
Reducing Latency on the Internet using

cCComponent-Based Downf~ad'~

and

"Fife-Segment Transfer Protoc~C'~

By Babak S . Noghani

A Thesis submitted to the Faculty of Graduate Studies

Of the University of Manitoba

In Partial Fulfillment of the Req~ements for the Degree of

Department of Electrical & Cornputer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada
O March, 2001

Reducing the Latency on the ïntaacâ

National Library I * m of Canada
Bibliothèque nationaIe
du Canada

Acquisitions and Acquisitions et
Bibliographic Semices services bibliographiques
395 Wellington Street 395. rue Wellington
Ottawa ON K1A ON4 Ottawa ON K I A O N 4
Canada Canada

The author has granted a non-
exclusive licence aliowing the
National Library of Canada to
reproduce, loan, distribute or seli
copies of this thesis in microform,
paper or elecironic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author' s
permission.

Your Ne Votre r6iërmœ

Our tw Notre r é I B l l l n ~ ~

L'auteur a accordé une Licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de mïcrof iche /~ de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGEET PERMISSION PAGE

Redncing Latency on the Internet using (CComponent-Based Do~nload '~

and 'cFile-Segment Transfer Protocol"

Babak S. Noghani

A Thesis/Practicum submitted to the Facuity of Graduate Studies of The University

of Manitoba in partial fulnllment of the requirements of the degree

of

Master of Science

BABAK S. NOGHANI O 2001

Permission bas been granted to the Library of The University of Manitoba to lend o r seli
copies of this thesidpracticum, to the National Library of Canada to microfilm this
thesisfpracticum and to lend or seii copies of the f i lm, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author resewes other publication rights, and neither this thesidpracticum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholariy research.

Babak Noghani

I further authorize the University of Manitoba to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

The University of Manitoba requires the signatures of al1 pesons using or photocopies

this thesis. Please sign below, and give address and date.

Reducing the Latcncy on the Interna

This thesis examines the Component-Based Download (hereinafter referred to as

"CBD") and the Component-Based Download File-Segment Transfer Protocol

(hereinafter referred to as "CBD-FSTP") to combat the latency due to the slow

performance of the cuvent file transfer protocols. In particular, we focus on accelerating

the download of large files (e.g.: video) frorn the Intemet. This can be achieved by the

following two methods:

1. Defining a distributed server mechanism for transfemng data known as CBD; and

2. lntegrating a new distributed file transfer protocol known as CBD-FSTP

More efficient utilization of bandwidth can be obtained by using these two methods. This

will lead to a higher throughput and thus a reduced latency. The trade off will be higher

processing overhead and network utilization that are no longer major drawbacks

because of the emergence of fast cornputers with increasing processing power and the

expansion of fiber optic Gigabit links.

According to the data gathered throughout extensive measurements, CBD can speed

up the process of downloading large-size files up to 3 times faster compared to

conventional methods. The CBD-FSTP can also improve the latency by additional 30%

compared to the FSTP method, which is another fast newly-developed file transfer

protocol. Results show that CBD-FSTP can be 7 times faster than the File Transfer

Protocol (nereinafter referred as "RP) .

iii

Reducing the Latency on the Intenet

I would like to extend my thanks to my advisor, Dr. Robert D. McLeod for his support

and guidance throughout the entirety of my academic work on the CBD and CBD-FSTP.

I also want to thank Dr. David Blight for his support and encouragement when I started

Master's program. Finally, I want to thank Steve Kretschrnann for his cornmitment over

the course of implementing the FSTP protocol. Of course there are those who go

unnamed, and to them I offer my gratitude as well.

Reducing the Latency on the Intemet

Acronyms

/ Acronvm 1 Definition f

mBDp 1 Com~onent-Based Download /

M X -
ARDP

(mL 1 Diaital Subscriber Line 1

~cknowledgement~
Asynchronous Reliable Delivery

1 FSTP 1 File Seament Transfer Protocol 1
1 FTP 1 File Transfer Protocol 1
1 HlTP 1 HyperText Transport Protocol 1

Figure 1-1 Acronyms

IP
IPTD

Reducing the Latency on the interner

lnternet Protocol
Inter-Packet Transmission Delav

Table of Contents

1 Introduction .. 1

2 Component-Based Download ... 8

2.1 MOTIVATIONFORCBD .. 8
.. 2.1 -1 Prwf of Concept 10

.. 2.1.2 Discussion of the Results 21
... 2.2 FAULTTOLERANCE 22

2.2.1 Reliability Analysis .. 23
.................... 2.2.2 Server Selection ,, .. 30

3 File Segment Transfer Protocol (FSTP) ... 3 3

3.1 MOTIVATION FOR DESIGNING A NEW FILETRANSFER PROTOCOL ... 33
3.2 FILE SEGMENT TRANSFER PROTOCOL (FSTP) .. 3 5

.. 3.3 FSTP FLOW CONTROL 38

4 CBD-FSTP ... 4 1

4.1 MOTIVATION FOR CBD-FSTP .. 4 1
4.2 CBD-FSTP DESCRIPTION ,,., .. 41
4.3 CBD-FSTPSERVER .. 43
4.4 CBD-FSTP CLIENT .. 44
4.5 FSTP-CBD PROTOTVPE IMPLEMENTATION ... 44

... 4.5.1 Multi-Threaded Client 46
4.5.2 CBD-FSTP Header .. 47
4.5.3 Appending File Components ... 48

... 4.5.4 Flow Control 49
.. 4.5.5 Packet Size 50

4.6 U(PERIMENTAL MEASUREMENTS ... 51
4.6.1 Cornputers Used in Experimental Measurements .. 51
4.6.2 Measurements Procedure .. 52
4.6.3 Results ... 54

4.7 ANALYSE OF THE RESULTS .. 57
4.8 C O M P A R ~ ~ ~ N OFCBD-FSTP WITH FSTP ... 59

5 Conclusion .. 6 2

6 References ... 6 5

7 Appendices ô ï

7.1 TRANSFER CONTROL PROTOCOL,..................................... 67
7.1 -1 Introduction 67

................................. 7.1.2 General Description 67
7.1.3 Basic Data Transfer, .. 69

.. 7.1 -4 Congestion control 71
7.1.5 TCP Improvements ... 72

7.2 TR~VIAL FILE TRANSFER PROTOCOL W P) .. 73
7.2.1 Introduction .. 73
7.2.2 Trivial File Transfer Protocol 73

Reducing the Latency on the Intemet

.. 7.3 USER DATAGRAM PROTOCOL (UDP) 75
7.3.1 Introduction .. 75
7.3.2 UDP Encapsulation and Protocol iyering .. 76
7.3.3 UDP Multiplexing ... 77

....................................... 7.4 SOURCE CODE ,, 7 8
.. 7.4.1 CBD lrnplernentation 78

.. 7.4.2 CBD-FSTP Prototype lmplernentation 84
.. 7.5 TRACE ROUTE 105

List of Figures

... Figure 1-1 Acronyms v
........... Figure 2-1 CBD Distributeci Server Mechanism I O

Figure 2-2 Downloading Three Files (1, 1.3 & 2 Meg) in a 1 ûûBaseT LAN Environment 13
Figure 2-3 Downloading Ttiree Files (7.9, 8 & 9 Meg) in a 100BaseT LAN Environment 14

......... Figure 2 4 Downloading Three Files (50.8.33.7 & 34.9 Meg) in a 1 OOBaseT LAN Environment 14
....... Figure 2-5 Downloading Five Files (1 .Il 1.3, 1.8,2 & 2.8 Meg) in a 10OBaseT LAN Environment 15

Figure 2-6 Downloading Three Files (1 .Il 1.3 & 2 Meg) in a 10BaseT LAN Environment 16
Figure 2-7 Downloading Rve Files (1 .3,1.8,2.2. 2.3 & 2.5 Meg) in a 10BaseT LAN Environment ... 17
Figure 2-8 Downloading Three Files (1 .Il 1.3 & 2 Meg) in a 1 OBaseT Wireless Environment 18
Figure 2-9 Downfoading Three Files (6.6, 8.1 & 1 1.1 Meg) in a 1 OBaseT Wireless Environment 18
Figure 2-1 0 Downloading Five Files (1 .Il 1.3, 1 .8. 2 & 2.8 Meg) in a 1 OBaseT Wireless Environment

19
Figure 2-1 1 Downloading 3 Files (1 .l , 1.3 & 2 Meg) in a Modem Environmant (33.6 bps) 20
Figure 2-1 2 Replication Scheme A .. 23
Figure 2-13 Replication Scheme B .. 23
Figure 2-14 Five Distributed Servers with Replication Degree of three ... 28
Figure 2-1 5 Reliability of a System of Distributed Server 6ased on Number of Replicated Data 30
Figure 4-1 UML Sequence Diagram of CBD-FSTP .. 4 5

.. Figure 4-2 Static Classes of CBD-FSTP 46
Figure 4-3 Code Snippet for Spawning Threads for ParalleI Connections 47

... Figure 4-4 CBD-FSTP Header 47
Figure 4-5 Code Snippet for Creating CBD-FSTP Header ... 48
Figure 4-6 Code Snippet for Appending File Components ... 4 9
Figure 4-7 Downloading a 20 Meg File Distributed on Four Remote Machines 55
Figure 4-8 Downloading a 40 Meg File Distributeci on Four Remote Machines 56
Figure 4-9 Downloading a 15 Meg File Distributed on Three Remote Machines 56
Figure 4-1 0 Downloading a 30 Meg File Distributed on Three Remote Machines s/
Figure 7-1 Protocol Layering .. 6 9
Figure 7-2 Protocol layering ... 76
Figure 7-3 UDP Encapsulation-. 77
Figure 7 4 UDP demultiplexing .. 78

List of Tables

Table 2-1 Relative Latency (CBD/Conventional) ... 22
Table 2-2 Reliability and Number of Replicated Data .. 27
Table 4-1 Specifications of Machines Running the CBD-FSTP Server ... 52
Table 4-2 Average Latency (for Different Size of Files & Nurnber of Serves) 57
Table 4-3 Relative Latency (for Different Size of Files and Number of Servers) 58
Table 4-4 RTT and Number of Hops for Participating CBD-FSTP Server .. 59

vi i

Reducing the Latency on the intemet

Introduction

Cha~ter One

Reducing the Latency on the intenet

1 Introduction

1 .I Thesis Motives

The lnternet has seen tremendous growth within the last few years. The main

reason for its popularity is its ability to provide easy user access to a wide variety

of data from remote locations. This data can be of any nature and of any size,

from small text files to very large movies. Literally, there are no boundaries as to

the size of the files that can be accessed through the Intemet

In spite of the Internet's tremendous capabilities, lnternet users tend to complain

about the time they waste woiking on their cornputers, waiting for data to

download. This concem has grown larger with the emergence of audio and

video files over the Intemet. Files with several hundred megabytes are not

unusual these days. ln other words, for a typical lntemet user, latency is a

concem, and reducing this delay can be a great help for lntemet users. Finding a

quicker and more efficient way to download files from the lnternet is the primary

reason for this thesis.

1.2 Challenges

A number of approaches have been taken in minimizing user latency on the

Intemet. To name a few, increasing the bandwidth on the lntemet backbone and

to the end user, more efficient routing schemes, streaming data, etc. None of

which has effectively solved the latency problem.

1

Reducmg the Latency on the Intane€

Introduction

Latency is caused by a number of sources. For instance, if a server is overloaded

or has a slow disk, it imposes a considerable delay in processing a request.

Another such instance is caused when a user's computer does not quickly

respond to the packets being received and therefore, adds delay. The latency

caused by a server or client can be largely eliminated by using a more powerful

computer, more memory, or a faster disk.

The main portion of the latency perceived by an lntemet user is caused by the

network itself. Some sources of this delay are intrinsic to the network

infmstmcture, namely propagation and transmission delays. Propagation delay

depends on the speed of light and is negligible compared to other delay factors.

Transmission delay is not a big concem anymore. The reason for this is that

most lntemet users nowadays have access to reasonably high-speed lntemet

connections.

Delay can also be due to network congestion. High performance routing

algorithms and a fast and reliable network infrastructure can alleviate this

problem to a great extent. Routers, as well, contribute to the delay perceived by

the user due to the buffering and processing time involved in routing the lnternet

packets.

Yet another source of latency can be due to the design and implementation of

the lntemet protocols themselves. As a common rule, file transfer protocols were

Reducing the Latency on the Intemet

initially designed to match paRicuiar network characteristics with the type or size

of the data that is transmitted. Therefore, with the evolving nature of the Intemet,

the protocols are modified occasionally to optimize performance. Many

modifications to the existing protocols, namely Hyper Text Transport Protocol

HTTP [Ber96], have been proposed in the Iiterature to reduce the latency. Some

of them have already been tested and implemented on the lntemet to a great

extend. The more significant modifications are Iisted as follows:

Avoiding the cost of Round Trip Time (RTT) by reducing the number of

HlTP connections. This method uses a single, long-lived connection for

multiple HïTP transactions (persistent connection). The connection

rernains open for al1 the inline images of a single document, and across

multiple HTML retrïevals [Pad94j.

Utilizing multiple Transport Control Protocol (TCP) connections to the

server. This technique is currently used by web browsers that comply with

the HTTPI .1 [Fie99]. lnstead of opening and closing a connection for each

application request, HlTP 1.1 provides a persistent connection that allows

for multiple requests to be batched or pipelined to an output buffer. The

underlying TCP layer can put multiple requests (and responses to

requests) into one TCP segment that is forwarded to the lntemet Protocol

(IP) layer for packet transmission. Because the number of connection and

disconnection requests for a sequence of "get a file" requests is reduced,

fewer packets need to flow across the Intemet. Since more requests are

pipelined, TCP segments become more efficient. The result being less

3

Reducing the Lateacy on the Internet

introduction

lntemet traffic and faster performance for the user. When a browser

supporting HTTP 1.1 indicates it can decompress HTML files, a server will

compress them for transport across the Intemet, providing a substantial

aggregate savings in the amount of data that is being transmitted. (Image

files are already in a cornpressed format so this improvement applies only

to HTML and other non-image data types.)

Pre-fetching techniques attempt to predict future requests of a user, based

on the history of observed Web pages. Pre-fetching can reduce network

delays considerably [Cro98]. There are many solutions toward making the

pre-fetching techniques more efficient. They are descnbed throughout

literature. Most of these solutions try to deploy a leaming algorithm by

which proxies would be able to pre-fetch files that are most likely

ôccessed next by the lntemet user.

Using mirror/replicated servers, i.e.; spreading the workload among a

cluster of servers rather than a single machine handling the HTTP

requests. Server replication is an approach often used to improve the

ability of a sewice to handle a large number of clients. The most important

factor in efficient utilkation of replicated servers is the ability to direct client

requests to the best server, according to some optimal criteria. This issue

is discussed further in [Fei98].

As mentioned eariier, the lntemet has rapidly evoived more so in recent years.

One of its biggest improvements involves increased bandwidth availability. This

4

Reducing the Latency on the intanet

possibility has resulted due to the use of fiber networks, DSL, cable connections,

and other new technologies. A typical Intemet user now has abundant

bandwidth available to their computers compared to a few years ago. However,

in most cases, the bandwidth cannot be utilized efficiently. Experience has

shown that when using a typical file transfer protocol to download a file, only a

portion of the available bandwidth is utilized. Current file transfer protocols use

one of the versions of sliding-window mechanism for providing reliable

connection. In the sliding-window mechanism ' the sender should wait for an

acknowledgment from the receiver before sending the next segment of data.

The arnount of time before the sender receives the acknowledgment is referred

to as Round-Tn'p Time (RTT). In high-speed network, RTT can be even Iarger

than the transmission time. Therefore, the actual throughput of a connection is

lirnited by the RTT. This degrades the efficient utilization of the bandwidth by

current file transfer protocols.

The objective of this thesis is to expand downloading capabilities of large files

over the Intemet as quick as possible. This can be achieved by defining a

distributed server mechanism for transferring data. And secondly, by designing a

new file transfer protocol, which is compatible with our distributed mechanisrn.

l Refer to Appendix 7.1 for more information

Reducmg the Latency on the intetuet

The idea behind these two solutions is to utilize the bandwidth more efficiently

and elirninate the negative effect of RTT. This would lead to higher throughput

and shorter latency perceived by the Intemet user. Of course, this enhancement

is achieved as a trade off with additional processing overhead and network costs.

Fortunately, this is not a significant drawback due to the emergence of new

cornputers with ever-increasing processing power and fiber optic gigabit links-

1.3 Structure of Thesis

In the following chapter a new distributed server rnechanisrn (CBD) wiil be

introduced. In chapter three, a new file transfer protocol (FSTP) will be

introduced and explained in greater detail. Following that, in chapter four, the

CBD paradigrn would be integrated into the FSTP and a distnbuted version of

this new protocol (CBD-FSTP) would be designed. The prototype irnplernentation

of CBD-FSTP will also be covered in that chapter. Chapter five focuses on the

conclusion and discusses future research and direction.

Reducing the Latency on the intwet

Component-Based Domdoad (CBD)

Chapter Two

Reducing the Latency on the Intema

Coniponent-Bascd DownIoad (CBD)

2 Component-Based Download

2-1 Motivation for CBD

As mentioned eariier, bandwidth is not a bottleneck in today's networks any

longer. TCP, as the de facto file transfer protocol in the Intemet, has not properîy

adapted itself to this improvement. Experiments have shown that TCP's sliding

window mechanism for flow control and slow start algorithm for congestion

contro12, causes limited throughput particularly for a high-speed network

connection.

Although numerous changes have been applied to TCP to allow for transfemng

data quicker, this protocol is still considered quite slow. This is due to its initial

design, which is based on the assumption that in every given network, packet

loss ratio should be considerable and bandwidth relatively low. To be more

specific, overly consewative Retransmission Timeout (RTO), and inability to

measure the available bandwidth accurately, degrades the TCP service

throughput [Hoe96][Bra95].

The initial concept of CBD is closely related to what already has been utilized in

the implementation of H T P I .1 [Fie97]. HTTP1.l takes advantage of the concept

of long-lived TCP connections. That is, several logical data streams are

' Refer to appendix 7-1 for more information

Reducmg the Latency on the interna

Component-Based Download (CBD)

multiplexed by the application into one TCP socket This concept has been

extensively addressed in the literature over the last few years. Examples include

persistent-control HïTP and Session Control Protocol (SCP) [Pad94].

In CBD, quite simitar to HTTP1.l, the user establishes multiple concurrent

connections. The only difference is that these connections are linked to different

sewers, not just one. The distributed approach (Le., using several servers) is

intentionally chosen for the CBD because it increases fault tolemnce of the

downloading process. (This issue will be discussed in greater details in the

following sections.) Another concept that desewes consideration is that in

HTTP1.l the sizes of the transferred files are generally quite small and

connections are mediated through the web server. Whereas, CBD deals with

substantially larger files.

The concept of CBD is very simple and straightforward. For a user to be able to

download a file via CBD, the file should first be divided into several components

and put on different servers. When the user attempts to download the file, four

components are identified and they are as follows:

1. Multiple concurrent connections will be established between the user's

application and the servers maintaining the file components-

2. As soon as each connection has been set up, the file component will start

downloading independentiy from the others. In other words, al1 the

components will be downloaded simultaneously.

Reducing the Latency on the Intana

Componait-Basexi Download (CBD)

3. On the user's end, each connection will be teminated after the respective

component has been completely downloaded.

4. Finally, the components on the user's machine will get appended to each

other and reconstitute the original file.

The following illustrates the connections between the user's machine and the

multiple serves.

File

Client
I
!

File Camponcnt

File Componcat

Figure 2-1 CBD Distributed Server Mechanism

2.1 .1 Proof of Concept

As the firçt step in verifying the feasibility of the CBD mechanism, some

experirnents were performed. During these experirnents files were downloaded

once via the CBD, and once using the conventional method. After each trial, the

latency was measured and a cornparison was drawn. The CBD was simulated

as follows:
10

Reducing the Latacy on the interneî

Component-Based Download (CBD)

Since the FTP is the de-facto application protocol for downloading large

files over the Intemet, we used it in ouf tests for transfemng files-

* Several files located on remote FTP servers were selected. These files

were downloaded first, by establishing concurrent (al1 sirnultaneously) ITP

sessions between an FTP client and the servers, and secondly, by

establishing sequential (one after another) K P sessions between the

same FTP client and the sewers.

The total delays for downloading the files were measured in both cases. In

concurrent download, total perceived latency is equal to the greatest value

of the latencies measured for each individual download. In sequential

download, the perceived latency is equal to the sum of the Iatencies

measured for each individual download.

Needless to Say that in a real implernentation of CBD, components of a file

should be downloaded instead of standalone files. On the clienfs end the

components should be appended to each other to reconstitute the original file.

In this chapter the main concern is to verify that the CBD is quicker than

conventional download methods. Therefore, the focus will be rnerely on

measurernent of latencies. In chapter five a file transfer protocol will be

introduced, which CBD can be practically incorporated into.

Reducmg the Latency on the Intane

Component-Bad Download (CBD)

2.1.1.1 CBD Results

Our tests cleariy illustrated the great potential to improve the performance of a

network by using the CBD for large files. Depending on what network connection,

what level of distribution, and what component size were used, the downloading

time was 1 and a half to 3 times faster.

To repeat the experiment a reasonable number of times, a Java program was

wn'tten. This program automates the process of opening the K P sessions,

measuring and collecting the latencies? Over the course of experiments,

different contingencies that might occur in real-life situations were taken into

consideration. To compensate for the effect of variations cf the traffic load on the

network and to get a reliable result, experiments were repeated at various times

throughout the day on certain days of the week. To investigate the performance

of CBD and find out its optimum state, various environrnents and different

numbers and sizes of files were tested.

The experiments were perfonned over campus type LANs, modems, and

wireless LANs supporting 802.1 1. The following machines were used in the

experiments:

For connecting to 100BaseT: Sun Sparc Ultra 10,768 Meg of M M ,

running Solaris 5.6

' Refer to appendix 7.4.1 for its source code

Reducing the Latency on the inteniet

Component-Bad Download (CBD)

For connecting to 10BaseT: Sun Sparc Ultra 2, running Solaris

For connecting to wireless LAN: lntel Pentiurn II, nrnning Windows 98 with

32 Meg of RAM

The results obtained under each environment are provided in the following sub-

sections.

2.1 -1 .1 .1 1 OOBaseT LAN

Experiments were performed on three different sizes and nurnbers of files:

Three files, with sizes 1 . I l 1.3 and 2 Meg, were downioaded.

Measurernents were repeated one hundred times. The rnean latency while

utilizing the CBD was 85 seconds as cornpared to 176 seconds for the

conventional download. (Figure 2-2)

Figure 2-2 Downloading Three Files (1,13 & 2 Meg) in a lOOBaseT LAN
Environment

Three files, with sizes 7.9, 8 and 9 Meg, were downloaded. Measurements

were repeated ninety times. The mean latency while utilizing the CBD was

13

Reducing the Latency on the Intemet

Component-Based Download (CBD)

31 7 seconds as compared to 697 seconds for the conventional download

(Figure 2-3).

Figure 2 3 Downloading Three Files (7.9,8 & 9 Meg) in a lOOBaseT LAN
Environment

Three files, with sites 50.8, 33.7 and 34.9 Meg, were downloaded.

Measurements were repeated twenty times. The mean latency while

utilizing the CBD was 1,035 seconds as compared to 2438 seconds for

the conventional download (Figure 24).

ULM-

Figure 2-4 Downloading Three Files (50.8,33.7 & 34.9 Meg) in a lOOBaseT LAN
Environment

Reducing the Lataicy on the Intanet

Componmt-Based Downioad (CBD)

Five files, with sizes 1 .l, 1.3, 1.8,2 and 2.8 Meg, were downloaded.

Measurements were repeated one hundred and twenty times. The mean

latency while utiliu'ng the CBD was 91 seconds as compared to 267

seconds for the conventional download. (Figure 2-5)

Figure 2-5 Downloading Five Files (1.1,13,1.8,2 & 2.8 Meg) in a lOOBaseT LAN
Environment

The results show higher improvements in latency, when larger files get

downloaded, and the number of participating servers is increased (from 3 to 5).

2.1 -1.1 .2 10BaseT LAN

Experiments were performed on two different sizes and numbers of files:

Reducing the Latency on the Intanet

Componait-Based Download (CBD)

Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded.

Measurernents were repeated one hundred times. The mean latency white

utilizing the C8D was 47 seconds as compared to 99 seconds for the

conventional download (Figure 2-6).

Figure 2-6 Downloading Three Files (1.1,13 & 2 Meg) in a lOBaseT LAN
Environment

Five files, with sizes 1.3, 1.8, 2.2, 2.3 and 2.5 Meg, were downloaded.

Measurements were repeated fifty tirnes. The mean latency while utilizing

the CBD was 59 seconds as compared to 151 seconds for the

conventional download (Figure 2-7).

As the results imply, once again, increased improvement of latency was achieved

when the nurnber of participating servers was increased.

Reducing the Latency an the Internet

Component-Based Download (CBD)

Figure 2-7 Downloading Five FiIes (13,1.8,2.2,23 & 2.5 Meg) in a lOBaseT
LAN Environment

2.1.1.1.3 Wireless LAN

Experiments were perfomed on 3 different sizes and numbers of files:

Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded.

Measurernents were repeated ninety tirnes. The mean latency while

utilizing the CBD was 89 seconds as compared to 194 seconds for the

conventional download (Figure 2-8).

Three files, with sizes 6.6, 8.1 and 11 -1 Meg, were downioaded.

Measurements were repeated thirty times. The mean latency while

utilizing the CBD was 396 seconds as compared to 534 seconds for the

conventional download. (Figure 2-9).

Five files, with sizes 1.1, 1.3, 1.8, 2 and 2.8 Meg, were downloaded.

Measurements were repeated one hundred twenty times. The mean

Reduckig the Latency on the htwa

Componait-Based Download (CBD)

iatency while utilizing the CBD was 103 seconds as compared to 31 7

seconds for the conventional download. (Figure 2-1 0)-

Figure 2-8 Domloading Three Files (1.1,13 & 2 Meg) in a IOBaseT Wireless
Environment

Figure 2-9 Downloading Three Files (6.6,8.1& 11.1 Meg) in a lOBaseT Wireless
Environment

Reducmg the Latency on the Intemet

Compmat-ôasai Download (CBD)

Figure 2-10 Downloading Five Files (1.1,13,1.8,2 & 2.8 Meg) in a lOBaseT
Wireless Environment

The same as the fast two environments, results indicate an increase in the

number of concurrent connections improves the relative latency. When the sizes

of the files were increased, the performance of CBD detenorates. This result is

due to the lack of enough Random Access Memory (RAM) in the machine used

in a wireless environment. When FTP downloads a file, it is temporafily saved on

the RAM, before the Operating System allocates permanent storage space on

the hard disk. The machine utilized in the wireless environment, has only 32 MB

of RAM, which is not enough to handle the process of saving large files. By

utilizing a machine with more RAM this problem would be alleviated.

2.1.1.1.4 Dialup Modem

Reducing the Latmcy on the Intemec

Component-Based Download (CBD)

Three files, with sizes 1.1, 1.3 and 2 Meg, were downloaded. Measurements

were repeated thirty times. The mean latency white utilizing the CBD was 1578

seconds as compared to 1493 seconds for the conventional download. The

results imply that no improvement was achieved through utilization of the CBD in

this case (Figure 2-1 1).

Figure 2-11 Downloading 3 Files (1.1,13 & 2 Meg) in a Modem Environment
(33.6 bps)

Even before perfoming the experiments on dialup modem connection, one could

predict the same results (i.e-, no improvement). One of the basic assumptions

made in the design of CBD, is that the user machine should be connected

through a high-speed link. Having this wealth of bandwidth allows the user to

spare some of the bandwidth to the overhead of creating concurrent network

connections. Whereas in a dialup modem environment, the bandwidth is scarce

20

Reducing the Latency on the Internet

Component-Based Dowdoad (CBD)

in the first place and we cannot afford ioosing a portion of it to the overhead in

establishing multiple connections. In other words, the whole bandwidth is already

consumed by one network connection and there is no room for added

connections.

2.1.2 Discussion of the Results

To have a better representation of the results, the relative latencies for each

environment and file-component size are outlined in Table 2-1. Generally

speaking, when the number of concurrent connections is increased, CBD shows

more effectiveness in decreasing the latency. The number of parallel connections

for optimum performance depends on the available bandwidth at hand and the

processing power and specifications of the machine being utilized. Therefore,

there is no pre-defined optimum number of parallel connections. Also, when

larger files are downloaded, CBD shows better performance in decreasing the

latency. The reason for this rnay be due to the fact that when the duration of an

FTP session is prolonged, the percentage of the network overhead (due to

connection setup and tear down) as compared to the total network cost will be

reduced. Another proven result based on the experiments deterrnined that the

limitation in a computer RAM can degrade the performance of the CBD. This is

due to the fact that CBD needs more RAM for buffering its incoming data and

maintaining its concurrent TCP connections.

Reducing the tatency on the inteniet

File Configuration

3 Mes (4.5 Meg)

3 Files (26 Me@

3 Files (1 19.4 Meg)

5 Mes (9 Meg)

Component-Basai Dowdoad (CBD)

Table 2-1 Relative Latency (CBD/Conventional)

Environment

2.2 Fault Tolerance

1 OOBaseT

As with ail distributed mechanisms, a higher degree of fault tolerance and load

balancing can be obbined in CBD as compared to non-distributed approaches.

Loosing connection to a server on the lntemet due to the congestion or the

server itself going down, is very Iikely to occur. In such a situation, the CBD client

cannot access al1 the file components, and the downloading proceçs will

inevitably fail.

This problem can be addressed by resorting to a replication scherne, Le., instead

of having only one copy of a file component on one server, multiple file copies

can be rnaintained on several servers. (The same approach used in mirror

servers.) Depending on the nature of the fite cluster, and the network's

environment, various replication schemes can be implemented. Two practical

simple schemes are illustrctted in the following figures. Figure 2-12 illustrates the

scenano in which a complete backup of the file cluster is put on an additional

10BaseT

22

Reducing the Latency on the lntemeâ

Wreless 1 OBaseT Dia1 up modem

Componmt-Ba. ~ l o a d (CBD)

server. Figure 2-13 illustrates the scenariO in which a second copy of the file

cluster is divided into severai component5 and spread among the serves.

Figure 2-12 Replication Scheme A

m e .

Cornnent n Cornnent 2

Comwmt 1 Conmonmt 1

Figure 2-13 Replication Scheme B

2.2.1 Reliability Analysis

In a i s section the reliability that can be $&ieved white replicating the data over

multiple seivers will be explained and an&zed. Replication Scheme B is taken

as an exampfe and the number of replicqted components needed to achieve a

certain level of reliability will be analytically found. Before that the methodology

on how to estimate the reliability will be Q~scribed.

Reducing the L a t e 9 Oh the Intemet

2.2.1.1 Reliabîlîty Concept

The reliability of a system is its ability to maintain operation over a period of time

t- Formally, the reliability, R(t), of a system is:

R(t) = Pr (the system is operational in [O, t]) (Equation 2-1)

If Xdefined to be a random variable representing the lifetime of the system and

also letting F be the cumulative distribution function (CDF) of XI then reliability of

the system at time t is: (It is assumed that a system is working properly at t = O;

therefore, R(0) = 1)

R(t) = Pr(x > t) = 1 - F(t) (Equation 2-2)

When rnodeling a system, it is often assumed that the failure rate is constant.

The importance of this assumption is when the failure rate, hl is constant, the

resulting CDF of the lifetime of the components is exponential. That is:

~ (t) = - e-"

And the reliability:

(Equation 2-3)

R(t) = e-& (Equation 2-4)

Another rneasure often used for the analysis of systems is availability. The

availability of a system is often expressed as the instantaneous availability, A(t),

andlor steady-state availability (i.e., lim,, A@)). The instantaneous

availability, A(t), is defined as the probability that a system is operational at time

t It allows for one or more failures to have occurred during the interval (O, t)- If a

system is not repairable, the definition of A(t) is equivalent to R(t). Dependability

Reducing the Latency on the Intana

is used as the catch-al1 phrase for various measures such as reliability,

availability, etc.

"Series-Parallel Block Diagramn will be used to as a modeling technique to

analyze the reliability of the CBD. Next section describes this technique and it

can be adapted into the CBD paradigm.

2.2.1 -2 Series-Parallel Reliability

The series-parallel reliability block diagram is a technique used for detennining a

system's dependability. ln a block diagram model, components are represented

as blocks and are combined with other blocks in series, parallel, andlor k-out-of-n

configuration. A diagram that has components connected, as "senes structuren

requires that each component must be functioning for the overall systern to be

operational. A diagram that has components connected, as "parallel structure"

requires only one component to be functional for the overall system to be

operational. A "k-out-of-n structuren is superset of the series and parallel

structures and requires kof the n total components to be functional for an

operational system. Therefore, parallel and series structures are represented

with "k-out-of-n structures" that are "1 -out-of-n" and "n-out-of-n", respectively. The

equations for the distribution function of these structures are: (The upper line

represents a series and the lower line a parallel structure)

Reduciag the Lataicy on the fntemei

Componmt-Bas4 DowuIoad (CBD)

2.2.1 .3 Reliability of the Replication Scheme B

In Replication Scheme B, if there were no replicated data on the senrers, "Series

Reliability Block Diagramn would apply to the system. And if there were a

complete set of file components on each participating semers, "Parallel Reliability

Block Diagramn would apply.

Now, the question is how many copies of the data must be replicated and put on

the distributed semer system to achieve a certain level of reliability. Equation 2-6

gives the reliability of the CBD in which P(fj is the probability of having a

connection to each of the servers. In other words, this equation calculates the

distribution function for the k-th order statistic on n independent, identically

distributed random variables.

k

P,,, (t) = ç (:)(1 - P(t)) ' P(t) "-'
i=o

To make the computation of the above equation manageable, P(t) will be

assumed to be a constant and identical value for al1 the participating servers. In

a real-life scenario, to offset the effect of this unrealistic assumption in analyzing

the reliability of CBD, a minimum value can be considered for P(t) (the worst-

case scenario). Therefore, the Equation 2-6 can be rewritten as follows.

Reducing the Latency on the Intanet

Component-Based DownIoad (CBD)

To better illustrate how to use Equation 2-7 for calculating the number of

replication needed to achieve a desired reliability, an example is provided here.

The following assumptions are considered in this example-

5 servers are participating in the replication scheme

The minimum probability of successfully downloading a file component

from each server is 90%.

The desirable overall reliability for the replication scheme must be at least

99%.

Finding the optimum number of data replication cornes down to simply plugging

in the given numbers into the Equation 2-7 and looking for the values of kthat

corresponds to the reliabilities more than 99%

k

99% < c(f)(l- 0.9)'(0.9)" (Equation 2-8)
i=O

By solving the above inequality, the optimum number of data replication

(represented by the minimum value for k) to achieve reliabilities more than 99%

can be found. The values of the right-hand side of above inequality for different

k's are given in Table 2-2.

Table 2-2 Reliability and Number of Replicated Data

K (number of replication)

O

Reducing the Latency on the Internet

R (Reliability of the system)

0.59049

Componmt-Based Download (CBD)

By referring to the above table, the optimum number for having an overall

reliability more than 99% will be for k=2 (Le., having two copies of the data, in

addition to the original one). Therefore, there should be at least 3 copies of the

data on the distributed server system to achieve an overall reliabiIity of more than

99%.

Although Series-Parallel Reliability Block Diagram is a common technique for

modeling the network reliability, it fails to be a precise model for a replication

scheme. To explain how and why it cannot be an accurale model, a scenario in

which there are 5 servers with 3 file components on each of them (Le.: k=2) is

illustrated in Figure 2-1 4.

Smer 1 Serva 2 Server 3 Sema 4 Server 5

Figure 2-14 Five Distributed Servers with Replication Degree of three

According to the equation 2-9, the reliability of this system is:

Reducing the Latency on the intemet

Coniponait-Baseci Downioad (CBD)

The above equation is the sum of three probabilities.

1. Probability of al1 connections to servers being up and running and

2. Probability of one connection being down

3. Probability of two connections being down

However, in the replication scheme shown in Figure 2-14 if three servers were

down, as long as the missing servers were not adjacent, al1 the file components

will be accessible. This fact has not been accounted for in the "Series-Parallel

Reliability Block Diagram. Therefore, the actual reliability of the replication

scherne is more than what calculated before. To present a precise probability,

Equation 2-7 thus should be modified as follows.

Figure 2-1 5 better illustrates the difference between Equations 2-7 and 2-1 0. In

this figure, the reliabilities of a distributed server of five are plotted for different

nurnber of replicated data. Therefore, repIication degree can Vary between zero

and four. The X-axis represents the number of participating servers. For the

sake of discussion, a reliability of 90% is assurned for each individual server.

Two graphs are shown in this figure, the dashed graph represents the Equation

2-7, and the solid graph the Equation 2-10. As anticipated, reliability of the

systern when using the Equation 2-10 is slightly higher.

Simifar methodology can be applied to other replication schemes in order to

venfy the degree of replication required for certain dependability.

Reducing the Latency on the intemet

Componait-Based Download (CBD)

Figure 2-15 Reliability of a System of Distributeci Server Based on Number of
Replicated Data

2.2.2 Server Selection

When the file components are replicated, the issue becomes questionable as to

how clients shall select the replicated components and what policies they shalI

follow to regulate their connections to the servers. Depending on the type of data

(read-only or not) and network connections, different methods have been

proposed in the Iiterature. These different methods can be divided into two main

classes: static and dynarnic replication techniques [MCr95]. The following two

sub-sections describe each of these mechanisms in more details The replication

schemes introduced above can be easily implemented using these methods.

2.2.2.1 Static Methods

In this type of server selection, clients must have a priori knowledge of the server

location and network topology, Le., they pre-determine which server has the

quickest response to their request. Such a static server selection scheme is used
30

Reducing îhe Latency on the Inteniet

Component-Based Download (CBD)

in distribution of network news utilizing NNTP, The file transfer application counts

the number of hops between the client and each of the servers that contains the

file component (the original and replicated copies) and chooses the one with the

least number of hops, as the source of that file component. Since this metric is

Iess likely to change over long period of tirne, it is used in several static server

selection methods such as [Guy95].

2.2.2.2 Dynamic Methods

In this type of server selection the file transfer application probes the servers that

contain the replicated file component and chooses the first to reply (using the

RTT) as the source of that file component. The extra cost at runtime incurred by

dynamic methods, as compared to prior static knowledge of hop distances that

can be justified based on the improved latency [ACh95].

Reducing îhe Latency on the Latemet

Fiie-Segment Protocol (FSTP)

Chaoter Three

Reduciag the Latency on the Intend

F i l e - S w t Pmtocol (FSTP)

3 File Segment Transfer Protocol (FSTP)

3.1 Motivation for Designing a New File Transfer Protocol

Slow performance of the TCP and its overly redundant mechanisrn to manage

the network congestion and data flow, has motivated us to envisage a new

protocol for transferring files over the Intemet.

Earlier in this thesis, the FïP was utilized to test the CBD mechanism. The FF

works on top of the TCP that provides a reliable network connection. As a matter

of fact, al1 the commercial network applications that must preserve the integrity of

data use TCP as their transport level protocol. The most popular one, apart from

the n P , is Telnet.

The TCP is the most commonly used transport level protocol on the Intemet. This

was defined in the early eighties when the transmission medium was the

bottleneck of communication. Today, the emerging use of high-speed networks,

fiber optic links and powerful routers, has dramatically reduced the number of

corrupted or lost packets over the Intemet. This has caused the TCP's Sliding

Window Mechanism to appear slow. Another drawback of the TCP is the fact that

relatively large round trip propagation delay reduces its throughput. This causes

a serious limitation in the TCP design by further causing a hindrance in achieving

higher throughput. In addition, TCP also adds a 20-byte header for ensuring a

reliable virtual connection. Some of the fields in this header appear to be

Reducing the tatency on the intemet

FileSegmait Protocol (FSTP)

redundant and adds some unnecessary overhead. The processing and network

cos& of this lengthy header (especially when TCP packets are defragmented on

their path) cause yet another hindrance on the TCP.

There have been numerous modifications to enhance the performance of TCP.

Some of them are as follows.

Selective Acknowledgment [MMR96]

Window Scale option

Round-Trip Time Measurement

Protect Against Wrapped Sequence Numbersn [JBB92]

Latency of the TCP has been the primary motivation for designing faster

application protocols. This has been achieved through a trade off between speed

and loss of data integrity with no guarantee that the user will receive al1 the

packets.

Similar techniques have been utilized in other application-level protocols. For

example, Trivial File Transfer roto col^ (TRP) [Sol921 takes advantage of the

User Datagram Protocol (UDP) as its transport-level service to manipulate files

with no reliability guarantee. Another example worth mentioning is the

Asynchronous Reliable Delivery Protocol (ARDP) [ISI], which is a protocol

Refer to appendix 7-2

Reducing the Lataicy on the Intanet

Filesegment ProtocoI (FSTP)

developed by the University of Southem California for reliable transmission of

data over UDP.

In the following two sections a new protocol, called File Segment Transfer

Protocol (FSTP), will be introduced. This protocol is designed to transfer data

much faster than the FTP, while maintaining the integrity of the data.

3.2 File Segment Transfer Protocol (FSTP)

FSTP is an application level protocol, which uses a UDP socket for transferring

data and a TCP socket for sending control commands as compared to the FTP

that uses two TCP connections for both the control commands and the data.

Basically, FTP protocol is not concemed about retrieving the missing or

corrupted packets. The duty of providing a reliable network connection is

delegated to TCP. The TCP ensures the integrity of the data by monitoring the

incoming packets, and asking the sender for retransmission of the erroneous

andfor missing packets. The FSTP operates significantly different from the FTP.

Although we still have a TCP network connections for sending control commands

between the client and the server, the data itseif is transferred via UDP packets.

We chose to utilize the UDP in this case as it affords simple access to the

lntemet Protocol (IP). Sending data over the UDP does not bind us to the

restrained performance of the TCP.

Reducing the Latency on the intanet

File-S-t Rotocol (FSTP)

Another benefit in utilizing the UDP packets is their ability to lessen processing

time and network overhead in cornparison to a TCP connection. However, since

UDP only provides a datagram service, the necessary functionality for data

consistency is provided in another level. This task is perfomed in the application

level (Le., by FSTP itself). To do this, on the server end, FSTP attaches a unique

sequence nurnber to each packet. On the client end, once FSTP receives al1 of

the data packets in a stream, it looks for missing andor compted packets. If

FSTP client found any missing andfor compted packets, it sends a request for

retransmission of the missing packets back to the FSTP server. The server then

retrieves the rnissing parts of the file from its local disk and sends them once

again to the client. This process continues until the data is completely transferred

to the user.

Clearly, transmitting these packets at maximum speed would result in much of

the packets getting lost in transit due to a srnalter maintainable bandwidth over

the Internet. To maintain a reasonably small percentage of packet loss, an inter-

packet transmission delay is added. Adding this delay results in a more

successfui packet reception (with respect to the number of packets transmitted)

and wilI result in much fewer required retransmissions.

Relatively speaking, the examination of received packets, the generation of a

retransmission request, and the processing of a request by the server, takes a

fair amount of time. Therefore, the perceived latency to the user will actually be

3 6

Reducing the Lateacy on the Intemet

File-Segmmt Protocol (FSTP)

lowered due to the use of appropriate inter-packet transmission delay for a pre-

chosen packet size. This inter-packet transmission delay will also work to

minimize excessive network traffic and avoid network congestion. Also, to keep

the fragmentation ovemead as low as possible, we have to choose a UDP packet

size that is less than the Maximum Transfer Unit (MTU) size for the network

through which the data is traveling through.

Steps involved in FSTP process is summarized as follows:

FSTP client opens up a TCP connection with the server for exchanging

commands.

The client receives a list of files and their respective sizes.

Packet Size is set by the client and forwarded to the server. The server

begins the transmission-timing test by submitting the UDP packets of the

specified size to the client. Once the test is completed, the server

transmits a message to the client indicating the total transmission time and

the number of packets transmitted during the test.

The client calculates an appropriate inter-packet delay time and transmits

it to the server. The semer then reads this value.

The client fonnrards a "SENDn command by specifying the name of the file

to be retrieved and taking note of the file's size from the previously

acquired file listing. The size of the "sequence number" field in FSTP

header is set dynamically. (This will be desctibed in greater details later in

this section). Both the client and the server calculate the number of bytes

37

Reducing the Latency on the uitemff

Fiie-Segment Protocol (FSTP)

necessary for the packets' sequence numbers. It is necessary for the

client to calculate the number of bytes, so that it will property handle the

format of received packets without the server having to explicitly send a

description of the format. This is a requirement as the client and server

access the same program library to handIe tag numbers. The server

sends the file as a steam of UDP packets whose headers contain the file

name and sequence number to indicate the position of the data in the file.

After the stream of UDP packets has ended, the client generates a list of

missing or cornrpted packets and submits them in the form of a

retransmission request to the server. To further locate the compt packets,

the checksum capability of the UDP protocol is utilized.

The server retransmits the requested packets in the same format as the

original transmission.

This retransmission process continues until al1 packets are received.

The current experimental system atternpts to establish an average maintainable

data rate in packets per second (for a chosen packet size) and transmit the data

from a single server to the client.

3.3 FSTP flow control

TCP performs its flow control mechanism on the sewer end. The server adjusts

its window size based on the client's and the network buffer sizes. In a simplified

38

Reducing the Latmcy on the Intcmet

File-Segment Protoc01 (FSTP)

scenario, the server transmits a new packet after receiving acknowledgement

from the client; or retransmits the previous one, if timeout occurs. This allows for

the data to be transmitted at a slower Pace in passing through the network.

FSTP uses a totally different mechanism for managing the flow of data. The

method presented in our first version of FSTP attempts to measure the

throughput between the client and the sewer by conducting a brief test. This test

takes place before the server attempts to flood its connection with UDP packets

destined for the client over a short time interval (less than 1 second). The client

then calculates the packets it received in total together, with the noted

transmission time from the server, and calculates an appropnate delay. For

example, if the server sends 1,000 packets in one second and the clients

receives 100, we can speculate that if we transmit a packet every 10mS, we

should be able to maintain a high packet reception rate of success. By using this

simple scheme, a very reasonable data loss rate can be a~hieved.~

For complete covering of the FSTP and its prototype implementation dong with the resuIts achieved from

testing this new protocol, piease refer to [SKr99]/

39

Reducing the Latency on the Intemet

Cha~ter Four

Reducing the Lataicy on the Intanet

CBDFSTP

4 CBD-FSTP

4.1 Motivation for CBD-FSTP

According to the results discussed In chapter two, CBD can rnake downloading up to three

times faster. Also, prelirninary tests camed out on FSTP performance indicate a significant

improvement to the latency [SKr99]- Intuitively, if we incorporate the CBD mechanism into

the FSTP, we should be able to reach even a better performance cornpared to what has

been achieved through the use of the two methods by themselves. Based on this

reasoning, we designed a distributed version of the FSTP. We denoted this protocol as

the CBD-FSTP. A prototype of this protocol was also implemented in Java. This prototype

was used for our testing and cornparison to the performance of CBD-FSTP along with two
0

other file transfer protocols already covered eariier in this thesis (i.e.: FSTP & FTP).

This chapter starts off by introducing the CBD-FSTP and explaining its differences with the

FSTP. Sorne code snippets from CBD-FSTP will be presented to clarify the design.

Following that, the test environment (Le.: methodology and specifications of the

participating cornputers) will be described. Lastly, the data gathered through these

measurements will be presented and discussed.

4.2 CBD-FSTP Description

As mentioned earlier, CBD-FSTP is a modified version of FSTP. Therefore, explaining the

design details of this protocol seems to be redundant and will not be discussed in greater

4 1

Reducing the Laîency on the Intanet

CBD-FSTP

details. Our focus here will only be on parts that have been added or modified to make

possible the incorporation of CBD mechanism into FSTP.

A CBD-FSTP client should be able to establish multiple concurrent connections with

several sewers, instead of only one, before the requested file is downloaded. This is

because the file to be downloaded by the CBD-FSTP has been split into components and

put on different servers. Keeping this in rnind, when the CBD-FSTP client established its

TCP and UDP connections with the servers, packets are streamed through UDP

connections down to the client- The client allocates a temporary file for each component

(or each connection to the sewer). When a packet arrives, the client verifies the origin of

the packet and sends it to the corresponding temporary location. For each of its

connections, if the client does not receive more packets after a certain amount of time, it

assumes that the server on the other side of UDP connection has finished submitting its

packets. The client will then start looking for missing packets in each file component- It

does not wait for other file components to get downloaded. (This feature is important for

making this phase of download faster). The client finds the missing packets by using their

sequential numberfield. (The same as the FSTP.) For each file component, the client

sends a retransmission request, along with the sequence numbers of missing packets,

back to its server (through its TCP connection). CBD-FSTP serves retransmit the

requested packets to the client (through their UDP connections). This process continues

until al1 the packets from different file components get downloaded. After al1 the packets

belonging to a file component are downloaded, the client starts sorting them. Once again,

it does not wait for other file components to be downloaded completely. The sorted file

42

Reducing the Latency on the intemet

cornponents are stored into temporary locations. Upon finishing the sorting phase for al1

the file components, they get appended to reconstitute the original file. This task is done

through the allocation of permanent memory space and writing the file cornponents, based

on the ascending order of its component numbers, into it.

The algorithm explained above is implemented in a client-server environment. Therefore,

the tasks performed by each party will be described separately in the following two

sections,

4.3 CBD-FSTP Server

The FSTP sewer runs on a known port and spawns a thread for every client wanting to

set up a TCP connection. Upon establishing the TCP connection with a client, it sends a

message back to the client announcing that it is ready to serve the client's request. The

client's request can be either "send", or "retransmit".

If "send", the server

Creates a buffer equal to the size of the file to be downloaded;

lnitializes an CBD-FSTP packet;

Spirals into a loop and reads predefined chunks of data from the file into the FSTP

packet, and sends it to the client. This foop iterates until the whole file is sent to the

client.

If "retransmit", the server

Reads in the missing sequence numbers sent by the client;

Retrieves portions of the file corresponding to the sequence numbers;

Reducuig the Latmcy on the Internet

CBD-FSTP

Puts them into FSTP packets and sends them to the client.

4.4 CBD-FSTP Client

The client spawns thread for each CBD-FSTP szxer. Each thread opens a TCP

connection with its corresponding senier. It then initiates an FSTP packet with the file

component name, buffer size, packet size, and the servefs IP address. Next, it receives

the FSTP packets through its UDP connection with the server. It stores the packets (CBD

FSTP header plus the data itself) into a temporary file location. Once the last packet

arrives, it checks for rnissing packets. If it finds any, it sends a "retransmit" request, along

with the missing sequence numbers, to the server. It iterates until al1 the packets are

received, It then sorts the data according to their sequential numbers and saves them on

the local disk.

4.5 FSTP-CBD Prototype lmplementation

To verify that our assumptions in designing the FSTP-CBD Iead into a faster download, a

prototype has been implemented in Java. The reason for choosing Java is the fact that it

is a high-level language, which makes development, testing and debugging easier. The

CBD-FSTP is implemented based on the codes developed for FSTP prototype

implementation6. In this section, we bnefly present the classes involved and discuss only

parts of the code that ensures protocol compatibility with CBD. Figure 4-1 illustrates the

sequence diagram for the CBD-FSTP.

Refer to [SiCr991 for details

Reducing the Latency on the internet

Figure 4-1 UML Sequence Diagram of CBD-FSTP

Reducing the Latency on the Intanet

CBD-FSTP

calcDebyllS : long
checktist : BooleanU
consoleln : ~ u f f e r d e a d e
contmIPort : int
defaultPacketSize : int
+miTime : long
-fPacket : FSTPPacket
-in : BufferedReader
4nr : InputStrearnReader
-inResponse : String
-log : PnntWriter
4ogfileWnter : FileWnter
packetSb : int
-PreviousRequest : int
-segNum : int
-SOC k
sortTime : long
-startTime : Long
-statusTed : String
-totalRequested : int
4otalXmtTime : long
-xmtTime : long
cappend0
~ l e a r l n o
cdisconnecto
~initLog0
~penControlConnection0
creceiveRaw0
+reTransQ
+sortRawO
cstatusUpdate0
mpnameo

FSTPPacket
clump : ByteO
data : Byte0
-clumpOffset : int
delayTiiker : XMTdelayTiicke~
-fileName : String
-FSTPPort : int
-ineîû : InetAddress
inetchunter : int
-packetFleceived : Boolean
por t : int
-recvTimedOut I Booiean
-rTagNurn : Byten
-segNum : int
m k e t : DatagramSocket
-tag : FSTPTag
-tagOffset : int
-tirneDelay : long
-tirneout : int
+initReceiveporîO
+receiveO
+receiveRawO
+sendo
+opname0
+setDatao
+setDataTypeO
+setPorto

defaultPacketSize : int
-incoming : Socket
-1ocallP : Ine tAddw

FSTPTag
-block : int
-byteset : Boolean
clumpSite : int
-fileimgth : int
-fileNameLength : int
-FSTPPacketSPe : int
4ntSet : Boolean
4astAmount : int
-numbClumps : int
packetsize : int
-shift : int
4agByteValue : Bytel]
4aglntValue : int
-tagSize : int
+bytevalue()
+intValueO
+setByetValueO
+setlntValueO
+twoPower8xO

Figure 4-2 Static Classes of CBD-FSTP

Figure 4-2 shows the classes involved in the design of the CBD-FSTP. In following sub

sections we explain the functionalities specific to the CBD-FSTP.

4.5.1 Multi-Threaded Client

As deterrnined in the CBD approach, the client should establish parallel and/or concurrent

connections to multiple serves. Therefore, the client should be impiernented in a

distributed fashion. fn other words, the CBD-FSTP client should spawn a thread for

handling each of its connections to multiple CBD-FSTP servers. AI1 the threads should
46

Reducing the Latemcy on the intemet

CBD-FSTP

complete their tasks before the next stage (appending the file components) is initiated.

Figure 4-3 depicts the codes for completing this task.

public static vcf c i main (String C l args) throws UnknownHostException. SocketException,
InterruptedIOException, FileNotFoundException, IOException

C

"allocate a tl-zeaa for earh se=-zer
CBDFSTPClient tl = new CBDFSTPClient(l);
CBDFSTPClient t2 = new CEDFSTPClient(3) ;
CBDFSTPClient t3 = new CBDFSTPClient(3);
tl-start () ;
t2,startO ;
t3 -start (1 ;
trY
C

i/wair for al1 the th~eaüs to f in ish their tasks a~ri, fhen rerurn ro nair-
tl, join0 ;
t2. join0 ;
t3. join0 ;

1

Figure 4-3 Code Snippet for Spawning Threads for ParaUel Connections

4.5.2 CBD-FSTP Header

In cornpanson to the FSTP header, an extra field has been added to the CBD-FSTP

header. This field represents the file component to which that packet belongs. This field is

referred to as "Component Number". Figure 4-4 illustrates the CBD-FSTP pacicet header

fields.

Figure 44 CBD-FSTP Header

"Component Numbeffield is required because the CBD-FSTP client opens a separate

temporary file for saving each file component. Each temporary file should be addressable

47

Reducing the Latency on the Intemet

CBD-FSTP

sirnply by checking the header of the packet, so that the packet could be written to the

proper file. The following code snippet (Figure 4-5) shows the code for creating the

header. The code in bold is added to create the component number.

public FSTPPacket(String pE'Narne, int pSize, F-?= pPacketSize. InetAddress pInet,
in: pSNum) throws SocketException

I
.: /copy paraïeters to i t s r ~ ~ c e -.-âriables
inet0 = pInet;
fileName = pFName;
segNum = pSNum;
i:ini=ialize data sorts of deals
tag = new FSTPTag(pPacketSize, pFName.length0, pSize);
data = new byte Ctag.FSTPPacketSize1;
clump = new byte[tag-clumpSize1;
tagoffset = fileName.length() + i;
clumpoffset = tagûffset + tag-tagsize;
::- make a header for the aâcker
/:srart w i t h rhe file &me. ' * ' char, -ci Segment Mo

String header = new String(fi1eName);
ïnteger s = new ïnteger (çegMim1 ;
String seg = s.toString();
header+=seg;
header +='* ' ;
System-arraycopy(header,getgytesO.O,data,O,header.lengthO 1;
rTagNum = new byte [tag . tagsize 1 ;
{rcreate socket EGZ sencXcg
socket = new DatagramSocket 0 ;
this . setPriority (MAXMAXPRTOFUTY) ;

delayricker = new XMTDelayTickerO;
1

Figure 4-5 Code Snippet for Creating CBD-FSTP Header

4.5.3 Appending File Components

When al1 the file components are downloaded and sorted to re-build the original file, the

client should append the file components at the end of each other. A permanent file with

the same name as the original file is opened and the components are written sequentially.

The code snippet illustrateci below (Figure 4-6) perforrns this task.

Reducing the Latency on the Intemec

static private v ~ i d appendcstring marne, int segNum)

BU£ f eredïnputStream inS tream = nul1 ;
Bufferedûutputstream OutStream = nuil;
bcolean exceptionThrown = false;
boole= append = true;
File f = new File(fName + segNum);
String file = "test .aovq ;
inr sNum = segNum;
try

C
inStream = n e w Bu£ feredlnputStream(new FileInputStream(f) 1 ;
outStream = new BufferedOutputStream(new

FileOutputStream(file, appendl 1 ;
1

catch (Exceptiori e)
{

exceptionThrown = crue;
1
CrY
{

b'reil b = new Lyre[(i n t) f.length0 1;
instream-readlb) ;
outstream-write(b);
outstream-close () ;
instream. close () ;
System,out,println(f i l e <=mmpor,er-t "+sNumt" vas a~per ided to "+file) ;

1
catch (IOFxception el (1

Figure 4-6 Code Snippet for Appending File Components

4.5.4 Flow Control

Flow control in the CBD-FSTP is achieved using an Inter-Packet Transmission Delay

(IPTD). The IPTD is the time intewal between two consecutive packets transmitted by the

sewer. If the server does not use an IPTD and continues sending out the packets without

delay in between, the routers en route will flood and network congestion will occur. To

make the matter worse, since the client will not be able to receive the packets dropped

due to the congestion, it will ask the server retransmit them. In other words, more traffic,

more congestion, more dropped packets, and consequently more latency occur. For this

reason, the IPTD plays a very important rofe in the performance of the CBD-FSTP.

Therefore, IPTD must be chosen very carefully. A large lPTD will result into a sluggish

49

Reducing the Latency on the Intana

CBD-FSTP

protocol performance and a small IPTD will result in over exploitation and a waste of

network resources, saturate the routers and slow performance.

The FSTP utilizes an adaptive mechanism for finding the optimized IPTD for each

particular file transfer session. The operation of this mechanism is described as follows.

The FSTP server sen& out a number of packets to the client (e-g., 10,000) with no IPTD

in between. The client calculates the number of rnissing packets and tells the server how

many packets are missing. Based on this ratio (missing packetdsent packets), the server

then calculates the optimum value for the IPTD that is used in that particular connection.

The utilization of this adaptive mechanism entails considerable irnprovement in the FSTP

performance (refer to [SKr99]). However, we did not utilize this method in our CBD-FSTP

prototype implementation. The reason being that network administration policies generally

prevent the computers under its domain from flooding the network through a burst of

traffic. When we tried to use the adaptive flow control mechanisrn (that is used in the

FSTP) in our implementation, the computers used as our servers (which are administered

by other authorities) did not allow our protocol to send out a burst of packets. As a final

measure, we decided to find the best IPTD value for each server utilizing a brute force trial

and error method. We then hard coded these values into Our implementation,

4-55 Packet Size

Another factor that must be taken into consideration in implementing the CBD-FSTP

prototype is the size of the packets sent by the server. Choosing the right size increasingly
50

Reducing the Latency on the interna

CBD-FSTP

improves the performance of the protocol. We measured the latency for downloading a file

using various packet sizes, and found that a packet size of 1 kByte lead to the greatest

performance. (This supports the results obtained in [SKr99]-) This is more than likely due

to the fact that the largest size is less than the Maximum Transferable Unit (MTU) for a

typical network. During the implementation stages, we hard coded the packet size to1,024

bytes. Since our goal here is to prove the effect of adding the CBD to the FSTP, choosing

a unique size for both FSTP and CBD-FSTP tests gives us a reliable basis for

cornparison.

4.6 Experimental Measurements

To verify the assumption that the CBD-FSTP is faster than the FSTP, a senes of tests

were carried out. Using our prototype during testing, we downloaded a file utilizing three

different fiIe transfer protocols: FTP, FSTP, and CBD-FSTP. During each test, the latency

for downloading the file was measured. Our initial measurements have proven that CBD-

FSTP makes downloading more than 50% faster as compared to the FSTP. In the

following section we will describe our experimental measurements and present the end

results.

4.6.1 Cornputers Used in Experimental Measurements

The computer utilized as our client is a Sun Sparc Ultra 1, with 768 Meg of RAM. Four

workstations, ninning Sun or Linux, have used as Our CBD-FSTP servers. They are

located on four rernote locations in Canada (in Victoria, BC, Edmonton, AB, Calgary, AB,

and Regina, SK). All these machines are connected to the campus LANs (at the University

5 1

Reducing the Latency on the Intemet

CBD-FSTP

of Manitoba, University of Victoria, University of Alberta, University of Regina, & University

of Calgary), which provide for high-speed connections to the Intemet. Table (4-1)

illustrates the specifications of the machines used in Our tests. The operating systems

running on these machines are al1 Unix or tinux- The computer located in Victoria, BC has

Table 4-1 Specifications of Machines Running the CBD-FSTP Server

4.6.2 Measurements Procedure

the fastest processor.

We ran our tests by downloading a 20 Meg file using CBD-FSTP. The file to be

downloaded was already split into four parts (5 Megs each) and put on the four servers.

To download the 20 Meg file, four 5 Meg file components have downloaded

simulbneously. This was done through a parallel of connections between Our CBD-FSTP

client and the servers and further appended to each other to create the original file. Next,

we downloaded the same 20 Meg file using the FSTP. One of the above-mentioned

computers is used as Our FSTP server (the computer located in Victoria, B.C.). The file is

downloaded from that server, and its latency is measured. And finally, to have a

Location

Platform

Machine HiW

Node Name

Processor type

Release

OS

Reducing the Latency on the Intemet

UofA

Unknown

i6 86

548pcl

Unknown

22.5- 15

Lulux

UofM

SUNW,

Ultra- 1

Sun4u

Cmcl

Sparc

5.7

sunos

U o N

S M ,

Ultra-5-1 0

S d u

Gaiois

Sparc

5.6

sunos

UofR

SUNW,Ultra-1

Sm4u

ivanho

Sparc

5.5. I

sunos

UoK

SUNW,

Ul tra-2

S d u

CSC

S parc

5.7

sunos

CBD-FSTP

benchmark for our rneasurements, the same file is downloaded from the same machine,

this time using the FTP, and its latency is measured. We repeated the test 15 different

times during the day, on altemate days of the week to compensate for different network

traffic patterns.

We selected the machine in VictorÏa, BC as our server for the FSTP and the FTP.

Although this machine is physically the furthest machine to our client, it gave us the fastest

nrnning time for downloading the file, as compared to the other three machines. This is

due to the speed of the platforni (Ultra-5-10), which is the quickest of them ail. Also, This

machine may also presumably be connected with higher bandwidth to its Intemet

gateway. By choosing the fastest connection for perfoming our FSTP and FïP

measurements, we deliberately wanted to compare CBD-FSTP performance with the best

performance obtained from the FSTP and FTP.

Previous experiences with the FSTP have proven that utilizing the packet size of ! ,500

bytes will provide the fastest performance for this protocol [SKr99]. We Iater changed the

packet size for the CBD-FSTP and rneasured its performance. As we predicted changing

the packet size for the CBD-FSTP also related in much the way as the FSTP. Thus, the

packet size of 1,500 bytes was chosen for our CBD-FSTP tests.

Reducing the Latency on the Internet

CBD-FSTP

As rnentioned earlier, the FSTP uses an adaptive mechanism to select the IPTD. In this

mechanisrn, FSTP server sends a burst of packets (10,000) addressed to the client7.

During the irnplementation stage of the CBD-FSTP we had chosen to set the IPTD

manually, instead of using the above-mentioned algorithm. The reason for this decision is

that a couple of the cornputers used as ouf servers did not allow us to send out such

bursts of packets. This rnay be due to a security restriction imposed by systern

administration in order to control network traffic. The values measured in our tests do not

necessarily present the quickest time. However, since the purpose of our tests is primariiy

to investigate the irnprovement of latency when using the CBD-FSTP relative to the FSTP;

thus, not getting the fastest download time, will not change the comparative results.

4.6.3 Results

Figure 4-7 illustrates Iatency measurements when downloading a 20 Meg file using each

of the three file transfer protocols (FTP, CBD and CBD-FSTP). According to these results,

the CBD-FSTP can improve the latency up to 44%. The average vaIue for the CBD-FSTP

download is 59 seconds as compared to 85 for the FSTP. This is a significant

improvement to the latency, knowing the fact that the FSTP has been already designed to

achieve the fastest download possible.

These results encouraged us to repeat our tests to study the effect in size of the file and

the level of distribution (or number of the participating sewers) for the performance of the

CSD-FSTP. To accomplish this, three sets of measurements were taken.

' Refer to [SKr99] for details

Reducing the Latency on the Intemet

CBD-FSTP

Figure 4-7 Downloading a 20 Meg File Distributed on Four Remote Machines

First, a 40 Meg file (instead of a 20 Meg) was downloaded. In the CBD-FSTP download,

the 40 Meg file was split into four 10 Meg components- Figure 4-8 illustrates that the

average value for the latency in the CBD-FSTP was 122 seconds. This means an

improvement of approximately 62% in latency compared to the FSTP and 61 5% with

respect to the FTP.

Next, we changed the distribution level from 4 to 3 and repeated the measurements, one

for downIoading a 15 Meg and the other for a 30 Meg file. Figure 4-9 illustrates that for a

15 Meg file, the average value for the latency in the CBD-FSTP is 52 seconds. This

records a 52% improvement relative to the FSTP and 530% improvement with respect to

the FTP. Figure 4-10 presents the results for downloading a 30 Meg file with an average

Reducing the Latency on the intemet

CBD-FSTP

latency for the CBD-FSTP of 107 seconds. Cornparatively, it is approximately 40% faster

than the FSTP, and 545% than the FTP.

5 1 O
Number of Trllls

Figure 4-8 Downloading a 40 Meg File Distributed on Four Remote Machines

CBD-FSTP
1 5 Meg Re Semd Dy3 Servers at WON. UofA h u o R p Meg Esch)

400 6 I I

6
1

10 t6
Number or Tak

Figure 4-9 Downloading a 15 Meg File Distributed on Three Remote Machines

Reducing the Latency on the intemet

cewSTP
30 Meg FU8 Served bv 3 Semrs at UoN. UalA L UdR (1 O Meg Eacn)

700 I t

1

01 I I
O 5 1 O 15

Nunbar 0fTdaJ.s

Figure 4-10 Downloading a 30 Meg File Distributed on Three Remote Machines

All the results obtained through Our tests are surnmarized in Table 4-2.

Table 4-2 Average Latency (for Different Size of Files & Number of Servers)

Size of File (Meg)

20

40

15

30

4.7 Analysis of the Results

To gain a better understanding of the performance of the CBD-FSTP, we calculated the

relative latencies of the CBD-FSTP, FSTP and iTP with respect to each other and

Reducing the Latency on the Internet

Number of CBD-FSTP Server

4

4

3

3

Average Latency (seconds)

FTP

434

872

328

583

CBD-FSTP

59

122

52

1 07

FSTP

85

198

79

150

CBD-FSTP

identified al1 three latencies in Table 4-3. Results in Table 4-3 suggest that the best

relative performance for the CBD-FSTP is obtained when a 40 Meg file is downloaded

through four parallel connections. In other words, increasing the level of distribution makes

the CBD-FSTP faster. On the same token, the bigger the file for download, the better the

performance of the CBD-FSTP in cornparison to the other two protocols-

These results have proven the soundness of our initial assumptions, based on the design

of the protocol. We designed our protocol with the knowledge that using parallel

connections provides higher throughput for an lntemet user. On the other hand, this

protocol was especially designed for large files, in which the extra overhead (due to

setting up and tearing down the multiple connections) has less significance to the overall

duration of the download.

Tal

Size of File Number of CBD-FSTP Relative Latency

@'feg) Server CBD-STF'/I;TP FSTPATP CBD-FSTP/FSTP

20 4 0.16 0.20 1 0.69

1

Average: 0.16 0.23 0.67
1 1 1

)le 4-3 Relative Latency (for Different Size of Files and Number of Servers)

To investigate the connection speed between our client and servers, some data was

collected. First, the round-trip times (RTT) behiveen our client at the University of Manitoba

and each of the CBD-FSTP servers were measured. To get an average result, the

58

Reducing the Latency on the intaoet

measurements were repeated 20 times. Second, the number of hops between each

sewer and our client was collected (see Table 4-4). The value for the R I T increases when

the physical location of a server is further away. This explains the reason for the computer

in Victoria, BC having the largest RTT, and the other in Regina, SK having the smallest

RTT. (A complete list of routes between the ctient in University of Manitoba and each

sewer is provided in Appendix 7.5)- Looking a t this routing Iist reveals that apart from the

start and ending hops, the packets share the same route. Since al1 our sewers and the

client are located on different university domains across Canada and connected through

the CANET2, al1 packets are coming to the client generally through the same path. This

explains the reason for having a close RTT and almost the same number of hops. The

only exception for this occurrence is the computer at the University of Calgary. Each

packet originating from the University of Calgary should go through six local hops before

entering the CANET2, while taking only two o r three hops for the other three machines.

Number of Hops Location of the Server
1 1

Average R I T (msec)

Victoria, British Colombia 1 83.44

Edmonton, Alberta

8

Calgary, Aiberta

- . .

Table 4-4 RTT and Number of Hops for Participating CBD-FSTP Server

67.98

Regina, Saskatchewan

4.8 Cornparison of CBDFSTP with FSTP

8

62-74

The storing and sorting of the incoming packe* is done concurrently in the CBD-FSTP

(simultaneously for each file segment). This greatly reduces the delay corresponding to

I l

56.82

59

Reducing the Latency on the intemet

7

this phase of the download, as compared to that of the FSTP. On the other hand, since

the file components should be appended at the end of each other to re-create the original

file, an extra delay exists in the CBD-FSTP due to this appending process-

CBD-FSTP is more process intensive as compared to the FSTP due to its multi-threaded

design. It seams to work best on computers with higher processing power and larger

RAM's- The CBD-FSTP also shows a superior performance as compared to the FSTP on

machines with high-bandwidth connection to the Intemet.

CBD-FSTP does not use an adaptive flow control method (as in the FSTP) to determine

its Inter-Packet Transmission Delay (IPTD). If we are able to nin our CBD-FSTP servers

on networks that do not prevent us from sending out a burst of traffic (which is needed for

utilizing the FSTP adaptive flow control), we can achieve even greater resultç.

Reducing the Lataicy on the Lntemet

Conclusion

Chapter Five

Reducing the Latency on the Intenie

Conc fusion

5 Conclusion

in conclusion, our experiments and resulting data have proven the major effect of the CBD

on the latency over the Internet. When the CBD mechanism was applied on the FTP, we

achieved fatencies as low as one third of the conventional R P downloading time (Le.:

300% improvement in the latency). The CBD is a simple yet powerful idea by which we

can exploit the ever-increasing network bandwidth tu achieve the highest possible speed.

In applying the CBD to the FSTP, it also brought us to another 30% reduction rate in the

latency. Knowing the fact that the FSTP is itself an extremely fast file transfer protocol (on

average, four to five times faster than FTP) shows the overall effectiveness of the CBD

rnechanism. Moreover, due to the constraints we had during our experiments, we could

not utilize the adaptive flow control to optimize the performance of the CBD-FSTP.

Another matter of consideration involves our cornparison of the CBD-FSTP against the

FSTP, whereby we measured the results of running the FSTP server on the fastest

machine and connections available (four computers located in different universities)

against mnning the CBD-FSTP on al1 four cornputers. In other words, we based our

comparisons on a worst-case scenario. We believe that if we had machines with similar

processing power and network connection capacity, the latency can be further reduced to

50%.

Reducing the Latency on the Intanet

5.1 Future Work

The foilowing outlines a variety of areas that deserve further research and improvements

to the CBD and CBD-FSTP.

O The current implementation of CBD-FSTP is written in Java. Java, as a high level

language, made the prototype implementation much easier. Using a faster

language (e.g.: CE++) allows this protocol to work faster and more efficiently-

O In the CBD-FSTP, only one-way data transfer from the sewer to the client is

considered. During implementation, the client asked for a file and the server sent it

to the client. This is in contrast to a more general two-way model that allows data to

be sent in both directions (full duplex). In future implementations, the server and

client modules should be integrated to support the two-way data transfer model.

O The CBD-FSTP currently has no provision for user authentication. This is an

additional functionality that must be added in its next versions.

O The CBD-FSTP doesn't provide any error messages. Having error messages can

assist system administrators and notify thern of different types of errors that occure

on the network.

O More tests should be done on the CBD and the CBD-FSTP (with different file-

segment sizes and numbers of sewers) in order to determine the best combination

for optimum performance.

O To add reliability, a replication scheme should be integrated to the protocol.

O Component nurnber can be deleted.

O A mechanism should be added to the CBD-FSTP to stop re-transmitting packets

after a certain number of times in order to terminate the connection, assuming that

63

Reducing the Latency on the intanet

there is congestion en route. This prevents the protocol to hug the bandwidth and

exploit the network resources unnecessarily.

O ln the CBD-FSTP header, the "File Name" field can be removed. This will not

create any ambiguity for the client to discem from which server the packet is

coming from. lt will however, reduces the overhead of the CBD-FSTP packet

header-

Reducing the Latency on the Intanet

6 References

[AC hg51
A, Chankhunthod, P. DaMg, Ch. Neerdales, M, Schwartz. K. Worrelt, 'A HierarchicaI lntemet Object
Cachen, Technical Report CU-CS-766-95, University of Colorado, Boulder, Mar 1995

[Bra95]
L. Brakmo and L Peterson, 'Performance Problems in 4.4BSD TCPn, ACM Computer Communication
Review, vol. 25, no, 5, pp. 6986, Oct. 1995.

[B-I
T. Bernes-Lee, R. Fielding, and H. Fryçtyk, 'Hypertext Transfer Protocol-WP/1 .Ow, IETF. RFC 1945, May
1996.

[BMP94] LL. S. Bramko, S. W. O'Malley, & L L Peterçon, 7 C P Vegas: New Technique for Congestion
Detection & Avoidancen, Proceedings of SIGCOMM '94, ACM, PP- 24-35, 1999

[CaB96] B. Callaghn, Sun Microsystems, Inc. "WebNFS Semer Specification", 1 ETF, RFC 2055, Oct 1996.

[Cal%]
B. Callaghn, Sun Microsystems, Inc. WebNFS Client Specification", IETF, RFC 2054, Oct 1996.

[CIa88]
D. D. Clark, MIT, The Design Philosophy of the DARPA lntemet Protocols", In proceedings of
SIGCOMM188, Computer Communication Review Vol. 18, No. 4

[Cr0951
M. Crovella and R. Carter, 'Dynamic Server Selection in the Interner, Proceedings of the Third IEEE
Workçhop on the Architecture and the Implementation of High Performance Communication Subsystems
(HPCS'95), August 1995.

[Cr0981
M, Crovella and P. Barford, The Network Effects of Pre-fetching", In Proceedings of lEEE Infocom '98, San
Francisco, CA, 1998.

[Fei981
Z. Fei, S. Bhattacharjee, E. W. Zegura and M. H. Ammar, "A Novel Semer Selection Technique for
Improving the Response Time of a Replicated Service, Infocom198.

[Fie97
R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T. Berner-Lee, 'Hypertext Transfer Pr0 toco l -~P1/1~,
IETF, RFC 2068, Jan. 1997

[Guy951
J. Gutyon, M. Schwartz, 'Locating Nearby Copies of Replicated lntemet Servers", In Proceedings of
SIGCOMM'95, August 1995

[Hm961
J. C. Hoe, 'lmproving the Start-up Behaviour of a Congestion Control Scheme for TCPn, in Proceedings of
the ACM SIGCOMM'96 Symposium, 1996

Reducing the Latency on the intemet

[ISII
Information Science Institute, University of Southern Califomia, "The Asynchronous Reliable Delivery
P rotocol", URL: chttpY/~st.isi.edu/info/ardp/>

[IS181]
Information Sciences Institute, Transmission Control Protocol", IETF, RFC 793, Sep 1981.

[JBB92]
V. Jacobson, R, Braden, D, Borman, TCP Extensions for High Performancen, IETF, RFC 1323, May 1992

[Kar87]
A. Kam, 'lmproving Round-Trip Time Estimates in Reliable Transport ProtocoIsn, in Proceedings of ACM
SIGCOMM'87,1987

[MMR96]
M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledgment Optionsn, IETF, RFC 2018,
Sun Microsystems. October 1 996.

[NagW
J. Nagle, 'congestion Control in TCPIIP intemetworks, RFC 897, 1984

[Pad94]
V. N. Padmanabhan, and Jeffrey C. Mogul. 'lmproving HTTP Latency", Proceedings of the second
International World Wide Web Conference, Chicago, IL, pages 995-1005, October, 1994.

[PoRSS]
J. Postel, J. Reynolds, "File Transfer Protocol", IETF, RFC 959, ISI, October 1985

[P o s ~ ~]
J. Poster 'User Datagram Protocol*, IUF, RFC 768, USC/lnformation Sciences Institute. 28 August 1980.

[RGu98]
R. Guerraoui, A- Shiper, 'Fault-ToIerance by Replication in Distributed Systemsn, in Proceedings of Reliable
Software Technologies, Ada-Europe'96, Springer

[S kas]
S. Kretschmann, "FSTP an Application-Level File Transfer Protocol as an Alternative to FTPn, Bachelor of
Science thesis, Electrical and Computer Engineering Department, University of Manitoba, 1999

[Sol921
K. Sollins, The TFTP Protocol (Revision 2)", IETF, RFC 1350, MIT, July 1992.

[Sun891
Sun Microsystems, Inc., "NFS: Network File System Protocol Specificationn, 1-F, RFC 1094, March 1989

Reducing the Latency on the intanet

7 Appendices

7.1 Transfer Control Protocol

7.1 -1 Introduction

FTP and HITP are dominant application-level protocols for transferring files over the

lntemet. These two both use TCP for creating their reliable network connections. TCP was

developed in the late 1970's to transmit data reliably in the presence of lntemet packet

loss, primarily due to neWurk congestion. This protocol later became the standard

transport protocol for the Internet. TCP and other reliable transport protocol handle lost

packets by having the sender detect the loss and then retransmit the lost packet. TCP

also uses a congestion control algorithm to dynamically react to changing bandwidth limitç

of the Intemet. It is formally defined in the RFC 793. Errors and inconsistencies are

detected and debugged in the RFC 1122. Extensions are given in RFC 1323.

This section briefly describes how TCP works and discusses its mechanism for flow and

congestion control. It also gives a brief overview of the modifications added to the original

design of TCP to enhance its performance.

7.1.2 General Description

TCP is intended for use as a highly reliable host-to-host protocol between hosts on the

Intemet. TCP is a connection-oriented, end-to-end reliable protocol. TCP assumes it can

67

Reducing the Latency on the Intanet

Appendices

obtain a simple, potentially unreliable datagram service from the lower level protocols. In

principle, TCP should be able to operate above a wide spectrum of communication

systems ranging from hard-wired connections to packet-switched or circuit-switched

networks.

TCP fits into a layered protocol architecture (Figure 7-1) just above a basic lnternet

Protocol, which provides a way for the TCP to send and receive variable-length segments

of information enclosed in IP packets. The IP layer provides a rneans for addressing

source and destination TCP's in different networks. IP also deals with any fragmentation

or re-assembly of the TCP segments required to achieve transport and delivery through

multiple networks and interconnecting gateways. IP also carnes information on the

precedence, security classification and compartmentation of the TCP segments, so that

information can be communicated end-to-end across the Internet.

On the higher Ievel, TCP interfaces to application processes and on the Iower side to a

lower IeveI protocol such as IP. This interface consists of a set of calls rnuch like the calls

an operating system provides to an application process for manipulating files. For

example, there are calls to open and close connections and to send and receive data on

established connections. The interface between the TCP and lower level protocol is

essentially unspecified except that it is assumed there is a mechanism whereby the two

levels can asynchronously pass information to each other. The TCP is designed to work in

a very general environment of interconnected networks.

Reducing the Latency on the Mernet

As previously noted above, the primary purpose of the TCP is to provide reliable,

securable logical circuit or connection service between pairs of processes. Providing this

service on top of a less reliable lntemet communication system, requires facilities in the

following areas:

Figure 7-1 Protocol Layering

7.1.3 Basic Data Transfer

The TCP is able to transfer a continuous Stream of octets in each direction between its

users by packaging a number of octets into segments for transmission through the

lnternet

7.1 -3.1 Reliability

The TCP must recover data that is damaged, lost, duplicated, or delivered out of order by

the Internet. This is achieved by assigning a sequence nurnber to each octet transmitted,

and requiring a positive acknowledgment (ACK) from the receiving TCP. If the ACK is not

received within a timeout interval, the data is retransmitted. At the receiver, the sequence

numbers are used to correctly order segments that may be received out of order and to

Reducing the Latency on the internet

eliminate duplicates. Compted data is detected by adding a checksum to each segment

transmitted, and checking it at the receiver. Compted segments are then discarded.

7.1.3.2 Flow Control

TCP provides a means for the receiver to govem the amount of data sent by the sender.

This is achieved by retuming a "window" with every ACK indicating a range of acceptable

sequence numbers beyond the last segment successfully received. The window indicates

an allowed number of octets that the sender may transmit before receiving further

permission.

7.1.3.3 Multiplexing

To allow for many processes within a single Host to use TCP communication facilities

simultaneously, the TCP provides a set of addresses or ports within each host.

Concatenated with the network and host addresses from the IP, this forms a socket. A

pair of sockets uniquely identifies each connection. That is, a socket may be

simultaneously used in multiple connections. The binding of ports to processes is handled

independently by each Host.

7.1 -3.4 Connections

The reliability and flow control mechanisms described above require TCPs initialization

and maintain certain status information for each data Stream. The combination of this

information, inciuding sockets, sequence numbers, and window sizes, is called a

connection. Each connection is uniqi~ely specified by a pair of sockets identifying its two

sides. When two processes wish to communicate, their TCP's must first establish a

70

Reducing the Latency on the intaoet

Appendices

connection (initialize the status information on each side). When their communication is

complete, the connection is teminated to free up the resources for other uses-

Since connections must be established between unreliable hosts and over the unreliable

Intemet, a handshake mechanism with dock-based sequence numbers is used to avoid

erroneous initialization of connections.

7.1.4 Congestion control

TCP also provides an algorithm to prevent congestion in the routers, which is called "Slow

StaK When a connection is established, the sender initializes the congestion window to

the size of maximum segment in use on the connection. It then sends one maximum

segment. If this segment is acknowledged before the timer goes off, it adds one segment's

worth of bytes to the congestion window to make it two maximum size segments and

sends two segments. As each of these segments is acknowledged, the congestion

window is increased by one maximum segment size. When the congestion window is n

segments, if al1 n are acknowledged on time, the congestion window is increased by the

byte count corresponding to n segments. In effect, each burst successfully acknowledged

doubles the congestion window. When a timeout occurs, a threshold is set to half the

cuvent congestion window, and the congestion window is reset to one maximum

segment. The congestion window grows with the exception that it stops growing

exponentially when the threshold is hit. From that point on, successful transmissions grow

the congestion window linearly. In effect, this algorithm is guessing that it is probably

acceptable to cut the congestion window in half, and then gradually works its way up from

there.

Reducing the Latency on the Intemet

Appendices

Continuous work is required in order to improve the congestion control mechanism. For

example, TCP throughput can be improved by managing the clock more accurately,

predicting congestion before timeouts occur, and using this eariy warning system to

improve the slow start algorithm [BMP94]. Or, TCP Fast Retransmit algorithm developed

by Jacobson [JBB92].

7.1.5 TCP lmprovements

To enhance the performance of TCP protocol, various modifications have been added to

the original protocol. For instance, TCP accommodates varying lntemet delays by using

an "adaptive retransmission algorithm". In essence, TCP monitors the performance of

each connection and deduces reasonable values for timeouts. As the performance of

connection changes, TCP revises its timeout value (Le.: it adapts to the change). Karn's

aIgorithm [Kar87] is now being used for this purpose. Another Problem with eariy

implementations of TCP was "silly window syndrome" in which each acknowledgment

advertises a small amount of buffer space available and each segment carries a small

amount of data. This leads to inefficient use of availabIe bandwidth. TCP now requires the

sender and receiver to implement heuristics that avoid the "silly window syndromen. This is

accomplished through the utilization of the Nagle algorithm [Nag84]. According to this

algorithm, a receiver avoids advertising a small window, and a sender uses an adaptive

scheme to delay transmission so it clumps data into large segments.

Reducing the Latency on the Intema

7.2 Trivial File Transfer Protocol (TFTP)

7.2.1 Introduction

Currently, TCP exhibits inefficiencies in ternis of bandwidth consumption, retransmission

latency, and server processing. TFTP attempts to reduce TCP1s inefficiencies by shifting

the reliability burden from the server to the client.

Although FTP is the most prevailing file transfer protocol in the TCPIIP suite, it is also the

most complex and difficult to program. Many applications do not need the full functionality

FTP offers, nor can they afford the complexity.

7.2.2 Trivial File Transfer Protocol

TFTP is a simple protocol to transfer files, and therefore eamed the name Trivial File

Transfer Protocol (TFTP) [So192]. It is built on top of UDP and is designed to be small and

easy to implement. Therefore, it lacks most of the features of a regular FTP. It can only

read and write files frorn and to a rernote server. Any transfer begins with a request to

read or write a file- If the server grants the request, the connection opens and the file is

sent in fixed length blocks of 512 bytes. Each data packet contains one block of data, and

must be acknowledged by an acknowledgment packet before the next packet is sent. A

data packet of less than 512 bytes indicates temination of a transfer. If a packet gets lost

in the network, the intended recipient will timeout and may retransmit his last packet

(which may be data or an acknowledgment), thus causing the sender of the lost packet to

retransmit that lost packet. The sender has to keep just one packet on hand for

retransmission, since the lock step acknowledgrnent guarantees that al1 older packets
73

Reducing the Latency on the latand

Appendices

have been received. Notice that both machines, involved in a transfer, are considered

senders and receivers- One sends data and receives acknowledgments while the other

ends acknowledgments and receives data. Most errors cause terrnination of the

connection. An error is signaled by sending an error packet. This packet is not

acknowledged, and, therefore, not retransmitted. ln other words, the TFTP server or user

may tenninate after sending an error message and in effect the other end of the

connection may not get the message. Therefore, timeouts are used to detect such a

terrnination when the error packet has been lost. Errors maybe caused by any one of

three types of the following events:

Not being able to satisfy the request (e.g., file not found, access violation, or no

such user)

Receiving a packet which cannot be explained by a delay or duplication in the

network (e-g., an incorrectly fonned packet)

Losing access to a necessary resource (e.g., disk full or access denied during a

transfer)

This protocol is very restrictive, in order to simplify the implementation. For example, the

fixed length blocks allows for straightforward allocation, and the lock step

acknowledgement provides flow control and eliminates the need to re-order incoming data

packets.

The TFTP operates in a very simplistic way. The first packet sent asks for a file transfer -

the packet specifies a file nâme and whether the file will be read or written. Blocks of files

are numbered consecutively starting at nurnber one. Each data packet contains a header

that specifies the number of the block it carnes, and each acknowledgement contains the

74

Reducing the Lataicy on the Intemet

Appendices

number of the block being acknowledged. A block of less than 51 2 bytes signais the end

of the file. Error messages can be sent either in place of data or an acknowledgement;

errors teminate the transfer.

TFTP retransmission is unusual because it is symmetric, Each side implements a tirneout

and retransmission. If the side sending data times out, it retransmits the last data block. If

the side responsible for acknowledgments times out, it retransmits the last

acknowledgement. Having both sides parlicipate in retransmission helps to ensure that

transfer will not fail after a single packet ioss.

7.3 User Datagram Protocol (UDP)

7.3.1 introduction

User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-

switched computer communications in an environment of interconnected set of computer

networks. This protocol assumes that the lnternet Protocoi (IP) is used as the underlying

protocol. This protocol provides a procedure for application programs to send messages

to other programs with a minimum protocol mechanisrn, UDP is a thin protocol in a sense

that it does not add significantly to the semantics of IP. It merely provides application

programs with the ability to comrnunicate using the unreliable connectionless packet

delivery senlice. The protocol is transaction oriented, and delivery/duplicate protection are

not guaranteed. UDP is an alternative to the TCP. Much like the TCP, UDP uses lnternet

Protocol to receive a datagram from one computer to another. Unlike TC?, however, UDP

75

Reducing the Latency on the Intanet

Appendices

does not provide the service of dividing a message into packets and reassembling it at the

other end. Specifically, UDP doesn't provide for sequencing of the packets where data

arrives in and it does not provide feedback to control the rate at which information flows

between the machines. UDP provides protocol ports used to distinguish multiple programs

executed on a single machine. In addition to the data sent, each UDP message contains

both a destination port nurnber and a source port number, making it possible for the UDP

software at the destination to deliver the message to the correct recipient and for the

recipient to send a reply.

An application program that uses UDP accepts full responsibility for handling the problem

of reliability, including message loss, duplication, delay, out-of-order delivery, and loss of

connectivity.

7.3.2 UDP Encapsulation and Protocol Layering

Figure 7-3 shows the protocol layes hierarchy and the position of UDP in it. UDP lies in

the layer above the IP layer. Conceptually, application programs access UDP, which uses

IP to send and receive datagrams. The IP fayer is responsible for transferring data

between a pair of hosts, while the UDP layer is responsible only for differentiating among

multiple sources or destinations within one host.

Figure 7-2 Protocol layering

Reducing the Latency on the Intanet

Figure 7-3 UDP Encapsnlation

A UDP datagram is encapsulated in an IP datagram for transmission. This datagram is

then encapsulated in a frame for traversing the network. This is illustrated in Figure 74.

7.3.3 UDP Multiplexing

UDP accepts datagrams from many application programs and forwards them on to the IP

for transmission and accepts incoming UDP datagrams from the IP and fowards them on

to the appropriate application program.

Conceptually, al1 multiplexing and demultiplexing between UDP and application prograrns

occur through the port mechanism. In practice, each application program must negotiate

with the operating system to obtain a protocol port and an associated port number before

it can send a UDP datagram. Once the port has been assigned, any datagram the

application program sends through the port will have that port oumber. While processing

input, UDP accepts incoming datagrams from the IP software and demultiplexes based on

the UDP destination port, as figure 7-5 shows.

Reducing the Latency on the Intana

Appendices

1 UDP Datagram arrives

Figure 7 4 UDP demultiplexing

7.4 Source Code

In this section the source code are provided (in Java) for the CBD simulation and the

CBD-FSTP prototype implementation.

7.4.1 CBD lmplementation

The first two sections (FTPClient3 and mPClientThread) show the source code used for

simulating the concurrent download. The last section (CBDClientSequential) is the source

code for simulating the conventional (sequential) FTP download.

/ -
this class downloads three f i l e s irom different servers in 'concurrent' fashion. This is done by
spawning threads (FTFClientThread)

public class Ftpclient3
c
//class variables
static String logName = 'thrLogg;

Appendices

public static void mainistring arg [l)
&te@$n8api@Fcess~ile log;
String site2;
String site3 ;

if (arg. length == 3)
(

sitel = argl01:
site2 = arglll;
site3 = argl2I ;

1
else
c

sitel = ~ftp://ftp.dti.ad,jp/pub/&/editor/xemacs/Attic/leh-skktar.gz~;
site2 = ' f tpr //f tp-netscape.~om/pub/vjscdWpr3 /~jscdkb3. jar';
site3 = ' f t p : / / f t p . 1 w e b . c 0 m / M i s c U t i 1 i t i e s / T P I I e * ;

1
/ / create the log file

uy
c

log = new RandomAccessFile (logName, 'rw' i ;
}
catch (FileNotFoundException el

{
System-err.println(e1:

1
/ / repeat the test for 10 consecutive times
for (int i = 0; ic10; i++)

System-out.println(-*s is the ' + i + 'th ireration of loop'i;
FtpClientThread el = new PtgClientThread(site1) ;
FtpClientThread t2 = new FtpClientThread (site21 ;
PtpîlientThread t3 = new FtpClientThreatï (site3 1 ;
tl-starto;
t2.startO;
t3.startO;

+=Y
c

ti-join0 ;
t2. join0 ;
t3-join0;

catch i InterruptedException e)
C

System.err.println(e) ;

/ *
this class downloads a file £rom a ftp server, and masures the t h e taken for the download.
written b y babak S. noghani

pbïic class PtpClientThread extends Thread
(

string site;
public FtpClientThread (String site 1
c

super (site) ;
this-site = site;

1
public void run0
c

try
c

URL f tpURL = new URL (site) ;
downloadPile (EtpURL) ;

1
catch (MaIf ormedtJRLBcception e)
c

System-err.println(site + *is not mu, 1 ~mderstand!');
1

1
private long downloadPile (URL f tpffRL)
{

long start = System-currentTimeKillis () ;
long finish;
long duration = 0;
//open a connection with the FTP server
try
C

URtConnection uConn = f t p W . openConnection (1 ;

//extract the file name out of URL
String f ileName = f tpURL-getPile () ;
f ilmame = f ileName. substring (f ilelTame. 1astInd-f (' / ' 1 + 1) ;
InputStream in = UCOM-getInputStream(1 ;

//get the co~ection sgeciEications
int cl = uConn.getContenUength[1 ;
String ct = uConn.getCOntentType (1 ;

//check to make sure it is a binary file
if (cl == -1 I I ct,startswith(*text/'I 1
c

System,err.grintln('rhe size oE thls file: ' + fileName t ' is zero, or it' s not s
binaxy file' 1 ;

System-exit (O 1 ;
1
//initialire the local variables for implementing read method
int bufr = 128;
byte C 1 b = new byte lcl+bufrl
int bytesread = 0;
int offset = 0;

//sead the data into the temporary buffer 'b.
while (bytesread >= 0) {
bytesread = in.read(b, offset, bufr) ;
//system.out .grinth(-remaircing bytes: ' + (cl - (offset+bytesread) ! ;
if (bytesread == -1)
break;
offset += bytesread;

//for some reason read method blocks on some servers, when the remainig bytes are less
than byf fer size. for our purpose. it doesn* t matter. so we close the connection at this point.

if ((cl - offset) c bufr)
break;

Appendices

FileoutputStream fos = new FilerntpiltStream(fi1e~ame) ;
Eos.write(b) ;

String message = ' T h taken to download the file ' + fileName + ' is + duration +
second.s\n~;

system-out .printïn (message) :
FtpClient3.log.writeChars (message) ;

l
catch (Btception el
I

System.err.grintln(e);
1
return duration;

1 //end of method downloadPile
1

/ *
this class downloads three files from different £tg servers in 'sequential' fashion. and measures
the t h e taken for each download, and their total as well
written by babak S. noghani
* /
import java-io-*;
import java.net.*;

public class FtpClientSequential
I
/ / c ~ ~ s s variables
static String logName = 'seqLog';
static RandomAccessFile log;

public static void main (String argC1 i
E
String sitel = 'ftp://ftp.dti.ad.jp/pub/uniX/edit~r/~ema~s/Atti~/Ieim-skk~t~~gz~:
String site2 = ' ftp: //ftp.netscape.com/pub/ jscdk/pr3/ jscdkb3. jar- ;
String site3 = 'ftp://ftp.zweb.com/MiscUtiliries/TFTPSe~er~-1-980730.exe';
long toWuration = 0;

E
log = new RandomAccessFile (logName, 'nu') ;

1
catch (FileNotPoundException e)
I
System.err.println(e) ;

>
Sving key;
for (int j = O; j c IO; j++)
C

/ / creaces a URL object for each of 3 given ftp sites, and passes it on to the
' downloadFilem method

for tint i = 1; i -c 4; i++)
c

switch (i)
c

key = sitel;
break;

.p% t ey = site2;
break;
case 3 :
key = site3 :
break;
default :
key = sitel;

l
try
c

rJRL FtpURL = new URL(key};
totinration += downloadFile(FtpURL1;

1
catch (MalformedURLException e)
c

System.err.println(site1 + ' this is not a rrru; 1 can understand!');
1

) //end of for loop
String result = 'total duration is :' + tothisation + ' seconds\nn;
System-out-println (result) ;
try
E

1og.writeChars (result) ;
l
catch (IOException e)

E
Çys tem, err. println ('caught IODccegtion: + e . getMessage (1 ;

1
)//end of 2nd for loop

}//end of main

/ / method to download a file from an !?TP server, save it on the local disk, and returns the time
taken Ecr this process

s tatic long downloadFile (URL f tgU-)
c
long start = Systern- currentTheKillis (:
long finish;
long duration = 0;
rJRcco~ection uConn = null;
FileOutputStream fos = nuil;
InputStream in = null;

//open a connection with FTP server
try
E
UCOM = f tpURL . openConnection (1 ;

1
catch (IODrception e)
E
System.err.println('caught IOException: + e-getKessage0 l :

1
//extract the file name out of URL
String fiïeName = ftpURL.getFile 0 ;
fileName = fil~ame.substring(Eile~ame. 1astInd-f (' / ' + 1) ;
try
c

in = uCom.getInputStream(1 ;
1
catch (IOException e)
c
System. err-println ('caught IOException: ' + e. gewessage ()) ;

1
//check to see if the connection is established
int cl = uConn-getContentLength0;
String ct = uConn.getContentType (1 ;
if (cl == -1 i 1 ct.startsWith('text/'))

~euucmg me Lataicy on the htemet

System.err.printïn[*The size of this file: ' + fiîeName + ' is zero. or it's not a binary
file-) ;

f
çystem- exit (0 ;

//initialize the local variables for iinplementing read method
int bufr = 128;
bytetl b = new byteIcl+bufrl
int bytesread = 0;
int offset = 0;

while (bytesread >= 0)
C

L
bytesread = in.read(b, offset, bufr);

1
catch (IOException e)
r

System.err,println(*caught 10Ecception: ' + e.getMessage0);
1
if (bytesread == -1)

break;
offset += bytesread;
//for some reason read method blocks on some servers, when the remainig bytes are less than

byffer size. for o u r purpose. it doesn't matter, so we close the comection at this point.
if ((cl - offset) < bufrl

break;
)//end of while loop
//write the file, stored in buffer 'b', into the local disk
try
{

fos = new PileOutputStream (fileName1 ;
1
catch (FiïeNot~oundException el
C

Systa.err.println('caught ~ile~otFoundEXception: ' + e.getMessage0) ;
1
trY
r
fos.write(b) ;

>
catch (IO~~ception e)
C
Sy~tem.err.println(~caught IOException: ' + e.getlMessage0):

1
System.out.println('çite of the file: ' + fileName + ' is: ' + cl);
finish = Systern. currentTimeMillis (1 ;
duration = (finish - start)/1000;
String message = 'Tirne takea to download the file ' + fileName + ' is - + duration + '

seconds\n';
System-out .println (message) ;
try
c
1og.writeChars (message) ;

1
catch (1 OException el
C
System. err-println ('caught IOException: ' + e .getbfessage (1 ;

1
return duration;

)
1

Reducing the Latency on the interne4

Appendices

7.4.2 CBD-FSTP Prototype lmplementation

This section provides the source code for the CBD-FSTP. The code has been taken from

[SKr99]. Apart from slight modifications, we have not changed the original design and

naming. These changes were necessary to adopt to the distnbuted nature of the CBD-

FSTP. Similar to its original design, it consists of five classes. The first two act as the

client and server. The other three encapsulates the process of creating a CBD-FSTP

packet-

7.4.2.1 CBDFSTPClient

* This is a Cm-FSTP Client class. Tt opens up a TCP comection to an already know CBD-FSTP server.
It asks the server to -SENDw it a file, The packets containing the file are received throuçh a UDP
conneccion. It checks for missing/corrupted and sends a 'RETRANAMIT" to the server, aïong with the
sequence P of the missing packets. It then receives the missing packet. This loop iterates untill
al1 the packets are transferred to the client. it then closes its connection wich the CBD-FSTP
server.
The original code is written by Steve Kretshmann, and modified by babak S . Noghani. Modifications
include :
1. Changing the single-rbreaded client to alti-threaded
2. Adding an additional field to the gacket header
3. Adding the functionality of appending the file components
4. Disabling the adaptive flow control mechanism
5. Kard-coding the packet size

Last Modified: 22/11/99
** /

import java.net.*;
import java-io.';
import java-util. *;

public class CBDFSTPClient extends Thread
C

static private final int defaultPacketSize = 1024;
static private final int controlPort = 4712; //%P port number
private int packetsize = defaultpacketsize;
private FSTPPacket fPacket;
private Socket sock = null;
private ~nputstremeader inr = null;
private BufferedReader in = null;
private PrintWriter outRequest = nuil:
private String ixmesgonse = null;
private String StatusText ;
private booleanll checktist;
private int missir?gCounter;
private PrintWriter log;

Reducing the Latency on the Inteniet

private long calcDeLayCTs = 0 ;
static orivate BufferedReader ConsoleIn = null:

gg#@q ar Q u m &%!FW'r&% en&.;Euae, sor T~P~P' ime, totaïxmt~ime, xmt~ime = O;

private int totalRequested, grevious~e~uested = 0;
int segNum = 0;

private ~~~FSTPCiientiint SegNo) throws java,io.~~Exception. java-ic.~ileNot~oundBcception.
java. io. InterruptediOException, java. net -SocketException, java.net .unknown~ostException

c
segNum = SegNO;

1

public static void main(String[J args) throws UnknownHostException, SocketEXception.
InterruptedIoException. PileNotFoundExcep~~a~ IOException

f
String fileN = 'tast.movœ;
long beginTime=System. C U ~ ~ M ~ T ~ ~ ~ ~ S () ;
/ / initialize Lug
ConsoleIn = new gufferedReader(new InputStrearrrReader(Çystem.inl1;
InetAddress localip=InetAddress .geUocalHost () ;
System. out .princln ('lacalip = + localip) ;
//allocate a thread for each semer
CBDFSTPClient cl = new CBDFSTPClient (1) ;
CBDFSTPCiient t2 = new CBDFSTPClient (2 1 ;
CBDPSTPCliat t3 = new CBDFSTPClient (3) ;
tl.start0 ;
t2.startO;
t3 .start (1 ;
try
{

//wait for al1 the threads to finish their tasks and then return to main
tl- join() ;
t2. join0:
t3. join0 ;

1
catch (Interrupteception e)
C

System-err ,println ('Caught InterruptedDrception: ' + e .getMessage ()) ;
1
//append the three file segments at the end of each other
for (int segrnt =l; segmtc4; çegmt++)
c

append (f iieN. segmt 1 ;
1
long appendTime=Sys tem. currentTimeMilïis (1 ;
Systern. out .println('Overall Time for CBD-FSTP File Transf er = '+ ((appendTime-

beginTime1 /IO00 1 +* Sol ;
}//end of main0

public void run()
c

try

String host = null;
int seg = tùis .segNum;

switch (seg)
(

case 1: host = 'galois. csc.uvic.ca~ ; break;
case 2 : host = 5 48pcl5. ee . ualberta . ca'; break;
case 3: host = *ivanhoe.engg.uregina.cag; break;
case 4: host = 'csc.cpsc.ucalgary.ca'; break;

1
packetSize=1024;
1ogInitiaiized = false;
initLog ('log'tseg) ;
openControlConnection(host, seg);
/ /receive file

Appendices

String f ilellame = new String (' test .movm + seg) ;
startTime = Çystem- currentTimeMi1lis () ;

£Packet = new FST~Packet (fileName, 10021564, packetsize.
InetAddress .getByE7éme (host) , seg) ;

1
else
c

fpacket = new PSTPPacket (fileNdme, 10021192. gacketsize.
~net~ddress -getByName (host) , seg) ;

1
fPacket.initReceivePort(çeg);
receiveRaw (fileName, s ~) :
endTime=System. f z u t z ~ t ~ d l i i s () ;
Disconnect () ;
log ,close () ;

1
catch (Exception e)
(

~ system.out.println(e) ;
1

1

private void clearin i)
c

while ((! status~ext-startswith(' 0 0 0 - 1) 1 1 (statusText==null) i
(

try
C

statusText = in-seadLine (1;
1
catch(I0Exception el C 1
s tatusupdate () ;

1
1

private void Disconnect()
(

//issue cornmand and display results
out~equest.grint~n(~Qm~~);
outRepues t . flush (;
try
(

StatusText = in-readline (;
1
=a tch (IOException el (1
statusupdate (1 ;

1

private void initlogistring logFileNamei
C

try
C

logFileWriter = new ~iiewri ter (logFileName) ;
log = new PrintWriter(logFileWriter1;
LogInitialized = true;
//statusText = 'Local Log file created: ';
/ /s ta tusText += 1oqPileName ;
/ /statusUpdate () :
//System.out.print("Enter Log Header Informationz') ;
//String Header = ' -;
/ *
while (Header. length () > O)
(

I Keducing me Latmcy on the Lntemet

* /
Date now = new DateO;

i oq.println("Date/Time of Test:'+now) ;
Og~p~nt~(-*~*********t*************~***********.**************. 1 ;

1
catch (Ekception el
c

loginitialirecl = f alse:
statusText = 'Could Not Open Log File: ';
statusText += logPileName;
statusText += e;
statustrpdate () :

1
1

private void openControlConnection(Strhg host. int segment)
C

//initialire the TCP socket ta FSTPServer
boolean exception~hrown = false:
try
C

System,out.println('file component -+segment+- is serverd by: " + host):
sock = new Socket(host,controlPort);

if (LogInitialired) log.println('Connected to :'+hast+.. control part:'+controlPort);
1
catch (Exception el
c

exceptionThrown = m e ;
//grint to status window
statusText = -570 -or. ~ould not Open co~ection to * ;
s tatusText +=host;
statusText +=' ';
status~ext += e;
statustrpdate (1 ;

inr = new InputStreamReader(sock.getlnputStream0 1;
in = new BufferedReader(inr);
oumequest = new PrintWriter (sock.getûutgutSrream() ;

I 1
catch (Exception e 1
c

system-out-println(-Eirror Creating Control In/Out Readers:*+e);
exceptionThrown = true;

='Y
c

statusText = in.readline0;
1
catch (IOException e 1 C l
clearln (i ;

1

private void receiveRaw(String rPileName, int segNo) throws SocketException.
FileNotFoundExcegtion, IOException

C
boolean done = false;
boolean exceptionThrawn = false;
boolean reTR = false;
String rawPileName = new String (rFileName + ' .rawg 1 ;
//System.out.prùitln('rawFileName: '+rawFileNamei;
File f=new File(rawFi1eName) ;
FileoutputStream outStream = null;

//initialize packet checkïist
checktist = new boolean[fPacket.tag.numbClumpsl;

c
//open outputfile
trf
c

outstream = new PiîeOutputStream(rawFi1eName. r m) ;
StatusText = " (file component '+segNo+') Local Output file Opened : ' ;
statusText += rawFileNarne;
statusUpdate i) ;

1
catch(Exception e)
c

exceptionThrown = m e ;
statusText ='(file component '+segNo+-1 Could Not Create RAW outgut file:';
statusText += rawFileName;
statusText += ;

statusText += e;
statusupdate (;

1 / / end of try and exceptions for

/ /receive Packets
if (reTR)
c

~ystem.out.println(* (file component : ' + segNo + ' 1 Generating Retrans Request-) ;
reTrans (segNo) ;

1 1
else
c

r e ~ ~ = m e ;
String reqûut = new String('SEND ') ;

reqOut += rPileName;
System.out.println(- (file component: ' + segNo + '1 Connnaad sent to the server =

' +reqOur) ;
outRequest-printlnireqOut);
outReques t . flush i) ;
if (1ogInitialized)
c

log-print ('mit Req: '+fPacket. taq.numbClumps+' '1 ;
previousRequested = fpacker-tag-numbclumgs;

while (! f Packet .recvTirnedOut)
C

t w

fPacket.receiveRaw(segNo):
if (fPacket.packetReceived)
E

outStream.write(fPacket-data) ;
} / / 4 end if packetReceived

1

catch (Exception e) ()
) //end while !fPacket,recvTimedOut
outStream close (1 ;
statusText=in, readtine (1 ;
statusvpdate i ;
if (1ogInitialized)
C //extract XMT t h e from server

int index0 = statusText.indexQf("Pg);
int ind& = statuçText.indexOf i' ', (indexO+l) 1 ;
xmtTime = Long. decode (statusText . substring ((index0 + 1) , i indexl) 1 1 . longvalue (1 ;

1
Keclucmg the Latmcy on the lntemet

Appendices

try
(

rawstream = new ~ileInputStream(f);
statusText = '(file component: ' + SegNo + ' 1 Local RAW file Open& :';
StatuSText += rawfileNëime;
statusffpdate () ;

l

catch (Exception e)
t

excegtionThrown = true;
StatusText = '(file component: ' + segNo + ' 1 Could Not m e n RAW file:';
StatusText += rawPileName;
statusText += - ;

long Ammead = 0;
while (AmtRead c f lengtht)
i

int amt = rawstream. read(f Packet ,datai ;
f Packet .setDatasyte () ;
checktist [f Packet, tag. intValue (1] = true;
AmtRead += amt:

System.out.printLn(-(file component: ' + segNo + ' 1 Checking to see if we got al1 the
packets');

done = true;
//check to çee if al1 packets have been received
for(int i=O;icfPacket.tag.numbClumps;i++)
t

if (!checkListfil)
(

done = false;
i = fPacket.tag.numbClurngs-1;

1
1

1 //end !done while
if (logïnitialized)
{

endTime=System. currentTUneMilLis (;
log.println('Pkts ~ec~d:'+previousRequested+' =LOO%

T/Pkt='+ ((float)xmtTime/ (f 10at)previousRequested)) ;
l o g - p r i n t l n (. ~ ~ y l ~ e ~ l * I w * r - o - - v ~ - e - m v * * - e f H r . 1 ;

log.println('Total server hansmission ~ i m e = '+ (totalxmtTime/1000) +-) ;
log.println('Total Receive Time = '+((endTime-startTime)/1000)+' S m) ;
log.println(-Total ~rocessingTime = '+((endTime-startTime-totalXmtTUne)/L0001+' S .) ;

}

private void reTrans(int segNol
(
int seg = segNo;
String rTransHead = new String(fPacket.data, 0. fPacket-tagoffset);

1
Keaucmg the Lataicy on the Intemet

fortint i=O:icfPacket.tag.numWrlumgs;i++)

if (!checkList[il)
I

missingtounter++;
-ans = rTrans + i + = , ;
last = i;

) //end if not checked off
}//end for
//=.end retrans request
System.out.println((file component: + seg + ' 1 Sending Retrans request for

'+missingCounter+" Packets . ') ;
if (logrnitialized)
t

int pktsRcvd = previous~equested-missingC0unter;
log.print('Pkts Rec'd: '+ (pktsRcvd) +' ' 1 ;
log-println('='+ (int) (100' ((float) (pktsRcvd) 1 /previousRequested)+'%

T/Pkt=*+ ((float)xmtTMe/ (f loat) previousRequested) 1 ;
previousReguested = missingCounter;
log-print ('Retr Req: "+missingCounter+' ') ;

1
system.out.println('(file component: - + seg + ' f rrrans : -+rl'rans);
outReques t .println (rTrans) ;
oumequest . flush () ;
try
c

s tatusText = in. readline () ;
statusUpdate (1 ;

1
catch(10Exception e)
c

System.out.println(' {file component: ' + seg + ' 1 Error Reading Retr Msg. from Semer
.+el ;

l
static private void apgendistring EName, int segNum)
I

Buf f ered1nputStrea.m inStream = null ;
BufferedOutputStream OutStream = null;
boolean exceptionThrown = false;
boolean append = m e ;
Pile f = new File(fName + SegNun) :
String file = 'test .movœ ;
int sNum = segNum;
try

I
inStream = new Buf f eredInputStream(new FileInputStream (f)) ;
outStream = new BufferedoutputStream(new FileOutgut~tream(fi1e. append) 1 ;

1
catch (Exception el

exceptionThrown = m e ;
1
try
1

bytefl b = new bytel(intlf.lengthO1;
inÇtream.read(b) ;
//outStream.nite(b, ((segNum - l)*(int)f.lengthO), (intif-length0);
outStream.wrice(b) ;
outstream. close () ;
instream. close (i ;
System.out.println('file corngonent '+sNu~+' was aggended to '+file) ;

1
catch (IOException e) C 1

I
Keducmg the Lateacy on the Lntenet

Appendices

' boolean exceptionThrown = false;
String rawFileName = new String (rFileName + ' - raw') ;

checkList = new booleanlfpacket-tag-numbçlumpsi;
FileInputStream inStream = nuil ;
RandomAccessFile rOutFile = null:
int sNum = segNum; -
E

inStream = new FileIngutStream(rawFiïeName);
inStream.skip(0) ;
rOutFile = new RandomAccessFile (rFileName, -w-) ;
StatusText = - (file corngonent '+sNum+') Local Raw file Opened for Sorting : ';
StatuSText += rawFileName:
statusUpdate() ;

1

catchtException e)
i

exceptionThrown = m e ;
/ /print to status window
StatusText = '(file component '+sNm+') ExTor ûpening Raw file for Sorting : ':
s tatusText += rFileName;
StatusText += ' ';
StatusText += e;
s tatusCrpdate (;

1

boolean inAvailable = false;
'=Y
C

inAvailable = (inStream-availableO > 1):
1
catch (IOException e)
C

exceptionThrown = m e :
1

while (inAvailable && !exceptionTh.own)
c

'=Y
i

inStream.read (f Pa~ket~data) ;

f Packet. setData (;
1
catch (1 OException e
c

exceptionThrom = m e ;
1
int pNumber = f Packet. tag. intvalue (1 r
checktis t [pNumber 1 = true :
if (£Packet-tag-last)
L

//seek to the position of the last packet

1
catch (IOException e)
[

exceptionThrOwn = true;
1

I Keduclng the Latency on the intanet

Appendices

1
1
trY
t

inAvkilable = (

1
catch (IOException e
c

exceptionThrown
1

} / /end while

rûutFile .close () ;
inStream.close () ;

1
catch(I0Dcception e) {)

1
boolean al1 = m e ;
for (int j=O ; j>fPacket, tag.numbç1ump.s; j++)
r

if (!checkListtjl) al1 = false;
System,out.println('(file corngonent '+sMim+') ~idn't get: '+j);

I
if (al11 System.out.println(* (file component '+sNum+") Got al1 packetsg) ;
boolean rawDeleted = Ealse;
try
I

File rawrnPile = new File (rawFileName) ;
rawDeleted = rawInfile.delete0;
if (rawDeleted) Syçt~i .out .pr int ln(' (f i l e component ' + s N u ~ + ') Raw File Deleted');

1
catch (Exception e)
i

System.out.println(e);
1
if (!rawDeleted) System.out.println('(file component '+sNum+') RaW File Could NOT be

Deleted');
1

private void statusupddteo
c

Reducing the Latmcy on the lntwet

Appendice

/ **
* This is a CEDFSTP Server class (#1) . f t listens on TCP port #IO24 - Ugon receiving a request for
sending a file, it initiaïites a FsTP packet and starts sending the file back to the client through
a UDP socket connection.
* In this version we set the inter-packet transmisson time xnanublly. That's because of some
restrictions imposed by remote servers whrle trying ta send out a burst of packets (i-e-: 10000
packets in our case), which is needed in our adagtive mechanism.
The original code is written by Steve Kretshn!ann, and modified by babak S. Noghani. Modifications
include =
1. Qlanging the single-threaded client to multi-threaded
2. Adding an additional field to the packet header
3 - Adding the functionality of appending the file components
4 - Disabling the adaptive flow control mechanism
5. liard-coding the packet site

Last Modified: 22/11/99
* * /

import javz.io.*;
import java.net.';

public class CBDi?sTPse~er-l extends Thread
(

/ / Class Variables
static int defaultPacketSize = 1024; / / Port and defaultPacketSite cannot be changed
static InetAddress localip: //local ip address -- the same for al1 instances
private static String root;
private static String logText;
private socket incoming;
private int counter; //counts the number of nuining semer threads

public CBDFSTPServer-l(Socket incorne. int c) throws 1nterrugtedExcegtion
(
incoming = income;
counter = c:

1

public s tatic void main (String f 1 args 1
C
//find local ip
try
c
localip = InetAddress.getLocalHost0;
System. out. printïn ('Local IP Adàress = ' clocalip) ;

1
catchtunknownI?ostException el
c
System. err. println ('Caught UnknownHostException: ' + e

1
/ / root directory remaias the same regardeless of clients
ifiargs-length != O) root = argsC01;
else m o t = '/c:/users/babak/CBDJSTP";
int i = 0;
~ystem,out.printïn('~~~,~~~~-O1 Semer is Ready..');
System-out.println('~oot Dir = ' + rooti;

tsr
c
ServerSocket s = new SemerSocket (4712) ;
for(;;)
c
socket incoming = s .accept () ;
new CBDFSTPServer-1 (incoming , ++i 1 . S tart () ;

public void r u n 0
(/ /begirrning of run
long tirneDelay = 0;
int packetsize = defaultPacketSize;
int i,ip = 1,hl;
InetAddress inet;
int sNum = 1;
long ~oopsperpacket = 80000: //set the delay t h e manually
int skip=O;
String host. dir, corrnn, param;
dis = root;

try
(//try to do eveything
inet = incoming. getInetAddress () :
host = inet - tostring i) :
hl = host-indexOf (' / * ;

host = host.substring(h1 + 1);
BufferedReader in = new BufferedReader(new InputstreamReader(incoming.getInputStream~)) 1 ;
PrintWriter out = new PrintWriter (incoming.getûutgutStream(1 . true) ;
boolean done = false;

out .println (' (F i l e Component No'+sNum+' 1 120
out - flush () ;
while (! done i
(//Win while !done
out.println('000 ~~~~~~~~~~~~> '+dir+' : '
out-flush0 ;
String s tr = in.readLine () ;
if (str==null) break;
if (str.length(1 > 4)
(//begin in str > 4
com=str.substring(0.4) .trimO -toUpperCaseO ;
param = str.substring(4) .trimO ;

1
else
c
com=str.toIJpperCase(1 ;param-";

) //end s t r > 4

if (com.equals ('SEND' 1
c
File f:
if (param.startsWith('/'ll
c
f=new File(root.param) ;
System.out,println('100 Sending : '+root+param);
out. flush () ;

} //end if startsWith('/')
else
c
f =new File (dir, param) ;
System.out-println('100 sending : '+àïr+'/'+garam):
out - flush () ;

) //end else startsWith('/');
if (f .exists (1 1
c

/ / Initialize an FSTPPacket & Clumg
Long Long~ile~ength = new Long (f . length (1) ;
FSTPPacket fpacket = new FSTPPacket(param.

LongPileLength.intvalue~),packetSize,i~);
byte [] clump = new byte [f Packet. tag . clunwsize 1 ;
//Open file
FileInputStream outFile=new ~ile~nputscream(fi ;

Appendices

out. f lush () ;
sleeg(S00) ;
System. out .println ("hansmitting File ' +param) ;
System.out.prinrfn('toopsPerPacket= '+LoopsPerPacketl ;
long startsend = Sys tem. currentTimeMillis (1 ;
for (b l o c ~ = O ; blockNumbcf Packet. tag . numbClumgs ; bloclcNumb++)
I
//set block number
EPacket-tag-setIntValue(b10ckNumb);
//set data clump
amount = outFile.read(clump);
fPacket.setClump(clump);
/ / send the packet
£Packet - send(sNur&) ;

1 //end while amount >= clumpçize
long endSend = System.currentTirneKillis () ;
outfile. close (1 ;
Syçtem,out.println('mansfer Conipleted in '+(endSend - startsend)+' mS.');
double perpacket = (endçend-startsend);
perpacket /= fPacket.tag.numbClumps;
System~out.println("Average Time per Packet =-+perPacket+' mÇg);
out.println(' (File Component '+sNum+' 1 300 Transfer Completed in # " + (endçend -

startsendI+' LIS:) ;
s kip=O ;
outrile. close (1 ;

) / / end if f-exists
else out .println (' (File Component No'+sNum+') 550 '+f .getName (1 +' = no such file or

directory' 1 ;
out. f l u ~ h (1 ;

1 / / end if comm.equals('SEND'i

File f;
//strip rhe file name from the retransmission parametr
//int s t-tmdex = param. indexof (' * ' 1 ;
System.~ut.println(~puam = '+ param);
int startIndex = 9;
Stxing fileName = param. Mbstrïng(0, startmdex) ;
~ystem. out .println(* fileName = '+f ileName 1 ;
if (file~ame.st~tsWith(~/~i 1
f
f =new File (roo t . f ilellame) ;

1 //end if startswith('/')
else
c
f =new File (dir . f iïeName1 ;

1 //end else startswith('/"i ;
iL (f .exists (1 1
c

/ / Create new FSTPPacket
Long LongFileLength = new Long (f . length (1 1 ;
FSTPPacket EPacket = new ~ s ~ ~ ~ a c k e t (fileName, Long~ile~ength. intvalue (1 . packetsize,

inet, sNum) ;
byte[1 cl- = new byte [fPacket. tag.clumpSitel ;
//initialize checklist
boolem checkList [] = new booleanCfPacket. tag-numbçlumps 1 ;
Integer tInteger = null;
int reCount = O:
//Check off ~etransmission Clumps
while (startxndex + 1 c param. length ())
L
int endInde% = param. indexûf (' . " , startIndex + 1) ;
String s tringTag = param. subs t r i ng (s tart~ndexd , endmdex) ;
try

tInteger = new Integer(stringTag) ;
1
atch (NumberFormatException e 1

System.out.println(e+ stringTag);
1
checkLis t [tïnteger, intvalue () l = true ;
recount++;
s tartrndex = endIndex;

) //for k
FileInputStream outPile=new FileInputStream(f) ;
//retransmitt files in checklist
out .println(' (File component '+sNum+' 1 111 Retransmitting 8' +reCount+. Clump (s 1 from :

!) ;
out.flush0;
Çyçtem,out.grintln('Retransmitting ' + reCount + - Cîump(s) from : ' +fileName) ;
sleep(500) ;
f Packet - theDelay = LoopsPerPacket ;
if ((reCountc2000) && (reCounD1OO))

float fltReCount = (float) reCount;
float flWcdifier = 4' (2000-fltReCount) /1900:
f loat flUoopsPerPacket = (f loat i LoopsPerPacket;
f Packet. tirneDelay = (long) (fltloopsPerPacket=flt~odifier) ;

1
if (recountc100) f~acket.timeDelay==4;
long startsend = system.currentTimeKillis (1 :
forlint m=O; mcfPacket.tag.numbçlumgs;m++)
(
if (checkListlm1)
(
long amount = out~ile.read(clump);
£Packet.tag.setIntValue(m):
f ~acke t. seklurnp (clump ;
f Packe t . send t sNum) : . .

1 //end if checked
else outPile.skip(fPacket.tag.clumpÇize):

1 //end for m
long endçend = System. currentTimeMillis () ;
double perPacket = (endSend-startsend);
pereacket /= EPacket. tag.numbçlumgs;
System-out-println(mRetran~fer Completed in '+ (endSend - startbend) +* mÇ. ' 1 ;
System.out.println(*Average Time per Packet =* + ((endS.end - startSend) /reCount) + ' mS' 1 :
outfile. close () ;
out .println(' (Pile Component '+sNum+') 310 Retransmission Completed in Y'+ (endSend -

s tartsend) + ' mS . ' l ;
1 / / end if f-exists
else out.println((File Corngonent No'+sNm+' 1 550 '+f .getPJame() +' : no ~rlch file or

directory') ;
out. Elush (:

)//end of 'RETR'
else if (com.equals ('QUIT') 1
(
out.println('(file component -+sNum+') 290 GOOD BYEm):
out. flush () ;
done = m e ;

1
else out .println (O (File Component No0+sNum+' 1 500 \. ' t s t r . substring (O, 4) +' \ - : c o r m d not

understood' :
out-flush0 ;

> //end while !done
incoming . close () ;

1 //end try everything
catch (Exception el
c
System.out.println (e) ;

1
1 //End RunO

)//end class

7.4.2.3 FSTPPacket

/"
The original code is written by Steve Kretshmann, and modified by babak s. ~oghani
include :
1- Changing the single-threaded client to multi-threaded
2 . Adding an additional field to the packet header
3. Adding the functionality of apgending the file components
4 . DisablLng the adagtive flow control mechanism
5 . FIard-coding the packet size
* /
import java.net,*;
m o r t java.io,*;

Modifications

public class FSTPPacket extends Thread
c

/ /parameters
static int FSTPPort = 4711;
private IiletAddress ineto. inetl, inet2. inet3 ;
private String fileName;
private int SegNbm;
private int port = PSTPPoft:

/ /caïculated variables
private int clumpOffset;
public int tagûff set;

//internai variables
public FSTPTag tag;
public boolean packetReceived = false;
public long tirneDelay = 0;
public byte C l data;
private int inetCounter = 0:
public bytecl clump;
private byte [J zTagNum: / / received tag number
private int timeout = 5000; / / default tïmeout
private Datagrampacket packet;
private DatagramSocket socket;
pt&lic boolean remimedout = f alse ;
private 2rmDelayTicker delayricker;

public FSTPPacket (String pmame, int pSize, int ppacketsize, InetAddress prnet. int pSMM1 throws
SocketException

c
//cogy parameters to instance variables
inet0 = pInet;
fileName = pFNdm2:
SegNum = pçNum;

//initialize data sorts of deals
tag = new FSTPTag (ppacketsize, pPName. lengtht) , psize) ;
data = new byte[tag. ~S~~~acketSizel:
clump = new byteCtag.clumgSizel;
tagoffset = fileNme.length0 + 1;
clumpOf fset = tagûffset + tag. tagsize;

/ / make a header for the gacket
//&art with the File Name and "' char
String header = new String(Ei1eName);
Integer s = new Integer (çegNum1;

header+=seg;
header += * * ' ;

/ fcreate socket for sending
socket = new DatagramÇocketO;

this - setpriority (MAX-PRïOFUTY) :
delawicker = new Im'melayTicker (1 ;

}
void addIP (InetAddress E IP)
E
if (inetCounter-=O) inetl = fIP;
else if(inetCounter==l) inet2 = EIP;
else inet3 = f IP:
if î hetCounterc3) inetCounter++ ;

1
void initReceivePortîint segNum) tbrows SocketException
{
//initialize recieve socket on 'port'
port+=segm;
socket = new DatagramSocket(port);
socket-setsoTimeout (tirneout 1 :
socket.setReceiveBufferSize(10000000) ;
packet = new DatagrarnPacket(data, tag.~STPPacketSizel;
recvTimedOut = false:
System.out.println(~PSTPPacket.initReceiveP0 port# on client # '+segNumt' is: '+port);

1
void receive (throws SocketException. 1OException
(
recmimedûut = false;
packetReceived = false;
try
(/ / wait for a packet to arrive until timeout
socket .receive (packet) :

/Ive,-ify that this is coming from a designated FSTP semer
InetAüdress address = packet .getAddress (1 ;
boolean correctsender = address . equals (inet0) :
System,out.prinrln(~correctsender: *+correctsender);
if (inetCounter>O) (if (address.equals (inetl)) correctsender = true: >
if (hetCounter>l) (if (address . equals (inet2)) correctSender = m e ; 1
if (inetCounte-2) (if (address-equals (inet3)) correctsender = true; I

if (correctsender)
{
ffverify that the packet is the right file name
String recdName = new String(data, 0.fileName.lengthO 1 ;
if (recdName. equais (f ileName 1 1
c
ffget packet number
System.arraycopy (data, tagOf Eset , ziragmxn, 0, tag. tagSize) ;
tag . setmevalue (rTagNum1;
//capture data clump
System,arraycopy (data, clumpO f fset , clump, O, tag. clumpsize) ;

gacketReceived = t r u e ;
I

1
else Systern. out .print ('X');

1
catch(1nterruptedIOExcegtion el
C
recvTimedOut = m e ;

1
1
void receiveRaw () throws socketException, 10Excegtion

98

KeQucing Me Latency on the Intemet

Appendices

gacketReceived = false;
remimedout = false;

m i t for a packet to arrive votil timeout
socket.receive(packet):

//verify that this is coming frorn a designated FSTP server
InetAddress address = packet.getAddress();
boolean correctsender = address . equals (inet0) ;

if (inetCounter>O) (if (address. equaïs (inetl)) correctsender = m e ; 1
if (ine tcounte-1) (if (address ,equals (inet2)) correctsender = m e ; 1
if (inetCounten2) (if (address .equbLs (inet3)) correctsender = true; 1

if (correctsender)
c
//verify that the packer is the right file name
String recdName = new String (data, O, fileName-length (1 ;
if (recd~ame .equals (fileName) packet~eceived = m e ;
else System-out .print (recâName + * * ;

catch(InterruptedI0Excegtion el
c
recvTimedûut = true;
System.out.println(' Timeout ') ;

1
1
void send(int seg) throws Socketmception. IOException
C
if (tirneDelay ! = 0) delayTicker--ait (timeDelay) ;

//add tag to data packet
System.arraycopy(tag~byteValue~),O,data.tagoffset. tag.tagSize1;

/ /add clump
sysrem.arraycopy(clump, O.data, clumpoffset. tag-clurnpSize):
packet = new DatagramPacket(&ta, tag.FSTPPacketSize, ineto. port+seq);
socket - sendtpacket) :

1
void setclumg (byte C 1 SClump)
C
clump = SClump:
packemeceived = false;

1
void setData0
c
System.arraycopy(data, tagoffset ,rTagNum, 0, tag-tagSize);
tag . setByteValue (rTagNum) :
System.arraycopy(data, clumpoffset ,clumg, 0, tag-clumgSize);

1
void setDataByte ()
c
system.anaycopy(data, tagoffset , rTagNum, 0, tag. tagsize) ;
tag.setByteValue(flagNum);

1
void setPort(int fPort)
c
port = fPort;

1

-

Reducing the Latency on the Intema

7.4.2.4 FSTPTag

/ "
The original code is written by Steve Kretsbmann, and rnodifieà by babak S. Noghani- xodifications
include :
L . Changing the single-threaded client to multi-threaded
2 - Adding an additional field to the packet header
3 . Adding the functionality of appending the file comgonents
4 . Disabling the adagtive flow control mechanism
S. Hard-coding the packet size
" /

public class FSTPTag (
/ /parameters
public int packetsize;
public int filemgth:
public int f ileNameLength:

/ /calculated sizes
public int clumpSize;
public int numbClumps:
public int tagsize = 1:
public int lastAm6unt;
public int FSTPPacketSize:

/ /interna1 variables
public boolean byteset = false;
public boolean intSet = false:
private byte [1 taggytevalue:
private int tagIntValue:
public boolean last = faïse;

//temporary variables declared once here to increase
//the speed of the code (memory will not have to be
//assimed each time the methods start
private int block:
private int shift;

public FSTPTag(int pSiz. int fNameLength, int flength)
c
//copy parameters to instance variables
packetsire = pSiz:
f ileNameLength = fHameLength;
f ileLength =f Length:
tagIntValue = 0;

//FSTPPacketSize is total packetsire - Header Size
//UDP Headers=8 Bytes
/ / IP header=20 Bytes = 28 bytes header for UDP Packets
FSTPPacketSize = packetsize - 28;

//initial sizes
tagsize = 1;
clumpsize = FSTPPacketSize - 1 - fileNameLength -tagSize;
numbClumps = fileLength / clumpsize;

Appendices

//caiculate size of last cl- and adjust numbClumps
Integer IntegerLastAmount = new Integer(fi1eLength % clumpSize);
lastAmount = 1ntegerLastAmount.intValueO;
if (1astAmount ! = 0) numbClumps++ ;
else 1astAmount = cluruQSize;

taggytevalue = new byte [tagsize] ;
1 / / end FSTPTag initialization
final public byte [1 bytevalue (1
c

/ / This is written for speed
/ / 1 fully realize this looks really bad, but it is
/ / likely a small amount faster than implementing this in loops or
// some other fom. Tbis could make a difference wfien we are encoding
/ / or decoding thousands of packets.

switch(tagSize)
c
case 4:
block = tagIntValue & 255:
if (blocb127) tag~ytevalueC0 1 = (byte) (block - 256) ;
else tagByteValue [O] = (byte) block;

shift = tagIntValue >> 8;
block = shift & 255;
if (blocb127) tagByteValueCl1 = (byte) (block - 256) ;
else tagByteValue [11 = (byte l block;

shift = shift >> 8;
block = shift & 255;
if (block>127) tagByteValue[2] = (byte) (block - 256) ;
else tagByteValue C2 J = (byte) block;

block = shift >> 8;
if (block>127) tagByteValue [3 1 = (byte) (block - 256) :
else tagByteValue[3] = (bytelblock;
break;

case 3:
block = tagIntValue & 255;
if (blocb127) tagSyteValuei01 = (byte) (block - 256) ;
else tagByteValue [0 1 = (byte l block;

shift = tagIntValue >> 8;
block = shift & 255;
if (bloc-127) tagByteValue[lJ = (byte) iblock - 256) ;
else tagByteValue Cl] = (byte1 block;

block = sbift >> 8;
if (block>127) tagByteValue [21 = (byte) (block - 2 5 6) ;
else tagByteValue [2 1 = (byte) block;
break;

case 2:
block = tagrntvalue & 255;
if (blocb127) tagByteValue[O] = (byte) (block - 256) ;
else tagByteVahe [O] = (byte) block;

block = tagIntValue >> 8;

Keducmg the Latency on the Internet

Appendices

else tagByteValue Cl] = (byte block;
break;

if (tagIntValue>l27) tagByteValue [O1 = (byte) (tagIntValue - 256) ;
else tagByteVauef01 = (byte)tagIntValue;
break;

1
byteset = m e ;

1 / / end if !byteset
return tagByteVoïue;

1
public inc intvalue ()

c
if (!ineset)
{ / / T h i s method was modified for faster speed
//ramer tLian compact progranunhg structure

block = 0;
switch(tagSize)
{
case 4:
block = (int 1 tagsytevalue [3 1 ;
if (block < O) block += 256;
block ce= 24;

shift = (U t) tagByteValue 12 1 :
if (shift c O) shift += 256;
shift cc= 16;
block += shift;

shift = [int)tagByteValue[lI;
if (shift c O) shift += 256;
shift cc= 8;
block += shift:

shif t = (int 1 tagByteValue [O 1 ;
if (shift c O) shift += 256;
block += shift:
break;

case 3:
block = (int)tagByteValue[2l;
if (block c O) block += 256;
block cc= 16;

shift = (int) tagByteValue [li ;
if (shift c O) shift += 256;
shift cc= 8;
block += shift;

shift = (int) tagByteValue CO 1 ;
if (shift c 0) shift += 256;
block += shift;
break;

case 2:
block = (int)tagByteValue[ll;
if (block c O) block += 256;
block cc= 8;

shift = (int)tagByteValue[Ol;
if (shift c 0) shift += 256;
block t= shift;
break;

case 1:
block = (ht)tagByteValueiOl ;
if (block c O) block += 256;

Appendices

tagIntValue = block;
intSet = m e ;

1
lak t = (tagIntValue == (numbClumps-1)) ;
return tagIntvalue:
1

public void setByteValue (byte [1 bTag)
{
byteset = m e ;
intSet = false;
tagByteValue = bTag;

>
public final void seUntValue (int 1Tag)
(
byteset = false:
intSet = m e :
tagIntValue = 1Tag;
last = (ITag == tnumbçlumps-1) ;

1
/ / T h e following m e t h o d is no longer used
//in t i i is implementation.
/' public Integer decodestring (String stringrag)

c
int decoded = 0;
for(int i=O;icstringTag.lengthO;i++)
E
Character c = new Character(stringTag.charAt(i));
int hash = c.hashCode0;
if (hash c O) hash = hash + 256;
decoded=decoded + twoPower8x (i) 'hash:

1
Integer ~ntegerDecoded = new Integer(decoded1;
return IntegerDecoded;

1

* /
static private int twoPower8xiint p)
c
int t w o ~ = 1;
Eor (int i=l;ic=p;i++) tvmp *= 2 5 6 ;
return two~;

1

7.4.2.5 TagBenchmark

/"
The original code is writeen by Steve Kretshmann, and modified by babak S. Noghani . Modifications
include :
1, Changing the single-threaded client to nnxlti-threaded
2. Aüding an additional field to the gacket header
3 . Adding the functionality of appending the file components
4 . Disabling the adaptive flow control mechanism
5. md-coding the packet size
"/

mort java-io. *;
public class Tagaenchmark

C

Appendices

C
Integer Input = new Integer(argsEO1);

pd&&Cn~$~ggd~qlr ~iSEY$t'? (A b 1

int fLength = 2147483647;
int asiz = E;
byte bytevalue [] = new byte (4 1 ;
byte bytevalue2 11 = new byte C4 1 ;
FSTPTag FTag = new FSTPTag (psir, e3amelength. flength) ;
FSTPTag2 fia92 = new FSTPTagZ ipSiz. fNamelength. f Length) ;
System. out.println('TagSize = ' + FTag. tagsize) ;
S y s t e m . o u t , g r i n t l n (' ~ e s t s =*+numbTests):

boolean bad = false:
for (int i=O;icnumbTests;i+=17)
c
FTag. setSntValue (il ;
FTagl.setIntValue(i);
bytevaiue = mag. bytevalue (1 ;
bytevalue2 = ~ ~ a g 2 - bytevalue () ;
for tint j=O; jc~Tag-tagSize;j++)
i
if (bytevalue [j l ! =bytevalue2 Cj 1 1
i
bad=true ;
system-out .print (* X a + i + - ' 1 ;

1
1
FTag . se tByte~aiue (bytevalue) ;
~ag2.~etByte~alue(byteValue);
if (FTagZ.intValue0 != fiag.intValue0 1

Reducing the Latency on the intema

Appendices

7.5 Trace Route

Below are the results of running TraceRoute application on the machines utilized during

our tests of the CBD-FSTP.

From University of Alberta to University of Manitoba

1 eegw (129.128.68.1) 1 .O47 ms 0.917 ms 0.8j7 ms
2 canet2fddi.gw.ualberta.ca (1 29.1 28.1 -1 9) 1 223 ms 1 -451 ms 1 -422 ms
3 206.75.91.17 (206.75.91.17) 6.211 ms 7.047 ms 5.929 ms
4 205.1 89.32.58 (2051 89.3258) 42.297 ms 46.806 ms 44.525 rns
5 205.1 89.32.81 (205.1 89.32.81) 84.251 ms 66.069 ms 68.320 ms
6 atrouter.cc.umanitobaaca (207.1 61.242.1 8) 90.931 ms 66.387 ms 67.01 6 ms
7 bbrouter.cc.umanitoba.ca (1 30.1 79.1 6.21 0) 78.759 ms 76.1 25 ms 84.079 rns
8 icl4.ee.umanitoba.ca (1 Xî.179.8.80) 67.492 ms ' 76.507 ms

From University of Manitoba to University of Alberta

From University of Calgary to University of Manitoba

1 fivegate (1 36.1 59.5.1) 0.828 ms 0.630 ms 0.580 rns
2 towergate (1 36.1 59.28.1) 1.279 ms 0.81 4 ms 0.81 9 ms
3 campus (1 36.1 59.30.1) 1.238 ms 0.878 ms 0.855 ms
4 136.159.251.2 (136.159.251.2) 1.30'7 ms 1.02 ms 0.957 ms
5 192.168.47.1 (192-168.47.1) 1.355 ms 1.140 ms 1.001 ms
6 192.168.46.10 (192.168.46.10) 1.455 ms 2.046 ms 1.406 ms
7 205.189.32.58 (205.189.32.58) 38.281 ms 38.398 rns 38.189 ms
8 205.1 89-32-81 (205.1 89.32.81) 62.91 5 ms 62.1 93 ms 62.268 ms
9 atrouter.cc.umanitoba.ca (207.1 61.242.1 8) 62.451 ms 63.364 ms 62.294 ms
1 0 bbrouter.cc.umanitoba.ca (1 30.1 79.1 6.21 0) 63.261 ms 65-1 98 ms 64-21 2 ms
1 1 mcleod2.ee.umanitoba.ca (1 30.1 79.8.25) 62.781 ms ' 62.491 ms

From University of Manitoba to University of Calgary

traceroute to csc.cpsc.ucalgary.ca (136.159.5.16), 30 hops max, 40 byte packets
1 enrouter.cc.umanitoba.ca (1 30.1 79.8.70) 1-1 42 ms 1 .O78 ms 0.905 ms
2 atrouter.cc.umanitoba.ca (130.179.16.1) 0.767 ms 0.829 ms 0.688 ms

Reduchg the Lataicy on the internet

Appendices

3 mmet.mbnet.mb.ca (207.1 61 -242.1 7) 2.168 ms 1.799 ms 1.787 ms
4 205.189.32.82 (205.189.32.82) 24.229 ms 24.436 ms 25.652 ms
5 met-ab.canet2.net (205.189.32.57) 62.159 ms 61 -791 ms 61 -251 ms
6 1 92.1 68-46.9 (1 92.1 68.46.9) 61 -723 ms 62.275 ms 61.627 ms
7 192.168.47.3 (1 92.1 68.47.3) 62.241 ms 64.860 ms 62.421 ms
8 136.159.251 -1 (1 36.1 59.251 -1) 62.270 rns 62.302 ms 61.938 ms
9 1 36.1 59.30.2 (1 36.1 59.30.2) 62.1 94 ms 63.677 ms 61.972 ms
1 0 tsa.cpsc.ucaigary.ca (1 36-159.28.2) 63.006 ms 62.625 ms 62-1 33 ms
1 1 csc.cpsc.ucalgary.ca (1 38.1 59.5.1 6) 62.626 ms ' 70.946 ms

From University of Regina to University of Manitoba

1 NET-ED-UOFRGATE.CC.UREG1NA.CA (142.3.1 -1) 1 -748 ms 0.691 ms 0.699 rns
2 142,165.3.105 (142.165.3.105) 1.295 rns 1.360 ms 0.946 ms
3 205.189.32.54 (205.1 89.32.54) 30.506 ms 30.442 ms 32.426 ms
4 205.1 89.32.81 (205.1 89-32-81) 54.933 ms 54.448 ms 53.937 ms
5 atrouter.cc.umanitoba.ca (207.1 61 -242.1 8) 55.226 ms 54.845 ms 58.264 ms
6 bbrouter.cc.umanitobaaca (1 30.1 79.1 6.21 0) 55.296 ms 55.028 ms 55.078 ms
7 mcleod2.ee.umanitoba.ca (1 30.1 79-8.25) 55.674 ms ' 56.953 ms

From University of Manitoba to University of Regina

Reducing the Lat- on the intanet

