

Implementation of Wavelet Encoding Spectroscopic

Imaging Technique on a 3 Tesla Whole Body MR Scanner

by

Yao Fu

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2010 by Yao Fu

I hereby declare that I am the sole author of this thesis.

Abstract

 Magnetic Resonance Imaging (MRI) uses a magnetic field and low energy radio

waves to visualize the internal structure and function of the body. This is one of the most

popular technologies currently used for diagnostic imaging. Magnetic Resonance

Spectroscopy Imaging (MRSI), complementing MRI, provides a chemical map of the

scanned region by providing spatial information about tissue metabolite concentrations.

MRSI is being used for early diagnostics to differentiate diseased tissue from normal

tissue. However, obtaining metabolic maps with high spatial resolution requires long

acquisition times where the patient has to lie still inside the magnet bore (scanner)

especially if classical Chemical Shift Imaging (CSI) is used. The need for acquisition

time reduction is encountered in many practical applications. In this dissertation, a 3D

wavelet based encoding spectroscopic method (WE-SI) is investigated and implemented

on a 3 Tesla Siemens Scanner. Compared to CSI, the proposed method is able to reduce

acquisition time, and preserves the spatial metabolite distribution. As expected, a

decrease in Signal to Noise Ratio (SNR) is noticed in WE-SI data compared to CSI. The

dissertation explores important physical principles in MRI and spectroscopic imaging as a

background, following by introduction of the wavelet encoding theory and comparison to

Fourier encoding. In chapter 3, the implementation of WE-SI on a 3T scanner is detailed.

In-vitro and in-vivo results are displayed and discussed in chapter 4, followed by

conclusion.

Acknowledgements

I would like to thank my co-supervisors: Dr. Hacene Serrai, Dr. Gabriel Thomas and Dr.

Reza Fazel for their guidance, support and encouragement throughout the course of my

studies and preparing this thesis.

I also would like to thank Dr. Arkady Major and Dr. Krisztina Malisza for serving on my

examining committee, carefully reading my thesis and providing me with helpful

feedback and suggestions.

I would like to acknowledge the financial support from my co-supervisor Dr. Hacene

Serrai (NSERC-Discovery Grant) and Conference expense support from Department of

Electrical and Computer Engineering, University of Manitoba. All support is gratefully

acknowledged and appreciated.

Many thanks go to the stuff at National Research Council, Institute for Biodiagnostics.

They are very patient and helpful, in particular to Omkar Ijare, Patricia Gervai and Ernie

Packulak.

Contents

Chapter 1 Introduction to Magnetic Resonance Imaging and Spectroscopic

Imaging
1.1 Proton Spins with the Magnetic Field .. 1
1.2 Laboratory Frames and Rotating Frames... 2
1.3 Magnetization, Relaxation and the Bloch Equation.. 3
1.4 RF Pulses... 5
1.5 Signal Detection ... 8
1.6 Fourier Imaging and Acquisition Method ... 9
1.7 MR Spectroscopy ... 10
1.8 Chemical Shift Imaging (CSI) .. 11
1.9 Problems with CSI ... 12
1.10 Other MR Spectroscopic Imaging Techniques .. 18

Chapter 2 Theory
2.1 Haar Wavelet and Its Implementation on MR Scanner 22
2.2 Pulse Sequence Design.. 24
2.3 Time Saving in Wavelet Encoding .. 29
2.4 The Order of Acquisitions .. 33
2.5 Signal to Noise Ratio in Wavelet Encoding ... 36
2.6 Problems with WESI ... 37

Chapter 3 Material and Method
3.1 Hardware Environment.. 38
3.2 Programming Environment ... 39
3.3 Manual of Operation for WESI Sequence .. 40
3.4 RF Pulse Parameters.. 43
3.5 Phantom and Acquisition Parameters.. 45
3.6 In-vivo Tests ... 46
3.7 Raw Data Gathering.. 47
3.8 Data Analysis Method .. 48

Chapter 4 Result and Discussion
4.1 Phantom Results .. 51
4.2 In-vivo Results ... 59

Chapter 5 Conclusion
 .. 63

Appendices
Appendix A ..Source Code for WESI Sequence (IDEA)

 i

Table of Contents

 ii

Appendix B ... WESI Reconstruction Code (Matlab)
Appendix C.. Code for On-line Analysis (Matlab)
Appendix D ..Code for LCModel Analysis (Matlab)

Chapter 1

Introduction to

Magnetic Resonance Imaging and

Spectroscopic Imaging

Magnetic resonance imaging (MRI) is an imaging technique that has been widely

used for diagnosis, characterization, and treatment planning and assessment [1-4]. It is a

noninvasive method and has the ability to image a wide variety of soft tissues, making it

possible for application to most portions of the population. Magnetic resonance

spectroscopic imaging (MRSI) is being increasingly used in situations where MR

imaging cannot give a definite diagnosis. MRSI may provide early prognostic

information, aid in understanding brain development and metabolism; differentiate

between diseased and normal tissue, improve treatment, and reduce risk to the patient.

The acquisition of metabolic information from multiple imaged regions often involves

long acquisition times, particularly when using classical Chemical Shift Imaging (CSI)

[5-7]. At the same time, patients must lie still during the exam to avoid motion artifacts,

which is difficult with a long acquisition period.

To reduce acquisition time, several Fourier based approaches using modified high

speed imaging sequences have been proposed. Techniques such as Echo Planar Imaging

(EPI) [8] and spiral imaging [9] provide metabolite information from different brain

regions with high spatial resolution. They are generally limited to two spatial dimensions

 1

and have reduced metabolite spectral resolution. Recently, a non-Fourier encoding MRSI

technique based upon wavelet encoding-spectroscopic imaging (WE-SI) was proposed to

reduce acquisition time [10-11]. WE-SI utilizes selective radio-frequency (RF) pulses

with profiles resembling the shape of wavelets, to sequentially excite a set of

predetermined regions of the brain (sub-spaces) of different sizes and locations without

the need for full recovery time (TR), necessary for spin relaxation, between excitations.

In-vivo results on a 1.5T whole body scanner show that WE-SI provides data with high

spectral resolution in multiple dimensions and reduces acquisition time relative to CSI.

The increment in magnetic field sensitivity is important as it provides higher

signal sensitivity. However, field inhomogeneity increases with higher field strength,

which is quite challenging especially for the wavelet encoding technique because the

encoding is based on amplitude modulation. To prove the feasibility of WE-SI at a

higher field strength and comparing with previously developed 1.5 T WE-SI technique,

we implemented WE-SI on a 3 tesla clinical scanner equipped with 32 receive channels.

Our goal was to improve data sensitivity and increase the potential of WE-SI by

completing its implementation at a higher magnetic field. The fact that the work in this

dissertation is accomplished at a completely different platform with higher field strength,

requires development of new radio frequency (RF) pulses and the related pulse sequence.

Further more, a new ordering algorithm was also developed to automatically select

acquisition order for a minimum total acquisition time, and as a result the corresponding

reconstruction code was freshly written as well.

Over the years, MRI engineers put considerable efforts into improving hardware,

software, and acquisition technologies to increase signal quality and speed up the

 2

acquisition. MRI uses a strong magnetic field to force the nuclear magnetization of

hydrogen protons (mostly) to align to the direction of the magnetic field. Radio

frequency pulses are used to tip the spins into transverse plane for the scanner to pick up

a signal. Depending on the different densities of protons and relaxation parameters of

different tissues, different image intensities are obtained, hence an image can be formed.

1.1 Proton Spins with the Magnetic Field

Fig. 1.1 Proton spinning at equilibrium state.

Under an external magnetic field, B0, protons spin about the field direction. The

precession angular frequency for the proton magnetic moment vector is given by

 00 Bγω = (1.1)

where γ is the gyromagnetic ratio (or magnetogyric ratio) and is tissue related [12]. In

water, the hydrogen proton has a γ value around 2.68×108 rad/s/tesla. At a field of 3

tesla, spins processes at radiofrequency of 123.3MHz. This is the Larmor Frequency and

equation 1.1 is called the Larmor equation.

As shown in Fig. 1.1, in the equilibrium state the positive charge on the proton interacts

with the magnetic field and produces a torque,

BMN ×= (1.2)

 3

where M is the magnetic dipole moment or magnetic moment. The bar symbol

represents a vector.

This torque causes protons to rotate about the direction of B0 with angular momentum J .

N
dt
Jd
= (1.3)

The direct relationship between the magnetic moment and the spin angular momentum

vector is found by experiment:

JM ⋅= γ (1.4)

1.2 Laboratory Frames and Rotating Frames

The laboratory reference frame is a fixed frame which is represented by unprimed x, y

and z. It describes the physical dimension of the subject, eg, left-right, head-foot, and

anterior-posterior directions.

Another frame (denoted by x’, y’ and z’) is rotating about an arbitrary axis with respect to

the fixed frame because of the existence of a magnetic field. In this frame, the rotating

vector B1, known as the radio frequency (RF) field, appears to be stationary.

1.3 Magnetization, Relaxation and the Bloch Equation

From equation 1.2, 1.3 and 1.4, the following differential equation can be derived:

BM
dt
Md

×⋅= γ (1.5)

which is called the “fundamental equation of motion”. It is most advantageous to analyze

the magnetization and its differential equation in terms of parallel and perpendicular

 4

(with respect to the B0 field) components defined relative to the static main magnet field.

Let Bext = B0 z , then

zMM =|| (1.6)

yMxMM x=⊥ y+ (1.7)

0=
dt

dM z (1.8)

extz BM
dt

dM
×=⊥ γ (1.9)

The above equations are derived for the equilibrium state, in which case, the protons are

not interacting with each other. However, with interacting protons, the protons try to

align with the external field through the exchange of energy with the surroundings to

achieve the minimum potential energy with magnetization M0 [20]. The overall trajectory

of the tip of the net magnetization vector is shown in Fig. 1.2.

Fig. 1.2 The trajectory of the tip of net magnetization

In the transverse plane, ⊥M is maximum when spins are tipped into the transverse plane

(x,y plane). A loss of energy to the surrounding nuclei causes the return of the excited

nuclei from the high energy to the low energy states. This return is an exponential

process characterized by:

 5

)(1
0

1
z

z MM
Tdt

dM
−= (1.10)

where T1 is the experimental 'spin-lattice relaxation time', and is different from tissue to

tissue.

Solving 1.10, we have,

)1()0()(1/
0

1 TtT
t

zz eMeMtM −− −+= (1.11)

A loss in transverse magnetization is due to spins in the high and low energy states

exchanging energy, but without losing energy to the surrounding lattice. The rate of

change is characterized by:

⊥⊥
⊥ −×= M

T
BM

dt
Md

ext
2

1γ (1.12)

T2 is shorter than T1 because of the dephasing effect. Combining differential equations in

both the longitudinal direction and transverse plane into one vector equation, we obtain

the so called Bloch equation12,

⊥−−+×= M
T

zMM
T

BM
dt
Md

zext
2

0
1

1)(1γ (1.13)

The complete solution is therefore,

)sin)0(cos)0(()(00
/ 2 tMtMetM yx
Tt

x ωω += − (1.14)

)sin)0(cos)0(()(00
/ 2 tMtMetM xy
Tt

y ωω −= − (1.15)

)1()(11 /
0

/ TtTt
zz eMeMtM −− −+= (1.16)

 6

1.4 Radio Frequency (RF) Pulses

A B1 field applied on-resonance for a finite time is called an ‘RF pulse’ [12]. By adding

an RF field B1 which is at rest in the rotating frame and parallel to x' to the static field, we

are able to tip M from its equilibrium position. The total external field is

xBzBBext ′+= 10 (1.17)

Suppose spins are rotating with frequency ω in the laboratory frame, the rotating spins

will generate a magnetic field γω /− . Therefore, the effective field in the rotating frame

is:

')(10 xBzBBeff +−=
γ
ω (1.18)

For most cases, the RF pulse duration is much smaller than the decay of T1 and T2.

Therefore, spin relaxation with short RF in the rotating frame is similar to the static field

described above:

)sin)0(cos)0((''
/

'
2 tMtMeM yx

Tt
x ωω Δ+Δ= − (1.19)

)sin)0(cos)0((''
/

'
2 tMtMeM xy

Tt
y ωω Δ−Δ= − (1.20)

)1()0(11 /
0

/ TtTt
zz eMeMM −− −+= (1.21)

with Δω representing possible deviations from ideal conditions due to static field

impurities or variations in the applied RF frequencies.

During the short time (τ) of B1, we can assume a close to on-resonant condition. Under

this assumption, Δω is much smaller than ω1 and can be ignored. Therefore, spins are

seen only experiencing precession around the x axis with angular frequency ω1.

Therefore, the flip angle induced by the RF field is given by:

 7

τγτωθ 11 B==Δ (1.22)

1.5 Signal Detection

MR signals are detected by coils according to Faraday's law of electromagnetic induction.

A single magnetic moment is analogous to a bar magnet rotating about the z direction.

As the magnetic moment rotates, the flux change is picked up by the nearby coils. An

electromagnetic force (emf) is generated:

dt
demf φ

−= (1.23)

where

∫=
coilarea

sdBφ (1.24)

The emf induced in the MRI coil is expressed as:

∫ ⋅−=−=
samples

receive
M rBtrMrd

dt
dt

dt
demf)(),()(3φ (1.25)

where)(tMφ is the flux,)(rB receive is the coil field sensitivity.

The signal detected by a coil is proportional to the induced emf and expressed as:

∫ ⊥⊥∝)(),()(*3
0 rBtrrMdts ω (1.26)

If we assume the transmit and receive coils produce homogenous fields over the image

volume, we have,

∫⊥∝ BietrrdBts θρω),()(3
0 (1.27)

 8

1.6 Fourier Imaging and Acquisition Method

If we reduce equation 1.27 to a one dimensional case and assume that the transmit coil

produces a homogenous field over the image volume, we can write:

∫=),()()(tzi Gezdzts φρ (1.28)

Notice that 1.28 is in the form of the Fourier transform if,

zttzG πφ 2),(−= (1.29)

This equation together with equation 1.24 over a fixed coil area introduce the need for a

linearly varying field added to the static field,

)(),(0 tzGBtzBz += (1.30)

Equation 1.30 introduces another very important component in MR, namely G, called

gradient strength. It provides a linear variation added to the homogenous magnetic field

B0. The gradients associated the phase term in equation 1.28 with three dimensional

position, which converted equation 1.28 into Fourier transform form. The acquired

signals are in the Fourier domain, which is called the K space. Low frequency

components are located in the center of this K space, and high frequency components are

at the edges.

The extension of one-dimensional imaging to all three dimensions can be written as:

 (1.31) ∫∫∫ ++−=)(2),,(),,(zkykxki
zyx

zyxezyxdxdydzkkks πρ

 9

1.7 MR Spectroscopy

MR spectroscopy provides an encoding of measurable contributions from different

metabolites including water, fat, choline, creatine, n-acetyl aspartate and lactate by

identifying certain molecular constituents. It is a technique to provide spatial metabolite

information.

Protons in different molecules experience a different magnetic shielding effect due to

their chemical environments [12]. The Larmor frequency for specific metabolite:

 0Bw ioi γ= (1.32)

where iγ is called gyro-magnetic ratio and is constant for each isotope. If we use a

broadband transmit RF pulse to excite wide range of frequencies, we would obtain a time

signal containing information about the set of all nuclei in the sample. The Free Induction

Decay (FID) is a signal in time domain collected by the receiver coil [12]. Normally a

Fast Fourier Transform (FFT) is used to convert FID into a spectrum to analyze

metabolic peaks.

The small and measurable frequency shift from the Larmor frequency due to magnetic

shielding by local environment is called ‘chemical shift’ [12].

0)1()(BjB jshifted σ−= (1.33)

 10

The chemical shift spectrum is expressed as the fractional shift in parts-per-million (ppm)

of the NMR frequency relative to an arbitrary reference compound. Table 1.1 shows

common observable proton metabolites with ppm values is given as:

TABLE 1.1

OBSERVABLE PROTON METABOLITES

ppm Metaboite Properties
0.9-1.4 Lipids Products of brain destruction

1.3 Lactate Product of anaerobic glycolysis
 2.0 NAA Neuronal marker
2.2-2.4 Glutamine/GABA Neurotransmitters
 3.0 Creatine Energy metabolism

3.2 Choline Cell membrane marker
3.5 myo-inositol Glial cell marker, osmolyte hormone receptor mechanisms

1.8 Chemical Shift Imaging (CSI)

Chemical shift imaging (CSI) is a sequence used to record the spectroscopic data for a

group of voxels in two or three dimensions. It uses phase information to encode the

position by the Fourier encoding technique [5, 7]. A set of FIDs are collected at every k

space point. The sequence for three dimensional CSI is shown in Fig. 1.3. Phase

encoding is introduced to cover the k-space by varying the gradient amplitudes according

to equation 1.31 .

 11

Fig. 1.3 CSI sequence

1.9 CSI Limits

We can only collect finite discrete points in K space in Fourier Imaging. This implies two

potential problems common with Fourier Imaging: (1) Aliasing caused by under

sampling, and (2) windowing effects because of finite sampling.

1.9.1 Aliasing

 12

Because the K space data is discrete, when converting the K space data to the spatial

domain by Fourier transformation, the result is spatial periodic with period L as shown in

Fig. 1.4. If L is smaller than the field of view (FOV) A, aliasing occurs and the resultant

image wraps around along the under sampled direction (Fig. 1.5). This is also called the

folding effect. According to the Nyquist sampling criterion [13], the sampling frequency

has to be at least twice the highest frequency：

AAL =×≥
2

2 (1.34)

This means the sampling step in k space must be:

AL
k 11

≤=Δ (1.35)

Fig. 1.4 An object with FOV A with period L due to discrete sampling. [12]

 13

Fig. 1.5 Effect of aliasing on a MR phantom image.

(1) Suppose we have a boxcar gradient Gf applied on the readout direction, then Δk is

defined as:

AL

tGk f
11

≤=Δ=Δ γ (1.36)

Therefore the acquisition bandwidth has to be:

AG
t

fBW fγ>
Δ

=≡
1 (1.37)

(2) Suppose we have a boxcar gradient Gp applied on the phase encoding direction, then

Δk is defined as:

 ppGk τγ=Δ (1.38)

where τp is the duration of Gp. From equation 1.35 and 1.38 we have the requirement

for phase encoding direction:

 14

AGp

p γ
τ 1

< (1.39)

Situation 2 is responsible for CSI aliasing problems as CSI employs phase encoding in all

three Cartesian dimensions. In Seimens’ implementation, the smallest gradient strength is

calculated by the equality case of equation 1.36:

p
step A

G
τγ
1

= (1.40)

This ensures that the aliasing problem is avoided if Gstep is within the hardware limitation

with the desired FOV and resolution. If we assume the center of the FOV is placed at the

isocenter of the scanner, so there is no frequency shift for all CSI acquisition steps, and

assume that the k space data is uniformly distributed, then the maximum gradient strength

required for Fourier encoding is calculated as:

allowedstep GGnG max_max 2
≤= (1.41)

Where n is the desired resolution, and

Gmax_allowed is the maximum capable gradient that is defined by hardware. If Gmax exceeds

Gmax_allowed, the gradient step is forced to drop, and aliasing occurs.

In the Siemens’ 3T system, the Larmor constant γ is 42.5756 MHz/T, and the maximum

capable gradient is 11.547mT/m. Gradient duration is defined as 2800 µs. Therefore

equation 1.40 and equation 1.41 require that:

7531.2
10

28005756.42547.112
6 =

×××
≥

A
n (1.42)

 15

From equation 1.42 we can see that low resolution with large FOV would likely cause

aliasing problems. In cases of aliasing, intuitively we would see metabolite

contaminations across the FOV boundary.

A longer gradient duration will delay the echo, yielding a lower signal to noise ratio. A

higher capable maximum gradient requires extensive hardware modification.

1.9.2 Windowing Effect

The K space data we collect from the scanner has finite length, which can be

mathematically modeled by multiplying the sampled data by a rect function [13]. Then,

when we convert it to the spatial domain, this is equivalent to a convolution of the

original data with a sinc function. All images include this effect, but a wide rect function

gives a narrower sinc function, and therefore can provide negligible bluring. For the

same reason, there is a lower limit for spatial resolution.

 16

Fig. 1.6 Windowing effect on MR data.

As
AFOV

k 11
==Δ , suppose resolution is n, then the rectangle function in K space has a

length
A

n
2

. The corresponding sinc function in the spatial domain has a main lobe with

width equal to
n

A
2

. As shown in Fig. 1.6, it is clear that no matter how large the

resolution is, the main lobe of the sinc function will exceed the local region defined by a

pixel. The contamination caused by the main lobe will only affect the pixels right next to

it. The existence of side lobes will produce positive or negative contaminations as well.

As the distance between two pixels becomes larger, the level of contamination decreases

rapidly.

 17

We can intuitively reduce contamination by increasing resolution. For instance from Fig.

1.6, if we keep the distance between two metabolites to be
n
A , but increase the resolution

to 2n, there will be very little contamination. This amount of contamination can be

ignored.

1.9.3 Imperfection RF Pulse Profiles

Finite sample points are used to represent the shape of RF pulses. Tails exist on both

sides beyond the desired bandwidth. Therefore, substances outside the FOV excited by

those tails will be folded into the boundary of the other side. To overcome this problem,

usually the FOV of a CSI sequence is set larger than the View Of Interest (VOI).

However, by using this method, if we want to keep the voxel size inside the VOI, we

need to acquire data at a higher resolution over the entire FOV. As a consequence,

acquisition time is increased.

1.9.4 Acquisition Time

CSI uses 3D Fourier phase encoding to encode spatial location. For every encoding step,

the whole VOI is excited. Therefore, recovery time (TR) is needed for spin relaxation.

To acquire a 3D spectroscopic image with resolution nx, ny and nz, the total acquisition

time is:

zyxtotal nnnTRT ×××= (1.43)

 18

1.10 Other MR Spectroscopic Imaging Techniques

Other spectroscopic imaging methods have been proposed to address some of the

problems associated with CSI. These methods include Hadamard spectroscopic imaging

(SI) [14] [15], high speed imaging techniques such as EPI and spiral [16], fast spin echo

(FSE) [17], Steady State Free Precession (SSFP) and echo-shift methods. For a variety of

reasons, each of these methods has only been partially successful in improving the

original Fourier-based MRSI technique in terms of overall qualitative and quantitative

results.

The Hadamard SI method uses RF pulse modulation in the presence of gradients and

manipulates the sign of the acquired MR signal according to the Hadamard matrix to

obtain spatial encoding. One major advantage of this approach is the ability to provide

metabolite images at low spatial resolution with less cross voxel contamination and high

spectral resolution. The technique requires high RF peak powers as the number of voxels

increases in order to maintain the low cross voxel contamination.

High speed imaging methods such as EPI [8], Line Scan Echo Planar SI (LSPEPSI)

[18] or spiral are very rapid and offer high spatial resolution. However, as they use the

readout gradients to collect both spatial and spectral points, they require complicated

reconstruction methods to differentiate between these dimensions. In addition, there is a

trade-off between spatial and spectral resolution. The point spread functions in the spatial

and spectral dimensions can lead to a spread of signal over both dimensions [19].

Furthermore, the SNR tends to decrease compared to the CSI method due to the use of

high receiver bandwidths [20].

 19

FSE imaging methods allow imaging of a single chemical species, such as

phosphocreatine (PCr), and have been employed to examine human muscle and brain

[21]-[23] opriate echo spacing between the refocusing RF pulses is introduced to dephase

unwanted spins while fulfilling the CPMG (Carr, Purcell, Meiboom and Gill) condition

for the desired spins allowing their signals to be observed. Unfortunately only a limited

number of species can be imaged using these methods, with signals that are within a

narrow frequency range and are thus difficult to separate.

Echo-shifting methods were introduced in an effort to reduce acquisition time and

increase spatial resolution [24]. By time shifting either the readout gradient or the RF

pulses, both the spectral dimension and one spatial dimension are encoded. Phase

encoding is then used in the remaining spatial dimension. In this case, spectral resolution

is sacrificed for shorter acquisition time [25].

 20

Chapter 2

Theory of WESI

As discussed in section 1.9, the CSI technique can provide metabolite images with

good SNR and high spectral and spatial resolution at the cost of long acquisition times

that result from two factors:

1) The spin-lattice time, T1 of the metabolites is long (1-2 seconds for proton and

4-6 seconds for phosphorus MR), requiring a long recovery time (TR) between phase

encoding steps to allow for T1 relaxation. For a 3D spectroscopic image with spatial

resolution nx, ny and nz, the total acquisition time is:

AveragesnnnT zyxtotal ×××= (2.1)

As an example, an 8 by 8 by 4 metabolite map with TR = 2 sec using CSI requires at least

9 minutes. To reduce acquisition time, several Fourier-based approaches have been

proposed. These Fourier based techniques provide metabolite information with high

spatial resolution but are limited in spectral resolution and spatial dimensions. Therefore,

obtaining a high spatial resolution metabolic map using CSI requires long acquisition

time where the patient has to lie still inside the magnet.

 2) A large number of phase encoding steps are required in each spatial dimension

to avoid image reconstruction artifacts such as pixel bleed. To utilize CSI clinically,

spatial resolution is often sacrificed and TR times that are short with respect to T1 are

used, increasing the difficulty of obtaining accurate metabolite concentrations. If the

FOV is large, a folding effect results in large contamination at all boundaries since all

 21

three CSI dimensions are phase encoded. If the resolution is low, pixel bleed decreases

the data accuracy.

Similar to Fourier encoding that uses acquired k-space data, wavelet encoding

uses signals acquired from predetermined sub-spaces to fill the wavelet domain (Fig.

2.1). By replacing the Fourier transform by the wavelet (Haar wavelet) transform, pixel

bleed and total acquisition time are reduced with some sacrifice in SNR.

Fig. 2.1 Data processing procedures

2.1 Haar Wavelet and Its Implementation on The MR Scanner

Using this orthogonal basis, the wavelet transform is defined as [26]:

∫= dxxfxkjF kj)()(),(,ϕ (2.2)

As with the Fourier transform, the Inverse wavelet transform can be obtained by [26]:

 (2.3) ∑= kj kj kjFxxf
, ,),()()(ϕ

The Haar wavelet we are using is defined by:

⎪
⎩

⎪
⎨

⎧
−=
0
1

1
)(, xkjϕ

if
if
if

otherwise

kxk

kxk

jj

jj

11

11

2/)1(2/)
2
1(

2/)
2
1(2/

−−

−−

+<≤+

+<<

 (2.4)

 22

For j=1,2,3,…log2N-1, k= 0, 1, …2j-1-1

and,

1)(, =xkjϕ (2.5)

for j=0

 It is clear that the Haar wavelet is a sequence of orthogonal functions that can be

used to approximate any continuous real function.

In wavelet encoding, a set of dilated and translated prototype functions called

wavelets are used to span a localized space by dividing it into a set of sub-spaces with

pre-determined sizes and locations. As shown in equation 2.2, the wavelet transform is a

collection of inner products between the original function and the Haar basis. In

spectroscopic imaging, this process is achieved using RF pulses with profiles resembling

the wavelet shapes [10, 11]. Slice selective excitation and refocusing RF pulses, with

single and dual band profiles similar to Haar wavelets, are used in the modified point

resolved sequence (PRESS) [27] to acquire three dimensional (3D) wavelet encoding

spectroscopic imaging (WE-SI) data. The magnitude of both single and dual RF pulses

are set at unity (equation 2.2). The desired spatial resolution in each direction sets the

corresponding number of dilations (increases in the localization gradients), and

consequently the number of translations (frequency shift) of the Haar wavelets (RF

pulses), which are used to collect MR signals from the corresponding sub-spaces [10]

[11].

The bandwidths of all RF pulses are set to a fixed value, BWrf. The dilatation of

the Haar wavelet is implemented by changing the gradient strength.

 23

12 −⋅
= j

x

rf
j G

BW
x (2.6)

L
BW

G rf
x = (2.7)

Where L is the FOV along x, Gx is the gradient strength needed when the whole FOV is

excited.

The translation of the Haar Wavelet is implemented by shifting the center

frequency of the RF pulse. When j=0 or 1, the Haar wavelet is centered at the middle of

the FOV; otherwise, it is shifted. For encoding steps with the same dilation value j but

different translations (k and k+1), a frequency shift with the same value of RF bandwidth

is required.

We can simply extend equation 2.2 and 2.3 into three orthogonal spatial

dimensions:

dxdydzzyxfzyxkkkjjjF kjkjkj),,()()()(),,,,,(
332211 ,,,321321 ϕϕϕ∫∫∫= (2.8)

∑= kj kjkjkj kkkjjjFzyxzyxf
, 3213213,32,21,1),,,,,()()()(),,(ϕϕϕ (2.9)

2.2 Pulse Sequence Design

As previously mentioned, a WE-SI sequence is generated from a PRESS sequence

using RF pulses with profiles resembling Haar functions (single or dual boxcar shape).

 24

One excitation (90º) RF pulses and two refocusing (180º) RF pulses are applied together

with three slice selective gradients. RF pulses also can be seen as band filters, which can

flip spins about the precession direction if they are rotating within the selective frequency

range. By selecting the axis of precession and RF duration, different flip angles (eg. 90º

and 180º in our application) can be obtained. Equation 1.31 shows that protons spin at

linearly varying frequencies with the presence of gradients. Therefore, the required

bandwidth of the RF pulses is:

zGfBW sΔ=Δ≡ γ (2.10)

According to the wavelet transform, a single RF pulse is only applied when j=0,

otherwise a dual RF pulse is applied. An internal loop is added in order to accomplish

the dilation and translation for individual encoding steps through changing the gradient

strength and center frequency of the RF pulse correspondingly (fSeqRun() in appendix

A). Fig. 2.2 shows one step of WE-SI encoding (jx=2, jy=0, jz=0, kx=0, ky=0, kz=0).

Fig. 2.2: WE-SI pulse sequence design (at encoding step jx=2, kx=0; jy=0, ky=0; jz=0,

kz=0).

 25

At this encoding step, the slice selective (90°) RF pulse is on the x axis. Since

jx=2, a dual band 90° RF pulse is required. The gradient strength is calculated by

equation 1.4. The first refocusing (180°) RF pulse is selective on Y at jy=0. Therefore a

single band RF pulse is applied. The second refocusing (180°) RF pulse is selective on Z

at jz=0. Therefore a single band RF pulse is applied with the gradient on z-direction.

The 90° RF pulse is also called the excitation pulse, which flips spins within the

selected frequency into the transverse plane. It is assumed that the spins are tipped

instantaneously into the transverse plane at the center of the RF pulse, starting when spins

start dephasing about the x direction for half of the RF pulse duration due to the existence

of the x_gradient. In order to rephase spins, we need to apply Grephase with a reverse sign

[12]:

%50==
∫
∫

s

rephase

s

rephase

nderGtotalAreaU
nderGtotalAreaU

dtG

dtG
 (2.11)

There are twelve other gradients applied on all three dimensions with higher

magnitude (Fig. 2.2). They are called spoilers, whose function is to rapidly dephase the

spins outside the desired region in order to localize the signal. Due to the existence of

spoilers, spins rotate at different frequencies depending on their 3D position, over time a

phase difference is created and the received signal drops. At a certain time (half TE1 or

half TE2 as shown in Fig. 2.2), selective spins experience a 180º angle flip, which

reverses the phase difference and spins recover to being back in phase in another half TE1

or half TE2. For a better explanation, we suppose there are only two spins, one is rotating

 26

faster than the other one. At t=0, they are both flipped into the transverse plane and are

inphase. After half TE the faster spin is ahead of the slower spin by Δθ. Then both spins

experience the 180º RF pulse and the phase difference between the faster and the slower

becomes –Δθ. Since the faster spin still rotates at a higher frequency, in another half TE,

the two are in phase for a second time. Therefore, at t=TE, we obtain a phased signal

called an echo. However, for those spins which didn’t see the 180º RF pulse, they see a

total of 2Δθ and since this Δθ is actually randomly distributed between 0 and 2п, the

complex signal is cancelled out.

The echo time (TE) is the time when the spins in the selected region rephased

again after the second 180º RF pulse. MR signal is collected at t=TE. As spins are

rotating while relaxing, the received signal is in complex form.

 Hence, to ensure the rephasing process, we need: (1) the area negative lobe in is

half of the area of the positive lobe in x direction. (2) in all three dimensions, the areas of

the spoiler lobes before and after 180º RF pulses must be equal. In Fig. 2.2, we see the

first spoiler in X direction is smaller than others. This is the result of superposition of the

refocusing gradient and the spoiler.

To better illustrate how the RF pulses flip spins in order to select the desired

region, we show an example with jx=2 jy=2 and jz=2. Since dilations in all three

dimensions are non zero, all RF pulses have dual band profile.

Step 1: Apply a selective 90º RF pulse with a selective gradient on the x axis:

 27

Fig. 2.3 A 90º excitation pulse applied along x with jx=2.

Half of the spins (color pink) are flipped into the transverse plane; the other half

(white) are left untouched and spins rotates around spatial axis z. Suppose the RF pulse

is applied along +x’ in the rotating frame, during the short duration of B1 field, spins

rotates about +x’ axis by either +90º or -90º depending on the position along x. Right

after the B1 field, the left part of the pink region has spins lying along +y’ and the right

part of pink region has spins lying along –y’ in the rotating frame.

Step 2: Apply the first selective180º RF pulse on y

Fig. 2.4 A first 180º reforcosing pulse applied along y with jy=2.

 28

The first 180º RF pulse flips the spins in the front part of the cube by 180º in the

rotating frame about x’. Hence, spins that were rotating around z (color white) will

remain rotating around z but with an opposite sign. Due to the existence of the spoiler

gradients, the whole cube experiences dephasing, and only those spins selected by the

180° RF pulse can get rephased. Hence the signal from the grey part is destroyed.

Step 3: Apply the second selective 180º RF pulse on z.

Step 3 is exactly the same as step 2 but with a gradient applied on the remaining

axis. Hence, the signal collected at echo time (TE) is only from the desired blue voxel.

Fig. 2.5 A second 180º refocusing pulse applied along z with jz=2

2.3 Acquisition Time Reduction in Wavelet Encoding

The same number of acquisition steps is required for Fourier and Wavelet

encoding for the same spatial resolution. However, due to the finite support of the

wavelet transform, for most encoding steps, only a portion of subject is exited while the

 29

rest is relaxed, whereas for CSI a full TR is required for each step. Therefore, by

arranging the excitations in an optimal order, a series of these sub-space signals can be

acquired without the need of a full relaxation. The acquisition time is given by [11]:

()min_x y z effAcq time N N N TR N TR TR= − − , (2.12)

where, are the desired spatial resolution in zyx NNN ,, yx, , and respectively, and

is given by [11]:

z effN

 () ()
() ()

2 1 122 . 2 6 / 3 2 . 2 5 / 3 2 2.2

2 2. 8 2 2. 2 2. 4 / 3 ()

y z y xx xz z

y x y

M M M MM MM M
z z

eff M M M
y z x y x

M M
N

()M M M M M P x P y

+ + + +

+

⎡ ⎤− + + − + + −
⎢ ⎥=
⎢ ⎥+ − − + + − + + − − −⎣ ⎦

 (2.13)

representing the number of times where the sequence is being executed using TRmin.

TRmin is the total time needed to perform the sequence, which includes saturation, water

suppression, the actual pulse sequence, and acquisition duration. The difference between

TR and TRmin represents the extra time needed for spins to get fully relaxed after data

collection, and it is also the time reduction of WE-SI comparing to CSI.

The following variables are set to:)(log2 xx NM = , ,

, , and

)(log 2 yy NM =

)(log2 zz NM = 2(1)() .2 iP x i −= 2(1)2 j() 2. .P y j −= , where i and j run from 2 to

and respectively. If

xM

yM MM zMM x y === , is simplified to: effN

() ()3. 2 3 22 2 3. 8 / 3 4 / 3 3. 3.log() 8 / 3 4 / 3 3.M M
effN M P N N N⎡ ⎤ ⎡= + − − − = + − − −⎣ ⎦ ⎣ P⎤⎦ (2.14)

As shown in Fig. 2.6 where a 4 by 4 by 4 resolution is acquired from the sample,

acquisition time is reduced for the higher coefficients.

 30

Fig. 2.6 an example of 4 by 4 by 4 wavelet encoding [11].

The required excitation steps and timing are as following:

(a) The total FOV is excited

As shown in Fig. 2.6-1, at lower dialation (jx=0 or 1, jy=0 or 1, and jz=0 or 1), the whole

FOV is excited. A TR is required for each acquisition, and a total of 8 acquisitions are

 31

needed for collecting these 8 wavelet encoding coefficients. There is no RF pulse

translation needed for all 8 encodings.

8
1
2

1
2

1
2

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=N (2.15)

where denotes a combinations of b. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
a

(b) Half of the FOV is excited

There are 24 encoding steps where half of the FOV needs to be excited. This means at

one and only one dimension j=2 and k=0 or 1, while in the other two dimension, j could

be either 0 or 1 and k can be 0 only.

24
1
2

1
2

1
2

1
3

2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=N (2.16)

The six regions possible are highlighted in yellow in Fig. 2.6-2. To minimize the

acquisition time, the six regions are divided into three groups, where the two regions in

each group are complementary to each other and they should be excited sequentially. In

Fig. 2.6-2, the top and bottom encoding steps from the same column form one group. 90º

RF pulses are applied on the direction where j=2, so that only half of the spins are flipped

into the transverse plane. The rest of the region experiences two 180º RF pulses: the first

one flips the corresponding spins from +z to –z and the second one flips spins from –z

back to +z (z here represents the direction of B0). Therefore spins in the second half of

the FOV to keep precessing about +z as if they were never excited. Therefore, the second

half of the FOV can be excited without waiting for a full TR.

The time needed for these 24 excitations is: 24TR-12(TR-TRmin).

 32

In different groups, scaling factor j=2 occurs in different spatial dimensions,

therefore the 90º RF pulses are applied with gradient from corresponding j=2 dimension.

We call this process RF pulse switching.

(c) a quarter of the sample is excited

In this case as shown in Fig. 2.6-3, we will have two dimensions with j=2 and the

third dimension with j=1 or j=0. Each encoding step excites only a quarter of the sample.

Since 90º RF pulses applies with j=2, we are able to excite two regions sequentially

without waiting for a full TR in between.

24 encoding steps are needed when only a quarter of the sample is excited.

24
1
2

1
2

1
2

1
3

4
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=N (2.17)

Similar to (b), we can divide all the possibilities into three groups based on where j=0 or

j=1 is applied. For minimum acquisition time, steps within one group should be acquired

sequentially without waiting for a full TR and the time needed here is 24TR- 12(TR-

TRmin).

(d) 1/8 sample is excited

As shown in Fig. 2.1-4, there are 8 encodes in this case. Since the minimum dilation is

still 2, we can only excite two encoding steps without waiting for the full TR. The time

needed is 8TR-4(TR-TRmin).

 33

2.4 The Acquisition Order

In order to minimize acquisition time and cross-voxel contamination, and for best

signal strength, it is very important to acquire the wavelet encoding steps in a specific

order.

First, we want to minimize the total acquisition time by skipping the waiting time

for as many steps as possible. The localization property of the wavelet transform allows

us to excite different regions of the sample. The next encoding step should try to be

locate in a region that was not affected by all three RF , or are fully relaxed by the end of

the previous acquisition. We also need to ensure to receive the optimal amount of signal

for all acquisition steps. This means spins have to be fully flipped into the transverse

plane with minimum projection in the longitude direction.

As shown in the previous section, the designed WE-SI sequence consists of one

90º RF pulse and two 180º RF pulses for each encoding step. Since all pulses are

selective, there are a total of six cases that can occur for a spin inside the sample:

(1) The selected region sees one 90º and two 180º RF pulses.

(2) A region with no RF pulses.

(3) A region with two 180º pulses only.

(4) A region with one 90º and one 180º RF pulses only.

(5) A region with one 180º pulse only.

(6) A region with one 90º pulse only.

After finishing one acquisition step, we try to find the best step to be excited next. In

an ideal case, we would like to acquire a signal from case (2). This requires the minimum

of jx, jy and jz to be greater or equal to 2 and we can collect 2min(jx, jy, jz)-1 steps together

 34

without waiting for a full TR. We would excite regions with same dilations in a diagonal

order. The next region to be excited is ((jx, kx+1), (jy, ky+1), (jz, kz+1)).

To further speed up the process, we found that it is safe to collect regions in (3)

without waiting for a full TR. In region (3), spins see the first 180º RF pulse and flip to

–z immediately following longitudinal magnetization decay

)21(/
0

1 tTeMSI −−∝ (2.18)

Hence, at

)(5.0 21 TETEt +=

)21()/(2
0

211 TETETeMSI +−−∝ (2.19)

In our sequence,

msTETETE 5.37
2
755.0)(5.0 21 =≤=+

whereas T1 is at around 500ms for brain.

Also at this time, the second 180º RF pulse is applied to flip magnetization by 180º:

00
)/(2

0)21()21(211 MMeMSI TETET =−−≈−−∝ +− (2.20)

There is enough time (around 0.5 seconds for ADC acquisition) for the region to get fully

relaxed before the current acquisition ends. Therefore, we could acquire the next

encoding step from the regions seeing two 180º pulses.

We avoid acquiring data directly from regions in case (4), (5) and (6). If encodes from

these regions are needed, we will need to wait a TR for spins to be fully relaxed before

the next acquisition.

 35

In order to maximize the number of regions in case(2) and case(3) and to save time we

should always play the 90º RF pulse with the highest dilation.

To automatically select the the next encoding step for a minimized total acquisition time,

the following algorithm was developed. It requires resolution in all three dimensions to

be at a power of two.

function b=getHeader2(nx,ny,nz)
for i=0:nx*ny*nz-1
 find(the next encoding step in numerical order);
 if(!find)
 break;
 end
 calculate the dilation and translation for current step

 [Y,who_is_90]=max(scales);

Put 90 degree RF pulse selective on largest dilation direction;
Put the first 180 degree RF pulse selective on the second largest dilation
direction;
Put the second 180 degree RF pulse selective on the smallest dilation
direction;

for j=0:Y-1 // Y encoding steps can be acquired together //without
waiting full TR

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

 if(scale_1>1)
 p=mod(ii+j,scale_1);
 if p==0
 p=scale_1;
 end

 p=p+scale_1;

 else
 p=ii;
 end
 %%%
 if(scale_3>1)
 q=mod(jj+j,scale_3);
 if(q==0)
 q=scale_3;
 end
 % q=q+floor(j/scale_3)*scale_3;
 q=mod(q,scale_2);
 if(q==0)
 q=scale_2;
 end
% mod(jj+j,scale_3)
% floor(j/scale_3)
% scale_3
 q=q+scale_2;

 else
 q=jj;
 end

 36

 %%
 if(scale_3>1)
 r= mod(kk+j,scale_3);
 if(r==0)
 r=scale_3;
 end

 r=r+scale_3;

 else
 r=kk;
 end
 //flag the encoded steps
 %%
 end
end

2.5 Signal to Noise Ratio in Wavelet Encoding

WE-SI excites a distribution of spins at each acquisition time. The size of excited

subspaces decreases as wavelet dilation increases, whereas in Fourier encoding, the

whole FOV is excited at each acquisition step. Hence, on average, signal to noise ratio is

lower in WE-SI than in CSI. As a consequence, the sensitivity in 3D WE-SI compared to

Fourier encoding drops by [11]:

)2()224(
27

22222 +⋅+++
=

zyxyx

zyx
CSIWESI NNNNN

NNN
SNRSNR (2.21)

which is approximated to

2
3

)/3(NSNRSNR CSIWESI ⋅≈ if zyx NNN == (2.22)

 2.6 Problems with WE-SI

2.6.1 Chemical shift misregistration

As introduced earlier, both magnetic field gradient (position) and chemical shift can

contribute to a frequency difference. For WE-SI, translation is realized by shifting the

 37

center frequency of RF pulses. Hence, for different species, we need different shift

frequencies to arrive at the same spatial position. However, there is no easy way to shift

different frequencies with a single excitation. A higher bandwidth will help for chemical

shift misregistration. Details are shown in chapter 4.

2.6.2 RF pulse imperfection

With finite data points in the time domain, the RF pulse is not a perfect square. The tail

and transition bands contaminate the data.

2.6.3 B0 field inhomogeneity

At higher field strength, it is more difficult to achieve a high degree of B0 field

homogeneity [28]. WE-SI is magnitude modulated and is more sensitive to B0

inhomogeneity than CSI. Hence WE-SI technique may suffer more from pixel bleed.

 38

Chapter 3

Material and Methods

This chapter briefly introduces the implementation environment, procedures, and the

design of test methods.

3.1 Hardware Environment

We are using a 3 Tesla whole body Siemens clinical scanner located at the National

Research Council of Canada, Institute of Biodiagnostics. Transmit/Receive head coil

using only one receiving channel are attached to the Tray in at head position (shown in

Fig. 3.1). The scanner is connected to a user interface computer with controlling and

displaying functionalities provided by Siemens.

 39

Fig. 3.1 The Siemens 3T system.

3.2 Programming Environment

Syngo is the common software to all current Siemens Medical Solutions Products (also

known as Medcom). SyngoMR is the MR implementation of this software and it is also

called Numaris 4. The software was installed into the scanner to control MR data

acquisition [29].

The actual MR sequence in Numaris 4 was written in C/C++. The programming frame

work is called Integrated Development Environment for Applications (IDEA) which

consists of two prime parts: Sequence Development Environment (SDE) and Image

Calculation Environment (ICE). Normally, SDE controls the acquisition and gather the

raw data files (.dat). These files are then passed to ICE for data processing. For our

sequence, ICE is bypassed and is replaced by MATLAB programs written in-home.

 40

The software version we used for our development is SyngoVB15.

A pulse sequence is a program on the scanner that is used to program the hardware for

data collection. A sequence can be treated as an object with four main member functions:

fSEQInit, fSEQPrep, fSEQRun, and fSEQCheck. Static variables were used to transfer

information between different functions.

fSEQInit initializes measurement parameters, set up the boundary limits, and conFig.

static objects. fSEQPrep prepares RF pulses, gradients based on the parameters set up by

fSEQInit. It also estimates the total energy look ahead calculation. In fSEQrun, sequence

timing is created. fSEQcheck overflow the check.

Our WE-SI sequence is based on a single voxel spectroscopy sequence (SVS). However,

since the resolution, RF pulses and acquisition order are totally different, we’ve made

extensively modifications in all functions except fSEQcheck. The detailed coding is

available in appendix A.

3.3 Manual of Operation for WE-SI Sequence

The WE-SI sequence is a modification of the PRESS sequence (SVS in Siemens).

However, since it has multi-resolution for 3D, the sequence control cards are similar to

CSI, as shown in Fig. 3.2 to 3.6. Important settings for the WE-SI sequence will be

highlighted in this section.

On the left session of the routine card (shown in Fig. 3.2), position and FOV need to be

set properly based on previously acquired localizer images. For WE-SI, resolution is

closely related to FOV and RF bandwidth. Due to the nature of wavelet encoding, there

 41

is no folding effect that can be introduced by an imperfect excitation pulse (see section

2.9.3). Hence, View of Interest (VOI) should be set equivalent to FOV. On the right of

routine card, we should note “Average” should be set to 1 always. The value input for

“average” goes to the number of inner loops in the fSeqRun() function of the sequence

(Appendix A). This loop will repeat the same acquisition step for “average” times. In

this case, since the same region is to be excited, we will always need to wait a full TR

time in between, which is very inefficient for WE-SI. The actual averaging functionality

to obtain a better SNR is set by the “Measurements” value, found on the “contrast” card.

“Measurements” leads an outer loop in fSeqRun() function of the sequence, which will

perform all encoding steps and then repeat the whole process from the first encoding step

to the last for a total of “Measurements” times. In changing the number of

measurements, we are accomplishing the sequence order introduced in 2.4, and

acquisition time reduction according to equation 2.13.

Fig. 3.2 Routine Card.

 42

In the contract card (Fig. 3.3), the setting of “Measurement” increases SNR. Let n

be the number of measurements, the SNR is proportional to n .

Fig. 3.3 Contrast Card.

In the transmitter/receiver subcard under “system” (Fig. 3.4), we need to manually adjust

the transmitter voltage. The reference amplitude is the input voltage to the transmitter

(RFPA) required to produce a 180º rotation for a 1 msec (1000 usec) rectangular RF

pulse. All RF pulses are scaled to this reference RF pulse. Single 90º and 180º pulses are

kept at the default voltage. The profile of dual 90º and 180º RF pulses have both positive

and negative lobes (Fig. 3.5). Hence the voltage requires better optimization. From

extensive phantom testings, we conclude that the relation between dual RF pulses and

reference voltage to be:

 43

VD90 =0.75Vref;

VD180=2.75Vref;

Fig. 3.4 Transmiter/Receiver card

All other settings, such as resolution, saturation band, and TE/TR values are the same as

the regular CSI sequence.

3.4 RF Pulse Parameters

As introduced previously, we have developed the WE-SI technique by modifying the

spatially localized PRESS sequence to acquire 3D WE-SI data. Refined sinus cardinal

(sinc) functions, representing excitation (90º) and refocusing (180º) RF pulses for the

WE-SI sequence, using the Shinnar-Le Roux algorithm [30] are generated. The profiles

of these RF pulses, one single and one dual band, resemble scale and Haar wavelet

functions respectively (Fig. 3.5). The excitation RF pulse is applied along the slice

 44

direction and the refocusing RF pulses are applied along the phase and read directions by

analogy to the imaging sequences [12]. To achieve spatial encoding in the three

directions, dilations and translations of the dual band RF pulses detailed elsewhere [11],

are achieved by increasing the selection gradient strength and shifting the centre

frequency of the RF pulses respectively. The duration and bandwidth of all RF pulses are

5.2 msec and 2500Hz, respectively. Fig. 3.5 shows the spatial profiles of the RF pulses as

executed on the scanner (solid line) versus the Haar wavelet profiles (dashed line), where

the difference between the two shapes is in the transition band and the edges. This is

mainly due to the short duration of the sinc functions of the RF pulses. The signal loss

and cross voxel contamination can be corrected by data reconstruction in the inverse

wavelet transform.

-1250 0 1250
0

1

-1250 0 1250
-1

0

1

Hz Hz

A. Single 90 RF pulse B. Dual 90 RF pulse

-1250 0 1250
0

1

Hz Hz-1250 0 1250
-1

0

1

C. Single 180 RF pulse D. Dual 180 RF pulse

Fig. 3.5 Profiles of RF pulses (solid lines) used as Haar functions (dashed lines) in the
WE-SI sequence.

 45

3.5 Phantom and Acquisition Parameters

We conducted phantom studies at different spatial resolutions. Low resolution 2×2×2

and 4×4×2 data were acquired with different home-made phantoms (Fig. 3.6), and 8×8×4

data were acquired with a spherical phantom containing known solution with known

concentrations. The two home-made phantoms are as shown in figure 3.6. They were

made from two rectangular plastic holders containing equally spaced 2×2 and 4×4, 14

mm diameter holes. The size of each phantom is 40 mm × 40 mm and 70 mm × 70 mm.

Cylindrical tubes filled with aqueous solutions of metabolites with known concentrations

were placed in the holes of the plastic holder, dropped in a container filled with water,

which in turn immersed in a cylinder filled with canola oil. Single and dual band RF

pulses with profiles resembling Haar wavelet functions (5.2 msec duration and 2500 Hz

bandwidth) are used to acquire 3D WE-SI data on a 3T Siemens magnet. The acquisition

parameters are TR=2 sec, TE = 45 ms, ADC bandwidth = 2kHz, 1k points, and NEX = 4.

Two sets of phantom experiments have been conducted to evaluate the performance of

WE-SI versus CSI. In the first set (4x4x4 matrix size), a uniform spherical phantom

containing an aqueous solution of brain metabolites with known concentrations (NAA,

Creatine and Choline, etc.) is used for SNR calculations and data analysis using LC

Model. In the second set (4x4x1 matrix size), a home-made phantom with 16 tubes

containing different metabolite solutions with known concentrations is scanned to

determine voxel contamination

 46

Fig. 3.6 Localization MR images of the 2×2×2 (left) and 4×4×2 (right) phantoms. The

box represents the FOV used in the WE-SI sequence.

3.6 In-vivo Tests

Optimized 3D WE-SI sequence based on phantom results were used to conduct

studies on the human brain in healthy volunteers. For each healthy subject, a set of

standard volumetric anatomical images were obtained. In order to obtain the region-

dependent thresholds, it is necessary to have sufficient brain coverage for the WE-SI

dataset. Therefore, we will obtained three sets of 3D 1H WE-SI data.

For the first set, the repetition time and echo time was TR/TE=2000/75 ms with two

averages, and matrix size of 4 by 4 by 4 with a nominal voxel size approaching 4

cm3.

The acquisition time were:

1) localizer images (~ 5 minutes)

2) 3D CSI TR/TE = 2000/75 (4 by 4 by 4 Nex = 2, ~ 34 minutes)

3) 3D WE-SI TR/TE = 2000/75 (4 by 4 by 4, Nex = 2, ~ 20 minutes)

 47

For the second set the repetition and echo times were TR/TE = 1500/35 ms with

four averages. The matrix size used was be 8 by 8 by 2 with a nominal voxel size

approaching 2 cm3.

The acquisition times were :

4) 3D CSI TR/TE = 1500/35 (8 by 8 by 2, Nex = 2, ~ 4.5 minutes)

5) 3D WE-SI TR/TE = 1500/35 (8 by 8 by 2, Nex = 2, ~ 3 minutes)

For the third set the repetition and echo times were be TR/TE = 1500/35 ms with

four averages. The matrix size was 8 by 8 by 4 with a nominal voxel size

approaching 1 cm3.

The acquisition times were:

6) 3D CSI TR/TE = 1500/35 (8 by 8 by 4, Nex = 2, ~ 4.5 minutes)

7) 3D WE-SI TR/TE = 1500/35 (8 by 8 by 4, Nex = 2, ~ 3 minutes)

 The total time in the machine for each subject was on the order of 1 hour and 10

minutes. The data was transferred to a computer for analysis using in-house

software (Appendix B). Two different echo times were used to check the sensitivity

of the method at different echo times, and if the method is able to detect metabolites

at short apparent relaxation time.

3.7 Raw Data Gathering

3.7.1 TWIX

 48

TWIX is a built-in function that takes scanner output without any data processing. The

data are stored in the order of acquisition. The file contains a common header followed

by individual acquisitions. Each individual acquisition contains a header and a data

vector. The data vector is a vector of complex numbers represented by two floats, the

real part and imaginary part respectively. The actual decoding program is in appendix B.

3.7.2 spectro files

Spectro files contain processed data without headers. These files are accessible by the

Siemens on-line analysis software. We need to overwrite a CSI data file with processed

WE-SI results in order to display the results on scanner. The MATLAB code that is used

to overwrite .spectro files is in appendix C.

3.7.3 rda files

The .rda files are processed data with headers. The header contains information about the

patient and all acquisition parameters. rda files are important as they can be directly used

by LCmodel, which is a common software for spectroscopy data analysis. We can get

.rda files directly from the scanner by going to spectroscopy>options>export rawdata.

The Matlab code that is used to create a .rda file is in appendix D.

3.8 Data Analysis Method

In terms of data analysis, two types of software were used. The first one is LCModel

[31] which is commonly used by MRS users. It automatically quantizes the absolute and

relative concentrations of metabolites and signal to noise ratio. It requires basis functions

 49

for specific pulse sequence type and echo time information. The input to this software is

.rda files from the scanner which is taken from the spectroscopy card directly. The

outputs are quantization results and figures are similar to Fig. 3.7. The fit of spectrum is

given by red curves. The actual quantification of metabolites is given in the table at the

left part of the Fig. 3.7.

Fig. 3.7 LCModel output

To manually adjust the frequency shift, phase, baseline, and to have a better overlay of

the image and the spectrum, Simens online software is used. This is the easiest and

quickest way to view the spectrum. But it does not provide absolute quantification and

scanner for data processing must be conducted on the scanner.

 50

For our analysis, we overlaid the spectrum evaluation from LCmodel with the imaging

from Siemens to better represent our results.

Pre-processing is required regardless of the software. A discrete inverse Haar wavelet

transform must be performed on the raw data, instead of a discrete inverse Fourier

transform. This pre-processing step is done in MATLAB by first arranging wavelet

ecoding results into regular order and then performing an inverse wavelet transformation

in all three dimensions. The code is attached in appendix B.

For in-vivo results, a line broadening of 2.5Hz is applied to both WE-SI and CSI results.

Line broadening is a method to convolve the resultant spectrum with a Lorentzian

function whose width at half height equals a certain frequency value (2500Hz in our

case). Line broadening acts as a lowpass filter that filters out the higher frequency, and

smoothes the spectrum.

 51

http://mathworld.wolfram.com/LorentzianFunction.html
http://mathworld.wolfram.com/LorentzianFunction.html

Chapter 4

Results and Discussion

In-vitro and in-vivo results are presented in this chapter.

4.1 Phantom Results

 4.1.1 2×2×2 Phantom Test

At this resolution results show accurate information on absolute metabolite

quantification. Fig. 4.1 shows the accurate localization findings of the metabolite peaks

along with fitting results (red). The estimated metabolite concentration versus the

expected is shown in Table 4.1. Voxel contaminations are insignificant at this low

resolution. Since no wavelet translation (RF pulse shift) is performed, there is no

reduction on acquisition time.

 52

Fig. 4.1 Front axial slice of acquired metabolite spectra for the 2×2×2 WE-SI .

 53

TABLE 4.1

METABOLITE CONSENTRATION ESTIMATE MILLI-MOLAR (MM) BY 2×2×2 PHANTOM

 voxel

metabolite NAA Creatine Choline Water

NAA Measured 144 0 0 0

 (mM) True 150 0 0 0

Creatine Measured 0 64 4 0

 (mM) True 0 65 0 0

Choline Measured 0 0 48 0

 (mM) True 0 0 50 0

TABLE 4.2

WE-SI TIMING

Resolution
Total Acquisition Time

 Experiment Calculated reference (CSI)

2×2×2 32 sec 32 sec 32 sec

4×4×2 196 sec 191 sec 256 sec

8×8×4 1224 sec 1250 sec 2068 sec

 54

4.1.2 4x4x2 Phantom Test

The results also show that WE-SI was able to give accurate metabolite spatial

information with low voxel contamination (Table 4.3, Fig. 4.2). We are able to reduce the

acquisition time by 23.4% using WE-SI compared to CSI at this resolution (Table 4.2),

which are consistent with the theoretical calculations (equation 3.13).

TABLE 4.3

WE-SI EVALUATION FOR THE 4×4×2 PHANTOM

voxel position Expected Metabolites Contamination
(1,1) water 0
(1,2) NAA 0
(1,3) Choline NAA (2%)
(1,4) Glycine 0
(2,1) Acetone 0
(2,2) water 0
(2,3) NAA 0
(2,4) Creatine NAA (9%)
(3,1) Sarcosine 0
(3,2) Creatine 0
(3,3) Choline NAA 5%)
(3,4) NAA 0
(4,1) Glycine Succinate (6%)
(4,2) Succinate 0
(4,3) Sarcosine Choline (4%); Acetone (12.7 %)
(4,4) Acetone Succinate (5%)

 55

Fig. 4.2: Front axial slice of acquired metabolite spectra for the 4×4×2 WE-SI .

 56

Discussions on Voxel contamination

(1)Voxel contamination in WE-SI at 3 Tesla is mainly due to the RF pulse profiles not

perfectly matching the shapes of the Haar functions (Fig. 3.5). The tails of the RF pulse

profiles seen as solid lines in Fig. 3.5 extends outside the boxcar shown as a dashed line.

These tails pick up a small portion of signal from neighboring voxels.

(2)The transition bands are large causing voxel contamination. To minimize the profile

errors, we replaced the Haar function values (1 and -1) in the inverse wavelet transform

by numbers obtained from the fit of the RF pulse profiles to boxcar shapes.

(3) Another reason for voxel contamination is the B0 field inhomogeneity. At higher B0

field strength, homogeneity is more difficult to achieve, especially with phantoms made

from glass vials, plastic holders and containers, which complicates the shimming process

for better B0 field homogeneity due to susceptibility magnetic field effects [28]. As

shown in Fig. 4.2, we observe more contaminations in the bottom row, because of the

poor shimming at that location.

(4) The nature of chemical shift misregrastration affects more on the metabolites with

lower ppm values to a greater extent. Consider NAA with chemical shift at 2.0 ppm.

The chemical shift in frequency is calculated as:

Hzppmf 25.3083.123)2.27.4(0 =×−=×Δ=Δ ω (4.1)

 57

Therefore if NAA is present within the region of the scanning, we will lose a certain

amount of signal depending on the position of NAA, current dilation and translation of

the wavelet encoding.

Taking the following example, in which case we only have Water (left) and NAA (right)

(Fig. 4.3). If a 1D acquisition of resolution four is performed, the four acquisition steps

with their spatial coverage are shown in green bars.

For the step encodings one and two, gradients strength is calculated by:

LL
BWGx γγ

2500
== (4.2)

Water is resonating at a frequency depending on x:

xGf xw ⋅= (4.3)

NAA is resonating at a frequency 308.25 Hz lower than water frequency. Thus the

frequency shift is equivalent to a shift in the spatial domain:

L
BW

f
G
fx

x

Δ
=

Δ
=Δ
γ (4.4)

This shift is indicated by the blue box.

For encoding step 1:

 Signals collected are not affected by this shift

For encoding step 2:

 Due to the dual shape of the RF pulse, part of the NAA signal is cancelled by the

NAA signal shifted into the water region (the yellow shaded area) due to their opposite

sign. Hence, the total signal energy is weakened.

 58

For encoding step 3 and 4:

Since the x coverage is halved, the gradient strength is doubled. The chemical

shift still exists but ∆x is halved. As shown in the Fig. 4.3, encoding step 3 picks up

NAA signals passing the boundary (yellow shaded), and contamination is observed. At

encoding step 4, we were supposed to observe a zero wavelet coefficient because NAA

should be divided evenly by positive and negative part of the dual pulse. However, due

to the shift, we are most likely getting a small positive value.

This chemical shift misregistration problem is affecting all metabolite peaks. The

further the metabolite is from water peak, the more shifted it is going to be in spatial

domain. This problem is also more serious at higher field strength. From equations 4.4,

it is easy to see that greater RF bandwidth pulses with higher gradient strength will

reduce this effect.

 59

Fig. 4.3 Illustration of chemical shift misregistration.

A. 8x8x4 Spherical Phantom Test

This test was performed to evaluate and compare the SNR of WE-SI versus CSI.

As expected the SNR measured from a subset of voxels located at the center of the

sphere (B0 field homogeneity is better at the center of the sphere) is lower by 28.8%

compared to CSI. These results are comparable to the calculated ones at 29.9%

(equation 2.19). However, compared to results obtained at 1.5 tesla (results not shown),

the SNR at 3 tesla is higher. Acquisition time reduction is also obtained at this

resolution (Table 4.2).

 60

4.2 In-vivo Results

Figure 4.4 displays the second axial slice spectra from a 4 by 4 by 4 WE-SI and

from CSI human subject data, respectively. Fig. 4.5 displays the back axial slice spectra

from an 8 by 8 by 2 WE-SI and from CSI human subject data, respectively. Similar

relative quantification results of the metabolites were obtained. Table 4.4 shows the mean

values and the standard deviations over all the voxels for the six volunteers at each spatial

resolution of the metabolites ratios of N-acetyl-aspartate (NAA) and choline peaks to the

creatine peak. In table 4.5, acquisition times are given for both WE-SI and CSI at

different resolutions. WE-SI is quicker in acquiring MRSI data than CSI. The

experimental acquisition times approach the calculated ones.

As expected, the SNR was lower in WE-SI than CSI by a factor of 1.5, 2.7, and

3.2 in the 4 by 4 by 4, 8 by 8 by 2 and 8 by 8 by 4, respectively (Table 4.6). The SNR

was calculated as the ratio of the NAA peak intensity and the standard deviation of noise.

The SNR values are consistent with Equation 3.21.

 61

Fig. 4.4 In vivo spectra from the second axial slice of the 4x4x4 WE-SI (left) and CSI

(right) data.

Fig. 4.5, In vivo spectra from the back axial slice of the 8x8x2 WE-SI (left) and CSI

(right) data.

Table 4.4 The mean and standard deviation values SNR for different resolutions.

SNR 4x4x4 8x8x2 8x8x4
CSI 18.2500 ± 7.1738 18.6758 ± 7.1982 15.6543 ± 6.1891
WE-SI (experiment) 12.5235 ± 3.4935 7.5000 ± 2.2698 4.9257 ± 1.6256
WE-SI (calculated) 11.8502 6.7867 4.5658

Table 4.5 Experimental acquisition time duration for both WE-SI and CSI at three

different resolutions.

 WE-SI CSI
4x4x4 (TR=2s,avg=2) 3min20sec 4min16sec
8x8x2 (TR=1.5s, avg=4) 8min42sec 12min48sec
8x8x4 (TR=1.5s, avg=4) 17min14sec 25min36sec

 62

Table 4.6 Experimental and calculated SNR values for WE-SI and CSI at three different

resolutions.

Mean ± SD NAA/Cr Cho/Cr
4x4x4 WE-SI 1.7156 ± 0.4487 0.2699 ± 0.0812
 CSI 1.7742 ± 0.6753 0.2930 ± 0.0762
8x8x2 WE-SI 1.4010 ± 0.4994 0.2944 ± 0.1134
 CSI 1.5031 ± 0.6753 0.2953 ± 0.0841
8x8x4 WE-SI 1.4756 ± 0.6923 0.2835 ± 0.1553
 CSI 1.6025 ± 0.6784 0.2794 ± 0.0865

 63

Chapter 5 Conclusions and Future Work

A three dimensional wavelet encoding method for acquiring magnetic resonance

spectroscopic imaging data was presented. The proposed WE-SI was compared to the

gold standard CSI technique. This comparison, offers a valuable indication of acquisition

time, voxel contamination and sensitivity. In contrast to Fourier encoding which usually

works with fine grids over a large FOV, the wavelet encoding, is better for small FOVs

with low resolutions. At the same time, WE-SI reduces acquisition time compared to CSI.

The reduction in acquisition time is directly proportional to the spatial resolution and

dimensions. However, it suffers from lower SNR than CSI, although results obtained at 3

tesla were better in sensitivity than those obtained at 1.5 tesla. In order to increase the

SNR, less spatially localized wavelets should be used [32]. A more significant effect of

chemical misregistration was also seen at higher field with WE-SI method. Overall, WE-

SI is a reliable method at 3 tesla field strength and can be applied to clinical studies.

For future work, we suggest combining WE-SI with a parallel imaging (PI)

method for further reduction in acquisition time. This work requires the 3T platform to

be equipped with multi-receive channels covering independent and fixed object regions

that are used to collect the MR signal (Figure 6.1). Similar to Fourier encoding with PI

[33] where a number of k-space lines are not acquired resulting in an aliased image, a RF

pulse with redundant Haar wavelets will result a super-imposed image when

reconstructing it with a lower scale wavelet (N/R instead of N). Then as with SENSE

[33], coil sensitivity maps can be used to separate a super imposed voxel into R different

voxels at their corresponding positions. By applying PI, the acquisition time is reduced

 64

by a factor R, called the acceleration factor. A decrease in SNR is also expected.

However, since in Wavelet encoded parallel imaging (WE-PI) the RF excitation is not

reduced by a factor of R, the SNR drop with PI in WE-SI should be less significant than

with CSI.

Figure 6.1 Acquired and reconstructed wavelet domain lines with N=8 and R=2.
Translation and dilation values k and j are displayed for each wavelet encoding step.

Also, as mentioned in earlier chapters, we need higher RF bandwidth to reduce

chemical shift misregistration effect. However, the smaller B1s available at higher fields

restrict the Bandwidth available. We should look for methods that either minimize power

consumption of RF pulses, or minimize the bandwidth requirements. A good alternative

is presented in Goelman’s paper [34] as cascaded RF pulses (figure 6.2). In this method,

instead of using superposition which requires multiple bandwidths, the two RF pulses are

cascaded head and tail to keep power consumption within the limit.

 65

Figure 6.2 Cascaded RF pulses [34].

To reduce data reconstruction artifacts, which are the another source of voxel

contamination, wavelets with smoother decay and shorter duration that are less dependent

on the profiles of the RF pulses should be tested [32]. As a consequence, shorter RF

pulses could be used and data with shorter echo times could be acquired, which increase

data sensitivity.

 66

References:

1. Sundgren, PC; Dong, Q; Gomez-Hassan, D; Mukherji, SK; Maly, P; Welsh, R.,

“Diffusion tensor imaging of the brain: review of clinical applications,” Neuroradiology

vol. 46, p.339 – 350, 2004.

2. Ashwal, S; Holshouser, BA; Tong, KA., “Use of advanced neuroimaging

techniques in the evaluation of pediatric traumatic brain injury,” Developmental

Neuroscience, vol. 28, p. 309-326, 2006.

3. Hanstock, C; Faden, A; Bendall, M; Vink, R., “Diffusion-weighted imaging

differentiates ischemic tissue from traumatized tissue,” in ISMRM, Stroke 1994, vol. 25,

p. 843-848.

4. Sehgal, V; Delproposto, Z; Haacke, EM; Tong, KA; Wycliffe, N; Kido, DK; Xu,

Y; Neelavalli, J; Haddar, D; Reichenbach, JR., “Clinical applications of neuroimaging

with susceptibility weighted imaging,” J Magn Reson Imaging, vol. 22, p. 439-450, 2005.

5. Gruber, S.; Stadlbauer, A.; Mlynarik, V.; Gatterbauer, B.; Roessler, K.; Moser, E.,

“Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis,” in

Neurosurgery Clinics of North America, 2005, vol. 16, (1), p.101-114,..

6. Hetherington, H. P.; Kim, J. H.; Pan, J. W.; Spencer, D. D., “H-1 and P-31

spectroscopic imaging of epilepsy: Spectroscopic and histologic correlations,” in

Epilepsia vol. 45 (4), p. 17-23, 2004.

7. McKnight, T. R., “Proton magnetic resonance spectroscopic evaluation of brain

tumor metabolism,” Seminars in Oncology, 2004, 31, (5), 605-617.

8. Oshio, K.; Kyriakos, W.; Mulkern, R. V., “Line scan echo planar spectroscopic

imaging,” Magnetic Resonance in Medicine, vol. 44, (4), p. 521-524, 2000.

9. Adalsteinsson, E.; Irarrazabal, P.; Topp, S.; Meyer, C.; Macovski, A.; Spielman,

D. M., “Volumetric spectroscopic imaging with spiral-based k-space trajectories,”

Magnetic Resonance in Medicine, vol. 39(6), p.889-898, 1998.

10. J. Weaver, Y. Xu, D. Healy, J. Drisoll, “Wavelet-Encoded MR imaging,”

Magnetic Resonance in Medicine, vol. 24, p.275-287, 1992.

11. Young, R.; Serrai, H., “Implementation of three-dimensional wavelet encoding

spectroscopic imaging: In vivo application and method comparison,” Magnetic

Resonance in Medicine, vol. 61 (1), p. 6-15, 2009.

12. E. M. Haacke, R. W. Brown, M. R. Thompson, R. Venkatesan. Magnetic

Resonance Imaging: physical principles and sequence design. New York: Wiley-liss,

1999

13. B.P. Lathi, Signal Processing & Linear Systems. Oxford: Oxford University

Press, 1998.

14. Bolinger, L.; Leigh Jr., J. S., “Hadamard Spectroscopic Imaging (HSI) for multi-

volume localization,” Journal of Magnetic Resonance, vol. 80, p.62-167, 1988.

15. Gonen, O.; AriasMendoza, F.; Goelman, G., “3D localized in vivo H-1

spectroscopy of human brain by using a hybrid of 1D-Hadamard with 2D chemical shift

imaging,” Magnetic Resonance in Medicine, vol. 37 (5), p. 644-650, 1997.

16. Posse, S.; Gioacchino, T.; Risinger, O.; Bihan, D., “High-speed 1H spectroscopic

imaging in human brain by echo-planar spatial-spectral encoding,” Magnetic Resonance

in Medicine, vol. 37, p.644-650, 1995.

17. Duyn, J.; Moonen, C., “Fast proton spectroscopic imaging of human brain using

multiple spin-echoes,” Magnetic Resonance in Medicine vol. 30, p.409-414, 1993.

18. Hanson, L. G.; Schaumburg, K.; Paulson, O. B., “Reconstruction strategy for echo

planar spectroscopy and its application to partially undersampled imaging,” Magnetic

Resonance in Medicine, vol. 44(3), p. 412-417, 2000.

19. Adalsteinsson, E.; Irarrazabal, P.; Topp, S.; Meyer, C.; Macovski, A.; Spielman,

D. M., “Volumetric spectroscopic imaging with spiral-based k-space trajectories,”

Magnetic Resonance in Medicine, vol. 39 (6), p. 889-898, 1998.

20. Pohmann, R.; vonKienlin, M.; Haase, A., “Theoretical evaluation and comparison

of fast chemical shift imaging methods,” Journal of Magnetic Resonance, vol. 129 (2),

p.145-160, 1997.

21. Chao, H.; Bowers, J. L.; Holtzman, D.; Mulkern, R. V., “RARE imaging of PCr

in human forearm muscles,” Journal of Magnetic Resonance Imaging, vol. 7 (6), p. 1048-

1055, 1997.

22. Duyn, J.; Moonen, C., “Fast proton spectroscopic imaging of human brain using

multiple spin-echoes,” Magnetic Resonance in Medicine 1993, 30, 409-414.

23. Greenman, R. L.; Elliott, M. A.; Vandenborne, K.; Schnall, M. D.; Lenkinski, R.

E., “Fast imaging of phosphocreatine using a RARE pulse sequence,” Magnetic

Resonance in Medicine, vol. 39 (5), p. 851-854, 1998.

24. Haase, A., Snapshot FLASH MRI. “Applications to T1, T2 and chemical-shift

imaging,” Magnetic Resonance in Medicine, vol. 13, p. 77-89, 1990.

25. Hugg, J. W.; Maudsley, A. A.; Weiner, M. W.; Matson, G. B., “Comparison of k-

space sampling schemes for multidimensional MR spectroscopic imaging,” Magnetic

Resonance in Medicine vol. 36 (3), p. 469-473, 1996.

26. I. Daubechies, Ten lectures on wavelet, in CBMS. Philadelphia, PA: SIAM,
1994

27. Bottomley, “Selective volume method for performing localized NMR

spectroscopy,” United States Patent 4,480,228, Oct 30, 1984

28. Haacke, E. M., In “Magnetic Resonance Imaging,” Wiley, Eds. 1999.

29. Siemens MRI Stuff, Siemens IDEA user’s Manual, Siemens.

30. J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski, “Parameter Relations for

theShinnar-Le Roux Selective Excitation Pulse Design Algorithm,” in IEEE Trans. Med.

Imaging, vol. 10, p.53-65, March 1991.

31. Stephen Provencher, “LCModel & LCMgui User’s Manual,” August 2007.

32. Weaver, J.; Healy, D., “Signal-to-noise ratios and effective repetition times for

wavelet encoding and encoding with wavelet packet bases,” in Journal of Magnetic

Resonance (A), vol. 113, p.1-10, 1995.

33. Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter

Boesiger, “SENSE: Sensitivity Encoding for Fast MRI,” in Magnetic Resonance in

Medicine, vol. 42, p. 952-962, 1999.

34. Gadi Goelman, Songtao Liu, and Oded Gonen, “Reducing Voxel Bleed in

Hadamard-Encoded MRI and MRS,” in Magnetic Resonance in Medicine, vol. 55,

p.1460–1465, 2006.

Appendix A

…
static const long RFDuration = 5200;
static const long RFBandwidth=2500;
static sRF_PULSE_ARB D90RFPulse("D90RFPulse");
static sFREQ_PHASE D90PhSet("D90PhSet");
static sFREQ_PHASE D90PhNeg("D90PhNeg");

static sRF_PULSE_ARB D1801RFPulse("D1801RFPulse");
static sFREQ_PHASE D1801PhSet("D1801PhSet");
static sFREQ_PHASE D1801PhNeg("D1801PhNeg");

static sRF_PULSE_ARB D1802RFPulse("D1802RFPulse");
static sFREQ_PHASE D1802PhSet("D1802PhSet");
static sFREQ_PHASE D1802PhNeg("D1802PhNeg");

static sRF_PULSE_ARB D1821RFPulse("D1821RFPulse");
static sFREQ_PHASE D1821PhSet("D1821PhSet");
static sFREQ_PHASE D1821PhNeg("D1821PhNeg");

static sRF_PULSE_ARB D1822RFPulse("D1822RFPulse");
static sFREQ_PHASE D1822PhSet("D1822PhSet");
static sFREQ_PHASE D1822PhNeg("D1822PhNeg");

static sRF_PULSE_ARB S90RFPulse("S90RFPulse");
static sFREQ_PHASE S90PhSet("S90PhSet");
static sFREQ_PHASE S90PhNeg("S90PhNeg");

static sRF_PULSE_ARB S180RFPulse("S180RFPulse");
static sFREQ_PHASE S180PhSet("S180PhSet");
static sFREQ_PHASE S180PhNeg("S180PhNeg");

static sRF_PULSE_ARB S182RFPulse("S182RFPulse");
static sFREQ_PHASE S182PhSet("S182PhSet");
static sFREQ_PHASE S182PhNeg("S182PhNeg");

…
static long ro_off_freq, ph_off_freq, sl_off_freq

static short DorS_X, DorS_Y, DorS_Z, D1801_2, n_rd, n_ph, n_sl;
static short who_is_90,Y, WAIT;

…
 **\
*
* Name : fSEQInit
*
* Description : Defines the hard limits for the Seq/Change dialog.
*
* Return : An NLS status code.
*
**\

…
 pSeqLim->setBaseResolution(1,128, SEQ::INC_NORMAL,2);

 pSeqLim->setPELines(1, 128, 1, 2);

 pSeqLim->setMaxPhaseResolution(2);
 pSeqLim->setPartition(1, 128, 1, 2);

 pSeqLim->setfinalMatrixSizeRead(1, 128, SEQ::BASE2,2); //This is RL direction
 pSeqLim->setfinalMatrixSizePhase(1, 128, SEQ::BASE2,2); //This is AP direction
 pSeqLim->setfinalMatrixSizeSlice(1, 128, SEQ::BASE2,2); // THis is HF
(equivalent to SI) direction

 /////////////////////////////////////
 // 3D dimension
 /////////////////////////////////////
 pSeqLim->setDimension(SEQ::DIM_3,SEQ::DIM_2);
 pSeqLim->setPartition(1,128, SEQ::INC_NORMAL, 4);
 pSeqLim->setfinalMatrixSizeSlice(1, 128, SEQ::BASE2, 4);
 pSeqLim->setImagesPerSlab(1, 128, SEQ::BASE2, 4);
 pSeqLim->setSlabThickness(10, 300);
 pSeqLim->set3DPartThickness(1, 128, 1, 15);
 pSeqLim->setMinSliceResolution (0.5);

…

 **\
*
* Name : fSEQPrep
*
* Description : Prepares everything that the sequence needs at run time.
*
* Return : An NLS status code.
*

…
 RealAmpls=0;
 ImagAmpls=0;

 for (k=0; k<S90_LEN; ++k) {

 RealAmpls += pulseS90Shape[k].flAbs * cos(pulseS90Shape[k].flPha);

 ImagAmpls += pulseS90Shape[k].flAbs * sin(pulseS90Shape[k].flPha);

 }

 EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls);

 S90RFPulse.setTypeExcitation ();

 S90RFPulse.setDuration (RFDuration) ;

 S90RFPulse.setFlipAngle (90.);

 S90RFPulse.setInitialPhase (0);

 S90RFPulse.setSamples (S90_LEN);
 S90RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().readoutFOV());
 if (!S90RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS90Shape,EffAmplIntegs))

 return S90RFPulse.getNLSStatus();

 // computation of the frequency offset which defines the voxel position
 // input units:

 // [GSAmplitude] = mT / m
 // [LarmorConst / (2 pi)] = MHz / T
 // [VoxelPosition] = mm
 // output unit:
 // [Frequency] = Hz

 lFrequency = (long)(.5 + S90RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterRO());

 lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ;

 ro_off_freq=lFrequency;

 // Dule 90
 for (k=0; k<D90_LEN; ++k) {

 if(k<262){
 RealAmpls += pulseD90Shape[k].flAbs * cos(pulseD90Shape[k].flPha);

 ImagAmpls += pulseD90Shape[k].flAbs * sin(pulseD90Shape[k].flPha);
 }
 else{
 RealAmpls += -pulseD90Shape[k].flAbs * cos(pulseD90Shape[k].flPha);

 ImagAmpls += -pulseD90Shape[k].flAbs * sin(pulseD90Shape[k].flPha);
 }

 }

 EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls);

 D90RFPulse.setTypeExcitation ();

 D90RFPulse.setDuration (RFDuration) ;

 D90RFPulse.setFlipAngle (90.0);

 D90RFPulse.setInitialPhase (0);

 D90RFPulse.setSamples (D90_LEN);

 D90RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().readoutFOV());
 if (!D90RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD90Shape,EffAmplIntegs))

 return D90RFPulse.getNLSStatus();

////////////////////Dule 180
 RealAmpls=0;
 ImagAmpls=0;

 for (k=0; k<D1801_LEN; ++k) {
 if(k>252){
 RealAmpls += pulseD1801Shape[k].flAbs * cos(pulseD1801Shape[k].flPha);

 ImagAmpls += pulseD1801Shape[k].flAbs * sin(pulseD1801Shape[k].flPha);
 }
 else{
 RealAmpls += -pulseD1801Shape[k].flAbs *
cos(pulseD1801Shape[k].flPha);

 ImagAmpls += -pulseD1801Shape[k].flAbs *
sin(pulseD1801Shape[k].flPha);
 }

 }

 EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls);

 D1801RFPulse.setTypeExcitation ();

 D1801RFPulse.setDuration (RFDuration) ;

 D1801RFPulse.setFlipAngle (180.0);

 D1801RFPulse.setInitialPhase (0);

 D1801RFPulse.setSamples (D1801_LEN);

 D1801RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV());
 if
(!D1801RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1801Shape,EffAmplIntegs))

 return D1801RFPulse.getNLSStatus();

//////////////////////////////////Dule 182

 D1821RFPulse=D1801RFPulse;
 D1821RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness());
 if
(!D1821RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1801Shape,EffAmplIntegs))

 return D1821RFPulse.getNLSStatus();

 RealAmpls=0;
 ImagAmpls=0;

 for (k=0; k<D1802_LEN; ++k) {
 if(k>270){
 RealAmpls += pulseD1802Shape[k].flAbs * cos(pulseD1802Shape[k].flPha);

 ImagAmpls += pulseD1802Shape[k].flAbs * sin(pulseD1802Shape[k].flPha);
 }
 else{
 RealAmpls += -pulseD1802Shape[k].flAbs *
cos(pulseD1802Shape[k].flPha);

 ImagAmpls += -pulseD1802Shape[k].flAbs *
sin(pulseD1802Shape[k].flPha);
 }

 }

 EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls);

 D1802RFPulse.setTypeExcitation ();

 D1802RFPulse.setDuration (RFDuration) ;

 D1802RFPulse.setFlipAngle (180.0);

 D1802RFPulse.setInitialPhase (0);

 D1802RFPulse.setSamples (D1802_LEN);

 D1802RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV());
 if
(!D1802RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1802Shape,EffAmplIntegs))

 return D1802RFPulse.getNLSStatus();

 D1822RFPulse=D1802RFPulse;
 D1822RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness());
 if
(!D1822RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseD1802Shape,EffAmplIntegs))

 return D1822RFPulse.getNLSStatus();

//////////////////////////////////Single 180
RealAmpls=0;
 ImagAmpls=0;

 for (k=0; k<S180_LEN; ++k) {

 RealAmpls += pulseS180Shape[k].flAbs * cos(pulseS180Shape[k].flPha);

 ImagAmpls += pulseS180Shape[k].flAbs * sin(pulseS180Shape[k].flPha);

 }

 EffAmplIntegs=sqrt(RealAmpls*RealAmpls + ImagAmpls*ImagAmpls);

 S180RFPulse.setTypeExcitation ();

 S180RFPulse.setDuration (RFDuration) ;

 S180RFPulse.setFlipAngle (180);

 S180RFPulse.setInitialPhase (0);

 S180RFPulse.setSamples (S180_LEN);
 S180RFPulse.setGSAmplitude(2500/larmorconst / pMrProt-
>sliceSeries().front().phaseFOV());
 if (!S180RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS180Shape,EffAmplIntegs))

 return S180RFPulse.getNLSStatus();

 lFrequency = (long)(.5 + S180RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterPE());
 lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ;

 ph_off_freq=lFrequency;

////////////////////////////S 182

 S182RFPulse=S180RFPulse;
 S182RFPulse.setGSAmplitude(2500.0/larmorconst / pMrProt-
>sliceSeries().front().thickness());
 if
(!S182RFPulse.prepArbitrary(pMrProt,pSeqExpo,pulseS180Shape,EffAmplIntegs))

 return S182RFPulse.getNLSStatus();

 lFrequency = (long)(.5 + S182RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceShift());
 lFrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ;

 sl_off_freq=lFrequency;

/*[Function
**\
*
* Name : fSEQCheck
*
* Description : Checks the real-time sequence for gradient overflows.
*
* Return : An NLS status code.
*

…
**\
*
* Name : fSEQRun
*
* Description : Executes the real-time sequence.
*
* Return : An NLS status code.
*

…

 double x_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().readoutFOV(),
 z_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().thickness(),
 y_grad=2500.0/larmorconst / pMrProt->sliceSeries().front().phaseFOV();
 long n_sl ,n_ph, n_rd;
 long scale_sl, scale_rd, scale_ph, scale_1,scale_2,scale_3, xii,xjj,xkk, myflag, temp;

 n_rd = pMrProt->kSpace().baseResolution();

 n_ph = pMrProt->kSpace().phaseEncodingLines();

 n_sl = pMrProt->kSpace().partitions();

…

 ///
 // execute repetition loop
 ///

 n_rep = pMrProt->repetitions() + 1;
 for(k=0; k<n_rep; k++){

 short chkboard[32*32*32];
 int ii;
 for (ii=0; ii<32*32*32; ii++)
 chkboard[ii]=0;

 ss_adc1.Mdh.setCrep(k);

 ///
 // execute prepare loop
 ///

 fRTSetReadoutEnable(0); // disable ADC events
 for(i=0; i<n_prep; i++){

….
 ///
 // execute acquisition loop
 ///

 ///////////////////added Jan 2008//////////////////////
long lfrequency;
double dPhase;

 for (j=0; j<n_rd*n_ph*n_sl; j++){
 who_is_90=1;
 short found, ii,jj,kk;
 for (chk=0; chk<n_rd*n_ph*n_sl;chk++){
 found=0;
 if(chkboard[chk]==0){
 j=chk;
 found=1;
 break;
 }

 }

 if(found==0){

 continue;
 }

 int count_rd=j%n_rd+1;
 int count_ph=(j/n_rd)%n_ph+1;
 int count_sl=j/n_rd/n_ph+1;
 int cnt;

 scale_rd=1;
 scale_ph=1;
 scale_sl=1;
 scale_1=1;
 scale_2=1;
 scale_3=1;
 myflag=1;

 cnt=2;
 while(cnt<32){
 if(count_rd>cnt && count_rd<=2*cnt)
 scale_rd=cnt;
 if(count_ph>cnt && count_ph<=2*cnt)
 scale_ph=cnt;
 if(count_sl>cnt && count_sl<=2*cnt)
 scale_sl=cnt;
 cnt=cnt*2;
 }

 if(scale_rd>=scale_sl && scale_rd>=scale_ph){
 Y=scale_rd;
 who_is_90=1;
 if(scale_ph>=scale_sl){
 myflag=1;
 scale_1=scale_rd;
 scale_2=scale_ph;
 scale_3=scale_sl;
 ii=count_rd;
 jj=count_ph;
 kk=count_sl;
 }
 else{
 myflag=2;

 scale_1=scale_rd;
 scale_2=scale_sl;
 scale_3=scale_ph;
 ii=count_rd;
 jj=count_sl;
 kk=count_ph;
 }
 }

 if(scale_ph>scale_rd && scale_ph>=scale_sl){
 Y=scale_ph;
 who_is_90=2;
 if(scale_rd>=scale_sl){
 myflag=3;
 scale_1=scale_ph;
 scale_2=scale_rd;
 scale_3=scale_sl;
 ii=count_ph;
 jj=count_rd;
 kk=count_sl;
 }
 else{
 myflag=4;
 scale_1=scale_ph;
 scale_2=scale_sl;
 scale_3=scale_rd;
 ii=count_ph;
 jj=count_sl;
 kk=count_rd;
 }
 }

 if(scale_sl>scale_ph && scale_sl>scale_rd){
 Y=scale_sl;
 who_is_90=3;
 if(scale_ph>=scale_sl){
 myflag=5;
 scale_1=scale_sl;
 scale_2=scale_rd;
 scale_3=scale_ph;
 ii=count_sl;
 jj=count_rd;
 kk=count_ph;
 }
 else{
 myflag=6;

 scale_1=scale_sl;
 scale_2=scale_ph;
 scale_3=scale_rd;
 ii=count_sl;
 jj=count_ph;
 kk=count_rd;
 }
 }

 // the following two lines turns off the pulse switching functionality

// who_is_90=1;
// Y=1;
//
 for (cnt=0; cnt<Y; cnt++){
 int p,q,r;
 WAIT=Y==(cnt+1)?1:0;
 if(scale_1>1){
 p= (ii + cnt)%scale_1;
 p= p==0?scale_1:p;
 p= p+scale_1;
 }
 else
 p=ii;

 if(scale_3>1){
 q= (jj + cnt)%scale_3;
 q= q==0?scale_3:q;
 // q=q+cnt/scale_3*scale_3;
 q=q%scale_2;
 q= q==0?scale_2:q;
 q= q+scale_2;
 }
 else
 q=jj;

 if(scale_3>1){
 r= (kk + cnt)%scale_3;
 r= r==0?scale_3:r;
 r= r+scale_3;
 }
 else
 r=kk;

 if(myflag==2){
 temp=q;

 q=r;
 r=temp;
 }
 if(myflag==3){
 temp=p;
 p=q;
 q=temp;
 }
 if(myflag==4){
 temp=p;
 p=r;
 r=q;
 q=temp;
 }
 if(myflag==5){
 temp=p;
 p=q;
 q=r;
 r=temp;
 }
 if(myflag==6){
 temp=p;
 p=r;
 r=temp;
 }
 if(chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph]){

 if(myflag==1)
 q=q+scale_3;

 if(myflag==2)
 r=r+scale_3;

 if(myflag==3)
 p=p+scale_3;

 if(myflag==4)
 r=r+scale_3;

 if(myflag==5)
 p=p+scale_3;

 if(myflag==6)
 q=q+scale_3;
 }
 if(chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph])

 cout<<"ordering Error !!!"<<endl;

 count_rd=p;
 count_ph=q;
 count_sl=r;

 cout << "==>p,q,r,y: " << p<<q<<r<<Y <<
endl;
 chkboard[p-1+(q-1)*n_rd+(r-1)*n_rd*n_ph]=1;

 if(who_is_90==1){
 DorS_X=(count_rd==1)?1:0;
 DorS_Y=(count_ph==1)?1:0;
 DorS_Z=(count_sl==1)?1:0; //1--single 0---dule

 D90RFPulse.setInitialPhase (0);
 D1801RFPulse.setInitialPhase (0);
 D1802RFPulse.setInitialPhase (0);
 D1821RFPulse.setInitialPhase (0);
 D1822RFPulse.setInitialPhase (0);

 D90RFPulse.setGSAmplitude(scale_rd*x_grad);
 ss_grad_exc.setAmplitude(scale_rd*x_grad);
 ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800)
*scale_rd*x_grad / 4000));
 D1801RFPulse.setGSAmplitude(scale_ph*y_grad);
 D1802RFPulse.setGSAmplitude(scale_ph*y_grad);
 if(count_ph>1)
 ss_grad_pi_ph.setAmplitude(scale_ph*y_grad);
 else
 ss_grad_pi_ph.setAmplitude(scale_ph*y_grad/1.25);

 D1821RFPulse.setGSAmplitude(scale_sl*z_grad);

 D1822RFPulse.setGSAmplitude(scale_sl*z_grad);
 if(count_sl>1)
 ss_grad_pi_sl.setAmplitude(scale_sl*z_grad);
 else
 ss_grad_pi_sl.setAmplitude(scale_sl*z_grad/1.25);

 D1822RFPulse.setInitialPhase (0);
// lfrequency= ro_off_freq*scale_rd;
// cout<<"lfreq"<<lfrequency<<endl;
 lfrequency = D90RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterRO()-335 ;

 if(count_rd>2)
 lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth;
 lfrequency= (long)(.5 +lfrequency);
 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 *
pMrProt->spectroscopy().dDeltaFrequency) ;

 if(count_rd==1){

 S90PhSet.setFrequency(lfrequency);
 S90PhNeg.setFrequency(0L);

 dPhase = - lfrequency * (360./1e6) * 2600;
 S90PhSet.setPhase(dPhase);
 S90PhNeg.setPhase(- lfrequency * (360./1e6) * 2600);
 }

 D90PhSet.setFrequency(lfrequency);
 D90PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D90PhSet.setPhase(dPhase);
 D90PhNeg.setPhase(-lfrequency * (360./1e6) * 2600);

// lfrequency= ph_off_freq*scale_ph;
 cout << "x_freq " <<lfrequency<<endl;
 lfrequency = D1801RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterPE()-335 ;

// cout<<"lFreq "<<lfrequency<<endl;
 if(count_ph>2)

 lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth;
 lfrequency= (long)(.5 +lfrequency);
 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 *
pMrProt->spectroscopy().dDeltaFrequency) ;

 if(count_ph==1){
 S180PhSet.setFrequency(long(ph_off_freq/1.25-335));
 S180PhNeg.setFrequency(0L);

 dPhase = - long(ph_off_freq/1.25-335) * (360./1e6) *
S180RFPulse.getDuration() * 0.5;
 S180PhSet.setPhase(dPhase);
 S180PhNeg.setPhase(dPhase);
 cout << "y_freq:S180 "
<<S180PhSet.getFrequency()<<endl;
 }
 D1801PhSet.setFrequency(lfrequency);
 D1801PhNeg.setFrequency(0L);
 D1802PhSet.setFrequency(lfrequency);
 D1802PhNeg.setFrequency(0L);

 dPhase = -lfrequency * (360./1e6) * 2600;
 D1801PhSet.setPhase(dPhase);
 D1801PhNeg.setPhase(dPhase);
 D1802PhSet.setPhase(dPhase);
 D1802PhNeg.setPhase(dPhase);

// lfrequency= sl_off_freq*scale_sl;
 cout<<"y_freq "<<lfrequency<<endl;
 lfrequency = D1821RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceShift()-335 ;

// cout<<"lFreq "<<lfrequency<<endl;
 if(count_sl>2)
 lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth;

 lfrequency= (long)(.5 +lfrequency);
 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 * pMrProt-
>spectroscopy().dDeltaFrequency) ;
 cout<<"z_freq "<<lfrequency<<endl;

 if(count_sl==1){

 S182PhSet.setFrequency(long(sl_off_freq/1.25-335));
 S182PhNeg.setFrequency(0L);

 dPhase = - long(sl_off_freq/1.25-335)* (360./1e6) *
S182RFPulse.getDuration() * 0.5;
 S182PhSet.setPhase(dPhase);
 S182PhNeg.setPhase(dPhase);
 cout<<"z_freq S182
"<<S182PhSet.getFrequency()<<endl;
 }
 D1821PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1821PhNeg.setFrequency(0L);
 D1822PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1822PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D1821PhSet.setPhase(dPhase);
 D1821PhNeg.setPhase(dPhase);
 D1822PhSet.setPhase(dPhase);
 D1822PhNeg.setPhase(dPhase);
 }

 if(who_is_90==2){
 DorS_X=(count_ph==1)?1:0;
 DorS_Y=(count_rd==1)?1:0;
 DorS_Z=(count_sl==1)?1:0; //1--single 0---dule

 S90RFPulse.setInitialPhase
 (0);
 S180RFPulse.setInitialPhase (0);

 D90RFPulse.setInitialPhase (0);
 D1801RFPulse.setInitialPhase (0);
 D1802RFPulse.setInitialPhase (0);
 D1821RFPulse.setInitialPhase (0);
 D1822RFPulse.setInitialPhase (0);

 D90RFPulse.setGSAmplitude(scale_ph*y_grad);
 ss_grad_exc.setAmplitude(scale_ph*y_grad);
 ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800)
*scale_ph*y_grad / 4000));

 D1801RFPulse.setGSAmplitude(scale_rd*x_grad);
 D1802RFPulse.setGSAmplitude(scale_rd*x_grad);
 if(count_rd>1)
 ss_grad_pi_ph.setAmplitude(scale_rd*x_grad);
 else

 ss_grad_pi_ph.setAmplitude(scale_rd*x_grad/1.25);

 D1821RFPulse.setGSAmplitude(scale_sl*z_grad);
 D1822RFPulse.setGSAmplitude(scale_sl*z_grad);
 if(count_sl>1)
 ss_grad_pi_sl.setAmplitude(scale_sl*z_grad);
 else
 ss_grad_pi_sl.setAmplitude(scale_sl*z_grad/1.25);

 lfrequency = D90RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterPE()-335 ;
 if(count_ph>2)
 lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth;
 lfrequency= (long)(.5 +lfrequency);
 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 *
pMrProt->spectroscopy().dDeltaFrequency) ;

 D90PhSet.setFrequency(lfrequency);
 D90PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D90PhSet.setPhase(dPhase);
 D90PhNeg.setPhase(-lfrequency*(360./1e6) * 2600);
 if(count_ph==1){

 S90PhSet.setFrequency(lfrequency);
 S90PhNeg.setFrequency(0L);

 dPhase = - lfrequency * (360./1e6) * 2600;
 S90PhSet.setPhase(dPhase);
 S90PhNeg.setPhase(- lfrequency * (360./1e6) * 2600);
 }
 cout<<"pulse switched "<<"y_freq:"<<lfrequency<<endl;
 lfrequency = D1801RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceOffCenterRO() -335;

 if(count_rd>2)
 lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth;
 lfrequency= (long)(.5 +lfrequency);
 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 *
pMrProt->spectroscopy().dDeltaFrequency) ;
 D1801PhSet.setFrequency(lfrequency);
 D1801PhNeg.setFrequency(0L);
 D1802PhSet.setFrequency(lfrequency);
 D1802PhNeg.setFrequency(0L);

 dPhase = -lfrequency * (360./1e6) * 2600;
 D1801PhSet.setPhase(dPhase);
 D1801PhNeg.setPhase(dPhase);
 D1802PhSet.setPhase(dPhase);
 D1802PhNeg.setPhase(dPhase);

 if(count_rd==1){
 S180PhSet.setFrequency(long(ro_off_freq/1.25-335));
 S180PhNeg.setFrequency(0L);

 dPhase = - long(ro_off_freq/1.25-335) * (360./1e6) *
S180RFPulse.getDuration() * 0.5;
 S180PhSet.setPhase(dPhase);
 S180PhNeg.setPhase(dPhase);
 cout << "pulse swiched,x_freq:S180 "
<<S180PhSet.getFrequency()<<endl;
 }

 cout<<"pulse switched "<<"x_freq:"<<lfrequency<<endl;
 lfrequency = D1821RFPulse.getGSAmplitude() * larmorconst *
ss_slc.getSliceShift()-335;
 if(count_sl>2)
 lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth;
 lfrequency= (long)(.5 +lfrequency);

 lfrequency += (long)(pMrProt->txSpec().frequency() * 1E-6 *
pMrProt->spectroscopy().dDeltaFrequency) ;

 D1821PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1821PhNeg.setFrequency(0L);
 D1822PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1822PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D1821PhSet.setPhase(dPhase);
 D1821PhNeg.setPhase(dPhase);
 D1822PhSet.setPhase(dPhase);
 D1822PhNeg.setPhase(dPhase);
 if(count_sl==1){

 S182PhSet.setFrequency(long(sl_off_freq /1.25-335));
 S182PhNeg.setFrequency(0L);

 dPhase = - long(sl_off_freq /1.25-335) * (360./1e6) *
S182RFPulse.getDuration() * 0.5;
 S182PhSet.setPhase(dPhase);
 S182PhNeg.setPhase(dPhase);
 cout<<"pulse switched "<<"z_freq:
S182"<<S182PhSet.getFrequency()<<endl;
 }
 cout<<"pulse switched "<<"z_freq:"<<lfrequency<<endl;
 }

 if(who_is_90==3){
 DorS_X=(count_sl==1)?1:0;
 DorS_Y=(count_ph==1)?1:0;
 DorS_Z=(count_rd==1)?1:0; //1--single 0---dule

 ss_grad_exc.setAmplitude(scale_sl*z_grad);
 ss_grad_ref.setAmplitude(11.5- ((0.515*5200+0.5*800)
*scale_sl*z_grad / 4000));
 if(count_ph>1)
 ss_grad_pi_ph.setAmplitude(scale_ph*y_grad);
 else
 ss_grad_pi_ph.setAmplitude(scale_ph*y_grad/1.25);
 if(count_rd>1)
 ss_grad_pi_sl.setAmplitude(scale_rd*x_grad);
 else
 ss_grad_pi_sl.setAmplitude(scale_rd*x_grad/1.25);

 lfrequency= sl_off_freq*scale_sl-335;
 if(count_sl>2)
 lfrequency+=(-3.0/2*scale_sl+count_sl-
0.5)*RFBandwidth;

 D90PhSet.setFrequency(lfrequency);
 D90PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D90PhSet.setPhase(dPhase);
 D90PhNeg.setPhase(-lfrequency*(360./1e6) * 2600);
 if(count_sl==1){

 S90PhSet.setFrequency(lfrequency);
 S90PhNeg.setFrequency(0L);

 dPhase = -lfrequency * (360./1e6) * 2600;
 S90PhSet.setPhase(dPhase);
 S90PhNeg.setPhase(dPhase);
 }

 cout << "pulse swiched to 3: z_freq" <<lfrequency<<endl;
 lfrequency= ph_off_freq*scale_ph-335;

 if(count_ph>2)
 lfrequency+=(-3.0/2*scale_ph+count_ph-
0.5)*RFBandwidth;
 D1801PhSet.setFrequency(lfrequency);
 D1801PhNeg.setFrequency(0L);
 D1802PhSet.setFrequency(lfrequency);
 D1802PhNeg.setFrequency(0L);

 dPhase = -lfrequency * (360./1e6) * 2600;
 D1801PhSet.setPhase(dPhase);
 D1801PhNeg.setPhase(dPhase);
 D1802PhSet.setPhase(dPhase);
 D1802PhNeg.setPhase(dPhase);

 if(count_ph==1){
 S180PhSet.setFrequency(long(ph_off_freq /1.25-335));
 S180PhNeg.setFrequency(0L);

 dPhase = - long(ph_off_freq /1.25-335) * (360./1e6) *
S180RFPulse.getDuration() * 0.5;
 S180PhSet.setPhase(dPhase);
 S180PhNeg.setPhase(dPhase);

 cout << "pulse swiched to 3:y_freq, S180 " <<
S180PhSet.getFrequency() <<endl;
 }
 cout << "pulse swiched to 3: y_freq " << lfrequency<<endl;
 lfrequency= ro_off_freq*scale_rd-335;

 if(count_rd>2)
 lfrequency+=(-3.0/2*scale_rd+count_rd-
0.5)*RFBandwidth;

 D1821PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1821PhNeg.setFrequency(0L);
 D1822PhSet.setFrequency(lfrequency);
/*! EGA-05 !*/
 D1822PhNeg.setFrequency(0L);
 dPhase = -lfrequency * (360./1e6) * 2600;
 D1821PhSet.setPhase(dPhase);
 D1821PhNeg.setPhase(dPhase);
 D1822PhSet.setPhase(dPhase);
 D1822PhNeg.setPhase(dPhase);
 if(count_rd==1){

 S182PhSet.setFrequency(long(ro_off_freq/1.25-335));
 S182PhNeg.setFrequency(0L);

 dPhase = - long(ro_off_freq/1.25-335)* (360./1e6) *
S182RFPulse.getDuration() * 0.5;
 S182PhSet.setPhase(dPhase);
 S182PhNeg.setPhase(dPhase);
 cout << "pulse swiched to 3:x_freq, S182 " <<
S182PhSet.getFrequency() <<endl;
 }
 cout << "pulse swiched to 3: x_freq " << lfrequency<<endl;
 }

 for(i=0; i<n_ave; i++){
 D1801_2=k%2;
 //D1801_2=0;
 ss_adc1.Mdh.setCset(i); // averages

 ss_adc1.Mdh.setClin(count_rd-1);
 ss_adc1.Mdh.setCphs(count_ph-1);
 ss_adc1.Mdh.setCseg(count_sl-1);

 // ss_adc1.Mdh.setFirstScanInSlice(!i && !j);
 // ss_adc1.Mdh.setLastScanInSlice(j==(n_rd*n_ph*n_sl)-1 &&
i==(n_ave-1));

 lStatus = fSEQRunKernel(pMrProt, pSeqLim, pSeqExpo,
KERNEL_CHECK);
 CheckStatusPR(lStatus,"fSEQRunKernel");
 }

 }
 }

 if(k < (n_rep-1)){
 CheckStatusPB (lStatus = fSBBMeasRepetDelaysRun(pMrProt, pSeqLim,
pSeqExpo, k),"fSBBMeasRepetDelaysRun");

 }

 } // end repetition loop

…

/*[Function
**\
*
* Name : fSEQRunKernel
*
* Description : Executes the basic timing of the real-time sequence.
* This function is called by the function (libSBB)fSEQRunStd.
*
* Return : An NLS status code.
*

…

/************************************* S E Q U E N C E T I M I N G
*************************************/
/* Start Time | NCO | SRF | ADC | Gradient Events | Sync
*/
/* (usec) | Event | Event | Event | phase | read | slice | Event */
/*fRTEI(, , , , , , ,); [Clock]*/
/***
….

 if(who_is_90==1)
 fRTEI(lT, 0, 0, /*A*/ 0, 0, &ss_grad_exc,0,0);
 if(who_is_90==2)
 fRTEI(lT, 0, 0, /*A*/ 0,
&ss_grad_exc,0,0,0);
 if(who_is_90==3)
 fRTEI(lT, 0, 0, /*A*/ 0, 0,
0,&ss_grad_exc,0);

 if(!DorS_X){
 fRTEI(lT+= (ss_grad_exc.getDuration() - D90RFPulse.getDuration()),
&D90PhSet, &D90RFPulse,0,/*A*/0,0,0,0);
 if(who_is_90==1)
 fRTEI(lT+= (D90RFPulse.getDuration()),
&D90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_grad_ref,&ss_sp1_sl,0);
 if(who_is_90==2)
 fRTEI(lT+= (D90RFPulse.getDuration()),
&D90PhNeg,0,/*A*/0,&ss_grad_ref,&ss_sp1_ph,&ss_sp1_sl,0);
 if(who_is_90==3)
 fRTEI(lT+= (D90RFPulse.getDuration()),
&D90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_sp1_sl,&ss_grad_ref,0);

 }
 else{
 fRTEI(lT+= (ss_grad_exc.getDuration() - S90RFPulse.getDuration()),
&S90PhSet, &S90RFPulse,0,/*A*/0,0,0,0);
 if(who_is_90==1)
 fRTEI(lT+= (S90RFPulse.getDuration()),
&S90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_grad_ref,&ss_sp1_sl,0);
 if(who_is_90==2)

 fRTEI(lT+= (S90RFPulse.getDuration()),
&S90PhNeg,0,/*A*/0,&ss_grad_ref,&ss_sp1_ph,&ss_sp1_sl,0);
 if(who_is_90==3)
 fRTEI(lT+= (S90RFPulse.getDuration()),
&S90PhNeg,0,/*A*/0,&ss_sp1_ph,&ss_sp1_sl,&ss_grad_ref,0);

 }

 // slice select rephasing, 1st refocussing pulse

 if(who_is_90==2)
 fRTEI(lT+= (ss_sp1_sl.getDuration()), 0,0,/*A*/0,0,&ss_grad_pi_ph, 0,0);
 else
 fRTEI(lT+= (ss_sp1_sl.getDuration()), 0,0,/*A*/0,&ss_grad_pi_ph, 0,0,0);

 if(!DorS_Y){
 if(D1801_2){
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &D1801PhSet,
&D1801RFPulse, 0,0,0,0,0);
 fRTEI(lT+= (RFDuration), &D1801PhNeg, 0,0,
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);
 }
 else{
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &D1802PhSet,
&D1802RFPulse, 0,/*A*/0,0,0,0);
 fRTEI(lT+= (RFDuration), &D1802PhNeg, 0,/*A*/0,
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);
 }

 }
 else{
 fRTEI(lT+= (ss_grad_pi_ph.getRampUpTime()), &S180PhSet, &S180RFPulse,
0,/*A*/0,0,0,0);
 fRTEI(lT+= (RFDuration), &S180PhNeg, 0,/*A*/0,
&ss_sp1_ph,&ss_sp1_ro,&ss_sp1_sl,0);
 }

 // 2nd refocussing pulse

 fRTEI(lT+= (ss_sp1_sl.getDuration() + ss_sp1_sl.getRampDownTime() + sl_trueTE1),
 0,0,/*A*/0,&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);

 // hier wird der 2.Spoiler angeschaltet
 if(who_is_90==3)
 fRTEI(lT+= (ss_sp2_sl.getDuration()), 0,0,/*A*/0,0,&ss_grad_pi_sl,0, 0);
 else
 fRTEI(lT+= (ss_sp2_sl.getDuration()), 0,0,/*A*/0,0,0,&ss_grad_pi_sl, 0);
 if(!DorS_Z){
 if(D1801_2){
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &D1821PhSet,
&D1821RFPulse, 0,0,0,0,0);
 fRTEI(lT+= (RFDuration), &D1821PhNeg, 0,0,
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);
 }
 else{
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &D1822PhSet,
&D1822RFPulse, 0,/*A*/0,0,0,0);
 fRTEI(lT+= (RFDuration), &D1822PhNeg, 0,/*A*/0,
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);
 }
 }
 else{
 fRTEI(lT+= (ss_grad_pi_sl.getRampUpTime()), &S182PhSet, &S182RFPulse,
0,/*A*/0,0,0,0);
 fRTEI(lT+= (RFDuration), &S182PhNeg, 0,/*A*/0,
&ss_sp2_ph,&ss_sp2_ro,&ss_sp2_sl,0);
 }
 // acquisition

 //fRTEI(lT+= (ss_sp2_sl.getDuration() + ss_sp2_sl.getRampDownTime() + sl_trueTE2
 // /* - pMrProt->spectroscopy().acquisitionDelay()*/),
&ss_ph_s_adc,0,&ss_adc1,0,0,0,0);
 fRTEI(lT+= (ss_sp2_sl.getDuration() + ss_sp2_sl.getRampDownTime() +
sl_aqu_fill_before), &ss_ph_s_adc,0,&ss_adc1,0,0,0,0);

 // final spoiling

 // fRTEI(lT+=(1000 +
ss_adc1.getRoundedDuration(GRAD_RASTER_TIME)),&ss_ph_n_adc,0,0,
&ss_finsp_ro, &ss_finsp_ph, &ss_finsp_sl, 0);
 fRTEI(lT+=(1000 + ss_adc1.getRoundedDuration(GRAD_RASTER_TIME) +
sl_aqu_fill_after),&ss_ph_n_adc,0,0, &ss_finsp_ro, &ss_finsp_ph, &ss_finsp_sl, 0);
 fRTEI(lT+=(ss_finsp_sl.getDuration() + ss_finsp_sl.getRampDownTime()),
0,0,0,0,0,0,0);

 if(WAIT){
 // if(Y<2)
 dt=pMrProt->tr()[0]-lT-lTextra;
// else
// dt=pMrProt->tr()[0]-lT*(Y-1)-lTextra;
// dt=dt>0?dt:0;
 fRTEI(lT+= dt, 0,0,0,0,0,0,0);
 }

 ///
 // do testing and close the event block
 ///

 mSEQTest(pMrProt, pSeqLim, pSeqExpo, RTEB_ClockCheck, 10, 0 /*lLine*/,
0/*lSliceIndex*/, 0, 0) ;
 mSEQTest(pMrProt, pSeqLim, pSeqExpo, ulTestIdent , 10, 0/*lLine*/,
0/*lSliceIndex*/, 0, 0) ;
 CheckStatusPB(lStatus = fRTEBFinish(),"fRTEBFinish [*0010*]");

FINISHED:

 return(lStatus);
}

Appendix B WESI Reconstruction Code

nx=4;
ny=4;
nz=1;
average=16;
vector_size=1024;
TE=75; % ms
ADCBandwidth=2000; %Hz

[filename , pathname] = uigetfile('*.dat', 'Select an DAT file')
filename=[pathname, filename];
fid = fopen(filename,'r');

 SI=WLCons(90, nx);
 SI=fliplr(SI);

 VI=WLCons(180,ny);
 V2I=WLCons(180,nz);

bytes_to_skip = fread(fid, 1, 'uint32');
fseek(fid,bytes_to_skip,'bof');

A = fread(fid,'float32');
samplesbeforeecho=floor((0.5*TE*1000-1.5*5200-4800-4800-
300)*ADCBandwidth/1000000)+1;
no_samples=ceil((samplesbeforeecho+vector_size+8)/16)*16 ;
fillup=no_samples-samplesbeforeecho-vector_size-8;
no_samples=no_samples+16
AA=A(33:length(A));
B=zeros(1,2*nx*ny*nz*vector_size*average);
offset=1;
for (i=1:nx*ny*nz*average)

 temp=AA((i-1)*2*(no_samples)+1+samplesbeforeecho*2:(i-
1)*2*(no_samples)+vector_size*2+samplesbeforeecho*2);
 B(offset:offset+vector_size*2-1)=temp;
 offset=offset+vector_size*2;
end

N= B(1:2:length(B))+sqrt(-1)*B(2:2:length(B));

no_samples=vector_size;
M=reshape(N,no_samples,nx*ny*nz,average);

M=mean(M,3);

M=reshape(M,no_samples,nx*ny*nz);

wesi=M(:,1);
headers=getHeader2(nx,ny,nz);
data=zeros(no_samples,nx,ny,nz);

offset=1;
for i=1:nx*ny*nz
 headers(i,:)

data(:,headers(i,1),headers(i,2),headers(i,3))=M(offset:offset+no_sampl
es-1);
 offset=offset+no_samples;
end
clear M;
M=data;

data=zeros(size(M));
for i = 1:no_samples
 temp = reshape(M(i,:,:,:),nx,ny,nz) ; %(s , v , v_2)
 temp = transpose3D_3(temp); %(v2, s, v)
 % disp(temp);
 temp = times3D(inv(SI),temp); %(v2 , s , v)
 temp = transpose3D_2(temp); %(v,s,v2)
 % disp(temp);
 temp = times3D(inv(VI),temp); %(v , s , v_2)
 temp = transpose3D(temp); %(s,v,v2)
 % disp(temp);
 temp = times3D(inv(V2I),temp); %(s , v , v_2)
 temp = transpose3D_2(temp);
 % disp(temp);

 % this is an error
 data(i,:,:,:) = temp;
end

fdata=zeros(size(data));
data2rda=zeros(size(data));
cnt=0;
for k=1:nz
 figure;
hold on;
 for j=1:ny
 for i=1:nx
 cnt=mod(cnt+1,nx*ny);
 if(cnt==0)
 cnt=nx*ny;
 end

 fdata(:,i,j,k)=fftshift(fft((data(:,i,j,k))));
 data2rda(:,i,j,k)=conj(data(:,i,j,k))*10000;
 h=subplot(ny,nx,cnt);
 hold on;
 y=fdata(320:480,i,j,k);

 plot(real(y*1000));
 hold on
 plot(imag(y*1000),'r');

set(gca,'YLim',[-0.5 0.5]*1.5); axis('off');
 end
 end
end

function wavelet=WLCons(intensity)
dilation=log2(intensity);
wavelet=zeros(intensity,intensity);
scale=intensity;
translation=0;
rowdone=1;
wavelet(1,:)=ones(1,intensity);
for i=2:1:intensity
 k=log2(intensity/scale);
 for j=1:1:intensity
 if(translation<j &j<=translation+scale/2)
 wavelet(i,j)=1;
 end
 if(translation+scale/2<j&j<=translation+scale)
 wavelet(i,j)=-1;
 end
 if(j==translation+scale)
 translation=translation+scale;
 reak; b
 end
 end

 if(i==rowdone+intensity/scale)
 scale=scale/2;
 translation=0;
 rowdone=i;
 end
end

function A = transpose3D(M)
% switches the second and first elements.

for i = 1:size(M,3)
 for j=1:size(M,2)
 for k=1:size(M,1)
 A(j,k,i) = M(k,j,i);
 end
 end
end

function A = transpose3D_2(M)
% switches the first and third elements

for j = 1:size(M,2)
 for i=1:size(M,3)
 for k=1:size(M,1)
 A(i,j,k) = M(k,j,i);
 end
 end
end
function A = transpose3D_3(M)
% switches the third and second values

for j = 1:size(M,1)
 for i=1:size(M,2)
 for k=1:size(M,3)
 A(j,k,i) = M(j,i,k);
 nd e
 end
end

function A = times3D(M,N)
% multiplies together 2 3D matrices.

for i = 1:size(N,3)
 for j=1:size(N,2)
 A(:,j,i) = M * N(:,j,i);
 end

end

function b=getHeader2(nx,ny,nz)

% nx=8;
% ny=8;
% nz=4;

a=zeros(1,32*32*32);
b=zeros(nx*ny*nz,3);

cnt=0;
for i=0:nx*ny*nz-1
 m=find(a(1:nx*ny*nz)==0);

 if(numel(m)==0)
 break;
 end

 i=m(1)-1;
 xii=mod(i,nx)+1;
 xjj=mod(floor(i/nx),ny)+1;
 xkk=floor(i/nx/ny)+1;
 % a(ii,jj,kk)=1;

 scale_x=ceil(log2(xii));
 scale_y=ceil(log2(xjj));
 scale_z=ceil(log2(xkk));
 scales=[scale_x scale_y scale_z];
 for i=1:3
 if(scales(i)<1)
 scales(i)=1;
 end
 end
 scales=2.^(scales-1);
 scale_x=scales(1);
 scale_y=scales(2);
 scale_z=scales(3);
 [Y,who_is_90]=max(scales);

 if(who_is_90==1)
 if(scale_y>=scale_z)
 myflag=1;
 scale_1=scale_x;
 scale_2=scale_y;
 scale_3=scale_z;
 ii=xii;
 jj=xjj;
 kk=xkk;
 else
 myflag=2;
 scale_1=scale_x;
 scale_2=scale_z;
 scale_3=scale_y;
 ii=xii;
 jj=xkk;
 kk=xjj;
 nd e
 end
 if(who_is_90==2)
 if(scale_x>=scale_z)
 myflag=3;
 scale_1=scale_y;
 scale_2=scale_x;
 scale_3=scale_z;
 ii=xjj;
 jj=xii;
 kk=xkk;
 else
 myflag=4;

 scale_1=scale_y;
 scale_2=scale_z;
 scale_3=scale_x;
 ii=xjj;
 jj=xkk;
 kk=xii;
 end
 end
 if(who_is_90==3)
 if(scale_x>=scale_y)
 myflag=5;
 scale_1=scale_z;
 scale_2=scale_x;
 scale_3=scale_y;
 ii=xkk;
 jj=xii;
 kk=xjj;
 else
 myflag=6;
 scale_1=scale_z;
 scale_2=scale_y;
 scale_3=scale_x;
 ii=xkk;
 jj=xjj;
 kk=xii;
 nd e
 end

 [xii xjj xkk]

 for j=0:Y-1
 cnt=cnt+1;

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

 if(scale_1>1)
 p=mod(ii+j,scale_1);
 if p==0
 p=scale_1;
 end

 p=p+scale_1;

 else
 p=ii;
 end
 %%%
 if(scale_3>1)
 q=mod(jj+j,scale_3);
 if(q==0)
 q=scale_3;
 end
 % q=q+floor(j/scale_3)*scale_3;

 q=mod(q,scale_2);
 if(q==0)
 q=scale_2;
 end
% mod(jj+j,scale_3)
% floor(j/scale_3)
% scale_3
 q=q+scale_2;

 else
 q=jj;
 end
 %%
 if(scale_3>1)
 r= mod(kk+j,scale_3);
 if(r==0)
 r=scale_3;
 end

 r=r+scale_3;

 else
 r=kk;
 end

 if(myflag==2)
 temp=q;
 q=r;
 r=temp
 end
 if(myflag==3)
 temp=p;
 p=q;
 q=temp;
 end
 if(myflag==4)
 temp=p;
 p=r;
 r=q;
 q=temp;
 end
 if(myflag==5)
 temp=p;
 p=q;
 q=r;
 r=temp;
 end
 if(myflag==6)
 temp=p;
 p=r;
 r=temp;
 end

 % p+(q-1)*nx+(r-1)*nx*ny
 if(a(p+(q-1)*nx+(r-1)*nx*ny)==1)

 if(myflag==1)
 q=q+scale_3;
 end
 if(myflag==2)
 r=r+scale_3;
 end
 if(myflag==3)
 p=p+scale_3;
 end
 if(myflag==4)
 r=r+scale_3;
 end
 if(myflag==5)
 p=p+scale_3;
 end
 if(myflag==6)
 q=q+scale_3
 end
 end

 a(p+(q-1)*nx+(r-1)*nx*ny)=1;

 b(cnt,1)=p;
 b(cnt,2)=q;
 b(cnt,3)=r;
% if(who_is_90==1)
%
% b(:,(q-Y-1)*(ny/Y)+1:(q-Y)*(ny/Y),:)

 end
end

Appendix C Code for Online Analysis

%
clc;
[filename , pathname] = uigetfile('*.spectro', 'Select an RDA file')
nx=8;
ny=1;
nz=1;
output_filename=[pathname, filename];
outfile=fopen(output_filename,'w');
 % for m=1:2
 for k=1:nz
 for j=1:ny
 for i=1:nx
 for n=1:1024
 fwrite(outfile,real(data2rda(n,i,j,k))*1,'float32','ieee-le');
 fwrite(outfile,imag(data2rda(n,i,j,k))*1,'float32','ieee-le');
 end
 end
 end
 end
% end

fclose all;

Appendix D Code for LCModel Analysis

%
% Read spectroscopy data from Siemens machine
%
% Read a .rda file
%
%
clc;
[filename , pathname] = uigetfile('*.rda', 'Select an RDA file')
rda_filename = [pathname , filename]; %'c:/data/spectroscopy/spec raw
data/MrSpec.20020531.160701.rda'

fid = fopen(rda_filename);
myfilename=sprintf('modified_%s',filename);
output_filename=[pathname, myfilename];
outfile=fopen(output_filename,'w');

head_start_text = '>>> Begin of header <<<';
head_end_text = '>>> End of header <<<';

tline = fgets(fid)
fwrite(outfile,tline);
while (isempty(strfind(tline , head_end_text)))

 tline = fgets(fid)
 fwrite(outfile,tline);
 if (isempty(strfind (tline , head_start_text)) + isempty(strfind
(tline , head_end_text)) == 2)

 % Store this data in the appropriate format

 occurence_of_colon = findstr(':',tline);
 variable = tline(1:occurence_of_colon-1) ;
 value = tline(occurence_of_colon+1 : length(tline)) ;

 switch variable
 case { 'PatientID' , 'PatientName' , 'StudyDescription' ,
'PatientBirthDate' , 'StudyDate' , 'StudyTime' , 'PatientAge' ,
'SeriesDate' , ...
 'SeriesTime' , 'SeriesDescription' , 'ProtocolName'
, 'PatientPosition' , 'ModelName' , 'StationName' , 'InstitutionName' ,
...
 'DeviceSerialNumber', 'InstanceDate' ,
'InstanceTime' , 'InstanceComments' , 'SequenceName' ,
'SequenceDescription' , 'Nucleus' ,...
 'TransmitCoil' }
 eval(['rda.' , variable , ' = value ']);
 case { 'PatientSex' }
 % Sex converter! (int to M,F,U)
 switch alue v
 case 0

 rda.sex = 'Unknown';
 case 1
 rda.sex = 'Male';
 case 2

 rda.sex = 'Female';
 end

 case { 'SeriesNumber' , 'InstanceNumber' , 'AcquisitionNumber'
, 'NumOfPhaseEncodingSteps' , 'NumberOfRows' , 'NumberOfColumns' ,
'VectorSize' }
 %Integers
 eval(['rda.' , variable , ' = str2num(value) ']);
 case { 'PatientWeight' , 'TR' , 'TE' , 'TM' , 'DwellTime' ,
'NumberOfAverages' , 'MRFrequency' , 'MagneticFieldStrength' ,
'FlipAngle' , ...
 'SliceThickness' , 'FoVHeight' , 'FoVWidth' ,
'PercentOfRectFoV' , 'PixelSpacingRow' , 'PixelSpacingCol'}
 %Floats
 eval(['rda.' , variable , ' = str2num(value) ']);
 case {'SoftwareVersion[0]' }
 rda.software_version = value;
 case {'CSIMatrixSize[0]' }
 rda.CSIMatrix_Size(1) = str2num(value);
 case {'CSIMatrixSize[1]' }
 rda.CSIMatrix_Size(2) = str2num(value);
 case {'CSIMatrixSize[2]' }
 rda.CSIMatrix_Size(3) = str2num(value);
 case {'PositionVector[0]' }
 rda.PositionVector(1) = str2num(value);
 case {'PositionVector[1]' }
 rda.PositionVector(2) = str2num(value);
 case {'PositionVector[2]' }
 rda.PositionVector(3) = str2num(value);
 case {'RowVector[0]' }
 rda.RowVector(1) = str2num(value);
 case {'RowVector[1]' }
 rda.RowVector(2) = str2num(value);
 case {'RowVector[2]' }
 rda.RowVector(3) = str2num(value);
 case {'ColumnVector[0]' }
 rda.ColumnVector(1) = str2num(value);
 case {'ColumnVector[1]' }
 rda.ColumnVector(2) = str2num(value);
 case {'ColumnVector[2]' }
 rda.ColumnVector(3) = str2num(value);

 otherwise
 % We don't know what this variable is. Report this just to
keep things clear
 disp(['Unrecognised variable ' , variable]);
 end

 else
 % Don't bother storing this bit of the output
 end

end

%
% So now we should have got to the point after the header text
%
% Siemens documentation suggests that the data should be in a double
complex format (8bytes for real, and 8 for imaginary?)
%

bytes_per_point = 16;
complex_data = fread(fid , rda.CSIMatrix_Size(1) *
rda.CSIMatrix_Size(1) *rda.CSIMatrix_Size(1) *rda.VectorSize * 2 ,
'double');

%fread(fid , 1, 'double'); %This was a check to confirm that we had
read all the data (it passed!)

fclose(fid);

% Now convert this data into something meaningful

 %Reshape so that we can get the real and imaginary separated
 hmm = reshape(complex_data, 2 , rda.VectorSize ,
rda.CSIMatrix_Size(1) , rda.CSIMatrix_Size(2) , rda.CSIMatrix_Size(3)
);

 %Combine the real and imaginary into the complex matrix
 hmm_complex = complex(hmm(1,:,:,:,:),hmm(2,:,:,:,:));

 %Remove the redundant first element in the array
 Time_domain_data = reshape(hmm_complex, rda.VectorSize ,
rda.CSIMatrix_Size(1) , rda.CSIMatrix_Size(2) ,
rda.CSIMatrix_Size(3));

% for k=1:rda.CSIMatrix_Size(3)
% for j=1: rda.CSIMatrix_Size(2)
% for i=1:rda.CSIMatrix_Size(1)
% fdata(:,i,j,k)=fftshift(fft(conj(
Time_domain_data(:,i,j,k))));
% end
% end
% end
%

 %riplot(Time_domain_data(:,1,1,1))
 %% insert the time domain data here
 for l=1:4
 for n=1:4
 for j=1:4
 for k=1:1024
 fwrite(outfile,real(data2rda(k,j,n,1)),'double');

 fwrite(outfile,imag(data2rda(k,j,n,1)),'double');
 end
 end
 end
 end

fclose all;

	by
	Master of Science

