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ABSTRACT

This thesis is devoted to a problem in the representation theory of the symmetric
group over C (the field of complex numbers). Let d be a positive integer, and let Sd

denote the symmetric group on d letters. Given a partition λ of d, the Specht module
Vλ is a finite dimensional vector space over C which admits a natural basis indexed by
all standard tableaux of shape λ with entries in {1, 2, . . . , d}. It affords an irreducible
representation of the symmetric group Sd, and conversely every irreducible representa-
tion of Sd is isomorphic to Vλ for some partition λ. Given two Specht modules Vλ, Vµ,
their tensor product representation Vλ ⊗ Vµ is in general reducible, and hence it splits
into a direct sum

⊕
ν

V mν
ν of irreducibles. This raises the problem of describing the Sd-

equivariant projection morphisms (alternately called Sd-homomorphisms) of the form
Vλ ⊗ Vµ −→ Vν in terms of the standard tableaux bases. In this work we give explicit
formulae describing this morphism in the following cases:

• V(d−1,1) ⊗ V(d−1,1) −→ V(d−1,1),

• V(1d) ⊗ Vλ −→ Veλ , where λ = (d− 1, 1) or (2, 1d−2) and λ̃ is its conjugate.

The isomorphism Vλ ' V ∗
λ induces an equivariant projection morphism (which we

call a q-morphism)
Vλ ⊗ Vλ −→ V(d)

∼= C.

We have found explicit formulae for this morphism in the following cases:

λ = (d− 1, 1), (d− 2, 1, 1), (2, 1, . . . , 1).

Finally, we present a conjectural formula for the q-morphism in the case

λ = (d− r, 1, . . . , 1).
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Chapter 1

Introduction

From the general theory of representations and characters of finite groups, we focus
on the representation theory of the symmetric group Sd over C. We use the Specht
modules associated to the various partitions of d as the realizations of the irreducible
representations of Sd. In this thesis we exhibit explicit formulae for certain equivariant
projection morphisms of Specht modules.

If G is a finite group, then (for us) a representation of G will be a finite dimensional
C-vector space V together with a group homomorphism ρ : G −→ GL(V ). A sub-
representation W of V is a subspace such that ρ(g) stabilizes W for each g ∈ G.
The representation V is said to be irreducible if it has no subrepresentations except
W = {0}, V . It is a fundamental result due to Maschke that each representation is
a direct sum of irreducible representations. Moreover, up to isomorphism G has only
finitely many irreducible representations, and their number equals the number of con-
jugacy classes in G (see [21]). A summary of the general theory of representations of
finite groups is given in Chapter 2.

In general, there is no explicitly known bijection between conjugacy classes and
irreducible representations for an arbitrary G, but it is known when G = Sd. We briefly
describe this below. There is a bijection between the conjugacy classes in Sd and the
partitions of d (see [9, §4]). A partition λ of d is a non-increasing sequence of non-
negative integers, whose sum equals d. A partition is associated to a Young diagram,
e.g., the partition (3, 2) of d = 5 has Young diagram

.
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CHAPTER 1. INTRODUCTION 2

A standard λ-tableau is a Young diagram of shape λ where the boxes contain entries
from the set {1, 2, . . . , d}, such that the entries are strictly increasing along the rows
and columns. Let Bλ denote the set of all standard λ-tableaux. The Specht module Vλ

(see §3.2 below) is a C-vector space with a basis naturally indexed by the elements in
Bλ. (For simplicity, henceforth we will identify this basis with Bλ.)

For notational convenience, we will write a tableau as an array. Then, for instance, a
basis of V(3,2) is given by:

B(3,2) = {
[

1 3 4

2 5

]
,

[
1 3 5

2 4

]
,

[
1 2 5

3 4

]
,

[
1 2 4

3 5

]
,

[
1 2 3

4 5

]
}.

In general, the dimension of Vλ can be found by using a combinatorial formula called
the hook length formula. Each Vλ carries the structure of an irreducible representation
of Sd, and conversely each irreducible representation of Sd is isomorphic to some Vλ.
We describe the construction of Specht modules in Chapter 3.

If λ, µ are two partitions of d, then in general the tensor product representation
Vλ ⊗ Vµ is not irreducible, and hence decomposes as a direct sum of irreducibles. For
example, V(3,2) ⊗ V(2,2,1) decomposes as

V(4,1) ⊕ V(3,2) ⊕ V(3,1,1) ⊕ V(2,2,1) ⊕ V(2,1,1,1) ⊕ V(1,1,1,1,1).

(However, no such general formula is known for arbitrary λ and µ.) If Vν appears as a
summand in Vλ ⊗ Vµ with multiplicity one, then this raises the problem of describing the
projection morphism

π : Vλ ⊗ Vµ −→ Vν

in terms of the bases Bλ,Bµ,Bν . Of course, π is assumed to be Sd-equivariant, i.e., it
should be compatible with the action of Sd in the natural sense. In this thesis, we give a
solution to this problem in a few special cases.

For d ≥ 4, we have a general formula

V(d−1,1) ⊗ V(d−1,1)
∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2,2) ⊕ V(d−2,1,1).

In Chapter 4, we give an explicit description of the projection morphism

V(d−1,1) ⊗ V(d−1,1) −→ V(d−1,1)

in terms of the basis B(d−1,1) (see Proposition 4.2.3).
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For each partition λ, there is a conjugate partition, denoted by λ̃, whose Young
diagram is the transpose of the Young diagram of λ. If T ∈ Bλ, then its transpose
T t ∈ Beλ.

In general, there is an isomorphism V(1d)⊗Vλ
∼= Veλ for any λ (see [8, chapter 7]). In

Propositions 4.2.8 and 4.2.10 respectively, we give explicit formulae for this isomorphism
in the following two cases:

λ = (d− 1, 1), (2, 1, . . . , 1).

For any λ, the one-dimensional trivial representation V(d) always appears with mul-
tiplicity one in the tensor product Vλ ⊗ Vλ. By identifying V(d) with C, this defines a
Sd-equivariant projection morphism (which we call a q-morphism)

θλ : Vλ ⊗ Vλ −→ C.

In general, it appears difficult to describe θλ in terms of Bλ. In Chapter 5, we give
such a description in the cases

λ = (d− 1, 1), (2, 1, . . . , 1), (d− 2, 1, 1).

The results appear in Propositions 5.2.1, 5.2.2 and Theorem 5.2.5 respectively. Finally,
we present a general conjectural formula for θλ in the case

λ = (d− 1, 1, . . . , 1︸ ︷︷ ︸
r times

).

All the results above were obtained as follows. We wrote a set of MAPLE routines to
calculate all equivariant projection morphisms of the form

Vλ ⊗ Vµ −→ Vν

for arbitrary partitions λ, µ, ν of d, in terms of the tableaux bases. Then the formulae
were conjectured based upon several computational examples, and finally proved using
the straightening rules for tableaux.

–



Chapter 2

Representations and characters of
finite groups

2.1 History

Since the discovery of group characters by Frobenius at the end of the 19th century, the
development of group representation theory has been spectacular, and the theory has
shown powerful connections to other branches of mathematics. It makes an appear-
ance in areas of pure mathematics such as invariant theory and the theory of symmetric
functions (see [17]), and in areas of applied mathematics such as quantum theory and
nuclear physics (see [18]). The fundamental theory of complex (or ordinary) represen-
tations of finite groups was almost completed by Frobenius and Burnside. Schur later
simplified the rather complicated theory of Frobenius to a considerable extent by using
a lemma now called Schur’s lemma.

2.2 Notations and Definitions

The main resources for this chapter are [2, Chapter 2], [9, Chapter 1], [10, §41], [14,
Chapter 3], [15, Chapter VII], [20, Chapter 1], [21, Chapter 1].

Throughout this chapter, G denotes a finite group. Throughout this work, all vector
spaces are over C (the field of complex numbers). The general linear group, GL(V ),
is the set of all invertible linear transformations from V to itself.

Definition 2.2.1. A representation of G in V is a group homomorphism

ρ : G → GL(V ).

4



CHAPTER 2. GROUP REPRESENTATIONS 5

If ρ is understood from the context, then we say that V is a representation of G or
that V is a G-representation. If dim (V ) = n, then V is said to be a representation of
degree n. We will frequently use the notation g v instead of ρ (g) (v) . For w, v ∈ V ,
g, h ∈ G and c, d ∈ C the definition above implies that

1. g (c v + dw) = c (g v) + d (g w),

2. (g h) v = g (h v),

3. e v = v, where e is the identity of the group G.

Since ρ (g) is a linear transformation in GL(V ), the corresponding matrix of this trans-
formation, denoted by AV

g = (aij), is simply the action of ρ(g) on an ordered basis
{v1, . . . , vn} of V . According to our conventions,

g vi =
n∑

j=1

aij vj,

i.e., the image of vi via g is given by the i-th row of AV
g . This leads us to an equivalent

definition for a linear representation of G.
Let GLn stand for the group of invertible matrices of size n× n with entries from C.

Definition 2.2.2. A matrix representation of G is a group homomorphism

µ : G → GLn.

This means that, to each g ∈ G is assigned a matrix µ(g) = Mg ∈ GLn such that:

1. Me = I ,

2. Mgh = Mg Mh for any g, h ∈ G.

In the notation above, AV
g AV

h = AV
hg, hence

G −→ GLn, g −→ AV
g−1

is a matrix representation. Conversely, given a matrix representation g −→ Mg, one
can define a linear representation G −→ GL(Cn) by letting ACn

g = M−1
g with respect to

the standard basis of Cn. Hence the two concepts are equivalent.

Example 2.2.3. All groups have the trivial representation, which sends every g ∈ G

to the 1× 1 identity matrix.
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Example 2.2.4. Let G be the dihedral group D8, which is a finite group generated by
two elements a and b where a4 = b2 = e, and b−1 ab = a−1. Define the matrices X and
Y in GL2 by

X =

[
0 1

−1 0

]
, Y =

[
1 0

0 −1

]
.

Notice that X4 = Y 2 = I, Y −1 XY = X−1. Hence we have a representation

µ : D8 −→ GL2

defined by
µ (aibj) = X i Y j where, 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2.

If 1 ≤ r, s ≤ 4, and 1 ≤ u, v ≤ 2, then

µ(arbu asbv) = µ(aibj) = X i Y j = Xr Y u Xs Y v = µ(arbu) µ(asbv)

for some 1 ≤ i ≤ 4, and 1 ≤ j ≤ 2. The corresponding matrices for each g ∈ D8 are
as follows:

µ (e) = µ (a4b2) =

[
1 0

0 1

]
, µ (a) =

[
0 1

−1 0

]
, µ (a2) =

[
−1 0

0 −1

]
,

and,

µ (a3) =

[
0 −1

1 0

]
, µ (b) =

[
1 0

0 −1

]
, µ (ab) =

[
0 −1

−1 0

]
,

µ (a2b) =

[
−1 0

0 1

]
, µ (a3b) =

[
0 1

1 0

]
.

Definition 2.2.5. Let G be a finite group, and let V denote the free vector space on the
set of variables {xg : g ∈ G}. Then dim (V ) equals the order of G. Now the regular
representation of G can be defined as follows: for any h ∈ G and xg ∈ V ,

hxg = xhg.

Example 2.2.6. Consider the cyclic group C4 = {e, g, g2, g3} where e is the identity
element. Let V be the free vector space with the ordered basis

{xe, xg, xg2 , xg3}.
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Then the regular representation can be defined via the following action:

g xe = xg, g xg = xg2 , g xg2 = xg3 , g xg3 = xe,

g2 xe = xg2 , g2 xg = xg3 , g2 xg2 = xe, g2 xg3 = xg,

and similarly for other elements in G. The corresponding matrices are

AV
g =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , AV
g2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , AV
g3 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

Definition 2.2.7. Let V and W be two representations of G. A linear transformation
θ : V −→ W is called a G-equivariant morphism if the diagram

V
θ−−−→ W

g

y yg

V
θ−−−→ W

commutes for all g ∈ G.

In terms of matrices, suppose that V and W are of dimensions n and m respectively.
Let M be the corresponding n × m matrix of the linear transformation. Also let the
matrices AV

g and AW
g represent the actions of g with respect to ordered bases of V and

W respectively. Then θ is a G-equivariant morphism if the corresponding matrices
satisfy the equality AV

g M = M AW
g for every g ∈ G.

A G-equivariant morphism is also frequently referred to as a G-homomorphism in
the literature.

Definition 2.2.8. Let V and W denote two representations of G. We say that V and
W are isomorphic, denoted V ∼= W , if there is an invertible G-equivariant morphism
θ : V −→ W .

Henceforth we will sometimes drop the explicit reference to G if it is understood from
the context.
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2.3 Subrepresentations and Reducibility

Definition 2.3.1. Let V be a representation of G, and W a subspace of V . We say that
W is a subrepresentation of V , if W is invariant (or stable) under the action of G. In
other words, for every w ∈ W and g ∈ G, g w ∈ W .

Example 2.3.2. Each representation V has two trivial subrepresentations, namely W =

V, and W = {0}. Others are called nontrivial subrepresentations.

As we know, if θ is a linear transformation between the vector spaces V and W , then
θ(V ) and ker θ are vector subspaces of W and V respectively.

Lemma 2.3.3. For any equivariant morphism θ between the representations V and W,

the subspaces θ(V ) and ker θ are subrepresentations of W and V respectively.

PROOF. Let w ∈ θ(V ). Then there is a vector v ∈ V such that w = θ(v). Let g ∈ G.
Then g w = g θ(v) = θ (g v), hence g w ∈ θ(V ). Also, since θ (v) = 0 for any v ∈ ker θ,
then

0 = g θ(v) = θ (g v), which implies that g v ∈ ker θ.

So, θ(V ) and ker θ are a subrepresentations of W and V respectively.

Example 2.3.4. Let G = S3 be the symmetric group on the set {1, 2, 3},

G = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

Also, let V denote the regular representation with basis {xα : α ∈ G}. Clearly,
dim (V ) = |G| = 6. Let W be the one-dimensional subspace of V spanned by the
element

∑
σ∈G

xσ. Then W is a subrepresentation of V , since for any α ∈ G,

α
∑
σ∈G

xσ =
∑
σ∈G

xα σ =
∑
σ∈G

xσ.

This example will be used later. Of course, the same construction will work for any finite
group G.

Definition 2.3.5. Let V be a representation of G. If V has a nontrivial subrepresenta-
tion, then we say that V is reducible. Otherwise V is called an irreducible representa-
tion.

Thus V in Example 2.3.4 is reducible.
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Lemma 2.3.6. (Schur’s Lemma) Let V and W denote two irreducible representations of
G, and θ : V −→ W an equivariant morphism. Then

1. either θ is an isomorphism, or θ = 0;

2. if V = W, then θ = c · I for some c ∈ C (where I is the identity map).

PROOF. Part (1) is clear from Lemma 2.3.3. As to part (2), let c be any eigenvalue of
θ. Then θ − c I is an equivariant morphism from V to V with a nonzero kernel. Hence
θ − c I = 0.

Definition 2.3.7. Let V be a vector space with subspaces U and W . Then V is the
direct sum of U and W , written V = U ⊕W , if every v ∈ V can be written uniquely as
a sum

v = u + w, u ∈ U,w ∈ W.

In this case, U and W are called complements of each other.

The question now is, if V is a reducible representation and W is a subrepresentation,
is there a complement of W in V , which is a subrepresentation of V as well? The next
proposition answers this question.

If W ⊆ V is a subspace, then a linear map π : V −→ W is said to be a projection
morphism if π(w) = w for all w ∈ W . Such a morphism always exists. It is sometimes
called a ‘projection’ in the literature.

Proposition 2.3.8. Let V be a G-representation, and let W be a subrepresentation of
V . Then there exists a subrepresentation of V, which is a complement of W .

PROOF. Let π : V −→ W be any projection morphism. Define an endomorphism
π0 : V −→ V by

π0(v) =
1

|G|
∑
g∈G

g π g−1 v.

Claim 1: π0 is a projection on W . To show this, we have to prove that

1. ∀v ∈ V , then π0 (v) ∈ W, and

2. ∀w ∈ W, π0 (w) = w.

Let v ∈ V . Then g−1 v ∈ V gives π (g−1 v ) ∈ W, and therefore g π (g−1 v) ∈ W, since
W is invariant under the action of G.
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Now, for any w ∈ W , π (w) = w since π is a projection morphism. So, π (g−1 w) =

g−1 w, which implies that g π (g−1 w) = w. This proves Claim 1.
Claim 2: π0 is an equivariant morphism, i. e., hπ0 = π0 h for each h ∈ G.
Let h ∈ G. Then

hπ0 =
1

|G|
∑
g∈G

h g π g−1 =
1

|G|
∑
g∈G

h g π g−1 (h−1 h)

=
1

|G|
∑
g∈G

(hg) π (h g)−1 h (let hg = b)

=
1

|G|
∑
b∈G

b π b−1 h = π0 h.

Now, by Lemma 2.3.3, ker π0 is a subrepresentation of V . Hence

V = π0 (W )⊕ ker π0 = W ⊕ ker π0.

In the next example we will try to write the given representation as a direct sum of
irreducible representations.

Example 2.3.9. In Example 2.3.4, we have a subrepresentation W of V generated by
z =

∑
σ∈G

xσ. To write V as a decomposition of irreducible representations, let W ′ be the

subspace generated by z′ =
∑
σ∈G

(sign σ) xσ. To see that W ′ is invariant under G, let

α ∈ G. Then,

α z′ =
∑
σ∈G

(sign σ) α xσ =
∑
σ∈G

(sign σ) xα σ

= (sign α)
∑
σ∈G

(sign α) (sign σ) xα σ = (sign α) z′ ∈ W ′.

Now define the projection morphism

Φ : V −→ W ⊕W ′, Φ(xσ) = (z, (sign σ) z′).

If α ∈ G, then

α Φ(xσ) = (α z, α (sign σ) z′) = (z, (sign σ)(sign α) z′)

= (z, (sign α σ) z′) = Φ(xα σ) = Φ (α xσ),

hence Φ is an equivariant morphism. Let Y be the kernel of Φ. By Lemma 2.3.3, Y is a
subrepresentation of G. It is easy to check that the set

{x(1 2) − x(1 3)︸ ︷︷ ︸
y1

, xe − x(1 2 3)︸ ︷︷ ︸
y2

, x(2 3) − x(1 3)︸ ︷︷ ︸
y3

, x(1 3 2) − x(1 2 3)︸ ︷︷ ︸
y4

}
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forms a basis for Y . The next table describes the action of G on Y .

α ∈ G y1 y2 y3 y4

e y1 y2 y3 y4

(1 2) y2 − y4 y1 − y3 −y4 −y3

(1 3) −y2 −y1 y4 − y2 y3 − y1

(2 3) y4 y3 y2 y1

(1 2 3) −y3 −y4 y1 − y3 y2 − y4

(1 3 2) y3 − y1 y4 − y2 −y1 −y2

Let U be the subspace of Y generated by the set {u1, u2}, where

u1 = y1 + y2, and u2 = y3 + y4,

and similarly Ũ is generated by

ũ1 = y1 + y2 − y4, and ũ2 = y3 + y4 − y1.

The next two tables describe the action of G on u1, u2, ũ1, ũ2. It follows that the
subspaces U, Ũ are invariant under this action.

α ∈ G u1 u2

e u1 u2

(1 2) u1 − u2 −u2

(1 3) −u1 u2 − u1

(2 3) u2 u1

(1 2 3) −u2 u1 − u2

(1 3 2) u2 − u1 −u1

α ∈ G ũ1 ũ2

e ũ1 ũ2

(1 2) ũ1 −ũ1 − ũ2

(1 3) −ũ1 − ũ2 ũ2

(2 3) ũ2 ũ1

(1 2 3) −ũ1 − ũ2 ũ1

(1 3 2) ũ2 −ũ1 − ũ2

These subspaces have the following properties:

1. U ∩ Ũ = {0},

2. Each y ∈ Y can be written as a sum of an element in U and an element in Ũ . For
example, y3 = (u2 − u1) + ũ1.

Hence, Y = U ⊕ Ũ . In fact, both U and Ũ are irreducible G-representations because
neither one of them has a subspace invariant under the action of G. To see this, suppose
that F is a nontrivial subrepresentation of U . Say F is generated by the element f which
is a linear combination of u1 and u2. This means that

f = p u1 + q u2, for some p, q ∈ C.
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Now since F is invariant under the action of G, we have α f ∈ F for any α ∈ S3. Let
α = (1 2), and assume (1 2) f = t f for some t ∈ C. By using the table of the action of
G on U , we have

(1 2) f − t f = p(u1 − u2) + q(−u2)− tp u1 − tq u2 = 0.

Since u1 and u2 are linearly independent we have t = 1 and p = −2q. Doing the same
calculation for α = (1 3), we get q = −2p, which implies p = q = 0. A similar proof
shows that Ũ is irreducible. So, U and Ũ are irreducible subrepresentations. Altogether,
we have written the regular representation V as a sum of irreducible G-representations,
as follows:

V = W ⊕W ′ ⊕ U ⊕ Ũ .

In the next chapter, we will discuss a more direct and shorter method of finding the
irreducible subrepresentations of a symmetric group representation.

Theorem 2.3.10. (Maschke’s Theorem) Let G denote a finite group. Then every finite-
dimensional representation V of G is isomorphic to a direct sum of irreducible represen-
tations.

PROOF. (By induction on the dimension of V ). Note that a one-dimensional representa-
tion must be irreducible. If V is irreducible, then there is nothing to prove. Otherwise, by
Proposition 2.3.8, V can be written as

V = W ⊕W ′.

Since dim (W ), dim (W ′) < dim (V ), by our induction hypothesis each subrepresenta-
tion is isomorphic to a direct sum of irreducible representations, and hence so is V .

Example 2.3.11. Maschke’s theorem may not hold if the characteristic of the ground
field is positive. For example, let V denote the regular representation of the cyclic group
C2 = {e, g} in characteristic two. It is easy to verify that W = 〈xe + xg〉 is the only
one-dimensional subrepresentation of V . In particular V cannot be written as a direct
sum of irreducible subrepresentations.

The following section gives a method of constructing new representations from old
ones.
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2.4 Tensor Product and Kronecker Product

The main resources for the following are [2, Ch. 2], [14, chapter 19], and [16, §3.5].
Let M, N and P be vector spaces (over C). A mapping f : M × N → P is called

bilinear if for a fixed m ∈ M , the function n → f(m, n) is linear on N , and similarly for
the other argument.

We will construct a vector space T (depending on M, N ) such that for all P , the
bilinear mappings f : M × N → P are in a natural one-to-one correspondence with
linear mappings f ′ : T → P . More precisely there is a bilinear mapping g : M×N → T

such that the following diagram commutes:

M ×N -f

T
?

g

�
�

�
�

�
�

�
�

�
�
��

f ′

P

f = f ′ ◦ g.

Let F(M, N) denote the free vector space on pairs (x, y) where x ∈ M, y ∈ N . Let
D be the subspace of F(M, N) spanned by elements of the form

(x + x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′),

and

(ax, y)− a (x, y), (x, ay)− a (x, y), a ∈ C.

Now, let T denote the quotient space F(M, N)/D. Let x ⊗ y denote the image of (x, y)

in T . Then T is spanned by the elements of the form x ⊗ y, and from our definitions,

(x + x′) ⊗ y = x ⊗ y + x′ ⊗ y, x ⊗ (y + y′) = x ⊗ y + x ⊗ y′,

and
ax ⊗ y = x ⊗ ay = a (x ⊗ y).
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Equivalently, the mapping

g : M ×N → T defined by g(x, y) = x ⊗ y

is bilinear. Given a bilinear map f : M ×N → P , it gives a linear map

f̃ : F(M, N) −→ P, (x, y) −→ f(x, y).

We have an inclusion D ⊆ ker f̃ by bilinearity. Hence this induces a map f ′ : T −→ P .
The vector space T is called the tensor product of M and N , and is denoted by

M ⊗ N . If (xi)i∈I , (yj)j∈J are bases of M , N respectively, then the elements xi ⊗ yj

form a basis of M ⊗ N . Also, if M, N are finite-dimensional vector spaces, then so is
M ⊗ N , and clearly, dim (M ⊗ N) = (dim M)(dim N).

Now, if V and W are representations of G, we can define a new representation V ⊗W

by the formula: g (v ⊗ w) = g v ⊗ g w.
When a representation is written in the language of matrices, the notion of the tensor

product translates into the Kronecker product of matrices.

Definition 2.4.1. Let A = [ai j] and B = [bk l] be two matrices of size n×m and p× q,
respectively. Then their Kronecker product is defined as

A � B =

 a11B · · · a1mB
...

...
an1B · · · anmB

 = [ai j B].

Notice that the size of the new matrix is n p × m q. The standard properties of the
Kronecker product can be found in [10, §52].

Lemma 2.4.2. Let A, X be square matrices of size n and B, Y of size m. Then

(A � B) (X � Y ) = A X � B Y.

PROOF.

(A � B) (X � Y ) = [ai j B] [xi j Y ] = [
∑

k

(ai k B) (xk j Y )]

= [(
∑

k

ai k xk j) B Y ] = A X � B Y.

(Also see [20, §1.7] and [15].)
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Let G −→ GLm and G −→ GLn be matrix representations, with Mg ∈ GLm and
Ng ∈ GLn the images of g ∈ G. Then their tensor product representation G −→ GLmn

is given by the formula g −→ Mg � Ng. Indeed, by the lemma,

(Mg � Ng)(Mh � Nh) = (Mgh � Ngh).

Example 2.4.3. Consider U and Ũ from Example 2.3.9. Let (1 2) ∈ S3, from the tables
of the action of S3 on U and Ũ , we have:

AU
(1 2) =

[
1 −1

0 −1

]
, A

eU
(1 2) =

[
1 0

−1 −1

]
.

Hence

AU
(1 2) � A

eU
(1 2) =


1 0 −1 0

−1 −1 1 1

0 0 −1 0

0 0 1 1

 ,

which gives the action of (1 2) on U ⊗ Ũ .

2.5 Characters

The concept of a character is a milestone in the theory of group representations. It can
be used to obtain information about isomorphisms, reducibility and the decomposition
of given representations. The main resources for this section are [3, chapter 1], [9], [10,
§55], [14, Chapter 13], [15, Chapter 3] and [20].

Recall that, for any square matrix A, the trace of A (denoted tr A) is the sum of
entries on the main diagonal. We recall some properties of the trace. The proofs may
be found in [14].

Proposition 2.5.1. Let A = [aij] and B = [bij] be two square matrices of size n. Then

1. tr (A + B) = tr A + tr B,

2. tr (AB) = tr (BA),

3. tr (A � B) = (tr A) (tr B),
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4. for any invertible square matrix T of size n, we have tr (T AT−1) = tr A.

It follows from (4) that a linear endomorphism V −→ V has a well-defined trace.

Definition 2.5.2. Let ρ : G −→ GL(V ) be a representation. Then its character is the
function χρ : G −→ C, defined by

χρ (g) = tr ρ(g).

We will sometimes write χV (or even χ) instead of χρ if confusion is unlikely.

Example 2.5.3. In Example 2.2.4,

χ (e) = tr
[

1 0

0 1

]
= 2, χ (a) = tr

[
0 1

−1 0

]
= 0, χ (a2) = tr

[
−1 0

0 −1

]
= −2.

Recall that, in a group G, we say that an element y is conjugate to an element x

if x = t−1 y t for some t ∈ G. The set of all elements conjugate to x is called the
conjugacy class of x. Conjugacy is an equivalence relation, hence conjugacy classes
partition G.

Proposition 2.5.4. For any finite group G:

1. Isomorphic representations have the same characters.

2. Conjugate elements of G have the same characters.

3. If V and W are two G-representations, then

χV⊗W = χV χW , and χV⊕W = χV + χW .

4. If V is an n-dimensional representation, then χ(e) = n.

PROOF. To show (1), let V and W be G-representations, and g ∈ G. Then

χV (g) = tr AV
g = tr (M AW

g M−1) = tr AW
g = χW (g),

by part (2) of Proposition 2.5.1, and Definition 2.2.8. Now let x and y be conjugate in G,
so there is t ∈ G so that x = t−1yt. By part (4) of Proposition 2.5.1;

χV (x) = χV (t−1yt) = tr AV
t−1yt = tr (AV

t AV
y AV

t−1) = tr (AV
y ) = χV (y),

which proves (2). Now (3) is clear from proposition 2.5.1. Since AV
e is the identity matrix,

we have (4).
The next corollary is a direct result of (3).
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Corollary 2.5.5. Let V be a G-representation, and let

V =
k⊕

i=1

W⊕mi
i , where mi is the multiplicity of Wi in V

be the complete irreducible decomposition of V . Then:

χV (g) =
k∑

i=1

mi χ
Wi(g)

for any g ∈ G.

Definition 2.5.6. For any vector space V over the field C, the dual space, V ∗ is the
space of all linear transformations φ : V −→ C. In other words, V ∗ = Hom (V, C).

Now suppose that V is a G-representation. Given g ∈ G and φ ∈ V ∗, define g φ to
be the element in V ∗ which sends v ∈ V to φ(g−1 v). It is easy to verify that this turns
V ∗ into a G-representation. If AV

g denotes the matrix of the action of g with respect to
an ordered basis of V , then

AV ∗

g = ((AV
g )−1)t

with respect to the dual ordered basis of V ∗.
Now we list some standard results in the theory of characters.

Theorem 2.5.7. 1. Any two G-representations with the same characters are isomor-
phic.

2. The number of irreducible representations of G is equal to the number of conju-
gacy classes in G.

3. If V is the regular G-representation with irreducible decomposition

V '
⊕

i

W⊕mi
i ,

then mi = dim Wi. In particular, |G| = dim (V ) =
k∑

i=1

m2
i , where k is the number

of non-isomorphic irreducible representations.

4. For any G-representation V , and element g ∈ G,

χV ∗
(g) = χV (g).
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PROOF. The proofs may be found in [9, Ch. 2], [20, p. 37] or [21, Ch. 2]. We include a
proof of part (4). Let A = AV

g with respect to some ordered basis of V . Now A|G| = I ,
hence all the eigenvalues λ1, . . . , λn of A are roots of unity. Since ||λi|| = 1, we have
1
λi

= λi. Hence

χV ∗
(g) = tr ((A−1)t) =

n∑
i=1

1

λi

=
n∑

i=1

λi = χV (g).

Example 2.5.8. Let us reconsider Example 2.3.9. We have seen that V has irreducible
decomposition

V = W ⊕W ′ ⊕ U ⊕ Ũ .

All the theory above is illustrated by the following character table.

χW χW ′
χU χ

eU
e 1 1 2 2

(1 2) 1 −1 0 0

(1 3) 1 −1 0 0

(2 3) 1 −1 0 0

(1 2 3) 1 1 −1 −1

(1 3 2) 1 1 −1 −1

• The rows corresponding to conjugate permutations are identical.

• The representations U and Ũ have the same characters (notice their columns),
so they are isomorphic representations. Hence, the complete decomposition of V

may be rewritten as
V ∼= W ⊕W ′ ⊕ U⊕2.

• The dimension of each representation is the value of the character at e ∈ G. In
accordance with the theorem above,

|S3| = dim (V ) = dim (W ) + dim (W ′) + (dim (U))2 = 1 + 1 + 4 = 6.

• There are three different conjugacy classes in S3, namely the identity, the 2-cycles
and the 3-cycles. We have found three non-isomorphic irreducible representa-
tions, and hence there are no others.



Chapter 3

Representations of the Symmetric
Group; Specht Modules

In this chapter we use some combinatorial tools (specifically Young tableaux and straight-
ening rules) to describe the irreducible representations of Sd. We will construct an irre-
ducible representation Vλ (called the Specht module) corresponding to each partition λ.
The main resources for this chapter are [8], [9],[13] and [20].

3.1 Young tableaux

Definition 3.1.1. A non-increasing sequence λ = (λ1, λ2, · · · , λk) of non-negative in-
tegers is called a partition of d if λ1 + λ2 + · · ·+ λk = d.

For example, (5, 1, 1, 1), (2, 2, 2, 1, 1) are partitions for 8. Sometimes we may write
them as (5, 13), (23, 12) respectively.

Definition 3.1.2. A Young diagram is a collection of boxes, or cells, arranged in left-
justified rows, with a non-increasing number of boxes in each row. Listing the number
of boxes in each row gives a partition of the integer d that is the total number of boxes.
Conversely, every partition λ of d corresponds to a Young diagram.

For example, the partition λ = (3, 2, 2, 1) = (3, 22, 1) of 8 corresponds to the Young

19
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diagram

.

Definition 3.1.3. A Young diagram of partition λ with a distinct integer between 1 and d

in each box is called a λ-tableau, or simply a tableau. A standard tableau is a tableau
which is strictly increasing across each row, and down each column.

The following is an example of a standard tableau for the partition λ = (5, 2, 1, 1).

T =

1 3 5 6 7

2 4

8

9

.

Let T (i, j) denote the entry in row i and column j of T ; e.g., T (3, 1) = 8. The number
of standard tableaux corresponding to a partition λ is denoted by hλ. It is calculated by
the following formula (see [8, 9]).

3.1.1 Hook length formula

Each box in a Young diagram has a hook length which is the number of boxes strictly to
its right or below, with the box itself counted once. Let λ be a partition of d. Now

hλ =
d!∏

(hook length of each box)
.

For example

h(2,1) =
3!

3 · 1 · 1
= 2, for 3 1

1

and

h(5,2,1,1) =
9!

8 · 5 · 3 · 2 · 1 · 4 · 1 · 2 · 1
= 63, for

8 5 3 2 1

4 1

2

1

.



CHAPTER 3. SPECHT MODULES 21

In each case, we have written the hook length for each box in the box itself.
Henceforth, as a notational convenience we will write a tableau as an array. For

example, 
1 3 5 6

2 4

7

8

 ,

is a standard tableau for the partition (4, 2, 1, 1).

Example 3.1.4. Let d = 5 and λ = (3, 2) with Young diagram . Now

hλ =
5!

4 · 3 · 1 · 2 · 1
= 5,

and the standard tableaux are :

{
[

1 3 4

2 5

]
,

[
1 3 5

2 4

]
,

[
1 2 5

3 4

]
,

[
1 2 4

3 5

]
,

[
1 2 3

4 5

]
}.

3.2 Specht Modules

Our goal is to describe all the irreducible representations of Sd. Following [8, Ch. 7], we
construct an irreducible representation Vλ (called the Specht module) corresponding to
each partition λ of d. In brief, the main idea is the following: we describe a set of rules
(called the straightening rules) which convert a tableau of shape λ into an integer linear
combination of standard tableaux of the same shape. Then the Specht module is ob-
tained by factoring the free vector space over all λ-tableaux by the subspace generated
by relations coming from the straightening rules. These rules have their origin in the so
called ’First Fundamental Theorem of Invariant Theory’ (see [1, Ch. 2]).

Let Wλ denote the free C-vector space on the set of all (not necessarily standard)
Young tableaux of shape λ. For any g ∈ Sd and a tableau T ∈ Wλ, the action of g on T

is obtained by permuting the entries in T . That is to say, the (i, j)-th entry of the tableau
g T is g (T (i, j)). Thus, Wλ is an Sd-representation.

Example 3.2.1. Let (1 2) ∈ S3, and let
[

1 2

3

]
∈ W(2,1), then

(1 2)

[
1 2

3

]
=

[
2 1

3

]
.
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Now we define rules to change a non-standard tableau into a linear combination of
standard tableaux. These rules constitute the straightening algorithm. They will lead to
the construction of all irreducible representations of Sd.

3.2.1 Straightening Algorithm

Rule I. Column interchange:
This rule enables us to interchange two adjacent numbers in a column with a sign

introduced. For example 1, 2 5

3 4

1

 ⇒ −

 2 5

1 4

3

 ⇒

 1 5

2 4

3

 ⇒ −

 1 4

2 5

3


However this rule might not be enough to get a standard tableau. For example, 4 3

5 2

1

 ⇒ −

 4 3

1 2

5

 ⇒

 1 3

4 2

5

 ⇒ −

 1 2

4 3

5


Rule II. Right to left interchange:

Let Ci, Ci+1 denote two adjacent columns of the tableau T , and assume that they
have lengths li, li+1 respectively. Fix a positive integer k ≤ li+1. Given an increasing
length k subsequence a = (a1, a2, . . . , ak) of (1, 2, . . . , li), let T (a) denote the tableau
obtained by interchanging the (ar, i) and (r, i + 1) entries in T for all 1 ≤ r ≤ k. Now
the rule allows us to replace T by the linear combination

∑
a

T (a), where the sum runs

over all such subsequences a of a fixed length k.
Now the straightening algorithm is as follows. By Rule I, one can always ensure

that every tableau has increasing columns. Define a spot in a tableau T to be a pair
(a, b) such that T (a, b) > T (a, b + 1). If T has increasing columns but is not standard,
then it must contain at least one spot. Choose the unique spot (k, i) in T satisfying the
following condition: for any other spot (k′, i′) in T (if any),

i′ < i, or i′ = i, k′ < k.

Now use Rule II on T , and continue the same process on each summand in the linear
combination. It is proved in [8, chapter 7], that any tableau T may be changed into a
unique integer linear combination of standard tableaux by repeatedly applying rules I
and II.

1Here ⇒ stands for the successive replacement of tableaux using the straightening rules.
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Example 3.2.2. We would like to straighten the Young tableau T =

 1 2

4 3

5

. In this

tableau the columns are strictly increasing but the second row is not.

T =

 1 2

4 3

5

 ⇒

 2 1

3 4

5

 +

 2 1

4 5

3

 +

 1 4

2 5

3


⇒

 2 1

3 4

5


︸ ︷︷ ︸

S1

−

 2 1

3 5

4


︸ ︷︷ ︸

S2

+

 1 4

2 5

3



Clearly, S1 and S2 are not standard, so we will work on both of them separately.

S1 =

 2 1

3 4

5

 ⇒

 1 2

3 4

5

 +

 2 3

1 4

5

 +

 2 5

3 4

1


⇒

 1 2

3 4

5

−
 1 3

2 4

5

−
 1 4

2 5

3

 ,

S2 =

 2 1

3 5

4

 ⇒

 1 2

3 5

4

−
 1 3

2 5

4

 +

 1 4

2 5

3

 . So,

T ⇒

 1 2

3 4

5

−
 1 3

2 4

5

−
 1 2

3 5

4

 +

 1 3

2 5

4

−
 1 4

2 5

3

 .

Given a tableau T , let StT =
∑

αiSi be the unique linear combination of standard
tableaux obtained by straightening T . Now define Qλ to be the subspace of Wλ spanned
by the elements T − StT for all T . The proofs of the next two Theorems may be found
in [8, Chapter 7] and [20, Chapter 2].

Theorem 3.2.3. The subspace Qλ ⊆ Wλ is invariant under the action of Sd.

Hence the quotient vector space Vλ = Wλ

Qλ
is an Sd-representation. It is called the

Specht module associated to the partition λ.
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Theorem 3.2.4. 1. The following set

{T + Qλ|T is a standard tableau in Wλ}

is a basis of Vλ.

2. The Specht module Vλ is an irreducible representation of Sd.

3. If λ and µ are two different partitions of d, then Vλ 6∼= Vµ as Sd-representations.

Since the conjugacy classes in Sd are in bijection with partitions of d, this gives all
irreducible representations of Sd. Henceforth, for simplicity, we identify T + Qλ with T ,
and regard Vλ as the vector space with basis Bλ consisting of all standard tableaux of
shape λ.

Corollary 3.2.5. Let λ be a partition of d. Then dim Vλ = hλ.

PROOF. This follows by part (1) of the previous Theorem, since the number of standard
tableaux of shape λ is hλ.

The Specht module V(d−1,1) is called the standard representation, and V(1d) is called
the alternating representation. It is easy to check that V(d) is the trivial representation.

3.2.2 An Ordering of Bλ

It will be convenient to have a total order on the basis Bλ. The following ordering is
adapted from [13, §3.1].

Definition 3.2.6. Let T denote a standard tableau. The row-list of T , denoted RT is
the sequence (r1, r2, . . . , rd) such that the integer i occurs in row ri in T .

Now we order the tableaux in the reverse-lexicographic order of their row-lists. Let
T, S denote two tableaux. If there is an integer j such that

RTj < RSj, and RTi = RSi, for all i > j,

then we say that T < S.

Example 3.2.7. Let λ = (3, 2, 1, 1), T =


1 2 3 7

4 6

5

8

 and S =


1 3 5 6

2 4

7

8

,

then the row-lists are RT = (1, 1, 1, 2, 3, 2, 1, 4), and RS = (1, 2, 1, 2, 1, 1, 3, 4).
Clearly T < S, since RT7 < RS7 and RT8 = RS8.
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Example 3.2.8. Let λ = (3, 2). The Specht module V(3,2) is of dimension 5, and its
basis is the set

B(3,2) = {
[

1 3 5

2 4

]
,

[
1 2 5

3 4

]
,

[
1 3 4

2 5

]
,

[
1 2 4

3 5

]
,

[
1 2 3

4 5

]
}.

It is easy to check that they are listed in increasing order.

The next example illustrates the action of a permutation on the basis Bλ.

Example 3.2.9. Let B(3,2) = {T1, . . . , T5} be ordered as above, and let g = (1 2) ∈ S5.
Then

g T1 = (1 2)

[
1 3 5

2 4

]
=

[
2 3 5

1 4

]
= −

[
1 3 5

2 4

]
= −T1,

by the straightening rules. Using similar calculations, the action of g on V(3,2) is given by
the matrix

A
(3,2)
(1 2) =


−1 0 0 0 0

−1 1 0 0 0

0 0 −1 0 0

0 0 −1 1 0

1 0 −1 0 1


There is a similarly defined square matrix Aλ

g of size hλ for each partition λ, and g ∈ Sd.

3.3 The Character of Vλ

Recall that in Sd (the symmetric group on d elements) every permutation can be ex-
pressed as a product of disjoint cycles in a unique manner. A permutation τ ∈ Sd is
said to have the cycle pattern (1α1 , 2α2 , · · · , dαd) if its decomposition contains αi cycles
of length i. Similarly, the sequence α = [α1, α2, · · · , αd] is called its cycle type. Two
permutations are conjugate iff they have the same cycle type.

For example, in S6 the permutation (1 3 5 6) is a product of one 4-cycle and two
1-cycles, hence its cycle pattern is (12, 4) and cycle type is [2, 0, 0, 1, 0, 0]. The identity
permutation has cycle pattern = (16 ) and cycle type [6, 0, 0, 0, 0, 0]. Moreover, since∑

i αi = d, each cycle pattern can be identified with a partition of d, where the part αi

is repeated i times.



CHAPTER 3. SPECHT MODULES 26

3.3.1 Frobenius formula

This formula is a tool to compute the characters of all irreducible representations of Sd.
Let λ = (λ1, λ2, · · · , λk) be any partition of d. Given a cycle type α = [α1, · · · , αd],
let Cα stand for the corresponding conjugacy class. Introduce independent variables
x1, · · · , xk, and let x = (x1, . . . , xk). Define

∆(x) =
∏

1≤ i< j≤k

(xi − xj), and Pr(x) = xr
1 + · · ·+ xr

k for all integers r > 0.

Also, if f(x) = f(x1, · · · , xk) is a formal power series and l = (l1, · · · , lk) is a k-tuple
of non-negative integers, let

[f(x)]l = coefficient of xl1
1 · · ·x

lk
k in f(x).

Now define the specific k-tuple l = (l1, · · · , lk), where

l1 = λ1 + k − 1, l2 = λ2 + k − 2, · · · , lk = λk,

which is a strictly increasing sequence of k non-negative integers. Now we can find the
character of Vλ for any g ∈ Cα by using the Frobenius Formula,

χλ (g) =

[
∆ (x)

d∏
j=1

Pj(x)αj

]
(l1,··· ,lk)

. (3.1)

(See [9, Chapter 4] or [8, Chapter 7, Lemma 4] for a proof.)
In particular, from Proposition 2.5.4, we have hλ = dim Vλ = χλ (C[d,0,...,0]).

Example 3.3.1. Let d = 3, λ = (2, 1). Then l = (3, 1). Suppose that Cα is the
conjugacy class of the permutation (1 2). Then α = [1, 1, 0], and hence

χ(2,1) (Cα) =
[
(x1 − x2) (x1 + x2) (x2

1 + x2
2)(x

3
1 + x3

2)
0
]
(3,1)

= 0.

Remark 3.3.2. We have written a MAPLE program to find the character table for any d,
which works by building the polynomial expression in (3.1) for every λ and extracting the
appropriate coefficients. The rows of the table correspond to conjugacy classes and the
columns correspond to Specht modules. For instance, the character table for d = 3 is

χ(3) χ(2,1) χ(1,1,1)

C[0,0,1] 1 −1 1

C[1,1,0] 1 0 −1

C[3,0,0] 1 2 1
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The dimension of each Specht module can be read off from the last row. It follows
immediately from the Frobenius formula that χλ(Cα) is always an integer.

The next example illustrates the fact that the tensor product of two irreducible repre-
sentations is in general reducible.

Example 3.3.3. We would like to find the irreducible decomposition of V(2,1,1) ⊗ V(3,1).
The following is the character table for S4. The additional last column is the character
of V(2,1,1)⊗V(3,1), which is given by an entrywise multiplication of the columns for χ(2,1,1)

and χ(3,1) (see Proposition 2.5.4).

χ(4) χ(3,1) χ(2,2) χ(2,1,1) χ(1,1,1,1) χV(2,1,1)⊗V(3,1)

C[0,0,,0,1] 1 −1 0 1 −1 −1

C[1,0,1,0] 1 0 −1 0 1 0

C[0,2,0,0] 1 −1 2 −1 1 1

C[2,1,0,0] 1 1 0 −1 −1 −1

C[4,0,0,0] 1 3 2 3 1 9

Since each representation of Sd is a direct sum of the Vλ, assume that

V(2,1,1) ⊗ V(3,1) = n1 V(4) ⊕ n2 V(3,1) ⊕ n3 V(2,2) ⊕ n4 V(2,1,1) ⊕ n5 V(1,1,1,1),

for some non-negative integers n1, . . . , n5. By Proposition 2.5.4, for any g ∈ C[0,0,0,1],
we have

χV(2,1,1)⊗V(3,1)(g) = n1 χ(4)(g)+n2 χ(3,1)(g)+n3 χ(2,2)(g)+n4 χ(2,1,1)(g)+n5 χ(1,1,1,1)(g).

This gives an equation −1 = n1 − n2 + n4 − n5. Repeating the procedure for other
conjugacy classes, we get a system of five linear equations in the ni. From their solution,
we get the decomposition

V(2,1,1) ⊗ V(3,1) = V(3,1) ⊕ V(2,2) ⊕ V(2,1,1) ⊕ V(1,1,1,1).

Proposition 3.3.4. For a partition λ of d,

Vλ
∼= V ∗

λ .
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PROOF. Note that
χV ∗

λ (g) = χVλ(g) = χVλ (g).

Therefore, by part (1) of Theorem 2.5.7, we have Vλ
∼= V ∗

λ .

The next results will be used later in Chapter 4. They can be found in [9, Chapter 4].

Lemma 3.3.5. For any conjugacy class Cα of Sd, we have the following:

1. χ(d−1,1)(Cα) = α1 − 1;

2. χ(d−2,1,1)(Cα) = 1
2
(α1 − 1)(α1 − 2)− α2 ;

3. χ(d−2,2)(Cα) = 1
2
(α1 − 1)(α1 − 2) + α2 − 1.

PROOF. Recall that for any positive integer n and any complex numbers x, y:

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk. (3.2)

Now, for part (1), let λ = (d − 1, 1), therefore l = (d, 1) , and x = (x1, x2). Hence
χ(d−1,1)(Cα) =[

(x1 − x2)
d∏
j

Pj (x)αj

]
(d,1)

=

[
x1

d∏
j

Pj (x)αj

]
(d,1)

−

[
x2

d∏
j

Pj (x)αj

]
(d,1)

.

We are looking for the coefficient of xd
1 x2. Since

d∏
j

Pj(x)αj = (x1 + x2)
α1(x2

1 + x2
2)

α2 · · · (xd
1 + xd

2)
αd

= (xα1
1 + α1 xα1−1

1 x2 + · · ·+ xα1
2 ) (x2 α2

1 + · · ·+ x2 αd
2 ) · · · (xd αd

1 + · · ·+ xd αd
2 ),

and since
∑
i

i αi = d, by (3.2) we have:

χ(d−1,1)(Cα) = α1 − 1 as required.

The proof for parts (2) and (3) are similar, and are omitted.



Chapter 4

Equivariant Projection Morphisms

4.1 Introduction

Assume that λ, µ are two partitions of d, and Vν appears as a direct summand of Vλ⊗Vµ

with multiplicity one (see Example 3.3.3). This determines an Sd-equivariant projection
morphism

Vλ ⊗ Vµ −→ Vν .

(Here we have identified Vν with its isomorphic copy inside Vλ⊗Vµ.) By Schur’s lemma,
the projection is uniquely determined up to a constant. In this section we explicitly
describe such projections in terms of the bases Bλ etc., in the following cases:

• V(d−1,1) ⊗ V(d−1,1) −→ V(d−1,1),

• V(1d) ⊗ V(d−1,1) −→ V(2,1d−2),

• V(1d) ⊗ V(2,1d−2) −→ V(d−1,1).

The results appear in Propositions 4.2.3, 4.2.8, and 4.2.10 respectively. Throughout this
chapter, define the elements

σ = (1 2), and τ = (1 2 · · · d) (4.1)

in Sd. The next lemma is useful in checking the equivariance of a map of representa-
tions.

Lemma 4.1.1. Let H be the subgroup of Sd generated by σ and τ , then H = Sd.

29
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PROOF. The permutation group Sd is generated by the transpositions

(1 2), (2 3), · · · , (j j + 1), · · · , (d− 1 d) for 1 ≤ j ≤ (d− 1) .

We will show that each of those transpositions is in H . Notice that τ στ−1 = (2 3) and
τ (2 3)τ−1 = (3 4). In general,

τ (j, j + 1) τ−1 = (j + 1, j + 2), for any 1 ≤ j ≤ (d− 2).

This implies that H = Sd.

It follows that a morphism π : Vλ ⊗ Vµ −→ Vν is equivariant if the diagram

Vλ ⊗ Vµ
π−−−→ Vν

g

y yg

Vλ ⊗ Vµ
π−−−→ Vν

commutes for g = σ, τ .

Recall that we have a basis Bλ of Vλ, and hence a lexicographically ordered basis
Bλ,µ of Vλ ⊗ Vµ. Using these bases, let M denote the matrix of π and AVλ

g the matrix
describing the action of g on Vλ, etc. Then we have an equation

(AVλ
g ⊗ AVµ

g ) M −M AVν
g = 0.

Example 4.1.2. Let λ = (2, 1), and suppose that we want to find a projection morphism
π : Vλ ⊗ Vλ −→ Vλ. Since dim Vλ = 2, let Bλ = {T1, T2}, and

Bλ, λ = {T1 ⊗ T1, T1 ⊗ T2, T2 ⊗ T1, T2 ⊗ T2}.

Assume that π(Ti ⊗ Tj) = α
(1)
i j T1 + α

(2)
i j T2, hence M =


α

(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2

. Our problem

is to find the coefficients α
(k)
i j for i, j, k = 1, 2.

As in Example 3.2.9, we have A
(2,1)
σ =

[
−1 0

−1 1

]
, and

A(2,1)
σ � A(2,1)

σ =


1 0 0 0

1 −1 0 0

1 0 −1 0

1 −1 −1 1

 .
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We want M to satisfy the equation

(A(2,1)
σ � A(2,1)

σ ) M −M A(2,1)
σ = 0,

which means
1 0 0 0

1 −1 0 0

1 0 −1 0

1 −1 −1 1




α
(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2

−


α
(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2


[
−1 0

−1 1

]
= 0.

The left hand side is a matrix of size 4×2, so we have a linear system of eight equations
in α

(k)
ij . We get another eight equations from τ = (1 2 3).

1 −1 −1 1

1 0 −1 0

1 −1 0 0

1 0 0 0




α
(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2

−


α
(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2


[
−1 1

−1 0

]
= 0.

After solving the equations above we have
α

(1)
1 1 α

(2)
1 1

α
(1)
1 2 α

(2)
1 2

α
(1)
2 1 α

(2)
2 1

α
(1)
2 2 α

(2)
2 2

 =


1 −2

−1 −1

−1 −1

−2 1

 ,

up to a scalar. This numerical method can always be used for any λ, µ, ν. If there is no
non-zero solution, then it implies that Vν is not a summand in Vλ ⊗ Vµ.

Remark 4.1.3. We have encoded this method into a set of MAPLE routines in order to
calculate all equivariant projection morphisms of the form

Vλ ⊗ Vµ −→ Vν

in terms of the standard tableaux bases. (That is to say, we explicitly calculate the
matrices Aλ

g from the straightening rules, and solve a system of linear equations as
above.) All the subsequent results were obtained by calculating several examples using
these routines, then conjecturing formulae based upon these examples and then giving
formal proofs.
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4.2 Formulae for projection morphisms

Let λ = (d− 1, 1). The following lemma is found in [9, Exercise 4.19].

Lemma 4.2.1. Assume d ≥ 4. Then we have a decomposition

V(d−1,1) ⊗ V(d−1,1)
∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2, 2) ⊕ V(d−2,1,1).

PROOF. By Proposition 2.5.4, it is enough to show that both sides have the same charac-
ter. Let α = [α1, . . . , αd] be an arbitrary cycle type, and Cα the corresponding conjugacy
class. By the Frobenius formula and Lemma 3.3.5, we have

χ(d−1,1) (Cα) = α1 − 1, χ(d−2,2) (Cα) =
1

2
(α1 − 1) (α1 − 2) + α2 − 1,

χ(d−2,1,1) (Cα) =
1

2
(α1 − 1) (α1 − 2)− α2, χ(d) (Cα) = 1.

By Proposition 2.5.4,

χV(d−1,1)⊗V(d−1,1) (Cα) = χ(d−1,1)(Cα) χ(d−1,1)(Cα) = (α1 − 1)2,

and
χ(d)(Cα) + χ(d−1,1)(Cα) + χ(d−2,2)(Cα) + χ(d−2,1,1)(Cα) =

1 + (α1 − 1) +
1

2
(α1 − 1) (α1 − 2) + α2 − 1 +

1

2
(α1 − 1) (α1 − 2)− α2 =

(α1 − 1) (1 + α1 − 2) = (α1 − 1)2.

This ends the proof.

For d = 2, 3, we have special cases

V(1,1) ⊗ V(1,1)
∼= V(2), V(2,1) ⊗ V(2,1)

∼= V(3) ⊕ V(2,1) ⊕ V(1,1,1).

Note that

B(d−1,1) = {
[

1 3 4 · · · d

2

]
,

[
1 2 4 · · · d

3

]
, · · · }.

Write

Tk =

[
1 · · · k̂ + 1 · · · d

k + 1

]
, for 1 ≤ k ≤ d− 1.

(The notation k̂ + 1 means that the entry k + 1 has been omitted.) Then we have an
ordering {T1, T2, · · · , Td−1} of B(d−1,1). Let σ and τ be as in (4.1). The following
Lemma shows the action of σ and τ on B(d−1,1).
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Lemma 4.2.2. Assume d ≥ 3 and λ = (d− 1, 1).

1. The action of σ on Vλ with respect to the basis Bλ is given by the matrix,

Aλ
σ =


−1 0 0 · · · 0

−1 1 0 · · · 0
...

...
−1 0 0 · · · 1

 ,

which is interpreted as follows:
σ T1 = −T1, and
σ Ti = Ti − T1 , where Ti ∈ Bλ , 2 ≤ i ≤ d− 1.

2. Similarly, the action of τ is given by the matrix

Aλ
τ =


−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
−1 0 0 · · · 1

−1 0 0 · · · 0

 .

This means τ Tk = Tk+1 − T1, for 1 ≤ k ≤ d− 2, and τ Td−1 = −T1 .

PROOF. For (1),

σ T1 =

[
2 3 · · · d

1

]
= −T1, (by straightening ). For 2 ≤ k ≤ d− 1, we have:

σ Tk = σ

[
1 2 · · · k k̂ + 1 · · · d

k + 1

]

=

[
2 1 · · · k k̂ + 1 · · · d

k + 1

]
(by straightening )

=

[
1 2 · · · k k̂ + 1 · · · d

k + 1

]
+

[
2 k + 1 · · · k k̂ + 1 · · · d

1

]
= Tk − T1.

For (2) we just follow the same technique as above.

τ Td−1 = τ

[
1 2 · · · d− 1

d

]
=

[
2 3 · · · d

1

]
= −T1.
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For 1 ≤ k ≤ d− 2 we have;

τ Tk = τ

[
1 · · · k k̂ + 1 · · · d

k + 1

]

=

[
2 3 · · · k + 1 k̂ + 2 · · · 1

k + 2

]
= Tk+1 − T1.

Proposition 4.2.3. Assume d ≥ 3. Then the projection

θ : V(d−1,1) ⊗ V(d−1,1) −→ V(d−1,1)

which is defined by

θ(Ti ⊗ Tj) =
d−1∑
k=1

δk
i j Tk, where δk

i j =


2− d if i = j = k ,

2 if i = j 6= k,

1 otherwise,

is equivariant.

Notice that the result agrees with Example 4.1.2.

PROOF. To show that θ is an equivariant morphism, it suffices to show that g θ = θ g for
g = σ, τ . Assume g = σ, and i = j = 1,

σ θ (T1 ⊗ T1) = σ [(2− d)T1 +
d−1∑
k=2

2 Tk]

= −(2− d) T1 +
d−1∑
k=2

2 (Tk − T1) (by part 1 of Lemma 4.2.2)

= d T1 + (−2) T1 + (−2)(d− 2) T1 +
d−1∑
k=2

2 Tk

= (2− d) T1 +
d−1∑
k=2

2 Tk.

The right hand side is:

θ σ (T1 ⊗ T1) = θ (−T1 ⊗−T1) = θ (T1 ⊗ T1) = (2− d) T1 +
d−1∑
k=2

2 Tk = σ θ(T1 ⊗ T1).
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Let g = σ, and let i be an integer such that 2 ≤ i ≤ d− 1. Then the left hand side will
be:

σ θ(Ti ⊗ Ti) = σ [(2− d) Ti +
d−1∑
k=1
k 6=i

2 Tk]

= (2− d) (Ti − T1) + (−2) T1 +
d−1∑
k=2
k 6=i

2 (Tk − T1)

= (2− d) Ti − (2− d) T1 + (−2) T1 + (−2)(d− 3) T1 +
d−1∑
k=2
k 6=i

2 Tk

= (2− d) T1 + (2− d) Ti +
d−1∑
k=2
k 6=i

2 Tk.

The right hand side is:

θ σ (Ti ⊗ Ti) = θ ((Ti − T1)⊗ (Ti − T1))

= θ (Ti ⊗ Ti − Ti ⊗ T1 − T1 ⊗ Ti + T1 ⊗ T1)

= (2− d) Ti +
d−1∑
k=1
k 6=i

2 Tk −
d−1∑
k=1

Tk −
d−1∑
k=1

Tk + (2− n) T1 +
d−1∑
k=2

2 Tk

= (2− d)T1 + (2− d)Ti +
d−1∑
k=1
k 6=i

2 Tk,

which is the same as above.
The case of Ti ⊗ Tj where i 6= j and both are different from 1, remains to be checked.

σ θ(Ti ⊗ Tj) = σ
d−1∑
k=1

Tk = −T1 +
d−1∑
k=2

(Tk − T1)

= −T1 +
d−1∑
k=2

Tk +
d−1∑
k=2

(−T1)

= (1− d)T1 +
d−1∑
k=2

Tk.
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The right hand side equals

θ σ (Ti ⊗ Tj) = θ ( (Ti − T1)⊗ (Tj − T1) )

= θ (Ti ⊗ Tj − Ti ⊗ T1 − T1 ⊗ Tj + T1 ⊗ T1)

=
d−1∑
k=1

Tk −
d−1∑
k=1

Tk −
d−1∑
k=1

Tk + (2− d) T1 +
d−1∑
k=2

2 Tk

= (2− d) T1 +
d−1∑
k=2

Tk − T1

= (1− d) T1 +
d−1∑
k=2

Tk,

which is the same as above. Thus σ θ = θ σ.
For g = τ , we will show the equality τ θ (Ti ⊗ Tj) = θ τ (Ti ⊗ Tj), for the case

i = j = d− 1. The other cases are similar. By using part 2 of Lemma 4.2.2, we have:

τ θ (Td−1 ⊗ Td−1) = τ [
d−2∑
k=1

2 Tk + (2− d) Td−1]

=
d−2∑
k=1

2 (Tk+1 − T1)− (2− d) T1

=
d−2∑
k=1

2 Tk+1 + 2(2− d) T1 − (2− d) T1

=
d−2∑
k=1

2 Tk+1 + (2− d) T1,

and

θ τ (Td−1 ⊗ Td−1) = θ (−T1 ⊗−T1) = θ (T1 ⊗ T1)

= (2− d) T1 +
d−1∑
k=2

2 Tk

= (2− d) T1 +
d−2∑
k=1

2 Tk+1

= τ θ (Td−1 ⊗ Td−1).
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Definition 4.2.4. For every partition λ of d we can find another partition of d, called the
conjugate of λ, denoted by λ̃. If we look at a λ-tableau as an array, then λ̃ is exactly
the transpose of this array.

For example, let λ = (3, 2, 2, 1). The Young diagram of shape λ is ,

while for λ̃ it will be . That means λ̃ = (4, 3, 1). Also,

if T =


1 3 5

2 6

4 8

7

 , then T t =

 1 2 4 7

3 6 8

5

 .

The hook length of the (i, j)-th box in T is the same as that of the (j, i)-th box in the
transpose of T . Hence hλ = h

eλ.

Lemma 4.2.5. For any partition λ,

V(1d) ⊗ Vλ
∼= Veλ.

PROOF. See [8, §7.3, Corollary to Proposition 3].

If λ = (d− 1, 1), then dim Vλ = dim Veλ = d− 1. For 1 ≤ k ≤ d− 1 define

Sk =



1 r

2
...
r̂
...
d


, where r = d− k + 1.
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Then B(2, 1d−2) is the set of tableaux


1 d

2
...

d− 1


︸ ︷︷ ︸

S1

,


1 d− 1

2
...
d


︸ ︷︷ ︸

S2

, · · · ,


1 2

3
...
d


︸ ︷︷ ︸

Sd−1


.

Lemma 4.2.6. Assume d ≥ 3, and λ = (2, 1d−2). Then the action of σ on Vλ with
respect to Bλ is given by the matrix

Aλ
σ =


−1 0 0 · · · 0

0 −1 0 · · · 0
...

...
(−1)d (−1)d−1 (−1)d−2 · · · (−1)2

 .

More precisely,

σ Sd−1 =
d−1∑
k=1

(−1)d−k+1 Sk, and σ Sk = −Sk for 1 ≤ k ≤ d− 2.

For g = τ , the matrix is

Aλ
τ =



(−1)d (−1)d−1 (−1)d−2 · · · (−1)3 (−1)2

(−1)d 0 0 · · · 0 0

0 (−1)d 0 · · · 0 0
...

...
0 0 0 · · · (−1)d 0


.

That is, for Si ∈ Bλ, and 1 ≤ i ≤ d− 1, we have

τ S1 =
d−1∑
k=1

(−1)d−k+1 Sk.

Also,
τ Sk = (−1)d Sk−1, for 1 < k ≤ d− 1.
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PROOF. It is clear that when 1 ≤ k < d − 1 we have σ Sk = −Sk. Let us check the
case when k = d− 1 :

σ Sd−1 =


2 1

3
...
d

 =


1 2

3
...
d

 +


2 3

1
...
d

 + · · ·+


2 d

3
...
1


= Sd−1 +

d−2∑
k=1

(−1)d−k+1 Sk

=
d−1∑
k=1

(−1)d−k+1 Sk.

Similarly,

τ S1 =
d−1∑
k=1

(−1)d−k+1 Sk.

However, when 1 < k ≤ d− 1 we have:

τ Sk = τ



1 r

2
...
r̂
...
d


, (where r = d− k + 1)

=



2 r + 1

3
...

r̂ + 1
...
1


= (−1)d−2



1 r + 1

2
...

r̂ + 1
...
d


= (−1)d Sk−1, where r + 1 = d− (k − 1) + 1.

Recall that V(1d) is called the alternating representation. Let B(1d) = {U}, where U =
1

2
...
d

 is the only possible standard tableau of that shape. The next lemma shows the



CHAPTER 4. EQUIVARIANT PROJECTION MORPHISMS 40

action of the permutations σ and τ on U .

Lemma 4.2.7. With notation as above,

1. σ U = −U ,

2. τ U = (−1)d+1 U .

PROOF. This is clear from the straightening rules.

By Lemma 4.2.5, we have an isomorphism

Π : V(1d) ⊗ V(d−1,1) −→ V(2,1d−2).

Proposition 4.2.8. With notation as above, the morphism Π is defined by

Π(U ⊗ Ti) =
d−1∑
j=1

αi
j Sd−j,

where

αi
j =


(−1)j+1 2 when i = j,

(−1)j+1 when i 6= j.

PROOF. We want to show g Π = Π g for g = σ, τ . First, let g = σ and i = 1. By
Lemma 4.2.2, we have:

Π σ (U ⊗ T1) = Π(σ U ⊗ σ T1) = Π(−U ⊗−T1) = Π(U ⊗ T1)

=
d−1∑
j=1

α1
j Sd−j = 2 Sd−1 +

d−1∑
j=2

(−1)j+1 Sd−j.

On the other hand,

σ Π(U ⊗ T1) = σ

[
2 Sd−1 +

d−1∑
j=2

(−1)j+1 Sd−j

]

= 2
d−1∑
k=1

(−1)d−k+1 Sk +
d−1∑
j=2

(−1)j+1 (−Sd−j) (Lemma 4.2.6)

= 2
d−1∑
j=1

(−1)j+1 Sd−j +
d−1∑
j=2

(−1)j Sd−j

= 2 Sd−1 +
d−1∑
j=2

(−1)j+1 Sd−j = Π σ (U ⊗ T1).
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Now, assume i 6= 1. By Lemma 4.2.2,

Π σ ( U ⊗ Ti) = Π [−U ⊗ (Ti − T1)] = Π [−(U ⊗ Ti) + (U ⊗ T1)]

= −
d−1∑
j=1

αd−1
j Sd−j +

i∑
j=1

α1
j Sd−j, (since i 6= 1)

= −

[
Sd−1 +

d−1∑
j=2

αi
j Sd−j

]
+ 2 Sd−1 +

d−1∑
j=2

(−1)j+1 Sd−j

=
d−1∑
j=1

(−1)j+1 Sd−j −
d−1∑
j=2

αi
j Sd−j,

and

σ Π(U ⊗ Ti) = σ
d−1∑
j=1

αi
j Sd−j

= σ

[
Sd−1 +

d−1∑
j=2

αi
j Sd−j

]
(since i 6= 1)

=
d−1∑
k=1

(−1)d−k+1 Sk +
d−1∑
j=2

αi
j (−Sd−j) (by Lemma 4.2.6)

=
d−1∑
j=1

(−1)j+1 Sd−j −
d−1∑
j=2

αi
j Sd−j, (by letting k = d− j )

= Π σ (U ⊗ Ti).

Secondly, when g = τ and i = d− 1, then by using Lemma 4.2.2, we have:

Π τ(U ⊗ Td−1) = Π
[
(−1)d+1 U ⊗ (−T1)

]
= Π (−1)d(U ⊗ T1)

= (−1)d

d−1∑
j=1

α1
j Sd−j = (−1)d

[
2 Sd−1 +

d−1∑
j=2

(−1)j+1 Sd−j

]

= (−1)d Sd−1 +
d−1∑
j=1

(−1)d+j+1 Sd−j.
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Now the other side is

τ Π(U ⊗ Td−1) = τ
d−1∑
j=1

αd−1
j Sd−j = τ

[
(−1)d 2 S1 +

d−2∑
j=1

(−1)j+1 Sd−j

]

= (−1)d 2
d−1∑
k=1

(−1)d−k+1 Sk +
d−2∑
j=1

(−1)j+1 (−1)d Sd−j−1

By setting k = d− j in the first term we obtain

=
d−1∑
j=1

2 (−1)d+j+1 Sd−j +
d−2∑
j=1

(−1)d+j+1 Sd−j−1

= 2 (−1)d Sd−1 +
d−1∑
j=2

(−1)d+j+1 Sd−j

= (−1)d Sd−1 +
d−1∑
j=1

(−1)d+j+1 Sd−j = Π τ (U ⊗ Td−1).

As the last case when i 6= d− 1, we have

τ Π(U ⊗ Ti) = τ
d−1∑
j=1

αi
j Sd−j = τ

[
(−1)d S1 +

d−2∑
j=1

αi
j Sd−j

]

= (−1)d

d−1∑
k=1

(−1)d−k+1 Sk +
d−2∑
j=1

αi
j (−1)d Sd−j−1

=
d−1∑
k=1

(−1)k+1 Sk + (−1)d

d−2∑
j=1

αi
j Sd−j−1,

and

Π τ(U ⊗ Ti) = Π
[
(−1)d+1 U ⊗ (Ti+1 − T1)

]
(by Lemma 4.2.7)

= Π
[
(−1)d+1 U ⊗ Ti+1 + (−1)d U ⊗ T1

]
= (−1)d+1

d−1∑
j=1

αi+1
j Sd−j + (−1)d

d−1∑
j=1

α1
j Sd−j
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In the first term, when j = 1, the value of i + 1 can never be equal to 1, hence this
expression is

= (−1)d+1

[
Sd−1 +

d−1∑
j=2

αi+1
j Sd−j

]
+ (−1)d

[
2 Sd−1 +

d−1∑
j=2

(−1)j+1 Sd−j

]

= (−1)d Sd−1 + (−1)d+1

d−1∑
j=2

αi+1
j Sd−j + (−1)d

d−1∑
j=2

(−1)j+1 Sd−j

= (−1)d+1

d−1∑
j=2

αi+1
j Sd−j +

d−1∑
j=1

(−1)d+j+1 Sd−j.

By setting k = j − 1 we have αi+1
j = (−1) αi

k. Letting t = d− j, this equals

= (−1)d

d−2∑
k=1

αi
k Sd−(k+1) +

d−1∑
t=1

(−1)t+1 St

which completes the proof.

Example 4.2.9. Let d = 5. The projection Π : V(15)⊗V(4,1) −→ V(2,13) can be described
by the matrix:

M =


−1 1 −1 2

−1 1 −2 1

−1 2 −1 1

−2 1 −1 1

 .

For instance, the first row can be interpreted as

Π(U ⊗ T1) = −S1 + S2 − S3 + 2 S4.

By Lemma 4.2.5, we have an isomorphism Π : V(1d) ⊗ V(2,1d−2) −→ V(d−1,1).

Proposition 4.2.10. The isomorphism Π is given the following formula:

Π(U ⊗ Si) =
d−1∑
j=1

αi
j Td−j, where αi

j =


(−1)i (d− 1) if i = j,

(−1)i+1 if i 6= j.
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PROOF. We want to show that g Π = Π g, for g = σ, τ . Let g = σ and i = d− 1. Then

σ Π(U ⊗ Sd−1) = σ

d−1∑
j=1

αd−1
j Td−j = σ

[
d−2∑
j=1

(−1)d Td−j + (−1)d−1(d− 1)T1

]

=
d−2∑
j=1

(−1)d (Td−j − T1) + (−1)d (d− 1) T1 (by Lemma 4.2.2)

=
d−2∑
j=1

(−1)d Td−j + (−1)d+1 (d− 2) T1 + (−1)d (d− 1) T1

= (−1)d

d−1∑
j=1

Td−j.

On the other hand,

Π σ (U ⊗ Sd−1) = Π (−U ⊗
d−1∑
k=1

(−1)d−k+1 Sk).

By Lemma 4.2.6, and Lemma 4.2.7, this is the same as

=
d−1∑
k=1

(−1)d−k Π(U ⊗ Sk) =
d−1∑
k=1

(−1)d−k

[
d−1∑
j=1

αk
j Td−j

]

=
d−1∑
k=1

(−1)d−k

(−1)k (d− 1) Td−k +
d−1∑
j=1

6=k

(−1)k+1 Td−j


=

d−1∑
k=1

(−1)d (d− 1) Td−k +
d−1∑
k=1

(−1)d+1

d−1∑
j=1

6=k

Td−j

= (−1)d (d− 1)
d−1∑
k=1

Td−k + (−1)d+1 (d− 2)
d−1∑
j=1

Td−j

= (−1)d

d−1∑
k=1

Td−k = σ Π(U ⊗ Si).
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For i 6= d− 1, we have

σ Π(U ⊗ Si) = σ

d−1∑
j=1

αi
j Td−j

= σ

[
d−2∑
j=1

αi
j Td−j + (−1)i+1 T1

]
(by Lemma 4.2.2)

=
d−2∑
j=1

αi
j (Td−j − T1) + (−1)i+1 (−T1)

=
d−2∑
j=1

αi
j Td−j −

d−2∑
j=1

αi
j T1 + (−1)i T1

=
d−2∑
j=1

αi
j Td−j − T1

[
(−1)i (d− 1) + (−1)i+1 (d− 3)

]
+ (−1)i T1

=
d−2∑
j=1

αi
j Td−j − T1

[
(−1)i 2

]
+ (−1)i T1 =

d−1∑
j=1

αi
j Td−j.

By using Lemma 4.2.6, and Lemma 4.2.7,

Π σ (U ⊗ Si) = Π (−U ⊗−Si) = Π(U ⊗ Si) =
d−1∑
j=1

αi
j Td−j = σ Π(U ⊗ Si).

The argument for g = τ is similar. First, let i = 1.

Π τ (U ⊗ S1) = Π

[
(−1)d+1 U ⊗

d−1∑
k=1

(−1)d−k+1 Sk

]
( by Lemma 4.2.6, and Lemma 4.2.7)

= Π

[
U ⊗

d−1∑
k=1

(−1)k Sk

]
=

d−1∑
k=1

(−1)k

d−1∑
j=1

αk
j Td−j

=
d−1∑
k=1

(−1)k

(−1)k(d− 1) Td−k +
d−1∑
j=1

6=k

(−1)k+1 Td−j


=

d−1∑
k=1

(d− 1) Td−k − (d− 2)
d−1∑
k=1

Td−k =
d−1∑
k=1

Td−k =
d−1∑
k=1

Tk,
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whereas the other side is

τ Π(U ⊗ S1) = τ

d−1∑
j=1

α1
j Td−j

= τ

[
(−1)(d− 1) Td−1 +

d−1∑
j=2

Td−j

]

=

[
(−1)(d− 1) (−T1) +

d−1∑
j=2

(Td−j+1 − T1)

]
( by Lemma 4.2.2)

=

[
(d− 1) T1 +

d−1∑
j=2

Td−j+1 − (d− 2) T1)

]

=
d−1∑
j=1

Tj = Π τ(U ⊗ S1).

When i 6= 1, we have

Π τ (U ⊗ Si) = Π ((−1)d+1 U ⊗ (−1)d Si−1) ( by Lemma 4.2.6, and Lemma 4.2.7)

= −Π (U ⊗ Si−1) = −
d−1∑
j=1

αi−1
j Td−j

= −

(−1)k (d− 1) Td−k +
d−1∑
j=1

6=k

(−1)i Td−j


= (−1)k+1 (d− 1) Td−k +

d−1∑
j=1

6=k

(−1)i+1 Td−j ( letting d− k = t )

= (−1)d−t+1 (d− 1) Tt +
d−1∑
j=1

6=t

(−1)i+1 Tj.
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The other side is

τ Π (U ⊗ Si) = τ

[
d−1∑
j=1

αi
j Td−j

]

= τ

[
αi

1 Td−1 +
d−1∑
j=2

αi
j Td−j

]
( since i 6= 1, and by Lemma 4.2.2)

= (−1)i+1 (−T1) +
d−1∑
j=2

αi
j (Td−j+1 − T1)

= (−1)i T1 +
d−1∑
j=2

αi
j Td−j+1 −

d−1∑
j=2

αi
j T1

= (−1)i T1 +

(−1)k(d− 1) Td−k+1 +
d−1∑
j=2

6=k

(−1)i+1 Td−j+1


−

[
(−1)i (d− 1) T1 + (−1)i+1 (d− 3) T1

]
(let d− k + 1 = t )

= (−1)i T1 +

(−1)d−t+1 (d− 1) Tt +
d−1∑
j=2

6=t

(−1)i+1 Tj

− (−1)i 2 T1

= (−1)d−t+1 (d− 1) Tt +
d−1∑
j=1

6=t

(−1)i+1 Tj = Π τ (U ⊗ Si).

This completes the proof.

Example 4.2.11. As in Example 4.2.9, the projection Π : V(15) ⊗ V(2,13) −→ V(4,1) is
described by the matrix

P =


−1 −1 −1 4

1 1 −4 1

−1 4 −1 −1

−4 1 1 1

 .

For instance, the first row gives the equation

Π (U ⊗ S1) = −T1 − T2 − T3 + 4 T4.



Chapter 5

Equivariant q-Forms on Specht
Modules

5.1 Preliminaries

Recall that (see Proposition 3.3.4) we have an equivariant isomorphism

η : Vλ −→ V ∗
λ , v −→ ηv.

Moreover η is uniquely defined up to a scalar. (If η, η′ were two such isomorphisms,
then by Schur’s lemma η−1 ◦ η′ : Vλ −→ Vλ must be a scalar multiple of the identity.)
This defines a morphism

θλ : Vλ ⊗ Vλ −→ C,

by the formula θλ(v ⊗ w) = ηv(w). We can identify C with the trivial representation V(d)

by mapping 1 ∈ C to the unique element in B(d).

Lemma 5.1.1. With this identification, the morphism θλ is Sd-equivariant.

PROOF. Note that,

θλ(g v ⊗ g w) = ηg v(g w) = (g ηv)(g w) = ηv(g
−1 g w) = ηv(w) = θλ(v ⊗ w),

hence θλ is equivariant.

We call θλ the q-form associated to λ. As explained above, it is uniquely determined
up to a multiplicative scalar. If Bλ = {T1, . . . , Thλ}, then θλ can be represented by a
matrix of size hλ × hλ whose (i, j)-th element is θλ(Ti ⊗ Tj).

48
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Example 5.1.2. Let λ = (3, 2). Then a calculation similar to Example 4.1.2 shows that

θ(3,2) is represented by the matrix


4 2 2 1 −1

2 4 1 2 1

2 1 4 2 1

1 2 2 4 2

−1 1 1 2 4

.

This suggests that θλ is represented by a symmetric matrix. We prove this below.

Proposition 5.1.3. Given v, w ∈ Vλ, we have an identity θλ(v ⊗ w) = θλ(w ⊗ v).

PROOF. Define a new map fλ : Vλ⊗ Vλ −→ C as follows. For basis vectors T, T ′ ∈ Bλ,
let

fλ(T ⊗ T ′) =

{
1 if T = T ′,

0 if T 6= T ′.
(5.1)

Although fλ may not be equivariant, we can define an Sd-equivariant map by letting

hλ(T ⊗ T ′) =
∑
g∈Sd

fλ(g T ⊗ g T ′).

By the uniqueness proved above,

θλ(v ⊗ w) = ξ hλ(v ⊗ w),

for some constant ξ (independent of v, w). But hλ(v⊗w) = hλ(w⊗ v) by construction,
which completes the proof.

We can thus define a quadratic form Qλ : Vλ −→ C by the formula

Qλ(v) = hλ(v ⊗ v).

If g T =
∑

S∈Bλ

aS S, then fλ(g T ⊗ g T ) =
∑

S∈Bλ

a2
S > 0 by (5.1). Hence hλ(v ⊗ v) > 0

for every nonzero v ∈ Vλ. This proves that

Proposition 5.1.4. Qλ is a positive definite quadratic form.

In this chapter, we give explicit formulae for θλ when

λ = (d− 1, 1), (2, 1d−2), (d− 2, 12).
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Finally we conjecture a formula for the case λ = (d− r, 1r).

Recall that we have defined permutations

σ = (1 2), τ = (1 2 . . . d). (5.2)

To check that a form θλ : Vλ⊗Vλ −→ C is equivariant, it is enough to verify the equality
θ(v ⊗ w) = θ(g v ⊗ g w) for g = σ, τ and v, w ∈ Bλ.

5.2 Formulae for θλ

Proposition 5.2.1. Assume d ≥ 3, and λ = (d− 1, 1). Then the q-form

θλ : V(d−1,1) ⊗ V(d−1,1) −→ C

is given by:

θ (Ti ⊗ Tj) =

{
2 if i = j,

1 if i 6= j.

PROOF. Let i = j and g = σ. We want to show that θ (Ti⊗Ti) = θ σ (Ti⊗Ti). By using
Lemma 4.2.2,

θ σ (Ti ⊗ Ti) = θ [(Ti − T1)⊗ (Ti − T1)]

= θ [Ti ⊗ Ti − Ti ⊗ T1 − T1 ⊗ Ti + T1 ⊗ T1]

= 2− 1− 1 + 2 = 2 = θ (Ti ⊗ Ti).

Now let i 6= j where i 6= 1 and j 6= 1. Then

θ σ (Ti ⊗ Tj) = θ [(Ti − T1)⊗ (Tj − T1)] (by Lemma 4.2.2)

= θ [Ti ⊗ Tj − Ti ⊗ T1 − T1 ⊗ Tj + T1 ⊗ T1]

= 1− 1− 1 + 2 = 1 = θ (Ti ⊗ Tj)

Now let i 6= j, and either i = 1 or j = 1. Say i = 1, then

θ σ (T1⊗Tj) = θ[−T1⊗(Tj−T1)] = θ[−T1⊗Tj +T1⊗T1] = −1+2 = 1 = θ (T1⊗Tj).

The calculation is similar for g = τ .
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Proposition 5.2.2. Assume d ≥ 3, and λ = (2, 1d−2). Then the q-form θλ : Vλ⊗Vλ −→
C is given by

θ (Si ⊗ Sj) =


(d− 1) when i = j,

(−1)i+j+1 when i 6= j.

PROOF. As before, we will explicitly check only some of the cases.
Case (1), when i 6= 1, i 6= d − 1. We want to show θ (Si ⊗ Si) = θ g (Si ⊗ Si), for

g = σ, τ . By Lemma 4.2.6,

θ σ (Si ⊗ Si) = θ (−Si ⊗−Si) = θ (Si ⊗ Si) = (d− 1) = θ (Si ⊗ Si),

and

θ τ (Si ⊗ Si) = θ [(−1)d Si−1 ⊗ (−1)d Si−1] = θ (Si−1 ⊗ Si−1) = (d− 1) = θ (Si ⊗ Si).

Case (2) when i = j, i = 1. By using Lemma 4.2.6, we have

θ τ(S1 ⊗ S1) = θ (
d−1∑
i=1

(−1)d−i+1 Si ⊗
d−1∑
j=1

(−1)d−j+1 Sj)

= θ (
d−1∑
j=1

d−1∑
i=1

(−1)i+j Si ⊗ Sj)

= (d− 1) (d− 1) +
d−1∑
j=1

d−1∑
i=1
i6=j

(−1)i+j (−1)i+j+1

= (d− 1)2 − [(d− 1) (d− 2)]

= (d− 1) = θ(S1 ⊗ S1).

Case (3): i = j , i = d− 1, and g = σ. The proof is similar, because the action of τ on
S1 is the same as the action of σ on Sd−1.
Case (4): i 6= j , and both 6= 1, d− 1. Follow the same technique as in Case (1).

The partition λ = (d − r, 1r), 1 ≤ r < d is usually called a hook, due to the
appearance

· · ·
...
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of its Young diagram. A basis element in B(d−r,1r) can be distinguished only by the se-
quence of numbers in its first column (second row onwards). For p = (p1, p2, . . . , pr), let

Tp denote the basis element whose first column is (1, p1, p2, . . . , pr). e.g.,

1 2 5

3

4

6
will be denoted by T3 4 6.

Lemma 5.2.3. Let λ = (d − r, 1r), where d ≥ 2 and 1 ≤ r < d. Let Tp ∈ Bλ, where
p = (p1, p2, · · · , pr). Then

σ Tp =

−Tp if p1 = 2,

Tp +
r∑

i=1

(−1)i T2 p1···p̂i···pr otherwise;

whereas,

τ Tp =

(−1)r T2 (p1+1)···(pr−1+1) if pr = d,

T(p1+1) (p2+1)···(pr+1) +
r∑

i=1

(−1)i T
2 (p1+1)···(̂pi+1)···(pr+1)

otherwise.

PROOF. Let first Tp ∈ Bλ such that p1 = 2. That means

Tp =


1 a1 · · · ad−r−1

2

p2

...
pr

, where ai ∈ {3, 4, · · · , d}. Then

σ Tp =


2 a1 · · · ad−r−1

1

p2

...
pr

 = −


1 a1 · · · ad−r−1

2

p2

...
pr

 = −Tp.

However, if p1 6= 2 then

σ Tp = σ


1 2 a1 · · · ad−r−2

p1

...
pr

 =


2 1 a1 · · · ad−r−2

p1

...
pr


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=


1 2 a1 · · · ad−r−2

p1

...
pr

 +


2 p1 a1 · · · ad−r−2

1
...
pr

 +

· · ·+


2 pr a1 · · · ad−r−2

p1

...
1

 ,

= Tp + (−1) T2 p2···pr + (−1)2 T2 p1 p3···pr + · · ·+ (−1)r T2 p1 p2···pr

= Tp +
r∑

i=1

(−1)i T2 p1···bpi···pr .

Now, let Tp ∈ Bλ be such that pr = d. Then

τ Tp = τ


1 a1 · · · ad−r−1

p1

...
pr−1

d

 =


2 (a1 + 1) · · · (ad−r−1 + 1)

(p1 + 1)
...

(pr−1 + 1)

1

,

and if ai ∈ {2, 3, · · · , d− 1}, then τ Tp = (−1)r T2 (p1+1)···(pr−1+1).
Finally, when pr 6= d, the last number in the first row is equal to d. So, we have

τ Tp = τ


1 · · · d

p1

...
pr

 =


2 · · · 1

(p1 + 1)
...

(pr + 1)

 (by straightening),

= T(p1+1) (p2+1)···(pr+1) + (−1) T
2 ̂(p1+1)···(pr+1)

+ (−1)2 T
2 (p1+1) ̂(p2+1)···(pr+1)

+

· · ·+ (−1)r T
2 (p1+1) (p2+1)··· ̂(pr+1)

.

This ends the proof.

Notice that this is a generalization of lemma 4.2.2. The next example explains the
action of S5 on B(3,1,1).
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Example 5.2.4. Note that B(3,1,1) is the ordered set

{

 1 4 5

2

3

 ,

 1 3 5

2

4

 ,

 1 2 5

3

4

 ,

 1 3 4

2

5

 ,

 1 2 4

3

5

 ,

 1 2 3

4

5

}
= {T2 3, T2 4, T3 4, T2 5, T3 5, T4 5}.

Then the action of σ on B(3,1,1) is given by

A(3,1,1)
σ =



−1 0 0 0 0 0

0 −1 0 0 0 0

1 −1 1 0 0 0

0 0 0 −1 0 0

1 0 0 −1 1 0

0 1 0 −1 0 1


Also, the action of τ = (1 2 · · · 5) on B(3,1,1) is given by

A(3,1,1)
τ =



1 −1 1 0 0 0

1 0 0 −1 1 0

0 1 0 −1 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0


The next result concerns the partition λ = (d − 2, 12). Given two basis elements

Tp1 p2 , Tq1 q2 ∈ Bλ, let m be the number of indices i such that pi = qi. Moreover, define
n to be 1 if p1 = q2 or q1 = p2, and 0 otherwise. For instance, for the pairs (2, 3), (3, 4)

we have m = 0, n = 1. Similarly, for (2, 4), (2, 7), we have m = 1, n = 0.

Theorem 5.2.5. Assume d ≥ 4. Then the q-form θ : V(d−2,1,1) ⊗ V(d−2,1,1) −→ C is
defined by

θ (Tp1 p2 ⊗ Tq1 q2) =



3 when m = 2,

(−1)n when m + n = 1,

0 when m = n = 0.
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PROOF. We have to show that θ = θ g for every g = σ, τ . Let Tp1 p2 ⊗ Tq1 q2 be an
element in the basis of V(d−2,1,1) ⊗ V(d−2,1,1). We have the following cases.

(I) Assume g = σ.

1. m = 2. This means pi = qi, ∀ i = 1, 2. To show that θ σ (Tp1 p2 ⊗ Tp1 p2) = 3, we
have to look at the following subcases:

• p1 = 2, then θ σ (T2 p2 ⊗ T2 p2) = θ (−T2 p2 ⊗ −T2 p2) = 3.

• p1 6= 2, then

θ σ (Tp1 p2 ⊗ Tp1 p2) = θ ( (Tp1 p2 + (−1)T2 p2 + T2 p1)⊗ (Tp1 p2 + (−1)T2 p2 + T2 p1) )

= θ ( Tp1 p2 ⊗ Tp1 p2 − Tp1 p2 ⊗ T2 p2 + Tp1 p2 ⊗ T2 p1

− T2 p2 ⊗ Tp1 p2 + T2 p2 ⊗ T2 p2 − T2 p2 ⊗ T2 p1

+ T2 p1 ⊗ Tp1 p2 − T2 p1 ⊗ T2 p2 + T2 p1 ⊗ T2 p1 )

= 3− 1 + (−1)− 1 + 3− 1 + (−1)− 1 + 3 = 3.

2. m + n = 1. In this situation we have the following subcases:

• p1 = q1 = 2, that means m = 1 and n = 0. Then

θ (T2 p2 ⊗ T2 q2) = (−1)0 = 1.

The other side is θ σ (T2 p2 ⊗ T2 q2) = θ (−T2 p2 ⊗ −T2 q2 ) = 1.

• p1 = 2, (or q1 = 2), and p1 6= q1, p2 = q2. That means m = 1 and n = 0, so
we have

θ(T2 p2 ⊗ Tq1 p2) = 1.

Now, the other side will be

θ σ (T2 p2 ⊗ Tq1 p2) = θ (−T2 p2 ⊗ (Tq1 p2 − T2 p2 + T2 q1 ) )

= θ (−T2 p2 ⊗ Tq1 p2 + T2 p2 ⊗ T2 p2 − T2 p2 ⊗ T2 q1)

= −1 + 3− 1 = 1.

• p1 = q1 6= 2. Then p2 6= q2, which implies that m = 1 and n = 0, which is
similar to the second subcase in part (2) above.

• p1 6= q1 and none of them is 2, but p2 = q2. This case is the same as the
third case in part (2) above.
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• The last possible subcase is m = 0 and n = 1. That means p1 = q2, (or
p2 = q1). In this case,

θ( Tp1 p2 ⊗ Tq1 p1) = −1.

Then

θ σ ( Tp1 p2 ⊗ Tq1 p1) = θ ( (Tp1 p2 − T2 p2 + T2 p1)⊗ (Tq1 p1 − T2 p1 + T2 q1) )

= θ ( Tp1 p2 ⊗ Tq1 p1 − Tp1 p2 ⊗ T2 p1 + Tp1 p2 ⊗ T2 q1

− T2 p2 ⊗ Tq1 p1 + T2 p2 ⊗ T2 p1 − T2 p2 ⊗ T2 q1

+ T2 p1 ⊗ Tq1 p1 − T2 p1 ⊗ T2 p1 + T2 p1 ⊗ T2 q1 )

= −1− (−1) + 0− 0 + 1− 1 + 1− 3 + 1 = −1.

3. m = 0 and n = 0, that means p1, p2, q1, q2 are all pairwise different numbers. So,
we have

θ (Tp1 p2 ⊗ Tq1 q2) = 0.

However, for the other side we have to check the following possibilities:

• p1 = 2, (or q1 = 2), in this case

θ σ(T2 p2 ⊗ Tq1 q2) = θ (−T2 p2 ⊗ (Tq1 q2 − T2 q2 + T2 q1) )

= θ (−T2 p2 ⊗ Tq1 q2 + T2 p2 ⊗ T2 q2 − T2 p2 ⊗ T2 q1)

= 0.

• When none of p1, q1 is 2, we have

θ σ(Tp1 p2 ⊗ Tq1 q2) = θ ( (Tp1p2 − T2 p2 + T2 p1)⊗ (Tq1 q2 − T2 q2 + T2 q1) ) = 0.

(II) Assume g = τ . When r = 2, then by Lemma 5.2.3, we have:

τ Tp =

{
T2 (p1+1) if p2 = d,

T(p1+1) (p2+1) − T2 (p2+1) + T2 (p1+1) otherwise.

1. m = 2 then θ (Tp ⊗ Tp) = 3. For the other side we distinguish the cases p2 = d

and p2 6= d, and the discussion follows part (1) above.

2. When m + n = 1, we have exactly the same cases as above, namely :

• p2 = q2 = d, that means m = 1 and n = 0,
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• p2 = d, (or q2 = d), and p2 6= q2, p1 = q1. That means m = 1 and n = 0.

• p2 = q2 6= d. i.e. p1 6= q1.

• p2 6= q2 and none of them is d, but p1 = q1.

• m = 0 and n = 1. That means p1 = q2, (or p2 = q1), and none of them is d.

In all those cases the proof follows part (2) above.

3. m = 0 and n = 0, that means p1, p2, q1, q2 are all pairwise different numbers. So,
we have

θ (Tp ⊗ Tq) = 0.

For the other side we have the following cases

• p2 = d, (or q2 = d),

• none of p2, q2 is d,

and in each subcase the proof follows part (3) above.

5.3 A conjecture for the hook diagram

In this section we conjecture a formula for θλ when λ = (d− r, 1r) and 2 ≤ r ≤ d− 2.
Let p = (p1, p2, . . . , pr) and q = (q1, q2, . . . , qr) denote two increasing sequences

such that Tp, Tq ∈ B(d−r,1r). Define m to be the number of indices i such that pi = qi.
On the other hand, let n denote the number of ordered pairs (i, j) such that

i 6= j, pi = qj.

For example, if
p = (2, 4, 6, 8, 9), q = (3, 4, 5, 6, 8),

then m = 1, n = 2.

Conjecture 5.3.1. The q-form θ : V(d−r,1r) ⊗ V(d−r,1r) −→ C is defined by

θ (Tp ⊗ Tq) =



(r + 1) when m = r,

(−1)n when m 6= r and m + n = r − 1,

0 when m + n < r − 1.
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This conjecture would generalize Theorem 5.2.5. In future we will try to find a proof
of this conjecture, as well as find similar formulae for other partitions λ.
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