
202

multiSolver extension

This documentation and the associated source code are not approved or endorsed by OpenCFD Ltd. (ESI Group), producer of
the OpenFOAM software and owner of the OpenFOAM® and OpenCFD® trade marks.

multiSolver has been publicly released on github at https://github.com/Marupio/equationReader/

Refer to this website for the latest documentation and source code.

1 Introduction

1.1 What is it?

multiSolver is a master control class that allows you to create a superSolver composed of multiple

solvers within a superLoop. All solvers operate on the same dataset in sequence. For example:

1. icoFoam - runs to completion;

2. data is handed over to scalarTransportFoam;

3. scalarTransportFoam - runs to completion;

4. data is handed back to icoFoam, and the superLoop repeats.

1.2 What it isn’t

You should not use multiSolver to combine the physics of two solvers. For example, say you want to

model bubbles in a porous medium. That's like combining porousSimpleFoam with bubbleFoam.

You might be tempted to use multiSolver for that, but don't.

Each time it switches between solvers, multiSolver writes everything to disk, clears the memory, then

reloads everything all over again. This is not efficient. If you plan to switch between solvers at every

timestep, multiSolver is not a good idea. Rather, you should write a single solver that combines them

within its algorithm.

203

1.3 Features

 Multiple solvers - multiple solvers can be used in sequence on the same data set.

 Changing boundary conditions - the boundary conditions can change at distinct time intervals.

 Independent time - each solver can operate with an independent time value, although universal

time can still be used.

 Single case directory - the settings for all solvers are stored within a single case directory using a

"multiDict" dictionary format.

 Easy data management - All the data output is sorted into subdirectories corresponding to the

solver, and can be loaded / unloaded using the multiPost utility.

 Store fields - To save memory and hard drive space, not all solvers have to use all the fields.

Rather, they can "store" any unneeded fields, leaving more memory and disk space. The next

solver retrieves all stored fields, and no data is lost.

1.4 Why would you need this?

A fundamental assumption in the design of OpenFOAM is the existence of a universal time. Therefore

the time object is the top-level objectRegistry (i.e. runTime hosts the database for your simulation). This

design works for nearly all simulations imaginable, except for those that require more than one time

frame. For these situations, multiSolver will come in handy.

1.5 When would you need this?

The capabilities of multiSolver are useful for:

 multi-step processes to be modelled within a single application, e.g. fluid injection, followed by

settling;

 modelling of a flow problem characterized by two different timescales, e.g. stirring with

biochemical reactions; and

204

 changing boundary conditions mid-run.

Basically, if you find yourself:

 frequently copying data between case directories;

 frequently stopping and changing the simulation details, then restarting; or

 using runTime++ more than once in your solver,

then multiSolver might help you.

1.6 Mesh motion not fully supported

NOTE: At this time, multiSolver allows for full mesh motion, provided the mesh returns to its original

position between solvers. This functionality is planned for the future.

1.7 Update info

 2010-07-23: Initial import

 2011-03-29: Minor bug fix for 1.6-ext and 1.7.1

 2011-04-05: Major upgrade - now works for parallel simulations

 2011-06-03: Minor bug fix - decompose nolonger omits the initial directories

 2011-07-01: Overhauled the documentation on the wiki page (no change to the code)

 2012-10-25: Version 0.5.0

o Moved to git

o Enabled boundary switching

o Introduced version numbers to keep track of changes

 2013-08-29: Version 0.6.0

o Uploaded to github and OpenFOAM-extend

o Restructured applications and tutorials directories for consistency

o Made opening splash optional

205

2 Installation

2.1 OpenFOAM-extend

If you have a recent version of OpenFOAM-extend, you may already have multiSolver installed. Type

this command:

 [-d "$WM_PROJECT_DIR/src/multiSolver"]&&echo "Yes"||echo "No"

If the response is "Yes" then you already have it.

2.2 Git Installation

A git installation will allow you to download the latest updates to multiSolver.

multiSolver is git-tracked seperately from OpenFOAM, so if your OpenFOAM installation is also git-

tracked, it is advisable to put it in a seperate directory. Alternatively, if you use the latest version of

OpenFOAM-extend, multiSolver is incorporated within the main git repository.

Therefore, choose a seperate directory, for example:

 -OpenFOAM

 |-OpenFOAM-2.2.x

 | |-applications

 | |-src

 | '-etc, and so on

 '-multiSolver

To duplicate the structure above:

 cd $WM_PROJECT_DIR

 cd ..

 git clone https://github.com/Marupio/multiSolver.git

 cd multiSolver/src/multiSolver

 wmake libso

 cd ../../applications/solvers/multiSolver/multiSolverDemo

 wmake

 cd ../../../utilities/postProcessing/multiSolver

 wmake

206

To later update multiSolver:

 cd $WM_PROJECT_DIR

 cd ..

 git pull

 cd multiSolver/src/multiSolver

 wmake libso

 cd ../../applications/solvers/multiSolver/multiSolverDemo

 wmake

 cd ../../../utilities/postProcessing/multiSolver

 wmake

2.3 Manual installation

To manually install multiSolver:

1. Download the code:

 get the latest code from https://github.com/Marupio/multiSolver/archive/master.zip

 or use the zip file stored on the website linked-to from the DOI.

2. Open a terminal window and browse to the folder with your download.

3. Execute the following commands. You should be able to just copy and paste all 10 lines into your

terminal:

 unzip multiSolver-master.zip

 mv multiSolver-master/README multiSolver-master/tutorials/multiSolver

 cp multiSolver-master/* $WM_PROJECT_DIR

 rm -rf multiSolver-master

 cd $WM_PROJECT_DIR/src/multiSolver

 wmake libso

 cd $FOAM_APP/utilities/postProcessing/multiSolver

 wmake

 cd $FOAM_APP/solvers/multiSolver/multiSolverDemo

 wmake

multiSolver should now be installed.

3 Testing the installation

The installation comes with a demo application and test case. First copy the test case into your

run/tutorials directory:

cp -rf $WM_PROJECT_DIR/tutorials/multiSolver $FOAM_RUN/tutorials

207

To run the test case:

cd $FOAM_RUN/tutorials/multiSolver/multiSolverDemo/teeFitting2d

blockMesh

multiSolverDemo

To view the results:

multiSolver -load all

multiSolver -set icoFoam1

paraFoam

3.1 About the test case

The demo application is:

1. icoFoam1 - i.e. icoFoam with boundary conditions 1;

2. scalarTransportFoam;

3. icoFoam2 - i.e. icoFoam with boundary conditions 2;

4. scalarTransportFoam (again);

5. repeat.

The test case is a 2-dimensional tee fitting. The boundary conditions are:

1. icoFoam1:

 Inlet

 ||

 ||

Closed ====== Outlet

2. scalarTransportFoam:

 T = 1

 ||

 ||

 zeroG ====== zeroG

3. icoFoam2:

 Outlet

 ||

 ||

Outlet ====== Inlet

4. scalarTransportFoam:

 T = 1

 ||

 ||

 zeroG ====== zeroG

208

The test case also has storeFields defined to demonstrate their use:

 icoFoam doesn't need the T field, so it stores this field; and

 scalarTransportFoam doesn't need the P field.

Since icoFoam1 is the first to run, it must have all fields defined in its initial/0 directory, even

though it is storing the T field.

4 Using multiSolver

4.1 Case directory structure

The case directory for a superSolver is different than a standard solver. The directory transforms itself

while the solver runs. It contains transient files that are continuously modified by multiSolver, and static

files that you use to describe the change.

4.1.1 Data

Now, you don't have to worry about this as it is handled automatically, but the most notable difference

between a superSolver and a standard solver is where they keep their data.

A typical normal solver

[caseName]

|-system

|-constant

|-0

|-0.2 [timeDirectory]

|-0.4 [timeDirectory]

... more [timeDirectories]

A typical superSolver

[caseName]

|-system

|-constant

'-multiSolver

 |-[solverDomain1]

 | |-initial

 | |-0 [superLoop]

 | | |-0 [timeDirectory]

 | | |-0.2 [timeDirectory]

 | | |-0.4 [timeDirectory]

209

 | | ... more [timeDirectories]

 | |-1 [superLoop]

 | | |-1.2 [timeDirectory]

 | | |-1.4 [timeDirectory]

 | | |-1.6 [timeDirectory]

 | | ... more [timeDirectories]

 | ... more [superLoops]

 |-[solverDomain2]

 | |-initial

 | |-0 [superLoop]

 | | |-0 [timeDirectory]

 | | |-0.2 [timeDirectory]

 | | |-0.4 [timeDirectory]

 | | ... more [timeDirectories]

 | |-1 [superLoop]

 | | |-1.2 [timeDirectory]

 | | |-1.4 [timeDirectory]

 | | |-1.6 [timeDirectory]

 | | ... more [timeDirectories]

 | ... more [superLoops]

 ... more [solverDomains]

In short, standard solvers keep their data in:

[caseName]/[timeValue]

whereas superSolvers sort their data into superLoop subdirectories within subdirectories named after

the solverDomain:

[caseName]/multiSolver/[solverDomainName]/[superLoopIndex]/[timeValue]

The standard location of case/[timeValue] is used as a temporary loading area, mostly for post-

processing. You don't have to worry about this, as it is handled automatically by multiSolver and its

associated post-processing application.

4.1.2 Boundary changes

Changes to the mesh are not yet supported by multiSolver, but boundary changes between patch and

wall are supported. To do this, create create multiple copies of the constant/boundary file with

their respective solver domain names as extensions. For instance:

-constant

 |-boundary

 |-boundary.domain1

 |-boundary.domain2

 |-boundary.domain3

 |-faces

 |-neighbour

 |-owner

 ‘-points

210

4.1.3 multiDicts

A regular solver reads information from various dictionary files, and these affect its behaviour. When

using multiSolver, there will be dictionaries whose contents need to be different for each solverDomain.

To specify this behaviour, a multiDict is used.

multiDicts:

 sit in the same directory as the dictionary they are managing;

 have the prefix multi, followed by the name of their child dictionary; and

 are not required if the dictionary doesn't need to change between solvers.

For example, a typical constant directory might look like:

constant

|-reactionProperties standard dictionary (does not change)

|-multiTransportProperties multiDictionary (describes change)

'-transportProperties auto-generated dictionary (changes)

In this directory, there are three files:

 reactionProperties - this is a standard dictionary. (You can tell because there's no

multiReactionProperties.) It is user-editable and will not change during a run.

multiSolver ignores these files;

 multiTransportProperties - this is a multiDict. It is also user-editable and will not

change during a run. multiSolver recognizes it by its prefix "multi". It describes how the

dictionary transportProperties should change during a run;

 transportProperties - this dictionary is automatically generated by multiSolver. Its

content changes during a run (and during post-processing). Editing this file is only useful for

runTime modification.

A multiDict has the following structure:

dictionaryName fvSchemes;

multiSolver

211

{

 sovlerDomainName1 // this is the solverDomain name

 {

 // settings for the first solver go here

 }

 solverDomainName2 // another solverDomain name

 {

 // settings for the second solver go here

 }

 solverDomainName3 // etc..

 {

 }

 default // optional

 {

 // default settings go here

 // these are loaded first, then overwritten by solverName (above)

 // solvers whose names are not listed above inherit only these settings,

 // or none at all if default is absent

 }

}

Sometimes, two or more solverDomains will have identical dictionaries. Rather than write out their

settings several times, the sameAs keyword is available:

solverDomainName1

{

 // settings for the first solver go here

}

solverDomainName2

{

 sameAs solverDomainName1;

}

Exception! The multiControlDict contains the settings for multiSolver. It is not a standard

multiDict. See the next section for details.

4.1.4 MultiControlDict

The multiControlDict is the multiSolver analogue of the controlDict. The controlDict is

auto-generated based on the content of this file. The multiControlDict is the main control

dictionary and therefore it does not conform to the format of a regular multiDict. It is located in

case/system and is used to automatically generate the controlDict.

Since multiSolver has so many optional settings, the full list of settings for the

multiSolverControlDict is long, but most of these keywords are not required. The full list is

shown below:

multiSolverControl

212

{

 initialStartFrom

 firstTime

 firstTimeInStartDomain // *1

 firstTimeInStartDomainInStartSuperLoop // *1 *2

 startTime // *3

 startTimeInStartDomain // *1 *3

 startTimeInStartDomainInStartSuperLoop // *1 *2 *3

 latestTime // (default)

 latestTimeInStartDomain // *1

 latestTimeInStartDomainInStartSuperLoop // *1 *2

 startTime // (required with *3)

 startDomain // (required with *1)

 startSuperLoop // (required with *2)

 finalStopAt

 endTime // (default) *4

 endTimeInEndDomain // *4 *5

 endTimeInEndDomainInEndSuperLoop // *4 *5 *6

 superLoopEnd // *6

 writeNow

 noWriteNow

 nextWrite

 endTime // (required with *4)

 endDomain // (required with *5)

 endSuperLoop // (required with *6)

 multiDictsRunTimeModifiable // (default true)

 timeFormat

 timePrecision

}

solverDomains

{

 solverDomainName1

 {

 startFrom

 firstTime

 startTime // *7

 latestTimeThisDomain

 latestTimeAllDomains // (default)

 startTime // (required with *7)

 stopAt

 endTime // *8 (default)

 writeNow

 noWriteNow

 nextWrite

 iterations // *9 (cannot be used with adjustableTimeStep)

 solverSignal

 elapsedTime // *10

 endTime // (required with *8; default 0)

 iterations // (required with *9)

 elapsedTime // (required with *10)

 storeField

 purgeWriteSuperLoops // (default 0)

// * The rest are the standard controlDict entries, i.e.:

// writeControl

// timeStep

// runTime

// adjustableRunTime

// cpuTime

// clockTime

// writeInterval

// purgeWrite

// writeFormat

// writePrecision

// writeCompression

// runTimeModifiable

// graphFormat

// deltaT

// maxCo

213

// adjustTimeStep

// maxDeltaT

// * Anything else entered here will automatically be merged verbatim into the controlDict

 }

 solverDomainName2

 {

 timeValueStartFrom

 // etc..

 }

 default // (optional, but all prefixes must be defined)

 {

 // values here are loaded first, then overwritten by the solverDomainName

 }

}

multiSolverControl

The multiSolverControl subdictionary contains all the settings that affect the superSolver globally.

Initial start settings

 initialStartFrom - this setting determines where the superSolver reads the initial data from and

begins its run at:

o firstTime - load data from

case/multiSolver/currentSolverDomainName/0/0

o firstTimeInStartDomain - load data from case/multiSolver/startDomain/0/0

o firstTimeInStartDomainInStartSuperLoop - load data from

case/multiSolver/startDomain/startSuperLoop/0

o startTime - search

case/multiSolver/[allSolverDomains]/[allSuperLoops] for the

closest globalTime to startTime; load this data

o startTimeInStartDomain - search

case/multiSolver/startDomain/[allSuperLoops] for the closest

localTime to startTime; load this data

214

o startTimeInStartDomainInStartSuperLoop - search

case/multiSolver/startDomain/startSuperLoop for the closest localTime

to startTime; load this data

o latestTime - search

case/multiSolver/[allSolverDomains]/[allSuperLoops] for the

latest globalTime; load this data

o latestTimeInStartDomain - search

case/multiSolver/startDomain/[allSuperLoops] for the latest

localTime; load this data

o latestTimeInStartDomainInStartSuperLoop - search

case/multiSolver/startDomain/startSuperLoop for the latest localTime;

load this data

 startTime - only if required (see above)

 startDomain - only if required (see above)

 startSuperLoop - only if required (see above)

Final stop at settings

 finalStopAt - this setting determines when the multiSolver will stop the simulation

o endTime - stop when globalTime reaches endTime

o endTimeInEndDomain - stop when localTime reaches endTime in sovlerDomain

endDomain

o endTimeInEndDomainInEndSuperLoop - stop when localTime reaches endTime in

sovlerDomain endDomain at superLoop endSuperLoop

o endSuperLoop - stop after the superLoop number reaches endSuperLoop

215

o writeNow - stop and write after the next solver starts

o noWriteNow - stop without writing after the next solver starts

o nextWrite - stop at the next designated write time after the next solver starts

 endTime - only if required (see above)

 endDomain - only if required (see above)

 endSuperLoop - only if required (see above)

Other global settings

 multiDictsRunTimeModifiable - when set to on, multiSolver will scan and reread any changed

multiDicts

 timeFormat - fixed, scientific, or general, the same as in a regular controlDict. The

timeFormat must be applied globally - there cannot be two solvers using different timeFormats.

 timePrecision - again, the same as in the regular controlDict.

Solver domains

The solverDomains subdictionary contains all the solverDomainNames as subdictionaries, and also can

include a default, but all solverDomainNames must be included. These subdictionaries contain all the

settings that apply locally to a single solverDomain.

Local start settings

 startFrom - this setting determines the localTime value to start from each time this

solverDomain is initialized in each superLoop.

o firstTime - start from localTime = 0

o startTime - start from localTime = startTime

216

o latestTimeThisDomain - start from the localTime it left off at when it was last in this

solverDomain

o latestTimeAllDomains - start from the latest globalTime (i.e. localTime and globalTime

are equal for this solverDomain)

 startTime - only if required (see above)

Local stop settings

 stopAt - this setting determines where the solver will stop within each superLoop.

o endTime - stop when localTime = endTime

o writeNow - stop now and write out the results

o noWriteNow - stop now without writing out results

o nextWrite - stop at the next scheduled write time

o iterations - stop after endIterations have been achieved. This setting cannot be used if

adjustableTimeStep is enabled for this solverDomain

o solverSignal - leave it up to the solver to give the stop signal. This essentially sets

endTime to a very large number

o elapsedTime - stop after elapsedTime has passed for this solverDomain

 endTime - only if required (see above)

 iterations - only if required (see above)

 elapsedTime - only if required (see above)

Other local settings

 storeField - a wordList of any fields that this solverDomain doesn't need. This saves the field

from having to be carried in memory and written out at every write time, but also allows the

217

latest values of the field to be passed on to the next solverDomain. This works by copying the

field to the last write time of the solverDomain in question.

 purgeWriteSuperLoops - this works the same as the standard purgeWrite, except instead of

overwriting [timeValue] directories, [superLoop] directories are overwritten.

Any other values placed in the solverDomainName subdictionary will be merged verbatim into its

controlDict.

Default solver domain

Any values placed in the default solverDomain will be loaded first, and written over by any values

specific to a solverDomain. Although this is a default subdictionary, all solverDomainNames must be

present in the solverDomains subdictionary.

4.1.5 Boundary conditions and initial values

The boundary conditions and initial values are located in:

case/multiSolver/[solverDomainName]/initial/0

This is the analogue of the case/0 directory, except there is one for every solverDomain. Unlike in a

regular simulation, multiSolver will always refer to the boundary conditions located in initial/0.

4.1.5.1 Changing boundary conditions

multiSolver allows the boundary conditions to change between solverDomains. To accomplish this, the

latest internalField is combined with the boundaryField from initial/0.

4.1.6 Advanced boundary condition settings

I built in some functionality into multiSolver that I don't think is actually necessary. It basically allows

you to have the updated boundary field values skip solverDomains. The feature is also untested. I'm

commenting out the documentation for this section.

218

4.2 Store fields

Some solvers may not need to use all the fields created by other solvers. On the other hand, these other

solvers need the latest values for these fields. There are two options for handling this:

1. add the unneeded fields to the createFields.H of the solver. The extra fields will be carried

in memory, and written out at every time step.

2. declare these fields as storeFields in the multiControlDict. With this option, for the solver

that doesn't need them, these fields will not be loaded in memory, and will be written only to

the first timestep in each run.

Note: The first solverDomain to run must have all fields from all solvers defined in its initial/0

directory.

4.3 Local time and Global time

A fundamental principle of multiSolver is that time is independent between solverDomains. (If this

causes you apprehension, don't worry, the default behaviour uses a standard global time.) Therefore

there are two defined time values:

 localTime - the value known to the solver; and

 globalTime - the universal time, known only by multiSolver.

4.3.1 Initial start

The multiControlDict has settings for an initial start defined gloablly (initialStartAt), and

an initial start defined for each solverDomain (startAt). Sometimes these settings may appear to

come into conflict. What happens when initialStartAt is set to latestTimeAllDomains, but

startAt is set to startTime = 0?

219

The initialStartAt settings are where the initial data is read from. The startAt settings are

where the local time value starts from. Sometimes you may be trying to resume from the middle of a

run, and the initial time value should pick up from where it left off. multiSolver tries to determine when

this is the case. The rules are:

 startAt time is equal to the localTime of the initialStartAt data source;

 if the initialStartAt is from a different solverDomain than the initial solverDomain, the

startAt time specified in the multiControlDict is used instead.

4.3.2 Switching domains

When switching domains:

 globalTime stays the same (i.e. time does not step when switching domains); and

 localTime is set to the value specified by the startAt settings in the multiControlDict.

4.3.3 End time

The local stopAt settings are always compared with the global finalStopAt settings. If the

finalStopAt value occurs before the local stopAt value, the finalStopAt value is used, and the

end condition is set.

4.3.4 Initial superLoop

The initial superLoop value is determined by the initialStartAt settings. It is set to be equal to the

superLoop value of the initialStartAt data source. If the initialStartAt data source is from

a different solverDomain than the initial solverDomain, the next superLoop is used.

4.4 Runtime Modification

There are two levels of runtime modification: within a solverDomain, and globally.

220

 Editting a standard dictionary (e.g. controlDict, or transportProperties applies to a

solverDomain. Its effect depends on whether that solver has runTimeModifiable enabled.

This happens at the end of a solver iteration. However, these changes will be lost in the next

superLoop when the same solverDomain is initialized.

 Editting a multiDict dictionary applies globally. This is goverened by

multiDictsRunTimeModifiable setting in the multiControlDict, but these

modifications do not take place until the next solverDomain is initialized. However, these

changes are permanent.

5 Parallel

Parallel processing is now available with multiSolver.

5.1 decomposePar

To decompose the case directory:

1. Set it up as a usual multiSolver-enabled case directory;

2. Create a system/decomposeParDict file as you would with a regular parallel solver;

3. Instead of decomposePar, use:

multiSolver -preDecompose && decomposePar && multiSolver –postDecompose

5.2 reconstructPar

To reconstruct the case directory, instead of reconstructPar, use:

multiSolver -preReconstruct && reconstructPar && multiSolver –postReconstruct

5.3 Aliasing

If you are going to be doing this regularly, it might be a good idea to create a shorter alias for these two

commands. To do this, add:

221

alias multiDecomposePar='multiSolver -preDecompose && decomposePar && multiSolver -

postDecompose'

alias multiReconstructPar='multiSolver -preReconstruct && reconstructPar && multiSolver -

postReconstruct'

To the end of your OpenFOAM-version/etc/aliases.sh or OpenFOAM-

version/etc/aliases.csh file.

5.4 Parallel post processing

Apparently post processors are available that work with the data split across the processor directories /

drives. multiSolver can be post processed in this way as well. To achieve this, use the commands as

described on the post processing page, except run them in parallel.

For example, instead of:

multiSolver -load all

use:

mpirun -n 4 multiSolver -load all –parallel

substituting the correct options for mpirun. Then run your fancy parallel post processor.

6 Programming

6.1 Programming basics

Programming a multiSolver-enabled application is almost as simple as pasting two solvers together.

6.1.1 Simple example

Often a simple example is enough to get started. Here's a simple multiSolver-enabled application, or

"superSolver":

/*---*\

 ... STANDARD HEADER ...

---/

#include "fvCFD.H"

#include "multiSolver.H"

222

// * //

int main(int argc, char *argv[])

{

include "setRootCase.H"

include "createMultiSolver.H"

// * * * * * * * * * * * * * * * * icoFoam * * * * * * * * * * * * * * * * //

 Info << "*** Switching to icoFoam ***\n" << endl;

 solverDomain = "icoFoam";

include "setSolverDomain.H"

// Paste everything from icoFoam.C, starting with #include "createTime.H",

// and ending just before (but not including) return 0;

// * * * * * * * * * * * * * scalarTransportFoam * * * * * * * * * * * * * * //

 Info << "*** Switching to scalarTransportFoam ***\n" << endl;

 solverDomain = "scalarTransportFoam";

include "setSolverDomain.H"

// Paste everything from scalarTransportFoam.C, again, starting with

// #include "createTime.H", and ending just before (but not including)

// return 0;

include "endMultiSolver.H"

 return(0);

}

// *** //

6.1.2 Basic strategy

 Write (or choose existing) solvers that you intend to use with your superSolver;

 The createFields.H files (and associate #include statements) have to be renamed if they

differ between solvers;

 Add #include "multiSolver.H" to the top of the solver;

 Just after #include "setRootCase.H", add: #include "createMultiSolver.H"

 Between solvers use:

 solverDomain = "nextSolverDomain";

include "setSolverDomain.H"

 End with:

#include "endMultiSolver.H"

return (0);

223

6.2 Advanced concepts

If the basic framework described above doesn't suit your needs, read on. This section also covers some

semantics that may be useful to know.

6.2.1 More on solverDomains

A solverDomain is an individual solver loop. It is assigned a name, and the list of names is static. A

solverDomainName cannot be:

 all;

 constant;

 default; or

 root.

All solverDomains must appear in the case/system/multiControlDict file, although declaring

additional names is not a problem.

6.2.2 Order of execution

In the simple example above, all the solverDomains execute in sequence, once per superLoop. This is

not necessary: you can enclose them in conditionals; they can execute in any order; they can miss entire

superLoops; however, they cannot execute more than once per superLoop. Use: multiRun++

between solvers to force the superLoop number to increment if necessary.

Note: Using a multiRun++ statement may lead to user-confusion with the endSuperLoop

condition for finalStopAt.

6.2.3 runTime must go out of scope

Looking at the include files specified in the simple example, you will notice that the entire solver loop is

enclosed in its own set of braces { }, starting before #include "createTime.H". This is necessary

224

because runTime, the mesh, and all fields must go out of scope before multiSolver initializes another

solverDomain.

6.2.4 End condition

multiSolver will detect the end condition automatically during the setSolver function. It will archive

the last case/time directory, and exit the superLoop. This is achieved using the #include

framework described in the simple example. If you are deviating from this framework, the requirements

for correctly ending the multiSolver are:

 setSolver will automatically detect an end condition;

 to force an end condition, use setFinished();

 once the end condition is met, the function setSolverDomain must be encountered at least

once more (although it may be encountered any number of times) to perform the final data

clean-up;

 the function multiRun() returns true if another setSolverDomain still must be

encountered; false means the run has finished, and setSolverDomain has completed the

final clean-up;

 the inidivual solverDomain loops cannot be encountered after the final clean-up has taken

place. Enclose them each in:

if (multiRun.run())

{

 // solverDomain loop

}

6.2.5 #undef directives

Sometimes there will be conflicts with #define directives across solverDomains. For instance, if you

have more than one solver using #include "createPhi.H", only the first solver will recognize it.

This is caused by the fact that the createPhi.H file has this structure:

#ifndef createPhi_H

225

#define createPhi_H

// createPhi code

#endif

These preprocessor directives ensure the code for createPhi is read only once, regardless of how

many times it is included. This prevents the compiler from complaining that something is being

redefined. The problem is, when we switch solver domains, phi goes out of scope, and it is not

recreated. To overcome this, use an #undef directive between solver domains: #undef

createPhi.H

This, and a few other #undef directives are already included by default in the setSolverDomain.H

file. You may encounter others that need to be undefined. Please let me know if you do, and I will add it

to the setSolverDomain.H file. In the mean time, to add an #undef directive:

 using #include "setSolverDomain.H":

 Info << "*** Switching to icoFoam ***\n" << endl;

undef [conflicting definition]

 solverDomain = "icoFoam";

include "setSolverDomain.H"

 without using #include "setSolverDomain.H":

} // previous solver domain goes out of scope

multiRun.setSolverDomain(solverDomain);

#undef [conflicting definition]

if (multiRun.run())

{ // next solver domain comes into scope

where [conflicting definition] is the definition that needs to be removed.

6.3 How does it work?

OpenFOAM is incredibly flexible, and easily extensible, but implementing a change of this kind

challenged its founding assumptions. Therefore, the flexibility was not there on level it needed to be,

leaving little option but to use a top-level wrapper implementation.

226

A wrapper encloses the targeted object in a class that gives it the environment it expects to operate,

while simultaneously presenting a different environment to other objects interfacing with it. At the top-

level, the "other objects" are users. (Strictly speaking, at the code-level, multiSolver is not a true

wrapper since it doesn't include an "OpenFOAM solver" as a member variable, but it is in principle.)

multiSolver works by mutating the case directory into what each solver requires. A transient solver will

see the correct ddtSchemes setting in fvSchemes; likewise a steady state solver will see

steadyState for ddtSchemes. This is the purpose of the multiDict dictionary format.

The data output and input are hard-coded to the case/[timeValue] directory. Therefore, when

multiSolver initializes the next solverDomain, it archives the existing output into the correct directory at

case/multiSolver/[solverDomainName]/[superLoopIndex]/[timeValue], and

copies the latest field values to the initial time the next solver expects.

6.4 Reference

This reference section gives an overview of the functions available to you. You don't need to know any

of this. It might be better just to look at the source.

6.4.1 Solver interface functions

Functions designed for use within a solver.

setSolverDomain

This function mutates the case directory into what the next solverDomain expects. It:

 rereads any modified multiDicts;

 archives the existing data to case/multiSolver/solverDomain/superLoop/time;

227

 copies the current field data to the case/time/ directory, swapping the boundary conditions

if necessary;

 creates and writes the new controlDict;

 swaps all multiDicts to the next solverDomain; and

 checks for the end condition.

setFinished

This function tells multiSolver that once the current solverDomain is finihsed, the full superSolver run is

finished. (Technical, it tells multiSolver to save the last data and clean-up at the next

setSolverDomain(), then the full superSolver run is finished.)

operator++

This function increments the superLoop number. It must be used if the same solverDomain is visited

more than once in the same superLoop (otherwise it will overwrite its previous data). It can be used

once between any pair of setSolverDomain() functions.

run and end

The run() and end() functions are analogous to those of the same name in the Time class. The first

is true when the run should continue; the latter is true when the run should end.

6.4.2 Post processing functions

There are several functions designed for post-processing. Many of them depend on the use of the

timeCluster and timeClusterList classes.

228

setSolverDomainPostProcessing

This mutates the case directory to that expected by the specified solverDomain. This is necessary for

post-processors that read the controlDict.

timeFunctions

There are several searching / cataloging functions available for post-processing. Their function is

described in the multiSolver.H header file. These include:

 findSuperLoops - list all the superLoop directories in a given path;

 findClosestGlobalTime - find the closest globalTime to a given value in a

timeClusterList;

 findClosestLocalTime - find the closest localTime to a given value in a

timeClusterList. If timeClusters are overlapping, this function only uses the those from

the latest superLoop;

 findInstancePath - return the path to a given timeCluster and index;

 findMaxSuperLoopValue - maximum superLoop by value;

 findMaxSuperLoopIndices - return a labelList of the timeClusters with the

maximum superLoop value;

 nonOverlapping - if the timeClusters overlap in time, return false. timeClusters

that share starting points, or share ending points are non-overlapping;

 readSuperLoopTimes - catalog the time directories in

case/multiSolver/givenSolverDomain/givenSuperLoop;

 readSolverDomainTimes - catalog the time directories in

case/multiSolver/givenSolverDomain/allSuperLoops;

229

 readAllTimes - catalog the time directories in

case/multiSolver/allSolverDomains/allSuperLoops;

 loadTimeClusterList - copy / move time directories in a timeclusterList to

case/time;

 archiveTimeDirectories - copy / move time directories from sourcePath to

destinationPath; and

 purgeTimeDirectories - delete all time directories in a given path.

6.4.3 Support classes

There are a few additional classes that were written to support multiSolver. These include:

 tuple2List class;

 timeCluster class;

 timeClusterList class; and

 dummyControlDict class.

tuple2List

This is a sortable list of paired values was created. It is sortable by first or second value, and currently

can be any combination of scalar or label.

timeCluster

timeCluster is to multiSolver what instant is to runTime. This object holds all the information

necessary to catalog the data within a single solverDomain/superLoop directory. It holds:

 the solverDomain name;

 the superLoop number;

230

 the globalTimeOffset; and

 an instantList, cataloging all the time directories within the directory.

Sometimes, a timeCluster is used to identify a single time directory within a

solverDomain/superLoop. This is useful for functions such as: findClosestGlobalTime, which

needs to identify a single time directory. To assist in this operation, operator() has been defined. It

creates just such a timeCluster, given the index of the instant.

(This is a bit messy, it might have been smarter to create a different class to distinguish between single

time directories, and time directory lists.)

timeClusterList

Again, similar to instantList, for multiSolver. A timeClusterList can catalog all the data in the

case directory. Unlike instantList, this class has some functions of its own:

 append - add another timeCluster or timeClusterList to its collective;

 globalSort - sort its constituent timeClusters by their minimum globalTime;

 purgeEmpties - remove any timeClusters that have an empty instantList. Returns

false if none remain. Many functions depend on a non-empty instantList.

 selectiveSubList - returns a timeClusterList that is composed of a subList of the

original timeClusterList. The sublist is seleted by index using a labelList. The sublist is not

a true sublist like in other classes; rather it is simply another timeClusterList.

Note: Use purgeEmpties to ensure there are no empty timeClusters. Many of the

timeFunctions will throw a fatal error if passed an empty timeClusterList.

dummyControlDict

231

In order to allow runTimeModification of multiSolver's multiDicts, multiSolver required an

objectRegistry that doesn't dissappear between solverDomains, when runTime goes out of scope.

Therefore it needed its own objectRegistry. Hence, multiDictRegistry_ is a Time object. Time

was never intended to be a member variable, therefore its constructors do not allow initialization

without a controlDict. The object dummyControlDict was introduced as a self-initializing,

minimal controlDict.

dummycontrolDict also has constructors that take a multiControlDict; or its name. These

constructors look for the timeFormat and timePrecision keywords. If found, it includes these in

its settings. These settings are static variables owned by Time; and to simplify implementation, it was

made universal - i.e. they can only be set once (at initialization) in multiSolver.

Ultimately, the dummyControlDict was necessary for global runTimeModification.

7 Post processing

multiSolver has a post processing tool with the same name, which is required to make data available to

the standard post processors.

7.1 Overview

OpenFOAM is hard-coded to look for data in the case/[time] directories. In order to post-process

(including sampling, and data conversion) the data needs to be there. To accomplish this, a post

processing utility is available. Typing the command multiSolver in the terminal accesses this. It has

four main commands:

232

 -load - copy data files from their storage location to case/time (i.e. load the data for post-

processing);

 -purge - delete data files;

 -list - display the contents found in the case directory storage location; and

 -set - make the case directory appear as required for the given solver name.

7.2 Syntax

multiSolver -command 'options' [-global] [-local] [-noPurge] [-noSet] [-noStore]

7.3 -command

Choose one of:

 list - list data available

 load - copy specified data to case/time

 purge - delete specified data

 set - change case directory to match supplied solver domain

7.3.1 list

Takes no options. Giving options will produce an error.

multiSolver –list

7.3.2 load

Loads the data specified in options. Additional options:

 -global, -local - By default, load will copy by localTime, unless the times overlap, in

which case it loads by globalTime. These options force it to load by the specified time.

 -noPurge - By default, load will purge the case/time directories before copying the new

data in. This option disables this behaviour.

233

 -noSet - By default, if all the specified load data is from a single solverDomain, load will

automatically set the case directory to this solverDomain. This option disables this behaviour.

 -noStore - By default, if any storeFields exist, they will be copied into every time directory in

which they are missing - this is for ease of post-processing. This option disables this copying,

leaving only the data that actually exists in the multiSolver directory.

Load all data:

multiSolver -load all

Load all data from icoFoam solverDomain, using globalTime.

multiSolver -load icoFoam –global

Load all data from scalarTransportFoam, superLoops 1, 2, and 5 through 9, but do not delete the

case/time directories first:

multiSolver -load 'scalarTransportFoam 1 2 5:9' –noPurge

7.3.3 purge

Purges the data specified in options.

Delete all the case/time directories:

multiSolver -purge root

Delete superloops 5 through 9 in all solverDomains:

multiSolver -purge '5:9'

Delete all data in all solverDomains (except for initial directories):

multiSolver -purge all

7.3.4 set

Sets the case directory to a given solverDomain. That is, all multiDicts are changed to the correct

solverDomain; and a controlDict is written. The controlDict doesn't have all the data for the

given solverDomain, but it (importantly) points to the first case/time directory as its startFrom.

paraFoam uses this to initialize.

234

Set can only take a single solverDomain in options. Any superLoop specifications, or additional

solverDomain names will result in error.

7.4 'options'

The options to the command. If the options have whitespace characters (i.e. are more than 1 word),

they must be enclosed in apostrophes. Options come in two parts: solverDomains, followed by

superLoops. Each can have any number of entries, including zero, but options cannot be empty unless

using -list.

7.4.1 solverDomainNames

A simple word list, space delimited. List any solverDomains you want to load data from. e.g.:

scalarTransportFoam icoFoam customSolver

or

icoFoam

Omitting solverDomainNames indicates that *all* solverDomains will be used.

7.4.2 superLoop numbers

A space delimited number list in any order. Can include ranges using a : character. A value of -1

indicates the initial directory. e.g.:

3 5 6 9:12

or

-1 5

Omitting superLoop numbers entirely indicates that *all* superLoops will be used.

7.4.3 Special words

There are two special words reserved for some of the commands:

 all - indicates all solverDomains and all superLoops. Useable by -load and -purge.

235

 root - indicates all case/time directories. Useable by -purge only.

e.g.:

multiSolver -load all

multiSolver -purge root

7.5 Examples

Show all available data:

multiSolver –list

Load all available data:

multiSolver -load all

Load all data from solverDomain icoFoam:

multiSolver -load icoFoam

Load all data from superLoops 8 and 9 from all solverDomains:

multiSolver -load '8 9'

Load all data from superLoops 4, 6, 7, 8, and 9 from solverDomain scalarTransportFoam, but do not

delete any existing case/time directories.

multiSolver -load 'scalarTransportFoam 4 6:9' –noPurge

Load all data from superLoops 4, 5, 7, 8 and 9 from solverDomains icoFoam and scalarTransportFoam,

but force the directory names to globalTime:

multiSolver -load 'icoFoam scalarTransportFoam 4 5 7:9' –global

Delete all case/time directories:

multiSolver -purge root

Delete all time directories in case/multiSolver/allSolverDomains/allSuperLoops, but do not delete any

initial directories:

multiSolver -purge all

Delete superLoops 5, 6, 7, 8, and 9 from all solverDomains:

multiSolver -purge '5:9'

This instruction says to delete the initial directory from solverDomain icoFoam, but the initial directory is

never deleted, therefore nothing is done:

236

multiSolver -purge 'icoFoam -1'

Set the case directory to scalarTransportFoam's settings:

multiSolver -set scalarTransportFoam

