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The main theme of this dissertation deals with the impact and consequences of 

non-normal distribution on the process capabzty index Cpm. In this thesis, much work 

has been done in this area includïng the propertïes of &m, the estimate of Cpm, under 

normality, its sensitivity to non-normality and also the relationship of Cpm to squared 

error loss. ReIated to Cpm is the unifiing measare of process capabÏIity index Cpw- 

Several properties of kpw are investigated. Much of the controversy surrounding the Cp 

index involves 6a in the denominator. It carries particdar physical meaning when the 

process characteristic is normaily distributed- A new index Cpo is proposed which is 

based on the clifference between two order stahstics. The sampling distribution of Cpo 

is obtained for those cases where the process characteristic is unifonn, exponential and 

normal distributions. The behavior of &, when n = 2, under non-normal situations such 

as d o m  and exponential distributions is also investigated as a special case of kpo . 

Another major issue addressed in this dissertation is the Inverted Probability Loss 

Functions (IPLFs). It is a modified loss h c t i o n  found by inverhg a probability density 

function which was first invented by my s u p e ~ s o r  Dr. F.A. Spiring in 1993. The f k t  

loss fiinction I studied is the inverted beta loss fiuiction (IBLF). 1 have found certain 

interesthg properties that this class of loss fiinction possesses such as the shape, the loss 

hc t ion  and its associated risk fiinction of the IBLF are scale invariant under linex 

transformation. FinaUy, 1 have investigated a few more IPLFs satisfj6ng the usual loss 

fünction properties and developed some theorems in this portion of the study. 
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Symbols and Notations 

cdf 

pdf 

LSL 

USL 

T 

CL 

c2 

C P ~  

Cpm* 

Cumulative distribution fûnction 

Probability density fiinction 

Lower specification limit 

Upper specifïcation Limit 

Target value of a process 

Mean of a process 

Variance of  a process 
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capability index 
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- min[USL -T,T-LSL] the generalized Cpm index 
- 3,/- 

- - USL-LSL , the process capabiIity index based on order 
D 

statistics 

Order statistics of a random sample of size n 

5, - gr y the difference between the sth and rth population 

quantiles 

The y th population quantile, where P (X s c,)= y 



Cpw * 

- - USL-LSL 
- , the un@bg process capability index 

- -[USL - T,T- LSL] , the generalized process 
- 34- 

capability index 

A non-stochastic weight 

Sample size 

Random sampIe of size n 

- i = 1 -  - sarnple variance, unbiased 
n-1 

= Y, - Y,, the ciifference between the ah and sth order 

= USL - LSL 



- - USL -LSL 
another form of estimate of Cpm 

an estimate of Cpm* 

- - &[USL -T, T -LSLJ ,another form of estimate of 

Cpm* 

- - USL-LSL , the estimate of Cpo B 

Non-central chi-square distribution with n degrees of 

fieedom (df) and non-centrality parameter h 

- - n(p-~)' , non-centrality parameter 
o2 

Skewness 

Kurtosis 

Non stochastic weight 

Maximum loss 



Fuuction ofthe fonn of a pdf 

m = sup n(x7T) 
x 

Supremum or maximum of n(x, T) 

- - n(x7 , ioss inversion ratio 
rn 

Beta distri'bution with parameters a and P 

Gamma distribution with parameters a and B 

Normal distribution with parameters and m2 

Uniform distribution with parameters a and P 

Weibuii distribution with parameters a and P 

Inverted Beta Loss Function 

hverted Gamma Loss Function 

Inverted Nomal Loss Function 

Inverted Probability Loss Function 

Co 

= Sxa-' eWX dx , a > O, gamma function 
O 

QI 

= lxa-' e-x dx , a > O, incornplete gamma fhction 
z 

T 

= 1 xa-' (1 - x ) ~ - '  dx, incomplete beta fiinction 
O 



= 1 1 
xa-' (1 - x)~-' dx , incomplete beta bct ion  

0 B(a9B) 

General binomial coefficient 

The ah raw moment of a random variable 

2 
= -jexp[-u2] du, t > O, error function 

G o  

& - Nb) je u -t)b-a-L dt, a > O, b - a  > 0, 
r(b -a)r(a) O 

confïuent hypergeornetric fünction 

confluent hypergeometric fünction 



Chapter 1 

Introduction 

1.1 Overview 

Those measures of process capability known as process capabïlity indices (PCIs) 

have been used in ùidustry for more than 20 years. Shce the introduction of process 

capability indices popularized by Juran (1974), second and hird generation indices have 

been developed as well as a myriad of other measures have proliferated in both 

application and varïety. The widespread use and abuse of process capability 

measurements has led to improvements in quaiïty while also becoming topics of 

considerable controversy in the Iast few years. Many of the controversies couid be 

avoided through better knowledge of the properties associated with the various measures 

of process capability indices. 

1.2 Introduction of Cp Index 

The process capability index, Cp, was first introduced by Juan (1974) and it has 

been used extensively in manufacturing durhg the early 80's in Japan. The Cp index has 

been defined to be 

Ailowable process spread 
Cp = Actual process spread 

The allowable process spread is g e n e d y  taken to be the difference between the upper 

specification limit and the lower specincation Lunit while the actual process spread is 



represented by 6a where a is the process standard deviation associated with the 

measurement of a specined characteristic (Le., X). Cp is generally calculated as foiiows 

USL - LSL 
c p  = 

6cr 

The traditional assumptions associated with Cp include 

(1) the characteristic measurements arise fiom a normal distribution; 

(2) the measurements are taken only when the process is in control; and 

(3) the target of the characteristic is the midpoint of USL and LSL. 

The traditional estimator of Cp is defhed as 

USL - LSL Cp = 
6s 

The probability density function, expectation, and mean squared error of Cp as 

defined in equation C1.2.11 have been developed in Chan, Cheng and Spiring (1988~) and 

Chou and Owen (1989). Most studies that deal with the estimation of Cp are based on 

the above assumptions (Kane (1986a)). The impact of non-normal processes including 

mixtures of two normal distributions possessing different means but similar variance 

(Kocherlakota, Kocherlakota and Kirmani (1992)); and a single normal distribution 

distorted with different values of skewness and kurtosis (Chan, Cheng and Spiring 

(1988~)) have been documented. While others have promoted alternative techniques 

including Clements (1989) which uses the merence between the upper (at the 99.865") 

percentile and the lower (at the - 1 3 5 9  percentile as a measure of actual process spread. 

USL-LSL Chan, Cheng and Spiring (1988a) used Cp = , with d denoting the width of 
d 



the interval expected to contain 99.73% of the process measurements. Their goal was to 

use the width of the tolerance interval with 99.73% coverage 95% of the tirne (Le., w) 

rather then 6s as a measure of actuai process spread to assess ep. A similar approach 

was proposed by Pearn, Kotz and Johnson (1992). They use 

USL -LSL 
C ,  = 

80 

as a robust capability index developed to be as însensitive as possible to non-nomal data. 

The constant 8 is chosen such that the probabilïty of coverage, P(p - B a  c X C p +- QG), is 

close to one and as independent of the original distribution as possibie. 

1.3 The Development of Other Process Capability Indices 

Many researchers (Hsiang and Taguchi, (1985), Chan, Cheng and S p i ~ g  

(1 988b)) point out that Cp does not incorporate a target value into its determination. 

Second generation process capability indices (Kane (1 986a), Kane (1 986b)) attempt to 

incorporate deviations fiom the target value, T into their assessrnent of process capability. 

The List of second generation PCIs include 

USL-p 
Cpu = 

30 

p- LSL 
Cpl= 30 

and 

Cpk = min[Cpl, Cpu] 

Cpk* = (1-k) Cp 

where k = 
21 T-P 1 , O S ~ I I , ~ ~ ~ L S L < ~ < U S L .  

USL-LSL 



These indices attempt to take into account process variation as weil as departures 

fiom the target value in their assessrnent of process capabilzty. Each of these indices 

involves the unkaown parameters p and cZ which generally must be estimated, resulting 

in the folIowing estimators 

where 
~ I T - x ~  

k= 
USL-LSL - 

These estimators provide reasonable point estimators for their respective indices, but the 

statistical distributions associated with them are quite complicated. 

The distributions (Chow and Owen (1989)) of the estimated process capability 

indices including epk, ep l  and kpuare determined. their means, variances and mean 

squared mors are given. Interval estimations and skewness of epk  (Zhang, Stenback 

and Wardrop (1990)), confidence bounds of tPk, kpl and kpu (Kushler and Hurley 

(1 992)) are investigated under the assumption that process measurements are independent 

and normally distributed. A number of authors have proposed modincations of process 

capability indices that take into account to some extent the centre, or the target value, of 

the process and others that perhaps are more appropriate for non-normal situations. 



The third generation of PCIs include measures such as Cpm which is defined as 

USL-LSL 

Cpm=6 J= 

proposed independently by Hsiang and TaguchÎ (1985) and Chan, Cheng and Spiring 

(1988b), that incorporate the proxhity to the target value as well as the process variation 

when assessing process performance. The sarnpluig distriiution, under the normality 

assumption, for an estimate of Cpm (Cpm) aud some of its properties (Chan, Cheng and 

Spiring (1988b)) are examined. Estimators, bias and mean squared error of epm are 

investigated and various approximate confidence intervals (Subbaiah and Taam (1993)) 

are obtained and compared in terms of coverage probabillties, missed rate and average 

interval width. The robustness of kpm to deparhues fiom normality is studied and 

extended to include the PCI 

min[USL -T, T - LSL] 
Cpm* = 

3J-' 

so as to include asymmetrïc specincation Limits. Derivation of the distribution and its 

properties are studied and nimmarized in Chapter 2. Critical values for estimating Cpm 

are suggested for small sample sizes, and the control chart constants used for monitoring 

Cpm (Spiring (1995)) when the normal distribution is slightly distorted by skewness and 

kurtosis (Gayen (1949), Barton and Denois (1952), Draper and Tiemey (1972)) are 

The relationship between Cpm and the expected squared error loss provides an 

intuitive interpretation of Cpm. Johnson (1992) relates Cpm to squared error loss and 

this loss is expressed in a relative mamer such that users need to specify the target and 



the distance nom the target at which the product would have zero worth. Confidence 

Iimits for the expected relative loss are also discwed. A simikir relationship between 

Cpm and the estimated expected loss is proposed, and the upper codîdence Limits for the 

loss fùnction parameters and its approximation suggested. 

1.4 Examination of Cp Index in Various Distributions 

The sampling distniution of ep has been established under the assumption of 

nonnality. W e  will examine the distribution of ep when the process characteristic 

foliows d o m  and exponential distributions. However, due to the difnculties of the 

sampling distribution of S under different distributions, the sample size is Limited to n = 

2. Cornparisons with the normal distribution results with respect to expectations, mean 

squared errors (if such exist), probabilities and the related critical values (lower, c,, and 

upper, c,) are tabulated and summarized in Chapter 3 as specîal cases of Cpo ( a 

proposed process capability measure introduced in the following section ). 

1.5 Proposed Measure of Cp Index Irrespective to Normaüty 

Assumption 

It is weil known that the distn'bution of the sample standard deviation, S, is not 

robust to non-normal pdfs (Nelson (1992)) and departures fÏom normality hinder the 

effectiveness of the estimators in drawùig inferences regarding population parameters. In 

Chapter 3, a proposed index Cpo, which is based on order statisticq and is defined as 

USL-LSL 
Cpo = 

D 



where D = 5s-5,, "th P(Xcc- , )  = y, O < y c 1, r < s, ci the ith quantile, is 

investigated. 

The 

be obtained 

distribution o f  6 the merence between the rth and sth order statistics, c m  

for various distributions o f  X and hence the distriiution of 

USL-LSL ep= 

c m  also be found. The pdf o f  epo under different d i s t n i o n a i  forms including the 

uniform, exponential, normal distributions are examined. 

1.6 Unifjing Approach of Process Capability Indices 

In an attempt to summarize the process capability indices as one simple form, 

severai authors (Pearn, Kotz and Johnson (1992); Vihman (1995); Spiring (1997)) have 

proposed a general form of PCI that encompasses a wide variety of exishg PCIs. 

VaMman (1 995) proposes the index 

USL-LSL USL+LSL 
where d= 

2 
7 M= 

2 
, u20, v10. 

Most existing indices are then considered as special cases of C ,  (u, v). For example, 

letting u = O and v = O, resdts in 

while u = 1, v = O, it produces 



c, (170) = 
d-(cc-~[ 

= Cpk 
3a 

The denvation of the pdf c m  be found in Vihnman and Kotz (1995a), expectations and 

mean squared errors can be seen in Vihmmanand Kotz (1995b) and Vihmman(1995). 

An alternative algorithm was proposed by (Spiring (1997)) which suggested using: 

USL-LSL 

cpw = 6,/<r2+wol-~)'~ 

Cpw * = 
~ ~ U [ U S L  - T, T - LSL] 

3J-- 

where w is a non-stochastic weight. The pdf of epw (see equation [U. 11) developed in 

Spiring (1997) is based on a mixture of central chi-squared distributions. Similar to 

VZmman(1995) the most common indices c m  be formed as special cases of Cpw by 

USL t LSL 
putting different weights. For example, assuming T = 

2 
, by setting 

(i) w = O, results in 

Cpw = 
USL-LSL 

=Cp 
6a 



(ii) for w = 1, 

k(2 - k) 
(iii) when w = 

IP-4 "th p =- 
( ~ - k ) ~ ~ '  y m 

cnw = 
USL-LSL 

=(l-k) 
USL-LSL 

6s 

= Cpk*. 

(iv) sirnilarly for w = 
USL - LSL USL - LSL 

2 
y a=p- 

2 Y 

A USL-LSL 

= Cpk. 

The statisticai properties of cpw including its pdf and associated confidence intervals 

are investigated, anaiogous to Spiring (1997). The relationship between Cpw and the 

estimated expected weighted loss is discussed and upper confidence limits for this loss 



funciion parameters are ïiiustrated. Further study of epw including its density under 

normal distribution distorted by skewness and kurtosis (Gayen (1949)) is discussed in 

Chapter 4. 

1.7 Loss Functions 

In decision theory, loss functions are used to describe the deviation of an 

estimator eom a parameter d u e .  Loss iüncbons traditionally take forms such as 

squared error loss, absolute error loss, weighted loss and 0-1 loss. Each of these foms 

tacitly assumes that the larger the error made in estimating the parameter value the larger 

the loss incurred. DiEerent ïevels of penalties are inherent to each f o m  the loss function 

takes. Keephg these in rnind, statisticiam and practitionea make use of this concept to 

develop new applications in quaiity settings. This idea helps to stress the importance of 

being on target for both customers and suppliers. The use of Loss fimctions has increased 

steadily in industrial applications. 

1.8 Modified Loss Functions 

The loss fhction approach for assessing quality was first proposed by Taguchi 

(1986) who uses a modified squared error loss (quadratic loss) function to assess and 

illustrate losses to society associated with departwes nom a process target. Taguchi's 

modification added a bound to the usual quadratic loss bc t ion  in order to avoid an 

infinite penalty for those measures situated large distances from the target Spiring 

(1993) proposed an Inverted Normal Loss Function which differed fiom the traditional 

quadratic loss by providing a bounded, and hence more reasonable, assessrnent of 

10 



economic loss. Claiming that the INLF severely penalizes off-targetness, Sun, Lararnee 

and Ramberg (1996) refined the INLF and provided noallnear least squares estimates for 

the shape parameter of the modined loss Iùnction. Spiring and Yeung (1998) developed 

a class of loss fiinctions based on inverted pdfs including the gamma, chi-square, Laplace 

and Tukey's Symmetric Lambda distributions. generai class of loss fûnctions has 

nice properties and can accurately reflect symmetric and asymmetric losses incurred by 

the process. However the various loss fimctions in this class h a .  parameters nested in 

thek associated pdfs. Ln conjunction with these inverted Probability Loss Functions there 

is a lirnited number of conjugate distributions for the loss fhctions to select in order to 

assess the average loss or the risk fûnction associated with the process. 

1.9 Anotber Famiiy of Loss Function 

In Chapter 5, a family of loss functions is developed based on an inverted beta 

pdf. The shape of the Inverted Beta Loss Function can be modifïed to suit the 

practitioner's needs, whiIe providing alI the properties of the above mentioned loss 

functions. By restricting this family of loss fiinctions to those derived fiom the beta pdf 

we manage to provide a wide variety of potential loss functions while maintaining one set 

of parameters for the entire famiIyY The conjugate distribution cm be used to 

characterize the process measurements and has finite moments, allowing the risk funetion 

generated by the IBLF to be evaluated and depictïng the true average loss/cost associated 

with O ff-targetness. 



1.10 Some Properties of the Inverted Probability Loss Funetion 

The invention of invertihg a normal pdf to assess loss hctions for off-targetness 

is primarily introduced by Spiring (1993). The development of this type of loss ~ c t i o n s  

is m e r  developed utilizhg other density fiuichons. However the properties of the 

family of Inverted Probability Loss Functions has not k e n  fully studied. In Chapter 6 

several properties of this family of IPLFs are investigated. A few particular IPLFs have 

unique and interesting properties that can help practitioners to assess these loss functions 

correctly and appropriately. For each IPLF considered, some plausible conjugate 

distributions are suggested and worked out for c o ~ s o n  pinposes. The general forms 

of the expected value of the Loss inversion ratio (Le., E1["'Ir 1 1 under each P L F  

are listed as theorems, followed by the associated mean (risk fiinction) and the variation 

arïsing from different distributions of the process characteristic. The general 

performances of the IPLFs are compared numericatly under homogeneous conditions. 



Chapter 2 

The Index Cprn 

2.1 Introduction 

The process capability index Cprn is used to provide an assessrnent of the ability 

of the process to be clustered around the target. As Cprn is not traditionally used to 

provide insights into the number of parts non-codionning the Cpm parameter does not 

require 60 to reflect a precise number of non-conforrning. As a result, unlike other 

capability indices including Cp, Cpu, Cpl and Cpk, the Cprn index can provide 

practitioners with meaningfbi information in non-normal settings. The robustness of an 

estimator of Cpm to distributional assurnptions and the resulting impact on the iderences 

is investigated. 

With the capability indices receiving increased usage in process assessments and 

purchasing decision in the industry, the indices Cp, Cpk and Cprn were of particda. 

interest. These indices are easy to compute and interpet, and they are convenient for use 

by quality practitioners because these are based on traditionai specification limits. 

Nevertheless, some of them are not related to the loss incurred in failing to meet 

custorners' requirement. Taguchi (1986) emphasized the loss in a product's worth when 

one of its characteristics departs fiom the customers' target value. Johnson (1992) related 

the Cprn index to the symmetric squared error loss and expressed the loss in a relative 

marner so that the users need ortiy to speciQ the target and the distance fiom the target 



where the product would have zero worth. Upper confidence Limits and its 

approximation for this expected relative loss were illustrated. In this chapter, a s W a r  

reIationship between Cpm and squared error loss is estabfished which is based on the 

estimated loss other than the relative loss. Upper confidence Limits and its approximation 

for the loss fünction are discussed. 

2.2 Measuring Process Capability 

Process Capability indices are used to assess the ability of a process to meet 

customer specifications. There are many indices currently available, with the most weil 

known being Cp. Cp is often referred to as a measure of process potential rather than 

process capability, as it fails to consider where the process measurements are located. 

Processes with small variability, but poor proximity :O a target, have sparked the 

derivation of several indices that attempt to incorporate a target into their assessrnent of 

process capability. The most common of these measures assume T to be the midpoint of 

the specification iimits and include Cpm and Cpk. 

The process capability indices Cp, Cpl, Cpu, Cpk and Cpm belong to the f d l y  

of indices that relate customer requirements to process performance in the form of a ratio. 

As process performance improves, either through reductions in variation and/or moving 

closer to the target, these indices increase in magnitude for fixed customer requirements. 

In each case larger index values indicate a more capable process. 



2.3 Effects of Non-Normality 

If the process measurements do not &se fiom a Normal distribution none of the 

indices discussed in Section 2.2 provide valid measures of the number of parts non- 

conforming. Each index uses a fünction of a as a measure of actuai process spread in its 

determination of process capability. But as several authors (Hoaglin, Mosteller and 

Tukey (1983), Mosteiler and Tukey (1977), Tukey (1970) and Huber (1977)) have 

pointed out, that although the standard deviation has become sponymous with the tenn 

"dispersion", its physical meanhg needs not be the same for different families of 

distributions, or for that matter, within a f d y  of distributions. Therefore the actual 

process spread (a h c t i o n  of 60) does not provide a consistent meaning over various 

distributions. To illustrate, suppose that precisely 99.73% of the process measurements 

fa11 within the specification Limits. The values of Cp are 0.5766,0.7954, 1.0000, 1.2210 

and 1.4030 respectively when the measurements mise fiom a uniform, trïangular, normal, 

logistic and double exponential distribution. As long as 60 cames some practical 

ioterpretation when assessing process capability (Le., is translated înto ppm non- 

conforming), none of the indices should be used if the distribution of the characteristic 

under investigation is not normal. 

If we assume process capability assessments to be studies of the ability of the in- 

control process to produce product around the target, then Cpm will provide practitioners 

with an assessrnent of capability regardess of the distrîbution associated with the 

measurements. Clustering amund the target, rather than a measure of non-confonning 

releases the physical meaning attached to 60. The denominator of Cpm then provides a 

measure of the clustering around the target and compares this with customer tolerance. 



Eliminatïng the physicai meanllig allows Cprn to be used to compare the 

capability of various processes (or processes over time) regardless of the underlying 

distribution. However the underlying distribution will impact the Inferences that we can 

make nom samples gathered fiom the population. The effects of non-normaiïty on an 

estimator of Cprn are examhed. 

In order to assess process capability using Cprn in the presence of non-normal 

process measurements we need to better understand the effect of non-nomdity on the 

behaviour of the estïmated process capability (Le., epm). Moderate departues fiom 

nonnality can be emulated ushg a modined Gayen (1949) approach where the pdf 

associated with f (xi -T)~ (where X, , X, , ... , X, represents n observations selected 
i= 1 

randomly fiom a population) is transfonned to reflect the pdf associated with epm. The 

third and fourth moments are then varied to examine the impact of moderate departmes 

fkom normality, for the characteristic under investigation, on the distribution of &m. 

The resdts provide practitioners with a graphical view of the impact of non-normality as 

well as providing mechanisms for analyzing and correcting for the impact of non- 

normality. 

2.4 Generating and Estimating Cprn 

Cpm was previously defhed in equation [1.3.1] and its generdized form (Le., 

Cprn*), which include the original definition of Cprn (i-e., when USL-T = T-LSL) in 

equation [1.3.2]. Cpm* continues to reflect changes in the process analogous to other 

measures of the process capability while dowing T to be any value between LSL and 



USL. If the process variance (oz) increases, the denokator in equation [1.32] 

increases and Cpm* wiU decrease indicating that the process is less capable. I f  the 

process drifts fiom its target value (Le., i f  p moves away fkom T), the denominator of 

equation [1.3.1] wilI again increase causing Cpm* to declioe, again indicating that the 

process is less capable. 

In this section we wiIi examine some statistical 

including means and variances. For X - bI(&02 ), and 

USL-LSL 

USL-LSL 

properties of kpm and kpm * 

ne2 O=- , central chi square distribution with n - 1 df 
Cr2 

'1 " n(X-T)2 , mn-central chi square distribution with 1 df and non- 
cf2 

centrality parameter h = 
n b  - T ) ~  

, and is independent of 8 
oz 

non-central chi square distribution with n df and non-centrality o f  rl X n . 1 ~  

parameter h ( Johnson, Kotz and Balakrishnan (1 995)). 



where a* = 
&min [USL -T, T -LSL] =JiX cpm* 

3a 

Theorem 2.4.1: 

The ah moment of epm when X - N ( ~ ,  o2 ) is 

r - 
2 0 0  

E (&nr ) = (-cpm2) 2 P, Tc:-r) , for r < n. 
= O  (n;2j) 

where Pj = , the Poisson weights. 
j! 



The mean and variance of eprnare respectively 

The rth moment of Cpm * is similarly obtained and stated without proof in the folIowing 

theorem. 

Theorem 2.4.2: 

The rth moment of Cpm * when X - N( p, 02) is 

Now, let us examine the biases and mean squared errors of Cpm and eprn *. Let 

B (6) and MSE(~)  be the bias and mean squared error respectively of an estimatoc 6 ,  

îhen 



B ( c ~ )  = ~(e~rn) - Cpm 

Cpm - Cpm 

n t h  
2 j=û 



Cpm* 

Under the assumption p = T, Le., equivdently )c = O, hence the biases and mean squared 

errors of eprn and kprn * becorne 

-1 Cpm 1 



Taking Iimits as n approaches 00, it can be shown that 

,=L and üm 
n-m 

Thus both the biases o f  and Cpm * becorne zero, i.e., 

£3(kprn) = 0, and ~ ( & m  *) = 0. 

These imply that both t p m  and kpm* are asymptotically unbiased. Also, the mea.  

squared errors of kpm and Cpm * becorne zero, i.e., 

M S E ( & ~ )  = 0, and M S E ( C ~ ~  *) = 0. 

These imply that both Cprn and &n* are mean squared error consistent These also 

imply that both tpm and kpm * converge in probability to Cpm and Cpm*, respectively. 

2.5 Effects of Non-Normality on Cpm 

The generalized Cpm, Cpm*, can be estimated by 

random sample of size n, an estùnator of d is given by 



and 
USL -LSL USL -LSL 

Cpm = - - 
6 3  

Using Gayen (1949), the distribution of epm and epm * can be obtained fiom a 

Normal distribution distorted with nonzero values of Ic ,  and b,, where Ic ,  and X, are 

measures of skewness and kurtosis, respectively. The resuiting distribution of Cpm 

(similarly for * ) can be obtained through transformation- 



Consider a random sample of n measurements, X, , X, , ..., X, of a characteristic 

taken fkom a process which is in-control, then the sum of squares of the measurements 

with respect to the target value, T, is 

n 
where S, =EXi  , 

i=1 

2 2 

Y= i= E(xi 1 -T) =o(--T) + S2 
Let the transformation be n 

2 

Z=( 5 - T) 

and resdts in 1 
S, = n ( * & t ~ )  

with inverse transformation 
s2 = y -  nz 

and the Jacobian is J = 
6% 321-  

4 ~ 9 4  

- - 
* 



If T = O, then the inverse transformation becornes and the Jacobian of the 

inverse transformation rem& unchanged. Hence, foliowing Gayen (1 949) equation 

[2.1], we have: 

w, (n- l)= 

and the Hermite polynomids become 

H,(x)=x2 -1 H ~ ( - & ) = z ~  -1 
a and 

H2 (&b2-1 
H,(x)=x) -3x H3(- J;)=(-&)~ t3& (&)=(&Y-& 



The joint density of Y and Z is 



Y O < z < -, O< y c 00, zero elsewhere. [2.5.4] 
n 



In order to fïnd the marginal pdf, hI (y), of Y we aeed to integrate z between the limits O 

Y y-nz which makes the integration easier. Now, and - . By making a substitution u=- 
n Y 

Y-= let u=- Y Y Y Y ,then z=-(1-u), - - z =  -u,andyu=y-az,with -du=-& Thus 
Y n n II n 





Hence the marginal pdf of Y is 

O < y < a, zero elsewhere. [2.5.5] 



It c m  be easily shown that for any given sample size n (2 2), where k3 and k, 

satisQ the positive dennite region descrïbed by Barton and Demis (1952) and Draper 

00 

and Tierney (1 W2), then h, (y) dy = 1. This can be verifkd by i n t e p h g  the marginal 
O 

pdf of Y over the region fioom O to m. The positive definite region is defined as follows. 

When the measures of shape, k3 and A,, are known a c w e  of the form 

t 
x- - 

chosen to have the same first four moments as the pdf of x, is ofien taken to represent it, 

u 
where pu (x)=l + cr H , (x) is a uth degree polynomial in x expressed as a sum of 

r=l 

constant multiples of Hermite polynomials, H,(x). When x is in standardized form, the 

&3 values cl = c, = O, c p  =- 1 4  , c ,  =- and c ,  =O for r 25. Then f(x) is positive definite 
3! 4! 

if (x) 2 O for dl x. The solution of this positive definite region is described by the co- 

ordinates (c, , c ,  , ... , cu ) satisfying the following equations 

u 
I + ~ c , H , ( x ) = o  and & r ~ ~ - , ( x ) = O .  

r=l  r=l 

Now, the constant term inside the curly bracket of equation L2.5.41, when muitiplied by 

the integrand and integrated with respect to y over the region O to oo, is: 



The coefficient associated with h, when integrating y fkom O to 00, becomes: 

combining the coefficients, fiom (a) to (f), gives: 



Similady, the coefficient associated with A,: is: 

r (y) 

(d') -15 



combining the coefficients, fkom (a') to (j'), gives: 



a 

Therefore J h, (y) dy = 1 and hence is a proper marginai pdf associated with the joint 
O 

n 2 
density function h(y, z), where Y=Z (x~-T)Z and z =(x-T) . Now, 

i=t 

USL-LSL a, 

for each 

with Jacobian of the inverse transformation, 

So that the pdf of epm is: 



r (y) 

O < v c 00, zero elsewhere. [2.5.6] 



It c m  be shown that gep(v) is a proper pdf when L3 and Ic ,  satis@ the positive 

a: definite region associated with the density, by making a substitution of the form y=- 
v2 - 

Hence, it is just the marginal pdf given by equation [2.5.5] and the results follows. For 

B(a, @= r(a)r'), the pdfof epm can be written in terms of the beta function and it is 
rb+ P) 

O < v c a, zero elsewhere- [2.5.6a] 



Theorem 2.5.1: 

The rth moment o f  epm for r c n, is 

for r c n. [2-5.7] 

Proof= 

Using equation [2.54], the expectation of the rth moment of &m is 

and the results follow d e r  simplincation. 

Lemma 2.5.2 

The fist, second moments and variance of epm for r < n, are respectively, 



Proof: 

For the first and second moments, just direct substitute r = 1 and 2 into equation [2.5.TJ- 

The second moment can be simplified as 



The variance of epm foilows fiom v ( c ~ ~ )  = ~(hrn') -[~(eprn)]' der 

simplification. It can be seen fkom equations [2.5.8] and [2.5.9] that the expectation of 

Cpm will increase when h4 increases and will decrease when k3 increases. lncreasing 

the values of h, and X, causes the variance of kpm to increase and vice versa. 

FoUowing fiorn equation [2.5.3], a proper estimator of Cpm* is 

minpSL - T,T - LSL] a; Cpm * = - -- n- f i 9  

the pdf of Cpm* cm be easily obtained by substituting a; to a, in gCpm(~) as 

g cpm V )  It takes the following fom: 



r 2 + 6 
a n-l 3 n-1 1 a, n+l5 

+9(n+4)+~ -,- -193 -,- +6- 
nv ( 2  2 )  ( Z  2) n v B ( ~ * i )  

a; > O, O <v<ao, zero elsewhere. c2.5. 101 

4Jn-1 4 
For n = 5, T = O  and a, = =- (i.e,USL -LSL =4) , the density function of 

6 3 

Cprn becornes 

O < v < a, zero elsewhere. [2S. 1 11 



Figures 2.5.1 a-e shows the graph of Cpmusïng equation [2.5.11] for Merent 

values of 1, and A,. 

4 
Figure2.5.la Graphof epm whenn=5,T=O, a, = -, I ,  =Oand A, =O 

3 

4 
Figure2.5.lb Graphof epm whenn=5, T=O, a, = -, 5, =.1 and A, = 1.5 

3 



Figure 2.5. lc Graph of kpm whm n = 5, T = O, a, 

4 
Figure2.5.ld Graphof êpm whenn=5,T=O, a, = -, A3 = .3  and h, =2.5 

3 



4 
Figure2.5.le Graphof epm whenn=S,T=O, a, = -, A, =.3 and b, =3.5 

3 

The mean and variance are, respectively 

When I ,  and h, are both zero, then the mean and variance will be 

Using this result we c m  examine the impact of moderate departwes fiom the nonnality on 

the density fimction of epm. The plots that foliow, graphically depict the distorted 



distribution of X (the characteristic of interest) and the resuiting di~'butii0n of eprn for 

various values of b, (Le., X, = O.O(O.l)O.4) and X, (Le., b, = 0.0,0.5, 1 .O(l)4.O). Each 

pair of plots represents the distorted distribution of the X's (Le., f(x)) and the resuitïng 

distribution of cpm (Le. g(epm )) for n = 5. 

Figure 2-52 Series of plots showing the impact of k, and k, on gCpm (&II) 









From the above plots it is evident that A, and h, have relatively smaii impact on 

the underlying distribution (i-e., f(x)) while the impact on appears much more 

drarnatic. Clearly h, introduces bimodality to and would appear to have an 

impact on any inferences made- To quantfi the impact of skewness and kurtosis on 

g(epm), the tail probabilities (Le., p(epm> c) associated with various values of h3 and 

A, are summarized in Table 2.5.1. 



* is not positive definite 

Reading across Table 2.5.1, it can be seen that the rïght hand tail probabiiity 

associated with a fixed constant c is about 1.25 to 1.5 times larger, for h4 = -5 and 1 and 

fixed values of 1 A, 1, and about a double when h, is in the range o f  2 to 4. This implies 

that g(Cprn) is flatter, thicker and heavy tailed for nomegative values of  7i,and L, 1 

fixed. On the other hand, when we read vertically down Table 2-51, the right hand tail 

pro bability of Cpm decreases graduaily for a fixed X4 , when 1 A, 1 increases. 

The density fiuiction of Cpm for n =IO, T = O and a, = 4m=2 is 
6 

O < v < a, zero elsewhere. [2.5. 121 



with mean and variance 

When h, and A, are both zero, then the mean and variance will be 

The tail probabilities ~ [ C ~ r n > c l  n = 10, T = O, a, = 2 , [  A, 1, A,] are summarized in 

Table 2.5.2. 

* g[&n) is not positive definite 

Again reading across Table 2.5.2, the right band tail probability of epm at a fixed 

constant c and X, = O is 1.5 to 2 times larger for A, = -5 and 1 respectively, and fked 

values of 1 h, 1 are about triple the probabilities for values of A, in the range of 2 to 4 



suggesting g(epm) is flatter, thicker and heavy tailed when jicJ is fked with 

nonnegative values of A,. Meanwhile, when we read verticaiiy down Table 2.5.2, the 

behavior of the right hand taü probability of &rn decreases gradually for a fked k,, 

when 1 X, 1 increases. 

In those cases where the practitioner is monitoring process capability on a regular 

basis either by hand or in conjunction with a capabiiity chart (e-g., Spiring (1995)) 

Uiferences will be aected. For those process measurements exhibithg near normal 

distribution characteristics with non-zero estimates of X, and l, , corrections should be 

made either to the action limits (the critical values, c, and cu , where P ( & ~ c c ~ )  = 

P (kpm >c ) = -00 135) or to the specified level of a (the level of signifïcance) associated 

with the decision making process or capability chart. 

If the practitioner can idente  the amount of distortion fiom normality and if it is 

moderate, corrections can be made that will provide the practitioner with viable decision 

d e s  or action limits. In Tables 2.5.3a through 256a the criticai values (Le., c,) 

associated with the upper tail of g(cpm) have been detennined for various n, h3 andk,. 

Again it appears that the 1, has a substantid impact on any inferences made. In order to 

maintain the same confidence in the decision that the process capability has significantly 

improved (increased) in the presence of nonzero values of X,, larger values of Epm are 

required. 



Similarly i f  we examine the lower taii (Tables 2-5.3b through 2.5.6b) of g(cpm) 

(Le., when we want to iden- signincant deches in capability) the impact of Ic3 and I ,  

can be quantifïed and used in the decision making process. 

TABLE 2.5.3a Values of c, forn=4, [7c3[=0(.1)-4and k, =0(0.5)1,2(1)4 

LI 

where P [ C p z ~ c ,  ri, T = O, a, = 
J ~ - [ u s L  -LSL] 1 Xj IrLr] =O-OOl35 

6 

* is not positive definite 

TABLE 2.5.3b Values of c, for n = 4,1 k3 1 = O(. l )A and X, = O(0.5) 1,2(1)4 

where ~ [ ( ? ~ r n < c J  n, T=O, a, = 
J~-I[usL-LsL] 

, f h3 lJ4] = 0.00135 
6 



TABLE 254a Valuesofc, forn=5,1L3L,I=0(.1).4and L,=0(0.5)1,2(1)4 

where ~[Cpn>c, [  ~ , T = o ,  al = 
J=[USL -LSL] 

11, I,L,] = 0.00135 
6 

TABLE 2.5.4b Values of c, for n = 5,1 A, /,O(. L).4 and h, = O(O.5) 1,2(1)4 

where ~ [ ~ ~ . p m ~ c , l n , ~ = ~ ,  a, = 
&~Z[USL -LSL] 

1 k3 1, h,] = 0.00135 
6 

* is not positive definite 

TABLE 2.5.5a Vaiuesof cU forn=6,1A3I =0(.1).4and h, =0(0.5)1,2(1)4 

where P [ ~ ~ > C ~ I ~ , T = O ,  a, = 
J=[USL -LSL] 

, 1 h, 1 ,  h,] = 0.00135 
6 

k4 
I h3 1 
.O 
-1 

4 

2.890586 
rc: 

rt 

* 
* 

O 

2.291049 
* 

* g(epm) is not positive definite 

1 

2.5103 18 
2.507439 

-5 

2-41 1792 
2,408353 

2.498718 
2.483 877 

* 
- 

2.397909 
* 
* 

-2 I rlr 

2 

2.666526 
2.664338 

-3 

3 

2.789089 
2.7873 1 1 

2.65772 1 
2.646526 * 

2-78 1940 
2-772884 

-4 I * 2.630490 1 2.759975 



TABLE 2 - 5 3  Vaiues of c, for n = 6, [ )L, 1 = O(-1)-4 and L, = O(0.5) 1,2(1)4 

where ~ [ ( ? p < c J  n, T=O, a, = 
J~-~[usL-LsL] 

, [x31,A4] =0.00135 
6 

* is not positive dennite 

TABLE 2.5.6a Values of c, for n = 10,1& 1 = 0(.1)-4 and h, = 0(0.5)1,2(1)4 

where P[(?~~>C,[~,T=O, a, = 
, /~-~[usL - LSL] 1 IL, lJ4] = O-O0135 

6 

* g(epm) is not positive definite 

TABLE 2.5.6b Values of c, for n = 10,l A, 1 = 0(.1).4 and k, = 0(0.5)1,2(1)4 

J"=~[usL -LSL] 
where ~ [ ~ ~ r n ~ c , ( n , ~ = ~ ,  a, = , 1 h3 1, k4] = 0.00135 

6 

* g(&xn) i&mt positive definite 



Tables 2.5.7 a-d give the rÏght hand tail probabiiities for different values of Cpm. 

TABLE 2.5.7 a 



TABLE 2-5-7 b 



TABLE 2-57 c 



TABLE 2-57 d 

ISI 
.O 

-1 

-2 

-3 

-4 

h4 
. -0 

-5 
- 1.0 

1.5 
, 2.0 

3 .O 
4.0 

, -5 
1 .O 
1.5 
2.0 
3 .O 
-5 
1 .O 

. 1.5 
2.0 
3 .O 
1 .O 

. 1.5 
2.0 
3 .O 
2.0 
3 .O 



26 Exampie 

The adjusted breaking strength of  a perforation was identified by the customer as 

the key quality variable of a particdar process. An initial study of the process suggested 

that adjusted breaking strength did not follow a nomial distribution. The fkst f3iy 

observations fiom production were used to assess the nonnality of the breahg strengths. 

Both the histogram and the n o d  probability plot (Figure 2.6.1) suggest that breaking 

strengths do not behave norxnaily. The customer specifîcations and numericd resdts for 

the tira fifty observations were as foIlows 

The process was monitored at regular intervals (every 24 hours) at which h e  E, s 

and êpmwere calculated for ~bgroups of size 5 and Z and s charts are plotted 

Figure 2.6.2). The first subgroup of size five resulted in the followïng observations 

(see 



normal scores 

Figure 2.6.1. Histogram and Normal probability plot of Adjusted Breaking Strengths 



Mean of Pull Strengths 
3.0 

2 5  - 
2.0 - 

0.5 - 
0.0 I I I m I I I 

2 4 6 8 10 12 14 

Std Dev of Pull Strengths 

Figure 2.6.2 X and s chart of Adjusted Breaking Strengths 



To Uivestigate the process' Cpm (assumuig that the observations behave similar to 

the £kt fifty), the upper and Iower criticai values were detennined fiom Table 2.5.4a and 

4 
Table 2.5.4b (for n = 5, a, =-, A, = 0.1 and h, = 1.0 ) to be c,= 2690 and cu= 3.004 

3 

(a = 0.0027). Since epm= 0.71 feu inside the interval 1.2690, 3.00421 the pmctitioner 

concluded that the process Cpm had not changed. 

2.7 Relationship with Squared Error Loss Function 

Kane (1986) noted that PCIs were receiving increased usage in process 

measurements and purchaskg decisions especially in the automotive industry, and the 

indices Cp and Cpk were of interest. These indices are simple to manipufate, and are 

convenient because they are based on traditional specification Limits. However, they are 

not related to the cost of failùg to meet customers' desires. Taguchi emphasized the loss 

in a product's worth when one of its characteristics departs fiom the customers' ideal value 

T. To help accoimt for this Hsiang and Taguchi (1985) introduced the index Cpm, which 

was also proposed independently by Chan, Cheng, and Spiring (1988b) and they related 

the index Cpm to the idea of squared error loss. 

The index Cpm is defhed in equation [1.3.1] is a fhction of the expected squared 

deviation fiom the target The loss associated with a characteristic X misshg its target is 

often assumed to be appropriately approximated by the symmetric squared error loss 

function 



where w is a non-stochastic weight fiuiction. This implies that the loss is zero when the 

process is on target and the loss is positive for any deviation fiom target In this case the 

expected loss is 

and the Cpm index can be expressed as 

USL-LSL 
C P ~ =  f i6 Jm 

Equation [2.7.1] c m  be expressed in terms of Cpm 

Clearly when the expected loss increases as the value of Cpm becomes srnaller and vice 

versa. 

The relationship 12-7-21 is in terms of the expected loss of the product when the 

product is on target. This approach reduces the information and provides an interpretation 

of the index Cpm in terms of the percentage loss. This intuitive interpretation should 

increase the acceptance of this index by management. As a decision maker who may be 

interested in an upper limït on the loss from the process rather than just a point estimate of 

the loss, L(x). An unbiased estimator of E[LW ] is 



Note that L(x) is a unSormly minimum variance unbiased estimator (UMVUE) of L(x) if 

X cornes fiom N (p, a2) since it is unbiased and is a hction of jointly complete d c i e n t  

statistics, Hence 

Cpm=JW USL-LSL 

6dWj 

Notice that 

n b - ~ ) '  if which has a non-central chi square with n df and non-centrality parameter = 
Cr2 

X arises nom N( p , a2 ). The ratio 

so that 

Then an upper (1 - a) 100% confidence limit for the loss hct ion parameters, EL@)], is 



where x & - ~  is the LOO(1- a )th percentile of h, - 

Therefore a (1 - a) 100% upper confidence Mt for the loss function parameters, E[L(W, 

is 

Applying the classical Patnaik (1949) approximation by matching the first two moments 

of a scaied chi-square of the form cXt, where the constants c and v are determined by 

equating the means and variances of the two distributions, Le., to solve the equations 

So that 

and resdts in an approximate upper (1 - a) 100% confidence Limit for the loss function 

parameter, EbQQ ] 

where c= and i= 
n ( ~ - T ) ~  - 



2.8 Comments 

We have attempted to indicate that robustness studies for those process capability 

indices whose magnitudes are translated into parts per million non-conforming are 

meaningIess as the parameters are sensitive to departmes fiom norrnality. Hence 

regadess of how robust the estimator maybe, its associated parameter is not stable and 

hence any robustness claims carry Little meaning. SirnilarIy, developing actual and 

approximate confidence mtewals for these capabilày Ïndices when the process 

characteristics mise fiom non-normal distributions is an academic pursuit with no 

application. 

For those capability indices that attempt to assess the ability of the process to 

cluster around the target, the robustness of the estimator is a vdid concem. We have 

exarnined the robustness of the traditional estimator which aiso has the smdest bias and 

mean square error, in the face of moderate departwes fÎom normality. From the 

examination we are able to make recommendationsladjustments to critical values 

associated with attempts to assess changes in the process capability. Similar alterations to 

the action limits associated with capability monitoring charts are possible. 

The Cpm index, as weii as its generalization Cpm*, can be estimated respectively 

using Cpm and epm* for those cases where p = T. Both Epm and Cpm* have been 

shown to be biased estimators of Cpm and Cpm* respectively but are asymptoticaily 

unbiased. 

The quantities, Cprn and EL@)], each have their own advantages and are familiar 

to quaiity practitioners. The expected loss does require the use of an explicit loss fûnction 

such as Taguchi's modified loss function. However it is easily Uiterpreted in terms of 



monetary loss , either to the practitioner a d o r  the society when the process characteristic 

misses the target. 



Chapter 3 

Alternative Measures of Process Capability 

3.1 Introduction 

The use of order statistics in industrial applications has k e n  studied since Iate 

1940's. In statistical quality control, usually smaii samples, Say a = 5, are taken at 

intervals from a production process. For each sample, the means and the ranges are 

plotted on separate control charts to indicate whether the process is in- or out-ofcontrol. 

The study of the range and the mean range as measures of dispersion under normality are 

outlined in David (198 1) and Arnold, Balakrishnan and Nagaraja (1992). Efficiency and 

approximations of the mean range have been considered by Cox (1949), Patnaik (1950) 

and Cadwell(1953). The distribution of range in random samples has been discussed in 

depth by Hadey (1 942), McKay and Pearson (1933) and McKay (1 935)- 

Inferences regarding process measurements that do not appear to foliow a normal 

distribution were earlier cautioned against. One reason for the caution being that 

kp (Chan, Cheng, and Spiring (1 9 8 8 ~ ) ) ~  kpk and kprn (Section 2.5) have been shown to 

non-robust to departures from normality. For more dramatic departures from normality 

the problem does not lie so much in the non-robustness of the PCIs themselves. 

Regardless of the abilities of êp, epk and tprn to depict the true value of Cp, Cpk and 

Cpm respectively, if the measurements do not arke fiom a normal distribution poor 

inferences may be drawn. So dl PCIs are not universally appropriate measures of the 



ability of a process to ensure 99.73% of the process measurements fall within the 

required tolerance limlts. Another major difnculty in the abiliîy of the PCIs to indicate 

process capabiiity is their fimctional forms involve a hc t ion  of the population standard 

deviation as mentioned earlier in Section 2-3, Hence in addition to other criticisms of the 

PCIs we now find that as a general measure of process capability, Cp, as well as other 

indices Cpk, and Cpm which incorporate a into their computing dgorithm, should be 

restricted to the farnily of noma1 distributions. An alternative rneaswe of the actud 

process spread, which possesses the ability to provide consistent inferences over various 

distributions that the process measurements may assume, should k considered. 

The applications of order statistics to assess the process capability have been 

considered in Chan, Cheng and Spiring (1988a) and Clements (1989). In this chapter, a 

new process capability index, Cpo, is proposed using order statistics. We will examine 

this index for various process distributions such as uniforni, exponential and normal 

distributions. The samphg distribution of epo, the estimate of Cpo, and its associated 

properties such as pdf, mean and variance when the sample size is smali as well the bias 

and mean squared error when the sample size is large, are investigated. The right hand 

tail probabilities and critical values for small sample sizes are tabulated for reference. 

The sampling distribution of kpo is distribution-fiee when the distribution of process 

measurements is d o m  and exponential, and it works for any sample size and any value 

ofrands,forr<s- 



3.2 The Density of kpo 

Let X be the measurements of a process characteristic and a random sampIe of 

size n is drawn fiom X so as to measure the process capability. Let Y, <Y, < ... <Y, be the 

corresponding order statistics. We consider the spacing between the rth and the sth order 

statistics, that is 

whose pdfcan be shown to be 

n ! m 

ffi (w) = I[F(~,)~-'[F(Y~ +w)-F(Y~ K - ~ ~  (r-l)!(s-r -1)!(n-s)!- 

Now, d e h e  

USL-LSL 
cpo = 

D 

 ch that 

the probability P(X < 5, ) = y. 

USL-LSL a' 
An estimator of  Cpo is defked as epo  = - -- 

D 6 '  

The distribution o f  Cpo c m  be found by making a transformation on D resulting Ui 



3.2.1 The Distribution of Cpo when X arises from Uniform Distribution 

If X,,X,, . . . , X, - U(0,1), then fi - Be(s-r, n-s+r-1) (David (198 l), Arnold, 

Balakrishnan and Nagaraja (1 992)). Hence the pdfof Cpo has the form 

1 
(s-~+I)-L (n-s+r+~b~ 

- ( )  (Y) 
~ ( s - r , n - s + r + ~ ) ~  y 

a' < y < m, zero elsewhere. [3 2.1 -11 

Figures 3 .2.1.1 a-c show the density of epo using equation [3 2 1 - 1 1  when a' = 

USL - LSL = -1, n = 5, and various vaiues of r and S. 

A 

CPO 
Figure 3.2.1 .la Densîty of epo with a' = -1, n = 5, r = 1 and s = 5- 



Figure 3.2.l.lb ~ e n s i t ~ o f  tpowith a' =.1, n=S,r=2ands =S. 

Figure 3.2.l.k ~ e n s i t p f  epo with a' =.1, n=5,  r = 2  ands=4. 



Figures 32.1 -2% b show the deflsity of kpo using equation 132.1. 11 when a' = 

USL - LSL = -1, n = 10, and different values of r and s- 

Figure 3 -2.1 -2a Density of Cpo with a' = -1, n = 10, r = 1 and s = 10. 

Figure XLl.2b ~ e n s i t ~ o f  &KI with a' = -1, n =  10, r = 2  and s =9. 



Figures 32.1.3a, b show the density of êpo using equation [3 -2.1 -11 when a' = 

USL - LSL = -1, n = 20, and difZerent values of r and s- 

Figure 3 -2.1.3a Density of epo with a' = -1, n = 20, r = 1 and s = 20. 

Figure 3 -2.1.3 b Density of &O with 



From Figures 32.l.l a-c, Figures 3.2.1.2a-b and Figures 3 2.1 3a-b we can see that 

for a fixed sample size n, increasing the value of r or decreasing the value of s will skew 

the density of Cpo to the right. The magnitude of skewness is larger when decreasing s 

than increasing r rneanwhile the magnitude of kurtosis WU also be changed fiom 

leptolcurtic to platykwtic. 

Theorem 3.2.1 : 

The kth moment o f  epo when X - U(0,l) is 

E(&& )=a fk r(n+l)r(s-r-k) for s-r>k- 
r(n-k +l)r(s-r)' 

Consider the expectation of the kth moment of Cpo using equation [3.2.1.1] and 

a' 
substituthg u = -, then the expectation becomes 

V 

,k r(n+l)r(s-r-k) 
= a  for s-r>k- 

~ ( n - k  +l)r(s-r)' 

T'en the mean and variance are respectively 



Consider a special case of Cpo when n = 2, i-e., r = 1 and s = 2. The pdf in equation 

[ 3 3 A  -11 becomes 

ge&) =26-+)$, a'< y <ao , zero elsewhere. 

It c a .  be shown that equation [3.2.1.5] is equivalent to the density of Ep when n = 2 

a' 
except the constant a' is replaced by - 

3& 
. From the definition of Cp, 

Allowable process spread 
Cp = Actual process spread 

The usual estimator of Cp is defined to be 



For n = 2, the sample variance c m  be expressed as below: 

6' 
Let 6 = 1 XI - xLI = Ys -Y,, this is analogous to equation [3.2.1], then S' = - . and 

The inverse transformation is 

with Jacobian 



Let f,(x) be the pdfof Xi, i = 1.2; and g,(x) kthe pdfof 6 ,  then the form 

of the pdf associated with ep is 

Now, X has pdf f,(x) = 1, O < x < 1. By a ûam&ormation it is easy to show that the pdf 

of fi= Ix,-x,I is 

gg(x)=2(1-x), O < x < l .  

Following equation 13.2.1 .q, the pdf of ep under uniform distribution is 

a' a' 
hbiy) = 2 [ 1 - 9  3 A Y  3f iY2 '  3 f i  c y < . zero elsewhere. 13-2-1-71 

a' 
Hence this is equivalent to equation [32.1.5] with a' replaced by - 

3 f i  
- Note that both 

a' 
a' and - 

3& 
serve as a scale parameter respectively in the distribution of &IO and Cp . 

Ail the moments do not exist in this special case when n = 2 for both epo and Cp since 

the conditions in equations [3 -2.1 -31 and [3 -2.1.41 are not satisfied- 

Tables 3.2.1 .la and 3.2.1-1 b show the lower (c, ) and upper (c, ) cntical values 

of epo with a' = -1 and a' = .5 respectively, for various sample sizes, where 

p(tpo c c , )  = .O0135 = P(& cc,). 



Table 32.1. la The critical values of &XI with a' = -1. 

Table 3.2.1 . lb The critical values o f  tpo with a' = S. 

Tables 3.2.1.2a and 3.2.1.2b show the right hand tail probabilities of Cpo with 

a' = .1 and a' = -5 respectively. 

Table 3 2.1.2a The right hand tail probabilities of Epo with a' = -1. 

Table 3.2.1.2b The right hand tail probabilities of epo with a' = -5. 



Let us examine the bias and mean squared emr of kpo . 

B(&o) = E(&) - Cpo 

- - a h  a' - -  
s r -  y 

n 
s r -  y 

whese y is the probability contained between Y, and Y,. 

Assuming an equal tailed out-of-control probability, s can be d e n  as a fünction of n 

and r, i.e., s = n - r + 1. Hence the bias and mean squared error c a .  be re-stated in terms 

of n and r as below. 

Tables 3.2.1.2a and 3.2.1.2b show the biases and mean squared erron of &JO 

with a' = -1 and a' = -5 for various sample sizes. 



Tables 3 2.1.3a Biases and mean s~uared errors of t p o  with a' = -1. 

Tables 3 -2.13 b Biases and mean squared mors of &O with a' = -5. 

For example, iet n = 740, r = 1, Le., s = 740, and y = -9973, then 

Consider another example, let n = 100000, r = 135, i.e., s = 99866, and y = -9973, then 

Now, taking limits as n approaches ïnfhity, then 



and 

This implies that epo is asymptoticaily unbiased and mean squared error consistent. 

These also imply that Cpo converges in probabiiity to Cpo. 

3.2.2 The Distribution of kpo when X ariscs from Exponentiai 

Distribution 

It foliows directly fiom the transformation that X = -0 ln Y - E(i) y haviog the 

negative exponential distribution with parameter 0 if Y is uniformiy distributed between 

O and 1. If X,,X, , .. . , X, is a random sample fiom a negative exponential distribution 

with the pdf 

then r) has the pdf of the form 

a0 r-1 n ! S-r-1 
fb (w) = -@cl Le+r -ee(~r+'v)] 

(r - L)!(s-r- l)!(n-s)! ,-, 

making a substitution, u = e-*r, then 



Or, it may be expressed in te- of the distniution function of X Fx (x) = 1 -e-" 

Thus the pdf of epo utiiizing equation [3.2.2] is 

Figures 3.2.2.2a-c show varbus shapes of the pdf of &O using equation [3 -2.2.31 

when al8 = -5, n = 5 with different values of r and S. 

Figure 3.2.2.1 a Density of Cpo with a' 0 = .5, n = 5, r = 1, and s = 5. 



Figure 

Figure 

with atO = .5, n = 5, r = 2, and s = 5. 

Density of Cpo with atO = .5, n = 5, r = 2, and s = 4. 



Figure 3 -2.2.2a Density of Cpo with al0 = -5, n = 10, r = 1, and s = 10. 

Figure 3.2.2.2b with a'@ = -5, n = 10, r = 2, and s = 9. 



Figure Density of Cpo with al8 = -5, 

Figure 32.2.3b Density of &O with a'8 = -5, n = 20, r = 3, and s = 17. 



From Figures 3 22.1 a-c, Figures 3 222a-b and Figures 3 2.23 a-b we can see that 

for a fked sample size n, increasing the value of r will decrease skewness and increase 

kurtosis the density o f  epo simultaneously while decreasing the value of s will increase 

the kurtosis of density of epo . Increasing the sample size n will cause the density cuve 

flatter and SM? the mode of the Cpo to the left. 

Table 32.2.1 shows the lower (c ,  ) and upper (cU ) critical values of epo with 

a% = -5 for various sample sizes, where P&O cc,) = -00135 = P(Cpo cc,) while 

Table 3.2.2.2 shows the nght hand tail probabilities of Cpo with a'@ = -5 for various 

sample sizes. 

Table 3 -2-2.1 The critical values of epo with al0 = -5. 

Table 3.2.2.2 The nght hand tail probabilities of Cpo with a'0 = -5. 



The expectation and the variance of Cpo can be cornputed as follows : 

a'0 s-r-1 
m 1 ar 0 -c++~) (l*:) =I  e Y dy, fors-r> 1. ~(n-s+l,s-r) y 

Similarly, the second moment of Cpo is 

s-r-I 

a% ~ ( t p ~ )  = 7 1-e dy, fors-C>S. 
0 ~(n-s+l,s-r) 

Then, the variance is 

For equations f3.2.2.41 and [3 22-51 do not possess a closed fom, numerical integration 

is used to evaiuate the mean, variance, bias and mean squared error. 

Consider a special case of epo when n = 2, i.e., r = 1 and s = 2. Substituting into 

equation [3.2.2.3] results in 

. . 

a'8 -- =- e Y , O < y < a, zero elsewhere [3 2-2-73 

which is an inverted gamma distribution with shape parameter 1 and scde parameter a'0 . 

The pdf of an inverted gamma is 

where a is the shape parameter and h is the scde parameter, with 



h 
E(Y) = - , fora>l,andV(Y)= 

k2 
, for a > 2. 

a-1 (a - f (a -2) 

Following the development in SubsectÏon 32.1, it can be shown that the pdf of epo is 

a' 
equivalent to the pdf of ep when o = 2 except the constant a' is replaced by - 

3 J Z -  

Now, X has a negative exponential pdf with parameter 8. The distribution of X, -Xz, 

using the moment generating hct ion (mg0 technique, is 

1 
which is the rngfof a double exponential distribution with parameters a = O, anci P = - . 

0 

Making use of the distribution fiinction technique, the pdf of 6 = 1 X, - X1 1 is 

gb (x) = 9 e-ex , O < x < ~ , 8 > 0  

which is again a negative exponential distribution with parameter 8. 

Analogous to equation C3.2.l .q, the pdfof Cp under negatïve exponetial distribution is 



Hence both the distn'butions of Cpo and kp possess an inverkd gamma when n = 2 

a'0 
with shape parameter 1, scale parameter arO (for Cpo ) and - (for ep ). Thus, aiI the 

3 4 5  

moments do not exist in this case since a = 1, and do not satis& the conditions of  

equations [3 -2.2.41 and [3 -2.2.q- 

Let us examine the bias and mean squared error of Epo in the present. 

where y is the probability contained between Y, and Y,, 

The following table shows the biases and mean squared e n o e  of êpo with a'e = -5 for 

various sample sizes. 

Table 3.2.2.3 Biases and rnean squared errors of epo with a'8 = S. 



For example, let n = 740, r = 1, s = 740, y = 9973, and a'0 = -5 then 

B(C~O) = -0716295 - -07568533 = -.O04055833 

MSE(C~O) = 1.3662473 x W 4  + (- .00405~833)~ = l.530?45 1 x  IO-^ 

This seems to indicate numericdly that kpo is an asymptotically unbiased estimator and 

is mean squared error consistent. These also imply that Cpo converges in probability to 

Cpo. 

3.2.3 The Distribution of c p o  when X arises from Normal Distribution 

If XI,X2,---,Xn - N(p, a2), then Z,,Z, ,..., Zn - N(0,l) by the transformation 

formula Z=- X-p - Then the pdfof 6 is 
c 

s-r-1 
n! 

f, (w) = 
(r-#(s-r-~)!(n-s)! 

Notice that the probabiüty of out-of-control condition in the usual practice is a = -0027 

a 
and assuming equd tailed probabiiity then - = -00 135. The distribution of &O can be 

2 

afTected by the sample size n because the distribution of D is based on the Merence 

a 
between the order statistics X, and X, . For, if - = .O0 13 5, then 

2 



a 
When n 5 740, the distri'bution of D is just the distriiution of range. I f  we keep - = 

2 

-00135 fixed and when n > 740, the distribution of D will depend on the distribution of 

quasi-range. 

For a quaiity practitioner to monitor the quaiity characteristic in a process, usuaiiy 

smaller sample sizes are necessary. So we wÏll consider mal1 sampk inferences of epo . 

For n a 740, 6 is the range of the sample- Thus using equation [32.1] we c m  obtain the 

cumulative distribution fünction (cdf) of  tpo . 

Hartley (1942) has found the distribution of range, yr, (w), for symmetric 

unimodal distribution as follows. Let iIr,(w) and yn(w) be the pdf and cd& 

respectively, of the range, W, and sample size n. 



W 
And Yn (w) cm be rewritten, for a symmetric variate with respect to - -, as 

2 

43 

= n Y[F(- u)-F(-u - w ) ~ - '  f(-u - w)iu t n I[F(Z+ w)-F(Z)~-' f (zb where u=- z - w 
W -- W -- 
7 - 2 

" m 

+2n 1 [~(t )  -~(t-w)r-' f (t )dt , where t = z + W. 
W - 

The explicit pdf of Cpo can be obtained when Z - N(0,l) and n = 2 and 3. For the pdf of 

6 when n = 2 and 3 are respectively 

The correspondhg pdfof Cpo when n = 2, for O <y  < a, is 



a' 
It is equivalent to the distribution of Cp when n = 2 i f  a' is replaced by -. 

34% 

Analogous to Subsections 3 2.1 and 3 2.2, let X, , X, - N( p,02 ), with -a, < p c m, a > 0, 

be a random sample of size 2 and having pdf 

Let T = X, -X, , such that T - N(O,2 a2 ) and has pdf 

t2 I -- 
f,(t)=-e da', - a x t t m .  

2& 

Now D=ITI and has cdf 

Thus the pdf of D can be obtained through differentiating G, (w) with respect to w and 

it is 



Apptying equation 13 -2.1 -61, the pdf o f  ep under normal distribution is 

a' This is equivalent to equation 13.2.321 when a' is replaced by - - It can be shown 
34% 

that ail the moments of epo and ep do not exist when n = 2. The expectation of Epo is 

al2 
3 

a' -- 
making a substitution u = a d y = - -  u 2du 

4 0 ~ ~ '  4a 

which is undefined. 

Similady, aith the same substitution, the expectation of the second moment of kpo is 



which is again undefïneb Neither do the higher moments. The expectations of ep 
fo iio w directiy . 

The pdf of cpo when n = 3 is 

The rth moment of Epo is 

W 
w2 - 

3J2aVr a t= -- J6 -- - - Iw-'e 1 e dtdw 
X O O 

t 
Now, let v = - and change order of integration, the expectation becomes 

W 

1 

3JZa1r a JZ w- 

- - 1 1  wl-'e --(1+24 4 dvdw, forrc2 
x: O 0  



3f i  21-r arr rk-;) 5 
- - I 

dv tan 8 
2-r ' Letting v = - 

It O 
(1 t 2 v z ) z  fi 

When r = 1, the expectation of Cpo is 

The se :cond and higher moments do not exist. 

The bias of  epo is 

1 
B(C~O) = a'[ -92974 - - ] = -763073 a'. 

6 

For 4 5 n I 740, numerical methods or approximation methods are needed to find 

the pdf of Cpo when the distribution is normal. 



The pdfi of &O are determined for the cases ifprocess characterisàc is d o m  

distribution and exponential distribution. These pdfs can be used for any sampie size 

andior any position r and s can be. However the case for normal distribution is dependent 

2 
upon the size of sample, n, and the probability o f  out-of-control, a. I f  n l l  or nl-, 

a 

then the denorninator of epo wiII depend on the distribution of range in equal tailed out- 

2r 
of-control condition. In other situations if n l r  or nl-, where r > 1, then the 

a 

distribution of quasi-range is needed to be considered. 

McKay (1935) suggested an approximation to the distribution of range if w is 

W 
C f -  

2 
large such that 1 f (x)& = 1, hence 

McK 

W 
tf-  

2 
so suggested if w is small, then 1 f (x)dx = w f (t) , hence 

W 
f -- 

2 



Note that the distribution of epo is based on order statistics and is distrïbution- 

f?ee. epo is not just an estimate of the process capability, its magnitude c m  also be 

compared to oîher process capability indices in terms of bias, mean squared enor and 

relative efficiency. The relationships of Cpo to other process capability indices are as 

below: 

USL -LSL 6a 
Cpo = - 

D 6a 

60 1-k cpo =-- 
D 1-k CP 

- - 6 ~ 4 + ~ ~  Cpm, for p=-. I d  
D CF 

- - Cpw, for w nonstochastic. 
D 



Confidence intervals can be constructed and hypothesis testing can be elaborated if the 

samphg distribution epo is known. 

Modifications can be made to kpo so as to include asymmetric specincation 

bi ts .  A suggested form may look iike 

Cpo* =min 
' DI (YT * - LSL 1 



Chapter 4 

The Unifying Index Cpw 

4.1 Introduction 

Many authors have promoted the use of process capability indices Cp, Cpl, Cpu, 

Cpk and Cpm and have examined with difEerent degrees of completeness their associated 

properties. In an atternpt to simpii@ various process capabiiity indices that have led to 

controversy (Nelson, 1992), V m a n  and Kotz (1995% 1995b), Spiring (1 997), 

Vihman (1997) proposed families of indices that tie the various forms of measiues 

together, whiie iilustrating the statistical properties associated with each form. Ln this 

chapter, the Cpw index is dehed and the probability density function of its estimate, 

epw, presented. Properties nich as expectation, b is ,  mean squared enor, probabilities 

and critical values on some selected weights (Le. values of w) are M e r  investigated. 

4.2 The Probability Deasity Functioa of kpw and its Properties 

A naturd estimator of Cpw is 

CI USL - LSL CpW'6~m 
while the the naturd estimator of the generalized form of Cpw (equation r1.6.21) is 



where X- N(p, a2 ) are the measurements of a process characteristic, and w is a non- 

n(X-T)L and has a non-central chi square distribution of fieedom, and q= 
m2 

n(p -T)' 
with 1 df and the non-centrality parameter h = - Then 

b' 

Cpw= 
USL-LSL 

6" JG Jn 

and 

&[USL-LSL] 
where a = 

da 
= J Z G c P w ,  

and a* = 
Jn rninps~ -T,T- LSL] 

= J i T G c p w  *. 
3a 



Consider the distribution hction of Cpw, for x > O 

e 2  h J  
where Pj , the Poisson weights, and h the non-centrality parameter 

j ! 

2j+l -- Y 1 -- 
y 2  e 2  

fqj (Y)= 2 j t 1  y y > O, the chi square density with 2 j + 1 df 

t 2  ' e  
fdt)= , -, n - l y  t z 0, the chi square density with n - 1 df 



Dserentiate F~ (x) , Le., equation [4.2.5], with respect to x we can get fb (x) for w > O 

The first term on the right hand side of the above equation is zero since 8 is a 

wx2 
nonnegative random variable. L e m  u = - y, then the pdf of %w is 

a2 



a' 
2j+l n t 2 j  a2 [CS+ 1Fl[T;7--]+ ' 2x2 

When w = 1, the pdfof epw becomes the pdf of 

a' -- 

epm when X - N (p, ,02) 

Further, i fp = T, equivalently Ic = 0, the pdf of epw simplifies to 

this is equivaient to the pdf of Cp (Chan, Cheng and Spiring (1988b), (1988~)) when 

x - N ( ~ , G ~ ) .  

Consider again equation 14.2.61, if p = Ty then the @of epw becomes 



Further, if w = 1, equation [4.2.9] becomes equation [42.8]. 

The pdf of Cpw * can be obtained through the same procedure as in detennining 

the pdf of Cpw. From equations l4.2.31 and 14-2-41 we can see that Cpw and kpw * are 

having the same distribution and their distributions are difEered by replacing the constant 

a = Jnthw cpw (for Cpw) to a* = ,/=cpw * (for Cpw*) hence the pdf of Cpw + 

and its special cases associated with different values of w are listed as follows: 

When w = 1, the pdf Cpw * of becomes 

& 



If p = T, equivaiently k = O, the pdfof epw * simplifies to 

Consider again equation [4-2-10], if p = T, then the pdf of epw becornes 

Further, if w = 1, then equation [4.2.13] reduces to equation [U. 121. 

The statitical properties associated with Cpw are analytically intractable for the 

general case. However, when the target value and the process population mean are 

identical, Le., p = T, it is possible to derive some properties with difTerent values of W. 

Theorem 4.2.1: 

The ah moment of Cpw when X - N b, 02) is 



For 

2 Tij T \ j  1 Notice that y=8+qj - xnczj and Si=-=-=- - Beta - - 
0 Y '+qj I+- 

(2';1,n~1) are 

independent- Now, consider 



The mean and variance are respectiveiy 

-w Cpw 1 



If w = O, equation [4.2.l6] becomes 



Finther,  if^ = T, i-e., X = O, then equation [4.2.15] becomes 

and hence, 

Thus, the mean and variance of kpw when w = O and p = T are respectively 

If w = 1, equation [4.2.16J becomes 

f 



Thus, the meari and variance of Cpw when w = 1 and p = T are respectively 

Replacing a = ,/= cpw by a* = , / ~ n + l c w ~ p w  * in equatiom [4.2.14], and 

r4.2.171 through 14.2.261, we can obtain the moments of tpw * and its speciai cases for 

diffèrent values of W. 

The rth moment of epw * X - N (p, c r 2 )  is 

The mean and variance are respectively 



Thus, the mean and variance of epw * when w = O and p = T are respectively 



T'us, the mean and variance of epw* when w = 1 and p = T are respectively 

Cpw * 

NOW, let US examine the biases and mean squared errors of epw and kpw * . Let 

B (6) and MSE(~)  be the bias and mean squared error respectïvely of an estimator 6 ,  

recaii equations [4.2.17], [4?.2.18] [42.28] and [4.2.29], then 



= ~ ( k ~ w )  - Cpw 

n+hw a 

= r E p j  = O  .(n;zj) 
I Cpw - cpw 

Cpw* 





When p = T, Le., h = 0, then 



I f  w = O, then equations [42.42], r4.2.431, [4.2.44] and [4.2.4q become 

- 1 Cpw 1 



Taking Iimits as n + a, it c m  be shown that 

.=l and lirn - 
n-wm dn 2 

Thus both the bises of kpw and Cpw * become zero, Le., 

~ ( k p w )  = 0, and B(C~W *) = 0. 

These imply that both &v and cpw* are asymptoticaily unbiased. Also, the mean 

squared enors of &nv and Cpw * are zero, i-e., 

These impiy that when p = T and w = O both kpw and &w * are mean squared error 

consistent. These also h p l y  that both ePw and cpw * converge in probability to Cpw 

and Cpw*, respectively. 



If w = 1, then equations r42.421, [4.2.43], [42.44] and [42-45j become 

- 1 Cpw 1 

Taking limïts as n + a>, it can be shown that 

Thus both the biases of Cpw and Cpw * become zero, i-e., 

~ ( ~ p w )  = 0, and B(&*) = 0. 

These imply that both epw and epw* are asymptoticaiiy unbiased. Also, the mean 

squared errors of kpw and kpw * are zero, ir., 

MSE(C~W) = 0, and MSE(C~W *) = 0. 



These imply that when p = T and w = 1 both epw and Cpw* are mean squared ermr 

consistent. These also irnply that both Cpw and epw* converge in probability to Cpw 

and Cpw*, respectively. 

4.3 Confidence Intervals for Cpw and its Relationship to Squared Error 

Loss 

Similar to Section 2-7 we define the loss bct ion 

L(x) = ~ ( X - T ) ~  

with expectation 

Define the expected weighted loss of X when X is not on target as 

E[L , (x)] = o2 + w(p -T )~  

= E[L(x)] +(1-w)a2 

r 

?(xi -q2 
.. 2 - i = I  Il-W where O - , and L,(x)=- ô2 + w ( ~ - ~ ) Z .  

a n-1 



Il-W ..2 
Note that L,(x) =-a + W(X-~)tis auunbiased estimatorof E[L,(x)] and is a 

n-1 

function of jointly cornpkte sufncient statlstics if X - N~,s') ,  hence it is a unifomily 

minimum variance unbiased estimator (UMVCIE) for E[L~(x)]. Hence the Cpw index 

of equation C1.6.11 can be m e n  in terms of E[L , (x)] 

thus, an estimator of Cpw is 

USL -LSL 
Cpw= ,- 

epw = 
USL -LSL 

6 J L B  

Let X, , X, ,..., X, be a random sample fiom N(p, 02 ), then it follows that 

and 

and X, ô2 are independent, where X is the non-centraiity parameter. Andogous to 

Spiring (1997) and define 

n n-w ,2 QL = ,Lx + w ( ~ - ~ r J  
Q : ~ ,  becomes a iinear combination of two independent chi square random variables 



Denoting Q:,,@) as the cumulative distribution function (cdf) associated with Q:-,, 

Press (1966) showed that the Q;*,(X) can be expressed as a mixture of central chi square 

distribution with general form 

m 

with the dj's being the weights such that x d  = 1, where the d j's are the fünctions of 
j=O 

the degrees of fieedom (i.e., n - 1 and l), the non-centrality parameter, and the weight 

function. The fimctional form of the dj's are given in Press (1966), which for the 

general Q :,, (x), are as fdlows: 

ï 1-j+- 

x k) [w(n-~)lk-j[l- n - w r ( j ; ~ l  
r(i - c i@) n-w w(n - 1) 

(j-k)! 



Thus a (1 - a) 100% confidence Ïntervai for Cpw can be coastnicted as follows: 

for 

USL-LSL < USL -LsL USL -LSL "" - 6 ~ ~ / 1 ' ~ ' / = =  
- 

Cpw= 
USL -LSL 

I - 

Jl+Fcpw= usL - LsL 
60 

9 



Therefore a (1 - a) 100% confidence interval for Cpw is 

A (1 - a) 100% confidence interval for Cpw* cm be constnicted similady and it is 

Analogous to Section 2.7, we are going to find an upper confidence limit for the 

loss function parameter, E[L , (x)] . Consider the ratio 

n+Aw 
Hence, îw(x) - Q:,, and an upper (1 - a) 100% 

EL w (xll 

loss function parameter, E[L , (x)] c m  be denved 

confidence Mt for the 



n+hw 
Therefore, Lw (x) is an upper (1 - rl) 100% confidence limit for E[L , (x)]. 

Qn,ki -a  

4.4 Effects of Non-Normality on Cpw 

In order to examine the effects of non-norxnaiity of êpw, we foiIow the approach 

in Section 2.5. The estimator for Cpw is equation [4.2.1]. Now let X,,X2 ,..., X, be a 

random sample fiom X - N(0,l) and d e h e  

n 
where S ,  = 5xi and s2 = z(xi -x)~ =(n-1)s' 

i=L i = L  

and results in 

with inverse transformation 
s, = n ( k & + ~ )  

1 -. 



s, =I d z  
I f  T = O, then the inverse traLlSfonnatÏon becomes and the Jacobian of 

s2 = n(u-wz) 

the inverse transformation remains the same- Following Gayen (1949) equation [2.1], we 

have: 

and the Hermite polynomials 

- 
and . I 

--i, 

H,(-&)=(-JE), +3& H, (&)=(&y - 3 ~ ;  



The joint density of U and Z is 



U O c z c -, O< u < a, zero elsewhere. [4.4.1] 
W 

In order to find the marginal pdf, h, (u), of U we need to integrate z between the 

U U-U'Z 
Iunits O and-. By making a substitution t = - which makes the integration easier- 

W U 



Hence the marginal pdf of U is 

n-i 5 nu(1-w) 
2w 1 

n-1 3 n-i 3 nu(1-w) 
-6%8(- 2 ? 2  -) 1F1[T;2;- 2~ 1 

n-1 1 n-i 1 nu(1-w) 
2w 



O c u c q zero elsewhere. 



A a 
For Cpw=-=V , Jv 

du 
transformation, J = 

a a' 
then v = - with Jacobian o f  the inverse 

v2 f i 3 " = -  



a2 n-13 n-i 3 na2(l-w) 
+9(n+4)-i(- wv 2 ' 2  -) Fi - 2wv2 1 

~ U S L  - LSL] 
where a = = ,/=cpw, 

6c 

O < v c a, zero elsewhere. 



4.5 Comments 

The Cpw index, a s  well as its generaiization Cpw*, can be estimated respectively 

using kpw and Cpw* for those cases where p = T. Both kpw and Cpw* have been 

shown to be biased estimators of Cpw and Cpw* respectively. Asymptotically the biases 

and mean squared errors associated with both Cpw and Cpw* are zero implying that 

both kpw and Cpw * are asymptotically unbiased estimators and both converge in 

probabiiity to their respective parameters, Cpw and Cpw*, for w = O and 1. It can be 

m e r  shown, for w non-negative, that 

where 

b, c and z are real numbers. 

Assuming p = T, hence equations [4.2.42] through 14.2.453 can be shown equal to 

zero as n approaches infinity. These imply that both epw and Cpw* are 

asymptotically unbiased and are consistent estimators of Cpw and Cpw* respectively for 

non-negative values of W. 

The quantities, Cpw and E[L,(x)], each have their own advantages and are 

farniliar to quality practtioners. The expected weighted loss does require the use of an 

explicit loss function such as Taguchi's modified loss fimction attached with an 

appropriate weight fiuiction, W. Allowing the weight fiiaction (Spiring (1997)) to assume 



Werent foms aliows Cpw to be analogous to the different types of loss and utility 

functions available and used by practitioners. Ushg different weight functions allows 

one to customize the capability index to the process of interest, thereby allowing different 

shaped loss functions to be used for various processes. However it is easily interpreted in 

terms of monetary los, either to the practitioner andlor the society when the process 

characteristic misses the target. 

W e  have developed the statisticd properties of kpw and Cpw* where the 

process characteristic is normal distribution and when the normal distribution is distorted 

with non zero values of skewness and kurtosis. Vte have aiso developed alternative 

techniques to obtain the confidence intervals for Cpw as well as Cpw*. Sunilady to what 

we have done in Section 2.7 we have examined the relationship of Cpw to the squared 

error loss fünction. 



Chapter 5 

The Inverted Beta Loss Function and its 

Applications 

5.1 Introduction 

The applications of Loss fûnctions in quality assurance settings have been 

increasingly studied with the recognized importance of off-targetness by both customers 

and manufacturers. In tbïs chapter, a general class of loss functions based on the 

inversion of a family of probability density functions is examined. Applications in 

industry including reliability and quality assurance, process monitoring and control using 

economic loss are used to demonstrate applications of this general class of loss firnctions. 

Mathematical derivations are included as theorems in this chapter. Some properties 

arised fkom the IBLF are discussed in Section 5-7- 

5.2 The Inverted Beta Loss Function 

The maximum value of a standard beta pdf with parameten a > O, P > O having 

functiond form 

can be found as follows: 



Solving for x yields 

and represents the value of x where the beta pdf is a maximum- With the existence of 

unique maximum we must have a > 1, f3 > 1 and a c since 

a' W(X) - a-1 _ --- a-1 - 
, and evaluate at x = 

cbc' x2 (1 -x12 a t p - 2  

Following the development for general inverted probability loss hct ion outlined 

in Spiring and Yeung (1998), let T denote the target of the process, and define T = 

a-1 
to be fïxed- Using the unique maximum conditions associated with the beta 

a+P-2 

distribution a linear relationship can be established between a and p through T. The 

relationship can be written as 

T 1-2T 
a=-P+- and a-1= T(P - 1) 

1-T 1-T 1-T - 

L e h g  x(x, T) denote a function of the form of a beta probability density function 



where m denotes the supremurn of r(x,T). Then analogous to Spiring and Yeung 

(1 W8), the loss inversion ratio becomes 

The loss bction associated with inverthg the beta pdf is referred to as the 

hverted Beta Loss Function which, for a K, the maximum loss, is : 

Figures 5.2.1 a, b and c are IBLF's with K = 1 



andL (x, T= -80, a= 1.5, P =  1.125) 

Figure52lb L(x,T=.15,a=5,fl=23.67), L(x,T=.4SYa=5,P=5.89) 

and L (x, T = -80, a = 5, B = 2.00) 



and L (x, T = .80, a = 20, P =  5.75) 

5.3 The Risk Function 

The loss function is employed to describe the precise situation that the loss incurs 

when process measurements depart fkom the target. In decision theory the Risk Function 

provides the average loss associated with the process given the loss funcrion and some 

assumed distribution for the process measurements. It measures, in monetary units, the 

average loss to customers or society when the target is missed. The IBLF can be so 

chosen to fit the practitioners' need and its associated risk fünction can be evaluated 

easily . 

In particuiar if the process characteristic X has a beta distribution with parametes 

a > O and B > Oy then the expected loss or risk is given by 



The conjugate distriiution for this IBLF gives a closed form for the beta 

distribution. An application of this Rsk f ic t ion  wili be illustrated through an exampie 

fiom the printing industry. However there are other distributions which are suitable for 

this IBLF. ( See Section 5.7 for details ) 

5.4 Choosing the Appropriate IBLF 

in those cases where ody  the 'primary loss information" is specined, Le. T and 

Ky the general form of the IBLF is 

where K is the maximum loss, x(x,T) a standard beta pdf with parameters a and P, T = 

a-1 
is the target of the process, m is the supremum of x(x,T). 

a+P-2 

The associated risk function is equation f53.11 when assurning X - Be 

(a , ) The shape of this loss fiinction can be controued through the selection of a 

and/or p as long as both a > 1 and P > 1. Since a, B and T are related as follows : 



and assuming T to be ked ,  there are many combinations o f  a and B which can be w d  

to create various shapes for the IBLF. Three such combinations of a and P are illustrated 

in Figure 5-41. 

-I 

Figure54.1 L ,  (x, T=.6O,a=lS,P=1.33) ,  L,(x7T=.60,a=5, P=3.67) 
and L ,  (x, T= -6O,a=îO, P = 13.67) 

When T = 1 /2, fiom equation C5.4.11 it is easy to ve- that a = P. Assuming T 

= 112 and a = B > 1, the resulting IBLF is symmetric around T with the maximum loss 

reached at sUnilar distances fkom T in both directions- Figure 5.4.2 illustrates three of the 

many symmetric foms the IBLF may take on. 



Figure5.42 L ,  (x, T =  -50,a = 1.5, f3= 1.5), L, (x, T = . 5 0 , a  =1.5,P =1) 
andL,(x, T=SO,a= 1.5, P=1.5) 

When T # 112, the IBLF will be asymrneûic and have many potentid shapes. 

Figure 5.4.3 illustrates three IBLFs for the case where T < 1/2, while Figure 5.4.4 

illustrates three IBLFs for the case where T > 1/2. 

Figure 5.4.3 Various Asymmetric IBLFs with T < 112 

Outer: T=.15 ,K= l,a=l.S,j3=3.833 
Middle:T=-lS,K=l,a=5, P=23.6667 
Inner : T = -15, K = 1, a = 20, j3 = 108-6667 



Figure 5.4.4 Various Asymrnetric IBLFs with T > 1/2 
Outer: T=.72, K =  l,a=1.5, p =  1.1944 
Middle : T = -72, K = 1, a = 5, f3 = 2.5556 
Inner : T = -72, K  = 1, a = 20, P = 8.3889 

From the above figures we see small values of a "open up the arms" of the loss 

fùnction around T, whiie larger a values "tighten the arms around T". Small a values 

result in smaller econodc losses for slightly off target processes, while larger values of a 

assign a more severe penalty (loss) for s M a r  departures fiom the target. 

In those cases where T, K and an aiualiary piece of information about the Loss are 

known (e-g., [x , , L , 1, where L , represents the loss at x , ), the value of a is such that 



while continuhg to satisQ the conditions outlined in equation [5.4.1]. a can be solved 

using equation 15-4-21 using Ki = K for i = 1,2. The associated risk hction wiU be the 

same as that described in equation [5.3.1]. It c m  apply whenever x , < T or x , > T. 

Figure 5.4.5 a Figure 5.4.5 b 
T = -75, K = 10, LL.60, -751 = 4, T = -75, K = 15, L[.85, -751 = 6, 
a = 8.6844, P = 3.5615 a = 12.3235, B = 4.7745 

When T, K and two auxiliary pieces of information (e-g., [x , , L , ] and [x, , L , 1) 

are known and such that x , < T and x , > T, we need to solve for a, and a, such that 

It is easy to show the solutions are of the form 

where L ,  and L, - represent the loss associated with the values of the process 

charactenstic x ,  and x, respectively. Combining the resulting cuves provides 

practitioners with a versatile Ioss Eiinction of the form 



mz J 

dlowing both sides of the target to have a maximum loss of  K and shape based 

on x ,  (x,T) [which has parameters a, and Tl and x2(x, T) [which has parameters az 

and T]. Figure 5.4.6 illustrates the combined loss function based on two ciifferent Beta 

pas .  

Figure 5.4.6 T = -4, K = 2.5, L , (.3, -4) =1.25, L ,  (-75, -4) = 1.2 

Theorem 5.4.1: 

The associated rkk function of the IBLF, assuming X - Be (a J3 ,), is 

E P ( x ? T ) l = w  1 - C , B , ( l ,  + a , . n ,  +PR)IB(%Y P d -  

c 2 p ( i , + a . , n l + P ~ ) - B r ( l z f  a ~ ~ n 2 t P ~ ) J / B ( a ~ p  PR)) 

p.4.51 



where C i  = [T( l -T)? r  y l i  = a i - l y  ni  - - - ( a i - l ) , i = l y 2 -  1-T 
T 

Let X have a standard beta distribution with a > 0, and B > O, then 

For those situations where the maximum is different on either side of the target 

the LBLF cm be combined as follows : 



aliowing either side of the target to have maximum losses of K , and K, respectively and 

shape based on x ,  (xJ) and x, (x,T) - See Figure 5.4.7 for an example- 

O 0 . 2  0 .4  0 - 6  0 . 8  1 

X 

Figure 5.4.7 T = -65, K ,  = 15, L , (.2, -65) = 5, K, = 20, L, - (-7, -65) = 5 

Proof: 

Let X have a standard beta distribution with a > 0, and P > O, then 



Notice that equation 15.44 reduces to equation [5.4.5] when K I  = K2 = K. 

5.5 Properties of the IBLF 

1. The shape of the IBLF is scale invariant under linear transformation. 

If  the IBLF is based on a generalized beta distribution (Le., f(x)) with unique 

maximum conditions, then a transformation of the form y = a + bx results in an IBLF 



with similar shape but different scale andlor target. Assuming f(x) to be a standard 

beta pdf with unique maximum conditions, then the transformation y = a + bx results 

in y,_ =a + bx, . As a r e d t  the ratio of the pdf to its unique mode is independent 

of scale. It foiIows that 1 minus this ratio is also independent of scaie, and hence the 

IBLF is said to be scaIe invariant under linear transformations- To illustrate, Figures 

5.5.1 a and 5.5.1 b contain the IBLF associated with the standard Beta pdf and K = 10 

(i-e., L(x, T = -65)) and the IBLF associated with the transformation y = 20 + 20x 

again with K = 10 (Le., IBLF L(y, T = 33)). 

Theorem 5.5.1: 

The shape of the IBLF is scale invariant under linear transformation. 

Proof: 

If Y has a generalized beta distribution with parameters a > O, P > O and ranging fioom 

p to q ( with p 5 q ), then we can transform it to a standard beta distribution that 

possesses the same loss function as X. 

The pdf of Y is 

Let Y=(q-p)X+p andthen X= - Y-p with IJI= 
9-P 

Similarly, the mode of Y can be obtained through differentiation and found to be 



and let it equal to Tr , the target with respect to Y. 

T-p a-l - Notethat, 1) -- = T , the target value in X, 
q -p  a+p-2 

So, x(y,T') = ' ( ) a ( )  and correîpondingly m', the 
B(a7PXq - P) q - P q - P  

supremum of x(y, T' ), is 

Hence the loss inversion ratio 

Figures 5.5.la and 5.5.lb are IBLFs with K = 10. 



Figure 5.5-1 a 
L(y,T' = 33, a = 2, B = 1-54) 

Figure 5.5.1 b 
L(x, T = -65, a =2, = 1.54) 

2. Theorem 5.5.2 

The risk function is scale invariant under linear transformation. 

It foilows fiom Theorem 5.5.1, the pdf of X is 

Then the risk fiinction of Y is 



3. The risk fiinction associated with the IBLF has a closed fomi for ail distributions with 

f i t e  raw moments. 

The general form of the risk huiction for the IBLF is C-Em' (LX) " ] and can be 

evaluated for a.ii cases where the moments exist. 

In generd, the IBLF has a better evaluating form through the raw moments of the 

process characteristic X For 

C is the general binomial coefficient and pi is the rth raw moment. 

If n is a positive integer then the expectation above has h i t e  number of terms, otherwise 

it has infinite number of tenns. 



Notice that this risk fünctïon can be evaluated for any process characteristic 

distribution including normal, gamma, WeibiiU distrr'butions -.- etc. as long as di the raw 

moments exist, 

As another example to show the ease of evaluating IBLF. Let's consider the 

IBLF if X - U(a, ,BR), where O c a, c P R ,  then the associated risk function is : 

1-T 
let l=a- 1, n =  - 

T 
(a - 1) , be both positive integers, 

and let x = sidB , dx = 2sin0 cos9 dB 

c sin"" 0 n(n - l).. .(n - k + 1) 0 
cos'" 0 + 

(PR -aR)(n+I + 1) k=l(n+I)(n+l-1) ...( n+l-k+1) 



5.6 An Application of the IBLF 

A lottery ticket manufacturer produced tickets that were to be distrïbuted through 

a vendhg machine. The tickets were to be folded and stacked in columns within the 

vending machine and dispensed one at a time through a dispensing slot Mer inserthg 

sufEcient funds, a ticket would be exposed and the purchaser required to tear the ticket 

fiom the dispenser. The vending machine operators identined the critical characteristic in 

this process as the force required to remove the ticket fkom the dispenser. This force was 

directly related to the "pull strength" associated with perforations made on the tickets 

during rnanufacturing. 

The vending machine operators found that when the pull strength associated with 

the perforation was above 60 pounds per square inch (psi), tickets would not necessarily 

break dong the perforations, leaving portions of the ticket inside the vending machine. It 

was also found that in those case where puli stren* of the pedoration was less than 40 

psi, the vending machine tended to supply more than one ticket at a time- This resulted in 

the vending machine jamming as the next ticket would not feed properly through the 

mechanism. 

In the case of a vending machine jam the company felt the cost to restore the 

machine to working condition was $0.10 per ticket. If the pull strength went beyond 60 

psi, the vending machine was unable to break the perforation cleanly and the Loss per 

ticket was also considered to be $0.10. The manufacturer agreed to compensate the 

vending machine company on a sliding scale that accurately reflected the costs associated 

with offmget perforations. Both parties agreed that $0.10 per ticket fairly depicted the 

costs associated with a complete fdtue of the perforation and that this occurred when the 



perforation strengths were outside 40-60 psi interval. In addition they both agreed that the 

scale must include a $0.05 per ticket penalty to the manufacturer if the p d  strength were 

45 psi or 57.5 psi. 

Using this information above, an IBLF was UItimately used to reflect the 

compensatory package for perforations that were off target. In addition the manufacturer 

was interested in determining their risk exposure under normal operathg conditions. 

Using equation C5.43 J, for T = 55, K = . I, x , = 45, L , (x , , T )  = -05, a, = 1.9464 and 

x, = 57.5, L , (x , T) = -05, a2 = 10.0138, results in the IBLF ïiiustrated in Figure 5.6.1. 

The original and transformed puil strength data are listed in Tables 5.6-1 and 5.6.2. The 

pull strength data appears to foiiow a Be[a , = 2.0994, BR = 2.3 1 84 ] (verified by the Chi- 

square Goodness-of-fit test (p-vaIue = -0987)) whose expected loss (evduated using 

equation [5-4.51) is $0.028- 

Figure 5.6.1 
L,(x, = 45,T=55,K=.10)=.05,al =1.9464 and 

Ll(x l  = 575,T=55,K=.lO)=M,a, =10.0138 



Table 5.6.1 Pull Strength data 

Table 5.62 The transformed P d  Strength data 

5.7 Comments and Recommendations 

The shape of IBLF is easy to constnrct as the various choices of a for a k e d  T 

allows the IBLF to be tailored to the practitioners' need. In general the relationship that 

exîsts among T, a and p suggests that for a fked T, as a increases, B wili increase. 



Alternatively, keeping a fixed and increasing T, will decrease It can be seen that 

when T = 112, this may not necessary be that a = P and possessing symmetric shape of 

loss function. We can make use of equations [5.4.4] or [5.4.6] to adjust the loss function 

properly and having asymmetric shape. Figure 5.7.1 illustrates two IBLFs with T = 112 

but a # p and various values of K. 

Figure 5.7-1 

, =5) and - 

The general form of the iBLF admits a closed form risk function for those 

distributions having finite moments. The expectation of L(x, T) can be obtained easily 

even if the loss fünction is a combination of two different loss fimctions due to the nice 

form this IBLF possesses. In particdar, if the beta distribution is employed as the 

conjugate distribution, equations [5.4.5] and [5.4.71 are the solutions. If the process 

measurements follow a distribution of the form of a normal, gamma, Weibull, . . . etc., the 

risk fùnction can stiii be found- 



Under linear transformation the IBLF and its risk hction are the same as those 

IBLFs associated with the standard beta pdf. This follows directly fiom the resuit that a 

generalized beta distribution cm always be traosformed to a standard beta distribution. 

In general, the scale invariant nature of the IBLF and its associated nsk function 

under linear transformation holds for any distribution having a unique maximum. These 

c m  be shown as foilows: 

Let X - N(P,G~), its pdf has a unique maximum at x = p and let it be T. 

1 
Then K(x,T) = and its maximum is m = 

G o  
- Hence 

2 2 Now, let Y = aX + b - N(ap + b,a a ), where a and b are constants, its pdf g(y) has a 

L 

maximum is m' = 
&aa 

. Hence the Loss inversion ratio, after simplification, is 



X 
xa-' exp[- pl 

Foilowing this approach and if X - G(a,P) with pdf f(x) = with a unique 
r(a) Pa 

maximum at x = P(a-1) = T, a > 1. Then 

and 

with Ioss inversion ratio 

Then, if Y = aX + b, Y will possess a three-parameter Gamma distribution with location 

parameter b, scale parameter af3 and shape parameter a' with the pdf 

which has a unique maximum at y = ap(a-1) + b = T' . Thus 

(y a b) "-' [ (Y - b)(a - Q] 
exp - 

T'-b 



and 

hence the loss inversion ratio, after simplification, is 

Similady, if X - W(c,d) having the pdf f(x) = ~cix ' ' -~ex~[-cx~]  and X has a unique 

d d-1 d-1 x(x,T) = (d-l)T x exp 

and 

with loss inversion ratio 

For Y = a .  + b, Y WU have a three-parameter Weibull distribution with location 

parameter b, scale parameter a and shape parameter c, and its pdf is 



1 

([t J ' + b . ~ t s  lors inversion ratio is g(y) has a unique maximum at y = a - 

d-1 

&,T) y -b  d - I (T-~)(Y - b) 
m' = [T- 

d-1 d-1 (-Jd T'-b =&- 
= (t) exp{-[d(XT)d -cTd]}, for -- a - T ~  

Hence the loss fiuiction and risk h c t i o n  follow- 

There are some limitations of uiis IBLF when the unique maximum conditions do 

not hold. For example, taking a = 1 and P = 1 with any target value T, the loss will be 

zero over the range (O, 1) when standard beta distribution is concerned. It is unrealistic to 

have zero loss between the two specincation limits. 

To conclude, the applications of this proposed inverted beta loss function is not 

limited to industry as they c m  be used in any application where reflecting economic or 

monetary loss to the Company or to the society is of interest. 



Chapter 6 

Some Properties of Inverted Probability Loss 

Function 

6.1 Introduction 

Loss fhctions have k e n  studied for several decades and have ken  widely used 

for various purposes nich as business decision makuig, quality assurance and reiiability 

settings. Taguchi (1986) used a quadratic loss fiinchon to motivate and illustrate losses 

to society associated with departmes fiom the target in industrial applications. Spiring 

(1993) modined this loss h c t i o n  approach using an inveaed normal probability density 

function which provided a reasonable assessrnent of loss. Spiring and Yeung (1998) 

developed a class of loss fiinctions based on inverting various pdfs iccluding gamma, 

Tukey's Symmetric Lambda and Laplace distributions which not ody  provided the 

traditional properties of loss bctions but also emphasized the ;isymmetric loss cases- 

Loss fiinctions are used to quant* losses associated with deviation fiom a 

desired target value in both decision theory applications and quality assurance settings. 

In decision theory, loss is generdy d e h e d  as a nomegative function of the deviation of 

an estimator fiom the parameter value to be estimated. In quality assurance settings, loss 

fimctions are used to reflect the economic loss associated with variation about, and 

deviations from, the process target or the target value of a process characteristic. 



In decîsion theory, traditional loss functions usually take forms such as quadratic 

loss, absolute loss, step loss and the generalized loss (which includes the quadratic and 

absolute losses as specid cases) and possess nice properties such as boundedness, 

invariance under linear transformation, and closed under samphg ui prior-posterior 

analysis, ... etc. In this chapter, we investigate several statistîcal properties associated 

with the family of Inverted Probability Loss Functions. We have found IPLFs do have all 

these nice properties that the traditional 10% fünctions possess, and in addition IPLFs are 

more flexible in expressing the economic consequences associated with deviation fiom 

target as long as the selected probability density fiuiction possessing a unique maximum. 

6.2 Basis of Inverted Probability Loss Function 

The proposed general class of loss functions is based on the inversion of common 

probability density hctions. This family of loss hct ions satisfies the criteria that the 

loss must be non-negative, is zero worth at the target value, is monotonicaiiy increasing 

as the process drifts nom either side of target, and attains a quantifiable maximum near 

the lower andor upper specincation Mts of the process. In this section we are going to 

develop the basîs of this family of loss fûnctions. 

Let f(x) be a probability density function possessing a unique maximum at x. Let 

T = x be the value of this unique maximum, where T is the target value. Let n ( x , ~ )  = 

f(x), which is in terms of x and T, use in creating the economic loss hc t i on  for the 

process of interest, then m = sup f(x) = f(T). So that the IPLF takes the form 



where K is the maximum loss incurred when the target is not attauied and "("4 is the 
m 

Loss inversion Ratio, 

It cm be seen from the structure of equation [6.2.1] that n ( x , ~ )  is the form of a 

pdf in terms of x and T, m is the supremum (or the m;Yrimum) of n(x,~), the ratio 

x(x, T) , named the loss inversion ratio which has no unit and has a minimum value of 
m 

zero when x takes on values far fkom the target value T, and a maxùnum value of one 

when x is exactiy on target, i.e., O 5 n(X'T)S1. One property of the LIR with respect to 1 
m 

is the true percentage of the x values that are missed with respect to the target, and hence 

this percentage loss, I - x(x9-q , is the penalty it pays subject to the maximum loss 
m 

amount incurred in the process. The concept of percent defect (percentage of products 

that lie within specification limits but deviate fiom target) has been widely used as a 

measure of the quality level of process characteristics of manufactured products. Usually 

the percentage of defective products in shipped goods is s m d .  There are a number of 

properties this LIR possesses, in this section we are going to develop and examine these 

properties, and summarized in the following theorems. 

Theorem 6.2.1: 



For Os "(X9 T, SI , which llnplies O 5 SI, then multiply the inequality by 
m 

f,(x), the density of the process characteristic, and integrate over the space of X. Thus 

L J 

Theorem 6.2.2: 

The variance of LIR is 

Theorem 6.2.3: 

The variance of LIR is bounded between O and 1, i.e., O 5 V [TT)] < 1- 

Proof: 

From equation C6.2.21, we know that E {[.(y)]. 1 - k[n(y)]i' 2 O and, h m  

Theorem 6.2.1 that the maximum value of the second moment of LIR is 1 and the 

minimum value of square of the first expectation is O. Therefore O S V 

6.3 Properties of IPLF 

In manufacturing, loss functiom usually comprehend the economic consequences 

associated with deviations fiom target regardess of how small the deviation is. Since 

different processes have different sets of economic consequences, a flexible approach to 



developing loss fünctions is desirable. Taguchi's modified quadratic loss, the INLF 

(Spiring (1993)), and Sun, Laramee, and Ramberg's (1996) refkement are flexible, but 

do not cover the spectrum of potentid loss functions. 

The IPLF deiined in equation [6.2.1] c m  reflect losses arising fiom processes 

with observations not on target It also has properties inherent to the structure of the 

function. They can be expressed as follows: 

1. The generai fomi of the Risk Function for IPLFs is 

It can be evaluated either directly taking expectation of n ( x , ~ )  

~[ir (X,T)I = JR(X,T) f,(x) dx 
4 

or through the use of expectation of LIR 

where fR(x) is the distribution of the process characteristic, or a conjugate 

distribution. 

Similarly, the higher moments can be obtained 

provided that the expectations exist. 



Theorem 6.3-1: 

The IPLF is bounded between O and K, ie., O 5 E[L(X,T)] 5 K , where K is the 

maximum Loss incurred when the target is missed. 

Proof= 

For 

2. The variance of L(x, T) arises fiom using f, (x) as the process characteristic 

distribution is given by 

Theorem 63.2: 

The variance of an IPLF is K' times the variance of LIR. Hence it is bounded 

between O and IC2, i.e., O 5 v[L(x,T)] a K ~ .  

Proof= 



For O 5 v[L(x,T)] < IC2, foilows fkom Theorem 6.2.3. 

3. The Loss Inversion Ratio is scale invariant under linear transformation. 

4. The shape of IPLF is scale invariant under linear transformation. 

5. The Loss Function is scale invariant under Linea. transformation. 

6. The Risk Function is scale invariant under linear transformation. 

Theorem 6.3.3: 

Let X(X, T) be a continuous pdf denoted by f(x), having a unique maximum at x = T. 

Then under any iinear transformation Y = a + bX, b + 0, the foiIowing are scale 

invariant : 

(1) the Loss Inversion Ratio, Le., ~ (Y?T)  - - x(xJ)-  
m' 

3 

m 

(2) the shape of IPLF; 

(3) the IPLF; 

(4) the Risk Function. 



Proof : 

Given that n(x, T) is a continuous pdf denoted by f(x), then the iinear transformation 

= 

and 

= sup f(x) 
x& 

T' =a+ bT, and bm' = m- 

Let g(~) = ~(y, T'), then its LIR is 

This proves (1). 

~ ( Y Y  T') x(x, T) [ - m, ]=+- _ ],brncc(2)and(l) It follows fiom (1) that L ( ~ ,  T') = K 1 



From (3), it foIIows 

this completes the proof. 

6.4 The Selection of IPLFs 

Different choices of IPLFs can reveal differznt levels of penalties for similar 

deviations fiom a target SUnilarly, different process characteristics (conjugate 

distributions) with suitable choice of IPLF can succintly reflect the correct loss incurred 

by practitioners and hence to society. Investigation of several IPLFs with appropriate 

conjugate distribution are examined. How to evduate the quality level of products 

shipped to consumers is the problem of concern. We introduce a monetory evaluation of 

the quality of products, assuming that the tolerances are correct and the process 

measurements are in-control. In the subsequent subsections, selected loss functions with 

plausible conjugate distributions/statiSticai distributions associated with the process 

measurements are studied and compared in order to provide more information for the 

practitioners' selection- 



6.4.1 The Inverted Normal Loss Function 

Hence 

and 

I 
Let f(x) = - 60 ,which has a maximum at x = p and let it be T. 

with LIR 

1 
m = sup f(x) = - 

x d c  &c 

and hence the IPLF is L(x, T) = K{l -exp[- (x~~:)~]}. 

It can be seen from equation [6.4.1.1] that the larger the 02, the smdler the LIR and 

hence the larger the M F .  The Risk Function associated with N F ,  assuming a 

conjugate distribution of N ( ~ ,  ,ci) , using equations [6.3.l] and [6.3.3] is 



Theorem 6.4.1.1 : 

The rth moment of LIR associated with the INLF when the conjugate distribution is 

provided the expectations exist 

Proof: 

For the rth moment of LIR of INLF wlth respect to a normal conjugate distribution is 

Now, to complete the square in the exponent and it is 

Then the expectation becomes 



Using equation C6.3 -6'J and Theorem 6.4.1 -1, the variation o f  INLF arises fiom using the 

conjugate distribution of N ( ~ ,  ,ai), is 

Theorem 6.4.1.2: 

The rth moment of LIR associated with the INLF when the process characteristic 

distribution is u(~,,P,) is 

r=O. [6.4.1.6] 

provided the expectations exist. 

nius, the mean and variance of INLF for the d o m i  process characteristic 

distribution are respectively 



Theorem 6.4.13 : 

The rth moment of LIR assocîated with the INLF when the process characteristic 

distribution is ~ ( a  , , ,) is 

provided the expectations exist. 



The mean and variance of N F  for the gamma distribution are respectively 



For the expectation and variance of INLF when the process characteristic 

distribution is ~ e ( a , , ~ , ) ,  we need to expand the INLF into a series and then perform 

terrn by term integration to approximate these expected values. 



The normal pdf provides the basis for a varîety o f  IPLFs, a i l  with the familiar 

inverted symmetric beli shape. By varying T and 02, quality practitioners can customize 

a loss function in order to accurately depict Iosses associated with process departures 

fiom the target- The risk fünction associated with INLF can be evaluated for most 

distributions such as uniforni, gamma and beta that the process measurements rnay 

follow. However, diniculties may arïse in determinùig the fimctiond form of the risk 

hct ion for some distributions, for examples, Weibull (W(a, ,b,), with bR > 2) and 

lognormal. These associated risk fbctions will result in a complex number. Hence, the 

conjugate distribution for the INLF appears to be the normal distribution. 

6.4.2 The Inverted Gamma Loss Function 

Lettuig n ( x , ~ )  take the bctionai  form of the gamma distribution allows us to 

expand the class of IPLFs. The shape of the correspondhg loss function will be different 

fiom the N F  as R(X,T) will now be asymmetric around the target. The gamma 

distribution will form the basis for a group of loss fünctions that can be used to represent 

processes with continuous asymmetric Loss. The IGLF is developed as foUows: 

Let f(x) = with a unique maximum at x = ~ ( a  -l), a >17 and let 
r(a)~" 

it be T. Hence 



and 

with LIR 

thus, the IGLF is 

m = sup f (x) = 
XEX 

a -1 

It can be seen fiom equation [6.4.2.1] that if a increases, the LIR will decrease, thus the 

IGLF in equation [6.4.2.2] will increase. 

Theorem 6.4.2.1: 

The rth moment of LIR associated with the IGLF, when the conjugate distribution is 

~ ( a . 7 P , ) ,  is 

provided the expectations exist. 

Proof: 



provided the expectations exist- 

The mean and variance of IGLF for the gamma distribution are respectively 

Theorem 6-4.2.2: 

The rth moment of LIR associated with the IGLF, when the process characteristic 

distribution is ~ ( a ,  ,PR ) is 

r = 1 2  k [6-4-2-63 

provided the expectations exist. The expectation equals to 1 i f  r = 0. 



The mean and variance of IGLF for the uniform distribution are respectively 



Theorem 6.423: 

The rth moment of LIR associated with the IGLF when the process characteristic 

provided the expectations exist. 

The mean and variance of IGLF for the normal distribution are respectively 





Note that equations [6-4.2.101 and [6.4.2.11] may resdt in complex numben if a is not a 

positive integer- 

Theorem 6.4.2.4: 

The rth moment of LIR associated with the IGLF when the process characteristic 

distribution is ~ e ( a ,  ,fi,) is 

r = 0 ,  1,2, k. [6.4.2.12] 

The mean and variance of the IGLF for the beta distrîbution are respectiveIy 

The gamma pdf provides the bais for another range of IPLFs, ail with inverted 

asyrnmetnc shape having the right arm of the IGLF open up wider on the right hand side 



of the target By v-g T and a, quality practitioners can customize a Ioss hction to 

depict iosses associated with process departures fiom the target. However, care should 

be taken when practitioners fit an asymmetric loss ushg IGLF. If the target of the 

process is near the upper specifkation limit? IGLF may not depict losses adequately in 

this situation. 

The risk fiinction associated with the IGLF can be evaluated for distributions such 

as uniform7 n o d  and beta, that the process meanirements may foiiow. As mentioned 

eariier in Section 6.4.1, the Weibull and lognormal distributions may enhance difnculties 

in determinhg the fünctional form of the risk function. Thus, the conjugate distribution 

for the IGLF appears to be the gamma distribution- 

6.43 The Inverted Beta Loss Function (IBLF) 

The derivation of IBLF and its associated Risk Function have been discussed in 

Chapter 5, so that only the expectation of it's LIR is shown here. Recail equation [5.2.1] 

that when cr increases, LiR will decrease and thus decreases the IBLF. 

Theorem 6.4.3.1: 

The rth moment of LIR associated with the IBLF when the conjugate distribution is 

~e(a,$,) is 



The mean and variance of the IBLF for the beta distribution are respectîvely 

Theorem 6.4.3.2: 

The rth moment of LIR associated with the IBLF when the process characteristic 

distribution is ~ ( a ,  $, ) is 

The expectations of LIR of IBLF when the process characteristic distribution is 



If n is a positive integer then the expectation above has finite number of ternis, otherwise 

it has infinite number of terms- 

The beta pdf provides the basis for a variety of IPLFs, ail with various inverted 

symmetric and asymmetric shapes. By varying T and a, quality practitioners can 

customize a loss fimction in order to accurately depict losses associated with process 

departures fiom the target The risk fiuiction associated with IBLF c m  be evaluated for 

distributions such as uniform, nomai and gamma, that the process measurements may 

follow. Difficulties may arise in determuiùig the fûnctional form of the risk fimction as 

mentioned in Sections 6-4-1 and 6.4.2. However, numencal value of the nsk fiuiction 

associated with IBLF can be obtained using cornputhg packages such as Mathematica. 

Hence, the conjugate distribution for the IBLF is the beta distribution- 

6.5 Comparison of IPLFs 

The PLFs that we have considered include the M F ,  IGLF, IBLF and their 

associated properties for the uniform, normal, gamma and beta distributions. Let us 

compare the performance of these IPLFs under homogeneous situations by fixing the 

target at some T with the same variation on their open-upward " m s "  and hence se thg  

the same mean and variance for all the process characteristic distributions. 

Because the IPLFs are scale invariant, we can fk the target value of T between O 

and 1 to reduce calculations- The values of T equal to -1, -5 and -8 allow us to compare 

the various IPLFs. Two sets of hornogeneous process distributions were chosen for 

consideration, one with smali variation and the other with large variation. 



The distributions associated with parameters of IPLFs sefected with fked T and 

same variation on "anns" are shown in Table 6.5-1 

distributions associated with parameters with srnail 

respectively in Table 6.5.2a and Table 652b.  

wbiIe the 

and 

process characteristic 

variations 

TABLE 6-5-1 Fixed T with same variation on ccarms" 

are shown 

Table 6.5.2a 

Distribution 
Normal N(T, a2) 
Gmma G(a,B) 

Homogeneous process characteristic distributions 

1 2  1 with =?Y OR =- 
12 

Beta Be(cc,P ) Be(2,lO) Be(2,S) 

N(.l, -0107) 
G(2.5427, -0648) 

1 Distribution 1 Sam~le  s~ace 

1 1 Gamma G(3, 6' 

N(S, -0500) 
G(6-8541, -08541) 

1 Beta 

Nc.8, -0255) 
G(27.05 10,.0307) 



Table 6.5-2b Homogeneous process characteristic distributions with p,=12, a;= 24 

1 Beta 
m 

Be(3.2.4.8) 1 O ~ x ~ l ; O ~ v ~ 3 0 *  1 

Distri'bution 
Uniform ~ ( 1 2 -  6&. 12+6&) 
Normal N(10,lî) 
Gamma G(6,2) 

. - 1 

Beta Be(4-64,l-69) 1 O - = x ~ l ; - l O ~ y ~ 2 0 *  l 
V-n 

Sample space 
12-6& c x < 1 2 + 6 &  

-<xcoo 
O <xcm 

To compare the risk function is equivalent to comparing the expected value of 

LIR. I f  we are going to select the smallest risk fiinction it is equivalent to choosing the 

largest expected LE. Tables 6.5.3a to 6.5% show the expectations of L E ,  with 

diffierent T values, associated with difKerent process characteristic distributions. 

9 
Table 6.5-3a Expectation of LIR with T = -1, o'= .O107 

1 Beta ~ e ( 2 , 6 )  
1 m 

1 -002230 1 -007775 1 -007963 I 
# Approximated value using G(2, -1) 

Table 6.5.3b Expectation of LIR with T = -1, a2= -0107 

. -  . 
.026858# 
-195636 
-488535 

Normal N(S, .O1 07) 
Gamma G(3, -1666) 
Beta B e 6  2) 

t Gamma G162) 
I 

I ~000000 1 .000000 1 .oooooo I 

-00370 1 
-2 18479 
-531418 

.14395 1 
,167626 
-477809 

2 p,=12,0,=24 

Uni£orm u(12-6fi. 12+6&) 
Normal N(12,24 ) 

G(2.5427, -0648) 

.OOOOOO# 
,001 725# 

N(. 1, .O 107) 

.- -131552 

,772373 

. - .  
Beta Be(3.2,4,8) 
Beta Be(4.64, 1.68) 

Be(2,lO) 

,013827 
- 

,001463 

,175546 
,006008 

.214813 

.O13854 
-243 123 
.O15170 



From Tables 6.53a and 6.5.3b the target value T = -1 is near the lower 

specification limit, the INLF depicts the loss quite satisfactory if the process 

rneasurements are uniform or normal, irrespective of large or srnali variations. However, 

it wili overstate the tnie loss when the process measurements are skewed to the left such 

as Beta(6,2) in Table 6 -53 ,  G(6,2) and Be(4.64, 1.68) in Table 6.5.3b. The IGLF does 

a little better among these cases especidy where the process meanwments are gamma. 

The IBLF appears best in a l l  situations when the process variation is srnaIl. 

Table 654a  Expectation of LIR with T = -5, a2= -05 

Table 6.5.4b Expectation of LIR with T = .5, a2 = -05 

I 

Normal N(12,24) 1 -407509 1 ,OOOOOO# 1 .O00000 1 

- 
2 pR=.5, <rR=.0107 

Uniform U(0,l) 
Normal N(.5, .0107) 
Gamma G(3, ,1666) 
Beta Be(6,2) 
Beta Be(2,6) 

# Approxhated value usuig G(6, -1) 

N(.5,.05) 

-546292 
.612372 
-632013 
-519218 
SI921 8 

G(6.8541,.0854) 

-499985 
.602064# 
-571549 
-364509 
-561 889 

# Approximated value using G(6, -1) 

Be(2,2) 

-666667 
-690305 
-666667 
-666667 
,666667 

Tables 6.5.4a and 6.5.4b show the expectation of the LIR of the IPLFs when the 

I 

target value (Le., T = -5)  is at the middle of the process. The IBLF depicts loss 

.O000 19 

.661656 
-57505 1 

Gamma G(6,2) 
Beta Be(3.2,4.8) 
Beta Be(4.64. 1.68) 

.O000 13 
-853333 
-675556 

,00001 1 
-743910 
,537525 



extremely well where the process variation is s m d  or large. The N F  reflects loss 

much better than the other two IPLFs whenever the process variation is large. The IGLF 

is the worst in these situations- 

Table 6.5.5a Expectation of LiR with T = -8, G~ = -0255 

- -  < 

1 Normal NC5. -010n 1 -320186 1 
I 

2926 12# 1 -651712 1 . - 
1 Gamma G(3, -1666) 1 

I I 1 

-250092 1 -223922 1 -623138 1 

Table 6SSb Expectation of LIR with T = -8, a2 = -0255 

-4200 13 
-926726 

B e t a  ~e (6 ,2 )  - -037514 ' -022892 

. - 1 I 1 

Beta Be(4.64. 1-68) 1 -696812 1 -675903 1 -908127 

# Approximated value using G(27, -0308) 

2 pR=12,aR=24 

Uniform U(12- 6 a, 12+6 f i )  
Normal N( 12,24 ) 
Gamma G(6,2) 
Beta Be(32,4.8) 

I 1 1 + Approximated value using G(27, -0308) 

-722601 Beta Be(2,6) 

From Tables 6.5.5a and 6.5.5b, it can be seen that the IBLF is the best when the 

,741539 

N(.8, -0255) 

-549375 
.O00030 
,157804 

target value (T = -8) is near the upper specification limt and process variation is smail. 

The IBLF ranked second afier the INLF when the process variation is large. The IGLF is 

the worst among ail these situations, 

Based on the tabulated values above (Tables 6 5 3 a  to 6.5-5b), we have shown 

numerically that the overall performance of IBLF is the best among the three IPLFs 

G(27.051, -0307) 

.OOOOOO# 

.OOOOOO# 
.O00035 
-121304 

Be(2,5) 
-039162 

.000000 

.O00025 
-633012 



considered. Even though the variance of the process is large or srnail, the IBLF 

prescribes the loss consïstently regardless of whether the target value is located near the 

lower or upper specification limits- The performance of INLF is good ody  when the 

target value is near the middle and when the variation of the process characteristic 

distribution is small- The performance of IGLF is good onfy when the target value is 

near the lower specification b i t  irrespective of whether the variation of the process is 

large or sxnali. 

6.6 Comments 

The increasing use of loss fùnctions in quality assurance has created a demand for 

realistic and representative loss fiuictions. The family of inverted probability loss 

functions provides practitioners with a wide variety of Loss fiinctions that can be used to 

accurately depict process loss. We have examined the general propertïes of the Lnverted 

Probability Loss Function physîcally and statistically- Different cases of P L F  with their 

plausible process characteristic distributions are compared The risk b c t i o n  associated 

with IPLF is dependent upon the distribution of the process characteristic. Hence, the 

process characteristic distribution is important io selecting the best IPLF to reflect their 

true loss. 

From the evaluation above we c m  con% that the conjugate distributions for the 

IPLFs based on c'closed under sampiing" and "make calculation easyyy are respectively 

normal distribution for the INLF, gamma distribution for the IGLF and beta distribution 

for the IBLF. Also, we have suggested some other possible process characteristic 



distributions for use in evaluating the associated risks when the process measurements do 

not follow exactly their correspondhg conjugate distributions. 

The properties of  IPLF captioned Ï n  thïs chapter are lùnited to only one piece of 

primary loss information, Le., the target T, the rnaxUIlum loss K and [x,, L,] where L, 

represents the loss at x,. We can examine the properties of a composite inverted 

probability loss fiindon with two pieces of loss information, Le., T, K, [x, , L, ] and 

[x, , L, 1, or more generalIy with T, K, , [x, , L, 1, K2 , and [x, , L,]. The IPLF has the 

following form 

allowing either side of the target to have maximum losses of K, and K, respectively and 

shape based on n, ( x , ~ )  and x, (x, T) , where m, is the supremum of it, ( x , ~ )  and m2 is 

the supremum of x,  (x, T) . 



Chapter 7 

Conclusion 

7.1 The Process Capabüity Indices (PCIs) 

The process capability indices Cpm and Cpw are techniques which c m  be used to 

evaluate the ability of a process to attain a preset target value T and to fall within required 

specincation Limits concurrently. While Cpm* and Cpw* are the generalizations of Cpm 

and Cpw respectîvely so as including asymmetric specincation limits. However, Cpw* is 

a unified approach which draws together a particular class of process capability indices 

(Spiring (1997)) and ailows one to examine the statistical properties associated with 

estimaton of the various indices using a similar perspective. Varying different weight 

fûnctions allows one to customize the capability index to the process of interest and again 

to custornize the index to the appropriate loss fitoctions king used for various process 

depichg losses due to variation fiom T. 

Those PCIs which incorporate o into their computing algorithm and whose 

magnitudes are translated into parts per million non-conforming are meaningless in the 

face of depamires fiom nonnality. Regardless of how robust the estimator maybe, its 

associated parameter is not stable and hence any robustness clairn carry little meaning. In 

the face of normality distorted with non-zero values of skewness and kurtosis, adjustments 

to critical values associated with attempts to assess changes in the process capability. Al1 

PCIs involving o in their computation may contain much less than 99.73% of the process 



measurements if the process distribution is not n o d .  The process capability index Cpo 

is proposed as an alternative for ass~ssing process capability when the underlying 

distribution of the process measurements is UIZiform and exponentiai. The estimate of Cpo 

is distribution-fiee and can guarantee a coverage of at least 99.73% of the process 

measurements irrespective to the target value. Determination of the numerical value of 

&IO becomes a matter of finding a 99.73% probability between two orler statistics, i-e., 

P (Y, < D < Y, ) = -9973, and using the width of this interval ( Y, - Y, , where r c s) as a 

rneasure of the actual process spread. The bias and mean squared error of kpo has been 

shown convergent even though the rate of convergent is slower than that of Cpm, kpw 

as well kprn *and epw * . 

7.2 Inverted Probability Loss Functions 

Over the last few years, loss bctions have becoming increasingty important in 

quality asmance settings for quantifjhg economic Iosses associated with variation about, 

and deviation fiom, a desired target value or the target value of a product characteristic. [n 

Chapter 7, we have developed some properties of loss functions with primary loss 

information based on inversions of probability density functions and make numerical 

cornparison of some selected IPLFs. W~th an auxiiliary piece of loss information we have 

found that the performance of an inverted beta loss function is better than the inverted 

normal loss fiinction and the uiverted gamma loss fbction irrespective to whether the 

target value is near the lower or upper specincation LUnits or near the center of the process 

distribution. An industrial application of IBLF as well as its properties are included in 



Chapter 6. Fuaher study of IPLF can be extended to loss hctions with two pieces of loss 

information dowing two maximum Iosses on either side of the target value. 

The family of inverted probability loss hct ions  provides practitioners with a wide 

variety of loss functions that can be used to quality assurance settings. It also provides 

flexibility for practitioners to accurately depict process l o s  and succintly reflect monetary 

Loss to the Company or to the society of interest 

7.3 Future Research Direction 

There are sevcral possible extensions in some of the work done in previous 

chapters which may lead to significant results. The Cpm index, as mentioned in Section 

2.3, can be used to measure process capability when the measurements are normdy 

distributed. The index Cpm is expressed as a number which summarizes the process 

variation and the process drift fiom its target as the actual process spread relative to the 

allowable spread. A measure can be constnicted to quanti@ how the process 

measurements are clustering around the target- Analogous to Section 2.5, the robustness 

of the unifying index, Cpw, to deparhues kom normality is a possible extension of 

Chapter 4. Allowing dinerent weights (Spi~g(1997)) in Cpw we c m  compare the 

performance of the PCIs under norrnality distorted with non-zero values of skewness and 

kurtosis. 

The bivarïate beta distribution has the foiiowing pdf 

x,>Oy x2>0,x,+x,<l, a,,a,,fbO, zeroelsewhere. 



T'en X, and X, are sm*d to possess a bivariate beta distribution. FoUowing a similar 

approach of IBLF in Chapter 5, an inverted bivariate beta loss hction can be examined. 

It may extend to inverted multivariate beta loss function. Similady, inverted bivariate 

gamma loss fimctioa and inverted multivariate gamma bss fiuiction can also be studied. 
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