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ABSTRACT

This dissertation outlines work taken towards the understanding, implementation, and
improvements to the process of creating of quantitative images of the bulk-electrical
parameters of the interior of unknown objects via the use of electromagnetic scattering
data. Improvements are considered to both theory and experiments using low-power
radiation in the microwave frequency range, known as Microwave Tomography (MWT).

A detailed derivation of the Multiplicative-Regularized Contrast-Source Inversion
(MR-CSI) method is given, and we compare the performance of MR-CSI with the
other leading inversion technique used in MWT: the Gauss Newton/Distorted Born
Iterative Method. The inversion results of the two algorithms are very similar, and
thus most of the differences between them are in the relative ease of implementation
and computational resource use.

We further introduce a new version of the CSI algorithm, based on the Finite-
Difference method. Using this algorithm, we show that when accurate information
about a scatterer is known before the inversion process, this information is best
utilized as an artificial computational background, as opposed to an initial guess of
the scatterer.

The MWT problem is also formulated inside of a conductive enclosure, which
significantly changes the physics, and resultant Green’s function, of the MWT problem.
The implications and possible advantages of this type of MWT are discussed, and
synthetic inversion results for a circular enclosed system are presented. These results
show that the enclosure is capable of improving the inversion in some regions, although
more research is required to realize the full potential of conductive-enclosure MWT.

In the final section, experimental results from both open-region and conductor-
enclosed type MWT systems developed at the University of Manitoba are shown. For
the open-region system, we show that antenna coupling is a major factor affecting the
data collection, and provide a simple method for avoiding the frequencies where this
coupling is too strong to prevent effective imaging. For the conductor-enclosed type
system, we have found the system to be extremely sensitive to presence of antennas in
the chamber, and show that effective MWT imaging is possible in this type of system
by taking the antenna elements into account in the inverse solver.



CONTRIBUTIONS

This dissertation outlines several noteworthy contributions to the art of Microwave
Tomography. Many of these contributions were accomplished with significant help
from other colleagues, noted herein. These contributions include:

∙ Achieving an understanding of, and clarifying, the non-linear inverse problem
and completing a comparison of state-of-the-art inversion techniques (completed
with Puyan Mojabi).

∙ Implementing a novel differential-based inverse solver and showing that a-priori
information is better utilized as a background to the scattering problem.

∙ Formulation of the Microwave Tomography problem for conducting enclosures,
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Microwave Tomography system, and the development of a novel frequency
selection algorithm for this system (completed with Puyan Mojabi, Cam Kaye,
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1. INTRODUCTION

The road to wisdom?
Well, it’s plain and simple to express:
Err and err and err again
but less and less and less.

Piet Hein

This dissertation presents research into the use of radiated electromagnetic waves to

create images of objects which are obscured or hidden from normal human perception.

Frequencies utilized for this problem range from 1 Hz [1] all the way to optical

frequencies (THz) [2], and the image pixel size may vary from hundreds’s of meters to

micro-meters. While we focus on its use in the microwave frequency range where these

techniques are known as Microwave Tomography (MWT), the use of electromagnetic

fields to probe the interior of objects is known by many different names: non-destructive

testing, diffraction tomography, remote-sensing, and ground-penetrating radar, to

name a few.

The use of electromagnetic fields for the purpose of quantitatively determining

the inner structure of objects leads to inverse mathematical problems. In general,

inverse problems arise when one is attempting to determine some quantity, e.g.,
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source or material parameter, which is not directly observable, and can be contrasted

with the forward (or direct) problem, where both sources of energy and material

parameters are usually known. The forward and inverse problems obey the same

fundamental differential equations, but the known and unknown quantities appearing

in the equations are different. Typically, forward problem offers a unique solution

which may be calculated in a stable way, while the solution of the an inverse problem

is non-unique, and attempted solutions experience difficulties with stability (i.e., the

solution of the problem does not depend continuously on the input).

As a simple example of how inverse and forward problems may differ, consider

measuring the gravitational pull of an unknown object, and from this measurement

attempting to determine its density and shape (volume). If the density and shape

of this object are known, it is straight-forward to calculate its gravitational pull on

another object (forward problem). However, if we only know the gravitational pull

of the object on some gravity sensor, and desire to know the shape and density of

the object (the inverse problem), it is immediately clear that a unique solution is

impossible to find. Consider a homogeneous sphere of a particular volume and density,

then consider another sphere with twice the volume, but with half of the density of the

original. From some distance away, each sphere will exert the same gravitational pull,

and thus a unique solution cannot be found from knowledge of the gravitational pull

of the unknown object. Further, if we were to add some rapid variation to the outside

shape of our sphere, which caused gravitational variations below the detectable level of
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the gravity sensor used for the measurement, these variations would be undetectable.

Thus, in the inverse problem, we could add as many of these small variations as desired

to the ‘solution’ of the sphere’s shape without altering the measurement. As every

sensor has its practical detection limits, this issue leads to unstable solutions of inverse

problems. We note that this example is not identical to that of electromagnetic waves

used throughout this work, it does however provide an exmaple of how forward and

inverse problems may differ.

1.1 Microwave Tomography

This thesis focuses on the use of electromagnetic (EM) waves in the microwave

frequency range of a few hundred MHz to approximately 10 GHz. This type of

electromagnetic wave-field imaging is known as Microwave Tomography (MWT). The

etymology of the word ‘tomography’ implies imaging a 3D target through the use

of many 2D ‘cuts’ or slices through the scatterer, and MWT is often used this way

(e.g., [3–6]). However, the electromagnetic inversion community has extended this term

to include full 3D quantitative imaging, e.g., [7], and we also utilize this nomenclature.

Other terms used for MWT include ‘microwave inversion’, ‘microwave imaging’, or

the more general ‘electromagnetic inversion’. This work is focused on the quantitative

imaging of penetrable objects, i.e., the generation of images which have a quantitative

pixel intensity which relates to some physical parameter of interest. In this thesis,

these physical parameters are the the electrical permittivity and effective conductivity
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of the imaged object (which may be combined into the complex electrical permittivity).

The long-term goal of this work is the use of microwave radiation to image biomedical

tissues for medical purposes.

Biomedical microwave tomography provides a promising alternative or complemen-

tary biomedical diagnostic technique for conventional soft-tissue imaging modalities.

Current or predicted advantages of microwave tomography include (1) its low cost

and portability, especially relative to Magnetic Resonance Imaging (MRI); (2) its use

of safe non-ionizing radiation (unlike x-ray tomography); (3) its ability to image bulk-

electrical properties as a feature of tissue that is not imaged by most other modalities;

and (4) its ability to quantitatively reconstruct frequency dependent permittivity and

conductivity profiles of living tissue as a way of identifying physiological conditions of

those tissues.

Perhaps the most studied application of biomedical MWT is its use for the detection

and monitoring of breast cancer. Motivated by (i) the seriousness of the disease: it

ranks as one of the top causes of death for women in the industrialized world [8], and

(ii) by problems with comfort, specificity, and sensitivity of the current gold-standard of

breast-mammography (mammography is uncomfortable for the patient, misses about

15% of all cancers present, and around 3/4 of regions which are biopsied based on

mammography results turn out to be benign [9]), and (iii) early studies which showed

significant differences in electrical permittivity and effective conductivity between

normal and malignant breast tissues at microwave frequencies [10, 11], there has been
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significant interest in the use of microwaves for breast cancer detection [3,9,12–22].

More recent studies of ex-vivo breast tissue have moderated the early enthusiasm

for the technology [23,24]1. However, regardless of these measurements, at least one

group [26,27] has shown that MWT can successfully differentiate malignant breast

tumors from other non-malignant tissues in-vivo (on a series of mammography-screened

patients). There are also some initial reports of another group succesfully determining

the presence of breast cancer in-vivo as well [28,29].

Further applications for MWT might eventually be found in the frequent monitoring

of tissues and disease when a ‘watch and wait’ approach is indicated. For example,

there is recent evidence to suggest that up to 22% of breast cancers detected by

repeated mammograhpic screening naturally regress [30], and the ability to monitor

these cancers with non-ionizing radiation would be very useful.

Besides systems specifically designed for breast imaging, significant progress in

MWT has been made in the last decade, with experimental prototypes having been

used for the imaging of excised pigs’ legs [7], human limbs [31] and a canine heart, [32].

1.2 Outline of the Thesis

Although there has been much progress in Microwave Tomography (MWT) for biomed-

ical imaging applications, ranging from advances in inverse algorithms to better data

collection technology that has lead to preliminary clinical results, state-of-the-art

1 However, research into this question continues: it has now been shown that in-vivo permittivity
measurements are quite different from ex-vivo permittivities [25]
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MWT systems are still at a pre-clinical or early clinical stage (e.g., [26, 27]). We

are optimistic that with sufficient research, MWT will become competitive and a

widely used clinical medical imaging modality. However, before this occurs, the

state-of-the-art must be improved.

Working towards the goal of the creation of such an improved MWT system, the

research outlined in this dissertation may be broadly divided into three categories. (I)

The understanding, implementation and comparison of differing inversion techniques

[33], (II) attempts to improve the MWT in terms of image reconstruction quality

[34–36], and (III) the construction, calibration and testing of prototype MWT systems

[6, 37].

Part I: Understanding, Implementation and Comparison of differing inversion

techniques

In chapter 2, we cover the mathematical background of the inverse problem, a necessary

step for quantitative inverse imaging. In chapter 3, we cover, in detail, the derivation

of the Multiplicative Regularized Contrast Source Inversion (MR-CSI) method, which

is utilized as the inversion method of choice throughout this thesis. These first two

chapters comprise the overview/literature review of the inverse problem, and provide

the nomenclature and basis for the rest of the thesis.

In chapter 4, we outline a study between the two major classes of (quantitative)

inversion techniques currently in use.
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Part II: Improvements on MWT: Theoretical and Synthetic Results

In chapter 5, we outline a new version of the Contrast Source Inversion (CSI) method:

the Finite-Difference CSI method. With the use of a difference-based (as opposed

to integral-based) inverse solver, we are able to utilize arbitrary background media,

which is a method of computationally reducing the contrast. We show that this leads

to improved inversion when accurate information about the scatterer is available.

In chapter 6, we outline a method of MWT wherein the scatterer in enclosed in a

highly-conductive metallic boundary. This entails significant changes to the Green’s

function of the inverse problem, and these changes are outlined. Synthetic results are

presented for the inversion inside of conducting enclosures. While the full implications

of this class of MWT are not yet fully understood, some of the possible advantages of

this type of imaging are listed and discussed.

Part III: Experimental MWT Prototypes

Chapter 7 provides an overview and shows inversion results from two different MWT

prototypes developed at the University of Manitoba. The first system is an open-region,

ultra-wideband system which currently operates with an air background, with eventual

plans for a liquid matching medium. Preliminary inversion results are shown with data

collected with 24 co-resident antennas. The second MWT prototype is an enclosed

metallic chamber, also with an air-filled background. As the nature of scattering inside

the enclosed chamber is significantly more complicated than for open-region systems,
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an exposition on the calibration process is given for the enclosed experimental system.

Preliminary images from this system are also shown.

We finish the document with a conclusion, and an outline of the future work which

we feel should be performed.



2. MATHEMATICAL FORMULATION OF THE INVERSE

ELECTROMAGNETIC PROBLEM

The work of James Clerk Maxwell changed the world forever.

Albert Einstein

This thesis focuses on imaging with the scalar Helmholtz equation, and in this

chapter, the derivation of the Helmholtz equation from Maxwell’s equation is outlined,

and the assumptions required in order to model the full-wave electromagnetic problem

with the scalar Helmholtz equation are given. We further give the definitions for the

inverse source and inverse scattering problem, and provide an overview of regularization

methods.

2.1 Maxwell’s equations to the Helmholtz Equation

Electromagnetic phenomena in macroscopic media are described by Maxwell’s equa-

tions, expressed here in their time-domain differential form:
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∇× ℰ = −∂ℬ
∂t

(2.1)

∇×ℋ =
∂D
∂t

+ J (2.2)

∇ ⋅ ℬ = 0 (2.3)

∇ ⋅ D = �t, (2.4)

where the vector fields are the electric field intensity, ℰ [volts/meter] , the magnetic

field intensity, ℋ [amperes/meter], the magnetic flux density ℬ [teslas], the electric flux

density D [coloumbs/square meter], and the electric current density J [amperes/square

meter]. The charge density �t [coloumbs/cubic meter] is a scalar field, the curl operator

is represented by ∇× and the divergence operator is represented by ∇⋅. Additionally,

boundary conditions must be specified for the particular electromagnetic problem at

hand. The constitutive relations

D = �r�0ℰ (2.5)

ℬ = �r�0ℋ (2.6)

J = �ℰ (2.7)

are used in the presence of material. Here �0 [farads/meter] is the permittivity of free-

space, �r [unitless] is the relative permittivity, or dielectric constant, �0 [henry/meter]
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is the permeability of free-space, �r [unitless] is the relative permeability and �

[siemens/meter] is the electrical conductivity. In general, �r, �r and � are tensors of

rank-2, but in this work, we consider only isotropic materials, i.e. �r, �r and � are

taken to be scalar quantities. Although the constitutive parameters can be functions

of field strength (e.g., � is often a function of ℋ), we consider only linear materials.

Under the assumption of a time-harmonic dependency of the form ej!t, where

j =
√
−1 is the imaginary unit, and ! = 2�f [rad Hz] is the radial frequency, we may

write the time-harmonic Maxwell’s equations [38] as

∇×E = −j!B (2.8)

∇×H = j!D + J (2.9)

∇ ⋅B = 0 (2.10)

∇ ⋅D = �, (2.11)

where the time-harmonic forms of the vector fields are represented with bold-face

letters, and are related to their time-domain counterparts, e.g., by the formula

ℰ =
√

2Re
(
Eej!t

)
. (2.12)

Finally, we note that the constitutive relations (2.5 - 2.7) apply to the time-harmonic

problem, with the field variables replaced with their time-harmonic representations.

In addition, the constitutive parameters will now be complex variables.
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2.2 The Helmholtz Equation

While it is possible to utilize the full-vector Maxwell’s equations for the inverse problem,

we consider only the scalar inverse problem, represented by the Helmholtz equation.

To understand what approximations are required for this, we begin by assuming that

the permeability of all materials is that of free-space, i.e., �r = 1. Next, we combine

the permittivity and conductivity by defining the relative complex permittivity, as

�r = �′r + j�′′r . (2.13)

If we ignore dielectric polarization loss and consider only conductive losses, then

�′′r = −�
!
. (2.14)

Using (2.13), equations (2.8) and (2.9) may be written as

∇×E = −j!�0H (2.15)

∇×H = j!�r�0E + J i. (2.16)
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where we have added an impressed current (source term) J i. Dividing (2.15) by

−j!�0 and inserting the result into (2.16), we arrive at

1

−j!�0

∇×∇×E − j!�r�0E = J i. (2.17)

This equation may be simplified to [39]

∇2E + k2E +∇ [E ⋅ ∇ln (�)] = j!�0J i, (2.18)

where the wave-number, k = !
√
�r�0�0, and in a rectangular coordinate system

∇2 =
∂2

∂x2
x̂+

∂2

∂y2
ŷ +

∂2

∂z2
ẑ, (2.19)

where x̂, ŷ, ẑ are unit vectors in the three coordinate directions, and ∇ln(�) is the

gradient of the natural logarithm of the complex permittivity.

The third term in (2.18) couples the different components of the electric field. In

order to utilize a scalar model for the MWT problem, we must find a way to eliminate

this term from our model. There are several ways in which it either is zero, or may be

approximated as zero:

1. If the material parameter � does not vary, then this term is zero. However, this

is not a practical situation, a non-varying � would mean there was no scatterer

to image.
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2. If the material parameter � and the field E, do not vary along a particular

dimension, e.g., the ẑ direction, then the field component in that direction may

be modeled by the 2D scalar Helmholtz equation because the third term of (2.18)

is zero. This is what occurs in the Transverse Magnetic (TM) problem [38]. This

assumption is often used for 2D MWT (e.g., [3–6,40]).

3. If the complex permittivity varies so slowly with respect to position that it is

effectively a constant over distances on the order of a wavelength [39], then

the third term may be safely ignored, and the scalar problem applied. This is

equivalent to ignoring the charges which build up anywhere there is a change in

the permittivity.

4. The third term can just be ignored. This is not as bad an approximation

as it may seem: successful 3D experimental imaging of complex targets with

significant dielectric variation has been reported while using it [7], and the

authors of [7] note that the use of a full-wave model did not improve the imaging

results.

Throughout this work, we assume that second condition applies, and further assume

that the scalar quantity of interest is the Ez component of the field. For simplicity,

we represent the Ez component of the field with the symbol u, and the governing

equation of the system becomes the scalar Helmholtz equation:
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∇2u+ k2u = 0, (2.20)

Appropriate boundary conditions for the problem must also be applied.

2.3 The Inverse Problem with the Helmholtz Equation

When considering the inverse problem, it is convenient to write the Helmholtz equation

with a source term, and explicitly showing the spatial and frequency dependence of

the fields/materials:

∇2u(r, !) + k2(r, !)u(r, !) = −q(r, !), (2.21)

where r = (x, y, z) is a position vector, and we have utilized q = −j!�0Jz,i to simplify

the source term.

The typical forward problem for the Helmholtz equation involves knowledge of the

sources, q(r, !), and the material parameters, k(r, !). The goal is then to determine

the fields, u(r, !), for a given set of boundary conditions. This problem results in a

unique, stable solution.

When considering the inverse problem for the Helmholtz equation, we must consider

two different types of inverse problems: the inverse source and inverse scattering

problems. In the inverse source problem, the goal is to calculate the sources, q(r, !),

from (often partial, sometimes full) knowledge of the material properties, k(r, !) and
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(always) partial knowledge of the field u. In the inverse scattering problem, the source

q(r, !) field is typically known (in fact, under our control), as is the field, u for some

set of points outside the scatterer. In the inverse scattering problem the material

parameters are unknown.

Before we get into the details of these two inverse problems, it is important to ask

several fundamental questions about them (this discussion is based on [41]):

1. Does a solution exist?

From an engineering perspective, the answer to this question is a definitive ‘yes’,

for both the forward and inverse problems. We know that given a particular set

of fields, something physical must have created those fields.

It should be noted that there is a possibility that if the mathematical model

used is not a good approximation of the actual physics, the engineering intuition

that there must be a solution could conceivably break down.

2. Is the solution unique?

It is here that the inverse and forward problems begin to differ. In the case

of the forward problem, the solution (i.e., the field u) is unique for a given

source and scatterer. However, in both the inverse source and inverse scattering

problem, there are multiple solutions. In the inverse source problems, there exist

non-radiating sources which emit no fields outside a certain region, and thus are

not detectable [42,43]. The sources exist even in the case of perfect measurement
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of external fields. In addition to non-radiating sources, there are multiple sources

which may give rise to the same field outside of a region1. The inverse scattering

problem may be unique if one has knowledge of the field for all positions and all

frequencies outside of the scatterer [41], but for practical problems the collected

information is always of over a limited extent both spatially and in frequency,

and the inverse scattering problem is always non-unique for practical problems.

3. Is the solution stable?

Here, we loosely define stability as the continuity of the output (solution) with

respect to the input. That is, a solution is stable if the input changes ‘slightly’,

then the output also changes ‘slightly’. In this sense, the forward problem is

stable. However, inverse problems are unstable: a small arbitrary change in the

input (e.g., the known fields) may result in an arbitrarily large change in the

output (e.g., the material parameters). This, combined with non-uniqueness,

makes the inverse problem an ill-posed problem in the sense of Hadamard [44].

As the measured fields are unavoidably corrupted with noise in both the inverse

source and inverse scattering problems, this lack of stability is probably the

largest difficulty to overcome when attempting to solve inverse problems.

This lack of stability combined with the lack of uniqueness in the inverse problem

means that solutions must be regularized: any algorithm attempting to solve an

1 Consider two spherically shaped sources of different radii radiating at the same frequency, such
that the phase of the radiated field is the also the same to an observer. At some distance, the two
sources are indistinguishable.
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inverse problem must both (a) pick a single solution from the (infinite) number

available, and (b) stabilize the solution [45].

4. Does an Algorithm exist to compute the solution?

Forward problem solutions, both analytic and computational, have been available

for many decades. It is only fairly recently (within the last 30 years) that

effective methods for solving inverse problems have been discovered/invented

for linearized problems, and it is only more recently (≈15 years) that non-

linear algorithms have become available. For any reasonably sized problem,

these methods are all computational (analytic solutions do exist for some 1-D

problems [46], but do not exist for higher dimensional problems). The algorithms

currently in use still have many unanswered questions associated with them.

For example, iterative algorithms often converge to ‘reasonable’ solutions from

an engineering perspective, but from a mathematical perspective, the exact

convergence properties are still poorly understood.

2.3.1 Inverse Source Problem

For MWT, we are ultimately interested in solving the inverse scattering problem.

However, the inverse source problem is a special case of the inverse scattering problem,

and is easier to solve due to the fact that it is a linear (as opposed to non-linear)

ill-posed problem. Thus, it is important to understand the inverse source problem

before proceeding to the inverse scattering problem.
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S

k r ,

Source

Receivers

q j

u r rx ,

D

Fig. 2.1: The schematic for the inverse source problem. A source q(r, !), located inside the
domain D, radiates to a set of receivers at positions rrx, which are located at the
measurement domain S (outside of D). The goal is to determine q, from knowledge
of u(rrx, !), and k(r, !)

The Helmholtz equation (2.21) provides the starting point for the discussion of

the inverse source problem.

Given the governing Helmholtz equation:

∇2u(r, !) + k2u(r, !) = −q(r, !) (2.22)

with appropriate boundary conditions (ABC’s), recover q(r, !), r ∈ D, from knowledge

material parameters, k(r, !), and limited knowledge of the fields, u(rrx, !), rrx ∈ S.

The diagram associated with the inverse source problem is given in Fig. 2.1.

The inverse source problem may be represented in a more convenient format by

utilizing operator notation. By writing the solution of the Helmholtz equation (with
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the boundary conditions of the problem implicitly understood) as

u = G(q), (2.23)

where G is an operator for the solution of the Helmholtz equation. For example, if we

are utilizing an integral form of the operator, (2.23) becomes

u = −
∫
G(r, r′)q(r′)dr′. (2.24)

The operator G could also be the inverse of a differential operator matrix, as in the

Finite-Difference method (see Chapter 5)

With this notation, we formally write the inverse source problem as [41]:

The Inverse Source Problem:
Given the inverse Helmholtz operator (the Green’s function) G and mea-
surements u(rrx, !), determine q(r, !), r ∈ D, from

u(rrx, !) = −GS [q(r′, !)] r′ ∈ D, rrx ∈ S. (2.25)

where we have introduced GS to emphasize the restriction of the GS operator
to the measurement domain S.

Equations of the type shown in (2.25) are known as a linear Fredholm integral

equation of the first kind. Due to the fact that rrx /∈ D, and the Green’s function

is smooth (i.e., does not have a singularity associated when r ∕= r′), this problem is

ill-posed (i.e., non-unique and unstable [47]) and requires regularization. Note that

the forward problem is governed by the same equation as (2.25), except that r ∈ D,S
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and r′ ∈ D. In this case, the Green’s function singularity does occur withing the

domain D which results in a well-posed (stable and unique) problem. There exists a

large literature on how to solve problems of this type. We recommend the book by

Hansen [47] and the references therein.

2.3.2 The Inverse Scattering Problem

The inverse scattering problem is more complicated than the inverse source problem

due to the fact that there are two unknowns: both the field inside the scattering domain,

and the material properties of the scatterer. To complicate matters further, these two

unknowns are multiplied together, making the problem nonlinear. A schematic of

the inverse scattering problem is shown in Fig. 2.2. To derive the inverse scattering

problem, we begin with the Helmholtz equation (repeated here)

∇2u(r, !) + k2(r, !)u(r, !) = −q(r, !), (2.26)

again with appropriate boundary conditions. The goal of the inverse scattering

problem is to determine k(r) from knowledge of the field u at a set of receiver points

and knowledge of the source, q.

With the goal of obtaining a convenient integral representation of the inverse scat-

tering problem, we split the total field, u, into incident and scattered field components:

u(r, !) = usct(r, !) + uinc(r, !) (2.27)
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where uinc is defined as the field when no scatterers are present, usct is defined as the

field caused by the presence of the scatterer, that is

∇2uinc(r, !) + k2
b (r, !)uinc(r, !) = −q(r, !), (2.28)

where k2
b (r, !) is the known wave number for the background medium (often, but not

always a constant). We may subtract (2.28) from (2.26) which results in the equation

∇2usct(r, !) + k2(r, !)u(r, !)− k2
b (r, !)uinc(r, !) = 0. (2.29)

Rewritng the third term of (2.29) in terms of the total and scattered parts,

∇2usct(r, !) + k2(r, !)u(r, !)− k2
b (r, !)u(r, !) + k2

b (r, !)usct(r, !) = 0, (2.30)

and re-arranging terms, we arrive at

∇2usct(r, !) + k2
b (r, !)usct(r, !) = −k2

b (r, !)

(
k2(r, !)

k2
b (r, !)

− 1

)
u(r, !). (2.31)

which is the Helmholtz-equation for the scattered field usct with the wave-number

given by the known background medium properties, kb. The source term on the right
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hand side, here represented as sc, is given by

sc = k2
b (r, !)

(
k2(r, !)

k2
b (r, !)

− 1

)
u(r, !). (2.32)

The source term for the inverse scattering problem is zero outside the scatterer.

That is, when k = kb, the source term is zero. All of the unknowns of the inverse

scattering problem are now combined into the source term of (2.31), which is why an

understanding of the inverse source problem is a necessary pre-cursor to understanding

the inverse scattering problem.

Next, we define the contrast, �, as

�(r, !) =
k2(r, !)

k2
b (r, !)

− 1 =
�(r, !)− �b(r, !)

�b(r, !)
=
�r(r, !)− �r,b(r, !)

�r,b(r, !)
(2.33)

where �r,b and �b are the relative and actual permittivity of the background. All

information of the material parameters of the scatterer are contained inside the

contrast.

We further define the contrast sources, w(r, !), as

w(r, !) = �(r, !)u(r, !). (2.34)

Utilizing these contrast sources, we can see that the inverse scattering problem is

‘equivalent’ to the inverse source problem with the sources given by k2
bw, and the
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Fig. 2.2: The schematic for the inverse scattering problem. A source qj(r, !), located outside
the domain D, radiates an unknown scatterer � (or k). The scattered field is
recorded at positions rrx, which are on the measurement domain S. The goal is to
determine �, from knowledge of ũsct

j (rrx, !), and qj(r, !). Importantly, uj(r ∈ D,!)
is also unknown. Note that the source is does not need to be on the measurement
domain S, and multiple sources are possible.

collected fields being the scattered fields usct.

Having knowledge of the background wave-number means that we may find the

inverse Helmholtz operator associated with (2.31) and write

usct(r, !) = GS [�(r′, !)u(r′, !)] r ∈ S. (2.35)

This is not the final story, however. There are a few more things to emphasize. (i)

In the inverse scattering problem, we may create multiple sets of scattered fields by

changing our original source, which results in multiple sets of fields, while the contrast,

�, usually remains constant. (ii) We also write the measured fields as ũsct to emphasize

that the data are unavoidably corrupted by noise. (iii) We also have an additional
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constraint on the total field inside the imaging domain, which may be represented as

another equation. These three considerations may be taken into account by formally

writing the inverse scattering problem as:

The Inverse Scattering Problem:
Determine the material parameters of an unknown scatterer �, by utilizing
the Data equation:

ũsct
j (rrx, !) = GS [�(r′, !)uj(r

′, !)] rrx ∈ S, r′ ∈ D (2.36)

where the fields inside the domain D satisfy the Domain or Object equation:

uj(r, !) = uinc
j (r, !)− GD[�(r′, !)uj(r

′, !)] r, r′ ∈ D. (2.37)

The operator GD has been introduced to indicate the solution of the Helmholtz equation

inside of the inversion domain D, and the fields have been labeled with an index j

which corresponds to a source qj. In total, there are j = 1 . . . J sources.

The data (2.36) and domain (2.37) equations form an ill-posed, non-linear system

of equations for the two unknowns of � and u.

2.4 Regularization

The most common way to solve the inverse source (and eventually scattering) problem

is to formulate it as a minimization problem of a cost functional. In this case, any

inversion method must attempt to minimize the data-equation error:

Fdata(w) =
∥∥ũsct − GS (w)

∥∥2

S
(2.38)
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where GS is the Green’s function operator for the data equation (e.g., G(rrx ∈ S, r′ ∈

D)), and ∥v∥2
S is the L2-norm over the measurement surface S, defined as

∥b∥2
S = ⟨b, b⟩S (2.39)

where

⟨a, b⟩S =

∫
S

a(r′)b(r′)dr′ (2.40)

is the inner product on the measurement surface S and the overbar denotes the complex

conjugate. Almost all inversion algorithms attempt to minimize this functional, which

is just another way of stating that we are attempting to find a set of contrast sources

which generate the same scattered fields as the measured data. However, because of

the fact that the inverse source/scattering problems are ill-posed, a naive attempt to

minimize this cost function will result in a non-physical result (i.e., the image will

appear very ’noisy’, and in general, does not resemble the physical sources/scatterers).

From an optimization perspective, non-uniqueness means that there are an infinite

number of global minima of (2.38), and the instability means that the starting point

of the optimization algorithm is critical. This leads to the need for regularization.

Throughout this work, we define regularization as the process of (i) selecting a

single solution from the infinite number of possible solutions, and (ii) stabilizing the

solution method so that noise in the data does not lead to huge differences in the

final solution. One of the major differences between the classes of non-linear inversion
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techniques is the chosen method of regularizing the problem.

There are many ways to regularize an ill-posed optimization problem, and by

utilizing the minimization of the data equation in its inverse source problem format,

we give a brief overview of the basic techniques here. Many of the implementation

details when these techniques are used in different inverse solvers are left out, in order

to provide a high-level description of regularization.

2.4.1 Truncated Singular Value Decomposition

One of the easiest ways to gain insight into the inverse problem is through the singular

value decomposition of the operator and its solution. Assuming that we are solving

the inverse source problem for the contrast sources, the functional to be minimized

becomes

Fdata(w) =
∥∥ũsct − GS(w)

∥∥2

S
. (2.41)

The Singular Value Decomposition (SVD) of GS results in the representation [47–49],

GS(w) =
∞∑
n=1

�n ⟨w, vn⟩ yn (2.42)

where the �n are the singular values, vn are the right-hand singular functions, and yn

are the left-hand singular functions [47].
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In this representation, a solution for the data equation may be represented as [47,48]

w =
∞∑
n=1

1

�n

〈
ũsct, yn

〉
vn. (2.43)

In other words, the solution is obtained by projecting the data onto the left-singular

functions, then multiplying the result by the right-singular functions weighted by the

inverse of the singular values.

There are three points to make about (2.43):

1. It is the nature of the GS operator that the singular values �n rapidly approach

zero as n increases.

2. The projection of the exact scattered field data onto the left-singular functions

⟨usct, yn⟩ will only have significant values for some small number of singular

vectors, yn. In general, the projection gets smaller as n increases.

3. The measured data are unavoidably corrupted with noise, i.e., ũsct = usct(r) +

N(r), and the projection of this noise onto the left singular functions ⟨N, yn⟩

will have significant values for almost all values of n. This projection does not

tend to get smaller as n increases.

The result of these three points is that the use of an SVD solution for w will always

be overwhelmed by the contribution of the noise. In an intuitive way, if ⟨N, yn⟩ >>

⟨usct, yn⟩ for some n, then multiplication by 1/�n, (which is very large value for large n)
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will greatly amplify the contribution from the noise. Even in the case of near-perfect

measurements, the discretization errors of machine precision are enough noise to cause

instability [48].

One simple method to avoid this instability is to utilize the solution of (2.43), but

simply truncate the sum before the noise overwhelms the contribution of the data. This

works because the projection of the actual scattered field onto the left-singular function

is larger for smaller values of n. This method is known as Truncated Singular Value

Decomposition (TSVD). In this method the series trunctation point must be chosen

in some way. One possible way is through the Morozov discrepancy principle [50],

which simply states that the minimum value of the function Fdata(w) should never be

allowed to go lower than the measurement noise. Details of this method are left to

the references [47, 48].

It is important to note that any member of the null-space of the operator GS may

also be added to the solution (2.43) and maintain the equality. In general, the TSVD

method assumes that the contributions of any member of the null-space is zero, which

makes the solution unique.

2.4.2 Tikhonov Regularization

Tikhonov regularization is the most widely used regularization method in the literature,

and examples abound, see [33, 47,51–57] for just a few. Tikhonov regularization adds

a penalty term to the functional:
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F tikℎ
data(w) =

∥∥ũsct − GS (w)
∥∥2

S
+ � ∥AT �∥2

S (2.44)

where AT is a ‘Tikhonov’ operator (usually an identity matrix or the Laplacian

operator, ∇2), and � is a positive real number, known as the regularization parameter

which is used to balance the weighting between the data equation and the penalty

term. Tikhonov regularization will provide a unique solution to the minimization

of (2.44), and will also stabilize the mathematical solution as well [48]. It does not,

however, guarantee that the solution will be close the the physical contrast sources.

If the Tikhonov operator is the identity operator, then we may again use the

singular value decomposition to analyze the solution. In this case, the solution is

represented by [48]

wtikℎ,� =
∞∑
n

�n
�2
n + �

〈
ũsct, yn

〉
vn. (2.45)

Thus, the addition of the Tikhonov functional has changed the multiplication of (1/�n)

in the basic SVD solution (2.43) to multiplication by �n/(�
2
n + �). The denominator

of the latter term will never equal zero (as � > 0), and reduce the projection of any

noise in the measured data onto the final solution.

The main issue with Tikhonov regularization is the selection of the parameter

�. The solution, wtikℎ,� is extremely sensitive to the value of parameter, and there

is no guarantee that wtikℎ,� will accurately represent the physical contrast sources.

There are a large number of choices for Tikhonov regularization parameter selection.
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Options include ‘considerable numerical experimentation’, [7, 58] [19], the discrepancy

principle [50], the Normalized Cumulative Periodogram [56], the L-curve [59,60] and

Generalized Cross Validation (GCV) [61]. As Tikhonov regularization is not generally

used in this work, the details are left to the references.

2.4.3 Projection Methods

Another possible regularization technique for the inverse source problem is through the

use of a projection method. Many iterative optimization methods, e.g., the Conjugate

Gradient Least Squares (CGLS) method [19, 62] may be viewed as projecting the

solution onto a subspace of some the larger solution space (in the case of CGLS

method, the Krylov subspace [63]) at each iteration. By knowing the properties of

each dimension of the subspace onto which the solution is projected, one can simply

stop the iterative method when enough projections have been made. In practice, this

simply means applying the iterative (e.g., CGLS) method and stopping it after a

number of iterations.

Again, similar to the TSVD, one must determine some stopping number for the

iterations of the iterative method, which requires a similar criterion to TSVD or

Tikhonov regularization. As these methods are not used in this thesis, they are not

discussed further.
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2.4.4 Physical, or Maxwell Regularization

Yet another option for regularization is to use the constraint provided by the domain

equation (2.37) and add it to the minimization. This will regularize the problem,

often well enough that other forms of regularization are unnecessary. In the literature,

this is known as the Maxwell regularizer [64–66], but may also be called the physical

regularizer. It is physical in the sense that instead of stabilizing the problem simply

through the use of a mathematical stabilizer we are stabilizing the problem through

the use of additional physics-based information of the problem at hand. In this case,

the objective function to be minimized is switched to some variant of the equation

F (w) =
∥∥ũsct − GS(w)

∥∥2

S
+
∥∥uinc − GD(w)− u

∥∥2

D
(2.46)

where the second term
∥∥uinc − GD(w)− u

∥∥2

D
is a functional which represents the error

in the domain equation, and GD is the domain operator, e.g., G(r ∈ D, r′ ∈ D).

As physical regularization is the primary form of regularization used in the inverse

scattering method treated in detail in the next chapter, the Contrast Source Inversion

(CSI) technique, further discussion is held off for the next chapter.

2.4.5 Multiplicative-Regularization

Another form of regularization is Multiplicative-Regularization (MR). MR involves

multiplying the cost functional by a regularization term, and it usually used in
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conjunction with other forms of regularization. MR is motivated by image-deblurring

techniques, and it may be argued that MR is an image deblurring algorithm applied

on top of other forms of regularization. As MR is generally used throughout this work,

the details of MR are left to the next chapter.

2.5 Inverse Crimes

Throughout the inverse scattering literature, there is often mention of the inverse

crime (e.g., [34, 41, 48]). Inverse crimes occur when synthetic data is being utilized to

test an inversion algorithm, and that synthetic data is created with a numerical solver

which is too similar to the numerical method used in the inverse solver. Effectively,

this produces overly optimistic estimations of the power of the inversion algorithm. In

particular, inverse crimes occur when both the following conditions are satisfied [48]:

1. The model (e.g. 2D scalar Transverse Magnetic problem) used to produce the

forward data is the same as for the inverse model, and

2. The discretization and technique used for the numerical solution (e.g. Method

of Moments) for the forward solver are identical to that of the inverse solver.

In practice, these two ‘crimes’ can be avoided by (i) adding noise to the generated

forward data, and (ii) using a different discretization for the forward and inverse

solvers (e.g., using 100× 100 discretization cells in the forward solver, and 105× 105

discretization cells in the inverse solver). This is done with any synthetic data
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used throughout this work. The inverse crime is automatically avoided when using

experimental data, and in general it is preferred to test inversion algorithms on

experimental data.



3. INVERSION METHODS: THE MR-CSI METHOD

What I mean is that if you really want to understand something, the best
way is to try and explain it to someone else. That forces you to sort it
out in your mind. And the more slow and dim-witted your pupil, the more
you have to break things down into more and more simple ideas. And
that’s really the essence of programming. By the time you’ve sorted out a
complicated idea into little steps that even a stupid machine can deal with,
you’ve learned something about it yourself.
The character Richard, from Dirk Gently’s Holistic Detective Agency by
Douglas Adams

The data (2.36) and domain (2.37) equations provide us with the fundamental

equations that we attempt to solve in the rest of this thesis. There are many different

ways to solve these equations, and they may be separated into two major groups:

linearized inverse problems, and non-linear inverse problems.

Linearized inverse problems make significant assumptions regarding the wave-

propagation within the scatterer, and when applied to realistic problems do not offer

enough accuracy to provide quantitative imaging (although they may be very useful

for non-quantitative imaging and are widely used, see, e.g. [9,14,15,29,67,68]). These

linear techniques may also be called Fourier-based imaging techniques, and often called

radar-based techniques. While these techniques may often seem to be distinct from
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the non-linear scattering problem, and are often listed as a separate solution method,

e.g. [9], we have shown that they are, at their core, a linearized solution of the inverse

scattering problem [69]. Due to the fact that linear methods are not further discussed

in this dissertation, the details of an example Fourier imaging algorithm have been

left to the Appendix A.

The non-linear inversion techniques discussed in the previous chapter are able to

provide successful quantitative reconstructions of biological materials from experi-

mentally collected data at limited (even single) frequencies. The main advantage of

these ‘full’ inversion techniques, as opposed to the linearized techniques, is that a

quantitative inversion of such material parameters as conductivity and permittivity

goes a lot further toward solving the clinical identification problem, e.g. tumour or no

tumour, and makes the technique much more useful for biomedical applications.

To date, the only effective way to perform quantitative inversion is through iterative

methods based on minimizing some type of cost functional. The non-linear inversion

techniques offer a quantitative reconstruction of the contrast but are mathematically

more complicated than the linearized techniques, and usually take significantly more

computational resources to solve. Broadly speaking, there are two different approaches

that have been successfully used to solve the inverse scattering problem [70]. The

two approaches are distinguished by their method used to regularize the ill-posed

problem, their use (or lack of use) of a forward solver, as well as the selection of the

objective function that is minimized. The first approach, known as the conventional
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type, formulates the objective function based solely on the scattered data outside

the scatterer or Object of Interest (OI) and uses repeated calls to a forward solver

during the iterative minimization. Examples of this technique include the Distorted-

Born Iterative Method (DBIM) [53] and global optimization techniques (e.g. [71]).

The DBIM is equivalent to the Gauss-Newton (GN) method. The second class of

approaches, which are distinguished by the absence of a forward solver and the use of

an objective function based on both scattered fields outside the OI and total fields

inside the OI, is known as the modified gradient type. The two examples of this

class of inversion technique are the Modified Gradient Method (MGM) [66] and the

Contrast Source Inversion (CSI) method [31,64].

3.1 Conventional Class Inverse Scattering Algorithms

The conventional type inverse scattering algorithms primarily utilize the data misfit

equation of (2.38). However, for the inverse scattering problem the data equation

must also be enforced. Thus, conventional non-linear inversion techniques formulate

the inverse scattering problem as:

� = arg min
�

J∑
j=1

∥∥ũsct − GS {�uj}
∥∥2

S

subject to : uinc
j (r) = uj(r)− GD {�uj} r ∈ D (3.1)
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where again, the number of transmitters (sources) is j = 1 . . . J . For the conventional

type algorithms, e.g., DBIM, which only use the data misfit cost-functional, there is a

choice as to when the regularization is applied. The data misfit cost-functional may

be regularized before the optimization process, e.g., [70, 72], or the cost-functional

may be regularized at each step of the optimization process (once the problem has

been linearized) [19,53].

No matter which method of regularization is selected, the conventional techniques

(i) require the selection of some regularization parameter and (ii) require the use of

a forward solver. These techniques proceed by creating an estimate of the contrast,

�n, then enforcing domain equation (2.37) and calculating the new estimate of the

scattered fields through the use of a forward solver. Optimization techniques used to

determine the update of the contrast include the Gauss-Newton method [19,70,72]

and genetic algorithms [71].

As the implementation of the GN/DBIM method was the responsibility of another

co-author of [33] we provide only a brief description of DBIM algorithm. The details

are left to the reference [33].

3.2 Distorted Born Iterative Method

The Distorted Born Iterative Method, originally proposed by Chew and Wang [53],

tries to solve the nonlinear minimization problem given in (3.1) through an iterative

procedure by alternately updating the guesses of the contrast, �, and the field, u,
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inside the imaging domain D. Briefly, the DBIM may be summarized as follows:

1. (Initialization) Born approximation: assume that the total field in D is the

incident field, uj(r ∈ D) ≈ uinc
j .

2. (Initialization) Solve for the contrast, �, by minimizing the data equation (2.36).

This step requires regularization.

3. Use the new estimate of the contrast as the input to a forward solver and

generate a new estimate of the total field, un.

4. Check convergence of the algorithm, based on the relative data equation error.

That is, if the term

F S =

∑
j

∥∥ũsct
j − usct

j (�n, uj,n)
∥∥2

S∑
j

∥∥ũsct
j

∥∥2

S

(3.2)

is below a set threshold, the algorithm is stopped. Here, �n is the predicted

contrast at the nth iteration of the algorithm, and uj,n is the estimate of the

total field inside of D at the same iteration.

5. The distorted Green’s function operator is written as

GSn { } =

∫
k2
b,n(r′)Gn(r, r′) (r′)dr′, (3.3)

where r ∈ S , kb,n is the wavenumber of the inhomogeneous background with
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respect to �n, and Gn is the distorted Green’s function of the inhomogeneous

background �n. In order to compute Gn we use the forward solver once for each

receiver location [53].

6. Utilizing the Distorted Green’s operator, and the fields from step 3, update the

contrast in the form of �n+1 = �n + ��n where ��n is obtained by solving the

minimization problem:

��n = arg min
��

∑
j

∥∥ũsct
j − usct

j (�n, uj,n)− GSn {��um,n}
∥∥2

S
. (3.4)

7. Go back to step 3.

Note that (3.4) is similar to the initial minimization of the data equation, but is

different in the critical respects that it is solving for a relative change in the permittivity

and that the operator GSn is the distorted operator. To enhance the convergence of

DBIM, we employ a line search algorithm similar to [72]: if the error in the data

equation due to the correction ��n increases, the contrast is updated in the form of

�n+1 = �n + �n��n where �n is the appropriate step size. The details of the utilized

line search algorithm are not presented here but are available in [72].

For the regularization in step two, we utilize Tikhonov regularization, and the

regularization parameter is chosen via an efficient form of the L-curve method [33].
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3.3 Modified Gradient Class Inversion Algorithms and Contrast

Source Inversion

The key difference between modified gradient type and conventional type inversion

algorithms is that the modified gradient type use the physical, or Maxwell regularizer

discussed in section 2.4.4. Because of this, they typically do not require the use of

a forward solver at each step of the minimization process in order to enforce the

object/domain equation. At present, there are only two examples of this class of

algorithm, the Modified Gradient Method [66] and the Contrast Source Inversion

(CSI) technique [58,64,65,73,74].

Due to several important factors with regards to the modified-gradient type

inversion algorithms, namely:

1. they are computationally efficient, do not require the use of a forward solver

at each iteration, and use computational resources comparable to two forward

solver calls, and

2. they may be formulated in such a way that all regularization is completed

automatically,

we have decided, for this work, to implement the leading modified-gradient type

method, the CSI technique. Details of the CSI technique are provided below.
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3.4 Derivation of the MR-CSI Algorithm

The CSI method begins by using the contrast sources, wj = �uj and re-writing the

domain equation (2.37) as

�uinc
j = wj − �GD {wj} . (3.5)

The CSI is formulated as an iterative optimization algorithm but with the objective

function written with respect to the contrast and the contrast sources:

F (wj, �) = F S(wj) + FD(�,wj) =∑
j

∥∥ũsct
j − GS {wj}

∥∥2

S∑
j

∥∥ũsct
j

∥∥2

S

+

∑
j

∥∥�uinc
j − wj + �GD {wj}

∥∥2

D∑
j

∥∥�uinc
j

∥∥2

D

(3.6)

The normalization terms in the denominators are used to balance between the data

and domain equation errors.

In the basic CSI method the objective function (3.6), is minimized via the formation

of two interlaced sequences of the unknowns: a sequence of estimates of the contrast,

{�n} which is interlaced with a sequence of estimates of the contrast sources {wn}

where n represents the iteration number. For every step of the basic CSI method, the

contrast source sequence is updated via a single step of the Conjugate-Gradient [75]

minimization algorithm while assuming that the contrast is constant. After this, the

contrast is updated by minimizing the domain equation functional. The iterative
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process is continued until a desired minimum of the objective function is reached.

In order to derive the details of the CSI method, we first introduce the data error

at the ntℎ step of the CSI algorithm, �j,n, as

�j,n = ũsct
j − GS(wj,n), (3.7)

and the domain or object error at the ntℎ iteration as

rj,n = �nuj,n − wj,n. (3.8)

The estimate of the total field at iteration n is given by

uj,n = uinc
j + GD(wj,n). (3.9)

3.4.1 Update of the Contrast Sources

Assuming that the CSI algorithm has been initialized, and wj,n−1 and �n−1 are known,

we update the contrast sources with the following formula:

wj,n = wj,n−1 + �wj,nvj,n, (3.10)

where vj,n are the search directions, and �wj,n is the search distance for each transmitter.
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Search Direction and Distance

The basic search directions for the contrast sources are are given by

vj,0 = 0, vj,n = gwj,n + wj,nvj,n−1 (3.11)

where gwj,n is the gradient of the cost functional (3.6) with respect to the jtℎ contrast

source, j,n is the search distance. These two parameters are discussed below.

Calculation of gradients with respect to the contrast sources

The calculation of the gradients requires the derivative of the functional F (wj,n, �n)

with respect to wj,n. Derivatives of this nature are known as Fréchet derivatives, and

their definition is given in appendix B.

In particular, we are interested in the gradient of the cost functional with respect

to wj, evaluated at wj = wj,n−1:

gwj,n =
∂F S(wj)

∂wj

∣∣∣∣
wj=wj,n−1

+
∂FD(�n−1, wj)

∂wj

∣∣∣∣
wj=wj,n−1

. (3.12)
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Using the definition of the Fréchet derivative given in appendix B:

∂F S(wj)

∂wj
= lim

�→0

F S(wj + �gj)− F S(wj)

�

= lim
�→0

�S

�

[
∥�(wj + �gj)∥2

S − ∥�(wj)∥2
S

]
= lim

�→0

�S

�

[
∥�(wj)− �GS(gj)∥2

S − ∥�(wj)∥2
S

]
= lim

�→0

�S

�

[
−2�Re ⟨�(wj),GS(gj)⟩S + �2 ∥GS(gj)∥2

S

]
= −2�SRe ⟨�(wj),GS(gj)⟩S

= Re
〈
−2�SG∗S [�(wj)] , gj

〉
D
, (3.13)

In (3.13), � is given in eq. (3.7), �S is given by

�S =

[∑
j

∥∥ũsct
∥∥2

S

]−1

, (3.14)

and G∗S is the adjoint operator of GS , defined as the operator which satisfies the

equation

⟨a,GS(b)⟩S = ⟨G∗S(a), b⟩D , (3.15)

where a ∈ S is a member of the measurement domain, and b ∈ D is a member of the

domain D.

Thus, the gradient (see Appendix B) of the data error, evaluated at wj = wj,n−1 is
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given by

∂F S(wj)

∂wj

∣∣∣∣
wj=wj,n−1

= −2�SG∗S [�(wj,n−1)] . (3.16)

The gradient of the domain equation portion is calculated in a similar way. We

first define r(wj) = �n−1u
inc
j − wj + �n−1GD(wj) and then:

∂FD
n (�n−1, wj)

∂wj
= lim

�→0

FD
n (�n−1, wj + �gj)− FD

n (�n−1, wj)

�

= lim
�→0

�Dn
�
∥r(wj + �gj)∥2

D − ∥r(wj)∥
2
D

= lim
�→0

�Dn
�
∥r(wj)− � [gj − �n−1GD(gj)]∥2

D − ∥r(wj)∥
2
D

= lim
�→0

�Dn
�

{
−2�Re ⟨r(wj), [gj − �n−1GD(gj)]⟩D +

�2 ∥gj − �n−1GD(gj)∥2
D

}
= −2�Dn Re ⟨r(wj), [gj − �n−1GD(gj)]⟩D

= Re
〈
−2�Dn {r(wj)− G∗D [�n−1r(wj)]} , gj

〉
D
, (3.17)

where, �Dn is given by

�Dn =

[∑
j

∥∥�n−1u
inc
j

∥∥2

D

]−1

, (3.18)

and G∗D is the adjoint operator of GD, which is defined as the operator which satisfies

⟨a,GD(b)⟩D = ⟨G∗D(a), b⟩D , (3.19)

where a ∈ D is an element of the space D, and b ∈ D is a element of the space D.
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Thus, the gradient of the domain equation functional is given by

∂FD(�n−1, wj)

∂wj

∣∣∣∣
wj=wj,n−1

= −2�Dn {rj,n−1 − G∗D [�n−1rj,n−1]} . (3.20)

Polak-Ribière Search Directions

In the CSI method, the search directions are selected to be the Polak-Ribière search

directions [58,64,76]. For this case, wj,n is given by

wj,n =
Re
〈
gwj,n, g

w
j,n − gwj,n−1

〉
D〈

gwj,n−1, g
w
j,n−1

〉
D

. (3.21)

Finally, the search distance, �wj,n, in (3.10) is found by finding the minimum of the

cost functional (3.6) along the search direction vj,n−1. Explicitly,

Fn = �S
∑
j

∥∥ũsct
j − GS {wj,n}

∥∥2

S
+ �Dn−1

∑
j

∥∥�uinc
j − wj,n + �n−1GD {wj,n}

∥∥2

D

= �S
∑
j

∥∥�j,n−1 − �wj,nGS {vj,n}
∥∥2

S
+

�Dn−1

∑
j

∥∥rj,n−1 − �wj,n (vj,n + �n−1GD {vj,n})
∥∥2

D
, (3.22)

and by setting ∂Fn/∂�
w
j,n = 0, we may obtain

�wj,n =

〈
gwj,n, v

w
j,n

〉
D

�S ∥GS(vj,n)∥2
S + �Dn−1 ∥vj,n − �n−1GD(vj,n)∥2

D

. (3.23)
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3.4.2 Update of the Contrast

At each iteration of the CSI method, the contrast � is updated after the update of the

contrast sources wj. In the basic CSI method, this update is chosen by minimizing

the cost functional with respect to the contrast, while assuming the contrast sources

are constant. Further, we make the approximation that �Dn does not depend on �. As

F S in (3.6) does not depend on �, this means minimizing

1

�Dn
FD(wj,n, �n) =

∑
j

∥∥�uinc
j − wj + �GD {wj}

∥∥2

D
=
∑
j

∥�uj − wj∥2
D (3.24)

with respect to the contrast �n. This results in a minimizer

�an =

∑
j wj,nuj,n∑
j ∣uj,n∣

, (3.25)

which is the updated contrast at step n.

3.4.3 CSI Initialization

The CSI method needs a starting point. In practice, this may be a contrast (�0),

from which the contrast sources may be calculated (which requires a forward solver),

or it may be initialized with some guess at the contrast sources, wj,0. The standard

method [31, 58, 64, 74] is to initialize the contrast sources by minimizing the data

equation functional:

F data(wj) =
∥∥ũsct

j − GS {wj}
∥∥2

S
. (3.26)



3. Inversion Methods: The MR-CSI Method 49

The details of this minimization may be found in the appendices, section B.2, and the

solution is given by

wbp
j =

∥∥G∗S ũsct
j

∥∥2

D∥∥GSG∗S ũsct
j

∥∥2

S

G∗S ũsct
j . (3.27)

Once the contrast sources have been initialized, the initial contrast �0 is also initialized

through the use of equation (3.25), where

uj,0 = uinc
j + GDwbp

j . (3.28)

3.4.4 Multiplicative Regularization

While the CSI method alone may provide good inversion results on its own (e.g., [64]),

the method may be significantly enhanced through the use of a total-variation based

regularizer (see, e.g., [31, 58, 77–80]). In general, a total variation regularizer attempts

to penalize contrasts which have a large total variation (intuitively, it penalizes

contrasts which look ‘noisy’, and have significant variation from pixel to pixel). The

total-variation of a differentiable function, ℎ, ℎ ∈ D, is defined as

TV [ℎ(r)] =

∫
D

∣∇ℎ(r)∣ dr. (3.29)

Inspired by the use of total-variation based regularizers for imaging processing [81],

several regularizers based on different weightings of total-variations of the contrast have

been implemented and tested in the literature [58,78]. Initially, these regularizers were
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tested as an additive regularizer [58], but this requires the choice of a parameter used to

balance the effect of the total-variation term and the regular cost functional (3.6). This

leads to similar problems as with the selection of the Tikhonov weighting parameter

discussed in section 2.4.2. The parameter selection process may be avoided by applying

the total-variation based regularizer as a Multiplicative Regularizer (MR) [58,78].

With the MR term, the CSI cost function then becomes

Fn(wj, �) = FMR
n (�)

[
F S(wj) + FD(�,wj)

]
. (3.30)

Multiple testing of different regularizers [58, 78] has lead to a clear leader for the

purposes of MWT: the weighted L2-norm multiplicative regularizer. This regularizer

is given by

FMR
n (�) =

∫
D

b2
n(r)

(
∣∇�(r)∣2 + �2

n

)
dr, (3.31)

where

b2
n(r) =

1

A
(
∣∇�n−1(r)∣2 + �2

n

) , (3.32)

and the term �2
n has been added to ensure the differentiability to the regularizer, and

is given by

�2
n =

FD
n (�n−1, wj,n−1)

Δ
(3.33)

where the area of the inversion domain D is A =
∫
D

dr, and Δ is the area of an

inversion pixel.
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The introduction of this regularizer has no effect on the updating of the contrast

sources. This is because FR
n (�) does not depend on wj, and is equal to 1 when

� = �n−1. However, the updating of the contrast itself needs to change. In the

MR-CSI method this is done by

1. using the basic update of (3.25) as the first guess at each step of the CSI

algorithm, then

2. applying a single step of the CG algorithm to update the contrast again. The

Polak-Ribière directions are again utilized.

The second contrast update required for the MR-CSI method is given by

�MR
n = �an + �ndn (3.34)

where dn are again chosen as the Polak-Ribière directions:

d0 = 0 dn = g�n +
Re
〈
g�n , g

�
n − g

�
n−1

〉
D〈

g�n−1, g
�
n−1

〉
D

dn−1. (3.35)

To determine these directions, we need to calculate the gradient of the total



3. Inversion Methods: The MR-CSI Method 52

objective function with respect to � which is given by

g�n =
∂Fn(�,wj,n)

∂�

∣∣∣∣
�=�a

n

= FMR
n (�an)

∂FD
n (�,wj,n)

∂�

∣∣∣∣
�=�a

n

+

[
F S(wj,n) + FD

n (�an, wj,n)
] ∂FMR

n (�)

∂�

∣∣∣∣
�=�a

n

, (3.36)

where �an is the contrast given in (3.25).

Due to the fact that �an is a minimizer of FD
n , ∂FD

n /∂� evaluated at � = �an is

zero. Thus, we only need to calculate [74]

∂FMR
n (�)

∂�
= lim

�→0

FMR
n (�+ �d) + FMR

n (�)

�

= lim
�→0

∥bn∇ (�+ �d)∥2
D − ∥bn∇�∥

2
D

�

= 2Re ⟨bn∇�, bn∇d⟩D

= 2Re

∫
D

b2
n∇�(r) ⋅ [∇d(r)]Hdr

= 2Re

(
−
∫
D

{
∇ ⋅
[
b2
n(r)∇�(r)

]}
[d(r)]Hdr

)
= Re

〈
−2∇ ⋅

(
b2
n∇�

)
, d
〉
D
. (3.37)

Thus, under the definition of Fréchet derivative given in appendix B,

∂FMR
n (�)

∂�
= −2∇ ⋅

(
b2
n∇�

)
. (3.38)
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The final step of the MR update is to determine the step size of the CG step, �n

from (3.34). This is done by solving

�n = argminreal� {Fn (wj,n, �n + �dn)} . (3.39)

It is possible to determine the parameter � analytically. The cost-functional Fn

becomes [31]

Fn(w(j, n) =

[
F S
n (wj, n) + FD

n (wj,n, �n−1) + �2�Dn
∑
j

∥dnuj,n∥2
D

+2��Dn Re
∑
j

⟨dnuj,n, �n−1uj,n − wj,n⟩D

]
× [1 + 2�Re ⟨bn−1∇�n−1, bn−1∇dn⟩D +

�2 ∥bn−1∇dn−1∥2
D

]
(3.40)

By setting the derivative of this functional with respect to � to zero, a cubic equation

in � results. There are one real and two complex roots of the cubic equation, and the

real root is the minimizer of (3.39) [31, 74,78].

An important aspect of weighted-L2 MR process is that, when � is taken to be

real, it may be proven [78] that the MR term does not add any extra local minima to

the overall cost function.
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3.5 Implementation of the Data and Domain Operators

Until now, the specifics of the GS and GD operators has been left intentionally vague.

For most cases considered in this thesis (besides those in Chapter 5), these operators

are implemented as integral operators of the form:

GS(ℎ) = −k2
b

∫
D

G(r, r′)ℎ(r′)dr′ r ∈ S, r′ ∈ D, (3.41)

and

GD(ℎ) = −k2
b

∫
D

G(r, r′)ℎ(r′)dr′ r, r′ ∈ D, (3.42)

where G(r, r′) is the Green’s function for the Helmholtz equation (2.21) with the

appropriate boundary conditions. It is important to note that in the MR-CSI method,

these operators are not integral equations, but are rather just integrals (as ℎ is always

known in MR-CSI). Thus, their solution at each step is much less computationally

intensive than a full integral equation. The inversion domain D is discretized on a

regular rectangular grid, and integrals involved with the GS and GD are solved using

Richmond’s method [82]. In the open-region case, the operator GD is accelerated with

the use of Fast-Fourier Transforms (FFT’s) [83, 84]. In the case of enclosed-region

imaging (see Chapter 6) it is not possible to utilize FFT’s, and acceleration is not

used.
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Tab. 3.1: Computational Cost of MR-CSI Algorithm

For each iteration of main MR-CSI optimization loop: MCSI
cg

For each transmitter: Tx
Data (GS ,G∗S) Operators: ∝ 2Ract

x N
Domain (GD,G∗D) Operators: ∝ 3NlogN

end
end

3.5.1 Computational Complexity of MR-CSI

The computational bottle-neck of the MR-CSI method is the GD operator. In the

usual case, the GD operator scales with O(NlogN) computational time, where N is

the number of unknowns in the discretization. A detailed computational cost of the

algorithm is given in pseudo-code in Table 3.5.1, where the following conventions are

used: the number of transmitters is given by Tx, the number of active receivers for each

transmitter is Ract
x , and the number of iterations required for the main optimization

loop in the CSI algorithm is denoted by MCSI
cg . In Table 3.5.1 we have ignored any

operations which are proportional to N , which includes the contrast update for both

the CSI and MR-CSI algorithms.

Each step of the MR-CSI method requires calling the GD operator once, and the

G∗D operator twice, and requires calling both the GS and G∗S operator Ract
x times. Thus,

the overall scaling of the algorithm is O(NlogN). Due to the fact that each iteration

requires only an integral, rather than an integral equation, the overall algorithm takes

about 2 times the amount of computational time as a forward solver for the same

problem [58,64].



4. COMPARISON OF INVERSION TECHNIQUES

Mathematics seems to endow one with something like a new sense.
Charles Darwin

In a previous paper [33], our research group considered and compared an example

of each of the two primary types of inversion techniques in use for quantitative MWT:

the conventional, and modified gradient types. The comparison was completed by

blindly inverting a wide range of scattering data collected from multiple MWT systems

(by blindly, we mean that no extra information about the scatterer was used in the

inversion process). For this comparison, we utilized the MR-CSI algorithm, and the

DBIM algorithm. Both inversion techniques were applied to the 2D TM (scalar) inverse

problem. While both conventional and modified gradient types of inversion algorithms

have provided successful microwave imaging results, the relative performance of these

two groups of algorithms, in terms of inversion quality, regularization needs, and

computational resources, was poorly understood. We show this comparison and

present some of those results here.

The MR-CSI algorithm used for this comparison was outlined in the previous
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chapter. The DBIM algorithm utilizes Tikhonov regularization, with the Laplacian as

Tikhonov operator (see section 2.4.2). The DBIM algorithm was also combined with

the same weighted-L2 norm multiplicative regularizer used in the MR-CSI method,

in order to ensure that the comparison between the two methods was fair. With the

MR term, we have labeled the algorithm MR-DBIM. Since the MR-DBIM method is

not directly a part of this thesis the details are left to [33]. The primary purpose of

including these results is to provide a benchmark of another state-of-the-art non-linear

inversion algorithm to compare with the MR-CSI algorithm.

4.1 Comparison Results

In order to test the blind inversion capabilities of these algorithms, we present inversion

results from three different data sets: synthetic data, 2D experimental scattering

data collected by the Fresnel Institute in 2005 [40,85], and a data set from a MWT

system at UPC Barcelona [86, 87]. Each data set has different levels and types of

noise, utilizes different background media, and different antenna types and positions

(computational point sources, bi-static free-space broad-band antennas in the far field,

and co-resident water-submerged narrow-band antennas respectively). This wide range

of data provides an excellent cross-section of MWT data types. For the inversions, the

only constraints utilized were to keep the permittivity values within physical values

(e.g., Re(�r) ≥ 1, and Im(�r) ≤ 0).

Unless otherwise noted, all DBIM reconstructions shown in this section are gener-
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ated with the Laplacian regularizer and MR.

4.1.1 Synthetic leg data results

While the ultimate test of any inversion algorithm must involve experimentally collected

scattering data, it is very useful for comparison purposes to have a synthetic data

set where the exact, ‘ideal’ contrast is known. Towards this end, we have created a

synthetic model of a leg, shown in parts (a) and (b) of Fig. 4.1. Permittivity values for

the model were taken from published values on human tissue [88]. The model consists

of a bone (comprised of a marrow core, �r = 5.5− j0.55 surrounded by cortical bone,

�r = 12.6− j2.4), inside of a large mass of muscle (�r = 54.8− j13.0), surrounded by

skin (�r = 39.4− j12.9). Data were generated for the model based on a frequency of

1.5 GHz, with 30 transmitters and 30 receivers evenly spaced on a circle of radius

15 cm. The forward solver utilized a grid of 100 × 100 cells on a 10 × 10 cm grid.

The inversions were performed on a grid of 100× 100 cells on a 10.2× 10.2 cm grid

(thus avoiding the inverse crime, see section 2.5). The ‘leg’ was immersed in a lossless

background medium with �r = 77.3. To every measurement, 3% noise was artificially

added using the formula

ũsct
j = usct

j +max
(∣∣usct

j

∣∣ ,∀usct
j

)
Ns(�+ j�), (4.1)
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Tab. 4.1: Relative Vector Norms of Synthetic Leg Reconstructions

MR-CSI MR-DBIM
Reconstruction Reconstruction

L1 Error 20.3 % 21.1 %
L2 Error 30.0 % 28.3 %
L∞ Error 98.9 % 98.9 %

where Ns = 0.03 and � and � are zero-mean, uniformly distributed, random numbers

between -1 and 1.

The MR-CSI reconstruction is shown in part (c-d) of Fig. 4.1, and the DBIM

reconstruction is given in part (e-f). A 1D cross-section of the y = 0 line for all three

plots is shown in part (g-h). The two reconstructions are remarkably similar, which

can be seen particularly clearly in the cross-section plots. Neither algorithm accurately

resolves the skin, which is not surprising because the skin is approximately 1.5 mm,

or ≈ (1/20)�, thus showing one of the limits of non-linear imaging algorithms. In the

center of the bone, the dielectric constant values obtained by the CSI method are not

correct, and the DBIM values are closer to the true values.

As this is a synthetic target, we are able to determine the various Lp norms for the

reconstructed images (as compared with the exact image). For this case, the vector

norms are given by

Lp =
∥�exact(r)− �recon(r)∥p

∥�exact(r)∥p
, (4.2)

where �recon(r) is the reconstructed permittivity. Due to the fact that forward and
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inverse grids are not identical, the discretized versions of (4.2) were calculated by

interpolating onto a finer and finer mesh until the norm converged. The L-norms

for the various reconstructions of the synthetic leg are shown in Table 4.1. These

norms show that the two reconstructions are very close. For the L1 norm, the MR-CSI

reconstruction is better, for the L2 norm the MR-DBIM reconstruction is better, and

they are equal for the L∞ norm. These data provide some quantifiable confirmation

that the reconstructions are of a similar quality.

4.1.2 Fresnel data results

The MR-DBIM and MR-CSI methods were tested on the 2005 Fresnel Data set [40].

These data were collected in free-space over a broad frequency range utilizing double-

ridged horn antennas, at a distance of 1.67 meters away from the center of the imaging

region. Two antennas and a mechanical positioning system are utilized to collect the

data. The scatterers are 2D objects elongated enough in the z-direction so that the

objects and fields may be accurately modeled as 2D [40]. To calibrate these data, we

utilize the same process outlined in [89]. Calibration methods are discussed further in

chapter 7. Here, we present results from the FoamTwinDiel and FoamMetExt data

sets.
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Fig. 4.1: Synthetic leg data set. (a-b) The exact dielectric constant, (c-d) the MR-CSI
reconstruction, (e-f) The MR-DBIM reconstruction with Laplacian Regularizer,
and (g-h) A 1D cross-section along y = 0 of the ideal (black dash-dot line), MR-CSI
(red dashed line) and DBIM (blue solid line). The frequency used was f = 1.5
GHz. Dimensions are in meters.
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FoamTwinDiel

These data were collected for 18 transmitters, 241 receivers per transmitter, and

9 frequencies from 2-10 GHz in 1 GHz steps. The scatterer, shown in part (a) of

Fig. 4.2, consists of two smaller cylinders of dielectric constant �r = 3 where one

of the smaller cylinders is embedded in a larger cylinder with �r = 1.45. As the

cylinders are very low loss over the frequency range of interest, we constrain the

inversion to Im(�r) = 0 in this case. When inverting multi-frequency data, we utilize

a ‘marching-on-frequency’ approach for the DBIM method [90]. That is, we invert

the data at the lowest frequency, then use the result from that frequency as the first

guess for the second frequency (and so on). The MR-CSI utilizes a simultaneous

multi-frequency inversion, i.e., the data from all frequencies are utilized simultaneously.

We have implemented a simultaneous multi-frequency inversion for the DBIM, but

the marching-on-frequency method provides significantly better results, possibly due

to the fact that the initial Born approximation used in the DBIM is poor at high

frequencies.

Several reconstructions of this object, on a grid of 60× 60 cells, are shown in Fig.

4.2. Part (b-c) shows the reconstruction at a single frequency of 2 GHz, (d-e) at a

frequency of 6 GHz, and (f-g) the full data reconstruction from 2-10 GHz. In all cases,

the reconstructions are quite similar. Overall, the DBIM overshoots the maximum

dielectric constant of 3 in all three reconstructions, but otherwise the reconstructions

are hard to tell apart.
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(a) FoamTwinDiel Target
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Fig. 4.2: Reconstruction of Fresnel Data Set FoamTwinDiel. DBIM with MR and the
Laplacian regularizer reconstructions are on the left, and MR-CSI reconstructions
are on the right. (a) Schematic of the scattering cylinders, (b-c) Reconstructions
at 2GHz, (d-e) Reconstructions at 6 GHz and (f-g) Full-frequency reconstructions
2-10 GHz. Dimensions are in meters.
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FoamMetExt

This data set was collected for 18 transmitters, each with 241 receivers, over seventeen

1 GHz steps in the frequency range of 2-18 GHz. The 2D schematic of the scatterers

is shown in Fig. 4.3(a). In this case, the scatterers consist of a small (radius of 1.55

cm) cylindrical copper rod, next to a weakly scattering dielectric cylinder of radius 4

cm with �r = 1.45.

The reconstructions on a grid of 60×60, at a frequency of 6 GHz, are shown in Fig.

4.3. Part (b-c) shows the MR-CSI method and (d-e) the DBIM method. Again for this

data set, the reconstructions are very similar. In this case, the MR-CSI method gives

some oscillations inside the larger scatterer which the DBIM does not. There are some

differences inside the copper cylinder, but as there are no fields inside the cylinder

(and thus no information about the inside of the scatterer), these differences are not

relevant. The full frequency (2-18 GHz) reconstruction is shown in Fig. 4.4. Part (a-b)

shows the MR-CSI reconstruction, while part (c-d) shows the DBIM reconstruction.

In this case, the two are very similar, with the only significant differences being inside

the copper cylinder.

4.1.3 UPC Barcelona data set

The UPC Barcelona data set [86,87] was collected from a near-field single frequency

scanner, pictured in [91]. There are 64 transmitters, and 33 active receivers for each

transmitter (64 total receiver positions). The data were collected at a frequency of
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Fig. 4.3: Single frequency reconstructions of Fresnel Data set FoamMetExt. (a) Schematic
of the scattering cylinders, (b-c) MR-CSI reconstruction at 6GHz, (d-e) DBIM
reconstructions at 6 GHz. Dimensions are in meters.
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Fig. 4.4: Full-Frequency reconstruction of Fresnel Data Set FoamMetExt. (a-b) MR-CSI
reconstructions from 2-18 GHz data, (b-c) DBIM reconstructions from 2-18 GHz
data. In this case, the differences between the images are primarily inside the
copper rod, where no fields exist. In order to see the weakly scattering object, all
images have been limited to a maximum pixel intensity. Dimensions are in meters.



4. Comparison of Inversion Techniques 67

2.33 GHz. The data collection tank was filled with a background solution of water,

with permittivity �b = 77.3 − j8.66 at 2.33 GHz. We consider two different data

sets: a biomedical phantom, FANTCENT and a human forearm, BRAGREG. In all

inversions in this section, the results were restricted to lie within 0 ≤ Re(�r) ≤ 80

and −20 ≤ Im(�r) ≤ 0 after each iteration, as the targets do not have permittivities

higher than water. For this data set, we do not show the MR-DBIM results, but these

are available in [33].

Cylindrical Phantom: FANTCENT

We utilize this data set to display the results from several different types of regulariza-

tion for both the (MR)-CSI and (MR)-DBIM algorithms. The FANTCENT data set

consists of a water and ethyl-alcohol based phantom. A schematic of the phantom

(not to scale), with the constituent materials and their dielectric constants, is shown

in Fig. 4.5 (a).

The reconstructions for the CSI method are shown in Fig. 4.6. The reconstructions

with the DBIM method, and the identity regularizer are shown in Fig. 4.7 (a-b),

the DBIM with the Laplacian regularizer in (c-d) and the MR-DBIM (Laplacian

regularizer) are shown in (e-f).

Several points may be noted with regards to Figs. 4.6 and 4.7: (i) The CSI

algorithm is regularized well enough by the physical regularizer that reasonable results

are achieved without the use of MR. However, the use of MR does improve the inversion.
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Fig. 4.5: The schematic of the 2D FANTCENT scatterer.
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Fig. 4.6: Inversion of FANCENT data set: (a-b) The inversion with the CSI method (no
MR), (c-d) the results of the MR-CSI method. Dimensions are in meters.
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Fig. 4.7: Inversion of FANCENT data set: (a-b) The results for the DBIM with Identity
regularizer, (c-d) DBIM with Laplacian, and (e-f) DBIM with MR and Laplacian
regularizers. Qualitatively, the MR-DBIM and MR-CSI reconstructions are quite
similar. Dimensions are in meters.
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(ii) The basic CSI method is somewhere between the DBIM-identity regularized and

DBIM-Laplacian regularized solution. (iii) The MR-DBIM algorithm is quite similar

to the MR-CSI algorithm.

It is hard to determine which inversion method provides the better result in this

case. Both algorithms do not reconstruct the imaginary part of the dielectric constant

very well, although there seems to be fewer oscillations in the MR-CSI reconstruction.

However, the DBIM reconstruction obtains a closer result for the dielectric constant

of the inner cylinder, particularly for the real part of the dielectric constant, where it

reaches a value of Re(�r) = 15, when the actual value should be Re(�r) = 10. The

MR-CSI algorithm reaches approximately Re(�r) = 20.

Human Forearm: BRAGREG

The final data set detailed in this chapter is the scattering data taken from a human

forearm, data set BRAGREG. The expected relative permittivities at this frequency

are approximately �r = 54− j13 for muscle, �r = 38.5− j10 for skin, �r = 8− j1 for

bone marrow, and �r = 5.5− j0.6 for bone [31,88].

The reconstruction from the MR-CSI algorithm for this data set is shown in Fig.

4.8 (a-b), and the MR-DBIM inversion is shown in Fig. 4.8. In this case it is difficult

to determine which is a better reconstruction, due to the fact that there is no ideal

case with which to compare the reconstructions. In both cases, the overall structure of

the arm may be seen in both the real and imaginary part of the reconstructions. The
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Fig. 4.8: Human forearm inversions: (a-b) Results of the MR-CSI method. (c-d) Results for
the DBIM method with MR and Laplacian regularizer after 9 iterations. Dimensions
are in meters.

one advantage of the DBIM method is that it reaches closer to the expected value for

the real part of the permittivity of the bones. However, we again note that the DBIM

reconstruction with the identity regularizer (not shown) did not provide satisfactory

results, emphasizing the importance of the Laplacian regularizer.
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4.2 Discussion of inversion results

Using an example of each of the two major classes of non-linear inversion techniques,

the MR-CSI and DBIM methods, we blindly inverted a wide-range of data sets: noisy

synthetic data, free-space far field data, and near-field water-submerged data. These

inversion results provide a benchmark of the state-of-the art capabilities of non-linear

inversion techniques, and provide an excellent basis for inverting the results from our

MWT system.

The primary differences between these two examples of inversion techniques lie

not in the inversion results, but rather in implementation issues and computational

complexity. The details of the computational complexity comparison are left to [33],

but the conclusion is that the computational cost of the two algorithms is very similar.

In terms of implementation concerns, the MR-CSI is somewhat easier, primarily

because there is no need for the user to select a regularization parameter.



5. THE FINITE-DIFFERENCE CONTRAST SOURCE INVERSION

METHOD

The ability to infer information on an object without direct contact also
expands man’s sensory horizon. No doubt, it is a much sought after
capability.
W.C. Chew

All reported biomedical MWT systems use some kind of matching media (e.g.,

[3,67,86]). The matching media is a specially chosen fluid which surrounds the antennas

and scatterers. The primary effect of this matching media is to allow the imaging of

targets which would otherwise not be possible, by effectively reducing the contrast

of the scatterer. The result is that more of the incident wave is transmitted into

the scatterer. This allows more energy, which must ultimately carry the information

about the scatterer, to enter, interact with, then exit the scatterer. For example, if a

scatterer embedded in free-space has high permittivity around its edge (e.g., �r = 80),

then assuming normal incidence of a wave, at this edge only ≈ 20% of the energy will

enter the scatterer [38]. If however, a matching media of �r = 60 is used, ≈ 93% of

0 The work outlined in this chapter was completed while the author was at Schlumberger-Doll
Research, Cambridge, MA, USA.
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the energy will get through the boundary. Intuitively, this should lead to improved

inversion, as the higher magnitude waves are much more likely to be detectable.

The computational inversion problem is also affected by the use of matching media.

Even in the case of noiseless measurement and lossless media, the non-linear problem

can be very hard to solve when the scatterer is electrically large and/or has a high

contrast. For example, an empirical limit of the electrical size of the object kbd� = 25,

(where d is the largest dimension of the scatterer) has been suggested for the 3D

vectorial MR-CSI method [73]. Another example of large high-contrast scatterers

being difficult to reconstruct may be seen in Fig. 6.9. In general, it has been suggested

that the convergence of non-linear inversion algorithms is closely related to the norm of

the combined Green’s function operator (i.e. �G(r, r′)) [92], which is reduced through

the use of a matching material.

While the use of a matching media has well-known advantages, there is, however,

a way to computationally reduce the contrast without a physical matching media. In

the data (2.36) and domain (2.37) equations the background wavenumber kb may be

arbitrarily chosen. With a judicious selection of the background wavenumber, i.e.,

selecting the wavenumber to be as close as possible to the scatterer, the contrast can

be computationally reduced, rather than both physically and computationally reduced.

However, using non-homogeneous backgrounds requires a Green’s function for those

backgrounds, and this is easiest to accomplish with a difference based solver. In this

chapter, we use a Finite-Difference based solver.
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In addition to the ability to computationally reduce the contrast, difference based

solvers also have the advantage of readily incorporating other, known, inhomogeneities

(such as the non-active antenna elements [93–95]). While this advantage is not dealt

with in this chapter, it is discussed in chapter 7.

5.1 Difference based inverse solvers

The most common method of solving the full non-linear inverse wave-field problem,

especially with the CSI method, is to utilize the previously described (section 3.5)

Integral-Equation (IE) based modeling technique. Other examples of inversion and

imaging techniques which utilize IE modeling include [70,71,96,97]. IE techniques are

not suitable for a computational reduction of the contrast, as the Green’s function

for the background medium, G(r, r′), must be known in a (semi)-analytic form to

render the IE approach of practical use. This restricts the background to simple

geometric shapes [34,98]. A way around this problem is to use a differential technique

(Finite-Difference or Finite-Element) [1, 7, 99, 100], but to date, these differential

inversion methods are all of the conventional type and require the repeated use of a

full-forward solver call at each iteration of the inversion algorithm, combined with

some other type of problem-specific regularization parameter.

It is possible to modify the MR-CSI technique to use a differential solver to

implement the data and domain operators, GS and GD [36,74]. The algorithm used

for this implementation in our paper [36] is the Finite-Difference technique, and with
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this modification of the MR-CSI algorithm, we can capitalize on the advantages of

both a differential solver and the CSI technique.

5.1.1 A-priori information as an initial guess vs. inhomogeneous backgrounds

In order to computationally reduce the contrast, it is obvious that we must have

some kind of information available about the unknown scatterer, e.g., information

that the skin forms the outer layer of a biomedical scattering object and/or the

average properties of the tissues inside [101]. While ‘prior information’ is perhaps

a better term for this type of information, the MWT and general electromagnetic

inversion community have co-opted the term a priori information to refer to this

type of information. We utilize this nomenclature throughout. A priori information

is not restricted to surface or average properties: it may come from other imaging

modalities such as ultrasound or x-ray computed tomography or it may come from

earlier inversions with the same imaging method (this is known as time-lapse imaging).

Utilizing multiple imaging modalities may allow the construction of an accurate

background model from techniques which have a high resolution, but are not sensitive

to a particular pathology (such as x-ray CT), followed by a lower-resolution technique,

such as microwave imaging, that is sensitive to the pathology.

While it seems obvious that the use of a-priori information in the background

wave-number will improve the inversion results overall, for a fair comparison we

must also consider the use of this information as an initial guess for the inversion
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process. The use of a-priori information as an initial guess is readily incorporated into

both integral and differential based inversion algorithms. Therefore, throughout this

chapter, we always compare the use of a-priori knowledge as the background to the

inversion with the use of the same information as an initial guess to the (homogeneous

background based) inversion algorithm.

5.2 Finite-Difference Implementation of the Data and Domain

Operators

To discuss the Finite-Difference implementation of the CSI method we introduce

a new domain, T . The new computational domain is shown in Fig. 5.1 and is

necessary because our chosen differential operator requires discretization of the entire

domain, whereas integral operators require only the discretization of the unknowns

(i.e., discretization of the domain D). The Helmholtz equation for the scattered field

(2.29) may be written using operator notation as

퓗b

[
usct
j (r)

]
= −k2

bwj(r), r ∈ T. (5.1)

The solution of (5.1) may be written as

usct
j (r) = 퓗−1

b

[
−k2

bwj(r)
]

= 퓛b [wj(r)] r ∈ T. (5.2)
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T
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D

=0 ≠0

Source

Receiver

u j
inc

u j
sct

Fig. 5.1: Inverse scattering schematic for the FD-CSI method. The inversion domain D, and
measurement domain S, are embedded inside the total computational domain T .

where the operator 퓛b[⋅] is defined as

퓛b[⋅] = 퓗−1
b

[
−k2

b (⋅)
]
. (5.3)

Using this notation, we may write the data equation operator as

GS [⋅] = 퓜S (퓛b [⋅]) , (5.4)

where 퓜S is a characteristic operator which selects the fields at the measurement

domain S from the full computational domain T . We may write the domain operator

as

GD[⋅] = 퓜D (퓛b [⋅]) , (5.5)
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where 퓜D is a characteristic operator which selects the fields in the inversion domain

D from the computational domain T .

With this notation, the CSI objective function becomes

F (�,wj) =

∑
j

∥∥ũsct
j −퓜S {퓛b [wj]}

∥∥2

S∑
j

∥∥ũsct
j

∥∥2

S

+

∑
j

∥∥�uinc
j − wj + �퓜D {퓛b [wj]}

∥∥2

D∑
j

∥∥�uinc
j

∥∥2

D

. (5.6)

5.2.1 The FD-CSI method

Once the new operators 퓜D {퓛b [⋅]} and 퓜S {퓛b [⋅]} have been defined, the FD-CSI

method is conceptually identical to the CSI algorithm previously outlined in Chapter

3. The only change required is to replace the operators GD and GD with their difference

based counterparts: 퓜D {퓛b [⋅]} and 퓜S {퓛b [⋅]}.

This change also requires the use of the adjoint operators in their FD domain

counterparts. These are given by

G∗S [∘] = 퓜S∗ (퓛∗b[⋅])

G∗D [∘] = 퓜D∗ (퓛∗b[⋅]) (5.7)

where the operator 퓛∗b represents the adjoint of the operator 퓛b, and is given by

퓛∗b[⋅] = −k2
b (퓗∗b)

−1 [⋅], (5.8)
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where

퓗∗b[⋅] =
[
∇2 + k2

b (r)
]

[⋅]. (5.9)

The adjoint operator 퓜D∗ simply takes fields from the inversion domain, and maps

them into the total domain T . The adjoint operator 퓜S∗ takes the fields from the

measurement domain S, divides them by the area of the FD cell, and maps them into

the total domain T . The division by the area of the cell is required by the definition

of the adjoint operator [74]. Neither operator, 퓜S∗ nor 퓜D∗, conjugates any fields.

Multiplicative Regularization

The FD-CSI method may also utilize the MR term previously outlined in section 3.4.4.

As the MR update does not involve the differential/integral operators, the MR update

is unchanged from the previously reported MR-CSI method. With the MR term, the

difference based method is labeled the FD-MRCSI method.

5.3 Finite Difference Solver and Computational Burden of FD-CSI

The Helmholtz equation is solved via the Finite Difference Frequency Domain (FDFD)

method, using a 4th order FD scheme [102], which incorporates Perfectly Matched

Layer (PML) boundary conditions1. Both fields and materials are collocated on the

center of grid points. For the efficiency of the FD-MRCSI algorithm, it is important

1 The FDFD code was previously developed at Schlumberger-Doll Research by another author [102,
103]
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that the operators 퓗−1
b and (퓗∗b)−1 are computed only once, at the beginning of the

inversion process. The single initial computation is possible because the operators

depend only on the background medium, which does not change throughout the

inversion process. These operators are factorized with an efficient LU decomposition

of the resultant discretized operator (see [102, 103]). The decomposition is stored,

and the matrix system is solved via back-substitution for each call of the 퓗−1
b and

(퓗∗b)−1 operators. The decomposition process takes O(N1.5) operations. Each back-

substitution of the decomposed matrix system scales with O(N logN).

The solution of the 퓗−1
b system is required once per iteration of the MR-CSI

algorithm, and the solution of the adjoint system, (퓗∗b)−1 is required twice per iteration.

Once the initial LU decomposition is completed, the scaling of the FD-CSI algorithm

is the same as the integral-equation based CSI algorithm: O(N logN). However, we

note that overall, the computational burden for the FD algorithm is larger than for the

IE algorithm. This is due to: (i) the additional O(N1.5) matrix decomposition, and

(ii) the fact that N is larger for the FD based algorithm, because the entire domain,

T must be discretized in the FD approach, while only the inversion domain, D, must

be discretized in the IE approach.

5.4 Experimental Verification of the Algorithm

We first show that the FD-MRCSI algorithm is capable of inverting experimental data,

and we again use the UPC data set (see section 4.1.3).
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5.4.1 Cylindrical Phantom: FANTCENT

The cylindrical phantom data has been discussed previously and is shown in Fig. 4.5.

For ease of comparison, we show an approximation of the actual relative permittivity

of the phantom in Fig.5.2 (a) and (b) (not to scale). The complex dielectric constant

reconstruction from FD-MRCSI algorithm is shown in Fig. 5.2(c) and (d). The

reconstruction was carried out on a grid of 64× 64 cells. The reconstruction of the

dielectric constant is quite good, with the boundaries of the cylinders well delineated.

However, the exact dielectric constant values are not retrieved, with the inner cylinder

reaching a dielectric constant of about �r = 20− j11. The results closely match the

IE-MRCSI results presented in Fig. 4.6.

5.4.2 Human Forearm: BRAGREG

Next, we consider the reconstruction of scattering data taken from the human forearm

data set BRAGREG, which was previously utilized for the IE-CSI method in Chapter

4. The reconstruction of the data after 2,048 iterations of the FD-MRCSI algorithm

is shown in Fig. 5.3. The reconstruction was carried out on a grid of 64× 64 cells. In

this case, the expected (i.e., the values taken from the literature) complex dielectric

constants are not retrieved, particularly for the real dielectric constants for the bones.

However, the overall structure of the arm is clearly visible. These results again closely

match the IE-MRCSI results in Fig. 4.8.
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Fig. 5.2: Reconstruction of UPC Cylindrical Phantom data set. The configuration is shown
in (a), an approximation of the physical dielectric constant, on the same scale
as the reconstruction, is shown in (b) and (c), and the reconstruction with the
FD-MRCSI method is shown in (d) and (e).
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Fig. 5.3: Reconstruction of UPC Human Forearm data set. The reconstruction with the
FD-MRCSI method is shown in (a) and (b).

5.4.3 Use of a-priori information with experimental data

In addition to the above results, we inverted the UPC data by utilizing a priori

information. In the case of these two scatterers, a priori information is not directly

available (e.g., the exact sizes of the cylinders in the cylindrical phantom data set are

not available). Despite this, we have extracted ‘a priori ’ information from the blind

inversion results presented in Figs. 5.2 and 5.3. This was accomplished by performing

a visual-based edge extraction, then creating a model with the outline of the blind

inversion result, but filled with the average permittivity values taken from inside the

cylinder in the blind inversion. This simple model was then used for two cases: (i)

as an initial guess for the inversion process, and (ii) as a background model for the

inversion.

The resulting inversions were similar or worse compared to the blind inversion.
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When the average model was used as an initial guess, the algorithm simply converged

to the same result faster (e.g., in the case of the human forearm, in about 1/2 of

the iterations). In the case when the average model was used as a background, the

algorithm was trapped inside a local minimum, and the results were worse than the

blind results. These results clearly point to the importance of utilizing accurate and

meaningful a priori information.

5.5 Synthetic Results

To show the performance of the FD-MRCSI algorithm when accurate a priori infor-

mation is available, we consider two different computational examples. As a quality

indicator, we define the error between the true model and the reconstructed model as

follows:

Emodel =
∥�n(r)− �true(r)∥D
∥�true(r)∥D

, (5.10)

where �n is the reconstructed complex dielectric constant at iteration n, and �true is

the true complex dielectric constant.

To all synthetic experiments, random uniformly distributed noise with maximum

amplitude of 0.2% of the maximum value of the magnitude of the total field at the

receivers was added to the computed total fields, via the equation

uj = uj +max (∣uj∣ ,∀uj)Ns(�+ j�), (5.11)
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where Ns = 0.002 and � and � are uniformly distributed random numbers between

-1 and 1. This is equivalent to a signal-to-noise ratio (in the scattered fields) of

approximately 18 dB. Noise was added to the total fields (as opposed to the scattered

fields) because adding noise to the scattered field would cause the amount of noise to

vary significantly depending on the background model used (i.e., when a good estimate

of the background is available, the scattered field will be significantly smaller). Thus,

to add a noise based on the percentage of the scattered field would bias inversion

results towards the cases where a background model is utilized. This amount of noise is

equivalent to about 5% noise on the scattered fields when a homogeneous background

is assumed. It should be noted that experimental systems measure the total field, so

it is more appropriate to add noise to the total field.

5.5.1 Brain Model

As a synthetic example we consider a brain model, where we have added a ‘stroke’

region to the brain. The model is loosely based on the model outlined in [104], and

consists of an outer skin region, followed by bone, cerebral-spinal-fluid (CSF), gray

matter and white matter. The two “hemispheres” of the model are separated by

CSF. An image of the exact model is shown in Fig. 5.4(a) and (b). The dielectric

constants of the model were taken from [88], [105] and are given by �r,skin = 46− j15,

�r,bone = 12.8−j2.4, �r,gray = 52.8−j16.9, �r,white = 38.6−j9.0 and �r,CSF = 69.3−j42.8

at the operating frequency of 1 GHz. The model was embedded in a background with
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dielectric constant �r = 45− j13. We also included a stroke region in the left side of

the brain, consisting of blood, with dielectric constant �r,blood = 61.1 − j28.5. The

brain was illuminated with 32 line sources each with 32 receivers located on a circle of

radius 11cm.

As a priori information, we created the model shown in Fig. 5.4(c) and (d), which

consists of the skin and bone layers, with the interior filled with gray matter. We

inverted the data from the brain with the stroke twice, once by utilizing the a priori

information as an initial guess, and once by utilizing the information as a background

around which the model is reconstructed. These two inversion results are shown in

Fig. 5.5. The inversion where the information was used as an initial guess achieved

an error of Emodel = 14.4%, and the inversion where the information was used as a

background guess achieved a slightly better result of Emodel = 13.2%. Although these

two results are quite close, it is of interest that the stroke region is more accurately

reconstructed when the background model is utilized.

5.5.2 Time Lapse Brain Reconstruction

Another possible area of application for the FD-MRCSI method is in time-lapse

inversion. In this case, we are looking for the differences between a scattering object

when the data are collected at two different times. To explore this application, we

utilize the same brain model as above both with and without the stroke inclusion.

First, a base model is constructed by blindly inverting the brain model without the
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Fig. 5.4: Synthetic Brain Model: the exact model is shown in (a) and (b), and the assumed
a priori information in (c) and (d).
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(c) Background Re(�r)
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(d) Background Im(�r)

Fig. 5.5: Synthetic brain model reconstructions. (a) and (b) show the real and imaginary
parts of the FD-MRCSI reconstruction when the a priori information is utilized
as an initial guess. Parts (c) and (d) show the real and imaginary FD-MRCSI
reconstruction when the a priori information is used as the background.
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stroke. The parameters for the forward field generation and for the inversion were

identical to that of the brain model above. The result of the blind inversion is shown

in Fig. 5.6(a) and (b) (by blind inversion, we imply that no a priori knowledge is

utilized in the inversion and we employed a homogeneous background medium).

Next, data were collected with the stroke present in the model, representing data

collected at a later time. These data were inverted using the base model both as

initial model and as a background model. The results of the initial model inversion

are shown in Fig. 5.6(c) and (d), and the inversion results when the base model is

utilized as a background are shown in Fig. 5.6(e) and (f). In this example, the images

are quite similar, and this is borne out by the errors of the two inversions, with the

initial guess case having an error of Einitial
model = 20.6%, and with the background model

having an error of Eback
model = 20.8%.

In time-lapse inversion, we are usually concerned with the differences between the

earlier and later-time inversions. If we look this difference, shown in Fig. 5.7, it may

be argued that the inversion when the base model is used as the background shows the

differences (i.e., the stroke) more clearly than the initial case. We do note, however,

that the stroke is clearly visible in both sets of difference images. We also note that

no a priori information was utilized in this time-lapse imaging example.
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(b) Blind Im(�r)

x [cm]

y 
[c

m
]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

35

40

45

50

55

60

65

70

(c) Initial Re(�r)
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(d) Initial Im(�r)
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(e) Background Re(�r)
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(f) Background Im(�r)

Fig. 5.6: Time-lapse inversion example. Parts (a) and (b) show the blind inversion (base
model) of the brain model without a stroke. Parts (c) and (d) show the inversion
of the brain model with a stroke when the blind inversion is used as an initial guess.
Parts (e) and (f) show the inversion of the brain model with a stroke when the
blind inversion results are used as a background model.
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(b) Initial Difference Im(�r)
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(c) Back. Difference Re(�r)
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Fig. 5.7: Time-lapse difference images. Parts (a) and (b) show the subtraction of the base
model from the initial guess inversion. Parts (c) and (d) show the difference
between the base model and the background guess inversion. The second case has
fewer artifacts.
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5.5.3 Breast Model

To test the FD-MRCSI algorithm on a more complex, multi-frequency problem, we

consider a breast cancer example. We utilize a 2D breast model taken from a larger

3D model from the University of Wisconsin-Madison breast model repository [106].

The 3D model provides realistic breast tissue values over a broad range of frequencies,

based on the studies outlined in [23, 24]. Created from detailed MRI’s, the model

assigns several different tissue types to regions within the breast. There is further

variance of the permittivity values within each tissue type. We utilize the ‘mostly

fatty phantom #1’ model, from which we have selected a single 2D z =constant slice

of the full 3D model. The original repository model consists of 0.3 mm pixels, which

we decimated to 0.6 mm pixels for more efficient computations. To the basic breast

model, we added an elliptically shaped tumor with a major axis of length 1.2 cm, and

a minor axis of 0.8 cm. The permittivities for the tumor were taken from the ‘75th

percentile’ group from [24].

We simulate the breast model over a frequency range of 2 to 6 GHz in 1 GHz steps.

As the permittivities of breast tissues vary significantly over this frequency range, i.e.,

both the real and imaginary parts of �r are functions of frequency, we re-calculate the

values of the permittivities for the model at each frequency. The model is embedded

in a matching medium of oil (� = 2.6), and data are collected at 32 transmitters and

32 receivers. The transmitters and receivers are located on a circle of radius 4 cm.

The breast model at a frequency of 6 GHz is shown in Fig. 5.8(a) and (b).
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Due to the fact that the permittivity values vary significantly over the frequency

range, we treat the inversion of each frequency independently and utilize a marching-

on-frequency (MOF) inversion approach [90, 107], as opposed to a simultaneous

frequency approach. The simultaneous inversion approach requires a more complicated

permittivity model (e.g., a Cole-Cole model), while the MOF approach is capable of

utilizing the simple model � = �′+ j�′′, which is valid at each individual frequency. We

further utilize the a priori information of the skin location (see [18]) and assign the

interior of the breast to fatty tissue (50th percentile). The assumed a priori knowledge

at a frequency of 6 GHz is shown in Fig. 5.8(c) and (d).

We consider two different strategies of MOF inversion: the first is the standard

marching-on-frequency approach, which we label the ‘initial’ model. In this technique

we utilize the a priori information as an initial guess for the 2 GHz inversion. At the

subsequent frequencies, we use the result from the previous frequency as an initial

guess. In order to utilize the a-priori information as much as possible, we also enforce

the skin to the known permittivity values after each frequency. This inversion strategy

is amenable to IE inversion techniques. The results from the ‘initial model’ inversion

at 2, 4 and 6 GHz are shown in Fig. 5.9 (not shown are the 3 and 5 GHz results).

While the results are reasonable for the 2 GHz inversion, at 4 GHz artifacts begin to

appear around the skin of the breast. At 6 GHz, the exterior structure of the breast

begins to disappear (particularly in the imaginary part of the permittivity), and many

artifacts appear. At 6 GHz, the model error is Einitial
model = 62.8%.
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In the second strategy of MOF inversion, labeled the ‘background model’, we

utilize the a priori information as the background model for the 2 GHz inversion.

At the subsequent frequencies, we utilize the result from the earlier frequency as an

initial guess, but we also use the a priori information as a background model for each

frequency (with the � values of the skin and inner tissue adjusted for the frequency).

The inversion results for 2, 4 and 6 GHz are shown in Fig. 5.10. The resultant model

error at 6 GHz is Eback
model = 39.5%, a significant improvement over the ‘initial’ case.

In both inversion cases, the utilization of the result from the previous frequency

as an initial guess for the next frequency ignores the dispersive nature of the tissues.

However, this error is equivalent for both approaches, and allows for a fair comparison

between the two methods.

In the background case, the inversion does not break down at the higher frequencies,

and the structure of the breast is clearly visible. As opposed to the ‘initial’ model,

there are no obvious artifacts in the inversion. We also note that the tumor is clearly

visible and its dielectric constant is accurately reconstructed despite the fact that the

contrast of the tumor is � ≈ 20. We note that while many inversion algorithms will

see a ‘spike’ in the image at contrasts of that magnitude, it is a difficult problem to

obtain an accurate dielectric constant at such a high contrast.
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(c) a priori Re(�r) 6 GHz
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Fig. 5.8: Exact breast model at 6 GHz. The exact model is shown in (a) and (b). The
assumed a priori information is shown in (c) and (d)
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x [cm]

y 
[c

m
]

 

 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4 −15

−10

−5

0

(b) Im(�r) 2 GHz

x [cm]

y 
[c

m
]

 

 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
5

10

15

20

25

30

35

40

45

50

55

(c) Re(�r) 4 GHz
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(d) Im(�r) 4 GHz
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(e) Re(�r) 6 GHz
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Fig. 5.9: ‘Initial model’ marching-on-frequency reconstruction of breast model from 2-6 GHz.
The reconstructions at 2,4 and 6 GHz are shown.
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(c) Re(�r) 4 GHz
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(d) Im(�r) 4 GHz
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(e) Re(�r) 6 GHz
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Fig. 5.10: ‘Background model’ marching-on-frequency reconstruction of breast model from
2-6 GHz. The reconstructions at 2,4 and 6 GHz are shown.
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5.6 FD-CSI Conclusions

In this chapter, we have presented an FD-based CSI algorithm which is capable of

inverting complex permittivity biomedical data sets. The utility of the algorithm was

demonstrated with the inversion of experimentally collected biomedical data sets. The

use of an FD-based inversion technique allows the use of complex background models

where a Green’s function is not readily available.

Through the use of experimental and synthetic examples, we have reached several

tentative conclusions regarding the use of a priori information in the inversion process.

We do note that further study is necessary before these conclusions can be confirmed.

(i) When accurate information about the scattering object is available, its use as a

background model will improve the inversion result, and is probably preferable over

using the a priori information as an initial guess for the inversion algorithm. This

holds true particularly for high contrast and/or for the multi-frequency case. (ii) It is

important that the a priori information is accurate, otherwise its use may cause the

inversion algorithm to get caught in an undesired local minimum. (iii) When accurate

a priori information is not available, in time-lapse imaging applications the baseline

(earlier-time) model may be used advantageously as a background model.



6. INVERSION INSIDE OF CONDUCTING ENCLOSURES

The book of nature is written in the language of mathematics; without its
help it is impossible to comprehend a single word of it.

Galileo

The most common method of collecting biomedical MWT data is to place the

unknown scatterer inside an imaging tank filled with a matching fluid. Of necessity,

the tank holding the matching fluid is finite in extent. However, the vast majority

of imaging algorithms assume that the background is of infinite extent (this was

done in the last chapter, even when the background was not homogeneous). This

mismatch between the physical situation and model assumptions has the possibility

of leading to errors in the reconstruction. At the very least, it effectively adds extra

noise to the scattered field data. Consideration of this problem originally lead us to

formulate the inverse-scattering problem for an imaging region that is surrounded by

a highly-conductive (metallic) boundary.

However, in the course of investigating conducting enclosure MWT systems, it

was realized that besides correcting the errors associated with the matching material

0 The work outlined in this chapter is the subject of a patent application [108].
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boundary, there may be other beneficial reasons to consider the use of such systems.

Perhaps the most important of these from a practical point of view is that the scattered

fields are stronger inside of an enclosure, and the signal-to-noise ratio can expected to

be higher [49]. A higher signal-to-noise ratio should lead to higher resolution imaging,

and as we believe that the limited resolution is one of the few factors holding back

MWT as a technology, this is an important result. There are many other reasons

why the enclosed region problem shows great promise, and some of these are outlined

herein. The main result of this chapter is to show how the conducting enclosure can

be taken into account in MWT.

6.1 Potential advantages to enclosed-region MWT

We have split the potential advantages of enclosed-region Microwave Tomography into

two categories: theoretical advantages related to the inverse problem, and practical

advantages related to the collection of scattering data. There is some overlap between

these two categories, in that some features of enclosed-region MWT affect both

theoretical and practical advantages.

The practical potential advantages include:

∙ Stronger scattered fields are caused by the presence of the conducting bound-

ary [34, 49], and therefore a better signal-to-noise ratio based on the same

measurement system may be expected, even in the absence of external noise

sources.
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∙ The enclosure provides isolation from outside cables and instruments which

degrade the measurement accuracy and perturb the fields inside the imaging

domain from what is being assumed in the inversion algorithm.

∙ The enclosure shields the measurement domain from other sources of interference

(e.g., wireless networks and cell phones, etc.).

∙ As outlined in [34], the conducting enclosure gives the ability to accurately

model and monitor the boundary conditions of the problem, which is particularly

important for non-lossy matching media.

Although the theoretical advantages associated with the enclosed-region electro-

magnetic inverse problem are not all clear at the present time, and are area of active

research, the following list is probably exhaustive:

∙ Even if the quantity of information obtainable with a conducting enclosure is

not more than that obtainable with an open-region system [49], the resulting

optimization problem can have significantly different convergence properties,

both in terms of convergence rate as well as to where the algorithm converges

(i.e., local/global optima). One reason for this is because the domain of where the

search is being performed may be different for the (unknown) field variables. Also,

because the Green’s function operators are significantly different between the two

problems the iterative algorithms will have significantly different performance.

For example, even in a simple example such as finding the square-root of two,
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different formulations of the associated optimization problem may converge

to the correct answer, or not at all [109]. Changes in the Green’s could have

similar effects to the optimization problem associated with the inverse scattering

problem.

∙ The use of conducting enclosures allows for the possibility of capturing evanescent

fields without being in extremely close proximity to the scatterer. This may

have advantages for the inversion process, as outlined in [110–112].

∙ Because the Green’s function is ultimately responsible for the sensitivity of the

scattered field to permittivity changes inside the scatterer, the modified Green’s

function resulting from the enclosure can be used to enhance the sensitivity at

particular points in the imaging domain.

∙ The use of several conducting enclosures of different shapes and in conjunction

with data obtained from open-region systems may provide further information

and regularization of the non-linear inverse problem.

6.1.1 Other Enclosed MWT Research

To the best of our knowledge, our paper [34] was the first paper to consider the

possibility that inversion inside conductive-enclosures may improve MWT inversion

results. There is, however, another enclosed MWT system which has been considered in

the literature [113–115]. These earlier works did not consider the potential advantages
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of conductive-enclosed imaging (e.g., in [115] the reflections from the scanner wall are

considered ‘undesired’). Subsequent to the publication of our paper (the results of

which are outlined in this chapter), new experimental results with the enclosed MWT

system described in [113] have been published [4, 116], with the some experimental

imaging published. Further, an analysis of the inverse source problem via the singular

value decomposition of the enclosed Green’s operator has been completed [49]. This

analysis shows some of the ways that the inverse source problem differs inside a

conducting enclosure. In particular, [49] shows that the signal-to-noise ratio is higher

in a conductor-enclosed system.

6.1.2 Corrections to Previously Published Results

The results presented in this thesis differ from those presented in [34] upon which this

chapter is based. This is due to (i) a coding error which was present in the forward

solver associated with the open-region problem used for comparison purposes and (ii)

an error in the implementation of the MR term of the CSI method. These errors are

noted in [35].

6.2 Derivation of scalar Green’s function for cylindrical

conductor-enclosed imaging

To implement both a forward solver to generate synthetic data and implement the

MR-CSI inversion algorithm we require an appropriate closed-form Green’s function
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for the enclosed MWT system (for this chapter, we consider only an integral-equation

based inversion method). Thus, we seek the solution to the scalar wave equation when

the boundary condition is that of a circular Perfect Electric Conductor (PEC) cylinder.

Let the surface of the PEC cylinder be denoted by Ω, and the region enclosed by

the cylinder as T . The inverse scattering configuration with a conducting cylinder is

shown in Fig. 6.1. The Helmholtz equation for this system is given by

∇2u(r, !) + k2(r, !)u(r, !) = −q(r, !), r ∈ T (6.1)

where the field quantity u(r, !) must also satisfy the boundary condition

u(r;!) = 0 r ∈ Ω (6.2)

on the surrounding PEC surface.

The Green’s function for a homogeneous medium satisfies the equation

∇2G(r, r′) + k2G(r, r′) = −�(r− r′) r ∈ T (6.3)

Different Green’s functions result from the selection of different boundary conditions

for G(r, r′). The boundary conditions may be selected to best suit a particular problem.
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Fig. 6.1: The inverse scattering configuration inside of a conducting cylinder.

By using Green’s second identity,

∫
T

(�∇2 −  ∇2�)dT =

∮
Ω

(
�
∂ 

∂n
−  ∂�

∂n

)
dS, (6.4)

with � := u and  := G and noting that

∇2u(r) = −q(r)− k2u(r)

∇2G(r, r′) = −�(r− r′)− k2G(r, r′) (6.5)

we may write

u(r) =

∫
T

G(r, r′)q(r′)dr′ −
∮

Ω

(
u
∂G

∂n
−G∂u

∂n

)
dΩ. (6.6)
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If this were an open-region problem, we could eliminate the surface integral selecting

G to satisfy the Sommerfeld radiation condition. However, with the PEC surface, we

remove the surface integral by imposing G = 0 on Ω. To construct this G we utilize

the Modified Green’s function method [117]. We introduce a function, p(r, r′) which

satisfies the homogeneous scalar Helmholtz equation

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ T, (6.7)

and define the Modified Green’s function as

G(r, r′) = gfs(r, r
′) + p(r, r′), (6.8)

where gfs(r, r
′) is the free-space Green’s function, i.e., the usual Green’s function in

the absence of the PEC surface. It may be noted that the addition of the function p

makes no contribution to the right hand side of (6.3). Because G satisfies the PEC

boundary condition, the boundary condition for p becomes

p(r, r′) = −gfs(r, r′) r ∈ Ω. (6.9)
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Thus the function p satisfies the system

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ T

p(r, r′) = −gfs(r, r′) r ∈ Ω. (6.10)

With this construction, and the assumption that the derivative of the Green’s

function is finite on the surface Ω, the surface integral in (6.6) is eliminated and we

get

u(r) =

∫
T

G(r, r′)q(r′)dr′. (6.11)

6.2.1 Solution for the Scalar Green’s Function

We turn to finding an expression for the function p. The homogeneous differential

equation of (6.10) may be solved in a cylindrical coordinate system (r, �), centered at

the origin and using separation of variables [118]. The eigenfunction expansion of p is

given by (see Appendix C for the full derivation)

p(r, �, r′) =
A0√
2�
J0(kr) +

∞∑
n=1

(
An(r′)Jn(kr)

cos(n�)√
�

+Bn(r′)Jn(kr)
sin(n�)√

�

)
,

(6.12)
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where Jn is the ntℎ order Bessel function of the first kind. The coefficients An and Bn

are given by

An(r′) =
−1√

�Jn(ka)

∫ �

−�
gfs(a, �, r

′)cos(n�)d�

Bn(r′) =
−1√

�Jn(ka)

∫ �

−�
gfs(a, �, r

′) sin(n�)d� (6.13)

where a is the radius of the cylinder. In our case,

gfs(r, r
′) =

1

4j
H

(2)
0 (k ∣r− r′∣). (6.14)

where H
(2)
0 is the zeroeth order Hankel function of the second kind (note this is

the 2D homogeneous space Green’s function corresponding to the use of ej!t time

dependency).

Closed-form expressions for An and Bn may be derived (see Appendix C), and are

given by

An =
−�

4j
√
�Jn(ka)

[
Jn(k ∣r′∣)e−jn�′H(2)

n (ka) + J−n(k ∣r′∣)ejn�′H(2)
−n(ka)

]
(6.15)

and

Bn =
−�

4
√
�Jn(ka)

[
Jn(k ∣r′∣)e−jn�′H(2)

n (ka)− J−n(k ∣r′∣)ejn�′H(2)
−n(ka)

]
, (6.16)
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G: Enclosed Greens function for f = 1GHz at Tx = (0.15,0)
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gfs: Free−Space Greens function for f = 1GHz at Tx = (0.15,0)

x

y

 

 

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Fig. 6.2: An example of (a) the conductor-enclosed Green’s function vs. (b) the open-region
Green’s function at 1 GHz. The enclosing cylinder has a radius of 20 cm, and
�r = 3.

where H
(2)
n is the ntℎ order Hankel function of the second kind, and �′ is the angle

associated with the position vector r′. These closed-form expressions significantly

reduce computation time for the Green’s function.

Figure 6.2 shows a plot of the magnitude of Green’s function for a frequency of

1 GHz inside a PEC cylinder of radius 20 cm with a lossless background of �r = 3.

For comparison purposes, the regular free-space Green’s function is plotted in the

same figure. Note that both Green’s functions are singular at the source, but the

discretization used in Fig. 6.2 avoids these singularities. However, it is instructive to

note how much higher the fields are in the inversion region than for unbounded space,

for the same magnitude the current source.

In the context of computational electromagnetics, it is important to eliminate the

surface integral in (6.6). The elimination of this integral allows for the application of
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standard (frequency-domain) electromagnetic computational techniques, i.e., only a

minimal change is required to switch an extant computational code to the new physical

situation. In addition, we note that the only singularity of the enclosed-region Green’s

function, G, is located in the free-space term, gfs(r, r
′). This is due to the fact that p

satisfies a homogeneous differential equation. This means that standard methods of

extracting singularities in Method of Moments (MoM) codes (e.g., [82, 119]) remain

unchanged. This advantage is not a feature of other forms of the Green’s function (see

for e.g., [120] section 14.6.2). To evaluate integrals of the function p, we may utilize

standard quadrature techniques because p is a smooth function.

6.3 Implementation of the Modified Green’s function in the MR-CSI

The use of the Modified Green’s function in MR-CSI requires little or no changes

at the conceptual level. All that is required is the substitution of the modified

Green’s function in the CSI functional (equation (3.6)). However, the switch in

Green’s functions does affect the numerical implementation. From a computational

perspective, the most important aspects of the PEC Green’s function are that (i) it

cannot be written in the form G(r, r′) = G(r − r′) and (ii) the fields do not decay

monotonically as the distance between r and r′ increases. As these two properties are

the core requirements required for the FFT and Fast Multipole acceleration methods

respectively, the usual techniques used to make O(N2) (in memory and computational

time) matrix operations into fast O(N logN) matrix operations are not applicable
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to matrices which result from the use of this Green’s function. The lack of these

two desirable properties is not formulation-dependent, in that they represent the

actual physics of EM point sources in a PEC enclosed structure (the existence of

standing waves). Thus, a re-formulation of the Green’s function which would allow

these acceleration methods to be applied is not possible.

Despite these apparent difficulties with the enclosed problem, a solution which does

scale as NlogN in computation time is reported in [114], thus the problem is tractable.

Further, this N2 problem may also be solved through the use of a differential solver

(our group has done this, see [37, 99]). However, for simplicity, the results in this

chapter are generated with all matrix multiplication performed using N2 algorithms 1.

In practice, the infinite sum in equation (6.12) must be truncated. This is accom-

plished by taking enough terms in the series until it converges to within some error

tolerance. For the examples used in this chapter, given an error tolerance of 10−10,

the number of terms was always less than 50.

1 We have also invested significant effort into the creation of a Finite-Element-Method based
version of the CSI method (FEM-CSI). This method is very similar to the FD-CSI method, in that it
is a differential based solver that scales with O(N1.5 +NlogN), but it has the advantage that curved
boundaries may be accurately modeled without a stair-case approximation. In this method, two grids:
the triangle-based FEM grid, and the regular inversion grid must be defined. Switching between
these grids is done with FEM equivalents of the 퓜 operators (see section 5.2). Unfortunately, it
seems that the use of two grids with the FEM-based 퓜 operators interferes with the inversion result.
Research is ongoing.
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6.4 Sythetic Data Inversion Results

Several different synthetic data sets based on a 2D model have been generated to

test the efficacy of the enclosed microwave tomographic method. The incident field

for every transmitter was a line-source parallel to the axis of the scatterer, i.e., the

incident field was taken to be the Green’s function itself. The data were generated

with a 2D Method of Moments (MoM) solver using pulse basis functions and point

matching.

In order to test the inversion algorithm’s performance in the presence of noise, 5%

RMS additive uniformly distributed noise was added to all scattered field measurements

as follows:

ũsct
j = usct

j +max
(∣∣usct

j

∣∣ ,∀usct
j

) Ns√
2

(�+ j�), (6.17)

where � and � are uniformly distributed random numbers between -1 and 1, and Ns is

the desired fraction of noise (Ns = 0.05 for all examples). For every inversion example,

the conditions Re(�) > 0 and −Im(�) < 0 were enforced at every step of the MR-CSI

algorithm.

For image clarity, all results in Figures 6.3 to 6.9 display the negative of the

imaginary part of the contrast, −Im(�) = �′′/�b. Furthermore, for all reconstructions

displayed in Figures 6.3 to 6.9, we calculated the L1, L2 and L∞ vector norms based

on the exact permittivity, �exact. The vector norms are normalized by the norm of the
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exact contrast, and are discretized versions of the norms for the continuous case:

Lp =
∥�exact(r)− �recon(r)∥p

∥�exact(r)∥p
, (6.18)

where �recon(r) is the reconstructed contrast. These vector norms are given in Table

6.1. Due to the fact that forward and inverse grids are not identical, the discretized

versions of (6.18) were calculated by interpolating onto a finer and finer mesh until

the norm converged.

6.4.1 Square Scatterer

For the first numerical example, we consider a simple scenario consisting of a square

lossy scatterer. The operating frequency is 1 GHz, and the scatterer is embedded

in a PEC cylinder of radius 20 cm. The lossless background has a permittivity of

�b = 3. This low value of relative permittivity was chosen to avoid excessively small

wavelengths which overburden the O(N2) computations. The scatterer is illuminated

by 10 transmitters located evenly on a circle of radius 15 cm. The scattered field

is measured at 40 receiver points placed on a circle of radius 16 cm. The inversion

region D is a square with edges of 20 cm length located in the centre of the PEC

cylinder. The scatterer consists of a square object with sides of length 10 cm and

a contrast of � = 2.0 − j1.0. Thus, the object has edges slightly larger than 0.5

� (with respect to the background). The exact contrast is shown in parts (a-b) of



6. Inversion inside of Conducting Enclosures 115

Figure 6.3. The forward data were generated on a grid of 30 × 30 placed over D. In

order to avoid the inverse crime, the inversion grid was selected to be 29 × 29 cells.

The inversion results after 1024 iterations of the MR-CSI algorithm with the enclosed

(PEC bounded) Green’s function are shown in parts (c-d) of Figure 6.3.

The reconstruction results show a good, but not perfect reconstruction of the

object. The overall shape of the scatterer is clearly visible, and the magnitude of

both the real and imaginary parts of the contrast are close to the exact values (within

10%). However, the edges of the object are slightly blurred, which is not unexpected

given difference between the forward and inversion grids, and the real part of the

reconstruction overshoots the exact value of 2.0.

For comparison purposes, new data were generated for the equivalent unbounded

problem: all input parameters for the forward solver were kept the same, except the

PEC cylinder was removed, i.e., the regular unbounded-space Green’s function was

used. Thus, the target was embedded in an infinite medium filled with the background

permittivity of �b = 3. The forward data were then inverted with the MR-CSI method

using the regular unbounded-space Green’s function. This reconstruction is shown in

parts (e-f) of Figure 6.3. The inversion result is quite close to the inversion result from

the enclosed case, with slightly less overshoot in the real part of the reconstruction,

and more overshoot in the imaginary part of the reconstruction.

For further clarity, one-dimensional cross-sections of the two reconstructions are

shown in Figure 6.4. The value of the MR-CSI objective function, C(w, �), for these
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two reconstructions is shown in part (a) of Figure 6.11. The objective function is

lower when the PEC cylinder is present. However, as shown in Table 6.1 the L1 and

L2 vector norms are slightly better for the open-region problem. The L∞ norm is

better for the enclosed reconstruction.

6.4.2 Concentric Squares

Low Contrast Concentric Squares

Next, we consider the same scattering object that has often been used as a test case

for the MR-CSI method [58,64,78]. The scatterer consists of two concentric squares,

with an inner square having sides of length � (with respect to the background), with

a contrast of � = 0.6− j0.2, embedded in an exterior square having sides of 2� and

contrast � = 0.3− j0.4. The exact contrast profile is shown in parts (a-b) of Figure

6.5. The imaging region D consists of a square having sides of length 3�. A single

frequency of 1 GHz was utilized, and free-space was assumed for the background. The

forward data were generated on a grid of 31 × 31. Thirty (30) transmitters were

spaced evenly on a circle of radius 2.33� = 70 cm, and 40 receivers were placed evenly

on a circle of radius 2.17� = 65 cm. The scatterer was surrounded by a PEC cylinder

of radius 90 cm or approximately 3�.

The data were inverted via the MR-CSI algorithm with the bounded Green’s func-

tion. The inversion mesh was selected to have 29 × 29 elements. The reconstruction

after 1024 iterations of the MR-CSI algorithm is shown in parts (c-d) of Figure 6.5.
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The reconstruction is very close to the exact contrast, but with a few spurious pixels.

Again, the forward data were re-generated for the case where no PEC cylinder

was present, but keeping every other parameter of the forward solver the same.

These unbounded free-space data were inverted via the MR-CSI algorithm with the

unbounded Green’s function, and the results are shown in parts (e-f) of Figure 6.5.

One-dimensional cross-section results are shown in parts (a-b) of Figure 6.6. The

MR-CSI objective function vs. iteration number is shown in part (b) of Figure 6.11.

The three vector norms of the reconstructions are also given in Table 6.1.

In this case, the reconstruction results are ambiguous as to which result is better.

Considering the vector norms, the L1 is better for the enclosed case, while the L2 and

L∞ are better for the open-region case. From the center of the square in the imaginary

part of the contrast it may be argued that the inversion result from the enclosed

case is better, where the enclosed reconstruction is within 5% and the open-field

reconstruction has an error of over 50% (as seen from the 2D cross section plot).

However, both reconstructions provide reasonable results, in that the overall structure

of the scatterer is visible.

Mid Contrast Concentric Squares

The concentric square example was run again, but this time with a higher contrast

scatterer, with a contrast of 150% of the previous example for both inner and outer

squares. With this, the inner square now has a contrast of � = 0.9− j0.3, and the
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outer square has a contrast of � = 0.45− j0.6. Both the bounded Green’s function

and unbounded forward solvers were run again, and the data were inverted via the

appropriate MR-CSI program. All computational parameters were unchanged from

the previous concentric squares case.

The reconstruction results are shown in Figure 6.7, the cross sectional plots in

Figure 6.8 the MR-CSI objective functions in part (c) of Figure 6.11, and the vector-

norm errors in Table 6.1. The results are very close for all metrics. Both algorithms

resolve the two squares (in that concentric squares are clearly visible). However,

once again, in the interior of the square the enclosed inversion is improved over the

open-region case.

6.4.3 High-Contrast Multi-Frequency Concentric Squares

A high-contrast scatterer was created which consists of two concentric squares with the

inner square having sides of length 6 cm, and the outer square having sides of length

10 cm. The contrast for the inner cylinder is given by � = 3.6− j0.2 at a frequency of

0.5 GHz, and the outer square has a contrast of � = 2.0− j0.1 (also at 0.5 GHz). The

scatterer was embedded in a background medium with permittivity of �b = 3. The

object was illuminated by 12 sources, placed on a square centered at the origin with

sides of 15 cm, at frequencies of 0.5, 1, and 2 GHz. Thus, at the lowest frequency,

the scatterer had dimensions of L ≈ 0.29�, and at the highest frequency, L ≈ 1.15�.

Forty (40) receivers were utilized on a circle of radius 16 cm. For the forward solver,
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the scatterer was discretized into 45 × 45 cells, and for the inverse solver, a grid of 47

× 47 was utilized. For the first experiment, the scatterer was surrounded by a PEC

surface of radius 20 cm. For the second, the scatterer was embedded in an infinite

homogeneous background medium.

The reconstructions of the contrast are shown in Figure 6.9, the cross-section plots in

Figure 6.10, the MR-CSI objective function is shown in part (d) of Figure 6.11, and the

vector-norm errors for the reconstructions are given in Table 6.1. Both reconstructions

fail for the imaginary part the contrast (by this we mean the structure of the object

cannot be determined by looking at the imaginary part of the reconstruction). The L

metrics are very similar for the two cases.
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Tab. 6.1: Relative Vector Norms of Reconstructed Contrast Functions

Recon. with Recon. without
PEC enclosure PEC enclosure

Simple Squares (Fig. 6.3)
L1 Error 27.3 % 18.3 %
L2 Error 26.5 % 19.4 %
L∞ Error 63.2 % 75.3 %
Low contrast concentric squares (Fig. 6.5)
L1 Error 15.4 % 16.1 %
L2 Error 17.8 % 17.1 %
L∞ Error 72.0 % 56.4 %
Mid contrast concentric squares (Fig. 6.7)
L1 Error 20.0 % 19.9 %
L2 Error 22.3 % 22.0 %
L∞ Error 53.3 % 48.0 %
Multi-frequency concentric squares (Fig. 6.9)
L1 Error 48.8 % 45.8 %
L2 Error 51.9 % 51.8 %
L∞ Error 55.5 % 55.5 %

6.5 Discussion of the results

These results are inconclusive as to the possible benefits of the inversion inside of

conducting enclosures. In terms of the practical benefits of the enclosed-region for the

synthetic examples shown, we emphasize that for these examples, the signal-to-noise

ratio was the same for both enclosed and open-region systems (this is not the case in

physical systems), and the examples were arbitrarily chosen. Even in this case, for the

concentric square objects (Figures 6.5 and 6.7) the interior of the objects are better

reconstructed inside of the PEC (particularly for the imaginary part of the contrast).

As the interior regions of scatterers are typically the regions of the highest interest in
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Fig. 6.3: Square Scatterer Reconstruction after 1024 steps of the MR-CSI algorithm. (a-b)
The exact contrast of the scatterer. (c-d) The MR-CSI reconstruction when the
both forward data generation and inversion include a circular PEC enclosure. (e-f)
Reconstruction when both the forward data generation and inversion assume an
open-region background.
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Fig. 6.4: Cross-section of square scatterer reconstructions. (a-b) shows a 1D cross section
at y = 0 for the exact (black dash line), conductor-enclosed (blue solid line), and
open-region (red dash-dot) reconstructions for the square scatterer shown in Fig.
6.3.

MWT, this is a positive sign.

Investigation of the other possible benefits of conductor-enclosed imaging still

needs significant research. As noted above, another group [49] has considered the

linear (inverse scattering) problem by analyzing the SVD of the Green’s function

operator. Their conclusion is that the enclosure does not add quantitative information

to the linear problem (in the sense that no larger number of singular values may be

retrieved), but that the ‘quality’ of the information may be different. By this, it

seems that they mean that the particular singular values which are retrievable do not

represent the same data as the open-region problem, and different reconstructions

may be better for different cases. The results of this chapter support this conclusion.
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Fig. 6.5: Low Contrast Concentric Squares after 1024 steps of the MR-CSI algorithm. (a-b)
The exact contrast of the scatterer. (c-d) The MR-CSI reconstruction when the
both forward data generation and inversion include a circular PEC enclosure..
(e-f) Reconstruction when both the forward data generation and inversion assume
an open-region background. (d) A 1D cross section at y = 0 for exact (black
dash line), conductor-enclosed (blue solid line), and open-region (red dash-dot)
reconstructions.
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Fig. 6.6: Cross-Section of the Low Contrast Concentric Square Scatterer. (a-b) A 1D cross
section at y = 0 for exact (black dash line), conductor-enclosed (blue solid line),
and open-region (red dash-dot) reconstructions, for the low contrast concentric
square scatterer.



6. Inversion inside of Conducting Enclosures 125

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Exact Re(�)

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 0

0.1

0.2

0.3

0.4

0.5

(b) Exact Im(�)

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Enclosed Re(�)

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 

0.1

0.2

0.3

0.4

0.5

0.6

(d) Enclosed Im(�)

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Open Re(�)

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x [m]y [m]
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) Open Im(�)

Fig. 6.7: Mid Contrast Concentric Squares after 1024 steps of the MR-CSI algorithm. (a-b)
The exact contrast of the scatterer. (c-d) The MR-CSI reconstruction when the
both forward data generation and inversion include a circular PEC enclosure. (e-f)
Reconstruction when both the forward data generation and inversion assume an
open-region background.
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Fig. 6.9: Mutli-Frequency Concentric Squares after 1024 steps of the MR-CSI algorithm.
(a-b) The exact contrast of the scatterer. (c-d) The MR-CSI reconstruction when
the both forward data generation and inversion include a cylindrical PEC shield.
(e-f) Reconstruction when both the forward data generation and inversion assume
a free-space background.
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7. EXPERIMENTAL MICROWAVE TOMOGRAPHY SYSTEM

AND RESULTS

Research is what I’m doing when I don’t know what I’m doing.

Wernher von Braun

While the use of synthetic data for investigating inversion techniques may be

instructive, ultimately, all inversion techniques must be tested on experimental data.

Adding noise to the synthetically generated field data may avoid the inverse crime,

but the actual noise in data obtained from experimental data is not so easily modeled:

2D/3D errors, the assumption of scalar fields, external noise sources, and errors due

to near-field effects of antennas all play critical roles in practical MWT performance.

Our group at the University of Manitoba has constructed several prototype MWT

systems. One type of system is an open-region ultra-wideband system, which is

modeled with an open-region Green’s function. The others are conductor-enclosed

system, modeled with the enclosed Green’s function outlined in chapter 6. The

enclosed system will operate at similar, and lower frequencies bands than the open-

region system. All results presented herein use free-space as the background medium.
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Although these systems will allow the use of various fluids as matching media, currently

the antennas that are used have not been designed for immersion inside such media.

Note that a lossy background matching material will reduce errors such as reflections

from non-radiating antenna elements, but it is instructive to see the effects of these

errors without the matching fluid.

7.1 Overview of Open-Region MWT System

A photograph of the current open-region prototype is shown in Fig.7.1. We have

employed a two-port Agilent 8363B PNA-Series Network Analyzer (NA) as our mi-

crowave source and receiver, capable of producing measurements at discrete frequencies

or sweeps within the required frequencies at an approximate system dynamic range

of 120dB (an additional 15dB of dynamic range is available using the configurable

test set). The NA is connected to the antennas with a 2×24 cross-bar mechanical

switch (Agilent 87050A-K24), which provides excellent isolation (> 100 dB) over the

frequency range of interest. Twenty-four antennas are arranged at even intervals of

15 degrees in a circular array at the midpoint height along the inside of a plexiglass

cylinder. The cylinder has a radius of ≈ 22 cm, is 50.8 cm tall and is water-tight,

allowing it to be filled with a matching liquid at a future time. For use with certain

classes of test targets, there is also a motor assembly located underneath the cylinder

support structure that consists of two precision stepper motors arranged to provide

accurate positioning of the target within the chamber. The test target may be placed
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Fig. 7.1: The open-region microwave tomography system. The 24 Vivaldi antennas are
connected to a network analyzer via a 2×24 switch.

on a teflon platform mounted on a central teflon pillar protruding from a water-tight,

sealed hole in the center of the cylinder’s bottom boundary. The platform can be

rotated 360∘ (at increments smaller than 1∘ if needed). A vertical movement range for

the pillar of roughly 15 cm is also accommodated by the motor assembly to provide

full 3-D positioning of the target through the 2-D plane of the antenna array.

Communication between the NA, switch, and the controlling computer is accom-

plished through the General Purpose Interface Bus (GPIB), operating via a GPIB-

Ethernet hub. The data acquisition process is entirely automated: a measurement of

23× 24 = 552 data points takes less than 1 minute.
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7.1.1 Antenna Description

For the open-region system, we currently use Vivaldi antennas, based on [121], which

have been specifically designed and improved for this near field microwave imaging

system [122].The design bandwidth of the antennas is from 3 GHz to 10 GHz, although

in practice we have found them to be usable from to 2-10 GHz. These antennas utilize

a double-layer construction which significantly reduces the cross-polarization level of

radiation pattern [122]. This is critical to the use of the scalar 2D assumption about

the wave propagation in the chamber, as antennas which create and detect x and y

polarized fields would seriously degrade the resultant images. A picture of one of the

antennas is shown in Fig. 7.2.

It is further desirable that these antennas have a radiation pattern as similar as

possible to an ideal 2D line source ideal radiator, as this is the assumed source for the

inversion algorithms used throughout. A plot of the gain pattern of a single antenna

in the far-field region for the Ez polarization in the xy plane is given in 7.3. The main

beam has a 70∘ beamwidth, and is relatively flat across the center of the beam. While

we can expect this pattern to be significantly different inside the chamber (mostly

due to the presence of the other co-resident antennas), we experimentally choose

specific frequencies at which the coupling to the other antennas is minimal. At these

frequencies the incident field should be reasonably close to that of an ideal 2D line

source inside the inversion domain.
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Fig. 7.2: Close-up of one of the double layered Vivaldi antennas used in the microwave
imaging system. The two layers are held together with teflon screws.
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Fig. 7.3: Log-scale Gain of the Vivaldi antenna in the H-plane.
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7.1.2 Data collection and System Calibration

As the MWT inversion algorithms require scattered field measurements, and any

physical system is only capable of detecting the total field, the raw data are first

collected for the MWT system with no scatterer present. This data, labeled the

‘incident’ measurement, is then subtracted from all the subsequent data so that to

produce the scattered field data.

The scattered data must then be calibrated. There are two purposes for the

calibration: (i) to convert the S21 values of the NA into u (Ez) field values used in

the inversion algorithms, and (ii) to eliminate/compensate for as many measurement

errors as possible. To perform the calibration, we first measure scattered data from

a metallic cylinder with a known radius placed in the middle of the chamber. We

denote these S parameters as Ssct,known
21 . Next, the scattering experiment is repeated,

but with the unknown target present. These S parameters are denoted Ssct,unknown
21 .

Assuming a 2D line source generated incident field, we further denote the analytic

scattered fields from the known metallic cylinder as usct
known. These values are calculated

analytically [38].

Finally, the calibrated measured fields for the unknown target are calculated by

usct
cal =

usct
known

Ssct,known
21

Ssct,unknown
21 . (7.1)

This method of calibration will eliminate any errors which are constant over the two
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(Ssct
21 known and unknown) measurements. Examples of these types of ‘removable’

errors include cable losses and phase shifts, or mis-matches at connectors. However,

there are other factors in the measurement which are not constant between the two

measurements, and thus not entirely removed via the above calibration object. For

example, the antenna factor is not guaranteed to be the same for the known and

unknown measurements (as the system is operating in the near field). Another critical

component is the antenna coupling. For these reasons, the known object should be

as similar as possible to the expected class of unknown target. The use of a metallic

cylinder is not the only option: for example some MWT systems [123] [3] utilize the

‘known’ object to be the empty chamber (i.e., the incident measurement is utilized).

7.1.3 Antenna Coupling

In the current free-space configuration, one of the largest sources of error is the

antenna coupling, which tends to change the radiation properties of the antennas,

taking it further away from being well approximated as a line source. That is, the

other co-resident antennas can significantly change the radiation properties of the

antennas. As the coupling between the antennas will change significantly depending

upon the total fields, and the total fields result from the scatterer inside the MWT

system, the antenna coupling is a source of error which is not entirely removable by

the calibration procedure.

In an attempt to quantify the strength of the coupling between the 24 co-resident
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Fig. 7.4: Measurement of S1j for Vivaldi antennas. (a) ∣S1j ∣, and (b) angle(S1j). For this
measurement, all 24 antennas are co-resident in the tank.

antennas at different frequencies, we first measured the S1j parameter of the antennas

(j = 2 . . . 24). These results are shown in Fig. 7.4. While these values of antenna

coupling may seem low from an antenna design perspective, they are high enough to

cause significant problems with the measurements (as analyzed below). Research to

obtain a usable coupling reduction method from this information is ongoing.

To obtain usable frequencies for our inverse scattering experiments, we currently

use the following procedure: measure the S11 parameter for a single antenna when

no other antennas are present in the tank. This measurement is shown as the thick

black line in Fig. 7.5. Next, the other 23 antennas are all placed in the MWT system,

and the remaining Sii measurements are taken. These measurements are shown as

the colored lines in Fig. 7.5.

The Sii measurement of Fig. 7.5 provide an idea of where the antennas are

strongly/weakly coupling: we have found this plot to be predictive of which frequencies
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Fig. 7.5: Measurement of Sii for Vivaldi antennas. (a) ∣Sii∣, and (b) angle(Sii). The bold
black line is a representative measurement when only a single antenna is present,
the thin colored lines are the measurements for each antenna when all 24 antennas
are co-resident in the tank.

will provide reasonable imaging results, and which frequencies will not. The usable-

frequency selection is accomplished by avoiding the frequencies where there are large

differences between the single antenna measurement and the co-resident measurement.

For example, there is a significant difference between the single and co-resident

measurements at 3.5 GHz and 4 GHz, while there are much smaller differences at 3

and 4.5 GHz. In order to show the effects of these differences, in Figs. 7.6 and 7.7

compare the analytic scattered fields from a metallic cylinder of radius 4.445 cm versus

the calibrated measurement at 3, 3.5, 4, and 4.5 GHz. At the two frequencies where

the co-resident Sii measurements are significantly different than the free-space single

Sii antenna measurement (3.5 and 4 GHz), the calibrated measurements are much

worse for both magnitude and phase. For example, the maximum relative error at 3.5

GHz is ≈ 70%, while the maximum relative error at 3 GHz is ≈ 20%. These figures
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provide justification for the use of this basic method for avoiding the frequencies where

the antennas are strongly coupling.

We do note that even for the cases where the coupling seems to be minimal (Fig.

7.7) there are still significant errors (e.g., at 4.5 GHz, the maximum relative error is

≈ 25%). These errors are most likely due to the continued near-field coupling between

the antennas, and the fact that the metallic scatterers used for the calibration of the

system and Sii comparison purposes were not true 2D objects. This conjecture is

based on the fact that other MWT systems with 2D objects and far-field antennas do

not see errors as a large as this [85, 124]. For reference, the metallic cylinder used for

calibration has a radius of 2.54 cm and is 65 cm tall, while the cylinder used for the

comparison measurement has a radius of 4.445 cm, and a height of 46 cm. Cylinders

of different radii were selected to avoid calibrating and measuring the scattered fields

with the same object, which would have provided an overly-optimistic estimation of

the experimental system accuracy.

7.2 Results for Open-Region Experimental System

7.2.1 Scatterer #1

As initial phantom experiments, we utilize a circular teflon cylinder with a diameter

of 3.8 cm (1.5 inches) and an (approximately) square cross-section wooden cylinder.

With the Agilent 85070E dielectric probe kit, we measured the wood to have a contrast
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Fig. 7.6: Magnitude and phase comparison of scattered fields (Ez) from a PEC cylinder at
frequencies where the effects of antenna coupling are large: (a) 3.5 and (b) 4 GHz.
The solid blue line shows the analytic solution, and the calibrated measured fields
are shown with a dashed red line. The radius of the cylinder is 4.445 cm.
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Fig. 7.7: Magnitude and phase comparison of scattered fields (Ez) from a PEC cylinder at
frequencies where the effects of antenna coupling are small: (a) 3 and (b) 4.5 GHz.
The solid blue line shows the analytic solution, and the calibrated measured fields
are shown with a dashed red line. The radius of the cylinder is 4.445 cm.
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Fig. 7.8: Measured dielectric constant of teflon rod and wood block.

of �wood ≈ 1.0− j0.2, and the teflon to have a contrast of �tefl. ≈ 1.1− j0.13 (both at

3 GHz). A plot of the measured complex dielectric constant as a function of frequency

for the teflon and wood is shown in Fig. 7.8. Due to the fact that the lossy part of the

dielectric constant does not vary significantly, we assume a constant dielectric constant

for all frequencies. i.e., �′′(!) = const, as opposed to the usual Maxwell model [31,64],

where �′′(!) = �/(!�0).

The targets were placed in the chamber, as shown in Fig. 7.9 with an air background,

and 23× 24 measurements were taken for the frequencies of 3 and 6 GHz.

The single-frequency 3 GHz reconstruction from the enhanced-DBIM method is

shown in (a) and (b) of Fig. 7.10, and a frequency-hopping based reconstruction is

shown in (c) and (d) of Fig. 7.10. With the frequency-hopping scheme, the data from

each frequency are inverted independently, and the solution from the lower frequency

is used as the initial guess for the next higher frequency. As previously mentioned,

we have found the DBIM to be better suited to a frequency-hopping approach rather
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than a simultaneous multi-frequency reconstruction.

For the 3 GHz DBIM reconstruction (Fig. 7.10 (a) and (b)) we note that the

real part of the contrast shows the overall structure of the targets quite well, but the

reconstruction for teflon is too high: Re(�recon) = 1.6 instead of the expected value of

Re(�) = 1.1. For the wooden object, the real part of the contrast is reconstructed as

≈ 1.1, which is quite accurate, and the reconstruction shows a homogeneous region

(which is what we expect). For the imaginary part of the DBIM 3 GHz reconstruction,

we note that the presence of the two distinct objects is clear, but the imaginary part of

the teflon is clearly overshot (Im(�recon) ≈ −0.6, when it should be Im(�) = −0.13).

Further, the imaginary part of the contrast for the wooden object is not homogeneous,

although the expected value of Im(�) = −0.2 is achieved in the center.

For the 3 and 6 GHz DBIM reconstruction, the contrast of the teflon is closer

to the expected value than for the single frequency case in both real and imaginary

parts (�recon ≈ 1.4− j0.45). For the wood, the real part is again accurate (roughly

the same as for the 3 GHz reconstruction). The edges of the objects are quite clear in

the imaginary part of the reconstructed contrast, and the interior of the wood is more

homogeneous, but the edges of the wood show some overshoot (in one particular spot,

Im(�recon) ≈ −0.4 when the expected value is −0.2).

The single-frequency MR-CSI reconstruction at 3 GHz is shown in (a) and (b) of

Fig. 7.11, and a simultaneous multi-frequency reconstruction from 3 and 6 GHz data

in (c) and (d) of Fig. 7.11. In the multi-frequency case, data from all frequencies are
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simultaneously inverted, with the data from each frequency equally weighted.

Similar to the DBIM case, the MR-CSI 3 GHz reconstruction over-estimates the

value of the teflon cylinder to be Re(�recon) ≈ 1.6 when it should be 1.2. The edges of

the wood are not reconstructed as straight lines, and while the real part of the contrast

is homogeneous, the value of the contrast is too low: (Re(�recon) ≈ 0.85 instead of

1.0). For the imaginary part of the reconstruction, the contrast for the teflon is also

overestimated (−0.6 instead of −0.13), and there is a point of high loss in the wood

(−0.4 instead of −0.2).

In the multi-frequency MR-CSI reconstruction, Fig. 7.11 (c) and (d), the real part

of the contrast over-estimates the value of teflon, but achieves the expected value

for the wood (1.1). Additionally, the edges of the wood are much straighter. The

imaginary part of the contrast misses the value of the teflon (i.e., shows a contrast

of zero when it should be −0.13), but all values of Im(�recon) are not over-estimated.

The reconstruction of the wood is again inhomogeneous in Im(�) reconstruction.

Finally, we also note that the off-axis rotation of the wood in all reconstructions

reflects the physical orientation of the wood for the measurement.

7.2.2 Scatterer #2

The second scatterer consists of the same teflon cylinder, but this time combined with

a hollow Poly-Vinyl-Chloride (PVC) cylinder. A photograph of the phantom is shown

in Fig. 7.12. The thickness of the PVC cylinder is ≈ 0.6 cm, and it has a radius of
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Fig. 7.9: Dielectric phantom target consisting of teflon and wooden cylinders.

≈ 6.5 cm. The permittivity of the PVC cylinder was not measured, because the thin

width of the cylinder wall would make the measurements invalid (the measurement

would require a larger mass of PVC).

For this phantom, data were collected at 3, 4.5 and 6 GHz. The enhanced DBIM

reconstruction at 3 GHz is shown in (a) and (b) of Fig. 7.13 and the marching-on-

frequency reconstruction is shown in (c) and (d) of Fig. 7.13. The MR-CSI single

frequency reconstruction at 3 GHz is shown in (a) and (b) of Fig. 7.14, and the

simultaneous multi-frequency reconstruction is shown in (c) and (d) of Fig. 7.14.

Similar to the previous phantom, the DBIM 3 GHz reconstruction (Fig. 7.13 (a)

and (b)) overestimates the real part of the contrast for the teflon (2.2 instead of 1.2).

The thickness of the PVC is estimated to be too wide (≈ 1.7 cm instead of 0.6 cm).

In the imaginary part of the DBIM 3 GHz reconstruction, the overall structure of the

phantom is not visible. This is mostly due to the large artifact in the center of the

PVC pipe, and on the edge of PVC pipe closer to teflon. The value of Im(�recon) for
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Fig. 7.10: (a)Re(�) and (b)−Im(�) show the DBIM reconstruction of the dielectric phantom
#1 at 3 GHz. (c) and (d) show the real and imaginary parts of � for DBIM
reconstruction of the phantom using a frequency-hopping reconstruction at 3 and
6 GHz.
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(a) Re(�) MR-CSI 3 GHz
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(c) Re(�) MR-CSI 3 and 6 GHz
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Fig. 7.11: (a) Re(�) and (b) −Im(�) show MR-CSI reconstruction for phantom #1 at 3 GHz.
(c) and (d) show the real and imaginary parts of � for the MR-CSI reconstruction
of phantom #1 using a simultaneous frequency reconstruction at 3 and 6 GHz.
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Fig. 7.12: Scatterer 2: Dielectric phantom target consisting of PVC and teflon cylinders.
The separation between the cylinders is 1 cm.

the teflon is −0.2, but the edges are blurred.

The multi-frequency DBIM reconstruction, Fig. 7.13 (c) and (d), has less overshoot

in the real part of the teflon, (2.0 instead of 1.2). The real part of the PVC pipe

reconstruction is thinner and closer to the actual size (≈ 1.2 cm). In the imaginary

part of the reconstruction, the Teflon’s shape is not really visible, and the value is

overshot (−0.3 instead of −0.13). Additionally, in the imaginary part of the PVC

pipe’s shape does not follow the entire way around the cylinder. However the artifact

in the center of the PVC cylinder has disappeared.

In the single-frequency MR-CSI reconstruction, there is again an overestimate of

the real part of the contrast for the teflon (2.3). The separation of the PVC and teflon

is not at all clear and they are blurred together. The overall shape of the PVC cylinder

is clear, but the thickness is overestimated (≈ 1.67 cm, instead of 0.6 cm). In the

imaginary part of the MR-CSI single frequency reconstruction, the overall structure is
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Fig. 7.13: (a)Re(�) and (b)−Im(�) show the DBIM reconstruction of the dielectric phantom
#2 at 3 GHz. (c) and (d) show the real and imaginary parts of the DBIM
reconstruction using a marching-on-frequency reconstruction at 3, 4.5 and 6 GHz.
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Fig. 7.14: MR-CSI reconstruction of the dielectric phantom #2. (a) Re(�) and (b)−Im(�) of
the reconstruction at 3 GHz. (c) Re(�) and (d) −Im(�) show the reconstructions
using a simultaneous frequency reconstruction at 3, 4.5 and 6 GHz.
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not visible, and there is a large artifact in the center of the inversion domain.

The multi-frequency MR-CSI reconstruction shows less overshoot in the real part

of the teflon (1.8). The two objects are very distinct, although the physical separation

of 1 cm is not. The PVC is shown to be about same width (1.67 cm). The imaginary

part of the reconstruction shows the teflon size (3.8 cm) and contrast quite accurately

(i.e., −0.1 when it should be −0.13). In the imaginary reconstruction, the PVC shape

is visible but with includes artifacts and holes. Additionally, there still is a large

artifact in the center of the imaging domain.

7.2.3 Discussion of Results for Open-region MWT System

In both phantoms, the multi-frequency reconstructions were an improvement over

the single-frequency case. This is particularly apparent in the imaginary part of the

permittivity of scatterer #2. As expected through the use of higher-frequency data

the multi-frequency reconstructions had less blurred edges. As well, in phantom #2,

both the DBIM and the MR-CSI multi-frequency reconstructions clearly show that

two distinct objects are present, and in the DBIM case, the separation of the two

objects is (arguably) visible (the physical separation was 1 cm, or 1/5 of � at the

highest frequency).

In general, the exact contrast/permittivity values were not obtained. For example,

in the multi-frequency MR-CSI reconstruction of phantom #2, the permittivity of

the teflon is reconstructed as Re(�recon) = 1.8, when we expect it to be Re(�) =
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1.1. However, in 3 of the 4 reconstructions of phantom #1, the multi-frequency

reconstructions were closer to the true value of the teflon, and were never worse

than the single-frequency case. The imaginary part of the permittivity is, in general,

not accurately reconstructed, and there are many artifacts in the imaginary part

of the reconstructions. This has been seen in other systems [5]. The problems in

the imaginary part of the reconstructions were, however, improved with the use of

multi-frequency data.

We also speculate that the imaginary part of the permittivity in the wood phantom

is not homogeneous, as 3 of the 4 reconstructions of this target show a higher magnitude

in the center of the block.

We suspect that these errors in the reconstructions are primarily due to the large

amount of measurement noise caused by the coupling of the antennas. Other sources

of error, such as the assumption of a 2D line source based incident field are probably

less significant, and/or are adequately calibrated out by the calibration process. We

expect that when the MWT system is filled with a matching fluid the antenna coupling

will become significantly less noticeable due to losses in the fluid.

7.3 Enclosed MWT System Prototype

In addition to the open-region system, our group at the University of Manitoba has

constructed several different conductor-enclosed imaging system prototypes. The

enclosed system utilizes the same VNA, switch, and data collection process, but
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(a) (b)

(c)

Fig. 7.15: Some Enclosed MWT system prototypes. (a) Large diameter cylinder with small
antennas, (b) top and (c) side views of small diameter prototype with simple wire
monopole antennas.

substitutes the plexiglass chamber for a chamber made of stainless steel. Prototypes

with different cylinder sizes and with a series of antenna types have been constructed,

and data collected from them.

Different prototypes have been constructed so as to systematically study the

data collection, calibration, and inversion processes required for this class of system.

Obtaining useable data for conductor-enclosed systems is much more difficult than for
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the open-region system previously described. In particular, we have determined that

(i) the antennas must be taken into account in the inversion solver in a process similar

to that outlined in [93–95], and (ii) in a lossless system, as shown in Fig. 7.15, the

3D effects are extremely important, and extra effort must be made to build a system

which is as close as possible to a 2D system. Inside of an enclosed chamber, any error

in the model (e.g., having an antenna which radiates a field which has significant Ex

and Ey components) will lead to significant errors. While this sensitivity has made

successful inversion much harder than with the open-region system, we hope that this

sensitivity will be advantageous once the calibration issues have been solved.

As with the open-region MWT system, we have also tried to analyze the antenna

coupling. But because all the field distributions, at any frequency, are governed by

the modes of the resonant enclosure which dictate the coupling, such an approach

does not work with the enclosed scanner.

7.3.1 Enclosed System Analysis: Single antenna

In order to better understand the field distributions inside the resonant chamber, we

have turned to a full-wave Finite-Volume Time-Domain (FVTD) solver [125–127].

This code utilizes tetrahedral mesh elements, combined with a thin-wire model which

is capable of accurately modeling arbitrarily oriented thin wires in the mesh [128]. An

example of the FVTD mesh for an enclosed system is shown in Fig. 7.16. For faster

computations, the code has been fully parralleized [129].
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To analyze the system in full-3D and help us understand the inversion results from

the experimental system, we first generated an example enclosed inversion system with

a single antenna, as shown in Fig. 7.16. The antenna is a resistively-loaded (Wu-King)

dipole [130]. For both simulations, the PEC chamber cylinder had a radius of 10 cm,

and a height of 21 cm. The background permittivity throughout the tank was �r = 6.

For the first example (Fig. 7.16 (a)), the scatterer consists of two concentric cylinders

of radius 1.5 and 4.5 cm a each having height of 21 cm, and relative permittivities

of �r = 12 and �r = 8 respectively (� = 1.0 and � = 1/3). The Wu-King dipole was

located 1/4 of a wavelength (at 2 GHz) away from the PEC edge, had a total length

of ≈1.5 cm, and was excited using a derivative of a Gaussian incident pulse with

significant frequency content to up to 3 GHz. The second scatterer was embedded

in the same system, but is now a sphere withing a sphere (the permittivities remain

the same, and the radii of the spheres were equal to radii of the cylinders). For both

scatterers, the Ez field was recorded at a series of 40 points around the scattering

cylinder at the mid-line (z = 0) of the chamber, at a radius of 8 cm. Frequency

domain data were generated with the Fourier Transform. Due to the fact that the

scatterer is symmetric, the FVTD simulation was run only once, and the symmetry

used to generate data for 10 transmitters.
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(a) (b)

Fig. 7.16: A simulated enclosed tomographic system with a single Wu-King resistively loaded
dipole antenna. (a) shows an elongated (2D) target, (b) shows a spherical target.
Only the surfaces of the tetrahedral elements are shown.

7.3.2 Enclosed FVTD Simulation Calibration

Because the FVTD simulated PEC system does not generate the incident field as

a line source (as used in the MR-CSI inversion code), the data must be calibrated.

Similar to the experimental system, we calibrated the data by utilizing the formula

usct
cal =

uinc
known

uinc
FVTD

usct
FVTD. (7.2)

where uinc
known is the incident field from a line source inside a true 2D enclosure, uinc

FVTD is

the measured incident field from the 3D FVTD simulation, and usct
FVTD is the scattered

field taken from the FVTD simulation.

However, when this calibration method was applied to the FVTD data, it did not

provide reasonable inversion results. The core assumption of the above calibration
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procedure is that, within the inversion domain D, the true incident field is simply a

scaled version of the assumed incident field (with a complex scaling constant). Thus,

for this calibration procedure to give reasonable results, the plots of the magnitude

of the normalized FVTD incident field, uinc
FVTD, and the magnitude of the normalized

analytic incident field, uinc
known, should look very similar within D. For the tomographic

system shown in Fig. 7.16, such a plot is shown in Fig. 7.17. Part (a) of Fig. 7.17

shows the normalized incident field for a point source in a 2D PEC circular cylinder of

diameter 20 cm at a frequency of 2.5 GHz. Part (b) of Fig. 7.17 shows the normalized

incident field from the Wu-King dipole, located at the same transmitter position as

the point source, at the same frequency within the 3D approximation of the same

enclosure. As can be seen, these field distributions are quite different, and a simple

scaling is not possible between these two incident fields throughout the imaging region,

D. We suspect that these differences are largely due to (i) the 3D nature of the fields

from the Wu-King dipole, and (ii) multiple reflections from the dipole not being taken

into account with the enclosed Green’s function.

A new method of calibrating the incident field by first running the FVTD code for

the tomographic system with no scatterers present was introduced. The incident fields

in the domain D were recorded at the desired frequencies. Then, these incident fields

were used as the incident field for the inversion (i.e., uinc in the MR-CSI algorithm

was taken to be the measured FVTD incident field). After this, the calibration of

scattered fields using (7.2) was no longer used. Since the knowledge of the incident
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(a) (b)

Fig. 7.17: Normalized magnitude of the incident field at 2.5 GHz in the region D located in
a 20 cm diameter PEC cylinder, for (a) a true 2D line source, and (b) A Wu-King
dipole in the simulated 3D tomographic system. While both incident fields show
resonant effects, the overall shape of the resonances is very different.

fields is required for multiple transmitter positions, we assume that all transmitters

are located on a circle of constant radius inside the cylinder, and compute the incident

fields by interpolation. This way, the FVTD simulation only needs to be run once (as

opposed to once per transmitter), due to the circular symmetry of the tomographic

system.

7.3.3 Enclosed FVTD Simulation Results

Using the new calibration method, meaningful inversion results were obtained from

the single-antenna FVTD simulation. The reconstruction of the elongated cylinder

with the MR-CSI algorithm are shown in 7.18 (a) and (b). Only the real part of the

contrast is presented, as the scatterer is lossless. These results show that while the

reconstruction has some problems (e.g., the value of the center of the elongated cylinder
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is overshot by ≈ 40%), this basic calibration method is capable of reconstructing

targets inside of the 3D environment. There are more errors in the reconstruction of

the sphere, however, we do note that inner sphere is detected, but the exact contrast

is not acheived.

7.3.4 Enclosed System Analysis: Multiple antennas

A preliminary study to extend the FVTD-based calibration process described above

to a more realistic 24-antenna MWT system has begun in our group 1. Designed to

match the physical prototype shown in Fig. 7.15 (b) and (c), the FVTD mesh of this

system is shown in Fig. 7.19. The shorter prototype of Fig. 7.15 (b) and (c) has

been constructed because the antennas and scatterers may be better represented as

2D objects, which limits the 2D/3D errors from the system. In this system, the wire

antennas extend from the bottom to the top plates of the enclosure.

The same simulation and calibration procedure was applied to this 24 antenna

system. However, the inversion using the 2D analytic Green’s function did not provide

meaningful results. This is due to the presence of the full 24 antennas, which change

the Green’s function of the system sufficiently such that it cannot be modeled with

the analytic homogeneous Green’s function as outlined in Chapter 6. Evidence for

this may be obtained by considering the plots of the S11 measurement when only two

antennas are present in the chamber, and the same measurement when the other 22

1 The work outlined in the next two sections relies on significant efforts from Amer Zakaria, Cam
Kaye, and Puyan Mojabi.
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Reconstructed Contrast with Resonant Chamber for Concentric Spheres
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Reconstructed Contrast with Resonant Chamber for Concentric Spheres
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Fig. 7.18: MR-CSI reconstructions from the FVTD simulated single-antenna tomography
system. (a) and (b) show the regular and surface image of Re(�recon) for the
elongated cylinder shown in Fig. 7.16, and (c) and (d) show Re(�recon) for the
spherical scatterer shown in Fig. 7.16.
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(a)

(b)

(c)

Fig. 7.19: Two perspectives on a Finite-Volume Time-Domain mesh of an enclosed MWT
system. The experimental prototype being modeled is shown in (c). For measure-
ments with the system, a metallic cover is placed over the top of the chamber.
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passive antennas are added to the chamber. This comparison is shown in Fig. 7.20.

In particular, the resonances have significantly changed with the introduction of the

non-active antennas. Therefore, the presence of the other 23 antennas is substantially

changing the input impedance of the transmitting antenna and the field distribution

inside the chamber is not that of an empty 2D enclosure.

7.3.5 Experimental Inversion Results with Enclosed MWT system

As a way of further analyzing the enclosed MWT system, we turned to comparing

the FVTD fields with the fields generated from a Finite-Element based 2D scalar

solver2 [131]. With the FEM solver, we are easily able to model curved boundaries.

We are also able to easily model all the antenna elements in the enclosure. For the

prototype shown in Fig. 7.15 (b) and (c), the 2D FRM simulation was performed

with small PEC circles representing the antenna elements. The FEM mesh is shown

in Fig. 7.21. The whole mesh is shown in Fig. 7.21 (a) and a close-up of an antenna

element is shown in Fig. 7.21 (b). At the surface of the PEC antenna elements, the

tangential electric field was set to zero.

Due to the fact that the small circles representing the antennas are at the exact

positions of the sources/receivers, and that they represent PEC boundaries (where no

field may penetrate), we chose to place the source/receiver points �/20 away from

the edge of the small PEC circles. This leads to some errors in the inversion, and

2 The FEM solver was developed by Amer Zakaria.
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Fig. 7.20: FVTD simulation vs. experimental measurement in the conductor-enclosed MWT
system. (a) and (b) show the magnitude and phase of S11 when only two antennas
are present in the chamber. (c) and (d) show the same measurement when the
other 22 non-active antennas are present in the chamber. The two plots are
significantly different.
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(a) (b)

Fig. 7.21: Example of an FEM mesh for the enclosed system prototype. The 24 antennas
are modeled as small PEC cylinders, as shown in the zoomed image (b).

future work will focus on better ways to take the antennas into account. However,

this method has provided reasonable inversion results.

Using these FEM simulations, combined with the FVTD full-wave solver (which

better matches the physical system), we determine the frequencies at which the fields

are well-modeled by the 2D assumption. Examples of the magnitude of the scalar field

from the 2D FEM solver at 2.7 and 4 GHz are shown in Fig. 7.22 (a) and (c). These

are compared to the magnitude of the Ez field from the full-wave FVTD solver in

Fig. 7.22 (b) and (d). As is clear from the figure, the magnitude of the fields matches

quite well at 2.7 GHz, and does not match at 4.0 GHz. This similarity of fields is

predictive of the inversion results: at 4.0 GHz the inversion results are not meaningful,

however, at 2.7 GHz, the inversion results are meaningful.
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(a) 4 GHz FEM (b) 4 GHz FVTD

(c) 2.7 GHz FEM (d) 2.7 GHz FVTD

Fig. 7.22: Magnitude of 2D FEM vs. 3D FVTD Fields inside of imaging domain D. (a)
FEM fields at 4.0 GHz (b) FVTD fields at 4.0 GHz. (c) FEM fields at 2.7 GHz,
(d) FVTD fields at 2.7 GHz.
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Inversion results at 2.7 GHz

The need to take into account the small antenna elements in the Green’s function of

the inversion solver precludes the use of the current MR-CSI for the inversion. As

noted earlier (section 6.3), this author has attempted the creation of a FEM-based

CSI solver, but it currently does not provide acceptable inversion results and work is

on-going. However, an FEM-based DBIM solver has been implemented by another

member of our group 3 and is outlined in [99]. It is based on the DBIM code utilized

in chapters 3 and 4 earlier in this work. Instead of an integral equation based solver,

the code utilizes the FEM method for the forward solver at each iteration, allowing

the incorporation of the antenna elements into the Green’s function operator of the

inversion.

Inversion results obtained using this technique for a rectangular dielectric target

of dimensions 0.18�× 0.54� (2× 6 cm) for three different target positions are shown

in figures 7.23, 7.24, and 7.25. The first inversion, Fig. 7.23 shows the dielectric

target centered in the chamber. The permittivity of the target was measured to be

�r = 2.6− j0.12 at 2.7 GHz. In the FEM-DBIM reconstruction, the overall dimensions

of the object and its position in the center of the chamber is fairly well reconstructed.

The real part of the permittivity is undershot slightly (2.1 instead of 2.6), and the

edges of the object are blurred into an hour-glass type shape. Additionally, the target

appears lossless, with only a few artifacts appearing in Im(�r). The most significant

3 Puyan Mojabi
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Fig. 7.23: Experimental Inversion of enclosed MWT data with the FEM-DBIM code. (a)
shows the physical scatterer, (b) shows Re(�r), and (c) shows −Im(�r). The
object edges are blurred, but the overall shape is clear. The measured permittivity
of the target at 2.7 GHz was �r = 2.6− j0.12.
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Fig. 7.24: Experimental Inversion of enclosed MWT data with a shifted scatterer. (a) shows
the physical scatterer, (b) shows Re(�r), and (c) shows Im(�r). The measured
permittivity of the target at 2.7 GHz was �r = 2.6− j0.12.

area of error is in the center of the scatterer (i.e., the hour-glass shape).

In order to ensure that the inversion is capable of ‘following’ the object around

the enclosure, we have performed two other experimental inversions with the same

scattering object. For the first test, shown in Fig. 7.24, we moved the object away

from the center of enclosure. In this case, the inversion is very similar, however the

permittivity of the object is closer to the measured value (≈ 2.2), and the edges
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more straight. Interestingly, the edge farther away from the center of the chamber is

straighter than the edge tangential to the center of the chamber.

The third experimental test involved rotating the dielectric phantom at approx-

imately a 45∘ angle from the first measurement, while keeping the dielectric object

centered. These results are shown in Fig. 7.25. The real part of the reconstruction

shows a value for the dielectric constant which is quite close to the actual value (2.4).

However, there is an artifact which significantly overshoots the measured value of

the dielectric constant for the imaginary part of the reconstruction (peak value -0.4

instead of -0.12). This error is located entirely in the center of the domain.

Due to the errors near the center of the domain for this phantom, we speculate

that at this frequency and for this particular scatterer, there exists a null in the total

fields at the center of the domain. When there are no fields present in a particular

part of a scatterer, then the contrast � may take on any value without affecting the

scattered fields on the measurement surface S. This speculation is based on the fact

that when the scatterer is in the center of the domain (Figs. 7.23 and 7.25), there is a

strong ‘hour-glass’ shape, which is reduced when the object is not in the center of the

inversion domain (Fig. 7.24). Further evidence comes from the lossy artifact found in

Fig. 7.25. The possible existence of field nulls such as this emphasizes that inversions

inside of conducting enclosures should be done at multiple frequencies.
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Fig. 7.25: Experimental Inversion of enclosed MWT data with a rotated scatterer. (a) shows
the physical scatterer, (b) shows Re(�r), and (c) shows Im(�r). The measured
permittivity of the target at 2.7 GHz was �r = 2.6− j0.12.
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7.4 Experimental MWT Conclusions

Through the construction of an ultra-wideband open-region MWT prototype, we

have shown quantitative inversions from a multi-antenna system with a free-space

background. The results show that (a) the collection of invertible multi-frequency

data in multi-antenna environment is possible with a simple calibration procedure, as

long as certain frequencies are avoided, and that (b) inversion images are improved by

the use of this multi-frequency data. Furthermore, we have devised a simple method,

based on Sii measurements, of avoiding the frequencies where the antenna coupling is

too large for effective imaging, and utilized this method successfully in a complicated

multi-antenna environment.

For experimental MWT inside of a conducting enclosure with a free-space back-

ground, we have shown that experimental quantitative inversion is possible only

by taking into account the actual field distribution in the inversion algorithm. In

particular, for reasonable results, we have found that (i) the effects of the active and

non-active antennas must be taken into account in the Green’s function, and cannot

be removed via a simple calibration procedure, and (ii) even with a simple antenna

model, only certain frequencies may be utilized for 2D inversion. These can be found

via comparison of 2D modes with full-wave solutions of the fields inside the enclosure.



8. CONCLUSIONS AND FUTURE WORK

True education means fostering the ability to be interested in something.
Sumio Iijima

In this work, we have described research involved in the understanding, implementa-

tion and improvements to quantitative MWT. Further, we have presented preliminary

results from both open-region and conductor-enclosed microwave tomography systems.

From these results, we have drawn the following conclusions:

∙ The imaging algorithms for the inverse scattering problem with the scalar

Helmholtz equation are reasonably mature, with two classes of optimization

based inversion techniques dominating: Gauss Newton/DBIM based techniques,

and the CSI method. In particular, these two methods provide similar inversion

results with similar computational resources. However, the use of the physical

regularizer in the CSI method avoid the process of regularization parameters

selection that complicates the use of the DBIM method.

∙ The use of a differential implementation of the integral equation formulation of

the inverse problem, rather than an integral implementation based method is
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recommended, for two main reasons: (i) when a-priori information about the

scatterer is known, its use as an inhomogeneous background (i.e., computational

reduction of contrast) may improve the inversion result over the use of this

information as an initial guess to the inversion. The incorporation of this

information as an inhomogeneous background is much easier with a differential

based solver. (ii) Modeling static inhomogeneities in the inversion region, such

as antenna elements, is much easier with a differential based solver.

∙ The MWT problem may be formulated with an enclosed conducting boundary,

and imaging within such an enclosure is possible [34]. The enclosed-type system

has many possible advantages, e.g., will increase signal-to-noise ratio, and

will also induce significant changes in the Green’s function of the problem.

Experimental experience has shown that for the enclosed problem it is much

more difficult to use simple calibration techniques and better system models

and/or calibration methods are required for effective imaging. Effort put into

this problem is worthwhile, as this sensitivity should be advantageous once the

enclosed MWT system is properly modeled and calibrated.

∙ The use of multi-frequency data can significantly improve MWT imaging re-

sults, and ultra-wideband open-region systems utilizing simple calibration proce-

dures can provide satisfactory inversion results, provided certain frequencies are

avoided.
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∙ Further improvements to MWT, for both open-region and conductor-enclosed

type systems, will require the modeling of MWT system features inside of the

inverse solver.

We do note that at the end of this work, we are still not able to definitively

answer the ultimate question with regards to biomedical MWT: can it compete with

and/or outperform existing medical imaging modalities? The research outlined in

this dissertation shows that there is still much room for improvement in the MWT

technology, and we remain optimistic that MWT will become a widely-used clinical

imaging modality.

8.1 Future Work

The main challenge remaining to make MWT a competitive biomedical imaging

modality is the lower resolution of current MWT systems as compared to MRI,

ultrasound, and x-ray CT (in this context, we define resolution as the minimum size

of tumor which may be detected). The lower resolution of MWT is directly linked

to the relatively large wavelength of the microwaves utilized. There is, however,

no known theoretical limit to the spatial resolution obtainable from MWT; image

resolution as low as �/4 has been obtained for near-field imaging systems and it has

been suggested that the true resolution limit is governed by the achievable signal-

to-noise ratio of the measurements, and not the wavelength (see, e.g., low-frequency

impedance tomography systems). Super-resolution, i.e., resolution of targets smaller
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than �/2, has been claimed for non-linear electromagnetic inverse problems, and relies

on the availability of near-field measurements of the evanescent vector-fields [111,112].

Further gains in resolution will thus depend on the measurement of low-noise, near-field

radiation, probably of full-vector fields. We again emphasize that noise in an MWT

system anything that does not match the assumed model: errors with regards to the

2D scalar assumption, errors with regards to other antennas present, reflections from

matching field boundaries or other equipment in room, etc.

The elimination of these system modeling errors, the improvement of the signal-to-

noise ratio, and accurate methods of near-field measurement are closely tied together;

they will ultimately require good models of the MWT system under use. The research

presented in this dissertation will go some way towards solving this: the use of

differential solvers will allow the MWT system to be better modeled, thus improving

the signal-to-noise ratio, and the computational reduction of the contrast has been

shown to improve imaging when accurate a-priori information is available (although

we recognize that the question of possible resolution enhancement with this method has

not been answered, we are optimistic that this will occur). Further, through the use of

conductor-enclosed MWT systems, we should be able to detect evanescent fields more

easily than open-region systems, improve the ultimately achievable signal-to-noise

ratio, eliminate the modeling errors of the finite-matching fluid, and eliminate exterior

sources of noise. Even if conductor-enclosed MWT is ultimately shown not to have

any of the other theoretical advantages over open-region systems suggested in chapter
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6, the improvements listed here justify further research efforts.

In particular, in order to improve the art of MWT, effort is warranted in the

following areas:

∙ First, the resolution for MWT systems should be properly defined (the definition

will depend on the desired application), so that we may have an objective

standard to improve upon.

∙ Better antenna modeling inside of the inverse solver should be investigated for

both open-region and conductor-enclosed systems, including the possibility of

fully modeling the antennas in the inverse solver.

∙ In order to gain from the experience of others in near-field measurement, the

literature on near-field scanning systems used in electromagnetic compatability

(EMC) studies should be investigated, and results from this area applied to

multi-antenna near-field MWT data collection.

∙ The use of a-priori information as a computational background should be inves-

tigated and tested to determine if its use may improve resolution in experimental

MWT systems.

∙ To eliminate the modeling errors associated with the 2D scalar assumption,

full-vector 3D inversion with a differential solver should be implemented.

∙ Potential advantages of enclosed-chamber imaging should continue to be in-
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vestigated, and if possible, a detailed analysis of the convergence of inversion

algorithms inside this type of system should be completed.

∙ Experimental MWT must continue to be investigated at all steps of research, as

many critical system issues simply cannot be dealt with by simulation alone.
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Appendix A

LINEAR INVERSE SCATTING AND FOURIER IMAGING

As discussed in Chapter 3, a common way of solving the inverse scattering problem is

to linearize it by making some assumptions, then solving the resultant linear ill-posed

problem by manipulating/making further assumptions about the equations into the

form of a Fourier Transform. We discuss one of these techniques here.

A.1 Linearized Solutions to the Inverse Scattering Problem

The Born Approximation [132] provides the simplest and fastest way to solve the

inverse scattering problem. With careful implementation, real-time imaging is possible.

However, the Born approximation is a very restrictive approximation to make, in

that the vast majority of interesting inverse scattering problems do not satisfy the

approximation.

Explicitly, the Born approximation assumes that the solution to the domain

equation (2.37) is:

u(r, !) ≈ uinc(r, !) r ∈ D. (A.1)
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Simply put, the total field inside the imaging domain is approximated by the incident

field. The Born approximation, by solving for one of the two unknowns, linearizes the

inverse scattering problem. The data equation then becomes

ũsct(r, !) = −
∫
D

k2
bG(rrx, r

′;!)�uincdr′ rrx /∈ D (A.2)

where � is now the only unknown. In this case, the solution of (A.2) is now the solution

of a linear first-kind Fredholm integral equation, with a kernel given by k2
bGu

inc, and

we may employ all of the theory associated with problems of these type (see [41]

and [47]). Despite the fact that the problem is now linear, it is important to realize

that it still remains ill-posed (in the sense that there exists an infinite number of

solutions and the output is not a continuous function of the input).

A.1.1 Fourier Imaging Techniques

One method of solving the linearized inverse scattering problem is through Fourier-

based imaging techniques. In a process similar to that of x-ray CT [133], the equations

are manipulated until they are in the form of a Fourier Transform, then the inversion

is carried out by an inverse Fourier Transform. For MWT, these techniques are only

useful if the measurement set-up allows for wide-band multiple-frequency experiments.

Effectively, the extra data are needed to fill ‘k-space’ to an adequate level to perform

the inverse Fourier Transform. We outline one such possibility for Fourier imaging
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Fig. A.1: Fourier Imaging schematic. A point source is located at rtx radiates an incident
field to the scatterer located within D. The scattered fields are measured at the
position rrx.

here, although with slightly different assumptions, slightly different Fourier imaging

algorithms may be derived (see, e.g., [134]).

The diagram associated with this Fourier inversion algorithm is shown in Fig. A.1.

If we assume that the material properties vary in 2 dimensions, while the fields radiate

in 3 dimensions (which is known as the 2.5D model), and maintain the ej!t time

dependency, then the Green’s function is given by

G(r, r′) =
e−jkb∣r−r

′∣

4� ∣r− r′∣
, (A.3)

where kb is the background wave-number. For the purposes of Fourier imaging

techniques, we assume that the background is lossless and kb is constant. We further

assume that the material parameters are also lossless (i.e. Im(�) = 0). Let the source

be a point source, located at the position rtx, in which case the incident field is the

Green’s function. Additionally, let the scattered field be measured at position rrx.
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Under the Born approximation, the data equation becomes

ũsct(r, !) =
k2
b

4�

∫
D

e−jkb∣rrx−r
′∣

∣rrx − r′∣
e−jkb∣rtx−r

′∣

∣rtx − r′∣
�(r′)dr′ (A.4)

Making the standard far-field approximation, when ∣r∣ >> ∣r′∣: ∣r− r′∣ = ∣r∣+ r̂ ⋅ r′

in the numerator, and ∣r− r′∣ = ∣r∣ in the denominator, we may write

ũsct(r, !) =
k2
be
−jkb∣rrx∣e−jkb∣rtx∣

(4�)2 ∣rrx∣ ∣rtx∣

∫
D

e−jkbr̂rx⋅r
′
e−jkbr̂tx⋅r

′
�(r′)dr′. (A.5)

With a little manipulation, we arrive at

(4�)2 ∣rrx∣ ∣rtx∣ ũsct(rrx, !)ejkb∣rrx∣ejkb∣rtx∣

k2
b

=

∫
D

e−jkb[−((̂r)rx+r̂tx)⋅r′]�(r′)dr′. (A.6)

If we denote the 2-D Spatial Fourier Transform of the contrast � as �̃, with spatial

Fourier coordinates k = (kx, ky) then we may write

�̃ (k = kb(r̂rx + r̂tx)) =
(4�)2 ∣rrx∣ ∣rtx∣ ũsct(rrx, !)ejkb∣rrx∣ejkb∣rtx∣

k2
b

. (A.7)

Equation (A.7) gives a method of determining the values of the Fourier transform of

� (in the k-space domain) by varying the frequency, receiver position, and transmitter

position. If enough values of the contrast are determined the k-space, then an inverse

Fourier transform may be taken to determine the contrast � (up to some maximum

spatial frequency). To generate enough values of �̃ in k-space, many combinations of
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receiver/transmitter pairs, often combined with a large number of frequencies must

be utilized. In addition, the data collection will rarely provide evenly spaced data in

k-space, and the data must be interpolated to an even grid before the FFT may be

utilized [135].

For a further discussion how radar techniques and seismic migration algorithms,

while appearing to not utilize the full inverse problem, actually make use of the Born

approximation and then proceed to solve the inverse scattering problem, see [136].



Appendix B

FURTHER DETAILS ON CONTRAST SOURCE INVERSION

B.1 Fréchet Derivatives

In this brief section, we give the definition of the Fréchet derivative (see [137]). The

Fréchet derivative measures the variation of the functional F (a) with respect to a

small variation � along a direction b(r) with respect to the function a(r).

Let F (a) be some functional depending on a scalar function a(r) which can be

written as a continuous norm ∥ ⋅ ∥ generated by a continuous inner product < ⋅, ⋅ >.

Then the Fréchet derivative is written as:

∂F (a)

∂a
= lim

�→0

F (a+ �b)− f(a)

�
= < c, b > , � ∈ ℜ , (B.1)

where we may identify c(r) with the gradient of F with respect to the function a(r),

i.e.,

∇a F = c(r) . (B.2)

We may do this as the gradient provides the direction in which the variation of a
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functional is maximal. This method allows for the calculation of the gradients required

for the Contrast Source Inversion method.

B.2 Initialization of CSI Method

The initialization expression for the contrast sources of the CSI method is derived

here. We may solve (3.26), repeated here:

F data(wj) =
∥∥ũsct

j − GS {wj}
∥∥2

S
(B.3)

in the least-squares sense by solving

G∗SGS(wj) = G∗SSũ
sct
j , (B.4)

Furthermore, the mathematical problem of solving (B.4) is ill-posed. Thus, we apply

Tikhonov regularization:

[
G∗SGS + �2I

]
wj = G∗SGS ũsct

j , (B.5)

where I is the identity matrix. The basic back-propagation guess may be arrived at

by letting � →∞ [41]. Thus, the back-propagated solution is

wbpinit

j =
1

�2
G∗S ũsct

j . (B.6)
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Since the 1
�2

is a constant, it is dropped [41], and we arrive at

w
bpinit
j = G∗S ũsct

j . (B.7)

which is the the over-regularized, or back-propagated solution.

The initial back-propagation estimate is now taken as a search direction, and we

aim to find the � which minimizes the functional

F data(�) =
∥∥∥ũsct

j − �GSw
bpinit

j

∥∥∥2

S
=
∥∥ũsct − �GSG∗S ũsct

j

∥∥2

S
. (B.8)

F data is equal to

F data(�) =
∥∥ũsct

j

∥∥2

S
− 2�Re

〈
ũsct
j ,GSG∗S ũsct

j

〉
S

+ �2
∥∥GSG∗S ũsct

j

∥∥2

S
. (B.9)

To find the minimum of this, we find

∂F

∂�
= 0 (B.10)

which results in

� =
Re
〈
ũsct
j , GSG

∗
Sũ

sct
j

〉
S∥∥GSG∗Sũ

sct
j

∥∥2

S

. (B.11)
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By using the definition of the adjoint operator, we arrive at

� =

∥∥G∗S ũsct
j

∥∥2

S∥∥GSG∗S ũsct
j

∥∥2

S

, (B.12)

and thus

wbp
j =

∥∥G∗S ũsct
j

∥∥2

D∥∥GSG∗S ũsct
j

∥∥2

S

G∗S ũsct
j , (B.13)

which is the solution given in [64] and [58]. Note that because we have performed a

minimization over � this solution is at the least a local minimum of the data equation.



Appendix C

DERIVATION OF ENCLOSED GREEN’S FUNCTION

Herein, we derive the solution for the coefficients of the p function utilized in the

enclosed Green’s function section of the thesis (chapter 6). We are concerned with

solving the 2D differential equation

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ T

p(r, r′) = −gfs(r, r′) r ∈ Ω (C.1)

where Ω is a circle of radius a. We first introduce the cylindrical coordinates r = (r, �),

and write the Helmholtz equation in these cylindrical coordinates,

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂�2
+ k2p = 0 0 < r < a, −� < � < �

p(a, �, r′) = −gfs(a, �, r′). (C.2)
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Assuming that p may be written as

p(r, �) = R(r)H(�), (C.3)

we note that

R′′

R
+

1

r

R′

R
+

1

r2

H ′′

H
+ k2 = 0, (C.4)

where prime and double prime denote first and second derivatives respectively. Due

to the fact that R and H are independent, we note

r2R
′′

R
+ r

R′

R
+ r2k2 = −H

′′

H
= � = constant, (C.5)

which results in two separated ordinary differential equations (ODE), solvable through

the application of the boundary and periodicity conditions. The first ODE is given by

H ′′ + �H = 0, (C.6)

and the periodicity requirement gives the conditions

H(−�) = H(�)

H ′(−�) = H ′(�). (C.7)
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Equations (C.6) and (C.7) constitute a Sturm-Louiville system [118] with eigenvalues

� = n2 (C.8)

where n is a non-negative integer, with corresponding orthonormal eigenfunctions

1√
2�

n = 0

1√
�
cos(n�) +

1√
�

sin(n�) n > 0. (C.9)

The remaining differential equation is

r2R′′ + rR′ +
(
r2k2 − n2

)
R = 0. (C.10)

Equation (C.10) is Bessel’s equation of order n. We know that the solution to this

equation must be a summation of the Bessel functions of the form:

Jn(kr), Yn(kr), H(1)
n (kr), H(2)

n (kr). (C.11)

where Jn(kr) is the ntℎ order Bessel function of the first kind, Yn(kr) is the ntℎ order

Bessel function of the second kind, and H
(1)
n (kr) and H

(2)
n (kr) are the ntℎ order Hankel

functions of the first and second kind, respectively. However, since we know the
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solution p is non-singular inside the PEC region, solutions to must be of the form:

Rn(r) = Jn(kr), (C.12)

as Jn(kr) is the only solution of Bessel’s equation which is non-singular.

Thus, general solutions of the form p(a, �; r′) = R(r)H(�) may be now written as

p(a, �, r′) =
A0√
2�
J0(kr) +

∞∑
n=1

(
AnJn(kr)

cos(n�)√
�

+BnJn(kr)
sin(n�)√

�

)
, (C.13)

where the coefficients, A0, An, and Bn are chosen to satisfy the boundary conditions,

namely

p(a, �, r′) = −gfs(a, �, r′), (C.14)

or

p(a, �, r′) =
A0√
2�
J0(ka) +

∞∑
n=1

(
AnJn(ka)

cos(n�)√
�

+BnJn(ka)
sin(n�)√

�

)
. (C.15)

Making use of the orthonormal nature of the eigenfunctions of H(�), we multiply both

sides of (C.15) by 1/
√

2�, and integrate from � = −� to � = �, and arrive at

A0 =
−1√

2�J0(ka)

∫ �

−�
gfs(a, �, r

′)d�. (C.16)

To determine An, we multiply both sides of (C.15) by cos(m�)/
√
� and integrate over
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�, which results in

An =
−1√
�J0(ka)

∫ �

−�
gfs(a, �, r

′) cos(n�)d�. (C.17)

And by similar argument:

Bn =
−1√
�J0(ka)

∫ �

−�
gfs(a, �, r

′) sin(n�)d�. (C.18)

These two integrals may be derived in closed form by considering the identity ( [120],

section 11.4.2)

H
(2)
0 (k ∣r− r′∣) =

m=∞∑
m=−∞

Jm(kr)H(2)
m (kr′)ejm(�−�′) r ≤ r′

m=∞∑
m=−∞

Jm(kr′)H(2)
m (kr)ejm(�−�′) r ≥ r′, (C.19)

where r, r′, and �, �′ are the cylindrical coordinates for r and r′ respectively. For the

integrals in (C.17) and (C.18), r > r′, and we may write

An =
−1

4j
√
�Jn(ka)

∫ �

−�

(
m=∞∑
m=−∞

JJm(kr′)H(2)
m (kr)ejm(�−�′)

)
cos(n�)d�, (C.20)

which equals

An =
−1

4j
√
�Jn(ka)

(
m=∞∑
m=−∞

Jm(kr′)H(2)
m (kr)e−jm�

′

)∫ �

−�
ejm� cos(n�)d�, (C.21)
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and since ∫ �

−�
ejm� cos(n�)d� = � if ∣n∣ = m (C.22)

and is 0 otherwise, An is equal to the expression given in (34). The derivation for Bn

proceeds in an analogous manner.
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