KBGT
A Knowledge-Based system
for Group Technology

by

Wadococd M. Ibrahim

A Thesis

Submitted to the Faculty of Graduate Studies

Department of Mechanical Engineering

University of Maniicba
in partial fulfillment of the requirements
for the Degree of
Master of Science
Department of Mechanical Engineering
Industrial Engineering Program

Winnipeg, Manitoba

August 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts £from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
a2 la Bibliothégue nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur ({titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni 1la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-48093-9

KBGT
A KNOWLEDGE-BASED SYSTEM
FOR GROUP TECHNOLOGY

BY

WADOOD M. IBRAHIM

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1988

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

To my mother,

Widad Taha Ashgah Al-Azzawi

TABLE OF CONTENTS

ACKNOWLEDGEMENT . . v vvvnsvassnnns Ces s et e st ra cevesaesiid
FIGURES....... traasataesesenn Cisereasaseaa RN Cesesessann Ceeres iv
TABLES ., i vviiiiinninnnnns seseasaaeraasene cetieanens e saan Y
ABSTRACT..... e ean s enas St resierananas e st s e earanas v esesaaas 1
INTRODUCTION. v ivvnnernans RPN Chsaesare it Cesretearaa 2
LITERATURE REVIEW........ Chsres e casseans ceaeoa Ceeretiarr s ana .4
2.1 CLASSIFICATION APPROACH........ e rea s rs ettt 4
2.1,1 Visual Method. . iviiiiinnernnnnnen Ce et ariar s 5
2.1.2 Nomenclature/Function Method......vu.. Cereee e, ced5
2.1.3 Coding Method. ivvviveiinnnrenronnennneas e tterer et eens 6
2.1.3.1 Hierarchical Code Ceieeaeseea e R

2.7.3.2 Chained COGB tiiiutiurnosnronsenronsonennernnennas 8

2.1.3.3 Hybrid Code P it et 9

2.2 CLUSTER ANALYSIS APPRCACH..... Checorrearins Pesesareaas st e e 12
2.2.1 Matrix Formulation...... Ceerreesaaes e iiace e 12
2,2.1.1 Standard Matrix Formulation........... D 4

2,2.1.2 Generalized Matrix Formulation...... hererssaeead23

2.2.2 Mathematical Programming Formulations........... Cereaesas 23
2.2.2.1 Quadratic programming model....evvvnenienns ceseenn 24

2.2.2.2 p-Median Model...vvvuvrennnss Chet ettt et e e 26

2.2.2.3 Generalized p-Median Model...iveuivssnesnnnnnesnans2?
2,2.3 Other Modeling Approaches...viveernrsennasnsnaes R «0e29

2-3 KNOWLEDGE-BASED SYSTEMS..-- ooooooo LI I I R I R N I I I RN B R RS I 00031

3. KNOWLEDGE-BASED SYSTEM FOR GROUP TECHNOLOGY (KBGT)...vvvvsnnnnn.... 34

3.1 FORMULATION OF THE GROUPING PROBLEM IN AUTOMATED MANUFACTURING
SYSTEMS‘I lllll LR L L I R A R L I T I S I R S 48 4 8 0 e kAN LI I T I I BN Y) 34

3.2 STRUCTURE OF THE KNOWLEDGE-BASED SYSTEM (KBGT)...vvvvvunnnsea. .36

3.2.7 InpUt Bata.vieurnnrrernsnnnsnonns S 1
3.2.2 GroUPIing PrOCESS.usveeerenserenasnnsses e rtsaes s seee39
3.2.3 Output Data..vevuresn. e ie it seteanenn et et ans .40

3.3 DATA BASE........ D T T Chssserareriaen .43
3.4 THE KNOWLEDGE-BASED SUBSYSTEM (KBS)......... Cesearsanssans T
3.4.1 Knowledge BasSe........ e e e ceeseean 46
3.4.2 Inference Engine...... et et et ettt 51
3.4.3 Reguest Processor...... C ettt esrea et et a e 51

3.5 CLUSTERING ALGORITHM. ... 'v'verivnrnnnnsn. Crseener e e ses e 52
3.5.1 The Algorithm.u.vveiiiinennrnnnnns e ettt 53

« PERFORMANCE OF KBGT v itiuerooeennensentossnennneennenss Cheie e 55
4.1 ILLUSTRATIVE EXAMPLE .ttt ettt tnesunseenssennsnerenesnnesnnennn. 55
4.2 APPLICATION OF KBGT TO GT PROBLEMS .t v vvtereeensnnernnnrnanennns 60
4.3 APPLICATION OF KBGT TO TWO INDUSTRIAL CASE STUDIES.......00.... 67
4.4 QUALITY OF SOLUTIONS.....ovvueu.s Cr e e e ceesiar e 65
CONCLUSION........ veseraraaa PN . ‘e N cesenan A
REFERENCES. .t iiiiii it it i nennenenss Ceetaaaaes PN 72
APPENDIX JT.uiuiniiuiinenesonnivennennnas D Y
APPENDIZ Iliuvuvnvereereononannnnns PP |

APPENDIX III.Il‘..l.ll-‘l..Illl‘.llll..l‘l.l.ll.'.!llOll'll.l.l.‘ll112

-ii-

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Dr. Andrew Kusiak,
Professor of Industrial Engineering, for his guidance and encouragement
throughout the project. Acknowledgement is also due to Dr. Soad Taha
Ashgah, The author's aunt for her support. Finally, the author would
like to extend his thanks to his family for thier support and to Elin
Hallgrimson, the author's fiance, for her help in a number of ways

during the preparation for this thesis.

-iii-

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

1.
2.
3.
4,
5.
6.
7.
8.

10,
11.
12.

FIGURES

Grouping of parts using a visual method...evvrvnrnnnnennnn 5
Structure of a hierarchical code.vveiiiviinnrenennan ceaeedd
Structure of a Chained COGE. vivivierrrerrecncanenresnnonesB
Structure of a hybrid code.vovievvvennnninannnns P
A stand-alone knowledge-based SyStemM..viviesresinesonsesa33
A tandem knowledge-based system....evvvaan P X
Structure of the knowledge-based system (KBGT)........... 37

Illustration of the irrevocable control

strategy of KBGT...vviveunnn Cearitererasaaesaean Cieaiaaan 40
Input of matrix (5) in KBGT format....... Cheeeaas et 61
KBGT output generated from matrix (5)....vevuenen RN -y
Machine-part incidence matrix {(Burbidge 1973)}............ 63

KBGT output for the machine-part incidence

matrix in Figure 11....... Cererateeseaerasenas Cieeaes RPN Y

~iv-

TABLES

Table 1. Solutions of four group technology problems.......

Table 2. Solutions of two industrial case StUBIeS...vseeseess

Table 3. Measure of effectiveness of six group

technology problems......... e rie st

ooooo

ABSTRACT

In this thesis a knowledge-based system (KBGT) for solving the group
technology problem 1is presented. The formulation of the group
technology problem involves constraints related to machine capacity,
material handling system capability, and machine cell dimension. The
KBGT has been developed for an automated manufacturing environment. It
takes advantage of the developments 1in expert systems and optimization.
Two basic components of the knowledge-based system, namely the
krnowledge-based subsystem and the heuristic clustering algorithm are
discussed. Each partial solution generated by the clustering algorithm
is evaluated for feasibility by the knowledge-based subsystem which
modifies search directions of the algorithm. The KBGT is illustrated
with numerical examples. Application of KBGT to industrial group

technology problems is also presented.

CHAPTER ONE

INTRODUCTION

Group technology (GT) is a decomposition approach to manufacturing
that takes advantage of the similarity of operations to be performed on
different parts. Using GT, parts that require similar operations are
grouped into part families. The machines that process each part family

are grouped into machine cells.

Application of GT in manufacturing has the following advantages
(Kusiak and Chow, 1988):

- reduced production lead time

- reduced variety of process plans

~ reduced setup time

- reduced part shortages

-~ reduced work-in-process

- reduced rework and scrap material

- reduced raw material stocks

- reduced labour

- reduced production floor space

- reduced tooling

- reduced order time delivery

- reduced paper work

- increased reliability of cost estimates

- improved staff relations

The above advantages were justified and discussed 1in detail 1in Durie
(1970), Edwards (1971), Fazakerlay (1974), Holtz (1978a, 1978b),

Schaffer (1981), Ingram (1982), Hyer and King (1984}, and Kusiak and

Chow {1988). The group technology concept can be applied in a number of
manufacturing areas such as: product design, process planning,

programming, machining, inventory and management.

The thesis is divided 1into five chapters. In Chapter two the
existing approaches to modeling and solving the group technology problem
are reviewed, namely: classification approach and cluster analysis

approach. Moreover, knowledge-based systems are also introduced.

In Chapter three a formulation of the group technology problem in
automated manufacturing environment is presented. Te solve the GT
problem a Knowledge-Based System for Group Technology (KBGT) that has
been developed is discussed in detail. The KBGT is based on the tandem

system architecture proposed by Kusiak {1987).

In Chapter four, the performance of KBGT is demonstrated. First, an
illustrative example of the operation of KBGT is presented. Then, an
application of KBGT to group technology problems from the literature and

two industrial case studies are also discussed.

Conclusions are drawn in Chapter five.

CHAPTER THWO

LITERATURE REVIEW

In this chapter, a review of the existing Group Technology (GT)
literature is presented. Two approaches to modeling and solving Group
Technology problems are discussed. In the first section, the
classification approach 1is presented, where three methods of
classification are outlined. They are the wvisual method, the
nomenclature/function method, and finally the coding method. The
following three basic code structures are used in the coding method:
hierarchical, chained, and hybrid. In the second section, the cluster
analysis approach 1is discussed. Three basic formulations of the
clustering problem in group technology are presented, namely, the matrix
formulation, the mathematical programming formulation, and other
formulations. The 1last section of this chapter introduces basic
concepts of knowledge-based systems. The tandem knowledge~based system

architecture proposed by Kusiak (1987) is also presented.

2.1 CLASSIFICATION APPROACH

The term classification is used to refer to grouping parts into part
families based on similarities and/or dissimilarities of predetermined
part characteristics {Eckert, 1975, Ingram, 1982, Ham 1985). There are
three methods of the classification approach:

- visual method
- nomenclature/function method

- coding method.

2.1.1 visual Method

The visual method 1is a semi-systematic procedure where parts are
grouped based on similarity of geometric shape as shown in Figure 1,

where 11 parts have been grouped into four part families.

PF-1 PF-2

PF-3 PF-k

Figure 1. Grouping of parts using a visual method

2.1.2 Nomenclature/Function Method

This method is also a semi-systematic procedure where parts are
grouped based on given names that designate their functions (Ham, 1985}.
Both the visual and nomenclature/function methods are manual procedures
and are dependent on personal preference. Therefore, these two methods

are applicable in cases where the number of parts is rather limited.

2,1.3 Coding Method

In the coding method each part is assigned a code that consists of
numbers, letters, or a combination of both, based on predetermined part
characteristics. The most common part characteristics used are:

- geometric shape

- complexity

~ operational processes
- dimensions

- type of material

- shape of raw material

- required tolerance.

The above list may be extended to include additional characteristics

dependent on the type of parts coded.

In the literature a system that uses a coding method is called a
classification and coding system. The currently available
classification and coding systems differ with respect to the depth of
coverage of part characteristics mentioned above. For example, a
classification and coding system may provide more information on the
shape and dimension of a part whereas another may emphasize more on the

tolerance of a part.

There are three basic types of code structures:
- hierarchical
- chained

- hybrid.

2.1.3.1 Hierarchical Code

Hierarchical codes have been used in areas other than manufacturing.
For example, in biology, a lineage chart take this form and it is
usually called a family tree (Eckert, 1975). Another form is a company's

organizational chart.

To obtain a hierarchical code, characteristics of each part are
matched with the characteristics corresponding to each node of the tree.
For example, the sample code 222 indicated by the bold lines shown in
Figure 2. Since this structure is hierarchical the meaning of each
character in a code is dependent on the meaning of the character
preceding it. In order to fully interpret a part hierarchical code, all
of its characters have to be known. For a given part the length of its
hierarchical code is rather short compared to other coding systems

(Ingram, 1982).

characteristic 1

characteristic 2

characteristic 3

Figure 2. A tree structure of a hierarchical code

2,1.3.2 Chained Code

A chained code, also known as a polycode or feature code, is
constructed in such a way that each position denotes a part's
feature/characteristic. A code in a chained code system is based on a
selection of digits and/or letters through a number of multiple-choice
queries. To collect sufficient information describing a part, the user
scans a rather large number of queries. Therefore, a chained code is
typically long often more than thirty characters (Ingram, 1982). Since
a chained code does not have a hierarchical structure, the meaning of a
character is not dependent upon the preceding character. In practice
though not all characters are totally independent ({Eckert, 1975). &
chained coding system and a sample code are illustrated in Figure 3. A
sample code 121 is generated by selecting one digit from each of the

multiple choices.

characteristic 1

characteristic 2

characteristic 3

Figure 3. Structure of a chained code

2.1.,3.3 Hybrid Code

The structure of a hybrid coding system is a combination of the
hierarchical and chained code structures. Most current classification
and coding systems employ the hybrid code structure, because it has the

advantages of both structures (Schaffer, 1981}. A typical structure of

QD
- ()
O

a hybrid system is shown in Figure 4.

characteristic 1 Q °
characteristic 2 @ ° 0

characteristic 3 @ °

Figure 4. Structure of a hybrid code

The first two characters of the code in Figure 4 have the form of a
hierarchical structure that divides parts into subgroups and the

remaining characters are constituted by the chained code (Eckert, 1975).

- 9 -

Ham (1985) has listed 44 classification and coding systems currently
in use in industry. A company that intends to employ a coding and
classification system has to.select and modify an existing coding system
or to develop a new one so that it suits its needs. Ingram (1982) and
Dunlap and Hirlinger (1983) presented several classification principles
that should be considered in developing a classification and coding
system. Some of the widely applied systems are (Kusiak, 1985):

1) BRISH-BIRN (United Kingdom) - based on four to six-digit

primary code and number of secondary digits.

2) DCLASS {USA) - a software based system without any fixed

code structure.

3) CODE-MDSI (USA) - an eight digit code.

4) MICLASS (The Netherlands) - a twelve to thirty two digit code.

5) OPTIZ (West Germany} - a five digit primary code with an

extendable four digit secondary code.

6) TEKLA (Norway) - a twelve digit code.

The OPTIZ classification and coding system (Optiz and Wiendahl, 1975)
is discussed below. The code 1in a hybrid system consists of nine
digits. The five most significant digits are called a primary code, and
the remaining four digits are called a supplementary code. The most
significant digit is a part class code that is used to divide parts into
rotational and non-rotational parts. For example, a value of three or
four of the most significant digits indicates the deviation of L/D
ratio, where L is the length of a part and D is the diameter. The
second and third most significant digits are for a part's external shape
and form. The type of surface machine and teeth formation of a part are
represented by the fourth and fifth most significant digits.

‘]0.

The supplementary code indicates the size, material, original
material shape and accuracy of a part. In the OPTIZ system, the most
significant digits are used to specify the detailed structure of a part
(Gallagher and Knight, 1973). One of the advantages of the OPTIZ system
is that the code can be extended to include supplementary digits. This
feature makes the system applicable to different companies. Moreover,
the extension allows a more detailed description of a part and its

process plan which makes the new system suitable for computerization

(Billo et al., 1987},

- 11 -

2,2. CLUSTER ANALYSIS APPROACH

Cluster analysis is concerned with the separation of numerical data
sets into unique clusters of data (Gongaware and Ham, 1981). 1t has
been applied in many areas such as automated retrieval and storage
systems (Hwang et al., 1988), biology (Everitt, 1980), data recognition
(McCormick, et al., 1972), medicine (Klastorin, 1982), pattern
recognition (Tou and Gonzalez, 1974}, production flow analysis
(Burbidge, 1971; RKing, 1980), task selection (Nagai, et al., 1980),
automated manufacturing systems (Kusiak, 1985; Kumar, et al., 1986), and
expert systems (Cheng and Fu, 1985). Waghodar and Sahu (1983) 1listed
more than 400 references related to cluster analysis and group

technology.

The application of cluster analysis in group technology is to group
parts into part families and machines into machine cells. There are
three types of formulations of the clustering problem:

- matrix formulation
- mathematical programming formulation

- formulations based on other methods.

2.2.1 Matrix Formulation

In the literature there are two matrix formulations:
-~ standard matrix formulation

- generalized matrix formulation.

2.2,1.1 Standard Matrix Formulation

In the standard matrix formulation a 0-1 machine-part incidence

- 12 -

matrix {a.‘] is constructed from production process data usually listed
in operaigon sheets. The machine-part incidence matrix [a] consists
of 0,1 entries, where an entry 1 (0) indicates that part jlgs {(not) to
be processed on machine i. Typically, when an initial machine-part
incidence matrix [a__] is constructed, clusters of machines and parts
are not visible, Ciastering algorithms are used to transform an initial
machine-part incidence matrix into a more structured form, possibly a
a block diagonal form. The clustering concept 1is illustrated in

example 1,
Example 1
Consider the machine-part incidence matrix (1)

PART NUMBER

1 ! E
2 |3 1 1] MACHINE (1)
[a 1= NUMBER
ij 3 1 1
4 | 1 1 i

1 if machine i is used to process part j
vhere a =
ij 0 otherwise

Rearranging rows and columns in (1) results in matrix (2}.

- 13 -

PF-1 PF-2

2 [t 1 1 7
MC-1 {
3 11
(2)
4 1 1
MC-2
1L 1]

Two machine cells MC-1 = {2,3}, MC-2 = {4,1} and two corresponding
part families PF-1 = {1,5,3}, PF-2 = {2,4} are visible 1in matrix (2)}.
There is no flow of parts between the two machine cells. One has to
realize, that it is wvirtually 1impossible to design a cellular
manufacturing system without any interaction among machine cells. A

typical situation occuring in practice is illustrated in matrix (3).

PART NUMBER

2 1 1 1
MC-1
3 1 MACHINE (3)
4 i 1 1| NUMBER
MC-2 {
1L 1

Part 3 is to be manufactured in both machine cells.

Over the past fifteen years, the following approaches have been
developed to solve the matrix formulation of the group technology

problem;

- 14 -

- production flow analysis

~ similarity coefficient methods
- sorting algorithms

- bond energy algorithm

- cost based methods

- cluster identification algorithm.
e Production Flow Analysis

The production flow analysis (PFA) was introduced by Burbidge (1971).
The PFA is one of the earliest analytical methods for implementing group
technology in manufacturing systems. The PFA consists of three levels
of analysis:

- factory flow analysis
- group analysis

~ line analysis.

In factory flow analysis level a machine-part incidence matrix is
constructed based on analysis of part flows which may be obtained from
operation sheets. In the group analysis level an attempt is made to
identify machine cells and part families by rearranging rows and columns
of the machine-part incidence matrix. This level 1is primarily manual
and dependent on subjective evaluation. A great deal of research has
been conducted in order to make this level systematic and suitable for
computerization. The line analysis uses the generated clusters from the
group analysis to determine machine layout, identify bottleneck machines

and analyze flow patterns on the shop floor.

- 15 -

The PFA 1is primarily manual and lacks a clear-cut methodology,
especially, in group formation (Oba et al., 1987). 1t is, therefore,

not suitable for computerization.

Dekleva and Menart (1987) proposed a procedure that represents an
extension to PFA. The proposed procedure deals with the first and second
level of PFA and consists of three stages:

- identification of part families using clustering analysis
- identification of groups of machines using modified machine-part
incidence matrix

- test of fitness.

El-Essaway and Torrance (1972) presented component flow analysis
(CFA) that is similar to PFA. King and Nakornchai (1982) pointed out
the two differences between CFA and PFA. The CFA first partitions the
problem, whereas PFA does not. The second difference relates to the

manner in which the cells are formed in the two methods.
e Similarity of Coefficient Methods

A similarity coefficient method attempts to make PFA a systematic
procedure. In these methods a similarity/dissimilarity value for each
pair of data elements is calculated. These values are then stored in a
two-dimensional similarity array. This array is used as input to a
clustering algorithm to group the data elements. The similarity values
usually represent a distance between data elements. A common practice
is to minimize the sum of distances of grouped elements from the

calculated centroids of their respective clusters or to maximize the

- 16 -

distance between cluster centroids (Congaware and Ham, 1981). The
output is in the form of a dendogram. Clusters are generated based on a

threshold value of the similarity coefficient.

McAuley (1972) introduced the Single Linkage Cluster Analysis (SLCA)
which uses the similarity coefficient measure between two machines as
the number of parts processed on both machines divided by the number of
parts processed on either of the two machines. One of the major
drawbacks of SLCA is that it fails to recognize the chaining problem
resulting from the duplication of bottleneck machines (King and

Nakornchai, 1982).

In order to overcome the chaining problem Seifoddini and Wolfe (1986)
developed the Average Linkage Clustering (ALC) algorithm. They define
the similarity coefficient between any two clusters as an average of the
similarity coefficient between all members of the two clusters. The
grouping obtained is dependent on the similarity threshold value used.
Therefore, the SLCA and ALC algorithms generate a set of alternative
solutions rather than a unique solution. Seifoddini and Wolfe (1987)
suggest a threshold value based on material handling cost. Seifoddini
(1986) studied the problem of improper machine assignment in
machine-part grouping in group technology. The machines involved are
bottleneck machines. He suggested that all bottleneck machines be
reexamined after machine cells are formed and be reassigned wherever

necessary in order to reduce the number of inter-cellular moves.

De Witte (1980) developed a clustering algorithm that allows some
machines to be available in more than one machine cell. He divided all
available machines into:

- 17 -

1) primary machines, where only one copy of each machine is
available

2) secondary machines, where only a few copies of each machine are
available

3) tertiary machines, where sufficient number of copies of each

are available.

In order to analyze the interdependence between these machines, De
Witte (1980} suggested three similarity coefficients:

1) absolute similarity coefficient

2) mutual similarity coefficient

3) single similarity coefficient.

To obtain the best clustering results, first start assigning machines
with the absolute coefficient, the second, and then wuse the third

coefficient to allocate the remaining unassigned machines.
e Sorting Algorithms

Many researchers have studied cluster analysis algorithms that are
based on sorting rows and columns of the machine-part incidence matrix.
One of them, the Rank Order Clustering (ROC) algorithm was developed by
King (1980). This algorithm can be considered as an attempt to
computerize the group analysis level of production flow analysis. The
ROC algorithm is as follows:

STEP 1 Read éach row of the machine-part incidence matrix as a
binary word.
STEP 2 Sort the binary words in decreasing order.

STEP 3 1f the row order of the current machine-part incidence

- 18 -

matrix is the same as the order of the corresponding binary
words generated in Step 2, then go to Step 7 ;
else, rearrange rows of the matrix according to the order
generated in Step 2 and go to Step 4.

STEP 4 Read each column of the matrix as a binary word (the most
significant digit is the one at the top row).
Sort the binary words in decreasing order.

STEP 5 If the column order of the current matrix is the same as
the order of the corresponding binary words generated
in Step 4, then go to Step 7 ;
else, go to Step 6.

STEP 6 Rearrange the machine-part incidence matrix starting with
the first column by rearranging the columns in decreasing
order and go to Step 1.

STEP 7 STOP.

King and Nakornchai (1982) developed the ROC2 algorithm which is an
extension of the original ROC algorithm. Chandrasekharan and
Rajagopalan (1986) studied the deficiencies of the ROC algorithm and
developed MODROC algorithm, that incorporates the following two
methods to improve the performance of the ROC algorithm:

i. "block and slice" method

ii. hierarchical method

Another sorting algorithm that was studied by many researchers is the
Direct Clustering Algorithm (DCA} which was developed by Chan and Milner
(1982). The DCA incorporates the following steps:

STEP 1 Count the total number of 'i's in each row and column

- 19 -

of the machine-part incidence matrix.

STEP 2 arrange the machine-part incidence matrix with rows
in increasing order of the total number of 'i's and
columns with decreasing order of the total number of '1's.

STEP 3 For each column of the matrix, starting with the first
column, rearrange the rows, that have '1' entries in the
column considered, to the top of the matrix.

STEP 4 If the matrix generated in Step 3 is the same as the one
immediately preceding, then go to Step 7
else, go to Step 5.

STEP 5 For each row of the matrix, starting with the first row,
rearrange the columns, that have "1' entries in the row
considered, to the left-most position of the matrix.

STEP 6 If the matrix generated in Step 5 is the same as the
one immediately preceding, then go to Step 7
else, go to Step 2.

STEP 7 STOP.

e Bond Energy Algorithm

The Bond Energy Algorithm (BEA) is an interchange clustering
algorithm developed by McCormick et al. (1972). The BEA attempts to
transform the machine-part incidence matrix to a block diagonal form by
maximizing the measure of effectiveness which is defined as follows;

moon
ME=1/2Z I a |la +a +a +a]
i=1 j=1 17 i,j+1 1i,j-1 1i+1,3 1i-1,3

The BEA consists of the following steps:

- 20 -

STEP 1 Set i=1 ;
Select any column of the machine-part incidence matrix.
STEP 2 Move the remaining n-i columns, one at a time,
to the i+1 positions, and calculate each column's
contribution to the ME.
Place the column that gives the largest incremental
contribution to the ME in its best location.
Increment i by 1 and repeat Step 2 until i=n.

STEP 3 Repeat the same procedures in Step 2 for the rows.

A clustering algorithm based on the BEA and the Shortest Spanning
Path (SPP) algorithm, wac developed by Slagle et él. (1975). Their
concept was then extended by Bhat and Haupt (1976). They developed an
algorithm where the matching between any two rows/columns of the

machine-part incidence matrix is calculated as follows:

=
I
oo
Y
!
™

The Bhat and Haupt's algorithm maximizes the total sum of matchings

between rows and columns of the matrix.

e Cost-Based Method

Askin and Subramanian (1987) developed a clustering algorithm that
considers the following manufacturing costs:

1} fixed and variable machining

2} setup

3) production cycle inventory

- 21 -

4) work-in-process inventory

5) material handling.

The algorithm consists of three stages. In the first stage, parts
are classified using a coding system. In the second stage, an attempt
to develop a feasible grouping between parts based on the manufacturing
costs is performed. In stage three, the actual layout among a group of

machine cells is analyzed.

e Cluster Identification Algorithm

Kusiak and Chow (1987a) developed the Cluster Identification (CI)
algorithm, The CI algorithm decomposes the machine-part incidence matrix
into separable submatrices provided that they exist. The cluster
identification algorithm has a relatively low computational time
complexity of 0{2mn).

In practice a machine-part incidence matrix does not decompose into
separable submatrices, therefore, the cost analysis algorithm was
developed (Kusiak and Chow, 1987b). In the cost analysis algorithm a
cost ¢ is associated with each column/part of the machine-part
incidenge matrix. The cost c could be:

J

1) subcontracting cost

2) part flow rate.
The CI algorithm seems to be the most efficient algorithm in the
literature. It has a relatively low computational time complexity of

0{2mn).

- 22 -

2.1.1.2 Generalized Matrix Formulation

This formulation is an extension of the standard matrix formulation.
The extensior represents gualitative parémeters and constraints (Kusiak,
1986). The parameters could be part production cost, part machining time
and frequency of trips required to handle a part by a robot. The
constraints wusually represent production constraints such as maximum
number of machines in a machine cell, maximum machining time available
on a machine and maximum frequency of trips that can be handled by a

robot.

2,2,2 Mathematical Programming Formulations

There are a number of mathematical programming formulations that have
been developed to model the group technology problem. Most of these

formulations use a distance measure d between parts i and j. The
ij
distance measure d is a real-valued symmetric function obeying the
1]
three following axioms (Fu, 1980):
- reflexivity d = 0
i1
- symmetry d =4d
i3 3i
- triangle inequality 4 <d + 4
g 1p pg

The distance measure, also known as dissimilarity measure, is defined
depending on the application considered. The most commonly applied

distance measures are as follows {Kusiak, 1985):

1) Minkowski distance:

jo B
It
L s s
™
f
3]
[

- 23 -

where: n is the number of parts
r is a positive integer.
These two special cases of Minkowski's measure are widely used:
- absolute distance measure (for r=1)

- Euclidean distance measure {for r=2).

2) weighted Minkowski distance:

1,
It
Mo
=
o
{
>
fo—

ij k
Similar to Minkowski's distance measure, there are two special cases:
- weighted absolute distance measure {(for r=1)
- weighted Euclidean distance measure (for r=2).
3) Hamming distance:
d =Z {x ,x)
i3 k=1 ik 3k
1 if a #x
where: (x , x)= ik Jk
ik jk 0 otherwise.
In the following discussion three models of the mathematical
programming formulation in group technology are presented:
- quadratic programming model
- p-median model

- generalized p-median model.
2.2.2.1 Quadratic programming model

Kusiak et al. (1986) developed a Guadratic mathematical programming
formulation in group technology. They used the following parameters and
variables:

- 24 -

m number of machines
n number of parts
p number of part families
t number of parts in family j
1 if part i can be processed on machine j
1ij 0 otherwise

s similarity between part i and part j

1]
(s 20, i,j=1,2,...,n, s =0, i=j=1,2...,n)}
ij i3
m
s = dla ,a)
ij k=1 ik jk
1 ifa =a
vhere; dla ,a) = ik jk
ik jk 0 otherwise
i 1f part i belongs to part family j
X =

ij 0 otherwise

The 0-1 guadratic programming model is as follows:

p n-1 n
max L L I s X X (1)
1=1 i=1 j=i+1 i i1 31
p .
s.t. Z x =1, i=1,...,p (2}
=1 1ij
n
I ox =t , i=1,...,p (3)
i=1 i3 j
x =0,1 , i=1,...,n, J=1,...,p (4)
i3

Constraint {(2) ensures that each part is assigned to one family.
Constraint (3) specifies the required number of parts in each part
family. Constraint (4) is for integrality. In this model the number

of parts in each part family is restricted and to be determined a

- 25 -

priori. Since this model is computationally complex the p-median
model was developed as an approximation to this model (Kusiak and

Heragu, 1987). The p-median model is discussed later.

Kumar et al. (1986) have developed the following 0-1 quadratic

formulation of the group technology problem:

n-1 n k
max L I L a x X (5)
1=1 j=i+1 p=1 ij ip jp
k
s.t. L x =1, i=1,...,0 (6}
=1 i
n
1< Z x <fu, j=t,...,k (7)
i=1 ij
x = 0,1 i,3=1,...,n (8)
ij

where: a the volume of part i that has to be processed on machine j,
i3
or profit associated with parts i and j.
Constraint (6) ensures that each part is assigned to only one part
family. Constraint (7) is to limit the number of parts in each part

family, and constraint (8) is for integrality. Kumar et al. (1986}

have developed a two phase polynomially bounded heuristic algorithm.

2.2,2,2 p-Median Model

The p-median model is used to group n parts into p part families such
that the total sum of distances between any two . parts i and j is
maximized {(Kusiak, 1985). The definition of the p-median model follows
Mulvey and Crowder (1979):

m number of machines

- 26 -

n number of parts
p number of part families

1 if part i belong to part family j
X =

ij 0 otherwise

d distance measure between parts i and j

1]
n n
max £ I 4 «x (9)
i=1 j=1 1j 1ij
n
s.t. Z x =1 , i=1,...,n (10)
j=1 ij
n
I x =p (11)
=1 3j
X <$x i,3=1,...,n (12}
1] J]
x =0,1 , i,j=1,...,n (13)
1]

Constraint (10) ensures that each part belongs to exactly one part
family. Constraint (11) specifies the required number of part families.
Constraint (12) ensures that part i belongs to part family j only when
it is formed. Constraint (13) is to ensure integrality.

In the p—medi;n model p, the number of part families, is specified a

priori,

2.2.2.3 Generalized p-Median Model

In the p-median model and in most group technology models, the
assumption is used that there exists only one process plan for each

part. In automated manufacturing systems there 1is usually more than one

- 27 -

process plan for each part that can be generated by Computer-Aided
Process Planning (CAPP) systems. Kusiak (1987) presented the generalized
p-median model. This model permits more than one process plan to be
considered for each part. However, 1in the final clustered machine-part
incidence matrix only one process plan for each part 1is selected. The
objective of the model is to maximize the total sum of distance measures

between parts.

The following notation is used to formulate the model (Kusiak, 1987):
n number of parts
g number of process plans

F numpber of process plans for part k, k=1,2,...,n

p reguired number of process families

d distance measure between process plans i and j

ij
(8 = -o for all i and j in F , k=1,2,...,n, 8 =0,
i k ig
i,i=1,2,...,4, & 20 for all other { and j)
i
1 if process plan i belongs to process family j
x =

ij 0 otherwise

The objective function is :

a a
max £ £ & x (14)
i=1 3=1 i3 ij
a
s.t. L r x =1, k=1,2,...,n (15)
iF j=1 1ij
k
a
T ox =p i=1,...,q (16)
=1 1]

- 28 -

X Sx o, i,3=1,...,q (17}
x = 0,1 i,j=1,...,q (18)
ij
Constraint (15) ensures that only one process plan for each part is
considered. Constraint (16) specifies the number of part families
required. Constraint (17} ensures that part i is included in part
family j only when this part family is formed. Constraint (18} is

to ensure integrality.

Note that in this model the number of machine cells is determined a
priori. The generalized@ p-median model increases the chances of

obtaining a diagonally structured incidence matrix.

2.2.3 Other Modeling Approaches

There are two other modeling approaches that have been used to
formulate the group technology problem, namely a graph theoretic
approach and a set theoretic approach. The graph theoretic approach of
Rajagopalan and Batra (1975) uses cligues. The machines and the Jaccard
similarity coefficients are represented by the vertices and the arcs of
the graph, respectively. The number of cliques normally increases
exponentially with the increase of the number of machines (King and
Nakornchai, 1982). Therefore, this approach is applicable only when the

number of machines is rather small.

- 29 -

In the graph formulation the bottleneck parts/machines in a graph is
a non-trivial task. Lee et al. (1982) developed a heuristic algorithm in
order to detect the bottleneck parts/machines. This algorithm was

extended by Vannelli and Kumar (1986).

The second analytical method used to formulate the group technology
problem is a set theoretic method called polyhedral dynamics, also known
as g-analysis. While polyhedral dynamics is a branch of set theory
dealing with the topological relationship between finite sets,
g-analysis 1is wused to study polyhedral dynamics. The two terms
g-analysis and polyhedral dynamics are often wused interchangeably
(Robinson and Duckstein, 1986). Robinson and Duckstein {1986) applied
g-analysis to group formation of machine cells and part families. They
pointed out that the mathematical theory behind polyhedral dynamics is

rather complex.

- 30 -

2.3 RNOWLEDGE-BASED SYSTEMS

In the past decade, the principles and methodologies of Artificial
Intelligence (AI) have been applied to a number of areas.
Knowledge-based systems are perhaps the most widely used Al application.
A knowledge-based system is a computer program that uses explicit

knowledge of a domain to solve problems in that domain.

There is a fundamental difference between a knowledge-based system
and a standard computer program. In a conventional computer program, the
knowledge of how to solve a problem is scattered within the program code
which solves the problem (Miller, 1986)}. In a knowledge-based system
the knowledge 1is separated from the control component of the program.
Therefore, modifications and additions to the knowledge can be performed
without changing the control component (Miller, 1986} . Most
knowledge-based systems are stand-alone knowledge-based system, as shown
in Figure 5 (Kusiak, 1987). Kusiak {1987) proposed an architecture for a
knowledge-based system called a tandem architecture (see Figure 6}). 1In
the tandem architecture a knowledge-based system is working jointly with
a model and an algorithm. The tandem knowledge-based system is more
efficient than the stand-alone system when the problems involve
guantitative data because the model and the algorithm component deals

with the guantitative data efficiently.

A knowledge-based system consists of three basic components. The
first component is a knowledge base which contains domain-specific
knowledge of how to solve problems. The second component 1is a general

purpose control component called the inference engine (Waterman 1986).

- 31 -

The third component is a data base that contains facts about the problem

being solved.

The reader interested in the principles of knowledge-based systems
may refer to Rich (1983), Winston (1984), Nilsson (1980), Charniak and
McDermott (1985), Waterman (1986}, Jackson (1986}, and Hayes-Roth et al.
(1983).

Since the area of manufacturing is knowledge intensive, especially in
the design stage, and strongly dependent on manufacture know-how,
knowledge-based systems are well suited for solving manufacturing
problems. Kempf (1985) discussed the computational complexities of
manufacturing problems, for example part design and process planning. He
pointed out that the application of Al principles and methodologies is
one of the most realistic and practical approaches for dealing with
manufacturing problems. The implications of using artificial
intelligence for computer integrated manufacturing is presented in
Kusiak {1988). Heragu and Kusiak (1987) presented an analysis of
knovledge-based systems in manufacturing design. O'Conner presented
Intelligent Management Assistant for Computer System manufacturing
{IMACS), which 1is a knowledge-based system that assists in the
management of the manufacturing process {Waterman, 1986). IMACS helps
with the management of paper work, inventory, and capacity planning.
Intelligent Scheduling and Information Systems (ISIS) was studied by Fox
and Smith (1984). 1S1S generates factory job shop schedules and can also
assist plant schedulers to maintain schedule consistency and identify

decisions that result in unsatisfied constraints. For more information

- 32 -

related to knowledge-based systems in manufacturing refer to Gains

(1987}, Newman (1987), Faught (1986), and Kumara et al. {1986}.

KNCOWLEDGE
BASE

INFERENCE
ENGINE

Figure 5. A stand-alone knowledge-based system

KNOWLEDGE-BASED
SYSTEM

MODEL
&
ALGORITHM

Figure 6. A tandem knowledge-based system

- 33 -

CHAPTER THREE

A KNOWLEDGE-BASED SYSTEM FOR GROUP TECHNOLOGY (KBGT)

3.1 FORMULATION OF THE GROUPING PROBLEM IN

AUTOMATED MANUFACTURING SYSTEMS

A typical approach to cellular manufacturing is to group machines and
parts based on the binary machine-part incidence matrix, usually without
any constraints. Some authors, for example Stanfel (1982), Kumar et al.
(1986), Kusiak (1985) have restricted the size of machine cells and part

families.

The approach presented in this thesis considers two formulations of

the grouping problem.

The first formulatiorn is a generalization of the grouping problem

presented in the literature. Rather than the binary matrix {a], the
1]
matrix [t], wheret 2 0 is the processing time of part j on
ij ij
machine i 1is considered. This formulation involves also some

constraints, which are typical for an automated manufacturing

environment,

The grouping problem in automated manufacturing systems can be

loosely formulated as follows {(Kusiak, 1987):

Determine machine cells; for each machine cell, select a part family
consisting of parts with the minimum sum of subcontracting costs and
select a suitable material Thandling carrier with the minimum

corresponding cost subject to the following constraints:

- 34 -

Constraint C1 : processing time available at each machine is not

exceeded

Constraint C2 : upper limit on the frequency of trips of material
handling carriers for each machine cell is not

exceeded

Constraint C3 : number of machines in each machine cell does not
exceed its wupper 1limit or alternatively the
dimension (for example the length) of each

machine cell is not exceeded.

The above formulation of the GT problem is not only computationally
complex, but also involves constraints which are difficult to handle by
any algorithm alone. Therefore, to solve the the above problem, a

knowledge-based system has been developed (Kusiak and Ibrahim, 1988).

The second formulation considered is a special case of the
generalized formulation of the group technology problem. It involves a
0-1 machine-part incidence matrix (see Example 1 in Chapter 1) and

constraint C3 presented above.

- 35 -

3.2 STRUCTURE OF THE KNOWLEDGE-BASED SYSTEM (KBGT)

A typical knowledge-based system is developed based on the knowledge
elicited from experts. The elicited knowledge is'represented using a
suitable knowledge representation scheme in a knowledge base. A control
strategy, implemented in a form of an inference engine, is employed to
search the knowledge base in order to solve a problem. A knowledge-based
system of this structure is suitable rather for qualitative problems,

but is inefficient for solving problems of quantitative nature.

In this thesis, a tandem knowledge-based system is considered, where
a knowledge-based subsystem and an algorithm closely interact (Kusiak,
1988a). The algorithm deals with the gquantitative aspects of the
problem while the knowledge-based subsystem deals with the qualitative

aspects of the problem to be solved.

The knowledge-based system (KBGT) considered has the structure shown

in Figure 7:

- 36 ~

DATA BASE

KNOWLEDGE — BASED SYSTEM

RULES

PREPROCESSING

REQUEST

PROCESSOR

The KBGT consists of five components :

(1)
(2)
(3)
(4)
(5)

Figure 7. Structure of the knowledge-based system (KBGT)

data base
knowledge base
inference engine
request processor

clustering algorithm,

- 37 -

One of the most tangible advantages of the tandem architecture is a
relatively small knowledge base. This is because the computational
effort is divided between the inference engine and the algorithm. For
the same reason the tandem knowledge-based system is typically faster

than the stand-alone system.

The KBGT has been implemented in Common LISP on a SPERRY MICRO IT.
LISP, as a programming language for KBGT, has been selected for three

reasons;

(1) it facilitates implementation of the declarative knowledge

(2) it facilitates implementation of the procedural knowledge
(the clustering algorithm)

{3) it provides flexibility to define and implement the
interaction between the algorithm and the knowledge-based

subsystem,

3.2.1 Input data

The input data required by KBGT fall into two categories :
(i} machine data

(ii} part data

In addition to the above, depending on the characteristics of the
manufacturing system, the following optional data can be provided :
(1i1) maximum number of machines in a machine cell
(iv) maximum frequency of trips which can be handled by a material
handling carrier (for example, robot or automated guided
vehicle, AGV).

- 38 -

3.2.2 Grouping Process

Prior to the begining of the grouping process, KBGT constructs a
machine-part incidence matrix based on the input data provided by the
user. Next, the KBS initializes in the data base objects representing
facts known about the manufacturing system. Ther the system forms
machine cells and the corresponding part families. Each machine cell is
formed by including one machine at a time. A machine is first analyzed
by the KBS for the possibility of 1inclusion in the machine cell. For
example, a bottleneck machine (i.e. machine that process parts visiting

more than one machine cell) is not included.

Each time a machine cell has been formed the KBS checks whether any
of the constraints C1-C3 has been violated and removes all parts

violating the constraints.

For a machine cell which has been formed and analyzed by the KBS,
the corresponding machines and parts forming a part family are removed
from the machine-part incidence matrix. The system does not backtrack in
the grouping process, i.e. once a machine cell is formed, the machines
included in the cell are not considered for future machine cells. This
irrevocable control strategy, as illustrated in Figure 8, 1is possible
due to the nature of the algorithm and the knowledge-based analysis

performed by the KBS,

- 39 -

Machine Hachine Machipe

Cell 1 Cell 2 Cell n
INITIAL GOAL
Y of N |)
STATE ves
Iterstion 1 N Iterationvgvx‘J} Iteration n STATE

Figure 8. Illustration of the irrevocable control strategy of KBGT

3.2,3 Output Data

At the end of the grouping process, KBGT prints the following data:

(1) machine cells formed
The machine cells formed are listed in the order they have
been generated. For each machine cell the following
information is provided :
e machine cell number
e list of machine numbers in a machine cell

e part family number

L]

list of part numbers in a part family

material handling carrier alternatives, if any.

{2} part waiting list
This list includes parts that were placed on the waiting
list due to either :
e overlapping of parts in such a way that prevents

grouping, or

- 40 -

¢ including them in a machine cell would violate one

or more constraints.

{3) list of machines not used

The list of machines with all parts removed during the

grouping process

(4) list of bottleneck machines

The 1list of machines that process a relatively large
number of parts, which need to be processed on machines
belonging to more than one machine cell. These machines
should be given special consideration while determining
the layout. Each of these machines should be preferably
located adjacent to the machine cell that processes the

same parts.

{5) maximum number of machines in a cell

This number indicates the maximum number of machines in a
machine cell. It has an impact on the machine cells
formed, namely if it was too small, it might result in the
removal of too many parts. If this number is not supplied
by the user then the system groups the machines based on

their similarities only.

- 41 -

For any two 0-1 vectors

1]
n
s = L (a ,a)
ij k=1 ik jk
where:
i if element a = a
(a ,a)= ik jk
ik jk 0 otherwise
n number of parts

In particular, vector m may represent parts in machine cell MC-k, and
i

vector m may represent parts corresponding to the machine tc¢ be
J

selected (see Step 2 in the grouping algorithm in section 6). In this

case the distance s is regarded as a distance between machine
13 '

cell MC-k and machine m .
j

- 42 -

3.3 DATA BASE

The global data base contains information about the current problem
in a form of objects and frames. It is a non-monotonic data base, since
objects are modified by the clustering algorithm and the

knowledge-based subsystem (KBS}.

The contents of the data base are either provided by the user as
input data, or generated by the system. A list of objects and frames in

the data base is as follows:

(1) machine frame
Machine frame contains information regarding one machine
and is 1identified by the machine number. It has the
following format:
(m#i ((parts ({(p#1 p-time)...(p#j p-time)...)}
(max-process-time x)
(multiple y)))
vhere:
p-time: the time required to process part number p#j on
machine mfi {(p-time is equal to 0, if processing time

is not available)

max-process-time (optional): maximum processing time available

on machine m#i, i.e. the capacity of machine m#i
multiple {optional): number of the identical machines

available,

(2) part frame
- 43 -

Part frame contains information regarding each part and

is identified by the part number. It has the following

format :

(part#j ((primary-pp (m#1 ... mfi...))
fr y)
(fa z)))

where:
primary-pp: primary process plan for part#j
fr : frequency of trips required by a robot to handle part#j

fa : frequency of trips required by an AGV to handle part#)

(3} matrix-t (machine-part incidence matrix)
The machine-part incidence matrix 1is constructed by the

system based on the input data provided in the following

format :

((m#1 ({p#1 p-time) (p#2 p-time)...))

+*

(mbi ...)

.)
In case when processing times are not available, then by
default the matrix is a 0-1 incidence matrix, i.e. p-time

is 0.

(4) current machine

A machine that the system has selected for possible

inclusion in the machine cell being formed.

- 44 -

(5) list of candidate machines

A list of candidate machines to be included in the machine

cell being formed.

(6) list of temporary candidate machines
A list of all machines such that the parts that are
processed on the current machine are also processed or one
or more of these machines. Moreover, these machines are

not on the list of candidate machines.

{7) part waiting list
A list of parts that have been removed from the

machine-part incidence matrix.

(8) list of bottleneck machines

A list of all bottleneck machines.

{9) list of temporary bottleneck machines
A list of machines that are considered to be temporary
bottleneck machines. These machines may become
non-bottleneck machines after some parts have been removed

from the machine-part incidence matrix.

(10} list of machines not used

Same as discussed earlier in the subsection on the output

of KBGT.

- 45 -

(11) MC-k {machine cell k)

A list of machine numbers in the current machine cell.

(12) PF-k (part family k)

A list of part numbers in the current part family.

3.4 THE KNOWLEDGE-BASED SUBSYSTEM (KBS)

As illustrated in Figure 7, the knowledge-based subsystem (KBS)
consists of three components:
{1) knowledge base
{2) inference engine

(3) request processor.
3.4.1 Knowledge base

The knowledge base in KBGT contains production rules, which have been
acquired from three experts in group technology and the literature. In
the current implementation of KBGT, the knowledge base consists of three
classes of production rules :

{a) preprocessing rules
(b) current machine rules

(c) machine cell rules.

The preprocessing rules deal with the initialization of objects in
the data Base that are not provided by the user. The current machine

rules check the appropriateness of a current machine to the machine cell

- 46 -

being formed, for example whether the current machine 1is a bottleneck
machine. The machine cell rules deal with each machine cell which has
been formed. Machine c2ll rules check for violation of constraints and
remove parts violating them. The structuring of rules into separate
classes has two advantages. First, the search for applicable rules is
more efficient since the inference engine attempts to fire only rules
that are relevant to the current context. Second, the modularity of the

rule base makes it more understandable, and easy for modification.

Each rule has the following format:

(rule-number (IF conditions

THEN actions })

The rule number 1is used for identification by the inference engine.
The most significant digit represents a class, and the other two digits
represent a rule number in a cléss. The actions of the rule are carried
out, only if the conditions in the IF part are true. Each condition in a
rule can have one of the following three forms :

(i) a straightforward checking of values in the data base,
(ii) procedure calls to calculate the values required , Or

°

(ifi) a combination of (i) and (ii).

An example of (i) 1is comparing the size of the current MC-k with the
maximum number of machines allowed per machine cell. An example of (ii)
is a call of the procedure calculating the number of parts that a

machine shares within the current MC-k. The action part consists of

- 47 -

procedure calls and/or modifications of values of some objects in the

data base.

Combining a rule-based representation paradigm with procedural
representation paradigm improves the efficiency of the KBS. Values that
can not be obtained directly from the data base are calculated only when

necessary.

Sample production rules that have been implemented in KBGT are listed

below:

Rule-102 (preprocessing rule}
IF the intercellular movement (icm) level is not specified
AND the total number of machines is greater than 50
THEN set icm to 3
Note that the intercellular movement level is defined as icm= —?i 100%,
where: ny 1is the number of overlapping parts "
n 1s the total number of parts considered.

Alternatively the value of icm can be set by a group technology analyst.

Rule-103 (preprocessing rule)
IF the maximum number of machines in a machine cell
is specified
THEN remove from the machine-part incidence matrix all parts that
require more machines than the maximum number of
machines in a machine cell

AND place them on the part waiting list.

- 48 -

Rule-201

IF

AND

THEN

AND

Rule-202

IF

AND

AND

THEN
AND

{current machine rule)
no machine has been included in MC-k
the number of temporary candidate machines
plus the current machine is greater than
the maximum number of machines in a machine cell
add the current machine number to the list of
temporary bottleneck machines

go to Step 1 of the algorithm,

(current machine rule)
the maximum number of machines in a machine cell is not
specified
the similarity between the current machine and MC-k is less
than the similarity of the next machine to be selected as
the current machine
the number of parts that are processed by the current
machine and machines in MC-k is less than or egual to
the intercellular movement (icm) level
place the parts mentioned above in the part waiting list
set the list of temporary candidate machines to empty
set the list of candidate machines to empty
set the current machine to null

go to Step 6 of the algorithm.

- 49 -

Rule-203

IF

THEN
AND
AND

and

Rule-301
IF

THEN

Rule-302
IF

THEN

(current machine rule)
the total of the number of machines in MC-k and machines in
the list of temporary candidate machines and machines in the
list of candidate machines and the current machine is
greater than the maximum number of machines in a machine cell
the number of parts, which are processed by the current
machine and machines in MC-k, is less than or equal to
the intercellular movement (icm) level
place the parts mentioned above in the part waiting list
set the list of temporary candidate machines to empty
set the current machine to null

go to Step 5 of the algorithm.

{machine cell rule)
there are machines where constraint C1 is violated
remove parts from the machines violating constraint Cf

place the removed parts on the part waiting list.
{machine cell rule)

constraint C2 is violated for a robot or AGV

select a robot or AGV such that C2 is not violated.

- 50 -

3.4.2 Inference engine

One of the greatest advantages of the tandem system architecture is
the simplicity of the inference engine. The inference engine in KBS
employs a forward-chaining control strategy. In a given class of rules
it attempts to fire all the rules which are related to the context
considered. If a rule is triggered, i.e. the conditions are true, then
the actions of the triggered rule are carried out. However, some rules,
for example Rule-201, Rule-202 and Rule-203, stop the search of the

knowledge base and send a message to the algorithm.

The inference engine maintains a list of the rules which have been
fired. This list is called "explain". The rules in "explain" are placed
in the order that they were fired. The list forms a basis for building

an explanation facility,

3.4.3 Reguest processor

The request processor facilitates the interaction between the
algorithm and KBS. Based on each request of the algorithm, the request
processor calls the inference engine and selects a suitable class of

rules to be searched by the inference engine.

- 51 -

3.5 CLUSTERING ALGORITHM

The clustering algorithm presented is an extension of the algorithm
presented in Kusiak and Chow (1987a). It takes advantage of two simple

observations:

Observation 1

A horizontal line h drawn through any row i (machine number i} of
1

matrix [t] indicates parts to be manufactured on machine i. This
i)

observation is illustrated in matrix {(4)

PART NUMBER

1 2 3 4 5

1 [0.5 3.1 2.8
MACHINE
[t 1= 2|----- 7.4- - - -1,6{-h NUMBER (4)
1] 2
3 (3.9 4,2 4,3

The horizontal line h, crosses elements (2,3) and (2,5) in matrix(4).

Parts 3 and 5 are to be manufactured on machine 2.

Observation 2

A vertical line v drawn through any column of matrix [t] indicates
] 1]
machines to be used for manufacturing of the corresponding parts.

Based on the two observations the clustering algorithm is developed.

- 52 -

3.5.1 The Algorithm

Step 0 :

Step 1

Step 2

Step 3

Set iteration number k=1
Construct machine-part incidence matrix.

Send a request to KBS for preprocessing.

: Select a machine (row of machine-part incidence matrix) such

that it processes the maximum number of parts and is not in the
list of temporary bottleneck machines.

Place the selected machine in the list of candidate machines.

: From the list of candidate machines, select a machine, which

is the most similar to machine cell MC-k. If machine cell
MC-k is empty, then choose the machine selected in Step 1.

Draw a horizontal line h , where i is the selected machine
1

number.

: For each entry crossed once by the horizontal line h draw a

1

vertical line v . Parts indicated by the vertical 1lines are
i

potential candidates for part family PF-k.

For each entry t > 0 crossed by a vertical line v , add the
by]

corresponding machines, which are not in the list of candidate
machines to the list of temporary candidate machines.
Remove the current machines from the 1list of candidate

machines.

- 53 -

Step 4 .

Step 5 :

Step 6 :

Step 7 :

KBS analyzes the current machine selected, and takes one of

following two actions :
& go to Step 5 (include the current machine in MC-k)
e go to Step 1 (do not include it).

Add the machine considered to machine cell MC-k.
Add the corresponding part numbers to part family PF-k.
If the list of candidate machines is empty, then go to

Step 6, otherwise, go to Step 2 .

KBS analyzes machine cell MC-k for violations of constraints
C1-C3 and attempts to satisfy the constraints.
Remove machine cell MC-k and part family PF-k from the

machine-part incidence matrix.

If the machine-part incidence matrix is not empty, then
increment k by 1 and go to Step 1 ; otherwise,

STOP.

- 54 -

CHAPTER FOUR

PERFORMANCE OF KBGT

4.1 ILLUSTRATIVE EXAMPLE

Given the machine-part incidence matrix (5), vector fa (frequency of
AGV trips required for handling each part), vector fr (freguency of
robot trips required to handle each part), max-fa=40 (maximum frequency
of trips that can be handled by an AGV), max-fr=100 {(maximum frequency
of trips that can be handled by a robot), and vector T (the column
outside of matrix (5)) represents the maximum processing time available
on each machine, solve the group technology problem. The maximum number

of machines in a machine cell to be used is 3.

fa 11 30 2.5 - 6 10 - 6 7 15 18 14] max-fa (40)
fr {11305 3 6 1510 12 7 - 36 28] max-fr (100}

PART 060 0 0 ©0 O 0 O O 0 1 t 1

NUMBER 1 2 3 4 5 6 7 8 9 0 t 2
1 4 21 8 TFao0
2{26 5 10 40
3 20 10 22 8 |ao
MACHINE 4 35 2 6 50 (5)
NUMBER 55 6 25 50
6 16 10 3 1 60
7L 1 7 7 20

- B -

Iteration 1

Step 0 Iteration number is set to k=1,
The machine-part incidence matrix is constructed from the input
data presented in matrix (5).
A request is sent to KBS for preprocessing. KBS initializes
the following lists to empty : MC-k, PF-k, candidate machines,
temporary éandidate machines, bottleneck machines, temporary
bottleneck machines, current machine, waiting parts and

machines not used list.

Step 1 Machine 3 is selected since it processes the maximum number of
parts and it is not in the list of temporary bottleneck

machines. It is placed in the list of candidate machines.

Step 2 Machine 3 is selected from the list of candidate machines.

A horizontal line h; is drawn as shown in matrix (6) .

fa [11 30 2.5 - 6 10 - 6 7 15 18 14] max-fa (40)

fr 11 305 3 6 1510 12 7 ~ 36 28] max—-fr (100)
v v v v
? 5 }e 12
: !
PART 0 06 0 ©0 0O 6 0 0 O 1 1 1
NUMBER 1 2 ? 4 ? 6 7 B 9 q 1 %
L I S R B 8 | | Ja0
l !
2126 ? | 10 | [Y
i | i
3—-—»«7&— —_ 10— — — —~ 22— —?»40—-h
| 3
MACHINE 4 35 | 2 6 I | 50 (6)
NUMBER 515 I | 6 25 | ' 50
I I
6 16 | 10 | 3 : 1] |60
|
7 X 1 7 20
L. ' i i ? -

- 56 -

Step 3 Vertical lines v, vs, vyp, and vy; are drawn
{see matrix (6)).
Machine 2 and 7 are added to the list of temporary candidate
machines.

Machine 3 is removed from the list of candidate machines.

Step 4 Since the total of the number of machines in MC-k, machines
in the list of candidate machines, machines in the list of
temporary candidate machines, and the current machine equals 3,
constraint C3 is not violated. No current machine rule is fired.

Go to Step 5.

Step 5 Machine 3 is added to MC-k and parts 3, 5, 10, and 12 are
included in PF-k.
Since the list of candidate machines is not empty, then go

to Step 2.

Step 2 Machine 7 is selected since it is the most similar machine to
MC-k.

A horizontal line hy is drawn.

Step 3 Vertical lines vs, vyo and vy, have already been
drawn.

Machine 7 is removed from the list of candidate machines.

Step 4 Since the total of the number of machines in MC-k, machines in
the list of candidate machines, machines in the 1list of
temporary candidate machines, and the current machine eguals 3,
constraint C3 is not violated.

Go to Step 5.

- §7 -

Step 5

Step 2

Step 3

Step 4

Machine 7 is added to MC-k.
Since the list of candidate machines is not empty, then

go to Step 2.

Machine 2 is selected from the list of candidate machines.

A horizontal line h, is drawn {(see matrix {(7)).

fa [11 30 2.5 - & 10 - 6 7 15 18 14] max~-fa (40)

fr (11305 3 6 15 10 12 7 - 36 28] max-fr {100)
A v v v v AY
1 3 5 6 10 12
; | I J t
PART 0 0 0 0 0 0 0 0 0O 1 1 1
NUMBER 1 2 3 4 5 6 7 8 9 0 1 2
1 ! . ' -
1 4 21 | 8 [' Ja0
| I | ! I
2|26~ =5~ ~— L 10— — — — — — L |40~ —h
i | I | I 2
3= =20~ = ~104 — — — — 22— —8-40~ -h
MACHINE 4|} 35 L2 I I |50 (7)
NUMBER I [yo! | i
515 | | 6 25 | | {50
i !
6); 161 101 | 3 b1 1|60
| i i i i
T — — — — =1 — — — — . 7— — 7§20~ —h
i I | f 1 [

Vertical lines v; and vg are drawn (see matrix (7)).
Machine 5 is added to the list of temporary candidate machines,

Machine 2 is removed from the list of candidate machines.

Since the total of the number of machines in MC-k and machines
in the list of candidate machines and machines in the list of
temporary candidate machines and the current machine equals 4,
constraint C3 is violated.
Rule-203 is fired :

- part 3 is placed in the part waiting list

- the list of temporary candidate machines is set to empty

~ B8 -

- the current machine is set to empty.

Now constraint €3 is no longer violated. Go to Step 5.

Step 5 Since the current machine is empty then no element is added to

MC-% and PF-k.

Since the list of candidate machines is empty, then go to

Step 6.

Step 6 Constraint C2 is violated, because of part 10 which can not be

handled by an

AGV.

Therefore, rule-303 is fired and a robot is

selected as the material handling alternative.

Machine 3 and 7 and part 5, 10 and 12 are removed from the

machine-part incidence matrix {see matrix (8)).

Iteration number k is incremented by 1.

Step 7 Since machine-part incidence matrix is not empty, then go to

Step 1.

Two more iterations of the

Figure 10,

fa
fr
PART
NUMBER
1
2
MACHINE 4
NUMBER
5

6

01 30

[11 30

¢ 0
1 2

~ 4
26

35

10

algorithm

10 -~ 6
15 10 12

16

- 59 -

7

7

0
9

25

produces the results

18] max-fa (40)
36] max-fr {100)

1
1

40
40
50
50

60

(8)

shown in

4.2 APPLICATION OF KBGT TO GT PROBLEMS

To illustrate and test performance of the KBGT a number of problems
have been considered. The first is a generalized group technology
problem represented by matrix (5),. The KBGT input represention of

matrix (5) is shown in Figure 9.

- 60 -

(setq machine-db '{ (m1 (
| (m2 (
(m3 {
(mg (
(m§ (
(m6 {
(m7 {

(setq part-db

"({p1
(p2
(p3
(p4
(p5
(p6
(p7
{p8
(p9
(p10
(p11
(pt2

(setq max-mc-k-size
(setq max-fr 100)
(setq max-fa 40)

Figure 9.

(parts ((p2 4)(p4 23)(?8 8}))
(max-process-time 40))

(parts {(p1 26)(p3 5)(p6 10)))
(max-process-time 40)))

(max-process—time 40)})
(parts ((p2 35)(p7 2)(p8 6)))
(max-process-time 50}))
{parts ((p1 5)(p6 6)(p9 25)))
(max-process-time 50)))
(max-process-time 60)})
(parts ((p5 1){p10 7)(p12 7)))
(max-process-time 20)))

))

(m2 m5))
11)))

{m1 m& m6))
30)))

(m2 m3})
2,5)))

{m1 m6)}
0)))

{m3 m7))

{({primary-pp
(fr 11) (fa
((primary-pp
(fr 30} (fa
({primary-pp
(fr 5) (fa
({primary-pp
(fr 3} (fa
((primary-pp
(fr 6) (fa 6)
({(primary-pp (m2 m5))
(fr 15) (£ 10)))
({primary-pp
{fr 10) (fa
({primary-pp
(fr 12) (fa
((primary-pp
(fr 7) (fa
((primary-pp (m3 m7})
(fr 0) (fa 15)))
{{primary-pp (m6))
(fr 36) (£ 18)))
((primary-pp (m3 m7))
(£r 2B) (£ 14)))

0}

Input of matrix {5} in KBGT format

- 61 -

(parts ((p3 20)(p5 10)(§1o 22)(p12 8)))

(parts ((p2 16)(p4 10)(p7 3){p11 18}))

The output from KBGT for matrix (5) is shown in Figure 10.

({MACHINE-CELL 1) M3 M7)
((PART-FAMILY 1) P5 P10 pi2)
(M-H-S-ALTERNATIVE (AGV))

LS T e

{ (MACHINE-CELL 2) M6 M1 M4)

{ (PART-FAMILY 2) p2 P4 pP7 P11 PB)

(M-H-S-ALTERNATIVE (ROBOT))
L aE s et T

((MACHINE-CELL 3) M5 M2)
{(PART-FAMILY 3) P1 P6 P9)
(M-H-S-ALTERNATIVE (ROBOT OR AGV))
: Sa et SRR L LT

e e P O B i i S Tt B e S e S e i e e P B S s A i B i M o B S P v e B8 e

(PART—WAITING—LI SPeszeczs=mz==)> (93))
(MACHINES-NOT-USED=======z====> ()
(BOTTLENECK-MACHINES==========> ())

OO I o G B . B Ml M B Bt e R S . M e B P B B M M S . e e S B i B A D B

(MAXIMUM-MACHINE-CELL-SIZE-USED 3)

Figure 10. KBGT output generated form matrix (5)

As shown 1in Figure 10, three machine cells and part families have
been generated. MC-1 is served by an AGV, MC-2 is served by a robot, and
MC-3 can be served by a robot or an AGV. The overlapping part 3 is
placed on the part waiting list, The computation was performed for the

maximum cell size equal 3.

The second problem is a special case of the generalized GT problem.

It is based on 0-1 machine-part incidence matrix as shown in Figure 11.

- 62 -

-
— o
[=Ra)
oW
oo
[QX+
[=Nte}
O =
«om
o™

o

—— —
- — —
b -
— — -
—
— —
—— - — =
—
—
— —
-
— - —
—
——
- ——

}

NP OO NN

MACHINE
NUMBER

- —

dence matrix (Burbidge 1973)

incl

Machine-part

Figure 11,

- 63 -

For the incidence matrix in Figure 11, the KBGT provides the solution

in Figure 12,

((MACHINE-CELL 1) M5 M4 M15)
((PART-FAMILY 1) P5 P8 P14 P15 P16 P19 P21
P23 P29 P33 P41 P43)
S S S ST EEEE SR

((MACHINE-CELL 2) M9 M2 K16 M1 M14 K3)
((PART-FAMILY 2) P2 P4 p10 P18 P28 P32 P37
P38 P40 P6 P7 P17 P34
p35 P36 pP4a2)
tbd bbb tb bbbt bbb bbbt

{ (MACHINE-CELL 3} M10 M7)
((PART-FAMILY 3) P1 P12 P13 P25 P26 P31 P39)
+++++ bttt bbb bbbt

((MACHINE~CELL 4) M12 Mi1 M13)
((PART-FAMILY 4) P11 P22 P24 P27 P30 P3 P20)

4ttt bbb bt bbbt
(PART-WAITING-LIST==========> (P9))
(MACHINES-NOT-USED===========> (}
(BOTTLENECK-MACHINES=========> M8 M6)

— I D at R e S e s e e e R B o B B e e e S B B Bt M Mk 50 S B e e S e 8 R T P W O Y A .

(MAXIMUM-MACHINE-CELL-SIZE-USED 6)

Figure 12. KBGT output for the machine-part incidence
matrix in Figure 11

To date a large number of clustering algorithms have been developed
mostly for solving the 0-1 group technology problem and only a few of

them have been tested.

- 64 -

Since the generalized formulation of the GT problem is new, we could
not compare performance of the KBGT for this problem. We have identified
four 0-1 problems in the GT literature and soclved them with KBGT. The
solutions obtained are of better guality than ones generated by the four
algorithms considered (see Table 1). The computational time complexity
of the heuristic clustering algorithms available in the literature is
high, for example O(m?n+n2m), where m is the number of rows and n is the
number of columns in a machine-part incidence matrix (see Kusiak 1985).
The algorithm presented in this thesis is an extention of the clustering
identification algorithm (Kusiak and Chow 1987a, and 1987b) and has a
computational time complexity slightly higher than 0(2mn). The CPU time
reported in Table 1 is for a SPERRY MICRO IT (an IBM-PC compatible). In
addition some of the traditional algorithms listed in Table 1 required
human interaction, while KBGT does not. The machine-part incidence
matrices for each of the four problems presented in Table I and the

corresponding KBGT outputs are shown in Appendix I.

- 65 -

juepunpal §z BUTYDIRW SIyew z uotinTos ut g¢ 3aed buirdderasac ay3z Builjoeajuonqns z

wuyiltiobre zood ayj Aq pajeiauab

uUsaq SeY | uoIINTos 1

pat3toeds jou s/u

aTqenttdde jou ejfu

*238 (g 0 ¢ 5 s/u § UOTINTOS o
*085 0% 0 LE L 6 £ UCTINTOS e
T098 g 0 43 9 ot 2 UOTIINTOS e {861)uerTedobeley
"o85 g2 0 £z S L 1l UOTINTOS e pug
LodgH 001 157 ueleyyaseipueyd
0] £E 0l e/u JVIA0Z
*2as ¢ 0 9 £ s/u Z uoIINnIos e
"085 g 0 L £ ¥l | UOIINTOS o
2 LOgY
0 9 £ e/u £ UoI3NTOS o (L861)IT1Tauuep
o S z e/u Z uolIntos e LB 0t pue Iewny
0 ¥ z e/u I UoTINTOs o
wiyjtiobry
ITTauuen
pue Jewny
"2as5 | 1] 4 [+ € JLogd
zi S (9B L) TUTPPOI LSS
0 S < e/u vo1s
"098 § [L v 9 Log¥
z £ ¥ e/u Z Uo13inios e (Z861) teysuioyeN
z - - e/u | UCTINTOS e b 91 pue burty
JWYITIBTY 200y
SWIL Ndd sautyoey 533ed sattTIwey 3jled 3215 TTI2D poy3apn s31ed |saulyoepn aouaaiajay
Loay ¥oauUaT3I308 butddetaaao pue STT8) JUTYDENW auTyoen uo13INTOS jJo Iaqunp watgqoad
Jo Jaqunpn WNWT XeR
uoIINTOS waiqoad
swaiqead LboTouyrsy dnoab inoj 3o suorInies °} Iarqel

- 66 -

4,3 APPLICATION OF KBGT TO TWO INDUSTRIAL CASE STUDIES

The performance of KBGT has been evaluated using industrial data. In
the second case study KBGT has been applied to data obtained from
Standard Aero Ltd. (overhauling aeroplane engines company in Winnipeg,
Manitoba, Canada) to solve a GT problem involving 28 distinct machines
and 51 parts. For some machines multiple copies were available. The

parts selected represented all process plans in the company.

In the second case study KBGT has been applied on data obtained from
Fraunhofer Institut of Industrial Engineering (F. R. of Germany) to
solve an industrial GT problem involving 128 machines and 187 parts.
The solution results obtained for both case studies are presented in

Table 2.

The input and output machine-part incidence matrices for the two case

studies are shown in Appendix II.

- 67 -

T8A3T JUSWIAOW JEINTTa) 133Ul

Tutw ggiy £ 9 9 € £y £
*uTW QGig 0 gt b £ 06 2 L8l gzt ¢z Apn3g ase)
Tutw gyig 0 0 € £ 8c1 |
*o8s8 Zg a 14] £ 9 S
To9% (g Z 62 S € 8 4
"2’5 (f ! 114 S £ 6 £
“298 0z 4 Z [4 £ 61 Z 1S 82z 1 &pnis asep
Rt 174 S 0 Z b 61 1
SWIL Nd4D SaUTYDEN s3aieg satrtwed 3aed 9Z1S Iaquan s3l1ed |sautyoep aaquny
Loy yoaULTI30H butddetaano pue STTa) auiyodep VDT TT9D uoIINTOS Apni3s asen
sutyoey JO raquny
wnwt X e
3Jo aaquny

uorINTOS

&pnig sse) 19

S2TPN3Ss 2S5eD JerI3sSnpul os)

JO SUOTINTOS

"¢ |TqEL

- 68 -

4.4 QUALITY OF SOLUTIONS

In order to present the guality of the solutions provided by KBGT the
measure of effectiveness (ME) defined in McCormick et al. (1972) is
used:

ME = 1/2 L Za Jla +a +a +3]
13 i i,j+% i,3-1 i+1,i i-1,j

where a is an element of the 0-1 machine-part incidence matrix.
1]

The measure of effectiveness computed for the solutions provided by
KBGT and the solutions existing in the literature is presented in Table
3. The measure of effectiveness for the two industrial case studies is
also shown in Table 3. As we can see in Table 3 the quality of solutions
provided by KBGT is better than the existing solutions. It can be
further improved by changing parameters of the knowledge-based
subsystem. In the calculation of ME the overlapping parts as well as

parts to be processed on bottleneck machines were excluded.

- 69 -

|=w3T 10] paulezqo UQIINTOS ayjy ¢
SSJUBAT309332 JO 2INSROW 3Y3 InTea ayy saseaadul ATtwey 3aed e ur szied ayy jo sosuanbas ayjy butbueyo ¢
ATuo Logy &q pasn ;

patjtoads jou s/u

£F 166 £ UOT3iNTOSe
06 ZlL Z uolinlose - vLE L8} BZ1 z &pn3ys ase)
8Z1 088 | uclinicse
9 8L [COmuDHOmn
8 St § UOT3INIOSe
6 10l € uor3niose
61 98] Z UuQTINTOSe - 6E1 X 8¢ I dpnig ased
6! e661 | uoTin(oss
(L8661)ueredobelen
s/u 98t I 8¢ £E1 601 0w pue
thmcv_meHﬁcmLU
vl £ UOTI3INTOSe
s/u 80l Z uOTINTOSa 0Ll Z uoI3nfose 05 57 0¢ (L8611) TTITauuey
¥l Tt } UCIJ3NICSe €21 | U0I3NJTOSe PUB Jeuwiny
£ (£2 124 £2 Al q (9861)tuIppejTasg
(Z861) 1eyouroyen
9 88 55 2 £t 91 pue bBurty
221§ 112D L1oa) wy3ztaobty xi1jen 3nduil sjied SauTyIen BLU8Ia]Y
auTyoen asualalay 3O asquny
JWnWTXeR &g pajerousn xtazen 3nding
uoTinyos Jo SS3ULATIDa]JF JOo 3Inseay warqoid Aborouynal, dnoan

swatqoid Aborouydal dnoib XIS JO SS3UIATIDSIIS 3O 2INSRIW £ 27qeL

- 70 -

CHAPTER FIVE

CONCLUSION

In this thesis a generalized formulation of the problem of grouping
machines and parts in an automated manufacturing system was presented.
The formulation involves a matrix of processing times and three
constraints related to the availability of processing time at each
machine, the requirement for material handling carriers, and the maximum
number of machines allowed per machine cell. A special case of the
grouping problem invelving 0-1 machine-part incidence matrix was also
considered. To sclve the grouping problem a knowledge-based system
(KBGT) was developed. The KBGT involves a heuristic algorithm and a
knowledge-based subsystem. To demonstrate performance of the
knowledge-based system four problems available 1in the literature have
been solved. The solutions obtained are superior to ones presented in
the literature. This 1is due to the clustering algorithm presented and
the group technology knowledge included in the knowledge base.
Application of KBGT to two industrial case studies was also presented.
The approach presented involving an optimization algorithm and a

knowledge-based system can be applied to solving other problems as well.

- 71 -

REFERENCES

ANDENBERG, M.R. 1973, Cluster Analysis for Applications (New York:
Academic Press}).

ASKIN, R. and SUBRAMANIAN, S., 1987, A cost-based heuristic for group
technology configuration, International Journal of Production Research,
Vol. 25, No. 1, pp. 101-114,

BHAT, M.V. and HAUPT, A., 1976, An efficient clustering algorithm, IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC-6, No. 1, PP.
61-64,

BILLO, R.E., RUCKER, R., and SHUNK, D.L., 1987, Integration of a group
technology classification and coding system with an engineering
database, Journal of Manufacturing Systems, Vol. 6, No. 1, pp. 37-45.

BURBIDGE, J.L., 1971, Production flow analysis, The Production Engineer,
April, pp. 139-152,

BURBIDGE, J.L., 1973, Production Flow Analysis on the computer, The
Institute of Production Engineers, Group Technology Division, Third
Annual Conference.

CHAN, H.M., and MILNER, D.A., 1982, Direct clustering algorithm for
group formation in cellular manufacturing, Journal of Manufacturing
Systems, Vol. 1, No. 1, pp. 65-74,

CHANDRASEKHARAN, M.P. and RAJAGOPALAN, R., 1986, MODROC: an extension of
rank order clustering for group technology, International Journal of
Production Research, Vol. 24, No. 5, pp. 1221-1233,

CHANDRASEKHARAN, M.P. and RAJAGOPALAN, R., 1987, ZODIAC-an algorithm for
concurrent formation of part-families and machine-cells, International
Journal of Production Research, Vol. 25, No.6, pp. 835-850.

CHENG, Y., and FU, K.S., 1985, Conceptual clustering in knowledge
organization, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-7, No. 5, pp. 592-598.

CHERNIAK, E. and McDERMOTT, D., 1985, Introduction to Artificial
Intelligence, (Reading, Mass.: Addison-Wesley).

DE WITTE, J., 1980, The use of similarity coefficients in production
flow analysis, International Journal of Production Research, Vol. 18,
No. 4, pp. 503-514,

DEKLEVA, J, and MENART, D;, 1987, Extentions of Production Flow
Analysis, Journal of Manufacturing Systems, Vol. 6, No. 2, pp. 93-105.

DUNLAP, G.C. and HIRLINGER, C.R, 1983, Well planned coding and
classification system offers company-wide synergistic benefits,
Industrial Engineering, Vol. 15, No. 1, pp. 78-83.

- 72 -

DURIE, F.R.E., 1970, A survey of group technology and its potentail for
user application in the U.K., The Production Engineer, February, pp.
51-61.

ECKERT, R.L., 1975, Codes and classification systems, American
Machinist, December, pp. 88-92.

EDWARDS, G.A.B., 1971, The family grouping philosophy, International
Journal of Production Research, Vol. 9, No. 3, pp. 337-352,

EL-ESSAWY, I.G.K. and TORRANCE, J., 1972, Component flow analysis: an
effective approach to production systems' design, The Production
Engineer, May, pp. 165-176.

EVERITT, B., 1980, Cluster Analysis. (New York, N.Y.: Halsted Press).

FAUGHT, W.S., 1986, Applications of Al in engineering, IEEE Computer,
Vol. 19, No. 7, pp. 17-27.

FAZAKRERLAY, G.M., 1974, Group technology: Social benefits and social
problems, The Production Engineer, October, pp.383-386.

FOX, M.S., and SMITH, S.F., 1984, 1SIS: a knowledge-based system for
factory scheduling, Expert Systems Journal, Vol. 1, No. 1, pp. 25-49,

FU, KX.S., 1980, Recent developments in pattern recognition, IEEE
Transactions on Computers, Vol. C-29, No. 10, pp. 845-854,

GAINS, B.R., 1987, Expert systems in integrated manufacturing:
Structure, development and applications, in KUSIAK, A. (Ed.), Artificial
Intelligence: Computer Integrated Manufacturing, (Kempston, Bedford,
U.K.: IFS Publications) and {New York, N.Y.: Springer-vVerlag).

GALLAGHER, C.C., and KNIGHT, W.A., 1973, Group Technology, (London,
U.K.: Butterworths),

GONGAWARE, T.A. and HAM, 1., 1981, Cluster Analysis Applications for
Group Technology Manufacturing Systems, SME Ninth North American
Metalworking Research Conference. -

HAM, I. HITOMI, K. and YOSHIDA, T. 1985, Group Technology. (Boston, MA:
Kluwer-Nijhoff Publishing).

HAYES-ROTH, F., WATERMAN, D.A., LENAT, D.B., ({Eds.), 1983, Building
Expert Systems, (Reading, Mass.: Addison-Wesley).

HERAGU, S. and KUSIAK, A., 1988, Machine layout problem in flexible
manufacturing systems, Qperations Research, Vol. 36, No. 2,

HERAGU, S. and KUSIAK, A&., 1987, Analysis of expert systems in
manufacturing design, IEEE Transactions on Systems, Man and C bernetics,
Vol. SMC-17, No. 6, pp. 899-912.

- 73 -

HOLTZ, R.D., 1978a, GT and CAPP cut work-in-process time 80%, part 1,
Assembly Engineering, Vol. 21, No. 6, pp. 24-27.

HOLTZ, R.D., 1978b, GT and CAPP cut work-in-process time 80%, part 2,
Assembly Engineering, Vol. 21, No. 7, pp. 16-19,

HWANG, H., BAEK, W., and LEE, M-K., 1988, Clustering algorithms for
order picking in an automated storage and retrieval system,

International Journal of Production Research, Vol. 26, HNo. 2, pp.
189-201,

HYER, N.L. Ed., 1984, Group Technology at Work, (Dearborn, MI: Society
of Manufacturing Engineers).

INGRAM, F.B., 1982, Group Technology, in HYER, N.L. and KING, R.E.,
‘(Eds.), Group Technology at Work, (Michigan: Society of Manufacturing
Engineers).

JACKSON, P., 1986, [Introduction to Expert Systems, {(Reading, Mass.:
Addison-Wesley).

KEMPF, K.G., 1985, Manufacturing and artificial intelligence, Robotics,
vol. 1, No. 1, pp. 13-25,

KING, J.R., 1980, Machine-component group formation in production flow
analysis: An approach wusing a rank order clustering algorithm,
International Journal of Production Research, Vol. 18, No. 2, pp.
213-232,

KING, J.R., and NAKORNCHAI, V., 1982, Machine~component group formation
in group technology: review and extention. International Journal of
Production Research, Vol. 20, pp. 117 133,

KLASTORIN, T.D., 1982, The p-median problem for cluster analysis: A
comparison test using the mixture model approach, Management Science,
Vol. 31, No. 1, pp.1134-1146.

KUMAR, K.R., KUSIAK, A. and VANNELLI, A, 1986, Grouping of parts and
components in flexible manufacturing systems. Buropean Journal of
Operational Research, Vol. 24, pp. 387-397.

KUMAR, K.R., and VANNELLI, A. 1987, Strategic subcontracting for
efficient disaggregated manufacturing, International Journal of
Production Research, Vol. 25, No. 12, pp. 1715-1728.

KUMARA, S.R.T., JOSHI, S., KASHYAP, R.L., MOODIE, C.L. and CHANG, T.C.,
1986, Expert systems in industrial engineering, International Journal of
Production Research, Vol. 24, No. 5, pp. 1107-1125,

KUSIAK, A., 1985, The part families problem in flexible manufacturing
systems. Annals of Operations Research, Vol. 3, pp.279-300.

- 74 -

KUSIAK, A., 1986, Formation of Machine Cells and Part Families in
Flexible Manufacturing Systems, Proceedings of the 2nd International
Conference on Production Systems, INRA, Paris, France, April, Vol. 1,
pp. 15-28.

KUSIAK, A., 1987a, Artificial intelligence and operations research in
flexible manufacturing systems. Information Systems and Operational
Research (INFOR), Vol. 25, No. 1, pp. 2-12.

KUSIAK, A., 1987b, The generalized group technology concept,
International Journal of Production Research, Vol. 25, No. 4,
pPp.561-569.

KUSIAK, A., 1388, Artificial Intelligence: Implications for CIM, (New
York, N.Y.: Springer-Verlag).

KUSIAK, A., 1988a, EXGT-S: A knowledge-based system for group
technology, International Journal of Production Research, Vol. 26, No.
5, pp. 887-904.

KUSIAK, A. and CHOW, W.S., 1987a, An algorithm for cluster
identification, IEEE Transactions on Systems, Man and Cybernetics, Vol.
SMC-17, No. 4, pp. 696-699.

KUSIAK, A. and CHOW, W.S., 1987b, Efficient solving of the group

technology problem, Journal of Manufacturing Systems, Vol. 6, No. 2, pp.
117-124,

KUSIAK, A. and CHOW, W.S., 1988, Decomposition of manufacturing systems,
IEEE Journal of Robotics and Automation, Vol. 4, No. 5 (forthcoming).

KUSIAK, A. and HERAGU, S., 1987, Group Technology, Computers in
Industry, Vol. S, pp. 83-91.

KUSIAK, A. and IBRAHIM, W.M., 1988, KBGT: A Knowledge-Based system for
Group Technology, 1988 International Conference on Computer Integrated
Manufacturing, Troy, New York, May 25-25, pp. 184-193,

KUSIAK, A., VANNELLI, A.,, and KUMAR, K.R., 1986, Cluster analysis:

Models and algorithms, Control and Cybernetics, Vol. 15, No. 2, pp.
139-154.

LAWLER, E.L., LENSTRA, J.K., RINNOOY KAN, A.K.G., and SHOMYS, D.B. Eds.,
1985, The Travelling Salesman Problem: A Guided Tour of Combinatorial
Optimization, (New York, N.Y.: Wiley)

LEE, J.L., VOGT, W.G. and MICKLE, M.H., 1982, Calculation of shortest
paths by optimal decomposition, IEEE Transactions on Systems, Man and
Cybernetics, Vol. SMC-12, pp. 410-423,

McAULEY, J., 1972, Machine grouping for efficient production, The
Production Engineer, February, pp. 53-57.

McCORMICK, W.T., SCHWEITZER, P.J. and WHITE, T.W., 1972, Problem
decomposition and data reorganization by clustering technique,
Operations Research, Vol. 20, pp. 992-1009.

MILLER, A., 1386, Expert Systems, IEEE Potentials, October, pp. 12-15.

MULVEY, J.M. and Crowder, H.P., 1979, Clustering analysis: An
application of Lagrangian relaxation, Management Science, Vol. 25, ¥o.
4, pp. 329-340.

NAGAI, Y., TENDA, S. and SHINGU, T., 1980, Determination of similar task
types by the wuse of the multidimensional classification methods:
Towards improving quality of work 1life and job satisfaction,
Interpational Journal of Production Research, Vol. 18, No. 3, pp.
307-332.

NEWMAN, P.A., (1987), Scheduling in CIM, in KUSIAK, A., (Ed.),

Artificial Intelligence: Computer Integrated Manufacturing, (Kempston,
Bedford, U.K.: IFS Publications) and (New York, N.Y.: Springer-Verlag).

NILSSON, N., 1980, Principles of Artificial Intelligence, (Los Altos,
CA: Morgan Kaufmann Publishers),

OBA, F., KATO, K., VYASUDA, K. and TSUMURA, T., 1987, Review and
extension of cell formation problems in flexible manufacturing systems,
Computer Applications in Production and Engineering, in BO, K.,
ESTENSEN, L., FALSTER, P. and WARMAN, E.A. (Eds.), (North-Holland:
Elsevier Science Publishers).

OPTIZ, H. and WIENDAHL, H.P., 1971, Group technology and manufacturing
systems for small and medium quantity production, International Journal
of Production Research, Vol. 9, No. 1, pp 181-203.

RAJAGOPALAN, R. and BATRA, J.L., 1975, Design of cellular production
systems: A graph theoretic approach, International Journal of Production
Research, Vel. 13, No. 6, pp. 567-579.

RICH, E., 1983, Artificial Intelligence, (New York, N.Y.: McGraw-Hill).

ROBINSON, D. and DUCKSTEIN, L., 1986, Polyhedral dynamics as a tool for
machine-part group formation, International Journal of Production
Research, Vol. 24, No. 5, pp. 1255-1266

SCHAFFER, H., 1981, Implementing CIM, American Machinist, August, pp.
151-174,

SEIFODDINI, H. 1986, Improper Machine Assignment in Machine~Component
Grouping in Group Technology, Proceedings of the Fall Industrial
Engineering Conference, Boston, MA, December 7-10, pp. 406-409.

SEIFODDINI, H. and WOLFE, P.M., 1986, Application of the similarity

coefficient method in group technology, LIE Transactions, Vol. 18, No.3,
pp.271-277.

- 76 -

SEIFODDINI, H. and WOLFE, P.M., 1987, Selection of a Threshold Value
Based on Material Handling Cost in Machine-Component Grouping, I1IE
Transactions, Vol. 19, No. 3, pp. 266-270.

SLAGLE, J.L., CHANG, C.I, and HELLER, S.R., 1975, & clustering and data
reorganization algorithm, IEEE Transactions on Systems, Man and
Cyberneties, Vol., SMC-5, pp.125-128.

STANFEL, L.E., 1982, An algorithm using Lagrangean relaxation and column
generation for one-dimensional clustering problems, in S.H. Zanakis and
J.S. Rustagi (Eds.), Optimization in Statistics, (Amsterdam: North
Holland), pp. 165-185.

TOU, J.T. and GONZALEZ, R.C., 1974, Pattern Recognition Principles,
(Reading, Mass.: Addison-Wesley).

VANNELLI, A. and KUMAR, K.R., 1986, A method for finding minimal
bottleneck <cells for grouping part-machine families, International
Journal of Production Research, Vol. 24, No. 2, pp. 387-400,.

WAGHODEKAR, P.H., and SAHU, S., 1983, Group technology: A research
bibliography. OPSEARCH, Vol. 29, pp. 225-248,

WATERMAN, D.A., 1986, A Guide to Expert Systems, (Reading, Mass.:
Addison-Wesley).

WINSTON, P.H., 1984, Artificial Intelligence, {Reading, Mass.:
Addison-Wesley).

- 77 -

APPENDIX I

- 78 -

Input and output matrix from KBGT for the group technology problem

presented in King (1982)

0000000001111111111222222222233333333334444
12345676890123456789012345678901234567890123

1 1 1
2 1 1 11 o1
3 1 1 111
4 11 1 111 1
5 111 111 1 11 11 R
6 11 t11 111 1.1 1 111111 11
. 7 1 1 1
Input Matrix B 111 1111 1 #1111 11 1 111
9 11 1 1 1 111 1
10 1 11 11 1 :
11 1 1 1 1 1 1
12 1 11 1 1
131 1
14 1 1 i 1
15 1 1 1 11
16 1 11 1 1 it
0011112223440011233344001333011223312223020
5845691393132408827802767546123561912470309
5 111111111111 1
411 1111 1
i5 11 1 11
, 9 1111111111
Qutput Matrix 2 11 181111
16 111 111 11
1 11
14 1 111
3 1 1111
10 1111111
7 111
12 11111
11 111111
13 11
8 1 1 111 111 1 11 1111 11 111
& 11 111 11 11 11111 1 111 1

Machine Cells : MC-1 = {5,4,15}, MC-2 = {9,2,16,1,14,3}, MC-3 = {10,7}

MCc-4 = {12,11,13}

Part Families : PF-1 = {5,8,14,15,16,19,21,23,29,33,41,43}

PF-2 = {2,4,10,18,28,32,37,38,40,42,7,6,17,35,34,36}
PF-3 = {1,12,13,25,26,31,39}
PF-4 = {11,22,24,27,30,3,20}

Overlapping parts : {9}

Bottleneck Machines : {8,9}

- 79 -

Input and output matrix form KBGT for the group technology problem
presented in Seifoddini (1986)

000000000111

123456789012
1111 1
. 211 111 111
Input Matrix 311 111 1
4 1111
5 1111 111 1
000001101000
136780122459
3 1111141
2 1111911 1
Output Matrix 5 1111 111
1 1 114
4 111

Machine Cells : MC-1

{3,2,5}, Mc-2 = {1}

Part Families : PF-1 = {1,3,6,7,8,10,11}, PF-2 = {2}

Overlapping Parts : {12,4,5,9}

- 80 -

Input and

output matrix

{solution 1) from KBGT for the

technology problem presented in Kumar and Vannelli (1987)

Input Matrix

Output Matrix

Ul L B o DAL OO I TN) B -

— ok b b b b

[JEE Y
DU @-J N

[LCR SN
Ll D

[(SILCI O N)
e Eea A

(SN SRS
QU@

00000000011111811112222222222333333333344
12345678901234567890123456789012345678901

i 111 11
1 1 i1 11
1 1 11 1t
1 1 1t 1 1
1 1 11
1 1
1 1 11
1 11 1 1
1 1 1
1 1 1 1 1
i 1 11
11 11N 11
1 i i
t1 1 1 1
1 1
1 1
1 1 1 1
11 1 1
11 iR 1
11 11
11 111 1
11 1 11 11
i i 1 1 1
1
1
1 1 11
1 1
1 1 i
11 1 1 1 1
11 11
11122340331340001232023101331230201322021
12903902120311393102895557466774668845784
1111111 1
T 11t
o111
11t N
131t 11
1 T 11
i 111t
11 1 1 71t 1
1 111
1 11
111111
1 1
1111
1111
11 11
11 11 1
111
1 1
11 1111
1111
1111
1111
111 1
111 1
1 1
1 111 1
1
1
1 1

- Bf -

group

Machine Cells : Mc-1 = {12,10,23,3,22,21,1,2,11,13}

MC-2

{29,9,13,20,30,8,28,27,4}

MC-3 = {5,7,26,17,18,15,14,25,6,16}

Part Families : PF~1

1

{11,12,19,20,23,39,40,2,31,32,10,33,41)

PF-2

n

{1,3,9,13,21,30,22,8,29,35,15}

PF-3 = {5,17,34,36,16,27,37,4,26,6)
Overlapping parts : {18,38,24,25,7,28,14}

If overlapping part 38 is subcontracted then machine 24 is redundant.

- 82 -

Input and output matrix {solution 2) from KBGT for the group technology
problem presented in Kumar and Vannelli (1987)

00000000011111111112222222222333333333344
12345678901234567890123456789012345678301

Input Matrix

Output Matrix

R et DD O~ OV UT e WY —

bk ok b

14
15
16
17
18
LK
20
21
22
23
24
25
26
27
28
29
30

—

1

111
129
111

1 111 LI
11 11
11 i1

- —
—
—_

— s
—y
—

234033134123123020031000123212030231
490212031858585664577139310267768%44

22
03
11111
11
1
i
i

1
2
1
1
1
t
1
1

i i

bk b -t
—h

- 83 -

Machine Cells ; MC-1

{12,10,23,3,22,21,1,2,11,13,
24,4,16,27,28,6,14,25,15,5)

MC-2 = {29,9,19,20,30,8]

MC-3

n

{7,17,26,18}

Part Families : PF-1 = {11,12,19,20,23,24,39,40,2,31,32,

1,33,41,18,25,38,15,28,35,6,26,4,5,37,17}

PF-2

{1,3,9,13,21,30,22}

PF-3

{16,27}

Overlapping parts : {7,36,8,29,34,14}

- B4 -

Input

and output

matrix

{solution

1)

from KBGT for the group

technology problem presented in Chandrasekharan and Rajagopalan (1987)

Input Matrix

Output Matrix

340 €D~ O it

1
C0000000011114117112222222222333333333344444444445555555555666666666677777277778580808888899599599990
567890123456789012345678901234567890121345678901234567850123456789012234567890

) 1

$23456785012345678901234
§

il 1

in
11
1
11 1
1
i
11
1
1
1
1
11
1
1
11
1
1 11
1
"
1 i1
1 11
1
11
1
13
11
11
b

11 11

111 |

13
01225677808990112334446669716950133447709582259012368900023456680112345077868998673523147457249051516%
6778590628953145908035123583404718727590761224865587645943975613090680012451230349312144 176682823974

11ts11181111

- 85 -

[BR)
1 111
11 m
i 1
11 111
1 11¢
1111
IR RRRER]
11 1
1 % 1
o § H
11 1 1
11 1 11
1 1 t
1 1
H 1 1
P 1 1
1 1 1
i
1A
1
1
[ARRRRA! 1 1
1115113 1 1
[RAREREI 1 T
ARRRARSRAE! H
1111 11518 T3
IRRERAREA] 11
RERERRERA! 1 11
IRARRRRRI
IARRRERR] 1
11t 1811
1 IRARRE 1
11311 1
[ARSRE] t 1
ARRRAR 11
1" o1y 1
11y
11 H

Machine Cells : MC-1
MC-2
MC-3
MC-4

MC-5

Part Families ; PF-1

PF-2

PF-3

PF-4

PF-5

Overlapping Parts :

{22,37,5,39,23,8,18,36}
{26,38,6,40,12,2,10,16,31}
{11,13,14,35,17,24,29,27}
{1,32,7,3}
{4,9,20,30,25,19,28}

{6,17,27,28,55,69,70,76,82,88,89,99,93}

{1,14,15,29,30,38,40,43,45,61,62,63,95,
78,13,64,90,54}

{7,11,18,37,42,47,75,79,80,97,86,21,22
52,94,8,16,25,35,68,87,96}

{4,5,9,24,33,49,57,65,66,81}
{3,10,19,20,36,48,50,100,71,72,84,85,91,92}

{83,60,73,34,59,23,31,32,41,74,44,51,77,26,

46,98,2,58,12,53,39,67,56}

If overlapping parts {23,31,32,41,74,51,56} are subcontracted then

machines 33, 34, and 15 are redundant.

- 86 -

Input Matrix

Output Matrix

AL OO Y AT A L) T e 3 A KD YUYtk R

20

and output matrix

12345678590123456178901234

11

t
012344466901225767888990002)456668501147892011345001235689778899166934659781522358067323347572447321
14900352356778509626893945941975671671829074309680086553876124512344084188B35212226203431214176675902
11

111811131

{(solution from KBGT for

5678901234567B9012345678
1

technology problem presented in Chandrasekharan and Rajagopalan (1987}

000000000311113115122222222223333331333444444444455555555556666666666777777777788B888888859999999590

90123456789012345678%90123456768901234567B8901234567830
1

1
11
11

11
1111t

Machine Cells : MC-1 = {38,26,6,12,40}

MC-2 = {37,5,22,39,23,8,18,36)

L]

Mc-3 = {7,1,32,3,15,13,11,14,35}
MC-4 = {4,9,20}
MC-5 = {24,29,27,28,25,19,30}

MC-6 = {2,10,31,21,16)

Part Families : PF-1 = {1,14,29,30,40,43,45,62,63,95}

PF-2

{6,17,27,28,55,70,69,76,82,88,89,99,93,99}

PF-3 = {4,5,9,24,33,49,57,65,66,67,81,56,7,11,18
42,79,94}

PF-4 = {3,10,19,36,48,50,100}
PF-5 = {8,16,25,35,53,68,87,96,71,72,84,85,91,92}
PF-6 = {13,54,64,90}
Overlapping Parts : {38,44,61,58,98,78,83,15,59,21,22,37,52,86,2
60,73,34,23,31,32,41,74,51,77,26,46,47,75,39
20,12}
1f overlapping parts {21,22,37,52,86,2,23,31,32,41,74,51} are

subcontracted then machines 17, 33, and 34 are redundant.

- 88 -

Input and output matrix ({solution 3} from KBGT for the group

technology problem presented in Chandrasekharan and Rajagopalan (1987}

1
0000G000G1151414111222222222233333333334444444444555555555566666666667777777777888888888899999599590
1234567890123456789012345676501234567890123456789012345678501234567890123456789012345678501234567890

11 1 1 1 1 i1 11 1
i3] 1 11 11 1
1 1 1 1 1 1" 11 1

12 11 k] 1% 1 111 115 1% 1 1

] t
Input Matrix 20 1 1 ! 1 3

26 1 11 11 11 111 111 1
t

1

00234556550601147901134500123689156790125677859920123444669225977889923573854?3524537315344516795250

3 1?7?????519775829730968008655876]4470678590689397149001523512241245123114?06?59896353859214221850632
1%

14181 1111 1

1 3 111t 11

7 oiti1E 11 N 1

Qutput Matrix i

- B9 -

Machine Cells : MC-1 = {3,1,32,7,15,13,11}
MC-2 = {9,4,20}
MC-3 = {24,29,27}
MC-4 = {2,10,31,21,16,36}

MC-5

{39,37,5,8,22,23,18}
MC-6 = {38,26,12,6,40,17,35,14}
MC-7 = {25,30,19,28}
Part Families : PF-1 : {4,5,24,33,49,56,57,65,66,81,9,67,7,11,
18,42,79,97}
PF-2 : {3,10,19,36,48,50,100}
PF-3 : {8,16,25,35,68,87,96}
PF-4 : {13,54,64,77,90}
pr-5 : {6,17,28,55,69,70,76,88,89,93,99,27}
PF-6 : {1,14,29,30,40,43,45,62,63,95,21,22,52,94)
PF-7 : {71,72,84,85,91,92}
Overlapping Parts : {23,31,51,74,37,80,86,47,75,39,58,20,46,53,34,
73,38,15,59,32,41,44,82,12,61,78,98,60,,26,
83,2}
1f overlapping parts {23,31,32,41,74,51} are subcontracted then

machines 33 and 34 are redundant.

- 90 -

Input and output matrix

(solution 4) from KBGT for the group

technology problem presented in Chandrasekharan and Rajagopalan (1987)

Input Matrix

Output Matrix

VW NBE WA

1c

1
ODOUDGODUIEIl1|111122222222223333333333!4!‘44i44€555555555566666666567777777777888888888599999999995
12]4557890123455789012345678901236567890|231567893123!567890123455?590l?]456?890123¢567890§234567890

1 1 1 1

1" 1

11 11 ERRARI 1
1

1
5577899012]4446690]|47900023456687788990|134500|2368922]5925|5698564928873567430538675543]472157
906939]490035235?182574594397561524512]0965003655876!2224]1344059968623345184828767596791l40237

[IRERRERI
1oy
1114
Tt
1 1%
1M1t 11
i1 1" 11
11 o111
11 1 1
11 118
1 o n
IERRRRE]
1 1
1111511 1
111914 1 1
ERRRRER] t 1
1151131 1 19
11 111
11511 1
111141 3 1
111113 1 3
IRERRNE!
1811811 T
LERRARE] 5 3
[RETREE! 1 1 1
[ARRRRE] 1 1 \
1111811 1 11 1
1111 1 11
1M1 1 i1
11 P
[1 i
o 11
11 1 1 "
13 [|
i1 11%
EERE] 13 11
1111 111 i
111 1 1 Tt
1% 1 BRI 11
111 o 11

- 91 -

Machine Cells : MC-1 = {5,37,22,23,39,8}
MC-2 = {26,6,38,12,40}
MC-3 = {11,13}
MCc-4 = {1,32,7,3}
MC-5 = {30,25,19,28}
MC-6 = {20,4,9])
MC-7 = {24,29,27}
MC-8 = {14,35,17,18,34,36,15,33}
MC-9 = {2,10,31,16,21}

Part Families : PF-1 = {6,17,27,28,55,69,70,76,89,93,99}
PF-2 = {1,14,29,30,40,43,45,62,63,95}
PF-3 = {7,11,18,42,79,97}
PF-4 = {4,5,9,24,33,49,57,65,66,81}
PF-5 = {71,72,84,85,91,92}
PF-6 = {3,10,19,36,48,50,100}
PF-7 = {8,16,25,35,68,87,96}
PF-8 = {21,22,32,52,94,23,51}
PF-9 = {13,54,64,90}
Overlapping parts : {88,59,60,46,98,26,82,83,73,34,15,61,78,44,38,

2,58,37,86,67,75,80,56,47,39,31,41,74,20,12,
53,77}

- 92 -

APPERDIX 11

- 93 -~

000000000t 11811111122222222223333333333444444444455
123456789012345678901234567890123456789012345678301

(1) 1 1 1 11 1
2 1 1 1
(1) 3 11 11 1111 11191 11 11 1 i1 11 11111 11t
4 1
(1) 5 1 1 1 1 1
(1) 6 1 11 1 1
7 1 1 1 1 1
(1) 8 111111 1111 11 11t 111 1 11 111 1 11
9 1 1 1 11111 11 11
(1} 10 1 11 1
1 11 1 1 11 111 111 1 1
12 1 1111 11 1 1
13 1 1 1
14 1
15 1
(1) 16 11 11 111 11 1 1
17 1 11
{3) 18 1 1111 1111 1 1111111 1 1 1 1 11
19 1
(1) 20 111111 1 1111 111191111 1 "ot 111 1 111
(1} 21 it 1 1 1 T 11 11111 1%
22 1
23 1 1
24 1 1 11 11 1 1
25 1 111 1 1 11
26 1
27 1
28 1

Input Matrix for Case Study 1

’

Note: (1) indicates a multiple copy of the corresponding machine
{3) indicates 3 multiple copies of the corresponding machine

- g4 -

{1}

Hote:

15
22

9
10

1
13
14

3
20
8
18
16
20
8
18

1

=1 OO O

[N
AL W

001113334444444403323020011223001224230111122334552
891450480134567961645701307597459138822236826392017
21 1111111811911

1
1

h wad
—
kb b ok

i1t 1111

111

11
11
1
11
IRRRERARE
11 11111 11111
T 11 11 1111 1
1t 1111 IRERR R
111
IRRRRRARRER N
111111111111
11111 111
111118 11
111 1t 1
11 i1 1
1 1 11t
L
111
1
1
1
1
1
1
1
1 1
1 1 1
1 1 1 11
i1 11 111 111
11 1 11t
1 11 11 1B

Output Matrix {solution 1} for Case Study |

maximum machine cell size equal 19 and icm=1

(1) indicates the 1-st multiple copy of the corresponding machine

- 95 -

3334444444403323020011223001224231111233455220
0480134567961645701307597459138822368239201762

——— s O
-0
—_.
—_ e
- —

21 11111111111

15

22

9 111 1111 1

10 1 111

1 1 i 1 1

13 1 11

14 1

7 11 1 i1

3111t 1 11111811 111111111 1

20 1t 1111 1111 11 11118 11111 11

8 1 1% 1 1 1 11 11 111t 1 11

18 1 11t 1111 111111 1

16 1 1 111 11

6 1 1 11 1
(1) 20 1111111111
(i) 8 1111111111
{1) 18 11111 111
{1} 3 1 1111 11
(1} 16 11 11

2 A

17 111

5 1 o111
(1) o9 111

4 1

19 1

26 1

27 1

28 1

23 1 1

11 111 1 11 11 1111 it

12 1 1 i 11 1 1 1

24 11 1 11N

25 111 1 1 1 11 1

Output Matrix (solution 2) for Case Study 1

maximum machine cell size equal 19 and icm=3

Note: {1) indicates the 1-st multiple copy of the corresponding machine

- 96 -

550444444133440112322332112432301230100400123312120
015134679448053079713167685838261692347289540520921
17 11 1
5 1 1111
12 1 11 111811
g1 1 1111 1
21 1
3 1
20
8
18
10 H 1 1
23 1 1
24 11
18 11
3 1111
11 1
1
1

k-

8
19
26
27 1

. 28 1

6 111 1 1
14 1
15 !
22 1
13 1 1
25 111 11 141
34 1 1

111 11

— ok -

1
4
7
2
6
1

1
1

18
20 111 11111 1% 111 11 1 1

- T

Output Matrix {solution 3) for Case Study 1

maximum machine cell size equal 9 and icm=3

} indicates the 1-st multiple copy of the corresponding machine

Note: (1
{2) indicates the 2-nd multiple copy of the corresponding machine

- 97 -

6

[N O R
= WO LW D

L]
Vel

(1)

wh NI R et B
B VD

(1)

—_ e A -
L)l O U OO

25

Note: (1) indicates the i-st multiple copy of the corresponding machine

233322010122312134444444401134200112300231200451335
82162713301377944013456795685852613698740204920583 1

11 1 1
11 1 1
11
1 11
11 1111t 1 11
1 11 11111141 1111
LIERRRERE
1 111 1
1T 111111 1
111 11 i
1111311111 1 1 1 1 1t
11 111 1t 11 1"
11111 11111 1 11% 14
11 11 1 T
1
1
1
1 11 1
1111 1 1 11
111 111111 118111 11111
1
1
1
141
1
111t 1 111
111 1 1
1
1 111 1
t1 1
TITE119117 11 1 11 1 111 11
T111isT 1 1 91 1911111 1114118 1 111 11 141

Output Matrix {solution 4) for Case Study 1

maximum machine cell size equal 8

- 98 -

and icm=3

33113344444444%232301012220000111122234002351243503
:64548013456797978219303172468123602692974008583155
1 1 1

— . —
— b
et g St

Output Matrix {solution 5} for Case Study 1

maximum machine cell size equal 6 and icm=3

Note: (1) indicates the 1-st multiple copy of the corresponding machine

- 89 -

l
i Lt
!

L9S¥TZ106BLISYEZIO6BLISYEZL06BLISYEZI06BLIGYEZINEBLISYEZLOBRLISYEZI0B0LISYEZI06BLISYEZI06BLISYEZIOGBLIGYETI06BLISYEZI0BBLISYEZI06RLISYEZ I OBRLISYELIO60L954EZ1068L9GYEZI06BLISYEZI06BLISHEL]
BBR8RBBOLLLLLLLLLLIT9999999965GG5GGSGGP I YV Y ITEECEEECEZZZZTIITITLLLILILILIIO0000000096666666666B8888R08R8BLLLLLLLLLLIIIII999995556656655Y Yy YVybPITELeereeez222222222LI1LE11111000000000

(XN} [T '

(N8

Z &pnis ase) 103 X1a3el

PELVREELL)

IZE R

L N N N Ny N N N N N A R R N N N N R SN R R N R R S N A RN AN R RN AE T

anduj

N nOSDOO

- 100 -

(pPanuliuos) 7z Apnis ase) 103 xtajen anduj

[[|
t
o
!
|
] 1 1t I 1 1
!
1 i | 1 | | |
|
1 I
¢
!
'
[N [
1 | (S
1 S | AN AR S U S S S O [
!
[N [FEES AN [S bl NN R TS A T S b 1
et [
i 1
[N Lo
[(S 1 '
! [t 1
EELLL bt
t
1t ! [S E O borbe o Pt 1 4 ' }
! [t $ | [[[N O T O B A
| 1
' ! [b Lt [BE
| 1 !
1l H i [REN N i PEVLLLLLRL f 1 1 1 i 1 9]
1
1
|) I i [
i t | | (NI (ISR [S VEObERLEL | 1 1
1 { | i 1 [
[T Ve 1 i L | I ! 1 i 11
!
! I (R Lobke bt IR
1
o (S [1 (NN NS NN S ! | 1 1
| Ll
[
!
1 ! it
1 t [R RN A) !
Ll
[O S T B) (SN YA ' I [| [N A R o [T ' | e [
! | | [I ! | ! 1t 1ot ! [I i
[N | YRS TEIN
t !

LISYEZI0GBLISYEZIORBLISYIZIO6DLISYEZIOGBLISYETI06BLISVEZI06BLISYET I 0BRLISYEZIOBBLIGYEZIO6BLISIZI06BLOSYEZIOBRLISYEZI06BLISYEZI06BLISHEZIOBBLISYEZIOBBLIGVEZI0BBLISHEZIOEBLISPEZIOERLIGHIZL
BBEBBBRRLLLLLLLLLLTI99999999555566GG5 vy v Py L ECCLEREETZTTATIZZZLILILLLLLIIO0000000006666666666880B088BBBLLLLLLLLLLY999999999556556G565 by bbb VECELEEEEEEITITTZLZLZILILLLILLE1000000000
R R R R R N N N N RN R R NNy R R R SN S RN R N R A RN O

- 101

(E®NUTIUOD) ¢

) 1 ! I
[T [T
o |) (R I
!
1l } | [N
I 1 |
1
i
1 '
1 Lo o
i
! 1 [N
I
1
t | ' [[A A SR F AR NN A RN A ARY 1 Vbt ot
1
| Lokl
t
(IR
[y (R ¥ [
!
) ! [N

GGYETI06BLISYITIO6BLISYEZIOBBLISPEZ) 0bBLISYETI06DLISVEZ)I OBBLISYEZLO6BLISYEZIORBLISHEZLO
888BBBBLLLLLLLLLLI9999999995556550G5 G Y b Y Y Y bEECECECErEa22I22222ZILILIII1) 10000000000
RN N N R R R R R N R R RN NN R R RN N AU RS NN R RN AN R R R RN L)

dpnas ase) 103 xtajew indur

§
|
(3 L 3 i) ! i i
Mol it Lot L
i
i 3
[R [1
e i [B LELER LR
Leer 1 3
1 L I i
3 (Y] (33 1
BRSS! [[ARRERERR NNt 3 Lol B 3 [S S 1 | (3N)
¢] i 3 1
i il 1 } (23
3 ! I
I 1
i [| 1 I)
il i) [JES RS RN I i

]
68L9SYEZI06BLISYEZLOBBLISYEZIOBBLISYEZIORGLISYEZIO6BLISYIZLOEBLISYEZI06BLISYELI06BLISYETIOBBLISYEL)
Bh6E6666668UBBBBBRBBLLLLLILLLLI9999999995555555555 v by vECECCEEreEZZI22722221141421111000000006

BIL
Lzl
321
G2
124
X4}
[24]
(X4
ozl
61t
it
LIt
9k
Sl
¥l
£l
Zit
L
ol
601
801
L01
901
So01
¥ol
€0l

- 102 -

8Z1 ST 8Z1§s [a> aUTy eWw Wnwixew

z fpnis asen 103 Kp uotinfos) x1iiew 3nding

it

bt

.mnmhwmmvmwwmowwmmmoomhm_mmmwmmoamm¢mmwqmmwwvmmcmmh~N_cmm_mh_omv_vmwmwm_moomm»uwm¢oowmwmw~nmmn_wammvhmmm_
}3955995550L601 SSLLEZZI I00068BRISYEYEZOLIOLLLI IOOLSBBYZYYEETZIIEZISYI99Z3EZ1109009LGYERS I180LLL15952EB0YZ08LL9596565

FEERLRVLLLEE

l

LELEbIbg

I

LEl

t

L

bl

it

t

[

i

i

i
Lilibesg
£8£850962

VELRLLEEN)

[t
ot
Lot
LELELE
0BLYSY
SYYYyy
[ARNEN

1
X4
¥y
it

[N
[I
ISRNINY!
Phiiiidd
068L95¥T
YEECEELE
PLLELLLL

3 [
[[
1l
i
1
1
[1
I
3 [.
L i
| i il
1 15 i
t i I
[3 (13
I
! i l
i L [S
{ 4] 1
I
I
I EE RN I
I
} Lt [RN E Y S
Lt [B R B RN
I I Porbiir oy o I
(R R L l | 3 [
30y (RN A Y]
[i il
1 B R AN Y Y
[S A IR % N . i
e u tiitr b1
[LILLERLEL 834
[N I v
[[3 LEbbE b 1y
3 1 i H L I 3 i
! PRLLLETLLELLEY 3
(AR Bhed L I
3 [3 FEVEVEVLELELELb LY [
it ELLEEnr borrnnneieebbi
L L O N A NN R R RO Y Pl Lt
[} [N R N N A Y R N F R RN
i [[N ANAREY [)
! [(B YRR RRRRT IR
NN R N R R R R RN AR SN AR NN N

ZIGLSYEOBLIVIORBLGYEZIIELIGVELI06BLSILYOLIEEZELIZLBLG
€ETIL111000000666666B6BERLLLLLLLIFIIISSSYVECEZZZZIO00
LERLERRELELLL)

103 -

I6LBLIELYERASOZOEZZ00BLIISETIBS00BEYL5IYEBIIVELOSELIZIVEZIELIOBYLYEBSI61600EG1¥ISY069896VZL28L 1Z5YTTYLE6SIEBERS09SZI08BLIGYELIQBBLISVEZISLSYL06LIVI06BLSYELIIEIISIEZI0EBLGILY0LI6T26L92L0LY
11 9559995550L601SSLLEZZILOD06BEBISYYPEZBLZBLLLLIO0LSBBZZYYELZZLIEZOSYIOIZYEZI109HBOLSYERIIBBLLLISIIZEBOPZ0DLLIFISSSSSHYIIYIIVIECEECECEEZLII1100000066666666888LLLLLLLIFIYISSSIPELELITIZI000

APLELELELERE

AﬁUDEMuCOUV

AR AR N i
o
it
i
ithle 11
[EEEERERENY

ottt [Lt Lot

2L ST 9Z1s TTID IUTYDBW WNUWTXew

z &pnig ase) 103 (| uorintos) xtijew nding

Lt

1

L

H

I

!

}

I) 1t

(IS NN RN R N N RN S R N N S AR N S R NN

- 104 -

87l ST S21S 1182 auTydsew wnwixew

(pPenutjuon) gz Lpnis ase) 103 () uotinloes) xiijzew 3nding

- 105 -

©
”

I 06
] 124
10BLBLIEZYECBS0ZBETZ008LO1GEZSBG0066YLS9V6B899VEEOSELIZIVEZIBLIOBYIPERSIGLE00E5I VISYO06IBIBYZLZALIZSYZZYLE6SIFREBG095Z100L95YEZI068L9SYELIGLEYL06LOYI068LSYEZ19TI9SYEZIOBBLSILYOLIBEZELI2L0L9
Z219659995550L60156LLEZZ1I0006B0RISYIYEZBLTBLLII100LSBBZZRYEETTIIETISYIO9ZHEZII09BBBLEYERBIIHBLLLISIIZEROVZOBLLO99SSCSSIVPYEYPPPECESCEEEEZL1LII0000006666666688BLLLLLLL99999565HVEEFLZZZ1000
[N NN S A B SR R R R S NN I it Lottt L Mt t L R R R R N R RN R N R NN NN SR RN R RN

06 ST 3ZIS [19D SUTYDPW Wowixew

z Apnis ased 103 (g uotlintoes) xrajew 3nding

-~
m

- 106 -

BELEEE B 6L
et ! ¥ [y Lt

i I et

I 3 LEVRREELLE £5

i
1 3 i [H Y LELEE b 31
(S Y] [B
| I
| [R3%} bt
t I
LH [N l
(SR 11
(SRS Lo e
RN NN NN A R R RN NN RN R AN A SRR
ww-mmommmmmm-~mm_wh—oohammmm_ewmmtmemwme_«Nm,mm_omhwnwmmvmwocmhmm_mmemmvomom¢mm~,mom_aomomm_omhmwnmm~¢nmmmwmmmommw_omhomcmw_ommnwm¢m~_mhmvmo
m_____
w--

i

13! oy b1 29
Lot S} 1 i 58
NN RN) IR R R RN AN RO Y
6LIVLO6BLGYEZIQEI9SVETIO6BLGILYOLIBETLLIZLBLS
00000066666666888LLLLLLL99999555VVEEEZZTZI000
[SRRRR

|
i 1
t [0 S
! i
| i
ILILIONPELGSBBZPCLLLILIISHIELITLOBRYERBILIITOS0TLLFSS999SGLLEZTIZII00068888L95¥T05L699%0ZQGLIGIBBLLIGZERNYRLLIFIGEGSGPULIEELRYECEEEELES
Li Lot i [y i PRARRILELELI RN L ti l 3 [RN R RN RN SRR R RN Y

06 SI 9Z1S TT9D AUIYDEWw WNWTXew

(PINUTIUGD) 7 Apn3sg ase) 103 (g uorinios) xtajel 3Inding

[B I i |8}
oty Loit ol NN R
IR RN i ! i i 1

Phbiteir 1 1oL 1 i 1 ! [¢

133 i 1 i 3]

il

L (R i Lot 1 |
| t 3 ti Pt I

3! i | i
1 3 ! 13
ww‘mmommmmmmmm_mw_w:o:._vmwmw_vwmmwmomwm:vmm_mm_om\.mhmmmvmmocwhwwpmmwwmﬂomom:mm_mom,oom.owm_wmhwmhmmm:mmmwmmmowmm_omnmmemm_ommhwmvmm,mhmvmomnmfommnmcmm_wmEmvmm_omwhm_n¢o\.ommwmhmmhmhw
BLLILIOOYE I SSBBZYPEEZZILZGGYICZIZLOBBYEBILISZOS022Z195599955LLEZEZ1L00068R0BEL95Y52Z05L659VEZRG! 1918BLLISZEGOYBLLIIISSSSSY I IEYYECEELEECEZI 111 IC00D00BE6666668BBLLLLLLLIFIIISSSEPEEEZZZZI000
tit I I et I PLLLILERLLER R LRR L RLLLE bt 1 I [R N N R N N N N S S RN N RN RN

- 107 -

3

(N R N RN S RN RN NN R RN

(PenuUIjuoD)

wwwmmommmmmm-_mm.mnuc*hvmmmm~emmmwmvmwme—vmm_mm_cmhmnwmmemmoomhww_mmmwwmvcmom¢mmm_mom_comcwm_wmnwmhmmmvhmmmmmmmoemm_omnmm¢mm.ommnwmemN_mhmemOmnw¢.ommpmemm_mm_mmvmm_ommhmﬁthbwmnthwuhmhw
mnn,—nocom_mmmmmvemmmm_nmwmv*nmpmhcmmemwwhwwmomonwawmmwmmmmnnmwnm__coomwmmmwwm¢vwomnmow¢mmmm__w~mmwh_mmmmOemnmwwmmmmmm¢¢+qeeqeemmmmnmmmam_____oooooommmmmmmmmmmhhhhhhhwwwwwmmwvemmmmwmw_coo
(SN R R N N s e N R AR AR R R

06 ST @215 9D JUTYDeEW wWnWIxXew

¢ &pnig asen 103 (g votIn{os) xtajew 3nding

- 108 -

LEEEL

PLEVELERELIL 1L
i1t
[N Y RN SR RN B B YY)

Ll i it

LELE

z Apnis

(A%

bt

£t ST 9ZIS T9D BUTYDEW WNWIXew

3s€D 1031 (£ uotin(os) xtijew 3ndino

- 109 -

)
oAb bbbittinie 1ol
IR R R NN N NN R NN N Y]
mm_me_mmhmm~0mw~nmmnn'wmh~N0hm~ompmmmmmcmheﬁ_cmp¢~mmm¢mwewm¢~hmom*_omNththnmmmwmm_whmmn_¢mm,mwoommmwo_ommmvm~ammmmmhemmvmm_ommnmmnomvew_wmmmmwmvm_mmvmocmnmmm_mmwmmmmvommo
nwmmmommmmwmcmwmov-n,voomwm¢mmmowmm__w_c_mwmmmmmvavamowmmm_nmmowNN,_wmhhwwmwwwmmvemm~mmmmhwom_emu_n¢mmmve¢ﬂoq«mmmmmoonnnn«hhwmwmmmwoommm¢o_mmwwmmmshhpthNNN__ooomwmwwwnww
RSN [N Y LELELLEY

B6BESVESBEBYEOSE
SOVFEFEZILLL 100

AR S RR R AR RN SRR RN NN

ACUJCMUCOUV

I |
Liind
[ER AR !

(RN

(3N

3!

(AR PLELE fLd

b ST 8215 T[22 auTydew wnwixew

z 4pnias ase) 103 (€ coﬁuDHOmv X1ajeR indano

it | i

1
4 |

LEbrin o

e

SIGY16BLIEIOES | I6GLIYIBLITOLIZIGILESESOBLYLIOBLIZLITYGIII5VZLI08Y0BZLZBLLALYE2YEZIBLEELIEGH16100E90B01089GHZI0BYGEZLYISYIZI0bPLAEZ0ZEYSIBEREZIGHZIBIP2Z00BLIEYIGIZI6B5L06L06865PE5BEAYEOSE
SEA606666B6068B0YZILIYO0ZOGYEEZIISBLIIZIOICZEIZEEESYOYISOIESSILSE09ZZIIBRLLISSIIOSSUVEE ISBEZLIIZIVEZILIGSSY YV VYEEECEONLLLLLLLO99CZER00ZSSY0ISSHEBERLLLLLEZZIZLI0006BHBRBLI9GSPVEPEZILLLL00

IR R A RN R R RO [I PLEORRIT bRl

- 110 -

ESIGYIBBLZEIOET L BSLIYIBLEZOLEZISILESESOBLYLI 06LYZLIEPSIIISHTLIOBY I OBZLZBLLALICTYELIBLSHLIVS616100E998010BIGHZI0BISEZLYISIEZI06DLE6Z0ZPYSIBERELISYZIBIVZO0BLIEIISEZI6BSYOGEOEBESYESHERYEQSE
LOEGA60666686068B0YZ1LIVO0ZISEELZISSRLIZIOICIRZEECSY099S09E55) L6021 IBBLLISSSOISSUIEE IGBEZLITZIVTZILIISOIPY PV YLECECO0LLLLLLLIIICZZRO0ZSSYOICSEEBRRLLLLLETZZZLIO006RB8RBL9955YPVETILIIIO0

[SRR RN

£% ST 9Z1S T8> SUTYSew wnwlXeuw

(PanuT3uoD) 7z Apn3s ased 103 (£ uotrinlos) x1i3eW Inding

PRELELLLEITLbERRI L (NN A RN RN

APPENDIX III

- 112 -

;*****************************‘k***k**********************************

jRkkkdkkkdk*txk BEGINING OF KNOWLEDGE-BASE *kkkkkxkkxkkkkhkkhhhkkkk
R I T e T R et L g

(setq pre-processing-rules '(

(rule-101
{ ((equal t t))

((progn
(initialize-objects-in-db)
(list ‘continue}))})

(rule-102
{ ({zerop max-mc-k-size))

({progn
{setq max-mc-k-size (- (length machine-db) 1))
(list 'continue)}))) '

{rule-103
{ {(> max-mc-k-size 0))

((progn
(delete-parts-pp-large)
(list 'continuel})))})

{rule-104
{ ({< (length part-db) 20))

{(progn
(setg icm 33)
(list 'continue)))))

{rule-105
{ {(and
(< (length part-db) 50)
(greater-or-equal (length part-db} 20)))
({progn

(setq icm 5)
(list 'continue)})))

- 113 -

(rule-106
{ ((> (length part-db) 50))

({progn
(setqg icm 3)
(list 'continue}))))

(setq curr-machine-rules '(

(rule-201
(({and (zerop (length mc-k))
{> {+ (length candidate-machines)
(length temp-candidate-machines)
1) max-mc-k-size}))

{(progn (setq temp-bottleneck-machines {append
temp-bottleneck-machines
{list (car curr-machine))})
{setg matrix-t (append matrix-t {list curr-machine)))
{setg temp-candidate-machines nil)
(setqg temp-pf-k nil)
(list ‘select-new-machine))}))

(rule-202
(({and
(> (+ {length mc-k} 1) max-mc-k-size)
(> (?etq num-shared {(car (get-shared-parts curr-machine pf-k)})
0
{less-or-equal (* (/ num-shared {length part-db)) 100) icm)
(setq shared-parts (cadr (get-shared-parts curr-machine pf-k}))})
{{progn
(delete~p-in-candidate-machines shared-parts)
(delete-p-in-mc-k shared-parts)
(delete-p-in-curr-machine shared-parts)
{(delete-p-in-pf-k shared-parts)
(setqg part-waiting-list (append part-waiting-list shared-parts))
(remove-candidate-machines)
(cond {(not (null curr-machine))
(setq matrix-t (append matrix-t (list curr-machine)))}))
(setq temp-bottleneck-machines nil)
(setq temp-candidate-machines nil temp-pf-k nil
curr-machine nil num-shared nil shared-parts nil}
{list 'continuel})})))

(rule-203
{ ({and
(> (+ {length me-k) 1) max-mc-k-size)
(> (§th num-shared (car (get-shared-parts curr-machine pf-k)})
0
(> (* (/ num-shared (length part-db}) 100) icm)))
{(progn

- 114 -

{rule-204
(

(rule-205

(setg bottleneck-machines (append bottleneck-machines
{list (car curr-machine))))
(remove-candidate-machines)
(setq temp-bottleneck-machines nil curr-machine nil
temp-pf-k nil temp-candidate-machines nil num-shared nil)
(list 'continue)})}))

((and

(less-or-equal (+ (length mc-k) 1) max-mc-k-size)

(= max-mc-k-size (- (length machine-8b} 1))

(> (setq next-machine-similarity (get-next-machine-similarity))
curr-machine-similarity)

(> (?etq num-shared (car (get-shared-parts curr-machine pf-k)))
0

(less-or-equal (* (/ num-shared {length part-db)) 100} icm)

(setq shared-parts (cadr (get-shared-parts curr-machine pf-k)))))

{(progn

(delete-p-in-mc-k shared-parts)
(delete-p-~in-candidate-machines shared-parts)
(delete-p-in-curr-machine shared-parts)
{delete-p-in-pf-k shared-parts)
(setq part-waiting-list {append part-waiting-list shared-parts))
(remove-candidate-machines)
(cond ({not (null curr-machine))
{setqg matrix-t (append matrix-t (list curr-machine)})))

(setq temp-bottleneck-machines nil temp-candidate-machines nil

temp-pf-k nil curr-machine nil

num-shared nil shared-parts nil)
(list 'continue}))))

(({and (< (length mc-k) max-mc-k-size)

(> (+ (length mc-k)
(length candidate-machines)
(length temp-candidate-machines}
1) max-mc-k-size)
(> (setg num-not-shared (car (get-not-shared-parts
curr-machine))} 0)
(< (* {/ num-not-shared (length part-db)) 100) icm)
(setq not-shared-parts (cadr (get-not-shared-parts
curr-machine)))})

((progn

{delete-p-in-temp-candidate-m not~shared-parts)

(delete-p-in-candidate-machines not-shared-parts)

(delete-p-in-curr-machine not-shared-parts)

{(delete-p-in-temp-pf-k not-shared-parts)

{setq part-waiting-list (append part-waiting-list
not-shared-parts))

(setq temp-candidate-machines nil)

(setq not-shared-parts nil num-not-shared nil)

(list 'continue)))))

- 115 -

(rule-206

(((and (< (length mc-k) max-mc-k-size}

{rule-207

(> (+ (length mc-k) (length candidate-machines)
(length temp-candidate-machines) 1) max-mc-k-size)
(> {setq num-shared (car (get-shared-parts curr-machine pf-k)})
0)
{< (* {/ num-shared {length part-db)) 100} icm)
{setq shared-parts (cadr (get-shared-parts curr-machine

pf-k)})})

{{progn

(delete-p-in-mc-k shared-parts)

(delete-p~in-candidate-machines shared-parts)

(delete-p-in-curr-machine shared-parts)

(delete-p-in-pf-k shared-parts)

(setq part-waiting-list (append part-waiting-list
shared-parts))

{cond ((not (null curr-machine))

(setq matrix-t (append matrix-t {(list curr-machine}))))
(setq temp-bottleneck-machines (remove {car curr-machine)
temp-bottleneck-machines))

{setq temp-candidate-machines nil)

(setq temp-pf-k nil curr-machine nil)

(setq num-shared nil shared-parts nil)

(list 'continue)))))

({(and (< (length mc-k) max-mc-k-size)

(rule-208

(> {+ (length mc-k} {length candidate-machines)
(length temp-candidate-machines) 1) max-mc-k-size)

(greater-or-equal (* (/ (car (get-shared-parts curr-machine
pf-k)) (length part-db)) 100) icm)

{greater-or-equal (* (/ (car (get-not-shared-parts

curr-machine)) (length part-db)) 100} icm)
(check-multiple-machine curr-machine)
(setq not-shared-parts (cadr (get-not-shared-parts
curr-machine)))))

((progn

(setq matrix-t (append matrix-t (construct-multiple-machine
curr-machine not-shared-parts}))

{setq temp-bottleneck-machines (remove (car curr-machine)

temp-bottleneck-machines))

{(delete-p-in-curr-machine not-shared-parts)

(delete-p-in-temp-pf-k not-shared-parts)

(setq temp-candidate-machines nil not-shared-parts nil)

(list ‘'continue}))))

(({and (< (length mc-k) max-mc-k-size)

(> (+ (length mc-k) (length candidate-machines}
(length temp-candidate-machines) 1) max-mc-k-size)
(greater-or-equal
{(* {/ (setq num-shared (car (get-shared-parts
curr-machine pf-kj)}} (length part-db)} 100)

- 116 -

iem)
(greater-or-equal
(* (/ (setqg num-not-shared (car (get-not-shared-parts
) curr-machine})) (length part-db)) 100)
icm
{not (check-multiple-machine curr-machine)}))
{{progn
{setq bottleneck-machines (append bottleneck-machines
{list (car curr-machine})})
(setg temp-bottleneck-machines {remove (car curr-machine)
temp-bottleneck-machines))
{setq curr-machine nil)
(setq temp-candidate-machines nil temp-pf-k nil
num-shared nil num-not-shared nil}
(list 'continue)})))

(setqg machine-cell-rules '{

(rule-301
({(and (not (zerop (cadar {cadar mc-k))))
{setq capacity-violated-machines
{violated-capacity mc-k)}))

{{progn
(setq parts-deleted {removed-parts-capacity-violation
mc-k capacity-violated-machines))
(delete-p-in-mc-k parts-deleted)
{delete-p-in-pf-k parts-deleted)
(setq part-waiting-list (append part-waiting-list
parts-deleted))
(setq capacity-violated-machines nil parts-deleted nil)
(list 'continue}))))

(rule-302
({(not (zerop max-fr}))
({progn

{check-m~h-5 mc-k pf-k)
(list 'continue))}))

;******************* END OF RULES *d ks ke dkhhk kb hhd e Rk Rk bk kd b vk k%

;s PROCEDURES INVOKED BY RULES ®
__ %
’

(Gefun 1initialize-objects-in-db {)
{setg matrix-t (build-matrix-t machine-db))
(setqg curr-machine nil)

(setq bottleneck-machines nil temp-bottleneck-machines nil)
(setq candidate-machines nil temp-candidate-machines nil)
{setq machines-not-used nil part-waiting-list nil)

(setq pf-k nil temp-pf-k nil all-pf-k nil)
(setq mc-k nil all-me-% nil)

(setq all-m-h-s nil m-h-s nil)

(setqg explain nil part-pp-pairs nil))

(defun delete-parts-pp-large ()
(let {(parts-deleted))
(do ({parts part-db})
{{null parts) parts-deleted) ;test
{cond ({> (length (cadr (assoc 'primary-pp {(cadr (car parts)))))
max-mc-k-size)
(setq parts-deleted {(append parts-deleted
(list (caar parts))))})
(setg parts {cdr parts))}
(cond {{not (null parts-deleted))
(delete-p-in-matrix-t parts-deleted)
(setg part-waiting-list (list parts-deleted))))
(print parts-deleted)
(print (length parts-deleted)}))}

(Gefun delete-p-in-matrix-t (parts)
{do ({machines))
{(null parts) t) ;test
{setq machines (cadr (assoc 'primary-pp (cadr (assoc (car parts)
part-db)))))
(do ((m) (temp-parts){curr-part))
((null machines) t) j;test
(setg m (car (horizental-line {car machines})))
(setq matrix-t (remove m matrix-t))
(setq temp-parts {cadr m))
(setq curr-part (assoc (car parts) temp-parts))
(setg temp-parts {(remove curr-part temp-parts))
(cond ((not (null temp-parts)}
(setq m (list (car m) temp-parts))
((setq matrix-t (append matrix-t (list m)))}
t
{setq machines-not-used (append machines-not-used
{list (car m))))))
(setq machines (cdr machines)))
(setq parts (cdr parts)}))

(defun delete-p-in-candidate-machines {parts)

- 118 -

(do ((temp-candidates candidate-machines)
(machine-parts) (still-candidate) {(m))
((null temp-candidates) t) ;test
{setg m (car temp-candidates))
(setq machire-parts (cadar (horizental-line m)))
(setq matrix-t (remove (car {(horizental-line m)} matrix-t))
(do {(temp-machine-parts machine-parts))
((null temp-machine-parts) t) ;test
(cond ((member (caar temp-machine-parts) parts)
(setq machine-parts (remove (car temp-machine-parts)
machine-parts)))
({member {(caar temp-machine-parts) pf-k)
(setq still-candidate t))})
(setq temp-machine-parts (cdr temp-machine-parts)))
(cond ({null machine-parts)
(setg machines-not-used (append machines-not-used (list m}))
(setq candidate-machines (remove m candidate-machines))}
({null still-candidate)
(setq candidate-machines (remove m candidate-machines))
(setq matrix-t (append matrix-t
: (list (list m machine-parts)})))
t
(setq matrix-t (append matrix-t (%ist (list m machine-parts)}))
(setqg temp-candidates (cdr temp-candidates))}))

{(defun delete-p-in-temp-candidate-m (parts)
{do ((temp-candidates temp-candidate-machines)
(machine-parts) (m))
((null temp-candidates) t) ;test
(setg m (car temp-candidates))
(setq machine-parts {cadar (horizental-line m)))
(setg matrix-t (remove (car (horizental-line m)) matrix-t))
(do {(temp-machine-parts machine-parts))
({null temp-machine-parts) t) ;test
(cond ((member (caar temp-machine-parts) parts)
(setq machine-parts (remove (car temp-machine-parts)
machine-parts)))}
(setq temp-machine-parts {cdr temp-machine-parts}))
(cond ((null machine-parts)
{setg machines-not-used (append machines-not-used (list m)))
{setqg temp-candidate-machines (remove m
: temp-candidate-machines)}))
t
(setg matrix-t (append matrix-t {list
(list m machine-parts))}))))
(setq temp-candidates (cdr temp-candidates))))

(defun delete-p-in-mc-k (parts)
{do ({(temp-mc-k mc-k) (machine-parts) (m})
({null temp-mc-k) t) jtest
{setg m {car temp-mc-k))
(setg mc-k (remove m mc-k))

- 118 -

(setg machine-parts (cadr m))
(do ((temp-machine-parts machine-parts))
{{null temp-machine-parts) t) jtest
(cond ({member (caar temp-machine-parts) parts)
(setq machine-parts(remove (car temp-machine-parts)
machine-parts)))})

(setq temp-machine-parts (cdr temp-machine-parts)))

{cond ((null machine-parts)
(setq machines-not-used (append machines-not-used
(list (car m)))}) ;<==obj in DB

(t
{setg mc-k (append mc-k (1i
(setg temp-mc-k (cdr temp-mc-k))))}

st (list (car m) machine-parts))))))

(efun delete-p-in-curr-machine (parts)
{let ({machine-parts ({cadr curr-machine)))
(do {(temp-machine-parts (cadr curr-machine)))
({null temp-machine-parts) t) ;test
(cond ((member (caar temp-machine-parts) parts)
{setq machine-parts (remove (car temp-machine-parts)
machine-parts)}))

(setq temp-machine-parts (cdr temp-machine-parts)))

)
{cond ((null machine-parts) (setg curr-machine nil))
)

(t (setqg curr-machine (list (car curr-machine) machine-parts))}))))

(defun delete-p-in-pf-k (parts)
(8o (}
((null parts) t)
(setqg pf-k (remove {(car parts) pf-k))

{setq parts (cdr parts))))

(defun delete-p-in-temp-pf-k (parts)
(do ()
((null parts) t)
{setq temp-pf-k (remove

(car parts) temp-pf-k))
{setg parts (cdr parts)}))

(defun remove-candidate-machines ()}
{(do ((parts){machines candidate-machines})
({null machines) {setq candidate-machines nil) t)

(setg parts (cadr (get-shared-parts {(car (horizental-line
(car machines}))
pf-k)})

(zerop (length parts)) t)

(
({> (length parts) icm)
(setq matrix-t {remove {(car (horizental-line (car machines)))

matrix-t))
{setq bottleneck-machines (append bottleneck-machines
(list (car machines)))})
{{less-or-equal (length parts} icm)
(setq part-waiting-list (append part-waiting-list parts))
(delete-p-in-candidate-machines parts)
(delete-p-in-mc-k parts)

- 120 -

(congd

(delete-p-in-pf-k parts}
(delete-p-in-curr-machine parts)))
(setq machines ({cdr machines)))}

{defun greater-or-equal (a b)
{cong ({< a b) nil)
(t t)))

(Gefun less-or-equal (a b)
(cond ((> a b) nil)
(t t))

{efun get-next-machine-similarity ()
(cadr (select-most-similar-machine {append candidate-machines
temp-candidate-machines)
(add-temp-pf-k temp-pf-k pf-k))})

{defun check-multiple-machine (machine)
{let {{multiple {assoc 'multiple {cadr (assoc {car machine)
machine-db}))))
(cond ((null multiple) nil}
{(> (cadr multiple} 0} ¢t}
(t nil)}))

{defun construct-multiple-machine {(machine parts)
(let (Em?ghine—attributes (cadr {assoc {car machine) machine-db}))
n
(setg n (cadr (assoc 'multiple machine-attributes)))
(setg machine-attributes (remove (assoc 'multiple machine-attributes)
machine-attributes))
(setq machine-attributes (append machine-attributes
(list {list 'multiple {- n 1)))})
(setg machine-db (remove (assoc (car machine) machine-db)
machine-db))
{setqg machine-db (append machine-db
(list (list (car machine) machine-attributes)}})
{do ((all-parts {cadr machine}}
{(new-machine-parts))
({null parts) (list (list (car machine) new-machine-parts)})
(setg new-machine-parts (append new-machine-parts
(list (assoc (car parts) all-parts))))
(setq parts (cdr parts)))))

{Gefun sum-process-time (parts)
(apply '+ {mapcar #'({lambda (p) (cadr p)) parts)))

(defun violated-capacity (mc-k)

- 121 -

{do {(machines))
((null mc-k)} machines) ;test
{cond ({> (sum-process-time (cadar mc-k))
(cadr (assoc 'max-process-time
(cadr (assoc (caar mc-k) machine-db)})})
(setq machines (append machines (list (caar mc-k))))})
(setg mc-k (cdr mc-k))}}

(defun removed-parts-capacity-violation {mc-k machines)
{(do ({parts))
{{null machines) parts) ;test :
(setq parts (append parts (lowest-time-part-capacity
(cadr (assoc (car machines) mc-k))
(cadr (assoc 'max-process-time
{cadr (assoc (caar mc-k)

machine-db)}))}))
(setg machines (cdr machines)))}

(defun lowest-time-part-capacity (parts max-process—time)
{do ((part-deleted) (min-time max-process-time)
{(sum (sum-process-time parts))}
({null parts) (list part-deleted)) ;test
(cond ((and {less-or-equal (- sum (cadar parts)) max-process-time)
(< (cadar parts) min-time))

{setq min-time {cadar parts))
{setq part-deleted (caar parts))))

{setq parts {(cdr parts))))

(defun check-m-h-s (mc-k pf-k)
(let ({r-violation) (agv-violation))

(setg r-violation (> (sum-frequency 'fr pf-k) max-fr})
(setq agv-violation (> (sum-frequency 'fa pf-k) max-fa))
{cond ((and r-violation agv-violation)
{setq m-h-s '(none is suitable)})
({and (null r-violation) (null agv-violation})
(setg m-h-5 "(robot or agv)))
({null r-violation) (setg m-h-s '(robot)))
((null agv-violation} (setq m-h-s '{agv))))))

(defun sum-frequency (freq pf-k}
(let ({freguencies))
(setq frequencies {mapcar #'(lambda (p) (cadr
_ (assoc freg (cadr (assoc p part-db))))) pf-k))
(cond ((member '- frequencies)
{(+ (max max-fa max-fr) 1))

(t
(apply '+ freguencies)))))

- 122 -

(defun match-mc-pp (mc pp)

(do ((temp (append mc bottleneck-machines)))
{{null pp) t)
{princ "mc-pp==> ") (print pp} {(princ "mc-pp==> ") (print temp)
(cond ({not (member (car pp) temp)})
(return nil)))
(setq pp (cdr ppl)))

(Gefun match-all-mc-pp {part pp)
(do ((temp all-mc-k))
{(null temp) nil)
{cond ({match-mc-pp (cdar temp) pp)
(setq part-waiting-list (remove part part-waiting-list))
(setq part-pp-pairs (append part-pp-pairs {(list
(list part ppl})))

(add-p-to-group part (car (cdaar temp)))
(return t}))

{setq temp (cdr temp))))

(defun add-p-to-group (part k)
(do {(left) (temp) (right all-pf-k})
A{{pull right) (print "function add-p-to-group has rigth=null"})
(cond {(= k (car (cdaar right)))
setq temp (append (car right) (list part)))

{

(setq all-pf-k (append left (list temp) (cdr right)))
(return t))

t

(

(setg left {append left (list (car right))))
(setq right (cdr right)))))}

{defun match-alt-pp-groups (plist)
{do {(part) (pps))
((null plist) t)
(setq part {car plist}))

(setq pps {(cadr {assoc 'alternative-pps (cadr (assoc part part-db)))})
(princ "alt-groups==> ") (print pps)

{do ((pp))}
{{null pps) t)
(setg pp (car pps))

{cond ((match-all-mc-pp part pp) (return t)))
{setq pps (cdr pps)))
(setq plist (cdr plist})})

(defun use-alt-pp-for-part-waiting-list ()
{cond ({not (null part-waiting-list))
(princ "use=> ") (print part-waiting-list)
(cond ({listp (car part-waiting-list))

(match-alt~pp-groups (cdr part-waiting-list)))
(t

- 123 -

{match-alt-pp-groups part-waiting-list)})
(print-results all-mc~k all-pf-k)}))

A e L T T 2 L T T T T P T P R PR T R T S gn g A
jREkEkkkxkkkkkkdkhks END OF KNOWLEDGE-BASE #kkdkdkkdddkhhhkhhkhkhhothirrhdbns
M I T T T T T e e st

4 *
H

3 # INFERENCE ENGINE *
B o e e e e e *

(defun carry-out-rule-actions (actions)
(eval (car actions}))

(defun eval-rule-conditions (conditions)
{do ()
({null conditions) t)
(cond ((not (eval {car conditions))) {(return nil))}
(setg conditions (cdr conditions))))

(defun try-fire-rule {rule)
(let ((temp-rule) (rule-number) {conditions) (actions}
(msg) {cond-result} (action-result))

{setq rule-number (car rule)}
{setq temp-rule {cadr rule))
{setg conditions (car temp-rule))
(setg actions (cadr temp-rule))
(setq cond-result (eval-rule-conditions conditions))
(cond ({equal cond-result t)
{setq action-result (carry-out-rule-actions actions))
: (setq msg (list rule-number (car action-result))))
t
(setq msg (list rule-number ‘does-not-apply))))))

(defun kbs-inference-engine (rules)
{do ({(msg))
((null rules) (setq msg '{continue)))
(setq msg (try-fire-rule (car rules)))
(cond ((equal {(cadr msg) 'select-new-machine)
(return (cons 'select-new-machine msg))
(setq explain (append explain (list {car msg))))))
(setqg rules (cdr rules))))

¥ REQUEST PROCESSCR *

(defun kbs (request}
(cond ((equal reguest 'pre-process)
(kbs-inference-engine pre-processing-rules))

{{equal request 'check-curr-machine)
(kbs-inference-engine curr-machine-rules))

({egual request 'check-curr-group)
(kbs-inference-engine machine-cell-rules))}))

3K *
s ALGORI THM *
3 e *

(defun build-matrix-t (machine-db)
(do {(current-machine) (matrix-t))}
((null machine-db) matrix-t)
(setq current-machine (car machine-db))
(setq matrix-t {append matrix-t (list (list {car current-machine)
{cadr (assoc 'parts {cadr current-machine))))}))
(setqg machine-db {(cdr machine-db))))

(defun get-machines-remain ()
{do ((machines-remain) {m matrix-t))
{{(null m) machines-remain} jtest
{cond {{not (or (member (caar m) candidate-machines)
(member (caar m) temp-candidate-machines)))
(setg machines-remain (append machines-remain
(list (caar m))))))
(setg m {cdr m))}))

(Gefun machine-with-most-p ()
(do ({machine){machine-parts)(maximum 0)
(temp-machines-remain (get-machines-remain)))

({null temp-machines-remain} (list machine)) jtest
(cond ({not (member (car temp-machines-remain)
temp-bottleneck-machines))}
(setg machine-parts (cadr (assoc (car temp-machines-remain)
matrix-t)))
(cond ({> (length machine-parts) maximum)
{setq machine (car temp-machines-remain))
{setq maximum (length machine-parts)}))})
(setq temp-machines-remain (cdr temp-machines-remain)})

)

- 125 -

(defun select-machines ()
(machine-with-most-p})

(defun get-not-shared-parts (machine)
(do ({number 0) (machine-parts (cadr machine))
{not~shared-parts)
(parts-in-temp-candidate-m (p-processed-on-machines
temp-candidate-machines)))}
((null machine-parts) {list number not-shared-parts)) ;test
(cond ({and (not (member (caar machine-parts) pf-k))
(member (caar machine-parts) parts-in-temp-candidate-m))
(setq number (+ number 1))
(setq not-shared-parts (append not-shared-parts
(list (caar machine-parts)}}))})
(setg machine-parts {cdr machine-parts))))

(defun p-processed-on-machines {machines)
(do ((parts))
{{null machines) parts}
(setq parts (add-new-parts parts
{cadar (horizental-line (car machines)))))
(setq machines (cdr machines))))

(defun get-shared-parts (machine pf-k) .
(8o ((number 0) (parts-shared)
(curr-machine-parts {cadr machine)))

{{null curr-machine-parts) (list number parts-shared))

(cond ((member (caar curr-machine-parts) pf-k)
(setg number (+ number 1})
{setq parts-shared (append parts-shared
(list {caar curr-machine-parts})))))
(setq curr-machine-parts (cdr curr-machine-parts)}))

(defun select-most-similar-machine (machines pf-k)
{let {{num-parts (length part-db}})
{(cong %(null mc-k)} (list {(car machines) 2000))

t

(do ((max-similarity 0) {(curr-similarity)
(similar-machine (car machines})
{num-shared) (num-not-shared) (machine-parts) (m))
{{null machines)

(list similar-machine max-similarity)} ;test

(setg m (car machines})
(setq machine-parts {cadar (horizental-line m)}})
(setq num-shared (car (get-shared-parts
(car (horizental-line m)) pf-k)})

- 126 -

(setg num-not-shared (- (length machine-parts)
num-shared))
(setq curr-similarity (- num-parts
(+ num-not-shared (- {(length pf-k)
num-shared))))
(cond ({> curr-similarity max-similarity)
(setq similar-machine m)}
(setq max-similarity curr-similarity)))
(setq machines (cdr machines})))}))

(defun horizental-line (machine)
(list (assoc machine matrix-t)))

(defun get-temp-pf-k (machine)
{do ({machine-parts (cadr machine}) (t-pf-k))
((null machine-parts) t-pf-k} ;test
(setq t-pf-k (append t-pf-k (list {caar machine-parts})))
(setq machine-parts (cdr machine-parts))))

{defun get-pf-k (mc-k pf-k)
(let ((curr-machine~parts (cadar (last mc-k))))
{setg pf-k (add-new-parts pf-k curr-machine-parts})))

(defun add-new-parts (pf-k curr-machine-parts)
(do ()
((null curr-machine-parts) pf-k) ;got all parts of curr-machine

(cond ((not (member (caar curr-machine-parts) pf-k))
(setq pf~k (append pf-k (list (caar curr-machine-parts))})))
(setq curr-machine-parts {cdr curr-machine-parts)))}

(defun delete-candidate-from-temp {candidates temps)
{do ()
({null candidates) temps) jtest
(cond ((member (car candidates) temps)
(setq temps (remove (car candidates) temps))}))
(setq candidates (cdr candidates})))

{defun crossed-once (pf-k candidate-machines)

(do ((temp-machines (get-machines-remain))
(curr-machine-parts))

((null temp-machines) candidate-machines) ; test

(setq curr-machine-parts (cadr (assoc {car temp-machines) matrix-t)))
{do ()

({null curr-machine-parts) t} ;test

- 127 -

(cond ({member (caar curr-machine-parts) pf-k)
{setq candidate-machines (append candidate-machines

(list {car temp-machines))})
(return t))}

(t (setq curr-machine-parts (cdr curr-machine-parts)))))

(setg temp-machines {cdr temp-machines)}))

(defun add-temp-pf-k (temp-pf-k pf-k)
{do (}
({null temp-pf-k) pf-k)
{cond ({not (member (car temp-pf-k)} pf-k))
(setq pf-k (append pf-k (list (car temp-pf-k)})))))
{setg temp-pf-k (cdr temp-pf-k))})

(defun add-curr-machine-to-mc ()
(cond ({not {null curr-machine))
(setq mc~k (append mc-k (list curr-machine)}))
(cond ((member (car curr-machine) temp-bottleneck-machines)
(setg temp-bottleneck-machines (remove {car curr-machine)
temp-bottleneck-machines}))))))}

(defun add-mc-k (all-mc-k mc-k k)
(let ({curr-mc-k (list (list "machine-cell k)}))
(do ()

((null me-k} t) ; all machines included
(setq curr-mec-k (append curr-mc-k (list (caar mc-k)})))
(setq mc-k {cdr mc-k)})

(setq all-mc-k (append all-mc-k {(list curr-mc-k)})))

(defun add-pf-k (all-pf-k pf-k k)
(let ({curr-pf-k (append (list (list ‘part-family k)) pf-k)))
(setq all-pf-k {(append all-pf-k (list curr-pf-k}))})

(defun add-m-h-s (all-m-h-s m-h-s k)
{cond ((not (null m-h-s))
(setq all-m-h-s (append all-m-h-s (list (list
‘m-h-s-alternative m-h-s))))}
(setq m-h-s nil)
all-m-h-s)
{(t nil}))
{defun print-results (all-mc-k all-pf-k)
{0 ()
({null all-mc-k) t})
(print (car all-mc-k))}
(print (car all-pf-k))

- 128 -

(cond {(not (null all-m-h-s})

(print (car all-m-h-s}))}

(print " T ")

(print H 1r)
(setg all-mc-k (cdr all-mc-k))
(setq all-pf-k {cdr all-pf-k))
{cond ({not {(null all-m-h-s))

{setq all-m-h-s (cdr all-m-h-s))))}

(print =)
(print (list 'parts-on-waiting-list=====> part-waiting-list))
(print (list 'machines-not-used-list====> machines-not-used))
(print (list 'bottleneck-machines=======> bottleneck-machines))
(print ‘o }
{print (list 'maximum-machine-cell-size==> max-mc-k-size)))

e *

s ALGORITHM MAIN-LINE *

(defun gt-algorithm ()

(prog ((kbs-msg))
STEPO
{kbs 'pre-process)
{setq k 0)
STEP1
{setq candidate-machines (append candidate-machines
{select-machines}))
STEP2

{setqg curr-machine (select-most-similar-machine candidate-machines

pf-k)}
{setq curr-machine-similarity ({cadr curr-machine))
{setq curr-machine (car curr-machine))
(cond ({null curr-machine) (go presult)))
(setq curr-machine (car (horizental-line curr-machine)))
(setg temp-pf-k (get—temp-pf-k curr-machine))
{setq matrix-t (remcve curr-machine matrix-t))

STEP3

(setq candidate-machines (remove (car curr-machine)
candidate-machines))
{setg temp-candidate-machines (crossed-once
temp-pf-k temp-candidate-machines)}
(setq temp-candidate-machines (delete-candidate-from-temp
candidate-machines
temp-candidate-machines))

STEP4

- 129 -

(setqg kbs-msg {kbs 'check-curr-machine})
(cond ({equal (car kbs-msg) ‘'continue) t)
((equal (car kbs-msg} 'select-new-machine) (go stepi))
(t
(print "#** algorithm does not understand kbs message")
{go stop)))

STEPS
(setq pf-k (add-temp-pf-k temp-pf-k pf-k))
(add-curr-machine-to-mc)
(setq candidate-machines {append candidate-machines
temp-candidate-machines))
(setg temp-candidate-machines nil)

{cond {(null candidate-machines) (go formgroup))
{t {(go step2)))

STEP6
formgroup
{cond ((not (null pf-k))

(setg k (+ k 1))

(kbs 'check-curr—group)

(setg all-mc-k {add-mc-k all-mc-k mc-k k
(setq all-pf-k (add-pf-k all-pf-k pf-k &k
(setq all-m-h-s (add-m-h-5 all-m-h-s m-h-

))
)}
s k))))

{setg me-k nil pf-k nil temp-bottleneck-machines nil)

STEP7
presult
{cond ({null matrix-t) (print-results all-mc-k all-pf-k)
(go stop))
((= (length matrix-t) {length temp-bottleneck-machines))
(setg bottleneck-machines (append bottleneck-machines
temp-bottleneck-machines))
{print "too many bottleneck machines")
{print "change machine cell size")
{go stop}}
(t
{go stept}))
stop)

;***

;***************** END OF ALGORITHM LR E R R s S T T S T I T I LT T
;***

- 130 -

(defun kbgt ()
(gt-algorithm)
(print 1 !r)
(print n !l)
(print "*akkkxnrrsxs END OF PROCESSING #%k#wkkkkrkx"))

;***

:* PROCEDURES FOR USER INTERFACE L T e S R T i I
L L e Y L L R L e Ll D T T W,

(defun create-machine-db (machine-numbers)
{do ((parts) (machine-db) (machine-parts) (m})
({null machine-numbers) machine-db)
{setq machine-parts ())
{setq parts part-db)
(setq m (car machine-numbers))

(do ()

{((null parts) t)

{cond ({member m (cadar (cadar parts)))

(setg machine-parts {append machine-parts
(list (list (caar parts) 0)))))}

(setq parts (cdr parts)))

{setq machine-db (append machine-db (list (list m (list
(list 'parts machine-parts}))}))

(setq machine-numbers (cdr machine-numbers)}))

(defun print-group (1 num)
(let ((12))
{setg 12 (do ()
{((null 1) nil)
(cond {(equal num (car (cdaar 1)))
{return (cdar 1))))
(setq 1 (cdr 1)}))
(do ({blank " ™))
{({null 12) (print "xxx%endxzx"))
(princ {car 12))
(princ blank)}
(setqg 12 (cdr 12)))))

N L L T R LR Lt Lt T e,

; kkkkkkkkkkkkik*%%k END OF CODE L R L R Rt T
MRS L R L L L L T R T T T T T L L T o R R e u AR,

- 131 -

