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ABSTRACT

The main theme of this dissertation deals with the impact and consequences of

non-normal distribution on the process capability index Cpm. In this thesis, much work

has been done in this area including the properties of Cpm, the estimate of Cpm, under
normality, its sensitivity to non-normality and also the relationship of Cpm to squared

error loss. Related to Cpm is the unifying measure of process capability index Cpw.

Several properties of épw are investigated. Much of the controversy surrounding the Cp
index involves 6c in the denominator. It carries particular physical meaning when the

process characteristic is normally distributed. A new index Cpo is proposed which is

based on the difference between two order statistics. The sampling distribution of épo

is obtained for those cases where the process characteristic is uniform, exponential and
normal distributions. The behavior of ép , when n = 2, under non-normal situations such

as uniform and exponential distributions is also investigated as a special case of épo .
Another major issue addressed in this dissertation is the Inverted Probability Loss
Functions (IPLFs). It is a modified loss function found by inverting a probability density
function which was first invented by my supervisor Dr. F.A. Spiring in 1993. The first
loss function I studied is the inverted beta loss function (IBLF). I have found certain
interesting properties that this class of loss function possesses such as the shape, the loss
function and its associated risk function of the IBLF are scale invariant under linear
transformation. Finally, I have investigated a few more IPLFs satisfying the usual loss

function properties and developed some theorems in this portion of the study.
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Chapter 1

Introduction

1.1 Overview

Those measures of process capability known as process capability indices (PClIs)
have been used in industry for more than 20 years. Since the introduction of process
capability indices popularized by Juran (1974), second and third generation indices have
been developed as well as a myriad of other measures have proliferated in both
application and variety. The widespread use and abuse of process capability
measurements has led to improvements in quality while also becoming topics of
considerable controversy in the last few years. Many of the controversies could be
avoided through better knowledge of the properties associated with the various measures

of process capability indices.

1.2 Introduction of Cp In;lex

The process capability index, Cp, was first introduced by Juran (1974) and it has
been used extensively in manufacturing during the early 80’s in Japan. The Cp index has
been defined to be

Co = Allowable process spread
P Actual process spread

The allowable process spread is generally taken to be the difference between the upper

specification limit and the lower specification limit while the actual process spread is



represented by 66 where o is the process standard deviation associated with the
measurement of a specified characteristic (i.e., X). Cp is generally calculated as follows

_ USL - LSL
60 ’

Cp
The traditional assumptions associated with Cp include
(1) the characteristic measurements arise from a normal distribution;
(2) the measurements are taken only when the process is in control; and
(3) the target of the characteristic is the midpoint of USL and LSL.

The traditional estimator of Cp is defined as

N USL - LSL

Cp = 2.
p S [1.2.1]

The probability density function, expectation, and mean squared error of Cp as
defined in equation [1.2.1] have been developed in Chan, Cheng and Spiring (1988c) and
Chou and Owen (1989). Most studies that deal with the estimation of Cp are based on
the above assumptions (Kane (1986a)). The impact of non-normal processes including
mixtures of two normal distributions possessing different means but similar variance
(Kocherlakota, Kocherlakota and Kirmani (1992)); and a single normal distribution
distorted with different values of skewness and kurtosis (Chan, Cheng and Spiring
(1988c)) have been documented. While others have promoted alternative techniques
including Clements (1989) which uses the difference between the upper (at the 99.865™)

percentile and the lower (at the .135™) percentile as a measure of actual process spread.

Chan, Cheng and Spiring (1988a) used Cp " = EE%L—S-I:, with d denoting the width of



the interval expected to contain 99.73% of the process measurements. Their goal was to

use the width of the tolerance interval with 99.73% coverage 95% of the time (i.e., W)

rather then 6S as a measure of actual process spread to assess Cp . A similar approach
was proposed by Pearn, Kotz and Johnson (1992). They use

USL-LSL
Co= 0c

as a robust capability index developed to be as insensitive as possible to non-normal data.
The constant 0 is chosen such that the probability of coverage, P(i - 66 <X <p +00), is

close to one and as independent of the original distribution as possible.

1.3 The Development of Other Process Capability Indices

Many researchers (Hsiang and Taguchi, (1985), Chan, Cheng and Spiring
(1988b)) point out that Cp does not incorporate a target value into its determination.
Second generation process capability indices (Kane (1986a), Kane (1986b)) attempt to
incorporate deviations from the target value, T into their assessment of process capability.

The list of second generation PCIs include

USL—-pn

Cpu= 3o
_ p—LSL
Cpl= ——30_

Cpk = min{Cpl, Cpu]
and Cpk* = (1-k) Cp

2| T—p |

— = Tl 9<k<l,and LSL <p <USL.
USL-LSL

where k =



These indices attempt to take into account process variation as well as departures

from the target value in their assessment of process capability. Each of these indices
involves the unknown parameters p and ¢® which generally must be estimated, resulting

in the following estimators

épu - USL-X
3S

épl _ X~LSL
3S

épk = min[épl,épu]
Cpk=(1-k)Cp

. : 2T-X]|
where ~USL-LSL"
These estimators provide reasonable point estimators for their respective indices, but the

statistical distributions associated with them are quite complicated.

The distributions (Chow and Owen (1989)) of the estimated process capability
indices including Cpk, Cpl and Cpuare determined, their means, variances and mean
squared errors are given. Interval estimations and skewness of flpk (Zhang, Stenback
and Wardrop (1990)), confidence bounds of épk, ép[ and épu (Kushler and Hurley
(1992)) are investigated under the assumption that process measurements are independent
and normally distributed. A number of authors have proposed modifications of process

capability indices that take into account to some extent the centre, or the target value, of

the process and others that perhaps are more appropriate for non-normal situations.



The third generation of PClIs include measures such as Cpm which is defined as

Cpm——USL-LSL (3]

Yo +(u—T)

proposed independently by Hsiang and Taguchi (1985) and Chan, Cheng and Spiring

(1988b), that incorporate the proximity to the target value as well as the process variation

when assessing process performance. The sampling distribution, under the normality
assumption, for an estimate of Cpm (épm) and some of its properties (Chan, Cheng and

Spiring (1988b)) are examined. Estimators, bias and mean squared error of Cpm are
investigated and various approximate confidence intervals (Subbaiah and Taam (1993))

are obtained and compared in terms of coverage probabilities, missed rate and average
interval width. The robustness of Cpm to departures from normality is studied and
extended to include the PCI

Cpm* = min[USL-T,T—LSL]
3,/52 +(u-T)?

so as to include asymmetric specification limits. Derivation of the distribution and its

[1.3.2]

properties are studied and summarized in Chapter 2. Critical values for estimating Cpm
are suggested for small sample sizes, and the control chart constants used for monitoring
Cpm (Spiring (1995)) when the normal distribution is slightly distorted by skewness and
kurtosis (Gayen (1949), Barton and Dennis (1952), Draper and Tiemey (1972)) are
tabulated.

The relationship between Cpm and the expected squared error loss provides an
intuitive interpretation of Cpm. Johnson (1992) relates Cpm to squared error loss and

this loss is expressed in a relative manner such that users need to specify the target and



the distance from the target at which the product would have zero worth. Confidence
limits for the expected relative loss are also discussed. A similar relationship between
Cpm and the estimated expected loss is proposed, and the upper confidence limits for the

loss function parameters and its approximation suggested.

1.4 Examination of Cp Index in Various Distributions

The sampling distribution of Cp has been established under the assumption of

normality. We will examine the distribution of ép when the process characteristic
follows uniform and exponential distributions. However, due to the difficulties of the
sampling distribution of S under different distributions, the sample size is limited to n =
2. Comparisons with the normal distribution results with respect to expectations, mean

squared errors (if such exist), probabilities and the related critical values (lower, ¢, , and

upper, c) are tabulated and summarized in Chapter 3 as special cases of épo (a

proposed process capability measure introduced in the following section ).

1.5 Proposed Measure of Cp Index Irrespective to Normality

Assumption
It is well known that the distribution of the sample standard deviation, S, is not
robust to non-normal pdfs (Nelson (1992)) and departures from normality hinder the
effectiveness of the estimators in drawing inferences regarding population parameters. In
Chapter 3, a proposed index Cpo, which is based on order statistics, and is defined as

USL-LSL
Cpo=—"F—— [1.5.1]



where D = £ ~§_, with P(X<&,) =7, 0 <y <1, r<s, & the ith quantile, is
investigated.

The distribution of D , the difference between the rth and sth order statistics, can
be obtained for various distributions of X and hence the distribution of

a USL-LSL

Cpo=———s—— [1.52]
D

can also be found. The pdf of Cpo under different distributional forms including the

uniform, exponential, normal distributions are examined.

1.6 Unifying Approach of Process Capability Indices

In an attempt to summarize the process capability indices as one simple form,
several authors (Pearn, Kotz and Johnson (1992); Vannman (1995); Spiring (1997)) have
proposed a general form of PCI that encompasses a wide variety of existing PCls.

Vinnman (1995) proposes the index

C.(uv)= d:“lP‘M| :
3\/0 +v(p-T)

>

USL-LSL USL+LSL
where d= 5 , M= )

, u=0, v=0.

Most existing indices are then considered as special cases of C_(u,v). For example,

letting u =0 and v =0, results in

C,(0,0)=—=C
»(0,0) 30 P

while u=1, v=0, it produces



u=0,v=1,

andu=1,v=1,

The derivation of the pdf can be found in Vinnman and Kotz (1995a), expectations and
mean squared errors can be seen in Vinnmanand Kotz (1995b) and Vinnman (1995).
An alternative algorithm was proposed by (Spiring (1997)) which suggested using:

__ USL-LSL
6\{ c?’ +w(1.1—'[')2

Cpw [1.6.1]

_ min[USL —T,T-LSL]
3o +w(u-T)>2

Cpw* [1.6.2]

where w is a non-stochastic weight. The pdf of épw (see equation [4.2.1]) developed in
Spiring (1997) is based on a mixture of central chi-squared distributions. Similar to

Viannman (1995) the most common indices can be formed as special cases of Cpw by

.. ) ) USL +LSL )
putting different weights. For example, assuming T = — by setting
(i) w=0, results in

USL-LSL
Cpw=—=C
P 66 P



@ii) forw=1,

Cpw = USL-LSL Cpm
6\f0‘2+(p—'[')2
k(2-k -
(iif) when w = aﬁ, with p =IE;_—T|-
USL-LSL
Cow = K-k
6 |6 +———" (u-T)?
Vo et
—1-k) USL-LSL
6c
=(1-k)Cp
= Cpk*.
d ) |1 USL-LSL USL-LSL
iv) similarl == -1|—=,wi =5, a=p——
(iv) similarly for w Kd-—lal) I} o with d > a=p 5
Cowe= USL-LSL

2
S| SR Y I TP
° ’[(Had ‘Lz “

Iu—I(USIA-LSL)‘
I

C
d P

=Cpk.
The statistical properties of Cpw including its pdf and associated confidence intervals

are investigated, analogous to Spiring (1997). The relationship between Cpw and the

estimated expected weighted loss is discussed and upper confidence limits for this loss



function parameters are illustrated. Further study of épw including its density under
normal distribution distorted by skewness and kurtosis (Gayen (1949)) is discussed in

Chapter 4.

1.7 Loss Functions

In decision theory, loss functions are used to describe the deviation of an
estimator from a parameter value. Loss functions traditionally take forms such as
squared error loss, absolute error loss, weighted loss and 0-1 loss. Each of these forms
tacitly assumes that the larger the error made in estimating the parameter value the larger
the loss incurred. Different levels of penalties are inherent to each form the loss function
takes. Keeping these in mind, statisticians and practitioners make use of this concept to
develop new applications in quality settings. This idea helps to stress the importance of
being on target for both customers and suppliers. The use of loss functions has increased

steadily in industrial applications.

1.8 Modified Loss Functions

The loss function approach for assessing quality was first proposed by Taguchi
(1986) who uses a modified squared error loss (quadratic loss) function to assess and
illustrate losses to society associated with departures from a process target. Taguchi’s
modification added a bound to the usual quadratic loss function in order to avoid an
infinite penalty for those measures situated large distances from the target. Spiring
(1993) proposed an Inverted Normal Loss Function which differed from the traditional

quadratic loss by providing a bounded, and hence more reasonable, assessment of

10



economic loss. Claiming that the INLF severely penalizes off-targetness, Sun, Laramee
and Ramberg (1996) refined the INLF and provided nonlinear least squares estimates for
the shape parameter of the modified loss function. Spiring and Yeung (1998) developed
a class of loss functions based on inverted pdfs including the gamma, chi-square, Laplace
and Tukey’s Symmetric Lambda distributions. This general class of loss functions has
nice properties and can accurately reflect symmetric and asymmetric losses incurred by
the process. However the various loss functions in this class have parameters nested in
their associated pdfs. In conjunction with these Inverted Probability Loss Functions there
is a limited number of conjugate distributions for the loss functions to select in order to

assess the average loss or the risk function associated with the process.

1.9 Another Family of Loss Function

In Chapter 5, a family of loss functions is developed based on an inverted beta
pdf. The shape of the Inverted Beta Loss Function can be modified to suit the
practitioner’s needs, while providing all the properties of the above mentioned loss
functions. By restricting this family of loss functions to those derived from the beta pdf
we manage to provide a wide variety of potential loss functions while maintaining one set
of parameters for the entire family. The conjugate distribution can be used to
characterize the process measurements and has finite moments, allowing the risk function
generated by the IBLF to be evaluated and depicting the true average loss/cost associated

with off-targetness.

11



1.10 Some Properties of the Inverted Probability Loss Function

The invention of inverting a normal pdf to assess loss functions for off-targetness
is primarily introduced by Spiring (1993). The development of this type of loss functions
is further developed utilizing other density functions. However the properties of the
family of Inverted Probability Loss Functions has not been fully studied. In Chapter 6
several properties of this family of IPLFs are investigated. A few particular IPLFs have
unique and interesting properties that can help practitioners to assess these loss functions
correctly and appropriately. For each IPLF considered, some plausible conjugate

distributions are suggested and worked out for comparison purposes. The general forms

of the expected value of the loss inversion ratio (i.e., E[[i(é'r—)] }) under each IPLF
m

are listed as theorems, followed by the associated mean (risk function) and the variation
arising from different distributions of the process characteristic.  The general

performances of the IPLFs are compared numerically under homogeneous conditions.
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Chapter 2

The Index Cpm

2.1 Introduction

The process capability index Cpm is used to provide an assessment of the ability
of the process to be clustered around the target. As Cpm is not traditionally used to
provide insights into the number of parts non-conforming the Cpm parameter does not
require 6c to reflect a precise number of non-conforming. As a result, unlike other
capability indices including Cp, Cpu, Cpl and Cpk, the Cpm index can provide
practitioners with meaningful information in non-normal settings. The robustness of an
estimator of Cpm to distributional assumptions and the resulting impact on the inferences
is investigated.

With the capability indices receiving increased usage in process assessments and
purchasing decision in the industry, the indices Cp, Cpk and Cpm were of particular
interest. These indices are easy to compute and interpret, and they are convenient for use
by quality practitioners because these are based on traditional specification limits.
Nevertheless, some of them are not related to the loss incurred in failing to meet
customers' requirement. Taguchi (1986) emphasized the loss in a product’'s worth when
one of its characteristics departs from the customers' target value. Johnson (1992) related
the Cpm index to the symmetric squared error loss and expressed the loss in a relative

manner so that the users need only to specify the target and the distance from the target

13



where the product would have zero worth. Upper confidence limits and its
approximation for this expected relative loss were illustrated. In this chapter, a similar
relationship between Cpm and squared error loss is established which is based on the
estimated loss other than the relative loss. Upper confidence limits and its approximation

for the loss function are discussed.

2.2 Measuring Process Capability

Process Capability indices are used to assess the ability of a process to meet
customer specifications. There are many indices currently available, with the most well
known being Cp. Cp is often referred to as a measure of process potential rather than
process capability, as it fails to consider where the process measurements are located.

Processes with small variability, but poor proximity to a target, have sparked the
derivation of several indices that attempt to incorporate a target into their assessment of
process capability. The most common of these measures assume T to be the midpoint of
the specification limits and include Cpm and Cpk.

The process capability indices Cp, Cpl, Cpu, Cpk and Cpm belong to the family
of indices that relate customer requirements to process performance in the form of a ratio.
As process performance improves, either through reductions in variation and/or moving
closer to the target, these indices increase in magnitude for fixed customer requirements.

In each case larger index values indicate a more capable process.
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2.3 Effects of Non-Normality

If the process measurements do not arise from a Normal distribution none of the
indices discussed in Section 2.2 provide valid measures of the number of parts non-
conforming. Each index uses a function of ¢ as a measure of actual process spread in its
determination of process capability. But as several authors (Hoaglin, Mosteller and
Tukey (1983), Mosteller and Tukey (1977), Tukey (1970) and Huber (1977)) have
pointed out, that although the standard deviation has become synonymous with the term
"dispersion”, its physical meaning needs not be the same for different families of
distributions, or for that matter, within a family of distributions. Therefore the actual
process spread (a function of 6c) does not provide a consistent meaning over various
distributions. To illustrate, suppose that precisely 99.73% of the process measurements
fall within the specification limits. The values of Cp are 0.5766, 0.7954, 1.0000, 1.2210
and 1.4030 respectively when the measurements arise from a uniform, triangular, normal,
logistic and double exponential distribution. As long as 6c carries some practical
interpretation when assessing process capability (i.e., is translated into ppm non-
conforming), none of the indices should be used if the distribution of the characteristic
under investigation is not normal.

If we assume process capability assessments to be studies of the ability of the in-
control process to produce product around the target, then Cpm will provide practitioners
with an assessment of capability regardless of the distribution associated with the
measurements. Clustering around the target, rather than a measure of non-conforming
releases the physical meaning attached to 66. The denominator of Cpm then provides a

measure of the clustering around the target and compares this with customer tolerance.
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Eliminating the physical meaning allows Cpm to be used to compare the
capability of various processes (or processes over time) regardless of the underlying
distribution. However the underlying distribution will impact the inferences that we can
make from samples gathered from the population. The effects of non-normality on an
estimator of Cpm are examined.

In order to assess process capability using Cpm in the presence of non-normal

process measurements we need to better understand the effect of non-normality on the

behaviour of the estimated process capability (i.e., Cpm). Moderate departures from

normality can be emulated using a modified Gayen (1949) approach where the pdf

n
associated with Z(Xi--”f)2 (where X,.X,, ..., X, represents n observations selected
i=1

randomly from a population) is transformed to reflect the pdf associated with Cpm. The

third and fourth moments are then varied to examine the impact of moderate departures

from normality, for the characteristic under investigation, on the distribution of Cpm.
The resuits provide practitioners with a graphical view of the impact of non-normality as
well as providing mechanisms for analyzing and correcting for the impact of non-

normality.

2.4 Generating and Estimating Cpm

Cpm was previously defined in equation [1.3.1] and its generalized form (i.c.,
Cpm*), which includes the original definition of Cpm (i.e., when USL-T = T-LSL) in
equation [1.3.2]. Cpm* continues to reflect changes in the process analogous to other

measures of the process capability while allowing T to be any value between LSL and
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USL. If the process variance (o) increases, the denominator in equation [1.3.2]
increases and Cpm* will decrease indicating that the process is less capable. If the
process drifts from its target value (i.e., if p moves away from T), the denominator of
equation [1.3.1] will again increase causing Cpm* to decline, again indicating that the
process is less capable.

In this section we will examine some statistical properties of épm and épm"‘
including means and variances. For X ~ N( p.,cz ), and

Epm—— USL_LSL 241]

6y62 +(X-T)
USL-LSL

6 Jn&2+n()—(—T)z

where a= \/;[US6L—LSL]=‘/n+?\. Cpm
c

~2
6= 262—, central chi square distribution with n - 1 df
c

"= n(i—'l")Z

0,2

, non-central chi square distribution with 1 df and non-

centrality parameter A =

2
M, and is independent of 6
c

0+n-~ xﬁ’l, non-central chi square distribution with n df and non-centrality

parameter A ( Johnson, Kotz and Balakrishnan (1995)).
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- minfUSL - T, T—LSL]

" Cpm* =
Similarly, — 242
Y 3.0 n6? n(X—T)z : ]
V2 TS
,/9+n
where a*= JEM[Usg ‘T,T_LSL]=\/I1+A. Cpm*
o
Theorem 2.4.1:
The rth moment of Cpm when X ~ N(p,0%) is
l . I"( n-iéj—r)
N 2 ™
E (Cpm' ) = (1—112'— Cpmz) 2Pj———<=,forr<n [2.4.3]

j=0 r(n+2jj
2

Proof:
~ r
E(Cpm') =a' E[(9+a)_5:|
L r(n+ij—r)
= al'z 2 ZPJ .
j=0 r(n+21 )
2
: r(n+2j—~r)
(IH—}\.C 2)2 §Pj 2 i
i=0 r(n+2;)
2
6]
32
where Pj = , the Poisson weights.
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The mean and variance of épm are respectively

E( m):‘/ Cp zp [2.4.4]

,
, 15
P [2.4.5]

. A
v{eom )= com?; ZP:'T—)”‘ P
) (e

Y

The rth moment of épm * is similarly obtained and stated without proof in the following

theorem.

Theorem 2.4.2:
The rth moment of épm * when X ~ N(p,062) is

(n+2j—r)
. r )
E(Cpm*')= a*' E[(9+a)_7]— a* 2 2 ZP

§=0 F(n+2j)
2

Vn min[USL-T, T-LSL] _ _Jai% Cpm*.

3o

[2.4.6]

where a* =

Now, let us examine the biases and mean squared errors of épm and épm *_ Let

B (é) and MSE (é) be the bias and mean squared error respectively of an estimator 8,

then
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Jon 229 [ 5
nt ISP —— £ — R ?Cpm2+

N‘
T
!
TN
N |
+
—
SN———~
T
)
=
TN
)
+
o
N——

+ 1|{Cpm?

20
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B(épm *) = E(épm "‘) -Cpm*

( L 2 (_“)
n+ ( ) - 1|Cpm* [2.49]

MSE(épm *)= E[(épm *—Cpm *)Z] = V(épm *) + [B(épm *)F

o) g 5
=| 2% sp. Y b : +1|Cpm*? [2.4.10]

Under the assumption p =T, i.e., equivalently A = 0, hence the biases and mean squared

errors of épm and épm* become

iy
B(épm) = 11———2——1 Cpm

1)
B(épm *) = J% —2—-1 Cpm*

i n-2 n-1 i
, r( 2 ] o ( 2 ]
MSE(Cpm) = | 2 —2. 2 A2 /1 |cpm?

f o3 3

2 2

2 2

MSE(Cpm*) = | —2 /222 /.1 |Cpm*?

f o3 T o3)

2 {2

2 2

21



Taking limits as n approaches o, it can be shown that

—1 and lim (2= _Z=1.

EO 6

Thus both the biases of épm and Cpm * become zero, i.e.,

n
n—>w 2

B(épm) =0, and B(épm *) =0.
These imply that both Cpm and Cpm* are asymptotically unbiased. Also, the mean
squared errors of épm and épm* become zero, ie.,
MSE(Cpm) =0, and MSE(Cpm*) = 0.
These imply that both épm and épm"‘ are mean squared error consistent. These also

imply that both épm and épm * converge in probability to Cpm and Cpm*, respectively.

2.5 Effects of Non-Normality on épm

The generalized Cpm, Cpm*, can be estimated by

min[USL - T, T -LSL}
3\/ S2 + aX-0)* -1

n-1

Defining o' = \f E[(X—T)Z] = \[0'2 +(1,1—T)2 and letting X,,X,,.., X, denote a

random sample of size n, an estimator of ¢’ is given by

Cpm* = [2.5.1]
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é (x; -Xf +n(X-T)

n—1

n—1

_ J(n_l)sz +n(X-T)

- [+ Ty

~ USL-LSL USL-LSL
and Cpm = — =
6o’ Y

n—1

where Y = i(Xi —T)2 .
i=l

Similarly, Cpm * is defined as

_ min[USL-T,T-LSL] _ a;

Y JY '

n-1

Cpm *

[2.5.2]

Using Gayen (1949), the distribution of épm and Cpm * can be obtained from a

Normal distribution distorted with nonzero values of A; and A,, where A; and A, are

measures of skewness and kurtosis, respectively. The resulting distribution of Cpm

(similarly for épm * ) can be obtained through transformation.
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Consider a random sample of n measurements, X,,X,, ...,X, , of a characteristic
taken from a process which is in-control, then the sum of squares of the measurements

with respect to the target value, T, is

i=f:[(Xi —T)2 =n(X-T) +(n—1)82
= ——T) 2 +S,

n

n
where S, =2 X, ,
i=1

n s 2 n 2 2
=509 <2 -1) {31

and results in

S| =n(t z+T)

with inverse transformation
S =y — nz

a(sl ’52)
Ay.2)

R L

1

and the Jacobian is J =
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=+
If T = 0, then the inverse transformation becomes {s[ =Nz and the Jacobian of the
s, =y—nz

inverse transformation remains unchanged. Hence, following Gayen (1949) equation

[2.1], we have:

- [n_l) (1) = Wy(n-1)=W(n-1)
r r|5)22

and the Hermite polynomials become

H,(x)=x H(-Vz)=—+Vz H,(Vz)-vz
N I
H;(x)=x* —3x R T 7 Y 7 N - N W = W
H,(x)=x*-6x"+3 H4(—\/E)=ZZ—62+3 H4(\/;)=zz——6z+3.

Note that Hl(— \/;)=—Hl(\/_z.)



The joint density of Y and Z is

h(y,z)=W, (n—l){l+%—[ﬁ3( vz )+3(—zJH1( vz )]
S| A |

n+l

+Bl7—i3— ( Vz )6—3(2n+3X—-J_ )4+9(n+41— 2)2—15

6(-—2]( —z )4—3(n+3X—\/~ )z+6)
(m)(i z)z(n(n-{-lX— Vzf -3(a-1))

6n(n-2) (y ?

W(H—z) }H;fi
+W, (n—l){u—“%— 3(«/2)+3(—z) [(JZ)}
e nhmb (e

n+l

72[ o2 -3 i) 9fara T 15
(L )( (Vz) 3(ae3)z )2+6)
(n+1)( J (n(n+1XJ—)2_3(n_1))

e |
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+% Hy(-z)+ H;(V2) +3(X-Z)[H‘(—Jz- +Hl(&)]]

Lok H4(_ Jz)+H,(Vz) +6( -z)[HZ(- )+H,(vz) ]+6(n 1)(Il Z)z}

+—=-= 2nZ’? —6(2:1-&-3)22 +18(n+4)z—30+12(;- )[nz —3(n+3 z+6]

exp(_ %) (y- nz)"li_'l -1 - )

T
e ) e

+—=>| n2’ —3(211-!»3)22 +9(n+4 z—15+6(—~—z) nz> —3(n+3)z+6:

+(n9+1)(!" )2[“(““ 3{n-1) 1]+(:fgl)l(n-2+)1[ _2)3} >

0<z< %, 0<y < oo, zero elsewhere. [2.5.4]
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In order to find the marginal pdf, h[(y) , of Y we need to integrate z between the limits 0

and %. By making a substitution u= 4 which makes the integration easier. Now,

, then z=%(l—u), % -z= i—u,andyu=y—nz,with %du=-dz. Thus

let u=y

, forO<u<l1,0<y<wm

h(y, u) = h(y, 2) %

T J_z

b(y’n(l u) n
n-l1 l n-1 I

exp( y)y 2 2

(5K

5
[ (-u)*-6 y(1 u)i-3+6y (z(l-u)—l)i(ii)ﬁuz]

J—y - u)zly 1

24

4—{ nZ—j(l—u)z —3(2n+3)§—z(1—u)2 +9(n+4)%(1——u)—15

72
+62 (n—]’;(l —u)?-3(n+3)< (1~—u)+6J

N [n(n+1)y(1-u)_,(n_1ﬂ 6nn-2) y° s }

(n+1)n 2! " (n+3)(n+H) n3
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+n).4 2(l u) —6— (1 u)+3+6—u(1 u) 6 u+3([1 1) 2uZ:I

24 i (n-!—l)
+“7}‘—223- y I (1-u)’ —-3(2n+3)y—-(1-u)2 +9(n+4);(1—-u)—15

+6—u(1 u)’ ——18(n+3)y—2 (1-u)+362u

3 _ 2 _ 3
+9~:£2—u2(1—u)—27(n )y o, 60n-2) y u’ }}

(n+l) n? " +-(n-f-?a)(n+l) n’
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Hence the marginal pdf of Y is

h, (Y) =£ h(y, u) du

exp(—i)ﬁ“%[ {6910

o N g )

I_(£1+_2J " (o+1) n? r(f‘iﬁ)

2

0 <y <, zero elsewhere. [2.5.5]
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It can be easily shown that for any given sample size n (= 2), where A; and A,

satisfy the positive definite region described by Barton and Dennis (1952) and Draper

and Tierney (1972), then Ihl(y) dy = 1. This can be verified by integrating the marginal
0

pdf of Y over the region from 0 to . The positive definite region is defined as follows.
When the measures of shape, A5 and A,, are known a curve of the form

2z
X

2
f(X)=p v x)e—’
( V2n
chosen to have the same first four moments as the pdf of x, is often taken to represent it,

where p,(x)=1+3c, H,(x) is a vth degree polynomial in x expressed as a sum of
r=l1
constant multiples of Hermite polynomials, H,(x). When x is in standardized form, the

JA
values ¢, =¢,=0, c; =?3-—, (A =% and c_ =0 for r=5. Then f(x) is positive definite

if p,(x) >0 forall x. The solution of this positive definite region is described by the co-

ordinates (c,,c,,...,c, ) satisfying the following equations
1+>c H,(x)=0and ¥c rH,_ (x)=0.
r=1 r=1

Now, the constant term inside the curly bracket of equation [2.5.4], when multiplied by

the integrand and integrated with respect to y over the region 0 to o, is:

n n
RANS ‘1_“1) (l) (_X) 7
i ) el

ECE IO

n) 2
—|922
r(3)2
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The coefficient associated with A, when integrating y from 0 to «, becomes:

n-1 (%) [n+4) %‘f
1 1{ 2 )r N72)2°
n o2

RGO

L
2 )2

combining the coefficients, from (a) to (f), gives:

&[ 3 _£+3+6(n2-1)_6(n-l)+3(n-l)2:|

24 [n? n n n’
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= B4 I3 6n+3n” —6+6n+6n—6n7 +3-6n+3n2}=0.
n

Similarly, the coefficient associated with A3 is:

n—1 (Q (n+6) %g
RGLOEG
n? (n+6) (n—l) (1 LI

—_— D70 252

i) (5 rZ)z

n-1 S n+4

®) — 3(20+3) F(T) r(i) r(_z_) a3 __92n+3)
T R
(5 D g
" () (%Y (Y
@) -15 F(HT—IJ r(%) (2)
0

@)

)

Nl

r_(11+ l_(i) r n+4)2—"+4
18(n+3) U2 /7 \2 2 18(n+3)n-1)
T2 (n+4) (n—l) 1) no n2
| — g b I S
> I 5 r > 2

i3



combining the coefficients, from (a”) to (j’), gives:

n}é[ls 9o(20+3)9(n+4) _ 18(n-1) 18(n+3)n-1) 36(n—1) 9n+1)fn-1)
—5 - —-15+ 7 — +— + 2

72 | n? n? n n n’

_ 27(n2—1)2 N 6(n—1)2(n—2) }

n

_ 3023
72n?
+180-9n? +4—6n+2n” |

[5-9—6n+12n+3n> —5n® ~6+6n+18~12n~6n> —12n+12n* —3+3n> -9
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Therefore Ih,(y)dy = 1 and hence is a proper marginal pdf associated with the joint
0

density function h(y, z), where Y=3 (X,-T)* and Z=(§—'I’)2 . Now,
il

Cp =V,
6| X VY
n—-1

a; alz
for each vVE—= 2> y=—

Jy v
with Jacobian of the inverse transformation,

_dy __2af

dv v3

So that the pdf of Cpm is:
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n+l 3 n+l 1 n+3 1
5H3) e T5H3) {3
.6 ay 2 J\2) cai 2 )\2) .(o1) af 2 )2

+3
n’v* r n_) nv? r(n_-i-ZJ (n+1) n?v* r n+4
2 2 2
n—-1 7 n-1 5
=== 22 2
nA3| af [ 2 (2) N [ 2 ) (2)
+ —3(2n+3)
72 nZv® n+6 n2v? n+4
I > r >

r(n-{»l (3) r(n+l)r(l) 1_(u+3. (3)
4 - M5 2 - 5 6 - 3
a 2 2 a 2 2 a 2 2
—18(n+3)—=1 +36—L +9—1
( )n2V4 r n+4] nvz ]_“([H.zj 112v6 I“(ﬁ)
n+3 1 n+>5 1
IN—1urm — r— [ —
) af & (2]+ o) st 3 H3)

(n+1) n2v* r(n+4J (n+3)n+1) n3v* r(n%é)

0 <v < oo, zero elsewhere. [2.5.6]
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It can be shown that g, (V) is a proper pdf when A; and A, satisfy the positive

2

definite region associated with the density, by making a substitution of the form y=—L

v

Hence, it is just the marginal pdf given by equation [2.5.5] and the results follows. For

B, B)= I(e)T(B)

C(o+p

) the pdf of épm can be written in terms of the beta function and it is

aZ Ias)?‘ )
expl—5 | 3 R
v A v? 2a; B(n—l 1)
_ n3 2 2
(S 7
2 )2
4 _ 2 _
DAy 3I4B(n l’i B B(n 13J+3B(n l’_l_J
24| n- 2 2} v 2 2 2
p al g(n+t 3 al (n+l 1 (n 1) a} _(n+3 1
+6—— -6 28__’ B ’ =
n’v 2 °2) v 2 (n+l)n v? 2 72
2 6
L 3,68(11 17) ~3(2n 3) [n 15}
721 n°v 2 2 2yt 2 2

6
n-1 3 ISB(H -1 1)-{-6 2y
22 2 72 n’v®

nv" v
2 6
B(n+3,—l-)+36 ai B("H,l}w 2, B(n+3’3)
2 72 nv: (2 72 n’v® 2 2
6
_27(n -1) a} B(n+3,_1_]+ 6n(n-2) aj B(n-!—S,l)
(m+) n2v* U 2 "2} (n+:3)n+1) n?v® 2 2

0 <v <o, zero elsewhere. [2.5.6a]
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Theorem 2.5.1:

The rth moment of Cpm, forr <n, is

o) 15 w5 _{2) 5

E(Cpmr)= r n 8 n+d4) n+2 n
2 f3) Ly (%) )
o2 l}(rﬁf—r) F(n+;—-r] r[n+§.—~r) r(n_;_r)
3 -2 2 -
IR ECRECTIECE D
2 2 2 2
forr<n. [2.5.7]
Proof:

Using equation [2.5.4], the expectation of the rth moment of Cpmis
R _r w L
E(Cpm' )= E{a{Y 2 ] =aj [y 2h(yMdy
0

and the results follow after simplification.

Lemma 2.5.2

The first, second moments and variance of épm for r <n, are respectively,

NG GRGRLS
SECRNESS
’r(%ﬂj - F(%I-J [2.5.8]
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. 1 2z 1023
E(Cpm? )=a? 4 3
( o ) - {n—Z " (n+2)(n—2)+(n+4)(n+2)(“‘2)}

V(Cpm): aj niz * (n+;in—2) M (nMXlxréXn—Z)
FEGIGRGRS
L) ) () G)
Snxé{ r(nzﬁj _,F(DTH) +3 r(%l) -F(ET_IJ | [2.5.9]
HEGEGEGES
Proof:

For the first and second moments, just direct substitute r = 1 and 2 into equation [2.5.7].

The second moment can be simplified as

— s _
| 1) [ E) ) A5
E(é 2) al 2 D7L4 1§ 2 2 . 2
3 * (%) %) )
2 L2 \ 2 2
4 ( —
ks n+4) r n+2) F(EJ F(E
+5n1.3 > 3 \_ 2 +‘2 2 _

2 2
( -
24 r n+6) r n+4] r(n+2] I“(EJ
. 2 . 2 2 2

N————
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azl 2 22 2023
=4 + 4 3
2 |02 (0+2)n-2) (0+4)n+2)(n-2)

Y I S TS 1023
M2 (042)n-2) (n+4)n+2)n-2)

The variance of Cpm follows from V(Cpm)=E(épmz)—[E(épm)]-a&er
simplification. It can be seen from equations [2.5.8] and [2.5.9] that the expectation of
Cpmwill increase when A, increases and will decrease when A; increases. Increasing

the values of A; and A, causes the variance of Cpm to increase and vice versa.
Following from equation [2.5.3], a proper estimator of Cpm* is

o+ — Min[USL - T,T - LSL] _ a;
P ;[ Y JY’
n-1

the pdf of Cpm* can be easily obtained by substituting a; to a, in gépm(v) as

g épm.'(v) . It takes the following form:
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3
Ly a; B(n = 5) e (n = 3) 33( -1’1)
24 anv“ 272 nv2 272 2 2
.4 .2 ‘4
P B(n+l,§_)_ a, (n+l l} +3(n ~1) aj B(n+3,lj
n2v* U2 72) mv* 2 (n+1)n2v* 2 2
‘6
nAi| a; n-1 7 al’ (n—l 5
+ B -3(2n+3)——B| —,=
72 [n’—vﬁ (2 2) ( )n2v4 2 72
+6
a; (n -1 3) lSB( l}_ P B(n+l,§
27022 2 72 nZvé 2 2
2 .6
n+l 3 n+l 1 a; n+3 3
— 18(n+3 36 +9 Bl —,—
( ) nZv* (2 2) nv2 (2 2) n?v® ( 2)

_27(11 ~1) a1 B(n+3 ')+6 (n-2) a:(’ B(n+5 l]

(n+1) n2v* 2 2 (n+3)n+1) n2v®

Se—

a; >0, 0<v<oo, zero elsewhere. [2.5.10]

4, /n-1 4
Forn=5,T=0and a, =-————=§

g (i.e.USL-LSL=4), the density function of

Cpm becomes

g (v)=—road3] 133333+ 20833h,| 4+361199v™* —284444v~2
om exp(.sssssg) .

A

+.069444733[ —~20+35674v "% —-541799v™* +2133333v‘2]

0 <v <o, zero elsewhere. [2.5.11]
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Figures 2.5.1 a-e shows the graph of Cpm using equation [2.5.11] for different

values of A; and A,.

{5, 0, 0O}
2.5;
2
Ao 1.5 :
(Cpm :
g 1
OSJ
0-
0 1 2 3 4
N
Cpm

Figure 2.5.1a Graph of Cpm whenn=35,T=0, a, = %, A; =0and A, =0

{5, 0.1, 1.5}

2.5
. 1.5
(Cpm :
g (Cp .
0.5
Oied
0 1 2 3 4
A
Cpm

Figure 2.5.1b Graph of Cpm whenn=35,T=0, a, = %, A;=.land A, =15
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{5, 0.2, 1.5}

Al
Cpm

~ 4
Figure 2.5.1c Graph of Cpm whenn=35,T=0, a, = 3 Ay =2and A, =1.5

2.5:
N 1.5
g (Cpm) :
1
0.5

o _

0 1 2 3 4
/N
Cpm

Figure 2.5.1d Graph of Cpm whenn=5,T=0, a, = %’ Ay=3and A, =25
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{5, 0.3, 3.5}

0 1 2 3 4

FAN
Cpm
Figure 2.5.1e Graph of Cpm whenn=5,T=0, a, = f;-, A; =3and A, =3.5

The mean and variance are, respectively

4 Ay 25;33)

E|C =t

(Com)~ 3J2n[ 378

vite )_16 Ay 10231 (4 A, 25% ’
37217180 2x|3 21 378

When A; and A, are both zero, then the mean and variance will be

E(épm)= 9\1[6_
( )_16(311: -8)

8in

Using this result we can examine the impact of moderate departures from the normality on

the density- function of Cpm. The plots that follow, graphically depict the distorted



distribution of X (the characteristic of interest) and the resulting distribution of Cpm for
various values of A5 (i.e., A; =0.0(0.1)04) and A, (i.e,, A, =0.0, 0.5, 1.0(1)4.0). Each
pair of plots represents the distorted distribution of the X's (i.e., f(x)) and the resulting

distribution of Cpm (i.e. g(Cpm)) forn=>5.

Figure 2.5.2 Series of plots showing the impact of A, and A, on gépm(épm)
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{5, 0.4, 1.}

2.5
2!
A 1.5;
f(x) g (Cpm) .
i
0.5:
Or
4 0 1 2 3 4
PalS
X Cpm
{0.4, 2.} {5, 0.4, 2.}
6: 2.5;
0.6 :
0.5 Z
0.4: A 1.5
£(x) 0.3 g(Cpm) E
0.2: :
0.1 0.5:
0 0-
-4 -2 0 2 4 0 1 2 3 4
’
X Cpm
{0.4, 3.} {5, 0.4, 3.}
H 2-5:
C.6: :
0.5; 2§
0.4t ~ 1.5:
£(x) 0.3 g (Cpm) L
0.2:
0.1 0.5:
0t 0
-4 -2 0 2 4 0 1 2 3 4
A
X Cpm

From the above plots it is evident that A; and A, have relatively small impact on
the underlying distribution (i.e., f(x)) while the impact on g( épm) appears much more

dramatic. Clearly A, introduces bimodality to g(épm) and would appear to have an

impact on any inferences made. To quantify the impact of skewness and kurtosis on
g( Cpm ), the tail probabilities (i.e., P( épm> c) associated with various values of A; and

A4 are summarized in Table 2.5.1.
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TABLE 2.5.1 P[Cpm >c=15/n=5,T=0,a= g,[l_a,l, Ayl

Ay 0 0.5 1.0 2.0 3.0 4.0
|As1
0 0223410 | .0278535 | .0333660 | .0443910 | .0554159 | .0664409
.1 * 0276911 | .0332035 | .0442285 | .0552535 *
2 * 0272038 | .0327163 | .0437413 | .0547662 *
3 * * .0319042 | .0429291 | .0539541 *
4 * * * 0417922 | .0528172 *

* g(épm) is not positive definite
Reading across Table 2.5.1, it can be seen that the right hand tail probability
associated with a fixed constant ¢ is about 1.25 to 1.5 times larger, for A, =.5 and 1 and
fixed values of | A;], and about a double when A, is in the range of 2 to 4. This implies
that g( épm) is flatter, thicker and heavy tailed for nonnegative values of A and |A;|
fixed. On the other hand, when we read vertically down Table 2.5.1, the right hand tail
probability of Cpm decreases gradually for a fixed A, when | A ;| increases.

ol i

The density function of Cpm forn=10, T=0and a, =

2

859029 +.416666A 4[ 2.57709 + .343612v™* — 2-06167v‘"]

+.l38888k"r —12.8854 + .49087v ¢ —-5.15418v*+ 15.4625v—2]

gl

0 <v <o, zero elsewhere. [2.5.12]
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with mean and variance

N 227 ( 35 35h, 125A3%
E{Gpm)- 43( 35 ]

128 4096 24576
2
( )'16 e, 503 =35  35h, 12543
—+
8 96 672 2 128 4096 24576
When A, and A, are both zero, then the mean and variance will be

35V2n
192
4096 —1225n

18432

E(épm =

V(épm

The tail probabilities P[Cpm>c| n=10, T=0, a, =2, | A;|,A,] are summarized in

Table 2.5.2.
TABLE2.52 P[Cpm>c=1.5n=10,T=0,[As], 1,]

Aoy 0 0.5 1.0 20 3.0 20
=
0 10022230 | .0032352 | 0042474 | .0062717 | .0082961 | .0103205
1 * :0032065 | 0042187 | .0062431 | .0082675 *
2 * 10031207 | .0041329 | .0061573 | .0081816 *
3 * * 10039898 | .0060142 | .0080385 *
4 * * * ‘0058139 | .0078382 *

* g(épm) is not positive definite

Again reading across Table 2,5.2, the right hand tail probability of Cpm at a fixed
constant ¢ and A, =0 is 1.5 to 2 times larger for A, = .5 and 1 respectively, and fixed

values of | A;] are about triple the probabilities for values of A, in the range of 2 to 4
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suggesting g( Cpm) is flatter, thicker and heavy tailed when [A;] is fixed with
nonnegative values of A,. Meanwhile, when we read vertically down Table 2.5.2, the

behavior of the right hand tail probability of Cpm decreases gradually for a fixed A,,

when | A ;| increases.

In those cases where the practitioner is monitoring process capability on a regular
basis either by hand or in conjunction with a capability chart (e.g., Spiring (1995))

inferences will be affected. For those process measurements exhibiting near normal

distribution characteristics with non-zero estimates of A; andA,, corrections should be
made either to the action limits (the critical values, ¢, and ¢, where P(épm <c,_) =

P (Cpm>cu) = .00135) or to the specified level of a (the level of significance) associated

with the decision making process or capability chart.
If the practitioner can identify the amount of distortion from normality and if it is

moderate, corrections can be made that will provide the practitioner with viable decision
rules or action limits. In Tables 2.5.3a through 2.5.6a the critical values (i.e., cy)
associated with the upper tail of g( épm) have been determined for various n, A;andA,.

Again it appears that the A, has a substantial impact on any inferences made. In order to

maintain the same confidence in the decision that the process capability has significantly

improved (increased) in the presence of nonzero values of A, larger values of Cpmare

required.
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Similarly if we examine the lower tail (Tables 2.5.3b through 2.5.6b) of g( Cpm)

(i-e., when we want to identify significant declines in capability) the impact of A; and A,

can be quantified and used in the decision making process.

TABLE 2.53a Valuesof ¢y forn=4,|1;[=0(.1).4and A, =0(0.5)1, 2(1)4

where P{Cpm>c,in, T=0, a,

_yo-l [usL-LsL] 1231441 =0.00135

6
Tou 0 5 1 2 3 4
|25
0 33550540 | 3.751788 | 3926199 | 4.220000 | 4.464035 | 4.674280
1 * 3.745660 | 3.920817 | 4.215630 | 4.460321 *
32 * 3727110 | 3.904539 | 4.202425 | 4.449120 *
3 * * 3876973 | 4.180156 | 4.430270 *
4 * * > 4.148400 | 4.403484 *
*

g(épm) is not positive definite

TABLE 2.53b Valuesof ¢, forn=4,|A;]|=0(.1).4and A; =0(0.5)1, 2(1)4

where P[C‘pm<c[_l n, T=0,a, =

Jn-1[USL-LSL]

s 1A31,2,]1=0.00135

6
] O 5 I 2 3 3
[As]
0 273692_| 253044 | 244100 | 235150 | 230200 | 226849
1 * 252530 | 243718 | 234980 | 230080 *
2 * 251040 | 242860 | 234460 | 229730 *
3 * ¥ 241399 | 233640 | 229158 *
4 * g . 232558 | 228395 *
*

g(épm) is not positive definite
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TABLE 254a Valuesof c; forn=35,[A;|=0(.1).4 and A, =0(0.5)1,2(1)4

where P[épm>cU[ n,T=0,a; =

fn—l [USL -LSL] , I 2_3 [, }\_4] =0.00135

6
» 0 3 1 2 3 3
[As]
0 2.73330 | 2.882670 | 3.007967 | 3.212000 | 3376110 | 3.514335
1 * 3.745660 | 3.004204 | 3.209100 | 3373670 ¥
o) C 3727110 | 2.992814 | 3.200160 | 3.366310 -
3 C * 2973469 | 3.185120 | 3353910 *
4 * * * 3.163630 | 3.362610 ¥
*

g(épm) is not positive definite

TABLE 2.54b Values of ¢ forn=35,|A;|,0(1)4and A, =0(0.5)1,2(1)4

where P[Cpm <cp|m,

T=0,a, = ¥2" [usL -Lst] 1Al hq] =0.00135

6

oo 0 3 1 2 3 )
[A;] L
0 299490 | 278476 | 269310 | 260059 | 254915 | 251420
1 * 277970 | 268990 | 259889 | 254790 *
2 * 276483 | 268070 | 259380 | .254440 ¥
3 G * 266617 | 258557 | .253868 *
4 * * * 257470 | 253110 >
*

g(épm) is not positive definite

TABLE 2.5.5a Valuesof c; forn=6,|A;{=0(.1)4 and 1, =0(0.5)1, 2(1)4

where P[épm>cUl n, T=0, a;

_ Jn-1 [USL—LSL]’IM’M] — 0.00135

6

Ae] O 3 ] 2 3 7
[ A5
0 2.291049 | 2411792 | 2.510318 | 2.666526 | 2.789089 | 2.890586
1 * 2.408353 | 2.507439 | 2.664338 | 2.787311 *
2 * 2397900 | 2.498718 | 2.657721 | 2.781940 *
3 * * 2483877 | 2.646526 | 2.772884 >
4 ® * * 2.630490 | 2.759975 *
*

g(flpm) is not positive definite
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TABLE 2.5.5b Values of ¢, forn=6,|A;]=0(1).4and A, =0(0.5)1, 2(1)4

where P[Cpm<c,|n, T=0, a, =

Jn-T[usL-Lst] A3l A,]=0.00135

6

Ay 0 S 1 2 3 4
|A5]
.0 319724 298679 289428 280030 274766 271190
1 * 298187 289120 279850 274650 *
2 * 296717 288206 279349 274300 *
3 * * 286780 278540 273740 *
4 * * * 277469 272990 *
*

g(épm) is not positive definite

TABLE 2.5.6a Valuesof cy forn=10,|A;|=0(.1).4 and A, =0(0.5)1, 2(1)4

where P[Cpm>cy|n,

T=0,a, =¥2" [USL_LSL], |As1,A,] =0.00135

6

Ay 0 S 1 2 3 4
|As]
.0 1.589231 | 1.662535 | 1.718065 | 1.800279 | 1.860998 | 1.909326
1 * 1.660692 | 1.716605 | 1.799243 | 1.860191 *
2 * 1.655081 | 1.712173 | 1.796109 | 1.857756 *
3 * * 1.704606 | 1.790797 | 1.853644 *
4 * * * 1.7831658 | 1.847770 *
*

ngm) is not positive definite

TABLE 2.5.6b Valuesof ¢; forn=10, [A;|=0(.1).4 and A, =0(0.5)1, 2(1)4

where P[Cpm<cl_| n, T=0,a =

Jn-1 [USL—LSL]’ Ay ] = 0.00135

6
ox 0 5 T 2 3 3
|25
0 372771 | 352621 | 343510 | .334058 | .328700 | 325028
1 * 352182 | 343232 | 333910 | .328600 *
2 * 350018 | 342443 | 333468 | .328290 *
3 * * 341188 | 332758 | 327800 *
3 * * * 331800 | 327128 *
*

g(épm) is not positive definite
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Tables 2.5.7 a-d give the right hand tail probabilities for different values of Cpm.

TABLE2.5.7a
p(é& | 2 sl J
pm>c| n=4, a;=—=, A3, A,
L T
P"sl Ay S 1.0 1.5 2.0
.0 0 145227 .144305 036117 .012438
S -752090 .166489 043471 015214
1.0 758952 .188674 .050825 017990
1.5 765815 210859 2058179 .020766
20 172678 .233044 065533 023542 |
3.0 786403 277413 .0802404 029093
4.0 .800128 321782 .094948 .034645
1 ) 752471 .165926 .043250 015127 |
1.0 .759334 188111 2050604 017902
1.5 .766196 .210295 057958 020678
2.0 773059 .232480 .065312 023454
3.0 .7186784 .276850 .080020 -029006
2 S 753615 .164236 .042590 014865
1.0 760477 186420 _ .049944 017641
1.5 .767340 208605 .057298 020416
20 774203 230790 064652 023192
3.0 .787928 275159 .079359 028744
3 1.0 .762384 .183603 048842 017204
1.5 169246 -205788 .056196 .019980
2.0 776109 227973 .063550 022756
3.0 .789834 272342 .078258 .028308
4 2.0 .778778 .224029 062008 022145
3.0 792503 268398 076716 .027696
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TABLE 2.5.7b

P(épm>c[ n=s, a1=i |L3[,l4]

39
) | 2 s 1.0 15 2.0
0 |0 787493 121041 022341 1005983
5 786477 142525 027854 1007625
1.0 | 785460 -164008 1033366 1009266 |

1.5 | 784444 185492 1038879 .010908
2.0 | 783427 206976 1044391 012550
3.0 | 781395 249944 055416 015833
40 | 779362 292911 066441 019116

1 15 786965 142004 1027691 007574
1.0_| 785949 163488 1033204 1009215
1.5 | 784933 184972 038716 010857
2.0 | 783916 206455 1044229 012498
3.0 | 781884 249423 055254 015781

2 5 788432 .140443 1027204 .007420
1.0 | 787416 161926 _ 032716 .009062
1.5 | 786400 _183410 1038229 010703
2.0 | 785383 204894 1043741 012345
3.0 | 783351 247862 054766 015628

3 [ 1.0 | 789861 .159324 1031904 .008806
1.5 | 788844 _180808 037417 010447
2.0 | 787828 202292 1042929 012089
30 | 785795 245259 1053954 015372

4 [ 2.0 791250 .198648 041792 011730
30 | 789218 241616 052817 015013
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TABLE25.7¢

P(épm>c[ n=6, al—-z-£ |Ash MJ

Ay 5 1.0 15 2.0
0 820076 101831 013924 1002905
S 812916 122215 1017950 003849
1.0 805757 142598 021977 004793
1.5 798597 162981 1026003 005737
2.0 791437 -183365 1030029 1006682
3.0 777118 224131 1038082__| 008570
4.0 762799 264898 046135 1010459
5 813420 121739 1017833 1003820
1.0 806261 142122 1021860 004764
1.5 799101 162505 1025886 1005708
2.0 791941 182888 1029912 1006652
3.0 771622 223655 037965 008541
S 814932 1120310 017482 1003732
1.0 807772 140693 1021508 1004676
LS 800612 |__.161077 1025534 1005620
20 793453 181460 .029561 1006565
3.0 779133 222226 1037613 008453
1.0 810291 138312 1020922 1004530
1.5 803131 158696 1024949 1005474
2.0 795972179079 1028975 006418
3.0 781653 219845 1037028 1008307
2.0 .799499 175746 1028155 006214
3.0 785179 216512 1036207 1008102
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TABLE 2.5.7d

P(épm>c| n=10, a,=2, [l3|,l4)

Ay S5 1.0 1.5 20
.0 900368 052653 002223 000172 |
3 881284 067690 003235 2000263
1.0 862199 .082728 -004247 .000353
1.5 843115 097765 .005260 .000444
[ 2.0 -824031 112802 006272 2000534
3.0 785863 .142877 .008296 000715
4.0 747695 .172951 .010321 .000896
.S 881556 067368 .003207 .000260
1.0 .862472 .08241 004219 .000350
1.5 -843388 .097443 005231 .000441
| 2.0 .824304 .112480 006243 2000531
3.0 .786136 .142554 008267 .000712
S .882374 066401 003121 .000252
1.0 .863290 .081439 .004133 .000342
1.5 844206 .096476 .005145 .000433
[ 2.0 .825122 111513 006157 000523
3.0 . 786954 .141588 008182 .000704
1.0 .864653 .079828 003990 .000328
1.5 845569 .094865 005002 .000419
2.0 .826485 .109902 .006014 .000509
3.0 788317 .139976 008039 .000690
| 2.0 .828393 .107646 005814 .000490
3.0 .790225 137721 .007838 .000671
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26 Example

The adjusted breaking strength of a perforation was identified by the customer as
the key quality variable of a particular process. An initial study of the process suggested
that adjusted breaking strength did not follow a normal distribution. The first fifty
observations from production were used to assess the normality of the breaking strengths.
Both the histogram and the normal probability plot (Figure 2.6.1) suggest that breaking
strengths do not behave normally. The customer specifications and numerical results for

the first fifty observations were as follows

N 50
USL 2.0
LSL -2.0
Target 0
Mean -0.135
Std. 0.83
Deviation
Skewness |0.10
Kurtosis 0.99
Cpm 0.79

The process was monitored at regular intervals (every 24 hours) at which time X, s

and Cpm were calculated for subgroups of size 5 and X and s charts are plotted (see

Figure 2.6.2). The first subgroup of size five resulted in the following observations

n b}

X, 0.63

X, -1.04
X3 0.37
Xg4 0.99

Xs -0.48
X 0.09

s 0.835
Cpm 0.71
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Figure 2.6.1. Histogram and Normal probability plot of Adjusted Breaking Strengths
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Figure 2.6.2 X and s chart of Adjusted Breaking Strengths
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To investigate the process' Cpm (assuming that the observations behave similar to

the first fifty), the upper and lower critical values were determined from Table 2.5.4a and

Table 2.5.4b (forn =3, a, =§, A; =0.1and A, =1.0)to be ¢ =.2690 and cy=3.004

(o = 0.0027). Since Cpm= 0.71 fell inside the interval [.2690, 3.0042] the practitioner

concluded that the process Cpm had not changed.

2.7 Relationship with Squared Error Loss Function

Kane (1986) noted that PCIs were receiving increased usage In process
measurements and purchasing decisions especially in the automotive industry, and the
indices Cp and Cpk were of interest. These indices are simple to manipulate, and are
convenient because they are based on traditional specification limits. However, they are
not related to the cost of failing to meet customers' desires. Taguchi emphasized the loss
in a product's worth when one of its characteristics departs from the customers' ideal value
T. To help account for this Hsiang and Taguchi (1985) introduced the index Cpm, which
was also proposed independently by Chan, Cheng, and Spiring (1988b) and they related
the index Cpm to the idea of squared error loss.

The index Cpm is defined in equation [1.3.1] is a function of the expected squared
deviation from the target. The loss associated with a characteristic X missing its target is
often assumed to be appropriately approximated by the symmetric squared error loss

function

L(x)=w(x —'1')2
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where w is a non-stochastic weight function. This implies that the loss is zero when the
process is on target and the loss is positive for any deviation from target. In this case the

expected loss is

B[L(X)]zw[cz +(;,1—T)2] [2.7.1]

and the Cpm index can be expressed as

USL-LSL
Cpm = Vvw . 2.7.2
P SR =
Equation [2.7.1] can be expressed in terms of Cpm
EIL(x)]=w (2L “LSLF [2.7.3]

36Cpm?
Clearly when the expected loss increases as the value of Cpm becomes smaller and vice
versa.

The relationship [2.7.2] is in terms of the expected loss of the product when the
product is on target. This approach reduces the information and provides an interpretation
of the index Cpm in terms of the percentage loss. This intuitive interpretation should
increase the acceptance of this index by management. As a decision maker who may be

interested in an upper limit on the loss from the process rather than just a point estimate of

the loss, L(X). An unbiased estimator of E[L(X)] is

i(X)= wL’rz +(i-T)ll [2.7.4]
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Note that £(X) is a uniformly minimum variance unbiased estimator (UMVUE) of L(x) if

X comes from N( . 0'2) since it is unbiased and is a function of jointly complete sufficient

statistics. Hence
Cpm=+vw USL-LSL [2.7.5]

6YL(x)

Notice that

2
which has a non-central chi square with n df and non-centrality parameter l=~n£2’r—) if
G
X arises from N(ut, 6® ). The ratio
~2 ] n

G LY

L[<“72+()—(—'1‘)2]

0,2

n+A

so that E[L(_X)]

Then an upper (1 - a) 100% confidence limit for the loss function parameters, E[L(X)], is

(E[[lL&)]L(X) Xz a] -
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= P(E[L(X)] < (“”‘) L(X)] [2.7.6]

n} sl—ax

where 2 ;.;_, is the 100(1-c )th percentile of Ao
Therefore a (1 - ) 100% upper confidence limit for the loss function parameters, E[L(X)],
is

(n+}.) L(X) (n+7L)E’ (X T)Zl

n Al-a n Al-ax

Applying the classical Pataik (1949) approximation by matching the first two moments
of a scaled chi-square of the form cx% , where the constants ¢ and v are determined by

equating the means and variances of the two distributions, i.e., to solve the equations

cv=n(l +£), 2c3v= 2n(1 +E)
n n
n+2A (11+l.)2
= = R V=
n+Ai n+2A
So that Xox = Ko

and results in an approximate upper (1 - ) 100% confidence limit for the loss function

parameter, E[L(X)]

x;, £(X)=—" L‘r%(i-T)z] [2.7.7]
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2.8 Comments

We have attempted to indicate that robustness studies for those process capability
indices whose magnitudes are translated into parts per million non-conforming are
meaningless as the parameters are sensitive to departures from normality. Hence
regardless of how robust the estimator maybe, its associated parameter is not stable and
hence any robustness claims carry little meaning. Similarly, developing actual and
approximate confidence intervals for these capability indices when the process
characteristics arise from non-normal distributions is an academic pursuit with no
application.

For those capability indices that attempt to assess the ability of the process to
cluster around the target, the robustness of the estimator is a valid concern. We have
examined the robustness of the traditional estimator which also has the smallest bias and
mean square error, in the face of moderate departures from normality. From the
exainination we are able to make recommendations/adjustments to critical values
associated with attempts to assess changes in the process capability. Similar alterations to
the action limits associated with capability monitoring charts are possible.

The Cpm index, as well as its generalization Cpm*, can be estimated respectively

using épm and épm* for those cases where n = T. Both épm and épm* have been

shown to be biased estimators of Cpm and Cpm* respectively but are asymptotically
unbiased.

The quantities, Cpm and E[L(X)], each have their own advantages and are familiar
to quality practitioners. The expected loss does require the use of an explicit loss function

such as Taguchi's modified loss function. However it is easily interpreted in terms of
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monetary loss , either to the practitioner and/or the society when the process characteristic

misses the target.
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Chapter 3

Alternative Measures of Process Capability

3.1 Introduction

The use of order statistics in industrial applications has been studied since late
1940’s. In statistical quality control, usually small samples, say a = S5, are taken at
intervals from a production process. For each sample, the means and the ranges are
plotted on separate control charts to indicate whether the process is in- or out-of-control.
The study of the range and the mean range as measures of dispersion under normality are
outlined in David (1981) and Armnold, Balakrishnan and Nagaraja (1992). Efficiency and
approximations of the mean range have been considered by Cox (1949), Patnaik (1950)
and Cadwell (1953). The distribution of range in random samples has been discussed in
depth by Hartley (1942), McKay and Pearson (1933) and McKay (1935).

Inferences regarding process measurements that do not appear to follow a normal

distribution were earlier cautioned against. One reason for the caution being that

Cp (Chan, Cheng, and Spiring (1988¢)), Cpk and Cpm (Section 2.5) have been shown to
non-robust to departures from normality. For more dramatic departures from normality
the problem does not lie so much in the non-robustness of the PCIs themselves.
Regardless of the abilities of ép R épk and épm to depict the true value of Cp, Cpk and
Cpm respectively, if the measurements do not arise from a normal distribution poor

inferences may be drawn. So all PCIs are not universally appropriate measures of the
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ability of a process to ensure 99.73% of the process measurements fall within the
required tolerance limits. Another major difficulty in the ability of the PCIs to indicate
process capability is their functional forms involve a function of the population standard
deviation as mentioned earlier in Section 2.3. Hence in addition to other criticisms of the
PCIs we now find that as a general measure of process capability, Cp, as well as other
indices Cpk, and Cpm which incorporate o into their computing algorithm, shouid be
restricted to the family of normal distributions. An alternative measure of the actual
process spread, which possesses the ability to provide consistent inferences over various
distributions that the process measurements may assume, should be considered.

The applications of order statistics to assess the process capability have been
considered in Chan, Cheng and Spiring (1988a) and Clements (1989). In this chapter, a
new process capability index, Cpo, is proposed using order statistics. We will examine

this index for various process distributions such as uniform, exponential and normal
distributions. The sampling distribution of Cpo, the estimate of Cpo, and its associated
properties such as pdf, mean and variance when the sample size is small as well the bias
and mean squared error when the sample size is large, are investigated. The right hand
tail probabilities and critical values for small sample sizes are tabulated for reference.
The sampling distribution of épo is distribution-free when the distribution of process
measurements is uniform and exponential, and it works for any sample size and any value

ofrands, forr<s.
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3.2 The Density of Cpo
Let X be the measurements of a process characteristic and a random sample of

size n is drawn from X so as to measure the process capability. LetY;<Y,<...<Y, be the
corresponding order statistics. We consider the spacing between the rth and the sth order

statistics, that is

D=Y,.-Y, [3.2.1]
whose pdf can be shown to be
_ n! 2 o _ ~r-{
)= oo FOe) [ +w)-FGf

-E(y, +w)" £y J(y, + wMy,, 0<w<w, forr<s. [3.2.2]
Now, define

_ USL-LSL
D

Cpo
where D is the difference between the population quantiles, & 455 and & g4, » such that
the probability P(X < &, ) =Y.

USL-LSL

An estimator of Cpo is defined as Cpo = = % .

The distribution of Cpo can be found by making a transformation on D resulting in

(al\ d a' a' ar
Bep N=fp| = |- =2= £, 2 -
Cpo Dky) dy.y D y yl
v\ .t
= f. %;‘—2 0<y<oo [3.2.3]
\J /
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3.2.1 The Distribution of épo when X arises from Uniform Distribution
If X,X,, ... » X,~ U(0,1), then D ~ Be(s-r, n-s+r-1) (David (1981), Amnold,

Balakrishnan and Nagaraja (1992)). Hence the pdf of Cpo has the form

_ n! (a, s—r—1 a’ n-s+r _a;
géW(Y)_(s—r—l)!(n—s+r)zL?J (17] 2

N\ -r+1)-1 N (n—s+c+1)-1
= 1 a -2
B(s-—r,n—s+r+1)y[y) ( y)

a'<y <o, zero elsewhere. [3.2.1.1]

Figures 3.2.1.1a-c show the density of épo using equation [3.2.1.1] when a' =

USL —LSL =.1,n =35, and various values of r and s.

14
12:
10:
g (Cpo) &

2

i LR e AT )

0 0.20.40.60.8 1 1.21.4

AS
Cpo
Figure 3.2.1.1a Density of Cpowith a'=.1,n=5,r=1ands=5.
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14
12:
16:

g (Cpo)

O N & Oy ©

O 0.20.40.60.8 1 1.21.4
/N
Cpo

Figure 3.2.1.1b Density of Cpowith a'=.1,n=5,r=2ands=35.

14:
12:
10:
o 8:
g (Cpo) 4
6
4
O 0.20.40.60.8 1 1.21.4
N
Cpo

Figure 3.2.1.1c Density of épowith a'=.1,n=5r=2ands=4.
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Figures 3.2.1.2a, b show the density of épo using equation [3.2.1.1] when a' =

USL -LSL =.1, n = 10, and different values of rand s.

40:

35:

30t

. 25§

g (Cpo) 20t
15:

10¢

5:

OE
0.10.150.20.250.30.350.4

P
Cpo

Figure 3.2.1.2a Density of Cpowith a'=.1,n=10,r=1ands= 10.

40

35:

30%

25°

g(@po) 20:
15:

10:

5:

0=

0.1 0.15 0.2 0.25 0.3 0.35 0.4
€po

Figure 3.2.1.2b Density of épo with a' =.1,n=10,r=2and s=09.
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Figures 3.2.1.3a, b show the density of épo using equation [3.2.1.1] when a' =

USL —LSL =.1, n=20, and different values of rand s.

70;
60:
50:
~ 4-
g(CpO)BOi—
20:
10
0:
0.1 0.15 0.2 0.25 0.3

N
Cpo

Figure 3.2.1.3a Density of Cpowith a' =.1,n=20,r=1and s =20.

70:
60:
50:;
40:
30:
20"
10°
OI
0.1 0.15 0.2 0.25 0.3

g (Cpo)

/N
Cpo

Figure 3.2.1.3b Density of Cpowith a'=.1,n=20,r=3 ands=17.
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From Figures 3.2.1.1a-c, Figures 3.2.1.2a-b and Figures 3.2.1.3a-b we can see that

for a fixed sample size n, increasing the value of r or decreasing the value of s will skew

the density of Cpo to the right. The magnitude of skewness is larger when decreasing s
than increasing r meanwhile the magnitude of kurtosis will also be changed from

leptokurtic to platykurtic.

Theorem 3.2.1:

The kth moment of épo when X ~ U(0,1) is

E(Cpo* )=a™ Do+ )ls—r—k) o o op [32.1.2]
C(o~k+1)I(s—r)

Proof:

Consider the expectation of the kth moment of épo using equation [3.2.1.1] and

.. al .
substituting u = —, then the expectation becomes
y

w© k-1 As-r+0)-1 A\ (n=s+re)-1
E(Cpo*)=] Y (ﬂ [1—1) dy

2’ B(s—r,n—s+r+l) y y

_ 1 avk u(s—r—k)—[ (1 _u)(n—s+r+l)—l du

"o B(s—-r,n—s +r+l1)

&« B(s—r=k,n—s+r+1)
=a
B(s—r,n—s+r+l)

— ok F(n +1)F(s-r—k)

, ~r>k.
Tla—k+1)s_r) 57>
Then the mean and variance are respectively
E(épo)=a,l"(s—r-1)l"(n-s+r+l) F(n+1)
[(n) [s—rf(n—s+r+1)
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=_2n , fors-r>1, [3.2.1.3]

s—r—1

V(épo)—- an(n-1) a”n?

—(s—r—IXs—r—Z)-(s-r-—l)Z

_ a”n(n-s+r+1)
(s—r-»l)z(s—-r-Z)’

fors-r>2. [3.2.14]

Consider a special case of épo whenn =2, i.e., r=1 and s =2. The pdf in equation

[3.2.1.1] becomes
a')a' .
&épo (y) =2(1—;]-3— , a'<y <o, zero elsewhere. [3.2.1.5]
y

It can be shown that equation [3.2.1.5] is equivalent to the density of ép when n = 2

except the constant a' is replaced by —2 . From the definition of Cp,

32

Cp = Allowable process spread
p= Actual process spread

_a
6c

The usual estimator of Cp is defined to be




For n =2, the sample variance can be expressed as below:

i(xi —X)2

i=l
2-1

X, +X,)? X +X,)?
(xR o[x, - 2g )

$?=

_&K %) X=X
4 4

x,-X,)
2

Let D=|X, -X,|= Y, -Y,, this is analogous to equation [3.2.1], then S*

S f)S
= —.8o0
V2

The inverse transformation is

lwh
I

with Jacobian

EE

dép

_l a' |= a'
3v2Cp?| 3v2Cp?
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Let f,(x) be the pdf of X;,i =1,2; and g;(x) be the pdf of D, then the general form

of the pdf associated with Cp is

(a2 )

h(;p =83 \3‘/5),}

7]

e 4 a' ) a'
D\3J§y/3ﬁy2

Now, X has pdf f,(x)=1, 0 <x <1. By a transformation it is easy to show that the pdf

[3.2.1.6]

of D= IXI_XZI is
g5(x)=2(1-x), O0<x<Il.

Following equation [3.2.1.6], the pdf of Cp under uniform distribution is

1

a

a' 1
he, (y)=2]1- ,
& ( 32 y) W2y 32

<y < @, zero elsewhere. [3.2.1.7]

Hence this is equivalent to equation [3.2.1.5] with a' replaced by —2_ . Note that both

3\2

a' and —— serve as a scale parameter respectively in the distribution of Cpo and Cp.

W2

All the moments do not exist in this special case when n = 2 for both épo and ép since

the conditions in equations {3.2.1.3] and [3.2.1.4] are not satisfied.

Tables 3.2.1.1a and 3.2.1.1b show the lower (¢ ) and upper (c;) critical values

of épo with a' = .1 and a' = .5 respectively, for various sample sizes, where

P(Cpo <c, )=.00135=P(Cpo <cy).
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Table 3.2.1.1a The critical values of Cpo with a’ = 1.

n CL Cuy

2 .103815 148.0986
5 .101190 758684
10 .100559 256515

Table 3.2.1.1b The critical values of Cpo with a' = 5.

n CL Cu

2 519075 740.493
5 .505949 3.79342
10 .502795 1.28257
20 .501358 .789677

Tables 3.2.1.2a and 3.2.1.2b show the right hand tail probabilities of épo with

a' =.1 and a' =.5 respectively.

Table 3.2.1.2a The right hand tail probabilities of épo with a' = 1.

P( épo >c)
n c K 1.0 1.5 2.0
2 360000 -190000 128889 097500
5 .006720 1000460 -000094 2000030
10 42x107° 9.1x107° 2.5x1071° | 1.9x107"

Table 3.2.1.2b The right hand tail probabilities of Cpo with a' =.5.

P( épo >c)
n c 1.0 1.5 2.0
2 750000 555556 437500
5 187500 045268 015625
10 010742 .000356 .000030
20 000020 12x10"% | 55x10™"
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Let us examine the bias and mean squared error of épo -

B(Cpo) = E(Cpo) - Cpo

a'n

.2
s—-r—-1 vy

= a'[ 1 -l] [3.2.1.8]
s—-r—1 7y

where v is the probability contained between Y, and Y.

MSE(Cpo) = E[(épo—Cpo)z:I = v(Gpo) + [B(Epo)f

_ arln(n—s+r+1) +a,2l: n l ]2
(s—r—l)z(s—r—Z) s—r—1 vy

_ 2] n(n—s+r+1) I y
a {(s-r—l)l(s—r—z) +|:s-r—1 J } [3.2.1.9]

Assuming an equal tailed out-of-control probability, s can be written as a function of n
andr, ie,s=n—r+ 1. Hence the bias and mean squared error can be re-stated in terms

of n and r as below.

- n 1
BICpo) = a' - = 3.2.1.10
( P ) [ n-2r vy ] L ]

(n-2r)*(n-2r-1) [n-2r v

2
MSE(épo)=a’2{ n(2r) +[ = 1]} [3.2.1.11]

Tables 3.2.1.2a and 3.2.1.2b show the biases and mean squared errors of épo

with a' =.1 and a' =.5 for various sample sizes.
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Tables 3.2.1.3a Biases and mean squared errors of épo with a' =_1.

n B(Cpo) MSE(Cpo)
5 066396 009964
10 024729 2001580
30 010840 000190

Tables 3.2.1.3b Biases and mean squared errors of épo with a' = 5.

n B(Cpo) MSE(Cpo)
5 331980 249099
10 123646 026449
20 0580 004753

For example, letn=740,r=1, i.e,, s =740, and y = .9973, then

B(Cpo) = a’[ﬂ——l—} = 2'[1.002710027 -1.00270737] = 0.0000027173 ~ 0.

738 9973

A\ ol 740(2) 740 1
MSE(Cpo) = a {(738)"'(737)+[738 -9973}}

= a'z[ 3.68707x107° +7.38426x10'12}z 0.

Consider another example, let n = 100000, r = 135, i.e., s = 99866, and y = .9973, then

B(épo) _ o[100000 1 ]= 0
99730 9973

2
MSE(Epo) = a2 10000(2)(270) +[100000_ 1 ]
(99730)%(99729) | 99730 9973

= a'2|: 2.72202)(10_8} ~0.

Now, taking limits as n approaches infinity, then
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ma(ém)=a'm[ n —l]zo,

n—w n-x| n-—2r Y

2
and lim MSE(Cpo)=a” lim “ﬁzr) +[ = —i] ~0.
> nso | (n—2r)*(n-2r-1) |[n-2r vy

This implies that épo is asymptotically unbiased and mean squared error consistent.

These also imply that épo converges in probability to Cpo.

3.2.2 The Distribution of épo when X arises from Exponential
Distribution
It follows directly from the transformation that X = —8lnY ~ E(%), having the

negative exponential distribution with parameter 0 if Y is uniformly distributed between
Oand 1. If X,X,, ..., X, is a random sample from a negative exponential distribution
with the pdf

f (x)= e, 0<x<ow

then D has the pdf of the form

r-1

n! - _ _ oy, ew) ]!
f"’(W)—-(r—l)!(s-r—1)!(:1—5)! J[I—e Gyr] [e > et )]

[e-e (ve+w) ] " Qe %~ Oe-e(y‘w)dyr

n'o2e —aw(n— s+l)(1 e ™[
(c-1s-r- —1¥n-s)

making a substitution, u = e"%-, then

I[l e—ey,}' -8y, (n- r+l)dyr
0
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—r— 1 r—1
£ (w)= n! §2Ze—wln-s+1) (1 —e W )s 1 fu™!(1-u) gli
0 u

(r—l)(s—r-an—-s)

(n-r) R S Y
(s r—1)}{n— s)e[ Il [1 r

ol [l ], foro<w<um, [322.1]

B(n s+ls 1)

Or, it may be expressed in terms of the distribution function of X, F,(x)=1—¢™*

9[Fx W) L =y (W) [3222]

fﬁ(w) B( n—s+1,s

Thus the pdf of Cpo utilizing equation [3.2.2] is

s—r-} n—s+l
1 a'o a' a'
g = Fy| — I-Fy| — , O<y<w. 3.2.2.3
&po V) T — [ x(yﬂ [ x(yﬂ y [3.22.3]

Figures 3.2.2.2a-c show various shapes of the pdf of Cpo using equation [3.2.2.3]

when a'0 =.5, n =5 with different values of r and s.

4.

3.5:

3

. 2.5
g(Cpo)  2;
1.5%

1

0.5:

0?

0 1 2 3 4
FaS
Cpo

Figure 3.2.2.1a Density of Cpo with 2’6 =.5,n=5,r=1,ands=5.
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0 1 2 3 4

A
Cpo

Figure 3.2.2.1b Density of Cpo with 2’6 =.5,n=35,r=2,and s =5.

0 1 2 3 4
N\
Cpo

Figure 3.2.2.1c Density of Cpo with 2'0 =.5,n=35,r=2, ands=4.
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g (Cpo) 3¢
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Figure 3.2.2.2a Density of Cpo with 2’0 =.5,n=10,r=1,and s = 10.

q(/C\po)

R M S o =)

AN
Cpo

Figure 3.2.2.2b Density of épo with a'60 =.5,n=10,r=2,and s =9.
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Figure 3.2.2.3a Density of Cpo with a'0 =.5,n=20,r=1, and s =20.

/\
Cpo

Figure 3.2.2.3b Density of Cpo with a'0 =.5,n=20,r=3,ands=17.
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From Figures 3.2.2.1a-c, Figures 3.2.2.2a-b and Figures 3.2.2.3a-b we can see that

for a fixed sample size n, increasing the value of r will decrease skewness and increase
kurtosis the density of Cpo simultaneously while decreasing the value of s will increase
the kurtosis of density of Cpo . Increasing the sample size n will cause the density curve
flatter and shift the mode of the flpo to the left.

Table 3.2.2.1 shows the lower (c; ) and upper (c;) critical values of Cpo with
a'0 = .5 for various sample sizes, where P(épo <c ) =.00135 = P(épo <cy) while
Table 3.2.2.2 shows the right hand tail probabilities of Cpo with a'0 = .5 for various

sample sizes.

Table 3.2.2.1 The critical values of Cpo with a'6 = 5.

n CL Cu

2 075670 370.1200

5 .062549 2.349615
10 056789 7648430
20 .052350 4081427

Table 3.2.2.2 The right hand tail probabilities of Cpo with a'0 = .5.

P(Cpo >¢)
n c K] 1.0 1.5 2.0
2 632121 393469 283469 221199
5 159661 1023969 006457 1002394
10 016114 000226 000012 127x10-°
20 000164 201x10~% | 3.96x107! | 3.56x107"
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The expectation and the variance of Cpo can be computed as follows :

E(Cpo)=E(Y)

© 1 a'e L'e(n—sﬂ) _a9 s=r-1
=] e’ I-e ? dy, fors—r>1. [3.2.24]
oB(n—s+Ls—r) y

Similarly, the second moment of Cpo is

E(Cpo”) = gB(n—s+l,s—r) e l-e dy, fors-r>2. [3.2.2.5]
Then, the variance is
v{Gpo)= EEpo?) - [ElEpo)f [3.2.2.6]

For equations {3.2.2.4] and [3.2.2.5] do not possess a closed form, numerical integration
is used to evaluate the mean, variance, bias and mean squared error.
Consider a special case of Cpo whenn=2, i.e.,r=1and s =2. Substituting into

equation {3.2.2.3] results in

=]

a'

a’
he (y)=6e ;2‘
' _a8
=2 v , 0 <y<ow, zeroelsewhere [3.2.2.7]
y

which is an inverted gamma distribution with shape parameter 1 and scale parameter a'0.

The pdf of an inverted gamma is

a+l i
e (1) -2
f(V= (—) e, O0<y<oo,

where a is the shape parameter and A is the scale parameter, with
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A
E(Y)=——, fora>1,and V(Y) = for o > 2.

}.2
a-—1 (a—l)z(a—?.) '

Following the development in Subsection 3.2.1, it can be shown that the pdf of Cpo is

\J

equivalent to the pdf of ép when n = 2 except the constant a' is replaced by f/_f'

Now, X has a negative exponential pdf with parameter 6. The distribution of X, -X,,
using the moment generating function (mgf) technique, is

MXI—X: (t) = E[el(xl"x:) ]

' = E(e™)E(e™*)

which is the mgf of a double exponential distribution with parameters o =0, and § = é .
Making use of the distribution function technique, the pdf of D = I X, -X, [ is
g;(x) =0e 0, 0<x<w,8>0

which is again a negative exponential distribution with parameter 0.

Analogous to equation [3.2.1.6], the pdf of ép under negative exponetial distribution is

a'e
a® i
he (¥) =——se 327,
Cp(y 3 /2y2

0 <y < o, zero elsewhere. [3.2.2.8]
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Hence both the distributions of épo and ép possess an inverted gamma when n = 2

r

with shape parameter 1, scale parameter a'0 (for épo) and 3—% (for ép ). Thus, all the

372

moments do not exist in this case since o = 1, and do not satisfy the conditions of

equations [3.2.2.4] and [3.2.2.5].

Let us examine the bias and mean squared error of épo in the present.

B(épo) = E(épo) - Cpo

20 o) a0 \* 7!
@© ' —n—s+ —_— '
—F—— 20 e | ay- —20 . p22g
oB(n—s+1,s-r)y In[HY)
1-v

where 7 is the probability contained between Y, and Y,

MSE(épo) = E[(&po—Cpo)z] = V(épo)+ [B(é )]2

[3.2.2.10]

The following table shows the biases and mean squared errors of Cpo with 2’6 =5 for

various sample sizes.

Table 3.2.2.3 Biases and mean squared errors of Cpo with a'0 = 5.

n B(Cpo) MSE(Cpo)
5 264113 137743
10 136794 028420
20 082648 2009855

91



For example, letn=740,r=1,s =740,y =.9973, and a'0 =.5 then
B(Cpo) =.0716295 - 07568533 = -.004055833
MSE(épo) =1.3662473x107* + (—.004055833)* =1.5307451x10™*
This seems to indicate numerically that Cpo is an asymptotically unbiased estimator and

is mean squared error consistent. These also imply that épo converges in probability to

Cpo.

3.2.3 The Distribution of épo when X arises from Normal Distribution

If X;,X;,....X, ~N(u, 62), then Z,,Z,,...,Z_ ~ N(0,1) by the transformation

X- .
formula 2=T“- Then the pdf of D is

N r—1 2 s—r-1
n! 1 Yoy Z verw _Z
- = 2
(W) (r—l)!(s—r—l)!(n—s)!(\/Zn) _L[_Le ZdZJ l:,{ € dz}

- _é_ n-s 2 _(y,+w)z
fe 2dz] e 2e 2 dy, O<w<oo

r

Notice that the probability of out-of-control condition in the usual practice is o« = .0027
and assuming equal tailed probability then % = .00135. The distribution of Cpo can be

affected by the sample size n because the distribution of D is based on the difference

between the order statistics X, and X,. For, if % =.00135, then

a 2
(—)n513n$—= = 740.7
2 o



n o
When n < 740, the distribution of D is just the distribution of range. If we keep 3"

.00135 fixed and when n > 740, the distribution of D will depend on the distribution of
quasi-range.

For a quality practitioner to monitor the quality characteristic in a process, usually
smaller sample sizes are necessary. So we will consider small sample inferences of épo .
For n <740, D is the range of the sample. Thus using equation [3.2.1] we can obtain the

cumulative distribution function (cdf) of Cpo .

Gepo (1)=P(Cpo<y)

=P(l§s9—')
y
1

- niliF(z—&-—e—l—'\—F(z):ln_ dF(2)

Y,

=[2F(i')-1: " i2n ;f [F(t)—F[t—a;'ﬂn—lf(t)dt [32.3.1]

2y

2y
Hartley (1942) has found the distribution of range, vy, (w), for symmetric

unimodal distribution as follows. Let y,(w) and ¥ (w) be the pdf and cdf,

respectively, of the range, W, and sample size n.

w,(w) =n@-1) EIF(X + w)—F(x)]"—zf (x+ w)f(x)dx

¥ (w)=n i[F(x-i-w)-—F(x)]"'l dF(x)
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N . . w
And ¥, (W) can be rewritten, for a symmetric variate with respect to - Ea

n:E[F(z-!-w)—F(z)]""f(z)dz«i-n ¥+ ) e)ez

2

=n af\[F(— u)-F(-u -—w)]"'l f(-u—whu+n }:[F(z+ W)—]‘E‘(z)]““l f(zdz, whereu=—z—w

2 2

~n [[F(u+w)-F@)" " flu+w)du+n }:!:F(z-i-w)—F(z)]“'[ f(z)dz

w

2 2

=n T[F(z+ w)-F@)" ' [f(z)+f(z+w)ldz

w

2

— - n [[Flz+w)-F@QI ' [f@2)-fz+w)ldz+2 n }:’v[x-(zw)-l:(z)]"-lf(zw)dz

¥ il
2 2

_ [ZF(%) _l]" +2n§[F(t) F(emw)[" (Kt where t =2+ w.

The explicit pdf of Cpo can be obtained when Z ~ N(0,1) and n = 2 and 3. For the pdf of

D when n=2 and 3 are respectively

2
w

1
fﬁ(W):h;e 4 » O<W<wa

w

32 YT _E
fﬁ(w)z'—\/:e 4 | e 2dt, 0<w<oo.
T 0

The corresponding pdf of Cpo whenn =2, for 0 <y <o, is
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auz

7

O
EépoV)= yreea i [3-23.2]

It is equivalent to the distribution of Cp when n = 2 if a' is replaced by 3\75 .
c

Analogous to Subsections 3.2.1 and 3.2.2, let X,,X,~ N(p,6%), with —0 <p <o, 6> 0,
be a random sample of size 2 and having pdf

_(x-n)®
2
e 2o — <X <0,

b 4

(=g

Let T = X, -X,, such that T ~ N(0, 26 ) and has pdf

tz

e ¥, —o<t<oo.

f‘r(t) = 20‘\/;

Now f)=|T[ and has cdf
G5 (w)=P(|T|<w)
=P(-w<T<w)

2
w t

= R
-2[ 20vm €

Thus the pdf of D can be obtained through differentiating G 5 (w) with respect to w and
itis
d
gﬁ(W)=aGﬁ (w)

z

d % 1 —
=— e ‘o dt
dw -w 20’\/ T
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1 Wz - (__W)Z

e-lcr" —_—

T2oVr 26

wl

Tz
e 9, 0<w<oo.

01

T

e Tcz—(_l)

Applying equation [3.2.1.6], the pdf of ép under normal distribution is

a:2

L ey
h, (y)=——e y_2

~

a' T26°y?
= ,0<y<oo.
3W2roy? Y

T

a

32

This is equivalent to equation [3.2.3.2] when a' is replaced by

[3.2.3.3]

. It can be shown

that all the moments of Cpo and ép do not exist when n = 2. The expectation of épo is

E(Cpo) =E(Y)
avl
© a - d63y?
= e dy
ovroy
a|2 L} _.3.
making a substitutionu= ——=dy =——u 2du
Gy
~ ° a -1_-u
E(Cpo)= | u e "du
020VT
a’
= (0
25\/—7; ( )
which is undefined.

Similarly, with the same substitution, the expectation of the second moment of flpo is
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=)
462Jr \ 2

which is again undefined. Neither do the higher moments. The expectations of ép

follow directly.

The pdf of épo whenn=3is

a’

a? — 2
WZa' e G
-~ = e e 2dt.
EépolY) o I
The rth moment of flpo is
~ c a:r
E(Cpo*) = E ')zg(ﬁr)
=a'" E(ﬁ")
= 3V2a fwTe 4 [ e 2dtdw
T 0 0
Now, let v= — and change order of integration, the expectation becomes
w
£ s
To J6 X fle2v?
= 32a { | w'e 4(+ v-)dvdw, forr<2
T o0 o0
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dv letti _ tan®
¢ * etting v= —f

(1-&-2v2 )T

342 21" ar 1“(1—%)

T

3 )ar r(l—i) x
2/%

= | sec"© do
T 0

When r = 1, the expectation of épo is

E(époF%gsecG do

=31n\/§a'
N

=.92974 a’

The second and higher moments do not exist.

The bias of épo is

B(Epo) = a'[ 92974 - é] = 763073 a'.

For 4 < n < 740, numerical methods or approximation methods are needed to find

the pdf of Cpo when the distribution is normal.
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3.3 Comments

The pdfs of Cpo are determined for the cases if process characteristic is uniform
distribution and exponential distribution. These pdfs can be used for any sample size

and/or any position r and s can be. However the case for normal distribution is dependent

upon the size of sample, n, and the probability of out-of-control, ac. If ( ) )n <lor n<-2—
a

then the denominator of Cpo will depend on the distribution of range in equal tailed out-

.. .. [ 2r
of-control condition. In other situations if [3)1151' or n<—, where r > 1, then the
a

distribution of quasi-range is needed to be considered.

McKay (1935) suggested an approximation to the distribution of range if w is

w
t+—
2
large such that [ f(x)dx=1, hence

t———

2

n-2
t+—

wn(W)=n(n—1)if(t——)f(t+ ] ff(x)dx dt

_a-) %

2

w
t+—

2
McKay (1935) also suggested if w is small, then [ f(x)dx=wf (t), hence

w
t——
2

vomal-w2 T o= (t+g)[f(t)1n-zdt

99



2
w

_ Yn(n-1)w " 2e 4
@r)T

Note that the distribution of épo is based on order statistics and is distribution-

free. Cpo is not just an estimate of the process capability, its magnitude can also be
compared to other process capability indices in terms of bias, mean squared error and
relative efficiency. The relationships of Cpo to other process capability indices are as
below:

_ USL-LSL 60

C
po D 6o

=22 Cp.
D P

Cpo=2217X¢
PO"p 1k P

6c
D(1-k)

Cpk*,forO<k<l1.

_ USL-LSL 66y1+p*
D 604/1+p*

2 —
:66__ u]l)-l—pCpm, for ) =h"’_1l.
(e

Cpo = USL—LSL 601+ wp?
D 60'\/1+wp2

6 \{1+ 2 ]
=G—D£pr, for w nonstochastic.

Cpo
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Confidence intervals can be constructed and hypothesis testing can be elaborated if the
sampling distribution Cpo is known.

Modifications can be made to épo so as to include asymmetric specification

limits. A suggested form may look like

Cpor =min[USL ~-T T- LSLJ

DZ ’ Dl

where D, =& ; —& g9135 , and D =& 9465 —E 5-
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Chapter 4

The Unifying Index Cpw

4.1 Introduction

Many authors have promoted the use of process capability indices Cp, Cpl, Cpu,
Cpk and Cpm and have examined with different degrees of completeness their associated
properties. In an attempt to simplify various process capability indices that have led to
controversy (Nelson, 1992), Vidnnmanand Kotz (1995a, 1995b), Spiring (1997),
Viannman (1997) proposed families of indices that tie the various forms of measures
together, while illustrating the statistical properties associated with each form. In this

chapter, the Cpw index is defined and the probability density function of its estimate,

pr , presented. Properties such as expectation, bias, mean squared error, probabilities

and critical values on some selected weights (i.e. values of w) are further investigated.

4.2 The Probability Density Function of épw and its Properties

A natural estimator of Cpw is

USL-LSL
6\/6’ 2 -'r-w(—)z—-'l’)2

Cpw= [4.2.1]

while the the natural estimator of the generalized form of Cpw (equation [1.6.2]) is

~ . _min[USL—T,T—LSL]

pr * [4.2 2]
362+ w(X-T)
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where X~ N(u, o) are the measurements of a process characteristic, and w is a non-

stochastic weight.
Let 6= S = - 52 and it has a chi square distribution with n-1 degrees

2

X-T =n(5(-—'l')2
o2

of freedom, and n= and has a non-central chi square distribution

<
vn
: _ n(u-T)
with 1 df and the non-centrality parameter A = T e - Then
- USL-LSL
Cpw= p
6—-—-1/9+wn
Jn
=__2 [4.2.3]
1/9+wr|
- Cow* = min[USL - T, T-LSL]

3%,/9+wn

-2 [4.2.4]

,{9+w11

Vn[USL-LSL]

o = ,/n+lw Cpw,

where a=

and a*= \[r_lmin[USL3;T,T—LSL] = Jn+iw Cpw*.
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Consider the distribution function of Cpw , for x>0

Fépw x)= P(épw < x)

B

w2 2
=1- g P(Bs-a—z—wy)fq(y)dy [4.2.5]

-2 ;
where P; ___e*'(%) , the Poisson weights, and A the non-centrality parameter
Jt

BN
£, ()= Y © > ¥ > 0, the chi square density with 2j+1 df
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Differentiate F;_ (x), i.e., equation [4.2.5], with respect to x we can get f; (x)forw>0

and x> 0.

f. (x)"—F (x)

Cpw dx Cpw

_ a? a? a’ 2a*
——P(BS;{—WWXZ f, e | R

a

(2]

3 2 2
wx a 2a
+ fe(—z'—WY]—3fn(Y)dY-
0 X wX
The first term on the right hand side of the above equation is zero since O is a

2
nonnegative random variable. Letting u=—‘z—§—y , then the pdf of Cpw is

%

1 (a? a? 22 a’u

2j+l_ _2 I—u+i)
© I n+2; u 2 (1 u)—-—[ Xz w
.%Pj({ 1 2 n+2j 2§+l du
J= r[nz— ) 1—-( J;lJ 5 2 w 2 xUrzivl
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>

arH,zj B(n—l 2j+1)

x 2 2
= 2P ne2j . 25+l
j=0 r(n—l) r(21+1) 52 g 2 Tl ne2ivl
2 2
a? .
- 2j+1 n+2j a’ 2j+1 n+2j a’
2"+ F ; ; +F ; 5
© ‘{z 2 2| P 27 27 awx?
© an+2j
= 2P n+2) 25+1
i=0 r(n‘;'z.l) 22 l w 2 - X2l

2

_a_ b4 s 2 - - 2
e 2xz+IFl[2j+l;n+23; a ]+1F1|:2_|+1;n+2_];_ a ] @426

2 2 Tax? 2 2 2wx?

When w = 1, the pdf of épw becomes the pdf of épm when X ~ N(p,cz)

2
a

w a2 o 2
fopw (X) = TP , 0<x<oo. [4.2.7]

o - n+2j
j=0 F(n+2jj2 5 [xn+2j+l

2

Further, if p =T, equivalently A =0, the pdf of pr simplifies to

2

a

an e 2x~

n
l—(g) 22—1 xn+ 1
2

this is equivalent to the pdf of ép (Chan, Cheng and Spiring (1988b), (1988c)) when

, 0<x<oco, [4.2.8]

f(:pw (x) =

X ~N(u,02).

Consider again equation [4.2.6], if u =T, then the pdf of Cpw becomes
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,W>0,0<x<ow. [4.29]
Further, if w = 1, equation [4.2.9] becomes equation [4.2.8].

The pdf of épw * can be obtained through the same procedure as in determining
the pdf of Cpw . From equations [4.2.3] and [4.2.4] we can see that Cpw and épw * are
having the same distribution and their distributions are differed by replacing the constant
a= \/m Cpw (for Cpw) to a* = \/m Cpw * (for Cpw*) hence the pdf of épw *

de&%:Z%

and its special cases associated with different values of w are listed as follows:
xN+2j

a
2 N e, 2
i=0 F(n;ZJ) 52

. . g2
e 27 4 1F1|:2"+1 n+2j a*

2j+1 n+2j a*?
2 7 2 ’2x2]+‘F‘[ ’

2 7 27 2wx2]
When w = 1, the pdf Cpw* of becomes

w>0,0<x<cw. [4.2.10]

2

- Eﬁl ,0<X<w,
F(n+2")2 7 X 0+2itl
2

[4.2.11]
the pdf of épm* when X ~ N(p, 0'2)-

a*?
Fep () = ZP;

a*0+2 o 28
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If u = T, equivalently A = 0, the pdf of épw * simplifies to

a*?

an
Qwi@: , 0<x<ow. [4.2.12]

Consider again equation [4.2.10], if u =T, then the pdf of épw becomes

a*?
5= 1 na*? ln a**
a*"<e ™ + \F|——i— |+ F| =5=:—
; 1[2 2 2x2:| ' [[2 2 2wx2]

fépw'(x)= oy 3
F(E) 22 w2z x"!
2

w>0,0<x<w. [4.2.13]

Further, if w = 1, then equation [4.2.13] reduces to equation [4.2.12].

The statistical properties associated with Cpw are analytically intractable for the
general case. However, when the target value and the process population mean are
identical, i.e., u =T, it is possible to derive some properties with different values of w.

Theorem 4.2.1:

The rth moment of Cpw when X ~ N(].l,crz) is

r(n+2j—r)

. el

2 a)| 2 r 2j+1 n-1

EICpw' )| —=| P, —————=<=,F| - ——;—:1-w .

eor - 35) £ (252 | ]
2

forr=0,1,2,...k [42.14]
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Proof:

For E(épw’ ) =E{iar(9 +wn)-§}
) r ]
- 6] £p,0+m) 7
Pt
@ r ]
—a* $P, E[(9+wnjh
j=0 |
Notice that y=0+m; ~ x2,,; and 51.:&: N _ ! _ Bea (ZJH’n—I) are
Y 9+ﬂj I+—9— 2 2
n;
independent. Now, consider
- _r
2 2
O+wn; | =| y-m;+wn,
2
= ~{+(w—1)r|j
T T3
=7y ? I+(w—l)&]
R Y
r
_Ir ~3
=7y 2| 1+(w—1)5; ]
n+2j—r
AT r(—TJ_ )
and, F{Y 2]=2 2 N < J [4.2.15]
n+2j
(*3)
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r 2j+1 n+2j
=F| - —;———;1- 421
2 [[:2 5 > W] [ 6]
I..(n+2j—r)
Therefore E{épw')=[7a_£J E:P 2 2 [[g’%ﬂ;n;% ;l—w],

=0 ! 1_(m-?.j
2

forr=0, 1,2, ...k.

The mean and variance are respectively

r(n+2j—1j
—_— . .
2 , [[1 2J+I_n+_J;l_wJ

l_(n+2j) 272 7 2
2
l_(n-{—Zj—'l

n+Aw 2 2 ) 1 2j+1 n+2j
= P; k|-, ——;—:;1-w |Cpw 42.1
V2 j§oJ r(n+2j) 2 ‘[2 2 7 2 ] P [4-2.17]

2

E(épw) = a2 EOPJ-
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2

l_[n+2_}—2
a

vicow)=2d $p L 2 )
(Cow) 2| & {242 2
2
1_(sz—l) g
x 2 1 2j+1 n+2j
- ZPj———F<"2F —:*i"—;——J;l‘W]
s r(n+2_1] 27 2 2
2
I_(n-&-Zj—Z)
) H 71
_ardw) 2p L2 J g l,zi_*i;m;l_w}
2 =0 l_(n-t-Z]) 2 2
2
r(n+2j—l] 2
- =P 2_J) g|l2itln+a, Cpw?. [4.2.18]
= 272 2

o r(I:H-ZjJ
2

If w = 0, equation [4.2.16] becomes

n-1

'% 1 1 ‘% 254, =
E [ 1-8; } = _ [I-x] “x 2 [ 1-x J dx
0 B( 2_]-{-1 D—l)

2 72

r(n-r—ljr(n-i-ZJJ
T2 2
r(n-l)r[n+21—r)
2 2
_ ] r(n+§j—lj
~ n+iAw °°
=] p\ 2 J 42.19
then E(pr ) ( 2 CPWJ j§o ! I_(n+2j] [ :
2
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Further, if u =T, i.e., A =0, then equation [4.2.15] becomes

F( n—r)
E({i}ﬁ \2)

(n—r—l)
| 2
and hence, E(Cpw*) = (‘Epr) N2 7 [4.2.20]

Thus, the mean and variance of épw when w =0 and p =T are respectively

I_,(n—Z)
E(Cpw) = \g—n“’_rcpw [4.2.21]
%)
'r[n—ryj r(n—Z] 2]
vicpw) = % 2 J |2 /] Lepwt. [4.2.22]

[4.2.23]

r [ ——
A . ;n+k i 2
then E(CpW )=( TCPW} jgopj ——[sz)—
B [

Further, if u =T, 1.e., A =0, then
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1)

eI ——

E(Cpw') = (‘E prj A2 [4.2.24]
Thus, the mean and variance of Cpw when w =1 and p = T are respectively

r(n_—_lj
E(Cpw) = \/g —j—- Cpw [4.2.25]
(3)
) .
r(aﬁ) r[n_—lj
viepw) =213 2 2 | L2 /| Lcpw?, [4.2.26]

SESNEe

Replacing a = ,/n+kw Cpw by a* = ,/n-blw Cpw * in equations [4.2.14], and

[4.2.17] through [4.2.26], we can obtain the moments of épw* and its special cases for

different values of w.

The rth moment of Cpw* X ~ N(p, 0'2) is

r(n+2j—r]
A a*) = 2 r 2j+1 n+2j
E(pr*r)=($J jgopj W ZFI[E,T,T,I—W],
= r 2
2

forr=0,1,2, ..k [4.2.27]

The mean and variance are respectively

l_.(n+2j——lJ

A fn+lw = 2 1 2j+1 n+2j

E(Cpw *) = P. K| —,—; ;1-w [Cpw * 4228
2

113



n+2j-2
A 2j+1 n+2j
P, ZFI[I, 1>, J;l—w]

_ n+iAw| =
2 2

2 ,Z:o r(n+2j)

2
I_,([H-2j—1

2 ] 1 2j+1 n+2j ] 2
- y¥yPp.———— % L,F| -, ————;—;1—w Cpw* 4229
ZF r(n+2jJ 2 ‘[2 2 2 P [42.29]
2

l_(n—r—l)
[fw=0,then E(Cpw*")= U g pr*] Sp— 2 [4.2.30]
Sy

V(épw *)

2

Further, if u =T, i.e., A=0, then

i r[n-—r—l)
EGpw*) = [Epr*J N2 [4.2.31]

r(n—Z)
E(Cpw*) = \/E 2 Jopwe [4.2.32]
2 (n-—l)
r P
2
, 2\
r(n;3) r(n;Z)
v(Epw+) = 2. _ | Cpw *2 [4.2.33]
2 (n—l) (n—l)
2| |f2=
2 2
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r(n-{-Zj—r)

r

Ifw=1, then ‘E((Alpw*r) =(J%pr*) _ipj———%—_ [4.2.34]
=0 r(n-iz- _])

Further, if u =T, i.e., A =0, then

i F[n —r)
ElCpw*) = N% Cpw *) N2/ [4.2.35]

()
E(Gpw*) = ‘E Té_)— Cpw* [4.2.36]
2
}(n_—z) (2 .
V(épw *) =2 [21 - i . Cpw *2 [4.2.37]
3 [ 5)
2 2

Now, let us examine the biases and mean squared errors of épw and épw *. Let

B (é) and MSE (é) be the bias and mean squared error respectively of an estimator 0,

recall equations [4.2.17], [4.2.18] [4.2.28] and [4.2.29], then
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B(épw)

= E(épw) - Cpw

r(n-&-Zj—l]
_ fn+lw £p 2_ 2F{P,zﬁl;mzj;1_‘,‘,]pr _ Cpw
2 j-o r(n+2j) 127 2 2
2

I_,(n+2j--1)

n+Aw 2 2 1 2j+1 n+2j

P. F|—,—; ;1-w | — 1|1Cpw

V" 2 j§o’ r(n+2j) 2 ‘[2 2 2 ] P
2

2

_ ,n+lw $ j 2 ' ) F, l,2j+1;n+21;1_wJ _1|cpw
2 j=o r[u+21] 27 2 2
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[4.2.39]



2

l_(11~1-2j—2j
1%p 2 . I[1 2]+1.n+21;1_w}

272 7 2

(n+2j—2)
n+iAw 2 JE, 1,21*'1;“ l,l—w
2 j=o’ (n-i—ZJ] 2
L 2

n+2j-1

e )
_p [ntAw 5P, 2 2F||:l 2)‘*‘1;“*2’2];1_“,] + 1 sCpw? [4.2.40]
=0

2 r(n"'zj) 22
2
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= v(epw*)+ [Bleow
(n+21—2J
ey Ua ) o,

D+AW < 2 ) 1 2j+1 n+2j 2
—21/— p~ 2 J p|LATLR*A, ol lopw*t. @241
RN r(n+2j) “[2 2 72 WJ P [42.41]
2

;l—w] — 1|Cpw [4.2.42]

B(Cpw*) = \gi}_) zFl[l,—;-;l;l—w} — 1]|Cpw* [4.2.43]
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[4.2.44]

[4.2.45]



MSB(épw)= < %—(————— + 1 ‘Cpw?

MSE(Cpw *) = 4 %— +1 lCpw*?

Taking [imits as n — oo, it can be shown that

r(ngs) ’
lim [—21'—-——1—=l and lim %——1=1,
n—»w I_.(n— ) n—»w r(n— ]

2

for lim n°™ [{n+a)

=1. See Abramowitz and Stegun (1965).
n—e0 [(n+b)

Thus both the biases of épw and épw * become zero, i.c.,
B(épw) =0, and B(épw "‘) =0.
These imply that both épw and épw* are asymptotically unbiased. Also, the mean
squared errors of épw and épw * are zero, i.e.,
MSE(Cpw) =0, and MSE(Cpw *) = 0.
These imply that when g = T and w = 0 both épw and épw * are mean squared error

consistent. These also imply that both épw and épw * converge in probability to Cpw

and Cpw*, respectively.

120



If w = 1, then equations [4.2.42], [4.2.43], [4.2.44] and [4.2.45] become

)

B(épw) =| J——————=-1|Cpw

+ 1 >pr2

+ 1 »Cpw *2

MSE(Cpw) =

MSE(Cpw *) =

Taking limits as n — oo, it can be shown that

5
%——=1 and lim /= —~ < 4=
n—>w 2 r(g) n-w ¥ 2 F[E)

2 2
Thus both the biases of Cpw and Cpw * become zero, i.c.,
B(épw) =0, and B(épw *) =0.
These imply that both épw and épw* are asymptotically unbiased. Also, the mean
squared errors of épw and épw* are zero, i.e.,

MSE(Cpw) =0, and MSE(Cpw *) = 0.
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These imply that when p = T and w =1 both épw and épw* are mean squared error

consistent. These also imply that both épw and épw * converge in probability to Cpw

and Cpw*, respectively.

4.3 Confidence Intervals for Cpw and its Relationship to Squared Error
Loss
Similar to Section 2.7 we define the loss function
L(x) =w(x-T)
with expectation
E[LX)] = wo? +w(u—T) [4.3.1]

= (w-1)? +c> +W(].L—T)2 .

Define the expected weighted loss of X when X is not on target as
E[Ly (X)] = o? +w(u-T) [4.3.2]

= E[L)] +(-w)e?
= E[n_"lv 5>+ w(X—T)z}

n—

= E[Ly (X)]

where 62=1—_ and I:w(X)=¥6'2+ W(X—T .
n n-
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Note that L, (X) = -“—“%&2 + w(X—Tis an unbiased estimator of E[L (X)] and is a
n_

function of jointly complete sufficient statistics if X ~ N(p, 0'2), hence it is a uniformly
minimum variance unbiased estimator (UMVUE) for E[LW(X)]. Hence the Cpw index
of equation [1.6.1] can be written in terms of E[L  (X)]

USL-LSL

Cpw= [4.3.3]
6‘/ E[Lw(X)]
USL-LSL}
E|Lw({X)]= [ 434
L e e [43.4]
thus, an estimator of Cpw is
Cpw= USL-LSL [4.3.5]

6,/11“, (X)
Let X;,X,,...,X, bearandom sample from N(u, c?), then it follows that

2 2
®-TF ~ s = wl®-TF ~ =iy

~2 0'2 2 n—w .-n D—WGZ 2
and &~ i, > et~ =Tyl
n n—1 n—-1 n

and X, &2 are independent, where A is the non-centrality parameter. Analogous to

Spiring (1997) and define

Q% = 5 et e w(x-1) |

Qﬁ'k becomes a linear combination of two independent chi square random variables
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n—W 2 2
Xo-1 T WXiz-
n—1

Denoting Q2 (x) as the cumulative distribution function (cdf) associated with Q2 ;.

Press (1966) showed that the Qﬁ’JL (x) can be expressed as a mixture of central chi square

distribution with general form
Qﬁ,z x)= Zodj X.i-{»lj (x)
J=

with the d;'s being the weights such that id j =1, where the d;'s are the functions of
j=0

the degrees of freedom (i.e., n - 1 and 1), the non-centrality parameter, and the weight

function. The functional form of the d;'s are given in Press (1966), which for the

general Qﬁyl (x), are as follows:

CXP(_%)[%Jj-k( W(n—l)J%[l_ n-w_ )H

jox=0 G-k | n—-w
fi-jet .

xr(ig:oré)(v:(n wl)J ("E%J )

33 () ) e )

() EE P

~
g MI—-

=2
j=0
1=1,2,3,...,0
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Thus a (1 - @) 100% confidence interval for Cpw can be constructed as follows:

P[ij., %[w(x ~Tf +— "l"“z]«z a]=1-a
2

- ?,,.' G

2 B w(X- 17Ws2 < o2 =1—
P|: Qm;% '\/GZ[W(X T) + —6 }_ o l-a

P USL-LSL < USL-LSL USL -LSL | l—a
2 = 2 -
GGJQ n,i.;l—E GO’J I:W(X T)z + D=Ws 2] 6o Qn.}.: ad
2 0’ -1 2
for Cpw=USL-LSL

60"/1+}“—w
n
AW USL-LSL
= 1+—Cpw=—"—m——,
n 6c

then Cpw< épws

—0  Cpw<Cpws<
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Therefore a (1 - a) 100% confidence interval for Cpw is

[4.3.6]

[43.7]

Analogous to Section 2.7, we are going to find an upper confidence limit for the

loss function parameter, E[L W (X)] . Consider the ratio

n W~1 n
£y (X) in & X T)Z} =
E[Ly (X)) o +wlu-T) L

(o3
_ Qs
n+iw

Hence, il—w— (X) Qﬁyk and an upper (1 - o) 100% confidence limit for the
w

loss function parameter, E[LW(X)] can be derived

P[ Qﬁ,k 2 i,l;l—a:l =l-a

[ ) L} 1o
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PI: ELy(X)] < ;%’“”—EW(X)J =l-a [4.3.8]

nA;l-a

n+Aw

2
n,Al-a

Therefore, L (X) is an upper (1 - &) 100% confidence limit for E[L w &)

4.4 Effects of Non-Normality on Cpw

In order to examine the effects of non-normality of Cpw , we follow the approach

in Section 2.5. The estimator for Cpw is equation [4.2.1]. Now let X,,X;,...X, bea

random sample from X ~ N(0, 1) and define

u-E et S
ot <37

S| =n(i \/;+T)

with inverse transformation
s, =n(u—wz)

6(51,52)

and the Jacobian is J =
(v, z)

-0 “[i Z\I/EJ -_-472—“};-

n —-n
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and the Jacobian of
S, = n(u—wz)

If T = 0, then the inverse transformation becomes {

the inverse transformation remains the same. Following Gayen (1949) equation [2.1], we

bave:
exp —P-[u-t-z(l—w)] [n(u—wz) n;[_l
W, (n-1)= { 2 » } =W,(n-1)=W(n-1)
{3z
and the Hermite polynomials
H,(x)=x H,(- ‘/;) ~z Hl(\/;)=\[z_
H,(x)=x*-1 . H,(-Vz)=2*-1 . H,(Vz 221
()= -3x (VD)= s e T WS e
H,(x)=x* - 6x? +3 H,(~Vz)=2* —62+3 H,(Vz 22— 62+3

Notethat H,(-vz)+H,(vz)=0
Hy(~Vz)+Hy(Vz)=0
(- V2)+ B, (42)=2z-1)
H,(-vz)+H,(Vz)=2(2> -62+3).
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The joint density of U and Z is

h(u,2) =W, (n_l){li’gl[f{}(- J2)3u—-w)H, (V)]
e L e
%[ ooz -3@n3)-vz ) +9(ara)- vz ] 15
+6(u—wz(n(— Vz) 3@z +6)
+ﬁ(u—wz)2(n(n+lx— \/;)2—3(11—1))
6n(n-2) (a—wz)’ ] } _:%

W, (n—l){1+—[ H, (VZ 3(u—w2)H, (Vz)
et 1z vt ()28 - |
+n;_2[ n(Vz) -3n3)Vz) +9rafyz)-15
+6(u— wz(n(\/; )4 “3(“+3X‘E )2 +6)

+ (l)— (u - wz)z (n(n—(»lX\/—Z— )Z -3(11—1))

6n(n—2) L on2) (o ]}' n

(n+3 Xn-i—l)
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. )=exp{—g—[u+z(l—w)]}ni(u-wz)nT_l_[ i Jl
(e

4& (zz —62-!-3)4—6(11 - wz)-i-:’(—(l;:__—Tl))(u —wz)2 ]

24 |

a
% nz> -3(2043)z2 +9(n+4)z—15+6(u — wzinz2 -3 (n+3)z+6]

+—9—(u—wz)2 [n(n+1)z—3(n- I)}fﬂ(n-—z)( —~wz) ]

(n+1) Yn+1)

0<z< i, 0<u <o, zero elsewhere. [4.4.1]
W

In order to find the marginal pdf, h,(u), of U we need to integrate z between the

-WzZ .. . . .
which makes the integration easier.

limits 0 and . By making a substitution t= g
w u

Now, lett =22 then z=—(1—t), dz= ——dt. Thus
\%'2 A"

h(u, t) = h(u, z)

= u L9

_1{, for0<t<1,0<u<ow
w
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n B n-1
exp(—ziu)uz lexp —ﬁ(zl;‘ﬁt]t 2 lJ
h(u, t)= hud = hud

(e

1

L] lli-(I—t)2 —61(1—t)+3+6-‘ﬁ-t(l—t)—6ut+3Muztz
24 _w2 w w? n+l
2 3 2
A5 Y -t -3(2043) (=) +9(n+4) L (1—t)15
2] w w w

3 2
4—6:137t(1—t)2 ~18(n+3)2—t(1—t)+36ut
W w

3
u’ (0-1) 5 n(n-2) ;;
9n—t“(1-t)- t“ +6 t
n w (-0-27 n+l Wt (n~l»-3X11+1)|-I

Hence the marginal pdf of U is

h, (u)=£ h(u,t)dt

exp(—*z—nv;“)“%—lJ' n—1 1 n-1 1 null-w)
hy(u)= 0 B( ’“)‘F‘ 2T aw ]
(el S

nh,| u? _(n-15§ n-1 5 nui-w)
+ B = [F[ T
24| w2 272 2’2 2w

u . (n-1 3) n-1 3 nu(l—w)]
—6—B| —,— 1F1 s s
w 2 2 2 2 2w

+3p( 21 ’LJ lFl{:n-—l ;_I_; nu(l—w)}
2 2 2 2 2w
+ F

l|:n+1_£__nu(l—-w)j|

2 2 2w

_6uB n+1’_1_ F, n l;l;_nu(l-w):l
2 2 2 2
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nA3

(n 1) 2B(n+3 IJIFl[n-f—S;_l_ : nu(l—w)]

n+1 2 2 2 2 2w

i

72

3
,u B(n 17] F[[n-l;z; nu(l—w)}

3 272 2w

w 2 2

n-1 5] F[ -1.5. nu(l—w)]

_,(zn+3)_a( 5.
2 72 2 2 2w
+9(n+4)£ (n -1 3) Fl[n—l;g_; nu(l—w)]
272 2 2 2w

-15B(“ -1 1) F[n—l; 1 ;_nu(l—w)]

2 72 2 2 2w
+6n u2 B(n+1 5] lFl|:n+l;i;_nu(l—w)jl
w 2 2 2 2 2w

n+1 3) F[[1-&—1 3. nu(l—w)]
1 _ul—w)

u
_18(n+3)2-B 2FL 2
(°+)w(22‘ 2 277 2w

+36uB(n+I,l) F, n+1;l;_nu(1—w)

2 2 2 2 2w

u’? (n+3 3) p[n+3.3. nu(l—w)
o2 72’ 2w

_27(n—1)u2B(n+3 l) I1_‘,1[114-3 l nu(l—w)jl
2’ 2w

o D) 0 1) pfnss 1o

0 <u <, zero elsewhere. [4.4.2]
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- a a
For Cpw=—=V, then v=—
P=To Ju

transformation, J = du —zi So that the pdf of pr is
v v3
a’ )l 2a’
cep 1m0 110,25 25

(0 |

24 | wliv 272 2’ 2wv
2 _ _ 21 _
P B(n 1,3)[171 n-13 na (1-w)
wv2 2 72 272 2wv?
— — 2 —
38 ™ l,lj El2 1’1,_na (1-w)
2 72 272 2wv?

4 2(1_
+6-2 B n+1’3 F n+1;i;_na (1-w)
4 Y2 2 2

wiv 2 2 2wV

—6— n+1 1] n+l 1 nma’(-w)
2 727 2wv?

VN (n+3 1) Fl:n+3_l._na2(1—w):|

n+lv 2 72 2 727 2w
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a . . .
= u=— with Jacobian of the inverse



2 6 - 20
M3l _a B( 1 7) E|2 l;l; na?(1-w)
72 wiv 272 272 2wy

(n -1 5) F| 2= -1.5 na’(l-w)
272 272 2wv?
2
B(n—l’i) g |2 -13 na*(l-w)
2 72 2’27 2wv?

2
-1513(“ -1 1)11:[ n-l 1 na (t ’w)
272 2 2 2wv”
2

6 20 _
‘6 a; eB(n+l 5) E n+l 5 _na @ 2w)
wv 2 2 2 2wv
(n+l 3) n+l 3 na’(l-w)
T v S lFl 2 5 3
2 2 2 2 2wv
2 na2(l—
+36a_B(n+l 1) ol L (1-w)
vi 272 2 727 2wyt
6 A 2(y_
+9n2 6B(n-i—3 3) F, n+3;i;_na il Zw)
wv 2 2 2 2 2wv
(n— l)a n+3 1 n+3 1 na?(l-w)
-27——- Fl ST P
n+l v* 2 ) 2 2 2wv®

+6

n(n-2) a® B(n+5 IJ F[n+5'l. naz(l—w)}
a ~|,F, _

(o+3)n+1)v® 2 2 272 2wy?

where a= J_[US6[C;_ LSL] \/n+7\.prw

0 <v <o, zero elsewhere. [4.4.3]
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4.5 Comments
The Cpw index, as well as its generalization Cpw*, can be estimated respectively
using épw and épw* for those cases where p = T. Both épw and épw* have been

shown to be biased estimators of Cpw and Cpw* respectively. Asymptotically the biases
and mean squared errors associated with both Cpw and Cpw* are zero implying that

both épw and épw* are asymptotically unbiased estimators and both converge in
probability to their respective parameters, Cpw and Cpw*, for w = 0 and 1. It can be

further shown, for w non-negative, that

lim ,F I,—l-;E;l—le=1 and lim ,F l,l;g;l—wjl=l
2 22

n—»w n—w 2

where

F[bcsdsz]=1+ be Z+b(b+1)c(c+1)ZZ .. b(b+1)...(b+s—l)c(c+I)...(c+s—l)zs .
S 1d~ 1-2d(d+1) std(d+1)...(d+s—1) ’

b, ¢ and z are real numbers.

Assuming p = T, hence equations [4.2.42] through [4.2.45] can be shown equal to

zero as n approaches infinity.  These imply that both pr and épw* are
asymptotically unbiased and are consistent estimators of Cpw and Cpw* respectively for
non-negative values of w.

The quantities, Cpw and E[LW(X)], each have their own advantages and are
familiar to quality practitioners. The expected weighted loss does require the use of an
explicit loss function such as Taguchi's modified loss function attached with an

appropriate weight function, w. Allowing the weight function (Spiring (1997)) to assume



different forms allows Cpw to be analogous to the different types of loss and utility
functions available and used by practitioners. Using different weight functions allows
one to customize the capability index to the process of interest, thereby allowing different
shaped loss functions to be used for various processes. However it is easily interpreted in
terms of monetary loss, either to the practitioner and/or the society when the process

characteristic misses the target.

We have developed the statistical properties of épw and épw* where the
process characteristic is normal distribution and when the normal distribution is distorted
with non zero values of skewness and kurtosis. We have also developed alternative
techniques to obtain the confidence intervals for Cpw as well as Cpw*. Similarly to what
we have done in Section 2.7 we have examined the relationship of Cpw to the squared

error loss function.
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Chapter 5

The Inverted Beta Loss Function and its

Applications

5.1 Introduction

The applications of loss functions in quality assurance settings have been
increasingly studied with the recognized importance of off-targetness by both customers
and manufacturers. In this chapter, a general class of loss functions based on the
inversion of a family of probability density functions is examined. Applications in
industry including reliability and quality assurance, process monitoring and control using
economic loss are used to demonstrate applications of this general class of loss functions.
Mathematical derivations are included as theorems in this chapter. Some properties

arised from the IBLF are discussed in Section 5.7.

5.2 The Inverted Beta Loss Function

The maximum value of a standard beta pdf with parameters a > 0, § > 0 having

functional form

f(x)= x*! (1-x)*, 0<x<1,a>0,p>0,

1
B(a,B)

can be found as follows:
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Inf(x) =-InB(a,B) +(a - DInx+(p - 1) In(1 — x)

Olnf(x) a-1 B-—-1
& X 1-x

0

Solving for x yields

N - S
a+p-2

and represents the value of x where the beta pdf is a maximum. With the existence of

unique maximum we must have o > 1, p > 1 and a < since

Inf(x) a-1 Pp-1 el S
o _(l—x)2 , and evaluate at x = a+p-2
6'111f;(x) - (0!*‘3'2)3 <0 = maximum ifbotha>1and g > 1.
ox (a-D@PE-D

Following the development for general inverted probability loss function outlined
in Spiring and Yeung (1998), let T denote the target of the process, and define T =

a-1 .
m to be fixed. Using the unique maximum conditions associated with the beta
distribution a linear relationship can be established between o and B through T. The

relationship can be written as

T 1-2T _T(B-1)
= 1—TB+ -t and a-l= _l—T .

o

Letting n(x, T) denote a function of the form of a beta probability density function

x*'1-x)*"',  0<x<l,

1
"D = Ba.p)

with m = sup n(x,T) = T'1-T)*",

B(a.,B)
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where m denotes the supremum of mw(x,T). Then analogous to Spiring and Yeung

(1998), the loss inversion ratio becomes
=D @G
m \T 1-T
a1 (1-TXe-1)
-3 &
T 1-T
=T (a=1)

1-T (a-1)
=C{x(1—x) T } [5.2.1]

=T I-a
where C = !:T(l—'[) T } .

The loss function associated with inverting the beta pdf is referred to as the

[nverted Beta Loss Function which, for a K, the maximum loss, is :

Lx,T)=K 1-1’(’;;“]
( 1-T (-1
x{l-x)T
—K{l- —(—) 522
STt [5-2.2]

I-T (x-1)
= K{l —Cl:x(l -x) T :l }

Figures 5.2.1a, band care IBLF’s with K =1
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e NN /)

Figure 52.1a L, T=.15,a=15,=3.83), L(x,T=45,a=1.5,p=1.61)

and L (x, T =.80, = .5, B = 1.125)

L(x,T)

0 6.2 0.4 0.6 0.8 1

Figure 52.1b L (x,T=.15,a=5,B=23.67), L (x, T =.45, a =5, p =5.89)

and L (x, T= .80, o =5, p = 2.00)
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X
Figure 52.1c L (x, T=.15, a =20, p = 108.67), L (x, T = 45, ac =20, p =24.22)

andL (x, T=.80,a =20, 3 =3.75)

5.3 The Risk Function

The loss function is employed to describe the precise situation that the loss incurs
when process measurements depart from the target. In decision theory the Risk Function
provides the average loss associated with the process given the loss function and some
assumed distribution for the process measurements. [t measures, in monetary units, the
average loss to customers or society when the target is missed. The IBLF can be so
chosen to fit the practitioners’ need and its associated risk function can be evaluated
easily.

In particular if the process characteristic X has a beta distribution with parameters

o ; >0and B, >0, then the expected loss or risk is given by

I-T

1 (a-1)
E[L(Xs T)] = IK{I - CI:X(I - X)T:| }F(C—I—I—B-—) x%r~1 (a- X)Brldx
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t I-T
K(l _— e x(‘x'*'ﬂg-i)—l (1 _ X) _T_(a°l)+BR"‘I dx)
B(G. R B R) 6[

B(a + ot —I,I;TT-(a —D+Bg)
B B(ds,Br) : 53-1]

The conjugate distribution for this IBLF gives a closed form for the beta
distribution. An application of this risk function will be illustrated through an example
from the printing industry. However there are other distributions which are suitable for

this IBLF. ( See Section 5.7 for details. )

5.4 Choosing the Appropriate IBLF

In those cases where only the “primary loss information” is specified, i.e. T and

K, the general form of the IBLF is

, O0<x<l1

_ n(x,T)
Lx,T)=K [1— - ]

where K is the maximum loss, n(x,T) a standard beta pdf with parameters a and B, T =

-1
ﬁﬁ_a is the target of the process, m is the supremum of n(x,T).
The associated risk function is equation [5.3.1] when assuming X ~ Be

(agz.Br)- The shape of this loss function can be controlled through the selection of a

and/or B as long as botha > 1 and p > 1. Since &, B and T are related as follows :

_T-)
1-T

_ a-D(a-1

o-1 B-1=""—7"" [5.4.1]
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and assuming T to be fixed, there are many combinations of a and B which can be used
to create various shapes for the IBLF. Three such combinations of a and B are illustrated

in Figure 5.4.1.

L(x,T)

Figure 54.1 L,(x, T=.60,ax=1.5,8=1.33), L, (x, T=.60, a =5, B =3.67)
and L ; (x, T=.60,a =20, =13.67)
When T = 1/2, from equation [5.4.1] it is easy to verify that o =f. Assuming T
=1/2 and a =P > 1, the resulting IBLF is symmetric around T with the maximum loss
reached at similar distances from T in both directions. Figure 5.4.2 illustrates three of the

many symmetric forms the IBLF may take on.
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L(x,T) \ \\ // /
\ \\ [/ /
w

0 0.2 0.4 0.6 0.8 1

X
Figure 542 L, (x,T=.50,x=1.5,B=15), L, (x, T=.50,xa =1.58 =1)
andL; (x, T=.50,a=15,p=1.5)

When T # 1/2, the IBLF will be asymmetric and have many potential shapes.
Figure 5.4.3 illustrates three IBLFs for the case where T < 1/2, while Figure 54.4

illustrates three IBLFs for the case where T > 1/2.

7=

i\

wr W/
AN/

Figure 5.4.3 Various Asymmetric IBLFs with T < 1/2

Outer: T=.15K=1,a=15,B=3.833
Middle : T A5, K=1,a=35, B=23.6667
Inner: T=.15,K=1,a=20, p=108.6667
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Figure 5.4.4 Various Asymmetric IBLFs with T > 1/2
Outer: T=.72,K=1,a=15,p=1.1944
Middle: T=72,K=1, =5, B=2.5556
Inmner: T=.72,K=1,a=20, § =8.3889
From the above figures we see small values of a “open up the arms” of the loss
function around T, while larger a values “tighten the arms around T”. Small o values
result in smaller economic losses for slightly off target processes, while larger values of a
assign a more severe penalty (loss) for similar departures from the target.

In those cases where T, K and an auxiliary piece of information about the loss are

known (e.g., [x,, L ], where L, represents the loss at x, ), the value of « is such that

L, (x,,T)=K [1—5(%’—13] [5.4.2]
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while continuing to satisfy the conditions outlined in equation [5.4.1]. a can be solved
using equation [5.4.2] using K ; =K for i = 1,2. The associated risk function will be the

same as that described in equation [5.3.1]. It can apply whenever x, <T or x,>T.

14; ; j : 14: ———\ —
12— 12 N\ [
10; —~— -~ 10: \\ f—
L(x,T) % ; NC /- L(x,T) ?5? \ [
4t N\ [ 4 A/
2 N—/— 2: A
05 : . \_/ : 05 \./ :
0 0.20.40.6 0.8 1 0 0.20.40.60.8 1
X X
Figure 54.5a Figure 5.4.5b
T =.75,K=10, L[.60, .75] =4, T=.75,K=15,L[.85,.75] =6,
o= 8.6844, B =3.5615 o =12.3235, p =4.7745

When T, K and two auxiliary pieces of information (e.g., [x,,L,]and [x,,L, ])

are known and such that x, <T and x, > T, we need to solve for o, and o, such that

Ll(x,,T)=K[l—E‘—%ﬂ} and Lz(xz,T)=K[

1

. nz(xz,T)}_

m,

It is easy to show the solutions are of the form

Li(an)
lnl:l— K; } - -
o, = < 1_x. I +1, i=1,2. [5.4.3]

T 1-T
where L, and L, represent the loss associated with the values of the process

characteristic x, and x, respectively. Combining the resulting curves provides

practitioners with a versatile loss function of the form
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K(l _meD T))

L B m, if 0<x<T 544
D= l((l nz(x,T)) if T<x<l [5:4.4]
m,

allowing both sides of the target to have a maximum loss of K and shape based
onr,(x,T) [which has parameters o, and T] and =,(x,T) [which has parameters o,

and T]. Figure 5.4.6 illustrates the combined loss function based on two different Beta

pdfs.
2.5 \ /-
1.5 .
1- , \ /
0.5" K/
0: -
0 0.2 0.4 0.6 0.8 1
X
Figure 5.4.6 T=4, K=25,L,(3, 4)=1.25,L,(75, =12
Theorem 5.4.1:

The associated risk function of the IBLF, assuming X ~ Be (o ,B ¢ ), is
E[LX,D]=K{1-C B(l,+ag,n,;+Bg)/B(og,Pr)-

C,B(l,+toag,n, +Bg)-By(l,+og,n, +B)V B(og,Bg)}

[5.4.5]
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S 1-T
where Ci=[T(l—T) T] I, =a,;-1,n; = T(ai—l),i=l,2-

Proof:

Let X have a standard beta distribution with oc; >0, and g ; >0, then
1

ELXD]= [ LeT) f(x) dx

[}

©

K{1-C[x" Q-0 [} oo dx+ | K{1-Cy[x* (1= )™ ]} o) dx
T

T T ag -l l_x)ﬁn—l
~K[] fdx-C, [ xb(-xm Xt dx
[] fydx-C, [ "(~x" —gr—m—dx +
1 1 . . xa“‘-[ (1 _ X)BR—-[
- 5 2 1_ 2
K[Tj f(x) dx c_[Tj x" (1-x) Ban By dx]
T x[,ﬂxn—( (l _ x)n,-i—ﬁl—[ 1 x[,_-b-ak-l (l _ x) ny+Br-1
=K{1-C dx-C, dx
(-Cf —Resy B ’

Br(h +oe,n +Be) _ B, +ap,n; +Bg)—Br(l, +ag,n, +BR)}
J

=K 41-C 5
{ ! B(og ,Bgr) - B(ag,Bgr)

For those situations where the maximum is different on either side of the target

the IBLF can be combined as follows :

KI[I_ nl(x,n)

L 3 m, if 0<x<T s4
1= n,(x,T) if T<x<l [5-4.6]
K,l1- hm
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allowing either side of the target to have maximum losses of K | and K, respectively and

shape based on 7,(x.T) and =, (x,T). See Figure 5.4.7 for an example.

17.5¢
151

I/

L(x,T) lzigf \ /
/
/

7.

2. -

\
0 0.2 0.4 0.6 0.8 1

O U W

X

Figure 54.7 T=.65K,=15L, (2,.65=5K,=20,L,(7,.65=5

Theorem 5.4.2:
The corresponding risk function of the IBLF, assuming X ~ Be (a gz, Bg ), is
ELXD]=K, {I;(otg,Br)-CB(l +og,n, +Pg)/ B(ag.Bg)}
+Ky {[1-I (g, Br)]-
C,[B(l,+og,n, +Pg)-Br(l,+ag,n,+Bg)l B(ag.Bg)-

[5.4.7]

Proof:

Let X have a standard beta distribution with ot >0, and B ; >0, then
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E[LX,T)]= OI L(x,T) f(x) dx

= } K, {1-C [x" -]} foo) dx + [[ K, {1-C,[x" 1 - %)™ ]} fx) dx
0 T

= T T (] v\ X" (1-x)P!
=K, [Of f(x)dx-C‘af x"(1-x) B by dx] +
K [3- ) dx - C } X (1 —x)" x4 — x)Pet i
2 T x ) Zr B(og.Br)

Br(l, +og,ng +Bg)
B(og.Pr)

=K, [I+(og,Bg )-C, ]+

K {B(aR’BR)_BT(aR’ﬂR) _C I:B(lz +ag,n;, +Bg)—Br(l; +og,n, +BR):|}
2 B(atg.Bg) : B(og.Bg)

Br(l, +og,ng +Bg)

~ K (o e ) - €, B(og.Br) 1+
K, {[l—lr(ak,ﬂg)]—cll:B(ll + g,y ﬂ:;(zl: I?;R()lz +0lg ,0, +[5R):|}.

Notice that equation [5.4.7] reduces to equation [S4.5] when K, =K, =K.

5.5 Properties of the IBLF

1. The shape of the IBLF is scale invariant under linear transformation.
If the IBLF is based on a generalized beta distribution (i.e., f(x)) with unique

maximum conditions, then a transformation of the form y = a + bx results in an IBLF
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with similar shape but different scale and/or target. Assuming f(x) to be a standard
beta pdf with unique maximum conditions, then the transformation y = a + bx results
in y,..=a+bx,_. . As aresult the ratio of the pdf to its unique mode is independent
of scale. It follows that 1 minus this ratio is also independent of scale, and hence the
IBLF is said to be scale invariant under linear transformations. To illustrate, Figures
5.5.1 aand 5.5.1 b contain the IBLF associated with the standard Beta pdf and K = 10
(i.e, L(x, T = .65)) and the IBLF associated with the transformation y = 20 + 20x

again with K =10 (i.e., IBLF L(y, T =33)).

Theorem 5.5.1:

The shape of the IBLF is scale invariant under linear transformation.

Proof:

If Y has a generalized beta distribution with parameters « > 0, § > 0 and ranging from
p to q ( with p £ q ), then we can transform it to a standard beta distribution that
possesses the same loss function as X.

The pdf of Y is

-1 B-1
y-p| [4-Y¥
gy = ) [ ) ., P<y<q

B(a.f)Xq—p) [q—p qQ-p

Y -
Let Y=(q-p)X+p and then X=q_——5 with IJI=[%l=(Q’P)-

Similarly, the mode of Y can be obtained through differentiation and found to be

_@-pe-b
a+p_2 P

151



and let it equal to T, the target with respectto Y.

T-p a-1

N =
ote that, 1) q-p oip-2

=T, the target value in X,

1-T
2) B-1=T(a-1),and

I-T) =

3 (I:g)[ﬂ) ={m_1~)%}' _c
q—p/\q—p

a-1 B-1
So, n(y,T)= ( and correspondingly m', the
1) B(a.p}q—-p)\q—-p q-p Sponcimely

supremum of n(y,T'), is

B(a.B)q—-p)\q—p q-p B(a,B)(q-p)

Hence the loss inversion ratio

1-T
n(y, T) _ C(y - p] - (q - y) T

m' q—p q-p

1~T) @
= C{x(l —-x) T } , which is same as [5.2.1]

_m(xT)

m

- Lx,T) =L(y,T').

Figures 5.5.1a and 5.5.1b are IBLFs with K = 10.
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Figure 5.5.1a Figure 5.5.1b
Ly, T =33, a=2,B =1.54) L(x, T=.65,a=2,p=154)

2. Theorem 5.5.2
The risk function is scale invariant under linear transformation.
Proof:
It follows from Theorem 5.5.1, the pdf of X is
f(x) =g(y) [ J|=g[x(q-p) +p] (q-P)

1
~ B(a,B)a-p)

x* (1-x)*"(q-p)

 B(a,B)
Then the risk function of Y is

x“'1-x)", 0<x<lI.

q q
EL(Y.T)]= | L.T)ewdy=] LxT)gy)dy

1
= OI L(x,T) g[x(q - p) + p] (q - p) dx

} Lx,T) f(x) dx

E[LX,T)]
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3. The risk function associated with the IBLF has a closed form for all distributions with
finite raw moments.
The general form of the risk function for the IBLF is C-E[X’ (1-X)" ] and can be
evaluated for all cases where the moments exist.
In general, the IBLF has a better evaluating form through the raw moments of the

process characteristic X. For
E[LXD]= | K(l - f( )dx)
=K-K ? Eﬂ)—f (x)dx
- m

K I_TR(ZT)

—a0

f (x)dx:l

=K l—CTx'(l-—x)“f(x)dx:I

K 1-C§:0 LCi(=Di (1) ]

I-T -
where C= [T(l—T) T :I , and

C, is the general binomial coefficient and i _ is the rth raw moment.

n t

If n is a positive integer then the expectation above has finite number of terms, otherwise

it has infinite number of terms.
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Notice that this risk function can be evaluated for any process characteristic
distribution including normal, gamma, Wetibull distributions ... etc. as long as all the raw
moments exist.

As another example to show the ease of evaluating IBLF. Let’s consider the

IBLF if X ~U(ag,Bg), where 0 < ap < B, then the associated risk function is :

|

Br —g

Br Ll PR
E[LxD] = | K{“CX““(1~x) w )} -

c & T
=K{l——-— Ix=t1-x) T "dx}

BR _aR ag
1-T e .
let I1=a-1, n= ~—T—(a —1), be both positive integers,

and let x=sin’0, dx=2sin0 cosO dO

2C arcsin/Bg

R R arcsinfug

E[L(X, D] = K{l - sin”*! @ cos®™*! ede}

= 21+1
=K 1- 2Csin” " 0 cos?" 0

+ - 2k n(n—1)...(n-k+1) cos2™ 2k g arcsin /Bg
k=1(2n +21)(2n + 21 -2)...2n + 21 -2k + 2)

arcsin \fag

_ Csin?*' @ & 0(0—1)..(a—k+1cos> g P
_K{l_(BR—aR)(n+l+l)[cos O+ 2 sl D (nel_k+D) .
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5.6 An Application of the IBLF

A lottery ticket manufacturer produced tickets that were to be distributed through
a vending machine. The tickets were to be folded and stacked in columns within the
vending machine and dispensed one at a time through a dispensing slot. After inserting
sufficient funds, a ticket would be exposed and the purchaser required to tear the ticket
from the dispenser. The vending machine operators identified the critical characteristic in
this process as the force required to remove the ticket from the dispenser. This force was
directly related to the “pull strength” associated with perforations made on the tickets
during manufacturing.

The vending machine operators found that when the pull strength associated with
the perforation was above 60 pounds per square inch (psi), tickets would not necessarily
break along the perforations, leaving portions of the ticket inside the vending machine. It
was also found that in those case where pull strength of the perforation was less than 40
psi, the vending machine tended to supply more than one ticket at a time. This resulted in
the vending machine jamming as the next ticket would not feed properly through the
mechanism.

In the case of a vending machine jam the company felt the cost to restore the
machine to working condition was $0.10 per ticket. If the pull strength went beyond 60
psi, the vending machine was unable to break the perforation cleanly and the loss per
ticket was also considered to be $0.10. The manufacturer agreed to compensate the
vending machine company on a sliding scale that accurately reflected the costs associated
with off-target perforations. Both parties agreed that $0.10 per ticket fairly depicted the

costs associated with a complete failure of the perforation and that this occurred when the
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perforation strengths were outside 40-60 psi interval. In addition they both agreed that the
scale must include a $0.05 per ticket penalty to the manufacturer if the pull strength were
45 psi or 57.5 psi.

Using this information above, an IBLF was ultimately used to reflect the
compensatory package for perforations that were off target. In addition the manufacturer
was interested in determining their risk exposure under normal operating conditions.
Using equation [S4.3], for T =55, K=.1,x,=45,L, (x,,T)=.05,a, =1.9464 and
X,=575, L,(x,,T)=.05,a, =10.0138, results in the IBLF illustrated in Figure 5.6.1.
The original and transformed pull strength data are listed in Tables 5.6.1 and 5.6.2. The
pull strength data appears to follow a Be[ ot =2.0994, B =2.3184] (verified by the Chi-
square Goodness-of-fit test (p-value = .0987)) whose expected loss (evaluated using

equation [5.4.5]) is $0.028.
0.1 \ ” T /
0.08 \\\\\ - //
0.06 : 5
L(y,T) \ | /
0.04 ‘ \ /
0 A i .; :

40 45 50 55 60

Y

Figure 5.6.1
L,(x,=45,T=55K=.10)=.05,0, =1.9464 and
L,(x, =575,T=55,K=.10)=.05,a., =10.0138
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Table 5.6.1 Pull Strength data

40.6 47.6 49.5 52.8 450 51.6
48.5 583 46.5 53,5 48.9 583
420 41.0 473 47.5 470 54.5
47.7 448 475 47.0 41.7 54.8
42.6 56.5 524 559 42.2 52.6
50.5 49.7 48.6 58.6 437 53.7
47.6 55.0 450 546 55.0
46.6 518 51.0 46.2 538
56.9 48.6 476 44.0 494
53.7 442 52.0 44.5 48.1

Table 5.6.2 The transformed Pull Strength data
.03 38 475 .64 25 58
425 915 325 675 445 915
1 .05 365 375 35 725
385 24 375 35 .085 74
13 825 .62 .795 11 .63
525 485 43 93 .185 .685
38 75 25 73 75
33 .59 .55 31 69
.845 43 38 20 47
.685 21 .60 225 405

5.7 Comments and Recommendations

The shape of IBLF is easy to construct as the various choices of o for a fixed T

allows the IBLF to be tailored to the practitioners’ need. In general the relationship that

exists among T, o and P suggests that for a fixed T, as o increases, p will increase.
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Alternatively, keeping o fixed and increasing T, B will decrease. It can be seen that
when T = 1/2, this may not necessary be that a = B and possessing symmetric shape of
loss function. We can make use of equations [5.4.4] or [5.4.6] to adjust the loss function

properly and having asymmetric shape. Figure 5.7.1 illustrates two IBLFs with T = 1/2

but a # P and various values of K.

20. . . 20: . .
i i J— : /
17.155:E ~ s 17i2? —f—
12.5§ ~\ / 12.5: N /
L{x,T) 10; _\ /[ C O Lx,T) 104 N /
7.5% _\__ [ 7.5% \ —f
s: — / : 5 N\ /
2.5 \ 4 5.5 N /
HE \/ : 05 \_/ :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 G.6 0.8 1
X x
Figure 5.7.1

L,(x,K,=18,a,=10), L,(x, K, =18, a, =5) and
L, (x, K,=15,a,=5), L,(x, K, =20, a, =3)

The general form of the IBLF admits a closed form risk function for those
distributions having finite moments. The expectation of L(x, T) can be obtained easily
even if the loss function is a combination of two different loss functions due to the nice
form this IBLF possesses. In particular, if the beta distribution is employed as the
conjugate distribution, equations [5.4.5] and [5.4.7] are the solutions. If the process
measurements follow a distribution of the form of a normal, gamma, Weibull, ... etc., the

risk function can still be found.
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Under linear transformation the IBLF and its risk function are the same as those
IBLFs associated with the standard beta pdf. This follows directly from the result that a

generalized beta distribution can always be transformed to a standard beta distribution.

In general, the scale invariant nature of the IBLF and its associated risk function
under linear transformation holds for any distribution having a unique maximum. These

can be shown as follows:

Let X ~ N(u,6?),its pdf has a unique maximum at x = u and let it be T.

e |

Then =nx,T) = N and its maximum is m = no Hence

n(x,T) ex [_(X-T)l]
m P 26

Now, let Y =aX + b ~ N(ap +b,a%c?), where a and b are constants, its pdf g(y) has a
(y-T)’

2a’c’ ]
2t ac

exp[—

unique maximum aty =ap +band letitbe T'. Then n(y,T') = and its

. . 1 . X i
maximum is m' = oras” Hence the loss inversion ratio, after simplification, is
T ac

G.T) _ (Y_-lj L y-T _
—==exp[ 20'2] , for " x-T
cexp[ D
xp 20_2 ]
_T(x,T)
o
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e

Following this approach and if X ~ G(a,B) with pdf f(x) = W

with a unique

maximum at x = B(a-1) =T, a > 1. Then

et x(a—1)
. exp[- T ]
F(a)(a—iij
Tyt
- G

I (a)(%) )

with loss inversion ratio

n(x,T) _ (E) ot expl x(a—1) :
m T *P T
Then, if Y =aX + b, Y will possess a three-parameter Gamma distribution with location
parameter b, scale parameter af3 and shape parameter o, with the pdf
a-1
y—b) y—b
( a exp[ ap :l

gy)= T(a)p°a

which has a unique maximum at y = a(a-1) + b= T'. Thus

y—b)*" [(y—b)(a—l)]

oy ~=2| ,
(@) a(a—-1) a

n(y, T') =
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,_ [Ba ’1)]‘1.l exp[-(a—D] _ [ e

and = T-b |* T-b 1*’
coffh] el

hence the loss inversion ratio, after simplification, is

a—-1
n(y.T) _ { (y—be ] exp[_(_Y:P.)_(E‘_l)}, for Y; b_ X, T;b =T =f(a-1)

o ap(oc —1) T-b

O

n(x,T)

m

Similarly, if X ~ W(c,d) having the pdf f(x) = cdx’'exp[-cx“] and X has a unique

) cd \d
mammumat}c:(ﬁ) =T,d>1. Then

n(x,T) =(d-DT!x*exp [— d—;l(x'l')d}

d—-1

a-t cid &
and m =cdT ¢ exp[— il =cdT ¢ exp[-cT]

d-1

with loss inversion ratio

D ()" e £ o]}

For Y = aX + b, Y will have a three-parameter Weibull distribution with location

parameter b, scale parameter a and shape parameter c, and its pdf is

]
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1

cd \d
g(y) has a unique maximum aty = a(ﬁ) +b. Its loss inversion ratio is

m' a

d-1 _ 3
n(y,T) y-b(d-l)i d—1](T-b)(y—-b)] < |
- cd Nl I a Td-1

d-1 ] d
_(x E d d y—-b (T’—b\‘ _ cd o
-—(T) exp{-[ 3 (xT)® -cT _},for it ey —d_l—T

n(x,T)

m
Hence the loss function and risk function follow.

There are some limitations of this IBLF when the unique maximum conditions do
not hold. For example, taking o =1 and B = 1 with any target value T, the loss will be
zero over the range (0, 1) when standard beta distribution is concerned. It is unrealistic to
have zero loss between the two specification limits.

To conclude, the applications of this proposed inverted beta loss function is not
limited to industry as they can be used in any application where reflecting economic or

monetary loss to the company or to the society is of interest.
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Chapter 6

Some Properties of Inverted Probability Loss

Function

6.1 Introduction

Loss functions have been studied for several decades and have been widely used
for various purposes such as business decision making, quality assurance and reliability
settings. Taguchi (1986) used a quadratic loss function to motivate and illustrate losses
to society associated with departures from the target in industrial applications. Spiring
(1993) modified this loss function approach using an inverted normal probability density
function which provided a reasonable assessment of loss. Spiring and Yeung (1998)
developed a class of loss functions based on inverting various pdfs including gamma,
Tukey’s Symmetric Lambda and Laplace distributions which not only provided the
traditional properties of loss functions but also emphasized the asymmetric loss cases.

Loss functions are used to quantify losses associated with deviation from a
desired target value in both decision theory applications and quality assurance settings.
In decision theory, loss is generally defined as a nonnegative function of the deviation of
an estimator from the parameter value to be estimated. In quality assurance settings, loss
functions are used to reflect the economic loss associated with variation about, and

deviations from, the process target or the target value of a process characteristic.
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In decision theory, traditional loss functions usually take forms such as quadratic
loss, absolute loss, step loss and the generalized loss (which includes the quadratic and
absolute losses as special cases) and possess nice properties such as boundedness,
invariance under linear transformation, and closed under sampling in prior-posterior
analysis, ... etc. In this chapter, we investigate several statistical properties associated
with the family of Inverted Probability Loss Functions. We have found IPLFs do have all
these nice properties that the traditional loss functions possess, and in addition IPLFs are
more flexible in expressing the economic consequences associated with deviation from

target as long as the selected probability density function possessing a unique maximum.

6.2 Basis of Inverted Probability Loss Function

The proposed general class of loss functions is based on the inversion of common
probability density functions. This family of loss functions satisfies the criteria that the
loss must be non-negative, is zero worth at the target value, is monotonically increasing
as the process drifts from either side of target, and attains a quantifiable maximum near
the lower and/or upper specification limits of the process. In this section we are going to
develop the basis of this family of loss functions.

Let f(x) be a probability density function possessing a unique maximum at x. Let
T = x be the value of this unique maximum, where T is the target value. Let n(x,T)=
f(x), which is in terms of x and T, use in creating the economic loss function for the

process of interest, then m = supf(x) = f(T). So that the IPLF takes the form
X

L(x,T)=K[1—1t(x—’Tl] [6.2.1]

m
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—R(X’T) is the

where K is the maximum loss incurred when the target is not attained and
m

Loss Inversion Ratio.

It can be seen from the structure of equation [6.2.1] that n(x,T) is the form of a

pdf in terms of x and T, m is the supremum (or the maximum) of n(x,T), the ratio

n(x, T)

, named the loss inversion ratio which has no unit and has a minimum value of
zero when x takes on values far from the target value T, and a maximum value of one
. 3 n(x,T) 5
when x is exactly on target, i.e., 0<———~<1. One property of the LIR with respect to 1
m

is the true percentage of the x values that are missed with respect to the target, and hence

.T) . . . .
this percentage loss, 1 - n(x ), is the penalty it pays subject to the maximum loss
m

amount incurred in the process. The concept of percent defect (percentage of products
that lie within specification limits but deviate from target) has been widely used as a
measure of the quality level of process characteristics of manufactured products. Usually
the percentage of defective products in shipped goods is small. There are a number of
properties this LIR possesses, in this section we are going to develop and examine these

properties, and summarized in the following theorems.

Theorem 6.2.1:

The rth expectation of LIR is bounded between 0 and 1, i.e.,0 < E{ l:n—(%g] } <l1.
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Proof:

r
For Osz(ﬁil)sl, which implies OS[F—(X’—T)] <1, then multiply the inequality by
m m

fr(x), the density of the process characteristic, and integrate over the space of X. Thus

OSE{[T‘:(—E;Q:I}SI .

Theorem 6.2.2:

The variance of LIR is

PRI

Theorem 6.2.3:

The variance of LIR is bounded between O and 1, i.e., 0 < V[—@] <l1.
m

Proof:

7(X,T) n(X,T)

2 2
From equation [6.2.2], we know that E{[——] }—{E!: :I} >0 and, from
m

m

Theorem 6.2.1 that the maximum value of the second moment of LIR is 1 and the

X
minimum value of square of the first expectation is 0. Therefore 0 < V[—M] <l.
m

6.3 Properties of IPLF

In manufacturing, loss functions usually comprehend the economic consequences
associated with deviations from target regardless of how small the deviation is. Since

different processes have different sets of economic consequences, a flexible approach to
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developing loss functions is desirable. Taguchi’s modified quadratic loss, the INLF
(Spiring (1993)), and Sun, Laramee, and Ramberg’s (1996) refinement are flexible, but
do not cover the spectrum of potential loss functions.

The IPLF defined in equation [6.2.1] can reflect losses arising from processes
with observations not on target. It also has properties inherent to the structure of the
function. They can be expressed as follows:

1. The general form of the Risk Function for IPLFsis

E[L(X.,T)] =E{K[ll()§—)]} = K{l-E[f(——X’L)]}. [6.3.1]

m

It can be evaluated either directly taking expectation of w(x,T)
E[~(X, T)]= [2(x T) fa (x)dx (6.32]
or through the use of expectation of LIR

E[%ﬂ} i i’;n’l)fk(x)dx [6.3.3]

-0

where fgr(x) is the distribution of the process characteristic, or a conjugate
distribution.

Similarly, the higher moments can be obtained

E'[n(X,T)]‘]= T[ﬂ(x,T)]r fe(x)dx, r=0,12,...k [6.3.4]
or EI: “(LT)} }: i [E(X——Q] fo(x)dx, r=0,1,2,...k [6.3.5]
| m —0 m

provided that the expectations exist.
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Theorem 6.3.1:
The IPLF is bounded between 0 and K, ie., 0 < E[L(X,T)] < K, where K is the
maximum loss incurred when the target is missed.

Proof:

For OSﬂ(x—’T)Sl
m

0120 o
m

m

0 SKI:I—M:]S K

0<| K[l —“(’:;T) ]fR(x)dx < i K f, (x)dx

0 < E[L(X,T)] < K.
2. The variance of L(x, T) arises from using f (x) as the process characteristic

distribution is given by
v[L(X,T)|=K> {E{[Q—T} - {E[%T—)]}Z} [6.3.6]

Theorem 6.3.2:

The variance of an IPLF is K? times the variance of LIR. Hence it is bounded

between 0 and K2, ie., 0 < V[L(X,T)] < K>.

Proof:

VL(X.T)]= E{ [L(X, T)]Z} ~{Ex )}
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For 0 < V[L(X,T)] <K?, follows from Theorem 6.2.3.
3. The Loss Inversion Ratio is scale invariant under linear transformation.
4. The shape of IPLF is scale invariant under linear transformation.
5. The Loss Function is scale invariant under linear transformation.

6. The Risk Function is scale invariant under linear transformation.

Theorem 6.3.3:

Let n(x, T) be a continuous pdf denoted by f(x), having a unique maximum at x = T.
Then under any linear transformation Y = a + bX, b # 0, the following are scale
invariant :

n(y,T') _ n(x,T) :

m' m

(1) the Loss Inversion Ratio, i.e.,

(2) the shape of IPLF;
(3) the IPLF;

(4) the Risk Function.
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Proof :
Given that n(x, T) is a continuous pdf denoted by f(x), then the linear transformation

Y =a + bX has pdf

g(y)=£(x)|J|

{55

—-a
= bg(y)= f(YT) = £(x)
and sup f(x)=b sup g(y)
xeX yeY
= b sup f(y—a) 1
yeY b /b
= sup f(x)
xeX
= T =a+bT, and bm’ =m.

Let g(y) =n(y, T’), then its LIR is

n(y.T) _e(y)_be(y)_f(x)_n(xT)

m' m m m m
b
This proves (1).
, T , T
It follows from (1) that L(y, T')=K[l—£(—y'—)]=l([l—f(—fn——)] , hence (2) and (3)
m'
follow directly.
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m

= K{I—E—M:I}

From (3), it follows E[L(Y, T)]=E{K[l'£(l(£l]}

m

- K{l_E'L’:fl]}

= E[L(X.T)]

this completes the proof.

6.4 The Selection of IPLFs

Different choices of IPLFs can reveal differznt levels of penalties for similar
deviations from a target. Similarly, different process characteristics (conjugate
distributions) with suitable choice of IPLF can succintly reflect the correct loss incurred
by practitioners and hence to society. Investigation of several IPLFs with appropriate
conjugate distribution are examined. How to evaluate the quality level of products
shipped to consumers is the problem of concern. We introduce a monetory evaluation of
the quality of products, assuming that the tolerances are correct and the process
measurements are in-control. In the subsequent subsections, selected loss functions with
plausible conjugate distributions/statistical distributions associated with the process
measurements are studied and compared in order to provide more information for the

practitioners’ selection.
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6.4.1 The Inverted Normal Loss Function

2
1 (x—n) i i i
Let f{(x) = exp| —————— [,which has a maximum at x = and let it be T.
) J2n o xp[ 202 :l xTH
1 (x»’l‘)2
Hence n(x, T)= exp| —
( ) J2no xp[ 262
and m= su f(x)=
p x)= J—c
T -1)?
with LIR M:exp[-(x 2) } [6.4.1.1]
m 20
) (x-T)2
and hence the IPLF is L(x,T)=Kq{1—exp S| [6.4.1.2]
c

It can be seen from equation [6.4.1.1] that the larger the o, the smaller the LIR and

hence the larger the INLF. The Risk Function associated with INLF, assuming a

conjugate distribution of N(pR,cﬁ) , using equations [6.3.1] and [6.3.3] is

E[L(X T)] [K{l exp[ (x T) ]} \/._10_ exp[—g%oﬁ’?}i}dx

m e,q,{_%[(x;r) XS, J}
dx

=KJ1-
! Pomon

_ S (PR T)Z }} 3
=K{1- [6.4.1.3]
{ \/0'2*'0'& l: 2(0' +0'R)
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Theorem 6.4.1.1 :

The rth moment of LIR associated with the INLF when the conjugate distribution is

N(},LR,O’%{) is

(X1 o (T
E = exp| ————2_|, r=0,1,2,...k 6.4.1.4
{[ =) } Ny ""[ 2fo* +03) (s414)

provided the expectations exist.

Proof :

For the rth moment of LIR of INLF with respect to a normal conjugate distribution is

et

= [ (x-1)* (x—pg)’
= — —— =7 |dx
_L P 262 |V2n Cr =P 20%

2 1 i (=T)"  (x=re)’
=] = -= dx
Cw 2T Ogr CXP{ Z[r c? * 0’12{

Now, to complete the square in the exponent and it is

(X‘T)Z ("'!»l-p\)2 o’ +10% ( rTc§+pRcz)2 rczcﬁ(pR—T)z
r———+ = - +

2 -2 2 2 2 2
c Cr G Og G +0Og (0'2 +r0'i)

Then the expectation becomes
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e

GoR
2
2 2 2
_? \/c +IGR exp 1 (x rTc§+uRcr } Jtcrzc,z{(p.k—T)z dx
- 2.2 2. .2 N
= [Iro, c’og c’+16y (o—2+rcrf()z

oog
2 2 255
G +IOR o +roy

S . ey i |
Jo’ +1oh 2(02 ‘*‘“’%{) |

Using equation [6.3.6] and Theorem 6.4.1.1, the variation of INLF arises from using the

conjugate distribution of N(uk ,cﬁ) ,1s

2
V[L(X,T)]=K? {__L_ xp[ (ke=T)" } 2"2 . exp[ (“R T) ]} [6.4.1.5]
‘/0-24.20-2 c +20‘R G +0} o? +<5'R

Theorem 6.4.1.2:

The rth moment of LIR associated with the INLF when the process characteristic

distribution is U(ctg ,Bg ) is

TN E ol

=1 r=0.  [6.4.1.6]

provided the expectations exist.
Thus, the mean and variance of INLF for the uniform process characteristic

distribution are respectively
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ELX,T)]= K{ J— e [T_“R) rf(ﬁj{:]]} [6.4.1.7]
{2 ()

R Nt |

Theorem 6.4.1.3 :

The rth moment of LIR associated with the INLF when the process characteristic

distribution is G(og,Bg) is

n(X T)

sty

) r@)"”“’[‘%L Eoerf=), { g ”

\/——BRG

2
op +1 ap, +1 3 o -rT
T- R F|R2— =, ,r=0,1,2, ..., k. [64.19
(rBR ° )h( ) l{ 2 2 (EﬁRGZJ } ’ [ !

provided the expectations exist.
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The mean and variance of INLF for the gamma distribution are respectively

m

=

[6.4.1.10]
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VILX, 1]

ag+l 2
(;J exp[_%] 2 o1y’
] LA oot

2727 ZBRO‘Z

2
2\ g +1 ag +1 3 c:-T i
+(ﬁRT-O' )f[ 2 )11:"1[ 5 ,E,[WJ jl . [6.4.1.11]

For the expectation and variance of INLF when the process characteristic

distribution is Be(otg ,Bg ), We need to expand the INLF into a series and then perform

term by term integration to approximate these expected values.
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The normal pdf provides the basis for a variety of [PLFs, all with the familiar

inverted symmetric bell shape. By varying T and &2, quality practitioners can customize
a loss function in order to accurately depict losses associated with process departures
from the target. The risk function associated with INLF can be evaluated for most
distributions such as uniform, gamma and beta that the process measurements may
follow. However, difficulties may arise in determining the functional form of the risk
function for some distributions, for examples, Weibull (W(ag .bg ), with bg > 2) and
lognormal. These associated risk functions will result in a complex number. Hence, the

conjugate distribution for the INLF appears to be the normal distribution.

6.4.2 The Inverted Gamma Loss Function

Letting n(x, T) take the functional form of the gamma distribution allows us to

expand the class of IPLFs. The shape of the corresponding loss function will be different

from the INLF as n(x,T) will now be asymmetric around the target. The gamma
distribution will form the basis for a group of loss functions that can be used to represent

processes with continuous asymmetric loss. The IGLF is developed as follows:

a-1 ( xj
X expl ——
Let f(x) = TR B

with a unique maximum at x = B(ec—1), a>1, and let

it be T. Hence
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a—I ‘__ x(a—l)]
x* exp T

n(x,T)= = -
['(a) (LJ
a-1
(T)a—l
and m = supf(x)= c -
xeX O (a)(—l—-]

a-1

a—i
with LIR @={%xexp(——;—)] , [6.4.2.1]

a-1

thus, the IGLF is Lix, T)= K{ 1- [%xexp(—%)] } [6.42.2]

It can be seen from equation [6.4.2.1] that if o increases, the LIR will decrease, thus the
IGLF in equation [6.4.2.2] will increase.
Theorem 6.4.2.1:

The rth moment of LIR associated with the IGLF, when the conjugate distribution is

G(ag,Br), is

M r =exp[l'(a—1)] r[(lR 4.-r(a__l)]Bl'R('-'l—-l)-]:(1Il _
E{[ m ] } C(og )Bg @ —1)+ TP @D 7 r=0,1,2,....k. [6.4.2.3]

provided the expectations exist.

Proof:

m T T F(QR)B;R

IS s
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exp[r(a —l)] T [og +r(a-1)]-1 X
= R dx
Tl )pe TC0 | b Y
Br (a —1)+T

_ expfr(c—1)] Tfag +r(a—1)][3{1(“'[) To®
g )[Br (@ —1)+T[* e ’

provided the expectations exist.

r=07 17 2: et 4 k7

The mean and variance of IGLF for the gamma distribution are respectively

S G
VL& T = & exp[Z(oli (—;1]!)3%““’1‘“& ‘
{[2355-‘{1;3&:?2]@-” [a :fggiﬁ)ﬁ_]ﬂzm_u} [6.4.2.5]
Theorem 6.4.2.2:

The rth moment of LIR associated with the IGLF, when the process characteristic

distribution is U(cg ,Bg ) is

=

- r(%—n]r(a_l) a1 e P heno =

T T

r=1,2,....k [64.2.6]

provided the expectations exist. The expectation equalsto 1 if r=0.
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The mean and variance of IGLF for the uniform distribution are respectively

E[Loml*[l'(ﬁ)(a-u = —ak){r[“"”gk(;——l)]'r[“’o’ﬂ%ﬂ]}}

[6.42.7]

VILX, D]

=K [M]H z(a—lxgk—aa){r[z“‘l"”26"?*1)]“"[2““"”20[“——(?&]}

‘(&%}Z(a_l)[(a—lxﬁi—an)}z{r[“"”&?i) ]‘f[“"”ﬂ%l‘) ]}

[6.4.2.8]
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Theorem 6.4.2.3:

The rth moment of LIR associated with the IGLF when the process characteristic

distribution is N{p¢,0% ) is

l'(ll—l) / 2
ﬁeo’k) exp Hr ]

E“:M]r}=( T — ([ 20%

r(a—1)+1:l IF{[r(a —1)+1 1 [TuR —r(ot—l)tréj2 } [1+ (_I)r(a—l)]

1
r * R4
V2 [ 2 2 2 2T

+(5‘;—R(1—a)+ i Jr[‘(“ ’1)+2] IF[[’("‘“)*’Z 3 [Tug —cla-1o3 [ }[1_(_ 1]

or 2 2 27 2T%c%

r=0,1,2, ...,k [6.4.29]

provided the expectations exist.

The mean and variance of IGLF for the normal distribution are respectively
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E[L(X,T)] =K

1 a 1 [Tug —(@-1)oi] -
TZ_F[E]‘ [55 - 21262 }[H( e

Ogr 2 2’2’ 2T?%c%

+(ETR_(1_Q)+ KR ]r[a*”l} J‘l[aﬂ 3 [Tlla -(01—1)0121]2}[1 1)(u~1)] [6.4.2.10]

VILX, D]

K2 (262612‘ ]a lexr{— pﬁz J >
_ T 20k ﬁr(Za-—lJ IF{Za—I 1 [Tuk -(a—l)ckr}

vin 2 2’27 2T

_exp(\/—z_k J ‘/lirl:a:| I:%% [rl-’«a;glzt 1bk]zil[l+(_l)(a-l)]

2

+(91.L(1—a)+” "Jr[‘”l] [Fl[“” 3 [Tue ~(x-1)oi }[1 (1)e]

Ogr 2 2’27 2T%c%

[6.4.2.11]
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Note that equations [6.4.2.10] and [6.4.2.11] may result in complex numbers if a is not a

positive integer.

Theorem 6.4.2.4:

The rth moment of LIR associated with the IGLF when the process characteristic

distribution is Be(ag .Bg ) is

E{[ﬁ(ﬂ]r}*r(ak +Bg Jfr(o—1)+og | Fll:r(a——l)+ak,r(a_.1) +otg +Bgs r(a-1)]

m —r(ak (o —1)+ag +Br] " T

r=0,1,2,....k [642.12]

The mean and variance of the IGLF for the beta distribution are respectively

— _r(aa'*’BR)r[a’*'aR'l] |: ol
E[L(X,T)]-K(l o) s, 75 1] (Fif a+og —Lotog +Br —L— ]

[6.4.2.13]

VILX.T)]

[(og +Bg )T2a+ag —2]

=K?
Mo )T2o+ag +Bg —2] "

2( -1)]

Fll:za-l'-ak -2,2a+og +Br —2, T

_( T(og +Bg)Tfo+g —1] [ B a_—l]z
(I‘(ak)l"[a-;-akﬂik—l] Fi|a+oag —La+ag +Bg -1, T

[6.4.2.14]
The gamma pdf provides the basis for another range of IPLFs, all with inverted

asymmetric shape having the right arm of the IGLF open up wider on the right hand side
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of the target. By varying T and «, quality practitioners can customize a loss function to
depict losses associated with process departures from the target. However, care should
be taken when practitioners fit an asymmetric loss using IGLF. If the target of the
process is near the upper specification limit, IGLF may not depict losses adequately in
this situation.

The risk function associated with the IGLF can be evaluated for distributions such
as uniform, normal and beta, that the process measurements may follow. As mentioned
earlier in Section 6.4.1, the Weibull and lognormal distributions may enhance difficulties
in determining the functional form of the risk function. Thus, the conjugate distribution

for the IGLF appears to be the gamma distribution.

6.4.3 The Inverted Beta Loss Function (IBLF)

The derivation of IBLF and its associated Risk Function have been discussed in
Chapter 5, so that only the expectation of it’s LIR is shown here. Recall equation [5.2.1]
that when o increases, LIR will decrease and thus decreases the IBLF.

Theorem 6.4.3.1:

The rth moment of LIR associated with the IBLF when the conjugate distribution is

Be(ag.Bg ) is

r(a-l)+aR,r(a—l)ﬂ+BR)

I-T -
where C = [T(I—T)T} ,r=0,1,2, ... k.
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The mean and variance of the IBLF for the beta distribution are respectively

B(oc+ocR —1,(c —1)%-&-[3,{ ]

EIL(X,T)}=K[1-C 6.4.3.2
LT Blag-Be) i
VL, T)]=Kk? c ( —2,2(-1)1=L+p J
=K* —— o +a a-— ——-———+
B(ocg -Bg ) . :
[B(a+ak—l,(a 1)1—I+BRJ]-
- T . [6.43.3]

B(ak’ﬁk)

Theorem 6.4.3.2:

The rth moment of LIR associated with the IBLF when the process characteristic

distribution is U(ocg ,Bg ) is

E{[ﬂ(X,T)]'}z c’ ){ B+ [+, —m, cl+2,B ]

m (Br —otg Nrl+1

—'a{{-{.l ZF [rl+1’—m7rl+2,aR] } [6.4.3.4]

The expectations of LIR of IBLF when the process characteristic distribution is

N(pR,of{) or G(ag,Pg) can be evaluated by

CEX'(1-X)"] =C}_§0n Ci(-D (s [6.43.5]
I-T -a
where C=[T(I—DT] ,andl=a -1, n—*a—-l)
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If n is a positive integer then the expectation above has finite number of terms, otherwise
it has infinite number of terms.

The beta pdf provides the basis for a variety of IPLFs, all with various inverted
symmetric and asymmetric shapes. By varying T and a, quality practitioners can
customize a loss function in order to accurately depict losses associated with process
departures from the target. The risk function associated with IBLF can be evaluated for
distributions such as uniform, normal and gamma, that the process measurements may
follow. Difficulties may arise in determining the functional form of the risk function as
mentioned in Sections 6.4.1 and 6.4.2. However, numerical value of the risk function
associated with IBLF can be obtained using computing packages such as Mathematica.

Hence, the conjugate distribution for the IBLF is the beta distribution.

6.5 Comparison of IPLFs

The IPLFs that we have considered include the INLF, IGLF, IBLF and their
assoclated properties for the uniform, normal, gamma and beta distributions. Let us
compare the performance of these IPLFs under homogeneous situations by fixing the
target at some T with the same variation on their open-upward “arms” and hence setting
the same mean and variance for all the process characteristic distributions.

Because the IPLFs are scale invariant, we can fix the target value of T between 0
and 1 to reduce calculations. The values of T equal to .1, .5 and .8 allow us to compare
the various IPLFs. Two sets of homogeneous process distributions were chosen for

consideration, one with small variation and the other with large variation.
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The distributions associated with parameters of IPLFs selected with fixed T and

same variation on “arms” are shown in Table 6.5.1 while the process characteristic

distributions associated with parameters with small and large variations are shown

respectively in Table 6.5.2a and Table 6.5.2b.

TABLE 6.5.1 Fixed T with same variation on “arms”

T 1 5 8
Distribution
Normal N(T, ¢?) N(.1, .0107) N(.5, .0500) N(.8, .0255)
Gamma G{a,B) G(2.5427, .0648) G(6.8541, .08541) G(27.0510,.0307)
Beta Be(o,B) Be(2,10) Be(2, 2) Be(2,5)

Table 6.5.2a Homogeneous process characteristic distributions

3 1 1
with pg =5 o} Ty
Distribution Sample space
Uniform U(O, 1) 0<x<l1
Normal N 1 1 -0 <X <
ormal N(3- 15

1
Gamma G(3, E)

0<x<ow

Beta Be(6, 2)

O0<x<l;-l<y<]1*

Beta Be(2, 6)

0<x<L;0<y<2*

Y-
+ X=—2 _ Beta(x, B)

q-P
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Table 6.5.2b Homogeneous process characteristic distributions with pg =12, ox =24

Distribution Sample space

Uniform U(12- 62, 12+6+2) 12-642 <x<12+6+2
Normal N(10, 12) —0 <X <
Gamma G(6,2) 0<x<w
Beta Be(3.2,4.8) 0<x<1;0<y<30*
Beta Be(4.64,1.69) 0<x<1;-10<y<20*

Y-

+ X=—2L _ Beta(a, B)
q—p

To compare the risk function is equivalent to comparing the expected value of

LIR. If we are going to select the smallest risk function it is equivalent to choosing the

largest expected LIR. Tables 6.5.3a to 6.5.5b show the expectations of LIR, with

different T values, associated with different process characteristic distributions.

Table 6.5.3a Expectation of LIR with T =.1, ¢*=.0107

he=5,0i=0107 | NCL 01079 | G(5427,0648) | Be(210)
Uniform U(0, 1) 215912 212866% 234652
Normal N(.5,.0107) | 143951 026858% 1003701
Gamma G(3,.1666) | .167626 1195636 218479
Beta _ Be(6,2) 477809 488535 531418
Beta __ Be(2, 6) 1002230 007775 007963

# Approximated value using G(2, .1)

Table 6.5.3b Expectation of LIR with T =.1, ¢>=.0107

e=12,0%=24 N(1,.0107) | G(2.5427, .0648) | Be(2,10)
Uniform U(12- 642, 124642 131552 000000 013827
Normal N(12,24) 772373 001725% 001463
Gamma G(6,2) 7000000 2000000 2000000
Beta  Be(3.2, 4.8) 175546 214813 243123
Beta  Be(4.64, 1.68) 1006008 013854 015170

# Approximated value using G(2, .1)
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From Tables 6.53a and 6.5.3b the target value T = .1 is near the lower
specification limit, the INLF depicts the loss quite satisfactory if the process
measurements are uniform or normal, irrespective of large or small variations. However,
it will overstate the true loss when the process measurements are skewed to the left such
as Beta(6, 2) in Table 6.5.3a, G(6, 2) and Be(4.64, 1.68) in Table 6.5.3b. The IGLF does
a little better among these cases especially where the process measurements are gamma.

The IBLF appears best in all situations when the process variation is small.

Table 6.5.4a Expectation of LIR with T =5, %= .05

i=5,02-0107 | N(3,:05) |G(6354L, 0858 Be(22)
Uniform U(0, 1) 546292 499985 1666667
Normal N(.5,.0107) | 612372 602064% 1690305
Gamma G(3, .1666) | 632013 571549 666667
Beta  Be(6,2) 519218 364500 1666667
Beta  Be(2, 6) 519218 561889 666667

# Approximated value using G(6, .1)

Table 6.5.4b Expectation of LIR with T =.5, 6= .05

te—12,02=24 N(3,.05) | G(6.8541, 0854) | Be(2.2)
Uniform U(12-6+2, 124642) | -000000 70000007 1039284
Normal N(12,24) 407509 “000000% 2000000
Gamma_G(6,2) 7000011 1000019 2000013
Beta  Be(3.2, 4.8) 743910 661636 853333
Beta  Be(4.64, 1.68) 537525 575051 675556

# Approximated value using G(6, .1)

Tables 6.5.4a and 6.5.4b show the expectation of the LIR of the [PLFs when the

target value (i.e., T = .5) is at the middle of the process. The IBLF depicts loss
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extremely well where the process variation is small or large. The INLF reflects loss
much better than the other two IPLFs whenever the process variation is large. The IGLF

is the worst in these situations.

Table 6.5.5a Expectation of LIR with T = .8, 2= .0255

ng=.5,02=.0107 | NC8,.0255) [ G(27.051,.0307) Be(2,5)
Uniform U(0, 1) 358219 337034 664604
Normal N(.5,.0107) | .320186 292612# 651712
Gamma G(3,.1666) | .250092 223922 623138
Beta _ Be(6,2) 037514 022892 420013
Beta _ Be(2, 6) 741539 722601 926726

# Approximated value using G(27, .0308)

Table 6.5.5b Expectation of LIR with T = .8, 6>=.0255

up=12,62=24 N(.8, .0255) [ G(27.051, .0307) Be(2,5)
Uniform U(12- 642, 12+6+/2) .087345 .000000# 039162
Normal N(12,24) .549375 .000000# .000000
Gamma G(6,2) .000030 .000035 .000025
Beta  Be(32,4.8) 157804 121304 633012
Beta Be(4.64, 1.68) 696812 675903 908127

# Approximated value using G(27, .0308)

From Tables 6.5.5a and 6.5.5b, it can be seen that the IBLF is the best when the
target value (T = .8) is near the upper specification limit and process variation is small.
The IBLF ranked second after the INLF when the process variation is large. The IGLF is
the worst among all these situations.

Based on the tabulated values above (Tables 6.5.3a to 6.5.5b), we have shown

numerically that the overall performance of IBLF is the best among the three IPLFs
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considered. Even though the variance of the process is large or small, the IBLF
prescribes the loss consistently regardless of whether the target value is located near the
lower or upper specification limits. The performance of INLF is good only when the
target value is near the middle and when the variation of the process characteristic
distribution is small. The performance of IGLF is good only when the target value is
near the lower specification limit irrespective of whether the variation of the process is

large or small.

6.6 Comments

The increasing use of loss functions in quality assurance has created a demand for
realistic and representative loss functions. The family of inverted probability loss
functions provides practitioners with a wide variety of loss functions that can be used to
accurately depict process loss. We have examined the general properties of the Inverted
Probability Loss Function physically and statistically. Different cases of IPLF with their
plausible process characteristic distributions are compared. The risk function associated
with IPLF is dependent upon the distribution of the process characteristic. Hence, the
process characteristic distribution is important in selecting the best IPLF to reflect their
true loss.

From the evaluation above we can confirm that the conjugate distributions for the
IPLFs based on “closed under sampling” and “make calculation easy” are respectively
normal distribution for the INLF, gamma distribution for the IGLF and beta distribution

for the IBLF. Also, we have suggested some other possible process characteristic

193



distributions for use in evaluating the associated risks when the process measurements do
not follow exactly their corresponding conjugate distributions.

The properties of IPLF captioned in this chapter are limited to only one piece of
primary loss information, i.e., the target T, the maximum loss K and [xl, L[] where L,
represents the loss at x;. We can examine the properties of a composite inverted
probability loss function with two pieces of loss information, i.e., T, K, x4, L] and
[x,. L,], or more generally with T, K;, [x;, L;], K, and [x,,L,]. The IPLF has the

following form

[ '
K, 1—M] if x<T,
\ m,

L(X,T):«

(
K, l_n_z(x;'l’)J if x>T,
\ m,;

allowing either side of the target to have maximum losses of K| and K, respectively and

shape based on m,(x,T) and m,(x,T), where m, is the supremum of m,(x,T) and m, is

the supremum of 7, (x,T).
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Chapter 7

Conclusion

7.1 The Process Capability Indices (PCls)

The process capability indices Cpm and Cpw are techniques which can be used to
evaluate the ability of a process to attain a preset target value T and to fall within required
specification limits concurrently. While Cpm* and Cpw* are the generalizations of Cpm
and Cpw respectively so as including asymmetric specification limits. However, Cpw* is
a unified approach which draws together a particular class of process capability indices
(Spiring (1997)) and allows one to examine the statistical properties associated with
estimators of the various indices using a similar perspective. Varying different weight
functions allows one to customize the capability index to the process of interest and again
to customize the index to the appropriate loss functions being used for various process
depicting losses due to variation from T.

Those PCIs which incorporate ¢ into their computing algorithm and whose
magnitudes are translated into parts per million non-conforming are meaningless in the
face of departures from normality. Regardless of how robust the estimator maybe, its
associated parameter is not stable and hence any robustness claim carry little meaning. In
the face of normality distorted with non-zero values of skewness and kurtosis, adjustments
to critical values associated with attempts to assess changes in the process capability. All

PCIs involving ¢ in their computation may contain much less than 99.73% of the process
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measurements if the process distribution is not normal. The process capability index Cpo
is proposed as an alternative for assessing process capability when the underlying
distribution of the process measurements is uniform and exponential. The estimate of Cpo
is distribution-free and can guarantee a coverage of at least 99.73% of the process

measurements irrespective to the target value. Determination of the numerical value of
épo becomes a matter of finding a 99.73% probability between two orler statistics, i.e.,
P(Y, <]5<Ys) = .9973, and using the width of this interval (Y, —Y,, wherer <s) as a
measure of the actual process spread. The bias and mean squared error of épo has been
shown convergent even though the rate of convergent is slower than that of épm, épw

as well Cpm *and Cpw*.

7.2 Inverted Probability Loss Functions

Over the last few years, loss functions have becoming increasingly important in
quality assurance settings for quantifying economic losses associated with variation about,
and deviation from, a desired target value or the target value of a product characteristic. In
Chapter 7, we have developed some properties of loss functions with primary loss
information based on inversions of probability density functions and make numerical
comparison of some selected IPLFs. With an auxilliary piece of loss information we have
found that the performance of an inverted beta loss function is better than the inverted
normal loss function and the inverted gamma loss function irrespective to whether the
target value is near the lower or upper specification limits or near the center of the process

distribution. An industrial application of IBLF as well as its properties are included in
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Chapter 6. Further study of IPLF can be extended to loss functions with two pieces of loss
information allowing two maximum losses on either side of the target value.

The family of inverted probability loss functions provides practitioners with a wide
variety of loss functions that can be used to quality assurance settings. It also provides
flexibility for practitioners to accurately depict process loss and succintly reflect monetary

loss to the company or to the society of interest.

7.3 Future Research Direction

There are several possible extensions in some of the work done in previous
chapters which may lead to significant results. The Cpm index, as mentioned in Section
2.3, can be used to measure process capability when the measurements are normally
distributed. The index Cpm is expressed as a number which summarizes the process
variation and the process drift from its target as the actual process spread relative to the
allowable spread. A measure can be constructed to quantify how the process
measurements are clustering around the target. Analogous to Section 2.5, the robustness
of the unifying index, Cpw, to departures from normality is a possible extension of
Chapter 4. Allowing different weights (Spiring(1997)) in Cpw we can compare the
performance of the PCIs under normality distorted with non-zero values of skewness and
kurtosis.

The bivariate beta distribution has the following pdf

r(al+a2+|3) -l _a

f(xlsxz) = r(a,)r(az)r(ﬂ)x‘ xzz—l (l_xl'xz)p-l,

X; >0, x,>0,x; +x, <1, o,,,,p>0, zero elsewhere.
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Then X, and X, are said to possess a bivariate beta distribution. Following a similar
approach of IBLF in Chapter 5, an inverted bivariate beta loss function can be examined.
It may extend to inverted multivariate beta loss function. Similarly, inverted bivariate

gamma loss function and inverted mulitivariate gamma loss function can also be studied.
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