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ABSTRACT

One of the most natural and most interesting objects asso-
ciated with a topological space X is its space of closed subsets
EX. Of the wvarious topologies with which 2X may be endowed,
the one that concerns us here is the so-called finite topology
introduced by Vietoris in [48]. We shall refer to the space
of closed subsets of X, endowed with the finite topology, as
the hyperspace of X. Hyperspaces have been studied by several
authors from several points of view. 2X has been studied in
the context of set-valued mappings, fixed-point theorems, and
selections. This approach is illustrated in the collected papers
in [46]. The study of 2X when X is a continuum or metric
continuum has occupied the interest of many topologists. (A
few examples of this are [8], [31], [50]). The comprehensive
work of E. Michael [36] is the standard reference for the funda-
mental properties of X In [36], Michael describes various
topologies and uniformities on spaces of subsets and examines
such basic topics as separation axioms, countability, compactness,
continuous functions, connectedness and selections. Furthef
basic properties of 2% are examined in [32], where one may find
a treatment of such topics as set-valued mappings and decomposition
spaces. The relation of 2X to lattices and Brouwerian algebras,
and the role of 2X as a topological semilattice are also eluci-

dated in [32].



In this work, we are primarily concerned with properties
related to compactness in 2X. Such properties are of great
interest and have received considerable attention. One of the
earliest and most elegant results on hyperspaces is the funda-
mental compactness theorem, established by Vietoris, asserting
that 2X is compact when X is. This result is basic in the study
of several compactness-related properties of 2X. Important
progress in the study of compactness-related properties of QX
has recently been made by J. Keesling, who, in a series of
papers, [27], [28]; [29], [30], obtained many significant results,
including the fascinating result that normality and compactness
are equivalent in hyperspaces [28]. Keesling's results have
motivated much of the present work.

The first chapter is devoted to a study of pseudocompact
and countably compact sﬁaces, the emphasis being on powers and
products.

In Chapter 2, we apply the results of the first chapter in
examining the countable compactness and pseudocompactness of 2X.
In the third chapter, our attention is focused on the

Stone-Cech compactification of ZX, and particularly on the
validity of the relation B(EX) = oBX, The results of Chapter 2
provide us with a falrly large class of spaces for which this
relation is valid.

BX

The role of 2 as a compagctification of 2X is further

examined in Chapter 4, where we describe the G6~closure of 2



in EBX. This description enables us to obtain information on
the realcompactness of EX.

In the final chapter, in a somewhat different, though not
unrelated vein, we examine some of the cardinal invariants of

2X, ineluding weight, character and cellularity.
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Chapter O

PRELIMINARTES

Our topological terminology and notation are well established,
and follow the standard texts on point-set topology. For back-
ground material on rings of continuous functions and compacti-
fications, we refer the reader to the Gillman anvaerison text
[15]. TFollowing [15], the ring of continuous real-valued functions
on & topological space X is denoted by C(X), and its subring of
bounded members by C*¥(X). For £ e C(X), the set {x ¢ X: f(x) = 0}
is called the zero-set of f, and is denoted by Z(f). A cozero-set
is the complement of a zero-set. The set of all zero-sets of
functions in C(X) is denoted by Z(X). The Stone-Cech compacti-
fication of a completely regular, Hausdorff space X is denoted
by BX. It is characterized as the compactification of X to which
all bounded continuous real-valued functions on X may be continu-
ously extended. The set (and discrete space) of positive integers
is denoted by N. The points of BN-N are the free ultrafilters
on N, and they play a dual role in this thesis, as points of the
space BN, and as ultrafilters. The space of real numbers is
denoted by R, and the cardinality of a set S is denoted by |S|.

The notions from set theory that we shall employ are standard.
An ordinal is thought of as the set of its predecessors, and a
cardinal as an initial ordinal. The symbol W, is used to denote
the o'th iafinite cardinal. For a discussion of the cardinal
invariants discussed in this thesis, we refer the reader to [k4]

and [25].



In the present work, the main obJject of our study is the
space of closed subsets of & topological space. We now recall
the definition of the space of closed sets, and state several
basic facts concerning this space.

Let X be a topologicel space. Let 2X denote the set of
all non-empty closed subsets of X. For a subset A of X, we let

A X

2 = {Fe2: F cA}. We generate a topology on % by taking

all sets of the form 2G and all sets of the form EX - 2X_G,
for G open in X, as a sub-basis. This topology on 2X is known

as the finite topology, and EX, endowed with this topology,

is called the hyperspace of X.

Our basic references for the fundamental properties of 2X
are [32] and [36].
Following [32], we make the following notational convention.

A A ) =

For subsets A, ,A IEEERECN

0

A n X-A,
2% n2*o2 H=pefir c A

100 e oA of X, we let B(AO;

o and Fon AL # ¢ for all

i=1,2....,n}. Using this notation we see that the sets
n
.,G_ are open and U G, ¢ G
n i

B(G.3G.,...,G ) where G
n .
i=1

09 19' 5G

0’1" 0’

form a basis for the open subsets of 2X.
We now state several basic facts about hyperspaces which
we will need in the course of our discussion.

0.1. If X is T the singletons of 2X form a subspace

19
homeomorphic to X. ([361])



X
0.2. For each positive integer n, we set Fn(X) = {F g 27

|F| < n}, and we set F(X) = u F (X). IfXis T, then F(X) is

b
nel 1

dense in 2%, If X is Hausdorff, then Fn(x) is closed in 2%
for each n € N. (See 2.4 in [36].)

0.3. The operation of set~theoretic union, (A,B) - A u B,

is a continuous map from 2% x 2 into 2%, (See page 166 of [32].)

0.4 2X is compact Hausdorff if, and only if, X is compact
Hausdorff. (See 4.9 in [36].)

0.5. 2X is completely regular (and Hausdorff) if, and only
if, X is normal and Hausdorff. (See 4.9 in [36].)

0.6. If X is normal and Hausdorff, the natural mapping

i: 2% 5 oPX defined by i(F) = cloyF is an embedding of 2% onto

a dense subspace of QQX. (see [27].)
0.7. Let f be a bounded, real-valued function on X. We
) . . S i X
define real-valued functions £ and £~ on 2 by
£3(F) = sup{f(x): x € F} and f1(F) = inf{f(x): x € F}. Then

if £ is continuous, so are £* and £°. We have for f >0,

Z(f)

7(£%) = 2 and, if X is countably compact, Z(f') = B(X: z(f)).

Identifying X with the singletons in 2X, we see that, for a Tl
space X, X is C¥-embedded in 2X. (See L.7 and 4.8 in [36].)

0.8. If X is normal and T the sets of the form

l’
Zl Zn
B(X; 2 )u2 v ... u2, where Z_,7Z o2 € Z(X), form a

0 1’

base for the closed sets in 2X. This can be verified in a

0

straightforward manner.



From Chapter 2 on, we will assume that all spaces under

consideration are T and this assumption will be used without

l,
explicit mention in scome cases. These spaces are not consistently

assumed to satisfy separation axioms other than T Higher

e
separation axioms do enter in certain of our results and
arguments in a significant and essential way, and in such
situations we are explicit as to what separation axioms are
assumed. But we repeat that the assumption that all topological

spaces discussed are T, is tacit from Chapter 2 on. One further

1
word on separation aexioms: the term completely regular, even
when unmodified, implies Hausdorff throughout this thesis.
Theorems are referred to by number. "Theorem 2.6 of
Chapter 1" indicates the sixth theorem in the second section
of Chapter 1. When the number of the chapter is not indicated,

it is to be understood that the reference is to the present

chapter.



Chapter 1

COUNTABLY COMPACT AND PSEUDOCOMPACT SPACES

1. In this chapter we are concerned with certain aspects
of the theory of countable compactness and pseudocompactness.
Several of the ideas and results of this chapter will subse-
quently be applied to the countable compactness and pseudo-
compactness of hyperspaces; however, the main interest and
significance of these results lie in their contribution to the
general theory of countable compactness and pseudocompactness.
The material presented in this chapter is part of joint work
by the author and Viector Saks, whose contribution the author
gratefully acknowledges. This work appears in [20].

We characterize spaces all of whose powers are countably
compact, and thain partiai results on the corresponding question
for pseudocompactness. The basic tool in this work is
A. R. Bernstein's concept of D-compactness ([1]). The maximal
D~compact extension of a completely regular space is constructed.
Additional product theorems for pseudocompact spaces are proved,
imposing conditions closely related to D-compactness on the
factors, which imply the pseudocompactness of the product. In
the last section of the chapter, we prove several theorems
which provide new examples of non-trivial pseudocompact spaces.
In particular, we exhibit a homogeneous space, all of whose

powers are pseudocompact, in which no discrete countable set



has a cluster point.

2. Countably Compact Powers. Let us recall several definitions

of compactness~like conditions which depend on the behaviour of

countable sets.

Let X be a topological space.

X is said to be countably compact, if every countably infi-

nite subset of X has a cluster point.

A subset A of X is relatively cduntably compact in X, if

every countably infinite subset of A has a cluster point in X.

X is sequentially compact, if every sequence in X has a

convergent subsequence.

X is called strongly wo—compact, if every infinite subset

of X meets some compact subset of X in an infinite set.

Finally, we call X wo—bounded, if every countable subset

of X is contained in a compact subset of X.

Our first result characterizes those spaces X such that
every power of X is countably compact. The main tool in this
investigation is Bernstein's concept of D-compactness. In [1]
the concept was introduced, and some of the basic theory of
D-compact spaces was developed. We now give his definition of
D-compactness, and quote the major results in [1], including a

proof of his result that D-compactness is a productive property.



2.1 Definition. Let U be a free ultrafilter on N. TLet X be a
topological space, and let (xn: n e N) be a sequence in X. A

point z e X is said to be a D-limit point of the sequence

(xn: n e N) if, for every neighbourhood W of z, {n: X € W} e D.

We shall express this by writing z € D-1im x_. In Hausdorff
nse
spaces, D~limit points, when they exist, are unique, in which

cagse we write z = D-lim x . A space X is said to be D-compact
neo
S if every sequence in X has a D-limit point.

Observe that a D-limit point of a sequence of distinct
points (Xn: n e N) is, in particular, a cluster point of the set

{xn: ne N}. Therefore, a D-compact space is countably compact.

2.2 Lemma. Let {xn: nelNlcXandlet z e X be a cluster point

gi_{xn: ne N}. Then there exists D in BN-N such that z e D-lim X -
n—>o

Proof. Let G(z) denote the family of all neighbourhoods of z
in X. TFor We G(z), let s(W) = {n: x € W}. The family
F={s(W) - {x}: WeG(z), k ¢ N} has the finite intersection
property, and so there is an ultrafilter D on N such that F ¢ D.

Obviously U is free and z ¢ D-1im x .
nseo

2.3 Lemma. Let f: X > Y be a continuous map. Let (Xn: neN)

be a sequence in X, and let z ¢ X such that z & D-1im x . Then
nseo
£(z) e D-1im £{x ).
n->o n

Proof. For every neighbourhood W of f(z) in Y, f_l(w) is a

__']_(

neighbourhood of z in X. Since {n: x_ e £ (W)} = {n: f(x ) e W},
n n

the result follows.



2.4 Theorem (Bernstein). D-compactness is closed hereditary

and productive. A completely regular space is wo—boundedvif,

and only if, it is D-compact for every D in BN-N.

Proof. Obviously a closed subset of a D-compact space is
D-compact. We will prove the statement concerning products,
and refer the reader to Theorems 3.4 and 3.5 of [1] for the

last statement.

Thus, let {Xa: o € I} be a family of D-compact spaces,

and let X = I Xa“ We will show that X is D-compact. Let

oel
(x(n): n e N) be a sequence in X. Then, for each o in I,
(n) I X X ) ,
<Xa :n € Q) has a D-1limit point Za in Xa° This defines a
point z = (z ) in X. We claim that z & D-1im x(n). For,

a’ael
n->co

let W be any neighbourhood of z in X. There is a finite subset

F of I, and open sets Wa in X for each o in F, such that

0(7

z € 1l Wa x 1 Xa c W.
ael ag? = "

But {n: x(n) e W2 n A{n: xén) £ Wa}, and therefore
oel
{n: x(n) e W} ¢ D. This proves that z € D-lim x(n) and thus

-
X is D-compact.

2.5 Corollary. Any product of D-compact spaces is countably

compact .

Proof. Immediate.



We sre now in g position to characterize spaces all of

whose powers are countably compact.

2.6 Theorem. Let X be a topological space. The following

statements are equivalent:

(i) Every power of X is countably compact

c

(ii) X% is countably compact
x| ©

(iii) X is countably compact;

(iv) There exists D in BN-N such that X is D-compact.

Proof. (i) => (ii). This is trivial.
(ii) => (iv). We show that if (iv) fails, so does (ii).

Thus, suppose X is not D-compact for any D in BN-N. Then, for

(D)

each D in BN-N, there is a sequence (xn : n e ¥) in X which has

(n): neN)in

~

no D-limit point in X. Define a sequence (y

xPE¥ o fol10ws: yén) = xév).

For the sske of contradiction, assume (ii) holds. Then

XBN—N is countably compact, and therefore the sequence

(n)

(v :n e g) has a cluster point z in XBH—N. By Lemmsa 2.2,

there exists E in BN~N such that z e E-1lim y(n). But this
n-rco

implies, by Lemma 2.3, that

I.(z) ¢ E-1lim I (y(n)) = E-lim x<E).
E E n
n-o n->-oo

E)

But this is ridiculous, since (xn : n e N) has no E-limit

point. Thus (ii) must also fail.



10.

(iv) => (i). This follows immediately from 2.5.
(1) => (iii). This is trivial.

(iii) => (iv). Let I be the set of all sequences in X.

(o):

w
We write 0 € L as o = (Xn nelN). Now |[z] = [X| O, and so

(1ii) implies that x% is countably compact, Define a sequence

(n): ne H) in XZ as follows: zém) = xéo). Let p ¢ XZ be a

(n)

(z

cluster point of (=z :n e N). By 2.2, there exists D in

BN-N such that p e D-lim z\™). Ve claim that, for this D, X is

n—x

(o)

D-compact. For, if o = (xn ine€ N) is any sequence in X,

Lemma 2.3 implies that

I (p) e D-1lim Hg(z(n)) = D-1im xic).

g
n—> n—-«»

Thus every sequence in X has a D-limit point, and so X is D-compact.

2.7 Remark. In [U45], écarborough and Stone have shown that, if

X= 1 Xa’ then X is countably compact if, and only if, every

oel
c

subproduct of 22 factors is countably compact. Thus the conditions
(ii) eand (iii) in Theorem 2.6 may be regarded as an improvement

of their result in the case where all the factors are the same.

2.8 Corollary. If !X| < ¢, then x° is countably compact if,

eand only if, there exists D in BN-N such that X is D-compact.
In [L4] the following theorem is proved.

2.9 Theorem. (Saks-Stephenson). The product of not more than w

1

strongly wo-compact spaces is countably compact.
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Assuming the continuun hypothesis [CH], we obtain the following

corollary, which gives natural examples of J~compact spaces.

2.10 Corollary. [cH]. If |X| <c, and if X is strongly w,-compact,

then there exists D in BN-N such that X is D-compact. In particular,

every countably compact k-space of cardinality <c is D-compact

for some D in BN-N.

Proof. The first assertion is obvious from 2.8 and 2.9, while

the second is a special case, by Theorem 1.2 in [39].

2.11 Remark. Since every sequentially compact space is strongly
wo—compact, the conclusion of 2.10 holds for sequentially compact
spaces, of cardinal <c. This special case of 2.10 also follows

directly from Theorem 5.8 in [L5], together with our Theorem 2.6.

For non-trivial examples of the spaces hypothesized in 2.10,

the reader is referred to [10].

We now turn to another aspect of D-compactness. It follows
from the corcllary to Theorem 1 in [23], that every completely
regular spacé has a maximal D-compact extension. That is, for
every completely regular space X, there is a completely regular
D-compact space D(X) containing X as a dense subspace, such that
every continuous map of X into any (completely regular) D-compact
space extends continuously to D(X). From the final section of
[23], it follows that, in fact, we may take X c D(X) < BX where

D(X) is the intersection of all D-compact subspaces of BX



12.

containing X.

We now show how D(X) is built up from X. The construction
is an exact analogue of Example L4 in [1]. 1In this example,
Bernstein is cénstructing a D-compact space which is not
wo—bounded. His construction, when slightly modified, gives
the maximal D-compact extension of an arbitrary completely

ST » regular space. R. G. Woods independently characterized D(X)

by the same method as given here, in [52].

Let X be a completely regular space. We first construct a

transfinite sequence (Xa: o < wl) of subspaces of BX containing X.

Let XO = X. Assume we have constructed the spaces Xu’

for o < B such that
(i) a, <a, <B=>X cX ¢ BX

(ii) o, < a, < B => every sequence in X, has a D-1imit

L 1
peint in X .
o
2
We now construct XB. Let ZB be the set of all sequences in
u X . Tor each 0 ¢ ZB, let x be a D-1limit point of o in BX.
o<f

Finally, let X, = (v Xa) u {xc: o€ ZB}. This completes the

a<f

B

induction step, and gives a sequence (Xa: a < wl) satisfying

(i) and (ii) for all G4, <o, <.

2.12 Theorem. D(X) = u Xa.
o <w
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Proof. Obviously X ¢ u X ¢ gX. If (Xn: n e N) is a sequence

a<w ¢
1

in v Xa’ it lies entirely within one XB’ and thus has a D-limit

a<w
1

point in XB+1' Therefore u Xa is D-compact. A straightforward
o<w
1
induction shows that any D-compact subspace of BX containing X

must contain every Xa’ that is, must contain v Xa' From the

o<w
1

result we have quoted from the Herrlich and van der Slot paper

[23], it now follows that D(X) = u X .

2.13 Corollary. [D(X)| < |X| .

Proof. This is obvious from the construction described above.

Information on the role of D-compactness as an extension

property of topological spaces can be found in [52].

3. Powers and Products of Pseudocompact Spaces. Recall that a

space X 1s pseudocompact if every econtinuous real-valued function

on X is bounded. There is an obvious modification of D-compactness
which is suited to the study of pseudocompactness in completely
regular spaces. This is because, as Glicksberg observed in [21],

a completely regular space X is pseudocompact if, and only if,
every sequence of non-empty open subsets of X has a cluster point.
(A cluster point of a sequence of sets is a point such that each

of its neighbourhoods meets infinitely many sets in the sequence.)



1k,

In fact, as Glicksberg shows, it is necessary and sufficient

that every sequence of pairwise disjoint, non-empty open sets

have a cluster point. This condition in general, (that is,
for non-completely regular spaces) is stronger than pseudo-

compactness. (See [L45].)

3.1 Definition. Let D be a free ultrafilter on N. Let

(Sn: n € N) be a sequence of subsets of a topological space

X. A point p ¢ X is called a D-limit point of the sequence

(Sn: nel) if, for every neighbourhood W of p,

{n: Sn nNwW# ¢} e D. A space X is called D-pseudocompact if
every sequence of non-empty open subsets of X has a D-limit

point.

Meking use of arguments similar to those in 2.L, we can

readily establish the following facts.

3.2 Theorem. Every D-pseudocompact space is pseudocompact.

3.3 Theorem. Every product of D-pseudocompact spaces is

D-pseudocompact.

A corollary of these two theorems is that every power of
a D-pseudocompact space is pseudocompact. Now, it follows from
Theorem 4 of [21], that any product of pseudocompact, locally
compact spaces is pseudocompact, and that any product of pseudo-

compact, first countable space is pseudocompact. Since there is
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no reason, in general, to expect such products to be D-pseudo-
compact, one cannot hope for a result analogous to Theorem 2.6
for pseudocompact powers of completely regular spaces. This can
be seen in another way. In [21],.Glicksberg shows that a product

of completely regular spaces 1 Xu is pseudocompact if, and only
oel

if, every countable subproduct is pseudocompact. Now, for a
sequence of sets o = (Sn: nel)in X, let L(c) = {D g RU-N: o
has a D-limit point}. Let I be the set of sequences (of points)
_in X, and let ZG be the set of all sequences of non-empty open
subsets of X. The proof of 2.6 really shows that every power
of X is countably compact if, and only if, for every subset T of
£, nL(o) # ¢. Since every power of a completely regular space

oeT

“o

X is pseudocompact if, and only if, X is pseudocompact, we can,

in a similar way, conclude that every power of X is pseudocompact

if, and only if, for every countable subset T of ZG’ n L(c) # ¢.
geT

3.4 Example. A completely regular spaces; all of whose powers are

pseudocompact, which is not D-pseudocompact for any D in BN-N.

For each p in BN-N, let X = BN-{p}. Let X = T X.
P pepy-I ©

Since every power of X is a product of locally compact, pseudo-
compact spaces, every power of X is pseudocompact. But the factor
XD of X is not D-pseudocompact, and so X is not D-pseudocompact

for any D in BN-N.
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3.5 If a space X has a dense subset D such that every sequence
in D has an accumulation point in X, then obviocusly X is pseudo-
compact. Many of the famiiiar examples of pseudocompact spaces
have this property, and this criterion for pseudocompactness has
been used profitably in many instances. We refer the reader to

[3] and [13] for excellent examples of this.

With this in mind, another natural application of D-compactness
te the study of pseudocompactness arises. Let us consider spaces
X which have a dense subset A such that every sequence in A has

a D-limit point in X. Calling such spaces densely-D-compact,

we can establish the following theorem.

3.6 Theorem. Every product of densely-~D-compact spaces is

dengely~D-compact. Every densely-D-compact space is D-pseudo-—

compact.

Proof. The first assertion follows in a straightforward manner,
using an argument similar to that in 2.4. To prove the second
statement, let X be densely-D-compact. Let A be a dense subset
of X such that every sequence in A has a D-limit point in X. Now,
let (Gn: n e N) be any sequence of non-empty open sets in X. For
each n, there exists a point a, € Gn nA., Let p e X be a D-limit
point of the sequence (an: n e N). Then, clearly p is a D-limit

point of the sequence (Gn: n e N). Therefore, X is D-pseudocompact.
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4. Examples of Pseudocompact Spaces. In this section we prove

several theorems which provide new examples of non-trivial

pseudocompact spaces.

Let us first recall the notion of type in BN-N. The equi-
valence relation ~ defined on BY-N by x ~ y if there exists a
homeomorphism of BN onto itself taking x to y, decomposes BN-N
into equivalence classes called types. For p & BN-N, T(p)
denotes the type of p. Recall that, for any p e BN-N, T(p) is
dense in BN-N. (See 68 in [15], and [12].) ©Note also that

every type is a homogeneous space.

We are indebted to Z. Frolik for communicating the following

lemms .

L.l Lemma. (Frolik). Let T be a type of BN-N. Then no countable

digcrete subset of T has a cluster point in T.

Proof. ©Suppose the statement is false. We shall derive a contra-
diction.  Thus, let (xn: n e g) be a discrete subset of a type T
which has a cluster point in T, say x. Find pairwise disjoint,

infinite subsets {An: n e N} of N such that N= u An and x € ClBNAn

nell
for each n.

Now, for each n, xn and x are of the same type, so we can

find, for each n, a homeomorphism fn: BN - BN such that

f (x ) = x. Let g_ denote the restriction of f to A . Define
n'n n n n



18.

F: N-+-Nby F= u g," Let FB denote the Stone extension of F

) N nelN
to BN. Continuity implies that FB(xn) = x for each n, and

therefore implies that FB(clBN{xn: n e N}) = {x}. Thus Pix) = x.

We now appeal to a result of Katetov, in [26], which implies
that the fixed points of FB are precisely the points in the

BN-closure of the set of fixed points of F. (For a detailed proof,

B

see Lemma 9.1 in [6].). Thus, letting U = {p e BN: F (p) = p},

we have U = ClBN(U n N). In particular, U is open in BN. Since
x € U, and since x is a cluster point of {xn: n e N}, there is an
integer k such that X, € U. For such an integer k., we then have

to conclude that Xk =P

But this is ridiculous, since x is & cluster point of

{xn: n e N} and {xn: n e N} is discrete.

As was remarked in 3.5, the pseudocompactness of many

familiar spaces can be deduced by the presence of a relatively
countably compasct dense subspace. One of the first examples of
a pseudocompact space which‘has no dense countably compact
subspace appears in [35]. The following Theorem L.2, together
with Lemma 4.1, shows there are pseudocompact spaces in which
no countable discrete set has a cluster point. Assuming the
continuum hypothesis, in 4.3 below, we exhibit a pseudocompact
space in which no countable set has a cluster point. It follows
that, in all of these examples, there is no dense relatively

countably compact subspace. In Theorem 4.5 we show that these
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spaces have all of their powers pseudocompact. These results
show that pseudocompact spaces can be as far from countably

compact as is imaginable.

We will show that, if q is a non-P-point of BN-N, then
T(q) is pseudocompact. (For ﬁhe definition and basic properties
of P-points, see 4K and UL of [15].) We use the fact that, if
q is a non-P-point of BN-N, there exists a partition {Bn: ne N}
of N into infinite sets, such that for each A € q, we have
{n: 4 n Bn is infinite} is infinite. This can be shown directly,

as in Lemma 9.1Lk of [6].

Our originel theorem on the pseudocompactness of types
held for a more restricted class of types. We are grateful to
W. W. Comfort for pointing out that our construction works

for all non-P-point types.

4.2 Theorem. If g is & non-P-point of BN-N, then T(g) is

pseudocompact.

Proof. By the result of Glicksberg's quoted earlier, it is
sufficient to prove that every sequence of pairwise disjoint,

non-empty open subsets of T(q) has a cluster point in T(q).

Thus, let (Gn: n € ) be a sequence of pairwise disjoint,
non-empty open subsets of T(q). For each n, there is an infinite

subset An of N such that (cl An) n T(q) ¢ Gn' We claim that,

BN
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forn# m, A_ n A is finite. For, if A n A was infinite,
n m m n

then cl n cl An would be an open subset of BN that meets

ar'n " ey
BN~-N. The density of T(q) would imply that

(clBNAm) n (clBN

of G and G . Thus n #¥ m implies that A n A is finite. For
n m n m

An) n T(q) # ¢, which contradicts the disjointness

each n, let Ag =A - UA,. Then {A;: n e N} is a family of
i<n
pairwise disjoint infinite subsets of N such that

1

1
;v (N -~ v An)

1
(clBNAn) n T(q) ¢ G for each n. Let C, =4
o nelN
and let Cn = A; for n > 1. To find a cluster point of
(Gn: n e N) it clearly suffices to find a cluster point of the

) nT(g): n e N).

sequence ((clBNCn N

We have thus reduced the task of showing T(q) is pseudo-
compact to the following: We must show that, for every partition
of N into infinite sets {An: n e N}, the sequence

((ClBNAn) n T(g): n € §) has a cluster point in T(q). To this

end, let N = u A be such a partition. Since q is not a P-point
nel
of BN-N, there is a partition N = u B_of N into infinite sets,
nelN

such that, for each A e g, {n: A n Bn is infinite} is infinite.

Let £: N + N be a bijection teking Bn onto An for every n. Let

fB denote its Stone-extension to BN, and let p = fs(q). Then

p e T(q). We claim that p 1s a cluster point of the sequence

((ClBNAn) n T(g): n e N). To prove this, let (¢l A) n T(q) be

8N
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any basic neighbourhood of p in T(q). Then A € p, and so

f‘l(

A) € g. The set {n: f_l(A) n Bn ig infinite} is infinite.

Since f is a bijection, for infinitely many n, A n An is an

infinite set. But for any such n, ClBNA n ClBNAn is an open

subset of BN that meets BN-N. Since T(q) is dense in BN-N, for
= A

any such n, [(clBNA) n T(q)] n [(clBNA ) n T(q)] (ClBN )

n ClBNA ) # ¢. Thus every neighbourhood of p in T(q)

meets infinitely many of the sets (ClBNA ) nT(q). That is, p

is a cluster point of ClBNA nT(q): n e N). As we observed

at the beginning of the proof, this enables us to conclude that

T(q) is pseudocompact.

4.3 Remark. In [L2], assuming the continuum hypothesis, M. E. Rudin
shows there exists a non-P-point g in BN-N such that g is not in

the closure of any countable subset of BN-N. By our Theorem 4.2,
for such q, T(q) is a pseudocompact space in which no countable
subset has a limit point. The assumption that q is not a P-point

in 4.2 is essential, since a pseudocompact P-space is finite,

and therefore no P-point type is pseudocompact.

The following theorem shows that the non-P-point typés are
not only pseudocompact, they are, in fact D-pseudocompact. We
thus see that D-pseudocompactness arises in very natural and
fundamental spaces. As the reader will observe, our proof of the

D-pseudocompactness of types exploits the "homogeneity" of BN.
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4.4 Theorem. Let g be a non-P-point of BN-N. Then there exists

D in BN-N such that T(qg) is D-pseudocompact.

Proof. Let {An: ne g} be an infinite collection of pairwise

disjoint infinite subsets of N with N - u An infinite. Since
nelN

T(q) is pseudocompact, the sequence ((ClBNAn) nT(q): n e N) has
a cluster point p € T(q). A proof completely analogous to

Lemma 2.2 shows there exists a free ultrafilter U in BN-N such
that p is a D-limit point of ((clBNAn) nT(g): nelN). We wil;

show that for this D, T(q) is D-pseudocompact.

Thus, let (Gn: n € N) be any sequence bf non-empty open
subsets of T(q). For each n, find an infinite subset Bn of N
such that (clBNBn) nT(q) ¢ G, - Using the Disjoint Refinement

Lemma 7.5 of [6], we can find a pairwise disjoint sequence

(Cn: n e N) of infinite subsets of N, such that N - u C is
nel

infinite and Cn [« Bn for each n. It clearly suffices to show
that ((clBNCn) n T(q): n e N) has a D-limit point in T(q), for
such a point will be a D-limit point of (Gn: ne N). Now, let
f+ N >N be a bijection taking An onto Cn for every n. Let

5

r = f(p). Then r € T(q). It follows easily that r is a

D-limit point of ((clB

sequence of open sets in T(q) has a D-limit point. That is,

Ncn) nT(q): n e W) in T(q). Thus every

T(q) is D-pseudocompact.
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4.5 Theorem. If g is a non-P-point of BN-N, then every power

of T(q) is pseudocompact.

- Proof. This follows immediately from L.L4, 3.2, and 3.3.

4.6 Remark. Theorem 4.l and Lemma 4.1 show that, for a non-P-
point q of BN-N, T(q) is an example of a D-pseudocompact space
which is not densely E-compact for any E in BN-N. Thus the

converse of the second statement in 3.6 is false.

Our last result in this section is very special in nature.

It exhibits certain pseudocompact subspaces between X and BX.

b7 Recall that a completely regular space X is said to be

extremally disconnected if every open subset of X has open closure,

and bagically disconnected if every cozero-set in X has open

closure. For the elementary properties of these spaces, the

reader is referred to 1H and 6M in [15].

4.8 Theorem. Let X be basically disconnected and locally compact,

and let D be a dense subset of BX-X. Then X u D is pseudocompact.

Proof. We will assume not and reach a contradicticon. If X U D
is not pseudocompact, there is an unbounded function f in
C(X uD). Let g = (f2+1)“l. Then g ¢ C(X UD), 0 < g <1 and

inf g(t) = 0. Let gB denote the Stone extension of g to
teXwd

B(X uD) = BX. Since X is dense in X u D, for every n there is
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. For each n, let

n il fod

& point x in X such that g(xn) <
Gn = {x e X: g(x) < %&. Since X is locally compact, we can
find, for each n, &a cozero-set Hn containing Xn’ whose closure

is compact and is contained in Gn. Let W= wu Hn' Then W is a
nelN

cozero-set in X. Now chW is not compact, since the function g
on chW does not attain its infimum on chW. Thus ClBXW - X # 4.
But, since X is basically disconnected, ClBXW = ClBX(ClXW) is

open in BX. Since it meets BX-X, it must meet D, since D is

dense in BX-X. Let p ¢ (ClBXW) n D. Since g is strictly positive
on X u D, there is an integer m such that g(p) > %-. Let

m
V= {x e BX: gB(x) > ;&. Then V - U cl,H, is a neighbourhood
n i=1 &7 »

of p in BX which is disjoint from W. This is ridiculous, since

D€ ClBXw' This contradiction proves that X u D is pseudocompact.

4.9 Remark. The conclusion of Theorem 4.8 holds whenever X is
locally compact and realcompact. This result was established

by Fine and Gillman in Theorem 3.1 of [9]. A special case of

4.8, for extremally disconnected, locally compact spaces, combined
with Theorem 3.1 in [51], yields the Fine - Gillman result as a

corollary.
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Chapter 2

COUNTABLE COMPACTNESS AND PSEUDOCOMPACTNESS IN HYPERSPACES

1. We are concerned here with the countable compactness and
pseudocompactness of 2X. The first significant results concerning
this theme are found in [27], where it is shown that % ig

wo~bounded when X is normal and w. -bounded, and where it is pointed

0
out that 2X need not be countably compact or pseudocompact when
X is. Although we are unahble to characterize those spaces whose
hyperspaces are countably compact (or pseudocompact ), we obtain
substantial generalizations of the results in [27] mentioned
above. The concepts and theorems of Chapter 1 are applied in
establishing the following results. X is D-compact if, and only
if, 2X is D-compact. X is D-pseudocompact if, and only if,

EX is D—pseudocompact.' If all powers of X are countably compact,
then 2X is countably compact. If EX is countably compact, then
all finite powers of X are countably compact. If X is completely
regular and 2X is pseudocompact, then all finite powers of X

are pseudocompact. We give an example of a completely regular

space Y, all of whose finite powers are countably compact, such

that 2Y is not pseudocompact.

We assume, from now on, that all spaces considered are Tl

spaces.
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2. Some Theorems on the Countable Compacfness and Pseudocompactness

of 2%. Our first result compares the Decompactness of 2X

with that of X.

2.1 Theorem. Let D be a free ultrafilter on N. Then X is

D-compact if, and only if, 2X is D-compact.

Proof. Suppose 2% is D-compact. Let (xn: n € N) be any sequence
in X. The sequence ({Xn}: nel) in 2X has a D-limit point F
in 2X. Let p be any point of F. If G is a neighbourhood of p
in X, then, since F n G # ¢, B(X; G) is a neighbourhood of F in
QX. Since F is a D-limit point of ({xn}: n e N), we have
{n: {xn} e B(X; G)} ¢ D. But {n: {xn} e B(X; @)} = {n: x € G}.
Thus, for every neighbourhood G of p in X, {n: x e G} ¢ D, and
so p is a D-limit point of (Xn: ne H) in X. This shows X is
D-compact.

For the converse, suppose X is D-compact. We show 2X is
D-compact. Thus, let (Fn: n ¢ N) be a sequence in 2X. Let
L ={p e X: pils a D-limit point of the sequence (Fn: ne N)J.
Clearly L is a non-empty, closed subset of X. That is, L ¢ 2X.
We claim that I is a D-limit point of the sequence (Fn: n e N)
in 2X. To see this, let Y = B(G

el .,GT) be a basic neigh-

0>"1°""
bourhood of L in 2X. We must show that {n: Fn e W} e D. TNow let

N, = {neN: F_ < GO}, and for 1 ¢ {1,2,...,T} let N, = {neN:
T

FonGy # ¢}. Clearly {n e N: F e Wy = 'noNi. Thus, to
l:

show that {n ¢ N: Fn e W} € D, we need to prove that
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Ni e D for each i ¢ {0,1,...,T}. Now, since L ¢ I/, we have
L n Gy # ¢. Let p el n Gi' Then p is a D-limit point of the
gsequence (Fn: ne N) and Gi is a neighbourhocd of p, so
{n: ¢ nF_# ¢} =N, ¢ D. Thus N, ¢ D for i = 1,2,...,T.
i n i i
Finally, we show NO e D. Tor the sake of contradiction, assume

NO ¢ D. Then N-N_ e D. For each n e N-N_, choose a point

0 0

X € Fn - GO. For each n ¢ NO’ choose a point X arbitrarily

from Fn. The sequence (xn: ne N), so obtained, has a D-limit

point a, by the D-compactness of X. Clearly, a is a D-limit
point of the sequence (Fn: nelN), and so aelL. But L e,

so that L g GO. Therefore, a ¢ GO. Since a is a D-limit point

of the sequence (Xn: n e N), we have {n: x e GO} e D. But this

last set 1s disjoint from N-N_, which also lies in ?. This is

0

a contradiction. Therefore, N_ e U, and L is a D-limit point

0
. . X X .
of the sequence (Fn: n e N) in 2°., Thus 2 is D-compact.

From 2.1, we can obtain, as a corollary, the following

theorem due to J. Keesling, [27].

2.2 Corollary. Let X be a normal space. Then X is wo—bounded

if, and only if, 2X is wo—bounded.

Proof. If X is normal, then, by L.9.5 of [36], % is completely
regular. By Theorem 2.4 of Chapter 1, 2X is wo-bounded if, and

only if, it is D-compact for every free ultrafilter D on N.

By 2.1, this happens exactly when X is D-compact for all free
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ultrafilters U on N, which is equivalent to X being wo~bounded.

Theorem 2.1 also allows us to establish the following
relation between the countable compactness of 2X and that of

powers of X.

2.3 Corollary. Let X be a Hausdorf® space. If all powers of
X

X are countably compact, then 2X is countably compact. If 2

is _countably compact, then all finite powers of X are countably

compact.

Proof. 1If all powers of X are countably compact, then by 2.6
of Chapter 1, there is a free ultrafilter D on N such that X
is D-compact. By 2.1 above, 2X is also D-compact, and sco, in

particular, is countably compact.

Suppose 2X is countably compact. For each n e N, let

F(X) = {F e 2F

N : [Fl <mn}. By 2.4 of [36], Fh(X) is a closed

subspace of 2X for each n ¢ N. TFor each n, define the map

n
80 X~ Fn(X) by Sn(xl’X2’°"’X ) = {Xl’XZ""’Xn}' Then,

n

for each n, Sn is a continuous, closed, finite-to-~one map from
™ onto Fn(X), [14]. As countable compactness is closed hereditary
and preserved under perfect pre-images, the countable compactness

of 2X implies that of X" for each n e N.

We next turn to pseudocompactness. The next result is an

analogy to 2.1.
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2.4 Theorem. Let D be a free ultrafilter on N. _Then X is

D-pseudocompact if, end only if, 2X is D-pseudocompact.

Proof. Suppose 2X is D-pseudocompact. We show that X is

D-pseudocompact. Thus, let (Gn: e §) be a sequence of non-

n
Gn :
empty open subsets of X. Then (2 ": n e N) is & sequence of
non-empty open subsets of 2X. As 2X is D-pseudocompact, this
sequence has a D-limit point F e 2X. Choose any point p € F.

We show that p is a D-limit point, in X, of the sequence

(G :ne N). For, let W be any neighbourhood of p in X. Then,

n
since F n W # ¢, o _ XV g neighbourhood of F in o,
G
Since F is a D-limit point of the sequence (2 “: n e N),
G G
fn: 202X 225" 261 en. But 2 ®oa (282 X 4 b if,

and only if, Gn NW# ¢ Thus {n: Gn NW# ol eD, and so p
is a D-limit point of the sequence (Gn: n e N). Therefore X

is D-pseudocompact.

Conversely, suppose X is D-pseudocompact. Since the dets
T

G with G, ,G G, open in X and wu Gi c G

B(G T), STICAPRRR e
. i=1

R o

form a basis for the topology on EX, to show that 2X is
D-pseudocompact we need only show that sequences of such open
sets have D-limit points. Thus, suppose we are given a

sequence (Gn: n e N) of non-empty basic open sets Gn in 27,

Write Gn as B(GO;n’Gl,n""’GTn,n)’ with Gi,n open in X and
T
n
u a, < G . Let L = {p e X: pis a P-limit point of the
i,n O,n

i=1 77
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sequence (GO . € N) . Then L is a non-empty, closed subset
N

of X. That is, L € 2X. We claim that L is a D-limit point,

in 2X, of the sequence (Gn: n e N). Now the sets of the form

EG and B(X; G) form a sub-basis for 2X. Since filters are

closed under finite intersection, to show that L is a D-limit
point of (Gn: neN), it is enough to establish the following

two statements:
(i) If G is open in X and L ¢ 2G, then {n e N: o g Gn # ¢} e D.

(ii) If G is open in X and L e B(X; G), then

{n e N: B(X; G) n Gn # ¢} e D.

Let us first establish (i). Note that ¢ g Gn # ¢ if, and only

if, G n Gi’n # ¢ for all i = 1,2,...,T . Let
S = {n e N: 2 5 Gn # ¢} and let T = N-S. For the sake of

contradiction, suppose S ¢ V. Then T e D. For eachn e T,

find an integer i_ e {1,2,...,T } such that G n G. = ¢,
n n i .n

Define a sequence (Hn: n € N) of non-empty open subsets of X

as follows. For n e T, Hn = G, , and for n e S, Hn =G

i ,n 1,n°
n’ 9

Now, since X is D-pseudocompact, the sequence (Hn: n e N) has
a D-limit point a e X. 'Clearly a e L. Since L ¢ EG, we have
L G, and so a € G. Since a is a D-limit point of (Hn: ne N),
{nelN: Gn H # ¢} ¢ D. But this latter set is disjoint from

T, and T ¢ D. This is a contradiction. Therefore, S e D,

establishing (i). To establish (ii), suppose G is open in X
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and L € B(X; G). Observe that B(X; CG) n Gn # ¢ if, and only if,
GnGO,n#tb. Let M = {n e N: B(X; G) nG_# ¢}
= {n e N: GnGOn#cb}. Now, since L € B(X; G), L n G # ¢.
2
Let p e L n G. Then p is a D-limit point of the sequence
(GO L BE N), and G is a neighbourhood of p. Therefore,
2

{neN: Gn GO N # ¢} ¢ D. That is, M ¢ D, establishing (ii).
b

We have thus shown that L is a D-limit point of

(Gn: n € N). Therefore, o s D-pseudocompact, as desired.

Even having established 2.4, we cannot conclude that the
pseudocompactness of all powers of X implies the pseudocompactness
of 2X, at least not by an argument analogous to the one used in
2.3. The problem here is that D-pseudocompactness is not a
necessary condition for pseudocompact powers. (See 3.4 in
Chapter 1.) We can, however, establish a pseudocompact counter-
part to the second assertion in 2.3. Let us call a space X

G-pseudocompact if every sequence of non-empty open subsets of

X has a cluster point in X. (That is, a point in X, each of
whose neighbourhoods meets infinitely many sets in the sequence.)
These spaces have also been called feebly compact in the
literature. (See [45].) As was mentioned in the first chapter,
in the class of completely regular spaces, G-pseudocompactness
and pseudocompactness coincide. In general, G-pseudocompactness

implies pseudocompactness.
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2.5 Theorem. Let X be regular. If 2X is G-pseudocompact, then

all finite powers of X are G-pseudocompact.

Proof. Assume 2X is G-pseudocompact. Firstly, X is G-pseudo-

compact. For, if (Gn: ne H) is a sequence of non-empty open
G
subsets of X, the sequence (2 g € N) has a limit point L

in 2X. Choosing any point p e L, it is easy to see that p is
a limit point of (Gn: n ¢ N). Thus every sequence of non-empty

open subsets of X has a limit point in X. That is, X is

G-pseudocompact,

Next, we show that X x X is G-pseudocompact, for which it

suffices to show that every sequence (Un X Vn: n e N) where

Un’ Vn are non-empty, open subsets of X, has a limit point in
X x X. We will assume not, and we will derive a contradiction.
So assume (Un X Vn: n e N) has no 1limit point in X x ¥. Now X
is G-pseudocompact, as has already been established, so the
sequence (Un: n e ) has a 1limit point p € X. Since

(U %V :neN) has no limit point in X x X, in particular,
n n ~

(p,p) is not a limit point of (Un x V :neN). Therefore,

there is a neighbourhood W of p in X such that
fneN: (WxW)n (U xV)#9¢}is finite. Let

S=1{neN: (W xWn (Un x Vn) # ¢}. By regularity, find a

neighbourhood Wl of p in X such that Clel c W. Let

T = {n e N: Wl n Un # ¢}. Since p is a 1limit point of (Un: neXN),



T is infinite. Let Nl = T-S., Then Nl is infinite. Consider

the sequence ((Wl n UJ x Vn: ne Nl)' Being a refinement of a

subsequence of (Un xV :ne N), the sequence ((Wl n Un) x Vo

n e Nl) also has no limit point in X x X. Let A = chWl, and

let B = ch( u Vn). Then A and B are disjoint regular-closed
neNl

subsets of X and u [(W

nel\T:L

nU)xV ]cgcA xB. Now, since A an
1 n n
B are disJoint closed sets, A v B is homeomorphic to A + B,

+
the free union of A and B. By 5a., page 166 of [32], A8

homeomorphic to 2A x 2B. Now G-pseudocompactness is evidently
inherited by regular-closed subsets. As 2X is G-pseudocompact,
so is EAUB, and so, by the above remarks, so is 2A X 2B. It
follows easily that A x B is G-pseudocompact. But

((Wl n Un) xV ine N) has no limit point in X x X, which is

a contradiction. Thus X x X is G-pseudocompact.

One can now prove by induction on n, that X is G-pseudo~
compact for all n € . The essential idea in going from Xn
to Xn+l is the same as going from X2 to X3, but the details
are more cumbersome. Accordingly, we will show how to deduce
the G-pseudocompactness of X3 from that of X2 (and that of 2X,
of course), and leave the induction as a straightforward

extension of this step.

Thus, from the G-pseudocompactness of 2X and X x X, we are

to deduce the G-pseudocompactness of X x X x X. We assume that

33.

d



X X X X X is not G-pseudocompact, and we will reach a.contra-
diction. So, let (An xB xC:ne ) be an open sequence in

X3 which has no limit point. DNow X2 is G-pseudocompact, so

the sequence (An x B : n e N) has a limit point (a,b) in X x X.

n

Neither (a,b,a) nor (a,b,b) is a limit point of

(An X Bn X Cr: neXN) in XB. Thus we can find neighbourhoods
L

G and H of a and b respectively, such that the two sets

M= {nel: (6 xHxG)n (An x B % cn) # ¢} and

1

My

Find neighbourhoods Gl and Hl of a and b respectively such

that cl,G, ¢ G and el < H. Let My = {n e N: (Gl X Hl)
n (An x Bn) # ¢}. Since (a,b) is a limit point of
(An XxDB:ne N, M3 is infinite. Now let Nl = M3 - (Ml U Mg).
Then N, is infinite. Let A = G. n A , and let B = H. n B .
1 n 1 n n 1 n.

The sequence (Aé X B; X Cn: nel being a refinement of a

D
subsequence of (An xB xC:ne N), also has no limit point

in X°. But X2

n
is G-pseudocompact, so the sequence (Bé X Cn:
n e Nl) has a cluster point (c,d) in X2. Neither (c,c,d) nor

- . . 1 1
(d,c,d) is a cluster point of (An X Bn X Cn: ne Nl). So we

find neighbourhoods U and V of ¢ and d respectively, such that

the two sets

=
1l

t 1
N {n e N (UxUxV)n (An x B x cn) # ¢} and

nelN : (VxUxTV)n (A;

L2 1

i

{nelN: (GxHxH)n (An x Bn X Cn) # ¢} are finite.

3k,

1 . .
X Bn X Cn) # 6} are finite.
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Find neighbourhoods Ul and Vl of ¢ and d respectively, such

that cl Ul £ U and cl Vl < V. Now, let

X X

= {nen;: (ux v)n (B; xC ) # ¢}

Ly 1

Since (c,d) is a limit point of (B; xC :ne Nl)’ the set

" 1
LU L2) is infinite. For n € Ng= set A = An,

" 1"
B =U nB, ¢'=vV. nC . The sequence (A" x B xC':neN
1 n n n n

n 1 n n 2)

has no limit point in X°. Let A = el ( u A;), B = cl,( v B;),

neN neN

2 2
C = ch( U Cg). Then A,B,C are pairwise disjoint regular-closed
neN
2
1
subsets of X, and U (A x B x C;) S A xBxC. By the same
neN2

. AUBUC
argument used earlier, 2A X 2B X QC is homeomorphic to 2 .
which, as a regular-closed subspace of QX, inherits G-pseudo-
compactness. Thus A x B x C is G-pseudocompact, which contra-

n

1"
dicts the fact that (A; X Bn X Cn: nelN has no limit point.

5)

This contradiction proves that X3 is G-pseudocompact.

As was mentioned above, a completely regular space X is
G-pseudocompact .if, and only if, it is pseudocompact. Although
2X ig completely regular only when X ig normal, these concepts
remain equivalent for 2X when X is completely regular, as we

now show.

2.6 Proposition. Let X be completely regular. Then 2X is

G-pseudocompact if, and only if, it is pseudocompact.
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Proof. G-pseudocompactness always implies pseudocompactness.

We need only show that if 2X is not G-pseudocompact, then EX

is not pseudocompact. ITf 2X is not G-pseudocompact, there is

a sequence Gn = B(G G e ) of non-empty basic open

H g e e
O,n’ " 1,n Tn,n

subsets of 2X, which has no limit point in 2X. For each n

and each i € {1,2,...,Tn}, choose a point pn,i £ Gi,n' Let

F = {p

n n,i’ , 80, by complete
9

i= 1,2,...,Tn}. Now F_ € Go’n

regularity, we can find, for each n, a continuous, real-valued
function fn on X such that fn(x) = 1 for each x € Fn’ and

f (x) = 0 for each x € X - G , and such that 0 < £ < 1.
n O,n - n

Given n and 1 € {1,2,...,Tn}, by complete regularity, we can

find a continuous, real-valued function - on X such that
3

0<e, ; Sl 8 (p. .) =1, and g, i(x) = 0 for each
9 2

n,i “n,i

xeX-G . Now, for each n, define f; on 2% by

2
f (F) = inf f (x). For each n and each i e {1,2,...,T },
n xeF O &

+ +
define g_ ., on % by g .(F) =sup g_ .(x). By 4.7 of [36],
n,i n,i cep Dol

. - + .
the functions fn and g, ; are all continuous, real-valued
2

functions on 2X. Now, for each n, let G_ = f g .°...°g+ .
n n -n,i n,Tn

Then Gn is continuous and Gn(Fn) = 1, and Gn(F) = 0 for each

the function I n G dis continuous on 2X, and 1s clearly

nelN
unbounded. Thus 27 is not pseudocompact.

Fe ot - Gn. Since the sequence (Gn: n € N) has no limit point,
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2.7 Corollary. Let X be completely regular. If 2X is pseudo-

compact, then all finite powers of X asre pseudocompact.

Proof. This follows immediately from 2.6 and 2.7.

3. An Example. In [12], Z. Frolik constructs, for each positive
integer n, a space X, such that X is countebly compact, but
x5 not pseudocompact. In [27], J. Keesling shows that

the hyperspaces Of these spaces are not pseudocompact. This
conclusion also follows from 2.7. Also in [12], Frolik constructs
a space Y, all of whose finite powers are countably compact,

such that on is not pseudocompact. We will see below that EY

is not pseudocompact, thus providing a counterexample to the

converse of 2.7 and to the converse of the last statement in 2.3.

3.1 Example. A completely regular space Y, all of whose finite

powvers are countably compact, such that 2Y 1s not pseudocompact.

Frolik constructs a sequence Xi’ for 1 € N, of subspaces

of BN-N, such that T N u Xk is not pseudocompact, while every
kely
finite subproduct is countably compact. In his example,

n X, = ¢. The desired space Y is the free union of the spaces
ielN
Nu Xi’ together with a point at infinity, whose neighbourhoods

are complements of finitely many of the spaces N v Xi' To avoid

ambiguity, let us replace N u X, by ¥, = (N u Xi) x {i}. The
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space Y is then ( u Yi) u {»}, with the topology described
ielN

above. We wili show that QY is not pseudocompact. We will
in fact produce an open-~closed subspace of EY homeomorphic to
N. For each n, we let F = {(n,1), (n,2),...,{n,n)}. Since
each point of each copy of N is isolated in Y, it follows that,
for every n, Fn is an isolated point of—ZY. Thus
D= {Fn: ne N} 1s a discrete, open subspace of QY, and our
proof will be complete if we show D is closed in QY. Let
A e QY. We show that A is not a cluster point of D.

Case 1. An[ u N x {k}] # ¢. 1In this case, let

keN

(n,k) ¢ A. Now (n,k) is isolated in Y, so B(Y; {(n,k)}) is a
neighbourhood of A in o', At most one F, is in B(Y; {(n,k)}).
Therefore A is not a cluster point of D.

Case 2. T§e§e is an integer 1 such that A n Yi = ¢.
In this case, 2 i is a neighbourhood of A in ZY meeting D

in & finite set. Thus A is not a cluster point of D.

Case 3. For some integer i, |A n Yil > 1, In this case,
A meets two disjoint open subsets Gl and G2 of Yi. Since each
Fn contains at most one element from each Yi’ B(Y; Gl’GE) is &
neighbourhood of A in 2Y that is disjoint from D. So again,

A is not a cluster point of D.
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Case 4. In light of the first three cases, we may now
assume that A = {(Xn,n): n e N} u {«}, where, for each n,

x € Xn' Now, since n X = ¢, we can find integers n and m
nel

such that xn # X Find disjoint open sets U and V in BN such

that x ¢ U and x e V. Now set U = [Un (N u Xn)] x {n},

and Vl = [Vn (¥ u Xm)J x {m}. Then Ul and Vl are open in Y,

and (xn,n) e U Vl) is a neighbourhood

15
of A in 2Y. Since B(Y; Ul,Vl) is clearly disjoint from D, A

(xm,m) £ vl. Thus B(Y; Ul,

is not a cluster point of D.

Cases 1 to 4 combine to show that D is closed in EY,

completing the proof.

3.2 Remark. In light of the results of 2.3 and 2.7, and
Exemple 3.1, it is natural to ask whether there is any relation
between the pseudocompactness (countable compactness) of Xwo
and that of 2X. It would alsc be interesting to characterize
those spaces X whose hyperspaces are countably compact
(pseudocompact). The author has been unable to resolve these
questions, and leaves them open to the reader. Natural examples
of D-compact and D-pseudocompact spaces can be found in

Chapter 1. These spaces provide non~trivial examples of pseudo-

compact and countably compact hyperspaces.
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Chapter 3

THE STONE-CECH COMPACTIFICATION OF 2X

1. In this chapter our attention is focused on the Stone-Cech
compactification of the space of closed sets. Since 2X is
completely regular only when X is normal, (see 0.5 in Chapter 0),
we must confine our attention to hyperspaces of normal spaces.

As noted in 0.6 of Chaptef 0, if X is normal the mapping

X BX

iy 20+ 2 defined by i(F) = cl,,F is an embedding of 2X onto

BX
BX . BX
e dense subspace of 2" . In this way we can regard 2 as a

compactification of 2X.

When given a "natural" compactification aY of a completely
regular space Y, one of the most obvious questions one may ask
about oY is whether it coincides with the Stone-Cech compacti-
fication of Y. Investigations of this sort have led to many
interesting results. One of the most natural ways to form a
compactification of a product of completely regular spaces is
to take the product of the corresponding Stone-Cech compacti-
fications. Glicksberg's elegant results in [21] show that this
natural compactification of the product coincides with the
Stone-Cech compactification of the product exactly when the
product is pseudocompact. (Assuming all factors are infinite.)
The simplest compactification of a locally compact space is its

one~point compactification. Spaces whose one-point compactifications
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coincide with their Stone-~Cech compactifications are characterized
in 6J of [15]. Another example of this type of investigation
arises in the study of topological groups. In [49], Weil proves
that each totally bounded group G is a dense subgroup of a

compact group, and that this compactification is unique up to a
topological isomorphism fixing G pointwise. This compactification
of G is known as its Weil completion, and is denoted by G.

Groups G for which G can be identified as the Stone-Cech com-

pactification of G are characterized by Comfort and Ross in [71.

A similar situation presents itself for hyperspaces. EBX

is a natural compactification of % (for normal X). When can we

BX

identify 2 as the Stone-Cech compactification of 2X? It is to

this question that our efforts are directed in this chapter.

J. Keesling has stated in [30] that 8(2X) = oBX implies o s

pseudocompact. We give a proof of this result and obtain a

partial converse, namely, if EX X 2X is pseudocompact, then

BX. We also obtain two other characterizations of

the relation B(EX) = QBX. 'Using the results of Chapter 1 and

= 2

Chapter 2, we obtain a fairly large class of spaces for which

gX

the relation B(QX) = 2""% is valid.

Throughout this chapter we assume that X is normal, (and

T ), and when we speek of EBX as a compactification of 2X, we

1
. < o X . .1 AX BX .
are identifying 2° with the subspace i(2") of 2" as described

above.,
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BX

2. A Necessary Condition for B(ZX) = 2 Our first result

%

gives a necessary condition for B(2 = EBX. This theorem was
also established independently by J. Keesling, who announced

it without proof in [30].

2.1 Theorem. 1If B(EX) = QBX, then 2X is pseudocompact.

Proof. Before proceeding with the argument, let us examine the
BX, BX be the

canonical embedding of 2X onto a dense subspace of EBX. Now

to say that EBX is B(QX) is exactly the statement that i(EX)

is C"-embedded in EBX. Sc assume that B(QX) BX.

meaning of the equality B(EX) =2 Let i: 2% » 2

=2 We will

Tirst show that X must be pseudocompact. For the sake of contra-
diction, suppose X is not pseudocompact. Then there is a
sequence (Gn: n € ) of non-empty open subsets of X with the

property that chGn+l < Gn for all n, snd such that

n Gn = ¢ (see 9.13 in [15]). We may assume that
nel

ClXGn+l ; Gn for each n. PFor each n, we set Fn = ClXGn+l’

and we define the following sequence of open sets in EX. We
G F

let 6 =B(G : X-F )=2"qn (2X_ 2"

for each n. Then
Fn £ Gn for each n. We claim that (Gn: n e N) is locally

finite. TFor, let A e 2X. Let p € A. Since n Fn = ¢, there is
nelN

an integer k such that p ¢ F, . But then B(X; X - F,) is a

neighbourhood of A in 2X meeting only finitely many Gn.
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Therefore (Gn: n € N) is locally finite. Now, let

D= {Fn: n € N}. Since Gn nD= {Fn}, D is a discrete subset

of EX. S50 we may find a seguence (Hn: n e N) of pairwise dis-~
Joint open subsets of 2X such that Fn € Hn for each n. Let

Un = Hn n Gn for each n. Then (Un: n € N) is a locally finite

sequence of pairwise disjoint open sets in 2X, and Fn € un

for each n. It follows that D is C*—embedded in 2X. Applying

the homeomorphism i, we see that {i(Fn) n e N} is discrete and

c*_embedded in i(2%). since 8(2%) = 28X, 1(2X) is c*-embedded
in 2%, Thus, {i(Fn): ne N} is C*-embedded in 2PX. But since
the Fn's descend, it is easy to see that, in 2BX,

lim i(F ) = n i(Fn). Letting L = n i(Fn), we see that no

n->e n nelN nelN

function on {i(F ): n e N} vhich is 0 for infinitely many i(F)

and 1 for infinitely many i(Fn) can be extended continuously

to L. But this is a contradiction, as {i(Fn): n e N} is

C%—embedded in QBX. So we see that indeed X is pseudocompact.

Now we show that 2X is pseudocompact. To do this, we use the follow-
ing familiar characterization of pseudocompactness: A completely
regular space Y is pseudocompact if, and only if, every non-

empty G, set in BY meets Y. In light of this characterization,

S

to show QX is pseudocompact, we need only show that every

in 2P% intersects i(QX). Thus let S be a non-empty
BX

non-empty G

Gs in 2B pind a sequence (Gn: n € N) of open subsets of 2

such that § = n Gn' Let A € S. Then, for each n, we can find
nelN

S
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”Gn,Kn in BX so that A € B(Gn,O;Gn,l"'
n,K ) © Gn. For each n, let H_

n

open sets G G

s gooun
n,0’ "'n,l

< .G be open in BX such that

,0

=
In

Hn;O = ClBXHn,O [= Gn,O' For all n, and for all

J e {1,2,,..,Kn}, let Hn,j = Gn,j n Hn,O' Then

A e n B(H H

nell

<o H ) € n B(Gn ; G

n,0’
i n neN

n,1”’ n,K

Let H= n Hn,O’ and let G = n Gn,O' Obviously ClBXH s G.
nelj nelN

Now, for each n and J € {1,2,...,Kn}, H ; n H is a non-empty
9

G, in BX., By the pseudocompactness of X, we can find, for

S

each n and each J ¢ {1,2,...,Kn}, a point x in

n,J
{

Hn’J nHnX. Let B = clBX X, g B E N, je {1,2,...,Kn}}.

Then B € i(2X) and clearly B € n B(G
nelN

BX

Therefore every non-empty Gd in 2 meetS‘i(QX). Thus 2X is

”Gn,K ) ¢ S.
n

s G

H oo
n,0 n,l

pseudocompact.

2.2 Theorem. (i) Let A denote the subalgebra of C*(2X) generated
BX

by {£f°: £ e ¢¥(X)}. Then B(2X) = 2"% if, and only if, A is

uniformly dense in C%(QX). (Here C*(QX) is provided with the

usual sup-norm topology.)

(ii) Let o~ be pseudocompact. Then B(QX) - of% if,

and only if, every zero set in 2X is a countable intersection of

Zl Zn
Ju2~ T u ... u2", for

basic zero sets of the form B(X;Z

0

ASTRRPVARE- Z(X).
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Proof. (i) Recall from Chapter O that f° is defined on X by

£5(F) = sup{f(x): x € F}. We first observe that each f° can be
S BX

extended continuously to 27, This is immediate, since, given

B

f e C(X), we can extend f continuously to £ & C*(gX), and then

(fB)s is a continuous real-valued function on 2BX whose restric-

tion to 2% (recall we are identifying 2% as the subspace i(EX)

of 2BX) is clearly f°. It follows that every function in A can

be extended continuously to EBX, and thus that every function in
the uniform closure of A in C*(EX) may be so extended. (See

. . . . *, X
Prop. 5 of [22].) So if A is uniformly dense in C (27), every

%
function in C (EX) extends continuously to EBX. That is,

*
B then ¢ (2X) ana c¥(2f%)

are uniformly isomorphic, under the map g +-g8, where gB represents

= 2. Conversely, if B(2X) = 2

%
the Stone extension to QBX of g eC (2X). In light of the

*
preceding remarks we see that (fs)B = (fB)S, for all £ € C (X).

And so the converse in question becomes equivalent to the following

*
assertion: If X is compact, the subalgebra of C (QX) generated
T by the functions {f°: £ € C (X)} is uniformly dense in C (2%).

This assertion follows from the Stone~Weierstrass theorem, since

s

{£7: f ¢ CW(X)} contains the constant functions on 2X, and

separates points and closed sets, by 0.7 and 0.8 of Chapter O.

(ii) We first show that, if X is compact, every zero-set

in 2X is a countable intersection of basic sets of the form

Zl Z
Ju2~u...u2", where 2 Z e 7Z(X). BSo, assume

B(X;Z O,Zl,..., 1

0
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that X is compact, and let /) be a zero-set in 2X. Find open sets

(Gn: nel) in % so that W = n G . Now, by 0.8 in Chapter O,
nelN

every closed set in 2X is an intersection of certain of the basic

sets in question. In particular this is true of W. So write

W= n Ai’ where each Ai is a basic set of the form
iel
Zl Z :
B(X;ZO) U2~ u...u2" TFor eachn, W c Gn’ and so, by the

compactness of 2X, there is, for each n, a finite subset In of

I such that W ¢ n Ai = Gn. Letting J = u In’ we see that J

iel nelN
n M

is countable and W n Ai' Thus (! is a countable intersection
ied

as required.

It

QBX, every zero-set in i(2X) is the restric-

BX

tion of a zero-set in 2. Since BX is compact, the represen-

Now, if B(2%)

tation in (ii) holds for zero-sets in QBX, as proved above, and

80, by restricting to i(QX) and applying the homeomorphism i_l,

the corresponding representation for zero-sets in 2X is also

seen to be valid. There is one minor detail to be checked here,

namely, that if Z is a zero-set in B8X, the i“l(B(sX;z) n i(QX))

= B(X; Z n X). This can be verified as follows. Since 2X is

pseudocompact, so is X, by 2.7 in Chapter 2. Since X is normal,

X is countably compact, and every closed subset of ¥ is countably
X

#
compact and C -embedded in X. So, if A e 27, clBXA = gA. If

Z is a zero-set in BX such that (ClBXA) n%# ¢, then
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(C1BXA) N Z is a non-empty zero-set in BA. Since A is pseudo-
compact, indeed countably compact, it follows that (clBXA) nz
meets A, That is, Z n A= (2 nX) nA#%# ¢. Therefore,

17N (B(Bx;2) 0 1(25)) = B(X; Z n X).

Now, for the converse of (ii). We assume that X is

pseudocompact, and that every zero~set in 2X has the indicated

representation. Observe that, since the functions £° and f*
on 2% extend continuously to QBX, namely to (fB)S and (fB)l

Zl Z
every basic zero-set 2 U.ou2lt

BX

restriction of a zero-set in 2~ . This is clear from 0.7 in

2
u B(X,2 ) in EX is the
n+l
Chapter 0. Now since a countable intersection of zero-sets is
again a zero-set, if every zero-set in 2X has a representation
as in (ii), we conclude that every zero—sét in 2X is the
restriction of a zero-set in EBX. Together with the pseudo-
compactness of 2X, this enables us to conclude, by 4.4 of [2],

X BX X)

#*
that 2% is C -embedded in 2", that is, B(2

3. A Partisl Converse to 2.1. It is our aim in this section to

establish a partial converse to 2.1. Now to find sufficient

X) = QBX, is to find conditions which imply

#
that 2X is C -embedded in QBX. In this approach, we are asking

BX

conditions for g(2
when will 2 have the properties, as a compactification of 27,
that characterize B(QX) as &g compactification of 2X? Without
question, this is the most obvious and most direct means of

approaching the condition B(EX) = QBX. However, the approach
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BX

the point of view that 27 has the nice properties, and that

the relation B(2X) = QBX says that certain structure on X imposes

these properties on B(EX). That is, we propose ho describe

gX

2 as & compact extension of 2X, and try to determine when

B(2X) has the same description. The key to this approach is
that 2X and EBX are topological Join semi-lattices. EBX is a
compact Join semi-lattice containing EX as a dense sub-join
semi-lattice, and continuous join homomorphisms X R extend

continuously to ZBX. We thus describe 2BX

as a compact,
. . X . - X
algebraic extens1on of 27, and determine conditions when B(2")

enjoys this algebraic structure.

We first recall the definition of a topological join semi-

lattice.

3.1 Definition: A join semi-lattice is a set Y, equipped with a

binary operation v that satisfies the following identities:

(1) XV x=x
(ii) xvy=yvx

(iii) (XVy)Vz=xV(sz),

The element x V y is called the join of x and y. We shall

use the term V-semi-lattice as an abbreviation for join semi-lattice.
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If Y is a v-semi-lattice and we define, for a,b € Y, a <b
to mean thet a Vb = b, then < is a partial ordering on Y relative
to which every péir of elements has a least upper bound. Indeed,
in this ordering, sup{a,b} = a Vv b. Whenever we speak of order
in a semi-lgttice it is always this‘natural order to which we
refer. The supremum of a subset A, if it exists, is also called
its join, and is denoted by Vv A. We say a V-semi-lattice is
V-complete, if every non-empty subset has a supremum. A subset

S of a V-gemi-lattice Y is called a sub-V-—gemi-lattice of Y if

a,b € 5 imply a v b € S. A mapping f: Yl -> Y2 between v--semi-

lattices Yl and Y2 is a V-homomorphism if f(a v b) = £(a) v f(b)

for all a.b e Yl.

A topological V-semi-lattice is a V-semi-lattice Y equipped

with a topology such that the v-operation is continuous as a
mapping from Y X Y to Y, where Y X Y carries the product topology.
When speaking of topological V-semi-lattices, terms like compact
vV-semi-lattice, continuous V~homomorphism, carry their obvious

meaning.

3.2 Proposition. 2X and QBX

BX

2 is a compact V-semi-lattice, and the natural mapping

i: 2X > QBX

are topological V-semi-lattices.

is a topological isomorphism of 2X onto a dense

V—complete sub-V-semi-lattice of QBX. Every continuous

v-homomorphism from ZX to R extends to a continuous v-homo-

morphism of EBX into R.
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Proof. The first statement follows from statement 0.3 in
Chapter O, the V-operation being the usual set-theoretic
union. We know that the map i 1s a homeomorphism, and clearly
it preserves the operation. Therefore i is a topological

. X, . . BX
isomorphism of 27 into a dense sub-V-semi-lattice of 27 .
The natural ordering involved in these semi-lattices is just

set-~theoretic inclusion. Thus each semi-lattice is Vv-complete.

Now i(EX) is a V-complete sub-V-semi-lattice of 2BX, since for

X BX

{A,: 3 eItc2®, vi(A,) = Vel . in 277, is just
J jer 9 jel 8"
ClBX( ¥ clBXAj) which equals ClBX(ClX(,U A.)) which lies in
Jel jeIl
i(EX)

To prove the last assertion, let g be a continuous V-homo-
morphism from 2X into R. (B, of course, carries the natural Vv
defined by a vV b = max{a,b}.) We claim that g preserves all
suprema. For, let {Ai: ielI}c 2X. We show that

g( v A,)=glel, uA,) coincides with Vv g(A,). Clearly, since
. i X, . i
iel iel iel

g preserves order, V g(Ai) < gl v Ai). For the sake of contra-
iel iel

diction, assume Vv g(Ai) < g( v Ai). By the continuity of g,

iel ieT
we can find a basic neighbourhood B(GO;Gl,...,Gn) of
VA =cl, uA, in 2% such that T ¢ B(G.3G. ,...,G ) implies
. i X, i 0’71 n
iel iel
that g(T) > v g(Ai). Now cly, U A e B(GO;Gl,...,Gn) so we can

1el ieT
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find, for each j = 1,2,...,n0 an index i, € I so that Ai n GJ # .

! J

n

Letting P= U A, , we see that P ¢ B(G.3;G.,...,G ), and thus
i 0’71 n
J=1 7]
n

that g(P) > v g(A,). But P = u A, , and g preserves finite

ier  * j=1 *;

n n

Joins, so that g(P)=g( VvA )= vgla )< v g(Ai). This is
=15 =1 Yy T iel

a contradiction. Thus g preserves all joins, and this establishes

our claim.

Now, let f = g[{{x}: x € X}. Then f € C(X) and f is
bounded above. We claim that g = 5, To verify this, note

that if T e 2%, 2(T) = g( v {x}) = v g({x}) = v £(x) = £5(T).

xeT xeT xeT
(We have thus shown that every continuous join homomorphism
2X <+ R has the form fs; it is easy to see conversely, that if f
is a member of C(X) that is bounded above, then £° is a continuous
BX

V-homomorphism 2X - R.) The continuous extension of g to 2

.

whose existence is asserted in the proposition is simply (fB)S
We thus see, by this proposition, that comparing B(EX)
with QBX involves casting 8(2X) in the role of an algebraic
extension of 2X with the properties in 3.2. We shall see, in
the following theorem, that pseudocompactness enables us to

impose the required algebraic structure on B(QX).
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3.3 Theorem. Let 2X X 2X be pseudocompsct. Then there is a

X):is

v-gemi~lattice structure on B(EX) relative to which B(2

8 compsgct V-gemi-lattice, and 2X is & dense, sub-V-semi-~lattice.

Proof. Let u denote the continuous Join operation on EX. Being

a continuous map from 2X X 2X into 2X, u has a Stone extension

u® from B(QX x EX) into B(EX). But 2% x 2F is pseudocompact ,

so by Glicksberg's Theorem 1 of [21], B(ZX X 2X) = B(QX) x B(EX).
Thus u has a continuous extension uB: B(QX) x B(EX) > B(EX).

The map uB defines a continuous operation on B(ZX). It is readily
verified that uB defines a V-semi-lattice structure on B(QX).

In order to check that the three identities in 3.1 hold for the
operation uB, one observes that, in each case, the identities

are valid on a dense set, and since the identities are continuous
functions of their variables, they hold everywhere. The remaining

assertions in 3.3 are immediate. When the occasion arises, we

will denote uB(s,t) by s Vt, for s,t € B(EX).

At this point we may pose the following question. Do 3.2
and 3.3 give enough information so that, with the assumptions

BX are identical

in 3.3, we are able to conclude that B(EX) and 2
compactifications of 2X? This is indeed the case, but to prove
it we will need several facts about topological v-semi-lattices.

The first two facts are standard and easily proved results about

compact v-semi-lattices, while the last two results are much
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more technical. We will content ourselves here with stating
these results without proofs, giving appropriate references

in each case.

3.k Let K be a compact V-semi-lattice. Let (xa: a € D)

be an increasing net in K. Then Vv X, exists, and Vv X, = lim x .
oeD aeD o.eD

It (Xa: a € D) is a decreasing net bounded below, then A Xa

oeD
exists and A x = lim X, (see [33], [471.)
aeD oaeD
3.5 A compact V-semi-lattice is V-complete. ([33], [47]).
3.6 Let f be a v-homomorphism from a compact V-semi-lattice

S onto & compact V-semi-lattive T. -If f preserves the suprema
of increasing nets and the infima of decreasing nets, then f is

continucus. ([33].)

3.7 Let K be a compact V-semi-lattice. Then the continuous
v-homomorphisms of K onto metrizable compact V-semi-lattices

separate the points of K. (See page 49 of [24].)

Now it is easy to see that, in 2X, the join of a subset
S c 2X is the limit of the net of its finite sub-joins, the net
being directed by the finite subsets of S. This fact is tacitly
proved in 3.2 in showing that continuous v-homomorphisms from
X

2X into R preserve suprema. From this fact, we see that 2 is

8 v-complete subset of any compact v-semi-lattice K in which



2X is & sub--V-semi-lattice. Indeed, if S ¢ 2X, then, by the above
remarks, the join of S in 2X is the limit of the increasing

net of its finite sub-joins. These finite sub-joins in 2X

are the same as the corresponding Jjoins in K. But by 3.4, this
net converges to the join of S in K. Thus the join of S in K
coincides with the join of S in 2X. That is, 2X is a V-complete
subset of K. In particular, this statement is valid, in the

case that 2X X 2X is pseudocompact, for the compact V-semi-lattice

We now have the necessary tools to establish the main

result of this chapter.

X

3.8 Theorem. Let 2= x 2X be pseudocompact. Then B(QX) = ZBX.

Proof. By statement 0.7 in Chapter 0, X, considered as the

: . X . * . X
singletons in 2, is C" -embedded in 2. Thus the closure of
this copy of X in B(EX) is a copy of BX. So, there is an
embedding h: BX - B(2X) such that h(x) = {x} for each x ¢ X.
Since B(QX) is the largest compactification of 2X, there is a

. X RX R X .

quotient map N: B(2"7) > 277, whose restriction to 2" is the
identity on 2X. We endow B(QX) with the v-semi-lattice structure
described in 3.3. Since N 1s a v-homomorphism on a dense
subset, by continuity, @ is a v-homomorphism. Since the supremum

of a set is the 1limit of the suprema of its finite subsets,

by continuity, Q) preserves all suprema. Now, we define a mapping
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p: oPX Xy by ¥(S) = Vv h(p). Note that F|BX = h, that is,

pes

-+ B(2

the restriction of F to the singletons in QBX coincides with h.

We claim that T preserves joins. For, let {Ai: iell}c 2BX.

Then V F(A,) = v  nh(»), and F( vV A.) = F(cl
. i , i
iel pE U Ai iel

1el

U Ai)

BX iel

= v h(p). Clearly Vv F(A,) < F( v Ai). To prove the

peclBX u A, iel * iel
iel

reverse inequality, let a = Vv F(Ai) v h(p). DNow the set
iel peE U A,
SR
iel

{t e B(BX): t < al} is closed in B(ex). So, by the continuity
of h, {p ¢ BX: h(p) < a} is closed in BX. Since this latter

set evidently contains v A., it therefore contains clBX uAa,.
iel iel

So, for all p € cl u A, h(p) < a. Thus F( v Ai) = F(clBX U Ai)

BX iel iel iel

= % h(p) <a = Vv F(A,). Combining the two inequalities,

. i
pecl U A, iel
BXisI *

we conclude that F preserves Jjoins. Now consider the map

BX -> ZBX.

0 °TF: 2 By the continuity of Q and h, and the fact
that‘Q © h is the identity on {{p}: p ¢ X}, a dense subset of
{{p}: p e BX}, 0 © F is the identity on BX. (That is, on the
set {{p}: p € BX}.) Since Q and F preserve joins, so does

N°F. Soif S ¢ QBX, we have Q © F(S) = Q ° F( v {p})
peS

= vo°F({p})= v {p}=28. Thus, Q © F is the identity on
ped peS
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BX

2 It follows that F is one-to-one. Now 2X is a v-complete

subset of B(EX). Since F preserves joins, and since F({x}) = {x}
for each x ¢ X, we see that oK = F(QBX). Let L = F(EBX).
Since L contains the pseudocompact space 2X as a dense subset,
L is itself pseudocompact. Thus F is an algebraic isomorphism
of QBX onto the dense, pseudocompact sub-vV-semi-lattice L, of
B(EX). We now show that F is continuous. Now, if the topological
V-gsemi-lgttive S is a sub-V-semi-lattice of a compact V~-semi-
lattice, then a map G into S is continuous if, and only if,

R ° G is continuous for all continuous join homomorphisms R,

of 8 into metrizable v-semi-lattices. Indeed by 3.7, S has the
weak topology generated by such R. Thus, to show F: 2BX - L

is continuous, we prove that if R: L -~ M is a continuous v-homo-
morphism of L onto a metrizable v-semi-lattice M, then R °© F

is continuous. But, for any such R, M must be compact, since M,

as a continuous image of L, is pseudocompact, and every pseudo-
compact metric space is compact. Thus R °F is a map between compact
v-semi~lattices. ©Since R is a continuous v-homomorphism, R
preserves all Joins. Since F is an algebraic isimorphism,

I preserves all joins. Therefore R © F preserves all joins.

The same type of argument shows that R © F preserves decreasing
meets. Appealing to 3.6, we see that R © F is continuous. Thus
BX)

F is itself continuous. Thus F(2 is compact. Since the

image of F contains 27, we conclude that F(28%) = g(2%). 1t
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follows that F is a homeomorphism of 28X onto B(ZX) fixing %

BX X>.

point wise. Therefore 2°° = B(2

3.9 Remark. 1t seems quite plausible that the pseudocompactness

of 2X is equivealent to that of 2X X 2X.

This would establish
the converse to 2.1. The author has not been able to resolve
this question, and leaves 1t open tq the reader. ETven if the

ffffflf exact converse of 2.1 holds, it is unsatisfying in a very
significant way. It does not describe the relation B(QX) = P

in terms of properties of X. What is needed, of course, is a

description of the pseudocompeactness of 2X in terms of X; we

obtained some results along these lines in Chapter 2.

Now, by 5a., page 166 of [32], for any spaces S and T,

; . . +
2S X 2T is homeomorphic to 28 T, where S5+7T denotes the free

union of S and T. So if P is a class of topological spaces

such that X ¢ P implies EX is pseudocompact, and such that

X

X,Y ¢ P implies X+Y ¢ P, then X ¢ P => 27 x 2X is pseudocompact.

In particular, this is true of the properties D-compactness

and D-pseudocompactness, by the results of Chapter 2. (It is
obvious that each of these properties is preserved by finite
union.) We described many natural examples of these spaces in
Chapter 1, and we thus have a fairly large class of spaces which
satisfy the hypothesis of 3.8. In particular, we have the

following corollary. (See 2.6 in Chapter 1 and 2.1 in Chapter 2.)
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3.10 Corollary. Let X' be normal. If 8ll powers of X are countably
X) _ 2BX.

In particular, this conclusion holds

compact , then B(2

if X is normal and wo—bounded.

3.11 Remark. The technique employed'in 3.3, to impose algebraic
structure on the Stone-Cech compactification, can be applied to
rather general situations. For example, if we are given a completely
regular topological algebra A of a given type, pseudocompactness
can be used, just as in 3.3, to obtain an algebraic structure

on BA of the same type, relative to which BA is a compact fopo~
logical algebra, and A a dense subalgebra. This can be used to
compare an algebraic compactification to the Stone-Cech compacti-
fication whenever the algebraic extension is uniquely determined.
In particular, this method can be used to give a version of the
Comfort-Ross Theorem 1.2 of [7]; for a totally bounded topological
group G and its Weil completion G, BG = G if, and only if, G is

pseudocompact.
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Chapter 4
THE GG—CLOSURE AND REALCOMPACTNESS OF 2X
1. Many important properties of a completely regular space

X can be described in terms of its Stone-Cech compactification
BX. For example, X is pseudocompact if, and only if, every

non-empty G, set in BX intersects X. Cech-coniplete spaces are

$

precisely those spaces which are G6 sets in their Stone-Cech

compactifications. Another property of a completely regular
space X which can be described in terms of the embedding of X

in BX, and the one that most concerns us here, is realcompactness.
To state this description, we need a definition. Let X be a

subspace of a space Y. We say that X is G,-closed in Y if

$

Y - X is a union of Gs—sets in Y. This means that given a point

peY - X, we can find open subsets Gl’G of Y such that

PERRER

pe nG <Y~ X
n
nel

Realcompeactness can be described as follows. (see 8.8

of [15].)

1.1 Theorem. Let X be a completely regular Hausdorff space.

Then the following statements are equivalent.

(1) X is realcompact,

(i1) X is G.~closed in BX,

S

(iii) X is Gs-closed in some compactification of X.
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Of course, a realcompact space need not be Gs—closed in

all of its compactifications. For example, a locally compact

space is G.~closed in its one-point compactification if, and

)
only if, it is o-compact, and examples abound of realcompact,

locally compact spaces which are not o-compact.

Suppose we are given a compactification aX of a (completely

regular Hausdorff) space X. If X is G6—closed in oX, we see,
by 1.1, that X is realcompact. As we saw above, the fact that

X 1s G ~closed in oX may reflect much more than the realcompactness

8

of X, depending on the position of oX in the family of all com~

pactifications of X.

If X is normal and T then ZBX is a compactification of 2X.

Sinece ZBX is one of the most natural compactifications of 2X,

l’

it is of some interest to describe 2X in terms of its embedding

in EBX. In Chapter 3 we examined the circumstances under which

2X is C*-embedded in QBX. In this chapter, we examine the

BX

G.-closure of 2X in 277, and we characterize those spaces X

S

such that 2X is G6~closed in QBX. Using 1.1, we obtain infor-

mation on the realcompactness of 2X.

li;mf> 2. The G.-Closure of & in QBX.

5 We begin with an elementary

observation.
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2.1 Proposition. Let X be s subspace of Y. Let QY(X) = {pe¥Y:

every G.-set in Y containing p intersects X}. Then QY(X)_ig

the smallest sﬁbspace of ¥ that contains X and is Gs—closed in Y.

Proof: Clearly X ¢ QY(X). We first show that QY(X) is Gs-closed

in Y. For, let pe Y - QY(X)' Then there is a G.-set H, in Y,

$

such that p € H and H n X = ¢. Since any G, containing any

8
point of Q.(X) intersects X, we have H n Q.(X) = ¢. Thus
Y Y

QY(X) is G6~closed in Y.

Now, let S by any subspace of Y such that X ¢ 8 and S is

Gg-closed in Y. We show that QY(X) c 8. Let pe QY(X). If

P & S, since S is G _-closed in Y, there is a G.~set H, in Y,

8 S
such that p e H and H n S = ¢. But since p ¢ QY(X), HnX# ¢,

and since X < S, H nS # ¢. Thus p € S. Therefore, QY(X) c S,

and so Q.,(X) is the smallest G .-~closed subspace of Y which
Y

8

contains X.

We will refer to QY(X) in 2.1 as the Gs—closure of X in Y.

Now, in a completely regular space, a G.~set containing a given

S

point contains a zero-set containing the given point. (See 3.11

of [15].) So if X ¢ Y where Y is completely regular, our G

conditions may be re-~formulated as follows. X is Gs—closed in
Y if every point of Y ~ X lies in some zero-set of Y that is

disjoint from X. QY(X) is the set of points p, such that every

zero~set in Y that contains p intersects X.
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We now describe the‘GS—closure of 2X in QBX for a normal

space X. Recall that we are identifying 2X as the subspace

BX

i(2x) of 27, as in Chapter 3.

2.2 Lemma. Let X a normal, Hausdorff space. Let Q denote the
BX BX

G .~closure of 2X in 2 Then R = {F e 2°%: Z ¢ Z(BX), F c 2

8

implies F ¢ clBX(Z nxX)}.

BX

Proof: Observe that i(QX) ={Fe2®: F=cl, (FnX)} Let

BX
Ql denote the set described in the statement of the lemma. We

BX

will show that 2X [« Ql & Q and that Ql is G.~closed in 27,

8

from which the assertion follows. Since F ¢ 2X is equivalent

to T = ClBX(F n X), clearly % s Q

So let F & Q- Let H be any Gg-set in QBX containing F. Write

1 We now show that Ql < Q.

H= n Gn with Gn open in 2BX for each n. For each n, we can
nell
~ K
n
in BX with u G, <G
n i,n

find open sets GO,n;G o1,

yoe
1l,n O,n

) € G_. PFor each n, find a zero-set

and F ¢ B(G l,n""’GKn,n 0

O,n;G

Z in BX such that F ¢ Z < G . Now nZ =72 is a zero-set
n n O,n nell n

in X and F ¢ Z. Since F ¢ Ql, we have F ¢ ¢1_.(%Z n X). But

BX

(Z nX) e &£ H, and so every G.set in oBX containing F

1

“px 5

meets EX. Therefore F € Q, and so Ql <€ Q. We complete the
_ . . . BX BX

proof by showing Ql is Gd—closed in 277, Let F g 2 - Ql.

Then there is a zero-set Z in BX such that F < Z but
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L clPX(Z nX). Let H=238(Z; BX - c1,.(Z n X)). Then clearly

X

BX
and F ¢ H. Obviously H n Ql = ¢. Thus Ql

is Gy-closed in 28X

His a GG in 2B

2.3 Theorem. Let X be a normal, Hausdorff space. The following

are equivalent.

(1) o g Gg-closed in EBX,

(ii) X is Lindelsf.

Proof: (i) => (ii). Assume 2X is G.~-closed in EBX. In the

§
notation of the preceding lemma, this means that 2X = Ql.
We claim that X is Lindeldf. For the sake of contradiction,
assume X is not Lindeldf. Then, there is a family D of closed
subsets of X with the countable intersection property such that
D =¢. Let Dl be the family of countable intersections of

members of D. Then Dl is closed under countable intersection,

and n A= ¢. Let R= n ClBXA' Then, since R n X = ¢, we

AeDl AeDl
BX X . ..
have R e 2 - 2. Let Z be any zero-set in BX containing R.
Write Z = n G_, where Gn is open in BX. Now, for each n,
nelN

n ClBXA [= Gn’ and so, by compactness, there is, for each n,
AeD
1

a finite subset F_ of D. so that n cl XA <G . Let F u?l ..
n 1 R n n
Aan neN

Z.

Then F is a countable subset of U. and n cl XA < ngG
1 g n
AeF nelN
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But nA €D, and so R © cl

R N ( n4A) ¢ n ClBXA c 7. Tt follows

B eF AeF

easily that R g cl (Z n X). We have thus shown that, for

BX

Z e 72(BX), R ¢ Z implies R ¢ ¢l1,.(Z n X). This means that

But this is'nonsense, since R ¢ 2X = Ql. This shows

BX(
R € Ql.
that (i) => (ii).

(ii) => (i). Assume X is Lindelof. We show that 2X = Q

for which it suffices to show Ql < 2X. So, let F ¢ Ql. Then

F = n{clBX(Z nX):ZeZ(BX), Fcz}. Let R={Z e Z2(BX): F c 2}.
We claim that F = cl_ [ n (Z n X)]. If possible, let
BX ZeR

pebl - clBX[ n (Z nX)]. Find a closed neighbourhood M of p

zZeR
in BX such that M n [ n (Z n X)] = ¢. Since X is LindelSf, there
ZeR
is a sequence Zl’ZE""’ from R such that M n [ n (Zi nX)] = ¢.

ielN

But nZ, e R, and so F cel, [ n (2, n X)]. But this implies
. BX" . i
ielN ielN

pecl,. [ n(Z, nX)], and soMn [ n (Z. nX)] # ¢. This contra-

BX". i . i

ielN ielN

[ n(Z nX)]. Since the reverse

ZeR

diction proves that F ¢ ClBX

[ n(Z2 nX)].
ZeR

inclusion holds trivially, we conclude that F = ClBX

Thus ¥ € 2X, and so Ql [@ 2X. Therefore 2X is Géuclosed in ZBX.

2.4 Remark. It should be observed that the results of 2.2 and

2.3 carry over to higher cardinals. Calling a set a Gm—set
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if it is the intersection of m open sets, (m denotes an infinite
cardinal) and recalling that a space is m-Lindeldf if each of
its open covers has a subcover of <m sets, we see that, with
obvious modifications, 2.2 and 2.3 hold with Gé replaced by

Gm’ and Lindeldf replaced by m-Lindelof.

3. Some Remarks on the Realcompactness of 2X. By 2.3 and 1.1,

it follows that if X is LindelSf, then 2X is realcompact. Indeed,

BX

if X is Lindeldéf, then 2 is a compactification of EX in which

2X is G6—closed. We now give a direct proof of this result.
Recall that a completely regular space Y is realcompact if, and

only if, every z-ultrafilter on Y with the countable intersection

property is fixed. (See [15].)

3.1 Theorem. Let X be Lindelof aad completely regular. Then 2X

is realcompact.

Proof. Since a Lindeldf, completely regular space is normal, we
conclude by 4.9 of [36] that.EX is completely regular (and
Hausdorff) when X is completely regular and Lindelof. We use the
above characterization of realcompactness. So let 6 be a z-ultra-
filter on 2X with the countable intersection property, with X
assumed to be Lindeldf. We define two families of sets as follows.
We set a = {A ¢ 2X: there exists B ¢ 6 such that B ¢ EA} and we
set B = {A e 2X: there exists B € 6 such that B < B(X; A)}. TFor

A e B, we define GA = {FnA: Fea}l. We claim that for each
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A e B, GA has the countable intersection property. Let

{r } € o, and let A € B. Then, for each n, there is a

P ...
1’72 Fn
set Bn £ 6 with Bn s 2 7, and there is a set B e 8 with

B ¢ B(X; A). Since 6 has the countable intersection property,
Fn
we have ¢ # ( n B ) nBc (n2™)
n
nel nel

n B(X; A). Any element in

the latter intersection is contained in n F_ and meets A. So,
' nelN

in particular, ( n Fn) nA# ¢. Thus, each GA has the countable
nelN

intersection property. Since X is Lindeldf, there is, for each

A e B, a point P, € nGA. Let L = ch{pA: A e B}. We now show

that L € n8, whence 6 is fixed, and so 2X is realcompact. We
aggsume L ¢ n¢ and we will derive a contradiction. Ir L ¢ ne,
then there is a set B e 6 such that L i 3. Wow, since X is

normal, by 0.8 in Chapter O, the sets of the form

Z, 7
Ju2 > u ... u2"™ where z

B(X; 7 ;% are zero-sets

0 0Byt

in X, form a base for the closed sets in 2X. Now B & 0 and so
B is a zero-set in 2X, and is, in particular, closed. Since

L ¢ B, we can find zero-sets ZO’Zl""’Zn in X such that
Zl Z Zl Zn
%, and L ¢ B(X; Z, .

BegB(X; Z2.) uz2 U ... U2 Y u 2 U eow U 2

0
. . . Z . . X
Now if Z is a zero-set in X then 2° is a zero-set in 2. (See
Z.
0.7 in Chapter 0.) We cannot have any 2 e 6, because this

would put Zi in o and would imply that L c Zi’ or equivalently,
Z,
Le2 l, by the construction of L. So, since 8 is a z-ultra-

filter, there is, for each i = 1,2,...,n, a zero-set Bi in 6
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Z, n
such that Bi n2t= $. Letting C =B n n Bi’ we have C € ©
i=1
and C ¢ B(X; Z.). This implies Z_ e B, and so p, € Z. n L.
0] 0 ZO 0
But L ¢ B(X; ZO), so that L n Z, = ¢. This is a contradiction.

We conclude that L € nf.

3.2 Remark. In [55], the realcompactness of 2% is approached
by uniformities, and 3.1 can be deduced as a corollary of

results proved therein.

It does not seem to be known whether 2X is realcompact
whenever X is. Of course, if 2X is realcompact, then X is,
since, (for Hausdorff X) the singletons in 2X form a closed
subspace homeomorphic to X. We have to be slightly careful
in discussing the realcompactness of 2X, since 2X is completely
regular only when X is normal. If we use the definition of
realcompactness in [34], which applies in the non-completely
regular setting, we can then meaningfully ask whether 2X is

realcompact when X 1s completely regular and realcompact.

3.3 Proposition. Let P be & closed hereditary topological

property. TLet X be a regular, Hausdorff space such that

2X e P. If Y is a continuous-open-closed image of X, then

QY e P. (By a topological property, we mean a class of topo-

logical spaces which, whenever it contains a space X, also

contains all spaces homeomorphic to X.)
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Proof. Let X be regular and Hausdorff, with 2X e P. Let
f: X > Y be a continuous, open, and closed surjection. Define
m: 2% 5 27 by F(A) = £(A), and define G: 21 » 2% vy G(B) = £ 1(B).
By 5.10.1 and 5.10.2 of [36], F and G are continuous. Let

v = a(2b).

Then FIV and G are mutually inverse homeomorphisms
between Y and 2Y, and G © F is a retraction of 2X onto Y. Now,
since X is regular and Hausdorff, EX is Hausdorff (see 4.9 of

[36]). Asg a retract of 2X, Y is therefore closed in 2X. Thus

EY is homeomorphic to a closed subspace of 2X. Since P is

closed hereditary, 2Y e P.

From 3.3 we can deduce the:following. Let X be completely
regular. If 2X is realcompact, then X is realcompact and every
continuous-open-~closed completely regular image of X is real-
compact. It does not seem to be known whether realcompactness
is preserved under continuous-open-closed images. A counter-
example would provide an example of a realcompact space whose
hyperspace is not realcompact. This question, together with the
question of characterizing those spaces X for which 2X is

realcompact, we leave open to the reader.

3.4 Remark. In Chapter 2 we saw that countable compactness and
pseudocompactness are not preserved in passing to the hyperspace.
Most notable among the properties that 2X enjoys when X does,

are D-compactness, w.~boundedness (for normal spaces), and

0
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compactness itself. Each of the latter properties is closed-
hereditary and productive. (Such topological properties are
called extensién properties; see [23] and [52] for information

on extension properties.) Realcompactness is another closed-
hereditary and productive property, but, as mentioned above, it

is not yet clear whether 2X is realcompact whenever X is (even

for normal X). Whatever the situation may be for realcompactness,
one certainly does not expect every closed-hereditary, productive
property to be preserved in passing from a (normal) space X to

its hyperspace. We now give an example of a closed-hereditary,
productive property which is not so preserved, using Mrowka's
concept of E-compactness. (See [38].) Let us recall the defi-
nition of E-compactness. Let E be a given topological space.

A space X is said to be E-compact if X is homeomorphic to a closed
subspace of a product of copies of E. E-compactness is clearly
closed-hereditary and productive. We will now give an example

of a normal space E for which E-compactness is not preserved

in passing to the hyperspace.

We take for our space E the space constructed by Ostaszewski
in [40]. This space is countably compact, hereditarily separable,
perfectly normal, and non-compact, and is constructed in [40]
using certain set-theoretic assumptions which are consistent
with the continuum hypothesis and the usual axioms for set theory.

For this space E, we show that 2E is not E-compact, and thus
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we have the desired example.

By Proposition 3.2 in [29], (which assumes the continuum
hypothesis), the space W of countable ordinals can be embedded
as a closed subset of 2E. We show that W is not E~compact.
Since E-compactness is closed hereditary, this shows that 2E

is not E-compact. For the sake of contradiction, suppose W

is homeomorphic to a closed subspace W of a product I E, of
ieT

copies of E. Now W is w -bounded, and w.-boundedness is pre-

0 0

served by continuous maps. Thus each projection ﬂi(W) is
wo~bounded. Since E is hereditarily separable, each subspace
ﬂi(W) is separable, and so is compact. But W is a closed
subspace of the product of these compact projections, and hence
must be compact. This is a contradiction, and proves our

agsertion.
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Chapter 5

SOME CARDINAL INVARTANTS OF HYPERSPACES

1. In this chapter we are concerned with certain cardinal
invariants of hyperspaces, namely, weight, character, cellularity,
and m-weight. In each case, the invariant of 2X is described

by means of an equality, or inequality, in terms of invariants

of X. Although these results are not directly related to the
compactness~type properties we have examined in the previous
chapters, in several of the theorems and examples compactness

and covering conditions do play a role.

Several suthors have considered cardinal invariants of 2
in one context or another. In [36] it is shown that X is separable
if', and only if, 2X is separable, and that EX is second countable
if, and only if, X is a compact metric space. From 1 of [27]
it follows that if X has a closed discrete subset of cardinality
o, then 2X has a closed discrete subset of cardinality 2%, Spaces
X for which 2X is Lindeldf are characterized in 2 of [27], and

TIT of [53] describes those spaces for which 2X is first countable.

In order to formulate the relations we will establish, let
us recall the definitions of the cardinal invariants with which
we are concerned. The weight of a space X, denoted by w(X), is

the least cardinal of an open basis for X. The Lindelof number

of X, written L(X), is the smallest cardinal o such that every

open cover of X has a subcover of cardinality < a. The weak
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covering number of X, denoted by we(X), is the least cardinal o

for which each open cover of X has a subfamily with o or fewer

elements whose union is dense in X. If A ¢ X, the character of

X at A, written x(X,A), is the least cardinal of a base for the
neighbourhoods of A in X. If p € X, we write Xx(X,p) instead

of x(X,{p}). The character of X, denoted by x(X), is defined

by x(X) = sup{x(X,p): p € X}. The density of X, written d(X),

is the least cardinal of a dense subset of X. The hereditary
density of X, denoted by hd(X), is defined by hd(X) = sup{d(yY):

Y ¢ X}. A family P of non-empty open subsets of X is called a
m~bagis for X, if every non-empty open subset of X contains a
member of P. The m-weight of X, denoted by m(X), is the least
cardinal of a m-basis for X. The cellularity of X, denoted by
c(X), is defined by c(X) = sup{a: there is a family G of pairwise
disjeint, non-empty, open subsets of X whose cardinality is a}.
The relations we will establish may now be summarized as follows:

(1) w(x) < w(@¥) < wil® < ov(H),

(ii) Tf X is normal, then w(2%) < w(x)"¢ (%)

= x(X)-hd(X), where x(X) = sup{x(X,F): F is a

closed subset of X}.

(iv) (2

A
0]
]

o]
o
]
b

ja]
=
m
=

o

A
[AV]

(v) c(2
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Examples are given to illustrate the sharpness of these
estimates, and, in particular, an example of a non-normal space

for which (ii) fails is given. The relation given in (iii)

- is a straightforward generalization of the countable case treated

in [53].

Our basic references for the cardinal invariants described

in this chapter are [25], [L4], and [5].

In order to avoid trivial technical difficulties, let us
agree that all cardinal invariants mentioned above are infinite.

If one of the invariants is finite, we agree to replace it by wo.

It is easy to see that if F is a closed subspace of X, then
QF as a hyperspace has the same topology as 2F has as a subspace

of 2X, and we will use this fact in the sequel.

2. Relations between Cardinal Invariants of 2X and Those of X.

We first examine the weight of 2X. For an open cover G of

]

X, we define a(G) = min{|#|: H c G and H covers X}.

X) sup{w(X)u(G): 5 igs an open cover of X}.

A

2.1 Lemma. w(2

(X)G(G)

Proof. Let o = supiw : G is an open cover of X}, and let

D be a basis for X of cardinality w(X). If m is a cardinal number,
let D(m) = {A: A ¢ D and |A] < u}, and let D, = u{D(m): there is

an open cover G of X such that a(G) = m}. ©Now clearly a(G) < w(X)

for any open cover G of X. Thus there are at most w(X) distinct



Th,

numbers among the numbers a(G), and so Dl is really a union of at
most w(X) families D(m). Since [D(m)]| = w(X)™, o = sup{|D(m)]:
there is an open cover G of X such that m = a(G)}. Now a > w(X),
and Dl is the union of < w(X) families, each of whose cardinalities
does not exceed o. It follows that IDlI < a. Finally, we set

T = {ZUA: A e Dl} u {B(X;G): G € P}. We will show that the finite
intersections of members of T form a basis for Zr. Since || < a,
it will follow that W(EX) < |T] < o, thus proving the lemma. To

do this, we show that if W is any open set in X, then 2W is a
uﬁion of members of T, and B(X; W) is a union of members of T.

This is sufficient, since the sets B(X; U) and 2V for U,V open

in X, form a subbase for 2X. S0 let W be open in X. Let F ¢ QW.
Since D is a basis for X, there is a subfamily A of D such that

W = UA. Choose a subfamily Al of A of least cardiniiity that

covers F. Clearly, |A | < a{A u {X - F}), and so 2 LT,

UAl wl - - uA
Clearly, F g 2 € 2. Thus 2" 18 a union of such sets 2

and each such is a member of 7. Next, let W be open in X, and

let F e B(X; W). Then F A W# ¢. Let x e FnW. Since D is a

basis, there exists G € D such that x ¢ G ¢ W. It follows that
F e B(X; G) ¢ B{(X; W). Therefore, B(X; W) is a union of such

sets B(X; G), and so is a union of members of T. This completes

the proof of the lemma.

2.2 Corollary. Let X be a Tl space. Then w(X) < w(2X) < W(X)L(X)
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Proof. The first inequality follows from the fact that X is
homeomorphic to a subspace of 2X. The second inequality follows
from 2.1, since o(G) < L(X) for all open covers G of X. The
last inequality follows from the obvious relation L{(X) < w(X),
L(X)

< w

and so w(X) (x)¥(X) o ov(X)

2.3 Corollary. Let X be compact. Then w(X) = W(QX).

Proof. If X is compact, then for any open cover G of X, a(G)

is finite, and so w(X)a(G) = w(X), and since X is a subspace
P § X

of 2%, w(X) < w(2%). 2.3 follows.

2.4 Corollary. If W(X)L(X> = w(X), then w(X) = w(2X).

Proof. This is obvious from 2.1.

2.5 Corollary. Let X be a normal, T, space. If w(X) = w(BX),

then w(2X) = w(X).

space X, the mapping F > cl

B
, X BX
embedding of 2= onto a dense subspace of 2" . Thus w(2

Proof. For a normal, T XF is an

Xy

1

< w(EBX).

But, by 2.3, W(EBX) = w(BX), and by assumption, w(BX) = w(X).
We conclude that w(2X) < w(X). Since the reverse inequality is

always valid, we conclude that w(X) = W(QX).

Using a result of Comfort-Hager in [5], we can sharpen the

estimate of 2.2 for normel spaces.
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2.6 Theorem. Let X be normal and Tl' Then W(QX) < W(X)WC(X).

Proof. 1In a normal space X, any open set containing a closed
set F conteins a cozero-set containing F, and so the sets of

the form B(W; wl,wg,...,wn), where W,W ,...,Wn are cozero-sets,

. X .
form a basis for 2°. Since there are no more cozero-sets than

there are continuous real-valued functions, we conclude that EX
has & basis of cardinality < |C(X)|. By 2.2 of [5],

lc(x)| < W(X)WC(X) and so, in particular, W(QX) < w(X)

wc(X)'

Observe that, since we(X) < L(X), 2.6 formally sharpens the

L) )

estimate w(X of 2.2.

We will now give examples to illustrate the sharpness of
these estimates. From 1 of [27], and the obvious inequality
W(QX) < 2W(X), it follows that if X is a discrete space of

cardinal o, then 2X has weight 2% This shows that the equality

) = (kX

w(2 = W is attained for some spaces. On the other

X) )L(X)

hand, the equality w(2 = w(X fails for many familiar spaces.

For example, let X be the space of countable ordinals. Then

w
(x) . o1 But, since w(BX) = w

w(X) = L(X) = ) , and so W(X)L 1>

2.5 gives W(QX) = w,. Regarding the last inequality in 2.2,

1
)L(X) W(X>

note that the equality w(X =2 holds for spaces X

in which w(X) = L(X), (for example, discrete spaces), while the

L(X) P 2w(x)

strict inequality w(X) holds, for example, for Lindelof

spaces of weight c (for example, the Sorgenfrey line). Discrete
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spaces show that the inequality w(X) < W(2X> can be gtrict. We
have seen above, in 2.3, 2.4, and 2.5, that the equality

w(X) = W(EX) mey be attained.

The inequality in 2.6 may fail for non-normal spaces. For
example, let X be the upper half-plane with Niemytzki's tangent
disc topology. Then X is separable, and contains a closed discrete

subspace of cardinality c. Since, in general, we(Y) < a(Y),

it follows that we(X) = o Clearly, w(X) = ¢. Now from 1 of

0
[27], it follows that 2X contains & closed discrete subset of

X) c _ W(X)L(X)

cardinality 2°. It followe that w(2") = 2 , while

w(X)WC(X) = cwo = c.

Furthermore, the estimate in 2.6 for normal spaces X is

)L(X).

sharper than the general inequality W(QX) < w(X To see

this, we use the space of 1.2 in [10]. This space, which we
shall denote by Y, is constructed in [10] using the continuun
hypothesis, and is countably compact, normal, separable, non-

compact, and has cardinality w It follows that we(Y) = w

1° 0

and w(Y) = L(Y) = w.. The estimate in 2.6 for W(QY) is, using

1
w
the continuum hypothesis, W(Y)WC(Y) = wlo = W, while
. w w
w2 2 o T=2

Discrete spaces are examples of normal spaces for which the
relation in 2.6 is actually equality, while the countable ordinals
show that the inequality in 2.6 can be strict. (This follows

from the fact that the space of countable ordinals has weight
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and weak covering number w,; we have shown above that its hyper-

.)

1

space also has weight wy

Before turning to the character of 2X, we will look at the

m-welght of 2X, which is very easy to handle.

2.7 Theorem. 7(2

Proof. If P is a m-basis for X, then {QUF n[ nB(X; ¢)]: Fisa

GeF
finite subset of P} is a w-basis for 2X. Thus ﬂ(2X) < m{X). For
the reverse inequality, let {Gi: i e I} be a m-basis for 2X.
Lach Gi contains a non-empty basic open set B(Gi’O; Gi,l""’Gi,Ni)'
Then {Gi ielI, je {O,l,...,Ni}} is a m-basis for X. Therefore

X

a m-basis for X of least cardinality is no larger than the mT-weight

of 2%, That is, m(X) < n(2

X).

X

We now turn to the character of 2°. Our result is a straight-

forward generalization of the countable case treated in III of
[53]. Recall that, as mentioned above, x(X) is defined by

X(X) = sup{x(X,F): F is a closed subset of X}.

2.8 Theorem. If X is a Tl space, then x(ZX) = Y(X)hd(X).

Proof. Let us set o = x(ZX) and B = ¥(X)-hd(X) = max{%x(X),
hd(X)}. Let F be a closed subset of X. Since X(2X) = o, F has
a neighbourhood base in 2X of cardinality < a. Let {Gi: i< al

be such a base. For each i < o, we can find open sets
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Gi,O,Gi,l, ,Gi’N. in X so that F ¢ B(Gl,o, Gi)l, ,GlaNi) ¢ G,

1

Let U = {Gi o 1< a}. We claim that U is a base for the neigh--
3

bourhoods of F in X. For, let W be any open set in X which

contains F. Then 2w is a neighbourhood of F in 2X, thus there is

. W .
gsome i < o such that F ¢ B(Gi,O’ Gi,l""’Gi,Ni) c Gi ¢ 2". This

o S
Therefore x{(X,F) < !UI

clearly implies Gi S W. Thus U forms a base as claimed.
2

0. Bince F is an arbitrary closed subset

P A

of X, we conclude that ¥(X) = sup{x(X,F): F is a closed subset

of X} < a.

We next show that hd(X) < o. Let {Hi: i < o} be a base for

the neighbourhoods of X in 2X. For each i < a, find open sets

) < H..

i in X such that X e B(X; H .
1,Mi i

REREEEs. ) i1

i
F'or ecach i < o and for each j € {1,2,...,Mi} choose a point

x, ,ell, .. LetD={x, ,:i<a,je{l,...,M.}}. We claim
i,d i, i,] i

that D is dense in X. For, let V be any non-empty open subset
of X. Then B(X; V) is a neighbourhood of X in ZX, and so, for

some i < o, we have B(X; H .LH ) < Hi ¢ B(X; V). This

i,1° 1,M,

implies that Hi . &V for some j & {1’2""’Mi}° Therefore,

2

for such J, X 3 e V. Thus Vn D # ¢, and so D is dense in X.

We conclude that a(X) < [D| < a.

Now, let F be a closed subset of X. Then EF is a subspace

of 2X, and so X(QF) < X(2X) = a. Applying the argument of the

preceding paragraph to the hyperspace 2F, we obtain dA(F) < a.
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Thus every closed subspace of X has density < a. Now X is a

subspace of 2X, and so x(X) < x(QX) = 0. We show that this

implies every subspace of X has density < a. For, let S be any
subspace of X. Then cl S 1is a closed subspace of X, so by the
above, d(¢l 8) < a. Let {Fi: i < a} be a dense subspace of cl S

of cardinality < a. DNow, since x(X) < o, every point of cl S

has a neighbourhood base in X of cardinality < o. For each 1 < a,

let {Ni E J < a} be a neighbourhood base in X at the point p..

?

For each 1 < o and J < a, choose a point bi 3 £ Ni 3 n S. Let
2> 3

B = {bi,j: i <a, J <a}. Then B is dense in S and |B] < aco = a.
Thus 4(S) < [BI < a. We have thus shown that every subspace of

X has density < a, as claimed. It follows that hd(X) = sup{d(Y):

Y ¢ X} < a. Together with x(X) < a, we conclude that 8 < a.

We conclude the proof of 2.8 by showing that o < B.

A

Let T ¢ 2. Now a(F) < nha(Xx), and x(X) < X(X). Therefore

d(F) < B and x(X) < B. Let {xi: i < B} be a dense subset of F
of cardinality < B. For each i < 8, let {Gi,j:.j < B} be a base
for the neighbourhoods of X, in X of cardinality < B. DNow
x(X,F) < x(X) < 8. 8o there is a base for the neighbourhoods

of F in X of cardinality < B. Let {Hk: k < R} be such a base.
- >

Now, let W(F) ={2 k: k < B} u {B(X; Gi J) i< B, J < B} We

3

claim that the finite intersections of members of W(F) form a

V)

Vl""’ N

base for the neighbourhoods of F in 2X. For, let B(VO;

be a basic neighbourhood of F in 2X. Then F ¢ VO’ so there
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exists k < B such that F ¢ H < Vy- For each r e {1,2,...,N},

F nV, is a non-empty open subset of F. Since {xi; i < B} is

dense in F, there is, for each r e {1,2,...,N} a point X, € Vr'
T
Since {Gi J < B} is a basis at x, for each i, we can find,

W

for each r, an index jr such that x, € Gi . € Vr' It follows

r r’Jr

H N
easily that 2 © n n B(X; G, . ) = B(Hk; N
r=1 v 1°91

.,GiN’jN)

c B(VO; Vl,...,VN). Thus every neighbourhocod of F in 2X contains

g finite intersection of members of W(F), and so these finite
intersections, being themselves neighbourhoods of F in EX, form

a base for the neighbourhoocds of F in 2X. Since there are no

more than B such finite intersections, we conclude that X(QX,F) < B.
bince F was chosen arbitrarily in 2X, it follows that o = X(2X)

= sup{x(QX,F): Fe EX} < B. This concludes the proof of 2.8.

From 2.8 we deduce Wulbert's result in III of [53], namely:
If X is compact, then 2X is first countable, if and only if, X

is hereditarily separable and perfectly normal.

An interesting aspect of Theorem 2.8 is the relation between
the two cardinal invariants of X used to describe the character
of 2X. A Souslin continuum, whose existence is consistent with
the usual axioms for set theory, is compact, perfectly normal,
and not separable (see [L1]). For such a continuum S, we see that

X(8) < na(s). 1In [ko], Ostaszewski, using certain set theoretic



assumptions consistent with the usual axioms for set theory,
constructs a non-compact space X which is countably compact,
locally compact, perfectly normal, and hereditarily separable.
Let K denote the one-point compactification of this space.

Since X is countably compact and not compact, X is not o-compact.
Therefore, the point at infinity in K is not a G6 in K, and

thus K is not perfectly normal. However, K is hereditarily
separable since X is, and we see that hd(K) < X(X). It follows
that neither of the invariants ¥(X) or hd(X) can be removed in
2.8. However, in certain models of set theory, such a simpli-
fication can be made in certain cases. For example, I. Juhasz
has shown that Martin's axiom and the negation of the continuum
hypothesis imply that perfectly normal compact spaces are heredi-

tarily separable. (See 5.6 in [25].)

In light of the above remarks, it is interesting and somewhat
surprising that the numbers x(X) and hd(X) arise together in a

natural way in the context of hyperspaces.

The last cardinal invariant we will examine is cellularity.

We first establish the following lemma.

2.9 Lemma. Let D be dense in X, and let D = U Di.“_Then
iel

e(X) < II °sup{c(Di): ie I},

Proof. Let o = II

vsup{c(Di): i € I}. For the sake of contra-
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diction, suppose c¢(X) > a. Then there is a family G of pairwise
' +

disjoint, non-empty, open subsets of X such that IG[ =g . (Here

+ 5

o denotes the least cardinal larger than o.) For each i e I,

let Gi = {G e G: Gn Di # ¢}. Since D is dense in X, G = u Gi.
iel

Thus, since [I| < a, for some i e I, IGil = o'. Since

{Gn Di: G e Gi} is a family of pairwise disjoint, non-empty,
open subsets of D,, it follows that IGil < c(Di). But C(Dj) < a
for all jJ € I. We conclude that of = IGiI < C(Di) < a, a contra-

diction. Thus c(X) < d, as asserted in the statement of the lemmna.

2.10 Theorem. Let X be a Tl space. Then c(X) < c(2X) < sup{c(Xn):

ne N} < QC(X).

Proof. If G is a family of pairwise disjoint, non-empty, open
subsets of X, then {QG: G e G} is a family of pairwise disjoint,
non-empty, open subsets of 2X of the same cardinality as G. This

proves the first inequality.

X

For each positive integer n, let Fn(X) = {F e 2™ |F| < nl,

and let F(X) = wu Fn(X). F(X) is dense in X, So, by 2.9,
nell

C(QX) < wo°sup{c(Fn(X)): nelN} = sup{c(Fn(X)): n e N}. Now, for

X )

_ o0 )
each n, the map £ X - Fn(X) defined by fn<Xl’X2"" "

= {xl,xe,...,xn}, is a continuous surjection. (See 2.L4.3 of

[36].) Since cellularity is not increased by continuous maps,
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we have c(Fn(X)) < ¢(X™) for each n. Tt follows that

C(QX) < sup{c(X™): n e N}, establishing the second inequality.

The last inequality follows from 4.6 of [25].

We give two examples to illustrate the sharpness of the
estimates in 2.10. If X is separable, so are 2X and all finite
powers of X, in which case all the spaces " and 2X have cellﬁ—
0 In this case we have wy = e(X) = c(2X) = sup{c(Xn):

w
nel} < QC(X) =2°% 1Irsis a Souslin line, one can show

larity w

that 2° has uncountable cellularity. Assuming the continuum

hypothesis, 2.10 becomes w. = c(8) < c(2S) = sup{c(Sn):

0
nelN}= 2C(X) = wl. (The continuum hypothesis and the existence

of a Souslin line are, together, consistent with the usual axioms

for set theory; see [U1].) The author has been unable to

determine whether the second inequality in 2.10 can be strict.
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