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ABSTRACT

An analysis of wave propagation along an infinitely

longarrayofsingleortwoconcentrj-cloadedcircularloops
is presented. The travelling wave idea is applied to derive 

:,,,,,,,,

arelationshipforthepropagationconstantalongthestruc-

ture. The analysis is based on a "circuit theory't method and

gÍves the dispersion relation in terms of the mut'ual imped- 
.:..,.:::

ances between a ref erence and the other elements ' in the i";'''i';"'l
'

array. ïn addition, Flouquetrs theorem is used to account 
,,i,ii-,

fortheperiodicityofthestructure.Itisfoundthatcap-

acitive loading increases the operating frequency range, for )

agivenphasevelocityofthetravelling\^¡avealongthestruc.

ture,andconseguently,increasesthebandividthofthearray

Capacitive loading of the ínner array in a two concentric

looparrayrwhichoperatesintwopassbandsseparatedbya

stop-band,increasesboththeseparationofthepass-bands:
and the bandwidth of the second pass-band'

A study of the excitation problem in finite Yagi arrays 
¡,,,,.'.,..

shows that for arrays made of two concentric loops the choice ,':'t.'
'.,.lt1t,t,t 

ì

of the outer loop as the feeder gives the most superior gain :':")

and input admittance characteristics'

As an example of multiple-loadings ' the case of a 
,:.: j,.:

doubly loaded array is considered. It is found that for a "ì'r";i'

relativelysmoothvariationoftheinputadmittanceina

Yagiarray,theexcitermaybeloadedresistive1y.Extensive

investigation has also shown that to improve the gain bandwidth
.-:. 1.
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,,. ',a-t.- .

performance of a Yagi array, its directors and reflector must

be loaded by capacitive and inductive loads, respectively'

Similar result is also obtained for distributed impedance

loadings :: ,

coaxÍal planar loops and their application to backfire ":':':'i:::'

antenna are also studied. First' a general method is described

which enables one to study compact arrays and coaxial planar

loop antennas with considerable ease. The technique is then 11"';:"'

used to investigate the radiation characteristics of coaxial 
i:r;ii:l':'"

planar loop arrays ãnd backfire antennas constructed entirely ;"'t';1f,

withIoops.Thecomparisonbetweenthistypeofbackfire

antenna and the conventional one wit'h a solid reflector reveals

that the optimum sizes of the reflector and the peripheral

rim are approximately the same for both kind.s of the reflec-

tors. Ho\^tever, the optimum gain of the loop-reflector is

found to be about ldB less than that of the solid' reflec-

tor aerial. In addition, it is found that as few as 6 loops

are sufficient to construct the optimum size of the reflec- ;.,,,

tors and almost the same number of loops are required to form 
i'.'i1

.tttttt 
t tl

the optimum peripheral rim. The new structure reduces the ;,';"';'''

weight, windage and obstruction of view which accompany solid

reflectors. In addition, the new antenna lends itself to
t'

exact analytical investigation i,;ì.,:,'
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CHAPTER I

INTRODUCTION

The electromagnetic theory of circular loop antennas

has received considerable attention in the past due to its

advantages over dipole antennas, and its relatively simple

geometry. The radiation pattern of a small loop antenna is

similar to that of a dipole antenna and shows a figure eight

shape in the vertical plane involving the loop axis. How-

ever, it tends to become directive in the axial direction as

the loop circumference approaches one \^iavelength tI 21.

This fact suggests that a highly directive beam may be ob-

tained if an array of coaxíal loops of a proper dimension

is utitized. A well suited application of the loop arra]¡ is

to employ loops as elements in a Yagi-uda array, in which

only the second element is excited. However, in contrast to

the extensive studies avaitable on d.ipole Yagi-Ud.a arrays, the

literature on Yagi arrays of loop antenna is scarce. The

goal of this thesis is to undertake a detailed investigation

of these antennas.

1.1 Literature Review

The first general analysis of a circular loop as a

transmitting antenna was carried out by Hal]en [3]. I{e

considered the loop antenna excited by a lumped generator'

an j-dealized delta function generator, and obtained a formal

solution for the current and the input admittance in the

form of Fourier series. However, due to the occurrence of a

|.:.-..1Ì.--,.'ì

i :j:.1 . :.:



singularity in the high order Fourier coefficients, he was

unable to obtain numerical results except for loops small

compared to the wavelength. storer l4f reconsidered the

problem but avoided the contribution from the higher order

terms by approximating the series by an integral and evalua-

ting it using the Caushy's principle value' He provided

extensive tables and graphs of the input ad'mittance and cur-

rent distributions for loops up to a v¡avel-ength in circumfer-

ence and a number of different wire cross sections' Storer

also examined the validity of the constant current distrib-

ution on a smal1 loop and was 1ed tO the conclusion that

loops with circumference larger than 0.2 wavelength can

not be considered smal1.

T.T.I{ure-examinedtheproblemofevaluatingthe

Fourier series. He pointed out that, assuming that the cur-

rent flows along the center of the conductor, the expansion

of Hallen and StOrer does not converge everywhere on the

antenna t5l. He examined the surface current distribution on

a perfectly conductíng loop and verified that the resulting

Fourier series for I (o) converges everywhere except at the

driving point.

Later King et al-. t6l computed the input admittance

of a circular loop by taking a partial sur¡,mation of the infin-

ite series obtained by I"Iu. They suggested that a Fourier

series solution with tlventy terms is satisfactory for deter-

mining the admittance of thin (fi = 2 In 
" ? ì 10) and

kb 1 2.5 loops in air and dissipative media. Here k, a|

11¡r:¡1: !¡...;r::
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and b are the free space propagation constant and the wire '" 
""'

and looP radii' respectivelY'

Inagakietal.byassumingafinitegapatthedriv-

ing point gave a theoretical basis for determining the re-

quired number of terms in the current and admittance compu- ,,1,,1 
,.,

tations .L7). They obtained an expression for the driving-

point admittance in which the gap capacitance is a lumped

representation of the effect of the gap width' ,,,,.,,,

Iizuka et aI. have analyzed an array of two identi- .';"':'::::

ca1 parallel loop antennas. They have decomposed the volt- , 
ti'.",

a:i.: i: .:: .l

age and curr:ent into symmetric and. antisymmetric components'

As a result, the simultaneous integral equations for the

distributj-onofthecurrenta1ongthe1oopshavebeenconver.

ted into a single integral equation similar to that of an

isolated circular loop antenna which has already been stud'-

ied [8]. This method, hov'rever, is not applicable to antennas

with loops of different circurnferences. The experimental ,,'

work of Lindsay t9l is the first published study of relativellz

large circular loop Yagi arrays. Lindsay reported a gain 
',:,,j..t

difference of about 1.8d8 in favour of loop arrays in comp- ¡i'¡1"'
.::.-::-_-::

arison with dipole arrays of the same length. Later, Appel-

,ì1 Hansen reported similar .e>perir,pntal conparison [Za] ana [fO]' He

utili zed. a feeding system whích consisted of a circular loop 
i-,,,;,:

antenna as the exciter and a parasitic loop as reflector' For l'Ì:::ì'::r':

the director he selected three different confignrrationsr âr

array of parasitic circular loops made of flat plate loops t
:

a parasitic array of wire loops and a parasitic array of



straightrods'Comparingtheexperimentalgainofthese

directors, he found that for array lengths less than 2^

all three had similar gain performances, but for large arrays

the gain of rod directors was somewhat higher' A similar

problem was also examined by Takata and sekiguchi ilrl.

Their numerical and experimental results show that for arrays

lengths less than 2X there is a gain difference of about I dB

in favour of loop arrays over the arrays made of rod elements'

The first theoretical investigation of an array

of coaxial circular loop antennas with arbitrary circumfer-

ences, has been carried out by Ito et al. lL21 using Fourier

series expansion, with emphasj-s on the existence of finite

gaps at the driving points. The expression for the current

distributj-on on each loop and the input admit,tance involve

matrices, where Lhe dimension of each matrix is related to

the array size. Thus, in the investigation of loop arrays

the required computer time and storage capacity increase vfith

the array size and for very large arrays becom-e excessive '

To overcome these difficulties, the resonant propertlz of loops

\Á/as l-ater applied by the author to develop an efficient method

for the investigation of Yagi loop arrays tf3l ' For this

method, the exact radiation fields and the current distribu-

tions of a finite and relatively large uniform array of cir-

cul-ar loops were compared with that obtained using the domin-

ant mode only. The discrepancies between the results of both

radiation fields and current distributions were found to be

negligible. Later, âD approximate method was also utilized

f-i a::1r::ìr:i

t-.:.
li: i'



which facilitateé the rapid and accurate analysis of large

loop arrays t141. In this method, a large loop array consis-

ting of an arbitrary number of elements' was sub-dívided into

several small sub-arrays such that the first sub-array con-

tained the active element. Neglecting all sub-arrays except

the f irst t\,rro, the resulting two sub-arrays \átere solved sim-

ultaneously to yield loop currents. The results for the first

sub-array h¡ere fetained and were used in simultaneous solu-

tion of the second and third sub-arrays. The process was

continued until all loop curients \^lere obtained' The travel-

ling tìrave approach has also been used to study coaxial loop

arrays. shen and P.affoul have applied. this method to finite

uniform yagi arrays of equal loops to provide design para-

meters for a given bandwidth, directivity or array length

t151. FinaIIy, the electrical prooerties of coaxial Yagi

Ioop arrays vrere investigated by the author by applying the

exact solution and the significance of each array parameter

and their effects on antenna characteristics was determined

t16].Basedontheseworksextensivedesigndataforshort
and medium size arrays were obtained in t17l'

ïn this thesis we extend the investigation of circul-

ar loop arrays to arrays with loaded elements. wave propa-

gation on an infinite structure is investigated and charac-

teristics of finite arrays are studied. The work presentecl

here is based on the Fourier series expansion method' Thus'

a brief review of this theory for an array of coaxial circu-

Iar loops with arbítrary circumferences is given in the next



sections.

Chapterlldealswiththephasevelocityofwave

propagationonaloadedinfinitearrayofcircularcoaxial

loops. A dispersion relation is derived by using the so-

called "circuit theory" method and Flouquetts theorem' 'r1''¡'¡

ït is shown that reactive loading has significant

effects on the phase velocity of the propagating wave and

the cut-off frequency can be controlled by proper loading' 
::tl;t,

For a finite array, the effect of reactive toading is also '"'
studied and by a capacitive loading broad-band antenna char- i":'

acteristics are obtained as well'

Multj--source and loaded arrays are investigated in

chapter III. Initially, the array is excited by arbittary

sources at two symmetrical points with respect to the array

axis. The principle of superposition is applied and expres-

sions for the current distribution and the input admittance

are obtained. Later, all sources except for those on the .

qth element which excite the array, are replaced by lumped 
:

loads of finite lengths. The properties of these arrays are ,tt"
'l: :.

investigated and broadband characteristics for directive i.,.:.t"

gain and input admittance are reported'

ChapterlVdealswiththecoaxiallooparrayswith

d.istributed impedance loadíng. It is shown that, in general , ',,,., ,,,.

i5j
a broadband characteristic can be obtained by a distributed

impedance loading. The constant resistive loading is stud-

iedinmoredetaitsincethistypeofimpedancedistribution

can be fabricated readily and all practical anÈennas made of 
::,.,,,,,
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conductive metals falI into this category.

there has been increasing attention on high gain an-

tennas which are generally achievable by compact arrays. In

Chapter V, a method is described which enables one to study

compact arrays with considerable ease. Then, the method is

applied to investigate co-planar arrays and backfire antennas.

The technique gíven in chapter v is combined b¡ith Lhe

analysis of Chapter II in order to investJ-gate the phase ve1-

ocity of an infinite array of two concentric 1oops. This kind

of structure Possesses tv¡o distinct Pass-bands seParat:ed by

a stop-band which can be controlled by array geometry and

suitable reactive loadings. This is done in chapter vI.

Chapter VII summarizes the results and provides a list

of suggested topics for future research.

t.2 lggrr::-9g=::-991e!r91-gt--9r:gsl3r-!gæ'-èttlxs
since the Fourier expansion method is used as the

basic tool in this rvork, it is reviewed briefly in this sec-

tion. Figure (1-1) shows an array of coaxial circular loops

composed of N elements with arbitrary circumferences. The

center of loops are located on the z-axis and there is a fin-

ite gap at their driving-points. The radius of the ith loop'

the radius of the conductive wire, and the driving-point vol-

tage are denoted by bi, .i and Vi, respectively. It is

assumed that bi

length of the signal in free sPace. Its finite driving-point

gap is denoted by biôoi. The loop current Ii (Ôi) is assum-

ed to florv uniformly in the V direction along the conductor



#¡
#j
#i
#3
#2
#t

rig. l.-l: An array of circuiar coaxial loops

v-@2o sin \V/Z)

;::f*^:3:rr'i1

ri:.j:j
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Following the procedure in t3l-t7l for a single

integralequationsa+'isfyingtheboundarycond'i-

the electric field on the surfaces of l{ circular

be shown to be t12l

jn^ N t2r(oì = ;# l^ ttcot cos (Q, 0j) +

l- l=J -u

I^Iij(0. Oj)Ij(Oj)40!j i-L,2,"', NT (r'r)

radius

Rii (0,ü) =

and when i

(1.3)

surface.

loop, the

tions of

loops may

V.
I

-U.

b. oo. 1
I 'l-

r ¡2
Idr

--t
kbi a0í

(r.4)

where

*l:.;tkbiRii(o,q') /oii(o,ù)drþ i - j
w..(o) = 'u (1.2)

rl"' 
ôvn l--ikl^'. R..ló)l/R..(ô) / jexp t-jkbi otj (0) l/Rij (0) r- :

where r, (ó.) is the current on the jth loop' k = 2r
I 

. 
] 

Iti tlle L: Lll- l-clr L \Jrr u¡¡ç J ç'L 4vvx- f " À

is the propagation constant, and to = 120nf¿ is the charac-

teristic irnpedance of free space. Ui(Oi) is equal to I

within the driving-point gap and. is zero elset'here. The

d.istance R- between two currents, normalized by the loop
L)

andfor i= j is

14 sin2 þ/2 + 4(ar/bil2

I j and assuming Uij

b.
L

sin2 þ/zl4

ai, it is

d.. b' r.

Rij (O) = t4 (bj /bl' sin2 þ/2 + ,ËÍ. ,Uï - t)21''

In order to solve the simultaneous integral equations

(1.1) , the current -j (0j ) and the kernel Wij (0) are

expanded into Fourier series
co

I.(ó-) = I Ilcosng. , (j =1,2,...r N) (1'5)
I 'J n=0 ) J



i:.'/;;1: :?;a't:r
l:.::1í.::.):{.}.' il
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vüij(o) =,r-1".*î:"-jno (i'j=Lt2'"'r n) (1'6)

wherefor i=j

- ,2t¡ ¡2tr -jkbiR"(0'ü) ì*r
*T, = *;î = # J, .Jo @ eJ"vdodii' (1'7)

andfor ili

^ -ikb. R.. (ó)

xT. = rll , 1 l¿ne - : "jtô ao (r.B)"ij -'ij = ñ )o ---T;G-)- ç

An introduction of (1.5) and (1.6) into the right hand side

of equation (1.1), after some manipulation gives

sin n(6ör/2) l{
oñ=þi = -nolf i :'=t'Lj 

tj

| = Ir2r... tN ,' n ì 0

where

-irn kb. Kl- Iì = o
lrl

-n _ (I. 10)o:-i ,,n*I , ,,D-1- lrlo (kb. 'tij _ ^i-i n2 -.n ) , n ì 1

-- 
''--l ,o-ffi;*i:)'nì1

Equation (1.9) in the matrix form is i:¡¡i'.ì
.: :::': _:

lzljf ttif = foif nì0 (1'11) i"""'
,l t;,,tl.,' ,

These simultaneous equations contain a group of Fourier coef-

ficients of the current rl (j

ordernon1y.Theai"goiurandoffdiagona1e1ementsof
¡:lrjr.+.

the matrix ,Ï: represent the generalized self and mutual liì:Ïi:;!:r'i::::i

impedances of the nth order mode of the loop currents, xê'

spectively. Z!, and Z!. correspond to cases where ther-r- r-l

observation points of the electric field are on the same or 
,,..:.,:..:..
,:,, .,..,,,..1.
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differenteIement's.Toca1cu1atez!,andz:,theva1ues-r-l l-l-

of K|* and K?* should be known. To evaluate *Ti' the
- rl l-r

range of integration of equation (1.7) was divided into three

regions where in each region an approximation was used. The

details of this procedure is given in l7l ' 
,,-.,.,,....

The other coefficients K1-, G I j ) are presented in
rJ

polynomial form in LLzl

i';". r',.. ,.-.n r ,-L ; ry /,22\n:?n h2 . ^_. (z) G . L2¡ ,, ,,,, ,K. = --ìKþ.'tij -¡"-i 
,rl0 m]-(n + ml: "n*2m \e' 

', '

(irj = Lr2r"'rll i n = 0'1"") i'':'t''
:

where

v = kb, kb. (1.13)
'.tJ

t - t(kbi)2 + (kbr)2 + (kdij)'14: (1-14)

and h|+2m(Z) is the second kind spherical Hankel function

of order (n + 2m) i

:

L - 2 -L 9v:tsl!-P]:lr1Þe!191:-339-!!9-39r'1!!3399
Assuming that tvir l represents the inverse of the 

,,,.., ,.

matrix (21.. ) in equation (1. 11) , the current Ii (0i) on 
,li':,'¡':''LJ
::.::i:::

the ith element is then given by 
,,,,,:,,,

.. 
( i v?- ßî) cos noi (1'1s)Ií (0i) = I

n=0 j=I J

The admittance matrix tVir l may be cons'idered a diagonal 
Llil-

matrix for n larger than a certain number Ro determined ì;rli:ì:.

by the magnitudes of bi, Oj and Urj , EL2l and tf6l' Thus,

equation (1.15) may be reduced to

l_l':- I
i .-.:



(r.17)
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*olî..ßÎ
ri(oi) = ,,lo 

,rÏ, ,Ï, eJl'os '''oi * "=*j*, 
{1- "o= "0i

(1.16)

For the values of n for which the approximation

nnr'ì ''O

"ii J 4ka.
nr.i_ = bt/at

is valid, the second summation in (1.16) will be ltZJ

; Ë "o= 
no"ltt 

lot*u 
þí/2 ln (2 =i" J$l at

,,=r,1*, 4r 
"' noi = -l %-ô'{ Joi- 6þi/z 2

j4ka*v. ti sin(n 6þi/2) cos t9i
l-\,_

no ,rlr n 6þ L/2 n

where ti ì *o. For small val-ues of 0i the integral in

(1.18) can be evaluated approximately in the form

.4karv. I _ _4Oriui[*t+aþr/2-j 
"-õi 

.J = -j -* Ë 
ln(Qi + 6þL/2)

(1.1e)

when ôi = 6þi/2, equation (1.16) represents the driving- .,:,.,,:':

point current. Using the relation sin (nô Öi/Z) / (n6þi/2) = t 
',,,..r',,.,'...ì,',t, i'. ,t-i ,

for n S ti = br/ar, the input current Ir(i = L, 2' N) : :.:

may be v¡ritten as

*o I.I - 
ti V., â.ê

ï= = r r y1-,v.+ ; **i4oeoarVri"Zß6iôor "-i ,r]O j=f 't: J ¡=mo*l ,'ii
(1.20)

where bi60i represents the gap width and hence the third

term is related. to the gap capacitance, In 2ß = Y and 
r,,,ì,:.:,:,!",.

*, 
;rltr" .r" loi - 6þí/21 - |
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y = 0.5772 ís Eulerts constant. Because in derivation of

(I.20) the magnetic current has been neglected' the gap

capacitance is twice as large [7],

I.
a

ri (0i)

moN
'Tn=0 j=I

(1.2r)

(r.22)

nó.'l

(1.23)

(r.24)

i :i.

i:;r,'

cgr-

a.L
l_Zto^i t" 2orçTq

and therefore,

The admittance matrix 
"rj

n.l_1( ¡ +:_ + i urcnl)Vi_
n=mo+1 tÏi

n.
cos nó, +v. rt I .o='a l- =¡¡ *I Zl .ll: o rr

of the array is given by

nl . v. +'al )

The contribution of the nagnetic current was omitted in

equation (1.1) , because the effect of the gap capacitance is

limited to the vicinity of the driving ¡roint. The current

distribution on an antenna element is not significantly af.-

fected b)'this omission, ancl hence can be expressed by

*oN
IT

n=0 j=I
,r1. v.-rt l

mo
r yÎ.+

^ .LI
n=U

mo
r ,r1.- - l-'ln=o

n,
]-

T

n-m *1o

j 
'cgi r a=)1+

-n¿J..
l_a

Y.. =r-l

itj

t.2.2 The Radiation FieId and Directive Gain

In term.s of spherical coordinates r, e, 0, that have

their origin at the center of the first loop in Figure (I.1),

the radiation field can be expressed by



lN
I f Ikb., exp(jkd.. cosol
l. a l- - - rJ- "

J r-t

l- sin nO Ii rn+r(xt)J 
l.o" "*__j 

,r.25)

s the Bessel function of the

dit represents the spacing

t elements.

nd the definition of the dir-

n vrith respect to the direction

kd.-) rll2
AI' I'

(r.26)

L4

n^ [- cosO
- f, exp (- jkr) 

|L1
;^ j' rî [rn-, (xr)

n=u

= kb.sinO, Jr,(*i) i

d of order n, and

he ith and the firs

ing equation (I.25) a

in, the directive gaí

axis is given by
N

rn I . r- kbi exp (tj
'o l= -L

x.I
kin

nt

Us

ga

z-

[-uul
L', J

rvhere

first

betr.¡ee

ective

of the

,.- i. :1

u-Orf

where the

negative

]-on.

p.e(yilluil'
l_= I

plus sign is for the positive z-direction, and the

sign is for Gr, the gain in the negative dj-rect-

The material covered in the last few pages surTrmarl-zes

the rnajor steps required in developing the theory of l.oop

antennas and their arrays using the Fourier expansion method.

This method will- be utilized in the next chapter to deveì-op

further the theory of loop arrays and to investigate the

loading effects on the array characteristics. Both arrays of

j,1fi¡ite and fi¡rite lengths are studied. Tro study tlre characteristics

of finite yagi arrays of circular loops withr different nr¡nber of elenents'

ser¡eral differer¡t sizes Of array are selected whenever possiJrle. The

tlpes of structure studied in this ttresis are listed below:



i) infinite loaded arrays

ii) finite loaded arrays

iii) multiPlY loaded arrays

iv) constant distributed resistive loaded arrays

v) tapered distributed capacitive loaded loop antennas "' ,1':

vi) planar arrays of concentric loops

vii) a single and a Z-elenent loop antenna ahove the giror:nd plane

viii) a circular loop antenna in front of a sotid disk ,',',,'''';,'','''.
,,:.: ..,t.:tt.,

ref leCtOf 
i:::,:.;r..;:

ix) short backfire antennas with peripheral rim -: :'::':'

x) a circular loop antenna in front of a planar array of

concentric looPs

xi) a circular loop antenna in front of a planar array of

concentric loops with peripheral rim

xii) infinite arrays of two concentric loops with loaded

elements 
.

xiii) finite arrays of two concentric loops

!:i::.:i.l
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CHAPTER II

INFTNITE AND FINITE LOADED LOOP ARRAYS

2.L Introduction

Generally, the loading of an antenna by a lumped or

distributed impedance mod.ifies its current d'istribution and

affects its radiation characteristics. Thus, by a proper

selection of the type , size and the location of the load, the

performance of the antenna can usually be improved

The ídea of tuning a radiating structure to control

its current and hence its radiation properties, dates from

the earliest antennas and was commonly used in the design of

broadcast antennas ín the 1920's tl$l. There has been exten-

sive progress in the techniques of antenna impedance loading

during the last twentlz years and very interesting results

have already been reported for single dipoles and arrays of

dipole antennas t19l-1231. The single loadecl circular loop

antenna has also been studied in 1241'1261 and a broad fre-

quency characteristic r.¡as reported. Here, the rvork is ex-

tended to arrays of circular coaxial loops which are loaded

at o = o. Attention is specifically focussed on Yagi type

arrays in which only one of the ele¡nents is excited and the

rest are parasitics. These kinds of antennas enjoy the sim-

plicity of feed systems and are very inexpensive to fabri-

cate. Furthermore, these antennas have verv high directiv-

ity.
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2.2 The Reasons for Investigalion

Antennas with high d.irectivity are necessary to obtain

good sensitivity and selectivity in most communication sys-

tems. I'Iith the development of radio-astronomical research

during the past decades, such antennas have become more and

more important, and moreover, the requirements on the d'irec-

tional properties of antennas for radio-astronomy have become

more stringent than those for ordinary engineering applica-

tions. Antennas for radio-astronomy should have radiation

patterns with the narrowest possible rnain beams and lowest

possible side-lobe leveIs. In the micro$¡ave range of fre-

quencies such a high directivity is usuaI11' achieved by using

the large parabolic dish type of antennas. But in the lower

frequency range, the size of the parabolic antenna and con-

sequently, its cost become enorrnously large. The usual prac-

tice in such a range of frequencies is to combine some simple

types of antennas in the form of an array in order to obtain

the required directional properties. Furthermore' for mini-

mum cost and ease of steering the direction of the main

antenna beam, the nuinber of elements in the array should be

small. yagi-Uda antennas are one of the very few types that

may be used for such a purpose. In infinite form, this

structure may be used as an open waveguide. shen has given

a list of possible applications of this structure in l27f'

In spite of many investigations on Yagi arrays of di-

poles, reports on circular loop Yagi arrays are Scarce.

Although they are directive antennas, their 3dB bandwidth

i;:..$:?.:):?.)l
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is relatively small- rvhich is a major d'rawback associated with

this structure. Ïn this chapter it is shown that the band-

rvidth of the array can be improved rvith proper loading of

the elements. To do SOr the travelling \^¡ave idea is applied

on an infinite loaded circular loop array in order to obtain an

expression for the propagation constant along the structure'

Recent theoretical and experimental investigat'ions t28l-t301

have shown that a periodic array of infinite length can sup-

port a travelling lvave along its structure' This seems to

explain why a section of the structure rvith properly matched

ends can yield a rather directional end-fire radiation pat-

tern.TheapplicationofthetravellingwaveideatotheYagi

antenna dates back to 1950 when R.A. Smith t31l suggested that

the phsyical action of the directors in the Yagi arîay is

to reduce the phase velocity of the wave travelling along the

axis of the Yagi. This is equivalent to saying that the wave

radiated by the driven element travels through a region with

refractive index greater than unity'

Inthenextfewsectionswewillderiveanapproxímate

expression for the phase velocity of the travelling v¡ave along

aloadedlooparray.Thearrayextendstoinfinityinboth

directions along the z-axis, figure (2=1)' and consists of

equalcoaxialloopsofradiusbwhichareseparatedbya

distance d and are loaded with identical 10ad's of finite

length bôO at O = Therefore' the load impedance can

be represented by Z',U(O) , where U(O) is equal to unity

at the load. and zexo elsewhere. The analysis is based on

| ;.r::,:,i.i 1

.: .:t :;.:

':.:.r_

io:.',-+i
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the classical method and a d.ispersion relation j-s derived

in terms of the mutual impedances between the zeroth element

(the element on xy plane) and other elements in the array.

In addition, Flouquetrs theorem l32l is also used to account

for the periodicity of the structure. The effects of l-oad-

ing on the finite array is also investigated'

2.3 A Relation for Phase Velocity

Let ß be the propagation constant of the travelling

wave on the infinite array of figure (2'I), with a time

factor exp (jot) . Thus , fot the propagation along the posi-

tive z-direction (assuming the \^lave is propagated without

attenuation) the current d.istribution I* on the mth loop

is related to I0, that of the reference loop by the relation

rlll(o) = ro (o) exp 1-j $md) (2.L)

The investigation of the finite arrays by using the integral

equation method has shown t16l that for a properly designed

array the above assumption of a constant current magnitude

and phase change along the directors is approximately valid'

Equation (2.1) may also be recognized as the usual Flouquet

type of phase variation used in periodic structure analysis'

This type of phase variation is based on Flouquetrs

theorem which states that in any medium having a special per-

iodicity d, the fields are multiplied only by some complex

constants if one moves down the strucutre by a distance d.

This is obvious since if the structure is displaced along

the z-axis by an amount d, it coincides with itself and
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the new field can differ from the previous one only by a

constant factor.

For the current distribution IO(0) in equation (2.L)

the form l^cosQ iS adopted. This assumption for antenna
U

current has already been conf irmed in t13l and t16l' Further- 
,.1 ,,,

more this form of the current (n = I mode) is assuraed due

to the fact that we are interested in the first passband of

the array and within this band the array is an endfire ,..,.,
j..:t'.;'

antenna t 151 . "''' 
l:ì

In order to apply the boundary conditions on the ¡,,,,, 1| ;'l;1': ì

element surface, each load is replaced by a constant volt'age

generator. This ís made possible by applying the compensa-

tion theorem, which states that an impedance zl, in which a

current I is flowing can be replaced. by a potential differ-

ence equal to . lZf without changing the electrical behav-

iour of the network.

Now the application of the boundary condition can be 
;
1;.

carri-ed out in a similar manner to the case of the unloaded

arrays discussed. in the previous chapter. The resultant ':';
,. 

:, :.

rcatrix equation (1.11) for Il = I is of the form '1:':ll'.1r"-
:il:ì:.

ilzi)ltrjl = -lz:Lril, -æ ( j s - (2.2)

The ith row of this matrix equation is 
ì:,¡:.1,,;,

; zI . r. = -z-r., -oo<i<æ (2.3) [Ìt¡;l
r--r 1 L l-]=--

Since the array is a periodic structure v¡ith elements
.

extending from 'æ to *ær due to Symmetry one may, there-

20
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2L

fore write equation (2.3) iror the Oth element (reference :

element) without loss of generality' Thus using equation

(2.1), equation (2.3) becomes

æ

i z6* ro exp (- jmßd) = 'zt"r o Q ' 4)

.,.'.t,t. 't.,t,i

;;"t" from chapter r, the impedance 
'å* 

is siven bv

inn v2 + Ko- 1

zt = |=þ rnoÌom-'_.oP-åoå*t (2.s)
"om 2 -'-- 2 RD um 

..,...,.,
and ,, 

t,..,,,,.'' ,,

)-
K1--0m lr JO *'*rQ) - - vrtt

with

oo* = lgg [1 + ,#,' sin2 O/zl4 for m > o Q'7)

*Oo and *Ëo are as defined in (1.:¡ and (1' z¡ ' The infin-

ite summation in equation (2.4) is a transcendental equation'

In order to solve this equationr w€ will use a technique

which was employed. first. by Serracchiolli and Levis t33l for

dipole arrays. This procedure is based on obtaining an asymp-

totic formula for the 
'å* 

function and summing an infinite

series at finite tif while replacing the truncated terms by

their asymptotic equivalent. The magnitude of I'1 depends

on the geometry of the array and will be discussed in more

detail later. The steps involved in the above procedure are

discussed in detail in the next section'
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2.4 Evaluation of the Infinite Serj-es (2'4)

The infinite summation in equation (2'4) can be sub-

divided into three summations in the following way

-zL (2.8)

8) can be evaluated-

should, however, be

2.5).

tisfiedn equation (2-7)

terms of its binomial

[--rn+tl M ..l

[ : + 
-T 

. riJ zf* exe (-j ßmd) =

where l,{ is an integer such that t#

dition the infinite summations of (2'

approximately. The finite summation

evaluated exactly by using equation (

''¡Ihen condition ffi " f is sa

for R^ can be aPProximated bY two
UM

expansion. The result is given bY

dRo* = lml f;tr+
b r1

l_m]ã 
L¿

Introducing this expression into equation (2.6) gives

(for H " 1)

The integral in (2-

entation of the Bes

" 
Ë-É ' cosQ 

. cos no do (2.10)

is related to the Sommerfield repres-

function. Thus' one can find

ö/21

kb2
Jn (x) , with x = 

TnTa

+ t#l' sin2 9*
b

cos0 l (2.e)

(2.rr)

--n - b .- jk l*la
^0* =TlmTã--

f'
J6

r0)

sel

Therefore, equation (2.5) m'odifies to the form

_l
kb

, jrrì'b ':n (x) - J2 (x)
zô* = af- LKþ -----T- J1(x) l

(2.L2)
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I{ow, for the above range of Íl¡ and kb ñ, It the argument

x is small and the small argurn-ent approximation for the

Bessel functions can be used. Thus ' fot

.f(x)-n' x -' 0

the result is

räl " (2.13)I
ñT

jrnob 
-kbl-2d, '2

Introducing ,å*.

gr-ves

i zt^ "-j 
ßma * r-(lt) * ; r (A +

-M UIII' Éæ ¡[+ 1

where
inn kb2'orr = ---Æ-

Tn 5z
Þ='Ou 4d,2

'lTn k 3b 5

I =-'i 
'O

' 32dz

"rih 
- rffil e-jtclmldT¡ml Q'r4)

from equation (2.]-4) into equation (2'8)

o!
'om

fi (ß)

with i

each i

(i)

B c ,,exp (- jl< I'm I a+i6ma¡ - -"
T*T 

* l-m]-tt-fm-I "L

(2.rs)

(2.L6)

The infinite summations of (2.15) are of the form

l--.(i"t+1)l.r
IL

L --
= lf 2, and

separatelY.

--1

i I exp (- jr lrnl a+ j ßma Q.L7)--_--_---:,";il l*l'
3. |Iow we rvill consider (2.I7 ) for

ggu{,e! !es_ Eg¡- -r r tß-L

Relation (2.L7) for i=1 IS
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- (¡'1+1) exp (-jr lm l¿+ 
j ßrn¿) * ; exp (- j:< lIl l¿+ 

j ßm¿l =fl (ß) - r ffi-..:. 

-T*T-

-L êæ lm I M+l

co 
^ 

(-jkmd-j ßmd) : 
"-jkmd+j 

ßmd 
_I = + I ---

n=t+t m m=I{*l m

+
m

-jmd (k-ß)

F

f u-ll; rl
þr o=rl

(2.18)

The infinit.e summatj-on in (2.18) is known and is given in

reference t34l

æ tìInx æ-v ,.',: :

;-{fÏ = -rn(2sinx/2) t jry, o<x<2r Q.Lg) ;,,,:,',i,
m=.L

Utilizing 12.:.:9), the infinite summation of (2.18) gives

= -1n[2 sin q$q,
m=1

-j n-d(E+ß) - 1n[2 "ir, 
{Lpl * j +ÉÈ- =

-In 2(cos kd - cos ßd) + jkd Q'20)

Substituting (2.20) ínto (2.L9) gives the final result for

fr(ß) r

i.{

f1(ß) = -l-n 2(cos kd - cos ßd) + jkd - 2 L "-J**o "o= ßmd
m=l Q.2L)

r to (2.18) for f2ß)

- jmd (k+g¡

(ii )

f2(g) (2.22)



Again, referring to

co limx -2se-="-
m26m=I

qx-Tfu^ "")
So that

f2(ø) = +" rißd+ (kd)z I (ßd)2

l"n: Yå Y.,' .,,il2jkd+t\.]]ffl 2

rvhere

y1 = (ß-k) d

\2 = (ß+k)d

(iii) lgÐElellee-Eer--f¡JE).
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t34l we have

i (2r .- x) t j(xln x * x -

0<n<2n

?x-
72

+ je¿ r"tfl + jkd ln(vrvr)

i exp (-jmkd) .o=L^ _m¿m=l

fl (ß) 
' 

tnle

"-jmd 
(k+6¡

will have

(2.23)

ßmd

(2 .24)

(2.25)

(2.26)

(2 .27 )

Following the Procedure for

shown in t34l that

+
m3

-imd (k-ß)
elæ ¡{llr rl

þr *=!f 3 
(ß)

It is

co

T

m=1

timx
e r$n* + # æ

...) + r
m

1
rn3m3

. .rzx ttx2 "3r j(l-+*b) , 0<x<21r

Substituting (2.27) into Q.26) yields

f¡(o) = (ßd)2 t (kd)2 +

?,ri +^()L -frrv)+Yîr

ln(v-v^) + ßdkd" I'¿
æ

+ 2 L 1. -m=l m3 l

\2
Inj

Y1

-n2kdt-L1
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ll
2L

m=1

defined

, (2 .24)

exp (:jmkd) .-os ( ßmd)-_F- U\

in (2.25) .

and (2.28)

I ¡... i....i-,::!

a.', i

where Y1 and "Y 2 are as

Substituting (Q-2I)

vre get

(2.28)

into (2.15)

¡.1

Afr(ß) + Bf2(ß) + cf3(ß) * *j_- zf*exe(-jßmd) = -zL Q'29)
lll- ¡'¡

Equation (2.2g) is used to determine the propagation constant

ß from v""hich the phase velocity of the launched wave can be

obtained. The convergence of the solution for the phase con-

stant ß in equation (2.29) depends on the condition

l¡l >> ?. For a fixed value of the loopradius b, therefore,

the number of terms in the finite summation of (2,29) will

increase with decreasing the loop spacing d'

atrz.J

A computer program \^las developed which determines a

numerical solut.ion of the transcendental equation (2'29) for

the phase constant ß. The method which is used to calculate

the phase constant is the central point method t35l as explain-

ed below.

t{hen an approximate region of existence of the solu-

tion for g(ß) is known, the lower and upper bounds ßL

and ßu satisfying gL < ß ' ß.l-, are first determined'

Then the values of the function at both bounds and the central

point ßc between ßL and ßu, namely t g (ß[) ' g (ßu) and

g(ßc) are obtained. From the signs of these values \^7e can

determine which of the equally divided regions contains the

The Numerical Results for the Phase Velocit
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solution ß. By carrying out a series of these procedures

Ì^7e can make the central point arbitrarily close to the true

value of ß. However, before using this technique' it is

necessary to find out the range of values which ß can

assume.

A condition which one should keep in mínd when solv-

inE Q.2g) is that a Yagi array cannot support a travelling

uTave when the phase velocity is such that the currents of two

ad.jacent elements are out of phase, This is clear from equ-

ation (2.1) which for ßd = Ttr where d is the distance

between two adjacent loops, gives the current of each loop

equal and opposite in phase to that of the current on the

adjacent element. Therefore, one can no Ionger talk of a

direction of propagation and the array cannot support a trav-

elling wave. This sets the upper bound of the propagation

constant ß, i.e., ßd : r lzgf' The lower bound of ß is

determined by the fact that to have a slow v¡ave the smallest

value that ß can take is k, the free space propagation

constant. Therefore,

kdfßdSTt (2.30)

The numerical results presented here are obtained using

equatíons (2.2g) and (2.30¡ for an array with arbitrarlz dimension'

Figure (2.2) shows the solution of equation (2.29) for

an array with b = d = 2:-.45cm and operating at a frequency

range of l8O MHz to 2gO l4Hz. This figure gives the varia-

t.ion of the normalized phase velocity v/c as a function of

the frequency for various reactive loadings- It is seen that'

i-_.:a'ì-: ìr,+Ìl

.:ì
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ingeneral,acapacitiveloadingincreasesthephasevelocity

andforagivenphasevelocityextendstherangeoftheoper-
at.ing frequency' An inductive toading on the other hand'

reducesthephasevelocityandconsequently,reducestheoper.
ating frequency range' The reason for an increase (or dec-

rease)inthebandwidthcanbeunderstoodfrom-thediscussion
givenfortherangeofßsummarízedinequation(2.30).

Forahigherphasevelocitywehavesmallerßand'there-

fore, the range of frequency at which ßd < T is increased'

On the other hand , for inductive loading' the slope of v/c

versus frequency is higher and this causes ß to increase

rapidly until the array stops propagation (ßd = n) '

2.6 Finite Arralzs

Theaboveanalysisgivestheperformanceoftheloaded

infinitearrays.Inpractice,however,thearraysarefinite

in extent and cannot Eenerally support travelring waves of a

simplenature.Thereflectionsatthearrayendscau'seaddi-

tionaltravellingwaveswhichcomplicatetheanalysis.If

thearrayisreasonablylongthesereflectionsmaybeneglee-

tedandtheaboveanalysiscanstillbeusedtostudyapprox-
imately the loading effects' However' the summation on the

left-hand side of equation (2'8) must be carried out over

thearrayelements.Furthermore'ourinvestigationhasshown
thatequation(2.8)forfinitearraysdoesnothaveanysolu-

tionintherealfrequencydomain.Instead,locatingits

minimayieldssolutionswhichcorrespondcloselytothoseof

the infinite array. As a result, the minima of equation (2.8)

...:¡..::iÌ:.
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are used to obtain the solution for the finite array case'

These solutions, which are in the range of (2.30), represent

the frequencies of the Slow waves, which can be launched

along the finite array.

Figure (2.3) shovüs the approximate results for the

relative phase velocities of l9-element, loaded and unloaded,

arrays. Thej-r behaviouris similar to those of the infin-

ite arrays but their initial variation as a function of fre-

quency is somewhat slower. It is Ínteresting to note that

the finite structure Solution represents also a slow v¡ave

along the array. It is obvious that the larger the number of

elements in a finite array, the closer its solution is to

that of the infinite array solution-

The effects of loading on the directive gain of finite

arrays are investigated in the next sessicn'

2.7 Directive Gain of Loaded Arrays

It is known that the relative phase velocity in an

optimally designed Yagi antenna of length L must satisfy

the Hansen=Woodyard relation [36] '
, L/). 2f.xv/e = #fu = îffi (2'3L)

where f is the frequency of the signal. Differentiation

of the above relation with respect to the frequency shows

that ð,/ð,f (v/c) is never negative. This means that for the

gain of the array to remain unchanged, the phase velocity in

the antenna Structure should not decrease with increasing

frequency. In addition, the results of the previous section
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showed that., for a given phase velocity, a capacitive loading

of the array increases the operating frequency range and an

inductive loading tends to reduce it. Thus from the above

discussion and using equation (2.3L), one can expect that the

gain of the array must also behave in a similar fashion. In

practice, however, arrays are finite in size and usually con-

sist of only a few elements. In such cases, the travelling

v/ave along the array is not well established and array cur-

rents can be obtained more accurately from equation (2'2) '

Once these currents are known, other array characteristics

can be obtained readilY.

AsseeninChapterT,thedrivingcurrentoftheith

element of an N-element array excited at O = 0 by a voltage

Vr(i = 1, 2, ... I N) is of the form

, ':
I,:
'i.t.::: :

m ¡1 .---o N r- lr{(o) = r r v1.,v.+( r *-+ j,rrcni)vi
' n:O il1 

tij ' j '"=¡¡" +1 
'Ït

(2.32)

"jt, 

(o) =

(2.33)

where the parameters ti, *o are as defined previously'

Equation (2.32) can be used also for the loaded arrays'

In this case by using the compensation theorem the load

Zrí can be replaced by a generator of voltage Vi = -zLiIi (0) '

Thus, for the Yagi-array in which all the elements are loaded

at Q = O, except for the 'exciter one (the qth element) '

the above equation becomes

[1 + ZLi (I

mo
un 

,rlo

n.
l_

- oià) t"=d*rå + jocai) I ri (o)

*ôi.,( "J l-+iocôi)vi
tn'*o*t ,îi

*oN
+ r ry1..

n=0 j=l r-J

lq
nv.-aq
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where otn is the .Kronecker delta function and | = L, 2 ,
...., N. These equations can be modified to a matrix equati_on
of the form

l0ijl tIj (0) I =

where tOij I is

ó:_j = []-+zli(

t6il
anN
n.

l_
v

n=mo+1

tÏn * urn (

m
o-nL V.

n=0 - l-l

(2.3s)

(2 .36)

m.
c)

eí=VoX- n=o

x N matrix with elements

Ë. 
jr"gi)lôij *r"i(l -ôiq) .

J.1

n.'l_
r * * it¡c ,) v.

n=mo+I ,i, '--gi' 'í

Equation (2.34) is the characteristic equation of the
loaded array. rts solution gives the total current of each
loop at ó = 0 from which the currenL modes can be evaruated
readily. I¡trhen only the qth element is excited, i.e., for
i I q uj is repraced by -zt jr. (0) , The current modes from
equation (2.32) take the form

Yiq
Nv- - x vÎ."q jir "ij '") rj (o) for o f n S *o
lq,

_n
f,

t_

and

Y.
l_n

nq
t

n=mo

becomes

m'roN
vF

t7 L Lug n=0 j=l
lq,

oi¡ zr,iri {o¡ +

The gain of such an array can

to that of an unloaded one and

by

(2 .37 )

be obtai_ned in a manner similar
in the z-d.irection it is given
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t-:nlo.-drr 4

N

I . l- kbi exp (tjkdrr) ' ti l'
l-=I

(O*

fq,

(2.38)

where rl is the current mode for ll = 1'
t-

2.8 Effect of Loading on Directive Gain

Based on the analysis of the previous section, a comp-

uter progiram \^Ias developed to investigate the effect of load-

ing on antennars characteristics. For all arrays discussed

here t Ç. = 2. The variation with frequency of the gain of a

I0-element array in 0 - 0 direction is shown in figure (2'4)

for various capacitive loads. This figure shows that, âs

expected, a capacitive loading generally increases the band-

width of the array and shifts the center frequency upwards.

As an example, when the directors are loaded by lPF capac-

itors, the 3dB bandwidth is over 55 MHz, which represents

an approximate 2'70e" increase over that of the unloaded

array. Figure (2-5) shows similar effects for the directive

gain of a I4-element Yagi arralz,

In addition, the effect of reflector loading on the

antennars directive gain is also studied. The computed dir-

ective gain in +z-direction (0 = 0") is shown in figure

(2-61. In this figure the array directors are loaded by

2.sPf capacitors. The results show that the loading of the

reflector does not affect the high frequency cutoff signifi-

cantly. However, it has significant effect on the low fre-

quency cutoff of the array. Generally, inductive loading
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tends to reduce the low frequency cutoff and consequently

increases the bandwidth of the array. In other words¡ the

efficiency of the launching device, i.e., the combination of

reflector and exciter, will be increased at lower frequency

if the reflector is loaded properly. The reflector loading

also reduces the gain of the array. For completeness the

effects of reflector loading on backward radiation is stud'ied

in figure (2-7) which shows the directive gain of the array

of figure (2-6) in -z-direction (0 - n). It is seen that

the back radiation for the array with its reflector loaded

capacitively is comparable with its front directive gain given

in figure (2-6). On the other hand' a comparison of figures

(2-6) and (2^7) reveals t,hat an inductively loaded reflector

decreases the back radiation throughout the major part of

the array's bandwidth shown in figure (2-6)'

2.9 The Input Impedance

Figures(2.8)and(2*g)showthevariationofthe

input impedance of a loaded Yagi loop array as a function of

the frequency. From these figures, it is seen that the oscil-

lations of both the resistance and the reactance of the un-

loaded array are shifted to higher frequencies as the capac-

itive loading is increased. The amount of shift is almost

inversely proportional to the magnitude of the loading capa-

citors. The oscillations are also increased by increasing

the capacitive loading. It was found that within the 3dB

bandwid.th the 0 of the loaded array is smaller than that

of the unloaded one.

l:-_,:,'- l-r,:

i .:, :.: : :..,: :

I ,:'ìr'i.ì':::::.i.i
Ì ;ì1.:::,::i:li:,1
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2.10 The Radiation Field

The radiation field of a loaded Yagi array can readily

be found from equation (1.25) when the current distribution

of the loaded elements are known [equation (2.36)]- Figure

(2-10) compares the H-p1ane radiation field of a lo-element

loaded Yagi array with that of the unloaded one. only the

directors are loaded (C = 2.5 PF) and the frequency of the

signal is chosen to be 220 MHz at which the unloaded array

is on the verge of cutoff, figure (2'4). It is seen that the

radiation field of the,unloaded array is deteriorated, but

that of the üoaded array has good d.irectivity and its side

lobe levels are verv low. ''Also, from eguation (l-'25) it is eví-

dent that the E-plane pattern is symmetrical about the xz plane

but the H-p1ane pat,tern is generally unsynunetrical- about the

yz plane

Figure (2-11) compares the radiation field of the un-

l.oaded array of figure ( 2'4 ) wittr that of the same array

when the reflector is inductively loaded (L = 100 nH). The

frequency of the operating signal is 200 l¡tÍlz and as figure

(2-11) indicates, the array with unloaded reflector is out-

side its 3dB bandwidth. Although the main lobes for both

patterns are almost the same, the back radiation of the array

wÍth unloaded reflector is in the same order as the main 10be'

By adding an inductive load to the reflector, we have increased

the efficiency of the launching device, i.e., the combination

of the reflector and the exciter, and therefore, a higher

í-a.t-;+i+í-->::t : :t.: It,;.t.''a: ?i. r: -:i ".)

.::1-

.i,,-i:-J.-.'

-

oF lrANffo¡A
4

gain and lower back lobe is obtained.
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2.LI Discussions and Conclusions

The effects of capacitive and inductive loadings on

the performance of infinite and finite loop arrays were

investígated in this chapter. It was shown that capacitive

loading increases the operating frequency range for a given

phase velocity of the travelling r¡/ave along the structure

and consequently increases the bandwidth of the array. A

capacitive loading of the directors also increases the maxi-

mum gain of a coaxial Yagi loop array. An inductive loading

of the directors was found to have opposite effects.

It was shown thaú the loading of the refl-ector

has negligible effects on the high frequency cut-

off of the array, but affects the low frequency cutoff sig-

nificantly. An inductive loading of the reflector reduces

the low frequency cutoff and. consequently, further increases

the array band.width. Thus , to increase the gain bandwidth

of a coaxial Yagi-loop array, it. is recommended that the

directors and the reflector to be loaded by capacitive and

inductive loads' resPectivelY.

physically t371. An unloaded parasitic reflector, generally'

reflects part of the primary field of the driven element'

which undergoes a phase change of approximately 180o. How-

ever, a reinforcement of the radiation field in the forward

direction occurs at reflector to excitor separations smaller

than a quarter of a wavelength t161. This is due to the fact

that the antenna induction field also affects the phase dis-

tribution. In addition, the phase distribution along the

The results presented in this chapter can be explained i,.,,':,,r,
_-i.1.::r ..'

it r: r:, "r::ì'::
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array may also be adjusted by altering the geometrical

d.imensions of the parasitic loops. For kb < 1 (kb > 1)

loops are capacitive (inductive) and their currents lead

(lag) the excitation voltage. Thus, for a directive antenna,

directors (reflector) must be shorter (longer) than one bTave-

length. In such an array, íf the frequency is increased, the

directors may become greater than one wavelength in circum-

ference and the array ceases to be directive. However' by

a proper series'capacitive loading of the loops, their cur-

rents can have phase relationships similar to smal1 capaci-

tive loops. In other words, by a proper capacitive toading

the loop currents for kb > 1 act similar to those of the

kb < 1 case and the array can support a travelling wave.

Therefore, capacitive loading increases the operating band-

width. In contrast to the optimum bandwidth of an unloaded

array, this increase in the bandwidth is not limited as long

as we can provid.e a suitable load. That is, by means of

impedance loading, ât least theoreticallyr âIlY bandwidth can

be obtained.

ijlr: i.ìì 
.i:;
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CHAPTEP. ITT

MULTIPLY_DRTVEN AND LOADED COAXIAL CIRCULAR LOOP ARRAYS

3.1 Introduction

The analysis presented thus far has been restricted

to single-loaded or driven coaxial loop arrays' In this

chapter multiply-driven and loaded arrays are investigated'

Initially, the array loops are excited by arbitrary sources

at two symmetrical points with respect to the array axis.

The principle of superposition is applied and expressions

for the current distributions and' the input admittances are

obtained. To investigate the loading effects' one of the

sources on each loop is replaced by a lumped load of finite

length and a new expression for the current distribution is

obtained. Finally, all sources except on the qth element'

which excites the array, are replaced by lumped loads of

small length.

ThepresentationessentiallyhastheSameformatas

that given in the last two sections. That is, for finite

gaps at the driving-points and finite lengths of the loads

integral equations for the loop currents are obtained' These

integral equations are then reduced to a matrix equation by

expanding the currents and the kernel in Fourier series of

the azimuthal coordinate. The contribution from each set

of Sources located at similar points are then treated Separ-

ately.
.a:l:



3.2 Formolation of the Froblm

Considerthearrayoffigure(3-1),whichisactually

the same array as given in figure (1-1) ' except that the

former is also driven at Q = îï. The sources at O = 0 and

,rT are denoted by v| and vT, respectively- The applica-

tion of boundary conditions on the surfaces of the loops

gives the following integral equations for the currents

V9
1

(3.1)

(3.2)'

48

liì i.:1.t:':ì.:

. ù Ët*rr(öi - oj) ï(oj)doj

where all parameters are as defined in Chapter I ' It is

notedthatexceptforthesecondtermonthelef,thandside
(3.1) is similar to (l'1) and therefore' its solution can be

obtainedinasimilarmanner.TheFourierexpansionofthe

currentsandkernelwij(o)aresubstitutedin(3.1)and
after some manipulation one obt'ains

^rn , ^"n I ,'n r[ .: - 1 2¡ ...¡ N (3.2)
ßi^'*ßi" = -,!.,Z-ii 

tj ' L-'Lr
J=rn>0

where

rñ n sin(nô9t'/2)
ßi" = tÏ "otf-
^"n -,r, f ("Ttø-
ßi = ui 

"oEf
and zfij.l is as defined in (1.10). Equation (3.2) can be

written in th-e following matrix form
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rzïjrrrîr = toi"l * roi"r n>0 (3.3)

(3. s)

rf tVi, I is the inverse of (ZÏj ) r then the total current

on the ith element maY be shown to be

r, (ói) =

æ

T

n=0

æ

I
¡=¡¡¡ *1o

co

s

n=m *1o

i 4ka.

%

æN

n=0 j=l
ojn cos n6.

mo
x

n=0

n
ij

æN
+ ; ; ,rl . ßTn cos nö.

n=0 j=I - al l- r
(3'a¡

n ^nflv'.'. ß. cos nó. *
'al -l 'l-

where the first term on the right hand side of (3.4) is the

contribution of the Sources at 0 = O, and the second term

is due to VÏ. The computation of the currents due to the

first term has been discussed previously. Vüe therefore, now

consider the simplification of the second term'

3.3 Þ Iification of the Infinite Series in Equation (3r1]

m- is an integer as defined in Chapter I, and
oIf

tVirl is rhe inverse of the impedance matrix (zÏj), then

the second term in (3.4) reduces to

N
L

j=1

N
I

j=1
,rT. B']t "o= ,r0., =-l-l'l 'r

ßi"t co" nó.
zl . 'r-

t- l_

I
n=n. *1

ßin ti ß:'"

4; cos noi = 
,.,=,,f*, fr ""= "oi 

*
l_r

for the values of n for which the approximation (1.I7) is

vaIid, the infinite summation in (3- 5) becomes

ßi".I

cosn0,
(3.6)
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intotheinfinitesummation(3.6)simplifiesSubstituting (3.2)'

to

æ ^ttn
I þ cos nó,n 'l-

n=ni+l_

- -TÏ
f

oo.'l-

n.
a

5'

n=1

The

TÓlr
l- n=r

l
n6þ r/2) cosn$ .(

ñ

2 (-L¡ nsin

infinite summation in (3.7) may

2sin (n6Qr/2) cosn0.

(3.7)

itten as

sin n(öi + 6þi/2)æ nr (-1)
n=1

n2

sin n (0i 6þi/2)

-

sin n (0i 6þr/z)

The above infinite

be wr

ófrl
"rt"t l-

rL2
'::,,i: :

æ

T

n odd

sin n(0t + 6þr/2)
T

¡¡2

1= -Z (x
n2

(3.8)

summations are given in cl-osed form as t33l

æ

L

o=1r3r...
sin (nx)

sl-n nx = -(x ln x - x

Therefore ' subtracting (3.9)

æ

I
n=1

Lnx/2 x*

0<x<

x3 xs- tz - E;Ñd
0<n

from (3.10)

x3 ¡36 +

1Í

\...t

2r

gives

#. "')
(3.e)

(3.10)
n2

co

L
tt=2 r 4

æ

T

1r3r..

æ
F-
L

I
+ (x In

às¡"2x x-ig- 4xs

-l

14 ,400'
(3.11)

2 (-1) nsin (n6Q r/2) cosnþ,

from (3.11) and. (3.9) we obtain



æ
\'
L

n even

sl-n nx--T
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oo

- san nx
tr2n ocl.(l

15 xs+-' L4,400

(3.12)

and x=

çxln2

x=oi

*#"'

Substituting (3.L2) in (3.8) for

0i öþ i/2 Yields

+ 6öi/2

r (-1) n
n=1

ooN
xry

n:0 j=I

n.
l-

+I
n=m *1o

the assumption

for n

-i 4ka.

*oN
r r vÎ.. (-1) n

n=0 j=I J-J

2 sin (n 6þi/2) cos n$i

for

= -60. In 2 ...,'l-

lo.l¡'l_, (3.13)

(3.14)

cos (n$r) +

n.
. -t (-1)n 

I
I 

-;-- |n=J _l
(3.rs)

from v9 in
I

current at

¡¡2

!al

Using (3.13) along with

sin (n 6þ í/2)-nw-:1
reduces (3.5) to

n.f

VT

+ (-r) n cos noi
z':.

aa

VT
)

vT l-,-" zr_Lno

Equation (3.15) together wit.h the contribution

equation (3.3) may be used to obtaj-n the input

0i : 0 (or n) which is given bY

I.
l_

n.
I
I

¡=¡¡ *1o

where

( 1. 2r)

tv9 + (-r) n
l

mo
x

n=0
VTI)-

}I
L

j=1
:rì,!it

o I'I
¿J,,

al-
IC is thegÌ

il
and Cgr-

+ joe tc

gap capacitance at

could be considered

0 as defined in

effect of the

ll

gr-

l-
ln .t .l-

as the

(3.16)vTrar
rvl * t-rl" vïl

ny.. +- r_l

V9gr l-
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n

i Iln'.":r#,

fringe capacitance at 0 = 'rT

defined as

transferred to O=0 andis

(3.17)

(3.18)

0 in equation (3.16) is equal to unity for the input cur-

rentato=0andisequalto-lfortheinputcurrent
tll

at O - î. The role and magnitude of Cgi and Cgi are

also interchanged when cletermining the input current at

0 = T.

Neglecting the third term in (3.16) does not affect

the current distribution, since the gap capacitance is con-

fined to the vicinity of the drivíng point. Hence'

ri (0i)

n.
a
t

n=m0+1

*oN
i ; yÎ- tu9 + t-rl" uïl cos 'ioi +

n=0 j=I - al

tv! + t-rln vll
cos nQi

z\.l-a

Notice that when v9 = vl, all odd modes cancel and the even
3f

modes are twice as large as those of a singly driven array'

For v9 = -VT the situation is reversed. The radiation field
ll

and t,he directíve gain of the array can be obtained from

similar formula as given in Chapter I.

3.4 Arra Excited at = 0 and Loaded at 0 = ï

Now that the array current for a doubly-excited array

is known, the currents of a l-oaded array can be obtained by

using the compensation theorem. Let each loop in figure

(3-1) be loaded by a lumped load ,i,i at 0 = n, be excited
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by a source v! at O = Of andlet Ii(O) be the current

on the ith element. The current distribution on the loaded

array is calculated by applying the compensation theorem.

Therefore, each load at O = TÍ could be replaced by a gen-

erator vtith potential difference equal to -Ii(r) 'L' 
with

this equivalent representation of the load 
'Lr' 

it is immed-

iately evident that the method developed in the previous sec-

tion is appli-cabIe to this array. An expression for Ii(0i)

can be oþtained by using vj = -zï'l rj (r) in equation (3'18)

and solving the equation for tr (n) , which gives

m

r, (n) = ;"^ i t (-r)" vî: t3 - vÏ: ,î,: rj (r) I +
r n=O j=l
n.
i + t(-l)"ul ,î,iri(r)l ì i=r,2, "" N

n=mo*l tÏ, r !r- r 
(3. 19)

The above equation can be rearranged as

ti.*oN
11 + ,î,i -:j*, $r r, (ri, . 

":; :1, 
rT¡ ,i,: r. (n) -

. [=Ro rr
*o N ^ ^ 

ti r-r\[; ; (-r)n y?-, v9 * v? r (-*)-
n=o j=l 'ii -i a ¡=mo*l ,Ïi

This equation may be used to set up a matrix equation for the

currents Ii (n.) of the form

tôriltri(r)l = tvnl (3'20)

where ¡r, (ri) J and tv¡J are N x 1 column matrices. The

elements of tI, (n) J represent the current It (n) and those

of tV¡1 are given bY



55

m
a

v-=I'k n=o

the matrix

given by

ö.. = (1'Kf

where

+ v-0
K

NxN

mo

'i, tii
n=u

tk
I

n=mo*1

matrix

i vili (-r) n
l=r

t0l*il is an

t-+)t (3,21)
nzu.*

and its elements are

V9
J

- ci) ôrt +

delta function. When

the current modes I1
l_

z!.. t,(n)l for nLl)-

(3.22)

(3.23)

ri (r) is

from

(3.24)

ti , ..ñ
o'lt J t-r,oi = Árj-

n=mo*l ,ii

and UU, is the Kronecker

known one can readilY find

Nrl = i yl.. tv9 (-r) n
-l- i-1 - l-l JJ-r

and the remaining antenna

explained in the Previous

mo

characteristics can be found as

chapters.

3.5 i Arrays Loaded Both at 0 = $=ri

If the array is toaded both at 0 - 0 and 'tt I except

for the qth elementr wê wilt have the familiar Yagi array

with loaded elements. Let 29, and z:, be the loads at
Lr_ lJl-

o = 0 and r on the ith element. Ifr addition, let the

qth element be excited at Q = 0 and loaded at Ó - TI'

Following the procedure explained in the last section' equa-

tion (3. fB) changes to

Ya 0 and

m*oN

":i 
tin v! cos n*i - 

":; ,!, 
t (1 ôqj) -0L-,Ll

l;:¡ r,
j.: : I .

ri (0i) rj (0) +
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o

grrj = (r + ou z\,j, ôvj + ,i,: 
,,lo 

tïl

where
n. n.--:- r.Í 

--i 
(-1) k

o_, = t L/zWu , \ = I 

-

0v *=i*r 
t/ ouu ' Yv ¡=i+r ,:r,

once the currents Ii (0) and I, (n) are known' the current

__nmoctes ,i can readily be determined other antenna character-

istics can similarly be obtained'

ItmayappearsimplertousetheNinhomogeneousequ.

ations in (3.3) directly to obtain the currenÈ modes ri in-

stead of 2N inhomogeneous equations in (3'26), whichgives the

total currents Ii (0) and Ii (î) . However, for a given artay I

equation (3.26) provides the required total current, while equ-

ation (3.3) gives only the modal currents ri' Therefore'

equation (3.3) must be solved many times inorder to find the

tot,al axray current, whichmay require extensive computer time'

Equation (3.26) may also have time-saving advantages when array

characteristics for different loads are being considered. rts

solution, however, gives the total current Ii (0) and Ii (T) '

If the modal currents Ii are required, such as in field or

gain calculations, they can be obtained readily from an equa-

tion similar to equation (3.24) by replacing any source V?
J

wirh -29 -= r-, (o) , t3Bl.Ll)

3.6 Results and Discussions

Based on the theory presented in this chapter, the ' '"":'

properties of muttiple driven and loaded loop arrays can be

investigated. However, the most interesting circular loop

array is the well known Yagi-uda array in which only the

second element is excited. For this reason, only the :'.' ,,:'.'



58

properties of these types of antennas are reported here.

To investigate the effects of the loading on the antenna

characteristics an 8-element array is chosen, where aIl dir-

ectors are loaded with equal loads at 0 - 0 and IT. The

exciter and the reflector are assumed to be unloaded. The

variation of the direct,ive gain with frequency and for various

capacitive loading is shown in figure (3'Z). Similar to the

array with single loads shown in figure (2.4) ' a capacitive

(inductive) loadíng generally increases (decreases) the band-

widths of the array. For example, when directors are loaded

by 2.5 PF capacitors, the 3dB bandwidth is over 70MHz

which corresponds to an approximate 3503 increase over that

of the unloaded array. By loading the array at 0 = 0 loc-

ation, it was found that the frequency dependence of the array

gain becomes identical to that of a doubly l-oaded one' when

the loading capacitors are twice as large' This behaviour

can readily be understood by using the travelling \^Iave approach

explained in the previous chapter. Applying the method to

the doubly loaded array, wê will have the sum of the loads

at Q = 0 and TÌ in the right hand side of equation (2.3).

Hence, the frequency range over which the noramlized phase

velocity remains almost constant ' and, therefore, the gain

remains unchanged - is twj-ce as large as that of a single

loaded one for zl = z[ t39]. This has also been proved in

Appendix IIIA for finite arrays

The variatÍon of the input admittance of the above

doubly loaded array with frequency is given in figure (3-3).

l:ij+::kt:-:!i
:-j
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', t, 
t 

. -

The directors are loaded by Q = 5 PF capacitors and the ' :r:

exciter loading at 0 = î is the parameter' rt is interes-

ting to see that resistive loading of the exciter gives rela-

tively smooth behaviour for the input admittance through the

entire 3dB bandwidth of the array. Although an inductive ,,,,: ,,:',

load.ing of the exciter also gives constant input admittance,

its real part is always smaller than the imaginary part within

the 3dB bandwidth. Notice that for a capacitively (or in- ,','-,,- ,

ductively) loaded exciter, the first maxima of Re(Y'rr) shifts 'j'''''"'""

to the right (or left) of the unloaded case. A resistive 1:'.t-,t..-.t. - .l:

loading does not result in any shift, but does lead to a

damping effect. Beyond the maximum peak, the real part remains

at the level of the unloaded case. It was found that the

damping effect increases with increasing resistive loading.

It was al-so noticed that with a resistive loading of the ex-

citer, the gain of the array remains relatively unchanged

This is due to the fact that for long arrays the radiation

results predominantly from the currents on the direct,ors and 
:., _:,,,:

the exciter current has only smalI effects. Figure (3-4) l"'¡.","1,r

compares the magnitude of the current distribution on a loaded .,',"'.'
:,::,t:, 

'::

exciter (R = 1004) with that of an unloaded one. It is

clear that the variation of the current on the loaded exciter

is much smoother than that of the untoaded exciter' This 
,.,,,i,

indicates a travelling type current distribution and conse- irìr::!'."

quently, the array input admittance is less sensitive to the

frequency variation.
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3.7 Conclusion

In this chapter the effects of double loading on the

performance of circular loop arrays were investigated. The

analysis of the results revealed that to increase the gain

bandwidth product of a Yagi loop array, the directors must

be loaded capacitively. It was shown in the previous chapter

that the loading of the reflector inductively reduces the low

frequency cutoff and consequently further increases the ar-

ray's bandwidth. For multi-loadings of the reflector a simi-

lar effect is also exPected.

If a relatively smooth variation of the input admit-'

tance is required, the exciter may then be loaded resistively'

This does not deteriorate the efficiency of the antenna sig-

nificantly, as J-ong as the resistive loading is not Èoo Iarge.

This is due to the fact that the radiation of the array is

mostly d.ue to the currents on the directors.

The results also showed that the loading of the array

at o = 0 and Q = .ÍT I have equivalent ef fects. Because of

this equivalence of the loads, it may Seem unnecessary to

load the array at two Separate locations. Ho$lever, in view

of the limitation on the available active loads (varactors)

and their price rangie, it may become advantageous to use two

separate loads to simulate a single one.

!::: "-::'..: -:.: i, i
P.t.- -rL -r' ..-.t ]t ! ¡
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CHAPTER IV

CONTINUOUS I}4PEDANCE LOADING OF LOOP ARRAYS

4.L Introduction

The properties of circular loop antennas with lumped

J-mpedances were investigated in the last two chapters. This

chapter is devoted to loop antennas with continuous impedance

loading along their circumferences.

It has alread.y been d.emonstrated for the cylindrical

linear antennas that continuous impedance load.ing can be used

to broaden the frequency response of the input impedance and

far field pattern t40l-t431. A single loop antenna with a

continuous impedance loading has been studied by Lin l25l

and Smith 1261. Lin examined the input impedance of the im-

perfectly conducting loop antennas by Èhe numerical and the

differential equation methods and showed that a uniform re-

sistive loading could be used to achieve a broadband charact-

eristic of the input impedance t 25 I . Smith anallzzed a single

loop antenna with a uniform resistive loading by the Fourier

series method 1261. He also examined the effects of the

resistive loading on the radiating efficiency and the far-

zone field patterns of the antenna. In this chapter, the

work is extended to arrays of coaxial circular loop antennas

with distributed but arbitrary impedance loading. The numer-

ical results are given for the distributed uniform resistive

and tapered reactive loadings which are of practical interest.
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AIso, the validity of the assumption of inifinite conductivity

for materials such as Aluminum and Copper is examined'

4.2 Formulation of the Problem

consider the array of Figure (r'1) where the elements

are made of an imperfectly conducting wire of radius ai.

The effect of the finite conductivity can be assumed to be

equivalent to a continuous loading of the loop wire with a
!L

per unit length impedance of ztí(Oi) on the ' Lrr elem'ent'

If the thin wire aPProximations ai

made, then the applied tangential field on the surface of the ;'i'

ith loop may be shown to satisfy the following equation

V._a l-

"ãi = d 
ui (Oi) + zli (Oi) ri (Qi) tr - ui (0i) I (4 ' 1)

(i = 1, 2, ...., N)

where vi, bi and ui((Þi) are al. same as defined in chapter
t_

I. The induced electric field *o on the antenna surface f

maintained by the current and charges on the ith element, 
'

may be expressed as 
i;:.,.

i N r ðQ., :.ir'
p t f =,Il + ir¡Ax. , í= 1, 2t....r N (4.2) :oô .u, b. ð0, - "aij ' - 

., ,,' j=l -r 'r-l 
,,..,,,

where 0.. and A,- are the scalar and the vector potentials,
- l-l l-l

respectively. using equations (4.1) and (4.2) an integral

equation for the current Ii (Oi) can be obtained which' 
;,,,,,

following the previous approach for the perfectly conducting ¡"''"'

loops, may be shown to be



il:.ití(;íii*aä..1

vi ui(Oi) D ,r \ T ta \ F., - r.r t^ \-r : 
jno 

i lzn
zli (Oi) Ii (Ôi) tl - ui (0i) I = tË ,1, .Jo

tkbi cos (0, oj) . å- ry I wij (oi oj) ti ,Ôj )doj

! = 1, 2t ...., N ,., ,,.,.

(4.3)

Again, by an expansion of the current Ii (0i) and the kernel

W. . in Fourier series of the azimuthal coordinate and after
r I 

-¡¡ç 4a ¿¡r's u¡¡s+ 
,t'i1"..r,:;;a

some manipulation one finds '"""'.."'''

r2r l-v. u. (0. ) co n I jm0i 
i:",:.' -"''¡;'

.|o L 
-"ilt zli (oi) bi t r - ui (oi) I 

,,lo 
ri cos "*tl' '¿Ôi I 1; :::

NM
; t7 Tm i = 1, 2, ..., N (4.4)

= ¿. L., I.
-:- 1 r-l lJ-r

Equation (4.4) can be solved to yield the current mode= tT

for any desired load distribution. The number of required

modesMforanaccurateevaIuationoftheinputadmittance
l

depends on the geometry of the array and is approximately
b. .

given by M s * l12l. After these current modes are obtain-
I

ed, other antenna characteristics can easily be found from 
,:i.';.-.,,u,..,

the previously developed equations. Equation (4.4) is for 
:,,:.,:,,:,:r::'

any arbitrary load distribution zli(Oi). ïn general, it may ""';t'rt'::':':

not have an exact solution for arbitrary forms of zli (0i).

In such cases a numerical method must be utilized to solve 
,, ,,,i,,,.,,,,,

(4.4) for the current modes IT. The simplest form of the li't¡:'":$

load distribution is the uniform impedance loading which is

considered in the next sections.

66
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(4.5)

(4.7)

(4.8)

l:.:1: .t'-.. i

I .ri.i.:ii,.

4.3 Unifofm Load Diqtliþu-tion z"il{il

This type of impedance distribution is the simplest

case of antenna loadings and all practical antennas made of

conductive metals fa1l into this category. substituting

zti(o) = Zl'í in (4,4) and following the necessary steps'

white neglecting the integral of Ui (Oi) Ii (0i) ' (Appendix

IV-A), one finds

sinnôQ./. ñ N

u, W - Zlibin rT ' '., = :i, 'i: ri

where

n

Equation (4.5)

r ziit t rll -

2 for 11 =0 (4.6)
I for n>0

can be written in the matrix form for all n

i elr nl0

,9 ) andwhere ßi is as defined in (1

'iT = 'i¡ + 'r, n bi zri orj

in which urj is the Kronecker delta function. The imped-

ance matrix tr;il is different from the previous impedance

matrix tzl-,1 only in the principal diagonal elements'
LJ

Therefore, the same discussion about IzÏ:f isapplicable to

tz:11. That is, for n ' *o where *o is an integer deter-- r-l -

mined by the geometry of the arrayr the matrix triTl degener-

ates into a diagonal one. Thus, a relation for Ii(O) sim-

ilar to equation (1.16) can be obtained in which ,Ïi and

yÎ- are replaced bv ,iÏ and 
"rî, 

respectivelv and fyiif-al

is the inverse of the impedance matrix tzllr. Ïf the uniform- r-l-
.'l'i:
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load distribution is resistive, then the efficiency of the

antenna will be reduced. This deterioration of the efficiency

is certainly an important effect and is discussed in the next

section.

Effj.ciencv of the Antenna with a Uniform Resistive Loadin4.4

and

can

over

the

Pr

To calculate the antenna efficiencY we need the radiated

the dissipated powers of the antenna. The radiated' power P,

be obtained from the integration of the Poynting vector

a large spherical surface at the far field zonet oT from

following equation

= =1- f " rz sinodo l'n ln {o,o ) I " do2\o J6 ----- J9 I

The expressions for the radiation fietds of an l{-element

antenna was given in (I.25) which can be reduced to the form

uo o * Eo ô

(4.e)

(4.10)

need to integrate

rvork we can

E(0,0) =

with

le(o,O)l' = Inul2+ luOl'

To calculate the radiated po\^rer \de '

l"Ol' and luul' senaratelv' To s

modify the exPression for 
"O 

to th

n2 rN
luol' = #- 

l=!, "t ' ,,Io Yi cos

where * indicates the complex conjugate and

Ai = kbi exp (jkdit cos0)

Yi = jt rl [Jrr-, (xr) - Jn+I (xr) J

therefore,

implify the

e form
-1 l-N

"*j ' l=:,
-*A*. y^,Ï co

1 ! l-L
n

(4.

=";I
11)

i: i:.ltrÌj

(4 . t2)

(4.13)
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$¡ith

*i = kbi_ sinO

For loop arrays the number of significant modes in the

array, in particular for a Yagi array, is usually verlz limited

t161. Therefore, for accurate evaluation of the radiated

power the summation in equation (4.11) may be evaluated only

over the. first few modes. A term by term integration of

equation (4.11) over S gives

l2n n n* -n-.n*
I tI y'jcoströ.,. X y¡ cosnQ.)dQ. = 1T¡evïvï (4'L4)
J0 n=0 r- n=0 r Ï 'i n=0 n'f 'l

where 
2 for n=o

(4.15)g=nforn>o

and usi-ng (z + z*l = 2Re(z) , thererore

tr r2r n3 l-rn N n

l; .|, ,"*lzsinor2dodo = #' L], ,lr(loil',,j0 .,, 1v, l' sinod0

¡n N-I N
+ 2 Re f "r* 4, I r Aî r E*v1v1*)sin0d0 (4.16)

j6 i=I r j=i+1 Jn=O "LJ

which requires a final integration over 0. This integration

is carried out numericallY.

In a similar manner, the integration of lE.l' gives

the following results
¡,¡ r2t¡ nit r'tl N f z

I I le^l'rzsinododQ = + | t r la., l' I lvi l)sinocosodo
Jg Jg q' re Jg i=l ¿ n=f ¿

¡n N-I N
+2Ref r Ai( r Aîvi"vrflcososinodo (4.L7)

Jg i=I r j=i+I J

where
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In
Yi

Now,

Pr

Pt

summation of (4.16)

in the form

TnfrrN
= å U, ilr lar l't

Jn+I (xi) J

and (4.I7) gives

(4.18)

the radiated power

(4.20)

above equation

(4.2L)

rn N-l
Rol r

Jo i=l
,]=t"r.t]

.19)(4

fN
A. lra 

þ=i+r

x e lvÎl'+ r vln coso)sinodo
n=0 n "l-' n=l 

'l-

&

At ( r, "1vÎ* 
* coso t ri"ri^--i 

n=0 n'l-'l n=I a'l

The dissipated power can be calculated from

1 N lzTt
Þ:rI'D 2 i=t .Jo Re[z"' (o) ] I ri (o) I ' bi ¿o

which for constant Zti (0) becomes

r N -l2rPo = å ,:, ot n"tzr,iljo lr, to) l' do

Substituting r, (0) = rl cos n0 in the
n=u

gives

.NPo= + l_=I

where

tb. R- . 1T

r_ Ll_
I e r*:

n:onf

Rr,i = Re (zr,i ) '

Again, by selectíng only the first few terms from the summation

over n, the driving point power can be calculated v¡ith a

reasonable accuracy. Finally, from the radiated and the

dissipated powers the antenna efficiency can be defined in

the form



i -.;-r;,._:!,1

7T

P

efficiency = #- (4'22)
.D

which can be cal-culated readily by using equations (4.19) 
'

(4.2I) and (4.22). The above approach utilizes the integra-

tion of the radiation field and, therefore, needs only a few

current modes to give sufficiently accurate results I16] . An

alternative method for determining the efficiency exists

which uses the input admittance and this is explained in

Appendix (IV-B). However, the input admittance is a local

characteristic and its calculation usually requires a signi-

ficant number of modes.

4;5 Results and Discussion for Distributed Uniform

Resistive Loading

For a solid conductor of circular cross-section with

radíus a, the definition of the per unit length impedance

and an expression for its calculation are given in l+41.

For highly conducting materials of cond.uctivity o I the per

unit length imBedance may be computed from

v : 1+ j
'i 2naod=

(4.23)

/Twhere d" = f tro is the skin depth and u is the permeabi-

lity of the conductor. Antennas with fairly high internal

impedance per unit length are likely to be made by coating a

dielectric loop with a layer of conducting rnaterial 1251.

Tf in the frequency range of concern the thickness of the

conducting layer d is less than its skin depth, then the

impedance per unit length is essentially the dc resistance
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which is given bY

1oí ãão

The above formula together with equations given in the previous

section are utilized to sturly the effects of the constant and

continuous resistive loadj-ng on the characteristics of Yagi

loop arrays. The investigation is restricted to arrays where

only the exciter is loaded. This type of loading is selected

because a resistive loading of the parasitic elements increases

the antenna loss and deteriorates the antennats overall effic-

iency sj-gnificantly. The resistive loading of the exciter

should decrease the efficiency as we1l, but it is also expec-

ted to improve the broadband characteristics of the antenna'

As a result, only the effects of the uniform resistive load-

ing of the exciter on the Yagi loop arrays' characteristics

will be investigated.

Figure ( 4-1) shows tJ:e real and imaginary parte of' Ztrr'of a

l4-element array for different exciter loadings. It is seen

that the real part of the input impedance increases with

increasing resistive loading, but the relative variation of

Re(Z. -) decreases. For examPleo for 2,. = 250 A/m the---.-in . JJ¿

maximum variation of Re (Z.rr) from 190 to 2]-5 MHz is

less than 542 of the initial va}ue, while for the unloaded

case and within the same frequency range, this variation is

over 4OOZ. The variation of the directive gain of the array

with frequency for different exciter loadings is shown in

fig. (4-2). There is only a negligible change in the d'ir-

ective gain wit.h the exciter loading, since Gd is mainly

(4.24)
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controlled by the size and spacing of the parasitic elements.

Figure (4-3) depicts the variation of the efficiency of the

above array with frequency for d.ifferent exciter loadings'

It is interesting to see that the highest efficiency within

3dB bandwidth is for kb = 0.9. Directors of this size was

also found previously to give a better directivity for Yagi

arrays t4s1. The distribution of the phase and the relative

magnitude of the current on the exciter of the above array at

f - 2LO IrúIz are plotted in Figs. (4-4) and (4-5). It is

seen that the phase of the current for larger load distribu-

tion has a more gradual change near O = 90o. The relative

magnitude of the current has also a smoother variation than

that of the perfect conductor. These facts indicate that the

current distribution on the loaded exciter has a larger per-

centage of travelling wave type currents. Therefore, the

input impedance should be less sensitive to frequency variation'

In surF.mary, resistive loading of the exciter in a Yagi

loop array improves the broadband characterístics of the

antenna. Ho\nrever, resistive loading of the antenna decreases

its efficiency. For this reason the remaining part of this

chapter is devoted to a study of the possibility of broaden-

ing the array by utilizíng a purely distributed reactive

loading.

4,6 Tapeåed Capacitive- Loading

An interesting form of the reactive loading is an

exponentially increasing capacitive loading which was first

used by Rao et aI. 146l for dipole antennas. This type of

I +li:.:r.:,i::ì
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1oaddistributionhasa1sobeenstudiedbyLinl25]fora

single loop antenna using the numerical method- His method,

however, is lengthy and time consuming. Furthermore, the

results in l25l for unloaded loops show large disagreements

with the results of the Fourier series method which in turn , ,.,,
agrees very well v¡ith Kennedy's experimental data l47l' This

discrepancy is indicated in figure (4'6) in which the input

impedances of an unloaded loop computed by Lin (Ref . l25l .1. , ,, 
,

¡r_.:,1 .r:-. :,,.-.:

figures 7 and 8) is shown along with the results from the i::,';:¡,ì;'=",

Fourier series method. For kb > 0.8 the results show dif- 
1..''..-,.,.'';.

ferent behaviour and indicate large differences. One can'

therefore, safely assume that this discrepancy of Lin's res-

ults with the exPerimental data for the unloaded loop should

also exist for the loaded antennas. Thus, a further and an

accurate investigation of the loop antennas with tapered

capacitive loading is needed and will be carried out here by 
"''

usingtheFourierSeriesmethod.Thistypeof1oaddistrib-

ution is given by [25].

zri (O ) = - j Bi [exp tatu, l0il ) 1] (4.25)

where Bi and oi are arbitrary constants. Substituting

(4.25) in (4,4) yields

v. "t" T,l*-i" *, Bì bi 
vr;1 

rî f' ,"oibilÔil F 1) cos n9i'i m 6þi/2 r -l- -t 
,r=O 

-i i-n'-
imô. lI

"'---'i doi = r zT* rT
j=I il l

i = 1, 2, ...r N (4 .26)

where(I.f-l) is the number of the significant modes. Equation
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(4.26) may be written in the forrn

\r sin m ôôr/2 j Bi bi i ri ft l- 
j{m+n)Ot 

+ .+j{m-n)Ot]vi -mOln + ----- 
nl=s 

-a i -nL

a.u.lo. I N"i-il Yil-r r ^ L - -m c .rfr Tme d0i j Bit* bi' rî = 
ljr 

z-i: tJ r

,t;tt::.t;,"' ti t:;t, tttt'

i = I, 2, ..,, N (4.27)

the integral in (4.27) can be simplifíed to

[o .j 
(mtn) Ô, 

"oibr 
lÖi I d0. = l," .'oro, 

- j (mtn) ]0i 
doi '¡¡;",,,,1,i',::,,,

J-r r Jg '
i.-;..t,:.'t 

!.;" 
,:. ;,.;,

¡Tr [o*b. + j (mtn) JQ. I ,. -.t:',:'.::it'.i.:

+ I e rlt( ----'--:- -1 
Jo 

c *Yi oibi j (mtn)

[^t"ro, j(mtn)]n I 1 l"t"tot+j(m-tn,r'_rlF 
rL tj*çiTmñt L _l

Substituting (4.28) in (4.27) gives
(4.28)

ri (ef 'm + *T'*l j Bibi.* n rlsin m 6þ-/2 j B. b.: M
J-¿aI\.

'i m 6þi/2 2 ,,=O

N

= t zT- rT , i = rr2,-.-rN and m = orrr2r"'1111 (4'29)
-:-1 l-l l
)-L

where 01,* and *Ï'* .are given in (4.28) and involve only

terms with (m-n) and (m+n) modes' respectively. For all

modes m, 0 Í m j (.Ivr-Iteguation (4.29)can be written in the

following matrix form
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roii*r, vlrl , tzT¡1 , ..-, tz}¡¡l

tz\rt, r+\5^t, Lzl=l , ...r tz]*t

rti
rtä

¡ifirr

lvrl

lv zl

(4.30)

,rir,, ,rir,, roft;*r

roii*l is an M x

tzf, + j e.b.e*n)ô

M matrixwith (nrm = C,l-12t.-.' M-1)

iB, b"-*-i (el,* * nl,*) (4.3r)
fI rItr 2 '-L l-

.l

I

u*'l
t z$r: '

where

oll* ='l-l-

rzfiul

and t zfu I is an IvI x M diagonal matrix given by

:l
-Ìr I

"o1l

Þ¿,
= lo

L'

00

'iu o

00

Here, tt|l and tvil are IrI x 1 matrices with their

elements respectively given by r| and Vi for m = U,!,2,

....Ivt-l. It is obvious that the coefficient matrix in (4.30)

is an (N x 1"1) square matrix. Therefore, it may appear in-

convenient to use (4.30) for large Yagi arrays. On the

other hand, it was recently reported t16l that' generally,

it is adequate to use only the dominant mode for determining

the radiation field of a loop Yagi array. Other modes, which

are necessary for the calculation of the input admittance, can

be obtained by considering onty a few directors (usually two)
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adjacent to the exciter. Therefore, the apparant large size

of the coefficient matrix in (4.30) does not introduce any

d.ifficulties for obtaining the current distribution of the

array elements. once these currents are known, other array

characteristics can be obt'ained readily'

vfe are now in a position to investigate the effect of

the tapered reactive load.ing on various characteristics of the

coaxial loop arrays. For brevity, only the results for a

loaded single loop are presented here'

4.7 Results and. Discussion for a Loaded Antenna

Based on the theory presented in the last sectíon, a

computer program r^7as developed to Study the characteristics

of a single loop antenna with tapered capacitive loading.

Figure (4=7) demonstrates the effects of such loadings on the

driving point admittance of a loop antenna. It is seen that

the maxima and the minima of the conductance and the suscept-

ance are shifted to the right as o1 is increased from zero

to 15. This variation with frequency also decreases as oI

increases, Therefore, with a suitable choice of 81 and

o1, the input admittance can be made less sensitive to the

frequency variation. Figure (4-8) shows the variation of the

directive gain of the antenna with frequency for different

values of 01. For 1ow frequencies (kb < 1) the gain of

a toaded loop is smaller than that of the unloaded one and

the difference between the gains increases with increasing

the constant oI. on the other hand, it decreases with

increasing the frequency (kb > 1). In fact, the directive
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gain of a loaded. loop antenna becomes stightly larger than

that of the unload.ed antenna, ât certain frequencies which

depend on the value of crl. This means that the center fre-

quency of operation has shifted to higher frequencies.

4.8 Conclusion

Coaxial circular loop arrays with distributed impedance

loading have been stud.ied in this chapter by a simple exten-

sion of the Fourier series solution for the perfectly conduct-

ing loops. It was shown that, in general, a broadband charac-

teristic can be obtained by distributed impedance load'ing'

The constant resistive loading was studied in more detail

since it can be fabricated readily. The travelling wave

portion of the current distributior, *-= increased by intro-

ducing the distributed resistive loading into the antenna sys-

tem. The introduction of a dissipative load resulted in a

decrease of the efficiency, but it improved the broadband

characteristics of the antenna. The loss of the overall

efficiency in a transmitting system is often the price to be

paid in order to achieve the broadband and the directional

properties. If the lossy element is not added to the antenna

itself, it mav be addecl to tþe feeding network in order to

make the system broadband. However, the Slzstem will then

become more complicated. On the other hand, the efficiency

should not be of major concern in a receiving antenna for

which the requirements of a broadband, directivity and a

simplicity of the structure are usually the most important

factors. It has already been reported that resistive antennas

are being designed for use in satellite communications t 431.



CHAPTER V

PLANAR LOOP ARRAYS AND

TO BACKFTRE

THEIR APPLICATION

ANTENNAS

5.1 Introduction

In an investigation of circular loop arrays it was

found that, when the separation distance between adjacent

elements decreases, the series representing the Fourier coef-

ficients of the kernel, equation (1.12) ' converge very slowly

and their accurate computation becomes a tedious task l1-2l and

trzl. on the other hand, it has also been found that the

gain of an end-fire array increases as the spacing between

its adjacent elements decreases and the gain reaches a maxi-

mum when the total spacing approaches zero t481. In this

chapter a method is described which enables one to stud'y

compact coaxial loop arrays with considerable ease. The

approach is general and, therefore, applicable to the limit-

ing case when the separation distance between the adjacent

elements becomes zero. This limiting case generates a new

antenna which, due to its planar structure, we vüi1l call here

a "planar coaxial loop antenna". The method is also utilized

to investigate backfire antennas constructed entirely \'fith

circular loop elements. The performance of such antennas are

then compared with those of backfire antennas with a solid

reflector. A good portion of this chapter is devoted to the

investigation of backfire antennas with a solid reflector
| ì:. .i1::

il
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utilizing a loop antenna as the exciter'

5.2 The New Tecþglque

The coefficient *i, in the Fourier expansion of the

kernel in the starting integrar equation was presented in

(1.8) and is given again here for the continuity of the dis-

cussion

KÎ . = å ¡zn"-jkbiRij 
(Ô) 

. 
"jtô do (s.1)--il ¿Tt js -W

in a closed form this equation is given by lL21

*î, = -jkbi 
"i, 

*ffi# hå+2m(z) (s.2)

(i, j = 1, 2, N; 11 = 0, 1' "")

where aII parameters in (5.1) and (5.2) are the same as

those defined in Chapter I. Ialhen m in equation (5'2) in-

creases, the real part of the spherical Hankel function

d.ecreases, but its imaginary part increases. Therefore, the

imaginary part of the series in (5-2) remains as the domin- 
,..,.,..,,

ant part. It can be shoWn that for fixed kbi and OOj 
',,"''.',',

the convergence of (5.2) becomes slower as the spacing Urj .,¡,.,.,i.

decreases, t12l and [17]. In the limit when d" aÞproachesr-l

zeror oD the order of thousands of terms in the summation

becomes necessary to yield an accurate value for the func- :: ::

i.',:,'::,.'

tion K1.. '::
r_l

Numerical integration of equation (5.1) is also costly

since the real part of the integrand around Q = 0 becomes

Very large and thus it requires a large amount of computer 
iri-':ri
l-i':::' -
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time for an accurate computation of the integral. Consequen-

t]y, a modification of equation (5.1) is necessary to simp-

lify its numerical evaluation. To overcome this difficulty

the large variation of the integrand is extracted by adding

and subtracting I/Rij (O) to the integrand. Therefore'

equation (5.1) is modified to

-ikb. R. . (ó)
,,D 1 (nl" '''--i-'ij cos îg - r,l do + r l" :jg_ (5.3)
^ij = ; JotT-*+-r cre - n Jo *'I4)

where

R.- (ô) = LL/b? (b: * b.,' + d?.. 2b.'b. coso)lL-r-1 "' '-1 '-l l- l-l l- J

changing 0 to 20 + 'It in the second integral of equation

(5.3) gives

tTÍ ,,0 2b- d0_tdot_ar = .lotr = )-ntz
(s.4)

using the identity cos20 = I - 2sin20 and changing the

variable 0 to -0 yields

fr/z dol=A'Joæ
where

(5.s)

2b.
aA= t(bi + u¡)2 + dijlå

(s.6)
c2 = oj ¡2/bi

since b3 * bí ì 2bíb. (equaI when oj = b1), and

(bi * Oj ) ' ì  bibj, even in the limit when Utj = 0, the

coefficient Cz is always less than unity. Hence, the inte-

gral in equation (5.5) is a complete Etliptic integral of the

first kind t49l defined by



5.3 Planar Circular Loop Arrays

Planar loop array is a netv type of antenna

erature survey indicates that it has not, so far,

igated. In this array the axial separation of the

d. ., is zero (fígure 5'2a) and the convergence ofr-l'
in equation (5.1) is very slow. The above method,

gives the results with considerable ease. Figure

shows the computed currents of a 14-element array

(5.7)

n0 - l) d0 (5.8)

'.it! 
1: .l1'': : ,: :

and a lit-

been invest-

loops,

the series

however,

( 5-2b)

for different

87

î (r/2, C\

Substituting (S 7) and (S 5)

KÎ .rl

rt¡ /2
f

Jo

= *orur/2, c).*I; ,

d0

,/T=-F;ffi
in (5 3) gives

jkb. R..: (0)
-L IIe cos

--R-;rÐ-
The Elliptic integral (5.7) is tabulated in the literature

and can also be evaluated readily by a polynomial approxi-

mation 1497. Thus, it only remains to evaluate the remain-

ing integral of equation (5.4). Its integrand, however, is

a relatively smooth function and can be computed numerical-

ly. To investigate the behaviour of this integrand, its

real part is compared with that of equation (5.1) in figure

(5-1) (for n = O, n = 1 only). It is evident that the latter

has much smoother variations and its numerical integration

is trivial. The imaginary part of the integrands are smooth

functions of Q and are not included in the figure.

In the following sections, the application of this

method to co-planar coaxial loop antennas is discussed.
i--.t'

i:-. ::'l:
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loop separations. Only the smallest loop is excited and for

the selected dimensions the loop currents decrease rapidly

v¡ithin the first three loops, but remain relatively constant

in the remaining elements. This indicates the existence of

a weak surface vrave along the array [50 ]. The coaxial gain of

such an array is also investigated and is shown in figure

(5-3). It indicates a maximum gain of about 6dB regardless

of the array parameters. In addition, this maximum gain is

obtained when the largest element has a radius of about 0.75À.

This interesting fact was also verified for arrays with dif-

f erent number of loops and separati-ons.

!.;,:-i.:;i

t.:1:..4:-..t.!

loop

a)

After an intensive investigation of the planar circular

arrays, the following properties Ì¡lere identified:

When only the smallest loop is excited, the dominant

mode on the other elements is the same as the dominant

mode of the excíted loopr rlo matter how large the para-

sitic elements are. A similar situation was also est-

ablished, previously, for loop Yagi arrays with un-

equal elements t171.

If the largest element in the array is excit,ed, then

each loop will have its respective dominant mode, again

similar to loop Yagi arrays t171. Vühen only the larg-

est element is excited, the array does not radiate

significantly and the real part of its input admitt-

ance, Re("irr), is normally smaIl. Even for large

values of Re (Yrrr) the directive gain along the axis

of the array will not be large, since for this case

b)
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the exciter is a large loop which is known to have a

smal1 axial gain.

since the parasitic elements not in the neighbourhood

of the exciter have small currents relative to that

of the exciter, the input admittance of the array

tRe (Yrrr) I is not significantly altered by adding or

subtracting a parasitic elem-ent to the array. The

sensitivity of the Re (Yrrr) to the number of array

elements was found to depend on the ratio of the ele-

ments radii. For bt,/bt-t = 1.1 it was the most sens-

itive to the number of elements. I{hereas, fot

bi,/bi-I > 1.1 it had noticeable variation, but its

variation was found to be less than 10% when the

array elements were increased from 3 to 6.

s.4 EegEIrrc-4!!9!!eg
A backfire antenna radiates in opposite direction to

that of endfire. Antennas employing the backfire principle

conceived by Ehrenspeck t51l-t521 have been the subject of

extensive experimental studies t53l-t551. This technique

provides a means for increasing significantly the directivity

of an endfire antenna without increasing its length. Typi-

cal experimental gain increases of 6 to 8dB over a con-

ventional endfire Yagi of equal length are obtained' by an

application of the backfire principle t561. Later, Ehrenspeck

t57 I developed a "short backfire" antenna for which the back-

fire principle was applied to a single dipole "exciter" antenna

rather than to an endfire array. A gain of I3dB was
i i1':' r' . .':.::1.:ì.-,:.'::. ì.:.:: ::

t:



l'*"' iti."..'.:..1

93

achieved with this configuration. A short backfire antenna

has the Structure of a simple' open ended circular cavity

with a dipole exciter placed at an appropriate location inside

the cavity and. a sma]l reflecting plate placed in the open

end to reduce the direct radiation from the exciter.

Although backfire antennas have been studied exten-

sively by experimental methods, due to their complicated

structure, very little is known about their behaviour. Chen

et al. t56l gave an approxj-mate calculation of the radiation

fields of a short backfire antenna based on the measured

aperture fields. Zuker t5B I has studied a long backfire

antenna theoretically and provided some approximate data for

design. The same problem was studied j-n tsgl t61l by

applying the image theory. In i59l Nielsen and Pontoppidan

assumed that the reflector could be treated as an infinite

planar reflector, so that a complete image of the array

could be introduced. The mutual impedances between all di-

po1es, real as well aS imaginary, vlere determined by the Et'{F

method and sinusoidally distributed currents were assumed in

all elements. The surface currents induced on the infinite

reflecting plane by the currents of the exciting dipoles

were then determined. The field of the array with a finite

reflecting plane l^las eventually calculated by superposition

of the fields due to the exciting dipoles and the surface

currents on the part of the infinite plane that corresponds

to the actual finite plane. The analysis is direct and gives

readily useful results for backfire antennas with dipole
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elements and with a plane surface reflector. This approach,

howeverr Rây introduce some difficulties in computing the

characteristics of a long Yagi backfíre antenna due to the

required large surface reflector. Since the application of

the image theory, for determining the mutual impedances gives

results to a reasonable approximation only if the dimension

of the reflecting plane are very large compared to the dis-
tance of the plane from the farthest element, the longer the

Yagi array, tÏ.e larger the reflecting plane will be and,

therefore, extensive computer time and storage are required

to determine the surface current distribution.
Recently, Ehrenspeck 162l introduced a nerv backfire

antenna. The new design consists of a reflecting surface,

a peripheral rim of adjustable width, and a feed system in
the reflector center. The antenna was then optimized by

varying the frequency and rim width to find its highest dir-
ective gain which was reported to be about 18d8.

The characteristic of the one-element loop antenna

with a finite reflector were recently analyzed by Rojarayanont

and Sekiguchi t631. The current distribution on the loop

antenna with a finite reflector was assumed to be the same

as the loop current with an infinite reflector. Then, the

current induced on the finite reflector by the exciting cur-
rent of the loop was calcurated. Assuming this current dis-
tribution on the finite reflector, the characterj-stics of one-

element loop antenna with a finite reflector urere obtained.
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The advantage of the short backfire antenna is clear

by noticing the structural advantage of a plane reflector

over a parabolic dish, especially when the gain is less than

2OdB. In the remaining part of this chapterr wê will study

the backfire antennas using a circular loop as the exciter.

9le expect to obtain a higher backfire gain since a one l^lave-

length loop antenna has a higher gain than a half wavelength

dipole.

Four different kinds of reflectors for the backfire

antenna are discussed: i) an infinite reflector, ii) a

finite solid reflector (a disk), iii) a disk refl-ector with

a solid peripheral rim, and iv) concentric planar loops

with and without peripheral rim, where the rim is also made

of circular loops. Aside from the structural advantages of

the backfire antenna constructed only with an array of coax-

iaI circular ]oops, it also lend.s itself to exact analytical

investigation. A circular loop antenna in front of an infin-

ite reflector is discussed first and is given in the next

section.

5.4.1 A Sincrl-e Loop Antenna in Front of an Infinite Reflector
-----l--! ------ -

The exact current distribution of a loop antenna near

an infinite reflector, its input impedance and the radiation

characteristics are analyzed by the theory given in Chapter I.

Using the image theory the problem reduces to that of an array

with two identical elements and with V2 = -V1. Since the

physical antenna radiates only above the ground planer w€

therefore, use one half of the radiation field which faIls

i:-

j..i..::. _ :: i

l¡ì'-:iiii:ii;
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above the reflector. Figure (5-4) shows the directive gain

of such an antenna along the axj-s of the loop antenna as a

function of the loop spacing from the conducting plane and

for several sizes of the 1oop. The directive gain of a half

wavelength dipole antenna above the ground plane (due to

Kraus 16ü) is also given in figure (5-4) for comparison.

It is seen tÏ¡at the gain approaches a constant value as tlre spacing decrea-

ses. TLris is iJt good agreenent with ttre results of lüaus Løq] for a l-ossless

and a half wavelength dipole anter¡na. For practical anteru:as vfiich have

scrne fi¡rite loss, ttre gail wiI1, holvever , decrease as spacing decreases.

Ttris is due to large surrent discussed below. It is also seen tlrat the gain

decreases with j¡rcreasing tlre spacing. The system also has a higher gain and

a wider bandwidth for a large exciter size. TLre nwcj¡rn:m directive gajn of a

single loop antenna is about 4.6d8 for kb = 1.45. The

maximum directive gain of a loop antenna with kb = r.4 over

a ground plane is lOdB which, therefore, is 5.4d8 higher

than an isolated loop antenna. This gain is also ldB higher

than the gain of 2-element loop antenna with kbl = kbZ = 1.3

under an optimum excitation t'651. rt should be mentioned

here that the 10 dB is tlre optimr.rrn gain of a 2-element array which radiates

i¡to virtual half space.

Figures (5.S) and (5.6) show the input innpedance of
a loop antenna over a ground plane as a function of spacing

and for several sizes of the exciter. owing to the presence

of the ground plane, the driving-point impedance of the

antenna is, in general, different from that of its free space

value. As shown in figure (5-5), the real part of the input



97

Êlõ

z
H

o
Êlú
H
trr

o
FA

0.r 0.2 0. 3

+/^
o.4 0.5

antenna as a function
of loops

Fig. 5-4t Backfire gain of a looP
of d,=/\ for various size

400

320

240

160

0

Fig.5-5:

H
N

Ft{c
H
É
È
F¡

Hú

80

a) kb = 0.8
b) kb = 1.0
c) kb = I.2

dlx
S'

0.1 o.2 0.3 0.4 0.5

ReaI part of input irrpedance of a loop antenna as a

function of it,s spacl-ng from perfectly conduct-
ing ground for various size of loops

GROUND PLANE \-

Gai¡¡ of a
half wave-



hr¡,i:":3t::f'::r

98

T 80

400

320

240

160

-80

-160

-240

-320

GROI]ND PLANE

0.1 0.3 0.5
ds /À

Imaginqry part of input impedance of
as a function of its spacing from
ducting ground for various size of

a) kb=
b) kb=
c) kb=

0.8
1.0
L.2

ir,r:.ì,r::lr. I ri.r :,.: ì

¡¡1,=l:ì¡:1:::.; i::

g
.r{

È!

t¡jo
Erú
Ê{

É
z
H
u
d
A
H

a loop antenna
perfectly con-
Ioops.

Fig. 5-6:



99

impedance increases with increasing spacing and after reach-

ing a maximum, it decreases with a further increase of the

spacing. It is expected that both the real and the i-maginary

parts of the input impedance approach their free space values

as the spacing becomes very large, It is interesting to note

that the Im(Zrrr) is very small for ds/\ S 0.2 and kb = 1.

Therefore, it is easier to match the antenna to the feeding

system. Fj-gure (5-7) illustrates the dlnput current of the

exciter loop as a function of the heighL of the antenna

from the ground plane. It is interesting to note that the

current on a closely spaced loop is very large and decreases

as the height increases. However, the rad.iation resistance,

figure (5-5), is relatively small for small spacing. Hence,

a considerable reduction in the radiation efficiency may

result if the structure \^rere mad.e of lossy material.

In sunmary, a single loop antenna above a ground

plane is the simplest backfire antenna. with this simple

geometry a gain as high as 10dB is achievable. A closer

spacing gi-ves a higher directive gain but may result in a

deterioration of the efficiency, if the antenna has loss

resistansss. Referring to figures (5-¿)-(5-6), it is recom-

mended to use kb = I as the exciter element since it gives

a better input impedance performance.

Since the antenna and its image have currents of

equal hragnitude, but. opposite phase, there is a zero radiation
in the direction of the ground plane, that is, in the direc-

tion normal to the loop antenna axis (e = T/2). In practice,

the reflector size is finite and, therefore, the above results

ä;:ì;."t*1,i

i:;:: :-:-: . it..'',
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may.not seem to be useful. Hovlever, if the reflector is sev-

eral times larger than the loop diameter and the antenna is

not too far from the reflector, the results given here

will be applicable to the first order of approximation. The

directive gain of this simple geometry sti]l can be improved

with placing an array of circular loops in front of the flat

sheet reflector. Figure (5-8) shows the directive gain of

a 2-element array above the ground plane aS a function of

its distance from reflector. One of the loops in the array

acts as the secondary reflect,or which enhances the radiation

towards the flat sheet reflector. The geometry of this two

element array is selected for maximum radiation toward the

reflector and is found to be for kbZ -- 1.1, kb' = 1.05

(the reflector) at a spacing of dLz/x = 0.1 t451. It is

interesting to see that the addition of a reflector loop

increases the backfire gain by more than IdB over that of

the structure without the reflector loop. On the other hand'

t,he gain becomes relatively independent of the exciter to

the main reflector spacing. Therefore, this spacing can be

used as a mean to control the input impedance of the antenna.

If t^he antenna above the ground plane is a long Yagi array'

with its exciter as the second farthest element from the flat

sheet reflector, the backfire gain wilt be 6dB over the

ísolated array. This is due to the fact that the maximum

obtainable gaj-n from endfire antennas is directly propor-

tional to their lengths, provided the phase velocity is pro-

gressively adjusted to its optimum value as the antenna length

is lengthened. The gain of an ordinary .endfire antenna under
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this optimum condition is about L09"/2 above the isotropic

value, where .Q, is the length of the structure t511. Because

the electromagnetic wave travels the physical length of the

array twice in the case of a backfire antenna, this antenna

acts like an ordinary .endfire antenna with twice the length'

and the phase velocity must be adjusted accordingly. tr{e

then expect, to have a gain 3dB higher than that of the

isolated Yagi array. The other 3dB increase in the gain is

due to the Yagi and its image, which carries one half of the

total power and radiates into virtual half space.

So far, the characteristics of a circular loop or an

array of circular loops in front of an infinite reflector

hrere investigated. The next sect.ion is devoted to study the

radiation characteristics of a single loop in front of a

finite reflector.

5 - 4. 2 Essbg-ir9-4!!esgÊ-w-i!b-e-Eislge-Se!!es!sr
In a practical antenna the reflector has a finite síze,

which complicates the analytical solution. The problem of a

finite circular reflector can be solved as the limiting case

of an oblate spheroid te61. However, due to the difficulties

in computation of the spheroidal function, the solutions are

usually hard to utilize practically. The introduction of a

rim around the reflector further complicates the problem and

an analytical solution becomes impossible to obtain. In the

present workr wê have therefore, decided to use a numerical

method to study the problem of backfire antennas with a finite

reflector. For a circular reflector, with and without a rim,

the geometry has rotational symmetry and as such, can be stu-
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died by computer programs available for these geometries.

we have used a program which is based on the moment method

and was prepared by o1e Rydahl 167l and t6Bl. since the pro-
gram does not use circular loop antenna as a source, it was

decided to use a number of infinitesimal dipoles, located on

a circle with the radius of the exciter, in order to simul-
ate the desired exciter. The current for each dipole is
selected in such a r'tray that they represent the current dist-
ribution of the loop antenna. Figure (5-9) compares the rad-
iation fields j-n the H and E-planes of a one wavelength loop
antenna with those of eight infinitesimar dipoles located
uniformly on a circle with kb = l. Due to the symmetry only
one half of the radiation patterns are shown. A good agiree-

ment between the results can be seen. The ring of dipoles
then is used as a feed for finite backfire antennas. The

finite reflector is chosen to be a disk. Figure (5-r0) de-
picts the variation of the backfire gain with the diameter
of the disk, when the ring of dipoles is located 0.15À from

the reflector. rt is seen that the backfire gain increases
with increasing diameter of the reflector and after reaching
a relative maximum decreases with a further increase of the
disk diameter. The maximum backfire gain is about l0.25dB
which occurs for a disk diameter of about 1.45 wavelengths.

This is about tdB greater than the gain of a one \^Tavelength

loop antenna placed 0.15À above the ground plane (figure
5-4) - The decrease of the backfire gain with a further in-
crease of the refrector diameter beyond 1.45À may be due

to the phase and the amplitude of the current on the refl-ector.

I 1 - ,: rll:):1: t:
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For a reflector diameter larger than L,45À fields produced

by the currents on the reflector should be subtracted from

each other, since the maximum gain of the antenna is obtained

only if the field of alt the currents on the disk add in

phase.

Figure (5-11) shows the variation of the backfire gain

of the above antenna as a function of the feed spacing and

for various d.isk diameters. It is interesting to note that

for a finite reflector, the behaviour of the backfire gain

with the feed. spacing is similar to that of an infinite re-

flector (figure 5-4). For both cases the backfire gain in-

creases with decreasing distance of the loop antenna from

the reflector.
Finally, figure (5-L2) shows the current distribution

on a disk reflector of radius 0.716^ with the exciter loca-

ted 0,15À away from the disk. Both the radial and the cir-

cumferential currents on the reflector are mostly concentra-

ted in a region with circumference of about one wavelength

(D = 0.36). For D > 0.36 the components of the current

begin decreasing rapidly wíth increasing R and the radial

current In approaches zero near the edge of the disk. There

is, however, a sudden j-ncrease in the O component of the

current I, near the diskrs edge, which indicates the sing-
o

ularity of tO at the edge. It is also interesting to note

that the phase of In and tO are almost constant in the

region D f 0,36 v¿here most of the current is concentrated.

:: .:.i: r;ri.
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Thus, the maximum gain of a loop in front of a disk

reflector is about 10.25d8. It was mentÍoned earlier that

for dipole fed backfire antennas, the addition of a peripher-

al rim to the disk reflector improves the backfire gain over

that of a flat reflector. The following section is concerned

with the investigation of such an antenna.

5.4.3 Backfire Antenna with a Rim

In this section, the numerical investigations are

carried out for a disk reflector antenna with a rim around

the disk. Figure (5-13) shows the variation of the backfire

gain of such an antenna wj-th the length of the peripheral

rim and for various s,izes of the disk diameter. As seen in

the figurer the maximum gain is about 13.3d8 and occurs for

a reflector diameter and a rim length of about 7.75À and

0.65À, respectively. This indicates that the addition of

the peripheral rim to the reflector surface increases the

optimum size of the disk, since for a rimless antenna the

optimum size of the diameter was obtained to be 1.45À (fig-

ure 5-10). This increase in the optimum size of the reflec-

tor, and consequently an increase in the gain of the antenna'

may be attributed to the improvement of the aperture field

distrj-bution due to the peripheral rim. Figure (5-14) shows

the magnitude of the aperture fields, in both E and H-planes,

at a distance of 0.25À from the rim edge. It is seen that

t,he radiating aperture of the antenna extends outside of the

physical dimension of the structure, as was reported for the

dipole feed case 1621. The magnitude of the field in the Ì¡,::,
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H-p1ane increases initiafly, but tend to decrease rapidly
in the vicinity of the aperture edge. It reaches 10dB below

the aperture center value at a distance of about 0.2x bey-

ond the edge of the rim. In the E-plane, however, the field
decreases continuously from the aperture center, but the rate

of decrease is slower. It reaches the 10dB value at approx-

imately 1.3À from the aperture edge. This increase in the

radiating aperture of the antenna explains the higher dj-rect-

ivity obtained for this structure. It should be mentioned

here that Ehrenspeck has reported. a gain of L4.2dB for a

reflector of diameter 1.75À and a rim length of about 0.6À

1621. However, he used a short backfire feed (SBF), a di-
pole feed with a reflector disk in front of it, or an array

of SBF, since a single dipole can only illuminate reflector
areas of approximately 2x2 rc2f. Ehrenspeck, unfortunately,

does not provide any information about the SBF.

Since the gain of a one wavelength circular loop an-

tenna is greater than that of a half-wave dipole, its effec-
tive area should also be greater. The relation between the

effective area of an antenna and its power gain is given by

t6e l

- GÀ2A=
4r

For a one r^ravelength toop A¿ = 2.2Lx'/4, and for a half
vrave dipole Ad = L.64),2¡4n. The difference between AU and

Ad may indicates that refl-ector areas greater than 2x2

can be used for a single circular loop. In fact curves d ,
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e and f given in figure (5-13) show that for the :

ref lector areas gireater than approximately 2.7^,' the gain

decreases. That is, for larger reflectors a single loop can

not illuminate properly the active reflector areas and an

sBF (a single loop with a disk ref lector in front of it) , ,., 
:,

. ;:l: :: l'

whose effective radiating aperture is larger than that of a

single circular 1oop, must be used. It should be noted that

the approximate area which can be illuminated properly by a 
,,,,rì,,:.,,i

síng1e loop antenna may also be found from the knowledge of r'''"'-,

AL' Ad and the approximate maximum area illuminated prop- l-'.:,*:j'
,:j | ).:': ..:a:.

erly by a single half-wave dipole, which is given by 2).2.

That is
A^

# . (2^2) = 2.'7x2
ct

which is the same as that obtained numerically in the above

investigation 
i

5. 4.4 Eesbll19-4ltelle-s¡!b-EleleË-ç9!e9!!rls-lggps-eg-e

Bcllegle¡ :, ..

It is often necessary to reduce the weight, windage ;"""::"''''

t'ttat 
".¡'(wind loading parameter) , or obstruction of view which accom- .':' '

panies the solid reflectors studied in this chapter. In the

remaining part of this chapter, wê witl investigate the pos-

sibility of employing planar concentric loops to construct ,,, t ,

Ii:,"i:.l:i::Í'.

reflectors in a backfire antenna.

Figure (5-15) shows the backfire gain of a single

loop antenna in front of planar concentric loops as a func-

tion of the exciter spacing from the reflector. The size of 
;.,.:.:,..
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the exciter and the smallest loop on the reflector are

selected to be 1.1 and 1. 05, respectively t45 l - In ad-

dition, the ratio of the radii (the ratio parameter) of two

consecutive loops on the reflector is assumed as a parameter

in figure (5-15). It is seen that the backfire gain decrease" ',1,.,.

as spacing increases. This behaviour is similar to that of

a sj-ngle loop antenna in front of a reflector disk (figure

5-11) . Notice that the backfire gain is almost independent 
,:::,:r,:,

of the ratio parameter. Hor¡¡ever, the best results are obtain- ""'"''

ed when the ratio parameter and the circumference of the '.','.'.,,

largest loop on the reflector are about L.2 and 4.5À,

respectively. It is interesting to note that the optimum

size of the reflector loop is about the same as the reflector

disk. Figure (5-f6) shows the variation of the gain with

the exciter spacing where the number of loops which construct

the reflector is the parameter. In all cases the size of

the largest loop on the reflector is about 4.5À. It is seen

that 5 or 6 loops are enough to construct the reflector'

An extensive investigation was carried out in order to obtain l'.:,'"

''l' 'the best possible choice for the size of the smallest loop 
,' .,,

(kb2) on the reflector loop. It was found that the size of

kbz depends on the size of the exciter, kbI. The best per-

formance was obtained when kbl = 1.0 and kbz = l'1, or , .,

kbl = r.1 and kbz = 1.05 ¡ ot f inally kbr = r'2 and ij'rl

kbZ = 1.1. The last two sets of kbt and kbZ give slightty

Iargerbackfiregain,thanthefirstSet,sincetheantenna

composed of only these two toops have a strong back radiation 
,::,. ,
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fl2f and [45].
Figure (5-17) gives the backfire gain of an antenna

similar to that of figure (5-15) as a function of the reflec-

tor to exciter spacing. In this figure the size of the ex-

cit,er, kb', is the parameter and the size of the smallest

loop on the reflector, kb., always satisfies the relation

kbz = kb, + 0.1. In addition, the rat,io parameter is kept

constant and equal to L.2. It is seen that for kbl = 0-9,

the backfire gain is very poor and for kbt : 1 the gain

initialty increases with increasing spacing and after reach-

ing a maximum it decreases with a further increase of the

spacing. An important conclusion from this behaviour is that,

when the exciter is smaller than the smallest loop on the

reflector, the backfire behaviour departs from that of a

single loop above an infinite ground plane for the exciter

spacing less than 0.15À. Figure (5-18) compares the H-plane

far field radiation of the disk reflector with that of loop

reflector for exciter spacing of 0.15À. The agreemenÈ be-

tween the two radiation patterns is very good in the back-

fire direction. As expected, the front radj-ation for the

loop reflector is larger than that of the solid reflector-

5.4.5 Baq[f ire AnteEna_gilb_BCf fpheral Rim Constructed

which

shows

wr!b-leePe

In this case, the loop reflector has a

is also constructed with circular loops.

the variation of the backfire gain as a

peripheral rim

Figure (5-19)

function of
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the rim length and for various diameters of the loop reflec-

tor. The size of the exciter (kb') and consequently the

size of the smallest loop in the reflector (kbs) are chosen

to be 1.0 and 1.1, respectively, in order to compare the

results of this antenna with those of the solid reflector.

As mentioned earlier, a better gain performance can be

achieved with kbF = 1.1 (kbs = 1.05) or kbF = L.2 (kbs =

1.1). The maximum gain in figure (5-19) is about 12,3d8

which is obtained from curve f which corresponds to a

reflector diameter and a rim length of D = 1.93À and 1.1À'

respectively. It is seen that for D : I.75À the maxima

of the curves are within 0.2d8 of that, of curve d, for

which the maximum occurs for a rim length of about 0.65À.

It also gives a superior gain performance over the other curves

in figure (5-19) for rims smaller than 0.65^. In addit.ion'

the geometry related to curve d has the structural advant-

age of a smaller size and lower cost over e and f, with

about the same optimum gain. It ís also interesting to ob-

serve that, dL the maximum of curve d, the size of the rim

and the diameter of the loop reflector are about the same as

those of the solid reflector given in curve d of figure

(5-13). Their optimum gain differ only by approximately

1.2d8. Figure (5-20) compares the far field radiation pattern

of the solid reflector with that of loop reflector in both

the E and H-planes. Their agreement in backfire direction

is good. However, there is approxímately a 6.4d8 differ-

ence between the leve1 of the first side lobes in the H-plane.
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5.5 Summary

The radiation properties of planar loop arrays and

backfire antennas were investigated in this chapter. In

the beginning, a general method was developed which enables

one to study compact coaxial loop arrays. The method was

used to study the characteristics of a new type of antenna,

i.e., a planar loop array. It was shown that the array sup-

ports a very weak surface wave along itself and radiates

mainly in the broadside direction.

The technique was then used to investigate the radia-

tion characteristics of backfire antennas constructed entir-

e1y with loops. That is, arrays of coaxial loops !,¡ere employ-

ed to construct the peripheral rim and the reflector. The

comparison was made between this new type of backfire antenna

and the conventional one with a solid reflecÈor. It was found

t,hat the optimum size of the reflector is approximately the

same for both ki.::ds of ref lectors. For antennas with or with-

out a rim, the diameters of the reflectors were found to be

1.75À and I.43À, respectively. The length of the rim at

optimum gain was also found to be about the same for both

ki¡dsof reflectors, and was about 0.65À. Moreover' the opt-

imum gain of the solid reflector was found to be only about

ldB larger than that of the loop reflector. It was found

that as few as 6 loops are sufficient to construct the

optimum size of the reflectors and almost the same number of

loops are required to form the optimum peripheral rim.

Furthermore, aside from the structural advantages that the



nehr backfire

reduction of

lends itself

L23

antenna has over the solid reflector, i.e.,

weight, windage, or obstruction of viev¡, it also

to exact analytical investigation.
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CHAPTER VI

CHARACTERISTICS OF TWO EÑF'INITE AND FINTTE CONCENTRIC

LOOP ARRAYS WITH LOADED ELE¡4ENTS

6.1 Introduction

The analysis presented Ín the precedÍng chapters has

been restricted to single circular loop arrays. This chapter

deals with the analysis of wave propagation on two infinitely

Iong and concentric loop arrays. This kind of structure was

recently investigated by the so calIed I'antenna theory" method

which consists basically of calculating the electric field

due to all elements when a surface wave is propagating along

the structure t701. The phase velocity of the propagating wave

along the array has revealed that the array possesses two dis-

tinct passbands, corresponding respectively to the resonance

of the outer and the inner sub-arrays and are separated by a

stopband. The width of the stopband normally depends on the

ratio of the loop radii for the outer and the inner arrays.

It increases as the ratio of the radii increases and this
increase tends to shift the bandwidth of the first passband

to lower frequencies. In addition, the bandwidth of the second

passband is found to be generally much smaller than that of

the first passband, From a practical point of view one, there-

fore, should design an antenna which has relatively wide oper-

ating band.s in both passbands. It is also desirable to invest-

igate the rnethod of excitation of this dual array.

l:: i, -r.il.l,;tt::j:ì:::i
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This chapter considers both of the above problems.

The "circuit theory" rnethod developed in Chapter II is comb-

Íned with the technique given j-n Chapter V in order to invest-

igate the radiation properties of finite and infinite arrays

of two concentric loops. To improve the bandwidth character-

istics, the loading of the array elements with a reactive

impedance element is considered. Although the analysis is

general, only the numerical results for loading of the inner

array are studied, The first passband, corresponding to the

outer array, is designed to have a relatively wide character-

istic.
The excitation of finite Yagi arrays with concentric

loops are also studied in this chapter. Three different methods

of excitation are considered; only the outer sub-array is

excited, both sub-arrays are excited or, only the inner one

is excited. It is shown that, from a practical point of view'

the excitation of only the outer sub-array seems to give the

most superior gain and input impedance characteristics.

6.2 A Relation for the Phase VelocitY

The geometry of the arrav is shown in figure (6-1) 
'

where all i'Ès parameters are defined. The array is exten-

ded to infinity in both directions and it is assumed that the

first mode is propagating along the array. Therefore, the

currents on the elements of the reference ceI1, consisting

of the inner and the outer loop located on the xy plane,

can be presented as



':t. .

Fig. 6-1: An infinite array of concentric loops

ts
¡\)
Oì

::;i
r.¡::



L27

rä (o)

r; (o)

= rücoso

= ticosO

where the superscripts i and o are related to the inner

and the outer loops, respectively. For propagation along the

z direction with no attenuaÈion, the current distribution

on equal size loops of adjacent cells differ only by a phase

factor ;jßa (with a time factor "j"), where ß is the

propagation constant of the travelling wave along the array.

In order to apply the boundary conditions on the element sur-

face, the loads zi and z? are replaced by a constant volt-

age generators Vi and Vo, respectively. Now the applica-

tion of the boundary conditions can be carried out in a manner

similar to that explained in Chapter II. The final result

gives

(6.1)

(6.2)

.co
rä r tå*

m=Fæ

.i*^r- l, z1oum
m=Éco

æ^ì
r ,å*

m=-@

: zrro oo.m
m=-co

becomes

"-jßma = -zLL

--i gmd
e - -z:" 13

"-J 
ßma * rB

e-ißma * r;

Iå

i[::]
(6.3)

a solution

whi

I

ch in a matrix form

; ,ó* "-j 
ßmd + zrL

m=-æ

; Ç¡ "'j 
ßmd

UMIII=-æ

æ
^s u I

" oom
m=Fco

ó
a 711
" "om

ITI=-æ

.- j ßma

"-J 
ßma *

This set of homogeneous algebraic equations has

its determinant vanishes. That is,

if
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co^r zoi

Ill=so "-j 
ßmd,z

(6 .4)

the

(6.s)

li:'*i:rrl,r;l

( r ,å,n
m=Fæ

=0

"-jßma 
* zi) ( ; z¿i 

"-jßmdm=Fæ

If this condition is fu1filled., the resulting ratio of

outer to the inner current is given by

oï0
---:- = --ato

In the

-t
'o¡n

olloo*

jt
oom

where
__nK=

UM

with

Rom ( 0)

jn
^o*

" ,îr ^_ jß nd
u L ¡ E

UIn
III= - æ

,.j-- z¿r "-jßmd * '?)

above equations ,L^, ,å; and ,d * are cl-ef ined

j Ï9 (kb'

j + (kb2

j + rr.u, $i "å* -

1r¡l 
. -r- 

-
2

xifi + 16[
-----T--'

l* la
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t"
Jg

+r- 11 + to'r-o'"
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1q
Iq
Iq

*ó*)

Kfl )
0m'

iå*,
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(6.6)

(6.7)

(6.8)

(6.e)

(6.r0)

(6.11)
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1
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with bI and

4
þ/21

m>0

exp [- jkb2 R',m ( 0) + jn0 ]
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by bZ and Rö* v¡here

Röm(o) = rytt+,k,'=ir,' ç¡zJ\ , m)o rc.r2)

RO', *ËO and *òi are as defined in (1.7) and (1.8) -

Equation (6.4) is a transcendental equation. fn order

to solve this equationr w€ will try to find a solution for

the three infinite summations in (6.4). This is done in the

next section.

6.3 Evaluation of the Infinite Series in Equation (6.4)

A close look at the infinite series involving ,ð*

and. Z:! reveals that they are similar to the infinite serj-es
UM

given in equation (2.4) of Chapter II. Therefore, their sol-

ution can be found using an identical procedure to that pre-

sented. in Chapter II. The remaining infinite series involves

îl ancl- wj-lI be stated here, The infinite summation can be
UM

subdivided into three summations in the following \^tay

co 
^ ,ô_-1 -(Mf+]) Mt co   ,^

; ;r "-ißmd = [ "'r'' + r + r ] i:- 
"*JFmd*=l* "0m = -co *M r rt'-+r' "0m - ( 6 ' 13 )

since btbZ t bí

and (bt-b2)2 . bí for b2/bl < 2

l:":i::_,:-._l

;:-.;:::.:

Therefore, 4b ,b2
br-br2

monecanneg1ecttheterm(#)inequation(6.11).

Thus, the new form of **- becomes
UM

f or lnl a¡u,

^3*

(6.14)
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where x = kblb 2/l^la. The above integral is again related '

to the Sommerteta representation of the Bessel function.

Thus,

^ b^ ., r r--î- = j"? Pkl*lull*l J,.(x) (6.15)um - d ' n 
,'.'., .

Therefore, equation (6,3) modifies to the form ':.

^ -irn b, ro (x' 

=/-' 
- =+- rr(x) r "-jxltnldzl*l-1,ó* = -T- T LKDI ------T- - ffil

(6'16) t'1:"'':l;';t

substituting (6 . 16 ) in ( 6 . 13 ) gives relations si¡nilar to those i;;¡ ;¡:r¡n:il

obtained. for equation (2.4) in Chapter II, Therefore, in ,,,:-.,,1',1,. .'..:' :': | '

general, the solution of (6.4) is closely related to the sol-

ution of an isolated array. The numerical solution of (6-4)

gives the propagation constant S from which the phase vel-

ocity of the launched v¡ave can be obtainecl, This is done

in the following section.

6.4 The Numerical Results for the Phase Velocity

A computer program was developed to calculate the phase

constant ß from the transcendental equation (6.4). The

method which is used to calculate the phase constant ß is

the central point method which was explained in Chapter II.

Again, the range of variation of ß is limited by

kdÍgd5'rT

as was discussed previously. Figure (6'2) compares the num-

erical results of equation (6.4) for an unloaded array with

those obtained experimentally t701. A good agreement between

these results can be observed in both passbands. The second
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passband, however, is much smaller than the first one. To

improve this passband we assume that the inner loops are loaded

reactively and the outer sub-array is unloaded' Figure (6.3)

shows the results for such a loaded array. It is interesting

to see that loading the inner loops has a negligible effect

on the phase velocity within the first passband, but it has

a large effect on the second passband. A capacitive loading

of the inner elements shifts the center frequency of the

second passband upward which results in an improved isolation

between the two passbands. An inductive loading of the small

sub-array shifts the center frequency of the second passband

to lower frequencies and therefore, reduces the separation

between the passbands" A capacitive loading of the inner

elements also increases the phase velocity and for a given

phase velocity extends the range of the operating frequency.

Thus, from the previous cliscussion given in Chapter II we

can conclude that the gain of the finite array must also

behave in a similar manner. h,7e will not, therefore, attempt

to discuss further the effect of the loading on finite arrays.

Instead, however, we will consider the excitation problem of

concentric loop Yagi arrays.

6.5 The Excitation Problem

lVhen a finite Yagi array of concentric loops is used

as an aerial, a major question which arises is the method of

excitation can be used to launch efficiently, the travelling
wavesr oÍr both sub-arrays in their respective passbands.

This section studies the excitation problem and an attempt is
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made to find the best possible ans\¡¡er. A computer program was

developed to investigate the characteristics of finite con-

centric loop arrays. The program is general and can be used

for any number of loops in the array with any loop size and

loop spacing or outer to inner loop ratio. In the program,

the odd and even numbers are related to the inner and the

outer loops, respectively. Initially, âD 18-eIe¡nent array

consisting of nine uniform inner and outer loops is consid-

ered. It is called uniform since there is no change in size

of the inner or the outer loops along the array. Furthermore,

they are positioned uniformly along the z-axis. Three dif-
ferent methods of excitation are considered; only the outer

sub-array is excited, both sub-arrays are excited ¡ ot only

the inner one is excited. As in conventional yagi arrays,

the first ce1l (Ioop No. 1 and 2) is considered as the reflec-
tor for the array. The real parts of the input admittances

resulting from these three different methods of excitation
are shown in figures (6-4) and (6-5). Figure (6-4) shows

the real parts of the input admittances of the arrays when

both inner (kb3) and outer (kb4) loops are excited. Re(Y4),

the real part of the input admittance looking into ttr" port

connected to the outer loop kb4, has a maximum in the first
passband and becomes negative at f - 200 MHz and remains

negative within the second passband. On the other hand,

Re (Yr) is very small [relative to ne (Y¿) ] and positive

at the lower edge of the first passband and becomes negative

within the rest of the first passband and the stopband. It

I : -.ç: :''; i.r )
t_:;{ì'-:.1

';1.::ri::
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becomes positive at f - 190 MHz and has a relatively high

maximum at f - 230 MHz, These results indicate that within

the first passband the outer loop is contributing to the

radiation, but the inner loop absorbs the energy and does not

radiate, On the other hand, the outer loop absorbs energy

within the second passband and the inner loop radiates energy.

Figure (6-5) shows the real- part of the J-nput admittance of

the Same array when either the inner or the outer loop is

excited. V'ihen only the outer loop (kb4) is excited, the real

part of the input admittance has a maximum in the first pass-

band and then decreases rapidly. It achieves a second maximum

in the stopband and then remains almost constant v¡ithin the

second passband. Vühen only the inner loop (kb3) is excited

the real part of the input admittance is so smáll within the

first passband that it. is difficutt to show the results in

t,he figure. It increases with increasing frequency and has a

rel-atively high maximum in the second passband.

Figure (6-6) shows the dírective gain of the array

with three different methods of excitation. It is seen that

the behaviour of the gain in the first passband when both

Sub-arrays are excited is similar to the behaviour when only

the outer loop (kb4) is excited. When only the inner loop

is excited, the array has a poor directive gain in the pos-

itive z-direction and also a substantj-al portion of the first

passband. All three methods of excitation have almost similar

gain behaviour in the second passband. Figure (6-6) shows that

the directive gain of the array when only the inner loop is

ln:-i:i:,f ;a:<i
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excit,ed, is comparable with those of the other two cases within

155 160 MHz. However, figure (6-5) indicates that its radi-

ation in this range is negligible.

From the results obtained it is clear that from a

practical point of view, the excitation of only the outer

sub-array seems to give the most superior gain and Lhe input

impedance behaviour. However, in an earlier investigation

we have shown that lltl both the gain and the bandwidth of

an isolated cj.rcular-J-oop Yagi arrays can be optimized by

increasing the size of the reflector and the exciter (Appendix

vI-A). A concentric loop Yagi array operates in a similar

manner and the Same conclusion must apply for this antenna

as well. Thus, the reflector and the exciter size can be

utilized to further improve the gain and bandwidth of concen-

tric loop Yagi arrays, The f.at field radiation of the array

is studied in the next section.

6.6 The Far Fietd Radiation Pattern

a¿The H-p1ane 'far field radiation of an l8-element uni'

form Yagi array of concentric loops (9 cells) is shown in

figure (6.7). The array is operating at f - J-46 MHz which

is in the first passband and, therefore, the outer loops are

the major contributer to the far field radiation. Figure

(6.7) compares the total radiated far field with the radiation

from the inner elements. It is seen that the contribution

of the inner loops to the total far field is very smaIl.

Figure (6.8) compares the H-plane radiation fields of para-

sitic outer elements with that of inner loops of the above
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array at f - 225 MHz which is in the second passband. ït
is interesting to note that the radiation from the parasitic
outer elements is not as negligible as the far field radiation
from the inner elements shown in figure (6.7), From these

figures one may conclude that in the first passband the cur-
rent distributions on the outer loops must be significantly
larger than the currents on the inner elements. This relation-
ship reverses in the second passband where the currents on

the inner loops become large but evidently by a smaller fac-
tor, To examine these current distributions in a more detailed
manner, figures (6.9) and (6.I0) are included which show the

magnitude of the currents on each element at O - 0 and for
f = 145 I4Hz and f - 225 MtIz, respectively. Figure (6.g)

shows that the currents on the outer loops are about ten times

larger than the currents on the inner Ioops, when the array
is operating in the first passband. rn the second passband,

the currents on the inner loops are only about three times

larger than those of the outer elements. These results just-
ify the radiated far field given in figures (6.7) and (6.9).

6.7 Summary

Loaded Yagi arrays of concentric 1-oops vrere studied in
this chapter. The circuit theory method developed in chapter

rr was combined with the technique given for the co-pranar

array of chapter rv to investigate the phase velocity on an

infinite loaded concentric loop array. rt was shown that by

a proper serection of the reactive loading, the passbands

and the stopband can be controlled. The computation revealed

, rr. :.:;
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that a capacit.i-ve J-oading of the inner array increases both

the separation of the passbands and the bandwidth of the

second passband. The effect of the above loading on the first
passband. \â¡asf ho$rever, found to be negligible. This relative
independence of the first passband from loading the inner loops

is due to the fact that the mutual coupling between the inner
and the outer arrays is rather weak.

The excitation of finite yagi arrays of concentric
loops was arso studied in this chapter. Three different meth-

ods of excitation were considered; only the outer sub-array
was excited, both sub-arrays were excited or, only the inner
one was excited. rt was found that generally the gain and

the input impedance of the array depend strongly on the method

of excitation from a practical point of view, the excitation
of only the outer array seems to have the most superior gain

and input impedance characteristics.
The far field radiation of a finite yagi array of con-

centric roops was also investigated. Tt was shown that the
radiation from the inner array is negligibre when the array
is operating in the first passband. rn the second passband

the radiation from the outer array was found to be smarl.

1,1 il.l-':'



CHAPTER VÏI

DISCUSSION AND CONCLUSION

The problem of loadj-ng the circular loop array with
lumped or distributed impedances \¡ras stuCied in this thesis.
The impedance loading of elements was used to modify the cur-
rent distributions on the array and consequently, its band-

width and the radj-ation characteristics. Initially, the

investigation was focused on an infinitery long array v¡ith

loaded coaxial cj-rcular loops of equal size. The problern

was then extended to two concentric arrays of loaded lopps

which operate at two pass-bands which are separated rvith a

stop-band and controllable with the impedance loading. The

thesis also presentec a new type of antenna consisting of a

coaxial planar loop array. rts properties were investiga-
ted and the application of this design to backfíre antennas

rÁras discussed. The rnain objectives and the results which are

obtained in the course of this investigation are summarized

in the following paragraphs.

The travelling wave idea was appliec on an infinitely
long loaded circular loop array in order to obtain a relat-
ionship for the propagation constant along the structure.
The analysis was based on the so-carled "circuit theory"
method and gave the dispersion relation in terms of the

mutual impedances between the reference and the other e1e-

ments in the array. rn addition, Frouquet$s theorern was used

¡att-1:ra'l/.:

i:

,.': ,: :;?.
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to account for the periodicity of the structure. ft was

shown that capacitive loading increases the operating fre-
quency range, for a given phase velocity of the travelling
hrave along the structure, and consequently, increases the

bandwidth of the array. An inductive loading of the elements

was found to have the opposite effect.
Similar results \rrere also obtained for loaded arrays

of two concent.ric loops, which operated in two pass-bands

separated with a stop-band. It was found that a capacitive

loading of the inner array increases both the separation of

t.he pass-bands and the bandv,"idth of the second pass-band. fhe

effect of the above loading on the first pass-band was, how-

ever, found to be negligible. The excitation of a finite
array \^tas also investigated. For two concentric loops the

choice of the outer loop as the 'exciter was found to give the

most superior gain and input impedance characteristics.
The question of a suitable kind of load for the re-

flector of a finite Yagi array of loops was investigated in
d.etail. It was shourn that the loading of the ref lector has

negligible effects on the high frequency cut off of the array I

but affects the low frequency cut off significantly. An in-
ductive loading of the reflector reduces the 1ow frequency

cut off and consequently, further increases the array band-

Ì,úidth.

As an example of multiple loading, the case of the

doubly loaded arra)¡ rvas considered. The investigation rvas

made possible by an applicatj,on of the principte of super-

l::;í:i")üf;::j
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position. The study revealed that for a relatively sr'rooth

variation of the input admittance in a Yagi array, the exci-

ter may be loaded resistively. Thus, to improve the overall

characteristj-cs of a Yagi loop array, it was recommend.ed that

the directors and the reflector be loaded by capacitive and

inductj-ve loads, respectively. The exciter, however, must be

loaded resistively in order to reduce the variation of the

input admittance with frequency.

Coaxial circular loop arrays with distributed impedance

load.ing vras also analyzed by a simple extension of the Fourier

series solution for the perfectly conducting loops. It was

shown that, in general, a broadband characteristic can be

obtained by a distributed impedance loading. The constant

resistive loading vras stuCied in a more detailed manner since

it can be fabricated readily. The introduction of a dissi-
pative load resulted in a decrease of the efficiency, but it
improved the broadband characteristics of the antenna.

The thesis has also dealt with the coaxial planar loop

arrays and their application to backfire antennas. First,

a general method was developed which enables one to study

compact coaxial loop arrays and planar antennas. The tech-

nique was then used to investj-gate the radiation character-

istics of planar arrays and backfire antennas constructed

entirely with loops. The comnarison between this type of

backfire antenna and the conventional one with a solid re-

flector revealed that the optimum size of the reflector is
approxirnately the same for both kinds of reflectors. In the
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case of a backfire antenna with a peripheral rim, the length

of the rim at optirnum gain was also found to be about the

same for both kindsof reflectors. However, the optimum gain

oftheso1idref1ectorwaSa}¡out1dB1argerthanthatof

the loop reflector. The investigation showed that as few as , t ,

6 loops are sufficient to construct the optimurn size of the

reflectors ancl almost the same number of loops are required

to form the optimurn peripheral rim. Ìlot only does this new 
1,,,',,, , 

:,,

structure for the backfire antenna reducesthe weíght, windage '-"¡;''.1'':r"';'

::.-;.:ì :..,,
and obstruction of view which accompanies solid reflectors, i;t,.,,,:',,

but it also lends itself to exact analytical investigation

7.I Suggestions for Future Research

During the course of the present work, several topics

have arisen of which a few will be suggested here as a way of

motivation for future research in the general area of the

coaxialcircu1ar1ooparrays.Thefirstandthemostre1e.
vantprob1emistoinvestigatethephasevelocityoftheSur-

face vrave along trvo (or more) coupled paraIIel arrays. Since , . ,

the relationships between the surface wave and the beamwidth .t 
t",,,t,,

or the gain are already knorvn l7;-l, the design of coupled """'''"''
parallel Yagi arrays becornes possible if the phase constant

of the surface wave is obtained. The information on the phase

constant is also useful rvhen the structure is employed. as t.l'...' 
.,,,::,t.ji:i::. !r

millimeter waveguides. In this case the array can carry more

power or divide a given pou/er among several branches. The

analytical approach to obtain the solution for the phase con- :

stantofthesurfaceI^7aVea1ongacoup1edpara11e1arraySof
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circular loops is similar to those of Chapter II and VI.

A second interesting problern would be the investiga-

tion of ohmic loss per unit length on a periodic structure

of circular 1oops. This ohmic loss attenuates the signal

along the structure and therefore, becomes a significant para-

meter of the array when it is used as a surface waveguide in

applications in railway traffic control, railway obstacle

detection and telecommunications. The analysis given in

Chapter IV for continuous resistive loading may be helpful

in calculation of this parameter.

An important index of performance for a Yagi loop array

is the gain or directivity. However, a survey of available

literature indicates that so far no attempt has been rnade to

develop a method to maximize the gain of a Yagi loop array.

In general, the gain of any array can be maximized by using

a purely numerical search method. However, it is exceedingly

iaborious Èo consider all possible combinations of the various

parameters involved in order to obtain a true maximum. In

this ar:ea, recently, a perturbation technique was used to

simplify the optimizatíon process and was utilized to optim-

ize the gain of a dipole Yagi array llZl, t731. A preliminary

inves'bigation by the author on the space perturbation of a

Ioop Yagi array revealed that it is possible to apply the

above technique to loop arrays as rvell. However, a more

detailed examination of the subject is requiredr so that. its

usefulness and in particular the convergience of the method

when applied to loop arrays can be fully understood.
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Gain optimization by imped.ance loading, side lobe re- :

duction of the far field radiation pattern of loop Yagi arrays

by tapering the lumped load impedance from element to element,

reduction of scattering cross-section of single or an array

of loops by lumped or continuous impedance loading, and 
,,, 

,

characteristics of log periodic arrays of circular loops are

other unresolved problems, which may be studied in the future.

This thesis has considered some of the most relevant problems 
i,..:

and during the course of their investigation methods of solu- '.' iit

tion and. results have been introduced which may become useful ,,.'t..,'i.r:

for future investigations

;.:1..r:
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APPENDTX (Trr-e)

In this appendix it is shown that loading a Yagi antenna at

ô=0 or 0=n has similar effects on the antenna characteristics-

For simplicity we assume that the current distribution is of

the form

Ii(O) = rf cos nÖ' (34-1)

That is we are assuming that aII other modes are negligible

in comparison with the dominant nth mode t15l (for the end

fire array d.iscussed in this thesis we have used n=I mode).

Substítuting (34-1) into equation (3-18) yields, (for n=I)

N
ri (o) = -.!" rvli v3 + (-l)vTj "jr cos o ( 3A-2)

J=l-

ForaYagiarraywithon1ytheseconde1ementexcitedatÖ=0
and the rest of the elements loaded at Q-nr sr€ have

ri(Ot=vLrrvrcosQ +.,1.,v}: ri,:rJ{n) (34-3) ,,,,,
t=, 

,', , ,

From equation (34-1) we have Ir(n)=-t1. Substitution of Ir(n¡ ''t'i''""'..'

in (34-3) gives

,ï * -Ï, "li 
,î,: rl = 

"!.r"1, 
(i=1,2,...N) (34-4)

J=I
l2
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The above system of inhomogeneous equations gives the current

distribution on each loop loaded at Ó=T.

Now assume that the array is loaded at Ô=0, instead of at

0=n, and loads are replaced by short circuits at Ô=n. Equation

(34-2), therefore, changes to . 
".'

'':-:-l-.

ïi(ol = v]rv! - -T" oi: ,1, rj(o), i=1,2,---,N (3a,-s)
l=r
/2

,. i,..,, ,,.,-,-

substitution of r, (0) = r1f in (34-5) gives ''''.",...1

1Nri * ..:., vii '1,:rl = oîr'2 (34-6) '

l=f
l2

The system of inhomogeneous equation (34-6) gives the current 
l

distributiononeach1oadede1ementatÔ=0.Itisobviousthat

the results of (3Ã,-5) and (34-6) will be the same if ,Ii = ,?,t

which verifies the results obtained in Chapter ÏII.

l.rl!r:..!::ìjrl ,l

i. ,: :.i,..,r.:;



153

APPENDIX IV.A

In deriving equation (4.5) it was assumed that

æ rTÍ jmþ*
G = z-,b, r rl | .o" nö.: e' 

-- 'i 
u., ( Qi ) dÖi - 0Lr a n=0 J- J_T 'l- l- -

The validity of this assumption j-s examined in this appendix.

Since Ui (ôi) is equal to zero everywhere except inside the

driving gapr lve find

whichfor n=m=0 gives

"o,o = 'r,ibi 5oi ï1 (4A'2)

andfor nt'm/ 0

sin(n 1 m) ôQr/Z
c- = Z-'b' rl 

- 

(4A.3)-n,m -Li"i *i (n t m)

For a small driving gap ôQi, the above relation can be

approximated to

G = Z-.b. 6ó. tl lzft rIIì ln ]_ a l-

and for n = 0 and m / 0 equation (4A,.1) yields (for smal-l

ô0i)

"0,* = *Z ,"ro, rl sin(m 6þi/2) g ,"ibi ï1 50i

Similarlyfor nl0 and rn=0 wehave

)c ^ = ! z- .u. rl sin (n 6ö. /2) = z- .b. rl ôô.IlrU n LI l- a 'l-' IJI- a l- 'a

6ó. /2
c = ; G^ - = Zrrb., ; rî f' 

't 
cos nQt cos mQ. ¿oi

n=C rlrlll LL t ,.r=0 a )-Aþi/Z

(4A . 1)
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Hence, for any n or m the results of the integration is

50i, SÍnce 50i_ is small, and for a practical magnitude of

ZLi, the contribution of (44.1) to equation (4.3) can be

neglected.

l:.:.:.:.::':

..:: - :1. .-
:..4 .':'..

i .'l:.:, ì.. 
.

i:ì; ;,.'.'r
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APPENDTX IV.B

Another method to determine the efficiency of an array

of circular coaxial loops with continuous impedance loading

is given in this appendix. The approach given in Chapter IV

is general and is applícable to any antenna type. The fol-
Iowing method is only applicable to those antennas for which

the real part of the input admittance is precisely known.

The Fourier seríes solution for the currents of circurar loop

arrays provides the exact value of the input imped.ance.

Therefore, the following method can be applied to circular
loop anÈennas.

(48.1)

lrl: 1: :::{

it ::' l
:::riì.:'..

The efficiency of

P

P^ + P P.D r -j-n

the dissipated po\der given in
power calculated from

an antenna can be defined as

D-D
r_n t)

(4.2I) and Pi'

efficiency =

where PO is
is the input

P. =Ln
-N
+ ne(Yil lv, l'

l-- r
(4B .2)

where Y.: is the input admittance of the ith el-ement. A
l_

substitution of (4.2I) and (48.2) into (48.1) gives rhe ef-
ficiency in the form 

^.,

efficiency = 1

X tb.R-. î I e rll
i = I l- Irl- n=0 n l--

(48.3)
N

Re (yit lv, l,
l-=I
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APPENDIX (VI-A)

In this appendix it is shown that the reflector and

exciter size can be used to improve both the gain and the

bandwidth of circular-loop Yagi arrays. Based on the integral

equation method, explained in Chapter I, a computer program

is prepared to study the array characteristics. The program

is used to study Yagi loop arrays with L4 directors of equal

size and spacing. Figure (64-1) shows the variation of the

array gain rdith frequency. Curve a is for an array that

has no reflector and has an exciter equal in size to its

directors. Curve b is for the same array, but with a

reflector equal in size and soacing to the other array elements.

It is interesting to see that the gains of these arrays have

a similar behaviour as a function of frequency and the gain

of the array without a reflector is about 1 dB more than

the gain of the array with a reflector. This suggests that

the reflector in the array of curve b is not placed at an

optimum location. However, by modifying the reflector spac-

ing and with further examination of the array gain, it was

found that the gain of the array does not change significantly

with the reflector spacing. This seems to validate the

assumption of Shen and Raffoul tlsl that the reflector has

a negligible effect on the forward radiatíon. This assump-

tion is, however, only valid as long as the reflector size

is equal to that of other array elements.

The reflector, generally, reflects part of the primary

field of the driven element rvith a phase change which depends

'¡'.:.:.: : ?
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on its size and spacing. Loop antennas with kb : It where

k and b are the propagation constant and the loop radius,

exhibit inductive or capacitive impedances, depending whether

kb is larger or smaller than unity. ïn addition, the array

induction field also affects the phase distribution. One,

therefore, expects that for reinforcement of the forward

radiation field, the reflector should hÞve a size larger than

the directors. This expectation is verified by the rernaining

curves of figure 2. Curve c depicts the behaviour of the

gain for the, above arrays, when the reflector is larger than

other elements by a factor of 1.1. It is seen that the array

ga\.n is increased by about 2.5 dB, but results in a corres-

ponding bandwidthreduction. Usingthe above argument for the

loop impedance one can expect that the array gain can also be

improyed by increasing the size of the exciter. This j-s ver-

ified.in curve d, where the reflector and the exciter size

are increased respectively to I.2 and 1.1 times that of

directors. itot only the gain is further increased, but also

the bandwidth of the arrays is now comparable with those of

curves a and b. It is interesting to note that the gain of

this reflector and exciter combination is about 3 dB larger

than that of the array without a reflector shown in curve a.

This indicates that the reflector-exciter combination has

almost optimum dimensions and a further increase of their
size should reduce the array gain. Curves e and f illus-
trate this conclusion, as the array gain reduces continuously

as the reflector size is increased. An additional interesting
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result is the kink on all curves at about 2L5 ItHz. A similar

kink is al-so reported for dipole Yagi arrays 1231 and is

believed to be due to the same reason.

In summary, the gain and the bandwidth of any Yagi

array can be j-mproved by a proper selection of the reflector 
. .,.,

and exciter size. By an optimum reflector*exciter combina-

tion, which normally requires larger elements, âs much as

3 dB improvement in the gain over that of an array without 
,.,,,,,.,

a reflector can be obtained, Since a concentric loop Yagi i,:r,"..,ì

array operates in a similar manner, the reflector and the ', ,

exciter size of this antenna can, therefore, be utilized to

further improve its gain and bandwidth.
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