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ABSTRACT 

 
Myeloid-derived suppressor cells (MDSCs), characterized by the co-expression of 

CD11b and Gr1, are a heterogeneous population of immature myeloid cells that exhibit 

strong suppressive functions against T cell responses. In inflammatory conditions like 

IBD, there is an increase in MDSCs but this is not sufficient to improve intestinal 

inflammation in IBD.  Herein, we investigated the expansion of MDSCs in TNBS-

induced acute colitis and whether the adoptive transfer of in vitro generated MDSCs 

ameliorated intestinal inflammation. We found that CD11b+Gr1+ MDSCs were 

significantly increased in experimental colitis. Further, this increase correlated to some 

extent with the severity of the disease. As per our protocol, MDSCs were generated from 

bone marrow cells co-cultured with hepatic stellate cells (HSCs), an essential cell type to 

obtain functional MDSCs in vitro. Adoptive transfer of HSC-induced MDSCs improved 

body weight loss and significantly downregulated inflammatory cytokines TNF, IFN-γ, 

and IL-17 in colonic tissue. Our results indicate MDSCs are immunoregulatory players in 

intestinal inflammation and that the adoptive transfer of in vitro generated MDSCs may 

provide a novel therapeutic approach for inflammatory bowel disease.  
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INTRODUCTION 

 
Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory 

condition of the gastrointestinal tract, comprised mainly of Crohn’s disease and ulcerative 

colitis, generally characterized by clinical symptoms including fatigue, weight loss, 

diarrhea, bloody stools, and intestinal inflammation.2 Typically, inflammation in Crohn’s 

disease is transmural and in ulcerative colitis it is confined to the mucosa. The former is 

identified by the enhanced production of T helper 1 (Th1) and T helper 17 (Th17) 

proinflammatory cytokines, which can affect any area of the bowel but most commonly 

the small intestine and the colon in a fragmented fashion. In contrast, the latter is vaguely 

associated with T helper 2 (Th2) responses, mainly affecting the colon.3  

 

Epidemiology 

Epidemiological studies have revealed the highest incidence and prevalence rates 

of IBD in industrialized or “Westernized” regions of the world such as northern Europe,4-

9 the United Kingdom,10, 11 and North America.12-15 Interestingly, disease emergence has 

been reported in recent years in places where it was thought to be formally uncommon 

like southern or central Europe,16-18 Asia,19-23 Africa,24 and Latin America,25 hence, 

making IBD a worldwide health concern. It is estimated that 1.4 million individuals 

suffer from IBD in the United States and another 2.2 million in Europe.26 In Canada,	
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approximately 170,000 persons (0.5% of the entire population) have IBD, with usual high 

rates in Manitoba,15 making Manitoba home of the highest incidence rates in the world. 

Crohn’s disease and ulcerative colitis affect the young and adults, both men and women. 

It has, however, been observed that Crohn’s disease is slightly more predominant in 

females and ulcerative colitis in males, both with an overall age-specific incidence peak 

in the third decade of their lives.26, 27 

 

Pathogenesis 

 Although the etiology or pathogenesis of IBD still remains unknown, significant 

progress has been made in elucidating the players that orchestrate the development of 

intestinal inflammation. Substantial evidence indicates IBD is the result of complex 

interactions between environmental factors and aberrant immunological responses to 

enteric bacteria in genetically susceptible individuals. 

 
Environmental Factors 

 As communities become more educated about health issues and improve their 

living conditions, their lack of proper exposure to infectious agents in early childhood 

renders them more susceptible to these organisms when encountered later in life, 

developing abnormal immune responses.28 This “Westernization” of lifestyle in either 

developing countries or amongst the offspring of migrants to industrialized nations could 

help explain how the environment contributes to the development of IBD.29, 30  

 Smoking. Cigarette smoking has been well established as a contributor to an 

increased risk of Crohn’s disease development while conferring partial protection against 

ulcerative colitis.31 A meta-analysis of selected studies reported that current smokers 
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more than double their risk for developing Crohn’s disease, and former smokers are at a 

greater risk than nonsmokers. Inversely, current smokers are 40% as likely to acquire 

ulcerative colitis as nonsmokers, and former smokers are at a greater risk than 

nonsmokers.32 The mechanisms of protection against ulcerative colitis in smoking 

individuals are not known, however, special attention has been given to nicotine.33, 34 A 

study showed nicotine in vivo inhibits Th2 responses mainly seen in ulcerative colitis, 

while no effect is noted on the inhibition of Th1 cytokines predominating in Crohn’s 

disease.35         

 Diet. The intake of food may alter enteric flora or the functional properties of the 

epithelium. Over the last two decades, the Japanese population has experienced an 

increase in IBD, regardless of lacking a genetic mutation, NOD2, which has been 

associated with disease susceptibility.36 This increase in IBD may be due to the change in 

diet, which includes products richer in linoleic acids (beef and pork) than ω-3 fatty acids 

(fish).37 Also, it has been hypothesized that the excessive intake of sugar (Fermentable 

Oligo-, Di- and Monosaccharides and Polyols) promotes the expansion of the flora in the 

gut and increases the permeability of the intestine perhaps by hindering barrier function, 

thus, predisposing genetically susceptible individuals to Crohn’s disease.38 

 Appendectomy and other factors. Removal of the appendix appears to provide a 

protective effect for ulcerative colitis. Duggan et al indicated the removal of the organ in 

individuals younger than 20 years of age provides the greatest protection against the 

disease.39 Several other environmental factors such as vaccination, occupation, stress, and 

oral contraceptives have been suggested to increase the risk of IBD; however, further 
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evidence is required to establish a strong association between these environmental factors 

and the disease.40  

 
Immune Dysfunction  

 The intestinal epithelium serves as a physical barrier to prevent the entry of 

harmful substances from the lumen into the lamina propria. Intestinal epithelial cells are 

responsible for the sampling of gut microbiota via pattern-recognition receptors (PRRs) 

such as TLR and NOD, and for the secretion of mucus (goblet cells) and anti-microbial 

peptides (Paneth cells). Furthermore, innate and adaptive immune cells also play a key 

role in the regulation of intestinal microbiota. Through a complex network of interactions 

and signals, these cell populations and their products maintain a tolerogenic tone against 

non-pathogens in the normal intestine. However, in IBD, this tolerant state is lost and 

abnormal immune responses develop against the microbiota, resulting in chronic 

inflammation and subsequent tissue damage.41-44   

 Innate immunity. The innate immune system is designed to provide an initial and 

quick response to pathogens in a non-specific fashion. Defects in the intestinal epithelium 

may allow exposure of TLR-expressing cells to excessive luminal antigens, triggering the 

innate arm of the immune system.43 Innate cells like dendritic cells (DCs) and 

macrophages increase in numbers and upregulate the expression of TLR, recognizing 

molecular patterns from microbes. In IBD, TLR-activated gut DCs and macrophages 

stimulate the activation of the NF-κB protein complex, which then turns on the 

transcription of genes responsible for the increased production of proinflammatory 

cytokines such as IL-12/IL-6 and IL-23/TNF-α, respectively.45, 46 The aforementioned 

proinflammatory cytokines along with chemokines (e.g. CCL20),47, 48 adhesion molecules 
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(e.g. I-CAM),49 and co-stimulatory molecules (e.g. CD40)49 become critical for the 

amplification and maintenance of intestinal inflammation through the recruitment and 

activation of local and peripheral immune cells. These innate immune responses set the 

stage for the adaptive response.     

 Adaptive immunity. The adaptive immune system evolved to provide a more 

specific response to antigens, exhibiting diversity and memory. CD4+ T cells are central 

regulators of adaptive immune responses in IBD and their differentiation is greatly 

influenced by the environment and cytokine milieu.  

In Crohn’s disease, both Th1 and Th17 cells have been implicated as the key 

mediators driving the pathogenesis of the disease. The sustained activation of these cells 

leads to the inappropriate secretion of cytokines and other mediators that exhibit 

inflammatory functions resulting in tissue damage. Accumulated evidence supports the 

expansion of Th1 and Th17 cell populations and their cytokine profiles in Crohn’s 

disease patients.50-53 The Th1 cell subset is regulated by T-bet in the presence of IL-12 

(composed of p40 and p35 subunits) which is a cytokine typically produced by APCs 

activated in response to intracellular pathogens. In Crohn’s disease, Th1 cells produce 

enhanced amounts of TNF-α, IFN-γ, and IL-2 cytokines, which may cause tissue injury 

or recruit other inflammatory cells such as NK cells and macrophages. These recruited 

inflammatory cells may also contribute to tissue destruction via IFN-γ and TNF-α 

production, respectively.41 Conversely, Th17 cells are driven by RORγt in the presence of 

IL-6 and TGF-β, and are further expanded by IL-23 (p40/p19 heterodimer). The 

increased expression of Th17 cytokines in Crohn’s disease such as IL-17, IL-21, IL-6, 

and TNF-α may also promote the destruction of tissue and enhance T-cell resistance to 
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apoptosis. The differentiation of Th1 and Th17 cells is negatively cross-regulated by each 

other.51 

In ulcerative colitis, Th2 responses are thought to mediate the disease. Though IL-

4 is absent in ulcerative colitis tissues, increased levels of IL-5, IL-13, and IFN-γ have 

been observed in the mucosa of these patients.41, 42 The overexpression of IL-13, which is 

also produced by other non-T cells (e.g. NK T cells), may cause epithelial cells to 

become dysfunctional.41 Lastly, Th2 cell differentiation is inhibited by Th1 cytokines and 

vice versa.  

In healthy individuals, these Th cell responses are counterbalanced by regulatory 

T cells (Treg) via the production of anti-inflammatory mediators such as IL-10, TGF-β, 

and IL-35 or through the induction of apoptosis.54 However, in IBD, Treg cells are 

downregulated or absent in the lamina propria and Th cells become resistant to 

apoptosis.55 In IBD experimental models, IL-10-deficient mice develop spontaneous 

enterocolitis as they produce insufficient levels of IL-10, a cytokine known for its anti-

inflammatory and immunoregulatory functions.56    

 
Enteric Microbiota 

 More than 1014 microorganisms reside within the gastrointestinal tract (mostly in 

the colon) consisting of more than 1000 different species and their numbers are greater 

than the number of cells in an individual.54, 57 The composition of the intestinal 

microbiota includes Bacteroidetes (gram-negative bacteria), Frimicutes (gram-positive 

bacteria), Proteobacteria, Actinobacteria, viruses, protists, and fungi; over 90% of these 

microorganisms belong to the first two categories or phyla.56, 58 Commensal microflora 

defends the host from enteric pathogen colonization and contributes to the development 
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of the immune system,59 yet it is possible it contributes to IBD as well.54 It is unknown, 

however, whether the immune system responds to triggers from selected microbes or the 

entire enteric microbial community. Studies have reported that the administration of 

probiotics to IBD patients improved the disease.58 On the other hand, pathogenic agents 

have also been implicated in the pathogenesis of IBD such as Mycobacteria 

paratuberculosis, Listeria monocytogenes, measles virus, and specific strains of 

Escherichia coli,54 but none of these have been shown to be essential for the development 

of the disease. Adherent-invasive E. coli, however, has been strongly associated with the 

pathogenesis of Crohn’s disease as it is able to adhere and penetrate the epithelium.60	
  

Finally,	
  studies	
  involving	
  IBD	
  experimental	
  models	
  have	
  reported	
  that	
  mice	
  kept	
  in	
  a	
  

sterile	
  germ-­‐free	
  environment	
  do	
  not	
  develop	
  inflammation	
  in	
  the	
  intestines	
  

suggesting	
  a	
  relationship	
  between	
  enteric	
  microbes	
  and	
  the	
  pathogenesis	
  of	
  IBD.61 

 
Genetic Factors 

 Genetic abnormalities such as CARD15/NOD2 and ATG16L1 mutations have 

been strongly associated with the development of IBD in genetically susceptible 

individuals.3 

First, the CARD15 gene encodes NOD2, a cytosolic receptor expressed in 

epithelial cells, Paneth cells, macrophages, DCs, and endothelial cells.44 DCs in the 

lamina propria sense peptidoglycan (PGN) via TLR2 and become activated, leading to 

the activation of NF-κB and resulting in the production of antimicrobial peptides and 

cytokines that promote the differentiation of IFN-γ and IL-17 producing cells. NOD2, on 

the other hand, becomes activated upon the recognition and ligation of a peptide found in 

PGN, muramyl dipeptide (MDP), suppressing the activation of NF-κB mediated by PGN. 
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The inhibition of NF-κB by NOD2 downregulates the secretion of cytokines responsible 

for the induction of proinflammatory cells. However, the function of NOD2 may be 

impaired in Crohn’s disease patients, resulting in the enhanced production of 

proinflammatory cytokines.2 Individuals affected by Crohn’s disease carrying a 

dysfunctional NOD2 protein (20 to 30% of patients) show declined expression of anti-

microbial peptides like α-defensins by paneth cells,62-64 allowing bacteria to thrive; thus, 

leading to inadequately prolonged immune responses.2 Similar findings showing 

decreased α-defensin production by Paneth cells have been reported in Nod2-/- mice 

studies.65  

Second, ATG16L is a gene associated with autophagy regulation. Autophagy is a 

catabolic process with the ability to degrade organelles within cells in response to cellular 

stress, leading to cell death when prolonged.56 Crohn’s disease patients expressing the 

ATG16L1 mutation have defective Paneth cells; as a result, paneth cells may fail to 

effectively regulate enteric microbes via α-defensin production.66  

 

Therapeutic Strategies for IBD 

The design of an ideal therapy that would rebalance gut immune responses in IBD 

patients consists in achieving and maintaining remission free of side effects and the least 

possible surgical interventions.67 Commonly, as IBD worsens it requires a shift from anti-

inflammatory drugs, to immunosuppressant regimens, or to biological agents. Current 

biological therapies with proven efficacy used in the clinic for IBD target 

proinflammatory cytokines or block selective adhesion molecules important for the 

recruitment of leukocytes.68 Other promising therapeutic strategies include the blockade 
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of receptors involved in the activation and differentiation of T-cells, induction of anti-

inflammatory cytokines, and cell-based therapies.69, 70  

 
Current Biological Therapies  

Anti-TNF monoclonal antibody. TNF-α is a proinflammatory cytokine that plays 

a critical role in IBD. Currently, three anti-TNF-α monoclonal antibodies are used to treat 

IBD patients: infliximab, certolizumab pegol, and adalimumab. Infliximab, a chimeric 

monoclonal antibody, has been shown effective in treating refractory Crohn’s disease and 

ulcerative colitis;71, 72 however, some patients generate antibodies against the agent.73 

Certolizumab pegol, a humanized monoclonal antibody, has shown high remission rates 

in individuals with Crohn’s disease. Patients treated with certolizumab pegol develop 

antibodies to the agent too, but these are fewer than those treated with infliximab.74 

Finally, adalimumab, a fully human monoclonal antibody, has also been reported to 

induce remission in Crohn’s disease individuals with moderate to severe illness.75 As a 

final note, all these anti-TNF monoclonal antibodies promote apoptotic cell death in T 

cells in the intestine.76  

Selective adhesion molecule inhibitors. The interaction between immune 

migratory cells and endothelial cells is crucial for the homing of leukocytes to the site of 

injury or insult. Agents like Natalizumab and MLN-0002 have been used to prevent the 

accumulation of inflammatory cells in the intestines of IBD patients. Natalizumab, for 

instance, binds α4 integrin and interferes with the adhesion and transmigration of 

leukocytes to the gut.68 This agent has been shown to be effective for achieving remission 

in Crohn’s disease in a couple of phase-II clinical trials.77 Though recalled once for safety 

evaluations, Natalizumab is back in the market for treating Crohn’s disease and other 
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autoimmune conditions.68 On the other hand, MLN-0002 binds leukocyte α4/β7 integrin, 

preventing leukocyte adhesion to MAdCAM-1 specifically in the intestines. Lastly, this 

agent has demonstrated its efficacy in ulcerative colitis.77 

 
Promising Therapies  

Anti-IL-12/IL-23 p40 antibodies. ABT-874 and ustekinumab target the p40 

subunit shared by IL-12 and IL-23, which are essential cytokines for the differentiation 

and survival of Th cells implicated in intestinal inflammation.78 A trend for remission was 

observed in Crohn’s disease patients receiving ABT-874, which was characterized by 

lower levels of IL-12, IFN-γ, and TNF in the colon. A substantial number of patients, 

however, experienced reactions at the injection site and a small number of them 

developed antibodies against the agent.79  

Recombinant human cytokines. The local administration of anti-inflammatory 

agents like IL-10, which blocks the production of inflammatory mediators by 

macrophages, has shown to increase IL-10 levels in the intestinal mucosa of mice.80 This 

therapy has achieved encouraging results in a phase I study in patients with Crohn’s 

disease 81 and the same approach is being explored in ulcerative colitis.    

Cell-based therapy. Another attractive strategy being explored aims at “resetting” 

the immune system through Hematopoietic cell transplantation (HCT). The majority of 

patients with Crohn’s disease who have undergone allogeneic or autologous HCT have 

achieved remission, thus, establishing the effectiveness of HCT. However, questions such 

as HCT conditioning, transplant related mortality, and the transfer of known susceptible 

genes from allogeneic donor to recipient are of great importance.70 Tolerogenic DCs and 

Treg cells are also being considered as immunotherapeutic tools to restore tolerance. 
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Tolerogenic DCs are characterized by their ability to produce immunosuppressive 

cytokines and downregulate their own expression of co-stimulatory molecules, inducing 

and expanding Treg cells as their key mechanism for the maintenance of tolerance.82 

Genetically modified tolerogenic DCs have been shown to prevent83 and suppress84 

experimental arthritis, but at the same time they have been shown to prime allogeneic 

responses in transplantation, resulting in a faster rejection of the allograft.85 Similarly, in 

vitro expanded Treg cells prevented and reversed diabetes in diabetes-susceptible NOD 

mice;86 however, when Treg cells from diabetic patients were expanded ex vivo these 

mutually expressed TNF-α and IL-17.69       

Finally, though therapies currently available in the market have demonstrated 

acceptable efficacy, concerns such as elevated costs, immunosuppression, development 

of antibodies against used agents, and side effects urgently call for more effective 

therapeutic options. 

 

Myeloid-Derived Suppressor Cells 

 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of 

immature myeloid cells (IMCs), consisting of myeloid progenitor cells, which exhibit 

strong immunosuppressive functions against T cell responses. MDSCs were described 

more than two decades ago as a splenic macrophage-like suppressive cell population 

found responsible for the suppression of antitumor cytotoxicity in a MOPC-315 tumor 

model.87 Young et al. also reported the appearance of a bone marrow derived suppressor 

cell population termed “natural suppressor cells,” which accumulated in response to 

soluble factors produced by tumor cells in tumor-bearing mice88 and in cancer patients.89, 
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90 Further studies identified the expansion of a CD11b+/Gr1+ cell population with similar 

functional characteristics as “natural suppressor cells” and were speculated to be 

responsible for the decline of antigen tumor T cells in immunized mice.91 In recent years, 

this attractive cell population, MDSCs, has gained special attention due to its strong 

potential for immunosuppression observed not only in cancer settings but also in non-

tumor diseases.  

 

Origin of MDSCs 

In the bone marrow, the natural process of myelopoiesis, which is regulated by 

cytokines and soluble factors, generates IMCs. Under physiological conditions, these 

IMCs differentiate into mature DCs, granulocytes, or macrophages; however, in 

pathological settings, the differentiation of IMCs is partially inhibited, resulting in the 

expansion and activation of a cell population with strong immunosuppressive features 

collectively known as myeloid-derived suppressor cells (Fig. A).1  

 

Identification of MDSCs 

The description of MDSCs in tumor settings has facilitated their uniform 

characterization across different diseases in mice, but not in humans. In mice, MDSCs 

lack the expression of mature myeloid cell markers and are consistently identified by the 

non-specific co-expression of both CD11b and Gr1 antigens. CD11b, an αM integrin, is 

mainly expressed on myeloid cells (monocytes and macrophages, granulocytes, DCs) and 

lymphocytes (T and B cells). Gr1 (Ly6G and Ly6C), a myeloid differentiation antigen, is 

expressed by myeloid precursor cells and granulocytes. Monocytes also express Gr1 but  
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transiently.92 Two MDSC subsets have been characterized: CD11b+Gr1high (or 

CD11b+Ly6G+) granulocytic and CD11b+Gr1low (or CD11b+Ly6C+) monocytic.93 While 

the granulocytic group (70-80%) is more numerous than the monocytic group (20-30%), 

the second one is more suppressive.94 Granulocytic MDSCs produce higher amounts of 

ROS and lower levels of NO than monocytic MDSCs, while both express arginase 1.1 

Even though granulocytic and monocytic MDSCs share morphological features between 

polymorphonuclear neutrophils (PMNs) and monocytes, respectively, their functional 

aspects are different. For example, granulocytic MDSCs are immunosuppressive and 

PMNs are not. Also, granulocytic MDSCs produce higher amounts of ROS and arginase 

1, and are less phagocytic than PMNs. The second MDSC subtype, monocytic, is more 

suppressive and produces higher amounts of iNOS and arginase 1 than monocytes.92 In 

humans, MDSCs from cancer patients also lack the expression of mature myeloid cell 

markers, but their phenotype and subsets are rather vaguely described and may vary with 

disease type.95 In malignant settings, MDSCs were originally characterized as LIN-HLA-

DR-CD33+ or CD11b+CD14-CD33+.96 Still, the hallmark and most reliable marker for the 

identification of MDSCs in either mice or humans is their own suppressive function.	
   

  

Expansion and Activation of MDSCs 

In the bone marrow of normal mice, CD11b+Gr1+-expressing cells account for 

approximately 20%, while 2-4% of these cells are found in the spleen with no detectable 

suppressive activity (IMCs make up 0.5% of peripheral blood mononuclear cells in 

healthy persons). Nevertheless, in tumor-bearing mice, this cell population expands in the 

spleen 20-40%, acquiring immunosuppressive functions.1 The expansion of MDSCs is 
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promoted by factors like GM-CSF, G-CSF, M-CSF, SCF, VEFG, and IL-13, which are 

produced during pathological conditions through the stimulation of myelopoiesis and by 

inhibiting their differentiation into mature myeloid cells. These factors elicit signaling 

pathways in MDSCs that lead to the persistent activation of STAT3, which is involved in 

preventing differentiation and apoptosis and promoting survival and proliferation of 

MDSCs.96 The activation of MDSCs, dependent on STAT6 and STAT1 signaling, is 

influenced by factors released by activated T cells and tumor cells such as TGFβ, IFN-γ, 

IL-4, IL-13, and ligands for TLRs; and the activation of these two signaling pathways, 

along with STAT3, contributes to the upregulation of immunosuppressive mediators in 

activated MDSCs.1   

 

Suppressive Mechanisms of MDSCs 

In vitro and in vivo studies have reported mouse MDSCs suppress CD8+ T-cell 

responses in an antigen-specific fashion, perhaps through the uptake and presentation of 

soluble or tumor antigens, and require cell-cell contact.97-100 Whether CD4+ T-cell 

suppression by MDSCs is antigen-specific is still under investigation. Nonetheless, 

MDSC suppression in peripheral lymphoid organs may be antigen-specific in order to 

avoid systemic immunosuppression and to allow T cells to respond to other antigens.92 

The mechanisms of suppression by activated MDSCs include the production of arginase 

1, iNOS, ROS, peroxynitrite, and the induction of Treg cells (Fig. B).1 First, arginase 1, 

produced by both MDSC subsets, metabolizes L-arginine found in the local 

microenvironment. The reduction or depletion of L-arginine negatively influences the 

expression of CD3ς in T cells and impairs their function.101 Second, iNOS, which is 
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mainly produce by monocytic MDSCs, generates NO, which then disrupts JAK3 and 

STAT5 signaling in T cells and inhibits their function.102 Third, ROS is mainly produced 

by the granulocytic group, and it also contributes to the downregulation of the CD3ς-

chain expression in T cells and suppresses their antigen-specific responses.103 Fourth, 

peroxynitrite produced by MDSCs during cell-cell contact nitrates the CD8+ T cell 

receptor, making T cells unresponsive to specific antigen.104 Fifth, MDSCs also promote 

the differentiation of CD4+ T cells into Treg cells, perhaps through interactions of cell-

surface co-stimulatory molecules.105    

 

MDSCs in Different Pathological Conditions 

Since their initial identification in malignant settings more than two decades ago, 

MDSCs have also been recently described in different non-tumor disorders. For instance, 

studies have reported the significant expansion of a CD11+Gr1+ cell population upon 

parasitic infection with Leishmania major,106 Trypanosma brucei,107 T. cruzi,108 and 

Plasmodium chabaudi,108 which mediated T cell hyporesponsiveness via NO.109 During a 

viral infection, the generation of large numbers of CD11b+LyC+ cells suppressed immune 

responses to Theiler’s murine encephalomyelitis virus (TMEV), leading to the 

establishment of continuous infection in the CNS; however, the depletion of these cells 

resulted in the improvement of demyelinating disease that was associated with an 

increase of antigen-specific T cell responses.110 In allergic airway inflammation, three 

CD11b+Gr1+ subsets were identified in which Ly6C+Ly6G- and Ly6C+Ly6G+ showed 

anti-inflammatory activity, while Ly6C-Ly6G+ showed proinflammatory activity.111 The 

increase of a heterogeneous and immature IL-10-producing cell population in a	
  



 

 

 
Figure B. Suppressive mechanisms of MDSCs. Myeloid-derived suppressor cells 
(MDSCs) consist of two main subsets: monocytic MDSCs, which have a CD11b+LY6G-

LY6Chi phenotype, and granulocytic MDSCs, which have a CD11b+LY6G+LY6Clow. In 
most tumour models, it is predominantly (70-80%) the granulocytic subset of MDSCs 
that expands. We suggest that the granulocytic subset of MDSCs has increased activity of 
signal transducer and activator of transcription 3 (STAT3) and NADPH, which results in 
high levels of reactive oxygen species (ROS) but low nitric oxide (NO) production. ROS 
and, in particular, peroxynitrite (the product of a chemical reaction between superoxide 
anion and NO) induces the post-translational modification of T-cell receptors and may 
cause antigen-specific T-cell unresponsiveness. The monocytic MDSC subset has 
upregulated expression of STAT1 and inducible nitric oxide synthase (iNOS), and 
increased levels of NO but low ROS production. NO, which is produced by the 
metabolism of L-arginine by iNOS, suppresses T-cell function through various different 
mechanisms that involve the inhibition of Janus kinase 3 and STAT5, the inhibition of 
MHC class II expression and the induction of T-cell apoptosis. Both subsets have 
increased levels of arginase 1, which causes T-cell suppression through depletion of L-
arginine. Only monocytic MDSCs can differentiate into mature dendritic cells and 
macrophages in vitro. 
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polymicrobial sepsis mouse model, which required signaling though MyD88 for its 

expansion, inhibited CD8+ T cell responses and was observed to also orchestrate the 

characteristic shift from Th1 to Th2 polarization in sepsis.112 Also, a monocytic 

CD11b+Ly6C+Ly6G- cell population with regulatory functions was reported to efficiently 

suppress both CD4+ and CD8+ T cell proliferation through NO production in 

experimental autoimmune encephalomyelitis (EAE).113          

 
Cancer  

In recent years, the study of MDSCs in tumor settings has led to the identification 

of additional markers for this cell population. Blood samples from patients with colon 

cancer,114 breast cancer,115 and kidney cancer116 have shown the expansion of LIN-HLA-

DR-CD33+CD11b+ MDSCs. Similarly, peripheral blood from individuals with different 

types of cancer revealed a defective and immature DC population that lacked the 

expression of HLA-DR (MHC-II) and co-stimulatory molecules, exhibiting inhibitory 

activities against antigen-specific T cell responses in vitro; nevertheless, the addition of 

GM-CSF and all-trans-retinoic acid (ATRA) promoted the differentiation of these cells 

into mature DCs, restoring their capacity to stimulate an immune response.117 In mice, 

CD11b+Gr1+ cells were found to facilitate tumor progression via TGF-β production in a 

4T1 mammary tumor model.118 Additionally, IFN-γ-stimulated Gr1+CD115+ myeloid 

suppressor cells inhibited T cell proliferation in vitro and induced Treg cells via IL-10 

and TGF-β secretion in tumor-bearing mice.119        
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Inflammatory Bowel Disease  

To date, Haile and colleagues have recently reported the appearance of an MDSC-

like cell population in a particular transgenic mouse model of experimental colitis. Colitis 

in mice harboring enterocyte-specific hemagglutinin (HA) was induced by a single 

transfer of HA-specific CD8+ T cells.100 Interestingly, three HA-specific CD8+ T cell 

transfers induced a substantial expansion of CD11b+Gr1+ cells in both spleen and gut. 

These CD11b+Gr1+ MDSCs were found to suppress the proliferation of CD8+ T cells 

when assayed ex vivo.100 Furthermore, co-transfer of splenic MDSCs together with HA-

specific CD8+ T cells impaired inflammation in HA-transgenic mice, thus, demonstrating 

that MDSCs provide protection. Finally, this same group also described the expansion of 

a cell population exhibiting a phenotype suggestive of MDSCs in peripheral blood of 

IBD patients.100 

	
  

Adoptive Transfer of In Vitro Generated MDSCs 

Haile et al.100 demonstrated that the adoptive transfer of MDSCs isolated from the 

spleen of colitis mice ameliorates inflammation; nonetheless, the method for acquiring 

MDSCs is not practical for research and clinical practice. A recent study reported the 

effectiveness of co-transplanted MDSCs generated in vitro in the protection of islet 

allografts from host immune attacks during the entire course, resulting in long-term 

survival in more than 60% of islet allografts in the absence of immunosuppressant 

agents.120 This finding is further supported by another study in which co-transfer of in 

vitro generated MDSCs significantly increased the percentage of long-term survivors in 

about 75% of mice transplanted with allogeneic pancreatic islets for the entire 200-day 
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observation period.121 In GVHD, this approach successfully prevented the disease,122 

leading to long-term survival in about 82% of the recipients.123 These observations 

indicate the potential role of MDSCs in the long-term inhibition of immune responses. 

 

Generation of MDSCs In Vitro 

The generation of MDSCs ex vivo and their subsequent administration into 

patients manifesting diseases characterized by prolonged and abnormal activation of T-

cell responses may potentially improve the patient’s condition by inhibiting these 

aberrant immune responses. Different approaches have been explored for generating 

MDSCs in vitro via co-culture systems using bone marrow,124 or peripheral blood,125 or 

embryonic stem cells123 with a combination of cytokines and growth factors or hepatic 

stellate cells.126 

 
Growth Factors/Cytokines 

Several factors have been reported to promote the expansion of MDSCs in vitro. 

Combined LPS and IFN-γ treatment generates MDSCs from bone marrow progenitor 

cells under GM-CSF conditions, blocking the development of DCs.124 A cocktail of 

cytokines generates functional MDSCs from embryonic stem cells capable of inducing 

CD4+CD25+Fox3+ Treg cells and suppressing T cell activation in vitro and in vivo in a 

GVHD model.123 GM-CSF alone or in combination with a mixture of cytokines promotes 

the generation of CD33+ MDSC-like cells from PBMCs isolated from healthy donors.125 

Also, IL-13122, or GM-CSF and IL-6, or GM-CSF and G-CSF, induce the differentiation 

of mouse and human bone marrow precursor cells into immunosuppressive MDSC.121 
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Hepatic Stellate Cells 

Stellate cells are retinoid-storing cells found in the pancreas, lung, kidney, 

intestine, and liver.127 Extrahepatic stellate cells exhibit a fibroblast morphology, while 

hepatic stellate cells (HSC) display a star-like shape, playing non-immunological and 

immunological functions.128 Of importance, HSC participate in the healing process after 

liver injury, possess strong inhibitory functions against T-cell responses, and have been 

shown to potently induce MDSCs in vitro and in vivo through IFN-γ and complement 3 

(C3) production.126  

When HSCs are in a dormant state, they express desmin and glial fibrillary acidic 

protein (GFAP) and contain lipid droplets in the cytoplasm.129 However, during liver 

injury, HSCs transition into an activated state changing their morphology to that of 

fibroblast-like cells or myofibroblasts, lose retinoids, decrease GFAP expression, 

upregulate the expression of desmin and alpha-smooth muscle actin (α-SMA), and 

secrete multiple factors.129-131 Similarly, in vitro cultures of primary HSCs adhere to the 

surface of uncoated plastic and become activated, change their morphology, lose 

characteristic droplets, and upregulate the expression of α-SMA.131, 132 And, though not 

specific, α-SMA is the most dependable marker for the identification of HSCs in vitro as 

other local cells do not express it with the exception of smooth muscle cells enclosing 

large vessels.131	
   	
    

The co-transplantation of HSCs has been shown to protect islet allografts from 

being rejected by inducing T cell hyporesponsiveness133 and Treg cell development,134 

and by promoting MDSC generation.126 This co-transplantation needs to be autologous as 

allogeneic HSCs provide limited protection;135 nonetheless, large numbers of HSCs are 



	
   22	
  

needed for co-transplantation and such obtainment could add risks to the recipient. 

Alternatively, substantial numbers of MDSCs can be generated in vitro from the 

recipient’s bone marrow-derived myeloid precursor cells in the presence of small 

amounts of HSCs, which can be obtained from discarded liver donors or surgical 

specimens.136 In vitro generated MDSCs have been shown to suppress effector T cell 

responses in vivo, thereafter, substituting HSCs for protecting cell transplants from 

immune attack.126 In addition, this same group recently demonstrated that MDSC 

propagation by HSCs is not major histocompatibility complex (MHC) restricted;136 that 

is, allogeneic HSCs can be used to induce recipient’s bone marrow-derived MDSCs. 

Collectively, these exciting findings demonstrate that generating MDSCs in vitro is 

feasible.	
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RATIONALE 

 
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory 

condition of the gastrointestinal tract characterized by exaggerated Th1 and Th17 cell 

responses and deficient Treg cell functions. In IBD, a defective innate immune system 

fails to control bacterial entry into the gut mucosa, leading to the abnormal activation of 

adaptive immunity, which results in substantial intestinal damage. In particular, over-

activated Th cells from the adaptive immune system secrete proinflammatory cytokines 

such as TNF, IFN-γ, and IL-17, which exacerbate inflammation causing bowel tissue 

destruction.78 Though other immune cells also contribute to the production of these 

cytokines, the inflammatory cytokine secretion especially from T cell sources has been 

found to have deleterious effects in autoimmune diseases and to also recruit and activate 

other inflammatory cells.137  

Current biological therapies aim at blocking the aforementioned proinflammatory 

cytokines after being released,78 often targeting a single molecule (e.g. TNF); however, 

their effectiveness is limited, among other reasons, due to the heterogeneity of IBD, 

which involves multiple cytokines and immune cells for its development. A commonly 

used therapy in clinical practice that has achieved great success is infliximab, an anti-

TNF mAb, but its drawbacks such as high costs ($27,000/year) and the large proportion 

of individuals that develop antibodies against the agent outweigh its benefits.138, 139	
  

Alternatively, cell-based therapies like Hematopoietic cell transplantation (HCT) have	
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attempted to “reset” the immune system through hematopoietic cell infusion, 

demonstrating great promise by inducing clinical remission in Crohn’s disease patients.70 

Nonetheless, HCT requires rigorous conditioning, including high doses of chemotherapy, 

and it also involves the potential for transplant-related mortality and the transfer of 

known susceptible genes between allogeneic donor and recipient, predisposing recipients 

to other diseases.140 Other attractive therapeutic approaches in mouse models have shown 

the potential of tolerogenic dendritic cells (DCs) and regulatory T cells (Treg) to restore 

tolerance. Genetically engineered tolerogenic DCs have been shown to prevent83 and 

suppress84 experimental arthritis, but at the same time they have been shown to prime 

allogeneic responses, resulting in a faster rejection of the allograft.85	
  Such DCs exert their 

tolerogenic effects via the induction of Treg cells,82 hence their persistence could lead to 

immunosuppression. Similar to tolerogenic DCs, Treg cells have been shown to revert 

diabetes in mice,86 but their inherent instability and plastic phenotype, such as the 

concomitant expression of TNF-α and IL-17, could be detrimental.69 Thus, the urgent 

need for novel and more effective therapies is eminent. 

 

Myeloid-derived suppressor cells (MDSCs) exhibit intrinsic suppressive functions 

against multiple Th cell responses and also promote the development of Treg cells. 

MDSCs are expanded by factors produced during a pathogenic state which include 

cyclooxygenase 2, prostaglandins, stem-cell factor, and macrophage-colony stimulating 

factor, triggering signaling pathways like STAT3 that prevent their differentiation; the 

activation of MDSCs is carried out by factors produced mainly by T cells, such as IFN-γ, 

ligands for Toll-like receptors, and IL-4, which also activate signaling pathways like 
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STAT6, STAT1, and nuclear factor-κB involved in the upregulation of short-lived 

soluble mediators.1 These soluble mediators include arginase 1, iNOS, ROS, and 

peroxynitrite through which MDSCs mediate their immunosuppressive activities. The 

initial identification of MDSCs in cancer88, 89 has led to their recent description in other 

conditions like viral110 and parasitic109 infections, allergy,111 sepsis,112 

encephalomyelitis,113 and experimental colitis.100    

At the present time, little is known about MDSCs in IBD. To address this, we 

sought to determine the role of MDSCs in a TNBS-induced colitis mouse model, which is 

commonly used for IBD research due to its immediate onset colonic inflammation and 

absence of genetic manipulations typically not found in IBD patients.141 MDSCs play 

multiple roles in the immune system depending on the context that they are found in. For 

example, in tumor settings, they assist malignant cells to evade immune surveillance, 

while in autoimmune diseases like IBD, MDSC-mediated Th cell inhibition may protect 

the host. Though MDSCs are expanded in inflammatory conditions like IBD, their 

numbers are not sufficient to help ameliorate intestinal inflammation.100 Strong evidence 

from animal models of graft-versus-host disease (GVHD)122 and enterocolitis100 suggest 

that the adoptive transfer of MDSCs, either generated in vitro126 or isolated ex vivo,100 

significantly improves immune-mediated injury. Several systems have been developed to 

generate MDSCs in vitro through cultures of bone marrow progenitor cells together with 

a cocktail of cytokines or hepatic stellate cells (HSCs). Here, we used HSCs as they have 

been shown to propagate large numbers of MDSCs in vitro. Therefore, an adoptive cell 

therapy with MDSCs could target the proliferation and effector functions of Th cells, 

limiting or even preventing the release of multiple inflammatory cytokines (e.g. TNF, 
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IFN-γ, and IL-17) that cause intestinal tissue destruction, and induce Treg cells to restore 

and maintain tolerance. Questions whether MDSC persistence would predispose IBD 

patients to cancer are of great importance; nevertheless, MDSCs have been shown to 

disappear upon disease improvement.126, 142 Hence, we hypothesize that TNBS-induced 

colitis promotes the expansion of MDSCs, and that the adoptive transfer of in vitro 

generated MDSCs can ameliorate murine acute colitis via Th1 and Th17 cell 

suppression and through the induction of Treg cells. 	
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SPECIFIC AIMS 

 
1. To identify myeloid-derived suppressor cells in mice with TNBS-induced acute colitis.  

 

2. To establish the technique for generating hepatic stellate cell-induced myeloid-derived 

suppressor cells (H-MDSCs) in vitro from bone marrow progenitor cells  

 

3. To explore whether adoptive transfer of hepatic stellate cell-induced myeloid derived 

suppressor cells (H-MDSCs) can improve TNBS-induced acute murine colitis.	
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MATERIALS AND METHODS 

 
Animals 

 Female BALB/c mice (7-8 weeks old) were purchased from Charles River  

Laboratories (Saint-Constant, PQ, Canada) and kept at the Central Animal Care Services,  

University of Manitoba. The University Animal Ethics Committee approved all protocols  

used.  

      

Induction of Colitis 

 A commonly used mouse model of IBD is colitis induced by 2,4,6-trinitrobenzene 

sulfonic acid (TNBS), which haptinizes colonic proteins leading to the development of a 

delayed-type hypersensitivity reaction characterized by Th1 responses.141 This hapten-

induced colonic inflammation mimics human Crohn’s disease characterized by 

transmural mononuclear cell infiltrates, abnormal crypt architecture, loss of goblet cells, 

and ulcerations. Here, mice were lightly anesthetized with isoflurane, and then 

intrarectally challenged with TNBS (Sigma-Aldrich) via a 3.5 F catheter affixed to a 1-

mL syringe. The catheter was inserted through the rectum until the tip was advanced 4 

cm into the colon, and a total of 100 µl of TNBS (1.8 mg in 50% ethanol) was injected. 

To ensure retention of TNBS within the entire colon and cecum, mice were held in a 

vertical position for 40 seconds after the administration. For the development of acute 

colitis, mice were administered TNBS twice at days 1 and 8. All animals were sacrificed 
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4 days after the second TNSB challenge.  

 

Body Weight Monitoring 

 Mice were monitored twice a day for the first 48 hours and once a day thereafter. 

All animals, expect normal group, received 1 mL of saline 24 hours after each TNBS 

challenge as they dehydrate and sometimes present symptoms of diarrhea. Mice were 

weighed daily in the mornings prior to either TNBS or saline administration. Mice that 

reached a humane end point at 20% body weight loss were sacrificed and their body 

weight values excluded from the analysis.  

 

Preparation of HSCs 

 HSC were isolated from normal mouse livers by perfusion, via subhepatic vena 

cava, with 20 mL of a solution (I) containing Ca2+ and Mg2+ –free Hank’s balanced salt  

solution (HBSS; Sigma Chemical Company), 283 g/L HEPES, 35 g/L NaHCO3, 90 g/L  

glucose, 8.5 g/L EGTA, pH 8, followed by 20 mL of a solution (II) containing 0.15  

mg/mL collagenase D (Roche Diagnostics, Indianapolis, IN). The liver was then excised, 

mashed, and incubated at 37oC for 20 minutes in a suspension solution (III) containing 

0.15 mg/mL collagenase D, 0.4 mg/mL pronase (Roche Diagnostics, Indianapolis, IN), 

20µg/mL DNase (Roche Diagnostics, Indianapolis, IN). Both solutions II and III were 

dissolved in Ca2+ and Mg2+ –free Hank’s balanced salt solution (HBSS; Sigma Chemical 

Company), 283 g/L HEPES, 35 g/L NaHCO3, 90 g/L glucose, 110 g/L CaCl2). The 

resulting homogenate was filtered and then centrifuged on a density gradient cushion. 

HSC were collected from the upper layer and cultured in 20% FCS in 5% CO2 in air at 
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37oC for 7-14 days. The purity of HSC was > 95% as determined by the expression of α-

SMA and their star-like shape appearance examined under typical light.126      

 

LPMC Isolation 

 LPMC were isolated from freshly removed colon tissue. Colon samples were 

washed in Ca2+ and Mg2+ –free Hank’s balanced salt solution (HBSS; Sigma Chemical 

Company), opened longitudinally, cut into 5 mm pieces, and incubated in HBSS 

containing EDTA (0.37 mg/mL) and DTT (0.145 mg/mL) at 37oC for 30 minutes in a 

shaking incubator (this releases intraepithelial lymphocytes and epithelial cells). The 

tissue specimens were then digested in Ca2+ and Mg2+ –free HBSS containing 0.5 mg/mL 

collagenase D (Roche Diagnostics, Indianapolis, IN) and 0.01mg/mL DNase (Roche 

Diagnostics, Indianapolis, IN) in a shaking incubator for 1.5 hours at 37oC. The released 

cells were centrifuged on a 40-100% Percoll gradient (Pharmacia). LPMC were collected 

at the 40-100% interface.  

 

Splenocyte Isolation 

 The spleen was removed and mashed with a plunger through a cell strainer. 

Splenocytes were lysed of red blood cells, washed in phosphate buffer solution (PBS), 

and resuspended in RPMI-1640.  

  

HSC-Induced MDSC (H-MDSC) Generation 

 Bone marrow (BM) cells were isolated from normal mouse tibias and femurs, 

lysed of red blood cells, and 2 X 106/well cultured in 10% FCS in the presence of 15 
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ng/mL GM-CSF. HSCs were added at the beginning of culturing (HSC:BM cell ratio of 

1:50). The BM cell culture without HSC was used as control cells (cells were exposed to 

1 µg/mL LPS for the last 18-hour culture to generate mature DCs). 5-6 days later, both 

H-MDSC and DC cultures were harvested.  

 

Adoptive Transfer 

The following four groups were used for this experiment: 

A) H-MDSCs (received TNBS and H-MDSCs; n=8) 

B) DC (received TNBS and DCs; n=7)   

C) Saline (received TNBS and saline; n=7) 

D)	
  Normal (received neither TNBS nor H-MDSCs; n=4)  

 A total of 1 X 106 in vitro generated H-MDSC were adoptively transferred into 

mice in the H-MDSC group. 1 x 106 mature DCs were injected into mice in the DC 

group. Mice in the saline group received 100 µL saline. All mice in these three groups 

received intravenous injections through the tail vein once on day 1, 4 hours prior to the 

first TNBS administration. TNBS was given on day 8 again. All mice were sacrificed 

four days after the second TNBS challenge and the spleen and colon were removed for 

analysis.  

 

Cytokines Measured by ELISA 

 Frozen colonic specimens were homogenized in a buffer consisting of 1M Tris-

HCl, 3M NaCl, and 10% Triton supplemented with protease cocktail (Sigma-Aldrich, St. 

Louis. MO). Then, samples were frozen at -70°C and thawed in a water bath at 37°C. 
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This process was repeated three times and was followed by centrifugation at 2,500 rpm 

for 10 minutes at 4°C. The supernatants were immediately used to measure the 

concentrations of TNF, IFN-γ, and IL-17 (BD Bioscience) by ELISA or frozen at -70°C 

until assayed. ELISA measurement was performed according to the manufacturer’s 

instructions. 

 

Flow Cytometry Analysis 

 PE-Cy7-anti-CD11b, PE-anti-Gr1, FITC-anti-Ly6C, and APC-anti-Ly6G 

monoclonal antibodies were purchased from Biolegend. 1 X 106 cells were stained with 

labeled antibodies against CD11b, Gr1, Ly6C, Ly6G, and incubated on ice for 30 minutes 

and then washed with FACS buffer. Cells were analyzed on a FACS Calibur flow 

cytometer (Becton Dickinson, Mountain View, CA). Data analysis was performed using 

FlowJo software (Tree Star, Ashland, OR).  

 

Histology 

 The intestine was removed, sectioned, and fixed in 10% formalin. The tissue 

sections were embedded in paraffin blocks and cut longitudinally 6-µm thick. Slides were 

stained with hematoxylin and eosin (H&E) for inflammation assessment. A pathologist, 

blinded to the type of treatment, examined the histological sections according to the 

following parameters: a) severity of inflammation (based on polymorphonuclear 

neutrophil infiltration; 0-3: none, slight, moderate, severe), depth of injury (0-3: none, 

mucosal, mucosal and submucosal, transmural), and crypt damage (0-4: none, basal one-

third damaged, basal two-thirds damaged, only surface epithelium intact, entire crypt and 



	
   33	
  

epithelium lost). Mice received scores individually, all of which were added to a 

maximum of 10.   

  

Immunofluorescence Staining 

 Cells were grown on uncoated 8-well coverslip dishes and fixed in ice-cold 4% 

paraformaldehyde at room temperature for 30 minutes. Cells were then permeabilized in 

blocking solution (Amresco, United States) containing 0.5% Triton X-100 and incubated 

at 4oC for 1 hour with FITC-labeled anti-α-SMA (1:200) antibody in 1%BSA solution. 

Cells were then stained with Hoechst (1:200) and incubated at room temperature for 5 

minutes. The reaction was evaluated using fluorescent microscopy.   

 

Statistical Analyses 

 All experiments were performed more than two times, and values expressed as 

mean ± SD and analyzed by one-way analysis of variance (ANOVA) followed by 

Newman-Keuls multiple comparison test or Student’s t test using GraphPad Software 

(San Diego, California, USA). P < 0.05 was considered statistically significant.  
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RESULTS 

 
CD11b+Gr1+ MDSCs Are Expanded in Experimental Colitis 

To address the question whether MDSCs accumulate in TNBS-induced acute colitis, we 

detected CD11b+Gr1+ MDSCs in BALB/c mice with colitis. Mice were intrarectally 

challenged twice with TNBS to establish the development of intestinal inflammation. All 

mice were sacrificed four days after the second TNBS administration and their spleens 

and colons were examined. Spleens from normal mice contained 4.34±0.41% of 

CD11b+Gr1+ cells (Fig. 1A); however, a significant increase in the number of 

CD11b+Gr1+ MDSCs was observed in mice with colitis (Fig. 1A). We further 

characterized CD11b+Gr1+ MDSCs into their two well-defined subsets, monocytic and 

granulocytic, based on their phenotypic expression CD11b+Ly6C+ and CD11b+Ly6G+, 

respectively. Both monocytic and granulocytic subtypes were significantly increased in 

the colitis group when compared with normal mice (Fig. 1B and C). In addition, we 

analyzed whether the expansion of CD11b+Gr1+ MDSCs in the spleen and LPMC is 

correlated with the severity of the disease. In a normal mouse, 0.27% of LPMCs and 

4.77% of splenocytes were CD11b+Gr1+ MDSCs (Fig. 2, far left panel). The frequency of 

this cell population was relatively higher in animals with moderate inflammation or 

severe inflammation. In a colitis mouse with moderate inflammation, CD11b+Gr1+ 

MDSCs were found to be 1.57% of LPMCs and 10.29% of splenocytes (Fig. 2, middle 

panel), while in a colitis mouse exhibiting severe inflammation, CD11b+Gr1+ MDSCs	
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were found to be 12.5% of LPMCs and 59% of splenocytes (Fig. 2, far right panel). The 

frequency of CD11b+Gr1+ MDSCs in each mouse was higher in spleen than LPMCs (Fig. 

3). Taken together, these findings indicate CD11b+Gr1+ MDSCs are significantly 

increased in experimental colitis and that this expansion in the spleen and LPMCs 

correlates with the severity of intestinal inflammation.  

 

Figure 1. CD11b+Gr1+ MDSCs are increased in the spleen of TNBS-induced acute 
colitis. BALB/c mice were intrarectally challenged with TNBS twice at a one-week 
interval. Four days after the second TNBS administration, mice were sacrificed. 
Splenocytes were isolated from normal and colitis mice, stained for markers expressed by 
MDSCs and their two subsets, CD11b, Gr1, Ly6C, and Ly6G, and analyzed by flow 
cytometry. (A) Colitis mice showed a significant increase in CD11b+Gr1+ MDSCs when 
compared to naïve mice. This same expansion was seen when CD11b+Gr1+ MDSCs were 
further characterized into their respective (B) monocytic and (C) granulocytic subsets. 
**P < .01 
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Figure 2. Expansion of CD11b+Gr1+ MDSCs in LPMCs and spleen is correlated to some 
extent with the severity of acute colitis. Representative analysis of CD11b+Gr1+ MDSCs 
in LPMCs and spleen of colitis mice shows the recruitment of this cell population is 
highest in a mouse with severe disease (far right panel). Also, the expansion of 
CD11b+Gr1+ MDSCs in LPMCs and spleen is higher in a mouse with severe 
inflammation (middle panel) than in the naïve mouse (far left panel). 
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Figure 3. The frequency of CD11b+Gr1+ MDSCs is higher in spleen than LPMCs. All 
three mice expressed higher percentages of CD11b+Gr1+ MDSCs in the spleen (right) 
than LPMCs (left), but these were highest in the mouse with severe inflammation than in 
the mouse with moderate inflammation and naïve mouse.  
 
 
 
 
 
 
 
 
 
 
 
 
	
  



	
  38	
  

HSCs Promote the Development of MDSCs In Vitro 

 To generate MDSCs in vitro, we first isolated and cultured HSCs from mouse 

liver for 7-14 days. HSCs adhered to the bottom of the 6-well plate, proliferated, and lost 

their intracytoplasmatic lipid droplets as they became activated by day 9. HSCs 

transitioned from a quiescent state noted by their star-like shape to an activated state 

observed by a myofibroblast morphological change (Fig. 4A). HSCs were identified by 

their morphological characteristics under light microscopy and by the expression of α-

SMA (Fig. 4B), a marker for activated HSCs, using fluorescent microscopy. We then 

isolated bone marrow cells from normal mouse femurs and tibias and cultured them. 

HSCs were added at the beginning of culture at a ratio of 1:50 (HSC:BM), in the 

presence of GM-CSF, for 5 days to generate HSC-induced MDSCs (H-MDSCs). Cell 

culture without HSCs was used as control cells and LPS was added during the last 18 

hours of culture to drive the maturation of DCs. These cultures were stained with labeled 

antibodies against CD11b, CD11c, Gr1, Ly6C, and Ly6G, and analyzed using flow 

cytometry. 90.1% of H-MDSCs were CD11b+CD11c- and 62.6% of DCs were 

CD11b+CD11c-. In H-MDSC cultures, 47.7% of cells expressed CD11b and Gr1 

molecules; while in DC cultures, 33.2% of cells expressed CD11b and Gr1 molecules. H-

MDSCs contained only 1.14% of CD11b+CD11c+
 cells, whereas DCs contained 25.4% of 

CD11b+CD11c+ (Fig. 5), indicating the inhibition of DC development in the CD11b+Gr1+ 

H-MDSCs culture. 

To further characterize these in vitro generated MDSCs into their respective 

subsets, granulocytic and monocytic, cell cultures were gated on CD11b+ and analyzed 

for the expression of Ly6C and Ly6G. Here, 43.1% of H-MDSCs were Ly6G+Ly6C- 
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granulocytic and 0.289% were Ly6G-Ly6C+ monocytic; while 20.4% of DCs were 

Ly6G+Ly6C- and 3.79% were Ly6G-Ly6C+ (Fig. 6). Our results indicate HSCs induce 

high levels of CD11b+Gr1+ MDSCs, and that most of these H-MDSCs express markers 

that resemble the granulocytic subset, Ly6G+Ly6C-. 

 

 

Figure 4. Morphology of HSC culture at day 9. (A) HSCs were isolated from mouse 
livers and cultured in RPMI-1640 medium supplemented with 20% fetal bovine serum 
for 7-14 days. The purity of HSC preparation was > 95% as determined by their typical 
appearance under a light microscope and by their expression of α-SMA. (B) The 
expression of α-SMA by HSCs was analyzed by fluorescent microscopy. HSCs were 
grown on uncoated 8-well coverslip dishes, fixed in ice-cold 4% paraformaldehyde, and 
stained with FITC-labeled antibody against α-SMA and Hoechst for the nuclei at a 
dilution of 1:200. The green color shows α-SMA and the blue color shows the nuclei. 
Magnification (X 400). 
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Figure 5. In vitro generation of H-MDSCs from bone marrow progenitor cells. 2 X 106 
bone marrow cells were co-cultured with HSCs at a ratio of 50:1 in the presence of GM-
CSF for 5 days to generate CD11b+Gr1+ H-MDSCs (bottom left). For control cells, 
CD11b+CD11c+ DCs, LPS was added during the last 18 hours of culture (upper right). 
Cells were stained against CD11b, CD11c, Gr1, Ly6C, and Ly6G, and analyzed using 
flow cytometry. 
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Figure 6. Characterization of in vitro generated H-MDSCs. Cells were stained against 
CD11b, CD11c, Gr1, Ly6C, and Ly6G, and analyzed using flow cytometry. H-MDSCs 
(left) and DCs (right) were gated on CD11b+ and further characterized into monocytic 
and granulocytic subsets based on the expression of Ly6C and Ly6G.  
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Adoptive Transfer of H-MDSCs Ameliorates Experimental Colitis 

 Our lab has previously investigated the suppressive activity of in vitro generated 

H-MDSCs and found H-MDSCs inhibit the differentiation of Th17 cells and induce Treg 

cell differentiation in an in vitro system. Hence, we investigated the effects of in vitro 

generated H-MDSCs in an in vivo system using TNBS-induced acute colitis mice by 

adoptive transfer. In this preventive study, mice were injected 1 X 106 H-MDSC or 

control cells intravenously (tail vein) on day 1. Four hours later, mice received the first 

TNBS administration and a second dose on day 8 (1.8 µg in 50% ethanol). The transfer 

of H-MDSC resulted in mild colitis as indicated by the improvement in body weight loss 

after day 6 and by the fast recovery following the second TNBS dose (Fig. 7). A 

maximum of 4.17% loss in body weight was seen in the treated mice after the second 

TNBS administration, while the positive control groups, saline and DC, showed a 

maximum of 9.08% and 9.85% loss in body weight, respectively (Fig. 7). We also 

assayed for inflammatory cytokines known to play a central role in the development of 

inflammation in TNBS-induced colitis such as TNF, IFN-γ, and IL-17. As expected, 

colonic TNF, IFN-γ, and IL-17 cytokine levels were significantly downregulated in the 

group treated with H-MDSCs when compared to DC and saline groups (Fig. 8). The 

improvement of intestinal inflammation in the H-MDSC treated group was further 

confirmed by histological analysis of the colonic tissue. H&E staining indicated that mice 

receiving H-MDSCs had a more preserved intestinal structure and slight neutrophil 

infiltrates, correlating these changes with a 3.75 inflammation score. In contrast, colonic 

tissue sections from the saline and DC groups showed the presence of basal two-thirds 

crypt damage and moderate neutrophil infiltrates, correlating with a 6.25 and 5.8 
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inflammation score, respectively (Fig. 9). Our data suggest adoptive transfer of H-MDSC 

improves body weight loss and downregulates inflammatory cytokines in colonic tissue, 

thus, ameliorating intestinal inflammation 

 

 

 

 

 
Figure 7. Adoptive transfer of H-MDSCs improves body weight loss. Mice were 
intravenously injected once with 1 X 106 H-MDSCs, or 1 X 106 DCs, or 100 mL of 
saline. Four hours later, the first TNBS challenge was administered (1.8 µg in 50% 
ethanol) followed by a second dose on day 8. Four days after the second TNBS 
administration, mice were sacrificed and their spleen and colon were removed for 
analysis. As expected, mice treated with H-MDSCs showed improved body weight loss 
when compared to the saline and DC groups.   
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Figure 8. Adoptive transfer of H-MDSCs downregulates colonic levels of inflammatory 
cytokines. Splenocytes were stained for TNF, IFN-γ, and IL-17, and analyzed by ELISA. 
Th cell inflammatory cytokines levels were significantly downregulated in mice treated 
with H-MDSCs compared to saline and DC groups. *P < 0.05, **P < 0.01 
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Figure 9. Adoptive transfer of H-MDSCs improves intestinal inflammation. Colonic 
samples were stained with H&E and analyzed by a histopathologist blinded to the 
different treatment groups. The inflammation scores were assigned based on three 
different parameters: severity of inflammation, depth of injury, and crypt damage. 
Magnification (X 100), *P < .05 	
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DISCUSSION 

 
 The secrets of IBD remain to be unlocked; nonetheless, substantial evidence 

supports the theory of a multi-factor phenomenon versus a single component as the 

causation of the disease.3 Though it is widely accepted that the combination of 

environmental factors, genetic factors, enteric microflora, and abnormal immune 

responses contribute to the development of IBD, the last one is implicated to directly 

induce tissue damage. Aberrant immune responses are explicitly seen in both forms of 

IBD, Crohn’s disease and ulcerative colitis. Crohn’s disease has been characterized by 

the enhanced expression of Th1 and Th17 cell cytokines, while ulcerative colitis exhibits 

a moderate Th2 cytokine profile.143 It is important to note that although the main 

inflammatory cytokines involved in the pathogenesis of IBD are characteristic of the 

aforementioned Th cell subsets, other immune cells also secrete these cytokines, thus, 

contributing to the development of the disease. For example, in Crohn’s disease, Th1 

cells produce TNF and IFN-γ and Th17 cells secrete IL-17. Similarly, macrophages/NK 

cells produce TNF and IFN-γ and neutrophils/CD8+ T produce IL-17.41, 144 Th2 cells 

make IL-13, and NK T cells also produce this cytokine in ulcerative colitis.145 Hence, the 

targeting of a single cytokine or immune cell is unlikely to effectively treat the condition, 

as IBD is a heterogeneous disease that relies on multiple cytokines and immune cells for 

its development.  
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MDSCs are an attractive group of cells exhibiting strong suppressive functions 

against various types of T cell responses in pathological states,1 although their 

physiological role still remains a mystery. A great wealth of evidence indicates the 

expansion of MDSCs in cancer settings promotes tumor escape from immune 

surveillance;96 however, the immunoregulatory role played by MDSCs may be beneficial 

in autoimmune and inflammatory diseases like IBD. Herein, we detected CD11b+Gr1+ 

MDSCs in both normal and TNBS-induced colitis mice. Splenocytes and LPMCs of 

colitis mice were stained against CD11b and Gr1, and analyzed using flow cytometry. As 

expected, both the spleen and LPMCs of colitis mice showed a significant increase of 

CD11b+Gr1+ cells when compared to normal mice. Our data are supported by another 

experimental colitis study where the expansion of CD11b+Gr1+ MDSCs was reported in 

the spleen and MLN of antigen-specific enterocolitis transgenic mice.100 A caveat to 

MDSC identification is the lack of specific markers as other immune cells also co-

express CD11b and Gr1; thus, the assessment of inhibitory functions by CD11b+Gr1+ 

cells is important to indicate whether these CD11b+Gr1+ cells are MDSCs. Although the 

immunosuppressive properties of expanded CD11b+Gr1+ cells were not explored in this 

study, my colleagues did perform functional assays and found that CD11b+Gr1+ isolated 

from colitis mice could inhibit the proliferation of splenocytes in vitro when compared 

with control cells (manuscript submitted). Hence, based on their expression of cell 

surface markers and their inhibitory activity in vitro, these expanded CD11b+Gr1+ cells in 

TNBS-induced colitis mice are therefore regarded as MDSCs.  

In addition, we investigated the increase in frequency of CD11b+Gr1+ MDSCs in 

relation to the severity of the disease in three mice representative of normal, moderate 
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inflammation, and severe inflammation. As anticipated, the mouse affected by severe 

inflammation expressed the highest percentage of CD11b+Gr1+ cells in the spleen and 

LPMCs compared to the mouse with moderate inflammation and the naïve mouse, 

respectively. Although these results came from a small sample analyzed at one time point 

only, our lab (manuscript submitted) and others142 have reported the kinetics of MDSC 

accumulation in colitis and prostate inflammation, respectively, showing the highest 

frequency of MDSCs at the peak of acute inflammation.         

Though MDSCs are expanded in experimental colitis, their numbers are not 

sufficient to improve the disease. Thus, the adoptive transfer of MDSCs generated in 

vitro may be required to regulate inflammatory responses. Here, we used HSCs due to 

their strong potential for promoting MDSC generation in vitro and in vivo.126 

Additionally, our lab has previously compared the suppressive activity of in vitro 

generated MDSCs using three different approaches by co-culturing BM cells together 

with IL-6/GM-CSF, or LPS/GM-CSF, or HSCs, and found H-MDSCs to exhibit the 

strongest effects for promoting Treg cell differentiation and for inhibiting Th17 cell 

differentiation than the other two approaches (unpublished data). Therefore, we isolated 

HSCs and identified them by their typical morphological appearance and by the 

expression of α-SMA (purity > 95%). Next, we co-cultured BM cells together with HSCs 

to generate H-MDSCs in vitro. Approximately 50% of CD11b+ cells from the H-MDSC 

culture were Gr1+; while the frequency of control cells expressing CD11c was ~25%. 

Thus, it is necessary to improve culturing techniques in order to obtain a higher 

frequency of CD11b+Gr1+ H-MDSCs and a higher purity of DCs (CD11c+). Also, in vitro 
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generated H-MDSCs will require further assessment to explore whether they mediate 

suppression through the production of iNOS and arginase 1. 

 To investigate whether in vitro generated H-MDSCs improved intestinal 

inflammation, we adoptively transferred H-MDSCs into TNBS-induced colitis mice, as 

this mouse model resembles close immunological characteristics of Crohn’s disease.141 

Mice receiving H-MDSCs showed improved body weight loss, reduced levels of colonic 

Th cell inflammatory cytokines (TNF, IFN-γ, and IL-17), and a more preserved intestinal 

structure. Other groups have also demonstrated that adoptive transfer of in vitro 

generated MDSCs potently inhibit unwanted immune responses in transplantation126 and 

GVHD.122 Although our findings show that H-MDSCs provided greater protection in the 

maintenance of intestinal mucosa over mature DCs, perhaps by downregulating Th cell 

cytokine levels, the use of other control cells such as immature DCs and macrophages 

need to be considered in future experiments. Also, Treg cell cytokines such as IL-10 and 

TGF-β need to be assessed in mice treated with H-MDSCs, as these were not evaluated in 

this study.   

Now, the adoptive transfer of MDSCs and the potential local or systemic 

persistence of immunosuppressive MDSCs might raise concerns that they could create a 

favorable environment for tumor growth, increasing the risk for cancer development. 

This situation, however, seems unlikely to occur as the recruitment and activation of 

MDSCs takes place exclusively during pathological settings in response to inflammation- 

and cancer-released mediators.1 Reports have shown that MDSCs disappear or decline in 

numbers upon disease improvement.126, 142 Thus, the role of MDSCs should be 

investigated in inflammation-related tumorigenesis using the DSS-induced colitis-
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associated colon cancer model146 to explore whether treatment with MDSCs contributes 

to tumor growth and progression.  

A cell-based therapy using MDSCs seems attractive for the potential treatment of 

IBD; however, questions related to safety, stability, dosage, route of administration, and 

the predisposition to cancer are of great importance. Little is known about B cells in IBD; 

thus, it would be interesting to explore whether MDSCs also influence the expansion of 

the CD1d- B cell subpopulation, which has been reported to exhibit regulatory functions 

in a diabetes mouse model.147 Future studies will require clarification on the mechanisms 

of MDSC-mediated Th cell suppression in non-cancer pathogenic conditions as most of 

the existing knowledge on the MDSC field has come from tumor setting reports in which 

the expression of MHC II by MDSCs was absent or substantially low.92  
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CONCLUSION 

 
Herein, we reported for the first time a potential preventive role of MDSCs in 

TNBS-induced colitis, a murine model that resembles Crohn’s disease in several aspects, 

including cytokine dysregulation and no genetic modifications normally not found in IBD 

patients.141 In this study we showed that CD11b+Gr1+ MDSCs are expanded in TNBS-

induced murine colitis, but such increase in MDSC numbers is not sufficient to prevent 

the disease. Our findings demonstrated that in vitro generated H-MDSCs are effective in 

the amelioration of TNBS-induced colitis. Adoptive transfer of H-MDSCs alleviated 

intestinal inflammation as indicated by the improvement in body weight loss, 

downregulation in Th cell inflammatory cytokine levels in the colon, and reduction of 

inflammation scores, suggesting that H-MDSCs exhibit an immunoregulatory role in 

vivo. Our work differs from the one published by Haile et al.,100 mainly due to the fact 

that they analyzed the role of MDSCs in a colitis model of IBD using transgenic mice 

that expressed hemagglutinin in enterocytes and their method for acquiring MDSCs is not 

practical for research and clinical practice as they isolated MDSCs from the spleen; 

hence, we believe our model better addresses these potential issues, making it more 

suitable for translation research. Other groups have shown the expansion of MDSCs in 

vitro from human peripheral blood125 and bone marrow,121 but further research is needed 

to better characterize these cells in non-malignant settings and to generate MDSCs that 

are suitable for safe administration to individuals with autoimmune diseases like IBD. A	
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cell-based therapy with MDSCs has great potential for the effective treatment of IBD, 

one that could prove to be superior to current strategies by directly preventing Th cell 

inflammatory cytokine secretion instead of attempting to block individual molecules after 

they have already been released.    
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