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Abstract 

An experimental research program was designed to study laminar flows through and 

over models of porous media with or without inertial effects.  The models used were 

made up of circular or square rods arranged to cover solid volume fraction  ranging 

from 0.03 to 0.49, and filling fraction h / H ranging from 0.34 to 1 of the test channel.  In 

this way, the ratios of the depth of the test section to the porous medium pore H / l ranged 

from 5.75 to 18.25.  Three types of model porous media were tested: (1) two-dimensional 

‘horizontal’ models, having rod axes aligned along the span of the channel in a staggered 

or non-staggered fashion; (2) three-dimensional ‘vertical’ models with rod axes aligned 

in the transverse direction; and (3) three-dimensional ‘mesh’ models with rod axes 

aligned along both transverse and spanwise directions.  Using a pressure-driven viscous 

fluid, the bulk Reynolds number Rebulk was varied from 0.1 to 10.3.  Velocity measure-

ments were obtained using particle image velocimetry at various streamwise-transverse 

planes of the test section.  Differential pressure measurements were also obtained using 

electronic transducers.  These measurements were used to determine relevant governing 

equations for the flow through the porous media; to characterize the effects of  rod 

shape and arrangement, h / H, H / l, porous media dimensionality, and Rebulk on the flow; 

and to predict the flow at the porous medium-free flow interface. 

The Izbash and quadratic Forchheimer equations were respectively found to describe 

well the flow through two- and three-dimensional porous media.  Penetration of the free 



flow into the porous medium varied with ϕ and rod arrangement, but was nearly inde-

pendent of the rod shape.  At the interface between the porous medium and the free flow, 

h / H and H / l effects were found to be counteractive.  Penetration was highest for the 

vertical models compared with the mesh and horizontal models.  Inertial dependence of 

interfacial flow was weak when porous medium conditions were considered.  The inter-

facial flow was found to follow a dose response formulation with a predictable slip coef-

ficient.  

.   
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Chapter 1 

Introduction 

1.1 Overview 

Flow through and over porous media has essential bearing on many engineering applica-

tions.  Examples of these are groundwater hydrology, oil and gas exploration, permeable 

reactive barriers, binary alloy solidifications, and filtration technology.   

While porous media flow phenomena are largely laminar in nature, they are typically 

conducted through tortuous paths of interconnected voids in complex networks of solid 

matrices.  As a result, these flows are inherently complicated, and are still subject to 

many unresolved fundamental questions.  Notable amongst these questions are the consti-

tutive equations that govern the flow at the regime where the effects of inertia become 

significant.  In cases where there is an adjoining free (or open) parallel flow, an additional 

difficulty that is presented is the proper definition of boundary conditions at the interface 

between the porous medium and the open flow.  As these issues are still analytically and 

numerically formidable, there is a pressing demand for experimental studies to serve as a 
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basis for further understanding of the underlying physics involved.  This work therefore 

seeks to use an experimental approach to provide insights to help resolve these out-

standing concerns pertaining to laminar flows through and over porous media (with or 

without inertial effects).    

It is important to note that even though porous media flows are often multi-phase and 

may be compressible, and some may be driven by shear, this study is limited to single-

phase, incompressible, pressure-driven flows.  The insights gained from this single-phase 

consideration will nonetheless serve as a foundational knowledge base for multi-phase 

flow studies.  It should also be pointed out that the regimes of porous media flow pres-

ently under consideration include the range in which inertial effects just become apparent, 

but for which the conditions of flow are still steady.  This limitation has been put in place 

so that the issue of the onset of inertial effects can be specially tackled.  Furthermore, as 

the focus of this study is to present experimental evidence for cases which lend them-

selves to analytical and numerical simulations, the porous media utilized are only models 

of real porous media.  That, notwithstanding, the standard methods of averaging analysis 

applied in natural porous media still do hold as for real porous media.   

The purpose of this introductory chapter is to provide brief background information to 

the problem at hand.  To do this, basic descriptions of equations, notations and conven-

tional approaches to the problem are given.  This is followed by an outline of the objec-

tives and scope of the study, and a description of the structure of the thesis.   
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1.2 Terms, Notations and Equations 

In this section, some key terms, concepts, notations and equations used in the thesis are 

defined.   

1.2.1 Flow through Porous Media 

A porous medium may be defined as a material made up of a solid matrix with intercon-

nected voids or pores (Nield and Bejan 2006).  Such a material ranges from naturally oc-

curring substances such as soils, granular crushed rocks, and mammalian hair, to fabrica-

tions such as cigarettes, filters and wire-crimps.  The present study is limited to porous 

media that are rigid (i.e., not moving), and that for which the flows through and over 

them are not affected by gravity.  

Flow through porous media is of considerable interest in many natural and industrial 

areas.  Examples include the flow of hydrocarbons in oil wells, groundwater flows 

through beds of rocks, as well as the transport of minerals and contaminants through the 

ground.  One may also find this flow phenomenon directly relevant in gaseous or aqueous 

catalytic and inert packed bed reactors, flows through screens in filters, geothermal heat 

management, melting or solidification of binary alloys, trapping of soot in automobile 

emissions, heat exchanger technologies, and in lubrication. 

There are a number of terms that are commonly used to describe porous media.  One 

such term is the ‘porosity’, hereafter signified by ε.  Porosity is defined as the fraction of 

the porous media volume occupied by voids.  A complementary term of  is the solid 

volume fraction, hereafter signified by .  This is defined as the fraction of the porous 
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medium occupied by the solid matrix.  Solid volume fraction is therefore equivalent to (1-

ε.  In this thesis, frequent reference to porosity and solid volume fractions will be made 

to characterize the pore structure of porous media. 

1.2.1.1. The Continuum Approach 

The detailed solution of porous media flow is a formidable task.  Even with the most so-

phisticated computing technique, direct numerical simulations of the micro-scale flow 

equations within the pores are hardly possible without first allowing for a great deal of 

simplification of the porous media structure at hand (Breugem 2004; Nield and Bejan 

2006).  Due to the complex structure of typical porous media, numerical simulations are 

usually limited to methods using simplified boundary conditions or methods premised on 

a conceptual continuum model so that the behaviour of the flow on a large (average) scale 

can be considered with spatially averaged Navier-Stokes equations (Whitaker 1999; 

Breugem 2004).  Considering computational cost and realism, the latter method (which 

will hereafter be referred to as the ‘continuum approach’) is the more preferred option.  

One of the advantages of the continuum approach is that it accounts for the wide range 

of length and time scales that are present in porous media flows.  This approach is usually 

achieved by two averaging methods, namely spatial averaging, or statistical averaging.  

The present study limits its consideration to averaged quantities obtained by the spatial 

averaging method as that can be used readily without extra assumptions of statistical ho-

mogeneity.  Nonetheless, the two methods yield equivalent flow quantities if the spatially 

averaged relationships are those of primary interest (Nield and Bejan 2006), as is the case 

in this study.   
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The resulting quantities of interest in a spatial averaging are those averaged over suffi-

cient areas of pores that show changes only in a regular manner in spatial and temporal 

coordinates.  When this is done, the flow is assumed to be following these averaged 

measurements over the sample.  Spatial averaging yields averaged flow quantities over a 

representative elementary volume (REV) having length scales that are much larger than 

the scales at the pore level, and at the same time much smaller than those at the averaged 

scale of the total sample under investigation.  This REV ought to be sufficiently large that 

the flow quantity computed is the value at its centroid (Nield and Bejan 2006).  Thus, the 

average obtained is not dependent on the size of the volume element.  In a single-phase 

porous media flow, the total volume of an REV is given by the sum of the volume occu-

pied by the fluid and the volume occupied by the solid matrix. 

In this thesis, all microscopic (pore-level) quantities will be denominated by lower 

case letters, and the corresponding averaged flow quantities by upper case letters.  Thus, 

for example, in a Cartesian frame of reference, the components of microscopic velocity in 

the streamwise (x), transverse (y) and spanwise (w) directions are hereafter signified re-

spectively by u, v, and w, and the corresponding averaged components by U, V, and W re-

spectively.  Microscopic and averaged pressures are also represented by p and P respec-

tively. 

1.2.1.2. The Onset of Inertia and Related Problems 

Using spatial averaging in porous medium flow, the microscopic flow quantities in a fi-

nite microscopic elemental volume can be related to their respective averaged quantities 

in a defined REV by a superficial averaging method, or an intrinsic averaging method.  In 
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the superficial averaging method, a quantity     is obtained by averaging the respective 

microscopic quantity   in a volume element, over the entire elemental volume made up 

of fluid and solid parts.  The averaged velocity obtained by this means is called the ‘su-

perficial velocity’, Ufs (alternative terms for this velocity are: seepage velocity, volumet-

ric flux density, and filtration velocity; Nield and Bejan 2006.  The second kind of spa-

tial averaging, called intrinsic averaging, is done by averaging all microscopic quantities 

only over the volume of the fluid of the volume element.  The velocity obtained by this 

means is the ‘intrinsic velocity’, Uf.  In a Cartesian frame of reference the components of 

the porous media superficial velocity in the x, y, and z directions are hereafter signified 

respectively by Ufs, Vfs, and Wfs.  Similarly, those of the intrinsic velocity in the x, y, and z 

directions are hereafter signified respectively by Uf, Vf, and Wf.   

Using the continuum approach for a steady-state fluid flow of fluid density f, differ-

ential equations related to the continuity equation, and averaged momentum equations 

may be obtained (Whitaker 1996), and solved numerically using appropriate boundary 

conditions for whatever model of REV chosen.  The results may then be validated using 

the empirical Darcy Law, which is known to be the constitutive equation that applies at a 

sufficiently low flow rate, if body forces are assumed to be negligible in the flow (Bal-

hoff and Wheeler 2009).  The Darcy Law may be written as Nield and Bejan 2006 

fsf UPK 


1                             (1.1) 
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where     is the applied pressure gradient across the porous medium,  is the fluid dy-

namic viscosity, and K is a second-order permeability tensor.  In an isotropic medium, 

the permeability is scalar, and the tensor K can be replaced by k, called the ‘specific per-

meability’ or ‘Darcy permeability’.  For such a medium in which the vector     and the 

pressure gradient     are parallel along the stream, Darcy’s law can be expressed as 

k

U

dx

dP
df

                      (1.2) 

where          is a constant gradient of the streamwise pressure drop, and    is a con-

stant superficial streamwise Darcy velocity. 

Although the Darcy law is generally accepted to govern porous media flow, it does not 

cover all the practical ranges of flow in porous media.  As a result, areas of application 

such as those near well bores, fractures and tight screens of cryogenic propellant tanks, 

where seepage velocities are relatively high, may not be adequately modeled using the 

Darcy law.  As seepage velocities increase, a gradual transition occurs, resulting in a flow 

in which the relationship between the averaged velocity and the pressure gradient is no 

longer linear.  In this case inertia is no longer negligible, and has to be accounted for in 

the flow description.   

To account for this non-linearity, a number of formulations have been suggested.  The 

quadratic extension first proposed by Forchheimer (1901) is one of the most widely used.  

This equation, expressed in terms of Equation (1.2) is (Fourar et al. 2004) 

)(
2

dfd

f

f
UU

kdx

dP



                        (1.3) 
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where kf  is the equivalent Forchheimer permeability, and  is an inertial (non-Darcy 

flow) coefficient whose values are obtained through experimentation.  

While this quadratic equation appears to have worked well for many inertial flows, its 

uniqueness in describing the inertial regime has been questioned (Ruth and Ma 1992).  

Furthermore, it has been found not to be universal in the inertial range, particularly at the 

onset of inertia, and in the regime where the inertial range approaches unsteady flow.  

Some researchers (e.g. Firdaous et al. 1997) have therefore proposed that the on-set of 

non-linearity be better represented by the following cubic law: 

)(
3

2

d

f

d

f
UU

kdx

dP




                         (1.4) 

where   is a dimensionless parameter.  Between Equations (1.3) and (1.4), there has been 

a raging debate as to which of these equations is more representative of the flow phe-

nomenon.  While some efforts have been directed towards reconciling these problems, 

uncertainties still remain regarding the particular conditions (such as flow dimensions and 

porous media arrangement) under which the equations accurately apply.  As a result, nu-

merical modellers of such flow regimes are left to decide which model would be used in 

validating their results.  This makes the provision of further benchmark experimental data 

a necessity.  

1.2.2 Flow over Porous Media 

As for flow through porous media, flow over porous media is also of essential value in a 

number of engineering applications.  Applications include flows over river beds, fluid 

transport over biological membranes, flows over electronic cooling devices, permeable 
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reactive barrier flow arrangements, flow over packed bed heat exchangers insulations, 

and fluid flow in chemical drying devices. 

Attention is directed to Figure 1.1 where a typical single-phase laminar flow of identi-

cal fluids through and over a porous medium is schematically illustrated.  Accurate solu-

tion of such a coupled flow is daunting.  This is because it involves matching the coupled 

flow so that there is a detailed account of the transfer of momentum at the interface be-

tween the porous media section and the free zone.  In order to tackle this problem, two 

main levels of descriptions are usually considered, namely the microscopic and averaged 

levels of descriptions. 

At the microscopic levels of description, microscopic momentum equations are used to 

describe the flow in either the free zone flow, or the entire flow section.  For a steady in-

compressible Newtonian flow (in the absence of body forces), the microscopic momen-

tum equation that governs the flow is given by 

upu)u
2  (

f
                       (1.5) 

where   = (u, v, w) and     = (     ,      ,      ) are the local (microscopic) veloc-

ity and pressure gradient vector values.  This is an equation that may be used to describe 

the flow in the free zone and the porous medium section.  In cases where the convective 

terms in Equation (1.5) are negligible, the equation reduces to  

up 2                             (1.6) 

This is generally referred to as the ‘Stokes equation’. 
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(a) 

 

 

 

 

 

 

(b)                                                                      (c) 

 

 

 

 

 

Figure 1.1:  Flow through and over a model porous medium, as seen in the (a) micro-

scopic level of description; (b) Mesoscopic description of (a) with a continuous transition 

layer; and (c) Macroscopic description of (a) with a discontinuous interface.  The porosity 

profiles (in line) in (b) and (c) are only schematic.  Located at the origin of the plot ε(y) 

are the alternating short and long dashes.
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When both flow domains (i.e. the free zone flow, and the porous medium flows) are 

described with microscopic equations, the flow in the whole section is solved using Equa-

tion (1.5) or its appropriate modification (such as Equation 1.6), together with suitable 

boundary conditions.  Although this description generally leads to a detailed study of the 

physics of the flow, due to prohibitive computational costs of simulating the porous me-

dium flow, it is not applicable for most practical cases (Chandesris and Jamet 2007).  

Such considerations are usually limited to simple two-dimensional porous media flows 

(Larson and Higdon 1986, 1987; Sahraoui and Kaviany 1992) and simple three-

dimensional systems (Breugem 2004).   

The practical limitations associated with representing local heterogeneities makes the 

use of a modified microscopic description more useful.  In such a description, the flow in 

the porous medium is described by an averaged equation such as the Darcy’s Law (Equa-

tion 1.2), or an appropriate extension that accounts for inertial effects (such as the 

Forchheimer equation, i.e. Equation 1.3).   

Although this somewhat simplifies the description of flow within the porous medium 

in particular, the solution of the problem is still a challenge.  This is because the averaged 

and microscopic governing equations of different orders of the respective flow domains 

(such as in the one first order differential averaged equation of the Darcy law in the po-

rous medium, and the second order microscopic Stokes equation of the free zone) must 

be matched.  Related to this problem is the consideration of complex interactions at a 

nominal interface between the two flow domains for which hydrodynamic boundary con-

ditions are difficult to define.  
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For the case of a Stokes and Darcy coupled flow, one way to tackle the problem is to 

use a modified Darcian equation proposed by Brinkman (1947) in lieu of the Darcy law.  

The Brinkman equation may be expressed as 

k

U
U

dx

dP fs

fs

f 
  2'

                         (1.7) 

Here,    is an apparent (Brinkman) viscosity – a parameter which depends on the fluid as 

well as the geometry and structure of the porous medium.  With Equation (1.7), velocity 

and stress continuities may be assumed at the interface between the porous and the open 

medium (whose location is known a priori), so that together with the Stokes equation and  

other requisite boundary conditions, the flow can then be solved.  While the Brinkman 

equation is widely used in the literature, there seems to be no consensus as to how its so-

called apparent viscosity is to be modelled.  The value of this viscosity, its variation, the 

range of porosity of its application, and even its potency to predict accurate velocity pro-

files have all been subjects of much debate (e.g. Lundgren 1972; Koplik et al. 1983; Kim 

and Russel 1985; Larson and Higdon 1986, 1987; Dulofski and Brady 1987; Basu and 

Khalili 1991; James and Davis 2001).  This makes this method of solution an approxima-

tion at best, needing an alternative.  

Another way to match the Stokes and Darcy coupled flow is to use an empirical inter-

facial boundary condition.  Beavers and Joseph (1967) provided one of the first boundary 

conditions by reasoning that the classical no-slip condition is not applicable at the nomi-

nal interface of such a coupled flow due to a tangential slip velocity, Us at the nominal in-
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terface which is related to the interfacial shear rate of the fluid (du/dy y=0-) in the follow-

ing way   

)(

0

ds

y

UU
kdy

du






                                                                                         (1.8) 

The empirical parameter α in Equation (1.7) is a slip coefficient whose value is ob-

tained from experiments – something which is still not adequately provided in the litera-

ture.  Quite apart from this empirical limitation, the use of the slip boundary condition 

leads to a jump discontinuity in both velocity and stress at the interface, and therefore 

makes this approach unsuitable for flow modelling. 

The issue of determining the boundary condition at the interface has led to the postula-

tion of various formulations (e.g. Ochoa-Tapia and Whitaker 1995a, 1995b, 1998).  But 

these methods are either limited to one particular kind of porous media model, or lead to 

unrealistic velocity and shear discontinuities at the interface, or are fraught with unknown 

coefficient of one kind or another which need experimental determination.  This leaves 

the problem of laminar flow over porous media an unresolved one that needs to be ad-

dressed experimentally. 

1.2.2.1. Averaged Levels of Descriptions and Related Problems 

The scale limitations of the above-mentioned approaches of the microscopic levels of de-

scriptions have necessitated the current use of two kinds of averaged descriptions 

(Ochoa-Tapia and Whitaker 1995a; Chandesris and Jamet 2006, 2009; Jamer et al. 2009).  

For convenience and simplicity, these descriptions will be referred to as the ‘mesoscopic 



1.2 Terms, Notations and Equations  14 

 

 

description’, and the ‘macroscopic description’ (Chandesris and Jamet 2009).  In either 

case, the flow in the entire flow section is described by spatially averaged transport equa-

tions.  From these equations, the flow may be solved, or interfacial boundary conditions 

may be derived albeit with empirical coefficients (Ochoa-Tapia and Whitaker 1995a; 

Chandesris and Jamet 2006, 2007, 2009; Valdès-Parada et al. 2007; Jamet et al. 2009).  . 

The mesoscopic description is an extension of the continuum approach.  In this case, 

the whole flow section is treated as a continuum, and the same volume averaging is ap-

plied over the whole flow section.  Thus, the entire flow section is up-scaled to an equiva-

lent medium consisting of a homogenous porous section and a homogenous free zone 

separated by a continuous heterogeneous transition zone with varying effective transport 

properties in which the same volume averaged transport equation (which is usually simi-

lar to the Brinkman equation) is valid everywhere.  This is schematized in Figure 1.1(b).  

It should be noted however that for this type of averaged description, after the first aver-

aging (up-scaling), what results is an intrinsic averaged momentum equation in which a 

closure problem is confronted at the transition zone whose effective properties are com-

plex, and difficult to determine fully (Ochoa-Tapia and Whitaker 1995a; Valdès-Parada 

et al. 2007; Chandesris and Jamet 2006, 2009).  Indeed, at the present time, no formal 

approach has been developed to these closure relations (Jamet and Chandesris 2009).  

Such a problem makes the experimental provision of detailed information in this zone vi-

tal. 

In order to simplify the above-mentioned closure problem, fluid dynamists resort to 

the macroscopic description.  In this mode, an additional up-scaling is performed in 

which the heterogeneous transition zone is substituted by a discontinuous interface with 
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constant effective properties on either sides of the interface [as shown in Figure 1.1(c)].  

This up-scaling is done by averaging over the transition layer thickness (which is de-

fined as twice the transition layer thickness within the porous medium ; Ochoa-Tapia 

and Whitaker 1995a).  The main problem with this description however, is that appropri-

ate boundary conditions still need to be specified.  Furthermore, the second up-scaling as-

sociated with this description involves the knowledge of a transition layer thickness 

which still needs experimental determination (Ochoa-Tapia and Whitaker 1995a; Chan-

desris and Jamet 2006, 2009; Jamet et al. 2009).  One other weakness of this description 

is that it ultimately leads to loss of information of the momentum transfer, and thereby 

provides at best, only an approximate account of the flow.   

 

1.3 Summary of Research Goals 

The present research program seeks to investigate experimentally single-phase laminar 

flow through and over porous media with or without inertial effects.  The goals in sum-

mary are to characterize the flow with reference to various porous media parameters, to 

determine the governing equation that prevails at the onset of inertia within the porous 

medium, and to establish a workable boundary condition at the interface between a po-

rous medium flow and an overlying free flow.  

Circular and square rods arranged in simple and complex periodic patterns are used to 

model real porous media. The rods are arranged in a test channel so as to achieve solid 

volume fractions ranging from 0.03 to 0.49, and to fill 34% to 100% of the channel depth.  
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Using a refractive index matched viscous fluid as the working fluid, and pumping it 

through a system of valves and connectors, the flow is regulated so as to obtain flow 

through the porous medium up to the regime in which inertia is apparent.  A high resolu-

tion planar particle image velocimetry technique is used to measure streamwise and 

transverse velocities across various spanwise sections of the porous media.  In order not 

to lose detailed information at the interfacial region (as may result from the use of the 

macroscopic description), the velocity measurements are also spatially averaged in ac-

cordance with the mesoscopic level of description, and these averages are used to deter-

mine the requisite boundary conditions that apply at the interface.  Using electronic pres-

sure transducers, differential pressure measurements are also obtained.  The velocity and 

pressure measurements provide a complete set of experimental data to characterize the 

flow through and over porous media.   

The results of this experimental study are used to provide deeper insights into laminar 

flow through and over porous media.  This work is expected to form a substantial basis 

for further experimental, theoretical and numerical studies of more complex cases of real 

porous media. 

 

1.4 Thesis Structure 

This report presents studies on laminar flow through and over porous media.  Particular 

attention is focussed on the range of the laminar flow regime up to which inertia is just 

apparent.  The chapter which follows reviews the pertinent literature regarding such 
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flows.  Chapter 3 then presents a description of the experimental set-up, measurement 

procedure, and preliminary checks.  In Chapter 4 results of experiments are presented, to-

gether with a discussion, and then finally in Chapter 5, a summary of results and conclu-

sions are given, together with some proposals that may be considered for future studies. 
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Chapter 2 

Literature Review and Objectives 

2.1 Overview 

To put this study in the proper context of the present literature, this chapter reviews the 

pertinent works that have been published.  The reviews are summarized in Tables 2.1 to 

2.5.  This is followed by an outline of the problem under study in this work, and the theo-

retical basis, scope and objectives of the present research work. 

 

2.2 Flow through Porous Media 

This section looks at relevant publications of flow through porous media, focusing par-

ticularly on the Darcy Law, the onset of inertia, and the Forchheimer equation.  Follow-

ing this is a summary of the literature reviewed. 
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2.2.1 The Darcy Law 

When Darcy (1856) conducted his famous filtration experiments, his primary focus was 

the hydrological study of the fountains of Dijon.  He therefore conducted unidirectional 

flow experiments in vertical homogenous randomly and loosely packed sand filter beds 

as shown schematically in Figure 2.1.  The bed was of height h1 and bounded by horizon-

tal plane areas of equal size, A.  Open manometer tubes were attached at the upper and 

lower boundaries of the filter bed so that water percolating through the bed rose through 

the tubes to heights h3 and h2 measured above an arbitrary datum level.  Darcy’s observa-

tion was that for a steady-state flow in a uniform porous medium, there is a linear rela-

tionship between the volumetric flow rate, Q and the applied pressure drop.  The relation-

ship was dependent on an unknown hydraulic conduction coefficient k.  The relation, 

known as Darcy’s law, is stated as: 

1

23 )(

h

hhkA
Q


                                                                (2.1) 

The hydraulic conduction coefficient (commonly referred to as the permeability) k in 

Equation (2.1) may also be interpreted as a parameter for describing resistance of flow 

through porous media.  This is taken as a constant, depending on the properties of the po-

rous medium.  For porous media of packed beds or fibres, one other expression of the re-

sistance of the medium is a dimensionless parameter called the friction factor, f (reference 

will be made to another significance of this parameter in due course).   

The Darcy law has since been subjected to many experimental, numerical and theo-

retical treatments.  Many derivations of the law have been done based upon hydrody-

namic principles, using various conceptual models of porous media and related theorems 
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or techniques (e.g. Kozeny 1927; Irmay 1958; Scheidegger 1960; Rumer, 1969; Whitaker 

1986).  It is not within the scope of this work to present a thorough review of all the re-

ported treatments.  But it suffices to note at this point that the Darcy law as stated in 

Equation (2.1) may be generalized by the differential equation given in Equation (1.1).   

 

 

 

 

 

 

 

 

 

Figure 2.1:  Schematic diagram of Darcy’s experiment (Bear 1988). 

 

 

 

h3 

h2 

h1 
sand filter 

bed  

Open manometer 

Open manometer 

Water of 

flow rate Q 

Water collected  
Screen 



2.2 Flow through Porous Media  21 

 

 

2.2.2 The Evolution of Inertia 

The regime of fluid motion where the Darcy law is applicable is called the creeping or 

Darcy flow regime (Huang and Ayoub 2008).  For engineering and analytical purposes, 

this regime is often specified by a range of Reynolds numbers that is defined by an ap-

propriate length scale, L (such as the mean particle diameter, d; the square root of the 

permeability k; or the square root of the ratio of the permeability and the effective po-

rosity, (k / ε); Hlushkou and Tallarek 2006), and a velocity scale, U (which is usually 

the seepage velocity, Ud).  This Reynolds number, generically referred to as  



UL
Re                                  (2.2) 

where ν is the kinematic viscosity of the fluid), may be seen as the ratio of the inertial 

forces to the viscous forces in the flow.  To appreciate the utility of this dimensionless 

number, consideration is now given to the role of the viscous and inertial forces.  It is im-

portant to note that the viscous and inertial forces have opposing effects on the dynamics 

of the flow.  The viscous forces of the flow on one hand are the flow’s characteristic fric-

tional forces, responsible for smoothening out the microscopic heterogeneous velocity 

scales at neighbouring points of the flow.  Inertial forces, on the other hand, are the forces 

that bring about the transfer of energy from large-scale components to small-scale com-

ponents, thereby ensuring a characteristic heterogeneity in the flow.  The relative effects 

of these forces are defined in the Reynolds number.  Three main kinds of Reynolds num-

bers are used in the literature to discuss porous media flows. They are namely (Huang 

and Ayoub 2008):  the particle Reynolds number, Red =       ; the interstitial Reynolds 

number, Rei =          , and the so-called modified Reynolds numbers – such as that 
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due to Blake (1922), ReBL=          and Rek =         (which is also known as the 

Darcian Reynolds number; Spena and Vacca 2001).  Another Reynolds number that has 

been used is called the pore Reynolds number Repore.  This is based on a model of porous 

media represented as a bundle of identical cylindrical tortuous pores of diameter dpore, 

tortuosity τ, dynamic specific surface area, avd, (i.e. an empirical quantity defined as the 

ratio of the actual surface area of the particle in the flow to the volume of the solid), so 

that Repore for Newtonian flow is 4ρUdτ / (avd μ(1-ε)). 

As shown in Figure 2.2, in the Darcy regime, Re is usually of a value close to zero 

(or for practical engineering applications Rei < 1; Huang and Ayoub 2008).  The flow in 

that regime is essentially viscous, so that inertia is negligible.  This is what pertains in po-

rous media flow where the flow is typically conducted through media of very low hy-

draulic permeabilities, which effectively yields low velocities.   

Not all porous media flows, however, are characterized by very low velocities.  In hy-

draulically fractured wells and condensate reservoirs for example, relatively high veloci-

ties of flow are encountered, and their related flow phenomena do not follow the Darcy 

law.  Although the onset of this deviation is generally attributed to a more prominent in-

ertial force (e.g. Chauveteau 1965), the actual origins of these inertial forces have been 

the object of many speculations (Hlushkou and Tallarek 2006).  While some researchers 

ascribe this inertial force to pore roughness (Minsky 1951), others point out that this 

stems from such factors as the microscopic inertial force (Ma and Ruth 1993), inertial 

core development (Dybbs and Edwards 1984), interstitial pore space curvature (Hayes et. 

al. 1995), viscous boundary layer formation (Whitaker 1996), and the singularity of pat-

terns of streamlines that is sometimes associated with microscale non-periodicity of flow 
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(Panfilov et al. 2003).  Nonetheless, it must be emphasized that this deviation, being at a 

relatively low Re is certainly not the kind associated with the onset of turbulence (Schei-

degger 1960; Bear 1988; Dullien 1992; etc). 

 

 

 

 

 

 

Figure 2.2:  A schematic representation of the transition from Darcy flow to the inertial 

flow.  The vertical dashed line represents the region where Re ~10 (Bear 1988). 

 

In order to correct for the non-linearities in the inertial flow regime, Forchheimer 

(1901) proposed an ad hoc equation (Firdaouss et al. 1997) of the following form for an 

isotropic porous medium 

2

dd

f
bUaU

dx

dP
                         (2.3) 

Here, a and b are constants to be determined from experiments.  Equation (2.3) is equiva-

lent to Equation (1.3), so that a is identically the ratio of the dynamic viscosity to the 
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equivalent Forchheimer permeability, and b is the product of the inertial coefficient and 

the fluid density.   

Although Equation (2.3) (also known as the Forchheimer or quadratic equation; Fourar 

et al. 2004) is often attributed to Forchheimer (1901), Dupuit (1863) had previously sug-

gested a similar extension to Darcy’s Law.  Equation (2.3) is perhaps, the most widely 

used formulation for describing inertial effects in steady flow through porous media.  

This equation has also been extended to cover multi-dimensional flow.  Joseph et al. 

(1982), for example, modified the Forchheimer equation for this purpose so that Equation 

(1.3) for media of homogenous permeability becomes 

fsfs

f

fsf
k

c

k
UUUP

5.0


                   (2.4) 

where cf is a dimensionless “drag-form constant”.  The regime of flow in which the 

Forchheimer equation applies is called the Forchheimer flow regime.  This regime is a 

viscous-inertia regime, and it persists within the range of interstitial Reynolds numbers: 1 

  Rei < 150.  Beyond this range is a regime of a strong inertial unsteady laminar flow, 

characterized by wake oscillations and vortical development (Huang and Ayoub 2008).  

As the present study is limited to the regime of inertia onset, attention will be focussed on 

reviewing work done on porous media flow in the Forchheimer regime and particularly 

formulations governing that flow. 

Although the Darcy regime and the Forchheimer regime appear to be clearly demar-

cated, the transition from one regime to the other is known to be a gradual one 

(Moutsopoulos and Tsihrintzis 2005).  Plots of friction factor and the pore Reynolds 

number may be used as a convenient means of showing this transition (Comiti et al. 

2000).  Like the Reynolds number, the dimensionless friction factor also comes in various 
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forms in the literature.  It is given by ff1 =        
              (for packed beds; 

Huang and Ayoub 2008) or by ff2 = (     
            ) (Fourar et al. 2004), or even 

ff3 =       
              (Nield and Bejan 2006).  When ff1 versus pore Reynolds 

number is plotted logarithmically, the Darcy regime follows a straight line at low Reyn-

olds number.  This is followed by a region of deviation from this straight line due to an 

inertia effect.  The point at which this deviation begins is thought to be the transition 

point from Darcy flow to Forchheimer flow (Comiti et al. 2000).   

There has been a general inclination to define this transition by means of a critical 

Reynolds number Recr. (Bear 1988).  However, there has been a wide range of values that 

have been proposed over the years to be the correct Recr mainly due to the varying defini-

tions of Reynolds number.  Dybbs and Edwards (1984) performed perhaps, the most de-

tailed experiments in the literature covering the transition zone.  They used laser Doppler 

anemometry (LDA) and flow visualization techniques to obtain two-dimensional meas-

urements and dye streakline movies respectively.  The porous media model utilized was 

plexiglass rods arranged in a complex three-dimensional geometrical array, and their 

working fluids were refractive index matched with respect to the rods.  They concluded 

that this critical Reynolds number is within the range of 1 < Recr< 10, where the Recr was 

defined in terms of the interstitial Reynolds number of particles Rei (i.e., Recr = Recr,i).  In 

another study, Comiti et al. (2000) proposed that for engineering purposes, this Recr be 

defined as the point where the percentage of inertial effects in the pressure drop is greater 

than 5%.  They suggested that numerically, the Recr for non-Newtonian flow be fixed at 

Repore = 4.3.  More recently, Fourar et al. (2004) also showed that Recr may be assessed 

by considering the relative contributions of the pressure and drag terms of the governing 
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equation of the flow.  The Recr is the Reynolds number above which these terms are no 

longer proportional, but that the pressure drag increases faster than the viscous drag.  

They therefore proposed that Recr be seen to fall within the range of 2 < Repore< 4.   

 

2.2.3 Forchheimer Equation: Relevant Experimental Works 

As reviewed in the previous section, the Forchheimer equation is the most widely used 

formulation for modeling steady inertial flows in porous media.  This equation has been 

experimentally verified by many researchers.  Representative samples of such confirma-

tions are reviewed here to highlight the empirical approaches used, and some landmark 

results that were obtained.   

The Forchheimer equation was verified by Blake (1922) using measurements of flow 

rates and pressure drops for porous media of glass beads of different shapes, dimensions, 

fillings and height.  Ergun (1952) gave a further credence to the validity of the equation 

by using flow rate and pressure drop measurements from gas flow through a bed of 

crushed porous solids.  It is instructive to note that in that paper, references were made to 

previous experimental data (e.g. Burke and Plummer 1928; Lindquist 1933) as justifica-

tions for the Forchheimer equation.  Ergun (1952) also generalized the Forchheimer equa-

tion for packed beds in the form 

d

U
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dP df
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where F and G are constants determined through experimental data fitting.  A similar 

form of this equation (for unidirectional flow) was derived by Irmay (1958).  MacDonald 
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et al. (1979) later expanded this work and provided values of the constants that would 

better fit much of the data.  Ahmed (1967) also showed that the Forchheimer equation is 

correct, and reported values of a and b (in Equation 2.3) for sands.  Bordier and Zimmer 

(2000) measured flow rates and pressure head differentials for various drainage materials 

like gravels, geonet and geocomposite materials.  They were able to fit coefficients for 

the Forchheimer equations.  Van Batenburg and Milton-Tayler (2005) also used results of 

flow rate and pressure differential measurements for high velocity gas and water flow 

tests on proppant packs to show that the Forchheimer equation is indeed valid.  

Forchheimer-like equations have been verified for Newtonian and non-Newtonian flow 

through various porous media such as packed beds of spheres, cylinders, polyhedrons and 

plates (Comiti and Renard 1989).  These were achieved through pressure drop and flow 

rate measurements. 

In evaluating this overwhelming amount of empirical support however, it should be 

pointed out that these experimental data mainly rest upon global measurements of flow 

rates and pressure differences across various porous media sample.  This means that de-

tails (particularly of velocity) may have not been fully captured in those bulk measure-

ments.  Furthermore, there have also been a number of experiments that have been at 

variance with the Forchheimer equation.  These include the notable experiments of 

Forchheimer (1930), Skjetne et al. (1995), and Barree and Conway (2004, 2005).  In fact, 

after re-examining earlier reported data of Darcy (1856), Hazen (1895) and Chauveteau 

(1965), Firdaous et al. (1997) concluded that the data followed the cubic law given in 

Equation (1.4). 
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Further to this, there are some disputes about the value of the Forchheimer equation as 

a credible empirical tool that have arisen from the coefficients that are embedded in it.  In 

conventional practise (Balhoff and Wheeler 2009) the inertial coefficient β of the 

Forchheimer equation, is determined by rearranging the equation (as given in Equation 

1.3) into the following form 

)(
111

2

d

df

f

f

dapp U

U

kdx

dP

Uk 






              (2.6) 

so that it is the value of the slope of the plot of the inverse of the apparent permeability 

1/kapp against the dimensional Reynolds number            This coefficient has been a 

subject of much research over the years, and many different correlations have evolved to 

define its value for various porous media (Li and Engler 2001).  However, this parameter 

has also raised some suspicion about the universal application of the Forchheimer equa-

tion in the Forchheimer regime.  In a recent study, for instance, van Barree and Conway 

(2005) published results that generated some discussion about the sufficiency of the lin-

ear correlation suggested in Equation (2.6) (Huang and Ayoub 2008, Balhoff and 

Wheeler 2009).  Instead of the straight line expected from Equation (2.6), the experimen-

tal data of Barree and Conway (2004, 2005) yielded a downward concave curve.  This as-

sertion is supported theoretically and numerically by Edwards et al. (1990), Stanley and 

Andrade (2001) and Balhoff and Wheeler (2009).  If this is anything to go by, then the 

implication is that the Forchheimer equation may not be an adequate model to describe 

the flow within the entire regime of viscous-inertial flow.   

Apart from the inertial coefficient β, the permeability related to the Forchheimer equa-

tion, kf  has been another matter of varied interpretation in the literature.  While some in-
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variably equate this to the permeability obtained in the Darcy regime k (as given in re-

views of Li and Engler 2001 and Huang and Ayoub 2008), others have been quick to em-

phasize the difference between the two permeabilities (Muskat 1937; Skjetne et al. 1937; 

Chauveteau 1965; Barree and Conway 2004).  This confusion, though apparently subtle, 

raises a problem of interpretation, considering that some (e.g. review of Moutsopoulos 

and Tsihrintzis 2005) have interpreted the Forchheimer equation as a general case of the 

Darcy law, because at very low velocities, the second order terms of Equation (1.3) 

should be negligibly small.  These coefficient-related issues have in part raised a cloud of 

doubt regarding the value of the Forchheimer equation in describing the flow in the 

Forchheimer regime. 

2.2.4 Forchheimer Equation: Relevant Theoretical and Numerical Works 

Just as for experiments, several successful proofs can be used as theoretical justifications 

for the Forchheimer Equation.  Using various macro-scale approaches (e.g. volume aver-

aging: Irmay 1958, Whitaker 1996; principle of variation: Knupp and Lage 1995; homog-

enization theory:  Marušic-Paloka and Mikleic 2000; Chen et al. 2001; hybrid mixture 

theory: Hassanizadeh and Gray 1987); and micro-scale-based models (e.g. capillary ori-

fice model: Blick 1966; non-linear drag models: Rumer 1969; capillary network mode: 

Comiti and Renaud 1989; hydraulic radius method: Eisfeld and Schitzlein 2001), there 

have been many analytical endeavours to this effect.  Bear (1988) and Huang and Ayoub 

(2008) give comprehensive lists of these techniques in their reviews.  It is important to 

point out that the derivation of the Forchheimer equation has been extended to cover 

compressible flows (Chen et al. 2001) and multiphase flows (Bennethum and Giorgi 
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1997).  Numerical simulations have also admitted the use of the Forchheimer equation as 

an adequate model for the Forchheimer regime in both two-dimensional models (e.g. 

Wang et al. 1999) and three-dimensional models of porous media (Fourar et al. 2004), 

and particularly cases pertaining to the strong inertial regime (Wang et al. 1999; Balhoff 

and Wheeler 2009). 

It should be noted that the techniques employed in many of these theoretical deriva-

tions have however been questioned.  Ruth and Ma (1992) and Ma and Ruth (1993) for 

example, demonstrated that because microscopic inertial effects are not accounted for in 

the volume averaging technique, this technique cannot be a valid method to use in a con-

clusive derivation of the Forchheimer equation.  They further showed the non-uniqueness 

of the equation that governs the steady non-linear flow, pointing out that any number of 

polynomials could have been used to describe the non-linear behaviour of the flow.  This 

conclusion is in concurrence with Mei and Auriault (1991) and Woodié and Levy (1991) 

who had earlier shown that at low, finite velocities a homogenization technique yields a 

cubic law, not a quadratic law.   

These latter findings are not surprising, given that other equations have been suggested 

in the past to describe inertial steady laminar flows in porous media (Basak 1977).  

Forchheimer (1901) himself suggested two other equations of the following forms, which 

are relatively less known 

g

dd

f
bUaU

dx

dP
                  (2.7a) 
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where g and c are empirical terms.  Also, Izbash (1931) proposed an empirical power law 

of the form 

h

d

f
eU

dx

dP
                       (2.8) 

where e is an empirical constant.  The parameter h was specified to range from 1 to 2.  

Although this power law rivals the Forchheimer equation (as it is the preferred choice in 

modeling drainage systems; Bordier and Zimmer 2000), its physical soundness seems to 

be relatively less established.  White (1935), after analyzing dry air flow through packed 

towers (Scheidegger 1960), also gave a correlation belonging to the family of equations 

of (2.8), but setting h equal to 1.8.  There has been other less known empirical and semi-

empirical power laws by Escande (1953), Wilkinson (1956) and Slepicka (1961) which 

are reviewed by Basak (1977), all demonstrating the non-uniqueness of the Forchheimer 

equation to describe the inertial flow.  There are other formulations that may also be seen 

as extensions of the Forchheimer equation.  These, such as those of Wooding (1957) have 

been passed over because they are mainly suited for unsteady flows. 

In the recent past, many numerical studies (e.g. Couland et al. 1988; Rojas and Koplik 

1988; Hill et al. 2001; Balhoff and Wheeler 2009), have given credence to the use of an 

alternative cubic equation, given in Equation (1.4).  Although such numerical results were 

mostly simulations of simple two-dimensional periodic porous media (Barrére 1990; 

Firdaous and Guermond 1995; Amaral Souto and Moyne 1997), there has been at least 

one case in which the media was three-dimensional (i.e. a random pack of spheres; Bal-

hoff and Wheeler 2009).  It is also important to note that these results (whether two or 

three dimensional porous media models) are unanimous in support of a cubic law at rela-

tively lower velocities of the Forchheimer regime, although they have not had experimen-
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tal verification (apart from the confirmation provided by the re-examination of past data 

by Firdaous et al 1997).   

2.2.5 Summary of Review of Pertinent Studies of Flow through Porous 

Media 

The following, together with Tables 2.1 and 2.2 summarizes the review of studies of flow 

through porous media:  

(a) Flow through porous media has been a matter of great research interest over the last 

150 years (Table 2.1).  Many useful formulations have been proposed to describe the 

flow phenomena (Table 2.2).  These formulations have however been expressed mainly 

in terms of global parameters and they have been based on empirical observations of 

global streamwise measurements (as pointed out in Table 2.1).   

(b) The regimes of flow through porous media have also been widely covered.  However, 

the onset of inertia in the flow seems to be an area that needs further investigation.  As 

pointed out in Table 2.1, apart from the work of Dybbs and Edwards (1984), there ap-

pears to be no detailed velocity measurements that cover the phenomena of inertia onset. 

The Forchheimer equation has been a matter of great controversy.  As inferred from Ta-

ble 2.2, its uniqueness has been in doubt, and there is yet more to be known about the 

governing equation of flow at the onset of inertia. 
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Table 2.1: Summary of selected studies on equation governing the Darcy-Forchheimer 

transition zone.  

Focus of Research Study Pertinent Studies Reviewed 

Investigation 

Type 

Experimental Blake (1922) Ergun (1952) Burke and Plummer 

(1928), Lindquist 1933, and Morcom 1946) 

Ahmed (1967) Bordier and Zimmer (2000) Van 

Batenburg and Milton-Tayler (2005), Barree 

and Conway (2005), Balhoff and Wheeler 

(2009) 

Theoretical / 

Numerical 

Irmay (1958), Blick (1966), Edwards et al. 

(1990), Ruth and Ma (1992), Ma and Ruth 

(1993), Knupp and Lage (1995), Whitaker 

(1996), Marušic-Paloka and Mikleic (2000), 

Chen et al. (2001), Stanley and Andrade (2001) 

and Balhoff and Wheeler (2009) 

Velocity  

Measurement  

Technique  

(Experimental) 

Global Blake (1922), Ergun (1952), Burke and 

Plummer (1928), Lindquist (1933), and Mor-

com (1946), Ahmed (1967) Bordier and 

Zimmer (2000), Van Batenburg and Milton-

Tayler (2005), Barree and Conway (2005), 

Balhoff and Wheeler (2009) 

Detailed Dybbs and Edwards (1984) 

Dimensionality  

of Porous Medium 

(Experimental) 

 

Two Dimensions none 

Three Dimensions Blake (1922), Lindquist (1933), Morcom 

(1946), Ergun (1952), Ahmed (1967), Bordier 

and Zimmer (2000), Van Batenburg and Mil-

ton-Tayler (2005), Barree and Conway (2005), 

Balhoff and Wheeler (2009) 

Dimensionality  

of Porous Medium 

(Theoretical /  

Numerical) 

Two Dimensions Barrére (1990),  Firdaous and Guermond 

(1995), Amaral Souto and Moyne (1997), 

Wang et al. (1999),  

Three Dimensions Fourar et al. (2004), Balhoff and Wheeler 

(2009) 
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Table 2.2: Summary of prominent formulations for the Darcy-Forchheimer transition 

zone.  

Model Mathematical Formulation Comment 

Forchheimer / 

quadratic 

equation; 

Forchheimer 

(1901) 

)(
3
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d

f

d

f
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kdx

dP




  

Most widely used empirical 

equation for Forchheimer 

regime; However this has 

been found to be unsuitable 

for two dimensional flows, 

and the Darcy-Forchheimer 

transition zone (though not 

experimentally verified). 

Empirical 

Cubic equa-

tion; Firdaous 

et al. 1997) 
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Appears to work well for 

two-dimensional flows in 

the Darcy-Forchheimer 

transition zone. 

Ergun empiri-

cal equation 

Ergun (1952) 
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Suitable for packed beds 

Alternative 

empirical 

equations pro-

posed by 

Forchheimer 

(1901) 
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ddd
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Not as well known as quad-

ratic equation. 

Power Law of 

Izbash (1931) 
h
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Empirical with no well es-

tablished theoretical basis; 

works well for modeling 

drainage systems 
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2.3 Flow over Porous Media 

Like flow through porous media, the problem of porous media flow coupled with a free 

flow has generated intense research interest.  However, this review will consider only 

germane publications that highlight the main issues that have propelled research in this 

area of fluid mechanics.  Although the methods under discussion are related in many 

ways, for the sake of clarity and order in presentation, the present evaluation will be made 

by dividing the pertinent studies into two main blocks, defined by the contributions of the 

researchers.  The first block of contributions will hereafter be called the ‘Brinkman re-

lated contributions’, because it pertains to methods that are either based on Brinkman’s 

equation, or utilizes a similar equation.  The other contributions, denominated the 

‘boundary condition contributions’, will enlist research findings that propose interfacial 

boundary conditions.  Under the ‘boundary condition contributions’, studies that have 

been conducted to provide information about the boundary condition parameters (such as 

slip velocity and slip coefficient) are also reviewed. 

2.3.1 The Brinkman Related Contributions 

Brinkman (1947) studied the viscous flow past a dense swarm of spherical particles in a 

porous mass, and proposed an equation to calculate the viscous force that was exerted. 

This equation, called the Brinkman equation (presented in this work as equation 1.7), be-

came a necessary hypothesis for the solution of the problem.  This is because Darcy’s 

law, devoid of a viscous stress component, was inadequate to use in cases of porous me-

dia of low particle densities (k → ∞).  Furthermore, obtaining consistent boundary condi-

tions for coupled porous media and free flows was a particularly difficult task to under-
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take.  Brinkman therefore used Equation (1.7) together with other logical boundary con-

ditions to solve the whole flow domain problem.  After comparing results with an empiri-

cal relation by Carman (1937), it was found that for particles of solid volume fraction  < 

0.6, there was satisfactory agreement with Carman’s experimental relation when the ap-

parent viscosity ’ in the Brinkman equation was equal to the fluid’s dynamic viscosity 

.  This choice of value of ’ is also known as the Brinkman model (Agelinchaab et al. 

2006).  The Brinkman equation has since been used for the study of coupled porous and 

free flows.  The value of this Brinkman approach lies in its capacity to provide a velocity 

profile that accounts for the ‘boundary layer’ (i.e. the transition layer in the porous me-

dium) that occurs between the interface and the Darcy region.  There is further utility in 

the Brinkman approach, considering its adaptability for use for the whole coupled porous 

media- free flow as a single domain, if the variations of properties such as k, and   are 

known.  Perhaps, it is upon these bases that some have sought to establish its applicabil-

ity, and to expand on this approach by defining particularly the value of the empirical co-

efficient   . 

The Brinkman equation has therefore received rigorous verifications from numerous 

investigators, for low  porous media (e.g. Tam 1969; Childress 1972; Howells 1974; 

Hinch 1977; Freed and Muthukumar 1978; Rubenstein 1986).  However, many other 

studies using low  porous media have shown that the Brinkman equation often fails to 

predict the flow field (e.g. Larson and Higdon 1986, 1987; James and Davis 2001; Davis 

and James 2004).  Kaviany (1992) also showed that the Brinkman model gives an under-

estimation of the flow resistance at the interfacial boundary.  The result is that the bound-

ary effects persist further into the porous medium.   
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Experimental verifications of the Brinkman equation have furthermore, been largely 

sparse and indirect, and even some of these results have been in dispute.  Some theoreti-

cal predictions of permeability of high  porous media based on the Brinkman equation 

have been in agreement with experimental data (Brinkman 1947; Lungren 1972; Kim and 

Russel 1985).  However, Dulorfski and Brady (1987) argued that because the permeabil-

ity is a single scalar quantity, the permeabilities obtained do not represent the general 

flow, and thus, the empirical agreements in those experiments do not necessarily establish 

the validity of the Brinkman equation for media of high .  To prove their point, they 

provided fundamental solutions of creeping flow through porous media, and upon com-

paring their results with solutions of the Brinkman equation, they concluded that for > 

0.05, the Brinkman solution loses its ‘detailed predictive value’, though it remains a help-

ful qualitative tool.  Givler and Altobelli (1994) matched velocity measurements with 

analytical data for = 0.028, and came up with an apparent viscosity value, = 7.5.  

Generally, the literature shows that at best, there is a non-uniform validity of the Brink-

man equation even for low  (Rubenstein 1986; Nield and Bejan 2006; Gerritsen et al. 

2005)  

Modelling of the apparent viscosity of the Brinkman equation has attracted some at-

tention, but generated mixed results as well.  Koplik et al (1983) analyzed the shear flow 

at a porous media – free-zone interface.  They calculated the energy dissipated in a flow 

about an isolated sphere, and found the apparent viscosity to be less than the fluid viscos-

ity (i.e. < ).  This is in contrast with the findings of Lungren (1972), who concluded 

that this is not always the case.  Kim and Russell (1985) later used dilution theory to 

solve the Stokes equation for flow through a random array of fixed spheres for  ranging 
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from 0.30 to 0.50. Their analytical prediction was that the value of the apparent viscosity 

is greater than the viscosity of the fluid (i.e. > ), in contrast to the result obtained by 

Koplik et al. (1983).  Larson and Higdon (1986, 1987) also performed a numerical study 

of the shear flow near the surface of a porous media.  Their model porous media were 

made up of square and hexagonal arrays of cylindrical inclusions.  They concluded that  

<  when the flow was parallel to the cylinders, and  >  when the flow was perpen-

dicular to the cylinders.  Ochoa-Tapia and Whitaker (1995a), also argued that  /   is 

identically 1 / (1-, a result which though strikingly similar, is yet different from the re-

sult of Bear and Bachmat (1991) who used a volume averaging process to show that  / 

 is equal to τ / (1-where τ is the tortousity of the medium.  In their derivation, 

Ochoa-Tapia and Whitaker (1995a) tried to clarify some ambiguities regarding the so-

called apparent viscosity.  According to them, this Brinkman viscosity concept is really a 

confusion of superficial and intrinsic properties.  Due to the mixed results in the litera-

ture, there has been a proposal to use a variable apparent viscosity model (Kaviany 1992).  

However verification for this proposal remains to be provided.  In spite of the apparent 

uncertainties in the Brinkman approach, it has been reported to give realistic accounts for 

the transport of momentum from the free flow to the porous medium, which is approxi-

mated to occur within thickness of O (k ) (Goyeau et al. 2003). 

It must be pointed out that the Brinkman equation has also been extended for use in 

inertial flows.  Hsu and Chang (1990) derived such an equation, after some modification 

of the earlier works of Vafai and Tien (1981, 1982).  This equation can be written for in-

compressible steady flow in an isotropic porous media as follows 
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More recently, Shavit et al. (2002) also investigated the average velocity profile 

around the interface between a shallow free surface and porous media flow.  The porous 

region was modeled using the Cantor Taylor brush configuration (CTB) – similar to that 

studied by Taylor (1971) and Richardson (1971).  A modified Brinkman equation (MBE) 

was developed by averaging the microscale Stokes equation.  The MBE was found to 

provide an accurate prediction of the average velocity profile around the interface of the 

configuration, given a correct choice of the size of the REV, Hrev.  The velocity profile 

and its first derivative were continuous and reproduced with high accuracy the results of 

the average microscale Stokes equation.  In a succeeding numerical study, Shavit et al. 

(2004) generalized their MBE formulation, providing a complete macroscopic solution of 

the interface a ‘brush configuration’, given the fundamental properties of the porosity , 

and permeability k, the fluid dynamic viscosity , and the pressure gradient dPf/dx.  This 

general solution may only be applied to a laminar flow problem that involves an interface 

between a porous media that consists of a series of grooves, and a relatively fast moving 

flow region.  The solution also provides an accurate description of the flow rate.  The 

generalized MBE may be expressed as follows: 
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for -Hrev/2 < y < Hrev/2 
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where Uf is the streamwise intrinsic velocity, and αR is a conduction coefficient (= 

                .  They reported that the flow rate predicted by the MBE is accurate 

within a wide range of porosities (0.15 – 0.825).  This equation has been verified in PIV 

measurements by Shavit et al. (2004) and Rosenzweig and Shavit (2007).  The problem 

about the MBE is that it appears to be suited only for models of the Cantor Taylor brush 

configuration (CTB), and therefore provides only a limited solution to the problem of in-

terfacial flow. 

In another fresh look at the coupled porous medium-free flow problem, Nield and 

Kuznetsov (2009) modelled the problem by considering it as a flow in a three-layer chan-

nel, consisting of a transition layer sandwiched between a layer of free fluid and a porous 

medium layer.  They assumed the permeability of the transition layer to vary linearly 

across the channel.  They also assumed the permeability of the layers to be continuously 

matched.  The Brinkman model was used in the porous medium and transition layer.  Ve-

locity profiles were obtained from closed form expressions for each layer, and the results 

were compared with models using the Beavers and Joseph (1967) boundary condition at 

the interface.  It was observed that the results were satisfactory for thin transition layers 

and small Darcy numbers.  Although this three-layer technique seems plausible in some 

respects and could be explored further, its utility in this study is largely limited because it 

involves a simplification of the transition layer that may only apply in theoretical cases.  
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2.3.2 Boundary Conditions Contributions 

As pointed out in Chapter 1, an alternative approach to the solution of the problem of 

flow through and over porous media is that which requires boundary conditions at the in-

terface.  The boundary conditions that have been used in the literature range from empiri-

cally and analytically derived boundary conditions, to intuitive conditions such as conti-

nuity in shear stress and velocities.   

For this block of studies, the contribution of Beavers and Joseph (1967) is very sig-

nificant.  They attempted one of the first experimental studies on the interfacial boundary 

conditions for a Poiseuille flow through and over a porous medium.  In that work, various 

samples of two structurally different types of permeable materials - low density nickel 

foametal, and aloxite – were tested.  The volume fraction ranged from 0.20 to 0.49 (Kim 

and Russel 1985).  Based upon their measurements of the mass flow rates for demineral-

ized water and Sinclair 100-Grade Duro oil, they detected a tangential slip velocity Us at 

the nominal interfaces of the porous media.  These investigators postulated that the dif-

ference between Us, and the Darcian velocity Ud, is proportional to the shear rate of the 

fluid at the interface, du/dyy=0-.  The proportionality constant (i.e. slip coefficient, α) in 

the relation was speculated to depend linearly on   , as well as the structure of the mate-

rial at the interface.  This postulation was expressed in a boundary condition presented as 

Equation (1.8) in Chapter 1, known as the Beavers and Joseph boundary condition.  Val-

ues of α = 0.78, 1.45 and 4.0 for foametals and a value of 0.1 for aloxite were obtained 

based on the measured flow rates and known permeability values. Beavers and Joseph 

(1967) concluded that the rectilinear flow of a viscous fluid over the surface of a perme-

able material yields a boundary layer region within the material, whose effects could 
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greatly change the nature of the tangential motion near the interface.  It must be empha-

sized however that having noted this in their work, the boundary condition proposed did 

not truly account for a boundary layer region, and this has limited its utility. 

Saffman (1971) theoretically verified the semi-empirical boundary condition of Bea-

vers and Joseph (1967).  He approached the derivation by modelling the problem as a 

case of flow through a non-homogenous porous medium with porosity and permeability 

changing discontinuously from the values of 1 and   for the porous medium forming the 

boundary.  By performing an ensemble averaging, a derivation of Equation (1.7) in the 

following form was made: 
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Saffman (1971) noted that Equation (2.11) is only sufficient to calculate the outer flow 

correct to O(k).  Furthermore, since Ud in the Darcy Law was much smaller than other 

quantities, that velocity could be neglected if the details of the boundary layer were not 

required.  Saffman (1971) also noted that the actual location of the interfacial boundary 

will affect the value of the slip coefficient and may even take on negative values. 

Following the findings of Beavers and Joseph (1967), Taylor (1971) performed ex-

periments to verify whether the slip coefficient α, was dependent on any other features of 

the geometry of the media of flow apart from the porous material.  In this respect, he con-

ceived an ingenious means of designing an ideal porous material of solid volume fraction 

of about 0.5, for which the specific permeability k could be calculated using α. Shell 

Talpa oil was the working fluid.  The permeability k was computed from a theoretical 

analysis by Richardson (1971), and a value of α ≈ 2 was obtained.   
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Jones (1973) made a generalization of the Beavers and Joseph condition, assuming it 

to be a relationship involving shear stress, and expressed it as: 
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It is obvious from the foregoing equation that for cases where the transverse velocity gra-

dient along the stream is negligible, the Beavers and Joseph boundary condition is readily 

obtained.  This equation has however not yet been confirmed.   

In another investigative study, Neale and Nader (1974) made attempts to solve the in-

terfacial boundary condition problem.  They however proposed continuity in both the ve-

locity and the velocity gradient at the interface by introducing the Brinkman term in the 

momentum equation for the porous side.  Nonetheless they also showed that the Beavers 

and Joseph boundary condition may be obtained from the solution of the Brinkman equa-

tion (i.e. Equation 1.7) valid in the region y  0 of the parallel flow of Figure 1.1(a) if the 

slip coefficient  =         

Beavers et al. (1974) also performed experiments to verify the Beavers and Joseph 

boundary condition for gas flows.  They also sought to determine whether the fluid had 

any significant effect on Using a rectangular test section, a porous medium was placed 

at the bottom wall.  The porous media were of two specimens of foametal of different 

dimensions and permeability, and each of ≈ 0.05.  The experiments were performed in 

an open-loop air flow facility, and the airflow through the duct and the porous block were 

driven by the same axial pressure.  The magnitude of the pressure gradient was chosen to 

fall within the range for which a coupled parallel flow was established with fully-

developed laminar flow in the channel, and a Darcy flow in the porous material.  Flow 
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rate measurements of the laminar channel flow with a porous boundary were compared 

with that of a solid boundary.  The results showed that slip velocity at a porous boundary 

could be detected even for a gaseous working fluid, flowing along the boundary. It was 

found that was respectively, 0.27 and 0.19 for the two foametal specimens.  

In a study that was the first of its kind, Larson and Higdon (1986, 1987) numerically 

analyzed the microscopic flow near the surface of a two-dimensional porous media made 

up of simple arrays of infinite and semi-infinite lattices of cylindrical inclusions.  They 

used the boundary-integral method to solve the Stokes flow for cases of the idealized po-

rous medium aligned with the flow (Larson and Higdon 1986), and across the flow (Lar-

son and Higdon 1987).  Their results indicated that penetration is greater in the aligned 

flow.  They showed that the flow over the surface of a porous media is inherently surface-

driven with extremely rapid velocity decay at even low porous media concentrations.  

They calculated the slip velocity based on the flux above and below the interface, and 

noted a considerable discrepancy between the two definitions, except for very low vol-

ume fractions.  The slip velocities obtained from both methods decreased with increasing 

solid volume fraction as expected, however, negative values were also obtained – a result 

that has cast considerable doubt on the accuracy of their method.  For both axial and 

transverse flows, it was observed that except for extremely low concentrations, the defini-

tion of the nominal interface was of considerable influence on the value of slip velocity 

obtained.  They also noted that owing to slight protrusions of the medium above the 

nominal interface, the slip velocities may even take on negative values as suggested by 

Saffman (1971).  Consequently, Larson and Higdon (1986, 1987) concluded that the use 

of slip coefficients for porous boundaries was not well justified, and that generally, the 
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macroscopic models of Brinkman (1947), and Beavers and Joseph (1967) were inade-

quate to give a satisfactory descriptions of the detailed flow field at the porous surfaces.  

Vafai and Thiyagaraja (1987) studied the flow field and heat transfer at the interface 

between two different porous media, the interface separating a porous medium from a 

fluid, and the interface between a porous medium and an impermeable medium.  In the 

analysis, the velocity field in the porous medium was assumed to be independent of the 

flow direction.  They used continuity of velocity, shear stress and heat flux at the inter-

face, and the Forchheimer equation (to account for inertial effects within the porous me-

dium).  Vafai and Kim (1990) also considered the flow of fluid at the interface between a 

porous medium and a fluid layer with inertia and boundary effects.  They gave an exact 

solution to a simplified problem by using an identical shear stress in the fluid and the po-

rous medium at the interface region. 

Ochoa-Tapia and Whitaker (1995a) on the other hand, proposed a jump momentum 

transfer condition at the boundary between a porous medium and a homogeneous fluid.  

The condition, based on the non-local form of the volume averaged momentum equation, 

was developed to join Darcy's law with the Brinkman equation in solving the coupled po-

rous-free flow problem.  The approach assumes a jump in the stress but not in the veloc-

ity, allowing the convective transport to be continuous at the boundary between a porous 

medium and a homogeneous fluid.  However, it demands a specification of the Brinkman 

transition layer thickness of the interfacial region – something which needs experimental 

determination or verification.  For a porous medium of porosity ε, the condition can be 

expressed as: 
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Empirical measurements are also required to determine the coefficient 1 (which is a di-

mensionless parameter of a complex function) that appears in the condition.  In Ochoa-

Tapia and Whitaker (1995b), this coefficient was estimated to range from -1.0 to 1.5 for a 

good fit with experimental results of Beavers and Joseph (1967).  In another study, 

Ochoa-Tapia and Whitaker (1998) proposed another shear stress jump boundary condi-

tion for situations where inertia effects play a key role in the flow.  Here, for a porous 

medium of porosity ε , the condition requiring two empirical constants may be ex-

pressed as 
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Like Equation (2.13), this equation has empirical coefficients that need to be determined.   

Unlike Equation (2.13), Equation (2.14), has been the subject of intense research.  

Kuznetsov (1996) gave analytical solutions for the steady fully developed laminar fluid 

flow in the parallel-plate and cylindrical channels filled in one part with a porous me-

dium.  The stress jump boundary condition suggested by Ochoa-Tapia and Whitaker 

(1995a) was used at the interface to match the Brinkman equation to the Stokes equation.  

Kuznetsov (1996) demonstrated that the stress jump boundary condition is not only of 

theoretical interest, but also important for solving practical fluid flow problems.  Later, 

Goyeau et al. (2003) analyzed the forced flow parallel to the interface between the free 

flow and the porous medium by performing a momentum balance.  They introduced a 
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varying non-homogenous transition layer between the two domains and tried to provide 

insight into finding the jump coefficient in the model of Ochoa-Tapia and Whitaker 

(1995a).  However, they were only able to provide a relationship dependent on velocity 

variations (which are unknown in the problem).  According to the numerical computa-

tions of Deng and Martinez (2005), the jump coefficient 1 is dependent on the Reynolds 

number (based on the seepage velocity Ud and the depth of the whole test section, H), and 

the Darcy number (the ratio k / H
2
).  This is yet to be confirmed experimentally.    

Chandesris and Jamet (2006) analyzed a coupled homogenous porous media – free 

flow in order to determine the boundary condition that should hold at the interface.  Us-

ing matched asymptotic expansions with a heterogeneous transition layer at the interfacial 

region, they were able to obtain a model in which the condition is based on fluid stress. 

Their jump interface condition was of the following form  
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where β3 is an unknown jump coefficient, and   is the thickness of the transition zone 

(which must be determined or verified experimentally). They reported the product β3   to 

range from -0.64 to 4.28, for a good fit to experimental results of Beavers and Joseph 

(1967).  However, they also conceded that extra work would have to be done in order to 

define the value of this coefficient for various porous media.   

In a bid to do away with the problem of an adjustable coefficient, Valdès-Parada et al. 

(2007) derived another jump condition similar to Equation (2.13).  This condition how-

ever involves a mixed stress tensor at the right hand side of Equation (2.15) which com-

bines the Brinkman and global stress at the interface.  The Brinkman stress was deter-
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mined using polynomial functions describing spatial changes in porosity, while the global 

stress was determined by deriving and solving the local closure problem.  Although this 

work has been very helpful in dealing with related closure problems associated with inter-

facial boundary condition problems, it was nonetheless based on a rather convenient as-

sumption that the interfacial velocity effects were negligible. 

Chandesris and Jamet (2007, 2009) and Jamet and Chandesris (2009) have subse-

quently tried to account for the jump coefficients in Equations (2.13) to (2.15) using pres-

sure surface-excess forces and the friction surface-excess forces.  In the first of these pa-

pers, Chandesris and Jamet (2007) were able to obtain relationships between the structure 

of the transition region, and the value of the jump coefficients in Equations (2.13) and 

(2.15), provided the profiles of permeability and porosity at the transition region are 

known.  In a succeeding paper, Jamet and Chandesris (2009) further demonstrated that 

the coefficients depend linearly on the position of the interface of the macroscopic dis-

continuous description.  In Chandesris and Jamet (2009), a boundary condition similar to 

Equation (2.14), in which the right hand side parameters are expressed in terms of the 

pressure surface-excess force and the friction surface-excess force, was obtained.  None-

theless, these results are also subject to experimental verification, and are only an attempt 

to clarify an approximate solution to the problem. 

2.3.3 Boundary Conditions Contributions: Supporting Works 

There are a number of studies that provide further information about some of the bound-

ary conditions that have been proposed in the literature, as well as the associated empiri-

cal coefficients.   
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 One such numerical study of laminar flow across rod arrays was carried out by Sah-

raoui and Kaviany (1992) using a finite difference analysis to solve the momentum and 

continuity equations.  A periodic structure of the rods for solid volume fractions between 

0.2 and 0.5 was employed.  The work revealed dependence of the slip coefficient on the 

solid volume fraction, Reynolds number, and flow type (whether shear- or pressure-

driven).  However, it was only focussed on flow through and over two dimensional po-

rous media; neither did it suggest any alternative boundary condition. 

Gupte and Advani (1997)
 
later used an LDA technique to measure the fluid flow at the 

interface of a porous medium and a Hele-Shaw cell.  They reported values of  for a ran-

dom network of glass strand weaves of  = 0.07, 0.14, and 0.21.  The test channel was 

partially filled with the fibrous preform to create a free zone coupled with a Darcy flow.  

Saturated and steady flow through the cell was established by respectively injecting three 

different kinds of viscous fluids at a constant flow rate through the system.  It was found 

that while the interface between the flow through the porous medium and the free zone is 

affected by , it was unaffected by either the fluid viscosity or the flow rates on either 

side of the permeable boundary.  Furthermore, there was no specific trend in the variation 

of with the .  Gupte and Advane (1997) also reported that for fibrous mats, the transi-

tion layer within the porous medium was far larger than that predicted by the Brinkman 

solution.  While their results provided significant insight, it was nonetheless limited to 

just one kind of porous medium, and the free flow was that of a simple Hele-Shaw flow. 

James and Davis (2001) examined both shear-driven and pressure-driven flows in the 

interfacial region between an open and porous medium flow using models of porous me-

dium consisting of arrays of circular cylinders of a maximum solid volume fraction,  = 
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0.10.  The porous medium was oriented across the flow, and filled the channel typically 

to half its width.  Singularity methods were used in the analysis.  They introduced a di-

mensionless slip velocity Us /        (where    is the shear rate of the fluid at the inter-

face, dU/dyy=0+) which may be observed to be equal to 1/ in Equation (1.8) in the case 

of shear flows.  James and Davis (2001) found that for shear flow, Us /        depends 

only on, and that the slip velocity was small even for arrays with ϕ < 0.01 (i.e. open 

flows).  For the case of pressure-driven flows, the dimensionless slip velocity was found 

to be affected by , filling fraction, and the ratio of the porous medium depth to pore.  In 

another numerical work, Davis and James (2003) used singularity methods to investigate 

the slip velocity at the interface of a regular array of rods and the unfilled portion of the 

annulus for a shear-driven flow.  Solid volume fractions ranging from 0.0001 to 0.10 

were explored.  The dimensionless slip velocity Us /       , was found to be nearly inde-

pendent of the number of circles of rows behind the rods. However, with just a single 

row, the velocity increased by just about 10%. They therefore concluded that the velocity 

at the edge of a porous medium is nearly dependent only on the hydrodynamic resistance 

of the elements at the outer edge.  Although the studies of James and Davis (2001) and 

Davis and James (2003) threw further light onto the interfacial flow phenomenon, they 

were also limited to low solid volume fraction two-dimensional porous media under non-

inertial flow conditions. 

In another experimental study, Shams et al. (2003) used particle image velocimetry 

(PIV) to make detailed measurements of the creeping shear flow field near the edge of a 

two-dimensional model porous medium.  The model was an annular array of regularly 

spaced acrylic circular rods installed vertically onto a Plexiglass disk, to form a circular 
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brush.  Three annular arrays were made to cover solid volume fractions of 0.025, 0.052 

and 0.10 respectively.  Their results showed that secondary motion could arise in a po-

rous medium.  However, there was no quantification of shear rates at the interface.   

Tachie et al. (2003) performed experiments using the PIV to study the simple creeping 

shear flow penetrating a model of a fibrous medium.  They used an experimental set-up 

similar to that employed by Shams et al. (2003).  The model porous media used were 

made up of transparent acrylic rods of circular, square, and equilateral triangular cross-

sections.  The rods were arranged in an annular array to provide a solid volume fraction 

range of 0.01 to 0.16.  They observed that the minimum value of solid volume fraction 

for the onset of circulation depended on the rod geometry.  Concurring with Shams et al. 

(2003), Tachie et al. (2003) suggested that circulation started at 0.04 <   < 0.052.  The 

dimensionless interfacial slip velocity Us /        was found to be nearly independent of 

the rod shape, the number of circles of rods forming an array, as well as the solid volume 

fraction.  The dimensionless slip velocity decayed from 0.30 to 0.24 as the solid volume 

fraction increased sixteen-fold.  While the experiments of Shams et al. (2003) and Tachie 

et al. (2003) provided detailed experimental data, their results like James and Davis 

(2001) and Davis and James (2003), only apply to creeping shear flows over two-

dimensional porous media of low solid volume fraction. 

Tachie et al. (2004) consequently used PIV to measure velocities of slow shear flow 

over a three-dimensional model porous medium.  The test facility and experimental tech-

nique employed were similar to that used by Tachie et al (2003).  Here, however, the 

model porous medium used consisted of an array of uniformly–spaced rods oriented per-

pendicular to the axis of the cylinders, and mounted onto the inner cylinder to simulate a 
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‘brush- flow’ configuration of 81% filling fraction.  The model brushes were of solid vol-

ume fractions 0.025, 0.05, and 0.10. The dimensionless slip velocity was found to be 

about 1, and nearly independent of the solid volume fraction.  Their study like Tachie et 

al. (2003), was limited to simple shear flow, and the effects of filling fraction or inertial 

effects were neither covered.  

With a combined refractive index matching method, Goharzadeh et al. (2005) used 

PIV to quantify the velocity field at the interfacial area between a pressure-driven laminar 

flow and a porous medium.  The porous media was modelled by five different types of 

transparent borosilicate mono-disperse glass beads and polydisperse granulates.  The po-

rous media were of solid volume fraction 0.57, 0.59 and 0.62.  In the test conditions, the 

porous media depth was kept constant, while the depth of the free zone was varied.  Us-

ing averaged velocity data from their two-dimensional measurement, they observed that 

the transition layer in the porous medium was of the order of grain diameter and therefore 

much larger than the square root of permeability.  They also concluded that the proper ve-

locity scale for the interfacial flow is the slip velocity.  It should however be noted that 

their results pertained only to flow in which the local Reynolds numbers in the porous 

media were much below 1, and therefore apply to cases where inertial effects were not 

apparent. 

Agelinchaab et al. (2006) provided PIV measurements of flow driven by pressure, 

through and over a three-dimensional model porous media.  The experiments were con-

ducted in a channel of matched refractive index as the working fluid – mineral oil.  The 

porous media models were made up of square arrays of circular rods installed on the bot-

tom wall of the channel with the axes of the rods parallel to the wall-normal direction.  



2.3 Flow over Porous Media  53 

 

 

Solid volume fractions of 0.01<   < 0.49 and filling fractions of 0.28 and 0.56 were 

achieved.  Reynolds number effects were also tested.  The dimensionless parameter Us 

/        for h / H = 28% and 56% filling fractions was found to be 1 and 2 respectively, 

and Reynolds number effects were negligible on the dimensionless velocity.  The study 

also showed that penetration of the open flow into the porous medium is significantly 

higher than prior results obtained for the shear ‘cross-flow’ configuration.  The transition 

layer within the porous medium was found to exceed the screening distance k, and it de-

creased with increasing  but increased with the depth of the porous medium.  Some defi-

ciencies of this work is that no interfacial boundary condition was suggested, nor was 

there any provision of substantive information about the slip coefficient, or of the empiri-

cal coefficients in the boundary conditions suggested in Equations (2.13) and (2.15).   

In a more recent effort, Arthur et al. (2009) performed experiments using an experi-

mental set-up similar to that used by Agelinchaab et al. (2006).  Their models were also 

three dimensional, arrayed in the same way as Agelinchaab et al. (2006), so that the solid 

volume fraction , ranged from 0.01 to 0.49.  However in this case, the models were in-

stalled so as to study three boundary conditions of porous media flow.  In the first bound-

ary condition, the model porous medium was mounted on the bottom wall so that there 

was a free flow over it.  In other boundary conditions, model porous media were installed 

on both walls of the channel with and without an intervening space for free flow respec-

tively.  A planar PIV was used to obtain detailed velocity, using water as the working 

fluid.  They reported that the slip velocity reduced with permeability, and that in the other 

boundary conditions in particular, flow communication between the porous media was af-

fected by the combinations of  used.  Like Agelinchaab et al. (2006), Arthur et al. 
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(2009) did not propose any new interfacial boundary condition.  Furthermore, they did 

not provide area averaged measurements to properly compare results with other boundary 

conditions proposed in the literature.  However, their work provided further indications 

that the flow phenomenon at the interface of porous media and free flow are indeed com-

plicated and need further research.  

Using an experimental set-up similar to Goharzadeh et al. (2005), Morad and Khalili 

(2009) studied the transition layer flow inside a porous media of multi-sized spherical 

beds for which there is an overlying parallel pressure-driven free flow.  The porous me-

dium filled half of the total depth of the section.  The range of permeability of porous 

media was 0.007 mm
2
 to 0.038 mm

2
.  Morad and Khalili (2009) concluded that the ratio 

of the transition layer within the porous medium to the square root of the permeability is 

29.3 and therefore of the order the characteristic diameter of the porous medium.  Fur-

thermore, by assuming a weak jump in the velocity gradient, they showed that their tran-

sition layer velocity data could be fitted to an exponential function with a depth-

dependent coefficient.  Although this work provided more information regarding the size 

of the transition layer, it is unclear as to whether conclusions were derived from a consid-

eration of the average flow, which is the data of interest in porous media studies.  More-

over, their results are limited to glass beads and inertial effects were not explored.   
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2.3.4 Summary of Reviewed Literature of Flow over Porous Media 

From the foregoing, the following summarizes observations from the literature, as further 

demonstrated in Tables 2.3 – 2.5:  

(a) Much work has been focussed on flow over porous media (Table 2.3).  The contribu-

tions that have been made may be generally classified into the Brinkman (as summarized 

in Table 2.4), and the boundary condition groups (as summarized in Table 2.5).  Nonethe-

less, the theoretical and numerical studies are larger (more than twice more) than the ex-

perimental works. 

(b) There have been a number of experimental studies that provide velocity measure-

ments of flow over porous media.  However, as indicated in Table 2.3, these appear to be 

limited to flows in which inertia is not a factor. Indeed, there are few reports in the litera-

ture that cover flows through and over porous media where inertia is a factor, but these 

are numerical / theoretical works (Sahraoui and Kaviany 1992; Ochoa-Tapia and 

Whitaker 1998; Hsu and Chang 1990).  There is therefore a clear requirement for experi-

mental data that would cover this inertial range.   

(c) While there have been some boundary conditions proposed based on empirical obser-

vations (as laid out in Table 2.5), many more are theoretical derivations.  Generally, these 

boundary conditions are either drawn from analysis without firm experimental confirma-

tion, or laden with coefficients that need experimental determination (which are lacking).  

As a result the flow at the interfacial region is not properly modeled. 

(d) None of the experimental works using arrays of rods as model porous media utilized 

any other porous media rod arrangement.  Neither did any provide any formulation to 

solve the boundary condition problem at the interface of porous media and free flow.  
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There is therefore need for work to be done to ascertain the proper boundary conditions 

that apply at the interface. 
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Table 2.3: Summary of flow over porous media studies. 

Focus of Research Study Pertinent Studies Reviewed 

Investigation 

Type 

Experimental Beavers and Joseph (1967), Taylor (1971), 

Beavers et al (1974), Gupte and Advani (1997), 

Tachie et al (2003, 2004), Goharzadeh et al. 

(2005); Agelinchaab et al. (2006), Arthur et al. 

(2009); Morad and Khalili (2009) 

Theoretical / 

Numerical 

Brinkman (1947), Richardson (1971), Saffman 

(1971), Koplik et al. (1983), Kim and Russel 

(1985), Larson and Higdon (1986, 1987) Vafai 

and Thiyagaraja (1987), Hsu and Chang (1990), 

Sahraoui and Kaviany (1992), Ochoa-Tapia and 

Whitaker (1995a,1995b, 1998), Kuznetsov 

(1996), James and Davis (2001), Deng and 

Martinez (2005); Davis and James (2003, 

2004), Goyeau et al. (2003), Chandesris and 

Jamet (2006, 2007, 2009); Valdès-Parada et al. 

2007); Jamet and Chandesris (2009);  Nield and 

Kuznetsov (2009) 

Velocity Meas-

urements (Ex-

perimental) 

Global Beavers and Joseph (1967), Beavers et al 

(1974) 

Detailed LDA: Gupte and Advani (1997) 

PIV: Shams et al. (2003), Tachie et al. (2003, 

2004), Goharzadeh et al. (2005); Agelinchaab 

et al. (2006), Arthur et al. (2009); Morad and 

Khalili (2009) 

Dimensionality 

of Porous Me-

dium Flow  

One Dimen-

sion 

Pressure-Driven flow: Gupte and Advani 

(1997),  

Two Dimen-

sions 

Shear-Driven flow: Shams et al. 2003; Tachie 

et al (2003) 

Pressure-Driven flow: Shavit et al. (2004) 

Three Dimen-

sions 

Shear-Driven flow: Tachie et al. (2004),  

Pressure-Driven flow: Goharzadeh et al. (2005)  

Agelinchaab et al. (2006), Arthur et al. (2009); 

Morad and Khalili (2009) 

Flow with iner-

tial effects com-

prehensively 

considered 

Detailed Ex-

perimental 

Work 

None 

Theoretical / 

Numerical 

Sahraoui and Kaviany (1992), Ochoa-Tapia and 

Whitaker (1998), Hsu and Chang (1990) 
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Table 2.4: Summary of formulations for solving flow over porous media: the Brinkman 

contributions. 

Model Mathematical Formulation Comments 

Brinkman Equation 
 
   

  
        

 

 
       

Brinkman (1947)  

Generally acceptable for 

dilute solutions only ( < 

0.60); Has little experi-
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 Shavit et al. (2002, 2004) 

Applicable only for CTB 

configuration.  This has 

some experimental sup-

port Shavit et al. (2004) 

and Rosenzweig and 

Shavit (2007). 
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Table 2.5: Summary of formulations used for solving flow over porous media: the 

boundary condition contributions. 

 

References Velocity Velocity gradient Comments 

Beavers and Jo-

seph (1967) 
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2.4 Objectives and Methodology 

2.4.1 Objectives 

The present research program seeks to experimentally investigate pressure-driven laminar 

flows through and over porous media.  Due to a pressing need to study the onset of inertia 

in porous media flow, and to determine the requisite interfacial boundary conditions be-

tween porous media and an adjoining free flow, the following are the specific objectives 

of the present work: 

a) To conduct comprehensive experiments to characterize the effects of solid volume 

fraction, porous media rod shape, porous media rod arrangement, filling fraction (sepa-

rate and combined with the depth to porous medium pore ratio) porous medium dimen-

sionality, and Reynolds number on laminar flows through and over porous media flow.  

This should form a fundamental basis for further experimental, theoretical or numerical 

studies of more complicated cases of real porous media.  

b) To apply the benchmark experimental data to establish the governing equation that 

best describes the porous media flow when inertia sets in, and the conditions under which 

they hold. 

c) To employ averaged velocity measurements at the interface to verify or propose for-

mulations that may be used to describe the interfacial boundary conditions between a po-

rous medium and a free flow, and consequently, the flow at the interfacial transition 

layer.  
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2.4.2 Research Methodology and Measurement Techniques 

The above-mentioned goals are achieved by experimentation.  Regular arrays of rods are 

used to model real porous media.  Using such models is very helpful because of their 

relative simplicity and adaptability in theoretical, numerical, and experimental studies. 

Such models are also practical, as they simulate real cases such as banks of heat ex-

changer tubes, and provide valuable information of flow that may be applied in reservoir 

simulation.  

The effect of inertia will be studied by varying the Reynolds number so as to cover up 

to the Darcy regime and the transitional regime between the Darcy and Forchheimer re-

gimes.  Other flow factors to be varied are those identified through dimensional reasoning 

and observations made in the literature.  In this vein, other parameters considered in the 

experimental study include: 

i. The solid volume fraction of the model porous media.  In the present case, the 

solid volume fractions considered are 0.03, 0.06, 0.12, 0.22 and 0.49.  This range 

practically covers loosely packed and compact media for the experimental tech-

niques to be used; 

ii. The porous media rod shape, i.e., rods of circular and square cross-sections; 

iii. The mode of arrangement of porous media rods, i.e., in-line and staggered arrays;  

iv. The separate and combined effects of the filling fraction (h / H) and the test sec-

tion depth to porous medium pore ratio (H / l).  The fraction h / H ranged from 

0.34 to 1, and H / l from 5.75 to 18.25.  

v. The porous media dimensionality, determined in this case by the axial orientation 

of the rods used in the arrays; 
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With the development of technology, there has been an increasing demand to conduct 

more porous media experiments which capture multi-dimensional flow quantities, as op-

posed to mere global quantities.  Accordingly, there have been many advances in measur-

ing velocity in multi-dimensions.  As pointed out by Arthur et al. (2009), several pore-

scaled experimental studies of flow through porous media have been conducted in the 

past using various non-intrusive measurement techniques.  Amongst the available tech-

niques, the particle image velocimetry (PIV) technique stands out as one of the most ap-

propriate.  The PIV allows for the instantaneous whole flow-field measurement of pore-

scale two- and three-dimensional velocities from which averages of flow quantities can 

be obtained. 

Using a high resolution PIV technique, detailed velocity measurements are conducted 

both within the porous medium and the plain medium, as well as at the porous – free me-

dia interface.  To capture the variations of velocities in all directions various planes are 

measured along various sections along the span of the test section.  The velocities are av-

eraged spatially.  In addition to the velocity measurements, differential pressure meas-

urements are obtained using pressure-measurement gauges and transducers where possi-

ble, as also used in previous works (e.g. Zhong, Currie and James 2006).  The refined 

pressure and velocity datasets are then analysed and presented to provide a complete set 

of experimental data to characterize the flow through the model porous media, and to de-

scribe the interfacial boundary conditions.  
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Chapter 3 

Experimental Apparatus and Measurement 

Procedure  

3.1 Overview  

This chapter describes the test channel, porous media models, velocity and pressure 

measurement set-ups, as well as the general experimental rig.  This is followed by an ac-

count of how certain preliminary measurement concerns were resolved, quantification of 

measurement uncertainty, general measurement procedures, and test conditions. 

 

3.2 Experimental Apparatus 

3.2.1 Test Channel and Accessories 

The experiments were conducted in a transparent acrylic channel of length L = 500 mm, 

span W = 115.5 mm and a variable depth H, as shown in Figure 3.1.  The channel [Figure 

3.1(a)] was constructed from a transparent 25 mm thick acrylic sheet of refractive index 

(RI) 1.47, so as to allow optical access.  It was designed so as to allow flow to pass into it 

through a central entry hole at the upstream end, then through a 200 mm section reserved 
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for flow conditioning, and finally through a 300 mm test section, before exiting through 

another central hole at the downstream end.  As shown in Figure 3.1(b), the flow condi-

tioning section was made up of a square cross-sectioned insert assembly in which half of 

the assembly was packed with rods and separated from the other unfilled half by a perfo-

rated acrylic sheet.  The purpose of the flow conditioning section was to ensure that the 

flow that entered the measurement section was reasonably uniform.  Both entry and exit 

holes are of 25 mm diameter, and each of the 300 mm × H faces of the channel at the test 

section were reserved for either velocity or pressure measurements.  The pressure test 

side of the test section (shown in Figure 3.1c) was arrayed with pressure tap holes of 3.18 

mm diameter.  

3.2.2 Porous Media Models 

Three types of model porous media were used in the experiments.  For clarity and con-

venience, these model types will hereafter be referred to as ‘horizontal’, ‘vertical’ and 

‘mesh’ models.  They are schematized in Figures 3.2 and 3.3.  The horizontal models 

were composed either of circular (round) or square rods arrayed in a staggered or non-

staggered fashion.  All other models (i.e. vertical and mesh models) were composed only 

of circular rods in non-staggered arrays.  For clarity and simplicity, the horizontal models 

in particular are hereafter referred to as ‘round non-staggered horizontal’, ‘round stag-

gered horizontal’, or ‘square non-staggered horizontal’ models, depending on the particu-

lar type of rods or arrays used.  All other models are simply called ‘vertical’ or ‘mesh’ 

models because all of them are of circular rods in non-staggered arrays.  A summary of 

the porous media models used in the experiments is presented in Tables 3.1 and 3.2. 
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

 

 

 

Figure 3.1: (a) A schematic of the test channel; (b) the flow conditioner;  (c) the pressure 

measurement face of the test channel;  The shaded section is to distinguish the flow con-

ditioning section from the measurement section. All numeric dimensions are internal and 

are in millimetres. These are not drawn to scale. 
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(a)  

 

 

 

 

(b) 

 

 

 

 

Figure 3.2: Horizontal models in: (a) front section showing non-staggered array (b) front 

section showing staggered array. 

 

Each of the porous media models was constructed from acrylic rods of RI 1.47, as well as 

two side plates and one lower acrylic plate of RI, 1.47.  As shown in Figure 3.2(a), for the 

non-staggered horizontal model, corresponding holes were drilled through the side plates 

in a square array, so that when installed, the axes of the circular or square rods were 

aligned along the span of the test channel.  On the other hand, the staggered horizontal 
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models were constructed with holes arrayed as shown in Figure 3.2(b) so that alternate 

rows of rods were staggered by a distance of l/2 along the stream.   

 

(a)   

 

 

 

(b)  

 

 

 

Figure 3.3:  Front section of (a) vertical model, and (b) mesh model.  The coordinate di-

rections used in the experiments are shown.  In this drawing, all numeric dimensions are 

in millimetres. 
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Table 3.1:  Summary of geometrical dimensions of horizontal model.

 

 

Model  ϕ s or d 

(mm) 

l 

(mm) 

h 

(mm) 

H 

(mm) 

h / H H / l 

Round non-staggered 

horizontal 

 

 

 

 

 

 

 

 

0.06 3.18 12 83.0 83.0 1.00 6.92 

0.12 3.18 8 83.0 83.0 1.00 10.38 

0.22 3.18 6 83.0 83.0 1.00 13.83 

0.06 3.18 12 82.1 109.5 0.75 9.13 

0.12 3.18 8 82.1 109.5 0.75 13.69 

0.22 3.18 6 82.1 109.5 0.75 18.25 

0.49 4.76 6 82.1 109.5 0.75 18.25 

0.12 3.18 8 34.0 46.0 0.74 5.75 

0.22 3.18 6 34.0 46.0 0.74 7.67 

0.49 4.76 6 34.0 46.0 0.74 7.67 

 0.12 3.18 8 54.8 109.5 0.50 13.69 

 0.06 3.18 12 27.2 54.6 0.50 4.55 

 0.12 3.18 8 27.2 54.6 0.50 6.83 

 0.22 3.18 6 27.2 54.6 0.50 9.10 

 0.12 3.18 8 13.9 41.3 0.34 5.16 

Round staggered hori-

zontal 

0.12 3.18 8 82.1 109.5 0.75 13.69 

0.12 3.18 8 54.8 109.5 0.50 13.69 

Square non-staggered 

horizontal 

0.12 3.18 8 82.1 109.5 0.75 13.69 

0.12 3.18 8 27.2 54.6 0.50 6.83 
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Table 3.2:  Summary of geometrical dimensions of vertical and mesh models 

For the vertical model, holes were drilled through the lower plate of the model in a 

square array, so that the axes of installed circular rods were aligned in the transverse di-

rection, as shown in Figure 3.3(a).  The mesh model is schematically shown in Figure 

3.3(b).  This may be seen as a hybrid of the horizontal and vertical models.  Here, some 

of the circular rods were held by the two side plates (as in the horizontal models), and 

some were inserted into the lower plate (as in the vertical models) in a regularly alter-

nating manner, but in a cubic array.   

Model  ϕ s or d 

(mm) 

l 

(mm) 

h 

(mm) 

H 

(mm) 

h / H H / l 

Vertical 

 

0.03 3.18 16 34.0 46.0 0.74 2.88 

0.06 3.18 12 34.0 46.0 0.74 3.83 

0.12 3.18 8 34.0 46.0 0.74 5.75 

0.12 3.18 8 54.2 73.0 0.74 13.83 

0.12 3.18 8 34.0 61.0 0.56 13.83 

 0.12 3.18 8 34.0 73.0 0.47 10.38 

Mesh 0.06 3.18 12 83.0 83.0 1.00 6.92 

0.12 3.18 8 83.0 83.0 1.00 10.38 

0.22 3.18 6 83.0 83.0 1.00 13.83 

0.12 3.18 8 34.0 46.0 0.74 5.75 

0.22 3.18 6 34.0 46.0 0.74 7.67 

0.49 4.76 6 34.0 46.0 0.74 7.67 
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For models of circular rod of diameter d or square rods of side s, and solid volume 

fraction , rods were spaced at a distance l determined from the relations:  

l = d/2√(π/)                         (3.1) 

l = s/√                            (3.2) 

Circular rods used were of diameter d = 3.18 mm and 4.76 mm and inter-rod spacing of 

l = 6 mm, 8 mm, 12 mm and 16 mm, while square rods of side 3.18 mm and inter-rod 

spacing  l = 9 mm were used.  The rods were arrayed so as to cover solid volume frac-

tions within the range 0.03 < < 0.49.  The vertical models were of solid volume frac-

tion = 0.03, 0.06, and 0.12, whereas each of the horizontal and mesh models were of 

the range 0.06 < < 0.49.  These values were selected because they cover the entire 

range of solid volume of fibrous and porous media for which the models and the meas-

urement technique could be practically utilized. 

In a complete assembly, each porous medium model consisted of three plates 

screwed together to form a box of length 300 mm, and span 109.5 mm.  Each model 

was designed to hold a minimum of 10 rows of rods.  Each of the models consisted of 

rods that cover the entire span of the models.  Filling fractions were obtained by vary-

ing the depth of the porous medium h, and the channel depth H.  Variation of H was 

made possible by filling the bottom wall of the models with acrylic sheets.  The depth 

of the porous medium was also varied by filling the porous media to required depths (in 

the case of horizontal models and mesh models), or using various lengths of the rods (as 

in the vertical and mesh models).  The maximum relative standard deviation of the rod 

heights is estimated to be 1%.  As indicated in Table 3.1, in one set of models, horizon-
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tal porous media were made to fill the test section of depth H = 83.0 mm.  Four filling 

fractions, h / H = 0.75, 0.74, 0.50 and 0.34 were also obtained in the horizontal models 

by respective combinations of H = 109.5 mm and h = 82.1 mm; H = 46.0 mm and h = 

34.0 mm; H = 109.5 mm and h = 54.8 mm; and H = 41.3 mm and h = 13.9 mm.  Fur-

thermore, with H = 54.6 mm and h = 27.2 mm, an additional model of filling fractions 

of h / H = 0.50 was achieved.  As summarized in Table 3.2, for the vertical models, 

with mean depths of H = 46.0 mm and h = 34.0 mm, H = 61.0 and h = 34.0 mm, and H 

=73.0 mm and h = 34.0 mm, filling fractions, h / H of 0.74, 0.56 and 0.47 were respec-

tively attained.  An additional vertical model of h / H = 0.74 was obtained from mean 

depths of H =73.0 mm and h = 54.2 mm.  For the mesh models, one set of models was 

made to fill the test section of mean depth H = 83.0 mm.  Furthermore, with mean 

depths of H = 46.0 mm and h = 34.0 mm a filling fraction, h/H of 0.74 was achieved 

for another set of models.  Each of the porous media models was tested by placing them 

into the section of the test channel reserved for measurement as typified in Figure 3.4.   

 

 

 

 

 

Figure 3.4: A schematic three dimensional view of the test channel with a test round 

non-staggered horizontal model installed in the channel.  The coordinate directions used 

in the experiments are shown. 
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3.2.3 The PIV System and Arrangement 

A planar particle image velocimetry (PIV) system was used in the velocity data acquisi-

tion.  The reader is referred to Appendix A for a more detailed description of the PIV 

system and technique.  The typical hardware for the PIV system is schematized in Fig-

ure 3.5.  In general, the components of the system used are as follows: 

a) A laser generator providing a Nd-YAG, 120 mJ / pulse laser at 532 nm wavelength 

of light to illuminate the flow.  Connected to this generator was a set of cylindrical lens 

used to convert the laser light into a thin sheet. 

b) A C–mount 58 mm – 62 mm diameter EX Sigma lens, and a Nikon lens, equipped 

with a band-pass filter.  These lenses were fitted to a Dantec Dynamic HiSense 4M 

digital camera that used a charge coupled device (CCD) of 2048 pixel   2048 pixel 

chip and pitch 7.4 μm.  The camera was used to capture images of the flow section. 

c) A hub provided an interconnection and synchronization for the laser, camera, and 

the computer.  This hub also served as a medium for transferring captured images onto 

the computer. 

d) Dantec Dynamic DynamicStudio v.2.30 commercial software was installed on the 

hard-drive of a 3.0 GHz Pentium 4 computer.  This software was used to operate the 

PIV system, and to process the data that was acquired. 

The working fluid was a Cargille Immersion liquid (Code 5040) of kinematic vis-

cosity  = 20 × 10
-6

 m
2
/s (at 25

o
C), density  = 848 kg/m

3
 and RI = 1.47.  This fluid 

was specially synthesized in order to match the refractive indices of the acrylic materi-

als of the test channel and porous media models.  The fluid was seeded with silver-
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coated hollow glass spheres of mean diameter 10m and specific gravity 1.4.  These 

particles were chosen because they are sufficiently large to scatter light detectable by 

the recording medium.  Based on the working fluid and seeding particles, the particle 

settling velocity and response time were estimated to be 1.77μm/s and 7.98 ps, respec-

tively (The formulas for calculating the particle settling velocity and response time are 

provided in Appendix A).  As these values are very small compared with the typical ve-

locity and time scales used in the experiment, the particles were considered to follow 

the fluid faithfully. 

Nd:YAG  Laser

CCD 

camera

hub

Laser

generator

Computer 

 

Figure 3.5:  Schematic of hardware components of a typical PIV system. 
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3.2.4 The Pressure System 

Differential pressure measurements were made consecutively using two 4000 Series 

Capsuhelic pressure gauges, rated to measure pressures ranging from 0 to 0.5 and 0 to 1 

inches of water respectively.  These measurement devices were connected to the pres-

sure ports on one side of the test channel by a system of tubes, brass quick disconnect 

fixtures, and other accessory connectors.  A DTD+ electronic transducer rated to meas-

ure 0 to 1 inches of water was also used.  This transducer was connected to a digital 

Model Pax read-out meter and a personal computer to display the measurements. 

3.2.5 Arrangement of Test Facility 

Figures 3.6 and 3.7 show the arrangement and connections of the porous media test fa-

cility.  As indicated, the test facility was made up of the test channel, a 1 L acrylic res-

ervoir, a single speed centrifugal pump, two piston–spring loaded flow meters (so as to 

cover the wide range of flow rates to be tested), interconnecting hoses, tubing, and 

valves.  Other important components of the facility are sets of acrylic models (which 

were placed inside the tank to simulate various flow conditions), collecting trays 

(placed at various points to collect any leakages), and miscellaneous containers to store 

drained or dripping fluid.  The test channel was seated in a set of metered acrylic plates 

so that the tank could be moved in the streamwise and lateral directions.  The channel 

and the metered plates were both placed on a black PVC panel, and supported on a 

structural frame at about 1 meter height from the ground.  The laser and the camera 

were arranged so that they could be traversed along the frame mechanism in a parallel 
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plane.  The camera in particular was fixed onto an x-y translation stage having a least 

count of 0.5 mm, while the test channel was also held in an x-z stage also with a least 

count of 0.5 mm.   

 

 

 

 

 

 

Figure 3.6:  Porous media test facility. 
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Figure 3.7:  A picture showing the rear end of the test channel fitted with pressure port 

connectors.  

 

3.3 Measurement Procedure 

The Cargille immersion fluid, seeded with silver-coated hollow glass spheres, was con-

ducted through the flow system as indicated in the circuit in Figure 3.8.  The seeded 

fluid was pumped from the reservoir through a needle valve located downstream of a 

bypass.  It was then passed through the piston flow meter(s), then through needle 

valve(s) into the test channel, and recirculated back to the reservoir.  The needle valves 

served to regulate various flow rate levels required for specific test conditions.  Differ-

ent test conditions were achieved by inserting models into the measurement section of 

the test channel. 
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Figure 3.8: Schematic diagram of the flow circuit. 

 

3.3.1 Velocity Measurements 

As schematized in Figure 3.9, the PIV measurements were performed in the streamwise 

–transverse plane along the test channel.  Before these velocity measurements were 

made, the PIV system was calibrated to establish a scale factor between the real-time 

displacement of the flow displacements (in physical units) and the pixel displacements 

(in pixel units).  This was done by the use of a metallic rule fixed onto a try-square at 
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the measurement section of the channel within the still fluid.  A fine focus of the 

graduations of the ruler was reached by careful adjustments of the camera lens.  The re-

quired scale factor was then obtained through the use of the Dantec Dynamic Dynam-

icStudio v.2.30 software.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9  A schematic diagram of a typical PIV arrangement with test channel and a 

porous medium model. 

 

 

A number of precautions were taken to optimize the PIV measurements.  Optimum 

background contrast and resolution were kept by using requisite camera focal lengths.  

By ensuring that particle image diameters were of 2.3 pixels (which is close to 2 pixels 
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as recommended by Raffel et al. 2007), errors due to peak-locking were kept minimal.  

Histograms of the typical instantaneous images (provided in Appendix A) confirm this.  

In order to ensure a good signal to noise ratio, images were acquired using laser pulses, 

timed in such a way that the particle displacement in an interrogation area (IA) was less 

than a quarter of the side of the IA (Prasad 2000).  In the present experiments, using a 

typical interrogation window of 32 pixels by 32 pixels, and a sub-pixel accuracy of 0.1 

(Scarano and Riethmuller 1999), the dynamic range is estimated to be 80.  It is further 

noted that by choosing requisite time pulses between laser illuminations, the ratio of the 

displacement field variation to the root mean square of the pixel size and particle image 

diameter was kept far less than 1.  This was done to keep velocity gradient bias errors 

associated with the potentially large mean velocity gradients near the porous medium–

free zone interface, negligible.   

The best vector correlations of images were obtained by post-processing captured 

images using the adaptive-correlation option of Dantec’s Dynamic DynamicStudio 

v.2.30 software.  It is important to note that the adaptive-correlation option utilizes a 

multi-pass fast Fourier transform cross-correlation algorithm to compute the mean dis-

placements of particles within an IA for a period of laser exposure.  In connection with 

this, a Gaussian window function of width 0.1 pixels, and a low-pass Gaussian output 

filter of width 1.8 pixels were respectively used as an input filter and as a filter on the 

correlation plane prior to peak detection.  Furthermore, two steps of correlation proc-

esses were used to ensure that ample valid vectors were obtained.  Two iterations were 

performed at the first step, and then one more followed at the final step.  In all of these 

iterations, the acceptance factor used was 0.05.   
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Extensive velocity measurements were conducted at various sections of the x-y plane 

for various test conditions.  Because the thickness of the sheet of laser light illuminating 

the flow section was approximately 1.5 mm, channel movements along the streamwise-

spanwise plane were done in intervals of 2 mm in order to capture the spanwise varia-

tions in velocity typically over 2 unit cells of the model porous media.   

As mentioned in Chapter 1, in this work, all microscopic quantities are denominated 

by italicized lower case letters, and their corresponding averaged quantities by italicized 

upper case letters.  For the Cartesian frame of reference used, the components of the 

microscopic velocity in the streamwise (x), transverse (y) and spanwise (z) directions 

are designated respectively by u, v, and w.  Similarly, averaged velocities in the x, y and 

z directions are signified respectively by U, V, and W.   

To study the variation of the averaged streamwise velocities between rod centers 

along the transverse direction of horizontal models in particular, a line averaging 

scheme was used.  In this scheme, averages were computed along line y = c at a particu-

lar z plane.  Thus, the line averaged streamwise velocity was typically calculated as,  

  = 
 

 
         
 

 
                       (3.3)  

and the line averaged transverse velocity, similarly as,  

  = 
 

 
         
 

 
                            (3.4)  

Additionally, area averaged streamwise and transverse velocities were respectively ob-

tained from averaging microscopic velocities between adjacent rods of spacing l in the 

following manner 



3.3 Measurement Procedure  81 

 

 

    = 
 

  
        

 

 

 

 
                   (3.5) 

     = 
 

  
        

 

 

 

 
                    (3.6) 

Volume averaged streamwise and transverse velocities were also computed as follows 
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3.3.2 Differential Pressure Measurement 

Differential pressure measurements were obtained concurrently with the velocity meas-

urements.  This was done using pressure gauges or an electronic transducer connected 

to the flow at the time of testing, and recording the two measurements at the same con-

dition.  Each of these differential pressure measuring instruments was calibrated under 

standard conditions prior to measurements.  Due to the high sensitivity of these instru-

ments, they were connected and installed so that the potential for any clogging of the 

unit by seeding particles was kept minimal.  To do this, filters were installed between 

the connections at the channel, and those at the instruments.  The pressure measurement 

instruments were also located at areas isolated from vibrations.  Further precautions 

were taken to ensure that bubbles in the tapping lines were bled off.  To optimise the 

dynamic response of the instruments, the pressure lines were generally short, and of in-

ternal diameters of the order of 3 mm.   

The differential pressure values measured by the gauges were read off in such a way 

that errors due to parallax were minimal.  The least count of the gauges were respec-
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tively 0.05 and 0.1 inches of water, for the 0 – 0.5 and 0 – 1 inches of water ranged 

4000 Series Capsuhelic gauges.  The least count of the DTD+ electronic transducer was 

0.0002 inches of water.  Measurements with this transducer were recorded from the 

digital displays on a meter receiving signals transmitted from the transducer.  By con-

necting the meter to a personal computer, differential pressure data could be obtained as 

a function of time.  The differential pressure measurements were therefore computed 

from an average of the pressure differences recorded for each round of measurement.  

Most of the pressure measurements were done with the electronic transducer.  This is 

because its precision was better, compared with the gauges.   

 

3.4 Preliminary Checks 

A number of experiments were carried out to: determine the sample size required to at-

tain statistical convergence of velocity data, ascertain the accuracy of the velocity data, 

optimise the resolution of velocity measurements, verify the dimensionality of the hori-

zontal porous media models, verify the pressure accuracy of pressure measurements, 

check the entrance effects and the development of flow through models, and to estimate 

measurement uncertainties. 

 

3.4.1 Sample Size Determination of PIV Measurements 

To assess the sample size N, necessary to achieve statistical convergence, measure-

ments of u and v were made for flow through and over various porous media models.  
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In Figure 3.10, the flow through horizontal model of  = 0.22 is shown, because that 

gives a representative view of the statistical convergence in a test section where veloc-

ity scatter is expected to be high.  Various sample sizes were used.  From Figure 3.10, it 

is clear that the u profiles were indeed independent of the sample size.  A minimum 

sample size of N = 30 images was used in subsequent measurements.   
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Figure 3. 10:  Convergence test using ensemble-averaged streamwise (u) measurements 

of flow through 0.22 solid volume fraction horizontal model, and at z = 0.  This result 

was extracted at x/l = 6.5. 

3.4.2 Accuracy of Velocity Data 

To establish the accuracy of the PIV velocities, fully developed velocity profiles ob-

tained for a plane laminar channel flow in the test section were compared with analyti-

cally derived results.  In the plots, the velocity u was normalized by the corresponding 

local maximum velocity, umax whilst the transverse distance was normalized by the 
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depth of the channel flow, H.  As observed in Figure 3.11 the measured profiles are in 

good agreement with the analytical profile.   
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Figure 3. 11:  Verifying velocity measurements using fully developed channel flow u 

profiles taken at z = 0.    

3.4.3 Optimisation of PIV Measurements 

PIV provides velocity over a finite IA.  Previous works (e.g. Agelinchaab et al. 2006; 

Morad and Khalili 2009) shows that the transition layer thickness between the interface 

and the region further into the porous medium could range from a fraction to about two 

times the square root of the specific permeability of the porous medium.  This thickness 

spans over the size of typical interrogation windows used in previous works (e.g. Shams 

et al. 2003; Goharzadeh et al. 2005).  Thus, it was necessary to determine the best spa-

tial resolution that could be used to optimize the quality of interfacial velocity and shear 

rate data obtained with the PIV measurement technique.  To this end, an exploratory 

preliminary experiment was undertaken for this purpose.   
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As summarized in Table 3.3, various fields of view, IAs, and overlaps of PIV meas-

urements were tested (following precautions that ensured reduced peak-locking, and a 

good signal to noise ratio as discussed in section 3.3.1) in order to determine that which 

would produce a highly resolved velocity field while capturing a substantial range of 

depth of flow.  Averaged values of the slip velocity and shear rate at the interface were 

subsequently compared.   

 

Table 3.3:  Summary of fields of view and IA sizes explored in preliminary experi-

ments. 

Camera Lens Field of View 

(mm) 

Interrogation Window 

for 32 × 32 pixels (mm) 

Nikon 

 

55.65 

39.84 

0.84 

0.62 

EX-Sigma 

 

102.23 

56.58 

27.60 

22.58 

1.60 

0.88 

0.42 

0.35 

 For IAs < 0.42mm × 0.42 mm 

using field of view = 27.60 mm 

 

IA in pixels: pixels       

× pixels × overlap 

IA in mm (lx × ly ) IA in pixels: pixels × pixels 

× overlap 

16 × 16 × 50 0.11 × 0.11 16 × 16 × 50 

16 × 16 × 75 0.05 × 0.05 16 × 16 × 75 

32 × 16 × 50 0.21 × 0.11 32 × 16 × 50 

32 × 32 × 50 0.21 × 0.21 32 × 32 × 50 

32 × 32 × 75 0.11 × 0.11 32 × 32 × 75 

64 × 64 × 50 0.42 × 0.42 64 × 64 × 50 

64 × 64 × 75 0.21 × 0.21 64 × 64 × 75 
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In a typical first test run on a round non-staggered horizontal model sample, PIV IAs 

of 0.84 mm × 0.84 mm, 0.62 mm × 0.62 mm, and 0.35 mm × 0.35 mm, obtained from 

processing data with 32 pixels × 32 pixels IA with 50% overlap were explored.  Aver-

aged values of the slip velocity and shear rate at the interface were subsequently com-

pared.  In a typical test run on a horizontal model sample, it was observed that slip ve-

locities decreased with increasing sizes of the IA sides such that the slip velocity of the 

0.84 mm × 0.84 mm and 0.62 mm × 0.62 mm IAs were respectively ~50% and 10% 

less that of the 0.35 mm × 0.35 mm measurement.  The interfacial shear rate values also 

decreased with increasing size of the IA side, such that the value obtained for the 0.84 

mm × 0.84 mm and 0.62 mm × 0.62 mm IAs were respectively ~85% and 12% less 

than that of the 0.35 mm × 0.35mm measurements.  While the deviations in measure-

ment between the 0.62 mm × 0.62 mm and 0.35 mm × 0.35 mm IAs are well within 

those that may be attained within the IA sides of the respective measurement, the devia-

tions between 0.84 mm × 0.84 mm and 0.35 mm × 0.35 mm are significantly higher.  

Subsequently, further tests were run to investigate the effect of IAs and overlaps focus-

sing on the range 0.05 mm
2
 < IAs < 0.42 mm

2
 measurements only.  Velocity measure-

ments were thus made following precautions (as discussed in section 3.3.1) that ensured 

reduced peak-locking, and a good signal to noise ratio.  Regarding seeding density, the 

average number of particles ranged from 6 (in 16 pixels × 16 pixels) to 60 (in 64 pixels 

× 64 pixels).  The data were then processed with three kinds of IA pixel sizes (that is, 

16, 32 and 64 pixels) and two different IA overlaps (that is 50% and 75%.  It should be 

noted that overlapping IA does not improve spatial resolution).  By doing this, the ef-

fects of IA and overlaps on velocity measurements were investigated for IA sides rang-
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ing from 0.05 mm to 0.42 mm as summarized in Table 3.3.  In the table, lx represents 

the length of the IA in the streamwise direction, while ly stands for the length of the IA 

in the transverse direction.   

Sample results of velocity measurements are presented in Figure 3.12 using a round 

non-staggered horizontal model of solid volume fraction 0.12 and filling fraction 0.50 

as a typical case study to show the effect of varying PIV interrogation area sizes and 

overlaps on the flow measurements, for 0.05 mm
2
 < IAs < 0.42 mm

2
.  As shown in Fig-

ure 3.12, for 0.05 mm
2
 < IAs < 0.42 mm

2
 all the results collapse, and the interfacial 

quantities are equivalent.  It may be observed that there is little scatter from measure-

ments within the porous medium.  This scatter may be partly due to the relatively low 

velocities measured.  This scatter however does not affect the interfacial flow.  

Based on the above-mentioned results, subsequent tests were done with a 58 mm – 

62 mm diameter EX Sigma lens on the camera using a field of view of 27 mm per side 

so that the scale factor was typically 1.8.  The resultant spatial resolution was about 

0.42 mm when the velocity data was processed using an interrogation window of size 

32 pixels by 32 pixels.  By maintaining an overlap of 50% between neighbouring inter-

rogation areas during the processing of data, additional vectors were provided so that 

the distance between neighbouring vectors was ~ 0.21 mm.   

 



3.4 Preliminary Checks  88 

 

 

0.000 0.002 0.004 0.006 0.008 0.010 0.012
-0.20

-0.15

-0.10

-0.05

0.00

0.05

 

 

 16 x 16 x 50%

 16 x 16 x 75%

 32 x 16 x 50%

 32 x 32 x 50%

 32 x 32 x 75%

 64 x 64 x 50%

 64 x 64 x 75%

y / H

u (mm/s) 
 

Figure 3. 12:  Ensemble-average streamwise velocity distributions of a flow through 

and over round non-staggered horizontal model sample extracted at x / l ~ 4.5 to study 

the effects of IA sizes and overlaps.  The interface is marked by the dashed line. 

 

3.4.4 Dimensionality of Horizontal Porous Media Models 

Various porous media models were extensively tested to determine the variation of flow 

along the span.  It was observed that at least within -15 mm < z < 15 mm (which is 

greater than twice the size of a unit cell for the smallest solid volume fraction, ), the 

flow variation along the span was negligible.  Figure 3.13 shows typical results in 

which measurements made at various z planes for microscopic flow through and over 

horizontal porous media non-staggered and staggered models of  = 0.06, and 0.12 re-

spectively are compared.  The results demonstrate that within limits of uncertainty, this 
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two dimensional flow assumption holds within the range of spanwise distance covered.  

Due to the two-dimensional nature of the horizontal porous medium and interfacial mi-

croscopic flows, it was not necessary to take velocity measurements along multiple sec-

tions in the spanwise direction.  Succeeding measurements were therefore mainly con-

ducted in the z = 0 plane.   
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Figure 3.13:  (a) Measurements in non-staggered test model of  = 0.06 at x/l = 4.5 are 

shown; and in (b) are measurements in test model of staggered array of rods of  = 0.12 

at x/l = 7 showing that at least within -15 mm< z < 15 mm, the flow variation was neg-

ligible for flow within the porous medium and near the interface.   
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3.4.5 Flow Development in Porous Media and Entrance Effects 

Previous works in the literature have demonstrated that after a number of rows of rods, 

the flow through the porous medium becomes periodic or fully developed (Agelinchaab 

et al. 2006; Arthur 2008).  To determine this region of periodicity, measurements were 

made in the x-y plane at z = 0, and line averaged velocity measurement were extracted.  

Figure 3.14 (a) shows a sample result, using profiles of 0.06 solid volume fraction non-

staggered horizontal models of 0.75 filling fraction.  The results indicate that the flow 

generally became periodic at x / l > 3 (that is, from the 4
th

 row onwards).  All subse-

quent measurements were taken at x / l > 3 in order to ensure that results were within 

the region of periodicity.  
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Figure 3. 14:  Sample results of data measurements of tests with non-staggered horizon-

tal test model of  = 0.06 taken at z = 0 and extracted at y / l = −1.6 to show flow perio-

dicity at x / l > 3.; (b) Corresponding points of flow are compared when the most up-

stream rods are located at x = 0 mm (i.e. results for x / l = 6.5) and x = 214 mm (i.e. re-

sults for x / l = 33.3) to determine the entrance effects on flow. 
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As pointed out in Section 3.2, the flow at x = 0 was expected to be reasonably uni-

form, but not necessarily fully developed.  However, previous measurements of flow 

through and over porous media have been mainly done at locations where the corre-

sponding empty channel flow was fully developed.  It was therefore necessary to check 

whether the state of the flow at the entrance will have any significant effect on the flow 

within and over the porous media.  To do this, measurements were made for flow 

through and over vertical porous media models of  = 0.12 when the models were con-

secutively placed at points in the measurement section for which the most upstream 

rods were respectively x = 0 and 214 mm.  Results presented in Figure 3.14(b) show 

that entrance effects do not have significant effect on the flow through and over the po-

rous medium at the periodic region. The velocity Ubulk is the streamwise bulk velocity, 

and it was calculated as follows: 

      
 

 
         
 

 
                      (3.9) 

 

3.4.6 Accuracy of Differential Pressure Data 

Further tests were carried out to ascertain the accuracy of the differential pressure 

measurements.  In this case, velocity measurements were made through a horizontal po-

rous medium of solid volume fraction 0.05, and of 100% filling fraction.  A 0.05 solid 

volume fraction horizontal porous medium model was used for this test because for 

such a low solid volume fraction, there are known results for the value of specific per-
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meability k.  For a porous medium of long circular cylinders with uniform radius r (= d 

/ 2), k is given by (Sangani and Acrivos 1982; Jackson and James 1986): 

 32

2
076.4774.12476.1ln

8

1





r

k
                   (3.10) 

This value can then be used to predict pressure drops for measured streamwise seepage 

velocities, Ud using Equation (1.2).  Velocity and pressure measurements were made, 

focussing the PIV measurements within the core of the porous medium.  For the hori-

zontal model used, the seepage velocity Ud was obtained from an area averaging of u in 

a unit cell of 4 rods.  Equation (3.3) was used to compute this average of various veloc-

ity measurements in the z = 0 plane for a given flow rate.  Differential pressure meas-

urements obtained were compared with predictions for the measured Ud using Equa-

tions (1.2) and (3.10) for characteristic Reynolds number Repart =        << 1 (i.e. in 

the Darcy regime).  As shown in Figure 3.15, the agreement between experiments and 

the previous results is reasonable within experimental uncertainty limits (These limits 

are given in the next section).  
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Figure 3. 15:  Verifying accuracy pressure measurements.  Agreement between present 

experiment and previous results by Sangani and Acrivos (1982) is reasonable within 

measurement uncertainties.  

 

3.4.7 Measurement Uncertainties 

A formal assessment of the measurement uncertainties was undertaken for velocity and 

pressure measurements, based on the methodology outlined by Coleman and Steele 

(1995) and Stern et al. (1999).  This assessment is detailed in Appendix B.  The uncer-

tainty in streamwise velocity u in the free zone is approximately 1% of the local maxi-

mum velocity, umax.  Within the porous medium, the uncertainty in u within porous me-

dia of  = 0.03 and 0.06 is estimated to be 1.5% of umax.  For model porous media of  = 

0.12, 0.22 and 0.49, the uncertainties of u measured for flows through them are ap-
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proximately 2.5%, 4% and 5% respectively of umax within the medium due to relatively 

low optical access and lower velocities measured through these models.  For the trans-

verse velocities v, total uncertainties are also estimated to be 1% of umax in the free zone 

and in porous media of  = 0.03 and 0.06; and 2%, 3% and 3.5% of umax in model po-

rous media of  = 0.12, 0.22 and 0.49 respectively.  The total uncertainty in the differ-

ential pressure measurement is also estimated to be 3% of the average pressure drop.  

All error estimates are at 95% confidence level, and are signified by error bars in perti-

nent plots in this work. 

 

3.5 Test Conditions of Experiments 

Following preliminary checks, further tests were performed in four series of experi-

ments.  These are summarized in Tables 3.4 to 3.8.  In this work, test conditions are 

typically denoted by special names for the sake of convenience.  In cases where the 

models are to be distinguished the horizontal, vertical and mesh models are respectively 

signified as Mh, Mv and Mm.  Similarly, for cases where the kinds of horizontal models 

are distinguished, the staggered, round and square features of the model are respectively 

signified by St, Rd, and Sq.  Additionally, the particular solid volume fraction, test sec-

tion depth to porous medium pore ratio (DPR), filling fraction, and bulk Reynolds 

number Rebulk (= Ubulk d/ν or Ubulk s/ν  are respectively denoted by , ff, Dp and Re with 

subscript numbers indicating their respective values.  These special denotations are also 

provided in Tables 3.4 to 3.8.  
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Table 3.4:  Summary of test conditions in 1
st
 series of experiments 

Model  Range of 

   (mm/s) 

Range of Red Name 

Horizontal 0.06 2.2 to 79.7 0.4 to 12.7 Mh 

Horizontal 0.12 2.6 to 25.0 0.4 to 4.0 Mh 

Horizontal 0.22 2.2 to 28.1 0.3 to 4.5 Mh 

Mesh 0.06 2.3 to 37.5 0.8 to 6.0 Mm 

Mesh 0.12 1.5 to 17.7 0.2  to 2.8 Mm 

Mesh 0.22 0.3 to 4.1 0.1 to 0.7 Mm 

     

 

In the first series of experiments, the focus was on flow through round non-staggered 

horizontal and mesh model porous media only.  This was done to provide velocity and 

differential pressure measurements of flow through these models in order to determine 

the equation that best governs porous media flow up to the regime of the onset of inertia 

effects.  The test conditions are summarized in Table 3.4.  For further clarity, the geo-

metrical descriptions of the models used in this specific series of experiments are also 

summarized.  The Reynolds number Red (=          was used in each case.  Here, the 

seepage velocity Ud was obtained by averaging the velocities within the core of the po-

rous media model.  The test conditions are denominated as shown in the last column of 

the table.  It is to be noted that for these experiments, the goal was to obtain measure-

ments to cover the range of Red numbers where inertia is expected to be just apparent 

(i.e. 2 < Red < 4 as prescribed by Fourar et al. 2004).  However, this was not always 
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possible (particularly for Mm) because pressure values for Red > 1 exceeded the range 

that could be measured by the instruments that were used in this work.   

In the second series of experiments, the focus was on providing a comprehensive 

characterization of the effects of solid volume fraction, rod shape and arrangement, fill-

ing fraction and Reynolds number on laminar flow through and over two-dimensional 

porous media.  The pertinent test conditions are summarized in Table 3.5 and 3.6.  As 

shown, only horizontal models were tested.  The geometrical characteristics of the re-

spective test models per condition are repeated for further clarity in reference.  Table 

3.5 gives a summary of test conditions for models of h / H = 0.75, while Table 3.6 

shows test conditions for h / H = 0.50 and 0.34.  The range of Rebulk covered was 0.1 < 

Rebulk < 3.  Each of the test conditions is named as shown in the tables.   

In the third series of experiments, tests were performed on all three types of porous 

media models of the same filling fraction (i.e. ff = 0.74).  The focus was on the com-

parison of flow through and over two- and three-dimensional models of a wider range 

of solid volume fraction (0.03 <  < 0.49) and Reynolds number (0.8 < Rebulk < 10.3). 

One type of two-dimensional porous medium (i.e. horizontal porous medium), and two 

types of three-dimensional porous media (i.e. vertical and mesh models) were tested.  

The pertinent test conditions are summarized in Table 3.7.  The names of the test condi-

tions are shown in the last column of the table.   
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Table 3.5:  Summary of test conditions in 2
nd

 series of experiments for h / H = 0.75. 

Rod Shape /  

Arrangement 

  Ubulk 

(mm/s) 

Rebulk h / H Name  

Round / Non-staggered 0.06 1.0 0.2 0.75 Rd6Re0.2ff75 

Round / Non-staggered 0.06 1.6 0.3 0.75 Rd6Re0.3ff75 

Round / Non-staggered 0.06 3.3 0.5 0.75 Rd6Re0.5ff75 

Round / Non-staggered 0.06 6.4 1.0 0.75 Rd6Re1.0ff75 

Round / Non-staggered 0.06 15.5 2.5 0.75 Rd6Re2.5ff75 

Round / Non-staggered 0.12 0.9 0.1 0.75 Rd12Re0.1ff75 

Round / Non-staggered 0.12 6.1 1.0 0.75 Rd12Re1.0ff75 

Round / Non-staggered 0.12 1.9 0.3 0.75 Rd12Re0.3ff75 

Round / Non-staggered 0.12 15.8 2.5 0.75 Rd12Re2.5ff75 

Round / Non-staggered 0.12 1.6 0.3 0.75 Sq12Re0.3ff75 

Square / Non-staggered 0.12 4.5 0.7 0.75 Sq12Re0.7ff75 

Square / Non-staggered 0.12 6.7 1.1 0.75 Sq12Re1.1ff75 

Square / Non-staggered 0.12 14.6 2.3 0.75 Sq12Re2.3ff75 

Round / Staggered 0.12 1.9 0.3 0.75 St12Re0.3ff75 

Round / Staggered 0.12 5.1 0.8 0.75 St12Re0.8ff75 

Round / Staggered 0.12 6.5 1.0 0.75 St12Re1.0ff75 

Round / Non-staggered 0.22 0.7 0.1 0.75 Rd22Re0.1ff75 

Round / Non-staggered 0.22 1.7 0.3 0.75 Rd22Re0.3ff75 

Round / Non-staggered 0.22 7.0 1.1 0.75 Rd22Re1.1ff75 

Round / Non-staggered 0.22 14.5 2.3 0.75 Rd22Re2.3ff75 

Round / Non-staggered 0.49 1.1 0.3 0.75 Rd49Re0.3ff75 

Round / Non-staggered 0.49 5.3 1.3 0.75 Rd49Re1.3ff75 

Round / Non-staggered 0.49 10.7 2.5 0.75 Rd49Re2.5ff75 
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Table 3.6:  Summary of test conditions in 2
nd

 series of experiments for h / H = 0.50 and 

0.34. 

Rod shape /  

Arrangement 

 Ubulk 

(mm/s) 

Rebulk h / H Name  

Round / Non-staggered 0.06 1.8 0.3 0.50 Rd6Re0.3ff50 

Round / Non-staggered 0.06 3.3 0.5 0.50 Rd6Re0.5ff50 

Round / Non-staggered 0.06 4.6 0.7 0.50 Rd6Re0.7ff50 

Round / Non-staggered 0.06 8.6 1.4 0.50 Rd6Re1.4ff50 

Round / Non-staggered 0.12 2.6 0.4 0.50 Rd12Re0.4ff5 

Round / Non-staggered 0.12 9.1 1.5 0.50 Rd12Re1.5ff5 

Square / Non-staggered 0.12 1.1 0.2 0.50 Sq12Re0.2ff50 

Square / Non-staggered 0.12 9.0 1.4 0.50 Sq12Re1.4ff50 

Round / Staggered 0.12 1.4 0.2 0.50 St12Re0.2ff50 

Round / Staggered 0.12 9.4 1.5 0.50 St12Re1.5ff50 

Round / Non-staggered 0.22 2.7 0.4 0.50 Rd22Re0.4ff5 

Round / Non-staggered 0.22 6.0 1.0 0.50 Rd22Re1.0ff5 

Round / Non-staggered 0.22 10.7 1.7 0.50 Rd22Re1.7ff5 

Round / Non-staggered 0.12 3.0 0.5 0.34 Rd12Re0.5ff5 

Round / Non-staggered 0.12 4.7 0.7 0.34 Rd12Re0.7ff5 

Round / Non-staggered 0.12 12.6 2.0 0.34 Rd12Re2.0ff50 
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Table 3.7:  Summary of test conditions in 3
rd

 series of experiments. 

Model  Ubulk (mm/s) Rebulk Name 

Vertical 0.03 5.1 0.8 Mv3Re0.8 

Vertical 0.03 51.5 8.2 Mv3Re8.2 

Vertical 0.06 7.7 1.2 Mv6Re1.2 

Vertical 0.06 48.7 7.7 Mv6Re7.7 

Vertical 0.12 6.6 1.1 Mv12Re1.1 

Vertical 0.12 42.1 6.7 Mv12Re6.7 

Horizontal 0.12 6.9 1.1 Mh12Re1.1 

Horizontal 0.12 46.0 7.3 Mh12Re7.3 

Mesh 0.12 5.0 0.8 Mm12Re0.8 

Mesh 0.12 41.5 6.6 Mm12Re6.6 

Horizontal 0.22 5.9 0.9 Mh22Re0.9 

Horizontal 0.22 38.4 6.1 Mh22Re6.1 

Horizontal 0.22 41.7 6.6 Mh22Re6.6 

Mesh 0.22 4.9 0.8 Mm22Re0.8 

Mesh 0.22 8.5 1.3 Mm22Re1.3 

Mesh 0.22 43.2 6.9 Mm22Re6.9 

Horizontal 0.49 3.8 0.9 Mh49Re0.9 

Horizontal 0.49 22.5 5.4 Mh49Re5.4 

Horizontal 0.49 30.1 7.2 Mh49Re7.2 

Horizontal 0.49 41.5 9.9 Mh49Re9.9 

Mesh 0.49 3.9 0.9 Mm49Re0.9 

Mesh 0.49 43.3 10.3 Mm49Re10.3 

 

A supplementary series of experiments was undertaken to further assess the separate 

and combined effects of filling fraction and test channel depth-to-porous medium pore 
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ratio on the flow through and over porous media at similar bulk Reynolds numbers.  

This was done for two-dimensional porous media (i.e. horizontal model) and three-

dimensional porous media (i.e. vertical model).  A summary of general test conditions 

is presented in Table 3.8.  For the horizontal models, tests were performed only on 

round non-staggered models.  The test conditions were also kept at a similar Reynolds 

number (i.e. Rebulk ~ 1).  As for previous experiments, the test conditions are denomi-

nated as shown in the last column of the table. 

 

Table 3.8:  Summary of test conditions in 4
th

 series of experiments 

 

 

 

Model 

 

 h 

(mm) 

H 

(mm) 

H / l 

 

h / H Ubulk 

(mm/s) 

Rebulk Name  

Vertical 0.12 34.0 46.0 5.75 0.74 6.6 1.1 Mv12Dp5.75ff74 

Vertical 0.12 34.0 61.0 7.63 0.56 7.0 1.1 Mv12Dp7.63ff56 

Vertical 0.12 54.2 73.0 9.13 0.74 7.0 1.1 Mv12Dp9.13ff74 

Vertical 0.12 34.0 73.0 9.13 0.47 6.7 1.1 Mv12Dp9.13ff47 

Horizontal 0.12 27.2 46.0 5.75 0.74 6.9 1.1 Mh12Dp5.75ff74 

Horizontal 0.12 27.2 54.6 6.83 0.50 6.9 1.1 Mh12Dp6.83ff50 

Horizontal 0.12 54.8 109.5 13.69 0.50 7.6 1.2 Mh12Dp13.69ff50 

Horizontal 0.12 82.1 109.5 13.69 0.75 6.1 1.0 Mh12Dp13.69ff75 
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Chapter 4 

Results and Discussions 

4.1 Overview 

In this chapter, results of experiments are presented and discussed in order of the series of 

experiments conducted (as stated in section 3.5).  In section 4.2, the discussion is focus-

sed on the study of flow through two- and three-dimensional porous media up to the re-

gime of the onset of inertia, to determine the equation that best applies at that condition.  

In section 4.3.1, attention is then focussed on laminar flow through and over two-

dimensional porous media to characterize the bulk and interfacial flow conditions when 

various parameters are varied, and to determine the requisite interfacial boundary condi-

tions.  Following this in section 4.3.2 is a discussion of results obtained from the com-

parison of flow through and over two- and three-dimensional models, while extending the 

range of Reynolds number to cover inertial flows through porous media.  In section 4.3.3, 

results of supplementary series of experiments are discussed to assess the separate and 
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combined effects of filling fraction and test section depth to porous medium pore ratio 

(DPR) on the flow through and over porous media at similar bulk Reynolds numbers.   

Although planar PIV provides a whole flow field of two-dimensional velocity meas-

urements (of which typical vector map is shown in Appendix C), the flow phenomena 

under consideration were mainly that of spatially averaged distributions, and are pre-

sented as profiles of averaged velocity measurements.  As all the porous media and po-

rous media-open flow interfacial velocity quantities reported in this chapter were aver-

aged superficially, they are hereafter simply represented by upper case letters of the re-

spective microscopic (pore-level) quantities, without any specification of superficial or 

intrinsic averaging.  Furthermore, velocity measurements were either averaged over lines, 

areas, or volumes.  For clarity, where necessary, all averaged measurements (e.g. U, V) 

and derived quantities (e.g.      = dU/dyy=0) are distinguished in terms of the mode of av-

eraging by subscripting the quantity by ‘l’ (e.g. Ul, Vl,   ) for the case of line averages, 

‘a’ for area averages (e.g. Ua, Va,   ), or ‘v’ for volume averages (e.g. Uv, Vv,   ).   

 

4.2 Flow through a Porous Medium 

The section begins by drawing attention to some important observations from the results 

of measurements obtained from the first series of experiments.  In Figure 4.1, the superfi-

cial velocities normalized by the maximum superficial streamwise velocity Ud,max meas-

ured for the model, are plotted against the normalized pressure drop gradients (i.e. fric-

tion factor ff2) for the test conditions tested (presented in Table 3.4).  This is done for the 
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streamwise components [Figure 4.1(a)] and transverse components [Figure 4.1(b)] of the 

superficial velocity (respectively Ud and Vd ) in a log-linear plot.  This is an important de-

piction of the flow because the presentation of the transverse components in particular in 

such an experiment is virtually non-existent in the literature.  The figure shows that while 

the streamwise components are in a nearly linear relationship with the pressure drop 

measurements, the transverse components and the pressure-drop gradients are independ-

ent of each other.  The transverse velocities are also generally insignificant compared 

with the corresponding streamwise components.  The exception to this is for the horizon-

tal mesh models of 0.22 solid volume fraction (i.e. Mm22), where the streamwise veloci-

ties measured are very small (Ud,max is 4.1 mm/s). 

The log-log plot of the friction factor ff2 [=                
     ] against the char-

acteristic particle Reynolds number Red (= Udd/ in Figure 4.2 shows that the friction 

factor ff2 reduces with increasing Red.  If ff2 is interpreted as the ratio of the pressure drag 

to the most dominant inertial forces along the stream, then inertia appears to be a parame-

ter of interest as Red increases.   

It is also important to point out from Figure 4.2 that ff2 increases with increasing solid 

volume fraction of the porous medium for a given Reynolds number.  Furthermore, at a 

given Reynolds number, ff2 of the mesh models is significantly higher than that of hori-

zontal media.  The ff2 values of mesh models of solid volume fraction 0.12 and 0.22 (i.e. 

Mm12 and Mm22 respectively) in particular are about ten times the value of the corre-

sponding horizontal porous media (i.e. Mh12 and Mh22 respectively).  These results in-
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dicate then that the pressure drag increases as the porous medium becomes more compact 

and complex in arrangement, as expected.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Streamwise (Ud) and transverse (Vd) superficial velocities normalized by the 

maximum streamwise superficial velocity (Ud, max) plotted against the friction factor for 

various test conditions. 
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Figure 4.2:  The Reynolds number against the friction factor for the test conditions.  

To explore the empirical equation that best applies to the flow for the conditions 

tested, each of the superficial streamwise velocity – streamwise pressure-drop gradient 

plots was fitted with polynomial (i.e. quadratic and cubic) and power (allometric) curves.  

The forms of the equations fitted to the data are the following 
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It may be noted that Equation (4.1) is of the form of the ‘Forchheimer quadratic’ (F-Q) 

equation, while Equation (4.2) is of the form of the cubic equation supported by recent 

works (e.g. Couland et al. 1988; Rojas and Koplik 1988, Hill et al. 2001, Balhoff and 

Wheeler 2009).  This form would be referred to as the ‘cubic’ equation.  Equation (4.3) is 

of the form suggested by Forchheimer (1901), and it will hereafter be referred to as the 

‘Forchheimer cubic’ (F-C) equation.  The Equation (4.4) is of the form of the power law 

proposed by Izbash (1931).  This form would henceforth be referred to as ‘Izbash’, for 

convenience.  Fitting data to such dimensional equations has been found to be a useful 

method of providing a preliminary assessment of constitutive equations in porous media 

studies (Skjetne and Auriault 1999).  The results of the present curve fits are summarized 

in Figures 4.3, and in Tables 4.1and 4.2.  The tables provide magnitudes of the curve fit-

ting parameters as well as the adjusted coefficient of determination R
2
 of each curve. 

Table 4.1 indicates that the adjusted coefficient of determination is highest for the F-C 

curve.  However, this equation has the highest number of empirical parameters, and 

therefore complicating its practical application.  The Izbash equation is a simpler formu-

lation, and it is comparably proficient with the F-Q equation. However, the F-Q equation 

is preferred because of a higher R
2
 it yields when fitted to the experimental data.   

It is worth noting however, that the high R
2 

of the Izbash equation with the Mh and 

Mhdata in particular indicates that for horizontal models of such low solid volume 

fraction, the flow at Repart > 1, though not strictly Darcian in character, has pressure drops 

in a quasi-linear relationship with the seepage velocities.  This is similar to the flow 

through pipe at such Reynolds numbers.  It therefore indicates that for horizontal media 

of similar conditions, the porous medium flow behaves like a channel flow.   
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Figure 4.3:  Curves of the equations fitted to the experimental results. 

 

Table 4.2 shows that for the mesh (three-dimensional) models, the adjusted coefficient 

of determination is lowest for the cubic equation, but highest for the F-C equation, fol-

lowed by the F-Q equation.  However the F-C equation is marked by multiple fitting pa-

rameters.  It is clear then that for that model, the F-Q may be recommended for accuracy 

and simplicity based on this preliminary assessment.   
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Table 4.1:  Magnitudes (modulos) of curve fitting parameter, and adjusted coefficients of 

determination for two-dimensional test model cases. 

 

 

 

 

 

Equations of Fitted 

Curves, and parameters 

Test Conditions 

Mh Mh Mh 

F-Q 

 

 

a1 2280 7300 682 

b1 4024 6890 650971 

R
2 

0.994 0.991 0.980 

 R
2

d 0 0.647 0.161 

Cubic 

 

c1 2159 7677 5489 

d1 30378 9269 1865 

R
2 

0.988 0.984 0.943 

 R
2

d 0 0.388 0.753 

F-C 

 

e1 2723 3634 11187 

g1 26563 184280 1927520 

h1 222200 1747120 33812300 

R
2
 0.996 0.999 0.992 

 R
2

d -9.367 -0.189 0.998 

Izbash i1 1552 9703 521155 

j1 0.91 1.08 1.95 

R
2
 0.991 0.987 0.968 

 R
2

d 0 0.810 0.980 
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Table 4.2:  Magnitudes (modulos) of curve fitting parameters and coefficients of deter-

mination for three-dimensional test model cases. 

 

 

 

 

Equations of Fitted 

Curves, and parameters 

Test Condition 

Mm Mm Mm 

F-Q 

 

 

a1 2812 41825 97435 

b1 22368 157059 4972290 

R
2
 0.988 0.993 0.987 

 R
2

d 0.550 0.103 0.946 

     

Cubic 

 

c1 3118 42806 102758 

d1 361875 5605490 949747000 

R
2 

0.975 0.984 0.959 

 R
2

d 0.419 0.002 -0.057 

     

F-C 

 

e1 1387 38944 138099 

g1 160749 743733 26428500 

h1 273590 24774700 5351890000 

R
2
 0.993 0.992 0.987 

 R
2

d -1.536 -1.757 -2.705 

     

Izbash i1 6248 53579 178891 

j1 1.16 1.05 1.08 

R
2
 0.982 0.985 0.952 

 R
2

d 0.581 0.233 0.750 
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For a more complete assessment of the flow, Equations (4.1) to (4.4) were non-

dimensionalized.  The following are the resulting equations: 

d

f

df Re
d

b
da

Ref


1

2
1

2 
                  (4.5) 

d

f

df Re
ddc

Ref





1

2
1

2 
                  (4.6) 

21
112 1 d

f

ddf Re
h

)ge(RedRef



               (4.7) 

)Re
d

(UiRef d

f

j

ddf


1

12


                    (4.8) 

Equations (4.5), (4.6), (4.7) and (4.8) are respectively the non-dimensionalized forms of 

Equations (4.1), (4.2), (4.3) and (4.4).  The equations are fitted to the data, and presented 

in plots of the dimensionless resistance (i.e. the product of ff2 and Red) against Red, in 

Figure 4.4.  The adjusted coefficients of determination of the fitted curves are also pre-

sented as R
2

d in Tables 4.1 and 4.2. 

Results show that although the cubic equation has a relatively high R
2

d for two-

dimensional porous media, the F-Q and the Izbash equations are better fits when both 

two- and three-dimensional porous media are considered.  Of the F-Q and the Izbash 

equations, the F-Q equation appears to be the better fit for three-dimensional porous me-

dia, whereas the Izbash equation is better in the case of two-dimensional porous media. 



4.2 Flow through a Porous Medium  111 

 

 

0 5 10 15 20
1

10

100

1000

0 5 10 15 20
1

10

100

1000

0 5 10 15 20
1

10

100

1000

0 5 10 15 20

1

10

100

 

 

    M
h


6
    M

m


6
   M

h


12
 

    M
m


12
   M

h


22
  M

m


22 

            Cubic Curve Fit

f f2
 R

e
d

Re
d

 

 

    M
h


6
     M

m


6
    M

h


12
  

    M
m


12
    M

h


22
   M

m


22 

              Izbash Curve Fit
f f2

 R
e

d

Re
d

 

 

    M
h


6
   M

m


6
   M

h


12
 

    M
m


12
  M

h


22
  M

m


22 

               F-Q Curve Fit

f f2
 R

e
d

Re
d

(d)(c)

(b)

 

 

    M
h


6
   M

m


6
   M

h


12
 

    M
m


12
  M

h


22
  M

m


22 

                            F-C  Curve Fit

f f2
 R

e
d

Re
d

(a)

 

Figure 4.4:  Curves of equation fitted to the dimensionless experimental results. 
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4.3 Flow through and over Porous Media 

4.3.1 General Comments 

In this section, results obtained from series 2 to 4 (of experiments) are the subjects of at-

tention.  For each of these experiments, pertinent results are presented and discussed by 

first examining the bulk flow through the whole test section, and then focusing on the 

flow at the interface of the porous medium.  In each of these considerations, the bulk 

Reynolds number effects, solid volume fraction effects, filling fraction effects, as well as 

the effects of the porous medium structure (such as the staggered or non-staggered ar-

rangements, and the shape of the rod cross-sectional area) on the flow are studied.  All 

discussions are based on averaged streamwise and transverse components of velocity 

measurements made within the region of periodic flow.  These results are presented in 

Figures 4.5 – 4.32, and in Tables 4.3 – 4.10.   

As reviewed in Chapter 2, previous studies have shown the dependence of the interfa-

cial flow on certain key empirical quantities such as the specific permeability k, seepage 

velocity Ud, slip velocity Us, shear rate at the interface       = dU/dyy=0), the slip coeffi-

cient α, and the channel’s local maximum velocity Umax.     

The specific permeability, k of each test model was quantified using empirical values 

in the literature.  This was done because permeability values obtained in the first series of 

experiments could not be assured to be values pertaining the Darcy regime.  Accordingly, 

for non-staggered models of  < 0.12, Equation (3.10) was used.  For models of  > 0.12 
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and distance between rod centers l, the following equation due to Sahraoui and Kaviany 

(1992), and proposed for a similar range of porous medium and arrangement was used:  

21510620 l)(.k .                       (4.9) 

Specific permeabilities for staggered models of rod radius r and solid volume fraction  

were calculated using the following equation by Hellou, Martinez and El Yazidi (2004): 

))1(9092.0)1(5601.1)1(5960.0

)1(3422.0)1(2356.0)1(0406.0(

5.25.65.5

5.45.35.2
2











r

k
 

                        (4.10) 

The specific permeability for each mesh model was also calculated using the following 

empirical equation by Tamayol and Bahrami (2011): 























 1

24
)1(032.0

2

5.02








rk                   (4.11) 

For each test condition, Ud was also obtained by averaging the streamwise velocities 

only over a distance depending on the solid volume fraction and filling fractions of the 

models.  This limitation was put in place so as to shield the Ud values from any error 

emanating from the incorporation of velocities close to the interface and the lower wall 

boundary layer.       

Following Sahraoui and Kaviany (1992) and James and Davis (2001) who performed 

studies on similar porous media arrays, Us in this work is defined as the average stream-

wise velocity “at the plane tangent to the outer edges of the cylinders in the first row” 

(James and Davis 2001).  In the present measurements, it was not always possible to pro-

vide the averaged slip velocities at the interface.  This is because PIV provides velocities 
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measured over a finite interrogation area, whose center was not always located exactly at 

the interface.  Thus, the uncertainty in the interfacial location for the present experiments 

is expected to fall within ±0.11 mm which is half the size of an interrogation window.   

To determine the shear rate at the interface   (= dU /dyy=0), a curve of minimum ad-

justed coefficient of determination of 0.99, was always fitted to six or more U data points 

located at the region close to the interface.  Differentiation of the curve was then per-

formed in the direction of the free flow to obtain the shear rate at the interface.  For some 

of the line averaged data however, following this procedure using measurement data 

points could not be done without incurring errors.  Therefore, there was the need to first 

utilize a polynomial curve fit using a least square method, and then differentiate the curve 

smoothly over data points covering a distance of about 0.11mm.   

The interfacial flow was investigated using the dimensionless groupings Us / Umax, Us 

/        and the slip coefficient α.  The value of the dimensionless slip velocities Us / 

Umax, and Us /        is that the former shows the relative effect of the overlying free 

zone flow conditions on the slip velocity, whereas the latter provides information about 

the dependence of the slip velocities on the porous medium conditions.  The slip coeffi-

cient was also obtained using Equation (1.8), relating Us with Ud.   

A location sensitivity test was also undertaken for the slip parameters Us / Umax, Us 

/        and  .  All models typically showed higher sensitivity of α to location, com-

pared with Us / Umax and Us /         .  The deviations due to location of line averaged slip 

parameters were about 30% more than that of volume averages within ±0.11 mm.  Taking 

into consideration these sensitivities, the total uncertainties associated with the volume 
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averaged dimensionless Us / Umax are estimated to be 3% for  = 0.03, 0.06, and 5%, 8% 

and 10% for  = 0.12, 0.22 and 0.49, respectively.  The total uncertainties of Us /           

are approximately 5% for  = 0.03, 0.06, and 8%, 12% and 14% for  = 0.12, 0.22 and 

0.49 respectively.  The uncertainties of α are also estimated to be 8% for  = 0.03, 0.06, 

and 11%, 13% and 15% for  = 0.12, 0.22 and 0.49, respectively.  All of these uncertain-

ties are at a confidence level of 95%. 

 

4.3.2 Flow through and Over Two-Dimensional Porous Media 

The section presents and discusses results of the second series of experiments.  Here, the 

focus is to characterize the effects of solid volume fraction (ranging from 0.06 to 0.49), 

porous medium rod shape (i.e. circular and square rods), porous medium arrangement 

(i.e. staggered and non-staggered arrays), filling fraction (ranging from 0.34 to 0.75), and 

bulk Reynolds number (ranging from 0.1 to 2.5) on flows through and over two-

dimensional porous media.  

4.3.2.1. Bulk Flow Characterization 

The bulk flow is characterized using the relative magnitudes of the streamwise and trans-

verse velocities, the position of the maximum velocity, percentage flow rate distributions 

and the ratio of the maximum to bulk velocities (Umax / Ubulk).   

In Figure 4.5, results are presented to show the relative magnitudes of the line aver-

aged streamwise (Ul) and transverse (Vl) velocity data for cases in which the bulk Rey-

nolds number Rebulk is 0.3 and h / H = 0.75.  Similar plots are also shown for the corre-
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sponding volume averaged streamwise (Uv) and transverse (Vv) velocity data in the same 

test condition.  For Rebulk ≲ 1, the transverse velocities are no more than 3.5% of the local 

maximum streamwise velocity in the free zone.  Indeed, V measurements were for the 

most part within the bounds of error, and could therefore be neglected.  This observation 

is independent of the solid volume fraction, the mode of arrangement, and the shape of 

the rod cross-section.  Further assessment of data (as presented in Appendix C) indicates 

that the transverse velocities are at most 7% when 1 ≲ Rebulk ≲ 2.5.  

To show the effects of solid volume fraction  on the bulk flow, plots of test results 

are presented in Figure 4.6 for cases in which Rebulk is 0.3 and h / H = 0.75.  Figure 4.6(a) 

in particular, shows the solid volume fraction effects using the percentage of the total 

mass flow through the test section that is channelled through the free zone.  The results, 

(as further presented in Table 4.3 for other test conditions) show that there is an increase 

in the proportion of flow channelled into the free zone from 76% to 100% as ϕ is in-

creased from 0.06 to 0.49.  A similar trend is also found in the cases of filling fraction h / 

H = 0.50 (shown in Table 4.4), where the average percentage distributions increase from 

84% to 95% as   increases from 0.06 to 0.22.  This trend (not necessarily the values) 

also follows that observed by Arthur et al. (2009) in their vertical porous media configu-

rations.  It follows then that the increase in percentage flow through the free zone when 

the solid volume fraction increases occurs independent of the filling fraction, or the type 

of porous medium.  In fact, further checks from Tables 4.3 and 4.4 indicate that this ef-

fect is not only apparent at Rebulk = 0.3, but at higher Reynolds numbers (such as Rebulk ~ 

2 in Table 4.3, and Rebulk ~ 1 in Table 4.4).  Thus, the increase in percentage flow into the 
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free zone with an increase in , is a result of an increase in the resistance to the path of 

flow within the porous medium.   
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Figure 4.5:  The relative magnitudes of streamwise (U) and transverse (V) average veloci-

ties. Plots in (a) and (b) show the line averaged plots, while (c) and (d) show volume av-

eraged plots. Plots in (a) and (c) are results of models using round rods, while plots in (b) 

and (d) compare results obtained for round, and square rods, as well as in-line and stag-

gered arrangements. The dashed line shows the interface. 
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Figure 4. 6:  (a) Percentage flow channelled in the free zone; and (b) Ul,max / Ubulk ratios 

for the test conditions for which Rebulk = 0.3. 

 

Further effects of the variation of  are also depicted in Figure 4.6(b) using Ul,max / 

Ubulk ratios for the same conditions as in Figure 4.6(a).  (Only line averaged results of 

Umax / Ubulk are shown in the figure because the corresponding volume averaged results 

are equivalent when experimental uncertainties are considered, as may be verified from 

Tables 4.3 to 4.6).  It may be observed that as  increases from 0.06 to 0.49, Ul,max / Ubulk 

increases from 4.6 to ~6, which is the limiting value expected for the case where the po-

rous media is replaced by a solid block.  This trend is similarly observed for a filling frac-

tion h / H = 0.50.  From Table 4.4, Ul,max / Ubulk increases from about 2.3 to 2.8, as   in-

creases from 0.06 to 0.22.  These values tend towards the limiting value of Ul,max / Ubulk = 

3, for a solid block filling 0.50 of the depth of the test section.  It should be noted that 

Tables 4.3 and 4.4 also show that the increase in Ul,max / Ubulk with  occurs at Reynolds 
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numbers greater than 0.3.  These Ul,max / Ubulk trends of variation in  are similar to results 

obtained for vertical models in the literature (Agelinchaab et al. 2006). 

The effects of porous media rod shape (that is, circular and square rods) and arrange-

ments (that is, non-staggered and staggered arrays) on the bulk flow may be demonstrated 

using Figure 4.6, and Tables 4.3 and 4.4.  As shown, the bulk flow appears to be inde-

pendent of the porous media rod or shape.  At Rebulk  ~ 0.3 for example, the mean per-

centage flow channelled into the free zone remains at 87% for non-staggered and stag-

gered arrays of circular rods, and models of square rods of h / H = 0.75 and ϕ = 0.12.  The 

ratios Ul,max / Ubulk are also unaffected by the porous media structure when experimental 

errors are considered.  The same trend is observed for a filling fraction of 0.50 where the 

percentage flow remains the same at about 97% when Rebulk  ~ 1.5 for non-staggered and 

staggered arrays of circular rods, and models of square rods, so long as  is 0.12.  The 

Ul,max / Ubulk ratios are also nearly unaffected by the porous media rod shape or arrange-

ment. 
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Table 4.3:  Summary of pertinent results of line averaged data for h / H = 0.75. 

Name  % of 

flow  

through 

free 

zone 

y / H  

of 

Ul,max 

Ul,max 

/ 

Ubulk 

k
0.5

 

(mm) 

Ul,s 

  (mm/s)

Ul,s 

/Ul,max 

l  

(/s) 

Ul,s / 

  ( l k) 

Rd6Re0.2ff75 73 0.12 4.03 3.0 1.3 0.33 0.47 0.94 

Rd6Re0.3ff75 76 0.11 4.34 3.0 2.1 0.30 0.90 0.78 

Rd6Re0.5ff75 79 0.13 4.61 3.0 4.1 0.27 1.40 0.99 

Rd6Re1.0ff75 63 0.14 3.73 3.0 5.3 0.22 2.24 0.80 

Rd6Re2.5ff75 50 0.16 2.79 3.0 8.3 0.19 4.16 0.68 

Rd12Re0.1ff75 85 0.10 4.67 1.4 1.3 0.30 0.78 1.21 

Rd12Re0.3ff75 83 0.10 4.56 1.4 2.6 0.30 1.49 1.25 

Rd12Re1.0ff75 89 0.17 5.39 1.4 3.0 0.09 2.98 0.73 

Rd12Re2.5ff75 76 0.15 4.42 1.4 5.1 0.07 7.02 0.52 

Sq12Re0.3ff75 89 0.10 5.22 1.5 2.3 0.27 1.27 1.23 

Sq12Re0.7ff75 94 0.14 5.43 1.5 3.3 5.43 3.56 0.65 

Sq12Re1.1ff75 89 0.16 5.31 1.5 3.8 5.31 3.46 0.75 

Sq12Re2.3ff75 75 0.16 4.34 1.5 8.4 4.34 5.55 1.04 

St12Re0.3ff75 89 0.10 5.07 0.9 2.4 0.25 0.85 3.03 

St12Re0.8ff75 95 0.14 5.36 0.9 3.9 0.14 3.76 1.11 

St12Re1.0ff75 95 0.15 5.42 0.9 4.9 0.14 1.86 2.87 

Rd22Re0.1ff75 94 0.09 5.13 0.8 1.0 0.28 0.98 1.33 

Rd22Re0.3ff75 95 0.10 5.22 0.8 2.3 0.26 1.72 1.74 

Rd22Re1.1ff75 97 0.14 5.85 0.8 4.9 0.12 2.50 2.51 

Rd22Re2.3ff75 94 0.13 5.52 0.8 7.4 0.09 4.93 1.94 

Rd49Re0.3ff75 98 0.10 5.52 0.3 0.8 0.13 0.63 4.92 

Rd49Re1.3ff75 100 0.14 6.05 0.3 2.3 0.07 0.68 13.14 

Rd49Re2.5ff75 100 0.14 6.52 0.3 0.9 0.01 1.16 2.94 



4.3 Flow through and over Porous Media  121 

 

 

Table 4.4:  Summary of pertinent results of line averaged data for h / H = 0.50 and 0.34. 

Name  % of 

flow  

through 

free 

zone 

y / H  

of 

Ul,max 

Ul,max 

/ 

Ubulk 

k 

(mm) 

Ul,s 

(mm/s)

Ul,s/

Ul,max 

l  

(/s) 

Ul,s / 

  ( l k) 

Rd6Re0.3ff50 84 0.25 2.29 3.0 1.4 0.33 0.36 1.26 

Rd6Re0.5ff50 87 0.23 2.40 3.0 2.6 0.32 0.87 1.01 

Rd6Re0.7ff50 88 0.25 2.42 3.0 3.7 0.33 1.21 1.03 

Rd6Re1.4ff50 91 0.27 2.52 3.0 5.3 0.25 1.90 0.95 

Rd12Re0.4ff50 93 0.24 2.55 1.4 2.0 0.29 0.80 1.75 

Rd12Re1.5ff50 97 0.28 2.80 1.4 4.6 0.18 1.95 1.68 

Sq12Re0.2ff50 91 0.25 2.45 1.5 0.6 0.23 0.23 1.82 

Sq12Re1.4ff50 97 0.25 2.67 1.5 4.1 0.17 2.00 1.40 

St12Re0.2ff50 89 0.22 2.38 0.9 0.9 0.27 0.43 2.28 

St12Re1.5ff50 97 0.27 2.73 0.9 4.7 0.18 2.35 2.16 

Rd22Re0.4ff50 95 0.22 2.65 0.8 1.9 0.26 1.28 1.86 

Rd22Re1.0ff50 98 0.27 2.80 0.8 3.5 0.21 2.27 1.96 

Rd22Re1.7ff50 98 0.30 2.83 0.8 4.4 0.14 3.00 1.87 

Rd12Re0.5ff34 98 0.34 2.07 1.4 1.3 0.21 0.76 1.25 

Rd12Re0.7ff34 98 0.33 2.07 1.4 1.8 0.18 1.22 1.03 

Rd12Re2.0ff34 99 0.35 2.10 1.4 4.1 0.15 2.49 1.17 

 

Figures 4.7 and 4.8, and Tables 4.3 to 4.6, show the effects of filling fraction on the 

flow using the percentage flow distribution, the position of Umax, and the ratio Umax / Ubulk  

It may be observed from Tables 4.3 and 4.4 that for  = 0.06 of a non-staggered model of 

round rods for example, about 76% of the bulk flow is channelled through the free zone 

when h / H = 0.75 and Rebulk is maintained at 0.3.  This value increases marginally to 

84% at h / H = 0.50 for the same Rebulk.  However, for  = 22% the percentage flow rate 
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through the free zone remains constant at 95% when filling fraction is changed from 0.75 

to 0.50.  These results indicate that a reduction in filling fraction generally results in little 

or no increase in the percentage flow channelled.   
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Figure 4.7:  The filling fraction effects shown, comparing selected conditions for which 

Reynolds numbers are nearly the same, and the ϕ = 0.12.  Dashed line shows the inter-

face. 
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Figure 4.8: The effects of filling fraction using percentage flow rate distributions and 

Uv,max / Ubulk ratios for selected test conditions using non-staggered models.  

 

 

 

 

 

 

 



4.3 Flow through and over Porous Media  124 

 

 

Table 4.5:  Summary of pertinent results of volume averaged data for h/H = 0.75. 

Name Uv,s 

   (mm/s)

Uv,max 

/ 

Ubulk 

Uv,s / 

Uv,max 

v  

(/s) 

Uv,s /     

( v k) 

Uv,s /     

( v ) 

(mm) 

R
2 

Ud 

(mm/s) 

v  

 

Rd6Re0.2ff75 1.4 3.80 0.37 0.22 2.14 6.33 0.997 0.6 0.79 

Rd6Re0.3ff75 2.4 4.07 0.36 0.40 1.98 5.87 0.998 0.8 0.75 

Rd6Re0.5ff75 4.4 4.35 0.30 0.83 1.77 5.23 0.999 1.2 0.78 

Rd6Re1.0ff75 6.0 3.48 0.27 1.09 1.87 5.54 0.992 4.0 1.59 

Rd6Re2.5ff75 11.3 2.65 0.27 1.60 2.39 7.07 0.950 11.3 157.90 

Rd12Re0.1ff75 1.3 4.49 0.32 0.39 2.40 3.36 0.993 0.4 0.58 

Rd12Re0.3ff75 2.6 4.47 0.31 0.79 2.38 3.33 0.997 0.5 0.51 

Rd12Re1.0ff75 4.7 5.20 0.15 1.54 2.20 3.08 0.985 1.3 0.63 

Rd12Re2.5ff75 10.5 4.34 0.15 3.44 2.18 3.06 0.984 4.8 0.84 

Sq12Re0.3ff75 2.4 4.96 0.30 0.68 2.45 3.56 0.996 0.4 0.48 

Sq12Re0.7ff75 4.8 5.22 0.20 1.45 2.26 3.28 0.997 0.5 0.49 

Sq12Re1.1ff75 5.4 5.10 0.16 1.63 2.28 3.31 0.998 1.3 0.58 

Sq12Re2.3ff75 10.2 4.23 0.17 2.84 2.48 3.61 0.997 4.2 0.68 

St12Re0.3ff75 2.5 4.92 0.27 0.80 3.40 2.81 0.990 0.4 0.36 

St12Re0.8ff75 5.5 5.24 0.20 1.88 3.16 2.92 0.996 0.4 0.34 

St12Re1.0ff75 6.0 5.29 0.17 2.01 3.24 2.99 0.997 0.7 0.35 

Rd22Re0.1ff75 1.0 5.06 0.29 0.43 3.02 2.36 0.998 0.1 0.42 

Rd22Re0.3ff75 2.2 5.18 0.24 0.92 3.00 2.34 0.998 0.2 0.36 

Rd22Re1.1ff75 5.1 5.75 0.13 2.11 3.09 2.41 0.999 0.2 0.34 

Rd22Re2.3ff75 7.0 5.44 0.09 3.22 2.80 2.18 0.994 1.2 0.43 

Rd49Re0.3ff75 1.2 5.43 0.21 0.60 7.74 2.00 0.998 0.1 0.14 

Rd49Re1.3ff75 3.4 5.93 0.11 1.79 7.41 1.92 0.998 0.0 0.14 

Rd49Re2.5ff75 2.9 6.35 0.04 1.8 6.07 1.57 0.998 0.0 0.17 
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Table 4.6:  Summary of pertinent results of volume averaged data for 0.50 and 0.34. 

Name Uv,s 

  (mm/s)

Uv,max 

/ 

Ubulk 

Uv,s / 

Uv,max 

v  

(/s) 

Uv,s / 

( v k) 

Uv,s /     

( v ) 

(mm) 

R
2 

Ud 

(mm/s) 

 

v  

Rd6Re0.3ff50 1.4 2.17 0.36 0.24 2.02 5.99 0.998 0.6 0.83 

Rd6Re0.5ff50 2.8 2.28 0.36 0.48 1.94 5.74 0.999 0.9 0.76 

Rd6Re0.7ff50 3.8 2.30 0.35 0.64 1.99 5.87 0.999 1.1 0.72 

Rd6Re1.4ff50 5.9 2.39 0.29 1.13 1.77 5.25 0.999 1.8 0.81 

Rd12Re0.4ff50 2.0 2.49 0.30 0.55 2.53 3.54 0.994 0.4 0.49 

Rd12Re1.5ff50 4.9 2.79 0.19 1.50 2.35 3.29 0.998 0.4 0.47 

Sq12Re0.2ff50 0.8 2.38 0.32 0.21 2.72 3.96 0.990 0.2 0.52 

Sq12Re1.4ff50 5.9 2.60 0.25 1.69 2.38 3.47 0.998 0.5 0.46 

St12Re0.2ff50 1.1 2.34 0.32 0.31 3.80 3.51 0.985 0.3 0.37 

St12Re1.5ff50 5.4 2.63 0.22 1.72 3.43 3.16 0.998 0.4 0.32 

Rd22Re0.4ff50 1.7 2.61 0.25 0.70 3.18 2.48 0.998 0.2 0.36 

Rd22Re1.0ff50 3.3 2.76 0.20 1.35 3.10 2.42 0.998 0.1 0.33 

Rd22Re1.7ff50 4.6 2.79 0.15 1.84 3.21 2.51 0.998 0.2 0.33 

Rd12Re0.5ff34 0.1 2.02 0.23 0.44 0.19 3.22 0.999 0.1 0.48 

Rd12Re0.7ff34 0.2 2.02 0.22 0.70 0.19 3.01 0.999 0.2 0.52 

Rd12Re2.0ff34 0.3 2.10 0.18 1.59 0.20 3.00 0.999 0.3 0.50 

 

Tables 4.3 and 4.4 however show that a reduction in filling fraction results in signifi-

cant shifts in the position of Umax towards the top wall.  For example, in the case 

ofRd6Re0.3ff75, the position of Umax is y / H = 0.11 while that of Rd6Re0.3ff50 is 0.25.  

Comparing Umax / Ubulk values for various filling fractions of  = 0.12, it may be deduced 

from Figure 4.8(d), and  Tables 4.3 to 4.6 that a reduction in the filling fraction from 0.75 
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to 0.34 leads to a reduction of the ratio from ~5 to ~2.  This tends closer towards the 1.5 

mark expected for a fully developed channel flow with no porous media in the test sec-

tion. 

To explain these phenomena pertaining filling fraction effects, it should be noted that 

as the filling fraction reduces, the effective flow path for flow through the porous media 

is reduced.  This reduction is prominent in cases where the pores of the porous medium 

and the difference in filling fraction are relatively large (such as the case of a change in h 

/ H from 0.75 to 0.34 in non-staggered models of  < 0.12).  With such models, a reduc-

tion in filling fraction results in an increased or sustained percentage flow distribution 

through the free zone, and a consequent shift in the position of Umax towards the top wall. 

The ratio Umax / Ubulk reduces when h / H reduces from 0.75 to 0.34 due to Umax increasing 

at a higher proportion compared with Ubulk. 

To investigate the Reynolds number effects on the bulk flow, test cases run on the 

same model but at different Rebulk may be compared.  Percentage flow rate distributions 

in Figure 4.9, and Tables 4.3 and 4.4 show that Rebulk actually plays a significant role in 

the distribution of flow.  However the role of Rebulk is apparently not similar in trend for 

all the solid volume fractions.  For example, as Rebulk increases from 0.1 to ~ 2.5, the per-

centage flow through the free zone decreases by 32% and 11% for  = 0.06 and 0.12 non-

staggered models respectively.  However the deviations in percentage distributions are 

insignificant for Rebulk changes in other models.  
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Figure 4.9:  The Reynolds number effects shown by percentage flow rate distributions 

and Uv,max / Ubulk ratios for selected test conditions of non-staggered models.  
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 Furthermore, the results of the ratio Umax / Ubulk presented in Figure 4.9 and Tables 4.3 

to 4.6 also show that within error limits, Uv,max / Ubulk ratios of non-staggered models de-

crease by at most 40% and 9% for  = 0.06 and 0.12 respectively as Rebulk increases from 

0.1 to ~2.5.  All other models are relatively unaffected by a change in Reynolds number.  

Additionally, it is clear from Tables 4.3 and 4.4 that as Rebulk increases from 0.1 to 2.5, 

the position of Ul,max tends to shift towards the top channel wall.  The shift is by an aver-

age of 34% as Rebulk increases from 0.1 to ~ 2.5 in h / H = 0.75, an average of 18% as Re-

bulk increases from 0.2 to ~1.7 in h / H = 0.50, and about 8% as Rebulk increases from 0.5 

to 2.0 in h / H = 0.34. 

To explain the trends observed with changes in Rebulk, it is noted that as Rebulk in-

creases, more flow is expected to be channelled through the free zone until the flow dis-

tribution remains constant.  A shift in the maximum velocity towards the region where 

there is least resistance to flow is also expected.  However, it should be noted that an in-

crease in flow through the free zone occurs only when the resistance to flow in the free 

zone is less than that through the porous medium.  For more flow to be channelled 

through the porous medium, the effective drag due to the walls of the rods must be over-

come; and this is not easily accomplished under conditions of a low bulk flow, compact 

non-fibrous porous media (such as  > 0.12, and h / H = 0.50, 0.34).  When there is a 

combination of characteristics such as  < 0.12, h / H = 0.75 and h / l < 10.27 in non-

staggered arrays however, the resistance to flow by the medium may be overcome even at 

a low Rebulk.  Consequently, with further increase in Rebulk, the large porous medium 

pores provide a pathway of flow for more bulk flow as Rebulk increases.  The result of this 
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is a reduction in the relative percentage flow through the free zone and a reduction in the 

Umax / Ubulk ratio as observed in  = 0.06 and 0.12 non-staggered models. 

 

4.3.2.2. Interfacial Flow Characterization 

For each varying factor (i.e. solid volume fraction, rod shape, rod arrangement, filling 

fraction, and Reynolds number), the discussion on dimensionless slip velocities begins by 

considering first of all, the ratio Us / Umax, followed by the dimensionless slip velocity Us 

/ (  k).  It should be noted that both line averaged and volume averaged equivalents of 

Us / Umax (shown in Tables 4.3 and 4.4, and 4.5 and 4.6 respectively), indicate similar 

trends of variation, although their values may be different.  For Us / (  k) on the other 

hand, results of the two modes of averaging are typically different in trends.  This may be 

largely attributed to sensitivity of line averaged shear rate to the location.  

Regarding ϕ, it is clear from representative test results of Figures 4.10(a) and 4.10(b) 

that for line and volume averages, Us / Umax decreases with increasing solid volume frac-

tion.  Comparing the two averaged ratios of the present results, it is observed that the re-

duction in the volume averaged ratio as ϕ is increased from 0.06 to 0.49 is over 50%, 

while that of line averages is just about 16%.  Agelinchaab et al. (2006) also reported a 

decreasing trend of Us / Umax with increasing ϕ, even though the porous medium model 

and filling fractions were different.  This shows that the decreasing trend of Us / Umax 

with ϕ is essentially the result of large increments in the maximum velocity coupled with 
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a reduction in the slip velocities as the resistance in flow through the porous medium sec-

tion increases. 
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Figure 4.10:  Profiles of (a) line averages of Us / Umax (b) volume averages of Us / Umax 

(c)line averages of Us / (  k) (d) volume averages of Us / (  k) for which Rebulk = 0.3 

and h/H = 0.75.  The same legend used in (a) applies to all the plots. 

 

The dependence of Us / (  k) on ϕ is also shown in Figure 4.10(b), using test cases at 

Rebulk = 0.3, and h / H = 0.75.  The parameter Us / ( k) generally increases with ϕ.  It 

should be noted that similar trends were also observed for Rebulk ~ 1 and 2.  The strong 

dependence of Us / (  k) on ϕ illustrates the strong influence of local conditions of the 

porous medium conditions on this dimensionless slip.  This observation is however in 
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contrast with previous results (Agelinchaab et al. 2006; Arthur et al. 2009) where this 

dimensionless velocity was found to be independent of ϕ in vertical models.  This differ-

ence in trends of the two results indicates that the type of porous medium has a strong 

bearing on Us / (  k), as expected.  To better understand the trend of this dimensionless 

slip velocity however, the ratio Us /   (as summarized in Table 4.6) should be examined.  

This ratio may be interpreted as a measure of the screening length (James and Davis 

2001).  A comparison of the ratio indicates that as expected, the depth of penetration de-

creases with increasing ϕ.  Thus, the increase in Us / ( k) with ϕ suggests that using k 

to approximate the screening length (as done in the past) for such a flow becomes less 

meaningful as the ϕ increases. 

The variation of the rod shape and arrangements are also shown in the Us / Umax ratios 

in Figures 10(a) and (b), and Tables 4.3 to 4.6.  Results show that the staggered circular 

arrays are about 15% less than non-staggered arrays.  However, Us / Umax ratios of square 

and circular rods are essentially the same.  This implies that for a porous medium of ϕ = 

0.12, and filling fraction 0.75, the arrangement of the models (whether staggered or non-

staggered) is of greater consequence at the slip, than the shape of the rods.  Staggered ar-

rays will record smaller slip velocities than the non-staggered arrays.  This seems reason-

able as staggered models may offer greater resistance to flow at the region close to the in-

terface, compared with the non-staggered models. 

As shown in Figures. 4.10(c) and 4.10(d), the arrangement of the rods affects the value 

of the dimensionless Us /( k).  The dimensionless slips for the staggered models are 

more than 40% higher than that of non-staggered arrays.  The relatively high deviation in 
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the case of Ul,s / ( l k) is due to the relatively low line averaged shear rates which are 

highly sensitive to location.  This sensitivity is somewhat dampened for volume average 

results.  Comparing the ratios Us /   to give a better explanation of the trends in terms of 

penetration depth, it may be observed that that of the staggered model is about 22% of the 

depth of penetration of the non-staggered model when line averages are considered.  For 

the rod shapes, results of Figure 4.10 and Tables 4.3 to 4.6 show that the depths of pene-

tration of the free zone flow into the porous medium are similar in both circular and 

square.  

Regarding filling fraction, the variation of Us / Umax, for various filling fractions are 

compared for selected test models in Figure 4.11.  Figure 4.11(a) and (b) in particular 

show that the trend is inconsistent.  This inconsistency may be due to the varied H / l ra-

tio used in each filling fraction, as indicated in the previous work of James and Davis 

(2001).
 
  The line averaged values of Us / (  k) also do not seem to follow any system-

atic trend, as shown in Figure 4.11(c).  As mentioned earlier, this may be the result of the 

sensitivity of shear rates when line averages are used.  However, Tables 4.5 and 4.6 and 

Figure 4.11(d) indicate that volume averaged values Uv,s / ( v k) are independent of fill-

ing fraction.  This is expected because the free zone remained unchanged at 27.4 mm in 

all the filling fractions used in the present work.  
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Figure 4.11:  Profiles of selected test conditions line averages of Us / Umax in (a) and vol-

ume averages of Us / Umax in (b), to show the effect of h / H on the slip velocity. Profiles 

of selected test conditions line averages of Us / ( k) in (c) and volume averages Us / (

k) in (d), to show the effect of h / H on the slip velocity. 

 

The variation of the dimensionless slip velocities with Reynolds may also be drawn 

from Figures 4.12 and 4.13, and Tables 4.3 to 4.6.  It should be noted that both line aver-

aged and volume averaged equivalents of this ratio show similar trends of variation, al-

though their values may be different.  Figure 4.12 shows the trend of Rebulk effects for Us / 
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Umax, using representative cases for which the filling fraction is 0.75 and 0.50.  Generally, 

as Rebulk increases from 0.1 to ~1, Ul,s / Ul,max and Uv,s / Uv,max decrease sharply, and then 

gradually for Rebulk > 1 .  In h / H = 0.75, the decline is at least 40%, and in h / H = 0.50, 

it is at least 27%.  The decline is due to the maximum velocity increasing at a rate much 

higher than that of the slip velocity.  
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Figure 4.12:  Profiles of selected test conditions line averages of Us / Umax in (a) and (c); 

and volume averages of Us / Umax in (b), and (d), to show the effects Rebulk on the interfa-

cial flow.  
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Figure 4.13:  Profiles of selected test conditions line averages of Us / (   ) in (a) and 

(c); and volume averages of Us / (  ) in (b), and (d), to show the effects of Rebulk on the 

interfacial flow.  

 

Figure 4.13 shows the relationship between the dimensionless Us / (  k) and Rebulk.  It 

should be noted that some of the line averaged values do not seem to follow any system-

atic trend for models of 0.75 filling fraction [Figures 4.13(a), (c), and Table 4.3].  The 

volume averaged results [Figures 4.13(b), (d), and Tables 4.5 and 4.6] however, show 

that taking into consideration measurement uncertainties, there is no dependence of Uv,s / 



4.3 Flow through and over Porous Media  136 

 

 

( v k) on Rebulk.  This apparent independence between Us / ( k) and Rebulk observed is 

expected as the bulk flow within the porous medium section of the test cases are gener-

ally not affected by inertia.  Hence the normalization of the slip velocity by these local 

parameters associated with the porous medium would yield a dimensionless grouping that 

is relatively unaffected by Reynolds number. This is unlike the dimensionless Us / Umax 

whose direct relationship with the free zone (with larger inertial effects) makes it suscep-

tible to greater Reynolds number dependence. 

James and Davis (2001) also analyzed slow flow through and over two-dimensional 

model porous media of comparable filling fractions.  Although the solid volume fractions 

of their model porous media were only up to 0.10, their study is the most comprehensive 

in the literature available for some form of comparison.  Thus, their results for filling 

fraction 0.75 are plotted with the present results in Figure 4.14 for circular rods of non-

staggered arrangements.  It may be observed however that the deviations between the di-

mensionless slip velocity defects (Ul,s –Ud)/ l k of the present results and those of 

James and Davis (2001)
 
are more than 200% even at ϕ = 0.06, where the solid volume 

fractions of the two studies coincide.  Further comparisons were made with correspond-

ing results of James and Davis (2001; shown in Figure 8 of that publication) and the pre-

sent work for the case of h / H = 0.50.  It was also observed that the deviations between 

those analytical results and present results are over 300% for cases of comparable solid 

volume fractions.  These deviations are noteworthy given that Tachie et al. (2003) also 

measured dimensionless slip velocity defects for shear flow over porous media, and ob-
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tained values which were within 10% of comparable analytical results of James and 

Davis (2001).   
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Figure 4.14:  The effects of the variation of solid volume fraction on the dimensionless 

slip velocity studied using line-averaged dimensionless slip velocity defect (Ul,s –Ud ) / l

   values to compare with results of James and Davis (2001) 
 
wherein h / H  is also 0.75. 

 

These apparent discrepancies may be explained by considering the contrasting roles of 

depth ratios (such as h / H, H / l, and the ratio of the channel depth to the porous medium 

pore hf / l) on pressure- and shear-driven flows through and over porous media.  As James 

and Davis (2001) point out in their work, depth ratios are of no consequence in shear 

flows.  On the contrary, in pressure-driven flows, depth ratios play an important role in 

the flow dynamics, and should be factored in if complete similarity is to be assured be-

tween corresponding models.  Thus, it is noted that for the case compared in Figure 4.14, 

the depth ratios h / H, H / l and hf / l for the present work are respectively 0.75, 9.1 and 

2.3, while that of James and Davis (2001) were respectively 0.75, 20 and 5.  In another 
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comparable case, the present depth ratios h / H, H / l and hf / l are respectively 0.50, 4.6 

and 2.3 while that of James and Davis (2001) were respectively 0.50, 10 and 5.  Although 

cases compared are of the same h / H, due to significant differences in H / l and hf / H in 

all these cases, complete similarities between the present cases and that of James and 

Davis (2001) were not attained.  Therefore, the results of the two studies are not expected 

to be equivalent, and are thus over 200% in deviation.    

It is also pointed out that although the two-dimensional porous media results of Sah-

raoui and Kaviany (1992) may not be appropriately compared with the present work due 

to differences in filling fraction, they also reported that the slip coefficient increases with 

porosity.  This interpreted in the present case, means (Ul,s –Ud)/ l     increases with ϕ, 

which agrees with the present results as shown in Figure 4.14.   

 

4.3.2.3. Interfacial Flow: Comparison with Literature, and Prediction 

The present section on interfacial flow closes by attempting to predict the flow at the in-

terface in light of previous approaches of Brinkman (1947), Beavers and Joseph (1967), 

and Ochoa-Tapia and Whitaker (1995a) as provided in the literature.  As these previous 

approaches were primarily derived for flows in flow regimes where inertia is not a factor, 

the comparisons made here are first limited to cases in which Rebulk is far less than 1 (i.e. 

Rebulk = 0.3).  Only volume averaged data are used in this section.  It may also be noted 

that due to the periodic nature of the flow, the streamwise gradient of the volume aver-



4.3 Flow through and over Porous Media  139 

 

 

aged transverse velocity is zero, so that this gradient represented in the Equation (2.12) 

proposed by Jones (1973) is of no value here.   

In Chapter 2, the application of the Brinkman equation to describe the flow near the 

interface was briefly reviewed.  Due to the difficulty in modelling the apparent viscosity 

in this equation, two models of this viscosity are usually utilized.  The models are µ / µ' = 

1, which Brinkman (1947) used; as well as µ / µ' = 
advanced by Neale and Nader 

(1974).  To verify the applicability of these models in the present work, volume averaged 

data from the present experiments are compared with the models.  The comparisons are 

made in Figure 4.15.  Predictions from the use of the Brinkman equation are based on the 

following volume averaged form of the solution of the Brinkman equation valid in the 

porous medium (Neale and Nader 1974; Gupte and Advani 1997) 
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Figure 4. 15:  Verifying the Brinkman equation using experimental data at the interfacial 

zone of (a) Rdϕ6Re0.3ff75 (b) Rdϕ12Re0.3ff75 (c) Sqϕ12Re0.3ff75 and (d) Stϕ12Re0.3ff75 (e) 

Rdϕ22Re0.3ff75 (f) Rdϕ49Re0.3ff75. 
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It should be noted that if µ / µ' = v
2
, differentiating Equation (4.12) once with respect to 

y, and evaluating it at y = 0 should give 

)( , dsv
vv UU
kdy

dU




                        (4.13) 

Equation (4.13) is a modified form of the Beaver and Joseph (1967) boundary condition, 

accounting for continuity in velocity and shear at the interface.  Thus using µ / µ' = v
2
, 

Equation (4.12) should predict the velocity distribution if the model or the Brinkman 

equation is valid.  For the specific cases of µ / µ' = v
2
 used in Figure 4.15, the slip coef-

ficient v
 
was derived from Equation (4.13) using experimental results obtained for the 

respective test cases.  Figure 4.15 shows that apart from the singular case of agreement 

between experiments and the Brinkman model (i.e. µ / µ' = 1) for Rdϕ6Rd0.3ff75 (resulting 

in an adjusted coefficient of determination of 0.97) the two models of the Brinkman 

equation give incorrect predictions of the velocity profile within the porous medium.   

In order to compare selected results with the jump conditions of Ochoa-Tapia and 

Whitaker (1995a) and to provide some data regarding its empirical coefficient β1, an ad-

ditional up-scaling was performed at the interfacial region of the volume averaged data.  

This was done using a transverse length equal to two times the value of the transition 

layer thickness within the porous medium.  It should be noted that the transition layer 

thickness  is defined in this work as the transverse distance taken for the streamwise 

velocity within the porous medium to decay to 1.01Ud with reference to the interfacial lo-

cation (Nield and Nader 1974; Morad and Khalili 2009).  The values are summarized in 

Table 4.7.  Included in Table 4.7 are the values of β1.  The values of this coefficient are 
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derived from Equation (2.13), and their uncertainties are estimated to range from 10% to 

18% as solid volume fraction increases from 0.06 to 0.49.   

 

Table 4.7:  Summary of values pertaining to the interfacial flow and its prediction for se-

lected test conditions.  

Name 


mm 
β1

R
2
 v  

Rd6Re0.3ff75 14.0 7.35 0.998 0.75 

Rd12Re0.3ff75 4.2 0.57 0.997 0.51 

Sq12Re0.3ff75 4.1 0.59 0.996 0.48 

St12Re0.3ff75 4.2 0.43 0.990 0.36 

Rd22Re0.3ff75 3.4 0.44 0.998 0.36 

Rd49Re0.3ff75 2.8 0.76 0.998 0.14 

 

 

From the results, it may be observed that β1 ranges over more than one order of magni-

tude as is varied from 0.06 to 0.49.  While the dependence of the coefficient with  is 

unclearit is independent of the shape of the rods.  However, β1 reduces significantly (by 

about 30% for = 0.12) when arrays are changed from non-staggered to staggered array.  

One clear limitation of the Ochoa-Tapia and Whitaker (1995a) boundary condition in this 

work is that it results in a jump in shear at the interface, which is clearly not the case in 

the present results.  Nonetheless the Ochoa-Tapia and Whitaker (1995a) boundary condi-

tion is an improvement of the Beavers and Joseph boundary condition, which results in 

jumps in both velocity and shear. 



4.3 Flow through and over Porous Media  143 

 

 

To provide an alternative to predict the interfacial flow, curve-fitting techniques were 

applied to the experimental data at the interfacial region.  For the present results, the in-

terfacial flow was found to be well described by the following dose response curve, with 

an adjusted coefficient of determination of 0.99 and above (as shown in Figure 4.16 and 

shown in Table 4.7;  a fuller report for all the test conditions is given in Tables 4.5 and 

4.6): 

pyDv

AB
AyU

)(101
)(




                  (4.14) 

Here, A, B, D, and p are respectively the asymptote as y    , the asymptote as y   , 

the transverse component of the center of the curve, and the hill slope of the curve.  The 

curve fits are shown for selected test conditions in Figure 4.16 where Rebulk = 0.3.  The 

shear rate of the flow at the interface yields  

 10ln
)101(

10)(
2

0

p
AB

dy

dU
Dp

Dp

y

v








                (4.15) 

This equation is the boundary condition at the interface between the porous medium and 

free zone flow of the configuration studied.  As mentioned earlier, as y  ∞ in Equation 

(4.14), U = A which is equivalent to the seepage velocity Ud.  Furthermore, at y = 0 (i.e. 

at the interface),   

Dpsvv
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AUU
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Figure 4.16:  Experimental data at the interfacial zone fitted to data points of (a) 

Rdϕ6Re0.3ff75 (b) Rdϕ12Re0.3ff75 (c) Rdϕ22Re0.3ff75  (d) Rdϕ49Re0.3ff75  (e) Sqϕ12Re0.3ff75  and 

(f) Stϕ12Re0.3ff75.   Dashed line indicates the interfacial location. 
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The boundary condition in Equation (4.15) may therefore be interpreted as a form of the 

Beavers and Joseph (1967) boundary condition as the velocity defect is 

Dpdsv
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UU
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                    (4.17) 

Thus rearranging Equation (4.15) in the form of the Beavers and Joseph (1967) 

boundary condition, it may be shown that  
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        (4.18) 

The coefficient αv is a dimensionless empirical coefficient, equivalent to the slip coef-

ficient of the Beavers and Joseph (1967) boundary condition, and the values are provided 

in Figures 4.17 and 4.18, and Tables 4.5 to 4.7.  The results show that the equivalent slip 

coefficient decreases with increasing solid volume fraction (Figure 17).  While this coef-

ficient is independent of the shape of the rods, there is a strong dependency of this coeffi-

cient with the arrangement of the porous medium.  Indeed, the slip coefficient of the 

staggered model of ϕ = 0.12 is equivalent to the non-staggered model of ϕ = 0.22.  Unlike 

the coefficients β1 earlier discussed, αv ranges over less than one order of magnitude (Ta-

ble 4.7) when Rebulk = 0.3. 
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Figure 4.17: The effects of the variation of solid volume fraction, shape and arrangements 

of rods on the equivalent dimensionless slip coefficient for Rebulk = 0.3, h / H = 0.75.  

 

The results presented in Figure 4.18(a) and Tables 4.5 and 4.6 indicate that filling frac-

tion effects may only be significant for 1 < Rebulk < 2.5, in which case, increasing h / H 

from 0.50 to 0.75 increases αv substantially by ~34%.  It may also be deduced from Ta-

bles 4.5 and 4.6 that, αv is unaffected by Rebulk in all other models apart from the non-

staggered models of filling fraction, 0.75 and ϕ < 0.12.  It may be recalled that in the as-

sessment of the bulk flow, this group of models also showed inertial effects on the bulk 

flow.  As shown in Figure 4.18, for 1< Rebulk < 2.5, αv could increase by over 100 fold in 

non-staggered model of ϕ = 0.06.   
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Figure 4.18:  The effects of the variation of Rebulk and h / H on the equivalent dimen-

sionless slip coefficient.  
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While likening Equation (4.18) to the Beavers and Joseph (1967) boundary condition, 

it is important to remark that the Beavers and Joseph (1967) boundary condition was 

originally based on a simplified porous medium–free zone flow model in which the shear 

rate within the porous medium was not considered.  This therefore resulted in a descrip-

tion of the flow with a discontinuity in velocity, and a jump in the shear at the interface.  

Equation (4.18) corrects these deficiencies by accounting for continuities in velocity and 

stress at the interface.  The form of this boundary condition indicates the complex nature 

of the interfacial flow.   

It should also be added that unlike the formulations of Ochoa-Tapia and Whitaker 

(1995a, 1998) which need modification with the onset of inertia, the same boundary con-

dition as given in Equation (4.18) is sufficient for cases of porous medium–free zone in-

terfacial flow with or without inertial effects.  This may be verified in Figure 4.19, for se-

lected curve fits.  As shown, in all cases, the plots are in reasonable agreement with the 

prediction.  Apart from Rd6Re2.5ff75 [e.g. Figure 4.24(b)], all other fits were found with 

adjusted coefficient of determinations R
2
 of above 0.98, as summarized in Tables 4.5 and 

4.6. 
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Figure 4.19:  Experimental data at the interfacial zone fitted to data points of selected test 

conditions.  Dashed line indicates the interfacial location. 
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4.3.3 Flow Phenomena in two- and three-dimensional Porous Media 

This section presents and discusses results of the 3
rd

 series of experiments.  The aim is to 

compare flows through and over two- and three-dimensional porous media, focussing 

only on inertial and solid volume fraction effects.  To avoid unnecessary repetitive de-

scriptions of trends, the discussion is limited to only area and volume averaged velocities.  

In the first part of this section, averaged velocities are used to examine the bulk flow.  

The averaged velocities are subsequently used to study the flow at the interface of the po-

rous medium in the following part of the section.  In each of these considerations, flow 

through and over one type of two-dimensional porous media model (i.e. horizontal 

model) and two types of three-dimensional (i.e. vertical and mesh model) porous media 

are examined and compared.  This section extends the scope of study in the previous sec-

tion to cover a wider range of solid volume fraction (i.e. 0.03 <  < 0.49) and Reynolds 

number (i.e. 0.8 < Rebulk < 10.3).    

4.3.3.1. Bulk Flow Characterization 

Sample results plotted in Figure 4.20, show how area averaged streamwise velocities (Ua) 

and transverse velocities (Va) compare for flow through and over horizontal, vertical, and 

mesh models.  In the plots, corresponding volume averaged streamwise velocities (Uv) 

and transverse velocities (Vv) are also shown.  Results show that transverse velocities are 

no more than 3.4% of the maximum local streamwise velocity Umax when Rebulk ~ 1.  The 

transverse velocities increase to a maximum of 8.7% of Umax in high Reynolds number 

test conditions (as in Mh22Re6.6).  However, in cases where the flow through the porous 
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media is virtually a plug flow (e.g. Mm49Re10.3), transverse velocities are typically com-

parable with the streamwise velocities.  These descriptions are common with each type of 

porous medium model tested. 
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Figure 4.20:  The relative magnitudes of area averaged streamwise (Ua) and transverse 

(Va) velocities are compared for the following sample test cases - (a) and (b): Mh12Re1.1; 

(c) and (d): Mv12Re1.1; (e) and (f): Mm12Re0.8.   
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To compare the effects of inertia on the bulk flow for all the three types of porous me-

dia, the position of the maximum velocity, the percentage flow rates per unit width of test 

section channelled through the free zone, and Ua,max / Ubulk (together with the volume av-

erage equivalent Uv,max / Ubulk) may be assessed, as done in previous cases.  Results pre-

sented in Table 4.8 for all the types of model porous media show that the increase in    

Rebulk from 1 to ~7 is attended with up to a 36% shift in the position of Umax.  Figure 4.21 

(a) shows percentage flow rate distributions obtained for models of = 0.12, while Fig-

ure 4.21(b) shows that for models of  = 0.22.  These results also show that increasing 

Rebulk within the range of Reynolds number for the model types tested, leads to as much 

as 20% more of the fractional flow being diverted into the porous medium as long as  < 

0.22.  It is only at  > 0.22 that the effective drag due to the walls of the porous medium 

is high enough to resist significant increases in relative bulk flow through them.   

To further study the inertial effects in the models, the Uv,max / Ubulk ratios at the same 

test conditions of Figures 4.21(a) and (b) are respectively plotted for Figures 4.21 (c) and 

(d) (It should be noted that similar trends may be observed for Ua,max / Ubulk as shown in 

Table 4.8).  The plots show that the bulk distribution of flow and the Uv,max / Ubulk ratios 

decreases by about 22% as Rebulk increases from ~1 to ~7.  This reduction however tends 

to become less significant as  > 0.22, and insignificant at  = 0.49.  The results also in-

dicate that for all the models tested, as Rebulk increases, the rate of increase in Uv,max is 

relatively lower than Ubulk, and this remains the case even at  = 0.49. 
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Table 4.8:  Summary of area averaged test results    

Name y / H 

at 

Ua,max 

% of 

flow 

through 

free 

zone 

Ubulk 

/Ua,max 

k 

(mm) 

Ua,s 

  (mm/s)

Ua,s 

/Ua,max 

a  

(/s) 

Ua,s / 

(
a k ) 

Mv3Re0.8 0.06 39 2.05 4.6 9.6 0.91 0.91 2.30 

Mv3Re8.2 0.08 37 1.86 4.6 80.7 0.84 9.50 1.86 

Mv6Re1.2 0.10 56 2.87 3.0 13.6 0.62 4.13 1.11 

Mv6Re7.7 0.11 48 2.30 3.0 78.4 0.70 17.59 1.51 

Mv12Re1.1 0.11 82 4.30 1.4 16.0 0.56 2.54 4.49 

Mv12Re6.7 0.15 67 3.28 1.4 69.4 0.50 9.25 5.36 

Mh12Re1.1 0.12 80 4.30 1.4 9.6 0.32 6.89 1.00 

Mh12Re7.3 0.14 61 3.42 1.4 48.1 0.31 31.50 1.09 

Mm12Re0.8 0.12 90 5.47 1.5 3.0 0.11 4.42 0.45 

Mm12Re6.6 0.13 70 4.42 1.5 24.7 0.13 41.70 0.40 

Mh22Re0.9 0.12 90 4.77 0.8 12.7 0.45 6.74 2.42 

Mh22Re6.1 0.15 70 3.57 0.8 45.2 0.33 26.19 2.21 

Mh22Re6.6 0.15 83 4.39 0.8 58.2 0.32 29.26 2.55 

Mm22Re0.8 0.13 96 5.52 0.7 6.4 0.24 7.21 1.29 

Mm22Re1.3 0.13 96 5.56 0.7 9.8 0.21 11.89 1.20 

Mm22Re6.9 0.15 88 5.19 0.7 42.3 0.19 39.10 1.58 

Mh49Re0.9 0.13 99 5.74 0.3 1.6 0.07 4.30 1.43 

Mh49Re5.4 0.13 98 5.26 0.3 16.0 0.14 34.07 1.81 

Mh49Re7.2 0.11 98 5.15 0.3 30.3 0.20 48.27 2.42 

Mh49Re9.9 0.10 99 4.99 0.3 30.3 0.15 60.56 1.93 

Mm49Re0.9 0.15 99 6.47 0.2 1.7 0.07 2.78 2.80 

Mm49Re10.3 0.15 99 5.57 0.2 18.6 0.08 47.54 1.84 
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Figure 4.21:  The effects of Reynolds number on flow through and over the porous me-

dium studied using: percentage of bulk flow that is channelled through the free zone of 

test models of (a)  = 0.12, (b)  = 0.22; Uv,max / Ubulk of test models of (c)  = 0.12; and 

(d)  = 0.22.  The lines are not meant to imply a linear trend. 

 

In Figure 4.22, plots of selected test conditions are used to compare the solid volume 

fraction effects.  As shown, there is an increase in the proportion of flow channelled into 

the free zone, as  is increased from 0.03 to 0.49.  This increasing trend is independent of 

the type of model porous media, or the Reynolds number.  However, three-dimensional 
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mesh models channel about 10% more flow through the free zone, compared with the 

three-dimensional vertical and two-dimensional horizontal models at  = 0.12.  The verti-

cal and horizontal models on the other hand, record fairly equal levels of flow distribu-

tion.  The variation in Uv,max / Ubulk ratios for different solid volume fraction of porous 

media are also respectively shown in Figures 4.22(c) and (d) for the same conditions as 

Figures 4.22(a) and (b) to study solid volume fraction effects in all model types.  The fig-

ures show that Uv,max / Ubulk ratios increase with solid volume fraction irrespective of the 

Reynolds number or the type of porous medium.  As expected, Uv,max / Ubulk increases to 

the limiting value of ~6 expected for the case where the porous medium is replaced by a 

solid block.  As the observed increases in percentage flow distribution and Uv,max / Ubulk 

with solid volume fraction is independent of the model porous medium type or the Rebulk, 

it is confirmed that the increases are a direct result of an increase in the solid volume 

fraction of the porous medium. As the solid volume fraction increases, it leads to an in-

crease in percentage flow through the free zone and thus the position of Ua,max for each 

Ubulk tested. Table 4.8 also shows that the position of Ua,max shifts towards the top wall by 

about 80% . 
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Figure 4.22:  The effects of the variation of solid volume fraction  on the bulk flow 

demonstrated using (a) percentage of bulk flow channelled through the free zone for 

cases of Rebulk ~1, (b) percentage of bulk flow that is channelled through the free zone for 

cases of Rebulk ~ 7; (c) ratio of the volume averaged maximum to the bulk velocities for 

cases of Rebulk ~1; and (d) ratio of the volume averaged maximum to the bulk velocities 

for cases of Rebulk ~ 7. 

 

These phenomena may be understood by considering that the mesh models (by virtue 

of their arrangement) induce blockage of flow in two orthogonal directions, compared 
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with the blockage in one direction in the vertical and horizontal models. The blockage in 

two directions (in mesh models) leads to an enhanced channelling of flow through the 

free zone, compared with the horizontal or the vertical models, which have rods arrayed 

in only one direction. It is important to note however that the foregoing observations may 

only apply when the solid volume fractions are less than 0.22.  Figures 4.21(b), 4.22(a) 

and 4.22(b) and Table 4.8 indicate that the blockage levels of horizontal and mesh models 

tend to converge as the solid volume fraction increases from  = 0.22 onwards, so that 

there are ultimately equal levels of flow distribution at  = 0.49. For similar reasons as 

given for the flow distribution, the Uv,max / Ubulk values for the mesh models are more than 

15% higher than the horizontal or vertical models for  < 0.12. As  > 0.22, the 

Uv,max/Ubulk values of horizontal and mesh models also tend to converge. 

In closing, the effects of varying Rebulk and solid volume fraction in the bulk flow for 

the types of porous media studied are summarized using the velocity distributions plotted 

in Figure 4.23.  Though mesh models tend to channel more flow through the free zone, 

generally [as shown in Figure 4.23 (a)], all models of ϕ < 0.22 decrease in the percentage 

flow channelled in the free zone, as Rebulk increases [e.g. Figure 4.23 (b)].  This decrease 

however becomes insignificant by  = 0.49 [e.g. Figure 4.23 (c)].  As solid volume frac-

tion increases, more flow is channelled through the free zone [as exemplified in the verti-

cal model case studies in Figure 4.23 (d)]. Furthermore, the position of Ua,max shifts to-

wards the upper wall of the test section as Rebulk and  increases.  
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Figure 4.23:  Summary of effects of bulk variations using velocity distributions of flow 

through and over porous media as (a) porous media arrangements are varied, using hori-

zontal, vertical and mesh models of  = 0.12 and Rebulk ~ 1; (b) Reynolds number is in-

creased (this typifies observations in models of  < 0.49); (c) Reynolds number is in-

creased in a typical model of = 0.49; and (d) Solid volume fraction is varied, using ver-

tical models of Rebulk ~ 1;.  Dashed line indicates the interfacial location. 
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4.3.3.2. Interfacial Flow Characterization 

As done in previous study of the two-dimensional porous medium (i.e. § 4.3.2.2), atten-

tion will be limited to the dependence of the interfacial flow on the specific permeability 

k, the average slip velocity Us at the interface between the porous medium and overlying 

free flow, the average shear rate at the interface  (= dU/dy|y=0+), and the channel’s 

maximum average velocity Umax.  It is re-iterated that the specific permeability, k of the 

test models were quantified using correlations in the literature expressed in Equations 

(3.10), (4.9) and (4.11).  Values of k are provided in Table 4.8.  The specific permeabil-

ity k is expected to be inversely related to the proportion of flow channelled through the 

open section.  Thus from the percentage flow distribution results obtained, k for the 

mesh models are to be significantly less than that of the horizontal and vertical models.  

However, this is not the case when k for mesh models of  = 0.12 are compared with 

that of vertical and horizontal models of the same solid volume fraction.  The reason for 

this deviation may be the presence of inertial effects in the measurements.  Nonetheless it 

is important to stress that this does not in any way affect the conclusions of the trends ob-

served for slip velocities.  

It is important to note that because this section deals with local interfacial conditions, 

the values of the slip velocity and interfacial shear rates are expected to be highly sensi-

tive to the method of averaging, especially when shear rates are considered.  Therefore, 

the trends of corresponding dimensionless groupings may not necessarily be the same for 

area and volume averages.  However, to properly compare the results obtained in the 

three types of model porous media, only trends of volume averaged values will be dis-
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cussed.  Occasional references to area averaged results are made where necessary (the 

area averaged results are summarized in Table 4.8).  The volume averaged interfacial 

flows are investigated using the dimensionless groupings Uv,s / Uv,max and Uv,s / ( v k), 

summarized in Table 4.9.   

The discussion on dimensionless slip velocities begins by first considering the ratio Us  

/ Umax.  Figures 4.24(a) and (b) show the relationship between Rebulk and Us / Umax, using 

volume averaged measurements for selected test cases of  = 0.12 [in Figure 4.24 (a)], 

and  = 0.22 [in Figure 4.24(b)].  These selected cases are representative of the entire ex-

perimental data set, as may be verified from the experimental data summarized in Table 

4.9.  It may be readily observed that although there appears to be a decrease in Us / Umax 

with increasing Rebulk, the dependence is very weak in all models.   
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Table 4.9:  Summary of volume averaged test results   

Name Uv,max 

(mm/s) 

Ubulk 

/Uv,max 

Uv,s 

(mm/s)

Uv,s 

/Uv,max 

v  

(/s) 

Uv,s / 

   ( v k) 

R
2 

v

Mv3Re0.8 8.2 1.60 8.1 0.99 0.12 14.98 0.997 0.14 

Mv3Re8.2 73.5 1.43 71.5 0.97 1.76 8.87 0.999 0.31 

Mv6Re1.2 17.6 2.30 14.0 0.79 1.25 3.79 0.999 0.39 

Mv6Re7.7 94.1 1.93 74.4 0.79 6.05 4.15 0.998 0.45 

Mv12Re1.1 25.7 3.88 14.6 0.57 3.35 3.11 0.998 0.35 

Mv12Re6.7 127.0 3.02 66.4 0.52 14.30 3.32 0.994 0.43 

Mh12Re1.1 26.6 3.83 11.4 0.43 3.41 2.40 0.999 0.49 

Mh12Re7.3 138.1 3.00 55.4 0.40 16.53 2.40 0.999 0.80 

Mm12Re0.8 22.3 4.48 8.5 0.38 3.06 1.89 0.993 0.63 

Mm12Re6.6 150.5 3.63 53.8 0.36 18.91 1.90 0.997 0.81 

Mh22Re0.9 26.4 4.48 13.0 0.49 4.21 3.96 0.999 0.26 

Mh22Re6.1 130.9 3.41 50.0 0.38 18.13 3.54 0.999 0.34 

Mh22Re6.6 171.7 4.11 65.1 0.38 22.84 3.66 0.999 0.33 

Mm22Re0.8 24.7 5.06 9.3 0.38 3.74 3.62 0.999 0.28 

Mm22Re1.3 42.6 5.03 14.3 0.34 6.01 3.47 0.999 0.30 

Mm22Re6.9 201.5 4.66 53.9 0.27 22.68 3.47 0.993 0.34 

Mh49Re0.9 19.9 5.24 5.7 0.28 2.95 7.40 0.999 0.14 

Mh49Re5.4 111.6 4.96 36.7 0.33 17.10 8.29 0.998 0.12 

Mh49Re7.2 145.8 4.85 52.6 0.36 23.31 8.72 0.999 0.12 

Mh49Re9.9 195.1 4.70 67.3 0.34 31.21 8.33 0.999 0.12 

Mm49Re0.9 22.0 5.62 4.5 0.20 2.57 8.24 0.998 0.12 

Mm49Re10.3 201.1 4.65 62.3 0.31 29.62 9.94 0.988 0.10 
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Figure 4.24:  The effects of Reynolds number on the slip velocities using the ratio of: (a) 

volume-averaged slip velocity to maximum velocity for = 0.12, and (b) volume aver-

aged slip velocity to maximum velocity for = 0.22.   

 

 

To demonstrate how Us / Umax generally varies with , results of selected cases for 

which  = 0.12 have been plotted in Figure 4.25.  Volume averaged values at Rebulk ~ 1 

are shown in Figure 4.25(a), whereas in Figure 4.25(b), volume averaged results at Rebulk 

~7 are shown.  From these plots, it is clear all models decrease in Us / Umax with increas-

ing .  Three-dimensional vertical models decrease by about 42% as  increases from 

0.03 to 0.12.  Area averaged results of vertical models in Table 4.8 are similar in trend, as 

reported by Agelinchaab et al.(2006) and Arthur et al. (2009) who also performed tests 

on vertical models.  Indeed, present values are ~30% higher, and that is anticipated, given 

that the filling fraction of the present models (that is, 0.74) is higher than those previous 

studies (which had a maximum filling fraction of 0.56).  For two-dimensional horizontal 

models, Us / Umax decreases by ~10% when solid fraction varies from  = 0.22 to 0.49. In 
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the case of mesh models also, Us / Umax decreases by at least 14% when  increases from 

0.22 to 0.49.  The decreasing trends observed in all models (as shown in Figure 4.25) 

may be understood by considering that there will be large increments in the maximum ve-

locity compared with slip velocities, as the  in the porous medium section increases.  

To summarize the relative values of Us / Umax data of the three models, reference is 

made to Figures 4.24 and 4.25 again.  It is observed that the Uvs / Uv,max ratio of the verti-

cal model is more than 30% that of the horizontal and mesh models.  The two-

dimensional horizontal models also record ratios of Uvs / Uv,max that are at least 10% more 

than the mesh models. These results therefore indicate that penetration of the free flow 

through porous media of is largest for three-dimensional vertical models, fol-

lowed by horizontal models, and then the mesh models.  This is intuitive.  The vertical 

models are expected to be the highest considering that they offer the least surface area re-

sistance of the models in the x-z plane at the interfacial region. Mesh models on the other 

hand, would offer the greatest resistance to the penetration of flow penetration through 

the porous medium, compared with the other models.  
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Figure 4.25:  The effects of the variation of solid volume fraction on the slip velocities us-

ing the ratio of the (a) volume averaged slip velocity to maximum velocity for cases of 

Rebulk ~1; and (b) volume averaged slip velocity to maximum velocity for cases of Rebulk 

~ 7.  

 

 

Having considered Us / Umax, attention is now turned to Us /(  k).  Figure 4.26 shows 

the relationship between the dimensionless grouping Uv,s /( v k) and Rebulk for test cases 

of  = 0.12 [in Figure 4.26(a)], and  = 0.22 [in Figure 4.26(b)].  The reader may refer to 

Tables 4.8 and 4.9 for a fuller version of the Us /( k) results.  The overall observation 

of the dimensionless slip variation is that taking into account experimental errors, Uv,s /(

v k ) is nearly independent of Rebulk in all models when  > 0.12.  Inertial effects are 

most prevalent in vertical models of  < 0.12 where the Uv,s /( v k) values at Rebulk ~7 

are at least five times the value at Rebulk ~ 1.  
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Figure 4.26:  The effects of varying Rebulk on Uv,s /( v k) for: (a) = 0.12, and (b) = 

0.22.   

 

In Figure 4.27, the variation of Us /(  k) with is presented using selected volume 

averaged results for models at Rebulk ~ 1 [in Figure 4.27 (a)], and Rebulk ~7 [in Figure 4.27 

(b)]. The figures clearly indicate that while vertical models decrease with increasing , 

the horizontal and mesh models rather increase with increasing .  It is important also to 

note that the trend of Us /( k) variation with obtained in the present vertical models at 

Rebulk ~1, is different from that obtained by Agelinchaab et al.(2006).  Agelinchaab et 

al.(2006) observed that Ua,s /( a k) remained approximately constant at ~1 and ~2 for 

0.28 and 0.56 filling fractions respectively, despite changes in .  However, present re-

sults (as in Table 4.8) show that the dimensionless slip is not constant.  Although the 

cause of this discrepancy between the present observations and that of Agelinchaab et al. 
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(2006) is uncertain, it may be speculated that it may be mainly due to the differences in 

resolution of the area averaged velocity measurements used in obtaining the interfacial 

shear rate.  Present velocities are spaced at 0.11 mm intervals while theirs is about 1 mm. 

Furthermore, the H / l and h / H ratios for comparable test conditions in the experiments 

are different.   

 
0.0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

(b)(a)

(b) 

 

U
a

,s
 /

 (


a
 k

1
/2
)



 Horizontal model  

 Mesh Model  

 Vertical Model

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8
 

 

U
a

,s
 /

 (


a
 k

1
/2
)



 Horizontal model  

 Mesh Model  

 Vertical Model

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20
 

 

U
v
,s
 /

 (


v
 

 k
)



 Horizontal model  

 Mesh Model  

 Vertical Model

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

(a)

 

 

U
v
,s
 /

 (


v
 

 k
)



 Horizontal model  

 Mesh Model  

 Vertical Model

 

Figure 4.27:  The effects of varying  on Uv,s /( v  ) for: (a) Rebulk ~1; and (b) Rebulk ~ 

7.  

 

To summarize the relative values of Us /( k) for the three porous media types, the 

volume averaged results presented in Figures 4.26 and 4.27 may be used.  At , re-

sults show that three-dimensional vertical models record Us /( k) which are at least 

65% higher than those of the mesh and horizontal models.  The results also indicate that 

although Us /(  k) of mesh models are somewhat lower than the horizontal models, the 

trends of variation with solid volume fraction are similar (see Figures 4.26 and 4.27).  An 
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examination of the screening length Us /  provides a clearer insight to the value of the 

trends in Us /(  k).  The screening lengths show that the vertical models allow free flow 

to penetrate the porous medium ~4.5 times the penetration depth of horizontal models, 

and ~9.4 times the penetration depth of mesh models.  These conclusions are intuitive, 

considering that the vertical models are expected to provide a surface area resistance to 

flow in the x-z plane that is least compared with that of the horizontal and the mesh mod-

els.  However, because of the value of k used, within experimental errors, Uv,s /( v k) for 

the horizontal and mesh models of = 0.12, 0.22 and 0.49 are equivalent. 

 

4.3.3.3. Interfacial Flow Prediction 

An attempt is now made to predict the flow at the interface and its immediate regions for 

all the models investigated in the 3
rd

 series of experiments.  

After applying curve-fitting techniques to the volume averaged experimental data, the 

interfacial flow was found to be well described by the dose response curve of Equation 

(4.14), with an adjusted coefficient of determination of 0.98 and above (as shown in Ta-

ble 4.9).  In Figure 4.28, the applicability of this curve in vertical and mesh model porous 

media is also demonstrated.  Given that Equation (4.14) agrees well with the experimen-

tal data, it may be concluded that this form of flow equation applies at the interface be-

tween two- or three-dimensional isotropic porous media and an overlying free flow.  
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Figure 4.28:  Experimental data at the interfacial zone fitted to curves, and shown for se-

lected cases of: (a) Mv12Re8.2  (b) Mv12Re1.1 (c) Mh12Re1.1 (d) Mm12Re0.8 (e) Mh22Re6.6 

and  (f) Mm49Re0.9. Dashed line indicates the interfacial location. 
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The coefficient αv is the dimensionless empirical coefficient.  This is provided for all 

test conditions in Table 4.9.  As shown in Table 4.9 and Figure 4.29, αv is dependent on 

Rebulk for all models of  = 0.12 for Rebulk up to ~ 7. In these cases, as Rebulk increases, αv 

increases by a range of 15% to 120%.  However at  > 0.12, inertial effects are non-

existent.  It should also be pointed out that the trend of change in αv with  for vertical 

model is distinctly different from that of the mesh and horizontal models which are 

equivalent at  > 0.12. This further shows that the slip parameters are dependent on the 

direction in which the axes of the rods are arrayed.   
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Figure 4.29:  (a) Inertial effects on αv for three types of model porous media of  = 0.12; 

(b) Solid volume fraction effects on αv for three types of model porous media at Rebulk ~ 

7. 
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Additionally, as shown in Figure 4.30, Uv,s /( v  ) and αv obtained for horizontal and 

mesh porous media models  > 0.12 bear the following allometric correlation 
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Figure 4.30:  Plot for predicting αv from Uv,s /( v k) for present horizontal and mesh 

models of  > 0.12 and bulk Reynolds number up to Rebulk ~10. 
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4.3.4 Investigating the Separate and Combined Effects of Filling Frac-

tion and Test Section Depth-to-Porous Medium Pore Ratio (DPR) 

This section presents and discusses results of the 4
th

 series of experiments.  The study 

was conducted to further investigate the separate and combined effects of filling fraction 

(h / H) and DPR (H / l) on flows through and over two- and three-dimensional porous 

media.  For the bulk flow, the percentage of the total flow rates per unit width of test sec-

tion channelled through the free zone were calculated for each of the test conditions.  Re-

sults are presented in Table 4.10.  Corresponding results may also be seen in the area av-

eraged streamwise velocity distributions normalized by the local maximum (Ua,max) in 

Figure 4.31.   

 

Table 4.10:  Results of volumetric averages   

Name % 

of flow 

through  

free 

zone 

Ud 

(mm/s) 

Uv,s 

(mm/s)

v  

(/s) 

Uv,s / 

Uv,max 

Uv,s / 

( v k) 

   

Mv12Dp5.75ff74 82 1.1 14.6 3.35 0.57 3.11 0.35 

Mv12Dp7.63ff56 97 0.1 5.9 1.60 0.28 2.62 0.39 

Mv12Dp9.13ff74 87 1.8 8.2 2.54 0.26 2.34 0.55 

Mv12Dp9.13ff47 98 0.4 3.4 0.99 0.20 2.43 0.47 

Mh12Dp5.75ff74 80 1.8 11.4 3.41 0.43 2.39 0.49 

Mh12Dp6.83ff50 95 0.8 5.2 1.64 0.29 2.28 0.48 

Mh12Dp13.69ff50 97 0.5 2.5 0.81 0.11 2.24 0.57 

Mh12Dp13.69ff75 89 1.3 4.7 1.54 0.15 2.20 0.63 
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Figure 4.31:  Area averaged velocity distributions for (a) vertical models and (b) horizon-

tal models. 

 

It may be observed from results of Mv12Dp9.13ff74 and Mv12Dp9.13ff47 that for the 

three-dimensional vertical porous media, the percentage flow channelled through the free 

zone increases by 11% as h / H decreases from 0.74 to 0.47.  This is expected because as 

h / H decreases for a given depth of flow, the proportion of flow passing through the po-

rous medium reduces.  As a consequence, more flow is conducted through the free zone.  

The results of Mv12Dp5.75ff74 and Mv12Dp9.13ff74 also suggest that increasing H / l from 

5.75 to 9.13 increases the percentage flow channelled through the free zone by 5%.  This 

is also expected because as H / l increases, there is a decrease in distance between rods 

relative to the depth, and therefore an increase in the proportion of flow that is blocked by 

the porous medium.   
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A relative comparison of the effects of filling fraction and DPR on the flow distribu-

tion shows that filling fraction effects may be more prominent than DPR effects.  This is 

evident by the fact that an increase in filling fraction by a factor of 1.6, decreases the 

fractional free zone flow by up to 12%, while an increase in depth-to-pore ratio by a fac-

tor of 1.6 increases the percentage free zone flow by only 5%. 

For the two-dimensional horizontal porous media, the percentage flow channelled 

through the free zone increases by 9% as h / H decreases from 0.75 to 0.50 for a constant 

H / l of 13.69.  This is different from what was observed in the three-dimensional vertical 

porous media, and it is due to the increase in the depth of the free zone.  It should also be 

noted that for the horizontal model, doubling H / l at h / H of 0.50 increases the percent-

age of flow channelled through the free zone from 95% to 97% only.  This change is 

small (and insignificant considering error limits), compared with the 9% increase re-

corded when the filling fraction was reduced by half.  This further demonstrates that the 

H / l effect on the flow is relatively less pronounced than the filling fraction, when the 

flow rate distributions are considered. 

To study the slip velocities in the experiments, Uv,s / Uv,max ratios for the different test 

conditions are compared.  As shown in Table 4.10 and Figure 4.32, the filling fraction 

and the DPR affect the value of Uv,s / Uv,max.  For the vertical models, the effects of these 

two factors are counteractive.  As the filling fraction is increased from 0.47 to 0.74 for 

example, the Uv,s / Uv,max ratio increases marginally from 20% to 26%; but as the DPR is 

increased from 5.75 to 9.13, the Uv,s / Uv,max ratio reduces from 57% to 26%.  A compari-

son of the results however indicates that in a dual play of the two depth ratios, the DPR is 

the more important factor.  The contribution of the DPR may seem more significant here 
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because that is a more direct indication of the flow penetration of the open flow into the 

porous medium.  As l is increased for a given H, flow penetration is expected to increase.  

Conversely, as l is decreased for a given H, flow penetration is expected to decline.  

Similar observations in trend may also be deduced for the horizontal models.    
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Figure 4.32:  Volume averaged velocity distributions at the interfacial region for (a) ver-

tical models and (b) horizontal models.  The interface is marked by the dashed line. 

 

For the dimensionless slip Uv,s /( v k), the present results indicate that for a given 

DPR, the filling fraction is not a significant factor.  Thus as shown in Table 4.10, Uv,s /(

v k)  obtained remained at an average value of ~2.39 when H / l was kept constant at 

9.13 for the vertical models of filling fraction change from 0.74 to 0.47, and ~2.22 when 

H / l for horizontal models was kept constant 13.69 for filling fraction change from 0.50 
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to 0.75.  On the other hand, the DPR appears to have a more pronounced influence.  As 

for the Uv,s / Uv,max ratio, in both horizontal and vertical models as H / l increases, the di-

mensionless Uv,s /( v k) decreases appreciably.  This is a clear indication of the marked 

effect of pore size on the penetration of flow from the free zone into the porous medium.  

Agelinchaab et al. (2006) used vertical models of  = 0.12, h / H = 0.56, and at H / l = 

2.08.  For that test condition, they obtained Ua,s /( a k) = 1.97.  At  = 0.12 and h / H = 

0.56, the present results of Ua,s /( a k) = 1.74 which shows some weak but significant 

effect of H / l (even when measurement uncertainty limits are taken into account).  This 

further corroborates the fact that increasing H / l leads to a significant decrease in dimen-

sionless slip velocity as observed earlier.   

In closing, the effect of h / H and H / l on the slip coefficient v is considered.  Present 

results indicate that for both vertical and horizontal models, an increase in either parame-

ter by a factor of 1.5 leads to an increase in the slip coefficient v by at ~10% or more.   
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Chapter 5 

Summary of Results and Future Work 

In this final chapter, a summary of results and conclusions are provided.  The implica-

tions of these findings for theoretical and numerical work are also briefly pointed out, fol-

lowed by an outline of recommendations for future work that can be considered. 

5.1 Summary and Conclusions 

In this experimental research, laminar flows through and over porous media with or with-

out inertial effects were investigated with three main objectives in view.  The first objec-

tive was to provide comprehensive data to characterize the effects of solid volume frac-

tion, porous media rod shape and arrangement, porous medium dimensionality, Reynolds 

number and filling fraction (separate and combined with the depth to porous medium 

pore ratio) on laminar flows through and over porous media flow.  The second objective 

was to use the measurements to verify which governing equation best applies in two- and 

three-dimensional porous media flow conditions at the onset of inertia. The third objec-
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tive of this research was to seek a better formulation for predicting interfacial flow and 

the interfacial boundary conditions.   

To achieve the above-mentioned objectives, detailed experiments were undertaken for 

flow through and over porous media of solid volume fraction ranging from 0.03 to 0.49.  

Various porous media were modelled using circular and square rods, in non-staggered 

and staggered array, and with the rod axes aligned exclusively parallel to the spanwise di-

rection (to simulate a two-dimensional porous medium, called ‘horizontal’ model), and 

exclusively parallel to the spanwise direction (to simulate a three-dimensional porous 

medium, called ‘vertical’ model).  Another model was constructed so that the rods were 

arranged in a combination of spanwise and transverse directions (to simulate a more 

complicated version of the three-dimensional porous medium, called ‘mesh’ model).  The 

filling fractions of the porous media were also varied from 0.34 to 1.  By varying the flow 

rate of the pressure-driven flow through the test section, bulk Reynolds numbers ranging 

from 0.1 to 10.3 were studied.  A two-dimensional particle image velocimetry technique 

was used to conduct detailed velocity measurements.  Electronic transducers were used to 

obtain differential pressure measurements in some of the experiments.   

Experiments were conducted in four series.  In the first series of experiments, the fo-

cus was on flow through round non-staggered horizontal and mesh model porous media 

only.  This was done to provide velocity and pressure measurements of flow through 

these models in order to determine the equation that best describes the flow that governs 

porous media flow up to the regime of the onset of inertia effects.  In the second and third 

series, flows through two-dimensional porous media, and two- and three-dimensional po-

rous media were respectively studied to study the effects of solid volume fraction, filling 
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fraction, arrangement and shape of the porous medium rods, inertia, and porous medium 

dimensionality on the flow.  In the last series of experiments, flow through and over po-

rous media was investigated to particularly study the independent and combined effects 

of filling fraction and depth to porous medium pore ratio on the flow.  

 

5.1.1 Flow through a Porous Medium 

Results of the first series of experiments indicate that for flows through porous medium, 

transverse velocities are generally insignificant compared with the corresponding maxi-

mum streamwise velocities.  Furthermore, these transverse velocities are independent of 

the pressure drops.  The friction factor also increases with solid volume fraction of po-

rous medium, and it is also affected by the dimensionality of the models.  The three di-

mensional mesh porous media models of solid volume fraction 0.12 and 0.22 (i.e. Mm12 

and Mm22 respectively) in particular were found to be about ten times the value of the 

corresponding horizontal porous media.  Notwithstanding the dimensionality of the po-

rous media model, the relationship between the pressure drops and seepage velocities was 

found to be well described by the quadratic Forchheimer equation.  The quasi-linear rela-

tionship of the two-dimensional porous media of low solid volume fraction (i.e.  < 0.12) 

in particular was indicative of channel-like flow results which were best described by the 

Izbash Equation.   
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5.1.2 Flow Through and Over Porous Media 

For flows through and over porous media, the following summarizes the effects of the 

solid volume fraction, rod shape and arrangements, filling fraction (separate and com-

bined with and depth to porous medium pore ratio), porous media dimensionality and in-

ertia.  

(a) For the bulk flow, the percentage flow channelled through the free zone increases 

from ~40% to 98% as ϕ is increased from 0.03 to 0.49.  The percentage flow distributions 

of models of  > 0.22 are independent of the solid volume fraction.  At the interface, the 

ratio of slip velocity to the corresponding maximum velocity (Us /Umax) decreases from 

~0.91 to 0.05 as ϕ increases from 0.03 to 0.49.  The dimensionless velocities related to 

the interfacial shear rate [i.e. Us /( k)] show that penetration is reduced by at least half 

when ϕ increases from 0.06 to 0.49. 

(b) The bulk flow is nearly independent of the shape and arrangement of rods (i.e. stag-

gered or non-staggered arrangements).  At the interface however, Us /Umax of staggered 

arrays are about 15% less than that of non-staggered arrays, while square and circular 

rods are similar.  The penetration of the free flow into the staggered porous medium is at 

least 15% less that of the non-staggered arrays.  The penetrations are independent of the 

shape of the rods.  It must be noted however, that for the staggered arrays in particular, 

the value of the shear rate is significantly affected by the mode of averaging. 

(c) A reduction in filling fraction from 0.75 to 0.34 (while maintaining a constant depth 

of free flow) results in about 18% increase in the percentage flow channelled through the 

free zone. The depth to porous medium pore ratio effect on the flow is relatively less pro-
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nounced than the filling fraction, when the flow rate distributions are considered.  In the 

case of the interfacial flow, the two effects are counteractive, and the depth to porous 

medium pore ratio effects are more pronounced.  Present results also show that the effect 

of modifying the filling fraction on Uv,s /( v  k) is insignificant when the depth of the 

free zone remains unchanged. 

(d) With respect to porous media dimensionality, it is noted that for the same solid vol-

ume fraction (i.e.  = 0.12), three-dimensional mesh models channel about 10% more 

flow through the free zone, compared with the vertical and horizontal models.  Inertial ef-

fects are most prevalent in three-dimensional vertical models of  < 0.12 where the Uv,s /(

v  ) values at Rebulk ~7 are at least five times the value at Rebulk ~ 1.  Three-

dimensional vertical models allow free flow to penetrate the porous medium ~4.5 times 

the penetration depth of horizontal models, and ~9.4 times the penetration depth of mesh 

models.  

(e) As the bulk Reynolds increases, the transverse velocities compared with Umax, in-

crease from insignificant levels when Rebulk < 1 to about 8.7% when Rebulk = 6.6.  The 

bulk flows are also more susceptible to inertial effects when  < 0.12, h / H = 0.75 and h / 

l < 10.26, and arrays are non-staggered.  Increasing Rebulk within the range of Reynolds 

number for the model types tested, leads to more of the fractional flow being diverted 

into the porous medium as long as  < 0.22.  For the interfacial flow, as Rebulk increases 

from 0.1 to ~2.5, the ratios of the slip velocity to the corresponding maximum velocity 

Ul,s / Ul,max and Uv,s / Uv,max decreases sharply by at least 27%.  Beyond this range of 
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Reynolds number, the decrease in ratio is weak. There is no dependence of the volume 

averaged dimensionless slip velocity Uv,s /( v k) on Rebulk. 

By using curve-fitting techniques, a dose response equation was proposed as an ade-

quate model for flow distribution near the interface.  The derivative of this equation at the 

interface yields a boundary condition at the interface akin to that of the Beavers and Jo-

seph (1967).  This formulation is to be preferred to those of Brinkman (1947), the origi-

nal Beavers and Joseph (1967), Ochoa-Tapia and Whitaker (1995) and other related 

models in the literature, because it provides a more realistic description of the interfacial 

flow, and it applies to both non-inertial and inertial laminar flows.  Its related slip coeffi-

cient varies from 0.75 to 0.36 as ϕ increases from 0.06 to 0.49.  The coefficient is 

strongly dependent on the mode of arrangement of the rods, but independent of the shape 

of the rods.  Furthermore, αv appears to be unaffected by Rebulk and filling fraction in all 

other models apart from non-staggered models of filling fraction, 0.75 and ϕ < 0.12.  In-

deed, the slip coefficient may be predicted for given values of Uv,s /( v k) for two-

dimensional horizontal and three-dimensional mesh models of = 0.12, 0.22 and 0.49, 

and Rebulk up to 10.3. 

The same form of the interfacial formulation prescribed in this work applies to two- 

and three-dimensional porous media of ϕ ranging from 0.03 to 0.49, filling fraction rang-

ing from 0.34 to 0.75, porous media of square or circular rods, or staggered or non-

staggered arrays.  The formulation is also applicable for a flow regime of Rebulk ranging 

from 0.1 to 10.3.   
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5.2 Implications of Results for Theoretical and Numerical Studies 

The experimental data presented in this work provides great insight into porous medium 

flows as well as interfacial flow phenomena for porous medium-free non-inertial flows.  

This information may be used to calibrate and to validate theoretical models (as has been 

demonstrated in this work).   

This study provides other particular benefits in the theoretical and numerical model-

ling of laminar flows through and over model porous media, and the following is a sam-

ple of such benefits: 

(a) The use of the quadratic form of the Forchheimer equation has been verified to be 

adequate for the analysis and simulation of flows through two- and three-dimensional po-

rous media at the onset of inertia.  A cubic equation may not be necessary to improve ac-

curacy.  However, the Izbash equation should be preferred when only two-dimensional 

porous media are used.  

(b) The characterization of the interfacial flow has shown that the use of non-local aver-

age flow distribution to study the local interfacial flow quantities is not accurate, as these 

average distributions are not always sensitive to specific flow conditions (such as stag-

gered or non-staggered arrangement of the porous media) compared with the local inter-

facial flows.  This is an important point to note giving that much of the present theoretical 

work in the literature (e.g. Ochoa-Tapia and Whitaker 1995b, Goyeau et al. 2003; 

Chandesris and Jamet 2006, 2009) are heavily dependent on the average measurements of 

Beavers and Joseph (1996) in support of their theoretical analysis.     
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(c) Coupled porous-free flows may now be theoretically analyzed and numerically solved 

using a more realistic boundary condition at the interface, given explicitly in this work.  

Furthermore, a realistic formulation by which the interfacial flows over porous media 

over a wide range of solid volume fraction can be modeled, has been provided.  Its utility 

has been proven for cases with or without inertia effects, and it is expected to help deduce 

effective properties of the flow at the interfacial region.   

(d) The interfacial flow data presented in this thesis provides accurate information about 

the thickness of the interfacial region, which is not known a priori in theoretical studies.  

It should be noted that although this length scale is critical in the up-scaling of averaged 

velocity data to obtain a macroscopic description, it is often generalized, leading to an 

under-estimation or an over-estimation.  This work provides accurate information for this 

purpose. 

(e) The provision of extensive data on the dimensionless slip velocity Uv,s /( v k) will 

be a valuable tool to help assess the penetration of flow at the interface for various condi-

tions of free-porous media coupled flows in theoretical analysis.  Present results show 

Uv,s /( v  k) is not equal to 1/ε as claimed by Chandesris and Jamet (2009) in their the-

oretical work.  It shows that the value of this is not only dependent on the solid volume, 

but also on the structure of the porous medium particles, and this must be taken into con-

sideration when modeling. 

(f) This work shows that flow over porous media can be modeled without incorporating 

any stress or velocity jump at the interface, as previous theoretical works and boundary 
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conditions suggest (e.g. Beavers and Joseph 1967, Ochoa-Tapia and Whitaker 1995b, 

Goyeau et al. 2003; Chandesris and Jamet 2006, 2009).   

 

5.3 Recommendations for Future Studies 

To extend the characterization the effect of the depth to porous medium pore ratio on po-

rous media interfacial flow, further work is recommended for a wider range of ratios (e.g. 

covering 20 < H / l < 40).   

Furthermore, having shown the form of equation that applies at the interfacial bound-

ary for models of porous media made up of regularly repeated units, perhaps what re-

mains is to test whether this formulation also pertains to porous media made up of irregu-

larly arranged units.  For a more complete study, it will also be necessary to explore the 

theoretical basis of this equation, as well as its practical applications in future studies. 

One other natural extension of this work will be to consider turbulent flows over po-

rous media.  That is of important bearing to many engineering areas such as canopy 

flows, currents over river beds, grain and storage drying, and turbulent atmospheric 

boundary layers over forests under fire (De Lemos 2009).  Given the enormous engineer-

ing value of such flows, the inadequacy of pertinent experimental work as well as the 

limitations of numerical studies, cutting-edge experimental studies are critically required 

to characterize the flow, and to provide further understanding into the underlying trans-

port mechanisms of such turbulent interfacial flows.  
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Principles and Implementation of Particle 

Image Velocimetry 

A.1  Introduction 

This is an overview of the particle image velocimetry (PIV) technique is given.  While 

this overview provides information particularly related to the PIV system used in the re-

search program readers may refer to the manual provided by Dantec Dynamics for a more 

comprehensive layout of the system.  This outline (adapted from Arthur 2008) presents 

aspects such as the tracer particles, light sources, image recording media, image analysis 

methods, and some precautions taken to ensure optimization of measurements.  
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A.2  The PIV Technique 

PIV is an optical technique that allows for the quantitative measurement of whole flow 

fields instantaneously in two or three dimensions. Figure A.1 shows a schematic diagram 

of a typical experimental arrangement of a PIV system for the two-dimensional velocity 

measurement of a flow field. The set-up is made up of a number of components. The 

components are: tracer particles in a flow, a light source (e.g. a laser) and an image re-

cording medium (i.e. a camera). As shown, there are other systems used for the synchro-

nisation of the camera and laser pulses (e.g. synchronising hub), the evaluation the data 

images, and post-processing of the data acquired (e.g. a computer with image acquisition 

software). The specific components of the PIV technique used in this work are described 

in Chapter 3. 

The PIV technique is premised on the assumption that the tracer particles in the flow 

whose velocity is really being measured, faithfully follows the fluid flow.  In a typical 

PIV system, a plane of flow seeded with tracer particles is illuminated twice within a 

short interval of time by means of a laser.  The particles scatter the light, and this is in 

turn recorded on frames of a camera.  The displacements of the particle images between 

the intervals of light pulses are calculated from the positions at the two instances of time 

by statistical methods.  The velocity is then computed using the time delay between the 

two illuminations, and the imaging magnification. 
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Unlike other techniques of measurements where probes such as pressure tubes and 

hotwires are required to complete measurement, PIV allows for the study of flows in a 

relatively non-intrusive manner.  The tracer particles have properties such as to enable the 

flow measurements without any disturbance.  Furthermore, current developments of PIV 

technique make it possible for large portions of flow fields to be measured instantane-

ously and yet with optimum temporal and spatial resolution.  For a more detailed over-

view of the technique, the reader is directed to a practical guide by Raffel et al. (2007).  

Buffer / Synchronizer

Laser 

Generator

Computer

Laser

camera
Tracer particles in  a  flow

 

Figure A. 1: A typical PIV experimental set-up for the two-dimensional velocity meas-

urement of a flow field. 
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A.3  Tracer Particles 

In PIV, the hydrodynamic and optical properties of the tracer particles are critical to en-

sure high accuracy in measurement.  This is because the fluid flow is measured indirectly 

by measuring the velocity of tracer particles themselves within the flow.  

Using Stokes’ drag law to model the behaviour of a particle under acceleration, for a 

spherical particle in a viscous fluid at a Reynolds number less than unity, the settling ve-

locity vs induced due to the difference in the tracer particle density, p, and the fluid den-

sity, f. is given by (Mei et al 1991): 

 




18

2

pfp

s

gd
v


                      (A.1) 

The parameter g is the gravitational acceleration, dp is the particle diameter, and µ is the 

dynamic viscosity of the fluid. As this velocity is undesirable (being a result of the influ-

ence of gravitational force when p and f are mismatched.), one important precaution to 

be taken is that the particles are neutrally buoyant in the fluid. The ability of the particle 

to follow the flow is measured in terms of a response time parameter,R  This is governed 

by Stokes law, and also expressed as (Westerweel et al. 1996): 

 





18

2

psp

R

gdv
                      (A.2) 
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From this equation, it is readily observed that to ensure that,R is small enough to faith-

fully follow the flow, the particles must be sufficiently small.  However, it must also be 

large enough to scatter light sufficiently to be detected by the camera.  

These light scattering properties of a tracer particle are on the other hand subject to the 

particle size, shape, and orientation, the refractive index of the particles to that of the sur-

rounding medium, and the wavelength of radiation.   

Some of the seeding particles available commercially are silver-coated hollow glass 

spheres, hollow glass spheres, polyamide seeding particles, and fluorescent polymer par-

ticles. 

 

A.4  Light Source 

In PIV, the flow field needs to be illuminated with light of sufficient intensity to scatter 

light which can be recorded by the camera.  This is done using a suitable light source that 

is pulsed so that the seeding particles and flow field do not move significantly during the 

light-pulse exposure. 

Lasers are widely used in PIV techniques to illuminate the flow region.  They find 

ready application in this technique because they are able to emit monochromatic light at 

high intensity, which is converted into a thin sheet of light without chromatic aberrations.  

A laser system basically consists of a laser material, a pump source, and a mirror ar-

rangement.  The laser material is excited by the pump source by the introduction of elec-
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tro-magnetic or chemical energy to generate a sheet of light.  The mirror arrangement al-

lows the thickness and orientation of the light sheet to be adjusted.  Lasers can be classi-

fied as gas lasers (e.g. Helium-neon lasers, Copper-vapour lasers, Argon-ion lasers), or 

semiconductor / solid-state lasers (e.g. Ruby lasers, Neodymium: yttrium-aluminium-

garnet i.e. Nd:YAG lasers ) based on the type of laser material.  These lasers have atomic 

or molecular gas laser materials, and are continuous wave types, suitable for applications 

in low-speed water flows.  The semiconductor / solid-state lasers in particular are able to 

produce high quality beams, have high power efficiency and high amplification.  

 

A.5  Image Recording Media 

The initial and final positions of tracer particles scattering light in the field of flow are re-

corded with a camera.  Recording is either captured altogether by a single frame method, 

or by a multi-exposure means (in which there is an illuminated image per illumination 

pulse).  

For the single frame method, because the particle images are recorded onto one 

frame, there is no retention of information regarding the temporal order of the illumina-

tion pulse.  This leaves the displacement vector with directional ambiguity which must be 

accounted for by the use of additional schemes (such as image shifting), and necessitates 

a time-consuming iteration procedure for image optimization and processing. 
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The multi-frame exposure PIV recording method however results in the retention of 

the temporal order of the particle images.  The evaluation procedure associated with this 

method is also much easier to handle. That explains why it is currently the preferred 

method for image recording.  Modern technological developments in electronic imaging 

in multi-frame recording now allow for immediate feedback and optimization of image 

quality during the experiment.  The most widely used PIV multi-frame recording device 

is the charge-coupled device (CCD) camera.  This type of camera is particularly noted for 

its production of highly spatially resolved images, its capacity to enable PIV recordings 

do be done in a way that the recordings are temporarily spaced by microseconds, and its 

ability to give instantaneous digital signals of the image map of the particle positions for 

possible online analysis. 

Perhaps, the most important component of a CCD based camera is the sensor.  There 

are two types of CCD sensors, namely: full-frame-transfer CCD and interline transfer 

CCD sensors.  In either of these types however, the sensors typically consist of a two-

dimensional array of light sensitive picture detectors called pixels.  Each pixel is a ca-

pacitor, charged by the photons of light converted into electric charge as light is incident 

on it.  The electric charge is proportional to the photon flux incident on the pixel, and the 

time interval of flux exposure.  This charge is transformed to a read-out voltage observed 

on the PIV image map as a distribution in grey scale.  

CCD sensors have another set of cells called storage cells that is quite different from the 

pixels.  Unlike pixels, these storage cells are not exposed to light.  However, the storage 

cells work in close relation with the pixels.  Laser pulse and the camera frames are syn-
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chronised in such a way that the first laser pulse is timed to expose the first frame. The 

charge of the light-sensitive cells of the frame is then transferred to the storage cells after 

the laser pulse. At the second laser pulse the second frame is exposed. The first and the 

second frames are then transferred in a sequential manner to the camera outputs within a 

time interval of ~ 0.5 to 1 milliseconds (Agelinchaab 2005) or even less than 1 microsec-

ond (Agelin-Chaab 2010). 

 

A.6  Image Analysis 

Each camera frame bears image of particles that is sub-divided into rectangular regions 

called interrogation areas (IA).  The images that are recorded sequentially per impulse of 

laser radiation are correlated within each IA. This correlation involves a statistical 

evaluation of the average spatial shift in corresponding images, as described in Figure 

A.2.  

In the linear signal processing model of Figure A.2, the functions a and d of pixel co-

ordinates (x, y) represent the known functions of light intensities within an IA recorded at 

times t and t +∆t.  What needs to be determined is the spatial shift (displacement) func-

tion b(x, y) that exists in the presence of a noise function c(x, y).  To do this efficiently, 

fast Fourier transformation (FFT) processes are used in the correlation evaluation, so that 

the two-dimensional field of the camera image is made analogous to a time series in one 

dimension. It should be noted that in the figure, Fourier transforms are represented by 
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upper case functions of the corresponding lower case functions in the spatial frequency 

domain coordinates (u, v). The transforms A(u, v) and D(u, v) reduce the summation of 

elements of the sampled region to something of a complex conjugate multiplication of 

each corresponding pair of Fourier coefficients. The resultant coefficient function, ad is 

then transformed to obtain the correlation function ad. Using the location of the dis-

placement peak on the correlation plane and the time between laser pulses, the velocity 

vector in the IA is then evaluated. For an array of IAs, a velocity map is generated by 

processing images similarly over that array.  This numerical processing of images is typi-

cally done using commercially developed softwares such as DynamicStudio v.2.30 (by 

Dantec Dynamics). 

There are two basic correlation methods are commonly used in estimating the spatial 

shift function.  These are auto-correlation and cross-correlation methods.  The auto-

correlation method is not able to support the separation of particle positions on distinct 

frames of camera.  Thus an image recorded on a camera frame is correlated with a spa-

tially shifted version of itself, resulting in a large central peak in the correlation plane and 

two displacement peaks. The average particle displacement in the IA is obtained from the 

distance from the self-correlated central peak to either of the displacement peaks.  As 

auto-correlation is a result of a self-correlation of particle images, particle displacements 

less than 2 – 3 pixels are not detected, and this reduces the range of a particle displace-

ment over sub-pixel resolution (i.e., the dynamic range).  Furthermore, because of the na-

ture of this method of correlation process, there is directional ambiguity in the particle 

images. This makes it difficult to apply this correlation to flow applications in which ed-
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dies are expected. The problems of dynamic range and directional ambiguity may how-

ever be resolved using special cameras that have the capacity to shift the image of the 

particles on the CCD-chip in the interval between the first and second exposure. Nonethe-

less, a better option for the correlation of images that ensures complete separation of con-

secutive camera images with high resolution is the cross-correlation technique. 

 

 

 

Figure A. 2: This is a linear model of an image displacement function (Raffel et al. 

2007). The denominations x and y are respectively used to describe coordinates in the 

streamwise and transverse directions. 
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While the cross-correlation technique is applied to a single exposure / multiple (dou-

ble) frames by sampling two interrogation windows from the image recordings, the auto-

correlation technique is applied to single frame / double exposure recordings by using in-

terrogation windows of different sizes and / or slightly displaced from each other. In ei-

ther case however, at time t = t0 and at t = t0 +t the input signals of first and the second 

images are recorded. The spatial shift functions are obtained by the use of FFT algo-

rithms. As the calculation of correlations by means of FFT results in a cyclic noise at the 

edges of an IA, particle images at the edges have no corresponding pair. To reduce this, 

functions as overlapping of interrogation areas are employed to make use of all the in-

formation near the edges of the IA. In PIV, it is also recommended that particle image 

displacements be less than a quarter of the IA (Prasad 2000) because large relative dis-

placements results in a reduction in the signal to noise ratio. 

When many particle images in the first frame match with corresponding spatially 

shifted images in the next frame, high correlation values (called true correlations) result. 

Likewise small correlation values (or random correlations) are present when only indi-

vidual particles match with other particles in a second frame.  The correlations in the lat-

ter case occur because of seeding particles leaving an IA between the first and second 

image recordings.  This phenomenon is called ‘loss-of-pairs’. Random correlations lead 

to a decrease in signal-to-noise ratio. In applying the cross-correlation method, a suffi-

ciently large match of particle pairs is required to provide a satisfactory peak in the corre-

lation plane. The position of the peak gives the average displacement of the particle 

within the IA.  
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Comparing the two basic methods of correlation, the following remarks may be made 

(Further details may be seen in Raffel et al 2007 and Willert and Gharib 1991).  As al-

ready mentioned, the cross-correlation technique is superior to the autocorrelation tech-

nique.  It is typically characterised by a higher dynamic range and no directional ambigu-

ity.  Furthermore, the cross-correlation technique places less demands on the number of 

particles required per IA.  While autocorrelation techniques may require 10 particles per 

IA to obtain satisfactory results, cross-correlation requires only 6 (Keane and Adrian, 

1992). It should be added that although calculations in the cross-correlation technique are 

more complex and time-consuming, those computational challenges are usually over-

come by using computers of high speed and memory. 

Another preferred method of correlation is the adaptive correlation.  It is a special it-

erative type of cross-correlation, and it depends on the use of a guessed velocity spatial 

distribution. This initial guess is used to introduce an offset from the first IA. (i.e., the IA 

in the image frame from the first laser pulse) to the second IA (i.e. the IA in the image 

frame from the second laser pulse).  The resultant vector is validated, and then used as an 

input to estimate another IA offset.  The process is thus repeated, but with a subsequently 

smaller window.  The iteration continues until a convergence criterion is reached. As the 

iterative process associated with the adaptive correlation leads to an increase in signal 

strength, this correlation technique has some characteristics superior to other conven-

tional correlation methods. More vectors are successfully recovered (and not lost through 

loss of pairs) for a given seed density of the flow. Furthermore, there is consequential de-

crease in the size of the IA, improving the spatial resolution of the IA.  To obtain a high 
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valid detection probability for an adaptive correlation technique, the number of particle 

images per IA is to be only 3 or more (Keane and Adrian 1992). 

 

A.7  Post-Processing of Data from PIV Measurements 

The data obtained from PIV measurements is usually huge, and requires fast reliable and 

fully automated post-processing to facilitate interpretation.  This post-processing is usu-

ally accomplished by data validation, replacement of incorrect data, data reduction, fur-

ther data analysis and presentation of results. 

Upon evaluation of correlations, wrongly determined vectors (or outliers – vectors 

which have a signal to noise ratio is less than unity) are usually apparent by a visual in-

spection of the raw data. While outliers may be treated interactively for a small number 

of PIV recordings, for a large number of PIV recordings, this interactive treatment is not 

realistic. Such cases are therefore treated by means of an automatic algorithm with a high 

level of confidence, so that no questionable data is stored in the final data set. For cases 

of less than 5% outliers (under extremely challenging experimental conditions; Raffel et 

al, 2007), it is acceptable to recover erroneous data by using a replacement scheme, such 

as bilinear interpolation of valid neighbouring vectors.  To facilitate the thorough inspec-

tion of vectors, techniques such as averaging, conditional sampling and vector field op-

erators are usually applied. The PIV data may then be further analysed, and then pre-

sented in the form of plots which are easily appreciable. Post-processing of PIV data can 
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be done using commercially available software such as DynamicStudio, MATLAB 

(technical computing software developed and supplied by the MathWorks) and OriginPro 

(data analysis and graphing software by OriginLab).  

 

A.8  Optimizing PIV Measurements 

As the best of experimental conditions are still subject to outliers in its PIV vector map, 

optimization of PIV measurements is necessary so as to reduce outliers.  To do this, such 

parameters as measurement of the particle diameter, laser energy, light sheet dimensions, 

intervals between images, camera magnification and focal ratio ought to be carefully con-

trolled. To ensure optimal optical assess, the flow section must be refractive index-

matched with the working fluid.  Further to this, to optimise hydrodynamic and optical 

properties, the particle to be chosen must with density similar to the fluid density but 

large and polished enough to scatter light.  

It is recommended that to improve signal to noise ratio of vectors from a PIV meas-

urement, an IA should be large enough to accommodate enough particles, but small 

enough so that a vector describes the flow (Keane and Adrian 1990). Furthermore, to 

make corresponding particle image pairs separable, it has also be prescribed that the par-

ticles be allowed to travel more than one particle image diameter dτ, given by (Keane and 

Adrian 1990)  
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where dp is particle diameter, S is the object to image scale factor (also defined as the in-

verse of the magnification factor of the lens arrangement of the camera). The focal ratio 

of the camera, denoted by f#, is the diaphragm aperture. The aperture controls the light 

per unit area that is admitted into the image plane of the system. Light per unit area 

reaching the image plane of the system reduces as f# increases. The laser light wavelength 

is denoted by λ.   

The particle image diameter should be appropriately small.  According to Raffel et al. 

(1998) it becomes too small there will be insufficient information to utilize in sub pixel 

interpolation (sub pixel interpolation is a phase in data correlation intended to increase 

accuracy in detecting the location of the correlation peak by fractions of a pixel).  This is 

because there is a tendency for the data to be biased towards integer pixel values. One no-

table error caused by a wrong estimate of the sub-pixel interpolation is called peak lock-

ing.  It has a periodic pattern on pixel intervals. To minimize this, the particle image di-

ameter is recommended to be 2.0 pixels (Raffel et al. 2007) for minimizing peak locking. 

Figure A3 shows typical histograms that show cases of minimized peak locking, as main-

tained in the present experiments.  
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(a) 

 

 

(b) 

 

Figure A. 3: Typical histogram of peak widths for flow (a) through a free zone, and (b) 

through and over a = 0.12 vertical model porous media to demonstrate lack of peak 

locking. This is captured for flow through a mesh mode. 

 

 



Principles and Implementation of Particle Image Velocimetry  225 

 

 

 

For an image magnification M, and a minimum velocity, umin, the minimum time interval 

between images is given by: 

min

d
T

Mu

                        (A.4) 

Using Equation (A.4), appropriate time intervals can therefore be carefully controlled to 

ensure that particle displacements are less than a quarter of IA. 

The average number of particle images within a square IA of window size I and for a 

light sheet thickness of Δz is given as 

2

2

M

zCI
N I


                       (A.5) 

where C is the number of particles per unit fluid volume.  
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Uncertainty Analysis 

B.1  Overview 

As this report focuses on measurements of the streamwise velocity u, transverse velocity 

v, and average differential pressure measurements ∆P, it was needful that the uncertain-

ties regarding these quantities be evaluated.  To assess the uncertainty in u (i.e. Eu), v (i.e. 

Ev), and in ∆P measurements (i.e. E∆P), the bias and precision errors were identified and 

then quantified.  This was done by evaluating the measurement chain based on the meth-

odologies outlined by Coleman and Steele (1995), Stern et al. (1999), Forliti et al. 

(2000), Gui et al. (2001) and Adeyinka and Naterer (2005).  

 

B.2  Velocity Measurements 

The bias component of Eu was first estimated, taking into consideration that the limita-

tions on the accuracy of velocity measurements brought about by such factors as the par-
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ticle response to fluid motion, light sheet positioning, velocity gradient, light pulse tim-

ing, the size of IA, the sub-pixel interpolation of the displacement correlation peak and 

insufficient sample size (Arthur 2008; Agelin-Chaab 2010).  Many of these limitations 

were however expected to be minimized by the precautionary measures outlined in sec-

tion 3.3.1.  The elements of the velocity bias limits were identified as the resolutions of 

the image, the CCD camera chip, time interval between laser pulses, and the particle dis-

placement (Agelinchaab 2005).  These have been respectively denoted by Lo, LI, t, and 

s.  Using the following equation, the bias limit of the measured velocity, Bu was then 

determined  

Bu 
2 
=  L

2
BL

2
 +  L1

2
B L1

2
 + s

 2
 Bs

 2
 +  

t
 2

 Bt 
2       

            (B.1) 

where the sensitivity coefficients, X = ∂ui/∂X, for X = Lo, LI, t, s.  Typical assessments 

for bias limits of u have been outlined in Tables B.1 and B.2. 

The precision limit of the measured time-averaged streamwise velocity, Pu was statis-

tically evaluated from  
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where K is the confidence coefficient, and  the standard deviation of the measurements. 

The coefficient K has a value of 2 for a 95% confidence level for n = 15 experiments to 

measure of velocity at the same location (Adeyinka and Naterer 2005).   
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The value of the total uncertainty Eu was computed from the square root of the sum of the 

squared bias and precision errors, i.e.,  

Eu =  (B
2

u + P
2
u)                      (B.3) 

They were estimated to be 1% of the maximum velocity, umax in the free zone, and 1.5% 

of umax within porous media of  = 0.03 and 0.06.  Due to the presence of etches on the 

rod surfaces, the increase in solid volume fraction of the porous media was attended with 

a reduction in optical assess.  This, together with the record of low velocities within the 

porous medium contributed to considerable increments in precision errors of the meas-

ured velocities as the solid volume fraction increased.  Therefore, for the streamwise ve-

locities of flow through model porous media of  = 0.12, 0.22 and 0.49, the total uncer-

tainties are approximately 2.5%, 4% and 5% respectively of umax.   

The total uncertainties of the transverse velocities Ev, were also similarly determined 

(as discussed above) and found to be approximately 1% of umax in the free zone and in 

porous medium of  = 0.03 and 0.06; and 2%, 3% and 3.5% of umax in model porous me-

dia of  = 0.12, 0.22 and 0.49 respectively.  
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Table B.1: A typical assessment of the bias limit of u in free zone flow. 

Variable Magnitude BX X BXX (BXX)
2
 

Lo (m) 2.72 E-02 5.00 E-04  8.63 E -01 4.32 E -04 1.86 E-07 

LI (pix) 2.05 E+03 5.00 E-01 -1.14 E -05 5.72 E -06 3.28 E-11 

t (s) 2.30 E -03 1.00 E-07 -1.02 E 01 1.02 E -06 1.04 E-12 

s (pix) 4.07 E 00 1.27 E-02 5.77 E-03 7.32 E-05 5.36 E-09 

u (m/s) 2.34 E -02     

     ∑(BXX)
2
 

= 1.92 E-07 

Bu = 4.38 E -04 

 

 

 

Table B.2: A typical assessment of the uncertainties of u in porous medium for flow 

through and over 0.22 horizontal sample. 

Variable Magnitude BX X BXX (BXX)
2
 

Lo (m) 2.72 E-02 5.00 E-04 4.40 E -02 2.20 E -05 4.83 E-10 

LI (pix) 2.05 E+03 5.00 E-01 -5.83 E -06 2.92 E -07 8.50 E-14 

t (s) 4.20 E -03 1.00 E-07 -2.84 E -01 2.84 E -08 8.08 E-16 

s (pix) 3.78 E -01 1.27 E-02 3.16 E -03 4.01 E-05 1.61 E-09 

u (m/s) 1.19 E -03     

     ∑(BXX)
2
 

= 5.56 E-09 

Bu = 7.46 E -05 
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B.3  Differential Pressure Measurements 

The bias component of the pressure measurement was assessed using a methodology 

similar to that used for the velocity uncertainties.  As the measurement of the differential 

pressure was only limited by the pressure transducer, the relative bias error, as provided 

by the manufacturer was used.  The relative bias error due to the pressure transmitter, 

Br∆P = B∆P /∆P = 0.25%.  The precision limit of the pressure measurement P∆P, was also 

assessed statistically.  Using a similar equation as (B.2),  
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where K is the confidence coefficient and  the standard deviation.  Using n = 11 re-

peated experiments for this evaluation, the relative precision error in pressure measure-

ment, Pr∆p = P∆P / ∆P is estimated to be 3% at 95% confidence level  

The value of the total uncertainty E∆P was computed from the square root of the sum of 

the squared bias and precision errors, i.e.,  

E∆P = ( B∆P 
2
+ P∆P

 2
)
05

                    (B.5) 

and estimated to be 3% of the average pressure measurement. 
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B.4  Combined Error Assessments 

To compute the errors propagated in the calculation of any parameter R made up of inde-

pendent variables x1, x2, ... xn, with corresponding relative uncertainties of u1, u2, .... un, 

the following relative uncertainty expression was used (Fox et al. 2004): 
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Figure C. 1:  Typical PIV vector map of measurements. 

 



Supplementary Figures  236 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

 

 

Rd 
12

 Re
0.1

 ff
75

 :   U
v
 ;   V

v
 

Rd 
12

 Re
0.3

 ff
75

 :   U
v
 ;    V

v
   

Rd 
12

 Re
1.0

 ff
75

 :   U
v
 ;    V

v
  

y / H

Velocity / U
v,max

(e)

(d)(c)

(b)

 

 

St 
12

 Re
0.2

 ff
75

 :   U
v
 ;    V

v
 

St 
12

 Re
1.0

 ff
75

 :   U
v
 ;    V

v
   

St 
12

 Re
2.5

 ff
75

 :   U
v
 ;    V

v
  

y / H

Velocity / U
v,max

 

 

Rd 
22

 Re
0.3

 ff
75

 :   U
v
 ;   V

v
 

Rd 
22

 Re
1.1

 ff
75

 :   U
v
 ;   V

v
   

Rd 
22

 Re
2.3

 ff
75

 :   U
v
 ;   V

v
  

y / H

Velocity / U
v,max

(a)

 

 

   Rd 
6
 Re

0.3
 ff

50
 : U

v
 ;  V

v
 

   Rd 
6
 Re

0.5
 ff

50
 : U

v
 ;  V

v
   

   Rd 
6
 Re

1.4
 ff

50
 : U

v
 ;  V

v
  

y / H

Velocity / U
v,max(f)

 

 

Rd 
22

 Re
0.4

 ff
50

 :   U
v
 ;   V

v
 

Rd 
22

 Re
1.0

 ff
50

 :   U
v
 ;   V

v
   

Rd 
22

 Re
1.7

 ff
50

 :   U
v
 ;   V

v
  

y / H

Velocity / U
v,max

 

 

Rd 
12

 Re
0.5

 ff
34

 :   U
v
 ;   V

v
 

Rd 
12

 Re
0.7

 ff
34

 :   U
v
 ;   V

v
   

Rd 
12

 Re
2.0

 ff
34

 :   U
v
 ;   V

v
  

y / H

Velocity / U
v,max

 

Figure C. 2:  The relative magnitudes of volume averaged streamwise (Uv) and transverse 

(Vv) velocities for selected test conditions, showing effects of Reynolds number. 

 


