-3, 1-4, 2-3 and 2-4 in Table 5.1, are shown in Figure 5.5. Oscillatory type
singularities exist only in the case of combination 2-3. A strong dependence on the polar-
ization orientation is observed for all boundary condition combinations except for 2-4 and
the roots are symmetric about 8 = 0°. The combination 1-4 shows two roots for |8| > 45°
and the strongest or weakest singularity exists when the poling direction is along the z- or
z-axis. An exception occurs for the combination 2-3 resulting in the weakest singularity for
B =~ +50°.

A study of PZT-5 wedges show that singularities follow trends similar to those in Figs.
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5.3-5.5 and Table 5.3, and the magnitude of roots are also nearly identical.

5.4.2 Piezoelectric — conductor wedges and junctions

The results for PZT-4 — aluminum/nickel wedges and junctions are presented in Figures
5.6 and 5.7. The first case considered (Fig. 5.6a) involves aluminum or nickel ( treated
as an ideal conductor) quarter plane bonded to a PZT-4 quarter plane. The edges of the
PZT quarter planes are traction free and electrically open, and traction free for conductors.
Interface conditions are given by eqn (5.13). The polarization orientation (3 is varied from
180° to -180°. Only one root is observed for aluminum and two for nickel. The singularity
in nickel — PZT wedge is stronger than that in aluminum — PZT wedge. The latter system
has a very weak singularity with less dependence on 3. The influence of poling direction
is more significant in the case of nickel — PZT wedges with 8 = —45°,135° showing the
strongest singularities. In general, the singularity is weaker than the classical inverse square
root singularity. An aluminum or nickel wedge bonded to a PZT-4 half plane is considered
in Figure 5.6b. Setting polarization orientation angle 8 = 0, the effect of wedge angle a is
investigated. Three roots exist for both nickel and aluminum, and the singularities become
more severe as the wedge angle « increases. The case of an interface crack is obtained when
a = 180° and the singularity is found to be stronger than the classical inverse square root
singularity for both bi-material systems.

A fully bonded PZT-4 — aluminum or nickel junction is considered in Figure 5.7a for
varying angle « and three poling directions (8 = 0°,90°,180°). The results for § = 0° are
identical to that for § = 180°. No singularity exists when « is less than 180° for both
aluminum and nickel. When « is larger than 180°, a very weak singularity is noted for
aluminum — PZT system only for 8 = 90°. The root corresponding to nickel — PZT system
increases rapidly until o is closer to 240° for the three poling directions. An additional root
for this system exists for a closer to 270° when 8 = 90°. The singularities are weaker than
the classical inverse square root singularity. Consider the same bi-material systems except
that the interface defined by angle « is fully debonded and electrically open, as shown in
Fig. 5.7b. Three roots are found for aluminum, and four for nickel. Singularities exists for
all values of o considered and are more stronger for both nickel — PZT and aluminum -
PZT systems when compared to the fully bonded case in Fig. 5.7a. The singularity is also
stronger than the classical inverse square root singularity for most a in the case of nickel.
Based on the results shown in Figs. 5.6 and 5.7, it can be concluded that aluminum-PZT

systems have weaker singularities in most cases when compared to nickel-PZT systems. The
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same systems are considered with electrically closed boundary conditions on the debonded

interface and the results are found to follow trends quite similar to Fig. 5.7b with some

difference in the magnitude.

5.4.3 Piezoelectric — graphite/epoxy wedges and junctions:

The roots of a PZT — Gr./Ep. wedge with traction free and electrically open outer edges
are shown in Fig. 5.8a. The interface is fully bonded and electrically impermeable. The
influence of wedge angle « on the order of singularity is investigated, while the polarization
B is set to zero. Generally two roots exist with one over the full range of a, while another
exists only for a larger than 80°. The singularities become stronger as the wedge angle
increases for both PZT-4 and PZT-5. The roots show negligible dependence on the type
of piezoelectric material. The case of an interface crack between PZT and Gr./Ep. is
obtained when a = 180°, and the singularity is identical to the classical inverse square root
singularity. A piezoelectric-graphite/epoxy wedge similar to that shown in Fig. 5.6a is also
considered and the singularities are found very weak (weaker than -0.06) for the range of 3
shown in Fig. 5.6a.

A completely bonded PZT — Gr./Ep. composite junction similar to that shown in Figure
5.7a is examined in the numerical study, no singularities are found for the considered range of
a. A PZT — Gr/Ep. bi-material junction with a fully debonded and electrically impermeable
interface is examined in Fig. 5.8b. The polarization of PZT is set to 0° with the debonded
interface varied from 90° to 270°. Two roots exist for PZT-5 and three for PZT-4. The roots
are symmetric about & = 180° and show strong dependence on . When « is 180° (interface
crack), the classical inverse square root type singularity is observed for both piezoelectric
materials. The nonexistence of singularities for a fully bonded bi-material junction and the
presence of strong singularities for a debonded junction indicate the importance of interface

conditions on the stress field near a sharp corner.

5.4.4 Piezoelectric bi-material systems:

Bi-material junctions involving PZT-4 and PZT-5 with a debonded interface defined by
angle « are considered in Figure 5.9. Traction free and electrically open boundary conditions
are assumed along the debonded interface and full continuity (mechanical and electrical)
conditions are assumed on the other interface. The influence of a on the singularities is
investigated for three different polarization orientations (8;) of PZT-4 and for B = 0°.
Three modes of singularities are generally observed and the significance of poling direction
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[ is clearly noted. The singularities are stronger than any of the previously considered cases.
It is also interesting to note that roots for 8; = 0° are not identical for £5; = 180°. The
strongest singularity is noted when the two materials are polarized perpendicular to each
other and « is greater than 180°. The singularity is relatively weaker when the two materials
are polarized in the same direction when compared to opposite directions. Furthermore, the
singularities are symmetric about o = 180° when the materials are polarized in the same
or opposite directions. The present case can be counsidered as a general case of a horizontal
bi-material crack considered by Kuo and Barnett (1991). It is seen from Fig. 5.9 that
for a horizontal interface crack (o = 180°), the strongest singularity is obtained when the
two piezoelectric materials are polarized in opposite directions. Therefore the polarization
orientations of both materials have a significant influence on singular field near the tip
of an interface crack between two piezoelectric materials. Other admissible homogeneous
boundary conditions can be considered on the debonded interface and the results are not

presented here for brevity.
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5.4.5 Three material systems

Finally, the singularities in three dissimilar material systems, namely PZT, nickel and
Gr./Ep. composite, are considered. Such material systems are encountered in adaptive
structures, stack actuators, etc. The results are presented in Fig. 5.10 for two systems in-
volving three materials. The direction of polarization is assumed to be along the z-axis. The
system shown in Fig. 5.10a has a fully bonded interface between nickel and graphite/epoxy.
Nickel — PZT and PZT - graphite/epoxy interfaces are both fully mechanically bonded, and
electrically closed and impermeable respectively. A crack is assumed in PZT-4 along the
plane measured by the angle a. The crack faces have traction free and electrically open
boundary conditions. The numerical results show two to four roots depending on the angle
a. The singularities are very strong. The singularities corresponding this system in the
absence of a crack is also shown in Fig. 5.10a. Note the singularities become severe due to
the presence of the crack. Figure 5.10b shows results for a similar system involving PZT-4,
PZT-5 and nickel. The crack is assumed to exist in one of the piezoelectric materials and
a = 180° corresponds to a debonded interface between PZT-4 and PZT-5. Three roots
are found for the debonded PZT-4/PZT-5 interface case. One to four roots exist when the
crack is inside the piezoelectric medium depending on the angle a. Note the singularities
are discontinuous across the interface of PZT-4 and PZT-5. Again, the singularities are very
strong. In the case of fully bonded junction without a crack, the singularity is very weak
(-0.0078), as shown in the Figure 5.10b.

5.5 Conclusions

A general method of obtaining electroelastic singularities in piezoelectric wedges and com-
posite piezoelectric wedges/junctions is successfully developed by extending Williams’ eigen-
function expansion for elastic solids. The formulation is valid for an arbitrary polarization
orientation. The characteristic equation governing the order of singularity is transcendental
and the Miiller’s numerical method (1956) can be used to determine the roots accurately.
Compared to the corresponding elastic cases, piezoelectric wedges generally have one or
more extra admissible roots. Electric boundary conditions show a significant effect on the
order of singularities. The singularities of piezoelectric half planes and semi-infinite cracks
are found to be invariant with respect to the directions of polarization. The polarization
orientation has a negligible influence on singularities of piezoelectric wedges with identical

boundary conditions on both surfaces. However, for different boundary conditions on the
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edges, the order of singularities show strong dependence on the polarization angle.

The singularities are weaker for PZT — aluminum systems when compared to PZT —
nickel systems. The strongest singularities of PZT — graphite/epoxy systems are -0.5, which
corresponds to the case of a horizontal bi-material crack. Fully bonded PZT-graphite/epoxy
junctions do not show any singularities. Bi-material systems of two piezoelectrics have
stronger singularities that also depend significantly on the polarization direction. Two
piezoelectrics polarized in the same or opposite directions show weaker singularities when
compared to bi-material systems with polarizations perpendicular to each other. Three
material systems with a crack inside a piezoelectric medium have singularities more stronger
than the classical inverse square root singularity. The presence of a crack or a debonded
interface result in a much severe singularity for both two and three material systems. The
results presented in this Chapter are useful in material selection, optimum design and failure
analysis of adaptive structures and piezoelectric actuators. The present results are also
useful to the development of special finite and boundary elements for accurate simulation

of electroelastic fields at crack tips and sharp corners.



Chapter 6

Conclusions and Recommendations

6.1 Major Findings

The main conclusions of this thesis are summarized in this Chapter. Separate detailed
conclusions are given at the end of Chapters 2-5 based on the analysis and numerical results
presented in those Chapters. Following are the major conclusions and findings of the present

study.

1. The extended Lekhnitskii’s formalism can be successfully applied to study piezoelectric
plane problems with an arbitrarily oriented defect (elliptical void or crack). The ana-
lytical solutions for electroelastic field around an impermeable void and a permeable
void can be derived in a remarkably compact form. By mathematically reducing an
elliptical void to a crack, the analytical solutions for electroelastic field at the crack tip
as well as fracture parameters can be obtained for impermeable and conducting cracks.
The present results can be reduced to special cases of defect orientation reported pre-

viously, namely defects parallel or perpendicular to the direction of polarization.

2. It is found that the void orientation has a significant effect on the electroelastic field.
The solutions for special cases, namely voids that are either parallel or perpendicular to
the direction of polarization, cannot always be considered as the critical case. Numer-
ical results indicate that the impermeable void model is applicable to most practical
situations, whereas the more complex permeable void model (exact solution) should
be used when the medium is subjected to electric loading and the void geometry ratio
(b/a) is larger than 1000.

3. The orientation of a crack is found to have a negligible influence on the crack-tip
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hoop stress under remote mechanical loading. However, a significant influence of crack
orientation is observed under electrical loading or combined loading with larger electric
to mechanical load ratio. Crack closure may happen depending on the direction of
applied electric loading and the ratio of electric to mechanical loading. The influence
of an applied electric displacement normal to an impermeable crack is analogous to

that of an applied electric field tangential to a conducting crack.

For cracks containing air or vacuum in plane piezoelectric media, a unified formulation
accounting for three existing electric boundary conditions, namely the impermeable
crack model, the permeable crack model and the Hao & Shen type crack model, can
be developed. The three types of cracks practically have identical response under pure
mechanical loading. Under applied electric loading, the permeable crack model leads
to the conclusion that electric loading has no influence on crack problems. The Hao &
Shen type electric boundary conditions reduce to impermeable or permeable boundary
conditions under practical situations. It is shown that the applicability of reducing
the exact void solution to the exact crack solution is questionable. Such a reduction
results in the solution for a permeable crack instead of a solution corresponding to the

exact electric boundary condition for a crack as previously claimed by others.

. The method of continuously distributed generalized dislocations and Lekhnitskii’s
complex potentials can be successfully applied for analysis of branched crack prob-
lems. The problems of an impermeable branched crack and an impermeable bifurcated
crack can be reduced to the solution of a system of singular integral equations. It is
found that branch closure may happen depending on branch length, branch angle and
loading condition. The ranges of branch angles within which a branch is open are
quite larger for mechanical loading than for electric loading. The length of a branch

has negligible influence on branch closure under electric loading.

In the case of mechanical loading, a deviated branch plays a shielding effect on Mode
I stress and electric displacement intensity factors, compared to self-similar crack
extension. In the case of positive electric loading, a shielding effect is also observed
for the electric displacement intensity factor. In general, the asymptotic electroelastic
fields at the branch tip have a complex dependence on branch length, branch angle,
crack orientation and the type of loading. The influence of applied electric loading
is more complicated and significant than the influence of mechanical loading. The
trends of field intensity factors of a symmetrically branched crack are similar to those

of a single-branched crack, but a symmetrically branched crack has a narrower range
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of branched angles within which the crack remains open. The numerical results for
an asymmetrically branched crack indicate that, if a fracture criterion based on stress
intensity factors is used, it is unlikely that the two branches can simultaneously grow

when a bifurcated crack is subjected to remote tension.

. A new stress-based criterion and two energy-based criteria, namely the criterion of
modified hoop stress intensity factor, modified strain energy release rate and modified
total energy release rate, are proposed to predict potential propagation of an imperme-
able crack. The salient features of proposed criteria are the consideration of fracture
toughness anisotropy and removal of self-similar crack extension assumption. A sim-
ple model is developed to describe the fracture toughness anisotropy in piezoelectrics,

based on available experimental results.

Numerical results show that distinctly different propagation directions are predicted
if isotropic fracture toughness is used for both stress and energy based criteria. The
modified hoop stress intensity factor and the modified strain energy release rate cri-
teria indicate that a crack may branch off from a straight path even under symmetric
loading and geometry, which qualitatively agrees with previously reported experimen-
tal findings. Under applied mechanical loading, the criteria of modified strain energy
release rate and modified total energy release rate are virtually equivalent, and the two
energy-based criteria and the stress-based criterion predict similar crack propagation
paths. Under applied electrical loading, however, the predicted propagation paths by
the stress-based criterion are significantly different from those by the energy-based cri-
teria. Based on the criterion of strain energy release rate, a crack tends to branch off
from a straight path regardless of the polarization angle. Under combined mechanical
and electric loading, an electric field can either promote or retard crack propagation
depending on the branching angle, the direction of polarization and the direction of

applied electric field.

. A general method of obtaining electroelastic singularities in piezoelectric wedges and
composite piezoelectric wedges/junctions is successfully developed as a precursor to the
analysis of fracture problems involving multi-material systems. Analytical solutions
for piezoelectric half-planes and cracks can be obtained for some special boundary
conditions. The solutions for general cases involving multi-material systems can be

obtained numerically.

Piezoelectric wedges generally have one or more extra types of singularities, compared



6.2

124

to the corresponding elastic cases. Electric boundary conditions show a significant
effect on the order of singularities. The singularities of piezoelectric half planes and
semi-infinite cracks are found to be invariant with respect to the direction of po-
larization. The polarization orientation has a negligible influence on singularities of
piezoelectric wedges with identical boundary conditions on both surfaces. However,
for different boundary conditions on the edges, the order of singularities shows strong

dependence on the polarization angle.

The singularities are weaker for PZT /aluminum wedges when compared to PZT/ nickel
wedges. A fully bonded PZT-graphite/epoxy junction does not show any singularity.
Bi-material systems of two piezoelectrics have stronger singularities which also depend
significantly on the polarization direction. Two piezoelectrics polarized in the same or
opposite directions show weaker singularities when compared to bi-material systems
with polarizations perpendicular to each other. The presence of a crack or a debonded

interface results in a higher order singularity for two and three material systems.

Recommendations for future work

This following recommendations are made for future work.

1.

Nonlinear effects associated with domain switching at the crack tip should be ex-
amined. The switched domains induce incompatible strain under the constraint of
unswitched material, and consequently alter the stress distribution near the crack.
The fracture toughness may vary considerably due to domain switching. The con-
sideration of poly-domain systems in modelling is also important. Research in this
direction may explain the basis for some conflicting views reported in the literature.
Furthermore, the residual stresses, which are developed during the poling process,

need to be considered.

Coordinated experimental studies are needed to understand the real electric boundary

conditions on crack faces.

The exact nature of fracture toughness anisotropy should be determined. This requires
both experimental studies and complementary theoretical work. The proposed fracture

criteria should be experimentally validated.
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Appendix A

Material properties

The properties of three piezoceramics, namely PZT-4 (PZT-4a and PZT-4b), PZT-5 and
PZT-5H, used in this thesis are given here. PZT-4a and PZT-5H are used in Chapters 2-4,
and their properties are given in the form of eqn (2.2). PZT-4b and PZT-5 are used in
Chapter 5, and their properties are given in the form of eqn (2.1). Note that PZT-4a and
PZT-4b are from different sources, and their properties are slightly different.

PZT-4a (Park and Sun, 1995b):
c1y = 13.9 x 1010N/m?2, c¢1p =7.78 x 101°N/m2, ¢;3 = 7.43 x 100N /m2
ca3 = 11.3 x 1010N/m?2, ¢y = 2.56 x 1010 N/m?2
es1 = —6.98C/m?, ez3 = 13.84C/m2, e15 = 13.44C/m?2
e11 = 6.00 x 107°CV/m, €33 =547 x lO“gCV/m

PZT-4b (Berlincourt et al, 1964):
s11 = 10.9 x 10712m?/N, s33 =7.90 x 10712m2/N, s10 = —5.42 x 10~ 12m2/N
s13 = —2.10 x 1072m?2/N, s4 =19.3 x 10~ 12m2/N
g31 = —11.1 x 1073Vm/N, ga3 =26.1 x 10~3Vm/N, g5 =39.4 x 10~3Vm/N
P11 = 7.66 x 107V?/N, 33 =8.69 x 10'V2/N

PZT-5 (Berlincourt et al, 1964):
s11 = 14.4 x 1072m2/N, s33 = 9.46 x 107 2m2/N, s10 = —7.71 x 10~2m2/N
s13 = —2.98 x 1072m2/N, sy =25.2 x 10712m2/N
931 = —11.4 x 1073V m/N, g33 = 24.8 x 1073Vm/N, g15 =38.2 x 10~3Vm/N
P11 =6.53 x 10"V2/N, f33 =6.65x 107V2/N
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PZT-5H (Pak, 1992):
c11 = 12.6 x 1019N/m?2,
c33 = 11.7 x 101°N/m?2,

cl19 = 5.5 X IOION/mQ, c13 =5.3 X lOION/m2
cqq = 3.53 x 1010N/m?2

€31 = *6.50/111.2, €33 = 23.3C/m.2, €15 = 17.00/772.2

€11 =151 x IO—IOCV/m,

£33 = 130 x 10-1°CV/m



Appendix B

Constants Associated with
Branched Cracks

The constants kn; (n,¢ = 1, 2,3) appearing in eqn (3.3) are

A §220933 — g23932 ko = g12g933 — 913932 ks = g123923 — 922913
11 A2 ] 12 *AQ 3 AQ
Eor = §21933 — 931923 _ kg = g11933 — g31413 | kos = g11923 — g214913
21 —AQ 1 AQ 1 _A2
g21932 — 931922, g11932 —g31912 ., _ 911922 — g12921
k31 = ; k3= i ki =
Az —Ag AQ

where
gin =Pn +Pifin; gon =qn + @ifini  G3n = Sn + Sifin
Do = g11(g22933 — g23gs2) — 912(921933 — ge3gs1) + 913(921932 — 922931)
fin = (382 — 1283 + U3 — pnbo — nfiz + 6nfiz) /A1
fon = (f183 — 1361 — 183 + pnd1 — Snfi1 + 6nfiz)/ A1
fan = (B2b1 — 1182 — 81 + pinb2 — 6pfia + 6nfir)/ A
A1 = g1(8 — 83) + fa(83 — &1) + 23(61 — 62)
and an overbar denotes the complex conjugate of a complex-valued quantity.

The constants g;; (2,7 == 1,2,3) appearing in eqn (3.8) are

g1 = 522533 — 523832 qua = 512533 — 513532 g3 = S12523 — 522513
- As ’ - —A3 : - A

go1 = 521833 — S31523 qon = §11833 — 513531 | o3 = 5$11523 — $21513
B —A3 ’ A ’ - AY
__ 521532 — 831522 _ S11832 — 512831 _ _ S11522 — S12521

q31 = As 7 432 = . y 433 = As
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where

3 3 3
siy=ImY knj;  s35=—ImY pnknj; sz =—Im ) bukn

n=1 n=1 n=1

Az = s11(522533 — 523532) — S12(521533 — 523531) + S13(S21532 — $22531)

The constants J;; (3,5 =1,2,3) in eqn (3.21) are

_ ha2has — hoghgo Jip = high3z — hizhsa Jis = highgs — haahis

J ; ;
11 A4 1 _A4 1 A4
Joy = ho1h3s — haihas Joo = hi1h33 — hi3hsy Jom = hi1hog — ho1h3
Fur = ha1h3a — ha1hos Ty = hi1hsa — highar Jan = hithoa — highay
31 Na i Ja2 v ;o J3s Aa
where
hij = s15; hoj = —s3;; haj = —s3;

Ayq = hi1(hosha3z — hozhaa) — hi2(ha1has — hasha1) + hiz(harhse — hashsy)
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