Reducing Latency on the Internet using
“Component-Based Download”
and

“File-Segment Transfer Protocol”

By Babak S. Noghani

A Thesis submitted to the Faculty of Graduate Studies
Of the University of Manitoba
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Electrical & Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada
© March, 2001

Reducing the Latency on the Internet

il

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your file Votre référence

Our file Notre rélérence

L’auteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-57567-5

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

khkXxkk

COPYRIGHT PERMISSION PAGE

Reducing Latency on the Internet using “Component-Based Download”

and “File-Segment Transfer Protocol”
BY

Babak S. Noghani

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

BABAK S. NOGHANI © 2001

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicam and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

| hereby declare that [am the sole author of this thesis.
| authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Babak Noghani

| further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Babak Noghani

The University of Manitoba requires the signatures of all persons using or photocopies

this thesis. Please sign below, and give address and date.

u

Reducing the Latency on the Internet

ABSTRACT

This thesis examines the Component-Based Download (hereinafter referred to as
“CBD”) and the Component-Based Download File-Segment Transfer Protocol
(hereinafter referred to as “CBD-FSTP”) to combat the latency due to the slow
performance of the current file transfer protocols. In particular, we focus on accelerating
the download of large files (e.g.: video) from the Internet. This can be achieved by the
following two methods:
1. Defining a distributed server mechanism for transferring data known as CBD; and
2. Integrating a new distributed file transfer protocol known as CBD-FSTP
More efficient utilization of bandwidth can be obtained by using these two methods. This
will lead to a higher throughput and thus a reduced latency. The trade off will be higher
processing overhead and network utilization that are no longer major drawbacks
because of the emergence of fast computers with increasing processing power and the

expansion of fiber optic Gigabit links.

According to the data gathered throughout extensive measurements, CBD can speed
up the process of downloading large-size files up to 3 times faster compared to
conventional methods. The CBD-FSTP can also improve the latency by additional 30%
compared to the FSTP method, which is another fast newly-developed file transfer
protocol. Results show that CBD-FSTP can be 7 times faster than the File Transfer
Protocol (hereinafter referred as “FTP").

iii

Reducing the Latency on the Internet

ACKNOWLEDGMENTS

I would like to extend my thanks to my advisor, Dr. Robert D. McLeod for his support
and guidance throughout the entirety of my academic work on the CBD and CBD-FSTP.
| also want to thank Dr. David Blight for his support and encouragement when | started
Master's program. Finally, | want to thank Steve Kretschmann for his commitment over
the course of implementing the FSTP protocol. Of course there are those who go

unnamed, and to them | offer my gratitude as well.

iv

Reducing the Latency on the Intemnet

Acronyms

Acronym | Definition

ACK Acknowledgement

ARDP Asynchronous Reliable Delive
CBD Component-Based Download
DSL Digital Subscriber Line

FSTP File Segment Transfer Protocol
FTP File Transfer Protocol

HTTP HyperText Transport Protocol
iP intemet Protocol

IPTD Inter-Packet Transmission Dela:
LAN Local Area Network

MTU Maximum Transferable Unit
NNTP Network News Transfer Protocol
RAM Random Access Memory

RTO Retransmission Time Out

RTT Round-trip time

TCP Transport Control Protocol
TFTP Trivial File Transfer Protocol
TTL Time To Live

ubpP User Datagram Protocol

Figure 1-1 Acronyms

Reducing the Latency on the [ntemet

Table of Contents

1 introduction 1
1.1 THESIS MOTIVES 1
1.2 CHALLENGES 1
1.3 STRUCTURE OF THESIS . 6

2 Component-Based Download...... 8
2.1 MOTIVATION FOR CBD 8

2,11 Proof Of CONCEPL ...oocceeeeiceeermreeccccciacrecrencecssemesmea e neeessssesssesssnsnsrersvasnns 10
2.1.2 Discussion of the ReSUILS.......cem oo ccrccec i eeeccecsssse s eenresnesassannsnenneen 21
2.2 FAULT TOLERANCE ... 22
2.2.1 Reliability Analysis 23
2.2.2 SerVer SElECHON...ccivererereeeeeecreianeverneesrntmrerserssererensermnssasnsnenssrsnses 30

3 File Segment Transfer Protocol (FSTP\ 33
3.1 MOTIVATION FOR DESIGNING A NEW FILE TRANSFER PROTOCOL ..ccuceveeresnccesssossneross 33
3.2 FILE SEGMENT TRANSFER PROTOCOL (FSTP) ..ciiieeeeeeeeeececrecsvcensns 35
3.3 FSTP FLOW CONTROL .. 38

4 CBD-FSTP 41
4.1 MOTIVATION FOR CBID-FSTRPceeieeeercrenecenrisensconcrssenerennreacesssaseosenses .41
4.2 CBD-FSTP DESCRIPTION......ceereeveene eeereseresererrsonretorererrorerttiitsonttss s 41
4.3 CBD-FSTP SERVERcooceemeerrerersrnrsssassssoosammmessesssassssnsssnasescacs teremmeeesereeemmnseseteenernane 43
4.4 B D ST P CLIENT ceeeeeeeeeeeeeeeeeeeensserrserersesrsesonsesessarsesssssssrnnmnnssnsesssnmmassessmsssoresemsasssiinnassasase 44
4.5 FSTP-CBD PROTOTYPE IMPLEMENTATIONcccoeeresrracrsesssessesennsssssnsessesssasssssnsesssassasasmammssnssensse 44

4.51 MURI-TRIEAUEA ClIBNLceeeeeceeeeeeeereeeeereeceereeremrrenersnnesessnersossssssssssssnssensssnsessnsssnrmiinsanssansn 46
452 CBD-FSTP Header....ccooucevemvererrsememeeaaeeeennenoccesaseereessenseeesases eeeeesresesmeeceane .47
453 Appending File COMPONENES.......cccccvecrmmmmticccerereracrerrmmsemererrsssresrerssntssssssmssvinssmmsenssssaes 48
O S (o T 0o o1 { {0 [U S 49
4,55 PACKEOE SIZE ceueeeeeeeeereeeeeeteeeeeievmneereceronnsasesoseactasmstemnnnsarssasssensressessssnentessnnsissnssnniessnnsnsnsn 50
4.6 EXPERIMENTAL MEASUREMENTS......... teeeseseseeseanerasasmsannssenasaseseeresarasstiresanseanse 51
4.6.1 Computers Used in Experimental Measurements........... .. 51
4.6.2 MeasurementsS ProCeAUIB........vremrecmeeccncarercsrescersrrseeresnssssssosasassssssorsannssrsnsannsssasmeressseses 52
4.6.3 Results eneereeeaesenenreseonmsennonen ..54
4.7 ANALYSIS OF THE FIESULTS.c.uueemereemevencsensssessensnsrsssssaseessensmmensssnsmnncsasaeessessssssarases .57
4.8 COMPARISON OF CBD-FSTP WITH FSTP .o 59

5 CONCIUSIONcecceaeccecrimeccrcrenscnesenssensemrensinrassesisiansnsssensessessorans 62
5.1 FUTURE WORK ... orcrrereceereseesasesasaserssrssssssemsmssnressmssmsssssnesasnansssnressessssssstsnsssrbsssssssnsssmmennrenense 63

6 References ... eetiestestrtonnntaentasaransennancannnsans 65

7 Appendices...... 67
74 TRANSFER CONTROL PROTOCOL. teeeeetesassetestesesnssaraneatsnasseenansnnsasrasasansasatecasnsniteensrnnsas 67

711 INPOAUCEHON ...aeeeeecreeciierercreceecsecsereccecencostosseosaresssnesmssenrness 67
7.1.2 General DeSCriPlioN ..o vererevessnnraretsctisirstesiesssssesssosssesrrsnnssassnnsssssesessrsssassenagmmnncssinnsns 67
7.1.3 Basic Data Transfer 69
7.1.4 Congestion control.. 71
7.1.5 TCP Improvements.......c.ccoceceeerecmnnnee .72
7.2 TRIVIAL FILE TRANSFER PROTOCOL (TFTP) ..uneiieeeriieccncennreeeenecenccanoeses .73
T.2.1 INITOAUCHION cooeeeereeeeieeeeeeneeeeirecenerensresessennssseesssemesasesesnsessnssnmessesssssasssrrannnssrrresses .73
7.2.2 Trivial File Transfer Protocol 73

Reducing the Latency on the Internet

7.3 USER DATAGRAM PROTOCOL (UDP) 75

7.3.1 Introduction75
7.3.2 UDP Encapsulation and Protocol Layering ..76
7.3.3 UDP Muitiplexing - 77
7.4 SOURCE CODE .78
7.4.1 CBD Implementationccoooiieerecoeirrrennmteeecreetmrineeensesesnn s sanencrersasassennsonsenasonns 78
7.42 CBD-FSTP Prototype Implementatlon -84
7.5 TRACE ROUTE..... . .105

List of Figures

FIQUPE T-1 ACTONYMIS ...ccocunerrreeieeneeenecrssessressssnsssrsssnsrsmmstasasessssmsmessasanemsasere e s st e e m s s ta st s sassanss s s sernes v
Figure 2-1 CBD Distributed Server Mechanism 10
Figure 2-2 Downloading Three Files (1, 1.3 & 2 Meg) in a 100BaseT LAN Environment..................... 13
Figure 2-3 Downloading Three Files (7.9, 8 & 9 Meg) in a 100BaseT LAN Environment..................... 14
Figure 2-4 Downloading Three Files (50.8, 33.7 & 34.9 Meg) in a 100BaseT LAN Environment......... 14
Figure 2-5 Downloading Five Files (1.1, 1.3, 1.8, 2 & 2.8 Meg) in a 100BaseT LAN Environment....... 15
Figure 2-6 Downloading Three Files (1.1, 1.3 & 2 Meg) in a 10BaseT LAN Environment.................... 16
Figure 2-7 Downloading Five Files (1.3, 1.8, 2.2, 2.3 & 2.5 Meg) in a 10BaseT LAN Environment... 17
Figure 2-8 Downloading Three Files (1.1, 1.3 & 2 Meg) in a 10BaseT Wireless Environment 18
Figure 2-9 Downloading Three Files (6.6, 8.1 & 11.1 Meg) in a 10BaseT Wireless Environment 18
Figure 2-10 Downloading Five Files (1.1, 1.3, 1.8, 2 & 2.8 Meg) in a 10BaseT Wireless Environment
19

Figure 2-11 Downloading 3 Files (1.1, 1.3 & 2 Meg) in a Modem Environment (33.6 bps) 20
Figure 2-12 Replication SChemME A ... et cre s e s ee e e e nr e s nee s s e s s ae s s e nmnaes 23
Figure 2-13 Replication SChEmME Bcooireieieeeecrermeer et eeeseancene e snaeneessotsisesrrsssovessanase 23
Figure 2-14 Five Distributed Servers with Replication Degree of three ..28
Figure 2-15 Reliability of a System of Distributed Server Based on Number of Replicated Data 30
Figure 4-1 UML Sequence Diagram Of CBD-FSTPuueiirerrrrrmerrrrrrrrrrrecrerersscnseressssosiesssssensasssssess 45
Figure 4-2 Static Classes Of CBD-FSTP ... etrreeceeseteeesesenanccte s e st s e e neee 46
Figure 4-3 Code Snippet for Spawning Threads for Parallel Connections........coeeeeeeeenmininieneiinnens 47
Figure 4-4 CBD-FSTP HEAAGN....coueueeeeeeeeeceeeermioeenneeseseomaencasemnssmsasasastomommsesenserssssarttsssssssssmsassomssnse 47
Figure 4-5 Code Snippet for Creating CBD-FSTP Header .48
Figure 4-6 Code Snippet for Appending File COMPONENES.........cveeeeiviernereerirssrrerseesrsirinenenneeerenserne 49
Figure 4-7 Downloading a 20 Meg File Distributed on Four Remote Machines reeesemneneneseaeseaannnnen 55
Figure 4-8 Downloading a 40 Meg File Distributed on Four Remote Machines............cccvvererevenecneee 56
Figure 4-9 Downloading a 15 Meg File Distributed on Three Remote Machinesoccoeceeneeeeee 56
Figure 4-10 Downloading a 30 Meg File Distributed on Three Remote Machines............................. 57
Figure 7-1 ProtoCol LAYEMNG .c.cvererereecrremiicsiisessicictacereresserersmessisastssssessessossssssnsosssanascressssssssssssnssnassers 69
Figure 7-2 ProtoCO! laYEMNG....coueiemmietemeieaiineccecceeosieeeestenertasersarsessaratemasnsrassransssasaesananarssassanes 76
Figure 7-3 UDP ENCAPSUIALIONeuneeeeeeeeeeiirerrrreerieremeessetreetiecsensessseeseesensen s nesn e amtesses e s e nsnasaesesen 77
Figure 7-4 UDP demulItiplexing .c.ccovoeeeneeioeiriercicrccrcesereremen et csereresnmeararnesstsntssessnnesesssmsnessnassesnsanes 78
List of Tables

Table 2-1 Relative Latency (CBD/CONVENIONAI)cccceereeerecnntrrrererisesrnsernseesssssnsnssvasssnssnnssnssensnsnnsss 22
Table 2-2 Reliability and Number of Replicated Datacooeeeeimmmn e eee 27
Table 4-1 Specifications of Machines Running the CBD-FSTP Server52
Table 4-2 Average Latency (for Different Size of Files & Number of Servers)......c...cccovicnnceene 57
Table 4-3 Relative Latency (for Different Size of Files and Number of Servers).................. .58
Table 4-4 RTT and Number of Hops for Participating CBD-FSTP Server- .59

vii

Reducing the Latency on the Internet

Introduction

Chapter One

Reducing the Latency on the Internet

Introduction

1 Introduction

1.1 Thesis Motives

The Internet has seen tremendous growth within the last few years. The main
reason for its popularity is its ability to provide easy user access to a wide variety
of data from remote locations. This data can be of any nature and of any size,
from small text files to very large movies. Literally, there are no boundaries as to

the size of the files that can be accessed through the Intemet.

In spite of the Internet’s tremendous capabilities, Internet users tend to complain
about the time they waste working on their computers, waiting for data to
download. This concern has grown larger with the emergence of audio and
video files over the Intermet. Files with several hundred megabytes are not
unusual these days. in other words, for a typical Intemet user, latency is a
concern, and reducing this delay can be a great help for Internet users. Finding a
quicker and more efficient way to download files from the Internet is the primary

reason for this thesis.

1.2 Challenges

A number of approaches have been taken in minimizing user latency on the
Internet. To name a few, increasing the bandwidth on the Internet backbone and
to the end user, more efficient routing schemes, streaming data, etc. None of

which has effectively solved the latency problem.

Reducing the Latency on the Internet

Introduction

Latency is caused by a number of sources. For instance, if a server is overloaded
or has a slow disk, it imposes a considerable delay in processing a request.
Another such instance is caused when a user's computer does not quickly
respond to the packets being received and therefore, adds delay. The latency
caused by a server or client can be largely eliminated by using a more powerful

computer, more memory, or a faster disk.

The main portion of the iatency perceived by an Internet user is caused by the
network itself. Some sources of this delay are intrinsic to the network
infrastructure, namely propagation and transmission delays. Propagation delay
depends on the speed of light and is negligible compared to other delay factors.
Transmission delay is not a big concern anymore. The reason for this is that
most Internet users nowadays have access to reasonably high-speed Intemet

connections.

Delay can also be due to network congestion. High performance routing
algorithms and a fast and reliable network infrastructure can alleviate this
problem to a great extent. Routers, as well, contribute to the delay perceived by
the user due to the buffering and processing time involved in routing the Intemet

packets.

Yet another source of latency can be due to the design and implementation of

the Intermet protocols themselves. As a common rule, file transfer protocols were

Reducing the Latency on the Internet

Introduction

initially designed to match particuiar network characteristics with the type or size

of the data that is transmitted. Therefore, with the evolving nature of the Intemet,

the protocols are modified occasionally to optimize performance. Many

modifications to the existing protocols, namely Hyper Text Transport Protocol

HTTP [Ber96], have been proposed in the literature to reduce the latency. Some

of them have already been tested and implemented on the Intermnet to a great

extend. The more significant modifications are listed as follows:

Avoiding the cost of Round Trip Time (RTT) by reducing the number of
HTTP connections. This method uses a single, long-lived connection for
muitiple HTTP transactions (persistent connection). The connection
remains open for all the inline images of a single document, and across
multiple HTML retrievals [Pad94).

Utilizing multiple Transport Control Protocol (TCP) connections to the
server. This technique is currently used by web browsers that comply with
the HTTP1.1 [Fie97]. Instead of opening and closing a connection for each
application request, HTTP 1.1 provides a persistent connection that ailows
for multiple requests to be batched or pipelined to an output buffer. The
underlying TCP layer can put multiple requests (and responses to
requests) into one TCP segment that is forwarded to the Intemet Protocol
(IP) layer for packet transmission. Because the number of connection and
disconnection requests for a sequence of “get a file" requests is reduced,
fewer packets need to flow across the Intemet. Since more requests are

pipelined, TCP segments become more efficient. The result being less

3

Reducing the Latency on the Intemnet

[ntroduction

internet traffic and faster performance for the user. When a browser
supporting HTTP 1.1 indicates it can decompress HTML files, a server will
compress them for transport across the Intemet, providing a substantial
aggregate savings in the amount of data that is being transmitted. (Image
fites are already in a compressed format so this improvement applies only
to HTML and other non-image data types.)

¢ Pre-fetching techniques attempt to predict future requests of a user, based
on the history of observed Web pages. Pre-fetching can reduce network
delays considerably [Cro98]. There are many solutions toward making the
pre-fetching techniques more efficient. They are described throughout
literature. Most of these solutions try to deploy a leaming algorithm by
which proxies would be able to pre-fetch files that are most likely
accessed next by the Internet user.

e Using mirror/replicated servers, i.e.; spreading the workload among a
cluster of servers rather than a single machine handling the HTTP
requests. Server replication is an approach often used to improve the
ability of a service to handle a large number of clients. The most important
factor in efficient utilization of replicated servers is the ability to direct client
requests to the best server, according to some optimal criteria. This issue

is discussed further in [Fei98].

As mentioned earlier, the Internet has rapidly evolved more so in recent years.
One of its biggest improvements involves increased bandwidth availability. This

4

Reducing the Latency on the Internet

Introduction

possibility has resulted due to the use of fiber networks, DSL, cable connections,
and other new technologies. A typical Internet user now has abundant
bandwidth available to their computers compared to a few years ago. However,
in most cases, the bandwidth cannot be utilized efficiently. Experience has
shown that when using a typical file transfer protocol to download a file, only a
portion of the available bandwidth is utilized. Current file transfer protocols use
one of the versions of sliding-window mechanism for providing reliabie
connection. In the sliding-window mechanism * the sender should wait for an
acknowledgment from the receiver before sending the next segment of data.
The amount of time before the sender receives the acknowledgment is referred
to as Round-Trip Time (RTT). In high-speed network, RTT can be even larger
than the transmission time. Therefore, the actual throughput of a connection is
limited by the RTT. This degrades the efficient utilization of the bandwidth by

current file transfer protocols.

The objective of this thesis is tc expand downloading capabilities of large files
over the Intemet as quick as possible. This can be achieved by defining a
distributed server mechanism for transferring data. And secondly, by designing a

new file transfer protocol, which is compatible with our distributed mechanism.

! Refer to Appendix 7.1 for more information

Reducing the Latency on the Internet

Introduction

The idea behind these two solutions is to utilize the bandwidth more efficiently
and eliminate the negative effect of RTT. This would lead to higher throughput
and shorter latency perceived by the Intemet user. Of course, this enhancement
is achieved as a trade off with additional processing overhead and network costs.
Fortunately, this is not a significant drawback due to the emergence of new

computers with ever-increasing processing power and fiber optic gigabit links.

1.3 Structure of Thesis

In the following chapter a new distributed server mechanism (CBD) will be
introduced. In chapter three, a new file transfer protocol (FSTP) will be
introduced and explained in greater detail. Following that, in chapter four, the
CBD paradigm would be integrated into the FSTP and a distributed version of
this new protocol (CBD-FSTP) would be designed. The prototype implementation
of CBD-FSTP will also be covered in that chapter. Chapter five focuses on the

conclusion and discusses future research and direction.

Reducing the Latency on the Internet

Component-Based Download (CBD)

Chapter Two

Reducing the Latency on the Internet

Component-Based Download (CBD)

2 Component-Based Downioad

2.1 Motivation for CBD

As mentioned earlier, bandwidth is not a bottieneck in today’s networks any
longer. TCP, as the de facto file transfer protocol in the Intemet, has not properly
adapted itself to this improvement. Experiments have shown that TCP's sliding
window mechanism for flow control and slow start algorithm for congestion
control?, causes limited throughput particularly for a high-speed network

connection.

Although numerous changes have been applied to TCP to allow for transferring
data quicker, this protocol is still considered quite slow. This is due to its initial
design, which is based on the assumption that in every given network, packet
loss ratio should be considerable and bandwidth relatively low. To be more
specific, overly conservative Retransmission Timeout (RTO), and inability to
measure the available bandwidth accurately, degrades the TCP service

throughput [Hoe96][Bra95].

The initial concept of CBD is closely related to what already has been utilized in
the implementation of HTTP1.1 [Fie97]. HTTP1.1 takes advantage of the concept

of long-lived TCP connections. That is, several logical data streams are

? Refer to appendix 7-1 for more information

Reducing the Latency on the Internet

Component-Based Download (CBD)

multiplexed by the application into one TCP socket. This concept has been
extensively addressed in the literature over the last few years. Examples include

persistent-control HTTP and Session Contro! Protocol (SCP) [Pad94].

In CBD, quite similar to HTTP1.1, the user establishes multiple concurrent
connections. The only difference is that these connections are linked to different
servers, not just one. The distributed approach (i.e., using severa! servers) is
intentionally chosen for the CBD because it increases fault tolerance of the
downloading process. (This issue will be discussed in greater details in the
following sections.) Another concept that deserves consideration is that in
HTTP1.1 the sizes of the transferred files are generally quite small and
connections are mediated through the web server. Whereas, CBD deals with

substantially larger files.

The concept of CBD is very simple and straightforward. For a user to be able to
download a file via CBD, the file should first be divided into several components
and put on different servers. When the user attempts to download the file, four
components are identified and they are as follows:
1. Multiple concurrent connections will be established between the user’s
application and the servers maintaining the file components.
2. As soon as each connection has been set up, the file component will start
downloading independently from the others. In other words, all the

components will be downloaded simuitaneously.

Reducing the Latency on the Internet

Component-Based Download (CBD)

3. On the user’s end, each connection will be terminated after the respective
component has been completely downloaded.
4. Finally, the components on the user's machine will get appended to each
other and reconstitute the original file.
The following illustrates the connections between the user's machine and the

multiple servers.

Multiple Client

Figure 2-1 CBD Distributed Server Mechanism

2.1.1 Proof of Concept

As the first step in verifying the feasibility of the CBD mechanism, some
experiments were performed. During these experiments files were downloaded
once via the CBD, and once using the conventional method. After each trial, the
latency was measured and a comparison was drawn. The CBD was simulated

as follows:
10

Reducing the Latency on the Internet

Component-Based Download (CBD)

Since the FTP is the de-facto application protocol for downloading large
files over the internet, we used it in our tests for transferring files.

Several files located on remote FTP servers were selected. These files
were downloaded first, by establishing concurrent (alt simultaneously) FTP
sessions between an FTP client and the servers, and secondly, by
establishing sequential (one after another) FTP sessions between the
same FTP client and the servers.

The total delays for downloading the files were measured in both cases. In
concurrent download, total perceived latency is equal to the greatest value
of the latencies measured for each individual download. In sequential
download, the perceived latency is equal to the sum of the latencies

measured for each individual downioad.

Needless to say that in a real implementation of CBD, components of a file
should be downloaded instead of standaione files. On the client's end the

components should be appended to each other to reconstitute the original file.

In this chapter the main concem is to verify that the CBD is quicker than
conventional download methods. Therefore, the focus will be merely on
measurement of latencies. In chapter five a file transfer protocol will be

introduced, which CBD can be practically incorporated into.

1t

Reducing the Latency on the Internet

Component-Based Download (CBD)

2.1.1.1 CBD Results

Our tests clearly illustrated the great potential to improve the performance of a
network by using the CBD for large files. Depending on what network connection,
what level of distribution, and what component size were used, the downloading

time was 1 and a haif to 3 times faster.

To repeat the experiment a reasonable number of times, a Java program was
written. This program automates the process of opening the FTP sessions,
measuring and collecting the latencies.® Over the course of experiments,
different contingencies that might occur in real-life situations were taken into
consideration. To compensate for the effect of variations cf the traffic load on the
network and to get a reliable result, experiments were repeated at various times
throughout the day on certain days of the week. To investigate the performance
of CBD and find out its optimum state, various environments and different

numbers and sizes of files were tested.

The experiments were performed over campus type LANs, modems, and
wireless LANs supporting 802.11. The following machines were used in the
experiments:

e For connecting to 100BaseT: Sun Sparc Uitra 10, 768 Meg of RAM,

running Solaris 5.6

? Refer to appendix 7.4.1 for its source code

12

Reducing the Latency on the Internet

Component-Based Download (CBD)

e For connecting to 10BaseT: Sun Sparc Ultra 2, running Solaris
e For connecting to wireless LAN: Intel Pentium Il, running Windows 98 with
32 Meg of RAM
The results obtained under each environment are provided in the following sub-

sections.

2.1.1.1.1 100BaseT LAN

Experiments were performed on three different sizes and numbers of files:
e Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded.
Measurements were repeated one hundred times. The mean latency while
utilizing the CBD was 85 seconds as compared to 176 seconds for the

conventional download. (Figure 2-2)

Bownloadng womJ 2erecs (1.1,1.3 4.2 Megd
2 1008ateT Envrenmert.
T T T

Latency (seconds)

Figure 2-2 Downloading Three Files (1, 1.3 & 2 Meg) in a 100BaseT LAN
Environment

e Three files, with sizes 7.9, 8 and 9 Meg, were downloaded. Measurements

were repeated ninety times. The mean latency while utilizing the CBD was

13

Reducing the Latency on the Internet

Component-Based Download (CBD)

317 seconds as compared to 697 seconds for the conventional download

(Figure 2-3).

Oewnieaging ®om J servers (7.9. 0 & 3 MeQ)
108axeT LAN Envirenmant

ol r\/w

Figure 2-3 Downloading Three Files (7.9, 8 & 9 Meg) in a 100BaseT LAN
Environment

e Three files, with sizes 50.8, 33.7 and 34.9 Meg, were downloaded.
Measurements were repeated twenty times. The mean latency while
utilizing the CBD was 1,035 seconds as compared to 2438 seconds for

the conventional download (Figure 2-4).

Downtoading freen J Errvees (308, 317 £.34.5 Meg)
w2 1008a8eT Envvoment
Y

Figure2-4 Downloading Three Files (50.8, 33.7 & 34.9 Meg) in a 100BaseT LAN
Environment

14

Reducing the Latency on the Internet

Component-Based Download (CBD)

o Five files, with sizes 1.1, 1.3, 1.8, 2 and 2.8 Meg, were downloaded.
Measurements were repeated one hundred and twenty times. The mean
latency while utilizing the CBD was 91 seconds as compared to 267

seconds for the conventional download. (Figure 2-5)

Downloading Fle rom5Senvers (1.1, 1.3, 1 6. 24 2.8 Meg)
T Y T T T

400

» Oownioad

100} average = 91

4

2 " i z i
Q 20 40 L] a0 100 120
Nunbsrof Tnats

Figure 2-5 Downloading Five Files (1.1, 1.3, 1.8, 2 & 2.8 Meg) in a 100BaseT LAN
Environment

The results show higher improvements in latency, when larger files get

downloaded, and the number of participating servers is increased (from 3 to 5).

2.1.1.1.2 10BaseT LAN

Experiments were performed on two different sizes and numbers of files:

15

Reducing the Latency on the Internet

Component-Based Download (CBD)

e Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded.
Measurements were repeated one hundred times. The mean latency while
utilizing the CBD was 47 seconds as compared to 99 seconds for the

conventional download (Figure 2-6).

Downioading kom: 3 sarvers (1 1, 1.3 8 2 Meg)
108aseT LAN Environmant
T T T

T

. . N L L . . : .
° 10 20 30 40 s0 [70] 90 100
Number of Trials

Figure 2-6 Downloading Three Files (1.1, 1.3 & 2 Meg) in a 10BaseT LAN
Environment

o Five files, with sizes 1.3, 1.8, 2.2, 2.3 and 2.5 Meg, were downioaded.
Measurements were repeated fifty times. The mean latency while utilizing
the CBD was 59 seconds as compared to 151 seconds for the

conventional download (Figure 2-7).

As the results imply, once again, increased improvement of latency was achieved

when the number of participating servers was increased.

16

Reducing the Latency on the Internet

Component-Based Download (CBD)

Dowrscuding trom § Servecy (1.3, 1A 22.23 8285 Meg)
1082997 LAN Efwwrtnmant.

Latercy (seconas)

Figure 2-7 Downloading Five Files (1.3, 1.8, 2.2, 2.3 & 2.5 Meg) in a 10BaseT
LAN Environment

2.1.1.1.3 Wireless LAN

Experiments were performed on 3 different sizes and numbers of files:

e Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded.
Measurements were repeated ninety times. The mean latency while
utilizing the CBD was 89 seconds as compared to 194 seconds for the
conventional download (Figure 2-8).

e Three files, with sizes 6.6, 8.1 and 11.1 Meg, were downloaded.
Measurements were repeated thirty times. The mean latency while
utilizing the CBD was 396 seconds as compared to 534 seconds for the
conventional download. (Figure 2-9).

¢ Five files, with sizes 1.1, 1.3, 1.8, 2 and 2.8 Meg, were downloaded.

Measurements were repeated one hundred twenty times. The mean

Reducing the Latency on the Internet

Component-Based Download (CBD)

latency while utilizing the CBD was 103 seconds as compared to 317

seconds for the conventional download. (Figure 2-10).

Dowrioading Fem 3 Sarvers (1.1, 1.3 & 2 w9Q)
Wirslass LAN Envimoment

Figure 2-8 Downloading Three Files (1.1, 1.3 & 2 Meg) in a 10BaseT Wireless
Environment
Wam«:&«'km [-T1 0]

g
H

£,
3

Figure 2-9 Downloading Three Files (6.6, 8.1 & 11.1 Meg) in a 10BaseT Wireless
Environment

18
Reducing the Latency on the Internet

Component-Based Download (CBD)

Downtcading Fllas fom 5 Servers (1.1, 1.3, 1.6, 2 &2 S Meq)
0 2 PirelessLAN Emtronment
T

450

T T T N — T T T T

Latancy (seconds)

o 10 20 30 40 50 [70 80 9 100
Number of Trials

Figure 2-10 Downloading Five Files (1.1, 1.3, 1.8, 2 & 2.8 Meg) in a 10BaseT
Wireless Environment

The same as the last two environments, results indicate an increase in the
number of concurrent connections improves the relative latency. When the sizes
of the files were increased, the performance of CBD deteriorates. This result is
due to the lack of enough Random Access Memory (RAM) in the machine used
in a wireless environment. When FTP downloads a file, it is temporarily saved on
the RAM, before the Operating System allocates permanent storage space on
the hard disk. The machine utilized in the wireless environment, has only 32 MB
of RAM, which is not enough to handle the process of saving large files. By

utilizing a machine with more RAM this problem would be alleviated.

2.1.1.1.4 Dialup Modem

Reducing the Latency on the Internet

Component-Based Download (CBD)

Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded. Measurements
were repeated thirty times. The mean latency while utilizing the CBD was 1578
seconds as compared to 1493 seconds for the conventional download. The
results imply that no improvement was achieved through utilization of the CBD in

this case (Figure 2-11).

Oownloading rom 3 Servers (1.1, 1.3 8.2 teg)
Diaup Modem (33.6 bps)

Numbet of Tnats.

Figure 2-11 Downloading 3 Files (1.1, 1.3 & 2 Meg) in a Modem Environment
(33.6 bps)

Even before performing the experiments on dialup modem cennection, one could
predict the same results (i.e., no improvement). One of the basic assumptions
made in the design of CBD, is that the user machine shouid be connected
through a high-speed link. Having this wealth of bandwidth allows the user to
spare some of the bandwidth to the overhead of creating concurrent network
connections. Whereas in a dialup modem environment, the bandwidth is scarce

20

Reducing the Latency on the Internet

Component-Based Download (CBD)

in the first place and we cannot afford loosing a portion of it to the overhead in
establishing muitiple connections. in other words, the whole bandwidth is already
consumed by one network connection and there is no room for added

connections.

2.1.2 Discussion of the Resuits

To have a better representation of the resuits, the relative latencies for each
environment and file-component size are outlined in Table 2-1. Generally
speaking, when the number of concurrent connections is increased, CBD shows
more effectiveness in decreasing the latency. The number of parallef connections
for optimum performance depends on the available bandwidth at hand and the
processing power and specifications of the machine being utilized. Therefore,
there is no pre-defined optimum number of parallel connections. Also, when
larger files are downloaded, CBD shows better performance in decreasing the
latency. The reason for this may be due to the fact that when the duration of an
FTP session is prolonged, the percentage of the network overhead (due to
connection setup and tear down) as compared to the total network cost will be
reduced. Another proven result based on the experiments determined that the
limitation in a computer RAM can degrade the performance of the CBD. This is
due to the fact that CBD needs more RAM for buffering its incoming data and

maintaining its concurrent TCP connections.

21

Reducing the Latency on the Internet

Component-Based Download (CBD)

Environment

File Configuration | 100BaseT | 10BaseT | Wireless 10BaseT | Dial up modem

3 Files (4.5Meg) | 0.48 0.47 0.46 1.06
3 Files (26 Meg) | 0.45 0.39 0.74 -

3 Files (119.4 Meg) | 0.42 - - -

5 Files (9 Meg) 0.34 - 0.32 -

Table 2-1 Relative Latency (CBD/Conventional)

2.2 Fault Tolerance

As with all distributed mechanisms, a higher degree of fault tolerance and load
balancing can be obtained in CBD as compared to non-distributed approaches.
Loosing connection to a server on the Intemet due to the congestion or the
server itself going down, is very likely to occur. In such a situation, the CBD client
cannot access all the file components, and the downloading process will

inevitably fail.

This problem can be addressed by resorting to a replication scheme, i.e., instead
of having only one copy of a file component on one server, multiple file copies
can be maintained on several servers. (The same approach used in mirror
servers.) Depending on the nature of the file cluster, and the network’s
environment, various replication schemes can be implemented. Two practical
simple schemes are illustrated in the following figures. Figure 2-12 illustrates the

scenario in which a complete backup of the file cluster is put on an additional

Reducing the Latency on the Intenet

Component-Baseq Pownload (CBD)

server. Figure 2-13 illustrates the scenatio in which a second copy of the file

cluster is divided into several components and spread among the servers.

Coamnonent 1

Comnanent 2

Camnanent n

Figure 2-12 Replication Scheme A

Commnonent N Component 2 Component 3 Comp. n-1

Component 1 Component 1 Comoonent 2 Comoonent n

Figure 2-13 Replication Scheme B

221 Reliability Analysis

In this section the reliability that can be achieved while replicating the data over
muitiple servers will be explained and anglyzed. Replication Scheme B is taken
as an example and the number of replicatéd components needed to achieve a

certain level of reliability will be analytically found. Before that the methodology

on how to estimate the reliability will be q¢scribed.

Reducing the Latency on the Internet

Component-Based Download (CBD)

2.2.1.1 Reliability Concept

The reliability of a system is its ability to maintain operation over a period of time
t. Formally, the reliability, R(t), of a system is:

R(t) = Pr (the system is operational in [0, t]) (Equation 2-1)
If X defined to be a random variable representing the lifetime of the system and
also letting F be the cumulative distribution function (CDF) of X, then reliability of
the system at time t is: (It is assumed that a system is working properly at t =0,
therefore, R(0) = 1)

R()=Pr(x>t)=1-F(¢) (Equation 2-2)

When modeling a system, it is often assumed that the failure rate is constant.
The importance of this assumption is when the failure rate, A, is constant, the
resulting CDF of the lifetime of the components is exponential. That is:

F@t)=1-e* (Equation 2-3)
And the reliability:

R@)= e (Equation 2-4)
Another measure often used for the analysis of systems is availability. The

availability of a system is often expressed as the instantaneous availability, A(?),
and/or steady-state availability (i.e., lim,_,_ A(?)). The instantaneous

availability, A(?), is defined as the probability that a system is operational at time
t It allows for one or more failures to have occurred during the interval (0, t). Ifa

system is not repairable, the definition of A(t) is equivalent to R(t). Dependability

24

Reducing the Latency on the Intemnet

Component-Based Download (CBD)

is used as the catch-all phrase for various measures such as reliability,

availability, etc.

“Series-Parallel Block Diagram” will be used to as a modeling technique to
analyze the reliability of the CBD. Next section describes this technique and it

can be adapted into the CBD paradigm.

2.2.1.2 Series-Parallel Reliability

The series-parallel reliability block diagram is a technique used for determining a
system’s dependability. in a block diagram model, components are represented
as blocks and are combined with other blocks in series, parallel, and/or k-out-of-n
configuration. A diagram that has components connected, as “series structure”
requires that each component must be functioning for the overall system to be
operational. A diagram that has components connected, as “parallel structure”
requires only one component to be functional for the overall system to be
operational. A “k-out-of-n structure” is superset of the series and parallel
structures and requires k of the n total components to be functional for an
operational system. Therefore, parallel and series structures are represented
with “k-out-of-n structures” that are “1-out-of-n” and “n-out-of-n”, respectively. The

equations for the distribution function of these structures are: (The upper line

represents a series and the lower line a parallel structure)

Reducing the Latency on the Internet

Component-Based Download (CBD)

S § KGAD)
F@)= {H::I F;l " (Equation 2-5)

2.2.1.3 Reliability of the Replication Scheme B

In Replication Scheme B, if there were no replicated data on the servers, “Series
Reliability Block Diagram” would apply to the system. And if there were a
complete set of file components on each participating servers, “Parallel Reliability

Block Diagram” would apply.

Now, the question is how many copies of the data must be replicated and put on
the distributed server system to achieve a certain level of reliability. Equation 2-6
gives the reliability of the CBD in which P(t) is the probability of having a
connection to each of the servers. In other words, this equation calculates the
distribution function for the k-th order statistic on n independent, identically
distributed random variables.
£

P ()= Zo, GOA-PE) PO (Equation 2-6)
To make the computation of the above equation manageable, P(t) will be
assumed to be a constant and identical value for all the participating servers. In
a real-life scenario, to offset the effect of this unrealistic assumption in analyzing
the reliability of CBD, a minimum value can be considered for P(t) (the worst-

case scenario). Therefore, the Equation 2-6 can be rewritten as follows.

Pyw = Zk‘, ¢a-pep (Equation 2-7)

=0
26

Reducing the Latency on the Internet

Component-Based Download (CBD)

To better illustrate how to use Equation 2-7 for calculating the number of
replication needed to achieve a desired reliability, an example is provided here.
The following assumptions are considered in this example.
e 5 servers are participating in the replication scheme
e The minimum probability of successfully downloading a file component
from each server is 90%.
e The desirable overall reliability for the replication scheme must be at least
99%.
Finding the optimum number of data replication comes down to simply plugging
in the given numbers into the Equation 2-7 and looking for the values of k that

corresponds to the reliabilities more than 99%

99% < i‘,(f)(1—-0.9)"(0.9)** (Equation 2-8)
i=0
By solving the above inequality, the optimum number of data replication
(represented by the minimum value for k) to achieve reliabilities more than 99%
can be found. The values of the right-hand side of above inequality for different

k’'s are given in Table 2-2.

K (number of replication) R (Reliability of the system)
0 0.59049
1 0.91854
2 0.99144
3 0.99954
4 0.99999

Table 2-2 Reliability and Number of Replicated Data

27

Reducing the Latency on the Internet

Component-Based Download (CBD)

By referring to the above table, the optimum number for having an overall
reliability more than 99% will be for k=2. (I.e., having two copies of the data, in
addition to the original one). Therefore, there should be at least 3 copies of the
data on the distributed server system to achieve an overall reliability of more than

99%.

Although Series-Parallel Reliability Block Diagram is a common technique for
modeling the network reliability, it fails to be a precise model for a replication
scheme. To explain how and why it cannot be an accurate model, a scenario in
which there are 5 servers with 3 file components on each of them (i.e.: k=2) is

illustrated in Figure 2-14.

Server 1 Server 2 Server 3 Serverd4 Server 5

Comparent 1 Component 1
Companent 2 Component 2
Component 3 Component 3

Figure 2-14 Five Distributed Servers with Replication Degree of three

According to the equation 2-9, the reliability of this system is:

22“(,?)(1-0.9)'(0.9)* (Equation 2-9)
i=0

28

Reducing the Latency on the [nternet

Component-Based Download (CBD)

The above equation is the sum of three probabilities.

1. Probability of all connections to servers being up and running and

2. Probability of one connection being down

3. Probability of two connections being down
However, in the replication scheme shown in Figure 2-14 if three servers were
down, as long as the missing servers were not adjacent, all the file components
will be accessible. This fact has not been accounted for in the “Series-Parallel
Reliability Block Diagram. Therefore, the actual reliability of the replication
scheme is more than what calculated before. To present a precise probability,

Equation 2-7 thus should be modified as follows.

k+1

P, = ;)1~ P) P —n(l— P)e prrt! (Equation 2-10)
Figure 2-15 better illustrates the difference between Equations 2-7 and 2-10. In
this figure, the reliabilities of a distributed server of five are plotted for different
number of replicated data. Therefore, replication degree can vary between zero
and four. The X-axis represents the number of participating servers. For the
sake of discussion, a reliability of 30% is assumed for each individual server.
Two graphs are shown in this figure, the dashed graph represents the Equation
2-7, and the solid graph the Equation 2-10. As anticipated, reliability of the

system when using the Equation 2-10 is slightly higher.

Similar methodology can be applied to other replication schemes in order to

verify the degree of replication required for certain dependability.

29

Reducing the Latency on the [nternet

Component-Based Download (CBD)

[S SN RY WU D W

[S

No of Servers.
Figure 2-15 Reliability of a System of Distributed Server Based on Number of
Replicated Data

2.2.2 Server Selection

When the filte components are replicated, the issue becomes questionable as to
how clients shall select the replicated components and what policies they shall
follow to regulate their connections to the servers. Depending on the type of data
(read-only or not) and network connections, different methods have been
proposed in the literature. These different methods can be divided into two main
classes: static and dynamic replication techniques [MCr95]. The following two
sub-sections describe each of these mechanisms in more details. The replication

schemes introduced above can be easily implemented using these methods.

2.2.2.1 Static Methods

In this type of server selection, clients must have a priori knowledge of the server
location and network topology, i.e., they pre-determine which server has the

quickest response to their request. Such a static server selection scheme is used
30

Reducing the Latency on the Internet

Component-Based Download (CBD)

in distribution of network news utilizing NNTP. The file transfer application counts
the number of hops between the client and each of the servers that contains the
file component (the original and replicated copies) and chooses the one with the
least number of hops, as the source of that file component. Since this metric is
less likely to change over long period of time, it is used in several static server

selection methods such as [Guy95].

2.2.2.2 Dynamic Methods

in this type of server selection the file transfer application probes the servers that
contain the replicated file component and chooses the first to reply (using the
RTT) as the source of that file component. The extra cost at runtime incurred by
dynamic methods, as compared to prior static knowledge of hop distances that

can be justified based on the improved latency [ACh95].

31

Reducing the Latency on the Internet

File-Segment Protocol (FSTP)

Chapter Three

32

Reducing the Latency on the Internet

File-Segment Protocol (FSTP)

3 File Segment Transfer Protocol (FSTP)

3.1 Motivation for Designing a New File Transfer Protocol

Slow performance of the TCP and its overly redundant mechanism to manage
the network congestion and data fiow, has motivated us to envisage a new

protocol for transferring files over the Intemet.

Eariier in this thesis, the FTP was utilized to test the CBD mechanism. The FTP
works on top of the TCP that provides a reliable network connection. As a matter
of fact, all the commercial network applications that must preserve the integrity of
data use TCP as their transport level protocol. The most popular one, apart from

the FTP, is Telnet.

The TCP is the most commonly used transport level protocol on the Intermnet. This
was defined in the early eighties when the transmission medium was the
bottieneck of communication. Today, the emerging use of high-speed networks,
fiber optic links and powerful routers, has dramatically reduced the number of
corrupted or lost packets over the Intemet. This has caused the TCP’s Sliding
Window Mechanism to appear slow. Another drawback of the TCP is the fact that
relatively large round trip propagation delay reduces its throughput. This causes
a serious limitation in the TCP design by further causing a hindrance in achieving
higher throughput. In addition, TCP also adds a 20-byte header for ensuring a

reliable virtual connection. Some of the fields in this header appear to be

33

Reducing the Latency on the [nternet

File-Segment Protocol (FSTP)

redundant and adds some unnecessary overhead. The processing and network
costs of this lengthy header (especially when TCP packets are defragmented on

their path) cause yet another hindrance on the TCP.

There have been numerous modifications to enhance the performance of TCP.
Some of them are as follows.

e Selective Acknowledgment [MMR96]

¢ Window Scale option

e Round-Trip Time Measurement

e Protect Against Wrapped Sequence Numbers” [JBB92]
Latency of the TCP has been the primary motivation for designing faster
application protocols. This has been achieved through a trade off between speed
and loss of data integrity with no guarantee that the user will receive all the

packets.

Similar techniques have been utilized in other application-level protocois. For
example, Trivial File Transfer Protocol* (TFTP) [Sol92] takes advantage of the
User Datagram Protocol (UDP) as its transport-level service to manipulate files
with no reliability guarantee. Another example worth mentioning is the

Asynchronous Reliable Delivery Protocol (ARDP) [ISI], which is a protocol

* Refer to appendix 7-2

Reducing the Latency on the Internet

File-Segment Protocol (FSTP)

developed by the University of Southern California for reliable transmission of

data over UDP.

In the following two sections a new protocol, called File Segment Transfer
Protocol (FSTP), will be introduced. This protocol is designed to transfer data

much faster than the FTP, while maintaining the integrity of the data.

3.2 File Segment Transfer Protocol (FSTP)

FSTP is an application level protocol, which uses a UDP socket for transferring
data and a TCP socket for sending control commands as compared to the FTP

that uses two TCP connections for both the control commands and the data.

Basically, FTP protocol is not concemed about retrieving the missing or
corrupted packets. The duty of providing a reliable network connection is
delegated to TCP. The TCP ensures the integrity of the data by monitoring the
incoming packets, and asking the sender for retransmission of the erroneous
and/or missing packets. The FSTP operates significantly different from the FTP.
Although we still have a TCP network connections for sending control commands
between the client and the server, the data itseif is transferred via UDP packets.
We chose to utilize the UDP in this case as it affords simple access to the
Intemet Protocol (IP). Sending data over the UDP does not bind us to the

restrained performance of the TCP.

35

Reducing the Latency on the Internet

File-Segment Protocol (FSTP)

Another benefit in utilizing the UDP packets is their ability to lessen processing
time and network overhead in comparison to a TCP connection. However, since
UDP only provides a datagram service, the necessary functionality for data
consistency is provided in another level. This task is performed in the application
level (i.e., by FSTP itself). To do this, on the server end, FSTP attaches a unique
sequence number to each packet. On the client end, once FSTP receives all of
the data packets in a stream, it [ooks for missing and/or corrupted packets. If
FSTP client found any missing and/or corrupted packets, it sends a request for
retransmission of the missing packets back to the FSTP server. The server then
retrieves the missing parts of the file from its local disk and sends them once
again to the client. This process continues until the data is completely transferred

to the user.

Clearly, transmitting these packets at maximum speed would resuit in much of
the packets getting lost in transit due to a smaller maintainable bandwidth over
the Internet. To maintain a reasonably small percentage of packet loss, an inter-
packet transmission delay is added. Adding this delay results in a more
successful packet reception (with respect to the number of packets transmitted)

and will result in much fewer required retransmissions.

Relatively speaking, the examination of received packets, the generation of a
retransmission request, and the processing of a request by the server, takes a

fair amount of time. Therefore, the perceived latency to the user will actually be

36

Reducing the Latency on the Internet

File-Segment Protoco! (FSTP)

lowered due to the use of appropriate inter-packet transmission delay for a pre-

chosen packet size. This inter-packet transmission delay will also work to

minimize excessive network traffic and avoid network congestion. Also, to keep

the fragmentation overhead as low as possible, we have to choose a UDP packet

size that is less than the Maximum Transfer Unit (MTU) size for the network

through which the data is traveling through.

Steps involved in FSTP process is summarized as follows:

FSTP client opens up a TCP connection with the server for exchanging
commands.

The client receives a list of files and their respective sizes.

Packet Size is set by the client and forwarded to the server. The server
begins the transmission-timing test by submitting the UDP packets of the
specified size to the client. Once the test is completed, the server
transmits a message to the client indicating the total transmission time and
the number of packets transmitted during the test.

The client calculates an appropriate inter-packet delay time and transmits
it to the server. The server then reads this value.

The client forwards a “SEND” command by specifying the name of the file
to be retrieved and taking note of the file's size from the previously
acquired file listing. The size of the “sequence number” field in FSTP
header is set dynamically. (This will be described in greater details later in
this section). Both the client and the server calculate the number of bytes

37

Reducing the Latency on the Internet

File-Segment Protocol (FSTP)

necessary for the packets’ sequence numbers. It is necessary for the
client to calculate the number of bytes, so that it will properly handie the
format of received packets without the server having to explicitly send a
description of the format. This is a requirement as the client and server
access the same program library to handle tag numbers. The server
sends the file as a steam of UDP packets whose headers contain the file
name and sequence number to indicate the position of the data in the file.
After the stream of UDP packets has ended, the client generates a list of
missing or corrupted packets and submits them in the form of a
retransmission request to the server. To further locate the corrupt packets,
the checksum capability of the UDP protocol is utilized.

The server retransmits the requested packets in the same format as the
original transmission.

This retransmission process continues until all packets are received.

The current experimental system attempts to establish an average maintainable

data rate in packets per second (for a chosen packet size) and transmit the data

from a single server to the client.

3.3 FSTP fiow control

TCP performs its flow control mechanism on the server end. The server adjusts

its window size based on the client's and the network buffer sizes. In a simplified

38

Reducing the Latency on the Intemnet

File-Segment Protocol (FSTP)

scenario, the server transmits a new packet after receiving acknowledgement
from the client; or retransmits the previous one, if timeout occurs. This allows for

the data to be transmitted at a slower pace in passing through the network.

FSTP uses a totally different mechanism for managing the flow of data. The
method presented in our first version of FSTP attempts to measure the
throughput between the client and the server by conducting a brief test. This test
takes place before the server attempts to flood its connection with UDP packets
destined for the client over a short time interval (less than 1 second). The client
then calculates the packets it received in totai together, with the noted
transmission time from the server, and calculates an appropriate delay. For
example, if the server sends 1,000 packets in one second and the clients
receives 100, we can speculate that if we transmit a packet every 10mS, we
should be able to maintain a high packet reception rate of success. By using this

simple scheme, a very reasonable data loss rate can be achieved.®

* For complete covering of the FSTP and its prototype implementation along with the results achieved from

testing this new protocol, please refer to [SKr99)/
39

Reducing the Latency on the Internet

CBD-FSTP

Chapter Four

40

Reducing the Latency on the Internet

CBD-FSTP

4 CBD-FSTP

4.1 Motivation for CBD-FSTP

According to the results discussed In chapter two, CBD can make downloading up to three
times faster. Also, preliminary tests carried out on FSTP performance indicate a significant
improvement to the latency [SKr99]. Intuitively, if we incorporate the CBD mechanism into
the FSTP, we should be able to reach even a better performance compared to what has
been achieved through the use of the two methods by themselves. Based on this
reasoning, we designed a distributed version of the FSTP. We denoted this protocol as
the CBD-FSTP. A prototype of this protocol was also implemented in Java. This prototype
was used for our testing and comparison to the performance of CBD-.F-STP along with two

other file transfer protocols already covered earlier in this thesis (i.e.: FSTP & FTP).

This chapter starts off by introducing the CBD-FSTP and explaining its differences with the
FSTP. Some code snippets from CBD-FSTP will be presented to clarify the design.
Following that, the test environment (i.e.: methodology and specifications of the
participating computers) will be described. Lastly, the data gathered through these

measurements will be presented and discussed.

4.2 CBD-FSTP Description

As mentioned earlier, CBD-FSTP is a modified version of FSTP. Therefore, explaining the

design details of this protocol seems to be redundant and will not be discussed in greater

41

Reducing the Latency on the Internet

CBD-FSTP

details. Our focus here will only be on parts that have been added or modified to make

possible the incorporation of CBD mechanism into FSTP.

A CBD-FSTP client should be able to establish muitiple concurrent connections with
several servers, instead of only one, before the requested file is downloaded. This is
because the file to be downloaded by the CBD-FSTP has been split into components and
put on different servers. Keeping this in mind, when the CBD-FSTP client established its
TCP and UDP connections with the servers, packets are streamed through UDP
connections down to the client. The client allocates a temporary file for each component
(or each connection to the server). When a packet arrives, the client verifies the origin of
the packet and sends it to the corresponding temporary location. For each of its
connections, if the client does not receive more packets after a certain amount of time, it
assumes that the server on the other side of UDP connection has finished submitting its
packets. The client will then start looking for missing packets in each file component. It
does not wait for other file components to get downloaded. (This feature is important for
making this phase of download faster). The client finds the missing packets by using their
sequential number field. (The same as the FSTP.) For each file component, the client
sends a retransmission request, along with the sequence numbers of missing packets,
back to its server (through its TCP connection). CBD-FSTP servers retransmit the
requested packets to the client (through their UDP connections). This process continues
until all the packets from different file components get downloaded. After all the packets
belonging to a file component are downloaded, the client starts sorting them. Once again,

it does not wait for other file components to be downloaded completely. The sorted file

42

Reducing the Latency on the Internet

CBD-FSTP

components are stored into temporary locations. Upon finishing the sorting phase for all
the file components, they get appended to reconstitute the original file. This task is done
through the allocation of permanent memory space and writing the file components, based

on the ascending order of its component numbers, into it.

The algorithm explained above is implemented in a client-server environment. Therefore,
the tasks performed by each party will be described separately in the following two

sections.

4.3 CBD-FSTP Server

The FSTP server runs on a known port and spawns a thread for every client wanting to
set up a TCP connection. Upon establishing the TCP connection with a client, it sends a
message back to the client announcing that it is ready to serve the client's request. The
client's request can be either “send", or "retransmit".

If “send"”, the server

e Creates a buffer equal to the size of the file to be downloaded;

e Initializes an CBD-FSTP packet;

e Spirals into a loop and reads predefined chunks of data from the file into the FSTP
packet, and sends it to the client. This loop iterates until the whole file is sent to the
client.

If “retransmit’, the server

» Reads in the missing sequence numbers sent by the client;

o Retrieves portions of the file corresponding to the sequence numbers;

43

Reducing the Latency on the Internet

CBD-FSTP
e Puts them into FSTP packets and sends them to the client.

4.4 CBD-FSTP Client

The client spawns thread for each CBD-FSTP server. Each thread opens a TCP
connection with its corresponding server. It then initiates an FSTP packet with the file
component name, buffer size, packet size, and the server's IP address. Next, it receives
the FSTP packets through its UDP connection with the server. It stores the packets (CBD-
FSTP header plus the data itself) into a temporary file location. Once the last packet
arrives, it checks for missing packets. If it finds any, it sends a "retransmit" request, along
with the missing sequence numbers, to the server. It iterates until all the packets are
received. It then sorts the data according to their sequential numbers and saves them on

the local disk.

4.5 FSTP-CBD Prototype Implementation

To verify that our assumptions in designing the FSTP-CBD lead into a faster download, a
prototype has been implemented in Java. The reason for choosing Java is the fact that it
is a high-level language, which makes development, testing and debugging easier. The
CBD-FSTP is implemented based on the codes developed for FSTP prototype
implementation®. In this section, we briefly present the classes involved and discuss only
parts of the code that ensures protocol compatibility with CBD. Figure 4-1 illustrates the

sequence diagram for the CBD-FSTP.

§ Refer to [SKr99] for details

Reducing the Latency on the Internet

: HE
T

CBD-FSTP

1

]

i

!

send()
bytaValue() :
satintValue()
initReceivePory()
receivRaw()
setDataByte()
sotBytaValue()
satData()
setBytaValue()
I
: L]

T : T

H |

t)
t
[}
[}
]

Figure4-1 UML Sequence Diagram of CBD-FSTP

Reducing the Latency on the Internet

45

CBDFSTPClient

-calcDelayUsS : long
-checkList : Boolean(]
-consolein : BufferedReader|
-controlPort : int
-defaultPacketSize : int
-endTime : long

-fPacket : FSTPPacket
-in - BufferedReader
-inr : InputStreamReader
-inResponse : String

-Hog : PrintWriter
-logFileWriter : FileWriter
-packetSize : int
-PreviousRequest : int
-segNum : int

-sock

-sortTime : long
-startTime : Long
-statusText : String
-totalRequested : int
-totalXmtTime : long
-xmtTime : long

CBD-FSTP

XMTdelayTicker

+XMTDelayTicker()
+XMTWait()

FSTPPacket

+append(}

+clearin()

+disconnect(}

+initLog()
+openControlConnection()
+receive Raw()

+reTrans()

H+sortRaw(}
+statusUpdate()

-clump : Byte[]
-data : Byte(]
-clumpOffset : int
-delayTicker : XMTdelayTicker]
-fileName : String
-FSTPPort :int

-inet0 : InetAddress
-inetCounter : int
-packetReceived : Boolean
-port - int

-recvTimedOut : Boolean
-rTagNum : Byte[]
-segNum : int

-socket : DatagramSocket
-tag : FSTPTag

-tagOffset : int

-timeDelay : long

-timeout : int

l+opname(}

+initReceiveport()
[+receive()
+receiveRaw()
+send()
+opname()
+setData()
+setDataType()
+satPort()

CBDFSTPServer

-counter : int
-defaultPacketSize : int
-incoming : Socket
-locallP : InetAddress
HogText : String

FSTPTag

-block : int

-byteSet : Boolean
-clumpSize : int
-fileLength : int
-filaNameLength : int
-FSTPPacketSize : int
-intSet : Boolean
-lastAmount : int
-numbClumps : int
-packetSize : int

-shift : int
-tagByteValue : Byte{]
-tagintvValue : int
-tagSize - int

+byteValue()
+intVaiue()
+setByetValue()
+setintValue()
+twoPower8x()

Figure 4-2 Static Classes of CBD-FSTP

Figure 4-2 shows the classes involved in the design of the CBD-FSTP. In following sub

sections we explain the functionalities specific to the CBD-FSTP.

4.5.1 Multi-Threaded Client

As determined in the CBD approach, the client should establish parallel and/or concurrent
connections to multiple servers. Therefore, the client should be implemented in a
distributed fashion. In other words, the CBD-FSTP client should spawn a thread for

handling each of its connections to multiple CBD-FSTP servers. All the threads should
46

Reducing the Latency on the Internet

CBD-FSTP

complete their tasks before the next stage (appending the file components) is initiated.

Figure 4-3 depicts the codes for completing this task.

public static void main(String(] args) throws UnknownHostException, SocketException,
InterruptedIOException, FileNotFoundException, IOException
{

s/allocate a thread for each server
CBDFSTPClient tl new CBDFSTPClient(!);
CBDFSTPClient t2 new CBDFSTPClient(2);
CBDFSTPClient t3 new CBDFSTPClient(3);
tl.start();

t2.start{);

t3.start();

try

{

f/wait fcr all che threads to finish their tasks and then return o main
£l.join();
t2.join(};
£3.join();
}

}//7end of main()

Figure 4-3 Code Snippet for Spawning Threads for Parallel Connections

45.2 CBD-FSTP Header

In comparison to the FSTP header, an extra field has been added to the CBD-FSTP
header. This field represents the file component to which that packet belongs. This field is
referred to as “Component Number’. Figure 4-4 illustrates the CBD-FSTP packet header

fields.

i

a1

Figure 4-4 CBD-FSTP Header

“Component Number”field is required because the CBD-FSTP client opens a separate

temporary file for saving each file component. Each temporary file should be addressable

47

Reducing the Latency on the Internet

CBD-FSTP

simply by checking the header of the packet, so that the packet could be written to the
proper file. The following code snippet (Figure 4-5) shows the code for creating the

header. The code in bold is added to create the component number.

public FSTPPacket(String pFName, int pSize, int pPacketSize, InetAddress plnet,
inz pSNum) throws SocketException
{
s /copy paramerers to instence variables
inet0 = pInet;
fileName = pFName;
segNum = pSNum;
f/initialize data sorts of deals
tag = new FSTPTag(pPacketSize, pFName.length(), pSize);
data = new bvte([tag.FSTPPacketSize];
clump = new bvte[tag.clumpSizel]:;
tagOffset = fileName.length{) + 1i;
clumpOffset = tagOffset + tag.tagSize:;
‘s make a header for the packer
//start with the File Name, '*’' char, and Segment No

String header = new String{fileName);
Integer s = new Integer(seghNum) ;
string seg = s.toString():;
header+=seg;
header +='*';
System.arraycopy (header.getBytes () ,9,data, &, header. length(});
rTagNum = new bvtel[tag.tagSize]:
//create socket for sending
socket = new DatagramSocket () ;
this.setPriority (MAX_PRIORITY);
delayTicker = new XMTDelayTicker():;
}

Figure 4-5 Code Snippet for Creating CBD-FSTP Header

45.3 Appending File Components

When all the file components are downloaded and sorted to re-build the original file, the
client should append the file components at the end of each other. A permanent file with
the same name as the original file is opened and the components are written sequentially.

The code snippet illustrated below (Figure 4-6) performs this task.

48

Reducing the Latency on the Internet

CBD-FSTP

static private void append(String fName, int segNum)
{
BufferedInputStream inStream = null;
BufferedOutputStream outStream = null;
boolean exceptionThrown = false:;
boolean append = true;
File £ = new File(fName + segNum) ;

String file = "test.mov";
int sNum = segNum;
try

{
inStream = new BufferedInputStream(new FileInputStream(f)):
outStream = new BufferedOutputStream(new
FileOutputStream(file, append));
}
catch(Exception e)

exceptionThrown = true;

bytel[]l b = new byre((int)f.length()];

inStream.read(b) ;

outStream.write(b);

outStream.close();

inStream.close() ;

System.out.println("file component "+sNum+" was appended to °“+file);

}
catch (IOException e) (}
}

Figure 4-6 Code Snippet for Appending File Components

454 Flow Control

Flow control in the CBD-FSTP is achieved using an inter-Packet Transmission Delay
(IPTD). The IPTD is the time interval between two consecutive packets transmitted by the
server. If the server does not use an IPTD and continues sending out the packets without
delay in between, the routers en route will flood and network congestion will occur. To
make the matter worse, since the client will not be able to receive the packets dropped
due to the congestion, it will ask the server retransmit them. In other words, more traffic,
more congestion, more dropped packets, and consequently more latency occur. For this
reason, the IPTD plays a very important role in the performance of the CBD-FSTP.

Therefore, IPTD must be chosen very carefully. A large IPTD will result into a sluggish
49

Reducing the Latency on the Internet

CBD-FSTP

protocol performance and a small IPTD will result in over exploitation and a waste of

network resources, saturate the routers and slow performance.

The FSTP utilizes an adaptive mechanism for finding the optimized IPTD for each
particular file transfer session. The operation of this mechanism is described as follows.
The FSTP server sends out a number of packets to the client (e.g., 10,000) with no IPTD
in between. The client calculates the number of missing packets and tells the server how
many packets are missing. Based on this ratio (missing packets/sent packets), the server

then calculates the optimum value for the IPTD that is used in that particular connection.

The utilization of this adaptive mechanism entails considerable improvement in the FSTP
performance (refer to [SKr99]). However, we did not utilize this method in our CBD-FSTP
prototype implementation. The reason being that network administration policies generally
prevent the computers under its domain from flooding the network through a burst of
traffic. When we tried to use the adaptive flow control mechanism (that is used in the
FSTP) in our implementation, the computers used as our servers (which are administered
by other authorities) did not allow our protocol to send out a burst of packets. As a final
measure, we decided to find the best IPTD vaiue for each server utilizing a brute force trial

and error method. We then hard coded these values into our implementation.

455 Packet Size

Another factor that must be taken into consideration in implementing the CBD-FSTP

prototype is the size of the packets sent by the server. Choosing the right size increasingly
50

Reducing the Latency on the Internet

CBD-FSTP

improves the performance of the protocol. We measured the latency for downloading a fite
using various packet sizes, and found that a packet size of 1 kByte lead to the greatest
performance. (This supports the resuits obtained in [SKr99].) This is more than likely due
to the fact that the largest size is less than the Maximum Transferable Unit (MTU) for a
typical network. During the implementation stages, we hard coded the packet size t01,024
bytes. Since our goal here is to prove the effect of adding the CBD to the FSTP, choosing
a unique size for both FSTP and CBD-FSTP tests gives us a reliable basis for

comparison.

4.6 Experimental Measurements

To verify the assumption that the CBD-FSTP is faster than the FSTP, a series of tests
were carried out. Using our prototype during testing, we downioaded a file utilizing three
different file transfer protocols: FTP, FSTP, and CBD-FSTP. During each test, the latency
for downloading the file was measured. Our initial measurements have proven that CBD-
FSTP makes downloading more than 50% faster as compared to the FSTP. In the
following section we will describe our experimental measurements and present the end

results.

4.6.1 Computers Used in Experimental Measurements

The computer utilized as our client is a Sun Sparc Ultra 1, with 768 Meg of RAM. Four
workstations, running Sun or Linux, have used as our CBD-FSTP servers. They are
located on four remote locations in Canada (in Victoria, BC, Edmonton, AB, Calgary, AB,

and Regina, SK). All these machines are connected to the campus LANSs (at the University
51

Reducing the Latency on the Internet

CBD-FSTP

of Manitoba, University of Victoria, University of Alberta, University of Regina, & University
of Caigary), which provide for high-speed connections to the Internet. Table (4-1)
illustrates the specifications of the machines used in our tests. The operating systems
running on these machines are all Unix or Linux. The computer located in Victoria, BC has

the fastest processor.

Location UofM UofV UofA UofR UofC
Platform SUNW, | SUNW, Unknown | SUNW, Ultra-1 | SUNW,
Ultra-1 Ultra-5_10 Ultra-2
Machine /W | Sundu Sundu 1686 Sundu Sundu
Node Name Cmcl Galois 548pcl Ivanho CSsC
Processor type | Sparc Sparc Unknown | Sparc Sparc
Release 5.7 5.6 22.5-15 | 55.1 5.7
os SunOS SunOS Linux SunOS SunOS

Table 4-1 Specifications of Machines Running the CBD-FSTP Server

4.6.2 Measurements Procedure

We ran our tests by downloading a 20 Meg file using CBD-FSTP. The file to be
downloaded was already split into four parts (5 Megs each) and put on the four servers.
To download the 20 Med file, four 5 Meg file components have downloaded
simultaneously. This was done through a parallel of connections between our CBD-FSTP
client and the servers and further appended to each other to create the original file. Next,
we downloaded the same 20 Meg file using the FSTP. One of the above-mentioned
computers is used as our FSTP server (the computer located in Victoria, B.C.). The file is
downloaded from that server, and its latency is measured. And finally, to have a

52

Reducing the Latency on the Internet

CBD-FSTP

benchmark for our measurements, the same file is downloaded from the same machine,
this time using the FTP, and its latency is measured. We repeated the test 15 different
times during the day, on alternate days of the week to compensate for different network

traffic patterns.

We selected the machine in Victoria, BC as our server for the FSTP and the FTP.
Although this machine is physically the furthest machine to our client, it gave us the fastest
running time for downloading the file, as compared to the other three machines. This is
due to the speed of the platform (Uitra-5_10}), which is the quickest of them all. Also, This
machine may aiso presumably be connected with higher bandwidth to its Internet
gateway. By choosing the fastest connection for performing our FSTP and FTP
measurements, we deliberately wanted to compare CBD-FSTP performance with the best

performance obtained from the FSTP and FTP.

Previous experiences with the FSTP have proven that utilizing the packet size of 1,500
bytes will provide the fastest performance for this protocol [SKr99]. We later changed the
packet size for the CBD-FSTP and measured its performance. As we predicted changing
the packet size for the CBD-FSTP also related in much the way as the FSTP. Thus, the

packet size of 1,500 bytes was chosen for our CBD-FSTP tests.

53

Reducing the Latency on the Internet

CBD-FSTP

As mentioned earlier, the FSTP uses an adaptive mechanism to select the IPTD. In this
mechanism, FSTP server sends a burst of packets (10,000) addressed to the client’.
During the implementation stage of the CBD-FSTP we had chosen to set the IPTD
manually, instead of using the above-mentioned algorithm. The reason for this decision is
that a couple of the computers used as our servers did not allow us to send out such
bursts of packets. This may be due to a security restriction imposed by system
administration in order to control network traffic. The values measured in our tests do not
necessarily present the quickest time. However, since the purpose of our tests is primarily
to investigate the improvement of latency when using the CBD-FSTP relative to the FSTP;

thus, not getting the fastest download time, will not change the comparative results.

4.6.3 Results

Figure 4-7 illustrates latency measurements when downloading a 20 Meg file using each
of the three file transfer protocols (FTP, CBD and CBD-FSTP). According to these results,
the CBD-FSTP can improve the latency up to 44%. The average value for the CBD-FSTP
download is 59 seconds as compared to 85 for the FSTP. This is a significant
improvement to the latency, knowing the fact that the FSTP has been already designed to

achieve the fastest download possible.

These results encouraged us to repeat our tests to study the effect in size of the file and
the level of distribution (or number of the participating servers) for the performance of the

CBD-FSTP. To accomplish this, three sets of measurements were taken.

7 Refer to [SKr99] for details

54

Reducing the Latency on the Internet

CBD-FSTP

CBD-FSTP
20 Mog Flla Serverd by 4 Servers at UdV, UotA, UofR & UetC (5 Meg Each)

Latancy (Seconds)
5 & 8

[

(-4

=3
T

N
%
AN

@
o

T
1

i-]

Numbar of Trals

Figure 4-7 Downloading a 20 Meg File Distributed on Four Remote Machines

First, a 40 Meg file (instead of a 20 Meg) was downloaded. In the CBD-FSTP download,
the 40 Meg file was split into four 10 Meg components. Figure 4-8 illustrates that the
average value for the latency in the CBD-FSTP was 122 seconds. This means an
improvement of approximately 62% in latency compared to the FSTP and 615% with

respect to the FTP.

Next, we changed the distribution level from 4 to 3 and repeated the measurements, one
for downloading a 15 Meg and the other for a 30 Meg file. Figure 4-9 illustrates that for a
15 Meg file, the average value for the latency in the CBD-FSTP is 52 seconds. This

records a 52% improvement relative to the FSTP and 530% improvement with respect to

the FTP. Figure 4-10 presents the results for downloading a 30 Meg file with an average

55

Reducing the Latency on the Internet

CBD-FSTP

latency for the CBD-FSTP of 107 seconds. Comparatively, it is approximately 40% faster

than the FSTP, and 545% than the FTP.

CBD-FSTP
40 Meg fila Sarved by 4 Sarvers at Uofv, UotA, UotR & Uo(C (10 Meg Esch)
] T

1600

700

g

Latency (Ssconos)
a @
§ 3

L) T

s

(4]
©
Q

- CaD-FSIP

FsTP i
/4 maan: 198 A(_Z
- = ——— = =3
mean: 122 l

LY}
o
=3

-
Q
]

1

-]

1§

o
b
3

Number of Trals-
Figure 4-8 Downloading a 40 Meg File Distributed on Four Remote Machines

CED-FSTP
15 Meg Flie Served by 3 Servers at UotV, UolA & uo (5 Meg Each)
400 T T

FTP

3
T
I

Lalency (Seconds)
g
T
1

150

50

Number of Trails

Figure 4-9 Downloading a 15 Meg File Distributed on Three Remote Machines

56

Reducing the Latency on the Internet

CBD-FSTP

. CBD-FSTP
700 30 Meg Flie Served by 3 Servers at UofV, UsfA & UAR (10 Meg Each)
L) ¥

500 -

&

o

=
T
1

Lal:ncy (Seconda)
8

200

100

Numbder of Trials

Figure 4-10 Downloading a 30 Meg File Distributed on Three Remote Machines

All the results obtained through our tests are summarized in Table 4-2.

Size of File (Meg) | Number of CBD-FSTP Server | Average Latency (seconds)

CBD-FSTP | FSTP | FTP
20 4 59 85 434
40 4 122 198 872
15 3 52 79 328
30 3 107 150 583

Table 4-2 Average Latency (for Different Size of Files & Number of Servers)

4.7 Analysis of the Results

To gain a better understanding of the performance of the CBD-FSTP, we calculated the

relative latencies of the CBD-FSTP, FSTP and FTP with respect to each other and
57

Reducing the Latency on the Internet

CBD-FSTP

identified all three latencies in Table 4-3. Results in Table 4-3 suggest that the best
relative performance for the CBD-FSTP is obtained when a 40 Meg file is downloaded
through four parallel connections. In other words, increasing the level of distribution makes
the CBD-FSTP faster. On the same token, the bigger the file for download, the better the

performance of the CBD-FSTP in comparison to the other two protocols.

These results have proven the soundness of our initial assumptions, based on the design
of the protocol. We designed our protocol with the knowledge that using paraliel
connections provides higher throughput for an Internet user. On the other hand, this
protocol was especially designed for large files, in which the extra overhead (due to
setting up and tearing down the multiple connections) has less significance to the overall

duration of the download.

Size of File Number of CBD-FSTP Relative Latency

Meg) Server CBD-STP/FTP FSTP/FTP | CBD-FSTP/FSTP
20 4 0.16 0.20 0.69

40 4 0.14 0.23 0.62

15 3 0.16 0.24 0.66

30 3 0.18 0.26 0.73

Average: 0.16 023 0.67

Table 4-3 Relative Latency (for Different Size of Files and Number of Servers)

To investigate the connection speed between our client and servers, some data was
collected. First, the round-trip times (RTT) between our client at the University of Manitoba
and each of the CBD-FSTP servers were measured. To get an average result, the

58

Reducing the Latency on the Internet

CBD-FSTP

measurements were repeated 20 times. Second, the number of hops between each
server and our client was collected (see Table 4-4). The value for the RTT increases when
the physical location of a server is further away. This explains the reason for the computer
in Victoria, BC having the largest RTT, and the other in Regina, SK having the smallest
RTT. (A complete list of routes between the ciient in University of Manitoba and each
server is provided in Appendix 7.5). Looking at this routing list reveals that apart from the
start and ending hops, the packets share the same route. Since all our servers and the
client are located on different university domains across Canada and connected through
the CANETZ2, all packets are coming to the client generally through the same path. This
explains the reason for having a close RTT and almost the same number of hops. The
only exception for this occurrence is the comp:uter at the University of Calgary. Each
packet originating from the University of Calgary shouid go through six local hops before

entering the CANET2, while taking only two or three hops for the other three machines.

Location of the Server Average RTT (msec) | Number of Hops
Victoria, British Colombia | 83.44 8

Edmonton, Alberta 67.98 8

Calgary, Alberta 62.74 11

Regina, Saskatchewan 56.82 7

Table 4-4 RTT and Number of Hops for Participating CBD-FSTP Server

4.8 Comparison of CBD-FSTP with FSTP

The storing and sorting of the incoming packets is done concurrently in the CBD-FSTP

(simultaneously for each file segment). This greatly reduces the delay corresponding to

59

Reducing the Latency -on the Intemet

CBD-FSTP

this phase of the download, as compared to that of the FSTP. On the other hand, since
the file components should be appended at the end of each other to re-create the original

file, an extra delay exists in the CBD-FSTP due to this appending process.

CBD-FSTP is more process intensive as compared to the FSTP due to its muiti-threaded
design. It seams to work best on computers with higher processing power and larger
RAM’s. The CBD-FSTP also shows a superior performance as compared to the FSTP on

machines with high-bandwidth connection to the Intemet.

CBD-FSTP does not use an adaptive flow control method (as in the FSTP) to determine
its Inter-Packet Transmission Delay (IPTD). if we are able to run our CBD-FSTP servers
on networks that do not prevent us from sending out a burst of traffic (which is needed for

utilizing the FSTP adaptive flow control), we can achieve even greater resulits.

Reducing the Latency on the [ntemet

Conclusion

Chapter Five

61

Reducing the Latency on the Internet

Conclusion

5 Conclusion

In conclusion, our experiments and resulting data have proven the major effect of the CBD
on the latency over the Internet. When the CBD mechanism was applied on the FTP, we
achieved latencies as low as one third of the conventional FTP downioading time (i.e.:
300% improvement in the latency). The CBD is a simple yet powerful idea by which we

can exploit the ever-increasing network bandwidth to achieve the highest possible speed.

In applying the CBD to the FSTP, it also brought us to another 30% reduction rate in the
latency. Knowing the fact that the FSTP is itself an extremely fast file transfer protocol (on
average, four to five times faster than FTP) shows the overall effectiveness of the CBD
mechanism. Moreover, due to the constraints we had during our experiments, we could
not utilize the adaptive flow control to optimize the performance of the CBD-FSTP.
Another matter of consideration involves our comparison of the CBD-FSTP against the
FSTP, whereby we measured the results of running the FSTP server on the fastest
machine and connections available (four computers located in different universities)
against running the CBD-FSTP on all four computers. In other words, we based our
comparisons on a worst-case scenario. We believe that if we had machines with similar
processing power and network connection capacity, the latency can be further reduced to

50%.

62

Reducing the Latency on the Internet

Conclusion

5.1 Future Work

The following outlines a variety of areas that deserve further research and improvements

to the CBD and CBD-FSTP.

(o]

The current implementation of CBD-FSTP is written in Java. Java, as a high level
language, made the prototype implementation much easier. Using a faster
language (e.g.: C/C++) allows this protocol to work faster and more efficiently.

In the CBD-FSTP, only one-way data transfer from the server to the clientis
considered. During implementation, the client asked for a file and the server sent it
to the client. This is in contrast to a more general two-way model that allows data to
be sent in both directions (full duplex). In future implementations, the server and
client modules should be integrated to support the two-way data transfer model.
The CBD-FSTP currently has no provision for user authentication. This is an
additional functionality that must be added in its next versions.

The CBD-FSTP doesn't provide any error messages. Having error messages can
assist system administrators and notify them of different types of errors that occure
on the network.

More tests should be done on the CBD and the CBD-FSTP (with different file-
segment sizes and numbers of servers) in order to determine the best combination
for optimum performance.

To add reliability, a replication scheme should be integrated to the protocol.
Component number can be deleted.

A mechanism should be added to the CBD-FSTP to stop re-transmitting packets

after a certain number of times in order to terminate the connection, assuming that
63

Reducing the Latency on the Internet

Conclusion

there is congestion en route. This prevents the protocol to hug the bandwidth and
exploit the network resources unnecessarily.

In the CBD-FSTP header, the “File Name” field can be removed. This will not
create any ambiguity for the client to discern from which server the packet is
coming from. It will however, reduces the overhead of the CBD-FSTP packet

header.

Reducing the Latency on the Internet

References

6 References

[ACh95]
A. Chankhunthod, P. Danzig, Ch. Neerdales, M. Schwartz, K. Worrelf, “A Hierarchical Intemet Object
Cache”, Technical Report CU-CS-766-95, University of Colorado, Boulder, Mar 1995

[Brags]
L. Brakmo and L. Peterson, “Performance Problems in 4.4BSD TCP", ACM Computer Communication

Review, val. 25, no. 5, pp. 69-86, Oct. 1995.

[Berg6]
T. Bemers-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol-HTTP/1.0", IETF, RFC 1945, May
1996.

[BMP94] L. S. Bramko, S. W. O'Malley, & L. L. Peterson, “TCP Vegas: New Technique for Congestion
Detection & Avoidance”, Proceedings of SIGCOMM '94, ACM, PP. 24-35, 1999

[CaB96] B. Callaghn, Sun Microsystems, Inc. “WebNFS Server Specification”, |IETF, RFC 2055, Oct 1996.

[Cal96]
B. Callaghn, Sun Microsystems, Inc. “WebNFS Client Specification”, IETF, RFC 2054, Oct 1996.

[Cla88]
D. D. Clark, MIT, “The Design Philosophy of the DARPA Intemet Protocols”, In proceedings of
SIGCOMM’'88, Computer Communication Review Vol. 18, No. 4

[Cro95]

M. Crovella and R. Carter, “Dynamic Server Selection in the Intemet”, Proceedings of the Third |[EEE
Workshop on the Architecture and the Implementation of High Performance Communication Subsystems
(HPCS'95), August 1995.

[Cro98]
M. Crovella and P. Barford, “The Network Effects of Pre-fetching”, In Proceedings of [EEE Infocom '98, San
Francisco, CA, 1998.

[Fei98]
Z. Fei, S. Bhattacharjee, E. W. Zegura and M. H. Ammar, “A Novel Server Selection Technique for
Improving the Response Time of a Replicated Service, Infocom'98.

[Fie97]
R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T. Bemer-Lee, “Hypertext Transfer Protocol-HTTP1/1",

IETF, RFC 2068, Jan. 1997

(Guy9s5]
J. Gutyon, M. Schwartz, “Locating Nearby Copies of Replicated Intemet Servers”, In Proceedings of
SIGCOMM'95, August 1995

[Hoe96]

J. C. Hoe, “Improving the Start-up Behaviour of a Congestion Control Scheme for TCP”, in Proceedings of
the ACM SIGCOMM'36 Symposium, 1996

65

Reducing the Latency on the Intemet

References

[1sin
Information Science Institute, University of Southern Califomia, “The Asynchronous Reliable Delivery
Protocol”, URL: <http://gost.isi.edu/info/ardp/>

[iSi81]
Information Sciences Institute, “Transmission Control Protocol”, IETF, RFC 793, Sep 1981.

[uBB92]
V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High Performance”, IETF, RFC 1323, May 1992

[Kar87]
A. Kam, “Improving Round-Trip Time Estimates in Reliable Transport Protocols”, in Proceedings of ACM
SIGCOMM'87, 1987

[MMR96]
M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP Selective Acknowledgment Options™, IETF, RFC 2018,
Sun Microsystems, October 1996.

[Nag84]
J. Nagle, “congestion Control in TCP/IP intemetworks, RFC 897, 1984

[Pad94]
V. N. Padmanabhan, and Jeffrey C. Mogul. “Improving HTTP Latency”, Proceedings of the second
International World Wide Web Conference, Chicago, IL, pages 995-1005, October, 1994.

[PoR85]
J. Postel, J. Reynolds, “File Transfer Protocof”, IETF, RFC 959, IS}, October 1985

[P0s94]
J. Poster “User Datagram Protocol”, IETF, RFC 768, USC/Information Sciences Institute, 28 August 1980.

[RGu98}]
R. Guerraoui, A. Shiper, “Fault-Tolerance by Replication in Distributed Systems”, in Proceedings of Reliable

Software Technologies, Ada-Europe’'96, Springer

[Skrg9]

S. Kretschmann, “FSTP an Application-Level File Transfer Protocol as an Alternative to FTP”, Bachelor of
Science thesis, Electrical and Computer Engineering Department, University of Manitoba, 1999

[Sol92]
K. Sallins, “The TFTP Protocol (Revision 2)”, IETF, RFC 1350, MIT, July 1992.

{Sun89]
Sun Microsystems, Inc., “NFS: Network File System Protocol Specification”, IETF, RFC 1094, March 1989

66

Reducing the Latency on the Intemet

Appendices

7 Appendices

7.1 Transfer Control Protocol

7141 Introduction

FTP and HTTP are dominant application-level protocols for transferring files over the
Internet. These two both use TCP for creating their reliable network connections. TCP was
developed in the late 1970’s to transmit data reliably in the presence of Intermet packet
loss, primarily due to network congestion. This protocol later became the standard
transport protocol for the Internet. TCP and other reliable transport protocol handle lost
packets by having the sender detect the loss and then retransmit the lost packet. TCP
also uses a congestion control algorithm to dynamically react to changing bandwidth limits
of the Intemet. It is formally defined in the RFC 793. Errors and inconsistencies are

detected and debugged in the RFC 1122. Extensions are given in RFC 1323.

This section briefly describes how TCP works and discusses its mechanism for flow and
congestion control. It also gives a brief overview of the modifications added to the original

design of TCP to enhance its performance.

7.1.2 General Description

TCP is intended for use as a highly reliable host-to-host protocol between hosts on the

Intemet. TCP is a connection-oriented, end-to-end reliable protocol. TCP assumes it can

67

Reducing the Latency on the Internet

Appendices

obtain a simple, potentially unreliable datagram service from the lower level protocols. In
principle, TCP should be able to operate above a wide spectrum of communication
systems ranging from hard-wired connections to packet-switched or circuit-switched

networks.

TCP fits into a layered protocol architecture (Figure 7-1) just above a basic intemet
Protocol, which provides a way for the TCP to send and receive variable-length segments
of information enclosed in IP packets. The IP layer provides a means for addressing
source and destination TCP’s in different networks. IP also deals with any fragmentation
or re-assembly of the TCP segments required to achieve transport and delivery through
multiple networks and interconnecting gateways. IP aiso carries information on the
precedence, security classification and compartmentation of the TCP segments, so that

information can be communicated end-to-end across the Intermnet.

On the higher level, TCP interfaces to application processes and on the lower side to a
lower tevel protocol such as IP. This interface consists of a set of calls much like the calls
an operating system provides to an application process for manipulating files. For
example, there are calls to open and close connections and to send and receive data on
established connections. The interface between the TCP and lower leve! protocol is
essentially unspecified except that it is assumed there is a mechanism whereby the two
levels can asynchronously pass information to each other. The TCP is designed to work in

a very general environment of interconnected networks.

68

Reducing the Latency on the Intemet

Appendices

As previously noted above, the primary purpose of the TCP is to provide reliable,
securable logical circuit or connection service between pairs of processes. Providing this
service on top of a less reliable Internet communication system, requires facilities in the

following areas:

Figure 7-1 Protocol Layering

7.1.3 Basic Data Transfer

The TCP is able to transfer a continuous stream of octets in each direction between its
users by packaging a number of octets into segments for transmission through the

intemet

7.1.3.1 Reliability

The TCP must recover data that is damaged, lost, duplicated, or delivered out of order by
the Internet. This is achieved by assigning a sequence number to each octet transmitted,
and requiring a positive acknowledgment (ACK) from the receiving TCP. If the ACK is not
received within a timeout interval, the data is retransmitted. At the receiver, the sequence

numbers are used to correctly order segments that may be received out of order and to

69

Reducing the Latency on the Internet

Appendices

eliminate duplicates. Corrupted data is detected by adding a checksum to each segment

transmitted, and checking it at the receiver. Corrupted segments are then discarded.

7.1.3.2 Flow Control

TCP provides a means for the receiver to govemn the amount of data sent by the sender.
This is achieved by retuming a "window" with every ACK indicating a range of acceptable
sequence numbers beyond the last segment successfully received. The window indicates
an allowed number of octets that the sender may transmit before receiving further

permission.

7.1.3.3 Multiplexing

To allow for many processes within a single Host to use TCP communication facilities
simultaneously, the TCP provides a set of addresses or ports within each host.
Concatenated with the network and host addresses from the P, this forms a socket. A
pair of sockets uniquely identifies each connection. That is, a socket may be
simultaneously used in multiple connections. The binding of ports to processes is handled

independently by each Host.

7.1.3.4 Connections

The reliability and flow control mechanisms described above require TCPs initialization
and maintain certain status information for each data stream. The combination of this
information, inciuding sockets, sequence numbers, and window sizes, is called a
connection. Each connection is uniquely specified by a pair of sockets identifying its two
sides. When two processes wish to communicate, their TCP's must first establish a

70

Reducing the Latency on the [nternet

Appendices

connection (initialize the status information on each side). When their communication is
complete, the connection is terminated to free up the resources for other uses.

Since connections must be established between unreliable hosts and over the unreliable
Intermet, a handshake mechanism with clock-based sequence numbers is used to avoid

erroneous initialization of connections.

7.1.4 Congestion control

TCP also provides an algorithm to prevent congestion in the routers, which is called “S/ow
Start”. When a connection is established, the sender initializes the congestion window to
the size of maximum segment in use on the connection. It then sends one maximum
segment. If this segment is acknowledged before the timer goes off, it adds one segment’s
worth of bytes to the congestion window to make it two maximum size segments and
sends two segments. As each of these segments is acknowiedged, the congestion
window is increased by one maximum segment size. When the congestion window is n
segments, if all n are acknowledged on time, the congestion window is increased by the
byte count corresponding to n segments. In effect, each burst successfully acknowledged
doubles the congestion window. When a timeout occurs, a threshold is set to half the
current congestion window, and the congestion window is reset to one maximum
segment. The congestion window grows with the exception that it stops growing
exponentially when the threshold is hit. From that point on, successful transmissions grow
the congestion window linearly. In effect, this algorithm is guessing that it is probably
acceptable to cut the congestion window in half, and then gradually works its way up from

there.

71

Reducing the Latency on the Internet

Appendices

Continuous work is required in order to improve the congestion control mechanism. For
example, TCP throughput can be improved by managing the clock more accurately,
predicting congestion before timeouts occur, and using this early warning system to
improve the slow start algorithm [BMP394]. Or, TCP Fast Retransmit algorithm developed

by Jacobson [UBB92].

7.15 TCP improvements

To enhance the performance of TCP protocol, various modifications have been added to
the original protocol. For instance, TCP accommodates varying Internet delays by using
an “adaptive retransmission aigorithm”. In essence, TCP monitors the performance of
each connection and deduces reasonable values for timeouts. As the performance of
connection changes, TCP revises its timeout value (i.e.: it adapts to the change). Karn's
algorithm [Kar87] is now being used for this purpose. Another Problem with early
implementations of TCP was “silly window syndrome” in which each acknowledgment
advertises a small amount of buffer space available and each segment carries a small
amount of data. This leads to inefficient use of available bandwidth. TCP now requires the
sender and receiver to implement heuristics that avoid the “silly window syndrome”. This is
accomplished through the utilization of the Nagle algorithm [Nag84]. According to this
algorithm, a receiver avoids advertising a small window, and a sender uses an adaptive

scheme to delay transmission so it clumps data into large segments.

72

Reducing the Latency on the Internet

Appendices
7.2 Trivial File Transfer Protocol (TFTP)

7.2.1 Introduction

Currently, TCP exhibits inefficiencies in terms of bandwidth consumption, retransmission
latency, and server processing. TFTP attempts to reduce TCP’s inefficiencies by shifting

the reliability burden from the server to the client.

Although FTP is the most prevailing file transfer protocol in the TCP/IP suite, it is also the
most complex and difficult to program. Many applications do not need the full functionality

FTP offers, nor can they afford the complexity.

7.2.2 Trivial File Transfer Protocol

TFTP is a simple protocol to transfer files, and therefore earned the name Trivial File
Transfer Protocol (TFTP) [Sol92]. It is built on top of UDP and is designed to be small and
easy to implement. Therefore, it lacks most of the features of a regular FTP. It can only
read and write files from and to a remote server. Any transfer begins with a request to
read or write a file. If the server grants the request, the connection opens and the file is
sent in fixed length blocks of 512 bytes. Each data packet contains one block of data, and
must be acknowledged by an acknowledgment packet before the next packet is sent. A
data packet of less than 512 bytes indicates termination of a transfer. If a packet gets lost
in the network, the intended recipient will timeout and may retransmit his last packet
(which may be data or an acknowledgment), thus causing the sender of the lost packet to
retransmit that lost packet. The sender has to keep just one packet on hand for

retransmission, since the lock step acknowledgment guarantees that all older packets
73

Reducing the Latency on the Internet

Appendices

have been received. Notice that both machines, involved in a transfer, are considered
senders and receivers. One sends data and receives acknowledgments while the other
ends acknowledgments and receives data. Most errors cause termination of the
connection. An error is signaled by sending an error packet. This packet is not
acknowledged, and, therefore, not retransmitted. In other words, the TFTP server or user
may terminate after sending an error message and in effect the other end of the
connection may not get the message. Therefore, timeouts are used to detect such a
termination when the error packet has been lost. Errors maybe caused by any one of
three types of the following events:
e Not being able to satisfy the request (e.g., file not found, access violation, or no
such user)
e Receiving a packet which cannot be explained by a delay or duplication in the
network (e.g., an incorrectly formed packet)
e Losing access to a necessary resource (e.g., disk full or access denied during a
transfer)
This protocol is very restrictive, in order to simplify the implementation. For example, the
fixed length blocks allows for straightforward allocation, and the lock step
acknowledgement provides flow control and eliminates the need to re-order incoming data
packets.
The TFTP operates in a very simplistic way. The first packet sent asks for a file transfer —
the packet specifies a file name and whether the file will be read or written. Blocks of files
are numbered consecutively starting at number one. Each data packet contains a header
that specifies the number of the block it carries, and each acknowledgement contains the

74

Reducing the Latency on the Internet

Appendices

number of the block being acknowledged. A block of less than 512 bytes signals the end
of the file. Error messages can be sent either in place of data or an acknowledgement;

errors terminate the transfer.

TFTP retransmission is unusual because it is symmetric. Each side implements a timeout
and retransmission. If the side sending data times out, it retransmits the last data block. If
the side responsible for acknowledgments times out, it retransmits the last
acknowiedgement. Having both sides participate in retransmission helps to ensure that

transfer will not fail after a single packet loss.

7.3 User Datagram Protocol (UDP)

7.3.1 introduction

User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-
switched computer communications in an environment of interconnected set of computer
networks. This protocol assumes that the internet Protocol (IP) is used as the underlying
protocol. This protocol provides a procedure for application programs to send messages
to other programs with a minimum protocol mechanism. UDP is a thin protocol in a sense
that it does not add significantly to the semantics of IP. It merely provides application
programs with the ability to communicate using the unreliable connectionless packet
delivery service. The protocol is transaction oriented, and delivery/duplicate protection are
not guaranteed. UDP is an alternative to the TCP. Much like the TCP, UDP uses Intemet

Protocol to receive a datagram from one computer to another. Unlike TCP, however, UDP

75

Reducing the Latency on the Internet

Appendices

does not provide the service of dividing a message into packets and reassembiling it at the
other end. Specifically, UDP doesn't provide for sequencing of the packets where data
arrives in and it does not provide feedback to control the rate at which information flows
between the machines. UDP provides protocol ports used to distinguish multiple programs
executed on a single machine. In addition to the data sent, each UDP message contains
both a destination port number and a source port number, making it possible for the UDP
software at the destination to deliver the message to the correct recipient and for the
recipient to send a reply.

An application program that uses UDP accepts full responsibility for handling the problem
of reliability, including message loss, duplication, delay, out-of-order delivery, and loss of

connectivity.

7.3.2 UDP Encapsulation and Protocol Layering

Figure 7-3 shows the protocol layers hierarchy and the position of UDP in it. UDP lies in
the layer above the IP layer. Conceptually, application programs access UDP, which uses
IP to send and receive datagrams. The {P layer is responsible for transferring data
between a pair of hosts, while the UDP layer is responsible only for differentiating among

multiple sources or destinations within one host.

Figure 7-2 Protocol layering
76

Reducing the Latency on the Internet

Appendices

Figure 7-3 UDP Encapsulation

A UDP datagram is encapsulated in an |P datagram for transmission. This datagram is

then encapsulated in a frame for traversing the network. This is illustrated in Figure 7-4.

7.3.3 UDP Multiplexing

UDP accepts datagrams from many application programs and forwards them on to the IP
for transmission and accepts incoming UDP datagrams from the IP and forwards them on

to the appropriate application program.

Conceptually, all multiplexing and demultiplexing between UDP and application programs
occur through the port mechanism. In practice, each application program must negotiate
with the operating system to obtain a protocol port and an associated port number before
it can send a UDP datagram. Once the port has been assigned, any datagram the
application program sends through the port will have that port number. While processing
input, UDP accepts incoming datagrams from the IP software and demultipiexes based on

the UDP destination port, as figure 7-5 shows.
77

Reducing the Latency on the Internet

Appendices

UDP Datagram arrives

Figure 7-4 UDP demultiplexing

7.4 Source Code

In this section the source code are provided (in Java) for the CBD simulation and the
CBD-FSTP prototype implementation.

7.4.1 CBD Implementation

The first two sections (FTPClient3 and FTPClientThread) show the source code used for
simulating the concurrent download. The last section (CBDClientSequential) is the source

code for simulating the conventional (sequential) FTP download.

7.4.1.1 FTPClient3

/.

this class downloads three files from different servers in ®"concurrent®" fashion. This is done by
spawning threads (FTPClientThread)

=/

import java.io.=*:
import java.net.*:

public class FtpClient3
{
//class variables
static String logName = *“thrLog":;
78

Reducing-the-Latency-on-the lntanet

Appendices

public static void main(String arg(])
é:gE%ingaggggﬁgcessFile log:

sString site2;

String site3;

if (arg.length == 3)
{

sitel = argl0]:
site2 = argll]:
site3 = argl2]:
}
else
(
sitcel “ftp://ftp.dti.ad. jp/pub/unix/editor/xemacs/Attic/leim-skk.tar.gz";

site2 = "ftp://ftp.netscape.com/pub/viscdk/pri/viscdkb3.jar~;
site3 = *ftp://ftp.zweb.com/MiscUtilities/TPTPServerl-1-980730.exe";
}
// create the log file
try
{
log = new RandomAccessFile(logName, "rw*):;
}
catch (FileNotFoundException e)
{
System.err.println(e):
}
// repeat the test for 10 consecutive times
for (int i = 0; 1<10; i++)
{
System.out.println(-this is the * + i + *th iteration of loop*"):
FtpClientThread tl new PtpClientThread(sitel);
FtpClientThread t2 new FtpClientThread(site2);
FtpClientThread t3 new FtpClientThread(site3);
tl.start():
c2.startc(});
c3.start();
cry
{

"o

tl._join();:
c2.jein();
c3.join();

catch (InterruptedException e)

{
System.err.println(e};

7.4.1.2 FTPClientThread

/t
this class downloads a file from a f£tp server, and measures the time taken for the download.
written by babak s. noghani

79

Reducing tire-tatency o tie-fitermret

Appendices

import java.io.=*;
import java.net.*;

E)ﬂblic class PtpClientThread extends Thread
C

string site;
public FtpClientThread (String site)
€
super(site);
this_site = site;
}
public void runf()
{
try
C
URL f£tpURL = new URL (site);
downloadPile (EtpURL]) ;
}
catch (MalformedURLException e)
{
System.err.println(site + *is not URL I understand!");
}
}
private long downloadfFile(URL f£tpURL)
{
long start = System.currentTimeMillis();
long f£inish;
long duration = 0;
//cpen a connection with the FTP server
try
(

URLConnection uConn = f£tpURL.openConnection(};

//extract the file name out of URL

String fileName = ftpURL.getFile();

fileName = fileName.substring(fileName.lastIndexQf('/') + 1):
InputStream in = uConn.getInputStream();

//get the connection specifications
int cl = uConn.getContentLength();
String ct = uConn.getContentType():;

//check to make sure it is a binary file
if (el == -1 || ct.startsWith("text/"})
{
System.err.println(*The size of this file: * + fileName + * is zero, or it's not a
binary file");
System.exit(0);
}
//initialize the local variables for implementing read method
int bufr = 128;
byte(]l b = new byte[cl+bufr] H
int bytesread = 0:
int offset = 0;

//read the data into the temporary buffer *b"

while (bytesread >= 0) {

bytesread = in.read(b, offset, bufr);

//System.out.println("remaining bytes: * + (cl - (offset+bytesread))):;
if (bytesread == -1}

break:

offset += bytesread:

//for some reason read method blocks on some servers, when the remainig bytes are less
than byffer size. for our purpose, it doesn't matter, so we close the connecticn at this point.

if ((cl ~ offset) < bufr)

break:

80

Reducing the Latency on the Internet

Appendices

FileOutputStream fos = new FileOutputStream{fileName) ;
fos.write(b);

] princin(”ss, §%IQ~_'+'1 + * ig: " + cl):
Zzagggézg'g}é}sgé;é, étﬁé@gé ﬁf):b . mgé Eggm?ocal sk
duration = (finish -~ start)/1000;

String message = °*Time taken to download the file * + fileName + * is °* + duration + *
seconds\n";
System.out.printin(message):;
FtpClient3.log.writeChars (message) ;
1
catch (Exception e)
C
System.err.println(e);
}
return duration;
}//end of method downloadFile

7.4.1.3 FTPClientSequential

/t

chis class downloads three files from different ftp servers in "sequential® fashion, and measures
the time taken for each download, and their total as well

written by babak s. noghani

~/

import java.io.*~;

import java.net.*;

public class FtpClientSequential
{
//class variables
static String logName = °“seqLog”;
static RandomAccessFile log;

public static void main(String argll)
{
String sitel = "ftp://ftp.dti.ad.jp/pub/unix/editor/xemacs/Attic/leim-skk.tar.gz":
String site2 = *ftp://ftp.netscape.com/pub/viscdk/prl/viscdkb3.jar";
String site3 = *"ftp://ftp.zweb.com/MiscUtilities/TFTPServerl~-1-980730.exe";
long totbDuration = 0;
try
{
log = new RandomAccessFile{logName, *rw*);
}
catch (FileNotFoundException e)

[
System.err.printlin(e);
}
String key:
for (int j = 0; j < 10; j++)
{

// creates a URL object for each of 3 given ftp sites, and passes it on to the
*downloadFile" method
for (int i = 1; 1 < 47 i++)
{
switch (i}
{

81

Bt M
Reducing thre-trtency om thre-fntermet

Appendices

key = sitel;
break;
B8 tice,
break:
case 3 :
key = sitel:
break;
default :
key = sitel;
}
Ty
¢
URL FtpURL = new URL({key)}:
totDuration += downloadFile(FtpURL):
}
catch (MalformedURLException e}
{
System.err.println(sitel + "= this is not 2 URL I can understand!");
1
} //end of for loop
String result = "total duration is :" + totDuration + " seconds\n”;
System.out.println(result):;
try

¢
log.writeChars (result);

}
catch (IOException e)
{
System.err.println(*caught IOException: ® + e.getMessage());

}
}//end of 2nd for loop
}//end of main

// method to download a file from an FTP server, save it on the local disk, and returns the time
taken fer this process
static long downloadFile (URL £tpURL)
(
long start = System.currentTimeMillis():
long finish;
long duration = 0;
URLConnection uConn = null;
FileOutputStream fos = null:;
InputStream in = null;

//open a connection with FTP server
try
(

uConn = ftpURL.openConnection{):;
}
catch (IOException e)
(

System.err.println(-caught IOException: °* + e.getMessage(}};
}
//extract the file name out of URL
String fileName = ftpURL.getFile(}:
fileName = fileName.substring(fileName.lastIndexOf(‘'/'} + 1):
try
4

in = uConn.getInputStream():

}
catch (IOException e)
(

System.err.println(*caught IOException: " + e.getMessage()}:
}
//check to see if the connection is established
int cl = uConn.getContentLength();
String ct = uConn.getContentType():;
if (el == -1 {| ct.startsWith("text/"))

82

Rﬁucmg the Eifency on the Intemet

Appendices

System.err.println("The size of this file: * + fileName + * is zero, or it's not a binary
file“);

f

//initialize the local variables for implementing read method
int bufr = 128;

bytell b = new byte({cl+bufr] s

int bytesread = 0;

int offset = 0;

System.exit(0);

while (bytesread >= 0)
{
try
¢
bytesread = in.read(b, offset, bufr);
}
catch (IOException e}

System.err.println(*caught IOException: * + e.getMessage()):
}
if (bytesread == -1)
break;
offset += bytesread;
//for some reason read method blocks on some servers, when the remainig bytes are less than
byffer size. for our purpose, it doesn't matter, so we close the connection at this point.
if ((cl - offset) < bufr)
break;
}//end of while loop
//write the file, stored in buffer °*b*, into the local disk
try
{
fos = new PileOutputStream(fileName} ;
}
catch (FileNotFoundException e)
4
System.err.println({"caught FileNotFoundException: * + e.getMessage());
}
try
e
fos.write(b);
}
catch (IOException e)
¢
System.err.println(®caught IOException: * + e.getMessage()):
}
System.out.printin(*size of the file: * + fileName + * is: * + cl);
finish = System.currentTimeMillis():
duration = (finish - start)/1000:
String message = "Time taken to download the file * + fileName + " is * + duration + -
seconds\n*;
System.out.println(message);
cry
4
log.writeChars (message) ;
}
catch (IOException e)
C

}
return duration;

System.err.println(®*caught IOException: " + e.getMessage());

83

Reducing the Latency on the Intemnet

Appendices

7.4.2 CBD-FSTP Prototype Implementation

This section provides the source code for the CBD-FSTP. The code has been taken from
[SKr99]. Apart from slight modifications, we have not changed the original design and
naming. These changes were necessary to adopt to the distributed nature of the CBD-
FSTP. Similar to its original design, it consists of five classes. The first two act as the
client and server. The other three encapsulates the process of creating a CBD-FSTP

packet.

7.4.2.1 CBDFSTPClient

Vel

* This is a CBD-FSTP Client class. It opens up a TCP connection to an already know CBD-FSTP server.
It asks the server to "SEND" it a file. The packets containing the file are received throuch a UDP
connection. It checks for missing/corrupted and sends a "RETRANAMIT® to the server, along with the
sequence # of the missing packets. It then receives the missing packet. This loop iterates untill
all the packets are transferred to the client. it then closes its connection with the CBD-FSTP
server.

The original code is written by Steve Kretshmann, and modified by babak s. Noghani. Modifications
include:

1. changing the single-threaded client to multi-threaded

2. Adding an additional field to the packet header

3. Adding the functionality of appending the file components

4. Disabling the adaptive flow control mechanism

5. Hard-coding the packet size

Last Modified: 22/11/99
"/

import java.net.*;
import java.io.=*;
import java.util.=;

public class CBDFSTPClient extends Thread
{
static private final inc defaultPacketSize = 1024:
static private final int controlPort = 4712; //TCP port number
private int packetSize = defaultPacketSize:
private PSTPPacket fPacket;
private Socket sock = null;
private InputStreamReader inr = null;
private BufferedReader in = null;
private PrintWriter outRequest = null:
private String inResponse = null;
private String statusText;
private boolean{] checkList;
private int missingCounter:;
private PrintWriter log:;
84

Reducing the Latency on the Internet

Appendices

private long calcbDelayUs = 0;
static private BufferedReader ConsoleIn = null;

iv; jleWrit ileWrjiter = 1;
ggﬂggg §§§§e§%arf§¥£gngglé§aéﬁf gggg%ime. totalXmtTime, xmtTime = 0O;
private int totalReqguested, previousRequested = 0;
int segNum = O;

private CBDFSTPClient (int segNo) throws java.io.IOException, java.ic.FileNotFoundException,
java.io.InterruptedIOException, java.net.SocketException, java.net.UnknownHostException
{
segNum = segNo;
}

public static void main(String[] args) throws UnknownHostException, SocketException.
InterruptedIOException, FileNotFoundException, IOException
{
String f£ileN = °*test.mov”:
long beginTime=System.currentTimeMillis();
// initialize Log
ConsoleIn = new BufferedReader (new InputStreamReader(System.in)}:
InetAddress localip=InetAddress.getLocalHost():
System.out.printin(~localip = " + localip);
//allocate a thread for each server
CBDFSTPClient ctl new CBDFSTPClient(l):
CBDFSTPClient t2 new CBDFSTPClient (2):
CBDFSTPClient t3 new CBDFSTPClient (3);
tl.start():
t2.start():
t3.start();
try
{

//wait for all the threads to f£inish their tasks and then return to main
tl.join();
t2.joinl(};
t3.jo0in{);

}
catch (InterruptedBException e)
{
System.err .println("Caught InterruptedException: * + e.getMessage());
}
//append the three file segments at the end of each other
for (int segmt =1; segmt<4; segmt++)
{
append(fileN, segmt);
}
long appendTime=System.currentTimeMillis();
System.out.printin(*Overall Time for CBD-FSTP File Transfer = "+ ((appendTime-
beginTime) 71000} +" S*);
}//end of main()

public void run()
{
cry
(
string host = null;
int seg = this.segNum;

switch (seg)

{

*galeois.csc.uvic.ca"; break:;
~548pclS.ee.ualberta.ca”; break;
ivanhoe.engg.uregina.ca; break;
csc.cpsc.ucalgary.ca; break;

case l: host
case 2: host
case 3: host
case 4: host

}

packetSize=1024;

logInitialized = false;
initLog(~log=+seg);
openControlConnection(host, seg):
//receive file

85

Reducing the Latency on the Intemet

Appendices

String fileName = new String(°"test.mov" + seg);
startTime = System_currentTimeMillis({):;

ééé?'géékiéi;E$?e?%§§85§3$$§gd+oge5h?;sizes of file components
{

fPacket = new FSTPPacket (fileName, 10021564, packetSize,
InetAddress.getByName (host), seg):
}
else
{
fracket = new FSTPPacket (fileName, 10021192, packetSize,
InetAddress.getByName (host), segq);
}
fPacket. initReceivePort (seg)
receiveRaw(fileName, seg):
endTime=System.currentTimeMillis(};
Disconnect() ;
log.close();
}
catch (Exception e)
€
System.out.println(e);
}
}

private void clearIn()
{
while ((!statusText_startswith(=000")) || (statusText==null})
C
try
{
statusText = in.readLine():

}
catch(I0Exception e) {}
statusUpdate();

}

private void Disconnect()

{
//issue command and display results
outRequest.println(*QUIT");
outRequest.flush();
try
{

statusText = in.readLine():

}
catch (IOException e} ()
statusUpdate();

}

private void initLog(String logFileName)
{
try
{
logFileWriter = new FileWriter(logPileName) ;
log = new PrintWriter (logFileWriter);
logInitialized = true:;
//statusText = "Local Log file created: <*;:
//statusText += logFileName;
//statusUpdate():
//System.out.print("BEnter Log Header Information:"):
//string Header = * *;
/I
while (Header.length{) > 0)
{
Header=ConsoleIn.readLine();

log.println(Header) ;

86

Reducing the Latency on the [nteinet

Appendices

*/

Date now = new Date():
og.println("Date/Time of Test:*+now):
og.println(LR 222 22222222222 2222222222222 22221 ?'I"tt.'ttt'ttt't.') :

}
catch (Exception e)
¢

logInitialized = false:

statusText = ®"Could Not Open Log Pile: *;

statusText += logFileName;

statusText += e;

statusUpdate():

}

private void openControlConnection(String host. int segment)
(
//7initialize the TCP socket to FSTPServer
boolean exceptionThrown = false:;
try
C
System.out.println(-file component °+segment+" is serverd by: " + host):
sock = new Socket(host,controlPort}:

if (logInitialized) log.println(*Connected to :*+host+", control port:*+controlPort) ;

}
catch (Exception e)
{
exceptionThrown = true;
//print to status window
statusText = *570 Error. Could not Open connection to *;
statusText +=host:;
statusText +=" *;
statusText += e;
statusUpdate () ;
}
if{!exceptionThrown) try
{
inr = new InputStreamReader (sock.getInputStream());
in = new BufferedReader(inr);
outRequest = new PrintWriter(sock.getOutputStream());
}
catch (Exception e}

(
System.out.println(*Error Creating Control In/Cut Readers:"+e);

exceptionThrown = true;
}

if ('!'exceptionThrown)
4
try
{
statusText = in.readLine():
}
catch (IOException e) (}
clearIn(});

}

private void receiveRaw(String rFileName, int segNo) throws SocketException.
FileNotFoundException, IOException
{
boolean done = false;
boolean exceptionThrown = false;
boolean reTR = false;
String rawFileName = new String(rFPileName + ".raw");
//System.out.println(*rawFileName: *+rawFileName);
File f=new File{rawFileName);
FileOutputStream outStream = null;

87

Reducing the Latency on the Infemet

Appendices

//initialize packet checklist
checkList = new boolean(frPacket.tag.numbClumps]:;

gﬁ%iéuqysgsg?am rawStream = null:
{

//open outputfile
try
{
cutStream = new FileQutputStream(rawFileName, reTR):
statusText = " (file component ®+segNo+") Local Qutput file Opened :*:;
statusText += rawFileName:;
statusUpdate():
}
catch(Exception e)
{
exceptionThrown = true;
statusText =" (file component ®+segNo+") Could Not Create RAW output file:<;
statusText += rawFileName;
statusText += °* °*;
statusText += e;
statusUpdate() ;
} // end of try and exceptions for

//receive Packets
if (reTR}
{
System.out.println(* (file component: * + segNo + ") Generating Retrans Request~);
reTrans (seghNo) ;
}
else
{
reTR = true;
String reqOut = new String("SEND *);
reqOut += rPileName;
System.out.println(~ (file component: * + segNoc + ") Command sent to the server =
" +reqout) ;
outRequest.println(reqout);
outRequest.flush();
if (logInitialized)
4
log.print("Init Req:*+fPacket.tag.numbClumps+* *);
previousRequested = fPacket.tag.numbClumps:
1
statusText=in.readLine(}:
statusUpdate();

}
fPacket.recvTimedout = false:
while (!fPacket.recvTimedOut)
¢
try
{
fPacket.receiveRaw (segNo};
if (fPacket.packetReceived)
{
outStream.write{fPacket.data);
} /7 4 end if packetReceived
}

catch(Exception e) (}
} //end while !fPacket, recvTimedOut
outStream.close() ;
statusText=in.readLine() ;
statusUpdate()
if (logInitialized)
{ //extract XMT time from server
int index0 = statusText.indexOf{"#°);
int indexl = statusText.indexOf(" *, (index0+1}):
xmtTime = Long.decode(statusText.substring((index0 + 1). (indexl))).longValue(}:

88

Reducing the Latency on the Intemet

Appendices

totalXmtTime += >mtTime:
}

cle () - s Z . : . .y
/ooty BEBEL BT, TimE, 2y s RN E e feceived
try
{
rawStream = new FileInputStream(f):
statusText = "(file component: * + segNo + *) Local RAW file Opened
statusText += rawFileName;
statusUpdate();

}

catch{Exception e)
{
exceptionThrown = true:;
statusText = "(file component: * + segNo + °*) Could Not Open RAW file:";
statusText += rawFileName;
statusText += * *;
statusText += e;
statusUpdate(});
}

long AmtRead = 0;

while (AmtRead < f.length()})

{
int amt = rawStream.read(fPacket.data):
fPacket.setDataByte();
checkList[fPacket.tag.intValue()] = true;
AmtRead += amt:

}

System.out.println(~ (file compocnent: * + segNo + *) Checking to see if we got all the
packets®);
done = true;
//check to see if all packets have been received
for(int i=0;i<fPacket.tag.numbClumps;i++)
(
if (!checkList{il)
(
done = false;
i = fPacket.tag.numbClumps-1;

1

} //end !done while

if (logInitialized)

{
endTime=System.currentTimeMillis();
log.println(*Pkts Rec'd:"+previousRequested+* =100%

T/Pkt="+({float)xmtTime/ (float)previousRequested)) ;
log.println(l't'tt'tt"'trff"'t""'lI'-’,-'ttt.'t".l"'lt'tt'tt.) :
log.println(*Total Server Transmission Time = *+{totalXmtTime/1000)+* S<);
log.println(*Total Receive Time = "+((endTime-startTime)/1000)+* S*);
log.println({"Total ProcessingTime = *+((endTime-startTime-totalXmtTime) /1000)+" S°);

}
sortRaw(rFileName, segNo):;
if (logInitialized)
{
sortTime=System.currentTimeMillis();
log.println("Sort Time = *+((sortTime-endTime)/1000}+* S=};
1°g_println(-:tttt':tt:rtt'tt't't-'twnrt‘u:g‘r':t'-"-tt'ttt-t:tt'-);
log.println();
log.println(*Overall Time for FSTP File Transfer = "+ ((sortTime-startTime)}/1000)+" S*);

}

private void reTrans(int segNo)

{
int seg = segNo;
String rTransHead = new String(fPacket.data, 0, fPacket.tagOffset);

89

Reducing the Latency on the Internet

Appendices

rTrans += rTransHead;
//add packets and count how many are missing

isgi r = Q; - - -y .
SLpTagTEREags- n@é string(*RETR *);
for(int i=0:i<fPacket.tag.numbClumps;i++)

(
if (!checkList([i])

&
missingCounter++;
rTrans = rfrans + i + *,";
last = i;
} //end if not checked off
}//end for

//send retrans request
System.out.println(®*{file component: ®* + seqg + ") Sending Retrans request for
"+missingCounter+" Packets."):
if (logInitialized)
(
int pktsRcvd = previousRequested-missingCounter;
log.print(*Pkts Rec'd: "+ (pktsRcvd)+" *);
log.println(*="+(int) (100~ ((float) (pktsRcvd)) /previcusRequested)+* %
T/Pkt="+({float)xmtTime/ (£loat)previousRequested)):
previousRequested = missingCounter;
log.print ("Retr Req:"+missingCounter+" *);
}
system.out.println(" (file component: " + seg +*) rTrans : "+rTrans);
outRequest.println{rTrans};
outRequest.flush() ;
try
{
statusText = in.readLine():
statusUpdate():
}
catch(IOException e)
C
System.out.printin(*{file component: * + seg + °) Error Reading Retr Msg. from Server
"+e);

}
static private void append(String fName, int segNum)
{
BufferedInputStream inStream = null;
BufferedOutputStream outStream = null;
boolean exceptionThrown = false;
boolean append = true;
File f = new File(fName + segNum) ;
string file = *test.mov";
int sNum = segNum;
try
{
inStream = new BufferedInputStream(new FileInputStream(f)):
outStream = new BufferedOutputStream(new FileOutputStream(file, append)):
}
catch (Exception e)
{
exceptionThrown = true;

try
(
byte(] b = new byte([(int)f.length()]1;
inStream.read(b):
//outStream.write(b, ((segNum - 1)~(int)f.length()), (int)f.length(});
outStream.write(b);
outStream.close();
inStream.close():
System.out.println(*file component *+sNum+" was appended to "+file);

}
cacch (IOException e) (}

90

Reducmg the Latency on the Infamet

Appendices

private void sortRaw(String rFileName, int segNum)
f boolean exceptionThrown = false;
String rawFileName = new String(rFileName + *.raw");
checkList = new boolean(fPacket.tag.numbClumps];
FileInputStream inStream = null;
RandomAccessFile roOutFile = null;
int sNum = segNum;
try
{
inStream = new FileInputStream(rawFileName) ;
inStream.skip(0):
rQutFile = new RandomAccessFile(rFileName, "rw*);
statusText = "{file component "+sNum+*)} Local Raw file Opened for Sorting :":
statusText += rawFileName:
statusUpdate() ;
}

cacch(Bxception e)

{
exceptionThrown = true;
//print to status window
statusText = " (file component "+sNum+") Error Opening Raw file for Sorting : ":
statusText += rFileName;
statusText += " ";
statusText += e;
statusUpdate():

}

boolean inAvailable = false;
try
C
inAvailable = (inStream.available() > 1):
}
catch(IOException e)

exceptionThrown = true:

while (inAvailable && '!'exceptionThrown)
¢
try
¢
inStream.read(fPacket.data);
fracket.setData();

}
catch(IOException e)
{
exceptionThrown = true:;
}

int pNumber = f£Packet.tag.intValue():;
checkList [pNumber] = true:
if (fPacket.tag.last)

¢
//seek to the position of the last packet
try
{
routFile.seek((fPacket.tag.numbClumps ~ 1)* f£Packet.tag.clumpSize);
routFile.write(fPacket.clump, 0, fPacket.tag.lastAmount) ;
}
catch(I0OException e)
{
exceptionThrown = true;
}
}
else

try

Reducing the Latency on the Infemet

Appendices

rOutFile.seek(pNumber * fPacket.tag.clumpSize);
rOutFile.write{fPacket.clump);

iatch(IOException e}
{

exceptionThrown = true;
}

try
(
inAvailable = (inStream.available(} > 0);
}
catch (IOException e)
(
exceptionThrown = true;
}
}//end while

if (texceptionThrown)
¢
cry
{
rOutFile.close():
inStream.close();
}
catch (IOException e) {}
}
boolean all = true;
for(int j=0;j>fPacket.taqg.numbClumps;j++)

if (l!checkList[j]) all = false;
System.out.println(* (file component *+sNum+*) Didn't get: “+j);
}
if (all) System.out.println(®(file component "+sNum+") Got all packets"):
boolean rawDeleted = false;
try
{
File rawInFile = new File(rawFileName) ;
rawDeleted = rawInFile.delete(}:
if (rawDeleted) System.out.println(”(file component "+sNum+*) Raw File Deleted"):
}
catch (Exception)
{
System.out.printin(e);
}
if (!rawDeleted) System.out.println(-(file component "+sNum+*) Raw File Could NOT be
Deleted"):
}

private void statusUpdate()
{

System.out.println(statusText) ;
}

Reducing the Latency on the Internet

92

Appendices

7.4.2.2 CBDFSTPServer

/t*

* This is a CBDFSTP Server class (#1). It listens on TCP port #1024. Upon receiving a request for
sending a file, it initializes a FSTP packet and starts sending the file back to the c¢lient through
a UDP socket connection.

* In this version we set the inter-packet transmisson time manually. That's because of some
restrictions imposed by remote servers while trying to send out a burst of packets (i.e.: 10000
packets in our case), which is needed in our adaptive mechanism.

The original code is written by Steve Kretshmann, and modified by babak s. Noghani. Modifications
include:

1. Changing the single-threaded client to multi-threaded

2. Adding an additional field to the packet header

3. Adding the functionality of appending the file components

4. Disabling the adaptive flow control mechanism

S. Hard-coding the packet size

Last Modified: 22/11/8%9
II/

import jave.io.~*;
import java.net.=*;

public class CBDFSTPServer_1l extends Thread
C
// Class Variables
static int defaultPacketSize = 1024: // Port and defaultPacketSize cannot be changed
static InetAddress localip: //1local ip address -- the same for all instances
private static String root;
private static String logText:
private Socket incoming;
private int counter; //counts the number of running server threads

public CBDFSTPServer_l (Socket income, int ¢} throws InterruptedException
4

incoming = income:

counter = C:
}

public static void main(Stringfl] args)
{
//£ind local ip
txy
{
localip = InetAddress.getLocalHost(}):
System.out.println("Local IP Address = *+localip);

}
catch (UnknownHostException e)
{
System.err.println(*Caught UnknownHostException: * + e.getMessage());
}
// root directory remains the same regardeless of clients
if(args.length != 0) root = args[0];
else root = "/c:/users/babak/CBD_FSTP":
int 1 = 0;
System.out.println(*CBD_FSTP_01 Server is Ready..");
System.out.println("Root Dir = " + root):

try
¢
ServerSocket s = new ServerSocket(4712};
for(;:
{
Socket incoming = s.accept():;
new CBDFSTPServer_1 (incoming,++i).start();

93

—TReducing-the-Lateney-on-the-internet

Appendices

1
catch(BException e) (}

Yoy
public veoid run()
¢ //beginning of run
long timeDelay = 0;
int packetSize = defaultPacketSize;
int i,ip = 1,h1;
InetAddress inet;
int sNum = 1;

long LoopsPerPacket = 80000; //set the delay time manually
int skip=0;

string host., dir, comm, param:

dir = root;

try
{ //try to do eveything
inet = incoming.getInetAddress():
host = inet.toString(}:
hl = host.indexOf(~/"}:
host = host.substring(hl + 1);
BufferedrReader in = new BufferedReader (new InputStreamReader {incoming.getInputStream(})):
PrintWriter out = new PrintWriter (incoming.getOutputStream(), true);
boolean done = false;

out.println(*(File Component No®+sNum+"*) 120 CBD_FSTP_0l1 Server Ready."):
out. flush () ;

while (!done)
{ //begin while !done

out.println(~000 <*+counter+*> “"+dir+" : *);:

out.flush();

String str = in.readLine();

if (str==null)break:

if(stx.length()>4)

{ //begin in str > 4
comm=str.substring(0,4).trim(}.toUpperCase() ;
param = str.substring(4).trim();

}

else

{
comm=str.toUpperCase(} ;param="";

} //end str > &

if (comm.equals (*"SEND"))
{

File €:

if(param.startswith("/"))

{
f=new File (root,param):;
System.out.println{(*100 Sending : "+root+param);
out. flush(};

} //end if startsWith("/")

else

{
f=new File(dir,param);
System.out.println{("100 Sending : *+dix+"/"+param):;
out.flush();

} //end else startsWith(*/"):;

if (f.exists())

{
// Initialize an FSTPPacket & Clump
Long LongFileLength = new Long(f.length());
FSTPPacket £f£Packet = new FSTPPacket(param,

LongFileLength.intvalue (), packetsize, inet,sNum);

byte[] clump = new byte(fPacket.tag.clumpSize];
//0pen file
FileInputStream outFile=new FileInputstream(f);

94

Reducing the Lafency on the Inteamnet

Appendices

int blockNumb = 0;
//set the delay based on the manually chosen number of "loops per packet®

fPacket . timeD = S et sses -
ERE RSB RaYR e BERCBARRRERTRL - (/1nicialatasting foraap0d Loop
out. flush();
sleep(500);
System.out.println("Transmitting File ®+param) ;
System.out.println("LoopsPerPacket= ®+LoopsPerPacket) ;
long startSend = System.currentTimeMillis():
for (blockNumb=0;blockNumb<fPacket.tag.numbClumps ; blockNumb++)
{
//set block number
fPacket.tag.setIntValue (blockNumb) ;
//set data clump
amount = outFile.read(clump);
fracket.setClump (clump);
// send the packet
frPacket.send (sNum) ;
} //end while amount >= clumpSize
long endSend = System.currentTimeMillis():
outFile.closel();
System.out.println(-Transfer Completed in "+(endsend - startSend)+" mS.*);
double perPacket = (endSend-startSend);
perPacket /= fPacket.tag.numbClumps;
System.out.println("Average Time per Packet ="+perPacket+" mS*);
out.println(" (File Component "+sNum+") 300 Transfer Completed in #*+(endSend -
startSend)+" mS.");
skip=0;
outFile.close(};
} // end if f_exists
else out.princln(~®(File Component No"+sNum+*") 550 *+f.getName()+“: no such file or
directory*®):
out. flush():
} /7 end if comm.equals('SEND’}

else if(comm.ecquals(*RETR")}
(
File £;
//strip the file name from the retransmission parametr
//inc startIndex = param.indexOf('*');
System.out.println{*"param = "+ param);
int startIndex = 9;
String fileName = param.substring(0,startIndex):
System.out.println(*"fileName = "+fileName) :;
if (fileName.staxtsWith(*/"))
{
£=new File(root, fileName) ;
} //end if startsWith("/")
else
{
fznew File(dir, fileName):
} //end else startsWith(*/");
if (f.exists())
{
// Create new FSTPPacket
Long LongFileLength = new Long({f.length(});
FSTPPacket fPacket = new FSTPPacket(fileName, LongFileLength.intValue(). packetSize,
inet, sNum) ;
byte[] clump = new byte[fPacket.tag.clumpsSize];
//initialize checklist
boolean checkList([] = new boolean[fPacket.tag.numbClumps]:;
Integer tInteger = null;
int reCount = 0O:
//Check off Retransmission Clumps
while(startIndex + 1 < param.length())
¢
int endIndex = param.indexOf(®,",startIndex + 1):
String stringTag = param.substring(startIndex+l,endIndex) ;

oy

95

Keducing the La[ency on he [nienet

Appendices

tInteger = new Integer(stringTag);
}
fat:ch (NumberFormatException e)

System.out.println(e+ stringTag);

}
checkList[tInteger.intvalue()] = true;
reCount++;
startindex = endIndex;
} //7for k
FileInputStream outFile=new FileInputStream(f) ;
//retransmitt files in checklist
ocut.println(”" (File Component *+sNum+®) 111 Retransmitting #* +reCount+* Clump(s)} from :
*+fileName) ;
out. flush();
System.out.println({*Retransmitting * + reCount + " Clump(s) from :"+fileName) ;
sleep(500};
fPacket.timeDelay = LoopsPerPacket;
if ((reCount<2000) && (reCount>100))

float fltReCount = (float) reCount;
float fltModifier = 4*(2000-fltReCount)/1900;
float fltLoopsPerPacket = (float)LoopsPerPacket;
frPacket.timeDelay = (long) (fltLoopsPerPacket=fltModifier):
}
if (reCount<100) fPacket.timeDelay=*=4;
long startSend = System.currentTimeMillis():
for (int m=0; m<fPacket.tag.numbClumps;m++)
{
if (checkList([m])
{
long amount = outFile.read{clump);
fPacket.tag.setIntValue(m);
fPacket.setClump (clump) ;
fPacket.send(sNum) ;
} //end if checked
else outFile.skip(fPacket.tag.clumpSize)
} //end for m
long endSend = System.currentTimeMillis():
double perPacket = {(endSend-startSend);
perPacket /= fPacket.tag.numbClumps:;
System.out.println(*Retransfer Completed in *"+(endSend - startSend)+" mS."):
System.cut.println(®"Average Time per Packet =*+((endSend - startSend)/reCount)+® mS*):
outFile.close();
out.println(®(FPile Component °®"+sNum+") 310 Retransmission Completed in #'+(endSend -
startsSend)+" mS.");
} // end if £ _exists
else out.println(®(File Component No"+sNum+®") 550 "+f.getName()+": no such file or
directory®):;
out. tlush();
}//end of *"RETR"
else if (comm.equals(*QUIT"))
¢
out.println("(file component "+sNum+"} 290 GOOD BYE"):
out. flush() ;
done = true;
}
else out.println(*(File Component No"+sNum+*) 500 \""+str.substring(0,4)+"\" : command not
understood”) ;
out.flush();
} //end while !done
incoming.close();
} //end try everything
catch (Exception e)
{
System.out.println(e):

}
} //End Run()}
}//end class

96

Reducing the Latency on the Infernet

Appendices

7.4.2.3 FSTPPacket

/w
The original code is written by Steve Kretshmann, and modified by babak s. Noghani. Modifications
include:

1. Changing the single-threaded client to multi-threaded

2. Adding an additional field to the packet header

3. Adding the functiomality of appending the file components

4. Disabling the adaptive flow control mechanism

5. Hard-coding the packet size

>/

import java.net.*;

import java.io.*;

public class FSTPPacket extends Thread
{
/ /parameters
static int FSTPPort = 4711;
private InetAddress inetQ, inetl, inet2, inet3;
private String fileName;
private int segNum;
private int port = FSTPPoOrt:

//calculated variables
private int clumpOffset;
public int tagOffset;

//internal variables

public PSTPTag tag:

public boolean packetReceived = false:

public long timeDelay = 0;

public bytel] data:

private int inetCounter = 0;

public byte([] clump;

private bytel] rTagNum:// received tag number
private int timeout = 5000; // default timeocut
private DatagramPacket packet;

private DatagramSocket socket;

public boolean recvTimedOut = false;

private XMTDelayTicker delayTicker;

public FSTPPacket (String pFName, int pSize, int pPacketSize, InetAddress pInet, int pSNum) throws
SocketException
{
//copy parameters to instance variables
inet0 = pInet;
fileName = pFName:
segNum = pSNum;

//initialize data sorts of deals

tag = new FSTPTag(pPacketSize, pFName.length(), pSize);
data = new bytel[tag.FSTPPacketSize]:

clump = new bytel[tag.clumpSizel:

tagoffset = fileName.length() + 1;

clumpOffset = tagOffset + tag.tagSize;

// make a header for the packet
//start with the File Name and '*' char
String header = new String(fileName) ;
Integer s = new Integer (segNum);
97

Reducing the Latency on the Internet

Appendices

header+=seg;
header +="+';

%¥§§§§;§§§§%§S§§é§§%§§§£Z§g§§§?f().o,daca.O.header,length()):

//create socket for sending
socket = new DatagramSocket();

this.setPriority (MAX_PRIORITY):
delayTicker = new XMTDelayTicker():;

void addIP(InetAddress £IP)

if (inetCounter==0) inetl = fIP:
else if(inetCounter==1l) inet2 = fIP;
else inet3 = fIP;
if (inetCounter<3) inetCounter++;
}
void initReceivePort(int segNum) throws SocketException
{
//initialize recieve socket on “"port*
port+=segNum;
socket = new DatagramSocket (port);
socket.setSoTimeout (timeout) ;
socket.setReceiveBuffersize (10000000) ;
packet = new DatagramPacket (data, tag.FSTPPacketSize):;
recvTimedOut = false:;

System.out.println(*FSTPPacket.initReceivePort: port# on client # "+segNum+" is:

}
void receive() throws SocketException, IOException
{

recvTimedOut = false:;

packetReceived = false:;

try

(// wait for a packet to arrive until timeout

socket.receive (packet):

//verify that this is coming from a designated FSTP server
InetAddress address = packet.getAddress();

booclean correctSender = address.equals (inetO):
System.out.println("correctsender: "+correctSender);

if (inetCounter>0) (if (address.equals(inetl)) correctSender = true;}
if (inetCounter>l) {if (address.equals(inet2)) correctSender = true;}
if (inetCounter>2) {if (address.equals(inet3)) correctSender = true;}

if (correctSender)
{
//verify that the packet is the right file name
String recdName = new String(data, O0,fileName.length()};
if (recdName.equals(fileName))
(
//get packet number
System.arraycopy (data, tagOffset ,xrTagNum, 0, tag.tagSize):
tag.setByteValue (rTagNum) ;

//capture data clump
System.arraycopy(data, clumpOffset., clump, O, tag.clumpSize):

packetReceived = true;
}
}
else System.out.print({"X");

}
catch (InterruptedIQException e}
[¢
recvTimedOut = true;
}
}
void receiveRaw() throws SocketException, IOException

*+porct) ;

98

Kéamnngtﬁctiﬁmcyonthelnﬁ:na

Appendices

packetReceived = false;
recvTimedout = false:

try
[(/77 wait for a packet to arrive until timeout
socket.receive (packet) ;

//verify that this is coming from a designated FSTP server
InetAddress address = packet.getAddress();
boolean correctSender = address.equals(inet0};

if (inetCounter>0) ({if (address.equals(inetl)) correctSender = true:}
if (inetCounter>1l) {if (address.equals(inet2)) correctSender = true:}
if (inetCounter>2) (if (address.equals(inet3)) correctSender = true;}

if (correctSender)

{
//verify that the packet is the right file name
string recdName = new String(data, 0,fileName.length()):;
if (recdName.equals(fileName)) packetReceived = true;
else System.out.print(recdName + * *);

}
else System.out.print{®Inet0 ="+ inet0 + *"Incoming = -+packet.getAddress{));

}
catch({InterruptedIOException e)
C
recvTimedOut = true:;
System.out.println(* Timeout *);
}
}
void send(int seg) throws SocketException, IOException

¢
if (timeDelay != 0) delayTicker.xXMTwait(timeDelay):

//add tag to data packet
System.arraycopy(tag.bytevalue(),0,data,tagoffset, tag.tagSize):

//add clump

System.arraycopy (clump, 0,data, clumpOffset, tag.clumpSize):

packet = new DatagramPacket(data, tag.FSTPPacketSize, inet0, port+seg):;
socket.send(packet) :

}
void setClump(byte(}] SClump)
{
¢clump = SClump:
packetReceived = false:;
}
void setDatal)
{
System.arraycopy(data, tagOffset ,rTagNum, 0, tag.tagSize):
tag.setByteValue (xrTagNum) ;
System.arraycopy(data, clumpOffset ,clump, 0, tag.clumpSize);
}
void setDataByte()
{
System.arraycopy(data, tagOffset ,rTagNum, 0, tag.tagSize};
tag.setByteValue (rTagNum) ;
}
void setPort({int fPort)
(
port = fport;
}

Reducing the Latency on the Internet

99

Appendices

7.4.2.4 FSTPTag

/'

The original code is written by Steve Kretshmann, and modified by babak s. Noghani. Mecdifications
include:

L. Changing the single-threaded client to multi-threaded

2. Adding an additional field to the packet header

3. Adding the functionality of appending the file components

4. Disabling the adaptive flow control mechanism

S. Hard-coding the packet size

=/

public class FSTPTag (
/ /parameters
public int packetSize;
public int fileLength:
public int fileNameLength;

//calculated sizes

public int clumpSize:
public int numbClumps:;
public int tagSize = 1;
public int lastAmount;
public int FSTPPacketSize:

//internal variables

public boclean byteSet = false;
public boolean intSet = false;
private byte(] tagBytevalue:
private int tagIntValue;
public boolean last = false:

//cemporary variables declared once here to increase
//the speed of the code (memory will not have to be
//assigned each time the methods start

private int block:

private int shifc;

public FSTPTag(int pSiz, int fNameLength, int fLength)
{

//copy parameters to instance variables

packetSize = pSiz;

fileNameLength = fNameLength:

fileLength =fLength;

tagIntValue = 0;

//FSTPPacketSize is total packetSize -~ Header Size
//UDP Headers=8 Bytes

// IP header=20 Bytes = 28 bytes header for UDP Packets
FSTPPacketSize = packetSize - 28;

//initial sizes

tagsSize = 1;

clumpSize = FSTPPacketSize - 1 - fileNameLength -tagSize:;
numbClumps = fileLength / clumpSize;

100

B v irrrms bk
Reduocing tireEatency-omrtire-intermret

Appendices

while ((twoPower8x(tagSize) < numbClumps) && (twoPower8x(tagSize) > 1))

{

171cERERERRLY catonlake, 88828 29 filenamerengch - ragsize;
numbClumps = fileLength / clumpSize:

} //end while calculation tagSize

//caiculate size of last clump and adjust numbClumps
Integer IntegerLastAmount = new Integer{fileLength % clumpSize):;
lastamount = IntegerLastAmount.intvalue():;

if (lastAmount!= 0) numbClumps++;
else lastAmount = clumpSize:;

tagByteValue = new byte[tagSize];
} // end FSTPTag initialization
final public byte(] bytevalue()
{

// This is written for speed

// T fully realize this looks really bad, but it is

// likely a small amount faster than
// some other form. This could make
/7 or decoding thousands of packets.

if (!'byteSet}

switch(tagSize)
€
case 4:
block = tagIntValue & 255:
if (block>127) tagBytevValuel[0] =

implementing this in loops or
a difference when we are encoding

(byte) (block - 256);

else tagByteValue(0] = (byte)block;

shift = tagIntValue >> 8;
block = shift & 255;
if (block>127) tagByteValuel[l] =

{byte) (block - 2586):

else tagByteValue[l] = (byte)block;

shift = shift >> 8;
block = shift & 255;
if (block>127) tagByteValue{2] =

(byte) (block - 256):

else tagByteValue([2] = (byte)block;

block = shift >> 8;
if (block>127) tagByteValuel(3] =

(byte) (block - 256):

else tagByteValue(3] = (bytel)block;

break;

case 3:
block = tagIntValue & 25S5;
if (block>127) tagByteValue(0] =

(byte) (block ~ 256);:

else tagByteValue([0] = (byte)block:;

shift = tagIntValue >> 8;
block = shift & 285;
if (block>127) tagByteValue(l] =

(byte) (block - 256):

else tagByteValue([l] = (byte)block:

block = shift >> 8;
if (block>127) tagByteValue(2] =

(byte) (block - 256);

else tagBytevValue[2] = (byte)block;

break;

case 2:
block = tagIntvValue & 255;
if (block>127) tagByteValue[0}] =

(byte) {(block - 256);

else tagByteValue{0] = (byte)block;

block = tagIntValue >> 8;

101

Reducing the Latency on the Internet

Appendices

else tagByteValue(l] = (byte)block;
break;

égsébigck>127) tagByteValue(l] = (byte) (block - 256);

if (tagIntvalue>127) tagBytevValue[0] = (byte) (tagIntValue - 256);
else tagByteValue{0] = (byte)tagIntvValue;
break;
}
byteSet = true:
} // end if tbhyteSet
return tagByteValue:;
}
public int intvalue()
{
if (!intSet)
{ //This method was modified for faster speed
//rather than compact programming structure

block = 0;

switch(tagsize)

{
case 4:
block = (int)tagBytevValuel3]:;
if (block < 0) block += 256;
block <<= 24;

shift = (int)tagByteValuel2]:
if (shift < 0) shift += 256;
shift <<= 16:

block += shift;

shift = (int)tagByteValue(l];
if (shift < 0) shift += 256;
shifr <<= 8;

bleock += shift:

shift = (int)tagByteValue{O0];
if (shift < 0) shift += 256;
block += shift;

break:

case 3:

block = (int)tagByteValuel[2];
if (block < 0) block += 256;
block <<= 16;

shifc = (int)tagByteValue{l];
if (shift < 0) shift += 256;
shift <<= 8;

block += shift;

shift = (int)tagBytevValue{O0]:;
if (shift < 0) shift += 256;
block += shift;

break:

case 2:

block = (int)tagByteValue([l];
if (block < 0) block += 256;
block <<= 8;

shift = (int)tagByteValue[O0];
if (shift < 0) shifr += 256;
block += shift;

break;

case 1:
block = (int)tagBytevValue(O0];
if (block < 0) block += 256;

102

Reducing the Latency on the temet

Appendices

tagIntValue = block;
intsSet = true:;

}
la;t = (tagIntValue == (numbClumps-1)}:
return tagintvValue:
}
public void setBytevValue{byte[] bTag)
{
byteSet = true;
intset = false;
tagBytevalue = bTag:

}
public final void setIntValue(int lTag)
{

byteSet = false;

intSet = true:

tagIntValue = lTag:;

last = (1Tag == (numbClumps-1));

/¢The following method is no longer used
//in this implementation.
/* public Integer decodeString(String stringTag)
4
int decoded = 0;
for(int i=0;i<stringTag.length();i++)
(
Character ¢ = new Character(stringTag.charAt(i)):
int hash = c.hashCode():
if (hash < 0) hash = hash + 256;
decoded=decoded + twoPower8x(i)*hash:;
}
Integer IntegerDecoded = new Integer (decoded):
return IntegerDecoded;

»
/
static private int twoPower8x(int p)
(
int twoP = 1;
for (int i=l;i<=p;i++) twoP *= 256;
return twoP;

7.4.2.5 TagBenchmark

/'

The original code is written by Steve Kretshmann, and modified by babak s. Noghani. Modifications
include:

1. Changing the single-threaded client to multi-threaded

2. Adding an additional field to the packet header

3. aAdding the functionality of appending the file components

4. Disabling the adaptive flow control mechanism

S. Hard-coding the packet size

=/

import java.io.v;

public class TagBenchmark
¢

103

Appendices

{
Integer Input = new Integer(args{0]):

pubfEcTRERS 8 ST aTARYR ISBEYRINT ‘dtas)
int fLength = 2147483647;
intc psiz = 1S;
byte byteValue(] = new bytel(4d]:
byte bytevalue2(] = new bytel(4]:
FSTPTag FTag = new FSTPTag(pSiz, fNameLength. fLength):
FSTPTag2 FTag2 = new FSTPTag2(pSiz., fNameLength, fLength):;
System.ocut.println("TagSize = * + FTag.tagSize);
System.out.println(*NumbTests ="+numbTests):;

boolean bad = false:
for (int i=0;i<numbTests;i+=17)
{
FTag.setIntValue{i);
FTag2.setIntValue(i);
byteValue = FTag.byteValue();
bytevalue2 = FTag2.bytevalue():
for (int j=0; j<FTag.tagSize;j++)
{
if (byteValuel(j]'!=bytevValue2([j])
(
bad=true;
System.out.print{*X +i+* "};
}
}
FTag.setByteValue (bytevalue) ;
FTag2.setByteValue (bytevalue) ;
if (FTag2.intvValue() != FTag.intValuel())
{
bad=true;
System.out.print("Q®+i+* *);
}

}

if (!bad) System.out.println(®"Everything Matches Up");
}

Reducing the Latency on the Internet

104

Appendices

7.5 Trace Route

Below are the results of running TraceRoute application on the machines utilized during
our tests of the CBD-FSTP.

From University of Alberta to University of Manitoba

1 ee-gw (129.128.68.1) 1.047 ms 0917 ms 0.817 ms
canet2fddi.gw.ualberta.ca (129.128.1.19) 1.223 ms 1.451 ms 1.422ms
206.75.91.17 (206.75.91.17) 6.211{ms 7.047 ms 5.929 ms

205.189.32.58 (205.189.32.58) 42.297 ms 46.806 ms 44.525 ms
205.189.32.81 (205.189.32.81) 84.251 ms 66.069 ms 68.320 ms
atrouter.cc.umanitoba.ca (207.161.242.18) 90.931 ms 66.387 ms 67.016 ms
bbrouter.cc.umanitoba.ca (130.179.16.210) 78.759 ms 76.125 ms 84.078 ms
ici4.ee.umanitoba.ca (130.179.8.80) 67.492 ms * 76.507 ms

ONOUOBALWLN

From University of Manitoba to University of Alberta

1 enrouter.cc.umanitoba.ca (130.179.8.70) 1.070 ms 6.338 ms 0.854 ms
atrouter.cc.umanitoba.ca (130.179.16.1) 1.260 ms 0.730 ms 0.865 ms
mrnet.mbnet.mb.ca (207.161.242.17) 1.618 ms 1.854 ms 1.448 ms
205.189.32.82 (205.189.32.82) 24.553 ms 24.275 ms 24.061 ms
wnet-ab.canet2.net (205.189.32.57) 61.399 ms 61.289 ms 61.332 ms
206.75.91.18 (206.75.91.18) 66.445 ms 65.697 ms 65.716 ms
gsb04.gw.ualberta.ca (129.128.1.1) 71.5686 ms 77.877 ms 74.094 ms
548pc15.ee.ualberta.ca (129.128.68.184) 66.665 ms 66.769 ms 66.654 ms

ONOMAWN

From University of Calgary to University of Manitoba

fivegate (136.159.5.1) 0.828 ms 0.630 ms 0.580 ms

towergate (136.159.28.1) 1.279 ms 0.814 ms 0.819 ms

campus (136.159.30.1) 1.238 ms 0.878 ms 0.855 ms

136.159.251.2 (136.159.251.2) 1.307 ms 1.002ms 0.957 ms

192.168.47.1 (192.168.47.1) 1.355ms 1.140 ms 1.001 ms

192.168.46.10 (192.168.46.10) 1.455ms 2.046 ms 1.406 ms
205.189.32.58 (205.189.32.58) 38.281 ms 38.398 ms 38.189 ms
205.189.32.81 (205.189.32.81) 62.915ms 62.193 ms 62.268 ms
atrouter.cc.umanitoba.ca (207.161.242.18) 62.451 ms 63.364 ms 62.294 ms
10 bbrouter.cc.umanitoba.ca (130.179.16.210) 63.261 ms 65.198 ms 64.212ms
11 mcleod2.ee.umanitoba.ca (130.179.8.25) 62.781 ms * 62.491 ms

CQONOUPWN=

From University of Manitoba to University of Calgary

traceroute to csc.cpsc.ucalgary.ca (136.159.5.16), 30 hops max, 40 byte packets
1 enrouter.cc.umanitoba.ca (130.179.8.70) 1.142ms 1.078 ms 0.905 ms
2 atrouter.cc.umanitoba.ca (130.179.16.1) 0.767 ms 0.829 ms 0.688 ms

105

Reducing the Latency on the Internet

CoONOOOHW

Appendices

mret.mbnet.mb.ca (207.161.242.17) 2.168 ms 1.799 ms 1.787 ms
205.189.32.82 (205.189.32.82) 24.229 ms 24.436 ms 25.652 ms
wnet-ab.canet2.net (205.189.32.57) 62.159 ms 61.791 ms 61.251 ms
192.168.46.9 (192.168.46.9) 61.723 ms 62.275 ms 61.627 ms
192.168.47.3 (192.168.47.3) 62.241 ms 64.860 ms 62.421 ms
136.159.251.1 {136.159.251.1) 62.270 ms 62.302 ms 61.938 ms
136.159.30.2 (136.159.30.2) 62.194 ms 63.677 ms 61.972 ms

10 tsa.cpsc.ucalgary.ca (136.159.28.2) 63.006 ms 62.625 ms 62.133 ms
11 csc.cpsc.ucalgary.ca (136.159.5.16) 62.626 ms * 70.946 ms

From University of Regina to University of Manitoba

NOGO L WN

NET-ED-UOFRGATE.CC.UREGINA.CA (142.3.1.1) 1.748 ms 0.691 ms 0.699 ms
142,165.3.105 (142.165.3.105) 1.285ms 1.360 ms 0.946 ms

205.189.32.54 (205.189.32.54) 30.506 ms 30.442 ms 32.426 ms

205.189.32.81 (205.189.32.81) 54.933 ms 54.448 ms 53.937 ms
atrouter.cc.umanitoba.ca (207.161.242.18) 55.226 ms 54.845 ms 58.264 ms
bbrouter.cc.umanitoba.ca (130.179.16.210) 55.296 ms 55.028 ms 55.078 ms
mcleod2.ee.umanitoba.ca (130.179.8.25) 55.674 ms * 56.953 ms

From University of Manitoba to University of Regina

NOO A WN =

enrouter.cc.umanitoba.ca (130.179.8.70) 1.038 ms 0.776 ms 0.689 ms
atrouter.cc.umanitoba.ca (130.179.16.1) 1.408 ms 0.726 ms 0.585 ms
mrnet.mbnet.mb.ca (207.161.242.17) 1.831 ms 1.343 ms 1.302 ms
205.189.32.82 (205.189.32.82) 24.049 ms 25.149 ms 24.571 ms
smet-sk.canet2.net (205.189.32.53) 54.088 ms 53.891 ms 53.878 ms
142.165.3.106 (142.165.3.106) 54.658 ms 54.679 ms 54.677 ms
IVANHOE.ENGG.UREGINA.CA (142.3.212.1) 55.507 ms * 56.806 ms

Reducing the Latency on the Intenet

106

