The University of Manitoba

CHARACTERISTICS OF LOOP YAGI ARRAYS WITH LOADED ELEMENTS

AND THEIR APPLICATION TO SHORT BACKFIRE ANTENNAS

By

ALIREZA SHOAMANESH

A Thesis
Submitted to the Faculty Of Graduate Studies
In Partial Fulfillment Of the Requirements For The
Degree Of Doctor Of Philosophy

DEPARTMENT OF ELECTRICAL ENGINEERING

Winnipeg, Manitoba

Canada

JUNE 1979




CHARACTERISTICS OF LOOP vYAGI ARRAYS WITH LOADED ELEMENTS
AND THEIR APPLICATION TO SHORT BACKFIRE ANTENNAS

BY

ALIREZA SHOAMANESH

A dissertation submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY
©’1979

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this dissertation, to
the NATIONAL LIBRARY OF CANADA to microfilm this
dissertation and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this dissertation.

The author reserves other publication rights, and neither the
dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.




ABSTRACT

An analysis of wave propagation along an infinitely
long array of single or two concentric loaded circular loops
is presented. The travelling wave idea is applied to derive
a relationship for the propagation constant along the struc-
ture. The analysis is based on a "circuit theory" method and
gives the dispersion relation in terms of the mutual imped-
ances betweén a reference and the other elements, in the
array. In addition, Flouguet's theorem is uséd to account
for the periodicity of the structure. It is found that cap-
acitive loading increases the operating frequency range, for
a given phase velocity of the travelling wave along the struc-
ture, and consequently, increases the bandwidth of the array.
Capacitive loading of the inner array in a two concentric
loop array, which operates in two passbands separated by a
stop-band, increases both the separation of the pass-bands
and the bandwidth of the second pass-band.

A study of the excitation problem in finite Yagi arrays
shows that for arrays made of two concentric loops the choice
of the outer loop as the feeder gives the most superior gain
and input admittance characteristics.

As an example of multiple-loadings, the case of a
doubly loaded array is considered. It is found that for a
relatively smooth variation of the input admittance in a
Yagi array, the exciter may be loaded resistively. Extensive

investigation has also shown that to improve the gain bandwidth




ii

performance of a Yagi array, its directors and reflector must

be loaded by capacitive and inductive loads, respectively.

Similar result is also obtained for distributed impedance
loadings.

Coaxial planar loops and their application to backfire
antenna are also studied. First, a general method is described
which enables one to study compact arrays and coaxial planar
loop antennas with considerable ease. The technigque is then
used to investigate the radiation characteristics of coaxial
planar loop arrays and backfire antennas constructed entirely
with loops. The comparison between this type of backfire
antenna and the conventional one with a solid reflector reveals
that the optimum sizes of the reflector and the peripheral
rim are approximately the same for both kinds of the reflec-
tors. However, the optimum gain of the loop-reflector is
found to be about 1dB less than that of the solid reflec-
tor aerial. In addition,.it'is found that as few as 6 loops
are sufficient to construct'the optimum size of the reflec-
tors and almost the same number of loops are required to form
the optimum peripheral rim. The new structure reduces the
weight, windage and obstruction of view which accompany solid

reflectors. 1In addition, the new antenna lends itself to

“exact analytical investigation.
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CHAPTER I

INTRODUCTION

The electromagnetic theory of circular loop antennas

has received considerable attention in the past due to its

advantages over dipole antennas, and its relatively simple
geometry. The radiation pattern of a small loop antenna is
similar to that of a dipole antenna and shows a figure eight

shape in the vertical plane involving the loop axis. How-

ever, it tends to become directive in the axial direction as
the loop circumference approaches one wavelength [1 - 217].

This fact suggests that a highly directive beam may be ob-
tained if an array of coaxial loops of a proper dimension

is utilized. A well suited application of the loop array is
to employ loops as elements in a Yagi-Uda array, in which
only the second element is excited. However, in contrast to
the extensive studies available on dipole Yagi-Uda arrays, the
literature on Yagi arrays of loop antenna is scarce. The

goal of this thesis is to undertake a detailed investigation

of these antennas.

1.1 Literature Review

The first general analysis of a circular loop as a

transmitting antenna was carried out by Hallen [3]. He

considered the loop antenna excited by a lumped generator,
an idealized delta function generator, and obtained a formal
solution for the current and the input admittance in the

form of Fourier series. However, due to the occurrence of a




singularity in the high order Fourier coefficients, he was
unable to obtain numerical results except for loops small
compared to the wavelength. Storer [4] reconsidered the
problem but avoided the contribution from the higher order

terms by approximating the series by an integral and evalua-

ting it using the Caushy's principle value. He provided
extensive tables and graphs of the input admittance and cur-

rent distributions for loops up to a wavelength in circumfer-

ence and a number of different wire cross sections. Storer

also examined the validity of the constant current distrib-

ution on a small loop and was led to the conclusion that
loops with circumference larger than 0.2 wavelength can
not be considered small.

T.T. Wu re-examined the problem of evaluating the
Fourier series. He pointed out that, assuming that the cur-
rent flows along the center of the conductor, the expansion
of Hallen and Storer does not converge everywhere on the
antenna [5]. He examined the surface current distribution on
a perfectly conducting loop and verified that the resulting

Fourier series for 1I(¢) converges everywhere except at the

driving point.
Later King et al. [6] computed the input admittance

of a circular loop by taking a partial summation of the infin-

ite series obtained by Wu. They suggested that a Fourier
series solution with twenty terms is satisfactory for deter-=
mining the admittance of thin (@ = 2 1n 27 g > 10) and

kb < 2.5 loops in air and dissipative media. Here k, a,




and b are the free space propagation constant and the wire
and loop radii, respectively.

Inagaki et al. by assuming a finite gap at the driv-—
ing point gave a theoretical basis for determining the re-
quired number of terms in the current and admittance compu-
tations {7]. They obtained an expression for the driving-
point admittance in which the gap capacitance is a lumped
representation of the effect of the gap width.

Iizuka et al. have analyzed an array of two identi-
cal parallel loop antennas. They have decomposed the volt-
age and current into symmetric and antisymmetric components.
As a result, the simultaneous integral equations for the
distribution of the current along the loops have been conver-
ted into a single integral equation similar to that of an
isolated circular loop antenna which has already been stud-
ied [8]. This method, however, is not applicable to antennas
with loops of different circumferences. The experimental
work of Lindsay [9] is the first published study of relatively
large circular loop Yagi arrays. Lindsay reported a gain
difference of about 1.8dB in favour of loop arrays in comp-

arison with dipole arrays of the same length. Later, Appel-

. Hansen reported similar .experimental comparison [74] and [10]. He

utilized a feeding system which consisted of a circular loop
antenna as the exciter and a parasitic loop as reflector. For
the director he selected three different configurations, an
array of parasitic circular loops made of flat plate loops,

a parasitic array of wire loops and a parasitic array of




straight rods, Comparing the experimental gain of these
directors, he found that for array lengths less than 2A

all three had similar gain performances, but for large arrays
the gain of rod directors was somewhat higher. A similar

problem was also examined by Takata and Sekiguchi £11]d.

Their numerical and experimental results show that for arrays
lengths less than 2A there isa gain difference of about 1dB
in favour of loop arrays over the arrays made of rod elements.

The first theoretical investigation of an array

of coaxial circular loop antennas with arbitrary circumfer-

ences, has been carried out by Ito et al. [12] using Fourier
series expansion, with emphasis on the existence of finite
gaps at the driving points. The expression for the current
distribution on each loop and the input admittance involve
matrices, where the dimension of each matrix is related to

the array size. Thus, in the investigation of loop arrays

the required computer time and storage capacity increase with
the array size and for very large arrays become excessive.

To overcome these difficulties, the resonant property of loops

was later applied by the author to develop an efficient method

for the investigation of Yagi loop arrays [13] . For this
method, the exact radiation fields and the current distribu-

tions of a finite and relatively large uniform array of cir-

cular loops were compared with that obtained using the domin-
ant mode only. The discrepancies between the results of both
radiation fields and current distributions were found to be

negligible. Later, an approximate method was also utilized




which facilitated the rapid and accurate analysis of large
loop arrays [147. 1In this method, a large loop array consis-
ting of an arbitrary number of elements, was sub-divided into
several small sub-arrays such that the first sub-array con-

tained the active element. WNeglecting all sub-arrays except

the first two, the resulting two sub-arrays were solved sim=
ultaneously to yield loop currents. The results for the first
sub~array were retained and were used in simultaneous solu-
tion of the second and third sub-arrays. The process was

continued until all loop currents were obtained. The travel-

ling wave approach has also been used to study coaxial loop
arrays. Shen and Raffoul have applied this method to finite
uniform Yagi arrays of equal loops to provide design para-
meters for a given bandwidth, directivity or array length
[15]. Finally, the electrical properties of coaxial Yagi
loop arrays were investigated by the author by applying the
exact solution and the significance of each array parameter
and their effects on antenna characteristics was determined
[16]. Based on these works extensive design data for short

and medium size arrays were obtained in [17].

In this thesis we extend the investigation of circul-
ar loop arrays to arrays with loaded elements. Wave propa-

gation on an infinite structure is investigated and charac-

teristics of finite arrays are studied. The work presented
here is based on the Fourier series expansion method. Thus,
a brief review of this theory for an array of coaxial circu-

lar loops with arbitrary circumferences is given in the next




sections.

Chapter II deals with the phase velocity of wave
propagation on a loaded infinite array of circular coaxial
loops. A dispersion relation is derived by using the so-
called "circuit theory" method and Flouguet's theorem.

Tt is shown that reactive loading has significant
effects on the phase velocity of the propagating wave and
the cut—off frequency can be controlled by proper loading.
For a finite array, the effect of reactive loading is alsé
studied and by a capacitive loading broad-band antenna char-
acteristics are obtained as well.

Multi-source and loaded arrays are investigated in
Chapter III. Initially, the array is excited by arbitrary
sources at two symmetrical points with respect to the array
axis. The principle of superposition is applied and expres-
sions for the current distribution and the input admittance
are obtained. Later, all sources except for those on the
gth element which excite the array, are replaced by lumped
loads of finite lengths. The properties of these arrays are
investigated and broadband characteristics for directive
gain and input admittance are reported.

Chapter IV deals with the coaxial loop arrays with
distributed impedance loading. It is shown that, in general,
a broadband characteristic can be obtained by a distributed
impedance loading. The constant resistive loading is stud-
ied in more detail since this type of impedance distribution

can be fabricated readily and all practical antennas made of




conductive metals fall into this category.

There hés been increasing attention on high gain an-
tennas which are generally achievable by compact arrays. In
Chapter V, a method is described which enables one to study
compact arrays with considerable ease. Then, the method is
applied to investigate co-planar arrays and backfire antennas.

The technique given in Chapter V is combined with the
analysis of Chapter II in order to investigate the phase vel-
ecity of an infinite array of two concentric loops. This kind
of structure possesses two distinct pass-bands separated by
a stop-band which can be controlled by array geometry and
suitable reactive loadings. This is done in chapter VI.

Chapter VII summarizes the results and provides a list

of suggested topics for future research.

1.2 Fourier Series Solution of Circular Loop Arrays

Since the Fourier expansion method is used as the
basic tool in this work, it is reviewed briefly in this sec-
tion. Figure (1-1) shows an array of coaxial circular loops
composed of N elements with arbitrary circumferences. The
center of loops are located on the z-axis and there is a fin-
ite gap at their driving-points. The radius of the ith loop,
the radius of the conductive wire, and the driving-point vol-

tage are denoted by bi' a; and V;

i respectively. It is

assumed that bi >> a; and a; << A where X 1is the wave-
length of the signal in free space. Its finite driving-point
gap is denoted by b16¢i. The loop current Ii(¢i) is assum-

ed to flow uniformly in the ¢ direction along the conductor
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surface. TFollowing the procedure in [3]1-[7] for a single
loop, the integral equation satisfying the boundary condi-
tions of the electric field on the surfaces of N circular

loops may be shown to be [12]

Vi jno N 2T
5, Uil = mm, Ll f Ckbj cos(oy = ¢g) +
i i i j=1 ‘0
L3 w (6. - 61) I.(e1)@6'., i=1, 2, .., N (1.1)
kb, 8¢§ ijhri J 73 ]
where
21 =jkb.R. . (¢,¥)
f%J e iTii /Rii(¢,¢)d¢ i=3
i3(®) = 0 (1.2)
exp ["jkbi Rij(¢)]/Rij(¢) i# 3
27

A

is the propagation constant, and Ng = 12071 is the charac-

where Ij(¢j) is the current on the Jjth loop, k =

teristic impedance of free space. Ui(¢i) is equal to 1
within the driving-point gap and is zero elsewhere. The
distance Rij between two currents, normalized by the loop

radius bi and for i = 3j 1is

R, (6,9) = [4 sin? /2 + 4(a;/b;)? sin’ v/277 (1.3)

and when i # j and assuming dij >> a.. it is

a.. b. .
= ] _.1'_12 _l — 3
R, . (¢) [4(bj/bi)2 sin? ¢/2 + (bi) +(bi 1)2] (1.4)

In order to solve the simultaneous integral equations

(1.1), the current Ij(¢j) and the kernel Wij(¢) are

expanded into Fourier series

@ n .
I. . = ¥y I. cos .
j(¢5) I ney + Q4

il
o}
3]
~
~
Pz

(1.5)
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- n -jnoé e os 1
Wij(¢) n:inij e (1,3 1, 2, ..., N) (1.6)

where for i = j
-jkb.R.. (¢,V)
n -n 1 JZﬂ 2m iti1
o Jo Rii(¢,W)

IMapay  (1.7)

Lo R; 4 ()
K 4 e
ij ij 2T |, Rij(¢)

eIn? g4 (1.8)

An introduction of (1.5) and (l1.6) into the right hand side

of equation (1.1), after some manipulation gives

n sin n(6¢i/2) _ N n n
Bi = N 50,72 Vi = by Zi' 1. (1.9)
v i 3=1 J 3
i=1,2,...,N; n>290
where
jmn kb K;. n=20
o J i3
n —
Ziy T, n+l , _n-1 (1.10)
jmng, Kisw * Kig n? _n L
57— (kDb 3 T kb fiy) M2
Eqguation (1.9) in the matrix form is
n n n

These simultaneous equations contain a group of Fourier coef-

ficients of the current I? (3 =1, 2, ..., N) for the same

order n only. The diagonal and off diagonal elements of
the matrix Z?j represent the generalized self and mutual

impedances of the nth order mode of the loop currents, re-

spectively. Z?i and Z?j correspond to cases where the

observation points of the electric field are on the same or
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different elements. To calculate Z?j and Zgi the values

n

of K?j and K?i should be known. To evaluate K.. the

iif
range of integration of equation (1.7) was divided into three
regions where in each region an approximation was used. The
details of this procedure is given in [7].

The other coefficients K?j (i # j) are presented in

polynomial form in [12]

n+2m

noo_ s > y/27) 2
Kiy = ~3kby I ovim i mT Peom B (1.12)
n=0
(i,35=1,2,...,8 ; n=20,1,...)
where
y = kbi kbj (1.13)
_ 2 2 2% !

Z = [(kbi)_ + (kbj) + (kdij) ] (1.14)
and h? (Z2) is the second kind spherical Hankel function

n+2m

of order (n + 2m)

e o o v o T ot T O W T o T (e G g e S S R T e e o i S

Assuming that (y?j) represents the inverse of the
matrix (Zij) in equation (1.11), the current Ii(¢i) on
the ith element is then given by

® N
I.(6:) = % (£ yo. B2) cos n¢; (1.15)
Y op=0 g=1 0t *
The admittance matrix (y?j) may be considered a diagonal

matrix for n larger than a certain number mg determined

by the magnitudes of b., bj and dij ,[12] and [16]1. Thus,

equation (1.15) may be reduced to
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m n
o) N ® B
n n i
Ii(¢i) = r (Zz Yy B.)cos n¢i + p) —— cos n¢i
n=0 4=1 *3 J n=m_+1 Zj

. (1.16)

For the values of n for which the approximation

n.n
= - __9_._ =
Zii = j 4kai n > ng bi/ai (1.17)

is valid, the second summation in (1.16) will be D2]

n
£ B 4ka.V, (0.+8¢.:/2
z —% cos n¢; = -J ﬁ_—%ﬁi J * * ln(2 sin l§l)dt -
n=n,+1 Z.; o i ¢i"6¢i/2
j4ka, Vv, i sin(n 6¢i/2) cos né.
- —_—= 3 50,72 . = (1.18)
Mo n=1 o3

where n, > m_. For small values of ¢ the integral in

(1.18) can be evaluated approximately in the form

4kaiVi 4kai\7:.L oy + 6¢i/2
- ~ s .1 . /2
j e 55 J 3 e ] 5o, n(g; + 6¢l/ )
o; — S8¢;/2
- T.ln |d)l - 5(])1/2! -1 (1.19)

when ¢i = 6¢i/2, equation (1.16) represents the driving-
point current. Using the relation sin(n6¢i/2)/(n6¢i/2) ~ 1
for n < n, = bi/ai’ the input current Ii(l =1, 2, ... N)
may be written as

m n, v

o} N n 1 i aie
I. = 35 3 ytLv.+ 1 —= 4 jape a;V; In s
1 n=0 =1 13 3 n=m +1 2%, o"i'i T 28b; 8¢y
(@] 11
(1.20)

where bi6¢i represents the gap width and hence the third

term is related to the gap capacitance, 1n 28 =y and
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vy = 0.5772 is Euler's constant. Because in derivation of
(1.20) the magnetic current has been neglected, the gap

capacitance is twice as large [7],

a.e
(1.21)
c .. = 2 a. 1In S S
gi o i 28b16¢i
and therefore,
m N 7y
I, = © T yi. V.t Lo+ j o )V, (1.22)
n=0 =1 *J n=m_+1 Z; 9

The contribution of the magnetic current was omitted in
eguation (1.1), because the effect of the gap capacitance is
limited to the vicinity of the driving point. The current
distribution on an antenna element is not significantly af-

fected by this omission, and hence can be expressed by

m n.
(6. > Ly _—
I. (¢, = z r VY.. V. cos no. +V, z —— COS né,
e n=0 j=1 )3 * * n=mo+l Z?i +
(1.23)
The admittance matrix Yij of the array is given by
mg ng
n 1 . . .
r ovy.., + X —— + 3 wC_. ’ 1= 3
n=0 % n=m +1 2%, g
o ii
L. = 1.24
i3 - ( )
o
n , .
LYy i# 3
- J
n=o

1.2.2 The Radiation Field and Directive Gain
In terms of spherical coordinates r, 9, ¢, that have
their origin at the center of the first loop in Figure (l.1),

the radiation field can be expressed by
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E9 Ng cosH N
=-Z; exp (-jkr) 'E [kbi exp(jkdil cos8 ]
E¢ 1 i=1
oo Si
Y R Gl i (X)) 2 I x0T | sin ne (1.25)
n=0 n n * cos n¢
where X, = kbisine, Jn(xi) is the Bessel function of the

first kind of order n, and di represents the spacing

1
between the ith and the first elements.
Using equation (1.25) and the definition of the dir-

ective gain, the directive gain with respect to the direction

of the z-axis is given by

N
. . 112
mn, [iEl kb, exp(fjkd,,) * I.|
a,r T "7 ° N (1.26)
I Re(Y.,)]|v,|?
. 1 1
i=1

where the plus sign is for the positive z-direction, and the
negative sign is for Gr' the gain in the negative direct-
ion.

The material covered in the last few pages summarizes
the major steps required in developing the theory of loop
antennas and their arrays using the Fourier expansion method.
This method will be utilized in the next chapter to develop
further the theory of loop arrays and to investigate the

loading effects on the array characteristics. Both arrays of

infinite and finite lengths are studied. To study the characteristics
of finite Yagi arrays of circular loops with different number of elements,

several different sizes of array are selected whenever possible. The

types of structure studied in this thesis are listed below:




i)
1)
iii)
iv)
v)
vi)
vii)

viii)

ix)

X)

xi)

xii)

xiii)

14'

infinite loaded arrays

finite loaded arrays

' multiply loaded arrays

constant distributed resistive loaded arrays

tapered distributed capacitive loaded loop antennas
planar arrays of concentric loops

a single and a 2-element loop antenna above the ground plane

a circular loop antenna in front of a solid disk
reflector

short backfire antennas with peripheral rim

a circular loop antenna in front of a planar array of
concentric loops

a circular loop antenna in front of a planar array of
concentric loops with peripheral rim

infinite arrays of two concentric loops with loaded
elements

finite arrays of two concentric loops




CHAPTER 1II

INFINITE AND FINITE LOADED LOOP ARRAYS

2.1 Introduction

Generally, the loading of an antenna by a lumped or
distributed impedance modifies its current distribution and
affects its fadiation characteristics. Thus, by a proper
selection of the type, size and the location of the load, the
performance of the antenna can usually be improved.

The idea of tuning a radiating structure to control
its current and hence its radiation properties, dates from
the earliest antennas and was commonly used in the design of
broadcast antennas in the 1920's [18]. There has been exten=-
sive progress in the technicues of antenna impedance loading
during the last twenty years and very interesting results
have already been reported for single dipoles and arrays of
dipole antennas [19]1-[23]. The single loaded circular loop
antenna has also been studied in [24]-[26] and a broad fre-
guency characteristic was reported. Here, the work is ex-
tended to arrays of circular coaxial loops which are loaded
at ¢ = 0. Attention is specifically focussed on Yagi type
arrays in which only one of the elements is excited and the
rest are parasitics. These kinds of antennas enjoy the sim-
plicity of feed systems and are very inexpensive to fabri-
cate. Furthermore, these antennas have very high directiv-

ity.
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2.2 The Reasons for Investigation

Antennas with high directivity are necessary to obtain
good sensitivity and selectivity in most communication sys-
tems. With the development of radio-astronomical research
during the past decades, such antennas have become more and
more important, and moreover, the réquirements on the direc-
tional properties of antennas for radio-astronomy have become
more stringent than those for ordinary engineering applica-
tions. Antennas for radio-astronomy should have radiation
patterns with the narrowest possible main beams and lowest
possible side-lobe levels. 1In the microwave range of fre-
quencies such a high directivity is usually achieved by using
the large parabolic dish type of antennas. But in the lower
frequency range, the size of the parabolic antenna and con-
sequently, its cost become enormously large. The usual prac-
tice in such a range of frequencies is to combine some simple
types of antennas in the form of an array in order to obtain
the required directional properties. Furthermore, for mini-
mum cost and ease of steering the direction of the main
antenna beam, the number of elements in the array should be
small. Yagi-Uda antennas are one of the very few types that
may be used for such a purpose. In infinite form, this
structure may be used as an open waveguide. Shen has given
a list of possible applications of this structure in [27].

In spite of many investigations on Yagi arrays of di-
poles, reports on circular loop Yagl arrays are scarce.

Although they are directive antennas, their 3dB bandwidth
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is relatively small which is a major drawback associated with
this structure. In this chapter it is shown that the band-
width of the array can be improved with proper loading of

the elements, To do so, the travelling wave idea is applied
on an infinite loaded circular loop array in order to obtain an
expression for the propagation constant along the structure.
Recent theoretical and experimental investigations [281-[30]
have shown that a periodic array of infinite length can sup-
port a travelling wave along its structure. This seems to

explain why a section of the structure with properly matched

ends can yield a rather directional end-fire radiation pat-
tern. The a?plication of the travelling wave idea to the Yagi
antenna dates back to 1950 when R.A. Smith [311 suggested that
the phsyical action of the directors in the Yagi array is
to reduce the phase velocity of the wave travelling along the
axis of the Yagi. This is equivalent to saying that the wave
radiated by the driven element travels through a region with
refractive index greater than unity.

Tn the next few sections we will derive an approximate

expression for the phase velocity of the travelling wave along .

a loaded loop array. The array extends to infinity in both
directions along the z-axis, figure (2-1), and consists of

equal coaxial loops of radius b which are separated by a

distance d and are loaded with identical loads of finite
length bé¢ at ¢ = 0. Therefore, the load impedance can
be represented by ZLU(¢), where U(¢) is equal to unity

at the load and zero elsewhere. The analysis is based on
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the classical method and a dispersion relation is derived
in terms of the mutual impedances between the zeroth element
(the element on xy plane) and other elements in the array.

In addition, Flouquet's theorem [32] is also used to account

for the periodicity of the structure. The effects of load-

ing on the finite array is also investigated.

2.3 A Relation for Phase Velocity

Let B be the propagation constant of the travelling

wave on the infinite array of figure (2-1), with a time

factor exp(jwt). Thus, for the propagation along the posi-
tive z-direction (assuming the wave is propagated without
attenuation) the current distribution Im on the mth loop

is related to 1I that of the reference loop by the relation

0’
I.(¢9) = TI,(¢) exp(-jpmd) (2.1)
The investigation of the finite arrays by using the integral
equation method has shown [16] that for a properly designed
array the above assumption of a constant current magnitude
and phase change along the directors is approximately valid.

Equation (2.1) may also be recognized as the usual Flouquet

type of phase variation used in periodic structure analysis.
This type of phase variation is based on Flouquet's

theorem which states that in any medium having a special per-

iodicity d, the fields are multiplied only by some complex
constants if one moves down the strucutre by a distance d.
This is obvious since if the structure is displaced along

the z-axis by an amount d, it coincides with itself and
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the new field can differ from the previous one only by a
constant factor.

For the current distribution IO(¢) in equation (2.1)
the form I.cos¢ is adopted. This assumption for antenna

0
current has already been confirmed in [13] and [16]. Further-

more this form of the current (n = 1 mode) is assumed due
to the fact that we are interested in the first passband of
the array and within this band the array is an endfire
antenna [15].

In order to apply the boundary conditions on the

element surface, each load is replaced by a constant voltage
generator. This is made possible by applying the compensa-
tion theorem, which states that an impedance ZL in which a
current I is flowing can be replaced by a potential differ-
ence egual to —IZL without changing the electrical behav-
iour of the network.

Now the application of the boundary condition can be
carried out in a similar manner to the case of the unloaded

arrays discussed in the previous chapter. The resultant

matrix equation (1.11) for n =1 is of the form

1 = . -0 < i "]

The ith row of this matrix equation is

o}

1 = - -0 i [e)
z Zij Ij ZLIi ’ 0 < 1 < (2.3)

j==oo
Since the array is a periodic structure with elements

extending from -~ to +«, due to symmetry one may, there-




21

fore write equation (2.3) for the 0th element (reference
element) without loss of generality. Thus using equation

(2.1), equation (2.3) becomes

[oc]

1 — = -
3; ZOm IO exp (-jmBd) ZLIO (2.4)
where from Chapter I, the impedance Zém is given by
3TN K2+ K?
1 _ o Om Om _ 1 .1
Zom = —z LK 5 ~ % om’ (2.5)
and
n 1 (%7 1 . .
K= o J Gy exPL-IKD Rop(e) + Inelds (2.6)
0 Om
with
_ Im|a 22 o2 427"
ROm 5 [1+ (md) sin? ¢/2] for m > 0 (2.7)
ROO and KEO are as defined in (1.3) and (1.7). The infin-

ite summation in equation (2.4) is a transcendental equation.
In order to solve this equation, we will use a technique
which was employed first by Serracchiolli and Levis [33] for
dipole arrays. This procedure is based on obtaining an asymp-
totic formula for the Zém function and summing an infinite
series at finite M while replacing the truncated terms by
their asymptotic equivalent. The magnitude of M depends

on the geometry of the array and will be discussed in more

detail later. The steps involved in the above procedure are

discussed in detail in the next section.
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2.4 Evaluation of the Infinite Series (2.4)

mhe infinite summation in equation (2.4) can be sub-

divided into three summations in the following way

- (M+1) M ® X
s+ £ + £ | 2! exp(-jBmd) = ~-Z (2.8)
- -M M+1 Om L
M
where M is an integer such that %% >> 1. With this con-

dition the infinite summations of (2.8) can be evaluated
approximately. The finite summation should, however, be
evaluated exactly by using equation (2.5).

o M . . e .
Wwhen condition 5% >> 1 1is satisfied, equation (2.7)

for ROm can be approximated by twc terms of its binomial

expansion. The result is given by

a 1 ,2b2 _. B a
Rom = |m| 5 1+ 35 &3 sin? ¢/21 = |m| ¢+
b [1 - cos¢] (2.9)
IEE! )
Introducing this expression into equation (2.6) gives
md
(for 55 1)
: jkb?
~jk|m|d 7 J s COS¢
n ~ b e |m{d
Kom T[m[a Jo e « cos n¢ do (2.10)

The integral in (2.10) is related to the Sommerfield repres-
entation of the Bessel function. Thus, one can find

n

n _ bj exp(=jk] m.14) . _ kb?
Kom a %m| Jn(x) , with x = T—F—l-l—a (2.11)

Therefore, equation (2.5) modifies to the form

Jmngb Jo(x) = I, (%)

1 -3
Z 0m 5 LKDP 5 w5 Y1 ¥ ]

exp (=Jk |m]| d)
[m]

(2.12)
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Now, for the above range of m, and kb é 1, the argument
% is small and the small argument approximation for the

Bessel functions can be used. Thus, for

5 (x) —— = (5T (2.13)
n n! 2
x > 0
the result is
jmn_b . 3145 -
1 17" kb _db . _k°Db jk|m|a
Zom = 33 Uz " 2d[m] ~ Teazlml’ © /|m] (2.14)
Introducing Zém from equation (2.14) into eguation (2.8)
gives
M . -(M+1) e :
- Zé JIBmad L Ty L r e+ B . Cz)exp( ik[m|d+igmd) _ _,
-y Om oo M+1 YN m]
where (2.15)
. 2
A = jﬂnokb
4d
ﬂnob2
B = iaz (2.16)
mn _k3b®
c =-9-2__
3243
The infinite summations of (2.15) are of the form
- (M+1) © . .
£,(8) = r o+ 3 | exel JklIi“ld*JBmd (2.17)
- M+1 |m|

with i =1, 2, and 3. Now we will consider (2.17) for

each 1 separately.

(1) Summation for fi (B)

Relation (2.17) for i =1 |is

L
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ey - 5 Vempik|mlarigna) , f exp(-jk|m|d+ipnd)
l 00 l m I M+l | m l
© _(~jkmd-3Emd) ©  _-jkmd+jBmd
Z + I =
m=M+1 m m=M+1 ™
. M ~3md (k=B) ~3ma (k+8)
R e ; e (2.18)

The infinite summation in (2.18) is known and is given in
reference [34]
o TImX

b = =1n(2 sin x/2) % J
m
m=1

£, 0<x<o2m (2.19)

Utilizing (2.19), the infinite summation of (2.18) gives

© _—jmd (k+B) -jmd (k-B)
r & ; = = =In[2 sin gi%;ﬁlj -
m=1
L5 mQGt8) | gppy gin SUEZK) 4 g -a(ek) .
-1n 2(cos kd - cos pd) + jkd (2.20)

Substituting (2.20) into (2.18) gives the final result for

fl(B) ’
Mo ey
fl(B) =-1n 2(cos kd - cos Bd) + jkd - 2 I e JKOA os Rmd
m=1 (2.21)
(ii) Summation for £, (8)

We can find a relation similar to (2.18) for fz(B)

w M =Jjmd (k-8) -jmd (k+B)
£,(8) = [ Lo z:} g re (2.22)

2
=1 m=1 me
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Again, referring to [34] we have

© PImX T X x>
r & 5— = —~-Z (27 - x) £ jxln x - X = 55~
“ Tm 6 4 72
m=1
X5
—_— e - <
1,400 oo 0 n < 27 (2.23)
So that
_n? o (kd)?2 + (BA) 2% , . Y2 .
fZ(B) = 3 mRd + 3 + jR4 ln(Yl) + jkd ln(Yle)
03 3 5 5
. Y1 T Y2 Y1 7 Y2 N exp (-jmkd)
- 23kda + 3 73 14400 - 2 E — cos fAmd
m=1
(2.24)
where
Yl = (B'—k)d
(2.25)
Yz = (B+k)d
(iii) Summation for _£;(B)
Following the procedure for £4(B), we will have
o M ~jmd (k-8) -jmd (k+8)
f3(8) = z - z € I[-':-Se (2'26)
m=1 m=1
It is shown in [34] that
o +imx 2 2 4 hod
3x X 1
z = (3 1nx - =5 - )+ =
n=1 ms3 2 4 288 n mS3
. omix  mx? x3
i](s T+_]:§) , 0 < x <27 (2.27)
Substituting (2.27) into (2.26) yields
_ (Bd)? + (kd)? T2 _
£5(¢) 5 + 1n(y;y,) + Bdkd 1n Y
£\Y1 2 288 Y2 T Y1 = -3 I -
m=1 m3 3
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[

1 .
z expé;jmkd) cos ( Bmd)

m=1 (2.28)

where Y1 and Y, are as defined in (2.25).

Tedkd + %(Bd)z kd + %(kd)3 -2

Substituting ((2.21), (2.24) and (2.28) into (2.15)
we get

M
Afl(B) + sz(B) + Cf3(8) + T Z} exp(~jBmd) = -Z. (2.29)

m=-M Om L

Equation (2.29) is used to determine the propagation constant
8 from which the phase velocity of the launched wave can be
obtained. The convergence of the solution for the phase con-
stant B in equation (2.29) depends on the condition

M >> %?. For a fixed value of the loopradius b, therefore,
the number of terms in the finite summation of (2.29) will

increase with decreasing the loop spacing 4.

2.5 The Numerical Results for the Phase Velocity

A computer program was developed which determines a
numerical solution of the transcendental equation (2.29) for
the phase constant B. The method which is used to calculate
the phase constant is the central point method [35] as explain-
éd below.

When an approximate region of existence of the solu-
tion for g(B) 1is known, the lower and upper bounds Bg
and Bu satisfying Bg < B < Bu are first determined.

Then the values of the function at both bounds and the central
point Bc between Bz and Bu’ namely, g(sz), g(Bu) and
g(Bc) are obtained. From the signs of these values we can

determine which of the equally divided regions contains the
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solution 8. By carrying out a series of these procedures
we can make the central point arbitrarily close to the true
value of B. However, before using this technique, it is
necessary to find out the range of values which 8 can
assume.

A condition which one should keep in mind when solv-
ing (2.29) is that a Yagi array cannot support a travelling
wave when the phase velocity is such that the currents of two
adjacent elements are out of phase.. This is clear from egu-
ation (2.1) which for gd = m, where d 1is the distance
between two adjacent loops, gives the current of each loop
equal and opposite in phase to that of the current on the
adjacent element. Therefore, one can no longer talk of a
direction of propagation and the array cannot support a trav-
elling wave. This sets the upper bound of the propagation
constant B, i.e., Bd < w [29]. The lower bound of B8 is
determined by the fact that to have a slow wave the smallest
value that 8 can take is k, the free space propagation
constant. Therefore,
kd < Bd <7 (2.30)
The numerical results presented here are obtained using
equations (2.29) and (2.30) for an array with arbitrary dimension.

Figure (2.2) shows the solution of equation (2.29) for
an array with b = d = 21.45cm and operating at a frequency
range of 180 MHz to 290 MHz. This figure gives the varia-
tion of the normalized phase velocity v/c as a function of

the frequency for various reactive loadings. It is seen that,
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in general, a capacitive loading increases the phase velocity
and for a given phase velocity extends the range of the oper-
ating frequency. An inductive loading on the other hand,
reduces the phase velocity and consequently, reduces the oper-
ating frequency range. The reason for an increase (ox dec-
rease) in the bandwidth can be understood from the discussion
given for the range of B summarized in equation (2.30).

For a higher phase velocity we have smaller B and, there-
fore, the range of frequency at which Bd < m 1is increased.
On the other hand, for inductive loading, the slope of V/cC
versus frequency is higher and this causes B to increase

rapidly until the array stops propagation (Bad = m).

2.6 Finite Arrays

The above analysis gives the performance of the loaded
infinite arrays. In practice, however, the arrays are finite
in extent and cannot generally support travelling waves of a
simple nature. The reflections at the array ends cause addi-
tional ﬁravelling waves which complicate the analysis. If
the array is reasonably long these reflections may be neglec-—
ted and the above analysis can still be used to study approx-
imately the loading effects. However, the summation on the
left-hand side of equation (2.8) must be carried out over
the array elements. Furthermore, OuUr investigation has shown
that equation (2.8) for finite arrays does not have any solu-
tion in-the real frequency domain. Instead, locating its
minima yields solutions which correspond closely to those of

the infinite array. As a result, the minima of equation (2.8)




30

are used to obtain the solution for the finite array case.
These solutions, which are in the range of (2.30), represent
the frequencies of the slow waves, which can be launched
along the finite array.

Figure (2.3) shows the approximate results for the
relative phase velocities of 19-element, loaded and unloaded,
arrays. Their behaviourris similar to those of the infin-
ite arrays but their initial variation as a function of fre-
quency is somewhat slower. It is interesting to note that
the finite structure solution represents also a slow wave
along the array. It is obvious that the larger the number of
elements in a finite array, the closer its solution is to
that of the infinite array solution.

The effects of loading on the directive gain of finite

arrays are investigated in the next session.

2.7 Directive Gain of Loaded Arrays

It is known that the relative phase velocity in an
optimally designed Yagi antenna of length L must satisfy
the Hansen-Woodyard relation [36].

L/\ _ 2F)\
0.5 + L/A = 2fL + ¢ (2.31)

v/e =
where f is the frequency of the signal. Differentiation
of the above relation with respect to the frequency shows
that d/df(v/c) 1is never negative., This means that for the
gain of the array to remain unchanged, the phase velocity in

the antenna structure should not decrease with increasing

frequency. In addition, the results of the previous section
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showed that, for a given phase velocity, a capacitive loading
of the array increases the operating frequency range and an
inductive loading tends to reduce it. Thus from the above
discussion and using equation (2.31), one can expect that the
gain of the array must also behave in a similar fashion. 1In
practice, however, arrays are finite in size and usually con-
sist of only a few elements. 1In such cases, the travelling
wave along the array is not well established and array cur-
rents can be obtained more accurately from equation (2.2).
Once these currents are known, other array characteristics
can be obtained readily.

As seen in Chapter I, the driving current of the ith

element of an N-element array excited at ¢ = 0 by a voltage

Vi(i =1, 2, ..., N) is of the form
™ N n ni 1
I.(0) = ¢ T Yis Vot (% —— + JuwC_; )V, (2.32)
1 n=0 j=1 *J n=m_+1 Zn gi’ 1

where the parameters n,, m/ are as defined previously.

Equation (2.32) can be used also for the loaded arrays.
In this case by using the compensation theorem the load
ZLi can be replaced by a generator of voltage Vi = LlIl(O)
Thus, for the Yagi-array in which all the elements are loaded

at ¢ = 0, except for the :exciter one (the gth element),

the above equation becomes
n, m

: ( i 1 o N n
142, (1-8;0( T ——+3uC )11, (0) + T L y;y Zy5T5(0) =
ig n—mbﬁlzp. gt * n=0 j=1 i3 1373
m n. 11 #q
o) i
v. I y2 46, (3 —1——+Jmc )V, (2.33)

q n=0 lq 19 m +1 Zn 1
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where éiq is the Kronecker delta function anda i = 1, 2,
»++«r N. These equations can be modified to a matrix equation

of the form

where [¢ij] is an N x N matrix with elements
n m
i o
1 . n
¢.5 = (1+z_.( = —— +tJwC _.)]S8..+Z .(1-6. ) « ¥ V..
ij Li n=m +1 z@2. gl 1) Li ig n=g i3
11
m . n
S 40 . L ) v (2.35)
¢, =V I vy +6., ( = —— + jwC_, . .
i 1 =0 19 197 om +1 Z?i gi i

Equation (2.34) is the characteristic equation of the
loaded array. 1Its solution gives the total current of each
loop.at ¢ = 0 from which the current modes can be evaluated
readily. When only the gth element is excited, i.e,, for
i #q Vj is replaced by —ZLjIj(O). The current modes from
equation (2.32) take the form

N
n _ n _ n
I, = Yig Vq jzl Y ZLj Ij(O) for 0 <n < m, (2.36)
#q
and the input admittance becomes
1, (0) Ty N 1 o N 0
Y. = = X Yoo T % I T oyh.ozo.I.(0) +
1n Vq n=0 d Vq n=0 j=1 93 L3773
n
R S & O (2.37)
—_— + Jw .
n=m_+1 z° ’ 99
o aq

The gain of such an array can be obtained in a manner similar
to that of an unloaded one and in the z-direction it is given

by
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N
: . 12
_— I-E kb, exp (+jkd, ) Iil
G = 2. =1 (2.38)
d,r 4 . X )
Re(,Yin)|Vq| —E Re(ZLi)IIi(O)I
i=1
#9

where Ii is the current mode for n = 1.

2.8 Effect of Loading on Directive Gain

Based on the analysis of the previous section, a comp-
uter program was developed to investigate the effect of load-
ing on antenna's characteristics. For all arrays discussed
here, g = 2. The variation with frequency of the gain of a
10-element array in 6 = 0 direction is shown in figure (2-4)
for various capacitive loads. This figure shows that, as
expected, a capacitive loading generally increases the band-
width of the array and shifts the center frequency upwards.
As an example, when the directors are loaded by 1PF capac-
itors, the 3dB bandwidth is over 55 MHz, which represents
an approximate 270% increase over that of the unloaded
array. Figure (2-5) shows similar effects for the directive
gain of a l4-element Yagil array.

In addition, the effect of reflector loading on the
antenna's directive gain is also studied. The computed dir-
ective gain in +z-direction (8 = 0°) is shown in figure
(2-6). 1In this figure the array directors are loaded by
2.5PF capacitors. The results show that the loading of the
reflector does not affect the high frequency cutoff signifi-
cantly. However, it has significant effect on the low fre-

guency cutoff of the array. Generally, inductive loading
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tends to reduce the low frequency cutoff and consequently
increases the bandwidth of the array. In other words, the
efficiency of the launching device, i.e., the combination of
reflector and exciter, will be increased at lower fregquency

if the reflector is loaded properly. The reflector loading

also reduces the gain of the array. For completeness the
effects of reflector loading on backward radiation is studied
in figure (2-7) which shows the directive gain of the array
of figure (2-6) in -z-direction (6 = w). It is seen that

the back radiation for the array with its reflector loaded

capacitively is comparable with its front directive gain given
in figure (2-6). On the other hand, a comparison of figures
(2-6) and (2-7) reveals that an inductively loaded reflector
decreases the back radiation throughout the major part of

the array's bandwidth shown in figure (2-6) .

2.9 The Input Impedance

Figures (2-8) and (2-9) show the variation of the
input impedance of a loaded Yagi loop array as a function of
the frequency. From these figures, it is seen that the oscil-

lations of both the resistance and the reactance of the un-

loaded array are shifted to higher frequencies as the capac-
itive loading is increased. The amount of shift is almost

inversely proportional to the magnitude of the loading capa-

citors. The oscillations are also increased by increasing

the capacitive loading. It was found that within the 3dB
bandwidth the Q of the loaded array is smaller than that

of the unloaded one.
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2.10 The Radiation Field

The radiation field of a loaded Yagi array can readily
be found from equation (1.25) when the current distribution
of the loaded elements are known [equation (2.36)]. Figure
(2-10) compares the H-plane radiation field of a 1l0-element
loaded Yagi array with that of the unloaded one. Only the
directors are loaded (C = 2.5 PF) and the frequency of the
signal is chosen to be 220 MHz at which the unloaded array
is on the verge of cutoff, figure (2-4). It is seen that the
radiation field of the:unloaded array is deteriorated, but
that of the ‘loaded array has good'directivity and its side
lobe levels are vervy low. "Also, from equation(1.25) it is evi-
dent that the E-plane pattern is symmetrical about the xz plane
but the H-plane pattern is generally unsymmetrical about the

yz plane.

- . -

Figure (2-11) compares the radiation field of the un-
loaded array of figure ( 2-4 ) with that of the same array
when the reflector is inductively loaded (L = 100 nH). The
frequency of the operating signal is 200 MHz and as figure
(2-11) indicates, the array with unloaded reflector is out-
side its 3dB bandwidth. Although the main lobes for both
patterns are almost the same, the back radiation of the array
with unloaded reflector is in the same order as the main lobe.
By adding an inductive load to the reflector, we have increased
the efficiency of the launching device, i.e., the combination
of the reflector and the -exciter, and therefore, a higher

gain and lower back lobe is obtained.
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2.11 Discussions and Conclusions

The effects of capacitive and inductive loadings on

the performance of infinite and finite loop arrays were

investigated in this chapter. It was shown that capacitive
loading increases the operating frequency range for a given
phase velocity of the travelling wave along the structure
and consequently increases the bandwidth of the array. A
capacitive loading of the directors also increases the maxi-
mum gain of a coaxial Yagi loop array. An inductive loading
of the directors was found to have opposite effects.

lIt was shown that the loading of the reflector
has negligible effects on the high frequency cut-
off of the array, but affects the low frequency cutoff sig-
nificantly. An inductive loading of the reflector reduces
the low frequency cutoff and consequently, further increases
the array bandwidth. Thus, to increase the gain bandwidth
of a coaxial Yagi-loop array, it is recommended that the
directors and the reflector to be loaded by capacitive and
inductive loads, respectively.

The results presented in this chapter can be explained
physically [37]. An unloaded parasitic reflector, generally,
reflects part of the primary field of the driven element,
which undergoes a phase change of approximately 180°c. How-
ever, a reinforcement of the radiation field in the forward
direction occurs at reflector to excitor separations smaller
than a quarter of a wavelength [16]. This is due to the fact
that the antenna induction field also affects the phase dis-

tribution. 1In addition, the phase distribution along the
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array may also be adjusted by altering the geometrical
dimensions of the parasitic loops. For kb < 1 (kb > 1)

loops are capacitive (inductive) and their currents lead

(lag) the excitation voltage. Thus, for a directive antenna,

directors (reflector) must be shorter (longer) than one wave-

length. In such an array, if the frequency is increased, the

directors may become greater than one wavelength in circum-
ference and the array ceases to be directive. However, by
a proper series capacitive loading of the loops, their cur-
rents can have phase relationships similar to small capaci-
tive loops. 1In other words, by a proper capacitive loading
the loop currents for kb > 1 act similar to those of the
kb < 1 case and the array can support a travelling wave.
Therefore, capacitive loading increases the operating band-
width. 1In contrast to the optimum bandwidth of an unloaded
array, this increase in the bandwidth is not limited as long
as we can provide a suitable load. That is, by means of
impedance loading, at least theoretically, any bandwidth can

be obtained.




CHAPTER 1III

MULTIPLY-DRIVEN AND LOADED COAXIAL CIRCULAR LOOP ARRAYS

3.1 Introduction ‘

The analysis presented thus far has been restricted
to single-loaded or driven coaxial loop arrays. In this

chapter multiply-driven and loaded arrays are investigated.

Initially, the array loops are excited by arbitrary sources

at two symmetrical points with respect to the array axis.

The principle of superposition is applied and expressions
for the current distributions and the input admittances are
obtained. To investigate the loading effects, one of the
sources on each loop is replaced by a lumped load of finite
length and a new expression for the current distribution is
obtained. Finally, all sources except on the gth element,
which excites the array, are replaced by lumped loads of
small length.

The presentation essentially has the same format as

that given in the last two sections. That is, for finite

gaps at the driving-points and finite lengths of the loads
integral equations for the loop currents are obtained. These

integral equations are then reduced to a matrix equation by

expanding the currents and the kernel in Fourier series of
the azimuthal coordinate. The contribution from each set
of sources located at similar points are then treated separ-

ately.




3.2 Formulation of the Problem

Consider the array of figure (3
the same array as given in fig

former is also driven at o = T.

0

The sources at

1), which is actually
ure (1-1), except that the

¢ = 0 and

m are denoted by Vi and Vg, respectively. The applica-

tion of boundary conditions on the surfaces of the loops

gives the following integral eq

VQ \Y

i i , _
5 5s; V%) * B84, U (¢3 =)

i~vi

1 3?2

i

. Sag}wij(¢i - ¢5) I(¢§)d¢§

where all parameters are as defined in Chapter I.

uations for the currents
2T

kb. cos . — 0.

oy costo; -0

(3.1)

It is

noted that except for the second term on the left hand side

(3.1) is similar to (L.1) and therefore,»its solution can be

obtained in a similar manner.
currents and kernel Wij(¢)

after some manipulation one obtains

N
'n n n n
B .+ B, = L. Zg. L.
i i 3=1 ij 73
where
B'n _ VO Sln(n6¢i/2)
i i n¢;/2
i
B"n I sin(na¢i/2)
i i na¢i/2
and Zgj is as defined in (1.10).

written in the following matrix form

v

2,

. ey

N

The Fourier expansion of the

are substituted in (3.1) and

(3.2)

(3.2)"'

Equation (3.2) can be
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n n _ ‘n "n
[Zij][Ij] = [B;71 + [B; ] n >0 (3.3)
If (y?j) is the inverse of (Z?j), then the total current

on the ith element may be shown to be

(o0} N v ) N 1"

n n n n

I.(¢.) = z I V.. B. cos no, + I Z y.,. B." cos no.

i1 n=0 j=1 ij i i n=0 j=1 ij "i i
(3.4)

where the first term on the right hand side of (3.4) 1is the
contribution of the sources at ¢ = 0, and the second term

is due to VE. The computation of the currents due to the

first term has been discussed previously. We therefore, now

consider the simplification of the second term.

3.3 Simplification of the Infinite Series in Eqguation (3.4)

If m is an integer as defined in Chapter I, and

(y?j) is the inverse of the impedance matrix (Z?j), then
the second term in (3.4) reduces to
0 N n "n mo N n nll
z T V.. B. ¢€Os n¢s = z ¥ y.. B. cos np, +
n=0 j=1 *J J * n=0 j=1 *3 t
- |in
"i
z —=— COS n¢, . (3.5)

n=m_+1 Zp.
o ii

for the values of n for which the approximation (1.17) is

valid, the infinite summation in (3.5) becomes

- B|.|n ni B"n
z —%— cos n¢; = > -+ cos ng; +
n=mo+1 Zii n=mo+1 Zii
jdka. % " cosné¢,
i n i
- Z By o (3.6)
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Substituting (3.2)Iinto the infinite summation (3.6) simplifies

to
" m . n_.
0 8 n Vi o 2(-1) 51n(n6¢i/2)cosn¢i
X 2 __cos ncbi = = X > -
n=ni+l n q)i n=1 n
i 2(-1)Psin (nd¢./2)cosng,
i i
) 5 (3.7)
n=1 n
The infinite summation in (3.7) may be written as
o 2sin(né¢./2)cosnd, 0 sin n(¢, + 8¢./2)
:o(-1)" — S -
n=1 n even
sin n(¢i - 5¢i/2) _ ; sin n((b:.L + 6¢i/2) _
n2 n odd nz
(3.8)

n2

sin n(¢; - 6¢i/2):‘

The above infinite summations are given in closed form as [33]

> sin(nx) _ _ & _ 3 7 x5
_ z =gz - = 5 (x 1ln x/2 x + x°/36 + 7500 + ..)
n'—l'3, o o 0
0 < x < (3.9)
y simnx _ i x - x - XX ) (3.10)
noy B2 72 ~ 14,400 = °°° .
0 < n < 27
Therefore, subtracting (3.9) from (3.10) gives
X = I - X = - 5 (x1ln 2x - X - =5 - T 407)
2
n=2, 4 1 1,3,... 18 14,400

(3.11)

from (3.11) and (3.9) we obtain
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i sin nx ®  sin nx 3 .3 15 x°
2 —Hhz z = = =x1ln 2+ =% X"t 57755 -
n even 07 n odd 72 14,400
(3.12)

Substituting (3.12) in (3.8) for x = ¢; + 6¢i/2 and x =

o, - 6¢i/2 ‘yields

1
0 2 sin(n 6¢./2) cos n¢.
r  (-1)" = 1 - -5¢, 1n 2 ...,
n2 i
n=1
for |¢i| << 1 (3.13)

Using (3.13) along with the assumption

sin (n 6¢i/2)

n 59;/2 ~ 1 for n < ng (3.14)
reduces (3.5) to
o N n "n mO N n n .
z L Yis Bs cos(ng;) = z vy y.. (=1)7 V. cos(nd,) +
n=0 j=1 *3 J * n=0 j=1 *3 J +
n. T . n.
i V., jdka. i ,_q,Nn
+ T —5; (-1)? cos ng; - = VE in 2 + % i_%l_
n=m _+1 Z,. nO n=1
o 11
(3.15)
0

Equation (3.15) together with the contribution from Vi in
equation (3.3) may be used to obtain the input current at
o5 ~ 0 (or m) which is given by

m.

o N
Ii = 5 )3 [vq + (—1)n vT] y?. +
n=0 j=1 ] J
ni [V:(])_ + (.'-l)n VTlT] - [ [} 0 " T (3 1 )
z + jwb [C_. V., = C_. V.] .16
n=m_+1 z2, gr 1 gL 1
[@] 11

1
where Cgi is the gap capacitance at ¢; = 0 as defined in

(1.21) and Cgi could be considered as the effect of the
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fringe capacitance at ¢ =T transferred to ¢ = 0 and is
defined as

C 2 ea, [In2 + I

: ] (3.17)
gi o i n

8 in equation (3.16) is equal to unity for the input cur-
rent at ¢ = 0 and is equal to -1 for the input current

1
at ¢ = m. The role and magnitude of Cgi and Cgi are

also interchanged when determining the input current at
¢ = m.

Neglecting the third term in (3.16) does not affect
the current distribution, since the gap capacitance is con-
fined to the vicinity of the driving point. Hence,

m

o N
0 n T
I.(6.) = T = yo. [V:+ (-1)" V] cos no, +
itTi n=0 =1 ij 3 3 i
n, 0 n T
i [Vi + (-1) Vi]
X cos no, (3.18)
n i
n=m0+l Z. . /
ii

Notice that when Vg = Vg, all odd modes cancel and the even

modes are twice as large as those of a singly driven array.
0 T

For V. = -V. the situation is reversed. The radiation field

J
and the directive gain of the array can be obtained from

similar formula as given in Chapter I.

3.4 Array Excited at ¢ = 0 and Loaded at ¢ = 7

Now that the array current for a doubly-excited array
is known, the currents of a loaded array can be obtained by

using the compensation theorem. Let each loop in figure

™

Li at ¢ = m, be excited

(3-1) be loaded by a lumped load 2
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by a source Vg at ¢ = 0, andlet Ii(¢) be the current
on the ith element. The current distribution on the loaded
array is calculated by applying the compensation theorem.

Therefore, each load at ¢ = m could be replaced by a gen-

erator with potential difference equal to —Ii(ﬂ) Zgi. With
this equivalent representation of the load Zﬂ., it is immed-

L1

iately evident that the method developed in the previous sec-
tion is applicable to this array. An expression for Ii(¢i)

can be obtained by using vl = 27, Ij(ﬁ) in equation (3.18)

B L]

and solving the equation for Ii(ﬂ), which gives

I.(m) = i? g [(—1)n yn V0 - yn gm T, (m)] +
1 n=0 j=1 13 ] ij Ly 3
0y
z —-i—— [(—1)nvg—z£.l Ii(Tr)] ; i=1,2, ..., N
n=mo+l Zii
_ (3.19)
The above equation can be rearranged as
ni mo N
[1+2z], % Lao,mo+ 3yl . T (m) =
n=m_+1 Z.. n=0 j=1 ] 33
: o) ii
m n
o N i _q\n
3 (DR v+ vy 3 (1)
n=0 j=1 LI n=m +1 Z..
o) ii

This equation may be used to set up a matrix equation for the
currents Ii(ﬂ) of the form

[, ;LT (M1 = 7] (3.20)

where [Ii(w)] and [yk] are N x 1 column matrices. The
elements of [Ii(ﬂ)] represent the current Ii(ﬂ) and those

of [yk] are given by
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m n
(o} N k _1yn
Yy = I 3 ypo (17 0 + vg r (3.21)
n=0 j=1 - J nem_+l 7y,

the matrix [¢ki] is an N x N matrix and its elements are

given by
m
i °© n
g = Qmog)Syy FFpy I Vi (3.22)
n=0
where
n, n
0, = gz". ¢ L= (3.23)
i L1 n
n=m_+1 Z7.
o) ii
and Gki is the Kronecker delta function. When Ii(ﬂ) is
known one can readily find the current modes I? from
n N n 0 n _,m
. = z . - .= (- .+ I, < .
Iy io1 Y4 [Vj (-1) ZLj Ij(ﬂ)] for n < mg (3.24)

and the remaining antenna characteristics can be found as

explained in the previous chapters.

3.5  Yagi Arrays Loaded Both at ¢ = 0 and ¢ = 7

If the array is loaded both at ¢ = 0 and m, except

for the gqth element, we will have the familiar Yagi array

with loaded elements. Let Zgi and Zzi be the loads at

¢ =0 and T on the ith element, 1In addition, let the
gth element be excited at ¢ = 0 and loaded at ¢ = 7.
Following the procedure explained in the last section, equa-
tion (3.18) changes to

m m
0 n 0 o N

I.(¢s) = I . V_cos ng, - I I 1 -68_.) z.. I.(0) +
e neo 39 G 7 j=1 H a3’ 50
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n

-t 2l 1.(m 1] o, cos ng, + g ;iL-[(l -8 ) ZO I.(0) +
(L) Zrg I3t Vg S n qi’ Pri Ti
n=m _+1 Z,.
o ii
. njg v?
- n
+ (-1) Zri Ii(ﬂ)] cos n¢i4-6qi z cos né, (3.25)
m +1 Z..
o) ii
To solve the above equation for Ii(O) and Ii(ﬂ), one may

write (3.25) at ¢ = 0 and T in order to obtain 2N equa-
tions for 2N unknown currents Ii(O) and Ii(ﬂ). In the

matrix form, this can be represented as

[£,7  [ogyy] 1, (0) [c;]

ul L

= [z'] (3.26)

. . I. .
tv. . ] Lo, j(Tr) 3

uj vi

where [Ii(o)], [Ij(ﬂ)],'[gi] and [;3 1 are again N x 1
matrices with their elements respectively given by Ii(O) ’

Ij(ﬂ) for i, =1, 2, ..., N

mo n.
o= VO [z yoo o+ 5 1/22 1
+ ! n=0 +d 4 n=mo+l a9
mo n,
o= v0 o DR YR+ s, P (1R 1
j a 2o LR | aq

The submatrices [fuj], [¢Vi], [wuj] and [gvj] are N x N

matrices and their elements are given by (for u,v =1, 2,

ees., N)
mo

_ _ 0 0 _ n

fui = [+ %u (1 Guq) ZLu:| éui + ZLi(:L qu) nEO Yui
m
0 0 ° n n
. = - .+ . - N . -
wuj Yu(l Guq) ZLu duj ZLj(l qu) EO yuj (-1)
m
il i © n n

¢vi Yy ZLv vi ZLi L Ygi (=1)




m
o)
= m T n
9y = (A *+ogZpg) Syy Iy 2 Yy
n=0
where
n, n,
1 i _1\ kK
W=m_+1 k=m +1 2
(o) vv

once the currents Ii(O) and Ii(ﬂ) are known, the current

modes Ig can readily be determined other antenna character—

istics can similarly be obtained.

It may appear simpler to use the N inhomogeneous egqu-

n

ations in (3.3) directly to obtain the current modes Ii in-

stead of 2N inhomogeneous equations:hl(3.26),whichgﬁves the

total currents Ii(O) and Ii(n). However, for a given array,
equation (3.26) provides the required total current, while equ-
ation (3.3) gives only the modal currents I?. Therefore,
equation (3.3) must be solved many times in order to find the
total array current, whichmay require extensive computer time.
Equation (3.26) may also have time—séving advantages when array
characteristics for different loads are being considered. Its
solution, however, gives the total current Ii(O) and Ii(ﬂ).

If the modal currents I?

are required, such as in field or
gain calculations, they can be obtained readily from an equa-

tion similar to equation (3.24) by replacing any source VQ

J
. 0
with -z.. I.(0), 3817.
L3 j( ), [38]
3.6 Results and Discussions

Based on the theory presented in this chapter, the
properties of multiple driven and loaded loop arrays can be
investigated. However, the most interesting circular loop
array is the well known Yagi-Uda array in which only the

second element is excited. For this reason, only the
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properties of these types of antennas are reported here.

To investigate the effects of the loading on the antenna
characteristics an 8~element array is chosen, where all dir-
ectors are loaded with equal loads at ¢ = 0 and 7. The
exciter and the reflector are assumed to be unloaded. The
variation of the directive gain with frequency and for various
capacitive loading is shown in figure (3-2). Similar to the
array with single loads shown in figure (2.4), a capacitive
(inductive) loading generally increases (decreases) the band-
widths of the array. For example, when directors are loaded
by 2.5 PF capacitors, the 3dB bandwidth is over 70 MHZ
which corresponds to an approximate 350% increase over that
of the unloaded array. By loading the array at ¢ = 0 loc-
ation, it was found that the frequency dependence of the array
gain becomes identical to that of a doubly loaded one, when
the loading capacitors are twice as large. This behaviour
}can readily be understood by using the travelling wave approach
explained in the previous chapter. Appiying the method to
the doubly loaded array, we will have the sum of the loads
at ¢ = 0 and 7 in the right hand side of equation (2.3).
Hence, the frequency range over which the noramlized phase
velocity remains almost constant - and, therefore, the gain
remains unchanged - is twice as large as that of a single

g g [39]. This has also been proved in

loaded one for Z. = Z
Appendix IIIA for finite arrays.
The variation of the input admittance of the above

doubly loaded array with frequency is given in figure (3-3).
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Fig. 3-2: Directive gain of an 8-element array loaded at ¢ = 0 and 7.

by = 22.75 cm, by = 23.8 cm, bj = 21.45 cm (1 = 3, 4, ...,

8), element spacing = 21.45 cm, and Q2 = 2 In(2mby/a) = 12
Oonly the directors are loaded,
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3-3: Input impedance of an 8-element array as a

function o6f frequency. The directors are
loaded with C = 5 PF at ¢ = 0 and 1 and

the exciter loading at ¢ = 1 is the para-
meter. The geometry is the same as in fig-
ure (3-2). real part, imagin-
ary part.
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The directors are loaded by C = 5 PF capacitors and the
exciter loading at ¢ = m is the parameter. It is interes-
ting to see that resistive loading of the exciter gives rela-
tively smooth behaviour for the input admittance through the
entire 3dB bandwidth of the array. Although an inductive
loading of the exciter also gives constant input admittance,
its real part is always smaller than the imaginary part within
the 3dB bandwidth. Notice that for a capacitively (or in-
ductively) loaded exciter, the first maxima of Re(Yin) shifts
to the right (or left) of the unloaded case. A resistive
loading does not result in any shift, but does lead to a
damping effect. Beyond the maximum peak, the real part remains
at the level of the unloaded case. It was found that the
damping effect increases with increasing resistive loading.

It was also noticed that with a resistive loading of the ex-
citer, the gain of the array remains relatively unchanged.
This is due to the fact that for long arrays the radiation
results predominantly from the currents on the directors and
the exciter current has only small effects. Figure (3-4)
compares the magnitude of the current distribution on a loaded
exciter (R = 1009) with that of an unloaded one. It is
clear that the variation of the current on the loaded exciter
is much smoother than that of the unloaded exciter. This
indicates a travelling type current distribution and conse-
guently, the array input admittance is less sensitive to the

frequency variation.
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Fig. 3-4: The distribution of current on exciter of an 8-element array with and

without lumped resistive loading. The directors are loaded with C =
5 PF at ¢ = 0 and m. The geometry is the same as in figure (3-2)
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3.7 Conclusion

In this chapter the effects of double loading on the
performance of circular loop arrays were investigated. The
analysis of the results revealed that to increase the gain
bandwidth product of a Yagi loop array, the directors must
be loaded capacitively. It was shown in the previous chapter
that the loading of the reflector inductively reduces the low
frequency cutoff and consequently further increases the ar-
ray's bandwidth. For multi-loadings of the reflector a simi-
lar effect is also expected.

If a relatively smooth variation of the input admit-’
tance is required, the exciter may then be loaded resistively.
This does not deteriorate the efficiency of the antenna sig-
nificantly, as long as the resistive loading is not too large.
This is due to the fact that the radiation of the array is
mostly due to the currents on the directors.

The results also showed that the loading of the array
at ¢ =0 and ¢ = w, have equivalent effects. Because of
this equivalence of the loads, it may seem unnecessary to
load the array at two separate locations. However, in view
of the limitation on the available active loads (varactors)
and their price range, it may become advantageous to use two

separate loads to simulate a single one.
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CHAPTER IV

CONTINUOUS IMPEDANCE LOADING OF LOOP ARRAYS

4.1 Introduction

The properties of circular loop antennas with lumped
impedances were investigated in the last two chapters. This
chapter is devoted to loop antennas with continuous impedance
loading along their circumferences.

It has already been demonstrated for the cylindrical
linear antennas that continuous impedance loading can be used
to broaden the frequency response of the input impedance and
far field pattern [40]1-[43]. A single loop antenna with a
continuous impedance loading has been studied by Lin [25]
and Smith [26]. Lin examined the input impedance of the im-
perfectly conducting loop antennas by the numerical and the
differential eqguation methods and showed that a uniform re-
sistive loading could be used to achieve a broadband charact-
eristic of the input impedance [25]. Smith analyéed a single
loop antenna with a uniform resistive loading by the Fourier
series method [26]. He also examined the effects of the
resistive loading on the radiating efficiency and the far-
zone field patterns of the antenna. In this chapter, the
work is exteﬁded to arrays of coaxial circular loop antennas
with distributed but arbitrary impedance loading. The numer-
ical results are given for the distributed uniform resistive

and tapered reactive loadings which are of practical interest.
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Also, the validity of the assumption of inifinite conductivity

for materials such as Aluminum and Copper is examined.

4.2 Formulation of the Problem

Consider the array of Figure (1-1) where the elements
are made of an imperfectly conducting wire of radius a, -
The effect of the finite conductivity can be assumed to be

equivalent to a continuous loading of the loop wire with a

per unit length impedance of ZLi(¢i) on the ith element.

If the thin wire approximations a; << b, and a; << A are

made, then the applied tangential field on the surface of the

ith loop may be shown to satisfy the following equation
a Vi
E% = - E;-Ui(¢i) + ZLi(¢i) Ii(¢i) (1 - Ui(¢i)] (4.1)

(i =1, 2, «ee., N)
where Vi’ bi and Ui(¢i) are the same as defined in Chapter

i
T. The induced electric field E¢ on the antenna surface,

maintained by the current and charges on the ith element,
may be expressed as
i N 1 aQij
By = -  § g5t I Beyy o 1T lo 2, W2)
j=1 "1 ij

where Qij and Aij are the scalar and the vector potentials,
respectively. Using equations (4.1) and (4.2) an integral

equation for the current Ii(¢i) can be obtained which,

following the previous approach for the perfectly conducting

loops, may be shown to be
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Vi Ui(¢i) jno N 2T
[kby cos(¢d. — ¢') + . —jii-] W.. (¢, — ¢!) I, (d')do!
J i 3 kb; 929, ijtri s TS J
i=1, 2, «¢.., N

(4.3)
Again, by an expansion of the current Ii(¢i) and the kernel
Wij in Fourier series of the azimuthal coordinate and after

some manipulation one finds

0 6¢i n=0
N m .

= I 7z, u i = 1,2, ..., N (4.4)
3=1 J 3

Equation (4.4) can be solved to yield the current modes I?
for any desired load distribution. The number of required
modes M for an accurate evaluation of the input admittance
depends on the geometry of the array and is approximately
given by M = g% [12]. After these current modes are obtain-
ed, other anten;a characteristics can easily be found from
the previously developed eguations. Equation (4.4) is for
any arbitrary load distribution ZLi(¢i). In general, it may
not have an exact solution for arbitrary forms of ZLi(¢i).
In such cases a numerical method must be utilized to solve
(4.4) for the current modes I?. The simplest form of the

load distribution is the uniform impedance loading which is

considered in the next sections.

27 "viUi(cpi) ® n ijq:i
f —_—— - ZLi(¢i) bi [1- Ui(¢i)] X Ii cos n¢i‘e do.

1
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4.3 Uniform Load Distribution 2..(¢.)

This type of impedance distribution is the simplest
case of antenna loadings and all practical antennas made of
conductive metals fall into this category. Substituting
ZLi(¢) = ZLi in (4.4) and following the necessary steps,
while neglecting the integral of Ui(¢i) Ii(¢i), (Appendix

IV-A), one finds

sin n §¢./ N
Vv, i’2 Ly pr e = I zo. 10 (4.5)
i n 6¢,/2 Livi i n . ij 73
i Jj=1
where
2 for n=20
£ = (4.6)
n 1 for n > 0

Equation (4.5) can be written in the matrix form for all n

'n n _ n
[Zij][Ij] = [B;

i1 n > 0 (4.7)

where B? is as defined in (1.9) and

'n n

z. 0 = gZ.. +e_Tb, Z_. 6.. (4.8)
13 kg | n i Li 13

in which 6ij is the Kronecker delta function. The imped-

1
ance matrix [Zi?] is different from the previous impedance

matrix [Z?j] only in the principal diagonal elements.

Therefore, the same discussion about [Z?j] is applicable to

1
[Zi?]. That is, for n > m, where m is an integer deter-
t
mined by the geometry of the array, the matrix [Zi?] degener-

ates into a diagonal one. Thus, a relation for Ii(¢) sim-

n

ilar to equation (1.16) can be obtained in which Zii and
y?. are replaced by an and y'n respectively and [y'n
ij ii ij’ ij

1
is the inverse of the impedance matrix [Zi'n

j]. If the uniform
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load distribution is resistive, then the efficiency of the
antenna will be reduced. This deterioration of the efficiency
is certainly an important effect and is discussed in the next

section.

4.4 Efficiency of the Antenna with a Uniform Resistive Loading

To calculate the antenna efficiency we need the radiated
and the dissipated powers of the antenna. The radiated power E
can be obtained from the integration of the Poynting vector
over a large spherical surface at the far field zone, or from

the following eguation

P =

1 m 2m
= J r? sin6do J |E(6,¢)]2% d¢ (4.9)
o 2no 0

0
The expressions for the radiation fields of an N-element

antenna was given in (1.25) which can be reduced to the form

E(8,9) = Eg 8+ E ¢
with
|E(6,9)|% = IEe|2+ |E<b|2 (4.10)

To calculate the radiated power we, therefore, need to integrate

|E and |Ee|2 separately. To simplify the work we can

2
o)

modify the expression for . E¢ to the form

n2 N N
|E |2 = s | 5 A, - I cos na| « | T A¥. g2 cosn¢
b lé6rz2 29 i o Yi Qbi 21 i gyl .,

(4.11)
where * indicates the complex conjugate and
Ai = kbi exp(jkdil cosb) (4.12)
n _ .n .n _
Y o= 30 I DO (xy) = T, (%) (4.13)
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with
x., = kb. sin®
i i
For loop arrays the number of significant modes in the

array, in particular for a Yagi array, is usually very limited

[16]1. Therefore, for accurate evaluation of the radiated

power the summation in equation (4.11) may be evaluated only
over the first few modes. A term by term integration of

equation (4.11) over ¢ gives

2T
n n* n_n%*
(x vy; cosn¢,* I v; cosnd)de, = T I E_Y.Y. (4.14)
L) n=0 T i =0 3 T i n=o B 13
where
2 for n =0
e, = , {(4.15)
1 for n >0
and using (Z + Z*) = 2Re(Z), therefore
T 2T n; T N n
J J [E¢|zsin6r2d6d¢ = T 7 J % ([Ai|2 z enlyilz sin6de
0 -0 0 i=1 n=0 .
T N-1 N n pk
+ 2 Re f z Ai( z A* T ¢ YiYs )sin6dso (4.16)
0 i=1 j=i+l J n=0 1

which requires a final integration over ©. This integration

is carried out numerically.

In a similar manner, the integration of IE6l2 gives

the following results

T (27 ne™ (™ N n,
J J lEe|2 r’singdédd = T f (= |a;]* = [|y][)sinbcosbas
0 Jo 0 i=1 n=1
T N-1 N |n 1L*x
+ 2 Re Jo _zl A g:ﬂ AY vy an)cosesinede (4.17)
i= j=1i

where
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'n _ .n. n
Yi S [Jn-l(xi) + Jn+1(xi)]

(4.18)

Now, summation of (4.16) and (4.17) gives the radiated power

P in the form

r
™ T N ) n, n
- _© . .
P. = 33 J 2 IAi[ ( E €, lyil +OIoyg cosf)sinbd6 +
0 i=1 n=0 =1
v N_l N n n* n*
2 Re J X Ai z A* (L enYiY' + cosf % Yiy! ) |sin6db
0 i=1 j=i+l J n=0 J ]
(4.19)
The dissipated power can be calculated from
1 N 2m )
P, = 3 I f Re[Z; ($) 1[I, (¢)]* b, d¢ (4.20)
i=1l ‘0
which for constant ZLi(¢) becomes
1 N 2T [ |2
P = = I b, RelZ .]J I, (9) ao
D 2 j=1 % Li 0 i
Substituting Ii(¢) = L I? cos n$¢ in the above equation
n=0
gives
1 N
_ 1 n
Pp = 3 _E [b RLi T I € Ii] (4.21)
i=1 n=0
where
RLi = Re (ZLi).

Again, by selecting only the first few terms from the summation

over n, the driving point power can be calculated with a

reasonable accuracy. Finally, from the radiated and the

dissipated powers the antenna efficiency can be defined in

the form




71

P
efficiency = =——— (4.22)

PD+Pr
which can be calculated readily by using equations (4.19),
(4.21) and (4.22). The above approach utilizes the integra-
tion of the radiation field and, therefore, needs only a few
current modes to give sufficiently accurate results{l6]. An
alternative method for determining the efficiency exists
which uses the input admittance and this is explained in
Appendix (IV-B). However, the input admittance is a local

characteristic and its calculation usually requires a signi-

ficant number of modes.

4.5 Results and Discussion for Distributed Uniform

Resistive Loading

For a solid conductor of circular cross—-section with
radius a, thé definition of the per unit length impedance
and an expression for its calculation are given in [44].

For highly conducting materials of conductivity o, the per

unit length impedance may be computed from

Z; 2Tacd, (4.23)

where ds = /,g%; is the skin depth and u 1is the permeabi-
lity of the conductor. Antennas with fairly high internal
impedance per unit length are likely to be made by coating a
dielectric loop with a layer of conducting material [25].

If in the frequency range of concern the thickness of the

conducting layer d is less than its skin depth, then the

impedance per unit length is essentially the dc resistance
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which is given by

1 '
Zi = Z7mado (4.24)

The above formula together with equations given in the previous

section are utilized to study the effects of the constant and

continuous resistive loading on the characteristics of Yagi

loop arrays. The investigation is restricted to arrays where
only the exciter is loaded. This type of loading is selected
because a resistive loading of the parasitic elements increases

the antenna loss and deteriorates the antenna's overall effic-

iency significantly. The resistive loading of the exciter
should decrease the efficiency as well, but it is also expec-
ted to improve the broadband characteristics of the antenna.
As a result, only the effects of the uniform resistive load-
ing of the exciter on the Yagi loop arrays' characteristics
will be investigated.

Figure ({4-1) shows the real and imaginary partg of’ Zin' of a
l4-element array for different exciter loadings. It is seen
that the real part of the input impedance increases with

increasing resistive loading, but the relative variation of

Re(Zin) decreases. For example, for ZL2 = 250 @/m the
maximum variation of Re(Z{n) from 190 +to 215 MHz is
less than 54% of the initial value, while for the unloaded

case and within the same frequency range, this variation is

over 400%. The variation of the directive gain of the array
with frequency for different exciter loadings is shown in
Fig. (4-2). There is only a negligible change in the dir-

ective gain with the exciter loading, since Gd is mainly
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Fig. 4-1: The input impedance of a 14- element array for
several continuous loading of exciter. b1 = 1.2 b3,

b2 = 1.1 b3, bi = 20 cm (i =23, 4, «..., 14), element
spacing = 20 cm, ba/a = 38.94.
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Fig. 4-2: Effect of continuous loading of exciter on the
directive gain of the l4-element array in fig-
ure (4-1) as a function of frequency
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(4-1) with frequency for different exciter loading
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controlled by the size and spacing of the parasitic elements.
Figure (4-3) depicts the variation of the efficiency of the
above array with frequency for different exciter loadings.
It is interesting to see that the highest efficiency within
3dB bandwidth is for kb = 0.9. Directors of this size was
also found previously to give a better directivity for Yagi
arrays [45]. The distribution of the phase and the relative
magnitude of the current on the exciter of the above array at
f = 210 MHz are plotted in Figs. (4-4) and (4-5). It is
seen that the phase of the current for larger load distribu-
tion has a more gradual change near ¢ = 20°. The relative
magnitude of the current has also a smoother variation than
that of the perfect conductor. These facts indicate that the
current distribution on the loaded exciter has a larger per-
centage of travelling wave type currents. Therefore, the
input impedance should be less sensitive to frequency variation.
In summary, resistive loading of the exciter in a Yagi
loop array improves the broadband characteristics of the
antenna. However, resistive loading of the antenna decreases
its efficiency. For this reason the remaining part of this
chapter is devoted to a study of the possibility of broaden—’
ing the array by utilizing a purely distributed reactive

loading.

4,6 Tapered Capacitive Loading

An interesting form of the reactive loading is an
exponentially increasing capacitive loading which was first

used by Rao et al. [46] for dipole antennas. This type of
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77

load distribution has also been studied by Lin [25] for a
single loop antenna using the numerical method. His method,
however, is lengthy and time consuming. Furthermore, the
results in [25] for unloaded loops show large disagreements
with the results of the Fourier series method which in turn
agrees very well with Kennedy's experimental data [47]. This
discrepancy is indicated in figure (4-6) in which the input
impedances of an unloaded loop computed by Lin (Ref. [25]
figures 7 and 8) is shown along with the results from the
Fourier series method. For kb > 0.8 the results show dif-
ferent behaviour and indicate large differences. One can,
therefore, safely assume that this discrepancy of Lin's res-
ults with the experimental data for the unloaded loop should
" also exist for the loaded antennas. Thus, a further and an
accurate investigation of the loop antennas with tapered
capacitive loading is needed and will be carried out here by
using the Fourier series method. This type of load distrib-

ution is given by [25].

2., (0) = -3 B; Lexplogbylo) - 1] (4.25)

where B and a, are arbitrary constants. Substituting

(4.25) in (4.,4) yields

sin m 8¢./2 M-1 T a;b.|¢.]
i . n itit i
V. . +3 B, b, I I f (e - 1) cos ng.
rom M’i/2 T 10 t /g *
Jmo ., N
e tay, = 3 2% I¥
1 j:l 1] J
i=11, 2, ..., N (4.26)

where(M-1) is the number of the significant modes. Equation
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(4.26) may be written in the form

sin m 8¢,/2 j By b, M j (m+n) ¢, +j (m-n) ¢,
Vi Tmse./2 t T2 LI : *e
i n=0 -7
o.b. | ¢, | N
ivitvi . m m -m
e d¢; = 3 Byey bym Iy = X Zyy Iy
j=1
i=1,2, «v., N (4.27)

the integral in (4.27) can be simplified to

Jw_r j(mn)¢, ob.|é;] Jﬁ [a;b, -3 (mn) ¢,

e e de., = e daé.
- 1 0 .
T [aibi + j(min)]¢i _ 1
e ad; = b, = 3mEn)
0 ivi )
e[ocibi - j(mzn)lm e 1 e[aibi-Fj(min)]ﬂ__l
o.b, + j(mZn)
ii
(4.28)
Substituting (4.28) in (4.27) gives
sinm §¢./2 j B, b, M
i i 71 n n,m n,m _ . m
Vi w5573t 5 oIt ¥ R,'") - j Bgbye mI;
i n=0
N m m
= r Z.. I. , i=1,2,..., and m=0,1,2,...,M (4.29)
j=1 13 73

where Q?’m and R?’m .are given in (4.28) and involve only
terms with (m-n) and (m+n) modes, respectively. For all
modes m, 0 < m <(M-l)eguation (4.29)can be written in the

following matrix form




_ - .
m m .
(63171, (27,1, 137500 «oer [Zpl ) (T 1] (V]
m m .
(203, 145571, 12551, «oes 250|115 ] [V,]
(4.30)
m ™ m n,m m
- —_ — — o
where [¢?£m] is an M x M matrix with (n,m = 6,1,2,..., M-1)
iB.b, f
o™ = (2™, + 3 B.b.e_m$ e ('™ 4 gM (4.31)
ii ii iTi™m n,m 2 i i

and [Zﬁzj is an M x M diagonal matrix given by

Zyg 0 o ... 0

m — 2
[Zkzj = 0 Zkz 0 .o 0
nil
0 0 0 . o e “kg,

Here, [1@

l] and [Vi] are M x 1 matrices with their

elements respectively given by I? and Vi for m=2¢0,1,2,
...,M-1, It is obvious that the coefficient matrix in (4.30)
is an (N x M) sguare matrix. Therefore, it may appear in-
convenient to use (4.30) for large Yagi arrays. On the

other hand, it was recently reported [16] that, generally,

it is adequate to use only the dominant mode for determining
the radiation field of a loop Yagi array. Other modes, which
are necessary for the calculation of the input admittance, can

be obtained by considering only a few directors (usually two)
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adjacent to the exciter. Therefore, the apparant large size
of the coefficient matrix in (4.30) does not introduce any
difficulties for obtaining the current distribution of the
array elements. Once these currents are known, other array
characteristics can be obtained readily.

We are now in a position to investigate the effect of
the tapered reactive loading on various characteristics of the
coaxial loop arrays. For brevity, only the results for a

loaded single loop are presented here.

4,7 Results and Discussion for a Loaded Antenna

Based on the theory presented in the last section, a
computer program was developed to study the characteristics
of a single loop antenna with tapered capacitive loading.
Figure (4~7) demonstrates the effects of such loadings on the
driving point admittance of a loop antenna. It is seen that
the maxima and the minima of the conductance and the suscept-
ance are shifted to the right as 04 is increased from zero
to 15. This variation with frequency also decreases as 0o,
increases, Therefore, with a suitable choice of Bl and
g the input admittance can be made less sensitive to the
frequency variation. Figure (4—8) shows the variation of the
directive gain of the antenna with frequency for different

values of For low frequencies (kb < 1) the gain of

ag-
a loaded loop is smaller than that of the unloaded one and

the difference between the gains increases with increasing

the constant o On the other hand, it decreases with

1

increasing the frequency (kb > 1). 1In fact, the directive
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gain of a loaded loop antenna becomes slightly larger than
that of the unloaded antenna, at certain frequencies which

depend on the value of o This means that the center fre-

1

quency of operation has shifted to higher frequencies.

4.8 Conclusion

Coaxial circular loop arrays with distributed impedance
loading have been studied in this chapter by a simple exten-
sion of the Fourier series solution for the perfectly conduct-
ing loops. It was shown that, in general, a broadband charac-
teristic can be obtained by distributed impedance loading.

The constant resistive loading was studied in more detail
since it can be fabricated readily. The travelling wave
portion of the current distribuéion was increased by intro-
ducing the distributed resistive loading into the antenna sys-
tem. The introduction of a dissipative load resulted in a
decrease of the efficiency, but it improved the broadband
characteristics of the antenna. The loss of the overall
efficiency in a transmitting system is often the price to be
paid in order to achieve the broadband and the directional
properties. If the lossy element is not added to the antenna
itself, it mav be added to the feeding network in order to
make the system broadband. However, the system will then
become more complicated. On the other hand, the efficiency
should not be of major concern in a receiving antenna for
which the requirements of a broadband, directivity and a
simplicity of the structure are usually the most important
factors. It has already been reported that resistive antennas

are being designed for use in satellite communications [43].




CHAPTER V

PLANAR LOOP ARRAYS AND THEIR APPLICATION

TO BACKFIRE ANTENNAS

5.1 Introduction

In an investigation of circular loop arrays it was
found that, when the separation distance between adjacent
elements decreases, the series representing the Fourier coef-
ficients of the kernel, equation (1.12), converge very slowly
and their accurate computation becomes a tedious task [12] and
[17]. On the other hand, it has also been found that the
gain of an end-fire array increases as the spacing between
its adjacent elements decreases and the gain reaches a maxi-
mum when the total spacing approaches zero [48]. In this
chapter a method is described which enables one to study
compact coaxial loop arrays with considerable ease. The
approach is general and, therefore, applicable to the limit-
ing case when the separation distance between the adjacent
elements becomes zero. This limiting case generates a new
antenna which, due to its planar structure, we will call here
a "planar coaxial loop antenna". The method is also utilized
to investigate backfire antennas constructed entirely with
circular loop elements. The performance of such antennas are
then compared with those of backfire antennas with a solid
reflector. A good portion of this chapter is devoted to the

investigation of backfire antennas with a solid reflector
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utilizing a loop antenna as the exciter.

5.2 The New Technigue

The coefficient ng in the Fourier expansion of the
kernel in the starting integral equation was presented in

(1.8) and is given again here for the continuity of the dis-

cussion
~9kb.R. .
n 1 2T 70 lj(¢) jn¢
0 ij :

in a closed form this equation is given by [12]

o 2Zm+n
n _ . (y/22)
Kij = -3kby I rmEm ! n+2m (2) (5-2)
n=0
(1,5 =1, 2, «-- N; n =0, 1, «...)

where all parameters in (5.1) and (5.2) are the same as
those defiqed in Chapter I. When m in equation (5.2) in-
creases, the real part of the spherical Hankel function
decreases, but its imaginary part increases. Therefore, the
imaginary part of the series in (5.2) ‘remains as the domin-
ant part. It can be shown that for fixed kb.l and kb.

J

the convergence of (5.2) becomes slower as the spacing dij

decreases, [12] and [17]. In the limit when dij approaches
zero, on the order of thousands of terms in the summation
becomes necessary to yield an accurate value for the func-
tion K9..

1]

Numerical integration of equation (5.1) is also costly
since the real part of the integrand around ¢ = 0 becomes

very large and thus it requires a large amount of computer
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. time for an accurate computation of the integral. Consequen-
tly, a modification of equation (5.1) is necessary to simp-
1ify its numerical evaluation. To overcome this difficulty
the large variation of the integrand is extracted by adding

and subtracting l/Rij(¢) to the integrand. Therefore,

equation (5.1) is modified to

-jkb. R, . () -
n 1 Jﬂ[e 1 1) cos ng - 1j 1 f d¢
K., = = — ] do + = —— (5.3)
where
= 2 2 2 2 _ 5
Rij(¢) = [l/bi (bj + bi + dij 2bibj cosd) ]

changing ¢ to 26 + 7™ in the second integral of equation

(5.3) gives
: 0 2b.do
- Jﬂ R d?¢) - J. (b? + bZ + dSl + 2b.b. cos26)%
0 Rij —my2 Pi Py T A4y 524

(5.4)
Using the identity cos28 = 1 - 2sin’6 and changing the

variable 6 to -¢ yields

m/2 dé
.= A- L) (1 - CZ sinZ¢)= (5.5)

where
2b,
A= b % + d;41%
[(b; + by) i5317
(5.8)
c? = b. A?/b,
J i
- 2 2 =
Since bj + by 2 2bibj (equal when bj = by), and
2 . . . =
(by + bj) > 4bibj' even in the limit when dij 0, the

coefficient C? is always less than unity. Hence, the inte-
gral in equation (5.5) is a complete Elliptic integral of the

first kind [#97 defined by
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m/2 aé
F(m/2, C) = JO (5.7)
/1 - C2sin?¢
Substituting (5 7) and (5 5) in (5 3) gives
ikb. R, . (¢)
n - 1 1 Tr(e i cos np - 1) d¢
Kij = - A F(n/2, C) + = JO Rij(¢) (5.8)

The Elliptic integral (5.7) is tabulated in the literature
and can also be evaluated readily by a polynomial approxi-
mation [49]. Thus, it only remains to evaluate the remain-
ing integral of equation (5.8). Its integrand, however, is
a relatively smooth function and can be computed numerical-
ly. To investigate the behaviour of this integrand, its
real part is compared with that of egquation (5.1) in figure
(5#1) (for n =0, n =1 only). It is evident that the latter
has much smoother variations and its numerical integration
is trivial. The imaginary part of the integrands are smooth
functions of ¢ and are not included in the figure.

In the following sections, the application of this

method to co-planar coaxial loop antennas is discussed.

5.3 Planar Circular Loop Arrays

Planar loop array is a new type of antenna and a lit-
erature survey indicates that it has not, so far, been invest-
igated. 1In this array the axial separation of the loops,
dij’ is zero (figure 5-2a) and the convergence of the series
in equation (E.1) is very slow. The above method, however,

gives the results with considerable ease. Figure (5-2b)

shows the computed currents of a l4-element array for different
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loop separations. Only the smallest loop is excited and for

the selected aimensions the loop currents decrease rapidly

within the first three loops, but remain relatively constant
in the remaining elements. This indicates the existence of

a weak surface wave along the array [50]. The coaxial gain of

such an array is also investigated and is shown in figure

(5+3). It indicates a maximum gain of about 6dB regardless

of the array parameters. In addition, this maximum gain is

obtained when the largest element has a radius of about 0.75A.

This interesting fact was also verified for arrays with dif-

ferent number of loops and separations.

After an intensive investigation of the planar circular
loop arrays, the following properties were identified:

a) When only the smallest loop is excited, the dominant
mode on the other elements is the same as the dominant
mode of the excited loop,lno matter how large the para-
sitic elements are. A similar situation was also est-
ablished, previously, for loop Yagi arrays with un-
equal elements [17].

b) If the largest element in the array is excited, then
each loop will have its respective dominant mode, again
similar to loop Yagi arrays [17]. When only the larg-
est element is excited, the array does not radiate

" significantly and the real part of its input admitt-
ance, Re(Yin)' is normally small. Even for large
values of Re(Yin) the directive gain along the axis

of the array will not be large, since for this case
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the exciter is a large loop which is known to have a
small axial gain.

c) Since the parasitic elements not in the neighbourhood
of the exciter have small currents relative to that
of the exciter, the input admittance of the array
[Re(Yin)] is not significantly altered by adding or
subtracting a parasitic element to the array. The
sensitivity of the Re(Yin) to the number of array
elements was found to depend on the ratio of the ele-
ments radii., For bi/bi—l = 1.1 it was the most sens-
itive to the number of elements. Whereas, for
bi/bi-l > 1.1 it had noticeable variation, but its
variation was found to be less than 10% when the

array elements were increased from 3 to 6.

5.4 Backfire Antennas

A backfire antenna radiates in opposite direction to
that of endfire. Antennas employing the backfire principle
conceived by Ehrenspeck [51]-[52] have been the subject of
extensive experimental studies [531-[55]. This technique
provides a means for increasing significantly the directivity
of an endfire antenna without increasing its length. Typi-
cal experimental gain increases of 6 to 8dB over a con-
ventional endfire Yagi of equal length are obtained by an
application of the backfire principle [56]. Later, Ehrenspeck
[57 1 developed a "short backfire" antenna for which the back-

fire principle was applied to a single dipole "exciter" antenna

rather than to an endfire array. A gain of 13dB was
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achieved with this configuration. A short backfire antenna
has the structure of a simple, open ended circular cavity
with a dipole exciter placed at an appropriate location inside
the cavity and a small reflecting plate placed in the open
end to reduce the direct radiation from the exciter.
Although backfire antennas have been studied exten-
sively by experimental methods, due to their complicated
structure, very little is known about their behaviour. Chen
et al. [56] gave an approximate calculation of the radiation
fields of a short backfire antenna based on the measured
aperture fields. Zuker [58] has studied a long backfire
antenna theoretically and provided some approximate data for
design. The same problem was studied in [s91 - [61] by
applying the image theory. In [59] Nielsen and Pontoppidan
assumed that the reflector could be treated as an infinite
planar reflector, so that a complete image of the array
could be introduced. The mutual impedances between all di-
poles, real as well as imaginary, were determined by the EMF
method and sinusoidally distributed currents were assumed in
all elements. The surface currents induced on the infinite
reflecting plane by the currents of the exciting dipoles
were then determined. The field of the array with a finite
reflecting plane was eventually calculated by superposition
of the fields due to the exciting dipoles and the surface
currents on the part of the infinite plane that corresponds
to the actual finite plane. The analysis is direct and gives

readily useful results for backfire antennas with dipole
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elements and with a plane surface reflector. This approach,
however, may introduce some difficulties in computing the
characteristics of a long Yagi backfire antenna due to the
required large surface reflector. Since the application of
the image theory, for determining the mutual impedances gives
results to a reasonable approximation only if the dimension
of the reflecting plane are very large compared to the dis-
tance of the plane from the farthest element, the longer the
Yagi array, the larger the reflecting plane will be and,
therefore, extensive computer time and storage are required
to determine the surface current distribution.

Recently, Ehrenspeck [62] introduced a new backfire
antenna. The new design consists of a reflecting surface,

a peripheral rim of adjustable width, and a feed system in
the reflector center. The antenna was then optimized by
varying the frequency and rim width to find its highest dir-
ective gain which was reported to be about 18dB.

The characteristic of the one-element loop antenna
with a finite reflector were recently analyzed by Rojarayanont
and Sekigﬁchi [63]. The current distribution on the loop
antenna with a finite reflector was assumed to be the same
as the loop current with an infinite reflector. Then, the
current induced on the finite reflector by the exciting cur-
rent of the loop was calculated. Assuming this current dis-
tribution on the finite reflector, the characteristics of one-

element loop antenna with a finite reflector were obtained.
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The advantage of the short backfire antenna is clear
by noticing the structural advantage of a plane reflector
over a parabolic dish, especially when the gain is less than
' 204B. In the remaining part of this chapter, we will study
the backfire antennas using a circular loop as the exciter.
We expect to obtain a higher backfire gain since a one wave-
length loop antenna has a higher gain than a half wavelength
dipole.

Four different kinds of reflectors for the backfire
antenna_are discussed: i) an infinite reflector, 1ii) a
finite solid reflector (a disk), iii) a disk reflector with
a solid peripheral rim, and 1iv) concentric planar loops
with and without peripheral rim, where the rim is also made
of circular loops. Aside from the structural advantages of
the backfire antenna constructed only with an array of coax-
ial circular loops, it also lends itself to exact analytical
investigation. A circular loop antenna in front of an infin-
ite reflector is discussed first and is given in the next

section.

5.4.1 A _Single Loop Antenna_ in Front of an Infinite Reflector
The exact current distribution of a loop antenna near
an infinite reflector, its input impedance and the radiation
characteristics are analyzed by the theory given in Chapter I.
Using the image theory the problem reduces to that of an array
with two identical elements and with v, = -Vl. Since the

physical antenna radiates only above the ground plane, we

therefore, use one half of the radiation field which falls
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above the reflector. Figure (5-4) shows the directive gain

of such an antenna along the axis of the loop antenna as a
function of the loop spacing from the conducting plane and

for several sizes of the loop. The directive gain of a half
wavelength dipole antenna above the ground plane (due to

Kraus [64]) is also given in figure (5-4) for comparison.

It is seen that the gain approaches a constant value as the spacing decrea-
ses. This is in good agreement with the results of Kraus [64] for a lossless
and a half wavelength dipole antenna. For practical antennas which have
some finite loss, the gain will, however , decrease as spacing decreases.
This is due to large current discussed below. It is also seen that the gain
decreases with increasing the spacing. The system also has a higher gain and

a wider bandwidth for a large exciter size. The maximum directive gain of a’

single loop antenna is about 4.6dB for kb = 1.45. The
maximum directive gain of a loop antenna with kb = 1.4 over
a ground plane is lOdB which, therefore, is 5.4dB higher
than an isolated loop antenna. This gain is also 1dB higher

than the gain of 2-element loop antenna with kb, = kb, = 1.3

1 2

under an optimum excitation [65]. It should be mentioned
here that the 10 dB is the optimum gain of a 2-element array which radiates
into virtual half space.

Figures (5.5) and (5.6) show the input impedance of
a loop antenna over a ground plane as a function of spacing
and for several sizes of the exciter. Owing to the presence
of the ground plane, the driving-point impedance of the

antenna is, in general, different from that of its free space

value. As shown in figure (5-5), the real part of the input
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impedance increases with increasing spacing and after reach-
ing a maximum, it decreases with a further increase of the
spacing. It is expected that both the real and the imaginary

parts of the input impedance approach their free space values

as the spacing becomes very large. It is interesting to note
that the Im(Zin) is very small for ds/k < 0.2 and kb = 1.
Therefore, it is easier to match the antenna to the feeding
system. Figure (5-7) illustrates the dnput current of. the
exciter loop as a function of the height of the antenna
from the ground plane. It is interesting to note that the
current on a closely spaced loop is very large and decreases
as the height increases. However, the radiation resistance,
figure (5~5), is relatively small for small spacing. Hence,
a considerable reduction in the radiation efficiency may
result if the structure were made of lossy material.

In summary, a single loop antenna above a ground
plane is the simplest backfire antenna. With this simple
geometry a gain as high as 10dB is achievable. A closer
spacing gives a higher directive gain but may result in a
deterioration of the efficiency, if the antenna has loss
resistances. Referring to figures (5-4)-(5-6), it is recom-
mended to use kb = 1 as the exciter element since it gives
a better input impedance performance.

Since the antenna and its image have currents of
equal magnitude, but opposite phase, there is a zero radiation
in the direction of the ground plane, that is, in the direc-
tion normal to the loop antenna axis (6 = w/2). In practice,

the reflector size is finite and, therefore, the above results
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may not seem to be useful. However, if the reflector is sev-
eral times larger than the loop diameter-and the antenna is
not tbo far from the reflector, the results given here

will be applicable to the first order of approximation. The
directive gain of this simple geometry still can be improved
with placing an array of circular loops in front of the flat
sheet reflector. Figure (5-8) shows the directive gain of

a 2-element array above the ground plane as a function of
its distance from reflector. One of the loops in the array
acts as the secondary reflector which enhances the radiation
towards the flat sheet reflector. The geometry of this two
element array is selected for maximum radiation toward the

reflector and is found to be for kb, = 1.1, kb, = 1.05

2 1
(the reflector) at a spacing of dlz/k = 0.1 [45]7. 1It is
interesting to see that the addition of a reflector loop
increases the backfire gain by more than 1dB over that of
the structure without the reflector loop. On the other hand,
the gain becomes relatively independent of the exciter to
the main reflector spacing. Therefore, this spacing can be
used as a mean to- control the input impedance of the antenna.
If the antenna above the ground plane is a long Yagi array,
with its exciter as the second farthest element from the flat
éheet reflector, the backfire gain will be 6dB over the
isolated array. This is due to the fact that the maximum
obtainable gain from endfire antennas is directly propor-
tional to their lengths, provided the phase velocity is pro-

gressively adjusted to its optimum value as the antenna length

is lengthened. The gain of an ordinary .endfire antenna under
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this optimum condition is about 10%2/2 above the isotropic

value, where & is the length of the structure [51]. Because

the electromagnetic wave travels the physical length of the
array twice in the case of a backfire antenna, this antenna
acts like an ordinary .endfire antenna with twice the length,
and the phase velocity must be adjusted accordingly. We
then expect to have a gain 3dB higher than that of the
isolated Yagi array. The other 3dB increase in thegain is
due to the Yagi and its image, which carries one half of the
totalvpower and radiates into virtual half space.

So far, the characteristics of a circular loop or an
array of circular loops in front of an infinite reflector
were investigated. The next section is devoted to study the
radiation characteristics of a single loop in front of a

finite reflector.

5.4.2 Backfire Antenna with a Finite Reflector

In a practical antenna the reflector has a finite size,
which complicates the analytical solution. The problem of a
finife circular reflector can be solved as the limiting case
of an oblate spheroid [66]. However, due to the difficulties
in computation of the spheroidal function, the solutions are
usually hard to utilize practically. The introduction of a
rim around the reflector further complicates the problem and
an analytical solution becomes impossible to obtain. In the
present work, we have therefore, decided to use a numerical
method to study the problem of backfire antennas with a finite

reflector. For a circular reflector, with and without a rim,

the geometry has rotational symmetry and as such, can be stu-
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died by computer programs available for these geometries.

We have used a program which is based on the moment method
and was prepared by Ole Rydahl [67] and [68]. Since the pro-
gram does not use circular loop antenna as a source, it was

decided to use a number of infinitesimal dipoles, located on

a circle with the radius of the exciter, in order to simul-
ate the desired exciter. The current for each dipole is
selected in such a way that they represent the current dist-
ribution of the loop antenna. Figure (5-9) compares the rad-

iation fields in the H and E-planes of a one wavelength loop

antenna with those of eight infinitesimal dipoles located
uniformly on a circle with kb = 1. Due to the symmetry only
one half of the radiation patterns are shown. A good agree-
ment between the results can be seen. The ring of dipoles
then is used as a feed for finite backfire antennas. The
finite reflector is chosen to be a disk. Figure (5-10) de-
pPicts the variation of the backfire gain with the diameter

of the disk, when the ring of dipoles is located 0.15\ from
the reflector. It is seen that the backfire gain increases

with increasing diameter of the reflector and after reaching

a relative maximum decreases with a further increase of the
disk diameter. The maximum backfire gain is about 10.25d4B

which occurs for a disk diameter of about 1.45 wavelengths.

This is about 1dB greater than the gain of a one wavelength
loop antenna placed 0.15) above the ground plane (figure
5-4). The decrease of the backfire gain with a further in-
crease of the reflector diameter beyond 1.45) may be due

to the phase and the amplitude of the current on the reflector.
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For a reflector diameter larger than 1.45) fields produced
by the currents on the reflector should be subtracted from
each other, since the maximum gain of the antenna is obtained
only if the field of all the currents on the disk add in
phase.

Figure (5-11) shows the variation of the backfire gain
of the above antenna as a function of the feed spacing and
for various disk diameters. It is interesting to note that
for a finite reflector, the behaviour of the backfire gain
with the feed spacing is similar to that of an infinite re-
flector (figure 5-4). For both cases the backfire gain in-
creases with decreasing distance of the lon antenna from
the reflector.

Finally, figure (5-12) shows the current distribution
on a disk reflector of radius 0.716) with the exciter loca-
ted 0.15\A away from the disk. Both the radial and the cir-
cumferential currents on the reflector are mostly concentra-
ted in a region with circumference of about one wavelength
(D = 0.36). For D > 0.36 the components of the current
begin decreasing rapidly with increasing R and the radial
current IR approaches zero near the edge of the disk. There
is, however, a sudden increase in the ¢ component of the
current I near the disk's edge, which indicates the sing-

¢

ularity of I at the edge. It is also interesting to note

¢

that the phase of IR and I¢ are almost constant in the

region D < 0.36 where most of the current is concentrated.
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Thus, the maximum gain of a loop in front of a disk
reflector is about 10.,25dB. It was mentioned earlier that
for dipole fed backfire antennas, the addition of a peripher-
al rim to the disk reflector improves the backfire gain over
that of a flat reflector. The following section is concerned

with the investigation of such an antenna.

5.4.3 Backfire Antenna with a_Rim

In this section, the numerical investigations are
carried out for a disk reflector antenna with a rim around
the disk. Figure (5-13) shows the variation of the backfire
gain of such an antenna with the length of the peripheral
rim and for various sizes of the disk diameter. As seen in
the figure, the maximum gain is about 13.3dB and occurs for
a reflector diameter and a rim length of about 1.75A and
0.65\, respectively. This indicates that the addition of
the peripheral rim to the reflector surface increases the
optimum size of the disk, sinée for a rimless antenna the
optimum size of the diameter was obtained to be 1.45XA (fig-
ure 5-10). This increase in the optimum size of the reflec-
tor, and consequently an increase in the gain of the antenna,
may be attributed to the improvement of the aperture field
distribution due to the peripheral rim. Figure (5-14) shows
the magnitude of the aperture fields, in both E and H-planes,
at a distance of 0.25) from the rim edge. It is seen that
the radiating aperture of the antenna extends outside of the

physical dimension of the structure, as was reported for the

dipole feed case [62]. The magnitude of the field in the
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H-plane increases initially, but tend to decrease rapidly
in the vicinity of the aperture edge. It reaches 104dB below
the aperture center value at a distance of about 0.2)X bey=-
ond the edge of the rim. In the E-plane, however, the field
decreases continuously from the aperture center, but the rate
of decrease is slower. It reaches the 10dB value at approx-
imately 1.32 from the aperture edge. This increase in the
radiating aperture of the antenna explains the higher direct-
ivity obtained for this structure. It should be mentioned
here that Ehrenspeck has reported a gain of 14.2dB for a
reflector of diameter 1.75X and a rim length of about 0.6A
[62]. However, he used a short backfire feed (SBF), a di-
pole feed with a reflector disk in front of it, or an array
of SBF, since a single dipole can only illuminate reflector
areas of approximately 2A2? [62]1. Ehrenspeck, unfortunately,
does not provide any information about the SBF.

Since the gain of a one wavelength circular loop an-
tenna is greater than that of a half-wave dipole, its effec-
tive area should also be greater. The relation between the

effective area of an antenna and its power gain is given by

[691]
_ GA?
A = T
For a one wavelength loop Az = 2.21X%/47 and for a half
wave dipole A, = 1.64A2/4m. The difference between A  and

a L

Ad may indicates that reflector areas greater than 23?2

can be used for a single circular loop. In fact curves 4d ,
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e and £ given in figure (5-13) show that for the
reflector areas greater than approximately 2.7)2 the gain
decreases. That is, for larger reflectors a single loop can
not illuminate properly the active reflector areas and an
SBF (a single loop with a disk reflector in front of it),
whose effective radiating aperture is larger than that of a
single circular loop, must be used. It should be noted that
the approximate area which can be illuminated properly by a
single loop antenna may also be found from the knowledge of
and the approximate maximum area illuminated prop-

Bor Bg

erly by a single half-wave dipole, which is given by 202,

That is
By

« (2x%) = 2,77
By

which is the same as that obtained numerically in the above

investigation.

5.4.4 Backfire Antenna with Planar_ Concentric_Loops_as_a

It is often necessary to reduce the weight, windage
(wind loading parameter), or obstruction of view which accom-
panies the solid reflectors studied in this chapter. In the
remaining part of this chapter, we will investigate the pos-
sibility of employing planar concentric loops to construct
reflectors in a backfire antenna.

Figure (5-15) shows the backfire gain of a single
loop antenna in front of planar concentric loops as a func-

tion of the exciter spacing from the reflector. The size of




113

the exciter and the smallest loop on the reflector are
selected to be 1.1 and 1.05, respectively [45]. 1In ad-
dition, the ratio of the radii (the ratio parameter) of two
consecutive loops on the reflector is assumed as a parameter
in figure (5-15). It is seen that the backfire gain decreases
as spacing increases. This behaviour is similar to that of

a single loop antenna in front of a reflector disk (figure
5-11). Notice that the backfire gain is almost independent
of the ratio parameter. However, the best results are obtain-
ed when the ratio parameter and the circumference of the
largest loop on the reflector are about 1.2 and 4.5X,
respectively. It is interesting to note that the optimum
size of the reflector loop is about the same as the reflector
disk. Figure (5-16) shows the variation of the gain with

the exciter spacing wheré the number of loops which construct
the reflector is the parameter. In all cases the size of

the largest loop on the reflector is about 4.5\. It is seen
that 5 or 6 loops are enough to construct the reflector.
An extensive investigation was carried out in order to obtain
the best possible choice for the size of the smallest loop
(kbz) on the reflector loop. It was found that the size of

kb2 depends on the size of the exciter, kbl. The best per-

formance was obtained when kbl = 1.0 and kb2 = 1.1, or
kb, = 1.1 and kb, = 1.05, or finally kb; = 1.2 and
kb2 = 1,1. The last two sets of kbl and kb2 give slightly

larger backfire gain, than the first set, since the antenna

composed of only these two loops have a strong back radiation
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[12] and [45].

Figure (5-17) gives the backfire gain of an antenna
similar to that of figure (5-15) as a function of the reflec-
tor to exciter spacing. In this figure the size of the ex-

citer, kb is the parameter and the size of the smallest

1[
loop on the reflector, kb2, always satisfies the relation
kb, = kb, + 0.1. In addition, the ratio parameter is kept

2 1
constant and equal to 1.2. It is seen that for kb1 = 0.9,

the backfire gain is very poor and for kbl > 1 the gain
initially increases with increasing spacing and after reach-
ing a maximum it decreases with a further increase of the
spacing. An important conclusion from this behaviour is that,
when the exciter is smaller than the smallest loop on the
reflector, the backfire behaviour departs from that of a
single loop above an infinite ground plane for the exciter
spacing less than 0.15)A. Figure (5-18) compares the H-plane
far field radiation of the disk reflector with that of loop
reflector for exciter spacing of 0.15).- The agreement be-
tween the two radiation patterns is very good in the back-
fire direction. As expected, the front radiation for the

loop reflector is larger than that of the solid reflector.

5.4.5 Backfire Antenna with Peripheral Rim Constructed

In this case, the loop reflector has a peripheral rim
which is also constructed with circular loops. Figure (5-19)

shows the variation of the backfire gain as a function of
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the rim léngth and for various diameters of the loop reflec-
tor. The size of the exciter (ka) and consequently the
size of the smallest loop in the reflector (kbs) are chosen
to be 1.0 and 1.1, respectively, in order to compare the
results of this antenna with those of the solid reflector.

As mentioned earlier, a better gain performance can be
achieved with kbp = 1.1 (kbg = 1.05) or kb = 1.2 (kbg =
1.1). The maximum gain in figure (5-19) is about 12,3dB
which is obtained from curve f which corresponds to a
reflector diameter and a rim length of D = 1.83\ and 1.1a,
respectively. It is seen that for D > 1.75A the maxima

of the curves are within 0.2dB of that of curve d, for
which the maximum occurs for a rim length of about 0.65A.

It also gives a superior gain performance over the other curves
in figure (5-19) for rims smaller than 0.65\A. In addition,
the geometry related to curve d has the structural advant-
age of a smaller size and lower cost over e and £, with
about the same optimum gain. It is also interesting to ob-
serve that, .at the maximum of curve d, the size of the rim
and the diameter of the loop reflector are about the same as
those of the solid reflector given in curve d of figure
(5-13). Their optimum gain differ only by approximately
1.2dB. Figure (5-20) compares the far field radiation pattern
of the solid reflector with that of loop reflector in both
the E and H-planes. Their agreement in backfire direction

is good. However, there is approximately a 6.4dB differ-

ence between the level of the first side lobes in the H-plane.
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5.5 Summary

The radiation properties of planar loop arrays and
backfire antennas were investigated in this chapter. 1In
the beginning, a general method was developed which enables
one to study compact coaxial loop arrays. The method was
used to study the characteristics of a new type of antenna,
i.e., a planar loop array. It was shown that the array sup-
ports a very weak surface wave along itself and radiates
mainly in the broadside direction.

The technique was then used to investigate the radia-
tion characteristics of backfire antennas constructed entir-
ely with loops. That is, arrays of coaxial loops were employ-
ed to construct the peripheral rim and the reflector. The
comparison was made between this new type of backfire antenna
and the conventional one with a solid reflector. It was found
that the optimum size of the reflector is approximately the
same for both kinds of reflectors. For antennas with or with-
out a rim, the diameters of the reflectors were found to be
1.75) and 1.43), respectively. The length of the rim at
optimum gain was also found to be about the same for both
kinds of reflectors, and was aboutr 0.65\A. Moreover, the opt-
imum gain of the solid reflector was found to be only about
1dB larger than that of the loop reflector. It was found
that as few as 6 1loops are sufficient to construct the
optimum size of the reflectors and almost the same number of
loops are required to form the optimum peripheral rim.

Furthermore, aside from the structural advantages that the
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new backfire antenna has over the solid reflector, i.e.,
reduction of weight, windage, or obstruction of view, it also

lends itself to exact analytical investigation.
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CHAPTER VI

- CHARACTERISTICS OF TWO INFINITE AND FINITE CONCENTRIC

LOOP ARRAYS WITH LOADED ELEMENTS

6.1 Introduction

The analysis presented in the preceding chapters has
been restricted to single circular loop arrays. This chapter
deals with the analysis of wave propagation on two infinitely
long and concentric loop arrays. This kind of structure was
recently investigated by the so called "antenna theory" method
which consists basically of calculating the electric field
due to all elements when a surface wave is propagating along
the structure [70]. The phase velocity of the propagating wave
along the array has revealed that the array possesses two dis-
tinct passbands, corresponding respectively to the resonance
of the outer and the inner sub=~arrays and are separated by a
stopband. The width of the stopband normally depends on the
ratio of the loop radii for the outer and the inner arrays.

It increases as the ratio of the radii increases and this
increase tends to shift the bandwidth of the first passband

to lower frequencies. In addition, the bandwidth of the second
passband is found to be generally much smaller than that of

the first passband. From a practical point of view one, there-
fore, should design an antenna which has relatively wide oper-
ating bands in both passbands. It is also desirable to invest-

igate the method of excitation of this dual array.
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This chapter considers both of the above problems.

The "circuit theory" method developed in Chapter II is comb-
ined with the technique given in Chapter V in order to invest-
igate the radiation properties of finite and infinite arrays
of two concentric loops. To improve the bandwidth character-
istics, the loading of the array elements with a reactive
impedance element is considered. Although the analysis is
general, only the numerical results for loading of the inner
array are studied. The first passband, corresponding to the
outer array, is designed to have a relatively wide character-
istic,

The excitation of finite Yagi arrays with concentric
loops are also studied in this chapter. Three different methods
of excitation are considered; only the outer sub-array is
excited, both sub-arrays are excited or, only the inner one
is excited. It is shown that, from a practical point of view,
the excitation of only the outer sub-array seems to give the

most superior gain and input impedance characteristics.

6.2 A Relation for the Phase Velocity

The geometry of the array is shown in figure (6~1),
where all its parameters are defined. The array is exten-
ded to infinity in both directions and it is assumed that the
first mode is propagating along the array. Therefore, the
currents on the elements of the reference cell, consisting
of the inner and the outer loop located on the =xy plane,

can be presented as
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Ig(¢) = Ig cos ¢
o o (6.1)
IO(¢) = I0 cos ¢

where the superscripts i and o are related to the inner
and the outer loops, respectively. For propagation along the
z direction with no attenuation, the current distribution

on equal size loops of adjacent cells differ only by a phase
factor éjsd (with a time factor ejwt), where B is the
propagation constant of the travelling wave along the array.
In order to apply the boundary conditions on the element sur-
face, the loads Zi and ﬂi

age generators vt  and Vo, respectively. Now the applica-

are replaced by a constant volt-

tion of the boundary conditions can be carried out in a manner

similar to that explained in Chapter II., The final result

gives
iz . _-jBmd o o Iy -jgmd _ _,i i
To % Zom © I mf_w Zom © 2r, To
(6.2)
i 2 o1 -3 8md o > 1 -jpmd _ _,0 0
IO m;im Zom e + I0 mjim ZOm e = ZL IO
which in a matrix form becomes
- jpmd i o jgmd T i
: 1 - 1 -
m=z_°° 2y © + 77 mioo 2o € Iy
® . jBmd ® j Bmd S -0
m=2—wzom e » m=2“°° ZOm e + ZL IO
(6.3)

This set of homogeneous algebraic equations has a solution if

its determinant wvanishes. That is,
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«© A

1 ~JjBmd i o 1 .~JjBmd o, _
(2 z e +ZL)(Z Zme +ZL)(ZZ

m==—oo M= =00 ; ===

O; e-ijdf
= 0 (6.4)

If this condition is fulfilled, the resulting ratio of the

outer to the inner current is given by

co

X Al "jBI?Id
Ig ——y ZOm €
—_— == % : — (6.5)
i 1 ~3Bmd o
I (m=§m ZOm e + ZL)
In the above equations Zém’ Zé; and Zam are defined as
™ K2+ K?
1 - =+ _ 0 Om om _ 1 1
Z0m 1 = (kby ; Kb, Ko (6.6)
™ K'2 + g'°
'l _ . 0 Gm Om _ 1 n
Zom j —— (kb, 5 ¥, K7 ) (6.7)
N ™ K2+ K¢ ~
1 - 0 Oom om _ 1 1
Z0m 3 (kby 3 kb, Xom’ (6-8)
where
Kn _ ’-1__ 2m exP['—kal Rom(q)) + 3n¢] a . 0
Om 21 |, Rom (0) ¢, m
with
2b A
_ Imla 1,2 .. » :
ROm(¢) = —BI— 1+ (?ETO sin® ¢/2] (6.9)
En 1 [ZH exp[—-]kb2 ROm(¢) + jn¢] 5
= 37 < ¢ (6.10)
Om 27 Jo R (¢)
om
N b, - b, ? 4b.b L :
d 2 . 2
ROm(¢) = i%i" [1+ (—laﬁr——) + (mé)f sin? ¢/2] (6.11)
m> 0
5 s T n .
and KOm is the same as KOm with bl and ROm replaced
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2 0
2b. 2 5
' = Jﬂ_l.g 2 4 2
ROm(¢) b2 [1 + (TET) sin® ¢/27] ’ m>0 (6.12)
n e . .
ROO’ K00 and KOO are as defined in (1.7) and (1.8).
Equation (6.4) is a transcendental equation. In order

to solve this equation, we will try to find a solution for
the three infinite summations in (6.4). This is done in the

next section.

6.3 Evaluation of the Infinite Series in Equation (6.4)
A close look at the infinite series involving Zém
and 26; reveals that they are similar to the infinite series

given in equation (2.4) of Chapter II. Therefore, their sol-

ution can be found using an identical procedure to that pre-

sented in Chapter II, The remaining infinite series involves
Zém and will be stated here. The infinite summation can be

subdivided into three summations in the following way

oo

-(M'+1) M o

o =73 Bmd o ~j Bmd
s gl gTIBmd _ o Ty Ly 4 5 ]zl eI
m:-oo Om -0 _MI D’I"l"l Om (6-13)
: 2
since blb2 > bl
2 2
and - (by=by) " < by for b,/b; < 2

Therefore, 4b.b. >> (b

12> - b2)2 and for sufficiently large

1

by = by 2 ,
m one can neglect the term (—"TET_—) in equation (6.11).
Thus, the new form of Kgm becomes
~ b . i .
n ~ 2 ~jk d 1 ("
Kom & © 3k |m /m| ﬁ'fo 3% ©0S% os ng a¢ ’

for Imld/b2 >> 1 (6.14)
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where x = kblbz/lmld. The above integral is again related
to the Sommerfeld representation of the Bessel function.

Thus,

. b, .
kS = 3" ?§ éﬂklmld/|m| 3_(x) (6.15)

Therefore, eguation (6.8) modifies to the form

jmn_ b 3o (X) = 3, (X)

o1 - o _2 -3
Z0m 5~ g Lkby 3 kb, J,(X) 1 e

-4k
J Imld/lm‘

(6.16)

substituting (6.16) in (6.13) gives relations similar to those
obtained for equation (2.4) in Chapter II. Therefore, in
general, the solution of (6.4) is closely related to the sol-
ution of an isolated array. The numerical solution of (6.4)
gives the propagation constant B from which the phase vel-
ocity of the launched wave can be obtained. This is done

in the following section.

6.4 The Numerical Results for the Phase Velocity

A computer program was developed to calculate the phase
constant B from the transcendental equation (6.4). The
method which is used to calculate the phase constant B is
the central point method which was explained in Chapter II.

Again, the range of variation of B is limited by

kd < gd < ™

as was discussed previously. Figure (6-2) compares the num-
erical results of equation (6.4) for an unloaded array with
those obtained experimentally [70]. A good agreement between

these results can be observed in both passbands. The second
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passband, however, is much smaller than the first one. To

improve this passband we assume that the inner loops are loaded

reactively and the outer sub-array is unloaded. Figure (6.3)
shows the results for such a loaded array. It is interesting
to see that loading the inner loops has a negligible effect
on the phase velocity within the first passband, but it has

a large effect on the second passband. A capacitive loading
of the inner elements shifts the center frequency of the
second passband upward which results in an improved isolation
between the two passbands. An inductive loading of the small
sub-array shifts the center frequency of the second passband
to lower frequencies and therefore, reduces the separation
between the passbands. A capacitive loading of the inner
elements also increases the phase velocity and for a given
phase velocity extends the range of the operating frequency.
Thus, from the previous discussion given in Chapter II we

can conclude that the gain of the finite array must also

behave in a similar manner. We will not, therefore, attempt

to discuss further the effect of the loading on finite arrays.

Instead, however, we will consider the excitation problem of

concentric loop Yagi arrays.

6.5 The Excitation Problem

When a finite Yagi array of concentric loops is used
as an aerial, a major question which arises is the method of
excitation can be used to launch efficiently, the travelling
waves, on both sub-arrays in their respective passbands.

This section studies the excitation problem and an attempt is
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made to find the best possible answer. A computer program was
developed to investigate the characteristics of finite con-
centric loop arrays. The program is general and can be used
for any number of loops in the array with any loop size and
loop spacing or outer to inner loop ratio. In the program,
the odd and even numbers are related to the inner and the
outer loops, respectively. Initially, an 18~element array
consisting of nine uniform inner and outer loops is consid-
ered, It is called uniform since there is no change in size
of the inner or the outer loops along the array. Furthermore,
they are positioned uniformly along the z-axis. Three dif-
ferent methods of excitation are considered; only the outer
sub-array is excited, both sub-arrays are excited, or only
the inner one is excited. As in conventional Yagi arrays,

the first cell (loop No. 1 and 2) is considered as the reflec-
tor for the array. The real parts of the input admittances
resulting from these three different methods of excitation
-are shown in figures (6-4) and (6-5). Figure (6-4) shows

the real parts of the input admittances of the arrays when
both inner (kb3) and outer (kb4) loops are excited, Re(Y4),
the real part of the input admittance looking into the port
connected to the outer loop kb4, has a maximum in the first
passband and becomes negative at £ = 200 MHz and remains
negative within the second passband. On the other hand,
Re(Y3) is very small [relative to Re(Y,)] and positive

at the lower edge of the first passband and becomes negative

within the rest of the first passband and the stopband. It
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becomes positive at £ = 190 MHz and has a relatively high
maximum at £ = 230 MHz, These results indicate that within
the first passband the outer loop is contributing to the
radiation, but the inner loop absorbs the energy and does not
radiate, On the other hand, the outer loop absorbs energy
within the second passband and the inner loop radiates energy.
Figure (6-5) shows the real part of the input admittance of
the same array when either the inner or the outer loop is
excited. When only the outer loop (kb4) is excited, the real
part of the input admittance has a maximum in the first pass-
band and then decreases rapidly. It achieves a second maximum
in the stopband and then remains almost constant within the
second passband. When only the inner loop (kb3) is excited
the real part of the input admittance is so small within the
first passband that it is difficult to show the results in
the figure. It increases with increasing frequency and has a
relatively high maximum in the second passband.

Figure (6-6) shows the directive gain of the array
with three different methods of excitation. It is seen that
the behaviour of the gain in the first passband when both
sub-arrays are excited is similar to the behaviour when only
the outer loop (kb4) is excited. When only the inner loop
is excited, the array has a poor directive gain in the pos-
itive z-direction and also a substantial portion of the first
passband. All three methods of excitation have almost similar
gain behaviour in the second passband. Figure (6-6) shows that

the directive gain of the array when only the inner loop is
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excited, is comparable with those of the other two cases within
155 - 160 MHz. However, figure (6-5) indicates that its radi-
ation in this range is negligible.

From the results obtained it is clear that from a
practical point of view, the excitation of only the outer
sub-array seems to give the most superior gain and the input
impedance behaviour. However, in an earlier investigation
we have shown that [71] both the gain ‘and the bandwidth of
an isolated circular-loop Yagi arrays can be optimized by
increasing the size of the reflector and the exciter (Appendix
VI-A). A concentric loop Yagi array operates in a similar
manner and the same conclusion must apply for this antenna
as well. Thus, the reflector and the exciter size can be
utilized to further improve the gain and bandwidth of concen-
tric loop Yagi arrays. The far field radiation of the array

is studied in the next section.

6.6 The Far Field Radiation Pattern

agThe H-plane :far field radiation of an 18-element uni-
form Yagi array of concentric loops (9 cells) is shown in
figure (6.7). The array is operating at £ = 146 MHz which
is in the first passband and, therefore, the outer loops are
the major contributer to the far field radiation. Figure
(6.7) compares the total radiated far field with the radiation
from the inner elements. It is seen that the contribution
of the inner loops to the total far field is very small.
Figure (6.8) compares the H-plane radiation fields of para-

sitic outer elements with that of inner loops of the above
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array at £ = 225 MHz which is in the second passband. It

is interesting to note that the radiation from the parasitic
outer elements is not as negligible as the far field radiation
from the inner elements shown in figure (6.7). From these
figures one may conclude that in the first passband the cur-
rent distributions on the outer loops must be significantly
larger than the currents on the inner elements. This relation-
ship reverses in the second passband where the currents on

the inner loops become large but evidently by a smaller fac-
tor. To examine these current distributions in a more detailed
manner, figures (6.9) and (6.10) are included which show the
magnitude of the currents on each element at ¢ = 0 and for

f = 145 MHz and £ = 225 MHz, respectively. Figure (6.9)
shows that the currents on the outer loops are about ten times
larger than the currents on the inner loops, when the array

is operating in the first passband. In the second passband,
the currents on the inner loops are only about three times
larger than those of the outer elements. These results just-

ify the radiated far field given in figures (6.7) and (6.8).

6.7 Summary

Loaded Yagi arrays of concentric loops were studied in
this chapter. The circuit theory method developed in Chapter
IT was combined with the technique given for the co-planar
array of Chapter IV to investigate the phase velocity on an
infinite loaded concentric loop array. It was shown that by
a proper selection of the reactive loading, the passbands

and the stopband can be controlled. The computation revealed
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that a capacitive loading of the inner array increases both

the separation of the passbands and the bandwidth of the

second passband. The effect of the above loading on the first
passband was, however, found to be negligible. This relative
independence of the first passband from loading the inner loops
is due to the fact that the mutual coupling between the inner
and the outer arrays is rather weak.

The excitation of finite Yagi arrays of concentric
loops was also studied in this chapter. Three different meth-
ods of excitation were considered; only the outer sub-array
was excited, both sub-arrays were excited or, only the inner
one was excited. It was found that generally the gain and
the input impedance of the array depend strongly on the method
of excitation from a practical point of view, the excitation
of only the outer array seems to have the most superior gain
and input impedance characteristics.

The far field radiation of a finite Yagi array of con-
centric loops was also investigated. It was shown that the
radiation from the inner array is negligible when the array
is operating in the first passband. In the second passband

the radiation from the outer array was found to be small.




CHAPTER VII

DISCUSSION AND CONCLUSION

The problem of loading the circular loop array with
lumped or distributed impedances was studied in this thesis.
The impedance loading of elements was used to modify the cur-
rent distributions on the array and consequently, its band-
width and the radiation characteristics. 1Initially, the
investigation was focused on an infinitely long array with
loaded coaxial circular loops of equal size. The problem
was then extended to two concentric arrays of loaded loops
which operate at two pass-bands which are separated with a
stop~band and controllable with the impedance loading. The
thesis also presented a new type of antenna consisting of a
coaxial planar loop array. Its properties were investiga-
ted and the application of this design to backfire antennas
was discussed. The main objectives and the results which are
obtained in the course of this investigation are summarized
in the following paragraphs.

The travelling wave idea was applied on an infinitely
long loaded circular loop array in order to obtain a relat-
ionship for the propagation constant along the structure.
The analysis was based on the so-called "circuit theory"”
method and gave the dispersion relation in terms of the
mutual impedances between the reference and the other ele-

ments in the array. 1In addition, Flouquet's theorem was used
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to account for the periodicity of the structure. It was
shown that capacitive loading increases the operating fre-
quency range, for a given phase velocity of the travelling
wave along the structure, and consequently, increases the
bandwidth of the array. An inductive loading of the elements
was found to have the opposite effect.

Similar results were also obtained for loaded arrays
of two concentric loops, which operated in two pass-bands
separated with a stop-band. It was found that a capacitive
loading of the inner array increases both the separation of
the pass-bands and the bandwidth of the second pass-band. The
effect of the above loading on the first pass-band was, how-
ever, found to be negligible. The excitation of a finite
array was also investigated. For two concentric loops the
choice of the outer loop as the .exciter was found to give the
most superior gain and input impedance characteristics.

The question of a suitable kind of load for the re-
flector of a finite Yagi array of loops was investigated in
detail. It was shown that the loading of the reflector has
negligible effects on the high frequency cut off of the array,
but affects the low frequency cut off significantly. An in-
ductive loading of the reflector reduces the low frequency
cut off and consequently, further increases the array band-
width.

As an example of multiple loading, the case of the
doubly loaded array was considered. The investigation was

made possible by an application of the principle of super-
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position. The study revealed that for a relatively smooth
variation of the input admittance in a Yagi array, the exci-
ter may be loaded resistively. Thus, to improve the overall
characteristics of a Yagi loop array, it was recommended that
the directors and the reflector be loaded by capacitive and
inductive loads, respectively. The exciter, however, must be
loaded resistively in order to reduce the variation of the
input admittance with fregquency.

Coaxial circular loop arrays with distributed impedance
loading was also analyzed by a simple extension of the Fourier
series solution for the perfectly conducting loops. It was
shown that, in general, a broadband characteristic can be
obtained by a distributed impedance loading. The constant
resistive loading was studied in a more detailed manner since
it can be fabricated readily. The introduction of a dissi-
pative load resulted in a decrease of the efficiency, but it
improved the broadband characteristics of the antenna.

The thesis has also dealt with the coaxial planar loop
arrays and their application to backfire antennas. First,

a general method was developed which enables one to study
compact coaxial loop arrays and planar antennas. The tech-
nigue was then used to investigate the radiation character-
istics of planar arrays and backfire antennas constructed
entirely with loops. The comparison between this type of
backfire antenna and the conventional one with a solid re-
flector revealed that the optimum size of the reflector is

approximately the same for both kinds of reflectors. In the
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case of a backfire antenna with a peripheral rim, the length
of the rim at optimum gain was also found to be about the
same for both kindsof reflectors. However, the optimum gain
of the solid reflector was about 1dB larger than that of
the loop reflector. The investigation showed that as few as

6 loops are sufficient to construct the optimum size of the
reflectors and almost the same number of loops are reguired
to form the optimum peripheral rim. Not only does this new
structure for the backfire antenna reduces the weight, windage,
and obstruction of view which accompanies solid reflectors,

but it also lends itself to exact analytical investigation.

7.1 Suggestions for Future Research

During the course of the present work, several topics
have arisen of which a few will be suggested here as a way of
motivation for future research in the general area of the
coaxial circular loop arrays. The first and the most rele-
vant problem is to investigate the phase velocify of the sur-
face wave along two (or more) coupled parallel arrays. Since
the relationships between the surface wave and the beamwidth
or the gain are already known [71], the design of coupled
parallel Yagi arrays becomes possible if the phase constant
of the surface wave is obtained. The information on the phase
constant is also useful when the structure is employed as
millimeter waveguides. In this case the array can carry more
power or divide a given power among several branches. The
analytical approach to obtain the solution for the phase con-

stant of the surface wave along a coupled parallel arrays of
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circular loops is similar to those of Chapter II and VI.

A second interesting problem would be the investiga-
tion of ohmic loss per unit length on a periodic structure
of circular loops. This ohmic loss attenuates the signal
along the structure and therefore, becomes a significant para-
meter of the array when it is used as a surface waveguide in
applications in railway traffic control, railway obstacle
detection and telecommunications. The analysis given in
Chapter IV for continuous resistive loading may be helpful
in calculation of this parameter.

An important index of performance for a Yagi loop arfay
is the gain or directivity. However, a survey of available
literature indicates that so far no attempt has been made to
develop a method to maximize the gain of a Yagi loop array.
In general, the gain of any array can be maximized by using
a purely numerical search method. However, it is exceedingly
laborious to consider all possible combinations of the various
parameters involved in order to obtain a true maximum. In
this area, recently, a perturbation technique was used to
simplify the optimization process and was utilized to optim-
ize the gain of a dipole Yagi array [721,[73]. A preliminary
investigation by the author on the space perturbation of a
loop Yagi array revealed that it is possible to apply the
above technique to loop arrays as well. However, a more
detailed examination of the subject is required, so that its
usefulness and in particular the convergence of the method

when applied to loop arrays can be fully understood.
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Gain optimization by impedance loading, side lobe re-
duction of the far field radiation pattern of loop Yagi arrays
by tapering the lumped load impedance from element to element,
reduction of scattering cross-section of single or an array
of loops by lumped or continuous impedance loading, and
characteristics of log periodic arrays of circular loops are
other unresolved problems, which may be studied in the future.
This thesis has considered some of the most relevant problems
and during the course of their investigation methods of solu-
tion and results have been introduced which may become useful

for future investigations.
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APPENDIX (III-3)

In this appendix it is shown that loading a Yagi antenna at
¢=0 5r ¢=7 has similar effects on the antenna characteristics.
For simplicity we assume that the current distribution is of
the form

n

Ii(¢) = Ii cos n¢i (3A-1)

That is we are assuming that all other modes are negligible
in comparison with the dominant nth mode [15] (for the end
fire array discussed in this thesis we have used n=1 mode).

Substituting (3A-1) into equation (3-18) yields, (for n=1)

N 1 .0 1 .
Ii(¢) = E [yij Vj + (-—1)yij Vj] cos ¢ (3a-2)

For a Yagi array with only the second element excited at ¢=0

and the rest of the elements loaded at ¢=7, we have

1 N1 oa
Ii(¢) =¥, V, cos$ + jzl yij ZLj

#2

From equation (3A-1) we have Ii(ﬂ)=—1%. Substitution of Ii(ﬂ)

Ig(ﬂ) (32-3)

in (3A-3) gives

N
ih+ oz oyl 1= yr, V), (i=1,2,...N) (3A-4)
£

Li 7J “i2
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The above system of inhomogeneous equations gives the current
distribution on each loop loaded at ¢=T7.

Now assume that the array is loaded at ¢=0, instead of at
¢=m, and loads are replaced by short circuits at ¢=m. Equation

(3A-2), therefore, changes to

N
_ .1 .0 1 0 .
Ii(¢) = Y;,Y, jzl Vi zLj Ij(O), i=1,2,...,N (3a-5)
#2
substitution of Ii(O) = Ii in (3A-5) gives
1, ¥ 1_ .1 40 (32-6)
Ii + .E yi] ZL] Ij = Yio v2
j=1
#2
The system of inhomogeneous eguation (3A-6) gives the current
distribution on each loaded element at ¢=0. It is obvious that
0

the results of (3A-5) and (3A-6) will be the same if Zgi = ZLi

which verifies the results obtained in Chapter III.
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APPENDIX IV-A

In deriving equation (4.5) it was assumed that

® n m jm¢i
I, J cos né, e Ui(¢i) d¢i ~ 0

n=0 -7

The validity of this assumption is examined in this appendix.
Since Ui(¢i) is equal to zero everywhere except inside the

driving gap, we find

- e 86,/2
G = nzo Gn,m = ZLibi nzo I? —6¢i/2 cos n¢i cos m¢i d¢i
(4A.1)
which for n =m = 0 gives
G = z_.b, 8¢, 1° (4a.2)
0,0 Li™i i
and for n# m # 0
n sin(n * m)8¢i/2
®hm T P i T I (48-3)

For a small driving gap 6¢i, the above relation can be
approximated to

o n
G = Zlibi 6¢i Ii /2

and for n =0 and m #¥ 0 equation (4A.1l) yields (for small

- 2 0 _. - 0
GO,m = ZLibi Ii sin(m 6¢i/2) — ZLibi Ii 6¢i
Similarly for n # 0 and m = 0 we have

- 2 n _. - n
Gn,O = = ZLibi Ii sin(n 6¢i/2) & ZLibi Ii 6¢i
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Hence, for any n or m the results of the integration is

6¢i. Since 6¢i is small, and for a practical magnitude of

ZLi’ the contribution of (4A.1) to equation (4.3) can be

neglected.
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APPENDIX 1IV-B

Another method to determine the efficiency of an array
of circular coaxial loops with continuous impedance loading
is given in this appendix. The approach given in Chapter IV
is general and is applicable to any antenna type. The fol-
lowing method is only applicable to those antennas for which
the real part of the input admittance is precisely known.
The Fourier series solution for the currents of circular loop
arrays provides the exact value of the input impedance.
Therefore, the following method can be applied to circular
loop antennas.

The efficiency of an antenna can be defined as

Pr Pin B PD
— = (4B.1)
%) + Pr Pin

efficiency =

where P is the dissipated power given in (4.21) and Pi

D n
is the input power calculated from
1 N 2
P.n = 5 T Re(y;) |v] (4B.2)
i=1
‘where Yi is the input admittance of the ith element. A
substitution of (4.21) and (4B.2) into (4B.l) gives the ef-
ficiency in the form N
P n
. E L [biRLi T nio > Ii]
efficiency = 1 - 5 (4B.3)
L Re(Y,) |V.]|?
. i i
i=1
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APPENDIX (VI-A)

In this appendix it is shown that the reflector and
exciter size can be used to improve both the gain and the
bandwidth of circular-loop Yagi arrays. Based on the integral
equation method, explained in Chapter I, a computer program
is prepared to study the array characteristics. The program
is used to study Yagi loop arrays with 14 directors of equal
size and spacing. Figure (6A-1) shows the variation of the
array gain with frequency. Curve a is for an array that
has no reflector and has an exciter equal in size to its

directors. Curve b 1is for the same arrav, but with a

reflector equal in size and spacing to the other array elements.

It is interesting to see that the gains of these arrays have
a similar behaviour as a function of frequency and the gain
of the array without a reflector is about 1 dB more than
the gain of the array with a reflector, This suggests that
the reflector in the array of curve b is not placed at an
optimum location. However, by modifying the reflector spac-
ing and with further examination of the array gain, it was
found that the gain of the array does not change significantly
with the reflector spacing. This seems to validate the
assumption of Shen and Raffoul [15] that the reflector has
a negligible effect on the forward radiation. This assump-
tion is, however, only valid as long as the reflector size
is equal to that of other array elements.

The reflectdr, generally, reflects part of the primary

field of the driven element with a phase change which depends
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on its size and spacing. Loop antennas with kb = 1, where
k and b are the propagation constant and the loop radius,
exhibit inductive or capacitive impedances, depending whether
kb is larger or smaller than unity. In addition, the arréy
induction field also affects the phase distribution. One,
therefore, expects that for reinforcement of the forward
radiation field, the reflector should have a size larger than
the directors, This expectation is verified by the remaining
curves of figure 2. Curve c¢ depicts the behaviour of the
gain for thg above arrays, when the reflector is %arger than
other elements by a factor of 1.1. It is seen that the array
gain 1s increased by about 2.5 dB, but results in a corres-
ponding bandwidth reduction. Using the above argument for the
1oopin@édanceone can expect that the array gain can also be
improved by increasing the size of the exciter. This is ver-
ified in curve d, where the reflector and the exciter size
are increased respectively to 1.2 and 1.1 times that of
directors. Not only the gain is furﬁher increased, but also
the bandwidth of the arrays is now éomparable with those of
curves a and b. It is interesting to note that the gain of
this reflector and e#citer combination is about 3 dB larger
than that of the array without a reflector shown in curve a.
This indicates that the reflector-exciter combination has
almost optimum dimensions and a further increase of their
size should reduce the array gain. Curves e and £ illus-
trate this conclusion, as the array gain reduces continuously

as the reflector size is increased. An additional interesting




159

result is the kink on all curves at.about 215 MHz, A similar
kink is also reported for dipole Yagi arrays [23] and is
believed to be due to the same reason.

In summary, the gain and the bandwidth of any Yagi
array can be improved by a proper selection of the reflector
and exciter size. By an optimum reflector—exciter combina-
tion, which normally requires larger elements, as much as
3 dB improvement in the gain over that of an array without
a reflector can be obtained, Since a concentric loop Yagi
array operates in a similar manner, the reflector and the
exciter size of this antenna can, therefore, be utilized to

further improve its gain and bandwidth.
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