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Abstract

The charged muons detected by meson telescopes are bent
as they pass through the earth's magnetic‘fielda These
particles have energies much reduced from the energies of
the primary protons. Conseguently, they might experience
large deflections under the influence of the earth's magnetic
field., One of the purposes of this thesis is to determins
to what degree this process influences meson telescope
observations,

The calculations take into account that muons are pro-
duced at different heights with different energies, that
energy is dissipated as the charged particles traverse the

atmosphere, and that muons decay in flight. Distribution

curves are presented for the deflection spectrum for dif=-
ferent viewing directions in an equatorial plane., It is
found that the shape of the curve is not very seﬁsitive to
changes in the viewing direction in this plane, The maximum
deflection for muons of like sign is about .30 radians and
the average deflection is about .09 radians in a coordiante
gystem in WhichAit is possible to describe the deflection with
one.angle, It is concluded that corrections for this un-
certalinty in the viewing direction, although not negligible,
would give 1ittle additional information in telescope observa-
tions with the present state of the art of cosmic ray telescopes,
Liouville'!s theorem in classical form is investigated
with emphasis placed upon its application to cosmic ray

problems., The theorem is presented in a pedagogic fashion,



Liouville's theorem is shown to be valid in a given electro=-
wmagnetic field in a phase space in which the Newtonian
momenta are used as coordinates. The relationship betwsen
the intensity of cosmic radiation and the density in phase
space 1s derived, Liouville's theorem is shown to be the
link between the intensities of radiation in different
viewing directions at the same observation point. In con-
servative fields, isotropic radiation at infinity implies
isotropic radiation everywhere, Conservative fields alone
cannot produce the diurnal variation,

A slight modification of Axford's model for the diurnal
variation is given as an example of the breakdown of Liouville's
theorem. A frictional effect which causes the breakdown 1is
introduced when the cosmic ray particles traverse regions of
turbulence in the magnetic field. Since Liouville's theorem
has been shown to be valid in a given electromagnetic field,
that is, one which is a function of position and time only,
it is concluded that the presence of the particles in these
turbulent fields must influence the field. An analytical

argument does not accompany this qualitative statement,
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PART ONE

DEFLECTION OF MUONS BY TH& EARTH'S MAGNETIC FIELD



CHAPTER ONE

Introduction to Meson Deflection Calculations

Liouville's thecrem is often applied to cosmic ray
studies of isotropy. It is used to show that any isotropy
that is observed cannot be due to interactions between
particles and conservative fields, This is discussed in
part II.

Experimentally, a deteéting device which is able to
discern directions can be used to investigate the existence
of" isotropies in the primary cosmic radiation, A commonly
uged device which supposedly has this property 1g the cosmic

ray telescope. In practice, a cosmic ray telescope counts

o

particles coming from a finite range of directions., There
are four fundamental factors which affect its directional
properties,

The primary cosmic ray particles are bent as they pass-
through the earth's magnetic field. To account for this it
is necessary to calculate the asymptotic directions of the
particles, the directions of motion that the primaries have
when they first come under the influence of the earth's field,
Often one speaks of the asympbtotic cone of acceptance of the
detector, This is the solid angle containing the asymptotic
directions of approach that gignificantly contribute to the
counting rate of the detector. It was shown by K., G. McCrackeA‘)

that the variation in the asymptotic cones of acceptance from

station to station would mean that different stations would



gsee an anisotropy in the primury radiation in different
ways., DBecause of the nature of the sarth's magnetic field,
particles will undergo larger deflections at low latitudes
then at high latitudes., Therefore, in general low latitude
stations smooth cﬁt the anisotropy because of their wide
cones of acceptance, They also will shift the phase and
reduce the amplitude cf the anisotropy. On the other hand,
the high latitude stations more falthfully reflect the sctual
anigsotropy. The phase 18 more or less preserved and the

amplitude is larger than for low latitude stations, In

2]

addition to having the observatlon station at a high latitude,

zed

faad

the eflffscts of deflsctions of the primaries can be minim

th high

£y
O

‘_J:

by selecting particles w 1 energies, High energy
particles are bent to a lesser degres. By selecting high
gnergy particles however, counting rates are réduc@do
Secondly, the mesons debected by cosmic ray telescope
are the result of decay of pions which in turn were produced
in collisions by the primary protons, One would expect that
in general the directions of the mesons and pions would be
different than that of the parent particle, but from conserva-
tion of momentum considerations, that their dirsctions would

be collimated in some cone about the direction of the primary

proton. The question remains as to how closely collimated



are the mesons bto the primary particles. High energy
colligions produce closely collimated secondaries(z)a The
decay of a pion into a muon and a neutrino 1s accompanied .
by small angle scattering and the muon beam is only slightly
more divergent than the original beam. The half width of the
muon distribution @xceéds 10 only in case of very low plon
energies, The pion rigidity has to be less than 1 Bev/c
before the spread of muons 1is important(g)e A common pro=-
cedure used in dealing with cosmic ray telescopes which de=-
tect high energy mesons only is to assume that the secondary
particles are collimated in the direction of the primary
particles.

liesons are scattered through small angles as the result
of elastic collisions in the atmosphere. The spreading
caused by these collisions has been dealt with by Rossi(4t
The effect 1s usually neglected.

In practice,meson telescopes count particles coming
from directions contained in a finite solid angle. Quite ob=-
viously then, there is a spread in the viewing directions one
considers due to the geometry of the telescope. If only the
solid angle of the telescope is reduced in size the counting
rate is also reduced. To maintain counting rates and to de=-
crease the solid angle requires large detectors sevarated by
large distances.

The final aspect which affects the directional properties

of the telescope is the deflection which mesons experience as

they pass through the earth's magnetic field. Bonnevier and



5)

Brunberg( investigated this aspect of the optics of cosmic
ray telescopes. They considered tracing a particle of a

given energy, 1 Bev, along i1ts trajectory from the observation
point up to a given height, 20 km. They did this for vertically
orientated teiescopes only. They found the deflection as a
function of the magnitude of the earth's magnetic field and
the dip angle. Eﬁr a viewing station at Winnipeg (dip angle
77014? and magnetic intensity B = 0,60544 gauss) the value

of the deflection calculated was approximately 1°. Mo attempt
was made to éccount for the fact that mesons are produced at
different levels in the atmosphere., No attempt was made to
investigate how the deflections changed with energy.

It was the purpose of this study to make a more detailed
analysis of the deflections of mesons in the earth's magnetic
field in order to determine whether, and if necessary how,
one would take this intoc account in determining the viewing
directions of a cosmic ray telescope., The way this was done
was to determine the theoretical distribution curve, the re-

lative numbers plotted against the deflections of the mesons.

(é)

This project was a continuation of work undertaken by E. Hung' ™,

which was motivated by experimental observations in the cosmic

(7)

ray laboratory of Dr, S, Standil .
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CEAPTER TWO

Approach Used to Determine Meson Deflections and Intensity

The investigation of the deflections of mesons in the
earth's magnetic field required that three rather obvious,
but nevertheless important, items be taken into account,
First, mesons with opposite charges are bent in different
directions, Secondly, the magnitude of a particle's deflec~-
tion depends upon its height of production in the atmosphere,
which may differ from particle to particle; and upon its
energy which changes as the particle passes through the atmos-
phere, Thirdly, the meson are unstable particles and decay
in flight. A procedure had been established by Harris and
Escobar(gl and Hung(g) for finding differential intensities
of mesons at ground level which considered these points. This
procedure was modified in such a way as to enable the calcu=~
lation of the distribution of the deflections undergone by
mesons counted with a cosmic ray telescope., For the sake of
completeness much of the approach used by Harris and Escobar,
and Hung will be restated,

The following basic assumptions are necessary to the
development of the fundamental calculations:

i) The primary particles undergo all their deflections
outside the atmosphere., This 1s usually a good
approximation as the depth of the atmosphere 1is
much swmaller than the radiil of curvature of the

primaries, which have large energies. This means



i1)

vi)

vii)

viii)

ix)

“that the primary particles undergo rectilinear

motion in the atmosphere.

Secondaries are degraded in energy; therefore,
their radii of curvature are small compared to

the depth of the earth's atmosphere and hence
their deflection cannot be ignored.

The surface of the atmosphere is considered to be
a‘plahe above the point of observation,

The earth's magnetlic fleld is taken to be constant
throughout the depth of the atmosphere,

The primary rédiation is independent of time and
direction at the top of the éﬁmospheree

The pions, which are produced in collisions by the
primaries with particles in the atmosphere, decay
immediately into muons, |

The pions and muons are collimated in the same
direction as the primary proton at production.
This assumption together with the previous one per-
mits one to ignore pions as far as deflections are
concerned,

The production of mesons through pion decay occurs
continuously throughout the atmosphere, Therefore
the production occurs cbntinuously along any path
considered.,

The primary protons are merely absorbed exponent=-

lally in the atmosphere with a constant attenuation

'length L. That is, L is independent of energy.
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x) The scattering of mesons in air is taken to be
negligible.

There are two coordinate systems to which reference will
be made. In both systems the origin is located atbthe point
of observation, and both systems are chosen to be right handed
orthogonal bases.

Recalling that the magnetic induction, g,'is taken to be
constant with height, it is convenient to choose a coordinate
systemS to be called system K, (X, ¥y, 2), such that the z axis
is anti-parallel to B (figure 1). The ¥y axis is in a plane
containing the 2z axis and the geomagnetic axis and 1s directed
toward the geomagnetic north. Then the x axis poiﬁts toward
the geomagnetic east. This coordinate system is especially
suited for considering deflections of charged particles in
the earth's magnetic field since the deflections are the re-
sult of the moving charge's spiral motion about the lines of
force, Therefore, in the K coordinate system the deflection
can be given by the change in the azimuthal angle, A4y,

The coordinate system which has the veftical direction
as the % axis will be called system K! (X, Y, 2) (fipure 1).
Here the Y axis points toward the geographical north and the
X axls toward the geographical east., This coordinate system
1s conveniéent for describing orilentations in the laboratory.

The transformation between coordinate systems K' and X
is given in appendix one;

In figure 1, the trajectory of a meson in cocrdinate

‘system K is shown. The following symbols, given in
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Figurel, Path of Positive Muon In Earth's Magnetic Field



alphabetical order, are to be used in the ensuing sections

By (0, 0 -B) -~ magnetic induction at O (gauss)

D | -~ depth of atmosphere at observation voint
(gm e )

/

[ ' =~ angle between Oz and vertical

F=rprT -- resistive force of ailr upon meson in flight
(gm sec " ¢m)

== gravitational acceleration {. cm secmE)

H -~ the altitude measured from O upward along the
vertical direction (gm cm™<)

1 -= the path length of the trajectory measured in
the direction of motion (cm)

A == the angle between 7T and the vertical

Ao == the angle between T, and the vertical

m -~ mass of air in a volume V (gm)

I == average gram molecular weipght of air (gm)

P ~- rest mass of muon ( lMev/c<)

n == unit vector in the vertical direction,
(0, sin&lg cosfl)

P == pressure of atmosphere at H (dyne me2)

P -~ momentum of muon (gm cm sec ™ )

J4 -- azlmuthal angle in K coordinate system

ﬁo == azimuthal angle of observation direction in

K system
== charge of muon (electronic charge in e, s. u.)
R == energy of the muon at point of observation in

-t
terms of its residual range in air (gm cm °)



. ‘ o ]
<R, -- universal gas constant (dvne cm (gm mole) ™

(°abs)ml)

P -- density of air (gm cm™2) |

S -~ the path length of the trajectory measured
from O upward (gm cmmz)

T -= temperature of atmosphere (%abs)

T == unit vector anti-parallel to the tangent

vector of the particles trajectory

“To -~ T corresponding to direction of obsservation
=) ~- the angle between Oz and T
v = -vT -~ velocity of muon (cm sec™t)

Before deriving the equations which are necessary for
the calculations perhaps a word should be said about the
general procedure to be followed., A telescope with a given
orientation is taken. (Here only directions in the equatorial
plane wers consid@red but the argument is not restricted to -
this case.) One then considers a meson of a given charge
which arrives at the telescope with a given energy. The
meson's trajectory is then extended back to the top of the
atmosphere, allowing for energy loss by the particle during
flight. Once this has been achieved, the number of mesons
produced at each point along the trajectory, which have the
proper energy at production to just reach the telescope with
the correct amount of energy, is found. The next step re-
quires the determination of the probability that a meson pro-
duced at a given point on the trajectory with the right amount

of energy will not decay before reaching the telescope. The



trajectory, the number produced at each point, and the pro-
babllity of survival, will be sufficient to calculate the
number of particles arriving at the telescope which satisfy
given.conditions,

For the purposes required, the defermination of the

trajectory of a muon is equivalent to finding the deflection

of the particle together with the path length S and the angle A

at each point of the trajectory.
The deflection can be found by considering a muon in

The equation of motion is

flight.
i%ﬁ% =qUuxB8 +F
it 95?:"* (1)
but £ = 'ﬂng
F= FI (2)
v=-vT

Therefore,
- AL - T4 =-qut8 + FY (3)
AL s

- A7)

A(
AKX
However, ££ =V°. Applying the chain rule and dividing by v,
(4)

x8 + FX
C v

- r . = -
coL T4 =%

Take the dot product with j’of both sides, remembering that

Trslimplies that AL T =0
- - AL
- dff =_F : (5)
A U
Substitute this result into equation (4) to give
(6)

- -g8x7
AY = %Qﬁﬂ:“..

A

or ﬁ(q«:—%é)iﬁ'ﬂ
L C.di

(7)



from the definitionsgo.%:“ﬂ, so that
f/(’l’:’%@"?xs @)
C(Od%
Recalling that §E(0,o)-—8)7 equation (8) yields
0(7;( = %6’?’5, ds
P

=-q 87
,(’2’? % v dS
K
6(73: o

These equations give

ﬂ((’?’x-&i’}‘g):%%ﬂ“(?}“i?}) = é%? ”(SCR("‘JL'?’?)

(10)

which can be integrated to give
]

s ,

] = (LB s':—;;f%.*ﬂ As’

kY ”f ‘ <Pe (11)
q;fo.‘-’(q}o Y < ¢ 0

One can write Ty, *« Tyo = constantxa’:’éﬂ Therefore,

. _rSs 8 ds”’
’/;-\tvg?‘}::cmsmd'r 6;‘[?50 ~£§:ﬁ£ S:] (12)

The third equation in (9) yields the result,
’?'} = constant (13)
One can also write
V= wim 6L o thamd) 4k como (14)
On comparing components of 2; it is found that cos ©=constant,
This implies that © =constant and sin © =constant. Hence,
¢ =@, - [3B45 (15)
o CPE
The following empirical formula which 1s accurate to
within one per cent for 30< R+ S<6000 gm cmaz, where R4S 1isg
the residual range at any point along the trajectory, gives

an approximate expression for p as a function of R and S(wﬂ“)@

/ / 53.5 ——-o.oo_zo’g

* - pe \BCHR*S (18



P is obtained as a function of H by using the ideal gas law.

P\/=M (17)

Cn substltutln

F’ (o- Hfla/} (18)

and
into (17
{O Mg(o H) (19)
The value ofﬂ?&med was 2870 cm(Oabs)m1 (for dry air)s; so
that - =a2g10 T (20)
(O-H)

The substitution for p and P from equations (16) and (20)

into equation (15) gives the result,

- H)ds!
= -2970%8 Sr535 | 0-0020'7}25__
wnere the usual function notation has been used,

From the definitions of 4, S, and H it is seen that

AH ]
Co A CH) | (22)

When this is substituted 1nuo (22)

HI 4
A¢(H) ¢(H) 75—-—:28?03 J{SSS - 0.00207 I_{____)__Z(.f.{ﬁ (23)

Z6+R+5’ ©-H') CoxpH)

Ag is in radians.

Since A is the angle between v and the vertical it is
clear that cosA=mT = (A°+JLM8 ’km‘{\) ("Memgéq’mem(ﬂkme)
or e = ind nin® @ing + con S esa 6 (24)
cos A is then a function of g as 6vand ® are constant angles.
If sin ¢ is expanded as a Taylor series aboutb ﬁlz ¢O, cos]
becomes cosA = MJ"“""“G[M ¢°+A¢m¢°"b¢zjgn{i .—A¢3%Z'¢'°

+A¢7‘%ﬁ9+--°'-ﬂ+m£’me (25)

By rearranging terms and taking the series only as far as

(12)

necessary for the calculations one gets
3
€ A(H)= mRa+Mf/mem¢a[a¢(ﬂ)—agéﬂ)j (26)

+ o § i € @in, [— Lg°CH) + Ag"‘(ﬂ)]
= 2%



{

where cos 203
Equation (22) can be integrated to give

sciy= (44’ (27)

—T
s Cox A(H')
Equations (23), (26), and (27) constitute a set of

coupled integral equations which are difficult to solve in
closed form., The following series of successive approximations
can be used to solve this set of equations:
i) Initially choose AF(H) = 0
ii) Substitute into equation (26) to give initial values
for cos A ()
iii) Substitute into (27) to find S(H)
iv) Put the values of S(4) back into equation (23) to
obtain new values for A ¢ (H)
v) Find refined values for cos A (H) in equation (26)
from the & ¢(H) above, 1In turn, find S(E) by
using the cos A (H) in equation (27). Repeat
steps (iii) to (v).
If the series converge then repetition of the above process
gives values which are closer and closer to the correct
solutions, Some criterion can be established to determine
where the series can be terminated,
Once the trajectory has been found, the next step is to
get an expression for the number of mesons produced at each

point along the trajectory. Sands(‘sl Olbert(“{”)3 and Harris

and Escobar(ls) developed such a relationship., Empirically
it was determined that at the top of the atmosphere the number

of mesons produced per gram, per second, per steradian, in a
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given direction with residual ranges at producfion in the

region R/to Rl+dR/; G(R')dR’9 was such that the relationship
GV AR = ACotR) TR (28)

was valid, where A,® ,mare parameters, It was reasoned that

g could depend upon the observation point and direction,

only
since the counting rate for high energy mesons would be in-
dependent of these factors. In fact it was shown that "a" is
a function of the geomagnetic cutoff rigidity only. Therefore,
the empirical differential range spectrum at production should
be written as G(R(,a)dee At a point below the top of the
atmosphere the number of mesons produced will differ from the
number produced at the top of the atmosphere by a factor
which accounts for the exponential absorption of the primary
protons. Thus at a point below the top of the atmosphere,
the number of mesons produced per gram, Dber second, per
steradian, in a giveh direction, such that the residual range
at production is in the region‘R, to Rg‘deg is given by

G(Ry @) ke (H/) (e

where v is the atmosphere transversed by the primary proton

)

O

before production and L is the constant attenuation length
for the absorbtion of the primary protons., From the assump-

‘v 4 » o-H)
tion of rectilinear motion y=£ 3

where Ais the angle
which the negative tangent to the protons trajectory makes
with the vertical. This of course is tThe same A associated
with the meson's motion at production since the meson is cole-
limated in the same direction as the proton. By putting in

the experimentally determined values of A,



r? e . 4: mg 2 . ml &l e 2 mg
-2l x 107 gm cm™ sec steroad “3 n, 35.958; and L, 120 gm cm <,

(0-H)

- -2 - =1
G(K—#S,ﬂ)—(7?:::)3%{1%%2 ?mzw poc arad, (30)
for 100< F+ $< 6000 gm cm~2 (1€),

Since negative and positive particles experience de-
flections in opposite directions, they are treated separately.
This means that it is necessary to have separate range pro=-
duc tion gpectra which depend on the charge. To find these
quantities G4 and G_, which will be indicated by (G, whereos =1
it is useful to recall that because the primary particles are
predominately protons, conservation of charge requires that
moré positive then negative secondaries be produced. To

account for this one introduces the positive excesgss at pro=-

duction5£:é‘is defined by

- —- (G‘.‘..'—G..)o_L_
J‘(R*S;R) (C+FG) 2 (31)
where G,+G_ = G(R+S, a). Thus
C;++'c;_ = G(R+S, ™) 3 (32)
i Com G = LEGEIS )

The sclution to these equations is

Ge—‘-‘"li[l +¥f{&+$,a)]6(ﬁ*570‘) (33)
If the expression for G(R S,a) fr%m (30) is sybbtltuted inte (305
—(0-H) }dﬁ I
7.3i%i0 (34)
G (R+$)0~)0{K-'-"[‘+’c:{(k+s’ a')] R*S)S% 26T A

! tanad
In words, G,(R+ S,a)dR is the numbegan mesons with signoc™
produced at a point S along a trajectory, in a given direction,
per gram, per second, per steradlan, and which have energies
at production in the range R+S to R+ S+ dR. If these

particles survive the decay process and reach the telescope
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they will have residual ranges in the region K to R+dR.
Let W(R+5) be the probability that a meson produced with
energy R+S will survive a distance S. The law of decay in

the laboratory frame is
«le = - L w’

where Tz T/J]-v%a and Tis the mean life time of the

mesons in a frame at rest. That is, the rate of change of
probability at any time is proportional to the probablility of

survival up to that point, The element of time,

+=dL = -4S (36)
At =2 =52 |

Then upon substitution into equation (35)
Aw’ — LS

W VT e (57)

However2

= U
% Vi- v (38)

Thu dwr’ = uds (39)
S T

When this is integrated,

L’w(ms)] j ‘Odm’r - 'J;SJ?E{'S,;I (40)

Recalling equation (15), one sees that

S4s! = cad

G (41)
o O 38
Therefore, upon substitution equation (40) becomes
o (R+S) = ~Cpa (42)
%B’r

If A¢ is expressed as a function of R and H then wr is also

a function of R and H,
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Using the results contained in equations (23), (26),
(27), (34) and (42), it is possible to find expressions for
various types of intensity. The humber of particles of
charge ¢ which reach the telescope with residual range R to

R+ dR and which are produced at a point S, in dS5, is given by
Gc.(ﬁ‘{'gza) &(KJ-S' (R, S, o..) (43)

t ~(0~H)
o Lfirgofirise)] 13lxie g0 Joodsae

(q+R+S‘)5~5? {20 CoR A (H)
i 2 e tanod ™!
If this expression is integrated over the length of the
trajectory, © to S{Dj, the result is the number of particles
of charge G which reéch the telescope with residual ranges R
to R + dR, This is commonly called the differential intensity.
Thus, the differential intensity spectrum for particles with

charge 6 , Ae-(R,Te), 1is given by

0 4y -(0-H) H )”(H
. ] I . Wk, H o)
othm) = [ it g S Rtean) i )
° s “‘E—Eﬁﬁlﬂ—'

where the integration over S from 0 to $ (D) has been replaced
by an integration over H by utilizing relationship (27).
Notice that the intensity is a function of the telescope's
viewing direction T,. It is readily seen that the corres-
ponding integral intensitgl%i&;ﬁ})zcan be found when the in-
tegration of the differential intensity is carried out over R.
The lower limit of R is the minimum energy needed by a meson
in order to be counted, This is determined by the telescope
geometry., This limit must be consistant with the restrictions

placed upon the calculation by equations (16) and (30)., Thess
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restrictions place an upper
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Thus
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18 =

»
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.31 xlo W{*("’H) 3 WX, H,v)-dHM’

lZoCﬁA _\ 0012(/"1)

"Mf" (486)

2811y, the number of

partlcles which reach the telescops with residual ranges By
o RE and which are produced in the range Hy to Hp, W(Hp, Ro),
is given by

WHy,82) J f [_l-r.-m*«f(k—fs‘ a)]'?BlX/g)s%{
200! plarad " (47)

1., - KA - o o o o by o o o P E . S O .
ine egquations derived here wers used Lo obbain a

reaching the telescope,.

distribution curve of the def
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CHAPTER THREE

Numerical Computations

The deflection in the earth's magnetic field undergone
by a meson of chargeo¢ , which arrives at a telescope in a
given direction, depends upon the residual range, R, at the
observation point and upon the helght, H, where it was jOdely
duced. Because this is so, it is possible for particles
with different ranges, Ry and Ro for example, to be bent the
same amount, A Y, provided they are produced at different
heights, Hy and Hg., Given an R and a height of production,
H, equations (23), (26),and (27) can be employed to give a
unique value of AP, When these values of R, H, and A¢ are
substituted into the integrand of integral (47), the number
of particles produced at height H, with residual range K at
observation 1is given by the value of this integrand. These
are not necessarily the only particles which undergo this
deflection, A@. To obtain the distribution curve one must
add up all the particles which have been bent the same amount.
The way this was done is the subject of this section.

Because an expression could not be found analytically
which gave the distributlion curve for a given viewing direc-
tion, 1t was necessary to construct a histogram which in the
limit as the intervals became small would give the smooth
curve, Une way of doing this was to break up the R-H plane
into rectangular boxes bounded by the lines of constant R and

TH

H. Corresponding to the 1] x there is the number of
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particles which have residual ranges in the interval R, , to R;

and which were produce@ at heights between Hé~l and Hi, This
number was found for eatch box in the plane by using equation
(47). In principle, the boxes in the R-H plane could have
been chosen so small that all the particles associated with

a box underwent approximately the same deflection., An

average deflection was found using the values of the deflec=
tions corresponding to the R,H pairs at the corners of the
box. The number of particles found for each box was then
associated with the average deflection for that box. The
spectrum of deflections was divided into intervals and when

it was determined in which interval the average deflection

for a given box fell the number of particles for that box was
added to the existing sum of particles in that interval. When
this was done for all the boxes in the R=H plane the histogram
was obtained.

Integrations were approximated using the trapazoid method
as this was deemed sufficient to obtain results with satis-
factory accuracy. The top of the atmosphere was taken to be
H = 1000 gm cmwga 200 gm em™® was taken to be the minimum
residual range required by a mescn in order that 1t be counted
by the telescopeg. This lower energy cutoff corresponded ap=-
proximately to the lower energy cutoff of the non-rotating
cosmic ray telescopes of Dr, S, Standil and R, Briggs at the

(18)

University of Manitoba,  The maximum value of the residual
; -2
range at observation was taken to be 4400 gm cm ®. The reason

for choosing this value lles in the fact that R+S must



gatisfly at all points along the trajectory the relation
100 < R+ 3< 6000 gm cm™® in order that relations (15) and (30)
be valid. For a telescope located on the parallel of latitude
passing through Winnipeg, 64040N9 and in the direction in the
equatorial plane,vﬁ(x*that makes the least angle with the
vertical, the apparent depth df the atmosphere is 1000/00364040
1'gm<<mnm2, or 1600 gm cm ~, For any other viewling direc=
tion in the eguatorial planeyz’g the apparent depth of the
atmosphere is given by 1000/0033’308 64,4° gm cm"z° The
maximum value of R+ S for any viewing directicon is approxi-
mately the sum of K and the apparent depth of the atmosphere,
trictly speaking therefore, the maximum residual range allowed
in these calculations ‘does depend on the viewing direction:
however, since the calculations were performed for small J's
only, this dependence was ignored., DNote that the case of
large ¥ can be readily taken into account with only a small
modification. In practice there are limits placed upon the
nurber of boxes one can consider in the ReH rlane and on the
size of the intervals considered in the deflection spectrume.
As the calculations were computerized, these limits were re-
lated to the finite capacity of the computer memory unit and
by the finite speed with which the computer operates, It was
decided that .01 radians would be a reasonable magnitude to
take for the size of the intervals along the A¢ axis of the
distribution histogram. The basis for this decision was the
fact that this would give about forty points between zero

deflection and what was estimated to be the maximum. The

For definition of ¢ see page 72,
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size of the boxes in the R~H plane were originally chosen to
be AH=40 gm cm > and AR= 200 gn cm™S, This corresponded
roughly to the limits of the capability of the 1620 IBM
computer. It became evident after examining initial results
that the size of the boxes would have to be changed. Work
was transferred to the IBM 360 when it became available,

All equations and expressions were put into forms that
were convenient for numerical computation. The following is
a list of relations adapted for computer manipulation of the
IBM 360:

i) The atmospheric height was divided into 180 in-

tervals by writing - _ o
H=H(N) = 1040~ iLoN g SRyl
200 = 4(N=121) G o N :22)237,...(_,|

- 2 N=62,63, 6]
— 4o —H(N-61) gmom” N 62,63, (48)

1i) The intervals of residual range at observation, R

wers given by

R:K(L):A/Jfoo-l_ ?,mwcz L=/)2) ..... 20 (49)

The intervals of R and H defined here indicate
how the R-II plane was divided into boxes in order
to facilitate the numerical computations.

1i1) Eguation (23), y Y
_ =280 8 53.5 ~—o0.00207 T_QL) zZ=.
A¢(R;H)" *7;6%%~\£ iéZIEIEEﬁ (0-H) com A(H')

was converted into a useful form by writing

U(N):"2-370% 8 T(N) AH : o
He' (o-Ho)) ( 2 ) N=1,2, l6o

-2
=-0.098675%43cTN) pkerne O H =40 gmom (50)
Q00 — H(N)

wtel) = -2 0qg7543 T ()
-




and |
- 53.5 —0,0020"7 _
ViN) = {m Com AN (51)
Then N
AGULN) = 2 um'-l)v(ﬂ'—l)*"‘“'Mw} et
Nl=Z sza).““ 21

QgL N) = i {()CN'—I)V(NLI)‘#' U(N’)V(N')} + AG (K, N-1)

N'z22 /0 o
=22 13 P
N i 3 (52)

Mz

A¢U~)~) <

i DL VIN'=1) + NI VD Y 4 pd (0 w1
/100
N 2,63, - 16!

N'=62
Here the different forms of AP(L,N) correspond
to different ranges of H. AH was taken to be

2

40 gm cm © in the definition of U(N)., However,

in fact, AH has the values 40, 4, and .4 gm cm"2
depending on the range of H one 1s integrating
over, DNotice also that in equation (50) a special
situation exists for U(l61l). This arose because
mathematically equation (23) diverges if H is
allowed to take on the value D, The expression -
used for the density was found by applying the
ideal gas law to the atmosphere., This implies
that the atmosphere 1s of limitless extent be-
cause %°(J'ﬁé%3 , where h is.the height of the
atmosphe;goin cme. This in turn means that B is
taken as Dbeing constant to infinity and that mesons

are produced everywhere, Although the factor ac=-

counting for meson decay, 1s an exvonential with
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exponent proportional to Ay and limits the number
of mesons with large A@ to small values; it is
necessary to restrict the values of A in the
numerical calculations to finite values., This

can be done by not integrating to the very top of
the atmosphere or by introducing a new expression
for the dénsity in the last interval of height &4H,
The latter effectively constrains the atmosphere
to a finite region in space. This was done when:
formally D=-H=1 gm cn™® was substituted into the
ideal gas law to find the density. It should be
noted that if the interval of height, A4H, which
causes the difficulty is small, the number of
mesoné surviving to the telescope will be small,
and hence it 1Is not a matter of great importance
in which of these two ways this interval is treated.
Equation (26), which gives the cosine of the angle

between the negative tangent vector and the vexﬂﬁdal,
Cox AMH) = <o g + pin € 'adin © Can B, [A¢(H)-Ag§:(”)1

+pind aim® cind [-a‘wm + A94(H)
2 24

was written . _
Comd(R) = com Ao + cind | ine e, (2904, M) = 0g g. N)]

i . 4
WX'MGM%[W%L;N)‘QZ‘_I_S’—& (53)
2

. ‘"o ‘ 1
and cosd, = MXMGOR(}{O'(‘C@-J"MG

Equation (27), giving the path length

sciy= [ a4
o Cox A(H)
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became

+ S(N-1)
20.0 Qm;l(N)] :
Sy = Z [mJ(N - N=2,3, -2 (64)
10[ ?mq]+sm~0
(N i C(n_
Stny = Z caz(nl i} N 22,23, 6]
S(N-1)
504)' 02 M l]+
CsR
NEa2 [Cﬂﬂ(d ‘) )(Nj :6?)63 wee dbi

vi) Equation (47) which gives the number of particles

assoclated with a box in the R-H plane,

£2 pHa 4 -H R H) //{/K
- 3] (0-H) —cpapdih)
W(Hz,ﬁz)—j ‘E—z‘-[ﬁértf‘(ﬂs)&) (3?;-____,;:‘;)"3:57;@2,‘20%17“,“ TET Cor A4}
R, Hi

was evaluated in steps.

., 1 Lﬁm;~m~—0]
Ny =L [1+Lofiry | 1:31xi0
YNy [ ‘](q+Ru)+S(L;N))358 2 emAm)  (55)

EPSLoN(N) = ~CH O8P(N,L)= -9.16592776- 4g (N, L) '

$BY {56)
Then the number of particles arriving at the
telescope with residual range R(L), having been
produced in the interval of height H(N-1) to
H(N) is

X(N,L) = Y(N) +Y(N-1)

except when N=22 and N=62 (87)

X(z22,L) = Y(22) +Y(2)
10

and X(ez,L) = Y(e)+Y (&)
FPinally W(H,R) became 10

WN,L) = XN, LY+ X(NyL=t) (58)
Notice that ©8/2 was not included in W(N,L) be=

cause only the relative number was of importance
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and AR is the same for all intervals,
The value of the deflection for the N-L boX, AN,

was found from

AN _I_[AVS(N-I,L—l).\LAyS(N)L)-aL A#(NJL-'H%(N“‘)‘-)] (59)
11.

Once the deflection and relative numbsr for the

N-L box was found, the N-L box was broken into

4 small boxes. The relative number was taken to

be W(N, L) for each of the smaller boxes, Four

average deflectlions corresponding to the four

boxes created were determined from the value AN

assigned to the center of the N-L box and from the

values of the deflection at the corners.

The average deflection for all the particles

counted given by the ratio of the weighted sum of

the deflections and the sum of the relative numbers.
A% = SD/gp (60)

The computations were done in the following orders:

The sign of the particle,o~, was chosen.

For a given value of L and R=R(L), & g(N) was

set equal to zero for all N.

Cos A(N) was determined for all N from equation (53).

From equation (54), S(N) was found for all N,

New values of A¢ were determined from equation (52).

New values of cos A(N) were found from (83) .

New values of S(N) were found from (52).

If the new value of S(161) differed in absolute

value from the previous value by more than 1 gm c:m”2
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but less than 900 gm cm™?

the computations were
repeated from step (v). If the critical differ=-
ence was less than 1 gm cm“g, the new values of
S(N) were ussd in the ensuing steps.

ix) The steps from (ii) to (viii) were repeated for
all the different values of L;
x) The relative number associated with each main box
was found from eqﬁations (55), (56), (87), and (58).
xi) The deflection associated with each main box was
found from (57).
xii) The deflections and the relative numbers assoclated
with each of the smaller boxes was found.

xiii) It was determined in which interval each deflection
belonged and then the appropriate relative number
was added to the existing total for that interval.

xiv) The average deflection was found., |
xv) The whole process was repeated for particles with
the opposite charge to give the distribution curve
for the viewing direction chosen, § .
Thres pileces of information had to be supplied before the

numerical work could be started. First, the value of "a" in

equation (55) had to be given., Because "a" changes slowly

(17) one value was used for all direc-

-
"2 was taken as 510 gm cm elze) Second, the posi=

with viewing direction
tions.
tive excess at production,—JkR*-S, a) was replaced by the
positive excess at gea level, because the former was not

(21

known )@ The twenty values for {(R) were read as data in



the program (appendix two). Finally the temperature was
determined at various heights from data for The Pas, Manitcbha
as this was the only data available(zl)a Incorporating these
values in the equations described previously, a program wasg
written for the IBM 380 which quickly gives the reguired
histogram for different values of gamma (appendix three),

Because of the limitations of the IEM 1620 computer,
gsatisfactory results were not obtained when attempts were
made to calculate the distribution histogram on this machine,
using the boxes in the R-E plane method. 4An alternative pro-
Cédure which was tried is briefly presented here for the saké
of completeness;also because it might be a convenlent starting
point for future calculations.

Again an attempt was made to construct a distributicn
histogram with .0l radian Intervals along the A¢ axis, This
method amounted to integrating equation (47) in the R-H plane
between contours which corresponded to constant values of LY,
the deflection in the K coordinate system, As written,equation
(47) could not be integrated analytically, but this difficulty
was overcome by fitting surfaces for the relative number as a
function of K and H, and for R as a function of A¢ and H.
Polynomials of fifth order were fit by the least square method
to a group of points generated in a previous vrogram. For
each point, four corresponding quamtities were specified, the
deflection, the relative number, the Height, and the residual

range at observation,



- 20 =

In the afgument that follows the symbols defined below
will be used,
ANUN -- number of particles with deflsctions between two
specified values of A ¢,
RN (R,H) -~ relative number of particles corresponding to a
height of production H and a residual range at

observation R

P -- deflection (radians)
R -- regidual range at cbservation gm cm™e
PI, P2 -- values of deflection along contours which act as

limits for integration in equation (47)
BEl, H2 -~ limits of integration for H in equation (47)

Tt was assumed that the relative number, RN(R, H), could
be represented sufficiently well by a Ffifth order polynomial
in R and H, |

wu(kH) = 5 5 CiyRTHE

A= 1'3‘
iy &1

(61)

and that the residual range R could be approximated as a

fifth order polynomial in P and H,

6 & R0 k-t
R(eHY = > 2 Dok FeH

=}
o +k 2N
If equation (47) is integrated between two contours in

(62)

© the R-H plane along which P has the values Pl and P2 respec=-
tively, then the number of particles with deflections between
Pl and PZ is given by

ANum=jfﬁ~(&HMU” (63)

On substitution from (61)
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y'd
ANUN = Z Z C;, K ﬁ/ IQXH (64)

H

X

R(P1H) ,e*r'?

By integrating over R

_ RILH .
ANCM f é K‘ / VERPY (65)
/./ ATt "‘ /: g

/("‘3 ‘ n (P/) H)

When Pl and P2 were substituted into equation (62), R(Pv, H)
and R(P2, H) were found as power series in H. JFrom these
series, the powers of R(PI,H) and R(P2,H) were obtained. They

were written

ey H™
R(P/)H)-ZQ{ ' (66)
X 7~ ’Q-
where &I, = Z Ogm (67)
,t—5/.'“ £-1
and R (FI)H) = > QL (f1)H (68)
A=y

Equations (65)9 (66), and (68) were combined to give

ANUM= ZZ Z(C?f(f’%ﬂ‘@x(f"ﬂ)}H*"JH? AH (69)

H‘ A%i"'?
Finally, Jntegrqtvon over H gave the required relationship,
c. [ & @,eff’z,r)—smr’oz?{m*“a‘ Wit } ’
OpTo T Dy Y =
ANvmM = Z‘E A L X"fg-l (70)
/.'f‘é"?

This method of obtaining the distribution of deflection
histogram was programmed for the IBM 360 comnuter. It did
not give satisfactory results.because the polynomials were

poor approximations to the actual functions.
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An elementary consideration of the deflections of mesons
in the earth's magnetic field would lead one to believe that
the distribution curve for mesons of a given sign would be a
function describing some kind of peak, That is, small de=~
flections correspond to mesons which were produced near the
obgervation point or to mesons produced with large energies,
Not many exponentially attenuated primaries reach the lower
layers of the atmosphere to produce mesons: and there are
fewer mesons produced with largé energies as the production
spectrum employed indicates., On the other'hand, one would
expect few mesons to have large deflections, Large deflections
correspond to mesons produced in the upper regions of the atmosg-
phere. Since mesons decay in flight, few would survive the
large distances necessary to reach the telescopre. As the sur-
vival probability is cqntrolled by an exponential factor it
is likely that the distribution curve for deflections will
behave in a somewhat similar manner for large deflections,

For very large values of the deflection the relative number

of particles should tend toward zero. Between the extremes

in deflection one would expect the two factors, one pertaining
to the number of particles produced at a given height and the
o ther cénoerning the survival probability of the mesons, to
produce a maximum,

The qualitative argument described above is indeed supported
guantitative ‘ . . . .
by the = AL e determination of the deflection distribution
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curve, BExamples of the type of curves obtained using the
program given in the appendix are given in figures 2 and &,
These curves correspond to viewing directions of gamma equal
to 5 and +25 degrees respectively., There are two peaks, one
for each type of charge., The positive particles suffler nega-
tive deflections while the negative mesons undergo positive
deflections. Notice that the maximum deflection is approxi-
mately .30 radians or about 17 degrees for both positive and
negative mesons, The average deflections have been calculated
in the same program and work out to be roughly .095 radians
or about 5.4 degrees in the K coordinate system. The results
indicate that the distribution curve in the K system is not
sensitive to changes in the viewing direction. It is perhaps
useful to know that the time taken to calculate eleven dis-
tribution histograms was about three minutes.

It was mentioned previously that the K coordinate systeum
in which all the calculations were performed is not the system
usually used to describe events and orientations in the labor-
atory. A most convenient coordinate system in the cosmic ray
laboratory is the K' system described earlier. A program was
written for the computer which converted the deflections, A,
in the K coordinate system to the K' system in terms of the
zenith and azimuthal angles © and . In addition, the angle
between the negative tangent to the particlels motion and
the direction of the telescope was calculated for given values
of &FY., This angle was called < , TFor viewing directions

given by O equal to 5 and +25 degrecs the value of o<
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Figure 2{a). Distribution Curve of;Deglectéons o? %ositig?b>
-+ ~ Muons, Detected At ¥= 57, Figure<'®/ And
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igtribution Curve of Deflections of Positive Muons,
etected at &= 25°, Area Under Curve Ts Normalized

To Unity.
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FigurefiﬂjL Distributicn Curve of Deflections of Negative Muons,
' Detecbed at &= 25°, Area Under Curve Is Normalized
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corresponding to the average deflections was approximately
Z.B8degrees,

The program used to determine the distribution of de-
flection curve could be sasily modified to find a number of
other qﬁantitiese It could be used to find intensities, The
modification involved in finding differential and integral
intensities would require the limits in equation (47) to be
changed. To find the differential intensity equation (45)
would be used and to find the integral intensity equation (46)
would be used. The program for doing this is given in
appendix four. Once the intensities have been found for a
number of viewing directions, the opportunity arises to deter-
mine the exponent, n, in the experimentally used cos™ formula,

T =7, "6
where & 1s the zenith angle in the k' system and I, is the
vertical intensity. |

By integrating equation (47) over the whole range of R
but over a narrow range of H one can determine the number of
particlés which were produced in a given layer of the atmos-
phere and which_are counted by a telescope in a given direc-
tion, In addition, the average height of production could be
found by dividing the sum of the weighted heights of pro-
duction by the sum of the weights, the number of particles
counted, & further bit of information can be obtained
relatively easily 1f one determines the average height of
productibn for particles in a given narrow range of R, Then

one can see how the average height of production changes with R.
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The program for doing this is gilven in appendix five.

No attempt was made in the theory to account for T
mesons being captured. Thus, the procedure employed in the
preéeding sections would not predict a positive temperature
effect which 1s the result of the total cross section per
unit volume for 77T meson capture decreasing with increasing
temperature., However, the influence of the temperature of
the atmosphere on counting rates can be inVestigated if one
keeps in mind the limitations of the theory. The effect that
would be calculated would involve the change in density of the
atmosphere or equivalently the change in the average height
of production in cm., with temperature., The data for the
temperature corresponding to different heights, H, can be
changed by simply changing the data cards. It should be
noted that it is difficult to obtain reliable data about the
temperature'diétribution in the atmosphere, particularly so
if one wants the change in the temperature distribution with
time,

Changes in counting rates with fluctuations in pressure
can also be handled with the existing techniques., It would
involve changing the wvalue of the height of the top of the

2

atmosphere in gm cm © in the program and adding or subtracting

levels of H in the integration involved,

/
Finally, one should note that by changing values ofoc,ﬁ157

and "a" the program can be adopted to give results for differ-

ent observation locations.



CHAPTER FIVE

Conclusions

The distribution curve for the deflections undergone in
the earth's magnetic field by mesons counted by a telescope
satisfying certain conditions was found., For a cosmic ray
telescope, in an equatorial plane, looking south, ¥= 0, the
asymptotic directions at production of the mesons counted,
wepe all contained in a cone about the axis of symmetry, the
telegcope's viewing direction, with a one half apex angle 11l.5
degrees. The average deflection was given by a half apex
angle of 3.8 degrees, ‘that is, on the average the directions
of the mesons at proddction make an angle of 3.8 degrees with
the viewing direction of the telescope. The results obtained
from other directions given by the angle.x were similar.

Tt must be said that the magnitudes of meson deflections
ars not so large that they in themselves completely destroy
the directional properties of the cosmic ray telescope, In
the present state of the art it is probably unnecessary to
correct for the bending ofvmesons as the obther uncertainties
introduced by the finite solid angle of the telescope and
the spread in the asymptotic directions of the primaries are
predominant., However, it is conceivable that as the resolving
power of directional detecting devices improves the spread in
effective viewing directlons caused by meson deflection might
nave to be taken into account., One possible advance would be

the development of a cosmic ray telescope that would dif-

ferentiate between positively and negatively charged mesons
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with relatively high energies, A telescope of this type,
but detecting low energy mesons, has been used<13)°

The distrivbution curve obtained could be used as a
histogram with intervals of Ag equal to .0l radians to give
the number of particles counted which have suffered deflections
between two values of A ¢ in the K coordinate system. The
two values must differ by more than .0l radians. A table has
been constructed which can be used to convert deflections in
the K coordinate system to deflections in the K'coordinate

system,



PART TWO
LIOUVILLE'S THEOREM APFLIED TO COSMIC RAYS



CHAPTER ONE

Tntroduction to Liouville's Theorem Applied to Cosmic Ravs

Tt is often enlightening in dealing with problems concern=
ing cosmic ray intensities to employ a theorem from statistlcal
mechanics, Liouville's theorem., Consider a phase space, the
coordinates of which are the generalized coordinates and
generalized momenta of the cosmic ray particles, and in which
there are enough points so that one can talk about a density
of points in phase space, Liouville's theorem says that under

cerbain conditions the density in phase space 1s congtant in

time as one moves along the path determined by the equations

e

of motion of the system. It is the purpose here to present

2

the conditions necessary for Liouville's theorem to be valid

and to ascertain when the theorem is applicable to conditions

found in cosmic ray problems, In order to clarify the reasons

to

Sn

¢

. for breakdown of the theorem the problem of the diﬁ@mal var:
tion is presented as an example.

The counting rate of & counting device at the top of the
atomosphere which detects particles above the cutoff riglidity
can be related to the density in phase space. This relation
of course is the connection betwsen Liouville's theorem and
cosmic ray physics. The purpose ol having a directional
detecting device is to be able to determine the directions of
arrival of the primery cosmic ray particles. Does the exist-

ence of preferred directions imply bthat sources of cosmic
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rays lie along the associated asymptotic directions? Thé
asymptotic directions take Into account the bending of the
charged particles through the Gerrestrial magnetic field.
Assuming'Liouville‘s theorem is valid for cosmic ray particles
as they traverse space, that cosmlc radiation 1s isotropic
and independent of the observation point at large distances
from the earth, and that only conservative electric fields act,
then one can say that the radiation is isotropic near the
earth., In other words, the counting rates for particles
above the cutoff rigidity are the same in any direction. An-
isotropies cannot be created by conservative forces acting on
cosmic ray particles as they journey through space 1f these
forces are consistent with the conditions of Liouville's
theorem. Under these conditions an observed anisotropy is
indicative of an anisotropic distribution of the sources of
cosmic ray particles, It is shown later that a time inde-
pendent electromagnetic field which is a function of vosition
only.{(the presence of the cosmic ray particles does not in-
fluence this field to any significant extent) satisfies the
conditions of Liouville's theorem., Such a field cannot
therefore create an anisotropy. On the other hand, an irregular
magnetic field which interacts with the particles in such a
way that the field is influenced by the particles to a signifi-
cant extent does not satisfy the constraints necessary to
apply Liouville's theorem.

In the development of the theories concerning the origin

of varlations in the counting rate with direction, such as



the diurnal variation, it is’important to remember that any
mechanism proposed must be such that it violates the conditions
necessary for Liouville's theorem to be valid or it must in-
volve non=-conservative forces, or both. Thus, the argument

_ 2
of Ahluwalia and Dessler( #)

that the diurnal variation was
due to the drift velocity of particles in the perpendicular
electric and magnetic fields associated with the solar wind
was negated by D., Stern's implementation of Liouville's

(25) : -
theorem . This theorem can be used as a test to eliminate
the possiblility that certain mechanisms are responsible for

observed variations,
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CHAFTER TWO

General YTheory

Before a statement and prcocof of Liouville's theorem 1s
given, a brief resumé is presented of some of the relevant
fundamental notions of statistical mechanics,

A system is a physical object of interest. In cosmic
ray problems a charged particle is a system. The collection
of all systems of the same structure but distributed over a
range of different possible states 1s called an ensemble,

Here the ensemble shall mean the collection of all cosuic ray
particles, Bach system has n degrees of freedom and 1is
characterized by the generallzed cocrdinates ql,'qgn.qh and
the generalized momenta P1s DPosessPhe The states of our
systems are specified by the generallized coordinates and
generalized momenta of the particles. There are three degrees
of freedom per system, FPhase space 1s a conceptual Euclidean
space with the generalized coordinates and momenta serving

as the coordinates. Phase space therefore has 2n axes. For
each system of the ensemble there is one point in phase space.

For statistical purposes there is no need to distinguish
between individual systems. It is sufficient to know the
number of systems at a glven time which correspond to different
regions of phase space., The ensemble 1s considered to consist
of such a large number of sysbtems that the distribution in
phase space is continuous. JThen the density or distribution

function, P(q,p,t)9 is defined as the number of pointgs per

unit volume of phase space, When this is known the ensemble
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1s regarded as completely specified., The number of systems,

£N3 in the range, d?¢£ d%miﬁvd$ ..... -4¢mis given by
- dN = (3¢, 1) a}laaﬂ.-- A Ak ARa- - - dem

1 o (264 37,28 ),
Statement of Liouville's Theorem .

Consider an ensemble of noninteracting systems, where initially
AT = AG - AGady - dfn is to be regarded as the element of
volume in phase space and F(q,p,t) is the density in vhase
space, Jlhe phase space is considered to have no sources or
sinks. In other words, systems are not created or destroyed.
Each system moves in accordance with Hamilton's eq&ations of
9H _—d)'A. ol Q# %ﬁ
9?;
or equivalently with the following form of Lagrange's equationé
of motion, J(g'é - 29X zo

At 7gi

Each point in phase space moves under the resbtrictions. -

motion,

imposed by the equations of motion of the corresponding
mechanical system. Consider at one instance of time the
volume element d7T, the boundary of which is formed by some
sﬁrface of neighboring system points. The position of the
system points defining the volume change with time hence it
appears that the shape and volume of the region might change
with time, Liouville's theorem says that the volume element
dT is constant with respect to time as it is followed along
its dynamical path, 4An equivalent statement of Liouville's
theorem would be that the density in phase space as one moves

with the region under consideration is constant with respect

to time,



Proof:

This proof will make use of the continulty equation in
phase space. There are no sources or sinks in phase Space.,
Consider the volume element in phase space at time t,

This volume element is regarded as being fixed in the space.
Tt does not move with the system points it contains. Jhe
number of poinbts in this volume at time t

a@N = F{%)@)I)’i%xd%md(fl\"aﬂqam
As time progresses the system points in phase space move. In
a time dt system points will flow across each "face" of the
volume element. <YThe number of points entering in time J%

through the face located at q; and perpendicular to the qj

(O%i'ﬂ&f’(‘g,/ﬂe%z“'“'d%i“‘d%-;(' -d%m A - 'ﬂ(f‘m

The number of points entering through the other "face' of

axis is

the volume element perpendicular to the as axis in time &t at
G dGi s
. - AR,
—(gw%% At ) % *%%4 43, )50 - A A €
A i

where only terms up to first order in dg are considered.,

o "thﬁx 6("#

ihe "faces" perpendicular to the p-axes can be handled in a
similar fashion. Therefore, the change in the number of

particles in the volume element, 4V, in'&% is

o) = -5 [P(Z24i)+ (% 5438, 6] 44 A A
Dividing by dV ‘ . ) .

So - 5(44) ~[e( 2 )+ (3, 3R 8]

Einstein notation used, 1 = 1, 2, ... n

ot



Therefore . ] . .
2 = - [p(Zh+ %)+ (35,5 +3 4]

However, Hamilton's equations are

.‘:DH omd ‘-=“"DH
Yo" 5g O €T

Therefore,
(o 22// - 92/'} ) =Q
9(}: D%A 9%‘?@*

("(
2% = (% i+ 3 ®)

)
%
or éﬁ_ + %% 4&@ =0

Pis a constant of the motion,

and

The fact that f is a constant of the motion implies that
the volume element 1s constant along the path of the motion,
Consider an infinitesimal volume element in phase space, dT.
As time progresses the system points defining the volume will
move and the volume may have a different shape and volume,
The number of points contained in the volume will be constant
with time. If some system were to cross the boundary it
would at some time occupy the position of a boundary point,
Since the motion of a system is uniquely determined by its
location in phase space at a given btime, the system would
travel together with the boundary point thereafter. Therefore
the number of system points within a given volume element 1is

constant with time. Since d§1=fd7 is the number cof points in

AT at all times AT

_ (4N = dp AT+
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Howevar,é%:o and P::constant9 therfore 47T is a constant of
the motion,

It has been seen that Liouville's theorem requires that
the equations of motion describing each sytem can be put into
the form of Hamilton's equations. It is useful to enguire
whether the motion of charged particles through an electro-
magnetic field can be described by the equations of the
familtonian form,

Consider a nonrelativistic particle in a given electro-
magnetic field which is completely determined by a given
scalar potential ¢ and a given vector votential A, The
potentials are functions of position and time only. The
electric field, E, and the magnetic induction, B, are gilven

in terms of the potentials in c.ge.s. units by

B =VxA
- 194 -y (1)
£ = c 5% ¢

The Lorentz force on a charged particle in an electromagnetic

field is given by

F=glectv:8)] (

]

Substituting for B and E from (1)

£ - o2t reonal '<
[yxVxﬁ]X—_— ?(2,)} Qﬂx) U'}(?/')" %ﬂxl) )
) )

- zs}*"é—yfi% e Uya‘; ERE

= 2(8yv) - r-VAx
2%

Do
S

(SN2
N

but

(4)
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However VVA = //}X - 2(){%5 (5)

as can be seen from the definition of the convective deriva-

tive since A is independent of V', Therefore

[‘Ix(wﬁ)_]x = ??(';i(“f) —~ ii}c —%_/4%)5 (6)

Substituting from equation (6) into (3)

F* :<%ljjzg_+ pICETE A!_./~Jfﬁi] (7)

Since A is independent of U, Ay = Eﬁﬂilﬂ
?Oy

When this is substituted into (7)

L .,.[/r-(” Ly
‘%{ _(.f__‘_f_@_ 7:€>c_~___], (8)

7 is independent of ve1001ty therefore

[%h-r)-¢]
(- < —6((953(
K %{ fret A:—_ ) (9)

Define £

M::C’Lﬁ-‘f“%?g‘ (10)

Then 2 (11)
=9u“d(z>%) | _
=k T E

Lagrange's equations are of the form

J(%“) 2T = Qy

c)%
where = F. I = F, omd ’]’_—;__/_)‘7710'l
O =

Therefore the equation of motion becomes

T Ju
LZE) o7 - ou - é(ﬂr‘_l
Z;e oKX DX e (13)
Taking all terms to one side and defining the Lagrangian as

L=T-U

(12)

%(%K) -—%é-_ z0 | (14)
daxt

The other Lagrangian equations are found in a similar fashion.

A Hamiltonian can be defined in the usual way where one defines
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the generalized momenta by

dri = 2L = vt Ay | (18)

v,
where i=1, 2, 5, Hamilton's equations,

- 5 = -H

£
are then valid in the case of a charged particle in a given
electromagnetic field. Note that it was necessary for ¢ and

A to be independent of the particle velocity.

Lagrangian and Hamiltonian equations of motion can be
found for the case of relativistic particles?m)lhe relativistic
Lagranglam is -

L =-mc2 (i~ ) + < (ﬁ@j'€¢ (16)
where v- is the velocity of the particle and M, is the rest
mass, <The momenta, Dio used in the derivation of Hamilton's

equations are defined by

2L =M & (17
(F,L Z—:‘ e 44' (l ‘.’_’,)/1 c ./_} (17)
The Hamiltonian, H(ﬁ% ) z S ¢ %1. L, Therefore

H=m,C {I+( T [(ﬁ?x gﬂx)'f(ﬁ'e’q?) +(#3- &) j}*e?g(w)

Because the motion of a charged particle in a given
electromagnetic field can be described by Hamilton's equations,
Liouville's theorem holds in a phase space where the coordin-
ates are the coordinates of the particles and the generalized
mbmentaygﬁ==W"EFP§~@ as seen in (15) and (17).

Liouville's theorem gains importance in cosmic ray physics
from the fact that the density in the phase space corresponding
to the ensemble of cosmic ray particles can be related to the

counting rate of a directional detecting device, Consider an
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ideal detecting instrument which locks at primary particles
which come from directions contained within an infinitesimal
solid angle‘ﬁuh The cross sectional area of the device is dA.
Puppose that dN particles with components of momenta, parallel
to the axls of the cone, between p, and pl+d§, are counted in
time dt., Momentum here is defined as mass bimes velocity.
The two mutually perpendicular components of momentum of a
given particle perpendicular to the axis of the cone are
bounded by dp, and dp,; respectively, if the particle is counted.
Ihat is, dp, and dpy define the limits of momenta specified
by the cone. Together p, , dp,, and dpz specify the solid
angle, 1t 1s seen that the solid angle, dw, is given by

deo = (PBEN2EE) - Aga A

T

(4£)* & e

In time t, a beam of particles would travel a distance

%%_along the direction of the infinltesimal solid angle from
the apex of the cone defining the solid angle. The lateral
spreading of the beam in t is confined to the area @%%;J(f%g%g).
Since the solid angle is infinitesimal the nofmal direction
to this area is parallel to the radii of the defining cone,
Thus from the definition of solid angle the above expression
1s obtained for dw,

Let oo be the number of varticles ver unit volume of
configuration space with components of momentum between P,
and p, + dp, parallel to the axis of the cone, Then, the dN

particles counted in time dt at t will have come from a

configuration volume element

AV= dA -k (20)
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where dA 1s the cross sectional area of the detector and
U':d%% . Then

AN= o-dV (21)
Not only do the dN particles with components of momenta along
the axis betwsen Py and j;:>l~i--dp:L come from a volume element
dV in configuration space but they must also come from a
volume element dezz dpl dp2 dp5 in momentum space., This
means that the number of particles counted in 4t at t, at
the position of dA, with parallel components of momentum be-
tween Py and pl—F dpl come from a volume slement dVdVF in
phase space, Therefore,

dN:(OdV&Vﬂq (22)
where F 1s the density in phase space of the cosmic ray
particles at the position of the telescope and at momentum
P1. Bquations (21) and (22) give the relationship between
f and 97,

o= p 4V (25)

From (19)

= J 1¢QF 4 :,fg%ﬁ— d
- ‘%7"32% ey (24)

{
Substituting into (22) from (20) and (24)
AN = pd(/#m@l/:(v%w(ﬁ,z%q@,dﬂvoﬁf (25)
Now the number of particles with components of momentum
parallel to the axis of the cone, counted per unit area, per

unit time, per unit solid angle, N', 1s given by

/: dﬂ/ = ] = 3 .
S P I TR T e (26)
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The connection between the intensity, N', and the density
in phase space,F9 has been derived for the case where the
Newtonian momenta were used as coordinates in phase space,

For the case of cosmic ray particles in an electromagnetic
field Liouville!s theorem was shown to hold in a phase space

where the momenta were given by

s @y e B (27)
where % = my; and 1 refers to the 1th particle. W. Swann °)
showed that Liouville's theorem is still valid in the phase
gpace where the-@%lare the momenta. The volume element in
this phase space 1is d&gldiz“”'d}m4$/"'"4$;-The volume element
in the phase space in which Liouville's theorem has been
shown to be valid is d%‘-- ~--'d‘{;mid‘; - ‘“""A(f'lm .

The relationship between these two volume elements is
4(3_! ‘‘‘‘‘ ‘i%m a(d;". e dd%;,‘: (rp(}»/ . dci_mdth’. e dqﬁml
where J is the Jacobian corresnonding to this transformation.
The Jacobian, J = EZﬁj@'*"_;§m<&""--d%J) =1
2(?1 eee 'cg"'”‘(ﬁt R <F’“)

This is so because

DY = Gy, D o, 24 = 220, I =Ly
S R A A T

Therefore

l:
. O
{ O

J = © h = | (29)

A . - - .. - .28

: . .

e:n .',4 ©

EIAm .. e Jhnm

i ¢ R o
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Then A9, - 'J%Mdd‘all' ....4@“1: %%‘. 'd%m"{d’t"" AdRu = ®
constant along the dynamical path,

The results of Liouville's theorem still apply in
(q,p() phase space. The density in phase space 1s constant
as one follows a volume element along its path. If cosmic
ray particles only interact with conservative electric and
magnetic fields without significantly affecting the fields;
that is, if the fields are always functions of position and
time, then Liouville's theorem is valid as the particles
traverse space., If this were so, and if one assumes that
far away from earth the cosmic ray radiation is isotropic
and independent of position then one could conclude that the
radiation in the vicinity of earth is isotropic,

In a conservative field the change in the magnitude of
the momentum of a particle in going from the observation
point to infinity is independent of the path. Therefore if
cosmic ray particles which arrive at a detector near the
earth from different direétions but with momenta equal in
magnitude, are traced back along theilr trajectories to in«
finity they have equal momenta at infinity, Along the tra-
jectories the density in phase space 1s constant because of
Liouville's tneorem., If one assumes that at infinity the
density in phase space depends only upon the magnitude of
the momentum, then the phase space densities are constant
for the two trajectories. Referring to equation (26) one

can conclude that the intensities in all directions are

equal; the radiation is isotropic., If the fields are not
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steady and the electric field is no longer conservabtive then
in general tracing particles with the same momentum at the
observation point back along their respective trajectories
will lead to different momenta at infinity. In this case,
one can no loﬁger say that radiation which is isotropic at
infinity is isotropic at the observation point, even though
Liouville's theorem is valid,

So far it has been shown that if a system can be des-
cribed by Hamiltonian equations of motion, Liouville!
theorem holds., This does not mean that the theorem is
automatically negated 1f the system's equations of motion can
not be put into Hamiltonian form. In order to determine
some condition which will indicate the breakdown of Liouville's
theorem consider the following. Suppose that the generalized
form of Lagrange's equations is used,

(9[- } oL =Q
Alog) - Be =< (29)
where Q;=ﬁf}.2§i. i indicates the generalized cocordinate and
gt

j the particle. Einstein summation notation is used here .

and in what follows. By definition

.= 9L (30)
€im 25 |
Therefore .
1 -Q; = %%; (31)
Since H(fﬁ,‘g.,i') . @A ; -—LU%. %) )

then AH = 1&0”((5‘ __3/__ 0{% +¢b AQ“L Lid'cg_i-g%df (32)
Substituting for 24

5%17
A= g, A€ — (- Q)4 —%&E I



but -y({-[(%)dq,f) :%Aa-&—%d@n‘%ﬁ (33)

The differentials in (32) and (33) are independent., Therefore

equating coefficients in the two equations one gets the general=-

!
ized Hamiltonian equations,

=24

%? 9634 (34)
({Q- :-Q__,+&A:
A 9%;

In Liouville's theorem a ternm appears on the right hand
side, The continuity equation in phase space is found by
analogy to %ﬁ“‘ v(pr)=o o %%+E-'V‘O+(Dv'£=o
In phase space '>

ngﬁihdk?‘,%%ﬂo@%; tpghs =o (55)
Using the definition of the convective derivative

+(‘°[?%é ‘éf" | (36)

Substitutlng for q; and p; from equation (34), the above

becomes
2
éﬁ*(o[g%ﬁ)@“ gdyz?} * ?‘2&] -9
or é{xg =- 97%:; (37)

If the generalized forces are functions of the generalized

momenta, Liouville's theorem breaks down,



CHAPTER THREE

Diurnal Variation and Liouville's Theorem

Observations indicate the presence of a diurnal variation
in the cosmic ray intensity in the equatorial plane with an
amplitude of about 0.4 per oent(a')o This corresponds to an
anisotropy in the radiation reaching earth with the maximum-
ocecuring when the detecting device 1s looking backward along
’the earth's orbit and the minimum occuring when the direction
of observation is forward along the earth's orbit.

If the radiation is éssumed to be isotropic and inde~
pendent of position at infinity, if one considers steady
fields, and 1f Liouville's theorem 1s valid, then the radia-
tion in directions which are accessible is 1sotropic in the
vicinity of the earth. To explain the observed variation in
intensity one can try to eliminate at least one of the three
conditions which together predict isotropic radiation near
earth.

Buppose that the first two conditions are met but a
mechanism i1s proposed which explains the observed anisotropy
as the result of the breakdown of Liouville's theorem in a
steady electromagnetic field. It has been showh that
Liouville's theorem holds valid in a given electromagnetic
field, even 1f that Tield is time dependent. The theorem is
valid both for the Canonical and the Newtonian momenta. Thus
a contradiction arises as the third condition 1s met if the

first two conditions hold., Any attemptsto explain the diurnal
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variation which rely upon steady electromagnetic fields to
destroy the isotropic nature of the radiation seem doomed to
failure., One only needs to confront the hypothesis with the
existence and'raﬁifications of Liouville's theorem.

Stern(SI) and Parker<33) have attempted to show the
mechanism by which the isotropy is maintained in a conserva-
tive field., In effect, what happens is that a density
gradient is set up along the direction of the electromagnetic
drift velocity. This in turn, negates the anisotropy which
would have resulted from the existence of the drift velocity
above,

Parker(34) and Axford(ss)

have separately proposed
essentially the same mechanism which they have successfully
used to predict the diurnal variation. Their models give the
observed directions for the anisotropy and also the observed
amplitudes of the variation in intensity. They have attri-
buted the variations in intensity bto the existence of time
dependent.electromagnetic fields in the form of moving
irregularities in the magnetic field beyond the orbit of the
earth, and to a breakdown in Liouville's theorem,. The point
of interest here is that their mechanism involves the break-
down of Liouville's theorem in the presence of an electro-
magnetic field. The naive viewpoint, which automatically
relagated to oblivion any hypothesis, relying upon electro-
magnetic fields to destroy the vélidity of Liouville's theorem,

must be scrutinized more closely. Liouville's theorem has been

used to argue against the plausibility of proposals for the
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mechanism producing the diurnal -variation, such as Ahluwalia's
and Dessle:r"s(:%)‘9 Which reguired nothing more than an ap=
propriate steady electromagnetic fileld, The theorem has been
shown to be valid in such a given field. On the other hand,
Axford only requirés a particularbelectromagnetic field in

his model, His argument however implicitly contains the fact
that Liouville's theorem breaks down. How is this seemingly
paradoxial situation resolved?

In what follows a slightly modified version of Axford's
model shall be presented, In essence, it contains the same
features as the Parker model and produces the same results,
The difference between the two presentations is one of approach
only.

To begin with, it is necessary to state that the magnetic
field i1s to be considered as being made up of two parts.

There is a regular part and a fluctuating»part superimposed.
The regular part cf the field is the "garden hose" model pro-
posed by Parker(37)a Near the sun's equatorial plane a
plasma escapes from the solar corona. The direction of this
solar wind is approximately radial and its velocity, of the
order of 300 km/sec, 1s indicated by Vg. Because of the high
conductivity of the plasma, the lines of magnetic induction
are locked in the plasma and dre carried radially outward

- . - {3%) ) . s .
with a velocity Vg . At any given time, consider the
shape of a line of magnetic induction as shown in figurefbu&;
Suppose that the line of force is the result of plasma eg~

caping from a region about point A at this time. The sections



Figure4. A Line Of Magnetic Induction Frozen In The Solar Wind



of the line of force at points B, C, D, and E must be the
result of plasma, given off by this region at earlier times
and because of the suns rotation at different locations in
space., The plasma and hence the segments of the line of
force have travelled distances from the surface of the sun in
proportion to times elapsed since escape from the corona.
The time period since escape is given by %ﬁ? where 4 is the
angular velocity of the sun's equatorial region and g is the
polar coordinate describing the angular displacement of the
line segment from the emitting region, A in figure four. Tthe
result therefore is that the lines of force form the Arch-~
imedesg spirals given by

n=t(E) (1)
At a later time the situation is the same except that now
the line of force has rotated through an angle. The "garden
hose'™ field co=-rotates with the sun.

As a prelude to further calculations consider figure
five, © 1s the angle between the velocity of the solar
wind at a point (r, ) and the line of force., X is the
complement of ©., Choose x, y axes as shown. Then the line
of magnetic induction is described by {}:Q’m?s_é +n.,w‘n¢%..

Substituting 2 :gf— ¢2
oz Ve (¢omgstanty)
L2
n=d

f = b [-guit+ ong)is (emgtondly ]

is a vector tangent to the line of force. Consider the

Then

.

Oy anp = eend Ve graent i

-

-
-
-—
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Figure 5, Relationship Between Vectors .22xa and Vg



Tf one substitutes for ruz . .
R = Ve [(comg-daind) £ s (gt andly |

R and N are parallel. A line perpendicular to B is then

perpendicular to R. From the diagram this means that

_\_{5_: HAam X (2)
[ Wel ’ .
In the coordinate system moving with the velocity of
the solar wind there is only the magnetic field. From a

fixed coordinate system in which the solar wind has a velocity

. 39 .
Vg there 1s an induced electric fleld( ) given by

E+LVixB8=0 (3)
Therefore p o
- | ;
E__E__\/S S
but Qam & = T ¥
hence CE = Vs coa X
8

Vy can be substituted for from (2) so that
%:JL-[ZMX (4)
This result will be useful later,

The fluctuating part of the magnetic field has the
effect of scattering the cosmic ray particles., Turbulence in
the solar wind causes irregularities in the magnétic field.
These irregularities move with approximately the velocities
of the solar wind. Axford uses the analogy bstween the motion
of light ions in a magnetic field in the presence of heavier
neutral atoms and the motion of cosmic ray particles through
the magnetic field irregularities., No attempt has been
successful in justifying the use of this analogy. I1f there
is justification for employing it, one can show that Liouville's

theorem cannot be applied in this situation,.



A convenlent place to start in the analysis of the motion
of‘cosmic ray particles through an electromagnetic field, as
described above, 1s the writing down of the appropriate
Boltzmanmés equation,

%+E'%+%<é+éfxé)'%:(%)c (5)
2 7 =
where T (x, v, t) is the distribution function for the cosmic
ray particles with massbm and charge e, & and B are the
regular parts of the fields, and (%&L ig the rate of change
of the distribution function as a result of collisions with
turbulent regions of the magnetic field., The results of
taking the lowest order moments of the Boltzmann equation
and integrating, (See appendix six.)are the continuity and

conservation of momentum equations,

3
%%—r V-(mé) = J(%)c A : (6)
' 3
Db 4 (u-v)u = -L VS E (e LuxB) ek (BTN ()

X
where n is the density in configuration space, U is the
streaming velocity of the cosmic ray particles and ébis a
stress tensor which can be approximated by V-$ =V(-é-mcl)
See appendix six. In order to evaluate the effect of the
collisions with the turbulent regions of the magnetic field,
Axford envokes the analogy of light ions colliding with
heavier neutral atoms“fo)0 He usegs a simple mean free path
argument, where T is the mean collision interval, The effect
of collisions is to rearrange the velocitles of the particles

but not to change their density in configuration space,
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Therefore 3

J(3). A =e @)
From the analogy, the average change in momentum per collision
of the particles 1is Wn(!S‘E) , Where V ig the solar wind
velocity and consequently the avpproximate velocity of the
turbulent regions of the magnetic field, v is the velocity of
the particle., See appendix seven, This change in the mo-
mentum on the average takes place in timeT, Therefore the
average force per unit volume of configuration space due to
collisions is given by Q%?f%“yt Since\[{g%ﬂcjifog that is,
since there is no rate of change, because of collisions, in
the number of particles per unit volume of configuration
gpace, any change in the momentum per unit volume caused by
collisions must be due to a change in the momentum of the
particles already in the volume. Therefore the rate of
Change of momentum per unit volume due to collisions must be

[ (3f) A = (s

This means that

(Lo oplet g

It should be noted that in the above discussion a

friction-like force is introduced., This means that
Liouville's theorem breaks down since frictional forces can .
only be treated as generalized forces in the Hamiltonilan
equations, It will now be shown that thls type of force is
consistent with the conditions G%%C was assumed to satisirly.
Consider the continuity equation for the distribution function

t) .
2%_(,?(&01) L PUY) —o
P 29X, AN

flx,v,
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where 1 = 1, 2, 3, and 1 refers to the vector corﬁponentsg
Now supvnose that y".—._f:'g_ + F. where Fo is the Lorentz force
mm
and mb, is the average force due to collisions. Then
2p - opt Fe W F G fUr 4 f D =o (11)
However V-U=zo0 since v is considered to be independent of x.
Therefore |

3_%+u-v%’*f:< V\,%-~"F V"'{L {‘V\r (12)

but V., Ffe =0, so that

%+I.v%+%-vb.%:“fc‘vv'/%“‘B-OV"EC (13)

Thisis Boltzmann's equation. Equating the right hand sides of
(5) and (13) |
(%) = ~Fo Vg -}U £ (14)
Suppose F_= K2(Vs-r), Then V- Fo = ~3k2, 'ﬁsing these

-

relations one can evaluate j(%%)c 0@(!’ and j(%&:} .\fdsv‘ ;

(B =y PR g e

BN

The second integral can be integrated by parts to give
_ f N
A = 3k3m-3k*m =0
J @8,
if one takes f = 0 at infinity. Similarly, integrating by
parts one find

(%] w%:s&ﬂ;m jvkm ) g 4%

3R mu+mh2(Vg-44) = mAkr(Vs-u)

1t

(17)



S0 far 1t has been shown that the friction-like force
introduced,” 1s consisfent with: the assumptions made’ about
the effect of collisions. To show in detall that the ap-
propriate form of Liouville's theorem breaks down recall

that

) v 24 4 9\3‘}: =0
%'ﬁ’xgﬁi + vy G YL (18)
or =~V ¥ (19)

However F_= /K"(.\,/s“[) ond V- Ee = o y therefore
-—C v

dh = -} O [Re-r)] = f3R

Integrating this equation,
3Rt
L=he €

Notice that 5%% #?O. This wmeang that Liouville's theorem 1s

(20)
(21)

not valid here, The fact that £ is an exponential function
of time is indicative of the notion that particles under a
frictional force tend toward a limiting velocity. In this
phase space this means that the density function tends toward
infinity along a surface of constant velocity Vg and tends
toward zero elsewhere,

The friction=like effect arises because of the presence
of turbulent regions of magnetic field. However Liouville's
theorem has been shown to be valid in any glven electro-
magnetic field. This paradox can be can be resolved if one
could show that the cosmic ray particles in passing through
the turbulent regions of the magnetic field, modify the field
in such a way that one can no longsr consider the field to be

a given function of position and time only. The field now
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would have to depend alsc on the velocities of the particles.
Rebturning to the development of the explanation of the

siurnal varietion, squations (6 {7 (8), and {2} can be
¥ 4 2 32

k‘;

combined to give

Dm +V-(M4)=o
73 {22}
{ 2z I
and g,-(éa-i-(“ V)u _L’V(——fmc )+£(§+ci_9_(z\'§)+-——(!s~y) (23)

Provided u changes slowly compared to the mean collision

time, T, and the gyrofrequency900=$L§5 the left hand side of

fmc
(23), 44 | can be neplected. Then
e e 54./ux3).+l,(v ~«) o
o=~ Vm+ L (E+L4xE V-4 (24)
3m m < T

e model used here shall be limited to the scliptic
planef In this plane magnetic fleld lines of force form
Archimedes spirals, and the slectiric fleld is perpendicular
to the plane as indicated by equation (3). In a circula

reglon about bthe sun which contains the earth's orbit the

are considered to be very regular and T is large.

XS
i

‘_J

ald

},.;.
T

Cutside the perimeter of this reglon the fields are considersd
to be very turbulent and Tis small. Cylindrical polar co-

ordinates are chosen and the unit vectors in the principal

s . A oD . .
directions are r, ¢, k. 3ese figure sSiXx.. X is the angle

3

vetween the normal to the magnetic field and the radius

vector. Vg is the velocity of the solar wind. Then
B = BpimXA — Bew X §
E =l VBcon g. .
E={ x (25)
V= \/LC
Uz Un? +M¢§§\+M3

From the symmetry of the model ga- and m=constant on the

boundary with the bturbulent region. It Is assumed that

*CWliﬂdrical modification of Axford's model
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FPigure 6. Turbulent Region of Magnetic Field

BOUNDARY ©F
TURBULENT REGION
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things change very slowly as one crosses the eclintic plane
o~ 3
in the k direction. Therefore %1_503 In deriving equation
(24) it was assumed that
AL - DU 449U =0
-

, therefore V= N gf_‘. and
or D(Ur*) — o (26)
Because particles do not accumulate in the clrcular region
and the region is not evacuated of cosmic ray particles Uf
on the boundaries of the cavity., <lhat is, Up=0 on the surface
of the sun and on the boundary with the turbulent region,
Because of (26) Un=0 everywhere,

It is now possible to substitute these conditions to=-
gether with the expression for E ffom (4) into equation (24)
written in cylindrical polar coordinates to give

5{;3 +Te [—’—Vssmx& +4 (~ug Beu X K + Uz B X§

o= "
+L{35mxl")]+<v”' “9‘.,32\ 43 R ) (27)
After substitutingws= S§ , the component equations can be
written
27 A ==V
o Ug + Wl X Uy =S G0 =70

o df vereax Uyt 0 400

M} 4 0 1§%’=.44¢o?xcmy

Bquations (28) together with equation (2) can be solved to

(28)

’Wu“rmhxaﬁ -

give

) F3
,Lc.”/““’z(r”l o H] s (29)
3 ”’ [1+(w’r,<w'u)<)1]
(30)
- 2N

u
0 A”KXI] QYTNMJ)t]
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- LT
= X
Uy .1
Ll +(w')—m’m¥)1
Tf one assumes that at the earth's orbit the field is

(31)

regular and T goes to infinity then

(/(%: (&) ‘

b(gg:.a.n, : : (32)
The cosmic ray particles co-rotate with the sun., In addition

it can be seen that
Am — o
A

The density gradient which Stern showed balanced the effects

(33)

of the drift velocity in static fields has been destroyed by
the turbulent magnetic field outside this region. The choice
of the boundary condition %%?::o eliminates the possibility
of obtaining no cosmic ray streaming, u=0., By setting U= o

in equation (24) it is seen that

C?2 UM =€ g:= € VgenX

(34)
Therefore for no streaming to take place a density gradient
must be present. This gradient can be destroyed by having a
turbulent region present.

It should be pointed out that the model assumed here 1s
consistent with Stern's érgument(qq) ir T=@ | Setting
W=o and ¥=ov | equation (24) becomes

2ym = & E .

Equations (22) and (23) can be combined to give

—%rjzg.—fv-(mys): (v-K-Vim (36)

. P s PRV — . - 2.
where K is the diagonal diffusivity tensor Wlth.Ku‘%Caq’ and

KL‘:é ¢ T is a coordinate system with one axis parallel
Lp+ﬁu?3%1
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to B. The streaming veloclity parallel to B is
muUupy = ml{s,, -~ Ky Vum
or Uy = Vsu- C:%I 77 (’Q”‘M)
If ==
Vim=o0 (37)

Equations (35) and (37) can be combined to give

%
This is the same expression obtained by Stern for Efdt .

dn
where the g‘direction was the direction perpendicular to the
magnetic fileld.
Finally, the model described above is only applicable
to particles which are affected by the turbulent regions of

the magnetic field. The upper limit here is 10" ov, (4%
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CHAPTER FOUR

Conclusions

Liouville's theorem was shown to be valid whenever the
ensemble can be described by Hamilton's equations. The gen~
erallized forces must be such that they can be taken into the
Hamiltonian, Liouville's theorem holds in any electromagnetic
field which is a Tunction of position and time only and which
ig not influenced am‘appreciable amount by the presence of
the cosmic ray particles,

It appears that the exlstence of very turbulent magnetic
fields causes the varticles to be scattered in such a manner
that the average forcé acting on the particles 1s a friction=-
like force., If one assumes the existence of such a force,
the diurnal variation is correctly predicted., This, of
course, causes thé breakdown of Liouville's theorem, The
fact that this force must be electromagnetic in nature prompts
one to say that the particles influence the magnetic field in
gsome way; otherwise one would be faced with a contradiction
"to Liouville's theorem.

The cylindrical modification of Axford's model fof the
diurnal variation predicts the observed results., It predicts
that for particles above 10" ev no variation will be observed,
For low energy particles the idealized model of a perfectly
regular field in the cavity, T=ee , must be abandoned., The
fluctuating part of the field is, in fact, present to some
degree in the cavity and hence the very low energy particles

will be scattered enough to minimize, if not wipe out, any
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anisotropy. The model pertains only to radiation in the
ecliptic plane, What happens outside this plane is not
discussed,

It is the existence of time dependent fields in the form
of turbulent regions of magnetid field together with the break-
down of Liouville's theorem which no longer allows one to con=
clude thaf radiation is isotroplc near the earth 1f one
assumes isotropy far away.

A final point in regards to the friction=-like effect is
that the actual mechanism which produces this effect has not
been explained, Unly a qualitative 1dea of what might take

place has been suggested,
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APPENDIX ONE

Transformation Between Coordinate Systems K' and K

The % axis, the vertical direction, is in the yz plane.
The vz plane, the plane through the observation point and
containing the geomagnetic axis, intersects a spherical earth
in a great circle., The vertical direction is just an exten-
aion of a radius of this circle and thus 0& is in the plane.
(See figure 7.} ..

A compass needle confined to the XY plane would align
itself in a direction corresponding to the projection of the
v axis (which points toward the geomagnetic north) upon the
XY plane. The angle between this projection and true north
(the Y axes points toward true uo%ﬁwv is the declination
anglee, If the declination angle is east of true north,
then a rotation about 0% ofedin the clockwise sense bring 0Y
into the vnlane containing Oy, Oz, 0Z. That is, the yz and Y&
planes coincide., O& and Ox are then in the same direction,
as they are the normals to coincident olanes, If the dip
angle is north, (dip angle is the acute angle between the
direction of B and the horigontal plane) a rotation about 0X
owA%“dSQ angle between Oz and 03, ( %mn@OplQH@,man@v in the
counter clockwise sense will bring the two sets of axes into

coincidence., In matrix notation the transformation is
X | © o \[Crme TpmX o X
4| = o ! b | qumex  ceeed O V\
7ot mih e o X2
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Figure 7. The K or (x,v,z) and The XK' or (X,Y,%) Coordinate
Systems

geographic
north pols

geomagnestic

vertical north pole

geomagnetic
meridian througho

geographical meridian
through o

dotted line 1s the projection of
oy upon the XY plane
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APPENDIX TWO

Values of J}XJ, the Positive Excess, Read as Data for L =1, 2, -
seoss 20 0.,2265
0.2275
0.2285
0.2295
0.2305
0,2315
0.2325
0.2330
0.2335
0.2335
0.2335
0.2335
0.2330
0,2320
0.2300
0.2275
0.2235
0.2140
0.2080
0.2180
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APPENDIX 81X

\ " - . (43)
Moments of Boltzmann's Bquation

Suppose that £(v,r,t) ig the distribution function fo
the ensemble undsr consideration, It is assumed that  goes
to zero at infinity, et Q(v) be some function of velocity,
¥, only. All integrations in this section shall be over
velocity space Then

3 m"—"tt) =5¥ABU—

the density Iln conliguration space at a point r. In

[5

#

froda

addition, a guanbity @(gyt) can be defined by
m Qo) :ley)%<!.G,f) A3 v
A bar over any quantlty shall indicate a similar typs of
average value,
A8 a preliminary step to finding the regquired mements
of the Boltzmann equation three useful integrals are investi=-

2y

gated. The Einstein summation notation is used here with

fagpdte=s G fepeir= 28 o

. _ (Ule]
J’Q\,- ?%JV:%;S&MA%&S‘r--%%T/ (2)

Integrating by DuTﬁsg

- [ HPLS
\fQ<¢V¢ 2 41V = ji\jji%13 i*«;-%39[ﬁ9%5E14&

J VL

Becaugse I =2 O u.t inf uli’;}?’ 4 ————m‘
vel 43 _ 2 £
Ay e NS -

Boltzmann's equation is

NS
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(4)

'5%? +'€%%"%%F :'(g%%c.
forces is
c

2-‘
F being the none collision forces, (D )

-+ v
since £ =4Y¥
W AX
the rate of change of the distribution function due to
collisions,
To find the lowest order moments of the Boltzmann's
equation as it is, seb

to integrate the

(3) can then be used to integrate

equation; that is,
Q= 1. Bguations (1),

cerms on the left hand side of

the te:
] = (% v (5)

gm +9(MV») —_—m E a
7E  9Xi
ray particles Traversing an electro=

(2),
(4) to give

g

In the case of cosmic

magnetic field
Ay o = (g+LrxB]
ax ™ |
and Z7‘%g;j -0 . Therefore equation (5) becomes
: 3
v, 2M 4 V.- (mY :\f &, .
” oL+ md) = [ (98] A (5)
he first ler moment of Boltzmann's equation,

cof the equation after sach term has been wmulti-
plied by v, set Q = v. Again equations (1), (2), (3) can be
used to evaluate the laflt hand sid@, Then
Dmd) 4 P (vl ,m[af M)}J J“u- %}JW
2 XK, (7)

(4%) =0

=
Since g%a_
omd) oL (0v)] —mdd = (2L 43
e Jel8s. 4

gsscond term in this sgquation can be writlten as

The
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o

jgm%is"'* j‘v‘ %A3v+9 Jrntdr
: vaz%d V+9 j"“%“ tr}

[ god

+4 {%.,.}_g{ ..... §

S\

t
1.

(9)

Now deline a random veloclty w=yv - u, where u is the
average velocity and v is the velocity of a particle. Then
- 3 '

w:_,/_j(."'-kf]%”( r=0 (10)
= m
Substituting for v in expression (9) and recalling that

= the second term upon Iintegration bscomes
/‘_ { TmlU4 @, )+ D m (Uil + 9 622) o pm(a,d3+“’/“~’3)§
/

X, X2 2 X3

bifo R !

ITn tensor notation this can be written as

Vo(muy)+ V- (m& &)

(11)

When this is substituted for the second term, equation (8)

becomes

D(ME) V- (mhd) 4V (MER) — "‘”M 'j"(v,}(:

ST (12)
However, V-(MUU)=mU VA 44 Q-(m4), and from
equation (8) 3

w[v-(mu)|= “j j S
Therefore 3. U D
A130 md.‘:( = ME s E:e§+g.’,)i—lé (13)
: T ! B «
and omd U 4(1%%
v= - M7

On substitution of the results of (13) into (12)
- 3
ML i VU + U ) 3 SemfF - (v/ob)d v
G tmd VUL (Gg) L4 S mE = fu(). (14)
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where 2 —,nggiis called the stress tensor,

mmetric then the off diagonal elements of 3 are

w
e
d
&
-
[
e
H
t,‘“
et
"»4

o (mEB) = AMBE) 4 g D(m ) 4k D(Mmws?)
S = V(M A S e Tt S

{>.

msu—;l) +£ ?(m(:)'z) - V(_;%E)

178 & P Xa oX3

(15)

3
f(%~) Av is the rate of change of density in con=
J /C. ‘

figuration space which results from collislons of cosmic ray

n

particles with irregularit in the magnetic field., The

o
s
o
®
t

s o

sffect of these collisions is to redistributs the velocitles

£

[N
=

of the perticles such that a coordinate system moving with

the irrsgularities the particles appear to exscutbs a random

walk type of motl'n.(4&) The density in confi g ration 8pace
is unefiected by ccllisions, Th@r@for@_f(?%J =0
ﬂnjlf( L Aﬂf ig the rate of pe of momentum per

unit volume of configuration space.  If the changs in momentum
in a collision on the average 1is m(V - u) where V is the
velocity of the irregularities and u 1s the average velocity
of the particles, and if is the average time between col-

lisions, then the average force per unit volume equals MM f"(V g)
: T

Therefore

Je () £vea -s) (16)
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If all these assumptions are made, the zero and Tirst
moments of Bolbzmann'’s eguation give the continuity ana the
congervation of momentum equations, |

LM 4 G-(md)=0
7t ' (17)

o DK uvs = - L V(S E ) ()
an 2—7—t— -— -— 3!\'\ i <

Trn order to be able to work with esquations (17) Axford

o
<

approximates wdby ¢,
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APPENDIX SEVEN

Average Change in bomentum of a Light Particle
in Collision with a Heavy Particle

Consider two particles of mass m and M respectively.
The particles are to be treated as smooth elastic spheres,

mass Misg intiallyat resty
Suppose that in a coordlnate system in whlchAmassrlhas ve]oumtv

Vo and collides with mass L at 'n

angle © as shown in figure §.. After the colllslon mass m

has a velocity v with zenith angle @ .. The other particle

has a velocity V at a zenith angle ©. Then the conservation

of momentum and energy equations are

Ym Vg, =g @ + MV © ‘momentum along z axis (1)
_ - & + MV ©

o =mvnm® N fum momentum L 2z axis (2)

gt = v + MY (%

2 = * : 5)

Eliminating @' and Vv between (1), (2), and (3)

V= amhond (4)
(rm+M)
Consider a beam of identical particles of mass m and

velocity v, uniformly distributed in the Xy plane, If D ig
the distance between centers, the effective area presented
for collisions is TD%., The probability p(e,@)de d¥ of a
collision occuring at a point (8,¢) in @ to © + d6 and ¢ to
¢ + d¢ measured from the center of mass M is given by the
ratio of the effective area presented for collisions by this

region to 'the total effective area.

/aq(e,qs)p(ea(gé: Dom® L0404y - M,,Qmep(fa 2@

Al (5)

The change in the momentum of mass m for a collision with

vp@int of impact at (&, ¢) is the negative of the change of

momentum of the mass M. From (4)
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Figure Collision Between Light Particle and Heavy Particle



A_é 6. ¢) — ;zmu*omeM(mem¢£+wﬁem¢é+mez_@] (8)
S (rm+ M)

On the averags the change in momentum of the particles of

mass m that collide is

= [@ad) ade, (€ $)Aedd )
Combining (5}, (8), and (7)
AE = M %Mf jmgm e(memyﬂwmemfé«tmeﬁ)/e/;d

™ (m+m)7r
o 5!5-

(8)

S
2 |
3

11
5=

The calculation was performed for the cags where mass M
was at rest, If mass M has an initial velocity Vo in the

rest frame, then

(¢}



