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One of the most natural- and most interesting obJects asso-

ciated. l¡it,h a topological space X is its space of cl-osed. subsets
YY

2", Of the various topologies vith which 2" may be end-oved-,

the one that concerns us here is the so-ealled finite topology

introduced. by Vietoris in t\8]. We shal-l- refer to the space

of closed. subsets of X, end.owed vith the finite topology, as

the hyperspace of X. Hyperspaces have been studied. by several

authors from several points of view. 2X has been stud.ied. in

the context of set-val-ued. rnappings, fixed.-point theorems, and

se-Lections. This approach is il-lustrated in the coll-ected. papers

in [)+6]. The study of 2X vhen X is a continuum or metric

continuum has occupied the interest of many topologists. (A

few examples of this are [B], [:r1, [>o]). The comprehensive

work of E. MÍchael [36] is tne standard reference for the funda-

mental- properties of 2X. I.r lS6], Michael d.escribes various

topologies and uniformities on spaces of subsets and examines

such basic topics as separation axioms, countability, compactness,

continuous functions, connected-ness and- sel-ections. Further

basic properties of 2X are examined. in l=21 , r,¡here one may find.

a treatment of such topics as set-val-ued mappings and decomposition

spaces. The re]ation of 2x to l-attices and. Brour,¡erian algebras,

and the role of 2x a= a topological- semilattice are ar-so eluci-

dated in [Sz].

ABSTRACT



fn this work, l^¡e are primarily concerned. vith properties

rel-ated. to compactness in eX. Such properties are of great

interest and. have received consid.erabre attention. one of the

earl-iest and most eJ-egant results on hyperspaces is the funda-

mental- compactness theorem, established. by vietoris, asserting
Y

Lhat 2" is compact vhen x is. This result is basic in the stud.y

of several compactness-related. propertíes of ZX. fmportant

progress in the study of compactness-related. properties of 2X

has recently been mad.e by J. Keesl_ing, who, in a series of

papers " [27], lzSl; lz9l, [S01, obtained many significant resutts,

including the fascinating resul-t that normality and compactness

are equivalent in hyperspaces [28]. KeesJ_ingts resul_ts have

motivated much of the present vork.

The first chapter is devoted. to a study of pseudocompact

B.¡c1 countably comp""t 
"pu,""s , the emphasis being on povers ancl

prod.ucts.

In Chapter 2, .ure appfy the results of the first chapter in

examining the countable compactness and pseudocompactness of 2x.

In the third chapter, our attention is focused_ on the

Stone-Cech compactification of 2X, and- partíeularJ.y on the

vatidity of the ret-ation g(ZX) = ZßX. The resut-ts of Chapter 2

provide us vith a fairJ-y J-arge cl_ass of spaces for which this

relation is val-id".

The rol-e of zßX as a compactification of 2X i" further

examined^ in Chapter )+, vhere ve describe the G.-closure of ZX



l_n

the

^ßx2---. This d.escription enabl-es us to obtain information on

realcompactness of 2X.

In the final- chapter, in a somevhat d.ifferent, though not

unrel-ated. vein, we examine some of the cardinal- invariants of
Y2'^, includ.ing r^reight, character and ceJ-J-uJ.arity.
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Our topologicaJ- terminolo¿Çf, and notation are wel-l established,

and foll-ov the stand.ard. texts on point-set topology. For back-

ground. material- on rings of continuous functions and. compacti-

fications o ve refer the reailer to the Gi]-l-man and Jerison text

[ri]. Folloving [r5], the ring of continuous real--val-ued. functions

on a topoiogical- space X is d.enoted by C(X), and its subring of

bound.ed. members by C*(x). ¡'or f e C(x), ttre set {x e X: f (x) = 91

is cd-led. the zero-set of f, and is denoted by Z(f). I cozero-set

is the complement of a zero-set. The set of alf zero-sets of

functlons :.n C(X) j.s d.enoted by Z(X). The Stone-Cech compacti-

fication of a completeJ-y reguJ-ar, Hausd.orff space X is denoted

by ßX. ït is characterÍzed. as the compactification of X to vhÍch

all- bounded. continuous real-vaJ-ued functions on X may be continu-

ously extended.. The set (and. discrete space) of positive integers

is denoted by N. The points of ßS-U are the free ultrafilters

on {, and. they play a d.ual- ro}e in this thesis, as points of the

space ß{, and. as ultrafil-ters. The space of real numbers is

denoted by B, and. the card.inal-ity of a set S is denoted by lS l.
The notions from set theory that ve shal-l- employ are stand.ard.

An ordinal is thought of as the set of its predecessors, and a

cardinal as an initial- ordinaf. The symbol rrro is used to d.enote

the c¿tth lnfinite card.inal . For a d.iscussion of the cardinal

invariants discussed. in this thesis, we refer the read.er to tl+]

an¿ [25].

Chapter 0
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In the present vork, the main obJect of our study is the

space of cfosed. subsets of a topological space. \^Ie now recal-l

the d.efinition of the space of cl-osed. sets, and state several

basic facts concerning this space.

Let X be a topotogÍcal- space. Let 2X d.enote the set of

all- non-empty closed subsets of X. For a subset A of X, we let

zA = {F e zx; F s Ai. I{e generate a topology on 2x by taking

all sets of the form 2G and. all- sets of the fonn 2X - 2*-G,

for G open in X, as a sub-basis. This topology on 2X i" known

as the finite topology, and 2X, end-owed vith thís topology,

is called the hypqg¡pgçe_of X.

Our basic references for the fund.amental- properties of 2X

are [32] an¿ t361.

FolJ-owing lSZ1, we make the foll-owing notational- convention.

subsets A0,Al_,...,4n of X, lqe let B(AO;Af ,... rArr) =
n X-4.

n n(zx-z 
--t) 

={Fe 2x:¡'sAoandFnA, lgforalt
i=l-

For

240

2.

i = I )2.... ,n]. Using this notation we see that

¡(Go;Grr... rGn) r¡here Go,Gl_r...,Gn are open and.

form a basis for the open subsets of 2X.

h/e nor,¡ state several- basic facts about hyperspaces which

we wil-l- need. ín the course of our d.iscussion.

0.1. ff X is Tr, the singletons of 2X fortn a subspace

homeomorphic to X. (tf6l)

the sets
n
u G-. S G^,

-tu:l= I



3.

O.2, For each positive integer n' lre set Fr.(X) = {F e 2X:

lrl j r], and we set F(x) = u F (x). rf x is Tr, then F(x) is
,rrry 

t
d.ense in 2X. If X is Hausdorff, then Fn(X) is cl-osed. in 2À

for each n Ê ry. (see z.l+ :-n t36l. )

0.3, The operation of set-theoretic r.rnion, (A'S) + A u B,

is ¿r continuous map from 2x * 2x into 2x. (see page 166 or [:2]. )

O.\ 2X iu compact Hausdorff if, and onJ-y if, X is compact

I{¿r.usdorff. (see )+.9 in tS6l.)

0.5. 2X i= completely regular (and. Hausd.orff) if, and only

if , X is normal- and- Ilausdorff . (See )+.9 in t:01. ¡

0.6. If X is normal- and Hausd.orff , the natural mapping

i: zx n zßx clefined l¡r i(F) = clu"F is an embed.ding of 2X onto

a dense subspace ot zPX. (see lzf).)

0.7. Let f be a bounded, real-valued function on X. I'nle

clefine real--valued. functions fs and fi on 2X by

fs(ti) = sup{f(x): x e F} and ri(¡') = inf{f (x): x e F}. Then

if f is continuous, so rru fi and. fs. I{e have for f I o,

z(fs) = zz(f) ur.o, if x is countably compact, z(rí) = ¡(x, z(t)).

fdentifying X vith the singJ-etons in 2Xe r¡¡e see that, for a Ta

. ^'Ê ^Xsp€ice X, X is C^-embedded. in 2". (see )+.7 and )+.8 i-n t:6]. )

0.8. ff X is normal- and Tr, the sets of the form
n1t

- -t ^zni¡(X; Zo) u 2- u u2", where ZO.ZI,,..,znez(x), forma

b¿rse for the closed sets in 2X. This cart be veri-fied in a

strai ght forvard- manner .



l+.

From ChaTller 2 on, ï,e vill assume that all spaces under

consideration are Tr, and this assumption will be used- without

exp.Licit mention j.n some cases. These spaces are not consistently

assumed to satisfy separation axioms other than Tr' Higher

separation axioms d.o enter in certain of our resul-ts and

arguments in a significant and essential vay, and in such

situations we are explicit as to vhat separation axioms are

assuned. But we repeat that the assumption that all topological

spaces d.iscussed. are T, is tacit from Chapter 2 on. One further

r¡ord on separation axioms: the term completeJ-y regular, even

r,¡hen unmodifíed., implies Hausdorff throughout this thesis.

Theorems are referred. to bv number. "Theorerl- 2.6 of

Çhapter l-" ínclicates the sixth theorem in the second. section

of Chapter I. When the mrmber of the chapter is not ind.icated.,

it:Ls to be understood. that the reference is to the present

chapter.



1. In this chapter we are concerned- with certain aspects

of the theory of countable compactness and pseud.ocompactness.

Several of the id.eas and resul-ts of this chapter will_ subse-

quently be applied. to the countabl_e compactness and pseud_o-

compactness of hyperspaces; hovever, the main interest and.

significance of these resul-ts l_ie in their contribution to the

¿leneral- theory of countable compactness and. pseud.ocompactness.

The material presented. in this chapter is part of joint vork

by the author and. Victor Saks, whose contribution the author

gratefully acknowl-edges. This work appears in [20].

We characterize spaces all- of vhose povers are countably

compact, and obtain partial resul_ts on the correspond.ing question

for pseud.ocompactness. The basic tool- in this work is

¿.. R. Bernstein's concept of O-compactness (tf]). The maximal

0-compact extension of a completely reguJ-ar space is constructed..

Additlonal product theorems for pseudocompact spaces are proved-,

imposing conditions closel.y rel_ated to 2-compactness on the

factors, vhich imply the pseudocompactness of the product. fn

t;he fast section of the chapter, we prove several theorems

which pz'ovide nel¡ exaJnpl-es of non-trivial pseud.ocompact spaces.

In particular e we exhibit a homogeneous space, all of r,¡hose

powers are pseud.ocompact, in which no discrete countabl_e set

COUNTABLY CO¡/PACT AND PSEI.]DOCO}.,PACT SPACES

Chapter 1

5.



has a cluster point.

2. Countably ComÞact Povers.

of compactness-l-ike cond"itions

countabl-e sets.

Let X be a topological space.

X is said.

nite subset of

A subset A

Let us recall-

r,¡hich d.epend

every countably infinite subset of A has a cluster point

to be .countabfy compact,

X has a cl-uster point.

X is sequential-ly compac!, if every sequence in X has

convergent subsequence .

several definitions

on the behaviour of

of X Ís rel-ativelv countabfy compact in

X is cal-l,ed strongl-y o'-compact, if every infinite subset

of X meets some compact subset of X in an infinite set.

6.

Fina1ly, we call X Ulo-bounded, if every countabl_e subset

of X is contained in a compact subset of X.

if every countably infi-

Our first result characterizes those spaces X such that

every po'v¡er of X is countably compact. The main tool_ in this

investigation is Bernstein?s concept of ?-compactness, fn If]

the concept was introd.uced, and some of the basic theory of

2-compact spaces was d.evel-oped.. tr{e nor,¡ give his definition of
'D-compacLness ) and- quote the maJor results ir [l], incJ-uding a

proof of his result tinat ?-compactness is a prod.uctive property.

X, if

in X.



T.

2.1 Defínition. Let 0 be a free ultrafil-ter on ry. Let X be a

topological space, and. let (xrr: n e ry) be a sequence in X. A

point z e X is said. to be a ?-fimit Loint_ of the sequence

(*._ r n e N) if , for every neighbourhood. l/ of z, {n: x.- e \{} e O.'n'n
lle shal-l- express this by writing z e D-Lim xn. fn Hausdorff

n-þ
^-¡spaces, I/-l-fudt points, when they exist, are unique, in which

case ïre vrite z = O-Lim xn. A space X is said. to be ?-compg:t
n-)æ

if every sequence in X has a ?-limít point.

Observe that a D-l'imit point of a sequence of d.istinct

points (x.-: n e N) is, ín particul-ar, a cluster point of the set-n
{x-.: n e !tI}. Therefore, a ?-compact space is countabJ_y compact.n

a.¿

of

Lemma. Let{x:neN}
n

{x:neN}. Thenthere

Proof . Let G(z) Aenote the famity of al-l- neighbourhood.s of z

i-n x. For trrI e G(z) , tet s(w) = 1tr xn e tr^IÌ. The family

Ê = {s(w) - {t}: w e G(z), k Ê N} has the finite intersection

property, errd so there is an ultrafil_ter 2 on N such that F g D.

Obviously 2 is free and. z e ?-lim x
n-Þ rì

c X an4 let z e X be a cluster point

2.3 Lemma" Let f : X -> Y be a continuous ma¡.

exists 2 :.n ßw-w such that z e

be a sequence in X. and l_et z e X such tltat z

1(z) e D-tim r(x,,).
n->@

Proof. For every neighbourhood

neighbourhood of z in X. Since

the resul-t foll-or¿s .

D-:-inr
n+@

x.
n

w of f(z)

{n: x e
n

Let (x

e u-Iam
n+æ

n

X.

-tin Y, f *(\{) is a

f-r(w)Ì = {n: f(xrr) e w},

'ry)
Then



2.lJ Theorem (Bernstein). ?-compactness is cl-osed. hereditary,

and prod.uctive. A comrrletel-y regular space is ul

and onl-y if, it is 2-compact for every 2 in gN-{

Proof. Obviousty a closed. subset of a D-compact space is

3-compact. We will- prove the statement concerning prod.ucts ,

and refer the read.er to Theorems 3.I+ and.3.5 of [l] for ttre

last statement.

Thus, Iet {Xo: cr e f} be a fami}y of 2-compact spaces,

and l-et X = il X . We vil-l show that X is 2-compact. Let
ser 0

, (n)(x'--': n e l-{) ¡e a sequence in X. Then, for each o in I,
/- \(*-t"': n e N) has a D-limi-t point z. in X-. This defines a'0 ' cr 0,

point z = (^-) ^- in X. hle craim that z e }-rim "(t). For,q,'ce 1 
n+æ

let W be any neighbourhood of z in X. There is a finite subset

I of ï, and open sets Wo in Xo, for each cr in F, such that

ze nW x IIX clÍ.
-Gr-0-ge-ti' 0ç!'

But {n: *(n) e t^I}: n {n, {") e wo}, and therefore
oeF

{n' *(t) ¿ w} e 0. This proves that , , D-:ri^ *(n) and thus
n-Þ

X is ?-compact.

^-bounded if,

0.

2.5 Coyol-lary.

-comp.ac.!_.

Proof " Tmmed.iate.

Anv prod.uct of 0-compact sllaces is countablv



We are now in a position to characterize spaces al-l- of

vhose powers are countably compact.

2.6 Theorem. Let X be a topological space. The foll-oving

statements are equivalent:

(i) Every_power o-f X is countabl-L_lprnpact;
õ

^v1..\ --¿|11/ À Ls
0)^

( iit ) xlxl is counta¡ty- gompact ;

(iv) There exists 2 in ß{-N such that X is O-compact.

Proof. (i ) => (íi ) .

(ii) =t (i").

Thus, suppose X is not

each 0 in ß{-{, there

no ?-limit point in X.

xßN-N as fott-or,¡" (n)
,YD

countably compact;

o

This is triviaf.

tr'or the seke of contrad.iction, assume (ii) nof¿s. Then

Xßry-ry is countably compact, and. therefore the sequence

("("): n e {) rras a cluster point " in xßT-{. By Lemma z.z,

there exists E j-n ß{-N such that z e E-l-im 
"(tt). 

But this
n+e

implies, by Lemma 2.3, that

nr(z) e E-rim nr(r(') ) = E-rim "lt).n+æ n-þ

But this is ridicut-ous, sinc" f *lE): n e {) nas no E-l-i¡rit

point . Thus (i-i ) must al-so fail-.

I{e show that if (iv) fails, so d.oes (ii).

2-compact for any 2 in ß{-{. Then, for

is a sequ"rr"" ("(?), n e N) in x r,¡hich has
rr 

/-^ \
Define a sequenc" (yt"/: n e N) in

_ ..(D)
n



r_0.

(iv) =t (i ) . This fotlows immed.iateJ-y from 2.5 ,

(i) =r (iit). This is triviar-.

(lii) => (iv). Let I be the set of all sequences in X.

wevriteoex t ' (o) rN). Novlrl= 
(,^

rs o = (*ì"': n e {). Now lrl = lxl u, and so

(fii) impties that XX is eountably compact. Define a sequence

(r(t): n e N) in xx as forr-ovs: ,:^) = Jo). Let p. xr b" u.om
cluster point of (z(t), ,r c ry). By 2.20 there exists D in

/\
ß{-{ such that p e ?-tim r\n) . \^Ie ctaim that, for this 0, X is

n-)Ð

2-compact. For, if o = (*jo), r. ry) is any sequence in X,'n
Lemma 2.3 impfies that

no(n) ¿ %-Lim ro{r(t)) = ,-lrr *Ío)
n-+æ n+€

Thus every sequence in X has a 2-timit point , and. so X is O-compact.

2"T Remark. fn [)+5], é"""bo"orgh and Stone have shor¿n that, if

{ = il X^r then X is corrntably compact if, and only if, every
Gel.

Dcsubproduct of 2* factors is countably compact. Thus the conditions

(ii) an¿ (iii-) in Theorem 2.6 may be regarded- as an improvement

of their result in the case where al-l- the factors are the same,

2,8 Corol-lary. If lXl : c, then Xc is countabty compact if,

end only if, there exÍsts 0 in ßN-N such that X is ?-compact"

fn l)+i+] tne following theorem is proved..

2.p Theorem. (Saks-Stephenson). The product of nolmore than

strongly 0 .

(¡I



I1.

Assuming the continuur.r hypothesis ICU], ve obtain the following

corollary, vhich gives natural- examples of ?-compact sDaces.

2.I0 Corollary. ICH1.

then there exists 2 in

_everL countabfy comTl

for some 2 in ßry-ry.

Proof. The first assertion is obvious from 2.8 and 2.!, while

the second is a special case, by Theorem J-"2 in l:g].

If lxl : ", and if X is strongly og-ggpad,

ßN-N such that X is 2-comoact¿ fn oarticufar-

2.11 Remark. Since every sequential_ly compact space is strongJ-y

o^-compact, the conclusion of 2.f0 hol-ds for sequentially compact
U

spaces, of cardinal- <c. This special case of 2.1-0 also foll_ovs

directly from Theorem 5.8 :-n [l+l], together with our Theorem 2.6.

For non-trivial- examples of the spaces hynothesized in Z.IO,

the read.er is referred. to [f01.

We now turn to another aspect of 2-compactness. It fol_lovs

from the coro-Llary to Theorem l- in l2Jl , that every compJ_ete1y

:regular space has a maximal O-compact extension. That is, for

every completeì-y regular space X, there is a completety regular

?-cornpact space 2(X) contaÍning X as a dense subspace, such that

every continuous map of x into any (complete]-y regular) O-compact

space extends continuously to 0(X). From the final section of

123) , it fol-l-ows that , in fact, we may take X g 0(X) c ßX vhere

D(X) is the intersection of atJ- 2-compact subspaces of ßX

k-space of cardinal-ity Íc fF. ?-compd_



containing X.

l^le now shov hov 2(X) is buil-t up from X, The construction

is an exact analogue of ExampJ-e )+ in l:-]. fn this exampJ_e,

Bernstein is constructinp5 a ?-compact space which is not

t-t'-bound.ed. His construction, r+hen slightJ_y modified., gives

the maximal ?-compact extension of an arbitrary completeJ.y

re6¡ular space. R. G. I,Iood.s ind.epend-ently characterized ?(X)

by the same method- as given here, :-n [52].

LetXbeacompletely

trans f inite secluence (Xo t

Let XO = X. Assume we have constructed the spaces Xq,

for cx < ß such that

12.

(i) or j o2 .

/..\(f1,

point in X

regular space. l{e first construct a

d ( o. ) of subspaces of ßX containíng
-L'

!/e

uX_. c,
r.r < l-j

Irinally,

c[-<d^<I¿

0
â

ß=>X cX çßX0f - o2

ß => every sequence in X

nov construct

For each o e

incluction step,

(i) an¿ (ii) for

Iet X-
tj

Xß. Let IU be the set of all sequences in

XU, let xo be a ?-timit point of o in ßX.

2.1-2 Theorem. 0(X) = , Xo.
o"r-

=(u X
^0s<[J

and gives

al.l ua <

X.

) u {xo: o e IU}. This compfetes the

o]-
has a D-limit

a sequenc" (Xo: o, . cur) satisfyíng

o2 ' 'r-'



Proo f.

inuX
oarl

point in

f?

Obviously X -c , Xo _c ßX. lf (xn: n e {) is a sequence
o"]-

o, it l-ies entirely within one XU, and thus has aD-timit

induction shor¿s that any 2-compact subspace

must contain every Xo, that is, must contain

*ß*a Therefore u X^, is 2-compact.
u

o¿<(l)-I

result we have quoted. from the Herrl-ich and.

l23l, it noi^¡ follows that 2(X) = u X
oar]-

(¡^
2.13 corollary. lr(x)l . lxl

Proof, This is obvious

fnformation on the

property of topoJ-ogical

A straightforvard.

3. Poqe,¡s_ and. Products of Pseudocompact Spaces. Recall that a

of ßX containing X

u X From the
0o"r-

van der Slot paper

sp€rce X is pseudgcoppact if every continuous real-val-ued. function

on X is bounded. There is an obvious modification of 0-compactness

r¿hich is suited. to the study of pseud.ocompactness in completely

regular spaces. This is because, as Gl-icksberg observea in lef],

a completely regular space X is pseudocompact if, and. only if,

every sequence of non-empty open subsets of X has a cl_uster point.

(A cluster point of a sequence of sets is a point such that each

of its neighbourhood.s meets infinitefy many sets in the sequence. )

from the construction

rol-e of O-compactness as an extension

spaces can be found in l>Zl.

described. above.



In fact, as Gl-icksberg shovs, it is necessary and. sufficient

that every sequence of pairwise disJoint, non-empty open sets

have a cl-uster point. This cond.ition in general , (that is,

for non-comptetely regular spaces) is stronger than pseud.o-

compactness. (see tl+l]. )

3.1- Definition.

(srr: n e I) be

X. Apointpe

(snrne{)if,

{n:SnnWl0}

every sequence

point.

Let 0 be a free uttrafitter on {. Let

a sequence of subsets of a topological space

X is cal-l-ea a ?-l-imit poilrt of the sequence

for every neighbourhood W of p,

¿ D. A space X is cal-led ?-pseud.ocompact if

of non-empty open subsets of X has a 0itimit

Makin¿¡ use of arguments simil-ar to those in 2.h, we can

read.ily establ-ish the fol-l-oving facts.

14.

3.2 Theorem. Every 2-pseudocompact space is pseud.ocompact.

3.3 Theorem. EIery p4od.uct of 2-pseudocompact spaces is

?_p"""e*!e$..

A corollary of these tvo theorems is that every power of

a O-pseud.ocompact space is pseud.ocompact. Now, it fo]-]-ovs from

Theorem l+ of l2f ], that any prod.uct of pseudocompact, J-ocally

compact spaces is pseudocompact, and- that any product of pseudo-

compact, first countabl-e space is pseud.ocompact. Since there is



L5.

no reason, in general , to expect such prod.ucts to be 2-pseudo-

compact, one cannot hope for a resul-t analogous to Theoren 2.6

for pseudocompact pol,rers of completely regular spaces. This can

be seen in another vay. In [ef], Gl-icksberg shovs that a product

of completely regular spaces II Xo is pseud.ocompact if, and only
oef

if , every countabl-e subprod.uct is pseudocompact. Nov, for a

sequence of sets o = (Srr: n e N) in X, 1et L(o) = {2 e ßN-{: o

has a O-timit pointÌ" Let X be the set of sequences (of points)

in X, and. l-et Xn be the set of al-l- sequences of non-empty open

subsets of X. The proof of 2.6 really shows that every por,,rer

of X is countably compact if, and. onty if, for everf, subset T of

L, n l(o) I 0. Since every power of a completely reguJ-ar space
oeT

X is pseudocompact if, and

in a similar vay, conclude

if, and. only if, for every

J.)+ Example. Açqrqplelely r:egular space-, al-l- of whose por¡reïs are

pseud-ocompact. vhich is not ?-pseudocompact for any D in ßry-ry"

-.,0onJ-y if , X - is pseud.ocompact , ïre can,

that every poi,rer of X is pseud.ocompact

For each p in ß{-U, let Xn = ßg-{n}.

Since every pol¡er of X is a product of locall_y compact, pseud.o-

compact spaces e every pover of x is pseudocompact. But the factor

X, of X is not ?-pseudocompact, and. so X is not ?-pseudocompact

for any ? in ßlV-w.

countable subset T of x., n L(o) I 0.
- -^mU ¿f

LetX- iI X
peßry-ry p
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3.5 ff a space X has a d.ense subset D such that every sequence

in D has an accumulation point in X, then obviously X is pseudo-

compact. Many of the familiar examples of pseudocompact spaces

have thls property, and. this criterion for pseud.ocompactness has

been used profitably in many instances. We refer the read.er to

[3] ana lf3] for excel]-ent examples of this.

With this in mind., another natural apptication of ?-compactness

to the stud.y of pseudocompactness arises. Let us consider spaces

X t¿hich have a d.ense subset A such that every sequence in A has

a ?-timit point in X. Calling such spaces d.ensel-y-2-compgqt,

ve can establ-ish the fol-lor,ring theorem.

3.6 Theorem. Every prod.uct of d.ensel-y-0-compact spaces is

clensely-2-compact. Every densely-?-compact space is ?-pseud.o-

compact,

Proof. The first assertion fol-l-ows in a straightforward manner,

usirig an argument similar to that in 2.1+. To prove the second.

s'batement, let X be d.ensely-D-compact. Let A be a dense subset

of X such that every sequence in A has a 2-timit point in X. Nov,

l-et (C*t n e N) be any sequence of non-empty open sets in X. Forn

eachn, there exists apoint a' e G' nA. Letp e Xbe aD-limit

point of the sequence (arr: n r ry). Then, elearly p is a ?-Jimit

point of the sequence (G_r n E ry). Therefore, X is 2-pseud.ocompact.



l+. Examples of Pseud.ocomÐact Spaces. fn this

severaJ- tlieorems which provid.e nev examples of

pseudocompact spaces.

Let us first recafl- the notion of type in ßN-N. The equi-

val-ence relation - defined on ß{-$ by x - y if there exists a

homeomorphism of ß{ onto itsel-f taking x to y, decomposes ßN-{

into equivalence classes cal-l-ed. types. For p Ê ßry-ry, T(p)

denotes the type of p. Recatl- that, for any p e ßry-ry, f(p) ls

dense in ßU-{. (see 6s :-n lf5l, ana [rz]. ) Note atso that

every type is a homogeneous space.

We are indebted to Z. Frofik for communicating the folloving

lemma.

section ve prove

non-trivial-

)+ ,1 Lenma. (Frolik ) .

discrete subset of T

LT.

Proof. Suppose the statement is false. We shall- d.erive a contra-

diction. Thus, let (xrr: n e N) ¡e a discrete subset of a type T

which has a cluster point in T, say x. Find. pairwise d.isjoint,

infinite subsets {A: nEN}of N suchthatN= uA andx r 
"fßlÉr,,rrry t n

for each n"

Let T be a type of ßN-N. Then no cou.ntable

has a cl-uster point in T,

Novn for each n, x. and x are of the same type, so ve can

find.u for each n, a homeomorphism frr: ßry * ßry such that

tr.(*rr) = *. Let Br. denote the restriction of f. to Arr. Define
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F: N -+ N by F - ¡ g-. Let tr'ß denote the Stone extension of F
neN

to ßry. Continuíty implies that tß{*rr) = x for each n, and-

therefore implÍes that Fß(cl^",{x : n e N}) = {x}. Thus Fß(*) = *.þ1\ n

We nor,¡ appeal to a result of Katetov, in [26], whieh implies

that the fixed. points of ¡ß are precisely the points in the

ßN-closure of the set of fixed. points of F. (For a detailed proof,

see Lenuna 9.1 in t6l.), Thus, letting U = {p e ßI: ¡ß(p) = p},

'we have U = cl-^",(U n ry). fn particular, U is open in ßN. Since
fjl\ '

x e U, and. 
":.r,"1 

x is a cl-uster point of {xrr: n e {}, there is an

integer k such that xO e U. For such an integer k, ve then have

to concfud.e that *k = Fß(xO) = x.

But this is rid.iculous, since x is a cluster point of

ix : n e N] and" {x : n e N} is discrete.n-n

As was remarked. in 3.5 , the pseudocompactness of many

familiar spaces can be d.educed. by the presence of a relatively

coun'bably compact dense subspace. One of the first examples of

a pseudocompact space vhich has no d.ense countably compact

subspace appears :-n [¡5]. The fol-foving Theorem )+.2, together

with Lemma l+.t, shovs there are pseud-ocompact spaces in vhich

no countable discrete set has a cl-uster point. Assuming the

continuum hypothesis, in )+.3 bel-ov, r,re exhibit a pseud.ocompact

space in vhich no countable set has a cluster point. It fol-l-ovs

that, in al-l- of these examples, there is no d.ense relatively

countably compact subspace. In Theorem )+.5 we show that these



spaces have al-l- of their powers pseud.ocompact. These resul-ts

shov that pseudocompact spaces can be as far from countably

compact as ís imaginable.

We will- show that, if q is a non-P-point of ßN-N, then

f(q) is pseudocompact. (¡'or t,he definition and. basic properties

of P-points, see l+f a¡r¿ l+l ot lf:]. ) We use the fact that, if

q is a non-P-point of ßry-ry, there exists a partition {Brr: n e {}
of N into infinite sets, such that for each A e q, we have

{n: A n B- is infinite} i-s infinite. This ean be shovn d.irectly,n

as in Lemma 9.flr of [6].

Our origínal- theorem on the pseud.ocompactness of types

hel-d. for a more restricted. class of t¡rpes. l{e are grateful to

W, W. Comfort for pointing out that our construction works

for all- non-P-point types.

L.2 Theorem. If q i,s a non-P-point of ß{-{, then T(tLþ

pseg<lqcompact.

l-9.

Proof. By the

sufficient to

non-empty open

Thus, let

non-empty open

resul-t of Gl-icksbergrs quoted. earlier, it is

prove that every sequence of pair"urise d.isJoint,

subsets of T(q) iras a ct-uster point in T(q)"

subset A' of { such that ("tßrorr) n r(q) g Grr. We claim that,

(Cr,: n e ry) ¡" a sequence of pairwise d.isjoint,

subsets of T(q). For each n, there is an infinite



r0.

for n I m, A-. n A is finite. For, if A_ n A-- vas infinite,-nm'mn
then c1^".4 n c1 ^",4 vould be an open subset of ßN that meetsþNm ßNn

ßry-ry. rie ¿ensity or T(q) r,¡ould impJ-y that

(cl'rA*) n ("t'ryOrr) n f(q) I g, vhich contradicts the disJointness

of G and G Thus n # m implies that A- n A is finÍte. Fornmnm
each n. fet Ar = A_ - u A_.. Then {A': n e ry} is a family of' n n i.n-i

pe.]-rwl_ se

( cr urai )

and let

(c : n e'n

sequence

d.isJoint infinite subsets of g such that

n T(q) -c G' for each n. Let Cr_ = oj_ u (N -,'!ro")

C- = a] for n > I. To fÍnd. a cluster point ofnn
{) it clearJ-y suffices to find a cluster point of the

((cr'*crr) n r(q) : n e {).

We have thus red.uced. the task of shoving f(q) is pseud.o-

compact to the following: l{e must show thatr'for every partition

of { into infinite sets {Arr: n e ry}, the sequence

((cIUrA,.) n T(q) : tr e {) has a ct-uster point in T(q). To this

end, 1et N = u A' be such a partition. Since q is not a p-point
nery

of ß{-{, there is a partition N = u B- of tI into infinite sets,
nÊry "

such that, for each A e q, {n: A n B' is infinite} is infinite.

Let f: ry -) TI be a bijection taking B' onto A' for every n. Let

fß d.enote its Stone-extension to ßN, and. ]-et p = fß(q). Then

p e T(q). We cl-aim that p is a cl-uster point of the sequence

(("t.frr) n r(e): n e N). To prove this, Iet (cr'rA) n T(q) be



any basic neÍghbourhood.

r-1(A) e q. The set {n:

SincefisabiJection,

infinite set. But for any such n, "f ßf n "tgf'
subset of ß{ that meets ßry-ry. Since f(q) is dense

any such n, t(cr'r.l) n T(q)l n l(".ß!vAr) n r(q)l = (crU*A)

n ("tgfn) n r(q) # +. Thus every neighbourhood of p in T(q)

meets infinitely marry of the sets (cf 
U^Arr) n T(q). That is, p

of p in f(q). Then A e p,

r-l(a) n 8,, 1s infiniteÌ

for infinitely many n, A o

is a cl-uster poÍnt of (("agfn) n r(q): n r ry).

at the beginninfq of the proof. this enables us

f (.1) is pseud.ocompact.

beginning of the

l+.3 Remark. In l\Zl, assuming the continuum h¡,pothesis, M. E. Rudin

shor¡¡s there exists a non-P-point q in ß{-I such that q is not in

the cl-osure of any countabl-e subset of ßry-ry. By our Theorem )+.2

for such s., T(q) is a pseud.ocompact space in which no countabl-e

subset has a fimit point. The assumptíon that q is not a p-point

in l+"2 is essential, since a pseud.ocompact p-space is finite,
and therefore no P-point type is pseud.ocompact.

The foll-owing theorem shor¿s that the non-p-point t¡rpes are

not only pseud.ocompact, they are, in fact 2-pseud.ocompact. We

thus see that 2-pseudocompactness arises in very natural and.

fund-amental- spaces. As the reader vir-r- observe, our proof of the

2-pseudocompactness of types erploits the "homogeneity" of gN.

and. so

is infinite.

A isan
n

is an open

in ß{-{, for

¿)-.

proof,

As ve observed-

to conclude that



h.h Theorem. .l,et q be a non-.P-poi ßry-ry.

0in ${-[ such that T(q) is ,.-pseud,oco4pact.

Proof. Let {n : n
n

disjoi-nt infinite

r(cl) is pseud.ocompact, the sequence ((cr,^¿-) n T(e): n e {) hasÞNn
¿r cluster point p e T(q) . A

Lemma 2.2 shows there exists

e NÌ be an infinite

subsets of N vith N

that p is a 2-timit point of (("1g1Érr) n T(q) : n e g). We

show 'bhat for this 12, r(q) i" 2-p"J,rdocompact.

Thus, Iet (Grr: n e {) be any sequence of non-empty open

subsets of T(q). For each n, find. an infinite subset Br, of N

such that ("t'ryUrr) n f(S.) _. Gr.. Using the Disjoint Refinement

Lemma 7.5 of [6], we can find. a paÍrvise d_isjoint sequence

(Crr: n e {) of infinite subsets of N, such that N - u Cr., ís
nery -'

infinite and c ç B- for each n. Tt clearry suffices to shownn
that ((clonC_) n f (q)' n e [) has a ?-l-im¡t point j_n T(q) , forþl\ n
such a polnt vill- be a };timit point o¡ (Gn: n e {). Nov, let

f: N + N be a biJection taking A' onto C' for everrr n. Let

. = rß(p). Then r e T(q) . It fol-t-ovs easity that r is a

D-timit point of ((cfonc-) n r(o,) : n e {) in T(q). Thus everyÞ{n
.jequence of open sets in T(q) trr" a D-J,imit point. That is,

f (q ) is O-pseud.ocompact .

Then there exists

collection of pairwise

- uA infinite. Since-nnel\

proof completely analogous to

a free ultrafilter 2 in ßN-N such

r¿i1l-



\. 5 Theorem. ff q is a non-P-point of

of T(q) is pseudocomþact.

Proof . This fol-lows immed.iately from h.)+, 3.2, and. 3.3.

4.6 Remark. Theorem Il.\ and. Lemma \.1 shov that, for a non-P-

point 11 of ß$-{, T(q) ís an exampJ-e of a 2-pseud.ocompact space

which is not d.ensely E-compact for any E in ßN-N. Thus the

converse of the second- statement in 3.6 is fal-se.

Our last resu-l-t in this section is very special in nature.

It exhibits certain pseudocompact subspaces between X and. ßX.

)+.7 Recal-t that a completely regular space X is said to be

extr-emally d.isconnected if every open subset of X has open closure,

and basically di.sconnected. if every cozero-set in X has open

cLosure. For the elementary propertíes of these spaces, the

reader is referred. to tII and 6U i-n [f¡].

ßry-ry, then every pow-er

23.

h. B Theorem.

and. l-et D be

I?roof . I{e wiLl assume not and reach a contrad.ictíon.

is not pseud.ocompact, there is an unbounded. function

c(x u ¡). Let g = (r2*r)-f. Then g e c(x u D), o <

inf g(t) = O. l,et gß d.enote the Stone extension of
t eXuD

g(X u D) = ßX. Since X is dense Ín X u D, for every

Let X be bas-!cal-Iy disconnected and l-ocal-IL_çqrnpgct,

a d.ense subset of ßX-X. Then X u D is pseudocompact.

]fXUD

fin

gcland

n there is



e point x' in X such that g(xr,) <

Gr,. = {x e x: g(xl . *1. since x

find,, for each n, a cozero-set H

is compact and is contained. in G

cozero-set in X. Now cJ_r't{ is not compact,

on cJ-*l{ does not attain its infinum on c1"\^I.

But, sínce x is baslcatly d.isconnected., clu*I^I = c1u"(cl"w) is

open in ßX. Since it meets ßX*X, it must meet D, since D is

d.ense in ßX-X. Let p e (clU*I{) n D. Since g is strictty positive

on X u D, there is an integer m such that e(p) t * Let

R r- m

V - {x e ßx: s"(x) t *}. Then V -.:."l,Hi is a neighbourhood.
.L-I

I
= . For each n, l-et

is J-ocal-ly compact, ve

n
containing *n, ¡¿hose

LetW=

of p in ßX .,¡hich is disJoint from W. This is rid.icul_ous, since

p e cl'rl{. This contrad.iction proves that X u D is pseudocompact.

uH
__n

n eI\

since

Thus

zlt.

h"9 Remark. The conclusion of Theorem l+.8 hol-ds whenever X is

roca-LÌy compact and. real-compact. This resul-t was establ-ished.

by Fine and Gill-man in Theorem 3.f of 19]. A special_ case of

\.8, for extremal-ly d.isconnected, local-ly compact spaces, combined

with Theorem 3.1- in [5f], yietds the Fine - Gilfman result as a

corollary.

can

cl-osure

tr{isaThen

the function

"tßx" - x +

6

0.



COUNÍABLE COMPACTNESS AND PSETIDOCOX,IPACTNESS IN HYPERSPACES

r. we are concerned here vith the cor:.ntabte compactness and

pseud.ocompactness or 2x. The first significant resul-ts eoncerning

this theme are found. tn IZT], where it is shown that 2X is

trlo-bound.ed. when x ís normal and. tr,ro-bounded-, and. vhere it is poinied.
.Xout that 2 need. not be countably compact or pseud.ocompact vhen

x is. AÌthough we are unable to characterize those spaces r,¡hose

hyperspaces are eountably compact (or pseudocompact), we obtain

sutrstantial generarizations of the results in l2T] mentioned

above. The concepts and. theorems of chapter f are applied in

es'bablishÍng the following resul-ts. x is ?-compact if, and. only

if , 2" is O-compact. X is ?-pseud.ocompact if , and. only if ,

2" is O-pseud.ocompact. rf all powers of x are cormtabÌy compact,

^Xxühen 2 is countably compact. Tf z" is countably compact, then

all- finite porárers of x are countably compact. rf x is completery
^Xregu-Lar arìd 2 is pseud.oeompact, then al-l- finite powers of x

are pseudocompact. we give an example of a completety regular

space Y, alf of whose finite powers are countably compact, such
YthaL 2- is not pseudocompact.

We assume, from now on, that all spaces considered. are T,

s paces .

Chapter 2
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2. Some Theorems on the Countabl-e Compactness arrd, Pseud.ocompactness

of 2X

r,v-ith that

. Our first result compares the ?-compactness of 2X

of X.

2.1- Theorem. Let 0 be a free ultrafilter on N.

D--co.mpact if , and. only if , 2X i= ?-compact.

l:)rc¡of . Suppose 2X is 2-compact. Let (xrr: n e U) be any sequence

in X. The sequence ({xrr}: n e {) in zx has a 2-limit point F

.^xin 2--. Let p be any point of F. ff G is a neighbourhood. of p

ín X, then, since tr'n G I 0, ¡(X; C) is a neighbourhood of F in
^X2--. Since F is a ?-timit point o¡ ({xn}: n e N), we have

{n: {xrr} e B(X; C)} e D" But {n: {xrr} e ¡(X; C) } = {n: x' e G}.

illhus, for every neighbourhood G of p in X, {n: x' e G} e D, and.

so p is a D-Iimit point of (xrr: n e N) in X. This shows X is

0-compact.

For the converse, suppose X is 2-compact. I{e show 2X is

2-compact. Thus, let (tr'rr: n e {) be a sec¿uence in 2X. Let

| = {p r X: p is a 2-timit point of the sequence (Frr: n e {)}.
CJ.earJ-y L is a non-empty, closed. subset of X. That is, L e 2X.

\{e claim that L is a 2-limit point of the sequence (nrr: n e N)

.^xin 2... To see this, l-et [tJ - ¡(GOiGl, .,*r) be a basic neigh-

bourhood. of L in 2X. i{e must show that {n: Tn e (tl} e 0. Nor.¡ l-et

No = {n e {: tr'r, S GO}, and. for i e {:- r?r...,T} let N. = {n e {:
T

F' n G, f þj. Clearly {n e {: F' e ßl} = .n^Ni. Thus, to
1=u

show that {n e {: tr'r, e W} e D, we need. to prove that

Then X is



N. E D for each i e
l

tnG.Iö. Let

sequence (Frrr n Ê

{ri:c nF #ø}in
FinaJ.J.y, ve shov

{011r... ,T}. Now, since L e [,tJ, we have

e L n G.. Then p is a ?-timit point of the
I

) and. G. is a neighbourhood. of p, so
a

N- e 0. Thus N_. e D for i = l- ,2u...,T.11

e D. For the sake of contrad.iction, assume

N0 + r. Then N-NO e ?. For each n e T-NO, choose a point

*n . En - G0. For each n e NO, choose a point x' arbitrarily

[r'r-rrn ]i'n. The seq.uence (xrr: n r ry), so obtained,, has a 0-tlmit

po,LnL a, bT the ?-compactness of X. Clearly, a is a ?-timit

por',nt of the sequence (Frrr n e N), and- so a e L. But L e (tJ ,

so that ¡ S GO. Therefore, a r GO. Since a is a O-l-imit point

of' the sequence (xn: n e ry), ve have {n: *., r GO} e D. But this

last set is disioint from {-NO, r¿hich also lies in D. This is

¿r contradiction. Therefore, ltrO e 0, end L is a O-f:-mi-t poin'b

of the sequence (Frr, n e ry¡ ir, ex. Thus 2X is 2-compact.

ry

=

*o

D7

li'rom 2. f :

tlieorem due to

2.?- Corollary. Let X be a normal space. Then

iJ'. and onlv if . 2X i"

Ì^¡e

J.

can obtain, as a corollary, the following

Keesling , lZTl.

Proof . If X is normal, then, by )+ .9.5 of lS6], 2X i" completely

regular. By Theorem 2.\ of Chapter I, 2X Ís ul'-bounded if , and.

only if, it is 2-compact for every free ultrafilter 2 on N.

ßy 2.1 , this happens exactly r,¡hen X is 2-cornpact for a^LJ. free

r¡ ^-bound-ed, .

X is r¡--bound.ed



ultrafilters D on {, ¡,¡hich is equívalent to X being o'-bounded..

Theorem 2.1- also allovs us to establish the fotlowing

reLation betr,¡een the countable compactness of 2X and that of

povers of X.

2.3 CoroLfary. Let X be a Hausd.orf:i space. If all- por¡¡ers of

X are countaþ-l-y co:npact, then 2X i" countably compact . If 2X

.

_cjnpac!..

Proof. lf all- por¡¡ers of X are countably compact, then by 2.6

of Chapter 1, there is a free ultrafilter 0 on T such that X

is ?-compact. By 2.1- above,2X i" al-so 2-compact, and- so, in

particular, is countably compact.

_^xSuppose 2-- is countably compact. For each n e {, let

Fn(x) = {F , 2x, lrl : ,,}. By 2.\ of [36], Fn(x) Ís a closed

subspace of 2X for each n e N. For each n, d.efine the map

28.

srr: xn -t Fn(x) br srr(xr,xz,...,Xn) = {x, ,xz, . r*r}. Then,

for each r, Sr, is a continuous, closed., finite-to-one map from

Xn onto Fn(X), [ft+1. As countabJ-e compactness is c]-osed. hereditary

and. preserved under perfect pre-images, the eountabl-e compactness

c¡f 2X implies that of Xn for each n e N.

We next turn to pseudocompactness. The next resul_t is an

analogy to 2.l- .



2.h Theorern. Let 0 be a free ul-trafil-ter oJr N. Then X is

?-pseud.ocompact if , and- only if , 2X is O-pseud.ocompact.

Proof . Suppose 2X is 2-pseud.ocompact. 1^/e shor¿ that X is

2-pseud.ocompact. Thus, let (Grr: n e tI) be a sequence of
G

empty open subsets of X. Then (2n: n e N) is e sequence

non-empty open subsets of 2X. As 2X is O-pseudocompact,

sequence has a 2-timit point F e zX. Choose any point p

We show that p is a 2-timit point, in X, of the sequence

(Grr: n e ry). For, let !l be any nei-ghbourhood of p in X. Then,

since F n I,{ I þ, 2x - zx-W is a neighbourhood.*o, 
" 

in 2X.

Since F is a 2-timit point of the sequence (Znt n e {),
GG

{n: 2 n n (ex - zx-w) # þ}, o. But 2 n n (ex - ex-w) # þ ir,
and only if, Gn n hr I 0" Thus {n: G' n W # þ} e 2, and so p

is a ?-timit point of the sequence (Grr: n e ry). Therefore X

is D-pseudocompact.

)o

Conversely, suppose X is 2-pseudocompact. Since the d,ets
T

¡(GorGtr...,GT), with GO,GI,...rGT open in X and .r_Gi = Go,
]-=l-

I'orm a basis for the topology orr 2X, to show that 2X is

2-pseudocompact r"¡e need only show that sequences of such open

sets have ?-timit points. Thus, suppose we are given a

sequence (G-: n e w) of non-empty basic open sets G^ in ZX.-nn
wríte Gr. as t(*orn,Gf ,r, " ',Grnr,'), with *rrn onutt in x and'

T
n

U G. * c G^ -. Let L = {p e X: p is a ?-timit point of the
tr_r 1¡l urn
J. --L

non-

of

this

clì



sequence (C^ _: n e N) . Then L is a non-empty, closed. subset- Ur[.

of X. That is,, L e 2X. 't{e cl-aim that L is a 2-timit point,

in 2X, of the sequence (Grr: n , ry). Now the sets of the form

2G and S(x; C) form a sub-basis for 2X. Since fil-ters are

cl-osed under finite intersection, to show thai; L is a O-l-imit

point of (Grr: n e N), 1¡ is enough to establ-ish the following

t wo statements:

\1/

(ir )

If G is open in X and L e zG, then {n e N; zG n Gn+ þ} e D.

IfGis

tn Ê N:

Let us first establish (i). Note that ZG n G

if, G n or,, I 6 tor all_ i = L,Z,... rTn. Let

open

s(x;

S - {n e ry, 2G n Gn + þ} and. let T = ry-S. tr'or the safte of

contrad.iction, suppose S È r. Then T e 0. For each n e T,

find an integer i' e {I ,2,...,Tr} such that G n *rrr,, = ó.

DefÍne a sequencu (Hrr: n e {) of non-empty open subsets of X

cls follor,¡s. For n e T, Hr, = G. . and for n e S. H - G_

nril- 
' n lrfl

t\ow, since X is ?-pseud.ocompact, the sequence (Hrr: n e U) has

a ?-timit point a e X. Cl-earl-y a e L. Since L e pG, we have

L cG, and so a e G. Since a is aO-ti_mitpoint of (Urr: n e{)

{n e N: G n Hn I 0I e 0. But this tatter set is disjoint from

T, and I e D. This is a contradíction. Therefore, S e 3,

establ-ishine (i). To estabtish (ii), suppose G is open in X

inX

G) n

30.

and L e B(X; G), then

Gn+ þj e0.

n I þ if, and only
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ancl L Ê B(X; G). observe that; B(X; C.) n Gn# ó if, and onJ-y if ,

G n Go,n# þ. Let M = {n e N: s(x; G) n G' I ô}

= {n e N: G n GO,n* ö). Nov, since L e e(x; c), L ñ G I O.

Let p e L n G. Then p is a ?-l-imit point of the sequence

(*o,rr: n E S), an¿ G is a neighbourhood of p. Therefore,

{n e I: G n OO,rl þ} e0. That is, M e 2, establishing (il).

trn/e have thus shorm that L is a 2-timit point of

(Gr,: n e ry) . Therefore, 2]: i" 2-pseud.ocompact, as il-esired..

Even having established. 2.4, we cannot concl-ude that the

pseudocompactness of eJ-t povers of X implies the pseud.ocompactness

Yof 2", at least not by an argument analogous to the one used. in

2,3. The problem here ís that ?-pseud.ocompactness is not a

necessary cond.ition for pseudocompact por¡rers. (See 3.)+ in

Chapter 1.) We can, however, establish a pseudocompact counter-

part to the second. assertion in 2.3. Let us cal-l a space X

G-pseud.ocompact if every sequence of non-empty open subsets of

X has a cluster point in X. (fnat is, a point in X, each of

whose neighbourhood.s meets infinitely many sets in the sequence.)

These spaces have also been cal-Ied. feebly compact in the

literature. (S"e t\l]. ) As was menti-oned. in the first chapter,

in the class of completely regul-ar spaces, G-pseudocompactness

and pseud.ocompactness coincid.e. In 65eneral, G-pseudocompactness

impJ-ies pseudocompactness .
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2.5 'Iheorem. Let X bé reqular. ff 2" is G-lseudocomoact - then

a,1,1_ finit,l powerg of X are G-pseud.ocompact.

l?roof. Assume 2X is G-pseudocompact. Firstty, X is G-pseudo-

compact. For, if (G-: n e {) is a sequence of non-empty opennG
subsets of X, the sequence (Z n, n e N) has a l-ímit point L

.^xin 2 Choosing any point p e L, it is easy to see that p is

a limit point of (Cr,: n e N). Thus every sequence of non-empty

open subsets of X has a l-imit point in X. That is, X is

G-ps eud.ocompact.

Next, r+e show that X x X is G-pseudocompact, for which it

suffices to show that every sequencu (Ur, * Vrrr n e ry) where

Urr, Vr are non-empty, open subsets of X, has a l-imit point in

x x x. lle r,¡íl-l assume not, and. we will- d.erive a contrad.iction,

So assume (Urr * Vrr: n e N) has no timit point in X x X. Now X

is G-pseudocompact, as has atread,y been established, so the

sequence (Urr: n e N) tras a l-imit point p E X. Since

(U,-, * Vrr: n e {) has no l-imit point in X x X, in particular,
(p,p) is not a l-imit point ot (Un * Vr,.r n e S). Therefore,

l,here is a neighbourhood t{ of p in X such that

{n e n: (w x 6) n (Ur, * V,r) I ô} i." finite. Let

S = {n e {: (W'W) n (Un * Vrr) # ø}. By regutarity, find a

neighbourhood W, of p in X such that c1"\ _c I,/. Let

I = {n e iI: W, n Un I 0}. Since p is a finit point of (Urr: n e N),
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T is infinite. Let N, = T-S. Then Na is infinite. Consid-er

the sequence ( (Wf n UJ * Urrr n e Nr). Being a refinement of a

subsequence of (Ur, * Vn: n e {), the sequence ((w, n urr) x Vrr:

n e Na) also has no limit point in X x X. Let A = "fXWl, 
and-

let B = cÌr( ,_- Vrr). Then A and B are disjoint regular-closed." neN,

subsets of X and. [(Wa n Urr) r Vr,] -c A x B. Nov, since A and.
neN,

l3 are disJoint closed. sets, A u B is homeomorphic to A + B,

the free union of A and B. By 5a.¡ page 166 of lSz),2AoB i=

homeomorphic to ZA * 28. Nov G-pseud.ocompactness is evidently

inherited by regular-closed. subsets. As 2X i" G-pseudocompact,

so is 2A'8, and. so, by the above remarks, so is 2A * 28. It

foll-ovs easily that A x B is G-pseudocompact. But

((w. n U..) x V-: n e ry) nas no timit point in X x X, which islnn
a contradiction. Thus X x X is G-pseud.ocompact.

One carr now prove by ind.uction on n, that Xn is G-pseudo-

compact for aJ-J. n e ry. The essential idea in going from Xn

to xn+l is the sa.rne as going from x2 to x3, but the d.etails

are more cumbersome. AccordingÌy, r.+e r¡¡il-l_ show hor¿ to ded.uce

the G-pseudocompactness of X3 from that of X2 (and. that of ZX 
"

of course), and leave the inductíon as a straightfo¡-ward.

extension of this step.

Thus, from the G-pseud.ocompactness

to d.ed.uce the G-pseudocompactness of X x

of 2X

Xx

and. X x X, ve are

X. InIe assume that



X x X x X is not G-pseudocompact, and we will- reach a contra-

diction. So, J.et (Ar, * Br * Crr: n e N) ¡e a:r open sequenee in
.,3 _-2X- whlch has no l-imit point. Nov X* is G-pseud.ocompact, so

the sequence (Or. * Brr: n e {) has a l-imit point (a,b) in X x X.

Neither (arb,a) nor (a,b rb) is a linit point of

(A- * B* x C-: n e {) in X3. Thus we can find neighbourhoodsnnn
G and H of a and. b respectively, such that the two sets

M='a

Mz=

{ne

{ne

Find. neighbourhood.s Ga and H, of a and b respectively such

that cl"Gl- -. G and cl*H, c H. Let M, = {n e N: (C, " Ur)

n (Ar. " urr) # +j. Since (a,b) is a tinit point of

(A' x llr,: n e ry), M3 is infinite. Nor,¡ t-et Nl = M3 - {tq u Mr).

Then Na is infinite. Let At = Gl_ n Arr, and l-et Bt = Hl_ n Brr..

The sequence (or, >< trl * ar.: n e Nr), being a refinement of a

subsequence of (Ar, * Br, * Cr,.: n e {), also has no l_imit point

in x3, But X2 is G-pseudocompact, so the sequence (Bt * Crr:

n e Nr) n*s a cl-uster point (c,a) in X2. Neither (c,c,d.) nor

(d.,c,d) is a cluster point of (A; " U,l r arr, n e Nr). So we

find neighbourhood.s U and. V of c and d. respectively, such that

the tvo sets

N: (c

N: (c

xHxG) n(¡. xB
n

xHxH) n(4.

3l+.

* 8., * cn) I 0] are fÍnite.

" crr) # 0] ana

L, = {n e Nr:

I'r= {n e Nr:

(u"u*v) n(A'
n

(v*urv) n(A''n

I
B

n

B'
n

* cn) I o]

x c ) I oÌn

and.

are fínite.
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Find. neighbourhood.s U, and. Va of c and d respectively, such

that cl*Ul -. U and. cl"V, s V. Now, J-et

L3 = {n e Na. (ur* vt) n (r" * Cn) f þ}.

Since (c,d) is a t-imit point ot (B' * Crr, n e Nr), the set

N2 = L3 - (tr_ u L") is infinite. For n , N2, set Ai = O;,

u,-r=ur- nu;, tl] =ur_ nCrr. The sequerr"u (Au *Bu *C': n eNr)

has no limit point i-n X3. Let A = cl"( , A;), n = cI"( u ei),
nel\2 n€N2

c = ct*( u ci). Then
nei\2

subsets of X, and u

neN,

argument used. earl-ier,2A * zB * 2C i" homeomorphic to rAuBuC,

which, as a regular-closed subspace of 2X, ínherits G-pseudo-

compactness. Thus A x B x C is G-pseud.ocompaet, vhich contra-

clj.cts the fact that (Or,>< U" " t": n c Nr) tras no limit point.

This contrad.ictíon proves that X3 is G-pseud-ocompact.

As 'r¡as mentioned above, a completely regular space X is

G-pseud.ocompact if, and. only if, it is pseudocompact. Atthough

2X i= completely regular only vhen X is norrnal, these concepts

remain equivalent for 2X -r¡hen X is completely regular, as we

now shor¿.

A,B,C are pairwise d.isjoint reguJ-ar-cl-osed

(al t ¡- . cl) -- R x B x c. By the se.ure'nnn'

^.^-Y2.6 Proposítion. Let X be completel-y regul_ar. Then Z" ís

G¡pseudocompact if , and. only if , it is pseudocom'pact.



Proof. G-pseud.ocompactness afvays implies pseud.ocompactness.

We need. only shov that if 2X i" not G-pseud-ocompact, then 2X

is not pseudocompact. ff 2X is not G-pseud.ocompact, there is

a sequenc" Gr, = u(*orrrt*rrrr... ,Gr_ rr,) of non-empty basic open
lLY

subsets of 2X, r.rhich has no limit point in 2--. For each n

and each i e {l ,2r... rTr}, choose a point prri . *rrr. Let

F_ = {p-_ -.: i = L"Zr...,T }. Nov F c G^ , so, by completen 'fl¡1 'n n Urtr'

regularityr we can find., for each n,, a continuous, real-valued.

function fn on X such that frr(x) = t for each x e Frr, and-

frr(x) = O for each x e X - GOrr, and such that O. trr. t.

Given n and. :- e {f r2r...,tr}, by complete regularity, we can

find a continuous, real-valued functíon grrri or X such that

0 i grr,i: rr Br,i(Pnri) = t, and- srrrr(x) = o for each

x e X - G-. Noi,r, for each n, define f-- on eX ¡ylrn n

r](f') = inf f -(x). For each n and each i e {r ,2,..n n'
XE¡'

define g+ - or, 2X ¡v el -. 
(¡') = sup g- . (*). By \.7"n,1 " "n 11 ' *rþ 

'r ri'

-JO .

the functions f- ana gl - are all- continuous, real-valued.n -flrl

functions or, 2X. Now, for each n, let Gr. = frr.*i.r.....*l-,
"n

ThenG is continuous and G (F ) =1, and-C (f') =Oforeachn n' n' ' -n'-'

F e 2" - G_. Since the sequence (G_, n e N) tras no limit point,n-n
the firnction X n G is continuous on 2X, and. is clearly

neN n

r-lnbounded. Thus 2X i" not pseud.ocompact.

' 'Tra] '

or 1361,



?.7 Corollar:y.

compact . then al-t finite pov'ers of X are pseud.ocompact.

Proof. This follovs immediately from 2.6 anð. 2.7 "

Let X be eompletely reÉrular. ff 2X is pseudo-

3. An Example. fn llZ), Z. Frolik constructs, for each posÍtive

integer n, a space X, such that Xn is countably compact, but

--n+l-X^''- is not pseud.ocompact. fn lZTl, J. Keesling shovs that

the hyperspaces of these spaces are not pseudocompact. This

concl-usion also fol-l-ows from 2.'1 . Ai-so in li-.Zl , Frolik constructs

B. space Y, al-J. of whose finite pol¡ers are countably compact,
0ô

such that Y'is not pseud.ocompact. We vill- see below that 2Y

is not pseud.ocompact, thus provid.ing a counterexample to the

converse of 2.7 a.nd to the converse of the l-ast statement in 2.3.

3.1 Example. A completely regul-ar space Y, al-]- gf r¡¡hose finite

powers are countably compact. such that 2Y is not pseud-ocompact.

37.

Frol-ik constructs a sequence X., for i e N, of

of ß{-{, such that 
.II__ { u XO is not pseudocompact,
t{ el\

.finite subproduct is countably compact. In his example,

î X., - 0. The d.esired. space Y is the free union of the spaces
---r1cl\

N u X*, together with a point at infinity, whose neighbourhoods-1

are complements of finitely many of the spaces N u Xi. To avoid.

ambiguity, l-et us replace ry u X:_ by Yi = (ry u Xr) x {i}. The

subspaces

whife every



space Y is then ( u y-) u {*}, with the topology described
ieN *

above. l/e wil-l'- shov that 2Y is not pseud.ocompact. We r,¡il-l

in fact prod.uce an open-cl-osed subspace of 2Y homeomorphic to

ry. For each n, we l-et Fr, = {(n,f), (n,2) (.,n)i. Since

each point of each copy of N is isolated. in Y, it fol-l-ovs that,

for every ., F' is an isol-ated point ot-2Y. Thus

D = {F.^: n e N} is a d.iscrete, open subspace of zY, and. our
n

proof wiJ.l be complete if we shov D is cl-osed in eY. Let

¡, e 2Y. We show that A is not a el-uster point of D.

Case l-.

(n,k) e A. Now (n,k) is isol-ated.

neighbourhood. of A in ZY. At most

Therefore A is not a cluster point

Anf u N'{t}1 #þ.
keN

38.

Case 2. There is an integer i such that A n Y = ¿lr""*" " " -i
_athls case, 2 is a neighbourhood. of A in 2Y meeting D

a finite set. Thus A is not a cluster point of D.

fn

in

Case 3. For some integer i, la n Y. I t r. fn this case,

A meets tvo d"isjoint open subsets Ga and. G, of Y.. Since each

Fr. contains at most one element from each Yi, B(Yi Gl_rG2) is a

neighbourhood of A in 2Y that is disjoint from D. So again,

A is not a cluster point of D.

In this case, Iet

in Y, so B(Y; {(n,k)}) is a

one F. is in B(Y; {(n,tc)}).

of D.



ig.

Case )+. fn light of the first three cases, we may nol,r

assume that A = {(xrrrn): n e N} u {-}, vhere, for each n,

*r, r X.. Nov, since n__X., = tþ, ve can find. integers n and. m

nEtI

such that *r, I **. Find d.isjoint open sets U and V in ß{ such

thatx' eUand.xre V. NowsetUr= [Un (ry uXrr)i * {n},

and V, = [V n (N u x*) ] r {m}. Then U, and Va are open in Y,

and (xrr,n) r Ul, (x*,n) r Vt. Thus B(Y; UroVa) is a neighbourhood.

of A in 2Y. Since l(Y; ur,Vr) is clearly d.isjoint from D, A

is not a cl,uster point of D.

Cases I to )+ combine to show that D is cl-osed in 2Y,

completíng the proof.

3.2 Remark. In light of the resul-ts of 2.3 and.2.f , and.

Example 3.1, it is natureJ- to ask whether there is any re]ation
(¡-

between the pseudocompactness (countable compactness) of X o

and. that of 2X. ft would. al-so be interesting to characterize

those spaces X vhose hyperspaces are corrntabJ-y compact

(pseudocompact). The author has been unable to resol-ve these

questions, and. l-eaves them open to the read.er. Natural_ examples

of ?-compact and 2-pseudocompact spaces can be found in

Chapter 1. These spaces provide non-trivial exanpl.es of pseudo-

compact and countably compact hyperspaces.



1. ïn this chapter our attention is focused on the Stone-Cech

compactification of the space of cl-osed, sets. Since 2X i"

completeJ-y regular only when X is normal-, (see 0.5 in Chapter 0),

r¿e must confine our attention to hyperspaces of normal- spaces.

As noted. in 0.6 of Chapter 0, if X is normal the mapping

THE STONE-CECH CO}PACTIFÏCATÏON OF 2X

Chapter 3

i: zX . zßx d.efíned ly i(F) = clU"F is an embed.ding of 2x onto

a dense subspace

compact Í fi cat ion

'[n/hen given a "naturalt' compactification oY of a completely

regular spa.ce Y, one of the most obvious questions one may ask

about qY is r,¡hether it coincides r,¡ith the Stone-Cech compacti-

fication of Y. Tnvestigations of this sort have led to many

interesting results. One of the most natural ways to form a

compactification of a product of conÞletel_y regular spaces is

to ta,Jl,e the product of the corresponding Stone-Cech compacti-

fications. Gl-icksbergrs elegant resurts in [2t] strolr that this

natural- compactification of the product coincides vith the

Stone-Ceeh compactification of the prod.uct exactly vhen the

product is pseud.ocompact. (Assuming all factors are infinite.)

The simplest compactification of a Ìocall-y compact space is its
one-point compactification. Spaces r,¡hose one-point compactifications

of

of

zgx. rn this way lre can regaï.¿ 2ßx as a

2x.

l+0.
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coincide with their Stone-Cech compactifications are characterized

in 6,1 of [r5]. Another exampl-e of thís type of investigation

arises in the study of topologicat groups. In [l+g], ]/eil proves

that each totally bound.ed group G is a d-ense subgroup of a

compact group, and. that this compactification is unique up to a

topological isomorphism fixing G pointvise. This compactification

of G is knom as its Weíl- completion, and. is d.enoted. by G.

Groups G for whieh G can be identified as the Stone-Cech com-

pactification of G are characterized by Comfort and Ross in Il].

A simil-ar situation presents itself for hyperspaces . 2ßX

is a natural compactification of eX (for normal X). Idhen can we

identify 2ßX 
"." 

the Stone-Cech compactification ot 2X? It is to

this question that our efforts are d.Írected. in this chapter.

J. Keesting has stated in [:o] ttrat g(ex) = 2ßx impties 2x is

pseudocompact. I{e give a proof of this result and. obtain a

partial converse, namely , if 2X * 2X is pseud.ocompact, then

O(eX) = 2ßX. trn/e also obtain two other characterizations of

the rel-ation ß (ZX¡ = 2ßX. Using the results of Chapter I and.

Chapter 2, ve obtain a fairly large class of spaces for vhich

the relation ß(zX) = eßX i-" val-id..

Throughout this chapter ve assume that X i-s normal, (and.

T, ) , and. vhen ve speak of ZßX as a compactification of 2X, ve

are id.entifying 2X with the subspace i(zX) or 2ßX u.= d.escribed

above.



2, A Necessary Condition for g(eX) = zBX.

6¡ives a necessary cond.ition for g(zx) = zßX. This theorem vas

also established ind.epend.ently by J. Keesling, vho announced

it v¡lthout proof in ISO].

2.1 Theorem. If ß( ZX) = 2ßX, th"n 2X is pseud.ocompact.

Proof . Before proceed.ing with the argument, let us exami-ne the

meaning of the equatity o(ex¡ = zßx. Let i, zx . zßx ¡" thu

canonical- embed,d-ing of zX onto a dense subspace of eßX. Now

to say Lhat 2ßX i= ß(2X) is exactty the statement that i(2X)

is cx-embedd.ed. in eßX. so assume that ß( zX) = zßx. l/e vit-]-

first show that x must be pseudocompact. For the sake of contra_

cLiction, suppose X is not pseudocompact. Then there is a

sequence (ç-: n e N) of non-empty open subsets of X ¡.¡ith then

property that cl"Gn+l S G' for all_ n, snd such that

n G- = 0 (see 9.13 in lr¡l). We may assume that
-- rt

nEl\

"lxGrr*t; G' for each n. For each n, ve set Fr = "lxcrr+1 ,

and we define the fol-IovÍng sequence of open sets in ZX. InIe

retG =B(G:X r ,-.Gt ^tnX ^Fn+l ro^n n - In+l) = ¿ n (2 - 2 -- -) for each n. Then

Ii'r, e G' for each n. We ctaim that (Grr: n e N) is J_ocally

f.inite. For, J-et A e 2X. Let p e A. Since n Fr, = g, there is
nery

un ínteger k such that p 4 Ft. But then B(X; X - OU) is a

neighbourhood of A in 2X meeting only finitely many Grr.

Our first resul-t

l+2.
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Therefore (G-, ,r e N) is locally finite. Now, 1etn

2= {Frr: n eN}. Since Gnn0 = {Frr},Dis adiscrete subset

of 2X. So r¡e may find. a sequenc" (flr: n a {) or pairwise dis-

Joint open subsets of 2X such that F' e fl* for each n. Let

U_ = H_ n G_ for each n. Then (U : n e N) is a l-ocalJ-y finitennnn
sequence of pairvise d.isjoint open sets in 2X, and. Frr , U'

for each n. It fol-l-ows that ? is Cn-.¡rbed.ded. in 2X. Applying

the homeomorphism i-, ve see that {i(frr) n e {} is discrete and

c*-ernbedded in i(ex). since g(zx) = zßx, t(zx) is CË-embedded

in zßx. Thus, {i(rrr): n e ry} i" c*-embedded in zßx. But since

the F-rs d.escend, it is easy to see that, ín 2ßX,
n

l-im i(Frr) n-_i(Frr). Lettíng L = n__i(F.r) , we see that no
n->@ ^- ne N nEry

function on fi-{frr) : n e N} which is O for infinitety many i(Fn)

and l- for infinitely many i(Frr) can be extend-ed continuously

to L. But this is a contrad.iction, as {i(Fn): n € IV} is

C*-embed.ded in 2ßX. So l¡e see that ind.eed. X is pseud.ocompact.

Now rse shov that 2x i" pseudocompact. To do this , tt.e use the fot]ow-

íng familÍar characterization of pseud.ocompactness: A completely

re65uJ-ar space Y is pseudocompact if, and. only if, every rÌon-

empty GO set Ín ßY meets Y. Tn light of thÍs characterization,
'L

to shor,¡ 2" is pseud.ocompact, we need. only shov that every

non-empty Gu in 2ßX int""sects i(ex). Thus fet S be a non-enpty

cU ln eßX. Find a sequence (Gr., n e ry) of open subsets or ZßX

such that S = n G*. Let A e S. Then, for each n, ïre can find
neN n



open sets G.rrorGnrl'... rGrrrK' in ßx so that A e B(Gnr0;Gnrr_r.

.. rGrrOrr, -. n, For each n, J-et n.rr' O. open in ßX such that

A c lln;. t 
"lßxHrro ç Gnro. For al-l- n, and' for al-l-

J e {I,2,,

Ae n¡(H
nery

LetH= n

...K Ì. tet H = Ç n H Then'n - trrJ trrJ îru

,r,0; Hrr,ro" 
"Hn,Kr, -t rr!*u(*r,ot 

Gr,l" " 'Gr,orr' -t t

Nov, for each n and J e {L"zr... rKn}, Hrrj n H is a non-empty

GO in ßX. By the,pseudocompactness of X, we can find., for

each n and each J e {1 ,2,.,. rKr}, s point xnrJ in

ttrrJ n H n X. Let B = clg¡{xnrjr r e {, j e {I,2,...,Kn}}.

Then B e i(ex) and clearly B e 
rr!*u(*r,', 

*rr,r,...,Gr,or, -.,

Therefore every non-empty Gu in zãX r.ut= i(2X). Thus eX is

pseudocompact.

2.2 Theorem. (i) f,et A d.enote the subal-sebra of C*(zX) n"nurated

neN
Ht, o' and let t = 

,rlrtn, o'

Ll+.

Obviously cJ-U*H s G.

{fs: f e c#(x)}. Then ß(2x) = zßx ir- and

" (Here

usual sup-norm topotogy. )

Y
and onl-y if" every zero set in 2" is a countable intersection of

basic zero sets of the form

7'ot...rzn. z(x).

(ii. ) let zx be

^'X, ^X'C" \2" ) is provided

pseud.ocompact. Then ß(zX) = zßX if .

Z-
Ig(x;Zo) u2- u

A

r,¡ith

IS

the

/J

nu 2 ", _!qr



Proof. (i) Recatl from Chapter O that fs is d.efined on 2X by

fs(F) = sup{r(x): x e F}. we first observe that each fs can be

extend.ed. continuousty to 2ßX. This is imnediate, since, given

f e C*(x) , .,,¡e can extend. f continuously to rß e C*(ßx) , and- then

(fß)" is a continuous real--va1ued. firnction on 2ßX rho"" restric-

tion to 2X (r.cal-l we are identifying 2X as the subspace i(ZX)

or zßX) is clearl-y fs. It follows that every firnction in A can

be extended. continuously to eßX, and. thus that every function in

the uniform closure of A in C*(eX) may be so ertend.ed. (See

Prop. 5 ot lzzl.) So if A is uniforrnty dense in cx(2x) , ev"ry

function i-n c*(2X) extends continuously to eßX. That is,

o(ex¡ = zßx. converserï, if g(zx) = zßx, then cx(2x) and c*(zßx)

are uniformly isomorphic, under the map g * gß, vhere gß r"pru""rt"

the stone extension to 2ßx of g e cn(2x). rn light of the

precedíng remarks we see that (r")ß = (rß)", for at-t- f , cn(x).

And. so the converse in question becomes equivalent to the follor.^ring

assertion: ïf X is compact, the subalgebra of C*(2X) generated.

by the functions {f"r f e c*(x)} is uniform]-y d.ense in C*(2X).

This assertion foll-ows from the Stone-hleierstrass theorem, since

{t": f e c*(X) } contains the constant fu¡rctions on 2X, and

separates points and cl-osed. sets, by 0.7 and 0.8 of Chapter 0.

(ii-) We first shov that, if X is compact, every zero-set
.^xin ?-- is a countable intersection of basic sets of the form

Z-Z
ll(x;zo) u 2 r u u2n, where Zo,Zr,..,"Znez(x). so, assume

l+j.



that X is eomprrct,

(G,r: n e rI) in 2X

every cl-osed set in 2X is an intersection of certain of the basic

sets in questi-on. fn particuf-ar this is true of UJ. So write

(1) = ñ Á. o Ì,¡here each A_. is a basic set of the forrn
ier 1- 1

î7tþ1 u

e(X;zo) u2 t r... u2n. Foreach nrH 9 Grr, andsorbythe

compactness of 2X, th.re is, for each no a finite subset f' of

I such that üi s n A. E G_. Letting J = u T__, r,re see that JI n - -_n]-eln ne{

is countable and. útl = .n_A:.. Thus û/ is a countabl-e intersection
l- eJ

as required..

Now, if g(zx) = 2ßx, every zero-set in i(zx) is the restric-

tion of a zero-set in ZßX. Since ßX is compaet, the represen-

tation i-n (ii) hot¿s for zero-sets in Pßx, 
^= 

proved. above, and-

so, by restricting to i(ZX) and applying the homeomorphism i-f,

the correspond.ing representation for zeto-sets in 2X is also

seen to be val-id. There is one mi_nor detail- to be checked. here,

namely, that if Z is a zero-set in ßX, the :.-f (¡(ßX;Z) n i(ex))

= n(X; Z n X). This can be verified as foll-or¿s. Since 2X is

pseud.ocompact, so is X, by 2.7 tn Chapter 2. Since X is normal ,

X is countably compact, and every cl_osed. subset of X is countably

and Iet (rJ be a zero-set in 2X.

so that ú(/ = n G.r. Nov, by 0.8
nery

t+6.

Find. open sets

in Chapter 0,

compact and. C*-embed.d.ed in X. So, if A e 2X, 
"f ßlÉ - ß4. f f

Z is a zero-set in ßX such that (cf'ra) L Z + þ, then



(cf'rA) n Z is a non-empty zefo-set in pA. Since A is pseud.o-

compact, ind.eed coirntably compact, it follovs that (cf 
Ur.t) ît Z

meets A. That is, Z n A =

i-l(s( ßx.;z) n i(ex)) = ¡(x;

Now, for the converse of (li¡. We assume that 2X is

pseud.ocompact, and. that every zero-set in 2X has the indicated.

representation. Observe that, since the functions fs and. fi

on 2X extend. continuously to 2ßX, r"*ury to (rß)" and (rß)í,

every basic zero-set zzl , ... u

(zn
o^L tt

restriction of a zeïo-set in eßX

x)nA#ô.
x).

Chapter 0. Now since a countabl-e intersection of zero-sets is

a55ain a zero-set, if every zero-set in 2X has a representation

as in ( li ), we conclude that every zero-set in 2X is the

restriction of a zeïo-set in ZßX. Together i¡ith the pseud.o-

compactness of 2X, this enables us to conclude, by t+.1+ of le],
that 2x is c*-embed.d.ed in 2ßx" that is, e(ex) = zßx,

3. A Partial- Converse to 2.1-. ft is our aim in this section to

Therefore,

Lz

Z

2 n u u(*,rr-r*r-) i-n ex is the

. This is clear from 0.T in

establish a partial converse to 2.I. Nor,¡ to find. sufficient

conditions for g(ex) = 2ßX, is to find cond.itions which imply

tha't 2X is C*-embed.ded in eßX. In this approach, r{e are askÍng

when rr¡il-l 2ßX hr.r" the properties, ES a compactification of ZX,

that characterize g(eX) as a compactÍficatíon of 2X? Without

question, this is the most obvious and most d.irect means of

approaching the cond.ition g(ZX) = 2ßX. However, the approach



taken here is to reverse the roles of ß(zX) an¿ eßX. t¡Ie take

the point of viev ttrat 2ßX has the nice properties, and. that

the reLation ß(2X) = 2ßX ""y" that <:ertain structure on X imposes

these propertie" or, ß(eX). That is, Ïre propose to d.escribe

2ßX u." a compact extension of zX, and. try to d.eterrnine vhen

ß(2X) has the same description. The key to this approach is

that 2X u,rd. 2ßX are topotogical Join semi-t-attices. 2ßX i" u.

compact Join semi-l-attice containing 2X as a d-ense sub-join

semi-J-attice, and continuous join homomorphisms ZX * B extend.

continuously to eßX. We thus d.escribe 2ßX u," a compact,

algebraic extension ot 2X, and d.etermine cond.j-tions when g(eX)

enJoys this algebraic structure.

We.first recaLl- the d.efinition of a topological join semi-

l-attice.

\8.

3.1- Definitíon:

bínary operation

(i)

(1f,/

li111/

A Join semi-l-attice is a set Y, equipped. r¡ith

that satisfies the. folJ.owing identities:

xvx=x

xVy=yVx

The element x v y is called the join of x

the term v-semi-lattice as an abbreviation

(x v y) v z = x v (y v z).

and-

for

y. We shall-

join semi-lattice.



Le.

If Y 1s a v-semi-lattlce and. we d.efine, for a,b e y, a _< b

to mean that a V b = b, then S is a partial orderring on y relative

to which every pair of elements has a reast upper bound. rndeed,

in this ordering, sup{a,b} = a V b. I{henever we speak of order

in a semi-l-attice it is e,lways this natural- order to vhich ve

refer. The Bupremum of a subset A, if it exists, is also called.

its Join, and is denoted. by v A. We say a v-semi-l_attice is

v-compf.ete, if every non-empty subset has a supremum. A subset

S of a v-semi-Iattice Y is caJ-ted a sub-v-semi-lattice of y if

arb e S imply a vb e S. Amapping f: Yr*Y2beti,¡een v-semi-

lattices Y. and Y.., is a v-bomçryrphi.sn if f(a v b) = f(a) v f(b)

for all a,b e Y, .
l-

A topolosical- v-semi-l-attice is a v-seni-l-attice y equipped

vith a topology such that the v-operation is continuous as a

mapping from Y x Y to Y, vhere Y x Y carries the prod.uct topology.

l{hen speaking of topological v-semi-l-attices, terms tike compact

v-semi-lattice, continuous v-homomorphism 2 carry their obvious

meaning,

1.2 Proposition. 2x and 2ßx are topol-osicar v-semi-rattices.
av

^pJ\ .2 Ís a compact v-semi-Iattice, and the natural manr:inq

UL! u 2ßX is a topological isomorphism of 2X onto a d.ense

v-complete sub-v-semi-lattic. of 2ßX. Everv continuous
Yv-hgronorphism from 2" to R extend,s to a continuous v-h-onlo_-

AY

@8.



Proof. The first statement fol].ovs from statement 0.3 in

Chapter 0, the v-operation being the usual- set-theoretic

unlon. We know that the map i is a homeomorphì-sm, and cJ-early

it preserves the operation. Therefore i is a topological

lsomorphism of 2X into a d.ense sub-v-semi-lattice of eßX.

The natural ord.ering involved in these semi-lattices is just

set-theoretic inclusion. Thus each semi-l-attice is v-complete.

Now i(ZX) i" a v-complete sub-v-semi-lattice of 2ßX, 
"ir,.ce 

for

{ar: J e r} I zx, 
"l_t(oJ) 

= .l-"to*R¡ irr 2ßx, is just
Je_L " Je_L

cl-u*(¡ 
lr"te*A¡ 

) which equals clur("t"t 
,lro, 

) ) vhich lies in

i (zx)

To prove the last assertionr let g be a continuous v-homo-

-^xmorphism from 2" into !. (8, of course, carries the natural- v

defined by a v b = max{a,b}.) We cl-aim that g preserves al.l

suprema. For, let {4.: i e f } -. ZX, We shov that

S( v 4.. ) = g(cf., u A. ) coincides with v g(a* ). Clearly, since
iert ^irrt irt= 1

g preserves ord.er, v g(4. ) s g( v A- ). For the sake of contra-
ier l- - ief 1

d.iction, assume .u-.e(Aj.) . e(.u_Ai). By the continuj-ty of B,
].et ]-el-

ve can find a basic neighbourhood B(GOiGt,...,Grr) of

. 
u-Ai = "fX . 

r_Ai in 2X such that T e B(c';cr,... ,Gn) implies
ief * -'ief

that e(T) > 
. 
v_c(A. ). Nov cl." 

. 
r_Ai r r(Go jGf , ..,*r) so r^/e car.

r_et t_EI

,o.
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find., for each J = lr2r..,rfl an ind.ex i, e I so that A* n C. I 0.JlJJ
n

Letting P = , Al ., l¡e see that P r 3(GOiGl , .,*r.), and, thus
J=f *J

n
that S(P) r v e(A-). But P = u Aì , and, g preserves finite

ieI t i=l- ti
nn

Joins,sothate(P)=s(vl- )= ve(a- ). vg(R-). Thisís
,L. -L. - 

fJ=A J J=A J ].Ê_L

a contradiction. Thus g preserves aII joins, and- this establishes

our claim.

Now, letf =gl{{x}:xeX}. Thenf eC(X)andf is

bounded. above. lle cl-aim that g = fs. To verify this, note

that if I e2X, g(T) =e( v {x}) = ve({x}) = vr(x) =rs(t).
xeT xeT xeT

(tr^/e have thus shown that every conti.nuous join homomorphism

eX -, B has the form fs; it is easy to see conversely, that if f

is a member of C(X) tnat is bound.ed above, then fs is a continuous

V-homomorphism zX * B. ) The continuous extension or g to zßX

r+hose exístence is asserted. in the proposition is simply (fß)".

We thus see, by this proposition, that comparing O(eX¡

r¡ittr zßX j-nvol-ves casting O(zX¡ in the ro]-e of an algebraÍc

-^xextension of 2-- r¿ith the properties in 3.2. We shal_l. see, in

the fol-loving theorem, that pseud.ocompactness enables us to

impose the required. algebraÍc structure or. ß(eX).



3.3 Theorem. f,"t -zl- 
t aX ¡" "t""¿"".

v-semi-lattice structure on ß(eX) relative to which ß(zX) '1"

a compact v-semi-l,attice" and. 2X is a dense, sub-V-semi-l-attice.

I?roof. Let u denote the continuous join operation on 2X. Being

a continuous map from 2X * 2X into 2X, u has a Stone exbension

.,rß fro* ß(zx * zx) into ß(zx). But 2x * 2x is pseud-ocompact,

so by Gt-icksberg's Theorem I of lz:rl, ß(ex r zx) = g(zx) * g(zx).

T'hus u has a continuous extensio.,rß, g(ex) * ß(2x) * ß(2x).
. ^, ^x.The map u' defines a continuous operation on ß(2"). It is readily

.ßvverrr':-ecr rnaÌ u ' d.efines a v-semi-l-attice structure on ß(2").

In ord.er to check that the three id.entities in 3.1- hotd. for the

ßoperation u-, one observes that, in each case, the identities

are valid on a dense set, and. since the identities are continuous

firnctions of their variabl-es, they hold everywhere. The remaining

assertions in 3.3 are immediate. ln/hen the occasion arises, we

aal
wil-I d.enote up(s,t) by s v t, for s,t e ß(2").

Ê^)..

At this point T¡re may pose the folloving question. Do 3.2

and 3.3 give enough information so that, with the assumptions

in 3.3, ve are abl-e to concl-ude that g(ax) an¿ 2ßX are id.entical-

compactifications of ZX?

it ¡.¡e wil-I need. several

llhe first tvo facts are

compact v-semi-latti-ces,

This is ind.eed. the case, but to prove

facts about topological v-semi-fattices.

standard. and. easil-y proved resu-l-ts about

while the last tvo results are much



more technicaJ-. 't^le vil-l content oursel-ves here vith stating

these resufts vithout proofs, giving appropriate references

in each case.

3.1+

be an

Tf (x
0,

exists

Let K be

increasing

-\:ctÊDJ].s

and ^x_cL
oe l)

A compact

a compact v-semi-lattice. Let (x

net in K. Then V _xo exists, and
o¿Êl)

3.5

3.6 Let f be a v-homomorphism from a compact v-semi-Iattice

S onto a compact v-semi-lattive T. If f preserves the suprema

of increasing nets and the infima of decreasing nets, then f is

con'Linuous. (t:Sl.)

a decreasing net bound.ed beIov,

= tim x- . (see [sg] , tl+f l. )

oeD 0

v-semi-l-attice is v-compl-ete.

53.

3.T Let K be a compact v-semi-lattice. Then the continuous

v-homomorphisms of K onto metrizabl-e compact v-semi-l-attices

separate the points of K. (See page )+9 of lel+]' )

q

VX
q,e D

then

D)

=limx
creD 0

Nov it is easy to see that, in 2X, the join of a subset

S S ZX is the l-irnit of the net of its finite sub-joins, the net

being directed by the finite subsets of S. This fact is tacitly

proved. in 3.2 in shovÍng that continuous v-homomorphisms from

2x into R preserve supïema. From this fact, ve see that 2X is

o u-"o*niete subset of any compact v-semi-l-attice K in vhich

^x_d
crel)

(t:¡1, l+rl).
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^XY2" is a sub--v-semi-l-attíce. fndeed, if S I 2", then, by the above

rem¿rrks, the join of S in 2X is the limit of the increasing

net of its finite sub-joins. These finite sub-joins in 2X

¡:.re the same as the corresponding joins in K. But by 3.h, this

net converges to the Join of S in K. Tnus tne join of S in Ii

coincides vith the join of S in 2X. That is, 2X i" a v-complete

subset of K. fn particular, this statement is valid, in the
YY

case that 2" x 2" is pseud.ocompact, for the compact v-semi-lattice
\¡

K = ß(2").

lJe nor¿ have the necessary tools to establish the main

result of this chapter.

3.8 'rheorem. Let 2x * 2x b" pseudocompact. Then ß (zx) = zBX.

Prool'. lly staternent 0.7 in Chapter 0, X, considered. as the

singletons in 2X, is C*-embed.ded in 2X. Thus the cl-osure of

this copy of X in ß(2X) is a copy of ßX. So, there is an

embeclding h: ßX * ß(2X) such that tr(x) = {x} for each x e X.

[i:Lncc. ff (ZX) is the largest compactification of 2X, there is a

quotient map Q, g(ex) * 2ßX, whose restriction to 2X i= th.

-Íclentity ur 2X. IJe enclor¿ g(ZX) vith the v-semi-lattice structure

desci:ibecl in 3.3. Since Q is a v-Ìromomorphism on a d.ense

subset, by continuity, Q is a v-homomorphism. Since the supremum

ol'¿l set is the límit of the suprema of Íts finite subsets,

by contlnuity, Q preserves al-l suprema. Now, we d-efine a mapping



F: 2 
ßx .' ø(zx)

the restriction

l{e claim that F

Then vF(A_.)=
t-

1eI

by r(S) = v h(p). Note that llßX = h, that is,
pes

of F to the singletons in ZßX coincid.es vith h.

preserves Joins. For, Iet {R. : i e I } s zßx.

u tr(-:), and F( v A* ) = F(cloo- u 4,. )
pe u A- ier ] Þ^ irr t

.*J-ael

= v n(p).
Pt"Ì ßx. '-Aircl

reverse inec¿ual-ity, let a = v F(4. ) = v h(p). Nov the set
ieI I oe uA.

*l-
a e-L

Ytr
{u e ß(2"): t < a} is closed. i-n ß(2'') . So, by the continuity

of'h, {p e ßX: h(p) . a} is closed in ßX. Since this Ìatter

ce'|, evid.ently contains .r_Ai, it therefore contains "tßX.r_Ai.AET1eI

So, for al-l p e clo- u A_., h(p) j 
". 

Thus F( v A*) = F(cJ.o.. u A*)u^ iar t irr t u^ ief '

= v n(p) < a = v ¡'(R. ). Combining the tvo inequalities,
pec]. .-- u A. ieI 1

uJ(. _ 1
1E-L

we concl-ud.e that F preserves joins. Now consid.er the map

Q o F, 2ßX -, 2ßX, By the continuity of Q and- h, and the fact

thn'b f) o h is the iclentity on {{p}: p e X}, a dense subset of

{{p}: p e ßX}, Q o F is the id.entity on ßX. (fnat is, on the

se'b {{p}: p e ßX}. ) Since Q and. F preserve joins, so does

QoF. Soif Se 2ßX,*"haveQ"F(S) =QoF( v{p})
PCS

Crearl-v vF(4.) <F( vA.).
]- - l'ael ael

55.

To prove the

- v Q o F({p}) = v {p} = s.
pes pes

Thus, Q o F is the identity on
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2ßX. It follor,¡s that F ís one-to-one. Now 2X i" a v-complete
v

subset ot ß(2"). Since F preserves joins, and. since F({x}) = {x}

for each x e x, we see that 2X -. ¡'(eßX). Let L = F( zßX).

Since L contains the pseudocompact spac" 2X u." a dense subset,

L is itself pseudocompact. Thus F is an algebraic isomorphism

of 2ßX onto the dense, pseud.ocompact sub-v-semi-tattice L, of

ß(2"). We nov show that F is continuous. Now, if the topotogical

v-semi-l-attive S is a sub-v-semi-l-attice of a compact v-semi-

l-¿rttice, then a map G into S is continuous if , and only if ,

R o G is continuous for all continuous join homomorphisms R,

of S into metrizabl-e v-semi-l-attices. Indeed. by 3.7, S has the

weak topology generated by such R. Thus, to shcw F: 2ßX * l,

is continuous, ve prove that íf R: L + M is a continuous v-homo-

rnorphism of L onto a metrizable v-semi-lattice M, then R o F

is continuous. But, for any such R, M must be compact, sínce M,

as ¡r continuous image of Lo is pseudocompact, and every pseud.o-

compact metric space is compacb. Thus R o F is a map betr,¡een compaet

v-semi-l-attices. Since R is a continuous v-homomorphism, R

preserves all Joins. Since F is an al-gebraic isimorphism,

Ir preserves all- Joins. Therefore R o F preserves all- joins.

The same type of argument shovs that R o F preserves d.ecreasing

meets. Appealing to J.6, we see that R o F is continuous. Thus

F is itself continuous. ffrus ¡'(eßX) is compact. Since the

image of F contains 2X, ve concl-ud.e that F(2ßX) = ß(2X). rt



forl-ovs that F is a homeomorphism or eßX onto ß(eX) fixing 2x

point vise. Therefore 2ßx = g(eX).

3.9 Remark. It seems quite pl-ausible that the pseudocompactness

Yof 2" is equivaJent to that of 2X * 2X. This voul-d. establ-ish

the converse to 2.1. The author has not been able to resolve

this question, and. leaves it open to the read.er. Even if the

exac'b converse of 2.1 hoLd.s, Ít is unsatisfying in a very

significant way. ft d.oes not describe the relation g(zX) = 2ßX

in terms of properties of X. lihat is needed, of course, is a

clescription of the pseudocompactness of 2X in terms of X; we

obt¡¡ined some results along these lines in Chapter 2.

Now, by !a., page 166 of [Se1, for any spaces S and. T,

^S ^T ^S+T2'- x 2- is homeomorphic to 2- -, vhere S+T d.enotes the free

uni<>n of S and T. So if P is a elass of topological spaces

suclrthat X e P impties 2X i" pseud.ocompact, and such that

X,Y e P implies X+Y e P, then X e P =, 2X * 2X ís pseud.ooompact.

In partÍcuÌar, this is'true of the properties O-compactness

arrd ?-pseud-ocompactness, by the resul-ts of Chapter 2. (ft is

obvious that each of these properties is preserved. by finite

union. ) We described. many natural- examples of these spaces in

Chapter 1, and- we thus have a fairly large class of spaces which

satisfy the hypothesis of 3.8. In particular, ve have the

following corollary. (See 2.6 in Chapter I and. 2.I in Chapter 2.

,7.



3.10 Corollary.

if X is normnl

t. then ß

3.f1 Remark. The technictrue employed. in 3"3, to impose algebraic

structure on the Stone-Cech compactification, can be applied to

rather general situations. For exampl-e, if l^re are given a completely

regular topoÌogica-I algebra A of a given type, pseud.ocompactness

can l¡e used., just as in 3.3, to obtain an algebraic structure

on ßA of the same type, relative to vhich ßA is a compact topo-

J-ogical algebra, and A a d.ense subalgebra. This can be used to

compa.re an algebraic compactification to the Stone-Cech compacti-

fication vhenever the al-gebraic extensíon is uniquely d.etermined..

In particular, this method can be used to give a version of the

Comfort-Ross Theorem 1.2 of [7]; for a totally bounded topological

group G and. its Weil completion õ, ßG = G if, and only if, G is

pseudocompact.

Let X be normal.

¿

and.

zgx. rn
(r)^

U
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Tf all- powers of X are countably

-bound.ed..

icular, this conclusion holds



1. Many important properties of a compÌetely repçular space

X can be <lescribed in terms of its Stone-Cech compactification

ßX. For example, X is pseudocompact if, and only if, every

non-empty GO set in ßX intersects X. Cech-complete spaces are

precisely those spaces which are GU sets in their Stone-Cech

compactifícations. Another property of a eompJ-eteJ-y regular

space X vhich can be described in terms of the embed.ding of X

in ßX, and- the one that most concerns us here, is realcompactness.

To state this clescription, ve need a definition. Let X be a

subspace of a space Y. I^Ie say that X is GU-cIose{ in Y if

Y - X is a union of G.-sets ín Y. This means that given a point

p e Y - X, ve can find open subsets GarGZr..., of Y such that

De nG cY-X.' --nn e.L\

Realcompactness can be described. as foflovs. (See 8.8

or lr5 l. )

l.I Theorem. Let X be a completelv requ-Iar Hausd"orff space.

TITE Gô_CLOSUR]I AND REALCOMPACTNESS OF 2X

Chapter h

qo

Then the fol-loving statements are equivalent.

\11

(:.i)

X is rea.lcompact_,

(i:.i) x is G.
ô

X ís G"-closed in $X,:--6

-closed. in some compactification of X.



0f course, a realcompact spaee need not be G.-closed. in

all of its compactifications. For example, a locally compact

space is G.-closed. in its one-point compactification if, and.

only if , J-t is o-compact, and examples abound of realcompact,

J.ocall-y compact spaces vhich are not o-compact.

Suppose Ì{e are given a compactification qX of a (completely

reguJ-ar Hausd.orff ) space X. If X is G.-closed in sX, ve see,

by 1.1, that X is real-compact. As lre sav above, the fact that

X is G"-closed. in oX may reflect much more than the real-compactness
Ò

of X, depending on the position of cx,X in the family of al-l com-

pactifications of X.

If X is normal and Tr, then eßX :-" a compactification of 2X.

^ßX Xliincc 2--- ís one of the most natural- compactifications of 2",

it is of some interest to d.escribe 2X in terms of its enrbed.ding

. ^ßxin 2"'--. In Chapter 3 ve examined the circumstances under vhich
v ., Qt¡. ^8 ^pll2 is C"-embedd-ed, in 2'--. fn this chapter, ve exernine the

-X ^ßXG.-closu.re of 2.. in 2-'-, and. we characterize those spaces X

]T RY
srrch that 2" ís G.-eJ-osed in 2*". Using I.l, ve obtain infor-

mation on the realcompactness of 2X.

bu.

2. The G^-Closure or 2X in eßX.

observation.

hle begin with an elementary



2.1 Proposition. Let X be a subspace of Y. Let Q.,(X) = {p e Y:.I

everj¡ G,-set in Y Sontaining p intersects XÌ. Theq a.,(X)_jt

ttt". smalþ-gl-l*ibspace of Y that conjains X and js G.:closed in

Proof: CIearIy X -c 0"(x). 't{e first shov that Ay(X) is G.-closed

in Y. For, let p e Y - Ay(X). Then there is a G.-set H, in Y,

such that p e H and. H n X = 0. Since any GU eontaining any

point of Qr(X) intersects X, we have H n Qr(X) = O. Thus

Ar(x) is Go-closed in Y.

Now, let S by any subspace of Y such that X -c S and. S is

G.-closed in Y. We shov that Qr(X) S S. Let p e Qy(X). rf

p # S, since S is G.-cl-osed. in Y, there is a G.-set H, in Y,

suchthatp eHandH n S= ó. But sincep € Qy(X), H nXlþ,

and- since X _c S, H Ír S 10. Thus p e S. Therefore, Qr(X) . S,

and so Qr(X¡ is the smallest G.-cJ-osed subspace of Y which

contains X.

h\l

ln/e vil-l- refer to Qy(x) :." 2.1- as the G6-.@.

Now, in a completely regul-ar space, a G.-set contai-ning a given

point contains a zero-set containing the given point. (See 3.11-

of lff ]. ) So if X -c Y where Y is completel-y regular, our GU

conclitions may be re-formufated as fol-lows. X is G.-c]-osed. in

Y if every point of Y - X lies in some zero-set of Y that is

disjoint from X. ar(X) is the set of points p, such that every

zero-set Ín Y that contains p intersects X.

Y.



We now describe the G.-closure of 2X in zBX for a normar

space X. Recal-L that we are identifying 2X rs the subspace

i(ex) ot zßx, as in chapter 3.

2.2 Lemma,

G^-cl-osure of 2x i-n eßx.
ô

implies F s cl-^.,(Z n X) Ì.
lJil

Let X a normal-

Proof : Observe that i(ZX) = {F e zßX, p = cl'"(f n x)}. Let

Qa denote the set describeil in the statement of the lemma. We

wil-l show that 2X -. Ql- -. Q and that Q, is G.-cJ-osed. in 2ßX,

from r,¡hich the assertion fol-}ovs. Since F e 2X is equivalent

to ]r = clU*(F n X) , cÌearIy t" -. Qt. We nov shov that Q, s Q.

So l-et U, Qt. Let H be any G.-set:-r, ZßX containing F. I.{rite

ll= nG r^¡ithG -ßX
-_ n 

:r, open in 2'--- for each n. For each n, ve can
ne-L\

rina ofu., sets G^ -;G, . ,.. . ,G,, - in ßx r¿ith I"*. , -c c^
o rr,.;Gr ,il' " "GKrr rn i=r r ,fl u rÐ

and F e 3(G^ _;G (\ \'. G.^. For each n, find. a zero-set" "t"Orn'"f ,fl"" t"*rrrÐ'= -n ----- -l

Zn in ßX such 'bhat F . Zn S *0,r. to* 
,r!*rr, 

= Z is a zero-set

in ßX anð" T c Z, Since O r Qt, r,re have F _c clU"(Z n X). But

"tßr( Z n X) e 2X n fl, and. so every Gu-set in eßX containing F

meets 2X. Therefore F e Q, and so Qt S Q. We complete the

proof by shoving Q, is Gu-closed tn 2ßX" Let F , eßX - Qt.

Then there is a zero-set Z in ßX such that F c Z but

Hausd.orff space. Let Q d.enote the

Tèen Q = {F , 2ßx, z ¿ z(gx) , T ç z

62.



r $ crrr(z n

Il is a GU in

Ís G.-cJ.osed

2.3 Theorem.

X). Let' H =

2ßX and F e

av
ln¿

g{s__ruIva ..

n(z; gx - ct'*(z n x)).

H.ObviouslyHnQr=0.

(r)

(.11,

LetXbeanormal-

I?roof : (i) => (ii). Assume 2x is Gu-ct-osed. i-n eßX. rn the

notation of the preceding l-emma, this means that 2X = Ql_.

We cl-aim that X is Lindelöf. For the sake of contrad.iction,

assume X is not Lind.elöf. Then, there is a family D of closed

subsets of X with the countabl-e intersection property such that

n0 = þ. Let 0. be the family of countabl-e intersections of'_L

members of 0. Then ?, is closed. und-er countable intersection,

and. n A=ô. LetR= tr clo.,A. ThenrsinceRnX=0rw€
IteD, Aeq, prr

have R , zßX - 2x, Let Z be any zero-set in ßX containing R.

lVri'l,e Z = n-,Grr, vhere G' is open in SX. Nov, for each n,
nel\

! "lexA s G.: and so, by compactness, there is, for each n,
AeU,

^X¿rs

X is Lindel-öf.

G^
ô

. ^ßx
-^ 

l^oôal 1n ')
-"--=--t

Hau,sd.orf f space.

Then clearly

Thus Q,

oJ.

The fol-lovine

a fÍnite subset F' of 2, so that ? "aßlÉ -. c'
Aer

n

Then F is a countabl-e subset of D^ and. n cl^.¡{ g nt 
Ar F Þ'¿! neN

Let f = uO__n
ne.l\

n



But n A e 0- and. so R _. cI^.,( n A) s
AeF r- Þ^ ArF

easily that R s cfU*(Z n X). We have

Z e Z(gX) , R ç Z impties ¡ -c cIU"(Z n

n r Qt. But this is nonsense, since R

that (i) =' (ii).

/..\trrJ =>

for which it

F = n{ ct^.,(Z
Þi!

Ide claim that

/. \(i). Assume X is Lind.el-of. We shor^¡

suffices to shov Q- . 2X. So. l-et F
"-L

n X): Z e Z(gX) , F 9 ZÌ. Let R = {Z

F = c]o-[ n (z n x)]. Tf possibte,
'n zaR

n cl-o-L s Z. Tt follows
AeF P¿'

p c F - clo.,,.[ n (Z n X)]. Find. a closed. neighbourhood. M of p

'n z.R

in ßX such that M n I n (Z n X) I = 0. Since X is Lindel-öf, there
ZeR

thus shovn that, for

X). This means that
,Y
4 2" = Q- . This shor¿s't-

is a sectruence 2r,22,..., from R such that M n [.n (2, n X)] = p.
ieI r-

IJu'b n Z, e R, and- so F _c cJ.o.r[ n (2. n X)]. But this implies
ieN r o^ trry r

p e c:-o*[ n (2, n x) ], and. so M n I n (2, n x)] I 0. This contra-
"'^ ieN * ir$

cliction o"oiu" that F s ct'*[ .1.(Z n X) ]. Since the reverse
¿L¡I

O+.

that 2x = et,

t Qt Then

ez(gx):FeZ\"

fet

incfusion holds trivially, ve conclude that tr'= clo.rl n (Z n X)].
'tt ztR

'lhus F , 2X, and. so Q, e eX.

2.L Remark. Tt shoul-r1 be observed that the resu-lts of 2.2 and

2.3 cat:ry over to higher card.inals. Cal-ling a set a G -set

Therefore 2X i" Gu-closed. in eßX



6r.

if it is the intersection o:fl m open sets, (n d.enotes {r,n infinite

cardinal) and recall.ing that a space is m-Lind.elöf if each of

its open coveïs has a subcover of <m sets, Tte see that, with

obvious modifications, 2,2 and.2.3 hold. with GU replaced. by

G, , and Lindelöf replaced by m-Lind.el-öf .m'

3. Some Remarks on the Realcompactn-ess-of 2X. By 2.3 and t.t,

it follovs that if X is Lind.el-öf, then 2X i" real-compact. Indeed-,

if X is Lindelöf, then eßX i-= a compactification of 2X in vhich
Y

2" is G^-closed. iüe nov give a direct proof of this resul-t.
U

Reca^ll that a compÌete1y regular space Y is real-compact if, and.

only if, every z-ul-trafílter on Y vith the cou¡table intersection

property is fixed. (see tri l. )

Y
3,1 Theorem. Let X be Lind.e]-öf g:1d complet-ety regul-al:.- Then .2-"

i:._fg"lcompac!..

Proof . Since a Lindelöf , completely regr-r-l-ar space is normal , we

concl-ucÌe by)+.9 of [:6] tnat 2X is completeJ-y regular (and.

llausd.orff ) when X is completely regular and, Lind.elöf . \,tre use the

¿rbove characterization of realcompactness. So let 0 be a z-u-l-tra-

^Xfil-ter on 2-- with the countable intersection property, vith X

assumed. to be Lind.elöf. lnle define tvo famities of sets as foll-ovs.

We set q = {A .2X, there exísts ß e 0 such that ß. zA} and we

t¡set ß = {A e 2": there exists ß e 0 such that ß _- S(X; A)}. For

A e ß, ve d.efine GO = {F n A: F e g}. I{e cl-aim that for each



A e ß, GO has the cor.rntable intersection property. Let

{tr-,Or,...} -c o, and l-et A e ß. llhen, for each n, there is a
F

set Bn e 0 vith ßn s 2 tr, ffid there is a set B e 0 vith

ß s B(X; A). Since 0 has the countable íntersection property,
F

ve have f I ( n ß. ) n ß -. ( n 2 n) n B(X; A). Any etement in
nrry t nery

the Iatter intersection is

in particular, ( n 1,,.) n A
neN --

intersection property. Since X is Lindelöf, there is, for each

Ae ß, apointpO e nGO. LetL=cl"{pO: Ae ß}. T,n/enovshow

that L e n0, vhence 0 is fixed, and so 2X is real-compact. We

assurne t 4 n0 and. we will d.erive a contrad,iction. If L { n0,

ttrenthere is aset ß e 0 suchtfratt { ß. Nor+, sinceXis

normal , by 0.8 i-n Chapter 0, the sets of the form
ZZ

n(x; ZO) u z r u u zn, where ZO,ZI....,Znare zero-sets

in X, form a base for the cl-osed. sets in ZX. No-r¡ ß e 0 and- so

ß is a zero-set in 2X, and is, in particul-ar, closed. Since

L { B, ve can find zero-setsoZ' ,2I,...,2n in X such that

iì -c B(x; ,o) u 2"r u ... u z^n, and L { a(x;zo) u zzr u ... u zz

Now if Z is a zero-set in X then 2Z is a zero-set in 2X. (See
Z.

0.7 in Chapter O.) We cannot have any Z r e 0, because this

"o*Orlra Z. ín e and would inply that L I Zi" or equivalently,
_ ^1 _L, e'2 -, by the construction of L. So, since 0 is a z-uLLra-

filter, there is, for each i = Ir2:...¡[e a zero-set ß. in 0

contained in n F and. meets A. So,
,..ry t

+ þ. Thus, each GO has the countable

66.



such that ß.
I

and C -. ß(X;

But L 4 s(x;

lfe concl-ude

17

n 2 r = þ. Letting C =

^ì. 
This impties Z

ZO)osothatLnZO

that L e n0.

3,2 Remark. In Lr5l, the realcompactness of 2X is approached.

by unifornities, and.3.f can be d.educed. as a corollary of

resuLts proved. therein.

ft d.oes not seem to be knovn whether 2X is realcompact

r.¡henever X is. Of course , if 2X is realcompact, then X is ,

since, (for Hausd.orff X) tne singletons in 2X form a cJ-osed.

subspace homeomorphic to X. InIe have to be stightly carefuf_

in discussing the realcompactness of 2X, since 2X i" completely

regular onJ-y vhen X is normal. ff ve use the definition of

real-compactness in ISir1, vhich applies in the non-completely

reguÌar setting, ïre can then meaningfutly ask vheth.r 2X i"

realcompact when X is completely regular and. real_compact.

3.3 Proposition. Let P be a cl-osed hered.itary topoloEieal

n
ß n n ß." r,¡e have C e g

J._I

ß, and so p,z e Z^ n L.''Lo u

This is a contradiction.

c0"

-L- 9.

of.

property. Let X be a r.eg:lrl_ar. Hausdor-ff space such that
Y

2" e P. If Y is a continuous-open-closed. ÍmaEe of X- then

2::-I. (¡y t topological- property, ve mean a class of topo-

logical- spaces vhich, whenever it contains a space X, p'ts6

contains al-l spaces homeomorphic to X. )
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Proof . Let X be regular and Hausd-orff , vith ZX e P. Let

f: X -+ Y be a continuous, open, and closed surjection. Define

l¡: 2x n 2Y ly F(A) = r(a) , and. define G: zY * zx by G(s) = r-1(¡).

tsy 5.1-0.1- and 5.10.2 of [36], f' and. G are continuous. Let
V

V = C(2'). Then Fl/ ana G are mutual-Iy inverse homeomorphisms

between / and.2y, and G o F is a retraction of 2X onto /. Now,

since X is reguJ-ar artd Hausd.orff , 2X i" Hausd.orff (see \.9 of

t:e1¡. As a retract of 2X, V is therefore ctosed in 2X. Thus

YY2' is homeomorphic to a closed. subspace of 2". Since P is

closed. hered.itary, 2Y e P.

From 3.3 we can d.ed.uce therfolloving. Let X be compJ-etely
Yregular. If 2,t is realcompact, then X is realcompact and every

continuous-open-closed. completely regular image of X is real-

compact. It does not seem to be knor.m whether real-compactness

is preserved. under continuous-open-closed. images. A counter-

example voul-d- provid.e an example of a realcompact space vhose

hyperspace is not realcompact. This question, together vith the

question of characterizing those spaces X for which 2X i=

realcompact, we leave open to the read.er.

3.I+ Remark. fn Chapter 2 we sar+ that corintable compactness and

pseudocompactness are not preserved in passing to the h¡,perspace.

Most notable among the properties that 2X enjoys rnhen X d.oes,

are D-compactness: ur'-bound.edness (for normal spaces), and.
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compactness itself. Each of the latter propertíes is cl-osed-

hereditary and. productive. (Such topologicaJ- properties are

called extension properties; see [23] an¿ lrZl tor infortnation

on extension properties.) Realcompactness is another closed.-

hered,itarv and prod.uctive property, but , as mentioned. above, it

is not yet clear vhether 2X i" real-compact r+henever X is (even

for normal x). l^Ihatever the situation may be for realcompactness,

one certainly d.oes not expect every closed-hered.itary, productive

property to be preserved. in passing from a (normal) space X to

its hyperspace. We nov give an example of a cl_osed-hered.itary,

prod.uc'bive property which is not so preserved, using Mrovkats

concept of E-compactness. (See [38].) let us recal-l- the defi-

nition of E-compactness. Let E be a given topological_ space.

A space x is said to be E-compact_ if x is homeomorphic to a cfosed.

subspace of a product of copies of E. E-compactness is clearJ_y

closed-hered.itary and productive. \,{e r¿i}l nov give an example

of a normal- space E for l¡hich E-eompactness is not preserved

in passing to the hyperspace.

1,,/e take for our space E the space constructed by Ostaszewski

in ll+O]. This space is countably compact, hered.itarily separable,

perfectly normal-, and. non-compact, and is constructed. in fho]

using certain set-theoretic assumptions vhich are consistent

v¡ith the continuum hypothesis and. the usuaJ- axioms for set theory.

For this space E, we shov that 2E i" not E-compact, and. thus



r¿re have the desired example.

By Proposition 1.2 in lZ9l, (vhich assumes the continuum

hqypothesis), the space I,i of countabl-e ord-inal-s can be embed.d.ed.

as a cl-osed. subset of 28. We shov that W is not E-compact.

Since E-compactness is closed hered.itary, this shows that 2E

is not E-compact. For the sake of contrad"iction, suppose W

is homeomorphic to a closed. subspace fr of a prod.uct II E,. of
ier 1

copíes of E. Now fr is u-r'-bounded., and ur.-bound.edness is pre-

served. by continuous maps. Thus each projection n. (t) is

trl'-bounded. Since E is hereditaril¡r separable, each subspace

n.(Ñ) is separable, and so is compact. But fr is a closed1'

subspace of the prod.uct of these compact projections, and. hence

must be compact. This is a contrad.iction, and proves our

asserti on.

TO.



l. fn this chapter l,re are concerned. with certain c¿lrdinal_

Chapter I

SOME CARDINAI INVARIANTS OF HYPERSPACES

invariants of hypeïspaces, namely, weight, character, ce11ularity,

and n-weight. fn each case, the invariant of 2X i= d.escribed.

by means of an equality, or inequatity, in terms of invariants

of X. Although these results are not d.irectly rel-ated. to the

compactness-i:ytrle properties ve have examined in the previous

chapters, i-n several of the theorems and examples compactness

and covering conditions d-o ptay a rol-e.

Several authors have consid.ered. card-inal- invariants of 2X

in one context ot' another. fn lS6] it is shown that X is separable

if, and. only if, 2X i" separable, and- that 2X is second countabfe

if, and only if, X ís a compact metric space. From I of l2Tl

it fol-lows that if X has a cl-osed. d.iscrete subset of card.inalí.ty

^x"cr, then 2" ihas a cl-osed discrete subset of cardinality 20. Spaces
Y

X for r¿hich 2" is Lind.elöf are characterized. in 2 of IZT), ana

-lrr of [53] ¿escribes those spaces for vhích 2x is first countable.

In ord.er to formul_ate the relations we will establish, let

us recall- the definitions of the card.inal- invariants with ¡.¡hich

Ì^¡e are concerned.. The g.rg.!t of a space X, d.enoted by w(X) , is

the -Least card.inal of an open basis for X. The Lindelöf number

TI.

of X, written L(X) , is the smal-lest card.inal

open cover of X has a subcover of cardinatity

q, such that every

< cr. The r¿eak
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clvering number. of X, denoted by vc(X), is the least cardinal- s

for which each open cover of X has a subfamily vith cr, or fever

elements 'r¡hose union is dense in X. ff A c X, the cha.rac-ter of

{gté, written X(XrA) , is the teast card.inal of' a base for the

neighbourhoods of A in X. If p e X, we vrite X(X,p) instead.

<¡f x(X, {p}). The -qþa"a"tut of X, rlenoted. by X(x), is d.efined,

by X(X) = sup{X(X,p): p e X}. The de4gj-t¿ of X, written d(X),

is 'Lhe least cardinal of a d.ense subset of X. The hered.itarl¿

.d"g!.ig of X, denoted by rrd(X), is defined by hd(X) = sup{a(y):

Y -c XÌ. A family P of non-empt;¡ open subsets of X is cal-Ied. a

¡:¡aS.is_ for X, if every non-empty open subset of X contai-ns a

member of P. The n-weigh-t_of X, denoted. by n(X) , is the least

cardinal* of a n-basis for X. The cellutarity of X, denoted by

c(X), is defined. by c(X) = sup{o: there is a family G of pairwise

disjoint, non-empty, open subsets of X whose card_inality is oÌ.

The L:elations ve vil-l establ-ish may now be summarÍzed. as foll_ovs:

(i) w(x) . r(zx) . r(x)L(x) . zt(x).

(ti) rr x is normat-, then rfril :'r(x)wc(x).
/...\ ,^x(iii¡ X(2") = x(x)"hd(X), where x(x) = "up{X(X,F)' F is a

closed. subset of XÌ.

(iv) n(zx) = n(x).

(,r) 
"(2x) < sup{c(xt), n e N} . z"(x).
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Examples are given to il-lustrate the sharpness of these

estimates, and., in particular, an exeJnple of a non-noflnal space

for r¿hich (ii) fails is given. The rel-ati.on given in (:-ii)

is a straightforward. generalization of the countable case treated.

]n L )J.l .

Our basic references for the card.inal invariants d.escribed

in this chapter are lzrl, i)+], ana [5].

fn order to avoid trivial technical difficulties, let us

agree that al-l- card.inal invariants mentioned above are infinite.

ff one of the invariants is finite, ve agree to replace it by oO.

It is easy to see that if F is a closed. subspace of X, then

-F ^F.2 as a hyperspace has the same topology as 2- has as a subspace

Yof 2'-, and ve r+iII use this fact in the sequel-.

2

i{e first examine the r^reight of 2X. For an open cover G

X, we define c(G¡ = min{ lf/l: ll 9 G and H covers X}.

Retations between CardÍnal- Invariants of 2X and, Those of

2.I Lernma.

Proof. Let o = sup{w(x)o(G), G i" an open cover of X}, and let

0 be a basis for X of cardinality r¡(X). If n is a card-inaJ- number,

ret 2(n) = {A: A .0 and. lÁl : r}, and tet 0, = u{D(m): there is

an open cover G of X such that q(G) = mÌ. Now clearly cl(G) . v(X)

for any open cover G of a. Thus there are at most v(X) d.istinct

r^{å . sup{v(x)o(G) : G is an op"n .co.rgr of x}-

T.

of
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numbers Bnong the numbers a(G), md so DI is really a union of at

most w(X) famit-ies 0(n). Since l7(n) I = *(X)m, o = sup{ la(*) l:
there is an open cover G of X such that m = s(G)]. Nor¿ o : w(X),

and.0, is the union of < r^¡(X) famities, each of whose cardinal-ities

d.oes not exceed o. It follows that la,I 5 ". Fina11y, we set
ttÁf = {2"'': AeD.} u {S(X;C): Ce0}. Wevi]-l showthatthefinite

l_

intersectj-ons of members of T form a basis for 2X. Since lf l < o,

it will fo]-lor,¡ that w( ,') : lf l _. cr,, thus proving the temma. To

d.o this, we show that if W ís any open set in X, then 2W is a

r-¡nion of members of f, and S(X; I^I) is a union of members of T.

This is sufficient, since the sets ¡(X; U) and 2V for U,V open

in X, form a subbase for 2X. So let W be open in X. Let F .2W.

Since D is a basis for X, there is a subfamily A of D such that

W = uA. Choose a subfamify Af of A of l-east card.inatity that
uA.

covers F. Ctearly, lArl 1 "{A u {x - r}), and so 2 t e T.
uA- uA-

Clearly, F E z r s zW. Thus 2W is a urrion of such sets 2 f 
;

and. each such is a member of T. Next, l-et W be open in X, and.

J.et F e S(X; W). ThenF nI^Il Þ. Let x e F nW. Since 0 ís a

basj.s, there exists G e D such that x e G c lf. ft fol-lows that

!- e B(x; G) _c B(X; W). Therefore, n(x; w) is a r.mion of such

sets B(X; G), and. so is a union of members of T. This completes

the proof of the lemma.

2.2 Corollary. LetXbea T. s!ec9: Then v(x) . *(zx) . *çx¡t(x) . zw(x)
l-
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Proof . The first inequality follor.rs f,rom the fact that X is

homeomorphic to a subspace of 2X. The second inequality foltolrs

from 2.1, since q(G) < L(X) for atl open covers G of X. The

last inequality follor,¡s from the obvious relation L(X) . w(X) ,

and so v(x¡L(x) . *(x)*(x) - ,w(x).

2,3 Corollary.

Proof. ïf X is compact, then for

is fínite, and so v(x)o(G) = *(x) ,

ot 2x, r,r(x) . *(ex) . 2.3 fottows.

2.1+ corotlary. rr r(x)L(x) = *(x)

Let x be compact. Tnen w(X) = r(eX).

Proof. This is obvious from 2.1.

2.5 CorolLary. Let X be a normal-,
1¡

tilen r¿(2") = w(X).

any open cover G of X, c(G)

and. since X is a subspace

Proof. For a normal-, T, space X, the mapping F + clßXF is an

embeclding of 2X onto a dense subspace or zßX. Thus w(zx) : *(eßX).

But, by 2,3, w(zßx) = w(gx), and by assumption, \^r(ßx) = w(x).

l{e conclude that w(2X) . v(X). Since the reverse inequality is

always valid.e Ìre conclude that ir(X) = *(2X).

, then w(x) = r(zx).

Using a resul-t of Comfort-Hager itr 15], ve can sharpen the

estimate of 2.2 for normal- spaces.

mt1 space. rr w({) = v(ßX),



2.6 Theorem. Let X be normal- and

Proof. rn a normal space X, any open set containing a cI0sed.

set F contains a cozero-set containing F, and so the sets of

the forrn a(w; wa,Wz,...r%), vhere WrWl_,...,% are cozero-sets,

form a basis for 2x. since there are no more cozero-sets than

there are continuous real--valued functions, 'r^re conclude that 2x

has a basis of cardinal-ity : lC(X) l. By Z.z ot l5l,

lc(x) I ¡ *{x¡""(x) and so, in particur-ar, w(2x) : v(x)vc(x).

Observe that,. since wc(X) j l(X),2.6 formalty sharpens the

estlmate r(x)t(x) of z.z.

I,rle vill now give exampJ-es to il-l-ustrate the sharpness of

these estlmates. From I of lzlf, and the obvious inequality

*Qx) 
-. e"(x) , ít fortows that if x is a d.iscrete space of

carclinal- o, then 2x has weight 20. Thís shor,¡s that the equality

*(2X) = r(x)L(X) is attained for some spaces. on the other

hand, the equaJity w( ZX) = *(X)L(") ,"rr-" for many famitiar spaces.

For example, let x be the space of countable ordinars. Then

.,¿(x) = l(x) = u:r, and 
"o *(x)L(x) = e 1. Buto since r(gx) = rr,

2.! gives r(ex) = ,1. Regarding the l-ast inequality ín Z.Z,

note that the equaÌity r(x)t(x) = et(x) hold.s for spaces x

in which v(X) = L(X), (for example, d.iscrete spaces), while the

strict inequal-ity w(x)L(x) < 2v(x) hor-ds, for exampre, for Lind.elöf

spaces of veight c (for exemple, the sorgenfrey l-ine). Discrete

T.. The:r *(ex) . v(x¡wc(x)

fo.



spaces shov that the ine<¡uality w(X) ¡ or(2X) can be s¡trict

have seen above, In 2,3, 2.)+, and 2.J, tinat the ec1uallty

w(X) = *(ZX) may be attained.

The inequality in 2.6 may fail- for non-normal spaces. For

exanrpJ-e, J-et X be the upper half-pl-ane with Niemytzkits tangent

disc topology. Then X is separable, and. contains a closed discrete

subspace of card.inalíty c. Since, in general, wc(Y) : d(y),

it fol-lows that vc(X) = r0. C1early, w(X) - c. Nov from I of

IZT), it follovs that 2X contains a cl-osed d.iscrete subset of

c¡¿rdinari'ly 2t. It fortows that w( zX) = 2c = q(X)L(X), whire
/ --\ û)^

w(x)wc(Å/-"'=".

f'urthermore, the estimate in 2.6 for normaÌ spaces X is

sh;.rrper than the qenerat inecluatity v(2x) : *(x)L(x). To see

l,his, we use the space of l-.2 in [fO]. This space, vhi-ch ve

shall denote by Y, is constructed. :-n lfO] using the continuu¡r

Ìrypothesis, and. is countably compact, normal , separab-ì_e, non-

cornpact, and. has cardinal-ity urr. It folloi,¡s that vc(y) = t,r'

trncl w(Y) = L(Y) = ol_. The estimate in 2.6 for r(zY) is, using

tfre continuum hypothesis, lr(y)t"(y' - ,io = ,1, white

*ly)L(Y) = ,,, "t = ,".w\ r ,i - ujl = é

({.

We.

Discrete spa.ces are examples of normal_ spaces for vhich the

rel-¿rLion in 2,6 is actual.J.y equality, r+hil-e the countab.l-e ordinals

sirow that the inectruality in 2.6 can be strict. (fn:-s follows

l"rom the fact that the spaee of countabre ord.inal-s has r,reight
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and. r¡reak covering number or; lre have shor^m above that its hyper-

space al-so has veisht urr. )

Before turning to the character of 2X , r+e will- l-ook at the

n-weight of 2X, r+hich is rery easy to hand.l-e.

2. 7 rheorem. ¡zxu_g_g)-

,,rProof. ff P is a n-basis for X, then {2"' n I n B(X; G) ]: F is a
GeF

finite subset of PÌ is a n-basis for 2X.

the reverse inequality, l-et {G.: i e T}

.Uach G-. contains a non-empty basic opena

Then {G* _.: i e r, j e {0,1,...,N.}} isf ,,1 i -

a n-ba.sis fo:: X of least cardinality is

of 2X. That is, ,iT(x) . n(eX).

trr/e now turn to the character of 2x. our result is a straight-
forw¿Lrd generarizatíon of the countable case treated in rrf of

lfS]. Recall that, as mentioned above, X(X) is d.efined by

I(x) = sup{X(x,¡') : F is a closed subset of X}.

Thus r(ex) : r(x). For

be a r-basis for 2X.

set B(ar,ot Gi,1,...,*r,rr)
a r-basis for X. Therefore

no larger than the n-veight

2.8 Theorem. _IJ._X is a T,I

Proof . Let us set cr

ir¿(x)]. Let F be a

a. neigÌrbourhood. base

be such a base. For

, ^X'= x(2") and ß = x(x).hd(x) = max{x(x)

cl-osed. subset of X. Since x(2X) = o,
.^xtn 2 of card.inality < o. Let {G. : i

each i < 0, we can find open sets

space, then *(eX) = l(x) .hd(X).

F L-^114ò

< c¿]
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Gi,o'Gi,r" ",Gi,Ni in x so that F t 3(Gi,oi Gi,1,'..,Gi,Ni) -t Gl.

Let U = {G., ^: i < a}. We clairn that U is a base for the neigh-1rU

bourhoods of F in X. For, Iet W be any open set in X vhich

contains F. Then 2lf is a neighbourhood of F in 2x, thrr" there is

sorne i < q, such that F e B(c.,oi Gi,r,...,Gi.N. ) _. G, ç 2w. This
a

c}early implies tr,O _. 
". 

Thus U forms a base as cl,aimed.

Therefore x(x,F): lul: ". since F is an arbitrary crosed subset

of X, ve conclud.e that X(X) = supiX(X,f ): F is a cl_osed subset

ofX]<q.

l,{e next show that ir¿(X) < s. Let {ll.: i < s} be a base for

the neigtrbourhood.s of x ín 2x. For each i < q, find open sets

ttr,tr"'olli.,t, tt x such that x e B(x; trrr'...,Hi,rr) -. //r.

f¡or each i < cr and for each j e {LrZr... ,Mi} choose a point

*í,.j t ttr,J' Let D = {*i,,J t i < e, J e {1,...,M.}}. \'/e craim

bhat D is d.ense in x. For, 1et v be any non-empty open subset

of X. Then B(X; V) is a neighbourhood. of X in 2X, and so, for

some i ( ü, 'r^le have B(x; II.,l,...,Hi,Mi) s f/i s B(x; v). This

implies that II .,j _. V for some ¡ e {1 ,2,...,Mr}. Therefore,

for such J, *r,j e V. Thus V n D I g, and so D is d-ense in X.

V/e conclude that d(X) . ln I < s.

Now, let F be a cl-osed. subset of X. Then 2F is a subspace

o:f 2X" and so X(ZF) : X(eX) = o. Applying the argument of the

preced.ing paragraph to the hyperspac " ZF , we obtain d(F) < s.
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Thus every cl-osed. subspace of X has d.ensÍty < o. Nov X is a

subspace ot 2X, and- so X(X) 1X(eX) = o. I,Ie show that this

impJ-ies every subspace of X has density < o. For, let S be any

subspace of X. Then cI S is a cl_osed subspace of X, so by the

above, d"(ct S) . o. Let {p.: i < a} be a d.ense subspace of cl S

of card.lnality < o. Now, since X(X) _. s, every point of c]. S

has a neighbourhood. base in X of card.inality: o. For each i . o,

let {tr,jr J < cr} be a neighbourhood base in X at the point p..

Ioreachi < crandJ ( o, choose¿poíntbi,j rtr,j nS. Let

¡ = {b. .: i . o, i < q}. Then B is dense in S and lsl < c!.cr = o.l rJ

Tfrus d.(S) < lSl < c!. We have thus shown that every subspace of

X has clensity < o, as claimed.. It follor¿s that hd(X) = spp{d(y):

Y -c X] < o. Together witir X(X) ( q, Ì{e conclude that ß < o.

l{e conclud.e the proof of 2.8 by showing that cr < ß.

^XLet F e 2". Nov d.(F) . hd(X) , and. X(X) _< 1(x). Therefore

d(F) _< ß and X(X) < ß. Let {x.: i < ß} be a d.ense subset of tr'

ol' card.inality < ß. For each i < ß, J-et {tr, jr j < ß} be a base

for the neighbourhood.s of x. Ín X of cardinality -. ß. Nov

X(X,F) : X(x) . g. So there is a base for the neighbourhood.s

of F in X of cardinal_ity _< 
g. Let {H,.: k < ß} be such a base.

H

Now, let lrJ(f) ={2 k: k < ß} u {¡(X; Gi,j), i < ß, j < ß}. }Ie

claim that the finite intersections of members of (d(F) form a

ba.se for the neighbourhood.s of F in 2X. For, Iet S(Vr;Vf ,...,VN)

be a basic neighbourhood of F in 2X. Then F . VO, so there
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exists k < ß such that F c I{k -. VO. For each r e {I ,p,...,N},

F n V" is a non-empty open subset of F. Since {x.: i . ß} is

dense in F, there is, for each r e {l , pr.. . rN} a point x. . V".
T

fiince {G.. rr J . ß} is a basis at x- for each i, we can find.,l:J 1

for each r, an index j" such that x._ r Gi-,j = V". ft fol-lo¡,¡s
IIT

H-N
easilythat2Kn nB(X;C-. -)=B(H,;C. .....c. )

r=.1_ 'rrJ, J(' tl_ril_ irrj¡'

-. 3(VOi Vl,...,Ur). Thus every neÍghbourhood of F in 2X contains

a finite intersection of members of üJ(F), and. so these finite
intersections, being themselves neighbourhoods of F in 2x, form

a base for the neighbourhood.s of F i.n 2x. sinee there are no

more than ß such finite intersections, ve concrud.e that x(eX,¡') . g.

fjince F was chosen arbitrariry ín zx, it foll-or,¡s that o = x(2x)

= sup{X( zX,F): F e eX} . ß. This coneludes the proof of 2.8.

From 2.8 r+e ded.uce llul_bert's resul_t in IfI of [53], namely:

X is compact, then 2X i" first countabl-e, if and on-l-y if, X

hereditarily separabl_e and perfectly normal_.

rf'

An interesting aspect of rheorem 2.8 is the rel_ation betveen

the two cardinal- invariants of x used to d.escribe the character

of 2". A sous-l-in continuum, vhose exi-stence is consistent with

the usual axioms for set theory, i-s compact, perfectJ-y normal ,

and not separabre (see tl+r]). For such a continuum s, ve see that

i(sl < hd(s). rn [)+o], ostaszevski, using certain set theoretic
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nssumptions consistent vitir the usual axi.oms for set theory,

constructs a non-compact space X vhich is countabJ_y compaet,

locally compact, perfectJ-y normal, and hereditarily separabl_e.

Let K denote the one-point compactification of rhis space.

since x is countabJ-y compact and not compact, x is not o-comr¡act.

Therefore, the point at infinity in K is not a GU in K, and

thus K is not perfectly normal_. llovever, K is heredítariJ_y

separable since X is, and. we see that hd(K) . 1(f). Tt fotlows

that neither of the invariants X(X) or hd(X) can be removed. in

2.8. I{owever, in certain model-s of set theory, such a simplí-

fication can be mad.e in certain cases. For exampJ-e, T. Juhasz

has shor¡¡n that Martinrs axiom and the negation of the continuum

hypothesis inply that perfectty normal- compact spaces are heredi-

'barily separabJ-e . (See 5 .6 ín lz>l . )

rn light of the above remarks, it is interesting and. some¡¿hat

surprising that the numbers t(X) and hd(X) arise together in a

na,'bura.-L way in the context of hyperspaces.

The l-ast cardinal-

We first establish the

2.9 Lemma.

c(x): lrl.sup{c(lr): i e

p'oo¡. Let g = lr l,sup{c(¡. ), i e r}.

Let D be dense in X

invariant ve vil-l examine

foJ-Iowing lemma.

I}

and. let D

is cellularity.

-U
ieI

D.
l-

For the sake

._ Then

of contra-
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diction, suppose c(X) > e. Then there is a far,rily G of pairr+ise

d.isjoint, non-empty, open subsets of X such that le I = o*. (Here

s+ denotes the least cardinal l-arger than q,.) lor each i e I,

let G. = {Gc G: cnD. lO}. SinceDis dense inX,G= uGi.1 1 ier -

Thus, since lrl j o, for some i e r, lGil = o*. Since

{c n n-: G e G-} is a family of pairvise disjoint, non-empty,11

open subsets of D. , it follows that lGrl . "(Dr). But c(1, ) . cr

for all- J e I. L'/e conclud.e that q+ = lGi. l : "(nr) . o,, a contra-

clic'bion. Thus c(X) . à, as asserted in the statement of the l-emma"

2.I0 Theorem. i:g!--ð_be e T. space. Then c(X) . "(ZX) 
. sup{"(Xn),

ne[].e"(x).

l?roof . If G is a family of pairwise disjoint, non-empty, open

subsets of X, tnen {2G: G e G} is a family of pairwise disjoint,
non-empty, open subsets of 2X of the same cardinality as G. Thís

proves the first inec¿uality.

For each positive ínteger n, Iet Fn(X) = {F r 2X, lel I r},

and ret F(X) = u_-Frr(X). F(X) is d,ense in eX. So, by 2.),
NET

, -x,c(2") j rO.sup{c(F,r(X)): n e N} = sup{c(F,.(x)): n e {}. Nov, for
eaclr n, the map frr, Xn * Fn(X) defined bv frr(xa ,x2,...,*^)
= {*-L,xZ, .r*r}, is a continuous surjection. (See Z.\.3 of

lSe1. ) Since cell-ularity is not increased by continuous maps,
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we have c(F (X)) . c(Xn) for each n. It foLlovs uruLt' n'
v

" 
(Z^) I s..pi"(Xt) : n E !), establistring the seconci ineq.uatity.

The last inecluality follor,rs from h.6 of IZS).

We give two exampl-es to il_lustrate the sharpness of the

estimates in 2.10. rf x is separable, so are 2x and. al-r finite
po'wers of X, in which case al-I the spaces Xn and.2X hu.rr" cell-u-

laritl/ rrr'. In this case'Ì¡¡e have ur' = c(X) = "(eX) = sup{c(Xt),

n e ry 
j .2"(x) - r'0. lf s is a sousl-in rine, one can show

that 23 has uncountabl-e cerlularity. Assuming the continuum

hypothesisr 2.l-0 becomes oO = c(S) . 
"(2S) = sup{"(Sn),

^c(x)rr e N j = 2" "" - ,, (The continuum hypothesÍs and the existence

of a sousl-in l-ine are, together, consistent with the usual_ axioms

for set theory; see [l+f ]. ) fne author has been unable to

d.eterrnine whether the second inequal-ity in 2.1-o can be strict.



[f] A. R. Bernstein, A nei¿ kind of compactness for topological

spaces , Fund . Math. 66 (t,gf o), l85-r93.

lZl R. L. Bl-air and A. 1^1. Hager, Extensions of zero-sets and. of

real--valued. functions, Math. Z. ß6 (L9T\), I+l.-52.

t¡] ví. I,{. comfort, A nonpseud.ocompact prod,uct space whose finite
subproducts are pseudocompact, Math. Annal :'T0 (1967 ), )+f-)+)+.

tt+ ] \,{. \,1 . Comfort, A survey of cardinal invariants, General

Topotogy and lts AppJ-ications l_ (fqfr), L63-L99.

t:] It. l,^I. Comfort and A. W. Hager, Estimates for the nrunber of

real-val_ued continuous functions, Trans. Amer. Math. Soc.

r5o (t9TO), 6t9-6st.

t6] h/. I^I. comfort and s. Negrepontis, The Theory of ultrafirters

Springer-Verlag, Heidelberg, Grundlehren d.er math. t¡,rissen-

schaften, VoI. 2l-l- , I9T\.

lll hr. l,^/. Comfort a¡ld K. A. Ross, pseudocompactness and. uniform

continuity in topological_ groups, pac. Jour. Math. t6

Qgee) , l+B¡-)+96.

iB] D. l^/. curtis and R. M. schori, 2x and. c(x) are homeomorphíc

to the Hirbert cube, Bul_l_. Amer. Math. Soc. B0 (f-9Tl+), gZT_g3Ì.

ig] N. J. Fj-ne and L. Gi-l-l-man, Remote points in ß!, proc. Amer.

Math. soc. .l_3 (tg6z), z9-36.

[ro1 s. P. Franklin and M. Rajagopal-an, some exampres in topoì-ogy,

Trans. A¡ner. Math. Soc. L])j (fqft),:05-Srh.

BIBLIOGRAP}IY

85.



86.

lff ] Z. Frolik, The topological- prod.uct of countably compact

spaces, Czech. Math. J. Bl (fg6O), Se9-:SB.

[fe1 Z. Frolik, Sums of u]-trafilters, Bul_I. Amer. Math. Soc.

T3 6967), BT-9r.

[f¡] Z. Frolik, On tvo problems of W. lü. Comfort, Comm. Math.

Univ. Carol-. 8, I (ry6f ) , rS9-rl+)+.

IfL1 T. Ganea, Symmetrische potenzen topologischer Räume,

l'{ath. Nachr. lt ( :-grL+) , 305-3r6.

[r¡] L. Gillman and. M. Jerison, Rings of continuous Functíons,

Van Nostrand, Nev York, 1960.

[161 J. Ginsburg, some resu-]-ts on the cou¡tabre compactness and.

pseud.ocompactness of hyperspìlces, to appear.

lrr] J. Ginsburg, on the stone-cech compactification of the space

of cl-osed sets, to appear.

[r01 J. Ginsburg, A no1;e on the Go-closure and rearcompactness
__xof' ¿ , to appear.

lfg] J. Ginsburg, Some cardinal_ invariants of hyperspaces, to

appear.

[20] J. Ginsburg and. v. saks, Some applications of ultrafil-ters
in topoJ-ogy, to appear in pac. J. Math.

[2r] r. Gl-icksberg, stone-cech compactifications of products,

Trans. Amer. Math. Soc. 90 (f9j9), 569_18z.

Lzzl A. \{. Hager, some remarks on the tensor prod.uct of frmction

rings, Ma,th. Zeitschr. 92 (tg66) , ztO-zZ)+.



Br.

les] H. Herrlich and. J. van der sl-ot, properties vhich are crosely

related to compactness, Tnd.ag. Math. 29 Ãg6l), ]7Z)+-jZg.

lzir¡ K. I{. Iiofmann and P. s. Mostert, EJ-ements of compact semi*

groups, Charles Merrill, Columbus, Ohio, L966.

l25l I. Juh6"sz, Cardinal Functions in Topology, Math. Centre

Tracts 3)+, Mathematicat centre, Amsterdam, The Netherland.s,

r9Tt'

lz6l M. Katetov, A theorem on mappings, comm. Math. univ. caror.

8, I Íg6l ), L3r-)+s:.

lzrl J. Keeslin6S, Normality and properties re.l-ated to compactness

in hyperspaces, proc. Amer. Math. Soc. ù+ (fqfO), T6O_766.

lz-Bl J. Keesting, Normality and compactness are equival-ent in

hyperspaces, BuJ_]. Amer. Math. Soc, T6 (tgTO),6t\-6t9.

lzgl J. Keesling, on the equivalence of normality and compactness

in hyperspaceso pac. Jour. Math. 33 (l9TO) , 6>T_.661.

[:o] J. Keesl-ing, compactness rel-ated properties in hyperspaces,

Lecture Notes in Math. Vol_. j-Tl , Springer-Verlag, BerJ-in.

IJeidel-berg. Nev York I970, p. l+O-)+3.

[:r] J. L. Kel]-ey, Ilyperspaces of a continuum, Trans. Amer. Math.

soc. ,z (r9\z), 2246.

[:e] K. Kuratovski, Topology I, Acad.emic press, J966, f6O-lBT.

Is:] J. D. Lawson, rntrinsic topoJ-ogies in topoJ-ogical r-attices

and semil_attices, pac. J. Math. l+h (tgf}), 5%_602,

t :t+ 1 M. Mand-elker , support s of conti-nuous fimctions , Trans . Amer .

Math. Soc. 156 (tgTt), T3-83.



88.

t¡i] M. M. Marjanovió, A pseud.ocompact space having no d-ense

countably compact subspace, Glasnik. Mat. Tom 6 ee) _ mo. l_ _

tgTr, rhg-r'0.

lse] E. Michaer, Toporogies on spaces of subsets, Trans. Amer.

Math. soc. Tr (rg|l), r5z_:-93.

lzll Kíiti Morita, completion of hyperspaces of compact subsets

and topological completion of open_cl_osed maps, General

Topology and fts Applications, )+ (ryf\) , ZtT_233.

t:8] S. Mrovka, Further resul_ts on E-compact spaces T, Acta

Mathematica t2O (tg6ï), 16r_195.

lZgl N. Noble, Countably compact and. pseud.ocompact products,

czech. Math. J. Lg ¡969), sgo_zgT.

il+o] A. J. ostaszewski, on "oora"lt" compact, perfectry normal

spaces, J. London Math. Soc. (to appear).

ltrr ] M. E . Rudin, sousrin' s conj ecture, Amer. Math. Mon. T6 (Lg6g) ,

l_11_3-11-l_9.

l)+2] M. E. Rud.in, partial ord-ers on the types in ßI, Trans. Amer.

Math. soc. L55, No. z (r9Tr), Srl_262.

tIt3] v. saks, countabty compact Groups, Thesis, wesl-eyan university,
Middletor¿n, Conn. , I9TZ.

[)+h] v. saks and R. M. stephenson Jr., prod.ucts of m-compact

spaces, proc. Amer. Math. Soc. 28 (L}TL), Z7B_Z}B.

t\i] c. T. scarborough and A. H. stone, products of nearJ-y compact

spaces, Trans. Amer. Math. Soc. Id+ Ogee) , f3f_fl+7.



89.

lh6] Set-Valued Mappings, Selectíons and. ToT:o1oq-ical Properties
Y

of 2", Lecture Notes in Mathematlcs, Vol. fTI, Springer-Verlag,

Berlin.Tleídelberg.Nev York, 1970.

tt+f ]. D. P. Strausso Topological- .l-attices, Proc. Lond.on Math. Soc.

rB (1968), ztT-230.

t)+B] L. Vietoris, Bereiche Zveiter Ord.nung, Monatshefte für

Mathematik und Physik vol. 33 09æ), )+9-62.

tl+g] ,4,. I,treil-o Sr-r les espaces à structure uniforme et sur l-a

topologie générale, Pari-s, llermann , 1937.

IiO] M. ]/oJdystawski, Sur .l-a contractilité des hyperspaces de

continus local-ement connexes, Fund-. Math. 30 (1938), Z\T-252.

[>f] R. G. Woods, Co-absol-utes of remainders of Stone-Cech com-

pactifications, Pac. J. Math. 37 (1971), 5\r-560.

l>Zl R. G. Woods, Topological extension properties, to appear in

Trans. Amer. Math. Soc.

t>¡] D. E. l{ufbert, Subsets of first countable spaces, Proc. Amer.

Math. soc. 19 (1968), r2T3-r2TT.

lit+1 P. Zenor, On the completeness of the space of compact subsets,

proc. Amer. Math. Soc. 26 (L970), t9O-t92.

l5r) P. Zenor, On the near compl-eteness and the real-compactness

of the space of closed subsetso to appear.


