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Abstract

This thesis is concerned with complex wave digital filter (WDF) realizations of the
most common classical lowpass filters such as Butterworth, Chebyshev and Cauer (ellip-
tic) filters. The direct design method of Gazsi [8] based on lattice WDFs which applies to
odd-order lowpass filters is summarized in detail. That method is then generalized to
even-order lowpass filters using the theory of complex lattice WDFs. In this regard, an
even-order lowpass transfer function is decomposed into two complex allpass functions
giving a lattice configuration and each lattice branch is realized by cascaded complex first-
degree allpass sections. Two realizations of complex first-degree allpass sections are pre-
sented, one with a real two-port terminated by a modular multiplier in series with a delay
and the other with a cross structure terminated in a delay. The cross structure (adaptor) has
the property that it remains pseudolossless with the quantization of the multiplier coeffi-
cients. Using available explicit formulas, a direct design method and some design exam-
ples are given for even-order Butterworth, Chebyshev and Cauer(elliptic) filters. The
design process includes an optimization of the wordlength (the number of digits) used in

the coefficients.
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Chapter 1

Introduction

A digital filter is a computational structure derived from a difference equation that
produces an output discrete signal (output sequence) from an input discrete signal (input
sequence). Each digital filter simulates a linear, shift-invariant discrete time system and is
specified by an input-output relationship in either the time or the frequency domain, that
filters out a given frequncy range and passes the remaining frequency range (called the
passband). The computational structure can be implemented by either a computer program
on a general-purpose computer or by a dedicated single chip realization.

Because digital filters are only implemented in a finite precision arithmetic, signal
and system coefficients must be approximated, and errors can arise from coefficient quan-
tization, rounding errors and overflow. These errors are termed finite-word-length (FWL)
effects. It is well known [1], [22] that a digital filter structure that has low passband sensi-
tivity to coefficient quantizations also generates low level rounding noise. Therefore, in
designing a digital filter, a structure with low passband sensitivity to coefficient quantiza-

tions is preferred. Otherwise, higher accuracy and longer wordlength have to be used.
Unfortunately, the traditional method of direct realization of the transfer function H (z),

which uses the coefficients of H (z) as the actual multipliers, suffers from high sensitiv-



ity to coefficients and other FWL effects. There have been several methods developed to
reduce FWL effects but the choice is usually difficult due to several available tradeoffs in
these approaches.

An alternative to the conventional approach is the wave digital filter (WDF)
approach, introduced by Fettweis [1]. WDFs are modeled on classical analog filters
(called reference filters) in lattice or ladder configurations, but use wave quantities as the
signal variables. Because resistively terminated lossless analog networks have low sensi-
tivity to coefficients, the same properties are carried over to WDFs. Specifically, properly
designed WDFs preserve some of the good properties of passive lossless reference filters
and have, for example, low passband sensitivity properties which reduce the accuracy
requirement and thus the wordlength needed for the multiplier coefficients and also lead to
good dynamic range performance. In addition, they have excellent stability properties
even under nonliner operating conditions resulting from overflow and roundoff effects.
We refer to the review paper by Fettweis [1] and the references contained therein for a
detailed discussion of WDFs and their advantages.

While there are many different possible structures for WDF realizations of the classi-
cal reference filters, it is well known that explicit formulas exist for some of the struc-
tures, which make the design process direct and simple. This is particularly useful for non-
expert designers who are not familiar with the intricate techniques of the classical network
theory used in the design process. Using some explict formulas available for the most
common lowpass filters (Butterworth, Chebyshev and Cauer (elliptic) filters), Gazsi [8]
presented a direct design method for lattice WDFs where both lattice branches are realized

by cascaded first- and second-degree allpass sections. All coefficients are computed



directly from the design parameters. We note that this method applies to the odd-order
classical reference filters only, because an even-order filter cannot be implemented by real
lattice WDFs (see [14]).

For an even-order low-pass transfer function (in the z-variable), Vaidyanathan, Rega-
lia and Mitra [14] introduced a method that decomposes it into two complex allpass func-
tions giving a lattice configuration. From this structure and a generalization of WDF to the
complex domain, Scarth and Martens [3] presented a complex WDF realization of even-
order classical reference filters (such as the Butterworth, Chebyshev and Cauer filters) by
implementing the complex allpass function in each lattice branch through an extraction
process with complex two-port adaptors and delays.

In this thesis, even-order classical filters will be implemented in lattice complex
WDFs (CWDFs) where both lattice branches are realized by cascaded complex first-
degree allpass sections. A direct design method will be given for even-order classical ref-
erence filters such as the Butterworth, Chebyshev and Cauer filters. The design process
includes an optimization of the wordlength (the number of digits) used in the coefficients.
In comparison with the method of Scarth and Martens [3], where the complex allpass
function in each lattice branch is implemented by recursively extracting a lower degree
allpass function, the cascade approach to be presented here is more direct and straightfor-
ward. In particular, the implementation of a first-degree allpass section in the cross struc-
ture leads to a single coefficient [10], which is very useful in the optimization of
wordlength and maintains the pseudolossless of the structure.

In Chapter 2, we briefly describe the real WDFs in the lattice structure and the method

used in [8] to realize odd-order classical filters. The implementations of first- and second-



degree allpass sections by means of three-port circulators will be presented in detail, and
in Chapter 3 it will be generalized to the complex case.

Our main results are given in Chapter 3. First, in Section 3.1, we describe the method
of [14] that decomposes an even-order low-pass transfer function into two complex all-
pass functions in lattice structure. Then a corresponding CWDF theory is given in Section
3.2. Section 3.3 gives the realization of a degree one allpass section by complex adaptors.
Section 3.4 describes transformations between the variables. Section 3.5 presents synthe-
sis using cascaded allpass sections. Finally, in Section 3.6, a process to optimize the word-
length of the cross adaptor coefficients is given.

In Chapter 4, we give the design procedure and examples, and in Chapter 5 the con-

clusions.



Chapter 2

A direct design method for real WDF

The main purpose of this thesis is to present a complex lattice WDF realization for
even order classical lowpass filters and a direct design method (see Chapter 3). This is a
generalization of the method in [8], which is described in detail in this chapter. In [8], a
direct design method is given for lattice WDF realizations, where both lattice branches
are realized by cascaded first- and second-degree allpass sections with real coefficients.
Odd-order lowpass digital Butterworth, Chebyshev, and Cauer filters can be implemented

using this method.

2.1 Structure of the lattic realization

WDFs are derived from real lossless reference filters using voltage wave quantities
[2]. Consider a two-port (Figure 2.1) where for port i (i=1 or 2), the voltage is V;, the cur-
rent /;, and the port (or normalizing) resistance R;.
Then the the incident and reflected wave quantities A ;and B;, and the incident and
reflected wave vectors are defined by

A, =V,+RJI, B, =V,-RI, i=1,2 (2.1a)



o U <2
— B e —_— _
o 1 B2 5

Fig.2.1 A two-port N with port resistances Ry and R,

a= {Al} b= [Bl} (2.1b)
A2 B2

The incident and reflected wave vectors are related by the scattering equation [15]

and

b= Sa 2.2)

where S is called the scattering matrix:

S S
g |71 012 (2.3)
Sa1 S22
We assume that the two-port N is symmetric and reciprocal, i.e.

S11 = S S12 = 81 (2.4)
Next, define reflections §; = s;,—5,,, S, = s;; + 847 - Inview of (2.3) and (2.1b), the
individual equations of (2.2) can be written [15] as
2B = §;(A;-A,)) +S5,(A; +A) (2.5)
2B, = =S, (A -A,) +5,(A; +4A)) (2.6)
These equations lead to the Lattice realization of a WDF shown in the following Figure

2.2(a) (with the wave quantities as the input and output)
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Fig. 2.2 (a) Wave-flow diagram of a lattice WDF.

(b) Simplified wave-flow diagram.

The correspondence between a WDF and its reference filter is established in the fre-
quency domain, not in the time domain. However, we can not simply carry over the com-
plex frequency p from the reference to the digital domain since, in the latter, transfer

functions are not rational in p. Hence, a complex frequency variable, v, is usually



adopted. The simplest and most appropriate choice for v is the bilinear transform of the
z-variable, i.e.,

T
eP

v =221 _ tanh (T /2) z (2.7a)
z+ 1

T=1/F (2.70)
where F is the sampling frequency.
In both lattice branches of the lattice WDF (Figure 2.2), S, (y) and S, (y) are all-

pass functions. Consequently, they may be written (except for possible sign reversals) in

the following form [8]:

81 (=v)
S, = 2.8
! 81 (v) (282)
and
8, (V)
S. = 2.8b
2 8r (v) ( )

where g, (y) and g, (V) are so called Hurwitz polynomials[24] of degree N , and N,.

Further, the transfer functions that are realized by these WDFs are given by

S, +S h

S11 = Spp = 12 g ggxg (2.9)
AV Y

Sip = 5y = 2ot = gﬂ(‘\% 2.10)

where 2 (y) , f(v) and g (y) are the so-called canonic polynomials [23], [24].

From (2.8), (2.9), and (2.10) we see that

g(v) =g, (W)g, (v (2.11a)



h (y)

%{gl (-¥) &, (W) +8, (V) g, (-¥) } (2.11b)

i

) = 348 (W&, (-0) — g, (-9) 8, (1)) 2.110)
g (v) is a Hurwitz polynomial of degree N, where N = N N,

The degree of the lattice WDF is the sum of the degrees of the two reflectances S, and
S, . For the case of real coefficients, N must always be an odd number [15].

It is also known that the zeros of the polynomials g, (W) and g, () are alternately

distributed in a [8] (see Figure 2.3). This property allows the determination of g; (v) and

/
X
X
X
%)
5
X
X
X

Fig. 2.3. Alternating distribution of the zeros of the polynomial g; and g,.

8, () from g (y).

A

\)

2.2 Design of lattice WDF



In this section we discuss how to realize allpass functions S, and S,. An allpass func-

tion can be synthesized by several different methods. Here, let us consider the realization
as a cascade of elementary sections by means of three-port circulators [2]. We consider the
elementary sections of first- and second-degree.

2.2.1 The determination of the multiplier coefficient of a section of degree one

A section of degree one has a reflectance of the form:

-y +B,
S = VB, (2.12)

It is known, and we prove below, that, using two-port adaptors, the corresponding wave
digital realization has an equivalent wave-flow diagram as shown in Figure 2.4, where the

coefficient vy, is

0 (2.13)

Fig. 2.4 Adaptor representation of an allpass section of degree one.

Proof: First, consider the interconnection of two two-ports, with port resistances R and R,

(see Figure. 2.5). The wave quantities are related to the voltages and currents by

10



i Iy

O > O - )
+ +
Vl V2
o) o 0
R; Ry

Fig. 2.5 Direct connection of two two-ports.

a; = v, +R i,
b, =v,-R,i,
Ay = vy +R,i,
by, = v,-R,i,
Since the two ports are simply connected, we have
v, =V,
i
Substituting (2.15a) and (2.15b) into (2.14c), we get
a, = vi—R,i,

From (2.14a) and (2.16), we get

) a,—a,
I =-
R1 +R2
R2a1 +R1a2
v TR e—
1
R1 +R2

Substituting (2.17a) and (2.17b) into (2.14b), we get

11

(2.14a)

(2.14b)

(2.14¢)

(2.144d)

(2.15a)

(2.15b)

(2.16)

(2.17a)

(2.17b)



b, = a, +Y (ay~ay)
and substituting (2.17a) and (2.17b) into (2.14d), we get
by = a +v,(a,-ay)

where

S
I
=

Also from Figure 2.4, we have a, = z_lb2

Substituting (2.19) into (2.18a) and (2.18b)
-1
by = (1+v¥p)z by—"a,

1
by = Yz by+ (1-vy)a,

From (2.20b) we get

1-—
b, = — 10

— _lal
1~y0z

Substituting (2.21) into (2.20a)

S =

-1
br_ 2 %
a 1

1 1- yoz_

Substituting (2.7a) into (2.12)

. .1 1-B,
s DT _1+B,
B z—1 N 1-B, _
178 1- o

z 1 +B,

Comparing (2.22) and (2.23), we get

12

(2.18a)

(2.18b)

(2.18¢)

(2.19)

(2.202)

(2.20b)

(2.21)

(2.22)

(2.23)



1-B
o= 118

0 (2.24)
0

This completes the proof.

2.2.2 The determination of the multiplier coefficients of a section of degree two

N —
2

Each of the ! sections of degree two has (as we shall prove below) a reflectance

of the following form:

2
v ~AN+B;

S (2.25)

wz +A¥ + B,
It is known [8] that the corresponding wave digital realization has equivalent wave-flow

diagrams as in Figure 2.6, where the coefficients are given by

A,-B,-1
hi-t T ZTE AT (2.262)
1 1
and
=B 2.26b
where i = 1, 2, ,]L_—-l
2
Port 1 Port 2 Port 3
O—»— ¢ T O
ay ay l b3
) -0
Y2i-1 Yai
Ot—] I N
bl b2 a3

13



fo SR — e s —
aq t:h) b3
O Lo
i §Y)
Y2i-1 | i i
bl b2 a3
(b)

Fig. 2.6(a), (b) Equivalent wave-flow diagrams of the ith second-degree allpass section.

Proof: first, asin the degree-one case, we have

by = a,+v,; | (a,~a;) (2.27a)
by =a,+v,;_,(a,—ay) (2.27b)
by = ay+Y,; (a,—as) (2.27¢c)
by = a3 +Y,; (a,—as) (2.274d)

Also from Figure 2.6(a), we have

a, =z by (2.28a)
ay = b, (2.28b)
a, =7 b, (2.28¢)

Substituting(2.28¢) into (2.27d)

1-v,;

by = 143

- L (2.29)
1~z

Substituting(2.28c), (2.29) and (2.28b) into (2.27c)

_1 ;
by = (1+v))z [ — _"1]43“72ia3

14



- —;bz (2.30)

Substituting(2.30) into (2.28a)

-1

1l T =Yy

a, -z 1(——72_’1}92 @2.31)
1=7,2

Substituting(2.31) into (2.27b)

-1
(I=v;_ )z +V2ﬂ’2i—1‘vzia

a, - Za, (2.32)
2+ Y1 = Y2 = Yoi_12
Substituting(2.32) into (2.27a)
b — +9,. (Y —l)z:"1+z—2
S = a_l _ 2i—-1 2i 21—1—1 . (233)
Lol m (Vg =Dz =¥y 42

Also, substituting (2.7a) into (2.25)

) -a(57)
(z+1 A 7+1 +B;

i) Al 51)
(z+1 +4, z+1 *B

(1-A,+B)7" + (2B,~2)z+ (1+A,+B)

S=

(1+4;+B)z" + (2B,~2)z+ (1-A, +B))

A-Bi-1 2D .
A +B+1 A+B+1° 7F 030
-~ 2(B,-1) | A-B-1, '

[t A e Mt
A+B+1° “A+B+1°

15



Comparing(2.33) and (2.34), we get

b = il (2.35)
2i-1 A +B,+1 )
and
By - 2Bi-b 2.36
Vil =D = g ST (239
l 1
Substituting (2.35) into (2.36), we have
1-B,

T, = 1+Bl. (2.37)

I

This completes the proof.

2.2.3 Synthesis using cascaded allpass functions
We now discuss direct design methods for lattice WDF realizations of the classical fil-
ters using the first- and second-degree allpass sections.

Consider one of the Butterworth, Chebyshev or Cauer parameter (elliptic) reference fil-
ters. Let g () be given in the product form

(N-1)/2 5
(W) = (w+By ] (w +wA,-+BJ (2.38)

i=1

From this, g, (¥) and g, (y) can be obtained using the alternating property relating to

the distribution of the their zeros. Thus the allpass functions S, and S, can be written as

the following product of sections of degree one and two.

16



2 2 : 2
-Y+By, ¥y -VYA,+B, Vv -VyA,+B, Y -WYA, + B,

S (y) =
1
v+ B, wz+wA2+B2 w2+\uA4+B4 w2+wAk+Bk
2 2 2
s (v) YV -VA +B, ¥ -VyA;+B, Y -YA, +B,
2 = * e T
\U2+WA1+31 \u2+wA3+B3 w2+wAl+Bl
where
N-1 N-3 N - N-1
2= ——— = k= —_— [
k 5 , [ 5 , Or 5 , 1 5

All adaptor coefficients can be computed by (2.13) and (2.26). Using the cascade synthesis

of these elementary sections, realizations of §; and S, are obtained, which leads to the

corresponding block diagram for the filter given in Figure 2.7.

In the most common cases, i.e., for Butterworth, Chebyshev and Cauer (elliptic) refer-

ence filters, A ;» B; of (2.38) can be obtained by the formulas given in [8] and [19]. So the

construction of explicit formulas for the above structure of a WDF is availible [8]. We

note that all these filters are odd order and have real coefficients.
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Input 1/
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» cee Complementary
. = -1 output
] "y
" OYN-2
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Y2 -3
Oi'yYN—l

:

Fig.2.7. Block diagram of the lattice WDF with cascaded allpass sections

forN =5,9, 13, ... (as the top structure), or N =7, 11, 15, ...(as the

bottom structure).
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Chapter 3

A direct design method for complex WDF

This chapter presents complex wave digital filter (CWDF) realizations of even-order
classical reference filters. We discuss how to decompose an even-order transfer function in
the z-variable into a sum of two complex allpass functions in Section 3.1. The correspond-
ing CWDF theory is given in Section 3.2. Section 3.3 gives a realization of a degree-one
allpass section by a two-port adaptor with a delay. Section 3.4 describes transformations
between the variables. Section 3.5 presents synthesis using cascaded allpass sections.
Finally in Section 3.6, a process to optimize the wordlength of the cross adaptor coeffi-

cients is described.

3.1 Decomposition of an even-order lowpass transfer function

In this section, we discuss decomposing a general even-order digital filter transfer
function G (z) in the z-domain into the sum of complex allpass functions. The method

was introduced in [9] and we will show how this idea can be used to implement even-

order filters.

Consider a stable transfer function G (z) that is real-valued for real z and satisfies
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IGL ej w)l <1, for all real w, where 7 = ¢ . Such transfer functions are said to be
bounded real. There exists a certain class of bounded real transfer functions (including the
classical filters discussed in Chapter 2) that can be implemented in the form of a parallel

interconnection of two allpass filters A, (2), A,(z) (Figure 3.1) [9] with real coeffi-

cients. This observation was first made in connection with wave digital filters [15]. The
allpass functions can be implemented as a cascade of lossless lattice structures (see Chap-
ter 2). The key point concerning the implementation as a sum of two allpass sections is

that each allpass function can be implemented as a cascade of first-degree allpass sections.

\

Al (Z) 4

A o

X(2) A @ Y(2)

Fig. 3.1 Parallel connection of two allpass sections.

There are certain conditions that a bounded real transfer function G (z) has to satisfy

in order to be implemented as in Figure 3.1. In particular, let G (z) be an Nth-order low-

pass transfer function of the form

_ P
G(z) = D) (3.1a)
where
-1 -N
P(z) =pytpiz +...+pyz (3.1b)
-1 -N
D(z) =1+djz +..+dyz (3.1¢)
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Here, p,,d, (n = 0,1,2,...,N) arereal and P (z) is a symmetric polynomial, i.e.,

P(z‘lj - P () (3.2)
It can be shown that N has to be odd so that an implementation in the form of Figure 3.1 is
feasible [9]. For example, odd-order --but not even-order-- lowpass Butterworth, Cheby-
shev, and Cauer filters can be implemented as in Figure 3.1 (the corresponding lattice
WDFs diagram was given in Figure 2.2).
So for even N, an implementation in the form of Figure 3.1 is impossible. Here, we
describe a modification given in [14] for the case of an even-order lowpass function

G (z) . Specifically, we decompose G (z) into a sum of allpass functions A 1 (z) and
A, (z) with complex coefficients [9].

Consider an Nth-order bounded real function G (z) = P (z) /D (z) asin (3.1) given
in minimal form (i.e., no common factors between P (z) and D (z) ). Assume that P (2)
is a symmetric polynomial satisfying (3.2). Let H (z) be a bounded real function with the

same denominator D (z) . Then

-1 -N
Q(z)  90t91Z2 +---qp2

= 3.3)
D (2) 1+ a’lz_1 + ...sz—N

H(z) =

such that {G (z), H(z)} are a power-complementary pair, i.e., satisfy
o )2 ‘o )12
IG( e]le + IH( e""JI -1 (3.4)
Such an H (z) can always be constructed by finding a spectral factor Q( ¢ (DJ of the pos-

o )2 o )12
itive function (’D(ej w)l - IP(e] mjl ) In many filtering applications, it is possible to
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find a spectral factor Q(z) such that Q(z) is symmetric.
So assume that P (z) and Q (z) are both symmetric. We know that, by analytic con-

tinuation, (3.4) implies
G(2)G(2) +H(2)H(z) = 1 (3.5)
except at the poles, where G (z) and H (z) are the functions obtained from G (z) and

H (z) by replacing z by z_l and all complex coefficients are conjugated. Also, from

(3.1a) and (3.3) this implies

P(2)P(2) +0(2)Q(2) = D(2)D (2) (3.6)

Since P (z) and Q (z) are symmetric, we can write

P(z) ="P(2) 0(z) =20 (2) 3.7)
Then (3.6) becomes
2 2 -N -1
P (2)+Q (2) =z D(z }D(z) (3.8)

which can be decomposed as
[P() +iQ@1IP () -j0 @1 =Dl o 39

Let {z, z,, ..., z,} denote the zeros of D (z) . None of them can be real for the follow-

ing reason: If z, were a real zero of D (z), then it would certainly be a zero of
P (z) +jQ(z) or P(z) —jQ (z) . Assume for example, that P (z,) +j0Q(z,) = 0. Since

z, isreal and P (z) has real cofficients, P (z,) isreal, and sois Q (z,) . Accordingly, we

musthave P (z,) = Q(z,) = 0.In particular, this implies a common factor ( 1- z_lzr)
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between P (z) and D (z) , which has been ruled out earlier.
All the above 7, ’s occur in complex conjugate pairs (since D (z) is a polynomial with

real coefficients ). Hence

M

— - - N
D(z) = kl;Il(l—Z Izk)(l —<Z lzk"") . M= ) (3.10)
As a result, (3.9) can be rewritten as
[P(2) +jQ(2)1[P(2) —jQ(2)]
M
= Z—NH(1~Z_Izk)(l—z—lzk*) (1-2zz,) (1-zz,%)  (3.11)
k=1

Since P (z) and Q(z) are symmetric polynomials with real coefficients, the zeros of
P (z) +j0O(z) occur in reciprocal pairs, as do the zeros of P (z) — jQ (z) . Moreover, if
z,is a zero of P (z) +jQ (z) , then its conjugate z,* is a zero of P (z) - jO (z) . In con-

clusion, the zeros shown on the right-hand side of (3.11) can be assigned as follows:

P(2) +jQ(2) = kz”MH (1 ~z_1zk)(1 - 22;) (3.12)
k=
M
P(z) -jO(z) = X*z_MH (l—z"lzk*)(l - 22, %) (3.13)
k=1

where A is a complex unimodular constant. Dividing both sides of (3.12) and (3.13) by

D (z) in (3.10), we get

-1

M
Z —Z
G(2) +jH(z) = M [ —=% (3.14)
k=11-2z z,*
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G(2) -jH(2) = H _Z" (3.15)

k—1l-z zk

Thus, G (z) and H (z) can be written as linear combinations of stable allpass functions

G(2) = %[Al(z) +A,(2)] (3.16)
H(z) = zij[Al(z) A, ()] (3.17)
where
"1

A(2) = kH (3.18)

foil-7 g
A, (2) = x*H _Z" (3.19)

_11—2 Zk

Note that A (z) and A, (z) have complex coefficients, and the coefficients of A, (z) are

the conjugates of the coefficients of A, (z) . Figure 3.2 represents the allpass decomposi-

tion scheme.

Ay (z)

Y

-1 0.5 G(z)

\

A, (2)

0.5j H(z)

Fig. 3.2 Implementing the allpass complementary pair.

Also, since the coefficients of A, (z) are complex conjugates of those in A, (z),itis
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only required to implement A, (z) if the input is real. The real part of the filtered output

sequence is the output corresponding to G (z) , while the imaginary part of the output

sequence of A, (z) is the output corresponding to H (z) as in Figure 3.3.

I e 1)) G(2)=Y (2)iX(z)

b > yin) y(n)=y,(n)+jyi(n)

x(n)

real o——>| A1(@)

Fig. 3.3. Implementation of G(z) by means of a single complex allpass function.

In summary, given any bounded real function G (z) = P (z) /D (z) with symmetric
numerator P (z) , we can always obtain the implementation of Figure 3.1 or Figure 3.2 if
there exists a bounded real function H (z) = Q(z) /D (z) with symmetric numerator
Q (z) , such that (3.5), (or equivalently (3.6) ) holds. The above-mentioned conditions on

G (z) and H (z) can be found in a class of selective filters. For example, even-ordered
Butterworth, Chebyshev and Cauer digital transfer functions satisfy the above require-

ments.

3.2 The corresponding classical complex wave digital theory

In this section, we present a decomposition similar to that of Section 3.1 and similar to

that in [5] using wave digital theory. Therefore, the discussion will be in the v -domain.

In Section 2.1, we have discussed the classical wave digital theory and the scattering

equation. For a complex wave digital network, there is similarly a scattering equation and
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the scattering matrix given by [24], [23] as follows.

Bl} =S Al} (3.20)
B2 A2

with the scattering matrix

S - {h Of;} . (3.21)
8|f —oh,

The polynomials f, g, & satisfy the following conditions:
M) f=f(y),g=gW),h = h(y) are real or complex polynomials (i.e. real or
complex coefficients) in the complex frequency variable v . The subscript asterisk denotes
paraconjugation, i.e., f, (V) =f* (-y*) where the superscript asterisk designates com-
plex conjugate. For a real polynomial f, (v) = f(—y)
(2) g(y) is a Hurwitz polynomial.
(3) f,g,and A are related by

88+« = hh, +ff. (3.22)

(4) o isaconstant with || = 1, therefore for a real constant either 6 = 1 or ¢ = —1.

For real polynomials f, g, and %, we know that in the reciprocal case:
f= of. (ie. 515 = 55) (3.23)
and in the antimetric (antisymmetric) case:

h=och, (ie sy =-s;) (3.24)

Under the conditions (3.23) and (3.24), (3.21) becomes
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B" f } (3.25)
-

W+ f = cgg. (3.26)

and (3.22) becomes

I

For the real case g, (¥) = g (-y) ; let us consider:

Y =0:2.(0) = g(0) (3.27)
Then from (3.26), we have
B (0) +£(0) = 62(0)g.(0)= 05’ (0) (3.28)
which shows ¢ = 1.
Let the degree of g be n, and its highest coefficient be g ,» then

g:, = (-D'g, (3.29)

Since the highest coefficient of n o+ f2 must be positive, the highest coeficient of gg.,

must be positive. Then we get
n n 2
0<g,8:, = (1) 78,8, = (-1 g, (3.30)

and thus, » must be even.

Also, with o = 1, (3.23) becomes f = f,, (3.24) becomes % = h, . Therefore fand A

must have even degree.

Thus we have
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2 2 . .
ho+f= (h+]jf) (h=jf) = gg. (3.31)
which will be required for the decomposition derived below. We can assume without loss
of generality that f and g are relatively prime, then g can not have real zeros; because if

g8 = 0 for v, real, then A (y,) and f(y,) are real and both must be zero from

(B.31),ie. h (yy) = 0 and F(¥y) = 0, which implies f and % have a common zero

which has been ruled out. (Note that a similar proof of the corresponding result in the z-
domain was given in Section 3.1.) Thus g cannot have real zeros and the zeros of (3.31)

must appear with quadrantal symmetry ( gg. is an even polynomial). Without loss of gen-

erality assume f is monic. Let
n/2

gw) = k[] (w=w,) (w—vy;) (3.32)

i=1
where Re {y;} <0 and £ is real.

Substituting (3.32) into (3.31)

B () +£ (9) = (F9) +B (W) (FOW) = jh (¥))

n/2

= ET] w-v) (w=v) (v +v,) (v +w*)  (3.33)
i=1

Let

_n/2
v(w) = k" TT (v (- (3.342)

i=1
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then

_n/2
va(y) = ke’ T () (w-v) (3.34b)
i=1
and
VW) va (W) = g () g. (¥) (3.35)

We can identify f(v) +jh (y) with v (y) and f(v) —jh () with v, () . The factor
¢ o remains to be determined from a given f and g .

FO9) = 20 (W) +v. ()

_n/2 L 172
_ g[efe IT w+v (- + e T (w+wy <w—w,->} (3:36)

i=1 i=1

BOW) = 5 (W) v (9)
k .911/2 'en/2
= Q_j(e] H (W'i'wl'*) (W‘W,‘*) —e_J H (\]f+\jfl.) (\lf_.wi)j (3.37)
i=1 i

Dividing both side of (3.36) and (3.37) by g () in (3.32)

£ _ 1[ef9"1/12"’+"’f*+e—fe'ﬁ vy,
g(y) 20 v, Sty (3.38a)
n/2 2 n/2
, T I U
h(wi — %[ejeﬂw —Wl e ]eH W W;] (3.38b)
gLy AN Al & R A S
Let
n/2 .
. A
A (y) = eJQH\::,_\Z,’, (3.39)
; l
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n/2 W"'W;’

A, () = e : (3.39b)
TR | Ran

Then we can write
JSy) _ 1
LoD = 5, () + 4, (¥)) (3.402)
UGN 3.40b
T = 3 A =4, () (3.40b)

To complete the determination of A, (y) and A, (v) from f(y) and g (), ¢ ® is eval-

uated from
g(oo) = %(eje+e_jej = cos© (3.41a)
’é(oo) - zij(e"e_e“jej — sin® (3.41b)

If A is unknown, we can calculate g (o) and g (0) to evaluate ej e.

Also, corresponding to the odd case, the poles of even-order A 1 (¥) and A, (y) are

alternately distributed in a cyclic manner{12] (see Figure 3.4). Again, this property will be

used to determine A, (V) .
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Imy

Fig. 3.4 Alternating distribution of the poles of the polynomial A; and A,

3.3 Realizations of complex sections of degree one

To implement (3.40), we need to realize complex sections of degree one

vy

k

S(y) = . In the z-variable, a complex allpass section of degree one has a reflect-

ance of the following form:
S = — (3.42)
1 -z k*z
In [3], Scarth and Martens gave a realization of a complex WDF through an extraction
process with complex two-port adaptors and delays. Here we present a realization using a

complex two-port and a delay. Let us consider a complex two-port adaptor as in Figure

3.5.
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port 1

Fig. 3.5 A complex all-pass section of degree one.

Let

S = 1[h Of*} (3.43)
8\f —-oh,

be the scattering matrix where f, g, k are complex constants that satisfy the conditions

(3.22) in Section 3.2. Since g is a scaling constant, let g = 1 . Then

S - (h Of*} and [A2+1H = 1. (3.44)
f —oh,

From the scattering equation and the diagram, we obtain

b, = ha, +of*a, (3.45a)
b, = fa,-oh*a, (3.45b)
a,=7"'b, (3.46)

Substituting (3.46) into (3.45b), we have

a, = Z+J;h*a1 3.47)

Substituting (3.47) into (3.45a), we have
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by _ . offt _hto(hrar)s

. . (3.48)
a, 7+ oh* 1+ Gh*z
<+ g !y orh
=0 — = o . (3.49)
1 +oh*z 1 +oh*z
This is in the form (3.42). Let
b i, ie. h=—oy (3.50)
p k k
. . . i Jj8, )
Write Z;, O In polar form, i.e. Z, =re ,0 =¢ toobtain
0
W = 1-10? = 1= Lie [ = 1=+, F = 1= 2"
So
j(¢+91) 2 _j(ez“el)
S |~Te N1-r'e (3.51)
o, p
N1 —~r2e1 - re 70
Here, we consider two cases: first, 61 =0, 92 = 0; and second, 0, = -9, 92 = 0,.
3.3.1 Complex wave digital cross adaptor
Ifo, =0, 0, = 0, then
i 2
S | —re I-r (3.52)
1—r2 red®

We can scale S by introducing the transformation

i 1/ 2
1 10 —rejq) ANl = r2 Lo _reJ¢ d, L=r
DSD™ = 0 d . 1= 2 (3.53)
2 1- r2 reﬂq) d2 d 2 /¢

) 1—r re
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10

where D = 10 ,D‘1= 1
0d, 0 —

2

Let d, = Al —r2,then

1
-

pspi - |
1- r2 re

(3.54)

We note that the scattering matrix (3.54) is the same form as the complex cross adaptor

scattering matrix [10] if we let B = —re. The complex cross adaptor signal-flow dia-

gram is as shown in Figure 3.6(a). Expressing b, and b, as functions of a; and a, , we

obtain

b, = Ba, +a, (3.55a)

b, = —B*b, +a, (3.55b)

We can also write the relationship as

b, - Ba, +a, (3.56a)

2
by = (1181 Ja, - B*a, (3.56b)
The symbolic representation is given in Figure 3.6b. For the realization of CWDFs, this

complex cross adaptor offers several advantages. The two constants B and —B* differ
from each other only in the sign of their real parts and must have a magnitude less than
unity. So essentially, there is only one coefficient involved. A physical interpretation of the

complex cross adaptor is given by Martens [6] using the relationship between the hybrid
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a; O—>—— ———o0 b,
Ry >< R,
b O B ——=—0 a,
(b)
JXI i i2
o | b—o—» e — o
+ +
Vi 1§ n D Xo vy
: o I
(©)

Fig.3.6.(a) Signal-flow diagram of complex cross adaptor.
(b) Symbolic representation of (a).

(c) Physical interpretation of (a).

‘ ' . o Im {B} R,
matrix and the scattering matrix as shown in Figure 3.6(c), where X e T Re (B}’

_ Ry(1-Re{B})
2 Im{B}

The complex cross adaptor can be used to realize a complex allpass section of degree

,and n = 1-Re {B} .
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one. We know that a complex allpass section of degree one has a reflectance of the follow-

-1
ES -1
1 -z,%z

ing form S = and the corresponding signal-flow diagram of a wave digital

realization is given in Figure 3.7, where the multiplier coefficient is given by

B =z (3.57)

port 1

Fig.3.7 Adaptor representation of a complex cross allpass section of degree one.

Here, we check the pseudolosslessness property of the cross adaptor

S=[ B 2 1} (3.58)
L~ 1B -p*

Comparing (3.54) and (3.58), we have

B=——rej¢
Let
1 0 1 0
G={DH2- = 3.5
D) 0 12 0 12 (3.59)
I—r 1-|B]

The condition for pseudolosslessness is given as [3]

G=5TGs (3.60)
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To check whether (3.60) is satisfied, we note that

I 0
S*TGS=[B*1—|B|2} : [B IJ
U )0 T g LI

Br 1 10
B 1
- I -B 1 2 L-|BI2—BJ "o — 2 ¢
1Bl 1-|B|

Therefore, the complex cross adaptor structure is pseudolossless as expected.

3.3.2 Complex wave digital adaptor from real wave digital adaptor

If 91 = -0, 92 = Gl,then

2 2
S — —r Nl—r _ [l 3q;| —r l-r (3.61)
N1- ret® e d? 0 N1- oy

Similarly to the cross adaptor, we use scaling

0 ~r —ANl-r

pspl- |1 0 d, (3.62)

O e—.]q)
2
d2 1-r r
Al- r2
Lf:td2 =3 , then

1 _

pspiz [V O || = 1+r (3.63)
0 |1-r r

We note that this is the real adaptor scattering matrix with a unimodular multiplier, we

have the corresponding wave-flow diagram as shown in Figure 3.8.
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port 1

O

Fig.3.8. A complex two-port adaptor representation with a real two-port adaptor

and a unimodular multiplier.

3.4 Transformation from y-domain to z-domain

The complex wave digital filter realizations in Section 3.3 are all designed directly in
the z-domain for convenience. However, in the classical wave digital theory, transfer
functions are usually given in the W -domain, and so it is preferred to design the filters in
the r-domain. All the functions and their relationships in the z-variable described in
Section 3.1 can be easily transformed into the Y-variable by the bilinear transformation

1+ -1

z = ::f (v = Eﬁ ). This is a one-to-one transformation that maps the whole of 1 -

domain onto the whole of z-domain and vice versa. The imaginary axis in the \ -domain
maps onto the unit circle in the z-domain and the left and right halves of the v -domain
correspond to the inside and outside of the unit circle in the z-domain, respectively. The
point y = O transformsto z = l,and ¢ = o to 7z = —1.

Consider a complex allpass function of degree one in the 1 -variable

Yoy

3.64
v (3.64)

C(y) =
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From the definition ¢ = g—_l

e obtain in the z-plane

I_Z B3
—1+ ‘ % -1
147 ('\Vl-"—l)Z +(W,'4~+1)
Cz) = -1 B -1
-z —y —('\lfl-"‘l)Z “(W,"‘l)
1+7"
~1 W,'*'i'l
ot Z + o
_ [wi’"_lJ Yy -1
B P 4+1
V; 1+W, Zl
—1
Let
B=wii+1
Wi'_l
Then, we have
. _ P+l
V; g1
Thus, we get
y -1
C(2) =( B*—l) z +PB
B-1 1+[3"‘z_1

(3.65)

(3.66)

(3.67)

(3.68)

Therefore C (z) can be realized by the implementation of the complex cross adaptor of

Section 3.3 and a unimodular multiplier.

3.5 Synthesis using cascaded complex allpass functions

From the realization of real wave digital filter theory [1], [2], a chain connection of

allpass sections of degrees 1 and 2 can be obtained by means of three-port circulators ter-
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minated at one port by a capacitance or an inductance or by a parallel- or series-resonant
circuit. Similarly, a complex chain connection of first-degree allpass sections using three-

port circulators and constant reactance networks N,, N,, ..., N, , terminated in a

n’
capactance can be used to obtain an # th order allpass as shown in Figure 3.9(a). The con-

stant reactance networks N 1 N2 s eens N’Z are realized by the circuit in Figure 3.6(c).

€y
Nn
I
T
(RO V2 R
Ry
Nl N2 Nn
A.1=EO—>J RO I+O—>—J RO |—->—o— ® o @ —O—»———I ROI+O B2
R Ry
Bl G 0 - O - o— e o o —O - o] A2(=O)
(b)

Fig. 3.9. (a) An allpass complex two-port inserted between resistive terminations.

(b) General structure of the resulting complex WDF realization, N; to N,

are realized using cross adaptors.

Corresponding to the design methods for real coefficients WDFs in Section 2.2, in



this section we discuss direct design methods for complex WDFs. We implement an even-

order classical filter as a lattice CWDFs by decomposing it into two complex allpass func-
tions A, (z) and A, (z) (Section 3.2). Then each complex allpass function is synthesized
from the elementary complex first-degree sections. The elementary sections can be real-

ized by the method of Section 3.3.

—1

z +B
A (2) =xH =xH-—_k_
k—ll_zkz _11+Bk
M -1 M -1 -
D SR S . z +B.F
A () = M ]] lil =11 lil
k=11-2.2 k=11+P,z

where A is a unimodular multiplier.
The corresponding block diagram and the signal flow diagram for the complex multiplier

coefficient wave digital filter are given in Figure 3.10 and Figure 3.11.

Fig.3.10. Block diagram of complex cross WDF
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Fig.3.11. Signal-flow diagram of the complex cross WDF.

3.6 The optimization of complex cross adaptor coefficients

In realizing a WDF, we need to quantize the multipliers to a limited number of bits
for implementation in hardware. Generally, as the number of bits increases, more accuracy
is obtained. However, under the constraint of cost and efficiency, we would like to find the
minimal number of bits that could be used to represent the coefficients and preserve as
many as possible of the filter’s frequency response characteristics (the given specifica-

tions). This is carried out by an optimization process that searches through a set of param-

M
eters {B,} (which vary within specific ranges to increase or decrease the number of
i=1

bits) for an approximate design, that has minimal number of bits and satisfies the given
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specifications.
First, for each coefficient B, let Bi ~ B, be the number obtained after quantization

in b bits, i.e., it is the number obtained when BI. is expressed in binary form with round-

~ n n.
ing. Then B, can be written as the binary fraction B, = 2—;z B,, where n, and b are inte-

gers. Then b is the number of binary bits of n; and El. when they are represented in

binary form.

After an approximation of {3 ;+ has been computed and with K = [}, 7y, ...y iyl s

we use the finite search algorithm developed by Jarmasz [20] which consists of the follow-

ing steps:

(1) The bits of {3 ;» are varied within specified ranges and those {|§ ;} that satisfy
given specifications are recorded as solutions. Stop if a solution is found.

(2) Ifno solution is found, then b, the number of bits representing |§i , is increased.

To generate the different parameter sets {[5 ;» that vary within specified ranges in (1),

we let I’;l- be the numerator of B~i and ;2,. =n;+r; withr; e [—ei, g1,i =1(1)M where
g;,1 = 1(1)M, are positive integers. The digits r; are generated by counting from -,
to €;. The counting algorithm is presented in Figure 3.12 [20]. Define the offset vector

R = [r,ry ..yl
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The new vector B = [[i, B~2, s B;,I = ibf{ can be computed from

2
K=K+R = [n, +r,ny+r,, s My 7y
B is tested to determine if it satisfies the design specificiations.
From Figure 3.12, it is easy to see that the value for COUNT, when END is reached,
is

M
COUNT = [] (2¢;+1) = COUNT,

i=1

There exists a one-to-one correspondence between the integer set

{i=1(1)COUNT, ,} and the offset vector R generated by the algorithm in Figure

3.12. To illustrate, consider the case M = 2, g, = &, = 1. We obtain

2
COUNT, . = H 3 = 9 and the correspondence between R and COUNT is shown as

i=1

Figure 3.13. The numbers r, r; were generated sequentially using the alogrithm in Figure
3.12. For each offset vector R = [r},7,] generated, a corresponding K = [n~1, n~2] is

obtained. The results for K = [n,ny] = [4,7] are also given in Figure 3.13.
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Y
R=[0,0,...,0], COUNT=0

[

A J
1=0, COUNT=COUNT+1

L

/

1=1+1

A

I, = l'i+1

Ili=al YES

NO

I=r1- (28i+1)

o

YES +<
NO

RC100, .. 0]

( END )

Fig. 3.12 Flowchart for generating all possible R vectors.
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COUNT| 1 1 m, m
1 0 1 7 5
2 1 -1 8 3
3 1 0 8 4
4 11 8 5
5 -1 -1 6 3
6 -1 0 6 4
7 -1 1 6 5
8 0 -1 7 3
9 0 O 7 4

Fig. 3.13. The correspondence between R and COUNT.

It is important to note that, although theoretically it is possible to test all feasible
parameter sets, the computer time to do so could be very costly. Consequently, the ranges

within which the numbers are allowed to vary must be limited.



Chapter 4

The design procedure and examples

This Chapter presents design procedures for the even-degree classical Butterworth,

Chebyshev, and Cauer filters. Design examples are also given to illustrate the procedures.

4.1 The design procedure for complex wave digital filters

We know that explicit formulas exist for WDF realizations of the odd-degree Butter-
worth, Chebyshev, and Cauer filters, which have already been discussed in [8]. Here, we
present similar results for the design of CWDF realizations of the even-degree Butter-
worth, Chebyshev, and Cauer filters. Namely, explicit formulas and procedures will be
given for computing the poles and multiplication coefficients.

The design specifications for a low-pass filter are frequently given in terms of attenu-

ation as illustrated in Figure 4.1, where

A b maximum allowable attenuation in the passband in decibels

A, @ specified minimum attenuation in the stopband in decibels

f, + lower edge frequency of the stopband

fp . upper edge frequency of the passband
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Attenuation

A
Ag .
777777777
Ap 4
Frequency
£y fs

Fig.4.1. Design specifications
F : sampling frequency
Instead of the above parameters, the factors € 50 € and the transformed frequencies
9> @, are more convenient in deriving the explicit formulas. They are defined by

A,/10
e = AN10 -1 4.1)

e = 410 -1 4.2)
¢, and ¢ p are the corresponding analog frequencies obtained via the pre-warping formula

which stems from the bilinear transformation (2.7).

¢, = tan (nf,/F) (4.3)

¢, = tan (nf})/F) 4.4)

The first step in the design of a practical filter is the determination of the filter degree

n required to meet the above specifications. For the low-pass Butterworth, Chebyshev,
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and Cauer filters, a minimum value for the degree can be estimated by using the following
approximations [8]:

¢,In(c, - es/ep)
nmin = In (03)

(4.5)

where ¢, ¢y, and ¢ are given in Table 1 with

ky = /(ps/(pp (4.6a)

and
2 3 »
ki =k +k;+1, fori =0,1,2,3. (4.6b)
Table 1:

Filter type € €2 €3
Butterworth 1 1 ko?
Chebyshev 1 2 ky
Cauer 8 4 2ky

Next we describe how to determine the poles and multiplication coefficients for each of
the three classical filters. These formulas are deduced from the papers by Darlington [19]

and Gazsi [8].

To calculate the poles of a Butterworth Filter

Define the parameters

a9 = J9,/9, 4.7)
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1/n
w = 1/(5108[) ) (4.8)

(i(3+h)w)/n
th = Wwe

4.9

where 3 = 0, 1/2 for n odd, even.
Vary h in equation (4.9) from 1to 2n, apply the required sequence of transformations

and retain the zeros with negative real parts (v, = Wo,)- Then the v, (i=1,...,n)are
the poles of A, (y) and A, (v) . The poles of the rational functions A (y) and A, (y)

are alternately distributed in a cyclic manner (see Figure 3.4) and hence A, (y) and

A, (V) can be determined. For a Butterworth filter g (0) = 0 and g (0) = 1, there-

fore, from (3.41), eje = j. Then, we have

n/2 n/2

0 VY oy VY,
AL (y) = ¢ ,and A, (y) = e e
1 iI=Il ~Vi ’ ll;[l\lf—\}fﬁ

By the bilinear transformation v = —z;—i (see Section 3.4), A, (V) is transformed from
Z

the y -plane to the z-plane as A, (z) , and A, (y) is transformed from the y -plane to

the z-plane as A, (z) .

A () = ejeH

(4.10a)
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_en/z
Ay(2) =" [—

n/2 n/2 -1
-j0 Bz_l} Z +Bf
= ¢ H[ " H — (4.10b)
i\ B 1)1 4B
Define
n/ o
|
A = H( B J (4.11)
Then
n/2 —1 n/2 _1 5
+B, By
A(z) =M — il,andA(z)—XH 1
i=11+B*z i-11+B;z
where
vE+1
B,‘ = l*
W,"_l

are the cross adaptor coefficients, i = 1, ..., n/2.

To calculate the poles of a Chebyshev Filter

Define the parameters

0= /(ps/(pp (4.12a)

n

w - €l+ IS+ (4.12b)
ep
Wy, = we(i(8+h)n)/n 4.12¢)
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where 0 = 0,1/2 forn odd, even.

1 ( : )
Wn, = —| w,, - — (4.13)
Oh qu ih

Win
Vary h in equation (4.12) from 1to 2n, apply the required sequence of transforma-

tions and retain the zeros with negative real parts (y i = Yo ). Then, the same as above,
determine the poles of A, (), A, (V) using the alternating distribution property.

Finally, using the bilinear transformation transfer the poles from the  -domain to the z-

. . . 0
domain to get the cross adaptor coefficients B;»i=1,..,n/2; ¢ and A are deter-

mined as for a Butterworth filter.

To calculate the poles of a Cauer Parameter (elliptic) Filter

99 = /(ps/(pp (4.14a)

Qo1 = 4o+ g —1,fori = 0,1,2,3 (4.14b)

1 n
my = §(2q4) (4.152)

mi_y = 1(mi+l),f0fi =43,2,1 (4.15b)
2 m

i

and furthe, define auxiliary parameters by means of

1 ’1
gl = g"'*' —§+1 (4163)
p 811

gi+1 = migi+'\/ (migi)2+19f0ri = 07 1: 273 (4.16b)
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N
my my |2
84 84

we = 5Oe(z’(8+h)n)/n (4.18)

where & = 0,1/2 forn odd, even.

2

!

1 1) .
w, . = w,—— |, fori =5,47321 (4.19)
i—1 2‘11'—1(

Vary h in equation (4.18) from 1to 2n, apply the required sequence of transformations and

retain the zeros with negative real parts (y; = wqy,)- Then, as for a Butterworth filter

determine the poles of A, (v), A, (¥) using the alternating distribution property. To

0 .. .
calculate ¢”° of a Cauer filter, the transmission zeros are required.

To calculate the transmission zeros

q
y4k=———(—4]m—j,fork=0ton—1. (4.202)
COS| —=
n2
Wi = Yor /(pscpp (4.20b)

where w X is a transmission zero.

In [25], Saal presented two cases for the frequency response: case a and case b . In

k e m,\f ()|
case a, we obtain J—C(oo) = —1-—5 andé'(oo) = —-———h—z,where k, = _p—O—lfn(—)
1+ 8 J1+E 4

and |f(0)] is the product of all the zeros of f. From (3.41) eje = g () + g (o) . Then
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It

oyt VY L v+y,
wehave A, (v) = ¢ ,and A, (¢) = e . Finally, by the
1V E v, 2tV Ew—w‘

bilinear transformation transfer the poles from  -plane to z-plane to get the cross adaptor

coefficients B,, i = 1,...,n/2.

In case b, the largest transmission zero w in (4.20b) and its complex conjugate

max

are transformed to infinity, and the remaining zeros of f and the zeros of g are trans-

formed with the formula [25]

7 - (wmaxzz_ ! J;VZ (4.21)

Winax TV

where ¥ and  are the complex frequencies of cases ¢ and b, respectively. And

P

:g; (0) =0, g (0) =1 and ej9 = j. The rest of the design procedure is the same as in

case a. The frequency response of Example 3 is an example of case b .

4.2 The design examples

In this section, we present examples illustrating the above procedure. The optimiza-
tion process of Section 3.6 is also used.

Example 1: a Butterworth filter. The design specifications are as follows:

Passband: fp =40kHz A = 0.1 dB

40 dB

Stopband: f = 6.06 kHz A

Sampling frequency: F = 16 kHz.
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Mo B Mol
From Section 3.5 4, (2) = X H _._’i_l ,and A, (z) = A* H
k=11+Bk*Z k=11+Bkz
In this example, M = n/2 = 4
First, we get all the coefficients using (4.11) and (4.7)-(4.9) as follows:

A = 0.79255208 — j0.60980423

B, = 0.19393093 + j0.80206562
B, = 0.12755109 + j0.29882163
B, = 0.11806879 — j0.97131420

B, = 0.14977756 — j0.52514838

Second, choosing 6 bits for the quantized coefficients, yields:

A = 50/64—j39/64

B, = 12/64+51/64
B, = 8/64+j19/64
B, = 7/64-j6/64

By, = 9/64—33/64

The frequency response for the quantized system is shown in Figure 4.2. We note that the
transmission zero has shifted from f/F = 0.5 to f//F = 0.4 due to quantization and the
level in the passband has shifted up by 0.08 dB due the quantization of the unimodular

multiplier. Also, for 6 bits of quantization the design specifications are not satisfied. The

optimized 6-bit coefficients are as follows:

A = 51/64—j38/64
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B, = 13/64+52/64
B, = 8/64+/19/64
B, = 7/64-j6/64

B, = 9/64-j33/64

The frequency response for the optimized system is shown in Figure 4.3; the design speci-
fications are satisfied after optimization. The corresponding WDF diagram is shown in

Figure 3.10 and Figure 3.11.

Example 2, a Chebyshev filter, the design specifications are as follows:

Passband: f}) 4.0 kHz Ap = 0.1 dB

Stopband: f, = 5.0 kHz A, = 40 dB

Sampling frequency: F = 16 kHz.
Mo -l M -1 .
z +B z +pF
From Section 3.5, 4,(z) = A[] ——%,and 4, (2) = A*[] —’—B]}l
k=11+Bk*Z k=11+BkZ
In this example, M = n/2 = 4

First, we get all the coefficients using (4.11) and (4.12), (4.13) as follows:

A = 0.72977057 - j0.68369212

By

0.31623816 + j0.93943470

—0.29761296 + j0.59613754

B,

B, = —0.47760190 — j0.22954025
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B, = —0.92962980 - j0.80898964

Choosing 10 bits of quantization for the coefficients, gives the following:

A = T747/1024 - j700/1024

B, = 32/1024 +j961/1024
B, = —304/1024 + j610/1024
B, = —489/1024 - j235/1024
B, = —95/1024 — j828,/1024

The frequency response for the quantized system is shown in Figure 4.4. We note that
the transmission zero has shifted from f/F = 0.5 to f/F = 0.44 due to quantization.

Also, for 10 bits of quantization the design specifications are not satisfied. The optimized

coefficients of length 10 bits follow:

A = 748/1024 - j699/1024

B, = 33/1024 +j962/1024
B, = ~305/1024 +j609/1024
B, = —488/1024 — j234/1024
B, = —95/1024 — j828,/1024

The frequency response for the optimized system is shown in Figure 4.5; the design
specifications are satisfied after optimization. The corresponding WDF diagram is shown

in Figure 3.10 and Figure 3.11.

Example 3, a Cauer filter, the design specifications from [10] are as follows:
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Passband: f})

3.4 kHz, A, =0.14dB

Stopband: fs 4.6 kHz, A, =80 dB

Sampling frequency: F = 16 kHz.

M -1 M -1 e

z +B 2 +BF

From section 3.5, A, (z) = XH ——-—/i—I,and Ay (2) = KH lil'
k-11+B%z k=11+Pz

In this example, M = n/2 = 4
Using (4.20), (4.21), the transmission zeros are as follows:

£, = 0.0000000 + 13010445, £, = 0.0000000 + j1.5002911
f; = 0.0000000 +2.2277880, f, = 0.0000000—1.3010445
f5 = 0.0000000-1.5002911 , £, = 0.0000000-72.2277880

Using (4.14)-(4.19), the zeros of g are as follows:

g; = —0.21338281 + j0.50348335, g, = —0.12278124 + j0.70965761

83 = —0.03885768 + j0.80445136, g, = —0.28032632 + j0.18499087

og
)
!

= —0.21338281-j0.50348335, g, = —0.12278124-0.70965761

= —0.03885768-0.80445136, g, = —0.28032632-;0.18499087

o9
<
I

Finally, we get all the coefficients using (4.11), (4.20), (4.21) and the bilinear transforma-
tion applied to the zeros of f and g:
A = 0.63664746 — j0.77115497

—0.40617395 + j0.58348068

By

B, = —0.20351874 + j0.93195854
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By = —0.27281303 — j0.80448570

B, = —0.53015731 - j0.22108827

Choosing 12-bit coefficients, the quantized coefficients are as follows:
A = 2607/4096 - j3158/4096

B, = —1663/4096 + j2389/4096

~833/4096 + j3817 /4096

B,

By = —1117/4096 ~ j3295 /4096

B, = —2171/4096 — j905 /4096

The frequency response for the quantized system is shown in Figure 4.6. We note that
for 12 bits of quantization the design specifications are not satisfied. The optimized coeffi-

cients of length 12 bits are as follows:

A = 2607/4096 — j3159/4096

B, = —1664/4096 + j2388./4096
B, = —833/4096 + j3817/4096
By = —1117/4096 — j3295 /4096

B, = —2170/4096 — j904/4096

The frequency response for the optimized system is shown in Figure 4.7, the design
specifications are satisfied after optimization. The corresponding WDF diagram is shown

in Figure 3.10 and Figure 3.11.
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Fig. 4.2 . Quantized Butterworth filter Ex 1 frequency response.
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Chapter 5

Conclusions

A complex lattice WDF realization of even-order classical lowpass filters such as But-
terworth, Chebyshey and Cauer filters has been given. Complex first-degree allpass sec-
tions are implemented by a complex two-port cross adaptor with a delay. The cross
adaptor represents an implementation of a first-degree section with two complex multipli-
ers and a delay, but the two multipliers differ from each other only in the sign of their real
parts and must have a magnitude less than unity. So essentially, there is only one coeffi-
cient involved. Also, the complex wave digital adaptor can be implemented with a real
wave digital adaptor and a unimodular multiplier. With the explicit formulas available, the
design process is simple and parallel to the one for the WDF realization of odd-order clas-
sical lowpass filters [8]. The design examples confirm the effectiveness of optimizing the
wordlength.

For future work, it remains to be explored whether first-degree complex allpass sec-
tions can be implemented with one complex multiplier and one delay. (For allpass func-
tions with real coefficients, the lattice structure with one multiplier and one delay per
section are well known). This will make it comparable with the realization of odd-order

filters.
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