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Abstract

This thesis is about some issues in system modeling: The firstis a parsimonious
representation of MISO Hammerstein system, which is by projecting the multivari-
ate linear function into a univariate input function space.This leads to the so-called
semiparamtric Hammerstein model, which overcomes the commonly known “Curse
of dimensionality” for nonparametric estimation on MISO systems. The second issue
discussed in this thesis is orthogonal expansion analysis on a univariate Hammerstein
model and hypothesis testing for the structure of the nonlinear subsystem. The gener-
alization of this technique can be used to test the validity for parametric assumptions
of the nonlinear function in Hammersteim models. It can alsobe applied to approx-
imate a general nonlinear function by a certain class of parametric function in the
Hammerstein models. These techniques can also be extended to other block-oriented
systems, e.g, Wiener systems, with slight modification. Thethird issue in this thesis is
applying machine learning and system modeling techniques to transient stability stud-
ies in power engineering. The simultaneous variable section and estimation lead to a
substantially reduced complexity and yet possesses a stronger prediction power than
techniques known in the power engineering literature so far.

Keywords: nonparametric estimation, semiparametric, MISO Hammerstein model,
curse of dimensionality, model selection, Lasso, transient stability boundary, machine
learning
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1 Introduction

System identification is the field of applied science that is concerned with determining the

structure of an unknown system from the observed data representing the input and output

signals of the system. The input data are in the form of stochastic time series, whereas

the output signal is corrupted by measurement noise. As suchthe system identification

problem is closely related to statistical inference - the view that is taken in this thesis.

System identification plays an important role in science andengineering. A historical

example of applying the idea of system modeling is the Italian physicist, mathematician,

astronomer and philosopher Galileo Galilei, who based on the empirical observations of

distance and time elapsed during the process when an object fell from a ramp, established

the law of falling bodies.

Modern system identification has been utilizing statistical tools, e.g., machine learning

techniques. The issue of finding an adequate parsimonious model from data plays a critical

role. In fact, system identification provides powerful techniques for building models of

complex systems in communication, signal processing, control, power engineering, and

biomedical engineering [1], [2], [3], [4], [5], [6], [7].

Our main focus is to develop a basic methodology for a large-scale system modeling

problems. The thesis is divided into four main parts. The first part is a brief introduc-

tion to basic structures of our methodology. Concepts such as block-oriented systems,

and in particular models such as Hammerstein systems and Wiener systems will be intro-

duced. The second part of the thesis is concerned with a low-dimensional representation of

a multivariate Hammerstein system. This is achieved by using the theory of semiparamet-

ric approximation. Semiparametric models are a parsimonious compromise between fully

nonparametric models and parametric models. Therefore, they overcome the well-known

curse of dimensionality problem, and yet preserve their advantage of not assuming any

parametric forms for nonlinear submodels. The third part isabout identification methods

using orthogonal expansions in determining the nonlinear characteristic of a single-input-
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single-output (SISO) Hammerstein system. Hypothesis testing is also discussed in this part

in the context of testing whether the nonlinear function within the Hammerstein system be-

longs to a certain parametric class. Finally, the last part of the thesis deals with a particular

machine learning techniques applications, namely, the study of transient stability analysis

of power systems. Specifically, we use the regression methods utilizing Least Absolute

Shrinkage and Selection Operator (Lasso), compared with the other methods used in the

field of power engineering. The contributions presented in this thesis are:

• Numerical studies of semiparametric approximation for MISO Hammerstein models

(Section 3),

• Using the thresholding approach to determine the structureof orthogonal basis esti-

mates for the nonlinear characteristics of a SISO Hammerstein system, where it is

assumed that the nonlinear subsystem belongs to a given parametric class (Section

4),

• Truncation parameter selection for orthogonal series estimate of the Hammerstein

system (Section 4),

• Testing hypothesis on the parametric form of the nonlinear characteristic of the Ham-

merstein system (Section 4),

• Using Lasso Regression for power system stability analysis, and achieving a better

prediction accuracy than the existing methods in the field (Section 5).

2



2 Review of System Identification Methodology

2.1 System Identification and Machine Learning

The modern system identification problems arose around early 1960s in the field of con-

trol engineering, after the development of model-based control design [8], [9]. At that

time, much of the control design were in actuality single-input-single-output (SISO) sys-

tems. The availability of such models finally became extended from control design in

electrical and mechanical engineering [10], and they were applied in the diverse areas such

as environmental systems, biological and biomedical systems, and transportation systems.

Meanwhile, system identification has also been extended from being viewed as determin-

istic problems to being viewed as stochastic problems. [10]is one of the early works that

map maximum likelihood approach from statistics into system identification, and this ap-

proach has became widely used in 1970s. Naturally, system identification later became

viewed as a question of approximation theory, in the sense that one searches the model that

best approximates the true physical system, rather than themodel that exactly captures the

true physical process. The model is then determined by the output-error model estimation

method, illustrated in Fig.1. We observe the input-output pair(Un, Yn), 1 ≤ n ≤ N ,

Figure 1: The output-error model-estimation method.

where inputUn ∈ Rd is a stochastic process, and outputYn ∈ R1 is mixed with some noise

3



due to physical reasons, e.g., channel noise. Note that the input and output both can be

one-dimensional or multi-dimensional, and yet we are usingmultiple-input-single-output

(MISO) systems for illustration, for the more general case,multiple-input-multiple-output

(MIMO) system can be viewed as parallel combination of several MISO systems. We sup-

pose the same input{Un} go through a virtual model, and the predicted output is{Ŷn}.

Assume the virtual model is stationary, and has certain characteristics (e.g., linear, nonlin-

ear, linear and nonlinear in cascade/parallel/feedback, etc) and the issue of system identi-

fication is merely to find the optimal system that minimizes a cost measure between{Yn}

and{Ŷn}.

There are three basic approaches to system modeling:

(a) Parametric Modeling:Ŷn = h(
−→
Un|θ), where

−→
Un = (Un,Un−1,Un−2, · · · ) is the

history of the system input up to the timen, andUn ∈ Rd.

The input-output mappingh(·) is specified up to the unknown, finite dimensional

parameterθ ∈ Θ, whereΘ is a set of admissible values of the parameter. That is, we

assume that the model belongs to certain class of parametrically defined functions

[11].

(b) Nonparametric Modeling:̂Yn = h(
−→
Un).

The input-output mappingh(·) is totally unknown. That is, no assumption is imposed

on the class of the system [12].

(c) Semiparametric Modeling:̂Yn = h
(−→
Un|g(·), θ

)
.

The input-output mappingh(·) is specified up to the unknown, finite dimensional

parameterθ and a finite set of one-dimensional functionsg(·) =
(
g1(·), · · · gr(·)

)

[12].

4



2.1.1 The Classical Parametric Modeling Based on the Output-Error Approach

In the parametric modeling, the output error ofen, see Fig.1, is given by

en(θ) = Yn − Ŷn(θ) = Yn − h(
−→
Un|θ).

We measure the expected loss by the mean square error:

Q(θ) = E
{∣∣∣Yn − h(

−→
Un|θ)

∣∣∣
2}
. (1)

So for parametric modeling, the identification problem can be formulated as follows:

given a training set{(U1, Y1), (U2, Y2), · · · , (UN , YN)} of input-output data of the un-

known system, construct an algorithm̂θN for estimatingθ∗ ∈ Θ, such that lim
N→∞

Q(θ̂N ) =

Q(θ∗), whereθ∗ = arg min
θ∈Θ

Q(θ).

Assume without loss of generality that the input-output relationship for the true sys-

tem is described byYn = f ∗(
−→
Un) + εn for some unknownf ∗(·). Also, we assume that

E{f ∗2(
−→
Un)} <∞ andE|εn|2 <∞. Then if the noise is independent of the system history,

we have:

Q(θ) = E
{∣∣∣Yn − h(

−→
Un|θ)

∣∣∣
2}

= E
{∣∣∣f ∗(

−→
Un) − h(

−→
Un|θ)

∣∣∣
2}

+ E|εn|2. (2)

Let us discuss two important cases of parametric modeling:

Case 1. If f ∗(
−→
Un) = h(

−→
Un|θ∗), i.e., the true system is in the parametric model spaceH =

{h(·|θ) : θ ∈ Θ}, and the valueθ∗ ∈ Θ defines the true system. Then under some

identifiability conditions, we can expect that:

θ∗ = arg inf
θ∈Θ

Q(θ),

5



and consequently,

Q∗
parametric = inf

θ∈Θ
Q(θ) = E|εn|2.

Thus, the noise level (measured by its variance) gives the smallest possible identifi-

cation error (Bayes error).

Case 2.Let f ∗(·) /∈ H, i.e., the true system is outside the assumed parametric class. Then

θ∗ = arg inf
θ∈Θ

Q(θ) defines theL2 projection of the true system onto the model class

H. Henceh(·|θ∗) characterizes the best model for the given system. Note thatθ∗

may not be unique.

In this case, the smallest possible error for parametric modeling is given by:

Q∗
parametric = inf

θ∈Θ
Q(θ) = E

{∣∣∣f ∗(
−→
Un) − h(

−→
Un|θ∗)

∣∣∣
2}

+ E|εn|2,

where the first term on the right-hand-side of this expression represents the irre-

ducible modeling error for the best possible parametric model.

In order to estimate the optimal model from given training data, we need to construct

the empirical counterpart ofQ(θ). A natural empirical version ofQ(θ) is

Q̂N(θ) =
1

N

N∑

n=1

∣∣∣Yn − h(
−→
Un|θ)

∣∣∣
2
.

As a result an estimate ofθ∗ can be obtained by

θ̂N = arg min
θ∈Θ

Q̂N (θ).

The convergence of such estimators have been studied in someparticular cases, e.g., linear

situations [13]. In fact, it is known [12] that we need first toestablish the following uniform

convergence result,

P (sup
θ∈Θ

|θ̂N(θ) −Q(θ)| > δ) → 0 as N → ∞.
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This implies [12] that,∀δ > 0,

P
{∣∣∣Q(θ̂N ) − inf

θ∈Θ
Q(θ)

∣∣∣ > δ
}
→ 0 as N → ∞,

and furthermore,

θ̂N → θ∗, (P) as N → ∞,

where(P) denotes it is convergence in probability, and also

h(·|θ̂N) → h(·|θ∗), (P) as N → ∞.

Further results from machine learning theory may allow us toget a finite sample bounds

for P (sup
θ∈Θ

|Q̂N(θ) −Q(θ)| > δ). This issue, however, will not be pursued in this thesis.

Possible distribution of errors occurring in the parametric inference of system modeling

is illustrated in Fig.2.

Figure 2: Relationship between errors in parametric systemmodeling.
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2.1.2 The Nonparametric Modeling Based on the Output-ErrorApproach

In the fully nonparametric approach, the modeling error is eliminated completely. In fact,

the minimumh∗(
−→
Un) of the error

Q(h) = E
{∣∣∣Yn − h(

−→
Un)

∣∣∣
2}
,

is achieved by the regression function, i.e.,

h∗(
−→
Un) = E{Yn|

−→
Un}. (3)

The corresponding minimal (Bayes) error is

Q(h∗) = E{var(Yn|
−→
Un)}.

For Yn = f ∗(
−→
Un) + εn, Q(h∗) is denoted asQ∗

nonparametric is reduced to the noise level,

i.e.,

Q∗
nonparametric = E|εn|2.

The distribution of errors occurring in the nonparametric inference for system modeling is

shown in Fig.3. Note that there is no modeling error.

The empirical risk, corresponding toQ(h), is given by minimizing

Q̂N(h) =
1

N

N∑

n=1

|Yn − h(
−→
Un)|2.

Minimization of Q̂N (h), however, yields an estimate that interpolates data. A meaningful

result can be obtained directly. We can, however, estimate the regression functionh∗(
−→
Un)

assuming the system memory is finite, i.e.,Yn = f ∗(Un,Un−1, · · · ,Un−p) + εn, wherep

is the memory size andUn ∈ Rd. Note thatf ∗(·) is a(p+ 1)d-dimensional function. Then

under some general conditions on the smoothness off ∗(·), we can construct a consistent

8



Figure 3: Relationship between errors in nonparametric system modeling.

estimatêhN(u0,u1, · · · ,up) of f ∗(·) with the corresponding convergence rate:

ĥN (u0,u1, · · · ,up) = f ∗(u0,u1, · · · ,up) +OP

(
N− 2

4+d(p+1)

)
,

whereOP (·) denotes “in probability” convergence. Clearly, this is a very slow rate of

convergence for large values ofd andp.

2.1.3 The Semiparametric Modeling Based on the Output-Error Approach

Parametric approach, examined in Section2.1.1, has its inherent limitation in carrying a

substantial modeling error. On the other hand, nonparametric approach, shown in Section

2.1.2, reveals a slow convergence rate for large input dimensiond and large system mem-

ory p. The semiparametric strategy gives a logical tradeoff between the limitation of the

parametric approach and the flexibility of nonparametric modeling.

The output-error solution in the semiparametric setting isthe minimization of the crite-

rion function

Q
(
g(·), θ

)
= E

{∣∣∣Yn − h
(−→
Un|g(·), θ

)∣∣∣
2}

with respect tog(·) andθ.

Note that if we minimizeQ
(
g(·), θ

)
with respect tog(·), the solution of such problem
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is a set of functionsg(·; θ) indexed byθ ∈ Θ. Note thatg(·; θ) is the regression function

g(
−→
Un; θ) = E

{
Yn

∣∣∣h
(−→
Un|g(·), θ

)}
. (4)

Generally obtainingg(·; θ) can be a difficult task. In some particular cases, examined in

this thesis, the functionsg(·; θ) can be easily characterized. Pluggingg(·; θ) intoQ
(
g(·), θ)

yields the so calledprofiled riskfunction which solely depends onθ

Q(θ) = E
{∣∣∣Yn − h

(−→
Un|g(·; θ), θ

)∣∣∣
2}
. (5)

The minimumθ∗ of Q(θ) characterizes the best value of the parametric model. The best

nonparametric part is obtained by

g∗(·) = g(·; θ∗).

As a result the optimal (in theL2 sense) semiparametric model is given by
(
θ∗, g∗(·)

)
. The

smallest possible error for semiparametric modeling is:

Q∗
semiparametric = Q

(
g∗(·), θ∗

)
= E

{∣∣∣f ∗(
−→
Un) − h

(−→
Un|g∗(·), θ∗

)∣∣∣
2}

+ E|εn|2.

Let us consider, similarly to the parametric case, the following two important cases of

semiparametric modeling.

Case 1.Let f ∗(
−→
Un) = h

(−→
Un|g∗(·), θ∗

)
, i.e., the true system is in the semiparametric model

space

S =
{(
θ, g(·)

)
: θ ∈ Θ, g(·) ∈ G

}
,

whereG is some assumed function space. The pair
(
θ∗, g∗(·)

)
∈ S defines the

true system. Then under some identifiability conditions we expect that
(
θ∗, g∗(·)

)
=

10



arg inf
(θ,g(·))∈S

Q
(
θ, g(·)

)
. Clearly in this case

Q∗
semiparametric = inf

(θ,g(·))∈S

Q
(
θ, g(·)

)
= E|ε|2.

Case 2.Let f ∗(·) /∈ S, i.e., the true system is outside the assumed semiparametric class.

Then,
(
θ∗, g∗(·)

)
= arg inf

(θ,g(·))∈S

Q
(
θ, g(·)

)
defines theL2 projection of the system

onto the model classS. Hence
(
θ∗, g∗(·)

)
characterize the best modelh

(
· |g∗(·), θ∗

)
,

for the given true system. The smallest possible error for semiparametric modeling

is given by

Q∗
semiparametric = Q

(
g∗(·), θ∗

)
= E

{∣∣∣f ∗(
−→
Un) − h

(−→
Un|g∗(·), θ∗

)∣∣∣
2}

+ E|εn|2,

where the first term represents the irreducible modeling error for the best possible

semiparametric model.

Figure 4: Relationship between errors in semiparametric system modeling.

The possible distribution of errors occurring in semiparametric estimation is illustrated
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in Fig. 4.

There is a fundamental relationship between the aforementioned three modeling strate-

gies: parametric, nonparametric, and semiparametric,

Q∗
nonparametric ≤ Q∗

semiparametric ≤ Q∗
parametric. (6)

In order to estimate the empirical characteristic of the semiparametric model, we need to

estimateg(·; θ) in (4). Next we use this estimate in the empirical version of the profile error

Q(θ) defined in (5). Hence, denoting a generic estimate ofg(·; θ) by ĝN(·; θ), we can use

the following empirical version ofQ(θ).

1. Resubstitution estimate:̂QN (θ) = 1
N

∑N
n=1

∣∣∣Yn − h
(−→
Un|ĝN(·; θ), θ

)∣∣∣
2
. This is the

resubstitution error that typically is not a very accurate estimate ofQ(θ) as it employs

the same data for estimatingg(·; θ) and the evaluation of the error.

2. Partition estimate:̃QN(θ) = 1
N2

∑
T2

∣∣∣Yn−h
(−→
Un|ĝN1(·; θ), θ

)∣∣∣
2
. HereĝN1(·; θ) is the

estimate ofg(·; θ) obtained from the subsetT1 of the training set size ofN1. The

remaining part of dataT2, size ofN2, is employed for the evaluation ofQ(θ). This

partition estimate is usually very precise, because it facilitates not only the mathe-

matical analysis of the estimation algorithms but also gives a desirable separation

of parametric and nonparametric estimation problems, which allows one to evaluate

parametric and nonparametric estimates more efficiently [12].

3. Cross-Validation methods, e.g., leave-one-out method:Q̂N (θ) = 1
N

∑N
n=1

∣∣∣Yn −

h
(−→
Un|ĝ−n(·; θ), θ

)∣∣∣
2
, where ĝ−n(·; θ) is the estimate ofg(·; θ) using the data set

where(Un, Yn) is deleted.

It is also worth noting that although the asymptotic Bayes estimation error for parametric,

nonparametric, and semiparametric approaches have the relationship in (6), it is hard to

compareQ(θ̂N ),Q(ĥN) andQ
(
ĝN(·), θ̂N

)
, the estimators based on finite data cases.
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2.2 Block-Oriented Systems

In signal processing, linear time-invariant (LTI) systemsare often used to model the char-

acteristics of filters and simple circuits. However, in manyother cases, linearity assumption

may not be sufficient, and nonlinearity needs to be taken intoconsideration in order to cap-

ture more general cases of applications. The so-called block-oriented system is a general

class of systems which combines linear dynamic subsystems as well as static nonlinear sub-

systems. The combination of these subsystems could be either in cascade, or in parallel, or

both. Fig.5 shows some examples of popular forms of block-oriented systems.

Figure 5: Examples of block-oriented system.

Block-oriented systems are a powerful and parsimonious trade-off between linear mod-

els and general nonlinear models, and are important in many cases [14]. Quite often, they

are able to reflect the nature of many physical applications,e.g., biological applications,

neological process, brain theory, etc [15].

System modeling can be studied in either discrete-time or continuous-time perspective.

Although analog system modeling is closer to the nature of physical process, for the reason

of complexity, most of research in this area are focused on discrete-time modeling.

Out of the many possible block-oriented systems, Hammerstein system is a popular

one [16], [17], [18], [19]. It is named after the German mathematician Hammerstein, who

examined nonlinear integral equations called “Hemmerstein integral equations” [20]. The

model consists of a nonlinear subsystem, followed by a linear one. Fig. 6 is an example

showing a single-input-single-output (SISO) Hammersteinsystem with a general nonlinear
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subsystem̂m∗(·) and an infinite impulse response (IIR) linear subsystem, represented by

{λ∗i }.

Figure 6: SISO Hammerstein model with general univariate nonlinearity and infinite im-
pulse response dynamical subsystem.

In the above figure,εn is the nonlinear noise inside the model. Fig.6 corresponds to

the following relationship between the input, output and intermediate signals, where “∗”

denotes the true characteristics:

Vn = m∗(Un), Gn =
∞∑

i=0

λ∗iVn−i, Yn = Gn + εn.

Similar to Hammerstein system, Wiener system is another commonly used block-oriented

system, it composed a linear subsystem and a nonlinear subsystem afterwards. Fig.7 de-

picts Wiener system.

Figure 7: SISO Wiener model with general univariate nonlinearity and infinite impulse
response dynamical subsystem.

Another block-oriented system which has been extensively studied is the so-called

Sandwich model, which is a combination of Hammerstein and Wiener models. Fig.8

shows a SISO Sandwich model.

This thesis will mainly focus on identifying Hammerstein systems. However, it can be

conjectured that similar techniques can be applied to Wiener systems with modifications.
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Figure 8: SISO Sandwich model.

Based on the dimensionality of input/output, block-oriented systems can be categorized

into single-input-single-output (SISO), multiple-input-single-output (MISO) and multiple-

input-multiple-output (MIMO) systems. Since MIMO systemscan be viewed as parallel

combination of MISO systems, MISO systems are often studiedin the existing research.

2.3 Identification of MISO Hammerstein Models

The MISO Hammerstein system is shown in Fig.9. The input, output relationship is given

Figure 9: MISO Hammerstein model with general multivariatenonlinearity and infinite
impulse response dynamical subsystem

by Fig. 9.

Vn = m∗(Un), Gn =
∞∑

i=0

λ∗iVn−i, Yn = Gn + εn,

whereUn = (Un,1, Un,2, · · · , Un,d)
T ∈ Rd is thed-dimensional input to the system. The

intermediate signalsVn andGn are not observed.

2.3.1 Identification of Linear Subsystem

In identifying a Hammerstein system, we normalize the linear subsystem such thatλ∗0 = 1.

Furthermore, we assume{Un} to be a sequence of independent identically distributed

vectors.
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Let us first consider the single-input Hammerstein system. It is worth mentioning that

the linear subsystem inside the Hammerstein model is much simpler to estimate compared

with identifying the nonlinear part. For instance, correlation method provides a simple

technique to estimate the linear part. In fact, the following relationship holds, see Section

2.4for the proof.

λ∗i =
cov(Yn+i, Un)

cov(Yn, Un)
. (7)

In the case of multiple-input Hammerstein system , the formula in (7) must be modified.

Hence, we have

λ∗i =
cov(Yn+i, η(Un))

cov(Yn, η(Un))
, (8)

whereη : Rd → R is any function selected by the user, such thatE(m∗(Un))η(Un)) 6= 0.

For instanceη(U) =
∑d

i=1
ηi(Ui)

d
, for some functionηi(·), i = 1, · · · , d.

The correlation formulas (7), (8) suggest thatλ∗i can be estimated by:

λ̂i =
1
N

∑N−i
j=1 (Yj+iUj)

1
N

∑N
j=1(YjUj)

, (9)

for the one-dimensional input, whereN is the size of training set, and

λ̂i =
1
N

∑N−i
j=1 (Yj+iη(Uj))

1
N

∑N
j=1(Yjη(Uj))

, (10)

for the multi-dimensional case, it has been demonstrated [12] that:

λ̂i = λ∗i +OP (N−1/2), (11)

Since identifying the linear part is numerically simple. Inour research, we focus mostly

on the problem of recovering the nonlinear subsystem. Hence, we may assume that̂λi is

close to its true valueλ∗i , and in the context of nonlinear subsystem identification, we use,

without loss of generality,λ∗ instead of̂λ.
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2.3.2 Identification of the Nonlinear Subsystem

Generally, parametric and nonparametric approaches can beapplied to identifying the non-

linear part of the Hammerstein model. Parametric methods require prior information on the

characteristic of the subsystems, therefore by its nature it always carries a risk of modeling

error. On the other hand, the nonparametric approach requires no prior assumption on the

class of functions defining the nonlinear subsystem.

Under the assumptionE
{
m∗(U)

}
= 0 and the normalizationλ∗0 = 1, it can be shown

[12] that optimized by mean square error,

m∗(u) = E(Yn|Un = u). (12)

The proof of this identity is also presented in Section2.4. Based on this regression relation-

ship in (12), various nonparametric techniques can be applied for recoveringm∗(u). Some

nonparametric estimates are listed below:

• Classical kernel estimate

m̂(u) =

∑N
i=1 YiK( ||u−Ui||

h
)

∑N
i=1K( ||u−Ui||

h
)
, (13)

whereK(·) is a d-dimensional kernel function, e.g., Gaussian kernel, andh is a

smoothing parameter (bandwidth). When input{Un} to the system is one-dimensional,

(13) becomes:

m̂(u) =

∑N
i=1 YiK(u−Ui

h
)

∑N
i=1K(u−Ui

h
)
.

• Local linear kernel estimate.

For one-dimensional input, local kernel estimate has the following form:

m̂(u) =

∑N
i=1 YiK(u−Ui

h
)

∑N
i=1K(u−Ui

h
)

+
(
u− Ū(u)

) ∑N
i=1 Yi

(
Ui − Ū(u)

)
K

(
u−Ui

h

)

∑N
i=1 Yi

(
Ui − Ū(u)

)2
K

(
u−Ui

h

) , (14)
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where

Ū(u) =

∑N
i=1 UiK(u−Ui

h
)

∑N
i=1K(u−Ui

h
)

is the local weighted mean of{Ui}.

For d-dimensional input, see [21] for the explicit expression oflocal linear kernel

estimator.

• Convolution kernel estimate.

When input to the system is one-dimensional and bounded on the support[a, b], the

convolution kernel estimate can be applied in nonparametric estimation.U(1), U(2),···, U(n)

is the ordered version ofU1, U2,···, Un, U(0) = a andU(N+1) = b are defined to be

boundary values of the support of the input distribution, and
{
(U(1), Y[1]), · · · ,

(U(N), Y[N ])
}

is input-output pair from the training set
{
(U1, Y1) · · · , (UN , YN)

}
.

Then the convolution kernel estimate has the following form:

m̂(u) =
N+1∑

i=1

Y[i](U(i) − U(i−1))h
−1K

(u− U(i)

h

)
, (15)

or

m̂(u) =
N∑

i=1

Y[i]

(U(i+1) − U(i−1))

2
h−1K

(u− U(i)

h

)
, (16)

Note thatY[i]’s are not ordered, they are just in pair withU(i)’s. See Section2.4 for

more details. Compared with other kernel estimates, convolution kernel has the ad-

vantage of not having denominator. However, it can only be applied to 1-dimensional

input cases, since there is no multivariate counterpart forordering the data.

• Orthogonal series estimate

m̂(u) =

∑T
k=0 âkψk(u)

∑T
k=0 b̂kψk(u)

, (17)

where
{
ψi(·)

}
is an orthonormal basis system defined on the supportD that includes
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the support ofUn, i.e.:

∫

D
ψi(u)ψj(u)du =





1, for i = j

0, for i 6= j,

andT is the truncation parameter, and

âk =
1

N

N∑

n=1

Ynψ(Un),

b̂k =
1

N

N∑

n=1

ψ(Un).

Note that the denominator in (17) estimates the input densityfU(u), and the numer-

ator estimates the termm∗(u)fU(u).

For identifying the nonlinear subsystem inside a MISO Hammerstein model, it can be

demonstrated [12] that by using nonparametric estimate,

m̂(u) = m∗(u) +OP (N− s
2s+d ), (18)

whered is the dimension of input data, ands indicates the smoothness of the function

m∗(·) measured in number of existing derivatives. The formula in (18) shows that the

convergence rate of nonparametric estimate decreases as the dimension of input increases.

For example, supposem∗(·) has finite second derivative, i.e.,s = 2, and we examine

|m̂(u)−m∗(u)| for different value ofd. Suppose length of dataN1 is needed ford = 1 and

|m̂(u) −m∗(u)| < δ. On the other hand, length of dataNd is needed for ad-dimensional

system to achieve the same level of estimation errorδ, then we have

N
− 2

d+4

d ≃ N
− 2

5
1 , (19)

that is,

Nd ≃ Nα·d
1 ,
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whereα = d+4
5d

. For different value ofd, 1
5
≤ α ≤ 1. It shows that to obtain a given

degree of precision of a nonparametric estimate, the samplesize must grow exponentially

with the input dimensiond. This illustrates the so-called “Curse of dimensionality”in

nonparametric estimation.

2.4 Auxiliary Proofs

The following proofs can be also found in [12].

Proofs of (7) and (8) When the input{Un} is one dimensional, according to Fig.6, the

following relationship between input and output signal holds:

Yn =
∞∑

j=0

λ∗jm
∗(Un−j) + εn,

therefore:

cov(Yn+i, Un) = cov
( ∞∑

j=0

λ∗jm
∗(Un+i−j) + εn+i, Un

)

= cov(λ∗im
∗(Un), Un) + cov(

∞∑

j=0,j 6=i

λ∗jm
∗(Un+i−j), Un)

= λ∗i cov(m∗(Un), Un) +
∞∑

j=0,j 6=i

λ∗jcov(m∗(Un+i−j), Un).

Since{Un} is an i.i.d process, cov(m∗(Un+i−j), Un) = 0 for i 6= j. Then we have

cov(Yn+i, Un) = λ∗i cov(m∗(Un), Un). Sinceλ∗0 = 1 and cov(Yn, Un) = λ∗0cov(m∗(Un), Un),

we getλ∗i = cov(Yn+i,Un)
cov(Yn,Un)

. Thus the relationship (7) has been proved.

When input{Un} is multi-dimensional, Fig.9 yields the following relationship be-

tween input and output:

Yn =
∞∑

j=0

λ∗jm
∗(Un−j) + εn.
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From this we get

cov(Yn+i, η(Un)) = cov
( ∞∑

j=0

λ∗jm
∗(Un+i−j) + εn+i, η(Un)

)

= cov(λ∗im
∗(Un), η(Un)) + cov(

∞∑

j=0,j 6=i

λ∗jm
∗(Un+i−j), η(Un))

= λ∗i cov(m∗(Un), η(Un)) +
∞∑

j=0,j 6=i

λ∗jcov(m∗(Un+i−j), η(Un)).

Since{Un} is an i.i.d process, cov(m∗(Un+i−j), η(Un)) = 0 for i 6= j. Then we have

cov(Yn+i, η(Un)) = λ∗i cov(m∗(Un), η(Un)). Becauseλ∗0 = 1, and cov(Yn, η(Un)) =

λ∗0cov(m∗(Un), η(Un)), thenλ∗i = cov(Yn+i,η(Un))
cov(Yn,η(Un))

. Thus the relationship (8) has been

proved.

Proof of (12) Since{Un} is a white process, relationE(m∗(Ui)|U0) = E(m∗(Ui))

holds fori 6= 0. Thus,

E(Yn|Un = u) = E(
∞∑

j=0

λ∗jm
∗(Un−j) + εn|Un = u)

= λ∗0m
∗(u) + Em∗(U)

∞∑

i=1

λ∗i .

Under the conditionEm∗(U) = 0 andλ∗0 = 1, we haveE(Yn|Un = u) = m∗(u), therefore

(12) has been proved.

The aforementioned considerations imply that

Yn = m∗(Un) +
∞∑

i=1

λ∗im
∗(Un−i) + εn

= m∗(Un) + ξn + εn, (20)

whereξn =
∑∞

i=1 λ
∗
im

∗(Un−i) is independent ofUn, and can be viewed as “system noise”

due to the memory of system, in contrast withεn, the external measurement noise.
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Proofs of (15) and (16) Whenh → 0, the convolution property of smoothing kernels

(See [12] for admissible class of such kernels) gives that

1

h

∫ b

a
m∗(z)K(

u− z

h
)dz → m∗(u),

at every points ofu wherem∗(u) is continuous. Here we assume that the support ofm∗(u)

is the interval[a, b]. Since according to (20), Yn = m∗(Un) + ξn, then ordering the input of

data such thata = U(0) ≤ U(1) ≤ · · · ,≤ U(N) ≤ U(N+1) = b, we obtain

1

h

∫ b

a
m∗(z)K(

u − z

h
)dz =

1

h

∫ U(1)

U(0)

m∗(z)K(
u− z

h
)dz +

1

h

∫ U(2)

U(1)

m∗(z)K(
u − z

h
)dz + · · ·

+
1

h

∫ U(n−1)

U(n)

m∗(z)K(
u− z

h
)dz + · · · 1

h

∫ U(N+1)

U(N)

m∗(z)K(
u − z

h
)dz

≃
N∑

j=1

m∗(U(j))
1

h

∫ U(j)

U(j−1)

K(
u− z

h
)dz

≃
N∑

j=1

Y[j]
1

h

∫ U(j)

U(j−1)

K(
u− z

h
)dz.

Notice that
∫ U(j)

U(j−1)
K(u−z

h
)dz can be either approximated by(U(j)−U(j−1))K(

u−U(j)

h
) or by

(U(j+1)−U(j−1))

2
K(

u−U(j)

h
). Therefore the relationships in (15) and (16) have been proved.
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3 Semiparametric Hammerstein Model Identification

3.1 Semiparametric MISO Hammerstein Model

In identifying a MISO Hammerstein Model (Fig.9 in Section2.3), nonparametric estimate

of the system with larger dimensions of input, usually has a slower convergence rate, see

(18). Particularly, for very larged, the estimatêm(·) hardly converges. This is referred to

as “Curse of dimensionality”.

Figure 10: Semiparametric approximation of a MISO Hammerstein system.

In order to overcome this disadvantage in nonparametric modeling, semiparametric

Hammerstein models have been proposed [12], [22] to approximate MISO Hammerstein

system, see Fig.10. The intention is to replace the multivariate input function m∗(·) by

the approximationm∗(u) ≈ g∗(γ∗Tu). Note we need to assumeE(U) = 0, andλ∗0 = 1 as

before, and also
∑∞

j=0 |λ∗j | <∞. Then the relationship between input, output and interme-

diate signals are:

Wn(γ) = γTUn, Vn(γ, g) = g(γTUn), Ŷn =
∞∑

j=0

λjVn−j(γ, g).

The output-error model-estimation method applied to the system and the model leads to the

following minimization:

(λ̃∗, γ∗, g∗(·)) = arg min
(λ,γ,g(·))

, Q(λ, γ, g(·)) (21)
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whereλ = (λ0, λ1, · · · )T , and

Q(λ, γ, g(·)) = E

∣∣∣Yn −
∞∑

i=0

λig(γ
TUn−i)

∣∣∣
2
. (22)

if the loss is measured by mean-square criterion.

It can be proved (see Section3.2.4) that

λ̃∗ = λ∗ = (λ∗0, λ
∗
1, · · · )T , (23)

which means the value ofλ that leads to the smallest modeling error is actually the true

valueλ∗ itself. Sinceλ∗ can be estimated by correlation method (9), our focus will be

mainly on estimation ofγ∗ andg∗(·), and assuming the estimateλ̂ to be close toλ∗, we

use the valueλ∗ directly in the following studies. Note that(γ∗, g∗(·)) may not be unique,

but it defines the semiparametric Hammerstein model that is the closed to the true MISO

Hammerstein system. In the case thatm∗(u) = g∗(γ∗Tu), that is, when the MISO Ham-

merstein system can be exactly represented by semiparametric model, the system can be

shown in Fig. 10. By using semiparametric model for MISO Hammerstein systems, the

Figure 11: Semiparametric Hammerstein system.

convergence rate for estimating nonparametric part isN−2/5, see (19), for any dimension

of the input. The essence of semiparametric model is the projection of a the multivariate

nonlinear function onto a one dimension function space. Semiparametric model is some-

where between parametric case where the nonlinear functionis fully parameterized, and

the fully nonparametric case where the class of nonlinear function is totally unspecified.
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3.2 Algorithms for Semiparametric Hammerstein Model Identifica-

tion

The main characteristics to estimate are the parametric characteristicγ∗ and the nonpara-

metric characteristicg∗(·). Furthermore, we assume the linear subsystem is a finite order

impulse response (FIR) of orderp. For IIR cases, we can always approximate them by a

FIR subsystem wherep can be viewed as a truncation parameter. In this section we assume

m∗(u) = g∗(γ∗Tu), the semiparametric model exactly describes the true MISO Hammer-

stein model, see Fig.11). Then the input-output relationship is the following:

Wn = γ∗T
Un, Vn = g∗(Wn), Gn =

∞∑

i=0

λ∗iVn−i, Yn = Gn + εn.

Note that the identification algorithms to identify such system can also be applied to a more

general case, when the semiparametric model is only an approximation to the true MISO

Hammerstein system, which will be discussed in Section3.3.

3.2.1 Parameter Estimation

Parametric Inference Based on Minimizing the Empirical Mean Squared Error

In order to identifyγ∗ andg∗(·), we need to estimate them one at a time. i.e., assume

γ is specified, then{Wn} is fully specified. Denote this series of intermediate signal by

{Wn(γ)}, since it is fully dependent onγ. Notice the model between{Wn(γ)} and{Yn} is

a SISO Hammerstein model, thusg(·) can be estimated through nonparametric techniques,

denote this estimate bŷg(·; γ). The above procedure can be demonstrated by Fig.12.

Using another data set to evaluate the estimation error, it is shown thatγ = γ∗ is the

asymptotic minimizer of this error [12]. Thus based on a given data set of input observa-

tions and output responses, estimation ofγ∗ would require some sub-sampling schemes,

e.g., leave-one-out, Cross-Validation, partition method, etc. In this research, for the most

part we use partition method, that is we minimize the criterion function, the empirical pro-
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Figure 12: The block diagram illustrating the semiparametric approach.

file risk function:

Q̂N =
1

N2

∑

T2

(Yn −
p∑

i=0

λ̂iĝ(Wn−i(γ); γ))
2, (24)

with respect toγ, the minimum is given by

γ̂ = arg min
γ∈Γ

Q̂N (γ).

It is worth mentioning that (24) is the most general formula involving the estimateλ̂ of

λ∗. In simulation studies, however, the true valueλ∗ is employed sincêλ is the consistent

estimate and as such does not have an essential influence on the overall accuracy of the

Hammerstein system identification algorithm. NoteT2 is a subset of given data, andĝ(w; γ)

is an nonparametric estimator based onT1, another subset of given data. Note that data in

T1 andT2 should be totally independent of each other. Obtainingĝ(w; γ) could be by any

one of the nonparametric estimation formulas, e.g., in our research, we use local linear

kernel estimator:

ĝ(w; γ) =

∑
T1

YnK

(
w−Wn(γ)

h

)

∑
T1

K

(
w−Wn(γ)

h

) +
(
w − W̄ (w; γ)

)∑
T1

Yn

(
Wn(γ) − W̄ (w; γ)

)
K

(
w−Wn(γ)

h

)

∑
T1

(
Wn(γ) − W̄ (w; γ)

)2

K

(
w−Wn(γ)

h

) , (25)

and

W̄ (w; γ) =

∑
T1
Wn(γ)K

(
w−Wn(γ)

h

)

∑
T1
K

(
w−Wn(γ)

h

)

is the local weighted mean ofWn(γ).

The partition of data set is shown in Fig.13.
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Figure 13: Partitioning data into training and testing subsets. Note that the firstp observa-
tions in the data set are deleted. AlsoT1 andT2 arep observations away from each other
so as to make sure (24) uses independent data for “training” and “testing”.

Using the methodology developed in [12] [23], we can conjurethat the estimator̂γ

converges in probability toγ∗ asN1 → ∞ andN2 → ∞.

Direct Parameter Estimation via the Average Derivative Technique

The aforementioned algorithm for estimatingγ̂ requires finding the minimum of the em-

pirical mean squared criterion. This calls for some efficient optimization scheme. Yet such

an estimate is not explicit. Another method which directly estimatesγ∗ is based on the

following strategy. Let the conditions

E{g∗(W )} = 0 and E{g∗(1)(W )} 6= 0

be satisfied, then:
γ∗j
γ∗1

=
E(Ynlj(Un))

E(Ynl1(Un))
, j = 2, · · · , d, (26)

whereUn =
(
Un,1, · · · , Un,d

)
is the multivariate input,lj(u) =

∂f(u)/∂uj

f(u)
andf(u) is the

probability density function ofUn. Section3.2.4gives briefly the details of this method.

For the input signals that have unknown density,f(u) can be estimated through kernel

methods, see [12]. Particularly if we have prior knowledge about input density, e.g., ifUn

isNd(0,Σ) with Σ = diag(σ2
1, · · · , σ2

d), then the derivative method based on (26) becomes:

γ∗j
γ∗1

=
σ2

1

σ2
j

E
{
YnUj,n

}

E
{
YnU1,n

} , j = 2, · · · , d. (27)
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This yields the following estimate [12] ofγ∗j :

γ̂j

γ∗1
=
σ2

1

σ2
j

N−1 ∑N
t=1 YtUj,t

N−1
∑N

t=1 YtU1,t

, j = 2, · · · , d. (28)

The simulation studies will focus mostly on minimizing MSE approach in estimation

of the parametric part. Direct estimate using derivative method will also be examined as a

comparison with the former approach.

3.2.2 Nonparametric Estimation

Estimation ofg∗(·) is obtained by plug in the estimateγ̂ into (25):

ĝ(w) = ĝ(w; γ̂), (29)

but using the whole data set rather than using a subsetT1. It can also be shown by similar

procedures as in [12], [23] that asN → ∞,

γ̂ → γ∗, (P) (30)

and by continues mapping theorem, thatĝ(w; γ̂) − ĝ(w; γ∗) → 0, (P). It can also be

shown that̂g(w; γ∗) − g∗(w) → 0, (P), thus

ĝ(w; γ̂) − g∗(w) = (ĝ(w; γ̂) − ĝ(w; γ∗)) + (ĝ(w; γ∗) − g∗(w))

→ 0, (P) (31)

3.2.3 Monte Carlo Evaluation of Indentification Algorithms

In order to evaluate estimation errors,L (e.g.,L = 100) repetitions of the same experiment

sets are simulated from the system.
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Error for the evaluation of the quality of the estimateγ̂ is measured by

Err(γ̂) =
1

L

L∑

t=1

||γ̂[t] − γ∗||2,

whereγ̂[t] is the value of the estimatêγ obtained from thet-th training set.

Error for the evaluation of the quality of the nonparametricestimatêg(w) is evaluated

by the MISE (Mean Integrated Square Error). For a single training set we first obtain:

ISE(ĝ) ≃ 1

M

M∑

i=1

(
g∗(W new

i ) − ĝ(W new
i )

)2
,

whereM is the size of testing set of{(Unew
1 , Y new

1 ), · · · , (Unew
M , Y new

M )}, andW new
i =

γ∗TUnew
i . Next the MISE is obtained by:

MISE(ĝ) ≃ 1

L

L∑

t=1

ISE[t](ĝ), (32)

where ISE[t](ĝ) is the value of ISE(ĝ) obtained from the estimation of thet -th training set.

Note that it is reasonable and necessary to normalizeγ∗ in the model, e.g.,||γ∗|| = 1

or γ∗1 = 1. We normalize such thatγ∗ = 1. For 2-dimensional input cases, we furthermore

expressγ as
(

cos(θ), sin(θ)
)
, and evaluate the error for this parametric part by:

Err(θ̂) =
1

L

L∑

t=1

|θ̂[t] − θ∗|2. (33)

A practical question is how to select the kernel bandwidth innonparametric estimation.

It is reasonable to use different bandwidths, one for the preliminary estimatêq(·; γ), and the

other for the final estimatêq(·). We denote these two values ash1 andh2.. The bandwidth

selection, as well as other implementation issues, will be discussed in Section3.4.

3.2.4 Auxiliary Proofs

The following proof can be also found in [12].
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Proofs of (23) Since the normalization isλ∗0 = 1, the predictive output is given by:

Ŷn =
∞∑

i=0

λiVn−i(γ) =
∞∑

i=0

λig(Wn−i(γ)),

= g(Wn(γ)) + ξn,

whereWn(γ) = γTUn is the projected input signal onto the direction defined by the vector

γ ∈ Rd, ξn =
∑∞

i=1 λig(Wn−i(γ)). Without loss of generality, we can assume thatλ0 = 1

andE{g(Wn(γ))} = 0 for each admissible(γ, λ), thereforeξn can be treated as zero mean

noise and independent ofWn(γ), or independent ofUn. Hence the criterion (22) becomes:

Q
(
λ, γ, g(·)

)
= E|Yn − ξn − g(Wn(γ))|2.

For a given(λ, γ) pair, the minimum ofQ(λ, γ, g(·)) with respect tog(·) is attained by the

regression function

g(w; γ) = E{Yn − ξn|Wn(γ) = w} = E{Yn|Wn(γ) = w} − E(ξn)

= E{Yn|Wn(γ) = w},

where independence ofξn andWn(γ) has been used, as well as the fact thatE(ξn) = 0.

Note that the solutiong(·; γ) is independent ofλ.

Pluggingg(·; γ) intoQ
(
λ, γ, g(·)

)
, we get

Q(λ, γ) = E[var{(Yn − ξ̃n)|Wn(γ)}], (34)

where ξ̃n is the version ofξn with g(·) replaced byg(·; γ). Then we will examine the

minimum ofQ(λ, γ) with respect toλ. Note that

Yn = m∗(Un) + ηn + εn,
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whereηn =
∑∞

i=1 λ
∗
im

∗(Un−i). SinceYn−ξ̃n = m∗(Un)+εn+ηn−ξ̃n, thus the conditional

variance term in (34) becomes:

var{(Yn − ξ̃n)|Wn(γ)} = var(m∗(Un)|Wn(γ)) + var(εn) + var{ηn − ξ̃n}. (35)

The only term in (35) depending onλ is the last term. Note that

ηn − ξ̃n =
∞∑

i=1

{λ∗im∗(Un−i) − λig(Wn−i(γ); γ)}

=
∞∑

i=1

λ∗i
{
m∗(Un−i) − g(Wn−i(γ); γ)

}
+

∞∑

i=1

(λ∗i − λi)g(Wn−i(γ); γ).

As a result, we have the last term in (35) is given by:

∞∑

i=1

λ∗i
2var

{
m∗(Un−i) − g(Wn−i(γ); γ)

}
+

∞∑

i=1

(λ∗i − λi)
2var

(
g(Wn−i(γ); γ)

)
.

This indicates thatQ(λ, γ) in (34) is minimized byλ = λ∗. Thus (23) has been proved.

Pluggingλ = λ∗ into (34), the corresponding error has the following form

Q(λ∗, γ) = E[var(m∗(Un)|Wn(γ))] + var(εn) +
∞∑

i=1

λ∗i
2var{m ∗ (Un−i)− g(Wn−i(γ); γ}.

This defines the profile riskQ(γ) for the projection parameterγ. It is worth mentioning

thatQ(γ) can also be written int he following form:

Q(γ) = E
{(
Yn −

∞∑

i=0

λ∗i g(Wn−i(γ); γ)
)2}

, (36)

whereg(w; γ) = E{Yn|γTUn = w}.

The minimizer ofQ(γ) gives the optimal value ofγ,i.e., we define

γ∗ = arg min
γ∈Γ

Q(γ). (37)

As the solution for the optimal nonlinearityg(w; γ) is coupled with the projection parame-
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terγ, we finally obtain the best nonlinearity in the model is characterized by

g∗(·) = g(w; γ∗).

The above considerations indicate:

1. The minimum ofQ(λ, γ, g(·)) with respect toλ is λ∗, the impulse response of the

true system. This holds regardless ofg(·) or γ.

2. The minimization ofQ(λ, γ, g(·)) with respect tog(·) for a given(λ, γ) is given by

the regression function

Proofs of (26) and (27) First, we need the following Lemma (Theorem 14.7 from [12]):

Let (U, Y ) ∈ Rd × R be a pair of random vectors such thatU has a densityf(·) defined

on the setS ⊆ Rd. Suppose thatf(·) has a continuous derivative andf(·) is zero on the

boundary∂S of S. Assume that the regressionM(u) = E{Y |U = u} has a derivative

∂M(u)/∂u. Then, we have,

E(∂M(U)/∂u) = −E
{
Y
∂f(U)/∂u

f(U)

}
(38)

Note this is a direct consequence of integration by parts:

E(∂M(U)/∂u) =
∫

S

∂M(u)

∂u
f(u)du

= M(u)f(u)|∂S −
∫

S
M(u)(∂f(u)/∂u)du

= −
∫

S
M(u)(∂f(u)/∂u)du

= −
∫

S
M(u)

∂f(u)/∂u

f(u)
f(u)du

= −E
{
Y
∂f(U)/∂u

f(U)

}

For the semiparametric Hammerstein system, we haveYn =
∑∞

j=0 λ
∗
jm

∗(Un−j) + εn,
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wherem∗(u) = g∗(γ∗Tu), and due tom∗(u) = E(Yn|Un = u), we have:

E(∂m∗(Un)/∂u) = γ∗E(g∗(1)(Wn)),

whereWn = γ∗TUn. By virtue of (38), we get:

γ∗E(g∗(1)(Wn)) = −E
{
Yn
∂fU(Un)/∂u

fU(Un)

}
.

Hence,
γ∗j
γ∗1

=
E

{
Yn

∂fU(Un)/∂uj

fU(Un)

}

E
{
Yn

∂fU(Un)/∂u1

fU(Un)

} ,

and (26) has been proved.

Notice that if{Un} ∼ Nd(0,Σ), then

∂fU(u)/∂u

fU(u)
= −Σ−1u,

thus
γ∗j
γ∗1

=
E{Yn(Σ−1Un)j}
E{Yn(Σ−1Un)1}

,

where(Σ−1Un)j denotes thej-th coordinate of the vector(Σ−1Un). This confirms (27).

3.3 Approximation of a MISO Hammerstein System by a Semipara-

metric Model

In practice, it is of interest to find the best semiparametricrepresentation for a given MISO

Hammerstein model. Namely, we want to use a semiparametric model (Fig.10) to approx-

imate a MISO Hammerstein model (Fig.9), and wish to discover the optimal parametric

part γ = (γ1, γ2, · · · , γd)
T ∈ Rd and nonparametric partg(·) which minimize the mean

squared error (22). For the system in Fig.9, it shows in Section3.2.4thatQ(γ, g(·)) is
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minimized with respect tog(·) for a givenγ by the following regression function

g(w; γ) = E(Yn|γTUn = w) = E(m∗(Un)|γTUn = w). (39)

Note second equality in (39) holds because of (20). Plugging the solution in (39) into

Q(γ, g(·)), we can obtain the general formula (36) for the smallest projection error for a

given γThe minimizer ofQ(γ) in (36) defines the best possibleγ and is denoted asγ∗

(3.2.1). Note thatγ needs to be specified with normalization constraints, i.e.,||γ|| = 1.

The optimal nonlinearityg∗(w) is then defined asg∗(w) = g(w; γ∗), and the corresponding

minimal error of the proposed approximation isQ(γ∗).

In the simulation studies, an example of semiparametric approximation will be exam-

ined as as an illustration.

3.4 Simulation Studies

In the following simulation studies, we are going to examinethe identification of semi-

parametric model through the methods described in the previous section. Section3.4.1-

3.4.8will be focused on the case that the true MISO Hammerstein system can be correctly

represented by the semiparametric model, as the system in Fig. 11. Section3.4.1-3.4.4will

be focused on semiparametric estimation under different nonlinear function, when differ-

ent length of training data is available, when the input is ofdifferent dimensions, as well

as when the input is correlated in its different dimensions.The kernel estimate bandwidth

h1 will be treated as another variables besides “θ” and will be determined together with

obtainingθ̂ when minimizing the criterion function (24) in each run of the simulation. The

selection of kernel bandwidthh2 in obtainingĝ(·) will be discussed and compared in the

simulation studies in Section3.4.1. In Section3.4.5, the asymptotic distribution of such

estimate will be examined by simulations, and visual plot about nonparametric estimate

“ ĝ(·)” will also be shown with the true characteristicsg∗(·) as a comparison. Section3.4.6

will be about selection of kernel bandwidthh1 andh2. It shows another option: use fixed
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values beforehand forh1, andh2, and this approach is also feasible due to its performance is

close the other approach used in Section3.4.1-3.4.4. In Section3.4.6, simulations will also

examine another question: How performance in semiparametric estimation will change if

a wrong kernel size is used. This could be due to practial reasons such as the width of

grids that optimization criterion function is evaluating.Section3.4.6will also examine

how the accuracy of estimating the parametric part will influence the estimation of the non-

parametric part̂g(·). Section3.4.7will conduct simulations to see how the ratio between

the two subsets in partition data in estimatingγ∗ will have influence on the final perfor-

mance. It will also examine another re-sampling technique:leave-one-out. Furthermore,

the minimization of MSE approach in estimation ofγ∗ will be compared in Section3.4.8

with the derivative method, which is a direct approach in obtaining the formula of solution

described in Section3.2.1. Finally, the issue that approximating a true MISO Hammer-

stein model by a semiparametric one will be shown in Section3.4.9. In this case, “γ∗” and

“g∗(·)” are first determined by calculations. Then simulations will be performed on how

close semiparametric estimate can represent the true nonlinear characteristic in the MISO

model.

3.4.1 Estimation Error vs Smoothness of Nonparametric Characteristic

The shape of nonlinear function usually have a great influence on the performance of semi-

parametric estimation, as well as the optimal kernel bandwidth. In the first simulation

example, identification of semiparametric Hammerstein model is examined in the context

of identifying different nonlinear functions. We useg∗(w) = α arctan(βw). The param-

eterβ here reflects how “difficult” the nonlinear function is. i.e., within the same interval

symmetric to the origin, the smallerβ is, the closerg∗(·) is to a linear function, while the

greaterβ is, the closerg∗(·) is to a function that has a jump atw = 0. See Fig.14 for this

series of functions. Noteα here is to ensureE
(

arctan(βW )
)2

is invariant for different

selections ofβ, andα(β = 2) = 0.7.

For all different nonparametric functions we examined, we use the same conditions: In-
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Figure 14: Plot ofg∗(w) = α arctan(βw) for differentβ.

put is a 2-dimensional i.i.d. Gaussian processU ∼ N2

(

 0

0


 ,


 1 0

0 1




)
, γ∗ =

(
cos(θ∗),

sin(θ∗)
)T

, whereθ∗ = π/4, and we use
(

cos(θ̂), sin(θ̂)
)T

to estimate the parametric part.

Linear part is a FIR(3) filter:Λ = [1,−0.8, 0.6, 0.4], i.e.,Gn = Vn − 0.8Vn−1 + 0.6Vn−2 −

0.4Vn−3 in Fig. 9. And the noise isεn ∼ i.i.d.N(0, 0.1), which corresponds to a9.57dB

SNR in the system despite of differentβ. The length of data set is150, and we use approx-

imately55% of the whole data set to obtain̂g(·; γ). The kernel bandwidthh1 here is used

as the value that minimize the contrast function in (24). Denote its value bŷh1. Repeat

the same experiment forL = 100 times, and use (33) to evaluate the average identification

error of the parametric part and (32) to evaluate the average error in the nonparametric part.

We show the simulation results in the following Table1.

Not surprisingly, we notice that as the nonlinear function becomes steeper (larger value

of β), the identification error for the parametric part increases, and the optimal bandwidth

ĥ1 becomes smaller. Forβ = 2, Err(θ̂) is 0.002631 on average. This is equivalent to an

average2.94 degrees error from the true valueθ∗.

Onceĥ1 is determined by optimization, there exists several different ways to selecth2.

It makes sense to use some sub-sampling scheme to selectĥ2. On the other hand, [24]
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shows that the optimal bandwidth of kernel density is:

h = (
C

N
)−1/5, (40)

whereC is a constant that depends on the nonlinear functionm∗(·) as well as the kernel

functionK(·).

Due to the relationship in (40), it is also reasonable to selectĥ2 = c · ĥ1, wherec is a

constant determined by the ratio of length ofT1 over the length of the whole data. So we

compare the following three strategies:

Case 1. The valuêh2 is selected by the leave-(p+1)-out method in order to ensurethe inde-

pendence of the resampled data. Hence, the bandwidth for specifying the estimate

ĝ(·) is obtained by minimizing the following criterion

Q̂CV (h2) =
1

N − p

N∑

n=p+1

(
Yn −

p∑

i=0

λ̂iĝ−[n−i,p+1])(Ŵn−i)
)2
,

whereŴi = γ̂TUi, andĝ−[n−i,p+1](·) is the version of the kernel estimateĝ(·) (with

the bandwidthh2) computed from all the training points except

{(Un−i, Yn−i), (Un−i−1, Yn−i−1), · · · , (Un−i−p, Yn−i−p)}.

β ĥ1 Err(θ̂)

0.2 5.522 (1.868) 0.001127 (0.002080)
0.5 4.073 (2.036) 0.001312 (0.004081)
1 2.809 (1.677) 0.002038 (0.003514)
2 1.681 (1.153) 0.002631 (0.006035)
5 1.080 (0.603) 0.003249 (0.005718)
10 0.849 (0.399) 0.003546 (0.005377)
20 0.726 (0.173) 0.004474 (0.008064)

Table 1: Estimation errors and optimal kernel bandwidth in parametric part of the semi-
parametric model in the stated experiment for different values ofβ. The mean as well as
standard deviation of the error and bandwidth are shown.
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Case 2. Use the kernel window size the same as the one in the first stage of the semiparametric

algorithm,̂h2 = ĥ1. This serves as the comparing case for not distinguishing between

the two bandwidths in the process of semiparametric identification.

Case 3. Usêh2 proportional toĥ1, i.e., ĥ2 = c · ĥ1, wherec = (N/N1)
− 1

5 , andN1 is the

length of the training setT1.

These different approaches are examined by simulations.M = 200 observations

are generated as the testing set in each run of simulation of obtain an approximation of

MISE(ĝ). Comparisons are shown in Table2. Clearly the identification in Case 2 is not as

good as in Case 3, this shows the necessity of making distinction between the two band-

widths in the two stages of nonparametric estimation. Comparing Case 1 and Case 3, we

see when the nonparametric functiong∗(·) is not too flat (β > 1), re-sampling (Case 1) will

always lead to much higher value ofĥ2, and have higher nonparametric estimation error.

Conclusion can be made that wheng∗(·) is not too close to linear, using the bandwidth

selected in calculatinĝg(·; γ) multiplied by a known factorc is a better option compared

with applying re-sampling again in selectingh2 the final stage of nonparametric estimation.

In most of the following sections the kernel bandwidth ofh2 is selected in this way. The

estimation error for identification of parametric and nonparametric parts are also shown in

Fig. 15.

β ĥ
[Case 1]
2 MISE(ĝ(·))[Case 1] MISE(ĝ(·))[Case 2] MISE(ĝ(·))[Case 3]

0.2 5.3295 (1.5275) 0.004514 (0.004520)0.004721 (0.006502) 0.005224 (0.008485)
0.5 4.9650 (1.1418) 0.008909 (0.007909)0.009578 (0.011578) 0.009228 (0.007959)
1 4.1740 (0.9929) 0.019215 (0.008037)0.016471 (0.012053) 0.016533 (0.012840)
2 3.0300 (1.1704) 0.030738 (0.013092)0.022295 (0.012897) 0.022536 (0.013521)
5 1.2055 (0.8695) 0.031996 (0.016693)0.030481 (0.019466) 0.029457 (0.016275)
10 0.8160 (0.4758) 0.037975 (0.019514)0.037981 (0.019530) 0.037048 (0.019300)
20 0.6990 (0.4319) 0.044579 (0.016798)0.043602 (0.014725) 0.042455 (0.015170)

Table 2: Performance of nonparametric identification usingdifferent strategies in selecting
h2.

It is also worth mentioning that estimation of errors and kernel bandwidths in Table1
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(a) (b)

Figure 15: Semiparametric estimation error vsβ. (a) Err(θ̂) vsβ, (b) MISE(ĝ) vsβ.

and Table2 all show values with a great variance. This is perhaps the nature of semipara-

metric identification.

3.4.2 Estimation Error vs Data Size

It is of interest to see how semiparametric estimation performs under different length of

training data set. Again, InputU∼ i.i.d. N2

(

 0

0


 ,


 1 0

0 1




)
, γ∗ =

(
cos(θ∗), sin(θ∗)

)T
,

whereθ∗ = π/4, and we use
(

cos(θ̂), sin(θ̂)
)T

to estimate the parametric part.g∗(w) =

0.7 arctan(2w). Linear part is a FIR(3):Λ = [1,−0.8, 0.6, 0.4], and the noise isεn ∼

i.i.d.N(0, 0.1), which corresponds to a9.57dB SNR for the system. Use approximately

55% of the whole data set to obtain̂g(·; γ). The kernel bandwidthh1 is used as the value

ĥ1 that minimize the contrast function in (24). Useĥ2 = c · ĥ1 in obtainingq̂(·). Exam-

ine identification error for different value ofN , which is the length of observed data set.

Repeat the same experiment forL = 100 times, and use (33) and (32) to evaluate average

identification error in the parametric part and in the nonparametric part. The simulation

result is in Fig.16.
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(a) (b)

Figure 16: Semiparametric estimation error vsN . (a) Err(θ̂) vsN , (b) MISE(ĝ) vsN .

3.4.3 Estimation Error vs Dimension of Input

In this section we will examine the performance of semiparametric estimation for different

dimensions of input data:U∼ i.i.d. Nd

(



0

0

.

.

.

0


 ,




1 0 · · · 0

0 1 · · · 0

.

.

.
.
.
.

. . . 0

0 0 · · · 1




)
. γ∗ =

(
cos(θ∗), 1√

d−1
sin(θ∗),

· · · , 1√
d−1

sin(θ∗)
)T

, with θ∗ = π/4, and we use
(

cos(θ̂), 1√
d−1

sin(θ̂), · · · , 1√
d−1

sin(θ̂)
)T

to estimate the parametric part.g∗(w) = 0.7 arctan(2w). Linear part is FIR(3):Λ =

[1,−0.8, 0.6, 0.4], and the noise isεn ∼ i.i.d.N(0, 0.1), which corresponds to a9.57dB

SNR for the system. Use approximately55% of the whole data set to obtain̂g(·; γ). The

kernel bandwidthh1 is used as the valuêh1 that minimize the contrast function in24, and

useĥ2 = c · ĥ1 as the kernel bandwidthh2. Examine identification error for different value

of d. Repeat this forL = 300 times, and use (33) and (32) to evaluate average identification

error in the parametric part and in the nonparametric part. The simulation result is in shown

Fig. 17.

From Fig. 17(c), we see that optimal kernel window size is almost invariant for all

the dimensionality. Fig.17 shows that semiparametric estimation works equally well in

higher dimensions compared with lower dimensions. If we conduct the same experiment,

but applying nonparametric estimation directly to the input and output data, i.e., examine

the regression ofY directly on multivariate inputU. Applying classical kernel estimation

and we get Fig.18. Note that this plot include the case that the input dimension is from 1
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(a) (b)

(c)

Figure 17: Semiparametric estimation error vs input dimensionality. (a) Err(θ̂) vs d, (b)
MISE(ĝ) vsd, (c) Average optimal kernel bandwidtĥh1 vsd.

to 20, andL = 200 times of repetition is performed for calculating the average. This result

should be compared with Fig.17, and is an illustration for the “Curse of dimensionality”.

Figure 18: Direct nonparametric estimation for different dimensions of input. This reflects
the so-called “Curse of Dimensionality”, which is a typicalshortcoming for nonparametric
estimation.
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3.4.4 Estimation Error vs Correlation of Input

In the next experiment, we are going to examine semiparametric estimation in the context of

input signal having correlation between each of its dimensions.γ∗ =
(

cos(θ∗), sin(θ∗)
)T

,

whereθ∗ = π/4, and we use
(

cos(θ̂), sin(θ̂)
)T

to estimate the parametric part.g∗(w) =

0.7 arctan(2w). Linear part is a FIR(3):Λ = [1,−0.8, 0.6, 0.4], and noise isεn ∼

i.i.d.N(0, 0.1). which corresponds to a9.57dB SNR for the system. Use approximately

55% of the whole data set to obtain̂g(·; γ). The kernel bandwidthh1 is used as the value

that minimize the contrast function in (24), denote it bŷh1. Useĥ2 = c · ĥ1 as the kernel

bandwidth in estimatingg∗(·). The length of observed data set isN = 150. Let inputU ∼

i.i.d. N2

(

 0

0


 , α(ρ) ·


 1 ρ

ρ 1




)
. Note the termα is to make sureE(W ) here is invariant

for differentρ, andα(ρ = 0) = 1. In this case the SNR of the system is always9.57dB

for differentρ. Examine semiparametric estimation for different choice of ρ, and repeat the

same experiment forL = 300 times, and use (33) and (32) respectively to evaluate average

identification error in the parametric part and in the nonparametric part. The simulation

result is shown Fig.16.

(a) (b)

Figure 19: Semiparametric estimation error vs input correlation. (a) Err(θ̂) vs ρ, (b)
MISE((̂g(·))) vsρ.

It is not surprising to observe in Fig.19(b) that under different input correlation, as long

asE(W ) is invariant, then the nonparametric estimation has similar level of errors. On the

other hand, Fig.19(a) shows negative input correlation corresponds to smaller parametric
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errors in the semiparametric model. This is consistent withthe intuition that negatively

correlated input is able to make the parametric part more distinctive under this situation.

3.4.5 Distribution of Semiparametric Statistics

In Section3.4.2, for N = 150, andd = 2, and repeatL = 10000 times for evaluation the

error, if we plot the nonparametric estimateĝ(·) and compare its shape withg∗(·), the result

is shown in Fig.20.

(a) (b)

Figure 20: Estimation of nonparametric functiong∗(·) in the semiparametric model. (a)
The mean estimate (dash line) and the true function (solid line), (b) The 95% pointwise
confidence interval of the estimate (dash line) and the true function (solid line).

We then examine the distribution ofθ̂, ĥ1, (θ̂ − θ∗)2 andISE(ĝ(·)). The histogram,

as well as nonparametric estimation of these distributionsare shown in Fig.21. Not sur-

prisingly, the distribution of̂θ has a Gaussian shape, thus consistent with Central Limit

Theorem. Note empirical mean forθ̂ is 0.786481 (θ∗ = 0.785398) and standard deviation

for θ̂ is 0.055030.

3.4.6 Estimation Error vs Kernel Bandwidth

In previous simulation studies, we have been using flexible choice of kernel bandwidths,

i.e., using the bandwidth that would lead to minimum contrast function in (24), thus se-

lecting ĥ1 the same time when obtaininĝθ, and usêh2 = c · ĥ1 in obtainingĝ(·). Thus

the kernel bandwidths always differ from simulation to simulation even though the system
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21: Distribution of semiparametric estimation statistics. (a) Histogram of̂θ, (b)
Histogram of optimal̂h1, (c) Histogram of(θ̂ − θ∗)2, (d) Histogram ofISE(ĝ), (e)-(h),
nonparametric estimation for the distributions shown in (a)-(d).

is the same. Another approach is to fix kernel bandwidth beforehand, and use this fixed

bandwidth in semiparametric estimation.

Given inputU ∼ i.i.d. N2

(

 0

0


 ,


 1 0

0 1




)
, γ∗ =

(
cos(θ∗), sin(θ∗)

)T
, whereθ∗ =

π/4, and we use
(

cos(θ̂), sin(θ̂)
)T

to estimate the parametric part.g∗(w) = 0.7 arctan(2w).

Linear part is a FIR(3):Λ = [1,−0.8, 0.6, 0.4], and the noise isεn ∼ i.i.d.N(0, 0.1), which

corresponds to a9.57dB SNR for the system. Use approximately55% of the whole data

set to obtain̂g(·; γ). The kernel bandwidthh1 is fixed beforehand. Examine the error for

parametric part under different value ofh1. Repeat the same experiment forL = 500 times,

and use (33) to evaluate average identification error in the parametricpart. The simulation

result is in Fig.22.

It shows that fixingh1 = 3.5 in this case will lead to the smallest error. The average
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(a) (b)

Figure 22: Estimation error in the parametric part using fixed kernel bandwidth. (a) The
minimum contrast function vsh1, (b) Err(θ̂) vsh1.

mean square error for̂θ is 0.00314 (with standard deviation0.006059). Compare this result

with the flexible bandwidth case (Table1) where average Err(θ̂) is 0.00263 (and standard

deviation0.006035), we can conclude that fixingh1 works relatively well. The curve near

the minimum in Fig.22(b) is rather flat, suggesting that using a wide range of values for

bandwidthh1 is relatively applicable. Therefore fixing bandwidthh1 is another feasible

option in semiparametric modeling.

Next, we come to the issue of selectingh2. It might be reasonable to fixh2 = c · h1, as

(40) has suggested. In this caseh2 is specified byh1. In previous simulation, we examine

this approach, and compare MISE(ĝ) under different selection ofh1. Fig. 23 shows this

result. Although using kernel bandwidthh1 = 3.5 in obtainingĝ(·;λ) leads to averagely

optimal estimate of̂θ, fixing kernel bandwidthh2 = c ·3.5 leads to poor result in estimating

ĝ(·) from Fig. 23.

Another method is to use fixedh2 totally independent ofh1. To the sameL = 500 data

sets, we use automatical selection ofh1 (as in Section3.4.1-3.4.4) in obtainingĝ(·;λ), and

then use fixedh2 in estimatinĝg(·). The result of this simulation is shown in Fig.24.

This shows if we want to use fixed kernel window size, the valueused in estimating

g∗(·) should be1.1 for training set of length 150. The mean and standard deviation for the

mean integrated square error in this setting is 0.02264 and 0.01568. It is very close to the
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Figure 23: Estimation error in the nonparametric part usingfixed kernel bandwidthh2 =
c · h1.

Figure 24: MISE(ĝ(·)) vsh2.

unfixed case in Table2 (0.02254 and 0.01352).

Therefore we should select kernel bandwidth equal to3.5 in estimatingγ∗, and to be

1.1 in estimatingg∗(·). For the training set with different length of data, we can modify

these numbers by a multiplication factor accordingly.

Fig. 24 is whenθ∗ is estimated under proper selection ofh1, while for simulations in

Fig. 23(b), it is usually not so. However, the estimateĝ(·) have similar shapes in the two

figures. Thus it suggests the estimation ofg∗(·) and the estimation ofθ∗ are independent

of each other, and under the circumstance even using improper kernel window size in esti-

matingθ∗, properly selecting kernel window size in the second step would still give good

estimate about the nonparametric functiong∗(·).

On the other hand, in semiparametric estimation using flexible kernel bandwidth, mis-

using the kernel width (e.g., the error due to the length of grid we search in optimization)
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could lead to higher identification error. This is further examined in Fig.25. In this simu-

lation, the sameL = 500 data sets are obtained. Letĥ1 is minimizer of contrast function,

but a different valueh1 is used as kernel bandwidth in obtainingĝ(·; γ), andh2 = c · h1 is

used in obtaininĝg(·). It shows estimation of parametric part would be more subjective to

kernel bandwidth, while estimation of nonparametric part is not so much sensitive.

(a) (b)

Figure 25: Estimation error when sub-optimal kernel bandwidth is used. (a) Err(θ̂) vs
(h1 − ĥ1), (b) MISE(ĝ(·)) vs (h1 − ĥ1).

3.4.7 Discussions about Optimal Data Partition and Other Re-sampling Schemes

In the previous simulations, we have been using55% of the total data as the setT1 to

calculateĝ(·;λ). A question of interest is how much percent data should used in such re-

sampling would give optimal identification result. The following experiment is using the

same system and algorithms as in Section3.4.2, with N = 206. And the simulation is to

examine identification performance under different choices ofN1, the length ofT1. Note

thatN = 206 in this case is for the convenient that the total observations in setT1 andT2

are equal to200. We then performL = 300 repetitions of simulations to obtain average

errors. The result is shown in Fig.26.

From the simulation result, we observe using 55%-60% of whole data in obtaining

ĝ(w; γ) would lead to the most accurate estimate ofγ∗. However, the length of this subset

seems to have less significant influence in estimatingg∗(w), except for extreme cases.
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(a) (b)

Figure 26: System identification error vs length ofT1 subset. (a) Err(θ̂) vsN1, (b) MISE(ĝ)
vsN1.

Besides, the minimum in Fig.26(a) is rather flat, suggesting that a wide range ofN1/N

ratio choices would be acceptable.

For the same system, if we observe data sizeN = 150, and use fixed kernel bandwidth

h1 = 3.5 andh2 = 1.1, and to apply leave-one-out rather than partition re-sampling, we

finally get Err(θ̂) = 0.000621, and MISE(ĝ(·)) = 0.021413 in the simulation. Comparing

this result with the partition method where Err(θ̂[Partition]) = 0.002631 (corresponds to an

average 1.428 degree of error) and MISE(ĝ(·)[Partition]) = 0.022536 (shown in Table1 and

Table2), we see a significant improvement in estimation of parametric part, while estima-

tion of nonparametric part still performs similarly. Leave-one-out method fully makes use

of the total data set, so it is not surprising that it leads to better estimates. When only a small

data set is available, leave-one-out is surely a powerful option. The similar performance in

MISE(ĝ(·)) again suggests re-sampling technique only have influence onparametric part,

and identification of parametric part and nonparametric part are two relatively separated

problems.

3.4.8 Comparison with Derivative Method in Parametric Inference

The previous simulations have been using minimization of MSE in estimating the para-

metric part of the model. If the parametric inference in Section 3.4.1and Section3.4.2

are performed through the derivative approach (See Section3.2.1) rather than minimiz-
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ing MSE, we get Fig.27 and Fig. 28 respectively. Note that the constraint||γ∗|| = 1

is also used here, and we also use(cos(θ̂), sin(θ̂)) for representinĝγ, as we did for the

2-dimensional cases in both Section3.4.1and Section3.4.2, and use (33) to represent the

estimation error for the parametric part.

Figure 27: Err(θ̂) vsβ using derivative approach in parametric inference.

Figure 28: Err(θ̂) vsN using derivative approach in parametric inference.

Comparing with Section3.4.1 and Section3.4.2, we see that the prediction error is

at least 3 times larger by applying derivative approach. Therefore, the derivative method,

although explicit in solutions, does not work as good as minimizing MSE approach. How-

ever, due to its simplicity in application, it can always be applied as a first approach in

semiparametric estimation, and its solution could be applied as an initial search position

for applying the other method.

If we examine apply semiparametric estimation for different dimension of input, ap-

plying derivative approach to the system in Section3.4.3, and useE(||γ̂ − γ∗||2) as the
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indicator for estimation error, we get Fig.29.

Figure 29: Err(γ̂) vs dimension using derivative approach in parametric inference.

3.4.9 Semiparametric Approximation of a MISO Hammerstein System

In this section, we are going to examine the validity of applying semiparametric model to

MISO Hammersteim systems. Suppose we observe data from a 2-dimensional Hammer-

stein system with the following nonlinearities:

m∗(Un) = σ(Un,1 + 3Un,2) + σ(3Un,1 + Un,2) − 1

whereσ(x) = (1 + e−x)−1 is the so-called sigmoid function, andUn = (Un,1, Un,2)
T ,

n = 1, · · · . The plot of this 2-d nonlinear function is shown in Fig.30.

Figure 30: Err(γ̂) vs dimension using derivative approach in parametric inference.

We notice thatm∗(·) qualify E(m∗(Un)) = 0. In order to determine the optimal

parametric characteristicγ, we need to evaluateQ(γ) in (36). Under the normalization
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||γ|| = 1, we express the parametric part byγ = (cos(θ), sin(θ))T . For inputU ∼ i.i.d.

N2

(

 0

0


 ,


 1 ρ

ρ 1




)
then the simulation ofQ(θ) vs θ according to (36) under different

input correlationρ is shown in Fig.31.

(a) (b)

(c) (d)

Figure 31: The smallest projection errorQ(θ) vs θ, given different input correlationρ. (a)
ρ = 0, (b) ρ = 0.1, 0.5, 0.7, 0.9, (c) ρ = −0.1,−0.5,−0.7, (d) ρ = −0.8,−0.85,−0.9.

Fig. 31(a)&(b) shows that forρ ≥ 0, the approximation error function has its minimum

at θ = π/4. This means the parametric part in semiparametric model should have the

characteristicθ∗ = π/4, i.e., γ∗ = (
√

2/2,
√

2/2)T . For negative values of correlation

input ρ (Fig. 31(c)), it seems that forρ ≥ −0.7, θ∗ should still be selected asπ/4. As

ρ becomes closer to−0.8 (Fig. 31(d)), the minimum ofQ(θ) becomes harder and harder

to identify, and whenρ = −0.8 (Fig. 31(c)), it seems the regionθ ∈ {θ : π/6 ≤ θ ≤

π/3} all corresponds to the minimum ofQ(θ). This means reasonably,θ∗ could be any

value betweenπ/6 and π/3, although the semiparametric model lost its uniqueness in
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identification, it on the other shows the approximation to the MISO Hammerstein model is

relatively “easy” since as long asθ∗ is within [π/6, π/3], the approximation error is almost

equally the smallest. Fig.31(d) also shows that whenρ < −0.8, the global minimum of

Q(θ) no longer appears atθ = π/4, but atθ = π/6 andθ = π/3 respectively. Thereforeθ∗

should be equal to eitherπ/6 or π/3 in this case.

The nonlinear characteristicg∗(·) is obtained by (29). The result is shown in Fig.32.

For ρ > −0.7, θ∗ = π/4, and the shape ofg∗(·) is shown in Fig.32(a). Forρ = −0.8, θ∗

does not have unique values, and Fig.32(b) showsg∗(·) whenθ∗ is selected asπ/6, π/3

andπ/4. Forρ = −0.9, θ∗ equals to eitherπ/6 or π/3, and plug in the correspondingg∗(·)

are the same for each case, and is shown in Fig.32(c).

(a) (b)

(c)

Figure 32: The nonlinear functiong∗(·) in semiparametric approximation under different
input correlation. (a)ρ = 0, 0.5, 0.9,−0.5, (b) ρ = −0.8, θ∗ = π/6, π/3, π/4, (c) ρ =
−0.9, θ∗ = π/6, π/3.

We are interested in applying semiparametric model to the MISO Hammerstein system
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with with nonlinear subsystemm∗(Un) and input signal described as above. Suppose the

MISO Hammerstein model has linear subsystem FIR(3):Λ = [1,−0.8, 0.6,−0.4], and

ρ = 0 in the input covariance matrix, and the noiseεn ∼ i.i.d.N(0, 0.3052) (10dB SNR for

the system). Then we first examine the effect of kernel size inthe semiparametric identifi-

cation scheme described before when the training set is of lengthN = 150, then conduct

a repetition ofL = 500 different simulations. Fig.33(a) shows average Err(θ̂) vs kernel

size (denoted byh1). We generate a testing data set containingM = 200 observations

from the MISO Hammerstein model, and use1
L
· 1

M

∑M
i=1 |ĝ(γ̂TUi) − m∗(Ui)|2 (where

γ̂ = (cos(θ), sin(θ))) to evaluate the error in estimating the nonparametric characteristics

g∗(·). Note this error is an estimate ofE|ĝ(γ̂TU) − m∗(U)|2, which is approximately

E|ĝ(γ̂TU) − g∗(γ∗TU)|2 plus the semiparametric projection error. Note sinceĝ(γ̂TU) is

very close tôg(γ∗TU) (see Section3.4.6), E|ĝ(γ̂TU)−m∗(U)|2 can be viewed as a statis-

tics that reflects the error for̂g(·). Then 1
L
· 1

M

∑M
i=1 |ĝ(γ̂TUi)−m∗(Ui)|2 vs kernel window

size (denoted byh2) is shown in Fig.33(b).

(a) (b)

Figure 33: Semiparametric identification error vs kernel size. (a) Err(θ̂) vs h1, (b)
Err(|ĝ(γ̂TU) −m∗(U)|2) vsh2.

From Fig. 33, we see that the optimal kernel length for this problem ish1 = 4.5,

andh2 = 2.3. Using these two kernel size and adjusted on consideration of data length

of training set, we conduct another simulation about the identification error vs length of

training data. We performL = 100 repetitions for the average performance and the result
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is shown in Fig.34.

(a) (b)

Figure 34: Semiparametric identification error vs length oftraining data. (a) Err(θ̂) vsN ,
(b) Err(|ĝ(γ̂TU) − m∗(U)|2) vsN , the solid line is the empirical error, while the dotted
line is the regression fitting to the solid line. Note they almost coincide.

In Fig. 34(b), the error converges to some non-zero constant asN → ∞. This is due

to the error introduced by approximating the true MISO system using a semiparametric

system. Thus we use the model Err(|ĝ(γ̂TU) −m∗(U)|2) = a ·N b + c to fit the empirical

observations in Fig.34(b), and find the coefficients to bea = 0.976, b = −0.788 and

c = 0.01359. The convergence rate−0.788 is very close to the theoretical value (−2/5×2)

for 1-dimensional nonparametric estimation (18), and the limit term0.01359 is also very

close to the calculations for the semiparametric projection error shown in Fig.31.

For the case the length of training setN = 150, if we generateL = 100 independent

training data sets and examine the nonparametric estimate of ĝ(·) in each simulation and

compared them with the calculated optimalg∗(w) whenρ = 0, the result is shown in Fig.

35.

3.5 Conclusions

In Section3, semiparametric Hammerstein model identification schemesare examined by

simulation studies. It shows that in many cases, MISO Hammerstein systems can be ap-

proximated by semiparametric models, such that the “Curse of Dimensionality” can be

avoided. In semiparametric model identification, the estimation of parametric part “γ∗”
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(a) (b)

Figure 35: Estimation of the nonparametric part in the semiparametric model. (a) Mean of
ĝ(·) (solid line), and the trueg∗(·) (dashed line), (b) Mean of̂g(·) (solid line), and the95%
pointwise confidence interval of the estimate (dashed line).

and nonparametric part “g∗(·)” are relatively two independent processes. In estimation of

γ∗, minimization of MSE leads to better performance compared with derivative method. In

estimatingγ∗ and estimatingg∗(·), two kernel estimate bandwidths are involved (h1 and

h2). The kernel bandwidths can be chosen by two possible approaches: One is to deter-

mine beforehand the optimal kernel sizeh1 andh2 individually and fix them in advance.

The other approach is to determineh1 by consider it as another variable, together withθ̂ (or

γ̂) should minimize the criterion function. Then use this selectedĥ1 multiplied by a known

constant factor to beh2 the kernel bandwidth in estimation ofg∗(·). Among the two ap-

proaches, the latter one will lead to more accurate estimation results, while the former one

is faster to implement, and yet lead to estimation error relatively close to the latter approach.

Re-sampling technique is also required in the process of estimatingγ∗, and leave-one-out

could be an optimal option when the training et is small. Partition method could also be

applied when the training set is larger. The influence of nonlinear function shape, input

dimensions, length of training data, correlation between different input dimensions, have

also been demonstrated in the simulation studies.
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4 Model Selection Algorithms for Identification of Ham-

merstein Systems

4.1 Introduction

This section of the thesis is concerned with identification of a SISO Hammerstein system

depicted in Fig.6. For a long time, researchers who have applied parametric approach

to system identification have been relying on the assumptionthat the system nonlinearity

m∗(·) can be specified by a finite dimensional parameter such thatm∗(·) = m∗(·; θ), θ ∈ Θ,

i.e., the nonlinear function belongs to a certain known class of functions, e.g., a class of

polynomial characteristics. A fundamental question, however, is the validity of the para-

metric assumption. This section will try to address this issue in the context of testing

whether the nonlinear functionm∗(·) in the Hammerstein model belongs to a certain para-

metric class.

In particular, we represent the system nonlinearity by an orthogonal expansion and our

model selection methodology is based on a certain type of thresholding rules. The thresh-

olding strategy is applied to estimated Fourier coefficients and it has its roots in the wavelet

analysis of signals [25]. The thresholding algorithm is able to capture the sparse structure

of the functional form as is it aimed to reduce the variance ofthe estimate at the expense of

introducing some bias. Overall, the thresholding estimateof the system nonlinearity reveals

the substantially smaller mean squared error. Yet another issue is discussed in Section4:

where the parametric assumption is not assumed, we can estimate the system nonlinearity

by orthogonal expansion of a finite order. The required truncation parameter can be deter-

mined by certain shrinkage methods. Therefore, this approach is equivalent to estimate a

general nonlinearity by a nested class of parametric functions.

Furthermore, we assume the input to the system to be i.i.d. Gaussian. Under this

assumption, an orthogonal basis employing Hermite polynomials is a natural choice to

represent the system nonlinearity. In fact, the Hermite polynomials form the orthogonal
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basis with respect to the Gaussian weight. This approach canalso be extended to other

input signal distributions, e.g., for uniformly distributed input one can use trigonometric

functions or Legendre polynomials.

4.2 Orthogonal Series Estimation Using Hermite Polynomials

Hermite polynomials is a set of classical polynomials orthogonal with respect to a Gaussian

weight, see [26], [12] for some basic properties of this polynomial. One of the common

form of Hermite Polynomials is defined as follows:

Hn(x) = (−1)nex2/2 d
n

dxn
e−x2/2.

It can be shown in [26] that the polynomials{Hn(x)} satisfy the following orthogonality

property

∫ ∞

−∞
Hk(x)Hl(x)w(x)dx =




k!, for k = l

0, for k 6= l

wherew(x) = 1√
2π
e−x2/2. The first several Hermite polynomials are:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

H7(x) = x7 − 21x5 + 105x3 − 105x

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105
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H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x

H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945.

The general means for generating Hermite polynomials is given by the following three-

term recursive formula

Hn+1(x) = xHn(x) − nHn−1(x), n ≥ 1,

with the initial conditionsH0(x) = 1,H1(x) = x.

Let us definehk(x) = Hk(x)/
√
k!. Then{hk(x)} constitutes an orthogonal basis, i.e.,

we have

∫ ∞

−∞
hk(x)hl(x)w(x)dx =





1, for k = l

0, for k 6= l.

Functions satisfying
∫ |m(x)|2w(x)dx <∞ can be represented by Hermite polynomial

expansions:

m(x) =
∞∑

k=0

akhk(x), (41)

where

ak =
∫ ∞

−∞
m(x)hk(x)w(x)dx (42)

is thek-th Fourier coefficient. Due to the orthonomality we have Parseval’s formula

∫ ∞

−∞
m2(x)w(x)dx =

∞∑

k=0

a2
k. (43)

The inner product associated with the Hermite expansion is defined with respect to the

standard Gaussian densityw(·), i.e.,< m1, m2 >=
∫ ∞
−∞m1(x)m2(x)w(x)dx.

For the Hammerstein system in Fig.6, i.e.,Yn =
∑∞

i=0 λ
∗
im

∗(Un−i) + εi, with λ∗0 = 1,

Em∗(Un) = 0, the relationship as in (12) allows us to expand the nonlinear charac-

teristicm∗(·) in a series of Hermite polynomials in (41). Thereforem∗(·) can be esti-
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mated by the truncated version of the Hermite expansions. Hence, for a given data set

{(U1, Y1), · · · , (UN , YN)}, we obtain

m̂(u) =
T∑

k=0

âkhk(u), (44)

where

âk =
1

N

N∑

n=1

Ynhk(Un)
w(Un)

fU(Un)
(45)

is the estimate ofak, T is the truncation parameter, andfU(·) is the density function of the

input signal. The formula in (45) can be derived in the following way:

ak =
∫ ∞

−∞
m∗(u)hk(u)w(u)du

=
∫ ∞

−∞
m∗(u)hk(u)

w(u)

fU(u)
fU(u)du

= E
{
m∗(Un)hk(Un)

w(Un)

fU(Un)

}

= E
{
Ynhk(Un)

w(Un)

fU(Un)

}
. (46)

The formula in (45) is just the empirical counterpart of (46). Particularly, if the input data

are from the standard Gaussian distribution, (45) becomes

âk =
1

N

N∑

n=1

Ynhk(Un). (47)

Note that if the input data have Gaussian distribution with non-standard variance, it can

always be normalized by a linear transformation and then be treated as the normalized

Gaussian distribution case. So the estimates in (44) and (47) can be applied to a more

general class of cases where the input distribution is Gaussian with no unit variance.

The arguments used in (46) shows that̂ak is the unbiased estimate ofak, i.e.,

E(âk) = ak. (48)
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Note that this fact implied thatEm̂(u) =
∑T

k=0 akhk(u) is the partial sum of representing

m∗(u) in terms of Hermite polynomials.

However, some more tedious algebra, see [12], reveals that

var(âk) = O(
1

N
). (49)

It is important to note that (49) takes place regardless whetherak 6= 0 or ak = 0. The

bounds in (49) holds under the assumption that the linear subsystem of theHammerstein

model is stable, i.e.,
∑∞

i=0 |λ∗i | <∞. Note also that the constant appearing in (49) depends

onk. We can rewrite (49) in the following compact form

âk = ak +OP (N−1/2), for all k (50)

whereOP (·) denotes “in probability” convergence.

The meaning of (49) is that even ifak = 0, then there exists irreducible statistical error

contributing to the overall reconstructed accuracy of the nonlinear estimatêm(u).

The aim of our research is to propose a modified estimate ofak that is able to detect the

case whetherak = 0. Hence, we seek for an estimateãk with the following property

ãk =




ak +OP (N−1/2), if ak 6= 0

0, if ak = 0.

For such an ideal estimator, one has to relax the property of being unbiased, i.e.,

E(ãk) 6= ak.

Nevertheless, the modified estimateãk can reveal the reduced mean squared error. A partial

remedy to remove the undesirable property in (50) can be obtained by employing a class of

thresholding rules, see Section4.3.
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4.3 Thresholding Techniques for Coefficients Shrinkage

In many cases, the coefficients{ak; k = 0, 1, · · · } are sparse, meaning that most of them

are zero except for a few values. Hence, denoting byST = {k : ak 6= 0, 0 ≤ k ≤ T} we

have that the partial sum for representingm∗(u) is given bymT (u) =
∑

k∈ST

akhk(u). The

sparse case corresponds to the situation when|ST | ≈ T ε for some smallε > 0. In such

circumstances the estimatorm̂(u) in (44) is unable to detect a set of Fourier coefficients

that are zero. As we have already noted in (50) this is due to the irreducible statistical

error caused by the randomness of training data. As a result,the estimatêm(u) is going

to reveal a large reconstruction error. To address this important issue one needs to turn to

some shrinkage approach often implemented in terms of thresholding rules where we can

test the magnitude of Fourier coefficients and set them appropriately to zero if they are not

in the sparse set of the underlying nonlinearity. Thresholding methods have been originally

developed in the application of the statistical inference of wavelets [25], [27]. There are

several types of thresholding rules, e.g., hard, soft, and block thresholding. Denote the

estimated coefficients after thresholding byãk. Hard thresholding corresponds to

ãk =





0, |âk| < th,

âk, |âk| ≥ th. (51)

whereth is the threshold to be selected. One simple way of selectingth is the so-called

“Universal Threshold” [28], in whichth is specified as
√

v̂ar(âk) · 2 logN , and v̂ar(âk)

is an estimate of the variance ofâk, see Section4.7. Thresholding Hermite coefficients

could be particularly useful if we know that the true characteristic is a polynomial of some

unknown order.

It is worth mentioning that̃ak is a biased estimate ofak. This is a general property of

the shrinkage rules, i.e., unbiasedness must be relaxed in order to capture a sparse structure

of the underlying characteristic.
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4.4 Estimating a General Nonlinearity by Hermite Polynomials

The estimatêm(·) in (44) is able to converge under some conditions onm∗(·) to a general

class of nonlinear characteristicsm∗(·), provided that the truncation parameterT depends

on the training sizeN in such a way that

T (N) → ∞

and √
T (N)

N
→ 0

asN → ∞. The proofs of such asymptotic properties of the Hermite series nonparametric

estimatem̂(·) can be found in [12].

In this research, however, we are interested in a finite sample size property of̂m(·),

i.e., the problem of choosing the truncation parameterT . Our strategy for specifyingT is

relying on the global discrepancy measure betweenm̂(u) andm∗(u). Owing to Paserval’s

formula we first represent the Integrated Square Error (ISE)as follows

ISE(m̂) =
∫ ∞

−∞
(m̂(u) −m∗(u))2w(u)du

=
T∑

k=0

(âk − ak)
2 +

∞∑

k=T+1

a2
k. (52)

Next, the Mean Integrated Square Error (MISE) can be evaluated by

MISE(m̂) = E
{

ISE(m̂)
}

=
T∑

k=0

E(âk − ak)
2 +

∞∑

k=T+1

a2
k

=
T∑

k=0

var(âk) +
∞∑

k=T+1

a2
k, (53)

where the relationship in (48) was used and the expected sign is taken with respect to all

training sets of sizeN .
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The minimizer of (53) with respect toT determines the optimal truncation valueT ∗ of

the orthogonal estimate, i.e.,

T ∗ = arg min
T≥1

MISE(m̂)

= arg min
T≥1

{ T∑

k=0

var(âk) +
∞∑

k=T+1

a2
k

}
. (54)

This defines the theoretical optimal (with respect to MISE) value of the truncation parame-

ter that can not be directly computed as it contains unknown variables. In fact, both var(âk)

anda2
k are unknown in advance. A computable estimate ofT ∗ can be obtained by esti-

mating var(âk) anda2
k. Let v̂ar(âk) be some estimate of var(âk), see Section4.7. Since

0 ≤ a2
k = E(â2

k)− var(âk) then one can estimatea2
k by

(
â2

k − v̂ar(âk)
)
. To prevent that this

difference to be negative, we estimatea2
k by

(
â2

k − v̂ar(âk)
)

+
,

wherea+ = max(a, 0).

All these considerations yield the following empirical choice of the truncation parame-

ter

T̂ = arg min
1≤T≤N

{ T∑

k=0

v̂ar(âk) +
N∑

k=T+1

(â2
k − v̂ar(âk))+

}

= arg min
1≤T≤N

{ T∑

k=0

v̂ar(âk) −
T∑

k=0

(â2
k − v̂ar(âk))+

}
(55)

whereT̂ is believed to be the estimate ofT ∗. The final formula in (55) results from the fact

that
∑∞

k=T+1 a
2
k =

∫ ∞
−∞m∗2(u)w(u)du− ∑T

k=0 a
2
k.

We can conjecture that̂T → T ∗ (P) asN → ∞. Nevertheless, such asymptotic prop-

erties of T̂ are postponed to future research. In this thesis, the selection of truncation

parameter̂T is examined by means of simulation studies.
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4.5 Testing for the Polynomial Form of the Nonlinear Characteristic

While Section4.3 have discussed the issue of Hermite polynomial estimation and coeffi-

cient shrinkage for estimating the polynomial characteristics, it is of interest whether it is

reasonable to assume the nonlinear function to be polynomial. The problem here would be

testing the polynomial model hypothesis against all other nonparametric alternitives, i.e:

H0 : m∗(·) is a polynomial of order less thanp, (56)

against Ha : m∗(·) is not a polynomial of order less thanp.

This is equivalent to testing

H0 : r∗(u; p) is a constant for eachu ∈ R, (57)

wherer∗(u; p) = m∗(u) − ∑p−1
k=0 a

∗
khk(u), and{a∗k, k = 0, · · · , p} are the Hermite coeffi-

cients form∗(·), against the alternative:

Ha : r∗(·; p) is not a constant for eachu ∈ R.

Note this test is actually the no-effect hypothesis forr∗(·; p).

The expressionr∗(·; p) can be estimated by:

r̂(u; p) =
p+T ′∑

k=p

âkhk(u), (58)

whereT ′ is the truncation parameter andâk is the same as that appears in (44) and (47). In

follows from the central limit theorem,̂ak ∼ N(ak,
√

var(âk)). Under the null hypothesis,

âk/
√

v̂ar(âk), k = p, · · · would have standard normal distribution for asymptotically large

N . This leads to the Neyman Smooth Test [29], [30], [31] statistic:

SN =
p−1+b∑

k=p

â2
k

v̂ar(âk)
. (59)

It is postulated that̂ak/
√

v̂ar(âk), k = p, · · · are independent of each other. Under the
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null hypothesis,TN should haveχ2 distribution with degrees of freedomb. For a statistical

test of significance levelα, the one-sidedχ2-test would reject the null hypothesisH0 for

SN > χ2(α; b), whereχ2(α; b) denotes the1 − α quantile of the cdf ofχ2
b .

Neyman suggested that the selection ofb could be important for the performance of

this test, for a too large value ofb would undermine the influence of the abnormal terms of

âk/
√

v̂ar(âk). He proposedb should be set as a priori. In the following simulation studies,

we fix this value to beb = 10.

In the simulation studies, it is shown that Neyman test can really distinguish between

a true polynomial structure Hammerstein system and a non-polynomial structure of Ham-

merstein system. However, a larger data set is required to testm∗(·) to qualify higher order

polynomial assumptions. Besides,âk as well asv̂ar(âk) should be carefully estimated.

Weighted Monte Carlo (Section4.6) would be a way to improve the estimate in (47). The

estimation of var(âk) will be discussed in Section4.7. More detailed examples will be

shown in the simulation studies in Section4.8.

4.6 Weighted Monte Carlo

The derivation in (46) can be considered as a Monte Carlo problem. As such the formula

in (47) is the simplest Monte Carlo technique for the integral evaluation. We have already

pointed out in (49) that the variance of the estimateâk decreases asO( 1
N

). Our goal is

to apply refined Monte Carlo integration algorithms developed in [32] in order to improve

the 1
N

convergence rate. To do so, let{(U(1), Y[1]), · · · , (U(n), Y[n]), · · · , (U(N), Y[N ])} be

the ordered version of{(U1, Y1), · · · , (UN , YN)} with respect toUn. Then (47) can be

rewritten as

âk =
N∑

n=1

1

N
Y[n]hk(U(n)),

which resembles the rectangular method of numerical integration. Yet, an improvement is

to replace the rectangular-form of numerical integration by trapezoidal rule, in particular,
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the weighted Monte Carlo method proposed by Yakowitz et al [32]:

âk =
N∑

n=1

ωnY[n]hk(U(n)), (60)

whereωn = 1
2

(
Φ−1(U(n+1)) − Φ−1(U(n−1))

)
, Φ−1(·) is the inverse standard Gaussian cdf,

andU(0) = −∞, U(N+1) = +∞. It can be shown that the estimator in (60) has a much

faster convergence rate:

E{(âk − ak)
2} = o(1/N4).

The implementation of such weighted Monte Carlo method willalso be examined in simu-

lation studies.

4.7 Estimation of the Variance

In both Section4.3 and Section4.4, the variance of the estimator var(âk) needs to be

estimated. The simplest way is to estimate it directly through the observed data. Based on

(47):

var(âk) = var
( 1

N

N∑

n=1

Ynhk(Un)
)

Using Lemma 12.4 in [12], we can prove that

var(âk) =
1

N
var

(
Y1hk(U1)

)
, for k ≥ 1. (61)

Let us estimate var(âk) by a standard formula

v̂ar(âk) =
1

N

1

N − 1

N∑

n=1

(
Ynhk(Un) − âk

)2

. (62)

It is worth mentioning that although the estimator (62) is consistent, yet it is not unbiased,

due to the dependency ofYis.

Another approach to estimatêvar(âk) is bootstrapping. Efron et al [33] shows that gen-

erating the bootstrapping sets according to the pair(Un, Yn) is a relatively good approach
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for estimation. The realization of such bootstrapping for estimatingv̂ar(âk) can be gener-

alized in the following procedures:

1. Given the observations{(U1, Y1), · · · , (UN , YN)}, draw(U [boot]
n , Y [boot]

n ),n = 1, · · · , N

from it with replacement, this forms a bootstrapping set

{(U [boot]
1 , Y

[boot]
1 ), · · · , (U [boot]

N , Y
[boot]
N )}.

2. Computêa[boot]
k =

∑N
n=1 Y

[boot]
n hk(U

[boot]
n ), k = 0, 1, · · · .

3. Repeat steps 1 and 2,B times to get̂a[boot,1]
k , · · · , â[boot,B]

k .

4. Estimate var(âk) by:

v̂ar(âk) =
1

N

1

B − 1

B∑

b=1

(
â

[boot,b]
k − 1

B

B∑

t=1

(
â

[boot,b]
k

))2

, k = 0, 1, · · · (63)

For the estimatêak in (47), both (62) and (63) can be used to calculatêvar(âk). It is shown

in Section4.8.1that estimatev̂ar(âk) according to (63) and that according to (62) leads to

similar performance in thresholding the coefficients. So the formula in (62) is preferred

since bootstrapping is usually much more time consuming. However, if âk is obtained by

the modified Monte Carlo (60), then (62) can no longer be applied to estimate the variance

of âk, v̂ar(âk) must be calculated through bootstrapping method (63).

4.8 Simulation Studies

4.8.1 Hermite Polynomial Estimation with Thresholding Rule

Experiment 1 Suppose we observe a data set from the following system:

• InputU ∼ N(0, 1).

• Linear part of the system is characterized by FIR(3),Λ = [1,−0.8, 0.6,−0.4], whereas

the same identification method also be applied to IIR subsystems (e.g. ARMA mod-

els).
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• m∗(u) = h1(u) + h2(u) + h3(u) ≃ 0.482u3 + 0.707u2 − 0.225u− 0.707.

• εn ∼ i.i.d.N(0, 0.648). The amplitude of noise here corresponds to a10 dB signal-

to-noise ratio in the system.

• Length of data observed:N = 5000.

• Obtain Hermite coefficientŝak by (47). Use bootstrapping to estimatêvar(âk), and

generateB = 100 bootstrapping sets. Then apply thresholding rule and then obtain

the modified coefficients̃ak. Repeat this forL = 100 times.

The simulation result is shown in Fig.36.

Figure 36: Comparison of the boxplot of Hermite polynomial estimate without and with
thresholding rules in Experiment1, Section4.8.1. Note that the true value should beα∗

k = 1
for k = 1, 2, 3 andα∗

k = 0 for other value ofk. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually.

Fig. 36 shows that applying orthogonal estimate crudely will always result in nonzero

coefficients even though many of them actually should be zero. By contrast, thresholding

method can eliminate most of the redundant coefficients. If we calculate the MISE of the

estimate, then we find shrinkage method will greatly enhancethe estimate (MISE 0.1352
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vs MISE 4.7907).

In this experiment, if we use (62) rather than (63) to calculatev̂ar(âk), their difference

will be shown in Fig. 37. There is very little difference in most of the cases. If we use

the shrinked coefficient estimatesãk to form the nonparametric estimatêm(·) and then to

calculate the MISE of the Estimate, then the above two approaches would lead MISE to be

0.1662 and0.1576, which again shows their performances comparably similar.

Figure 37: Boxplot of the difference of calculatinĝvar(âk) by (62) and by (63).

Experiment 2 Suppose the nonlinear system with 4th order polynomial, then with all

other conditions similar to the above experiment:

• InputU ∼ N(0, 1).

• Linear subsystem:Λ = [1,−0.8, 0.6,−0.4].

• m∗(u) = h1(u)+h2(u)+h3(u)+h4(u) ≃ 0.204u4 +0.482u3−0.518u2−0.225u−

0.095.

• εn ∼ i.i.d.N(0, 0.864). The amplitude of noise here corresponds to a10 dB signal-

to-noise ratio in the system.

• Length of data observed:N = 5000.

• Obtain Hermite coefficientŝak by (47) and apply thresholding rule and then obtain

the modified coefficients̃ak. Repeat this forL = 100 times.
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The result is shown in Fig.38.

Figure 38: Comparison of the boxplot of Hermite polynomial estimate without and with
thresholding rules in Experiment2, Section4.8.1. Note that the true value should beα∗

k = 1
for k = 1, 2, 3, 4 andα∗

k = 0 for other value ofk.

Unlike estimating the system with polynomial of order3 in the previous experiment,

the estimate in Fig.38 behaves badly for̃a3 andã4. If we increase the length of data set

to a larger value and conduct a similar simulation, this problem could be solved. It will be

shown in the next experiment.

Experiment 3

• InputU ∼ N(0, 1).

• Linear subsystem:Λ = [1,−0.8, 0.6,−0.4].

• m∗(u) = h1(u)+h2(u)+h3(u)+h4(u) ≃ 0.204u4 +0.482u3−0.518u2−0.225u−

0.095.

• εn ∼ i.i.d.N(0, 0.864). The amplitude of noise here corresponds to a10 dB signal-

to-noise ratio in the system.
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• Length of data observed:N = 20000.

• Obtain Hermite coefficientŝak by (47) and apply thresholding rule and then obtain

the modified coefficients̃ak. Repeat this forL = 100 times.

The result is shown in Fig.39. Comparing with the previous simulation, it suggests that

accurately determining higher order of polynomial characteristics requires a bigger data set

observed. Some simple algebra shows the for the same training data, the term var(âk) grows

substantially ask increases, therefore making the “Universal threshold” in (51) increase

substantially for larger value ofk. This will lead toãk being set to zero for larger value

of k regardless of the true nonlinear characteristic. Only by using larger training data set

could solve this problem. Thus thresholding method in Hermite series estimate works for

smaller orders of polynomial, and would require larger dataset to work for larger orders.

Figure 39: Comparison of the boxplot of Hermite polynomial estimate without and with
thresholding rules in Experiment3, Section4.8.1. Note that the true value should beα∗

k = 1
for k = 1, 2, 3, 4 andα∗

k = 0 for other value ofk.
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4.8.2 Approximating the Nonlinear Characteristics by Polynomial Function of Fi-

nite Orders

Experiment 1

• InputU ∼ N(0, 1).

• Linear subsystem:Λ = [1,−0.8, 0.6,−0.4].

• m∗(·) = arctan(·).

• εn ∼ i.i.d.N(0, 0.097). The amplitude of noise here corresponds to a10 dB signal-

to-noise ratio in the system.

• Length of data observed:N = 1000.

• Obtain Hermite coefficientŝak by (47). Compare the following ways:

1. Apply thresholding rule and then obtain the modified coefficientsãk, consider

the highest order of coefficients̃ak that is not zero to be the order of the poly-

nomial approximation, denote this order byT̂ .

2. UseT̂ in (55) as truncation parameter and use{âk; k = 0, · · · , T̂} as the final

coefficients in the estimate.

• Use a testing set of 10000 data to approximate the IntegratedSquare Error (ISE) of

the estimate.

• Repeat the above estimation forL = 100 times.

If âk is calculated by (47), the result is shown in Table3. The approximation ofm∗(·) =

arctan(·) by Hermite polynomial estimate is shown in Fig.40.

If we use the weighted Monte Carlo integration (60) to calculateâk in the previous

simulation, the exact same data sets lead to the following estimation result shown in Table

4.
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Use Thresholding Obtained from (55)

Median ofT̂ 1 4
25% quantile ofT̂ 1 3
75% quantile ofT̂ 3 8

Mean of ISE 0.01602904602 0.01687971919
SD of ISE 0.00748799189 0.01596121436

Table 3: Using Hermite polynomial estimate to approximate anon-polynomial function
in the nonlinear part in a Hammerstein system, withâk calculated by (47), and length of
training data equal to1000.

Figure 40: The approximation ofm∗(·) = arctan(·) by finite order Hermite polynomial
expansion. UsêT in (55) as the truncation parameter. The solid line represents thetrue
m∗(·), while the dot represent the mean of the estimate for different sets of data at the
sampled points, which almost concide with the solid line. The dashed line represents for
95% pointwise confidence interval of the estimate.

Use Thresholding Obtained from (55)

Median ofT̂ 3 13
25% quantile ofT̂ 3 5
75% quantile ofT̂ 3 38

Mean of ISE 0.00920190510 0.01766346591
SD of ISE 0.00564368652 0.02112562867

Table 4: Using Hermite polynomial estimate to approximate anon-polynomial function in
the nonlinear part in a Hammerstein system, withâk calculated by weighted Monte Carlo
(60), and length of training data equal to1000..

Experiment 2 If we use a longer data set, and conduct a similar experiment as the previ-

ous one:

• InputU ∼ N(0, 1).

• Linear subsystem:Λ = [1,−0.8, 0.6,−0.4].
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• m∗(·) = arctan(·).

• εn ∼ i.i.d.N(0, 0.097). The amplitude of noise here corresponds to a10 dB signal-

to-noise ratio of the system.

• Length of data observed:N = 5000.

• Obtain Hermite coefficientŝak. Compare the following ways:

1. Apply thresholding rule and then obtain the modified coefficientsãk, consider

the highest order of coefficients̃ak that is not zero to be the order of the poly-

nomial approximation.

2. UseT̂ in (55) as truncation parameter and use{âk; k = 0, · · · , T̂} as the final

coefficients in the estimate.

• Use a testing set of 10000 data to approximate the IntegratedError (ISE) of the

estimate.

• Repeat the above estimation forL = 100 times.

If âk is calculated by (47), the result is shown in Table5.

Use Thresholding Obtained from (55)

Median ofT̂ 3 7
25% quantile ofT̂ 3 7
75% quantile ofT̂ 3 11

Mean of ISE 0.0047361547 0.00358710897
SD of ISE 0.00333382545 0.00246170059

Table 5: Using Hermite polynomial estimate to approximate anon-polynomial function
in the nonlinear part in a Hammerstein system, withâk calculated by (47), and length of
training data equal to5000.

The approximation ofm∗(·) = arctan(·) by Hermite polynomial estimate is shown in

Fig. 41:

If we use the weighted Monte Carlo integration in the previous simulation, the exact

same data sets lead to the following estimation result shownin Table6.
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Figure 41: The approximation ofm∗(·) = arctan(·) by finite Hermite polynomial estimate.
UseT̂ in (55) as the truncation parameter. The solid line represents thetruem∗(·), while
the dots represent the mean of the estimate for different sets of data at the sampled points,
which almost coincide with the solid line. The dashed line represents for 95% pointwise
confidence interval of the estimate.

Use Thresholding Minimize SURE

Median ofT̂ 5 11
25% quantile ofT̂ 3 9
75% quantile ofT̂ 7 19

Mean of ISE 0.00291291034 0.00236654928
SD of ISE 0.00164455304 0.00131312311

Table 6: Using Hermite polynomial estimate to approximate anon-polynomial function
in the nonlinear part in a Hammerstein system, withâk calculated by (60), and length of
training data equal to5000.

Comparing this result with the previous experiment, it clearly demonstrates that for the

same system and same input, the optimal truncation parameter increases as the length of

data set increases.

4.8.3 Testing the Polynomial Hypothesis of the Nonlinear Characteristics

In this section, simulations are conducted to test whether the nonlinear function in a Ham-

merstein model belongs to a polynomial parametric class. Hammerstein system with true

polynomial nonlinear structures and non-polynomial (Inverse tangent) nonlinear structures

are compared. A FIR(3) linear part is assumed to be known, anda medium level noise is

present, while the SNR for the system is10dB.
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Experiment 1 Suppose we observe data sets from the following two systems with non-

linear functionm∗
1(·) andm∗

2(·):

• InputU ∼ N(0, 1).

• Linear part of the system is characterized by FIR(3):Λ = [1,−0.8, 0.6,−0.4],

whereas the same identification method also applies to IIR subsystems (e.g. ARMA

models).

• m∗
1(u) = h1(u) + h2(u) + h3(u) ≃ 0.482u3 + 0.707u2 − 0.225u− 0.707.

• m∗
2(u) = arctan(u).

• ε1,n ∼ i.i.d.N(0, 0.648), ε2,n ∼ i.i.d.N(0, 0.097). The amplitude of noise here

corresponds to a10 dB signal-to-noise ratio in each of the two systems respectively.

• Length of data observed:N = 5000.

• Obtain Hermite coefficientŝak. Use (62) to estimatev̂ar(âk).

• Test the hypothesisH0: m∗
j(·) is polynomial of order less thanp. j = 1, 2, p =

1, 2, · · · , 20. Use Neyman Test described in Section4.5 with b = 10. Obtain the

P-Value of the test corresponding to testing of each data set.

• Repeat this forL = 100 times. Show the boxplot of P-Value corresponding to dif-

ferent value ofp in each data set among theL repetitions. Also obtain the empirical

probability of rejectingH0 at significance levelα = 0.05 based on theseL trials.

With âk calculated by (47), the result is shown in Fig.42.

If the âk is calculated by weighted Monte Carlo (60), the result is shown in Fig.43.

It is not surprising to observe testing “m∗
1(·) is polynomial and its order is less than

p = 1 (or 2, 3)” is always rejected. Forp ≥ 4, the tests form∗
1(·) usually have large

P-Value, which means not rejectingH0. Compare Fig.42 with Fig. 43, definitely using

weighted Monte Carlo would increase the accuracy of testing, since the probability that not
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Figure 42: Plot of Neyman test result whenâk is obtained by (47) in Example 1, Section
4.8.3. The two columns correspond to testing the two systemsm∗

1(·) (true polynomial)
andm∗

2(·) (inverse tangent). The two rows show the boxplot of the P-Value corresponds to
testing hypothesis of different orders, as well as the empirical probability of rejecting null
hypothesis based on theL trials.

Figure 43: Plot of hypothesis testing result whenâk is estimated by (60) in Example 1, Sec-
tion 4.8.3. The two columns correspond to testing the two systemsm∗

1(·) (true polynomial)
andm∗

2(·) (inverse tangent). The two rows show the boxplot of the P-Value corresponds to
testing hypothesis of different orders, as well as the empirical probability of rejecting null
hypothesis based on theL trials.
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rejectingH0 for p ≥ 4 in testingm∗
1(·) is larger. Thus Neyman test usually showsm∗

1(·)

can be viewed as a polynomial of order3.

It is noticeable that it failed to correctly test the system with m∗
2(·) nonlinearity for

p ≥ 4. The plot shows that the test could not reject the hypothesisthatm∗
2(·) is polynomial

of order less thanpwhenp ≥ 4. This is due to the fact that the true Hermite polynomial co-

efficientsa∗2;k = form∗
2(·) is small for higher orders, i.e:a∗2;1 = 0.65568,a∗2;3 = −0.127112,

a∗2;5 = 0.0508282, a∗2;7 = −0.0258004, a∗2;9 = 0.0148394, a∗2;11 = −0.00923285, a∗2;13 =

0.00606755, a∗2;15 = −0.00415276, ..., anda∗2;k = 0, for k = 0, 2, 4 · · · . Identifying the

nonzero existence of higher order coefficients through testing would be possible only if

var(âk) is small for allk. In the next experiment a larger data set is used, and it showsthe

validity of testing higher order polynomial orders.

Experiment 2 The experiment is the same from last one except a much bigger size of

data set is used:

• N = 100000.

Using âk calculated by (47) and by (60) will lead to the result in Fig.44 and Fig. 45

respectively.

With a large training set, testing larger order hypothesis of m∗
2(·) becomes possible.

“m∗
2(·) is polynomial and its order is less thanp” can be always rejected forp up to9 or 10.

It can be concluded that with large enough data, testing the polynomial order hypothesis of

any nonlinear system within a Hammerstein system can be examined in the same way.

Besides, comparing Fig.42with Fig. 43, and comparing Fig.44with Fig. 45, it shows

using weighted Monte Carlo (60) to estimatêak will lead to a higher correct rate in testing

m∗
1(·).

4.9 Conclusions and Future Work

In Section4, Hermite polynomial series estimate in SISO Hammerstein system identifica-

tion is examined. Simulation shows with large training dataset, the parametric assumption
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Figure 44: Plot of Neyman test result witĥak calculated by (47) in Example 2, Section
4.8.3. The two columns correspond to testing the two systemsm∗

1(·) (true polynomial)
andm∗

2(·) (inverse tangent). The two rows show the boxplot of the P-Value corresponds to
testing hypothesis of different orders, as well as the empirical probability of rejecting null
hypothesis based on theL trials.

Figure 45: Plot of Neyman test result witĥak calculated by (60) in Example 2, Section
4.8.3. The two columns correspond to testing the two systemsm∗

1(·) (true polynomial)
andm∗

2(·) (inverse tangent). The two rows show the boxplot of the P-Value corresponds to
testing hypothesis of different orders, as well as the empirical probability of rejecting null
hypothesis based on theL trials.
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of any orders for the nonlinear characteristics can be correctly tested with high probability.

The power of this test, will be future work in this research. Again, similar techniques can

also be applied to test other parametric assumptions for thenonlinear subsystem. Besides,

orthogonal series analysis with coefficient shrinkage method, or with truncation parameter

selection method in system identification are also examined.

It is worth mentioning that the methods used in Section4 can also be extended to MISO

systems. Hence, the coefficients shrinkage method can eliminate redundant coefficients for

MISO system estimation, yielding, therefore, higher accuracy and overcome the curse of

dimensionality.
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5 Lasso Regression for Transient Stability Analysis

The previous sections have been focused on some theoreticalissues about system modeling.

In the following section, we are going to examine a system modeling problem in the context

of transient stability applications.

5.1 Introduction to Transient Stability Analysis Using Lasso Regres-

sion

The concept of power system security is an indication of the power systems in the presence

of disturbance. It is a time-varying property, and relevantresearch can be divided into

several different fields. See Fig.46 [34].

Figure 46: Classification of power system stability.

Transient stability is the ability of a power system to return to its normal operating

condition when disturbances occur due to a fault in the system such as loss of a large load

or loss of a generator. It is a reflection of the capability of the power system to absorb kinetic

energy due to the transient disturbance. The transient stability behavior of a power system,

in general, is determined by the steady state before disturbance, the nature of the fault,

and the post-contingency structure of the power system. Hence, for a certain contingency
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in a given power system, transient stability is characterized only by the pre-contingency

conditions.

The transient stability index (TSI), therefore, is only a function of initial operating point,

given that a certain fault is being examined. i.e., TSI= fTSI(x), wherex = (x1, · · · , xp)

is a random variable describing the pre-contingency state.In our studies, the fault critical

clearing time (CCT) is used to represent the TSI. The transient stable region is characterized

by TSI ≥ TSI0, where TSI0 is the threshold value. The boundary region{x : fTSI(x) =

TSI0} is called the transient stability boundary (TSB), and it defines the boundary between

secure and insecure regions of the initial state for power operating.

For a given initial state, the post-contingency transient stability behavior after a cer-

tain fault can be determined by solving a large number of coupled nonlinear differential

and algebraic equations (DAE). Time-domain simulations for transient stability can be per-

formed in such way to obtain the TSB. Meanwhile an alternative approach is to implement

regression or pattern classification techniques. Comparing with time-domain simulation,

regression/pattern classification methods has naturally its advantage in respect of speed,

and is easily applicable in real scenarios when immediate decisions are necessary.

Among the existing literatures on regression analysis approach to the problem of tran-

sient stability, the Ridge Regression strategy has been proposed. This method offers some

advantage over ordinary least squares in terms of lower prediction error. Nevertheless. the

Ridge Regression algorithm is not able to eliminate redundant parameters, and as a result

suffers the curse of dimensionality.

In this section we examine a modern regression technique forthe transient stability

problem that utilizes thel1 penalty and is able to simultaneously estimate parameters of the

models and eliminate redundant residuals. This algorithm is often referred to as the Lasso

(Least Absolute Shrinkage and Selection Operator) method and is based on the concept

of minimizing the predictive least square error with constraint to the weights penalized

in l1 norm [35] rather thanl2 norm in the Ridge Regression case. The Lasso method

can eliminate or downweight input variables which are of only minor influence on the
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prediction error. The essential parameters of the model areestimated with the optimal

parameteric accuracy. Thus by eliminating unnecessary input variables the Lasso algorithm

can also achieve feature selection at the same time, thus provide important information

about the mechanisms of the power system.

In the field of transient stability, previous works have beenutilizing Ridge Regression,

Kernel Ridge Regression methods, Support Vector Machines [34], [36], [37]. It is shown

in this thesis that using Lasso regression achieves much favorable prediction in terms of

the prediction error and moreover the capacity to simultaneously eliminate the majority of

unnecessary features [35], [38].

5.2 Lasso Regression

5.2.1 From Ridge Regression to Lasso Regression

Transient stability data is usually high dimensional sincemeasurement is taken from a large

number of ports in the power system. Generally we are given data set of the form

(
X1, Y1

)
, ...,

(
Xn, Yn

)
,

with p-dimensional observationsXi =
(
X

(1)
i , · · · , X(p)

i

)T
and1-dimensional responseYi.

We wish to determine the new response when a new observation is given.

If we assume linear relationship between the response variableY and the explanatory

variableX(j)s, then we have the linear regression model:

Yi =
p∑

j=1

βjX
(j)
i + εi (i = 1, · · · , n), (64)

whereεi is the i.i.d noise with zero mean and independent of{Xi}, andβ =
(
β1, · · · , βp

)

is the vector of unknown parameters. The linear regression model is important because

many other forms of regression (This includes, e.g., generalized linear methods) can be

derived from the formula of linear regression.
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Linear regression is also sometimes expressed in the matrixform:

Y = Xβ + ε, (65)

with design matrixXn×p =
[
X1, · · · ,Xn

]T
, response vectorYn×1 =

[
Y1, · · · , Yn

]T
, pa-

rameter vectorβp×1 =
[
β1, · · · , βp

]T
and error vectorεn×1 =

[
ε1, · · · , εn

]T
.

The explanatory variablesX and the response variableY are used after initial prepro-

cessing so that they are with zero mean and standard deviation equal to one.

The classical way to estimate the model parametersβ is to apply the least squares

strategy, i.e., to minimize
1

n
||Y −Xβ||22 (66)

This yields the well known least square solutionβ̂LS =
(
XTX

)−1(
XTY

)
.

The problem with the least square solution is its lack of stability, i.e., a small perturba-

tion on data may yield a large variation on the model.

To address this issue of lack of stability, a Ridge Regression is based on the minimiza-

tion of least squares withl2 constraint to the weights:

||Y −Xβ||22/n+ λ||β||22.

The solution to the Ridge Regressionβ̂Ridge is the minimizer of the above criterion.

β̂Ridge(λ) = arg min
β

(
||Y − Xβ||22/n+ λ||β||22

)
(67)

The required minimization problem can also be written in thefollowing equivalent primal

form:

β̂Ridge;primal(s) = arg min
β;||β||2≤s

(
||Y − Xβ||22/n

)
.

Different from the Ridge Regression, Lasso regression usesthe constraint in the form of
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thel1 penalty:

β̂Lasso(λ) = arg min
β

(
||Y − Xβ||22/n+ λ||β||1

)
. (68)

The equivalent primal form of the minimization is the following:

β̂Lasso;primal(s) = arg min
β;||β||1≤s

(
||Y −Xβ||22/n

)
.

The comparison between Ridge Regression and Lasso regression can be illustrated by the

contour lines of the sum of squares||Y − XTX||22, shown in Fig.5.2.1.

Figure 47: Contour lines of the sum of squares of regression.Left: Lasso method. Right:
Ridge method.

In Fig. 5.2.1, the shaded area corresponds to the constraints imposed on the weights.

Thel1 constraint corresponds to the square shape, therefore minimum sum of squares could

happen at the corner which means one observation feature is to be set with zero weight. On

the other hand the minimum sum of squares never happen at suchcorner places in case of

thel2 constraint which corresponds to Ridge Regression. This illustrate how Lasso method

can achieve feature selection during the estimation process.

In order to achieve the required optimal variable selectionand parameter estimation,

one needs to select the regularization parameterλ. The penalty parameterλ determines

the number of nonzero weights in the final solution of the regression problem. Standard

approaches to specifyλ are based on some versions of Cross-Validation re-samplingtech-

niques. With the selected regularization parameterλ, the weights are calculated through
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certain algorithms, i.e. Shooting algorithm for Lasso (Seesection5.2.3).

5.2.2 The Adaptive Lasso

For regression problems with high-dimensional data observations, the previously intro-

duced Lasso method may not be enough to eliminate all the un-useful features. In order to

eliminate more explanatory variables with less influence tothe model, one might need to

use the so-called “adaptive Lasso” [39], which is a re-weighted version of Lasso:

β̂adapt(λ) = arg min
β

(
||Y − Xβ||22/n+ λ

p∑

j=1

βj

β̂init,j

)
(69)

whereβ̂init is an initial estimator for the weights, and it also has to qualify:

β̂init,j = 0 ⇒ β̂adapt,j = 0

The essence of the above adaptive Lasso approach is that greater penalty is assigned to the

features with smaller weights in the first step.

Similarly, multi-step Lasso adaptive (MSA-Lasso) regression can be performed. This

would eliminate further more features compared with Lasso regression or the two-step

adaptive Lasso regression.

5.2.3 Shooting Algorithm for Lasso

In calculating the Lasso regression, one algorithm is the coordinate descent minimization.

First, denote the criterion function by:

Qλ(β) =
(
||Y −Xβ||22/n + λ||β||1

)
.

The gradient of||Y − Xβ||22/n is :

Gj(β) = −2XT
j (Y −Xβ)/n.
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1. Set m=0. Letβ(0) ∈ Rp be an initial parameter estimate.

2. repeat

• m = m+ 1;

• For j = 1, · · · , p:

β
(m)
j =

sign(Zj)(|Zj| − λ
2
)+

Σ̂jj

,

Zj = XT
j (Y − Xβ−j)/n, Σ̂ = n−1XTX.

3. until numerical convergence.

5.3 Generation of Transient Stability Data

The power system where regression estimate is performed is amedium scale real power

system with 470 buses, as is shown in Fig.5.3. It consists 470 buses, 45 generating

units, 214 loads and 482 transmission lines, 152 fixed shunts, and 374 adjustable trans-

formers [34]. All 45 generators are modeled with a 5th order generator modeled while the

excitation systems of most generators are model with terminal voltage transducers, volt-

age regulators, exciters, and power system stabilizers. The original 470 Bus System was

lightly loaded so that the system was very stable. In order tostudy the 470 Bus System

under heavy load and generation conditions, a new base case was generated by increasing

load and generation levels. The contingency is due to a 3-phase fault near bus 1007 on

line 1007-1028 for 8 cycles and then the fault is cleared by opening line 1007-1028. This

contingency is an example showing a case that the instability of the system is due to the

swing of one generator against the rest of the system. Therefore for this contingency, the

stability boundary is at 8 cycles. This study examines the cases that a perturbation of±15%

and±25% for active and reactive power happens, and in these cases theperturbation for

generator reference voltage setting is±2%.

Measurements are taken at the 470 buses. Therefore the observations are 939-dimensional,

where 470 of them correspond to voltages and 469 of them are measurement of angles. The
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Figure 48: Single Line Diagram of Generators and 345 kV Network of 470 bus system.
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per unit voltage vales and angles in radians are used to represent the input variable spaces.

For each of the observationXi, Critical Clearing Time (CCT) is simulated as the response

Yi to thei− th observation dataXi. Here the CCT is used as a transient stability index.

In each cases, a training set of sizel = 800 is examined. Independent data sets are

used to evaluate the prediction errors. Data{(X1, Y1), ..., (Xn, Yn)} are first normalized so

that the observations as the responses would have zero mean and unit standard deviation.

Denote the normalized data set by{(X∗
1, Y

∗
1 ), ..., (X∗

n, Y
∗
n )}. Prediction errors are obtained

in the form of mean square error for normalized responses:

MSE(normalized)=

√√√√1

l′

l′∑

i=1

(Y ∗
i − Ŷ ∗

i )2,

whereY ∗
i is the normalized observation and̂Y ∗

i is the predicted value, andl′ is the length

of the testing set which is independent from the training data set.

We also evaluate the root-mean-square-error(RMSE) for theoriginal response:

RMSE=

√√√√1

l′

l′∑

i=1

(Yi − Ŷi)2,

which exhibits actual physical meanings for application purpose. The unit of this error is

“cycles”.

Since we know the fault clearing time is 8 cycles in these simulations, the observed

CCT can determine whether the initial contingency would lead to stable or unstable oper-

ating point. Therefore given a certain contingency, it is our interest to predict whether a

certain pre-contingency state characterized by the 939-dimensional observation will lead to

“stable” or “unstable” operating point. Thus we also use thefollowing indices to evaluate

the performance of the regression analysis:

• FA =
∑

(False Alarms)
l′

A False Alarm occurs when an stable operating point (An pre-contingency operat-

ing point that leads to a transiently stable power system when subjected to a given

89



contingency) is classified as unstable.

• FD =
∑

(False Dismissals)
l′

A False Dismissal occurs when a stable operating point (An pre-contingency operat-

ing point that leads to a transiently unstable power system when subjected to a given

contingency) is classified as stable.

• FC =
∑

(False Alarms+False Dismissals)
l′

False Classification occurs when an unstable operating pintis classified as stable or

stable operating point is classified as unstable.

• FD Range

A False Dismissal means an unstable case is dismissed as stable. The CCT for the

cases that lie on the boundary is equal to the actual fault clearing time. The CCT of

the most unstable case dismissed as stable gives an indication of how close the FD

cases are to the boundary. The FD range expresses the distance from the worst FD to

the transient stability boundary.

• FA Range

A False Alarm means that a stable case is dismissed as unstable. The CCT of the

most stable case dismissed as unstable gives an indication of how close the FA cases

are to the boundary. The FA range expresses the distance fromthe worst FA to the

transient stability boundary.

5.4 Regression Analysis for 25% Perturbation Data

As described in the last section, the data set is:

• DimensionP = 939

• Training set size:l = 800
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Prior to applying Lasso regression to the linear model, dataneed to be normalized in

order to make sure each feature corresponds to observation values with mean zero and unit

standard deviation. The regularization parameterλ plays a decisive role in the accuracy

and final number of selected features. From (68), by intuition bigger value ofλ would set

more features to zero weights. The selection of regularization parameterλ requires certain

kind of re-sampling techniques. Due to the consideration for computational complexity,

them-fold Cross-Validation could be suitable for such purpose.

Shooting algorithm in Section5.2.3for calculating lasso suggests that, with a certain

selected regularization parameterλ, the computation complexity for calculating weights

for a set of data of lengthn is:

(L+ 2) ·O
(
nP 2

)
, (70)

whereP is the number of total features in the observation, or the dimension of one obser-

vation.L is the number of loops before the iteration stops.

The computation that takes most of the running time is the Cross-Validation that choose

the optimal regularization parameterλ. In order to find optimalλ, suppose we need to

compare the performance ofNλ candidate values ofλ on average. For them-fold Cross-

Validation, we do calculations on a data set of approximately size m−1
m

· n for m times.

Suppose the “shooting algorithm” loop is to runT1 times before it stops. Then the compu-

tational complexity is:

m · (T1 + 2) ·Nλ ·O
(
(
m− 1

m
· n) · P 2

)
.

That is:

(m− 1)(T1 + 2)Nλ ·O
(
nP 2

)
. (71)

Once the regularization parameterλ has been selected, the regression complexity for

calculating the coefficients is only:

(T2 + 2) ·O
(
nP 2

)
, (72)
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whereT2 is the number of running loops for “shooting algorithm” calculation. This is

usually different fromT1, since calculating regression requires iterative optimization in

“shooting algorithm” to be precisely converging, while this is not necessary for selecting

optimal regularization parameter. On the other hand, usinga large valueT1 may not be

possible due to computational considerations.

In the following Section5.4.1and Section5.4.2, Lasso regression are going to be con-

ducted for linear models. Section5.4.3will conduct regression on the same data by Ridge

Regression method, and the result will be used as a comparison for Lasso regression. Sec-

tion 5.4.4will show Lasso regression on extended models which includesome reflection

of quadratic relationships, and Section5.4.5will perform Kernel Ridge Regression, which

is also a Ridge version of regression for higher-order model, and the result will also be

compared with Lasso. Note that5.4.1, Section5.4.2, Section5.4.4have been using very

parsimonious parameters (m, T1, T2). This is from the prospective of saving computational

time. In Section5.4.6and Section5.4.7, the role of these parameters is going to be dis-

cussed. Section5.4.8 (and its quadratic extended models in Section5.4.8) will give an

example about Lasso regression under other parameter set-ups when more computational

time is allowed. In the end, if Lasso regression under different parameter set-up can be

compared, the best possible linear regression result will be shown in Section5.4.9, and

Section5.4.9is about the Lasso regression on its extended quadratic model.

In Section5.4.7, it will be demonstrated by changing different fold of Cross-Validation

in selecting regularization parameter in Ridge Regression, the prediction errors vary very

little. Therefore the MSE for Ridge Regression shown in Section 5.4.3and the MSE for

Kernel Ridge Regression shown in Section5.4.5will be used as reference for comparison

in Lasso regression of different set-ups.

5.4.1 Lasso Regression Analysis, Using 3-fold CV for Parameter Selection

According to (71), the fold of Cross-Validation is important for running time considera-

tions. Here we use3-fold Cross-Validation, and denote the selectedλ by λCV . For the
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iteration times in the “shooting algorithm”, we useT1 = 2000 andT2 = 15000.

The mean square residual (MSR) for the constrained fit with constraintλ, and the

nonzero weights number vsλ are shown in the Fig.49. Note thatλCV is emphasized

asλ∗ in the figure.

(a) (b)

Figure 49: (a) Mean square residual (MSR) vsλ, (b) Number of selected features vsλ.

MSR is minimum (0.0627) whenλ = 0.0152 and the result implies that 99 of the total

939 features are with nonzero weights. Then we useλ(1) = λ∗CV = 0.0152 to calculate the

lasso regression weights for the whole training data set. Denote the estimated weights in

this step bŷβ(1). The superscript here denotes it is the estimate in first-step Lasso. Then we

find that the number of nonzero weights is 81. After applying linear model with weights

β̂(1) to the testing set and get{Ŷ (1)
j , j = 1, · · · , 399}, we calculate the prediction error

by MSE = 1
l′

∑l′

j=1 (Yj − Ŷ
(1)
j )2, wherel′ = 399 is the length of testing set. The result is

0.0735.

5.4.2 Multi-Step Lasso Regression

If we apply multi-step Lasso regression after getting the result in Section5.4.1, we can get

similar results after each step. It is shown in Table7. Note that “# F” denote the number of

non-zeros weights, which is also the selected features.

From here we come to the conclusion that by assuming linear model using the afore-

mentioned procedure, the best achievable prediction erroris 0.07082070 with the weights
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stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.01519734 0.062739820.07349168 0.86541573 81
2 0.00016132 0.054423730.07127725 0.85227782 53
3 0.00014077 0.053093220.07101012 0.85067927 45
4 0.00007339 0.052663910.07111103 0.85128347 43
5 0.00011722 0.052622310.07091939 0.85013561 43
6 0.00012935 0.052602510.07082070 0.84954386 43

Table 7: Multi-step Lasso regression for 25% disturbance data. 3-fold CV used in selecting
regularization parameter,T1 = 2000 andT2 = 15000.

obtained by Lasso regression method. Only 43 features are useful for the model.

As described in Section5.3, the regression technique can be used for classification

applications. The performance of Multi-step Lasso regression for classification of 25%

disturbance data corresponding to the previous set-up is shown in Table8.

It takes about1.2 hours for a2.30GHz computer to run the aforementioned regression.

Computation time of Lasso regression with other selection of (m,T1) can be calculated

based on this result and (71).

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0.25% 4.76% 5.01% 7.188 - 8.000 8.000 - 8.929
2 0.25% 5.01% 5.23% 7.188 - 8.000 8.000 - 8.929
3 0.25% 5.51% 5.76% 7.188 - 8.000 8.000 - 8.929
4 0 5.01% 5.01% 8.000 - 8.000 8.000 - 8.929
5 0 5.01% 5.01% 8.000 - 8.000 8.000 - 8.929
6 0 5.26% 5.26% 8.000 - 8.000 8.000 - 8.929

Table 8: Classification indices for applying Multi-step Lasso regression for 25% dis-
turbance data. 3-fold CV used in selecting regularization parameter,T1 = 2000 and
T2 = 15000.

5.4.3 Lasso Algorithm and Ridge Regression: Comparison Studies

Using the same training and testing sets of data, the previous Lasso regression performance

is going to be compared with the Ridge Regression technique described by (67). Suppose

we also use 3-fold Cross-Validation to select the regularization parameter in (67).

So the optimalλ for Ridge Regression is 3.7501. Denote this value byλRidge,CV . By
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Figure 50: Mean square residual (MSR) vsλ in Cross-Validation by Ridge Regression.

using this regularization parameter and the whole trainingset, we calculate the weights

using Ridge Regression. Then we use the testing set to evaluate the error. The mean square

error of prediction corresponds to Ridge Regression is 0.0902079. The performance for

regression as well as pattern classification is shown in Table9 and Table10.

Ridge λRidge,CV MSR MSE RMSE(cycles) # F

3.75008570 0.094565010.0902079 0.95879995 939

Table 9: Ridge Regression for 25% disturbance data. 3-fold CV used in selecting regular-
ization parameter.

Ridge FD FA FC FD range (cycles) FA range (cycles)

0 4.26% 4.26% 8.000 - 8.000 8.000 - 9.772

Table 10: Classification indices for applying Ridge Regression. 3-fold CV used in selecting
regularization parameter.

Comparing this result with the Lasso regression method, we notice that Lasso regres-

sion for all steps would achieve considerably smaller prediction mean square error, i.e.

6-th step Lasso leads to MSE22.49% smaller than that of Ridge, or equivalently, RMSE

12.40% smaller. Also Lasso regression can automatically select asfew as 43 features out

of the 939, while Ridge Regression will lead to all weights tobe nonzero, whether useful

or not. The weights calculated by Lasso are shown in Fig.51, aside with those calculated

by Ridge method.

Ridge Regression shows smaller false alarm rates. But the False alarm range is much
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(a) (b) (c) (d)

Figure 51: The weights determined by regression for 25% disturbance data. (a) One-step
Lasso, (b) Two-step Lasso, (c) Six-step Lasso, (d) Ridge Regression.

bigger than Lasso regression with the aforementioned parameter setup.

It makes sense to compare the previous Lasso regression and Ridge Regression results

since both of them are applied to linear models, both of them are based on minimization

of mean square error with constraints on weights. In the following sections, models are

extended to incorporate quadratic relations between the features. And Lasso regression on

this extended model is going to be compared with Kernel RidgeRegression, which is an

extension of Ridge Regression for higher-dimensional relationships.

5.4.4 Lasso Regression for Quadratic models

If we extend the linear model into quadratic model, that is, we assume the quadratic rela-

tionship between the observations and response, then the model is:

Y∗ = X̃∗β̃ + ε, (73)

whereY∗
n×1 =

[
Y ∗

1 , · · · , Y ∗
n

]T
, X̃∗

n×(p+3)p/2 =
[
X̃∗

1, · · · , X̃∗
n

]T
,

X̃∗
i = [X

∗(1)
i ,X

∗(2)
i , · · · ,X∗(p)

i ,X
∗(1)
i X

∗(2)
i ,X

∗(1)
i X

∗(3)
i , · · · ,X∗(p−1)

i X
∗(p)
i ] ,

β̃(p+3)p/2×1 =
[
β̃1, · · · , β̃(p+3)p/2

]T
, εn×1 =

[
ε1, · · · , εn

]T
.

We can extend the data into quadratic forms to apply Lasso regression. But this means
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expanding 939 features in the linear model into 442269 covariates. According to (71), the

complexity for computation would be(442269/939)2 = 221841 times of the linear model,

even without considering the necessity of using largerT1 andT2. Therefore it is too difficult

for numerical analysis.

In order to solve this issue, we can try to approximate the model by expanding from

the selected features. In the following part, Lasso regression will be applied to the models

extended from the selected features of 2nd-step and 4th-step results shown in Table7.

Lasso regression for quadratic model extended from 43 features From the selected

features in 4-th step Lasso regression shown in Fig.7, we can get43 + 42 + · · ·+ 1 = 946

quadratic-term features. Together with the original 43 linear-term features, we form a

model of 989 covariates. After applying normalization to each covariates, we conduct

Lasso regression analysis on the new model. The settings in regression are selected as the

following:

• Use 3-fold Cross-Validation to select optimal regularization parameterλ,

• T1 = 2000,

• T2 = 15000.

The result calculated by multi-step Lasso algorithm is shown in Table11and Table12.

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00264484 0.044551950.05262265 0.73230509 88
2 9.3502e-05 0.030153550.04982496 0.71257272 54
3 2.8959e-05 0.028947410.05016505 0.71500049 51
4 9.8804e-06 0.028878650.05034889 0.71630943 51
5 1.0210e-05 0.028877020.05035593 0.71635947 51
6 1.0210e-05 0.028876890.05035731 0.71636934 51

Table 11: Multi-step Lasso regression for 25% disturbance data with 989 extended features.
3-fold CV used in selecting regularization parameter,T1 = 2000 andT2 = 15000.

So here we achieve better result than Lasso regression for the linear model. Finally, the

51 extended features are selected. By further checking these51 extended features, we find
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stepk FD FA FC FD range (cycles) FA range (cycles)

1 0 1.75% 1.75% 8.000 - 8.000 8.000 - 8.823
2 1.00% 1.25% 2.26% 7.768 - 8.000 8.000 - 9.772
3 1.00% 1.25% 2.26% 7.768 - 8.000 8.000 - 9.772
4 1.00% 1.25% 2.26% 7.768 - 8.000 8.000 - 9.772
5 1.00% 1.25% 2.26% 7.768 - 8.000 8.000 - 9.772
6 1.00% 1.25% 2.26% 7.768 - 8.000 8.000 - 9.772

Table 12: Classification indices for applying Multi-step Lasso regression for 25% distur-
bance data with 989 extended features. 3-fold CV used in selecting regularization parame-
ter,T1 = 2000 andT2 = 15000.

that among them,50 are quadratic terms from42 of the original linear features, and the

other one is an linear feature. Overall,42 features from the linear model have contributed

to these selected51 extended features. Here MSE is0.05035731, which is equal to55.80%

of the Ridge Regression MSE in Section5.4.3, or 62.14% of the Kernel Ridge Regression

MSE, see Section5.4.5.

Lasso regression for quadratic model extended from 53 features If we do feature

expansion from the 53 features selected by the 2-step linearLasso regression, and perform

similar techniques, we can get the following results. Note that the total number of extended

features in this case is1484, and the settings for Lasso regression is similar to the last

section:

• Use 3-fold Cross-Validation to select optimal regularization parameterλ,

• T1 = 2000,

• T2 = 15000.

Therefore we finally select 38 features from the 1484 quadratic features. All these38

extended features are quadratic relationship between33 of the original linear features. The

MSE corresponds here is equal to51.73% of the linear Ridge Regression MSE in Section

5.4.3, or 57.63% of the Kernel Ridge Regression MSE (See section5.4.5).
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stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00147384 0.039621290.04816466 0.70059970 202
2 0.00041776 0.034973790.04710221 0.69282948 47
3 0.00015036 0.028920030.04749144 0.69568621 39
4 5.4202e-05 0.028771590.04696164 0.69179487 38
5 7.8577e-05 0.028814230.04671763 0.68999528 38
6 2.5137e-05 0.028823140.04669970 0.68986284 38

Table 13: Multi-step Lasso regression for extended model of25% disturbance data with
1484 features. 3-fold CV used in selecting regularization parameter,T1 = 2000 andT2 =
15000.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0.50% 1.00% 1.50% 7.716 - 8.000 8.000 - 8.718
2 0.50% 1.50% 2.01% 7.716 - 8.000 8.000 - 8.981
3 0.75% 1.00% 1.75% 7.716 - 8.000 8.000 - 9.772
4 0.75% 1.25% 2.01% 7.716 - 8.000 8.000 - 9.772
5 1.00% 1.25% 2.26% 7.188 - 8.000 8.000 - 9.772
6 1.00% 1.25% 2.26% 7.188 - 8.000 8.000 - 9.772

Table 14: Classification indices for applying Multi-step Lasso regression for 25% distur-
bance data with 1484 extended features. 3-fold CV used in selecting regularization param-
eter,T1 = 2000 andT2 = 15000.

5.4.5 Lasso and Kernel Ridge Regression: Comparison Studies

Kernel Ridge Regression is an extension from linear Ridge Regression. It is based on the

following extension of the model:

y =
n∑

i=1

αiK(xi, x) (74)

whereK(·, ·) is a kernel function which satisfies the so-called “Mercer’sTheorem”.

Therefore kernel regression can reflect higher order relationship between features.

It can be shown that the solution to kernel regression can be expressed as:

α̂i = (K + nλI)−1y, (75)

whereK is an × n matrix with (i, j) element equal toK(xi, xj), λ is the regularization
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parameter (similar to that in the linear Ridge Regression),andI is an× n identity matrix.

Here we use the polynomial kernelK(a,b) = (q + aT b)p here. We first examine the

p = 2 case, which corresponds to the quadratic relationship between the features. (p=1

would be quadrivalent to linear Ridge Regression, which hasbenn already examined in

the previous sections.) Again, we use the same training and testing data set, and 3-fold

Cross-Validation is used to choose the optimal parameterq andλ.

We first choose different value for constant termq, and then plot the regression mean

squares vsλ. The following figure is an illustration of the relationshipbetween the mean

square residual (MSR) and the regularization parameterλ when different value ofq is

adopted.

(a) (b) (c)

Figure 52: Regression sum of squares (MSR) vs regularization parameterλ under different
value ofq in Kernel Ridge Regression of order 2. (a)q = 1 × 105, (b) q = 3.16 × 105, (c)
q = 1 × 106.

The regression sum of squares (MSR) is a function of bothq andλ in this case. We find

that MSR is minimized when(q, λ) = (316228, 3225). Then we fixλ = 3225 value and

plot MSR vsq in Fig. 53as an illustration of MSR changing withq.

Using (q, λ) = (316228, 3225), we find the prediction error is0.0851 for the Kernel

Ridge Regression using polynomial kernel of order 2.

We notice that the Kernel Ridge Regression result is improved from the linear Ridge

Regression. But still its MSE is significantly larger than the Lasso regression counterpart.

If we apply the same procedure using polynomial kernel of higher orders (p ≥ 3), the

result are shown in Table33and Table16.
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Figure 53: Regression sum of squares (MSR) vs parameterq whenλ = 3225.

orderp q
(p)
3CV λ

(p)
3CV MSR MSE RMSE(cycles) # F

2 316228 3224.9 0.087951470.08513388 0.93144437 939
3 9474635 1612079.2 0.102644720.08146376 0.91114595 939
4 14330126 5.06 × 1011 0.10262463 0.08131985 0.91034078 939
5 18938420 0.01 0.102608550.08119592 0.92983016 939
6 23713737 0.01 0.102598890.08114725 0.91993648 939
...

...
...

...
...

...
...

12 52329912 0.01 0.102577930.08104084 0.90877776 939

Table 15: Kernel Ridge Regression of different orders for 25% disturbance data. 3-fold CV
used in selecting regularization parameter.

stepk FD FA FC FD range (cycles) FA range (cycles)

2 0.25% 3.76% 4.01% 7.188 - 8.000 8.000 - 9.192
3 0.75% 2.26% 3.01% 7.716 - 8.000 8.000 - 9.087
4 0.75% 2.26% 3.01% 7.716 - 8.000 8.000 - 9.772
5 0.25% 3.51% 2.76% 7.188 - 8.000 8.000 - 9.192
6 0.25% 4.01% 4.26% 7.188 - 8.000 8.000 - 9.772
...

...
...

...
...

...
12 0.75% 2.26% 3.01% 7.716 - 8.000 8.000 - 9.087

Table 16: Classification indices for applying Kernel Ridge Regression of different orders
for 25% disturbance data. 3-fold CV used in selecting regularization parameter.

5.4.6 Selection of the Loop Parameter

As mentioned in the beginning of Section5.2.3, the iteration times for minimization in the

“shooting algorithm for Lasso” can have influence for the final regression result. Therefore

they need to be practically taken into consideration. Once the regularization parameterλ

is determined,T2 will play a role of ensuring the convergence of the “shootingalgorithm
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for Lasso”. Numerical solution forT2 might not be explicit. We conduct the following

experiment for the 25% disturbance data of size 800 as mentioned in the previous sections.

• Regularization parameterλ is selected by 3-fold Cross-Validation.T1=10000,

• With regard to first step Lasso regression, examine regression result while using dif-

ferent value ofT2.

The result is shown in Fig.54. We come to the conclusion that for this type of data with

dimension939, “shooting algorithm” should run more than around 11000 loops to get a

consistent prediction error, as well as an unchanged numberof selected features.

(a) (b)

Figure 54: (a). MSE vsT2, (b) Number of selected features vsT2.

Although at least 11000 runs must be allowed for “shooting algorithm” to calculate

precisely, optimization for selectingλ doesn’t necessarily need as much as this number.

This is due to the following reasons: Optimalλ could be found beforeT2 times of iteration.

Also, a smallerT1 might sometimes lead to better performance.

The following experiment is conducted:

• Regularization parameterλ is selected by 3-fold Cross-Validation.T2 = 15000.

Based on the previous discussion, this corresponds to largeenough iterations for the

“shooting algorithm” loop to converge.

• Examine the regression result while using different valuesof T1.
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The result is shown in Fig.55. We notice that after about11000 times of iteration in

(a) (b)

(c) (d)

(e) (f)

Figure 55: The influence of loop parameterT1. (a) Value of selectedλ(1)
3CV vs T1, (b)

Corresponding MSR vsT1, (c) MSE for the 1-st step Lasso vsT1, (d) Number of selected
features in the 1-st Lasso vsT1, (e) MSE for the 6-th step Lasso vsT1, (f) Number of
selected features in the 6-th step Lasso vsT1.

the “shooting algorithm” loop, the result will tend to be thesame, this re-confirms the

conclusion from Fig.54. However, using a smaller value forT1 also provides a relatively

good result in terms of regression error. It sometimes even lead to better results. In practice

it would be a matter of luck for the selection ofT1, we only know as long asT1 is greater

than about 2000, there is a great chance of regression error close to the level that using
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T1 > 11000. Besides, using a smaller value forT1 most of the time leads to smaller

number of selected features than usingT1 ≥ 11000, which is another desirable character

for regression analysis.

About the 1-st step Lasso regression, amongT1 ∈ {3000, 4000, 5000, · · · , 10000}. All

values ofT1 will lead to mean square error within 99.86% to 103.73% of theMSE that

T1 ≥ 110000 is used. And for the 6-th step Lasso regression result, we seethat forT1 ∈

[750, 11000], the majority ofT1 values lead to surprisingly smaller MSE than whenT1 ≥

110000 is used, i.e.T1 = 7000 has MSE that is 88.21% of the MSE thatT1 ≥ 110000 is

used.

5.4.7 Discussions about Re-sampling

We have performed Lasso regression on25% disturbance data when differentT1 and dif-

ferent fold of Cross-Validation are used. It seems that the5 − 10 fold of Cross-Validation

is usually better than3 or 4 fold of Cross-Validation. Most of linear Lasso regression

MSE using5 ≤ m ≤ 10 have regression MSE that is75% - 80% of the MSE using

m = 3, T1 = 2000, the most parsimonious set-up (See Section5.4.2). Under some other

set-ups, the performance of Lasso regression could lead to further smaller MSE, See Sec-

tion 5.4.9.

On the other hand, different fold of Cross-Validation doesn’t change the performance

of Ridge Regression very much. See Table17 and Table18. Therefore the Ridge Regres-

sion in Section5.4.3, and the Kernel Ridge Regression in Section5.4.5, can represent the

performance of the two algorithms in general.

5.4.8 Lasso Regression Analysis, 7-fold CV for Parameter Selection

Multi-Step Lass regression on linear model The aforementioned Lasso regression uses

3-fold of Cross-Validation. Here we examine another parameter set-up:

• Use 7-fold Cross-Validation to select regularization parameterλ,
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m -fold of CV λ(m) MSR MSE RMSE(cycles) # F

3 3.75008570 0.094565000.09020790 0.95879995 939
4 3.51406394 0.089039230.09022665 0.95889957 939
5 2.91280277 0.089971860.09038246 0.95972717 939
6 3.49257955 0.089010960.09022890 0.95891154 939
7 0.07459192 0.088231060.08775725 0.94568659 939
8 0.08380993 0.084418190.08798486 0.94691216 939
9 0.07269519 0.082888710.08771057 0.94543501 939
10 0.06630639 0.082725710.08757316 0.94469416 939

Table 17: Ridge Regression for 25% disturbance data. Different fold of Cross-Validation
re-sampling technique examined.

m -fold of CV FD FA FC FD range (cycles) FA range (cycles)

3 0.00% 4.26% 4.26% 8.000 - 8.000 8.000 - 9.772
4 0.00% 4.26% 4.26% 8.000 - 8.000 8.000 - 9.772
5 0.00% 4.51% 4.51% 8.000 - 8.000 8.000 - 9.772
6 0.00% 4.26% 4.26% 8.000 - 8.000 8.000 - 9.772
7 0.75% 1.75% 2.51% 7.716 - 8.000 8.000 - 9.192
8 0.75% 2.01% 2.76% 7.716 - 8.000 8.000 - 9.192
9 0.75% 1.75% 2.51% 7.716 - 8.000 8.000 - 9.192
10 0.75% 1.50% 2.26% 7.716 - 8.000 8.000 - 9.192

Table 18: Classification indices for applying Ridge Regression to 25% disturbance data.
Different fold of Cross-Validation re-sampling techniqueexamined.

• T1 = 10000,

• T2 = 15000.

According to (71) and Formula72, this set-up would take 15 times processing time as

the Lasso linear regression in Section5.4.1and Section5.4.2.

For the 1-st step Lasso regression, the mean square residual(MSR) for the constrained

fit with constraintλ, and the nonzero weights number vsλ are shown in the Fig.56. Note

that the optimalλ is emphasized as in the figure.

MSR is minimum (0.0589) whenλ = 0.00162. Then we useλ(1) = λ∗CV = 0.00162 to

calculate the Lasso regression weights for the whole training data set. Denote the estimated

weights in this step bŷβ(1). The superscript here denotes it is the estimate in first-step

Lasso. Then we find that the number of nonzero weights is 378. We apply the linear model
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(a) (b)

Figure 56: (a) Mean squre residual (MSR) vsλ, (b) Number of selected features vsλ.

with weights β̂(1) to the testing set and get{Ŷ (1)
j , j = 1, · · · , 399}. We calculate the

prediction error by MSE= 1
l′

∑l′

j=1 (Yj − Ŷ
(1)
j )2, wherel′ = 399 is the length of testing

set. The result is 0.066285.

Then by applying adaptive Lasso and multi-step Lasso regression based on this result,

we get results shown in Table19. Again, “# F” denotes the number of non-zeros weights,

which is also the selected features.

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00162370 0.058918370.06628522 0.82189068 378
2 0.00035988 0.037288630.05514453 0.74964724 79
3 7.77325e-9 0.0335196 0.05692402 0.76164657 79
4 0.00004713 0.033282810.05636768 0.75791551 74
5 0.00003339 0.033111140.05645032 0.75847090 73
6 1.55088e-8 0.033030290.05707699 0.76266927 73

Table 19: Multi-step Lasso regression for 25% disturbance data. 7-fold CV used in select-
ing regularization parameter,T1 = 10000 andT2 = 15000.

The best achievable prediction mean square error here is 0.05515. Only73−79 features

are useful for the model compared with the total 939 featuresin the model. Note that this

performance has mean square error22.33% smaller than the result shown in Section5.4.2.

The pattern classification performance is also examined. Itis shown in Table20.

Lasso regression for quadratic models, with features extended from the linear model

In this section we extend model to include quadratic relationship between the79 features
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stepk FD FA FC FD range (cycles) FA range (cycles)

1 0 2.76% 2.76% 8.000 - 8.000 8.000 - 9.192
2 0 1.25% 1.25% 8.000 - 8.000 8.000 - 8.348
3 0 0 0 8.000 - 8.000 8.000 - 8.000
4 0 0.05% 0.05% 8.000 - 8.000 8.000 - 8.348
5 0 0.05% 0.05% 8.000 - 8.000 8.000 - 8.348
6 0 0.05% 0.05% 8.000 - 8.000 8.000 - 8.348

Table 20: Classification indices for applying Multi-step Lasso regression for 25% dis-
turbance data. 7-fold CV used in selecting regularization parameter,T1 = 10000 and
T2 = 15000.

selected by the 2-nd step Lasso regression result shown in Table 19. The extended model

is going to have79 + 78 + · · ·+ 1 quadratic terms, as well as the79 linear terms. In total,

that is3239 extended features.

The set-up is:

• Use 3-fold Cross-Validation to select regularization parameterλ,

• T1 = 4000,

• T2 = 40000.

We use 3-fold Cross-Validation for considerations of computational complexity. Ac-

cording to (71), the computation would cost about 21.5 times of that the simulation in

Section5.4.1takes. The result for multi-step Lasso regression is shown in Table21.

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00124000 0.044067970.05289462 0.73419511 300
2 0.00015648 0.031612520.05438718 0.74448164 88
3 0.00003655 0.025957000.05009815 0.71452358 75
4 0.00001880 0.025307100.04938512 0.70942054 73
5 0.00002336 0.025159050.04920196 0.70810375 70
6 0.00000513 0.025082080.04928440 0.70869676 70

Table 21: Multi-step Lasso regression for extended model of25% disturbance data. 3-fold
CV used in selecting regularization parameter,T1 = 4000 andT2 = 40000.

The best achievable prediction mean square error here is 0.04928. Only70 out of the

total3239 extended features are selected. Comparing with the Kernel Ridge Regression re-
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sults, the 5-th step Lasso regression has mean square error39.04% smaller, or equivalently,

the RMSE22.08% smaller.

Interestingly, if we examine the300 extended features selected by the 1-step Lasso, they

are from the cross-relationship of78 original features. The88 selected extended features

in step 2 are from62 of the original features, and the selected features from step 3 to step 6

are all from59 of the original features.

The pattern classification performance is also examined. Itis shown in Table22.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0.5% 1.25% 1.75% 7.188 - 8.000 8.000 - 9.772
2 0.74% 1.00% 1.75% 7.716 - 8.000 8.000 - 9.772
3 1.00% 1.00% 2.01% 7.188 - 8.000 8.000 - 8.876
4 1.00% 1.00% 2.01% 7.188 - 8.000 8.000 - 8.876
5 1.00% 1.00% 2.01% 7.188 - 8.000 8.000 - 8.876
6 1.00% 1.25% 2.26% 7.188 - 8.000 8.000 - 9.772

Table 22: Classification indices for applying Multi-step Lasso regression to extended model
of 25% disturbance data. 3-fold CV used in selecting regularization parameter,T1 = 4000
andT2 = 40000.

5.4.9 Lasso Regression Analysis, 6-fold CV for Parameter Selection

Multi-step Lass regression on linear model Section5.4.1and5.4.2represent the Lasso

linear regression that uses almost the most time-saving set-up, while Section5.4.8 can

represent a random setup ofm andT1 for Lasso regression on the linear model. In Section

5.4.9we are going to show the Lasso regression analysis of the samedata assuming linear

model, under the setup that produces the best performance within the numerous situations

we examined: We have examined the Lasso regression withm = 2, 3, 4, · · · , 10 folds of

Cross-Validation, andL1 = 2000, 3000, 4000, · · · , 10000 as the value of loops in “shooting

Lasso” to select regularization parameterλ. The set-up that leads the smallest error is the

following:

• Use 6-fold Cross-Validation to select regularization parameterλ,

• T1 = 4000,
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• T2 = 15000.

According to (71) and (72), this set-up would take 5 times processing time as the Lasso

linear regression in Section5.4.1and Section5.4.2.

For the 1-st step Lasso regression, the Mean squre residual (MSR) for the constrained

fit with constraintλ, and the nonzero weights number vsλ are shown in the Fig.56. Note

thatλ∗CV is emphasized asλ∗ in the figure.

(a) (b)

Figure 57: (a) Mean squre residual (MSR) vsλ, (b) Number of selected features vsλ.

MSR is minimum (0.0614) whenλ = 0.00129. Then we useλ(1) = λ∗ = 0.00129 to

calculate the lasso regression weights for the whole training data set. Denote the estimated

weights in this step bŷβ(1). The superscript here denotes it is the estimate in first-step

Lasso. Then we find that the number of nonzero weights is 434. We apply the linear model

with weights β̂(1) to the testing set and get{Ŷ (1)
j , j = 1, · · · , 399}. We calculate the

prediction error by MSE= 1
l′

∑l′

j=1 (Yj − Ŷ
(1)
j )2, wherel′ = 399, is the length of testing

set. The result is 0.07037.

Then by applying adaptive Lasso and multi-step Lasso regression based on this result,

we get results shown in Table23. Again, “# F” denotes the number of non-zeros weights,

which is also the selected features.

The best achievable prediction mean square error here is 0.05068. Only32−42 features

are useful for the model compared with the total 939 featuresin the model. Note that this

performance has mean square error71.09% of the result shown in Section5.4.2, or55.81%
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stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00129189 0.061409930.07036502 0.84680641 434
2 0.00122544 0.036627630.05309092 0.73555613 59
3 0.00005680 0.031827680.05068121 0.71866947 45
4 0.00033748 0.030729770.05034812 0.71630393 33
5 0.00002738 0.030453040.05100691 0.72097506 32
6 0.00000017 0.030406170.05088550 0.72011644 32

Table 23: Multi-step Lasso regression for 25% disturbance data. 6-fold CV used in select-
ing regularization parameter,T1 = 4000 andT2 = 15000.

of the MSE using Ridge Regression.

The pattern classification performance is also examined. Itis shown in Table24.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0.00% 2.51% 2.51% 8.000 - 8.000 8.000 - 8.823
2 0.00% 1.50% 1.50% 8.000 - 8.000 8.000 - 8.401
3 0.00% 0.50% 0.50% 8.000 - 8.000 8.000 - 8.243
4 0.00% 0.50% 0.50% 8.000 - 8.000 8.000 - 8.243
5 0.00% 0.50% 0.50% 8.000 - 8.000 8.000 - 8.243
6 0.00% 0.50% 0.50% 8.000 - 8.000 8.000 - 8.243

Table 24: Classification indices for applying Multi-step Lasso regression for 25% dis-
turbance data. 6-fold CV used in selecting regularization parameter,T1 = 4000 and
T2 = 15000.

Lasso regression for quadratic models, with features extended from the linear model

Extended model from 33 features Similar to Section5.4.4, here we extend model

to include quadratic relationship between the33 features selected by the 4-th step Lasso

regression result shown in Table23. The extended model is going to have33+32+ · · ·+1

quadratic terms, as well as the33 linear terms. In total, that is594 extended features.

The set-up is:

• Use 3-fold Cross-Validation to select regularization parameterλ,

• T1 = 3000,
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• T2 = 20000.

We use 3-fold Cross-Validation for considerations of computational complexity. The

result for multi-step Lasso regression is shown in Table25.

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00000313 0.044774670.03318769 0.58155957 594
2 0.00082748 0.020207600.03421298 0.59047450 438
3 0.00078259 0.015715840.03388333 0.58762299 352
4 0.00053177 0.014931810.03219415 0.57278838 312
5 0.00051229 0.013758660.03139655 0.56564855 278
6 0.00058708 0.013041520.03118869 0.56377303 253

Table 25: Multi-step Lasso regression for extended model of25% disturbance data. 3-fold
CV used in selecting regularization parameter,T1 = 3000 andT2=20000.

The best achievable prediction mean square error here is 0.03119. This error is only

34.68% of the MSE of Ridge Regression (See Section5.4.3), or 38.49% of the MSE of

Kernel Ridge Regression (See Section5.4.5).

The pattern classification performance is also examined. Itis shown in Table26.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 1.00% 2.01% 3.01% 7.241 - 8.000 8.000 - 8.770
2 1.00% 1.75% 2.76% 7.241 - 8.000 8.000 - 8.718
3 0.50% 1.50% 2.01% 7.241 - 8.000 8.000 - 8.718
4 0.75% 1.75% 2.51% 7.241 - 8.000 8.000 - 8.718
5 1.00% 1.25% 2.26% 7.188 - 8.000 8.000 - 8.718
6 1.00% 1.75% 2.76% 7.188 - 8.000 8.000 - 8.718

Table 26: Classification indices for applying Multi-step Lasso regression to extended model
of 25% disturbance data. 3-fold CV used in selecting regularization parameter,T1 = 3000
andT2=20000.

5.5 Regression Analysis for 15% Perturbation Data

Similar to the 25% data studied in Section , the 15% perturbation data set is:

• DimensionP = 939

• Training set size:l = 800
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The length of testing set isl′ = 400. Data are normalized before applying regression

techniques. The regression here is exactly similar to that in Section5.5.

5.5.1 Lasso Regression Analysis, Using 4-fold CV for Parameter Selection

The setup is:

• Use 4-fold of Cross-Validation to select regularization parameterλ.

• T1 = 2000.

• T2 = 15000.

The mean square residual for the constrained fit with constraint λ, and the nonzero

weights number vsλ are shown in the Fig.58. Note thatλ∗CV is emphasized asλ∗ in the

figure.

(a) (b)

Figure 58: Mean Square residual (MSR) and # of selected features vsλ in Section5.5.1,
(a) Mean square residual (MSR) vsλ, (b) Number of selected features vsλ.

MSR is minimum (0.0124) whenλ = 9.2039 × 104 and the result implies that 628 of

the total 939 features are with nonzero weights. Note that this number is different from the

final number of selected features, since in parameter selection, T1 = 2000 is a relatively

small number of iteration for the “shooting algorithm” to converge. The reasons to use such

a smallT1 was discussed in Section5.4.6. Then we useλ(1) = λ∗CV = 9.2039 × 104 to

calculate the lasso regression weights for the whole training data set. Denote the estimated
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weights in this step bŷβ(1). The superscript here denotes it is the estimate in first-step

Lasso. Then we find that the number of nonzero weights is 341. This is true number of

selected features usingλ(1) = 9.2039 × 104. We apply the linear model with weightŝβ(1)

to the testing set and get{Ŷ (1)
j , j = 1, · · · , 400}. We calculate the prediction error by

MSE = 1
l′

∑l′

j=1 (Yj − Ŷ
(1)
j )2. (l′ = 400) The result is 0.019694.

Then we perform multi-step Lasso regression, the result is shown in Table27. We also

examine the pattern classification indices. Interestinglythere is no classification error for

the testing set (shown in Table28).

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00092039 0.012424410.01969405 0.28528630 341
2 0.00016090 0.007366800.01461748 0.24578177 53
3 0.00002414 0.006882780.01421118 0.24234189 43
4 0.00001053 0.006851430.01404045 0.24088175 43
5 0.00001114 0.006850390.01402272 0.24072959 43
6 0.00000807 0.006848140.01403481 0.24083334 42

Table 27: Multi-step Lasso regression for linear model of 15% disturbance data . 4-fold
CV used in selecting regularization parameter,T1 = 2000 andT2 = 15000.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0 0 0 8.000- 8.000 8.000 - 8.000
2 0 0 0 8.000- 8.000 8.000 - 8.000
· · · · · · · · · · · · · · · · · ·
6 0 0 0 8.000- 8.000 8.000 - 8.000

Table 28: Classification indices for applying Multi-step Lasso regression for linear model
of 15% disturbance data. 4-fold CV used in selecting regularization parameter,T1 = 2000
andT2 = 15000.

5.5.2 Lasso and Ridge Regression: Comparison Studies

Similar to Section5.4.3. Suppose we also use 4-fold Cross-Validation to select the regu-

larization parameter in (67). First, the relationship between residual sum of squares and

regularization parameterλ is shown in Fig.59.
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Figure 59: Mean square residual (MSR) vsλ in Cross-Validation in Ridge regression in
Section5.5.2

So the optimalλ for Ridge Regression is 0.0046308. By using this regularization pa-

rameter and the whole training set, we calculate the weightsusing Ridge Regression. Then

we use the testing set to evaluate the error. The mean square error of prediction corresponds

to Ridge Regression is 0.0249284. The performance for regression as well as pattern clas-

sification is shown in Table29 and Table30.

Ridge λCV MSR MSE RMSE(cycles) # F

0.0046308 0.02485360.0249284 0.32096721 939

Table 29: Ridge Regression for 15% disturbance data. 4-foldCV used in selecting regular-
ization parameter.

Ridge FD FA FC FD range (cycles) FA range (cycles)

0 0 0 8.000 - 8.000 8.000 - 8.000

Table 30: Classification indices for applying Ridge Regression. 4-fold CV used in selecting
regularization parameter.

The 5-th step Lasso regression shown in Table27 has a 43.75% smaller mean square

error compared with Ridge Regression, or equivalently, a 25.00% smaller root mean square

error compared with Ridge Regression. Also Lasso regression lead to the selection of 43

features, compared to the total 939 features, while Ridge Regression leave all features to

have non-zero weights. The weights of the features are shownin Fig. 60, Lasso, Adaptive

Lasso, 6-step Lasso results are compared with Ridge Regression results.
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(a) (b) (c) (d)

Figure 60: The weights determined by regression. (a) One-step Lasso, (b) Two-step Lasso,
(c) Six-step Lasso, (d) Ridge Regression.

5.5.3 Lasso Regression for Quadratic Models

Similar to section 3.2.4, we want to do regression to includequadratic relations of features.

In order to simplify computation, we expand the models from the 43 features selected by

the 3-rd step Lasso regression. (See Table27 in Section5.5.1) The total extended model

includes 989 features, in which43+41+ · · ·+1 = 946 covariates are quadratic terms, and

43 covariates are the original features. Then we apply multi-step Lasso regression, where

the parameters are set-up as follows:

• Use 3-fold Cross-Validation to select regularization parameterλ,

• T1 = 3000,

• T2 = 15000.

In the first step Lasso, the relationship between regressionsum of squares andλ are shown

in Fig. 61, together with the corresponding number of nonzero-weightfeatures vsλ. Min-

imum MSR corresponds toλ = 0.00062592. Use this as the regularization parameter in

the first step Lasso. The Multi-step Lasso regression results are shown in Table31. And

the classification performance of different steps of Lasso are shown in Table32. Again, the

classification error is zero for the testing set.
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(a) (b)

Figure 61: (a) Mean squre residual (MSR) vsλ, (b) Number of selected features vsλ.

stepk λ(k) MSR MSE RMSE(cycles) # F

1 0.00062592 0.006675640.01226547 0.22514148 275
2 0.00000625 0.005754070.01002906 0.20358396 164
3 0.00006055 0.005377380.01062372 0.20953268 114
4 0.00001693 0.004809290.01016227 0.20493149 104
5 0.00002793 0.004606990.01010217 0.20432467 94
6 0.00002403 0.004563290.01010768 0.20438038 92

Table 31: Multi-step Lasso regression for extended model of15% disturbance data . 3-fold
CV used in selecting regularization parameter,T1 = 3000 andT2 = 15000.

stepk FD FA FC FD range (cycles) FA range (cycles)

1 0 0 0 8.000- 8.000 8.000 - 8.000
2 0 0 0 8.000- 8.000 8.000 - 8.000
...

...
...

...
...

...
6 0 0 0 8.000- 8.000 8.000 - 8.000

Table 32: Classification indices for applying Multi-step Lasso regression for extended
model of 15% disturbance data. 3-fold CV used in selecting regularization parameter,
T1 = 3000 andT2 = 15000.

5.5.4 Lasso Algorithm and Kernel Ridge Regression: Comparison Studies

Similar to Section5.4.5, Kernel Ridge Regression parameterq andλ are selected by Cross-

Validation. Here we use 4-fold Cross-Validation. Regressions are conducted applying

quadratic kernel of different orders. The results are shownin Table33and Table34.
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orderp q
(p)
3CV λ

(p)
3CV MSR MSE RMSE(cycles) # F

2 339820833 542.46909370 0.017309510.01619021 0.40619259 939
3 697830585 1.218814e+12 0.017295850.01619687 0.40627610 939
4 777365030 1.407465e+21 0.017304670.01616100 0.40582600 939
5 388905200 1.018152e-016 0.019637620.01841108 0.43315699 939
6 562341325 1.018152e-016 0.019666990.01856998 0.43502226 939
...

...
...

...
...

...
...

12 897687132 1.018152e-016 0.019656860.01813012 0.42983919 939

Table 33: Kernel Ridge Regression of different orders for 15% disturbance data. 4-fold CV
used in selecting regularization parameter.

stepk FD FA FC FD range (cycles) FA range (cycles)

2 2.26% 1.75% 4.01% 7.188 - 8.000 8.000 - 17.102
3 2.26% 1.75% 4.01% 7.188 - 8.000 8.000 - 17.102
4 2.26% 1.75% 4.01% 7.188 - 8.000 8.000 - 17.102
5 2.26% 1.50% 3.76% 7.188 - 8.000 8.000 - 14.466
6 2.26% 1.75% 4.01% 7.188 - 8.000 8.000 - 17.102
...

...
...

...
...

...
12 2.26% 1.50% 3.76% 7.188 - 8.000 8.000 - 14.466

Table 34: Classification indices for applying Kernel Ridge Regression of different orders
for 15% disturbance data. 4-fold CV used in selecting regularization parameter.

5.6 Conclusions for Transient Stability Analysis

In this section, we have examined the Lasso algorithm in the context of transient stability

analysis. Our results show that Lasso algorithm and its extensions outperform the com-

monly used techniques utilizing Ridge Regression and Kernel Ridge Regression techniques

in terms of the prediction error. For the25% perturbation data, the properly tuned Lasso

regression leads to a38% smaller MSE error compared with Kernel Ridge Regression.

Furthermore due to the adaptive nature of Lasso algorithm, we achieve not only a smaller

prediction error bust also a more parsimonious model compared with the solutions em-

ploying thel2 penalty. Depending on the purpose of application, one can choose between

the models that lead to more precise prediction, and the onesthat have smaller number of

feature variables. By selecting loop parametersT1 andT2, the balance between accuracy

and efficiency can also be selected based on the application purpose of the user.
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