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Abstract

Stochastic time series models are commonly used in the analysis of large-scale water
resources systems. In the stochastic approach, synthetic flow scenarios are generated
and used for the analysis of complex events such as multi-year droughts. Conclusions
drawn from such analyses are only plausible to the extent that the underlying time
series model realistically represents the natural variability of flows. Traditionally, hy-
drologists have favoured autoregressive moving average (ARMA) models to describe
annual flows. In this research project, a class of model called Markov-Switching (MS)
model (also referred to as a Hidden Markov model) is presented as an alternative to
conventional ARMA models. The basic assumption underlying this model is that a
limited number of flow regimes exists and that each flow year can be classified as be-
longing to one of these regimes. The persistence of and switching between regimes is
described by a Markov chain. Within each regime, it is assumed that annual flows
follow a normal distribution with mean and variance that depend on the regime. The
simplicity of this model makes it possible to derive a number of model characteristics
analytically such as moments, autocorrelation, and crosscorrelation. Model estima-

tion is possible with the maximum likelihood method implemented using the Expec-



tation Maximization (EM) algorithm. The uncertainty in the model parameters can
be assessed through Bayesian inference using Markov Chain Monte Carlo (MCMC)
methods.

A Markov-Switching disaggregation (MSD) model is also proposed in this research
project to disaggregate higher-level flows generated using the MS model into lower-
level flows. The MSD model preserves the additivity property because for a given year

both the higher-level and lower-level variables are generated from normal distributions.

The 2-state MS and MSD models are applied to Manitoba Hydro’s system along
with more conventional first order autoregressive and disaggregation models and pa-

rameter and missing data uncertainty are identified in the analysis of system drought.
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Chapter 1

Introduction

1.1 Introduction

Energy supply is one of the most important problems facing the world today. The
availability of energy, preferably cheap energy, is a premise for industrial growth.
Electricity is commonly generated in hydro, thermal, and nuclear plants. There are
environmental concerns regarding nuclear power. The environmental impacts of the
Chernobyl nuclear disaster in 1986, the world’s worst nuclear power accident, will
persist many years into the future. Fossil fuels (natural gas, coal, and oil) are the
primary sources of thermal power. However, fossil fuel sources are non-renewable
and will be exhausted in a foreseeable future. Hydropower is renewable, clean, and
cheap, but is subject to uncertainty in resources because the energy generation of a
hydropower station is directly dependent on the availability of water. Extended low

flows or droughts reduce the system output and eventually may make it impossible to



1.1. INTRODUCTION

meet the required energy demand. Hence, understanding the frequency and severity
of droughts is important in order to quantify the reliability of energy supply.
Manitoba Hydro is responsible for the production of electricity to the benefit of the
population of Manitoba. Over 96% of 5143 MW total installed capacity of Manitoba
Hydro is derived from 14 hydropower stations in Manitoba. Approximately 60% of
its production is consumed by the province and the rest is exported, primarily to
the US. Therefore, greater emphasis is being placed on Manitoba Hydro’s capability
to meet long-term firm power export contracts under extreme drought conditions.
One characteristic that distinguishes hydropower from thermal and nuclear power is
the uncertainty related to the natural variability of the energy supply. River runoff
varies in time and space and cannot be predicted in advance. Since river runoff is
the source of hydropower energy, variability in energy supply is inevitable. Because
of the significant storage capacity in Manitoba Hydro’s system, short-term (e.g. daily,
weekly) ﬁuptuations in inflow are not a concern for Manitoba Hydro. However, longer
periods (e.g. months, years) of extended low flows may lead to situations where thermal
resources and imports would be required to meet contracts. Therefore, it is of high
importance to be able to quantify the reliability of energy supply. The overall supply
reliability is a function of various technical factors and the availability of water. The
need to determine the reliability of inflow is the primary motivation for this study.
For a large hydropower system, several factors increase the complexity in defining
drought. Firstly, droughts are inherently regional in nature but only to a certain

extent. The Nelson and Churchill River drainage basins cover an area of 1.34 x 10 km?
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with distinct hydrological and climatologic characteristics. Hence, in a typical drought
study it will be necessary to divide the system into homogeneous sub-basins.

Secondly, the large storage capacity also increases the complexity in defining drought.
Lake Winnipeg has a surface area of 24,420 km? which translates into a storage capac-
ity equivalent to six months of average outflow from the lake. Therefore, the regulation
of this lake plays a vital role in enhancing the system capability during drought con-
ditions.

Thirdly, for a hydropower system, the drought must be defined in terms of energy
potential. This requires that flows at each generating station be converted to energy.
To assess the system capability, the overall energy potential of the system must be
compared with the overall energy demand.

Fourthly, relatively long data series are required to accurate model droughts. In
many cases, such long series are not available and one must often rely on data filling
and extension.

Hydropower utilities have traditionally employed the critical drought as basis for
system development. The critical drought is defined as the most severe extended low
flow period in the record of historical inflows. In the past, hydropower systems were
often developed to be able to meet a fixed demand under inflow conditions identical
to the critical drought. However, the critical drought approach does not provide a
complete assessment of system reliability. There are indeed obvious limitations asso-
ciated with the critical drought approach. Firstly, no probability of occurrence can be

assigned to the critical drought, and for that reason, it is not possible to make state-
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ments about supply reliability. Secondly, the critical drought is a function of record
length. A long record of inflow is likely to contain a more severe drought episode
than a short record. A sensible planning criterion should be independent of record
length. The critical drought period currently employed by Manitoba Hydro occurred
in 1939-41; another severe drought occurred in the late eighties.

Alternatively, a stochastic approach may be used to overcome some of the limi-
tations of the critical drought approach. The stochastic approach requires the esti-
mation of a stochastic time series model. Stochastic models attempt to reproduce
the key statistics of historical data such as means, variances, autocorrelations, and
crosscorrelations. In this approach, historical data are used to estimate the parame-
ters of the model. Once the model is estimated, large set of equally likely synthetic
traces can be generated. These traces show many possible hydrologic conditions that
do not explicitly appear in the historical record. For example, if a definition of the
critical drought can be developed, the simulated probability distribution of the critical
drought can be determined using these traces. This information could potentially be
used to assess the return period of the historical critical drought and other drought
scenarios in general and can be used in the assessment of system reliability.

Stochastic models of hydrologic time series have played a major role in the water
resources literature over the past four decades. Stochastic models have been reasonably
successful as a practical tool for analysis, forecasting, and control. Since they have
been used for decades, much experience has been accumulated in their application.

Autoregressive (AR), autoregressive moving average (ARMA), periodic autoregressive
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moving average (PARMA), and disaggregation models are the most commonly used
stochastic models in the hydrology literature and software packages of these models
are available (e.g. S-PLUS, SPIGOT, and SAMS2000 [Grygier and Stedinger, 1990;
Salas et al., 2000]).

In the last decade, Manitoba Hydro has funded a number of research projects
aimed to define the probability of system drought using a stochastic approach. These
projects used observed monthly flows at selected key points to develop a stochastic
streamflow generation model. DeWit [1995] developed the first stochastic model for
Manitoba Hydro’s system and employed SPIGOT, a synthetic streamflow generation
software package, to generate synthetic streamflow sequences. He worked directly with
flows and estimated that the return period of the historical critical drought (1939-41)
to be 381 years. Rangarajan [1998] improved the modeling framework in SPIGOT
and modified the regulation rules for Lake Winnipeg. He defined energy drought by
converting water flow at the generating stations into equivalent energy flow. The study
initiated by Rangarajan [1998] was completed by Akintug [2002] who estimated that
the return period of the historical critical drought to be 397 years.

Previous studies did not include any treatment of model, parameter, and data
uncertainty and left a number of questions open. Although they were a step in the
right direction, the assessment of the probability of system drought requires further
investigation by integrating uncertainty. There is a general need to quantify uncertain-
ties in the estimate of drought frequency. Estimated return periods depend strongly

on various modeling choices and parameter estimates. In this research project, the
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uncertainties associated with the structure of stochastic time series models and their
parameter estimates will be investigated. The uncertainty associated with filled-in
data will also be considered. The integration and quantification of model, parameter,
and data uncertainty into an overall assessment of system reliability should provide a
better foundation for making future planning decisions.

Low frequency variability of annual hydrological data have been observed in North
American climate regimes. In addition to observed data, paleoclimatic studies have
proved the existence of long-term wet and dry periods in North America. The pre-
liminary streamflow data analysis of Manitoba Hydro’s system also revealed apparent
long-term wet and dry periods. The existence of cycles such as those observed in the
Nelson and Churchill River Basin cannot be explained by pure randomness.

In the literature, numerous studies have identified global climatic mechanisms that
influence the North American climate at annual and decadal time scales. Climate
states are potentially linked to low-frequency oceanic circulations such as the North
Atlantic Oscillation (NAO), the Southern Oscillation (SOI), and the Pacific Decadal
Oscillation (PDO). There is a complex interaction between these circulations. How-
ever, it is believed that they influence each other and the cumulative effect of these
circulations produces a quasi-cyclic forcing mechanism in the hydrological cycle.

Model uncertainty due to inadequate representation of cycles is neglected in most
studies. Model uncertainty refers to the sensitivity of predictions to the specification
of a correct model structure. Since Manitoba Hydro is primarily interested in multi-

year droughts, this study will mainly focus on the uncertainties associated with the
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annual stochastic time series model. In the previous studies by Manitoba Hydro, the
lag-one autoregressive [AR(1)] model was selected for annual streamflow generation in
SPIGOT. However, one may question whether the AR-assumption is the best choice if
indeed low-frequency climate variability is present. A significant part of the research
reported in this thesis was motivated by doubt about the ability of the AR(1) model to
adequately reproduce the persistence patterns evident in Manitoba Hydro’s streamflow
data. Streamflow data from Manitoba Hydro’s system show periods where dry and
wet spells have persisted for a significant number of years. These cyclic observations
motivated the search for alternative stochastic time series models, in particular models
that can mimic the regime-like behavior of hydrologic time series.

It is not clear if conventional stochastic models such as AR and ARMA can ade-
quately reproduce the cycles present in Manitoba Hydro’s data. The reproduction of
cycles of wet and dry years in synthetic streamflow generation is obviously extremely
important when the model is used to determine drought frequency. An annual stochas-
tic model type called Markov-Switching model is selected in this research because it
presumably should be able to better represent wet and dry cycles in the historical
data. In the literature, this type of model is also referred to as hidden Markov models
or Markov mixture models. The idea of a Markov-Switching model is not new in the
hydrology literature. It was applied thirty years ago by Jackson [1975]. A major chal-
lenge at the time was the estimation of the model parameters. The Markov-Switching
model framework has been successfully employed in different fields, including speech

recognition, econometrics, ion channels, image analysis, and DNA composition. There
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has also been a number of recent applications in hydrology, including Wilks [1998],
Hughes et al. [1999], Lu and Berliner [1999], Thyer and Kuczera [2000, 2003a, b], and
Kehagias [2004).

The parameters of a stochastic model are estimated from historical records. Param-
eter uncertainty refers to the uncertainty due to the use of a limited amount of data for
model estimation. Estimated parameters have sampling errors whose magnitude de-
pends on the length of the historical data records. In most practical applications, this
sampling uncertainty is neglected although it may have significant impact on the con-
clusions drawn from the study [Stedinger and Taylor, 1982b]. Parameter uncertainty
will here be included in the Markov-Switching model framework through Bayesian in-
ference. In the Bayesian approach, the unknown parameters of the stochastic model
are treated as random variables instead of fixed quantities. This approach quantifies
the parameter uncertainty by deriving the distribution of the model parameters.

In a multi-site analysis, the length of observed data at each site must be equal.
To make best use of available data, it is common practice to extend the shorter series
using record extension techniques. Missing streamflow data of Manitoba Hydro have
been filled-in and the records have been extended by Manitoba Hydro prior to this
study [Girling, 1988, 1990]. However, since filled-in data are not observed values, the
uncertainty resulting from using estimated values rather than observations must be
quantified and taken into account. In this research project, an attempt is made to

quantify uncertainty associated with reconstructed data.
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1.2 Objectives of the Study

The objectives of this research project are specified in the light of the discussion
above. The overall objective of the project is to develop a comprehensive probabilistic
framework incorporating model, parameter, and data uncertainty in order to derive
a better estimate of drought frequency and its associated precision. The developed
framework will be applied specifically to Manitoba Hydro, but the proposed techniques

are general and can be transferred to any other hydropower system. More specific

objectives are:

e To incorporate parameter uncertainty into a multi-site AR(1) model: In this
project, the performance of a multi-site Markov-Switching model with parameter
uncertainty will be compared with a multi-site AR(1) model with parameter
uncertainty for Manitoba Hydro’s system. Although parameter uncertainty was
integrated into the single-site AR(1) model by Stedinger and Taylor [1982b], a

preliminary analysis revealed that the extension to multi-site models is somewhat

more involved.

o To develop a single- and multi-site Markov-Switching model for annual stream-
flow time series: Since both single-site and multi-site modeling frameworks are

required in this project, a single-site and multi-site Markov-Switching model,

which presumably should be abe to better mimic the regime-like behavior of

observed annual streamflow data, will be developed.

e To explore the theoretical properties of Markov-Switching models: The theoretical
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properties such as autocorrelation structure, moments, and marginal distribution

of Markov-Switching models will be explored.

To identify and implement an efficient parameter estimation method for the
Markov-Switching model: The lack of efficient estimation methods for some years
prevented the Markov-Switching model to gain popularity. However, significant
advances in parameter estimation techniques for Markov-Switching model have
been made in recent years. An efficient parameter estimation method will be

explored.

To incorporate parameter uncertainty into single- and multi-site Markov-Switching
models: Parameter uncertainty will be integrated into Markov-Switching models

through numerical Bayesian methods.

To incorporate reconstructed data uncertainty into multi-site Markov-Switching
model: The uncertainty associated with reconstructed data will be taken into
consideration in the multi-site Markov-Switching model through the use of nu-

merical Bayesian methods.

To develop a disaggregation model using a Markov-Switching modeling approach:
A variation of the classical disaggregation model exploiting the characteristics of

the Markov-Switching framework will be developed.

To incorporate model, parameter, and data uncertainty in the estimation of the

probability of system drought: The importance of model, parameter, and data
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uncertainty will be analyzed by comparing the results of the drought frequency

analysis with and without considering uncertainties.

e To perform a drought frequency analysis: A comprehensive energy drought fre-

quency analysis will be performed for the Manitoba Hydro’s system.

1.3 Structure of the Report

The thesis is organized as follows: Manitoba Hydro’s system and hydrological data are
described in Chapter 2. Chapter 3 explains the definition of hydrological and energy
drought for Manitoba Hydro. A review of the AR(1) and disaggregation models are
given in Chapter 4. The integration of parameter uncertainty into the multi-site AR(1)
model is also given in this chapter. A detailed explanation of the Markov-Switching
modeling framework which forms the basis of the thesis is explained in Chapter 5 and
its multi-site extension is given in Chapter 6. In Chapter 7, the disaggregation model
using the Markov-Switching modeling approach is presented. The application of the
developed models to Manitoba Hydro’s system is provided in Chapter 8. Finally, the

conclusions are given in Chapter 9.
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Chapter 2

Manitoba Hydro’s System

2.1 Introduction

The system of Manitoba Hydro comprises the Nelson River and the Upper Churchill
River drainage basins. The Nelson River Basin is the 20" largest on a global scale.
The Nelson River drains Lake Winnipeg into Hudson Bay. Several large river systems,
notably the Saskatchewan, the Assiniboine, the Red, and the Winnipeg River systems
contribute water to Lake Winnipeg and are therefore part of the greater Nelson River
drainage basin. The Upper Churchill River drainage basin is actually separate from
the Nelson River drainage basin but has become part of Manitoba Hydro’s system as
a result of the diversion of water from the Churchill River into the Nelson River at
Southern Indian Lake. Figure 2.1 illustrates the major drainage basins contributing
to Manitoba Hydro’s system. Despite the relatively flat relief of Northern Manitoba,

the Nelson River provides 80% of the hydropower production of Manitoba Hydro
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ALBERTA

MAJOR DRAINAGE AREAS
CONTRIBUTING TO
MANITOBA

Figure 2.1: Major drainage basins contributing to Manitoba Hydro’s system (from Mani-
toba Water Stewardship web site).

because of its high flow volume. Lake Winnipeg and Southern Indian Lake are the two
major reservoirs in the system regulated according to the needs of Manitoba Hydro.
The generating stations are located on three rivers namely the Winnipeg River, the
Saskatchewan River, and the Nelson River. A brief explanation of rivers, reservoirs,
and hydropower generating stations in Manitoba Hydro’s system are giyen in this

chapter.
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Saskatchewan R.

Wpg.

Western Tributaries PIAO Eastern Tributaries

Fairford R.

Legend:
@ Streamflow gauge station

Assiniboine R.

RedR.

Figure 2.2: Schematic diagram of Manitoba Hydro flow system. Streamflow gauge stations
and other hydrological components of the system.

2.2 Major Rivers and Hydrological Components in

Manitoba Hydro’s System

The Nelson River drainage basin includes five major contributing rivers namely the
Saskatchewan River, the Winnipeg River, the Red River, the Assiniboine River, and
the Churchill River. The Upper Churchill River Basin is considered part of the system
because of the Churchill River diversion at Southern Indian Lake (SIL). A schematic
diagram of the river system and the location of streamflow stations are given in Fig-
ure 2.2. Manitoba Hydro’s system is usually divided into five distinct hydrologic
components, described in the following. The average annual flows and the relative

contribution to the system of each hydrologic component are given in Table 2.1.
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Table 2.1: Major hydrologic components of Manitoba Hydro’s system and their contribu-
tions to the system.

Av. Annual Flow Contribution

No Site Location 1912-98 1912-98
(cfs) (%)
1 Winnipeg River Slave Falls 31,650 27.6
2 Saskatchewan River Grand Rapids 20,100 17.5
3 Churchill River* Southern Indian Lake 31,390 27.4
4  Local Flows Burntwood and Nelson River 13,140 114
5 Lake Winnipeg PIAO Lake Winnipeg 18,500 16.1

* Diverted flow

2.2.1 Winnipeg River

The Winnipeg River system is about 765 km long and runs in a northerly and westerly
direction from its ultimate source near Lake Superior to the southern shore of Lake
Winnipeg. The drainage basin area of Winnipeg River is 150,000 km?. Two thirds of
this drainage basin is in northwestern Ontario, one-fifth spreads south into northern
Minnesota, while the rest of it is in eastern Manitoba, where the river flows into Lake
Winnipeg at Traverse Bay.

Streamflow records are available from 1912 at Slave Falls with no missing records.
The average annual flow is 31,650 cfs. There are six hydropower generation stations
on this river with about 560 MW total capacity (Great Falls, Seven Sisters, Pine Falls,

McArthur, Slave Falls, and Pointe DuBoise).

2.2.2 Saskatchewan River

The Saskatchewan River originates from the Canadian Rockies and flows east into

Manitoba where it passes through Cedar Lake before emptying into Lake Winnipeg.
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It is the fourth longest river system in Canada, travelling almost 2000 km and its
drainage area is 334,100 km?. Streamflow records are available from 1912 at Grand
Rapids station which is located close to Lake Winnipeg. The average annual flow is
20,100 cfs. A single generation station with a capacity of 480 MW is located at Grand
Rapids. The Grand Rapids Generation Station was the first hydroelectric generation

station built in Northern Manitoba.

2.2.3 Churchill River

The drainage basin area of the Churchill River is 283,350 km?. It is located north
of the Nelson and Saskatchewan River basins. Manitoba Hydro diverts a significant
portion of the Churchill River flow at Southern Indian Lake through the Rat River
and Burntwood River into the Nelson River. This increases the flow in the lower reach
of the Nelson River where Manitoba Hydro’s three largest power generation stations,
Kettle, Long Spruce, and Limestone, are located. The diverted flow is regulated by
the Notigi Control Structure on the Rat River and by the Missi Control Structure at
the northern end of Southern Indian Lake. Flow records for Churchill River at its
entrance to Southern Indian Lake (SIL) are available from 1930. The average annual
flow of the Churchill River is 35,550 cfs of which an average of 31,390 cfs is diverted

into the Nelson River.
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2.2.4 Partial Inflow Available as Outflow (PIAO)

In addition to the Saskatchewan and the Winnipeg River, several other gauged and
ungauged streams flow into Lake Winnipeg from east and west. The total inflow
available as outflow (TTAO) is defined by a simple water balance equation that involves
the summation of the Lake Winnipeg outflow (Opwypg) over a suitable time period and

its storage change (ASLwyy) during the same period:

TI1AO = (Total Inflow) — (Total Loss)

= OLwpg £ ASLwpg (2.1)

The partial inflow available as outflow (PIAQ) is obtained by subtracting the in-
flows of the Winnipeg River, Iiy,,, and the Saskatchewan River, Ig4s, from the TIAO

(Girling [1990]).

PIAO = TIAO — (Iyypg + Isask) (2.2)

The Lake Winnipeg PIAO is used as one of the hydrological components in the
stochastic modeling of Manitoba Hydro’s system. Unlike the other components, the
PIAO does not represent the flow conditions at a specific point on a particular river.
The PIAO takes into account losses due to evaporation and seepage from the lake.
The effect of evaporation is significant during dry weather because Lake Winnipeg
has a surface area of 24,390 km?. The PIAO is an important component of Manitoba

Hydro’s system because the effect of evaporation must be considered in a drought
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Table 2.2: Local Flows on the Burntwood and Nelson River.

Av. Annual Flow

No Index River Location 1912-98
(cfs)
1 BRI Burntwood South Bay - Notigi 1,068
2 BR2 Burntwood Notigi - Wuskwatim 1,772
3 BR3 Burntwood  Wuskwatim - Manasan 170
4 BR4A Burntwood Manasan - Thompson 232
5 BR4B Burntwood Thompson - First Rapids 117
6 NRO Nelson Lake Winnipeg - Jenpeg 971
7 NR1 Nelson Jenpeg - Bladder Rapids 1,494
8 NR2 Nelson Bladder Rapids - Kelsey 1,514
9 NR3 Nelson Kelsey - Birthday 4,515
10 NR4 Nelson Birthday - Kettle 425
11 NR5 Nelson Kettle - Long Spruce 459
12 NR6 Nelson Long Spruce - Limestone 181

study. The PIAO consists of the Red River, the Assiniboine River, and the Fairford
River, gauged and ungauged tributaries from the western and eastern side of Lake

Winnipeg, and the water loss due to evaporation and seepage.

2.2.5 Local Flows

In addition to the four major components described in the previous section, the local
flows of the Burntwood (BR) and the Nelson River (NR) are also considered in Mani-
toba Hydro’s system. The sites are named according to the river they are located on.
The aggregation of the 12 local flows given in Table 2.2 are modeled as a single artificial
basin site. This aggregated basin site is then disaggregated into sub-basin sites in the
stochastic modeling framework described in Chapter 8. Table 2.2 also indicates the
location of local flows on the Nelson and Burntwood River and their average annual

flows.
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2.3 Regulation of Reservoirs in the System

In the mid-1960’s, provincial power planners made a long-term decision on the future
supply of electricity for the province of Manitoba. The decision was to build a series
of hydroelectric generating stations on the Nelson River. Three generating stations
on the lower Nelson River were constructed. The regulation of Lake Winnipeg was
required to allow for greater flows into the Nelson River when needed. In order to
increase the power production potential of the lower Nelson River by as much as 40%,
most of the Churchill River flow was diverted into the lower Nelson River at Southern
Indian Lake through the Rat River and the Burntwood River.

Developing an accurate model for the management of Lake Winnipeg and Southern
Indian Lake is beyond the scope of this study. Therefore Lake Winnipeg and Southern
Indian Lake outflows are estimated by using a simplified representation of the system.
DeWit [1995] developed a heuristic-based model for the regulation of Lake Winnipeg
and Southern Indian Lake that was further refined by Rangarajan [1998]. In this
study, DeWit’s and Rangarajan’s heuristic-based regulation models, explained in the

following sections, are employed.

2.3.1 Regulation of Lake Winnipeg

In February 1966, the province of Manitoba and the government of Canada came to an
agreement allowing Manitoba Hydro to regulate Lake Winnipeg as a natural reservoir
for hydroelectric development on the Nelson River. Regulation is necessary because

the natural flow pattern from Lake Winnipeg into the Nelson River is opposite to
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the energy needs of the province. Demand is higher than supply during winter, while
maximum inflow occurs during spring and early summer where the demand is relatively
low. Therefore, it is necessary to decrease the outflow from Lake Winnipeg in spring
and early summer in order to have more available outflow in the fall and winter.
The Lake Winnipeg Regulation project guarantees winter outflows so that the winter
demand for electricity can be met.

The license allows Manitoba Hydro to set the outflows as required for power pro-
duction purposes along the Nelson River as long as the level of the lake is kept between
711 ft and 715 ft above sea level. During wet and dry periods, the lake level may rise
above or drop below these levels, however, according to the agreement, the lake will
be operated to return to the licensed operating range as quickly as inflow conditions
permit.

The storage capacity between 711 ft and 715 ft of Lake Winnipeg corresponds to
approximately six months of average outflow requirements. Hence, the regulation of
Lake Winnipeg has a significant influence on drought and flood conditions. There are
several other constraints on the operation of the lake. Beside maximum and minimum
lake levels, Manitoba Hydro must also respect maximum and minimum release flows.
In addition to these considerations, the management of the reservoir might be affected
by other factors such as long range forecasts of precipitation conditions and power
demand. For example, if the spring is predicted wetter than normal, Manitoba Hydro
may release more than the usual portion to provide room for flood control.

Surface elevation and release flows are the two major constraints for the operation
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of Lake Winnipeg.

o Surface Elevation: Although, the lake elevation mostly fluctuates between 713
ft and 714 ft, the allowable operating range is between 711 ft and 715 ft. These

are the licensed minimum and maximum lake elevations.

o Minimum and Mazimum Release (R): The preferred minimum flow is R, =
25,000 cfs while the preferred maximum flow is R,,;, = 150,000 cfs. Sometimes

releases may exceed the maximum or go below the minimum.

The storage capacity of Lake Winnipeg is 400,000 cfs-month between maximum
and minimum lake elevations, which means 1 ft of elevation is equal to 100,000 cfs-
month. In other words, there is enough water to meet the minimum release for 16
months at full storage.

As given in (2.1), total inflow available as outflow (TIAO) is calculated as the
outflow plus or minus storage change in Lake Winnipeg. TIAO is equal to PIAO plus
Winnipeg and Saskatchewan River inflow. The TIAO takes into consideration the
effects of losses due to evaporation and seepage in Lake Winnipeg. The outflow from
Lake Winnipeg depends on TIAQO. The heuristic release rules applied in this study

consider two conditions:

1. TTAO 2 Rpas:

The excess flow (TIAO — Ryq,) will be stored fully or partly in the lake. If
the lake reaches the maximum level of 715 ft, the reminder will be released from

Lake Winnipeg. If the storage is full at the end of the previous month, the
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Table 2.3: Maximum preferred release during winter months.

Riax (kefs)

Storage | Elevation | Nov  Dec Jan Feb  Mar
0 709 45.0 50.0 500 500 45.0

200,000 711 45.0 50.0 500 500 45.0
300,000 712 45.0 500 500 500 45.0
400,000 713 450 500 50.0 50.0 45.0
500,000 714 66.2 T79.0 744 744 662
600,000 715 96.8 1082 104.0 1040 96.8
700,000 716 1147 1234 1181 1181 114.7
1,000,000 719 186.3 184.2 1475 1745 186.3

lake outflow will be equal to TIAO. There is an assumption in this model that
the absolute maximum storage level is 715 ft since this elevation is the licensed

maximuim.

2. TIAO < Rz

e November through March
During winter months the lake outflow is set to the maximum preferred
release even during drought months. These preferred maximum releases are
given in Table 2.3 (from Rangarajan [1998]). Depending on the previous
month’s storage, the release outflow is obtained from this table using linear
interpolation. The storage at the end of month m can be calculated using

the water balance equation:

Storage,, = Storage,,_1 + T1AO,, — Out flow,, (2.3)

If this storage exceeds 714.75 ft, the excess water is also released.
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e April through July
During spring, the lake level should be sufficiently low to allow room for
the incoming spring runoff. The percentage of TIAO (P;) that is keep in
storage is influenced by the difference between the maximum storage and
the previous month’s storage:
_1.25(575,000 — Storage_1)

— 2.4
A 375,000 (24)

where 575,000 ft3 and 375, 000 ft3 correspond to the maximum storage and
the average storage, respectively. After calculating the percentage of TIAO

to keep in storage, the storage at the end of the month is calculated as

Storage,, = Storagen,_1 + (TTAO,, x P;) (2.5)

If this new storage exceeds the maximum level (714.75 ft), the excess water

is released as well.

Minimum-dry and minimum-wet outflows are given in Table 2.4. If the
previous month’s water level is greater than 713.5 ft, the minimum outflow
is set equal to minimum wet, otherwise it is equal to minimum dry. If the
calculated outflow of that particular month is less than its minimum value,

the outflow is set equal to the minimum.

e August through October

During the end of summer and fall, Manitoba Hydro starts to use the Lake

23



2.3. REGULATION OF RESERVOIRS IN THE SYSTEM

Table 2.4: Minimum outflows of Lake Winnipeg.

Minimum Minimum Minimum Minimum
Period Dry Outflow Wet Outflow | Period Dry Outflow Wet Outflow
(Month)  (cfs-month)  (cfs-month) | (Month) (cfs-month)  (cfs-month)
Jan 50,000 50,000 Jul 25,000 40,000
Feb 50,000 50,000 Aug 25,000 40,000
Mar 45,000 45,000 Sep 25,000 40,000
Apr 30,000 40,000 Oct 30,000 40,000
May 25,000 40,000 Nov 40,000 45,000
Jun 25,000 40,000 Dec 50,000 50,000

Winnipeg storage to meet its demand. In this case, in addition to TIAO a
percentage of TIAQ is also released from the lake. This percentage of TIAO
(P,) is influenced by the difference between the previous month’s storage
and the minimum storage:

_ 0.50(Storagen, 1 — 200,000)
B 375,000

P, (2.6)

where 200,000 ft2 and 375,000 ft2 correspond to the minimum storage and

the average storage, respectively. After calculating the percentage of TIAO

to release from storage, the storage at the end of the month is calculated

as

Storage,, = Storagen,_1 — (T'1AO, X P») (2.7)

Manitoba Hydro uses a deterministic long-term planning model (SPLASH) to as-
sess the adequacy of their generation system. Monthly historical flow records are used
to simulate the rule curves of Lake Winnipeg. Rangarajan [1998] adjusted the con-

stants 1.25 and 0.50 in (2.4) and (2.6) in order to mimic the SPLASH model outflows
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during the most severe drought event (1938-42).

2.3.2 Regulation of Southern Indian Lake

The regulation of Southern Indian Lake is not as complicated as Lake Winnipeg.
In this project, it will be based on the heuristic rules suggested by DeWit [1995].
Manitoba Hydro operates two control structures on this lake. These control structures
allow the diversion of a significant portion of the Churchill River ﬂows into the lower
reach of the Nelson River where the three largest generation stations, Kettle, Long
Spruce, and Limestone, are located. This diversion enhances energy generation and the
energy supply reliability of the system. The operation of this diversion depends on the
various agreements between Manitoba Hydro and local communities and other parties
affected by the regulation of Southern Indian Lake. There are several constraints in
this agreement such as maximum and minimum releases and lake surface elevations.
DeWit [1995] considered three major constraints on the regulation of Southern
Indian Lake. These three major constraints, given below, are considered in order to

determine the release flow through the Notigi control station to the Nelson River:
1. The specified minimum release at Missi must be maintained.
2. The Notigi release should be kept at licensed maximum or as high as possible.

3. The Lake surface elevation of Southern Indian Lake should be between 843.5 ft

and 847.5 ft above see level.
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2.3. REGULATION OF RESERVOIRS IN THE SYSTEM

Table 2.5: Licensed release limits for Notigi and Missi control stations.

Period | Max. Notigi  Min. Missi Period | Max. Notigi  Min. Missi

(Month) | Release (cfs) Release (cfs) || (Month) | Release (cfs) Release (cfs)
Jan 34,000 4,000 Jul 35,000 500
Feb 34,000 3,000 Aug 35,000 500
Mar 34,000 2,000 Sep 35,000 500
Apr 34,000 2,000 Oct 35,000 2,000
May 35,000 1,000 Nov 34,000 6,000
Jun 35,000 500 Dec 34,000 5,000

The storage volume between the maximum and minimum lake elevation is 54,000
cfs-month (Bruce Hinton, personal communication). The licensed limits of Notigi and
Missi are given in Table 2.5

Based on the three constraints above, Notigi releases can be calculated for three

basic flow conditions:
1. Churchill River inflow is greater than the summation of Notigi licensed
maximum and Missi licensed minimum:

Notigi releases will be equal to the maximum licensed limit and excess water will

be either fully or partly stored in Southern Indian Lake with the reminder being

released from Missi.

2. Churchill River inflow is less than the summation of Notogi licensed
maximum and Missi licensed minimum, and greater than Missi li-

censed minimum:

Missi release will be the licensed minimum and the storage in Southern Indian
Lake will be used to bring Notigi releases up to the licensed maximum or as high

as possible.
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Figure 2.3: Schematic diagram of Manitoba Hydro generating stations.

3. Churchill River inflow is less than Missi license minimum:

The storage in Southern Indian Lake will be used to bring Missi release up to
the licensed minimum. Any remaining storage will be used to increase Notigi

releases.

2.4 Hydro-power Generating Stations

There are fourteen hydro-power and two thermal generating stations in Manitoba
Hydro’s system. The installed capacity of these generating stations are given in Table

2.6 and a diagram showing the approximate location of each generating station is given
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Table 2.6: Manitoba Hydro’s generating stations.

Generating Station | Capacity (MW) || Generating Station | Capacity (MW)
Limestone 1294 Slave Falls 68

Long Spruce 1020 McArthur 54
Kettle 1224 Seven Sisters 155
Kelsey 215 Pointe DeBoise 72
Jenpeg 97 Laurie River 1 5

Grand Rapids 480 Laurie River II 6

Pine Falls 88 Brandon 97

Great Falls 129 Selkirk 139

in Figure 2.3. The Missi and the Notigi control structures which regulate Southern
Indian Lake, as well as the East Channel which diverts part of the Lake Winnipeg
outflows around the Jenpeg Generating Station into Cross Lake are also shown in this
figure.

As seen from Figure 2.3, the majority of the generating stations are located on the
Nelson River and the Winnipeg River. The total installed electric capacity of Manitoba
Hydro’s system is 5143 MW. The thermal stations in Brandon and Selkirk account
for 4% of this amount. The remaining 96% of the capacity are associated with the
14 hydropower generating stations with about 77% of the total capacity coming from
the stations on the Nelson River, 9% from six stations on the Winnipeg River, and
10% from one station on the Saskatchewan River. In addition, two small hydropower
stations are located on the Laurie River but because of their location and size, these

are not considered in the drought frequency analysis.
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Chapter 3

Drought Definition for Manitoba

Hydro

3.1 1Introduction

The various drought definitions employed in practice reflect differences in regions,

needs, and disciplinary approach. Since there are widely diverse views on the inter-

pretation of droughts among the scientists of different disciplines, it is not possible to
give a universal definition.

In this chapter, different drought definitions encountered in the literature are briefly
presented. The emphasis is given to the definition of hydrological drought and energy
drought. After identifying a suitable definition of energy drought for Manitoba Hydro’s
system, historical energy drought events are extracted from observed streamflow data

and discussed.
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3.2. GENERAL DEFINITION OF DROUGHT

3.2 General Definition of Drought

In general, a drought may be defined in terms of meteorological, agricultural, hydro-
logical, energy, and socioeconomic factors.

Meteorological drought is usually a period of negative departure of precipitation
from a given threshold value. Different thresholds such as 50%, 75%, 90%, and 100%
of the long-term average precipitation may be considered. Due to climatic differences,
what is considered a drought in one location may not be a drought in another location.
Meteorological observations are the first indicators of drought.

Agricultural drought occurs when the amount of soil moisture no longer meets the
need of a particular crop at a particular time. Agricultural drought is usually the first
economic sector to be affected by drought.

Hydrological drought refers to a situation when surface and subsurface water sup-
plies such as streamflow, reservoir elevations, and groundwater tables are below given
threshold values. As in the case of meteorological droughts, threshold values may be
defined as different percentages of the long-term average. There is a time lag between
meteorological drought and hydrological drought. When low precipitation occurs over
an extended period of time, this shortage will be reflected in declining surface and
subsurface water levels.

Hydropower energy drought occurs when the generated energy does not meet the
energy demand in a particular time period. Since streamflow water is the source of
hydropower energy, energy drought is closely related to hydrological drought.

Socioeconomic drought occurs when physical water shortage begins to affect people.
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3.3. DEFINITION OF HYDROLOGICAL DROUGHT

In this situation, the demand for an economic good exceeds supply as a result of a
weather-related shortfall in water supply. According to this definition, energy drought
can be considered a socioeconomic drought.

The first step in a scientific analysis is to define and specify the components of
the problem under investigation. Therefore, a clear definition of drought is required
before a drought frequency analysis can be undertaken. Since the performance of a
hydropower system is related to the availability of streamflow, hydrological drought

and energy drought will be considered in this research project.

3.3 Definition of Hydrological Drought

The theory of runs represents perhaps the best framework for the definition of hydro-
logic droughts. Yeuvjevich [1967] recommended the theory of runs for defining hydro-
logic droughts and for studying their statistical properties. The theory of runs has
since been used by many researchers [Sen, 1977, 1980a, b; Chander et al., 1981; Ze-
lenhasic and Salvai, 1987; Mathier et al., 1992; Sharma, 2000; Shiau and Shen, 2001;
Zelenhasic, 2002].

The runs of the time series of a stochastic variable can be defined in several ways.
A time series z; can be converted into a binary series by selecting a threshold value
xo and recording observations as above and below the threshold. A run is defined
as a consecutive sequence of above-threshold or below-threshold observations. The
parameter xy can be variable in time.

Figure 3.1 illustrates some common drought variables using concepts from the
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L: Drought Length
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time ( t)

Figure 3.1: Drought parameters using Theory of Runs.

theory of runs. For a given time series of z; and a selected truncation level zg, there

are three drought parameters that are often considered:

1. Drought Duration (L;): Negative run length, i.e. the time elapsed between a

downcross and the next upcross.

2. Drought Severity (S;): Negative run sum, i.e. the sum of all negative deviations

between a downcross and an upcross.

3. Drought Magnitude (My): The average negative deviation from the truncation

level Zo, (Md = Sd/Ld)

These three parameters have been extensively used in the definition of hydrologic
droughts. Since drought magnitude is completely determined by the other two, drought
duration and drought severity can be considered the two primary parameters of a

hydrologic drought analysis. It has been noted in the literature that there are strong
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3.3. DEFINITION OF HYDROLOGICAL DROUGHT

positive correlations between drought duration and drought severity [Sen, 1977; Chang
and Stenson, 1990; Sharma et al., 1997].

The main advantage of using runs in the definition of hydrologic drought is the pos-
sibility of determining their properties analytically or by data generation methods. For
example, it is possible to determine analytically the probability density function (pdf)
of the drought severities of given drought durations. When the analytical approach
becomes too complex, an appropriate data generation method can be employed to
obtain properties of runs such as drought severities and drought durations frequencies.

Based on the concept of runs, Dracup et al. [1980] outlined four decisions to be
made in arriving at a viable drought definition: the nature of the water deficit (e.g.
precipitation, soil moisture, streamflow), the basic time unit of the data (e.g. month,
season, year), the truncation level which distinguishes low flows from high flows (e.g.
mean, median, mode), and the regionalization and/or standardization approach.

In this project, the analysis of hydropower system drought requires the modeling of
flows at a monthly time step. The main advantage of using a monthly time resolution
is sensitivity because a drought event may initiate in one year and continue to the
subsequent year. If only annual flows were analyzed, such drought events would not
appear in the drought analysis. The seasonal variability of the energy demand is
another reason for using a monthly time step.

The truncation level divides the time series into deficits (droughts) and surpluses.
A water shortage exists when the flow is below the truncation level. Therefore, the

selection of the truncation level is one of the most important factors in the definition
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3.4. DEFINITION OF ENERGY DROUGHT

and analysis of drought. There is no universal definition of truncation level. It may
be a constant [ Yevjevich, 1967] or a function of time [Mathier et al., 1991, 1992]. It
typically depends on the type of drought under study and the objectives that water
users wish to attain. Since this study will involve drought analysis of monthly time

series, a seasonally variable truncation level will be considered.

3.4 Definition of Energy Drought

In drought analysis for hydropower systems, drought should be defined in terms of en-
ergy. For a fixed head, the produced energy at a hydropower station is proportional to
the amount of turbined water. Hence, monthly or annual streamflow at a hydropower
station can be converted into energy by multiplying by a factor, assuming a constant
head. In general, an energy drought occurs when energy supply is less than energy
demand. In large hydropower systems comprising multiple stations and covering dif-
ferent drainage basins, the deficit at one station does not necessarily result in system
drought. An energy drought occurs only when the total energy demand exceeds the
total energy supply of the system. The energy time series at monthly or annual time
steps may be used in the assessment of drought frequency.

Energy drought, as proposed by Rangarajan [1998] for Manitoba Hydro’s system,
is defined in the following. The energy flow (MWh) at generating station ¢ during

month m in year ¢t may be defined as

B = ¢ X f; X by, (3.1)
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3.4. DEFINITION OF ENERGY DROUGHT

where qS% is the monthly average flow and f; is the flow-to-power conversion factor at
generation station ¢, i = 1,2,...,n, and h,, is the total time (in hours) in month m.

Monthly energy flow at each generation station can be calculated and summed to give

the monthly total energy flow Ej,, of the system:
n o
By =Y E{) (3.2)
i=1

Monthly energy deficits of the system are defined using the monthly net energy
demand D,, as a truncation level. When the total energy flow Ej,, is less than the net

energy demand D,,, an energy deficit £ Dy, occurs. Mathematically

ED,, = (3.3)

0 if Eyn 2 Dy,

fort=1,2,...,T,and m=1,2,...,12.

Based on the monthly time series of EDy,,, energy drought duration and severity
can be calculated using the theory of runs as described in Section 3.3. In this case,
the duration L, of an energy drought is the number of consecutive months where total
energy flow is lower than net energy demand and the energy drought severity is the

summation of energy deficits during the L; months.
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3.5. DEFINITION OF ENERGY DROUGHT FOR MANITOBA HYDRO’S SYSTEM

Table 3.1: Flow-to-power factors and inflow sites for generating stations.

Generation Station | Flow-to-Power Factor Inflow Site
(MW /kefs)

Point DuBois 3.16 Winnipeg River at Slave Falls
Slave Falls 2.01 Winnipeg River at Slave Falls
Seven Sisters 4.24 Winnipeg River at Slave Falls
McArthur 1.75 Winnipeg River at Slave Falls
Great Falls 3.93 Winnipeg River at Slave Falls
Pine Falls 2.87 Winnipeg River at Slave Falls
Grand Rapids 9.26 Saskatchewan River at Grand Rapids
Jenpeg 2.16 Lake Winnipeg Outflow
Kelsey 4.05 Lake Winnipeg Outflow

+ NRO + NR1 + NR2
Kettle 7.11 Kelsey flows + Notigi Release + NR3 + NR4

+ BR1 + BR2 + BR3 + BR4A + BR4B

Long Spruce 6.09 Kettle flows + NR5
Limestone 7.89 Long Spruce flows + NR6

3.5 Definition of Energy Drought for Manitoba Hy-

dro’s System

In this project, energy drought has been tailored to the specifics of Manitoba Hydro’s
system. Calculation of the energy flow at each station requires information about
forebay and tailrace elevations. Since Manitoba Hydro’s generating stations have rel-
atively little variation in forebay-levels, a pragmatic approach is used which assumes
that a given amount of flow at a particular site will produce a certain amount of
power. Manitoba Hydro has developed flow-to-power conversion factors at each of the
generation stations based on historical records. Although some of the water might be
spilled, it is assumed that all flow passes through the turbines. This assumption is
realistic for a drought study since all available water would be used during drought

periods. Flow-to-power factors for each hydropower station are given in Table 3.1.
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3.5. DEFINITION OF ENERGY DROUGHT FOR MANITOBA HYDRO’S SYSTEM

Although the six Winnipeg River generating stations are listed individually in Table
3.1, they are treated as one station having an inflow equivalent to the Winnipeg River
flow at Slave Falls and a flow-to-power factor 17.96 MW /kefs which is the summation
of six factors.

DeWit [1995] mentioned that another special case occurs when calculating the
energy flow at the Jenpeg generating station. The flow at Jenpeg is a combination of
Lake Winnipeg outflow and local flow NRO. However, a portion of these flows bypasses
the generating station through the East Channel. To incorporate this condition into
the model, it is assumed that none of the NRO flow passes through Jenpeg’s generating
station while all of the Lake Winnipeg outflow does.

The monthly flows of the Saskatchewan River at Grand Rapids, the Winnipeg River
at Slave Falls, the PTIAQO of Lake Winnipeg, and the Churchill River at Southern Indian
Lake are known. The outflow from Lake Winnipeg and Southern Indian Lake are
calculated according to the heuristic rules given in Section 2.3. With the knowledge of
local inflows to the Burntwood and Nelson Rivers, the monthly flow at each generating
station can be obtained and converted to energy flow using (3.1). The total energy
flow is obtained using (3.2).

The monthly net energy demand of the system for the load year 2005 was ob-
tained from the SPLASH model used at Manitoba Hydro (Bruce Hinton, personal
communication, 2003). In the calculation of the monthly net energy demand, domes-
tic (Province of Manitoba) and export energy demands as well as energy imports and

thermal energy generation of each month are taken into consideration. The net energy
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Table 3.2: Monthly energy demands for Manitoba Hydro’s system.

Manitoba Load Firm Firm Thermal Net Hydro

Month Load Adjustment | Export | Import | Generation Demand
(GWh) (GWh) (GWh) | (GWh) (GWh) (GWh)

Jan 2357.99 29.95 420.63 | 369.02 380.58 2058.97
Feb 2022.00 27.35 383.62 | 336.34 346.82 1749.81
Mar 2063.00 28.76 420.63 | 369.02 380.58 1762.79
Apr 1678.00 22.94 515.62 | 486.53 313.52 1416.51
May 1626.00 20.75 492.42 | 286.99 361.53 1490.65
Jun 1579.98 19.83 480.58 | 277.78 344.04 1458.57
Jul 1643.00 19.59 498.42 | 286.99 352.02 1521.99
Aug 1673.00 20.04 499.42 | 286.99 353.80 1551.67
Sep 1537.00 20.57 481.58 | 277.78 252.96 1508.40
Oct 1723.99 22.20 495.42 | 286.99 332.72 1621.90
Nov 1950.98 26.23 410.11 | 357.16 366.21 1663.94
Dec 2306.99 29.50 421.63 | 369.02 380.58 2008.52

Personal communication with Bruce Hinton, 2003 Manitoba Hydro

demands given in Table 3.2 are employed as threshold values.

The theory of runs was used to define energy drought events and associated char-
acteristics for Manitoba Hydro’s system. However, the definition of drought duration
is adapted to the specifics of Manitoba Hydro. Based on the analysis of storage levels
computed by the SPLASH model, drought duration is defined as follows. The duration
of a drought event is not the number of consecutive deficits, but rather the number of
periods when the surface elevation of Lake Winnipeg is lower than 714 ft which is the
average elevation. This means that after identifying an energy deficit, the lake level
should be checked backward and forward from that particular point to determine the
beginning and the end of the drought event. A drought event is assumed to start when
the lake elevation drops below 714 ft and terminate when it reaches 714 ft again. After
obtaining the drought length T}, the energy drought severity for Manitoba Hydro is

obtained as the summation of energy deficits during this period. Figure 3.2 illustrates
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Figure 3.2: Duration and severity of a drought event for Manitoba Hydro.

these concepts. In the analysis, it was observed that in many cases a couple of spring
months separates two consecutive drought events because of snow melt. Therefore,
when the time between two consecutive drought events are less than or equal to four
months, these drought events are combined into one drought event.

As mentioned earlier in this chapter, the magnitude of a particular drought event is
equal to the ratio of severity and duration for that event. The magnitude of a drought
event is generally a poor indicator for a hydropower system because two drought
events could have the same magnitude and yet have very different power production
capabilities. Duration and severity are probably the two most effective parameters to
described drought events.

Based on the energy drought definition for Manitoba Hydro given above, energy
drought events were extracted from the historical record. A total of five drought events

listed in Table 3.3, were identified from the 1912-98 record data. The most severe
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Table 3.3: Historical drought statistics of Manitoba Hydro’s system.

Event Start End Duration Severity Magnitude
No Date Date (months) (GWh) (GWh/month)
1 Sep. 1929  May. 1933 45 57.8 1.3
2 Nov. 1938 Apr. 1942 42 3309.0 78.8
3 Nov. 1960 May. 1962 19 208.7 11.0
4 Sep. 1976  Mar. 1978 19 104.0 5.5
5 Oct. 1987  Apr. 1992 55 2780.7 50.6

drought event occurred between November 1938 and April 1942, with a duration of 42

months and a severity of 3,309 GWh.
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Chapter 4

Traditional Stochastic Models for

Data Generation

4.1 Introduction

The objective of drought frequency analysis is to assign a probability of occurrence

to a specified drought event or alternatively to estimate the drought event having a

prescribed probability of occurrence. Once the drought is defined, the frequency of
droughts can be estimated in several ways, using empirical, analytical, or stochastic
techniques.

Since it is not possible to predict future hydrologic variables with certainty, stochas-

tic and probabilistic theories are proper tools to employ in the modeling of hydrologic
time series. The limitations of using a short historical flow trace in the drought analy-

sis can be overcome by using a stochastic time series model. The stochastic approach
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Figure 4.1: Stochastic modeling approach.

is employed in this research project.

Stochastic streamflow models have played a major role in the analysis and planning
of water resources systems throughout the world. Stochastic time series models should
reproduce important statistics of historical data such as means, variances, autocorrela-
tion, and cross-correlation. The aim of synthetic hydrologic simulations is to produce
a large set of equally likely traces that are statistically similar to the historical data.
Stochastic models do not generate any new information independent of the data, but
they allow one to examine complex characteristics of flows such as multi-year droughts
that cannot be obtained by conventional statistical analysis.

Figure 4.1 illustrates the typical approach to stochastic modeling. Historical stream-
flows are used to choose and verify a stochastic model. The stochastic time series model
is then used to generate a number of flow scenarios of given length. From each scenario,

one can extract the drought statistic of interest and perform a frequency analysis. The
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outcome of the frequency analysis is useful for determining the probability of system
drought.

In selecting a stochastic model, it is important to identify which characteristics
of the streamflow time series being modeled are important and which are not. The
model should preserve the overall mean and variance of the data. Furthermore, there
is often considerable persistence or long memory in historical streamflow time series
that is particularly important to preserve in drought studies. Obviously, the historical
records should guide one in the model development.

The stochastic approach appears to be the most viable technique to analyze com-
plex hydrological characteristics. In this project, the streamflow series at several gaug-
ing stations in the Churchill and Nelson River Basin are considered for probabilistic
drought analysis of Manitoba Hydro’s system. Therefore, the analysis and modeling
of both univariate and multivariate time series are required.

In this project, the synthetic data generation will be done in two steps: (1) gener-
ation of annual flows, and (2) disaggregation of generated annual flows into monthly
flows. This is called a disaggregation approach. The main advantage of this approach
is that the generated flows preserve the historical statistical properties at both annual
and monthly levels.

The majority of stochastic models involves an assumption that the underlying pro-
cess is normal. For such processes, a necessary condition is that the data be normally
distributed. However, streamflow data are usually not normally distributed. In this

case, observed data must be transformed into normal before model calibration. Some
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4.2, MARGINAL DISTRIBUTIONS AND DATA TRANSFORMATION

common transformations are described in the next section. Since first order autoregres-
sive [AR(1)] models were selected for the modeling of annual flows in previous studies
at Manitoba Hydro, single-site and multi-site AR(1) models are described next. The
integration of parameter uncertainty into AR(1) models is also presented in this chap-
ter for both single- and multi-site cases. Finally, the traditional temporal and spatial

disaggregation models employed in this research project are presented.

4.2 Marginal Distributions and Data Transforma-
tion

Most of the models for generating stochastic processes deal directly with normally
distributed random variables. Unfortunately, streamflow distributions tend to be pos-
itively skewed. Salas et al. [1988] proposed three main approaches for dealing with

skewed hydrologic time series.

1. To transform the skewed series into normal before modeling the series;

2. To model the original skewed series and handle the skewness through the prob-

ability distribution of the uncorrelated residuals;

3. To find a relationship between the first two moments of the original skewed series
and those of the normal series so that the moments of the original skewed series
are preserved. Loucks et al. [1981] gave an example of this approach using an

autoregressive Markov model for annual flows.
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Since the best techniques are developed for normal processes, it is generally simpler
to transform the skewed variables into normal rather than finding similar procedures
for the non-normal variables. However, when transforming the original series into
normal, biases in the statistical properties of the generated flows may occur. For
example, the mean of the transformed series may be reproduced but not the mean of
the original series. Salas et al. [1988] suggested to use the first approach if biases are
small. Otherwise, other approaches should be envisioned.

A disadvantage of the first approach is revealed when annual flows are disaggregated
into monthly flows. When the transformed flows are modeled, the generated monthly
flows generally fail to sum up to the previously generated annual flows.

In this project, the first approach has been employed. The 2-parameter lognor-
mal, 3-parameter lognormal, and Box-Cox transformation methods are widely used to
transform streamflows to an approximate normal distribution [Grygier and Stedinger,
1990, 2001; Salas, 1993; Stedinger, 1980; Loucks et al., 1981; Thyer et al., 2002; Salas
et al., 2000]. It should be noted that in a drought analysis, a good fit in the lower tail

of the marginal distribution is more important than the fit in the upper tail.

4.2.1 2-Parameter Lognormal Transformation

In hydrology, flows are often adequately modeled by a 2-parameter lognormal dis-

tribution. A logarithmic transformation of the observed flow g¢; at time step ¢, i.e.

z; = In(gs) (4.1)
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then produces a normally distributed observation z;.

4.2.2 3-Parameter Lognormal Transformation

This transformation is the same as the 2-parameter lognormal transformation, except

that it has a non-zero lower bound 7. ¢; is transformed as

zy = In(g — 7) (4.2)

where ¢; must be greater than its lower bound 7. Stedinger [1980] and Stedinger and

Taylor [1982a] suggest procedures for estimating the lower bound 7.

4.2.3 Box-Cox Transformation

When observed flows do not follow a normal or a lognormal distribution, a Box-Cox

transformation may be applied. The Box-Cox transformation of g; is

(@-1/X i A£0

In(g;) if A=0

where ) is a parameter chosen to ensure that the transformed hydrological data x; are
approximately normally distributed. To define a measure of normality of x;, one may
look at the correlation of point coordinates in a quantile-quantile probability plot, see
next section for details. The higher the correlation coefficient, the better a normal

distribution fits the data. The optimal value of )\ is determined numerically as the
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value that maximizes the probability plot correlation coefficient.

4.2.4 Selection of the Transformation Method

In order to decide which transformation method is most appropriate, the Filliben
probability plot correlation coefficient test statistic is employed [Filliben, 1975; Vogel,
1986]. The Filliben statistic r measures the correlation between the transformed or-
dered flows z; and their corresponding normal quantiles M; which can be obtained as

f ia(m = T)(M; — M) (4.4)

[Z;il(xi — 22T (M, - M)Z} 172

Among the given transformation methods, the candidate with the highest r-value

should be selected.

4.3 Generation of Aggregated Flows

Autoregressive (AR) and autoregressive moving average (ARMA) models are com-
monly used for generation of aggregated flows such as annual flows. These models
reproduce important statistical properties of the annual streamflow series under con-
sideration. In the previous studies of Manitoba Hydro’s system, it has been found
that based on the Akaike Information Criterion (AIC), the AR(1) model is the best
choice between competing ARMA models. The AR(1) model was also used in this
study as a basis for comparison with the proposed MS model in the assessment of

the probability of system drought. Since both singe-site and multi-site models are
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required in the stochastic model frameworks, (see Chapter 8), both univariate and
multivariate AR(1) models together with methods for assessing parameter uncertainty

are explained in the following sections.

4.3.1 Single-Site Autoregressive Model

The autoregressive (AR) model is one of the most popular models for annual time series
in hydrology. This is in part due to its simplicity. Let x; be a normally distributed
variable with mean p, and variance 2. The autoregressive model of order p, denoted

AR(p), may be written as

p
2= po+ Y $5(@g — o) + (4.5)
=1

where &; ~ N(0,02) is an uncorrelated (in time) normal random variable with mean
zero and variance o2. The coefficients ¢1, ..., ¢, are autoregression coefficients. The
parameters of the model are g, 04, ¢1,...,d,, and o2.

The mean and the variances of an AR(p) process are

Elz] =p, (4.6)

Vlz] =02

N (1“¢1p1“"“¢ppp)
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respectively. The autocorrelation function of AR(p) can be calculated as

Po = 1 (48&)

P = P1Ppr—1+ -+ Oppr—p, k2=>1 (4.8b)

where py, is the lag-k autocorrelation coefficient of the variable z;.

The AR(1) model

Ty = figp + G1(Tem1 — M) + € (4.9)

is a particularly popular special case of (4.5). The parameters of an AR(1) model can

be estimated from observed data using the method of moments:

_ 1
,u,m—x———,ftzzlxt (4.10)
1 &
e - 2
Op = 8z = 2 (z — ) (4.11)
T-1 - _
b=y = 2=t (ﬁf ‘”)(“J’t_“ 7) (4.12)
> i (@ — T)°
0f =0,(1-p}) (4.13)

The autocorrelation function of the AR(1) model can be obtained from (4.8b) as

pr=¢% k>0 (4.14)

The AR(1) model preserves the historical mean, standard deviation, and lag-1

serial correlation coeflicient of the transformed variables.
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In the previous drought studies for Manitoba Hydro, the impact of uncertainty
in the parameters of the AR(1) model was not considered. However, Stedinger and
Taylor [1982b] found that the impact of parameter uncertainty on derived storage
capacity-reliability relationship for reservoir systems was as important as choosing an
appropriate stochastic time series model.

In this project, parameter uncertainty will be investigated primarily at the annual
level, while the uncertainty of the parameters of the temporal and spatial disaggre-
gation components of the model will be ignored. The rationale for this is that the
droughts of interest here are multi-year droughts, so that the effect of the annual
model is much more significant than the disaggregation models. The full parameter
uncertainty is integrated into the AR(1) model through Bayesian Inference as ex-
plained in Section 4.3.3. A general explanation of Bayesian Inference is presented in
the next section. A more detailed account can be found in for example Gelman et al.

[1995] and Boz and Tiao [1992).

4.3.2 Parameter Uncertainty through Bayesian Inference

In the frequentist approach, the probability of an event is defined by the frequency of
that event. According to frequentists, the parameters of a stochastic model are un-
known constants that can be estimated using available observed data. The assumption
is that the population parameters are equal to the sample estimates. The method of
moments and the method of maximum likelihood are the most popular techniques for

parameter estimation. However, when the amount of observed data is limited, which
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is often the case in hydrology, parameter uncertainty can be considerable and needs
to be taken into account.

The Bayesian approach provides a useful mechanism for quantifying parameter
uncertainty. In the Bayesian approach, there are two sources of information for learn-
ing about unknown parameters: (1) prior information, based for example on expert
knowledge, and (2) observed data. The unknown parameter vector 8 = (6y,...,6,,)
is treated as a random variable described by a probability density function which ex-
presses the uncertainty about 8. Prior to observing the data, this density function is
denoted p(@) and is called the prior distribution; it contains all available knowledge
about the parameters other than that associated with the observations. After observ-
ing the data X = (z1,...,z7)’, the density is denoted p(61X) and is referred to as the
posterior distribution. The process of collecting data, and thus acquiring knowledge
about 8, is reflected in a reduction in uncertainty. Therefore, the posterior distribution
is more concentrated than the prior. Using Bayes’ theorem, the posterior distribution

of @ is given by

p(O1X) = &2%.@ (4.15)

where p(X|0) is the likelihood function /(0|X), and p(X) = [p(X|0)p(@)dd is the
normalizing constant of the posterior distribution necessary to ensure that the posterior
distribution integrates to one. p(X) is called the marginal distribution of the data or
prior predictive distribution. The quantity p(X) does not depend on 8, and with fixed

X, it can be considered a constant so that Bayes’ theorem can be written in the more
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Prior > Prior
Information pdf W
Bayes > Posterior
Theorem pdf
Sample «| Likelihood A
Information “"1 Function

Figure 4.2: The Bayes theorem.

compact form

p(91X) < 1(61X)p(6) (4.16)

which shows that the posterior distribution is proportional to the likelihood function
multiplied by the prior distribution. In the posterior distribution of the model param-
eters, the likelihood function provides the contribution from the observed data and
the prior distribution provides the contribution from prior knowledge about model
parameters.

In the Bayesian approach, the unconditional probability density of a future variable

zy, given observed variables X, can be obtained as [Zellner, 1971]

p(z|X) = /0 p(z16)p(8]X)d8 (4.17)

This resulting p(z|X) is also known as the posterior predictive or Bayesian proba-
bility density function and can be used for simulation of random realizations of z.

Once the posterior distribution of the model parameters has been derived, sets of
parameters can be drawn from that distribution [ Vicens et al., 1975a, b; Stedinger and

Taylor, 1982b; Stedinger et al., 1985; Bozx and Tiao, 1992]. In the case of the AR(1)
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model, the posterior density of the model parameters can be derived analytically.
However, an analytical expression for the posterior distribution may not be possible
for complex models. In such cases, Markov chain Monte Carlo (MCMC) simulation
methods can be employed to draw samples from the posterior distribution. In this
research, an MCMC method is used in the quantification of the parameter uncertainty
of the MS model discussed in Chapters 5 and 6.

In streamflow simulation, parameter uncertainty may be incorporated by generat-
ing from the Bayesian distribution of streamflow. This is done by first sampling the
model parameters from the posterior distributions and then using the parameter set
to simulate one streamflow sequence of desired length. This process is repeated for

each sequence.

4.3.3 Incorporating Parameter Uncertainty into the Single-

Site AR(1) Model

The analysis of parameter uncertainty in univariate and multivariate regression models
was developed four decades ago, see for example Zellner [1971]. In the hydrological
literature, Vicens et al. [1975b] defined the single-site AR(1) model as a univariate
normal linear regression model and incorporated parameter uncertainty. Stedinger
and Taylor [1982b] examined the effect of the parameter uncertainty of the annual
AR(1) model on estimates of monthly reservoir system reliability. They found that
streamflow models may underestimate the frequency of severe droughts if parameter

uncertainty is not considered. Despite these conditions, the quantification of parameter
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uncertainty is often found lacking in the application of stochastic hydrological models.
For the purpose of parameter estimation, (4.9) may be written as a univariate
regression model

T = fo+ P1Ts-1 + & (4.18)

where (y, $1 and o2 are the unknown model parameters. The above model can also

be expressed in matrix forms as

X=wf+e (4.19a)
T ]. T )
z3 1 z Bo €3
- + (4.19b)
: : ﬂl .
T 1 Tr_1 ET

The joint likelihood function of B and o2 given the observed data X can be written

as [Zellner, 1971]:

1 1
18, 021X) o« g exp{ -

2
€ 206

[vs? + (ﬂ—B)'w'w<ﬂ~B>}} (4.20)

where v =T — 2 is the degrees of freedom and ,B is the standard maximum likelihood

estimator of the unknown model parameter vector 3,

B = (Www) WX (4.21)
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The term s? is the observed variance of the residuals calculated as
1 5 .
s = —(X —wB)(X - wh) (4.22)

To obtain the posterior density function of the model parameters, p(8, o.|X) , the
likelihood function in (4.20) must be multiplied by the prior density function, p(8, o).
If little is known a priori about the model parameters, a diffuse joint prior density

function of B and o, may be used. A common choice is Jeffrey’s noninformative prior:

p(B; 0c) = p(B)p(o.)

1
X —
O¢

(4.23)

where —co < f# < o0 and 0 < 0. < oco. With this prior, the joint posterior density

function becomes

1 1
p(B,0:|X) x 77 OXP {_

202 [”33 + (8~ B)ww(p - ﬁ)] } (4.24)

Using the conditional probability theorem, the above equation can also be written

(B, 0¢|X) = p(Bloe, X)p(oe|X) (4.25)

The marginal posterior density of o, can be obtained by integrating (4.24) with
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respect to the elements of

2

1 Vs
o7 XD (— 205) (4.26)

€

p(oe|X)

which is the kernel of an inverse-Gamma distribution with parameters (v/2,vs2/2) or
a scaled inverse-y2-distribution with parameters (v, s2).
Once the marginal posterior density of 0., p(c¢|X), and the joint posterior density

of B and o, p(B,0.|X), are known, the conditional density function of B given o. and

X can be obtained from (4.25) as

Bl X) x e {0 [(B-BYww) 6-B]} @

2
207

which is a multivariate (bivariate) normal distribution with mean 8 and covariance
matrix o2(w'w)1.

In summary, sampling from the joint posterior distribution can be done as follows
1. Calculate B from (4.21) and s2 from (4.22).

2. Draw o2 from the scaled inverse-x2-distribution
o2 ~ Inv — x*(v, s2) (4.28)

In practice, one can simulate o2 as

[UN ]

o = (4.29)
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where %? is a random variable drawn from a standard y2-distribution with v

degrees of freedom.

3. Given the simulated o2, draw 8 from the multivariate normal distribution

B~ NB, o2 (ww)™) (4.30)

For each set of simulated model parameters, one streamflow sequence of desired
length can be generated. Parameter simulation should be repeated for the generation

of each new streamflow sequence.

4.3.4 Multi-Site Autoregressive Model

In the analysis of multiple time series, vector and matrix notation is needed but the
basic principles are similar to univariate analysis. The main properties of multi-site
AR models are the mean, the cross-covariance, and the autocovariance structure.

Let qt(n) be the observed annual flow at site n (n = 1,...,N) in year t (t =
1,...,T). If the observed annual flows do not follow a normal distribution, they
must be transformed as described in Section 4.2. The transformation function may
be different for each site. Let xﬁn) be the normally distributed transformed annual

flow. Before estimating the model parameters, it is common practice to standardize

the transformed flows. For example, the elements of the standardized annual sequence
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of the first site can be obtained as

.’[Z,El) —zM

s

A =

(4.31)

where (1) is the sample mean and s is the sample standard deviation of the trans-
formed flows at site 1.

The multi-site AR(1) model suggested by Matalas [1967] is defined as

Zt = AZt—l + Bet (432)

in which A and B are (N x N) parameter matrices and Z; and Z;_; are (N X 1)
column vectors of observations at time ¢ and t — 1, respectively. The (N x 1) vector
€; contains uncorrelated normally distributed random variables with zero mean and
unit variance. Hence, the covariance of €; is the identity matrix, E[e;€;] = I. It is also
assumed that the vector €; is uncorrelated with Z;_,, i.e. E[Z; 1€;] =0.

The parameter matrices A and B are generally obtained using the method of
moments. By multiplying (4.32) by Z} and Z} , and taking expectation, one can

obtain the following expressions:

A=MM;! (4.33)

BB' = My — M M;' M, (4.34)
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where My is the lag-zero cross-covariance matrix

M, = E|Z.Z!] (4.35)

and M, is the lag-one cross-covariance matrix

M, = E|[Z.Z._|] (4.36)

The lag-k cross-covariance matrix for the multi-site AR(1) model is

M, =A*M,, k>0 (4.37)

Determination of B from knowledge of BB' is a classical problem in multivariate
statistics. Methods to solve BB’ for B are given in Salas et al. [1988] and Bras and
Rodriguez-Tturbe [1993]. Software such as MATLAB have the capability to solve the
above estimation problem.

The multi-site AR(1) model has the property to preserve the historical means,
standard deviations, and lag-zero and lag-one cross-correlations. However, the AR(1)
model may not preserve the long-term persistence observed in the historical data.
Because autoregressive models are “short memory” models which means that their
autocorrelation functions decay very fast as the time lag increases, Salas et al. [1988]
noted that AR(1) models produce smaller droughts for a given demand level. There-

fore, if the observed data suggest long-term persistence, alternative models should be
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used.

4.3.5 Incorporating Parameter Uncertainty into the Multi-

Site AR(1) Model

Since this research project has a multi-site dimension, parameter uncertainty must
be considered at the multi-site level. The quantification of parameter uncertainty
in multi-site AR(1) models was presented by Valdes and Rodriguez-Iturbe [1977] in
the hydrologic literature. Incorporating parameter uncertainty into multi-site AR(1)
models is not straightforward. Unlike in the single-site case, the structure of the
standard multivariate regression model cannot be used for the multi-site AR(1) model.
However, a special case of the generalized traditional multivariate regression model
can be employed to represent the multi-site AR(1) model structure [ Tiao and Zellner,
1964].

Let x&n), e ,xgb ) denote the normally distributed annual flow series at site n. The

multi-site AR(1) model can be written

o) = Bio + Bz + 512$£2—)1 + .. -ﬂleEZ—vl) +ef”
$§2) = a0 + ,321w§1_)1 + /322$£2_)1 + .. -,32N7/’£]-V1) + 5§2) (4.38)

xﬁN) = Bno + ﬂlef(:l—)l + 5N2$£2_)1 +.. -ﬂNNﬂJ,E]_V} + €§N)

where 3;; are regression coefficients and &; are independent identically distributed zero
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mean normal random variables with covariance matrix %, g, ~ Ny (0,%).

The above model can be expressed in a compact normal regression model

X=QB+¢ (4.39a)
x @) w B e
= . : + : (4.39b)
where

z 1 &Y W Bro eV
(n) (1 (™) (n)

X(n) = " , W= ! & o ) ﬂn = ﬂnl 3 5(n) - =3
xrf,? ) 1 a:g,} 1 1 .- wg\i)l OnnN E,E,? )
) (4.40)

where § and ¥ are the model parameter matrices. Using (4.39a), the joint likelihood

function of 8 and ¥ given the observation vector X can be written as

1(B,Z1X) ox |17 exp |~ 818 — 2 (8~ BYE @ wlw(8 ~ B) (4.41)

In (4.41), tr denotes the trace operator, ® denotes Kronecker or direct matrix multi-

plication, and ﬁl = (Bll, ceeh ﬁ;v) is the standard maximum likelihood estimator of the
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unknown model parameter vector S, i.e.
B, = (Ww) WwX®. (4.42)

The matrix S = {s;;} is proportional to the sample covariance matrix. The elements

of S are defined as
sij = (XD —wBY (XD —wp)), i,j=1,...,N (4.43)

It is assumed that little is known a priori about the model parameters # and % and
that they are independently distributed. Diffuse priors are used when no information
about the model parameters are known. For the multi-site case, Zellner [1971] gives

Jeffrey’s diffuse prior as

p(B8,X) = p(B)p(X)

x |B|"z () (4.44)

Multiplying the likelihood function in (4.41) by the prior distribution in (4.44), the

posterior distribution of 8 and X can be obtained as

p(B,S1X) o [SHTHH exp | - LS — (6 - BTE @ww(B ~ B)|  (4.49)
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The above equation can also be written

p(8,E1X) = p(BI%, X)p(E|X) (4.46)
with
B, X) e [Bfp e [ 16 -BTE o) )
and
1 | S
p(B|X) o« |X|2¥ exp [—itrz IS’] (4.48)

where k denotes the size of the 8 vector and v = T'— k + N + 1 denotes the degrees of
freedom. It can be seen that the conditional posterior distribution of 8 given ¥ in (4.47)
is a multivariate normal distribution with mean 8 and covariance matrix £ ® (Ww)™!
and the posterior distribution of ¥ in (4.48) is an inverted Wishart distribution.

Like in the single-site AR(1) model, the simulation of the model parameters is a
two step process. After estimating the parameter matrices in (4.42) and (4.43), the

covariance matrix X is first simulated from the inverted Wishart distribution:

¥ ~ Inv-Wishart(v, S) (4.49)

and then, for given X, B is simulated from a multivariate normal distribution:

B~ NyB,E @ Ww)™/v) (4.50)
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When parameter uncertainty is considered as defined above, generated steamflow
sequences reflect both the natural hydrologic variability of streamflows and uncertainty

about the model parameters.

4.4 Disaggregation of Aggregated Flows

Among the various techniques for time series analysis developed in hydrology, the dis-
aggregation approach seems to be the most suitable for this research project [ Valencia
and Schaake, 1973]. Disaggregation models can be used at temporal and spatial levels.
In temporal disaggregation, generated annual flows are disaggregated into monthly
flows. In spatial disaggregation, generated aggregated flows from a region are dis-
aggregated into flows at individual sites within the same region. The generation of
aggregated flows and the disaggregation procedure are independent.

Typical sequential linear models such as periodic autoregressive (PAR) and peri-
odic autoregressive moving average (PARMA) or other types of models preserve the
statistiéal characteristics at the monthly level but not at the annual level. The ma-
jor advantage of disaggregation models is that they preserve historical statistics of
both annual and monthly streamflows. Disaggregation models also have an additiv-
ity property when observed data are normally distributed. The seasonal values adds
up to the annual values. In most cases, however, observed streamflows are not nor-
mally distributed. When the transformed flows are modeled, disaggregated monthly
flows generally fail to sum to the generated annual flow. In this case, an adjustment

procedure must be used to ensure that disaggregated flows add up to aggregated flows.
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The first well-accepted disaggregation model was developed by Valencia and Schaake
[1973]. A number of variations of this model have subsequently been proposed. The
first disaggregation models were multivariate (simultaneous disaggregation of annual
flows at several sites). Valencia and Schaake [1973], Mejia and Rousselle [1976], Tao
and Delleur [1976], and Hoshi and Burges [1979] are typical examples of such models.
These models attempt to reproduce all covariance properties between monthly flows
as well as those between monthly and annual flows among all sites and time steps.
This results in a huge number of parameters which is not desirable when the sample
size is small. Since short record length is a common case in hydrology, attempts have
been made to reduce the number of parameters by preserving a reduced number of
statistics of the data.

One way of reducing the number of parameters is to use condensed disaggregation
models such as those developed by Lane [1979], Stedinger et al. [1985], Grygier and
Stedinger [1988], and Grygier and Stedinger [1990]. Condensed models reduce the
number of parameters to be estimated by modeling only a reduced number correlations
among the monthly flows. Lane’s condensed model which was employed in this research
project, is described later in Section 4.4.3.

As an alternative to condensed models, Salas et al. [1988], Loucks et al. [1981],
and Bras and Rodriguez-Tturbe [1993] suggested that the disaggregation be done in
steps (stages or cascades). For example, annual flows at one or more sites can be
disaggregated to monthly flows in two or more steps. Santos and Salas [1992] analyzed

the potential of the step disaggregation idea. In the Santos-Salas model, an annual flow
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value may be disaggregated into 12 monthly flows by first disaggregating the annual
flow into the first month flow and the sum of the remaining 11 months. Then the
latter sum is disaggregated into the second month flow and the sum of the remaining
10 months, and so on until all monthly flows have been obtained. Salas [1993] notes
that the Santos-Salas step model is very similar to the condensed model of Stedinger
et al. [1985].

Another stepwise disaggregation model was proposed by Koutsoyiannis [1992].
This approach, called the dynamic disaggregation model (DDM), is very similar to
the Santos and Salas stepwise disaggregation procedure. However, there are some dif-
ferences between them. At each steps, the DDM uses a nonlinear generation module
that disaggregates a given amount into two parts. However, this module adds notable
mathematical complexity. Therefore, Koutsoyiannis and Manetas [1996] presented a
simpler method that keeps some ideas of the DDM approach. Their disaggregation
method is based on three simple ideas. First, it starts by using a sequential PAR(1)
model and keeps its formalism and parameter set. Second, it uses accurate adjusting
procedures to allocate the error in the additive property. Third, it uses repetition in
order to improve the approximation of statistics that are not explicitly preserved by
the adjusting procedures.

Tarboton et al. [1998] developed a nonparametric disaggregation model (NPD).
Their NPD model can capture the dependence structure present in the observed data
without imposing arbitrary linearity or distributional assumptions. The necessary joint

probability density functions are estimated directly from the historical data. These
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methods circumvent the drawbacks of the parametric methods. The methods are data-
driven and relatively automatic, so non-linear dependence will be incorporated to the
extent suggested by the data. The empirical marginal distributions are reproduced
and normalizing transformations are avoided. The real advantage of the NPD method
is the ability to model complex relationships between aggregated and disaggregated
flows. However, a disadvantage of the NPD approach is that it is computationally
intensive.

In this research project, Lane’s condensed disaggregation model [Lane, 1979] is
employed to disaggregate generated annual flows at five sites into monthly flows at
those sites. Furthermore, Mejia and Rousselle’s model [Mejia and Rousselle, 1976] is
employed to spatially disaggregate aggregated annual flows for the basin into annual
flows for the five basin sites. The same model is also used to disaggregate generated
aggregated monthly Local Flows at the Burtwood and the Nelson River into monthly
flows at the individual local flow sites. In the following sections, the employed disag-

gregation models as well as Valencia-Schaake model are presented in more details.

4.4.1 Valencia-Schaake Disaggregation Model

The basic disaggregation model developed by Valencia and Schaake [1973] can be used
both for temporal or spatial disaggregation. For example, in order to spatially disag-
gregate the aggregated zero mean annual basin flow (higher-level variable) z; in year

t into N zero mean annual basin site flows (lower-level variables) y, = (yt(l), e y,EN))’

67




4.4. DISAGGREGATION OF AGGREGATED FLOWS

for the same year, the Valencia-Schaake disaggregation model can be written as
y: = Az + Be; (4.51)

where A and B are parameter matrices with dimensions (N x 1) and (N x N), respec-
tively, and €; is an (IV x 1) column vector of independent standard normal variables
with zero mean and unit variance. As in the multi-site annual model, the covariance
matrix of €, is the identity matrix, F|e:€;] = I, and vector €, is uncorrelated with z;,
Elz.€;] =0.

The parameter matrices A and B may be estimated using the method of moments.
Prior to parameter estimation, the marginal distribution of all observed aggregated
annual flows and annual flows of each site must be transformed to normal. Then the
transformed observed data sets must be centered by subtracting their sample mean.
Using the method of moments, the estimates of parameter matrices A and B can be

obtained as

A =SyxS¥% (4.52)

BB =8Syy — ASxy (4.53)
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where

NUR
X=[r1...27], Y = Do, (4.54)
A

and Syy represents the sample covariance of the vectors U and V. Because U and V

have zero mean, the sample covariance matrices can be calculated as

Sxx = (1/T)XX’ (4.55a)
Syx = (1/T)YX' | (4.55b)
Syy = (1/T)YY’ (4.55¢)
Sxy = Syx (4.55d)

The Valencia and Schaake [1973] spatial disaggregation model in (4.51) preserves
the correlation between all lower-level variables and between all lower-level and higher-
level variables. However, when this model is used to disaggregate annual flows into
monthly flows, the correlation coefficient between the last month of one year and the
first month of the following year is not explicitly preserved. Mejia and Rousselle [1976]
tried to overcome this problem by including a new parameter matrix and a vector of
monthly values from the previous year at the right hand site of the Valencia and

Schaake model in (4.51).
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4.4.2 Mejia and Rousselle Disaggregation Model

When spatial disaggregation is considered as in (4.51), the Mejia and Rousselle model
takes the form

y; = Az, + Be; + Cy; 1 (4.56)

where y;_; is an (N x 1) column matrix of disaggregated annual lower-level variables
from the previous time step (year) for each site and C is a new (N x N) parameter
matrix. All other terms remain the same as for the basic model in (4.51). The

parameters A, B, and C may be estimated using the method of moments as

A= [Svix, = Svvies 7l v Svis ] %
Sxux, ~ Sxo 187y Seris| (4.57a)
G = :sm_l ~ Asxtyt_l] St v (4.57h)
BB' =Sy, — ASx,y, — CSyyy, | (4.57c)

Lane [1981] showed that if one uses the above equations directly in the estimation
of parameters, some important moments are not preserved. He suggested the following

equations be used instead of the sample covariance matrices Sx,y, , and Sy,y, ,:

S¥vis :SXtXt_ls;(:XtSXth (4.58a)

v, =Svivio T 8vx. Sy, [Skv, — Sxivisy] (4.58b)

In addition to the properties of the Valencia-Schaake model, this model also pre-
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serves the lag-1 cross-correlations between the aggregated basin flows and disaggre-
gated basin site flows, and between basin site flows themselves. Although this model
is slightly more involved than the basic model, it is still quite straightforward. How-
ever, the problem of the excessive number of parameters in the Valencia and Schaake
model is made worse especially when it is used as a temporal disaggregation model to

disaggregate generated multi-site annual flows into monthly flows.

4.4.3 Lane’s Condensed Disaggregation Model

The above disaggregation models have a large number of parameters when they are
used for multi-site disaggregation of annual flows into monthly flows. A large number
of parameters estimated from a small sample gives large estimation errors. Since short
length of records is a common case in hydrology, attempts have been made to reduce
the number of the parameters in disaggregation models by preserving only important
characteristics of the model.

Lane [1979] developed a condensed version of the Valencia-Schaake disaggregation
model by relaxing the constraint that the model reproduce the observed correlations
between every pair of monthly flows. Lane’s model reproduces only the concurrent
and lag-1 month-to-month correlations, and the correlations between the monthly
and annual flows. This condensed model is known as the LAST model [Lane, 1979)].
Since in the condensed disaggregation models, the annual flows are disaggregated
one-month-at-a-time, one of the important attributes of the original disaggregation

model, the additivity property, is lost. To preserve the additivity property, one must
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adjust the disaggregated monthly flows. Adjustment procedures are discussed in the
next section. However, any adjustment may distort the marginal distribution of the
generated monthly data.

In Lane’s condensed multi-site temporal disaggregation model, zero mean annual

flows at N sites, 2; = (xgl), ... ,ng))' , can be disaggregated into zero mean flows for

month m at the N sites, ¢, = (yt(,l,f, e ,yt(ﬁ))’ . For the first month of the year, Lane’s

disaggregation model can be written as

Y = A1z + Bien (4.59a)

and form=2,...,12 as

Yim = Amxt + Bmetm + Cmyt,m—-l (459b)

where Ap,, By, and C,, are (N x N) parameter matrices for month m, §¢m-1 is an
(N x 1) vector of previous month flows at all N sites, and €, is an (N x 1) vector of
independent (uncorrelated) zero-mean, unit variance normal random variables. When
disaggregation of annual flows into monthly flows is considered, there are 12 sets of
parameters A,, and B,, and 11 sets of parameters C,,.

Prior to parameter estimation, the marginal distribution of all observed monthly
and annual flows at each site must be transformed to normal if they are not already
normally distributed. Different transformation models can be used for different months

at the same site. Furthermore, the transformed flows should be centered.
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For the purpose of parameter estimation, the above models are presented as

Yl = Al.X + B161 (460&)

and form=2,...,12 as

Y. = ApX + Bpém + CY ms (4.60Db)

where Y, represents the transformed month m flows at all sites, X represents the
transformed annual flows at all sites, and Y ,,,_; represents the transformed previous
month flows at each site. The dimension of all matrices is (IV x T') and can be formed

as

zM ) Y o Yo

X = Do and Y, = B (4.61)
N N N N
o0 o | W o

The parameter matrices A,,, B,,, and C,, may be estimated using the method
of moments. For the first month, the parameters of the model given in (4.60a) are

obtained as

A, = Sy, xS%% (4.62)

B\B| = 8Sy.y, — AiSxy, (4.63)
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and for month m, m = 2,...,12, the parameters of the model given in (4.60b) are
obtained as
A, = :symx — Sy,¥m . Sy. _lym_lsym_lx] x
Sxx —8xv0 157"y, Svuix] - (4.64)
O = :symym_l - Amsxym_l] Syl o, (4.65)
BB, =Sy.v. — AuSxv, — CuSy, ¥n (4.66)

The main advantage of Lane’s model is the reduction of the number of parameters.
It requires fewer parameters than the full Valencia-Schaake model because it does
not explicitly preserve high-lag month-to-month correlations. A shortcoming of the
model is that the monthly data do not exactly add up to give the annual time series
because the months are not generated jointly. Lane concluded that the benefit of
the parameter reduction far outweighs this shortcoming. In fact, it should be noted
that the additivity problem is common to all disaggregation models if the data are
transformed to normal. The solution to this problem is to adjust the seasonal flows so

that they add up exactly to the annual values.

4.4.4 Streamflow Adjustment Procedure

When the transformed flows rather than the original observed flows are modeled,
generated monthly flows generally fail to sum to the previously generated annual flow.

Therefore, generated monthly flows need to be adjusted in order for their sum to equal
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the generated annual flows. Several flow adjustment procedures are proposed in Lane
[1979] and Stedinger and Vogel [1984] and a comparison of these procedures has been
done by Grygier and Stedinger [1988]. In this project, two adjustment procedures are

employed.

Proportional Adjustment

Grygier and Stedinger [1988] found that the proportional procedure distorted low flows
less than other procedures. In the proportional procedure, in order to preserve the ad-
ditivity property in year ¢, the corrections are allocated proportionally to the originally

generated monthly flows ¢;,,, by multiplying by a factor d.

G = deim, m=1,...,12 (4.67)

The factor d; is calculated as

Em:l Qtm

where ¢, is the generated annual flow. After this adjustment the sum of adjusted
monthly flows (gf; + - - - + ¢}1,) will be exactly equal to g;.
This procedure is also used in the software packages LAST [Lane, 1979], SPIGOT

[Grygier and Stedinger, 1990], and SAMS2000 [Salas et al., 2000].
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Standard Deviation Adjustment

[Lane, 1979] proposed to adjust flows in proportional to their standard deviation

G = Qm + dtSm, m=1,...,12 (4.69)

where the factor d; is calculated as

12
g, = % 2om= Gom (4.70)
Zm:l Sm

where s,, is the standard deviation of the month m.
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Chapter 5

Single-Site Markov-Switching

Model

5.1 Introduction

In recent years, there has been a growing awareness of the existence of low-frequency
climate signals that affect the hydrology of many parts of the world. Low-frequency
climate variability can often be associated with oceanic circulations because the oceans
provide the inertia needed to sustain variability at decadal time scales. Although our
understanding of the physics that govern these oceanic circulations and their relation-
ship to surface climate is incomplete, observations confirm their existence.

Several ocean driven mechanisms have been linked to the climate of North America.
The El Nifio-Southern Oscillation has received much attention, because of its strong

impact on the global climate. El Nino is an intermittent phenomenon, occurring
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Figure 5.1: Cycles observed in PDO-Index and Columbia River
with irregular intervals of typically 4-7 years. Other phenomena tend to have a more
regime-like occurrence, often sustained over periods of several years. Examples include

the North Atlantic Oscillation (NAO) which has been found to have an impact on

the North-Eastern part of North America and the Pacific Decadal Oscillation (PDO)

which has been linked to the climate of the North Western part of North America [Neal
et al., 2002; Spence, 2002; Hsieh et al., 2003]. As seen in Figure 5.1, the annual PDO-
Index has obvious cycles, remaining for extended periods above or below the historical
average. This is particularly obvious when considering the 5-year running average.
Although not quite as obvious, a similar tendency is observed in the unregulated

annual streamflow of the Columbia River (at Nicholson, British Columbia, Canada).

The existence of cycles such as those observed in Figure 5.1 cannot be explained by
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Figure 5.2: Annual Aggregated Basin Flows 1912-98. Normalized anomalies and 5-yr
running average.

pure randomness. Moreover, one might suspect that traditional time series models such
as ARMA-type models fail to provide a good description of the characteristic cycles.
Stochastic time series models are often employed in drought and management studies.
Failure to adequately reproduce cycles obviously may lead to erroneous conclusions.
Therefore, as a preliminary analysis, the observed annual streamflow data for Manitoba
Hydro were analyzed to identify if there is evidence of long-term wet and dry cycles.
When the annual observed streamflow data of Manitoba Hydro are smoothed by a
5-yr running average, distinct wet and dry periods are revealed at all sites. Figure
5.2 illustrates these wet and dry periods for Aggregated Basin Flows, that is, the
sum of the five sites of Manitoba Hydro’s system. The 5-yr running average of each
of the five sites of Manitoba Hydro system is given in Appendix A. The occurrence
and persistence of wet and dry periods are clearly visible at all sites. They may be
considered to be a result of the complex climate dynamics that influence the North

American climate.
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The above observation motivates a search for alternative time series models, in par-
ticular models that can mimic the regime-like behavior of Manitoba Hydro’s streamflow
data. In this research project, models that can be used in ‘simulation mode’, which
effectively excludes the possibility of using climate indices such as PDO and NAO as
conditioning variables, are of particular interest.

In stochastic time series models, the generated synthetic series should be statis-
tically similar to the observed series, but should provide a wider range of scenarios.
As mentioned previously, statistically similar implies that basic statistics such as the
mean, the variance, and the autocorrelation function of the variable of interest are well
preserved by the model. However, when cycles are prevalent, other criteria may be
needed. In fact, the autocorrelation function alone may not be sufficient to adequately
describe the persistence structure of the data, although in the literature autocorrelation
and persistence are often used synonymously.

In this chapter, a class of models called Markov-Switching (MS) models for mod-
eling single-site annual hydrologic time series is presented. In the literature, they are
also referred to as hidden Markov models or Markov mixture models. The motivation
for adopting this type of model in hydrology is the assumption that the climate regime
of each year can be described by a state variable that can take only a limited number
of values, typically 2-3. The state variable evolves in time according to a discrete
Markov chain, described by a matrix of transition probabilities. The sequence of state
variables for an observed series is not known. The assumption is that an observed

hydrologic variable arises from a statistical population whose parameters depend on
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the particular state in which the climate is. Hence, to simulate a synthetic series of
for example annual runoff from an MS model with all parameters specified, one would
first simulate the state series using the transition probabilities of the Markov chain
and then generate the annual runoff for each year from a distribution whose parameter
depends on the state for that year.

MS models have been applied in different fields, including speech recognition,
econometrics, ion channels, image analysis, and DNA composition. In hydrology, the
idea of a Markov-Switching model was applied thirty years ago by Jackson [1975]. A
major challenge at the time was the estimation of model parameters. In recent years,
significant progress in the area of MS processes has been made, including the develop-
ment of efficient algorithms for estimating parameters. There have also been a number
of recent applications in hydrology, including Wilks [1998], Hughes et al. [1999], Lu
and Berliner [1999], Thyer and Kuczera [2000], Thyer and Kuczera [2003a, b], and
Kehagias [2004].

The MS model also has close links to the Shifting Level (SL) model proposed by
Salas and Boes [1980]. In fact, as pointed out by Fortin et al. [2004], the SL model
can be considered a special case of the MS model.

In this chapter, several objectives of the research project are addressed. After for-
mulation of the single-site MS model, the statistical properties of the model, including
the marginal distribution, moments, and autocorrelation function, are developed and
discussed. Two methods of implementing maximum likelihood estimators, one based

on direct numerical maximization of the likelihood function and the other based on
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the Expectation-Maximization (EM) algorithm are presented. Although the EM algo-
rithm is somewhat elaborate, the method can be easily implemented on a computer.

Finally parameter uncertainty is integrated into the MS model.

5.2 Formulation of the Single-site MS model

There are several variants of MS models. In this research project, a relatively simple
version of the model which provides an adequate description of Manitoba Hydro’s data
is employed. More specifically, it is assumed that the process in question is stationary
and switching between M climate regimes (or states). It may be useful to think of
climate regimes as for example dry, normal, and wet spells. The particular regime
is described by a state variable s; which can take discrete values from 1 to M. The
state variable is unobserved and is therefore referred to as a hidden variable. The
observed variable g, is assumed to have been drawn from a probability distribution
whose parameters are conditional upon the particular state prevailing at time ¢. It is
also assumed that given the state sequence, ¢; is independent of previous observations.
Although in principle there is no restriction on the type of distributions used to describe
G, it is here assumed that ¢; is normally distributed with mean and variance that are
specific to the state. To generate q;, one would first simulate the state series using the

transition probabilities; then given s;, ¢;: would be generated as

¢ = i, + 05,6, t=1,...,T . (6.1)
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where €; ~ N(0,1) is a standard normal variable, and u,, and o, are the state depen-
dent mean and standard deviation of a normal distribution.

The unobserved discrete state variable s; may be dependent upon s;_1, 8¢—2,. .., St—r
in which case the process of s; is an r-order Markov chain. In the above model, it is
assumed that the state variable s; follows an M-state first-order Markov chain with

transition probability matrix

P =[p;] =Pr{s; = jlss-1 =14}, 4,j=1,....M (5.2)

where Zﬁl p;; = 1. Persistence in ¢, is inherited exclusively from the characteristics of
this Markov chain. Therefore, drought properties of synthetic runoff series generated
from the MS model are closely linked to the transition probabilities of the Markov
chain.

In summary, the MS model is described by the (MxM )-matrix P of transition prob-

abilities and the 2M parameters of the normal distribution of each state, (11, 071, ti2, 02,

)

5.3 Theoretical Properties of the MS model

In this section, the statistical and stochastic properties of the MS model described
above are examined. The focus will be on analytical expressions for the mean, the
variance, and the coefficient of skewness of gq;, its statistical distribution over time, as

well as its autocorrelation function. These are properties that are commonly used to
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judge the adequacy of hydrological time series models.

5.3.1 Stationary Probabilities of the Markov Chain

Many of the following expressions involve the stationary probabilities, 7;, of the Markov
chain, that is, the probability that the Markov chain will be in state ¢ at some time
into the future where the effect of the initial state has vanished. For an infinitely
long sequence, m; may alternatively be interpreted as the fraction of time the chain
is in state 7. Given the transition probability matrix P, the stationary probabilities

m = (7,7, ..., Ty) can be obtained by solving P'r = 7 subject to ZM m; = 1 which

i=1
can also be written as 1%,m = 1, where 1), denotes an (M x 1) vector of 1’s. Using
these equations, the vector  must satisfy Am = epr,1, where epr.; denotes the last
column of the identity matrix, I'y1; and A denotes the (M + 1) x M matrix
Iy — P
A= (5.3)
T
Then,

7= (A'A) Ay (5.4)

For example, for the two state MS model (M = 2), the stationary probabilities are

m=—2 and mp=—P2 (5.5)
P12 + P21 P12 + P2
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5.3.2 Marginal Distribution of Observed Variables

Assuming that all state distributions are normal, then if the process is in state 1, the
observed variable ¢; will be drawn from a N(u;,0%) distribution, if the process is in
state 2, it will be drawn from a N(ug,03) distribution, and so on. The density of g;

conditional on the state variable s; = ¢ can then be written

— u:)?
f(qtlst = 7’7¢) = \/2171_'0_. exp {—Qt_éazil)_} ’ i=1,...,M (56)

where ¥ = (p1, ..., p, 0%, ...,05) is a vector of population parameters. The joint
density of the observed variable ¢; and the unobserved variable s; is the product of the

conditional and marginal densities

(s, s¢ = iln) = flqi|se = 4,9) Pr{s; = i;p} (5.7)

where p = (p11, P12, - - -, Parnmr ) denotes the (M? x 1) vector of Markov transition prob-
abilities, the parameter vector = (¥,p’), and Pr{s; = i;p} = m;, where p is the
vector of the Markov chain parameters. The marginal or unconditional density of g;

is obtained by summing over all possible states

M 2
fladn) = 3 me—oxp { -l 59)

which is a mixture of M normal densities.

There is an extensive statistical literature on mixture densities. Mixture density
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functions have been found to be quite flexible compared to conventional distributions
which of course is no surprise since they generally have more parameters. For example,
it has been found that a mixture of 2-3 normal distributions can approximate a log-
normal distribution quite well [McLachlan and Peel, 2000]. Thus there is hope that
the MS model will provide a good reproduction of the marginal distribution of runoff,
q:, although the marginal distribution is a complex function of transition probabilities
and M sets of normal density parameters. This point is further investigated in Chapter
8.

It is worth noting that the flexibility of the mixture density is likely to eliminate
the need for transformation of the data. This is in contrast to more conventional time
series models that rely on the normal assumption and which in many cases require

prior transformation of the data.

5.3.3 Moments of the MS Model

The moments of ¢, in particular the mean value, the variance, and the coefficient of
skewness, are of significant interest in hydrological time series models. Assuming that
the state process starts with a random draw from the stationary distribution, order R

central moments of the MS model can be obtained from the principle of conditional
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expectation as follows:

E[(g:— W = E[E [(& — w)"s¢]]
=E [E [{(1s, — 1) + 05,6} |54] |

= i” 3 (R> (s — w)* "ol Ele]] (5.9)

where the last expression has been obtained using the binomial formula. Under the

assumption that ¢, ~ N(0, 1), it can be shown that

4
1 when r =0
Ele]l =9 [I;/2(2¢—1) when r is even (5.10)
0 otherwise
\

The mean value, the variance, and the coefficient of skewness of ¢; can be readily

obtained using the general formula [Timmermann, 2000]:

p = Elg] =Z7fz' i (5.11)
= El(q: — w)’] = Z mi (i — 1)* + o7 (5.12)
. — E[(Qt u) | _ s Z”w (s — 1) + 302 (s — )] (5.13)
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5.3.4 Autocorrelation Structure of the MS Model

Another model property of interest is the autocorrelation function of ¢;. For a lin-
ear, normal model, the persistence structure of the process is entirely described by
the autocorrelation function. For a nonlinear, non-normal model, the autocorrelation
function will not describe all aspects of the persistence structure, but it remains a key
property that should be reasonably preserved by the model.

Let v = E [(¢: — p)(gt—r — p)] denote the lag-r autocovariance of g;. To derive an
analytical expression for this function, one can first substitute (5.1) into the definition

of the autocovariance function:

Y = E (g — p)(ge—r — 1))
=F [(,U'Sg + Os:€ — :u')(/J'St—r + Osy_€t—r — ,U,)]

= E [ps,pbse_.] —1°, T=12,... (5.14)

The last expression is obtained by noting that all product terms involving €; and
€ vanish after taking expectation. Also, since Elus] = Elps,_,] = 1, we have
Elps, i) = Elps,_,p} = p2. It should be noted that (5.14) cannot be used to calculate
the variance (r = 0), since for that case the term FE[e?] must be considered. The
variance must be obtained using (5.12). From the above expression, it can be seen that

the autocovariance of ¢; is entirely determined by the Markov chain and its associated
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mean levels. The first term in the last line of (5.14) can be calculated as

M M
E[,ustlu’st—r] = Z Z M i PI‘{St =J,St—r = Z}

i=1 j=1

M M
=3 ujpiPr{s, = jlss—r = i} Pr{s, , = i} (5.15)
i=1 j=1

Here Pr{s; . =1} =m; as defined earlier, and from the theory of Markov chains, it is
well known that Pr{s;=j|s;—, =t} can be obtained as the (4, §)’th entry in the matrix
P7, where P is the one-step transition matrix. If we define II to be the diagonal
matrix containing 7y, ..., on the diagonal and g = (1, ..., pn)’, then the double

summation in (5.15) can be written concisely as Elus,pts, ] = p'TIP"p. Therefore
Ye=pTP p—p?, r=12... (5.16)

In most situations, it is more useful to consider the autocorrelation function which
may be obtained as

pr=%, r=1,2,... (5.17)

where o2 is given in (5.12). Equations (5.16) and (5.17) suggest an exponentially decay-
ing autocorrelation. Salas and Boes [1980] observed that the autocérrelation structure
of their Shifting Level model was equivalent to that of an ARMA(1,1) model. The
same applies to the MS model. More specifically, Poskitt and Chung [1996] showed
that the autocorrelation structure of the M-state Markov chain process is equivalent

to that of an ARMA(M —1, M —1) process. For example, a 2-state MS model has
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the same autocorrelation function as an ARMA(1,1) model. In other words, it is in
principle possible to find an ARMA model that has exactly the same autocorrelation
function as a given MS model. Of course, the models may differ in other aspects such
as marginal distributions. However, even with identical autocorrelation functions and
marginal distributions, the structure of MS models and ARMA models are fundamen-
tally different and therefore may lead to different results in terms of more complex

simulation statistics [Akintug and Rasmussen, 2005b).

5.4 Parameter Estimation of the MS Model

The lack of efficient estimation methods for some years prevented the MS model from
gaining popularity. In recent years, there has been significant interest in MS models
and this has among other things led to the development of efficient algorithms for
parameter estimation.

Because of the relatively high number of parameters in MS models, the method-
of-moments is not likely to produce good estimates [Andel, 1993]. The method of
maximum likelihood holds more promise. In this section, two possible implementations
of the maximum likelihood method for MS models are briefly outlined.

The following notation will be needed. Let Q@7 = (¢1,¢2,---,qr)’ be a vector of
observations and St = (s1, 8a, .. ., $7)’ be the associated (unobserved) state variables.
The MS model in (5.1) is described by the parameters of the normal densities associated
with each state, 9, and the transition probabilities vector, p. Since the rows in P must

sum to 1, not all elements of P need to be considered. For example, a 2-state Markov
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chain is entirely described by two probabilities. In order to start the simulation, the
algorithm described below also requires an assumption about the distribution of the
first state variable, s;. It will be assumed that the initial states are drawn from a
probability distribution, whose parameter vector is @ = (g1, 02, . - -, 0m)’, Where g; =
Pr{s; = i|@Qr}. Hence, the complete parameter set of the MS model is 8 = (', 9, ¢')’.
These are the parameters that must be estimated from an observation sequence Q7.

Given the model parameters @, the joint density of (Qr,St) can be expressed as

p(Qr,S7|0) = f(Qr|ST,0) Pr{S7|0} (5.18)

where the two terms on the right-hand side are

f(QT|ST70) = Hf(Qtl:u'Sﬂ USt) ’ (519)
Pr{S7i8} = ¢u, [ Pr{(suealss)|P) (5:20)

t=1

Note that it specifically has been assumed that f(g:|ys,,0s,) is a normal distribution.
If both @1 and St had been observed, one could readily compute the complete-data

likelihood function as

1(6\Qr,St) = p(@Qr,ST|f)
T-1 T
= on [[Prlseals)lP [ F@ltmnn)  (521)

Since the likelihood function cannot be conditioned on the unobserved state vari-
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ables, it is necessary to eliminate St from the joint density by marginalization. This

requires summation over all possible state sequences:

10|Qr) = p(Qr|0)
= Z p(QT;STlo)

All St
T-1

= os [[ Pr{(sesals) P ] f(@ltsers 0s0) (5.22)

All S7 t=1

In the above form, the likelihood function is intractable because of the need to
sum over all MT possible state sequences. However, noting that for each ¢, the state

variable s; appears only in a few factors, (5.22) can be simplified to

M M
10|Qr) = Z 05, F(q1| 515 05,) Z Psys5 f (2] s5, 055)

s1=1 89=1
M
toe Z psT_lsTf(QT“/fsT, O'ST) (523)
spr=1

In matrix form, (5.23) can be written concisely as [MacDonald and Zucchini, 1997]

101Qr) = A, (ﬁ At> 15 (5.24)

t=2

where

Qlf(Q1|M1,01)

om faq1lttne, onr)
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Pllf(Qtlﬂl,Ul) Ple((ItWM,UM)
A= : : :

] o f(@elpr,o1) - Pummf(@lpn, om) ]
and 1, is a M-dimensional column vector of 1s. Calculation of the likelihood function
via (5.24) is straightforward. A numerical procedure must be employed to find the 8
that maximizes (5.24).

An alternative way to implement the maximum likelihood method is the Expectation-
Maximization (EM) algorithm. This method was originally devised by Dempster et al.
[1977] to handle the case of missing data, but has been adapted to MS models [Bilmes,
1998; McLachlan and Peel, 2000]. The EM algorithm may have some advantages over
direct numerical optimization. It is relatively easy to implement and it is found to be
more robust than direct maximization of the likelihood function. In addition, the EM
method produces some useful statistics as a byproduct.

The EM algorithm is an iterative approach that cycles through two steps called the
expectation (E) step and the maximization (M) step until a local or global maximum of
the likelihood function is found. In the EM implementation, the log-likelihood function

is conditioned on both the observations Q7 and the unobserved state variables S7. The

log-likelihood function is obtained by taking the logarithm of (5.21)

T-1 T
log(8|Qr, St) =1log o, + > _logPr{(si|s)|P} + > f(altters0s)  (5.25)
t=1 t=1

St is unobserved, but given the observations @Qr and some estimate of @, one
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can calculate the expectation (over the possible M7T state sequences) of the complete
likelihood function which is the first step (E-step) of the EM-algorithm. The key
component in the implementation of the EM-algorithm is to define a function for the
expected value of the log-likelihood function.

Given the observed flows Q7 and the MS model parameters, 8, the following prob-

ability sequences are of interest:

Pr{s; =1i|@Qr,0}, i=1,....M;t=1,...,T (5.26)

Pr{s; =i, 841 = j|Qr,0}, 4j=1,....M;t=1,....T—1 (5.27)

Specifically, Pr{s; = i|@r,0} is the probability of being in state ¢ at time ¢ and
Pr{s; =1, st+1 = j|@r,0} is the joint probability of being in state ¢ at time ¢ and state
j at time £ + 1, given the observed data. These two probabilities are key elements
in Markov-Switching models [Rabiner and Juang, 1986] and in the EM estimation
procedure. Their estimation is discussed further in Section 5.5.

Once the above probabilities have been determined as discussed in Section 5.5, it
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is straightforward to express the expected log-likelihood function as

Q016™) = Ellogl(6|Qr,ST)|Qr,60%]

M
= Z Pr{s; = i|Qr,0%} log o;
i=1

M M T-1

+3 NN Pr{s, =i, 5001 = §1Qr, 0P} log py;

i=1 j=1 t=1

M T
+ D Prise = ilQr,60P}log f(ailui, oF) (5.28)

i=1 t=1

where %) is the current estimate of . The probabilities Pr{s; = i|Qr,0®} and
Pr{s; =1, 5:11 = j|Q@r,0%} are estimated using 8®) in place of 8. The expectation is
over the possible sequences of the unobserved St, given the observation Q7 and the
model parameters 8%). Therefore, (5.28) is a function of @ only. This completes the
E—sfep of the EM-algorithm.

In the M-step of the EM-algorithm, the expectation of the log-likelihood function,
Q(6/6%)), is maximized with respect to §. This leads to a new estimate of the model
parameters that improves the current estimate and becomes the next value of  in the

iterative EM-algorithm. More specifically,
0%+ — arg max Q(0,0%) (5.29)

The E- and M-steps are repeated until the difference between 8*+1 and 8%*) is smaller
than some specified convergence criterion. The final value of 8%*) is a local maximum

of the log-likelihood function. Generally, it will also be the global maximum. In our
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applications of the model to hydrological and climatic data, cases have not yet been
encountered where there were reasons to believe that a global maximum had not been
found [Akintug and Rasmussen, 2005b]. The estimation procedure appears to be quite
stable. As a byproduct, the estimation also gives the probability distribution of St.
A closer inspection of (5.28) shows that its maximization is greatly simplified by the
fact that its three terms involve different parameters and therefore can be maximized
individually. The first term involves only the parameter p; and can be maximized
using the method of Lagrange multipliers to ensure that Zfil 0; = 1. This gives the

intuitive result:

o) = Pr{s; =i|Qr,0®}, i=1,... M. (5.30)

Similarly, transition probabilities can be obtained from the second term in (5.28).

Using again the Lagrange method to ensure that Z;‘il pij = 1, one finds

p(k+1) — 23:11 PI‘{St =1, 5t41 = j'QT7 0(k)}

: Cdj=1,...M. 5.31
: ST Pr{s, = i1, 0®} 7 (531)

Finally, using the third term in (5.28), the parameters of the state distributions

(normal distributions) can be obtained as

“(_k+1) _ Z;‘F=1 Pr{s; = iIQTﬁ(k)}Qt
' S Pr{s;=iQr,0W} ’

=1,...M. (5.32)
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2
23;1 Pr{s; = i|Qr, 0%} (% - ,u,ng))
S Pr{s; =i|Qr,0®)}

2)(k+1) _ , i=1,...M. (5.33)

(UZ

Note that in the above expressions Pr{s; = i|@Qr,0%} and Pr{s; =1, s;41 = j|Qr,0%}
are estimated using the old parameter vector ). It should be clear that the key to
implementing the EM-algorithm is the calculation of Pr{s; = i|@Qr,8®} and Pr{s; =
i, 8041 = §|@Qr,0%}, described in detail in the following section.

In order to start the iterative estimation algorithm, initial parameter estimates are
needed. A number of techniques can be used to select the initial estimates of the model
parameters [Rabiner, 1989]. It was found that the estimation procedure is quite robust
to the specification of starting values. A simple approach consists of using the empirical
distribution of ¢; to determine M equiprobable ranges. The initial parameters u; and
o; are estimated from the members of each range. Similarly, transition probabilities
may be obtained by counting the empirical frequency of transitions. The probability
distribution of the first state may be set to g; = 1/M.

The EM algorithm for estimating the parameters of the MS model may be sum-

marized as follows:
1. Select initial parameter values, 81, and set k = 1.

2. Using the current parameter values, calculate Pr{s; = i|Qr,0%®} and Pr{s; =

i,5041 = 7|Qr,0%} according to the procedure given in the following section.

3. Obtain an improved estimate of the parameter 8(+1) using Equations (5.30)-

(5.33). Update k.
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4. Compare the new parameter estimates with the previous ones and determine if

the specified convergence criterion is satisfied. If not, return to point 2.

Hamilton [1990] suggested to stop when |[@*+1) — 9(®)| is less than 1078, however,
it was experienced in this project that this is not a good choice for all parameters.
Different convergence criterions should be applied to distribution parameters and to
transition probabilities because u; and o; are scale dependent whereas transition prob-
abilities are limited to [0,1].

Both ML algorithms described above were employed to Manitoba Hydro’s stream-
flow data and in the large majority of cases identical solutions were obtained. At rare
occasions, one method may find a local optimum. A change of initial values typically
would resolve this conflict. It was found that the EM algorithm is slightly more robust

than direct optimization, albeit not necessarily faster.

5.5 Estimation of State Probability Sequences

The EM algorithm requires estimation of the probabilities Pr{s; = |@r,0} and
Pr{s; = 4,8¢41 = j|@r,0}. Two possible methods to estimate these probabilities

are outlined in the following sections.
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5.5.1 Forward-Backward Algorithm

Define the forward variable ¢;(t) to be the probability of observing the partial sequence

41,92, - - -,qs, and ending up in state ¢ at time ¢:

a;(t) = fla, @, - - -, @, St = i|0) (5-34)

and the backward variable (;(t) to be the probability of observing the rest of the

sequence ¢iy1, gi+2, - - - , 4T, given that the state at time ¢ is i:

Bi(t) = f@t+1, Ger2, - - - |8 = 1,0) (5.35)

It is possible to express (5.26) and (5.27) in terms of o;(t) and G;(t) as

(1) 5: (T
Pr{s, = ilQr, 8} = — (AW (5.36)
Zi:l az(t)ﬁz (t)
. . @ ()pi; 5,008t + 1
Pr{s; =i, 5011 = §|Qr,0} = —3 SVI)P i (Qer1|pi, 03) 85 ( ) (5.37) L
> im1 Djmn @(8)Pii (@1l 03) B3 (E + 1)
To estimate o;(t) and G;(t), the following algorithm can be used.
The Forward Algorithm
The forward variable, a;(t), ¢ = 1,2,..., M, can be calculated recursively as follows:
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1. Initialization: For t =1
a;(1) = oif(q1|piy00), i=1,2,...,.M
2. Induction: For t =2,3,...,T
M
a;(t) = (Z ai(t — 1)1%') flaelps, o), 7=12,....M
=1

The Backward Algorithm

The backward variable, 5;(t), i = 1,2,..., M, can be calculated as follows:

1. Initialization: For t =T
GiT)y=1 3j=12,....,.M
2. Induction: For T —1,T —2,...,1

M
Bit) =Y piif(@lu,03)Bi(t +1), i=1,2,...,M

j=1

(5.38)

(5.39)

(5.40)

(5.41)

More details about this algorithm are provided in Rabiner and Juang [1986], Bilmes

[1998], and McLachlan and Peel [2000].

It was found that the calculation of the sequences a;(t) and (;(t) as described

above is numerically unstable. This is not surprising since they involve products of up

to T' terms, each one smaller than 1. Even for relatively small samples, the precision
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capacity of the computer is quickly reached. Several re-scaling techniques have been
proposed to overcome this problem [Lerouz and Puterman, 1992; Rabiner, 1989]. One
possibility, described by Rabiner [1989), is to re-scale a;(t) and §;(t) by normalizing

them over all states. The procedure starts by calculating a;(1) as above and then scale

it as
i(1 .
sy =30 1o M (5.42)
Zj:l a;(1)
where 6;(1) is the scaled value. Fort =2,3,...,T, 04(?) is calculated recursively based

on the re-scaled values

M
a%(t) = (Z &J(t - 1)pﬁ> f(Qt|/~L‘La Ui) 3 1= ]-a 27 s >M
j=1

(1) =

_ G i -1,2,..., M. (5.43)
Zj:l a;(t)

The same procedure is used to re-scale §3;(t). For t=T, one can set 5;(T) =1, i =

1,2,..., M, and calculate the scaled coefficient set Bi(T) as

[—”347’):%, i=1,2,...,M. (5.44)

Thenfort =T —1,T —2,...,1, B;(¢t) is calculated as

M
Bit) = piif(qalu 0Bt +1), i=12,....M

=1

Bi(t) :-Z—Jﬂ—z-l%(—t) , i=1,2,...,M (5.45)
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Because the calculation of Pr{s; = i|Qr,0} and Pr{s; = %, s;11 = j|Qr,0} involves
ratios of a;(t) and S;(t), the re-scaling factors cancel out. Therefore, &;(t) and Bi(t)
can be used directly in (5.36) and (5.37) in lieu of o;(¢) and G;(t).

It was found that the scaling procedure is necessary in most cases and that it

eliminates any numerical instability.

5.5.2 Kim’s Algorithm

Kim [1994] presented an alternative to the Forward-Backward algorithm explained
above. This algorithm is valid when s; depends on past observations only through
the value of s;_; and future observations only through the value of s;1;, and the
conditional density of ¢; in (5.6) depends on s;,S;—1,... only through the current
state s;. Let @;_1 = (q1,42,...,q:—1) represent observations up till time ¢ — 1 and
Q7 = (q1,9s, - - ., qr) represent all observations. Given parameter estimates of the MS
model, Kim’s algorithm consists of two sub-algorithms. In the first sub-algorithm,
called the filtering algorithm, the (T x M) matrix of filtered probabilities Pr{s;, =
j|@:, 0}, for 5 =1,..., M, are calculated and in the second sub-algorithm, called the
smoothing algorithm, the (T x M) matrix of smoothed probabilities Pr{s; = j|Qr,0}

for j =1,..., M are calculated.
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Filtering Algorithm

Step 1: Given Pr{s;_; =i|Q; 1,0}, =1,..., M, the probabilities Pr{s; = j|Q;:_1,0},

j=1,..., M, are calculated as

M
Pr{s; = j|Q:1,0} = Z Pr{s; = j,51-1 = i|Q¢-1,0}
i=1

M
= ZPr{st = jlss—1 = i} X Pr{s;—1 = 4|Q:-1,0} (5.46)
i=1

where Pr{s; = j|s;-1 = i} = p;; are transition probabilities.

Step 2: After observing g; at time ¢, the probability term can be updated as

PI'{St = ]IQho} = PI‘{St - j|qt7 Qt—l:o}
_ p(gs,8: = j|Qs—1,0)
f(a:|Q:-1,0)
_ false = J,Qs-1,0) x Pr{s; = j|Q:-1,0}
Z;’le flaelse = 4,Q¢-1,0) x Pr{s; = j|Q:—1,0}

(5.47)

where Q; = {Q:—1, ¢}

The above two steps may be iterated for ¢t = 1,2,..., T to obtain Pr{s; = j|Q:-1,0}
and Pr{s; = j|@;}. However, in order to initialize step 1, Pr{sp = ¢|Qo} is needed.

The stationary probabilities 7; can be used instead of Pr{sy = i|@o} at t = 1.

Smoothing Algorithm

After obtaining Pr{s; = j|Q:-1,0} and Pr{s; = j|Q:,0} in the filtering algorithm,

inferences can be made on s; using all the information in the sample and Pr{s; =
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i|Qr,0} fort =1,2,...,T.
Step 1: Consider the following derivation of the joint probability that s; = 7 and

st+1 = k based on the full data set:

Pr{s; = j, se41 = k|Qr,0} = Pr{s¢11 = k|Qr,0} x Pr{s; = j|s;11 = k,Qr,0}

= Pr{s;y1 = k|Qr,0} x Pr{s; = j|s;11 = k,Qs,0}
_ PT{8t+1 = k|QT70} X PI‘{St =7,8t41 = k,Qt,o}
Pr{siy1 =k, Q:,0}
_ Pr{ssr1 = k|Qr,0} X Pr{s: = j|Q:,0} x Pr{s; = j|sty1 = k}
Pr{3t+1 = k)ano}

(5.48)

Step 2: Once the joint probability Pr{s; = j, st11 = k|@7,0} has been calculated,

state probabilities Pr{s; = j|@r,0} can be obtained as

M
Pr{s, = j|Qr,0} = > Pr{s: = j, 511 = k|Qr,0} (5.49)

k=1

Given the last iteration of the filtering algorithm, Pr{Sr = i|Qr,0}, the above
two steps can be iterated backwards for t =T — 1,7 — 2,...,1 to get the smoothed
probabilities, Pr{s; = j|@r,0}. Unlike the Forward-Backward algorithm, there is no

numerical instability in Kim’s method and its implementation is relatively easy.
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5.6 Identification of the MS Model

In Section 5.4, it was assumed that the order of the MS model to be estimated was
known. The optimal number of states is usually not known a priori and must be
selected based on objective criteria. This is similar to identifying the optimal order
(p, q) of an ARMA(p, ¢) model. In fact, because of the similarity between the autocor-
relation functions of MS and ARMA models, one approach could be to estimate the
number of states by examining the autocorrelation of the best-fit ARMA(p, ¢) model
and use the information about p and q to choose the appropriate number of states in
the MS model [Zhang and Stine, 2001].

In statistical analyses, model selection is often based on some measure related to
the likelihood function. Examples include the likelihood ratio test [Hansen, 1992],
the Akaike Information Criterion (AIC) [Akaike, 1974], and the Bayesian Information
Criterion (BIC) [Schwarz, 1978]. Fraley and Raftery [1998] suggested that the BIC
may be a good choice for the MS class of models. The BIC for the M-state MS model
is defined as

BICy = —2log L(0.|Q7) + das log(T) (5.50)

where L(03,.|Qr) is the data likelihood function given in (5.24), evaluated at the
maximum likelihood estimate of 8, djs is the number of independent parameters in
the M-state MS model, and T is the number of observed data. For a model with M

states, dys = M? + M. Preference is given to models with low BIC values.
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5.7 Incorporating Parameter Uncertainty into the

Single-Site MS Model

As in the case of the AR(1) model, parameter uncertainty for the single-site MS
model will be approached from a Bayesian perspective. The posterior distribution of
the AR(1) model parameters could be derived analytically and because it takes the
form of a standard probability distribution, the parameters of the model can be drawn
directly from that posterior distribution. In the Bayesian analysis of MS models, both
the parameters of the model, 8, and the states variables s;, ¢ = 1,2,...,T, must be
treated as random variables. However, in this case, a standard analytical expression
of the joint posterior distribution of the parameters is not possible.

When the posterior distribution cannot be expressed in analytical form, Markov
chain Monte Carlo (MCMC) methods may be used to draw samples from the poste-
rior distribution [Gelman et al., 1995; Gemerman, 1997; Gilks et al., 1998]. A brief

explanation of MCMC methods is given in the following section.

5.7.1 Markov Chain Monte Carlo Methods

It is often possible to represent the behavior of a physical system by describing all
the different states the system may occupy and by indicating how the system moves
from one state to another in time. A Markov chain is a sequence of random values
whose value at a given time depends only upon the value at the previous time step.

The controlling factor in a Markov chain is the transition probability, which is the
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conditional probability for the system to go to a particular state, given the current
state of the system.

Numerical methods which involve random sampling are called Monte Carlo meth-
ods. Monte Carlo methods have been used for centuries, but only in the past several
decades has the technique gained the status of a full-fledged numerical method capable
of addressing the most complex applications.

MCMC method together with the Bayesian framework is a powerful method in
the quantification of parameter uncertainty. This stochastic simulation technique is
able to reproduce the statistical joint distribution of the whole parameter set of any
model. There has been an explosion in the use of MCMC in statistics and hydrology
over recent years, primarily because of their application in Bayesian inference. The
basic idea of MCMC methods is to simulate a Markov chain sequence where at each
iteration a sample of the model parameters are generated so that any desired feature
of the posterior distribution may be accurately summarized. Given certain conditions,
the distribution of these samples converges to a stationary distribution which is the
posterior distribution. MCMC methods make possible the use of flexible Bayesian
models that would otherwise be computationally infeasible. The last decade has wit-
nessed a burst of activity in applying Bayesian methods to parameter uncertainty in
hydrology. Most of these applications have used MCMC methods to simulate poste-
rior distributions [Kuczera and Parent, 1998; Bates, 2001; Campbell and Bates, 2001;
Thyer et al., 2002; Bell et al., 2002).

There are many different MCMC techniques but the most fundamental are the
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Metropolis-Hastings algorithm and the Gibbs sampler. The Gibbs sampling method

seems the most efficient technique to apply to the MS model.

Gibbs Sampler

Where the form of the full conditional distributions of parameters are known, these
may be used to obtain candidate parameters. The Gibbs sampling is appropriate when
sampling from the marginal distributions is not convenient or possible. Details of the
Gibbs sampler can be found in Smith and Richman [1993], Chen et al. [2000], and
Gemerman [1997], and an excellent tutorial on this technique is provided by Casella
and George [1992]. This technique has also been widely used in hydrology [Sanso and
Guenni, 1999; Thyer and Kuczera, 2000].

In Gibbs sampling, each component of the model parameter vector is drawn from
the distribution of that component conditioned on the data and the remaining param-
eters. This distribution is referred to as the full conditional distribution.

The Gibbs sampler is based on the following algorithm:

Step 1: Initialize the iteration counter to k = 1 and the parameter vector to #©® =

(0:{0)’ MR ] (SO))T
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Step 2: Draw a new value 8% from the full conditional distributions

6"~ p(6,]0F Y, 68, 6D

6P~ (6,160,087, 08

k k k k -

Step 3: Set k =k + 1, and return to step 2.

Since each simulated parameter vector depends only on the previous simulated
parameter vector, and not on any other previous values or the iteration counter &, the
Gibbs sampler algorithm defines a homogeneous Markov chain.

Although the Gibbs sampler appears to converge significantly faster in practice
than the Metropolis algorithm (Gelman et al. [1995]), it requires the ability to ran-
domly sample one parameter or blocks of parameters at a time from the univariate or
multivariate conditional probability distribution, respectively. Therefore, the deriva-
tion of such conditional distributions is required in order to use the Gibbs sampler as

a MCMC simulation technique.
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5.7.2 Application of the Gibbs Sampler to the Single-Site MS

Model

As explained above, the idea in the Gibbs sampler is to simulate, in turn, from the
distribution of each parameter conditioned on the data and the remaining parameters.
Thus, at iteration k& each component of the parameter vector is sampled from the

conditional distribution:
k— k—
8 — p(9; | 6,600,680 6, Qr) (5.51)

where d is the number of the components of the parameter vector. 6; can refer to
either a scalar or a subvector of the parameter vector 8. Smith and Richman [1993]
noted that if the parameters are highly correlated, then the convergence of the Gibbs
sampler could be very slow. Therefore, if possible highly correlated parameters should
be blocked together as a subvector of 8 and sampled from a multivariate conditional
distribution.

For the single-site MS model, Gibbs sampling can be implemented with the follow-

ing simulation steps:

SP p(Sy | p*V, gk pE-D Q) (5.52)
P® — pP|SP) (5.53)
p 0 — p(u,0:] 8P, w0, Qr) (5.54)
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where g = (u1, pi2, ..., par) and 6 = (01,09,...,0), and i refers to the state. The
hidden state time series St is sampled first because once it is known, the sampling
of the remaining quantities is relatively simple. The conditional distribution of the
transition probabilities P is purely dependent upon knowledge of St. Hence, in (5.53)
the data @ is omitted in the conditioning. The description and the derivation of the

above conditional densities are presented in the following sections

Simulating the State Probability Sequence

The state variable s;, t = 1,2,...,T, can be simulated one by one from each of the

following T" conditional distributions

p(st[S'_t,QT,O), t= 1,2,. . ,T (555)

where S_¢ = (s1,...,5t-1,8¢41,---,57)" . However, it is also possible to simulate the
entire state sequence from the joint conditional distribution of Sz, p(St|@r,8) [Chib,
1996]. This density can be written by applying the conditional probability theorem

repeatedly

p(STIQTyo) =p(s1,{s2,--- 73T}|QT>0)
:p(sll{‘s?a ey ST}aQT70) X p({327 LR 3T}|QT70)
=p(s1,{s2,...,57}|@r,0) X p(s2,|{s3,...,57},Qr,0)

x p({ssy--.,s7}Qr,0) (5.56)
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The summary of this recursion can be written as

p(S7|Qr,0) =p(s1, I{Sz, .oy87},Qr,0) .. p(se|{st41,---,87},@Qr,0) .. .p(s7|Qr,0)

(5.57)

in which terms of the form p(s;|{s¢s1,- .., s}, @r,0) occur repeatedly. Applying Bayes
theorem, the conditional probability theorem, and the Markovian property of the

states, Chib [1996] defined a simplified expression for the typical term

p(St = j|{5t+1, cey 3T}>QT,0) 12,8 p(3t+1 = let =7, G)P(St = j[Qt,G) (5-58)

where the first term on the right hand side is the transition probability of going from
state j at time ¢ to state k at time ¢ + 1, and the other term is the probability of
s; = j given @Q; which can be obtained using the filtering algorithm given in Section
5.5.2. The normalizing constant of this function is the sum of the numbers obtained
in (5.58) as s; runs through 1,..., M, ZJle P(st11 = kst = 7,0)p(st = 7|Q:, 0).

Using the equations defined above, the simulation of the state sequence is as follows.
Run the filtering algorithm to calculate p(s; = j|@:,8). Once p(sr = j|@Qr,8) is known
from the last iteration of the filtering algorithm, it is straightforward to generate sr.
After simulation of s7, the remaining states are simulated backwards for T'— 1,7 —

2,...,1 using (5.58).

112




5.7. INCORPORATING PARAMETER UNCERTAINTY INTO THE SINGLE-SITE MS MODEL

Simulating Transition Probabilities

Given the state sequence, S, the derivation of the conditional posterior distribution of
the unique elements of the transition probability matrix, P, is straightforward because
P is independent of the data, @7, and the parameters of the model, 8.

Let the ith row of P be denoted p; = (pi1,pi2, - - -, Pine)*. It is assumed that the
form of the posterior conditional distribution of the rows of the transition probability
matrix are equivalent. In determining the conditional posterior distribution p(p;|St),
the likelihood function, I(St|p;), is required. The likelihood function for p; has the
kernel of a Multinomial distribution.

M
1(Stlp:) o H (pij)™ (5.59)

j=1

where n;; is the number of times that state 4 is followed by state j in the state sequence
St.

When a conjugate prior is used, the posterior distribution is from the same family
as the prior. The Dirichlet distribution is a conjugate prior for the Multinominal
likelihood function. An independent Dirichlet distribution for the prior distribution of

p; has the form

p(p:) o< pT Vg L plgim Y (5.60)

where o;; are the parameters of the prior Dirichlet distribution. When this prior is

multiplied by the likelihood function in (5.59), the updated posterior distribution is
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also Dirichlet:

p(@ilSr) oc plertraVpEtraTh | plenrtnacl) (5.61)

3

In the Gibbs sampler, the simulation of p; from a Dirichlet distribution must be

repeated for each row of P

piIST ~ D’&")"(ail + N1y, 0p niM) (5.62)

The prior parameters may be fixed as a;; = --- = a;y = 1, in which the prior
distributions will be non-informative or diffuse. This is a common choice in Bayesian

inference.

Simulating State Mean and Variance

In Bayesian inference, one must ensure that the posterior distribution is a proper
probability distribution which means that the integral of its density must equal 1. The
use of an improper noninformative prior does not preclude that a proper posterior can
be obtained [Gelman et al., 1995]. For example, assume that the prior distribution of
the state variance is p(02) oc 1/0? which is a noninformative distribution. This prior
distribution is improper because over the range of (0,00), it has an infinite integral.
However, if there is at least one data point this improper prior gives a proper posterior
distribution. Since there is a chance to simulate no data in a particular state, it was

decided not to use an improper prior distribution of o2 in the Bayesian analysis of the
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MS model.

Let the observed streamflow data coming from state ¢ be denoted g, where 7 =
1,2,...,n;. According to the assumptions, ¢, follows a normal distribution with meah
w; and variance o2. The likelihood function for (u;, 0?) is

1, 7100 o (o™ exp {50 [0~ Ds? @ — ]} (569

where the sufficient statistics g = n; 'Y -, ¢, and s? = (n; — 1)1 Y7 (¢ — @)?
are the sample average and the sample variance of observations in state %, respectively.

The joint prior distribution of (u;,02) may be written as p(u;, 02) = p(ui|o2)p(o?).
The use of the normal distribution for p(u;|o;) and the scaled Inverse Chi-square

distribution for p(c?) result in the following conjugate prior distribution

1
bl o) o G P exp { =y [+ malo - w¥]| (500

where vy, Ko, 1o, and o2 are the parameters of the prior normal-inverse-x2-distribution.

In the Gibbs Sampler iterations, the hidden state of the observed variable g; in year
t is known from the simulated state sequence S7. When no data in a particular state
is simulated, the state mean and variance are simulated from the prior distribution
instead of the posterior. In this case, the state variance must be simulated first from

the scaled inverse-y2-distribution and then the state mean must be simulated from the
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normal distribution given the simulated variance.

o2 ~ Inv — x*(v, 0?) (5.65)

lo? ~ N (o, o7 /o) (5.66)

The posterior distribution is obtained by multiplying the prior by the likelihood

function in (5.63):

_ — 1
p(pi, 071Q:) o< o7 ' (a7) (ni/2+1) exp {*202 [Vniarzzi + Ko (Hhn; — :“i)2]} (5.67)
i

where the parameters of the joint posterior distribution are

Kn, =Ko + T (5.68)
Un, =Vo + 1y (5.69)
Ko n;
= ; 5.70
Hins Ko +n; Ho + Ko + ni% ( )
KoTi
Vn;O2, =Vooq + (n; — 1)s? + Eg—(—ji—_—:jbj(qi — 1)? (5.71)
(]

The parameters of the posterior distribution reflects the prior information and
the information from the data. In the absence of any prior knowledge about the
state distribution parameters, a diffuse prior will be used. When the diffuse prior
distribution combines with the data likelihood function, the posterior distribution is

dominated by data.
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The posterior distribution may be written as

pwi, 771Qs) = p(uilo?, Qi)p(o71Qs) (5.72)

so that sampling can be accomplished by first drawing o2 from its marginal distribu-
tion, (scaled inverse-y?)

o2|Q; ~ Inv — X2(l/ni, o2 ) (5.73)

ng

and then, given the simulated value of o2, simulating y; from its normal conditional

posterior distribution,

1107, Qi ~ N(in;, 07 [ in,) (5.74)

Initializing the Parameter Vector in the Gibbs Sampler

The Gibbs sampler requires an initial set of parameters. The method given in Section
5.4 can be used for the Gibbs sampler as well. Alternatively, the parameters estimated
by maximum likelihood can be used. The use of the estimated parameters as initial

values will improve the convergence of the Gibbs sampler.

Assessing MCMC Convergence

When MCMC simulation is used instead of direct simulation from the posterior dis-
tribution, one must ensure that the Markov chain has converged to a stationary dis-
tribution. Hence, after selecting the initial values, the MCMC algorithm is allowed to

sample continuously for a certain number of iterations until the effect of the starting
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values has vanished. This initial sampling is known as warm-up or burn-in. Once con-
verged, the samples from the MCMC algorithm can be considered as samples drawn
from p(0|@r). The required number of simulations for warm-up can be decided using
various convergence diagnostic tools.

Cowles and Carlin [1996] reviewed 13 convergence diagnostic tools and recom-
mended using a variety of methods and multiple independent parallel Markov chains.
Kass et al. [1998] discussed several topics such as confidence in simulation results,
methods for speeding and assessing convergence, and the estimation of standard er-
rors of MCMC methods.

In this project, multiple independent parallel Markov chains have been used and the
R statistic was employed to assess the convergence of these multiple chains [Gelman
and Rubin, 1992]. The R statistic is a measure of the variance between-chain and
within-chain. The R statistic is relatively high if multiple Markov chains are not
mixing properly in the parameter space.

The method can be summarized as follows:

Step 1: Using the conditional distributions in the Gibbs sampler, independently sim-
ulate J > 2 parallel sequences with different starting points, each of length 2L.
To diminish the effect of the starting values, use only the second L iterations of

each sequence.

Step 2: For each scalar parameter of interest, v, in the chain, calculate the between-
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sequence variance B/L, and the within-sequence variance W, defined by

J
1 — —\2
B/L=~— ; (0; — D) (5.75)
where
1 & 1<
'l_)j = Z Z’Ujl and U= 7 Z _j (576)
=1 j=1
and
1 J
W=- > s (5.77)
j=1
where
1 L
st = T > (v — ;) (5.78)
=1

Step 3: Estimate the marginal posterior variance of the estimand, v, by a weighted
average of B and W,
N L-1 B

Step 4: Calculate the Gelman-Rubin statistic, \/}—AB, the potential scale reduction, by

= V()
VE= o (5.80)

As the individual sequences converge and range over the entire parameter space,

1% approaches W and the statistic \/E decreases to 1.

Gelman and Rubin [1992] recommend to compute \/E for all estimands of interest

until it is near 1 for all of them. Once this is obtained, the simulated values from the
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second halves of the sequences can be treated as samples from the posterior distribution
of all parameters. Further details on this method can be found in Gilks et al. [1998]

and Gelman et al. [1995].

Implementation Issue

There are several constraints that must be enforced in the implementation of the Gibbs
sampler. In the MS model framework, the posterior distribution can have more than
one mode. During the iteration of the Gibbs sampler, the chains can move from one
mode to another. For example, in the 2-state MS model, state 1 parameters can
become state 2 parameters and vice versa. This is called aliasing and it decreases
the rate of convergence [Gelman et al., 1995]. In order to prevent this, Gelman et al.
[1995] recommended to use a constraint that p; < --- < up. In addition, for each
state, the coefficient of variation, C,,, for i = 1,2,..., M, is bounded between 0.0001
and 2.0 [McMahon and Mein, 1986]. If the above constraints are not satisfied during

simulation, the state mean and variance are resimulated.
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Chapter 6

Multi-Site Markov-Switching

Model

6.1 Introduction

As mentioned in Section 4.1, Manitoba Hydro’s system requires multi-site modelling.

In this chapter, the single-site MS model, proposed in the previous chapter, is extended

to a multi-site model [Akintu§ and Rasmussen, 2005a).

The chapter is organized as follows. The formulation of the multi-site MS model
along with the model assumptions are presented in the following section. Maximum
likelihood estimation, implemented using the EM algorithm, is then explained. In Sec-
tion 6.4, the crosscorrelation structure of the MS model is derived. The incorporation
of parameter uncertainty and missing data uncertainty into the multi-site MS model

through Gibbs sampling is introduced in Section 6.5.
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6.2 Formulation of the Multi-Site MS model

In the multi-site MS model, it is assumed that the hydrological process is stationary
and switching between M unobserved climate states. As before, the state is described
by a state variable s; = (1,2,..., M). The observed flows q; = (qt(l), - ,qt(N))' at N
sites is assumed to have been drawn from an N-dimensional multivariate probability
distribution whose parameters are conditional upon the particular state prevailing
at time . The use of multivariate distributions should make it possible to preserve
the spatial correlation between sites, at least to a certain degree. It is assumed that
the climate state is regional so that every site is in the same climate state at every
point in time. It is also assumed that, given the state sequence S7 = (sy,...,sr),
g: is independent of previous observations. As in the single-site case, there is in
principle no restriction on the type of state distributions, however, it is assumed here
that q; follows an N-dimensional multivariate normal distribution with mean vector
Bs, = (,u,g), ... ,,ugv))’ and covariance matrix X,, that are specific to the state. Hence,

given s;, one could generate g; as

q: = ps, + V6 (6.1)

where ¢; is a vector of independent, standard normal variables and V,, is the decom-
position of the state covariance matrix X,,, satisfying V,, V', = X,,. Finding V, is a
standard problem in multivariate time series analysis and several methods are avail-

able, see references in Section 4.3.4. In the above model, it is assumed that the state
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variable s; follows an M-state first order Markov chain with transition probability

matrix P, see (5.2).

6.3 Parameter Estimation of the Multi-Site MS Model

Parameter estimation for the multi-site MS model can be accomplished in a way very
similar to the single-site model. In the multi-site MS model, it is assumed that the
state distributions are N-dimensional multivariate normal. Thus, if s; is known, the

density of ¢; conditional on the state variable s; is

. 1 1 1 .
flasls: = 4,9) = Wem {—'2‘(¢1t — i)' 27 (g _‘I‘i)}7 i=1,...,.M
(6.2)
where ¥ = {1, ..., ar, 21, - . ., Ly} is the set of population parameters. However, s;
is unobserved (hidden). In order to proceed, one can consider the joint density of the

observed variable ¢; and the unobserved variable s; which is given by

p(g:, s: = iln) = f(qils: = i,9) Pr{s; = 4; P} (6.3)

where P denotes the (M x M) matrix of Markov transition probabilities, the parameter

set n = {9, P}, and Pr{s; = ¢; P} = m;. By summing (6.3) over all possible states, the

unconditional density of ¢; can be obtained as

M

Flaskn) =3 Wi(—Q%)W/ilE—iIlE exp {—%(Qt — )7 (g — ﬂi)} (6.4)

i=1
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which is an M component N-dimensional multivariate normal density with mixing
coeflicients ;.

Let @r = {q1,92,--.,97} be the set of all multi-site observations and S; =
(s1, S2,--.,57) be the associated state variables for the basin. The multi-site MS model
in (6.1) is described by the parameter set 8 = {9, P, o} where o = (01, 02,..-,0m) is
the probability distribution of the first state variable in the sequence. This distribution

is needed in the formulation of the maximum likelihood estimation.

Given the model parameters 8, the joint density of (Qr,St) can be expressed as

p(Qr,S7|6) =Pr{Sr|0}f(Qr|ST,0)

T—1 T
00, [ Pri(sesalse) P} ] #(@elters Z2) (6.5)
t=1 t=1

where it is assumed that f(g:|us,, Xs,) is an N-dimensional multivariate normal distri-
bution. This equation can also be considered as the complete-data likelihood function.

In order to obtain the data likelihood function, S7 can be eliminated by summing over

all possible state sequences:

16|Qr) = p(Qr|0)
= Y p(@r,S1l0)

All S
T-1 T
= Z Os: H Pr{(st1]s:)|P} Hf(Qtlﬂ'stazst) (6.6)
AlSy =1 =1
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which can be simplified as

M M
01QT) = 00 f( @1l Ber) > Poronf(@2lthars D)

s1=1 so=1
M
T Z pST—18Tf(thILsT7 EST) (67)
8T=1

In matrix form, (6.7) can be written as [MacDonald and Zucchini, 1997]

101Qz) = A, (HA> L (6.8)

t=2

where
o1f (a1, 1)

A= ,
om F(qu|iar, Bar)
P11 f(@elm,81) .. i f(@elprr, Bar)
A = ,
lef(Qt|l£1, 21) e pMMf(QtlﬂrM, EM)

and 1,, is an M-dimensional column vector of 1s. The parameters of the multi-site
MS model, 0, can be obtained by maximizing (6.8) using a numerical procedure.
As in the single-site MS model, the EM algorithm can alternatively be used in the

estimation of the multi-site MS model. In the EM implementation, the log-likelihood
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function is

T—-1 T
log1(8|Qr, S7) = log 05, + Y log Pr{(se41s)|P} + Y _ f(gltts,, Bs,) (6.9)
t=1 t=1

In the first step of the EM algorithm, the @ function, which is the expected value of

the log-likelihood function, is obtained as

Q16®) = Ellogl(8|Qr,S1)|Qr,0®)]

M
= > Pr{s; =i|Qr,6®}log o
i=1

M M T-1
+ Z Z Z Pr{s; =i, 8141 = j|Qr,0®} log pi;
i=1 j=1 t=1
M T
+3 ) Pr{s; =i|Qr,0%} log f(gspi, ) (6.10)
=1 t=1

where ) is the current estimate of 8, and Pr{s, = i|Qr,0%®} and Pr{s; = 1,841 =
71Qr,0®} are estimated using #%) in place of 6.

In the second step, Q(0]0®) is maximized with respect to @ to obtain a new
estimate of the model parameters that improves the current estimate and becomes the

next value of @ in the iterative EM-algorithm:
0%+ = arg max Q0,0 (6.11)

The EM iteration steps are repeated until a local maximum of the log-likelihood func-

tion is reached.
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The maximization of (6.10) yields:

o) = Pr{s; =i|Qr,0®}, i=1,...M. (6.12)

oot _ Xt Prise = sun = 31Qr, 69}
7 T Pr{s, = i|Qr,0®}

i, i=1,...M. (6.13)

u(k+1) _ Zf:l PI‘{St = Z'|QT,‘9(I€)}¢1t

, 1=1,...M. 6.14
S Pr{s, =i|Qr,0®} 614

/
S Pr{se = i1Qr, 09} (g — ™) (0 — )

(1) _
z i1 Pr{s: = i|Qr,0®}

, i=1,...M.
(6.15)

The calculation of Pr{s; = i|Qr,0®} and Pr{s; = i, 5,41 = j|Qr,0%} are described

in detail in Section 5.5. Note that in the multi-site case, the probability density of the

univariate normal distribution used in the forward-backward algorithm or in Kim’s

algorithm must be replaced by the multivariate normal density.
In order to start the iterative estimation algorithm, initial parameter estimates are
needed. For the initial parameter estimates, observed streamflow values of each site

are standardized using their sample mean and standard deviation as

(m) _ m)
M=t — % (6.16)

s,(ln)
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Then a single sequence is obtained by adding the standardized values of IV sites at
each time step, z; = zt(l) + 252) +--+ zt(N). This aggregated sequence is used to deter-
mine M equiprobable ranges. According to these ranges the initial state sequence of
the region is obtained. For example, for a 2-state multi-site MS model, if z; is negative,
the regional climate is in state 1, otherwise it is in state 2. Using the regional state
sequence, data sets of each state at each site are obtained from observed streamflow
time series of the region. The initial parameters p; and ¥; are then estimated using the
data sets of each state. Similarly, transition probabilities may be obtained by counting

the empirical frequency of transitions. The probability distribution of the first state

may be set to g; = 1/M.

6.4 Crosscorrelation Structure of the MS Model

In the multi-site MS model, a key model property of interest is the crosscorrelation
function of g; which should be reasonably preserved by the model.
For site g and h, let 7" = E [(qt(g) ONC - u(h))] denote the lag-0 crossco-

variance between qu) and qgh). An analytical expression of the lag-0 crosscovariance
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can be derived by substituting (6.1) into the definition of the crosscovariance function:

, h
) E[(q(g) u(g))(qﬁ)—u(h))]

=k [(Mg‘f) + 09 4 ylom P _ M(g)) (,ug:) + o9l yh ) ,u(h))]
2 2
=E [JOu®] + E { (9:9)y)(h9) (egg)) } +E [Ug;,h)vg»,h) <6§h)) ] EOMO

(6.17)

where 49 and u® are the overall mean of g, at site g and &, respectively, and v(®) is
the (g, h)’th entry in V,,. u® and p® can be obtained from (5.11) using the multi-site
estimates of state means. The last expression is obtained by noting that all product
terms involving only one e(g) or one egh) or both vanish after taking expectation. Also,

E [,ugf)u(h)] = F [,u(g),ug}:)] = p9u® . The terms in the last line of (6.17) can be

calculated as

[0 )] Zﬂﬂgwﬂp (6.18a)
2
: [vgf’%gﬁ’g) ()] = Lomatu @150
i=1
9 M
B o ()] = 3 mlp ol (6.180)
i=1

and the lag-0 crosscovariance between site g and h can be summarized as

~oh) — Z i@ +Zwv(g,g) (h:9) +Z7T% (@) (k) _ (@) 1, (R) (6.19)

i=1 i=1
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The analytical expression of the lag-r crosscovariance function can be expressed as

K
VP = E[(a - n@)(g) - u®)]
=F [(,ugg) + v§9»9>e£9) + vgg’h)egh) — ,u(g)) (,u(h) + vgh’g)e,gg) + 'ugh’h)egh) — u(h)ﬂ
t t t ter t—r

St—r

(9),(R)

= B [pu)] —u®

P r=1,2,... (6.20)
As in the derivation of the lag-r autocovariance function in Section 5.3.4, the cross-

covariance function above can be written concisely as
YW = (u9) TP (™) — pOp® | r=1,2,... (6.21)

where p(9) = (ugg),ugg),...,ygg})l, ph = (Ngh),ugh),...,ug\’;))l, IIis a (M x M)
diagonal matrix with the stationary probabilities 7; on the diagonal, and P is the
transition probability matrix.

The cross-covariance matrix of several sites can be constructed by calculating the
covariance between all pairs of sites. In order to obtain the lag-r crosscorrelation
matrix, the elements of the covariance matrix can be divided by the standard deviations

of the corresponding sites calculated from (5.12):

- ,y(g,h)
gh) _ T =
P = EpOL r=12,... (6.22)
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6.5 Incorporating Parameter and Data Uncertainty

into Multi-Site MS Model

The methodology that was used to incorporate parameter uncertainty into the single-
site MS model is extended to the multi-site MS model in this section. In addition,
since the framework of the multi-site MS model enables one to handle the missing data
problem, the uncertainty associated with missing data is here incorporated into the

multi-site MS model as well.

6.5.1 Application of the Gibbs Sampler to the Multi-Site MS

Model

In the multi-site analysis, the length of the observed streamflow record at the different
sites must be the same. In traditional methods, one either truncates the different time
series to the period of concomitant record which implies a loss of valuable information,
or extends the shorter records using for example linear regression. By estimating the
missing data, one ensures that all the available streamflow information in this basin is
used in the analysis. Several techniques have been developed to estimate missing data
in hydrology. For detailed explanations of some of these techniques, refer to Hirsch
[1982].

In the Gibbs sampler, the missing data are treated as parameters and simulated
from their conditional distribution along with the usual model parameters [Gelman

et al., 1995]. The sampled missing data are combined with the observed data in order
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to form the complete data matrix Q1 which is a matrix of T vectors of the data at N

sites expressed as

QT = {Qmisa Qobs} (623)

where Q,,;s and Qs are the simulated missing data and observed data, respectively.
Using arbitrary starting parameter values @, the following Gibbs sampler steps

can be repeated to simulate the parameters from their full conditional posteriors.

SP ~ p(ST|uffu_l),Efflfl),P(’“‘l),Qéf“‘”) (6.24)
P® ~ p(P|sP) (6.25)
QW, ~ p(QmisIS$),Nfﬁf1),Efﬁfl),Qobs) (6.26)
® = {Q%.Qu} (6.27)
p, B0~ p(m,Eingc), Sp’“)) (6.28)

where 7 refers to the state, 2 =1,2,..., M, pffn—l) = {ugk—l), e ,ps\’}—l)} and 25511—1) =

{25’“_1), - ,25{2"1)}. The state time series St is simulated first because the simula-
tion of the transition probabilities P and Qs are dependent upon knowledge of St.
As in the case of the univariate model (Section 5.7.2), Chip’s procedure is employed
to simulate St and P. Note that in Chip’s method, the probability density of the
univariate normal distribution must be replaced by the multivariate normal proba-
bility density. The simulation of the missing data values, the state mean vector and

covariance matrix is explained in the following.
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Simulating the Missing Data

Since the distribution associated with each climate state is assumed to be multivariate
normal, the missing data values are simulated from a multivariate normal distribution.
Note that the state sequence is simulated first in each iteration of the Gibbs sampler
so that the simulation of missing values can be conditioned on s;.

In the simulation of missing data at time ¢, there must be at least one site with
observed data. In other words, the number of missing data values my at time ¢ must
be less than number of the sites N. If this condition is satisfied, the vector of missing
data values ¢/ at time step ¢ can be simulated from an mgy-dimensional normal

distribution, conditional upon g5, u;, and X;, i.e.:

47" 1g5"°, i, Bi ~ Nony (B Brmy) if s =1 (6.29)

From standard normal theory g, and X,,, can be expressed in terms of 2%, u;,

and X; as [Tong, 1990]

Pom,g :”';nis + E;m’slobs (Egbs)_l (ngs _ I‘?bs) (630)

2., =2;nis _ Emis[obs E;-’bs -1 Ez_)bs]mis (6.31
d 1 1

, . islob bs|mi . e .
where pobs, ymis| ymis | yobs gyméslobs o g s10bsimis con be obtained as partitionings of
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J15 and 27.
pgbs 2;_)173 Sgbs]mis
Il’;nis 2;’”3]053 zzms

Simulating the State Mean Vector and the Covariance Matrix

For a given simulated state sequence, consider the data (observed and simulated)
associated with state i. Define q, = (qg), e ,qu)), T =1,...,n; to be the data
coming from state ¢ and let Q; = (g1, .. .,qn;)". The joint likelihood function of (u;, ;)

given @; can be written as
U(pss, Tl @s) o< B /% exp <—% 2(47 — mi)'%;7 (g — Ni)) (6.33)
It can be shown [DeGroot, 1970] that
g (@r — )27 (gr — ps) = mips — Q)T (i — Qi) + tr(8,E;) (6.34)

where Q; = n% >°™ @, is the vector of average observed data coming from state i.
The notation tr(M) refers to the trace of the matrix M, i.e. the sum of the diagonal

elements of the matrix, and S; is the sum of squares matrix relative to Q;,

5= @ Q)a—Q (6.35)
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Substituting (6.34) into (6.33) yields

Ui, Zil@Qs) o< |8 ™/ exp {—% [ (s — Qi)' (s — Qi) + tr(S:%;)] } (6.36)

which is the kernel of a multivariate normal-Wishart distribution.

The use of a non-informative (improper) prior distribution may cause some prob-
lems in the Gibbs sampler. As mentioned in Chapter 5, when no data is simulated in
a particular state, the posterior becomes improper. However, in the multi-site case,
an improper posterior is obtained when the number of data sampled in a particular
state is less than the number of sites. Therefore, a proper prior distribution is used.
Since there is no prior information about the parameters, a diffuse prior is used. In
this way the data dominate the posterior distribution.

To develop a joint prior distribution, the relationship (g;,%;) = p (1:|X:) p (E;)
can be utilized. The use of the multivariate normal density for p (u;|%;) and the
inverse-Wishart density, which is the multivariate generalization of the scaled inverse-

x*-distribution, for p (¥;) yields the conjugate joint prior density:

1
p(uz,Ez) X |Ei|_(V°+N+2)/2 exp {—-2- [K,o(ﬂi — [l:o)lz;l(ﬂz - Mo) + tI‘(A()Ei—l)] } (637)

where vy, Ko, po, and Ay are the parameters of the joint prior distribution which has the
same form as the likelihood function in (6.36). For the simulation of the prior parame-
ters from (6.37), the prior state covariance matrix X; must be simulated first from the

inverse-Wishart distribution and then, given the simulated state covariance, the prior
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state mean vector p; must be simulated from the multivariate normal distribution:

¥; ~ Inv-Whisharty (v, Ag?) (6.38)

Bl ~ Ny(po, i/ ko) (6.39)

where the parameters vy and Ay are the degrees of freedom and the scale matrix of
the prior inverse-Wishart, and g and %g are the prior mean vector and the scale of X3,
respectively.

Using the prior distribution in (6.37) and the likelihood function in (6.36), Bayes’

theorem yields the following posterior distribution

i 1 o _
Pps, Bl @) oc || "ot NAD/2 exp{ §[nz'(lti — Q)T (i — Qi)
+ o — o)’ %5 (s — pro) (6.40)

+ tr((Ao + S:)Z; )]}

According to DeGroot [1970]

(1 — Qi) T (i — Qi) + Ko (s — o) T (13 — po)
(6.41)

Kol
Ko+ 1y

(o — Q:)'Z; (1o — Qi)

=(rso + 105) (ps — ) B (i — o) +
where ft,, is given in (6.45). The rightmost term of (6.41) can also be expressed as

Kol S vie—1 ~ KoT;
— 0.V —0:)=t
Ko + 1 (”O Qz) ¢ (“0 QZ) g Ko + Ny

(1o — Qs) (o — Qi)E;l] (6.42)
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Using the expression in (6.42), the joint posterior distribution in (6.40) can be rewritten

as

e 1 _
P(ps, Ti|Qy) oc| By~ (retvotN+2)/2 eXP{—ﬁ[('ﬁo + 1) (1 — o) B (s — fon) 6.45)
6.43

Rol;

(ko — Q3)' (1o — Q)Z7 )]}

+ tI‘((Ao + Sz) + p ™

which can be further modified to obtain the multivariate normal inverse-Wishart dis-

tribution as

—(w 1 _
P, 351Q;) o |X4 (vt N+2)/2 exp{ — 5[('%)([% - ltni)'zi l(l%' — fin;)

(6.44)
+tr(An )]}
with posterior parameters
K + 1, _7;
Up, =1y + 1y, HBn; = OMO—Q
o F 10 (6.45)
Ko

n. — i
ng — i An:A Sz - - i’ — Y&
Kn; = Ko + T c=Ao+ +n0+n,-(”° Qi) (1o — Qs)

The simulation of the state mean vector and covariance matrix from (6.44) may be

summarized as follows:
1. Assume prior parameters pg, kg, Yo, and Aq.
2. Calculate posterior parameters from (6.45).

3. Simulate ¥; from an inverse-Wishart distribution

¥; ~ Inv-Whishart(v,,, A,;}) (6.46)

N4
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4. Simulate y;, given ¥;, from a multivariate normal distribution

Bi| B ~ Ny (o, i/ bin,) (6.47)

In the incorporation of parameter uncertainty, one of the major challenges is the
selection of appropriate prior parameters in order to get a suitable diffuse prior distri-
bution. As a preliminary analysis, a comparison of the prior and posterior distributions
must be included to ensure that the prior distribution is diffuse relative to the posterior
distribution. The selection of prior parameters will be discussed later in connection

with the application.

Initializing the Parameter Set in the Gibbs Sampler

The maximum likelihood estimates of the model parameters can be used as initial
values in the Gibbs sampling. Use of ML-parameters will improve the convergence
of the Gibbs sampler. The initial missing data values may be estimated based on

correlations with the observed data from other sites in the basin.

Assessing MCMC Convergence

In the multi-site MS model, the same convergence diagnostics as in the single-site MS
model are applied, see Section 5.7.2. In addition, diagrams showing the Gibbs samples
for each individual parameter may be examined visually.

As in the single-site case, the constraint that g; < --- < pys is enforced in order

to avoid aliasing.
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Chapter 7

Disaggregation Using

Markov-Switching Model

7.1 Introduction

As explained in Chapters 5 and 6, non-linear Markov-Switching models provide an
interesting alternative for modeling climate regimes present in aggregated annual flows.
In typical water resources system analyses, generation of sub-annual flows such as
monthly flows may be needed. In this case, temporal or spatial disaggregation models
may be employed to disaggregate generated higher-level flows into lower-level flows.
As mentioned in Section 4.4, traditional linear disaggregation models require nor-
mally distributed data. When data are not normally distributed, an appropriate trans-
formation must be applied prior to the use of the model but in this case, the addi-

tivity property is lost and some form of adjustment is needed. However, the adjusted
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variables may no longer represent the assumed marginal distributions and important
statistics such as the mean and the variance of the observed lower level variables may
not be well reproduced.

In this chapter, a Markov Switching disaggregation (MSD) model is proposed to
disaggregate higher-level flows generated using the MS model into lower-level flows
[Akintug and Rasmussen, 2005c]. With this modeling approach, it is possible to pre-
serve the non-linear structure of both the higher-level and lower-level flows, while their
important statistics are implicitly preserved. The assumptions and the formulation of
the MSD model are presented in the following section. In the subsequent section, the
estimation of model parameters is outlined. In Section 7.4, the performance of the
proposed model is investigated by a comparison with the classical Valencia-Schaake
disaggregation (VSD) model [ Valencia and Schaake, 1973] described in Section 4.4.1.
In the last section of this chapter, the potential advantages and disadvantages of the

proposed MSD model are discussed.

7.2 Model Formulation

The proposed MSD model can be used for both temporal and spatial disaggregation.
In temporal disaggregation, annual flows ¢; are generated using an M-state MS model
as described in Chapter 5. It is assumed that monthly flows, gy, m = 1,...,12, are
also described by M climate regimes and have the same state probability sequence as
annual flows, i.e. Pr{s; = i|Qrn} = Pr{s; = i|Qr} where Qrn, = (qim,---,q7m)’ is

the month m flows. In this way, every month is in the same climate state as the year
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it belongs to. In simulations, the climate state s; is known from the annual model.
It is further assumed that, given the climate state, gy, is normally distributed with
mean and variance that are specific to the state. The MSD model is obtained by using
the above assumptions with the VSD modeling structure given in (4.51). In the MSD
model, the zero mean annual flows x; may be disaggregated into zero mean monthly

flows y; = (y,1,--.,Ye12) in year t as
Y = Aszmt + BSth (71)

where the state dependent parameter matrices A,, and B;, have dimensions (12 x 1)
and (12 x 12), respectively, and €; is an (12 x 1) column matrix of independent standard

normal variables with zero mean and unit variance.

7.3 Parameter Estimation

With the MSD model described in the previous section, the marginal distributions of
monthly flows become mixtures of M-normal distributions. Since the state probability
sequences are fixed and known from the annual MS model, the parameters of the
state distributions for each month can be estimated using the maximum likelihood

estimators given in (6.14) and (6.15) with g, replaced by qim = (gt,1, @2 - - -, @t,12)":

T .
_ th%Pr{st = z|QT,0}qtm Ci=1,...M (7.2)
Zt:l PI'{St = 7/|QT70}

Hi
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Y. — 231:1 Pr{s, = i|Qr,0} (@um — i) (@m — 1)’
Z > i1 Pr{s; = ilQr,0}

, i=1,...M. (7.3

It should be emphasized again that the state probabilities Pr{s; = i|@r,8} are inher-
ited from the annual model. The diagonal of the state covariance matrix in (7.3) gives
the state variances of each month. Alternatively the state mean and variance of each
month m can be estimated individually using the single-site estimators of mean and
variance given in (5.32) and (5.33).

In (7.1), the parameter matrices A; and B; for state i = 1,..., M, may be estimated

using the method of moments as described in (4.52) and (4.53):

A; = Sy.x.83, (7.4)
BzB: = Sy;v; — AiSxy; (7.5)
where the sample covariance matrices may be calculated as
T . ]
Pr{s, = — 1) o — i
SY,'Y,; — Zt:l r{St TZIQTaa} (th [ ) (qt [ ) (76)
2 =1 Pr{s: = i|Qr,0}
T —q —_— . —_— . !
Sy.x, = D=1 Pr{s: ; i|@r,0} (q.tm pi) (g0 — i) (7.7)
> i1 Pr{s: = iQr,6}
Sy, = i {8 = 1Qr, 0} (00 — 1) (@om — 1) 8)

Zf:l Pr{st = 7;|QT7 0}

where p; is the state ¢ mean of the higher-level variable known from the annual MS
model. The sample covariance matrix Sx,x, is equal to the state i variance af of the

higher-level variables and is known from annual MS model.
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7.4 Preliminary Analysis

Before using the proposed disaggregation model for drought frequency analysis, the
performance of the 2-state MSD model was explored by comparing it with the classical
VSD model in (4.51).

The MSD model and VSD model were applied to 138 years (1860-1997) of monthly
flows of the Niagara River at Queenston, Ontario. The data were obtained from the
HYDAT CD-ROM provided by Environment Canada. Five hundred sequences of 138
years annual flows were generated using the 2-state MS model given in (5.1) and
generated annual flows were disaggregated with the two models. The MSD model was
applied according to the principles described in the previous section. In the case of
the VSD model, observed annual flows and monthly flows were transformed to obtain
a normal marginal distribution using the transformation models in Section 4.2, with
the best model selected according to the Filliben statistic. For the Niagara River,
Box-Cox transformations with different A values were selected for observed monthly
and annual flows. In the simulations, annual flows generated by the 2-state annual MS
model have a normal mixture marginal distribution, so annual flows were subjected to
a normalizing transformation before use of the VSD model. After application of the
VSD model, the disaggregated monthly values were first inverse-transformed and then
adjusted using the proportional adjustment procedure to sum up to annual values, see
Section 4.4.4. Transformation and adjustment are not required for the MSD model.
Both models were tested for their ability to reproduce the following important statistics

of the observed flows: (1) Mean; (2) Standard deviation; (3) Cross-correlation; and
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Figure 7.1: January flows of the Niagara River at Queenston, Ontario, simulated with
the MSD model. a) Marginal probability density function. b) Normal probability plot of
observed flows and fitted mixture distribution

(4) Marginal distribution.

As a first step, the goodness-of-fit of the marginal distributions of the monthly flows
is examined. Figure 7.1 illustrates the fitted marginal probability density function for
the MSD model (mixture of two normals) and the normal probability plot of observed
January flows of the Niagara River. The marginal distribution of January flows is very
well preserved by the MSD model. The probability density and normal )probability
plot of the other months are given in Appendix B. Generally, the fit for the other
months is very good.

To examine the sampling variability of various statistics, box plots were used.
When an observed statistic does not fall within the range of the box, the model does

not reproduce that statistic well.
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Figure 7.2: Niagara River simulated monthly mean values using a) VSD model. b) MSD
model. The asterisk (%) represents the observed statistic.
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Figure 7.3: Niagara River simulated monthly standard deviations using a) VSD model. b)

MSD model. The asterisk () represents the observed statistic.
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Figure 7.4: Niagara River simulated monthly coefficient of skewness using a) VSD model.
b) MSD model. The asterisk () represents the observed statistic.

The comparison of simulated and observed monthly means, standard deviations,
and coefficients of skewness are given in Figure 7.2 to Figure 7.4 for both VSD and
MDS models. The labels on the z-axis (1,2,...,12) indicates the calender month
(January=1).

As illustrated in Figure 7.2 and Figure 7.4, the means and the coefficients of skew-
ness of observed monthly flows for each month are well reproduced by both models.
However, Figure 7.3 suggests the simulated standard deviation of the first five months
are not well preserved by the VSD model. The MSD model reproduces the standard
deviations relatively better. This bias in the VSD model is due to the inverse trans-
formation and the required adjustment of the variables that distort the distribution of

simulated monthly flows.
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Figure 7.5: Simulated and observed cross-correlation pairs of January flows of the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (x)
represents the observed statistic. In the z-axis, 1-A indicates the correlation between January
flows and annual flows, 1-2 indicates the correlation between January and February flows,
and so on.

The two models were also compared in terms of their ability to preserve observed
flow correlations. Figure 7.5 shows the correlation between January flows and annual
flows, and between January flows and the remaining 11 months’ flow of the same
year. The comparison for other months is given in Appendix C. For all months,
the MSD model is able to reproduce the dependence between monthly variables and
between monthly and annual variables. However, the correlation between certain pairs
of months is not well reproduced by the VSD model. This is due to the bias caused
by the inverse-transformation and adjustment procedure when the observed data are
not normally distributed.

To further evaluate the preservation of the assumed marginal distributions by the

two models, the probability plot of 10,000 simulated flows are examined. In order
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Figure 7.6: Simulated Niagara River January flows disaggregated by VSD model. a)Before
adjustment procedure b) After adjustment procedure

to identify the possible source of distortion in the marginal distribution, the normal
probability plot of January flows simulated from both the VSD and the MSD model
were examined before and after the adjustment procedure. Since no transformation
and adjustment are required for the MSD model, the marginal distributions, which
are mixtures of two normals, are very well preserved with 10,000 simulated flows for
all months. In the VSD model, the Box-Cox distribution with A = 1.4 was suggested
by the Filliben statistic for January flows and Figure 7.6 illustrates how the tails of
January flows are distorted after application of the adjustment procedure. Similar
distortions were identified for most of the other months, see Appendix D.

The application of the proposed MSD model to the Manitoba Hydro’s system is

described in Section 8.8.
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7.5 Discussion

One of the potential disadvantages of the MSD model is that some flexibility in the
marginal distributions of the lower-level variables is lost due to the fact that the mixing
probabilities are imposed by the annual model. Therefore, it is important to verify
that the marginal distributions of the lower-level variables are well preserved.

The MSD model preserves the additivity property because for a given year both the
higher-level and lower-level variables are generated from normal distributions. Despite
the fact that monthly means, variances, and cross-correlations are not modeled directly,
they appear to be generally well preserved by the model.

The MSD model is not parsimonious in terms of parameters because a separate set
of model parameters is required for each climate state. Hence it is not recommended
to use the MSD model for multi-site disaggregation when the length of the observed
record is short. The MSD model may be used for univariate temporal or spatial disag-
gregation. A reduction in parameters can be obtained using a staged disaggregation
procedure [Santos and Salas, 1992] which disaggregate higher-level variables to lower-
level variables in two or more steps, or Lane’s condensed disaggregation model, given
in (4.59a) and (4.59b). However, if such methods are used, the additivity property is

lost.

149



Chapter 8

Application to Manitoba Hydro’s

System

8.1 Introduction

One of the objectives of this project is to quantify model, parameter, and data uncer-
tainties in the drought frequency analysis of Manitoba Hydro’s system. In order to
achieve this objective, the proposed stochastic models given in Chapters 4, 5, 6, and
7 are applied to Manitoba Hydro’s system. After the generation of synthetic flows,
drought events are extracted from each scenario according to the definition of drought
adopted in Chapter 3, and the drought frequency analysis is performed.

In this chapter, the details of the application of stochastic models are reported and

the results of the energy drought frequency analysis are presented.
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Figure 8.1: Observed and missing Manitoba Hydro streaflow data.

8.2 Historical Data Sets

The streamflow data used in the project were supplied by the Resource Planning and
Market Analysis Department of Manitoba Hydro. As mentioned in Chapter 2, Man-
itoba Hydro’s system is divided into five hydrological components. The flow records
of the Winnipeg River at Slave Falls and the Saskatchewan River at Grand Rapids
are available from 1912 to 1998 without any missing flows. The flow records of the
Churchill River are available from 1930 to 1998. The Lake Winnipeg PIAO represents
all Lake Winnipeg inflows except the Winnipeg and Saskatchewan River inflows. The
inflow records of the tributaries on the western and eastern sides of Lake Winnipeg are
available from 1957 to 1998. The local flows of the Burntwood and the Nelson River
are also available from 1957 to 1998. Manitoba Hydro uses data for the period 1912-98
in their deterministic SPLASH model for planning and evaluation of their system. To
obtain a full 1912-98 data record for all sites, data extension for the above hydrological
components was performed by Manitoba Hydro [Girling, 1988, 1990].

In the stochastic time series models, the accuracy of estimated parameters depends
on the record length and on the accuracy of the data. Therefore, initially three sets

of data covering the periods 1912-98, 1930-98, and 1957-98 were intended for use
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in the épplication. These periods represent different degrees of extension (see Table
8.1). However, eventually the 1957-98 data set was not used in the drought frequency
analysis because together with gauged flows of PTAO more than 70% of the system’s
inflow is known for the period 1930-1956 which covers the critical drought period as
well. The statistical data analysis and the drought frequency analysis are performed

considering the 1912-98 and 1930-98 data sets.

8.3 Selection of Modeling Sites and Water Year

In Manitoba Hydro’s system, there are 15 streamflow sites of interest and Lake Win-
nipeg PIAO (see Section 2.2). In the stochastic modeling, it was found to be beneficial
to combine sites in order to decrease the dimension of the framework. The aggrega-
tion of the streamflow sites significantly reduces the dimension of the models and the
number of parameters to be estimated. The aggregation is expected to improve the
performance of the stochastic models.

In this project, the disaggregation approach was employed. Annual flows at one or
more aggregated basin sites are generated first and then disaggregated into monthly
flows, which can then be spatially disaggregated into monthly flows at sub-basin sites.
If it is required for the analysis of the system, monthly flows at any sub-basin site can

be further spatially disaggregated into monthly flows at key sites.
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8.3.1 Basin Sites

The Winnipeg River, the Churchill River, and the Saskatchewan River are considered
as basin sites in the stochastic modeling framework because they are the major rivers
that contribute on average 28%, 27%, and 18%, respectively, to the total inflow into
Manitoba Hydro’s system. As discussed in Chapter 2, PIAO is an important compo-
nent of Manitoba Hydro’s system with a 17% contribution to total inflow and it is also
selected as a basin site. The total contribution of the local flows in the Burntwood and
the Nelson River basins is about 16% (Table 2.2). Site-to site correlation coefficients
of local flows are high so these local flows are aggregated and considered as a basin
site as well.

In summary, the following basin sites are selected:

1. Churchill River: The Churchill River flows upstream of Southern Indian Lake.

2. Saskatchewan River: The Saskatchewan River flows at Grand Rapids.

3. Lake Winnipeg PIAQ: The partial inflow available as outflow values of Lake

Winnipeg.

4. Winnipeg River: The Winnipeg River flows at Slave Falls

5. Local Flows: Aggregated local flows at the Burntwood and the Nelson Rivers.

In the stochastic models, the flows of the five basin sites given above were also
aggregated to one artificial site called the Aggregated Basin which represents the total

inflow to Manitoba Hydro’s system.
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Table 8.1: Mean, standard deviation, and coefficient of skewness of observed annual flows
for five basins and Aggregated Basin.

1912-98 1930-98
Basins n o Cs 7 o Cs
Churchill River 35554 6655 -0.093 | 35488 7466 -0.057
Saskatchewan River | 20101 5968 0.806 | 19201 5451 1.012
Lake Wpg PTAO 18504 9740 0.411 | 19452 10114 0.297
Winnipeg River 31651 8924 0.412 | 32302 9422 0.212
Local Flows 13142 3316 0.289 | 13486 3429 0.275
Aggregated Basin 118952 23589 0.306 | 119928 25069 0.152

The mean values, the standard deviations, and the skewness coefficients of the
annual flows of the five basin sites as well as the Aggregated Basin Flows are given in

Table &8.1.

8.3.2 Sub-basin Sites

As seen from Figure 2.3, six generation stations are located on the Winnipeg River.
It is assumed that the flow at Slave Falls is representative for all other stations. The
hydrometric station on the Saskatchewan River is located at the Grand Rapids gener-

ating station which means that the flow passes through the generating station directly.

There are no generating stations on the Churchill River but a significant portion of this
river is diverted through the Notigi Control structure into the Nelson River upstream
of the Kettle generating station. This diverted flow will be taken into consideration
for Kettle, Long Spruce, and Limestone generating stations. Therefore, there is no
need to spatially disaggregate the Winnipeg River, the Saskatchewan River, and the
Churchill River flows into sub-basin sites.

The PIAO flows are used as input to Lake Winnipeg in order to calculate the
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Lake Winnipeg outflows which are used for energy generation on the Nelson River.
Therefore, there is also no need to spatially disaggregate the Lake Winnipeg PIAO
flows.

The 12 local flows, given in Table 2.2, are modeled as a single artificial basin
site. The aggregated Local Flows are disaggregated into artificial sub-basin sites and
key sites according to the contribution (physical location) of these local flows to the
generating stations located on the Nelson River. As shown in Table 3.1, the Upper
Nelson River local flows NRO, NR1, and NR2 contribute to all generating stations
on the Nelson River. The Burntwood River local flows BR1, BR2, BR3, BR4A, and
BR4B, and the Nelson River local flows NR3 and NR4 contribute to Kettle, Long
Spruce, and Limestone generating stations. At the lower Nelson River, NR5 has
contribution to Long Spruce and Limestone, and NR6 to Limestone only. Because of
the very high correlation between NR5 and NR6, they are aggregated and considered
as a sub-basin site in the modeling framework. In summary, the aggregated key sites

are

1. NR012: NRO+NR1+NR2

2. NR34BRAIl: NR3+NR4+BR1+BR24+BR3+BR4A+BR4B

3. NR56: NR5+NR6
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Table 8.2: Coeflicients of NR5 and NR6 Local Flows for the linear deterministic disaggre-
gation model.

1912-98 Data Set:

Month | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
NR5 0.74 0.68 0.66 062 070 0.74 071 068 0.71 0.75 0.78 0.76
NR6 026 032 034 038 030 026 029 032 029 025 0.22 024

8.3.3 Key Sites

If it is necessary, each sub-basin site flows can be further disaggregated to flows at
control points according to their contribution to the generating stations. Because of
the contribution of key sites BRAIl, NR012, and NR34 to the same set of generating
stations, there is no need to disaggregate these into flows at individual control points.
However, key site NR56 must be disaggregated into two control points NR5 and NR6,
because the local flow NR5 contributes to both Long Spruce and Limestone while NR6
contributes only to Long Spruce. Because of the high correlation between NR5 and
NR6 (0.92), there is no need to use a stochastic model to disaggregate monthly NR56
flows to NR5 and NR6 flows. Instead a deterministic linear disaggregation procedure
is used. The historical flows at NR5 and NR6 are used to calculate the proportions of
these flows at the artificial key site NR56. The linear coefficients for the 1912-98 data

set are given in Table 8.2.

8.4 Stochastic Modeling Frameworks

The first step in the modeling of the multi-site streamflow time series is the selection

of an appropriate modeling framework defining the components to be modeled and
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the associated stochastic models. In the selection of the frameworks, an attempt was
made to minimize the required number of modeling steps. The two main modeling
frameworks used in this research project are outlined in Figures 8.2 and 8.3. These
two frameworks will be compared in terms of their ability to preserve the statistical
properties of observed flows.

In Modeling Framework-1 given in Figure 8.2, a single-site annual model is used
to generate annual flows for the entire basin. A spatial disaggregation model is then
used to disaggregate generated annual flows into annual flows at the five basin sites.
The annual flows at the five basin sites are subsequently disaggregated into monthly
flows using a multi-site annual-to-monthly disaggregation model. The local flows in
the Burntwood and Nelson Rivers must be further disaggregated into monthly flows at
the three key sites. The last step of the framework is the deterministic disaggregation
of monthly flows at key site NR56 into NR5 and NR6 flows using a deterministic linear
disaggregation procedure (Section 8.3.3).

In Modeling Framework-2 given in Figure 8.3, annual flows at the five major basin
sites are generated first using a multi-site annual model. The remaining steps of the
framework are the same as in Modeling Framework-1.

As mentioned earlier, in this research project, the emphasis is placed on the mod-
eling of the annual flows. Hence, the two frameworks differ only in the modeling of the
annual flows. In the annual flow generation, parameter uncertainty is considered for
both frameworks. In Framework-2, the data uncertainty in the multi-site MS model

is also considered. Using AR(1) and MS models, a total of nine modeling frameworks

157



8.4. STOCHASTIC MODELING FRAMEWORKS

MODEL 1
Single-site Annual Model

Generation of annual flows for an entire basin.

Aggregated

Basin Flows

MODEL 2
Spatial Disaggregation Model
Disaggregation  of generated annual basin flows
into annual flows at five major basin sites.

Churchill Saskatchewan Lake Wpg. Winnipeg
River River PIAO River

Aggregated
Local Flows

Multi-site Annual to Monthly  Disaggregation Model

MODEL 3

Disaggregation of generated annual flows
into monthly flows at five basin sites.

Saskatchewan Lake Wpg. Winnipeg
PIAO River
v

Aggregated
Local Flows

MODEL 4
Spatial Disaggregation Model
Disaggregation of monthly flows in one basin site
into monthly flows at three sub-basin sites.

P®E

MODEL 5
Deterministic Linear  Disaggregation
Disaggregation of monthly flows in one sub-basin site
into monthly flows at two key sites.

S @

Drought
Simulation Model

Figure 8.2: Stochastic Modeling Framework-1
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MODEL 1
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Generation of annual flows at five major basin sites.
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MODEL 2

Multi-site Annual to Monthly  Disaggregation Model
Disaggregation of generated annual flows
into monthly flows at five basin sites.
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MODEL 3

Spatial Disaggregation Model
Disaggregation of monthly flows in one basin site
into monthly flows at three sub-basin sites.
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MODEL 4

Deterministic Linear  Disaggregation
Disaggregation  of monthly flows in one sub-basin site
into monthly flows at two key sites.

® @&

Drought

Simulation Model

Figure 8.3: Stochastic Modeling Framework-2
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Table 8.3: Selected models in Framework-1.

Modeling Framework-1:

Model Model-1 Model-2 Model-3 Model-4 Model-5
Single-site MR Spatial | Lane’s Temporal | Lane’s Spatial | Deterministic
MF-1.1 AR(1) Disagg. Disaggregation | Disaggregation Disagg.
Model Model Model Model Model
Single-site MR Spatial | Lane’s Temporal | Lane’s Spatial | Deterministic
MF-1.2 | AR(1) Model with Disagg. Disaggregation | Disaggregation Disagg.
par. uncertainty Model Model Model Model
Single-site MS Spatial | Lane’s Temporal | Lane’s Spatial | Deterministic
MF-1.3 | Markov-Switching Disagg. Disaggregation | Disaggregation Disagsg.
Model Model Model Model Model
Single-site MS Spatial | Lane’s Temporal | Lane’s Spatial | Deterministic
MF-14 MS Model with Disagg. Disaggregation | Disaggregation Disagg.
par. uncertainty Model Model Model Model

are employed (see Tables 8.3 and 8.4).

8.5 Application of the Traditional Models

In the drought frequency analysis, the performance of the proposed MS model was
compared with the traditional AR(1) model. Details about the application of the

AR(1) model are given in the following.

8.5.1 Marginal Distributions and Data Transformation

In the traditional first order autoregressive model and disaggregation models, described
in Chapter 4, it is assumed that flows are normally distributed. The marginal distri-
butions of the observed annual and monthly flows of the five basin sites and three
key sites were investigated in terms of normality. Normal, 2-parameter lognormal,

3-parameter lognormal, and Box Cox distributions were fitted to observed flows and
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Table 8.4: Selected models in Framework-2.

Modeling Framework-2:

Model Model-1 Model-2 Model-3 Model-4
Multi-site Lane’s Temporal | Lane’s Spatial | Deterministic
MF-2.1 AR(1) Disaggregation | Disaggregation | Disaggregation
Model Model Model Model
Multi-site Lane’s Temporal | Lane’s Spatial | Deterministic
MF-2.2 AR(1) Model with Disaggregation | Disaggregation | Disaggregation
parameter uncertainty Model Model Model
Multi-site Lane’s Temporal | Lane’s Spatial | Deterministic
MF-2.3 Markov-Switching Disaggregation | Disaggregation | Disaggregation
Model Model Model Model
Multi-site Lane’s Temporal | Lane’s Spatial | Deterministic
MF-2.4 MS Model with Disaggregation | Disaggregation | Disaggregation
parameter uncertainty Model Model Model
Multi-site Lane’s Temporal | Lane’s Spatial | Deterministic
MF-2.5 MS Model with Disaggregation | Disaggregation | Disaggregation
parameter and data uncertainty Model Model Model

the Filliben correlation coefficient statistic given in Section 4.2.4 was used to select the
best distribution. For a given series, the distribution with the highest Filliben statis-
tic is usually selected as transformation. However, in most cases, Filliben statistics
for two or more distributions were very close to each other. Having similar Filliben
statistics does not mean that two distributions fit data equally well in all regions of
the distribution. Hence, beside the Filliben statistic, probability plots were visually
investigated one by one and compared with other candidate distributions. The ones
having a better fit in the lower tail (low flows) of the plot which is of most interest
in drought studies were selected. The selected marginal distributions for the 1912-98
data set are given in Table 8.5. The marginal distribution of monthly flows of the Ag-
gregated Basin Flows site is not included in Table 8.5 because they were not modeled

in the frameworks in Figure 8.2 and 8.3.
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Table 8.5: Selected marginal distributions for basin sites and key sites.

1912-98 Data Set:

Site Amm (J F M A MJ J A S O N D
Agg. Basin F. 3 - - - - - e e e e e
Churchill R. 1 11 4 1 1 1 4 1 1 4 2 2
Saskatchewan R. 3 1 1 3 3 2 3 4 4 4 4 2 1
Lake Wpg. PIAO 3 11 1 3 3 43 3 1 1 3 1
Winnipeg R. 4 4 3 4 3 3 3 3 4 4 3 2 2
Agg. Local F. 3 3 3 1.3 1 3 1 1 3 2 2 3
NRO12 3 3 3 3 4 4 4 3 3 2 2 2 3
NR34BRAIl 1 3 3 1.2 1 3 1 1 1 3 3 3
NR56 3 3 3 3 4 3 2 3 3 3 4 3 3
1: Normal, 2: 2-Par. Lognormal, 3: 3-Par-Lognormal, 4: Box-Cox

8.5.2 ARMA-Type Model Selection

The selection of the order of ARMA models is commonly based on the Akaike Infor-

mation Criterion (AIC) [Akaike, 1974]:

AIC = —2In[max(Ly)] + 2(k) (8.1)

where [max(Ly)] is the maximum value of the likelihood function for a candidate model
with k parameters. Hence, the AIC takes into account the parsimony of a model. For
Autoregressive Moving Average [ARMA(p,q)] models, minimizing (8.1) is equivalent

to minimizing [Salas et al., 1988]

AIC(p,q) = TIn(6%) + 2(p + q) (8.2)

where T is the length of observed record and 42 is the estimate of the residual variance.

In this project, the best ARMA-type model was selected from among ARMA(1,1),
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Table 8.6: AIC values for annual ARMA-type model identification.

1912-98 Data Set:

AIC
Basin F. | Chur. R. | Sask. R. | PIAO | Wpg. R. | Local F.
ARMA(1,1) | -18.78 -67.01 -13.18 | -11.97 -8.31 -8.36
AR(2) -18.74 -67.00 -13.18 | -11.97 -8.01 -8.27
AR(1) -19.84 -68.63 -14.84 | -13.92 -8.47 -9.35
AR(0) 2184.3 1964.1 1945.1 | 20304 | 2015.2 1842.9

AR(2), AR(1), and AR(0) models. The model that gave the minimum AIC according
to (8.2) was selected. As seen from Table 8.6, the AR(1) model is the best choice

between competing models for all sites.

8.6 Application of the 2-state Single-site M'S Model

to Manitoba Hydro Data

In the drought frequency analysis, Framework-1 generates aggregated annual flows
for the entire Manitoba Hydro basin using a single site annual stochastic time series
model. In this section, the application of the single site MS model for Manitoba
Hydro along with some implementation issues of this model is presented. The MS
model identification and parameter uncertainty are also explained in this section.

To determine the order of the MS model for the Aggregated Basin Flows and the five
basin sites, the BIC described in Section 5.6 was employed. More specifically, models
of order 2, 3, and 4 were considered. Models with five states or more were considered of
little interest because of the high number of paran;eters. The corresponding BIC values

for each data set are given in Table 8.7. In the case of the Churchill River 1912-98 data,
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Table 8.7: BIC values for MS Model identification.

1912-98 Data Set:

BICMm
States (M) | dps | Basin F. | Chur. R. | Sask. R. | PTAO | Wpg. R. | Local F.
2 6 590.2 605.2 602.3 644.5 638.9 565.1
3 12 594.7 603.9 609.3 651.9 645.3 571.6
4 20 604.2 612.3 620.6 664.3 649.8 580.5
1930-98 Data Set:
BICMm
States (M) | dpr | Basin F. | Chur. R. | Sask. R. | PIAO | Wpg. R. | Local F.
2 6 4714 390.6 377.8 418.9 415.9 354.5
3 12 477.4 395.5 384.2 426.6 417.1 362.0
4 20 490.6 403.5 393.2 438.1 423.3 372.7

a 3-state model appears to be the best choice, while for the other sites, the 2-state
process wins the model comparison for all data sets. However, when the 1930-98 data
set is considered, the 2-state process appears to be the best choice for all sites. Since
only the 1930-98 period of the Churchill River is actually observed, a 2-state model
was selected for all basin sites for all data sets. In the case of annual runoff, s; = 1
represents a dry state (relative to long-term annual mean) and s; = 2 a wet state. For
the 2-state MS model, the unknown parameter vector is @ = (g1, P12, P21, t1, f2, 01, 02).

In order to start the iteration for parameter estimation, initial parameters are
needed. For the 2-state MS model, the observed data Qr were compared with the
long term annual mean @ to obtain the two data sets, Qg, for state 1 and Qg, for
state 2. Specifically if the observed data in year ¢ is less than @, it is considered as
belonging to Qg,, otherwise to Qg,. The initial population parameters u; and o;, for
1 = 1,2, are then estimated from these data sets.

The initial elements of the transition probability matrix can also be obtained from
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Qr. Let n;; denote the number of moves from state i to state j, and n; denote the
length of Qg,. In this case, the empirical transition probability is p;; = n;;/n;. Once
D12 and po; are known, the remaining elements of the transition probability matrix, P,
can be calculated as p;; = 1 — p12 and pye = 1 — poy.

For a 2-state MS model, there are two initial probabilities, g; and g,, but only one
of them needs to be estimated because g; = 1 — gy. Since this parameter converges
very quickly, it can be set to o; = 1/2.

Once the initial parameters are selected, the ML-estimates of the model parameters
can be calculated using the EM algorithm as explained in Section 5.4.

After estimation of the parameter vector 8, the streamflow sequences can be sim-

ulated in two steps. First, the state time series is simulated by a Markovian process

st|st—1 ~ Markovian(g, P) (8.3)

Once the state sequence is known, the streamflow variable can be simulated from

N(/.Ll,O'l) if S = 1

Il

qt (8-4)

N(,U,Q,O'z) if S = 2

The single-site 2-state MS model is applied to the five basin sites in Manitoba
Hydro’s system as well as to the Aggregated Basin Flows site. The objective is to
investigate the evidence of a 2-state persistence structure in the observed annual runoff

of Manitoba Hydro.
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Table 8.8: Estimated ML-parameters and associated model properties of the single-site

2-state MS model (Annual runoff in cfs).

1912-98 Data Set:

Churchill | Saskatchewan | Lake Wpg. | Winnipeg | Aggregated | Aggregated
River River PIAO River Local Flows | Basin Flows
1 25,817 17,716 13,836 25,977 11,402 107,090
[ 37,874 28,319 25,858 38,411 16,404 137,760
o1 3,193 3,615 6,843 5,462 2,206 17,027
o3 4,879 4,934 8,907 7,274 2,412 19,632
piz | 0.1274 0.0898 0.0934 0.1876 0.1726 0.1160
P21 0.0308 0.3551 0.1213 0.2164 0.3010 0.1628
b 35,526 19,857 19,065 31,751 13,225 119,850
(35,554) (20,101) (18,504) (31,651) (13,142) (118,950)
o 6,630 5,784 9,823 8,889 3,318 23,627
(6,555) (5,968) (9,740) (8,924) (3,316) (23,589)
Cs -0.3111 0.8902 0.3627 0.3536 0.3056 0.2510
(-0.0935) (0.8058) (0.4110) (0.4122) (0.2891) (0.3076)
” 0.4367 0.3005 0.2891 0.2901 0.2771 0.2953
(0.7456) (0.4195) (0.4089) (0.3367) (0.3497) (0.4712)
P2 0.3677 0.1668 0.2270 0.1729 0.1459 0.2130
(0.5269) (0.1251) (0.1472) (-0.0043) (0.0322) (0.1431)
The observed values are given in parentheses

Maximum likelihood estimates of the MS model for the 1912-98 record are obtained
by means of the EM-algorithm and are reported in Table 8.8, along with selected
statistics of the observed data.

A number of characteristics of the MS model are of interest. Many of these can
be calculated analytically using the various formulas provided in Section 5.3. First of
all, the model should adequately reproduce the marginal distribution of runoff. In the
2-state MS model, the marginal distribution is a mixture of two normal distributions.
The resulting pdf and probability plot of the annual Aggregated Basin Flows are
shown in Figure 8.4. As seen from the probability plot, the marginal distribution of
the Aggregated Basin site is very well preserved. Appendix E contains probability

plots of the five basin sites.
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Figure 8.4: Annual Aggregated Basin Flows of Manitoba Hydro’s system. a) Marginal
probability density function of MS model. b) Normal probability plot of observed annual
flows and fitted MS model
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First, second, and third order moments are reported in Table 8.8 for all sites. There
are some minor discrepancies between observed and modeled moments, but overall
the reproduction of moments is good, as one would expect based on the visually good
reproduction of the marginal distribution.

It is of interest to look at the estimated state probability sequences, Pr{s; = #|Qr},
fort=1,2,and t =1,2,...,T. Figure 8.5 shows the state probabilities and the mean
level associated with the most probable state for the annual Aggregated Basin Flows.
At all sites, the state probabilities are very well defined, that is, most of the state
probabilities are either close to zero or one (see Appendix F).

Based on the transition probabilities given in Table 8.8, it is possible to determine
the average duration of each regime. For example, for the Aggregated Basin Flows,
the dry regime has an expected duration of 1/p;3 = 9 years, and the wet regime has
an expected duration of 1/py; £ 6 years.

Figure 8.6 shows the autocorrelation function of a 2-state MS model and the con-
ventional AR(1) fitted directly to the data. In this particular example, the observed
short-term (lag-1) correlation is not well captured by the MS model. On the other
hand, an AR(1) model preserves very well the first autocorrelation coefficient. For
higher lags, the scenario is reversed. Beyond lag-2, the AR(1) model considerably
underestimates the observed autocorrelation whereas the MS model does a more rea-
sonable job in preserving the observed autocorrelation. If the interest is multi-year
droughts with typical durations greater than two years, then the MS-model may seem

a more prudent (conservative) choice.
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Figure 8.6: Aggregated Annual Basin Flows. Observed and modeled autocorrelation func-
tion.

As mentioned in Section 5.3.4, an M-state MS model has the same autocorrela-
tion structure as an ARMA(M —1, M —1) model. Therefore, the functional form of
autocorrelation of the 2-state MS model considered here is equivalent to that of an
ARMA(1,1) model. In Appendix G, the autocorrelation function for the 2-state MS

model and AR(1) and ARMA(1,1) models are compared for all sites.

8.6.1 Incorporating Parameter Uncertainty

In Section 5.7, the incorporation of parameter uncertainty was developed for the M-
state MS model. In this section, the specific case of M = 2 case will be considered.
Given initial parameters, the entire state sequence will be simulated first using Chib’s

method.
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For M = 2, the Multinomial likelihood function of the transition probabilities in

(5.59) reduces to the Binomial function

U(St|piy) o (pig) ™9 (1 — pij)m (8.5)

and the Dirichlet prior distribution in (5.60) becomes the Beta distribution

p(pij) o< (pig) @D (1 — py;) (8.6)

pij ~ Beta (o, ) (8.7)

where o and (3 are parameters of the prior distribution. For a diffuse prior distribution,
a = = 1. Using (8.5) and (8.6), the updated posterior distribution becomes a Beta

distribution

p(ps;|ST) o (pi) ™9t D(1 — pjj)(mi=mis+h=1) (8.8)

pi;|St ~ Beta (o + ny;, B+ n; — ny;) (8.9)

For the 2-state single-site MS model, the k’th iteration of the Gibbs sampler pro-
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ceeds as follows:

S® ~ p[Sr|p®Y,e® Y, PE-D Q] (8.10)

p12)|S(k) ~ Beta [1+n§g),1—|—n(k) ngg)] (8.11)
pPIS®  ~ Beta [1+n§’§),1+n§’°)—ng’;)] (8.12)
@HPIQr ~ Inv—x* [v®, (2)W] (8.13)
pP 0P, Q1 ~ N[, (03)® k¥ (8.14)
@)PNQ2 ~ Inv—x* [V, (a2,)P] (8.15)
pP10D®, Qo ~ N [u®, (03)®/k®] (8.16)

(k)

where n;;”,

1,5 = 1,2, is the number of times that s; = ¢ and s;1; = j, and n; is the
number of times that s; = i in the state sequence S¥° ). The posterior parameters of
the Normal and Inv-Chi-square distribution, nS{?, l/y(:), ;ugf), ( ,2”)(’“), are given in (5.68)-
(5.71).

For the hyperparameters (parameters of the prior distribution) of u; and o2, the

following parameters are selected in order to obtain diffuse prior distributions:

ko =1 Ho; = Hipre
w=>5 05, =00, (8.17)

where p;,,,, and o2 are the maximum likelihood estimates of state i mean and

IMLE

variance, respectively.
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As mentioned in Section 5.7, during the simulation of the state sequence s¥° ) in
the Gibbs sampler, it is possible to obtain less than two occurrences of one of the
states. In this case, since there is not enough data to simulate the parameters from
the posterior distribution of that state, they are directly simulated from their prior

distributions. Specifically

(07) ®  Inv — x*(vo,03,) (8.18)

1P (62)® ~ N(go,, (63)* /1) (8.19)

However, since the prior distributions are diffuse, some constraints are applied in
order to minimize the simulation of highly unlikely parameters. For the state mean
and variance, the prior distribution is bounded as

(o) =

2

E [(a,?)"“)] +/Var [(a,?)(k)}] (8.20)

i = [0, % (o3)® V] (8.21)

where for the scaled inverse-x2-distribution

B|(e)"Y] = ;—0—1/—3—2-03,. (8.22)
Var [(03) (k)] - (v — 2§2UEV0 —4) c (8:28)

When a heuristic method is used for the initial parameter vector in the Gibbs

sampler, the algorithm is allowed to sample for a certain number of iterations (warm
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Figure 8.7: 2-State MS model parameters simulated using Gibbs sampling of the posterior
distributions for Aggregated Basin Flows.
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Figure 8.9: Correlograms for the parameters of the 2-state MS model simulated from Gibbs
sampler for Aggregated Basin Flows.

up) in order to minimize the impact of the initial parameters. The convergence of
the chain can be tested using different methods. However, when the MLEs are used
as initial parameters, it was observed that according to the R statistic (Section 5.7),
this warm-up period is not necessary because the MLEs are close to the mode of the
marginal posterior distributions. Five thousand simulated model parameters and their
marginal posterior distributions for Aggregated Basin Flows are given in f‘igures 8.7
and 8.8, respectively.

As mentioned in Section 4.3.3, when parameter uncertainty is considered, each
streamflow sequence is simulated using a different set of model parameters. In MCMC
simulations, a significant autocorrelation can be observed in the chain. To avoid this

correlation, the chain can be thinned by taking every n’th valued in the chain. This
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is a common practice in MCMC simulations. In order to decide the thinning interval,
the correlograms of the 5000 simulated parameters for Aggregated Basin Flows are
examined. As seen from Figure 8.9, the autocorrelation is close to zero after lag 20
for all parameters. After examining several chains, it was decided to use every 30th

parameter sets for the simulation of synthetic flows.

8.7 Application of the 2-State Multi-site M'S Model

to Manitoba Hydro Data

In Framework-2, annual flows at the five hydrological components of Manitoba Hydro’s
system are generated using a multi-site stochastic time series models. The multi-
site extension of the MS model was described in Chapter 6 for the general M-state
case. In this section, the application of the 2-state multi-site MS model and the
corresponding parameter and data uncertainty procedures are presented for Manitoba
Hydro’s system.

The basic assumption of the multi-site model is that a single state variable describes
the flows at all sites. In other words, the model does not allow one site to be in dry state
and another site in wet state in the same year. If the watersheds are geographically
close, this should not be an overly restrictive assumption since it is reasonable to
assume that the climate regime is regional in scope. For watersheds that do not belong
to the same climate region, this could be a somewhat restrictive assumption. However,

if individual state variables are applied to individual sites, it becomes impossible to
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preserve the cross-correlation between sites.

The multi-site application of the 2-state MS model for Manitoba Hydro’s system
considers 5-dimensional vectors of observations, q; = (qt(l), e ,qt(‘r’)),, fort=1,...,T.
In order to model the correlation between the five sites, it is assumed that the five
annual flows are generated from a multivariate normal distribution. After estimating
the model parameter set 8 = {01, P12, P21, P1, B2, X1, X}, the state sequence can be

simulated as

S¢|8s—1 ~ Markovian(g, P) (8.24)

Given the state sequence at time ¢, the streamflow variable can be simulated from

N(pl,El) if S = 1

q: (8.25)

N ([lz,zg) if St = 2

The parameter estimation for the multi-site MS model was presented in Section
6.3. Table 8.9 gives the state means and standard deviations of the 2-state multi-site
MS model for the five sites along with first, second, and third order moments for the
1912-98 data set.

Figure 8.10 shows the associated marginal distribution for the Saskatchewan River
using the multi-site model. The fit is good, particularly in the left tail which is of
most interest in drought studies. Generally, it is possible to obtain a good distribution
fit with the multi-site MS model. The fit tends to be better if sites are considered

individually. However, even with the 5-site model employed here it is possible to
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Table 8.9: ML-parameters and moments of the multi-site MS model of Manitoba Hydro
annual runoff (cfs) with transition probabilities p12 = 0.0506 and po; = 0.0820.

1912-98 Data Set:

Churchill | Saskatchewan | Lake Wpg. | Winnipeg | Aggregated
River River PIAO River Local Flows
1 34130 17119 16720 29347 12761
723 37218 23588 20589 34345 13588
o1 8159 3556 9548 8398 3466
P 3464 6246 9422 8651 3028
I 35309 + 19588 18197 31255 13077
(35554) (20101) (18504) (31651) (13142)
o 6927 5709 9684 8836 3330
(6555) (5968) (9740) (8924) (3316)
cs | -0.3540 0.7305 -0.0037 0.0322 -0.0443
(-0.0935) (0.8058) (0.4110) (0.4122) (0.2891)
1 0.0407 0.2629 0.0327 0.0655 0.0126
(0.7456) (0.4195) (0.4089) (0.3367) (0.3497)
P2 0.0353 0.2280 0.0283 0.0568 0.0110
(0.5269) (0.1251) (0.1472) (-0.0043) (0.0322)

The observed values are given in parentheses
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Figure 8.10: Saskatchewan River. Normal probability plot of observed annual flows and
fitted multi-site MS model.
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Figure 8.11: Saskatchewan River. Observed and multi-site MS model autocorrelation.

obtain good fits. The probability plots for all five sites of the multi-site MS model are
given in Appendix H.

Serial correlation plays a key role in determining drought frequencies and is one of
the main properties that a model should preserve. The autocorrelation function for the
Saskatchewan River mean annual flow is shown in Figure 8.11 along with the observed
autocorrelation function. Except for lag 1, the modeled autocorrelation somewhat
overestimates the observed autocorrelation. This again appears to be a consequence
of the simultaneous fitting of five sites, because if only the Saskatchewa.n River is
considered, the fit is much better. It is worth noting the substantial autocorrelation
of the MS model even at very high lags. This could have considerable impact on
the characteristics of droughts. The long-term autocorrelation is partly due to the
considerable persistence of the Markov Chain and partly due to the difference in mean

levels. For some of the other sites where the difference in the estimated mean levels
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Table 8.10: Modeled and observed cross-correlation of Manitoba Hydro annual runoff (cfs).
Parameters are estimated using the multi-site MS model. The observed cross-correlations
are given in parenthesis.

1912-98 Data Set:

Churchill | Saskatchewan | Lake Wpg. | Winnipeg | Aggregated
River River PIAO River Local Flows
Churchill 0.2239 0.1866 -0.0592 0.1714
River 1 (0.2290) (0.1829) (-0.0217) (0.1586)
Saskatchewan 0.3315 0.3505 0.1820
River 1 (0.2948) (0.3523) (0.1597)
Lake Wpg. 0.5376 0.6981
PIAO 1 (0.5394) (0.6962)
Winnipeg 0.4604
River 1 (0.4699)
Aggregated
Local Flows 1

The observed values are given in parentheses

is modest, the autocorrelation function tends to die out much faster. As seen from
Table 8.9, the simultaneous fitting of the five sites considerably underestimates the
observed lag-1 and lag-2 autocorrelations for some of the sites. The comparison of the
autocorrelation functions for the single-site MS model, the multi-site MS model, and
the MS disaggregation model for the five sites are given in Appendix I.

It is of practical interest to be able to calculate the overall covariance of g;, given
information about the covariance matrix for each state. The calculation of the covari-
ance matrix is described in Section 6.4. The crosscovariance matrix of several sites
can be constructed by calculating the covariance between all pairs of sites and can be
standardized to give the crosscorrelation matrix. The crosscorrelations of the multi-
site MS model are given in Table 8.10. It can be seen that the crosscorrelations are
very well preserved by the model. The preservation of crosscorrelation is an important

model property in drought studies.
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8.7.1 Incorporating Parameter and Data Uncertainty

For the purpose of incorporating parameter and data uncertainty in the drought fre-
quency analysis of Manitoba Hydro’s system, the Gibbs sampler is applied to the
2-state, multi-site MS model. The methodology for the M-state MS model was de-
scribed in Section 6.5.

For the 2-state 5-site MS model, the k’th iteration of the Gibbs sampler proceeds

as follows:
S ~ p[Sr| a0, ul 0, mEY, mE, PED, QB Y] (3.26)
p12)ls(k) ~ Beta [1 +n52)>1 +’I’L(k) ng’;)] (827)
pB1S® & Beta [1 +nf, 14 - nff)| (8.28)
2¥|Q; ~ Inv-Whishart [1, (A;1)®] (8-29)
yOE® Q. ~ N [u(’“) g /n(k)] (8.30)
Egk)|Q2 ~ Inv-Whishart [ fl’;),(A_l)(k)] (8.31)
pBIE® Q, ~ [ﬂ(m n® /K<k>] (8.32)
where nEJ), i,j = 1,2, is the number of times that s; = 7 and s;;; = j, and n; is the

number of times that s; = ¢ in the state sequence Sf(p'c ). As in the single-site case, a
state sequence is first simulated using Chip’s method. The posterior parameters of the
multivariate Normal and Inv-Whishart distributions, 55,’?, V,(L’f),p,gi),Agf), are given in

(6.45).

In the application of the Gibbs sampler for a multi-site MS model, it was found

180



8.7. APPLICATION OF THE 2-STATE MULTI-SITE MS MODEL TO MANITOBA HYDRO DATA

that if the prior parameters for the state distributions are not carefully chosen, the
Gibbs sampler may not achieve convergence. Therefore, the selection of suitable prior
parameters was a challenge in the application.

As in the single-site case, the state mean vector and covariance matrix are simulated
from their prior distributions when the number of the data in a particular state in the
simulated state sequence St is less than or equal to the number of the sites. However,
in the multi-site application, sampling from prior distributions rarely occurs.

For the prior parameter, Thyer and Kuczera [2003a] suggested to use the data-

based empirical Bayes estimates defined as

po =19 (8.33)

Ap=—b (8.34)

where # and S,;; are the empirical mean vector and covariance matrix of the entire
observed data set Q7. Thyer and Kuczera [2003a] used the same prior parameters for
both states. In this project, the above hyperparameter values were initially employed.
However, using these prior parameters it was found that certain posterior distribu-
tions became bimodal. Therefore, the multivariate extension of the single-site prior
parameters given in (8.17) were used for each state. The multivariate parameters are

given by
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x;
=T Ao = ——MLE__ (8.35)
o — ML

where p;,,,, and X;,,, . are the maximum likelihood estimates of the state ¢ mean
vector and covariance matrix, respectively. The constants ko and 1 were selected low
enough to obtain a diffuse proper prior distribution.

To consider data uncertainty in the Gibbs sampler, missing data values are simu-
lated from a multivariate normal distribution and used to augment the observed data
to obtain the complete data series, QS}“ ) = { 7(,’23, Qobs}. The updated complete data
series is then used to obtain data series from state 1 and 2, @, and 5, that are used
in the simulation of the state mean vector and covariance matrix. It was found that in
the Gibbs sampler, the number of data in a particular state usually was greater than
the number of sites which means that the model parameters can be simulated from
posterior distribution in the large majority of iterations.

As in the single-site MS model, a thinning interval of 30 was used. Examination of
the simulated parameter chains revealed that a warm up period is not necessary when
the MLEs are used as initial parameter values in the Gibbs sampler.

The simulated posterior distributions are given in Appendix J. There is a good

agreement between the maximum likelihood estimates and posterior distributions of

the model parameters.
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8.8 Application of the 2-State MS Disaggregation

Model

In the application of the spatial MSD model, the annual Aggregated Basin Flows ¢;
generated using the single-site 2-state MS model (see Section 8.6) are disaggregated

(1) t(5))’ . It is assumed that lower level

into annual flows in five sites ¢; = (¢;”,...,q
variables are described by two climate regimes and have the same state probability
sequence as annual flows. This means that every site is in the same climate state in
a given year. In the disaggregation, the climate state s; is known from the single-site
2-state MS model. In the MSD model, the zero mean annual Aggregated Basin Flows

x; may be disaggregated into zero mean annual flows y; = (y,gl), cee yﬁs))’ at the five

sites as

Az + B, if s;=1

Ye (8.36)

A2.’I3t + B2€t if S = 2

Despite the loss of some flexibility, it was found that the marginal distributions are
well preserved for all five sites (see Appendix K). However, because of the constraint
that all sites must be at the same state in the same year, the mean levels are closer to
each other at all sites compared to the single-site models (see Appendices F and L). Es-
timated state means and standard deviations and overall means, standard deviations,
and coefficients of skewness are given in Table 8.11. Although there are some minor
discrepancies between observed and modeled moments, in most cases, the MSD model

preserves moments better than the multi-site and single-site MS model (Table 8.8 and

183



8.8. APPLICATION OF THE 2-STATE MS DISAGGREGATION MODEL

Table 8.11: ML-parameters and moments of the MS spatial disaggregation model of Man-
itoba Hydro annual runoff (cfs) estimated using Aggregated Basin Flows’ state sequences
Pr{s; = i|Qr} for i = 1,2 and transition probabilities pj2 = 0.1160 and py; = 0.1628.

1912-98 Data Set:

Churchill | Saskatchewan | Lake Wpg. | Winnipeg | Aggregated | Aggregated
River River PIAO River Local Flows | Basin Flows
751 34070 18458 14158 28478 11920 107090
2 37904 22705 25391 36679 15078 137760
o1 7046 5282 7063 7359 2750 17027
02 5046 5977 9273 8742 3163 19632
7 35666 20225 18832 31891 13234 119850
(35554) (20101) (18504) (31651) (13142) (118950)
o 6569 5961 9776 8931 3317 23627
(6555) (5968) (9740) (8924) (3316) (23589)
cs | -0.2303 0.1290 0.3784 0.2183 0.1892 0.2510
(-0.0935) (0.8058) (0.4110) (0.4122) (0.2891) (0.3076)
o, 0.0597 0.0889 0.2314 0.1478 0.1588 0.2953
(0.7456) (0.4195) (0.4089) (0.3367) (0.3497) (0.4712)
P2 0.0430 0.0641 0.1669 0.1066 0.1146 0.2130
(0.5269) (0.1251) (0.1472) (-0.0043) (0.0322) (0.1431)

The observed values are given in parentheses

8.9). However, it is worth noting that the problems with the fitting of autocorrelation

functions are not overcome with the MSD model. As in the multi-site MS model, for

some of the sites, the MSD model considerably underestimates the observed lag-1 and

lag-2 autocorrelations. The autocorrelation functions for the MSD model for the five

sites are given in Appendix I.

Using information about the covariance matrix for each state, the crosscorrelations

produced by the MSD model are given in Table 8.12. Although the multi-site MS

model preserves crosscorrelation quite well, the comparison of Tables 8.10 and 8.12

reveals that the MSD model is modeling crosscorrelation even better than the multi-

site MS model.
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Table 8.12: Modeled and observed cross-correlation of Manitoba Hydro annual runoff (cfs).
Parameters are estimated by disaggregating Aggregated Basin Flows using the MS disaggre-
gation model. The observed cross-correlations are given in parentheses.

1912-98 Data Set:

Churchill | Saskatchewan | Lake Wpg. | Winnipeg | Aggregated
River River PIAO River Local Flows
Churchill 0.2278 0.1829 -0.0126 0.1587
River 1 (0.2290) (0.1829) (-0.0217) (0.1586)
Saskatchewan 0.2947 0.3571 0.1638
River 1 (0.2948) (0.3523) (0.1597)
Lake Wpg. 0.5407 0.6955
PIAO 1 (0.5394) (0.6962)
Winnipeg 0.4744
River 1 (0.4699)
Aggregated
Local Flows 1

8.9 Verification of Annual Models

In stochastic modeling applications, it is important to verify that the computer imple-
mentation of the model is done correctly. The verification of a stochastic streamflow
model typically involves a demonstration that statistics that should be preserved by
the model are indeed reproduced. In the present application, 100,000 years of flows
were generated using four modeling frameworks (MF-1.1, MF-1.3, MF-2.1, and MF-
2.3 in Tables 8.3 and 8.4) and generated statistics were compared with corresponding
observed statistics for all sites. Only models without parameter uncertainty were con-
sidered for validation. Since normally transformed data are used in the traditional
AR(1) model, the means, the standard deviations, the lag-1 auto-correlations, and the
lag-0 cross-correlations of observed and generated flows were compared before and af-
ter inverse transformation. As seen from Sections M.1 and M.3 in Appendix M, there

is a good agreement between observed and simulated annual flows in both frameworks
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involving AR-models. For the verification of the MS-type models (Model MF-1.3 and
MF-2.3), key statistics are compared with corresponding theoretical statistics given in
Tables 8.9, 8.10, 8.11, and 8.12. As in the case of the traditional AR(1) models, all
selected statistics are well preserved.

In the stochastic modeling, preservation of the marginal distributions is of partic-
ular interest as well. When traditional disaggregation models are used, the marginal
distributions may be distorted because of the application of the adjustment procedure.
The analysis of simulated annual flows reveals that the marginal distributions are well
preserved in all modeling frameworks. However, it is worth mentioning that the spa-
tial disaggregation employed in the model MF-1.1 introduces a minor distortion in the
upper tail of the annual Churchill River, Winnipeg River, and Local Flows which may
not be critical for the drought analysis.

One of the general criteria for the validation of models with parameter uncertainty
is to check if the estimated model parameters are located close to the mode of the
corresponding posterior distributions. The posterior distributions of the single-site
MS model parameters that is used in model MF-1.4 for the Aggregated Basin Flows
are given in Figure 8.8. The posterior distributions of the multi-site MS model that
are used in model MF-2.4 can be found in Appendix J. In all posterior distributions,
maximum likelihood estimates are close to the mode of the corresponding posterior

distribution. This indicates that the models have been correctly implemented.
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8.10 Energy Drought Frequency Analysis for Man-

itoba Hydro’s System

The drought frequency analysis can be performed using any of the three drought
variables discussed in Chapter 3, namely duration, severity, and magnitude. However,
the magnitude of a drought event is a poor indicator of a drought for a hydropower
system because two drought events could have the same magnitude but their impact
could be very different in terms of power production capabilities. To describe the
impact of drought events, the duration and severity are used in the frequency analysis.
After the generation of synthetic monthly flows for Manitoba Hydro’s system using
the nine stochastic modeling frameworks, drought severities and associated durations
were extracted from each synthetic series according to the definition of drought for
Manitoba Hydro (see Section 3.5).

In the design of engineering structures, the return period of extreme events such as
floods and droughts has been widely used. The return period can be defined in different
ways. In this study, the return period is defined as the average elapsed time (years)
between the occurrence of specified drought events. In the case of annual floods, the
maximum flood in any given year can be assumed to be independent and identically
distributed with a known exceedance probability pes., and the return period T can be
calculated in a straightforward manner as T = 1/pe,.. However, since droughts can
span several years, the return period of a given drought event cannot be computed in

the same way as for floods. In the case of droughts, the return period can be obtained
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as follows [Sadeghipour and Dracup, 1985; DeWit, 1995]

T__T

p exc

(8.37)

where 7 is the average cycle length of drought events which can be calculated as the
total number of flow years divided by the total number of drought events extracted.
The drought frequency analysis was performed using synthetic flows generated by
the nine modeling frameworks. A total of 1000 sequences of 1000 years synthetic flows
were generated using each modeling framework, and drought events (durations and
severities) were extracted from each sequence according to the definition of drought
(see Chapter 3). The extracted drought events obtained from the 1000 sequences were
then combined and sorted from the highest (most severe) event to the lowest (least
severe) event. The exceedance probabilities were calculated using the Weibull plotting
position formula, pe,. = m/(n+1), where m is the order number of the event and n is
the total number of events. Linear interpolation is employed for the calculation of the
exceedance probability of a given drought severity. For each modeling framework, the
average cycle length 7 in years is calculated as the total number of years (1,000,000)

divided by the total number of drought events obtained.

8.10.1 Frequency Analysis Results and Discussion

The result of the stochastic drought analysis is presented in the form of frequency

curves. The simulated energy drought frequency curves based on the 1912-98 data set
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Drought Frequency Curves (1912-98)
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Figure 8.12: Drought frequency curves obtained from all modeling frameworks (1912-98).
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Figure 8.13: Drought frequency curves obtained from all modeling frameworks (1930-98).
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Table 8.13: Statistics of calculated return periods of given drought severities using model
MF-1.1. The statistics are base on hundred repeated analysis under identical conditions.

Drought Severity (GWh)
1000 | 3000 | 5000 7000
Mean 62.8 | 296.4 | 1029.8 | 3218.7
Standard Deviation | 0.53 4.6 29.7 175.6
Median 63 297 1031 3213.5
Maximum 64 305 1104 3739
Minimum 62 286 955 2842

are given in Figure 8.12. It should be noted that minor variations in the estimated
frequency curves are observed from one simulation to another. In order to quantify
this variation, 100 frequency curves were simulated using the MF-1.1 model (1912-98
data set) and the return period of certain drought severities was calculated from each
frequency curve. The statistics of the calculated return periods, given in Table 8.13,
show that there is no significant variation between simulations. Although model MF-
1.1 is the simplest and therefore fastest model among others, it takes approximately
10 days to simulate 100 frequency curves using a 2.8 GHz Pentium 4 processor com-
puter. Therefore the quantification of the variation in frequency curves is not done
for the other models. It is assumed that the variation obtained from model MF-1.1 is
representative of the variation for all models.

Figure 8.12 illustrates that in all cases, the inclusion of parameter uncertainty in
the annual model yields smaller return period for a given drought severity than when
using the corresponding annual model without parameter uncertainty. This is to be
expected. The effect of including parameter uncertainty is relatively more significant

when short records are used. Although the 1912-98 data set is relatively long, Figure
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8.12 shows that when extreme drought events with return periods in excess of 100
years are considered, there is a significant impact of parameter uncertainty.

In addition to parameter uncertainty, Figure 8.12d illustrates the consideration of
missing data uncertainty in the multi-site MS model. It can be seen from this figure
that the consideration of missing data uncertainty significantly affects the results of
the frequency analysis. For example, in Figure 8.12d, the return period of a drought
event with a severity of 4000 GWh is approximately 600 years when model MF-2.4 is
used. This model considers only parameter uncertainty in the multi-site MS model.
However, the return period of the same event is 300 years according to model MF-2.5
which considers both parameter and data uncertainty in the same model.

The same drought frequency analysis was repeated using historical data from the
period 1930-98. The frequency curves for this data set are given in Figure 8.13. The
comparison of frequency curves for the periods 1912-98 and 1930-98 reveals that the
return period of a given drought severity decreases when the 1930-98 data set is used.
Since the percentage of missing data is smaller for the 1930-98 data set (compared to
1912-98), the impact of missing data uncertainty on the frequency analysis is also less
in the 1930-98 data set (Figure 8.13d).

The frequency curves for drought severity conditional upon drought duration are
analyzed for all modeling frameworks and data sets. The conditional frequency curves
that are obtained using model MF-2.5 are given in Figure 8.14a. For example, the
return period of a 2000 GWh drought severity with duration less than or equal to 2

years can be obtained from the figure as approximately 300 years. The conditional
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MF-2.5 Severity—Duration—-Frequency Curves (1912-98)
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Figure 8.14: Conditional drought frequency curves obtained from MF-2.5 (1912-98).
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Table 8.14: Return Period (T') of critical drought (3309 GWh) using all modeling frame-
works and data sets.

Framework-1 Framework-2
MF-1.1 MF-1.2 | MF-1.3 MF-14 || MF-2.1 MF-2.2 | MF-2.3 MF-24 MF-2.5
Teri012—_08 360 200 2380 1040 480 420 540 370 200
Teri050-08 170 120 740 340 230 190 430 210 190

frequency curves can also be plotted as Severity-Duration-Frequency curves as in Fig-
ure 8.14b. The conditional frequency curves for other modeling frameworks are given
in Appendix N for both data sets.

Manitoba Hydro has an interest in determining the frequency of the critical drought
of 3309 GWh (see Table 3.3). The return period of the critical drought, calculated using
each modeling framework and each data set, is given in Table 8.14. Several observations
can be made. Models MF-1.1 and MF-1.2, which differ only in the consideration of
parameter uncertainty in the single-site AR(1) model, suggest that the consideration
of parameter uncertainty in the modeling of Aggregated Basin Flows has significant
impact on the estimation of the return period of the critical drought. When the
uncertainty in the parameters of the single-site AR(1) model is considered, the return
period changes from 360 to 200 years for the 1912-98 data set, and from 170 to 120
years for the 1930-98 data set. In the MF-2.1 and MF-2.2 models, which differ only in
the consideration of parameter uncertainty in the multi-site AR(1) model, the impact
of parameter uncertainty is relatively small.

In the application of the MS model, there is a significant difference between the re-

sults of the two frameworks. Model MF-1.3 generates annual Aggregated Basin Flows
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using a single-site MS model and disaggregates them into annual flows at five sites.
Model MF-2.3 generates annual flows at five sites using the multi-site MS model.
As seen from Tables 8.9 and 8.11, there are significant differences between model
parameters in the two models MF-1.3 and MF-2.3. Although consideration of param-
eter uncertainty significantly reduces the calculated return period in model MF-1.4,
it is still not a realistic value in comparison with the other modeling frameworks. In
Framework-1, the modeling of Aggregated Basin Flows influences the results of the fre-
quency analysis. The difference between models MF-1.3 and MF-2.3 may be explained
by their persistence structure that can be obtained using the estimated transition prob-
abilities. In the MF-1.3 model, the probability of moving from state 1 (dry) to state
2 (wet) is estimated as pi2 = 0.12, and moving from state 2 to state 1 is estimated as
po1 = 0.16. These estimates suggest that the dry regime has an expected duration of
around eight years and the wet regime has an expected duration of around six years.
In the MF-2.3 model, the persistence structure is stronger with expected durations of
around 20 years for the dry regime and 13 years for the wet regime.

In order to identify the source of the difference in the frequency analysis results
between the AR(1) model and the MS model in Framework-1, the single-site MS model
and the AR(1) model for Aggregated Basin Flows is further investigated by a drought
frequency of annual streamflow (as opposed to energy flows). In streamflow analysis,
a multi-year drought may be defined as a period of consecutive years during which
the annual streamflow is continuously below the long-term mean annual runoff. The

period of time for which the annual flow is below the long-term mean annual runoff
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Figure 8.15: Aggregated Basin Flows (1912-98). Streamflow drought frequency curves
obtained using the Modeling Framework-1.

is defined as the drought duration and the cumulative deficit of streamflow during a
drought is defined as the drought severity.

According to above definition of streamflow drought, 15 drought events were ex-
tracted from the 1912-98 record of Aggregated Basin Flows (see Figure 5.2). The
critical drought is observed from 1936 to 1944 with a severity of 2,581,000 cfs-years.
This critical streamflow drought corresponds to the critical energy drought for Mani-
toba Hydro’s system observed between 1938 and 1942 (see Table 3.3). The frequency
curves obtained using 500 sequences of 1000-yr synthetic flows generated using the
AR(1) and the MS models with and without parameter uncertainty are given in Fig-
ure 8.15. Considering parameter uncertainty, Figure 8.15 suggests that the return

period of the critical drought is approximately 130 years with the AR(1) model and
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approximately 290 years with the MS model. The difference in results increases with
increasing drought severities. For example, the return period of a severity of 4,000,000
cfs-years is approximately 400 years with the AR(1) model and approximately 1300
years with the MS model. In this particular application, although the MS model pre-
serves all important statistics well, it generates less severe extended low flows than the
AR(1) model for Aggregated Basin Flows.

In the energy drought frequency analysis, it was found that the modeling of Ag-
gregated Basin Flows dominates the results of the drought frequency analysis in
Framework-1 for both the AR(1) and the MS models. Therefore, for energy drought
frequency analysis Framework-1 may not be the best choice of framework. In addi-
tion, the structure of Framework-1 does not allow one to incorporate missing data

uncertainty.
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Chapter 9

Conclusions

The overall objective of this project was to develop a comprehensive probabilistic
framework for energy drought frequency analysis by considering model, parameter,
and missing data uncertainty. In this last chapter, several conclusions of the project
are presented.

The MS models are applied to Manitoba Hydro’s system along with traditional
models in the assessment of energy drought frequency. The importance of model, pa-
rameter, and missing data uncertainties was quantified by comparing the results of
the comprehensive energy drought frequency analysis with and without considering
uncertainties. Two modeling frameworks were employed in the generation of synthetic
flows. In one framework, a single series of all inflow sources is modeled first and then
disaggregated spatially to the five basin sites representing the major inflow compo-
nents of Manitoba Hydro’s system. In the second framework, the five basin sites are

simulated simultaneously with a multivariate stochastic model. Although both frame-
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works preserve the important statistical properties of observed flows well, the results of
the drought frequency analysis differ significantly from each other. Since the modeling
of Aggregated Basin Flows, which is an artificial site, dominates the results of the
drought frequency analysis in Framework-1, Framework-2 may be the better choice of
framework for Manitoba Hydro’s system.

The impact of parameter uncertainty may in some cases be more important than
the choice of model [Stedinger and Taylor, 1982b]. This is especially true when the ob-
served record is short and/or the number of parameters to be estimated is high. In such
circumstances, it becomes important to quantify parameter uncertainty. Although, the
1912-98 data set is relatively long, the frequency analysis shows a significant impact of
parameter and missing data uncertainty, especially when considering extreme drought
events which was one of the main objectives of this project.

The structure of the multi-site MS model allows one to incorporate the uncertainty
associated with missing data to ensure all information in the basin is utilized. The
drought frequency analysis results reveal that different conclusions are obtained when
missing data uncertainty is introduced in the multi-site MS model.

From a physical point of view, the regime switching property of MS models may
have some justification. A number of well documented hydrologic time series exhibit
regime-like behavior that in many cases can be associated with oceanic circulation
patterns.

A major componenent of the research has been to study the performance of MS

models when applied to hydrological data series. The structure of the MS model is
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simple and easy to understand. Low order models are also relatively parsimonious in
terms of parameters. A 2-state single-site model has six independent parameters to be
estimated. Model parameters can be estimated efficiently by the method of maximum
likelihood.

All basic statistical properties of the model can be derived analytically from the
estimated parameters. This is useful for understanding model characteristics and for
quick model evaluation.

The marginal distribution of data generated from an M-state MS model is a mix-
ture of M normal distributions. Although mixture densities are known to be quite
flexible, the marginal distribution associated with MS models may give a poor fit to
the observed data compared to conventional transformation such as Box-Cox. It was
found that if the sole objective is to fit a mixture density to the observed data, then a
good agreement can usually be achieved. However, when the estimation includes the
Markov chain parameters, some of the flexibility is lost and a good fit apparently is
not always possible. This may be a limitation of MS models. It should be empha-
sized however that in many cases the MS model provides a good representation of the
marginal distribution of data.

As it is the case with most model comparisons, the relative merits of different
models depend on the data used in the study. For the data used in this study, the
marginal distributions were well represented by the MS model. However, the multi-site
version of the MS model produced significantly weaker autocorrelation than the single-

site model. A general finding is that single-site MS models often result in stronger
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autocorrelations at higher lags than traditional low-order ARMA-type models. This
may be important in drought studies where one would expect autocorrelation to have
impact on simulated statistics and where a model with strong autocorrelation would
be considered a conservative choice. In multi-site applications, the MS model should
be used with caution especially when the basin is large and not homogeneous. In such
cases, the preservation of the autocorrelation may be seriously compromised.

Bayesian inference was used to incorporate parameter uncertainty into the single-
site and multi-site MS models. Since analytical expressions for posterior distributions
are not available for the MS model, a Markov chain Monte Carlo method known as the
Gibbs sampler is used to simulate model parameters from the posterior distributions.
In all applications, a good agreement was observed between the posterior distribution
of a given parameter and its corresponding maximum likelihood estimate.

In the MS model, the assumption that all sites are in the same state at the same
time may not be justified when the basin is large and consists of nonhomogeneous
sub-basins. This is indeed a questionable assumption for Manitoba Hydro’s system
which is large and diverse. In the single-site MS model estimation (see Table 8.8),
transition probabilities suggest average duration of dry spells from 5 to 11 years for
the five sites. However, wet spell durations for the Churchill River differ from the
other four sites with an average of 33 years compared to 3-8 years for the remaining
sites.

While there is no basis for concluding that the MS model is generally superior to

the AR(1) model, there are cases where the model is quite appropriate and in fact may
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have some physical justification, for example, when a particular hydrologic variable is
known to be influenced by low-frequency oceanic circulations such as ENSO, PDO,
and NAO.

The MS disaggregation (MSD) model proposed in Chapter 7 is a new contribution
to the hydrology literature. The main advantage of the MSD model is that it preserves
the additivity property without distorting the marginal distributions of lower level
flows by adjustments. This is a common problem in the application of traditional
disaggregation models.

There are several possible extensions to the MS model considered in this project.
In cases where the autocorrelation structure of the data is not well represented by
the simple MS model, one could assume that the flows within a given state spell
are autocorrelated, perhaps in the form of a simple first-order autoregression. This
will add considerable complexity to the model, but also improve the preservation of
autocorrelation.

Although the marginal distributions associated with the MS model give good fits
to Manitoba Hydro’s data, it may be possible to improve the fit further by considering
other distributions than the normal as components of the model. For example, it
might be possible to obtain a better fit if a combinations of lognormal distributions
were used. Although not a problem in this study, the simulation of negative flows
could happen in other situations. In this case, truncated normal distributions could
be a solution.

In large basins, the assumption of a common state sequence for all sites is too
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restrictive. An alternative modeling approach could be developed for spatial variations
in the state. However, this would significantly increase the number of parameters.
The author believes that this thesis has made an original contribution to the hy-
drology literature. The MS model that has recently gained popularity in stochastic
hydrology has been investigated further by defining its theoretical properties for an ar-
bitrary number of states, by finding solutions for the implementation of the estimation
procedures, by developing the MS disaggregation model, and by applying the model
to Manitoba Hydro’s system in the assessment of energy drought frequency analysis

along with traditional models.
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Appendix A

Evidence of Long-term Cycles in

Manitoba Hydro’s Annual

Streamflow

A.1 Introduction

During the preliminary analysis, Manitoba Hydro’s annual streamflow data were smoothed
using a 5-yr running average. As seen from following plots, there is evidence of ex-
tended long-term wet and dry cycles in all five sites and aggregated basin flows. This

evidence motivated the choice of a 2-state Markov-Switching model in this project.
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Figure A.1: Churchill River annual flows, 1912-98. Normalized anomalies and 5-yr running

average.
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Figure A.2: Saskatchewan River annual flows, 1912-98. Normalized anomalies and 5-yr
running average.
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Figure A.3: Lake Winnipeg annual PIAO, 1912-98. Normalized anomalies and 5-yr running

average.
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Figure A.4: Winnipeg River annual flows, 1912-98. Normalized anomalies and 5-yr running

average.
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Appendix B

Probability Density Functions and
Normal Probability Plots for the

Niagara River Monthly Flows

B.1 Introduction

In the MSD model, proposed in Chapter 7, the parameters of the marginal distributions
of the lower-level variables are estimated conditional on the higher-level variable’s state
probability sequences. Therefore the goodness of fit of the marginal distributions of the
monthly flows must be tested before application of the model. As illustrated in Figure
B.1 to Figure B.12, good fits of the marginal distributions of all observed monthly

flows of the Niagara River were obtained by the MSD model.
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Figure B.1: January flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.2: February flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.3: March flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.5: May flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.6: June flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.7: July flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.8: August flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.9: September flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.10: October flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.11: November flows of the Niagara River. a) Marginal probability density func-
tion. b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.12: December flows of the Niagara River. a) Marginal probability density func-
tion. b) Normal probability plot of observed flows and fitted mixture distribution.
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Appendix C

Comparison of Simulated and
Observed Cross-Correlations for

the Niagara River Monthly Flows

C.1 Introduction

In Chapter 7, the MSD model and the VSD model are compared using simulated and
observed lag-0 cross-correlation coefficients. Figures C.1 - C.12 illustrate the correla-
tion between all monthly variables, and between all monthly and annual variables. On
the z-axis, numbers 1,2, ...,12 represent the months January (1), February (2), ...,
December (12), and A represents annual flow. For example, 1-A indicates the corre-
lation between January flows and annual flows, 1-2 indicates the correlation between

January and February flows, and so on.
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Niagara River Cross-Correlations (January)
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Figure C.1: Simulated and observed cross-correlations for January flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk ()
represents the observed statistic.
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Figure C.2: Simulated and observed cross-correlations for February flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (x)
represents the observed statistic.
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Niagara River Cross-Correlations (March)
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Figure C.3: Simulated and observed cross-correlations for March flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Niagara Rivér Cross—CorrelatIons (May)
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Figure C.5: Simulated and observed cross-correlations for May flows for the Niagara River.
a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk () represents

the observed statistic.
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Figure C.7: Simulated and observed cross-correlations for July flows for the Niagara River.
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Figure C.9: Simulated and observed cross-correlations for September flows for the Niagara
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Figure C.11: Simulated and observed cross-correlations for November flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (x)
represents the observed statistic.
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Appendix D

Probability Plots of the Simulated

Niagara River Monthly Flows

D.1 Introduction

To evaluate the modeling of the marginal distributions by the MSD and the VSD
models, the probability plot of 10,000 simulated flows are examined. Figures D.1
- D.12 compare normal probability plots of simulated monthly flows using the two
models. The marginal distribution of the MSD model is a mixture of two normals. In
the VSD model, the Box-Cox distribution was suggested by the Filliben correlation
coefficient statistic for all months. In most cases, the tails of the modeled marginal
distribution were not well reproduced by the VSD model, whereas the MSD model

performs relatively well.
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Figure D.1: Simulated January flows of the Niagara River using a) VSD Model. b) MSD

Model.
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Figure D.2: Simulated February flows of the Niagara River using a) VSD Model. b) MSD

Model.
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Figure D.4: Simulated April flows of the Niagara River using a) VSD Model.
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Figure D.9: Simulated September flows of the Niagara River using a) VSD Model. b) MSD

Model.

0.999F

0.99

ty
o
©
o

S
I
SO

Probabili
O

0.10

0.01
0.001

0.30

Niagara River - October

T T T T T T

i B — ~ Box-Cox (A=2.1)
; T *  Simulated Runoff — VSD Model
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Av. Monthly Runoff (m/s)
(b) T T T T T T T T ~ Tx '
i — = Mixture Distribution |:
~K | % Si v lated Rulnoﬁ—MSP Model
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Av. Monthly Runoff (nf/s)

Figure D.10: Simulated October flows of the Niagara River using a) VSD Model. b) MSD

Model.

239



D.1. INTRODUCTION

'
Niagara River — November
(a) T T ¥ T T T T T T ;

0.999
0.99

0.90
0.70

0.30F
0.10
0.01 / — - Box-Cox (A =2.2)
0.001 o, BT X Slmulated Runoff VSD Model
= I 1 1 I

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Av. Monthly Runoff (m'/s)

Probability
O¢
o
O
T

T

T

T

0.999
0.99

0.90-

0.70
0.501
0.30

0.101-
0.01

0.001} — — Mixture Distribution
- g( x Slmulated Runoff MSD Model
1 1 1 |

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Av. Monthly Runoff ms/s)

Probability

Figure D.11: Simulated November flows of the Niagara River using a) VSD Model. b)
MSD Model.

Niagara River - December

T T T T T T T T

_ =2 — ~ Box-Cox (A = 1.5)
e % _Simulated Runoff — VSD Model
1 1 T ' x T

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

e
(=3
o
purg

T

Av. Monthly Runoff (m’/s)

Probability
O
193

— = Mixture Distribution i_
¥ % Simulated Runoff - MSD Model
3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Av. Monthly Runoff (n13/s)

Figure D.12: Simulated December flows of the Niagara River using a) VSD Model. b)
MSD Model.

240



Appendix E

The Single-site 2-state MS Model:

Fitted Marginal Distributions

E.1 Introduction

After estimating the model parameters for the five sites of Manitoba Hydro’s system
individually, the goodness-of-fit of the marginal distributions produced by the single-
site 2-state MS model can be assessed visually by probability plots (Figures E.1-E.6.
Although the data are not transformed into Normal in the MS model, the model

appears to fit the data very well at all sites.
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Figure E.1: Annual flows of the Churchill River at Southern Indian Lake. a) Marginal
probability density function of MS model. b) Normal probability plot of observed annual
flows and fitted MS model

x 107 Saskatchewan River

1 T T T T T T T
(@)
0.8

os

0.4r

Probability Density

1 L 1 L 1 1

0.5 1 1.5 2

25 3 35 4 45
Av. Annual Runoff (cfs)

x 10*

Figure E.2: Annual flows of the Saskatchewan River at Grand Rapids. a) Marginal prob-
ability density function of MS model. b) Normal probability plot of observed annual flows
and fitted MS model
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Figure E.3: Annual flows of the Lake Winnipeg PIAO. a) Marginal probability density
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model
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244



Appendix F

The Single-site 2-state MS Model:
State Probabilities and Regime

Changes in Observed Streamflow

F.1 Introduction

To appreciate the usefulness of a 2-state MS model for Manitoba Hydro’s data, it is
of interest to look at the estimated state probability sequences, Pr{s; = i|Qr}, for
i=1,2,andt=1,2,...,T. Figures F.1- F.5 illustrates the state probabilities and the
mean level associated with the most probable states. At all sites, the state probabilities
are very well defined, that is, most of the state probabilities are either close to zero or

one.
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Appendix G

The Single-site 2-state MS Model:
Autocorrelation Function

Comparison

G.1 Introduction

It is of interest to examine and compare the autocorrelation function of the 2-state
MS model and the conventional AR(1) and ARMA(1,1) models (for more details see
Akwtug and Rasmussen [2005b]). Figures G.1-G.6 show the autocorrelation function
for the equivalent ARMA(1,1) model denoted ARMA(1,1)-MS (see Section 5.3.4 for
details). The result, obtained from the theoretical autocorrelation equations, confirms
that the autocorrelation structure of a 2-state MS-model can be exactly reproduced by

a properly selected ARMA(1,1) model. The following figures also show the autocor-
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Figure G.1: Churchill River. Observed and modeled autocorrelation functions.

relation function of ARMA(1,1) and AR(1) models fitted directly to the data by the
method of moments (ARMA(1,1)-MOM and AR(1)-MOM, respectively) and 95% sig-
nificance levels. At all sites, the observed short-term (lag-1) correlation is not captured
by the MS model. On the other hand, the AR(1)-MOM and ARMA(1,1)-MOM models
preserve very well the first and the first two autocorrelation coefficients, respectively.
For higher lags, the ARMA-type models in some cases considerably underestimate
the observed autocorrelation whereas the MS model does a more reasonable job in

preserving the observed autocorrelation.
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Figure G.6: Aggregated Basin Flows. Observed and modeled autocorrelation functions.
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Appendix H

Multi-site MS Model Probability

Plots

H.1 Introduction

In the MS model, the agreement between the observed data and the fitted distributions
is assessed graphically using probability plots. Figures H.1-H.5 illustrate the associated
marginal distributions for the five sites using the 2-state multi-site MS model. When
sites are considered individually, the goodness-of-fit tends to be better, howevér, good

fits are obtained with five sites as well.
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Appendix I

Autocorrelation Function

Comparison of MS Models

I.1 Introduction

Figures 1.1-1.5 show the autocorrelation function for the single-site MS model, the
multi-site MS model, and the MS Disaggregation model along with the observed
autocorrelation function. The result, obtained from the theoretical autocorrelation
equations, confirms that the fit is much better when sites are considered individu-
ally compared to the simultaneous fitting of the five sites. For some of the sites, the
simultaneous fitting of the five sites considerably underestimates the observed auto-

correlation.
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Figure 1.5: Aggregated Local Flows. Observed and modeled autocorrelation functions.

261



Appendix J

The Multi-site 2-state MS Model:

Posterior Distributions

J.1 Introduction

The simulated posterior distributions of multi-site MS model parameters are shown in
the following sequence of figures. There is a good agreement between the maximum
likelihood estimates and the posterior distributions of the model parameters. The

ML-estimates are close to the mode of the posterior distributions.
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Appendix K

The Spatial 2-state MS
Disaggregation Model: Fitted

Marginal Distributions

K.1 Introduction

In the MSD spatial disaggregation model, Aggregated Basin Flows are first simulated
with a single-site MS model and the MS disaggregation model parameters are estimated
for the five sites. The goodness-of-fit of the marginal distribution of the MSD model is

illustrated in the following figures. The model appears to fit the data well at all sites.
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Figure K.1: Annual flows of the Churchill River at Southern Indian Lake. a) Marginal
probability density function of MSD model. b) Normal probability plot of observed annual

flows and fitted MSD model.
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and fitted MSD model.
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Figure K.3: Annual flows of the Lake Winnipeg PIAO. a) Marginal probability density
function of MSD model. b) Normal probability plot of observed annual flows and fitted
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Figure K.4: Annual flows of Winnipeg River at Slave Falls. a) Marginal probability density
function of MSD model. b) Normal probability plot of observed annual flows and fitted MSD

model.
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i Aggregated Local Flows
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Figure K.5: Annual flows of Aggregated Local Flows in Burntwood and Nelson River. a)
Marginal probability density function of MSD model. b) Normal probability plot of observed
annual flows and fitted MSD model.
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Appendix L

The Spatial 2-state MS
Disaggregation Model: Regime

Changes in Observed Streamflow

L.1 Introduction

Figure L.1 illustrates the state probabilities for the MSD model, estimated using the
single-site MS model for Aggregated Basin Flows. The mean levels associated with
the most probable states are given in Figures L.2-1..6. Because of the constraint that
all sites must have the same state sequence, the mean levels are closer to each other

at all sites compared to the single-site models.
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Figure L.1: The MSD model state probabilities for all five sites.
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Figure L.2: The MSD model regime shifts for the Churchill River annual runoff.

271



L.1. INTRODUCTION

4 x 10 Saskatchewan River

3.5 i

) ‘d' ’AA o | ol

0.5 1 1 1 1 1 1 1 1
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Streamflow (cfs)
N

-
a
T

1

Figure L.3: The MSD model regime shifts for the Saskatchewan River annual runoff.
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Figure L.4: The MSD model regime shifts for the annual Lake Winnipeg PTAO.
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Figure L.5: The MSD model regime shifts for the Winnipeg River annual runoff.
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Figure L.6: The MSD model regime shifts for the Aggregated Local Flows annual runoff.
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Appendix M

Verification of Stochastic Models

M.1 Modeling Framework 1.1

Simulated flows 100,000-yr

MODEL 1: SINGLE-SITE AR(1) ANNUAL MODEL

MEAN STANDARD DEVIATION LAG-1 AUTOCORRELATION
Obs (Norm) 14.993 0.0865 0.489
Syn (Norm) 14.993 0.0862 0.488
Obs (Raw) 1427424 283063 0.471
Syn (Inv-T) 1425755 281094 0.487

MODEL 2: MEJIA AND ROUSSELLE SPATIAL DISAGGREGATION MODEL

MEAN

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 4772326 12.559 14.415 152.67 13.157
Syn (Norm) 4767817 12.559 14.415 152.70 13.157
Obs (Raw) 426644 241214 222048 379811 157705
Syn (Inv-T) 426295 241045 222121 380346 157733
Syn (Adj) 426389 241078 221294 378962 158032
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M.1. MODELING FRAMEWORK 1.1

STANDARD DEVIATION

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1062897 0.237 0.063 13.352 0.076
Syn (Norm) 1058128 0.235 0.063 13.436 0.076
Obs (Raw) 79857 71610 116881 107091 39797
Syn (Inv-T) 79567 69346 115109 108414 39714
Syn (Adj) 82882 69905 114055 103815 41565

LAG-0 CROSS-CORRELATION

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.226 0.172 -0.036 0.147
Obs (Raw) 1 0.229 0.183 -0.022 0.159
Syn (Inv-T) 1 0.223 0.171 -0.037 0.147
Syn (Adj) 1 0.262 0.163 -0.049 0.226
1 0.333 0.356 0.189 Sask R
1 0.355 0.361 0.208
i 0.295 0.352 0.166
1 0.351 0.354 0.204
1 0.342 0.346 0.249
1 0.541 0.693 PIAO
1 0.548 0.693
| 0.539 0.696
1 0.543 0.692
1 0.532 0.671
1 0.463 Wpg R
1 0.471
1 0.470
1 0.466
1 0.467

1 Local
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M.2. MODELING FRAMEWORK 1.3

LAG-1 AUTOCORRELATION

Chur R Sask R PIAO
Obs (Norm) 0.743 0.428 0.413
Syn (Norm) 0.739 0.413 0.465
Obs (Raw) 0.746 0.420 0.409
Syn (Inv-T) 0.739 0.405 0.465
Syn (Adj) 0.730 0.401 0.470

M.2 Modeling Framework 1.3

Simulated flows 100,000-yr

MODEL 1: SINGLE-SITE MS(2) ANNUAL MODEL

MEAN STANDARD DEVIATION LAG-1 AUTOCORRELATION
Obs 1427424 283063 0.471
Syn 1435796 282509 0.296

MODEL 2: MARKOV-SWITCHING SPATIAL DISAGGREGATION MODEL

MEAN

Chur R Sask R PIAO Wpg R Local
Obs 426644 241214 222048 379811 157705
Syn 427870 242105 225375 381800 158652
STANDARD DEVIATION

Chur R Sask R PIAO Wpg R Local
Obs 79857 71610 116881 107091 39797
Syn 78654 71288 117148 106892 39560
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M.2. MODELING FRAMEWORK 1.3

LAG-1 AUTOCORRELATION

Chur R Sask R PIAO Wpg R Local
Obs 0.746 0.420 0.409 0.337 0.350
Syn 0.059 0.084 0.233 0.146 0.155
LAG-0 CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local
Obs il 0.229 0.183 -0.022 0.159 Chur R
Syn 0.227 0.183 -0.017 0.157
1 0.295 0.352 0.160  Sask R
1 0.294 0.357 0.164
il 0.539 0.696 PIAO
1 0.540 0.694
1 0.470 Wpg R
1 0.472
1 Local
1
TRANSFORMED (NORMAL) ANNUAL FLOW STATISTICS
MEAN
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 4772327 12.559 14.415 152.668 13.157
Syn (Norm) 4770589 12.557 14.415 152.560 13.156
STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1062897 0.237 0.064 13.352 0.0764
Syn (Norm) 1060528 0.236 0.063 13.320 0.0760
LAG-1 AUTOCORRELATION
Chur R Sask R PIAQ Wpg R Local
Obs (Norm) 0.743 0.428 0.413 0.343 0.356
Syn (Norm) 0.056 0.083 0.221 0.142 0.152

277



M.3. MODELING FRAMEWORK 2.1

LAG-0 CROSS-CORRELATION

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.224 0.179 -0.024 0.152
1 0.333 0.356 0.189 Sask R
1 0.292 0.352 0.160
1 0.541 0.693 PIAO
1 0.534 0.694
1 0.463 Wpg R
1 0.466
1 Local
1
M.3 Modeling Framework 2.1
Simulated flows 100,000-yr
MODEL 1: MULTI-SITE AR(1) MODEL
MEAN
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 4772327 12.559 14.415 152.668 13.157
Syn (Norm) 4762787 12.560 14.416 152.729 13.157
Obs (Raw) 426644 241214 222048 379811 157705
Syn (Inv-T) 425943 241163 223074 380223 157767
STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1062897 0.237 0.064 13.352 0.076
Syn (Norm) 1048865 0.233 0.062 13.227 0.075
Obs (Raw) 79857 71611 116881 107091 39797
Syn (Inv-T) 78897 69348 113996 106714 39066
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M.3. MODELING FRAMEWORK 2.1

LAG-1 AUTOCORRELATION ’

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 0.743 0.428 0.413 0.344 0.358
Syn (Norm) 0.760 0.445 0.425 0.348 0.366
Obs (Raw) 0.746 0.420 0.409 0.337 0.350
Syn (Inv-T) 0.760 0.438 0.424 0.345 0.365

LAG-0 CROSS-CORRELATION

Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1 0.232 0.180 -0.029 0.151 Chur R
Syn (Norm) 1 0.238 0.184 -0.028 0.157
Obs (Raw) 1 0.229 0.183 -0.022 0.159
Syn (Inv-T) 1 0.235 0.184 -0.029 0.157
1 0.333 0.356 0.189 Sask R
1 0.349 0.356 0.201
1 0.295 0.352 0.160
1 0.344 0.351 0.197
1 0.541 0.693 PIAQ
1 0.543 0.688
1 0.539 0.696
1 0.539 0.688
1 0.463 Wpg R
1 0.461
1 0.470
1 0.457
1 Local
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M.4. MODELING FRAMEWORK 2.3

M.4 Modeling Framework 2.3

Simulated flows 100,000-yr

MODEL 1: MULTI-SITE MS(2) ANNUAL MODEL (Annual)

MEAN
Chur R Sask R PIAO Wpg R Local
Obs 426644 241214 222048 379811 157705
Syn 423557 235067 217752 374542 156590
STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local
Obs 79857 71610 116881 107091 39797
Syn 83140 68751 116253 105860 39683
LAG-1 AUTOCORRELATION
Chur R Sask R PIAO Wpg R Local
Obs 0.746 0.420 0.409 0.337 0.350
Syn 0.044 0.265 0.036 0.068 0.013
LAG-0 CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local
Obs 1 0.229 0.183 -0.022 0.159 Chur R
Syn 1 0.226 0.185 -0.059 0.167
1 0.295 0.352 0.160 Sask R
1 0.336 0.354 0.184
1 0.539 0.696 PIAO
1 0.535 0.694
1 0.470 Wpg R
1 0.460

Local




M.4. MODELING FRAMEWORK 2.3

TRANSFORMED (NORMAL) ANNUAL FLOW STATISTICS

MEAN
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 4772327 12.559 14.415 152.668 13.157
Syn (Norm) 4770147 12.559 14.415 152.603 13.156
STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 1062897 0.237 0.064 13.352 0.0764
Syn (Norm) 1062881 0.238 0.064 13.331 0.0759
1
LAG-1 AUTOCORRELATION
Chur R Sask R PIAO Wpg R Local
Obs (Norm) 0.743 0.428 0.413 0.343 0.356
Syn (Norm) 0.038 0.232 0.036 0.068 0.013
LAG-0 CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.223 0.180 -0.050 0.158

1 0.333 0.356 0.189 Sask R

il 0.377 0.353 0.208

, 0.541 0.693 PIAO
1 0.535 0.694
1 0.463 Wpg R
1 0.460
1 Local
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Appendix N

Conditional Drought Frequency
Curves

N.1 Introduction

As part of the drought frequency analysis, the frequency curves for drought severity
conditional upon drought duration are plotted for all modeling frameworks and the
two data sets. The conditional frequency curves are presented as Severity-Duration-

Frequency curves in Figures N.1-N.18.
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Figure N.1: Conditional Drought Frequency Curves obtained from MF-1.1 (1912-98).
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'

MF-1.2 Severity-Duration-Frequency Curves (1912-98)
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Figure N.2: Conditional Drought Frequency Curves obtained from MF-1.2 (1912-98).
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MF-1.3 Severity-Duration-Frequency Curve (1912-98)
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Figure N.3: Conditional Drought Frequency Curves obtained from MF-1.3 (1912-98).
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‘

MF-1.4 Severity-Duration-Frequency Curves (1912-98)
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Figure N.4: Conditional Drought Frequency Curves obtained from MF-1.4 (1912-98).
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MF-2.1 Severity-Duration-Frequency Curves (1912-98)
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Figure N.5: Conditional Drought Frequency Curves obtained from MF-2.1 (1912-98).
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MF-2.2 Severity-Duration-Frequency Curves (1912-98)
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Figure N.6: Conditional Drought Frequency Curves obtained from MF-2.2 (1912-98).
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MF-2.3 Severity-Duration-Frequency Curves (1912-98)
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Figure N.7: Conditional Drought Frequency Curves obtained from MF-2.3 (1912-98).

289



N.1. INTRODUCTION

MF-2.4 Severity-Duration-Frequency Curves (1912-98)
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Figure N.8: Conditional Drought Frequency Curves obtained from MF-2.4 (1912-98).
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MF-2.5 Severity-Duration-Frequency Curves (1912-98)
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Figure N.9: Conditional Drought Frequency Curves obtained from MF-2.5 (1912-98).
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MF-1.1 Severity-Duration-Frequency Curves (1930-98)
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Figure N.10: Conditional Drought Frequency Curves obtained from MF-1.1 (1930-98).
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'

MF-1.2 Severity-Duration-Frequency Curves (1930-98)
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Figure N.11: Conditional Drought Frequency Curves obtained from MF-1.2 (1930-98).
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'

MF-1.3 Severity-Duration-Frequency Curves (1930-98)
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Figure N.12: Conditional Drought Frequency Curves obtained from MF-1.3 (1930-98).
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Figure N.13: Conditional Drought Frequency Curves obtained from MF-1.4 (1930-98).
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MF-2.1 Severity—Duration—-Frequency Curves (1930-98)
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Figure N.14: Conditional Drought Frequency Curves obtained from MF-2.1 (1930-98).
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1

MF-2.2 Severity-Duration-Frequency Curves (1930-98)
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Figure N.15: Conditional Drought Frequency Curves obtained from MF-2.2 (1930-98).
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MF-2.3 Severity-Duration-Frequency Curves (1930-98)
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Conditional Drought Frequency Curves obtained from MF-2.3 (1930-98).
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Conditional Drought Frequency Curves obtained from MF-2.4 (1930-98).
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MF-2.5 Severity-Duration-Frequency Curves (1930-98)

9000 L — ! — T T Ty ! LA
—— Drought duration 1 year and less 5 BB RR - i <
8000H — Drought duration 2 years and less
—— Drought duration 3 years and less
—— Drought duration 4 years and less | -
7000 H —— Drought duration 5 years and less |- -
—— Drought duration 6 years and less
) L e : e e S i
= 6000 -
g s
£ 5000[ .
[} 2
= -
Q
@ 4000 5
P :
3 3000_ - " " i, ,:,,.:,,: A::: ...... :.:.::. - .:.: _
a : : S NS ﬁ R : A
) KSR RO il
1000 _ ......... P
. .
10'
Return Period (year)

6000 — ! ! ! ! !

5000

4000

3000

Drought Severity (GWh)

2000

Drought Duration (year) and less

Figure N.18: Conditional Drought Frequency Curves obtained from MF-2.5 (1930-98).
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