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Abstract

This thesis is about some issues in system modeling: Thadiesparsimonious
representation of MISO Hammerstein system, which is bygotojg the multivari-
ate linear function into a univariate input function spadéis leads to the so-called
semiparamtric Hammerstein model, which overcomes the aamhyrknown “Curse
of dimensionality” for nonparametric estimation on MISGms. The second issue
discussed in this thesis is orthogonal expansion analysessunivariate Hammerstein
model and hypothesis testing for the structure of the nealisubsystem. The gener-
alization of this technique can be used to test the validityplirametric assumptions
of the nonlinear function in Hammersteim models. It can &ls@pplied to approx-
imate a general nonlinear function by a certain class ofrpatac function in the
Hammerstein models. These techniques can also be extemd#éuet block-oriented
systems, e.g, Wiener systems, with slight modification. fhire issue in this thesis is
applying machine learning and system modeling techniquésmsient stability stud-
ies in power engineering. The simultaneous variable seetm estimation lead to a
substantially reduced complexity and yet possesses agstrgmediction power than
techniques known in the power engineering literature so far

Keywords: nonparametric estimation, semiparametric, MISO Hamtagrsnodel,
curse of dimensionality, model selection, Lasso, transbility boundary, machine
learning



Acknowledgements

Many people have been a great help to me in my research anchit easure to thank
them all.

e First and foremost, | thank Professor Dr. Mirostaw Pawlakgiwing me the oppor-
tunity to study the MSc program under his supervision. Itlb@sn my privilege to
be his student. | appreciate his guidance, encouragemguos, and advice.

| thank Manitoba Hydro for the financial support.

| also thank Professor U.D. Annakkage, and Dr. Bathiya Jesas for providing
data for the research work in Sectibof this thesis.

| thank Professor. Mirostaw Pawlak, Professor Pradeeparviglath, and Professor
A. Thavaneswaran for their invaluable suggestions for fiyod this thesis.

Finally, I would like to thank Dr. Waner Su, Xiaoxia Li, Melvi& Corrine Klassen,
Daniel Lockery, Dr. Piotr Wasilewski, Amy Dario, as well al$ my other valued
friends. Their friendship are also important in the proagfssy pursuit for knowl-
edge.



Contents

Abstract ii
Acknowledgements \Y
List of Tables vii
List of Figures iX
1 Introduction 1
2 Review of System Identification Methodology 3
2.1 System Identification and Machine Learning . . . . . . .. ...... ... 3
2.1.1 Parametric Modeling Approach . . . . ... ... ... ..... 4
2.1.2 Nonparametric Modeling Approach . . . . ... ... ... ... 7
2.1.3 Semiparametric Modeling Approach . . . . . .. ... ... ... 9
2.2 Block-Oriented Systems . . . . . . . . . . ... .. .. 12
2.3 Identification of MISO HammersteinModels . . . . . . ... ..... 14
2.3.1 Identification of Linear Subsystem . . . . . .. ... ... ... 15
2.3.2 ldentification of the Nonlinear Subsystem . . . . ... ...... . 16
2.4 AuxiliaryProofs. . . . . .. . .. .. 19
3 Semiparametric Hammerstein Model Identification 23
3.1 Semiparametric MISO Hammerstein Model . . . . . . c e 23
3.2 Algorithms for Semiparametric Hammerstein Model Id‘eratlon ..... 25
3.2.1 Parameter Estimation . . . . . . .. ... ... L. 25
3.2.2 Nonparametric Estimation . . . . ... .. ... ......... 28
3.2.3 Monte Carlo Evaluation of Indentification Algorithms . . . . . . 28
3.2.4 AuxiliaryProofs . ... .. ... ... .. . 29
3.3 Approximation of a MISO Hammerstein System by a Semipatac Model 33
3.4 Simulation Studies . . . . . ... 34
3.4.1 Estimation Error vs Smoothness of Nonparametric &ftaristic . 35
3.4.2 Estimation Errorvs Data Size . .. .. .. ... ... ...... 39
3.4.3 Estimation Error vs Dimensionof lnput . . . . ... ... ... 40
3.4.4 Estimation Error vs Correlationof lnput . . . . . .. ... ... 42
3.4.5 Distribution of Semiparametric Statistics . . ... .... ... 43
3.4.6 Estimation Error vs Kernel Bandwidth . . . . . .. ... .. .. 43

3.4.7 Discussions about Optimal Data Partition and Othesdtepling
Schemes . . . . ... 47
3.4.8 Comparison with Derivative Method in Parametric tefee . . . . 48
3.4.9 Semiparametric Approximation of a MISO Hammerstgist&n . 50
3.5 Conclusions . . . . . . 54



4 Model Selection Algorithms for Identification of Hammerstein Systems 56

4.1 Introduction . . . . . . ... 56
4.2 Orthogonal Series Estimation Using Hermite Polynosnial . . . . . . . . 57
4.3 Thresholding Techniques for Coefficients Shrinkage ...... . . . .. .. 61
4.4 Estimating a General Nonlinearity by Hermite Polyndmiia. . . . . . . . 62
4.5 Testing for the Polynomial Form of the Nonlinearity . . . . . . ... .. 64
46 WeightedMonteCarlo . . . . .. .. .. ... .. .. ... .. ..... 65
4.7 Estimationofthe Variance . . . ... .. ... .. ... ... . .. ... 66
4.8 Simulation Studies . . . .. ... 6.7
4.8.1 Hermite Polynomial Estimation with Thresholding®&ul . . . . . 67
4.8.2 Parametric Approximation of a General Nonlinear @btaristics . 72
4.8.3 Testing the Polynomial Hypothesis of the Nonlineaai@hteristics 75

4.9 Conclusionsand FutureWork . . . . . . ... ... .. oL 78
5 Lasso Regression for Transient Stability Analysis 81
5.1 Introduction to Transient Stability Analysis Using kasRegression . . . .81
5.2 LassORegression . . . .. .. ... .. .. 83
5.2.1 From Ridge Regression to Lasso Regression . . ... ... . 83
5.2.2 TheAdaptivelLasso . . ... ... ... . .. ... 86
5.2.3 Shooting AlgorithmforLasso . . . .. .. ... ... ... ... 86

5.3 Generation of Transient StabilityData . . . ... .. ... ....... 87
5.4 Regression Analysis for 25% Perturbation Data . . . . . ... 90
5.4.1 Lasso Regression Analysis, Using 3-fold CV for Paltamiéelectlon92
5.4.2 Multi-Step LassoRegression . . . . . .. ... ... ... 93
5.4.3 Lasso Algorithm and Ridge Regression: Comparisodi&u . . . 94
5.4.4 Lasso Regression for Quadraticmodels . . . . . ... .. ... 96
5.4.5 Lasso and Kernel Ridge Regression: Comparison Studie . . . 99
5.4.6 Selection of the Loop Parameter . . . . . ... ... ...... 101
5.4.7 Discussions about Re-sampling . . . .. ... ... ... ... 104
5.4.8 Lasso Regression Analysis, 7-fold CV for Parametic8en . . .104
5.4.9 Lasso Regression Analysis, 6-fold CV for Parametic8en . . .108

5.5 Regression Analysis for 15% PerturbationData . . . . . .. ... L1111
5.5.1 Lasso Regression Analysis, Using 4-fold CV for Paltamféelectloﬂlz
5.5.2 Lasso and Ridge Regression: Comparison Studies . .. . 113
5.5.3 Lasso Regression for Quadratic Models . . . . . .. ... .. 115
5.5.4 Lasso Algorithm and Kernel Ridge Regression: Comsparbtudied.16

5.6 Conclusions for Transient Stability Analysis . . . . . .. .. ... ... 117
References 118

Vi



List of Tables

1

N

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

Estimation errors and and optimal kernel bandwidth in tkgeeement in

Section3.4.1 . . . . . e 37
Comparison about different strategies in selecting. . . . . . . . .. .. 38
Using Hermite polynomial estimate to identify the nonéneharacteristic
in a Hammerstein system, with calculated by47), andN = 1000.. . . . 73
Using Hermite polynomial estimate to identify the nonéneharacteristic
in a Hammerstein system, with calculated by§0), andN = 1000.. . . . 73
Using Hermite polynomial estimate to identify the nonéneharacteristic
in a Hammerstein system, with, calculated by47), andN = 5000.. . . . 74
Using Hermite polynomial estimate to identify the nonéneharacteristic
in a Hammerstein system, with calculated by§0), andN = 5000.. . . . 75
MSA Lasso forr5% distributiondatayjn =3. . . . . . ... ... ... .. 94
Classification indices for applying MSA Lasso 26% distribution data,
M =3 . o o e e e e e e e e e e e e e e e e 94
Ridge Regression for 25% disturbance data, m=3. . . . . . .. .. .. 95
Classification indices for applying Ridge Regression38&cisturbance
data, m=3. . . . . .. 95
MSA Lasso for 25% disturbance data with 989 extendedfestu. . . . . 97
Classification indices for applying MSA Lasso to 25% dis&unce data
with 989 extended features. . . . . . . . . .. ... 98
MSA Lasso for 25% disturbance data with 1484 extendedfest . . . . . 99
Classification indices for applying MSA Lasso to 25% distunce data
with 1484 extended features. . . . . . . . . . ... ... ... 99
Kernel Ridge Regression for 25% disturbancedata. . . . . ... . .. 101
Classification indices for applying Kernel Ridge Regi@s$o 25% distur-
bancedata. . . ... . ... . ... 101

Ridge Regression for 25% disturbance data using differsdnes form. . . 105
Classification indices for applying Ridge Regression38&cdisturbance

data using differentvaluesfor. . . . . . . .. .. .. ... ... .. .. 105
MSA Lasso for 25% disturbancedata="7. . . . . . .. .. ... .. .. 106
Classification indices for applying MSA Lasso to 25% distunce data,

M= T o e e e e e e e e e e e 107
MSA Lasso for 25% disturbance data witt89 extended features. . . . .107
Classification indices for applying MSA Lasso to 25% dis&unce data

with 3239 extended features. . . . . . . . . ... .. ... ... ... 108
MSA Lasso for 25% disturbancedata,=6. . . . . . .. .. ... .. .. 110
Classification indices for applying MSA Lasso to 25% distunce data,

L 110
MSA Lasso for 25% disturbance data withi extended features. . . . .111
Classification indices for applying MSA Lasso to 25% dis&unce data

with 594 extended features. . . . . . . . . ... ... ... ... 111
MSA Lasso for 15% disturbancedata. . . . ... ... .. .. ... .. 113

Classification indices for applying MSA Lasso to 15% distunce data. . 113

Vii



29
30

31
32

33
34

Ridge Regression for 15% disturbance datas 4. . . . . . . . .. .. .. 114

Classification indices for applying Ridge Regression3&o1disturbance
dataym = 4. . . . . . e 114
MSA Lasso for 15% disturbance data witkt extended features. . . . .116
Classification indices for applying MSA Lasso to 15% distunce data
with 946 extended features. . . . . . . . . . . . ... 116
Kernel Ridge Regression for 15% disturbancedata. . . . . ... . .. 117
Classification indices for applying Kernel Ridge Regi@s$o 15% distur-
bancedata. . .. .. .. ... .. ... ... 117

viii



List of Figures

O oo ~NOOTA, WNPE

The output-error model-estimation method. . . . . . e |
Relationship between errors in parametric system mqgielln ....... 7
Relationship between errors in nonparametric system hmgde . . . . . . 8
Relationship between errors in semiparametric systenefimad . . . . . . 11
Examples of block-oriented system. . . . . .. .. ... ........ 13
SISO Hammersteinmodel. . . . . .. ... ... .. ... ... ... .. 13
SISOWienermodel. . . ... ... .. .. . ... ... .. 14
SISO Sandwichmodel. . . . . ... ... .. ... .. .. ... .. ... 14
MISO Hammersteinmodel. . . . . . . ... ... ... ... .. ... 15
Semiparametric approximation of a MISO Hammersteinesgst. . . . . . 23
Semiparametric Hammersteinsystem. . . . . . ... ... ... ... 24
The block diagram illustrating the semiparametricappho . . . . . . .. 26
Partitioning data into training and testing subsets. ...... . . .. .. .. 27
Plot ofg*(w) = a arctan(fw) for differents. . . . .. . ... ... .. .. 36
Semiparametric estimationerrorys . . . . . . ..o 39
Semiparametric estimationerror&s . . . . .. . ... ... ... 40
Semiparametric estimation error vs input dimensiopalit. . . . . . . .. 41
Direct nonparametric estimate for different dimentiohsput. . . . . . . 41
Semiparametric estimation error vs input correlation. ... . . . . ... . 42
Estimation of nonparametric function in the semlparamenodel ...... 43
Distribution of semiparametric estimation statistic.. . . .. .. .. ... 44
Estimation error in the parametric part using fixed kebagldwidthh;. . . 45
Estimation error in the nonparametric part using fixesch&ebandwidthh,. 46
MISE(G(-)) VSha. « v v v o e e e e 46
Estimation error when sub-optimal kernel bandwidth esdus. . . . . . . . 47
System identification error vs lengthBfsubset. . . . . ... . ... ... 48
Err(é) Vs [ using derivative approach in parametric inference. . . . ... 49
Err(é) vs N using derivative approach in parametric inference. . . . ... 49
Er¥) vs dimension using derivative approach in parametric exfee. . . . 50
Er¥) vs dimension using derivative approach in parametric exfee. . . . 50
The smallest projection error ¥3n semiparametric approximation. . . . 51
The nonlinear functiop*(-) in semiparametric approximation. . . . . . . 52
Semiparametric identification error vs kernel size. . ...... . . .. ... 53
Semiparametric identification error vs length of tragndata. . . . . . . . . 54
Estimation of the nonparametric part in the semiparametodel. . . . . . 55
Comparison of the boxplot of Hermite polynomial estimatthout and

with thresholding rules in Experimeimj S/egtion4.8.1 ........... 68
Boxplot of the difference of calculatingr(a,) by (62) and by 63). . . . . 69
Comparison of the boxplot of Hermite polynomial estimatthout and

with thresholding rules in ExperimeRf Sectiord.8.1 . . . . .. .. ... 70
Comparison of the boxplot of Hermite polynomial estimaithout and

with thresholding rules in Experimesf Sectiod.8.1 . . . . .. .. ... 71



40

41

42

43

44

45

46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61

m*(-) = arctan(-) approximated by Hermite polynomial expansion in Ex-

periment 1, Sectiod.8.2 . . . . . . . ... .. 73
m*(-) = arctan(-) approximated by Hermite polynomial expansion in Ex-
periment 2, Sectiod.8.2 . . . . . . . ... .. 75
Plot of hypothesis testing result whénis obtained by47) in Example 1,
Sectiodd.8.3 . . . . 77
Plot of hypothesis testing result whénis obtained by §0) in Example 1,
Sectiodd.8.3 . . . . 77
Plot of hypothesis testing result with calculated by 47) in Example 2,
Sectiond.8.3 . . .. 79
Plot of hypothesis testing result with calculated by §0) in Example 2,
Sectiodd.8.3 . . . . 79
Classification of power system stability. . . . ... ........... 81
Comparison between Lasso and Ridge methods. . . . . . 85
Single Line Diagram of Generators and 345 kV Network of bU@ system 88
MSR and # of selected featuresvg Cross-Validation. . . . ... .. .. 93
MSR vs)\ in Cross-Validation by Ridge Regression. . . . . . . .. .. .. 95
Comparison of weights determined by Lasso and Ridge RBeigre for
25%data. . . ... 96
MSR vs\ in Cross-Validation by Kernel Ridge Regression. . . . . . .. 100
MSR vs Kernel Ridge Regression orgen when\ = 3225. . . . . . . .. 101
MSE and # of selected features vs loop paranmgter. . . . . . .. .. .. 102
The influence of loop parametéy. . . . . . .. ... ... ... .... 103
MSR and # of selected featuresvs Section5.4.8 . . . ... ... ... 106
MSR and # of selected featuresvi Section5.4.9 . . .. ... ... .. 109
MSR and # of selected featuresvg Section5.5.1 . . .. ... ... .. 112

MSR vsA in Cross-Validation in Ridge Regression for 15% disturlzatiatal 14
Comparison of weights determined by Lasso and Ridge féé distur-

bancedata. . . . . . . . . ... 115
MSR and # of selected features ¥$n Cross-Validation for 15% distur-
bancedata. . . . . . . . ... 116



1 Introduction

System identification is the field of applied science thabisaerned with determining the
structure of an unknown system from the observed data reptiag the input and output
signals of the system. The input data are in the form of statahéime series, whereas
the output signal is corrupted by measurement noise. As gwekystem identification
problem is closely related to statistical inference - thewihat is taken in this thesis.

System identification plays an important role in science emgineering. A historical
example of applying the idea of system modeling is the Itaphysicist, mathematician,
astronomer and philosopher Galileo Galilei, who based erethpirical observations of
distance and time elapsed during the process when an objetb a ramp, established
the law of falling bodies.

Modern system identification has been utilizing statisticals, e.g., machine learning
techniques. The issue of finding an adequate parsimoniodsirfrom data plays a critical
role. In fact, system identification provides powerful teicjues for building models of
complex systems in communication, signal processing,robmiower engineering, and
biomedical engineering [1], [2], [3], [4], [5], [6], [7].

Our main focus is to develop a basic methodology for a laogdessystem modeling
problems. The thesis is divided into four main parts. The fiest is a brief introduc-
tion to basic structures of our methodology. Concepts sschleck-oriented systems,
and in particular models such as Hammerstein systems angewsgstems will be intro-
duced. The second part of the thesis is concerned with a lowftsional representation of
a multivariate Hammerstein system. This is achieved byguia theory of semiparamet-
ric approximation. Semiparametric models are a parsimmd@mpromise between fully
nonparametric models and parametric models. Therefoeg,dhercome the well-known
curse of dimensionality problem, and yet preserve theimathge of not assuming any
parametric forms for nonlinear submodels. The third paahisut identification methods

using orthogonal expansions in determining the nonlinbaracteristic of a single-input-



single-output (SISO) Hammerstein system. Hypothesigigs also discussed in this part
in the context of testing whether the nonlinear functiorhmthe Hammerstein system be-
longs to a certain parametric class. Finally, the last piati@thesis deals with a particular
machine learning techniques applications, namely, thaystfi transient stability analysis
of power systems. Specifically, we use the regression msthblizing Least Absolute

Shrinkage and Selection Operator (Lasso), compared witlother methods used in the

field of power engineering. The contributions presentetiisthesis are:

e Numerical studies of semiparametric approximation for @lI8ammerstein models
(Section 3),

e Using the thresholding approach to determine the struciioethogonal basis esti-
mates for the nonlinear characteristics of a SISO Hammiarsystem, where it is
assumed that the nonlinear subsystem belongs to a givemeti@ class (Section
4),

e Truncation parameter selection for orthogonal seriesnesé of the Hammerstein
system (Section 4),

e Testing hypothesis on the parametric form of the nonlinbaracteristic of the Ham-
merstein system (Section 4),

e Using Lasso Regression for power system stability anglgsid achieving a better

prediction accuracy than the existing methods in the fie&t{(iSn 5).



2 Review of System Identification Methodology

2.1 System ldentification and Machine Learning

The modern system identification problems arose aroung €860s in the field of con-
trol engineering, after the development of model-basedrobdesign [8], [9]. At that
time, much of the control design were in actuality singlptitisingle-output (SISO) sys-
tems. The availability of such models finally became extenflem control design in
electrical and mechanical engineering [10], and they wppdied in the diverse areas such
as environmental systems, biological and biomedical systand transportation systems.
Meanwhile, system identification has also been extended freing viewed as determin-
istic problems to being viewed as stochastic problems. igd0he of the early works that
map maximum likelihood approach from statistics into systdentification, and this ap-
proach has became widely used in 1970s. Naturally, systentifitation later became
viewed as a question of approximation theory, in the seredetie searches the model that
best approximates the true physical system, rather thamdidel that exactly captures the
true physical process. The model is then determined by ttuterror model estimation

method, illustrated in Figl. We observe the input-output pai,,,Y,), 1 < n < N,

Figure 1: The output-error model-estimation method.

where inpufU,, € R? is a stochastic process, and outplitc R® is mixed with some noise



due to physical reasons, e.g., channel noise. Note thahthg and output both can be
one-dimensional or multi-dimensional, and yet we are usmfiple-input-single-output
(MISO) systems for illustration, for the more general casaltiple-input-multiple-output
(MIMO) system can be viewed as parallel combination of seMeiSO systems. We sup-
pose the same inpytU,, } go through a virtual model, and the predicted outpu{tfi’g}.
Assume the virtual model is stationary, and has certainachearistics (e.g., linear, nonlin-
ear, linear and nonlinear in cascade/parallel/feedbackaad the issue of system identi-
fication is merely to find the optimal system that minimize®ateneasure betwedry,, }
and{Y,}.

There are three basic approaches to system modeling:

(@) Parametric Modeling:ffn = h(ITn|6), WhereIT; = (U,,U,1,U,_o,---) is the
history of the system input up to the timeandU,, € R“.
The input-output mapping(-) is specified up to the unknown, finite dimensional
parametep € ©, where© is a set of admissible values of the parameter. That is, we
assume that the model belongs to certain class of paraaigtriefined functions

[11].

(b) Nonparametric ModelingY,, = h(ITn).
The input-output mappinfy(-) is totally unknown. That is, no assumption is imposed

on the class of the system [12].

(c) Semiparametric Modelingy;, = h(IT,]g(-), 9).
The input-output mapping(-) is specified up to the unknown, finite dimensional
parametex) and a finite set of one-dimensional functions) = (g1(-),- - g ("))

[12].



2.1.1 The Classical Parametric Modeling Based on the OutptiError Approach

In the parametric modeling, the output erroregf see Fig.l, is given by
en(0) = Y, — Yo(0) = Y, — h(UL|0).
We measure the expected loss by the mean square error:
Q(6) = E{|v, — n(T10)[ }. o

So for parametric modeling, the identification problem carfdrmulated as follows:
given a training sef{ (U, Y1), (U, Ys), .-+, (Un, Yy)} of input-output data of the un-
known system, construct an algoritifha for estimatingg* € ©, such that]\}iqn})o Q(éN) =
Q(6%), wheref* = arg Ieléiél Q).

Assume without loss of generality that the input-outpuatiehship for the true sys-
tem is described by, = f*(ITn) + ¢, for some unknowry*(-). Also, we assume that
E{f*z(ITn)} < oo andEle, |* < co. Then if the noise is independent of the system history,

we have:

Q) = E{|v.—h(U,[0)[}

:E{

Let us discuss two important cases of parametric modeling:

17(T) = h(T10)[ ) + Eleal” @)

Case 1.If f*(IT;) = h(IT;\H*), i.e., the true system is in the parametric model sgdce
{h(-|0) : 6 € O}, and the valu@* € O defines the true system. Then under some
identifiability conditions, we can expect that:

0" = arg inf Q(0),



and consequently,

« . _ 2
Qparametric - elgé Q(e) - E|5n| .

Thus, the noise level (measured by its variance) gives ttalast possible identifi-

cation error (Bayes error).

Case 2.Let f*() ¢ H, i.e., the true system is outside the assumed parametss.clehen
0* = arg gg(g Q(0) defines the., projection of the true system onto the model class
H. Henceh(-|0*) characterizes the best model for the given system. Notefthat
may not be unique.
In this case, the smallest possible error for parametricatoglis given by:

F+(U) = h(U,97)

. 2
Q;arametric = inf Q(@) - E{ } + E|€n|27

0cO

where the first term on the right-hand-side of this expressapresents the irre-

ducible modeling error for the best possible parametricehod

In order to estimate the optimal model from given trainingagdave need to construct

the empirical counterpart @§(0). A natural empirical version af(#) is
A 1 XN — 2
Qn) =5 - |V, — h(U,[0)[ "
n=1
As a result an estimate é6f can be obtained by

On = argmin Qx(0).

The convergence of such estimators have been studied ingantieular cases, e.g., linear
situations [13]. In fact, it is known [12] that we need firsestablish the following uniform

convergence result,

P(sup |Oy(0) — Q(#)| > 0) — 0 as N — .
0cO



This implies [12] thaty§ > 0,
P{lQ(0y) - ;g(g)cg(e)] >0} —0 asN — oo,

and furthermore,

Oy — 0, (P) as N — oo,

where(P) denotes it is convergence in probability, and also
h(-|0x) — h(-|6"), (P) asN — oo.

Further results from machine learning theory may allow ugdba finite sample bounds

for P(sup |Qn(0) — Q(0)| > §). This issue, however, will not be pursued in this thesis.
Ee)

Possible distribution of errors occurring in the paraneatrierence of system modeling

is illustrated in Fig.2.

Best Model in H
o(e)
H={[h(+16):6 0}

o(6y)
Selected Model
electe oae Best Possible (Bayes) Model

Figure 2: Relationship between errors in parametric systemeling.



2.1.2 The Nonparametric Modeling Based on the Output-ErrorApproach

In the fully nonparametric approach, the modeling errollimieated completely. In fact,

the minimumh*([?n) of the error
Q(h) = E{|v, — n(T,)|}.
is achieved by the regression function, i.e.,
h(U,) = E{Y,|U}. 3)
The corresponding minimal (Bayes) error is

Q(h*) = E{var(Y,[U,)}.

_) - - -
ForY, = f*(U,) + ., Q(h*) is denoted as); . qrametric 1S reduced to the noise level,
ie.,
Q;kzonparametric = E|€n‘2'

The distribution of errors occurring in the nonparametnierence for system modeling is
shown in Fig.3. Note that there is no modeling error.

The empirical risk, corresponding (%), is given by minimizing
~ 1 N —
Qu(h) = 5 3 Yo = (T,
n=1

Minimization of Q (1), however, yields an estimate that interpolates data. A ingér
result can be obtained directly. We can, however, estinmetedgression functioh*(IT)n)
assuming the system memory is finite, i¥,,= f*(U,,U,_1,--- ,U,_,) + €, Wherep
is the memory size antd,, € RY. Note thatf*(-) is a(p + 1)d-dimensional function. Then

under some general conditions on the smoothnegs ©@f, we can construct a consistent



—— EStimation Eryor -
—
Best Possible (Bayes) Model

Q(_'f?_,\,_]
Selected Model

Figure 3: Relationship between errors in nonparametritegsysnodeling.

estimatehy (1, uy, - - - ,u,) of f*(-) with the corresponding convergence rate:

~

hy(ug,uy, -+ u,) = f*(ug, uy, - -+, u,) +OP(N‘W>7

where Op(-) denotes “in probability” convergence. Clearly, this is ayslow rate of

convergence for large values @aindp.

2.1.3 The Semiparametric Modeling Based on the Output-Erro Approach

Parametric approach, examined in Sect®oh.], has its inherent limitation in carrying a
substantial modeling error. On the other hand, nonpararegiproach, shown in Section
2.1.2 reveals a slow convergence rate for large input dimensgiand large system mem-
ory p. The semiparametric strategy gives a logical tradeoff betwthe limitation of the
parametric approach and the flexibility of nonparametricdeimg.

The output-error solution in the semiparametric settirtpesminimization of the crite-

rion function

Q(9().0) = E{|[Y. — h(Talg(-).6)[ )

with respect tgy(-) andé.

Note that if we minimize) (g(-), 0) with respect tqy(-), the solution of such problem

9



is a set of functiong(-; 0) indexed by € ©. Note thaty(-; 0) is the regression function
— —
9(U,;0) = E{Y,|n(Tng(),0)}. (4)

Generally obtaining(-; #) can be a difficult task. In some particular cases, examined in
this thesis, the functiong-; ¢) can be easily characterized. Pluggiig ¢) into Q(g(-), 0)

yields the so callegrofiled riskfunction which solely depends @h
— 2
Q(0) = E{[Y, — n(Uslg(+0).0)| }. (5)

The minimumé* of Q(#) characterizes the best value of the parametric model. Tse be

nonparametric part is obtained by
g° (1) = g(0").

As a result the optimal (in thé, sense) semiparametric model is given(lﬁ?, g*(-)). The
smallest possible error for semiparametric modeling is:
2

} + Elen|*.

Qemiparamenic = Q(9°(),07) = E{|£*(U,) = h(Uy|g*(-),0%)

Let us consider, similarly to the parametric case, the valg two important cases of

semiparametric modeling.

pnd pd . . . . -
Case l.Let f*(U,,) = h(Un|g*(-), 9*), i.e., the true system is in the semiparametric model

space

S={(0,9(-)) : 0 €©,9() € G},

where G is some assumed function space. The réﬂit g*(~)) € S defines the

true system. Then under some identifiability conditions waeet that(@*, g*(-)) =

10



arg(e,gl?))esQ( .g()). Clearly in this case

* _ : . _ 2

Qsemz’par(zmetric - (9,;?)€ESQ(979( )) E|5| .

Case 2.Let f*(-) ¢ S, i.e., the true system is outside the assumed semiparanciiss.
Then,(@*,g*(-)) = arg inf Q(e,g(-)) defines thel, projection of the system

(0,9(-))€S
onto the model class. Hence(6*, g*(-)) characterize the best modf- |g*(-), 0*),
for the given true system. The smallest possible error forigarametric modeling
is given by
* —— —— * *

Qremmiparametric = Q(97(),67) = E{ N LBl

where the first term represents the irreducible modelingrdar the best possible

semiparametric model.

Best Model in S
Qo (1.07)

S = {(0.g(+ r))) :H€0.9() € G}

Estimation error

Q45 (). 0x)

Selected Model 7
IOCIoN. MOdo Best Possible (Bayes) Model

Figure 4: Relationship between errors in semiparametstesy modeling.

The possible distribution of errors occurring in semipagéim estimation is illustrated

11



in Fig. 4.
There is a fundamental relationship between the aforemaedi three modeling strate-

gies: parametric, nonparametric, and semiparametric,

Q;kwnparametric S Q:emiparametric S Q;arametric' (6)

In order to estimate the empirical characteristic of theipamametric model, we need to
estimatey(-; 0) in (4). Next we use this estimate in the empirical version of thadilererror
Q(0) defined in §). Hence, denoting a generic estimatey6f 6) by gy (+; 6), we can use

the following empirical version of)(0).

. . . A 1 N g ~ 2 . .
1. Resubstitution estimat&) (0) = + >, ‘Yn — h(Un|gN(-;9),9)’ . This is the

resubstitution error that typically is not a very accurattreate of)(¢) as it employs

the same data for estimating; ¢) and the evaluation of the error.

2. Partition estimated y (6) = N% >, Yn—h(ITn\QNl(g 9),9)‘2. Heregy, (+; 0) is the

estimate ofy(-; #) obtained from the subsé&t of the training set size oN,. The
remaining part of datds, size of N,, is employed for the evaluation 6f(#). This
partition estimate is usually very precise, because ififatgs not only the mathe-
matical analysis of the estimation algorithms but also gji@edesirable separation
of parametric and nonparametric estimation problems, kvailows one to evaluate

parametric and nonparametric estimates more efficienglj/ [1

3. Cross-Validation methods, e.g., leave-one-out meth@g:(f) = D DA )
g A

7 (Unlgn(:6),6)

where(U,,, Y, ) is deleted.

2, whereg_,(+;0) is the estimate ofj(-;6) using the data set

It is also worth noting that although the asymptotic Bayedsyedion error for parametric,
nonparametric, and semiparametric approaches have titenship in 6), it is hard to

compare(fy), Q(hy) and@Q(gx(-), ), the estimators based on finite data cases.

12



2.2 Block-Oriented Systems

In signal processing, linear time-invariant (LTI) systeans often used to model the char-
acteristics of filters and simple circuits. However, in maltiyer cases, linearity assumption
may not be sufficient, and nonlinearity needs to be takencotsideration in order to cap-
ture more general cases of applications. The so-callekddented system is a general
class of systems which combines linear dynamic subsystemsléas static nonlinear sub-
systems. The combination of these subsystems could be gitb@scade, or in parallel, or

both. Fig.5 shows some examples of popular forms of block-orientedegyst

—p=1 Linear |—b
Linear h
Sl
Nonlinear
—p=INonlinear

Figure 5: Examples of block-oriented system.

Block-oriented systems are a powerful and parsimoniogetadf between linear mod-
els and general nonlinear models, and are important in masgsd14]. Quite often, they
are able to reflect the nature of many physical applicatiergs, biological applications,
neological process, brain theory, etc [15].

System modeling can be studied in either discrete-time wtim@ous-time perspective.
Although analog system modeling is closer to the nature géiglal process, for the reason
of complexity, most of research in this area are focused sereie-time modeling.

Out of the many possible block-oriented systems, Hammarsiestem is a popular
one [16], [17], [18], [19]. It is named after the German matia¢ician Hammerstein, who
examined nonlinear integral equations called “Hemmersteegral equations” [20]. The
model consists of a nonlinear subsystem, followed by a tioea. Fig.6 is an example

showing a single-input-single-output (SISO) Hammerssgstem with a general nonlinear

13



subsystemn*(-) and an infinite impulse response (lIR) linear subsystentessmted by

AT}

g?i
Uf; ; ‘/ﬁ' o G,a'g KI
4>| m(s) |4>| {%.iz0} |—>i—>

Figure 6: SISO Hammerstein model with general univariat@inearity and infinite im-
pulse response dynamical subsystem.

In the above figures,, is the nonlinear noise inside the model. F&corresponds to

the following relationship between the input, output angimediate signals, where

denotes the true characteristics:

Vo =m*(Uy), Gu=S ANVii Yo=G,+en

1=0

Similar to Hammerstein system, Wiener system is anothenoonty used block-oriented
system, it composed a linear subsystem and a nonlinear stebswafterwards. Fig7 de-

picts Wiener system.

gﬂ
| | | G, ¥ Y,
t {lr 20} v m’"(e) I—J—P

Figure 7: SISO Wiener model with general univariate noraitg and infinite impulse
response dynamical subsystem.

Another block-oriented system which has been extensivelglied is the so-called
Sandwich model, which is a combination of Hammerstein andné&fi models. Fig.8
shows a SISO Sandwich model.

This thesis will mainly focus on identifying Hammersteirsgyms. However, it can be

conjectured that similar techniques can be applied to Wisystems with modifications.

14



Figure 8: SISO Sandwich model.

Based on the dimensionality of input/output, block-orezh$ystems can be categorized
into single-input-single-output (SISO), multiple-ingsingle-output (MISO) and multiple-
input-multiple-output (MIMO) systems. Since MIMO systeen be viewed as parallel

combination of MISO systems, MISO systems are often stuidi¢ite existing research.

2.3 ldentification of MISO Hammerstein Models

The MISO Hammerstein system is shown in Fg.The input, output relationship is given

U

n

=l m (») — {J:,r'zO}

=~
o]

Figure 9: MISO Hammerstein model with general multivariatanlinearity and infinite
impulse response dynamical subsystem

by Fig. 9.
Vn = m*<Un)7 Gn - Z)\:Vn—w Yn = Gn + €n,
=0
whereU,, = (U, 1,Upn9, - ,Unq)" € R%is thed-dimensional input to the system. The

intermediate signalg,, and(,, are not observed.

2.3.1 Identification of Linear Subsystem

In identifying a Hammerstein system, we normalize the lirsedosystem such thaf = 1.
Furthermore, we assumidJ,,} to be a sequence of independent identically distributed

vectors.
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Let us first consider the single-input Hammerstein systeéns. worth mentioning that
the linear subsystem inside the Hammerstein model is muacplsr to estimate compared
with identifying the nonlinear part. For instance, cortigla method provides a simple
technique to estimate the linear part. In fact, the follgywielationship holds, see Section

2.4for the proof.
. cov(Y,, Uy)

tocovY,, Uy) 0

In the case of multiple-input Hammerstein system , the fdanmu (7) must be modified.

Hence, we have
x COV<Yn+i777(Un))

oY, n(T) (8)

wheren : R — R is any function selected by the user, such that.*(U,,))n(U,,)) # 0.
For instance)(U) = M for some functiom;(-),i =1, -- ,d.

The correlation formulasrj, (8) suggest thak; can be estimated by:

¥ 20 (YinU;)

v 2 (Y30))
for the one-dimensional input, where is the size of training set, and
o F DN (en(U)) (10
T 1 N )
v =1 (Y51(U;))
for the multi-dimensional case, it has been demonstrat2ltifht:
Ai =\ + Op(N7'/2), (11)

Since identifying the linear part is numerically simple. dar research, we focus mostly
on the problem of recovering the nonlinear subsystem. Hemeenay assume that is
close to its true valug;, and in the context of nonlinear subsystem identificatioa use,

without loss of generality)* instead of).
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2.3.2 ldentification of the Nonlinear Subsystem

Generally, parametric and nonparametric approaches capgbed to identifying the non-
linear part of the Hammerstein model. Parametric methaglsmre prior information on the
characteristic of the subsystems, therefore by its nat@alevays carries a risk of modeling
error. On the other hand, the nonparametric approach esjoo prior assumption on the
class of functions defining the nonlinear subsystem.

Under the assumptidE{m*(U)} = 0 and the normalization = 1, it can be shown

[12] that optimized by mean square error,
m*(u) = E(Y,|U, =u). (12)

The proof of this identity is also presented in Secof Based on this regression relation-
ship in (12), various nonparametric techniques can be applied foveromym*(u). Some

nonparametric estimates are listed below:
e Classical kernel estimate

u—-U;
infu) = SR
X k(U

(13)

where K (-) is a d-dimensional kernel function, e.g., Gaussian kernel, and a
smoothing parameter (bandwidth). When inplit } to the system is one-dimensional,

(13) becomes:

() = S KT )
Vit K ()

e Local linear kernel estimate.

For one-dimensional input, local kernel estimate has theviing form:

LYK (555) B U@)R(SE)

mlu) = u—U(u
(u) YL K (45 #{ ())zﬁm(m—mu)) K(452)

17



where
- Y UK (55
Ulu) = S—ris
Yo K(%57)

is the local weighted mean ¢t/ }.

For d-dimensional input, see [21] for the explicit expressionaufal linear kernel

estimator.

Convolution kernel estimate.

When input to the system is one-dimensional and boundedeosupporta, b], the
convolution kernel estimate can be applied in nonparamestimationl/;y, Uy)...., Up,)
is the ordered version df,, U,....,U,, U = a andUy,1) = b are defined to be
boundary values of the support of the input distributiord é(U(l), Yiuy), -,
(U(N),Y[N])} is input-output pair from the training sét(Ul,Yl) e ,(UN,YN)}.

Then the convolution kernel estimate has the following form

. N+1 . U — U(z)
i(u) = > Yig (Ui — U-0)h ™ K ( ; ). (15)
=1
or
N al Ulir1) — U - u—Ug;
() = o vy o)1=y (16)
i=1

Note thatY[;’s are not ordered, they are just in pair with,,’s. See Sectior2.4 for
more details. Compared with other kernel estimates, cotionl kernel has the ad-
vantage of not having denominator. However, it can only lieg to 1-dimensional

input cases, since there is no multivariate counterpauifdering the data.

Orthogonal series estimate

Yk xthr(u)

_ 2@ , 17
o bt (u) (a7

m(u)

where{(-) } is an orthonormal basis system defined on the suppakiat includes
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the supportolU,,, i.e.:

1, fori=j
/mwwwmz{
b 0, fori#j,
andT is the truncation parameter, and
1 N
i, = — » Y,
Qg NnX::l nw(Un)a
. 1 XN
E— U,
b=y 3 v (U

Note that the denominator il {) estimates the input densify;(u), and the numer-

ator estimates the term*(u) fu(u).

For identifying the nonlinear subsystem inside a MISO Hamstegn model, it can be

demonstrated [12] that by using nonparametric estimate,
in(u) = m*(u) + Op(N =), (18)

whered is the dimension of input data, andindicates the smoothness of the function
m*(-) measured in number of existing derivatives. The formulali €hows that the
convergence rate of nonparametric estimate decreases dsrtnsion of input increases.
For example, suppose*(-) has finite second derivative, i.es,= 2, and we examine
| (u) —m*(u)| for different value ofl. Suppose length of daf¥, is needed for/ = 1 and
|m(u) — m*(u)| < 6. On the other hand, length of da¥, is needed for @-dimensional

system to achieve the same level of estimation errtinen we have
__2 _2
Ny “ = Ny 2, (19)

that is,
Ny~ N4,
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wherea = <2, For different value ofl,

= < a < 1. It shows that to obtain a given

1
5
degree of precision of a nonparametric estimate, the sasigganust grow exponentially
with the input dimensioni. This illustrates the so-called “Curse of dimensionality”

nonparametric estimation.

2.4 Auxiliary Proofs

The following proofs can be also found in [12].

Proofs of (7) and (8) When the inpuf{ U, } is one dimensional, according to Fi§, the

following relationship between input and output signaldsol
Yn = Z )\;m*(Un_]) + En,
=0
therefore:

cov(Y, i, U,) = cov( Z )\;m*(UnH_j) + Enti Un)
=0
= cov(\im*(Uy,), Uy) +cov( Y Xim*(Upyij), Un)
j=0,j#i
= Xeov(m*(U,), Upn) + > Neov(m*(Uppizj), Un).
j=0,j#i
Since {U,} is an i.i.d process, cow*(U,1i—;),U,) = 0 fori # j. Then we have
cov(Y,,1i, Uy,) = Afcov(m*(U,), U,). Since\; = 1 and co\Y,, U,) = Ajcom(m*(U,,), U,),
we get\; = % Thus the relationshipr has been proved.
When input{U,,} is multi-dimensional, Fig.9 yields the following relationship be-

tween input and output:

Yn = Z )\;m*(Un_]) + &np.
j=0
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From this we get

COMYo1i,n(Un)) = €OV( 3 Nim" (Unsicy) + €ntis n(Un))
= couAm*(U,),n(Un)) +co > Aim™(Ungiy), n(Un))
j=0,j#i

= Acov(m™(U,),n(Un)) + > Ajcov(m” (Upi—j), n(Un)).
=0.j#i

Since{U,} is an i.i.d process, c@w*(U,;_;),n(U,)) = 0 for ¢ # j. Then we have
cov(Y,.i,n(U,)) = Aicov(m*(U,),n(U,)). Because\j = 1, and covyY,,n(U,)) =

Ascov(m*(U,), n(U,)), thenX: = %. Thus the relationship8] has been

proved.

Proof of (12) Since{U,} is a white process, relatioB(m*(U,)|Uy) = E(m*(U;))
holds fori # 0. Thus,

E(Y,|U,=u) = Z)\* “(Un—j) +,|U, = nu)
= Aym (u) + Em*( ZA*

Under the conditiofEm*(U) = 0 and\| = 1, we haveE(Y,,|U,, = u) = m*(u), therefore
(12) has been proved.

The aforementioned considerations imply that

Y, = +Z)\* *( )+ en

— m*(U n)+§n+sn, (20)

where¢,, = >, AXim*(U,,_;) is independent oU,,, and can be viewed as “system noise”

due to the memory of system, in contrast with the external measurement noise.
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Proofs of (15 and (16) Whenh — 0, the convolution property of smoothing kernels

(See [12] for admissible class of such kernels) gives that

h/ K(*2)dz — ' (u),

at every points of: wherem*(u) is continuous. Here we assume that the supportdf:)
is the intervala, b]. Since according ta2Q), Y,, = m*(U,,) + &,, then ordering the input of
data suchthat = Uy < Uy < -+, < Uy < Uvyry = b, we obtain

u—z 1 Vo u—z 1 U
dz = — (VK —
h/ Jd= =3 ), AR

1 (Um- — 1 /U, —
b [T @R D [ a2
h Utn) h Uy h

U —z
“(NK
B o, m*(z) K ( - )dz +

() u—z

Zm (Us) h/U(] K

Ui U—z

2:: [jh K( A )dZ

U1

12

12

Notice thatfg((jjl) K (“2)d= can be either approximated by ;) — U;_1)) K (—2 U(”) or by

(U‘”*l);U(’”))K(“_g(” ). Therefore the relationships %) and (L6) have been proved.
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3 Semiparametric Hammerstein Model Identification

3.1 Semiparametric MISO Hammerstein Model

In identifying a MISO Hammerstein Model (Fi§.in Section2.3), nonparametric estimate
of the system with larger dimensions of input, usually hakbaear convergence rate, see
(18). Particularly, for very largé, the estimaten(-) hardly converges. This is referred to

as “Curse of dimensionality”.

U, v,

m(») —

Nonlinear Part

wir
% n(}'_, o)

Figure 10: Semiparametric approximation of a MISO Hamnegnstystem.

In order to overcome this disadvantage in nonparametricetmagl semiparametric
Hammerstein models have been proposed [12], [22] to apmiabel MISO Hammerstein
system, see Figl0. The intention is to replace the multivariate input funatio*(-) by
the approximatiomn*(u) ~ g*(7*7u). Note we need to assunigU) = 0, and)\; = 1 as
before, and alsd>}2, [\}| < oo. Then the relationship between input, output and interme-

diate signals are:

Wo(7) =7 U, Vi(1,9) = 977U, Yo =S NVioi(7,9).
=0

The output-error model-estimation method applied to tl#esy and the model leads to the

following minimization:

(A7, 97()) = arg (Agiglr(l_)),Q(A,%g(-)) (21)
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where) = (A, A, ---)T, and

S 2
Q7. 9() = B[V, = > Mgy U, )| (22)
=0
if the loss is measured by mean-square criterion.
It can be proved (see Secti@.9 that
A== (A )T (23)

which means the value of that leads to the smallest modeling error is actually the tru
value \* itself. Since\* can be estimated by correlation meth®), (our focus will be
mainly on estimation of* and ¢*(-), and assuming the estimateto be close to\*, we
use the value\* directly in the following studies. Note thét*, ¢*(-)) may not be unique,
but it defines the semiparametric Hammerstein model th&eislosed to the true MISO
Hammerstein system. In the case thétu) = ¢*(y*"u), that is, when the MISO Ham-
merstein system can be exactly represented by semiparametdel, the system can be

shown in Fig.10. By using semiparametric model for MISO Hammerstein systetime

Nonlinear Part

&~

w Y

€
u, ] ] G, .i i
- v s » {4.iz0} —>

Figure 11: Semiparametric Hammerstein system.

convergence rate for estimating nonparametric paktis/®, see 19), for any dimension
of the input. The essence of semiparametric model is theegtion of a the multivariate
nonlinear function onto a one dimension function space. ig@m@metric model is some-
where between parametric case where the nonlinear funigifully parameterized, and

the fully nonparametric case where the class of nonlinazstian is totally unspecified.
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3.2 Algorithms for Semiparametric Hammerstein Model Identfica-
tion

The main characteristics to estimate are the parametriactasisticy* and the nonpara-
metric characteristig*(-). Furthermore, we assume the linear subsystem is a finite orde
impulse response (FIR) of order For IIR cases, we can always approximate them by a
FIR subsystem whernecan be viewed as a truncation parameter. In this section svaras
m*(u) = g*(y*Tu), the semiparametric model exactly describes the true MIS@iHer-

stein model, see FidL1). Then the input-output relationship is the following:

Wn - V*TUnv Vn = g*(Wn)7 G" = Z)\:Vn—ia Yn - Gn T &n.

1=0

Note that the identification algorithms to identify suchteys can also be applied to a more
general case, when the semiparametric model is only an appaton to the true MISO

Hammerstein system, which will be discussed in Sec3i@

3.2.1 Parameter Estimation

Parametric Inference Based on Minimizing the Empirical Mean Squared Error

In order to identifyy* and g*(-), we need to estimate them one at a time. i.e., assume
~ is specified, thef{ W, } is fully specified. Denote this series of intermediate sidmya

{W, ()}, since itis fully dependent on. Notice the model betweefiV,,(v)} and{Y,,} is

a SISO Hammerstein model, thys) can be estimated through nonparametric technigues,
denote this estimate bj(-; ). The above procedure can be demonstrated bylg.

Using another data set to evaluate the estimation erra,sthown thaty = ~+* is the
asymptotic minimizer of this error [12]. Thus based on a gidata set of input observa-
tions and output responses, estimationydfwould require some sub-sampling schemes,
e.g., leave-one-out, Cross-Validation, partition mettetd. In this research, for the most

part we use partition method, that is we minimize the ciatefunction, the empirical pro-
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Nonlinear Part

v, - L
i » (o)

Nonlinear Part

i M_(y’) gle)

Figure 12: The block diagram illustrating the semiparamoetpproach.

file risk function:

with respect tay, the minimum is given by
7 = argmin On (7).

It is worth mentioning thatZ4) is the most general formula involving the estimatef

A*. In simulation studies, however, the true valieis employed sinca is the consistent
estimate and as such does not have an essential influence ondfall accuracy of the
Hammerstein system identification algorithm. N&iés a subset of given data, antv; )

is an nonparametric estimator basedlgnanother subset of given data. Note that data in
T, andT; should be totally independent of each other. Obtairifng; ) could be by any
one of the nonparametric estimation formulas, e.g., in esearch, we use local linear

kernel estimator:

ZTl YnK(%"(V)) _ ) ZTl Y, (Wn(’y) - W(w,y))K(%ﬂw)

)
ZT] K(inZ"('Y)) w—W(w;7) , (25)

ZTl (Wn(’V) - W (w;’y))QK(%n(V))

g(w;y) =

and I S WH(W)K(w—W;n(’Y))
(w, ’7) - ZTl K(w_pzn(,y))

is the local weighted mean ¥, ().

The partition of data set is shown in Fifj3.
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Use for obtaining g (w: ) Use for obtaining O (7)
Training Set Testing Set

L9 -
P T1 I P | T |

Figure 13: Partitioning data into training and testing sibsNote that the firgt observa-
tions in the data set are deleted. AlSpand7; arep observations away from each other
S0 as to make sur@4) uses independent data for “training” and “testing”.

Using the methodology developed in [12] [23], we can conjilna the estimatofy

converges in probability te* asN; — oo and Ny — oo.

Direct Parameter Estimation via the Average Derivative Tetinique

The aforementioned algorithm for estimatifigequires finding the minimum of the em-
pirical mean squared criterion. This calls for some efficagstimization scheme. Yet such
an estimate is not explicit. Another method which directyiratesy* is based on the

following strategy. Let the conditions
E{g"(W)} =0 and E{g" (W)} #0

be satisfied, then:

v EYLl;(U,)) -
T Ema)y TR =

whereU,, = (Un,l, e ,Umd) is the multivariate input,;(u) = % andf(u) is the
probability density function otJ,,. Section3.2.4gives briefly the details of this method.
For the input signals that have unknown densfiyy) can be estimated through kernel
methods, see [12]. Particularly if we have prior knowledbgetd input density, e.g., iJ,,
is Ny (0, %) with ¥ = diag(o?, - - - , %), then the derivative method based 86)(becomes:
% _ ot E{Yulin

W_T:U_?myjzg’...7d. (27)
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This yields the following estimate [12] of;:

L b R
Mo oy NI, YU,

-2, d. (28)

The simulation studies will focus mostly on minimizing MSREpaoach in estimation
of the parametric part. Direct estimate using derivativéhoe will also be examined as a

comparison with the former approach.

3.2.2 Nonparametric Estimation

Estimation ofy*(-) is obtained by plug in the estimatento (25):

9(w) = g(w; %), (29)

but using the whole data set rather than using a sulisdt can also be shown by similar

procedures as in [12], [23] that & — oo,

7= (P) (30)

and by continues mapping theorem, that; ) — g(w;~*) — 0, (P). It can also be
shown thagj(w;v*) — ¢*(w) — 0, (P), thus

gw;y) —g"(w) = (g(w;5) — glw;")) + (g(w;7*) — g"(w))
— 0, (P) (31)

3.2.3 Monte Carlo Evaluation of Indentification Algorithms

In order to evaluate estimation errofs(e.g.,L = 100) repetitions of the same experiment

sets are simulated from the system.
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Error for the evaluation of the quality of the estimates measured by
L
Err(4 Z -7

where4!! is the value of the estimateobtained from the-th training set.
Error for the evaluation of the quality of the nonparameéstimate;(w) is evaluated

by the MISE (Mean Integrated Square Error). For a singl@imgi set we first obtain:

1 M ) 2
ISE(9) ~ - > (9" (W) = g(W7"))

z:l

where M is the size of testing set gf(Upe”, Y*v), -+, (U™, Yir*) b, and Wew =
v TUrer . Next the MISE is obtained by:

L
MISE(§ Z ISE! (4 (32)

h |

where ISE!(§) is the value of ISE)) obtained from the estimation of theth training set.

Note that it is reasonable and necessary to normatiza

orv; = 1. We normalize such that* = 1. For 2-dimensional input cases, we furthermore
expressy as( cos(0), sin(@)), and evaluate the error for this parametric part by:

2 1L %2
Err(9) Z| — 0%, (33)

t:l

A practical question is how to select the kernel bandwidthanparametric estimation.
It is reasonable to use different bandwidths, one for thirpieary estimatej(-; v), and the
other for the final estimatg(-). We denote these two values/asandh,.. The bandwidth
selection, as well as other implementation issues, williseussed in Sectiod.4.

3.2.4 Auxiliary Proofs

The following proof can be also found in [12].
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Proofs of 23) Since the normalization i%; = 1, the predictive output is given by:

~

Y, = Z)\Vnz Z)\Zg

= g(Wn( )+ &ns

wherelV,,(v) = 41U, is the projected input signal onto the direction defined tebctor
v € RY &, =32, \ig(W,_i(7)). Without loss of generality, we can assume that= 1
andE{g(W,(v))} = 0 for each admissibléy, \), thereforet,, can be treated as zero mean

noise and independent ©f,, (), or independent dtJ,,. Hence the criterion22) becomes:

Q(A\7,9()) =E[Ys — & — g(Wa(7) .

For a given(\, ) pair, the minimum of)(\, v, g(+)) with respect tgy(-) is attained by the

regression function

glw;y) = E{Y, = &[Wa(7) = w} = E{Yo[Wn(7) = w} — E(,)

= E{Y,|[W.(y) = w},

where independence ¢f, andW,,(y) has been used, as well as the fact thgf,) = 0.

Note that the solutiog(-; ) is independent oX.

Pluggingg(-; ) into Q( Y5 g ()), we get
QA7) = Elvar{(Y, — &)[Wa(1)}], (34)

where¢, is the version oft, with ¢(-) replaced byg(-;~). Then we will examine the

minimum of Q(\, ) with respect to\. Note that

Y, = m*(U,) + n, + &y,
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wheren,, = X2, Arm*(U,, ;). SinceY, —&, = m*(Un)+sn+nn—§n, thus the conditional

variance term in34) becomes:
var{(Y, — &)|[Wa(y)} = var(m*(U,)[W,(y)) + var(e,) + var{n, — &} (39)

The only term in 85) depending or is the last term. Note that

- Z{Xk (Uni) = Mig(Wasi(7); )}

_ Z N {m* (Unsi) = g(Wass(7)i ) } + Z (A7 = X)g(Wosi(7)57)-

As a result, we have the last term B is given by:

[e.e]

> Nvar{m (U,) — g(Wani(7):7)} + Z (A = \)var(g(Wa—i(1):7).

1=1

This indicates thaf)(\, ) in (34) is minimized byA = \*. Thus @3) has been proved.

Plugging\ = \* into (34), the corresponding error has the following form

Q") = Ejvar(m™(Uy,)[Wn(7))] + var(e,) Z Atvar{m x (U,—i) — g(Woi(7)i7}-

=1

This defines the profile risk)(+) for the projection parameter. It is worth mentioning

that@(~) can also be written int he following form:

Q) = B{ (Yo = 3 Xig(Whi2)i)} (36)

whereg(w;v) = E{Y,|y"U, = w}.

The minimizer ofQ)(~) gives the optimal value of,i.e., we define

7" = arg min Q7). (37)

As the solution for the optimal nonlinearigyfw; ) is coupled with the projection parame-
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ter, we finally obtain the best nonlinearity in the model is cloggazed by

The above considerations indicate:

1. The minimum ofQ (A, ~, g(+)) with respect to\ is \*, the impulse response of the

true system. This holds regardless;of) or .

2. The minimization of)(\, v, g(-)) with respect tgy(-) for a given(\, ) is given by

the regression function

Proofs of (26) and (27) First, we need the following Lemma (Theorem 14.7 from [12]):
Let (U,Y) € R? x R be a pair of random vectors such tiRathas a density(-) defined
on the setS C R9. Suppose thaf(-) has a continuous derivative arfd-) is zero on the
boundarydsS of S. Assume that the regressidid(u) = E{Y'|U = u} has a derivative
OM (u)/0u. Then, we have,

_ o1 0f(U)/0u
E(OM(U)/du) = —E{Y 0 } (38)

Note this is a direct consequence of integration by parts:

E@MU) o) = [ 22 rydu

s Ou

= M(u)f(Wlos — [ M()(@(w)/0u)du

S /S M(u)(9f (u)/du)du

g @0
J A=
01(V)/0uy

f(U)

—E{Y
For the semiparametric Hammerstein system, we hgve > °°  Xim*(U,,_;) + e,

Jj=0"
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wherem*(u) = ¢g*(v*"Tu), and due ton*(u) = E(Y,|U,, = u), we have:

E(9m*(Uyn)/0u) = y"E(g"V (Wy)),

whereW,, = +*TU,,. By virtue of (38), we get:

dfu(U,)/0u
“E(gD(W,)) = —EY, ———" L.
YE(g D (W,)) = —E{ U }
Hence, ot (Un)/
* fu(Un uj
ﬁ:E{Yn RI) }
* Ofu(Un)/Oui |’
N BT

and @6) has been proved.
Notice that if{U,,} ~ Ny(0,X), then

Ofo(w/ou
fow -

thus
% E{V(ZTUL) )
v E{YL(EZTUL )

where(X~!U,,); denotes thg-th coordinate of the vectd®~'U,,). This confirms 27).

3.3 Approximation of a MISO Hammerstein System by a Semipara

metric Model

In practice, it is of interest to find the best semiparamegpresentation for a given MISO
Hammerstein model. Namely, we want to use a semiparametieh{Fig.10) to approx-
imate a MISO Hammerstein model (Fig), and wish to discover the optimal parametric
party = (v1,%2, - ,72)T € R? and nonparametric pagt-) which minimize the mean

squared errord2). For the system in Fig9, it shows in Sectior8.2.4that Q(~, g(-)) is
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minimized with respect tg(-) for a giveny by the following regression function

g(w;y) = E(Ya[y"U, = w) = E(m"(U,) 70U, = w). (39)

Note second equality in39) holds because of2(0). Plugging the solution in39) into
Q(7v,9(+)), we can obtain the general formul@g] for the smallest projection error for a
givenyThe minimizer ofQ(v) in (36) defines the best possibleand is denoted as*
(3.2.7. Note thaty needs to be specified with normalization constraints, [}, = 1.
The optimal nonlinearity*(w) is then defined ag"(w) = g(w;~*), and the corresponding
minimal error of the proposed approximatiorijéy*).

In the simulation studies, an example of semiparametricaqmation will be exam-

ined as as an illustration.

3.4 Simulation Studies

In the following simulation studies, we are going to examine identification of semi-
parametric model through the methods described in the quevsection. Sectio8.4.1
3.4.8will be focused on the case that the true MISO Hammersteitesysan be correctly
represented by the semiparametric model, as the system.ihtEiSection3.4.13.4.4will

be focused on semiparametric estimation under differentimear function, when differ-
ent length of training data is available, when the input igliéferent dimensions, as well
as when the input is correlated in its different dimensidrtge kernel estimate bandwidth
hi will be treated as another variables besidésand will be determined together with
obtainingd when minimizing the criterion functior2d) in each run of the simulation. The
selection of kernel bandwidth, in obtainingg(-) will be discussed and compared in the
simulation studies in SectioB.4.1 In Section3.4.5 the asymptotic distribution of such
estimate will be examined by simulations, and visual plaiwgmonparametric estimate
“g(-)” will also be shown with the true characteristi¢y-) as a comparison. Secti@¥4.6

will be about selection of kernel bandwidth andh,. It shows another option: use fixed
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values beforehand fdr;, andh,, and this approach is also feasible due to its performance is
close the other approach used in SecB8oh13.4.4 In Section3.4.6 simulations will also
examine another question: How performance in semipara&restimation will change if

a wrong kernel size is used. This could be due to practiabreasuch as the width of
grids that optimization criterion function is evaluatin§ection3.4.6 will also examine
how the accuracy of estimating the parametric part will iefice the estimation of the non-
parametric parf(-). Section3.4.7will conduct simulations to see how the ratio between
the two subsets in partition data in estimatiigwill have influence on the final perfor-
mance. It will also examine another re-sampling technideave-one-out. Furthermore,
the minimization of MSE approach in estimation-gfwill be compared in SectioB.4.8
with the derivative method, which is a direct approach iregbihg the formula of solution
described in SectioB.2.1 Finally, the issue that approximating a true MISO Hammer-
stein model by a semiparametric one will be shown in Se@idtf In this case,4*” and
“g*(-)" are first determined by calculations. Then simulationd b performed on how
close semiparametric estimate can represent the trueneanlcharacteristic in the MISO

model.

3.4.1 Estimation Error vs Smoothness of Nonparametric Chaacteristic

The shape of nonlinear function usually have a great infle@mcthe performance of semi-
parametric estimation, as well as the optimal kernel badttwi In the first simulation
example, identification of semiparametric Hammerstein ehagxdexamined in the context
of identifying different nonlinear functions. We ugé&(w) = a arctan(fw). The param-
eter3 here reflects how “difficult” the nonlinear function is. i.&ithin the same interval
symmetric to the origin, the smalleris, the closer*(-) is to a linear function, while the
greaters is, the closey*(-) is to a function that has a jump at= 0. See Fig.14 for this
series of functions. Note here is to ensuré'?;(arctan(m/(/'))2 is invariant for different
selections of3, anda(5 = 2) = 0.7.

For all different nonparametric functions we examined, &€ the same conditions: In-
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Figure 14: Plot ofy*(w) = a arctan(fSw) for different.

10

0
putis a 2-dimensional i.i.d. Gaussian proctss- NQ( { } , { } ),7* = (cos(@*),
0

0 1
sin(e*))T, wheref* = /4, and we us< cos(f), sin(é))T to estimate the parametric part.
Linear part is a FIR(3) filterA = [1,—-0.8,0.6,0.4],i.e.,G,, = V,, — 0.8V,,_1 + 0.6V}, _5 —
0.4V,,_3 in Fig. 9. And the noise ig,, ~ i.i.d. N(0,0.1), which corresponds to @57dB
SNR in the system despite of differesit The length of data set is50, and we use approx-
imately 55% of the whole data set to obtai-; v). The kernel bandwidth, here is used
as the value that minimize the contrast function2d)( Denote its value byll. Repeat
the same experiment fdr = 100 times, and use3Q) to evaluate the average identification
error of the parametric part an83) to evaluate the average error in the nonparametric part.
We show the simulation results in the following Talile

Not surprisingly, we notice that as the nonlinear functiendmes steeper (larger value
of 3), the identification error for the parametric part increasad the optimal bandwidth
h, becomes smaller. Fgt = 2, Err(d) is 0.002631 on average. This is equivalent to an
average2.94 degrees error from the true valde

Onceh, is determined by optimization, there exists several diffémays to seledt,.

It makes sense to use some sub-sampling scheme to #gle@n the other hand, [24]
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shows that the optimal bandwidth of kernel density is:

C
h= (=) 40
whereC' is a constant that depends on the nonlinear functitf) as well as the kernel
function K (+).
Due to the relationship ird0), it is also reasonable to seldet = ¢ - iy, wherec is a

constant determined by the ratio of lengthZgfover the length of the whole data. So we

compare the following three strategies:

Case 1. The valug, is selected by the leave-(p+1)-out method in order to entherénde-
pendence of the resampled data. Hence, the bandwidth foif{gpg the estimate

g(-) is obtained by minimizing the following criterion

1 N

. P . R 2
Qcv(ha) = (Y = 3 Mdpiprny(Wai))
=0

N _pn=p+1

wherelV; = 47U, andg_p,—; »11)(+) is the version of the kernel estimajé) (with

the bandwidthh,) computed from all the training points except

{(Un—i7 Yn—i)a (Un—i—h Yn—i—l)a ) (Un—i—p7 Yn—i—p)}-

~

3 hy Err(0)
0.2 5.522(1.868) 0.001127 (0.002080)
0.5 | 4.073 (2.036) 0.001312 (0.004081)
1 | 2.809 (1.677) 0.002038 (0.003514)
2 | 1.681 (1.153) 0.002631 (0.006035)
5 || 1.080 (0.603) 0.003249 (0.005718)
0.849 (0.399) 0.003546 (0.005377)
0.726 (0.173) 0.004474 (0.008064)

10
20
Table 1: Estimation errors and optimal kernel bandwidthanametric part of the semi-
parametric model in the stated experiment for differentigalof3. The mean as well as
standard deviation of the error and bandwidth are shown.
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Case 2. Use the kernel window size the same as the one in tregdiye of the semiparametric
algorithm,h, = h,. This serves as the comparing case for not distinguishitvges

the two bandwidths in the process of semiparametric ideatitin.

Case 3. Usé, proportional toh,, i.e., hy = ¢ - hy, wherec = (N/N;)75, and N, is the

length of the training séf;.

These different approaches are examined by simulatialls.= 200 observations
are generated as the testing set in each run of simulatiobtafroan approximation of
MISE(g). Comparisons are shown in TalieClearly the identification in Case 2 is not as
good as in Case 3, this shows the necessity of making digimbetween the two band-
widths in the two stages of nonparametric estimation. ComgaCase 1 and Case 3, we
see when the nonparametric functigi-) is not too flat ¢ > 1), re-sampling (Case 1) will
always lead to much higher value bf, and have higher nonparametric estimation error.
Conclusion can be made that whet(-) is not too close to linear, using the bandwidth
selected in calculating(-; v) multiplied by a known factor: is a better option compared
with applying re-sampling again in selectihgthe final stage of nonparametric estimation.
In most of the following sections the kernel bandwidthgfis selected in this way. The
estimation error for identification of parametric and na@paetric parts are also shown in

Fig. 15

g
0.2
0.5

N -

=
o

Table 2: Performance of nonparametric identification usliffgrent strategies in selecting

ha.

h[QCase i

5.3295 (1.5275)
4.9650 (1.1418)
4.1740 (0.9929)
3.0300 (1.1704)
1.2055 (0.8695)
0.8160 (0.4758)
0.6990 (0.4319)

MISE(g(-))(c

0.004514 (0.00452
0.008909 (0.00790
0.019215 (0.00803
0.030738 (0.01309
0.031996 (0.01669
0.037975 (0.01951

MISE(§(-))lces
0D.004721 (0.006502
99.009578 (0.011578
7D.016471 (0.012053
2P.022295 (0.012897
3D.030481 (0.019466
49.037981 (0.019530

0.044579 (0.01679

89.043602 (0.014725

MISE(§(-))!ce=e?
0.005224 (0.008485)
0.009228 (0.007959)
0.016533 (0.012840)
0.022536 (0.013521)
0.029457 (0.016275)
0.037048 (0.019300)
0.042455 (0.015170)

It is also worth mentioning that estimation of errors andheébandwidths in Tablé
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Figure 15: Semiparametric estimation errorga) Err(é) vs 3, (b) MISE(g) vs 5.

and Table2 all show values with a great variance. This is perhaps ther@af semipara-

metric identification.

3.4.2 Estimation Error vs Data Size

It is of interest to see how semiparametric estimation peréounder different length of

0 0
training data set. Again, Inp@f ~i.i.d. Nz( [ ] : [ ! ] ),7* = (cos(@*),sin(e*))T,
0 0 1

wheref* = /4, and we us€ cos(0), sin(é))T to estimate the parametric part'(w) =
0.7arctan(2w). Linear part is a FIR(3):A = [1,-0.8,0.6,0.4], and the noise is,, ~
i.i.d. N(0,0.1), which corresponds to @57dB SNR for the system. Use approximately
55% of the whole data set to obtayi-; v). The kernel bandwidth, is used as the value
h, that minimize the contrast function i24). Useh, = c - h, in obtainingg(-). Exam-
ine identification error for different value d¥, which is the length of observed data set.
Repeat the same experiment for= 100 times, and use3@) and @2) to evaluate average
identification error in the parametric part and in the noapaetric part. The simulation

resultis in Fig.16.
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Figure 16: Semiparametric estimation errorVs(a) Err(é) vs N, (b) MISE(g) vS N.

3.4.3 Estimation Error vs Dimension of Input

In this section we will examine the performance of semipaaimestimation for different

0 1 0 0
. . . . 0 o 1 - 0 ) .
dimensions of input datdJ ~ i.i.d. Nd( SR R ) v = (008(9*), o sin(07),
0 0 0 1
- A sin(6)", with 9 = /4, and we usd cos(8), A= sin(d).--- , A= sin(9))"

to estimate the parametric parg*(w) = 0.7 arctan(2w). Linear part is FIR(3):A =
[1,-0.8,0.6,0.4], and the noise is,, ~ i.i.d. N(0,0.1), which corresponds to &57dB
SNR for the system. Use approximatély’ of the whole data set to obtaifi-;y). The
kernel bandwidth, is used as the valug that minimize the contrast function 24, and
useﬁg =c- Bl as the kernel bandwidth,. Examine identification error for different value
of d. Repeat this fol, = 300 times, and use3@) and B2) to evaluate average identification
error in the parametric part and in the nonparametric pdme. Simulation result is in shown
Fig. 17.

From Fig. 17(c), we see that optimal kernel window size is almost invarfar all
the dimensionality. Fig.17 shows that semiparametric estimation works equally well in
higher dimensions compared with lower dimensions. If wedcmhthe same experiment,
but applying nonparametric estimation directly to the ingod output data, i.e., examine
the regression of” directly on multivariate inputU. Applying classical kernel estimation

and we get Figl18. Note that this plot include the case that the input dimengdrom 1
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Figure 17: Semiparametric estimation error vs input direeraity. (a) Erl(é) vsd, (b)
MISE(g) vsd, (c) Average optimal kernel bandwidth vsd.

to 20, andL = 200 times of repetition is performed for calculating the averaghis result

should be compared with Fid.7, and is an illustration for the “Curse of dimensionality”.

I
2 4 B g 10 12 14 16 18 20
dimension

Figure 18: Direct nonparametric estimation for differemensions of input. This reflects
the so-called “Curse of Dimensionality”, which is a typis@lortcoming for nonparametric
estimation.
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3.4.4 Estimation Error vs Correlation of Input

In the next experiment, we are going to examine semiparanastimation in the context of
input signal having correlation between each of its dimamsi* = (cos(@*), sin(é’*))T,
where¢* = 7/4, and we use( cos(f), sin(é))T to estimate the parametric pati(w) =
0.7arctan(2w). Linear part is a FIR(3):A = [1,—0.8,0.6,0.4], and noise isz,, ~
i.i.d. N(0,0.1). which corresponds to @57dB SNR for the system. Use approximately
55% of the whole data set to obtaiji-; ). The kernel bandwidth, is used as the value
that minimize the contrast function i24), denote it byh;. Useh, = ¢ - h; as the kernel
bandwidth in estimating*(-). The length of observed data setNs= 150. Let inputU ~

iid. Nz(lo},a(p). { L

). Note the termu is to make sur&(1V) here is invariant
0 p 1

for differentp, anda(p = 0) = 1. In this case the SNR of the system is alwaysrdB

for differentp. Examine semiparametric estimation for different choite,@nd repeat the
same experiment fat = 300 times, and use3@) and @2) respectively to evaluate average
identification error in the parametric part and in the noapaetric part. The simulation

result is shown Figl6.
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Figure 19: Semiparametric estimation error vs input catieh. (a) Er(é) Vs p, (b)
MISE((g(-))) vs p.

Itis not surprising to observe in Fig9 (b) that under different input correlation, as long
asE(W) is invariant, then the nonparametric estimation has sirfeleel of errors. On the

other hand, Figl9(a) shows negative input correlation corresponds to smpéleametric
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errors in the semiparametric model. This is consistent withintuition that negatively

correlated input is able to make the parametric part motendis/e under this situation.

3.4.5 Distribution of Semiparametric Statistics

In Section3.4.2 for N = 150, andd = 2, and repeal. = 10000 times for evaluation the
error, if we plot the nonparametric estimgte) and compare its shape wigfi(-), the result

is shown in Fig.20.
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Figure 20: Estimation of nonparametric functigt(-) in the semiparametric model. (a)
The mean estimate (dash line) and the true function (sai&) li(b) The 95% pointwise
confidence interval of the estimate (dash line) and the woetfon (solid line).

We then examine the distribution 6f &y, (§ — 6*)> and ISE(j(-)). The histogram,
as well as nonparametric estimation of these distributasesshown in Fig21. Not sur-
prisingly, the distribution of) has a Gaussian shape, thus consistent with Central Limit
Theorem. Note empirical mean féris 0.786481 (#* = 0.785398) and standard deviation
for 4 is 0.055030.

3.4.6 Estimation Error vs Kernel Bandwidth

In previous simulation studies, we have been using flexibtece of kernel bandwidths,
i.e., using the bandwidth that would lead to minimum coritfasction in 24), thus se-
lecting h; the same time when obtainirly and use, = ¢ - k, in obtainingg(-). Thus

the kernel bandwidths always differ from simulation to siation even though the system
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Figure 21: Distribution of semiparametric estimation istats. (a) Histogram of, (b)
Histogram of optimakh,, (c) Histogram of(§ — 0*)2, (d) Histogram ofl SE(g), (e)-(h),
nonparametric estimation for the distributions shown ja(¢.

is the same. Another approach is to fix kernel bandwidth leéfand, and use this fixed

bandwidth in semiparametric estimation.

Given inputU ~ i.i.d. Ng( { ! } : { b } ) v = (cos(@*),sin(@*))T, wheref* =
0 0 1

/4, and we us€ cos(0), sin(é))T to estimate the parametric pagt(w) = 0.7 arctan(2w).
Linear partis a FIR(3)A = [1, —0.8, 0.6, 0.4], and the noise is,, ~ i.i.d. N(0,0.1), which
corresponds to 8.57dB SNR for the system. Use approximatéyf% of the whole data
set to obtairy(-; ). The kernel bandwidth; is fixed beforehand. Examine the error for
parametric part under different value/af. Repeat the same experiment for= 500 times,
and use 33) to evaluate average identification error in the parametit. The simulation
resultis in Fig.22

It shows that fixingh; = 3.5 in this case will lead to the smallest error. The average
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Figure 22: Estimation error in the parametric part usingdikernel bandwidth. (a) The
minimum contrast function v, (b) Eré) vsh;.

mean square error féris 0.00314 (with standard deviatiod.006059). Compare this result
with the flexible bandwidth case (Tahl® where average E) is 0.00263 (and standard
deviation0.006035), we can conclude that fixinky; works relatively well. The curve near
the minimum in Fig.22(b) is rather flat, suggesting that using a wide range of wafae
bandwidthh, is relatively applicable. Therefore fixing bandwidth is another feasible
option in semiparametric modeling.

Next, we come to the issue of selectihg It might be reasonable to fi, = ¢ - hy, a@s
(40) has suggested. In this cakeis specified by,. In previous simulation, we examine
this approach, and compare MIGE under different selection of;. Fig. 23 shows this
result. Although using kernel bandwidth = 3.5 in obtainingg(-; ) leads to averagely
optimal estimate of, fixing kernel bandwidtl, = ¢- 3.5 leads to poor result in estimating
g(+) from Fig. 23.

Another method is to use fixdd totally independent of,. To the samd. = 500 data
sets, we use automatical selectiormef(as in Sectior8.4.1:3.4.4 in obtainingg(-; A), and
then use fixed, in estimatingg(-). The result of this simulation is shown in Fig4.

This shows if we want to use fixed kernel window size, the vaised in estimating
g*(+) should bel.1 for training set of length 150. The mean and standard dewvidtir the

mean integrated square error in this setting is 0.02264 &1b68. It is very close to the
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Figure 23: Estimation error in the nonparametric part usixed kernel bandwidth, =
C- hl.

Figure 24: MISEg(+)) VS hs.

unfixed case in Tabl2 (0.02254 and 0.01352).

Therefore we should select kernel bandwidth equal.5an estimatingy*, and to be
1.1 in estimatingg*(-). For the training set with different length of data, we candifo
these numbers by a multiplication factor accordingly.

Fig. 24 is whenf* is estimated under proper selection/af while for simulations in
Fig. 23(b), it is usually not so. However, the estimgte) have similar shapes in the two
figures. Thus it suggests the estimatiorydf-) and the estimation of* are independent
of each other, and under the circumstance even using impkepeel window size in esti-
matingd*, properly selecting kernel window size in the second steplavstill give good
estimate about the nonparametric functiof ).

On the other hand, in semiparametric estimation using flexiernel bandwidth, mis-

using the kernel width (e.g., the error due to the length @f ge search in optimization)
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could lead to higher identification error. This is furtheaened in Fig.25. In this simu-
lation, the samd. = 500 data sets are obtained. Liet is minimizer of contrast function,
but a different valué, is used as kernel bandwidth in obtainif@; ), andhy = ¢ - hy is
used in obtaining(-). It shows estimation of parametric part would be more suhjeto

kernel bandwidth, while estimation of nonparametric pariot so much sensitive.
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Figure 25: Estimation error when sub-optimal kernel bamuitiwis used. (a) E(é) VS
(hl — hl), (b) MlSE(g()) VS (hl — hl)

3.4.7 Discussions about Optimal Data Partition and Other Resampling Schemes

In the previous simulations, we have been usiago of the total data as the sé&i to
calculatej(-; A). A question of interest is how much percent data should ussdch re-
sampling would give optimal identification result. The @lling experiment is using the
same system and algorithms as in Sec8ch2 with N = 206. And the simulation is to
examine identification performance under different ch®iok/N;, the length ofl;. Note
that NV = 206 in this case is for the convenient that the total observatiorset’; andT,
are equal t@200. We then performl. = 300 repetitions of simulations to obtain average
errors. The result is shown in Fig6.

From the simulation result, we observe using 55%-60% of whizta in obtaining
g(w;~) would lead to the most accurate estimate tf However, the length of this subset

seems to have less significant influence in estimaditigy), except for extreme cases.
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Figure 26: System identification error vs lengttiefsubset. (a) E(é) vs Ny, (b) MISE(g)
VS Vy.

Besides, the minimum in Fig26(a) is rather flat, suggesting that a wide rangé\ef N
ratio choices would be acceptable.

For the same system, if we observe data 8ize 150, and use fixed kernel bandwidth
h, = 3.5 andhy, = 1.1, and to apply leave-one-out rather than partition re-sargpive
finally get Er(f) = 0.000621, and MISE(-)) = 0.021413 in the simulation. Comparing
this result with the partition method where E;AHIP artition]y — ().002631 (corresponds to an
average 1.428 degree of error) and M(SE)!"*r#onl) = (.022536 (shown in Tablel and
Table2), we see a significant improvement in estimation of paramptrt, while estima-
tion of nonparametric part still performs similarly. Leawee-out method fully makes use
of the total data set, so itis not surprising that it leadsgtibdy estimates. When only a small
data set is available, leave-one-out is surely a powerftibopThe similar performance in
MISE(g(+)) again suggests re-sampling technique only have influenga@metric part,
and identification of parametric part and nonparametri¢ @ two relatively separated

problems.

3.4.8 Comparison with Derivative Method in Parametric Inference

The previous simulations have been using minimization oEMI$ estimating the para-
metric part of the model. If the parametric inference in ##c8.4.1and Sectior3.4.2

are performed through the derivative approach (See Se8tid) rather than minimiz-

48



ing MSE, we get Fig.27 and Fig. 28 respectively. Note that the constraif*|| = 1
is also used here, and we also Uses(f), sin(d)) for representingy, as we did for the
2-dimensional cases in both Secti®d.1and SectiorB.4.2 and use 33) to represent the

estimation error for the parametric part.
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Figure 27: Er(é) Vs 3 using derivative approach in parametric inference.
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Figure 28: Er(é) vs N using derivative approach in parametric inference.

Comparing with Sectior3.4.1and Sectior3.4.2 we see that the prediction error is
at least 3 times larger by applying derivative approach.rdfoee, the derivative method,
although explicit in solutions, does not work as good as mining MSE approach. How-
ever, due to its simplicity in application, it can always lgpked as a first approach in
semiparametric estimation, and its solution could be appdis an initial search position
for applying the other method.

If we examine apply semiparametric estimation for différdimension of input, ap-

plying derivative approach to the system in Sect®4.3 and useE(||5 — +*||?) as the
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indicator for estimation error, we get Figo.

Figure 29: Er(¥) vs dimension using derivative approach in parametric erfee.

3.4.9 Semiparametric Approximation of a MISO Hammerstein §stem

In this section, we are going to examine the validity of applysemiparametric model to
MISO Hammersteim systems. Suppose we observe data fromraetisional Hammer-

stein system with the following nonlinearities:

m*(Un) = U(Un,l + 3Un72) -+ U(3Un71 + Umg) —1

whereo(z) = (1 + e ®)~! is the so-called sigmoid function, ald,, = (U,1,U,2)%,

n = 1,---. The plot of this 2-d nonlinear function is shown in F&.

Figure 30: Er(9) vs dimension using derivative approach in parametric erfee.

We notice thatm*(-) qualify E(m*(U,)) = 0. In order to determine the optimal

parametric characteristig, we need to evaluat@(v) in (36). Under the normalization
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|[7]] = 1, we express the parametric part hy= (cos(d),sin(9))”. For inputU ~ i.i.d.

0 1
Nz( , g ) then the simulation of)(#) vs 0 according to 86) under different

0 p 1
input correlatiory is shown in Fig.31.
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Figure 31: The smallest projection er@(¢) vs ¢, given different input correlatiop. (a)
p=0,(0)p=0.1,0.5,0.7,0.9, (c) p = —0.1,-0.5,—0.7, (d) p = —0.8, —0.85, —0.9.

Fig. 31(a)&(b) shows that fop > 0, the approximation error function has its minimum
atd = w/4. This means the parametric part in semiparametric modelldhmave the
characteristi* = 7/4, i.e.,v* = (v/2/2,+/2/2)T. For negative values of correlation
input p (Fig. 31(c)), it seems that fop > —0.7, 6* should still be selected as/4. As
p becomes closer te-0.8 (Fig. 31(d)), the minimum ofQ)(#) becomes harder and harder
to identify, and wherp = —0.8 (Fig. 31(c)), it seems the regioh € {0 : 7/6 < 6 <
7/3} all corresponds to the minimum @#(¢). This means reasonabl§; could be any

value betweenr/6 and 7/3, although the semiparametric model lost its uniqueness in
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identification, it on the other shows the approximation ®MiSO Hammerstein model is
relatively “easy” since as long &3 is within [7 /6, /3], the approximation error is almost
equally the smallest. Fig31(d) also shows that whem < —0.8, the global minimum of
Q(#) no longer appears 8t= 7/4, but atd = 7/6 andd = /3 respectively. Therefore*
should be equal to eithet/6 or 7/3 in this case.

The nonlinear characteristic () is obtained by 29). The result is shown in Fig32.
Forp > —0.7, * = 7 /4, and the shape af*(-) is shown in Fig.32(a). Forp = —0.8, 6*
does not have unique values, and F32(b) showsg*(-) whend* is selected as /6, 7/3
andr/4. Forp = —0.9, 0* equals to eitherr /6 or 7 /3, and plug in the corresponding(-)

are the same for each case, and is shown inFA(g).
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Figure 32: The nonlinear functiogi'(-) in semiparametric approximation under different
input correlation. (ap = 0,0.5,0.9,—0.5, (b) p = —0.8, 0* = 7/6,7/3,7/4, (C) p =
—0.9, 0* = 7/6,7/3.

We are interested in applying semiparametric model to the®IHammerstein system
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with with nonlinear subsystem*(U,,) and input signal described as above. Suppose the
MISO Hammerstein model has linear subsystem FIR(8)= [1,—0.8,0.6,—0.4], and

p = 0in the input covariance matrix, and the noise~ i.i.d. N(0,0.305%) (10dB SNR for
the system). Then we first examine the effect of kernel sizbersemiparametric identifi-
cation scheme described before when the training set isygtheV = 150, then conduct
a repetition of. = 500 different simulations. Fig33(a) shows average &9}) vs kernel
size (denoted by:;). We generate a testing data set containlig= 200 observations
from the MISO Hammerstein model, and use L °M 6(47U;) — m*(U,)|* (where
4 = (cos(#),sin(M))) to evaluate the error in estimating the nonparametricasttaristics
g*(+). Note this error is an estimate &fg(5”U) — m*(U)|?, which is approximately
E|§(7"U) — ¢*(v*TU)|? plus the semiparametric projection error. Note sifcg’ U) is
very close tgj(v*7U) (see SectioB.4.6, E|§(77U) —m*(U)|? can be viewed as a statis-
tics that reflects the error fgi(-). Thent -+ >, |9(37U;) —m*(U;)|? vs kernel window

size (denoted byi,) is shown in Fig.33(b).
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Figure 33: Semiparametric identification error vs kernekesi (a) Er(é) vs hy, (b)
Er(|g(470) —m*(U)[?) vsho.

From Fig. 33, we see that the optimal kernel length for this probleniis= 4.5,
andh, = 2.3. Using these two kernel size and adjusted on considerafioata length
of training set, we conduct another simulation about thatifileation error vs length of

training data. We performh = 100 repetitions for the average performance and the result
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is shown in Fig.34.
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Figure 34: Semiparametric identification error vs lengtlraining data. (a) E(ﬁ) VSN,
(b) Err(|g(37U) — m*(U)|?) vs N, the solid line is the empirical error, while the dotted
line is the regression fitting to the solid line. Note they asincoincide.

In Fig. 34(b), the error converges to some non-zero constaif as oc. This is due
to the error introduced by approximating the true MISO gystesing a semiparametric
system. Thus we use the model §§t47 U) — m*(U)|?) = a - N + c to fit the empirical
observations in Fig.34(b), and find the coefficients to he = 0.976, b = —0.788 and
¢ = 0.01359. The convergence rate().788 is very close to the theoretical valueZ/5 x 2)
for 1-dimensional nonparametric estimatidi8), and the limit tern0.01359 is also very
close to the calculations for the semiparametric projeatimor shown in Fig31.

For the case the length of training S€t= 150, if we generate, = 100 independent
training data sets and examine the nonparametric estinfidgte)an each simulation and
compared them with the calculated optim&lw) whenp = 0, the result is shown in Fig.

35.

3.5 Conclusions

In Section3, semiparametric Hammerstein model identification scheamnegxamined by
simulation studies. It shows that in many cases, MISO Harstaigr systems can be ap-
proximated by semiparametric models, such that the “CufdRirmensionality” can be

avoided. In semiparametric model identification, the eation of parametric party*”
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Figure 35: Estimation of the nonparametric part in the sanametric model. (a) Mean of
g(+) (solid line), and the true*(-) (dashed line), (b) Mean ¢f(-) (solid line), and thé&5%
pointwise confidence interval of the estimate (dashed.line)

and nonparametric parg*(-)” are relatively two independent processes. In estimation o
~*, minimization of MSE leads to better performance comparid eerivative method. In
estimatingy* and estimating;*(-), two kernel estimate bandwidths are involvéd énd
hs). The kernel bandwidths can be chosen by two possible appesa One is to deter-
mine beforehand the optimal kernel sizeand h, individually and fix them in advance.
The other approach is to determihgby consider it as another variable, together Wifor
4) should minimize the criterion function. Then use this sttd/; multiplied by a known
constant factor to bé, the kernel bandwidth in estimation ¢f(-). Among the two ap-
proaches, the latter one will lead to more accurate estimaésults, while the former one
is faster to implement, and yet lead to estimation errotikaly close to the latter approach.
Re-sampling technique is also required in the process ohashg~*, and leave-one-out
could be an optimal option when the training et is small. iRant method could also be
applied when the training set is larger. The influence of ime@r function shape, input
dimensions, length of training data, correlation betweifiergnt input dimensions, have

also been demonstrated in the simulation studies.
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4 Model Selection Algorithms for Identification of Ham-

merstein Systems

4.1 Introduction

This section of the thesis is concerned with identificatiba 8ISO Hammerstein system
depicted in Fig.6. For a long time, researchers who have applied parametpmaph
to system identification have been relying on the assumpitianthe system nonlinearity
m*(-) can be specified by a finite dimensional parameter suctvth@j = m*(-;0),60 € O,
i.e., the nonlinear function belongs to a certain knownslaisfunctions, e.g., a class of
polynomial characteristics. A fundamental question, haweis the validity of the para-
metric assumption. This section will try to address thisiesen the context of testing
whether the nonlinear function*(-) in the Hammerstein model belongs to a certain para-
metric class.

In particular, we represent the system nonlinearity by amogonal expansion and our
model selection methodology is based on a certain type e$ttwiding rules. The thresh-
olding strategy is applied to estimated Fourier coeffigemtd it has its roots in the wavelet
analysis of signals [25]. The thresholding algorithm iseatol capture the sparse structure
of the functional form as is it aimed to reduce the variancthefestimate at the expense of
introducing some bias. Overall, the thresholding estiroatke system nonlinearity reveals
the substantially smaller mean squared error. Yet anosiseeiis discussed in Sectidn
where the parametric assumption is not assumed, we caragstihe system nonlinearity
by orthogonal expansion of a finite order. The required tatino parameter can be deter-
mined by certain shrinkage methods. Therefore, this agpr@saequivalent to estimate a
general nonlinearity by a nested class of parametric fansti

Furthermore, we assume the input to the system to be i.i.dus&an. Under this
assumption, an orthogonal basis employing Hermite polyalsnis a natural choice to

represent the system nonlinearity. In fact, the Hermiteg/paials form the orthogonal
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basis with respect to the Gaussian weight. This approaclalsanbe extended to other
input signal distributions, e.g., for uniformly distrilma input one can use trigonometric

functions or Legendre polynomials.

4.2 Orthogonal Series Estimation Using Hermite Polynomiad

Hermite polynomials is a set of classical polynomials ogihreal with respect to a Gaussian
weight, see [26], [12] for some basic properties of this polyial. One of the common

form of Hermite Polynomials is defined as follows:
H,(z) = (—1)"ex2/2£6_x2/2
" dxn '
It can be shown in [26] that the polynomid]#/,,(x)} satisfy the following orthogonality
property

/ Z Hi(2) Hy(2)w(x)de =

{k!, fork =1

0, fork #1

wherew(z) = %e—ﬁ/z. The first several Hermite polynomials are:

HQ(ZIZ') =1
Hi(x)==x
Hy(z) =2* — 1
Hi(z) = 2° — 3z

z) = 2° — 152" + 452% — 15
Hy(x) = 2" — 212° + 1052° — 105z

Hg(x) = 2® — 282° 4 2102 — 4202% 4 105
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Hy(x) = 2” — 362" + 3782° — 12602° + 945z

Hyo(x) = 2" — 452% + 6302° — 31502* 4 47252% — 945.

The general means for generating Hermite polynomials isrghy the following three-

term recursive formula
Hyq(x) = xHy(x) — nH, 1(x), n>1,

with the initial conditionsH(z) = 1, Hy(z) = x.
Let us definey,(x) = Hy(z)/vEl. Then{h,(z)} constitutes an orthogonal basis, i.e.,

we have
1, fork=1

/ " (@) (@) w(@)de = {
> 0, fork #1.

Functions satisfying |m(z)|?w(x)dz < oo can be represented by Hermite polynomial

expansions:
m(x) = Z arhy(x), (42)
k=0
where
ap = /_O:O m(x)h(z)w(x)dx (42)

is thek-th Fourier coefficient. Due to the orthonomality we havesaal’s formula

/OO m?(z)w(z)dr = i az. (43)
- k=0

The inner product associated with the Hermite expansioreied with respect to the
standard Gaussian density-), i.e., < my,ms >= [0 m(x)ma(z)w(x)dz.

For the Hammerstein system in Fig.i.e.,,, = > Xfm* (U, _;) + &;, with A\ = 1,
Em*(U,) = 0, the relationship as in1@) allows us to expand the nonlinear charac-

teristic m*(-) in a series of Hermite polynomials id1). Thereforem*(-) can be esti-
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mated by the truncated version of the Hermite expansionsicélefor a given data set

{(U,Y1),---,(Un,Yn)}, we obtain

T
k=0
where
Z Y, hi (U, fU((U )) (45)

is the estimate afy, 7" is the truncation parameter, affid(-) is the density function of the

input signal. The formula ind®) can be derived in the following way:

m* (u)hy(u)w(u)du

ap =

{
= E{Yuh(U,) w(Un) 3 (46)

The formula in 45) is just the empirical counterpart c4§). Particularly, if the input data

are from the standard Gaussian distributia@) becomes

. 1Y
i =~ 30 Valu(U). (47)
n=1

Note that if the input data have Gaussian distribution witin-standard variance, it can
always be normalized by a linear transformation and therrdémted as the normalized
Gaussian distribution case. So the estimatest#h &nd @7) can be applied to a more
general class of cases where the input distribution is Gausgth no unit variance.

The arguments used id§) shows that, is the unbiased estimate @f, i.e.,

E(a) = ag. (48)
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Note that this fact implied thatm(u) = >7_, axhi(u) is the partial sum of representing
m*(u) in terms of Hermite polynomials.

However, some more tedious algebra, see [12], reveals that

vamdk)::(D(f%). (49)

It is important to note that4@) takes place regardless whethgr=# 0 or a, = 0. The
bounds in 49) holds under the assumption that the linear subsystem dfiimemerstein
model is stable, i.e} 2, |\f| < oo. Note also that the constant appearingdf) (depends

on k. We can rewrite49) in the following compact form
ar = ap + Op(N~Y?),  forall k (50)

whereOp(-) denotes “in probability” convergence.

The meaning of49) is that even ifa;, = 0, then there exists irreducible statistical error
contributing to the overall reconstructed accuracy of thelinear estimate: (u).

The aim of our research is to propose a modified estimaig thfat is able to detect the

case whethet, = 0. Hence, we seek for an estimatgwith the following property

ap —

~ { ak—i-Op(N_l/z), |f ak§£0
07 |f CLkIO.

For such an ideal estimator, one has to relax the propertgiaflunbiased, i.e.,

Nevertheless, the modified estimajecan reveal the reduced mean squared error. A partial
remedy to remove the undesirable propertya) can be obtained by employing a class of

thresholding rules, see Sectidr8.
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4.3 Thresholding Techniques for Coefficients Shrinkage

In many cases, the coefficienfs,; k = 0,1,---} are sparse, meaning that most of them
are zero except for a few values. Hence, denotingpy= {k : ar, # 0,0 < k < T} we
have that the partial sum for representing(u) is given bym(u) = k% aghy(u). The
sparse case corresponds to the situation wheh~ 7< for some smgllg > 0. In such
circumstances the estimator(u) in (44) is unable to detect a set of Fourier coefficients
that are zero. As we have already noted 50)(this is due to the irreducible statistical
error caused by the randomness of training data. As a reéBalestimaten(u) is going

to reveal a large reconstruction error. To address this itapbissue one needs to turn to
some shrinkage approach often implemented in terms ofttbléisig rules where we can
test the magnitude of Fourier coefficients and set them gpjaitely to zero if they are not
in the sparse set of the underlying nonlinearity. Threshgldhethods have been originally
developed in the application of the statistical inferentavavelets [25], [27]. There are
several types of thresholding rules, e.g., hard, soft, dadkithresholding. Denote the

estimated coefficients after thresholdingday Hard thresholding corresponds to

0, l|aw| < th,
iy, =

whereth is the threshold to be selected. One simple way of selec¢tirig the so-called

—

“Universal Threshold” [28], in whichth is specified as\/va/r(a) -2log N, andvar(ay,)
is an estimate of the variance @f, see Sectiod.7. Thresholding Hermite coefficients
could be particularly useful if we know that the true chagastic is a polynomial of some
unknown order.

It is worth mentioning thai,, is a biased estimate af,. This is a general property of
the shrinkage rules, i.e., unbiasedness must be relaxeden to capture a sparse structure

of the underlying characteristic.
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4.4 Estimating a General Nonlinearity by Hermite Polynomids

The estimaten(-) in (44) is able to converge under some conditionsot-) to a general
class of nonlinear characteristigs (-), provided that the truncation paramefedepends

on the training sizéV in such a way that

T(N) —

and
T(N)
N

— 0

asN — oco. The proofs of such asymptotic properties of the Hermiteeseronparametric
estimaten(-) can be found in [12].

In this research, however, we are interested in a finite sausipk property ofn(-),
i.e., the problem of choosing the truncation paraméteOur strategy for specifying@’ is
relying on the global discrepancy measure betw@én) andm*(u). Owing to Paserval’s

formula we first represent the Integrated Square Error (ESHbllows

ISE(i) = /_O:O(Th(u)—m*(u))Qw(u)du
- S (—a)i+ 3 (52)

k=0 k=T+1

Next, the Mean Integrated Square Error (MISE) can be evediiay

MISE(i) = E{ISE(in)}

E(a —ap)*+ > a;

Il
NE

k=0 k=T+1
T o0

= Y var(ay) + Y. af, (53)
k=0 k=T+1

where the relationship ird@) was used and the expected sign is taken with respect to all

training sets of sizéV.
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The minimizer of 63) with respect tdl’ determines the optimal truncation valtié of

the orthogonal estimate, i.e.,

T = arg min MISE(1)

= argmin{z:var ar) + Z ak} (54)

k=T+1

This defines the theoretical optimal (with respect to MIS&e of the truncation parame-
ter that can not be directly computed as it contains unknaviakles. In fact, both véiy)
anda; are unknown in advance. A computable estimaté ofcan be obtained by esti-
mating vata;) andaj. Let va(?k) be some estimate of Vi), see Sectiod.7. Since

0 < a2 = E(aj) — var(a,) then one can estimaté by (&i — v?r(d\k)). To prevent that this

difference to be negative, we estimateby

—

(di — var(dk))+,

wherea, = max(a,0).

All these considerations yield the following empirical at®of the truncation parame-

ter
T = arg 1 mln {Zvar + > (di—var(dk))Jr}
k=T+1
T —_—
= arg min {Zvar I —var(dk))+} (55)
k=0

whereT is believed to be the estimate Bf. The final formula in §5) results from the fact
thaty 32 .y a2 = /25 m**(uw)w(u)du — S1_, aj.

We can conjecture th& — 7+ (P) asN — co. Nevertheless, such asymptotic prop-
erties of T’ are postponed to future research. In this thesis, the &mfeof truncation

parametef’ is examined by means of simulation studies.
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4.5 Testing for the Polynomial Form of the Nonlinear Characeristic

While Sectiord.3 have discussed the issue of Hermite polynomial estimathcaeffi-
cient shrinkage for estimating the polynomial charactiessit is of interest whether it is
reasonable to assume the nonlinear function to be polynofria problem here would be

testing the polynomial model hypothesis against all otlogrparametric alternitives, i.e:
Hy: m*(-) is a polynomial of order less than (56)

against H,: m*(-) is nota polynomial of order less than

This is equivalent to testing

Hy: 7*(u;p) is aconstant for each € R, (57)

wherer*(u; p) = m*(u) — X0_¢ athi(u), and{a}, k = 0,--- ,p} are the Hermite coeffi-

cients form*(-), against the alternative:
H,: r*(:;p) is nota constant for each € R.
Note this test is actually the no-effect hypothesisifar; p).

The expression*(-; p) can be estimated by:

p+T1’

Fluip) = Y aphe(u), (58)

k=p

whereT” is the truncation parameter afgis the same as that appears4d)(and @7). In
follows from the central limit theorend,. ~ N(ax, \/var(ax)). Under the null hypothesis,
dk/\/va(d\k), k = p,--- would have standard normal distribution for asymptotickdrge
N. This leads to the Neyman Smooth Test [29], [30], [31] stiatis

p—1+b d2

Sy= Y —L—. (59)
k=—p Var(ag)

It is postulated tha&k/\/va(d\k), k = p,--- are independent of each other. Under the
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null hypothesis]y should have? distribution with degrees of freedobn For a statistical
test of significance level, the one-sided?-test would reject the null hypothesi#, for
Sy > x?(a;b), wherex?(«a; b) denotes the — o quantile of the cdf ofy;.

Neyman suggested that the selectiorb @ould be important for the performance of
this test, for a too large value 6fwould undermine the influence of the abnormal terms of
dk/\/va(d\k). He proposed should be set as a priori. In the following simulation stgglie
we fix this value to bé = 10.

In the simulation studies, it is shown that Neyman test catiyrelistinguish between
a true polynomial structure Hammerstein system and a ntynpmial structure of Ham-
merstein system. However, a larger data set is requiredteuté-) to qualify higher order
polynomial assumptions. Besideg, as well asva/r(a) should be carefully estimated.
Weighted Monte Carlo (Sectioh6) would be a way to improve the estimate #v). The
estimation of vafa,) will be discussed in Sectiod.7. More detailed examples will be

shown in the simulation studies in Sectidd.

4.6 Weighted Monte Carlo

The derivation in 46) can be considered as a Monte Carlo problem. As such the farmu
in (47) is the simplest Monte Carlo technique for the integral eaibn. We have already
pointed out in 49) that the variance of the estimaig decreases a@(%). Our goal is

to apply refined Monte Carlo integration algorithms develbm [32] in order to improve
the & convergence rate. To do so, Etq), Y1), -+, (Uwmy, Yi))s - -+ » (Ui, Yiny) } be
the ordered version of (U, Y1), -, (Un, Yn)} with respect tol,,. Then @7) can be
rewritten as

N1
i = 3 Vi he(Uim),

n=1
which resembles the rectangular method of numerical iategr. Yet, an improvement is

to replace the rectangular-form of numerical integratigrirapezoidal rule, in particular,
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the weighted Monte Carlo method proposed by Yakowitz et 2]:[3

N
ar =Y waYimhi(Ug), (60)

n=1

wherew,, = %(@‘%U(nﬂ)) — <I>‘1(U(n_1))), d~!(-) is the inverse standard Gaussian cdf,
andUqy = —oo, U1y = +oo. It can be shown that the estimator BOf has a much

faster convergence rate:

E{(ax — ax)*} = o(1/N%).

The implementation of such weighted Monte Carlo methodaldb be examined in simu-

lation studies.

4.7 Estimation of the Variance

In both Section4.3 and Sectiomd.4, the variance of the estimator Var) needs to be

estimated. The simplest way is to estimate it directly tigftothe observed data. Based on
(47):
N
var(ay) = var( Z Y, hi (U )

Using Lemma 12.4 in [12], we can prove that
1
var(ay) = Nvar(Ylhk(Ul)), for k > 1. (61)

Let us estimate va#i;.) by a standard formula

— 1 1

N 2
var(ay) = NN _1 > (Ynhkz(Un) - dk) : (62)

It is worth mentioning that although the estimat62)is consistent, yet it is not unbiased,
due to the dependency bfs.
Another approach to estimata/r(a) is bootstrapping. Efron et al [33] shows that gen-

erating the bootstrapping sets according to the @ajr Y,,) is a relatively good approach
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for estimation. The realization of such bootstrapping fsﬁmatingva(d\k) can be gener-

alized in the following procedures:

1. Giventhe observatiodsU;, Y1), -, (Un, Yn)}, draw(Ubeetl ylbeotl) 'y = 1.... N
from it with replacement, this forms a bootstrapping set
{(U[boot le[boot})’ o (U][\l;oot}’ ngw()t])}.

2. Computel™ = YN |y lbootlp (Ulboot]y =01, -

3. Repeat steps 1 and B,times to geti"”"") ...  al"?,

4. Estimate vdiay) b

/\ B

1 o~ (oot _ LS~ ooty \?
var(ay, _N—lZ( _Eg(ak ))’ k=01, (63)

b=1

For the estimate,. in (47), both 62) and 63) can be used to calcula@(&\k). It is shown
in Section4.8.1that estimateya/r(a) according to §3) and that according t®%g) leads to
similar performance in thresholding the coefficients. Sefibrmula in 62) is preferred
since bootstrapping is usually much more time consumingvever, if a; is obtained by
the modified Monte Carlog0), then 62) can no longer be applied to estimate the variance

—

of ay, var(a, ) must be calculated through bootstrapping mett&3). (

4.8 Simulation Studies

4.8.1 Hermite Polynomial Estimation with Thresholding Rule

Experiment 1 Suppose we observe a data set from the following system:
e InputlU ~ N(0,1).

e Linear part of the system is characterized by FIR{3} [1, —0.8,0.6, —0.4], whereas
the same identification method also be applied to IIR sukgysi{e.g. ARMA mod-

els).
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o m*(u) = hy(u) + ho(u) + hs(u) ~ 0.482u> + 0.707u? — 0.225u — 0.707.

e ¢, ~ i.i.d. N(0,0.648). The amplitude of noise here corresponds fi® @B signal-

to-noise ratio in the system.
e Length of data observedy = 5000.

e Obtain Hermite coefficientg, by (47). Use bootstrapping to estimata/r(a), and
generateB = 100 bootstrapping sets. Then apply thresholding rule and tiésiro

the modified coefficients,. Repeat this for. = 100 times.

The simulation result is shown in Fig6.
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Figure 36: Comparison of the boxplot of Hermite polynomistimate without and with
thresholding rules in Experimeit Sectior4.8.1 Note that the true value should bg = 1

for k = 1,2,3 anda; = 0 for other value oft. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentites/hiskers extend to the
most extreme data points not considered outliers, andeosithre plotted individually.

Fig. 36 shows that applying orthogonal estimate crudely will algvagsult in nonzero
coefficients even though many of them actually should be. ZByocontrast, thresholding
method can eliminate most of the redundant coefficients.eltalculate the MISE of the

estimate, then we find shrinkage method will greatly enhaheesstimate (MISE 0.1352
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vs MISE 4.7907).

In this experiment, if we use6@) rather than §3) to calculatev?r(d\k), their difference
will be shown in Fig. 37. There is very little difference in most of the cases. If we us
the shrinked coefficient estimatég to form the nonparametric estimate-) and then to
calculate the MISE of the Estimate, then the above two agesmwould lead MISE to be

0.1662 and0.1576, which again shows their performances comparably similar.
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Figure 37: Boxplot of the difference of calculatina(&\k) by (62) and by 63).

Experiment 2 Suppose the nonlinear system with 4th order polynomiah thigh all

other conditions similar to the above experiment:
e InputU ~ N(0,1).
e Linear subsystemA = [1,—-0.8,0.6, —0.4].

o m*(u) = hy(u) + ho(u) + hg(u) + hy(u) ~ 0.204u* +0.482u3 — 0.518u? — 0.225u —
0.095.

e ¢, ~ i.i.d. N(0,0.864). The amplitude of noise here corresponds fi® @B signal-

to-noise ratio in the system.
¢ Length of data observedy = 5000.

e Obtain Hermite coefficients, by (47) and apply thresholding rule and then obtain

the modified coefficients,. Repeat this for. = 100 times.
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The result is shown in Fig38.
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Figure 38: Comparison of the boxplot of Hermite polynomistimmate without and with
thresholding rules in Experimet Sectior4.8.1 Note that the true value should bg = 1
for k =1,2,3,4 anda; = 0 for other value of.

Unlike estimating the system with polynomial of ordm the previous experiment,
the estimate in Fig38 behaves badly foii; anday. If we increase the length of data set
to a larger value and conduct a similar simulation, this fabcould be solved. It will be

shown in the next experiment.

Experiment 3
e InputlU ~ N(0,1).
e Linear subsystemA = [1,—0.8,0.6, —0.4].

o m*(u) = hy(u)+ ho(u) + hs(u) + hy(u) = 0.204u* +0.482u3 — 0.518u? — 0.225u —
0.095.

e ¢, ~ ii.d. N(0,0.864). The amplitude of noise here corresponds i® @B signal-

to-noise ratio in the system.
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e Length of data observedv = 20000.

e Obtain Hermite coefficients, by (47) and apply thresholding rule and then obtain

the modified coefficients,. Repeat this for. = 100 times.

The result is shown in Fig39. Comparing with the previous simulation, it suggests that
accurately determining higher order of polynomial chaggstics requires a bigger data set
observed. Some simple algebra shows the for the same galata, the term v, ) grows
substantially asg increases, therefore making the “Universal threshold™at) {ncrease
substantially for larger value df. This will lead toa, being set to zero for larger value
of k regardless of the true nonlinear characteristic. Only bggukarger training data set
could solve this problem. Thus thresholding method in Hegrseries estimate works for

smaller orders of polynomial, and would require larger datieto work for larger orders.
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Figure 39: Comparison of the boxplot of Hermite polynomistimmate without and with
thresholding rules in Experimest Section4.8.1 Note that the true value should bg = 1
for k =1,2,3,4 anda; = 0 for other value of.
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4.8.2 Approximating the Nonlinear Characteristics by Polynomial Function of Fi-

nite Orders
Experiment 1

e InputlU ~ N(0,1).

Linear subsystemA = [1, —0.8,0.6, —0.4].
e m*(:) = arctan(-).

e, ~ 1..d. N(0,0.097). The amplitude of noise here corresponds fi® @B signal-

to-noise ratio in the system.

Length of data observedv = 1000.

Obtain Hermite coefficients, by (47). Compare the following ways:

1. Apply thresholding rule and then obtain the modified cordfitsa,, consider
the highest order of coefficienig that is not zero to be the order of the poly-

nomial approximation, denote this order By

2. UseT in (55) as truncation parameter and uUse; k=0, ,T} as the final

coefficients in the estimate.

e Use a testing set of 10000 data to approximate the Integ&dedre Error (ISE) of

the estimate.
e Repeat the above estimation fbr= 100 times.

If a, is calculated by47), the result is shown in Tabl@ The approximation ofn*(-) =
arctan(-) by Hermite polynomial estimate is shown in F&.

If we use the weighted Monte Carlo integrati®d0) to calculatea, in the previous
simulation, the exact same data sets lead to the followitignason result shown in Table

4.
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Median of1’
25% quantile ofl”
75% quantile ofl”

Mean of ISE

SD of ISE

Use Thresholding

1

1

3
0.0160290460%

Obtained from §5)

4
3
8

» 0.01687971919

0.0074879918¢

) 0.01596121436

Table 3: Using Hermite polynomial estimate to approximatea-polynomial function
in the nonlinear part in a Hammerstein system, withcalculated by 47), and length of

training data equal td000.

Figure 40: The approximation ofi*(-) = arctan(-) by finite order Hermite polynomial
expansion. Usé in (55) as the truncation parameter. The solid line representrtiee
m*(-), while the dot represent the mean of the estimate for diftesets of data at the
sampled points, which almost concide with the solid linee Tashed line represents for
95% pointwise confidence interval of the estimate.

Median of T’
25% quantile ofl”
75% quantile ofl”

Mean of ISE

SD of ISE

Use Thresholding

3

3

3
0.0092019051(
0.00564368657

Obtained from §5)

13

5

38
) 0.01766346591
» 0.02112562867

Table 4: Using Hermite polynomial estimate to approximat@a-polynomial function in
the nonlinear part in a Hammerstein system, wijtfcalculated by weighted Monte Carlo
(60), and length of training data equal 1600..

Experiment 2

ous one:

e InputlU ~ N(0,1).

e Linear subsystemA = [1,—0.8,0.6, —0.4].
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e m*(-) = arctan(-).

e, ~ 1i.d. N(0,0.097). The amplitude of noise here corresponds i® @B signal-

to-noise ratio of the system.

Length of data observedv = 5000.

Obtain Hermite coefficients,. Compare the following ways:

1. Apply thresholding rule and then obtain the modified codfitsa,, consider
the highest order of coefficienig that is not zero to be the order of the poly-

nomial approximation.

2. UseT in (55) as truncation parameter and use; k=0, ,T} as the final

coefficients in the estimate.

e Use a testing set of 10000 data to approximate the Integiaten (ISE) of the

estimate.
e Repeat the above estimation fbr= 100 times.

If a, is calculated by47), the result is shown in Tabk

Use Thresholding| Obtained from $5)

Median of T’ 3 7
25% quantile ofl’ 3 7
75% quantile ofl” 3 11

Mean of ISE 0.0047361547| 0.00358710897
SD of ISE 0.00333382545 0.00246170059

Table 5: Using Hermite polynomial estimate to approximatea-polynomial function
in the nonlinear part in a Hammerstein system, wiithcalculated by 47), and length of
training data equal t6000.

The approximation ofn*(-) = arctan(-) by Hermite polynomial estimate is shown in
Fig. 41
If we use the weighted Monte Carlo integration in the pregsisimulation, the exact

same data sets lead to the following estimation result showable®6.
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-1 0 1 2

Figure 41: The approximation af*(-) = arctan(-) by finite Hermite polynomial estimate.
UseT in (55) as the truncation parameter. The solid line representsleen*(-), while
the dots represent the mean of the estimate for differeatodetata at the sampled points,
which almost coincide with the solid line. The dashed lingresents for 95% pointwise
confidence interval of the estimate.

Use Thresholding| Minimize SURE

Median of T’ 5 11
25% quantile of’ 3 9
75% quantile ofl” 7 19

Mean of ISE || 0.00291291034 0.00236654928
SD of ISE 0.00164455304 0.00131312311

Table 6: Using Hermite polynomial estimate to approximatea-polynomial function
in the nonlinear part in a Hammerstein system, withcalculated by §0), and length of
training data equal t6000.

Comparing this result with the previous experiment, it diedemonstrates that for the
same system and same input, the optimal truncation paraimeteases as the length of

data set increases.

4.8.3 Testing the Polynomial Hypothesis of the Nonlinear Clracteristics

In this section, simulations are conducted to test wheti@nonlinear function in a Ham-
merstein model belongs to a polynomial parametric classniHerstein system with true
polynomial nonlinear structures and non-polynomial (hsegtangent) nonlinear structures
are compared. A FIR(3) linear part is assumed to be knownaanédium level noise is

present, while the SNR for the systeml i&lB.
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Experiment 1 Suppose we observe data sets from the following two systethsan-

linear functionmj(-) andmi(-):
e InputlU ~ N(0,1).

e Linear part of the system is characterized by FIR(3):= [1,—0.8,0.6, —0.4],
whereas the same identification method also applies to IlRyaiems (e.g. ARMA

models).
o mi(u) = hy(u) + ho(u) + ha(u) ~ 0.482u3 + 0.707u? — 0.225u — 0.707.
o mi(u) = arctan(u).

® ¢, ~ 1Li.d. N(0,0.648), €5, ~ i.i.d. N(0,0.097). The amplitude of noise here

corresponds to &) dB signal-to-noise ratio in each of the two systems respelgti

e Length of data observedy = 5000.

—

e Obtain Hermite coefficients,. Use 62) to estimatevar(ay).

e Test the hypothesi#l,: mj(-) is polynomial of order less thap j = 1,2, p =
1,2,---,20. Use Neyman Test described in Sectb with b = 10. Obtain the

P-Value of the test corresponding to testing of each data set

e Repeat this for. = 100 times. Show the boxplot of P-Value corresponding to dif-
ferent value of in each data set among tlierepetitions. Also obtain the empirical

probability of rejectingH, at significance levek = 0.05 based on thesg trials.

With a,, calculated by47), the result is shown in Figi2.
If the a,, is calculated by weighted Monte CarleQ), the result is shown in Figl3.

It is not surprising to observe testing:}(-) is polynomial and its order is less than
p = 1 (or 2, 3)" is always rejected. Fop > 4, the tests fornj(-) usually have large
P-Value, which means not rejectirig,. Compare Fig.42 with Fig. 43, definitely using

weighted Monte Carlo would increase the accuracy of tessimge the probability that not
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Figure 42: Plot of Neyman test result whépis obtained by47) in Example 1, Section
4.8.3 The two columns correspond to testing the two system§) (true polynomial)

andm’(-) (inverse tangent). The two rows show the boxplot of the Ri#&alorresponds to
testing hypothesis of different orders, as well as the eigaiprobability of rejecting null

hypothesis based on thietrials.
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Figure 43: Plot of hypothesis testing result whigns estimated byq0) in Example 1, Sec-
tion 4.8.3 The two columns correspond to testing the two systerf(s) (true polynomial)
andm’(-) (inverse tangent). The two rows show the boxplot of the Ri&/alorresponds to
testing hypothesis of different orders, as well as the eigaiprobability of rejecting null
hypothesis based on thetrials.
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rejecting H, for p > 4 in testingmj(-) is larger. Thus Neyman test usually shoms(-)
can be viewed as a polynomial of order

It is noticeable that it failed to correctly test the systerthwn’(-) nonlinearity for
p > 4. The plot shows that the test could not reject the hypothbatsn’(-) is polynomial
of order less thap whenp > 4. This is due to the fact that the true Hermite polynomial co-
efficientsas,;, =forms(-) is small for higher orders, i.i;.; = 0.65568, a5.3 = —0.127112,
as5 = 0.0508282, a5, = —0.0258004, a5.q = 0.0148394, a3, = —0.00923285, a3, 3 =
0.00606755, aj,; = —0.00415276, ..., anda,, = 0, for k = 0,2,4---. Identifying the
nonzero existence of higher order coefficients throughngstould be possible only if
var(a) is small for allk. In the next experiment a larger data set is used, and it stiwvs

validity of testing higher order polynomial orders.

Experiment 2 The experiment is the same from last one except a much bigges

data set is used:
e N = 100000.

Using a, calculated by 47) and by 60) will lead to the result in Fig.44 and Fig. 45
respectively.
With a large training set, testing larger order hypothe$is(-) becomes possible.
“m3(-) is polynomial and its order is less thahcan be always rejected ferup to9 or 10.
It can be concluded that with large enough data, testingahapmial order hypothesis of
any nonlinear system within a Hammerstein system can beiagann the same way.
Besides, comparing Figt2 with Fig. 43, and comparing Figd4 with Fig. 45, it shows

using weighted Monte Carl®0Q) to estimatei, will lead to a higher correct rate in testing

mi(-).

4.9 Conclusions and Future Work

In Section4, Hermite polynomial series estimate in SISO Hammerstestesy identifica-

tion is examined. Simulation shows with large training dagg the parametric assumption
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Figure 44: Plot of Neyman test result withh calculated by 47) in Example 2, Section
4.8.3 The two columns correspond to testing the two system§) (true polynomial)
andm’(-) (inverse tangent). The two rows show the boxplot of the Ri#&alorresponds to
testing hypothesis of different orders, as well as the eigaiprobability of rejecting null

hypothesis based on thietrials.
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Figure 45: Plot of Neyman test result withh calculated by §0) in Example 2, Section
4.8.3 The two columns correspond to testing the two system§) (true polynomial)
andm’(-) (inverse tangent). The two rows show the boxplot of the Ri&/alorresponds to
testing hypothesis of different orders, as well as the eigaiprobability of rejecting null
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of any orders for the nonlinear characteristics can be ctiyreested with high probability.
The power of this test, will be future work in this researchgaf, similar techniques can
also be applied to test other parametric assumptions fandhénear subsystem. Besides,
orthogonal series analysis with coefficient shrinkage wetbr with truncation parameter
selection method in system identification are also examined

It is worth mentioning that the methods used in Seci@an also be extended to MISO
systems. Hence, the coefficients shrinkage method camalimiedundant coefficients for

MISO system estimation, yielding, therefore, higher aacyrand overcome the curse of

dimensionality.
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5 Lasso Regression for Transient Stability Analysis

The previous sections have been focused on some theorssigas about system modeling.
In the following section, we are going to examine a systemetind problem in the context

of transient stability applications.

5.1 Introduction to Transient Stability Analysis Using Lasso Regres-
sion
The concept of power system security is an indication of thegy systems in the presence

of disturbance. It is a time-varying property, and relevasearch can be divided into

several different fields. See Fid6[34].

| Power System Stability

Rotor Angle Frequency Voltage

Stability Stability Stability
Transient Small Disturbance Large Disturbance Small Disturbance
Stability Angle Stability Voltage Stability Voltage Stability

I ! — —
| Short Term | | Long Term |
11 1
| Short Term | | Long Term |

Figure 46: Classification of power system stability.

Transient stability is the ability of a power system to retto its normal operating
condition when disturbances occur due to a fault in the systgch as loss of a large load
or loss of a generator. Itis areflection of the capabilityhaf power system to absorb kinetic
energy due to the transient disturbance. The transientigtddehavior of a power system,
in general, is determined by the steady state before detgdy the nature of the fault,

and the post-contingency structure of the power systemcéjdor a certain contingency
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in a given power system, transient stability is characeetianly by the pre-contingency
conditions.

The transient stability index (TSI), therefore, is only adtion of initial operating point,
given that a certain fault is being examined. i.e., FSfrg;(x), wherex = (z1,-- -, z,)
is a random variable describing the pre-contingency stateur studies, the fault critical
clearing time (CCT) is used to represent the TSI. The tramsiable region is characterized
by TSI > TSIy, where TS{ is the threshold value. The boundary region: frg;(x) =
TSIy} is called the transient stability boundary (TSB), and itmiedithe boundary between
secure and insecure regions of the initial state for poweraimg.

For a given initial state, the post-contingency transie¢abifity behavior after a cer-
tain fault can be determined by solving a large number of Emiponlinear differential
and algebraic equations (DAE). Time-domain simulatiomsremsient stability can be per-
formed in such way to obtain the TSB. Meanwhile an altermetipproach is to implement
regression or pattern classification techniques. Comgawith time-domain simulation,
regression/pattern classification methods has natunallgdvantage in respect of speed,
and is easily applicable in real scenarios when immediatisidas are necessary.

Among the existing literatures on regression analysisagugr to the problem of tran-
sient stability, the Ridge Regression strategy has begrogeal. This method offers some
advantage over ordinary least squares in terms of lowelgirea error. Nevertheless. the
Ridge Regression algorithm is not able to eliminate redohgarameters, and as a result
suffers the curse of dimensionality.

In this section we examine a modern regression techniquéh@transient stability
problem that utilizes thg penalty and is able to simultaneously estimate parameténs o
models and eliminate redundant residuals. This algorighaoften referred to as the Lasso
(Least Absolute Shrinkage and Selection Operator) methddisabased on the concept
of minimizing the predictive least square error with coastt to the weights penalized
in [; norm [35] rather tharl; norm in the Ridge Regression case. The Lasso method

can eliminate or downweight input variables which are ofyomlinor influence on the
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prediction error. The essential parameters of the modekstienated with the optimal
parameteric accuracy. Thus by eliminating unnecessauy igriables the Lasso algorithm
can also achieve feature selection at the same time, thwsdpromportant information
about the mechanisms of the power system.

In the field of transient stability, previous works have be&hzing Ridge Regression,
Kernel Ridge Regression methods, Support Vector Machiddls [36], [37]. It is shown
in this thesis that using Lasso regression achieves mudhndhle prediction in terms of
the prediction error and moreover the capacity to simutiasly eliminate the majority of

unnecessary features [35], [38].

5.2 Lasso Regression
5.2.1 From Ridge Regression to Lasso Regression

Transient stability data is usually high dimensional simaasurement is taken from a large

number of ports in the power system. Generally we are givéa skt of the form

(X1, Y1), (X, Vi),

T
with p-dimensional observations; = (X}l), e ,XZ-(”)) and1-dimensional responsg.
We wish to determine the new response when a new observatgiven.
If we assume linear relationship between the responseblafaand the explanatory

variableX )s, then we have the linear regression model:
p
z Z +52 17 7”)7 (64)

whereg; is the i.i.d noise with zero mean and independerftXf}, andjs = (ﬁl, e ,ﬁp)
is the vector of unknown parameters. The linear regressiodes important because
many other forms of regression (This includes, e.g., géimedhalinear methods) can be

derived from the formula of linear regression.
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Linear regression is also sometimes expressed in the nfiatnx
Y = X3+ ¢, (65)

with design matrixX,,,, = [Xl, . ,X,JT, response vVectoy ., = [Yl, . ,an, pa-
rameter vectop, ., = [ﬁl, e ,ﬁp}T and error vectot,,; = [51, e ,sn}T.

The explanatory variableX and the response variableare used after initial prepro-
cessing so that they are with zero mean and standard devedigal to one.

The classical way to estimate the model parameteis to apply the least squares
strategy, i.e., to minimize

Y - Xl (66)

This yields the well known least square solutigyy, = (XTX) ! (XTY).

The problem with the least square solution is its lack ofiitgh.e., a small perturba-
tion on data may yield a large variation on the model.

To address this issue of lack of stability, a Ridge Regressibased on the minimiza-

tion of least squares with constraint to the weights:
1Y = X3I3/n + ABI[3.
The solution to the Ridge Regressiﬁﬁaidge is the minimizer of the above criterion.
Orane(3) = argmin (I[Y = X313/n+ X511 67)

The required minimization problem can also be written inftilwing equivalent primal

form:

Bridgesprimal(§) = arg  min Y - XJ||3 n)
Onstyerima(s) = axg_min (Y = X313

Different from the Ridge Regression, Lasso regression theesonstraint in the form of
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thel, penalty:
Braseol ) = argmin (1Y = X5]3/n + N3] ) (69)

The equivalent primal form of the minimization is the follmy:

3Lassoprimal($) = arg  min Y — X3||3 n)
Buassarima(s) = arg_min_(I[Y =X/

The comparison between Ridge Regression and Lasso regressi be illustrated by the

contour lines of the sum of squarg¥ — X*X||3, shown in Fig.5.2.1

Figure 47: Contour lines of the sum of squares of regresdieft. Lasso method. Right:
Ridge method.

In Fig. 5.2.], the shaded area corresponds to the constraints imposédr evetghts.
Thel; constraint corresponds to the square shape, thereforenonimsum of squares could
happen at the corner which means one observation featuréésget with zero weight. On
the other hand the minimum sum of squares never happen ateuuér places in case of
thel, constraint which corresponds to Ridge Regression. Thistihte how Lasso method
can achieve feature selection during the estimation psoces

In order to achieve the required optimal variable selectind parameter estimation,
one needs to select the regularization parametefhe penalty parametex determines
the number of nonzero weights in the final solution of the esgion problem. Standard
approaches to specifyare based on some versions of Cross-Validation re-samigoig

niques. With the selected regularization paramatethe weights are calculated through
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certain algorithms, i.e. Shooting algorithm for Lasso (Seetion5.2.3.

5.2.2 The Adaptive Lasso

For regression problems with high-dimensional data olagiems, the previously intro-
duced Lasso method may not be enough to eliminate all thesefulfeatures. In order to
eliminate more explanatory variables with less influencthéomodel, one might need to
use the so-called “adaptive Lasso” [39], which is a re-wtadlversion of Lasso:

Bt = axgmin (1Y = Xl/n+ 2> =) ©9)

j=1 Pinit,j

Where@m-t is an initial estimator for the weights, and it also has tolifya

ﬁinit,j =0 = ﬁadapt,j =0

The essence of the above adaptive Lasso approach is thegrgreaalty is assigned to the
features with smaller weights in the first step.

Similarly, multi-step Lasso adaptive (MSA-Lasso) regi@s<an be performed. This
would eliminate further more features compared with Lasggression or the two-step

adaptive Lasso regression.

5.2.3 Shooting Algorithm for Lasso

In calculating the Lasso regression, one algorithm is tleedinate descent minimization.

First, denote the criterion function by:
(B = (IIY = X8/3/n+ A8l ).
The gradient of|[Y — XJ||3/nis :
G;(8) = —2XT(Y = Xp)/n.
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1. Setm=0. Lep® € R” be an initial parameter estimate.
2. repeat

e m=m-+1;

e Forj=1,--- p:
sign(Z)(1Z,] - 3)s

g = A ,
’ 2j;

Z; =XI(Y - X3_;)/n, £ =n"'X"X.

3. until numerical convergence.

5.3 Generation of Transient Stability Data

The power system where regression estimate is performednisdum scale real power
system with 470 buses, as is shown in Fi§.3 It consists 470 buses, 45 generating
units, 214 loads and 482 transmission lines, 152 fixed shants 374 adjustable trans-
formers [34]. All 45 generators are modeled with a 5th orderagator modeled while the
excitation systems of most generators are model with texinvioltage transducers, volt-
age regulators, exciters, and power system stabilizers. ofiginal 470 Bus System was
lightly loaded so that the system was very stable. In ordestudy the 470 Bus System
under heavy load and generation conditions, a new base @ssgemerated by increasing
load and generation levels. The contingency is due to a 3epfault near bus 1007 on
line 1007-1028 for 8 cycles and then the fault is cleared Bnapy line 1007-1028. This
contingency is an example showing a case that the instabilithe system is due to the
swing of one generator against the rest of the system. Tdver&br this contingency, the
stability boundary is at 8 cycles. This study examines tises#hat a perturbation afl 5%
and +25% for active and reactive power happens, and in these casgethebation for
generator reference voltage setting+2%.

Measurements are taken at the 470 buses. Therefore thealises are 939-dimensional,

where 470 of them correspond to voltages and 469 of them asmsurement of angles. The
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Figure 48: Single Line Diagram of Generators and 345 kV Nekvad 470 bus system.
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per unit voltage vales and angles in radians are used tos@qrthe input variable spaces.
For each of the observatioX;, Critical Clearing Time (CCT) is simulated as the response
Y; to thei — th observation datX;. Here the CCT is used as a transient stability index.

In each cases, a training set of size- 800 is examined. Independent data sets are
used to evaluate the prediction errors. DA, Y1), ..., (X,,, Y,,) } are first normalized so
that the observations as the responses would have zero méamé standard deviation.
Denote the normalized data set X1, ), ..., (X, Y*)}. Prediction errors are obtained

n’ - n

in the form of mean square error for normalized responses:

: 1 )
MSE(normalized)= J i S (V- V)2,
i=1
whereY;* is the normalized observation afif is the predicted value, aritlis the length

of the testing set which is independent from the trainingdet.

We also evaluate the root-mean-square-error(RMSE) foottiggnal response:

which exhibits actual physical meanings for applicationgmse. The unit of this error is
“cycles”.

Since we know the fault clearing time is 8 cycles in these fations, the observed
CCT can determine whether the initial contingency wouldll&astable or unstable oper-
ating point. Therefore given a certain contingency, it is imterest to predict whether a
certain pre-contingency state characterized by the 98@4aisional observation will lead to
“stable” or “unstable” operating point. Thus we also useftiilwing indices to evaluate

the performance of the regression analysis:

o FA— Z(Fals? Alarms

A False Alarm occurs when an stable operating point (An ingency operat-

ing point that leads to a transiently stable power systemvghdbjected to a given
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contingency) is classified as unstable.

False Dismissals
ll

.FD:E(

A False Dismissal occurs when a stable operating point (&rcpntingency operat-
ing point that leads to a transiently unstable power systéernvsubjected to a given

contingency) is classified as stable.

o FC — S (False Alarmsl!:alse Dismissals

False Classification occurs when an unstable operatingpatassified as stable or

stable operating point is classified as unstable.

e FD Range
A False Dismissal means an unstable case is dismissed &s. Stéde CCT for the
cases that lie on the boundary is equal to the actual fawdtiolg time. The CCT of
the most unstable case dismissed as stable gives an indicdthow close the FD
cases are to the boundary. The FD range expresses the diftamche worst FD to

the transient stability boundary.

e FA Range
A False Alarm means that a stable case is dismissed as unsfiie CCT of the
most stable case dismissed as unstable gives an indicdtrmwalose the FA cases
are to the boundary. The FA range expresses the distanceliemorst FA to the

transient stability boundary.

5.4 Regression Analysis for 25% Perturbation Data

As described in the last section, the data set is:
e DimensionP = 939

e Training set sizel = 800
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Prior to applying Lasso regression to the linear model, datd to be normalized in
order to make sure each feature corresponds to observatioeswvith mean zero and unit
standard deviation. The regularization parameatg@iays a decisive role in the accuracy
and final number of selected features. Fra@®8)(by intuition bigger value o would set
more features to zero weights. The selection of regulaozgtarametei requires certain
kind of re-sampling techniques. Due to the consideratiorcéonputational complexity,
them-fold Cross-Validation could be suitable for such purpose.

Shooting algorithm in Sectioh.2.3for calculating lasso suggests that, with a certain
selected regularization parameterthe computation complexity for calculating weights
for a set of data of length is:

(L+2)-0(nP?), (70)

whereP is the number of total features in the observation, or theedsion of one obser-
vation. L is the number of loops before the iteration stops.

The computation that takes most of the running time is thes&hké@lidation that choose
the optimal regularization paramet&r In order to find optimal\, suppose we need to
compare the performance of, candidate values of on average. For the:-fold Cross-
Validation, we do calculations on a data set of approxinyrzsva;éle’”T‘1 - n for m times.
Suppose the “shooting algorithm” loop is to riintimes before it stops. Then the compu-

tational complexity is:

m~(T1+2)-NA-O((mT_1-n)-P2).

That is:
(m = 1)(Ty +2)Ny - O(nP?). (71)

Once the regularization parametehas been selected, the regression complexity for

calculating the coefficients is only:

(T2 +2) - O(nP?), (72)
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whereT; is the number of running loops for “shooting algorithm” adhtion. This is
usually different fromT}, since calculating regression requires iterative opt@atian in
“shooting algorithm” to be precisely converging, whileghs not necessary for selecting
optimal regularization parameter. On the other hand, ugiteyge valuel; may not be
possible due to computational considerations.

In the following Sectiorb.4.1and Sectiorb.4.2 Lasso regression are going to be con-
ducted for linear models. Secti@xy.3will conduct regression on the same data by Ridge
Regression method, and the result will be used as a compdastasso regression. Sec-
tion 5.4.4will show Lasso regression on extended models which inckaiee reflection
of quadratic relationships, and Sectidd.5will perform Kernel Ridge Regression, which
is also a Ridge version of regression for higher-order moaledl the result will also be
compared with Lasso. Note that4.1, Section5.4.2 Section5.4.4have been using very
parsimonious parametens (7}, T3). This is from the prospective of saving computational
time. In Sections.4.6and Sectiorb.4.7, the role of these parameters is going to be dis-
cussed. Sectiob.4.8(and its quadratic extended models in Secto4.§ will give an
example about Lasso regression under other parameteps&then more computational
time is allowed. In the end, if Lasso regression under dffi€parameter set-up can be
compared, the best possible linear regression result wikhown in Sectiob.4.9 and
Section5.4.9is about the Lasso regression on its extended quadraticlmode

In Section5.4.7, it will be demonstrated by changing different fold of Cragdidation
in selecting regularization parameter in Ridge Regresslanprediction errors vary very
little. Therefore the MSE for Ridge Regression shown in ®ack.4.3and the MSE for
Kernel Ridge Regression shown in Sectmd.5will be used as reference for comparison

in Lasso regression of different set-ups.

5.4.1 Lasso Regression Analysis, Using 3-fold CV for Parartex Selection

According to {1), the fold of Cross-Validation is important for running #nconsidera-

tions. Here we usé-fold Cross-Validation, and denote the selectelly A\qy. For the
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iteration times in the “shooting algorithm”, we uge = 2000 and7; = 15000.
The mean square residual (MSR) for the constrained fit witistaint A\, and the
nonzero weights number vs are shown in the Fig49. Note that\.y is emphasized

as\* in the figure.
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Figure 49: (a) Mean square residual (MSR)\v¢b) Number of selected features ks

MSR is minimum (0.0627) wheh = 0.0152 and the result implies that 99 of the total
939 features are with nonzero weights. Then weiSe= \,;, = 0.0152 to calculate the
lasso regression weights for the whole training data sehoethe estimated weights in
this step by3("). The superscript here denotes it is the estimate in firgtisieso. Then we
find that the number of nonzero weights is 81. After applyingar model with weights
AW to the testing set and ge@ffj(l), j =1,---,399}, we calculate the prediction error
by MSE = L 50" (v; — V)%, wherel’ = 399 is the length of testing set. The result is
0.0735.

5.4.2 Multi-Step Lasso Regression

If we apply multi-step Lasso regression after getting thseitdn Sectiorb.4.1, we can get
similar results after each step. It is shown in Tahl&lote that “# F” denote the number of
non-zeros weights, which is also the selected features.

From here we come to the conclusion that by assuming lineaeimging the afore-

mentioned procedure, the best achievable prediction er@07082070 with the weights
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stepk

OO, WN P

A(F)

0.01519734
0.00016132
0.00014077
0.00007339
0.00011722
0.00012935

MSR

MSE

0.062739820.0734916
0.054423730.0712772
0.053093220.0710101
0.052663910.0711110
0.052622310.0709193
0.052602510.0708207

RMSE(cycles)

0.86541573
0.85227782
0.85067927
0.85128347
0.85013561
0.84954386

#F

81
53
45
43
43
43

Table 7: Multi-step Lasso regression for 25% disturbant¢a.dfold CV used in selecting
regularization parametéer; = 2000 and7; = 15000.

obtained by Lasso regression method. Only 43 features afaldisr the model.

As described in Sectiob.3 the regression technique can be used for classification
applications. The performance of Multi-step Lasso regoesfor classification of 25%
disturbance data corresponding to the previous set-upisrsin Table8.

It takes about.2 hours for &2.30GHz computer to run the aforementioned regression.
Computation time of Lasso regression with other selectibfwg 77) can be calculated

based on this result an@J).

stepk FD FA FC | FD range (cycles) FA range (cycles
1 0.25%| 4.76%| 5.01%| 7.188-8.000 8.000 - 8.929
2 0.25% | 5.01%| 5.23%/| 7.188 -8.000 8.000 - 8.929
3 0.25%| 5.51%| 5.76%| 7.188 -8.000 8.000 - 8.929
4 0 5.01%| 5.01%| 8.000 - 8.000 8.000 - 8.929
5 0 5.01%| 5.01%| 8.000 - 8.000 8.000 - 8.929
6 0 5.26%| 5.26%| 8.000 - 8.000 8.000 - 8.929

Table 8: Classification indices for applying Multi-step kasregression for 25% dis-
turbance data. 3-fold CV used in selecting regularizatiarameter,7; = 2000 and
Ty = 15000.

5.4.3 Lasso Algorithm and Ridge Regression: Comparison Stlies

Using the same training and testing sets of data, the preViasso regression performance
is going to be compared with the Ridge Regression technigaeribed by §7). Suppose
we also use 3-fold Cross-Validation to select the reguddion parameter ing7).

So the optimal\ for Ridge Regression is 3.7501. Denote this value\Ry,e cv. By
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Figure 50: Mean square residual (MSR) Vs Cross-Validation by Ridge Regression.

using this regularization parameter and the whole traisiely we calculate the weights
using Ridge Regression. Then we use the testing set to ¢edheserror. The mean square
error of prediction corresponds to Ridge Regression isG2099. The performance for
regression as well as pattern classification is shown inel&abhd TablelO.

Ridge

3.75008570 0.094565010.0902079 0.95879995 | 939

ARidge.CV MSR O‘ MSE ‘RMSE(cycIes)

#F‘

Table 9: Ridge Regression for 25% disturbance data. 3-f¥ldis§ed in selecting regular-
ization parameter.

Ridge FC

4.26%

FD | FA
0 | 4.26%

FD range (cycles) FA range (cycles
8.000 - 8.000 8.000-9.772

Table 10: Classification indices for applying Ridge Regmss3-fold CV used in selecting
regularization parameter.

Comparing this result with the Lasso regression method, etieethat Lasso regres-
sion for all steps would achieve considerably smaller mtemh mean square error, i.e.
6-th step Lasso leads to MSE.49% smaller than that of Ridge, or equivalently, RMSE
12.40% smaller. Also Lasso regression can automatically selef@vass 43 features out
of the 939, while Ridge Regression will lead to all weightdb&ononzero, whether useful
or not. The weights calculated by Lasso are shown in &igaside with those calculated
by Ridge method.

Ridge Regression shows smaller false alarm rates. But tise B&arm range is much
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Figure 51: The weights determined by regression for 25%urhsince data. (a) One-step
Lasso, (b) Two-step Lasso, (c) Six-step Lasso, (d) Ridged®sgpn.

bigger than Lasso regression with the aforementioned petearaetup.

It makes sense to compare the previous Lasso regressionidgel Regression results
since both of them are applied to linear models, both of thesrbased on minimization
of mean square error with constraints on weights. In thevahg sections, models are
extended to incorporate quadratic relations between Htares. And Lasso regression on
this extended model is going to be compared with Kernel RiRggression, which is an

extension of Ridge Regression for higher-dimensionatimahips.

5.4.4 Lasso Regression for Quadratic models

If we extend the linear model into quadratic model, that is,agsume the quadratic rela-

tionship between the observations and response, then ttiel iso

Y =X +e, (73)

* * * T * ok vk T
whereY*,,, = [Yi )T 7Yn} 1A (p+3)p/2 T {Xlu T 7Xn} )
Xﬁk — [Xf"(l) X*_‘(Q) . X%(P) X%(l)X%(z) X%(l)X%(?’) . X*_‘(p—l)Xf"(P)]

i ) ) 7 7 7 ) 7
T

~ ~ T
ﬁ(p+3)p/2x1 = {51, T ,ﬁ(p+3)p/2] 1 Enxl = [51, te 7571}
We can extend the data into quadratic forms to apply Lassesemn. But this means
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expanding 939 features in the linear model into 442269 catew. According to{1), the
complexity for computation would b@l42269,/939)% = 221841 times of the linear model,
even without considering the necessity of using lafigeandT,. Therefore it is too difficult
for numerical analysis.

In order to solve this issue, we can try to approximate theehbyg expanding from
the selected features. In the following part, Lasso regvessill be applied to the models

extended from the selected features of 2nd-step and 4phretalts shown in Tablé,

Lasso regression for quadratic model extended from 43 feates From the selected
features in 4-th step Lasso regression shown in Figee can gett3 + 42 + - - -+ 1 = 946
guadratic-term features. Together with the original 4&dinterm features, we form a
model of 989 covariates. After applying normalization to each covasatwe conduct
Lasso regression analysis on the new model. The settinggiession are selected as the

following:

e Use 3-fold Cross-Validation to select optimal regulati@aparameten,
e 77 = 2000,
e 75 = 15000.

The result calculated by multi-step Lasso algorithm is sihowTlablel1l and Tablel2.

stepk M) MSR MSE RMSE(cycles)| # F

1 0.00264484 0.044551950.05262265 0.73230509 | 88
2 9.3502e-05 0.030153550.04982496 0.71257272 | 54
3 2.8959e-05 0.028947410.05016505 0.71500049 | 51
4 9.8804e-06 0.028878650.05034889 0.71630943 | 51
5 1.0210e-05 0.028877020.05035593 0.71635947 | 51
6 1.0210e-05 0.028876890.05035731] 0.71636934 | 51

Table 11: Multi-step Lasso regression for 25% disturbarata dith 989 extended features.
3-fold CV used in selecting regularization parametér= 2000 and75 = 15000.

So here we achieve better result than Lasso regressiongtindar model. Finally, the

51 extended features are selected. By further checking tHesxtended features, we find
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stepk FD FA FC | FD range (cycles) FA range (cycles
1 0 1.75%| 1.75%| 8.000 - 8.000 8.000 - 8.823
2 1.00%| 1.25%| 2.26%| 7.768 -8.000 8.000-9.772
3 1.00%| 1.25%| 2.26%| 7.768 - 8.000 8.000-9.772
4 1.00%| 1.25%| 2.26%| 7.768 - 8.000 8.000-9.772
5 1.00%| 1.25%| 2.26%| 7.768 -8.000 8.000-9.772
6 1.00%| 1.25%| 2.26%| 7.768 -8.000 8.000-9.772

Table 12: Classification indices for applying Multi-stepsksa regression for 25% distur-
bance data with 989 extended features. 3-fold CV used ictsaieregularization parame-
ter,7; = 2000 and7; = 15000.

that among them;0 are quadratic terms fron2 of the original linear features, and the
other one is an linear feature. Overadl, features from the linear model have contributed
to these selectedll extended features. Here MSHI®5035731, which is equal t&5.80%

of the Ridge Regression MSE in Sectibi.3 or 62.14% of the Kernel Ridge Regression
MSE, see Sectiob.4.5

Lasso regression for quadratic model extended from 53 feates If we do feature
expansion from the 53 features selected by the 2-step lireesmo regression, and perform
similar techniques, we can get the following results. Nbs the total number of extended
features in this case 5184, and the settings for Lasso regression is similar to the last

section:
e Use 3-fold Cross-Validation to select optimal regulai@aparametep,
e 77 = 2000,
e 75 = 15000.

Therefore we finally select 38 features from the 1484 quadiaatures. All thes&8
extended features are quadratic relationship betwaer the original linear features. The
MSE corresponds here is equalitb73% of the linear Ridge Regression MSE in Section
5.4.3 or57.63% of the Kernel Ridge Regression MSE (See sechigh5).
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stepk

OO, WN P

AF)

0.00147384
0.00041776
0.00015036
5.4202e-05
7.8577e-05
2.5137e-05

MSR

0.039621290.04816466
0.034973790.04710221
0.028920030.04749144
0.028771590.04696164
0.028814230.04671763
0.028823140.04669970

MSE

RMSE(cycles)

0.70059970
0.69282948
0.69568621
0.69179487
0.68999528

0.68986284

#F

202
47
39
38
38
38

Table 13: Multi-step Lasso regression for extended mod@56b disturbance data with

1484 features. 3-fold CV used in selecting regularizatiarameter/; = 2000 and7;

15000.
stepk FD FA FC FD range (cycles) FA range (cycles
1 0.50% | 1.00%| 1.50%| 7.716-8.000 8.000-8.718
2 0.50% | 1.50%| 2.01%| 7.716-8.000 8.000 - 8.981
3 0.75%]| 1.00%| 1.75%| 7.716 -8.000 8.000-9.772
4 0.75%]| 1.25%| 2.01%| 7.716-8.000 8.000-9.772
5 1.00%| 1.25%| 2.26%| 7.188-8.000 8.000-9.772
6 1.00%| 1.25%| 2.26%| 7.188-18.000 8.000-9.772

Table 14: Classification indices for applying Multi-stepslksa regression for 25% distur-
bance data with 1484 extended features. 3-fold CV used @&cey regularization param-
eter,7; = 2000 and7; = 15000.

5.4.5 Lasso and Kernel Ridge Regression: Comparison Studie

Kernel Ridge Regression is an extension from linear Ridggr€&sion. It is based on the

following extension of the model:

Y= Z ;K (x;, )
i=1

(74)

where K (-, -) is a kernel function which satisfies the so-called “Mercaiteorem”.

Therefore kernel regression can reflect higher order cglakiip between features.

It can be shown that the solution to kernel regression canxpessed as:

&; = (K +nA\)™ty,

(75)

whereK is an x n matrix with (i, j) element equal td{(z;, z;), A is the regularization
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parameter (similar to that in the linear Ridge Regressiam)lI is an x n identity matrix.

Here we use the polynomial kerrila, b) = (¢ + a’b)? here. We first examine the
p = 2 case, which corresponds to the quadratic relationshipdmiwhe features. (p=1
would be quadrivalent to linear Ridge Regression, which i already examined in
the previous sections.) Again, we use the same training estth§ data set, and 3-fold
Cross-Validation is used to choose the optimal paraniedeid \.

We first choose different value for constant tejirand then plot the regression mean
squares vs\.. The following figure is an illustration of the relationshptween the mean
square residual (MSR) and the regularization parametethen different value of; is

adopted.

(@) (b) (©)

Figure 52: Regression sum of squares (MSR) vs regularizpaoameteA under different
value ofq in Kernel Ridge Regression of order 2. (g} 1 x 10°, (b) ¢ = 3.16 x 10°, (c)
g=1x 10

The regression sum of squares (MSR) is a function of bathd \ in this case. We find
that MSR is minimized whelflg, \) = (316228, 3225). Then we fixA = 3225 value and
plot MSR vsq in Fig. 53 as an illustration of MSR changing with

Using (¢, \) = (316228, 3225), we find the prediction error i8.0851 for the Kernel
Ridge Regression using polynomial kernel of order 2.

We notice that the Kernel Ridge Regression result is imptdi@m the linear Ridge
Regression. But still its MSE is significantly larger thae thasso regression counterpatrt.

If we apply the same procedure using polynomial kernel ohéigorders > 3), the

result are shown in Tablé3 and Tabl€el6.
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Figure 53: Regression sum of squares (MSR) vs paramet@en\ = 3225.

orderp | i), AP MSR MSE | RMSE(cycles) #F
2 316228 32249  0.087951470.08513388 0.93144437 | 939
3 | 9474635 1612079.2 0.1026447P.08146376 0.91114595 | 939
4 | 14330126 5.06 x 10" 0.10262463 0.08131985 0.91034078 | 939
5 18938420  0.01  0.1026085%.08119592 0.92983016 | 939
6 |23713737  0.01  0.1025988%.08114725 0.91993648 | 939
12 | 52329912  0.01  0.10257793.08104084 0.90877776 | 939

Table 15: Kernel Ridge Regression of different orders féb62bsturbance data. 3-fold CV
used in selecting regularization parameter.

stepk | FD FA FC | FD range (cycles) FA range (cycles
2 0.25%| 3.76%| 4.01%| 7.188-8.000 8.000-9.192
3 0.75%| 2.26%| 3.01%| 7.716-8.000 8.000 - 9.087
4 0.75%| 2.26%| 3.01%| 7.716-8.000 8.000-9.772
5 0.25%| 3.51%| 2.76%| 7.188-8.000 8.000-9.192
6 0.25%| 4.01%| 4.26%| 7.188-8.000 8.000-9.772
12 | 0.75%] 2.26%| 3.01%| 7.716 - 8.000 8.000 - 9.087

Table 16: Classification indices for applying Kernel RidgegRession of different orders
for 25% disturbance data. 3-fold CV used in selecting retgdtion parameter.

5.4.6 Selection of the Loop Parameter

As mentioned in the beginning of Sectibr?.3 the iteration times for minimization in the
“shooting algorithm for Lasso” can have influence for thelfnegression result. Therefore
they need to be practically taken into consideration. Oheerégularization parametar

is determined?;, will play a role of ensuring the convergence of the “shoothgprithm
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for Lasso”. Numerical solution fof; might not be explicit. We conduct the following

experiment for the 25% disturbance data of size 800 as nrexdim the previous sections.
e Regularization parameteris selected by 3-fold Cross-Validatioin;=10000,

e With regard to first step Lasso regression, examine regnesssult while using dif-

ferent value off5.

The result is shown in Figs4. We come to the conclusion that for this type of data with
dimension939, “shooting algorithm” should run more than around 1100Qkto get a

consistent prediction error, as well as an unchanged nuaoflssiected features.

0.086
0.082
w008 :
w : 3

0.076

Mumber of selected features

0.074

o7 i i i i i i i 0

(a) (b)
Figure 54: (a). MSE v§5, (b) Number of selected features¥s

Although at least 11000 runs must be allowed for “shootirgpathm” to calculate
precisely, optimization for selecting doesn’t necessarily need as much as this number.
This is due to the following reasons: Optimatould be found beforé, times of iteration.
Also, a smallefl; might sometimes lead to better performance.

The following experiment is conducted:

e Regularization parametex is selected by 3-fold Cross-Validatioril; = 15000.
Based on the previous discussion, this corresponds to éargegh iterations for the

“shooting algorithm” loop to converge.

e Examine the regression result while using different vahfes, .
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The result is shown in Figh55. We notice that after aboutl000 times of iteration in
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Figure 55: The influence of loop parametér. (a) Value of selectedggv vs T, (b)
Corresponding MSR V&, (c) MSE for the 1-st step Lasso ¥$, (d) Number of selected
features in the 1-st Lasso \i§, (e) MSE for the 6-th step Lasso 3, (f) Number of
selected features in the 6-th step Lass@vs

the “shooting algorithm” loop, the result will tend to be thkame, this re-confirms the
conclusion from Fig.54. However, using a smaller value f@i also provides a relatively

good result in terms of regression error. It sometimes exad to better results. In practice
it would be a matter of luck for the selection 6f, we only know as long a$; is greater

than about 2000, there is a great chance of regression dose to the level that using
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T, > 11000. Besides, using a smaller value fét most of the time leads to smaller
number of selected features than using> 11000, which is another desirable character
for regression analysis.

About the 1-st step Lasso regression, améng {3000, 4000, 5000, - - - , 10000}. All
values of7; will lead to mean square error within 99.86% to 103.73% of Mf&E that
Ty > 110000 is used. And for the 6-th step Lasso regression result, wehsedor 7 €
[750, 11000], the majority ofT} values lead to surprisingly smaller MSE than whgn>
110000 is used, i.e.I; = 7000 has MSE that is 88.21% of the MSE tH&at > 110000 is

used.

5.4.7 Discussions about Re-sampling

We have performed Lasso regression26fi disturbance data when differeft and dif-
ferent fold of Cross-Validation are used. It seems thabtthel0 fold of Cross-Validation
is usually better tha3 or 4 fold of Cross-Validation. Most of linear Lasso regression
MSE using5 < m < 10 have regression MSE that &% - 80% of the MSE using
m = 3,77 = 2000, the most parsimonious set-up (See Seciegh?. Under some other
set-ups, the performance of Lasso regression could leadtteef smaller MSE, See Sec-
tion 5.4.9

On the other hand, different fold of Cross-Validation ddeshange the performance
of Ridge Regression very much. See Tabfeand Tablel8. Therefore the Ridge Regres-
sion in Sectiorb.4.3 and the Kernel Ridge Regression in Sectto#.5 can represent the

performance of the two algorithms in general.

5.4.8 Lasso Regression Analysis, 7-fold CV for Parameter &etion

Multi-Step Lass regression on linear model The aforementioned Lasso regression uses

3-fold of Cross-Validation. Here we examine another patamset-up:

e Use 7-fold Cross-Validation to select regularization pagger\,
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m -fold of CV A(m) MSR MSE RMSE(cycles)| #F
3 3.75008570 0.094565000.09020790 0.95879995 | 939
4 3.51406394 0.089039230.09022665 0.95889957 | 939
5 2.91280277 0.089971860.09038246 0.95972717 | 939
6 3.49257955 0.089010960.09022890 0.95891154 | 939
7 0.07459192 0.088231060.08775725 0.94568659 | 939
8 0.08380993 0.0844181/90.08798486 0.94691216 | 939
9 0.07269519 0.082888710.08771057] 0.94543501 | 939
10 0.06630639 0.082725710.08757316 0.94469416 | 939

Table 17: Ridge Regression for 25% disturbance data. [@ffitefiold of Cross-Validation
re-sampling technigue examined.

m -foldof CV | FD FA FC | FD range (cycles) FA range (cycles
3 0.00%| 4.26%| 4.26%| 8.000 - 8.000 8.000-9.772
4 0.00%| 4.26%| 4.26%| 8.000 - 8.000 8.000-9.772
5 0.00%| 4.51%| 4.51%/| 8.000 - 8.000 8.000-9.772
6 0.00%| 4.26% | 4.26%| 8.000 - 8.000 8.000-9.772
7 0.75%| 1.75% | 2.51% 7.716 - 8.000 8.000-9.192
8 0.75%| 2.01%| 2.76%| 7.716 - 8.000 8.000 - 9.192
9 0.75%| 1.75%| 2.51%| 7.716-8.000 8.000 - 9.192
10 0.75%| 1.50%| 2.26%| 7.716-8.000 8.000 - 9.192

Table 18: Classification indices for applying Ridge Regms$o 25% disturbance data.
Different fold of Cross-Validation re-sampling technigeseamined.

e 77 = 10000,

e 75 = 15000.

According to 71) and Formular2, this set-up would take 15 times processing time as
the Lasso linear regression in Sectmd.land Sectiorb.4.2

For the 1-st step Lasso regression, the mean square re@uiBRl) for the constrained
fit with constraint\, and the nonzero weights number vare shown in the Figh6. Note
that the optimal\ is emphasized as in the figure.

MSR is minimum (0.0589) wheh = 0.00162. Then we us&® = \%,, = 0.00162 to
calculate the Lasso regression weights for the whole trgidata set. Denote the estimated
weights in this step by3™®. The superscript here denotes it is the estimate in firgt-ste

Lasso. Then we find that the number of nonzero weights is 3#aMgly the linear model
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Figure 56: (a) Mean squre residual (MSR)Ngb) Number of selected features ¥s

with weights 3V to the testing set and gét’", j = 1,---,399}. We calculate the
prediction error by MSE= ll,zg.'zl (Y; — }73»(1))2, wherel’ = 399 is the length of testing
set. The result is 0.066285.

Then by applying adaptive Lasso and multi-step Lasso regne®ased on this result,
we get results shown in Tabl®. Again, “# F” denotes the number of non-zeros weights,
which is also the selected features.

stepk M) MSR MSE RMSE(cycles)| #F

0.00162370 0.058918370.06628522 0.82189068 | 378
0.00035988 0.037288630.05514453 0.74964724 | 79
7.77325e-9  0.0335196 0.05692402 0.76164657 | 79
0.00004713 0.033282810.05636768 0.75791551 | 74
0.00003339 0.033111140.05645032 0.75847090 | 73
1.55088e-8 0.033030290.05707699 0.76266927 | 73

OO WN P

Table 19: Multi-step Lasso regression for 25% disturbarata.d7-fold CV used in select-
ing regularization parametéf; = 10000 and7, = 15000.

The best achievable prediction mean square error here535050 Only73 — 79 features
are useful for the model compared with the total 939 featurdéise model. Note that this
performance has mean square e22B83% smaller than the result shown in Sectiod.2

The pattern classification performance is also examineasd shown in Table0.

Lasso regression for quadratic models, with features extated from the linear model

In this section we extend model to include quadratic retesiop between thg9 features
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stepk | FD| FA FC | FD range (cycles) FA range (cycles
1 0 | 2.76%| 2.76%| 8.000 - 8.000 8.000-9.192
2 0 | 1.25%] 1.25%| 8.000 - 8.000 8.000 - 8.348
3 0 0 0 8.000 - 8.000 8.000 - 8.000
4 0 | 0.05%]| 0.05%| 8.000 -8.000 8.000 - 8.348
5 0 | 0.05%]| 0.05%| 8.000 -8.000 8.000 - 8.348
6 0 | 0.05%]| 0.05%| 8.000 -8.000 8.000 - 8.348
Table 20: Classification indices for applying Multi-stepsksa regression for 25% dis-

turbance data. 7-fold CV used in selecting regularizatiarameter,7; = 10000 and
T, = 15000.

selected by the 2-nd step Lasso regression result showrble T8 The extended model
is going to have’9 + 78 + - - - + 1 quadratic terms, as well as tfig linear terms. In total,
that is3239 extended features.

The set-up is:

e Use 3-fold Cross-Validation to select regularization pagger\,
e T = 4000,

e T, = 40000.

We use 3-fold Cross-Validation for considerations of cotapianal complexity. Ac-
cording to {1), the computation would cost about 21.5 times of that theukton in

Section5.4.1takes. The result for multi-step Lasso regression is shoviiable21.

stepk AR MSR MSE RMSE(cycles)| #F
1 | 0.00124000 0.044067970.05289462 0.73419511 | 300
2 | 0.00015648 0.031612520.05438718 0.74448164 | 88
3 | 0.00003655 0.025957000.05009815 0.71452358 | 75
4 | 0.00001880 0.025307100.04938512 0.70942054 | 73
5 | 0.00002336 0.025159050.04920196 0.70810375 | 70
6 | 0.00000513 0.025082080.04928440 0.70869676 | 70

Table 21: Multi-step Lasso regression for extended mod2béb disturbance data. 3-fold
CV used in selecting regularization paramefér= 4000 and7s = 40000.

The best achievable prediction mean square error here49280 Only70 out of the

total 3239 extended features are selected. Comparing with the KelidgeRRegression re-
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sults, the 5-th step Lasso regression has mean squarg@iéy smaller, or equivalently,
the RMSE22.08% smaller.
Interestingly, if we examine th#&)0 extended features selected by the 1-step Lasso, they
are from the cross-relationship @8 original features. Th&8 selected extended features
in step 2 are fron®2 of the original features, and the selected features from3te step 6
are all from59 of the original features.

The pattern classification performance is also examinasd stiown in Tabl@2.

stepk FD FA FC | FD range (cycles) FA range (cycles
1 0.5% | 1.25%| 1.75%| 7.188-8.000 8.000-9.772
2 0.74%| 1.00%| 1.75%| 7.716-8.000 8.000-9.772
3 1.00%| 1.00%| 2.01%| 7.188-8.000 8.000 - 8.876
4 1.00%| 1.00%| 2.01%| 7.188-8.000 8.000 - 8.876
5 1.00%| 1.00%| 2.01%| 7.188 -8.000 8.000 - 8.876
6 1.00%| 1.25%| 2.26%| 7.188-8.000 8.000-9.772

Table 22: Classification indices for applying Multi-stepslsa regression to extended model
of 25% disturbance data. 3-fold CV used in selecting regrdéion parametef]; = 4000
andT, = 40000.

5.4.9 Lasso Regression Analysis, 6-fold CV for Parameter &etion

Multi-step Lass regression on linear model Section5.4.1and5.4.2represent the Lasso
linear regression that uses almost the most time-savingsetvhile Section5.4.8 can
represent a random setuprafand7; for Lasso regression on the linear model. In Section
5.4.9we are going to show the Lasso regression analysis of the datae@assuming linear
model, under the setup that produces the best performarticwie numerous situations
we examined: We have examined the Lasso regressiomwith 2, 3,4, - - - , 10 folds of
Cross-Validation, and,; = 2000, 3000, 4000, - - - , 10000 as the value of loops in “shooting
Lasso” to select regularization paramekerThe set-up that leads the smallest error is the

following:
e Use 6-fold Cross-Validation to select regularization pagger\,
e 77 = 4000,
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e 75, = 15000.

According to 1) and (72), this set-up would take 5 times processing time as the Lasso
linear regression in Sectidn4.1and Sectiorb.4.2

For the 1-st step Lasso regression, the Mean squre resid&R) for the constrained
fit with constraint\, and the nonzero weights number vare shown in the Figh6. Note

that\},,, is emphasized as" in the figure.

ero Coyariates

Number of Nonz;

(b)
Figure 57: (a) Mean squre residual (MSR)Ngb) Number of selected features ks

MSR is minimum (0.0614) whea = 0.00129. Then we use\('). = X\* = 0.00129 to
calculate the lasso regression weights for the whole trgidata set. Denote the estimated
weights in this step by3™®. The superscript here denotes it is the estimate in firgt-ste
Lasso. Then we find that the number of nonzero weights is 4&aMgly the linear model
with weights 3 to the testing set and gét’"), j = 1,---,399}. We calculate the
prediction error by MSE= ll,zg.'zl (Y; — }73»(1))2, wherel’ = 399, is the length of testing
set. The resultis 0.07037.

Then by applying adaptive Lasso and multi-step Lasso regne®ased on this result,
we get results shown in Tab®8. Again, “# F” denotes the number of non-zeros weights,
which is also the selected features.

The best achievable prediction mean square error hereS6®80 Only32 — 42 features
are useful for the model compared with the total 939 featurdéise model. Note that this

performance has mean square etbn9% of the result shown in Sectidh4.2 or 55.81%
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stepk

OO, WN P

AF)

0.00129189
0.00122544
0.00005680
0.00033748
0.00002738
0.00000017

MSR

0.0614099
0.0366276
0.0318276
0.0307297
0.0304530

0.0304061

MSE

30.07036502
30.05309092
80.05068121
70.05034812
40.05100691
70.05088550

RMSE(cycles)

0.84680641
0.73555613
0.71866947
0.71630393
0.72097506
0.72011644

#F

434
59
45
33
32
32

Table 23: Multi-step Lasso regression for 25% disturbarata.d-fold CV used in select-
ing regularization parametéf; = 4000 and7s = 15000.

of the MSE using Ridge Regression.

The pattern classification performance is also examinasd stiown in Tabl&4.

stepk FD FA FC | FD range (cycles) FA range (cycles
1 0.00%| 2.51%| 2.51%| 8.000 - 8.000 8.000 - 8.823
2 0.00%| 1.50%| 1.50%| 8.000 - 8.000 8.000 - 8.401
3 0.00%| 0.50% | 0.50%| 8.000 - 8.000 8.000 - 8.243
4 0.00%| 0.50% | 0.50%| 8.000 - 8.000 8.000 - 8.243
5 0.00%| 0.50%| 0.50%| 8.000 - 8.000 8.000 - 8.243
6 0.00%| 0.50% | 0.50%| 8.000 - 8.000 8.000 - 8.243

Table 24: Classification indices for applying Multi-stepsksa regression for 25% dis-
turbance data. 6-fold CV used in selecting regularizatiarameter,7; = 4000 and
Ty = 15000.

Lasso regression for quadratic models, with features extated from the linear model

Extended model from 33 features Similar to Sectiorb.4.4 here we extend model
to include quadratic relationship between @i3efeatures selected by the 4-th step Lasso
regression result shown in Tal##8. The extended model is going to ha8se+ 32+ - - -+ 1
guadratic terms, as well as thg linear terms. In total, that i594 extended features.

The set-up is:
e Use 3-fold Cross-Validation to select regularization pagger\,

e 7} = 3000,
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e 75 = 20000.

We use 3-fold Cross-Validation for considerations of cotafianal complexity. The

result for multi-step Lasso regression is shown in T&ile

stepk ) MSR MSE RMSE(cycles)| #F
1 | 0.00000313 0.044774670.03318769 0.58155957 | 594
2 |0.00082748 0.020207600.03421298 0.59047450 | 438
3 |0.00078259 0.015715840.03388333 0.58762299 | 352
4 | 0.00053177 0.014931810.03219415 0.57278838 | 312
5 | 0.00051229 0.013758660.03139655 0.56564855 | 278
6 | 0.00058708 0.013041520.03118869 0.56377303 | 253

Table 25: Multi-step Lasso regression for extended mod2béb disturbance data. 3-fold
CV used in selecting regularization parameiér= 3000 and7,=20000.

The best achievable prediction mean square error here 38090 This error is only

34.68% of the MSE of Ridge Regression (See Secttoa.3, or 38.49% of the MSE of

Kernel Ridge Regression (See Sectod.5.

The pattern classification performance is also examineasd shhown in Table6.

stepk FD FA FC | FD range (cycles) FA range (cycles
1 1.00%| 2.01%| 3.01%| 7.241 -8.000 8.000 - 8.770
2 1.00%| 1.75%| 2.76%| 7.241 - 8.000 8.000 - 8.718
3 0.50% | 1.50%| 2.01%| 7.241 -8.000 8.000 - 8.718
4 0.75%| 1.75%| 2.51%| 7.241-8.000 8.000 - 8.718
5 1.00%| 1.25%| 2.26%| 7.188-8.000 8.000 - 8.718
6 1.00%| 1.75%| 2.76%| 7.188-8.000 8.000 - 8.718

Table 26: Classification indices for applying Multi-stepslsa regression to extended model
of 25% disturbance data. 3-fold CV used in selecting reggdéion parametef]; = 3000
and7,=20000.

5.5 Regression Analysis for 15% Perturbation Data
Similar to the 25% data studied in Section , the 15% pertiobatata set is:
e DimensionP = 939
e Training set sizel = 800
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The length of testing set i8 = 400. Data are normalized before applying regression
techniques. The regression here is exactly similar to th&eictions.5.
5.5.1 Lasso Regression Analysis, Using 4-fold CV for Parartex Selection
The setup is:
e Use 4-fold of Cross-Validation to select regularizationgmaeter).
e 77 = 2000.
e 75 = 15000.

The mean square residual for the constrained fit with coinstta and the nonzero
weights number vs are shown in the Fig58. Note that\.,, is emphasized a%* in the

figure.

ariates

Mumber of Nonzero cov

(a) (b)

Figure 58: Mean Square residual (MSR) and # of selectedriesits) in Section5.5.],
(a) Mean square residual (MSR) xs(b) Number of selected features ks

MSR is minimum (0.0124) wheh = 9.2039 x 10* and the result implies that 628 of
the total 939 features are with nonzero weights. Note tharntilmber is different from the
final number of selected features, since in parameter gahedf, = 2000 is a relatively
small number of iteration for the “shooting algorithm” tos@rge. The reasons to use such
a smallT; was discussed in Sectidh4.6 Then we use\ = X%, = 9.2039 x 10* to

calculate the lasso regression weights for the whole trgidata set. Denote the estimated
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weights in this step b)@(l). The superscript here denotes it is the estimate in firgt-ste

Lasso. Then we find that the number of nonzero weights is 34is i$ true number of

selected features using” = 9.2039 x 10*. We apply the linear model with weights?

to the testing set and géffj(l), j = 1,---,400}. We calculate the prediction error by
MSE= 1y, (v; — V)2 (' = 400) The result is 0.019694.

Then we perform multi-step Lasso regression, the resuttagva in Table27. We also

examine the pattern classification indices. Interestitigdye is no classification error for

the testing set (shown in Tabks).

stepk
1

2
3
4
5

6

AF)

0.00092039
0.00016090
0.00002414
0.00001053
0.00001114
0.00000807

MSR

0.0124244
0.0073668
0.0068827
0.0068514
0.0068503

0.0068481

MSE

10.01969405
00.01461748
80.01421118
30.01404045
90.01402272

40.01403481

RMSE(cycles)

0.28528630
0.24578177
0.24234189
0.24088175
0.24072959
0.24083334

#F

341
53
43
43
43
42

Table 27: Multi-step Lasso regression for linear model d¥oldisturbance data . 4-fold
CV used in selecting regularization paramefgr= 2000 and75 = 15000.

stepk | FD | FA | FC | FD range (cycles) FA range (cycles
1 0 0 0 8.000- 8.000 8.000 - 8.000
2 0 0 0 8.000- 8.000 8.000 - 8.000
6 0 0 0 8.000- 8.000 8.000 - 8.000

Table 28: Classification indices for applying Multi-stepsksa regression for linear model
of 15% disturbance data. 4-fold CV used in selecting regrdéion parametef]; = 2000
and7; = 15000.

5.5.2 Lasso and Ridge Regression: Comparison Studies

Similar to Sectiorb.4.3 Suppose we also use 4-fold Cross-Validation to selectaga-r
larization parameter in6{). First, the relationship between residual sum of squanes a

regularization parameteris shown in Fig.59.
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Figure 59: Mean square residual (MSR) i$n Cross-Validation in Ridge regression in
Section5.5.2

So the optimal\ for Ridge Regression is 0.0046308. By using this regulidnga-
rameter and the whole training set, we calculate the weiggitey Ridge Regression. Then
we use the testing set to evaluate the error. The mean squarefprediction corresponds
to Ridge Regression is 0.0249284. The performance for ssgne as well as pattern clas-

sification is shown in Tabl29 and Table30.

Ridge

Aoy MSR MSE RMSE(cycles)
0.0046308 0.02485350.0249284| 0.32096721

#F
939

Table 29: Ridge Regression for 15% disturbance data. 4Gdldised in selecting regular-
ization parameter.

Ridge
0] 0]O0 8.000 - 8.000 8.000 - 8.000

FD ‘ FA ‘ FC‘ FD range (cyclesT FA range (cycleﬂ

Table 30: Classification indices for applying Ridge Regmss4-fold CV used in selecting
regularization parameter.

The 5-th step Lasso regression shown in Tédnas a 43.75% smaller mean square
error compared with Ridge Regression, or equivalently,.8@® smaller root mean square
error compared with Ridge Regression. Also Lasso regnedsan to the selection of 43
features, compared to the total 939 features, while Ridggdsion leave all features to
have non-zero weights. The weights of the features are showig. 60, Lasso, Adaptive

Lasso, 6-step Lasso results are compared with Ridge Remgnessults.
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Figure 60: The weights determined by regression. (a) Oseistsso, (b) Two-step Lasso,
(c) Six-step Lasso, (d) Ridge Regression.

5.5.3 Lasso Regression for Quadratic Models

Similar to section 3.2.4, we want to do regression to inclyaiedratic relations of features.
In order to simplify computation, we expand the models frive 43 features selected by
the 3-rd step Lasso regression. (See Tadlén Section5.5.7) The total extended model
includes 989 features, in whial3 + 41+ - - - + 1 = 946 covariates are quadratic terms, and
43 covariates are the original features. Then we apply mtéf-£asso regression, where

the parameters are set-up as follows:

e Use 3-fold Cross-Validation to select regularization pagger\,
e 77 = 3000,

e 75 = 15000.

In the first step Lasso, the relationship between regressionof squares antlare shown

in Fig. 61, together with the corresponding number of nonzero-weegitires vs\. Min-
imum MSR corresponds td = 0.00062592. Use this as the regularization parameter in
the first step Lasso. The Multi-step Lasso regression iesuét shown in Tabl81. And
the classification performance of different steps of Lassshown in Tabl@2. Again, the

classification error is zero for the testing set.
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Figure 61: (a) Mean squre residual (MSR)Ngb) Number of selected features ks

stepk

OO WN B

AF)

0.00062592
0.00000625
0.00006055
0.00001693
0.00002793
0.00002403

MSR

0.0066756
0.0057540
0.0053773
0.0048092
0.0046069
0.0045632

1000 =
800
600
400

200

Number of Nonzero Covariates

10°

MSE

40.01226547
70.01002906
80.01062372
90.01016227
90.01010217
90.01010768

it T g

I}

(b)

RMSE(cycles)

0.22514148
0.20358396
0.20953268
0.20493149
0.20432467
0.20438038

#F

275
164
114
104
94
92

Table 31: Multi-step Lasso regression for extended mod&bé6 disturbance data . 3-fold
CV used in selecting regularization paramefgr= 3000 and75 = 15000.

stepk | FD | FA | FC

1 0| 0] O
2 00O

FD range (cycles

8.000- 8.000
8.000- 8.000

FA range (cycles

8.000 - 8.000
8.000 - 8.000

6 0] 0)|O0 8.000- 8.000 8.000 - 8.000

Table 32: Classification indices for applying Multi-stepsksa regression for extended

model of 15% disturbance data. 3-fold CV used in selectimylegization parameter,
T, = 3000 and7, = 15000.

5.5.4 Lasso Algorithm and Kernel Ridge Regression: Compasion Studies

Similar to Sectiorb.4.5 Kernel Ridge Regression paramejemnd) are selected by Cross-
Validation. Here we use 4-fold Cross-Validation. Regressiare conducted applying

guadratic kernel of different orders. The results are shiovilfable33 and Table34.
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orderp

OO0 wWN

Q:E,ng

339820833
697830585
777365030
388905200
562341325

12 897687132

Ny

542.46909370
1.218814e+12
1.407465e+21
1.018152e-016
1.018152e-016

1.018152e-016

MSR

0.0196568%01813012

MSE

0.0173095101619021
0.01729585%01619687
0.01730467.01616100
0.0196376201841108
0.0196669901856998

RMSE(cycles)

0.40619259
0.40627610
0.40582600
0.43315699
0.43502226

0.42983919

#F

939
939
939
939
939

939

Table 33: Kernel Ridge Regression of different orders fé&boXbsturbance data. 4-fold CV
used in selecting regularization parameter.

stepk | FD FA FC | FD range (cycles) FA range (cycles
2 2.26%| 1.75%| 4.01%| 7.188-8.000 8.000 - 17.102
3 2.26%| 1.75%| 4.01%| 7.188-8.000 8.000 - 17.102
4 2.26%| 1.75%| 4.01%| 7.188-8.000 8.000 - 17.102
5 2.26%| 1.50%| 3.76%| 7.188 -8.000 8.000 - 14.466
6 2.26%| 1.75%| 4.01%| 7.188-8.000 8.000 - 17.102
12 | 2.26%| 1.50%| 3.76%| 7.188 - 8.000 8.000 - 14.466

Table 34: Classification indices for applying Kernel RidgegRession of different orders
for 15% disturbance data. 4-fold CV used in selecting retgdtion parameter.

5.6 Conclusions for Transient Stability Analysis

In this section, we have examined the Lasso algorithm in tmeext of transient stability
analysis. Our results show that Lasso algorithm and itsnsibes outperform the com-
monly used techniques utilizing Ridge Regression and H&iuge Regression techniques
in terms of the prediction error. For t8% perturbation data, the properly tuned Lasso
regression leads to 3% smaller MSE error compared with Kernel Ridge Regression.
Furthermore due to the adaptive nature of Lasso algoritheraehieve not only a smaller
prediction error bust also a more parsimonious model coetpwith the solutions em-
ploying thel, penalty. Depending on the purpose of application, one cansghbetween
the models that lead to more precise prediction, and the thia¢fiave smaller number of
feature variables. By selecting loop parametgrand s, the balance between accuracy

and efficiency can also be selected based on the applicatrpoge of the user.
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