
DESIGN AND REALIZATION OF 

FIR AND BIRECIPROCAL 

WAVE DIGITAL FILTERS 

by 

Yuhong Zhang 

A Thesis 

Presented to the Faculty of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Department of  Electricai and Cornputer Engineering 

University of Manitoba 

Wi~ ipeg ,  Manitoba 

Canada 

O Yuhong Zhang 

April, 2000 



National Library Bibliathegue nationaie 
du Canada 

~üis i t ions and Acquisitions et 
Bibliogmphic Services mivices bibliographiques 

The author has granted a non- 
exclusive licence allowllig the 
National Library of Canada to 
reproâuce, loan, distribute or sel1 
copies of this thesis in microform, 
papa or electronic formats. 

The author retahs ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la fome de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être impîimés 
ou autrement reproduits sans son 
autorisation. 



TESE üMVERSITY OF MANITOBA 

FACULTY OF GRADUATE STUDlES 
***** 

COPWGHT PERMISSION PACE 

Design and Rea~atioa of FIR and Birceiprwil Wave Digital Fiiters 

A ThesidPricticum submittd to the Faculty of Graduate Studles of The University 

of Minltobr in partial fuliüirnent of the rquirements of the dcgree 

of 

Master of Science 

Permission hm k o  grinted to the Library of The Udvemlty of Manitoba to Icnd or ru 
copies of this thesidpracîicum, to the National Llbmiy of Canada to microfilm this 
tbciiJpi.cticum and to knd or seIl copia of the Nm, and to Dlrmtations Abstncts 
Iiterortiooal to pubîirh a i  rbimct of thlr tbris/prrcticum. 

The ruthor wncr othtr pubiicrtioii rlghts, and ntltkr thia tbesidpricticum wr tstens~ve 
estracts from it miy k prliited or othemlw nproductd rvlthout the author's wdtten 
permission. 



1 hereby declare that I am the sole author of this thesis. 

1 authonze the University of Manitoba to lend this thesis to other institutions or individu- 

als for the purpose of scholarly research. 

Yuhong Zhang 

1 M e r  authorize the University of Manitoba to reproduce this thesis by photocopying or 

by other means, in total or in part, at the reqwst of  other institutions or individuals for the 

purpose of scholarly mearch. 

Yuhong Zhang 



Acknowledgments 

1 wouid like to express rny drep appreciation and gratitude to my advisor. Professor 

G . O. Martens for his encouragement, patience, and ever-helpful guidance through- 

out the course of my study. I have greatly benefited fiom his expertise and constant 

help and advice. which will continue to have positive influence on my life. 1 also 

extend my lhanks to the members of my cornmittee. Dr. Shwedyk and Dr. Jarmasz 

for their valuable inputs. 

Special thanks go to my husband and my parents for their love. understanding 

and encouragement at al1 times. 



DESIGN AND REALIZATION OF 

FIR AND BIRECIPROCAL 

WAVE DIGITAL FILTERS 

Yuhong Zhong 

A bstract 

This thesis concentrates on two subjects related to wave digital filter design and realiza- 

tion. The first one considen the cascade synthesis of lossless two-port networks, which is 

based on the factonzation of the transfer matxix or the scattering matrix. Anothn subject 

of this thesis is the design and realization of bireciprocal filters. 

Jannasz provided an efficient cascade synthesis algorithm of lossless two-port net- 

works by extracting elementary sections step by step. Following this approach, based on 

the factorization of the transfer matrix. necessary and suficient conditions for cascade 

synthesis of lossless two-port networks h m  a given canonic set of scattering polynomials 

is presented. An algorith to realize a digital filter with ladder structure based on the cas- 

cade decomposition and an illustrative example are also provided. 

Fettweis proposeâ another approach to the cascade decomposition of lossless two- 

port networks based on the factorization of the scattering matrix. A proof that this 

approach can be applied to FIR filters is provideâ and at the same time a realization struc- 

tw and an algorithm in a very general fonn is developeû. Several other realization struc- 

tures and algorithms for FIR tilters are derived directly h m  this general fom, including 



- ---- - - - 

Fettweis' two structures. 'Ik.0 example are included to demonstrate the eficiency of the 

algorithms and to compare the implementation structures. 

An analytical fonnula method and an optimization method for the design of birecipro- 

cal filters are presented. The analytical formula method is simple, direct and uses simple 

calculations. It is obiainad by reducing the design of bireciprocal filters to a Chebyshev 

approximation pmblem and making use of a fonnula due to Cauer. The optimization 

method for the design of bireciprocal filters is developed by applying a minima algorithm 

proposPd by Dutta and Vidyasagar, and is an alternative to Wegener's solution. A lattice 

implementation structure is derived which clearl y shows the advantages of bireciprocal fil- 

ters which exhibit a saving in hardware of nearly one-half compared to nonbireciprocal fil- 

ters. 
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Chapter 1 

Introduction 

Wave digital filters introduced by Fettweis[l] are modelecf on classical analog filters and 

therefore preserve some of the good properties of passive lossless analog filters, including 

low roundsff noise, large dynamic range, low sensitivity, and stability. There is a detailod 

discussion of digital filters and their advantages in the review papa by Fettweis[ I 1. 

There are many different realization structures for wave digital filters. Ladder and lat- 

tice structures play important rola in them. The ladder structure is built on a decomposed 

analog circuit[l O], which is one reason why network cascade synthesis is of interest. Fett- 

weis[3] gave a detailed discussion of the cascade synthesis of lossless two-port networks 

b y the trans fcr matrix factorizat ion. Jarmasz[Z] presented an efficient synthesi s algorithm 

for lossless No-port neworks which is also baseâ on the factorimion of the transfer 

matrix. For the given filter specifications, the canonic polynomial set 

{ f (Y), g(y ) ,  h (y) ) can be obtained by using a classical filter design method. Then by 

using Jarmasz' synthesis algorithm, an analog and a wave digital network can be derived 
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at the same time. Fettweis also proposed another approach[ 1 ] that the decomposition of 

lossless two-port networks be based on the factorization of the scattenng matrix instead of 

the transfer matrix. This approach is suitable for application to FIR Glters which have a 

very simple fonn for g, where g is the canonic polynomial of Belevitch's representation. 

Lanice wave digital filters are one of the most attractive ones among the diffkrent 

stnictures of IIR digital filters[l][l9]. Especially, the lattice wave digital filters with bire- 

ciprocal characteristic function fom an important subclass of the lattice wave digital fil- 

ters. These kinds of filters, called bireciprocal filters lead to a significant saving in the 

number of multipliers and adders since only less than half the nurnber of adapton is 

required if they are implemented with lattice wave digital stnictures[14]. One of the popu- 

lar design methods [24] uses the aid of optimization, e.g. nonlinear optimization as in the 

Fletcher-Powell algorithm or a Remez-type optimization.Wegener o f f d  a general real- 

ization structure for bireciprocal filtm in [14]. 

The goal and motivation of this thesis are as follows: 

1)  To provide a complete proof to the theory of the realizability of cascade decomposi- 

tion of lossless networks, which is not found in [2]. 

2) To develop an efficient decomposition algorithm for FIR filters and to prove that by 

applying the approach in [Il that the cascade synthesis of lossless two-port networks 

bas4 on the factorization of scattering matrix applied to FIR filters is successful. Fettwis 

suggested two realization structures for FIR filters in [1], but no algorithm and no proof of 

the realizability are given. 

3) To give an analytical formula m e W  and an alternative optimization methd to 

desi p bireci procal fil ters. 



Chrpter 1 introduction 
- -- - 

In order to realize a digital filter using a ladda structure, a decomposed analog net- 

work is necessary. Chapter 2 follows the decomposition scherne in [2 ] ,  extracts elementary 

sections step by step based on the factorization of the transfer matrix. In particular, a nec- 

essary and sufficient condition for cascade synthesis of lossless two-port networks from a 

given canonical set of scattering polynomials is proven. Therefore, it shows in theory that 

Jarmasz' decomposition approach of lossless two-port networks is realizable. An algo- 

nthm and an example that realize a ladder stnicture bas4 on the decomposed network are 

presented at the end of this chapter. 

Chapter 3 applies Fettweis' suggestion that cascade decomposition can be based on 

the factorization of the scattenng matrix of FIR filters, and it develops a realization stnic- 

ture and algorithm in a very general form. Using this approach several realization sûuc- 

tures and algorithms for FIR filters are derived directly, including two structures proposeci 

by Fettweis. The fact that linear phase FIR filters have symmetric or antisynunetric (anti- 

metric) structures is proven, which means that oniy half the number of multipliers needs to 

be calculated for linear phase FIR filters. Two examples which are used to demonstrate the 

efficiency of the algorithm and to compare between the implementation structures are 

included. 

Chapta 4 discusses the design and realization of bireciprocal filins. An analytical for- 

mula methcd and an optimization method are presented. From the definition of birecipro- 

cal filters, some useful properties are derived. Based on the definition and propmes, the 

design of birecipmcal filters reduces to a Chebyshev approximation problm, which cm 

be solved by Caun's fomula[30]. The analytical formula method proposed in this thesis 

is simple and direct. Optimization is an important tool for the design of bireciprocal fil- 
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ters[2 1][24]. ln Chapter 4, the optimization method for the design of bireciprocal filters is 

achieved by applying a minimax algorithm proposed by Dutta and Vidyasagar and is an 

alternative solution to that of [ 141 for bireciprocal filters. A lanice implementation struc- 

ture is derived which shows the savings in the number of required muliipliers and adders. 

Finally, conclusions are included in Chapter 5. 
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Chapter 2 

Cascade Synthesis of Lossless Two-porî Neîworks 

Using the Transfer Matrices 

Jmasz[2] provided an efficient synthesis algorithm for lossless two-port networks 

(Fig. 2.1) based on a simplified characterization of elementary sections. However, a corn- 

plete proof of the theory of decomposition is not found in [2]. In this Chapter, following 

the approach in [2] that uses the transfer mahix as a tool to complete the decomposition of 

lossless two-port networks, a proof of the realizability of the decomposition procedure is 

given. Finally, a wave digital realization algorithm based on the decomposed structure and 

an illustrative example are presented. 

Fig. 2.1 A iosslcss two-port nctwodc 
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2.1 BeIevitch's Representation for 'ho-Port Networks and 

the Definition of the Canonic Parameters 

A lossless, passive, two-port network N as shown in Fig. 2.1 can be represented by 

canonic polynomials in the form of a scattering matrix S, or a transfm matrix 11, 

where the subscript asterisk denotes para conjugation. i.e., for a real polynomials 

f +(y ) = /(-y) and the polynomials f*, g and h satisfy the following necessary and suf- 

ficient conditions: 

1 . Polynomials f ,  g and h are real in some complex frequency variable, Say y . 

2. f ,  g and h are related by the Feldtkeiler equation 

gg, = If, + hh, 

3. g(v) 1s a Hunvitz polynomial with al1 its zeros strictly in the lefi-hand plane. 

4. a is either + 1 or - 1 .  For reciprocal two-ports, 

a = Pl* (2.3) 

Thet the above four conditions are necessary and sufficient means that for any lossless, 

passive, two-port network, there are thm polynomials which fulfil the four conditions and 

correspond to the network via the scattering matrix S. Vice-versa, if the three polynornials 

J g, and h. satism the four conditions, there must be a two-port network which has a scat- 

tering matrix S as in (2. la). 

Three further parameters, transmission zero yo, reflectance p, and delay d play impor- 

tant d e s  in the synthesis of lossless two-ports[2]. niey have the following definitions: 
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where the pnmc denotes differentiation. The special case of v, = a, called a transmis- 

sion zero at infinity, definitions (2.4')-(2.6') are applied instead of (2.4)-(2.6). 

2.2 Elementary Sections 

In this part, the elementary sections, i .e.. zero-, first- and second-order pol ynomials 

f ,  g, h and their conesponding two-port networks, are presented as tables which are 

includeâ in Jannasz' thesis[2]. For convenimt reference, they are shown bclow. 
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Zero order sections 



Chrpter 2 Cascade Synthab of h î n r  'k.eport 
Networiu Udng the 'ftimfer Matrice8 

First and second order sections 

Circuit components ReiUzibUity 
Conditions 
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Circuit componenb 

L = 
A' 

2 
r (1 + cosy) 

g = 
cosyL 

+ 102 + 2 ( i  - cosacosy) 
2 2 @ +0o2 sin y dsiny 

h = 
2cosy 2 +  Z ( c 0 s a -  cosy) 

2 @  2 * siny d siny 

cosy2+ l y Z  + 
g = 

siny 2 

Reaüzr büity 
Conditions 

sina cosy = - 

cosy = 2gsina 
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2.3 Cascade Decomposition from the Scattering Polynomlals 

Suppose that the three polynomials f ,  g, h and unimdular number a. which satisfy 

the four conditions, are given. Our objective is to synthesize the two-port network which 

corresponds to the given polynomials as a cascade of elernentary sections. 

One effective synthesis method consists of decomposing the üansfer matrix T of a loss- 

lcss tivo-pon nctwork (Fig. 2.1) into a product form[2]: 

where Ta and Tb are both transfer matrices of lossless two-ports, in particular Ta corre- 

sponds to one of the elementary sections. The canonic polynomials corresponding to Ta 

shall be designated by fa. g,, and ha, and those corresponding to Tb byh.  gb. and hb From 

a = O$,* f = f a f b  

g = gag, + 

h = h p b + a a g , d ,  

The equation T = T, T b  is equivalent to 

w here 
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Lernma 2.1 : The reflectance p(yro) and delay d ( v o )  defined by (2.5) and (2.6) or 

( 2  .Y) and (2.6') have the following properties: 

1) P(Wo)P*(Wo) = 1 (2.14) 

2) Ip(yo)l = 1 .  if y. ison the jo axis 

3) d W o )  = d&Vu) 9 i f  /*(yo) = f (~ , )  = O (2.15) 

4) d(wo)  i s  real if y. is on the jo axis 

5) d( y,) is positive if vo is on the jw axis 

where y, is a transmission zero, i.e. 

/(yo) = 0 

and 

hoof: I ) The Feldtkeller equation (2.2) and equation (2.16) imply 

g(Wo)g*(~o) = h ( V 0 ) h d y o )  or (hWo)) / (gW0))  = (g,( yo))/(h,(yo)), i.e. 

p(yo)  = l/(p,(y,)), which yields equation (2.14). 

2 )  I f  Vo is on the jo axis, say y. = jeo , substitute y, into (2.14), then 
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property 2) holds. 

3) Differentiating the Feldtkeller equation (2.2), and evaluating at y. , yields 

( g ' g ~ g g ' d l ~ ,  = ( h ' h 4 h ' d l w  = vo + ( f f +  -ff dlv = (2.18) 

Since /,(y,) = f(vo) = 0,(2.18)becomes 

k'g, -gg', - h'h, + hh'*)lv = \Yo = O 

and 

into (2.19), (2.19) 
IV .  Vo 

= O .  Taking the definitions of d(y , )  and 

d+( yo) into account, gives d(yo)  = d ,  (yo), i.e. (2.15) holds. 

4) If as in property 2). y, is on the jo axis. i.e. y, = j*, ; then 

This means that the value of the delay at the transmission zen> on the jo axis is real, i.e. 

property 4) is proven. 

5) From the definitions of the admittance and the impedance 

which are positive real[33], it follows that 



0, 
21- 
a 
w - - 

Ci.  

-3 

0, 21- 
O 
w - ., 

r,. 

C*i 
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where f,(yu) = 0. 

Roofi Starting h m  the definition of nflectance and substituting (2.9)-(2.10) for g 

and h yields 

ga* - ha* 
guga, = fafa, + haha+ a n d / a ( ~ ~ )  = O imply - - - at = yo Substituting 

h, g u  

this result into (2.22) yields the desired (2.20). 

From the definition of delay and again substituting (2.9)-(2.10) for g and h yields 

Making use of ga* - = - and du = ( d a ) ,  st yr = yo. afim romecslculations. the 
h a  g a  

value of the second terni on the right hand side of (2.23) is zero which implies (2.2 1) 

holds. 

Theomm 2.1 : Suppose that nwnber a and three polynomials g, h and f = f ,yb sat- 

is@ conditions 1,2,3,4 (see 2. l), then so do a, and va, g,, ha) which correspond to one 

of the elernentary sections, then the number ab and Vb, gb, hb}  determined by (2.12)- 

(2.13) also fulfil the four conditions (rewritten here for easy reference) 

I . Polynomials fb ,  g6 and hb are real in some complex ûequency variable, Say y, 
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2. f ,, g, and h ,  are related by the Feldtkella equation 

W b *  = fbfb* + h b h h ï  (2.24) 

3. g&) is a Hurwitz polynomial with al1 its zeros stnctly in the left-hand plane. 

4. ab is either + I or - 1. For reciprocal hvo-ports, 

Ob = f b / f b +  (2.25) 

houfi 1. Sincef, is a factor ofJ so taking (2.12) into account it is obvious thatJ, is a 

real polynomial. From (2.13), it is known that, in order to prove gb and hb are both real 

polynomials, it must be shown that f a  f ,, divides the numerators of (2.13). In other 

words, the numerators should contain the zeros of f, f ,, . 

The numerators of gb(y)  and h , ( ~ )  will be cdled p ( ~ )  and q ( y ) ,  respectively, 

i.e. 

P ( W )  = g(w)g,,( W )  - W ) I i , , ( w )  

4 ( y )  = g,(v)h(y) - h,(v)g(y) 

Assume yu is a zero of / , (y)/ ,&),  then there are two situations: 

1 )  y, is not on the jo axis 

2) y, is on the jo axis 

Situation 1)  corresponds io the elementary sections 8-9 in which y, is a single zcro of 

f .(y) f ,* ( y )  . Situation 2 )  cornponds to the elementary sections 1-7. In this case, if y. 

is a 2- of f a ( ~ ) v  it must also be a zero of fa&), and vise versa, i.e. f,(y) fa&) 



2 has a factor ( y  - yo)  . 

Therefore, for situation 1),  it i s  only necessary to prove thnt 

p(wo) = 0,  q ( W o )  = 0 (2.28a.b) 

From (2.26), 

the equation (2.28a) follows fiom Lemmas 2.1,2.2, namely, 

For situation 2). rewrite equations (2.26) and (2.27) in a Taylor expansion fom: 

Since p ( y , )  = O and q(y,) = O, it is required to show that 
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h 1 - ha* B y L e n r n i a s 2 . 1 , 2 . 2 , ~  = pu= p = - andg = - - - at y = y,. nius, h m  the 
hu, g h P ga* 

definitions of d(yo)  , d ,  ( y,) and Lemmus 2.1.2.2, 

Differentiating equation (2.27) and using Lemmus 2.1,2.2, yields 

= gga(ga'h -+----%')I h' ha' 

gug g g, a , = ,,) 

2 Therefore, p(y )  = O(y - and p ( y )  = O(y - y,) hold. which means the 

numerators ofgb and hb do include the factor /A,, and the fact that gb and hb are real 

polynomials is proved. 

2. Substituting (2.13) into (2.24) and by simple calculation, 

which mems the Feldtkeller equation holds. 

3. From (2.2) (with subscript a) and (2.24), it follows that 
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From (2.9). g = gagb + a,h,, hb # O, at y = j+ , because g w )  is a Hurwih poiyno- 

the extended Rouche's theorem(4) that and g&b have the same number of zeros in the 

right -band plane. Hence the fact that g is Hurwitz, i.e., there are no zeros in the right-hand 

plane irnplies g,, gb are Hunvitz polynomials. 

4. It is obvious that a, = 2 = f 1 , and for a reciprocal two-port and a reciprocal 
Ga 

section a: 

Therefore, Theorem 2.1 i s  proved. 

Theorein 2.2. Assume that polynomials g, g, and gb are the same as in Theorem 2.1. 

Let n denote the degree of g, and na and nb are the degrees of g, and gb respectively, then 

the equation 

holds. 

Roo# Fint .  fiom (2.9), i t i s  easy to see that 

n S n , + n b  

Therefore, it is required to prove thst 

nln,+nb 
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From the Feldtkella equation 

gaga* = f afa* + 'ah,* (2.35) 

it i s  known that the degree of& and the degree of h, are less than or equal to n, and either 

the degree off, or the degree of ha equals na. Hence only the following two situations are 

in consideration. 

1 ) degree ofjo = n, 

equation (2.13) yields nb  5 n ,  + n - 2 n a  = n - n a ,  i.e., n 2 n, + n ,  . 

2) degree of/, < n, 

From the table of elementary sections, it is known that bis case includes only two sec- 

tions: 

Section l:f, = d a , g ,  = y + d a ,  h, = y, a, = 1 ,  p u ( - )  = 1 .d,>O, 

- Section2:(, = d , , g ,  = y + d a ,  h ,  - -y, a, = 1 ,  po(=) = - 1  ,da>O, 

In this case, based on f = /Ji and (2.2). it follows directly that the degree off < n 

and the degee of h = n. Therefore it is can be assumed that 

1 ,  v' p ' p )  = 1 
where k = . Substituting f, = da, g, = y + da ,  ha = kyr into -1,v pu(-) = - 1  

On the right-hand side of the above equation the coefficient of y" ' ' is 
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-go + k2g, = O and the coefficient of y", Say c, is  given by 

c=dugo-g ,  + & h l .  (2.37) 

On the other hand, the delay at infinity is computed by using (2.6') which yields 

g1 h l  d = - -  . Now take into account that d = d , ,  it follows that 
go kg, 

which yields c = 0. 

Thus the inequality n, l n - 1 = n - n, holds and therefore the inequality (2.34) 

holds. 

Thus if a set of canonic polynomials V; g, h }  withfin factored fonn is given, then 

based on Theorem 1 and T'heonm 2, a synthesis algorithm which realizes the circuits cm 

be given as follows: 

1). Select a transmission zero {y, : /,(y,) = O}, compute the reflectance p, accord- 

ing (2.5)  or (2.5') and the delay d ,  for a reciprocal section according to (2.6) or 

(2.6'). 

2). Refemng to the elmentary section tables. obtain (a,, fa, g,, h a )  and computc 

{ a,, f b ,  g,, h,  } according to fonnulae (2.1 2)-(2.13). 

3). Drop subscript b and retum to step 1) until al1 the transmission 2 m s  are extracteci. 

4). Extract a zem-order section. 
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Aeer al1 the factors offlave been exhausted, the rernainder polynomials correspond to 

a zerosrder section, Le., an ided transformer or a gyrator must be extracted to complete 

the synthesis, as shown in Fig. 2.2 (a), (b), depending on whether a is + 1 or - 1, respec- 

tivel y. 
I 

Fig. 2.2 

Note: when considering numerical computation, more attention must be paid to step 3 

where gb and hb are calculated by using (2.13). The polynomials in (2.1 3) are in proâuct 

representation which is preferred to coefficient representation, since the Frequency 

responses of narrow-band filters are very sensitive to coefficients. g, and hb can be 

obtaineâ[29] in the same form by using the Newton-Maehly algorithm[3 11. If this algo- 

rithm does not converge for a particular starting value, Muller's mahod followed by the 

Secant method[3 I ] can be usd  to obtained an impmved starting value. The combination 

of these algorithms has proven to be successfùl for a large number of circuits which have 

been decomposed (see Appendix 1 for more details). 
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23 Wave Digital Filter Realization 

After the decomposition of a lossless two-port network is finished, i.e. a network like 

Fig. 2.2 (a) or (b) is obtained, there are two efficient methods to transforrn it into a wave 

digital filta realization structure. 

The first one is to refer to the tables in [2] ,  where for every analog elementary section 

there is a wave digi ta1 elementary section corresponding to it. So it is easy to obtain the 

wave digital equivaients for the analog networks presented in Fig. 2.2. 

Another method is using the ladder wave digital structure. The details about how to 

map an analog network into its ladder wave digital equivalent are presented in Antoniou's 

book[lO]: Digital filters. 

Therefore, for a given digital specification, the wave digital filta which satisfies the 

specification can be obtained by the following steps. 

Step 1. Pre-warp the Frequency axis of the frequency specification using 

@ = tan (y) , where o and 4 are digital and analog frequencies respective1 y. 

T is the sampling fkquency. 

Step 2. Use this pre-warped fraquency to design the analog filter. for example, a Butter 

worth, a Chebyshev. or a Cauer filter and obtain the Belevitch's polynomial set 

( f (W g(W* h ( W 1  

Step 3. Follow the algorithm proposad in section 2.2 and derive a decomposed andog 

network, Fig. 2.2 (a) or (b). 

Step 4. Transfer the analog netwoik to its ladder wave digital equivalent. 

An option at Step 2, is to switch to the following Step 3'. 

Step 3'. Follow the algorithm proposai in section 2 3  and refer to the tables in [2], 

then derive the wave digital structure directly. 
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2.4 Illustrrtive Algorithm Examplt 

To illustrate the algorithm proposed in the previous section, a simple example is shown 

here. 

It 
Exrmple: specifications A p  = 0.4dB. A, = 40dB , = 2 5 ,  0, = 41 ,T = 50 

Step 1. Pre-warp the frequency axis and obtain qp = 1 , 4, = 3.4. 

Step 2. Three canonic polynomials and the number a are obtained as follow: 

9 

f = y -+  16, a =  1 

Step 3: Follow the algorithm proposed in section 2.2 and denve a decomposed analog 

network : 

1) Calculate the reflectance and the delay at the fint transmission zero: 

2) From the elementary section tables, select { a l ,  f, . g h } and cornpute 

{a,, f b,  g,, h , )  , according to (2.13): 
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- - 

3) Drop subscnpt b and rem to l) ,  the values of the reflectance and the delay at 

transmission zero yi = - are pr = - 1 ,  d2 = 1017, and also 

Renim to I )  again, computc thc \ducs of thc rcflcctancc md thc dclay rit 

transmission zero y3 = = as p3 = 1,  d3 = 2, and select 

4) Extract the ideal transformer. 

The final realized circuit is  shown in Fig. 2.3. 

Step 4. Transfer the analog two-port network in Fig. 2.3 to its ladder wave digital equ- 

valent which is shown in Fig. 2.4. 

Step 5 Calculate al1 the panuneters according to the approach in [ I l ,  [Il] ,  [ l  O]. 

AAer 8 bits of quantization, the above parameters become 

The fquency response o f  the above ladder wave digital filter is presented in Fig. 2.5 

which shows that the specifications are satisfied. 
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Fig. 2.3 Analog two-port network 

Fis. 2.4 Ladder wave digital cquvalent 
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Aîteniution respouc of 4'' order ladder WDF 

Phrae mponae of 4" order ldder WDF 

Fig. 2.5 
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Chapter 3 
Realization of FIR Wave Digital Filters 

by Factorization of the Scattering Mat& 

In the previous chapter. the cascade decomposition with the transfer matrix of a lossless 

two-port network is discussed. In fact. a lossless two-port network N can also be synthe- 

sized by factorkation of the scattering matrix [ l ] .  Fettweis presented the resulting sînic- 

ture and its corresponding wave flow diagram as follows. 

Fis. 3. 1. Syntheais of a classical two-port by scattering mitrix fictorization 
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Fig. 3.2. Wave Flow Diagram 

In Figs 3.1, 3.2, NI to N, are lossless two-ports of Iowa degree than that of N. Therefore, 

the question is how to decompose the network N into a series sub-networks Ni ( i  = 1,2 .... . 
n),  which appear to offer advantages over those obtained directly. In the next section. an 

application of this approach to an FIR filter is discussed. 

3.1 Some Basic Characteristics of FIR Filters 1101 

FIR filters have a finite nurnber of ternis in the impulse response, therefore, the output 

can be written as a finite convolution sum 

where x(n) is the input and h(n  ) is the Iength-N impulse nsponse. The transfer fwction 

of an FIR filter is given by the z transfomi of h(n ) as 
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For the FIR filter to have linear phase, the impulse response h ( n )  must be either sym- 

metric ( h ( n )  = h ( N  - n ) )  or anti-symmetric ( h ( n )  = -h (N - n )  . 

There are several design methods[l O], [ 121. The basic design procedure is to constnict 

an ideal lowpass filter in the tiaquency domain and use the inverse z transfomi to derive 

h,,,,(n) . The impulse response hid,,,(n) is then tmncated by a window funciion. How- 

ever, the tnincated filter is typiçally not causal, i.e h ( n )  t O ,  n < O .  To make the tnincated 

-& filter causal, multiply by z . where k is selected as the minimum positive integer such 

that the tmncated FIR filter is causal, 

The classical implementation of an FIR filter is to use the transversal structure as fol- 

lows: 

3.2 Belevitch's Repmcntation for an FIR alter 

Consider the given FIR filter (3.2). for convenience, rewrite it as 
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and assume H(r )  is scaled so that ( H ( r ) (  I 1 on the unit circle in the f1 -domain. Also 

assume the polynornial set {f(r), g(r), h(r) } is the Bclevitch's representation in the r-' - 

domain. Then 

- I and its p a n  conjugatc in thc ; -domain i s  

-n Furtha g(z) = 1, g,(r) = z , where g,(z) is the para conjugate of g(z) . The equation 

follows from the Feldtkeller equation gg, = ff, + hh,  . Next rewrite the right-hand 

side in product fom as 

wherec is a constant and a,, i = 1.2, ..., n ,  are the terosof h(z)h&).  h ( : )  canbesep- 

arated from (3.4) by using the properiy that every zero of h(z )  must be a reciprocal of a 

zero of h,(s) [29]. If ai is a zero of h ( z )  , therr: must exist an a, satisfying a, = 1 / a ,  in 

the set of zeros of h(r)h,(z)  , which c m  be alloncd as a zero to h,(z)  . AAer al1 elernents 

in the set of z m s  of h(z)h,(z)  have been exhaustcd, a11 the z m s  of h(z)  are obtained. 

The constant factor of h (2  ) , namely k can be detennineâ by k = f c /  n (4,) , i , 1 
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where b, , i = 1,2, . .., n , are the zeros o f  h(z )  and the ratio c /  n ( -b i )  must be pas- [,:, 1 
itive (see Appendix I I ) .  Based on this idea, using a program written in MATLAB, h ( z )  

which has the same degree as / ( r )  can be obtainecî, say, 

and by the definition: h,(z j = r-"h(z-' ) , iis p m  wnjugatr is 

Thus, the scattering matrix S= Of *(') 1 can be written as 

Additionally, by the Feldtkeller equation, the elements of the matrix should satisfy 

-2n Consider the term and obtain an important equation 

f n f  0 + hnho = 0 

which will be usefûl later. 

3.3 A New Implementation Structure and Algorithm for FIR FUters 

in [ 1 1, Fettweis proposeci two implementation structures which are shown in Figs. 3.7- 

3.8. In this section. applying the approach of Figs. 3.1,3.2 to FIR filter (3.3), a general 
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implernentation structure and algorithm are presented. Starting from this general implemen- 

tation stmcture and algorith, a series of implementation stmctures and algorithms. which 

include Fettweis' structures, are derived. 

Assume S and S i ,  i  = 1 '2 ,  . . . , n , are the scattering mahices corresponding to networks 

N and Ni ( i  = 1.2. . . ., n ) (Figs. 3.1, 3.2) respectively, 

Then from Fig. 3.4, it is easy to derive that 

S = S,S ,-,... S ,  

Therefore. the question is how to decide the form of Si ( i  = 1.2, . . . , n ) such that network 

N is decomposed into a series of realizable sub-networks Ni (i = 1,  2..... n). This is discussed 

next. 

Suppose that a lossless two-port network N for the FIR filter can be decornposed into 

two lossless two-port sub-networks Na. Nb. (see Fig. 3.4). where Na is called an elementary 

section, 
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and S, Sa and Sb are the scattenng matrices corresponding to Networks N, Na, and Nb respectively. 

Then S = SaSb and Sa = Sa&= , i.e. S = SapS.S,, which implies 

- I 
S2Sb = Sap S . Note that saP-l = 

1 l and consider (3.5). This yields 

The desired degree of Sb is n- 1 which can be reached if and only if 

hl, fo 6 2  P i - h  Making use of (3.6), Le., -= --, then h m  (3.9). - = - - - .Let a, = a,  p, = P and 
n a2 fn 

a, = Ka, p, = r p ,  rs0.Thenthegmerai fonnfor Sap is 

(3.1 Oa,b) 
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7' If Sap is requireâ to be normalized, i.e, Sap Sap = I ,  where I is the identity maûix, then 

1 ,a = cos0 K, a and p should satisQ K~ = 1 and a2 + p2 = 1 . Thetefore, let IC = 

and p = sine. Then Sap can be rewritten as 

h n  where tene = - and (3.8) becomes 
f n  

and 

n -  l n - l  

where o, = -a. I t  is  obvious that Sb has the same forrn as S, except that it is one degree 

lower than S. If its Belevitch rcpresentation in the z-' -domain is a(*), g&), hb(z)}, then 
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- --. 

Now it is required to prove that the polynomials/b(:), gb(z) and hb(z) also satisfy the 

Feldtkeller equation 

Since S = SOS Sb and det(S) = det(SB)det( )det(S,) . i.e., 

- (n -  1 )  
equation f&) f&) + hb(t)h&) = ( f ( i ) f+(~)  + h(z)h&))r = r holds, which 

yields equation (3.13). 

The above conclusion that Sb has the sarne properties as S except a lower degree shows 

that by replacing S with Sb. the decomposed procedw can be repeated until al1 elementary 

sections are extracted. Based on the above derivation, the realization structure and an algo- 

rithm to solve for al1 parameters O,, i = 0. 1,2  ..... n. is given below. 

When n is even. the realization structure is as presented in Fig. 3.6 (a), and the scattering 

matrix S is factorized as 

-cosen sine, 

= [sine,, wse] [: :: 
When n i s  odd, then is a small change in the realization structure and the factorization of the 

scattering maeix (see Fig. 3 $6 (b) and equation (3.1 5)). 

= kcose,, sinonm 

sine, cosû, 
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(a) n is cven 

(b) n is odd 

(c) Nonalized wo-port 

Fig. 3.6 Wave digital rcalization of an FIR filtcr 

Now. the algoritlun is  presented as follows: 

Stepl: j = n ,  

hk, ,  = h k , f k , ,  = f k ,  k = n - 2 . n -  1,  n 

Step 2: j = j -  1 

- h,, - fk* ,+p ine ,+ ,  -hk*,+,cos8,+I 
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Step 3: 

Step 4: 

h .  fi. h . .  
if j 2  1 ,  tane, = A, c o d j  = 

fj. j J- 
= 

h .  + f .  

go to Step 2, otherwise go to Step 4. 

3.4 Other Implementation Structures 

Fettweis implementation structure: 

(a) n is men 

(b) n is odd 

Fig. 3.7 Sg - structure 
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where the corresponding scattering matrices S are factorized as 

and 

Compareâ the algorithm proposed in last section, here, 

Reconsider (3.1 Oa), but this time let K = 1 , $ = 1 and set a = P. Then 

SB = 1: and annothn Fettweis realization rmicture[l] ir obtined as 

(a) n is e n n  

(b) n is odd 

Fig. 3.8 SB - structure 
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w here 

n 

pi = cote,, i = O, 1, ..., n ,  a = n sine, (3.17) 
, = O  

It is noticed that in the above two structures, both multipliers 6, = tanû, and 

pi = cote, may be greata than one. But in the realization of a digital filter, it is required 

to quantize the multipliers for implementation in hardware and it is desirablc to have al1 

the multipliers less than one. This can be achieved as follows: Consider 

-cosO, sine, 
S . = [  sine, cosûi ] . ~ f ~ c o s O i ~ ~ ~ s i n O , ~ , e x ~ c t c o s ~ i , a n d r ~ t e S ~ , w  

w here 

6,= tane,, for Itan0,l 5 1 ; 

otherwise 1 sin 0,l > 1 cos@,( , then extract sine,. Se, becornes 

-cote, -Pi 1 se,=*e,[ cote, l ] = Y n $  

where 

pi= cote,, for Icotû,l< 1 (3.19) 

So, afler the above manipulation, the scattering matrix S can be factored as a mixed 

product of Sa and Sg , and a coefficient 
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nius a mixed structure which has the desired properties cm be obtaineâ. 

Next. by considering two other equivalent foms of Se = 

realization structures are obtained. One of the equivalent foms of Sg i s  a 2-port adaptor 

A"' 

Fig. 3. 9 2-port adaptor 

cascaded with a pair of inverse multipliers [2], i.e.. Se = P I  S ~ P ,  where P = 

0 k = tan - and the corresponding scattering matrix Sy = [ 11, Y = cos0 . 
2 '  

Thus. another factored fonn of the scattering matrix S is obtained as 

w here 

Bi yi = cosû,, k, = tan- i = O, 1'2, ..., n 
2 '  

and the sign before k, depends on whethcr the degree n is even or odd. If n is even, +&, is 
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preferred, othenvise, -ko , and its realization structure i s  presented in Fig. 3.1 0. 

Fig. 3.10 Two-port adaptor structure 

Another equivalent fonn of  S, is a cross adaptor 

(a) Cross adaptor B? = A ,  - P B , =  ( I - P ~ ) A ,  - PA? 

(b) Signal-flow diagram 

Fig. 3.1 1 

cascaded with a pair of inverse multipliers[l8][13], P = 1; 11 , where k = sine, i.e., 

S, = P-'S@P wilh sg , p = -COSO. Thus the scattering matrix S can also 

be factored as 

w here 



Cbapter 3 Rerlization of FIR Wive Digital FUters 
by Factorhtion of tbe Scattering Mibis 

- -  

Therefore, it is easy to give its realization structure as 

Fig. 3.12. Cross adaptor structure 

So far, six difieren1 realization structures have been deived. The orighal one, pre- 

sented in Fig. 3.6 (a), (b), is narned the Se - shucture. The one in Fig. 3.7 is named the S6 - 

structure and the one in Fig. 3.8 the Sp - structure. The mixed S6 and Sp structure is called 

the S6 -Sp -structure and the last two are the 2-port-adaptor-structure and the cross-adap- 

tor-structure. For the S, - structure, the algorithrn is alreody given in 33. In fact, it is easy 

to obtain different algorithms for the diff't structures by making small modifications on 

the known algonthm according to the definitions of the d i f f m t  structures. 

3.5 Illustritive Algorithm Example 

In order to demonstrate the algorithrn, a simple FIR filter 

with its scattering matrix 

will be considered. 
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Based on the algorithm proposed in section 3.3, the factorkation result is obtained in 

1+4 Fig. 3.13. If it is realized according to Fig. 3.7, by the f m u l a  (3.16). a = -- 
4 '  

6, = 1 - & , 6,  = 1 and S2 = 1 - 4. The implementation structure is shown is Fig. 

3.14. B a d  on Fig. 3.8 and equation (3.1 7), the Sp structure is obtained and s h o w  in Fig. 

3.15. For this example, because al1 1 cos0,l 2 I , the Sb -Sp -structure is the sarne as the Sa - 
structure. Similady, by Fig. 3.10 and equation (3.2 l), Fig. 3.12 and equation (3.22). the 2- 

port-adaptor-structure and cross-adaptor-structure are obtained, respectively (see Figs. 3.16, 

3.17). 

Fig. 3.13 So - structure for an ample 
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Fig.3.15. SB -sm>cn>rc for an example 

Fig. 3.16. Two-pon adaptor structure for an example 

Fig. 3.17. Cross adaptor structure for an example 
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3.6 Linear Phase FIR FUters 

FIR filtm have the important characteristic that they can achieve exactly linear phase 

and cannot be unstable[ 1 21. For convmience, rewrite (3.3) here, 

There are four possible types of FIR filters leading to a linear phase. 

n - 1 ,  
Type 1. n is odd and f i  = f n +  i = O, ..., - 2 '  

n - 2  Type4.nisevenand f, = - f , - i ,  i = 0, ..., - and f, = 0. 2 - 
7 

For the four Types of FIR filter, let us consider the scattering mlitrix 

For Type 1 and 2, let o = 1 , then S = ST. where Sr  means the transpose of S. for 'Spe 

3 and 4, let a = -1  , S = ST also holds. It is known that the decomposition proposed in 

3.3 does not require any change no matter if a = 1 or - 1 .  Therefore the factorization 

structure will be discussed unda the situation S = S r .  The intercsting point hen is to see 

n - 2  if there is any special relationship between Se, and Se , for i = 0, . . . , - 
0 - 1  2 , if n  is 

n  - even; i = O, ..., - 
2 

l ,  if n is odd. 
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If the degree n is even, according to the discussion in 3 3 ,  the matrix S can be factor- 

ized as 

Its central factor is Se#. Where the definitions of and SB,, i = 0, 1, . . ., n , are the same 

as before. Note that al1 these matrices are symmetric, i.e., S. = Sf and So I = s<. Hence 

from S = S r ,  another factorization of S 

is obtained. 

If n is odd, from 3.3, the scattering maûix can be factorized as 

S = -S&...S ,... S&, (3.25) 

where the central factor is S.. Similar to the situation where n is even, here S also has 

another factorization 

s = -S&. . .s,. . .s.s, 
n 

(3.26) 

Rewrite (3.2 3) and (3 .N) as 

s = s&sb,. s = s0,,szsb2 (3.27a,b) 

where Sb, = Sem - . . .Sem.. . S.Seo and Sb = Sel . . .Sen.. . SzSgn . F m  the decomposition 
i 

2 
5 

- tano, which irnplies SB. = Seo and and the algorithm in 3.3, tane,, = - - 
f n  

Sb, = Sb, . Replacing S with Sb or Sb , yields tanen - = tane, and Se = SI . 2 n - 1  
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n - 2  
This procedure can be repeated - 2 

times. Therefore the relationship between Se, and 

- , can be described as 

n - 1  
For n odd, equation (3.28) also holds for i = 0, . . . , - 2 - 

The above conclusions show that for a linear phase FIR filter, it is only required to 

extract half of the elementary sections and obtain the other half according to (3.28). In 

particular. if n is even, it is requireâ to calculate Sen, Sem , , . . . , SQn ; if n is odd. Se iI . 

sem , . 9 s e n ,  . Therefore, half the cornputions for the decomposition are required. 
T 

3.7 The Design Procedure and Examples 

In this section, the design procedure for an FIR filter according to the factored struc- 

ture will be presented first, then two examples to illustrate the procedure follow. 

3.7.1 Procedure 

The general design procedure can be canied out as follows: for a given specification in 

tenns of attenuation as illustrated in Fig. 3.18 
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If / / / / A : maximum anenution in the passband 
P 

As : minimum anenution in the stopband 

f p: uppcr edge fiquency of the pusband 

f, : lower edge fkquency of  the stopbpnd 

4 Frcqucn~y 

Fig. 3.18 Design spccification 

A MATLAB function REMEZ is used to create the FIR frequency response function, Say, 

which (after scaling so that IH(z)( I 1 on the unit circle) can also be seen asf(z) of the 

Belevitch representation {f(t). g(:), h ( z ) }  . As described in 3.2, g ( r )  = 1 and h ( z )  can 

be obtained by MATLAB programming, i.e. the scattering matrix 

S = r"' *@)] ir thm known. Nat by applying the ilgorithm stated in 33, 
&) f ( 2 )  -ah&) 

the basic factord structure. namely the Sg - structure (see Fig. 3.19) 

and al1 multipliers case,, sine,, i = O, 1, .. .. n are detennined. B a s 4  onthis basic 

structure, it is easy to daive other stnictum, such as the S6 -structure, Sp -structure, S6 - 
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SB -structure. Sb -SP -structure. 2-port-adaptor-structure and cross-adaptor-structure. The 

fomulae to determine al1 the structures are listed below. 

For the S6 - structure (see Fig. 3.7), 

n 

6, = t a d i .  i = O, 1, ..., n ,  a = n cosû, 
r = O  

For the Sp - stnicture (see Fig. 3.Q 

n 

p, = cotû,, i = O, 1, ..., n ,  a = n sine, 
i = O  

For the S6 - Sp -structure, 

Si= tane,, for 1 taneil a 1 , pi= cotû,, for 1 cotOi( c 1 

a = n cosû, n sinû, 
lços8,( 2 Isinûd (sin O,( > 1 cos0,I 

For the 2-pon-adaptor-stnicnire (see Fig. 1 0) 

(3.3 ta) 

(3.3 1 b) 

For the Cross-adaptor-structure (see Fig. 3. 1 2), 

pi = -cosûi, k, = sine,, i = 0, 1,2, ..., n (3.33) 

Afler al1 the multipliers for a selected structure are detetmined, they must ûe quantized 

to a limited number of bits for implementation in hardware. The last step is to implement 

the selected structure with the quantized multipliers. 

Several structures have b a n  establishcd so far. The question then arises as to which 

one is the preferred one. The Sg and Sb mixed structure, namely, the Sa -Sp -structure is 
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prefemd. Then are two reasons for this: the first one is that the SG -SB -structure has a rel- 

ative ly low sensitivity to changes in the multipliers; the second reason is that the Sg -SB - 

structure has only n+ 1 multipliers, nearly haif of that in the 2-port-adaptor-stnicture and 

the Cross-adaptor-stnicture, both of which have 2n multipliers. 

3.7.2 Eramples 

Next, two examples are presented according to the above design procedure. 

Example 1: Specification: Ap = 0.7 dB, A, = 27 dB, fp/ F = 0.19, fs/ F = 0.3 1 

For the spcification, an 1 8th order linear phase FIR filter 

- t  -2 -18 H ( z )  = f o + f i ~  +fzi + . . . + f  i 8 ~  

is obtained by using the MATLAB function REMEZ. Its coefficients are listed in Table 1. 

Tabk 1: The Coefücknts of 1 8 ' ~  FIR Fiiter 

From the Feldtkeller equation gg, = f f + + hh,  , 

Wk&)  = g(ag*(a - Jwf *(a 

Using a program written in MATLAB, the coefficients of polynomial 

-2 - 18 h ( ~ )  = ho + hl*-' + h2z + ... + h185 
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are obtained and are listed in Table 2 

Tabk 2: The CocfRcknta of L(z)  

Next, by the algorithm proposed in 33, al1 the multipliers in the Sg - structure, cosei, 

s ine, ,  : = 0, 1, . . ., 18 are calculateû and presented in Table 3 

Table 3: The Multiplien of Se- Structure 

Substituting the value of cosûi, sine,, ; = 0, 1, . . . , 1 4 into (3.3 1 a), (3.3 1 b), the mul- 
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tipliers of the Sb -Sp -structure are obtained and listed in Table 4 afler 8 bit quantilstion. 

Tabk 4: Tbe Multipîiers of Ss -SB Structure 

Similarly, fiom (3.32) and (3.33), the coefficients of the 2-port-adaptor-stnicture and 

cross-adaptor-structure can be solved for respectively. The results after 8 bit quwtization 

are presented in Table 5 and 6. Here it is noticed chat the relationship between the Ki in 

Table 5 and 6 and ki in equation (3.32) or (3.33) is 

r, = &, , r i  = k , / k  ,-,, i = 1,2 ,..., 18, K i 9  = l / k I 9  

Table 5: The Multipliers of 2-port Adaptor Structure 
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- - 

Tibk 6: The Multiplkrs of Cross Adiptor Structure 

The frequency responses for the three structures, Ss -Sp -shucture, 2-port-adaptor- 

structure and cross-adaptor-structure are ptesented in Figs 3.20.3.2 1. Fig. 3.20 shows al1 

the three structures satisfy the specification given in (3.34). and Fig. 3.2 1 shows that they 

have an exact linear phase in the passband except for jurnps of n in the stopband. 
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Fig. 3.20 
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Fig. 3.2 1 
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Examplet. Specification: Ap = O. 1 dB, A, = 35 dB, f J F  = 0.05, f , / F  = 0.2 

A 291h order linear phase FIR filter, whose coefficients are listed in Table 7, satisfies 

this specification. The objective of this example is to make a cornparison between the S8 - 

Sp -structure and the traditional direct fom also called the transversal structure (Fig. 3.3). 

The plots of frequency responses of the two structures are showed in Figs. 3.22-3.24. 

Where al1 multipliers are quantized to 8 bit numbers. Fig. 3.23 shows that the frequency 

response of the S6 -Sp -structure in the passband is much better than that of the direct fom 

structure. This means the Ss -Sp -structure has lower sensitivity than the direct fom stmc- 

Table 7: The CoeflRcients of FIR FUter 
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Fig. 3.22 
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Fig. 3.23 

Fig. 3.24 
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Chapter 4 

Design and Realhtion of B i r e c @ r d  Filters 

Bireciprocal IIR filters have big advantages in many communication applications of digi- 

tal filters in that the lattice structure with bireciprocal characteristic fùnction leads to enor- 

mous savings in hardware [Ml, [19], [24]. In this chapter, an analytical formula for the 

design of bireciprocal filters is presented first. followed by an optimization design method, 

and finally by a lattice realization structure. Sorne examples which demonstrate the real- 

ization structures are shown in sections 4.4,4.S. 

4.1 The Definition and Some Properties of Bireciproeal Fiiters 

Here three canonic polynomials f (y), g(y) and h ( ~ )  are used to repment an IIR 

filter. The frequency y is defined[S] by 

where s is the actual complur frrquency and T the sampling paiod. Fuithmore, g(y) is 

a Humin polynomials of d e g m  n. 



If the characteristic fÙnction[8] 

satisfies 

then the characteristic function is called a bireciprod or a mim-imagc function [ I I  and 

the corresponding filter H ( y) - - 'fi is a bireciprocal filter. Bas4  on the definition of a 
g(W 

bireciprocal filter defined by (4.2), some usefûl pmperties of f (y) . g ( ~ )  and h (y) can 

be denved, Le. 

where n is the degree of g( y).  

Proo1[29]: substituting (4.2) into (4.3) and multiplying the left-hand ratio by y", 

yields 
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also relatively prime. This can be proven as follows: Suppose h(y) and /(y) are not rel- 

atively prime, then there exist a polynomial p( y )  such that p( y) ( h (v) and p( y) 1 h( y) 

and deg p = no > O .  Let h(y)  = P ( ~ ) A i ( y ) ,  then deg h i  = deg -no ,and la 

b( W) 1 f ( y) a d  deg P = no > O ,  which is a contradiction. 

/(y) = khy), 

where k is a constant. Substitutkg (4.8) into (4.7), 

then h( y) = vnh( 1 /y) = &yn?( 1 /y) = kf (Y ) ,  which implies 

A(v)  = kf(y) (4.1 O) 

From (4.8)-(4.1 O), k2 = I which rneans (4.4a,b) are proven. 

Next, the p m f  of (4.5) is c o n s i d d .  From the Feldkeller equation and (4.8), it fol- 

lows that 
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where g ( ~ )  = yng( 1 /y).  Since g(y) is Hurwitz, g(y) and g&) are relatively 

prime and consequently so are %(y) and %,(y). Additionally, g(y) is Hurwih also 

implies g ( ~ )  is Hunvitz, which implies g(y) and %,(y) and g ( ~ )  and g&) are rel- 

4.2 Analytical Metbod for Design of Binclprocal Fiiters 

Generally, in filter design, a specification in tenns of attenuation as illustraied in Fig. 

3.18 is given fint. Then bascd on this specification, différent kinds of filters can be 

designed. In this section. an analytical method to design bireciprocal filters by building a 

bireciprocal characteristic fùnction k( y) which satisfies a specification (see Fig. 4.1 ) 

derived fiom Fig. 3.1 8 is presented. 
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E : maximum of tk(v)I in the passband 

6 : minimum of I ~ ( Y  11 in the stopôami 

Op uppcr edge ti-equency of the psssband 

O,: lower edge fkquency of the stopbmd 

OP Os kquenc y 

Fig. 4.1 Design spccification for &(y) 

If the maximum attenuation in the passband i s  Ap dB and the minimum attenuation in 

the stopband is A, dB, then 

because the attenuation u can be expressed in tenns of the characteristic function k( y) as 

oT a = lOlog(1 + l k ( W ) ~ 2 )  = 10log(l + I!!&!12), where y = j e  = jtan(2). Hence. 
/(VI 

if only the attenuation is of interest, al1 zeros and poles of the characteristic bction are 

usually distributed on the imaginary ais.  Furthemore, taking into account the definition 

of a bireciprocal filter (4.3) and the properties (4.4a,b), the characteristic function &y) can 

be assumed to have the forrn 

' n / 2  2 2 

r Iv  + P i  if n i s  even 
, = ipj2y2 + 1 

( n - 1 ) / 2  2 2 

Y n 'V ' P i  
9 i fn  is odd 

j -  1 pi2y2+ 1 
L 



Next, solve for the p i ,  i = 1,2, . . ., [ n / 2 ]  (where [ ] denotes integer part) such that 

k ( ~ )  satisfies the speci fication as illustrated in Fig. 4.1 . That is, in the passband, the maxi- 

mum of Ik(y)l is as small as possible and in the stopband, its minimum is as great as pos- 

sible. This is a Chebyshev approximation problern and it has a unique solution (301: 

where sn is the Jacobi eiiiptic function, and K is the cornpiete eiiiptic integrai of the first 

kind with rnodulus $, that is, 

The maximum of Ik(y)I in the passband cm be calculated by[30] 

The chatacteristic function 4 ~ )  defined by (4.13) has the property[30]: if its maxi- 

mum in the interval [O.OP] is E, thcn its minimum in [&, , -) must be I/E. This property 

means that if the specification about E and 6 illustrated in Fig. 4.1 does not satisS, €6 S 1 , 

but €8 > 1 , a small adjustment to E or 6 is requireâ: Let the new 

which satisfies €6 I 1 . 

The design procedure for bireciprocal filters using the healytical method is summa- 

rized as follows: 
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for an attenuation specification A,, A, , op and a, , calculate E and 6 according 

formulae (4.12). If ~6 > 1 , compute a new E or a new 6 according (4.17). 

using (4.15) calculate <Sp first, then K. Next deteamine the degree n using (4.16). 

use (4.14) to calculate pi, i = 1, 2. . . . , [n/ 2 j , which yields k ( ~ ) .  

from &w), h ( y) and f ( w ) immediately obtain 

[y  n (y' + p,') , if n is add 
1 =  1 

write the right-hand side of the Feldtkeller equation gg, = f f, + hh, in product 

locûted in the lefbhalf of the y-plane can be alloned to g( y), the reminder to g&). 

In order to demonstrate the above design procedure, an example is shown below. 

Example: Specification: A, = OSdB, A, = 53dB , a, = 1 , a, = 2 

Step 1 : calculate E. 6 according to (4.13) and obtain 

From (4.17) obtain a new e = 0.0022387. 

Step 2: From (4.1 S), (4.16). 

Step 3: From (4.14), p, , i = 1,2,3 , can be calculated as 
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Step 4: Substituting p i .  i = 1 , 2 , 3  , into (4.18). the polynomials h( y) and /(y) are 

found immeâiately 

f (y) = (0.691 72W2 + 1 ) ( 0 . 5 6 7 9 ~ ~ ~  + 1 ) ( 0 . 3 2 4 8 ~ ~ ~  + l ) 

Step 5: Using a program written in MATLAB, polynomial g(v) is obtained as 

Step 6: Finally, the bireciprocal filta which satisfies the specification has the transfer 

fUnc tion 

The frcquency response for this filter is shown in Fig. 4.2 
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4.3 Structure of Wave Digital Lattice Filten[81 

Wave digital filtm are derived from real lossless refmnce filtm using voltage wave 

quantities. Consider a two-port network fi? 

Attenurtion mponre 
90 1 I I r 

where the relationship between the incident wave A ,  = Yi  + /,Ri and reflected wave 

B, = V ,  - [ , R i ,  ( i  = 1.2 ) and the scattering matxix 

1 I 
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can be descti bed as 

B I  = q , A ,  + q 2 A 2  

Bz = sz iA ,  + s 2 4  

It i s  assumed that the two-port network N is symmetric and reciprocal, i.e. 

- - 
S I [  - S229 s i2  - Szl (4.2 1 ) 

- Next. define reflections S I  = s, - s  ,z, Sz - s + szi and take (4.2 1) into account. 

Then equation (4.20a.b) can be written as 

ZB, = S , ( A , - A Z ) + S 2 ( A I  + A 2 )  (4.22a) 

2B2 = + ( A ,  - 4) + S p i  + A 2 )  (4.22b) 

These equations lead to the lattice realization of a wave digital filter as shown in Fig. 

4.3(a). For A2 = O ,  the signal-flow diagram simplifies to Fig. 4.3(b). 

Fig. 4.3 (a) Signal-flow diagrarn of thc Laiticc structure 
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Fig. 4.3 (b) Simplified wavc-flow diagram 

Therefore the realization reduces to the realization of two reflectances: SI , S, . It is 

known that the scattering matrix (4.19) can also be described by canonic polynomials 

it follows that 

with 

In addition, fiom the Feldtkeller equation g( y )g, (y) = /(y)/&) + h(y)h* (y) 

and considering 4.23a.b.c.d. it follows that 

and gz(y) are also Hunvitz polynomials. Next h m  the definition for SI and Si. 
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p. - - - - - - - - - - - 

Thus both S, and S, are allpass functions. There are several methods[l] to realize allpass 

functions S, and S, . 

4.4 Optimization Metbod for the Design of Birecipmcal FUters 

in the previous section, an analytical solution for the design of bireciprocal filters was 

providad. The main advantage of the analytical method is simplicity, direct and easy cal- 

culations since both the Jacobi elliptic hct ion sn and the complete elliptic integral are 

available in MATLAB. However for somc situations, in order to obtain a fit to the pre- 

scribed specification. overdesign is required. In this section, applying Yli-Kaakinen's opti- 

mization approach[I 51 to the design of bireciprocal filters, anotha efficient design method 

is obtained. 

4.4.1 The otitement of problem 

One kind of optimization problem can be stated in the following form(l51: Find an 

adjustable parameter vector x to minimize 

subject to L inequality constraints 

g,(x)<O, 1 = 1,2, ..., L (4.26) 

Now, the question arises, how to d u c e  the design of bireciptocal filters to an optimi- 

zation problem, or how to define the objective hction y,(x)  . The magnitude fiinction is 
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prefmed rather than the characteristic function or attenuation function because there is an 

ideal function 

which the magnitude function can approximate. Here op and are the passband and 

stopband edges, respective1 y. For any attenustion spcification illustrated in Fig. 3.1 8, i t  is  

easy to obtain the corresponding specification for the magnitude: 

Fig. 4.4 Design specification for magnitude 

1 - 6 p  

4 
2 
'a, 
5 

% -  

w here 

l / / / / / / / / / / /  

/ 
6 : maximum dcviation of thc magniiudc 

/ in the pasnband 

6, : maximum magnitude in the rtopband 

I a : upper edgc frcquency of the passband 

O>E : lower edgc fkqucncy of the stopbaad 

- - - - - -I- I - 

6, = 1 - exp(-A,log 10/20), 6, = exp(-Aslog 10/20) (4.27a,b) 

Generally, optimization methoâs are a g d  way to solve a problem which contains 

some unknown parameters. The adjustable parameters included in the bireciprocal filters 

which are designad are denoted as vector x. The magnitude fwiction can be designated 

H(x, O),  where o is the fiquency. Thus the criteria illustrated in Fig. 4.4 can be stated 

mathematically[ 151 as 

Frqucncy 
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For optimization purposes, or to find the appropnate y , (x )  (cf 4.25) which have a uni- 

form expression, it is beneficial to combine the passband and stopband criteria. Let 

:E(.r, o)l = W ( o ) ( H ( x ,  a) - D(Wl , E [O.(j+,] u [as, Cl 

with 

1 ,  (0, apl 1/6 , ,  E [O, ap1 
and W(o) = 

0, 0) E [a,, Cl 1 o E [O,, C] ' 

is equivalent to (4.28a.b). Function E(x,o) is called the weighted mor function. Next, 

focus on finding the adjustable parameter vector x to minimize 

In order to make the above problem more suitable for optirnization, the passband and 

the stopband regions are discretized into the frequency points q E [ O ,  o p ] ,  i= 1,2. ... N p  

and coi E [O,, C] . i=Np + 1 , N p  + 2 ,  ... , N p  + Nr . The resulting non-constrained dis- 

crete problem is to find x to minimize 

(4.3 1 ) 

i.e., here IE(x,coi)l is taken as the y,@) in (4.25). In some situations where the parameter 

vector is required to satisfy additional conditions such as in (4.26), the problems is called a 
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constrained minimax problem. It can be solved by applying a minimization algorithm pro- 

posed by Dutta and Vidyasagar(281, which is listed in the next section. 

4.4.2 Minimu algorithm usina the Dutta-Vldyasagar method 

Pro blem : 

In 1281. Dutta and Vidyasagar proposed a methd to solve a problem of minimax opti- 

mization under constraints. This problem c m  be statad as follows: 

minimize F(x )  = max f , ( x )  
IE 1 

where I = { 1,2. . . . , n } is a finite s d  of integers, under the constraints 

g,(x) S O, j E J 

g,(x) = O j~ L 

Converting the above constrained problem to an unconstrained minimization of Least- 

squares type objective fwiction yields 

rninimize P(x, @) = ( f , ( x )  - e)" w,g,(x) + v,vl(x) 
i E I ( x )  i~ J ( x )  I E  L 

where @ is a prespecified constant, w,, j E J, and v,, 1 E L are prespecified weights, and 

Algorithm : 

Step I . Set B, < F(X)  , where F(X) is the optimum and B , is a lower ôound on F(X) . 

S t e p 2 . S e t @ , t B , , a n d k t  1 .  

Step 3. Minimize P(x,  et ) ,  dl the solution Z k .  



Chipter 4 ûesign and Rerlhtion of 
Binciptucal FUten 

Step 4. Set Bu as an upper bound on F(X) . For an unconstrained problem one c m  set 

B,  c min{F(xo), F ( f k ) } ,  where xo is the initial guess of the parameter vector. 

Step 5. Calculate 

M" t q, + { P(x,, *,)/n }"* 

~ ~ t + ~ + P ( ~ ~ , + ~ ) / ~ ( f ~ ( ~ ~ l - $ ~ ) ,  i~ !VA) 

where f ( f k )  = { i :  f , ( Z t )  > O k } .  

T T Step 6. If M 5 BL l ,  set ek + , t M , otherwise set + , + MM. AIso set 

, - 9 k *  

Step 7. Set B, t M", and S + P(X,* O&). 

Step 8. Set k t  k +  1 .  

Step 9. Minimize P ( x ,  e t ) ,  cal1 the solution .Tt. 

Step 10. If (Bu - B,) or @, I E, STOP (e is a small number). 

Step 1 1 .  If P(I,, ek) > 6 ,  go to Step 5, othenvise if P < SMALi, STOP (SMALL is a 

positive constant signifying the closeness of P ( f k  - , , ek - , ) to zero). If none is 

mie, then set Bu t @ ,  S t 0, and Ok t B, and go to Step 9. 

4.4.3 Conrtrueting the magnitude function 

From the discussion in section 4.4.1, it is known that the first step of applying optimi- 

zation for designing bimiprocal fiiters is to consrnict the magnitude fùnction. In this sec- 

tion. two construction methods are prrsented. M a h d  1 starta fkom the characteristic 
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function k(x ,  y) ,  which includes the unknown parameter vector x. n i e  magnitude func- 

tion H(x, y) can be easily be obtained fiom k ( x ,  W )  , as cm the weighted error function 

E (x, y). Parameter vector x is obtaineâ aAer applying optimization to E (x. y). Diffemit 

from method 1, methd 2 construct the magnitude fûnction H(x, y) h m  the lattice m l -  

ization structure. nie details of both methods are presented below. 

Method 1. Based on the definition of the bireciprocal filter (cf (4.3)) and the pmperty 

that al1 zeros and poles of the characteristic function are usually distnbuted on the imagi- 

nary mis. it can be assumed that the characteristic funftion which contains the adjustable 

parameter vector x has the following fom: 

( n -  I ) / Z  ' 2 y- + x, 
k ( x ,  yr) = W n , , 

i = 1 .ri'y + I 

Here x = (r,. x2, .... .r,,- , ) , n is the degree of the filter which is always assumecl ta be - 
2 

odd in order to implement the lattice structure. Then the magnitude function is 

with @ = tan o. Consider (4.32), the magnitude function w hich contains the parameter 

vector x and Frequency o. It has the following fonn: 

Al1 that is n d e d  next is to s u b s t i ~ e  (4.34) into (4.284b) and follow the procedure 

stated in section 4.4.1. A k  applying the Dutta-Vidyasapr minimax algorithm, a solution 



. 

for the parameter vector x will be obtained. 

Method 2: The idea for this method comes from Wegener's paper[14], which derives 

the design and implementation of bireciprocal filters at the same time. Recall the lattice 

structure pmposed in the previous section where the realization of  a digital filter was 

reduced to the realization of  two allpass filters SI (y) and S 2 ( ~ )  : 

where g( y) = g ,  (y)gz(y) . Based on tluee properties: 

3)  the degree of g(y) is odd. 

g( W )  can be assumed to have the following product form: 

From the lattice structure Fig. 4.3 and equations (4.35) and (4.36). it is c m  be assumed 

that a bireciprocal lowpass filter has the structure shown in Fig. 4.5, where 

Fig. 4.5 
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With M = Nf 1 and n = M + N +  1,then 

Let w = j@ and = tano,  and then obtain the magnitude function immediately. 

A ,  ( j t a n ~ )  n A z i ( x ,  j tano)  + n Bi j (x i  + ,, jtanw) 
i =  l 1 ' 1  

where x = (x,, .il2, . . . . x M ,  xdM + , , . . . , x , ~ )  is the parameter vector. Similar to Method 1, 

by substituting (4.37) into (4.28a,b), following the procedure stated in section 4.4.1, and 

then applying the Dutta and Vidyasag minimax algorithm, a solution for parameter vec- 

tor .r is obtained. 

Here it is appropriate to mention that this method can also be applied to any general 

lanice filter design. This cm be camied out by changing equations (4.37)-(4.40) to 
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Now the adjustable parameter is x = (x , . . . xM , N - ~ O ~ I  . . . y,w + N )  whose dimension is 

2 ( M  + N) + 1 that is same as the degree of the filter. 

4.5 The realization of Blreeiprocal FUters 

The realization structure for design method 2 hm been given in the previous section 

(see Fig. 4.5). For methd 1, afler solving for parameter vector x using the optimization 

method and obtaining characteristic iùnction k ( x ,  y),  it is easy to obtain /(y), h( y) 

and g( y ) (There is a statement about how to derive g( y) h m  f(y) and h(y )  in sec- 

tion 4.2.). Then folluwing the procedure stated in section 4.3, g, (y) and gz(y) can be 

obtained, then S, (y) and S,( y). and finally a smicture similar to Fig. 4.5 is obtained. 

This means that independentl y of whether the design for a bireciprocal filters uses rnethod 

I or niethd 2, the realization structure can always be reduced to Fig. 4.5. 

Next, focus on the realization of structure Fig. 4.5. It is known [14] that the realization 

of allpass sections, like A ,  (y) in Fig. 4.5, require no arithrnetic operations, but only a 

delay T. The wave-flow diagram is shown in Fig. 4.6 (a). For allpass sections of degree 

two, like AZi(y)  ( i  = 1,2, ..., M )  and B2,(y) ( j  = 1,2, ..., N), the realization 

requires a two-port adaptor and two delays 2X The coefficients yi  of the two-port adsp 

tom are given by 

yi = ( x i - 2 ) / ( x i + 2 ) ,  i = 1.2, .... M , M +  1, ..., M +  N (4.4 1 ) 
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The wave-flow diagram for degree two is shown in Fig. 4.6 (b), and the wave-flow dia- 

gram for realization structure Fig. 4.5 is presented in Fig. 4.6 (c). 

(a). The fint &grec section (b). The second dcgrcc section 

112 - 
output 

(c) Signal-flow diagram for realization of a bincipmcal filtcr 

Fig. 4.6 Realization of a bimiprocal filtcr 

The above signal-flow diagram shows that it only rquires M + N = (n  - 1 )/2 (n is 

odd) two-port adapton and n delays to implement an nlh order bireciprocrl filter, which 

means swings of almost one hdf in hardware cornparcd with 0 t h  digital filters. 
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4.6 Example 

The attenuation requirements are illustrated in Fig. 4.7[ 141 and the sampling fie- 

quency F = 48ffz. 

Fig. 4.7 

With method 1, starting from (4.32) and following the procedure described in section 

4.4.1. the adjustment parameter x c i ,  be solved for by applying the rninimization algo- 

rithm proposeci by Dutta and Vidyasagar. Here the parameter vector 

x = (-0.565007, -0.3 12758, -0.469945) 

is obtaineâ and 

/(y) = (W2(-0.565007)2 + 1 )(y2(-~.3 12758)' + 1 )(1y*(-0.469945)~ + 1 ) 

h ( y )  = y(y2 + ( - 0 . 565007 )~ ) (~~  + ( - 0 . 3 1 2 7 5 8 ) ~ ) ( ~ ~  + (-0.469945)~) 

and g(y ) cm be derived following the staternent in section 4.2 as 
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Next h m  section 4.2, it follows that 

g ,  (y) = (y + 1 )(yt2 + 0.9578127~ + 1 ) 

g , ( ~ )  = + O.30321961y + 1)(y2+ 1.6476963y + 1 )  

and f'rom equation (4.4 l) ,  the parameters of the three 2-port adaptors can be obtainec 

y = -0.35235092, y2 = -0.09658259, y, = -0.73669939 

AAer I 1 bit quantization, the three parameters become 

y, = -361/1024, y, = -99/1024, y, = -1509/2048 (4.42) 

W~th nrethod 2, as descnbed in section 4.4, starting fiom (4.40) and following the pro- 

cedure stated in section 4.1, the parameter x is obtained as 

x = (0.95780467, 1.6476936,0.3032 167 ) , 

and the coefficients of three 2-port adapton are obtained by (4.41) as 

y,  = -0.35235435, Y, = -0.09658332, y3 = -0.73670154 

Afier quantization, exactly the same results as in (4.42) are obtained which shows that the 

results of the two method are the sarne, Le., for the same problem, no matter which 

method is applied, the same realization structure results. The advantage of methd 2 is 

that the realization stnicture cm bc obtained directly afier applying the optimization algo- 

rithm. However it requires the constrained minimax algorithm and uses more cornputer 

time than rnethd 1, which only requirea the umonstraint minimax alprithrn. Another 

advantage of rnerhd 1 is that it is easy to derive f (y) , g( y) and h( y) after applying 

the optimization algorithm. 
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The realization structure for the example is shown in Fig. 4.8. 

la 

Inpur 
- 

Output 

Fig. 4.8 Rcalization structure of the example 

The freguency responses are presented in Fig 4.9 which shows that the specifications 

(see Fig. 4.7) are satisfied. 

mz 
Fig. 4.9 
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Chapter 5 

Con clusions 

In this thesis the following has been proven: 

The cascade decomposition of lossless two-port networks by means of the factonza- 

tion of the transfer matrix T is realizable. A proof of the necessary and sufficient 

conditions for the realizability is included. 

The cascade synthesis of two-port lossless networks by the factorization of the scat- 

tering matrix S applied to FIR filters is successful. An implementation structure and 

an dgorithm in a very grnetal fom are derived. Several other implementation shuc- 

mes  and related algorithms. including Fettweis' two structures, are obtained. Exam- 

ples demonstrate that for broad-band FIR filters al1 proposed stnictwes exhibit low 

sensitivity to multipliers, but for some narrow-band FIR filters, one of the derived 

stnîctuns, called the S6 -Sp -structure, shows much Iowa sensitivity in the passband 

than the classical direct form. Therefore the S 6 - S p ~ ~ î w e  is the recornmended 

structure for narrow-band FIR fiïtets. 
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Both the analytical formula method and the optimization method for designing birecip- 

rocal filters are efficient. The andytic formula method for the design of bireciprocal 

filters appears to be new. A search of the literatwe of the past ten years has not pro- 

duced any reference to it. The formula is simple, direct, and requires only simple cal- 

culations. The only disadvantage is that it requires overdesign in some situations. The 

optimization method developed in this thesis is very flexible. It is efficient not only for 

the design of bireciprocal tilters but also for general lanice wave digital filters afier 

minor modifications have been made. An example shows that the proposed optimiza- 

tion method is an alternate solution to Wegener's optimitotion method. 

Future research directions might be the following: 

Apply the approach of cascade synthesis of two-port lossless networks by factorizarion 

of the transfer matrix to FIR filters and compare with the results obtaineâ in chapta 3. 

Consider the design of half band filters using the same idea as in the design of birecip- 

rocal filters. 
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The Sum of Po(ynomids in h d u c t  Representation 

To determine the product representation of the sum of two polynomials p = a + b , a and 

b both in prduct representation without converting to coefficient representation requires 

an iterative procedure. For this purpose, consider the first two temis of the Tayla series 

about a point s, 

To determine an approximation sk + , to a zero, set p(sk + , ) = O and solve for sk + , : 

This is Newton's estimate[3 11 and can be used iteratively. k = 0, 1, . . ., k m ,  to improve 

the estimate of the zero. 

A h  a zero has been found it is necessary to prevent finding the sune zero repeatedly. 

This can be accomplished by zero suppression; i .e. by forma11 y dividing out the found 

zero. For this purpose the found m s  are accumulated in a polynomial c in prcxiuct repre- 

sentation. Next Newton's method is applied to 



giving 

This is the Newton-Maehly estimate[3 1 1. 

c'(s)  - Note that - - l 
* wherr the c, are the zeros of c (the found zms)  and 

C(S) 
1 = 1  

Similarly to c above 

Thus the Newton-Maehly estimate for a zero is readily calculated from a, b and c. If the 

sequence of estimates {xi} does not converge for a given initial value (a starhg value) 

x,. an improved starting value can be obtained using Muller's method followeâ by the 

Secant method[i 11. The sequence of estimates will be said not to converge if lxk + , - xd 

is not less than some e > O for k = km,. 

A fuizher consideration is the daennination of the constant factor K of p. Let Ka and 

K, be the constant factors of o and b. Then 



and if the dega = degb , K = Ka + K b ,  unless K, + Kb = O in which case degree 

reduction is said to occur; i.e. the degree ofp is less than the degree of a and b. The de- 

ofp and the constant factor K can be detemineû by converting to coefficient representa- 

tion and dctmining the nonzero coefficient of the highest powa of the sum of a and 0. 

ln a practical irnplementation exact equality cannot be expected. merefore a test like 

must be used to decide if K, + K, should be considered to be qua1 to zero. A similar test 

is used for detennining the highest nonzero coefficient of the sum if 

degp S dega - 1 

exceed the maximum number representable in the cornputer and in this case a test must be 

implemented and 1 /e(sc) set equal to zero, implying s, + , = sk . 

The algorithm described above has been tested on a large number of filter examples 

including high order, narmwband filters which are critical bacause of the clustering of 

zeros. The described algorithm has been successfully used in the design of such filters. 

may continue to increase and It has also been found that e(sk)  = p'(s,) cO(s t )  - - - 
P ( s ~ )  c(sk)  
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Solution of the Feldtkeller Equation for FIR Filters 

Theonm 1 : Given a polynomial 

- n - ( n  - 1 )  
f W  = f , ~  f fn- Iz  +...+/,. f m , f o * O . n > O  

1 f ( 1  S 1 for all o with z = do,  and a polynomial g(z) = I . Then there exists a poly- 

nomial 

such t hat 

g(z)g,(z) = / ( z ) / * ( z )  + h(z)h , (z )  

where the para conjugate is defincd by 

f&) = znf(l/z) = f,z -(n - 1 ) + ... + f n  

Roof: From the given f ( z  ) and g (z ) , 

Let 



deg a(z )  = 2n and the constant tenn of a ( z )  , f ,fn # O .  Therefore a (z )  can be 

expressed in product representation in the fom 

where the zeros are arranged so that la,l 2 Ia,l, i <  J 

2 n 
1 

But a ( i )  = a&) which implies that n a ,  = 1 and a, = - for somej, Le. the zeros 
i =  I " J  

occur in pain (a,, J-) with a ,  = a,. 

Let 

Note that luil 2 1 , i = 1,2, . .., n ,  and lai( s 1 , i = n, n + 1, .. ., 2 n .  Then 



Ii follows that h(r)h*(z)  and a(z )  have the same zeros, and, fkthermore, 

From (2) and ( 5 )  

and then 

and for z = da 

7 

Since 1 f (do)lœ s i for al1 o andfis nonconstant, there exists an o, such that 

1 / (d")I2 < 1 , which together with (6) irnplies lh(d00)12 t O .  Then h m  (6 )  

Now let 

and let 



and 

Finally h m  (2) and ( 9 )  

g ( z ) g , ( z )  = f n  = h(z )h*( z )  + f ( z ) f * ( r )  

where h(z  ) is defined by (7) and (8). From ( 1 O), f f + hn ho = O implying 

h,h, = - f n  f, # O ,  and therefore hn, h o t  O 

Corollary 1: Given a polynornial 

- n - (n  - 1 )  
f(2) = fWnl + f n - 1 z  + ... + f n f n o .  f , , fnotO.n>O 

l/(z)lS 1 for al1 o with z = du. and e polynomial g ( r )  = 1 . Then there exists a poly- 

- n i  - O -nO - ( n  - 1 )  nomial h ( t )  = z h ( z )  , where h ( z )  = h,#r + hn.- ,s + . . . + h, with 

n' = n-n,.hn.,h,#O and O I n l I n o  .suchthat 

-no - 
Let f ( z )  = z f (2). where 

Then l](r)l 5 1 for al1 o with s = dm. Let n' = n  - no. By Thcorcm 1, there exists 



- --  

- -nt -(n' - 1 ) 
h ( z )  = hn.z + hn. - + ...+ h o ,  hnf, hotO.suchthat 

Y"' = h ( r ) & ( r )  + / ( z ) j , ( z )  

-n' Notethat f & )  = f n +  f n - , z +  ...+ fnot = ~ & ) . N O W  

-no - -n -no - -no - 
: = r h ( z ) h , ( z ) + z  f ( z ) L ( z )  = z h ( z ) i * ( z ) + f ( z ) f & )  

-n t  - 
Let h ( z )  = r h ( r )  with 0 6 n l S n o , t h e n  

-n n l 0  -n-nlTn' 
h , (z )  = z  r h(  l / z )  = r , - h, (z )  

-no - C 

and h(z)h, ( : )  = z h ( z ) h , ( z ) .  And, finally, 

-n 
g ( z ) g * ( z )  = 2 = h ( a h * ( z )  + f(af&) 

-n 
CoruUory 2: Given f ( t )  = fnt , f, t O ,  I f n (  5 1 . and g ( r )  = 1 , then there exists 

which satisfies 

? - ( n  - n i )  i 

h,(z)  = JI -fn'z and h ( t ) h , ( z )  = (1  - fn')r-" 
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