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Abstract 

The potential of filling carbon nanotubes in polymers has been widely acknowledged for 

composites with exceptional new properties owing to the high strength of carbon 

nanotubes.  In the thesis, by employing Materials Studio 4.0 software, the buckling 

behaviour and vibration of polyethylene and carbon nanotube matrix composites are first 

discussed using molecular mechanics simulations. The research is aimed to acquire a 

high strength design of PE-CNT matrix with proper PE/CNT ratio as well as discovering 

the dynamic characteristics of the PE-CNT composites. Investigation results show that as 

the number of PE chains increases, the buckling strain and the resonance frequency will 

decrease. Van der Waals forces are collected to explain the relation of the PE chains to 

the buckling strain and the resonance frequency of the composites.  



 

iii 

 

Acknowledgments 

I would like to express my deepest gratitude to Professor Quan Wang. It was my 

privilege to be his graduate student. I greatly appreciate his guidance on this research, his 

academic moral character, and his efforts on research progress.  

I also want to thank Professor Peng, Dr. Luo, and Dr. Xing. Professor Peng and Dr. Luo 

have taught me both in undergraduate and graduate studies. Their guidance in simulation 

method and vibrations are extremely helpful in my graduate research. Dr. Xing brings me 

to an attractive and amazing world of biomaterials. 

I would like to thank Mr. Nan Wu and Mr. Zhaoyang Liang. I obtained a lot of necessary 

knowledge on mechanics, calculation and simulation software from them.  

Thanks must be given to my parents—my mother Mrs. Yaguang (Catherine) Dong and 

my father Mr. Jianji (James) Shi.  They gave me the unconditional love, support, 

encouragement and help. 

 



 

Contents 

 

Front Matter 

Contents ........................................................................................................................ 4 

List of tables.................................................................................................................. 7 

List of figures................................................................................................................ 8 

List of abrreviations .................................................................................................... 11 

List of symbols............................................................................................................ 12 

1 Introduction 14 

1.1 Concurrent research on CNTs and CNTs composites ....................................... 14 

 1.2    Objectives……………………………………………………………………...16 

1.3    Thesis organization………………………………………………………….…17 

2 Literature review                        19 

 2.1    Introduction of CNTs and their composites…………………………………....19 

      2.2    Mechanical properties of CNTs and their composites………………….……...22 

      2.3    Buckling behaviour of CNTs and their composites………..……………….….22 

2.4   Vibrations of CNTs and their composites……………………………………....24 

 

4 

 



 

3   Buckling behaviour of PE-CNT composites               26 

3.1    General information ……………………………………………….…….…….26 

3.2    Simulation method…………………………………………….….…….……...27 

  3.2.1   MM and force field……………………………….……………….….…..27 

  3.2.2   COMPASS force field………….………………………………….….….28 

3.3    Simulation………………………….……………………….……….…………30 

  3.3.1   Initial setup………………………………………….……………….…...30 

3.3.2   Minimizing setup…………….…………………………….……….…….33 

3.3.3   Boundary condition setup………..……………………………………….34 

3.3.4   Displacement setup……………….……………………………………....34 

3.4    Results and discussions………………….…….……………………………….36 

3.4.1   Buckling behaviour of PE-CNT matrices………………….…......………36 

3.4.2 The relations between the number of PE chains and the buckling 

strain………………………………………………………………………...38 

  3.4.3   Factors that affect the results………………………………………….….41 

4    VDW force between the PE chains and the CNT                                  47 

 4.1    General information…………………………………………………………....47 

4.2    VDW force and Lennard-Jones potential……….……………………….…….47 

4.3    Simulation……………………………………………………………….……..49 

  4.3.1   Modeling………………………………………………………………….49 

4.3.2   Simulation technique and process…………………………………….…..49 

 4.4 Results and discussions……………………………………………………….….51 

 

5 

 



 

5    Vibrations of PE-CNT matrix               58 

 5.1    Introduction ……………………………………………………………………58 

5.2    Continuum vibration model................................................................................58  

 5.3    Simulation process……………………………………………………………..62 

  5.3.1   Modeling……………….……………………………...…...……………..62 

  5.3.2   Minimization and vibration analysis ………………..……………………62 

 5.4   Results and discussions……………….………………………………..….........63 

6    Conclusion remarks and future work                     66 

 6.1    Conclusion remarks………………………….………………………………...66 

 6.2    Future work…………………………….…….……………………….……….67 

  6.2.1   Model improvement ………………….…………………………….……67 

6.2.2   Beamlike buckling………………………………………………………..67 

6.2.3   Experimental method…………………………………………………….68 

Back Matter 69 

Bibliography ............................................................................................................... 69 

6 

 



 

List of Tables 

Table 1 Total strain energy VS displacement for 2x2x2 nm 15 PE chain matrix…….....37 

Table 2 (a) Buckling parameters for 2x2x2 nm matrices….……………………….……38 

    (b) Buckling parameters for 2.5x2.5x2 nm matrices...........................................39 

Table 3 The vdW potential for total, PE-PE, CNT-CNT, PE-CNT and the difference for 

PE-CNT for 15 PE chain 2x2x2 nm matrix……………………………………………...51 

Table 4 Summary table parameters collected for 2x2x2 nm matrices…………..……....53 

Table 5 Table 5 Resonance frequencies for matrices containing 0, 1, 2, 4, 6, 8, 12 and 13 

chains………………………………………….................................……………………64 

 

 

 

 

  

7 

 



 

List of Figures 

Figure 1 (a) The illustration of how a hexagonal sheet of graphite is “rolled” to form 

SWNTs of different chirality (b) Armchair, zigzag, and chiral SWNTs (from left to 

right)...................................................................................................................................20 

Figure 2 The off-axis and top views of MWCNTs with three walls…………………….21 

Figure 3 TEM micrographs of nanotube buckling in an aligned composite: (a) large-scale 

Euler-type buckling observed for small diameter carbon nanotubes, (b) local 

buckling/kinking of a large diameter carbon nanotube and (c) segmental buckling of a 

large diameter carbon nanotube at higher strain, indicating continued transfer of load to 

the nanotube after initial 

buckling…………………………………………………………...24 

Figure 4 Schematic representations of the radial breathing mode (RBM) and the G-band 

mode for a zigzag CNT. From Jorio et al. [45]………………………………….……….25 

Figure 5 (a) Top view of CNT initially setup in 2x2x2 nm matrix (b) Side view of CNT 

initially setup in 2x2x2 nm matrix (c) Top view of CNT initially setup in 2.5x2.5x2 nm 

matrix (d) Side view of CNT initially setup in 2.5x2.5x2 nm matrix……………………31 

Figure 6 (a) PE chain setup in 2x2x2 nm matrix (b) in 2.5x2.5x2.5 nm matrix………...32 

Figure 7 (a) CNT, before adding constraints (b) CNT, after adding constraints…..……34 

8 

 



 

Figure 8 (a) Side view of displacement adding just before and (b) after buckling (c) Top 

view of displacement adding just before and (d) after buckling for 15 PE chain 2x2x2 nm 

matrix……………………….…..…………………………………….………………….35 

Figure 9 (a) Top view of displacement adding just before and (b) after buckling for 24 

PE chain 2x2x2 nm matrix……………………………………………………………….36 

Figure 10 Total potential energy VS displacement for 2x2x2 nm 15 PE chain matrix....38 

Figure 11 (a) One type of initial position for 20 PE chain in 2.5x2.5x2 nm matrix before 

and (c) after minimizing (b) another type of initial position for 20 PE Chain in 2.5x2.5x2 

matrix before and (d) after minimizing…………………..…………………...……….…42 

Figure 12 For the 2.5x2.5x2 nm matrix (a) 28 PE chain matrix and (b) 29 PE chain 

matrix shape just after minimizing (c) 30 PE chain matrix under 1.1 Å displacement and 

(d) 12 Å 

displacement………………………………………………………………………..43 

Figure 13 A comparison of 2x2x2 nm PE-CNT matrix with (a) 10 chains and (b) 12 

chains after minimizing………………………………………………………….……….44 

Figure 14 (a) 15 PE chain 2x2x2 nm matrix under 16 Å displacement before (b) and after 

deleting the CNT…………..……………………………………………………….…….50 

Figure 15 The vdW potential for total, PE-PE, CNT-CNT, PE-CNT and the difference 

for PE-CNT for 15 PE chain 2x2x2 nm matrix in curve………………………………...52 

Figure 16 (a) 16 PE Chain 2x2x2 matrix under 1.5 Å (b) and 1.6 Å displacement (c) 17 

PE Chain 2x2x2 nm matrix under 1.4 Å and 1.5 Å displacement……………..………...56 

9 

 



 

Figure 17 Fundamental resonant frequencies from continuum shell model and MD 

simulations for clamped and cantilever SWCNTs of thickness h=0.34 nm. 

[59]…….………61 

Figure 18 (a) The shape of the matrix including 1 PE chain before (b) and after 

minimizing...………………………………………………………….……………………

……..63 

 

 

 

 

10 

 



 

List of Abbreviations 

CNT     Carbon nanotube 

SWCNT    Single wall carbon nanotube 

DWCNT    Double wall carbon nanotube 

MWCNT    Multi-wall carbon nanotube 

PE      Polyethylene 

MD     Molecular dynamics 

MM     Molecular mechanics 

VDW     Van der Waals  

RBM     Radial breathing mode 

MS      Materials Studio 

COMPASS Condensed-phase optimized molecular potentials for atomistic 

simulation studies 

TEM Transmission electron microscopy 

AFM Atomic force microscopy 

PMMA Poly (methyl methacrylate) 

CVD Chemical vapor deposition 

 

11 

 



 

List of Symbols 

hC     Chiral vector 

1a ,    Unit vectors in two dimensional hexagonal lattice 2a

m ,    Translation indices n

d     Carbon nanotube diameter 

     Chiral angle 

E     Effective Young’s modulus beam material 

I     The moment of inertia of beam cross-section about its neutral axis 

A     Cross-sectional area of beam 

     Mass density of beam material 

w     The transverse displacement of the beam 

nf     Nth mode frequency  

L     Length of the beam 

nk     Eigen value for nth mode  

p     Winkler-type elastic reaction force per unit length 

K    A constant depends on the material that the MWNT is embedded 

b , , ,   Internal coordinates of bond, angle, torsion angle, out-of-plane angle 

12 

 



 

ij    Bond increments, represent the charge separation between two valence-

bonded atoms i and j 

 ,    Atomic partial charges and Lennard-Jones 9-6 (LJ-9-6) parameters or

,j i     j represents all atoms that are valence-bonded to atom i 

vdWTotal  Total vdW potential between atoms in the matrix 

vdWPE-CNT  vdW potential between the atoms on PE chains and the atoms on CNTs 

vdWPE-PE  vdW Potential between the atoms on PE chains 

vdWCNT-CNT vdW Potential between the atoms on CNT 

E    Difference of the vdW potential 

x   Average x, y direction expansion displacement of a CNT under 

compression of 0.1 Å 

[m], [c], [k] Mass, damping, and stiffness matrices 

n     Natural frequency 

 

 

 

 

 

13 

 



 

Chapter 1 

Introduction 

1.1 Concurrent research on CNTs and CNTs composites  

Since discovered by Iijima [1] in 1991, carbon nanotubes (CNTs) have generated great 

impact on science and engineering due to their outstanding physical and chemical 

properties.  

CNTs are the strongest and stiffest materials. Overney et al. [2] calculated the rigidity of 

short SWNTs and found the Young’s modulus to be 1500 GPa. A multi-walled CNT 

(MWCNT) was tested by Yu et al [3] and found to have a tensile strength of 63 GPa. The 

effects of the work function of the contact metal on the current-voltage characteristics of 

the CNT field-effect transistors (CNTFETs) have been studied by Mizutani et al. [4]. 

Researches on the thermal properties of nanotubes were carried out on ropes or bundles 

of tubes in early period of experimental work. Hone et al. [5] measured the thermal 

conductivity of a single wall CNT (SWCNT) mats at room temperature ranges from 2-35 

Wm-1K-1. Kim et al. [6] have used a microfabricated suspended device to measure the 
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thermal conductivity of MWCNTs and obtained the thermal conductivity over 3000 W/K 

at room temperature. 

Nowadays, mechanical behaviours of CNTs subjected to axial loading have drawn 

attention. Buckling is a very important research topic that has been studied by both 

molecular mechanics method (MM) and experimental method. Yakobson et al. [7] first 

employed molecular dynamics (MD) simulations and continuum mechanics models on 

the buckling of SWCNTs under axial compression. By employing MD simulations, Liew 

et al. [8] studied the buckling behaviour of axially compressed MWCNTs. Iijima et al. [9] 

utilized high resolution electron microscopes to observe the CNTs buckling behaviour 

under bending and explained by MD simulations. Moreover, Wang et al. [10] studied the 

local buckling of CNTs under bending as well as the torsional buckling of double wall 

CNT (DWCNTs) [11] using MM simulation.  

Concurrently, CNTs are considered ideal candidates as filler materials in composites. 

Kilbride et al. [12] measured both alternating current (ac) and direct current (dc) in 

polymer-nanotube composite thin films. Biercuk et al. [13] found that the thermal 

conductivity of the composite is higher than the polymer itself by adding SWCNTs to 

epoxy. To the author’s acknowledgement, researching on buckling behaviour of CNT 

composites is very essential; and in this case, to obtain the relation between the buckling 

behaviour of CNTs and CNTs composites becomes a key point of the research. 

Researches on buckling behaviour of CNT composite have been done by both MM 

method and experimental method. Wang [14] studied the buckling behaviour of single 

polyethylene molecule (PE) wrapped CNT and concluded that the van der Waals (vdW) 

interaction induced a decrease in buckling strain. Thostenson and Chou [15] studied the 
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nanotube buckling in aligned MWCNT composites using transmission electron 

microscopy (TEM) observation.  

Besides the buckling behavior, the dynamic characteristics are also significant in the 

applications in CNT/polymer composites. It is reported that significant increases in 

internal damping of polymer nanocomposites when CNTs are used as reinforcement. 

Koratkar et al. [16, 17] reported that densely packed MWNT nano-films have been 

embedded as interlayers within laminated piezo-silica sandwich beams to enhance the 

flexural stiffness by 30% and damping of the laminates by 100%. Moreover, loads 

applied on the composites result in strains of the nanotubes can be detected as changes of 

the carbon vibration frequencies using Raman spectroscopy [18]. 

 

1.2 Objectives 

First, in order to find a design of high strength polyethylene-CNT (PE-CNT) matrix with 

proper PE/CNT ratio, the buckling strain of PE-CNTs polymer matrices with different 

number of PE chains will be calculated using MM simulation. Subsequently, the buckling 

strain of the SWCNT and PE-CNTs polymer matrix will be compared. 

Second, the vdW interaction between PE chains and SWCNT before buckling will be 

studied using MM simulation, which may provide an explanation for the buckling 

behaviour. 

Third, the vibration of PE-CNT matrices will be analyzed and compared to the vibration 

of pristine SWCNTs in order to discover their dynamic characteristics. 
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1.3 Thesis organization 

This thesis contains 6 chapters. These chapters are organized are as follows: 

Chapter 1—Introduction: This chapter provides general information on concurrent 

research on CNTs and CNTs composites, the objective of this thesis, and the thesis 

organization 

Chapter 2—Literature review of mechanical properties of CNTs and their composites: 

This part first gives a brief introduction of CNTs and their composites; then emphasize on 

the mechanical properties, concurrent research on buckling and vibrations of CNTs and 

their composites. 

Chapter 3—Buckling behaviour of PE-CNT matrix composite: This chapter uses MM 

simulation method to find the buckling strain for different PE chains with SWCNTs both 

in 2x2x2 nm matrix and 2.5x2.5x2 nm matrix and discusses the relation of the number of 

PE chains and the buckling strain. 

Chapter 4—VDW force between PE chains and CNT: This chapter analyzes the vdW 

force among PE chains and CNTs before buckling for 2x2x2 nm matrix and finds that the 

vdW force will provide strong effect on the buckling strain in chapter 3. 

Chapter 5—Vibrational modes of PE-CNTs matrix composite: This chapter analyzes the 

different “fundamental” modes for 2x2x2 nm PE-CNT matrix composite and provides the 

relation of the number of PE chains and the vibrational frequencies. This result also 

provides relations on the number of PE chains and the buckling behaviour in chapter 3.  
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Chapter6—Concluding remarks and future work: This part is generally the conclusion of 

the thesis as well as indicating the future job. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 2  

Literature review  

 

2.1 Introduction of CNTs and their composites 

19 

CNTs, discovered by Iijima [1,19], are tubular carbon molecules whose lengths range 

from tens nanometers up to several microns [20–23]. CNTs own significant mechanical, 

electronic and thermal properties and own significant capacity for applications in 

nanocomposites, nanodevices, and nanoelectronics [24–27]. It is expected that CNTs will 

have great impacts on industries from medicine, agriculture, environment, and 

biotechnology to information technology, aerospace, and energy. The two main types of 

CNTs are SWNT [1, 19, 20], which is a seamlessly rolled single sheet of graphene 

cylinder formed with diameter of order of 1 nm and length of up to centimetres and 

MWCNT which consist of an array of such cylinders formed concentrically. SWCNTs 

are considered as a graphene sheet rolled up along its chiral vector as 

shown in Fig. 1(a), where  and  are unit vectors in the two-dimensional hexagonal 

lattice and the integers m and n are the translation indices. The perimeter of the SWCNT 

1 2hC ma na 

1a 2a

 



 

(m,n), formed along , is equal to the length of the vector. The diameter d of the 

SWCNT (m,n) is then calculated as  

hC

2 2| |
0.0783hC

d n




   nm m
nm     (2.1) 
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and the chiral angle   between  and  is given by hC 1a

    1sin [

2 2

3
]

2

m

n nm m
 

 
      (2.2)     

 which ranges from 0° to 30° owing to the hexagonal symmetry of the carbon atoms. 

Different types of SWCNTs are, thus, uniquely defined by the integer pair (m,n) or the 

corresponding chiral angle  .  

 

 

Figure 1 (a) The illustration of how a hexagonal sheet of graphite is “rolled” to form 

SWNTs of different chirality. (b) Armchair, zigzag, and chiral SWNTs [28] (from left to 

right)   

 

 



 

 In literature, SWCNTs have been classified into three categories, i.e., (1) zigzag CNTs 

with  =0° (m=0), (2) chiral CNTs with 0°< <30° (where m>n), and (3) armchair CNTs 

with   =30° (where m=n). These three different SWCNTs are illustrated in Fig. 1(b). 

MWCNTs comprise two or more concentric SWCNTs with usually different chiral 

angles as shown in Figure 2 [1, 23, 25, 29]. The constituent SWCNTs are nested within 

one another, with the interlayer spacing of 0.34 nm, close to 0.335 nm for the graphite 

layers [30–32]. The constituent SWNCTs interact with each other via the vdW forces. 

 

 

 

 

Figure 2 The off-axis and top views of MWCNTs with three walls [28] 

 

The combination of superlative mechanical, thermal and electronic properties of CNTs 

makes them ideal candidates as advanced filler materials in composites.  However, 

probably the most promising area of composites research involves the mechanical 

enhancement of plastics using CNTs as reinforcing fillers [33].  
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2.2 Mechanical properties of CNTs and their composites 

Lu [34] predicted that the Young’s modulus of CNTs was close to 1 TPa independent of 

nanotube type and diameter using an empirical simulation model. Treacy et al. [35] 

estimated Young’s modulus of isolated CNTs by measuring, in the transmission electron 

microscope, the amplitude of their intrinsic thermal vibrations and calculated the moduli 

of 0.40-4.15 TPa for different numbers of tubes, which is the first actual mechanical 

measurement. The atomic force microscope (AFM) is applied for the first direct 

measurement to obtain the stiffness constant of arc-MWCNTs for one end fixed and the 

average Young’s modulus is found to be 1.28 TPa by Wong et al. [36] in 1997. Jin et al. 

[37] worked on dynamic mechanical behaviour on CNT/poly(methyl methacrylate) 

composite. They tested PMMA doped with Arc-MWNT by DMA and found that the 

Young’s modulus increased from 0.7 GPa to 1.63 GPa at 17 wt.% CNTs. Studies on 

CVD-MWNT in polystyrene [38, 39] reported that the modulus increased from 2 GPa to 

2.6 GPa and 4.5 GPa at 5 wt.% and 25 vol.%, respectively, providing reinforcement 

levels of 9 and 19 GPa.  

 

2.3 Buckling behaviour of CNTs and their composites 

Tremendous efforts have been put on the buckling analysis of CNTs under diverse 

loading conditions. In this section, the buckling behaviour due to axial loading under 

compression is discussed. 

The first detailed investigation on the buckling of SWCNTs under axial compression was 

done by Yakobson et al. [7] who employed MD simulations and explained by continuum 
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mechanics models. It was observed that a SWCNT with an aspect ratio of 6 subject to 

large deformations reversibly switch into different morphological patterns. For such 

SWCNT with a relatively small aspect ratio, shell-buckling mode is observed. On the 

other hand, for a slender SWCNT with a large aspect ratio, the Euler beam buckling 

mode is observed instead. Thus, CNTs under axial compression demonstrate similar 

buckling modes to those predicted by continuum mechanics models. 

Despite the extensive atomistic simulations on CNT buckling, very few experimental 

results exist. From the few sample results, Lourie et al. [40] and Bower et al. [41] 

employed TEM to obtain Euler-beam buckling modes of MWCNTs. Waters et al. [42] 

obtained experimental results of shell buckling instabilities in vertically aligned 

MWCNTs under uniaxial compression. The experimental observations were found to 

agree well with the predictions of linear elastic shell buckling theory. Later, Waters et al. 

[43] conducted experiments on individual MWCNTs under axial compression in order to 

measure the critical shell-buckling load.  

Very few researches have been conducted on buckling behaviour of CNTs composites. In 

2004, Thostenson et. al [44] observed compressive buckling of aligned MWCNT-

Polystyrene Composite matrix through TEM and the graph is shown in Figure 3.  
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Figure 3 TEM micrographs of CNT buckling in an aligned composite: (a) large-scale 

Euler-type buckling observed for small diameter CNTs, (b) local buckling/kinking of a 

large diameter CNT and (c) segmental buckling of a large diameter CNT at higher strain, 

indicating continued transfer of load to the CNT after initial buckling. 

 

2.4 Vibrations of CNTs and their composites 

The one-dimensional nature of CNTs has pronounced effects on their vibrational 

properties. Spectroscopic work on the experimentally observable quantities of the tubes 

has become extremely rewarding as regards fundamental insight as well as the 

information used to characterize CNTs. It turns out that for the largest part of the 

vibrational properties combining CNT symmetry and electronic band structure is 

essential to gain deeper insight. Raman spectroscopy is a widely used technique in 

materials science which involves the excitation of a sample with intense monochromatic 
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light (typically laser light) followed by observations of the scattering of the incident 

radiation and it is used extensively to study vibrational modes of CNTs. The basic 

concepts and characteristics of Raman spectra from CNTs have been summarized by 

Ecklund et al. [45], Jorio et al. [46] and Dresselhaus et al. [47]. A review article on 

Raman spectroscopy of individual SWNTs has been published by Dresselhaus et al. [48]. 

The radial breathing mode (RBM) and the G-band mode, which are two of many possible 

modes of vibration of the atoms in a CNT, are shown schematically in Figure 4. 

 

Figure 4 Schematic representations of the radial breathing mode (RBM) 

and the G-band mode for a zigzag CNT [46].  
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Chapter 3  

Buckling behaviour of PE-CNT composites 

3.1 General information  

Although the buckling behaviour of CNTs was studied by many researchers, little 

research has been done on the buckling behaviour of CNTs composites. Moreover, to the 

author’s knowledge, no studies, whether through experiments or simulations, have been 

published on buckling behaviour of PE-CNTs. The purpose of this chapter is not only to 

find the buckling strain of the composite, but also to find how the buckling strain changes 

as the density of the matrix increases (i.e. how the buckling strain changes with the 

number of PE chains increases). The key point of this work is to make appropriate 

assumptions and set up proper simulation methods, and finally analyze the simulation 

results. 

 

3.2 Simulation method 
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Materials Studio 4.0 (Accelrys) [49] is employed to calculate the energies such as total 

potential energy, internal energy, vdW potential, etc.  

3.2.1 MM and force field 

The interactions between atoms are the foundations of molecular simulation, which 

include the interactions of chemical bond between atoms as well as the vdW interactions 

between molecules or hydrogen bond. There are two ways of describing these 

interactions: One way is chemical calculation and the other way is to employ the force 

field. MM uses Newtonian mechanics to model molecular systems. The potential energy 

of all systems in MM is calculated using force field.   

Force-field development, as a fundamental issue underlying all atomistic simulations, has 

drawn considerable attention in recent years. To construct a force field generally suitable 

for condensed phase applications, it was necessary to modify the nonbond parameters, 

and consequently, the valence parameters must also be changed due to the coupling 

between the valence and nonbond parameters. Basically, a hybrid approach consisting of 

both ab initio and empirical methods was employed to derive a new general force field 

based on the PCFF force field. In addition to those molecular classes covered in the PCFF 

force field, a number of new molecular classes were parameterized. Most significantly, 

nonbond parameters were completely re-parameterized. The outcome is a new, 

condensed phase-optimized ab initio force field. This force field is named COMPASS 

(condensed-phase optimized molecular potentials for atomistic simulation studies). 

3.2.2 COMPASS force field 
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The functional forms used in this force field are the same as those used in CFF-type force 

fields 
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The functions can be divided into two categories valence terms including diagonal and 

off-diagonal cross-coupling terms and nonbond interaction terms. The valence terms 

represent internal coordinates of bond ( ), angle (b  ), torsion angle ( ), and out-of- 

plane angle (  ), and the cross-coupling terms include combinations of two or three 

internal coordinates. The crosscoupling terms are important for predicting vibration 

frequencies and structural variations associated with conformational changes. Among the 

cross-coupling terms given in equation 3.1, the bond-bond, bond-angle and bond-torsion 

angle are the most frequently used terms. The nonbond interactions, which include a LJ-

9-6 function for the vdW term and a Coulombic function for an electrostatic interaction, 

 



 

are used for interactions between pairs of atoms that are separated by two or more 

intervening atoms or those that belong to different molecules. In comparison with the 

common LJ-12-6 function, which is known to be too ‘hard’ in the repulsion region, the 

LJ-9-6 function is softer but may be too attractive in the long separation range. However, 

this difference appears to be unimportant to the properties of interest in this work based 

on a comparative study carried out at the beginning of this project. The LJ-9-6 parameters 

( and ) are given for like atom pairs. For unlike atom pairs, a 6th order combination 

law is used to calculate the off-diagonal parameters: 

or
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The electrostatic interaction is represented using atomic partial charges. To make the 

charge parameters transferable, bond increments ij , which represent the charge 

separation between two valence-bonded atoms i and j, are used in the force field as 

parameters. For atom i, the partial charge is the sum of all charge bond increments ij  

i
j

q ij    (3.4) 

where j represents all atoms that are valence-bonded to atom i. 

In condensed-phase simulations of liquids and crystals, the nonbond interactions are 

usually truncated at a selected cutoff value (normally around 10 Å). A sharp cutoff is 

assumed for the present force field. However, the long-range interaction, which is the 
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total contribution of nonbond interactions beyond the cutoff, is critically important to be 

considered for calculating energies and pressures. [50] 

COMPASS is a powerful forcefield supporting atomistic simulations of condensed phase 

materials. COMPASS stands for condensed-phase optimized molecular potentials for 

atomistic simulation studies. COMPASS is the first ab initio forcefield that has been 

parameterized and validated using condensed-phase properties, in addition to various ab 

initio and empirical data for molecules in isolation. Consequently, this forcefield enables 

accurate and simultaneous prediction of structural, conformational, vibrational, and 

thermophysical properties for a broad range of molecules in isolation and in condensed 

phases, and under a wide range of conditions of temperature and pressure. The most 

recent enhancements to the COMPASS forcefield have concentrated on parameterization 

of more than 45 inorganic oxide materials and mixed systems, including interfaces of 

organic and inorganic materials. [51] 

 

3.3 Simulation 

 

3.3.1 Initial setup 

1. Matrix setup and matrix dimensions 

The nano-scale system is composed of a CNT and a PE matrix. The dimensions of the 

matrix are 2x2x2 nm and 2.5x2.5x2 nm. The matrices are replicated across periodic 

boundaries in all 3 dimensions which will make the SWCNT and PE chains infinitely 

long. The whole simulation process is done using Materials Studio 4.0 (Accelrys). 
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2. CNT parameters 

A (5, 5) SWCNT with 8 repeated units is embedded in a crystalline polymer matrix, 

whose diameter is 6.78 Å and length is 19.68 Å. The CNT is initially located at the center 

of the matrix. The shape and position of the CNT are shown in Figure 5 (a), (b), (c) and 

(d). Although the CNTs in the matrices have the same size, the different dimensions of 

the matrices show that the CNT in the 2.5x2.5x2 nm matrix looks much smaller from the 

top view and much thinner from the side view.   

 

 (a)                                       (b) 

 

     (c)                                    (d)    
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Figure 5 (a) Top view of CNT initially setup in 2x2x2 nm matrix (b) Side view of CNT 

initially setup in 2x2x2 nm matrix (c) Top view of CNT initially setup in 2.5x2.5x2 nm 

matrix (d) Side view of CNT initially setup in 2.5x2.5x2 nm matrix  

 

 

3. PE chain numbers and parameters 

One typical model for the 2x2x2 nm matrix contains 15 chains of 16 methylene units and 

2 methyl groups on the ends with the hydrogen atoms. The 15 PE chains are initially set 

up around the CNT. The shape of the 15 PE chain matrix looks like an “imperfect” 

square. The initial setup distance between every two adjacent PE chains is 3.5 Å, along 

both the horizontal and vertical directions. The buckling behaviours of matrices filled 

with 11-18 chains are all set up and compared. 

  

(a)                            (b) 

Figure 6 (a) PE chain setup in 2x2x2 nm matrix (b) in 2.5x2.5x2.5 nm matrix 
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One typical model for the 2.5x2.5x2 nm matrix contains 24 chains of 16 methylene units 

and 2 methyl groups on the ends with the hydrogen atoms. The initial setup distance 

between every two adjacent PE chains is 4.0 Å, along both the horizontal and vertical 

directions. The buckling behaviours of matrices filled with 22-29 chains are all set up and 

compared. Figure 6 (a) and (b) show the details of PE chains set up in 2x2x2 nm and 

2.5x2.5x2.5 nm matrices. 

 

3.3.2 Minimizing setup 

The minimization process is the simulation of the real PE-CNT synthesis process. By 

employing the COMPASS force field, a list of parameters is calculated using the software 

in a list called minimization energy summary. The procedure is as follows: First, set 

“ compass” as the force field from tab “Discover Setup” ; next, on the “Job control” tab, 

select “Run in parallel 4 of 4 processors” to make the calculation as fast as possible. Then 

click on “Discover Minimizer” and use “Smart Minimizer”.  Finally, customize the 

maximum iteration steps to be 300000. Using such a big number ensures a complete 

minimization process.  

After finishing the calculation step, the minimizing energy summary list is shown. The 

first minimizing process is done before the boundary condition since it indicates the 

simulation of PE-CNT synthesis, which is the first step after setting up the initial position 

of the PE chains and the CNT. However, if we are eager to see the buckling behaviour, 

displacements must be applied axially to the CNT, which essentially needs a boundary 

condition setup. 
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3.3.3 Boundary condition setup 

Constraints are added to the top and bottom portions of the CNT. The constraints are 

added on all 3 dimensions. The details of adding constraints to the CNT are shown in 

Figure 7 (a) and (b). 

 

(a)                            (b) 

Figure 7 (a) CNT, before adding constraints (b) CNT, after adding constraints 

 

3.3.4 Displacement setup 

34 

After adding constraints to the CNT, axial displacement will be added to both top and 

bottom portions of the CNT at the same distance. The distance is set at 0.1 Å for a total of 

0.05 Å on each side every time. After each displacement, Smart minimizer is employed 

 



 

to calculate the energy of each step. The displacements are added gradually until the CNT 

buckles. Figure 8 (a) and (b) shows the side view of the displacement just before and 

after buckling for 15 PE chain 2x2x2 nm matrices. For easy visualization, the PE chains 

are cleared. Figure 8 (c) and (d) show the top view of 15 PE chain 2x2x2 nm matrices 

just before and after buckling. 

 

 

(a)                                (b) 

 

35 

 



 

     (c)                                (d) 

Figure 8 (a) Side view of displacement added just before and (b) after buckling (c) Top 

view of displacement added just before and (d) after buckling for the 15 PE chain 2x2x2 

nm matrix. 

 

3.4 Results and discussions 

 

3.4.1 Buckling behaviour of PE-CNT matrices  

As visualized in Figure 5 (c) and (d), it is found that by adding a displacement of 1.9 Å, 

the 2x2x2 nm matrix with 15 PE chains starts to buckle. In other words, the buckling 

strain is 10.86%, which is the ratio of displacement to the original CNT length in the 

matrix (17.500 Å). Similarly, from Figure 9 (a) and (b), we found that by adding a 

displacement of 2.1 Å, the 2.5x2.5x2 nm matrix with 24 PE chains starts to buckle, and 

the buckling strain is measured at 12.00%.  
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     (a)                               (b) 

Figure 9 (a) Top view of displacement added just before and (b) after buckling for 24 PE 

chain 2x2x2 nm matrix. 

 

The occurrence of buckling can also be defined as a spontaneous drop of strain energy 

(Figure 10). Strain energy is the energy stored in the system, and as work is done to the 

system, typically the strain energy will be increased. However, when buckling happens, 

the system cannot support the stress added and energy is simultaneously released as heat 

which induces a sudden decrease in strain energy. Table 1 and Figure 10 show how the 

total strain energy changes with displacements added for the 2x2x2 nm 15 PE chain 

matrix.  

 

Table 1 Total Strain Energy VS Displacement for 2x2x2 nm 15 PE chain matrix 

Disp(Å) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Energy 

(kcal/mol) 

7182 7190 7203 7219 7238 7260 7284 7310 7337 7367

Disp (Å) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Energy 

(kcal/mol) 

7398 7430 7464 7500 7537 7575 7615 7657 7700 7676
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Figure 10 Total potential energy VS displacement for 2x2x2 nm 15 PE chain matrix  

 

3.4.2 The relations between the number of PE chains and the buckling strain  

After calculating the buckling strains of each individual matrix containing different 

numbers of PE chains, a comparison of these strains is essential since it will reveal how 

the buckling strain changes as the number of PE chains changes. Table 2 (a) and (b) are 

lists of buckling strains of 2x2x2 nm and 2.5x2.5x2 nm matrices with ascending numbers 

of PE chains.  

 

Table 2 (a) Buckling parameters for 2x2x2 nm matrix 

Number of PE 

chains 

Buckling length (Å ) Buckling Strain  Relative Density 

0 (pristine CNT) 2.3 13.14% N/A 

12  2.1 12.00% 4.210 
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13 2.1 12.00% 4.561 

14 1.9 10.86% 4.912 

15 1.9 10.86% 5.263 

16 1.7 9.71% 5.614 

17 1.6 9.14% 5.965 

18 1.3 7.43% 6.316 

     

Table 2 (b) Buckling parameters for 2.5x2.5x2 nm matrix 

Number of PE 

chains 

Length of buckling 

(Å) 

Buckling strain  Relative density 

0 (pristine CNT) 2.3 13.14% N/A 

22 2.3 13.14% 4.207 

23 2.2 12.57% 4.398 

24 2.1 12.00% 4.589 

25 2.1 12.00% 4.780 

26 1.9 10.86% 4.971 

27 2.0 11.43% 5.163 

28 1.9 10.86% 5.354 

29 1.5 8.57% 5.545 

 

The numbers in first column are the PE chain numbers in the matrix where the second 

and third columns show the length of buckling and buckling strain of the respective 
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matrices. The results show that as the number of the PE chains increases, the buckling 

strains of the matrices will decrease. However, to quantitatively state the relations 

between buckling strains and PE chain numbers, a new unit called “relative density”, 

defined as the PE chain numbers divided by the area that the PE chains occupy, appears 

in the last column of Table 2 (a) and (b).  

For the 2x2x2 nm matrix, the area that PE chains occupy is approximately 2.8501 nm2 

which is the area of the matrix minus the area of the SWCNT; similarly for 2.5x2.5x2 

matrix, the area the PE chains occupy is about 5.2299 nm2. The results in Table 2 (a) and 

(b) show that with similar relative density, the buckling strain would be the same. Both 

15 PE chain matrix in table 2 (a) and 24 PE chain matrix in table 2 (b) have similar 

relative density around 4.5 to 4.6, and they own the same buckling strain which is 

12.00%, and within the range of 4.9 to 5.2 for relative density, the buckling strain was 

about 10.86% for both matrices. As we only take one standard area of the CNT in each of 

2x2x2 nm matrix and 2.5x2.5x2 nm matrix and make an assumption that despite the 

number of PE chains, each matrix has the same CNT area. In the real case, the areas of 

the CNT in each PE chain matrix are slightly different. However, the influence of the 

area difference is negligible.  

Once the relations between the PE chain numbers and buckling strains have been found, a 

rational explanation has to be provided. The most acceptable reason is that the vdW 

interaction between PE chains and CNT affected the buckling strain of the matrix.  

One proper prediction is that the vdW interaction between the PE chains and CNT is 

compressive and the vdW force acted on the CNT body induced an early buckle of the 

PE-CNT matrix. Therefore the more PE chains added to the matrix, the larger the 
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compressive vdW force applied on CNT, which definitely indicates the buckling strain 

decreases with the number of PE chains increases. However, to verify our prediction, 

quantitative vdW forces calculation for different PE chain matrices must be done. 

Contents in chapter 4 have the comparison of vdW forces for different PE chain matrices.  

 

3.4.3 Factors that affect the results 

Although we already found a reasonable explanation of our results, the applicability of 

the results has to be discussed. Many factors may affect our results, which include initial 

position of PE chains and CNT, the range of PE chain numbers, the accuracy of our 

simulation method and external factors.  

The initial position of PE chains and CNT is the first factor that may affect our results. 

This is because the different initial position of the PE chains will form different matrix 

shape. The different displacements between the PE chains and the CNT will form 

different vdW force. The vdW force is one main factor that relates to the buckling strain. 

Therefore, the initial position would more or less influence the buckling strain. In our 

model, we have to put the PE in a “regular” initial position so that the buckling strain 

does not look strange. Figure 11 shows that the shapes of the matrices with same PE 

chain numbers but different initial positions after minimizing are quite different. To avoid 

the initial position effect, we always use the models with same initial positions and add or 

subtract the PE chains on that model.  
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     (a)          (b)   

 

 

     (c)          (d) 

Figure 11 (a) One type of initial position for 20 PE Chain in 2.5x2.5x2 matrix before and 

(c) after minimizing (b) another type of initial position for 20 PE Chain in 2.5x2.5x2 

matrix before and (d) after minimizing 
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The second factor that may affect our results is the PE chain number range. Too many PE 

chains will make the matrix too crowded and in that case, as the compressive vdW 

interaction on the CNT is extraordinarily big, the buckling behaviour is more complicated 

and sometimes very hard to be observed. Moreover, the shape of the CNT will have 

significant change, i.e. from a circular tube to an ellipse tube. Figure 12 has detailed 

explanation on how the shape of CNT changes with a higher number of PE chain matrix. 

 

 

     (a)           (b) 

 

     (c)          (d) 
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Figure 12 For the 2.5x2.5x2 nm matrix (a) 28 PE chain matrix and (b) 29 PE chain 

matrix shape just after minimizing (c) 30 PE chain matrix under 1.1 Å displacement and 

(d) 12 Å displacement 

 

From Figure 12 (a) and (b), it is found that only one more PE chain is added, the shape of 

the CNT greatly changed from a circular tube to an ellipse tube. Moreover, from (c) and 

(d), we found that the buckling behaviour looks very different from the “non-crowed” 

matrix buckling. This is because the crowded shape induced significantly big 

compression to the CNT but there is even no space to buckle. However, in this case, the 

buckling behaviour becomes more complicated and this is the reason that we do not 

consider the buckling behaviour of a high number of PE chain matrix. The opposite case 

is the matrix with low number of PE chains. Figure 13 (a) and (b) make a comparison on 

the shape of 10 PE chain and 12 PE chain in 2x2x2 nm matrix just after minimizing. 

From Figure 13 (a), it is obviously seen that there is big “hollow” space in the matrix 

while Figure 13 (b) had nearly no spare space. 

 

         (a)         (b) 
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Figure 13 A comparison of the 2x2x2 nm PE-CNT matrix with (a) 10 chains and (b) 12 

chains after minimizing 

 

As there is much spare space in matrix with less PE chains, the variety of different PE-

CNT matrices shapes due to the different initial positions set up of the PE chains will be 

the main reason of obtaining different buckling strains. This is because the PE-CNT 

matrices with the same number of PE chains but different shapes will have different vdW 

interactions between the PE chains and the CNT.  Therefore, the buckling behaviours of 

lower number of the PE chain matrices are not within our consideration. The PE chain 

numbers we selected in 2x2x2 nm matrix is from 12 to 18 and in 2.5x2.5x2 nm matrix is 

from 22 to 29.    

The third factor which may affect our results is the accuracy of our simulation method. 

As the method we used to find the buckling strain was by adding specific displacement 

and minimizing, we could only estimate an approximate buckling strain. For example, the 

15 PE chain 2x2x2 nm matrix owns a buckling length of 1.9 Å, which indicated that by 

adding 1.8 Å the matrix will not buckle but by adding 0.1 Å more it buckles. It does not 

really mean that just at 1.9 Å, it buckled. However, the buckling length must be within 

the range of 1.8 Å to 1.9 Å. Theoretically, we are able to find the most appropriate 

buckling length by trial and error method. In the real situation, as the calculation time is 

long, we can only find the buckling length within the error of 0.1 Å.  

Last, the model we set up can be considered as a general model by employing MM 

method, which compared to a specific experimental model, neglected a lot of external 
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factors such as impurity of the PE matrix, temperature and humidity of synthesis process, 

etc. 

Although most of our data are strong enough to indicate that the buckling strain decreases 

with the PE chain number increases, one exceptional case in the table 2 (b) were 

generated on 27 PE chain matrix. The buckling strain here in this case is larger than the 

matrix with 26 PE chains. The proposed reason could be the software exception when it 

is employing the COMPASS force field.  
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Chapter 4  

VDW force between PE chains and the CNT  

 

4.1 General information 

In chapter 3, it is predicted that the vdW forces between the PE chains and the CNT cause 

early buckle of the matrix. To verify our prediction, vdW forces in different PE chain 

matrices have to be obtained. MM method is employed and specific simulation 

techniques are needed to find the vdW forces between the PE chains and the CNT. 

Detailed explanations are provided in part 4.3 and relative results and discussions are in 

part 4.4. 

 

4.2 VDW force and Lennard-Jones potential  

In physical chemistry, the vdW force (or vdW interaction), named after Dutch scientist 

Johannes Diderik van der Waals, is the sum of the attractive or repulsive forces between 
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molecules (or between parts of the same molecule) other than those due to covalent bonds 

or to the electrostatic interaction of ions with one another or with neutral molecules. [52]   

The Lennard-Jones potential is often used as an approximate model for the isotropic part 

of a total (repulsion plus attraction) vdW force as a function of distance. 

vdW forces are responsible for certain cases of pressure broadening (vdW broadening) of 

spectral lines and the formation of vdW molecules. The London-vdW forces are related 

to the Casimir effect for dielectric media, the former being the microscopic description of 

the latter bulk property. The first detailed calculations of this were done in 1955 by E. M. 

Lifshitz. [53]  

The Lennard-Jones potential (also referred to as the L-J potential, 6-12 potential, or 12-6 

potential) is a mathematically simple model that approximates the interaction between a 

pair of neutral atoms or molecules. A form of the potential was first proposed in 1924 by 

John Lennard-Jones. [54] The most common expressions of the L-J potential are 

    (4.1) 

where ε is the depth of the potential well, σ is the finite distance at which the inter-

particle potential is zero, r is the distance between the particles, and rm is the distance at 

which the potential reaches its minimum. At rm, the potential function has the value −ε. 

The distances are related as rm = 21/6σ. These parameters can be fitted to reproduce 
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experimental data or accurate quantum chemistry calculations. Due to its computational 

simplicity, the Lennard-Jones potential is used extensively in computer simulations even 

though more accurate potentials exist. 

 

4.3 Simulation 

 

4.3.1 Modeling 

As we are calculating the vdW forces for the PE chain matrices, the model is the same as 

we set up in chapter 3. However, in order to obtain the vdW forces between the PE chains 

and the CNT, specific simulation method and technique must be employed.  

 

4.3.2 Simulation technique and process 

From the data obtained in the summary table, the only vdW potential we can directly 

obtain is the total vdW potential and there is no direct method to find the vdW potential 

between the PE chains and CNT, i.e. vdWPE-CNT. However, if we could find the vdW 

potential between the atoms on PE chains which was vdWPE-PE and the vdW potential 

between the atoms on the CNT, vdWCNT-CNT, we were able to employ this formula 

vdWPE-CNT = vdWTotal – (vdWPE-PE + vdWCNT-CNT)   (4.2) 

where vdWTotal is the vdW potential between every atom within the system which was the 

summation of vdWPE-CNT, vdWPE-PE and vdWCNT-CNT. However, to get the vdW potential 

would not be our final approach. We needed to calculate the vdW force using the vdW 
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potential. As we know, , where E F x   E  here is the difference between the two 

vdW potentials with adjacent displacements, F is the vdW force acting on the CNT 

between two adjacent displacements and x  is the change of displacement between CNT 

and PE chains. In the real case it is very hard to take the accurate data for x , and as an 

assumption, we considered the shape of the PE chains remain the same which means that 

x  is only related to the change of CNT shape. This assumption could very much 

facilitate our calculation.  

For the 3 parameters on the right hand side of equation 4.2, vdWTotal can be obtained 

directly from the energy summary table and vdWPE-PE and vdWCNT-CNT can be found by a 

very tricky method. First, collect a matrix under specific displacement after minimizing, 

and then delete the CNT portion and minimizing the rest part. The “Maximum Iterations” 

should be set as 0 steps, i.e. the final vdW potential equals the initial vdW potential. The 

vdW potential generated from the summary table is vdWPE-PE. This is up to now the best 

way to figure out vdWPE-PE. For vdWCNT-CNT the same method could be applied but the 

only difference is the deleted portion should be the PE chains other than the CNT. Figure 

14 shows the matrices shapes before and after deleting the CNT.  
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               (a)           (b) 

Figure 14 (a) 15 PE chain 2x2x2 nm matrix under 1.6 Å displacement before (b) and 

after deleting CNT 

 

4.4 Results and discussions  

By applying Eqn. (4.2), we obtain PE-CNT vdW potential and the difference of PE-CNT 

vdW potential E  between two adjacent displacements. The results of vdW potentials for 

15 PE chain 2x2x2 nm matrix are shown in Table 3 and the Figure 15. 

 

Table 3 The vdW potential for total, PE-PE, CNT-CNT, PE-CNT and the difference for 

PE-CNT for 15 PE chain 2x2x2 nm matrix 

Displacement 

(10-10m) 

Total 

VDW 

(kcal/mol) 

PE VDW 

 

(kcal/mol)

CNT 

VDW 

(kcal/mol)

PE-CNT 

VDW 

(kcal/mol) 

Difference

 

(kcal/mol)

0 -234.596034 -232.74 147.5592 -149.415309 0.06261

0.1 -236.982468 -232.559 144.9297 -149.352699 0.065639

0.2 -237.737354 -232.383 143.9328 -149.28706 0.063935

0.3 -237.10927 -232.207 144.3207 -149.223125 0.062629

0.4 -235.295024 -232.029 145.8948 -149.160496 0.060921

0.5 -232.45268 -231.852 148.4985 -149.099575 0.05841

0.6 -228.702941 -231.673 152.0117 -149.041165 0.056221

0.7 -224.136535 -231.495 156.3437 -148.984944 0.052782
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0.8 -218.821311 -231.317 161.4276 -148.932162 0.04848

0.9 -212.80739 -231.139 167.2151 -148.883682 0.044428

1 -206.127481 -230.962 173.6737 -148.839254 0.040081

1.1 -198.803183 -230.786 180.7822 -148.799173 0.034117

1.2 -190.849187 -230.613 188.5287 -148.765056 0.025775

1.3 -182.27155 -230.44 196.9078 -148.739281 0.015594

1.4 -173.074333 -230.27 205.9195 -148.723687 0.000615

1.5 -163.255643 -230.101 215.5681 -148.723072 -0.019177

1.6 -152.8111 -229.93 225.8613 -148.742249 -0.045328

1.7 -141.728071 -229.754 236.8135 -148.787577 -0.097028

1.8 -130.006169 -229.568 248.4468 -148.884605 6.843512

1.9 -128.043042 -233.614 247.6124 -142.041093  

 

 

 

Figure 15 The vdW potential for total, PE-PE, CNT-CNT, PE-CNT and the difference 

for PE-CNT for 15 PE chain 2x2x2 nm matrix in curve 
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From Figure 15, it is clear to see that at 1.9 Å, the vdW potentials for total, PE-PE, CNT-

CNT, PE-CNT significantly changed, which can also indicate the moment when buckling 

happens. Our purpose is to find the vdW force before buckling, and we only take the 

vdW potentials and differences at 0.3 Å, 0.2 Å and 0.1 Å before buckling. Table 4 is the 

data collected from the summary table. 

 

Table 4 Summary table parameters collected for 2x2x2 nm matrices 

12Chain Kcal/mol Kcal/mol Kcal/mol Kcal/mol Kcal/mol 

Displacement 

(Å) Total PE CNT PECNT Difference

1.7 -93.216 -188.744 234.6735 -139.146 -0.096831

1.8 -81.8013 -188.839 246.2808 -139.243 -0.110568

1.9 -69.7139 -188.929 258.5683 -139.353 -0.137591

2 -56.9339 -189.002 271.5592 -139.491  

13Chain      

Displacement 

(Å) Total PE CNT PECNT Difference

1.7 -140.068 -233.943 234.8082 -140.932 -0.161291

1.8 -128.542 -233.862 246.4138 -141.094 -0.175103

1.9 -116.322 -233.751 258.6982 -141.269 -0.183034

2 -103.381 -233.609 271.6803 -141.452  

14Chain      
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Displacement 

(Å) Total PE CNT PECNT Difference

1.5 -179.015 -237.897 214.3096 -155.427 0.064413

1.6 -168.539 -237.747 224.5705 -155.363 0.079792

1.7 -157.31 -237.5 235.4726 -155.283 0.096691

1.8 -145.292 -237.133 247.0271 -155.186  

15Chain      

Displacement 

(Å) Total PE CNT PECNT Difference

1.5 -163.256 -230.101 215.5681 -148.723 -0.019177

1.6 -152.811 -229.93 225.8613 -148.742 -0.045328

1.7 -141.728 -229.754 236.8135 -148.788 -0.097028

1.8 -130.006 -229.568 248.4468 -148.885  

16Chain      

Displacement 

(Å) Total PE CNT PECNT Difference

1.4 -161.604 -218.818 207.4897 -150.276 0.282985

1.5 -150.247 -217.332 217.0782 -149.993 -2.488037

1.6 -141.941 -216.681 227.2206 -152.481 0.41766

1.7 -129.858 -215.79 237.9947 -152.063  

17Chain      

Displacement 

(Å) Total PE CNT PECNT Difference

1.3 -78.4566 -134.661 199.7421 -143.538 0.398851
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1.4 -69.0284 -134.704 208.8148 -143.139 2.3949

1.5 -58.5262 -136.489 218.707 -140.744 0.48665

1.6 -48.1532 -136.98 229.084 -140.257  

18Chain      

Displacement 

(Å) Total PE CNT PECNT Difference

0.9 4.749292 -30.1393 171.2846 -136.396 0.368133

1 12.0096 -29.6128 177.6503 -136.028 0.418488

1.1 20.08549 -28.976 184.6708 -135.609 0.522052

1.2 29.10407 -28.146 192.3374 -135.087  

 

From Table 4, it is very clear to see that the vdW potential difference for 12, 13 and 15 

PE chains are negative, which means that tensile vdW forces apply between PE chains 

and CNT. It is strange that these results conflict with our prediction stating that 

occurrence of buckling is due to the compressive forces between the PE chains and CNT. 

It is because, primarily, our assumption is that the shapes of PE chains do not change 

with the displacements adding up to the matrices. In fact, this assumption does not apply 

to matrices with less PE chains. In another word, the shapes of PE chains with less PE 

chains will change in less PE chains matrices. As a comparison, the relative density is 

high enough for matrices with 16 or more PE chains. It is because the matrices are too 

crowded and there is no more space to move; therefore, our assumption applies. In this 

case, matrices with less than 16 PE chains will not be considered in calculation. 
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One exception is at 16 Chain matrix under 1.6 Å displacement and the other is at 17 

Chain matrix under 1.5 Å displacement. Both of the two exceptions have similar results, 

which is the vdW potential significantly changed, either positive or negative. The reason 

is that the shape of the CNT changed slightly when exceptions occurred but did not 

buckle. Figure 16 has the detailed comparison.  

 

(a)                     (b) 
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     (c)               (d) 

Figure 16 (a) 16 PE Chain 2x2x2 matrix under 1.5 Å (b) and 1.6 Å displacement (c) 17 

PE Chain 2x2x2 nm matrix under 1.4 Å and 1.5 Å displacements 

 

From Figure 16 (b) and (d) it is obviously seen that the shapes of the CNT ends have 

already changed due to compression. In the calculation, these two exceptions will not be 

collected. The method that we collected the displacement is first to choose two sets of 

data of two atoms diametrically and found the planer average distance, then divided by 2 

to get the average displacement of a single atom. After all, use the vdW potential to 

divide this displacement and we will get the vdW force. Finally, with the unit conversion, 

the vdW forces for 16, 17 and 18 PE chain matrices were 2.74496 nN, 3.41699 nN and 

6.95629 nN, respectively. The results calculated show that the compressive vdW forces 

between PE Chains and CNT are becoming bigger and bigger as the chain number 

increases, which can directly prove that the compressive vdW force is the major factor 

that influences the buckling strain. Moreover, the results point out that as the PE chain 

number increases, the compressive vdW forces between the PE chains and CNT will 

increase, and the buckling strains will decrease.  
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Chapter 5 

Vibrations of PE-CNT matrix 

 

5.1 Introduction  

Vibration is a very important mechanical behaviour for CNTs and their composites. In 

this chapter, the relations between the resonance frequencies and PE chain numbers will 

be obtained and then explained by the vdW interactions between the PE chains and CNT 

by applying a continuum model. 

 

5.2 Continuum vibration model 

It is important to have accurate theoretical models for the natural frequencies and mode 

shapes of CNTs for several reasons. For example, if the nanotubes are to be used as 

nanomechanical resonators, the oscillation frequency is a key property of the resonator. 

In addition, the effective elastic modulus of a nanotube may be indirectly determined 

58 

 



 

from its measured natural frequencies or mode shapes if a sufficiently accurate theoretical 

model is used. A continuum approach using the well known frequency equation for a 

beam has been employed by several investigators to estimate the theoretical fundamental 

flexural resonance frequencies of nanotubes [55] and nanowires [56]. For example, 

according to the well-known Bernoulli–Euler beam theory, the equation describing 

transverse, or flexural motion of a continuous, homogeneous, isotropic, linear elastic 

beam which is without rotary inertia or shear effects and whose properties do not vary 

along its length may be expressed as 

4 2

4 2
0

w w
EI A

x t
 


 

        (5.1)      

where E is the effective Young’s modulus of beam material, I the moment of inertia of 

beam cross-section about its neutral axis, A the cross-sectional area of beam,   the mass 

density of beam material, x the distance along beam, w(x, t) the transverse displacement 

of beam and t is the time. The corresponding frequency equation for flexural vibration is 

    

2
1/2

2

( )
( )

2
n

n

k L EI
f

L A 


        (5.2) 

where L is the length of beam, n the mode number, knL the eigenvalue for nth mode and 

fn is the nth mode frequency, Hz. The eigenvalues depend on the boundary conditions, 

and the choice of boundary conditions is obviously very important for an accurate 

simulation. For example, the first three eigenvalues for a fixed-free cantilever beam are 

 = 1.875,  = 4.694,  = 7.855, whereas the corresponding values for a free-free 

beam are  = 4.73,  = 7.853,  = 10.995. Eigenvalues and the corresponding 

1k L 2k L 3k L

1k L 2k L 3k L
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mode shape functions have been tabulated by Blevins [57] for the first few modes and the 

most commonly encountered boundary conditions. 

Yoon et al. [58] developed a double Timoshenko beam model to characterize the motions 

of the inner and outer tubes in a double wall CNT and then used the model to study the 

effects of rotary inertia and shear deformation on terahertz frequency transverse wave 

propagation in double wall CNTs. It was concluded that, because of the relative motions 

between the inner and outer tubes at high frequencies, the Timoshenko beam model is 

more relevant than the Bernoulli–Euler model for terahertz frequency wave propagation 

in double wall CNTs. A similar Timoshenko beam model was used to study terahertz 

frequency vibrations of short CNTs [59].  

The resonance frequency of a typical single SWNT vibrating in the free-free mode is 

easily in the GHz range, and when the nanotube is embedded in a polymer matrix which 

provides elastic restraint, the frequencies are even greater. For MWNTs embedded in an 

elastic medium such as a polymer matrix, the effect of the matrix on the resonance 

frequencies of the MWNT has been estimated by using a beam-on-elastic foundation 

model [60]. In this model, Eqn. (5.3) modified by adding a distributed elastic reaction 

force to the last of Eqn. (5.3) which applies to the outer tube in a MWNT, as 

   

4 2

1 1 4
[ ] n n

N N N N N

w w
p c w w EI A

2x t
 

 
   

     (5.3) 

where p = -KwN is a Winkler-type elastic reaction force per unit length and K is a 

constant which depends on the material in which the MWNT is embedded. The results of 

this simulation show that when the elastic medium surrounding the MWNT is very 

compliant, the vibrational modes consist of both global flexure and noncoaxial intertube 
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deformations. However, when the elastic medium is very stiff, almost all of the 

vibrational modes are essentially of the noncoaxial intertube type. Arash and Ansari [61] 

assessed the effectiveness of the present nonlocal shell model by MD simulations as a 

benchmark of good accuracy and the fundamental resonant frequencies from continuum 

shell model and MD simulations for clamped and cantilever SWCNTs of thickness 

h=0.34nm is found in figure 4. 

However, using a tight binding MD simulation of the same problem, Dereli and Ozdogan 

[62] observed the same induced radial vibration at the same frequency, but found it to be 

sensitive to tensile strain rate. Ab initio calculations of structural, elastic and 

vibrationalproperties of SWNTs have included the effects of chirality and radius [63] 

 

Figure 17 Fundamental resonant frequencies from continuum shell model and MD 

simulations for clamped and cantilever SWCNTs of thickness h=0.34 nm. [61] 
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5.3 Simulation process 

5.3.1 Modeling 

The model we used is the 2x2x2 nm matrix which is exactly the same as we set up in the 

buckling behaviour section. The matrices with SWCNT only, and 1, 2, 4, 6, 8, 12 and 13 

PE chains are setup.  

5.3.2 Minimization and vibration analysis 

First, select the compass force field. Second, check the box of “Include Hessian”. Third, 

on the “Job control” tab, select 1 processor instead of 4 in parallel. This is because the 

software does not support parallel calculation including Hessian. No constraints or 

displacements are added. Only use the minimizing function and set the maximum 

iterations to be 300000 to ensure that the atoms find their balanced position. Afterwards, 

press the “calculation” button under energy tab and make sure that the “Include Hessian” 

box remains checked. Finally, on the toolbar, press “tools” and click on “Vibrational 

Analysis”, then click on the “calculate” modes. A list of vibration frequencies from low 

to high will be listed. Double click each frequency, and different mode shapes will 

display. Figure 19 shows the shape of the matrix including 1 PE chain before and after 

minimizing. 
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Figure 18  (a) the shape of the matrix including 1 PE chain before (b) and after 

minimizing 

 

5.4 Results and discussions 

A list of frequencies will be generated. For example, the matrix with 1 PE chain will 

generate the range of frequencies from 4.85 up to 2981 cm-1 and totally 644 groups of 

data. The unit cm-1 is the reciprocal of wave length. In another word, the numbers of 

wave periods included in the 1 cm length. To calculate the frequency in Hz, multiplying 

3x1010is conducted.   

Our purpose is to find the fundamental mode of the matrix, i.e. the “breath” type mode. 

However, as the system can be considered as a huge multi-degree of freedom vibration 

system with thousands of atoms. Usually, it is very hard to figure out the fundamental 

mode since there are hundreds of data. However, from the matrix with only SWCNT and 

no PE chains we found that the breath mode owns the lowest frequency which is 33.36 
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cm-1. Therefore, we should try from low to high for every matrix to find the fundamental 

vibrational modes. Table 5 has the data for the resonance frequencies for matrices 

containing 0, 1, 2, 4, 6, 8, 12 and 13 Chains. 

 

Table 5 Resonance frequencies for matrices containing 0, 1, 2, 4, 6, 8, 12 and 13 chains. 

Number of PE chains Frequency (cm-1) 

0 33.36 

1 29.57 

2 24.63 

4 24.54 

6 22.84 

8 22.27 

12 21.42 

13 20.24 

 

It has been found that with the number of PE chains increases, the fundamental frequency 

decreases. These results calculated using simulation software coincide very well with the 

continuum model. 

From eqn (5.7)  
2 2

2n

n EI n P

L A L E

 



I

  , it is clear to see that the vdW force is 

inversely proportional to the natural frequency of the PE-CNT matrix. Therefore, as the 

number of PE chains increases, the resonance frequencies will decrease, which inosculate 

with the data obtained in Table 5.  

64 

 



 

In fact, we can only calculate the matrices containing up to 13 PE chains. This is due to 

the calculation ability of the computer. The calculation of matrices with 14 PE chains or 

more will induce a calculation crush. 
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Chapter 6  

Conclusion remarks and future work 

 

6.1 Conclusion remarks 

The research on the buckling behaviour of PE-CNTs matrices is significant and a 

research on how the density of PE chains related to the buckling strain is first discovered. 

This is not only a significant discovery in research area, but also important in industry 

manufacturing. For example, by adding a proper amount of CNTs into the PE matrix in 

the real manufacturing process will be intensively related to our work.  

Another significant work is that the vdW forces are calculated between the PE chains and 

CNT for different number of PE chain matrices. The significance of the job is that it 

provides quantitative explanation on why the buckling strain decreases with the number 

of PE chains increases in a PE-CNTs matrix.  

The last work that is conducted in the thesis is the analysis of vibration modes for 

different PE chain matrices. This is the first vibrational modal analysis on PE-CNT 

matrix and dynamic characteristics of PE-CNT matrix are discovered. 
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6.2 Future work 

Based on the contents of the thesis, it is found that a lot more future work can be done to 

improve my current work. 

6.2.1 Model improvement  

The model we are taken has high weight percentage of CNT. In real manufacturing 

situation, the percentage of the CNT in the matrix is usually 5% up to 40%. The results 

for lower weight percentage of CNT matrices might be a little different. Although it is 

found that with the same relative density, the buckling strain is similar, there might be 

exceptions after we add more PE chains and expand the dimensions of our matrices. 

However, it may require a lot more time for the computer to calculate the mechanical 

parameters for larger matrices and more atoms. One way to solve this problem is to 

purchase better computers with faster CPU calculation since we found that the bottleneck 

of the calculation is on CPU and the overall usage of the CPU will get to 95%-100% 

calculation occupation. Another way to solve this is to update the software since our 

version is old and a new version of Materials Studio may optimize the calculation method 

which may much more increase the calculation speed. 

6.2.2 Beamlike buckling 

It is clearly seen in the thesis that we only use short CNTs which will induce shell-like 

buckling. Moreover, for SWCNT, beamlike buckling is another type of buckling which 

always happen with larger aspect ratio. It is expected that beamlike buckling behaviour 

for PE-CNTs matrices will have similar results with shell-like buckling behaviour.  

However, simulations must be done to verify our expectation. One difficulty for the 
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simulations of the matrices with larger aspect ratio for CNT is when more atoms are 

added in, the calculation will be more complicated and much slower. Therefore to 

improve the work station is very necessary. If use the same computer, the model will 

have even less PE chains and the weight percentage of the SWCNT will be even larger 

which means that the model is not that appropriate compared with the real PE-CNTs 

products manufactured from industries. 

6.2.3 Experimental method 

The experimental method can be done to verify the answers calculated from the 

simulation software. However, more difficulties will be conquered. First of all, as the real 

PE-CNT product will not be as perfect as the model we set up, errors may be induced. 

Second of all, as the differences of buckling strain for different number of PE chains 

obtained from the simulation result are very small, the buckling differences we got from 

results we derived from the experiment might not be significant. The third difficulty is 

that in the experiment, it is very hard to apply accurate displacement to the matrix which 

is a big barrier to compare the simulation results and the experimental results. 
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