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Abstract 

   Magnetic Resonance Imaging (MRI) uses a magnetic field and low energy radio 

waves to visualize the internal structure and function of the body.  This is one of the most 

popular technologies currently used for diagnostic imaging. Magnetic Resonance 

Spectroscopy Imaging (MRSI), complementing MRI, provides a chemical map of the 

scanned region by providing spatial information about tissue metabolite concentrations.  

MRSI is being used for early diagnostics to differentiate diseased tissue from normal 

tissue.  However, obtaining metabolic maps with high spatial resolution requires long 

acquisition times where the patient has to lie still inside the magnet bore (scanner) 

especially if classical Chemical Shift Imaging (CSI) is used. The need for acquisition 

time reduction is encountered in many practical applications. In this dissertation, a 3D 

wavelet based encoding spectroscopic method (WE-SI) is investigated and implemented 

on a 3 Tesla Siemens Scanner.  Compared to CSI, the proposed method is able to reduce 

acquisition time, and preserves the spatial metabolite distribution. As expected, a 

decrease in Signal to Noise Ratio (SNR) is noticed in WE-SI data compared to CSI.   The 

dissertation explores important physical principles in MRI and spectroscopic imaging as a 

background, following by introduction of the wavelet encoding theory and comparison to 

Fourier encoding.  In chapter 3, the implementation of WE-SI on a 3T scanner is detailed.  

In-vitro and in-vivo results are displayed and discussed in chapter 4, followed by 

conclusion. 
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Chapter 1 

Introduction to 

Magnetic Resonance Imaging and  

Spectroscopic Imaging 

 

Magnetic resonance imaging (MRI) is an imaging technique that has been widely 

used for diagnosis, characterization, and treatment planning and assessment [1-4]. It is a 

noninvasive method and has the ability to image a wide variety of soft tissues, making it 

possible for application to most portions of the population.  Magnetic resonance 

spectroscopic imaging (MRSI) is being increasingly used in situations where MR 

imaging cannot give a definite diagnosis. MRSI may provide early prognostic 

information, aid in understanding brain development and metabolism; differentiate 

between diseased and normal tissue, improve treatment, and reduce risk to the patient.  

The acquisition of metabolic information from multiple imaged regions often involves 

long acquisition times, particularly when using classical Chemical Shift Imaging (CSI) 

[5-7]. At the same time, patients must lie still during the exam to avoid motion artifacts, 

which is difficult with a long acquisition period. 

To reduce acquisition time, several Fourier based approaches using modified high 

speed imaging sequences have been proposed. Techniques such as Echo Planar Imaging 

(EPI) [8] and spiral imaging [9] provide metabolite information from different brain 

regions with high spatial resolution. They are generally limited to two spatial dimensions 
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and have reduced metabolite spectral resolution. Recently, a non-Fourier encoding MRSI 

technique based upon wavelet encoding-spectroscopic imaging (WE-SI) was proposed to 

reduce acquisition time [10-11]. WE-SI utilizes selective radio-frequency (RF) pulses 

with profiles resembling the shape of wavelets, to sequentially excite a set of 

predetermined regions of the brain (sub-spaces) of different sizes and locations without 

the need for full recovery time (TR), necessary for spin relaxation, between excitations. 

In-vivo results on a 1.5T whole body scanner show that WE-SI provides data with high 

spectral resolution in multiple dimensions and reduces acquisition time relative to CSI.  

The increment in magnetic field sensitivity is important as it provides higher 

signal sensitivity.  However, field inhomogeneity increases with higher field strength, 

which is quite challenging especially for the wavelet encoding technique because the 

encoding is based on amplitude modulation.  To prove the feasibility of WE-SI at a 

higher field strength and comparing with previously developed 1.5 T WE-SI technique, 

we implemented WE-SI on a 3 tesla clinical scanner equipped with 32 receive channels.  

Our goal was to improve data sensitivity and increase the potential of WE-SI by 

completing its implementation at a higher magnetic field.  The fact that the work in this 

dissertation is accomplished at a completely different platform with higher field strength, 

requires development of new radio frequency (RF) pulses and the related pulse sequence.  

Further more, a new ordering algorithm was also developed to automatically select 

acquisition order for a minimum total acquisition time, and as a result the corresponding 

reconstruction code was freshly written as well.    

Over the years, MRI engineers put considerable efforts into improving hardware, 

software, and acquisition technologies to increase signal quality and speed up the 

 2



acquisition.  MRI uses a strong magnetic field to force the nuclear magnetization of 

hydrogen protons (mostly) to align to the direction of the magnetic field.  Radio 

frequency pulses are used to tip the spins into transverse plane for the scanner to pick up 

a signal. Depending on the different densities of protons and relaxation parameters of 

different tissues, different image intensities are obtained, hence an image can be formed. 

 

1.1 Proton Spins with the Magnetic Field 

 

Fig. 1.1 Proton spinning at equilibrium state. 

Under an external magnetic field, B0, protons spin about the field direction.  The 

precession angular frequency for the proton magnetic moment vector is given by  

 00 Bγω =              (1.1) 

where γ is the gyromagnetic ratio (or magnetogyric ratio) and is tissue related [12]. In 

water, the hydrogen proton has a γ value around 2.68×108 rad/s/tesla.  At a field of 3 

tesla, spins processes at radiofrequency of 123.3MHz. This is the Larmor Frequency and 

equation 1.1 is called the Larmor equation. 

As shown in Fig. 1.1, in the equilibrium state the positive charge on the proton interacts 

with the magnetic field and produces a torque,  

BMN ×=            (1.2) 
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where M  is the magnetic dipole moment or magnetic moment.  The bar symbol 

represents a vector. 

This torque causes protons to rotate about the direction of B0 with angular momentum J .  

N
dt
Jd
=            (1.3) 

The direct relationship between the magnetic moment and the spin angular momentum 

vector is found by experiment: 

JM ⋅= γ            (1.4) 

 

1.2 Laboratory Frames and Rotating Frames 

The laboratory reference frame is a fixed frame which is represented by unprimed x, y 

and z.  It describes the physical dimension of the subject, eg, left-right, head-foot, and 

anterior-posterior directions.  

Another frame (denoted by x’, y’ and z’) is rotating about an arbitrary axis with respect to 

the fixed frame because of the existence of a magnetic field.  In this frame, the rotating 

vector B1, known as the radio frequency (RF) field, appears to be stationary. 

 

1.3  Magnetization, Relaxation and the Bloch Equation 

From equation 1.2, 1.3 and 1.4, the following differential equation can be derived: 

BM
dt
Md

×⋅= γ           (1.5) 

which is called the “fundamental equation of motion”. It is most advantageous to analyze 

the magnetization and its differential equation in terms of parallel and perpendicular 
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(with respect to the B0 field) components defined relative to the static main magnet field. 

Let Bext = B0 z , then 

zMM =||           (1.6) 

yMxMM x=⊥ y+          (1.7) 

0=
dt

dM z           (1.8) 

extz BM
dt

dM
×=⊥ γ          (1.9) 

The above equations are derived for the equilibrium state, in which case, the protons are 

not interacting with each other.  However, with interacting protons, the protons try to 

align with the external field through the exchange of energy with the surroundings to 

achieve the minimum potential energy with magnetization M0 [20]. The overall trajectory 

of the tip of the net magnetization vector is shown in Fig. 1.2.  

 

Fig. 1.2  The trajectory of the tip of net magnetization 

In the transverse plane, ⊥M is maximum when spins are tipped into the transverse plane 

(x,y plane).  A loss of energy to the surrounding nuclei causes the return of the excited 

nuclei from the high energy to the low energy states.  This return is an exponential 

process characterized by: 
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 )(1
0

1
z

z MM
Tdt

dM
−=         (1.10) 

where T1 is the experimental 'spin-lattice relaxation time', and is different from tissue to 

tissue. 

Solving 1.10, we have, 

)1()0()( 1/
0

1 TtT
t

zz eMeMtM −− −+=          (1.11) 

A loss in transverse magnetization is due to spins in the high and low energy states 

exchanging energy, but without losing energy to the surrounding lattice.  The rate of 

change is characterized by: 

⊥⊥
⊥ −×= M

T
BM

dt
Md

ext
2

1γ         (1.12) 

T2 is shorter than T1 because of the dephasing effect.  Combining differential equations in 

both the longitudinal direction and transverse plane into one vector equation, we obtain 

the so called Bloch equation12, 

⊥−−+×= M
T

zMM
T

BM
dt
Md

zext
2

0
1

1)(1γ       (1.13) 

The complete solution is therefore, 

)sin)0(cos)0(()( 00
/ 2 tMtMetM yx
Tt

x ωω += −      (1.14) 

)sin)0(cos)0(()( 00
/ 2 tMtMetM xy
Tt

y ωω −= −      (1.15) 

)1()( 11 /
0

/ TtTt
zz eMeMtM −− −+=        (1.16) 
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1.4 Radio Frequency (RF) Pulses 

A B1 field applied on-resonance for a finite time is called an ‘RF pulse’ [12]. By adding 

an RF field B1 which is at rest in the rotating frame and parallel to x' to the static field, we 

are able to tip M  from its equilibrium position. The total external field is 

xBzBBext ′+= 10          (1.17) 

Suppose spins are rotating with frequency ω  in the laboratory frame, the rotating spins 

will generate a magnetic field γω /− . Therefore, the effective field in the rotating frame 

is: 

')( 10 xBzBBeff +−=
γ
ω         (1.18) 

For most cases, the RF pulse duration is much smaller than the decay of T1 and T2.  

Therefore, spin relaxation with short RF in the rotating frame is similar to the static field 

described above: 

)sin)0(cos)0(( ''
/

'
2 tMtMeM yx

Tt
x ωω Δ+Δ= −      (1.19) 

)sin)0(cos)0(( ''
/

'
2 tMtMeM xy

Tt
y ωω Δ−Δ= −      (1.20) 

)1()0( 11 /
0

/ TtTt
zz eMeMM −− −+=        (1.21) 

with Δω representing possible deviations from ideal conditions due to static field 

impurities or variations in the applied RF frequencies. 

 

During the short time (τ) of B1, we can assume a close to on-resonant condition. Under 

this assumption, Δω is much smaller than ω1 and can be ignored. Therefore, spins are 

seen only experiencing precession around the x axis with angular frequency ω1.  

Therefore, the flip angle induced by the RF field is given by: 
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τγτωθ 11 B==Δ          (1.22) 

 

1.5 Signal Detection 

MR signals are detected by coils according to Faraday's law of electromagnetic induction. 

A single magnetic moment is analogous to a bar magnet rotating about the z direction.  

As the magnetic moment rotates, the flux change is picked up by the nearby coils.  An 

electromagnetic force (emf) is generated: 

dt
demf φ

−=           (1.23) 

where  

∫=
coilarea

sdBφ           (1.24) 

The emf induced in the MRI coil is expressed as: 

∫ ⋅−=−=
samples

receive
M rBtrMrd

dt
dt

dt
demf )(),()( 3φ      (1.25) 

where )(tMφ is the flux, )(rB receive  is the coil field sensitivity. 

The signal detected by a coil is proportional to the induced emf and expressed as: 

∫ ⊥⊥∝ )(),()( *3
0 rBtrrMdts ω         (1.26) 

If we assume the transmit and receive coils produce homogenous fields over the image 

volume, we have, 

∫⊥∝ BietrrdBts θρω ),()( 3
0         (1.27) 
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1.6 Fourier Imaging and Acquisition Method 

If we reduce equation 1.27 to a one dimensional case and assume that the transmit coil 

produces a homogenous field over the image volume, we can write: 

∫= ),()()( tzi Gezdzts φρ          (1.28) 

Notice that 1.28 is in the form of the Fourier transform if, 

zttzG πφ 2),( −=          (1.29) 

This equation together with equation 1.24 over a fixed coil area introduce the need for a 

linearly varying field added to the static field, 

)(),( 0 tzGBtzBz +=          (1.30) 

Equation 1.30 introduces another very important component in MR, namely G, called 

gradient strength.  It provides a linear variation added to the homogenous magnetic field 

B0. The gradients associated the phase term in equation 1.28 with three dimensional 

position, which converted equation 1.28 into Fourier transform form. The acquired 

signals are in the Fourier domain, which is called the K space.  Low frequency 

components are located in the center of this K space, and high frequency components are 

at the edges.  

 

The extension of  one-dimensional imaging to all three dimensions can be written as: 

                         (1.31) ∫∫∫ ++−= )(2),,(),,( zkykxki
zyx

zyxezyxdxdydzkkks πρ
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1.7 MR Spectroscopy 

MR spectroscopy provides an encoding of measurable contributions from different 

metabolites including water, fat, choline, creatine, n-acetyl aspartate and lactate by 

identifying certain molecular constituents.  It is a technique to provide spatial metabolite 

information. 

 

Protons in different molecules experience a different magnetic shielding effect due to  

their chemical environments [12].  The Larmor frequency for specific metabolite: 

 0Bw ioi γ=           (1.32) 

where iγ  is called gyro-magnetic ratio and is constant for each isotope. If we use a 

broadband transmit RF pulse to excite wide range of frequencies, we would obtain a time 

signal containing information about the set of all nuclei in the sample. The Free Induction 

Decay (FID) is a signal in time domain collected by the receiver coil [12].  Normally a 

Fast Fourier Transform (FFT) is used to convert FID into a spectrum to analyze 

metabolic peaks. 

 

The small and measurable frequency shift from the Larmor frequency due to magnetic 

shielding by local environment is called ‘chemical shift’  [12]. 

 

0)1()( BjB jshifted σ−=          (1.33) 
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The chemical shift spectrum is expressed as the fractional shift in parts-per-million (ppm) 

of the NMR frequency relative to an arbitrary reference compound.  Table 1.1 shows 

common observable proton metabolites with ppm values is given as: 

TABLE 1.1 

OBSERVABLE PROTON METABOLITES 

ppm Metaboite Properties 
0.9-1.4 Lipids Products of brain destruction 

1.3 Lactate Product of anaerobic glycolysis 
   2.0 NAA Neuronal marker 
2.2-2.4 Glutamine/GABA Neurotransmitters 
   3.0 Creatine Energy metabolism 

3.2 Choline Cell membrane marker 
3.5 myo-inositol Glial cell marker, osmolyte hormone receptor mechanisms 

 

 

1.8 Chemical Shift Imaging (CSI) 

Chemical shift imaging (CSI) is a sequence used to record the spectroscopic data for a 

group of voxels in two or three dimensions.  It uses phase information to encode the 

position by the Fourier encoding technique [5, 7]. A set of FIDs are collected at every k 

space point. The sequence for three dimensional CSI is shown in Fig. 1.3.  Phase 

encoding is introduced to cover the k-space by varying the gradient amplitudes according 

to equation 1.31 . 
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Fig. 1.3    CSI sequence   

 

1.9 CSI Limits  

We can only collect finite discrete points in K space in Fourier Imaging. This implies two 

potential problems common with Fourier Imaging: (1) Aliasing caused by under 

sampling, and (2) windowing effects because of finite sampling. 

 

1.9.1 Aliasing 
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Because the K space data is discrete, when converting the K space data to the spatial 

domain by Fourier transformation, the result is spatial periodic with period L as shown in 

Fig. 1.4. If L is smaller than the field of view (FOV) A, aliasing occurs and the resultant 

image wraps around along the under sampled direction (Fig. 1.5).  This is also called the 

folding effect.  According to the Nyquist sampling criterion [13], the sampling frequency 

has to be at least twice the highest frequency： 

 

AAL =×≥
2

2           (1.34) 

 

This means the sampling step in k space must be: 

AL
k 11

≤=Δ           (1.35) 

 

 

Fig. 1.4 An object with FOV A with period L due to discrete sampling. [12]  
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Fig. 1.5 Effect of aliasing on a MR phantom image. 

 

(1) Suppose we have a boxcar gradient Gf applied on the readout direction, then Δk is 

defined as: 

 
AL

tGk f
11

≤=Δ=Δ γ          (1.36) 

 

Therefore the acquisition bandwidth has to be: 

AG
t

fBW fγ>
Δ

=≡
1         (1.37) 

 

(2) Suppose we have a boxcar gradient Gp applied on the phase encoding direction, then

Δk is defined as: 

   ppGk τγ=Δ           (1.38) 
 

where τp is the duration of Gp.  From equation 1.35 and 1.38 we have the requirement 

for phase encoding direction: 
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AGp

p γ
τ 1

<          (1.39) 

 

Situation 2 is responsible for CSI aliasing problems as CSI employs phase encoding in all 

three Cartesian dimensions. In Seimens’ implementation, the smallest gradient strength is 

calculated by the equality case of equation 1.36: 

 

p
step A

G
τγ
1

=              (1.40) 

This ensures that the aliasing problem is avoided if Gstep is within the hardware limitation 

with the desired FOV and resolution.  If we assume the center of the FOV is placed at the 

isocenter of the scanner, so there is no frequency shift for all CSI acquisition steps, and 

assume that the k space data is uniformly distributed, then the maximum gradient strength 

required for Fourier encoding is calculated as: 

allowedstep GGnG max_max 2
≤=          (1.41) 

Where n is the desired resolution, and 

Gmax_allowed is the maximum capable gradient that is defined by hardware. If Gmax exceeds 

Gmax_allowed, the gradient step is forced to drop, and aliasing occurs. 

In the Siemens’ 3T system, the Larmor constant γ is 42.5756 MHz/T, and the maximum 

capable gradient is 11.547mT/m.  Gradient duration is defined as 2800 µs.  Therefore 

equation 1.40 and equation 1.41 require that: 

7531.2
10

28005756.42547.112
6 =

×××
≥

A
n        (1.42) 
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From equation 1.42 we can see that low resolution with large FOV would likely cause 

aliasing problems. In cases of aliasing, intuitively we would see metabolite 

contaminations across the FOV boundary.   

A longer gradient duration will delay the echo, yielding a lower signal to noise ratio.  A 

higher capable maximum gradient requires extensive hardware modification. 

 

 

1.9.2 Windowing Effect 

The K space data we collect from the scanner has finite length, which can be 

mathematically modeled by multiplying the sampled data by a rect function [13].  Then, 

when we convert it to the spatial domain, this is equivalent to a convolution of the 

original data with a sinc function. All images include this effect, but a wide rect function 

gives a narrower sinc function, and therefore can provide negligible bluring.  For the 

same reason, there is a lower limit for spatial resolution.  
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Fig. 1.6 Windowing effect on MR data. 

 

As
AFOV

k 11
==Δ , suppose resolution is n, then the rectangle function in K space has a 

length 
A

n
2

.  The corresponding sinc function in the spatial domain has a main lobe with 

width equal to 
n

A
2

.   As shown in Fig. 1.6, it is clear that no matter how large the 

resolution is, the main lobe of the sinc function will exceed the local region defined by a 

pixel.  The contamination caused by the main lobe will only affect the pixels right next to 

it.  The existence of side lobes will produce positive or negative contaminations as well.  

As the distance between two pixels becomes larger, the level of contamination decreases 

rapidly.   

 17



We can intuitively reduce contamination by increasing resolution.  For instance from Fig. 

1.6, if we keep the distance between two metabolites to be 
n
A , but increase the resolution 

to 2n, there will be very little contamination.  This amount of contamination can be 

ignored.  

 

1.9.3  Imperfection RF Pulse Profiles 

Finite sample points are used to represent the shape of RF pulses.  Tails exist on both 

sides beyond the desired bandwidth.   Therefore, substances outside the FOV excited by 

those tails will be folded into the boundary of the other side.  To overcome this problem, 

usually the FOV of a CSI sequence is set larger than the View Of Interest (VOI).    

However, by using this method, if we want to keep the voxel size inside the VOI, we 

need to acquire data at a higher resolution over the entire FOV.  As a consequence, 

acquisition time is increased. 

 

1.9.4 Acquisition Time  

CSI uses 3D Fourier phase encoding to encode spatial location.  For every encoding step, 

the whole VOI is excited.  Therefore, recovery time (TR) is needed for spin relaxation.  

To acquire a 3D spectroscopic image with resolution nx, ny and nz, the total acquisition 

time is: 

zyxtotal nnnTRT ×××=          (1.43) 
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1.10 Other MR Spectroscopic Imaging Techniques 

Other spectroscopic imaging methods have been proposed to address some of the 

problems associated with CSI. These methods include Hadamard spectroscopic imaging 

(SI) [14] [15], high speed imaging techniques such as EPI and spiral [16], fast spin echo 

(FSE) [17], Steady State Free Precession (SSFP) and echo-shift methods.  For a variety of 

reasons, each of these methods has only been partially successful in improving the 

original Fourier-based MRSI technique in terms of overall qualitative and quantitative 

results. 

The Hadamard SI method uses RF pulse modulation in the presence of gradients and 

manipulates the sign of the acquired MR signal according to the Hadamard matrix to 

obtain spatial encoding. One major advantage of this approach is the ability to provide 

metabolite images at low spatial resolution with less cross voxel contamination and high 

spectral resolution.  The technique requires high RF peak powers as the number of voxels 

increases in order to maintain the low cross voxel contamination. 

High speed imaging methods such as EPI [8], Line Scan Echo Planar SI (LSPEPSI) 

[18] or spiral are very rapid and offer high spatial resolution. However, as they use the 

readout gradients to collect both spatial and spectral points, they require complicated 

reconstruction methods to differentiate between these dimensions. In addition, there is a 

trade-off between spatial and spectral resolution. The point spread functions in the spatial 

and spectral dimensions can lead to a spread of signal over both dimensions [19]. 

Furthermore, the SNR tends to decrease compared to the CSI method due to the use of 

high receiver bandwidths [20].  
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FSE imaging methods allow imaging of a single chemical species, such as 

phosphocreatine (PCr), and have been employed to examine human muscle and brain 

[21]-[23] opriate echo spacing between the refocusing RF pulses is introduced to dephase 

unwanted spins while fulfilling the CPMG (Carr, Purcell, Meiboom and Gill) condition 

for the desired spins allowing their signals to be observed. Unfortunately only a limited 

number of species can be imaged using these methods, with signals that are within a 

narrow frequency range and are thus difficult to separate.  

Echo-shifting methods were introduced in an effort to reduce acquisition time and 

increase spatial resolution [24]. By time shifting either the readout gradient or the RF 

pulses, both the spectral dimension and one spatial dimension are encoded. Phase 

encoding is then used in the remaining spatial dimension. In this case, spectral resolution 

is sacrificed for shorter acquisition time [25].  
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Chapter 2  

Theory of WESI 

 

As discussed in section 1.9, the CSI technique can provide metabolite images with 

good SNR and high spectral and spatial resolution at the cost of long acquisition times 

that result from two factors:  

1) The spin-lattice time, T1 of the metabolites is long (1-2 seconds for proton and 

4-6 seconds for phosphorus MR), requiring a long recovery time (TR) between phase 

encoding steps to allow for T1 relaxation. For a 3D spectroscopic image with spatial 

resolution nx, ny and nz, the total acquisition time is: 

AveragesnnnT zyxtotal ×××=        (2.1) 

As an example, an 8 by 8 by 4 metabolite map with TR = 2 sec using CSI requires at least 

9 minutes. To reduce acquisition time, several Fourier-based approaches have been 

proposed. These Fourier based techniques provide metabolite information with high 

spatial resolution but are limited in spectral resolution and spatial dimensions. Therefore, 

obtaining a high spatial resolution metabolic map using CSI requires long acquisition 

time where the patient has to lie still inside the magnet. 

  2) A large number of phase encoding steps are required in each spatial dimension 

to avoid image reconstruction artifacts such as pixel bleed. To utilize CSI clinically, 

spatial resolution is often sacrificed and TR times that are short with respect to T1 are 

used, increasing the difficulty of obtaining accurate metabolite concentrations.  If the 

FOV is large, a folding effect results in large contamination at all boundaries since all 

 21



three CSI dimensions are phase encoded.  If the resolution is low, pixel bleed decreases 

the data accuracy.  

Similar to Fourier encoding that uses acquired k-space data, wavelet encoding 

uses signals acquired from predetermined sub-spaces to fill the wavelet domain (Fig. 

2.1).  By replacing the Fourier transform by the wavelet (Haar wavelet) transform, pixel 

bleed and total acquisition time are reduced with some sacrifice in SNR. 

 

Fig. 2.1  Data processing procedures 

 

2.1 Haar Wavelet and Its Implementation on The MR Scanner 

 

Using this orthogonal basis, the wavelet transform is defined as [26]: 

∫= dxxfxkjF kj )()(),( ,ϕ         (2.2) 

As with the Fourier transform, the Inverse wavelet transform can be obtained by [26]: 

         (2.3) ∑= kj kj kjFxxf
, , ),()()( ϕ

The Haar wavelet we are using is defined by: 

⎪
⎩

⎪
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⎧
−=
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)(, xkjϕ          
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For  j=1,2,3,…log2N-1, k= 0, 1, …2j-1-1 

and, 

1)(, =xkjϕ           (2.5)    

for  j=0 

 It is clear that the Haar wavelet is a sequence of orthogonal functions that can be 

used to approximate any continuous real function. 

In wavelet encoding, a set of dilated and translated prototype functions called 

wavelets are used to span a localized space by dividing it into a set of sub-spaces with 

pre-determined sizes and locations. As shown in equation 2.2, the wavelet transform is a 

collection of inner products between the original function and the Haar basis. In 

spectroscopic imaging, this process is achieved using RF pulses with profiles resembling 

the wavelet shapes [10, 11]. Slice selective excitation and refocusing RF pulses, with 

single and dual band profiles similar to Haar wavelets, are used in the modified point 

resolved sequence (PRESS) [27] to acquire three dimensional (3D) wavelet encoding 

spectroscopic imaging (WE-SI) data.  The magnitude of both single and dual RF pulses 

are set at unity (equation 2.2).    The desired spatial resolution in each direction sets the 

corresponding number of dilations (increases in the localization gradients), and 

consequently the number of translations (frequency shift) of the Haar wavelets (RF 

pulses), which are used to collect MR signals from the corresponding sub-spaces [10] 

[11]. 

 

The bandwidths of all RF pulses are set to a fixed value, BWrf. The dilatation of 

the Haar wavelet is implemented by changing the gradient strength. 

 23



12 −⋅
= j

x

rf
j G

BW
x           (2.6) 

L
BW

G rf
x =           (2.7) 

Where L is the FOV along x, Gx is the gradient strength needed when the whole FOV is 

excited.  

 

The translation of the Haar Wavelet is implemented by shifting the center 

frequency of the RF pulse.  When j=0 or 1, the Haar wavelet is centered at the middle of 

the FOV; otherwise, it is shifted.  For encoding steps with the same dilation value j but 

different translations (k and k+1), a frequency shift with the same value of RF bandwidth 

is required.  

 

We can simply extend equation 2.2 and 2.3 into three orthogonal spatial 

dimensions:  

dxdydzzyxfzyxkkkjjjF kjkjkj ),,()()()(),,,,,(
332211 ,,,321321 ϕϕϕ∫∫∫=   (2.8) 

∑= kj kjkjkj kkkjjjFzyxzyxf
, 3213213,32,21,1 ),,,,,()()()(),,( ϕϕϕ      (2.9) 

 

 

 

2.2 Pulse Sequence Design 

As previously mentioned, a WE-SI sequence is generated from a PRESS sequence 

using RF pulses with profiles resembling Haar functions (single or dual boxcar shape).  
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One excitation (90º) RF pulses and two refocusing (180º) RF pulses are applied together 

with three slice selective gradients.  RF pulses also can be seen as band filters, which can 

flip spins about the precession direction if they are rotating within the selective frequency 

range.  By selecting the axis of precession and RF duration, different flip angles (eg. 90º 

and 180º in our application) can be obtained.  Equation 1.31 shows that protons spin at 

linearly varying frequencies with the presence of gradients.  Therefore, the required 

bandwidth of the RF pulses is: 

zGfBW sΔ=Δ≡ γ              (2.10) 

According to the wavelet transform, a single RF pulse is only applied when j=0, 

otherwise a dual RF pulse is applied.  An internal loop is added in order to accomplish 

the dilation and translation for individual encoding steps through changing the gradient 

strength and center frequency of the RF pulse correspondingly (fSeqRun() in appendix 

A).  Fig. 2.2 shows one step of WE-SI encoding (jx=2, jy=0, jz=0, kx=0, ky=0, kz=0). 

 

 

Fig. 2.2: WE-SI pulse sequence design (at encoding step jx=2, kx=0; jy=0, ky=0; jz=0, 

kz=0). 
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At this encoding step, the slice selective (90°) RF pulse is on the x axis.  Since 

jx=2, a dual band 90° RF pulse is required.  The gradient strength is calculated by 

equation 1.4.  The first refocusing (180°) RF pulse is selective on Y at jy=0.  Therefore a 

single band RF pulse is applied.  The second refocusing (180°) RF pulse is selective on Z 

at jz=0.  Therefore a single band RF pulse is applied with the gradient on z-direction. 

The 90° RF pulse is also called the excitation pulse, which flips spins within the 

selected frequency into the transverse plane. It is assumed that the spins are tipped 

instantaneously into the transverse plane at the center of the RF pulse, starting when spins 

start dephasing about the x direction for half of the RF pulse duration due to the existence 

of the x_gradient.  In order to rephase spins, we need to apply Grephase with a reverse sign 

[12]: 

%50==
∫
∫

s

rephase

s

rephase

nderGtotalAreaU
nderGtotalAreaU

dtG

dtG
     (2.11) 

 

There are twelve other gradients applied on all three dimensions with higher 

magnitude (Fig. 2.2).  They are called spoilers, whose function is to rapidly dephase the 

spins outside the desired region in order to localize the signal.  Due to the existence of 

spoilers, spins rotate at different frequencies depending on their 3D position, over time a 

phase difference is created and the received signal drops.  At a certain time (half TE1 or 

half TE2 as shown in Fig. 2.2), selective spins experience a 180º angle flip, which 

reverses the phase difference and spins recover to being back in phase in another half TE1 

or half TE2.  For a better explanation, we suppose there are only two spins, one is rotating 
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faster than the other one.  At t=0, they are both flipped into the transverse plane and are 

inphase.  After half TE the faster spin is ahead of the slower spin by Δθ.  Then both spins 

experience the 180º RF pulse and the phase difference between the faster and the slower 

becomes –Δθ.  Since the faster spin still rotates at a higher frequency, in another half TE, 

the two are in phase for a second time. Therefore, at t=TE, we obtain a phased signal 

called an echo. However, for those spins which didn’t see the 180º RF pulse, they see a 

total of 2Δθ and since this Δθ is actually randomly distributed between 0 and 2п, the 

complex signal is cancelled out. 

The echo time (TE) is the time when the spins in the selected region rephased 

again after the second 180º RF pulse.  MR signal is collected at t=TE.  As spins are 

rotating while relaxing, the received signal is in complex form.  

            Hence, to ensure the rephasing process, we need: (1) the area negative lobe in is 

half of the area of the positive lobe in x direction.  (2) in all three dimensions, the areas of 

the spoiler lobes before and after 180º RF pulses must be equal.  In Fig. 2.2, we see the 

first spoiler in X direction is smaller than others.  This is the result of superposition of the 

refocusing gradient and the spoiler. 

To better illustrate how the RF pulses flip spins in order to select the desired 

region, we show an example with jx=2 jy=2 and jz=2.  Since dilations in all three 

dimensions are non zero, all RF pulses have dual band profile.   

 

Step 1: Apply a selective 90º RF pulse with a selective gradient on the x axis: 
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Fig. 2.3  A 90º excitation pulse applied along x with jx=2. 

Half of the spins (color pink) are flipped into the transverse plane; the other half 

(white) are left untouched and spins rotates around spatial axis z.  Suppose the RF pulse 

is applied along +x’ in the rotating frame, during the short duration of B1 field, spins 

rotates about +x’ axis by either +90º or -90º depending on the position along x.  Right 

after the B1 field, the left part of the pink region has spins lying along +y’ and the right 

part of pink region has spins lying along –y’ in the rotating frame.   

Step 2: Apply the first selective180º RF pulse on y      

 

Fig. 2.4 A first 180º reforcosing pulse applied along y with jy=2. 
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The first 180º RF pulse flips the spins in the front part of the cube by 180º in the 

rotating frame about x’.  Hence, spins that were rotating around z (color white) will 

remain rotating around z but with an opposite sign.  Due to the existence of the spoiler 

gradients, the whole cube experiences dephasing, and only those spins selected by the 

180° RF pulse can get rephased.   Hence the signal from the grey part is destroyed.  

 

Step 3: Apply the second selective 180º RF pulse on z. 

Step 3 is exactly the same as step 2 but with a gradient applied on the remaining 

axis. Hence, the signal collected at echo time (TE) is only from the desired blue voxel.   

 

Fig. 2.5 A second 180º refocusing pulse applied along z with jz=2 

 

2.3 Acquisition Time Reduction in Wavelet Encoding 

The same number of acquisition steps is required for Fourier and Wavelet 

encoding for the same spatial resolution.  However, due to the finite support of the 

wavelet transform, for most encoding steps, only a portion of subject is exited while the 
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rest is relaxed, whereas for CSI a full TR is required for each step.  Therefore, by 

arranging the excitations in an optimal order, a series of these sub-space signals can be 

acquired without the need of a full relaxation.  The acquisition time is given by [11]: 

( )min_ . . . .x y z effAcq time N N N TR N TR TR= − − ,        (2.12) 

where,  are the desired spatial resolution in zyx NNN ,, yx, , and respectively, and  

is given by [11]:  

z effN
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⎢ ⎥=
⎢ ⎥+ − − + + − + + − − −⎣ ⎦

 (2.13) 

 

representing the number of times where the sequence is being executed using TRmin.  

TRmin is the total time needed to perform the sequence, which includes saturation, water 

suppression, the actual pulse sequence, and acquisition duration. The difference between 

TR and TRmin represents the extra time needed for spins to get fully relaxed after data 

collection, and it is also the time reduction of WE-SI comparing to CSI. 

The following variables are set to: )(log2 xx NM = , ,  

, , and 

)(log 2 yy NM =

)(log2 zz NM = 2( 1)( ) .2 iP x i −= 2( 1)2 j( ) 2. .P y j −= , where i  and j  run from 2 to  

and  respectively. If

xM

yM MM zMM x y === ,  is simplified to:  effN

 

( ) ( )3. 2 3 22 2 3. 8 / 3 4 / 3 3. 3.log( ) 8 / 3 4 / 3 3.M M
effN M P N N N⎡ ⎤ ⎡= + − − − = + − − −⎣ ⎦ ⎣ P⎤⎦     (2.14) 

As shown in Fig. 2.6 where a 4 by 4 by 4 resolution is acquired from the sample, 

acquisition time is reduced for the higher coefficients.  
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Fig. 2.6 an example of 4 by 4 by 4 wavelet encoding [11]. 

 

 

The required excitation steps and timing are as following: 

 

(a) The total FOV is excited 

As shown in Fig. 2.6-1, at lower dialation (jx=0 or 1, jy=0 or 1, and jz=0 or 1), the whole 

FOV is excited. A TR is required for each acquisition, and a total of 8 acquisitions are 
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needed for collecting these 8 wavelet encoding coefficients.  There is no RF pulse 

translation needed for all 8 encodings. 
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(b) Half of the FOV is excited 

There are 24 encoding steps where half of the FOV needs to be excited. This means at 

one and only one dimension j=2 and k=0 or 1, while in the other two dimension, j could 

be either 0 or 1 and k can be 0 only.   
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The six regions possible are highlighted in yellow in Fig. 2.6-2.  To minimize the 

acquisition time, the six regions are divided into three groups, where the two regions in 

each group are complementary to each other and they should be excited sequentially.  In 

Fig. 2.6-2, the top and bottom encoding steps from the same column form one group. 90º 

RF pulses are applied on the direction where j=2, so that only half of the spins are flipped 

into the transverse plane. The rest of the region experiences two 180º RF pulses: the first 

one flips the corresponding spins from +z to –z and the second one flips spins from –z 

back to +z (z here represents the direction of B0). Therefore spins in the second half of 

the FOV to keep precessing about +z as if they were never excited.  Therefore, the second 

half of the FOV can be excited without waiting for a full TR.   

The time needed for these 24 excitations is: 24TR-12(TR-TRmin).  
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In different groups, scaling factor j=2 occurs in different spatial dimensions, 

therefore the 90º RF pulses are applied with gradient from corresponding j=2 dimension.  

We call this process RF pulse switching. 

 

(c) a quarter of the sample is excited 

In this case as shown in Fig. 2.6-3, we will have two dimensions with j=2 and the 

third dimension with j=1 or j=0. Each encoding step excites only a quarter of the sample. 

Since 90º RF pulses applies with j=2, we are able to excite two regions sequentially 

without waiting for a full TR in between. 

24 encoding steps are needed when only a quarter of the sample is excited.  
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Similar to (b), we can divide all the possibilities into three groups based on where j=0 or 

j=1 is applied. For minimum acquisition time, steps within one group should be acquired 

sequentially without waiting for a full TR and the time needed here is 24TR- 12(TR-

TRmin). 

(d) 1/8 sample is excited 

As shown in Fig. 2.1-4, there are 8 encodes in this case.  Since the minimum dilation is 

still 2, we can only excite two encoding steps without waiting for the full TR.  The time 

needed is 8TR-4(TR-TRmin).  
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2.4 The Acquisition Order 

In order to minimize acquisition time and cross-voxel contamination, and for best 

signal strength, it is very important to acquire the wavelet encoding steps in a specific 

order.  

First, we want to minimize the total acquisition time by skipping the waiting time 

for as many steps as possible.  The localization property of the wavelet transform allows 

us to excite different regions of the sample.  The next encoding step should try to be 

locate in a region that was not affected by all three RF , or are fully relaxed by the end of 

the previous acquisition.  We also need to ensure to receive the optimal amount of signal 

for all acquisition steps. This means spins have to be fully flipped into the transverse 

plane with minimum projection in the longitude direction. 

As shown in the previous section, the designed WE-SI sequence consists of one 

90º RF pulse and two 180º RF pulses for each encoding step.  Since all pulses are 

selective, there are a total of six cases that can occur for a spin inside the sample: 

(1) The selected region sees one 90º and two 180º RF pulses. 

(2) A region with no RF pulses. 

(3) A region with two 180º pulses only. 

(4) A region with one 90º and one 180º RF pulses only. 

(5) A region with one 180º pulse only. 

(6) A region with one 90º pulse only. 

After finishing one acquisition step, we try to find the best step to be excited next.  In 

an ideal case, we would like to acquire a signal from case (2). This requires the minimum 

of jx, jy and jz to be greater or equal to 2 and we can collect  2min(jx, jy, jz)-1 steps together 
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without waiting for a full TR. We would excite regions with same dilations in a diagonal 

order.  The next region to be excited is ((jx, kx+1), (jy, ky+1), (jz, kz+1)). 

To further speed up the process, we found that it is safe to collect regions in (3) 

without waiting for a full TR.  In region (3),  spins see the first 180º RF pulse and flip to 

–z immediately following longitudinal magnetization decay 

)21( /
0

1 tTeMSI −−∝        (2.18) 

Hence, at  

)(5.0 21 TETEt +=  

)21( )/(2
0

211 TETETeMSI +−−∝        (2.19) 

In our sequence,  

msTETETE 5.37
2
755.0)(5.0 21 =≤=+  

whereas T1 is at around 500ms for brain. 

Also at this time, the second 180º RF pulse is applied to flip magnetization by 180º: 

00
)/(2

0 )21()21( 211 MMeMSI TETET =−−≈−−∝ +−     (2.20) 

There is enough time (around 0.5 seconds for ADC acquisition) for the region to get fully 

relaxed before the current acquisition ends.  Therefore, we could acquire the next 

encoding step from the regions seeing two 180º pulses. 

 

We avoid acquiring data directly from regions in case (4), (5) and (6).  If encodes from 

these regions are needed, we will need to wait a TR for spins to be fully relaxed before 

the next acquisition.  
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In order to maximize the number of  regions in case(2) and case(3) and to save time we 

should always play the 90º RF pulse with the highest dilation. 

 

To automatically select the the next encoding step for a minimized total acquisition time, 

the following algorithm was developed.  It requires resolution in all three dimensions to 

be at a power of two. 

 

function b=getHeader2(nx,ny,nz) 
for i=0:nx*ny*nz-1 
            find(the next encoding step in numerical order);             
            if(!find) 
                break; 
            end 
  calculate the dilation and translation for current step 
 
            [Y,who_is_90]=max(scales); 

 
Put 90 degree RF pulse selective on largest dilation direction; 
Put the first 180 degree RF pulse selective on the second largest dilation 
direction; 
Put the second 180 degree RF pulse selective on the smallest dilation 
direction; 
 
for j=0:Y-1 // Y encoding steps can be acquired together         //without 
waiting full TR 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5   
                     
                    if(scale_1>1) 
                        p=mod(ii+j,scale_1); 
                        if p==0 
                            p=scale_1; 
                        end 
  
                        p=p+scale_1; 
    
                    else 
                        p=ii; 
                    end 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                    
                    if(scale_3>1)    
                        q=mod(jj+j,scale_3); 
                        if(q==0) 
                            q=scale_3; 
                        end 
    %                    q=q+floor(j/scale_3)*scale_3; 
                        q=mod(q,scale_2); 
                        if(q==0) 
                            q=scale_2; 
                        end 
%                        mod(jj+j,scale_3) 
%                        floor(j/scale_3) 
%                        scale_3 
                        q=q+scale_2; 
                    
                    else 
                        q=jj; 
                    end 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                 
                    if(scale_3>1) 
                        r= mod(kk+j,scale_3); 
                        if(r==0) 
                            r=scale_3; 
                        end 
                    
                        r=r+scale_3; 
                 
                    else 
                        r=kk; 
                    end 
   //flag the encoded steps 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  end 
end 

 

 

2.5 Signal to Noise Ratio in Wavelet Encoding 

WE-SI excites a distribution of spins at each acquisition time.  The size of excited 

subspaces decreases as wavelet dilation increases, whereas in Fourier encoding, the 

whole FOV is excited at each acquisition step.  Hence, on average, signal to noise ratio is 

lower in WE-SI than in CSI.  As a consequence, the sensitivity in 3D WE-SI compared to 

Fourier encoding drops by [11]: 

)2()224(
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=
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which is approximated to 

2
3

)/3( NSNRSNR CSIWESI ⋅≈   if zyx NNN ==      (2.22) 

         

             

 2.6 Problems with WE-SI 

2.6.1 Chemical shift misregistration 

As introduced earlier, both magnetic field gradient (position) and chemical shift can 

contribute to a frequency difference. For WE-SI, translation is realized by shifting the 
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center frequency of RF pulses.   Hence, for different species, we need different shift 

frequencies to arrive at the same spatial position.   However, there is no easy way to shift 

different frequencies with a single excitation.  A higher bandwidth will help for chemical 

shift misregistration.  Details are shown in chapter 4. 

 

2.6.2 RF pulse imperfection 

With finite data points in the time domain, the RF pulse is not a perfect square.   The tail 

and transition bands contaminate the data. 

 

2.6.3 B0 field inhomogeneity 

At higher field strength, it is more difficult to achieve a high degree of B0 field 

homogeneity [28].  WE-SI is magnitude modulated and is more sensitive to B0 

inhomogeneity than CSI.  Hence WE-SI technique may suffer more from pixel bleed. 
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Chapter 3   

Material and Methods 

This chapter briefly introduces the implementation environment, procedures, and the 

design of test methods.  

 

3.1 Hardware Environment 

We are using a 3 Tesla whole body Siemens clinical scanner located at the National 

Research Council of Canada, Institute of Biodiagnostics. Transmit/Receive head coil 

using only one receiving channel are attached to the Tray in at head position (shown in 

Fig. 3.1).  The scanner is connected to a user interface computer with controlling and 

displaying functionalities provided by Siemens.   
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Fig. 3.1 The Siemens 3T system. 

 

3.2 Programming Environment 

Syngo is the common software to all current Siemens Medical Solutions Products (also 

known as Medcom).  SyngoMR is the MR implementation of this software and it is also 

called Numaris 4.  The software was installed into the scanner to control MR data 

acquisition [29].  

The actual MR sequence in Numaris 4 was written in C/C++.  The programming frame 

work is called Integrated Development Environment for Applications (IDEA) which 

consists of two prime parts: Sequence Development Environment (SDE) and Image 

Calculation Environment (ICE).  Normally, SDE controls the acquisition and gather the 

raw data files (.dat). These files are then passed to ICE for data processing.  For our 

sequence, ICE is bypassed and is replaced by MATLAB programs written in-home. 
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The software version we used for our development is SyngoVB15. 

A pulse sequence is a program on the scanner that is used to program the hardware for 

data collection. A sequence can be treated as an object with four main member functions:  

fSEQInit, fSEQPrep, fSEQRun, and fSEQCheck.  Static variables were used to transfer 

information between different functions. 

fSEQInit initializes measurement parameters, set up the boundary limits, and conFig. 

static objects. fSEQPrep prepares RF pulses, gradients based on the parameters set up by 

fSEQInit. It also estimates the total energy  look ahead calculation. In fSEQrun, sequence 

timing is created.  fSEQcheck overflow the check. 

Our WE-SI sequence is based on a single voxel spectroscopy sequence (SVS). However, 

since the resolution, RF pulses and acquisition order are totally different, we’ve made 

extensively modifications in all functions except fSEQcheck. The detailed coding is 

available in appendix A. 

 

 

3.3 Manual of Operation for WE-SI Sequence 

The WE-SI sequence is a modification of the PRESS sequence (SVS in Siemens).  

However, since it has multi-resolution for 3D, the sequence control cards are similar to 

CSI, as shown in Fig. 3.2 to 3.6.  Important settings for the WE-SI sequence will be 

highlighted in this section. 

On the left session of the routine card (shown in Fig. 3.2), position and FOV need to be 

set properly based on previously acquired localizer images.  For WE-SI, resolution is 

closely related to FOV and RF bandwidth.  Due to the nature of wavelet encoding, there 
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is no folding effect that can be introduced by an imperfect excitation pulse (see section 

2.9.3).  Hence, View of Interest (VOI) should be set equivalent to FOV.  On the right of 

routine card, we should note “Average” should be set to 1 always.  The value input for 

“average” goes to the number of inner loops in the fSeqRun() function of the sequence 

(Appendix A).  This loop will repeat the same acquisition step for “average” times.  In 

this case, since the same region is to be excited, we will always need to wait a full TR 

time in between, which is very inefficient for WE-SI.  The actual averaging functionality 

to obtain a better SNR is set by the “Measurements” value, found on the “contrast” card.  

“Measurements” leads an outer loop in fSeqRun() function of the sequence, which will 

perform all encoding steps and then repeat the whole process from the first encoding step 

to the last for a total of “Measurements” times.   In changing the number of 

measurements, we are accomplishing the sequence order introduced in 2.4, and 

acquisition time reduction according to equation 2.13.    

 

Fig. 3.2 Routine Card.  
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In the contract card (Fig. 3.3), the setting of “Measurement” increases SNR.  Let n 

be the number of measurements, the SNR is proportional to n . 

 

 

Fig. 3.3 Contrast Card. 

 

In the transmitter/receiver subcard under “system” (Fig. 3.4), we need to manually adjust 

the transmitter voltage.  The reference amplitude is the input voltage to the transmitter 

(RFPA) required to produce a 180º rotation for a 1 msec (1000 usec) rectangular RF 

pulse.  All RF pulses are scaled to this reference RF pulse.  Single 90º and 180º pulses are 

kept at the default voltage.  The profile of dual 90º and 180º RF pulses have both positive 

and negative lobes (Fig. 3.5).  Hence the voltage requires better optimization.  From 

extensive phantom testings, we conclude that the relation between dual RF pulses and 

reference voltage to be: 
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VD90 =0.75Vref; 

VD180=2.75Vref;  

 

Fig. 3.4 Transmiter/Receiver card 

All other settings, such as resolution, saturation band, and TE/TR values are the same as 

the regular CSI sequence. 

 

3.4 RF Pulse Parameters 

As introduced previously, we have developed the WE-SI technique by modifying the 

spatially localized PRESS sequence to acquire 3D WE-SI data. Refined sinus cardinal 

(sinc) functions, representing excitation (90º) and refocusing (180º) RF pulses for the 

WE-SI sequence, using the Shinnar-Le Roux algorithm [30] are generated. The profiles 

of these RF pulses, one single and one dual band, resemble scale and Haar wavelet 

functions respectively (Fig. 3.5). The excitation RF pulse is applied along the slice 
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direction and the refocusing RF pulses are applied along the phase and read directions by 

analogy to the imaging sequences [12]. To achieve spatial encoding in the three 

directions, dilations and translations of the dual band RF pulses detailed elsewhere [11], 

are achieved by increasing the selection gradient strength and shifting the centre 

frequency of the RF pulses respectively. The duration and bandwidth of all RF pulses are 

5.2 msec and 2500Hz, respectively. Fig. 3.5 shows the spatial profiles of the RF pulses as 

executed on the scanner (solid line) versus the Haar wavelet profiles (dashed line), where 

the difference between the two shapes is in the transition band and the edges. This is 

mainly due to the short duration of the sinc functions of the RF pulses. The signal loss 

and cross voxel contamination can be corrected by data reconstruction in the inverse 

wavelet transform. 
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C. Single 180 RF pulse        D. Dual 180 RF pulse 

 

Fig. 3.5  Profiles of RF pulses (solid lines) used as Haar functions (dashed lines) in the 
WE-SI sequence. 
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3.5 Phantom and Acquisition Parameters 

We conducted phantom studies at different spatial resolutions. Low resolution 2×2×2 

and 4×4×2 data were acquired with different home-made phantoms (Fig. 3.6), and 8×8×4 

data were acquired with a spherical phantom containing known solution with known 

concentrations. The two home-made phantoms are as shown in figure 3.6.  They were 

made from two rectangular plastic holders containing equally spaced 2×2 and 4×4, 14 

mm diameter holes. The size of each phantom is 40 mm × 40 mm and 70 mm × 70 mm. 

Cylindrical tubes filled with aqueous solutions of metabolites with known concentrations 

were placed in the holes of the plastic holder, dropped in a container filled with water, 

which in turn immersed in a cylinder filled with canola oil. Single and dual band RF 

pulses with profiles resembling Haar wavelet functions (5.2 msec duration and 2500 Hz 

bandwidth) are used to acquire 3D WE-SI data on a 3T Siemens magnet. The acquisition 

parameters are TR=2 sec, TE = 45 ms, ADC bandwidth = 2kHz, 1k points, and NEX = 4. 

Two sets of phantom experiments have been conducted to evaluate the performance of 

WE-SI versus CSI. In the first set (4x4x4 matrix size), a uniform spherical phantom 

containing an aqueous solution of brain metabolites with known concentrations (NAA, 

Creatine and Choline, etc.) is used for SNR calculations and data analysis using LC 

Model. In the second set (4x4x1 matrix size), a home-made phantom with 16 tubes 

containing different metabolite solutions with known concentrations is scanned to 

determine voxel contamination  
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Fig. 3.6 Localization MR images of the 2×2×2 (left) and 4×4×2 (right) phantoms. The 

box represents the FOV used in the WE-SI sequence. 

 

3.6 In-vivo Tests 

 

Optimized 3D WE-SI sequence based on phantom results were used to conduct 

studies on the human brain in healthy volunteers. For each healthy subject, a set of 

standard volumetric anatomical images were obtained.  In order to obtain the region-

dependent thresholds, it is necessary to have sufficient brain coverage for the WE-SI 

dataset.  Therefore, we will obtained three sets of 3D 1H WE-SI data.  

For the first set, the repetition time and echo time was TR/TE=2000/75 ms with two 

averages, and matrix size of 4 by 4 by 4 with a nominal voxel size approaching 4 

cm3.  

The acquisition time were: 

1) localizer images ( ~ 5 minutes) 

2) 3D CSI TR/TE = 2000/75 (4 by 4 by 4 Nex = 2, ~ 34 minutes) 

3) 3D WE-SI TR/TE = 2000/75 (4 by 4 by 4, Nex = 2, ~ 20 minutes) 
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For the second set the repetition and echo times were TR/TE = 1500/35 ms with 

four averages. The matrix size used was be 8 by 8 by 2 with a nominal voxel size 

approaching 2 cm3.  

The acquisition times were : 

4) 3D CSI TR/TE = 1500/35 (8 by 8 by 2, Nex = 2, ~ 4.5 minutes) 

5) 3D WE-SI TR/TE = 1500/35 (8 by 8 by 2, Nex = 2, ~ 3 minutes) 

For the third set the repetition and echo times were be TR/TE = 1500/35 ms with 

four averages. The matrix size was 8 by 8 by 4 with a nominal voxel size 

approaching 1 cm3.  

The acquisition times were: 

6) 3D CSI TR/TE = 1500/35 (8 by 8 by 4, Nex = 2, ~ 4.5 minutes) 

7) 3D WE-SI TR/TE = 1500/35 (8 by 8 by 4, Nex = 2, ~ 3 minutes) 

 The total time in the machine for each subject was on the order of 1 hour and 10 

minutes.  The data was transferred to a computer for analysis using in-house 

software (Appendix B). Two different echo times were used to check the sensitivity 

of the method at different echo times, and if the method is able to detect metabolites 

at short apparent relaxation time.  

 

3.7 Raw Data Gathering 

3.7.1 TWIX 
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TWIX is a built-in function that takes scanner output without any data processing.  The 

data are stored in the order of acquisition.  The file contains a common header followed 

by individual acquisitions.  Each individual acquisition contains a header and a data 

vector.  The data vector is a vector of complex numbers represented by two floats, the 

real part and imaginary part respectively.  The actual decoding program is in appendix B.   

 

3.7.2 spectro files 

Spectro files contain processed data without headers.  These files are accessible by the 

Siemens on-line analysis software.  We need to overwrite a CSI data file with processed 

WE-SI results in order to display the results on scanner.  The MATLAB code that is used 

to overwrite .spectro files is in appendix C. 

  

3.7.3 rda files 

The .rda files are processed data with headers.  The header contains information about the 

patient and all acquisition parameters.  rda files are important as they can be directly used 

by LCmodel, which is a common software for spectroscopy data analysis.  We can get 

.rda files directly from the scanner by going to spectroscopy>options>export rawdata.  

The Matlab code that is used to create a .rda file is in appendix D. 

 

3.8 Data Analysis Method 

In terms of data analysis, two types of software were used.  The first one is LCModel 

[31] which is commonly used by MRS users.  It automatically quantizes the absolute and 

relative concentrations of metabolites and signal to noise ratio.  It requires basis functions 
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for specific pulse sequence type and echo time information.  The input to this software is 

.rda files from the scanner which is taken from the spectroscopy card directly.  The 

outputs are quantization results and figures are similar to Fig. 3.7.    The fit of spectrum is 

given by red curves.  The actual quantification of metabolites is given in the table at the 

left part of the Fig. 3.7.   

 

Fig. 3.7 LCModel output 

 

To manually adjust the frequency shift, phase, baseline, and to have a better overlay of 

the image and the spectrum, Simens online software is used.  This is the easiest and 

quickest way to view the spectrum.  But it does not provide absolute quantification and 

scanner for data processing must be conducted on the scanner. 
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For our analysis, we overlaid the spectrum evaluation from LCmodel with the imaging 

from Siemens to better represent our results. 

 

Pre-processing is required regardless of the software.    A discrete inverse Haar wavelet 

transform must be performed on the raw data, instead of a discrete inverse Fourier 

transform.  This pre-processing step is done in MATLAB by first arranging wavelet 

ecoding results into regular order and then performing an inverse wavelet transformation 

in all three dimensions.  The code is attached in appendix B. 

 

For in-vivo results, a line broadening of 2.5Hz  is applied to both WE-SI and CSI results.  

Line broadening is a method to convolve the resultant spectrum with a Lorentzian 

function whose width at half height equals a certain frequency value (2500Hz in our 

case).  Line broadening acts as a lowpass filter that filters out the higher frequency, and 

smoothes the spectrum.     
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Chapter 4 

Results and Discussion 

In-vitro and in-vivo results are presented in this chapter.  

4.1 Phantom Results 

   4.1.1 2×2×2 Phantom Test 

At this resolution results show accurate information on absolute metabolite 

quantification. Fig. 4.1 shows the accurate localization findings of the metabolite peaks 

along with fitting results (red).  The estimated metabolite concentration versus the 

expected is shown in Table 4.1. Voxel contaminations are insignificant at this low 

resolution. Since no wavelet translation (RF pulse shift) is performed, there is no 

reduction on acquisition time. 
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Fig. 4.1 Front axial slice of acquired metabolite spectra for the 2×2×2 WE-SI . 
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TABLE 4.1 

METABOLITE CONSENTRATION ESTIMATE  MILLI-MOLAR (MM) BY 2×2×2 PHANTOM 

 

 

  voxel         

metabolite   NAA Creatine Choline Water

NAA Measured 144 0 0 0 

 (mM) True 150 0 0 0 

Creatine Measured 0       64 4 0 

 (mM) True 0       65 0 0 

Choline  Measured 0 0 48 0 

 (mM) True 0 0 50 0 

 

 

 

TABLE 4.2 

WE-SI TIMING 

Resolution 
Total Acquisition Time 

 

  Experiment Calculated reference (CSI) 

2×2×2 32 sec 32 sec 32 sec 

4×4×2 196 sec 191 sec 256 sec 

8×8×4 1224 sec  1250 sec  2068 sec 
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4.1.2 4x4x2 Phantom Test  

The results also show that WE-SI was able to give accurate metabolite spatial 

information with low voxel contamination (Table 4.3, Fig. 4.2). We are able to reduce the 

acquisition time by 23.4% using WE-SI compared to CSI at this resolution (Table 4.2), 

which are consistent with the theoretical calculations (equation 3.13). 

 

 

 

TABLE 4.3 

WE-SI EVALUATION FOR THE 4×4×2  PHANTOM 

voxel position Expected Metabolites Contamination 
(1,1) water 0
(1,2) NAA 0
(1,3) Choline NAA (2%) 
(1,4) Glycine 0
(2,1) Acetone 0
(2,2) water 0
(2,3) NAA 0
(2,4) Creatine NAA (9%) 
(3,1) Sarcosine 0
(3,2) Creatine 0
(3,3) Choline NAA 5%) 
(3,4) NAA 0
(4,1) Glycine Succinate (6%) 
(4,2) Succinate 0
(4,3) Sarcosine Choline (4%); Acetone (12.7 %)
(4,4) Acetone Succinate (5%) 
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Fig. 4.2: Front axial slice of acquired metabolite spectra for the 4×4×2 WE-SI . 
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Discussions on Voxel contamination 

 

(1)Voxel contamination in WE-SI at 3 Tesla is mainly due to the RF pulse profiles not 

perfectly matching the shapes of the Haar functions (Fig. 3.5). The tails of the RF pulse 

profiles seen as solid lines in Fig. 3.5 extends outside the boxcar shown as a dashed line. 

These tails pick up a small portion of signal from neighboring voxels.  

 

(2)The transition bands are large causing voxel contamination. To minimize the profile 

errors, we replaced the Haar function values (1 and -1) in the inverse wavelet transform 

by numbers obtained from the fit of the RF pulse profiles to boxcar shapes. 

 

(3) Another reason for voxel contamination is the B0 field inhomogeneity. At higher B0 

field strength, homogeneity is more difficult to achieve, especially with phantoms made 

from glass vials, plastic holders and containers, which complicates the shimming process 

for better B0 field homogeneity due to susceptibility magnetic field effects [28]. As 

shown in Fig. 4.2, we observe more contaminations in the bottom row, because of the 

poor shimming at that location. 

 

(4) The nature of chemical shift misregrastration affects more on the metabolites with 

lower ppm values to a greater extent.  Consider NAA with chemical shift at 2.0 ppm.  

The chemical shift in frequency is calculated as: 

Hzppmf 25.3083.123)2.27.4(0 =×−=×Δ=Δ ω      (4.1) 
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Therefore if NAA is present within the region of the scanning, we will lose a certain 

amount of signal depending on the position of NAA, current dilation and translation of 

the wavelet encoding.   

Taking the following example, in which case we only have Water (left) and NAA (right) 

(Fig. 4.3).  If a 1D acquisition of resolution four is performed, the four acquisition steps 

with their spatial coverage are shown in green bars.   

 

For the step encodings one and two, gradients strength is calculated by: 

LL
BWGx γγ

2500
==          (4.2) 

Water is resonating at a frequency depending on x: 

xGf xw ⋅=           (4.3) 

NAA is resonating at a frequency 308.25 Hz lower than water frequency. Thus the 

frequency shift is equivalent to a shift in the spatial domain: 

L
BW

f
G
fx

x

Δ
=

Δ
=Δ
γ          (4.4)

 

This shift is indicated by the blue box. 

For encoding step 1: 

 Signals collected are not affected by this shift 

For encoding step 2: 

 Due to the dual shape of the RF pulse, part of the NAA signal is cancelled by the 

NAA signal shifted into the water region (the yellow shaded area) due to their opposite 

sign. Hence, the total signal energy is weakened. 
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For encoding step 3 and 4: 

Since the x coverage is halved, the gradient strength is doubled.  The chemical 

shift still exists but ∆x is halved.  As shown in the Fig. 4.3, encoding step 3 picks up 

NAA signals passing the boundary (yellow shaded), and contamination is observed.  At 

encoding step 4, we were supposed to observe a zero wavelet coefficient because NAA 

should be divided evenly by positive and negative part of the dual pulse.  However, due 

to the shift, we are most likely getting a small positive value. 

This chemical shift misregistration problem is affecting all metabolite peaks.  The 

further the metabolite is from water peak, the more shifted it is going to be in spatial 

domain.  This problem is also more serious at higher field strength.  From equations 4.4, 

it is easy to see that greater RF bandwidth pulses with higher gradient strength will 

reduce this effect. 
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Fig. 4.3 Illustration of chemical shift misregistration. 

 

A. 8x8x4 Spherical Phantom Test   

This test was performed to evaluate and compare the SNR of WE-SI versus CSI. 

As expected the SNR measured from a subset of voxels located at the center of the 

sphere (B0 field homogeneity is better at the center of the sphere) is lower by 28.8% 

compared to CSI. These results are comparable to the calculated ones at 29.9% 

(equation 2.19). However, compared to results obtained at 1.5 tesla (results not shown), 

the SNR at 3 tesla is higher. Acquisition time reduction is also obtained at this 

resolution (Table 4.2). 
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4.2 In-vivo Results 

Figure 4.4 displays the second axial slice spectra from a 4 by 4 by 4 WE-SI and 

from CSI human subject data, respectively. Fig. 4.5 displays the back axial slice spectra 

from an 8 by 8 by 2 WE-SI and from CSI human subject data, respectively. Similar 

relative quantification results of the metabolites were obtained. Table 4.4 shows the mean 

values and the standard deviations over all the voxels for the six volunteers at each spatial 

resolution of the metabolites ratios of N-acetyl-aspartate (NAA) and choline peaks to the 

creatine peak.  In table 4.5, acquisition times are given for both WE-SI and CSI at 

different resolutions. WE-SI is quicker in acquiring MRSI data than CSI. The 

experimental acquisition times approach the calculated ones.   

As expected, the SNR was lower in WE-SI than CSI by a factor of 1.5, 2.7, and 

3.2 in the 4 by 4 by 4, 8 by 8 by 2 and 8 by 8 by 4, respectively (Table 4.6). The SNR 

was calculated as the ratio of the NAA peak intensity and the standard deviation of noise. 

The SNR values are consistent with Equation 3.21. 
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Fig. 4.4 In vivo spectra from the second axial slice of the 4x4x4 WE-SI (left) and CSI 

(right) data.  

 

 

Fig. 4.5, In vivo spectra from the back axial slice of the 8x8x2 WE-SI (left) and CSI 

(right) data. 

 

Table 4.4 The mean and standard deviation values SNR for different resolutions.  

SNR 4x4x4 8x8x2 8x8x4 
CSI 18.2500 ± 7.1738 18.6758 ± 7.1982 15.6543 ± 6.1891 
WE-SI (experiment) 12.5235 ± 3.4935 7.5000 ± 2.2698 4.9257 ± 1.6256 
WE-SI (calculated) 11.8502 6.7867 4.5658 

 

Table 4.5 Experimental acquisition time duration for both WE-SI and CSI at three 

different resolutions. 

  WE-SI CSI 
4x4x4 (TR=2s,avg=2) 3min20sec 4min16sec
8x8x2 (TR=1.5s, avg=4) 8min42sec 12min48sec
8x8x4 (TR=1.5s, avg=4) 17min14sec 25min36sec
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Table 4.6 Experimental and calculated SNR values for WE-SI and CSI at three different 

resolutions. 

Mean ± SD NAA/Cr Cho/Cr 
4x4x4 WE-SI 1.7156 ± 0.4487 0.2699 ± 0.0812 
  CSI 1.7742 ± 0.6753 0.2930 ± 0.0762 
8x8x2 WE-SI 1.4010 ± 0.4994 0.2944 ± 0.1134 
  CSI 1.5031 ± 0.6753 0.2953 ± 0.0841 
8x8x4 WE-SI 1.4756 ± 0.6923 0.2835 ± 0.1553 
  CSI 1.6025 ± 0.6784 0.2794 ± 0.0865 
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Chapter 5 Conclusions and Future Work 

 

A three dimensional wavelet encoding method for acquiring magnetic resonance 

spectroscopic imaging data was presented. The proposed WE-SI was compared to the 

gold standard CSI technique. This comparison, offers a valuable indication of acquisition 

time, voxel contamination and sensitivity. In contrast to Fourier encoding which usually 

works with fine grids over a large FOV, the wavelet encoding, is better for small FOVs 

with low resolutions. At the same time, WE-SI reduces acquisition time compared to CSI.  

The reduction in acquisition time is directly proportional to the spatial resolution and 

dimensions. However, it suffers from lower SNR than CSI, although results obtained at 3 

tesla were better in sensitivity than those obtained at 1.5 tesla. In order to increase the 

SNR, less spatially localized wavelets should be used [32]. A more significant effect of 

chemical misregistration was also seen at higher field with WE-SI method.  Overall, WE-

SI is a reliable method at 3 tesla field strength and can be applied to clinical studies. 

For future work, we suggest combining WE-SI with a parallel imaging (PI) 

method for further reduction in acquisition time.  This work requires the 3T platform to 

be equipped with multi-receive channels covering independent and fixed object regions 

that are used to collect the MR signal (Figure 6.1). Similar to Fourier encoding with PI 

[33] where a number of k-space lines are not acquired resulting in an aliased image, a RF 

pulse with redundant Haar wavelets will result a super-imposed image when 

reconstructing it with a lower scale wavelet (N/R instead of N). Then as with SENSE 

[33], coil sensitivity maps can be used to separate a super imposed voxel into R different 

voxels at their corresponding positions.  By applying PI, the acquisition time is reduced 
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by a factor R, called the acceleration factor.  A decrease in SNR is also expected.  

However, since in Wavelet encoded parallel imaging (WE-PI) the RF excitation is not 

reduced by a factor of R, the SNR drop with PI in WE-SI should be less significant than 

with CSI. 

 

Figure 6.1 Acquired and reconstructed wavelet domain lines with N=8 and R=2. 
Translation and dilation values k and j are displayed for each wavelet encoding step. 
 

 

Also, as mentioned in earlier chapters, we need higher RF bandwidth to reduce 

chemical shift misregistration effect.  However, the smaller B1s available at higher fields 

restrict the Bandwidth available.  We should look for methods that either minimize power 

consumption of RF pulses, or minimize the bandwidth requirements.  A good alternative 

is presented in Goelman’s paper [34] as cascaded RF pulses (figure 6.2).  In this method, 

instead of using superposition which requires multiple bandwidths, the two RF pulses are 

cascaded head and tail to keep power consumption within the limit.   
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Figure 6.2 Cascaded RF pulses [34]. 

To reduce data reconstruction artifacts, which are the another source of voxel 

contamination, wavelets with smoother decay and shorter duration that are less dependent 

on the profiles of the RF pulses should be tested [32]. As a consequence, shorter RF 

pulses could be used and data with shorter echo times could be acquired, which increase 

data sensitivity.  
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Appendix A 
 
 
… 
static const long  RFDuration = 5200; 
static const long  RFBandwidth=2500; 
static sRF_PULSE_ARB D90RFPulse("D90RFPulse"); 
static sFREQ_PHASE D90PhSet( "D90PhSet" ); 
static sFREQ_PHASE D90PhNeg( "D90PhNeg" ); 
 
 
static sRF_PULSE_ARB D1801RFPulse("D1801RFPulse"); 
static sFREQ_PHASE D1801PhSet( "D1801PhSet" ); 
static sFREQ_PHASE D1801PhNeg( "D1801PhNeg" ); 
 
 
static sRF_PULSE_ARB D1802RFPulse("D1802RFPulse"); 
static sFREQ_PHASE D1802PhSet( "D1802PhSet" ); 
static sFREQ_PHASE D1802PhNeg( "D1802PhNeg" ); 
 
static sRF_PULSE_ARB D1821RFPulse("D1821RFPulse"); 
static sFREQ_PHASE D1821PhSet( "D1821PhSet" ); 
static sFREQ_PHASE D1821PhNeg( "D1821PhNeg" ); 
 
static sRF_PULSE_ARB D1822RFPulse("D1822RFPulse"); 
static sFREQ_PHASE D1822PhSet( "D1822PhSet" ); 
static sFREQ_PHASE D1822PhNeg( "D1822PhNeg" ); 
 
 
 
static sRF_PULSE_ARB S90RFPulse("S90RFPulse"); 
static sFREQ_PHASE S90PhSet( "S90PhSet" ); 
static sFREQ_PHASE S90PhNeg( "S90PhNeg" ); 
 
static sRF_PULSE_ARB S180RFPulse("S180RFPulse"); 
static sFREQ_PHASE S180PhSet( "S180PhSet" ); 
static sFREQ_PHASE S180PhNeg( "S180PhNeg" ); 
 
static sRF_PULSE_ARB S182RFPulse("S182RFPulse"); 
static sFREQ_PHASE S182PhSet( "S182PhSet" ); 
static sFREQ_PHASE S182PhNeg( "S182PhNeg" ); 
 
 
 
… 
static long ro_off_freq, ph_off_freq, sl_off_freq 



static short DorS_X, DorS_Y, DorS_Z, D1801_2, n_rd, n_ph, n_sl; 
static short who_is_90,Y, WAIT; 
 
 
… 
 ****************************************************************\ 
* 
* Name        : fSEQInit 
*                
* Description : Defines the hard limits for the Seq/Change dialog. 
*                
* Return      : An NLS status code. 
* 
\**********************************************************************\ 
 
… 
  pSeqLim->setBaseResolution(1,128, SEQ::INC_NORMAL,2); 
 
   
  pSeqLim->setPELines( 1, 128, 1, 2);   
   
  pSeqLim->setMaxPhaseResolution( 2 );   
  pSeqLim->setPartition( 1, 128, 1, 2); 
 
  pSeqLim->setfinalMatrixSizeRead(1, 128, SEQ::BASE2,2); //This is RL direction 
  pSeqLim->setfinalMatrixSizePhase( 1, 128, SEQ::BASE2,2);  //This is AP direction 
  pSeqLim->setfinalMatrixSizeSlice( 1, 128, SEQ::BASE2,2); // THis is HF 
(equivalent to SI) direction 
   
 
  ///////////////////////////////////// 
  // 3D dimension 
  ///////////////////////////////////// 
  pSeqLim->setDimension( SEQ::DIM_3,SEQ::DIM_2); 
  pSeqLim->setPartition( 1,128, SEQ::INC_NORMAL, 4 ); 
  pSeqLim->setfinalMatrixSizeSlice( 1, 128, SEQ::BASE2, 4 ); 
  pSeqLim->setImagesPerSlab( 1, 128, SEQ::BASE2, 4 ); 
  pSeqLim->setSlabThickness( 10, 300 ); 
  pSeqLim->set3DPartThickness( 1, 128, 1, 15); 
  pSeqLim->setMinSliceResolution ( 0.5 ); 
 
   
 
 
 
… 



 ****************************************************************\ 
* 
* Name        : fSEQPrep 
*                
* Description : Prepares everything that the sequence needs at run time. 
*                
* Return      : An NLS status code. 
* 
\*********************************************************************** 
 
 
… 
 RealAmpls=0; 
 ImagAmpls=0; 
 
  for (k=0; k<S90_LEN; ++k) { 
 
     RealAmpls += pulseS90Shape[k].flAbs * cos(pulseS90Shape[k].flPha); 
 
     ImagAmpls += pulseS90Shape[k].flAbs * sin(pulseS90Shape[k].flPha); 
 
  } 
 
  EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls); 
 
  
 
  S90RFPulse.setTypeExcitation                           (); 
 
  S90RFPulse.setDuration                                                 (RFDuration) ; 
 
  S90RFPulse.setFlipAngle                                                           (90.); 
 
  S90RFPulse.setInitialPhase                                            (0); 
 
  S90RFPulse.setSamples                                                            (S90_LEN); 
  S90RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().readoutFOV());  
  if (!S90RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS90Shape,EffAmplIntegs)) 
 
    return S90RFPulse.getNLSStatus(); 
   
 
 
  // computation of the frequency offset which defines the voxel position 
  // input units: 



  // [GSAmplitude] = mT / m 
  // [LarmorConst / (2 pi)] = MHz / T 
  // [VoxelPosition] = mm 
  // output unit: 
  // [Frequency] = Hz 
 
  lFrequency = (long)( .5 + S90RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterRO() );   
   
  lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ; 
 
  ro_off_freq=lFrequency; 
 
 
  // Dule 90  
  for (k=0; k<D90_LEN; ++k) { 
  
   if(k<262){ 
     RealAmpls += pulseD90Shape[k].flAbs * cos(pulseD90Shape[k].flPha); 
 
     ImagAmpls += pulseD90Shape[k].flAbs * sin(pulseD90Shape[k].flPha); 
   } 
   else{ 
     RealAmpls += -pulseD90Shape[k].flAbs * cos(pulseD90Shape[k].flPha); 
 
     ImagAmpls += -pulseD90Shape[k].flAbs * sin(pulseD90Shape[k].flPha); 
   } 
 
 
  } 
 
  EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls); 
 
  
 
  D90RFPulse.setTypeExcitation                           (); 
 
  D90RFPulse.setDuration                                                 (RFDuration) ; 
 
  D90RFPulse.setFlipAngle                                                           (90.0); 
 
  D90RFPulse.setInitialPhase                                            (0); 
 
  D90RFPulse.setSamples                                                            (D90_LEN); 



  D90RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().readoutFOV());  
  if (!D90RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD90Shape,EffAmplIntegs)) 
 
    return D90RFPulse.getNLSStatus(); 
 
 
////////////////////Dule 180 
 RealAmpls=0; 
 ImagAmpls=0; 
 
 for (k=0; k<D1801_LEN; ++k) { 
  if(k>252){ 
     RealAmpls += pulseD1801Shape[k].flAbs * cos(pulseD1801Shape[k].flPha); 
 
     ImagAmpls += pulseD1801Shape[k].flAbs * sin(pulseD1801Shape[k].flPha); 
  } 
  else{ 
   RealAmpls += -pulseD1801Shape[k].flAbs * 
cos(pulseD1801Shape[k].flPha); 
 
   ImagAmpls += -pulseD1801Shape[k].flAbs * 
sin(pulseD1801Shape[k].flPha); 
  } 
    
  } 
 
  EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls); 
 
  
 
  D1801RFPulse.setTypeExcitation                           (); 
 
  D1801RFPulse.setDuration                                                 (RFDuration) ; 
 
  D1801RFPulse.setFlipAngle                                                           (180.0); 
 
  D1801RFPulse.setInitialPhase                                            (0); 
 
  D1801RFPulse.setSamples                                                            (D1801_LEN); 
   
  D1801RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV()); 
  if 
(!D1801RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1801Shape,EffAmplIntegs)) 
 



    return D1801RFPulse.getNLSStatus(); 
   
 
 
//////////////////////////////////Dule 182 
 
  D1821RFPulse=D1801RFPulse; 
  D1821RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness()); 
  if 
(!D1821RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1801Shape,EffAmplIntegs)) 
 
    return D1821RFPulse.getNLSStatus(); 
   
 
 
 
 
 RealAmpls=0; 
 ImagAmpls=0; 
 
 for (k=0; k<D1802_LEN; ++k) { 
  if(k>270){ 
     RealAmpls += pulseD1802Shape[k].flAbs * cos(pulseD1802Shape[k].flPha); 
 
     ImagAmpls += pulseD1802Shape[k].flAbs * sin(pulseD1802Shape[k].flPha); 
  } 
  else{ 
   RealAmpls += -pulseD1802Shape[k].flAbs * 
cos(pulseD1802Shape[k].flPha); 
 
   ImagAmpls += -pulseD1802Shape[k].flAbs * 
sin(pulseD1802Shape[k].flPha); 
  } 
    
  } 
 
  EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls); 
 
  
 
  D1802RFPulse.setTypeExcitation                           (); 
 
  D1802RFPulse.setDuration                                                 (RFDuration) ; 
 
  D1802RFPulse.setFlipAngle                                                           (180.0); 



 
  D1802RFPulse.setInitialPhase                                            (0); 
 
  D1802RFPulse.setSamples                                                            (D1802_LEN); 
   
  D1802RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV()); 
  if 
(!D1802RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1802Shape,EffAmplIntegs)) 
 
    return D1802RFPulse.getNLSStatus(); 
   
 
 
 
 
 
   D1822RFPulse=D1802RFPulse; 
  D1822RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness()); 
  if 
(!D1822RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1802Shape,EffAmplIntegs)) 
 
    return D1822RFPulse.getNLSStatus(); 
   
 
 
 
 
 
  
//////////////////////////////////Single 180 
RealAmpls=0; 
 ImagAmpls=0; 
 
 for (k=0; k<S180_LEN; ++k) { 
 
     RealAmpls += pulseS180Shape[k].flAbs * cos(pulseS180Shape[k].flPha); 
 
     ImagAmpls += pulseS180Shape[k].flAbs * sin(pulseS180Shape[k].flPha); 
 
  } 
 
  EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls); 
 
  



 
  S180RFPulse.setTypeExcitation                           (); 
 
  S180RFPulse.setDuration                                                 (RFDuration) ; 
 
  S180RFPulse.setFlipAngle                                                           (180); 
 
  S180RFPulse.setInitialPhase                                            (0); 
 
  S180RFPulse.setSamples                                                            (S180_LEN); 
  S180RFPulse.setGSAmplitude(2500/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV()); 
  if (!S180RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS180Shape,EffAmplIntegs)) 
 
    return S180RFPulse.getNLSStatus(); 
   
 
 
 
  lFrequency = (long)( .5 + S180RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterPE() );   
  lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ; 
 
  ph_off_freq=lFrequency;  
 
////////////////////////////S 182 
 
 S182RFPulse=S180RFPulse; 
 S182RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness()); 
  if 
(!S182RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS180Shape,EffAmplIntegs)) 
 
    return S182RFPulse.getNLSStatus(); 
   
   
  lFrequency = (long)( .5 + S182RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceShift() );   
  lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ; 
 
  sl_off_freq=lFrequency; 
 
 



/*[ Function 
****************************************************************\ 
* 
* Name        : fSEQCheck 
*                
* Description : Checks the real-time sequence for gradient overflows. 
*                
* Return      : An NLS status code. 
* 
\*********************************************************************** 
 
… 
****************************************************************\ 
* 
* Name        : fSEQRun 
*                
* Description : Executes the real-time sequence. 
*                
* Return      : An NLS status code. 
* 
\*********************************************************************** 
 
 
… 
 
 
  double x_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().readoutFOV(), 
   z_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().thickness(), 
   y_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().phaseFOV(); 
  long   n_sl ,n_ph, n_rd; 
  long        scale_sl, scale_rd, scale_ph, scale_1,scale_2,scale_3, xii,xjj,xkk, myflag, temp; 
   
 
 
  n_rd = pMrProt->kSpace().baseResolution();  
    
  n_ph = pMrProt->kSpace().phaseEncodingLines(); 
 
  n_sl = pMrProt->kSpace().partitions(); 
 
 
… 
 
 
 
 



  /////////////////////////////////////////////////////////////// 
  // execute repetition loop 
  /////////////////////////////////////////////////////////////// 
 
  n_rep = pMrProt->repetitions() + 1;  
  for( k=0; k<n_rep; k++ ){ 
     
    short chkboard[32*32*32]; 
    int ii; 
    for (ii=0; ii<32*32*32; ii++) 
     chkboard[ii]=0; 
 
    ss_adc1.Mdh.setCrep( k ); 
     
 
  /////////////////////////////////////////////////////////////// 
  // execute prepare loop 
  /////////////////////////////////////////////////////////////// 
 
  fRTSetReadoutEnable( 0 );  // disable ADC events 
    for( i=0; i<n_prep; i++ ){ 
 
 
…. 
  /////////////////////////////////////////////////////////////// 
  // execute acquisition loop 
  /////////////////////////////////////////////////////////////// 
 
 
  ///////////////////added Jan 2008////////////////////// 
long lfrequency; 
double dPhase; 
 
  for (j=0; j<n_rd*n_ph*n_sl; j++){ 
   who_is_90=1; 
   short found, ii,jj,kk; 
   for (chk=0; chk<n_rd*n_ph*n_sl;chk++){ 
    found=0; 
    if(chkboard[chk]==0){ 
     j=chk; 
     found=1; 
     break; 
    } 
 
   } 
 



   if(found==0){ 
 
    continue; 
   } 
 
   int count_rd=j%n_rd+1; 
   int count_ph=(j/n_rd)%n_ph+1; 
   int count_sl=j/n_rd/n_ph+1; 
      int cnt; 
           
  
    
   scale_rd=1; 
   scale_ph=1; 
   scale_sl=1; 
   scale_1=1; 
   scale_2=1; 
   scale_3=1; 
   myflag=1; 
 
   
   cnt=2; 
   while(cnt<32){ 
    if(count_rd>cnt && count_rd<=2*cnt) 
     scale_rd=cnt; 
    if(count_ph>cnt && count_ph<=2*cnt) 
     scale_ph=cnt; 
    if(count_sl>cnt && count_sl<=2*cnt) 
     scale_sl=cnt; 
    cnt=cnt*2; 
   } 
 
      if(scale_rd>=scale_sl && scale_rd>=scale_ph){ 
    Y=scale_rd; 
    who_is_90=1; 
    if(scale_ph>=scale_sl){ 
     myflag=1; 
        scale_1=scale_rd; 
     scale_2=scale_ph; 
     scale_3=scale_sl; 
     ii=count_rd; 
     jj=count_ph; 
     kk=count_sl; 
    } 
    else{ 
     myflag=2; 



     scale_1=scale_rd; 
     scale_2=scale_sl; 
     scale_3=scale_ph; 
     ii=count_rd; 
     jj=count_sl; 
     kk=count_ph; 
    } 
   } 
 
   if(scale_ph>scale_rd && scale_ph>=scale_sl){ 
    Y=scale_ph; 
    who_is_90=2; 
    if(scale_rd>=scale_sl){ 
     myflag=3; 
        scale_1=scale_ph; 
     scale_2=scale_rd; 
     scale_3=scale_sl; 
     ii=count_ph; 
     jj=count_rd; 
     kk=count_sl; 
    } 
    else{ 
     myflag=4; 
     scale_1=scale_ph; 
     scale_2=scale_sl; 
     scale_3=scale_rd; 
     ii=count_ph; 
     jj=count_sl; 
     kk=count_rd; 
    } 
   } 
 
   if(scale_sl>scale_ph && scale_sl>scale_rd){ 
    Y=scale_sl; 
    who_is_90=3; 
    if(scale_ph>=scale_sl){ 
     myflag=5; 
        scale_1=scale_sl; 
     scale_2=scale_rd; 
     scale_3=scale_ph; 
     ii=count_sl; 
     jj=count_rd; 
     kk=count_ph; 
    } 
    else{ 
     myflag=6; 



     scale_1=scale_sl; 
     scale_2=scale_ph; 
     scale_3=scale_rd; 
     ii=count_sl; 
     jj=count_ph; 
     kk=count_rd; 
    } 
   } 
 
   //  the following two lines turns off the pulse switching functionality 
 
// who_is_90=1; 
// Y=1; 
//////////////////////////////////////////////////////////////////////// 
      for (cnt=0; cnt<Y; cnt++){ 
       int p,q,r; 
    WAIT=Y==(cnt+1)?1:0; 
          if(scale_1>1){ 
     p= (ii + cnt)%scale_1; 
     p= p==0?scale_1:p; 
     p= p+scale_1; 
    } 
    else 
     p=ii; 
 
    if(scale_3>1){ 
     q= (jj + cnt)%scale_3; 
     q= q==0?scale_3:q; 
  //   q=q+cnt/scale_3*scale_3; 
     q=q%scale_2; 
     q= q==0?scale_2:q; 
     q= q+scale_2; 
    } 
    else 
     q=jj; 
 
    if(scale_3>1){ 
     r= (kk + cnt)%scale_3; 
     r= r==0?scale_3:r; 
     r= r+scale_3; 
    } 
    else 
     r=kk; 
     
    if(myflag==2){ 
     temp=q; 



     q=r; 
     r=temp; 
    } 
    if(myflag==3){ 
     temp=p; 
     p=q; 
     q=temp; 
    } 
    if(myflag==4){ 
     temp=p; 
     p=r; 
     r=q; 
     q=temp; 
    } 
    if(myflag==5){ 
     temp=p; 
     p=q; 
     q=r; 
     r=temp; 
    } 
    if(myflag==6){ 
     temp=p; 
     p=r; 
     r=temp; 
    } 
          if(chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph]){ 
 
                 if(myflag==1) 
                        q=q+scale_3; 
                     
                    if(myflag==2) 
                        r=r+scale_3; 
                     
                    if(myflag==3) 
                        p=p+scale_3; 
                     
                    if(myflag==4) 
                        r=r+scale_3; 
                     
                    if(myflag==5) 
                        p=p+scale_3; 
                     
                    if(myflag==6) 
                        q=q+scale_3; 
    } 
          if(chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph]) 



     cout<<"ordering Error !!!"<<endl; 
 
    count_rd=p; 
    count_ph=q; 
    count_sl=r; 
 
    cout << "==>p,q,r,y:                                            " << p<<q<<r<<Y << 
endl; 
    chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph]=1; 
 
 
 
 
 
 
 
 
 
 
     
     
        
 if(who_is_90==1){ 
     DorS_X=(count_rd==1)?1:0; 
     DorS_Y=(count_ph==1)?1:0; 
     DorS_Z=(count_sl==1)?1:0;  //1--single 0---dule 
      
     D90RFPulse.setInitialPhase                                            (0); 
     D1801RFPulse.setInitialPhase                                            (0); 
     D1802RFPulse.setInitialPhase                                            (0); 
     D1821RFPulse.setInitialPhase                                            (0); 
     D1822RFPulse.setInitialPhase                                            (0); 
      
     D90RFPulse.setGSAmplitude(scale_rd*x_grad); 
     ss_grad_exc.setAmplitude(scale_rd*x_grad); 
     ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800 ) 
*scale_rd*x_grad / 4000 )); 
     D1801RFPulse.setGSAmplitude(scale_ph*y_grad); 
     D1802RFPulse.setGSAmplitude(scale_ph*y_grad); 
     if(count_ph>1) 
    ss_grad_pi_ph.setAmplitude(scale_ph*y_grad); 
     else 
    ss_grad_pi_ph.setAmplitude(scale_ph*y_grad/1.25); 
 
 
     D1821RFPulse.setGSAmplitude(scale_sl*z_grad); 



     D1822RFPulse.setGSAmplitude(scale_sl*z_grad); 
     if(count_sl>1) 
    ss_grad_pi_sl.setAmplitude(scale_sl*z_grad); 
     else 
      ss_grad_pi_sl.setAmplitude(scale_sl*z_grad/1.25); 
 
     D1822RFPulse.setInitialPhase                                            (0); 
//     lfrequency= ro_off_freq*scale_rd; 
//     cout<<"lfreq"<<lfrequency<<endl; 
     lfrequency =  D90RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterRO()-335 ;   
 
      
     if(count_rd>2) 
    lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth; 
     lfrequency=  (long)( .5 +lfrequency);  
        lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * 
pMrProt->spectroscopy().dDeltaFrequency) ; 
 
     if(count_rd==1){ 
 
        S90PhSet.setFrequency( lfrequency );                                              
     S90PhNeg.setFrequency( 0L ); 
   
        dPhase = - lfrequency * (360./1e6) * 2600; 
     S90PhSet.setPhase( dPhase ); 
           S90PhNeg.setPhase( - lfrequency * (360./1e6) * 2600 ); 
     } 
 
     D90PhSet.setFrequency( lfrequency );                                               
     D90PhNeg.setFrequency( 0L ); 
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D90PhSet.setPhase( dPhase ); 
     D90PhNeg.setPhase( -lfrequency * (360./1e6) * 2600 ); 
 
 
 
 
//     lfrequency= ph_off_freq*scale_ph; 
     cout << "x_freq  " <<lfrequency<<endl; 
     lfrequency = D1801RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterPE()-335 ;   
     
//     cout<<"lFreq  "<<lfrequency<<endl; 
     if(count_ph>2) 



     lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth; 
     lfrequency=  (long)( .5 +lfrequency);  
        lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * 
pMrProt->spectroscopy().dDeltaFrequency) ; 
 
     if(count_ph==1){ 
      S180PhSet.setFrequency( long(ph_off_freq/1.25-335) );                                     
    S180PhNeg.setFrequency( 0L ); 
   
    dPhase = - long(ph_off_freq/1.25-335) * (360./1e6) * 
S180RFPulse.getDuration() * 0.5; 
    S180PhSet.setPhase( dPhase ); 
       S180PhNeg.setPhase( dPhase ); 
     cout << "y_freq:S180  " 
<<S180PhSet.getFrequency()<<endl; 
     } 
     D1801PhSet.setFrequency( lfrequency );                                               
     D1801PhNeg.setFrequency( 0L ); 
       D1802PhSet.setFrequency( lfrequency );                                               
     D1802PhNeg.setFrequency( 0L ); 
   
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D1801PhSet.setPhase( dPhase); 
        D1801PhNeg.setPhase(dPhase); 
        D1802PhSet.setPhase( dPhase ); 
        D1802PhNeg.setPhase( dPhase); 
 
 
 
//     lfrequency= sl_off_freq*scale_sl; 
   cout<<"y_freq  "<<lfrequency<<endl; 
   lfrequency = D1821RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceShift()-335 ;   
 
//     cout<<"lFreq  "<<lfrequency<<endl; 
     if(count_sl>2) 
     lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth; 
 
   lfrequency=  (long)( .5 +lfrequency);  
      lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ; 
     cout<<"z_freq  "<<lfrequency<<endl; 
 
     if(count_sl==1){ 



      
       S182PhSet.setFrequency( long(sl_off_freq/1.25-335)  );                                             
    S182PhNeg.setFrequency( 0L ); 
   
    dPhase = - long(sl_off_freq/1.25-335)* (360./1e6) * 
S182RFPulse.getDuration() * 0.5; 
    S182PhSet.setPhase( dPhase ); 
    S182PhNeg.setPhase( dPhase ); 
    cout<<"z_freq  S182 
"<<S182PhSet.getFrequency()<<endl; 
     } 
     D1821PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1821PhNeg.setFrequency( 0L ); 
     D1822PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1822PhNeg.setFrequency( 0L ); 
    dPhase = -lfrequency * (360./1e6) * 2600;  
     D1821PhSet.setPhase( dPhase); 
     D1821PhNeg.setPhase( dPhase); 
     D1822PhSet.setPhase( dPhase ); 
     D1822PhNeg.setPhase( dPhase ); 
    } 
 
    if(who_is_90==2){ 
     DorS_X=(count_ph==1)?1:0; 
        DorS_Y=(count_rd==1)?1:0; 
     DorS_Z=(count_sl==1)?1:0;  //1--single 0---dule 
 
     
 
     S90RFPulse.setInitialPhase      
     (0); 
     S180RFPulse.setInitialPhase (0); 
   
     D90RFPulse.setInitialPhase                                            (0); 
     D1801RFPulse.setInitialPhase                                            (0); 
     D1802RFPulse.setInitialPhase                                            (0); 
     D1821RFPulse.setInitialPhase                                            (0); 
     D1822RFPulse.setInitialPhase                                            (0); 
 
 
     D90RFPulse.setGSAmplitude(scale_ph*y_grad); 
     ss_grad_exc.setAmplitude(scale_ph*y_grad); 
     ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800 ) 
*scale_ph*y_grad / 4000 )); 



 
 
     D1801RFPulse.setGSAmplitude(scale_rd*x_grad); 
     D1802RFPulse.setGSAmplitude(scale_rd*x_grad); 
     if(count_rd>1) 
     ss_grad_pi_ph.setAmplitude(scale_rd*x_grad); 
     else 
    
 ss_grad_pi_ph.setAmplitude(scale_rd*x_grad/1.25); 
  
     D1821RFPulse.setGSAmplitude(scale_sl*z_grad); 
     D1822RFPulse.setGSAmplitude(scale_sl*z_grad); 
     if(count_sl>1) 
     ss_grad_pi_sl.setAmplitude(scale_sl*z_grad); 
     else 
      ss_grad_pi_sl.setAmplitude(scale_sl*z_grad/1.25); 
 
 
 
 
 
 
 
 
 
 
 
 
              lfrequency = D90RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterPE()-335 ;   
     if(count_ph>2) 
    lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth; 
     lfrequency=  (long)( .5 +lfrequency);  
        lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * 
pMrProt->spectroscopy().dDeltaFrequency) ; 
   
     D90PhSet.setFrequency( lfrequency );                                               
     D90PhNeg.setFrequency( 0L ); 
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D90PhSet.setPhase( dPhase ); 
     D90PhNeg.setPhase(  -lfrequency*(360./1e6) * 2600); 
     if(count_ph==1){ 
 
        S90PhSet.setFrequency( lfrequency );                                              
     S90PhNeg.setFrequency( 0L ); 



   
        dPhase = - lfrequency * (360./1e6) * 2600; 
     S90PhSet.setPhase( dPhase ); 
           S90PhNeg.setPhase( - lfrequency * (360./1e6) * 2600 ); 
     } 
     cout<<"pulse switched "<<"y_freq:"<<lfrequency<<endl; 
     lfrequency = D1801RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceOffCenterRO() -335;   
  
     if(count_rd>2) 
     lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth; 
     lfrequency=  (long)( .5 +lfrequency);  
        lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * 
pMrProt->spectroscopy().dDeltaFrequency) ; 
     D1801PhSet.setFrequency( lfrequency );                                               
     D1801PhNeg.setFrequency( 0L ); 
       D1802PhSet.setFrequency( lfrequency );                                               
     D1802PhNeg.setFrequency( 0L ); 
   
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D1801PhSet.setPhase( dPhase); 
        D1801PhNeg.setPhase( dPhase ); 
        D1802PhSet.setPhase( dPhase ); 
        D1802PhNeg.setPhase( dPhase); 
 
     if(count_rd==1){ 
      S180PhSet.setFrequency( long(ro_off_freq/1.25-335)  );                                    
    S180PhNeg.setFrequency( 0L ); 
   
    dPhase = - long(ro_off_freq/1.25-335) * (360./1e6) * 
S180RFPulse.getDuration() * 0.5; 
    S180PhSet.setPhase( dPhase ); 
       S180PhNeg.setPhase( dPhase ); 
    cout << "pulse swiched,x_freq:S180  " 
<<S180PhSet.getFrequency()<<endl; 
     } 
 
     cout<<"pulse switched "<<"x_freq:"<<lfrequency<<endl; 
     lfrequency = D1821RFPulse.getGSAmplitude() * larmorconst * 
ss_slc.getSliceShift()-335; 
     if(count_sl>2) 
     lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth; 
     lfrequency=  (long)( .5 +lfrequency);  



        lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * 
pMrProt->spectroscopy().dDeltaFrequency) ; 
 
     D1821PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1821PhNeg.setFrequency( 0L ); 
     D1822PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1822PhNeg.setFrequency( 0L ); 
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D1821PhSet.setPhase( dPhase); 
     D1821PhNeg.setPhase( dPhase); 
     D1822PhSet.setPhase( dPhase ); 
     D1822PhNeg.setPhase( dPhase ); 
     if(count_sl==1){ 
      
       S182PhSet.setFrequency( long(sl_off_freq /1.25-335) );                                             
    S182PhNeg.setFrequency( 0L ); 
   
    dPhase = -  long(sl_off_freq /1.25-335)  * (360./1e6) * 
S182RFPulse.getDuration() * 0.5; 
    S182PhSet.setPhase( dPhase ); 
    S182PhNeg.setPhase( dPhase ); 
    cout<<"pulse switched "<<"z_freq: 
S182"<<S182PhSet.getFrequency()<<endl; 
     } 
     cout<<"pulse switched "<<"z_freq:"<<lfrequency<<endl; 
    } 
 
    if(who_is_90==3){ 
     DorS_X=(count_sl==1)?1:0; 
     DorS_Y=(count_ph==1)?1:0; 
     DorS_Z=(count_rd==1)?1:0;  //1--single 0---dule 
 
     ss_grad_exc.setAmplitude(scale_sl*z_grad); 
     ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800 ) 
*scale_sl*z_grad / 4000 )); 
     if(count_ph>1) 
     ss_grad_pi_ph.setAmplitude(scale_ph*y_grad); 
     else 
    ss_grad_pi_ph.setAmplitude(scale_ph*y_grad/1.25); 
     if(count_rd>1) 
     ss_grad_pi_sl.setAmplitude(scale_rd*x_grad); 
     else 
     ss_grad_pi_sl.setAmplitude(scale_rd*x_grad/1.25); 
 



 
     lfrequency= sl_off_freq*scale_sl-335; 
     if(count_sl>2) 
    lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth; 
   
     D90PhSet.setFrequency( lfrequency );                                               
     D90PhNeg.setFrequency( 0L ); 
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D90PhSet.setPhase( dPhase ); 
     D90PhNeg.setPhase( -lfrequency*(360./1e6) * 2600 ); 
     if(count_sl==1){ 
 
        S90PhSet.setFrequency( lfrequency);                                              
     S90PhNeg.setFrequency( 0L ); 
   
        dPhase = -lfrequency * (360./1e6) * 2600; 
     S90PhSet.setPhase( dPhase ); 
           S90PhNeg.setPhase( dPhase ); 
     } 
      
      cout << "pulse swiched to 3: z_freq" <<lfrequency<<endl; 
     lfrequency= ph_off_freq*scale_ph-335; 
      
     if(count_ph>2) 
     lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth; 
     D1801PhSet.setFrequency( lfrequency );                                               
     D1801PhNeg.setFrequency( 0L ); 
       D1802PhSet.setFrequency( lfrequency );                                               
     D1802PhNeg.setFrequency( 0L ); 
   
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D1801PhSet.setPhase( dPhase); 
        D1801PhNeg.setPhase( dPhase ); 
        D1802PhSet.setPhase( dPhase ); 
        D1802PhNeg.setPhase( dPhase ); 
 
     if(count_ph==1){ 
       S180PhSet.setFrequency( long(ph_off_freq /1.25-335) );                                            
    S180PhNeg.setFrequency( 0L ); 
   
    dPhase = - long(ph_off_freq /1.25-335) * (360./1e6) * 
S180RFPulse.getDuration() * 0.5; 
    S180PhSet.setPhase( dPhase ); 
       S180PhNeg.setPhase( dPhase ); 



    cout << "pulse swiched to 3:y_freq, S180 " << 
S180PhSet.getFrequency() <<endl; 
     } 
             cout << "pulse swiched to 3: y_freq " << lfrequency<<endl; 
     lfrequency= ro_off_freq*scale_rd-335; 
      
     if(count_rd>2) 
     lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth; 
 
 
     D1821PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1821PhNeg.setFrequency( 0L ); 
     D1822PhSet.setFrequency( lfrequency );                                              
/*! EGA-05 !*/ 
     D1822PhNeg.setFrequency( 0L ); 
     dPhase = -lfrequency * (360./1e6) * 2600;  
     D1821PhSet.setPhase( dPhase); 
     D1821PhNeg.setPhase(  dPhase); 
     D1822PhSet.setPhase( dPhase ); 
     D1822PhNeg.setPhase( dPhase ); 
     if(count_rd==1){ 
      
       S182PhSet.setFrequency( long(ro_off_freq/1.25-335) );                                             
    S182PhNeg.setFrequency( 0L ); 
   
    dPhase = -  long(ro_off_freq/1.25-335)* (360./1e6) * 
S182RFPulse.getDuration() * 0.5; 
    S182PhSet.setPhase( dPhase ); 
    S182PhNeg.setPhase( dPhase ); 
     cout << "pulse swiched to 3:x_freq, S182 " << 
S182PhSet.getFrequency() <<endl; 
     } 
   cout << "pulse swiched to 3: x_freq " << lfrequency<<endl; 
    } 
 
    for( i=0; i<n_ave; i++ ){ 
     D1801_2=k%2; 
     //D1801_2=0; 
     ss_adc1.Mdh.setCset( i ); // averages 
 
   
     ss_adc1.Mdh.setClin( count_rd-1 ); 
     ss_adc1.Mdh.setCphs( count_ph-1 ); 
     ss_adc1.Mdh.setCseg( count_sl-1 ); 



 
  //   ss_adc1.Mdh.setFirstScanInSlice( !i && !j );           
  //   ss_adc1.Mdh.setLastScanInSlice( j==(n_rd*n_ph*n_sl)-1 && 
i==(n_ave-1) );  
 
  
    
     lStatus = fSEQRunKernel( pMrProt, pSeqLim, pSeqExpo, 
KERNEL_CHECK );  
     CheckStatusPR(lStatus,"fSEQRunKernel"); 
    } 
    
  } 
 } 
  
      
   if( k < (n_rep-1) ){ 
   CheckStatusPB ( lStatus = fSBBMeasRepetDelaysRun( pMrProt, pSeqLim, 
pSeqExpo, k ),"fSBBMeasRepetDelaysRun" ); 
 
  } 
 
  } // end repetition loop 
 
 
… 
 
 
/*[ Function 
****************************************************************\ 
* 
* Name        : fSEQRunKernel 
*                
* Description : Executes the basic timing of the real-time sequence. 
*               This function is called by the function (libSBB)fSEQRunStd. 
*                
* Return      : An NLS status code. 
* 
\*********************************************************************** 
 
 
 
 
 
 
 



 
… 
 
/************************************* S E Q U E N C E   T I M I N G 
*************************************/ 
/*            Start Time       |    NCO    |  SRF  |  ADC  |    Gradient Events    | Sync                
*/ 
/*              (usec)         |   Event   | Event | Event | phase | read  | slice | Event               */ 
/*fRTEI(                       ,           ,       ,       ,       ,       ,       ,        );   [ Clock]*/ 
/*********************************************************************** 
…. 
 
 
  if(who_is_90==1) 
   fRTEI(lT,   0, 0, /*A*/ 0, 0,                                                            &ss_grad_exc,0,0); 
  if(who_is_90==2) 
 fRTEI(lT,   0, 0, /*A*/ 0,                                                            
&ss_grad_exc,0,0,0); 
  if(who_is_90==3) 
   fRTEI(lT,   0, 0, /*A*/ 0, 0,                                                            
0,&ss_grad_exc,0); 
 
 
  if(!DorS_X){ 
 fRTEI(lT+= (ss_grad_exc.getDuration() - D90RFPulse.getDuration()), 
&D90PhSet, &D90RFPulse,0,/*A*/0,0,0,0); 
 if(who_is_90==1) 
 fRTEI(lT+= (D90RFPulse.getDuration()), 
&D90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_grad_ref,&ss_sp1_sl,0); 
 if(who_is_90==2) 
  fRTEI(lT+= (D90RFPulse.getDuration()), 
&D90PhNeg,0,/*A*/0,&ss_grad_ref,&ss_sp1_ph,&ss_sp1_sl,0); 
 if(who_is_90==3) 
  fRTEI(lT+= (D90RFPulse.getDuration()), 
&D90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_sp1_sl,&ss_grad_ref,0); 
   
 
 
  } 
  else{ 
 fRTEI(lT+= (ss_grad_exc.getDuration() - S90RFPulse.getDuration()), 
&S90PhSet, &S90RFPulse,0,/*A*/0,0,0,0); 
 if(who_is_90==1) 
 fRTEI(lT+= (S90RFPulse.getDuration()), 
&S90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_grad_ref,&ss_sp1_sl,0); 
 if(who_is_90==2) 



  fRTEI(lT+= (S90RFPulse.getDuration()), 
&S90PhNeg,0,/*A*/0,&ss_grad_ref,&ss_sp1_ph,&ss_sp1_sl,0); 
 if(who_is_90==3) 
  fRTEI(lT+= (S90RFPulse.getDuration()), 
&S90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_sp1_sl,&ss_grad_ref,0); 
   
 
  } 
 
  // slice select rephasing, 1st refocussing pulse 
  
   
  if(who_is_90==2) 
     fRTEI(lT+= (ss_sp1_sl.getDuration()), 0,0,/*A*/0,0,&ss_grad_pi_ph, 0,0); 
  else 
   fRTEI(lT+= (ss_sp1_sl.getDuration()), 0,0,/*A*/0,&ss_grad_pi_ph, 0,0,0); 
  
    
 
  if(!DorS_Y){ 
   if(D1801_2){ 
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &D1801PhSet, 
&D1801RFPulse, 0,0,0,0,0 ); 
 fRTEI(lT+= (RFDuration), &D1801PhNeg, 0,0, 
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);   
   } 
   else{ 
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &D1802PhSet, 
&D1802RFPulse, 0,/*A*/0,0,0,0 ); 
 fRTEI(lT+= (RFDuration), &D1802PhNeg, 0,/*A*/0, 
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);   
   } 
 
  } 
  else{ 
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &S180PhSet, &S180RFPulse, 
0,/*A*/0,0,0,0 ); 
 fRTEI(lT+= (RFDuration), &S180PhNeg, 0,/*A*/0, 
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);   
  } 
 
   
  // 2nd refocussing pulse 
 
  fRTEI(lT+= (ss_sp1_sl.getDuration() + ss_sp1_sl.getRampDownTime() + sl_trueTE1),  
    0,0,/*A*/0,&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);  



   
  // hier wird der 2.Spoiler angeschaltet  
  if(who_is_90==3) 
    fRTEI(lT+= (ss_sp2_sl.getDuration()), 0,0,/*A*/0,0,&ss_grad_pi_sl,0, 0); 
  else 
 fRTEI(lT+= (ss_sp2_sl.getDuration()), 0,0,/*A*/0,0,0,&ss_grad_pi_sl, 0); 
  if(!DorS_Z){ 
   if(D1801_2){ 
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &D1821PhSet, 
&D1821RFPulse, 0,0,0,0,0 ); 
 fRTEI(lT+= (RFDuration), &D1821PhNeg, 0,0, 
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);  
   } 
   else{ 
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &D1822PhSet, 
&D1822RFPulse, 0,/*A*/0,0,0,0 ); 
 fRTEI(lT+= (RFDuration), &D1822PhNeg, 0,/*A*/0, 
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);  
   } 
 } 
  else{ 
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &S182PhSet, &S182RFPulse, 
0,/*A*/0,0,0,0 ); 
    fRTEI(lT+= (RFDuration), &S182PhNeg, 0,/*A*/0, 
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);   
  } 
  // acquisition 
   
  //fRTEI(lT+= (ss_sp2_sl.getDuration() + ss_sp2_sl.getRampDownTime() + sl_trueTE2   
  //              /* -  pMrProt->spectroscopy().acquisitionDelay()*/ ), 
&ss_ph_s_adc,0,&ss_adc1,0,0,0,0); 
  fRTEI(lT+= (ss_sp2_sl.getDuration() + ss_sp2_sl.getRampDownTime() + 
sl_aqu_fill_before ), &ss_ph_s_adc,0,&ss_adc1,0,0,0,0); 
 
 
  // final spoiling  
   
  // fRTEI(lT+=(1000 + 
ss_adc1.getRoundedDuration(GRAD_RASTER_TIME)),&ss_ph_n_adc,0,0, 
&ss_finsp_ro, &ss_finsp_ph, &ss_finsp_sl, 0 ); 
  fRTEI(lT+=(1000 + ss_adc1.getRoundedDuration(GRAD_RASTER_TIME) + 
sl_aqu_fill_after),&ss_ph_n_adc,0,0, &ss_finsp_ro, &ss_finsp_ph, &ss_finsp_sl, 0 ); 
  fRTEI(lT+=(ss_finsp_sl.getDuration() + ss_finsp_sl.getRampDownTime()), 
0,0,0,0,0,0,0 ); 
 
  



 
  if(WAIT){ 
  //   if(Y<2) 
    dt=pMrProt->tr()[0]-lT-lTextra; 
//   else 
//    dt=pMrProt->tr()[0]-lT*(Y-1)-lTextra; 
//   dt=dt>0?dt:0; 
   fRTEI(lT+=  dt, 0,0,0,0,0,0,0); 
  } 
 
   
  ///////////////////////////////////////////////////////////////////////////////////// 
  // do testing and close the event block 
  ///////////////////////////////////////////////////////////////////////////////////// 
 
  mSEQTest(pMrProt, pSeqLim, pSeqExpo, RTEB_ClockCheck, 10, 0 /*lLine*/, 
0/*lSliceIndex*/, 0, 0) ; 
  mSEQTest(pMrProt, pSeqLim, pSeqExpo, ulTestIdent    , 10, 0/*lLine*/, 
0/*lSliceIndex*/, 0, 0) ;  
  CheckStatusPB(lStatus = fRTEBFinish(),"fRTEBFinish [*0010*]"); 
 
FINISHED: 
 
  return(lStatus); 
} 
 
  



Appendix B WESI Reconstruction Code  
 
nx=4; 
ny=4; 
nz=1; 
average=16; 
vector_size=1024; 
TE=75; % ms 
ADCBandwidth=2000; %Hz 
  
[filename , pathname ] = uigetfile('*.dat', 'Select an DAT file') 
filename=[pathname, filename]; 
fid = fopen(filename,'r'); 
 
  SI=WLCons(90, nx);  
  SI=fliplr(SI);  
  
  VI=WLCons(180,ny); 
  V2I=WLCons(180,nz); 
  
bytes_to_skip = fread(fid, 1, 'uint32'); 
fseek(fid,bytes_to_skip,'bof'); 
  
  
A = fread(fid,'float32'); 
samplesbeforeecho=floor((0.5*TE*1000-1.5*5200-4800-4800-
300)*ADCBandwidth/1000000)+1; 
no_samples=ceil((samplesbeforeecho+vector_size+8)/16)*16 ; 
fillup=no_samples-samplesbeforeecho-vector_size-8; 
no_samples=no_samples+16 
AA=A(33:length(A)); 
B=zeros(1,2*nx*ny*nz*vector_size*average); 
offset=1; 
for (i=1:nx*ny*nz*average) 
     
    temp=AA((i-1)*2*(no_samples)+1+samplesbeforeecho*2:(i-
1)*2*(no_samples)+vector_size*2+samplesbeforeecho*2); 
    B(offset:offset+vector_size*2-1)=temp; 
    offset=offset+vector_size*2; 
end 
  
N= B(1:2:length(B))+sqrt(-1)*B(2:2:length(B)); 
  
no_samples=vector_size; 
M=reshape(N,no_samples,nx*ny*nz,average); 
  
  
  
M=mean(M,3); 
  
  
  
M=reshape(M,no_samples,nx*ny*nz); 



wesi=M(:,1); 
headers=getHeader2(nx,ny,nz); 
data=zeros(no_samples,nx,ny,nz); 
  
offset=1; 
for i=1:nx*ny*nz 
    headers(i,:) 
    
data(:,headers(i,1),headers(i,2),headers(i,3))=M(offset:offset+no_sampl
es-1); 
    offset=offset+no_samples; 
end 
clear M; 
M=data; 
  
 
data=zeros(size(M)); 
for i = 1:no_samples 
   temp = reshape(M(i,:,:,:),nx,ny,nz)  ;            %(s , v , v_2) 
   temp = transpose3D_3(temp);                  %(v2, s, v) 
  % disp(temp); 
   temp = times3D(inv(SI),temp);   %(v2 , s , v) 
   temp = transpose3D_2(temp);          %(v,s,v2)    
  % disp(temp); 
   temp = times3D(inv(VI),temp);                  %(v , s , v_2) 
   temp = transpose3D(temp);            %(s,v,v2) 
  % disp(temp); 
   temp = times3D(inv(V2I),temp);                 %(s , v , v_2) 
   temp = transpose3D_2(temp); 
  % disp(temp); 
    
  % this is an error 
   data(i,:,:,:) = temp; 
end 
  
  
fdata=zeros(size(data)); 
data2rda=zeros(size(data)); 
cnt=0; 
for k=1:nz 
    figure; 
hold on; 
    for j=1:ny 
        for i=1:nx 
            cnt=mod(cnt+1,nx*ny); 
            if(cnt==0) 
                cnt=nx*ny; 
            end 
            
            fdata(:,i,j,k)=fftshift(fft((data(:,i,j,k)))); 
            data2rda(:,i,j,k)=conj(data(:,i,j,k))*10000; 
            h=subplot(ny,nx,cnt); 
            hold on; 
            y=fdata(320:480,i,j,k); 
  



            plot(real(y*1000)); 
                 hold on 
              plot(imag(y*1000),'r'); 
      
  
set(gca,'YLim',[-0.5 0.5]*1.5); axis('off'); 
        end 
    end 
end 
 
 
 
 
function wavelet=WLCons(intensity) 
dilation=log2(intensity); 
wavelet=zeros(intensity,intensity); 
scale=intensity; 
translation=0; 
rowdone=1; 
wavelet(1,:)=ones(1,intensity); 
for i=2:1:intensity 
    k=log2(intensity/scale); 
    for j=1:1:intensity 
        if(translation<j &j<=translation+scale/2) 
            wavelet(i,j)=1; 
        end 
        if( translation+scale/2<j&j<=translation+scale) 
            wavelet(i,j)=-1; 
        end 
        if(j==translation+scale) 
            translation=translation+scale; 
           reak;  b
        end 
    end 
     
    if(i==rowdone+intensity/scale) 
        scale=scale/2; 
        translation=0; 
        rowdone=i; 
    end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



function A = transpose3D(M) 
% switches the second and first elements. 
  
for i = 1:size(M,3) 
    for j=1:size(M,2) 
        for k=1:size(M,1) 
           A(j,k,i) = M(k,j,i); 
        end 
    end 
end 
 
function A = transpose3D_2(M) 
% switches the first and third elements 
  
for j = 1:size(M,2) 
    for i=1:size(M,3) 
        for k=1:size(M,1) 
           A(i,j,k) = M(k,j,i); 
        end 
    end 
end 
function A = transpose3D_3(M) 
% switches the third and second values 
  
for j = 1:size(M,1) 
    for i=1:size(M,2) 
        for k=1:size(M,3) 
           A(j,k,i) = M(j,i,k); 
       nd  e
    end 
end 
 
function A = times3D(M,N) 
% multiplies together 2 3D matrices. 
  
for i = 1:size(N,3) 
    for j=1:size(N,2) 
    A(:,j,i) = M * N(:,j,i); 
    end 
     
end 
 
function b=getHeader2(nx,ny,nz) 
  
% nx=8; 
% ny=8; 
% nz=4; 
  
a=zeros(1,32*32*32); 
b=zeros(nx*ny*nz,3); 
  
cnt=0; 
for i=0:nx*ny*nz-1 
            m=find( a(1:nx*ny*nz)==0); 



             
            if(numel(m)==0) 
                break; 
            end 
                 
            i=m(1)-1;     
            xii=mod(i,nx)+1; 
            xjj=mod(floor(i/nx),ny)+1; 
            xkk=floor(i/nx/ny)+1; 
         %   a(ii,jj,kk)=1; 
             
            scale_x=ceil(log2(xii)); 
            scale_y=ceil(log2(xjj)); 
            scale_z=ceil(log2(xkk)); 
            scales=[scale_x scale_y scale_z]; 
            for i=1:3 
               if(scales(i)<1) 
                   scales(i)=1; 
               end 
            end 
            scales=2.^(scales-1); 
            scale_x=scales(1); 
            scale_y=scales(2); 
            scale_z=scales(3); 
            [Y,who_is_90]=max(scales); 
   
            if(who_is_90==1) 
                if(scale_y>=scale_z) 
                    myflag=1; 
                    scale_1=scale_x; 
                    scale_2=scale_y; 
                    scale_3=scale_z; 
                    ii=xii; 
                    jj=xjj; 
                    kk=xkk; 
                else 
                    myflag=2; 
                    scale_1=scale_x; 
                    scale_2=scale_z; 
                    scale_3=scale_y; 
                    ii=xii; 
                    jj=xkk; 
                    kk=xjj; 
               nd  e
            end 
            if(who_is_90==2) 
                if(scale_x>=scale_z) 
                    myflag=3; 
                    scale_1=scale_y; 
                    scale_2=scale_x; 
                    scale_3=scale_z; 
                    ii=xjj; 
                    jj=xii; 
                    kk=xkk; 
                else 
                    myflag=4; 



                    scale_1=scale_y; 
                    scale_2=scale_z; 
                    scale_3=scale_x; 
                    ii=xjj; 
                    jj=xkk; 
                    kk=xii; 
                end 
            end 
            if(who_is_90==3) 
                if(scale_x>=scale_y) 
                    myflag=5; 
                    scale_1=scale_z; 
                    scale_2=scale_x; 
                    scale_3=scale_y; 
                    ii=xkk; 
                    jj=xii; 
                    kk=xjj; 
                else 
                    myflag=6; 
                    scale_1=scale_z; 
                    scale_2=scale_y; 
                    scale_3=scale_x; 
                    ii=xkk; 
                    jj=xjj; 
                    kk=xii; 
               nd  e
            end 
              
            [xii xjj xkk] 
   
            for j=0:Y-1 
                cnt=cnt+1; 
                     
        
        
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5   
                     
                    if(scale_1>1) 
                        p=mod(ii+j,scale_1); 
                        if p==0 
                            p=scale_1; 
                        end 
  
                        p=p+scale_1; 
    
                    else 
                        p=ii; 
                    end 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                    
                    if(scale_3>1)    
                        q=mod(jj+j,scale_3); 
                        if(q==0) 
                            q=scale_3; 
                        end 
    %                    q=q+floor(j/scale_3)*scale_3; 



                        q=mod(q,scale_2); 
                        if(q==0) 
                            q=scale_2; 
                        end 
%                        mod(jj+j,scale_3  )
%                        floor(j/scale_3) 
%                        scale_3 
                        q=q+scale_2; 
                    
                    else 
                        q=jj; 
                    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                 
                    if(scale_3>1) 
                        r= mod(kk+j,scale_3); 
                        if(r==0) 
                            r=scale_3; 
                        end 
                    
                        r=r+scale_3; 
                 
                    else 
                        r=kk; 
                    end 
                     
                    if(myflag==2) 
                        temp=q; 
                        q=r; 
                        r=temp 
                    end 
                    if(myflag==3) 
                        temp=p; 
                        p=q; 
                        q=temp; 
                    end 
                    if(myflag==4) 
                        temp=p; 
                        p=r; 
                        r=q; 
                        q=temp; 
                    end 
                    if(myflag==5) 
                        temp=p; 
                        p=q; 
                        q=r; 
                        r=temp; 
                    end 
                    if(myflag==6) 
                        temp=p; 
                        p=r; 
                        r=temp; 
                    end 
                     
                         
                 %   p+(q-1)*nx+(r-1)*nx*ny 
                 if(a(p+(q-1)*nx+(r-1)*nx*ny)==1) 



                    if(myflag==1) 
                        q=q+scale_3; 
                    end 
                    if(myflag==2) 
                        r=r+scale_3; 
                    end 
                    if(myflag==3) 
                        p=p+scale_3; 
                    end 
                    if(myflag==4) 
                        r=r+scale_3; 
                    end 
                    if(myflag==5) 
                        p=p+scale_3; 
                    end 
                    if(myflag==6) 
                        q=q+scale_3 
                    end 
                 end 
                      
                    a(p+(q-1)*nx+(r-1)*nx*ny)=1; 
  
                    b(cnt,1)=p; 
                    b(cnt,2)=q; 
                    b(cnt,3)=r; 
%                     if(who_is_90==1) 
%                          
%                         b(:,(q-Y-1)*(ny/Y)+1:(q-Y)*(ny/Y),:) 
                     
                end            
end 
             
             
             
 
 



Appendix C Code for Online Analysis 
 
% 
clc; 
[filename , pathname ] = uigetfile('*.spectro', 'Select an RDA file') 
nx=8; 
ny=1; 
nz=1; 
output_filename=[pathname, filename]; 
outfile=fopen(output_filename,'w'); 
 % for m=1:2 
  for k=1:nz 
  for j=1:ny     
  for i=1:nx 
 for n=1:1024 
 fwrite(outfile,real(data2rda(n,i,j,k))*1,'float32','ieee-le'); 
 fwrite(outfile,imag(data2rda(n,i,j,k))*1,'float32','ieee-le'); 
  end 
  end 
  end 
  end 
%  end 
  
fclose all; 
 



Appendix D  Code for LCModel Analysis 
 
 
 
% 
% Read spectroscopy data from Siemens machine 
% 
% Read a .rda file 
% 
% 
clc; 
[filename , pathname ] = uigetfile('*.rda', 'Select an RDA file') 
rda_filename = [pathname , filename]; %'c:/data/spectroscopy/spec raw 
data/MrSpec.20020531.160701.rda' 
  
fid = fopen(rda_filename); 
myfilename=sprintf('modified_%s',filename); 
output_filename=[pathname, myfilename]; 
outfile=fopen(output_filename,'w'); 
  
head_start_text = '>>> Begin of header <<<'; 
head_end_text   = '>>> End of header <<<'; 
  
tline = fgets(fid) 
fwrite(outfile,tline); 
while (isempty(strfind(tline , head_end_text))) 
     
    tline = fgets(fid) 
    fwrite(outfile,tline); 
    if ( isempty(strfind (tline , head_start_text)) + isempty(strfind 
(tline , head_end_text )) == 2) 
         
         
        % Store this data in the appropriate format 
         
        occurence_of_colon = findstr(':',tline); 
        variable = tline(1:occurence_of_colon-1) ; 
        value    = tline(occurence_of_colon+1 : length(tline)) ; 
         
        switch variable 
        case { 'PatientID' , 'PatientName' , 'StudyDescription' , 
'PatientBirthDate' , 'StudyDate' , 'StudyTime' , 'PatientAge' , 
'SeriesDate' , ... 
                    'SeriesTime' , 'SeriesDescription' , 'ProtocolName' 
, 'PatientPosition' , 'ModelName' , 'StationName' , 'InstitutionName' , 
... 
                    'DeviceSerialNumber', 'InstanceDate' , 
'InstanceTime' , 'InstanceComments' , 'SequenceName' , 
'SequenceDescription' , 'Nucleus' ,... 
                    'TransmitCoil' } 
            eval(['rda.' , variable , ' = value ']); 
        case { 'PatientSex' } 
            % Sex converter! (int to M,F,U) 
            switch alue  v
            case 0 



                rda.sex = 'Unknown'; 
            case 1 
                rda.sex = 'Male'; 
            case 2 
                 
                rda.sex = 'Female'; 
            end 
             
        case {  'SeriesNumber' , 'InstanceNumber' , 'AcquisitionNumber' 
, 'NumOfPhaseEncodingSteps' , 'NumberOfRows' , 'NumberOfColumns' , 
'VectorSize' } 
            %Integers 
            eval(['rda.' , variable , ' = str2num(value) ']); 
        case { 'PatientWeight' , 'TR' , 'TE' , 'TM' , 'DwellTime' , 
'NumberOfAverages' , 'MRFrequency' , 'MagneticFieldStrength' , 
'FlipAngle' , ... 
                     'SliceThickness' ,  'FoVHeight' , 'FoVWidth' , 
'PercentOfRectFoV' , 'PixelSpacingRow' , 'PixelSpacingCol'} 
            %Floats  
            eval(['rda.' , variable , ' = str2num(value) ']); 
        case {'SoftwareVersion[0]' } 
            rda.software_version = value; 
        case {'CSIMatrixSize[0]' } 
            rda.CSIMatrix_Size(1) = str2num(value);     
        case {'CSIMatrixSize[1]' } 
            rda.CSIMatrix_Size(2) = str2num(value);     
        case {'CSIMatrixSize[2]' } 
            rda.CSIMatrix_Size(3) = str2num(value);     
        case {'PositionVector[0]' } 
            rda.PositionVector(1) = str2num(value);     
        case {'PositionVector[1]' } 
            rda.PositionVector(2) = str2num(value);      
        case {'PositionVector[2]' } 
            rda.PositionVector(3) = str2num(value);     
        case {'RowVector[0]' } 
            rda.RowVector(1) = str2num(value);     
        case {'RowVector[1]' } 
            rda.RowVector(2) = str2num(value);        
        case {'RowVector[2]' } 
            rda.RowVector(3) = str2num(value);     
        case {'ColumnVector[0]' } 
            rda.ColumnVector(1) = str2num(value);      
        case {'ColumnVector[1]' } 
            rda.ColumnVector(2) = str2num(value);        
        case {'ColumnVector[2]' } 
            rda.ColumnVector(3) = str2num(value);     
             
        otherwise 
            % We don't know what this variable is.  Report this just to 
keep things clear 
            disp(['Unrecognised variable ' , variable ]); 
        end 
         
    else 
        % Don't bother storing this bit of the output 
    end 



     
end 
  
% 
% So now we should have got to the point after the header text 
%  
% Siemens documentation suggests that the data should be in a double 
complex format (8bytes for real, and 8 for imaginary?) 
% 
  
bytes_per_point = 16; 
complex_data = fread(fid , rda.CSIMatrix_Size(1) * 
rda.CSIMatrix_Size(1) *rda.CSIMatrix_Size(1) *rda.VectorSize * 2 , 
'double');   
  
%fread(fid , 1, 'double');  %This was a check to confirm that we had 
read all the data (it passed!) 
  
fclose(fid); 
  
% Now convert this data into something meaningful 
  
 %Reshape so that we can get the real and imaginary separated 
 hmm = reshape(complex_data,  2 , rda.VectorSize , 
rda.CSIMatrix_Size(1) ,  rda.CSIMatrix_Size(2) ,  rda.CSIMatrix_Size(3) 
); 
  
 %Combine the real and imaginary into the complex matrix 
 hmm_complex = complex(hmm(1,:,:,:,:),hmm(2,:,:,:,:)); 
  
 %Remove the redundant first element in the array 
 Time_domain_data = reshape(hmm_complex, rda.VectorSize , 
rda.CSIMatrix_Size(1) ,  rda.CSIMatrix_Size(2) ,  
rda.CSIMatrix_Size(3)); 
  
  
  
%  for k=1:rda.CSIMatrix_Size(3) 
%      for j=1: rda.CSIMatrix_Size(2)  
%          for i=1:rda.CSIMatrix_Size(1)   
%              fdata(:,i,j,k)=fftshift(fft(conj( 
Time_domain_data(:,i,j,k)))); 
%          end 
%      end 
%  end 
%   
  
 %riplot(Time_domain_data(:,1,1,1)) 
 %% insert the time domain data here 
  for l=1:4 
  for n=1:4  
  for j=1:4 
 for k=1:1024 
 fwrite(outfile,real(data2rda(k,j,n,1)),'double'); 



 fwrite(outfile,imag(data2rda(k,j,n,1)),'double'); 
 end 
  end 
  end 
  end 
  
fclose all; 
 


	by
	Master of Science

