
DvNRurc MuIuLATERRI, PppRING: AN EpplcIENT
MpcsaNISM FoR CoNtnoLLED RosouRCE SHRRINc

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Faculty of Graduate Studies
IJniversity of Manitoba

by

Kumaran Subramoniam

Copyright @ 2003 by Kumaran Subramoniam

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
JJ¿¿¿

COPYRIGHT PERMISSION

Dynamic Multilateral Peering: An EffTcient Mechanism
for Controlled Resource Sharing

BY

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

Kumaran Subramoniam

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and

copied as permitted by copyright laws or with express written authorization from the copyright
owner.

MASTER OF SCIENCE

Kumaran Subramoniam @ 2004

Peering systems are designed for efficient and fair load distribution among different au-

tonomous resource sharing entities. Resource sharing entities allow computing resources

such as disk space, memory space, network bandwidth, CPU cycles and specialized pro-

cessing power to ofier service to other entities on the network or to use the services offered

by other entities. A working agreement is established between the resource sharing enti-

ties, and these working agreements that are established "offiine" dictate how the peering

systems operate, while sharing resources among different entities. In this thesis, we have

designed a new peering system called' Dynami,c Multilateral Peeri'ng System' in which the

working agreement between resource sharing entities changes dynamically with change

in the load on the sharing entities.

The peering system designed in this thesis is compared with a peering system called

Stati,c Peering System. Unlike dynamic peering system, static peering system has a fixed

working agreement between different sharing entities; therefore, variation in load on re-

source sharing entities will not affect the sharing agreement. This problem of overlooking

the load on sharing entities is addressed in dynamic peering system, where the peering

policies among the sharing entities changes with the load. Pricing scheme is used in

dynamic peering system to evaluate the value of a resource on an entity, and the value of

the resource will change with the load. In dynamic peering system, working agreement

between entities is determined by the value of the resource. We show that by changing

the working agreement with change in the load increases the effi.ciency of the peering

system. In this thesis, we examine the dynamic peering system with ihe following ques-

tions in mind: (a) Wü dynamic peering system give better load distribution than static

peering system? (b) What are the limitations of dynamic peering system? (c) What are

ii

Abstract

the different conditions in which a dynamic peering system outperforms a static peering

system and vise versa? Load balancing is used as a baseline mechanism to compare the

efficiency of different peering systems.

lll

There are many people who helped me in pursuing my master's. First of all, I would

like to thank my advisor Dr. Maheswaran, who gave an insight of my thesis work. I

would like to thank my advisor, for guiding me with great patience, immense amount of

support, and without my advisor's support this thesis would have gone nowhere'

I would like to thank The Uni,uersity of Manitoba and Department of Electri,cal and

Computer Engineeri,ng for giving me the opportunity to pursue my master's degree. I

would like to thank my committee members Prof. Rasit Eskicioglu and Prof. Ekram

Hossain for spending their valuable time in evaluating my thesis. I would like to thank

TRLabs, for providing me financial support and resources. I am very much grateful to

TRLøbs for providing me a great research environment.

I would like to thank my family and friends for providing me a great support. I would

like to thank Rajesh for giving me valuable feedback on my thesis, and providing me

great support throughout my studies. I would like to thank Maniy for constantly helping

me in my research as well as other parts of my master's. I would like to thanks my

brother Amudhan for constantly pushing me to learn new things.

Acknowledgements

lv

Contents

l- Introduction

Literature Review 5

2.7 Pricing Algorithm 5

z.L.L Price Calculation Using Tâtonnement Process 5

2.I.2 Commodity Market 7

2.2 Peering Systems 8

2.2.L Enforced Resource Sharing For Web Clusters 8

2.2.2 Data Archiving Using Peering System I

2.2.3 Lottery Scheduling 10

2.2.4 Effectiveness Of Request Redirection On CDN Robustness 12

Peering Systems 1-3

3.1 Bilateral Peering System 13

3.2 Multilateral Peering System 16

3.3 Load Balancing System . 18

3.4 Static Peering 2I

3.5 Dynamic Peering System 22

3.6 Pricing Mechanism 25

v

3.7 Spectrum Of Cooperation

4 Simulation Setup And Results

4.L Performance Metrics

4.I.I Throughput...

4.1.2 T\rrn Around Time

4.I.3 Utilization

4.2 Assumptions And Limitations

4.3'Workload Generator

4.1.4 System Capacity

4.4 Simulator

4.4.I Parallel System Simulator

4.4.2 Load Balancing Simulation Setup

4.4.3 Static Peering Simulation Setup

4.4.4 Dynamic Peering Simulation Setup

Simulation Setup4.5

4.5.2 Peering Domains Wiih Differential Load

4.5.3 Peering Domains With Extreme Load .

4.6 Results

4.5.I All Peering Domains Overloaded

33

35

36

36

36

36

37

37

38

39

40

42

44

48

49

49

50

53

55

55

63

69

4.6.1 All Peering Domains Overloaded

4.6.2 Peering Domains With Differential Load

4.6.3 One Domain Overloaded And All Other Domains Underloaded

Future Work And

5.1 Contributions

5.2 F\rture Work

Conclusion

vl

76

76

78

A Abbreviations 7g

vll

List of Figures

3.1 Bilateral Peering System

3.2 Amalgamation In Bilateral Peering System

3.3 Hierarchical Peering Systems

3.4 Load Balancing Peering System

3.5 Multilateral Peering System

3.6 Client Demand Curve

3.7 Market Demand Curve

3.8 Spectrum Of Cooperation

4.r

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

FIow Chart For Load Balancing

Flow Chart For Accessing Log Info In Peering Systems

Flow chart For Scheduling Jobs In Peering Systems

Supply And Demand For Overloaded Parallel Systems

Supply and Demand Graph For Differential Load

Supply And Demand For Extreme Load

Domain Level Throughput For Overloaded Parallel Systems

Price Of Resource For Overloaded Parallel Systems

Foreign Resource Utilization For Overloaded Parallel Systems

Native Resource Utilization For Overloaded Parallel Systems

viii

T4

15

L7

19

24

29

29

33

43

46

47

52

53

54

57

57

59

60

4.11 Average Completion Time For Overloaded Parallel Systems .

4.12 Turn Around Time For Overloaded Parallel Systems .

4.13 System Capacity For Overloaded Parallel Systems

4.14 Queue For Overloaded Parallel Systems

4.15 Throughput For Differential Load

4.16 Average Price For Differential Load Condition

4.17 Foreign Resource Utilization For Differential Load .

4.18 Native Resource Utilization For Differential Load

4.19 Average Completion Time For Differential Load

4.20 T[rn Around Time For Differential Load

4.21

4.22

4.23

4.24

4.25

Throughput For Extreme Loads

Price For Extreme Loads

Foreign Resource Utilization For Differential Load

Average Completion Time For Extreme Load

4.26 Native Resource Utilization For Extreme Load

Turn Around Time For Extreme Load

60

61

62

62

66

66

67

68

68

69

72

72

l.J

f.)

74

74

tx

Chapter 1

Introduction

Peering concept is successfully implemented and used in the Internet by different network

service providers (NSPs). As an NSP by itself has limited capacity and reach, it is

beneficial and necessary for it to establish working agreements with other NSPs, to extend

its capacity and reach. These working agreements that are established "offi.ine" dictate

how the NSPs operate, while carrying each other's traffic. They outline the exchange

of bandwidth capacities among the domains. To gain a better understanding of the

peering process, let us examine the two motivations for peering: to extend reach and to

extend capacity. The reach extension in the Internet, makes peering mandatory. Without

working peering relationships, an NSP won't be able to route traf6.c to portions of the

Internet. This can be crucial for smaller NSPs with correspondingly smaller spans. The

capacity extension makes peering an optional requirement. Nevertheless, the additional

capacities provided by the peering arrangements can provide alternative paths for a

domain to route its traffic toward the destinations. This flexibility can be useful, when

the domain is subjected to load spikes.

One of the main technology that has helped the worid to shrink is Internet. As more

and more people have started to use the Internet as a source for accessing and trading

1

CsRprpR 1. It'ItRooucrroN

information, the resource for satisfuing these demands could not keep up. One possible

solution for the increasing demand is to increase the supply, for which all the resources has

it own threshold. This effectively means that there should be some way for an overloaded

system to access the resource of an underloaded system. The above discussion leaves us

with different systems peering with each other and these systems that peer with each

other are called Peeri,ng Systems.

Hence, the questions that arise in our mind is: What means do the different systems

use to peer with each other? One way of sharing resources among peers is through a

network. The network can be a wireless network or a wired network, but ultimatel$

all the peers have to be connected through some network. This thesis considers that all

peers in a peering system are connected through a network, and since the peering system

is connected in a network, it is called as Network Peeri'ng ^9gsúenz(NPS).

The situation in network peering systems is different than that in the Internet. In

network peering systems, peering can be hardly considered mandatory. There are two

contradicting observations. A domain should have sufficient resources to enter into a

peering agreement with another domain. On the other hand, a domain with sufficient

resources does not have to enter into a peering agreement. This implies the peering

agreements should be optional. In [ZhK01], a new peering scheme was suggested, where

each agreement had mandatory and optional peering levels that are independently set.

To examine the drawbacks of this scheme, we need to consider the core requirements of

peering in network peering systems.

Network peering systems are made of computing resources that are willing to co-

operate in addressing the requirements of their clients. In non-trivially large network

computing systems such as Grid computing systems, computing utilities and Peering

overlays, the cooperation is among domains that are clusters of resources with the same

ownership or administrative policies. Peering arrangements are necessary to coordinate

CnRprpR 1. IxrRooucuoi.¡

the inter-operation among the different domains such that a domain has control over

what is being shared with other domains. The overall objective of peering is to maximize

some global performance measure, while minimizing the impact on the local activities-

More specifically, a domain wants to share its resources, when it is under-loaded and

the resources are not critically required for local consumption; and don't want to share

anything if it is over-loaded and the resources are critically required for local consump-

tion. The peering policies define the parameters that can be used to determine, whether

a domain is under-loaded or over-loaded. When a domain is under-loaded, we need to

determine how much of its resources will it lend to other domains.

What is the gain for a domain to join a peering system? Why should a domain

with sufficient resources should join the peering system? In the case of a overloaded

system, it can use the resource of an underloaded peer in the peering system, and with

the underloaded system it can get some revenue out of the unused resource. In some

cases there are systems that need resources for preserving some backup information. In

the case of systems that need to preserve information, the main advantage is to increase

the redundancy of some important data. Peering system will be very useful in increasing

the redundancy of data in a data archiving system. Making several copies of data is very

important, but another important issue is to distribute the data in various autonomous

domains. If one domain fails, then the data can be retrieved from another autonomous

domain. In data preservation, reliability is a very important metrics, and reliability is

measured for both local and global peering domains. There are domains, which have

peering policy with one domain and share resources of some other domain.

Network peering systems are made of computing resources that are willing to coop-

erate in addressing the requirements of their clients. Peering arrangements are necessary

to coordinate the inter-operation among different domains such that a domain has con-

trol over what is being shared with other domains. The overall objective of peering is to

Cnaprpn 1. IivrRooucrroN

maximize some global performance measure, while minimizingthe impact on the local ac-

tivities. More specifically, a domain wants to share its resources, when it is under-loaded

and the resources are not critically required for local consumption; and don't want to

share if it is over-loaded and the resources are critically required for local consumption.

The peering policies define the parameters that can be used to determine, whether a

domain is under-loaded or over-loaded. When a domain is under-loaded, we need to

determine how much resources it will lend to other domains.

In this thesis, we propose a ne\ry peering system, which has peering policies that

changes with load on the system. As the peering policy changes with the load in the

peering domains, the peering system proposed in this thesis is named as Dgnami,c Peerí,ng

System. Dynamic peering system uses economic model to determine the peering policy.

The peering system proposed in this thesis is compared with the peering system proposed

in [ZhK01], and load balancing is used as a baseline to compare the peering systems. More

details on different peering systems are explained in chapter 3. The peering systems are

simulated, and the results are compared to show the advantages and disadvantages of

the peering systems.

Chapter 2

Literature Review

In this chapter, we examine projects related to peering systems and pricing algorithm.

Section 2.1 deals with projects related in calculating the price of the resource. Section

2.2 talks about projects related to different peering systems.

2.L Pricing Algorithm

z.L.L Price Calculation Using Tâtonnement Process

In tâtonnement process, excess demand is used to determine the equilibrium price, where

it is considered that the equilibrium price is reached when the demand is equal to the

supply. The tâtonnement process is an iterative process and the process will not end until

the equilibrium price is achieved. Price Tâtonnement process is an iterative process where

the price changes in the same direction as excess demand. In [ChW98], pricing of the

resources is done using the price-tâtonnement process. In [ChW98], WALRAS atgorithm

is used for the price-tâtonnement process. In WALRAS algorithm, interdependence of

the resources are not considered. The main argument in the WALRAS algorithm is that,

the price of a particular resource is dependent only on its own demand and the influence

5

CsnprpR 2. LtrpReruRp Rpvrpw

of the price of the other resources might increase or decrease, and eventually all of the

changes cancel each other.

In peering systems, there are situations where the demand is less than the supply. In

this case, the process waits until a demand is found for the existing supply and if there is

no demand for the existing supply then the process will run into an infinite loop. In this

pricing scheme, one of the major drawbacks is the processing time required to calculate

the value of a resource. The greater the time it takes to achieve the equilibrium, the

higher is the processing time.

In [FeN96], pricing of the resource is done using the price-tâtonnement process. The

drawback is, there is no control of price when there is a spike in the demand. The demand

is calculated by adding the demand proposed by the client and the supply is calculated

by polling information from the resource producer. [FeN96] uses tâtonnement process

and the price of the resource is changed when there is an imbalance in the supply or the

demand. The tâtonnement process is an iterative process and the price of the resource

is calculated until the excess demand is equal to zero. If the excess demand is greater

than zero, the price is increased and if ihe excess demand is less than zero then the price

is decreased. The value of the new price depends on the value of the old price, which

means that there should be an initial reference price, which will be used to calculate

the new price. The economic model developed in [FeN96] is used to control the resource

between different autonomous computer systems. [FeN96] and [ChW98] give an insight

of the tâtonnement process that can be used to calculate the value of a resource. The

economic model used in my thesis does not use tâtonnement process, but some ideas of

calculating the demand of the resource is borrowed from [FeN96]. The main reason for

not using tâtonnement process for calculating the value of the resource is, when there

are lots of spikes in the demand, it is difficult to achieve an equilibrium price.

Csepren 2. LrtpnetuRp RpvIew

2.L.2 Commodity Market

Wolski et al in [WoP00], has done a comparison in efficiency of calculating a price for

the resource using commodity market and auctioning. Both auction and commodity

market strategies are compared in terms of price stability, market equilibrium, consumer

efficiency, and producer efficiency. [WoP00] uses two methods for calculating the price of

the resource; one method deals with the polling of information from resource producers

and consumeÌs, where, it is assumed that the information provided by both resource pro-

ducers and consumers are reliable. Another method of calculating a price for the resource

is by using an approximation excess demand function of Smale's method [WoP00]. In

Smale's approximation, the excess demand is calculated using a large degree polynomial.

Statistical data is used to calculate the approximate Smale's excess demand function.

Ideas mentioned in [WoP00], gave some insight for calculating a value for the resource.

In our research, we have calculated the price of the resource by polling the resource

consumers and producers.

I

In [SaK98], a vertical differentiated pricing strategy is used, where vertical differenti-

ation is near-universal agreement among consumers of what constitutes higher or lower

quality. Five different pricing strategies for the sellers are evaluated. The strategies

are game-theory, my-optimal, computationallyJimited my-optimal, trial-and-error and

derivative-following. The buyers, in [SaK98], make decision for buying the resource by

using the utility function. In our project, we are using the utitity function as the demand

of the client. The utility function describes the demand proposed by the client and it is

similar to the polling technique used in [WoP00].

Cueprpn 2. LirpReruRp Rpvrpw

2.2 Peering Systems

2.2.L Enforced Resource Sharing For 'Web Clusters

In [ZhK01], two levels of peering a¡e introduced. The mandatory peering level is active

at all times irrespective of the state of the lending domain (i.e., whether the domain is

overloaded or not, it should honor the peering requirement and give away the specified

amount of resources). When all domains are overloaded, the mandatory peering policy

will cause unnecessary resource flows among the domains that would not improve the

overall performance. [ZhK01] uses a static peering model is to share resource among

different peers. [ZhK01] uses bilateral peering policy, which has a peering arrangement

with only two peering domains. [ZhK01] also uses a static peering policy, which creates

a lot of management overhead, but in our project we are using dynamic peering policy

which will change the peering policies according to the demand of the resource in a

domain. More details on different peering systems and peering policies are discussed in

Chapter 3.

In our peering model, we use a Central Information Board(CIB) io enable a mul-

tilateral peering system, which decreases the redundancy of the peering system. The

redundancy in a multilateral peering system is less because, if the CIB fails then the

entire peering system will fail. Since [ZhK}l] uses bilateral peering policy, the overhead

created due to having peering policies with individual peer is more when compared to

multilateral peering system. If there are hundreds of peers in a bilateral peering system

and if all the peers needs to peer with each other, then number of policies created is very

high when compared to multilateral peering. More detail description on the advantages

and disadvantages of multilateral and bilateral peering policies are given in Chapter 3.

In [ZhK01], optional tickets can be used by a peering system when the lending peering

Cueprpn 2. LrrpneruRn Rpvrpw

system is under loaded. By using the optional tickets, the load distribution effi.ciency

is increased. But in case when both the peering domains are overloaded, both domains

need to allow the foreign peering domains to use the mandatory resource that it has

promised.

For example, let us consider that there are two peering domains PD1 and PD2 that

are sharing 100 CPU cycles and 200 CPU cycles, respectively with each other. When

two peering domains are equally overloaded, it will be better for both peering domains

to avoid peering; but as the peering system has mandatory peering policy, the peers need

to share the mandatory peering resource. In this case PS2 will loose 100 CPU cycles to

peering system PSl even if the load in both peering system is the same, and this is an

unbalanced load distribution. To overcome this issue in [ZhK01], we have introduced a

peering model in which the peering policy changes with the local load on the domain.

2.2.2 Data Archiving Using Peering System

In [CoM02], work is done to find a highly reliable data trading mechanism among different

autonomous systems. Two trading algorithms are described collection trading and deed

trading, as a mechanism to facilitate trading blocks of space. [CoM02] concentrates more

on improving the redundancy of data storage in different autonomous systems. Bilateral

peering policy is used to store multiple copies of data at different sites through a network

by making replicas of the data.

As mentioned in [CoM02], collection trading can be better explained with an example,

and the example that I have used to explain collection trading is archival site that store

data. Audio data of one giga bytes is stored in archiving site A. Another archiving site

B approaches site A for archiving some of site B's data. If site A has enough space in its

system then it will accept site B's proposal. Site B archives two giga bybes of video data

Cseprpn 2. LrrpRetuRe RpvIpw

in site A, but site A has only one giga bybes of audio data to be archived. Now, there

are two copies of audio and video data and the redundancy of both audio and video data

has increased. The process continues, when more sites contact each other for archiving

data and the system grovrs with increase in number of sites.

Deed trading used in [CoM02] is similar to bilateral static peering done in [ZhK01].

In deed trading, deeds similar to property deeds are traded between different sites. The

deeds can be used as a whole or as part by the sites which holds the deeds. In collection

trading example, site A will loose one giga bytes of storage space because it had only one

giga byie of audio data to be archived in site B. In the case of site B, it gains one giga

byte of data storage because site A archived only one giga byte of information in site

B. If we consider the same example that is used in collection trading for deed trading,

site A will give site B two giga bytes of storage space and site B gives two giga bytes of

storage space to site A. Site B uses its deeds immediately and site A will use half of its

deed immediately and keep the remaining half deeds for later use.

In [CoM02], simulation is done for testing the global and local reliability, and scala-

bility of the trading mechanism. The simulation results show that the best reliability is

achieved with few sites. Simulation results also show that the reliability is better when

the number of sites is less than ten. In [CoM02], static peering is used and the sites need

to contact another site for archiving information, this way of polling every known site for

archiving formation introduces a lot of overhead. We have used the multilateral peering

system in our work to overcome the overhead created due to polling different sites.

10

2.2.3 Lottery Scheduling

[Wa\M9] presents a novel randomized resource allocation mechanism that provides re-

sponsive control over the relative execution rates of computations. The resource allo-

CsRprpR 2. LrtpReruRp RPvIPw

cation mechanism used is called Lottery Schedulíng. Lottery scheduling also provides

support for modular resource management. Lottery scheduling is done using tickets,

where lottery tickets encapsulate the rights for the resource. Scheduling by lottery ticket

is probabilistic and the expected allocation of resource for a client is proportional to the

number of tickets a client holds. Lottery scheduling algorithm is a randomized algorithm,

therefore, the actual allocated proportions are not guaranteed to be exactly the same as

the expected proportion. But [WaW94] claims that the disparity between actual and

expected proportions decreases as the number of allocation increases.

Lottery scheduling has a modular resource management algorithm and the modularity

is brought into the algorithm using tickets. The tickets can be explicitly transfered from

one client to another. A unique currency is used to denominate a ticket and the ticket

is valid only within a trusted boundary. Lottery scheduling has been implemented to

quantifu its ability to flexibly, responsively and effectively control the relative execution

rates of computation and the fairness of the scheduler. The lottery scheduler was im-

plemented in a multi-threaded client server application for searching text and competing

MPEG video viewers.

11

[WaW9] gave an insight of using tickets for resource allocation. The resource allo-

cation scheme in lottery scheduling uses randomized method to choose the winner for

the resource. The clients, which have more tickets have higher possibility of winning the

resource. In this thesis, we find a value for the resource and the clients get the resource

according to the amount of dollars he owns. By having a price for the resource, the

possibility of starving the low demand clients will be relatively less when compared to

lottery scheduling. Unlike lottery scheduling, the expected and actual resource allocation

for a low demand client is the same even if the demand for the resource is less.

CsapreR 2. LirpReruRp RevIpw

2.2.4 Effectiveness Of Request Redirection On CDN Robust-

NCSS

[LiV02] talks about an effective request redirection on content delivery networks (CDN).

Some of the important issues addressed are the response time and system throughput.

Response time is defined as a cumulative distribution of latencies and system throughput

is defined as the average number ofsatisfied requests for each second. System throughput

represents the overall robustness of a system, when there is a flash crowd or a distributed

denial of service.

[LiV02] designs a request distribution mechanism that is both responsive across a

wide range of loads and distributed denial of services attacks. [LiV02] has used different

strategies to implement a good request distribution mechanism. [LiV02] gave me an

insight of the different performance metrics that can be used to evaluate a system. The

concept of finding throughput, completion time, and system capacity is borrowed from

[LiV02]. We have also used the concept of calculating the threshold of a system from

[LiV02], where threshold of a system or system failure occurs when the queue length of

the system exceed five times the parallelism parameter. The number five for determining

the system failure is randomly chosen.

t2

Chapter 3

Peering Systems

Peering can be defined as a relationship between two or more domains in which the do-

mains create a direct link between each other and agree to forward each other's resources

directly across the link. Peering can be categorized by the policy used by the peers to

share their resources. The different peering policy that are discussed in this work are load

balancing peering system (LBPS), static peering system(SPS) and dynamic peering sys-

tem(DPS). The domains in the peering system can either have bi-lateral or multi-lateral

peering policy. A more detailed description about each system and their peering policy

is discussed in the following sections.

3.1 Bilateral Peering System

Bilateral peering system (BPS) can be defined as a peering system which has peering

policy with individual peering domains. Load balancing, static, and dynarnic peering

can be implemented by using bilateral peering policy. Bilateral peering system will have

more control of its resource, because it knows the peer that it is peering its resource. As

each peering domain has individual peering relation with another peering domain, the

13

CriRprpn 3. PppRrNc Svsrprr¿s

redundancy of the bilateral peering system is high. This is because, failure of one peering

domain will not cause the entire peering system to fail.

A bilateral peering system with sixteen domains is shown in Figure 3.1. Figure 3.1

shows that each peering domain has a peering policy with another peering domain and

there are some peering domains that have peering policy with more than one peering

domain. In Figure 3.1, we can see that PD10 has peering policy with both PD7 and

PD4.

L4

Flom Figure 3.1, we see that the sharing is restricted within a small entity. Each

PD5

PD4

Figure 3.1: Bilateral Peering System

PDlO

PD7

Cnaprpn 3. PppRt¡tc SYstPir¿s

individual entities in the peering system is shown as 81, 82, 83, 84, and E5' Each entity

have a different number of peering domains. Peering domains that are either directly or

indirectly connected to each other form an entity. In figure 3.1, entity E2 has peering

domains PD1, PD3, PDg, and only PD1 is connected directly to both PD3 and PD9.

PD3 and PD9 has an indirect connection between each other, and the indirect connection

is established through PD1. In entity 82, PD1 can use the local resource for local jobs,

and use the peered resource from PD3 and PD9 for peering. For example, let us consider

that PDl and PD3 shares 100 CPU slots with each other, and PDl and PD9 shares 100

CPU stots. In this example, PDl can use all the local resource for local jobs, use PD3's

resource for peering with PD9, and use PD9's resource for peering with PD3.

15

Scalability of a bilateral peering system increases when more peering domains make

Figure 3.2: Amalgamation In Bilateral Peering System

Cneprpn 3. PppRlNc SYstPIi,ts

direct peering relation with another peering domain. When peering domain from one

entity establishes peering relation with a peering domain in another entity, entity amal-

gamation occurs. Figure 3.2 shows that entities E4 and E5 is amalgamated into a single

entity E6, and this amalgamation of entities occur when peering domain PD12 and PD14

established a peering relation with each other. When more and more entities amalgamate,

the scalability of the peering system increases.

One of the main disadvantage of bilateral peering system is the restriction of its

resources to a certain entity. If we consider a case where entity El is overloaded and

entity E5 is underloaded, all the idle resource in entity E5 will go as a waste, and the

jobs in entity E1 witl be queued because of the overload. As each peering domains has to

establish individual peering relationships with another peering domain, there are more

overheads in distributing the peering policies.

3.2 Multilateral Peering System

Multilateral peering system (MPS) is a system, which has peering policy with all domains

in the peering system. MPS has a centralized information board(ClB) which will have

the peering information of all the peering domains, therefore, when compared to bilateral

peering system, the overheads due to sharing peering policies are less in MPS. As the

multilateral peering system requires a CIB to store the peering policy information of

different peering domains, the redundancy is less but the resource utilization is more

compared to bilateral peering system.

In Figure 3.1, which represents a bilateral peering system, all the peering domains can

have a CIB and the resource distribution becomes more load distributed. The problem

of wasting the idle resources of an entity, as explained in section 3.1 will be solved if a

multilateral peering system is used. But, the important issue with multilateral peering

16

Cnnprpn 3. PepRltic SvsreN4s

system is, as the the peering policy becomes more centralized the redundancy of the

peering system decreases. If the CIB fails, then the entire peering system will fail.

Therefore, there should be some trade-off between redundancy and resource utilization.

The redunda.ncy of the multilateral peering system can be improved by having a

hierarchical structure for the peering system. The hierarchical multilateral peering policy

structure is shown in figure 3.3. In figure 3.3, the lowest level of the hierarchy has the

peering domains, and the rest of the levels in the hierarchy has the CIB. In figure 3.3,

peering domains PDl, PD2 and PD3 form a peering system by submitting the peering

information to CIBI. Similarly two different CIBs, CIB2 and CIB3 are formed by PD4,

PD5, PD6, PD7, PD8 and PD9. CIBI, CIB2 and CIBS are in the same level of the

hierarchical structure. CIB1 and CIB2 are leaf nodes of the same branch, but CIB3 is a

leaf node of a different branch. In figure 3.3, we can see that each CIB forms a separate

entitg if there are no higher levels in the hierarchy then the resource distribution will

T7

Figure 3.3: Hierarchical Peering Systems

Csaprpn 3. PppRrNc Svstel4s

be restricted. But, as there are higher levels in the hierarchy, the peering systems in the

lower level of the hierarchy can amalgamate into a single peering system.

In Figure 3.3, we can see that CIB1 and CIB2 can be amalgamated into a single

central information board CIB4. It is not mandatory for all the peering systems in the

lower level to join the peering system in the higher level of the hierarchy, i.e., in Figure

3.3, it is not mandatory for CIB1 or CIB2 to have any peering policy with CIB4. If neither

CIB1 or CIB2 has peering policy with CIB4, then the branch which has CIB4 will not

exist. The dotted lines between peering domains in Figure 3.3, shows that peering is

done between peering domains between different peering systems. The dotted lines that

connect the CIBs, show some of the possible amalgamations of different peering systems.

The main advantage in hierarchical multilateral peering system is, even if one CIB fails,

the CIB in a different branch can still function.

With the hierarchical structure, the multilateral peering system is expected to be

more redundant. Therefore with the improved redundancg it is expected that a multi-

lateral peering system would perform better than bilateral peering system. Due to the

advantages of a multilateral peering system over a bilateral peering system, we have used

multilateral peering system for the peering model used in this thesis.

18

3.3 Load Balancing System

Load balancing peering system can be defined as a peering system, which has no peering

policy between peers and the resources in each peer are used according to the load in the

entire peering system. In a load balancing peering system, none of the peers have control

of its own resource and once a peer joins the peering system it will loose its autonomy.

Depending upon the load on entire system, the load will be distributed among different

peers so that the overall load in the entire peering system will be equally distributed to

CHeprpn 3. PppRntc SYsrpIi¡s

all the peers. One of the major disadvantages is that the load balancing peer looses it

autonomy.

As autonomy becomes a major concern for load balancing, the bilateral peering policy

might restrict the usage of the resource to just one peer. In bilateral peering system

peering, policy is restricted to only two domains and, therefore, this gives more control

for the peers on its resource. But, as we saw in Section 3.1, as the bilateral peering

system grows, the control of the resource for a peering domain decreases. In Figure 3.1,

rve can see that even though PD3 does not have direct peering relation with PD9, PD3

can have an indirect peering relation with PD9 through PD1. Therefore, the resources

in an single entity of the bilateral peering system will be common to all the clients in the

entity, i.e., aJl the resources in a single entity will be a common resource for the entire

peering system.

19

RÐurcg B*-*"

æ
ffi

Figure 3.4 shows a multilateral load balancing peering system, where PDl, PD2, PDB

Figure 3.4: Load Balancing Peering System

CneprnR 3. PppRIt{c Svsrpus

and PD4 are the four peering domains in the peering system. The cloud in the center

with resources, holds the virtual resources of all the peering domains. The resources will

physically be in its own peering domain, but as soon as the peering domain joins the

peering system the resources of the peers will virtually join the pool of resources of the

entire peering system. The clients from different peers use the resources in the central

pool, as a local resource without any restriction on the usage of the resource.

The load in all the domains in the peering system will be equally distributed. The big

cloud in Figure 3.4, shows that PDl, PD2, PD3 and PD4 are the only peering domains

that can access the resource from the common pool of resources. If some peering domain

wants to join the peering system, it will put all its resources into the central pool of

resources and will become a part of the peering system.

By looking at the load balancing peering system, it seems like peers with less resources

and high demand can join the peering system and utilize more resources than they have

contributed. The situation of over utilization of a resource by a peer brings the question

of how to control the peering domain which shares low resource and demands more

resource. One of the possible solution is to have a policy, where each peer can join the

peering system only if the peer can contribute a certain amount of resource. If a policy is

introduced to a load balancing peering system, it will become like a static peering system.

But, if no policy is introduced for the peers in the peering system, then the possibility of

reducing the efficiency of the peering system is more.

If we consider a situation, where only highly loaded peers join the peering system,

then all the domains will be racing for the resource and the purpose of peering will be

unsolved. For example, Iet us consider in Figure 3.4 that PS1, PS2, PS3, and PS4 are

sharing 1000 mega b¡es of hard disk space respectively. If PSl has a demand of 1500

mega b¡es, PS2 of 2000 mega bytes, PS3 of 1500 mega bytes and PS4 of 2000 mega

bytes, and the jobs in each peer in the peering system ha.s different start time. The jobs,

20

Cueprpn 3. PppRrwc Sysrpus

which starts first will try to grab all the resources and the jobs that appears in the end

will have no resource. In this example, let us consider that the jobs in PS1 starts at 1:00

am and ends at 2:00 am, jobs in PS2 starts at 1:30 am and ends at 2:30 am, and similarly

each peer has a difference, in the start time of the jobs, of one hour. In this case jobs

from PS1 will use extra 500 mega bytes from other peer's resource and similarty PS2 will

complete all its jobs by using the resource from other peers. But, peer PS3 rvill be able

to use only remaining 500 mega bytes from the resource pool and PS4 will be left with

no resource for its jobs.

This problem of unfair resource distribution can be solved by having some sharing

policies between peering domains. The following sections discuss two peering systems,

which distributes the resource with an enforced peering policy.

3.4 Static Peering

Static peering policy can be deûned as the policy that does not change for a time unit

regardless of the load in the domain. Static peering is the most simple peering technique,

as the peering policy is changed only at every time unit or probably after few time units.

As the policy for peering does not change very often, the overhead created due to the

management of the peering policy is greatly reduced. Even though the overhead has

been greatly reduced the efficiency of the peering is greatly reduced, because of the static

peering policg which does not change with changing load. Static peering systems can be

defined as a system, which has fixed policy for sharing resources among different peers.

The changes in the peering policy of a static peering system has to be done explicitly,

and this leaves the peering system to overlook the future demand for a particular time

interval and decide on the peering policy for a particular time interval.

In Figure 3.5, let us consider that PD1 shares 1000 units of resource, PD2 shares

21

Cneprpn 3. PppRINc Svsre\as

1500 units of resource, and PD3 shares 1000 units of resource. If we consider a condition,

where the overall local demand in PD1 is very less, then the only way in sharing the

utilized resource in PS1 is by changing the peering system policy. But, in general, most

of the peering system policy will not be changed very ofben. Going back to the example,

let us consider that the demand in PD2 and PD3 is very high. Both, PD2 and PD3,

can use the resource of PD1 only to the amount limited by the peering policy of PDl,

therefore the unused resources in PDl will go as a waste.

In the case of dynamic peering, as will be explained in Section 3.6, the value of the

resource is being decided by the demand proposed by the clients in the local system. So,

if there is high demand and if the supply for the resource is constant then the price of

the resource has to increase, which actually changes the peering policy implicitly.

Like load balancing and dynamic peering, static peering can also have either bilateral

or multilateral peering policy. In load balancing, once a peer joins the peering system,

it will loose its autonomy and becomes one of the resource in the peering system. In the

case of static peering, the peers does not loose its autonomy, because the peering policy

restricts the amount of resource it is willing to share.

22

3.5 Dynamic Peering System

Dynamic peering policy can be defined as the policy that changes with the change in the

load in the domain. Dynamic peering will have more management overhead than the

static peering because of the changing policy with the varying demand. The increase in

overhead is compensated with the increase in the efficiency of peering. This is so because

the peering policy changes with the change in load in the domain, there by increasing

the efficiency. The change in the load is used as a feedback to change the policy and

the policy is changed implicitly by changing the value of the resource. Dynamic peering

CHnprpn 3. PppRrwc Svsrpus

policy can be incorporated in both bilateral and multilateral peering system.

Peering system is a system in which different systems agree to share resources among

their peers. Dynamic multilateral peering system is a system which has sharing policy

such that, as the load in an individual peering domain changes, the sharing policy also

changes. The peering policy is controlled by the values of the sharing resource, and

the value of the resource varies with the demand proposed by the clients in the peering

domain. The value of the resource is calculated between a fixed time interval and changes

in the value of the resource will be reflected on the peering policy, only of the resource

in that particular time interval. The calculation of the value of the resource in a peering

system is explained in detail in Section 3.6. The multilateral peering policy can be

defined as the policy, which will allow all the peers in a peering system to share resource

with all other peers, and the peers in the multilateral peering system need not have any

knowledge about other peers. In the case of multilateral peering system, there should be

some centralized board that will have the information on sharing policies of each domain.

Figure 3.5 shows three peering domains PD1, PD2, and PD3 peering with each other

and there is a Centralized Information Board (CIB), which has the information on the

peering policies of all the different peering domains. If the peering domain PDl needs to

use the resource of either PD2 or PD3, it needs to know the peering policy of PD2 or PD3

and this information will be available in CIB. In general, the CIB holds the information

of the peering domains in the format given in table 3.1.

Table 3.1 shows a sample of the peering information with the system ID in the first

column, peering policy in the second column and the value of the resource in third column.

Peering policy is the number of dollars worth of resource a peering system is willing to

share. This concept of using dollars as the peering policy brings in the dynamics to the

policy of the peering system. With the peering policies specified in table 3.1, PDl will

share 500 units of resource , PD2 will share 700 units of resource and PD3 will share 1000

23

CueprpR 3. PpoRrNc Sysrprr¿s

System ID

Figure 3.5: Multilateral Peering System

24

PD1

units of resource. In this example peering domain PD3 is considered to have relatively

low demand and, therefore, it has a very low value for its resource. The value of peering

domain PD2 is the highest and therefore it shares relatively less resource. In the case of

PDl, even though the value of the resource is less when compared to PD2, the amount

of dollars worth of resource PDl shares is less than PD2. Therefore, PD1 shares less

resource when compared to PS2.

The value of the resource in a peering system is valid only for a specified time interval.

PD2

Peering dollars

PD3

Table 3.1: Example Dynamic Peering Sharing Information

1000

2100

Resource value in dollars

1000

2

3

1

CnapreR 3. PppRr¡rc Svsrpus

If the demand for the resource increases and if the supply for the resource remains

constant, then the value of the resource will be increased. For example, if we consider

that the value of the resource in PD1 increases from $2 to $4, then the number of resource

shared by PDl will decrease to 250 units, which brings the dynamics in the peering policy.

Dynamic peering policy of a peering system need not be changed explicitly between each

time interval, but as the load in the peering system varies, the value of the resource also

varies and the peering policy of the peering system changes implicitly.

3.6 Pricing Mechanism

The value of the resource can be calculated by different pricing mechanisms. Some of the

most common methods for calculating the value of the resource are auctioning [San02]

and commodity market [WoP00]. Auctioning is a very common value determination

mechanism, where clients bid for the resource and the client quoting the highest price

will win the auction. There are different types of auctioning mechanisms that can be

used in determining the value of the resource. A commodity market is relatively simple

for the clients, but it introduces lots of complexity in the market end. In a commodity

market, the value of the price is fixed for a certain time interval after which the value of

the resource changes according to the demand of the client.

Auctioning is a very old mechanism which is used to determine the value of a resource.

Some of the most common auctioning methods are closed bid auction and open bid

auction. Lots of research has been conducted to find the best auctioning system that

finds the correct value of the resource. Other than calculating the correct value of the

resource, the most important criteria that should be considered, is the time taken for

calculating the value of the resource.

Auctioning mechanisms can be categorized into parallel auctions and series auctions

25

Cueprnn 3. PppRl¡tc Svstptr¿s

[San02]. By the name it can be easily understood that in the case of a parallel auction,

different resources are auctioned in parallel and in the case ofa series auction one resource

is auctioned after another. In network peering systems (NPS), resources can vary from

CPU cycles, memory space, disk space, etc. Most of the resources are interdependent on

each other and if one of the resource is not available then buying another resource might

not do any good.

For example, Iet us consider that a job requires 1000 CPU cycles,, 572 Kilo bytes of

memory, and 100 Mega bytes of disk space. In the case of series auction, where each

resource is auctioned in a serial manner, let us consider that CPU cycles are auctioned

and the clients send bids for the CPU cycles, and win the auction. Now the situation

is that the client has bought CPU cycles and he has to do the bidding for memory and

disk space. If the client could not get one of the resource, then the resource that client

has already bought will be wasted. This problem in buying one resource and losing the

dependent resource can be avoided by using parallel auctioning. In the case of parallel

auctioning all the resources will be auctioned in parallel and the chances of winning the

auction for all the wanted resources is high, but still both series and parallel auction does

not promise the resources needed by the client.

As mentioned before, one of the most important criteria in calculating a value for

the resource is the time taken for finding the value of the resource. In the case of open

bid auctioning, it is difficult to have a fixed time to calculate the value of the resource.

The clients can keep on increasing the bid and at some particular time the auction might

end with a highest bidder. But, the time taken to find the correct value of the price can

even be infinite. To speedup the calculation of the value for the resource, auctioning can

be done for a particular time interval. One of the very good example is e-bay which is

one of the world's most popular on-line auction system. But once again the value of the

resource might not be correct because of lack of network or lack of time. In some cases,

26

CnRprpn 3. PppRIwc Svstptr¿s

the possibility that the clients, who have high demand, might not be able to bid for the

resource at the same speed as the client with low demand and loose track of bidding.

Therefore having a time restriction in auction might result in having an undesirable price

for the resource.

To solve the problem in open bid auctioning, there is another auctioning method

know as closed bid auction. In the case of closed bid auction, the client can send only

one bid and that will decide the demand and the price the ciient is willing to pay. Closed

bid auction reduces a lot of overhead that will appear in a open bid auctioning system,

because one client can only send one bid. It is assumed that there will be some security

service that controls the clients from sending multiple closed bids. Closed bid auction

can be conducted for a particular time interval and since a client can send only one bid,

network delay will not play an important role. But, still we have a problem of not getting

the dependent resource, because the bids sent by each client is closed, and the probability

of not getting the dependent resource is more in the case of a closed bid auction than

open bid auction.

There is another way of determining the value of the resource which is called as

commodity market [WoP00]. In commodity market, the value of the price is fixed for

a particular time interval and the client who have the money can buy the resource. It

seems to be very simple, but the question is how is the price fixed? One way of finding

the value of the resource is by finding the demand and the supply of the resource. It

is easy to calculate the supply as the market knows the amount of resource available

in the inventory. The demand can be calculated either by some statistical data or by

somehow determining the current demand. Commodity market has fewer overhead, when

compared to auctioning, and since the price is fixed for a time interval, the time for

calculating the value of the resource is also fewer.

The concept in peering system is to sha¡e resources arnong different entities. Network

27

CnaprpR 3. PppRrr'rc Svsrpus

peering system peers resources that can be accessed through a network. The resource

are mostly CPU cycles, memory, network resource, etc. Using auctioning mechanism to

calculate the share for an individual client is almost impossible. So, it is always better

to fix a price of the resource for a particular time interval and allow the clients to buy

the resource depending on their demand.

In this thesis, we have used the concept of closed bid and commodity market to

determine the value of the resource. The clients send a client demand vector to the

system domain manager, and the client demand vector has the price the client is willing

to pay and the demand for the specified price. The client vector cu(ø,b) is represented

as P¿,Q¿, Where e : 1 to ly', where ø is the client ID and ó is the peering system ID. l/ is

the number of varying demands proposed by the clients and the value of N is restricted

to some fixed integer, so that client can propose only a fixed number of demands. fl is

the price of the i¿h demand proposed by the client and Q¿ is the number of quantities

that the client is willing to buy for the price P¿. In the case of the example discussed

in Section 3.5 the system ID is PS1, PS2 and PS3. For example, a client vector may

look like (2,1000;3,6888; 7,7877). In this example, the client proposes three demand

parameters and each demand parameter is separated by a semicolon.

The demand proposed by the client is assumed to be following the economics model,

where as the number of quantity requested increases, the price decreases. The demand

curve is assumed to be as shown in figure 3.6. The demand curve in Figure 3.6 shows that

demand elasticity is negative, which means that as the number of quantity requested by

the client increases the price of the resource will decrease. In the case of a peering systems,

the supply can vary with the amount of resource contributed by the supplier, and the

demand proposed by the client can also vary. For example, if the supply increases, the

price proposed by the client will decrease, and as the supply decreases the price proposed

by the client will increase.

28

Cnaprpn 3. PppRrNc Svsrpus

Ø
L
(ú

õ cpsÞ cp+
.g
o CP3()'=
o-

CP2
cP1

----J---\l

S1 52
Quantity in units

Figure 3.6: Client Demand Curve

29

3

2.5
U,

ßt
õ
E 1's
o)
-9 1

o.
0.5

0

10 20 30 40 50 60 70 80 90

Demand in un¡ts

Figure 3.7: Market Demand Curve

CrieprpR 3. PppRritc Svsrpus

In dynamic peering model, the higher the price the lower is the amount of resource

shared by the peering system. In this pricing model, it is assumed that as the load

increases, the price of the resource will increase. If the price is not increased with the

increase in load, then the peering policy will not change and the possibility of loosing

more resources to a foreign job is more. The main objective in dynamic peering is that,

as the load increases, the sharing resource should decrease, and this is possible only if

the price of the resource is increased. Keeping in mind the dynamic peering objectives,

the market demand curve is expected to be as shown in Figure 3.7. Price elasticity in

Figure 3.7 is positive and the supply is fixed, therefore as the demand increases, the price

also increases. Using the demand curve proposed by the client, a value for the resource

is calculated and the value remains constant for a certain time interval. In dynamic

peering, the client vector is sent only by the host clients, which means that the value of

the resource is determined only by the local clients.

With the client vector lrye can draw a demand curve and we can find the Price Elas-

ticity of Demand (PED). PED can be defined as the ratio of the percentage change in

demand to the percentage change in the price, the formula for PED is shown in equation

3.1 [Me76]. With the knowledge of PED, demand, and supply; \4/e can calculate the price

using the basic PED formula from equation 3.1

30

In Figure 3.6, let us consider that the initial demand sent by the client represents the

demand curve CD3, and the initial supply for the peering system is S2.With the supply

52 and demand curve CD3, the price of the resource will be CPl. Let us consider that

the supply for the resource in the next time interval decreases from 52 to 51. If the local

clients did not change the proposed demand, then the new price will be CP2. But, there

is always a possibility that as the supply decreases the demand of the resource might

PED: % Change i,n demand,

% Change'in Price
(3.1)

Ciraptpn 3. PpPRrNc SYsrPIvts

increase, and the d.emand curve might move away from the axis. In general economics

??, as the demand curve moves away from the axis, it is expected that the supply for

the resource will also increase. But, if the demand curve is not shifting with the decrease

in supply, then the resource might get obsolete. Figure 3.6 shows three different client

curves, and the client demand curve CDl is the demand curve with the highest demand

and the client demand curve CD3 is the demand curve with the least demand.

In dynamic peering, the resources in a peering domain is shared with other peering

domain, and as the price of the resource decreases more resource is peered with foreign

clients. This situation makes the client to propose a client vector with higher price,

because if the client proposes low price then the possibility of loosing the local resource

to foreign clients is more. In dynamic peering, the price of the resource is more used to

control the access of the local resource by the foreign clients. The commodity market

used in this thesis assumes that the client vectors sent by the client represents the real

demand, and no measure is made to restrict the clients from sending false demand vectors.

In this thesis, I have done some simulation to show the operation of dynamic, static

and load balancing peering systems. In the simulation for dynamic peering system, clients

have to send some demand vector to calculate the value of the price. It is difrcult to

simulate the client with varying behavior, so I have normalized the price of the resource

with a equilibrium price, which is equal to one dollar. Equilibrium price can be defined

as the price when the excess demand is equal to zero. By using equation 3.2, we can

derive an equation for calculating the price for a given demand and supply.

31

c-
Dn-D.

Dc
DD

!-1|=!-9
Dtc

P": PnxD"xe
D"(e-L)+Dn

(3.2)

(3.3)

Cneprpn 3. PppRIwc Svsrpir¿s

Equation 3.3, gives the derived price equation. where e is the elasticity, D" is the

normalized demand, P' is the normalized price, D, is the current demand, and P" is the

price that needs to be calculated. The normalized demand Dn is equal to the supply

of the resource and the normalized price P, is equal to one. Current demand D" is

calculated by adding all the processing time requested by the client. Assuming a value

for elasticity and applying all known values, we can calculate a new price for the resource-

Calculation of a price can be better explained with an example. For calculating the

value of the resource with fixed supply, the normalized demand will remain constant and

with varying supply the normalized demand also varies with the varying supply. In this

example, the supply is fixed to 10 processing units and the demand increases each time

unit. Table 3.2, shows the value for the price for a given demand. The elasticity in this

example is assumed to be 1.5. We can see that as the demand increases, the price of the

resource also increases.

32

Demand in processing units

10

20

30

Price in dollars

40

50

Table 3.2: Example For Price Calculation With Varying Demand

60

1.0

70

1.5

80

1.8

2.0

90

2.t4

2.25

2.33

2.4

2.45

Cseprpn 3. PppRrlic Svstpl¿s

3.7 Spectrum Of Cooperation

In this section, we will talk about the spectrum of cooperation between peering domains

in different systems. In Figure 3.8, the left corner of the spectrum bar indicates that the

peering domains in the system is futly cooperative, and the right end of the spectrum

bar indicates that the peering domains in the system is fully non-cooperative. We can

see from Figure 3.8 thai the LBSs are fully cooperative, and the DPSs can have a wide

range of cooperation. In the case of SPSs, as the peering policy is fixed, the cooperation

between peering domains will remain in a fixed position in the spectrum. In Figure

3.8, the static peering system shows that the peering policy is less than 50% of the total

resource owned by the peering domains, and therefore, the figure shows that SPS is closer

to the right end of the spectrum.

33

Spectrum of Cooperation

In the case of DPSs, the cooperation between peering domains varies according to

Figure 3.8: Spectrum Of Cooperation

CseprpR 3. PppRlNc SYsrPus

the demand of the resource in each peering domain. If the value of the resource in a

peering domain is zero, then the peering domain will have full cooperation. In DPSs,

if the demand of the resource in a peering domain is less than the supply, then the

cooperation will be closer to the left end of the spectrum bar. In DPSs if the demand

and the supply in a peering domain is equal, then the cooperation will be in the center

of the spectrum bar. In Figure 3.8, we can see that if the value of the resource in a

peering domain is infinity, then cooperation of the peering domain will be zero. Flom

the spectrum of cooperation figure, we can see that the DPSs will have a wide range of

cooperation according to the load in the peering domain, and other systems will have a

fixed cooperation irrespective of the load.

34

Chapter 4

Simulation Setup And Results

In this chapter, performance is evaluated for different NPSs, and in each simulation,

peering domains are represented by a multi-processor parallel system. Simulation is

done for two peering systems; dynamic peering system and static peering system, and

simulation is also done for load-balancing, which is used as a baseline mechanism for

evaluating the peering systems. The performance metrics of different peering systems

are measured and a comparison is done to show the merits and demerits of different

peering systems. The simulation setup for all the peering system is done using multilateral

peering policy. Simulation setup for load balancing is explained in subseclion 4.4.2, static

peering is explained in subsection 4.4.3, and dynamic peering is explained in subsection

4.4.4. The input for the simulation is obtained from a workload generator program from

[Cw01]. Section 4.1 talks about the different metrics that we have used to measure the

performance of peering systems.

35

Cuaprpn 4. Siuur,etrou Sprup ANo Resulrs

4.L Performance Metrics

4.L.L Throughput

Throughput is the number of jobs completed in a unit of time (e.g., number of jobs

completed in a second). To measure this performance metric, the system is subjected

to a stream of jobs that are injected at some known rate. The throughput measures

the serving capacity of the domain. In this thesis, throughput is used to measure the

performance at the domain level as well as at the global level.

The domain level throughput measurement is done for each individual peers in the

peering system. When a peer is overloaded its is expected that the domain level through-

put measurement wiil give a good insight of the load distribution of overloaded domains

job to the underloaded domains. The global level throughput gives a insight of the

performance of the entire peering system for different peering policy.

4.L.2 Turn Around Time

This is the difference between the finishing time and the arrival time of a job. The average

turn around time measures how effectively the jobs were completed. In the best case,

the turn around time of a job will be equal to the service time. The best case happens

when the job waits zero time to receive the service.

36

4.L.3 Utilization

This measures the percentage of time a resource is busy. Over a domain, we measure

the average utilization of the resources in that domain. We can compute two types of

utilizations here. Native utilization is the percentage of time a resource is kept busy by

executing local jobs (i.e., jobs that belong to the local domain). Foreign utilization is

Cneprpn 4. Slirtuleuox Sprup ANo Rpsulrs

the percentage of time a resource is kept busy by executing foreign jobs (i.e., jobs that

belong to other domains). Total resource utilization of a domain is the sum of native

and foreign utilizations. This metrics gives very good idea of the distribution of the load

among the peering domains. When the load in a peering domain is high, then the foreign

jobs will avoid using the resource from the overloaded domain. Therefore, it is expected

that the foreign utilization is inversely proportional to the load on the peering domain,

and native utilization is directly proportional to the load.

4.L.4 System Capacity

System capacity is the aggregate processing time of jobs in the queue and jobs running

in the system when the system fails. The system is considered to have failed when the

number of jobs in the queue exceeds three times the number of parallelism nodes in a

system. A parallel system with n processors, have a maximum queue length as three

times n. The system is considered to have failed even if one of the peering domain in

the peering system has failed, therefore this metrics will give a very good overview of the

Ioad distribution in a peering system.

To evaluate this metrics the job injection rate must be very high. When the job

injection rate increases, the load applied to the system also increases, and therefore the

system fails as the queue length in the system exceeds the threshold.

0¡

4.2 Assumptions And Limitations

The assumptions and limitations of the dynamic peering system are as follows:

o Mí,suse: Dynamic peering system determines the value of the resource by polling

the clients for demand a vector. The demand vector sent by the client is assumed

Cneprpn 4. Sruur,attox Sprup Aivo Rpsulrs

to be correct, and I have not proposed any method from stopping the clients from

sending wrong demand vectors.

o Networlc delay: \Mhen different domains (NSPs) are trying to access a resource of a

remote domain, it is assumed that all the domains have the same priority to access

the foreign domain and the network delay is constant for all the domains. In other

words, the network delay and access priority is assumed to have no effect in our

model.

o Unique Resource: The peering model used in this thesis assumes that only one

resource is peered with different domains.

4.3 Workload Generator

The peering system described in this thesis has been simulated in a parallel system.

The input for the peering system simulation is obtained from a workload generator from

[Cw01]. The workload generator was built on the sole purpose for testing the perfor-

mance of the supercomputer schedulers. Testing the scheduling using realistic job is very

important to determine the performance of the scheduler. The workload generator pro-

gram is used just because it can generate input for different loads, number of jobs, and

number of nodes for a parallel system.

The workload generator takes few input parameters to generate a log file which has

the workload for a particular parallel system. The input parameters for the workload

generator are; number of nodes in the parallel system, number of jobs to be created, type

of paralleì system for which the workload is generated, and load multiplier. The first

parameter, number of nodes is basically the moldability of the jobs, where moldable jobs

are jobs that can run on multiple processors in a parallel system. The third parameter

38

CuRprpn 4. SlIr¿ur,Ruoti Sptup ANo Rssur,rs

is the parallel system type, which defines the parallel system for which the workload is

created. The workload generator can generate workload logs for four different parallel

system. The fourth parameter, load multiplier is a integer factor that varies the load on

the jobs of a parallel system. As the load multiplier increases the job arrival rate will

also increase, which is basically the load on the parallel system.

The jobs created by the workload generator is characterized by the arrival time,

requested time, execution time, and partition size. The workload generator program is

created using the log files from four different supercomputers and all four supercomputers

are IBM SP2s with different number of processors. The workload generator, generates

a log file with the above specified input para.meters, and the output log file created by

the workload generator has information on start time, processing time, completion time,

moldability, job status, job name, finish time, job orvner, and tag for the job. For peering

system simulation, \rye use only the start time and processing time of the job, all the other

information in the log file is not important for the simulation done in this thesis. Other

information available in the log files gives performance information specific to a parallel

system, but in this simulation we need only the input information to the parallel system.

39

4.4 Simulator

This section explains the parallel system and peering system simulator. The simulator is

written in C language and it runs on Linux operating system. The input to the simulator

is the log file generated by the workload generator. The peering system simulator have

different functions for simulating a static peering system, a dynamic peering system and

a load balancing system.

Crieprpn 4. Srrr¡ur,errou Sprup ANo Rpsulrs

4.4.L Parallel System Simulator

The parallel system simulator is programmed using linear linked list and each node in

the linked list refers to a processor in a parallel system. Each node in the linked list

has information about a single processor. The head node has the information about the

entire parallel system.

Each processor has the following local information:

o Auai,løble tí,me: This variable gives information on the available time of the proces-

sor.

¡ Status: The status variable shows the availability of the processor at a specific

time. If the processor is not available at the specified time then the status flag is

set, which means that the processor is busy.

t Processor /D: This variable is an integer which holds the ID of the processor in the

parallel system.

The parallel system also has some global variables which are defined in the head of

the linked list; the global information are listed below.

o Queue length: This is an integer variable and has the count of the number of jobs

queued in the parallel system.

40

Start ti'me oÍ job in the queue: This variable is an array and it has information of

the sta¡t time of the queued jobs. The values in the array are used by the parallel

system to process the queued job in a FIFO system.

System fai,lure: This is an integer variable and is used as a flag for indicating the

system failure. The parallel system is considered to have failed if the queue length

CuRprpn 4. Srrvrulerloru Snrup Auo Rpsulrs

exceeds a certain threshold. In this simulation the threshold is equal to three time

the number of processors in the parallel system.

The above mentioned local information from the processor and the global information

of a parallel system is used to simulate the parallel system. The parallel system simulator

uses different functions to do the simulation and the functions are listed below.

o Initiali,zati,on: This function takes two integers as the input parameter, the first

integer will represent the number of processors available in a parallel system. The

second input to the function specifies the threshold of the parallel system and the

threshold is used to determine the failure of the parallel system. This function re-

turns the structure of the processor, and the only meaningful value in the processor

structure will be the processor ID, other values in the structure will be initialized

to zero. The values that are initialized to zero holds the peering information.

Fí,nd auailable ti,me: This function is used to determine the available time of a

specified processor in the parallel system.

Remouejoô: This function is used to remove an assigned job from a processor in

the parallel system.

4l

Schedule ioó: This function is used to schedule a job in a processor in the parallel

system. The job is assigned to the processor which has the least available time.

Add Queue: This function is used to add a job into the queue. The job is added

into the queue only when the start time of the job is greater than the available time

of all the processors in the parallel system.

Remove job from queue: This function is used to remove jobs from the queue. This

function looks at the start time of the job in the queue and assigns the job to a

processor and removes it from the queue.

Cunprpn 4. Srrvrul.trrom Serup Au¡ Rpsur,rs

4.4.2 Load Balancing Simulation Setup

Load balancing system is a system which has no peering policies between domains. The

simulation is done for parallel systems with different number of processors, and the input

to the simulation is a log file and details about the parallel systems and the log file is

mentioned in section 4.5. As mentioned in section 4.3, the simulation uses only the start

time and requested processing time from the log file. In load a balancing system, the

resources of all parallel system will join the common pool and the jobs from any parallel

system can access the resource from the common pool without any restriction. The

simulator looks at the start time of the jobs coming from different parallel system, and

the job with the least start time is scheduled in one of the processor from the common

pool. The job is assigned to the parallel system which has the least completion time.

The flow chart in figure 4.1, shows the process of accessing the information from the log

file. The data blocks with labels P0, Pl, P2, P3, and P4 are the blocks which has the

log files. Each parallel system has its own workload log file, therefore, in this simulation

five log files are used. In the start of the simulation, a job from each log file is passed to

the common data pool block. The common data pool block has information of the start

time and processing time of local jobs of each parallel system, and the job with the least

start time is scheduled first and we can see from the flow chart that the first decision

block checks if the start time of job from P0 has the least start time. If the job from

P0 has the least start time, then the P0 job becomes the current job and it is scheduled;

next job from the P0 log file is moved to the common data pool. The flow chart shows

five decision block which makes decision on jobs from five different parallel system.

If a parallel system has jobs starting earlier than any other parallel system's job, then

jobs from the parallel system with the earliest start time will have share of the resource

from the common pool. The jobs from the decision block is moved to the schedule job

42

CneprpR 4. SivIur,¡.rroru Sprup At{o Rpsulrs

Job from P0 has thd
least start time

Job from P1 has
least start time

43

completion time

ÍromP2 has thd
least start time

least start time

Job from P4 has thé'

completion time_

least start time

completion time

Figure 4.1: Flow Chart For Load Balancing

completion time
has minimunì

Cneprrn 4. SrrvrulRrrow Sprup ANo Rpsul,rs

block. The schedule block is a process block, and jobs entering this block is scheduled in

one of the parallel system with the best completion time.

4.4.3 Static Peering Simulation Setup

Static peering system is a system in which domains has fixed peering policy between

different peering domains. The simulation for the peering system is done using multilat-

eral peering policy. Therefore a central information board is used to control the sharing

between domains. Each parallel system has different number of processors and therefore

the supply of processing time in each parallel system will also be different. In this sim-

ulation setup, the sharing policy is set such that each parallel system will share 40To of

its resource. The sharing policy of each pa,rallel system is fixed and it does not change

with the load on the parallel system.

The flow chart in figure 4.2 shows the process of accessing information from the log file

for each parallel system. The procedure of accessing information from the log file is the

sarne as load balancing; but when the job is scheduled the policy of the parallel system

will determine the scheduling of the job. The peering policy of each parallel system is

shown in table 4.1.

44

Parallel system Name

ANL

CTC

KTH

Total supply

SDSC

CTC

36

L29

Sharing policy

30

Table 4.1: Input For Parallel System

38.4

L4.4

t29

51.6

No. of processors

T2

15.36

L20

51.6

430

100

t28

430

Cnlprpn 4. Srl¡ur,.qrro¡¡ Sprup A¡ro Rpsulrs

Table 4.1 has information for each parallel system for a time unit of 0.3 x 106 seconds.

The time unit 0.3 x 106 seconds is a fixed time interval for which the peering policy holds

good, and the value of the time unit is fixed throughout the simulation. The first column

shows the name of the parallel system and the second column shows the total supply of

the processing resource in 106 seconds. The third column shows the resource shared by

each parallel system, which is 40% of the total supply. Static peering uses completion

time and sharing policy of the parallel system to schedule the job in a peering system.

The parallel system with the least completion time will be the best candidate to process

the job, but, if the parallel system with the least completion time is not a local parallel

system, then the requested job should have a processing time less than or equal to the

shared resource. If the requested processing time of the foreign job is more than the

peering resource of the parallel system that has the least completion time, then the job

has to assigned to the parallel system with the next least completion time. The shared

resource decreases as more and more foreign jobs are assigned to the parallel system.

The static peering process is shown in figure 4.3. In flow chart shown in figure 4.3,

the processing block BCT1 is the parallel system with the best completion time, B,CT?

is the parallel system with the next best completion time, etc. If the parallel system

with the best completion time is a local parallel system then the job is assigned to the

parallel system without verifying the peering policy. If the parallel system with best

completion time is not a local parallel system, then the peering policy check is done. If

the peering policy is not satisfied, then the job has to look for a parallel system with

the next best completion time. In the flow chart, if requested processing time (RPT) is

less than peering policy (PP), then the job has to look for another parallel system. This

process continues until the job finds a parallel system for executing the job, and if the

job could not find a parallel system, then, the entire system is considered to have failed.

45

CHeprpR 4. SIvur,etIot{ Sprup At{p Rssul,ts

Job from P0 has
least start time

46

least start time

Job from P2 has
least start time

least start time

Figure 4.2: Flow Chart For Accessing Log Info In Peering Systems

Job from P4 has
least start time

Cseprnn 4. Srvrulerro¡¡ Sprup Awo Rpsulrs 47

Figure 4.3: Flow chart For Scheduling Jobs In Peering Systems

Cri¡,prpR 4. Slvtuleuou Sprup ANo Resul,rs

4.4.4 Dynamic Peering Simulation Setup

Dynamic peering system is a system in which the peering policy changes with the change

in the load of the domain. The simulation is similar to the static peering system, except

the peering policy changes with the load. The peering policy in the dynamic peering

changes with change in the demand and in the supply of the resource. In this simulation

the peering policy of the parallel system changes after every 0.3 x 106 seconds. Table 4.2,

shows the peering information provided by each parallel system.

Parallel system Name

ANL

CTC

KTH

In table 4.2, frrst column gives the name of the parallel system. The second column

is the amount of dollars worth of resources the dynamic peering is willing to share. The

third column shows the total number of processors in the parallel system. The simulation

procedure for dynamic peering is exactly the same as the static peering, except the price

of the resource will determine the amount of resource the parallel system is sharing for

the current time unit. The price of the resource will depend upon the demand of the

local jobs and the supply of the resource.

M/hen the demand and the supply are equal, then the price of the resource will be

equal to one. With this normalization, the dynamic peering will behave like a static

peering. The peering policy of the dynamic peering is set for a normal load, where the

Sharing policy

SDSC

48

CTC

14.4

51.6

Table 4.2: Input For Parallel System

No. of processors

T2

15.36

t20

51.6

430

100

I28

430

Cneprpn 4. Srtr¿ullrlol Sptup Atit Rpsulrs

demand and the supply are equal. Therefore at normal load like the static peering, the

dynamic peering will be sharing forty percent of its resource. When the load in the

parallel system increases the price of the resource will increase so that the number of

resource shared will decrease.

4.5 Simulation Setup

Simulation is done for two different peering systems and a load balancing system with

varying load for each peering domains. Each peering domain in the simulation is rep-

resented by a parallel system. The simulation uses the log file created by the workload

generator [Cw01] as the input. This section has three subsections, subsection 4.5.1 deals

with input to parallel systems, with all the parallel systems overloaded. Subsection 4.5.2

talks about input to parallel systems, with one parallel system overloaded, three parallel

system underloaded and one parallel system normally loaded. Subsection 4.5.3, deals

with input to parallel systems, with one parallel system overloaded and all other parallel

systems underloaded.

4.5.L All Peering Domains Overloaded

49

In this simulation setup all the peering domains are overload so that the system fails

after executing a few thousand jobs. As mentioned before, each domain represents a

parallel system and each parallel system is differentiated with the number of processors

in the system. System capacity can be calculated in this simulation, because all peering

systems and load balancing system fail after execution a few thousand jobs. Fairness

of resource allocation is an important metric that needs to be measured in all peering

systems. This simulation is useful in measuring the fairness of resource allocation for the

Ieast overloaded parallel system.

CseprpR 4. Srrr,rulerrol¡ Serup Arup Rnsulrs

Information of the simulation setup is shown in table 4.3. The first column shows the

parallel system name, where ANL is Argonne National Laboratory SP2, CTC is Cornell

Theory Center SPz, KTH is Swedish Royal Institute of Technology SP2 and SDSC is

San Diego Super computer Center SP2. The workload generator mentioned in Section

4.3 takes the parallel system name as an input to generate the workload log file. The

second column gives the aggregate requested processing time of all the jobs submitted

to each parallel system. The third column gives the available processing time in each

parallel system and the fourth column gives the total number of processor available in

each parallel system. All the data in table 4.3, is provided for 286419 seconds, after

which dynamic peering system fails. In all simulations, calculation for all the systems is

done until one of the system fails, and in this simulation, dynamic peering system fails

after 286479 seconds.

The supply for each parallel system is calculated by the formula given in equation

4.1. Where ,9¿ is the supply for the ith parallel system, N¿ is the number of processors

for the 'ith parallel system and ? is the duration for which the supply is calculated. The

demand is calculated by adding the requested processing time.

50

Figure 4.4 shows the requested processing time for different parallel system. Flom the

figure 4.4 we can see that load in parallel system 1 and parallel system 4 has relatively

higher load, and the load on parallel system 2 is relatively closer to the supply.

4.6.2 Peering Domains \ryith Differential Load

In this simulation setup, the load in one parallel system is high compared to all other

parallel systems. In this simulation the fairness of resource allocation in the normally

S¿ : N¿XT (4.1)

Cseprpn 4. Sruur,errou Sorup Awo Rpsur.rs

Domain Name

ANL

CTC

Demand (sec.)

KTH

SDSC

91249530

Table 4.3: Input For Parallel Systems With Parallel Systems Overloaded

CTC

loaded parallel system is examined, where in a normally loaded parallel system, the

supply and demand are equal. In this simulation all metrics except system capacity can

be calculated. For calculating the system capacity the peering system must fail, and

with the load provided in this simulation all peering systems will not fail. A system is

considered to have failed, if the number of jobs in the system queue exceeds the threshold.

The threshold for system failure is equal to three times the number of processors in the

parallel system, therefore the failure threshold for each parallel system is different. All

metrics calculation is done for the time until the first peering system fails. For example,

if static peering fails while executing a job at tl seconds, then the metrics calculation for

dynamic peering system, and load balancing is done until tl seconds. System capacity

is the only metrics that is calculated until the individual peering system fails.

Information on the simulation is shown in table 4.4. Flom table 4.4 rrye can see that

the demand is the only parameter that have changed. For calculating the throughput,

turn around time, and completion time, the requested processing time is reduced so that

system does not fail afber executing few jobs. As mentioned in Section 4.5.L, supply is

calculated until the duration for which the jobs are injected to the parallel systems. In

this simulation the supply is calculated for g12003 seconds. In all simulations, calculation

228t87400

Supply (sec.)

40608110

tr2704400

34357440

240835100

123109860

No. of processors

28636800

36637056

123114160

L20

430

51

100

128

430

CueprpR 4. Srir¿ur,arroi.u Sprup Atso Rpsur,rs

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

0.00E+00

Ø
!
o
C)
o)
U)

.E
o
E

õ)c,6
U)
o)oo
o-

for all the systems is done untii one of the system fails, and in this simulation, static

peering system fails after 912003 seconds.

Figure 4.4: Supply And Demand For Overloaded Parallel Systems

Domain Name

52

ANL

El Demand

CTC

@S

Demand (sec.)

KTH

SDSC

4t5274L00

Figure 4.5 shows that the requested and available processing time of different parallel

system. From figure 4-5, we can see that the demand on PSO is higher than all the other

parallel systems. PS3 has load equal to the supplg therefore this simulation will be used

to measure fairness in resource allocation for parallel system 3. In this simulation, it is

also necessary to see load distribution of parallel system 0 with all other parallel system.

CTC

235518200

Supply (sec.)

39270390

116666400

109440360

241928300

Table 4.4: Input For Parallel System

392161290

No. of processors

91200300

116736384

392L6L290

L20

430

100

L28

430

Cnaprpn 4. SIuur,etIoru Serup A¡¡p Resulrs

Information on the simulation results are provided in following sections.

4.50E+08

4.00E+08
at

E 3.soE+08
()
$ 3.00E+08

; 2.soE+oB
c.Þ 2.ooE+oB
õ)

ã 1.50E+08
|J)

$ 1.00E+08
o
à 5.ooE+07

0.00E+00

This simulation setup is good for calculating the throughput, completion time, and

other metrics. In this simulation setup parallel system 0 is heavily loaded, and except

parallel system 3 all other parallel systems are underloaded loaded. The peering policy

for dynamic peering will change as the load in the domain changes, but if the domain

is normally loaded then the demand and the supply will be the same and the price for

the resource will be the normalized price. The normalized price in dynamic peering is

equal to one and if the price is one, then the sharing policy of both static and dynamic

peering in the normally loaded domain will be the same. If the sharing policy in static

and dynamic peering are the same then both the system will behave the same.

4.5.3 Peering Domains With Extreme Load

Figure 4.5: Supply and Demand Graph For Differential Load

53

In this simulation setup parallel system PSO is heavily loaded and all other parallel

systems are underloaded. The main aim in doing this simulation is to see if there is a

difference in the peering policy of dynamic and static peering. Except PS0, all the other

CuRprsn 4. SIIr¿ur,etiol Sprup ANp Rpsul,ts

parallel systems are underloaded and when compared with static peering, the underloaded

domains in dynamic peering will share more resource. The simulation is done for 575774

seconds, therefore the supply for the simulation is calculated for 575774 seconds.In all

simulations, calculation for all the systems is done until one of the system fails, and in

this simulation, static peeringsystem fails afier 575774 seconds. Figure 4.6, shows that

load in parallel system 0 is great when compared to all other parallel system.

Domain Name

ANL

CTC

Demand (sec.)

KTH

SDSC

405064400

CTC

30787660

Supply in (sec.)

43840455

54

74449600

69092880

30576090

Table 4.5: Input For Parallel System

4.50E+08

ø 4.00E+08Ì,
5 s.sor+oa()
3 s.ooe+os
c'õ 2.50E+08

È 2.ooE+08
Þ).= 1.50E+08
1J)

$ t.ooe*oa

Æ s.ooE+o7

0.00E+00

24758280

57577400

No. of processors

73690720

24582820

t20

430

100

128

430

Figure 4.6: Supply And Demand For Extreme Load

Cseprpn 4. Stuur,etIoN Sprup Arup Rpsur,ts

4.6 Results

This section discuss the results of the simulation done for dynamic and static peering

system and load balancing system. This section is divided into subsections, and each

subsection talks about the results obtained from different simulation setup. In the results,

ANL parallel system is referred as PSO, SDSC as PS3, and KTH as PS2. The simulation

has used two CTC machines, the CTC in the second row of table 4.3 is refereed to PS1,

and CTC in the fifth row of table 4.3 is referred as PS4.

4.6.I All Peering Domains Overloaded

This subsection, discusses the results obtained for simulation setup explained in section

4.5, subsection 4.5.1, where all peering domains are overloaded. As shown in figure 4.4,

the demand for processing time in all the parallel systems are greater than the supply.

The demand for processing time of parallel system 2 is not as high as compared with other

parallel systems, and the supply of processing time for parallel system 2 is relatively less

than all other parallel systems. In this simulation, rrye can measure the system capacity

and all other metrics mentioned in section 4.1. Table 4.6 shows the metrics for load

balancing, table 4.7 shows the metrics for static peering and table 4.8 shows the metrics

obtained from dynamic peering. In all the tables, ACT is the average completion time,

TAT is the turn around time, NRU is native resource utilization, FRU is foreign resource

utilization and SC is system capacity.

First, let us look at the throughput for the simulation- Figure 4.7 shows the do-

main level throughput for the different systems. The domain level throughput of load

balancing and static peering for PSl, PS3 and PS4 are higher than dynamic peering.

But in the case of PS2, which is the least loaded domain, dynamic peering has higher

throughput. This result shows that in dynamic peering, the least overloaded parallel

55

Crinprpn 4, Siuur,RtIoru Sptup At'to Rpsulrs

Parallel

system

PSO

ACT (sec.)

PS1

PS2

3347r4

PS3

338774

TAT (sec.)

PS4

345191

161816

350212

168184

344598

NRU

ParalleÌ

system

L75948

84.243

L75973

106.881

FRU

174003

PSO

t2t.405

62.297

ACT (sec.)

Table 4.6: Load Balancing Metrics

PS1

Throughput

L01.227

105.32

PS2

340997

115.82

129.03

P53

334443

48L

106.841

TAI (sec.)

P54

3L6344

t042

Queue

89.183

56

168099

364371

L43

360

163853

353237

480

SC (sec.)

system PS2 is not starved by other highly loaded parallel systems. Load balancing has

the smallest throughput for PS2, which means that in load balancing the highly loaded

parallel systems are grabbing the resources from the least loaded parallel systems. In

peering systems we expect that load in the peering domains should be distributed, but

it should not starve the domain with minimum load.

Figure 4.8 shows the average price of the resource when all the peering domains are

overloaded. An average price is shown, because in dynamic peering system the value of

NRU

1290

L44548

t026

236632300

181.641

300

190131

845988500

151.598

FRU

384

182641

201724700

t24.729

4L.9t7

L290

Table 4.7: Static Peering Metrics

259109300

Throughput

203.t62

41.913

871659400

t70.2L7

4t.9

468

41.922

L044

Queue

41.911

198

360

474

SC (sec.)

792

212093800

996

70

473961100

376

57991980

867

242248100

548777200

CnRprpR 4. Sirr¿ur,Rrrox Ssrup Awo Rpsur,rs

1200

1000
at)
-oo
= 800o
-Eo
Þ 600
È
oo
b 400
ciz 2oo

0

Figure 4.7: Domain Level Throughput For Overloaded Parallel Systems

57

Figure 4.8: Price Of Resource For Overloaded Parallel Systems

CHeprpR 4. Sivtuleuou Sprup ANo Rssut,ts

Parallel

system

PSO

ACT (sec.)

PS1

PS2

347977

PS3

330016

TAT (sec.)

P54

306949

L75079

374108

r59426

355230

the resource is calculated between a fixed time interval, and in a simulation there are

possibility of having different prices in different time intervals. As mentioned in chapter

3, when the price of the resource in a dynamic peering system is equal to the nominal

price, then dynamic peering system will behave like static peering system. But in this

simulation setup, the price of the resource is greater than the nominal price, therefore,

when compared to static peering dynamic peering will share less resource.

The behavior that \rye see in the throughput of parallel system 2 can be better ex-

plained wiih the foreign resource utilization graph in figure 4.9. We can see that the

resource utilization of the foreign jobs is less in the case of dynamic peering. In dyna,rnic

peering, as the load in a peering domain is increased the resource shared with other

peering domains will decrease. In this simulation, the load in all the peering domains

are high, therefore, the foreign utilization of all the peering domains are less in dynamic

peering. Jobs in the queue of all the parallel systems are also taken into consideration

while calculating the resource utilization, and this is the reason for some of the resource

utilization being greater than 100%.

In this simulation, as all the domains are overloaded, the native resource utilization

NRU

135153

2t0.45

199976

168.219

FRU

184634

130.187

27.975

Table 4.8: Dynamic Peering Metrics

Throughput

231.196

24.945

184.991

27.854

454

20.879

1068

Queue

24.823

58

204

351

456

SC (sec.)

723

207830000

974

47

43141070

384

44452380

862

224188400

529357500

Cnlprpn 4. Srti,tulerio¡r Sprup ANo Rpsulrs

140

120

c 100
.o
(ú

È80l
q)

960
lo
u,

Ê40

20

0

Figure 4.9: Foreign Resource Utilization For Overloaded Parallel Systems

is expected to be high. In the case of dynamic and static peering system as there is

restriction in the foreign resource utilization, the native resource utilization for both

dynamic and static peering is high. Figure 4.10 shows the native utilization for different

parallel systems. Figure 4.10 also shows that the native resource utilization for dynamic

peering is the highest. This is because in dynamic peering system as the load increases,

the price of the resource increases and therefore sharing with foreign domain decreases.

In the case of average completion time, Figure 4.11 shows that the average completion

time for parallel system 2 is the lowest in dynamic peering. This can be explained by

the resource utilization of the native and foreign jobs of the different parallel systems.

The foreign utilization of parallel system 2 is the least for dynamic peering, and therefore

most of parallel system 2's resource is used by the native jobs, and therefore, the average

completion time of PS2 is less in the case of dynamic peering. The average completion

time of PS2 in static peering is also less when compared to load balancing and static

peering. As parallel system 1 is overloaded, it is expected that in load balancing, parallel

system 1 will get a greater share of the global resource.

59

Cneprpn 4. SruuleuoN Sprup ANo Rpsur,rs

250

200
c
e
S 1so

(¡)

9 rnn
f, rvv
o
U'o
E.

50

0

Figure 4.10: Native Resource Utilization For Overloaded Parallel Systems

PS1

60

PS2 PS3

4.00E+05

3.50E+05
ØÞ
$ 3.00E+05
o
E e.soE*os
'g

z.ooe*os

.p 1.50E+05
U)
U'g 1.00E+05
9cL 5.ooE+04

0.00E+00

Figure 4.11: Average Completion Time For overloaded Parallel Systems

PSO PS1

CHeprpn 4. Sruur,RrIo¡¡ Sprup Awo Rpsulrs

Turn around time gives almost the same information as average completion time.

Figure 4.12, shows the turn around time of different parallel systems under different

peering poiicies. The behavior in turn around time has the same explanation as average

completion time.

2.50E+05

2.00E+05

1.50E+05

1.00E+05

5.00E+04

0.00E+00

Øõ
o()
q)
o
'õ
E
tr

When the system fails, the addition of processing time of jobs in the queue, and

unfinished jobs, will give the system capacity. Figure 4.13 shows the system capacity,

and it is clear that the system capacity of load balancing is the highest. This is because,

load balancing fails only when the queue in all the parallel systems reaches its threshold.

In load balancing, when one parallel system's queue reaches its threshold, it will move

its job to another parallel system, and this happens until all the parallel systems reaches

its threshold.

In simulation setup explained in subsection 4.5.1, all the domains are overloaded and

therefore the dynamic peering will be sharing the least amount of resource. Therefore,

when one parallel system reaches its queue threshold, it has very few peering resources

to execute its jobs. This is evident from figure 4.I4, which shows the queue length on

Figure 4.12: T\rrn Around Time For Overloaded Parallel Systems

61

E¡ Load

@ Static

tr Dynamic

CHeproR 4. Srrrrur,euom Serup Awo Rpsur,rs

'1.00E+09

9.00E+08

8.00E+08

7.00E+08

6.00E+08

5.00E+08

4.00E+08

3.00E+08

2.00E+08

1.00E+08

0.00E+00

¡J'
Ec
o()
o
ct)

'õ
E

o)
'6
a)q)
()I
fL

each parallel system. In figure 4.14, we can see that the overall jobs in the parallel

system queue is less in dynamic peering. In static peering, as the sharing policy is fixed

irrespective of the load on the system, each parallel system shares more resource than

in dynamic peering. This simulation setup show that, as all the parallel systems are

overloaded, dynamic peering will have a poor system capacity. But, as we can see from

other metrics, dynamic peering has more fair resource allocation.

Figure 4.13: System Capacity For Overloaded Parallel Systems

62

@ Load

I Static

tr Dynamic

1400

1200

o 1000
5
o)

3 800

', 600
-oor 400

200

0

Figure 4.14: Queue For Overloaded Parallel Systems

@ Load

E Static

6 Dynamic

CueprpR 4. Sruur,Rriox Sprup A¡ro Rpsur.rs

In conclusion, when all the system are overloaded, dynamic peering system will not

starve the least loaded domain. This is evident from the resource allocation for PS2

parallel system. The global system performance of load balancing is better than any

other peering system, but, the resource allocation becomes unfair when least loaded

domains are starved.

4.6.2 Peering Domains With Differential Load

This subsection talks about the results obtained for simulation setup explained in section

4.5, subsection 4.5.2. As shown in figure 4.5, the demand for processing time in parallel

system PSO is greater than the supply. The demand in parallel systems PS1, PS2, and

PS4 are less than the supply, and the demand in PS3 is almost same as the supply.

This simulation is done to see the load distribution from the overloaded domain to the

underloaded domains. We also have one parallel system PS3 which is normally loaded,

for which \rye can measure the fairness of resource allocation. Table 4.9 shows the metrics

obtained from simulating a load balancing system, table 4.10 shows the metrics for static

peering system, and table 4.11 shows the metrics obtained from simulating dynamic

peering system.

As mentioned in subsection 4.5.2, PSO is the only parallel system which is overloaded.

Therefore, it will be useful to see how the load in PSO is distributed to other parallel

systems. Figure 4.15 shows that the throughput for parallel system PSO is the least in

the case of static peering. Load balancing has the highest throughput for PSO, this is

because both dynamic and static peering have restriction in the resource usage for foreign

jobs. As PSl, PS2 and PS4 are underloaded, load balancing was able to use many of

resources from these underloaded parallel systems. As static peering has rigid peering

policy, it was not able to use many of resource from the underloaded parallel systems.

63

Cneprpn 4. Sruur,arrow Sprup ANo Rpsulrs

Parallel

system

PSO

ACT (sec.)

PS1

PS2

594773

PS3

5401 16

TAT (sec.)

PS4

543475

t10275

545520

55369

54t5I2

NRU

Parallel

system

55394

78.64

Table 4.9: Load Balancing Metrics

FRU

58703

36.16

29.02

PS()

56780

27.r2

Throughput

ACT (sec.)

62.96

PS1

52.73

70.64

PS2

632682

3337

45.46

64

47.33

PS3

537898

4164

TAT (sec.)

45.t2

P54

541315

In dynamic peering the sharing policy changes with varying load, therefore the resource

shared by underloaded domain are more than static peering. But, when compared to

load balancing, dynamic peering has less throughput because of the restriction in the

resource usage of the underloaded parallel systems.

Figure 4.16 shows the average price of different peering domains. Fbom figure 4.16,

rve can see that the average price of resource in PSO is the highest and the average price

of resource in PS3 is close to the nominal price, which is one dollar. The average prices

689

148184

548548

1862

53151

541506

4770

NRU

53235

r45.78

Table 4.10: Static Peering Metrics

61731

FRU

50.86

56774

8.99

37.73

Throughput

39.99

65.12

39.99

55.8

3L2t

36.85

4202

32.66

693

1863

4170

Cneprnn 4. Sivrur,errox Sprup ANo Rpsur,ts

Parallel

system

PSO

ACT (sec.)

PS1

PS2

623755

PS3

537806

TAT (sec.)

PS4

551501

of resource in PSl, PS2 and PS4 are less than the nominal price, and this indicates that

the demand in PSl, PS2 and PS3 are less than the supply.

Foreign resource utilization wiil also give a good idea on the load distribution in

the parallel systems. In this metrics, we need to look at parallel systems which are

overloaded and underloaded. In overloaded parallel systems, it is better if the foreign

resource utilization is less, and in underloaded parallel systems the foreign utilization is

expected to be high. Figure show that foreign resource utilization in parallel system PSO

is the least in the case of dynamic peering. This shows that as the load increases the

dynamic peering, enforces a poor resource sharing, so more resource can be used by the

local jobs. Load balancing has the highest foreign resource utilization for parallel system

PSO, which shows that, without any control of resource sharing, even domains with high

load is overloaded with foreign jobs. The reason for high foreign resource utilization in

load balancing is, PSO uses other parallel systems resource and overloads the underloaded

parallel system, and jobs from underloaded domains use PSO resource.

The foreign resource utilization of the underloaded domains are the highest in load

balancing. This is because, unlike dynamic peering system, load balancing does not have

139304

544880

53059

54t456

NRU

55387

L44.74

Table 4.11: Dynamic Peering Metrics

58063

FRU

48.29

56724

6.607

33.16

Throughput

44.4

72.98

52.69

3182

65

56.9

24.78

4203

31.4

702

1902

4L2l

CHeprpR 4. Sivrur,errom Sprup ANp Rpsulrs

4500

4000

3500

3000
f

-o 2soo
o)
fI 2000
l- lsoo

1000

s00

0

Figure 4.15: Throughput For Differential Load

66

J

2.5

9z
(ú

õ
E t'u

c)3r
o-

0.5

0

Figure 4.16: Average Price For Differential Load Condition

Cueprpn 4. Sluulauo¡¡ Sprup A¡lo Rnsulrs

any restriction in using the resource of the underloaded peering domains. In the case

of static peering system, as the peering policy is fixed, the overloaded domains uses the

least resource from the underloaded domains.

70

c60
.9

.E uo

i¿oo:30o
Ø

Ê. zo

10

When compared to static and dynamic peering, load balancing has high foreign re-

source utilization. Figure 4.18, shows that native utilization for load balancing in all the

parallel systems are less. There are two reasons for this condition, one is because of the

over usage of local resource of parallel systems by foreign jobs. The second reason is, in

dynamic and static peering, there is restriction in local resource usage by foreign jobs,

which will constraint lots of local jobs to be executed in the host parallel system.

In the case of load balancing, since there is no restriction in local resource usage, the

jobs are executed in the parallel system which gives the best completion time. Therefore,

it is expected that load balancing has the best completion time and turn around time.

Figure 4.19, shows that average completion time for load balancing is better in all parallel

systems except PS3. PS3 is the parallel with normal load, and we see that dynamic

peering has better average completion time and turn around time. This shows that,

dynamic peering has better fair allocation of resource.

Figure 4.17: Foreign Resource Utilization For Differential Load

ot

E¡ Load

E Static

tr Dynamic

CueprpR 4. Sin¿ui.¡,uox Serup ANn RpsuLrs

160

140

.õ 120

.E 1oo

ãeoo

=60o
U'

Ê40
20

0

Figure 4.18: Native Resource Utilization For Differential Load

68

6.40Ê+05

ø 6.208+05zt
g 6.00E+05
(¡)

.? s.8oe+os

fl s.ooe+os

.p 5.40E+05
tt)

S 5.20E+0s
o
E 5.ooE+05

4.80E+05

Figure 4.19: Average Completion Time For Differential Load

Cseprpn 4. Sruur,auon Sprup Alro Rpsulrs

160000

140000

120000
tt
ït
5 100000
oE eoooo

I 60000
E
¡=

40000

20000

o

4.6.3 one Domain Overloaded And All Other Domains Under-

loaded

Figure 4.20: Turn Around Time For Differential Load

In this simulation, except PSO all other parallel systems are under-loaded. The main

aim in doing this simulation is to see how bad the static peering performance. As static

peering has rigid peering policy, the under-loaded resource are not properly used. The

input for this simulation is shown in table 4.5. Table 4.12 shows the metrics for load

balancing, table 4.13 shows the metrics for static peering and table 4.14 shows the metrics

for dynamic peering.

In this simulation, load balancing and dynamic peering has the same results. This

is because only parallel system PSO is overloaded and all other parallel systems are

underloaded. In the case of dynamic peering, the underloaded parallel systems will share

almost the entire resource and the overloaded resource will have very few foreign jobs,

this is because all the foreign parallel systems are underloaded, and ultimately dynamic

peering will be the same as load balancing.

The throughput for PSO is higher in the case of load balancing and dynamic peering.

@ Load

ts Static

E Dynamic

69

CrieprpR 4. Sruul,lrloir Sprup Ai.¡n Rpsur,rs

Parallel

system

PS()

ACT (sec.)

PSl

PS2

434370

PS3

325422

TAT (sec.)

PS4

324743

130666

32947L

23342

325272

NRU

Parallel

system

t9732

134.36

Table 4.72: Load Balancing Metrics

24043

FRU

L0.42

23181

PSO

0.85

6.73

ACT (sec.)

Throughput

PS1

100.07

t9.2

PS2

69.53

478708

L2.34

70

2405

PS3

33.73

325422

TAT (sec.)

L252

P54

324743

1.29

This shows that in static peering, because of the rigid sharing policy, the overloaded

parallel system could not use the resource from under-loaded parallel systems. Figure

4.21, shows the result for the throughput for different parallel systems. The throughput

for all the underloaded parallel systems are the same, but for the overloaded parallel

system PSO, dynamic peering and load balancing has better performance.

Figure 4.22,, shows the average price of the resource in each parallel system. It is clear

from figure 4.22, that the overloaded parallel system has price higher than the nominal

2\0

175003

329471

576

23342

325272

NRU

1249

t9732

208.77

Table 4.13: Static Peering Metrics

24043

FRU

12.43

23181

0

7.6

Throughput

4L.67

19.2

47.67

12.34

2220

4r.67

L252

41.67

2L0

576

L249

Cueprsn 4. SIrr¡uleuom Sprup Ano Rpsulrs

Parallel

system

PSO

ACT (sec.)

PS1

PS2

434370

PS3

325422

TAT (sec.)

PS4

324743

price and therefore, the resource sharing in overloaded domain is less in dynamic peering.

But the price of the resource in underloaded domains are less than the nominal price,

which allows a greater sharing of the underloaded resource.

In static peering, foreign resource utilization in all the underloaded parallel systems

are restricted to 40% resource usage, which is the sharing policy. In the case of dynamic

peering systems, the foreign resource utilization varies according to the load, and gives a

better performance. Figure 4.23, shows that the foreign resource utilization in dynamic

peering and load balancing is more in the underloaded parallel system PSl. Foreign

utilization of PS3 and PS4 is more in static peering, this is because in dynamic and load

balancing, PSl and PS2 where able to saiisfy the demand for PSO jobs, and the necessity

for using PS3 and PS4 resource was very less.

Native utilization in static peering is more than dynamic peering and load balancing.

This is because, in static peering there is a rigid peering policy, which will share a fixed

resource irrespective of the load, and ultimately even if a parallel system is highly loaded,

it will be able to use only a fixed resource from underloaded domains. Figure 4.26, shows

the native resource utilization of different peering systems.

130666

329477

23342

325272

NRU

79732

134.36

Table 4.14: Dynamic Peering Metrics

24043

FRU

10.42

23181

0.85

6.73

Throughput

100.07

L9.2

69.53

12.34

7T

2405

33.73

1252

r.29

2L0

576

L249

Cseprpn 4. Sruur,erroN Sprup ANo Rpsul,rs

3000

2500

2000
f,
o-
E3 tsoo
I
F looo

500

0

Figure 4.21: Throughput For Extreme Loads

72

3

2.5

9z
(ú

o

Ë r.u

c)0-'=lù
0.5

0

Figure 4.22: Price For Extreme Loads

CHRprpn 4. Srrr¿ur,ATrox Sprup Ai.ro Rpsur,rs

120

c 100
o'E
.Ê Bo
.E
3
o60g
=940q)
rc

20

0

Figure 4.23: Foreign Resource Utilization For Differential Load

PS1 PS2

73

6.00E+05

I 5.00E+05
co
$ +.ooe*os

Ë 3.ooE+05

(')

ã 2.00E+05
U)oo9 1.00E+05
fL

0.00E+00

Figure 4.24: Average Completion Time For Extreme Load

Cn¿.prpn 4. Situur,errol Sprup Axo Rpsulrs

2.00E+05

1.80E+05

1.60E+05

1.40E+05

1.20E+05

1.00E+05

8.00E+04

6.00E+04

4.00E+04

2.00E+04

0.00E+00

U'!
oo
0)o
'õ
E
¡=

Figure 4.25: Thrn Around Time For Extreme Load

74

250

c 2OO
.9
(ú

È 1so

o
9 rnn
o
U'otr50

o

Figure 4.26: Native Resource Utilization For Extreme Load

Cneprpn 4. Sruur,RrioN Serup ANo Rpsulrs

The average completion time and turn around time for PSO is better for load balancing

and dynamic peering. Figure 4.24, shows the average completion time, and from the

graph it is clear that the average completion time for PSO is better in dynamic peering

and load balancing. This shows that in dynamic peering, PSO uses lots of resource from

underloaded domains and ultimately decreasing its average completion time.

75

Chapter 5

Future \Mork And Conclusion

This chapter gives a summary on the overall work done in this thesis. This chapter is

divided into three section; section 5.1 deals with the contributions made in this thesis,

section 4.2 deals with the limitations and assumptions made in this thesis, and section

5.2 deals with the future work that needs to be done.

5.1 Contributions

This thesis make the following contributions:

o Peeri,ng Model: Dynamic peering system is a new peering system proposed in this

thesis. In dynamic peering system, the peering policy of the peering domains change

with the changes in load. Peering policy of peering domains in a dynamic peering

system is determined using micro-economics concepts. The pricing mechanism used

in this thesis combines concepts from auctioning and commodity market to give an

efficient and valid pricing scheme.

Føi,r resource allocati,on: As the peering policy of peering domains in dynamic peer-

ing system is decided by the load on the peering domain, unfair resource allocation

76

CuRprpR 5. FuruRp \Monx Axo ColrcLUSroN

has been avoided, and this is evident from the simulation results. In static peering

system, peering policy is fixed and therefore unfair resource allocation is more com-

mon. A baseline mechanism is used to compare both static and dynamic peering

system.

In dynamic peering system, load on individual peering domain wilt decide the

peering policy of that peering domain, therefore, when all the peering domains

in a peering system are overloaded, global system performance in dynamic peering

system might be less than static peering. This is because, even if all the peering

domains are overloaded, the load in each peering domain will be different, and in

static peering, as the peering policy is fixed, the highly overloaded peering domain

can use more resource from less overloaded peering domains. But once again, the

fairness in the resource distribution will be better in dynamic peering.

Resource Uti,Ii,zati,on: As the peering policy in static peering system is fixed, the

unused resources from the underloaded peering domains are not properly utilized.

But, in the case of a dynamic peering system, as the peering policy changes with

the load in the peering domain, the unused resources in the under-loaded peering

domains are more efficiently used.

tara
lt

Multi.Iateral Peeri,ng Mod,el: In this thesis, we have proposed a new peering model

which is called as multilateral peering model. This model is more centralized when

compared to the the existing bilateral peering model. We have also proposed a

hierarchical model of the multilateral peering system to increase the redundancy of

the peering system.

Cueprpn 5. FuruRe Wonx ANo Co¡tcLUSIoN

5.2 Future 'Work

In this thesis, simulations are done to show the behavior of all the features explained in

this thesis. I hope that someone will use the ideas from this thesis and do more research

to develop the proposed model. I have listed the future work that can be done to improve

and show some benefits of the proposed model.

o Simulations are done only for multilateral peering system, therefore as a future

work more simulations can be done to show the advantages and disadvantages of

bilateral and multilateral peering systems.

In this thesis, simulations are done only for a multilateral peering system with just

one node. Therefore, the redundancy of the multilateral peering system cannot be

analyzed. If simulation is done with more nodes in the multilateral peering system,

then the redundancy of the peering system can be better analyzed.

More simulations can be done to show the scalability of the peering system. Simu-

lations with more nodes in the peering system can better explain the scalability of

the multilateral peering model.

78

The demand vector sent by the clients are assumed to be correct. We have not

proposed any security model to prevent incorrect information send by the client.

Appendix A

Abbreviations

ACT Actual Completion Time

BPS Bilateral Peering System

CIB Central Information Board

DPS Dynamic Peering System

FIì,U Foreign Resource Utilization

LBS Load Balancing System

MPS Multilateral Peering System

NPS Network Peering System

NRU Natural Resource Utilization

NSP Network Service Provider

SC System Capacity

SPS Static Peering System

TAT T\rrn Around Time

79

Bibliography

[ChWgS] Q. Cheng and P. Wellman, "The WALRAS algorithm: A convergent dis-

tributed implementation of general equilibrium outcomes," Computati,onal Eco-

nomíns, Vol. 12, 1998, PP. I-24.

[CoM02] B. Cooper and H. Garcia-Molina, "Peer-to-peer data trading to preserve infor-

mation," Informati,on Systems, Vol. 20, No- 2, 2002, pp- 133-170.

[Cw01] W. Cirne, "A comprehensive model of the supercomputer workload," In Pro'

ceedi,ngs of lth Ann. Workshop on Worlcload Characteri,zati,on, Dec. 2001,

pp. 140-148.

[FeN96] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, "Economic mod-

els for allocating resources in computer systems," in Marhet-Based Control: A

Pøradigm for Di,stri,buted Resource Allocati,on,S. Clearwater, ed., World Scien-

tific, Hong Kong, 1996.

[LiV02] L. \Mang, V. Pai, and L. Peterson, "The Effectiveness of Request Redirection

on CDN Robustness," Technical Report, Princeton University, June 2002.

[Me76] Robert A. Meyer, Mi,croeconomi,cs Deci,si,ons, Houghton Miffiin Compa.ny,

Houghton Miflin Company, Boston, L976.

80

BreLrocRAPHY

[SaK98] J. Sairamesh and J. Kephart, "Price dynamics of vertically differentiated infor-

mation markets," Proceed,i,ngs of Fi,rst Internati,onal Conference on Informati,on

and Computati,on Economi,es, Oct. 1998.

[San02] T. Sandholm, "Algorithm for optimal winner determination in combinatorial

auctions," Arti,fi,cial Intelligence, Vol. 135, No. L-2,2002., pp. 1-54.

[WaW9a] C. A. Waldspurger and W. E. Weihl, "Lottery scheduling: flexible

proportional-share resource management," In Proceedi,ngs of the Fi,rst Sym-

posi,um on Operati,ng System Desígn and, Implementati,on, Nov. 1994, pp- 1-11.

[WoP00] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, "G-commerce: Market formula-

tions controlling resource allocation on the computational Grid," International

Parallel and, Di,stri,buted Processi,ng Symposi,um (IPDPS),, Apr. 2001.

[ZhK01] T. Zhao and V. Karamcheti, "Enforcing resou¡ce sharing agreements among

distributed server clusters," Technical Report, New York University, Oct. 2001.

81

