A New Level of
Electronic Design Automation
- Design Flow Manager -
a Software Tool Implemented
Using the Object-Oriented
Development Methodology.

by
Krzysztof Kobylinski

A Thesis
Submitted to the Faculty of Graduate Studies
In Partial Fulfilment of the Requirements

for the Degree of
MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

©1997

i~l

National Library Bibliothéque nationale
of Canada du Canada
isitions and isitions et
auﬁi‘g;raphic Services :qwl:es bibliographiques
Ot ON KIA ONe Ofwa ON K1 oNe
Canada Canada
Your file Votre rééérence
CQur flg Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the = L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-23367-7

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

SARdE

COPYRIGHT PERMISSION PAGE

A VEW LEVEL OF ELECTRONIC DESIGN AUTOMATION
~DESIGN FLOW MARAGER-
A SOFTHARE TOOL IMPLEMENTED
USING THE OBJECT-ORIENTED
DEVELOPMERT METRODOLOCY

BY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requiremeats of the degree

of

Krzysztof Kobylinski 1997 (c)

Permission bas been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

‘The University of Manitoba requires the signatures of all persons using or photocopying
this thesis. Please sign below, and give address and date.

Abstract

This dissertation focuses on the issues related to Electronic Design Automation and
Object-Oriented sofiware development methodology. Based on the example of a PCB
Design and Analysis Flow, it shows the benefits of introducing executable design flows
which capture all the steps and data communication aspects of design processes. Design
Jlows provide a means of mapping between the theoretical design steps and the CAD
tools which provide the functionality to fulfill the step tasks. The implication of the
proven usability of the design flows leads to the concept of a Design Flow Manager.

The Design Flow Manager is a software product which enables organizing design flows
into flow libraries and provides a means of searching the libraries for the design flow
meeting to the highest extent the requirements of the design process. The object-oriented
software design process of the Design Flow Manager is presented with all its steps and
deliverables. The Design Flow Manager is currently being investigated at the Micro-
electronics and Systems Softiware Laboratory in the Department of Computer and Elec-
trical Engineering at the University of Manitoba.

Acknowledgments

First of all I want to thank my beloved Andreana for her total support during this
work and opening for me the new exciting dimensions of love and life.

My parents participated in this work by raising me in the atmosphere of admiration
for human thinking and creativity.

Dr. Bob McLeod being my advisor used the method of throwing into deep water
which gave me so much space and freedom to make choices that at this moment in
my life, I am happy where I am and where I am going with my professional career.
Fortunately he was not consistent with his expectations of me being a neural net-
work learning dynamics expert. His tremendous management skills enabled financ-
ing of my research for more than three years.

Mr. Tapas Shome was undoubtedly my guide in the huge and crowded jungle of
contemporary technology. His bottomless knowledge of what is happening and
what to read was certainly the pillar supporting my maturing as a software engineer.

Dr. W. Pedrycz, Dr. M. Pawlak, Dr. D. Blight, Peter Czezowski, Roger Ng, Budi
Rahadjo, Jackson Wong and all those who were always ready to give their feedback
about the research have my deep respect.

All the colleagues, students, professors and staff members of the Department of
Electrical and Computer Engineering who create great friendly atmosphere in this
organization deserve warm appreciation.

Mrs. Maria Stawychny who offered hours of her time to check the grammar and
style of this work is highly appreciated.

Finally, I would like to thank MICRONET, the Canadian Microelectronic Corpora-
tion, and NSERC for supporting this work.

Tabie of Contents

Table of Contents

Abstract.....1

Acknowledgments.....ii

1.0
20
2.1
22
23
23.1
23.2
233
234
235
24
25
26
30
KN |
32

32.1

Introduction.....1
CAD wols and design flows.....2
Design process building.....2
Design process flows.....3
PCB design and analysis flow.....S
Design Capture subflow.....7
Signal Analysis subflow.....9
Thermal Analysis subflow.....12
Reliability Test step.....13
Manufacturing Data step.....13
Other design flows.....13
Benefits of introducing design flows to the design environment.....13
Motivation to introduce a Design Flow Manager.....14
Design Flow Manager - object-oriented software design process.....15
Application requirements.....15
Analysis.....16

Requirements analysis.....16

3.2.1.1 Requirements statement.....17

3.2.1.2 Usecase scenarios.....18

3.2.1.2.1 CheckAdmin use case.....21

32.12.2 ActiveLib use case.....22

Tabie of Contants

32.123 NewAdmin use case....22
32.124 DeleteAdmin use case.....23
32.125 NewLibrary use case....24
52.1.2.6 DeleteLibrary use case....25
32.1.2.7 AddFlow use case.....26
32.1.2.8 UpgradeFlow use case.....29
32.1.29 DeleteFlow use case.....30
32.1.2.10 ListLibraries use case.....31
3.2.1.2.11 OpenLibrary use case....31
3.2.1.2.12 NewFlow use case.....31
32.1.2.13 ViewDesignSteps use case.....31
32.12.14 Open Flow use case.....32
32.1.2.15 Secarch Flow use case.....33
3.2.1.3 Graphical user interface.....37
322 System analysis.....41

3.22.1 Object model.... 41

3222 Dynamic model....44

3223 Functional model....48

3.3 Design....S1

33.1 System design.....51

33.1.1 System Decomposition.....51
33.2 Specifying Concurrency....54
33.1.3 Task - Resource Allocation.....54
33.14 Data Stores Implementation Strategy.....54

33.1.5 Software Control Approach.....56

Table of Contents

33.1.6 System Behavior in Exceptional Situations.....56
33.1.7 Other Strategic Decisions.....57

332 Objectdesign.....57

5.3.2.[Class associations definition.....58

3.3.22 Class operations definition.....60

33.23 Class attributes definition.....62

34 Implementation.....63

34.1 Model implementation.....63

34.1.1 Code template.....63

34.12 Member functions implementation.....63

34.1.3 Use case compiled programs.....63

34.14 Use case tcl/tk implementation.....64

342 View and Controller implementation.....65

40 Conclusions.....66

References and Bibliography.....67

Appendix A The header file dfL.h.....69

Appendix B The member functions implementation file dfl.cc.....82
Appendix C The C++ implemented menu option files.....105
Appendix D The main application file dfl.....121

Appendix E The final GUI version.....146

1.0 introduction

The very high complexity and variety of present design technologies create big
challenges for designers. The complexity of present engineering products creates a
challenge in the form of complex design processes with highly intricate design
steps. As a result of this situation the learning curve for new designers is very steep.
Another flavor to the challenge is added by the design tools vendors and the variety
of their design tools called Computer Aided Design tools. The mapping between
the theoretical design steps for a particular technology and the CAD tools which
provide a2 means to perform the design process is often not obvious. To make the
situation even worse, some design processes may not be accomplished with the
CAD tools provided by one vendor creating another challenge for the transfer of
design data and deliverables between different CAD tools sequenced by a design
process. This thesis addresses these challenges by proposing and implementing a
Design Flow Manager. The Design Flow Manager is implemented using object ori-
ented and modem software development practices.

10of 154

CAD toois and design flows.

CAD tools and design flows.

21

Design process buliding.

Design process building is coordinating a set of activities leading to the formulation
of a specific design process flow. Initially the design process goals have to be
defined. The set of process goals leads to a definition of subsequent deliverables of
the design process. From the deliverables the necessary design steps may be
defined. Next the mapping of those theoretical design steps into CAD tools has to
be done.

In this work an example of a Printed Circuit Board (PCB) Design and Analysis Pro-
cess is presented. The goal of the design process is to provide a means of capturing

design system information, creating a board layout and evaluating it for signal and

thermal problems. The deliverables of the process are as follows:

(i) system schema,

(ii) component and trace layouts,

(iii)) signal and thermal analysis reports,

(iv) manufacturing data in the form of plotter control commands.

The theoretical design steps necessary to generate the above deliverables may be
defined as follows:

- schematic capture,
- component layout,
- routing,

- signal analysis,

- thermal analysis,

- manufacturing data generation.

20f 154

CAD tools and design flows.

22

The CAD tools which enable the realization of the above design steps may be, for
example, supplied by two vendors - Mentor Graphics Inc. and Quantic Inc. Mentor
Graphics provides the following tools: Librarian, Design Architect, Package and
Layout for PCB design, Thermal Analysis and Fablink for manufacturing data gen-
eration. Quantic provides the following signal analysis and support tools: Database
Manager, BoardScan, Wave Probe, Signal Viewer and Greenfield.

The number of CAD tools indicates that the mapping between them and the theo-
retical design steps is not one-to-one which creates another challenge for the
designer. The designer has to possess enough knowledge on the specific aspects and
functionality of the particular CAD tools to be able to perform the design in the
CAD tools domain instead of the domain of the design steps. Using CAD tools pro-
vided by two different vendors may or may not create another challenge for design
data and deliverables communication. In the above case, tools interfacing is sup-
ported by the Mentor-Quantic Interface, which enables data transfer from the
design into the signal analysis stage.

The function of the CAD tools and the flow of the design process is presented in the
next section where an executable flow for the process is introduced.

Design process flows

Mentor Graphic Inc. introduced two tools which provide the platform and a means
to create, instantiate and execute design flows. WorkXpert is a specialized graphic
editor which enables the building and modifying of design flows using standard
components. It enables flow capture which may be described as an activity to define
the steps that build the design process, their sequence and dependencies between
their actions and the results of the other step executions. Under the definition of the
design steps we should understand the specification of the desired behavior which
is expected during step execution. FlowXpert provides the platform and environ-
ment to manage compiled flows instantiation and execution. It monitors and con-
trols flow execution through dependencies and state functions and also automates
flows where appropriate [3).

3of 154

CAD tools and design flows.

A design flow is a compiled, self contained software structure which provides the
designer with a graphical, fully functional representation of the design algorithm
and may be instantiated for a specific design process case. A design flow is a sys-
tem built from three main components:

- graphical template,
- set of application tools,
- set of defined executable actions.

An instance of a design flow additionally preserves specific design data and deliv-

erables. The state of design data and deliverables correspond to a certain state in the
specific design process instance.

The graphical template presents the design process in the form of a task graph with
different kinds of steps and interconnections between them which define the control
flow. The following steps may be applied as flow components:

- task steps,

- subflow steps,

- &cision Stﬂpso

- activity steps.

Different steps correspond to different activities. Task steps enable the activation of
any actions in the form of executable programs in the local operating system shell.
Each of the task steps may have defined links for the pre-execute, execute and post-
execute actions. This enables not only CAD tool launching but also other activities

around the design process such as the automation of design data import-export
between CAD tools.

Subflow steps encapsulate complete flows which correspond to the main parts of
the design process and very ofien are characterized by their own deliverables. Sub-
flow steps enabie the introduction of a hierarchy of design steps or tasks. Using a

4of 154

CAD tools and design flows.

23

hierarchy of design steps provides a means to apply the human problem-solving
method of decomposition of complex problems into well-defined subproblems [1].

Decision steps provide the mechanism to control and customize design process
flows by providing definable decision inquiring dialog boxes.

Activity steps are very similar in their abilities and definitions to task steps. The
only difference is that these are not sequenced with other steps into design flows but
exist as independent activities which may be executed at any time during the design
flow execution.

PCB design and analysis flow.

The Printed Circuit Board (PCB) Design and Analysis Flow has been created to
automate the process of PCB design data inquiring, design capture, thermal and
signal analysis, reliability testing, and manufacturing data generation.

The PCB flow is built as a hierarchical design step structure which decomposes the
design and analysis process into subprocesses corresponding to specific main task
groups which lead to the generation of process deliverables. The main task groups
have been distinguished and as a result, the top level of the flow consists of five

main components:

- Design Capture subflow,

- Signal Analysis subflow,

- Thermal Analysis subflow,
- Reliability Test step,

- Manufacturing Data step. -

Additionally the flow contains a Design Setup step and four decision steps
(Figurel).

Sof 154

CAD tools and design flows.

FIGURE 1. PCB Design and Analysis flow template with design setup and decision step

60of 154

CAD tools and design flows.

The Design Setup step prompts the designer to enter an existing or new design
name. Defining the design name value enables ¢ither a connection to existing
design data and deliverables generated during past sessions of the design process
instance or (0 create a new instance of a design process. All tools activated during
the design process are linked automatically to the design instance data.

Design Capture subfiow.

The Design Capture subflow gathers all the tasks and steps necessary to complete
design capture with two main deliverables. These are the schema and board layout
(Figure 2). The Design Components activity step enables the execution of the Men-
tor Graphics Librarian tool. This allows the designer to create a database specific
for the design which organizes and stores design specific components, component
mapping files and design geometries such as: logos, padstacks, component
geometries, board geometry and mechanical parts specifications. The reason why
this step is defined as an independent activity step is to enable the designer 10 intro-
duce any database upgrades at any time during the design capture process. Three
sequenced design steps are:

- schemu.c m’yo
- Data Preparation,
- Board Layout.

The Schematic Entry step executes the Mentor Graphics Design Architect tool,
which is a specialized graphic editor providing a means for schematic capture.
Schematic capture is an activity which includes such tasks as components pick up
from libraries or new hardware components definition, component connections def-
inition, and components and connections properties specification. After the schema
has been captured, the design process flow goes to the next step called Data Prepa-
ration. This step executes the Mentor Graphics Package tool. This tool performs
mapping of logical symbols on a schema to the corresponding physical compo-
nents, checking the design for design rule errors and creating support design objects
like componeats, gates, nets and pins to be transferred into a layout tool [5).

7Tof 154

FIGURE 2. Design Capture subfiow template.

‘The Board Layout step is activated next by executing the Mentor Graphics Layout
tool. This tool enables the transformation of the system schema into a physical
board layaut. The activities performed in this tool are board layers definition, com-
ponent placement and nets routing. All of them may be performed either manually
or automatically.

The deliverables of the complete Design Capture subflow are the system schema
and the board layout with its physical characteristics.

8of 154

CAD tools and design flows.

FIGURE 3. PCB Signal Analysis subfiow template with decision prompts.

232 Signal Anslysis subfiow.

The Signal Analysis subflow is highly customized to accommodate the features of
analysis tools which are specific to the chosen vendors. The analysis methodology is
also not formalized and the features of the analysis tools leave lots of freedom for the
designer to create a desired analysis methodology.

9of 154

CAD tools and design flows.

The subflow consists of six design steps which execute five different tools. The loop-
ing coatrol mechanism provides the designer with an automated, efficient and easy to
use analysis system (Figure 3). The subflow starts with the Analysis Interface step
which executes the Mentor Graphics Layout tool and the board layout is loaded into
the tool. In this case the Layout tool has activated the Quantic interface as one of its
menu options. The interface enables the extraction of the design data and the genera-
tion of analysis input files required by the Quantic tools.

Next, the decision step enables the redirection of flow control to the Components
Translation step. This step executes Quantic’s Database Manager which allows sub-
stitutions for components not found in Quantic’s database. The tool also provides a
means of displaying, adding and deleting items in the database. Next, the flow control
is redirected to the Check Layout for Problems step which executes Quantic’s
BoardScan. This tool scans the board to detect possible analog problems and as a
result generates an analysis repost file. The report file consists of information about
critical nets and values defining the scale of specific phenomena. During the post-exe-
cute action of the step a scripting file is executed which automatically extracts the
information about the number and names of critical nets from the report file and gen-
erates a critical nets listing. If the number of critical nets is equal to zero, then the run
of the subflow is finished on the step NO PROBLEMS. In other cases subflow control
goes to the step called Signal on the Worst Net, where Quantic’s Wave Probe tool is
executed. The tool displays the graphical representation of the signals on the most
critical net (Figure 4). At this stage of the process, the designer’s experience plays a
crucial role since he has to decide if the problems found on the most critical net may
be eliminated by introducing any changes on the layout or schematic level and if the
elimination of the problems may introduce any improvements to the other critical
nets. The What-if Analysis on the Net? decision box enables sending the worst net to
detailed analysis or picking up the next worst net from the listing and loading it into
Quantic’s Signal Viewer tool.-

10 of 154

CAD tools and design flows.

FIGURE 4. Signals on the critical net.

Detailed “what-if” analysis is performed in Quantic’s Greenfield tool executed
from the What-if Analysis step. The system loads the actual critical net to the
Greenfield tool where an interactive analysis for cross-section modifications and
schematics rebuilding may be performed. The tool also enables the creation or ver-
ification of design rules in terms of conductor shapes and sizes, dielectric types and
sizes and placement of conductors, ground and power planes. The detailed analysis
shows if there exists any possible corrections to the problems on the net and if the
corrections may be performed on the layout or schematic level. In case the analysis
does not provide any correct solution, the Possible Correction decision step redi-
rects the flow control to the Pick up the Next Worst Net step. This step executes a

1101154

CAD tools and design flows.

scripting file which extracts the next critical net from the listing generated from the
BoardScan report file.

When the results of detailed analysis provide a correction solution, the flow control
may be redirected to the appropriate layout or schematic tool to introduce necessary
changes.

FIGURE §.

PCB Thermal Analysis subfiow template.

Thermal Analysis subfiow.

The Thermal Analysis subflow consists of two task steps: Analysis Interface and
Thermal Analysis. The Analysis Interface step executes Mentor Graphics’ Layout
tool which enables the designer to generate an ASCII Geometries File. The ASCIL
Geometries File may be imported into Mentor Graphics’ AutoTherm tool. The
AutoTherm tool enables interactive thermal analysis of a PCB design by simulating
heat transfer, analyzing thermal behavior and generating graphical results.

12 of 154

CAD tools and design flows.

2.4

25

Reliability Test step.

After performing signal and/or thermal analysis, flow control is directed to the Reli-
ability Test step. Mentor Graphics' Reliability Manager tool executed in this step
enables the generation of predictions for electronic systems life time. To achieve
reliability estimation in the form of Mean Time Between Failures (MTBF) value,
the tool employs commonly used failure rate models and the results of analysis
tools. The Reliability Manager directly accesses design and analysis data, computes
the failure rate and graphically displays results.

Manufacturing Data step.

In the case that the analysis results and reliability level of the design are satisfac-
tory, the design may be exported to manufacturing. The Manufacturing Data siep
provides all necessary features for generating manufacturing data and documenta-
tion of the printed circuit board design. The tool executed in this stage is Mentor
Graphics’ FabLink. The output of the FabLink tool contains photoploter (artwork)
data, drilling and milling data, fabrication (detail) and assembly drawings, a bill of
materials and a variety of reports [4].

Other design flows.

Another project which is currently under development in the Microelectronic and
Systems Software Laboratory is a design flow which will provide a means to model
the behavior of hardware systems. The flow will provide graphical design entry and
enable simulation to evaluate the correctness and generation of the corresponding
VHDL code. The CAD tools employed to analyze and compile the VHDL code,
and to perform functional and timing simulations are supplied by Synopsys Inc.
After satisfactory simulation runs, the systems will be exported to target technology
for final syntheses [14].

Benefits of introducing design flows to the design environment.

Analyzing the existing design flows leads to the conclusion that the employment of
design flows into design automation gives designers several advantages (3]:

- use of dependable, repeatable design processes,

13 of 154

CAD tools and design flows,

- reusable process expertise based on the state of the art experience across the orga-
nization,

- automation of repetitive or complex tasks that allows engineers to concentrate on
I’ » -

- leverage existing tool customizing,
- hierarchical process decomposition into well-defined subproblems,

- multi-discipline, multi-framework flow integration enables coordination of tasks
in a multi-vendor tool environment,

- multi-user and multi-platform real time project tracking which provides design
team members with dynamic task and data status and automated and conditional
notification of critical design process eveats,

- a decrease in the learning curve especially for new or junior designers.

Motivation to introduce @ Design Flow Manager

The flexibility and benefits of the flow approach make it likely that flows will be
used as the primary mechanism to automate and manage design expertise in the
near future. From the perspective of any design organization we see the implemen-
tation of this approach in the form of design flow libraries. The design flow libraries
will categorize flows and organize them in clusters. The flow libraries may for
example group flows which support the same design technology and provide differ-
ent intricacy of design steps and deliverables. Because of this an aspect of flow
libraries management will be to provide mechanisms to search libraries for the
required flows. This is the perfect moment to introduce the Design Flow Manager
tool, which will provide a means to manage flow libraries and fiows. The tool is
described in the next chapter along with the complete software design process
which led to its implementation.

14 of 154

——

Design Flow Manager - object-oriented software design process.

Design Flow Manager - object-oriented software
design process.

The complete software design process consists of the following major steps: Analy-
sis, Design, Coding, Testing, Release and Maintenance [13] (Figure 6). The Design
Flow Manager presented here was developed with the help of the Object Modeling
Technique (OMT) which is one of the commonly used object - oriented software
development methodologies (8].

FIGURE 6.

3.1

Software design process.
Appiication requirements.

‘The Design Flow Manager as proposed in the previous chapter is expected to pro-
vide a means for: ’

- accessing the tools which enable the creating and/or rebuilding flows; in the par-
ticular case these are WorkXpert and FlowXpert from Meator Graphics Inc.,

- customizing and managing flow libraries,

15 of 154

Design Flow Manager - object-oriented software design process.

- searching flows,

- executing flows.

3.2 Analysis.
Analysis is the phase of the software design process where project requirements are
being formalized and functionality and structure of the system is being analyzed.
The two main groups of design activity during this stage are requirements analysis
and system analysis. (Figure 7)

FIGURE 7. Analysis Phase.

321 Requirements anslysis.

This is an extremely important phase of the process with the main focus oriented
towards a deep and complete understanding of user needs and the expected func-

16 of 154

Design Flow Manager - cbject-oriented software design process.

tionality of the system. Close cooperation between the user and the designer is nec-
essary which very often has the form of a series of recorded sessions. As a result of
this step three deliverables are generated: a Requirements Statement, a set of Use
Case Scenarios, and a Graphic User Interface prototype [6].

3.2.1.1. Requirements statement_

A very good understanding of the expected system functionality and its environ-
ment is necessary to generate a Requirements Statement. Informal and often incom-
plete user expectations have to be refined and specified in a formal way.

The set of requirement statements for the Design Flow Manager is defined as fol-
lows:

- the tool should enable the user to organize the design flows into libraries which
will have the form of file structures preserving all the information regarding local-
ization of flows and the design steps of these flows,

- the management of flows should enable the user to add new and delete old flows
from a specific library, as well as create new flow libraries and delete obsolete ones,

- based on the set of required design steps, a searching mechanism should be imple-
mented, which will generate statistics reflecting the degree of match between the
set of desired design steps and the set of design steps building up the available

flows,

- the tool should enable executing both WorkXpert and FlowXpert tools for pur-
poses of creating and executing new flows,

- only one library at a time should be activated granting access to its flows,
- the tool should enable viewing design steps of any chosen design flow,

- the tool should display graphical representation of flows in the form of icons
which should enable executing them with the help of a standard pointing device,

17 ot 154

I

Design Fiow Manager - object-oriented software design process.

- the tool should reserve library management tasks only for users granted adminis-
tration privileges.

3.2.1.2. Use case scenarios.

Based on the analysis of user requirements a set of Use Case Scenarios have been
generated. Use cases describe a system’s functionality in terms of defining and
describing possible scenarios of system use and interaction with its environment.
The functionality of the system is divided into less complex operations which
present a sequential events exchange between objects upon which the system is
built. Each operation may have a number of possible scemarios which show
optional action flows [6)(7]. There is one Use Case Event Trace created for every
Use Case Scenario. It represents a sequence of events taking place between objects
during a system operation which corresponds to a particular scenario. All the com-
munication signals between objects are considered to be events (7).

The Event Flow shows a summary of all events taking place between all the objects
making up the system [6] (Figure 22).

The set of use cases extracted from the requirement statements of the Design Flow
Manager defines the required functionality of the tool. The set includes the follow-
ing use cases (Figure 8):

- Grant User Administration Privileges (NewAdmin),

- Revoke User Administration Privileges (DeleteAdmin),
- Create New Library,

- Delete Library,

- Add Flow,

- Update or Upgrade Flow,

- Delete Flow,

18 of 154

Design Fiow Manager - object-oriented software design process.

- List Existing Libraries,
- Open Library,

- New Flow,

- View Design Steps,

- Open Flow,

- Search Flow.

FIGURE 8. Set of Design Flow Manager use cases.

190t 154

Design Flow Manager - object-oriented softwere design process.

The diagram presenting the use cases set shows inheritance hierarchy (Figure 8).
Some use cases inherit from the CheckAdmin and some from the ActiveLib use
cases. The application of inheritance to use cases has been discussed in {7]. The
CheckAdmin use case represents the system activity which evaluates whether the
user is granted the administration privileges to perform the inherited operations or
not. The ActiveLib use case represents the actions leading to activation of a specific
flow library.

user_ok

i S

user_false

FIGURE 9. CheckAdmin use case event traces. Two scenarios: user_ok and user_faise.

20 of 154

Design Flow Manager - object-oriented software design process.

3.2.1.2.1. CheckAdmin use case (Figure 9).
The textual description of the system activity during the CheckAdmin use case is:

- the user activates one of the following menu options: NewAdmin, DeleteAdmin,
NewLibrary, DeleteLibrary, AddFlow, UpgradeFlow or DeleteFlow,

- the system extracts from the set of environment varizbles the value of USER
which matches userid,

- the system sends a Checkltem event with the argument of user ID to the
AdminList which preserves information about users who have been granted admin-
istrative privileges,

- the user ID is verified and if it is included in the AdminList the system enables
activation of any administrative tasks,

- in the case that the user ID is not included in the AdminList, the system sends a
negative message to the user.

AdministretodUser System LUibList Fowld lconeList
. AddFiow, UpgradeFlow, DeisteFlow,
SearchFow, OpeniFiow, ViewDesignSuspe, Openlbrery
—enenm———————Cchooss M |
Choossiiem(LibName)
Puticons
Activelib_done
(Pavent)

AdminiswratorUser Sysam UnLiet
choosse Rem n J. e Saployed
l . atiame j]ﬂ—-nuuu-n

FIGURE 10. Activelib use case event traces. Two scenarios representing scenarios for existing

21 0of 154

Design Flow Manager - cbject-oriented software design process.

3.2.1.2.2. ActiveLib use case (Figure 10).

The textual description of the actions performed during the ActiveLib use case is:
- the user activates one of the following menu options: SearchFlow, OpenFlow,
ViewDesignSteps, OpenLibrary or any of the following menu options: AddFlow,
UpgradeFlow or DeleteFlow activated by the control flow after successful execu-
tion of the CheckAdmin use case,

- the system sends a request to a library list called LibList to return all the elements
of the list,

- the system displays all the elements of the LibList asking the user to choose one
of them,

- the system activates the chosen flow library,

- the chosen library extracts from the IconList the names and locations of flow
icons to be displayed in the icon window,

- in the case that the library name chosen is invalid, the system returns an error mes-
sage to the user.

3.2.1.2.3. NewAdmin use case (Figure 11).

The textual description of the actions performed during the NewAdmin use case is:
- the user selects the Grant User Administration Privileges menu option,

- the system after successfully performing the CheckAdmin use case, requests the
user to enter a new administrator user ID,

- the user enters the new administrator user ID,

- the system sends AddItem event to AdminList passing the user ID value as an
argument,

- the AdminList object performs the procedure to attach a new element and returns
control to the system,

- in the case that the user eaters a user ID of an existing administrator, the system
retums an error message. -

22 of 154

Design Fiow Manager - object-oriented software design process.

(Parent)

=i T

(Parent)
Nowhdmin
Userid_Exists
AdminList
| __'_I.:............
user id exists
FIGURE 11. NewAdmin use case event traces. Two case scenarios for sucoessfully adding a

new administrator and a redundant run for an existing administrato

3.2.1.2.4. DeleteAdmin use case (Figure 12).

The textual description of the actions performed during the DeleteAdmin use case
is:

- the user selects the Revoke User Administration Privileges menu option,

- the system afier successfully performing the CheckAdmin use case, requests the
user to enter obsolete administrator user ID,

- the user enters the administrator user ID,

- the system sends & Deleteltem event to AdminList passing the user ID value as an
argument,

- the AdminList object performs the procedure to detach the specified element and
retums control to the system.

23 of 154

Design Flow Manager - object-oriented software design process.

Userid_Ok

=1 T

FIGURE 12.

DeleteAdmin use case svent trace.

3.2.1.2.5. NewLibrary use case (Figure 13).

The textual description of the actions performed during the NewLibrary use case is:
- the user selects the Create New Library menu option,

- the system after successfully performing the CheckAdmin use case, requests the
user to enter a new library name,

- the user enters the new library name,

- the system seands event AddJtem to the LibList object passing the LibName with
the value of the library name as an argument,

- the LibList attaches the new element to the list and instantiates an object of the
new library - FlowLib,

- the FlowLib object sequentially sends events to create LibStepList, FlowList and
IconeList objects,

- after successful creation of all its composite objects, the FlowLib object returns
the flow control to the system,

- in the case that the library name entered by the user is invalid, the LibList object
does not attach a new item but returns an error message to the system which passes
the message to the user.

24 of 154

Design Flow Manager - object-orientsd software design process.

[P AN

&

j:—:i: SIS
&

<>

e

Adminiewator Sysem]-
gut BDrary NEme ey
prmmmmm— AddRerm(LibName)

m”m 1

FIGURE 13. Newlibrary use case event traces. Two case scenarios for a successful runand a
failure because of an invalid library name.

3.2.1.2.6. DeleteLibrary use case (Figure 14).

The textual description of the actions performed during the DeleteLibrary use case
is:

- the user selects the Delete Library menu option,

- the system after successfully performing the CheckAdmin use case, requests the
user to enter the obsolete library name,

- the user enters the obsolete library name,

- the system sends Deleteltem to the LibList object passing as the argument
LibName which has the value of the obsolete library name,

- the LibList object detaches the item corresponding to the library name and sends a
Destroy events to its composite objects: LibStepList, FlowList, IconeList,

- after successful destruction of its components, the FlowLib object returns the flow
control to the system,

250t 154

Design Flow Manager - object-oriented software design process.

- in the case that the entered by the user library name is invalid, the LibList returns
an error message to the system.

FIGURE 14.

DeleteLibrary use case event traces. Two case scenarios for a successful run and a
failure because of an invalid library name.

3.2.1.2.7. AddFlow use case (Figure 15).

The textual description of the actions performed during the AddFlow use case is:
- the user selects Add Flow menu option,

- the system after successfully performing the CheckAdmin and ActiveLib use
cases, requests the FlowLib object to retum list of existing flows,

- the FlowLib objectmquest-s the FlowList object to return the list of existing flows,
which is being displayed to the user,

- the system requests the user to enter a new flow name,

- the user enters the new flow name,

26 of 154

R

Design Fiow Manager - object-oriented software design process.

- the system creates new instance of the Flow passing the FlowName value as the
attribute,

- the new object of the Flow sends a request to the FlowList to be attached to the
list,

-'meﬂowobjectauwsminmnuofﬂow&epljstwhichsendsthemqmwmc
system (o receive design steps of the new flow,

- the system requests the user to enter the design steps,

- the user enters the design steps,

- after receiving the design steps, the FlowStepList object attaches them to its list
and sends them to the LibStepList object which stores design steps of all the flows
contained by the active library,

- the LibStepList attaches the design steps to its list,

- the Flow object requests the system for the new flow icon data, and the system
passes this request to the user,

- the user enters the new flow icon data,
- the Flow object receives the icon data and passes it to the IconeList,

- the IconeList object attaches the new flow icon name to its list and returns the
control to the system,

- in the case that the user has entered an invalid flow name, the FlowList object
sends an error message (o the system after it has received the AddItem event from
the Flow object. The system passes the error message to the user,

- in the case that the user has eatered invalid icon data, the Flow object sends an
error message to the system which passes the message to the user.

27 of 154

Design Flow Manager - object-oriented software design process.

g

g ot n e

use case avent traces. Three case scenarios for a successful run and two
name and invalid flow icon data.

AddFlow
failure runs because of an invalid

FIGURE 18.

28 of 154

Design Flow Manager - object-orientad software design process.

3.2.1.2.8. UpgradeFlow use case (Figure 16).

The textual description of the actions performed during the UpgradeFlow use case
is:

- the user selects the Upgrade Flow menu option,

- the system after successfully performing the CheckAdmin and ActiveLib use
cases, requests the FlowLib object to return the list of existing flows,

- the FlowLib object passes the request to the FlowList object,

- the FlowList object returns to the system the list of flows contained in the active
library which is displayed to the user,

- the user is requested to enter the flow name,

- the user enters the flow name, which causes the system to send the Edit event to
the Flow object,

- the flow is edited and the user has the opportunity to introduce changes to the flow
structure,

- upon completion of the flow editing, the Flow object sends UpdateList events to
both FlowStepList and LibStepList, requesting both objects to introduce changes in
terms of design steps,

- upon completion of the step lists update, the Flow object retumns the control to the
system.

(Perent)

Administrator Systom Flowld Foudist Fow FowSapList LibSwplist
F-M,j
ji=—chocse Sow name
sql’umm >

s UpdateList
————

] UpgradeFlow_done | -1

FIGURE 16. UpgradeFlow use case event trace.

290t 154

—

Design Flow Manager - object-orientad software design process.

3.2.1.2.9. DeleteFlow use case (Figure 17).

The textual description of the actions performed during the DeleteFlow use case is:
- the user selects the Delete Flow menu option,

- the system after successfully performing the CheckAdmin and ActiveLib use
cases, requests the FlowLib object to retumn the list of existing flows,

- the FlowLib passes the request to the FlowList object,

- the FlowList object returns to the system the list of flows contained by the active
library which is displayed to the user,

- the user is requested to enter the flow name,

- the user enters the flow name, which causes the system to send a Deleteltem event
to the FlowList object,

- the FlowList object detaches the item from its list and sends a Destroy event to the
Flow object,

- the Flow object sends a Destroy event to the FlowStepList object, which asks the
LibStepList object to Deleteltems from its list,

- the Flow object sends a Deleteltem event to the IconList passing the flow name as
the argument,

- the IconList object detaches the item corresponding to the flow icon data and
returns the control flow to the system.

FIGURE 17.

DeletoFlow use case event trace.

30 of 154

R

Design Fiow Manager - object-oriented software design process.

3.2.1.2.10. ListLibraries use case (Figure 18).

The textual description of the actions performed during the ListLibraries use case
is:

- the user selects the List Existing Libraries menu option,
- the system sends a GetList request to the LibList object,

- the LibList object returns the list of libraries to the system which displays them to
the user.

o un
]

FIGURE 18.

3.2.1.2.11. OpenLibrary use case.
This use case is just an instance of the ActiveLib use case.
3.2.1.2.12. NewFlow use case.

The textual description of the actions performed during the NewFlow use case is:
- the user chooses the NewFlow menu option,

- the system executes the WorkXpert to enable the user to work on a new flow.
32.1.213. ViewDecignStep:s use case (Figure 19).

The textual description of the actions performed during the ViewDesignSteps use
case is:

- the user chooses the ViewDesignSteps menu option,

310t 154

I

Design Flow Manager - cbject-oriented software design process.

- the system afier successfully performing the ActiveLib use case, requests the
FlowLib object to retumn the list of existing flows,

- the FlowLib object requests the FlowList object to retum the list of flows con-
tained in the activated library,

-the system displays the list of flows,
- the system asks the user to choose the flow in order to view its design steps,
- the user chooses the flow,

- the system sends a GetList event to the FlowStepList object which is a part of the
chosen Flow obiject,

- the FlowStepList object sends its list of steps to the system,

- the system displays the design steps to the user.

FIGURE 19.

ViewDesignSteps use case event trace.

3.2.1.2.14. OpenFlow use case (Figure 20).
The textual description of the actions performed during the OpenFlow use case is:
- the user chooses the OpenFlow menu option,

- the system after successfully performing the ActiveLib use case, requests the
FlowLib object to retum the list of existing flows,

32 of 154

Design Flow Manager - object-oriented software design process.

- the FlowLib object requests the FlowList object to return the list of flows con-
tained in the activated libeary,

- the system displays the list of flows,
- the system asks the user to choose the flow to be executed,
- the user chooses the flow,

- the system executes the FlowXpert with the chosen flow being activated.

{Parent}
OpenFlow
System Fowlb Flowlist Flow
e GotList{LIbNSMS)
b it displayed
))
lq— m[,dm’ |
FIGURE 20. Open Flow use case event trace.

3.2.1.2.15. SearchFlow use case (Figure 21).
The textual description of the actions performed during the SearchFlow use case is:
- the user chooses the SearchFlow menu option,

- the system after successfully performing the ActiveLib use case, requests the
FlowLib object to return the list of existing flows,

- the FlowLib object requests the FlowList object to return the list of flows con-
tained in the activated library,

- the system creates SearchStepList, SearchMachine and SearchResult objects,

- the system asks the user to choose from the LibStepList the design steps required
by his design process and sends them to the SearchStepList object,

33 0f 154

-

Design Flow Manager - object-oriented software design process.

Search Flow use case event frace.

Design Flow Manager - object-oriented software design process.

- after all steps have been chosen, the user starts the searching procedure which
causes the sending of a Start Search event to the SearchMachine object,

- the SearchMachine object reads the steps from the SearchStepList object,

- the SearchMachine sequentially reads flow names from the active library flows
contained in the FlowList object,

- after receiving a flow name, the system sends a request to the FlowStepList to
send a list of design steps of the particular flow,

- the SearchMachine object compares the required steps to those included in the
actual flow,

- the SearchMachine sends the comparison result to the SearchResult object,

- the SearchResult object displays the information that shows the extent to which
particular flows meet the requirements of a particular design process in terms of its
design steps,

- after extracting all the flows included in the FlowList, the SearchMachine clears
the ScarchStepList object and sends a message to the system indicating the comple-
tion of the search activity,

- the user may choose any flow displayed by the SearchResult object which will
retum the flow name to the system to enable executing the flow.

350f 154

Design Fliow Manager - object-oriented software design process.

The Event Flow - summary of all events taking place for a System object.

Design Fiow Manager - object-oriented software design process.

3.2.1.3. Graphical user interface.

A preliminary design of the graphical user interface (GUI) is very important at this
point. Visual representation of the system “like the user will see it”, is very helpful
in interacting with the potential users to extract and complete their expectations and
requirements [7). Delivering to the users the GUI without functionality behind it
but with all the feel of the system is very encouraging and helpful for them to gen-
erate feedback and possibly new requirements.

At the preliminary stage the GUI builds upon use cases, corresponding to menu
options, which capture non obvious interaction with the user. The main window,
search flow, add flow and view design steps are considered as such. The main win-
dow (Figure 23) contains four different sections. The top space is occupied by the
menu bar providing a means to activate all the menu options. The central part of the
window is occupied by two sections - the left one displaying flow icons from the
activated library and the right one being a simplified file manager. The flow icons
enable the activation of flows by employing a pointing device. The bottom of the
window consists of a status message box which displays information regarding
actual tool status and activities, as well as execution errors.

The search flow menu option GUI (Figure 24) contains two listing boxes, one dis-
playing all the design steps contained by all the flows included in the activated
library, the second displaying user choices of required design steps necessary to
accomplish his design process. The bottom of the window consists of a Search
Result text box which displays statistical results of the search flow activity. The
three buttons enable starting search activity, canceling the use case and returning to

The add flow menu option GUI (Figure 25) contains three entry fields to acquire
from the user all the necessary information related to the new flow such as: flow
name, flow location and the flow's icon location. The radial buttons enable the set-
ting of the number of design steps contained in the new flow. The window ptompt-
ing for the names of design steps is activated by the “Enter flow step names™
button.

37 ot 154

Design Flow Manager - cbject-oriented software design process.

FIGURE 23. The GUI of the main window along with the menu options.

38 of 154

Design Flow Maneger - object-orientsd software design process.

FIGURE 24. The GUI of the Flow Search menu option.

39 of 154

I — R

Design Flow Menager - cbject-oriented software design process.

FIGURE 25. The GUI of the Add Fiow menu option.

The view design steps menu option GUI (Figure 26) consists of two list boxes
which contain flow names that belong to the activated library and step names of the
chosen flow.

40 of 154

Design Flow Manager - cbject-oriented software design process.

System anslysis.

The System Analysis objective is to build 2 model of the system which expresses
its functionality and internal structure but which is not affected by implementation
issues. Designers using the OMT notation analyze the system by creating three sep-
arate models which are the Object, Dynamic and Functional Models (8]. In this
phase the first version of these models is created. Together they form an Analysis
Document which is the deliverable of this step [6].

FIGURE 26.

The GUI of the View Design Steps menu option.

3.2.2.1. Object model.

The Object Model defines WHAT the basic components of the system are, and the
kind of associations that exist between them. The Object Model represents the
static system structure [6] [8]). The components called Objects, appear in the form
of structures consisting of member data and member functions operating on these
data [8][11]. Objects are extracted directly from the Requirements Statement and
Use Case Scenarios. They appear in the Use Case Scenarios as interacting entities.

410t 154

Design Flow Manager - cbject-oriented software design process.

In many cases those entities correspond to the system’s persistent data objects (7].
A very efficient way to extract objects is to consider all the nouns appearing in the
Requirements and Use Cases ss potential objects. In the set of the nouns, objects
should be distinguished from object atributes and irrelevant objects from the appli-
cation point of view. Defining objects helps to find and define associations between
them. Associations represent static relations between objects. Objects sharing simi-
lar characteristic in terms of member data and member functions may be grouped
into Object Classes from which particular objects are instantiated thereby signifi-
cantly improving code reuse [8][11].

The Object Model built based on the use case analysis, illustrates the classes of
objects existing in the use cases as active actors and the static relationships existing
between them (Figure 27). Three different kinds of associations exist in the model:
one-to-one, one-to-many and composite association. The FlowLib is composed of
LibStepList, FlowList and IconList. The LibList is a class of storage objects which
preserve lists of objects of the class FlowLib. The FlowLib is a class of composite
objects which represent flow libraries and conmsist of three components:
LibStepList, FlowList and IconList. The LibStepList is a class of storage objects
which preserve lists of design steps contained by all the design flows belonging to a
particular flow library. The FlowList is a class of storage objects which preserve
lists of all flows belonging to a specific flow library. The IconList is a class of stor-
age objects which preserve lists of icon data corresponding to all the flows con-
tained by specific flow libraries. The FlowList contains Flow objects which is a
class of objects preserving data specific to flows. The Flow objects keep their icon
information in an object of type IconList. The Flow has a FlowStepList which is a
class of storage objects preserving lists of design steps contained by the specific
design flow. The FlowStepList can be accessed by the SearchMachine which is a
class of objects encapsulating functionality necessary to compare sets of required
steps to those contained by flows. The set of required design steps is preserved in a
storage object of the class SearchStepList. The SearchMachine generates a
SearchResult which is a class of objects preserving information containing
SearchMachine activity results. Three classes of objects contain lists of design
steps. FlowStepList, LibStepList and SearchStepList contain one or more objects
of class DesStep. The class DesStep represents objects preserving information

42 of 154

Design Fiow Manager - object-orientsd software design process.

about design steps. The AdminList is a class of storage objects preserving lists of
users who have been granted administrative privileges. The User is a class of
objects preserving user names. Hypothetical procedures and attributes of the object
classes have been extracted from the use cases (Figure 28). The hypothetical proce-
dures represent events defined in the use cases and attributes represent values used

as events arguments.
FlowLib
AdminList LibList
[EEName—containg —
T K
°°"'i"”“ consists of
User I
LibStepList FlowList iconelist
iconName
contains
\ conthins l
Flow
contains e KAGPS ICOMN) o
1 1+
contains
SearchMachine A —
SCCE8808 sy
gem:ram
SearchResult
FIGURE 27. The analysis stage Object Model.

430t 154

Design Flow Manager - object-oriented software design process.

Flowl
Flowlix(void}
AdminList UbList ~Flowlib{void)
Activate(void)
Adminkie¥(void) B)
~AdminList(void) ~LRListvei)
Addem(char’) Ovimantchor?
DelsteRem(char”)
cutmotom)] [Gesste) L 1
‘ LixSwpList Flowlist lconeList
LibNeme LibNems LibNeme
SearchSusplist LibSwpListivoid) iconeList(void)
User ‘ ~LibStepList(void) ~Flowlist(void) ~iconsList(vold)
SearchSteplList(void) Addhamichar) AddRem{chesr”) AddRem(char’)
usenid m+ Delsteemichar’) Delstoemichar’) Delsteemicher’)
Addiemichar’) GelLinvoid) GetList(voic) Puticonee(void)
Delstehem(char”) UpdaseList(void) Choosellem(void) Licon]
Getliskvoid) Delstaltomaicher) GetNaxthem(void)
EmptyList(void) Choosellem(void) W—
1+ 1
Fow
OesSisp 1e -
SearchiMachine ‘Sephame) Location
SearchMachine(void) DesStep(void) Flow(void)
is.uuw FowSeplist |edivoich
SearchDone(void) FowName Launch{void)
ReadSeerchSieps(char”) SearchResult FlowStepList(void)
Ia.mdm SesrchReeu(void) Addeemicher)
ComparsSwpe(vold) ~SearchResult(void) GetLiss(void)
GetNextFlow(void) | Choosellem(void) UpdetaLittvod)
PutResult{void) PutSispNames(char”)

analysis stage Object r introducing hypothetical p res

a3

3.2.2.2. Dynamic model.

The Dynamic Model represents the system's operations which are divided into ele-
mentary events that in most cases change the system's internal state. The model
shows WHEN those events take place and what kind of object transitions they
cause [8]. The dynamic model consists of Object State Disgrams [6] created for all
the class objects with behavior which is not obvious. The diagrams represent

44 of 154

Design Flow Manager - object-oriented software design process.

objects as Finite State Machines and represent all the events received and sent by
objects in all the use case scenarios and captures an object’s internal state changes
initiated by those events.

FIGURE 29. Object State Diagram of an instance of class Flow.

450of 154

SRR EE—— — s

Design Flow Manager - object-oriented software design process.

Different internal states of an object correspond to different values of its data mem-
bers [6](8]- In the case of the Design Flow Manager, the dynamic models of Flow
and SearchMachine objects have been created.

The state diagram of an object of class Flow (Figure 29) presents 4 different events
which initialize activities leading to changes in the flow’s intemal state. Those
activities are: CreateNew, Destroy, Launch and Edit.

A CreateNew event begins a sequence of activitics leading to new flow creation.
Along with the event signal, the value of FlowName is passed to an object of class
Flow. Receiving the event signal pushes the Flow object to the “add new flow name
to flow list” state. In this state, the Flow object sends an AddItem event along with
the value of FlowName to the object of class FlowList. This event causes the
FlowList object to determine if the FlowName value corresponds to any of the
items contained in the list. In the case, that the name is not included, a new object is
attached to the list and a “flow name ok” message is returned to the Flow object
which goes to the next state. Otherwise, an error message is returned and the Flow
object returns to the previous state prompting the user again for the value of the
FlowName variable. In the “flow name ok™ state, the Flow object sends a Create
event to the FlowStepList class, which causes the creation of an object of this class.
After receiving confirmation of the FlowStepList object creation, the Flow object
requests icon data from the User. After receiving icon data, the Flow object sends
the data to the IconList object as an argument of an AddItem event. The IconList
object checks if the received icon data corresponds to any of the elements already
contained in the list and if not it attaches a new element to its list and returns con-
trol to the System. In the case that the icon data is already correlated to anyone of
the items in the list, an error message is returned to the System.

A Destroy event begins a sequence of activities leading to the elimination of an
existing flow from a flow library. The FlowName value is passed to the Flow object
as an argument of the Destroy event. Next, the Flow object sends a Destroy event to
the FlowStepList object. After successfully destroying this object, the Flow object
asks the IconList object to delete from its list the icon data cotresponding to the

46 of 154

R

Design Flow Manager - object-oriented software design process.

Flow object. Then the Flow object sends an event to the FlowList object which
causes the deletion of the item corresponding to the flow from the list.

A Launch event begins a sequence of activities leading to an existing design flow
éxecution. In the state initialized by this event, the Flow object passes its name to
the FlowXpert for execution.

An Edit event begins a sequence of activities leading to editing an existing design
flow for changes and updates. Along with the event, a FlowName value is passed as
an argument. The Flow object launches the WorkXpert tool, which edits the flow.
After the introduction of the flow changes and termination of WorkXpert, the Flow
object requests the Administrator for information regarding changes in terms of
design steps. After receiving information from the Administrator, the Flow object
sends events to the FlowStepList and LibStepList objects requesting their lists to be
updated. Successful updates make the Flow abject returns control to the System.

The state diagram of an object of class SearchMachine (Figure 30) represents
changes in the internal state of the object. A Search event initializes the
SearchMachine constructor. After successful construction of the SearchMachine
object, the object reads the active flow library name which is the value of the
FlowLib variable. Next the SearchMachine object requests the list of required steps
from the SearchStepList object. After receiving the step list, the SearchMachine
object requests the FlowList object for the next item which is a flow name con-
tained in the active library. Upon receiving the flow name, the SearchMachine
object requests the FlowStepList object for the list of steps building the flow. Next,
the SearchMachine object compares both lists of design steps and after generating a
result, sends it to the SearchResult object to be displayed to the User. At this point,
the SearchMachine object goes back to request the next flow name from the
FlowList object. The process is repeated as long the FlowList object provides the
SearchMachine object with flow names. Once all the flow names have been pro-
cessed, the SearchMachine sends a completion message to the user and clears the
content of the SearchStepList object to make it ready for the next search case.

47 of 154

Design Flow Manager - object-oriented software design process.

FIGURE 30.

Object State Diagram of an instance of class SearchMachine.

3.2.2.3. Functional model.

The Functional Model shows HOW the system operations are performed. To
achieve this, Data Flow Diagrams (DFDs) are created for system operations and are
particularly useful for those that are more complex. Data Flow Diagrams are the
functional decomposition of the system and represent the kind of data transforma-
tions are performed during the system operation [6][8).

For some systems it is not necessary to create a Functional Model. This is the case
for systems with functionality focused on data management as opposed to data
transformation. In the case of systems where interaction with the user is very

48 of 154

R Sy

Design Flow Manager - object-oriented software design process.

advanced and constitutes the main part of the system functionality, the Functional
Model is very helpful [7].

As an addition to the Data Flow Diagrams, Operation Descriptions may be created.
These are textual descriptions indicating what the operations are supposed to
achieve, their inputs, outputs and which objects are modified by them, as well as the
conditions necessary to perform them (6].

|(Systsm |(m System
l m“l FlowStepList
requestad design sieps form the flow et 84 flows cone Y |
“m of the Fiowhiers flow
Search Machine FlowName set
—mmum search staps ”mmmd -

(Parent)

SearchMachine ssarch resuft
ReadFlowSteps(L
Search(void)

ReadSearchSwep(char’) I(S" hResul

FIGURE 31.

Functional Model of the Search Flow operation.

The Design Flow Managet was not considered to have functionality complex
enough to make creating a functional model for all the operations necessary. The
only operation complex enough is Search Flow (Figure 31). An object of class
SearchMachine is initialized as the first step of the Search Flow operation. Next,
the ReadSearchStep procedure receives from the System requested steps one by

49 of 154

I

Design Fiow Manager - object-oriented software design process.

one and sends them to the SearchStepList object to be attached to the list. Upon
reading all the steps, the ReadFlowName procedure receives a Flow object from the
FlowList object and sets the FlowName attribute of the SearchMachine object to
the value of the Flow object name. Next, the ReadFlowSteps procedure reads
design steps from the FlowStepList object which is a composite of the Flow object.
After all the steps have been read, the Search procedure performs the comparison of
step sets and sends the result to the SearchResult object to be displayed. Next, the
control goes back to the ReadFlowName procedure to extract the next flow name
from the FlowList object. Once all the flow names have been read from the
FlowList object, the operation terminates returning control to the system.

50 of 154

S

Design Flow Manager - object-oriented software design process.

3.3 Design.

FIGURE 32. Design Phase.

3.3.1 System design.

During the System Design phase, the main system strategic decisions are to be con-
sidered. A System Design Document is the deliverable created during this step [6).

3.3.1.1. System Decomposition.

In many cases the intemalsﬁtlcmoflhesystemissocomplexthatsystemdecom-
position may be very helpful in a further design process. Since the complexity of
the system is already known, the designing resources may be allocated. Subsystems
extracted from the original system should be consistent in terms of their functional-

510t 154

PR

Design Flow Manager - object-oriented software design process.

ity. A good indication of a well done decomposition is a minimal number of event
interactions between different subsystems.

At this point in the design it is the perfect time to improve some of the software
qualities, such as maintainability, repairability, evolvability and reusability. This
may be achieved by defining interfaces for all the subsystems and configuring them
in the Client - Server mode [21]. Subsystem interfaces strictly define all the ser-
vices provided by subsystems and what kind of information/data has to be provided
with each service request. In the Client - Server approach, the client initializes com-
munication with the server whenever it needs to use a server’s services. In this con-
figuration all the changes introduced to the system are done locally which has a
significant impact on extending the above mentioned qualities.

The Design Flow Manager in its first release is designated to be used in the univer-
sity environment. The concept will be evaluated by applying the tool to organize
CAD expertise access to students both taking CAD courses or laboratories and

graduate students performing their own designs.

These assumptions led to the idea of separating the functional algorithm and repre-
sentation to enable higher maintenability, changeability and incrementality. To
decrease the risk factor and apply reusability, the scheme for the tool architecture
has been taken from a design patterns library. Design patterns and especially archi-
tectural design patterns were introduced which provided designers with a continu-
ously increasing number of patterns that address the most common aspects and
problems of software architecture. The Model/View/Controller (MVC) [15][16]
used by Smalltalk-80 to build graphic user interfaces is a perfect example of a pat-
tern which addresses the Design Flow Manager requirements (Figure 33). The sys-
tem is partitioned into three main subsystems. The Model represents the application
in terms of the system’s functionality. The View defines the representation of the
system in the form of a graphic user interface which is independent from Model.
The Controller is responsible for interpretation of user interactions with the system.
Any of the subsystems may be independently changed both statically and dynami-
cally. The independence of the subsystems also enables the employment of differ-
ent technologies during their implementation. This advantage will also be used in

52 of 154

N

Design Flow Manager - object-oriented software design process.

the design of the tool. Since the best feedback from the user is acquired in the form
of evaluation of the interaction with the software through the graphic user interface,
the implementation of the GUI should enable fast and easy responses to user
requests. The tcl/tk {17] scripting language which provides a platform for rapid
GUI prototyping, meets all the afore mentioned requirements. Since the View is
designed for flexibility, the Controller should be designed for flexibility too.

The Model has been implemented in C++ to improve system performance. To pre-
serve system changeability in terms of its functionality, the Model subsystem is
implemented as a set of compiled modules which may be updated according to
changes in the set of menu options.

The three subsystems interact with each other and the user communicates with the
sysiem through the View. The implementation languages of the subsystems are
specified as follows: View is implemented in Tcl/Tk, Model in C++ and Controller
is implemented in both languages.

MVC pattemn implementation

FIGURE 33. Software architecture of Design Flow Manager.

53 of 154

Design Flow Manager - object-oriented software design process.

3.3.1.2. Specifying Concurrency

There are many ways that concurrency may occur in the system. Use cases may
have concurrency existing within them as well as different use cases or different
instances of the same use case may be active at the same time. This leads to the sit-
uation where different objects belonging to the same or different classes and even
whole subsystems may be concurrent. The Object Model is a good place to trace

concurrent objects.

Good management of the concurrent entities may be very critical for real-time sys-
tems. For those, in some cases the concurrent subsystems may require separate
hardware to be able to meet the time constraint requirements.

Concurrency effects are not expected to occur in the case of Design Flow Manager.
3.3.1.3. Task - Resource Allocation

In the case of complex systems or systems whose requirements expect distributed
resources, Task - Resource Allocation has to be performed. In the simplest case the
tasks correspond to subsystems. The allocation may take place between distant net-
worked computational units or different processors coexisting in the same unit.

The Design Flow Manager is designed with the purpose to be run locally on a sin-
gle station although it provides the means to access design flows distributed across
a local network.

3.3.1.4. Data Stores Implementation Strategy

Persistent data storage also has to be considered. The choice between files, rela-
tional database or object-oriented database has to be made. For applications using
small amounts of data, files are recommended because of their simplicity. In other
cases there is a choice between relational and object-oriented databases. The rela-
tional database information representation is table oriented where tables may con-
tain primitive data types. There is no easy way to store objects with all their
attributes in the table structures. This incompatibility creates the need for an inter-

54 of 154

P S

Design Flow Manager - object-oriented software design process.

face which will enable transitions between object oriented and table oriented data
representations (7).

For the purpose of the Design Flow Manager, a file system has been chosen to store
persistent data. The choice was motivated by the relatively small amount of data to
store. The file system consists of files and folders dedicated to libraries and flows
(Figure 34). Each flow library posses a dedicated folder which contains the
flow_list.names file and folders dedicated to each flow belonging to the library. The
flow_list.names file preserves information about which flows belong to the library.
Each flow folder contains three files: flow_step_list.names, icon.dfl, location.dfl.
The flow_step_list. names preserves information about all the design steps included
in the flow. The icon.dfl and location.dfl preserve information about the flow’s icon
and executable file location respectively.

sim_lib flow_list names

flow_step_list.names icone.dfl location.dfl

FIGURE 34. Library folders and file, flow folders and files - persistent data storage file model.

S§50f 154

R

Design Flow Manager - object-oriented software design process.

3.3.1.5. Software Control Approach

The choice of software control has to be made. In many cases eveat driven control
is applied especially for systems with developed graphical user interface. The GUI
may be designed as the global coatrol object which activates specific procedures in
the response to inputs received from the user and environment. Real-time systems,
especially those characterized by concurrency may need a concurrent control
approach to be applied.

The architecture of the Design Flow Manager separates control from view and
model. The event driven controller defines the interface between the GUI imple-
mented in tcl/tk and compiled C++ programs representing implementations of the
menu option actions of the tool. The interfacing is implemented partially in tcl/tk
and C++ where the icl/tk event loop is used to implement system events tracking.

3.3.1.6. System Behavior in Exceptional Situations.

System behavior in situations like start up and abnormal termination as well as
error handling has to be determined. The procedures to release resources should be
defined. Memory deallocation and external resource link elimination belong to the

most important cases.

During start up the Design Flow Manager needs to be able to read the DFL_HOME
and USER environment variables. The DFL._HOME variable defines the location
of the software in the system and should have its value set prior to tool initializa-
tion. The USER variable should contain the actual user id which is necessary to test
user administrative privileges. The activated library is set initially to eda_lib which
contains the PCB design and analysis flow described in chapter 2.

In the case of any error during tool execution, the corresponding message is dis-
played to the user either in the status text box at the bottom of the main window or
dialog boxes generated by the tcl/tk interpreter. Failure to provide necessary entry
data will prevent the tool from executing a particular program action.

56 of 154

0

Design Flow Manager - object-oriented design process.

332

At this stage, no mechanism is defined that assures memory deallocation after sys-
tem termination except for standard initialization of object destructors taking place
before program termination.

3.3.1.7. Other Strategic Decisions

Other strategic decisions reflect considerations concerning operating system plat-
form, system portability, system performance and resource requirements.

The Design Flow Manager was implemented and designed to be used on Sun Sparc
stations running SunOS or Solaris operating system. The software may be ported to
other operating systems supporting the tcltk scripting languages and Mentor
Graphics flow tools (WorkXpert and FlowXpert). Certainly the system may also be
redesigned to suppott the management of flows designed with the help of software
different from the afore mentioned. Compiling the C++ programs on different plat-
forms requires the Rouge Wave foundation class library to be available [18].

Since the software provides only a means to access design flows, the performance
has not been considered as a design issue.

Installation of the software requires approximately 3 MB of free hard disk space.
There must also be some memory reserved for the persistent data file structure.

Object design.

In the Object Design phase the main focus is put on refining the system model to
introduce implementation issues. Also the implementation aspects of Objects are
considered which mainly focus around their member functions and attributes.
Members’ definitions and partitions between Private and Public are specified.

The Object Model is refined and Object Inheritance and Aggregation is introduced
to optimize the code reusability factor.

The Object Design phase may require a few refinement cycles to coordinate mem-
ber function definitions and class generalization.

§7 of 154

Design Fiow Manager - object-oriented software design process.

3.3.2.1. Class associations definition.

In addition to the associations which reflect functionality and structure of the sys-
tem, inheritance and aggregation associations may be introduced at this point. Both
of them radically improve code reuse quality of the software. Objects building up
the system may be grouped into Object Classes. An Object Class possesses all the
common member data and member functions existing in all the objects instantiated
from the class. From an object class other object classes may be inherited. Those
new subclasses inherit all the data and function members of the superclass and may
additionally have their own members specifically defined for them. A Superclass is
a generalization of its subclasses and sometimes the inheritance is called “a kind
of” association. The inheritance may be built with many levels ending up with
classes with very significant differences in their members. From classes on each
level of inheritance, objects may be instantiated by defining values of object
attributes. Sometimes, to simplify an inheritance tree Abstract Classes are created,
from which no objects will be instantiated [8){9]{11][12](19][20]).

Aggregation is called “a part of” association and enables the abject oriented repre-
sentation of the internal structure of complex objects. Aggregation associations
connect complex objects with objects which are their building components. Aggre-
gation may also be built on many levels.

The study of the object model created during the system analysis stage (Figure 28),
leads to the conclusion that the system contains 7 classes of type list. The main task
of these lists is to store objects. At this point reusability by inberitance may be
introduced. All of the list classes may be inherited from one superclass called
LinkedList which includes all the procedures supported initially by all the list
classes (Figure 35). To decrease risk and radically shorten the design time, an exist-
ing class template was used as the superclass for the linked list classes. The
RWTV&IDIistdbfmmlltWWavefoundaﬁonclm library is a template of a
doubly linked list which meets the necessary requirements [18]. The hypothetical
procedures of LinkedList have been replaced by the procedures being members of
the RWTValDlist<T> class (Figure 36).

58 of 154

R

Design Fiow Manager - object-oriented software design process.

il

[T

Ll

59 of 154

R

Design Flow Manager - cbject-oriented software design process.

3.3.2.2. Class operations definition.

The events are extracted from the Use Case Event Traces and Object State Dia-
grams of the Dynamic Model and considered to be function calls. Events received
by a particular object are calls to its member functions. Member functions are allo-
cated to objects. Functions are defined as Public Members of the objects. These
functions may only operate on the data members of the same object supporting the
concept of encapsulation and data hiding. In some cases it may happen that func-
tions should operate on objects belonging to different classes. These functions need
to be able 0 access data members of the objects they operate on. The way to
achieve this is to define these as public Friend functions [11][19][20].

The same functions for inherited object classes may require different methods for
different classes. In this case these functions have to be defined in the superclasses
as Virtual.

The introduction of the RWTValDlist<T> class as the superclass of the linked list
classes led to the final revision of their procedures. Procedure arguments have also
been defined (Figure 36). The presented object model does not include argument
constructors, overloaded insertion operators << and overloaded extraction opera-
tors >>. Argument constructors set the object attributes values during the object
instantiation process. The insertion and extraction operators overloading proce-
dures are defined as friend functions and enable operations on objects during per-
sistent data files access.[11]

The implementation requirements for the T objects being stored in the RWTValD-
list<T> specify that class T must have [18]:

- a default constructor,

- a defined copy semantic (for example Flow::Flow(const Flow&)) which provides
a copy mechanism for objects of types defined by the designer,

- a defined assignment semantic (for example Flow::operator=(const Flow&))
which provides overloading of the assignment operator to be used with objects of
types defined by the designer,

60 of 154

Design Fiow Manager - object-oriented software design process.

- a defined equality semantic (for example Flow::operator==(const Flow&)) which
provides overloading of the equality operator to be used with objects of types
defined by the designer.

FIGURE 36. Wdummammmwm

610f 154

R - I

Design Flow Manager - abject-oriented software design process.

3.3.2.3. Class attributes definition.

Class attributes which constitute member data are defined for each class at this step.
Attributes are mainly a collection of member function arguments. Most of the
attributes are hidden and this makes them accessible only by the member functions
of the same class which is accomplished by defining them as private. Those which
are 1o be accessed by external functions are defined as public.

The class attributes which have been extracted during the system analysis stage
have been completed by new ones which are imposed by the implementation
requirements (Figure 36).

62 of 154

e

Design Flow Manager - object-oriented software design process.

3.4 impiementation.

Implementation has been organized into a number of separate phases. In the first
phase the system code template has been generated. In the second phase the mem-
ber functions have been implemented. The third phase focuses on the software con-
trol implementation for the particular use cases that leads to the creation of a set of
separate compiled and scripting modules of code. The fourth phase focuses on the
View implementation in the form of tcltk script. The fifth and last phase results in
the implementation of Controller and software integration as expansion of the main
script of the application [20].

Mode! implementation.
The Model has been implemented during the first three phases.

3.4.1.1. Code template.

Code template includes all the class declarations without the member function defi-
nitions. The resulting code represents the internal structure of the system. The code
template has been generated with the help of “Software through Pictures” tool from
Interactive Development Environments Inc. which has also been used during the
system analysis and system design stages. As mentioned ecarlier, the C++ program-
ming language has been used to implement the system [11][19]{20). The generated
dfi.h header file is presented in Appendix A.

3.4.1.2. Member functions implementation.
The implementation of the member functions has been done manually and is pre-
sented in Appendix B as the dfl.cc file.

3.4.1.3. Use case compiled programs.

For some of the software menu options separate compiled programs have been
implemented (Figure 37), which are presented in the Appendix C. Those menu
options are:

- Grant User Administration Privileges,

- Revoke User Administration Privileges,

63 of 154

Design Flow Manager - object-oriented software design process.

- Create New Library,
- Delete Library,

- Add New Flow,

- Delete Flow,

- Search Flow,

addadmin deladmin nlb dli nflow dlf search

FIGURE 37. Executable programs for some of the menu options.

3.4.1.4. Use case tcl/tk implementation.

The remaining menu option actions have been implemented with the help of tcl/tk
scripts and are included in the main application file dfi. Those menu options are as

follows:

- New Flow,

- View Design Steps,

- Open Flow,

- List Existing Libraries,

- Open Library

64 of 154

A

Design Flow Manager - object-oriented software design process.

J42

View and Controller implementation.

View is completely implemented in the tcl/tk script as part of the dfl file (Appendix
D). The main part of the Controller is also implemented in the same file. The
remaining part of the Controller responsible for the argument passing mechanism is
partially implemented in the C++ compiled programs.

The dfl file consists of the following main parts:

- main GUI components (View),

- messages (View),

- global variables (Controller),

- procedures (View & Controller),

- menu option procedures - means use cases (Controller & Model),
- GUI definition (View),

The main GUI components define the basic sections of the main application win-
dow. Messages are defined text variables used during application execution as entry
field prompts or help information. A set of global variables has been defined to pass
values between procedures and preserve basic application data such as application
location in the “home” for example. Procedures have been defined to reuse some of
the tasks, to organize the code and to implement support windows. Menu option
procedures are implementations of the controlling part of the menu option execu-
tion. GUI definition implements the main application window.

65 of 154

Conclusions

4.0

Conclusions

In the first part of the thesis, the power of executable flows in design process auto-
mation has been presented. The PCB design and analysis flow developed here may
be used even by inexperienced designers to ensure an accurate design process.
Next, another level of design automation was proposed - the management of design
flow libraries. The tool designed to provide the means for this management -
Design Flow Manager - was presented. The Design Flow Manager may be a start-
ing point to building a design expert system with more extended support for the
designer.

The software was designed and implemented using the object-oriented approach.
The methodology has been proven to be very effective in software development.
The design process presentation and formulation starts from the early requirements
statement and leads to the resulting implementation code. This is one of only a few
available publications presenting the whole scope of the object-oriented software
design process. Therefore, it is designated to provide guidelines to other designers
considering employment of this methodology.

66 of 154

References and Bibliography

(1) P. Derrington, Management of the Design Process, in Knowledge Based Expert
Systems in Engineering: Planning and Design, p. 19 - 33, Computational Mechan-
ics Publications 1987.

(2] H.A. Simon, Structure of lll-Structured Problems, Artificial Intelligence 4, p.
181-201, 1973.

{3] Mentor Graphics, WorkXpert - WorkFlow Management Workshop, Boston, Oct.
17-18, 1995.

[4]) Fablink User'’s Manual, Meator Graphics 1995.
(5] PCB Products Overview Manual, Mentor Graphics 1995.

[6] Mastering Object Oriented Methods - interactive tutorial, Action Software Inc.,
1996.

(7] Ivar Jacobson, Object-Oriented Software Engineering - A Use Case Driven
Approach, Addison-Wesley Publishing Company, 1992.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall Inc., 1991.

[9] Stuart Frost, The Select Perspective - Developing Enterprise Systems using
Object Technology, Select Software Tools Inc., 1995.

[10] Software through Pictures / Object Modeling Technique, Interactive Develop-
ment Environments Inc., 1995.

(11] Robert Lafore, Object-Oriented programming in C++, Waite Group Press,
1995.

[12] Mastering Object Oriented Methods - interactive tutorial, Action Software
Inc., 1996.

(13) Ian Sommexville, Software Engineering, Addison-Wesley Publishing Com-
pany, 1992.

[14] Paul Godavari, "Implementing MPEG audio code hardware through Rapid
Prototyping Design Methodologies” - Master Thesis under development, Depart-
ment of Electrical and Computer Engineering, University of Manitoba.

[15) G.E.Krasner, S.T.Pope, A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming,
1(3):26-49, August/September 1988.

67 of 154

Conclusions

[16] E.Gamma, R.Helm, R.Johnson, J.Viissides, Design Patterns - Elements of
Reusable Object-Oriented Software, 1995, Addison Wesley Longman, Inc.

[17] Jobn K. Ousterhout, “Tc! and the Tk Toolkit”, Addison-Wesley Publishing
Company, 1994.

f18] Thomas Keffer, “Tools.h++. Foundation Class Library for C++ Program-
ming - Version 6”. Rogue Wave Sofiware Inc., 1994

[19] M.A. Ellis, B. Stroustrup, “The Annotated C++ Reference Manual”, Addison-
Wesley Publishing Company, 1995.

[20] H. Schildt, “C++ the Complete Reference - Second Edition”, Osborne
McGraw-Hill, 1995.

[20] S. McConnell, “Code Complete A Practical Handbook / Software Construc-
tion”, Microsoft Press, 1993.

[21] A.D. Birrel, B.J. Nelson, “Implementing remote procedure calls”. ACM Trans
Computer Systems, vol. 2, pp. 39-59, 1984.

68 of 154

Appendix A.0 The header file dfl.h

/] StP - created on Thu Jul 17 12:52:02 1997 for kobylin@ brandy from system flola_1

//Kris Kobylinski
{/this is the dfL.h file

#ifodef _dfi_h_
#define _dfi_h_

#include <rw/tvdlisth>
#include <tw/rstream.h>

/! stp/omt class declarations
class LibStepList;
class User;

class AdminList;
class IconeList;

class SearchStepList;
class LibList;

class FlowStepList;
class FlowList;

class DesStep;

class Flow;

class FlowLib;

class SearchMachine;
class SearchResult;

69 of 154

1/ stpiomt class declarations end

// stp/omt class definition 39
class LibStepList : public RWTValDiist<DesStep>
{
// stp/omt class members
public:
LibStepList(void);
LibStepList(char* c);
~LibStepList(void);
void DeleteFile(char®); /REMOVES THE LIST FILE
protected:
DesStep ptrDesStep;
//DesStep contains;
//LibStepListIterator ptrLibStepListiterator;
FlowLib ptrFlowLib;
private:
char®* LSLLibName;
/I stp/omt class members end
K
// stp/omt class definition end

70 of 154

Appendix

User(void);

~User(void);

User(char® ¢);

void User(const User& u);

{/define an assignment operator:
void operator=(const User& u);

//define an equality test operator:
int operator==(const User& u)const;
friend ostream& operator <<(cstream&: str, User& u);
protected:
private:

char* UserName;
k

/1 stp/omt class definition 21
class AdminList : public RWT ValDlist<User>
{
/1 stp/omt class members
public:
AdminList(void);
~AdminList(void);
void DiskIn(void); /READS THE LIST FROM FILE
void DiskOut(void); /WRITES THE LIST TO FILE
protected:

User ptrUser;

7101 154

Appendix

//User contains;
//AdminListIterator ptrAdminListiterator;
private:
I/ stp/omt class members end
|5
/l stp/omt class definition end

// stp/omt class definition 29
class IconeList : public RWTValDlist<char>
{
// stp/omt class members
public:
IconeList(void);
IconeList(char® c);
void ~IconeList(void);
void DeleteFile(char®); /REMOVES THE LIST FILE
protected:
Flow ptrFlow;
Flow keepsiconein;
//IconeListiterator ptriconeListiterator;
FlowLib ptrFlowLib;
private:
char* ILLibName;

// stp/omt class members end
b

T20f 154

Appendix

1/ stp/omt class definition end

// stp/omt class definition 27
class SearchStepList : public RWTValDist<DesStep>
{
// stp/omt class members
public:
SearchStepList(void);
~SearchStepList(void);
protected:
DesStep ptrDesStep;
SearchMachine ptrSearchMachine;
DesStep contains;
//SearchStepListIterator ptrSearchStepListIterator;
private:
/I stp/omt class members end
k
/I stp/omt class definition end

1] stp/omt class definition 1
class LibList : public RWTValDlist<FlowLib>

{
/I stp/omt class members

T30t 154

~LibList(void);
void Diskin(void); //READS THE LIST FROM FILE
void DiskOut(void); /WRITES THE LIST TO FILE
protected: '
FlowLib ptrFlowLib;
FlowLib contains;
//LibLIstIterator ptrLibLIstiterator;
private:
// stp/omt class members end
k
/l stp/omt class definition end

/f stp/omt class definition 59
class FlowStepList : public RWT ValDlist<DesStep>
{
/1 stp/omt class members
public:
FlowStepList(void);
FlowStepList(char® c);
~FlowStepList(void);
void Diskin(char*); /READS THE LIST FROM FILE
void DiskOut(char®); /WRITES THE LIST TO FILE
char® MakePath(char®, char®*); /RETURNS THE PATH TO FILE
void SetName(Flow); /SETS FSLFlowName VALUE
protected:

74 of 154

Appendix

Flow ptrFlow;
DesStep ptrDesStep;
SearchMachine ptrSearchMachine;
Flow has; ’
SearchMachine accesses;
DesStep contains;
//FlowStepListiterator ptrFlowStepListiterator;
private:
char®* FSLFlowName;
// stp/omt class members end
k
{/ stp/omt class definition end

Il stp/omt class definition 16
class FlowList : public RWTValDlist<Flow>
{
{/ stp/omt class members
public:
FlowList(void);
FlowList(char® c);
~FlowList(void);
void DiskIn(void); /READS THE LIST FROM FILE
void DiskOut(void); //WRITES THE LIST TO FILE
char®* MakePath(char®); /RETURNS THE PATH TO FILE
void DeleteFile(void); /REMOVES THE LIST FILE

750f 154

Appendix

void GetName(void); /RETURNS THE FLLibName VALUE
void GetList(void); /RETURNS THE LIST
void MakeFile(void); //CREATES THE LIST FILE

protected:
Flow ptrFlow;
Flow contains;

//FlowListiterator ptrFlowListiterator;

FlowLib ptrFlowLib;
private:

char®* FLLibName;
Il stp/omt class members end
k
// stp/omt class definition end

Il stp/omt class definition 63
class DesStep
(
/l stp/omt class members
public:
DesStep(void);
DesStep(char* c);
~DesStep();
DesStep(const DesStep& ds);
{/define an assignment operator:
void operator=(const DesStep& ds);

76 of 154

Appeundix

//define an equality test operator:
int operator==(const DesStep& ds)const;
friend cstream& operator <<(ostream& str, DesStep& ds);
protected:
FlowStepList ptrFlowStepList;
LibStepList ptrLibStepList;
SearchStepList ptrSearchStepList;
LibStepList countains;
SearchStepList contains;
FlowStepList contains;
private:
char® StepName;
// stp/omt class members end
k
// stp/omt class definition end

Il stp/omt class definition 51
class Flow
{
// stp/omt class members
public:

Flow(void);

Flow(char*);

Flow(char®, char®, char®);

~Flow(void);

77 of 154

Appendix

void MakeFiles(char®); /CREATES THE FLOW INFORMATION FILES
char* MakePath(char®, char®); /RETURNS THE PATH TO THE FILES
char®* GetName(void); /RETURNS THE FlowName VALUE
void DeleteFiles(char*); /REMOVES THE FLOW INFORMATION FILES
//define an assignment operator:
void operator=(const Flow& 0);
//define an equality test operator:
int operator==(coast Flow& f)const;
friend ostream& operator <<(ostream&: str, Flow& f);
protected:
FlowList ptrFlowList;
IconeList ptriconeList;
FlowStepList ptrFlowStepList;
FlowList contains;
IconeList keepsiconein;
FlowStepList has;
private:
char®* FlowName;
char® Location;
char® Icone;
// stp/omt class members end
k
// stp/omt class definition end

/I stp/omt class definition 10

78 of 154

FlowLib(char® c);
~FlowLib(void);
FlowLib(const FlowLib& f);
void DeleteFiles(char*); /REMOVES THE FILES
void MakeFiles(void); /CREATES THE FILES
//define an assignment operator:
void operator=(coust FlowLib& fl);
{/define an equality test operator:
int operator==(const FlowLib& fl)const;
friend ostream& operator <<(ostream& str, FlowLib& fl);
protected:
LibList ptrLibList;
LibList contains;
FlowList flist;
LibStepList Islist;
IconeList ilist;
private:
char® LibName;
// stp/omt class members end
b

790t 154

// stp/omt class definition end

// stp/omt class definition 71
class SearchMachine
{
/1 stp/omt class members
public:
SearchMachine(void);
~SearchMachine(void);
void ReadSearchStep(char®); /READS THE LIST
void ReadFlowName(Flow); /READS THE VALUE OF THE NEXT FLOW NAME FROM TRHE LIST
void ReadFlowSteps(char®, Flow); /READS THE LIST
float Search(void); /RETURNS A RESULT OF STEPS COMPARISON
protected:
FlowStepList ptrFlowStepList;
SearchStepList ptrSearchStepList;

FlowStepList accesses;
private:
// stp/omt class members end
k
// stp/omt class definition end

Il stp/omt class definition 66

80 of 154

pSiio g

Pu 23300} Jmoydys
npudy

anoo} ymoydys 4/

Pu? nopuyRp ssep Jmo/dss //
q
PU? S32quaw SSEP Julo/dys //
‘opwy yvop
TSN MOL] oT8YD
saywarad

tseImd JuppPeEgIIelS

spa>oad
ANTVA onvY JHL AV'IdSIA/ {(Proa)sepdng proa
(2190 J MOLINMIIYYIIEIS
{(ProapmsayyIvag-
{ProapmsyyaRag

Appendix B.0 The member functions implementation file dfl.cc

HHHHTTIRITHIT e e
//StP — created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flola_1

//Kris Kobylinski)
{/this is the dfi.cc file with member function definitions.

#include "dfL.h"
#include <rw/tvdlist.h>
#include <rw/rstream.bh>
#include <string.h>
#include <iostream.h>
#include <fstream.h>
#include <stream.h>

extern "C" {

#include <stdio.h>

int remove_file(const char *path);
}

#define FN "lib.names"

#define FL "flow_list.names"
#define LSL "Lib_step_list.names"
#define IL "icone_list.names"
#define FSL "flow_step_list.names"
#define FLOC "location.dfi"
#define ILOC "icone.dfi"

#define USERS "users.dfi"
#define SLASH "/

int STR_LEN = 30;

int USER_NAME = 8;

int remove_file(const char *path)
{

82 of 154

HIHHIIT IS sepList/ITINIIH
I stp/omt operation 39::110

LibStepList::LibStepListQ{

}

/1 stp/omt operation end

LibStepList::LibStepList(char® c) {
//set the LSLLibName attribute
LSLLibName = new char{strien(c) + 1];
strepy(LSLLibName, c);

}

// stp/omt operation 39::111

LibStepList::~LibStepList({
delete [] LSLLibName;

}

/I stp/omt operation end

{] stp/omt operation 39::113
void
LibStepList::DeleteFile(char® ¢) {
//initialize the flow_list.names file
char® dfl = new char{strien(c)+1];
strepy(dfl, ¢);
char® efl = SLASH;
streat(dfl,efl);
efl=LSL;
strcat(dfl, efl);
const char® path = dfi;

83 of 154

Appendix
remove_file(path);
delete dfi;
}
// stp/omt operation end

HHHTTTTHR s IITHITIIINTT
LI i
User::User() {

}

User::User(char®c) {
UserName = new char{USER_NAME];
strepy(UserName, c);

User::~User() {

User::User(const User& u) {
UserName = new char{strien(u.UserName)+1];
strepy(UserName, u.UserName);
}

void

User::operator=(const User& u) {
if (this != &u) {

delete UserName;
UserName = new char{strien(u.UserName)+1];
strepy(UserName, u.UserName);

}
}

//define an equality test operator:

84 of 154

Appendix

int

User::operator==(const User& u) const {
return stremp(UserName, . UserName)==0;

}

ostream&

operator <<(cstream& str, User& u) {
str << u.UserName;
return str;

TN AQoin st/
// stp/omt operation 21::107

AdminList::AdminListQ{
}
// stp/omt operation end

/1 stp/omt operation 21::108

AdminList::~AdminList(Q{
}
{/ stp/omt operation end

/I stp/omt operation 21::136

void

AdminList::DiskIn({

/fthis puts the UserNames from the USERS file into AdminList
const char® path = new char{STR_LEN}; :
path = USERS;

char® ch_ptr = new char{STR_LEN];

char® test = new char{2];

test = "\O\V"';

85 of 154

Appendix

chard;
int i=0;
fstream infile;
infile.open(path, ios::inlios::binary);
/if(infile) {
while(linfile.cof0) (
infile.seekg(i, ios::beg);
infile >> d;
if(tinfile.cof() {
if{d !="¥) {
Stest =d;
streat(ch_ptr, test);
i+
}
else {
append(ch_ptr);
*ch_ptr = "0';
i+=2;
}
}
}
in
{/delete [] ch_ptr;
}

// stp/omt operation end

/I stp/omt operation 21::148

void

AdminList::DiskOut() {
/ithis puts the AdminList into the USERS file
coast char® path = new char{STR_LEN]};
path = USERS;

86 of 154

Appendix

remove_file(path);
fstream outfile;
outfile.open(path, ios::outlios::binary);
while(lsEmpty())
outfile << get() << "#" << endl;
}

{/ stp/omt operation end

Mt icone List//INIIITIH
1l stp/omt operation 29::137

IconeList::IconeList({
}
1/ stp/omt operation end

IconeList::IconeList(char® ¢) {
{/set the ILLibName attribute
ILLibName = new char{strien(c) +1];
strepy(ILLibName, ¢);

}

1/ stp/omt operation 29::138

IconeList::~IconeList({
delete [] ILLinName;

}

// stp/omt operation end

{/ stp/omt operation 29::139
void
IconeList::DeleteFile(char® ¢) {

87 of 154

[Anitislize the flow_Jist.names file
char® dfl = new char{strien(c)+1};
strepy(dl, c);
char® efl = SLASH;
streat(dfl,efl);
efi=]IL;
strcat(dfl, eff);
const char® path = dfi;
cout << "path =" << path << endl;//test
remove_file(path);
delete dfi;

}

// stp/omt operation end

HTTHTHISeaxchStepList/IHIIIT
/I stp/omt operation 27::95

SearchStepList::SearchStepList({
}
/I stp/omt operation end

/I stp/omt operation 27::96
SearchStepList::~SearchStepList({
}

{I stp/omt operation end

NI LS Lt/
LibList::LibListO {
}

LibList::~LibList({

88 of 154

void
LibList::DiskIn({
//this puts the UserNames from the USERS file into AdminList
const char® path = new char{STR_LEN];
path =FN;
char® ch_ptr = new char{STR_LEN];
char® test = new char{2];
test = "VOVD"';
chard;
int i=0;
fstream infile;
infile.open(path, ios::inlios::binary);
if(infile) {
while(linfile.cof() {
infile.seekg(i, ios::beg);
infile >> d;
if(tinfile.eof() {
ifd!="#¥){
*test =d;
streat(ch_ptr, test);
i++;
}
else {
append(ch_ptr);
*ch_ptr = 'W0';

89 of 154

void

LibList::DiskOut() {
I/this puts the LibList into the lib.name file
const char * path = FN;
remove_file(path);
fstream outfile;
outfile.open(path, ios::outlios::binary);
while(!isEmpty()

outfile << get() << "#" << endl;
}

HitHiHiiTFowStepList//IITTITTHIT
{l stp/omt operation 59::114

FlowStepList::FlowStepList(Q{
}
{/ stp/omt operation end

FlowStepList::FlowStepList(char* ¢) {
FSLFlowName = new char{strien(c) +1];
strepy(FSLFlowName, ¢);

}

// stp/omt operation 59::115

FlowStepList::~FlowStepList({
delete [] FSLFlowName;

}

/l stp/omt operation end

// stp/omt operation 5§9::116
void

90 of 154

Appendix

FlowStepList::DiskOut(char® ¢) {
//this puts the FlowList into the LIB_NAME/FL file
coast char® path = new char{STR_LEN]);
path = MakePath(c, FSL);
remove_file(path);
fstream outfile;
outfile.open(path, ios::outlics::binary);
while(lisEmpty())

outfile << get() << "#" << endl;
}
// stp/omt operation end

/I stp/omt operation 59::167

char*

FlowStepList::MakePath(char *c, char* d) {
{//this procedure returns the path to the file LIB_NAME/FLOW_NAME/FSL
{/c is LibName, d is FSL
char® dfi = new char{STR_LEN];
strepy(d, c);
char® efl = new char{STR_LEN];
efl =SLASH;
strcat(dfl,efl);
strcat(dfl, FSLFlowName);
streat(dfl,efl);
efl=d;
streat(dfl, efl);
return dff;

}

/I stp/omt operation end

/I stp/omt operation 59::168
void
FlowStepList::SetName(Flow f) {

91of 154

FSLFlowName = new char{STR_LEN];
strepy(FSLFlowName, £.GetName();

}

// stp/omt operation end

// stp/omt operation 59::169
void
FlowStepList::DiskIn(char® ¢) {

//this puts the StepNames from the FSL file into FlowStepList
coast char® path = new char{STR_LEN];

path =MakePath(c, FSL);
char® ch_ptr = new char{STR_LEN];
char* test = new char{2];
test = "VIM"';
chard;
int i=0;
fstream infile;
infile.open(path, ios::inlios::binary);
while(infile.cof() {
infile.seekg(i, ios::beg);
infile >> d;
f(¢infile.cof() {
if(d !="#) (
Stest = d;
strcat(ch_ptr, test);
f++;
}
else {
DesStep* ds_ptr = new DesStep(ch_ptr);
append(*ds_ptr);
//delete ds_ptr;
*ch_ptr = "\0';
f+=2;

92 of 154

}
}
[/delete [] ch_ptr;
}
{/ stp/omt operation end

HHTHTITITTI R ow ListIITINTIHNT
// stp/omt operation 16::100

FlowList::FlowList(){
}
/I stp/omt operation end

/I stp/omt operation 16::101

FlowList::~FlowList({
}
/I stp/omt operation end

/I stp/omt operation 16::102

FlowList::FlowList(char® c) {
{/set the FLLibName aitribute
FLLibName = new char{strien(c) +1];
strepy(FLLibName, c);

}

/] stp/omt operation end

/] stp/omt operation 16::156
void

FlowList::MakeFile((

/finitialize the flow_list.names file

93 of 154

Appendix

const char® path = new char{STR_LEN];
path = MakePath(FL);
fatream outfile;
outfile.open(path, ios::outlios::binarytics::beg);
outfile << '#¥ <cendl;
outfile.close();

}

/I stp/omt operation end

/I stp/omt operation 16::157

void

FlowList::DeleteFile() {
//initialize the flow_list.names file
const char® path = new char{STR_LEN];
path = MakePath(FL);
remove_file(path);

}

// stp/omt operation end

{1 stp/omt operation 16::158
void
FlowList::DiskIn() {

//this puts the FlowNames from the FL file into FlowList

const char® path = new char{STR_LEN];
path sMakePsth(FL);
char® ch_ptr = new char{STR_LEN];
char® test = new char{2);
test = "VINO™';
char d;
int i=0;
ifstream infile;
infile.open(path, ios::inlios::binary);
while(linfile.cof)) {

94 of 154

infile.seekg(l, jos::beg);
infile >> d;
if(infile.cof0) {
if(d !='#) {
Stegt = d;
streat(ch_ptr, test);
i+
}
else {
Flow* flow_ptr = new Flow(ch_ptr);
append(*flow_ptr);
delete flow_ptr;
*ch_ptr = "\0';
i+=2;
}
}
}
delete [] ch_ptr;
fidelete [] d;
}
// stp/omt operation end

/I stp/omt operation 16::159
void
FlowList::DiskOut() {

//this puts the FlowList into the LIB_NAME/FL file

const char® path = new char{STR_LEN];

fstream outfile;
path = MakePath(FL);
remove_file(path);

outfile.open(path, ios::outlios::binarylios::app);

while(\isEmpty()

95 of 154

Appendix

outfile << get() << "#" << endl;
}
/I stp/omt operation end
char*
FlowList::MakePath(char® ¢) {

/this procedure returns the path to the file

char* dfl = new char{STR_LEN];
strepy(dfl, FLLibName);
char® efl = new char{STR_LEN];
efl =SLASH;
strcat(dfl,efl);
efl=c;
streat(dfl, efl);
//delete [] efl;
return dfi;
}

char® FlowList::GetName() {
return FLLibName;

HHTHTTTTNNDesS cepl/ITTHITTIITITIITTITN
// stp/omt operation 63::117

DesStep::DesStep(O{

}

{/ stp/omt operation end

DesStep::DesStep(char® ¢)
StepName = new char{strien(c) +1];
strcpy(StepName, ¢);

}

// stp/omt operation 63::118

96 of 154

DesStep::~DesStep(O{
delete [] StepName;
}
// stp/omt operation end
DesStep::DesStep(const DesStep& ds) {
StepName = new char{strien(ds.StepName)+1];
strepy(StepName, ds.StepName);
}

void

DesStep::operator=(const DesStep& ds) {
if (this != &ds) {

delete StepName;
StepName = new char{strien(ds.StepName)+1];
strepy(StepName, ds.StepName);

}
}

int
DesStep::operator==(const DesStep& ds) const {
return stremp(StepName, ds.StepName)==0;
}

ostream&
operator <<(ostreamé&: str, DesStep& ds) {
str << ds.StepName;
return str;
}

i e
/] stp/omt operation 51::140

Flow::Flow(}{

87 of 154

}
// stp/omt operation end
Flow::Flow(char® ¢) {
FlowName = new char{strien(c) +1];
strepy(FlowName, c);
}

Flow::Flow(char® ¢, char® d, char® ¢) {
FlowName = new char{strien(c) + 1];
strepy(FlowName, ¢);

Location = new char{strien(d) +1];
strepy(Location, d);

Icone = new char{strien(e) +1);
strepy(icone, €);

}

/! stp/omt operation 51::141

Flow::~Flow({
delete [] FlowName;
}
// stp/omt operation end
Flow::Flow(const Flow&) {

FlowName = new char{strien(f.FlowName)+1);

strepy(FlowName, £.FlowName);
}
// stp/omt operation 51::142
char*
Flow::MakePath(char *c, char* d) {

/fthis procedure returns the path to the file LIB_NAME/FLOW_NAME/FLOC or ILOC

/e is LibName, d is FLOC or ILOC
char® dfl = new char{STR_LEN];
strepy(dfl, c);

char® efl = new char{STR_LEN];

98 of 154

efl =SLASH;

streat(dfl, FlowName);
strcat(dfl,efl);

efi=d;

streat(dfl, efl);

return dfi;

/] stp/omt operation end

// stp/omt operation 51::143

void

Flow::MakeFiles(char® ¢) {
/lc is LibName
const char® path = new char[STR_LEN];
path = MakePath(c, FLOC);
remove_file(path);
fstream outfile;
outfile.open(path, ios::outlios::binary);
outfile << Location << endl;
outfile.close();

path = MskePath(c, ILOC);
remove_file(path);
outfile.open(path, ios::outlics::binary);
outfile << Icone << endl;
outfile.close();

}

// stp/omt operation end

// stp/omt operation 51::144
char*

99 of 154

Flow::operator=(const Flow&) {
IR (this != &) {

{/delete FlowName;

//delete Location;

//delete Icone;

//FlowName = new char{strien(f.FlowName)+1];

FlowName = new char{STR_LEN];
strepy(FlowName, f.FlowName);
{/Location = new char{strien(f.Location)+1];
//Location = new char{STR_LEN];
//strepy(Location, f.Location);
//icone = new char{strien(f.Icone)+1];
/ficone = new char{STR_LEN];
{/strcpy(Icone, LIcone);
in

int

Flow::operator==(const Flow& f) const {
return stremp(FlowName, f.FlowName)==0;

}

ostream&

operator <<(ostream& str, Flow& f) {
str << {.FlowName;
retura str;

}

100 of 154

TR Sow LS
/I stp/omt operation 10::145

FlowLib::FlowLib(): flist(), Islist(), flist() {
}
// stp/omt operation end

FlowLib::FlowLib(char* c):flist(c), Islist(c), ilist(c) {
LibName = new char{strien(c) +1];
strepy(LibName, c);

}
/I stp/omt operation 10::146

FlowLib::~FlowLib({
delete [] LibName;

}

/I stp/omt operation end

// stp/omt operation 10::147
FlowLib::FlowLib(const FlowLib& fi) {
LibName = new char{strien(fl.LibName)+1];
strepy(LibName, fl.LibName);
}
I/ stp/omt operation end
void
FlowLib::MakeFiles({
{//calls make file procedure of FlowLib compouents
fiist. MakeFile(; ’
/Nstist. MakeFile(c);
/Alist MakeFile(c);
}

101 of 154

FlowLib::DeleteFlles(char® ¢) {

Islist. DeleteFile(c);

remove_file(c);

FlowLib::GetName() {
return LibName;

void

FlowLib::operator=(const FlowLib& fl) {
if (this 1= &f) {

delete LibName;
LibName = new char{strien(fl.LibName)+1];
strepy(LibName, fl.LibName);

}
}

int

FlowLib::operator==(const FlowLib& fl) const {
return stremp(LibName, fl.LibName)==0;

}

ostream&
operator <<(cstream& str, FlowLib& fl) {
str << fLLibName;
return str;
}

102 of 154

Appendix

IS earchMachine//IHTITTIITTT
SearchMachine::SearchMachine() : ssi(), 510, sr0 {

void

SearchMachine::ReadSearchStep(char® ar) {
ssl.append(ar);

}

void

SearchMachine::ReadFlowName(Flow f) {
FlowName = new char{STR_LEN]);
strcpy(FlowName, {.GetName();

}

void

SearchMachine::ReadFlowSteps(char® c, Flow f) {
fsl.SetName(f);
fsL.clear();
fsl.DiskIn(c);

}

float
SearchMachine::Search() {
int no_ssteps = 0;
int to_ssteps = ssl.entries();
for(int i = 0; i < to_ssteps; i++) {
if(fsl.contains(ssl.at(i)))
Do_ssteps++;
}

103 of 154

return (fioat) no_ssteps / (fioat) to_ssteps;
}

SearchMachine::TestDisplay((
while(!fsl.sEmpty()
cout << fal.get() << " flowstep "' << endl;
}
WIS eaxchResult///THTTIITTT

/I stp/omt operation 66::119

SearchResult::SearchResult({
}
/I stp/omt operation end

SearchResult::SearchResult(Flow f, float r) {
FlowName = new char{STR_LEN];
strepy(FlowName, £.GetName();

Ratio=r;

}

I/ stp/omt operation 66::120
SearchResult::~SearchResult(){
}

/I stp/omt operation end

1/ stp/omt operation 66::121
void
SearchResult::Display({
cout << FlowName << " has ";
cout << (int)}(Ratio*100) << " % of required steps” << endl;
}
/I stp/omt operation end

104 of 154

Appendix C.0 The C++ implemented menu option files.

C.1 File addadmin.cc
//Kris Kobylinski 08/7/97
//mono file addadmin.cc for the Add New Flow menu option.
Ui
{MPre:
/]
IR
{Moput:
{/1: your UserName
//2: new UserName
MR
//Function:
//1. Reads the AdminList from the users.dfl file
/12, Checks if the UserName is not included in the AdminList
/3. Adds the UserName
{/4. Writes back the AdminList
AT
/[To implement:

int

main(int argc, char** argv)

105 of 154

//command line arguments:
//1: your UserName
//2: new UserName
if(arge >= 3)
{
AdminList al;
al.DiskIn(;
User u(argv{1]);
User him(argv{2]);
if(al.contains(u)) {
if(al.contains(him)) {
cout << "The user has already the administration priviledges granted."” << endl;
return 0;
}
else {
al.append(argvi2]);
al.DiskOut();
return 0;
}
}
else {
cout << "ERROR: You are not allowed to perform this operation.” << endl;
return 0;

}

106 of 154

Appendix

else {
cout << "ERROR: You did not enter user ID!" << endl;
return 03
}

C.2 File deladmin.cc
/I StP -~ created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flols_1
//Kris Kobylinski 08/7/97
//mono file deladmin.cc for the Revoke User Administrative Priviledges menu option.
TR Ty
/MPre:
/4
HHITHETTRET TR R T
//Input:
//1; your UserName
//2: absolete UserName
g
{/Function:
/1. Reads the AdminList from the users.dfl file
/72, Checks if the UserName is not included in the AdminList
/3. Removes the UserName
//4, Writes back the AdminList

NI rnnnin

//To implement:

107 of 154

#include "dfLh"
int
main(int arge, char®® argv)
{
//command line arguments:
//1: your UserName
/12: his UserName
if(arge >=3)
{
AdminList al;
al.DiskIn(;
User u(argv{1));
User him(argv{2]);
if(al.contains(u)) {
if(!al.contains(him)) {
cout << "The user has not been granted the administration priviledges." << endl;

108 of 154

cout << "ERROR: You are not allowed to perform this operation!" << endi;
return 0;
}
}
else {
cout << "ERROR: You did not enter user ID!" << endl;
return 0;
}
}

C.3 File newlib.cc
11 StP - created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flola_1
//Kris Kobylinski 08/8/97
//mono file newlib.cc for the New Library menu option.
HHTTTTRTTTHATTTRTR I T
{/Pre:
//1. Create the LibName directory
HHTTHRTHR AR T
//Input:
//1: UserName
/12: LibName
HHTTINITT IR e iy
{/Function:
{/1. Checks the administration priviledges of the user
//2. Reads the LibList from the FN file
//3. Checks if the LibName is not included in the LibList

109 of 154

/4. Adds the LibName

//S, Crestes the LibName/FL file
/6. Writes back the LibList
HITHTHTHITHRTTHRTHT T

//To implement:

int
main(int arge, char*® argv)
{
//command line arguments:
//1: UserName
/2: LibName
iflarge >=3)
{
AdminList al;
al.DiskIn();
User u(argv{1]);
if(al.contains(u)) {
LibList Il;
L.DiskIn();
FlowLib fi(argv{2]);
if(*1l.contains(fl)) {
Lappend(argv{2]);

110 of 154

cout << argv{2] << " library is already created ." <<endl;
return 0;
}
}
else {
cout << "ERROR: You are not allowed to perform the task." << endl;
return 0;
}
}
else {
cout << "ERROR: You did not enter new library name!" << endl;
return 0;

}

C.4 File dellib.cc
{/ StP -- created on Thu Jul 17 12:52:02 1997 for kobylin @brandy from system fiola_1
/[Kris Kobylinski 08/8/97 '
//mono file dellib.cc for the Delete Library menu option.
HHTHITTRITTHITTETTT T T T

//Pre:

M of 154

Appendix

R

/Input:

//1: UserName

//2; LibName

AR T

//Function:

/1. Checks the administration priviledges of the user
/2. Reads the LibList from the FN file

//3. Checks if the LibName is not included in the LibList
//4. Deletes the LibName

//S. Deletes the LibName/FL file

//6. Writes back the LibList

g

/Mo implement:

#include "dfLb"

int
main(int arge, char*® argv)
{
//command line arguments:
//1: UserName
//2: LibName

if(arge >=2)

1120f 154

Appendix

AdminList al;
al.DiskIn();
User u(argv(1]);
if(al.contains(u)) {
LibList I;
IL.DiskIn(;
FlowLib fi(argvi2]);
if(ll.contains(ff)) {
IL.remove(argvi2]);
fl.DeleteFiles(argv{2));
IL.DiskOut();
return 0;
}
else {
cout << "ERROR: * << argvi2] << " is not a valid library name." << endl;
return 0;
}
}
else {
cout << "ERROR: You are not allowed to perform the task.” << endl;

return 0;

113 of 154

cout << "ERROR: You did not enter new library name!" << endl;
return 0;
}

C.S File newflow.cc
/] StP -« created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flola_1
//Kris Kobylinski 07/28/97
{//mono file newflow.cc for the Add New Flow menu option.
NI i
//Pre:
{/Create the LIB_NAME/FLOW_NAME directory
TR T
/Mnput:
/11: UserName
//2: LibName
//3: FlowName
//4: Location
//5: Icone location
//6...:FlowSteps
iR
//Function:
//1. Checks user admin priv
/2. Adds new FlowName to LIB_NAME/FL file
/13. Creates LIB_ NAME/FLOW_NAME/flow_step_list.names and fills with the fiow's steps
{/4. Creates LIB_NAME/FLOW_NAME/FLOC and puts there Location

114 0of 154

Appendix

/I5. Creates LIB_NAMES/FLOW_NAME/NLOC and puts there flow’s icone location or puts defauit one.

MR

int
main(int arge, char®® argv)
{
//command line arguments:
/11: UserName
//2: LibName
//3: FlowName
//4: Location
//S: Icone location
1/6...:FlowSteps
iflarge >=7)
{
AdminList al;
al.DiskIn();
User u(argv{1]);
if(sl.contains(u)) {
FlowList fi(argv{2]);
f.DiskInQ;
fl.append(argv{3]);
1.DiskOut();

1150f 154

FlowStepList fsi(argv{3));
for(int iv6; ic=arge; i++)
fsl.append(argvii]);
L DiskOut(argvi2);
Flow f{argv{3],argvi4},argviS);
f.MakeFiles(argv{2]);
return 0;
}
else {
cout << "ERROR: You are not allowed to perform this operation." << endl;
return 0;
}
}
else {
cout << "ERROR: The flow data is inclomlete!" << endl;
return 0;
}

C.6 File deiflow.cc
// StP -~ created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flola_1
//Kris Kobylinski 07/31/97
/fmono file delflow.cc forlheDdeuFlowmuop.ﬂon.
g
{Pre:

1/

116 of 154

LTI R an

/Moput:

//1: UsesName

{12: LibName

//3: FlowName

HTHRTTHUTTRATTTTTTT TR T

//Function:

/1. Checks user admin privs

(/2. Deletes FlowName from LIB_NAME/FL file

/3. Deletes file LIB_NAME/FLOW_NAME/Mow_step_Jlist.names
//4, Deletes file LIB_NAME/FLOW_NAME/FLOC
//5. Deletes files LIB NAMES/FLOW_NAME/ILOC
//6. Deletes directory LIB_NAMES/FLOW_NAME
AT

#include ""dfi.h"

int
main(int arge, char®® argv)
{
//command line arguments:
/11 UserName
//2: LibName

//3: FlowName

if(arge >=4)

117 of 154

AdminList al;
al.DiskIn(;
User u(argv(1));
if(al.contains(w)) {
FlowList fi(argv{2]);
f.DiskInQ;
fi.remove(argv{3]);
f1.DiskOut();
Flow flargvi3));
f.DeleteFiles(argvi2]);
return 0;
}
else {
cout << "ERROR: You are not allowed to perform this operation.” << endl;

cout << "ERROR: You did not enter the flow name!" << endl;
return 0;

}

C.7 File search.cc
/] StP ~ created on Thu Jul 17 12:52:02 1997 for kobylin@brandy from system flola_1

118 of 154

{/Kris Kobylinski 08/4/97

//mono file searchfiow.cc for the Search Flow menu option.

HHTHTEITTRATTTTT R TR Ty
//Pre: |

n
NIRRT T
/Mnput:

//1: LibName
/12...:SearchSteps
HITHTin T
//Function:

n,

HHTHTTHTTTTRTRT Ty

/fTo implement:

¥include "dfLh"

main(int argc, char®*® argv)
//command line arguments:
/N: LibName

//2...: SearchSteps

if(arge >= 3)

11901 154

Appendix

cout << "Chosen design steps: "';
for(int i=2; i<arge; i++) {
cout << argviijc<c™ "';
sm.ReadSearchStep(argv{i]);
}
cout << endl;
Flow f;
while(!fLisEmpty() {
f=fl.get);
sm.ReadFlowName(f);
sm.ReadFlowSteps(argv(1], 0);
SearchResult sr(f, sm.Search();
st.Display(;
}
return 0;
}
else {
cout << "ERROR: You did not choose any design steps !" << endl;
return 0;

}

120 of 154

Appendix D.0 The main application file dfl.
#! /ust/local/bin/wish -f .

#This is the main executable of the Design Flow Manager by Kris Kobylinski
#ECE 1997

THHHHHHENRHE

#VIEW-MAIN GUI COMPONENTS#
S

set m .menu

wm title . "Design Flow Manager”

wm geometry . 650x500

frame .menu -relief raised -borderwidth 2 -background SeaGreen2
frame .top -relief sunken -borderwidth 1 -background #3a7

frame .bottom -relief raised -borderwidth 1

frame .top.left -relief raised
frame .top.right -relief raised

pack .menu -side top -fill both
pack .top -side top -expand 1 -fill both
pack .bottom -side bottom -fill x

pack .top.left .top.right -in .top -side left -expand 1 -fill both -padx 2m -pady 2m

SR

#VIEW-MESSAGES#

SN RN
#This messages are used for displaying in the box_ series and help boxes#
SN

set msgl "Design Flow Manager version 1.0 by Kris Kobylinski 1997 Department \ of Electrical and Computer
Engineeting University of Manitoba"

121 of 154

set msg2 "Do you really want to exit Design Flow Launcher 7"
set msg3 "Enter userid:”

set msg4 "Enter library name:"

set msgS “Enter flow name:"

set msg6 "Enter flow location:”

set msg7 "Enter flow’s icone location:”

set msg8 "Number of flow steps:”

set msg9 "Enter flow step names”

set msgl0 "Choose the number of flow steps:”

set msgl1 "To start search choose the steps from the \"Active Library Flow Step\" list by double mouse click.
Next press the \"Start Searching\" button. If you want to add more steps after receiving searching result you may
do so by clicking with the left mouse button on more steps. In case you want to run a new search with new set of
steps, press the \"New Search\" button, to clear the list of required steps.”

set msgl2 "To view flow steps of a particular flow, double click with the left mouse button on the flow's name in
the \"Active Library Flows\" list box."

set msgl3 "You may activate any of the listed libraries by double clicking on the library name with the left
mouse button.”

set msgl4 "You may launch any of the listed flows by double clicking on the flow's name with the left mouse but-
ton.”

set msgl5 "The step names can not include spaces, to separate words use underscores or start each word with an
upper case character.”

FHHHEEHHEHHREH AR
#CONTROLLER-GLOBAL VARIABLES#
S
set exit 0

set userid ""

set path [pwd]

setentry {}

set user $env(USER)

set home Senv(DFL_HOME)

set activelib eda_lib

set flowname {}

set flowlocation {}

set iconelocation {)

12201154

set stepsnumber {}

set location [pwd }

set flowstep(16) .
SRR N A

AN AN
#VIEW&CONTROLLER-PROCEDURES#
TN

proc getFile (} {

#this reads from the buffer file

global entry
global home
set entry ""
setstr {}
set buffer [open "Shome/buffer” r+]
while { [gets "Sbuffer” entry] >=0} {
set entry
lappend str Sentry
}
close Sbuffer
return $str

proc getSteps {} {
#his reads from the flowsteps array
global stepsnumber

global flowstep
setstr {}

123 of 154

Appendix
seti0
while { $i < $stepsnumber } {
lappend str Sflowstep($i)
incri+l
}
return $str

proc box_info { title bitmap text } {

#This script creates information or warning box.

#There are expected three arguments passed with the
#invokation command:

#->title of the box,

#->internal bitmap name (ex: error, hourglass, info,

questhead, question, warning)

#->message text.

set win .boxinfo

catch { destroy $win }

toplevel $win

w title $win Stitle

#wm geometry . 300x200

frame $Swin.up -relief raised -borderwidth 1

frame $win.down -relief raised -borderwidth 1

label $win.bitmap -bitmap $bitmap

message $win.msg -width 65m -justify center -text $text
button $win.ck -text Ok -command "destroy Swin"

pack $win.up -expand 1 -fill both

pack $win.down -expand 1 -fill both -ipadx 6m

pack $win.bitmap $win.msg -in $win.up -side left -padx 3m -pady 4m
pack $win.ok -in $win.down -expand 1 -fill x -padx 30m -pady 4m

124 of 154

Appendix

proc list_box { title file msg } {

#ithis creates the list box which returns a choice from the list
#used by openFlow and listExistingLibraries
#Command line arguments:

#title - of the window

#file - path and name to the file consisting the items to be read
#msg - text displayed in the help window

global home

global activelib
global entry

set win .listbox

catch { destroy $win }
toplevel $win

wm title $win Stitle

frame $win.frame -relief raised -borderwidth 1
frame $win.buttons -relief raised -borderwidth 1

pack $win.frame -expand 1 -fill both
pack $win.buttons -expand 1 -fill both

listbox $win.items -relief raised -borderwidth 2 -yscrollcommand "$win.scroll set”
scrollbar $win.scroll -relief sunken -borderwidth 2 -command "$win.items yview"

pack $win.scroll -in $win.frame -side right -fill y
pack $win.items -in $win.frame -side left -fill both

button $win.ok -text OK -borderwidth 4 -command " destroy $win"
button $win.help -text Help -borderwidth 4 -command "
box_info \"Stitle Help\" info \"$msg\""

12501 154

Appendix

pack Swin.ok $win.help -in $win.buttons -side left -expand 1 -fill both -padx 2m -pady 2m

setinput [open $filer]

while { [gets Sinput line] >=0} {
Swin.items insert end [string trimright "$Sline" \#]
}

bind $win.items <Double-Button-1> {
set entry [selection get]
}

tkwait variable entry

proc uni_box_enter { title number msg } {

#this aquires same kind multi entry information like design steps
#used by addFlow

#Command line arguments:

#title - of the window

#inumber - of the entry fields

#msg - text displayed in the help window

global home

global flowstep

set win .uniboxenter
catch { destroy $win }
toplevel $win

wm title $win $title

frame $win.frame -relief raised -borderwidth 1
frame $win.buttons -relief raised -borderwidth 1

126 of 154

Appendix

pack $win.frame -expand 1 -fill both
pack $win.buttons -expand | -fill both

set buffer [open "Shome/buffer” w+]
puts Sbuffer ™ '

close Sbuffer

set buffer [open "Shome/buffer” a+]

seti0
while { $i < Snumber) {
entry $win.stepentry$i -width 40 -relief sunken -bd 2 -textvariable flowstep($i)
#lappend fsteps $flowstep($i)
#puts Sbuffer Sflowstep($i)
incri+1

}
close Sbuffer

seti0

while ($i < $number } (
pack $win.stepentry$i -in Swin.frame -side top -expand 1 -fill x -padx 4m -pady Im
incri+l

}
button $win.help -text Help -command "box_info \"$title Help\" info \"$msg\""

button $win.ok -text Ok -command {
destroy .uniboxenter
}

pack $win.ok $win.help -in Swin.buttons -side left -expand 1 -fill x -padx 4m -pady 1
tkwait window $win

127 of 154

Appendix

proc box_enter (title bitmap msg} (

#this aquires one value and puts it in the entry

#Used by newUser, delUser, newLib, delLib, delFlow, openLib
#Command line u'gllménts:

#title - of the window

#bitmap - displayed left to the entry field

#msg - of the entry prompt

global entry

setentry (}

set w .entrybox

catch {destroy Sw}
toplevel $w

wmn title $w Stitle

wm geometry $w 350x160

frame $w.up -relief raised -borderwidth 1

frame $w.down -relief raised -borderwidth 1

label Sw.bitmap -bitmap $bitmap

message $w.msg -width 310 -justify center -text Smsg

entry $w.in -width 20 -relief sunken -bd 2 -textvariable entry

button $w.cancel -text Cancel -command {
setentry (}
destroy .entrybox
}
button $w.ok -text Ok -command (
destroy .entrybox
}

pack $w.up -expand 1 -fill both
pack $w.down -expand 1 -fill both -ipadx 6m

128 of 154

Appendix

pack Sw.bitmap $w.msg Sw.in -in Sw.up -side left -fill x -padx 4m -pady Sm
pack $w.cancel $w.ok -in $w.down -side left -expand 1 -fill x -padx 4m -pady Im

tkwait window $w
}

proc multi_box_enter {title bitmap msg msg01 msg02 msg03 msg04 msg0S } {

#this aquires flow information regarding its name, location and icon location
#Used by: addFlow

#Command line arguments:

#title - of the window

#bitmap, msg03 - redundand

#msg, msg01, msg02 - entry field prompts

#msg04 - enter steps button text

#msg05 - number of steps prompt

global entry

global stepsnumber
global msgl5
setentry {}

set w .multientrybox
catch {destroy $w}
toplevel $w

wm title $w Stitle

frame $Sw.up -relief raised -borderwidth 1
frame $w.up1 -relief raised -borderwidth 1
frame $w.up2 -relief raised -borderwidth 1
frame $w.up3 -relief raised -borderwidth 1
frame $w.up4 -relief raised -borderwidth 1
frame $w.down -relief raised -borderwidth 1

129 of 154

Appendix

#FLOW NAME
message $Sw.msg -width 310 -justify center -text Smsg
entry $w.in -width 30 -relief sunken -bd 2 -textvariable flowname

#FLOW LOCATION
message $w.msgl -width 310 -justify center -text Smsg01
entry $w.inl -width 30 -relief sunken -bd 2 -textvariable flowlocation

#ICON LOCATION
message $w.msg2 -width 310 -justify center -text Smsg02
entry $w.in2 -width 30 -relief sunken -bd 2 -textvariable iconelocation

#NUMBER OF FLOW STEPS

message $w.msg4 -width 310 -justify center -text Smsg05

setj 15

while { $§>0} (
radiobutton $w.rb$j -text $j -variable stepsnumber -value $j -anchor s
incrj-1

}

#BUTTONS
button $w.cancel -text Cancel -command (
setentry {}
set stepsnumber 0
destroy .multientrybox
}
button $w.ok -text Ok -command {
destroy .multientrybox
}
button $w.entersteps -text $Smsg04 -command {
uni_box_enter "Enter flow step names” "$stepsnumber” "$msglS5"

130 of 154

pack Sw.up -expand 1 -fill both

pack $Sw.upl -expand 1 -fill both

pack $w.up2 -expand 1 -fill both

pack $w.up3 -expand 1 -fill both

pack $w.down -expand 1 -fill both -ipadx 6m

#FLOW NAME
pack Sw.msg -in $w.up -side left -expand 1 -fill x -padx 4m -pady lm
pack $w.in -in $w.up -side right -expand 1 -fill x -padx 4m -pady 1m

#FLOW LOCATION
pack Sw.msgl -in $w.upl -side left -expand 1 -fill x -padx 4m -pady Im
pack $w.inl -in $w.up1 -side right -expand 1 -fill x -padx 4m -pady 1m

#ICON LOCATION
pack Sw.msg2 -in $w.up2 -side left -expand 1 -fill x -padx 4m -pady 1m
pack $w.in2 -in $w.up2 -side right -expand 1 -fill x -padx 4m -pady 1m

#NUMBER OF FLOW STEPS

pack $w.msg4 -in Sw.up3 -side top -fill x

setjl

while { $j<=15} (
pack $w.rb$j -in Sw.up3 -side left -fill x -padx Om -pady 1m
incrj +1

}
pack $w.entersteps $w.cancel $w.ok -in $w.down -side left -expand 1 -fill x -padx 4m -pady 1m

tkwait window $w

131 0f 154

Appendix

proc step_box { } {

#his display list of flows one list box and steps of chosen flow in another
#Used by: viewSteps

global activelib

global home

set sb .win

toplevel $sb

wm title $sb "Step Viewer”

frame $sb.top -relief sunken -borderwidth 2
frame $sb.buttons -relief sunken -borderwidth 2
pack $sb.top $sb.buttons -side top

frame $sb.left -relief sunken -borderwidth 1
frame $sb.right -relief sunken -borderwidth 1
pack $sb.left $sb.right -in $sb.top -side left -expand 1 -fill both -padx 2m -pady 2m

label $sb.label_flows -text "Active Library Flows" -relief raised -borderwidth 2
scrollbar $sb.scroll_flows -relief sunken -borderwidth 2 -command "$sb.flows yview”
listbox $sb.flows -relief raised -borderwidth 2 -yscrolicommand "$sb.scroll_flows set”

label $sb.label_steps -text "Flow Steps” -relief raised -borderwidth 2
scrollbar $sb.scroll_steps -relief sunken -borderwidth 2 -command "$sb.steps yview"
listbox $sb.steps -relief raised -borderwidth 2 -yscrollcommand "$sb.scroll_steps set"

button $sb.ok -text OK -borderwidth 4 -command " destroy $sb”

button $sb.help -text Help -borderwidth 4 -command (
box_info "Step Viewer Help” info $Smsgl2

pack $sb.label_flows -in $sb.left -side top -fill x

132 ot 154

Appendix

pack $sb.scroll_flows -in $sb.left -side right -fill y
pack $sb.flows -in $sb.left -side left -fill both

pack $sb.label_steps -in $sb.right -side top -fill x
pack $sb._scroll_steps -in $sb.right -side right -fll y
pack $sb.steps -in $sb.right -side left -fill both

pack $sb.ok $sb.help -in $sb.buttons -side left -expand 1 -fill both -padx 2m -pady 2m

#FILLING THE LIST BOXES
set f [open "$home/SactivelitVflow_list.names"”]
while { [gets $fline] >=0} {
$sb.flows insert end [string trimright "Sline” \#]
}

close $f

bind $sb.flows <Double-Button-1> {

.win.steps delete 0 end
set f [open "Shome/$activelib/ selection get }/flow_step_list.names"]
while ([gets $fline] >=0} {
.win.steps insert end [string trimright "$line” \# |
}

close $f

proc search_box_enter { } (

#this displays all flow steps and chosen flow steps, runs the search program and displays resulting statistics
#Used by: searchFlow

global activelib
global home

133 of 154

Appendix
set sbe .win
toplevel $Ssbe
wm title Ssbe "Flow Searcher”

frame $sbe.top -relief sunken -borderwidth 1
frame $sbe.bottom -relief sunken -borderwidth 2
frame $sbe.message -relief sunken -borderwidth 1

frame $sbe.top.left -relief sunken

frame $sbe.top.centre -relief sunken

frame $sbe.top.right -relief sunken

pack $sbe.top -side top -fill both

pack $sbe.bottom -side top -expand 1 -fill both

pack $sbe.message -side bottom -expand 1 -fill both

pack $sbe.top.left $sbe.top.centre $sbe.top.right -in $sbe.top -side left -expand 1 -fill both -padx 2m -pady 2m
LEFT FRAME

label $sbe.label_keywords -text "Active Library Flow Steps” -relief raised -borderwidth 2

scrollbar $sbe.scroll_keywords -relief sunken -borderwidth 2 -command "$sbe. keywords yview"

listbox $sbe.keywords -relief raised -borderwidth 2 -yscrollcommand "$sbe.scroll_keywords set”
RIGHT FRAME

label $sbe.label_rules -text "Required Flow Steps” -relief raised -borderwidth 2

listbox $sbe.rules -relief raised -borderwidth 2 -yscrollcommand "$sbe.scroll_rules set”

scrollbar $sbe.scroll_rules -relief sunken -borderwidth 2 -command "$sbe.rules yview"

BUTTONS

button $sbe.ok -text OK -borderwidth 4 -command "destroy $sbe”

134 of 154

button $sbe.new -text "New Search” -borderwidth 4 -command {
set buffer { open buffer w+]
puts $buffer *"
#global sbe
.win.rules delete 0 end
}

button $sbe.search -text "Start Searching” -borderwidth 4 -command {

set buffer1 [open bufferl w+]
puts $bufferl ™"
set bufferl [open buffer! a+]
set steps [getFile]
eval exec $home/search $activelib << "space $steps” >bufferl
while { [gets "Sbufferl” llline] >=0 } {
.win.result insert end $llline
}

close Sbufferl

}

button $sbe.help -text Help -borderwidth 4 -command {
box_info "Search Help” info $msgil
#MESSAGE BOX
listbox $sbe.result -relief sunken -borderwidth 2 -yscrolicommand "$sbe.scroll_info set”
scrollbar $sbe.scroll_info -relief sunken -borderwidth 2 -command "$sbe.result yview"
label $sbe.status -text "Search Result” -relief raised -borderwidth 1

PACKING

pack $sbe.label_keywords -in $sbe.top.left -side top -fill x

135 of 154

pack Ssbe.scroll_keywords -in $sbe.top.left -side right -fill y
pack Ssbe.keywords -in $sbe.top.left -side left -expand 1 -fill both

pack $sbe.label_rules -in $sbe.top.right -side top -fill x
pack $sbe.scroll_rules -in $sbe.top.right -side right -fill y
pack $sbe.rules -in $sbe.top.right -side left -expand 1 -fill both

pack $sbe.ok $sbe.new $sbe.search $sbe.help -in $sbe.bottom -side left -expand 1 -fill both -padx 8m -pady 4m

pack $sbe.status -in $sbe.message -side top -expand 1 -fill x
pack $sbe.result -in $sbe.message -side left -expand 1 -fill x
pack $sbe.scroll_info -in $sbe.message -side right -fill y

FILLING LIST BOXES

set f [open "Shome/$activelib/flow_list.names"]
while { [gets $fline] >=0} {
set file { open "Shome/Sactivelib/[string trimright "Stine” # }/flow_step_list.names"]
while { [gets $file Itine] >=0} {
$sbe.keywords insert end [string trimright “$iline" \#]
h
close $f

close $file

set buffer [open buffer w+]

puts $buffer ™"

-win.rules delete 0 end

bind $sbe.keywords <Double-Button-1> {
global sbe
set buffer [open buffer a+]
puts Sbuffer [selection get]
-win.rules insert end [selection get]
close Sbuffer

136 of 154

Appendix

proc starTool {tool_nnme_ tool} {
.info_field insert end "Starting $tool_name ...”
update
exec $tool
}

AR
#CONTROLLER-MENU OPTION PROCEDURES#
AR

proc viewSteps { } {
step_box

proc openFlow (} {
global entry
global home
global activelib
global msgl4
list_box "Open Flow" "$home/$activelit/flow_list.names" "$msg14"
if { Sentry '=""} {
.info_field insert end "Sentry is being executed”
exec fx -open /home/ee/ul S/kobylin/flow_lib/Sentry -multiuser 10
}

proc runFlow {flow_name} {
set flow_name pcb_mentor_quantic
flow_icons itemconfigure $flow_name -foreground red

update

137 of 154

Appendix

.info_field insert end "Starting $flow_name flow..."

update

exec fx -open /home/ee/ul 5/kobylin/flow_lib/$flow_name.flow -muitiuser 10
focus flow_icons

flow_icons itemconfigure $flow_name -foreground blue

update

proc searchFlow { } {
search_box_enter

proc getValue {offset maxBytes} {
global state
set last {expr Soffset+SmaxBytes-1]
string range $state $offset $last
}

proc selGone (} {
global state
set state {}

}

proc libList { } {
global msg13
global home
global activelib
global entry
list_box "List Existing Libraries” "$home/lib.names" "$msg13"
if { Sentry!=""} (
set activelib $entry

138 of 154

Appendix

proc addadm msg {

global entry

global user

global home

set entry (}

box_enter "Grant User Administration Priviledges™ hourglass $msg

if { Sentry!=""} {
exec Shome/addadmin Suser Seatry
.info_field insert end "$entry is being added to the admin list."
}

proc deladm msg {

global entry

global user

global home

setentry {)

box_enter “Revoke User Administration Priviledges” hourglass $Smsg

if { Sentry !=""} {
exec $Shome/deladmin $user Sentry
.info_field insert end "Sentry is being deleted from the admin list.”
}

proc newlibrary msg (
global entry
global user
global home
box_enter "Create new flow library” hourglass $Smsg
if (Sentry !="" } {
exec mkdir Sentry
exec Shome/newlib Suser Sentry

139 of 154

.info_field insert end "Sentry flow library is being created.”

proc dellibrary msg (
global entry
global user
global home
box_enter "Delete flow library” hourglass $Smsg
if { Sentry t=""} (
exec Shome/dellib Suser Sentry
.info_field insert end "$entry flow library is being deleted.”

proc addflow { msg msg01 msg02 msg03 msg04 msg05 } {
global user
global home
global activelib
global flowname
global flowlocation
global iconelocation
global flowstep
global fsteps
global stepsnumber
multi_box_enter "Add flow to the active library” hourglass $msg $msg01 $msg02 $Smsg03 $Smsg04 $Smsg05
if { SAlowname !=""} {
Jnfo_field insert end [getFile]
if { Sactivelib !="" } {
exec mkdir "Sactivelit/$flowname"
set steps [getSteps |
eval exec Shome/newflow Suser Sactivelib $fowname $flowlocation Siconelocation << "space $steps”
.info_ficld insert end "$flowname has been added.”

140 of 154

Appendix

proc deleteflow msg {
global entry
global user
global home
global activelib
box_enter "Delete flow from the active library” hourglass $Smsg
if { Sentry 1=""} {
exec $home/delflow Suser $activelib Sentry
.info_field insert end "Sentry flow is being deleted.”
}

proc openlibrary msg {
global activelib
global entry
box_enter "Set active library" hourglass $msg
if { Sentry '="" } {
set activelib Sentry
info_field insert end "Sactivelib library is being activated.”

TR RN

#VIEW - GUI DEFINITION#
FHHHHHHHN AN
#box_ series are procedures.#
FHHHHHHHAE AR

menubutton .menu.flow -text Flow -menu .menu.flow.m -undetline 0

1410t 154

Appendix

menu .menu.flow.m

.menu.flow.m add command -label New -underline 0 -command { starTool XpertBuilder xb }
.menu.flow.m add command -label "View Design Steps” -underline 0 -command { viewSteps }
.menu.flow.m add command -label Open -underline 0 -command { openFlow }

.menu.flow.m add command -label Search -underline 0 -command { searchFlow }
.menu.flow.m add separator

.menu.flow.m add command -label Exit -underline O -command { destroy .}

menubutton .menu.library -text Library -menu .menu.library.m -undetline 0

menu .menu.library.m
.menu.library.m add command -label "List Existing Libaries” -underline 0 -command { libList }
.menu.library.m add command -label "Open Library” -underline 0 -command { openlibrary $msg4 }

menubutton .menu.admin -text Administer -menu .menu.admin.m -underline O

menu .menu.admin.m

.menu.admin.m add command -label "Grant User Administration Privileges” -underline 0 -command { addadm
$msg3 }

.menu.admin.m add command -label "Revoke User Administration Privileges” -underline 0 -command { deladm
$msg3 }

.menu.admin.m add separator

.menu.admin.m add command -label "Create New Library” -underline 0 -command { newlibrary $Smsg4 }
.menu.admin.m add command -label "Delete Library" -underline 0 -command { dellibrary Smsg4 }
.menu.admin.m add separator

-menu.admin.m add command -label "Add Flow” -underline 0 -command { addflow $msg5 $msg6 $msg7 $msg8
Smsg9 $Smsgl0 }

.menu.admin.m add command -label "Delete Flow” -underline 0 -command { deleteflow $msg5 }
menubutton .menu.help -text Help -menu .menu.help.m -underline 0

menu .menw.help.m
.menu.belp.m add command -label Contents

142 of 154

Appendix

.menu.help.m add separator

.menu.help.m add command -label About... -underline 0 -command { box_info "About Design Flow Manager”
info $Smsgl }

LEFT FRAME

iabel .1abel_flowmanager -text "Active library Sactivelib” -relief raised -borderwidth 2
update idletasks

.label_flowmanager config -text "Active library Sactivelib”

canvas .flow_icons -relief raised -borderwidth 2 -yscrolicommand " .scroll_flowmanager set”
scrollbar .scroll_flowmanager -relief sunken -borderwidth 2 -command ".flow_icons yview"

set flist { open "$home/$activelib/flow_list.names"]
while { [gets $flist line] >=0 } {
set iloc [open "Shome/Sactivelib/[string trimright "Sline” "W")/icone.dfl”)
gets $iloc iline
eval .flow_icons create bitmap 2c 2c -bitmap @S$iline -tags activeicon
close Siloc
set floc [open "$home/Sactivelib/ string trimright "Sline” "\W#" Jlocation.dfl” |
gets $floc fline
flow_icons bind activeicon <Double-Button-1> { runFlow $fline }

close $floc

RIGHT FRAME

label .label_navigator -text $location -relief raised -borderwidth 2
update

143 of 154

listbox .file_names -relief raised -borderwidth 2 -yscrollcommand ".scroll_navigator set”
scrollbar .scroll_navigator -relief sunken -borderwidth 2 -command " file_names yview"

foreach i [Isort [glob -nocomplain *}] {
file_names insert end $i

frame .buttons
button .up_file -text Up -command {
file_names delete 0 end
set path [file dirname [pwd]]
set location $path
cd Spath
.info_field insert end $path
foreach i (Isort (glob -nocomplain *]] {
file_names insert end $i

1}

button .down_file -text Down -command {
file_names delete O end
selection handle .down_file getValue STRING
set pathdown [selection get]
set location $pathdown
file_names delete 0 end
.down_file config -command (selection own .down_file selGone}
_.info_field insert end $pathdown
cd Spathdown
.info_field insert end $Spathdown
foreach i [Isort [glob -nocomplain *]] {
file_names insert end $i
1

BOTTOM

144 of 154

listbox .info_field -relief sunken -borderwidth 2 -yscrolicommand ".scroll_info set”
scrollbar .scroll_info -relief sunken -borderwidth 2 -command ".info_field yview”
label .status -text Status -relief raised -borderwidth 1

PACKING

pack .menu.flow .menu_library .menu.admin -side left
pack .menu.help -side right

pack .label_flowmanager -in .top.left -side top -fill x
pack .scroll_flowmanager -in .top.left -side right -fill y
pack .flow_icons -in .top.left -side left -expand 1 -fill both

pack .label_navigator -in .top.right -side top -fill x

pack .buttons -in .top.right -side bottom -fill x

pack .scroll_navigator -in .top.right -side right -fill y

pack .file_names -in .top.right -side left -expand 1 -fill both
pack .up_file .down_file -in .buttons -side left -expand 1 -fill x

pack .status -in .bottom -side top -expand 1 -fill x
pack .info_field -in .bottom -side left -expand 1 -fill x
pack .scroll_info -in .bottom -side right -fill y

update

#this is the end

145 of 154

Appendix

Appendix E.0 The final GUI version.

E.1 Main window

146 of 154

E2 ViewDesignSteps

147 of 154

E3 OpenFiow

E.4 SearchFlow

148 of 154

Appendix

E.6 OpenLib

150 of 154

E.7 NewAdmin

E.8 DelAdmin

151 of 154

E.10 DelLib

152 of 154

E.11 AddFiow

153 of 154

Appendix

E.12 DeiFlow

154 of 154

