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Abstract

In this thesis, we study how a meta-analysis of genetic association studies is influenced

by the degree of genotype imputation uncertainty in the studies combined and the

size of meta-analysis. We consider the fixed effect meta-analysis model to evaluate the

accuracy and efficiency of imputation-based meta-analysis results under different levels

of imputation accuracy. We also examine the impact of genotype imputation on the

between-study heterogeneity and type 1 error in the random effects meta-analysis model.

Simulation results reaffirm that meta-analysis boosts the power of detecting genetic

associations compared to individual study results. However, the power deteriorates with

increasing uncertainty in imputed genotypes. Genotype imputation affects a random

effects meta-analysis in a non-obvious way as estimation of between-study heterogeneity

and interpretation of association results depend heavily on the number of studies

combined. We propose an adjusted fixed effect meta-analysis approach for adding

imputation-based studies to a meta-analysis of existing typed studies in a controlled

way to improve precision and reliability. The proposed method should help in designing

an effective meta-analysis study.

KEY WORDS: Between-study heterogeneity; Dosage test; Effect size; Genotype

imputation; Inverse-variance weighting method
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Chapter 1

Introduction

1.1 Background and Motivation

Genome-wide association studies (GWAS) are large population based studies that

analyze a large number of genetic variants in the human genome for their relationship

with a common disease or related traits. Prior to inception of GWAS, the major method

of association testing was through genetic linkage in the family based studies. The

linkage-based methods were highly successful with single-gene (monogenic) diseases,

however, the same could not be replicated for common and complex multi-gene (poly-

genic) diseases. A proposed solution was GWAS, which boost the detection power,

hence attain better performance than the linkage studies in finding genetic asociations

for complex diseases (Altmüller et al., 2001).

GWAS have successfully identified many genetic variants underlying many diseases.

Examples include the very first GWAS that assessed age-related macular degeneration

in patients (Haines et al., 2005) and the largest GWAS so far that investigated multiple

diseases such as the coronary heart disease, type 1 diabetes, type 2 diabetes, rheumatoid

arthritis, Crohn’s disease, bipolar disorder, and hypertension (WTCCC, 2007). A
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simple Google Scholar search for “Genome-wide Association Study” yields about 52, 000

scholarly published articles in all times, with 3, 100 articles published in 2014 alone.

Despite the breakthrough of GWAS, the success in finding locations of genetic

variations for traits of interest have been moderate. This is because the effect sizes

of common variants are not large enough, and as a result, GWAS often have inflated

type 1 error and low power (Li et al., 2012; Begum et al., 2012). Thus, GWAS must

have relatively larger number of individuals for a desired detection power in discovering

weaker genetic variants (Altshuler and Daly, 2007). Obtaining tens of thousands of

individuals who are to be genotyped for hundreds of thousands to millions of genetic

variants may not be feasible because of the laborious work of genoyping as well as high

costs involved in the process. Genotype imputation offers one way of maintaining a

large study size at a much lower cost.

Genotype imputation is a method of estimating variants, thereby allowing researchers

to assess markers that are not directly genotyped in a study, or have missing values on

some study individuals. It increases the number of variants to be tested for association

while maintaining the sample size, hence boosts the detection power of GWAS in

comparison to the case of no imputation. However, due to uncertainty arising from

the probabilistic design of imputation methods, analysis based on imputed data fails

to be as powerful as the ideal one that uses directly genotyped data. Thus, genotype

imputation alone is not sufficient to address the problem of detecting risk variants with

small effect sizes and/or lower risk allele frequencies.

A more powerful and cost-effective solution is to perform meta-analysis, a statistical

technique that allows combining information across several independent studies. In the

recent past, there have been considerable joint research efforts to amalgamate results

from multiple GWAS into an extensive genome-wide meta-analysis which results in a

larger sample size and an improved detection power (de Bakker et al., 2008; Begum et al.,
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2012). While it has been proven successful in finding variants associated with common

diseases such as Crohn’s disease (Franke et al., 2010), rheumatoid arthritis (Stahl

et al., 2010) and Parkinson’s disease (Nalls et al., 2011), genome-wide meta-analysis

has its own limitations. A major one is that because different GWAS use different

genotyping array platforms (e.g., Affymetrix, Illumina), their set of genetic markers

under investigation may not coincide with one another. Hence, even though these

studies address the same research problem and employ same or similar methodologies,

their results would not be combinable in a genome-wide level. Genotype imputation

offers a natural strategy to overcome this challenge by imputing the variants that are

genotyped in different platforms.

As noted earlier, imputation introduces uncertainty in genotypes, which results

in a remarkable reduction of detection power of GWAS. This subsequently reduces

the detection power of a genome-wide meta-analysis. By the fact that including more

studies in meta-analysis also boosts power brings two conflicting effects into the whole

meta-analysis process whose overall effect is not clearly understood. This has motivated

the research in this thesis.

In recent years, there have been a number of publications on meta-analysis of

genetic studies and various factors surrounding it (e.g., Sterne et al., 2000; Higgins

et al., 2003), yet only few have addressed the impact of imputation. Zaitlen and Eskin,

2010 proposed the so-called imputation aware meta-analysis approach for case-control

studies. Under the assumption of fixed effects, their method uses adjusted weights in the

classical weighted sum of z-scores statistic (see Section 1.2) to control the contribution of

imputation-based studies. The weight adjustment they suggest is based on the Pearson’s

correlation coefficient between the true and imputed genotypes, which quantifies the

imputation quality. In as much as it improves the detection power in comparison to

the standard approach, this method is yet to be implemented for quantitative traits,
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studies with varying true effects sizes, as well as being replicated in other meta-analysis

approaches.

Another work that has investigated the impact of imputation on meta-analysis was

Li et al., 2012. Through simulations based on data from Framingham Heart Study, they

found that for studies with a common true effect size, imputation induces considerable

between-study heterogeneity, which in turn results in power reduction. They further

considered a setting where studies have different true effect sizes, and concluded that

the random effects model provides a better strategy for imputation-based meta-analysis

as it accounts for between-study heterogeneity, irrespective of whether it is structural

or induced.

In both papers, the empirical findings were based on meta-analysis of limited size;

three studies in Li et al., 2012 and only two in Zaitlen and Eskin, 2010. Since the

size of meta-analysis drastically affects both the detection power and the estimation

of between-study heterogeneity, settings with more studies are needed for conclusive

results. We, therefore, extensively explore the impact of imputation on genome-wide

meta-analysis using a relatively large number of studies in our simulation experiments.

A further inclusion in our experiments is the consideration of the degree of imputation

accuracy, which neither work carefully assessed. As expected, the detection power of

meta-analysis deteriorates with increasing uncertainty in the imputed data, suggesting

that an adjustment strategy is necessary to reach valid conclusions.

Li et al., 2012 studied imputation-based meta-analysis for quantitative traits under

both fixed effect and random effects models, but did not consider any adjustment on

imputation quality. Zaitlen and Eskin, 2010, on the other hand, proposed a re-weighting

scheme in their imputation-aware meta-analysis approach, but only for case-control

studies with a common true effect size. In this thesis, we adapt the latter approach in

the fixed effect meta-analysis, with some modifications using studies with quantitative
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traits.

Our new re-weighting approach achieves a better detection power relative to the

traditional approaches. Although the improvement is slight in the cases studied, our

work provides a better understanding of, and treatment for, the impact of genotype

imputation on meta-analysis of quantitative traits. We also assess the impact of

genotype uncertainty on the type 1 error in the random effects meta-analysis. We

observe that genotype uncertainty reduces the between-study heterogeneity as a result

of reduced individual studies’ effect sizes. Moreover, uncertainty affects the type 1 error

of a random effects meta-analysis in a way that has no clear pattern. We focus on single

marker tests in our analyses. However, the methods can be extended, with additional

work, to GWAS settings where several markers are jointly tested.

In the remaining of this chapter, we first review statistical methods employed in

meta-analysis, and then explain some basic genetics concepts together with common

assumptions and genetic models in GWAS setting.

1.2 An Overview of Meta-analysis Methods

Meta-analysis refers to quantitative methods used to combine summary results of

independent studies and to investigate between-study heterogeneity. Meta-analysis

applications have evolved over a period of time. While some of the early statistical

work goes back to Pearson, 1904, the framework for a formal anaysis is mainly due to

Cochran, 1937 and Fisher, 1932. A relatively recent influential work is DerSimonian

and Laird, 1986, which is credited with popularizing the use of meta-analysis in clinical

trials. Besides their wide use in clinical practice, meta-analysis methods have been

applied to agricultural experiments (e.g., Cochran, 1937), observational studies (e.g.,

Stroup et al., 2000), and lately, genetic studies (e.g., Ioannidis et al., 2001).
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Meta-analysis uses a common measure of strength among studies, known as effect

size, for amalgamation of study results. Effect sizes are obtained from a study’s data

using inferential statistics such as z-scores, p-values, log odds ratio, mean difference and

model coefficients. A weighted mean of the effect sizes is often the outcome of interest

in a meta-analysis (DerSimonian and Laird, 1986; Thompson et al., 2011), which can

be inferred using different methods as detailed in Section 1.2.2.

1.2.1 Strengths and Limitations

Meta-analysis has an obvious comparative advantage over an analysis based on a

single study. It aggregates results from many studies, hence, in essence, uses more

information to address the problem of interest. This makes meta-analysis particularly

attractive for discerning small effects, which would often be missed by individual studies,

especially when conducted on a limited budget. Meta-analysis also allows researchers to

investigate existence of structural and/or variational differences between studies. Once

detected, such differences can usually be incorporated into meta-analysis in a flexible

way. Furthermore, most meta-analysis approaches can easily handle addition of newly

available study results, which essentially improves the accuracy and precision of overall

summary estimates.

Despite its proven strengths, meta-analysis has several limitations. A major issue is

the selection of studies to be used for a meta-anlysis, since the results highly depend

on the studies selected. Meta-analysis often relies on results from successful studies of

published literature. However, there exist many studies that are never published largely

because of insignificant results, language bias, familiarity bias or due to inconclusive

results by the authors (Rothstein et al., 2005; Kavvoura and Ioannidis, 2008). This

selection of studies for publication is known as publication bias.

Publication bias may result in false positives, therefore it requires some serious

6



attention in a meta-analysis. Most available tools to detect publication bias are graphical,

such as funnel plot (Light, 1984; Egger et al., 1997) and Galbraith plot (Galbraith,

1988). To counter the effect of publication bias, there have been serious efforts to

include unpublished studies in a meta-analysis. To some extent, this has been enabled

through collaborations in consortia and global networking among researchers (Walker

et al., 2008). See, for instance, the Cochrane Collaboration (CC). Other common

meta-analysis issues include validity of individual study data and results, population

stratification and conflicts of interest of the studies underlying a meta-analysis study

(Kavvoura and Ioannidis, 2008; Roseman et al., 2011). These aspects need careful

examination prior to any meta-analysis.

1.2.2 Methods

Depending on the type of available study summaries and the model assumptions, meta-

analysis methods can be classified into three major categories: p-value based approaches,

fixed effect meta-analysis and random-effects meta-analysis.

p-value based approaches The Fisher’s p-value approach (Fisher, 1932) is the

simplest method of aggregating results across several studies. It uses the individual

study p-values to combine the underlying studies, hence can be used when the effect

sizes are not readily available. Given k independent studies, the Fisher approach uses

the test statistic

x2 = −2
k∑
j=1

ln(pj),

where pj is the p-value of the jth study. Under the null hypothesis of “no effect”, the

test statistic follows a χ2 distribution with 2k degrees of freedom. The p-value of the

meta-analysis is given by Pr(X2 > x2).
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The major pitfall of this method is that it treats the p-values unevenly. To clearly

understand, we use the example outlined in Rice, 1990. Consider two studies with

p-values 0.001 and 0.999. In the studies we reject the null hypothesis in the first one

and fail to reject in the other. By p-value approach, we obtain a meta-analysis p-value

of 0.008, which favours rejection of the null hypothesis, yet on average there is no

significant effect. This shows that the method favours studies with smaller p-values,

and this asymmetry introduces an undesired bias for the combined results.

Furthermore, the method assumes that all the studies involved are equally weighted,

which is usually not the case as some studies are larger than others. Another downfall of

this procedure is that the direction of the effect of each study is not taken into account.

Hence, studies in opposite directions tend to strengthen each other instead of cancelling

out (Begum et al., 2012).

Alternatives to the p-value approach that handle these problems include Stouffer’s

method (Stouffer et al., 1949). This strategy tackles the asymmetry problem by

converting p-values to z-scores using zj = φ−1(1 − pj) for a one-sided (right-tailed)

test, where φ−1 is the quantile function of the standard normal distribution. For a two

sided-test, the conversion requires knowledge of the effect direction, and defined as

zj = φ−1(1− pj/2) for a positive effect and as zj = φ−1(pj/2) for a negative one. Once

the z-scores are obtained for each of the k studies, the test statistic is defined

zS =

∑k
j=1 zj√
k

.

Under the null hypothesis, each zj , the z-score of the jth study, is normally distributed

with mean 0 and variance 1, so is the Stouffer’s test statistic zS. Hence, for a two-sided

test, the p-value of meta-analysis is given by 2(1− φ(|zS|)), where φ is the cumulative

distribution function of the standard normal.
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However, Stouffer’s procedure still equally weighs the studies. An improvement

to the method was proposed independently by Mosteller and Bush, 1954 and Liptak,

1958. This development is a more powerful weighted z-score method that weighs studies

differently as well as taking into account different directions of studies for a two-sided

test. The test statistic is given by

z =

∑k
j=1wjzj√
w2
j

.

The weights, wj can be chosen as the inverses of the study variances or the square root

of the study sizes. In studies that use t distribution, the weights are equivalent to the

degrees of freedom (Begum et al., 2012).

The meta-analysis methods discussed so far use p-values or (converted) z-scores,

from individual studies. More powerful alternatives use directly the observed effect sizes.

These methods require the effect sizes to be measured with high precision on the same

scale and units in all the underlying studies (Begum et al., 2012). The two popular

methods are fixed effect meta-analysis (FEM) and random effects meta-analysis (REM)

(Borenstein et al., 2010). These methods use the inverse-variance weighting approach

to give weights to the individual studies (DerSimonian and Laird, 1986).

Fixed effect meta-analysis Fixed effect model assumes that a single true effect

size θ underlies all the studies in the meta-analysis and variations in the observed effects

θ̂ are as a result of sampling error ε. Hence, for a given jth study in a meta-analysis, the

observed effect is defined as θ̂j = θ + εj, where εj is typically assumed to be normally

distributed with mean 0 and variance σ2. As a result, θ̂j is normally distributed with

mean θ and variance σ2/nj, where nj is the study size. The within study variance of

the jth study is estimated by replacing the unknown σ2 by the sampling error variance

9



estimate σ̂2, and is given by vj = σ̂2/nj. In the inverse-variance method, the weight

of the jth study is defined as wj = 1/vj. This ensures that larger studies are given

more weights since their inverse variances become larger. The overall weigthed observed

effect size is given by

θ̂FE =

∑k
j=1wj θ̂j∑k
j=1wj

,

which is an unbiased estimate of θ, with standard error given as
√

1/∑k
j=1 wj. To test

whether θ is different from a specific value θ0, the test statistic takes the form

zFE =
θ̂FE − θ0√
1/

∑k
j=1 wj

.

The test is significant when the p-value, 2(1 − Φ(|zFE|)) is less than the significance

level α.

Random effects meta-analysis In the random effects model, the true effect

sizes θj’s that underlie each study are allowed to vary from one to another. This

brings in two sources of variation, (1) variation due to sampling error εj and (2)

between-study variation ξj, which accounts for the deviation of true effect size θj from

the true grand mean effect θ. Thus, the observed effect of the jth study is given by

θ̂j = θj + εj = θ+ ξj + εj , where ξj and εj assumed to be independent and have normal

distributions with mean zero and variances τ 2 and σ2
j , respectively. Consequently, θ̂j

has normal distribution with mean θ and variance σ2
j + τ 2.

As in the fixed effect meta-analysis, the weight w∗
j of the jth study is defined using

the inverse variance method, where within and between-study variances are replaced by
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their estimates vj and τ̂ 2, i.e.,

w̄j =
1

vj + τ̂ 2
.

The estimate τ̂ 2 is obtained from the Cochran Q-statistic,

Q =
k∑
j=1

wj

(
θ̂j − θ̂FE

)2
.

This statistic is also used in testing heterogeneity among studies. The τ 2 estimator is

therefore given by

Q− df
C

,

where

C =
k∑
j=1

wj −
∑k

j=1w
2
j∑k

j=1wj
.

Once between-study heterogeneity is estimated, the weighted observed effect θ̂RE is

computed as

θ̂RE =

∑k
j=1 w̄j θ̂j∑k
j=1 w̄j

.

The subsequent procedure is similar to the FEM case.

There exists other meta-analysis approaches such as Bayesian methods that utilize

information from the prior assessment of the effect sizes (Sutton and Abrams, 2001)

and multivariate approaches that include possible correlation between outcomes and

effects (Zheng et al., 2012; Evangelou and Ioannidis, 2013).
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1.3 Genetic Terminology

The purpose of this section is to familiarize the reader with basic genetic concepts. The

field of genetics is very wide, therefore, we will limit our focus on concepts that are

related to GWAS and this thesis.

Genetic research concerns the study of human genome, i.e. the entire collection of

human genetic information. This information is encoded as a DNA sequence, which is a

series of DNA bases, A, T, C and G, showing the order of nucleotides in the DNA. See

Figure 1.1 (NHGRI) for a visual illustration.

Figure 1.1: Visual illustration of a DNA sequence.

Any two individuals have over 99% identical DNA sequence (IHGSC, 2001). However,

the variations in remaining less than 1% may considerably cause modifications to a

person’s traits resulting into risks such as diseases or physical effects such as skin

12



complexion. The most common type of genetic variant (polymorphism) is a single

nucleotide polymorphism (SNP), which occurs at a single nucleotide position in the

DNA sequence. GWAS typically infer these type of variants. Other types include

deletions, insertions, inversions and copy-number variations. These structural variations

are more difficult to characterize (Raphael, 2012).

International research efforts to map and catalog genetic variations across human

(and other species) genome resulted in a large collection of databases. In particular,

the International HapMap Project (HapMap, 2005, 2007, 2010) and the 1000 Genome

Project (T1000GPC, 2010, 2012) are rich sources that subsequently assist in identifying

patterns in human genome map. To date over 38 million SNPs have been identified in

the human genome from around 100,000 SNPs in 2005 (Zheng et al., 2012; Bush and

Moore, 2012; T1000GPC, 2012).

Most human SNPs are biallelic, that is they consist of two alleles. We denote A

as the major allele and a as the minor allele. Allele a usually is the risk allele if it is

a direct cause of a trait. Its frequency in a population is referred to as minor allele

frequency (MAF) only if the frequecy is < 0.5. We denote MAF as q while that for the

major allele is denoted as p, where p = 1− q. A MAF of 0.3 suggests that 30% of a

population has allele a and 70% has allele A. The combinations of alleles, as a result of

mating, yield genotypes. As illustrated in Table 1.1, biallelic SNPs have three possible

genotypes AA, Aa and aa. Note that Aa and aA are treated the same, i.e., the order is

not relevant.

A commonly made assumption in genetic studies is the Hardy–Weinberg equilibrium

(HWE), also known as the Hardy–Weinberg principle, which allows predicting genotype

frequencies from allele frequencies. The principle describes the genetic variation in a

population and states that both allele and genotype frequencies in a population remain
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Table 1.1: Genotype possibilities at a biallelic SNP given parental alleles.

Father
Allele A a

Mother
A AA Aa

a aA aa

constant from one generation to the other, provided there is random mating within the

population and non existence of destabilizing factors (Edwards, 2008).

The genotype frequencies, shown in Table 1.2 are represented as probabilities of the

genotypes where, p2 = Pr(AA), q2 = Pr(aa) and 2pq = Pr(Aa). The sum of all these

proportions is a binomial expansion of the square of sum of allele frequencies, therefore,

also equals to 1. The expansion, p2 + 2pq + q2 = 1, is called the Hardy-Weinberg

equation. Zheng et al., 2012 show that the subsequent generations’ genotype frequencies

are constant given HWE.

Table 1.2: Genotype frequencies given parental alleles.

Father
Allele A a

Freq p q

Mother
A p p2 pq

a q qp q2

However, for the HWE to hold more assumptions are required. Therefore, in addition

to random mating, the population size should be infinite, male and females should

have identical allele frequencies, no migration and mutation and the absence of natural

selection. Note that these restrictions may not be realistic in practical settings; one has

to test whether HWE holds (Balding, 2006).

An observable characteristic of an individual is known as phenotype or trait. Traits
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such as height, learning ability, blood pressure and weight are continuous and are often

controlled by several genes (polygenic). Other traits like albinism, Huntington’s disease

and cystic fibrosis are discrete and are usually as a result of a single gene (monogenic)

(Zheng et al., 2012). Continuous traits can also be expressed as discrete traits leading,

for instance, to a case-control study setting, where cases are instances of extreme

manifestation of a trait and controls otherwise.

A genetic model is a probabilistic description of inheritance. Dominant, reccessive,

multiplicative and additive (dosage) models are the four most commonly analyzed

models in literature as explained in Zheng et al., 2012. Table 1.3 shows a summary of

these models.

Table 1.3: Summary of the genetic models.

Model AA Aa aa

Dominant 0 r r

Recessive 0 0 r

Multiplicative 0 r r2

Additive 0 r 2r

We assume that allele a is the risk allele, therefore, its presence in a genotype

increases risk rth fold. In a dominant model genotypes Aa and aa have the same

effect, hence having at least one copy of a results in risk, r. As for the recessive model,

genotypes AA and Aa gives no risk meaning both copies of a are necessary in a genotype,

i.e., aa, for risk r to be registered. The multiplicative model assumes no risk for AA,

risk r for Aa and risk r2 for aa. Additive model is linear, thus for each copy of a the

risk increases by r.

In practice it is not possible to know the underlying model, therefore, some studies

use a combination of models though a suitable correction for multiple testing is necessary.

In GWAS, additive model is the most widely used model because it gives a reasonable
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detection power for both the additive and dominant models though it is less powered for

the other two (Bush and Moore, 2012). Throughout the thesis, we focus our attention

to the additive model.

GWAS investigate a complete set of genetic information in many individuals in a

bid to find association between genetic variants (SNPs) and heritable traits of interest

(Clarke et al., 2011; Li et al., 2012). GWAS testing strategies include testing of

association of multiple SNPs with a single trait, multiple SNPs with multiple traits

as well as testing for interactions between genetic and environmental factors causing

occurrence of a trait (Balding, 2006).

Most GWAS screen hundreds of thousands of SNPs for their associations with a

large number of traits. Data on environmental variables are also often collected. Given

such data structure, one may want to test genetic associations jointly on multiple

SNPs and/or multivariate traits, possibly including gene-environment interactions.

Since SNPs, as well as traits, are correlated, this task can be quite challenging. For

computational feasibility and statistical tractability, initial SNP screening is almost

always performed one-at-a-time considering one marker and one trait. Such procedures

are referred to as single-SNP tests.

Statistical procedures for testing single-SNP associations differ according to the

type of traits, the coding of genotype variable at the SNP, as well as the underlying

genetic model. As has been discussed earlier, there are two types of traits; categorical

and quantitative. Generalized linear models can be used to test for association between

a SNP and a categorical trait, where logistic regression model is a specific case for

binary traits. Other methods for binary traits include contingency tests such as Pearson

χ2-square test (Pearson, 1900), Fisher exact test (Fisher, 1922), likelihood-ratio test

(Neyman and Pearson, 1933) or Cochran–Armitage trend test (Cochran, 1954b). For

quantitative traits, the simple linear regression (SLR) model and the Analysis of
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Variance (ANOVA) are the most widely used procedures for testing genetic associations.

There are also parametric methods of testing genetic association such as family

based designs for linkage-based studies, score test, ordered categorical outcomes and

bayesian alternatives (Zheng et al., 2012; Balding, 2006). Non-parametric methods

include the rank-based Kruskal–Wallis one-way ANOVA. Like the ANOVA method,

this method determines whether genotype groups orginate from the same distribution.

When at least one group is different from the others, then significant result is assumed

(Kruskal and Wallis, 1952; Acar and Sun, 2013). A comprehensive list of test procedures

for both case-control data and quantitative traits can be found in Balding, 2006. In

this thesis, we focus on single-SNP association tests for a quantitative trait using the

SLR model. The details of the test procedure are in Chapter 2.

Before any association test is carried out on the collected data, quality of the data

has to be ascertained. Therefore, testing deviations from the HWE, verifying the

population homogeneity assumption and checking for missing data are mandatory data

cleaning procedures for the genotype data. One also has to test any distributional

assumptions on the quantitive traits.

As we have mentioned earlier, departure from the HWE can be as a result of one or

a combination of inbreeding, mutation, population stratification and selection. HWE

testing helps select a subset of existing SNPs that are good for association tests. See

Zheng et al., 2012 for a review of statistical procedures used in testing HWE.

In large association studies, significant results for a single-SNP association test can

be as a result of an underlying population structure and not necessarily because of

the association between the SNP and trait. A population structure is the existence of

sub-populations characterized by unique allele frequencies majorly due to non-random

mating and disappearance of particular alleles as individuals migrate, die or do not
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reproduce. Violation of population homogeneity can lead to both type 1 and type 2

errors, hence needs to be carefully examined in genomic control.

Another important issue in genetic studies is missing or low quality data. Missingness

in phenotype data is seldom, and is typically handled by excluding the corresponding

subjects from the study. Genotype data, on the other hand, are never perfect due to

heavy data processing, referred to as genotyping, hence contain a lot of missing values.

Imputation methods are widely used to treat the latter issue, as we detail in Chapter 2.

The outline of the thesis is as follows. Chapter 2 reviews statistical analysis of GWAS

for typed and imputed SNPs, and evaluates the impact of imputation on association test

results of a single study. Chapter 3 and Chapter 4 outline fixed effect and random effects

meta-analysis methods, respectively. Chapter 3 contains our main contributions; namely

(1) the assessment of the impact of genotype uncertainty on meta-analysis results, (2)

the evaluation of the proposed re-weighting schemes for meta-analysis type 1 error and

power gain, (3) an empirical judgement on the required number of imputation-based

studies to achieve a certain power level in a meta-analysis. In Chapter 4, we assessed

the impact of genotype uncertainty on between-study heterogeneity as well as the

type 1 error in the null hypothesis case. We provide our conclusions in Chapter 5. In

the appendix, we have provided part of the r-program codes that we used for data

simulation and analyses.
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Chapter 2

Association Testing in Genome-wide
Association Studies

Over the last decade, GWAS have transformed into a dominant tool for exploring

genetic construction of human traits (Bush and Moore, 2012), and have been successful

in identifying genetic variants underlying many diseases. While there are recently

emerged new technologies in genetic research, such as whole-genome and exome next

generation sequencing (Hall, 2007; Zhang et al., 2011), GWAS still constitute a popular

cost-effective tool for a first step in unearthing genetic locations contributing towards

human susceptibility to complex diseases. The complex nature of GWAS invites a rich

collection of statistical problems, concerning aspects ranging from genomic control to

multiple comparison adjustments.

In this chapter we study the impact of genotype imputation on single-SNP association

test results for a quantitative trait in the case of a single GWAS. This consideration

provides foundation for our investigations in Chapter 3 and Chapter 4 where we address

the impact of genotype imputation on meta-analysis of multiple GWAS.

In Section 2.1, we describe the problem of genotype uncertainty and briefly review

some genotype imputation algorithms. The statistical framework and methods for
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testing associations are outlined in Section 2.2, in the cases without and with genotype

uncertainty. Section 2.3 contains simulation experiments to evaluate the impact of

genotype uncertainty on test results. The chapter ends with a summary of the major

conclusions.

2.1 Genotype Uncertainty

Quality checks during GWAS data cleaning result in discarding poor quality samples

(individuals) or SNPs. Hence, in practice, GWAS data are almost always incomplete.

SNPs violating the HWE assumption, or having a small minor allele frequency (<

0.05 or 0.1) or a low genotype call accuracy (<0.9 or 0.99) are typically removed from

the anaysis. Furthermore, individuals having many untyped genotypes (e.g., missing

rate >5%) would be excluded from the study. Such data cleaning would improve the

reliability of GWAS, but at a cost of losing information.

Genotype imputation is an appealing strategy to recover missing and/or untyped

genotype information, thereby increasing power of an association study, especially for

SNPs that are difficult to identify (Marchini et al., 2007; Li et al., 2009; Spencer et al.,

2009). Imputation also helps in cost reduction in large studies where a subset of SNPs

is typed and the remaining set is imputed (Zhang et al., 2013). More importantly,

genotype imputation makes it possible to combine studies that use different genotyping

platforms, hence allow meta-analysis.

Most imputation algorithms employ a combination of statistical techniques including

hidden Markov models, expectation maximization algorithm, maximum likelihood

estimation and random selection from a probability distribution, as well as indirect

inference of neighbouring SNPs in the study and of reference panels of extensively

genotyped SNPs from the International HapMap Project and 1000 Genomes Project.
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There exist many software tools such as MACH (Li and Abecasis, 2006), fast-PHASE

(Scheet and Stephens, 2006), P-LINK (Sham et al., 2007), IMPUTE (Marchini et al.,

2007; Howie et al., 2009), BEAGLE (Browning and Browning, 2009) that perform

genotype imputation. While they use different algorithms for imputation and in

quantifying its accuracy, they often yield similar results (Marchini and Howie, 2010).

Imputation methods often give a probabilistic estimation of an imputed genotype

as vector of group probabilities pi = (pi0, pi1, pi2), with
∑2

j=0 pij = 1. Here, pij =

Prob(Gi = j) is the probability of the jth genotype on the ith individual, Gi is the

genotype variable for the ith individual at a particular SNP. Table 2.1 illustrates a

typical genotype imputation output for a fully imputed SNP.

Table 2.1: Imputed genotype probabilities for a fully imputed SNP.

Genotype
Individual 0 1 2

1 0.958 0.011 0.031
2 0.316 0.248 0.436
...

...
...

n 0.000 0.621 0.379

Various strategies can be used to combine the imputed genotype probabilities to estimate

the missing genotypes. The most common approaches are the best guess (BG) approach

and the dosage approach. The BG approach selects the genotype value with the highest

probability, that is,

G̃i = {j : max(pi0, pi1, pi2)},

while the dosage approach uses the dosage, the expected number of copies of the minor

allele, given by

G̃i = 0 pi0 + 1 pi1 + 2 pi2.
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The dosage approach almost always performs better than the BG method since it

loses less information. There also exist other approaches for combining the genotype

probabilities that are either model-based, such as posterior probability method (Marchini

et al., 2007; Aulchenko et al., 2010; Zheng et al., 2011), or non-parametric (Acar and

Sun, 2013).

2.2 Association Testing

As have been discussed earlier, strategies for testing genetic associations differ for

categorical and quantitative traits. In this section, we look at association testing of a

quantitative trait, first at a fully typed SNP and then at an imputed SNP.

2.2.1 Association Testing at a Fully Typed SNP

The most commonly used test approaches for quantitative traits are the analysis of

variance (ANOVA) and simple linear regression (SLR) models. Suppose we have a

sample of n unrelated individuals. Denote the trait response by Yi and the genotype

by Gi for the ith individual. In ANOVA, the genotype is taken to be a categorical

covariate. On the other hand, if we consider the genotype as numeric, the association

test is addressed within the SLR model, given by

Yi = β0 + β1 Gi + εi, i = 1, . . . , n Gi ∈ {0, 1, 2}. (2.1)

The error terms εi’s are assumed to be independently and identically distributed with

mean 0 and variance σ2. If the error distribution is assumed normal, then the phenotype

variable Yi follows a normal distribution with mean β0 + β1Gi and variance σ2. Note

that the SLR model in (2.1) accommodates the ANOVA model, when Gi’s are treated

categorical.
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GWAS association testing under model (2.1) concerns the testing problem,

H0 : β1 = 0 vs. HA : β1 6= 0, (2.2)

where the null hypothesis specifies no genetic association and the alternative indicates

a genetic association in either direction, i.e., two sided. Under the SLR model, the

parameter of interest β1 is estimated using the least-squares method, which yields

β̂1 =

∑n
i=1(Gi − Ḡ)(Yi − Ȳ )∑n

i=1(Gi − Ḡ)2
=

∑n
i=1(Gi − Ḡ)Yi∑n
i=1(Gi − Ḡ)2

,

with standard error,

sβ̂1 =

√ ∑n
i=1(Yi − Ŷi)2

(n− 2)
∑n

i=1(Gi −G)2
=

√
σ̂2∑n

i=1(Gi −G)2
,

The estimator β̂1 is consistent for β1 and have the distribution,

β̂1 ∼ N

(
β1,

σ2∑n
i=1(Gi − Ḡ)2

)
.

Thus, the testing problem in (2.2) is addressed using the statistic,

z =
β̂1
sβ̂1

.

Since the study sizes of GWAS are often large, the Central Limit Theorem together

with Slutsky’s lemma, yield an asymptotic normal distribution for this statistic, i.e.,

z
d
=

β̂1

σ/
√∑n

i=1(Gi − Ḡ)2
∼ N

(√∑n
i=1(Gi − Ḡ)2

σ
β1, 1

)
, (2.3)
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which corresponds to the standard normal distribution under the null hypothesis. Thus,

we reject the null hypothesis in (2.2) when the p-value, 2 Pr(Z > |z|) is less than the

level of significance α.

This test procedure is conducted for each of the SNPs in a GWAS. It is preferred

due to its simplicity, as it allows fast screening of a large number of SNPs.

2.2.2 Association Testing at an Imputed SNP

Testing association for a quantitative trait at an imputed SNP is more or less similar

to testing at a fully genotyped SNP. The difference only comes in with the type of

approach employed in estimating genotypes from imputed genotype probabilities. We

denote the imputed genotypes as G̃. In the BG approach, G̃ can be taken as categorical

or numerical. This allows the use of either SLR model or ANOVA model in association

testing as explained in the previous part. However, if dosage is used, only the SLR

model is suitable since G̃ is continuous.

Replacing G in (2.1) with G̃ yields

Yi = β0 + β1 G̃i + εi, i = 1, . . . , n, G̃i ∈ [0, 2].

The least squares estimator of β1 is given by

β̃1 =

∑n
i=1(G̃i − ¯̃G)(Yi − Ȳ )∑n

i=1(G̃i − ¯̃G)2
=

∑n
i=1(G̃i − ¯̃G)Yi∑n
i=1(G̃i − ¯̃G)2

,

with the standard error,

sβ̃1 =

√√√√ ∑n
i=1(Yi − Ỹi)2

(n− 2)
∑n

i=1(G̃i − G̃)2
=

√
σ̃2∑n

i=1(G̃i − G̃)2
,
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where Ỹi is the predicted phenotype value obtained from the fitted regression line. Once

the estimates β̃1 and sβ̃1 are obtained, the hypothesis in (2.2) is tested using the same

procedure as in Section 2.2.1.

However, it is important to note that β̃1 is not an unbiased estimator of β1. Its

expectation is

E(β̃1) =

∑n
i=1(G̃i − ¯̃G)E(Yi − Ȳ )∑n

i=1(G̃i − ¯̃G)2

=

∑n
i=1(G̃i − ¯̃G)(Gi − Ḡ)∑n

i=1(G̃i − ¯̃G)2
β1 = γ β1,

(2.4)

where γ is the shift factor. Similarly, the variance of β̃1 can be obtained as

var(β̃1) =

∑n
i=1(G̃i − ¯̃G)2 var(Yi)(∑n

i=1(G̃i − ¯̃G)2
)2 =

σ2∑n
i=1(G̃i − ¯̃G)2

.

Hence, even though the distribution of β̃1 is normal, its parameters are different from

those of the distribution of β̂1, i.e.,

β̃1 ∼ N

(
γβ1,

σ2∑n
i=1(G̃i − ¯̃G)2

)
.

Provided that σ̃2 consistent for σ2, we obtain the following asymptotic distribution

for the test statistic

z̃ =
β̃1
sβ̃1

d
=

β̃1

σ/

√∑n
i=1(G̃i − ¯̃G)2

∼ N

 γ β1

σ/

√∑n
i=1(G̃i − ¯̃G)2

, 1

 .

Our empirical findings in Section 2.3.3 suggest an almost similar performance of σ̂2 and

σ̃2.
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Note that when the null hypothesis holds, i.e., β1 = 0, z̃ has standard normal

distribution. However, when β1 6= 0, the mean of the distribution is a scale multiple of

that of z = β1/sβ̂1 . The scale factor is shown to be

E(z̃)

E(z)
=

∑n
i=1(G̃i − ¯̃G)(Gi − Ḡ)

σ

√∑n
i=1(G̃i − ¯̃G)2

σ√∑n
i=1(Gi − Ḡ)2

= rG,G̃,

where rG,G̃ is the Pearson’s correlation coefficient between the true genotypes G and

the imputed ones G̃.

Having discussed the test procedures at a typed and imputed SNP, we will examine

their empirical performance in the next section.

2.3 Simulation Study

We conduct extensive simulations majorly to assess how the degree of genotype imputa-

tion uncertainty affects the association test results based on dosage. We also compare

the performance of the dosage approach with that of the BG method.

2.3.1 Simulation Design

We focus our attention to the SLR model, hence consider a quantitative trait that is

normally distributed and treat G as numeric. Table 2.2 summarizes the parameter

values describing our simulation scenarios. These values yield 72 different settings, for

which we generate data as follows.

Since phenotype is conditional on genotype, we first generate the genotype data.

Genotype generation was performed in two steps. In the first step, we obtain the

genotype group sizes randomly from a trinomial distribution whose parameters are

determined by the MAF and sample size under the HWE assumption. Hence, in a
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Table 2.2: Parameter values describing the simulation scenarios.

Parameter Values

MAF 0.1 0.2 0.3
n 200 500 1000
β0 30
β1 0 0.25 0.5 1
σ 1 3

GWAS of size n with a MAF of q, the expected group sizes for genotypes 0,1, and 2 are

n0 = n (1 − q)2, n1 = n 2(1 − q)q and n2 = n q2, respectively, assuming HWE holds.

Once the group sizes are determined randomly, we code the true genotypes accordingly.

For each MAF and n combination, we generate one set of genotypes, yielding to 9

different genotype sets in total.

In the second step we induce uncertainity into the genotypes using the Dirichlet

distribution since it is a distribution over multinomials. In Dirichlet distribution, the

parameter vector, ψ = (ψ1, ψ2, ψ3) with ψ1 + ψ2 + ψ3 = 1 is specified to account for the

genotype imputation accuracy. The resultant output is a random vector of probabilities,

P = (P0, P1, P2), where P0 +P1 +P2 = 1 and each of the vector component corresponds

to the genotypes 0, 1 and 2 respectively.

When generating these probabilities from the Dirichlet distribution, we consider

ψ < 1 for the true genotype group, and (1− ψ)/2 for the other two. The parameter

values are chosen as ψ = 0.9, 0.8, and 0.7 representing 10%, 20% and 30% uncertainty

levels, respectively. Note that the true genotypes have 0% uncertainty level reflecting

the case where SNP is typed. We assume an additive model and generate the phenotype

data conditional on genotypes using the SLR model in (2.1). For a given MAF and

sample size, we use the true genotypes in the corresponding genotype data, and generate

10,000 Monte-Carlo samples of phenotype data, each from a normal distribution with
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mean β0 + β1G, where G ∈ {0, 1, 2} and standard deviation σ. Hence, for each of

genotype data set, we obtain 8 different sets of phenotype data, replicated 10,000 times.

Note that the parameter values for β1 are chosen to reflect the cases with small,

medium and large effect sizes. The σ values are selected under the alternative hypothesis

case such that we obtain empirical power of at least 0.3 at 0% level of uncertainty with

n = 500. MAFs are chosen to reflect typical settings for common markers, usually

>0.05.

2.3.2 Association Test Results

For each genotype dataset, we obtain the dosage and BG genotype values at each

uncertainty level. We then perform association tests as explained in Section 2.2.2. Our

main interest is to understand the impact of genotype uncertainty on the test results as

we vary the simulation parameters. In the following, we first check the accuracy of the

tests under the null hypothesis and then do a power analysis.

Evaluation of Empirical Type 1 Error Rates

Under the settings with β1 = 0, which correspond to the null hypothesis of no genetic

association, we obtain the empirical type 1 error rates at α = 0.005, 0.01 and 0.05. The

results are presented in Table 2.3 for each MAF. Based on these results, we see that

the empirical type 1 error rates are not significantly different from the corresponding

nominal α levels for both BG and dosage approaches. Thus, neither the approach in

imputing genotypes nor the degree of genotype uncertainty has a significant impact on

the type 1 error rate.

For the case with MAF = 0.1, n = 500, and σ = 3, we obtain the density plots of

the β1 estimates and the test statistic z under the dosage approach across different

uncertainty levels. In the left panel of Figure 2.1, we see that the means of the β1
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Table 2.3: Empirical type 1 error rates of the association tests at α = 0.005, 0.01, 0.05
for the dosage and BG procedures when n = 500.

Dosage BG

MAF σ α = 0.005 α = 0.01 α = 0.05 α = 0.005 α = 0.01 α = 0.05

0.1

1

0% 0.0051 0.0097 0.0467 0.0051 0.0097 0.0467
10% 0.0057 0.0104 0.0498 0.0050 0.0106 0.0494
20% 0.0052 0.0103 0.0505 0.0052 0.0094 0.0487
30% 0.0046 0.0107 0.0527 0.0051 0.0105 0.0516

3

0% 0.0041 0.0092 0.0514 0.0041 0.0092 0.0514
10% 0.0045 0.0090 0.0486 0.0055 0.0107 0.0466
20% 0.0044 0.0087 0.0498 0.0062 0.0103 0.0537
30% 0.0052 0.0099 0.0507 0.0065 0.0102 0.0469

0.2

1

0% 0.0050 0.0089 0.0474 0.0050 0.0089 0.0474
10% 0.0044 0.0088 0.0461 0.0042 0.0085 0.0465
20% 0.0048 0.0102 0.0498 0.0050 0.0105 0.0511
30% 0.0051 0.0102 0.0524 0.0041 0.0085 0.0522

3

0% 0.0057 0.0107 0.0506 0.0057 0.0107 0.0506
10% 0.0062 0.0106 0.0520 0.0060 0.0113 0.0524
20% 0.0061 0.0122 0.0528 0.0064 0.0127 0.0526
30% 0.0047 0.0088 0.0500 0.0049 0.0096 0.0495

0.3

1

0% 0.0058 0.0118 0.0527 0.0058 0.0118 0.0527
10% 0.0045 0.0109 0.0526 0.0056 0.0121 0.0520
20% 0.0069 0.0126 0.0521 0.0051 0.0105 0.0510
30% 0.0048 0.0103 0.0515 0.0052 0.0102 0.0522

3

0% 0.0050 0.0092 0.0522 0.0050 0.0092 0.0522
10% 0.0048 0.0100 0.0515 0.0054 0.0099 0.0517
20% 0.0068 0.0120 0.0546 0.0060 0.0107 0.0531
30% 0.0042 0.0102 0.0541 0.0051 0.0100 0.0500

estimates are centered around the true value β1 = 0 for all uncertainty levels. However,

their standard errors tend to decrease as uncertainty increases, as depicted by the

29



Figure 2.1: Density plots of the β1 estimates (left) and the test statistic z (right) under
the null hypothesis.
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shrinking density tails. On the other hand, the density plots of z-scores in the right

panel of Figure 2.1 indicate no significant difference across different levels of imputation

accuracy. This supports the result in (2.3) and explain why the empirical type 1 error

rates in Table 2.3 are not significantly affected by genotype uncertainty.

Evaluation of Empirical Power

For the settings with β = 0.25, 0.5 and 1, we calculate the empirical power using the

nominal level α = 0.01. The results for the dosage and BG approaches are summarized

in Table 2.4 and Table 2.5, respectively. In both tables we see that the power drops

significantly as uncertainty level increases. We also observe that as n,MAF and the true

effect size β1 increase, the empirical power within a specific case increases as expected.

The reverse is observed when σ increases.

A cross-comparison of these results indicate that the BG approach may not be a

good choice for testing genetic associations at an imputed SNP, especially when the
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underlying model is additive. This conclusion is driven by the lower empirical power

of the BG approach under all the alternative hypothesis scenarios, in comparison to

the dosage approach. The performances of the two approaches are also compared

graphically in Figure 2.2 for the case with MAF = 0.1, n = 500, and σ = 3. We see

that the dosage approach slightly outperforms the BG procedure at all uncertainty

levels. We also observe that, besides an increasing degree of uncertainty, smaller sample

sizes also lower the detection power significantly.

Figure 2.2: Comparison of performances of the dosage and best guess procedures across
different uncertainty levels and study sizes, when MAF = 0.1, β1 = 0.5 and σ = 3.

For a better understanding of the power decrease due to imputation uncertainty,

we look at the density plots of β1 estimates and the test statistic z for the dosage
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Figure 2.3: Density plots of the β1 estimates (left) and the test statistic z (right) under
the alternative hypothesis scenarios with β1 = 0.25 (top), β1 = 0.5 (middle), β1 = 1
(bottom).
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approach under all alternative scenarios, focusing on the case with MAF = 0.1, n = 500,

and σ = 3. The top, middle and bottom panels of Figure 2.3 show the results for

the scenarios with β1 = 0.25, 0.5 and 1, respectively. The density plots for the β1
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estimates, shown in the left panels, indicate a shift from the true value towards zero,

increasing in magnitude with the uncertainty level. We also observe lower variability

in the distribution of the β1 estimates at higher uncertainty levels. While this feature

disappears upon standardization to z-scores (right panels), we still observe a shift

towards zero, proportional to the true β1 value in the distribution of the test statistic.

As β1 increases, the shift from the true effect size widens with an increase in

uncertainty. The effect size does not seem to significantly affect the standard error of

the estimates.

2.3.3 A Closer Look at Genotype Uncertainty

We have seen that uncertainty in the genotypes reduces the detection power of GWAS.

We now take a closer look at how this occurs, focusing on the cases with MAF = 0.1,

n = 500 and σ = 3, as presented in Figure 2.2.

We first look at how the two imputation approaches differ in terms of the genotype

values they produce. In Table 2.6, we report the standard deviations sG̃ of the imputed

genotypes under both approaches at each uncertainty level, where the value at 0%

gives the standard deviation sG of the true genotypes. We also include the Pearson

correlation coefficient between G and G̃, and the shift factor γ = rG,G̃(sG/sG̃) in (2.4)

under each approach.

Table 2.6: The genotype standard deviations, correlation values and shift factors under
the dosage and BG procedures at different uncertainty levels for the case with MAF =
0.1 and n =500.

Dosage BG
0% 10% 20% 30% 0% 10% 20% 30%

sG̃ 0.405 0.466 0.519 0.526 0.405 0.524 0.646 0.700
rG,G̃ 1.000 0.743 0.554 0.409 1.000 0.701 0.472 0.355
γ 1.000 0.646 0.432 0.315 1.000 0.541 0.296 0.205
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Table 2.6 suggests that the imputed genotypes have larger variation compared to the

true ones, and the variability increases with the degree of uncertainty. As expected, the

correlation between the imputed and true genotypes decreases as uncertainty increases.

The shift factor quantifies the amount of bias, which is (γ − 1)β1, in the estimates

of genetic effect. Hence, the smaller γ values at higher uncertainty levels indicate a

larger bias in the corresponding estimates. Overall, we observe that BG approach

produces more variation, lesser correlation and larger bias than the dosage approach at

all uncertainty levels, which explains its relatively poor performance in Section 2.3.2.

Table 2.7: The mean and standard deviation (given in parentheses) of σ̃2 calculated
from 10000 Monte-Carlo samples, for the cases with MAF = 0.1, n = 500 and σ = 3
under the dosage procedure at difference uncertainty levels.

Uncertainty Level
0% 10% 20% 30%

β1 = 0
8.99670 8.99689 8.99668 8.99671
(0.57167) (0.57151) (0.57121) (0.57136)

β1 = 0.25
9.00634 9.01092 9.01354 9.01463
(0.57431) (0.57488) (0.57488) (0.57474)

β1 = 0.5
9.00468 9.02325 9.03370 9.03886
(0.56881) (0.57023) (0.57061) (0.57145)

β1 = 1
8.99889 9.07340 9.11334 9.13656
(0.57481) (0.57992) (0.58302) (0.58467)

Next, we check whether genotype uncertainty has any impact on the error variance

estimates σ̃2 under the models with β1 = 0, 0.25, 0.5 and 1, focusing on the dosage

approach. For this, we look at the mean and standard deviation of σ̃2 calculated from

10000 Monte-Carlo samples, and compare the values with those at 0% uncertainty level,

which correspond to the classical mean square error σ̂2. Table 2.7 verifies that the error

variance estimates σ̃2 are equally consistent for σ2 = 9 as the estimates σ̂. This result

indicate that the smaller standard error of β̃1 is mainly due to the larger variation in

the imputed genotypes at higher uncertainty levels.

Finally, we verify the results in Section 2.2 with empirical evidence from our
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simulations. In Table 2.8, we report the estimated bias and variance for β̃1 based on the

results presented in Figures 2.1 and 2.3. We also include the corresponding theoretical

values in parentheses for comparison purposes. The values match closely, hence our

empirical findings support the theoretical results.

Table 2.8: Bias and variance of β̃1 estimated from 10000 Monte-Carlo samples for the
cases with MAF = 0.1, n = 500 and σ = 3 under the dosage procedure. Given in
parentheses are the corresponding theoretical values based on the results in Section 2.2.

Uncertainty Level
β̃1 0% 10% 20% 30%

β1 = 0
Bias -0.0051 -0.0031 -0.0007 -0.0039

(0) (0) (0) (0)

Variance 0.1098 0.0821 0.0670 0.0649
(0.1100) (0.0831) (0.0670) (0.0651)

β1 = 0.25
Bias -0.0001 -0.0892 -0.1437 -0.1726

(0) (-0.0885) (-0.1420) (-0.1713)

Variance 0.1085 0.0822 0.0661 0.0653
(0.1100) (0.0831) (0.0670) (0.0651)

β1 = 0.5
Bias -0.0019 -0.1786 -0.2881 -0.3424

(0) (-0.1769) (-0.2840) (-0.3426)

Variance 0.1131 0.0841 0.0675 0.0658
(0.1100) (0.0831) (0.0670) (0.0651)

β1 = 1
Bias -0.0026 -0.3534 -0.5669 -0.6845

(0) (-0.3539) (-0.5680) (-0.6852)

Variance 0.1108 0.0821 0.0676 0.0648
(0.1100) (0.0831) (0.0670) (0.0651)

2.4 Summary

In this chapter, we have reviewed the association test procedures for imputation-based

GWAS, and investigated the impact of genotype uncertainty on the test results via a

simulation study. We have also assessed the effect of other parameters on the study

results.

From the simulation results, we conclude that the larger MAF, the bigger study size,

the bigger magnitude of genetic effect and the smaller the error variance, the higher the

37



detection power of GWAS. On the other hand, uncertainty in imputed genotypes may

significantly lower the detection power. In such cases, the dosage approach offers a better

imputation method since it does not loose as much information as BG method. These

findings are not new, and have been established by many (see, for instance, Spencer

et al., 2009 and Acar and Sun, 2013. However, to our knowledge, the mechanism behind

the power decrease due to genotype uncertainty has not been addressed in such detail.

We have observed that the imputation uncertainty increases the genotype variation,

which consequently, reduces the standard error of the genetic effect estimates. We

have also provided distributional results for the slope estimates and the z-scores under

genotype uncertainty, and shown that genotype uncertainty results in underestimation

of the magnitude of the genetic effect size. Since the reduced standard errors do not

fully compensate for the underestimated effect sizes, we obtain smaller z-scores and thus

lower detection power in imputation based tests. These findings are insightful not only

for imputation-based GWAS analyses, but also for imputation-based meta-analyses,

which we address in Chapter 3 and Chapter 4.
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Chapter 3

Fixed Effect Meta-analysis

GWAS have been used to find SNPs that underlie common complex diseases. These

studies often require large sample sizes to detect moderate effect sizes of SNPs. In our

simulation study in Chapter 2, we illustrated that despite a modest study size (e.g.,

n = 500), the detection power of a study (e.g., with a true effect size of 0.5), can still

be underpowered. Most genetic association studies have adopted aggregation of GWAS

summaries to boost power, a statistical procedure known as GWAS meta-analysis.

The two most common genome-wide meta-analysis methods are the fixed effect

meta-analysis (FEM) and random effects meta-analysis (REM) though p-value based

appraoches are also not uncommon in GWAS applications. Given k studies with sample

sizes n1, n2, . . . , nk, the general meta-analysis model for the studies is a modified form

of the single GWAS model in Equation (2.1) and is given by

Y
(j)
i = β

(j)
0 + β

(j)
1 G

(j)
i + ε

(j)
i , i = 1, . . . , nj, j = 1, . . . , k. (3.1)

The model represents the phenotype of the ith individual in the jth study. In its most

general form, the model in (3.1) allows the intercept and slope coefficients to vary across

studies. In all our discussions, we assume that the studies share a common intercept,

i.e., βj0 = β0. The slope coefficient is of the main interest for testing genetic associations
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and considered as the effect size in GWAS meta-analysis approaches for quantitative

traits. Note that for case-control studies a commonly used effect size is the log odds

ratio, which requires a different approach than considered here (Haddock et al., 1998).

As in Chapter 2, we are interested in testing

H0 : β1 = 0 vs. HA : β1 6= 0.

We discuss the FEM methodolgy for both typed and imputed genotyes in Section

3.2.1. Therein, we propose two re-weighting schemes for imputation-based meta-analysis.

In Section 3.2, we provide simulation results on the performance of FEM methods under

genotype uncertainty. We summarize our findings in Section 3.3.

3.1 Methods

In FEM, the underlying assumption is that all studies in the meta-analysis have a

common true genetic effect size β1 and that the studies only vary because of sampling

error within each study. Therefore, the model in (3.1) becomes

Y
(j)
i = β0 + β1 G

(j)
i + ε

(j)
i , i = 1, . . . , nj, j = 1, . . . , k.

As in the single GWAS case, preliminary analyses are necesary before meta-analysis. In

FEM, the aim is to make sure that the studies to be combined are as homogenous as

possible (Thompson et al., 2011). This simply means ensuring that the SNP are similar,

MAFs are more or less similar, and the HWE holds for all the studies. Any study that

either deviates from the HWE, has significantly different MAF or shows any other sign

of originating from a totally different population is either removed or its summaries

adjusted appropriately. This is done to avoid potential between-study variance.

In the following, we consider a setting with k studies all investigating the same

quantitative trait. Our interest is to test a particular SNP for its association with this
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trait. Among many possible scenarios, we focus on the two extreme ones, (1) all the k

studies have the SNP genotyped, and (2) all the k studies have the SNP imputed. Note

that in practice, one would typically encounter a situation where a SNP is genotyped in

some studies and imputed in others. Understanding the two extreme cases is essential

to address such in-between scenarios.

3.1.1 FEM at a Fully Typed SNP

Suppose all k studies have the SNP genotyped and report a fixed effect size estimate

together with its standard error. These summaries can be combined in FEM using a

weighted average of the estimates with properly chosen weights. To estimate the fixed

effect β1 from the reported estimates β̂(j)
1 , j = 1, . . . , k, we use the inverse-variance

weighting technique of DerSimonian and Laird, 1986, where the study weights wj’s are

inversely proportional to the square of the reported standard errors s2j . The weighted

mean genetic effect size of k studies, β̂1FE, therefore given by

β̂1FE =

∑k
j=1wjβ̂

(j)
1∑k

j=1wj
,

where wj = 1/s2j and β̂
(j)
1 is the effect size of the jth study. Since β̂1FE is a weighted

mean of unbiased estimators, it is also unbiased with mean

E
(
β̂1FE

)
=

∑k
j=1wj E

(
β̂
(j)
1

)
∑k

j=1wj
=
β1
∑k

j=1wj∑k
j=1wj

= β1.

Although the quantities sj’s are estimated from data, they are customarily treated

as known variances of the effect size estimates. Hence, the variance of the mean effect
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size is the second root of the inverse of the sum of the weights i.e.,

var
(
β̂1FE

)
=

∑k
j=1w

2
j var

(
β̂
(j)
1

)
(∑k

j=1wj

)2 =

∑k
j=1w

2
j 1/wj(∑k

j=1wj

)2
=

1∑k
j=1wj

.

Thus, the standard error of β̂1FE is

sFE =
1√∑k
j=1wj

.

Note that β̂(j)
1 ’s are normally distributed either exactly because the phenotype is

normally distributed, or approximately via CLT since sample sizes for GWAS are large.

Hence, β̂1FE also has a normal distribution,

β̂1FE ∼ N

(
β1,

1∑k
j=1wj

)
.

The hypothesis in (2.2) is tested using the statistic

zFE =
β̂FE
sFE

If each study reports a z-score (or a p-value together with the direction of the effect

size) instead of the effect size estimates, the statistic zFE can be written in terms of the
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individual studies’ z-scores,

zFE =

∑k
j=1wjβ̂

(j)
1∑k

j=1wj(∑k
j=1wj

)−0.5 =

∑k
j=1wjβ̂

(j)
1√∑k

j=1wj

=

∑k
j=1

√
wj β̂

(j)
1 /sj√∑k

i=1wj

=

∑k
j=1

√
wj zj√∑k

i=1wj

.

(3.2)

Thus, from the distribution in (2.3) the distribution of zFE becomes

zFE ∼ N

β1
√√√√ k∑

j=1

wj, 1

 .

Under null hypothesis zFE has a standard normal distribution. We reject the null

hypothesis when the p-value, 2 Pr(Z > |zFE|), is less than the chosen level of significance,

α.

3.1.2 FEM at an Imputed SNP

Use of imputed genotypes in the underlying studies of a genome-wide meta-analysis

study affects the distribution of the effect size estimate of each study, which consequently

affects the result of meta-analysis. The revised FEM model at an imputed SNP is

Y
(j)
i = β0 + β1 G̃

(j)
i + ε

(j)
i , i = 1, . . . , nj, j = 1, . . . , k.

Suppose these k studies report the estimates β̃(j)
1 ’s along with their standard errors

s̃j’s, j = 1, . . . , k, obtained as discussed in Section 2.2.2.

β̃1FE =

∑k
j=1 w̃jβ̃

(j)
1∑k

j=1 w̃j
,
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where w̃j = 1/s̃2j . Its standard error is

s̃FE =
1√∑k
i=1 w̃i

.

Given that β̃(j)
1 ’s are not unbiased for β1, β̃1FE is also not unbiased with expectation

E
(
β̃1FE

)
=

∑k
j=1 w̃j E

(
β̃
(j)
1

)
∑k

j=1 w̃j
=

∑k
j=1 w̃j γj∑k
j=1 w̃j

β1,

where γj is obtained from (2.4). Assuming the reported values s̃j ’s are the true standard

errors, the variance of β̃1FE is obtained as

var
(
β̃1FE

)
=

∑k
j=1 w̃

2
j var

(
β̃
(j)
1

)
(∑k

j=1 w̃j

)2 =
1∑k

j=1 w̃j
.

Hence, the distribution of β̃1FE becomes

β̃1FE ∼ N

(∑k
j=1 w̃j γj∑k
j=1 w̃j

β1,
1∑k

j=1 w̃j

)
.

Once we obtain β̃1FE and s̃FE, the testing of the problem in (2.2) follows the same

procedure in Section 3.1.1. The test statistic for the hypothesis (2.2) is

z̃FE =
β̃1FE
s̃FE

,

which can be written in terms of the study z-scores, as in (3.2), as

z̃FE =

∑k
j=1

√
w̃j z̃j√∑k

i=1 w̃j

,
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The distribution of z̃FE is therefore,

z̃FE ∼ N

(∑k
i=1 w̃j γj∑k
i=1 w̃j

β1, 1

)
,

which yields a standard normal distribution under the null hypothesis. Hence, we reject

the null hypothesis if 2 Pr(Z > |z̃FE|) > α.

Adjusted Weighted Effect Size Estimator

In Chapter 2 we have seen that genotype uncertainty causes underestimation of the

genetic effect size, resulting in an overall decrease in the detection power of a GWAS.

Since meta-analysis is a summary of several GWAS, some of which have imputed

genotypes, we expected in a similar observation because it is the individual studies’

effect size estimates and their respective standard errors that are used to estimate the

overall effect size. Therefore, the imputation effect of the individual studies is carried

over to the meta-analysis.

Since the standard error of the effect size estimate drops with increasing uncertainty,

the studies with poorly imputed genotypes are given bigger weights. Given that these

studies are underpowered due to genotype uncertainty and have greater weights, they

underpower a meta-analysis. Thus, an imputation-aware approach becomes essential to

give the poorly imputed studies lesser weights in comparison to well imputed or fully

typed studies. Motivated by the work of Zaitlen and Eskin, 2010, we propose using

an imputation quality score (IQS) to adjust the study weights. An IQS measures the

accuracy of the imputed genotypes in relation to the true ones.

In practice, the true genotype data are not available, therefore, calculation of the

imputation accuracy has to rely solely on the imputed genotypes. Most genotype

imputation software report an IQS that quantifies the imputation accuracy. Different

sofwares employ varied proposed methodologies. One such methodology proposed by
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Li and Abecasis, 2006 calculates an estimate of the Pearson correlation coefficient (r)

between true genotypes and imputed ones using

r̂ =
σ̂2
G̃

2 q̃(1− q̃)
,

where σ̂2
G̃
is the empirical variance of the imputed genotypes and q̃ is the MAF estimate.

For well imputed genotypes r̂ would be close to 1 and close to 0 for genotypes that are

poorly imputed.

In our adjusted meta-analysis experiments, we directly use the Pearson correlation

coefficient r to down weigh the imputed studies. We propose two approaches, one

re-weighing the effect size estimates and another method which adjusts the z-scores.

Adjustment 1 For the jth study, let rj be the correlation between the true

genotypes and the imputed genotypes. The new weight for the study takes the form

w∗
j = rj w̃j.

This is a product of the correlation coefficient and the traditional weight thereby giving

well imputed studies better weights. For k studies, the adjusted overall effect size

estimate is

β∗
1FE =

∑k
j=1w

∗
j β̃

(j)
1∑k

j=1w
∗
j

.

The variance of β∗
1FE,

s∗FE
2 =

1∑k
j=1w

∗
j

.

Though a better estimator of β1, β∗
1FE is still not unbiased. Its expectation is

E (β∗
1FE) =

∑k
j=1w

∗
j E
(
β̃
(j)
1

)
∑k

j=1w
∗
j

=

∑k
j=1w

∗
j γj∑k

j=1w
∗
j

β1

46



and the variance is

var (β∗
1FE) =

∑k
j=1w

∗
j
2 var

(
β̃
(j)
1

)
(∑k

j=1w
∗
j

)2 =

∑k
j=1 r

2
j w̃

2
j/w̃j(∑k

j=1 rjw̃j

)2
=

∑k
j=1 r

2
j w̃j(∑k

j=1 rjw̃j

)2 .
Therefore, β∗

1FE is normally distributed as shown

β∗
1FE ∼ N

∑k
j=1 rjw̃j γj∑k
j=1 rjw̃j

β1,

∑k
j=1 r

2
j w̃j(∑k

j=1 rjw̃j

)2
 .

The new test statistic for the hypothesis (2.2) is

z∗FE =
β∗
1FE

s∗FE

We reject the null hypothesis if 2 Pr(Z > |z∗FE|) > α.

Adjusment 2 Alternatively, in our second adjustment, we re-weigh the individual

z-scores in

z̃FE =

∑k
j=1

√
w̃j z̃j∑k

i=1 w̃j
=

∑k
j=1 w̌j z̃j√∑k

i=1 w̌
2
j

,

where w̌j = 1/s̃j. The new weights take the form

w̌∗
j = rj w̌j

Therefore, the new FEM statistic becomes

žFE =

∑k
j=1 w̌

∗
j z̃j√∑k

i=1 w̌
∗2
j

,

We reject the null hypothesis in (2.2) when 2 Pr(Z > |ž∗FE|) > α.
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3.2 Simulation Study

In this section, we performed a simulation study to assess the impact of genotype

imputation on FEM via simulations. We consider two scenarios: (1) all studies in

meta-analysis have equal study sizes where n = nj = 500, (2) studies in meta-analysis

have unequal study sizes where nj ∈ {200, 300, 500, 800, 1000}. In each scenario, we

consider four genotype uncertainty levels per study. The levels are assumed to take 0%,

10%, 20% and 30% genotype uncertainties.

Under both scenarios, we generate three sets of meta-analysis, each with five

studies. For each of these 15 studies, the genotype and phenotype data are simulated

independently using the steps outlined in Section 2.2. The underlying model parameters

are chosen as MAF = 0.1, β0 = 30, σ = 3, and for the true effect size we set β1 = 0, 0.25

and 0.5, the first reflecting the null hypothesis, and the other two the alternative. To

generate phenotype data within a study, we use the same genotype data for the null

and alternative models. For each setting, we obtain 10000 Monte-Carlo replicates by

generating only the phenotype data.

Within each case of a particular uncertainty level we obtain association test results

of the 15 studies using the dosage approach, and record the summary data consisting

of effect size estimate, standard error, z-score and p-value.

3.2.1 Meta-analysis Results

Given the summary data for each particular scenario, we perform meta-analysis using

the traditional FEM method as well as the two adjusted versions. The initial meta-

analysis size is set to k = 5 studies, where we use the first set of five studies. We then

increase the meta-analysis size to k = 10 and k = 15, including the second set to first
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and the third set to the first two, respectively. This consideration enables us to properly

track the impact of number of studies on the meta-analysis results.

Evaluation of Empirical Type 1 error rates

We obtain the empirical type 1 error rates at α = 0.01 under the null hypothesis of no

genetic effect, i.e., β1 = 0. Table 3.1 presents the results for both FEM methods.

Table 3.1: Empirical type 1 error rates of the three FEM methods at α = 0.01.

Equal study sizes Unequal study sizes

5 10 15 5 10 15

Traditional FEM

0% 0.0098 0.0089 0.0101 0.0096 0.0110 0.0104

10% 0.0103 0.0093 0.0087 0.0108 0.0090 0.0106

20% 0.0105 0.0098 0.0098 0.0101 0.0087 0.0116

30% 0.0098 0.0097 0.0089 0.0087 0.0105 0.0097

Adjustment 1

0% 0.0098 0.0089 0.0101 0.0096 0.0110 0.0104

10% 0.0029 0.0026 0.0019 0.0023 0.0031 0.0022

20% 0.0010 0.0007 0.0005 0.0004 0.0005 0.0015

30% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001

Adjustment 2

0% 0.0098 0.0089 0.0101 0.0096 0.0110 0.0104

10% 0.0100 0.0092 0.0088 0.0108 0.0093 0.0105

20% 0.0100 0.0099 0.0100 0.0105 0.0092 0.0119

30% 0.0096 0.0101 0.0088 0.0091 0.0104 0.0098

As expected, at 0% uncertainty level, the adjusted versions under each case give the

same value as the traditional FEM method, which does not deviate much from the

nominal level α = 0.01. However, as uncertainty increases, only the traditional FEM

and the Adjustment 2 achieve the nominal type 1 error value of 0.01. For these two

methods, we observe that genotype uncertainty does not significantly affect the rates.
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Adjustment 1, on the other hand, consistently gives lower empirical type 1 error rates,

which tend towards zero as uncertainty increases. This seems to be mainly due to the

increased standard error of the adjusted overall effect estimate. In all three methods, we

observe fairly similar results for the cases with equal and unequal study sizes considered

in the simulation study.

Evaluation of Empirical Power

In power assessment, we considered two setups, one with β1= 0.25 and the other

β1 =0.5. The results are summarized in Table 3.2 where both the traditional and

adjustment 2 FEM approaches have been used. These summaries are for the cases

where meta-analysis is performed on studies that fall with a specific genotype uncetainty

level.

In all cases, we see that the empirical power increases as we increase the number

of studies in a meta-analysis. Use of bigger true effect size in simulation also has a

significant impact on the power since it results in larger overall effect size estimates

which consequently give significant results. Meta-analysis with unequal study sizes has

better empirical power compared to the one with equal study sizes. This is attributed

to the larger average sample size of 560 individuals in the unequal study sizes compared

to the 500 individuals in the equal study sizes case. Most importantly, for a fixed

true effect size and fixed number of studies in a meta-analysis, we observe that power

decreases as uncertainty increases. From Table 3.2, we see that our adjusted FEM

method performs slightly better than the traditional FEM in all cases.

The two FEM methods considered are not significantly different as can be observed

from the table, however, our adjusted FEM method performs better in most of the cases.

The empirical power gain due to the adjustment is not significantly large, therefore,

we can say that both methods perform equally when studies in a meta-analysis have a

uniform level of uncertainty.
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Table 3.2: Empirical power of the traditional and adjusted FEM methods at at α = 0.01.

Equal study sizes Unequal study sizes

FEM 5 10 15 5 10 15

β1 = 0.25

Traditional

0% 0.2051 0.4683 0.5966 0.2640 0.5515 0.6765
10% 0.0976 0.2940 0.4187 0.1254 0.3490 0.4773
20% 0.0566 0.2115 0.3208 0.0829 0.2608 0.3821
30% 0.0322 0.1381 0.2279 0.0409 0.1640 0.2710

Adjusted

0% 0.2051 0.4683 0.5966 0.2640 0.5515 0.6765
10% 0.0985 0.2947 0.4185 0.1251 0.3491 0.4771
20% 0.0570 0.2104 0.3205 0.0825 0.2613 0.3815
30% 0.0326 0.1376 0.2280 0.0421 0.1645 0.2709

β1 = 0.5

Traditional

0% 0.8154 0.9896 0.9995 0.9087 0.9983 1.0000
10% 0.4910 0.8580 0.9699 0.6071 0.9317 0.9902
20% 0.2860 0.6010 0.8236 0.4108 0.7161 0.9016
30% 0.1168 0.2874 0.4767 0.1803 0.3906 0.5932

Adjusted

0% 0.8154 0.9896 0.9995 0.9087 0.9983 1.0000
10% 0.4947 0.8600 0.9704 0.6070 0.9318 0.9907
20% 0.2864 0.6042 0.8250 0.4125 0.7194 0.9032
30% 0.1169 0.2879 0.4797 0.1839 0.3951 0.5971

In practice the studies involved often have varying genotype uncertainty levels. To

simulate this case, we take the first five studies at 0% uncertainty level and combine

them with the studies in the other two sets at 0%, 10%, 20% and 30% uncertainty levels.

This way, we consider the impact of adding imputed study results to meta-analysis

when we initially have k = 5 typed study results. We include 0% uncertainty level to

reflect the ideal cases with k = 10 and k = 15 typed studies. Table 3.3 is a summary of

the empirical power for both traditional FEM method and the adjusted FEM for mixed

uncertainty levels. We observe that empirical power of our adjusted meta-analysis

method is better than the traditional FEM in all the cases that we considered.
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Table 3.3: Empirical power of the traditional and adjusted FEM methods at α = 0.01.

Equal study sizes Unequal study sizes

FEM 10 15 10 15

β1 = 0.25

Traditional
10% 0.3609 0.4695 0.4361 0.5401
20% 0.2850 0.3802 0.3716 0.4655
30% 0.2045 0.2773 0.2756 0.3504

Adjusted
10% 0.3680 0.4777 0.4447 0.5477
20% 0.3080 0.4013 0.3949 0.4850
30% 0.2491 0.3150 0.3260 0.3913

β1 = 0.5

Traditional
10% 0.9508 0.9915 0.9851 0.9975
20% 0.8767 0.9473 0.9369 0.9785
30% 0.7586 0.8220 0.8596 0.9063

Adjusted
10% 0.9571 0.9930 0.9866 0.9980
20% 0.9051 0.9633 0.9588 0.9871
30% 0.8430 0.8951 0.9258 0.9542

3.2.2 Adding Imputed Studies

In this section, we investigate the gradual increase in the meta-analysis power as we

add studies one at a time for the case with equal study sizes. The first five studies have

fully typed studies and from the the sixth study, we have four different cases through

adding studies from the four uncertainty levels independently. We have considered both

the standard FEM method and our adjusted FEM method.

Figure 3.1 shows empirical power progression as we add one study at a time in the

equal sized studies case. For the first 5 studies where there is no genotype uncertainty,

we obtain the empirical power for both FEM methods. With no genotype uncertainty,

there is a steady increase of power as studies in the meta-analysis increase until the 15th

study. With the other uncertainty levels, the increase is relatively lower. As uncertainty

level increases, the rate of empirical power increment reduces relative to the uncertainty
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level as shown by the branches where 0% is the top branch and 30% is the bottom

branch. This observation is same for the two β1’s and for both FEM approaches.

Figure 3.1: Plots showing progression of empirical power with increase in number of
studies using old FEM method (left panel) and adjusted FEM (right panel) for β1 = 0.25
(top panel) and 0.5 (bottom panel).
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However, for the uncertain meta-analysis cases where the adjusted FEM model

has been used, the branching of the line plots is narrowing towards the line plot for
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0% uncertainty. This indicates that the adjusted method performs better than the

traditional FEM method. It is also important to note that, sometimes when an extra

study is added in a meta-analysis, increase in power is not always guaranteed. This

is quite clear on the plots for the traditional FEM (see Figure 3.1), where at 30%

uncertainty level. For example, where β1 = 0.5, we see a decrease in empirical power

when the 6th, 7th and 8th studies are added, thereafter, there is a marginal increase in

power.

To achieve empirical power of about 0.95 for the equal sized studies meta-analysis,

where β1 = 0.5 and the first five studies are fully typed, we need three more studies

at 0% uncertainty level or five more studies at 10% uncertainty level for both the

traditional FEM and adjusted FEM. However, at 20% uncertainty level, nine more

studies are required for the adjusted FEM. The traditional FEM does not achieve this

power even with 10 extra studies. Therefore, for a desired power of a meta-analysis

study at an imputed SNP, more studies may be required for the traditional FEM in

comparison to the adjusted FEM.

3.3 Summary

In this chapter, we have evaluated the impact of genotype uncertainty on FEM results,

compared the accuracy of the traditional FEM and the adjusted FEM, and provided

an empirical judgement on the number of imputation-based studies required to achieve

a desired power level under both methods.

Initially, we proposed two adjustment methods, adjustment 1 and adjustment 2.

From the simulation study results, we observed that adjustment 1 gives inaccurate type

1 error rates at 0.01 level of significance for both equal and unequal study meta-analyses.

Therefore, we settled on the adjustment 2, which we refer to as adjusted FEM, in our

subsequent analyses. From the results, we have verified that in both the traditional FEM
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and adjusted FEM, type 1 error is not significantly affected by any or a combination

of the simulation parameters. We have also ascertained that a bigger effect size and

addition of more studies result in better detection power in a meta-analysis. We noted

that a meta-analysis study that has a superior average study size of the individual

studies give better power.

On comparing the two meta-analysis methods, in the case where the individual

studies have varied uncertainty levels, we have observed that the adjusted FEM gives

slighlty better power in comparison to the traditional FEM. In addition, the adjusted

FEM often requires fewer imputation-based studies to achieve a certain power, especially

when there is siginificant genotype uncertainty. However, when the uncertainty in the

genotypes is high, a desired power may never be achieved because some of the added

studies may decrease the meta-analysis power. This is more pronounced in the traditional

FEM.
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Chapter 4

Random Effects Meta-analysis

In Chapter 3, we have discussed the genome-wide meta-analysis model that assumes that

the underlying studies have the same true effect size. Therefore, the studies estimate a

common effect and the differences are as a result of sampling error. Occasionally, the

estimated effect sizes may vary in the individual studies because of both the differences

in the underlying true effects sizes of the studies and sampling error. The differences

in the true effect sizes maybe a result of geographical differences of the studies or

differences in studies populations. The estimated individual studies’ effect sizes may

also show these variances because of the different statistical methodologies employed in

the studies. When the observed effect sizes of individual studies are different because

of not only the sampling error but also other unexplained factors, we assume that

between-study variance/heterogeneity is present in the studies.

When between-study variance is proved to be present among studies then random

effects meta-analysis (REM) is advisable to be used over FEM model. Like FEM, REM

also uses a weighted mean of estimated effect sizes of the primary studies to estimate

the overall genetic effect size. However, in REM the weighting is determined in two

steps, (1) first using the FEM weighting method to obtain the FEM overall effect size

and (2) adding the between-study variance to the within study variance to obtain the
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total variance, which is then used in the inverse variance weighting scheme to estimate

the overall effect size.

In this chapter, we explore the findings of Li et al., 2012. Using more studies,

we investigate the effect of genotype uncertainty on between-study heterogeneity and

type 1 error in the test of association under REM. REM methodolgy for both typed

and imputed genotypes is discussed in Section 4.1. Therein, we discuss methods for

quantifying and testing the between-study heterogeneity as well as testing for association.

In Section 4.2, we provide simulation results on the accuracy of REM method under

genotype uncertainty. We summarize our findings in Section 4.3.

4.1 Methods

In the preliminary analysis of a meta-analysis study, if we discover between-study

heterogeneity, we suspect that the individual studies’ effect size estimates are from

different distributions and hence prefer REM model for genome-wide meta-analysis. In

REM, the model in (3.1) takes the form

Y
(j)
i = β0 + β

(j)
1 G

(j)
i + ε

(j)
i , i = 1, . . . , nj, j = 1, . . . , k,

where β(j)
1 ∼ N(β1, τ

2). β1 is the grand mean of the individual study true effect sizes

and τ 2 is their variance.

However, before any meta-analysis is undertaken, we have to quantify and test for

heterogeneity. For k studies addressing the same problem on the same quantitative

trait on a particular SNP, we explore heterogeneity for both fully typed studies on

one hand and purely imputed studies on the other. We are particularly interested in

how meta-analysis study conclusions are affected in these two cases in the prescence of

heterogeneity.
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4.1.1 REM at a Fully Typed SNP

The first step in REM is to test for heterogeneity for the studies involved in a meta-

analysis. We are therefore interested in testing

H0 : τ 2 = 0 vs. HA : τ 2 > 0, (4.1)

The null hypothesis defines no heterogeneity and the alternative states some heterogene-

ity. In meta-analysis, a common way of testing the problem in 4.1 is to use Cochrane Q

test (Cochran, 1950, 1954a).

Consider k studies such that β̂(1)
1 , β̂

(2)
1 , . . . , β̂

(k)
1 are independently, normally

distributed effect size estimators with mean β1 and variance σ2
j + τ 2, where σ2

j is the

within study variance for jth study. The test statistic for testing heterogeneity is

Q =
k∑
j=1

wj

(
β̂j − β̂1FE

)2
,

where wj and β̂1FE are obtained as outlined in Section 3.1.1 and Q is χ2 distributed with

k − 1 degrees of freedom. To obtain the mean of Q, we first need know the distribution

of β̂1FE in the presence of heterogeneity. Since each β̂(j)
1 are normally distributed with

mean β1, β̂FE is also normally distributed with mean β1 and variance,

var
(
β̂1FE

)
= var

(∑k
j=1wjβ̂

(j)
1∑k

j=1wj

)
=

∑k
j=1w

2
jvar

(
β̂
(j)
1

)
(∑k

j=1wj

)2
=

∑k
j=1w

2
j

(
σ2
j + τ 2

)(∑k
j=1wj

)2 =

∑k
j=1wjσ

2
j + τ 2

∑k
j=1w

2
i(∑k

j=1wj

)2 .
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Therefore, the mean of Q is

E (Q) = E

(
k∑
j=1

wj

(
β̂
(j)
1 − β̂1FE

)2)
=

k∑
j=1

wj E

((
β̂
(j)
1 − β + β − β̂1FE

)2)

=
k∑
j=1

wj

(
E
(
β̂
(j)
1 − β

)2
+ E

(
β − β̂1FE

)2
+ 2E

(
β̂
(j)
1 − β

)(
β − β̂1FE

))
.

Solving each part of the equation, we obtain

E (Q) = k − 1 + τ 2

(
k∑
j=1

wj −
∑k

j=1w
2
j∑k

j=1wj

)
. (4.2)

Under null hypothesis, Q is χ2 distributed with degrees of freedom k− 1 while under

the alternative hypothesis it has a non-centrality parameter given by the last term in

(4.2). We reject the null hypothesis in the problem (4.1) when Pr(χ2 > Q) > α.

Q statistic only helps in testing heterogeneity but can not quantify the severity of

heterogeneity among the studies on a common scale. The degree of heterogeneity is

often quantified by I2 (Higgins et al., 2003) and is given by

I2 =
Q− (k − 1)

Q
100%.

I2 ranges from 0% to 100% where 100% denotes extreme heterogeneity. Heterogeneity

has been naively categorized into low, moderate and high for I2 values 25%, 50% and

75%, respectively.

If we obtain significant results in the test of heterogeneity, we perform meta-analysis

using the REM model. The overall observed effect size is estimated using the inverse-

variance weighting technique where the variance is the sum of the between-study and

within study variance estimates. Within study variance is reported in study summaries
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and treated as the true value as in Section 3.1.1 while the between-study variance is

estimated using expectation of Q-statistic in (4.2) and is given by

τ̂ 2 =
Q− (k − 1)

C
,

where

C =

(
k∑
j=1

wj −
∑k

j=1w
2
j∑k

j=1wj

)
.

Therefore, the weight of the jth study in REM is

w̄j =
1

s2j + τ̂ 2
,

which yields the overall effect size estimate

β̂1RE =

∑k
j=1 w̄jβ̂

(j)
1∑k

j=1 w̄j
.

Given that β̂1RE is a weighted mean of unbiased estimators, it is also unbiased.The

derivation of its distribution follows the same procedure in the FEM model and is given

by

β̂1RE ∼ N

(
β1,

1∑k
j=1 w̄j

)
.

The test statistic for the hypothesis in (2.2) is

zRE =
β̂SE
sRE

,
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where sRE =
√

1/
∑k

j=1 w̄j. In the case where each study reports only the z-score the

statistic zRE can be written in terms of the z-scores,

zRE =

∑k
j=1

√
w̄j zj√∑k

i=1 w̄j

,

with distribution

zRE ∼ N

β1
√√√√ k∑

j=1

w̄j, 1

 .

Therefore, under the null hypothesis zRE has a standard normal distribution. We

reject the null hypothesis when the p-value, 2 Pr(Z > |zRE|), is less than the significance

level, α.

4.1.2 REM at an Imputed SNP

If all the studies in the genome-wide meta-analysis have imputed genotypes, the

distribution of the overall effect size changes because the distribution of the individual

studies’ effect size estimators are affected as we had seen in Chapter 2. In the case of

REM the model in (3.1) becomes

Y
(j)
i = β0 + β

(j)
1 G̃

(j)
i + ε

(j)
i , i = 1, . . . , nj, j = 1, . . . , k.

Assume that all the k studies in REM report the effect size estimates β̃(j)
1 ’s along with

their standard errors s̃j’s, j = 1, . . . , k. We test the between-study heterogeneity as

shown in Section 4.1.1, with the test statistic is given as

Q̃ =
k∑
j=1

w̃j

(
β̃j − β̃1FE

)2
,
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where w̃j = 1/s̃2j and β̃1FE is estimated as shown in Section 3.1.2. The I2 value for

imputed SNP based studies is

Ĩ2 =
Q̃− (k − 1)

Q̃
100%.

For significant heterogeneity results, the between-study variance is estimated in a

similar way as in Section 4.1.1 and is given by

ˆ̃τ 2 =
Q̃− (k − 1)

C̃
,

where

C̃ =

(
k∑
j=1

w̃j −
∑k

j=1 w̃
2
j∑k

j=1 w̃j

)
.

By inverse variance method the weights of the j imputed study becomes

˜̄wj =
1

s̃2j + ˆ̃τ 2
.

Therefore, the mean effect size estimate is

ˆ̃β1RE =

∑k
j=1

˜̄wjβ̂
(j)
1∑k

j=1
˜̄wj

,

and its standard error is

s̃RE =
1√∑k
i=1

˜̄wi

.

Since β̃(j)
1 ’s are not unbiased for β1, β̃1RE is not unbiased as well. Its distribution is
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derived the same way as that of FEM mean effect size in Section 3.1.2 and is given by

β̃1RE ∼ N

(∑k
j=1

˜̄wj γj∑k
j=1

˜̄wj
β1,

1∑k
j=1

˜̄wj

)
.

Once we obtain β̃1RE and s̃RE, similar procedure outlined in Section 3.1.1 is followed

for testing of the problem in (2.2). The test statistic becomes

z̃RE =
β̃1RE
s̃RE

,

which can also be written in terms of the individual studies’ z-scores, as in (3.2),

z̃RE =

∑k
j=1

√
˜̄wj z̃j√∑k

i=1
˜̄wj

.

The distribution of z̃RE is,

z̃RE ∼ N

(∑k
i=1

˜̄wj γj∑k
i=1

˜̄wj
β1, 1

)
,

Under the null hypothesis the distribution of z̃FE is standard normal distribution. We

reject the null hypothesis if 2 Pr(Z > |z̃RE|) > α.

4.2 Simulation Study

In this section, we assess the impact of uncertainty on REM results via simulations. We

particularly focus on the assessment of heterogeneity and the accuracy of REM results

under the null hypothesis. As in the FEM simulations, we consider both equal and

unequal study sizes, and form three sets, each consisting of 5 studies. Four genotype

uncertainty levels, 0%, 10%, 20% and 30%, are included for each study. Within each
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setting we choose τ 2 values that result in approximately, low, moderate and and high

heterogeneity levels. The respective τ 2 values considered are, 0.04, 0.16 and 1 for low,

moderate and high heterogeneity for a meta-analysis that consist of 5 equally sized

studies.

Data are generated similar to as outlined in 3.2. The underlying model parameters

are chosen as MAF = 0.1, β0 = 30, σ = 3, and β1 is set at 0 for the null hypothesis. The

underlying true efffect size of each study is randomly obtained from normal distribution

where mean is β1 and variance τ 2. These true β1 values are only generated once for

studies with both equal and unequal study sizes. The generated true effect sizes at each

heterogeneity level are shown in Table 4.1 for the case with k = 5 studies.

Table 4.1: True effect sizes for different τ 2 values in a five study genome-wide meta-
analysis using the REM model under null hypothesis.

Parameter Effect sizes

τ 2 = 0.04 0.0928 -0.0207 -0.0017 0.0633 0.2158

τ 2 = 0.16 0.0598 -0.6365 -0.4337 0.6796 -0.4667

τ 2 = 1 -0.2357 1.9711 0.2288 -0.6493 -0.1134

To generate phenotype data within a study, we use the same genotype data for all the

different heterogeneity levels. For each setting, we obtain 10000 Monte-Carlo replicates

by generating only the phenotype data. Within each case of a particular uncertainty

level we obtain association test results of the 15 studies using the dosage approach, and

record the summary data consisting of effect size estimate, standard error, z-score and

p-value.
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4.2.1 Meta-analysis Results

Having obtained the individual studies’ summary results we perform test for hetero-

geneity, quantify the heterogeneity and perform meta-analysis as outlined in Section

4.2 within a specific scenerio using the REM method.

Evaluation of Heterogeneity

We investigate the impact of genotype uncertainty on the power and the degree of

between-study heterogeneity under the alternative hypothesis of the problem in 4.1.

We also compare our results to Li et al., 2012. Table 4.2 is a summary of the empirical

power of the test of heterogeneity and average I2 values under the null hypothesis.

We observe that for a fixed number of either equal or unequal sized studies, there is a

consistent drop in the rejection rates and I2 values as uncertainty increases at moderate

and high heteregoneity levels. This is illustrated in Figure 4.1, under the scenario with

equal sized studies. At low heterogeneity, power for the test of heterogeneity is very

low and is around the nominal level α = 0.01. The mean values of I2 confirms this

observation.

In the individual studies, the true effect sizes are necessarily not zero (see Table 4.1),

hence as uncertainty increases, the estimated effect sizes tend towards zero and become

smaller as explained in Chapter 2. Since they are converging to a common value as

uncertainty increases, the size of Q-statistic diminishes and as consequence,empirical

power and I2 reduces. Therefore, contrary to Li et al., 2012 conclusion, we can say that

uncertainty reduces the observed between-study heterogeneity.

Moreover, for moderate and high heterogeneity, there is an increase in significant

results as the number of studies increases. Interestingly, in most cases, the degree of

uncertainty decreases, which indicates that increasing the number of studies in REM

may result in less degree of between-study heterogeneity. At low heterogeneity, there is
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Table 4.2: Empirical power and mean I2 for the three heterogeneity levels.

Equal Study sizes Unequal Study sizes

5 10 15 5 10 15

Empirical

Low

0% 0.0150 0.0172 0.0194 0.0121 0.0157 0.0178

10% 0.0133 0.0152 0.0130 0.0133 0.0147 0.0155

20% 0.0117 0.0112 0.0137 0.0116 0.0117 0.0134

30% 0.0117 0.0127 0.0128 0.0128 0.0129 0.0124

Moderate

0% 0.5210 0.8157 0.9271 0.4919 0.7422 0.8876

10% 0.2441 0.4148 0.5486 0.2091 0.3834 0.5089

20% 0.1175 0.1864 0.2374 0.0986 0.1651 0.2165

power 30% 0.0499 0.0739 0.0943 0.0536 0.0680 0.0962

High

0% 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000

10% 0.9219 0.9964 0.9997 0.9651 0.9996 1.0000

20% 0.5635 0.8889 0.9673 0.7355 0.9668 0.9972

30% 0.2737 0.4942 0.6269 0.4306 0.6948 0.8584

I2

Low

0% 16.0727 13.9683 12.9916 15.5243 13.2332 12.0453

10% 14.8967 13.0009 11.6278 14.9602 12.7738 11.6033

20% 14.5008 12.4415 11.0200 14.3414 12.1528 10.7104

30% 13.8290 11.7150 10.4121 14.0167 11.8725 10.4809

Moderate

0% 64.5148 67.2644 67.3141 63.1034 64.1932 64.8441

10% 48.0203 50.1470 50.5094 45.0656 48.4187 48.8730

20% 35.6481 36.5462 35.6875 33.4479 34.2283 34.2184

30% 25.3793 24.6590 23.9501 26.2304 24.5396 24.5531

High

0% 89.7298 89.6461 89.3477 92.4364 91.9183 91.6832

10% 81.8684 81.6372 81.2655 84.5482 85.0946 84.34841

20% 66.4446 70.6618 70.2822 73.7772 76.0299 76.0126

30% 50.6289 53.8755 53.5116 60.2275 62.1787 63.2575



Figure 4.1: Plots showing impact of genotype uncertainty on between-study hetero-
geneity for the equal sized studies. The top panel plots illustrate the case of moderate
heterogeneity and the bottom panel ones illustrate high heterogeneity. The left panel
plots show average I2 values and the right panel plots are for rejection rates at α =
0.01.
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an unclear behaviour of the rejection rates as the number of studies increases, this is

because the studies have almost similar true effect sizes.
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Evaluation of Empirical Type 1 error rates

For a nominal type 1 error of α = 0.01, we obtain the empirical type 1 error rates under

the null hypothesis of no genetic effect for low, moderate and high heterogeneity levels

as shown in Table 4.3.

Table 4.3: Empirical type 1 error rates of the three heterogeneity levels under the REM
method at α = 0.01.

Equal Study sizes Unequal Study sizes

5 10 15 5 10 15

Low

0% 0.0153 0.0210 0.0282 0.0109 0.0160 0.0203
10% 0.0117 0.0142 0.0173 0.0101 0.0116 0.0144
20% 0.0095 0.0133 0.0142 0.0089 0.0098 0.0109
30% 0.0080 0.0100 0.0119 0.0076 0.0078 0.0101

Moderate

0% 0.0062 0.0073 0.0123 0.0094 0.0163 0.0707
10% 0.0098 0.0120 0.0270 0.0140 0.0223 0.0764
20% 0.0088 0.0142 0.0232 0.0130 0.0207 0.0733
30% 0.0073 0.0135 0.0189 0.0070 0.0107 0.0158

High

0% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10% 0.0006 0.0005 0.0008 0.0007 0.0001 0.0004
20% 0.0034 0.0013 0.0028 0.0021 0.0018 0.0044
30% 0.0043 0.0062 0.0096 0.0090 0.0113 0.0141

For a fixed number of studies, the meta-analysis empirical type 1 error rate decreases

as uncertainty increases at low heterogeneity but increases at high heterogeneity. At

moderate heterogeneity, type 1 error rate pattern is not quite clear, as in some cases, it

is higher and in others lower than the nominal significance level. At low and moderate

heterogeneity, we also observe a steady increase in type 1 error as the number of studies

increases in meta-analysis. The number of false positives are higher at 0% levels of

uncertainty. On the other hand, at high heterogeneity there is almost no rejection,

especially at low uncertainty levels. These varying patterns make it quite difficult
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to reach a common conclusion on the impact of genotype uncertainty. However, it

is obvious that the DerSimonian and Laird, 1986 approach fails to produce accurate

results even when there is no uncertainty.

4.3 Summary

In this chapter, we have assessed the impact of genotype imputation on REM results

using a simulation study. First, we have investigated the heterogeneity then type 1

error and lastly compared our results to Li et al., 2012.

From the results, we can conclude that genotype uncertainty reduces the degree of

between-study heterogeneity. Our findings are contrary to Li et al., 2012, who deduced

that “imputation may cause between-study heterogeneity, especially when imputation

was performed in some but not all of the sub-samples”. We have also observed that

as the number of studies increases, more significant results are observed, however, the

degree of heterogeneity drops. This may explain Li et al., 2012 observation since there

were only three studies and as we have seen, fewer studies often show higher degree of

heterogeneity.

The simulation results have also shown that in association testing, type 1 error of

REM is either underestimated or overestimated depending on the number of studies in

the meta-analysis or genotype uncertainty level. As a result, the test results obtained

may be questionable.
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Chapter 5

Conclusion

Our study was set out to assess the impact of genotype uncertainty on the genome-wide

meta-analysis. In Chapter 2 we have given the empirical findings for a single GWAS

while in Chapter 3 and Chapter 4, the empirical findings are for FEM and REM methods

respectively. In FEM we have investigated how uncertainty affects both type 1 error

and power of a meta-analysis and in REM, we have evaluated the impact of uncertainty

on between-study heterogeneity and type 1 error.

From our empirical results, we have observed that larger the sample size, bigger

effect size and higher MAF give higher detection power for a single-SNP GWAS. In

contrast, more variation in the trait lowers power. Also, increase in genotype uncertainty

results in underestimation of the effect size and at the same time reduces the within

study variance of a GWAS. Overall, this reduces the detection power of the test of

association, since the reduced within study variance does not fully compensate for

the reduced estimated effect size. In GWAS we also noted that dosage method of

imputation performs better than the BG method.

In FEM, we have observed that increasing number of studies and having a bigger

true effect size in a meta-analysis increase the detection power. Like GWAS, genotype

uncertainty reduces power. Our adjusted FEM performs almost equally to the traditional
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FEM in cases where the studies to be combined have a uniform uncertainty level. The

adjusted FEM, however, gives a slighlty better power than the traditional FEM where

the first five studies are fully typed and the added studies have a uniform uncertainty

level. To achieve a desired power, more studies are required for an imputation-based

meta-analysis where the first five studies are fully typed and the added studies have

imputed genotypes. This is achievable up to a certain uncertainty level because studies

with higher levels of uncertainty tend to reduce the meta-analysis study power (see

Figure 3.1 ).

In REM, we observed that type 1 error rates are not accurately estimated due to the

extra between-study heterogeneity factor. There have been previous attempts to solve

this problem on type 1 error (See Hartung and Knapp, 2001, Sidik and Jonkman, 2002,

Sidik and Jonkman, 2003, Han and Eskin, 2011 and IntHout et al., 2014). Through

simulation study, we also observed that in the test of heterogeneity, uncertainty reduces

the number of significant results as well as the magnitude of heterogeneity in instances

where heterogeneity is moderate or high. In addition, more studies give more significant

results with lower degree of heterogeneity.

In the FEM model, our method has not fully compensated for the power lost due to

uncertainty. Although, our simulations results have shown that it is better than the

traditional method, we recommend that a further research work to be done to improve

this method especially where studies in the meta-analysis have more than two levels

of heterogeneity. REM is more challenging due to the extra factor, therefore, before

conducting a power analysis, we recommend further investigation on the type 1 error.

Sound conclusions under REM would be possible only after an accurate procedure is

obtained.
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Appendix

The following is part of the r-code used in data simulation and analyses.

#######################################################################

## FUNCTIONS

#######################################################################

rdirichlet <- function(n.d, alpha1) {

#######################################################################

# This function generates data under dirichlet distribution with

# parameter vector alpha1

#######################################################################

l <- length(alpha1)

x <- matrix(rgamma(l*n.d,alpha1),ncol=l,byrow=TRUE)

sm <- x%*%rep(1,l)

return(x/as.vector(sm))

}

############################################

# simple check:

############################################

# p= rdirichlet(100, c(0.1,0.1,0.8))

# colSums(p)/100

############################################

#######################################################################

add.func <- function(p.vec){

#######################################################################

# calculates dosage value for a vector of genotype probabilities

#######################################################################
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if(length(p.vec)!=3){stop("Parameter vector should be 3-dimensional")}

G.dosage <- sum(p.vec*c(0, 1, 2))

return(G.dosage)

}

############################################

# simple check:

############################################

# add.func(p) # gives error

# d = apply(p, 1, "add.func") # OK

############################################

#######################################################################

Geno.data <- function(n, q, unc.lev = 0){

#######################################################################

# simulates genotype data at a given MAF and with different uncertainty

# levels

#######################################################################

# number of uncertainity levels

L.unc <- length(unc.lev)

# population genotype probabilities assuming H-W equilibrium.

p <- 1 - q

pg.p <- c(p^2, 2*p*q, q^2)

# number of individual studies in a meta-analysis

k <- length(n)
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# Defining the empty objects for mega-probabilities and mega-dosage

# values

mega.genoprob <- vector("list",k)

mega.dosage <- vector("list",k)

for(i in 1:k){

# genotype group sizes for the ith study

geno.size <- rmultinom(1, n[i], pg.p)

# Defining the empty objects for the ith study

genoprob <- array(NA, c(n[i], 3, L.unc),

dimnames = list(1:n[i], c("G0", "G1", "G2" ),

paste(unc.lev*100, "%", "uncert", sep = " ")))

dosage <- matrix(data = NA, nrow = n[i], ncol = length(unc.lev),

dimnames = list(1:n[i], paste(unc.lev*100, "%",

"uncert", sep = " ")))

for(j in 1:L.unc){

genoprob[,,j] <- round(rbind(rdirichlet(geno.size[1],

c(1 - unc.lev[j],(unc.lev[j])/2, (unc.lev[j])/2)),

rdirichlet(geno.size[2], c((unc.lev[j])/2, 1 - unc.lev[j],

(unc.lev[j])/2)), rdirichlet(geno.size[3], c((unc.lev[j])/2,

(unc.lev[j])/2, 1 - unc.lev[j]))), 3)

dosage[,j] <- apply(genoprob[,,j] , 1, add.func)

}

mega.genoprob[[i]] = genoprob
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mega.dosage[[i]] = dosage

}

# Returning results

all.data <- list("Dosage"= mega.dosage, "GenoProb" = mega.genoprob)

return(all.data)

}

############################################

# simple check:

############################################

# gdat = Geno.data(n=c(10,15), q=0.2, unc.lev = c(0, 0.1))

############################################

#######################################################################

Pheno.data_FE <- function(n, param, G.size){

#######################################################################

# simulates phenotype data under Fixed effect model (FEM) given the

# true genotype vector

#######################################################################

# n: vector of sample sizes

# param: c(Beta.0, Beta.1, sigma)

# G.size: matrix of genotype group sizes for all studies

#######################################################################

if(length(param)!=3){stop("Parameter vector should have dimension 3!")}

# Renaming the parameters

Beta.0 = param[1]

Beta.1 = param[2]
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Sigma = param[3]

# number of studies in the meta-analysis

k <- length(n)

if(k==1){G.size= t(as.matrix(G.size)) }

# Defining an empty list

mega.pheno <-vector("list",k)

for(i in 1:k){

y0<-rnorm(G.size[i,1], mean= Beta.0, sd=Sigma)

y1<-rnorm(G.size[i,2], mean= Beta.0+ Beta.1, sd=Sigma)

y2<-rnorm(G.size[i,3], mean= Beta.0+2*Beta.1, sd=Sigma)

mega.pheno[[i]] <- c(y0, y1, y2)

}

return(list("Phenotypes"= mega.pheno))

}

############################################

# simple check:

############################################

# G.size = matrix(NA, nrow=k,ncol=3)

# for(i in 1:k){G.size[i,] = colSums(gdat$GenoProb[[i]][,,1])}

# Pheno.data_FE(n=c(10,15), param=c(100,2,5), G.size)

# Pheno.data_FE(n=10, param=c(100,2,5), G.size[1,])

############################################

#######################################################################
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Pheno.data_RE <- function(n, Beta.0, Beta.1, Sigma, G.size){

#######################################################################

# simulates phenotype data under Random effects model (REM) given the

# true genotype vector

#######################################################################

# n: vector of sample sizes

# Beta.0: fixed intercept

# Beta.1: random slope values from N(mean= B1, sd=tau)

# Sigma: error variance

# G.size: matrix of genotype group sizes for all studies

#######################################################################

# number of studies in the meta-analysis

k <- length(n)

if(length(Beta.1)!=k){stop("Provide a vector of slope coefficients")}

if(k==1){G.size= t(as.matrix(G.size)) }

# Defining an empty list

mega.pheno <-vector("list",k)

for(i in 1:k){

y0<-rnorm(G.size[i,1], mean= Beta.0, sd=Sigma)

y1<-rnorm(G.size[i,2], mean= Beta.0+ Beta.1[i], sd=Sigma)

y2<-rnorm(G.size[i,3], mean= Beta.0+2*Beta.1[i], sd=Sigma)

mega.pheno[[i]] <- c(y0, y1, y2)

}

return(list("Phenotypes"= mega.pheno))
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}

############################################

# simple check:

############################################

# bvals = rnorm(k, mean=2, sd= 3)

# Pheno.data_RE(n=c(10,15), Beta.0=100, Beta.1=bvals, Sigma=5,

# G.size)

############################################

#######################################################################

test.stats <- function(Phenotypes, Genotypes){

#######################################################################

# performs the dosage test for a single study

##############################################################

Genotypes= as.matrix(Genotypes)

Dimen= ncol(Genotypes)

test.results <- matrix(data=NA, nrow = 4, ncol = Dimen, dimnames =

list(c("Beta1.estimate", "Beta1.error", "t-statistic", "p-value"),

paste("Level", 1:Dimen, sep = " ")))

for(i in 1:Dimen){

test.result <- summary(lm(Phenotypes~Genotypes[,i]))

test.results[1,i] <-test.result$coefficients[2,1]

test.results[2,i] <-test.result$coefficients[2,2]

test.results[3,i] <-test.result$coefficients[2,3]

test.results[4,i] <-test.result$coefficients[2,4]

}
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return(test.results)

}

############################################

# simple check:

############################################

# G = gdat$Dosage[[1]]

# Y = Pheno.data_FE(n=10, param=c(100,2,5), G.size[1,])$Phenotypes[[1]]

# test.stats(Y,G)

############################################

#######################################################################

meta_loop.test <- function(Phenotypes, Genotypes){

#######################################################################

# performs the dosage test for each study in a meta-analysis

############################################################

k <- length(Phenotypes)

Dimen <- dim(Genotypes[[1]])[2]

all.study_sum <- vector("list", Dimen)

for(j in 1:Dimen){

all.study_sum[[j]] <- matrix(data = NA, nrow = 4, ncol = k,

dimnames=list(c("Beta1.estimate", "Beta1.error",

"t-statistic", "p-value")))

colnames(all.study_sum[[j]]) <- paste("Study", 1:k, sep = " ")

}
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for(i in 1:k){

# Summaries for the i-th study of k-studies

test.res <- test.stats(Phenotypes[[i]], Genotypes[[i]])

# Loop for within study summaries for all the uncertainity levels

for(j in 1:Dimen){

all.study_sum[[j]][,i] <- test.res[,j]

}

}

return(all.study_sum)

}

############################################

# simple check:

############################################

# G = gdat$Dosage

# Y = Pheno.data_FE(n=c(10,15), param=c(100,2,5), G.size)$Phenotypes

# meta_loop.test(Y,G)

############################################

#######################################################################

cochran.q_test <- function(b, se){

#######################################################################

# calculates the Cochran’s Q-test statistic and reports p-value and

# I.square for heterogeneity test

##############################################################

# b: vector of slope estimates for study samples

# se: vector of standard errors of slope estimates
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##############################################################

if(length(b) < 2){stop("Length of b must be greater than 1")}

else if(length(se) < 2){stop("Length of se must be greater than 1")}

else if(length(b)!=length(se) ){warning("Length of se must be equal

to length of b")}

# Obtain weights, length of w/se and the degrees of freedom

w<-1/(se^2)

k<-length(w)

df<-k-1

# Weighted mean

b_w<- sum(w*b)/sum(w)

# Q-statistics

q.stat<-sum(w*(b-b_w)^2)

# p-value

value <- 1 - pchisq(q.stat, df, ncp = 0)

# I^2 calculation

I.sq <- ((q.stat - df)/q.stat)*100

if(I.sq <0) I.sq = 0

results<-list("Weighted.beta_est"= b_w, "Q_statistic"= q.stat,

"P_value"= value, "I_square" = I.sq )

return(results)

}
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############################################

# simple check:

############################################

# b = meta_loop.test(Y,G)[[1]][1,]

# se = meta_loop.test(Y,G)[[1]][2,]

# cochran.q_test(b,se)

############################################

#######################################################################

meta_func <- function(b, se, model, Qstat = FALSE){

#######################################################################

# performs meta-analysis for FEM and/or REM

##############################################################

# b: vector of slope estimates for study samples

# se: vector of standard errors of slope estimates

# model: Fixed Effect Model or Random Effect Model ("FE" or "RE")

# Qstat: heterogeneity test (TRUE or FALSE)

##############################################################

# reports results under FE and RE models

if(missing(model)){model= "BOTH"}

# Results from the test of heterogeneity.

Cochran.Q = cochran.q_test(b, se)

pval_Q <- Cochran.Q$P_value # Cochran Q-test p-value

k<-length(b) # Number of studies in the meta-analysis

w <- (se)^(-2) # Study weights
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#############################################################

# First part: Fixed effect model

#############################################################

if(model == "FE" | model=="BOTH"){

b.fe <- Cochran.Q$Weighted.beta_est # Weighted beta estimate

V.fe <- 1/sum(w) # Variance of weighted beta estimate

# Test statistic

z.fe <- b.fe/sqrt(V.fe) # Z-score statistic

# p-values

p.val_fe <- 2*(1-pnorm(z.fe,mean=0,sd=1)) # Two sided test

# Where p.val_fe > 1

if(p.val_fe > 1) p.val_fe = 2 - p.val_fe

# Results for fixed effects

results.fe<- list("Weighted_beta.estim" = b.fe,

"Error" = sqrt(V.fe), "Z_Score" = z.fe, "Beta.P_value" = p.val_fe)

}

#############################################################

# Second part: Random effects model

#############################################################

if(model == "RE" | model=="BOTH"){

# Calculating tau.sq_stat:

q.stat<- Cochran.Q$Q_statistic # Q-statistics
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c<-sum(w)-(sum(w^2))/sum(w) # Weighting factor

df <- k-1 # degrees of freedom

tau.sq_stat <- (q.stat-df)/c

# In case tau.sq_stat <0, return 0

if(tau.sq_stat<0) tau.sq_stat = 0

# Total variance

var.t<- 1/w + tau.sq_stat

# RE weights

w.re <- 1/var.t

# Weighted beta under random effects

b.re<- sum(w.re*b)/sum(w.re)

# Variance of weighted mean

V.re <- 1/sum(w.re)

# Test statistic

z.re <- b.re/sqrt(V.re) # Z-score statistic

# p-values

p.val_re <- 2*(1-pnorm(z.re,mean=0,sd=1)) # Two sided test

# Where p.val_re > 1

if(p.val_re > 1) p.val_re = 2 - p.val_re

# Results for random effects

results.re<- list("Weighted_beta.estim" = b.re,

"Error" = sqrt(V.re), "Z_Score" = z.re, "Beta.P_value" = p.val_re,
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"Tau.Sq"= tau.sq_stat)

}

#############################################################

# Heterogeneity results

#############################################################

if (Qstat == TRUE){

results.q<- list("Q_statistics" = Cochran.Q$Q_statistic,

"Q_stat.P_value" = pval_Q, "I_square" = Cochran.Q$I_square)

}

#############################################################

# Results to return:

#############################################################

# Returns fixed effect results

#############################################################

if (model == "FE"){

if(Qstat == FALSE){ # Qstat is not required

return(results.fe)

}else{ # Qstat is required

results.nfe<-list("FE_results" = results.fe,

"Q.statistics_results" = results.q)

return(results.nfe)

}}

# Returns random effect results

#############################################################

if (model == "RE"){
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if(Qstat == FALSE){ # Qstat is not required

return(results.re)

}else{ # Qstat is required

results.nre<-list("RE_results" = results.re,

"Q.statistics_results" = results.q)

return(results.nre)

}}

# Returns both FE and RE results

#############################################################

if (model=="BOTH"){

if(Qstat == FALSE){ # Qstat is not required

results.nullF <- list("FE_results" = results.fe,

"RE_results" = results.re )

# output results

return(results.nullF)

}else{ # Qstat is required

results.nullT <- list("FE_results" = results.fe,

"RE_results" = results.re,

"Q.statistics_results" = results.q )

return(results.nullT)

}}}

############################################

# simple check:

############################################

# meta_func(b, se, Qstat = TRUE)

############################################
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