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Abstract

Stochastic time series models are commonly used in the analysis of large-scale water

resources systems. In the stochastic approach, synthetic flow scenarios are generated

and used for the analysis of complex events such as multi-year droughts. Conclusions

drawn from such analyses are only plausible to the extent that the underlying time

series model realistically represents the natural variability of flows. Thaditionally hy-

drologists have favoured autoregressive moving average (ARMA) models to describe

annual flows. In this research project, a class of model called Markov-Switching (MS)

model (also referred to as a Hidden Markov model) is presented as an alternative to

conventional ARMA models. The basic assumption underlying this model is that a

limited number of flow regimes exists and that each flow year can be classified as be-

Ionging to one of these regimes. The persistence of and switching between regimes is

described by a Markov chain. Within each regime, it is assumed that annual flows

follow a normal distribution with mean and variance that depend on the regime. The

simplicity of this model makes it possible to derive a number of model characteristics

analytically such as moments, autocorrelation, and crosscorrelation. Model estima-

tion is possible with the maximum likelihood method implemented using the Expec-



tation Maximization (EM) algorithm. The uncertainty in the model parameters can

be assessed through Bayesian inference using Markov Chain Monte Carlo (MCMC)

methods.

A Markov-Switching disaggregation (MSD) model is also proposed in this research

project to disaggregate higher-level flows generated using the MS model into lower-

Ievel flows. The MSD model preserves the additivity property because for a given year

both the higher-level and lower-level variables are generated from normal distributions.

The 2-state MS and MSD models are applied to Manitoba Hydro's system along

with more conventional first order autoregressive and disaggregation models and pa-

rameter and missing data uncertainty are identified in the analysis of system drought.
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Chapter 1

Introduction

1.1 Introduction

Energy supply is one of the most important problems facing the world today. The

availability of energy, preferably cheap energy, is a premise for industrial growth.

Electricity is commonly generated in hydro, thermal, and nuclear plants. There are

environmental concerns regarding nuclear power. The environmental impacts of the

Chernobyl nuclear disaster in 1986, the world's worst nuclear power accident, will

persist many years into the future. Fossil fuels (natural gas, coal, and oil) are the

primary sources of thermal power. However, fossil fuel sources are non-renewable

and will be exhausted in a foreseeable future. Hydropower is renewable, clean, and

cheap, but is subject to uncertainty in resources because the energy generation of a

hydropower station is directly dependent on the availability of water. Extended low

flows or droughts reduce the system output and eventually may make it impossible to
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meet the required energy demand. Hence, understanding the frequency and severity

of droughts is important in order to quantify the reliability of energy supply.

Manitoba Hydro is responsible for the production of electricity to the benefit of the

population of Manitoba. Over 96% of 5143 MW total installed capacity of Manitoba

Hydro is derived from 14 hydropower stations in Manitoba. Approximately 60% of

its production is consumed by the province and the rest is exported, primarily to

the US. Therefore, greater emphasis is being placed on Manitoba Hydro's capability

to meet long-term firm power export contracts under extreme drought conditions.

One characteristic that distinguishes hydropower from thermal and nuclear power is

the uncertainty related to the natural variability of the energy supply. River runoff

varies in time and space and cannot be predicted in advance. Since river runoff is

the source of hydropower energy, variability in energy supply is inevitable. Because

of the significant storage capacity in Manitoba Hydro's system, short-term (e.g. daily,

weekly) fluctuations in inflow are not a concern for Manitoba Hydro. However, Ionger

periods (e.g. months, years) of extended low flows may lead to situations where thermal

resources and imports would be required to meet contracts. Therefore, it is of high

importance to be able to quantify the reliability of energy supply. The overall supply

reliability is a function of various technical factors and the availability of water. The

need to determine the reliability of inflow is the primary motivation for this study.

For a large hydropower system, several factors increase the complexity in defining

drought. Firstly, droughts are inherently regional in nature but only to a certain

extent. The Nelson and Churchill River drainage basins cover an area of L.34x106 km2
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with distinct hydrological and climatologic characteristics. Hence, in a typical drought

study it will be necessary to divide the system into homogeneous sub-basins.

Secondly the large storage capacity also increases the complexity in defining drought.

Lake Winnipeg has a surface area of 24,420 km2 which translates into a storage capac-

ity equivalent to six months of average outflow from the lake. Therefore, the regulation

of this lake plays a vital role in enhancing the system capability during drought con-

ditions.

Thirdly, for a hydropower system, the drought must be defined in terms of energy

potential. This requires that flows at each generating station be converted to energy.

To assess the system capabilit¡ the overall energy potential of the system must be

compared with the overall energy demand.

Fourthly, relatively long data series are required to accurate model droughts. In

many cases, such long series are not available and one must often rely on data filling

and extension.

Hydropower utilities have traditionally employed the cri,ti,cal drought as basis for

system development. The critical drought is defined as the most severe extended low

flow period in the record of historical inflows. In the past, hydroporùrer systems were

often developed to be able to meet a fixed demand under inflow conditions identical

to the critical drought. However, the critical drought approach does not provide a

complete assessment of system reliability. There are indeed obvious limitations asso-

ciated with the critical drought approach. Firstly, no probability of occurrence can be

assigned to the critical drought, and for that reason, it is not possible to make state-
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ments about supply reliability. Secondly, the critical drought is a function of record

length. A long record of inflow is likely to contain a more severe drought episode

than a short record. A sensible planning criterion should be independent of record

length. The critical drought period currently employed by Manitoba Hydro occurred

in 1939-41; another severe drought occurred in the late eighties.

Alternatively, a stochasti,c approach may be used to overcome some of the limi-

tations of the critical drought approach. The stochastic approach requires the esti-

mation of a stochastic time series model. Stochastic models attempt to reproduce

the key statistics of historical data such as means, variances, autocorrelations, and

crosscorrelations. In this approach, historical data are used to estimate the parame-

ters of the model. Once the model is estimated, large set of equally likely synthetic

traces can be generated. These traces show many possible hydrologic conditions that

do not explicitly appeax in the historical record. For example, if a definition of the

critical drought can be developed, the simulated probability distribution of the critical

drought can be determined using these traces. This information could potentially be

used to assess the return period of the historical critical drought and other drought

scenarios in general and can be used in the assessment of system reliability.

Stochastic models of hydrologic time series have played a major role in the water

resources literature over the past four decades. Stochastic models have been reasonably

successful as a practical tool for analysis, forecasting, and control. Since they have

been used for decades, much experience has been accumulated in their application.

Autoregressive (AR), autoregressive moving average (ARMA), periodic autoregressive
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moving average (PARMA), and disaggregation models are the most commonly used

stochastic models in the hydrology literature and software packages of these models

are available (e.g. S-PLUS, SPIGOT, and SAMS2000 lGrygi,er and, Stedi,nger,1990;

Salas et ø1., 2000]).

In the last decade, Manitoba Hydro has funded a number of research projects

aimed to define the probability of system drought using a stochastic approach. These

projects used observed monthly flows at selected key points to develop a stochastic

streamflow generation model. DeWi,t [1995] developed the first stochastic model for

Manitoba Hydro's system and employed SPIGOT, a synthetic streamflow generation

software package, to generate synthetic streamflow sequences. He worked directly with

flows and estimated that the return period of the historical critical drought (1939-41)

to be 381 years. Rangarajan [1998] improved the modeling framework in SPIGOT

and modified the regulation rules for Lake Winnipeg. He defined energy drought by

converting water flow at the generating stations into equivalent energy flow. The study

initiated by Rangarajan 119981was completed by Akzntug [2002] who estimated that

the return period of the historical critical drought to be 397 years.

Previous studies did not include any treatment of model, parameter, and data

uncertainty and left a number of questions open. Although they were a step in the

right direction, the assessment of the probability of system drought requires further

investigation by integrating uncertainty. There is a general need to quantify uncertain-

ties in the estimate of drought frequency. Estimated return periods depend strongly

on various modeling choices and parameter estimates. In this research project, the
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uncertainties associated with the structure of stochastic time series models and their

parameter estimates will be investigated. The uncertainty associated with filled-in

data will also be considered. The integration and quantification of model, parameter,

and data uncertainty into an overall assessment of system reliability should provide a

better foundation for making future planning decisions.

Low frequency variability of annual hydrological data have been observed in North

American climate regimes. In addition to observed data, paleoclimatic studies have

proved the existence of long-term wet and dry periods in North America. The pre-

liminary streamflow data analysis of Manitoba Hydro's system also revealed apparent

Iong-term wet and dry periods. The existence of cycles such as those observed in the

Nelson and Churchill River Basin cannot be explained by pure randomness.

In the literature, numerous studies have identified global climatic mechanisms that

influence the North American climate at annual and decadal time scales. Climate

states are potentially linked to low-frequency oceanic circulations such as the North

Atlantic Oscillation (NAO), the Southern Oscillation (SOI), and the Pacific Decadal

Oscillation (PDO). There is a complex interaction between these circulations. How-

ever, it is believed that they influence each other and the cumulative effect of these

circulations produces a quasi,-cycli,c forcing mechanism in the hydrological cycle.

Model uncertainty due to inadequate representation of cycles is neglected in most

studies. Model uncertainty refers to the sensitivity of predictions to the specification

of a correct model structure. Since Manitoba Hydro is primarily interested in multi-

year droughts, this study will mainly focus on the uncertainties associated with the

6
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annual stochastic time series model. In the previous studies by Manitoba Hydro, the

lag-one autoregressive [AR(l)] model was selected for annual streamflow generation in

SPIGOT. However, one may question whether the AR-assumption is the best choice if

indeed low-frequency climate variability is present. A significant part of the research

reported in this thesis was motivated by doubt about the abiliiy of the AR(l) model to

adequately reproduce the persistence patterns evident in Manitoba Hydro's streamflow

data. Streamflow data from Manitoba Hydro's system show periods where dry and

wet spells have persisted for a significant number of years. These cyclic observations

motivated the search for alternative stochastic time series models, in particular models

that can mimic the regime-like behavior of hydrologic time series.

It is not clear if conventional stochastic models such as AR and ARMA ca,n ade-

quately reproduce the cycles present in Manitoba Hydro's data. The reproduction of

cycles of wet and dry years in synthetic streamflow generation is obviously extremely

important when the model is used to determine drought frequency. An annual stochas-

tic model type called Marleou-Swi,tchi,ng model is selected in this research because it

presumably should be able to better represent wet and dry cycles in the historical

data. In the literature, this type of model is also referred to as hidden Markov models

or Markov mixture models. The idea of a Markov-Switching model is not new in the

hydrology literature. It was applied thirty years ago by Jackson [1975]. A major chal-

lenge at the time was the estimation of the model parameters. The Markov-Switching

model framework has been successfully employed in different fields, including speech

recognition, econometrics, ion channels, image analysis, and DNA composition. There
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has also been a number of recent applications in hydrology, including Wi,lks [1998],

Hughes et aI.11999], Lu and Berl'iner [1999], Thyer and Kuczera [2000, 2003a, b], and

Kehasi,as [2004].

The parameters of a stochastic model are estimated from historical records. Param-

eter uncertainty refers to the uncertainty due to the use of a limited amount of data for

model estimation. Estimated parameters have sampling errors whose magnitude de-

pends on the length of the historical data records. In most practical applications, this

sampling uncertainty is neglected although it may have significant impact on the con-

clusions drawn from the study lStedi,nger and Taylor, 1982b1. Parameter uncertainty

will here be included in the Markov-Switching model framework through Bayesian in-

ference. In the Bayesian approach, the unknown parameters of the stochastic model

are treated as random variables instead of fixed quantities. This approach quantifies

the parameter uncertainty by deriving the distribution of the model parameters.

In a multi-site analysis, the length of observed data at each site must be equal.

To make best use of available data, it is common practice to extend the shorter series

using record extension techniques. Missing streamflow data of Manitoba Hydro have

been filled-in and the records have been extended by Manitoba Hydro prior to this

study fGirling,1988, 19901. However, since filled-in data are not observed values, the

uncertainty resulting from using estimated values rather than observations must be

quantified and taken into account. In this research project, an attempt is made to

quantify uncertainty associated with reconstructed data.
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L.2 Objectives of the Study

The objectives of this research project are specified in the light of the discussion

above. The overall objective of the project is to develop a comprehensive probabilistic

framework incorporating model, parameter, and data uncertainty in order to derive

a better estimate of drought frequency and its associated precision. The developed

framework will be applied specifically to Manitoba Hydro, but the proposed techniques

are general and can be transferred to any other hydropovyer system. More specific

objectives are:

o To i,ncorporate parameter uncer-tai,nty i,nto a multi,-si,te AR(1) model: In this

project, the performance of a multi-site Markov-Switching model with parameter

uncertainty will be compared with a multi-site AR(l) model with parameter

uncertainty for Manitoba Hydro's system. Although parameter uncertainty was

integrated into the single-site AR(l) model by Stedi,nger and Taylor [1982b], a

preliminary analysis revealed that the extension to multi-site models is somewhat

more involved,

o To d,euelop a s'ingle- and mult'i-si,te Marlcou-Swi,tchi,ng model for annual stream-

flow ti,me series: Since both single-site and multi-site modeling frameworks are

required in this project, a single-site and multi-site Markov-Switching model,

which presumably should be abe to better mimic the regime-like behavior of

observed annual streamflow data, will be developed.

o To erplore the theoreti,cal properti,es of Marleou-Switchi,ng models: The theoretical
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properties such as autocorrelation structure, moments, and marginal distribution

of Markov-Switching models will be explored.

To identi,fy and implement an ffici,ent parameter esti,mati,on method for the

Markou-Swi,tchi,ng model: The lack of efficient estimation methods for some years

prevented the Markov-Switching model to gain popularity. However, significant

advances in parameter estimation techniques for Markov-Switching model have

been made in recent years. An efficient parameter estimation method will be

explored.

To i,ncorporate parameter uncerta'inty i,nto si,ngle- and multi,-si,te Marlcou-Swi,tchi,ng

models: Parameter uncertainty will be integrated into Markov-Switching models

through numerical Bayesian methods.

To i,ncorporate reconstructed data uncertai,nty i,nto multi,-si,te Markou-Swi,tchi,ng

model: The uncertaintv associated with reconstructed data will be taken into

consideration in the multi-site Markov-Switching model through the use of nu-

merical Bayesian methods.

To deuelop a di,saggregati,on model usi,ng a Marlcou-Swi,tchi,ng modeli,ng approach:

A variation of the classical disaggregation model exploiting the characteristics of

the Markov-Switching framework will be developed.

o To i,ncorporate model, parameter, and data uncertai,nty i,n the esti,mati,on of the

probabi,li,tg of sgstem drought: The importance of model, parameter, and data

10
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uncertainty will be analyzed by comparing the results of the drought frequency

anaiysis with and without considering uncertainties.

To perfortn a drought frequencg analgsi,s: A comprehensive energy drought fre-

quency analysis will be performed for the Manitoba Hydro's system.

1.3 Structure of the Report

The thesis is organized as follows: Manitoba Hydro's system and hydrological data are

described in Chapter 2. Chapter 3 explains the definition of hydrological and energy

drought for Manitoba Hydro. A review of the AR(l) and disaggregation models are

given in Chapter 4. The integration of parameter uncertainty into the multi-site AR(1)

model is also given in this chapter. A detailed explanation of the Markov-Switching

modeling framework which forms the basis of the thesis is explained in Chapter 5 and

its multi-site extension is given in Chapter 6. In Chapter 7, the disaggregation model

using the Markov-Switching modeling approach is presented. The application of the

developed models to Manitoba Hydro's system is provided in Chapter 8. Finally, the

conclusions are given in Chapter 9.

11



Chapter 2

Manitoba Hydro's System

2.L Introduction

The system of Manitoba Hydro comprises the Nelson River and the Upper Churchill

River drainage basins. The Nelson River Basin is the 20¿ä largest on a global scale.

The Nelson River drains Lake Winnipeg into Hudson Bay. Several large river systems,

notably the Saskatchewan, the Assiniboine, the Red, and the Winnipeg River systems

contribute water to Lake Winnipeg and are therefore part of the greater Nelson River

drainage basin. The Upper Churchill River drainage basin is actually separate from

the Nelson River drainage basin but has become part of Manitoba Hydro's system as

a result of the diversion of water from the Churchill River into the Nelson River at

Southern Indian Lake. Figure 2.L illustrates the major drainage basins contributing

to Manitoba Hydro's system. Despite the relatively flat relief of Northern Manitoba,

the Nelson River provides 80% of the hydropower production of Manitoba Hydro

L2
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MAJOR DRAINAGE AREAS
CONTRIBUTING TO

MANITOBA

Figure 2.1: Major drainage basins contributing to Manitoba Hydro's system (from Mani­
toba Water Stewardship web site).

because of its high flow volume. Lake Winnipeg and Southern Indian Lake are the two

major reservoirs in the system regulated according to the needs of Manitoba Hydro.

The generating stations are located on three rivers namely the Winnipeg River, the

Saskatchewan River, and the Nelson River. A brief explanation of rivers, reservoirs,

and hydropower generating stations in Manitoba Hydro's system are given in this

chapter.

13
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HUDSON
BAY

N

Assiniboine R.
• Streamflow gauge station

RedR.

Figure 2.2: Schematic diagram of Manitoba Hydro flow system. Streamflow gauge stations
and other hydrological components of the system.

2.2 Major Rivers and Hydrological Components in

Manitoba Hydro's System

The Nelson River drainage basin includes five major contributing rivers namely the

Saskatchewan River, the Winnipeg River, the Red River, the Assiniboine River, and

the Churchill River. The Upper Churchill River Basin is considered part of the system

because of the Churchill River diversion at Southern Indian Lake (SIL). A schematic

diagram of the river system and the location of streamflow stations are given in Fig-

ure 2.2. Manitoba Hydro's system is usually divided into five distinct hydrologic

components, described in the following. The average annual flows and the relative

contribution to the system of each hydrologic component are given in Table 2.1.

14



2.2. MAJOR RTVERS AND HYDROLOGICAL COMPONENTS IN MANITOBA HYDRO'S SYSTEM

Table 2.1-: Major hydrologic components of Manitoba Hydro's system and their contribu-
tions to the system.

No Site Location 1912-98 1912-98

2 Saskatchewan River
3 Churchill River*
4 Local Flows

Grand Rapids
Southern Indian Lake

Burntwood and Nelson River

20,100
31,390
13,140

17.5
27.4
\7.4

5 Lake Winnipeg PIAO Lake Winnipeg 18,500 16.1

2.2.L 'Winnipeg River

The Winnipeg River system is about 765 km long and runs in a northerly and westerly

direction from its ultimate source near Lake Superior to the southern shore of Lake

Winnipeg. The drainage basin area of Winnipeg River is 150,000 km2. Two thirds of

this drainage basin is in northwestern Ontario, one-fifth spreads south into northern

Minnesota, while the rest of it is in eastern Manitoba, where the river flows into Lake

Winnipeg at Tbaverse Bay.

Streamflow records are available from tgl2 at Slave Falls with no missing records.

The average annual flow is 31,650 cfs. There are six hydropower generation stations

on this river with about 560 M\M total capacity (Great Falls, Seven Sisters, Pine Falls,

McArthur, Slave Falls, and Pointe DuBoise).

2.2.2 Saskatchewan River

The Saskatchewan River originates from the Canadian Rockies and flows east into

Manitoba where it passes through Cedar Lake before emptying into Lake Winnipeg.

15
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It is the fourth longest river system in Canada, travelling almost 2000 km and its

drainage area is 334, 100 km2. Streamflow records are available from Lgt2 at Grand

Rapids station which is located close to Lake V/innipeg. The average annual flow is

20,100 cfs. A single generation station with a capacity of 480 MW is located at Grand

Rapids. The Grand Rapids Generation Station was the first hydroelectric generation

station built in Northern Manitoba.

2.2.3 Churchill River

The drainage basin area of the Churchill River is 283,350 km2. It is located north

of the Nelson and Saskatchewan River basins. Manitoba Hydro diverts a significant

portion of the Churchill River flow at Southern Indian Lake through ihe Rat River

and Burntwood River into the Nelson River. This increases the flow in the lower reach

of the Nelson River where Manitoba Hydro's three largest power generation stations,

Kettle, Long Spruce, and Limestone, are located. The diverted flow is regulated by

the Notigi Control Structure on the Rat River and by the Missi Control Structure at

the northern end of Southern Indian Lake. FIow records for Churchill River at its

entrance to Southern Indian Lake (SIL) are available from 1930. The average annual

flow of the Churchill River is 35,550 cfs of which an average of 31,390 cfs is diverted

into the Nelson River.

16
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2.2.4 Partial Inflow Available as Outflow (PIAO)

In addition to the Saskatchewan and the Winnipeg River, several other gauged and

ungauged streams flow into Lake Winnipeg from east and west. The total inflow

available as outflow (TIAO) is defined by a simple water balance equation that involves

the summation of the Lake Winnipeg outflow (O¡,wrò over a suitable time period and

its storage change (LS"w*) during the same period:

f IAO: (Total Inflow) - (Total Loss)

: OLwps * L,Suarys (2.r)

The parti,al inflow aaa'ilable as outfl,ow (PIAO) is obtained by subtracting the in-

flows of the Winnipeg River, Isrrn, artd the Saskatchewan River, I so"r", from the TIAO

(Gi,rti,ns [1990]).

PIAO:TIAO - (Iwonl Iso"n) (2.2)

The Lake Winnipeg PIAO is used as one of the hydrological components in the

stochastic modeling of Manitoba Hydro's system. Unlike the other components, the

PIAO does not represent the flow conditions at a specific point on a particular river.

The PIAO takes into account losses due to evaporation and seepage from the lake.

The effect of evaporation is significant during dry weather because Lake Winnipeg

has a surface ârea of 24,390 km2. The PIAO is an important component of Manitoba

Hydro's system because the effect of evaporation must be considered in a drought

T7
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Table 2.2: Local Flows on the Burntwood and Nelson River.

No Index River Location
Av. Annual Flow

1912-98
(cfs)

1 BRl Burntwood South Bay - Notigi 1,068
2 BR2 Burntwood Notigi - Wuskwatim
3 BR3 Burntwood Wuskwatim - Manasan
4 BR4A Burntwood Manasan - Thompson
5 BR4B Burntwood Thompson - First Rapids
6 NRO Nelson Lake Winnipeg - Jenpeg
7 NR1 Nelson Jenpeg - Bladder Rapids
8 NR2 Nelson Bladder Rapids - Kelsey

1,772
t70
232
TT7

97r
1,494
r,5r4
4,515I NR3 Nelson

10 NR4 Nelson
11 NR5 Nelson

Kelsey - Birthday
Birthday - Kettle 425

Kettle - Long Spruce 459
12 NR6 Nelson Long Spruce - Limestone 181

study. The PIAO consists of the Red River, the Assiniboine River, and the Fairford

River, gauged ând ungauged tributaries from the western and eastern side of Lake

Winnipeg, and the rù/ater loss due to evaporation and seepage.

2.2.6 Local Flows

In addition to the four major components described in the previous section, the local

flows of the Burntwood (BR) and the Nelson River (NR) are also considered in Mani-

toba Hydro's system. The sites are named according to the river they are located on.

The aggregation of the 12 local flows given in Table 2.2 are modeled as a single artificial

basin site. This aggregated basin site is then disaggregated into sub-basin sites in the

stochastic modeling framework described in Chapter 8. Table 2.2 also indicates the

Iocation of local flows on the Nelson and Burntwood River and their average annual

flows.
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2.3 Regulation of Reservoirs in the System

In the mid-1960's, provincial power planners made a long-term decision on the future

supply of electricity for the province of Manitoba. The decision was to build a series

of hydroelectric generating stations on the Nelson River. Three generating stations

on the lower Nelson River were constructed. The regulation of Lake Winnipeg was

required to allow for greater flows into the Nelson River when needed. In order to

increase the power production potential of the lower Nelson River by as much as 40To,

most of the Churchill River flow was diverted into the lower Nelson River at Southern

Indian Lake through the Rat River and the Burntwood River.

Developing an accurate model for the management of Lake V/innipeg and Southern

Indian Lake is beyond the scope of this study. Therefore Lake Winnipeg and Southern

Indian Lake outflows are estimated by using a simplified representation of the system.

DeWit [1995] developed a heuristic-based model for the regulation of Lake Winnipeg

and Southern Indian Lake that was further refined by Rangarajøn, [1998]. In this

study, DeWit's and Rangarajan's heuristic-based regulation models, explained in the

following sections, are employed.

2.3.L Regulation of Lake 'Winnipeg

In February 1966, the province of Manitoba and the government of Ca¡rada came to an

agreement allowing Manitoba Hydro to regulate Lake Winnipeg as a natural reservoir

for hydroelectric development on the Nelson River. Regulation is necessary because

the natural flow pattern from Lake Winnipeg into the Nelson River is opposite to

19
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the energy needs of ihe province. Demand is higher than supply during winter, while

maximum inflow occurs during spring and early summer where the demand is relatively

Iow. Therefore, it is necessary to decrease the outflow from Lake Winnipeg in spring

and early summer in order to have more available outflow in the fall and winter.

The Lake Winnipeg Regulation project guarantees winter outflows so that the winter

dema¡rd for electricitv can be met.

The license allows Manitoba Hydro to set the outflows as required for por,¡¡er pro-

duction purposes along the Nelson River as long as the level of the lake is kept between

7LL ft and 715 ft above sea level. During wet and dry periods, the lake level may rise

above or drop below these levels, however, according to the agreement, the lake will

be operated to return to the licensed operating range as quickly as inflow conditions

permit.

The storage capacity between 7Ll ft and 715 ft of Lake Winnipeg corresponds to

approximately six months of average outflow requirements. Hence, the regulation of

Lake Winnipeg has a significant influence on drought and flood conditions. There are

several other constraints on the operation of the lake. Beside maximum and minimum

lake levels, Manitoba Hydro must also respect maximum and minimum release flows.

In addition to these considerations, the management of the reservoir might be affected

by other factors such as long range forecasts of precipitation conditions and power

demand. For example, if the spring is predicted wetter than normal, Manitoba Hydro

may release more than the usual portion to provide room for flood control.

Surface elevation and release flows are the two major constraints for the operation

20
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of Lake Winnipeg.

Surface Eleuati,on: Although, the lake elevation mostly fluctuates between 713

ft and 714 ft, the allowable operating range is between 7LL ft and 715 ft. These

are the licensed minimum and maximum lake elevations.

o Min'i,mum and, Mari,mum Release (R): The preferred minimum flow is R,nin :

25,000 cfs while the preferred maximum flow is R,n¿n: 150,000 cfs. Sometimes

releases may exceed the maximum or go below the minimum.

The storage capacity of Lake Winnipeg is 400,000 cfs-month between maximum

and minimum lake elevations, which means 1 ft of elevation is equal to 100,000 cfs-

month. In other words. there is enoueh water to meet the minimum release for 16

months at full storage.

As given in (2.1), total inflow available as outflow (TIAO) is calculated as the

outflow plus or minus storage change in Lake Winnipeg. TIAO is equal to PIAO plus

Winnipeg and Saskatchewan River inflow. The TIAO takes into consideration the

effects of losses due to evaporation and seepage in Lake Winnipeg. The outflow from

Lake Winnipeg depends on TIAO. The heuristic release rules applied in this study

consider two conditions:

l. TIAO > R^.":

The excess flow (TIAO - R*",) will be stored fully or partly in the lake. If

the lake reaches the maximum level of 7L5 ft, the reminder will be released from

Lake Winnipeg. If the storage is full at the end of the previous month, the
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Table 2.3: Maximum preferred release during winter months.

Feb Mar
Rn", (h

Dec JanSto
0

200,000
300,000
400,000
500,000
600,000
700,000

1,000,000

0
45.0
45.0
45.0

66.2
96.8

t74.7
i86.3

50.0
50.0
50.0
74.4

104.0
118.1
Lt+.Ð

45.0
45.0
66.2
96.8

I14.7
186.3

50.0 50.0
50.0 50.0
50.0 50.0
79.0 74.4

108.2 104.0
t23.4 118.1
184.2 747.5

45.0

lake outflow will be equal to TIAO. There is an assumption in this model that

the absolute maximum storage level is 715 ft since this elevation is the licensed

maximum.

2. TIAO < R,,o":

o November through March

During winter months the lake outflow is set to the maximum preferred

release even during drought months. These preferred maximum releases are

given in Table 2.3 (from Rangarujan [1998j). Depending on the previous

month's storage, the release outflow is obtained from this table using linear

interpolation. The storage at the end of month n'L carr be calculated using

the water balance equation:

Storage* : Storage*: -l T I AO,n - Outf low*

If this storage exceeds 714.75 ft, the excess wâter is also released.

(2.3)
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o April through July

During spring, the lake level should be sufficiently low to allow room for

the incoming spring runoff. The percentage of TIAO (P1) that is keep in

storage is influenced by the difference between the maximum storage and

the previous month's storage:

Pt: L25(575,000 - Storage^-1)
(2.4)

375,000

where 575, 000 ft3 and 375, 000 ft3 correspond to the maximum storage and

the average storage, respectively. After calculating the percentage of TIAO

to keep in storage, the storage at the end of the month is calculated as

Storage*: Storagem-t * (TIAO* x P1) (2.5)

If this new storage exceeds the maximum level (714.75 ft), the excess water

is released as well.

Minimum-dry and minimum-wet outflows are given in Table 2.4. If the

previous month's water level is greater than 713.5 ft, the minimum outflow

is set equal to minimum wet, otherwise it is equal to minimum dry. If the

calculated outflow of that particular month is less than its minimum value,

the outflow is set equal to the minimum.

r August through October

During the end of summer and fall, Manitoba Hydro starts to use the Lake
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Table 2.4: Minimum outflows of Lake Winnipeg.

tnlmum
Wet Outflow
(cfs-month

tntmum
Dry Outflow

Minimum
Wet OutflowPeriod Dry Outflow

(Month) (cfs-month)
Jan 50,000
Feb 50,000
Mar 45,000
Apr 30,000
May 25,000
Jun 25,000

Period
Month

50,000
50,000
45,000
40,000
40,000
40,000

25,000
25,000
30,000
40,000
50,000

Aug
sep
Oct
Nov
Dec

cfs-month cfs-month)
25

40,000
40,000
40,000
45,000
50,000

Winnipeg storage to meet its demand. In this case, in addition to TIAO a

percentage of TIAO is also released from the lake. This percentage of TIAO

(Pr) is influenced by the difference between the previous month's storage

and the minimum storage:

Pz: 0.50(Storag€m-t - 200, 000)
(2.6)

375,000

where 200,000 ft3 and 375,000 ft3 correspond to the minimum storage and

the average storage, respectively. After calculating the percentage of TIAO

to release from storage, the storage at the end of the month is calculated

as

storage*: storage*4 - (TI AO,* x P2) (2.7)

Manitoba Hydro uses a deterministic long-term planning model (SPLASH) to as-

sess the adequacy of their generation system. Monthly historical flow records are used

to simulate the rule curves of Lake Winnipeg. Rangarajan [1998] adjusted the con-

stants 1.25 and 0.50 in Q.\ and (2.6) in order to mimic the SPLASH model outflows
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during the most severe drought event (1938-42).

2.3.2 Regulation of Southern Indian Lake

The regulation of Southern Indian Lake is not as complicated as Lake Winnipeg.

In this project, it will be based on the heuristic rules suggested by DeWi,t [1995].

Manitoba Hydro operates two control structures on this lake. These control structures

allow the diversion of a significant portion of the Churchill River flows into the lower

reach of the Nelson River where the three largest generation stations, Kettle, Long

Spruce, and Limestone, are located. This diversion enhances energy generation and the

energy supply reliability of the system. The operation of this diversion depends on the

various agreements between Manitoba Hydro and local communities and other parties

affected by the regulation of Southern Indian Lake. There are several constraints in

this agreement such as maximum and minimum releases and lake surface elevations.

DeWi,t [1995] considered three major constraints on the regulation of Southern

Indian Lake. These three major constraints, given below, are considered in order to

determine the release flow through the Notigi control station to the Nelson River:

1. The specified minimum release at Missi must be maintained.

2. The Notigi release should be kept at licensed maimum or as high as possible.

3. The Lake surface elevation of Southern Indian Lake should be between 843.5 ft

and 847.5 ft above see level.
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2.3. REGULATION OF RESERVOIRS IN THE SYSTEM

Max. Notigi Min. Missi

34,000 3,000
34,000 2,000
34,000 2,000
35,000 1,000
35.000 500

Table 2.5: Licensed release limits for Notigi and Missi control stations.

Period
Month)

Max. Notigi Min. Missi
Release (cfs) Release lcfs

an
Feb
Mar
Apr
May
Jun

35,000
35,000
35,000
35,000
34,000
34,000

500
500
500

2,000
6,000
5,000

The storage volume between the maximum and minimum lake elevation is 54,000

cfs-month (Bruce Hinton, personal communication). The licensed limits of Notigi and

Missi are given in Table 2.5

Based on the three constraints above, Notigi releases can be calculated for three

basic flow conditions:

1. Churchill River inflow is greater than the summation of Notigi licensed

maximum and Missi licensed minimum:

Notigi releases will be equal to the maximum licensed limit and excess water will

be either fully or partly stored in Southern Indian Lake with the reminder being

released from Missi.

2. Churchill River inflow is less than the summation of Notogi licensed

maximum and Missi licensed minimum, and greater than Missi li-

censed minimurn:

Missi release will be the licensed minimum and the storage in Southern Indian

Lake will be used to bring Notigi releases up to the licensed maximum or as high

as possible.
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2.4. HYDRO-POWER GENERATING STATIONS

Assiniboine R.

RedR.

HUDSON
BAY

N

Legend-

o I Generating station
I I Control structure

Figure 2.3: Schematic diagram of Manitoba Hydro generating stations.

3. Churchill River inflow is less than Missi license minimum:

The storage in Southern Indian Lake will be used to bring Missi release up to

the licensed minimum. Any remaining storage will be used to increase Notigi

releases.

2.4 Hydro-power Generating Stations

There are fourteen hydro-power and two thermal generating stations in Manitoba

Hydro's system. The installed capacity of these generating stations are given in Table

2.6 and a diagram showing the approximate location of each generating station is given
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2.4. HYDRO-POWER GENERATING STATIONS

Table 2.6: Manitoba Hydro's generating stations.

Limestone
Long Spruce
Kettle
Kelsey
Jenpeg
Grand Rapids
Pine Falls
Great Falls

in Figure 2.3. The Missi and the Notigi control structures which regulate Southern

Indian Lake, as well as the East Channel which diverts part of the Lake Winnipeg

outflows around the Jenpeg Generating Station into Cross Lake are also shown in this

figure.

As seen from Figure 2.3, the majority of the generating stations are located on the

Nelson River and the Winnipeg River. The total installed electric capacity of Manitoba

Hydro's system is 5143 MW. The thermal stations in Brandon and Selkirk account

for 4Yo of this amount. The remaining g6To of the capacity are associated with the

14 hydropower generating stations with about 77% of the total capacity coming from

the stations on the Nelson River, 9To from six stations on the Winnipeg River, and

L\Yo from one station on the Saskatchewan River. In addition, two small hydropower

stations are located on the Laurie River but because of their location and size, these

are not considered in the drought frequency analysis.

68
Ð4

155

72
5

6

97
139

t294
1020
1224
2r5
97

480
88
729

McArthur
Seven Sisters
Pointe DeBoise
Laurie River I
Laurie River II
Brandon
Selkirk
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Chapter 3

Drought Definition for Manitoba

Hydro

I 3.1 Introduction

The various drought definitions employed in practice reflect differences in regions,

needs, and disciplinary approach. Since there are widely diverse views on the inter-

pretation of droughts among the scientists of different disciplines, it is not possible to

give a universal definition.

In this chapter, different drought definitions encountered in the literature are briefly

presented. The emphasis is given to the definition of hydrological drought and energy

drought. After identifying a suitable definition of energy drought for Manitoba Hydro's

system, historical energy drought events are extracted from observed streamflow data

and discussed.
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3.2. GENERAL DEFINITION OF DROUGHT

3.2 General Definition of Drought

In general, a drought may be defined in terms of meteorological, agricultural, hydro-

logical, energy, and socioeconomic factors.

Meteorologi,cal droughú is usually a period of negative departure of precipitation

from a given threshold value. Different thresholds such as 50Yo,75y0,90T0, and t00To

of the long-term average precipitation may be considered. Due to climatic differences,

what is considered a drought in one location may not be a drought in another location.

Meteorological observations are the first indicators of drought.

Agricultural drought occurs when the amount of soil moisture no longer meets the

need of a particular crop at a particular time. Agricultural drought is usually the first

economic sector to be affected by drought.

Hyd,rologi,cal drought refers to a situation when surface and subsurface water sup-

plies such as streamflo\¡/, reservoir elevations, and groundwater tables are below given

threshold values. As in the case of meteorological droughts, threshold values may be

defined as different percentages of the long-term average. There is a time lag between

meteorological drought and hydrological drought. When low precipitation occurs over

an extended period of time, this shortage will be reflected in declining surface and

subsurface water levels.

Hgdropower energA drought occurs when the generated energy does not meet the

energy demand in a particular time period. Since streamflow water is the source of

hydropower energy, energy drought is closely related to hydrological drought.

Soc'ioeconomi,c droughú occurs when physical water shortage begins to affect people.
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3.3. DEFINITION OF HYDROLOGICAL DROUGHT

In this situation, the demand for an economic good exceeds supply as a result of a

weather-related shortfall in water supply. According to this definition, energy drought

can be considered a socioeconomic drought.

The first step in a scientific analysis is to define and specify the components of

the problem under investigation. Therefore, a clear definition of drought is required

before a drought frequency analysis can be undertaken. Since the performance of a

hydropower system is related to the availability of streamflow, hydrological drought

and energy drought will be considered in this research project.

3.3 Definition of Hydrological Drought

The theory of runs represents perhaps the best framework for the definition of hydro-

logic droughts. Yeujeui,ch [1967] recommended the theory of runs for defining hydro.

Iogic droughts and for studying their statistical properties. The theory of runs has

since been used by many researchers fSen, 1977, 1980a, b; Chander et al., I98L; Ze-

Ienhasi,c and Salaai,, L987; Mathier et a1.,1992; Sharma,2000; Shi,au and Shen,200L;

Zelenhasi,c, 2002].

The runs of the time series of a stochastic variable can be defined in several ways.

A time series r¿ cÐ,Ír be converted into a binary series by selecting a threshold value

rs and recording observations as above and below the threshold. A run is defined

as a consecutive sequence of above-threshold or below-threshold observations. The

parameter rs ca,ÍL be variable in time.

Figure 3.1 illustrates some common drought variables using concepts from the
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3.3. DEFINITION OF HYDROLOGICAL DROUGHT

L: Drought kngth
S: Drought Severity

M: Drought Magninde

Figure 3.L: Drought parameters using Theory of Runs.

theory of runs. For a given time series of ø¿ and a selected truncation level zs, there

are three drought parameters that are often considered:

I. Drought Durat'ion (,ú¿): Negative run length, i.e. the time elapsed between a

downcross and the next upcross.

2. Drought Seueri,tg (S¿): Negative run sum, i.e. the sum of all negative deviations

between a downcross and an upcross.

3. Drought Magni,tude (M¿)t The average negative deviation from the truncation

level zs, (Mo: SalL¿).

These three parameters have been extensively used in the definition of hydrologic

droughts. Since drought magnitude is completely determined by the other two, drought

duration and drought severity can be considered the two primary parameters of a

hydrologic drought analysis. It has been noted in the literature that there are strong

timc ( t)
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3.3. DEFINITION OF HYDROLOGICAL DROUGHT

positive correlations between drought duration and drought severity lSen, Lg77; Chang

and Stenson,7990; Sharma et al., L9971.

The main advantage of using runs in the definition of hydrologic drought is the pos-

sibility of determining their properties analytically or by data generation methods. For

example, it is possible to determine analytically the probability density function (pdf)

of the drought severities of given drought durations. When the analytical approach

becomes too complex, an appropriate data generation method can be employed to

obtain properties of runs such as drought severities and drought durations frequencies.

Based on the concept of runs, Dracup et al. ll980l outlined four decisions to be

made in arriving at a viable drought definition: the nature of the water deficit (e.g.

precipitation, soil moisture, streamflow), the basic time unit of the data (e.g. month,

season, year), the truncation level which distinguishes low flows from high flows (e.g.

mean, median, mode), and the regionalization and/or standardization approach.

In this project, the analysis of hydropower system drought requires the modeling of

flows at a monthly time step. The main advantage of using a monthly time resolution

is sensitivity because a drought event may initiate in one year and continue to the

subsequent year. If only annual flows were analyzed, such drought events would not

âppear in the drought analysis. The seasonal variability of the energy demand is

another reason for using a monthly time step.

The truncation level divides the time series into deficits (droughts) and surpluses.

A water shortage exists when the flow is below the truncation level. Therefore, the

selection of the truncation level is. one of the most important factors in the definition
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3.4. DEFINITION OF ENERGY DROUGHT

and analysis of drought. There is no universal definition of truncation level. It may

be a constant lYeujeui,ch,Ig6Tl or a function of time lMathier et al., 199L,1992]. It

typically depends on the type of drought under study and the objectives that water

users wish to attain. Since this study will involve drought analysis of monthly time

series, a seasonally variable truncation level will be considered.

3.4 Definition of Energy Drought

In drought analysis for hydropower systems, drought should be defined in terms of en-

ergy. For a fixed head, the produced energ.y at a hydropower station is proportional to

the amount of turbined water. Hence, monthly or annual streamflow at a hydropower

station can be converted into energy by multiplying by a factor, assuming a constant

head. In general, an energy drought occurs when energy supply is less than energy

demand. In large hydropower systems comprising multiple stations and covering dif-

ferent drainage basins, the deficit at one station does not necessarily result in system

drought. An energy drought occurs only when the total energy demand exceeds the

total energy supply of the system. The energy time series at monthly or annual time

steps may be used in the assessment of drought frequency.

Energy drought, as proposedby Rangarajan [1998] for Manitoba Hydro's system,

is defined in the following. The energy flow (MWh) at generating station i during

month m in year t may be defined as

(3.1)EIÌ: qfl x f¿ x h*
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3.4. DEFINITION OF ENERGY DROUGHT

where q!,}i" the monthly average flow and fi is the flow-to-power conversion factor at

generation station 'i, 'i : L,2,...,n, and h,n is the total time (in hours) in month rn.

Monthly energy flow at each generation station can be calculated and summed to give

the monthly total energy flow E¿,o of the system:

Ehn:Ðn9 (3.2)
i:l

Monthly energy deficits of the system are defined using the monthly net energy

demand D* as a truncation level. When the total energy flow E¿,o is less than the net

energy demand D,o, an energy deficit EDun occurs. Mathematically

- Et* if

if

ED'l*: 

{;-

E¿1n 1Dp

Em2 D*

(3.3)

for t: Ir2r.. . rT, and rn: Ir2r. .. rL2.

Based on the monthly time series of. ED¿*, energy drought duration and severity

can be calculated using the theory of runs as described in Section 3.3. In this case,

the duration L¿ of. an energy drought is the number of consecutive months where total

energy flow is lower than net energy demand and the energy drought severity is the

summation of energy deficits during the L¿ months.
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3.5. DEFINITION OF ENERGY DROUGHT FOR MANITOBA HYDRO'S SYSTEM

Table 3.1: Flow-to-power factors and in-flow sites for generating stations.

Generation Station
(MW/kcfs)

int
Slave Falls
Seven Sisters
McArthur
Great Falls
Pine Falls
Grand Rapids
Jenpeg
Kelsey

Kettle

Long Spruce
Limestone

3.16
2.07
4.24
r. tÐ
3.93
2.87
9.26
2.16
4.05

7.77

6.09
7.89

Winnipeg River at Slave Falls
Winnipeg River at Slave Falls
Winnipeg River at Slave Falls
Winnipeg River at Slave Falls
Winnipeg River at Slave Falls
Winnipeg River at Slave Falls

Saskatchewan River at Grand Rapids
Lake Winnipeg Outflow
Lake Winnipeg Outflow
+ NRO + NRl + NR2

Kelsey flows * Notigi Release + NR3 + NR4
+ BRl + BR2 + BR3 + BR4A + BR4B

Kettle flows * NR5
Long Spruce flows * NR6

3.5 Definition of Energy Drought for Manitoba Hy-

dro's System

In this project, energy drought has been tailored to the specifics of Manitoba Hydro's

system. Calculation of the energy flow at each station requires information about

forebay and tailrace elevations. Since Manitoba Hydro's generating stations have rel-

atively little variation in forebay-levels, a pragmatic approach is used which assumes

that a given amount of flow at a particular site will produce a certain amount of

power. Manitoba Hydro has developed flow-to-power conversion factors at each of the

generation stations based on historical records. Although some of the water might be

spilled, it is assumed that all flow passes through the turbines. This assumption is

realistic for a drought study since all available water would be used during drought

periods. Flow-to-power factors for each hydropower station are given in Table 3.1.
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3.5. DEFINITION OF ENERGY DROUGHT FOR MANITOBA HYDRO'S SYSTEM

Although the six Winnipeg River generating stations are listed individually in Table

3.1, they are treated as one station having an inflow equivalent to the Winnipeg River

flow at Slave Falls and a flow-to-power factor 17.96 Mw/kcfs which is the summation

of six factors.

DeWi,t [1995] mentioned that another special case occurs when calculating the

energy flow at the Jenpeg generating station. The flow at Jenpeg is a combination of

Lake Winnipeg outflow and local flow NR0. However, a portion of these flows bypasses

the generating station through the East Channel. To incorporate this condition into

the model, it is assumed that none of the NRO flow passes through Jenpeg's generating

station while all of the Lake Winnipeg outflow does.

The monthly flows of the Saskatchewan River at Grand Rapids, the Winnipeg River

at Slave Falls, the PIAO of Lake Winnipeg, and the Churchill River at Southern Indian

Lake are known. The outflow from Lake Winnipeg and Southern Indian Lake are

calculated according to the heuristic rules given in Section 2.3. With the knowledge of

Iocal inflows to the Burntwood and Nelson Rivers, the monthly flow at each generating

station can be obtained and converted to energy flow using (3.1). The total energy

flow is obtained using (3.2).

The monthly net energy demand of the system for the load year 2005 was ob-

tained from the SPLASH model used at Manitoba Hydro (Bruce Hinton, personal

communication, 2003). In the calculation of the monthly net energy demand, domes-

tic (Province of Manitoba) and export energ.y demands as well as energy imports and

thermal energ-y generation of each month are taken into consideration. The net energy
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3.5. DEFINITION OF ENERGY DROUGHT FOR MANITOBA HYDRO'S SYSTEM

2357.99
2022.00
2063.00
1678.00
1626.00
1579.98
1643.00
1673.00
1537.00
1723.99
1950.98
2306.99

29.95
27.35
28.76
22.94
20.75
19.83
19.59
20.04
20.57
22.20
26.23
29.50

420.63

383.62
420.63

515.62
492.42
480.58
498.42
499.42
481.58
495.42
410.11
42r.63

369.02
336.34
369.02
486.53
286.99
277.78
286.99
286.99
277.78
286.99
357.16
369.02

380.58
346.82
380.58
313.52
361.53
344.04
352.02
353.80
252.96

332.72
366.21
380.58

Table 3.2: Monthly energy demands for Manitoba Hydro's system.

Feb
Mar
Apr
May
Jun
Jul
Aug
sep
Oct
Nov
Dec

Net Hydro
Demand

GWh)
2058.97
7749.87
1762.79

1416.51
1490.65
1458.57
152t.99
1551.67
1508.40
1621.90
1663.94
2008.52

communication with Bruce Hinton. 2003 Manitoba Hvdro

demands given in Table 3.2 are employed as threshold values.

The theory of runs was used to define energy drought events and associated char-

acteristics for Manitoba Hydro's system. However, the definition of drought durati,on

is adapted to the specifics of Manitoba Hydro. Based on the analysis of storage levels

computed by the SPLASH model, drought duration is defined as follows. The duration

of a drought event is not the number of consecutive deficits, but rather the number of

periods when the surface elevation of Lake Winnipeg is lower than 7L4 ft which is the

average elevation. This means that after identifying an energy deficit, the lake level

should be checked backward and forward from that particular point to determine the

beginning and the end of the drought event. A drought event is assumed to start when

the lake elevation drops below 7L4ft and terminate when it reaches 7L4ft again. After

obtaining the drought length T¿, the energy drought seueri,ty for Manitoba Hydro is

obtained as the summation of energy deficits during this period. Figure 3.2 illustrates
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Figure 3.2: Duration and severity of a drought event for Manitoba Hydro.

these concepts. In the analysis, it was observed that in many cases a couple of spring

months separates two consecutive drought events because of snow melt. Therefore,

when the time between two consecutive drought events are less than or equal to four

months, these drought events are combined into one drought event.

As mentioned earlier in this chapter, the magnitude of a particular drought event is

equal to the ratio of severity and duration for that event. The magnitude of a drought

event is generally a poor indicator for a hydropower system because two drought

events could have the same magnitude and yet have very different power production

capabilities. Duration and severity are probably the two most effective parameters to

described drought events.

Based on the energy drought definition for Manitoba Hydro given above, energy

drought events were extracted from the historical record. A total of five drought events

listed in Table 3.3, were identified from the 1912-98 record data. The most severe
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Table 3.3: Historical drought statistics of Manitoba Hydro's system.

Event

No

Start

Date

End

Date

Duration Severity Magnitude

(monihs) (Gwh) (G\Mhlmonth)

I
2

3

4

5

Sep. 1929

Nov. 1938

Nov. 1960

Sep. 1976

Oct. 1987

May. 1933

Apr. 1942

May. 1962

Mar. 1978

Apr. 1992

57.8

3309.0

208.7

104.0

2780.7

4õ

42

i9
19

ÐÐ

1.3

78.8

11.0

Ð.Ð

50.6

drought event occurred betvveen November 1938 and April 1942, with a duration of 42

months and a severitv of 3.309 GWh.
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Chapter 4

Traditional Stochastic Models for

Data Generation

4.L Introduction

The objective of drought frequency analysis is to assign a probability of occurrence

to a specified drought event or alternatively to estimate the drought event having a

prescribed probability of occurrence. Once the drought is defined, the frequency of

droughts can be estimated in several \l/ays, using empirical, analytical, or stochastic

techniques.

Since it is not possible to predict future hydrologic variables with certainty, stochas-

tic and probabilistic theories â,re proper tools to employ in the modeling of hydrologic

time series. The limitations of using a short historical flow trace in the drought analy-

sis can be overcome by using a stochastic time series model. The stochastic approach
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SYSTEM OUTPUTANALYSIS
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Figure 4.1-: Stochastic modeling approach.

is employed in this research project.

Stochastic streamflow models have played a major role in the analysis and planning

of water resources systems throughout the world. Stochastic time series models should

reproduce important statistics of historical data such as mea,ns, variances, autocorrela-

tion, and cross-correlation. The aim of synthetic hydrologic simulations is to produce

a large set of equally likely traces that are statistically simila¡ to the historical data.

Stochastic models do not generate any new information independent of the data, but

they allow one to examine complex characteristics of flows such as multi-year droughts

that cannot be obtained by conventional statistical analysis.

Figure 4.1 illustrates the typical approach to stochastic modeling. Historical stream-

flows are used to choose and verify a stochastic model. The stochastic time series model

is then used to generate a number of flow scenarios of given length. Fbom each scenario,

one can extract the drought statistic ofinterest and perform a frequency analysis. The
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4.1. INTRODUCTION

outcome of the frequency analysis is useful for determining the probability of system

drought.

In selecting a stochastic model, it is important to identify which characteristics

of the streamflow time series being modeled are important and which are not. The

model should preserve the overall mean and variance of the data. Ffurthermore, there

is often considerable persistence or long memory in historical streamflow time series

that is particularly important to preserve in drought studies. Obviously, the historical

records should guide one in the model development.

The stochastic approach appears to be the most viable technique to analyze com-

plex hydrological characteristics. In this project, the streamflow series at several gaug-

ing stations in the Churchill and Nelson River Basin are considered for probabilistic

drought analysis of Manitoba Hydro's system. Therefore, the analysis and modeling

of both univariate and multivariate time series are required.

In this project, the synthetic data generation will be done in two steps: (1) gener-

ation of annual fl.ows, and (2) disaggregation of generated annual flows into monthly

flows. This is called a disaggregation approach. The main advantage of this approach

is that the generated flows preserve the historical statistical properties at both annual

and monthly levels.

The majority of stochastic models involves an assumption that the underlying pro-

cess is normal. For such processes, a necessary condition is that the data be normally

distributed. However, streamflow data are usually not normally distributed. In this

case, observed data must be transformed into normal before model calibration. Some
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4.2. MARGINAL DISTRIBUTIONS AND DATA TRANSFORMATION

common transformations are described in the next section. Since first order autoregres-

sive [AR(l)] models were selected for the modeling of annual flows in previous studies

at Manitoba Hydro, single-site and multi-site AR(1) models are described next. The

integration of parameter uncertainty into AR(l) models is also presented in this chap-

ter for both single- and multi-site cases. Finally, the traditional temporal and spatial

disaggregation models employed in this research project are presented.

4.2 Marginal Distributions and Data TYansforma-

tion

Most of the models for generating stochastic processes deal directly with normally

distributed random variables. Unfortunatelg streamflow distributions tend to be pos-

itively skewed. Salas et a/. [1988] proposed three main approaches for dealing with

skewed hydrologic time series.

1. To transform the skewed series into normal before modeling the series;

2. To model the original skewed series and handle the skewness through the prob-

ability distribution of the uncorrelated residuals;

3. To find a relationship between the first two moments of the original skewed series

and those of the normal series so that the moments of the original skewed series

are preserved. Loucks et al. lL98L] gave an example of this approach using an

autoregressive Markov model for annual flows.
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4.2. MARGINAL DISTRJBUTIONS AND DATA TRANSFOR]VIATION

Since the best techniques are developed for normal processes, it is generally simpler

to transform the skewed variables into normal rather than finding similar procedures

for the non-normal variables. However, when transforming the original series into

normal, biases in the statistical properties of the generated flows may occur. For

example, the mean of the transformed series may be reproduced but not the mean of

the original series. Salas et al. [1988] suggested to use the first approach if biases are

small. Otherwise, other approaches should be envisioned.

A disadvantage ofthe first approach is revealed when annual flows are disaggregated

into monthly flows. When the transformed flows are modeled, the generated monthly

flows generally fail to sum up to the previously generated annual flows.

In this project, the first approach has been employed. The 2-parameter lognor-

mal, 3-parameter lognormal, and Box-Cox transformation methods are widely used to

transform streamflows to an approximate normal distribution fGrygi,er and Stedinger,

1990,2001; Salas,t993; Stedi,nger,tgSD; Loucks et al.,Lg8l; Thger et a1.,2002; Salas

et a1.,2000]. It should be noted that in a drought analysis, a good fit in the lower tail

of the marginal distribution is more important than the fit in the upper tail.

4.2.L 2-Parameter Lognormal Tlansformation

In hydrolog¡ flows are often adequately modeled by a 2-parumeter lognormal dis-

tribution. A logarithmic transformation of the observed flow q¿ at time step ú, i.e.

(4 1)r¿ : ln(q¿)
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4.2. MARGINAL DISTRJBUTIONS AND DATA TRANSFORMATION

then produces a normally distributed observation ø¿.

4.2.2 3-Parameter Lognormal Transformation

This transformation is the same as the 2-parameter lognormal transformation, except

that it has a non-zero lower boundr. qt is transformed as

q:ln(qt - r)

where Ç¿ must be greater than its lower bound r. Stedi,nger ll980l and Stedi,nger and

Taglor [1982a] suggest procedures for estimating the lower bound r.

4.2.3 Box-Cox Tlansformation

When observed flows do not follow a normal or a lognormal distribution, a Box-Cox

transformation may be applied. The Box-Cox transformation of q¿ is

(4.2)

(4.3)
I r¡ - ,r,^ ir

*r: 
1

["(q') if

^+0
À:0

where À is a parameter chosen to ensure that the transformed hydrological data r¿ Ð.re

approximately normally distributed. To define a measure of normality of r¿, one may

look at the correlation of point coordinates in a quantile-quantile probability plot, see

next section for details. The higher the correlation coefficient, the better a normal

distribution fits the data. The optimal value of I is determined numerically as the
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4.3. GENERATION OF AGGREGATED FLOWS

value that maximizes the probability plot correlation coefficient.

4.2.4 Selection of the Transformation Method

In order to decide which transformation method is most appropriate, the Filliben

probability plot correlation coefficient test statistic is employed lFi,lti,ben,1975; Vogel,

19861. The Filliben statistic r measures the correlation between the transformed or-

dered flows r¿ and their corresponding normal quantiles M¿ which can be obtained as

r: DLr@o-¡)(Mu-M) (4.4)

lDL,{", - Ð' DL,(M, -,ø'f''
Among the given transformation methods, the candidate with the highest r-value

should be selected.

4.3 Generation of Aggregated Flows

Autoregressive (AR) and autoregressive moving average (ARMA) models are com-

monly used for generation of aggregated flows such as annual flows. These models

reproduce important statistical properties of the annual streamflow series under con-

sideration. In the previous studies of Manitoba Hydro's system, it has been found

that based on the Akaike Information Criterion (AIC), the AR(l) model is the best

choice between competing ARMA models. The AR(l) model was also used in this

study as a basis for comparison with the proposed MS model in the assessment of

the probability of system drought. Since both singe-site and multi-site models are
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required in the stochastic model frameworks, (see Chapter 8), both univariate and

multivariate AR(l) models together with methods for assessing parameter uncertainty

are explained in the following sections.

4.3.L Single-Site Autoregressive Model

The autoregressive (AR) model is one of the most popular models for annual time series

in hydrology. This is in part due to its simplicity. Let r¿ be a normally distributed

variable with mean ¡.r,, and variance o2,. fne autoregressive model of order p, denoted

AR(p), may be written as

p
\---1 ,tt: l-Ln + LÓ¡@r-¡ - P,) * et
;-1
J-L

(4.5)

where e¿ - l/(0, o!) is an uncorrelated (in time) normal random variable with mean

zero and variance o!. fhe coefficients ót,...,óp arc autoregression coefficients. The

parameters of the model are pr) or, ót,... ,ór, and o!.

The mean and the variances of an AR(p) process are

El"l

vl"l

:þ,

:o": o!
(L-ûø-"'-órPr)

(4.6)

(4.7)
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respectively. The autocorreiation function of AR(p) can be calculated as

Po: L

Pn:ÓtPn-r * "'*ÓpPn-p, k>L

where p¡ is the lag-k autocorrelation coefficient of the variable z¿.

The AR(l) model

frt: ltra * Ó{rr-t - p,) * et (4.e)

is a particularly popular special case of (a.5). The parameters of an AR(l) model can

be estimated from observed data using the method of moments:

(a.8a)

(4.8b)

(4.10)

(4.11)

(4.12)

(4.13)

1T
þæ:r:jI",

l4 t:1
1T

0n: sa: T+LD,@, - T)'
t-1

Q: TL:

"?: "3Q

DL,@, - Ì)'

- p?)

The autocorrelation function of the AR(l) model can be obtained from (a.8b) as

pn: ó!, k> o

The AR(l) model preserves the historical

serial correlation coefficient of the transformed

(4.r4)

mean, standard deviation, and lag-l

variables.

s?-1 / -\/ -\Lrt \rt - r)\r¡4 - r)
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In the previous drought studies for Manitoba Hydro, the impact of uncertainty

in the parameters of the AR(1) model was not considered. However, Sted'inger and

Taylor [1982b] found that the impact of parameter uncertainty on derived storage

capacity-reliability relationship for reservoir systems \l/as as important as choosing an

appropriate stochastic time series model.

In this project, parameter uncertainty will be investigated primarily at the annual

level, while the uncertainty of the parameters of the temporal and spatial disaggre-

gation components of the model will be ignored. The rationale for this is that the

droughts of interest here are multi-year droughts, so that the effect of the annual

model is much more significant than the disaggregation models. The full parameter

uncertainty is integrated into the AR(l) model through Bayesian Inference as ex-

plained in Section 4.3.3. A general explanation of Bayesian Inference is presented in

the next section. A more detailed account can be found in for example Gelman et al.

[1995] and, Bor and T'iao [1992].

4.3.2 Parameter lJncertainty through Bayesian Inference

In the frequentist approach, the probability of an event is defined by the frequency of

that event. According to frequentists, the parameters of a stochastic model are un-

known constants that can be estimated using available observed data. The assumption

is that the population parameters are equal to the sample estimates. The method of

moments and the method of maximum likelihood are the most popular techniques for

parameter estimation. However, when the amount of observed data is limited, which
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is often the case in hydrology, parameter uncertainty can be considerable and needs

to be taken into account.

The Bayesian approach provides a useful mechanism for quantifying parameter

uncertainty. In the Bayesian approach, there are two sources of information for learn-

ing about unknown parameters: (1) prior information, based for example on expert

knowledge, and (2) observed data. The unknown parameter vector 0: (0t...,0^)'

is treated as a random variable described by a probability density function which ex-

presses the uncertainty about 0. Prior to observing the data, this density function is

denoted p(0) and is called the prior di,stributi,on; it contains all available knowledge

about the parameters other than that associated with the observations. After observ-

ing the data X : (rt, . . . ,ïr)' , the density is denoted p(06) and is referred to as the

posteri,or di,stributi,on The process of collecting data, and thus acquiring knowledge

about d, is reflected in a reduction in uncertainty. Therefore, the posterior distribution

is more concentrated than the prior. Using Bayes' theorem, the posterior distribution

of 0 is given by

p(llx):'w (4.15)

where p(Xl0) is the likelihood function l(0lx), and p(X) : I p(Xlî)p(Ðaß is the

normalizing constant of the posterior distribution necessary to ensure that the posterior

distribution integrates to one. p(X) is called the marginal distribution of the data or

prior predictive distribution. The quantity p(X) does not depend on á, and with fixed

X, it can be considered a constant so that Bayes' theorem can be written in the more
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Figure 4.22 The Bayes theorem.

compact form

p(îlx) x t(îlx)e@) (4.16)

which shows that the posterior distribution is proporti,onal to the likelihood function

multiplied by the prior distribution. In the posterior distribution of the model param-

eters, the likelihood function provides the contribution from the observed data and

the prior distribution provides the contribution from prior knowledge about model

parameters.

In the Bayesian approach, the unconditional probability density of a future variable

re¡, given observed variables X, can be obtained as lZellner,lg7ll

p(rlx) : 
lrn@10)e(01Ðdn

(4.r7)

This resulting p(rlX) is also known as the posterior predictive or Bayesian proba-

bility density function and can be used for simulation of random realizations of z.

Once the posterior distribution of the model parameters has been derived, sets of

parameters can be drawn from that distribution lVi,cens et al., L975a, b; Stedi,nger and

Taylor,1982b; Stedi,nger et a1.,1985; Bor and Tiao,1992]. In the case of the AR(l)
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model, the posterior density of the model parameters can be derived analytically.

However, an analytical expression for the posterior distribution may not be possible

for complex models. In such cases, Markov chain Monte Carlo (MCMC) simulation

methods can be employed to draw samples from the posterior distribution. In this

research, an MCMC method is used in the quantification of the parameter uncertainty

of the MS model discussed in Chapters 5 and 6.

In streamflow simulation, parameter uncertainty may be incorporated by generat-

ing from the Bayesian distribution of streamflow. This is done by first sampling the

model parameters from the posterior distributions and then using the parameter set

to simulate one streamflow sequence of desired length. This process is repeated for

each sequence.

4.3.3 Incorporating Parameter lJncertainty into the Single-

Site AR(l) Model

The analysis of parameter uncertainty in univariate and multivariate regression models

was developed four decades ago, see for example Zellner [19711. In the hydrological

literature, Vi,cens et al. ll975b] defined the single-site AR(l) model as a univariate

normal linear regression model and incorporated parameter uncertainty. Stedi,nger

and Taylor [1982b] examined the effect of the parameter uncertainty of the annual

AR(l) model on estimates of monthly reservoir system reliability. They found that

streamflow models may underestimate the frequency of severe droughts if parameter

uncertainty is not considered. Despite these conditions, the quantification of parameter
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uncertainty is often found lacking in the application of stochastic hydrological models.

For the purpose of parameter estimation, (4.9) may be written as a univariate

regression model

frt: þo I þñ*t I et (4.18)

where þo, þt and o! are the unknown model parameters. The above model can also

be expressed in matrix forms as

X:uþ*e (a.1ea)

f1

r2

rr-t

The joint likelihood function of B and o!

as lZellner, L97L]:

(4.1eb)

given the observed data X can be written

(4.20)

fr2

rg

r7

[;].

€2

63

€7

t(P,o)x) * +"-r{-+ lrr? + (P - i,)'r'r@ - þ)]\

where u : T - 2 is the degrees of freedom and, þ is the standard maximum likelihood

estimator of the unknown model parameter vector p,

(4.2r)þ:7u,u¡-1u,X
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The term sl is the observed variance of the residuals calculated as

p(þ,o,lx) * #"r{-+

(4.22)

To obtain the posterior density function of the model parameters, p(P,ø,lX) , the

Iikelihood function in (a.20) must be multiplied by the prior density function, p(fl,ou).

If little is known a priori about the model parameters, a diffuse joint prior density

function of. p and oe may be used. A common choice is Jeffrey's noninformative prior:

p(þ,o,) : p(þ)p(o")

1o<-
oe

de ( oo. With this

(4.23)

where -oo < B < æ and 0 <

function becomes

prior, the joint posterior density

(4.24)

Using the conditional probability theorem, the above equation can also be written

p(þ,""!X) : p(þlo,,X)eþ)X) (4.25)

The marginal posterior density of. ou can be obtained by integrating ( .24) wlth

lrr? + (P - it)'r'r@ - þ)l\

as
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respect to the elements of p

which is the kernel of an inverse-Gamma distribution with parameters (u12,us!12) or

a scaled inverse-X2-distribution with parameters (", t?).

Once the marginal posterior density of o,, p(",|X), and the joint posterior density

of p and ou, p(þ,o,lX), are known, the conditional density function of p given ø. and

X can be obtained from (4.25) as

p(o"lx) * +"r(-'#)

p(þlo",x) * +"-r{-+

(4.26)

(4.27)

(4.2e)

which is a multivariate (bivariate) normal distribution with mean p and covariance

matrix o!(u'u)-I.

In summary, sampling from the joint posterior distribution can be done as follows

1. Calculate p from (4.21) and sl from (4.22).

2. Draw o! from the scaled inverse-X2-distribution

03-Inu-x'Q,t?) (4.28)

Ito - îtl't 'r)-'(p- Ð] )

,c USI

In practice, one ca,n simulate ø"2 as
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where rt2 is a random variable drawn from a standard X2-distribution with z

degrees of freedom.

Given the simulat ed o!, draw B from the multivariate normal distribution

þ - N(þ,o!(u'u)a) (4.30)

For each set of simulated model parameters, one streamflow sequence of desired

Iength can be generated. Parameter simulation should be repeated for the generation

of each new streamflow sequence.

4.3.4 Multi-Site Autoregressive Model

In the analysis of multiple time series, vector and matrix notation is needed but the

basic principles are similar to univariate analysis. The main properties of multi-site

AR models are the mean. the cross-covariance. and the autocovariance structure.

Let q[^) be the observed annual flow at site n (n : L,. . . , ¡/) in year t (t :

1,...,?). If the observed annual flows do not follow a normal distribution, thev

must be transformed as described in Section 4.2. The transformation function mav

be difierent for each site. Let r[") be the normally distributed transformed annual

flow. Before estimating the model parameters, it is common practice to standardize

the transformed flows. For example, the elements of the standardized annual sequence
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of the first site can be obtained as

(1) -rr \11) ri.' - at-t
l1)sà'

(4.31)

(4.32)

(4.33)

(4.34)

where ¿(1) is the sample meân and sf) is the sample standard deviation of the trans-

formed flows at site 1.

The multi-site AR(l) model suggested by Matalas [1967] is defined as

Zt: AZrt I Be¿

in which ^4 and B are (,nf x ,nrr) parameter matrices and Z¿ and Z¿-1 are (lú x 1)

column vectors of observations at time ú and ú - 1, respectively. The (l/ x 1) vector

€¿ contains uncorrelated normally distributed random variables with zero mean and

unit variance. Hence, the covariance of e¿ is the identity matrix, Ele¿e!r]: 1. It is also

assumed that the vector e¿ is uncorrelated wilh Z¿4, i.e. EIZ¿-1€í] :0.

The parameter matrices ,4 and B are generally obtained using the method of

moments. By multiplying (4.32) bV Z', and Z'r-, and taking expectation, one can

obtain the following expressions:

Â: MtMlr

ÊÊ':Mo-M1MïM\
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where Ms is the lag-zero cross-covariance matrix

fuo: Elzú';

and Ml is the lag-one cross-covariance matrix

IûIr: Elzúl-l

The lag-k cross-covariance matrix for the multi-site AR(1) model is

Mn:AkMo, k>o

(4.35)

(4.36)

(4.37)

Determination of B from knowledge of. BBt is a classical problem in multivariate

statistics. Methods to solve ÊÊ' fo, Ê are given in Salas et at. ll988l and Bras and,

Rodríguez-Iturbe [1993]. Software such as MATLAB have the capability to solve the

above estimation problem.

The multi-site AR(l) model has the property to preserve the historical means,

standard deviations, and lag-zero and lag-one cross-correlations. However, the AR(l)

model may not preserve the long-term persistence observed in the historical data.

Because autoregressive models are "short memory" models which mea,ns that their

autocorrelation functions decay very fast as the time lag increases, Salas et a/. [1988]

noted that AR(l) models produce smaller droughts for a given demand level. There-

fore, if the observed data suggest long-term persistence, alternative models should be
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used.

4.3.5 Incorporating Parameter lJncertainty into the Multi-

Site AR(l) Model

Since this research project has a multi-site dimension, parameter uncertainty must

be considered at the multisite level. The quantification of parameter uncertainty

in multi-site AR(l) models was presented by Valdes and Rodriguez-Iturbe ll977l in

the hydrologic literature. Incorporating parameter uncertainty into multisite AR(1)

models is not straightforward. Unlike in the single-site case, the structure of the

standard multivariate regression model cannot be used for the multi-site AR(l) model.

However, a special case of the generalized traditional multivariate regression model

can be employed to represent the multi-site AR(1) model structure fTi,ao and Zellner,

1e641.

Let rf),.. . ,*g) denote the normally distributed annual flow series at site n. The

multi-site AR(l) model can be written

*Í') : þn -r þ,,rrÍ'), + þnrÍz)t + . . . þwrÍIì + rÍ'l

,Í') : þzo r þrrrÍ!, + LzzrÍlt + . . . LzurÍll + el'l (4.38)

,Í*) : l¡vo -r 0*rrÍ!, + þwzrÍz\ t . . . þu ¡,trj1ì + rÍtl

where 0r¡ are regression coefficients and e¿ are independent identically distributed zero
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mean normal random variables with covariance matrix X, e¿ - Iúv(O,X).

The above model can be expressed in a compact normal regression model

X:Qþ+e (a.3ea)

jK.(1)

¡(rv)

â(1)

6(N)

(4.3eb)

(n\
cwç2

(n\
eà'

:

(n)ô.,çTl

4.40)

(4.41)

u

þt

þ¡,t

where

x@) : , þ):

(n)
12'

(n)rà'

:

tnl
r,T,

, þn:

þno

þnt

þn¡'¡

, e(n) -

where B and E are the model parameter matrices. Using (4.39a), the joint likelihood

function of B and E given the observation vector X can be written as

t(p,'jlx)x lr¡år*n l-]t,r-rs - )ro - it)'>-' Ø u'u(p- r,l

In (4.41), tr denotes the trace operator, I denotes Kronecker or direct matrix multi-

^l ^, ^l
plication, and p : (þy...,þ*) is the standard maximum likelihood estimator of the
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unknown model parameter vector þ, i.e.

þ,: (u'u)-trry(n) (4.42)

The matrix ,S : {rr¡} is proportional

of ,9 are defined as

to the sample covariance matrix. The elements

s¿¡ : (y(t) - uþu¡'|x<i) - rþ¡), i.,j :1,...,N (4.43)

It is assumed that little is known a priori about the model parameters p andX and

that they are independently distributed. Diffuse priors are used when no information

about the model parameters are known. For the multi-site case, Zellner [1971] gives

Jeffrey's diffuse prior as

p(P,E): p(þ)p(D)

x lEl-å(w+t¡ (4.44)

Multiplying the likelihood function in (4.4L) by the prior distribution in (4.44), the

posterior distribution of. B and X can be obtained as

p(P,lllx)x lE¡å(r+rv+l) exp 
l- 

jrr"-'t -|w - it)'z-' Øu'u(B- u,] Ø-45)
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The above equation can also be written

p(p,xlx) :'p(plE, X)p(rE) (4.46)

with

and

p(PlE,X) o< ll¡åt.*o l-;* - ft)'>-' Øu'!u(B- r,] (4.47)

(4.4e)

(4.48)

where k denotes the size of the p vector andu -T - k+¡rr*l denotes the degrees of

freedom. It can be seen that the conditional posterior distribution of. p given E in @.a7)

is a multivariate normal distribution with mean þ and,covariance matrix E ø (ø'ø)-1

and the posterior distribution of E in (a.48) is an inverted Wishart distribution.

Like in the single-site AR(l) model, the simulation of the model parameters is a

two step process. After estimating the parameter matrices in @.a\ and (4.43), the

covariance matrix E is first simulated from the inverted Wishart distribution:

p(xlx) x lxlå'",.0 [-]""-'t]

X - Inv-Vy'ishart(2,,9)

and then, for given X, p is simulated from a multivariate normal distribution:

(4.50)þ - N¿(þ,8 ø (u'u)-r lu)
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When parameter uncertainty is considered as defined above, generated steamflow

sequences reflect both the natural hydrologic variability of streamflows and uncertainty

about the model parameters.

4.4 Disaggregation of Aggregated Flows

Among the various techniques for time series analysis developed in hydrology, the dis-

aggregation approach seems to be the most suitable for this research project fValenci,a

and Schaalee,19731. Disaggregation models can be used at temporal and spati,al levels.

In temporal disaggregation, generated annual flows are disaggregated into monthly

flows. In spatial disaggregation, generated aggregated flows from a region are dis-

aggregated into flows at individual sites within the same region. The generation of

aggregated flows and the disaggregation procedure are independent.

Typical sequential linear models such as periodic autoregressive (PAR) and peri-

odic autoregressive moving average (PARMA) or other types of models preserve the

statistical characteristics at the monthly level but not at the annual level. The ma-

jor advantage of disaggregation models is that they preserve historical statistics of

both annual and monthly streamflows. Disaggregation models also have an additiv-

ity property when observed data are normally distributed. The seasonal values adds

up to the annual values. In most cases, however, observed streamflows are not nor-

mally distributed. When the transformed flows are modeled, disaggregated monthly

flows generally fail to sum to the generated annual flow. In this case, an adjustment

procedure must be used to ensure that disaggregated flows add up to aggregated flows.
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The first well-accepted disaggregation model was developedby Valenci,a and Schaalce

[1973]. A number of variations of this model have subsequently been proposed. The

first disaggregation models were multivariate (simultaneous disaggregation of annual

flows at several sites). Valenci,a and Schaake [1973], Meji,a and Rousselle 11976], Tao

and Delleur 11976], and Hoshi, and Burges [1979] are typical examples of such models.

These models attempt to reproduce all covariance properties between monthly flows

as well as those between monthly and annual flows among all sites and time steps.

This results in a huge number of parameters which is not desirable when the sample

size is small. Since short record length is a common case in hydrology, attempts have

been made to reduce the number of parameters by preserving a reduced number of

statistics of the data.

One way of reducing the number of parameters is to use condensed di,saggregati,on

models such as those developed by Løne [1979], Stedi,nger et al. 11985], Grygi'er and

Stedi,nger [1988], and Grggi,er and Stedinger [1990]. Condensed models reduce the

number of parameters to be estimated by modeling only a reduced number correlations

among the monthly flows. Lane's condensed model which was employed in this research

project, is described later in Section 4.4.3.

As an alternative to condensed models, Salas et ø1. [1988], Loucles et al. lL98Il,

and Bras and Rodríguez-Iturbe [1993] suggested that the disaggregation be done in

steps (stages or cascades). For example, annual flows at one or more sites can be

disaggregated to monthly flows in two or more steps. Santos and Salas 119921analyzed

the potential of the step disaggregation idea. In the Santos-Salas model, an annual flow
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value may be disaggregated into 12 monthly flows by first disaggregating the annual

flow into the first month flow and the sum of the remaining 11 months. Then the

latter sum is disaggregated into the second month flow and the sum of the remaining

10 months, and so on until all monthly flows have been obtained. Salas [1993] notes

that the Santos-Salas step model is very similar to the condensed model of Stedi,nger

et al. ll985l.

Another stepwise disaggregation model was proposed by Koutsogi,anni,s 1L992].

This approach, called the dgnami,c di,saggregati,on model (DDM), is very similar to

the Santos and Salas stepwise disaggregation procedure. However, there are some dif-

ferences between them. At each steps, the DDM uses a nonlinear generation module

that disaggregates a given amount into two parts. However, this module adds notable

mathematical complexity. Therefore, KoutsoEi,anni,s and Manetas [1996] presented a

simpler method that keeps some ideas of the DDM approach. Their disaggregation

method is based on three simple ideas. First, it starts by using a sequential PAR(I)

model and keeps its formalism and parameter set. Second, it uses accurate adjusting

procedures to allocate the error in the additive property. Third, it uses repetition in

order to improve the approximation of statistics that are not explicitly preserved by

the adjusting procedures.

Tarboton et at. [1998] developed a nonparametric di,saggregat'ion model (NPD).

Their NPD model can capture the dependence structure present in the observed data

without imposing arbitrary linearity or distributional assumptions. The necessary joint

probability density functions are estimated directly from the historical data. These
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methods circumvent the drawbacks of the parametric methods. The methods are data-

driven and relatively automatic, so non-linear dependence will be incorporated to the

extent suggested by the data. The empirical marginal distributions are reproduced

and normalizing transformations are avoided. The real advantage of the NPD method

is the ability to model complex relationships between aggregated and disaggregated

flows. However, a disadvantage of the NPD approach is that it is computationally

intensive.

In this research project, Lane's condensed disaggregation model lLane, 1979] is

employed to disaggregate generated annual flows at five sites into monthly flows at

those sites. Furthermore, Mejia and Rousselle's model lMeji,a and Rousselle,IgT6] is

employed to spatially disaggregate aggregated annual flows for the basin into annual

flows for the five basin sites. The same model is also used to disaggregate generated

aggregated monthly Local Flows at the Burtwood and the Nelson River into monthly

flows at the individual local flow sites. In the following sections, the employed disag-

gregation models as well as Valencia-Schaake model are presented in more details.

4.4.L Valencia-Schaake Disaggregation Model

The basic disaggregation model developed by Valenci,a and Schaake [1973] can be used

both for temporal or spatial disaggregation. For example, in order to spatially disag-

gregate the aggregated zero mean annual basin flow (higher-level variable) r¿ in year

ú into N zero mean annual basin site flows (lowerJevel variables) gr: (AÍt) ,. . . ,AÍÐ)'
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for the same year, the Valencia-Schaake disaggregation model can be written as

Ut: Ant I Be¿ (4.51)

where,4 and B are parameter matrices with dimensions (l/ x 1) and (,nü x l/), respec-

tively, and e¿ is an (I/ x 1) column vector of independent standard normal variables

with zero mean and unit variance. As in the multi-site annual model, the covariance

matrix of e¿ is the identity matrix, Ele¿eil: 1, and vector e¿ is uncorrelated with ø¿,

Elr¿elrl:$.

The parameter matrices ,4 and B may be estimated using the method of moments.

Prior to parameter estimation, the marginal distribution of all observed aggregated

annual flows and annual flows of each site must be transformed to normal. Then the

transformed observed data sets must be centered by subtracting their sample mean.

Using the method of moments, the estimates of parameter matrices ,4 and B can be

obtained as

A: SvxSi'x

ÊÊ':Svv-ASxv

(4.52)

(4.53)
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where

X:lq...rrl, Y- (4.54)

(4.55a)

(4.55b)

(a.55c)

(4.55d)

and,S¿rv represents the sample covariance of the vectors U and V. BecauseU andV

have zero mean, the sample covariance matrices can be calculated as

sxx : Glr)xx'

sYx: (LlT)Yx'

svY : Tlr)YYl

SxY : SÇx

The Valenci,a and Schaalce [1973] spatial disaggregation model in (a.51) preserves

the correlation between all lower-level variables and between all lower-level and higher-

level variables. However, when this model is used to disaggregate annual flows into

monthly flows, the correlation coefficient between the last month of one year and the

first month of the following year is not explicitly preserved. Meji,a and Rousselle [L976]

tried to overcome this problem by including a new parameter matrix and a vector of

monthly values from the previous year at the right hand site of the Valencia and

Schaake model in (4.51).
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

4.4.2 Mejia and Rousselle Disaggregation Model

When spatial disaggregation is considered as in (4.51), the Mejia and Rousselle modei

takes the form

Ut:Art*Be¿*CUr-, (4.56)

where Ut-t is an (I/ x 1) column matrix of disaggregated annual lower-level variables

from the previous time step (year) for each site and C is a new (lú x lú) parameter

matrix. All other terms remain the same as for the basic model in (4.51). The

parameters A, B, and C may be estimated using the method of moments as

Lane ll98Ll showed that if one uses the above equations directly in the estimation

of parameters, some important moments are not preserved. He suggested the following

equations be used instead of the sample covariance matrices S xrv,_, and ,Syryr_r:

Â : þ",*, - S 
",",-rS rj-r",-rS'*,n-, ] *

þ *,*, - S x,v,-rSf,-r",-rs'",n-r] 
-t

ô :lSr,",-, - ÂS*,",-r] tnlr",-,

ÊÊ' :suv, - Âs*,u - ôsÇr",_,

S\rvr-, :S xrxr-rSil*rS *r",

S irr, -, : S yry, -, * S y, y r S -yrLy, 
lS i r", -, - S * r", - rf

(a.57a)

(4.57b)

(a.57c)

(4.58a)

(4.58b)

In addition to the properties of the Valencia-Schaake model, this model also pre-
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

serves the lag-l cross-correlations between the aggregated basin flows and disaggre.

gated basin site flows, and between basin site flows themselves. Although this model

is slightly more involved than the basic model, it is still quite straightforward. How-

ever, the problem of the excessive number of parameters in the Valencia and Schaake

model is made worse especially when it is used as a temporal disaggregation model to

disaggregate generated multi-site annual flows into monthly flows.

4.4.3 Lane's Condensed Disaggregation Model

The above disaggregation models have a large number of parameters when they are

used for multi-site disaggregation of annual flows into monthly flows. A large number

of parameters estimated from a small sample gives large estimation errors. Since short

Iength of records is a common case in hydrology, attempts have been made to reduce

the number of the parameters in disaggregation models by preserving only important

characteristics of the model.

Lane [19791 developed a condensed version of the Valencia-Schaake disaggregation

model by relaxing the constraint that the model reproduce the observed correlations

between every pair of monthly flows. Lane's model reproduces only the concurrent

and lag-l month-to-month correlations, and the correlations between the monthly

and annual flows. This condensed model is known as the LAST model fLane, L979].

Since in the condensed disaggregation models, the annual flows are disaggregated

one-month-at-a-time, one of the important attributes of the original disaggregation

model, the additivity property, is lost. To preserve the additivity property, one must
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

adjust the disaggregated monthly flows. Adjustment procedures are discussed in the

next section. However, any adjustment may distort the marginal distribution of the

generated monthly data.

In Lane's condensed multi-site temporal disaggregation model, zero mean annual

flows at I/ sites, 4: (rlL),...,rÍN))', can be disaggregated into zero mean flows for

month m at the Iy' sites, Uhn : @y), . . . ,yÍil))' . For the first month of the year, Lane's

disaggregation model can be written as

Utt: Atût i Bßn (a.5ea)

and for m:2.. . . . 12 as

Ut n : Arnrt I B rne¿rn I C rn\t.rn-t (4.5eb)

where A*, B*, andC,n are (.ð/ x,l{) parameter matrices for month m,!¿,,n-1is ãn

(,nf x 1) vector of previous month flows at all .ôy' sites, and.e¿,,, is an (I/ x 1) vector of

independent (uncorrelated) zero-mean, unit variance normal random variables. When

disaggregation of annual flows into monthly flows is considered, there are L2 sets of

parameters A,n and B* and 11 sets of parameterc C*.

Prior to parameter estimation, the marginal distribution of all observed monthly

and annual flows at each site must be transformed to normal if thev are not alreadv

normally distributed. Different transformation models can be used for different months

at the same site. F\rrthermore, the transformed flows should be centered.
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

For the purpose of parameter estimation, the above models are presented as

Yt: A1X I B:r1 (4.60a)

and for m:2.. . . . 12 as

Yrn: A*X I Brnern+CrnYrn-l (4.60b)

where Y- represents the transformed month rn flows at all sites, X represents the

transformed annual flows at all sites, andY*-l represents the transformed previous

month flows at each site. The dimension of all matrices is ll/ x ?) and can be formed

as

X-

The parameter matrices Arn, B*,

of moments. For the first month. the

obtained as

and Y,o:

Ât: S"r*Sxtx

grB'r: Syry, - Ârí*r,

and C^ may be estimated using the method

parameters of the model given in (4.60a) are

lr)ri'

:

tN)rì'

(1)
ai,;

:

(N)
Airn'

11lgr;^

:

(N)
Ar;

(4.61)

(4.62)

(4.63)
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

and for month n'L) n'L - 2,. . .,t2, the parameters of the model given in (4.60b) are

obtained as

Â* : lt, ^* - Sy *y *-rSrt*-r, *-rS" ^-r*f ,
ln 4 .,-1 o l-l
LS"* - S xv *-rS vl*_rv *_rSv ^-rx )

ô ,o : lt, ^" ^-, - Â*S *, ^-,) Sil-,, *-,

Ê *B; :Sy 
^y^ - Â,nS *, ^ - ô,,5, *-rt*

The main advantage of Lane's model is the reduction of the number of parameters.

It requires fewer parameters than the full Valencia-Schaake model because it does

not explicitly preserve high-lag month-to-month correlations. A shortcoming of the

model is that the monthly data do not exactly add up to give the annual time series

because the months are not generated jointly. Lane concluded that the benefit of

the parameter reduction far outweighs this shortcoming. In fact, it should be noted

that the additivity problem is common to all disaggregation models if the data are

transformed to normal. The solution to this problem is to adjust the seasonal flows so

that they add up exactly to the annual values.

4.4.4 Streamflow Adjustment Procedure

\Mhen the transformed flows rather than the original observed flows are modeled,

generated monthly flows generally fail to sum to the previously generated annual flow.

Therefore, generated monthly flows need to be adjusted in order for their sum to equal

(4.64)

(4.65)

(4.66)
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

the generated annual flows. Several flow adjustment procedures are proposedin Lane

[1979] and Stedi,nger and Vogel ll984l and a comparison of these procedures has been

done by Grygi,er and Stedi,nger [1988]. In this project, two adjustment procedures are

employed.

Proportional Adjustment

Grggi,er and Stedinger [1988] found that the proporti,onal procedure distorted low flows

less than other procedures. In the proportional procedure, in order to preserve the ad-

ditivity property in year t, the corrections are allocated proportionally to the originally

generated monthly flows q¿^ by multiplying by a factor d¿.

qi*: dtQt^, rn: Lr. . . ,I2 (4.67)

(4.68)

The factor d¿ is calculated as

dt: s12L^:t8t*

where q¿ is the generated annual flow. After this adjustment the sum of adjusted

monthly flows (qf, + .. .+ qitr) will be exactly equal to q¿.

This procedure is also used in the software packages LAST fLane, t979], SPIGOT

lGrygi,er and Stedi,nger,1990], and SAMS2000lSalas et aL,2000].
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4.4. DISAGGREGATION OF AGGREGATED FLOWS

Standard Deviation Adjustment

lLane,1979] proposed to adjust flows in proportional to their standard deviation

qk: Qtm I d¿s*, rn: L,...,12

where the factor d¿ is calculated as

dt:
s12

8t - L*:tQt*
s12
L¡n:tSm

where s- is the standard deviation of the month rn.

(4.6e)

(4.70)
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Chapter 5

Single- Site Markov- Switching

Model

5.1 Introduction

In recent years, there has been a growing awareness of the existence of low-frequency

climate signals that affect the hydrology of many parts of the world. Low-frequency

climate variability can ofben be associated with oceanic circulations because the oceans

provide the inertia needed to sustain variability at decadal time scales. Although our

understanding of the physics that govern these oceanic circulations and their relation-

ship to surface climate is incomplete, observations confirm their existence.

Several ocean driven mechanisms have been linked to the climate of North America.

The EI Niño-Southern Oscillation has received much attention, because of its strong

impact on the global climate. El Niño is an intermittent phenomenon, occurring
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PDO-lndex
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Figure 5.1-: Cycles observed in PDO-Index and Columbia River

with irregular intervals of typically 4-7 years. Other phenomena tend to have a more

regime-like occurrence, often sustained over periods of several yeaxs. Examples include

the North Atlantic Oscillation (NAO) which has been found to have an impact on

the North-Eastern part of North America and the Pacific Decadal Oscillation (PDO)

which has been linked to the climate of the North Western part of North America [/úeal

et a1.,2002; Spence,2002; Hsi,eh et a1.,20031. As seen in Figure 5.1, the annual PDO-

Index has obvious cycles, remaining for extended periods above or below the historical

average. This is particularly obvious when considering the 5-year running average.

Although not quite as obvious, a similar tendency is observed in the unregulated

annual streamflow of the Columbia River (at Nicholson, British Columbia, Canada).

The existence of cycles such as those observed in Figure 5.1 cannot be explained by
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x 104 Aggregated Basin Flows
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Flows 1912-98. Normalized anomalies and 5-yrFigure 5.2: Annual Aggregated Basin
running average.

pure randomness. Moreover, one might suspect that traditional time series models such

as ARMA-type models fail to provide a good description of the characteristic cycles.

Stochastic time series models are often employed in drought and management studies.

Failure to adequately reproduce cycles obviously may lead to erroneous conclusions.

Therefore, as a preliminary analysis, the observed annual streamflow data for Manitoba

Hydro were analyzed to identify if there is evidence of long-term wet and dry cycles.

When the annual observed streamflow data of Manitoba Hydro are smoothed by a

5-yr running average? distinct wet and dry periods are revealed at all sites. Figure

5.2 illustrates these wet and dry periods for Aggregated Basin Flows, that is, the

sum of the five sites of Manitoba Hydro's system. The 5-yr running average of each

of the five sites of Manitoba Hydro system is given in Appendix A. The occurrence

and persistence of wet and dry periods are clearly visible at all sites. They may be

considered to be a result of the complex climate dynamics that influence the North

American climate.
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5.1. INTRODUCTION

The above observation motivates a search for alternative time series models, in par-

ticular models that can mimic the regime-like behavior of Manitoba Hydro's streamflow

data. In this research project, models that can be used in 'simulation mode', which

effectively excludes the possibility of using climate indices such as PDO and NAO as

conditioning variables, are of particular interest.

In stochastic time series models, the generated synthetic series should be statis-

tically similar to the observed series, but should provide a wider range of scenarios.

As mentioned previously, statistically similar implies that basic statistics such as the

mean, the variance, and the autocorrelation function of the variable of interest are well

preserved by the model. However, when cycles are prevalent, other criteria may be

needed. In fact, the autocorrelation function alone may not be sufficient to adequately

describe the persistence structure of the data, although in the literature autocorrelat'ion

and persi,stence are often used synonymously.

In this chapter, a class of models called Markov-Switching (MS) models for mod-

eling single-site annual hydrologic time series is presented. In the literature, they are

also referred to as hidden Markov models or Markov mixture models. The motivation

for adopting this type of model in hydrology is the assumption that the climate regime

of each year can be described by a state variable that can take only a limited number

of values, typically 2-3. The state variable evolves in time according to a discrete

Markov chain, described by a matrix of transition probabilities. The sequence of state

variables for an observed series is not known. The assumption is that an observed

hydrologic variable arises from a statistical population whose parameters depend on
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the particular state in which the climate is. Hence, to simulate a synthetic series of

for example annual runoff from an MS model with all parameters specified, one would

first simulate the state series using the transition probabilities of the Markov chain

and then generate the annual runoff for each year from a distribution whose parameter

depends on the state for that year.

MS models have been applied in different fields, including speech recognition,

econometrics, ion channels, image analysis, and DNA composition. In hydrology the

idea of a Markov-Switching model was applied thirty years ago by Jackson [1975]. A

major challenge at the time was the estimation of model parameters. In recent years,

significant progress in the area of MS processes has been made, including the develop-

ment of efficient algorithms for estimating parameters. There have also been a number

of recent applications in hydrology including Wi,lks [1998], Hughes et aI. ll999l, Lu

and Berli,ner [19991, Thger and Kuczera [2000], Thyer and Kuczera [2003a, b], and

Kehasi,as 120041.

The MS model also has close links to the Shifting Level (SL) model proposed by

Salas and Boes [1980]. In fact, as pointed out by Forti,n et al. 120041, the SL model

can be considered a special case of the MS model.

In this chapter, several objectives of the research project are addressed. After for-

mulation of the single-site MS model, the statistical properties of the model, including

the marginal distribution, moments, and autocorrelation function, are developed and

discussed. Two methods of implementing maximum likelihood estimators, one based

on direct numerical maximization of the likelihood function and the other based on
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5.2. FORMULATION OF THE SINGLE-SITE MS MODEL

the Expectation-Maximization (EM) algorithm are presented. Although the EM algo-

rithm is somewhat elaborate, the method can be easily implemented on a computer.

Finally parameter uncertainty is integrated into ihe MS model.

5.2 Formulation of the Single-site MS model

There are several variants of MS models. In this research project, a relatively simple

version of the model which provides an adequate description of Manitoba Hydro's data

is employed. More specifically, it is assumed that the process in question is stationary

and switching between M climale regimes (or states). It may be useful to think of

climate regimes as for example dry, norrnal, and øeú spells. The particular regime

is described by a state variable s¿ which can take discrete values from 1 to M. The

state variable is unobserved and is therefore referred to as a hidden variable. The

observed variable g¿ is assumed to have been drawn from a probability distribution

whose parameters are conditional upon the particular state prevailing at time ú. It is

also assumed that given the state sequence, q¿ is independent of previous observations.

Although in principle there is no restriction on the type of distributions used to describe

q¿, it is here assumed that q¿ is normally distributed with mean and variance that are

specific to the state. To generate e¿, one would first simulate the state series using the

transition probabilities; then given s¿, Ç¿ would be generated as

(5.1)8t: þst * o"re¿ , t: tr. . . ,T
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where €¿ - l{(0,1) is a standard normal variable, and p", and cr", are the state depen-

dent mean and standard deviation of a normal distribution.

The unobserved discrete state variable s¿ ma/ be dependent upon st-7, st-2¡. . . , st-r

in which case the process of s¿ is an r-order Markov chain. In the above model, it is

assumed that the state variable s, follows an M-state first-order Markov chain with

transition probability matrix

P : lpu¡l: Pr{s¿ : jls.-t : ¿}, i,i : L,..., M (5.2)

where Df;:rpu¡: 1. Persistence in q¿ is inherited exclusively from the characteristics of

this Markov chain. Therefore, drought properties of synthetic runoff series generated

from the MS model are closely linked to the tra.nsition probabilities of the Markov

chain.

In summary, the MS model is described by the (MxM)-matrix P of transition prob-

abilities and the 2M parameters of the normal distribution of each state, (pt, ot, 1tr2, o2,

-.., PMroM)'

5.3 Theoretical Properties of the MS model

In this section, the statistical and stochastic properties of the MS model described

above are examined. The focus will be on analytical expressions for the mean, the

variance, and the coefficient of skewness of q¿, its statistical distribution over time, as

well as its autocorrelation function. These are properties that are commonly used to
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judge the adequacy of hydrological time series models.

5.3.1 Stationary Probabilities of the Markov Chain

Many of the following expressions involve the stationary probabilities, zr¿, of the Markov

chain, that is, the probability that the Markov chain will be in state i at some time

into the future where the effect of the initial state has vanished. For an infinitelv

Iong sequerce, 7T¿ may alternatively be interpreted as the fraction of time the chain

is in state i. Given the transition probability matrix P, the stationary probabilities

T : (trt,'r2t.. . ,rtw)'can be obtained by solving P'iÍ : zr subject t"DYrTr¿: L which

can also be written as l'*r : 1, where 1¡¿ denotes an (M x 1) vector of 1's. Using

these equations, the vector zr must satisfy '4n : êM+1, where e¡aa1 denotes the last

column of the identity matrix, I ¡a¡1 and A denotes the (M + 1) x M matrix

A- (5.3)

Then,

n: (A'A)-'A'"**,

"r,-'l

(5.4)

For example, for the two state MS model (M :2), the stationary probabilities are

nr: J?- and
Ptz -f Pzt

Ptz'lT2: -------:-
Ptz -t Pzt

(c.Ðl
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5.3.2 Marginal Distribution of Observed Variables

Assuming that all state distributions are normal, then if the process is in state 1, the

observed variable q¿ will be drawn from a N(pt,of) distribution, if the process is in

state 2, it will be drawn from a N(pr,o!) aistriUution, and so on. The density of q¿

conditional on the state variable sr : 'i can then be written

'i: 1,. . ., M (5.6)

where ,þ : 0"r,...,þM,o?,...,o'r)'is a vector of population parameters. The joint

density of the observed variable e¿ ànd the unobserved variable s¿ is the product of the

conditional and marginal densities

r(qrlr, : i,,ú) : #,""0 { -@#},

p(et, st : ¿þù : Í (qtlst : i,1þ) Pr{s¿ : i,;p} (5.7)

where p: (pn,p!2t... ,puu)'denotes the (M2 x 1) vector of Markov transition prob-

abilities, the parameter vector q : (tþ',p')', and Pr{s¿ : i,;p} - zr¿, where p is the

vector of the Markov chain parameters. The marginal or unconditional density of q¿

is obtained by summing over all possible states

M

f(q,lrt):Ð",à"-r{-W}

which is a mixture of M normal densities.

(5.8)

There is an extensive statistical literature on mixture densities. Mixture densitv
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functions have been found to be quite flexible compared to conventional distributions

which of course is no surprise since they generally have more parameters. For example,

it has been found that a mixture of.2-3 normal distributions can approximate a log-

normal distribution quite well lMcLachlan and Peel, 20001. Thus there is hope that

the MS model will provide a good reproduction of the marginal distribution of runoff,

q¿, although the marginal distribution is a complex function of transition probabilities

and M sets of normal density parameters. This point is further investigated in Chapter

8.

It is worth noting that the flexibility of the mixture density is likely to eliminate

the need for transformation of the data. This is in contrast to more conventional time

series models that rely on the normal assumption and which in many cases require

prior transformation of the data.

5.3.3 Moments of the MS Model

The moments of q¿, in particular the mean value, the variance, and the coefficient of

skewness, are of significant interest in hydrological time series models. Assuming that

the state process starts with a random draw from the stationary distribution, order R

central moments of the MS model can be obtained from the principle of conditional
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expectation as follows:

E l(q, - p)"1 : E lE l(q, - p)Ãls,]]

: E lE [{(¡r", - tò + o",er}8lsr]]

M R /D\: 
Ð "uÐl';)tu,- p¡R-,oivleil (b.e)

where the last expression has been obtained using the binomial formula. Under the

assumption that e¿ - .ð/(0,1), it ca^n be shown that

1 when r :0

Efeil: t ¡1;!çzt - ¡ when r is even (5'10)

0 otherwise

The mean value, the variance, and the coefficient of skewness of. q¿ can be readily

obtained using the general formula [T'immermann,2000l:

M
ñri\-p: ElqÀ: ) nu tt¿ (5.11)

i,:1
M

o2 : El(qt - p)"1: t "¿lQ'¿ - tò, + "?l (5.12)
i:L

o: W-t : o-Bf*,Kpo - tò, + zo?(pu - tòl (b.13)

87



5.3. THEORETICAL PROPERTIES OF THE MS MODEL

5.3.4 Autocorrelation Structure of the MS Model

Another model property of interest is the autocorrelation function of. q¿. For a lin-

ear, normal model, the persistence structure of the process is entirely described by

the autocorrelation function. For a nonlinear, non-normal model, the autocorrelation

function will not describe all aspects of the persistence structure, but it remains a key

property that should be reasonably preserved by the model.

Let y : E l(q, - p)(qr-, - ¡.r)] denote the lag-r autocovariance of. q¿. To derive an

analytical expression for this function, one can first substitute (5.1) into the definition

of the autocovariance function:

1r : þ l(q, - p)(qr-, - tt)l

: E l(F"r l o"re¿ - p)jt*-,I o"r-,e¿-, - P,)f

: Elu'"rlt"r-.] - p' , r:r,2,... (5.14)

The last expression is obtained by noting that all product terms involving €¿ ând

e¿-, vâ,nish after taking expectation. Also, since E[p"r] : Elp"r-,| : ¡^1, we have

Elp*p]: Elþ",_,þl: l"'.It should be noted ihat (5.14) cannot be used to calculate

the variance (r : 0), since for that case the term Elell must be considered. The

variance must be obtained using (5.12). Flom the above expression, it can be seen that

the autocovariance of q¿ is entirely determined by the Markov chain and its associated
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mean levels. The first term in the last line of (5.14) can be calculated as

MM
nr I \aS\ ñ rElp",lt",-,] : LL p¡puPr{s¿ : j, st_, : 'i}

i:7 j:I
MM

: t Ð PtPoPr{s¿ : ils-,: ¿} Pr{s¿-, : 'i}
i:r j:r

(5.15)

Here Pr{s¿-r:i,}:'Í(,i àß defined earlier, and from the theory of Markov chains, it is

well known that Pr{s¿: jlsr,:'i} can be obtained as the (i, j)'th entry in the matrix

P', where P is the one-step transition matrix. If we define II to be the diagonal

matrix containing îtrt...,7r¡i,4 or the diagonal and p: (pt,...,þu)', then the double

summation in (5.15) can be written concisely as Elþ"tþ"t-.]: ¡ttflP'p. Therefore

y : ¡ttllP'p_ lt', r : !r2r... (5.16)

In most situations, it is more useful to consider the autocorrelation function which

may be obtained as

Pr- o'' r : Lr2r.. . (5.17)

where ø2 is given in (5.12). Equations (5.16) and (5.17) suggest an exponentially decay-

ing autocorrelation. Salas and,Boes [1980] observed that the autocorrelation structure

of their Shifting Level model was equivalent to that of an ARMA(l,1) model. The

same applies to the MS model. More specifically, Poski,tt and Chung [1996] showed

that the autocorrelation structure of the M-state Markov chain process is equivalent

to that of an ARMA(M-L,M-l) process. For example, a 2-state MS model has
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the same autocorrelation function as an ARMA(l,l) model. In other words, it is in

principle possible to find an ARMA model that has exactly the same autocorrelation

function as a given MS model. Of course, the models may differ in other aspects such

as marginal distributions. However, even with identical autocorrelation functions and

marginal distributions, the structure of MS models and ARMA models are fundamen-

tally different and therefore may lead to different results in terms of more complex

simulation statistics lAkmtug and Rasmussen, 2005b].

5.4 Parameter Estimation of the MS Model

The lack of efficient estimation methods for some years prevented the MS model from

gaining popularity. In recent years, there has been significant interest in MS models

and this has among other things led to the development of efficient algorithms for

parameter estimation.

Because of the relatively high number of parameters in MS models, the method-

of-moments is not likely to produce good estimates fAnde¿, 1993]. The method of

maximum likelihood holds more promise. In this section, two possible implementations

of the maximum likelihood method for MS models are briefly outlined.

The following notation will be needed. Let Qr: (qt,ez,...,qr)'be a vector of

observations and Sr : ("r, tr, .. .,sr)' be the associated (unobserved) state variables.

The MS model in (5.1) is described by the parameters of the normal densities associated

with each state, tþ, and, the transition probabilities vector, p. Since the rows in P must

sum to 1, not all elements of P need to be considered. For example, a 2-state Markov
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chain is entirely described by two probabilities. In order to start the simulation, the

algorithm described below also requires an assumption about the distribution of the

first state variable, s1. It will be assumed that the initial states are drawn from a

probability distribution, whose parameter vector is p : (ø, Qz,. . . , Qpr)', where g¿ :

Pr{s1 : i'lQr}. Hence, the complete parameter set of the MS model is 0 : þþ' ,p' , d)' .

These are the parameters that must be estimated from an observation sequence Qr.

Given the model parameters 0, thejoint density of. (Q7,,97) can be expressed as

p(Qr, S rl0) : f (QrlS r, 0) P{S rl0} (5.18)

where the two terms on the right-hand side are

1

r(Qrlsr,o) : fl Í(qilp",,o",) ,

t:I
T_L

Pr{Srl0} : p", fl Pr{(s¿a1ls¿)lP}
t:I

I(ïlQ,r, s,r) : P(Qr, srl0)
T_T T

: p", fl Pr{(s¿.,.11s¿)lP} lI f (qlP",,o*)

(5.1e)

(5.20)

Note that it specifically has been assumed that l(qrlp*,ø",) is a normal distribution.

If both Qr and,,Sr had been observed, one could readily compute the complete-data

Iikelihood function as

(5.21)
t:7 t:r

Since the likelihood function cannot be conditioned on the unobserved state vari-
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ables, it is necessary to eliminate ,S7 from the joint density by marginalization. This

requires summation over all possible state sequences:

t(qlQr) : P(Qrlq)

: t P(Qr,Srlo)
AII ,Sr

T-1 T: t p", fI Pr{(s¿.,'1ls¿)lP} fl f (erlu,",,o*¡ (5.22)
All .9r t:7 t:7

In the above form, the likelihood function is intractable because of the need to

sum over aII MT possible state sequences. However, noting that for each ú, the state

variable s¿ appears only in a few factors, (5.22) can be simplified to

MM
t(|lQù : D p 

", 
f (qtl F ",, 

o 
",) \ n, 

", 
Í (ezl ¡t",, o,")

sr:1 sz:l
M

t P",-,",1(qrl4"''o"') (5'23)
sr:1

In matrix form, (5.23) can be written concisely as lMacDonald and Zucch'in'i, L99l

r(otQù: e:,(fie,)r* (5.24)

where

øÍ(qtlø,o)

gu l(qtlpv,ou)

At:
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At:

ntÍ(qtlø,ot) putÍ(qtlpm,o¡r)

pmf (qtlø,ot) pMuf (hlttpt,ou)

and l¡a is a M-dimensional column vector of ls. Calculation of the likelihood function

via (5.24) is straightforward. A numerical procedure must be employed to find lhe 0

that maximizes (5.24).

An alternative way to implement the maximum likelihood method is the Expectation-

Maximization (EM) algorithm. This method was originally devised by Dempster et al.

ll977l to handle the case of missing data, but has been adapted to MS models lBi,lmes,

L998; McLachlan and Peel,2000]. The EM algorithm may have some advantages over

direct numerical optimization. It is relatively easy to implement and it is found to be

more robust than direct maximization of the likelihood function. In addition. the EM

method produces some useful statistics as a byproduct.

The EM algorithm is an iterative approach that cycles through two steps called the

expectation (E) step and the maximization (M) step until a local or global maximum of

the likelihood function is found. In the EM implementation, the log-likelihood function

is conditioned on both the observations Q7 and the unobserved state variables,Sr. The

Iog-likelihood function is obtained by taking the logarithm of (5.21)

T_I T

IogI(01Q7,^9r) : logp", + ItogPr{(s¿arls,)lP} + t Í(qrlpo,o",) (5.25)
t:7 t:l

,S7 is unobserved, but given the observations Q7 and some estimate of 0, one
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can calculate the erpectati,on (over the possible Mr state sequences) of the complete

likelihood function which is the first step (E-step) of the EM-algorithm. The key

component in the implementation of the EM-algorithm is to define a function for the

expected value of the log-likelihood function.

Given the observed flows Q7 and the MS model parameters,0, the following prob-

ability sequences are of interest:

Pr{s¿ : ilQr,0}, 'i: L,... , M; t: L,. . . ,T

Pr{s¿ :'i,st+r: jlQr,O}, i, j - 1,.. .,M; t - 1,.. .,7 -L

(5.26)

(5.27)

Specifically, Pr{s¿ : ilQrd} is the probability of being in state i at time ú and

Pr{s¿ : i, st+L : jlQr,0} is the joint probability of being in state ¿ at time ú and state

j at time t + L, given the observed data. These two probabilities are key elements

in Markov-Switching models lfuabi,ner and Juang, 1986] and in the EM estimation

procedure. Their estimation is discussed further in Section 5.5.

Once the above probabilities have been determined as discussed in Section 5.5, it
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is straightforward to express the expected log-likelihood function as

Q(e¡ernt¡ : .E[log t(0lQ",Sr)lQr,0@]
M

: )- e.1r, : ilQr,61")\lo1 ar.L_
i':7

M MT-I
+ D I t Pr{s¿ :,i, st+t : ilQr,0@)}Logp¿¡

i,:7 j:r t:L
MT

+ t I e'1"' : ilQr,P(t)) tos f klPo, "?)i:I t:I
(5.28)

where g(r) ir the current estimate of 0. The probabilities Pr{s¿ : ilQr,B(r)} and

Pr{s¿ :,i,st+r: jlQr,B(r)} are estimated usingá(r) in place of 0. The expectation is

over the possible sequences of the unobserved ,S7, given the observation Q7 and the

model parameters d(fr). Therefore, (5.28) is a function of.0 only. This completes the

E-step of the EM-algorithm.

In the M-step of the EM-algorithm, the expectation of the log-likelihood function,

Q(î1efO¡, is maximized with respect to d. This leads to a new estimate of the model

parameters that improves the current estimate and becomes the next value of 0 in the

iterative EM-algorithm. More specifically,

g(k+r¡ - arg maxe(g,g(k)¡ (5.2e)

The E- and M-steps are repeated until the difference between 0(k+r) and á(fr) is smaller

than some specified convergence criterion. The final value of p(*) is a local maximum

of the log-likelihood function. Generally, it will also be the global maximum. In our
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applications of the model to hydrological and climatic data, cases have not yet been

encountered where there were reasons to believe that a global maximum had not been

found fAkr,ntug and Rasmussen,2005bl. The estimation procedure appea,rs to be quite

stable. As a byproduct, the estimation also gives the probability distribution of ^9a.

A closer inspection of (5.28) shows that its maximization is greatly simplified by the

fact that its three terms involve different parameters and therefore can be maximized

individually. The first term involves only the parameter p¿ and can be maximized

using the method of Lagrange multipliers to ensure that D{rpo:1. This gives the

intuitive result:

g(k+L) : pr{sr : iler,0@) , ,i: r,... M. (5.30)

Similarly, transition probabilities can be obtained from the second term in (5.28).

Using again the Lagrange method to ensure that lf:rpq : L, one finds

,\l*r) -ÐT:rrP:{!r:i',sr+t: ilQr,0@} , i, j:L,...M. (b.81)Yi'i 
DL;t Pr{s¿ : ilQr,o(k)}

Finally, using the third term in (5.28), the parameters of the state distributions

(normal distributions) can be obtained as

(k+1)
t'i

DT+Pr{t, : ¿lQr,O<rtrn, . i - 1.... M.
ffr er{s, :tlQr,g@} I o - L) "' (5.32)
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(5.33)

Note that in the above expressions Pr{s¿ : ilQr,B(t)} and Pr{s¿ :'i,st+L: jlQr,O@}

are estimated using the old parameter vector 6(n) . ¡¡ should be clear that the key to

implementing the EM-algorithm is the calculation of Pr{s¿ : ilQr,6(t)} and Pr{s, :

'i,st+t: jlQr,0(t)), described in detail in the following section.

In order to start the iterative estimation algorithm, initial parameter estimates are

needed. A number of techniques can be used to select the initial estimates of the model

parameters lRabi,ner, 1989]. It was found that the estimation procedure is quite robust

to the specification of starting values. A simple approach consists of using the empirical

distribution of. q¿ to determine M equiprobable ranges. The initial parameters p,¿ and

o¿ ãre estimated from the members of each range. Similarly, transition probabilities

may be obtained by counting the empirical frequency of transitions. The probability

distribution of the first state may be set to Q¿: L/M.

The EM algorithm for estimating the parameters of the MS model may be sum-

marized as follows:

1. Select initial parameter values, B(i), and set k : 1.

2. Using the current parameter values, calculate Pr{s¿ : ilQr,B(t)} and Pr{s¿ :

'i,st+t: jlQr,B(fr)) according to the procedure given in the following section.

3. Obtain an improved estimate of the parameter 0(k+1) using Equations (5.30)-

(5.33). Update,k.
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4. Compare the new parameter estimates with the previous ones and determine if

the specified convergence criterion is satisfied. If not, return to point 2.

Harni,Iton [1990] suggested to stop when ld(t+r) -0(k) | is less than 10-8, however,

it was experienced in this project that this is not a good choice for all parameters.

Different convergence criterions should be applied to distribution parameters and to

transition probabilities because p,¿ and o¿ ã,1ê scale dependent whereas transition prob-

abilities are limited to [0,1].

Both ML algorithms described above were employed to Manitoba Hydro's stream-

flow data and in the large majority of cases identical solutions were obtained. At rare

occasions, one method may find a local optimum. A change of initial values typically

would resolve this conflict. It was found that the EM algorithm is slightly more robust

than direct optimization, albeit not necessa¡ily faster.

5.5 Estimation of State Probability Sequences

The EM algorithm requires estimation of the probabilities Pr{s¿ : ilQr,0} and

Pr{s¿ :'i,st+r: jlQr,O}. Two possible methods to estimate these probabilities

are outlined in the following sections.
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5.5.1 Forward-Backward Algorithm

Define the forward variable a¿(t) to be the probability of observing the partial sequence

et,ez,. . . ,8t, and ending up in state i at time ú:

a¿(t) : f (h, qz,. . ., 8t,st : il0) (5.34)

and the backward variable p¿(t) to be the probability of observing the rest of the

sequence 8t+t,8t+2,. ..,QT, given that the state at time Í is z:

þo(t) : f (qt+r,Qt+2,-.',Qrls¿: i',0) (5.35)

It is possible to express (5.26) and (5.27) in terms of a¿(t) and B¿(ú) as

Pr{s¿:ilQr,o}:-3(Ð-P'(Ð- (b.36)
l{ra¿(t)B¿(t)

Pr{s¿ : i, st+L : jlQr,t¡ : (5.37)
z-o--rÐf:, a¿(t)p ¿¡ Í (q'+'l l'u, o ¿) p 

¡ (t + L)

To estimate a¿(t) and B¿(t), the following algorithm can be used.

The Forward Algorithm

The forward variable, a¿(t), i : I,2, . . . , M, can be calculated recursively as follows:

99



5.5. ESTIMATION OF STATE PROBABILITY SEQUENCES

1. Initialization: For ú : 1

ao(l) : p¿f (qrlp¿,o¿), 'i:1,2,..., M (5.38)

a¡(t) : (ä"U, - tlr,,) f(ø,1p,¡,o,), i : r,2,...,M (5.3e)

The Backward Algorithm

The backward variable , þ¿(t), 'i : 1,2, . . . , M, can be calculated as follows:

1. Initialization: For t: T

þ¡(T):I, j:I,2,...,M (5.40)

2. Induction: For T - l,T - 2,. .. ,t

M

þ¿(t) :Ðpotl@r*tlp¡,")0¡(ú + 1), 'i: r,2,. . . , M (5.41)
j:7

More details about this algorithm are provided in Rabi,ner and Juang [1986], Bi,lmes

[1998], and McLachlan and PeeI120001.

It was found that the calculation of the sequences a¿(ú) and B¿(t) as described

above is numerically unstable. This is not surprising since they involve products of up

to 7 terms, each one smaller than 1. Even for relatively small samples, the precision
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capacity of the computer is quickly reached. Several re-scaling techniques have been

proposed to overcome this problem lLerour and Puterman, 1992; Rabi,ner,1989]. One

possibility, described by Rabi,ner [1989], is to re-scale a¿(t) and B¿(t) by normalizing

them over all states. The procedure starts by calculating o¿(1) as above and then scale

it as

where ô¿(1) is the scaled value. For ú : 2,3, . . . ,7, ai(t) is calculated recursively based

on the re-scaled values

d¿(1) : 
#Ã, 

,i:1,2,...,M

prtrl : -#9 --, i:L,2,...,M.' Dii'þ¡Q)

Then for t: T - L,T - 2,. . . ,L, þ¿(t) is calculated as

(5.42)

a¿(t) : (ä^,n - r)o,,) r(q,lpu,ou), i : !,2,..., M

âr(t):D*:rr^t), ,i:\,2,...,M. (b.48)

The same procedure is used to re-scale B¿(t). For t:7, one can set B¿(T) : l, 'i:

L,2, . . . , M, and. calculate the scaled coefficient set ¡i(Z) as

(5.44)

M

Ên(t) :Dp¡Ík *rltt¡,o¡)þ¡(¿ + 1) , 'i: r,2,...,M
j:r

þuft) :-9L , ,i: !,2,...,M (b.4b)
Di':rþ¡(t)'
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Because the calculation of Pr{s¿ : ilQr d} and Pr{s¿ : 'i, s¿¡t : ilQr,á} involves

ratios of a¿(t) and B¿(t), the re-scaling factors cancel out. Therefore, ô¿(ú) ana þu(t)

can be used directly in (5.36) and (5.37) in lieu oT a¿(t) and B¿(t).

It was found that the scaling procedure is necessary in most cases and that it

eliminates anv numerical instabilitv.

5.5.2 Kim's Algorithm

Ki,m ll994l presented an alternative to the Forward-Backward algorithm explained

above. This algorithm is valid when s¿ depends on past observations only through

the value of s¿-1 and future observations only through the value of s¿..1, and the

conditional density of q¿ in (5.6) depends on st, st_1,. . . only through the current

state s¿. Let Qt:: (qt,ez,...,q¿_t) represent observations up till time ú - 1 and

Qr : (qr,qr,...,qr) represent all observations. Given parameter estimates of the MS

model, Kim's algorithm consists of two sub-algorithms. In the first sub-algorithm,

called lhe fi,tteri,ng algori,thm, the (7 x M) matrix of filtered probabilities Pr{s¿ :

jlQt,0|,for j :1,..., M, are calculated and in the second sub-algorithm, called the

smooth'ing algorithm, the (? x M) matrix of smoothed probabilities Pr{s¿ : ilQr,0}

for j :1,. .., M are calculated.
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Filtering Algorithm

Step 7: GivenPr{s¿-1 :ilQrt,0},i:1,..., M,theprobabilitiesPr{s¿:ilQr_'_,Q),

j : L,. . ., M, are calculated as

M

Pr{s¿ : jlQ*t,0} : tPr{s¿ : j,st-t : ilQr-t,O}
i:l
M

: tPr{s¿ : ilst-t: ¿} x Pr{s¿-1 : ilQrt,0} (5.46)
i:l

where Pr{s¿ : jlsçt - i} : pq are transition probabilities.

Step 2: After observing q¿ at time ú, the probability term can be updated as

Pr{s¿ : ilQr0} : Pr{s¿ : ilqt,Qt-r,0}

- 
p(qt,st: jlQrt,0)

f @,1Q,-r,o)

f @dtr: j,Qt-r,0) x Pr{s¿ : jlQt-t,0\
(5.47)- Dy:,Í(qrltr: j,Qrtd) x Pr{s¿ : jlQt¡,0} \v'

Di':tf @lq: i,Qr-rd) x Pr{s¿ : ilQt¡,

where Qt: {Qrt,,qt}

The above two steps may be iterated for t:1,2,. ..,T to obtain Pr{s¿ : jlQtq,0}

and Pr{s¿ : jlQr}. However, in order to initialize step 1, Pr{s¡ : i)Qo} is needed.

The stationary probabilities 'It¿ cã,n be used instead of Pr{s¡ : ilQo} at t: L.

Smoothing Algorithm

After obtaining Pr{st: jlQt-¡0} and Pr{s¿ : jlQrî} in the filtering algorithm,

inferences can be made on s¿ using all the information in the sample and Pr{s¿ :
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ilQr,0) for t: I,2,...,7.

Step 7: Consider the following derivation of the joint probability that s¿ : j and

s¿+1 : k based on the full data set:

Pr{s¿: i,s+t:lclQr,0}: Pr{sr+t: lclQrd} x Pr{s¿ : jlst+t:k,Qr,0}

: Pr{s¿ar : lclQr,á} x Pr{s¿ : jls+t: lc,Qt0}

Pr{s¿a1 : IclQr,0} x Pr{s¿ : i,lt+t: lc,Qr,O}
Pr{s¿-,.1 : lc,Qr,O}

_Pr{st+t : lclQr,O} xPr{st : jlQt,0} xPr{st : jls+t : lc} :':: :

Pr{s¿-,.1 : k,Qr,O}

(5.48)

Step 2: Once the joint probability Pr{st: j,s¿+l : klQr,0} has been calculated,

state probabilities Pr{s¿ : jlQr,0} can be obtained as

M

Pr{s¿ : jlQr,A} : t Pr{s¿ : i, st+t : klQr,O} (5.49)
lc:L

Given the last iteration of the filtering algorithm, Pr{S7 : ilQr,p}, the above '.:,.',i,.,

two steps can be iterated backwards for ú: T - I,T -2,...,1to get the smoothed '

probabilities, Pr{s¿ : jlQr,0}. Unlike the Forward-Backward algorithm, there is no

numerical instability in Kim's method and its implementation is relatively easy.
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5.6 Identification of the MS Model

In Section 5.4, it was â,ssumed that the order of the MS model to be estimated was

known. The optimal number of states is usually not known a priori and must be

selected based on objective criteria. This is similar to identifying the optimal order

(p,q) of an ARMA(p, q) model. In fact, because of the similarity between the autocor-

relation functions of MS and ARMA models, one approach could be to estimate the

number of states by examining the autocorrelation of the best-fit ARMA(p, q) model

and use the information about p and q to choose the appropriate number of states in

the MS model lZhang and St'ine,2001].

In statistical analvses. model selection is often based on some measure related to

the tikelihood function. Examples include the likelihood ratio test lHansen, 19921,

the Akaike Information Criterion (AIC) fAleai,ke, L9741, and the Bayesian Information

Criterion (BIC) lSchwarz,l97Sl. Fraley and Raftery [1993] suggested that the BIC

may be a good choice for the MS class of models. The BIC for the M-state MS model

is defined as

B I C M - -zlos L(0 
^r 

ÀQr) + d^¡ Ios(T) (5.50)

where L(ïu¡,lQr) is the data likelihood function given in (5.24), evaluated at the

maximum likelihood estimate of. 0, d,¡a is the number of independent parameters in

the M-state MS model, and 7 is the number of observed data. For a model with M

states, du : M2 + M. Preference is given to models with low BIC values.
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5.7 Incorporating Parameter lJncertainty into the

Single-Site MS Model

As in the case of the AR(1) model, parameter uncertainty for the single-site MS

model will be approached from a Bayesian perspective. The posterior distribution of

the AR(l) model parameters could be derived analytically and because it takes the

form of a standard probability distribution, the parameters of the model can be drawn

directly from that posterior distribution. In the Bayesian analysis of MS models, both

the parameters of the model, d, and the states variables st)t: L,2,...,7, must be

treated as random variables. However, in this case, a standard analytical expression

of the joint posterior distribution of the parameters is not possible.

\Mhen the posterior distribution cannot be expressed in analytical form, Markov

chain Monte Carlo (MCMC) methods may be used to draw samples from the poste-

rior distribution lGelman et al., 1995; Gemerynl,nj L997; Gi,lks et al., 19981. A brief

explanation of MCMC methods is given in the following section.

6.7.L Markov Chain Monte Carlo Methods

It is often possible to represent the behavior of a physical system by describing all

the different states the system may occupy and by indicating how the system moves

from one state to another in time. A Markov chain is a sequence of random values

whose value at a given time depends only upon the value at the previous time step.

The controlling factor in a Markov chain is the transition probability, which is the
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conditional probability for the system to go to a particular state, given the current

state of the system.

Numerical methods which involve random sampling are called Monte Carlo meth-

ods. Monte Carlo methods have been used for centuries, but only in the past several

decades has the technique gained the status of a full-fledged numerical method capable

of addressing the most complex applications.

MCMC method together with the Bayesian framework is a powerful method in

the quantification of parameter uncertainty. This stochastic simulation technique is

able to reproduce the statistical joint distribution of the whole parameter set of any

model. There has been an explosion in the use of MCMC in statistics and hydrology

over recent years, primarily because of their application in Bayesian inference. The

basic idea of MCMC methods is to simulate a Markov chain sequence where at each

iteration a sample of the model parameters are generated so that any desired feature

of the posterior distribution may be accurately summarized. Given certain conditions,

the distribution of these samples converges to a stationary distribution which is the

posterior distribution. MCMC methods make possible the use of flexible Bayesian

models that would otherwise be computationally infeasible. The last decade has wit-

nessed a burst of activity in applying Bayesian methods to parameter uncertainty in

hydrology. Most of these applications have used MCMC methods to simulate poste-

rior distributions lKuczera and Parent, 1998; Bates,200I; Campbell and Bates,200l;

Thyer et a1.,2002; Bell et a1.,2002].

There are many different MCMC techniques but the most fundamental are the
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Metropoli,s-Hasti,ngs algorithm and the Gi,bbs sarnpler. The Gibbs sampling method

seems the most efficient technique to apply to the MS model.

Gibbs Sampler

Where the form of the full conditional distributions of parameters are known, these

may be used to obtain candidate parameters. The Gibbs sampling is appropriate when

sampling from the marginal distributions is not convenient or possible. Details of the

Gibbs sampler can be found in Sm'ith and Ri,chmørz [1993], Chen et ø/. [2000], and

Gemertnan [1997], and an excellent tutorial on this technique is provided by Casella

and George [1992]. This technique has also been widely used in hydrology lSanso and

Guenn'i, 19991, Thyer and Kuczera, 2000l.

In Gibbs sampling, each component of the model parameter vector is drawn from

the distribution of that component conditioned on the data and the remaining param-

eters. This distribution is referred to as the full conditional distribution.

The Gibbs sampler is based on the following algorithm:

Step 1: Initialize the iteration counter to k : 1 and the parameter vector ¿6 p(0) :

(pÍo),. ..,0f))'
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Step 2: Draw a new value d(fr) from the full conditional distributions

p@rlof-') ,oy-t) , . . . ,of-t))

p(r,rlo\o) ,rly-') , . . . ,ef-'))

0lo)

0y)

oy N p@olr,fo),r,y),...,lf)r)

Step 3: Set k : lç + t, and return to step 2.

Since each simulated parameter vector depends only on the previous simulated

parameter vector, and not on any other previous values or the iteration counter k, the

Gibbs sampler algorithm defines a homogeneous Markov chain.

Although the Gibbs sampler appears to converge significantly faster in practice

than the Metropolis algorithm (Gelman et al. lI995l), it requires the ability to ran-

domly sample one parameter or blocks of parameters at a time from the univariate or

multivariate conditional probability distribution, respectively. Therefore, the deriva-

tion of such conditional distributions is required in order to use the Gibbs sampler as

a MCMC simulation technique.
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6.7.2 Application of the Gibbs Sampler to the Single-Site MS

Model

As explained above, the idea in the Gibbs sampler is to simulate, in turn, from the

distribution of each parameter conditioned on the data and the remaining parameters.

Thus, at iteration k each component of the parameter vector is sampled from the

conditional distribution:

0:o) *- p(0¡ | 0Ío),.. . ,ll1r,rrl\rÐ ,.. .,0f-'),Qr) (5.51)

where d is the number of the components of the parameter vector. 0¡ can refer to

either a scalar or a subvector of the parameter vector 0. Smith and, Rirchrnan 1L993)

noted that if the parameters are highly correlated, then the convergence of the Gibbs

sampler could be very slow. Therefore, if possible highly correlated parameters should

be blocked together as a subvector of 0 and, sampled from a multivariate conditional

distribution.

For the single-site MS model, Gibbs sampling can be implemented with the follow-

ing simulation steps:

sf)

p(rc)

(fr) (e)
þi',oì'

p(Sr I p(k-r) ,a(k-r) , P(k-') ,Qr)

pe I sP)

pjt¿,o¿ I sf), pÍr-'),oÍr-t),Qr)

(5.52)

(5.53)

(5.54)
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where F: (pt,þ2,...,pu)'ando: (ot,o2¡...,o¡ø)', and i refers to thestate. The

hidden state time series ,Sr is sampled first because once it is known, the sampling

of the remaining quantities is relatively simple. The conditional distribution of the

transition probabilities P is purely dependent upon knowledge of ,S7. Hence, in (5.53)

the data Qr is omitted in the conditioning. The description and the derivation of the

above conditional densities are presented in the following sections

Simulating the State Probability Sequence

The state variable st)t: L,2,...,7, calr be simulated one by one from each of the

following ? conditional distributions

p(sil94,Qr,0), t: I,2,. .. ,T iÐ.ÐÐl

where S+: (tt,...,st-L,st+1,...,sr)r. However, it is also possible to simulate the

entire state sequence from the joint conditional distribution of ,97, p(SrlQr,0) lchib,

1996]. This density can be written by applying the conditional probability theorem

repeatedly

p(SrlQr,0) :p(tr, {t", . . . , sr}lQr,O)

:p(sll{s2,. . .,sr}, Qr,0) x p({sz, ...,sr}lQr,O)

:p(st, {tr,. . .,sr}lQr,0) x p(s2,1{rr, . . .,sr},Qr,0)

x p({ss, ...,tr}lQr,0) (5.56)
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The summary of this recursion can be written as

p(SrlQr, 0) :p(s1, 1{"r, . . ., sr}, Qr, 0). . . p(s¿l {s¿+1, . . . ; sr}, Qr, 0) . . . p(trlQr, 0)

(5.57)

in which terms of the formp(s¿l{ st+1,.. . , sr}, Qr,0) occur repeatedly. Applying Bayes

theorem, the conditional probability theorem, and the Markovian property of the

states, Chib [L9961 defined a simplified expression for the typical term

p(st: jl{"r*r, . . . , sr}, Qr,0) x ?(s¿+r : lclst: j,0)p(st: jlQt,O) (b.böJ

where the first term on the right hand side is the transition probability of going from

state j at time ú to state k at time t + t, and the other term is the probability of

&: j given Q¿ which can be obtained using the filtering algorithm given in Section

5.5.2. The normalizing constant of this function is the sum of the numbers obtained

in (5.58) âs s¿ rüns through 1,..., M, Df:rp(s+t : lclst : j,0)p(s, : jlQt,0).

Using the equations defined above, the simulation of the state sequence is as follows.

Run the filtering algorithm to calculate pþt : jlQrd). Once p(sr : jlQr d) is known

from the last iteration of the filtering algorithm, it is straightforward to generate s7.

After simulation of s7, the remaining states are simulated backwards for T - 1,7 -
2,...,1 using (5.58).
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Simulating Tbansition Probabilities

Given the state sequence, ,S7, the derivation of the conditional posterior distribution of

the unique elements of the transition probability matrix, P, is straightforward because

P is independent of the data, Q7, and the parameters of the model, 0.

Let the 'ith row of P be denoted p¿ : (pa.,p¿2,.. . ,p¿¡rr)". It is assumed that the

form of the posterior conditional distribution of the rows of the transition probability

matrix are equivalent. In determining the conditional posterior distributionp(p¿lSr),

the likelihood function,l(Srlpo), is required. The likelihood function for 7t¿ has the

kernel of a Multinomial distribution.

M
t(Srlpu) * II (p¿¡)u'

j:7
(5.5e)

where n¿¡ is the number of times that state i is followed by state j in the state sequence

Sr.

When a conjugate prior is used, the posterior distribution is from the same family

as the prior. The Dirichlet distribution is a conjugate prior for the Multinominal

Iikelihood function. An independent Dirichlet distribution for the prior distribution of

p¿ has the form

p(p¿) x p[î^-') pÍi'z-,) . . . pÍi;'-') (5.60)

where a¿,

multiplied

are the

by the

parameters of the prior Dirichlet distribution. When this prior is

likelihood function in (5.59), the updated posterior distribution is
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also Dirichlet:

,¡Oolír) o< p\a'r+n..n-l)p(on'+no'-t) . . .pÍi;'*n¿¡ø-r)

In the Gibbs sampler, the simulation of p¿ ftom

repeated for each row of P

(5.61)

a Dirichlet distribution must be

pilSr - Di'r(an * rln,. . .,otiM * n¿u) (5.62)

The prior parameters may be fixed as dir : " r : d¿M : 1, in which the prior

distributions will be non-informative or diffuse. This is a common choice in Bavesian

inference.

Simulating State Mean and Variance

In Bayesian inference, one must ensure that the posterior distribution is a proper

probability distribution which means that the integral of its density must equal 1. The

use of an improper noninformative prior does not preclude that a proper posterior can

be obtained lGelman et a1.,1995]. For example, assume that the prior distribution of

the state variance is p(o2) x Lf o2 which is a noninformative distribution. This prior

distribution is improper because over the range of (0,oo), it has an infinite integral.

However, if there is at least one data point this improper prior gives a proper posterior

distribution. Since there is a chance to simulate no data in a particular state, it was

decided not to use an improper prior distribution of o2 in the Bayesian analysis of the
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MS model.

Let the observed streamflow data coming from state i be denoted q" where r :

1,2,.. .,n¿. According to the assumptions, q" follows a normal distribution with meah

þt¿ and variance ol. fne likelihood function for (p,¿,ol) is

(5.63)

where the sufficient statistics 8¿: nu-tDT:rq, and sl : (n¿ - 1)-tÐ]":r(q"-40)'

are the sample average and the sample variance of observations in state i, respectively.

The joint prior distribution of (pu,ol) may be written as p(þ¿,o?) : p0,tol"?)p("?).

The use of the normal distribution for p(p,¿lø¿) and the scaled Inverse Chi-square

distribution for p(ol) result in the following conjugate prior distribution

t(pu,o|lQu) x (ou'u)."o 
{ -+ l@o - t)s! + n¿(q¿ - p,)'l}

p¡t¿,o?) x o;L(ol)-(vs/2+7) "-, {-+ VooS + no(po - t r)'l\ (5.64)

where r/o, Ko, ps, and of; are the parameters of the prior normal-inverse-X2-distribution.

In the Gibbs Sampler iterations, the hidden state of the observed variable q¿ in year

ú is known from the simulated state sequence,ST. When no data in a particular state

is simulated, the state mean and variance are simulated from the prior distribution

instead of the posterior. In this case, the state variance must be simulated first from

the scaled inverse-X2-distribution and then the state mean must be simulated from the
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normal distribution given the simulated variance.

o?-Inu-x'Qo,oï)

Flol - N(tto,"?lno)

(5.65)

(5.66)

(5.68)

(5.6e)

(5.70)

(5.71)

The posterior distribution is obtained by multiplying the prior by the likelihood

function in (5.63):

pþru, o7 lQ u) x o;r (o!¡-(u*r /2+r)exp { - a'z l 2"? lrnuo'^u * nnn(ttnu - tt)'l\ (b.62)

where the parameters of the joint posterior distribution are

llnu :llg t IL¿

L/ni:I/O + n¿

Kg rL¿

þn, :______:_ ltO _r _____:_Q¿
It¡ t IL¿ Ko t Tù¿

unuol,o:uoo| -r (no - r)sf + ffifr, - po)2

The parameters of the posterior distribution reflects the prior information and

the information from the data. In the absence of any prior knowledge about the

state distribution parameters, a diffuse prior will be used. When the diffuse prior

distribution combines with the data likelihood function, the posterior distribution is

dominated bv data.
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The posterior distribution may be written as

pjtu, o? lQ u) : pjtnl"?, Q o)p("? lQ o) (5.72)

so that sampling can be accomplished by first drawing ol from its marginal distribu-

tion, (scaled inverse-X2)

o?lQo - Inu - x2 (unu, o1,) (5.73)

and then, given the simulated value of ol, simulating p"¿ ftom its normal conditional

posterior distribution,

pulo|,Q, - N(pnu,o? lonu)

Initializing the Parameter Vector in the Gibbs Sampler

(5.74)

The Gibbs sampler requires an initial set of parameters. The method given in Section

5.4 can be used for the Gibbs sampler as well. Alternatively the parameters estimated

by maximum likelihood can be used. The use of the estimated parameters as initial

values will improve the convergence of the Gibbs sampler.

Assessing MCMC Convergence

When MCMC simulation is used instead of direct simulation from the posterior dis-

tribution, one must ensure that the Markov chain has converged to a stationary dis-

tribution. Hence, after selecting the initial values, the MCMC algorithm is allowed to

sample continuously for a certain number of iterations until the effect of the starting
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values has vanished. This initial sampling is known aß uz,nn-up or burn-'in. Once con-

verged, the samples from the MCMC algorithm can be considered as samples drawn

from p(îlQa). The required number of simulations for warm-up can be decided using

various conuergence di,agnosti,c tools.

Cowles and Carli,n [1996] reviewed 13 convergence diagnostic tools and recom-

mended using a variety of methods and multiple independent parallel Markov chains.

Kass et al. [1998] discussed several topics such as confidence in simulation results,

methods for speeding and assessing convergence, and the estimation of standard er-

rors of MCMC methods.

In this project, multiple independent parallel Markov chains have been used and the

R statistic was employed to assess the convergence of these multiple chains lGelman

and Rubi,n, 1992]. The R statistic is a measure of the variance between-chain and

within-chain. The R statistic is relatively high if multiple Markov chains are not

mixing properly in the parameter space.

The method can be summarized as follows:

Step 1: Using the conditional distributions in the Gibbs sampler, independently sim-

ulate J ) 2 parallel sequences with different starting points, each of Length 2L.

To diminish the effect of the starting values, use only the second -L iterations of

each sequence.

Step 2: For each scalar parameter of interest, u, in the chain, calculate the between-
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sequence variance B f L, and the within-sequence variance I4l, defined by

1J
BIL: =+f (o¡ - ú)', J -T¿_J\

to. /Ðl

(5.76)

(5.77)

(5.78)

(5.7e)

where

and

where

jP-'',r: Ifr,
1J1\-.*?
J ?-J

and u-

W-

Step 3: Estimate the marginal posterior variance of the estimand, u, by a weighted

average of. B andW,

,?:rrþo,,-ú¡),

L-l BV(u): - 
= 

*W -t -\/ L L

JÊ,:rÆ

Step 4: Calculate the Gelman-Rubin statistic, ,fll,, th" potential scale reduction, by

(5.80)

As the individual sequences converge and range over the entire parameter space,

Û upp.o""hes W and the statistic ,/ Ê. d""r"uses to 1.

Gelman and Rubin [1992] recommend to compute J Î¿ ø, all estimands of interest

until it is near 1 for all of them. Once this is obtained. the simulated values from the
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second halves of the sequences can be treated as samples from the posterior distribution

of all parameters. Further details on this method can be found in Gi,lks et al. [1998]

and Gelman et al.119951.

fmplementation Issue

There are several constraints that must be enforced in the implementation of the Gibbs

sampler. In the MS model framework, the posterior distribution can have more than

one mode. During the iteration of the Gibbs sampler, the chains can move from one

mode to another. For example, in the 2-state MS model, state 1 parameters can

become state 2 parameters and vice versa. This is called alias'ing and it decreases

the rate of convergence lGelman et a1.,1995]. In order to prevent this, Gelman et al.

[1995] recommended to use a constraint that p4 a ..- a ltr. In addition, for each

state, the coefficient of variation, Cru, fori : L,2, . . . , M, is bounded between 0.0001

and 2.0 lMcMahon and Me'i,n,1986]. If the above constraints are not satisfied during

simulation. the state mean and variance are resimulated.

I20



Chapter 6

Multi-Site Markov-Switching

Model

6.1 Introduction

As mentioned in Section 4.L, Manitoba Hydro's system requires multi-site modelling.

In this chapter, the single-site MS model, proposed in the previous chapter, is extended

to a multi-site model lAkzntug and Rasmussen,2005a].

The chapter is organized as follows. The formulation of the multi-site MS model

along with the model assumptions are presented in the following section. Maximum

likelihood estimation, implemented using the EM algorithm, is then explained. In Sec-

tion 6.4, the crosscorrelation structure of the MS model is derived. The incorporation

of parameter uncertainty and missing data uncertainty into the multi-site MS model

through Gibbs sampling is introduced in Section 6.5.
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6.2 Formulation of the Multi-Site MS model

In the multi-site MS model, it is assumed that the hydrological process is stationary

and switching between M unobserved climate states. As before, the state is described

byastatevariables¿:(1,2,...,M). Theobservedflowsq¿:(qÍt),...,qjt)¡'utN

sites is assumed to have been drawn from an l/-dimensional multivariate probability

distribution whose parameters are conditional upon the particular state prevailing

at time ú. The use of multivariate distributions should make it possible to preserve

the spatial correlation between sites, at least to a certain degree. It is assumed that

the climate state is regional so that every site is in the same climate state at every

point in time. It is also assumed that, given the state sequence Sr: (rt,.. .,sr)',

g¿ is independent of previous observations. As in the single-site case, there is in

principle no restriction on the type of state distributions, however, it is assumed here

that q¿ follows an N-dimensional multivariate normal distribution with mean vector

1tr", : (¡r!1), . . . , pty))' and covariance matrix X", that are specific to the state. Hence,

given s¿, orr€ could generate q¿ as

Qt: ltrst lV 
"re¿

(6.1)

where e¿ is a vector of independent, standard normal variables andV", is the decom-

position of the state covariance matrix E"r, satisfying V"rV'", - X"r. Finding I/", is a

standard problem in multivariate time series analysis and several methods are avail-

able, see references in Section 4.3.4. In the above model, it is assumed that the state
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variable s¿ follows an M-state first order Markov chain with transition probability

matrix P, see (5.2).

6.3 Parameter Estimation of the Multi-Site MS Model

Parameter estimation for the multi-site MS model can be accomplished in a way very

similar to the single-site model. In the multi-site MS model, it is assumed that the

state distributions are /y'-dimensional multivariate normal. Thus, if s¿ is known, the

density of q¿ conditional on the state variable s¿ is

f (qtltt: i,rþ) :
(2r)N/2lI,¿lt/z

'i:I,...,M

(6.2)

where tþ: {ttr,...,1trM,Xr,... ,Eu} is the set of population parameters. However, s¿

is unobserved (hidden). In order to proceed, one can consider the joint density of the

observed variable q¿ and the unobserved variable s¿ which is given by

?(et,st: ¿lù : f (qilst: i,rþ) Pr{s¿ : i;P} (6.3)

where P denotes the (M x M) matrix of Markov transition probabilities, the parameter

set 4 : {rþ, P}, and Pr{s¿ : i.; P} : r¿. BV summing (6.3) over all possible states, the

unconditional density of. q¿ can be obtained as

."o 
{ -Iro, - po)'Eo'(ø, - t u)\,

M:t 1

Þ lEol'/'2n)*
,tz /

f
- Pu)'Eu'(q, - Pr)\*o 

{-;(q,
(6.4)f @'ln)
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which is an M component l/-dimensional multivariate normal density with mixing

coefficients n¿.

Let Qr : {qt,ez,...,qr} be the set of all multi-site observations and Sr :

(tt, 
"r, 

. . . , sr)' be the associated state variables for the basin. The multi-site MS model

in (6.1) is described by the parameter set d : {rþ,P,p} where I : (Ø, Qz, . . . , Qm)' is

the probability distribution of the first state variable in the sequence. This distribution

is needed in the formulation of the maximum likelihood estimation.

Given the model parameters 0,lhe joint density of (Q7,,S7) can be expressed as

p(Qr, S rl0) : Pr{Srld} f (QrlSr, 0)

T_I T
:0", ff Pr{(s¿a1ls¿)lP} fI f (qrlp",,E",)

t:l

where it is assumed that f (qrlp"r,X",) is an .lú-dimensional multivariate normal distri-

bution. This equaiion can also be considered as the complete-data likelihood function.

In order to obtain the data likelihood function, 57 can be eliminated by summing over

all possible state sequences:

(6.5)

(6.6)

I(olQr) : p(Qrlo)

: t P(Qr'S'lo)
AllSr

T_L T
: D p", fI Pr{(s¿a1ls¿)lP}f l(ørltt",,E",)

All Sr t:L t:l

124



6.3. PARAMETER ESTIMATION OF THE MULTI-SITE MS MODEL

which can be simplified as

t(|leò : Ð p", f (q|p",, x", ) I p",* 
"f 

( ezlþ",,D",)
s1:1 s2:1

M

t P"r-r"rf (qrlþ"r,E"r) (6 7)
sr:l

ln matrix form, (6.7) can be written as lMacDonald and Zucchi,ni,, L9971

(6 8)

where

øÍ(qln,E)
At: il'

puf (nlpv,Eu)

pnf (qtlry¿,xt) pu,,rf (qÅpv,Ðv)

At:

pwf (qtlql,Il) pum f (qlpv,Eu)

and l¡a is an M-dimensional column vector of ls. The parameters of the multisite

MS model, 0, can be obtained by maximizing (6.8) using a numerical procedure.

As in the single-site MS model, the EM algorithm can alternatively be used in the

estimation of the multi-site MS model. In the EM implementation, the log-likelihood

t(otQò: o,,(Do,)t*
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function is

T-1 T

togt(ïlQ7,,Sr) : los 0", + Dlogpr{(s¿arl",)lp} + t f (8t1p,",,8",¡ (6 9)
t:I t:l

In the first step of the EM algorithm, the Q function, which is the expected value of

the log-likelihood function, is obtained as

Q@p<o¡ : E[tog I(0lQr,Sr)lQr,0@] 
:

M
: f er{st :ilQr,0@}rogai

i:L
M MT-I

+ Ð t t Pr{s¿ :,i,st+! : jlQr,0@}losp¿¡
i.:r j:r t:l
MT

+ Ð ! nt{s, : ilQr,¿(t)} los f @rltto,l,u) (6.10)
i:I t:I

where g(t) ir the current estimate of 0, and pr{s¿ : iler,B(t)} and pr{s¿ :,i,st+r:

jlQr,g(Ðj are estimated using 6(Ð iyt place of d.

In the second step, Q(010(t)) is maximized with respect to 0 to obtain a new , .,

estimate of the model parameters that improves the current estimate and becomes the

next value of d in the iterative EM-algorithm:

o(k+r) : arg maxQ(0,ïU')¡ (6.11)

The EM iteration steps are repeated until a local maximum of the log-likelihood func-

tion is reached.
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Q(k+I) : pr{sr : iler,g@} , ,i : L,. .. M. (6.12)

^(rc+r) - DL-rt Pr{s¿ : 'i, st+r : ilQr,g(k)}yii -

(n\ -h)*(")_qi'-qi'þt ---Ð-

(6.13)

(6.14)lfr+1)pi ': DT:tPr{q: ilQr,0@)qt
, 'i: Lr...M.

!f, er{s¿ :llQr,0@}

, 'i:1r...M.

(6.15)

The calculation of Pr{s¿ : ilQr,d(r)} and Pr{s¿ :'i,st+r: jlQr,B(t)} are described

in detail in Section 5.5. Note that in the multi-site case, the probability density of the

univariate normal distribution used in the forward-backward algorithm or in Kim's

algorithm must be replaced by the multivariate normal density.

In order to start the iterative estimation algorithm, initial parameter estimates are

needed. For the initial parameter estimates, observed streamflow values of each site

are standardized using their sample mean and standard deviation as

(6.16)

ff, er{sr :'¿18r,0@}

i, Pr{s, : ilQr,0@\
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Then a single sequence is obtained by adding the standardized values of l/ sites at

each time step, z¿ : 
"[t'+z[2) +...+rjt). this aggregated sequence is used to deter-

mine M equiprobable ranges. According to these ranges the initial state sequence of

the region is obtained. For example, for a 2-state multi-site MS model, if z¡ is negative,

the regional climate is in state 1, otherwise it is in state 2. Using the regional state

sequence, data sets of each state at each site are obtained from observed streamflow

time series of the region. The initial parameters ¡.t¿ and X¿ are then estimated using the

data sets of each state. Similarly, transition probabilities may be obtained by counting

the empirical frequency of transitions. The probability disiribution of the first state

maybesetto p¿:tlM.

6.4 Crosscorrelation Structure of the MS Model

In the multi-site MS model, a key model property of interest is the crosscorrelation

function of g¿ which should be reasonably preserved by the model.

For site s and, h,Iet 1f 'h) : E lþÍù - pb\@Ínl - ,tr'l¡] denote the tag-O crossco-

variance between q[n) and qÍn). Ao analytical expression of the lag-O crosscovariance
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can be derived by substituting (6.1) into the definition of the crosscovariance function:

.yf'h) :n 
ftnÍ" - ,tù¡ç{Ð - /r(Ð)]

:øl(ul',) +u[s,,ùrØ) *u[s,,Dr(ù - p@) (uL?) +uÍhÐ.(ù-ru[n,n¡r1n, -r,")]
:ø lpln) pl?l + n 

1,5*, 
u,n,^ (.J',) "l * " lu5n,o,,,n,n, 

(.f") ') - r*t ,,nt

(6.17)

where ,Ø) ¿n¿ p(n) ur" the overall mean of. q¿ at site g and h, respectively, and ,(c't') is

the (9, fr,)'th entry inV",. fG) un¿ p(h) canbe obtained from (5.11) using the multi-site

estimates of state means. The last expression is obtained by noting that all product

terms involving only one ,!n) o, orr".jn) or both vanish after taking expectation. Also,

Eluln)u{h)): øluø>u|l: ¡r@)¡r@). The terms in the last line of (6.17) can be

calculated as

n lpli) p9))

E 
l,[i,ù,t:'') 

(.f,) )']

EU[',,^)r*,Ð (.Í'))']

M
: I nop[n) pÍn)

i':7
M

: t rus\s'ùr(n'o)
i':L
M

: t ruu{o'Ðu(n'n)
1,: L

(6.18a)

(6.18b)

(6.18c)

and the lag-O crosscovariance between site g and h can be summarized as

MMM
.y|,o) :Ð"urÍn) rjo) + D ruu\o,òr(n,s, * Ð r,t¡.@,Ðr(n,D _ r@ r(Ð (6.19)

i:7 i,:7 X:L
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^,@,h) -

:

The analytical expression of the lag-r crosscovariance function can be expressed as

- p@)@Í?,- /r(o))]

i u[sòrØ) + ul*Dr{n) (u9!. + u[!1) rl') + u!n'Ð r(nt

: E lp[n) t'!31,1 - ,Ø) r(h), r :

As in the derivation of the lag-r autocovariance function in Section 5.3.4, the cross-

covariance function above can be written conciselv as

,Ø,h) : çr{ù)' ¡¡p,(p(o)) - rØ) r(Ð, r : I,2, . . . (6.21)

where ,rØ) : (uf),u9,...,r9)', p(h) : (r?',p?),...,r9)',II is a (M *

diagonal matrix with the stationary probabiliti€s zr¿ or the diagonal, and P is

transition probability matrix.

The cross-covariance matrix of several sites can be constructed by calculating the

covariance between all pairs of sites. In order to obtain the lag-r crosscorrelation

matrix, the elements of the covariance matrix can be divided bv the standard deviations

of the corresponding sites calculated from (5.12):

E 
l@Í')

ø 
l(ul1) - r*,)]

(6.20)

_ p@)

Lr2r "'

M)

the

pl'h) : #, r:L,2,. ' ' (6.22)
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6.5 Incorporating Parameter and Data lJncertainty

into Multi-Site MS Model

The methodology that was used to incorporate parameter uncertainty into the single-

site MS model is extended to the multi-site MS model in this section. In addition.

since the framework of the multi-site MS model enables one to handle the missing data

problem, the uncertainty associated with missing data is here incorporated into the

multisite MS model as well.

6.5.1 Application of the Gibbs Sampler to the Multi-Site MS

Model

In the multi-site analysis, the length of the observed streamflow record at the different

sites must be the same. In traditional methods. one either truncates the different time

series to the period of concomitant record which implies a loss of valuable information,

or extends the shorter records using for example linear regression. By estimating the

missing data, one ensures that all the available streamflow information in this basin is

used in the analysis. Several techniques have been developed to estimate missing data

in hydrology. For detailed explanations of some of these techniques, refer to H'irsch

[1e82j.

In the Gibbs sampler, the missing data are treated as parameters and simulated

from their conditional distribution along with the usual model parameters [Gelrnan

et a1.,19951. The sampled missing data are combined with the observed data in order
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to form the complete data matrix Q7 which is a matrix of ? vectors of the data at 1ú

sites expressed as

Qr: {Q*¿",Qoa"} (6.23)

where Q*¿" arrd Qo6" are the simulated missing data and observed data, respectively.

Using arbitrary starting parameter values 6(o), the following Gibbs sampler steps

can be repeated to simulate the parameters from their full conditional posteriors.

SF)

p(n)

p (s,r I pf;u ')

e (P I sf))

{q*),",Q*"}

o Øn,Eo I sf)

, Ef;u t), p(k-t),Ag-r) (6.24)

(6.25)

(6.26)

(6.27)

(6.28),afr)

where i refers to the state, i:L,2,...,U, pfrr'): {rÍu-t', ...,pfo-Ð} a"dXf;u t):

{"Í*-t', ...,Efo-Ð}. fn" state time series ^92 is simulated first because the simula-

tion of the transition probabilities P and Qp¿s are dependent upon knowledge of 
^97.

As in the case of the univariate model (Section 5.7.2), Chip's procedure is employed

to simulate ,Sr and P. Note that in Chip's method, the probability density of the

univariate normal distribution must be replaced by the multivariate normal proba-

bility density. The simulation of the missing data values, the state mean vector and

covariance matrix is explained in the following.

a*)" N n(Q,,0" I sf),pf;u'),1fii'), Q"u")

ag)

plo),2Ío)
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Simulating the Missing Data

Since the distribution associated with each climate state is assumed to be multivariate

normal, the missing data values are simulated from a multivariate normal distribution.

Note thai the state sequence is simulated first in each iteration of the Gibbs sampler

so that the simulation of missing values can be conditioned oil s¿.

In the simulation of missing data at time ú, there must be at least one site with

observed data. In other words, the number of missing data values rn¿ at time ú must

be less than number of the sites l[. If this condition is satisfied, the vector of missing

data value, qTu" at time step ú can be simulated from an rn¿-dimensional normal

distribution, conditional upon qîb", lt¿, and X¿, i.e.:

qT*lqib",þ¿,8¿ - N*o(p*o,E*o) if st:,i (6.2e)

From standard normal theory lrm¿ andD*o can be expressed in terms of qfb", ¡tu,

and Ð¿ as fTong,19901

Itrrno:p,mi,s |ET¿slous (xiu")-t (qîr" - ttîu") (6.30)

(6.31)D^o :ET¿" - ¡.mi'lobs (fíu") -r yobslrnis

where poub" , l.tTu" , DTu", Elb", ETo"lou" , and E?b"l*¿" can be obtained as partitionings of
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p¿ andE¿

,,:IAE¿: (6.32)

(6.33)

(6.34)

(6.35)

Simulating the State Mean Vector and the Covariance Matrix

For a given simulated state sequence, consider the data (observed and simulated)

associated with state i. Define ø,: (øP,...,nft') , r :1,..., n¿, to be the data

coming from state ¿ and let Q¿: (%,. . . ,enn)' . The joint likelihood function of. (p¿,E¿)

given Q¿ can be written as

t(tto,EulQò xllol-'o/z*r (-å þt " - pi)'r.i'(0, - r))

It can be shown lDeGroot,1970] that

T¿¿

Ð (0" - u)'Eo'@, - pù : n¿(þ¿ - ãu)'Eot(p¿ - 8ù + tr(s¿x;l)
r:l

where 8u : *,D:':rg" is the vector of average observed data coming from state ¿.

The notation tr(M) refers to the trace of the matrix M, i.e. the sum of the diagonal

elements of the matrix, and ,S¿ is the sum of squares matrix relative to 8u,

su: Ð @r-ãu)(qr-8u)'
4-1

L##J
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Substituting (6.3a) into (6.33) yields

(6.36)

which is the kernel of a multivariate normal-Wishart distribution.

The use of a non-informative (improper) prior distribution may cause some prob-

Iems in the Gibbs sampler. As mentioned in Chapter 5, when no data is simulated in

a particular state, the posterior becomes improper. However, in the multi-site case,

an improper posterior is obtained when the number of data sampled in a particular

state is less than the number of sites. Therefore, a proper prior distribution is used.

Since there is no prior information about the parameters, a diffuse prior is used. In

this way the data dominate the posterior distribution.

To develop a joint prior distribution, the relationship (ttu,I,¡) : p ltilD¿) p (Ð¿)

can be utilized. The use of the multivariate normal density for p(p¿lD¿) and ihe

inverse-Wishart densit¡ which is the multivariate generalization of the scaled inverse-

X2-distribution, for p (I4) yields the conjugate joint prior density:

I(pu,EolQu) x l*ul_,"u/2"*o { -f,b,{r, - fuo)'Eo'(tt¿ - 8¿)+ tr(Srr;l)]}

pþr,i,E¿)x lxul-('o+ 
N+2)/2."0 

{ -}bo{r, - t o)'Eu'0r¿ - þo)+ tr(^gxc-l)]} (6.g2)

where L/0, K0, p¡, and Âs are the parameters of the joint prior distribution which has the

same form as the likelihood function in (6.36). For the simulation of the prior parame-

ters from (6.37), the prior state covariance matrix X¿ must be simulated first from the

inverse-Wishart distribution and then, given the simulated state covariance, the prior
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state mean vector p¿ must be simulated from the multivariate normal distribution:

xi

P¿Ix¿

Inv-Whishart¡¿ (zs, Â; 1 

)

lún¡(/¿0, Ð¿loo)

(6.38)

(6.3e)

where the parameters zs and Â6 are the degrees of freedom and the scale matrix of

the prior inverse-Wishart, and ¡16 and rc6 are the prior mean vector and the scale of X,

respectively.

Using the prior distribution in (6.37) and the likelihood function in (6.36), Bayes'

theorem yields the following posterior distribution

pþt¿,D¿lQ ¿) x 
I 
x, 

| 
-(" ¿-ruo* N 12) / 2exp{ - }fuu{ru - I u)'E u 

t (p¿ - I ¿)

* no(p¿ - po)'E¿'(þ¿ - þo)

+ tr((Â6 + S,)X¿ ')lÌ

According to DeGrooú [1970]

n¿(p¿-Qù'Eo'jto - 8ù -t no(p¿ - /ro)'Eu-i1þ¿ - Fo)

(6.40)

(6.41)

:(rc0 + n¿)(p¿ - p,.)'Er' (p¿ - F*) + m(tto - ù¿)'Eu' 0ro - 8o)

where ¡r," is given in (6.45). The rightmost term of (6.41) can also be expressed as

ffirr, - ùu)'Eu'!ro - 8u) : "lmùro - ùo)'(t o- o,)Et'] g.42)
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Using the expression in (6.42), the joint posterior distribution in (6.40) can be rewritten

as

p|t¿,Ð¿lQ¿) xlxu¡-("u ruo+N+2)/2"*p{-å[(oo + n¿)(p¿ - p.)'E¿|Qt¿ - þ,)
(6.43)

+ tr((Â¡ + s¿) + ffirr, - ùu)'(tto- 8,)x, ')lÌ

which can be further modified to obtain the multivariate normal inverse-Wishart dis-

tribution as

plr¿,D¿lQ¿) x lE,¡-{". 
+N+2)/2exp{ - f,[,.,,)@u - t nn)'I;ot 0ro - t ^,) (6.44)

+ tr(Â",X;1)l)

with posterior parameters

I,hi:uglfL¿, ltrn¿:W
(6.45)

Kn¿ : Ks1-rL¿, L..u :Âo +^g¿ + ffi(po - 8¿)'|to -8u)

The simulation of the state mean vector and covariance matrix from (6.44) may be

summarized as follows:

1. Assume prior parameters ¡16, Ko, u0, and Âs.

2. Calculate posterior parameters from (6.45).

3. Simulate E; from an inverse-Wishart distribution

(6.46)X¿ - Inv-Whishart(2,",, 
^;t)
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4. Simulate p¿, given X¿, from a multivariate normal distribution

F,ilÐo - Nru(P,.u, Eo I o,u) (6.47)

In the incorporation of parameter uncertainty, one of the major challenges is the

selection of appropriate prior parameters in order to get a suitable diffuse prior distri-

bution. As a preliminary analysis, a comparison of the prior and posterior distributions

must be included to ensure that the prior distribution is diffuse relative to the posterior

distribution. The selection of prior parameters will be discussed later in connection

with the application.

Initializing the Parameter Set in the Gibbs Sampler

The maximum likelihood estimates of the model parameters can be used as initial

values in the Gibbs sampling. Use of Ml-parameters will improve the convergence

of the Gibbs sampler. The initial missing data values may be estimated based on

correlations with the observed data from other sites in the basin.

Assessing MCMC Convergence

In the multi-site MS model, the same convergence diagnostics as in the single-site MS

model are applied, see Section 5.7.2. In addition, diagrams showing the Gibbs samples

for each individual parameter may be examined visually.

As in the single-site case, the constraint that pt 1 . .. 1 l.tt,t is enforced in order

to avoid aliasing.
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Chapter 7

Disaggregation Using

Markov-Switching Model

7.L Introduction

As explained in Chapters 5 and 6, non-linear Markov-Switching models provide an

interesting alternative for modeling climate regimes present in aggregated annual flows.

In typical water resources system analyses, generation of sub-annual flows such as

monthly flows may be needed. In this case, temporal or spatial disaggregation models

may be employed to disaggregate generated higher-level flows into lower-level flows.

As mentioned in Section 4.4, traditional linear disaggregation models require nor-

mally distributed data. When data are not normally distributed, an appropriate trans-

formation must be applied prior to the use of the model but in this case, the addi-

tivity property is lost and some form of adjustment is needed. However, the adjusted
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7.2. MODEL FOR}{ULATION

variables may no longer represent the assumed marginal distributions and important

statistics such as the mean and the variance of the observed lower level variables may

not be well reproduced.

In this chapter, a Markov Switching disaggregation (MSD) model is proposed to

disaggregate higher-level flows generated using the MS model into lower-level flows

lAkmtug and Rasmussen,2005cl. Wiih this modeling approach, it is possible to pre-

serve the non-linear structure of both the higher-level and lower-level flows, while their

important statistics are implicitly preserved. The assumptions and the formulation of

the MSD model are presented in the following section. In the subsequent section, the

estimation of model parameters is outlined. In Section 7.4, the performance of the

proposed model is investigated by a comparison with the classical Valencia-Schaake

disaggregation (VSD) model fValenci.a and Schaalee, Lg73l described in Section 4.4.L.

In the last section of this chapter, the potential advantages and disadvantages of the

proposed MSD model are discussed.

7.2 Model Formulation

The proposed MSD model can be used for both temporal and spatial disaggregation.

In temporal disaggregation, annual flows q¿ are generated using an M-state MS model

as described in Chapter 5. It is assumed that monthly flows, etm,TrL - 1,.. .,L2, are

also described by M climate regimes and have the same state probability sequence as

annual flows, i.e. Pr{s¿ : ilQr,"}: Pr{s¿ : i]Qr} where Qr*: (qr*,...,qr*)t is

the month rn flows. In this ïvay, every month is in the same climate state as the year
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it belongs to. In simulations, the climate state s¿ is known from the annual model.

It is further assumed that, given the climate state, gt* is normally distributed with

mean and variance that are specific to the state. The MSD model is obtained by using

the above assumptions with the VSD modeling structure given in (a.51). In the MSD

model, the zero mean annual flows r¿ may be disaggregated into zero mean monthly

flows gl¿ : (Ut,t,. . . ,Ut,n)' in year ú as

Ut: A"rrt * B"re¿ (7.1)

where the state dependent parameter matrices,4", and ,B", have dimensions (12 x 1)

and (12 xL2), respectively, and e¿ is an (12 x 1) column matrix of independent standard

normal variables with zero mean and unit variance.

7.3 Parameter Estimation

With the MSD model described in the previous section, the marginal distributions of

monthly flows become mixtures of M-normal distributions. Since the state probability

sequences are fixed and known from the annual MS model, the parameters of the

state distributions for each month can be estimated using the maximum likelihood

estimators given in (6.14) and (6.15) with q¿ replaced by qr*: (qtJ,et,z,. . .,Qt¡z)':

!f, er{s, : ilQr,0}qr^
(7.2)Itr¿: ff, er{s, : ilQr,g} , 'i: Ir...M,
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, :DLFr{sr--:lQ¿:,!l (qr,, - pl)@t* - tr¿)' , ,i:1,...M. (7.8)Ii, Pr{s¿ : ilQr,0}

It should be emphasized again that the state probabitities Pr{s¿ : ilQr,O) are inher-

ited from the annual model. The diagonal of the state covariance matrix in (7.3) gives

the state variances of each month. Alternatively the state mean and variance of each

month n1, can be estimated individually using the single-site estimators of mean and

variance given in (5.32) and (5.33).

In (7.1), the parameter matrices á¿ and B¿f.or state i - 1, . . . , M, may be estimated

using the method of moments as described in (4.52) and (4.ffi):

Â¿: S4xuS"!*,

ÈuÈ'o: Synun - A¿Sxnyu

where the sample covariance matrices may be calculated as

(7.4)

(7 5)

(7.6)

(7.7)

(7.8)

cr _ ÐLrPr{s¿ : ilQr,O} (qr,. - þu) (qr* - ttu)'tty¿y -

Su*n _DLrPr{s¿ : ilQr,0} (qr* - p¿) (q, - tu)'

ff, er{s, : ilQr,0}

DT:rPr{st: ilQr,O} (qt - p,¿) (qt* - p¿)'

ff, er{st : ilQr,0)
Sxoyu:

where ¡;¿ is the state i mean of the higher-level variable known from the annual MS

model. The sample covariance matrix S xnxu is equal to the state d variance ol of the

higher-level variables and is known from annual MS model.
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7.4 Preliminary Analysis

Before using the proposed disaggregation model for drought frequency analysis, the

performance of the 2-state MSD model was explored by comparing it with the classical

VSD model in (4.51).

The MSD model and VSD model were applied to 138 yea.rs (1860-1997) of monthly

flows of the Niagara River at Queenston, Ontario. The data were obtained from the

HYDAT CD-ROM provided by Environment Canada. Five hundred sequences of 138

years annual flows were generated using the 2-state MS model given in (5.1) and

generated annual flows were disaggregated with the two models. The MSD model was

applied according to the principles described in the previous section. In the case of

the VSD model, observed annual flows and monthly fl.ows were transformed to obtain

a normal marginal distribution using the transformation models in Section 4.2, with

the best model selected according to the Filliben statistic. For the Niagara River,

Box-Cox transformations with different À values were selected for observed monthly

and annual flows. In the simulations, annual flows generated by the 2-state annual MS

model have a normal mixture marginal distribution, so annual flows were subjected to

a normalizing transformation before use of the VSD model. After application of the

VSD model, the disaggregated monthly values were first inverse-transformed and then

adjusted using the proportional adjustment procedure to sum up to annual values, see

Section 4.4.4. Transformation and adjustment are not required for the MSD model.

Both models were tested for their ability to reproduce the following important statistics

of the observed flows: (1) Mean; (2) Standard deviation; (3) Cross-correlation; and
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Figure 7.1: January flows of the Niagara River at Queenston, Ontario, simulated with
the MSD model. a) Marginal probability density function. b) Normal probability plot of
observed flows and fitted mixture distribution

(4) Marginal distribution.

As a first step, the goodness-of-fit of the marginal distributions of the monthly flows

is examined. Figure 7.1 illustrates the fitted marginal probability density function for

the MSD model (mixture of two normals) and the normal probability plot of observed

January flows of the Niagara River. The marginal distribution of January flows is very

well preserved by the MSD model. The probability density and normal probability

plot of the other months are given in Appendix B. Generally, the fit for the other

months is very good.

To examine the sampling variability of various statistics, box plots were used.

When an observed statistic does not fall within the range of the box, the model does

not reproduce that statistic well.
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Niagara River Simulated Monthly Mean Values
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Figure 1.2: Niagara River simulated monthly mean values using a) VSD model. b) MSD
model. The asterisk (*) represents the observed statistic.
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Figure 1.3: Niagara River simulated monthly standard deviations using a) VSD model. b)
MSD model. The asterisk (*) represents the observed statistic.
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Niagara River - Monthly Coefficient of Skewness
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Figure 7.4: Niagara River simulated monthly coefficient of skewness using a) VSD model.
b) MSD model. The asterisk (*) represents the observed statistic.

The comparison of simulated and observed monthly means, standard deviations,

and coefficients of skewness are given in Figure 7.2 to Figure 7.4 for both VSD and

MDS models. The labels on the x-axis (1,2, ... ,12) indicates the calender month

(January=1).

As illustrated in Figure 7.2 and Figure 7.4, the means and the coefficients of skew-

ness of observed monthly flows for each month are well reproduced by both models.

However, Figure 7.3 suggests the simulated standard deviation of the first five months

are not well preserved by the VSD model. The MSD model reproduces the standard

deviations relatively better. This bias in the VSD model is due to the inverse trans-

formation and the required adjustment of the variables that distort the distribution of

simulated monthly flows.
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Niagara River Cross-Correlations (January)
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Figure 7.5: Simulated and observed cross-correlation pairs of January flows of the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic. In the x-axis, I-A indicates the correlation between January
flows and annual flows, 1-2 indicates the correlation between January and February flows,
and so on.

The two models were also compared in terms of their ability to preserve observed

flow correlations. Figure 7.5 shows the correlation between January flows and annual

flows, and between January flows and the remaining 11 months' flow of the same

year. The comparison for other months is given in Appendix C. For all months,

the MSD model is able to reproduce the dependence between monthly variables and

between monthly and annual variables. However, the correlation between certain pairs

of months is not well reproduced by the VSD model. This is due to the bias caused

by the inverse-transformation and adjustment procedure when the observed data are

not normally distributed.

To further evaluate the preservation of the assumed marginal distributions by the

two models, the probability plot of 10,000 simulated flows are examined. In order
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Niagara River - January
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Figure 7.6: Simulated Niagara River January flows disaggregated by VSD model. a)Before
adjustment procedure b) After adjustment procedure

to identify the possible source of distortion in the marginal distribution, the normal

probability plot of January flows simulated from both the VSD and the MSD model

were examined before and after the adjustment procedure. Since no transformation

and adjustment are required for the MSD model, the marginal distributions, which

are mixtures of two normals, are very well preserved with 10,000 simulated flows for

all months. In the VSD model, the Box-Cox distribution with A = 1.4 was suggested

by the Filliben statistic for January flows and Figure 7.6 illustrates how the tails of

January flows are distorted after application of the adjustment procedure. Similar

distortions were identified for most of the other months, see Appendix D.

The application of the proposed MSD model to the Manitoba Hydro's system is

described in Section 8.8.
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7.6 Discussion

One of the potential disadvantages of the MSD model is that some flexibility in the

marginal distributions of the lower-level variables is lost due to the fact that the mixing

probabilities are imposed by the annual model. Therefore, it is important to verify

that the marginal distributions of the lower-level variables are well preserved.

The MSD model preserves the additivity property because for a given year both the

higherlevel and lower-level variables are generated from normal distributions. Despite

the fact that monthly means, variances, and cross-correlations are not modeled directly,

they appear to be generally well preserved by the model.

The MSD model is not parsimonious in terms of parameters because a separate set

of model parameters is required for each climate state. Hence it is not recommended

to use the MSD model for multi-site disaggregation when the length of the observed

record is short. The MSD model may be used for univariate temporal or spatial disag-

gregation. A reduction in parameters can be obtained using a staged disaggregation

procedure lSantos and Salas,1992] which disaggregate higher-level variables to lower-

level variables in two or more steps, or Lane's condensed disaggregation model, given

in (a.59a) and (4.59b). However, if such methods are used, the additivity property is

Iost.
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Chapter 8

Application to Manitoba Hydro's

System

8.1 Introduction

One of the objectives of this project is to quantify model, parameter, and data uncer-

tainties in the drought frequency analysis of Manitoba Hydro's system. In order to

achieve this objective, the proposed stochastic models given in Chapters 4, 5,6, and

7 are applied to Manitoba Hydro's system. After the generation of synthetic flows,

drought events are extracted from each scenario according to the definition of drought

adopted in Chapter 3, and the drought frequency analysis is performed.

In this chapter, the details of the application of stochastic models are reported and

the results of the energy drought frequency analysis are presented.
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1912 ... 1929 1930 ... 1956 1957 ... 1998
Sask. R. i' i" '-, ,

Wpg.R.
,

Chur. R. 08 )EK'~
PIAO MIssn~G

Local F.

Figure 8.1: Observed and missing Manitoba Hydro streaflow data.

8.2 Historical Data Sets

The streamflow data used in the project were supplied by the Resource Planning and

Market Analysis Department of Manitoba Hydro. As mentioned in Chapter 2, Man-

itoba Hydro's system is divided into five hydrological components. The flow records

of the Winnipeg River at Slave Falls and the Saskatchewan River at Grand Rapids

are available from 1912 to 1998 without any missing flows. The flow records of the

Churchill River are available from 1930 to 1998. The Lake Winnipeg PIAG represents

all Lake Winnipeg inflows except the Winnipeg and Saskatchewan River inflows. The

inflow records of the tributaries on the western and eastern sides of Lake Winnipeg are

available from 1957 to 1998. The local flows of the Burntwood and the Nelson River

are also available from 1957 to 1998. Manitoba Hydro uses data for the period 1912-98

in their deterministic SPLASH model for planning and evaluation of their system. To

obtain a full 1912-98 data record for all sites, data extension for the above hydrological

components was performed by Manitoba Hydro [Girling, 1988, 1990].

In the stochastic time series models, the accuracy of estimated parameters depends

on the record length and on the accuracy of the data. Therefore, initially three sets

of data covering the periods 1912-98, 1930-98, and 1957-98 were intended for use
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8.3. SELECTION OF MODELING SITES AND WATER YEAR

in the application. These periods represent different degrees of extension (see Table

8.1). However, eventually the 1957-98 data set was not used in the drought frequency

analysis because together with gauged flows of PIAO more than 70% of the system's

inflow is known for the period 1930-1956 which covers the critical drought period as

well. The statistical data analysis and the drought frequency analysis are performed

considering the 1912-98 and 1930-98 data sets.

8.3 Selection of Modeling Sites and 'Water Year

In Manitoba Hydro's system, there are 15 streamflow sites of interest and Lake Win-

nipeg PIAO (see Section 2.2). ln the stochastic modeling, it was found to be beneficial

to combine sites in order to decrease the dimension of the framework. The aggrega-

tion of the streamflow sites significantly reduces the dimension of the models and the

number of parameters to be estimated. The aggregation is expected to improve the

performance of the stochastic models.

In this project, the disaggregation approach was employed. Annual flows at one or

more aggregated basin sites are generated first and then disaggregated into monthly

flows, which can then be spatially disaggregated into monthly flows at sub-basin sites.

If it is required for the analysis of the system, monthly flows at any sub-basin site can

be further spatially disaggregated into monthly flows at key sites.
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8.3.1 Basin Sites

The Winnipeg River, the Churchill River, and the Saskatchewan River are considered

as basin sites in the stochastic modeling framework because they are the major rivers

that contribute on average 28yo, 27yo, and 18%, respectively, to the total inflow into

Manitoba Hydro's system. As discussed in Chapter 2, PIAO is an important compo-

nent of Manitoba Hydro's system with a LTTo contrlbution to total inflow and it is also

selected as a basin site. The total contribution of the local flows in the Burntwood and

the Nelson River basins is about 16% (Table 2.2). Siie-to site correlation coefficients

of local flows are high so these local flows are aggregated and considered as a basin

site as well.

In summar¡ the following basin sites are selected:

1. Churchill River: The Churchill River flows upstream of Southern Indian Lake.

2. Saskatchewan River: The Saskatchewan River flows at Grand Rapids.

3. Lake 'W'innipeg PIAO: The partial inflow available as outflow values of Lake

Winnipeg.

4. Winnipeg River: The Winnipeg River flows at Slave Falls

5. Local Flows: Aggregated local flows at the Burntwood and the Nelson Rivers.

In the stochastic models, the flows of the five basin sites given above were also

aggregated to one artificial site called the Aggregated Basin which represents the total

inflow to Manitoba Hvdro's svstem.
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8.3. SELECTION OF MODELING SITES AND WATER YEAR

Table 8.1-: Mean, standa¡d deviation, and coeffi.cient of skewness of observed annual fl.ows
for five basins and Aggregated Basin.

1912-98
oBasins

Saskatchewan River
Lake Wpg PIAO.Winnipeg 

River
Local Flows

c"
35488 7466 -0.057
19201 545t 7.012
19452 10114 0.297
32302 9422 0.272
13486 3429 0.275

119928 25069 0.152

The mean values, the standard deviations, and the skewness coefficients of the

annual flows of the five basin sites âs well as the Aggregated Basin Flows are given in

Table 8.1.

8.3.2 Sub-basin Sites

As seen from Figure 2.3, six generation stations are located on the Winnipeg River.

It is assumed that the flow at Slave Falls is representative for all other stations. The

hydrometric station on the Saskatchewan River is located at the Grand Rapids gener-

ating station which means that the flow passes through the generating station directly.

There are no generating stations on the Churchill River but a significant portion of this

river is diverted through the Notigi Control structure into the Nelson River upstream

of the Kettle generating station. This diverted flow will be taken into consideration

for Kettle, Long Spruce, and Limestone generating stations. Therefore, there is no

need to spatially disaggregate the Winnipeg River, the Saskatchewan River, and the

Churchill River flows into sub-basin sites.

The PIAO flows are used as input to Lake Winnipeg in order to calculate the

35554 6655 -0.093
20101 5968 0.806
18504 9740 0.417
31651 8924 0.412
r3r42 3316 0.289
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8.3. SELECTION OF MODELING SITES AND WATER YEAR

Lake \Minnipeg outflows which are used for energy generation on the Nelson River.

Therefore, there is also no need to spatially disaggregate the Lake Winnipeg PIAO

flows.

The 12 local flows, given in Table 2.2, are modeled as a single artificial basin

site. The aggregated Local Flows are disaggregated into artificial sub-basin sites and

key sites according to the contribution (physical location) of these local flows to the

generating stations located on the Nelson River. As shown in Table 3.1, the Upper

Nelson River local flows NRO, NRl, and NR2 contribute to all generating stations

on the Nelson River. The Burntwood River local flows BRl, BR2, BR3, BR4A, and

BR4B, and the Nelson River local flows NR3 and NR4 contribute to Kettle, Long

Spruce, and Limestone generating stations. At the lower Nelson River, NRb has

contribution to Long Spruce and Limestone, and NR6 to Limestone only. Because of

the very high correlation between NR5 and NR6, they are aggregated and considered

as a sub-basin site in the modeling framework. In summary, the aggregated key sites

are

1. NR012: NRO+NRI+NR2

2. NRs4BRAll: NR3+NR4+BR1+BR2+BR3+BR4A+BR4B

3. NR56: NR5+NR6
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Table 8.2: Coefficients of NR5 and
gation model.

L912-98 Data Set:

NR5 | 0.74 0.68 0.66
NR6 | 0.26 0.32 0.34

NR6 Local Flows for the linea¡ deterministic disaggre-

Apr May Jun Jul A Sep Oct Nov Dec
0.62
0.38

0.70
0.30

0.7
0.26 0.29 0.32 0.25 0.22 0.24

8.3.3 Key Sites

If it is necessary, each sub-basin site flows can be further disaggregated to flows at

control points according to their contribution to the generating stations. Because of

the contribution of key sites BRAll, NR012, and NR34 to the same set of generating

stations, there is no need to disaggregate these into flows at individual control points.

However, key site NR56 must be disaggregated into two control points NR5 and NR6,

because the local flow NR5 contributes to both Long Spruce and Limestone while NR6

contributes only to Long Spruce. Because of the high correlation between NR5 and

NR6 (0.92), there is no need to use a stochastic model to disaggregate monthly NR56

flows to NR5 and NR6 flows. Instead a deterministic linear disaggregation procedure

is used. The historical flows at NR5 and NR6 are used to calculate the proportions of

these flows at the artificial key site NR56. The linear coefficients for the 1912-98 data

set are given in Table 8.2.

8.4 Stochastic Modeling Flameïyorks

The first step in the modeling of the multi-site streamflow time series is the selection

of an appropriate modeling framework defining the components to be modeled and
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8.4. STOCHASTIC MODELING FRAMEWORJ<S

the associated stochastic models. In the selection of the frameworks, an attempt was

made to minimize the required number of modeling steps. The two main modeling

frameworks used in this research project are outlined in Figures 8.2 and 8.3. These

two frameworks will be compared in terms of their ability to preserve the statistical

properties of observed flows.

In Modeling Framework-l given in Figure 8.2, a single.site annual model is used

to generate annual flows for the entire basin. A spatial disaggregation model is then

used to disaggregate generated annual flows into annual flows at the five basin sites.

The annual flows at the five basin sites are subsequently disaggregated into monthly

flows using a multi-site annual-to-monthly disaggregation model. The loca,l flows in

the Burntwood and Nelson Rivers must be further disaggregated into monthly flows at

the three key sites. The last step of the framework is the deterministic disaggregation

of monthly flows at key site NR56 into NR5 and NR6 flows using a deterministic linear

disaggregation procedure (Section 8.3.3).

In Modeling Fhamework-2 given in Figure 8.3, annual flows at the five major basin

sites are generated first using a multi-site annual model. The remaining steps of the

framework are the same as in Modeling Fbamework-l.

As mentioned earlier, in this research project, the emphasis is placed on the mod-

eling of the annual flows. Hence, the two frameworks differ only in the modeling of the

annual flows. In the annual flow generation, parameter uncertainty is considered for

both frameworks. In Fbamework-2, the data uncertainty in the multi-site MS model

is also considered. Using AR(l) and MS models, a total of nine modeling frameworks
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8.4. STOCHASTIC MODELING FRAMEWORKS

MODELl
Single-site Annual Model

Generation of annual flows for an entire basin.

MODEL 2
Spatial Disaggregation Model

Disaggregation of generated annual basin flows
into annual flows at five major basin sites.

MODEL 3
Multi-site Annual to Monthly Disaggregation Model

Disaggregation of generated annual flows
into monthly flows at five basin sites.

MODEL 4
Spatial Disaggregation Model

Disaggregation of monthly flows in one basin site
into monthly flows at three sub-basin sites.

MODELS
Deterministic Linear Disaggregation

Disaggregation of monthly flows in one sub-basin site
into monthly flows at two key sites.

Drought
Simulation Model

Figure 8.2: Stochastic Modeling Framework-l
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MODEL 1
Multi-site Annual Model

Generation of annual flows at five major basin sites.

MODEL 2
Multi-site Annual to Monthly Disaggregation Model

Disaggregation of generated annual flows
into monthly flows at five basin sites.

MODEL 3
Spatial Disaggregation Model

Disaggregation of monthly flows in one basin site
into monthly flows at three sub-basin sites.

MODEL 4
Deterministic Linear Disaggregation

Disaggregation of monthly flows in one sub-basin site
into monthly flows at two key sites.

Drought
Simulation Model

Figure 8.3: Stochastic Modeling Framework-2
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Lane's Spatial
Disaggregation

Model

AR(1) Model with
Lane's Temporal
Disaggregation

Model
MS Spatial

Disagg.
Model

Lane's Spatial
Disaggregation

Model

Table 8.3: Selected models in Flamework-l.

ministic
Disagg.
Model

Disagg.
Model

Deterministic
Disagg.
Model

Disagg.
Model

are employed (see Tables 8.3 and 8.4).

8.5 Application of the Traditional Models

In the drought frequency analysis, the performance of the proposed MS model was

compared with the traditional AR(l) model. Details about the application of the

AR(l) model are given in the following.

8.5.1 Marginal Distributions and Data Tlansformation

In the traditional first order autoregressive model and disaggregation models, described

in Chapter 4, it is assumed that flows are normally distributed. The marginal distri-

butions of the observed annual and monthly flows of the five basin sites and three

key sites were investigated in terms of normality. Normal, 2-parameter lognormal,

3-parameter lognormal, and Box Cox distributions were fitted to observed flows and
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AR(1)
Model

AR(1) Model with
Lane's Temporal Lane's Spatial

Disaggregation
Model

Lane's Temporal
Disaggregation

Model
Multi-site

MS Model with
parameter uncertaint

and data uncertainty

Table 8.4: Selected models in FYamework-2.

Modeling Fbamework-2:

Deterministic
Disaggregation

Model
Deterministic

Disaggregation
Model

Disaggregation
Model

Deterministic
Disaggregation

Model
Deterministic

Disaggregation
Model

the Filliben correlation coefficient statistic given in Section 4.2.4 was used to select the

best distribution. For a given series, the distribution with the highest Filliben statis-

tic is usually selected as transformation. However, in most cases, Filliben statistics

for two or more distributions were very close to each other. Having simila¡ Filliben

statistics does not mean that two distributions fit data equally well in all regions of

the distribution. Hence, beside the Filliben statistic, probability plots were visually

investigated one by one and compared with other candidate distributions. The ones

having a better fit in the lower tail (low flows) of the plot which is of most interest

in drought studies were selected. The selected marginal distributions for the 1912-98

data set are given in Table 8.5. The marginal distribution of monthly flows of the Ag-

gregated Basin Flows site is not included in Table 8.5 because they were not modeled

in the frameworks in Figure 8.2 and 8.3.
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3

1

3
3
4
3

3
1

3

Table 8.5: Selected marginal distributions for basin sites and key sites.

L912-98 Data Set:
JFM MJJASO

Agg. Basin F.
Churchill R.
Saskatchewan R.
Lake Wpg. PIAO
Winnipeg R.
Agg. Local F.
NRO12

NR34BRAII
NR56

1: Normal, 2: 2-Par. Lognor

8.5.2 ARMA-Type Model Selection

The selection of the order of ARMA models is commonlv based on the Akaike Infor-

mation Criterion (AIC) [Akai,ke, 1974]:

AIC : -2 ln[max( r)l + z(k)

ii4¡;;;',;;;
113323444421
1113 3 4 3 31131
43 4 3 3 3 3 4 4 3 2 2

331313113223
3 3 3 4 4 4 3 3 2 2 2 3

33 | 2131113 3 3
3 3 3 4 3 2 3 3 3 4 3 3

(8.1)

where [max(I¡)] is the maximum value of the likelihood function for a candidate model

with k parameters. Hence, the AIC takes into account the parsimony of a model. For

Autoregressive Moving Average [ARMA(p,q)] models, minimizing (S.1) is equivalent

to minimizing [^9øløs et al.,1988)

AIC@, a) : Tln(ô,2) + 2(p + q) (8.2)

where ? is the length of observed record and õ! is the estimate of the residual variance.

In this project, the best ARMA-type model was selected from among ARMA(I,1),
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Table 8.6: AIC values for annual ARMA-type model identification.

1912-98 Data Set:
AIC

Basin F. I Ch,r.. R. I Saslc. R. I PIAO I Wpe. R. I Local F.
IMA(1,1
AR(2)
AR(1)
ARIO)

-18.78
-78.74
-19.84
2184.3

-67.01
-67.00
-68.63
1964.1

-13.18
-13.18
-t4.84
1945.1

-r7.97
-r3.92
2030.4

97-11. -ð.itr
-8.01
-8.47

2015.2

-8.36
-8.27
-9.35

1842.9

AR(2), AR(l), and AR(O) models. The model that gave the minimum AIC according

io (8.2) was selected. As seen from Table 8.6, the AR(l) model is the best choice

between competing models for all sites.

8.6 Application of the 2-state Single-site MS Model

to Manitoba Hydro Data

In the drought frequency analysis, Fbamework-l generates aggregated annual flows

for the entire Manitoba Hydro basin using a single site annual stochastic time series

model. In this section, the application of the single site MS model for Manitoba

Hydro along with some implementation issues of this model is presented. The MS

model identification and parameter uncertainty are also explained in this section.

To determine the order of the MS model for the Aggregated Basin Flows and the five

basin sites, the BIC described in Section 5.6 was employed. More specifically, models

of order 2, 3, and 4 were considered. Models with five states or more were considered of

little interest because of the high number of parameters. The corresponding BIC values

for each data set are given in Table 8.7. In the case of the Churchill River 1912-98 data,
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States (M d¡'t Basin F. I Chur. R. I Sask. R. I PIAO I WpS. R. I Local F.

3
4

ö
T2

20

590.2
594.7
604.2

605.2
603.9
612.3

602.3
609.3
620.6

644.5
651.9
664.3

638.9
645.3
649.8

565.1
571.6
580.5

Table 8.7: BIC values for MS Model identification.

19L2-98 Data Set:

1930-98 Data Set:

States (M d'¡a Basin F. I Chur. R. I Sask. R. I PIAO | \Mps. R. I Local F.
,
3
4

0
L2

20

4( r.4
477.4
490.6

390.6
395.5
403.5

377.8
384.2
393.2

418.9
426.6
438.1

475.9
477.1
423.3

354.5
362.0
372.7

a 3-state model appears to be the best choice, while for the other sites, the 2-state

process wins the model comparison for all data sets. However, when the 1930-98 data

set is considered, the 2-state process appears to be the best choice for all sites. Since

only the 1930-98 period of the Churchill River is actually observed, a 2-state model

was selected for all basin sites for all data sets. In the case of annual runoff, s¿ : 1

represents a dry state (relative to long-term annual mean) and s¿ :2 a, øeú state. For

the 2-state MS model, the unknown parameter vector is 0 : (Qr,prr,prr, þt,ltr2,ot,oz).

In order to start the iteration for parameter estimation, initial parameters are

needed. For the 2-state MS model, the observed data Q7 rvere compared with the

Iong term annual mean @ to obtain the two data sets, Qs, for state 1 and Qs, for

state2. Specifically if the observed data in year t is less thanQ, it is considered as

belonging to Qs' otherwise to Qsr. The initial population parameters p,¿ and o¿, for

'i : I,2, are then estimated from these data sets.

The initial elements of the transition probabiliiy matrix can also be obtained from
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Q7. Let n¿¡ denote the number of moves from state 'd to state j, and n¿ denote the

length of Qs,. In this case, the empirical transition probability is p¿j: n¿¡fn¿. Once

pp and p21 ãre known, the remaining elements of the transition probability matrix, P,

can be calculated æ ?rr - 1 - pp and pzz: L - prt.

For a 2-state MS model, there are two initial probabilities, 0r and p2, but only one

of them needs to be estimated because Qt : I - p2. Since this parameter converges

very quickly, it can be set to Ø: Lf2.

Once the initial parameters are selected, the Ml-estimates of the model parameters

can be calculated using the EM algorithm as explained in Section 5.4.

After estimation of the parameter vector 0, the streamflow sequences can be sim-

ulated in two steps. First, the state time series is simulated by a Markovian process

s¿ls¿-r - Markovian(4, P) (8.3)

Once the state sequence is known, the streamflow variable can be simulated from

Qt-

The single-site 2-state MS model is applied to the five basin sites in Manitoba

Hydro's system as well as to the Aggregated Basin Flows site. The objective is to

investigate the evidence of a 2-state persistence structure in the observed annual runoff

of Manitoba Hvdro.

if

if
{*n',',',,,":,',

s¿:1

&:2
(8.4)
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Table 8.8: Estimated Ml-parameters and associated model properties of the single-site
2-state MS model (Annual runoff in cfs).

L912-98 Data Set:
A
Basin Flows

107,090
L37,760

Ol
o2

77

19,632

ltt
ltz

Ptz
Pzt

0.1160
0.1628

11

118,950

(23,589

0.2510
(0.3076

0.2953
0.4712
0.2130

(0.1431)
The observed values are

Maximum likelihood estimates of the MS model for the 1912-98 record are obtained

by means of the EM-algorithm and are reported in Table 8.8, along with selected

statistics of the observed data.

A number of characteristics of the MS model are of interest. Many of these ca¡r

be calculated analytically using the various formulas provided in Section 5.3. First of

all, the model should adequately reproduce the marginal distribution of runoff. In the

2-state MS model, the marginal distribution is a mixture of two normal distributions.

The resulting pdf and probability plot of the annual Aggregated Basin Flows are

shown in Figure 8.4. As seen from the probability plot, the marginal distribution of

the Aggregated Basin site is very well preserved. Appendix E contains probability

plots of the five basin sites.
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25,877
37,874

5,462
7,274

0.1876
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0.1726
0.3010
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Figure 8.4: Annual Aggregated Basin Flows of Manitoba Hydro's system. a) Marginal
probability density function of MS model. b) Normal probability plot of observed annual
flows and fitted MS model
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Figure 8.5: State probabilities and regime shifts for the mean annual Aggregated Basin
Flows.
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First, second, and third order moments are reported in Table 8.8 for all sites. There

are some minor discrepancies between observed and modeled moments, but overall

the reproduction of moments is good, as one would expect based on the visually good

reproduction of the marginal distribution.

It is of interest to look at the estimated state probability sequences, Pr{s¿ : ¿lQr},

foyi : I,2, and t : 1,2, . . . ,?. Figure 8.5 shows the state probabilities and the mean

Ievel associated with the most probable state for the annual Aggregated Basin Flows.

At all sites, the state probabilities are very well defined, that is, most of the state

probabilities are either close to zero or one (see Appendix F).

Based on the tra¡rsition probabilities given in Table 8.8, it is possible to determine

the average duration of each regime. For example, for the Aggregated Basin Flows,

the dry regime has an expected duration of. L/pp È 9 years, and the wet regime has

an expected duration of Lfp21 È 6 years.

Figure 8.6 shows the autocorrelation function of a 2-state MS model and the con-

ventional AR(l) fitted directly to the data. In this particular example, the observed

short-term (lag-l) correlation is not well captured by the MS model. On the other

hand, an AR(l) model preserves very well the first autocorrelation coefficient. For

higher lags, the scenario is reversed. Beyond lag-2, the AR(l) model considerably

underestimates the observed autocorrelation whereas the MS model does a more rea-

sonable job in preserving the observed autocorrelation. If the interest is multi-year

droughts with typical durations greater than two years, then the MS-model may seem

a more prudent (conservative) choice.
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Aggregated Basin Flows
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Figure 8.6: Aggregated Annual Basin Flows. Observed and modeled autocorrelation func­
tion.

As mentioned in Section 5.3.4, an M -state MS model has the same autocorrela-

tion structure as an ARMA(M -1, M -1) model. Therefore, the functional form of

autocorrelation of the 2-state MS model considered here is equivalent to that of an

ARMA(l,l) model. In Appendix G, the autocorrelation function for the 2-state MS

model and AR(l) and ARMA(l,l) models are compared for all sites.

8.6.1 Incorporating Parameter Uncertainty

In Section 5.7, the incorporation of parameter uncertainty was developed for the M-

state MS model. In this section, the specific case of M = 2 case will be considered.

Given initial parameters, the entire state sequence will be simulated first using Chib's

method.
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For M : 2, the Multinomial likelihood function of the transition probabilities in

(5.59) reduces to the Binomial function

t(Srlpu¡) x (7tu)@ei) 7L - prr)n;-n;i (8 5)

and the Dirichlet prior distribution in (5.60) becomes the Beta distribution

P(P¿¡) o (Pu¡)@-') (I -'P¿)(P-L)

P¿i - Beta(o,þ)

n@qls"¡ x (pnr)(nt'i+o-1)(1 - 'p' '¡(nt-n't¡+0-r)

pqlST - Beta (a i n¿¡, 0 + nu - nu¡)

(8.6)

(8.7)

where o and B are parameters of the prior distribution. For a diffuse prior distribution,

a: 0: 1. Using (8.5) and (8.6), the updated posterior distribution becomes a Beta

distribution

(8 8)

(8.e)

For the 2-state single-site MS model, the k'th iteration of the Gibbs sampler pro-
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ceeds as follows:

sf)

pl?lsf)

pl?tsf)

("1)(o)lQ'

p [Sr I lt(r-t),o(k-r),P(*-t), Qt]

Betalt + rfr) ,L + nf) - "\91

setulr+n9),t+nf) -"91L -^ --J

Inu - x' lrf) ,@1)(*)l

Ilo¿: þiuze

oïu: o?rr"

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

/rÍ*)l("?)(u), e, N ¡v lp*) , (o?)@ lK@l

@|¡{o1r, ñ Inu - x' lr#),þ1)@l

py)K"r)(k) ,q, N w lu*) ,@3)@ I o*)l

where nÍl),i,j:!,2, is the number of times that s¿ :i and, s¿+r : j, andn¿ is the

number of times that s¿ : i in the state sequence Sf). fne posterior parameters of

the Normal and Inv-Chi-square distribution, o*),"*), p*),þ",,)(o), are given in (5.63)-

(5.71).

For the hyperparameters (parameters of the prior distribution) of p,¿ and o|, the

following parameters are selected in order to obtain diffuse prior distributions:

Ko: I

uo:5

where þi¡rtø and of;*"u are the maximum likelihood estimates of state'd mean and

variance, respectively.
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As mentioned in Section 5.7, during the simulation of the state sequence Sf) in

the Gibbs sampler, it is possible to obtain less than two occurrences of one of the

states. In this case, since there is not enough data to simulate the parameters from

the posterior distribution of that state, they are directly simulated from their prior

distributions. Specifically

("?)'o' - Inu - x' ('0, oïn)

p:r)l @?)(fr) - ¡/(po ,,("7)T ' loo)

(8.18)

(8.1e)

(8.20)

(8.21)

(8.22)

(8.23)

However, since the prior distributions are diffuse, some constraints are applied in

order to minimize the simulation of highly unlikely parameters. For the state mean

and variance, the prior distribution is bounded as

("7)'o'

(k\
l.Li '

1ll{"?)(o)
AT

l

lv
t/ Ko

: 
l' l{"i),-,]

: 
luo, 

+ ("?)(r,l

2uo ,

- 

/T:
(us - 2)2(us - 4)" ut

where for the scaled inverse-x2-distribution

varlþÐ,0,] :
nl{"?)(-)l:ffifi,

When a heuristic method is

sampler, the algorithm is allowed

used for the initial parameter vector in the Gibbs

to sample for a certain number of iterations (warm
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Figure 8.7: 2-State MS model parameters simulated using Gibbs sampling of the posterior
distributions for Aggregated Basin Flows.
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Figure 8.9: Correlograms for the parameters of the 2-state MS model simulated from Gibbs
sampler for Aggregated Basin Flows.

up) in order to minimize the impact of the initial parameters. The convergence of

the chain can be tested using different methods. However, when the MLEs are used

as initial parameters, it was observed that according to the R statistic (Section 5.7),

this warm-up period is not necessary because the MLEs are close to the mode of the

marginal posterior distributions. Five thousand simulated model parameters and their

marginal posterior distributions for Aggregated Basin Flows are given in Figures 8.7

and 8.8, respectively.

As mentioned in Section 4.3.3, when parameter uncertainty is considered, each

streamflow sequence is simulated using a different set of model parameters. In MCMC

simulations, a significant autocorrelation can be observed in the chain. To avoid this

correlation, the chain can be thinned by taking every n'th valued in the chain. This
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is a common practice in MCMC simulations. In order to decide the thinning interval,

the correlograms of the 5000 simulated parameters for Aggregated Basin Flows are

examined. As seen from Figure 8.9, the autocorrelation is close to zero after lag 20

for all parameters. After examining several chains, it was decided to use every 30th

parameter sets for the simulation of synthetic flows.

8.7 Application of the 2-State Multi-site MS Model

to Manitoba Hydro Data

In Fïamework-2, annual flows at the five hydrological components of Manitoba Hydro's

system are generated using a multi-site stochastic time series models. The multi-

site extension of the MS model was described in Chapter 6 for the general M-state

case. In this section, the application of the 2-state multi-site MS model and the

corresponding parameter and data uncertainty procedures are presented for Manitoba

Hydro's system.

The basic assumption of the multi-site model is that a single state variable describes

the flows at all sites. In other words, the model does not allow one site to be in dry state

and another site in wet state in the same year. If the watersheds are geographically

close, this should not be an overly restrictive assumption since it is reasonable to

assume that the climate regime is regional in scope. For watersheds that do not belong

to the same climate region, this could be a somewhat restrictive assumption. However,

if individual state variables are applied to individual sites, it becomes impossible to
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preserve the cross-correlation between sites.

The multi-site application of the 2-state MS model for Manitoba Hydro's system

considers 5-dimensional vectors of obse I ttl ¡rr\ /
rvations, øt : (ø) ', ...,q;"' ) , for t: L,...,7.

In order to model the correlation between the five sites. it is assumed that the five

annual flows are generated from a multivariate normal distribution. After estimating

the model parameter set d: {Ø,ptz,pzt,l.Lt,l-tz,Er,Xz}, the state sequence can be

simulated as

s¿ls¿-r - Markovian(p, P) (8.24)

Given the state sequence at time ú, the streamflow variable can be simulated from

Qt:
5¿:1

st :2
(8.25)

The parameter estimation for the multi-site MS model was presented in Section

6.3. Table 8.9 gives the state means and standard deviations of the 2-state multi-site

MS model for the five sites along with first, second, and third order moments for the

I9L2-98 data set.

Figure 8.10 shows the associated marginal distribution for the Saskatchewan River

using the multi-site model. The fit is good, particularly in the left tail which is of

most interest in drought studies. Generally, it is possible to obtain a good distribution

fit with the multi-site MS model. The fit tends to be better if sites are considered

individually. However, even with the 5-site model employed here it is possible to

l*'r'''''
l',r', "',

if

if
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Table 8.9: ML-parameters and moments of the multi-site MS model of Manitoba Hydro
annual runoff (cfs) with transition probabilities P12 = 0.0506 and P21 = 0.0820.

1912-98 Data Set:
Churchill Saskatchewan Lake Wpg. Winnipeg Aggregated

River River PIAO River Local Flows

J.-LI 34130 17119 16720 29347 12761

J.-L2 37218 23588 20589 34345 13588
al 8159 3556 9548 8398 3466
a2 3464 6246 9422 8651 3028

J.-L 35309 19588 18197 31255 13077
(35554) (20101) (18504) (31651) (13142)

a 6927 5709 9684 8836 3330
(6555) (5968) (9740) (8924) (3316)

cs -0.3540 0.7305 -0.0037 0.0322 -0.0443
(-0.0935) (0.8058) (0.4110) (0.4122) (0.2891)

PI 0.0407 0.2629 0.0327 0.0655 0.0126
(0.7456) (0.4195) (0.4089) (0.3367) (0.3497)

P2 0.0353 0.2280 0.0283 0.0568 0.0110
(0.5269) (0.1251) (0.1472) (-0.0043) (0.0322)

The observed values are given III parentheses
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Figure 8.10: Saskatchewan River. Normal probability plot of observed annual flows and
fitted multi-site MS model.
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Figure 8.11: Saskatchewan River. Observed and multi-site MS model autocorrelation.

obtain good fits. The probability plots for all five sites of the multi-site MS model are

given in Appendix H.

Serial correlation plays a key role in determining drought frequencies and is one of

the main properties that a model should preserve. The autocorrelation function for the

Saskatchewan River mean annual flow is shown in Figure 8.11 along with the observed

autocorrelation function. Except for lag 1, the modeled autocorrelation somewhat

overestimates the observed autocorrelation. This again appears to be a consequence

of the simultaneous fitting of five sites, because if only the Saskatchewan River is

considered, the fit is much better. It is worth noting the substantial autocorrelation

of the MS model even at very high lags. This could have considerable impact on

the characteristics of droughts. The long-term autocorrelation is partly due to the

considerable persistence of the Markov Chain and partly due to the difference in mean

levels. For some of the other sites where the difference in the estimated mean levels
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Table 8.L0: Modeled and observed cross-correlation of Manitoba Hydro annual runoff (cfs).
Parameters are estimated using the multi-site MS model The observed cross-correlations
are given in parenthesis.

1912-98 Data Set:
Aggregated
Local Flows

0.7774
0.1586
0.1820

River (0.1

Lake Wpg.
PIAO

0.6981

rnmpeg
River

Local Flows

is modest, the autocorrelation function tends to die out much faster. As seen from

Table 8.9, the simultaneous fitting of the five sites considerably underestimates the

observed lag-l and lag-2 autocorrelations for some of the sites. The comparison of the

autocorrelation functions for the single-site MS model, the multi-site MS model, and

the MS disaggregation model for the five sites are given in Appendix I.

It is of practical interest to be able to calculate the overall covariance of. q¿, given

information about the covariance matrix for each state. The calculation of the covari-

ance matrix is described in Section 6.4. The crosscovariance matrix of several sites

can be constructed by calculating the covariance between all pairs of sites and can be

standardized to give the crosscorrelation matrix. The crosscorrelations of the multi-

site MS model are given in Table 8.10. It can be seen that the crosscorrelations are

very well preserved by the model. The preservation of crosscorrelation is an important

model property in drought studies.

River

Saskatchewan
River

Lake Wpg.
PIAO

Winnipeg
River

(-0.0217)

0.3315
0.2948)

The observed values are given in parentheses
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8.7.1 Incorporating Parameter and Data lJncertainty

For the purpose of incorporating parameter and data uncertainty in the drought fre.

quency analysis of Manitoba Hydro's system, the Gibbs sampler is applied to the

2-state, multi-site MS model. The methodology for the M-state MS model was de-

scribed in Section 6.5.

For the 2-state 5-site MS model, the k'th iteration of the Gibbs sampler proceeds

as follows:

s$)

p[?tsf)

p!i)ls$)

El*)lQ'

p[*)lrÍo), e'

E!*)le,

o ft, I pf-t), p¡-t),¡Í*-t),xt*-t), p(*-r)

Betalt + n9 ,1 + rufe) - "ßr)

Beta lt + nr?r), L + nf,) - "*,1
Inv-whish a* lufi) , (^;11)(È)]

ru Inv-Whish art luS) , (çt¡ttt1

, af-"] (8.26)

(8.27)

(8.28)

(8.2e)

(8.30)

(8.31)

(8.32)

where nÍl),¿, j : I,2, is the number of times that s¿ : i and s¿+1 : j, and n¿ is the

number of times that s¿ : 'i in the state sequence Sf). ns in the single-site case, a

state sequence is first simulated using Chip's method. The posterior parameters of the

multivariate Normal and Inv-Whishart distributionr, ofr),"*),p*),[tfr), are given in

(6.45).

In the application of the Gibbs sampler for a multi-site MS model, it was found
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that if the prior parameters for the state distributions are not carefully chosen, the

Gibbs sampler may not achieve convergence. Therefore, the selection of suitable prior

parameters was a challenge in the application.

As in the single-site case, the state mean vector and covariance matrix are simulated

from their prior distributions when the number of the data in a particular state in the

simulated state sequence ,S7 is less than or equal to the number of the sites. However,

in the multi-site application, sampling from prior distributions rarely occurs.

For the prior parameter, Thyer and, Kuczerø [2003a] suggested to use the data-

based empirical Bayes estimates defined as

l-lo : U

A - s;i",'o- 
(to-{112 )

(8.33)

(8.34)

where gl and ,5o6" ar€ the empirical mean vector and covariance matrix of the entire

observed data set Q7. Thyer and Kuczera [2003a] used the same prior parameters for

both states. In this project, the above hyperparameter values were initially employed.

However, using these prior parameters it was found that certain posterior distribu-

tions became bimodal. Therefore, the multivariate extension of the single-site prior

parameters given in (8.17) were used for each state. The multivariate parameters are

given by
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Æo: 1

uo :7

Itron: þ¿rtø

x. I

^0, 
: ?:-s ^ftÍ\uo- 2 )

(8.35)

where þ¿r"" and Ð¿*"u are the maximum likelihood estimates of the state 'd mean

vector and covariance matrix, respectively. The constants n6 and us were selected low

enough to obtain a diffuse proper prior distribution.

To consider data uncertainty in the Gibbs sampler, missing data values are simu-

Iated from a multivariate normal distribution and used to augment the observed data

to obtain the complete data series, Qg) : {qflr",Q*"}.The updated complete data

series is then used to obtain data series from state 1 and 2, Q1 and Qr, llnat are used

in the simulation of the state mean vector and covariance matrix. It was found that in

the Gibbs sampler, the number of data in a particular state usually was greater than

the number of sites which means that the model parameters can be simulated from

posterior distribution in the large majority of iterations.

As in the single-site MS model, a thinning interval of 30 was used. Examination of

the simulated parameter chains revealed that a warm up period is not necessary when

the MLEs are used as initial parameter values in the Gibbs sampler.

The simulated posterior distributions are given in Appendix J. There is a good

agreement between the maximum likelihood estimates and posterior distributions of

the model parameters.
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8.8 Application of the 2-State MS Disaggregation

Model

In the application of the spatial MSD model, the annual Aggregated Basin Flows q¿

generated using the single-site 2-state MS model (see Section 8.6) are disaggregated

into annual flows in five sites q¿ : (qÍt),...,qÍ'))'. It is assumed that lower level

variables are described by two climate regimes and have the same state probability

sequence as annual flows. This means that every site is in the same climate state in

a given year. In the disaggregation, the climate state s¿ is known from the single-site

2-state MS model. In the MSD model, the zero mean annual Aggregated Basin Flows

r¿ ma! be disaggregated into zero mean annual flows 3¡l¿ 
: (aÍt) ,. . . ,aÍu))' at the five

sites as

lo"' * B1e¿ if
nr: 

\
lA"' * Bzet if

Despite the loss of some flexibility, it was found that the marginal distributions are

well preserved for all five sites (see Appendix K). However, because of the constraint

that all sites must be at the same state in the same year, the mean levels are closer to

each other at all sites compared to the single-site models (see Appendices F and L). Es-

timated state means and standard deviations and overall means, standard deviations,

and coefficients of skewness are given in Table 8.11. Although there are some minor

discrepancies between observed and modeled moments, in most cases, the MSD model

preserves moments better than the multi-site and single-site MS model (Table 8.8 and

s¿:1

&:2
(8.36)
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Table 8.11: Ml-parameters and moments of the MS spatial disaggregation model of Man-
itoba Hydro annual runoff (cfs) estimated using Aggregated Basin Flows' state sequences
Pr{s¿ : ,lQr} for i : 1,2 and transition probabilities pr2:0.1160 and p21: 0.1628.

L9L2-98 Data Set:
Uhulchlll

River
Saskatchev/an

River
Lake Wpg.

PIAO
Winnipeg

River
Aggregated
Local Flows Basin Flows

ltt
Ir2

34070
37904

Iö4Ðð
22705

14158
25391

284',(8

36679
11920
15078

1

137760
Ol
O2

7046
5046

5282
5977

7063
9273

7359
8742

2750
3163

17027
19632

119850
(118e50)

23627
(23589

0.2510
0.3076

0.4712)
0.2130

(0.1431)
The observed values are given in

8.9). However, it is worth noting that the problems with the fitting of autocorrelation

functions are not overcome with the MSD model. As in the multi-site MS model. for

some of the sites, the MSD model considerably underestimates the observed lag-l and

lag-2 autocorrelations. The autocorrelation functions for the MSD model for the five

sites are given in Appendix I.

Using information about the covariance matrix for each state, the crosscorrelations

produced by the MSD model are given in Table 8.12. Although the multi-site MS

model preserves crosscorrelation quite well, the comparison of Tables 8.10 and 8.12

reveals that the MSD model is modeling crosscorrelation even better than the multi-

site MS model.

(20101)
31891

(31651) (r3142)

0.2183
0.4t22

0.1892
0.2891

0.4195)
0.1669

(0.7472
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Table 8.1-2: Modeled and observed cross-correlation of Manitoba Hydro annual runoff (cfs).
Parameters are estimated by disaggregating Aggregated Basin Flows using the MS disaggre-
gation model The observed cross-correlations are given in parentheses.

River
Lake Wpg.

PIAO

Local Flows

8.9 Verification of Annual Models

In stochastic modeling applications, it is important to verify that the computer imple-

mentation of the model is done correctlv. The verification of a stochastic streamflow

model typically involves a demonstration that statistics that should be preserved by

the model are indeed reproduced. In the present application, 100,000 years of flows

were generated using four modeling frameworks (MF-1.1, MF-1.3, MF-2.1, and MF-

2.3 in Tables 8.3 and 8.4) and generated statistics were compared with corresponding

observed statistics for all sites. Only models without parameter uncertainty vr'ere con-

sidered for validation. Since normally transformed data are used in the traditional

AR(l) model, the means, the standard deviations, the lag-l auto-correlations, and the

lag-O cross-correlations of observed and generated flows were compared before and af-

ter inverse transformation. As seen from Sections M.l and M.3 in Appendix M, there

is a good agreement between observed and simulated annual flows in both frameworks

lnnrpeg
River

1912-98 Data Set:
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involving AR-models. For the verification of the MS-type models (Model MF-1.3 and

MF-2.3), key statistics are compared with corresponding theoretical statistics given in

Tables 8.9, 8.10, 8.11, and 8.12. As in the case of the traditional AR(l) models, all

selected statistics are well preserved.

In the stochastic modeling, preservation of the marginal distributions is of partic-

ular interest as well. When traditional disaggregation models are used, the marginal

distributions may be distorted because of the application of the adjustment procedure.

The analysis of simulated annual flows reveals that the marginal distributions are well

preserved in all modeling frameworks. However, it is worth mentioning that the spa-

tial disaggregation employed in the model MF-l.1 introduces a minor distortion in the

upper tail of the annual Churchill River, Winnipeg River, and Local Flows which may

not be critical for the drought analysis.

One of the general criteria for the validation of models with parameter uncertainty

is to check if the estimated model parameters are located close to the mode of the

corresponding posterior distributions. The posterior distributions of the single-site

MS model parameters that is used in model MF-1.4 for the Aggregated Basin Flows

are given in Figure 8.8. The posterior distributions of the multi-site MS model that

are used in model MF-2.4 can be found in Appendix J. In all posterior distributions,

maximum likelihood estimates are close to the mode of the corresponding posterior

distribution. This indicates that the models have been correctly implemented.
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8.1-0 Energy Drought Flequency Analysis for Man-

itoba Hydro's System

The drought frequency analysis can be performed using any of the three drought

variables discussed in Chapter 3, namely duration, severity, and magnitude. However,

the magnitude of a drought event is a poor indicator of a drought for a hydropower

system because two drought events could have the same magnitude but their impact

could be very different in terms of power production capabilities. To describe the

impact of drought events, the duration and severity are used in the frequency analysis.

After the generation of synthetic monthly flows for Manitoba Hydro's system using

the nine stochastic modeling frameworks, drought severities and associated durations

were extracted from each synthetic series according to the definition of drought for

Manitoba Hydro (see Section 3.5).

In the design of engineering structures, the return period of extreme events such as

floods and droughts has been widely used. The return period can be defined in different

vvays. In this study, the return period is defined as the average elapsed time (years)

between the occurrence of specified drought events. In the case of annual floods, the

maximum flood in any given year can be assumed to be independent and identically

distributed with a known exceedance probability p",., a,îd the return period ? can be

calculated in a straightforward manner as ? : L/p"r". However, since droughts can

span several years, the return period of a given drought event cannot be computed in

the same way as for floods. In the case of droughts, the return period can be obtained
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as follows lSadeghi,pour and Dracup,1985; DeWi,ú, 1995]

.r- (8.37)

where r is the average cycle length of drought events which can be calculated as the

total number of flow years divided by the total number of drought events extracted.

The drought frequency analysis was performed using synthetic flows generated by

the nine modeling frameworks. A total of 1000 sequences of 1000 years synthetic flows

r,¡/ere generated using each modeling framework, and drought events (durations and

severities) were extracted from each sequence according to the definition of drought

(see Chapter 3). The extracted drought events obtained from the 1000 sequences v/ere

then combined and sorted from the highest (most severe) event to the lowest (least

severe) event. The exceedance probabilities were calculated using the Weibull plotting

position formula, peøc : ml(n * 1), where rn is the order number of the event and n is

the total number of events. Linear interpolation is employed for the calculation of the

exceedance probability of a given drought severity. For each modeling framework, the

average cycle length r in years is calculated as the total number of years (1,000,000)

divided by the total number of drought events obtained.

8.10.1 FYequency Analysis Results and Discussion

The result of the stochastic drought analysis is presented in the form of frequency

curves. The simulated energy drought frequency curves based on the LgI2-98 data set

T

Peøc
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Drought Frequency Curves (1912-98)
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Figure 8.12: Drought frequency curves obtained from all modeling frameworks (1912-98).
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Drought Frequency Curves (1930-98)
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Figure 8.13: Drought frequency curves obtained from all modeling frameworks (1930-98).
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Table 8.1-3: Statistics of calculated return periods of given drought severities using model
MF-1.1. The statistics are base on hundred repeated analysis under identical conditions.

Standard Deviation
Median

Maximum
Minimum

3218.7
175.6

3213.5
3739
2842

are given in Figure 8.12. It should be noted that minor variations in the estimated

frequency curves are observed from one simulation to another. In order to quantify

this variation, 100 frequency curves were simulated using the MF-1.1 model (1912-98

data set) and the return period of certain drought severities was calculated from each

frequency curve. The statistics of the calculated return periods, given in Table 8.13,

show that there is no significant variation between simulations. Although model MF-

1.1 is the simplest and therefore fastest model among others, it takes approximately

10 days to simulate 100 frequency curves using a 2.8 GHz Pentium 4 processor com-

puter. Therefore the quantification of the variation in frequency curves is not done

for the other models. It is assumed that the variation obtained from model MF-1.1 is

representative of the variation for all models.

Figure 8.12 illustrates that in all cases, the inclusion of parameter uncertainty in

the annual model yields smaller return period for a given drought severity than when

using the corresponding annual model without parameter uncertainty. This is to be

expected. The effect of including parameter uncertainty is relatively more significant

when short records are used. Although the 1912-98 data set is relatively long, Figure

Drought Severity (G\Mh)
1000130001 5000 | 7000

0.53
63
64
62
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8.12 shows that when extreme drought events with return periods in excess of 100

years are considered, there is a significant impact of parameter uncertainty.

In addition to parameter uncertaint¡ Figure 8.12d illustrates the consideration of

missing data uncertainty in the multi-site MS model. It can be seen from this figure

that the consideration of missing data uncertainty significantly affects the results of

the frequency analysis. For example, in Figure 8.12d, the return period of a drought

event with a severity of 4000 GWh is approximately 600 years when model MF-2.4 is

used. This model considers only parameter uncertainty in the multi-site MS model.

However, the return period of the same event is 300 years according to model MF-2.5

which considers both parameter and data uncertainty in the same model.

The same drought frequency analysis was repeated using historical data from the

period 1930-98. The frequency curves for this data set are given in Figure 8.13. The

comparison of frequency curves for the periods 1912-98 and 1930-98 reveals that the

return period of a given drought severity decreases when the 1930-98 data set is used.

Since the percentage of missing data is smaller for the 1930-98 data set (compared to

1912-98), the impact of missing data uncertainty on the frequency analysis is also less

in the 1930-98 data set (Figure 8.13d).

The frequency curves for drought severity conditional upon drought duration are

analyzed for all modeling frameworks and data sets. The conditional frequency curves

that are obtained using model MF-2.5 are given in Figure 8.14a. For example, the

return period of a 2000 GWh drought severity with duration less than or equal to 2

years can be obtained from the figure as approximately 300 years. The conditional
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MF-2.5 Severity-Duration-Frequency Curves (1912-98)
10000

- Drought duration 1 year and less

9000 - Drought duration 2 years and less
- Drought duration 3 years and less

8000
- Drought duration 4 years and less
- Drought duration 5 years and less

7000
- Drought duration 6 years and less

:2
~ (a)
~ 6000 ..
~
.~

5000>
Q)

en
:E 40000>
~

0

0 3000

Return Period (year)

: 1000-yr

500 -yr

200-yr

100-yr

50-yr

25-yr

4

Drought Duration (year) and less

5 6

Figure 8.14: Conditional drought frequency curves obtained from MF-2.5 (1912-98).
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Table 8.L4: Return Period (7) of critical drought (3309 GWh) using all modeling frame-
works and data sets.

frequency curves can also be plotted as Severity-Duration-Frequency curves as in Fig-

ure 8.14b. The conditional frequency curves for other modeling frameworks are given

in Appendix N for both data sets.

Manitoba Hydro has an interest in determining the frequency of the critical drought

of 3309 GWh (see Table 3.3). The return period of the critical drought, calculated using

each modeling framework and each data set, is given in Table 8.14. Several observations

can be made. Models MF-1.1 and MF-1.2, which differ only in the consideration of

parameter uncertainty in the single-site AR(l) model, suggest that the consideration

of parameter uncertainty in the modeling of Aggregated Basin Flows has significant

impact on the estimation of the return period of the critical drought. When the

uncertainty in the parameters of the single-site AR(l) model is considered, the return

period changes from 360 to 200 years for the 1912-98 data set, and from 170 to 120

years for the 1930-98 data set. In the MF-2.1 and MF-2.2 models, which differ only in

the consideration of parameter uncertainty in the multisite AR(l) model, the impact

of parameter uncertainty is relatively small.

In the application of the MS model, there is a significant difference between the re-

sults of the two frameworks. Model MF-1.3 generates annual Aggregated Basin Flows

L94

Flamework-1 Flamework-2
MF-1.1 MF-1.2 | Mr'-r.S MF-1.4 ll Ur'-Z.r MF-2.2 | Vlr'-Z.S MF-2.4 MF-2.5

T"rr"rr-n"
7"..^-^ ^-

360 200
t70 720

1040

340
2380
740

480 420
230 190

540 370 200
430 270 190
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using a single-site MS model and disaggregates them into annual flows at five sites.

Model MF-2.3 generates annual flows at five sites using the multi-site MS model.

As seen from Tables 8.9 and 8.11, there are significant differences between model

parameters in the two models MF-1.3 and MF-2.3. Although consideration of param-

eter uncertainty significantly reduces the calculated return period in model MF-l.4,

it is still not a realistic value in comparison with the other modeling frameworks. In

Framework-l, the modeling of Aggregated Basin Flows influences the results of the fre-

quency analysis. The difference between models MF-1.3 and MF-2.3 may be explained

by their persistence structure that can be obtained using the estimated transition prob-

abilities. In the MF-1.3 model, the probability of moving from state 1 (dry) to state

2 (wet) is estimated as pp : 0.I2, and moving from state 2 to state 1 is estimated as

p2t:0.16. These estimates suggest that the dry regime has an expected duration of

around eight years and the wet regime has an expected duration of around six years.

In the MF-2.3 model, the persistence structure is stronger with expected durations of

around 20 years for the dry regime and 13 years for the wet regime.

In order to identify the source of the difference in the frequency analysis results

between the AR(l) model and the MS model in Framework-l, the single-site MS model

and the AR(l) model for Aggregated Basin Flows is further investigated by a drought

frequency of annual streamflow (as opposed to energy flows). In streamflow analysis,

a multi-year drought may be defined as a period of consecutive years during which

the annual streamflow is continuously below the long-term mean annual runoff. The

period of time for which the annual flow is below the long-term mean annual runoff
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Figure 8.15: Aggregated Basin Flows (1912-98). Streamflow drought frequency curves
obtained using the Modeling Framework-I.

is defined as the drought duration and the cumulative deficit of streamflow during a

drought is defined as the drought severity.

According to above definition of streamflow drought, 15 drought events were ex-

tracted from the 1912-98 record of Aggregated Basin Flows (see Figure 5.2). The

critical drought is observed from 1936 to 1944 with a severity of 2,581,000 cfs-years.

This critical streamflow drought corresponds to the critical energy drought for Mani-

toba Hydro's system observed between 1938 and 1942 (see Table 3.3). The frequency

curves obtained using 500 sequences of 1000-yr synthetic flows generated using the

AR(l) and the MS models with and without parameter uncertainty are given in Fig-

ure 8.15. Considering parameter uncertainty, Figure 8.15 suggests that the return

period of the critical drought is approximately 130 years with the AR(l) model and
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approximately 290 yea,rs with the MS model. The difference in results increases with

increasing drought severities. For example, the return period of a severity of 4,000,000

cfs-years is approximately 400 years with the AR(l) model and approximately 1300

years with the MS model. In this particular application, although the MS model pre-

serves all important statistics well, it generates less severe extended low flows than the

AR(1) model for Aggregated Basin Flows.

In the energy drought frequency analysis, it was found that the modeling of Ag-

gregated Basin Flows dominates the results of the drought frequency analysis in

Fbamework-l for both the AR(l) and the MS models. Therefore, for energy drought

frequency analysis Flamework-l may not be the best choice of framework. In addi-

tion, the structure of Framework-l does not allow one to incorporate missing data

uncertainty.
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Chapter I

Conclusions

The overall objective of this project was to develop a comprehensive probabilistic

framework for energy drought frequency analysis by considering model, parameter,

and missing data uncertainty. In this last chapter, several conclusions of the project

are presented.

The MS models are applied to Manitoba Hydro's system along with traditional

models in the assessment of energy drought frequency. The importance of model, pa-

rameter, and missing data uncertainties rü/as quantified by comparing the results of

the comprehensive energy drought frequency analysis with and without considering

uncertainties. Two modeling frameworks r'¡/ere employed in the generation of synthetic

flows. In one framework, a single series of all inflow sources is modeled first and then

disaggregated spatially to the five basin sites representing the major inflow compo-

nents of Manitoba Hydro's system. In the second framework, the five basin sites are

simulated simultaneously with a multivariate stochastic model. Although both frame-
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works preserve the important statistical properties of observed flows well, the results of

the drought frequency analysis differ significantly from each other. Since the modeling

of Aggregated Basin Flows, which is an artificial site, dominates the results of the

drought frequency analysis in Framework-l, Fhamework-2 may be the better choice of

framework for Manitoba Hydro's system.

The impact of parameter uncertainty may in some cases be more important than

the choice of model fStedi,nger and Taylor, 1982b1. This is especially true when the ob-

served record is short and/or the number of parameters to be estimated is high. In such

circumstances, it becomes important to quantify parameter uncertainty. Although, the

1912-98 data set is relatively long, the frequency analysis shows a significant impact of

parameter and missing data uncertainty, especially when considering extreme drought

events which was one of the main objectives of this project.

The structure of the multi-site MS model allows one to incorporate the uncertainty

associated with missing data to ensure all information in the basin is utilized. The

drought frequency analysis results reveal that different conclusions are obtained when

missing data uncertainty is introduced in the multi-site MS model.

From a physical point of view, the regime switching property of MS models may

have some justification. A number of well documented hydrologic time series exhibit

regimelike behavior that in many cases can be associated with oceanic circulation

patterns.

A major componenent of the research has been to study the performance of MS

models when applied to hydrological data series. The structure of the MS model is

199



simple and easy to understand. Low order models are also relatively parsimonious in

terms of parameters. A 2-state single-site model has six independent parameters to be

estimated. Model parameters can be estimated efficiently by the method of maximum

likelihood.

AII basic statistical properties of the model can be derived analytically from the

estimated parameters. This is useful for understanding model characteristics and for

quick model evaluation.

The marginal distribution of data generated from an M-state MS model is a mix-

ture of M normal distributions. Although mixture densities are known to be quite

flexible, the marginal distribution associated with MS models may give a poor fit to

the observed data compared to conventional transformation such as Box-Cox. It was

found that if the sole objective is to fit a mixture density to the observed data, then a

good agreement can usually be achieved. However, when the estimation includes the

Markov chain parameters, some of the flexibility is lost and a good fit apparently is

not always possible. This may be a limitation of MS models. It should be empha-

sized however that in many cases the MS model provides a good representation of the

marginal distribution of data.

As it is the case with most model comparisons, the relative merits of different

models depend on the data used in the study. For the data used in this study, the

marginal distributions were well represented by the MS model. However, the multi-site

version of the MS model produced significantly weaker autocorrelation than the single-

site model. A general finding is that single-site MS models often result in stronger
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autocorrelations at higher lags than traditional low-order ARMA-type models. This

may be important in drought studies where one would expect autocorrelation to have

impact on simulated statistics and where a model with strong autocorrelation would

be considered a conservative choice. In multi-site applications, the MS model should

be used with caution especially when the basin is large and not homogeneous. In such

cases, the preservation of the autocorrelation may be seriously compromised.

Bayesian inference was used to incorporate parameter uncertainty into the single-

site and multi-site MS models. Since analytical expressions for posterior distributions

are not available for the MS model, a Markov chain Monte Carlo method known as the

Gibbs sampler is used to simulate model parameters from the posterior distributions.

In all applications, a good agreement was observed between the posterior distribution

of a given parameter and its corresponding maximum likelihood estimate.

In the MS model, the assumption that all sites are in the same state at the same

time may not be justified when the basin is large and consists of nonhomogeneous

sub-basins. This is indeed a questionable assumption for Manitoba Hydro's system

which is large and diverse. In the single.site MS model estimation (see Table 8.8),

transition probabilities suggest average duration of dry spells from 5 to 11 years for

the five sites. However, wet spell durations for the Churchill River differ from the

other four sites with an average of 33 years compared to 3-8 years for the remaining

sites.

While there is no basis for concluding that the MS model is generally superior to

the AR(l) model, there are cases where the model is quite appropriate and in fact may
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have some physical justification, for example, when a particular hydrologic variable is

known to be influenced by low-frequency oceanic circulations such as ENSO, PDO,

and NAO.

The MS disaggregation (MSD) model proposed in Chapter 7 is a new contribution

to the hydrology literature. The main advantage of the MSD model is that it preserves

the additivity property without distorting the marginal distributions of lower level

flows by adjustments. This is a common problem in the application of traditional

disaggregation models.

There are several possible extensions to the MS model considered in this project.

In cases where the autocorrelation structure of the data is not well represented by

the simple MS model, one could assume that the flows within a given state spell

are autocorrelated, perhaps in the form of a simple first-order autoregression. This

will add considerable complexity to the model, but also improve the preservation of

autocorrelation.

Although the marginal distributions associated with the MS model give good fits

to Manitoba Hydro's data, it may be possible to improve the fii further by considering

other distributions than the normal as components of the model. For example, it

might be possible to obtain a better fit if a combinations of lognormal distributions

were used. Although not a problem in this study, the simulation of negative flows

could happen in other situations. In this case, truncated normal distributions could

be a solution.

In large basins, the assumption of a common state sequence for all sites is too
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restrictive. An alternative modeling approach could be developed for spatial variations

in the state. However, this would significantly increase the number of parameters.

The author believes that this thesis has made an original contribution to the hy-

drology literature. The MS model that has recently gained popularity in stochastic

hydrology has been investigated further by defining its theoretical properties for an ar-

bitrary number of states, by finding solutions for the implementation of the estimation

procedures, by developing the MS disaggregation model, and by applying the model

to Manitoba Hydro's system in the assessment of energy drought frequency analysis

along with traditional models.
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Appendix A

Evidence of Long-term Cycles in

Manitoba Hydro's Annual

Streamflow

4.1- Introduction

During the preliminary analysis, Manitoba Hydro's annual streamflow data were smoothed

using a 5-yr running average. As seen from following plots, there is evidence of ex-

tended long-term wet and dry cycles in all five sites and aggregated basin flows. This

evidence motivated the choice of a 2-state Markov-Switching model in this project.
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Figure A.I: Churchill River annual flows, 1912-98. Normalized anomalies and 5-yr running
average.
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Figure A.2: Saskatchewan River annual flows, 1912-98. Normalized anomalies and 5-yr
running average.
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Figure A.3: Lake Winnipeg annual PIAO, 1912-98. Normalized anomalies and 5-yr running
average.
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Figure A.4: Winnipeg River annual flows, 1912-98. Normalized anomalies and 5-yr running
average.
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Figure A.5: Aggregated annual Local Flows, 1912-98. Normalized anomalies and 5-yr
running average.
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Figure A.6: Aggregated annual Basin Flows, 1912-98. Normalized anomalies and 5-yr
running average.
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Appendix B

Probability l)ensity Rrnctions and

Normal Probability Plots for the

Niagara River Monthly Flows

8.1 Introduction

In the MSD model, proposed in Chapter 7, the parameters of the marginal distributions

of the lower-level variables are estimated conditional on the higher-level variable's state

probability sequences. Therefore the goodness of fit of the marginal distributions of the

monthly flows must be tested before application of the model. As illustrated in Figure

8.1 to Figure 8.12, good fits of the marginal distributions of all observed monthly

flows of the Niagara River were obtained by the MSD model.
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Figure B.l: January flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.3: March flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.4: April flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.

222



B.!. INTRODUCTION

X 10-4 Niagara River - May
6

(a) - Mixture Distribution

~
5 - State 1 Distribution

'iii - - State 2 Distribution
c 4 /Q)

0 ,-

~ 3
/

/

:0 /

113 2 /
.0e /
a..

0
4000 4500 5000 5500 6000 6500 7000 7500 8000

Av. Monthly Runoff (ntis)

800075007000

1

- - Mixture Distribution I
x Observed Runoff r

5500 6000 6500

Av. Monthly Runoff (ntis)

50004500

0.999 (b)
0.99

~ 0.90
:0 0.70
~ 0.50
o 0.30
a: 0.10

0.01
0.001 v ­

L..-_----l.-__---l.--_------L__-----l..-__.l-_..::::I::====::r::::===..J
4000

Figure B.5: May flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.6: June flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.7: July flows of the Niagara River. a) Marginal probability density function. b)
Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.B: August flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Niagara River - September

- Mixture Distribution
- State 1 Distribution

- - State 2 Distribution

X 10-4
8 (a)

~ 6"iii
c
Q)

0

g 4
:0
~
.n
E 2
a..

0
4000 4500

/

/
/

,/
/ ,

/
/

/

5000 5500 6000 6500

Av. Monthly Runoff (rTf/s)

7000 7500

75007000

1

- - Mixture Distribution I
x Observed Runoff r

5000 5500 6000 6500

Av. Monthly Runoff (rTf/s)

4500

0.999 (b)
0.99

g 0.90
:0 0.70

~ 8:g8
a.. 0.10

0.01
0.001 _ - ­

L-_----l..-__-l-__L--_----L__-c===::===::r:=::==::::::J
4000

Figure B.9: September flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.lO: October flows of the Niagara River. a) Marginal probability density function.
b) Normal probability plot of observed flows and fitted mixture distribution.
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Niagara River - November
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Figure B.II: November flows of the Niagara River. a) Marginal probability density func­
tion. b) Normal probability plot of observed flows and fitted mixture distribution.
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Figure B.12: December flows of the Niagara River. a) Marginal probability density func­
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Appendix C

Comparison of Simulated and

Observed Cross-Correlations for

the Niagara River Monthly Flows

C.1 Introduction

In Chapter 7, the MSD model and the VSD model are compared using simulated and

observed lag-O cross-correlation coefficients. Figures C.l - C.Iz illustrate the correla-

tion between all monthlv variables. and between all monthlv and annual variables. On

the z-axis, numbers 1,2,. .. ,12 represent the months January (1), February (2), ...,

December (12), and A represents annual flow. For example, 1-A indicates the corre-

Iation between January flows and annual flows, 1-2 indicates the correlation between

January and February flows, and so on.
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Niagara River Cross-Correlations (January)
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Figure C.l: Simulated and observed cross-correlations for January flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Figure C.2: Simulated and observed cross-correlations for February flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Niagara RiveI' Cross-Correlations (March)
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Figure C.3: Simulated and observed cross-correlations for March flows for the Niagara
River . a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.

Niagara River Cross-Correlations (April)
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Figure C.4: Simulated and observed cross-correlations for April flows for the Niagara River.
a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*) represents
the observed statistic.
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Niagara River Cross-Correlations (May)
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Figure C.5: Simulated and observed cross-correlations for May flows for the Niagara River.
a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*) represents
the observed statistic.

Niagara River Cross-Correlations (June)

C T T f t ~
.~ 0.9 T

S i E!3 ~:E -

B t $Q) ""I I

t8 0.8

B B 1 tc:

t t.g 0.7
co I 1 +a;

odel t~ 0.6
0

(a)VSD
0.5

6-A 6-1 6-2 6-3 6-4 6-5 6-7 6-8 6-9 6-10 6-11 6-12

C

* T T t ~
- +

.~ 0.9 - ES t
E!J ~ -

:E T
..,
~ t ~Q)

~ t t8 0.8
~ t I

c: I + t2 0.7 I tco ~
a; I.-
~ 0.6 ~ $

+0
~odelt +

0.5
(b) MSD t
6-A 6-1 6-2 6-3 6-4 6-5 6-7 6-8 6-9 6-10 6-11 6-12

Figure C.6: Simulated and observed cross-correlations for June flows for the Niagara River.
a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*) represents
the observed statistic.
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Niagara River Cross-Correlations (July)
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Figure C.1: Simulated and observed cross-correlations for July flows for the Niagara River.
a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*) represents
the observed statistic.

Niagara River Cross-Correlations (August)
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Figure C.8: Simulated and observed cross-correlations for August flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Niagara River Cross-Correlations (September)..
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Figure C.9: Simulated and observed cross-correlations for September flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Figure C.IO: Simulated and observed cross-correlations for October flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Niagara River Cross-Correlations (November)
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Figure C.II: Simulated and observed cross-correlations for November flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Figure C.12: Simulated and observed cross-correlations for December flows for the Niagara
River. a) Simulated using VSD Model. b) Simulated using MSD Model. The asterisk (*)
represents the observed statistic.
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Appendix D

Probability Plots of the Simulated

Niagara River Monthly Flows

D.1- Introduction

To evaluate the modeling of the marginal distributions by the MSD and the VSD

models, the probability plot of 10,000 simulated flows are examined. Figures D.l

- D.Lz compare normal probability plots of simulated monthly flows using the two

models. The marginal distribution of the MSD model is a mixture of two normals. In

the VSD model, the Box-Cox distribution was suggested by the Filliben correlation

coefficient statistic for all months. In most cases, the tails of the modeled marginal

distribution were not well reproduced by the VSD model, whereas the MSD model

performs relatively well.
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Niagara River - January
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Figure D.l: Simulated January flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Figure D.2: Simulated February flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Niagara River - March
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Figure D.3: Simulated March flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Figure D.4: Simulated April flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Niagara River - May
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Figure D.5: Simulated May flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Figure D.6: Simulated June flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Niagara River - July

0.999 (a)

0.99

~0.90

B 0.70
~ 0.50
0 0.30

Q: 0.10

0.01
0.001 .;..-. .-r

X

- - Box-Cox (A. =2.4)
x Simulated Runoff - VSD Model

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Av. Monthly Runoff (ntis)

0.999 (b)

0.99

~0.90

B0.70
~ 0.50
0 0.30
Q: 0.10

0.01
0.001

x"><

x

- - Mixture Distribution
x Simulated Runoff - MSD Model

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
Av. Monthly Runoff (ntis)

Figure D.7: Simulated July flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Figure D.8: Simulated August flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Niagara River - September
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Figure D.9: Simulated September flows of the Niagara River using a) VSD Model. b) MSD
Model.
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Figure D.lO: Simulated October flows of the Niagara River using a) VSD Model. b) MSD
Model.
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MSD Model.
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Figure D.12: Simulated December flows of the Niagara River using a) VSD Model. b)
MSD Model.
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Appendix E

The Single-site 2-state MS Model:

Fitted Marginal Distributions

E.1- Introduction

After estimating the model parameters for the five sites of Manitoba Hydro's system

individually, the goodness-of-fit of the marginal distributions produced by ihe single-

site 2-state MS model can be assessed visually by probability plots (Figures 8.1-8.6.

Although the data are not transformed into Normal in the MS model, the model

appears to fit the data very well at all sites.
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Figure E.1: Annual flows of the Churchill River at Southern Indian Lake. a) Marginal
probability density function of MS model. b) Normal probability plot of observed annual
flows and fitted MS model
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Figure E.2: Annual flows of the Saskatchewan River at Grand Rapids. a) Marginal prob­
ability density function of MS model. b) Normal probability plot of observed annual flows
and fitted MS model
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Appendix F

The Single-site 2-state MS Model:

State Probabilities and Regime

Changes in Observed Streamflow

F.1 Introduction

To appreciate the usefulness of a 2-state MS model for Manitoba Hydro's data, it is

of interest to look at the estimated state probability sequences, Pr{s¿ : ilQr}, fot

'i: I,2, andt:1,2,...,?. Figures F.1- F.5 illustrates the state probabilities and the

mean level associated with the most probable states. At all sites, the state probabilities

are very well defined, that is, most of the state probabilities are either close to zeto ot

one.
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Figure F .1: State probabilities and regime shifts for the Churchill River annual runoff.
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Figure F .5: State probabilities and regime shifts for the annual Aggregated Local Flows.
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Appendix G

The Single-site 2-state MS Model:

Autocorrelation Function

Comparison

G.L Introduction

It is of interest to examine and compare the autocorrelation function of the 2-state

MS model and the conventional AR(l) and ARMA(l,1) models (for more details see

Ala'ntu! and Rasmusserz [2005b]). Figures G.1-G.6 show the autocorrelation function

for the equivalent ARMA(I,1) model denoted ARMA(I,l)-MS (see Section 5.3.4 for

details). The result, obtained from the theoretical autocorrelation equations, confirms

that the autocorrelation structure of a 2-state MS-model can be exactly reproduced by

a properly selected ARMA(l,l) model. The following figures also show the autocor-
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Figure G.!: Churchill River. Observed and modeled autocorrelation functions.

relation function of ARMA(l,l) and AR(l) models fitted directly to the data by the

method of moments (ARMA(l,l)-MOM and AR(l)-MOM, respectively) and 95% sig-

nificance levels. At all sites, the observed short-term (lag-I) correlation is not captured

by the MS model. On the other hand, the AR(l)-MOM and ARMA(l,l)-MOM models

preserve very well the first and the first two autocorrelation coefficients, respectively.

For higher lags, the ARMA-type models in some cases considerably underestimate

the observed autocorrelation whereas the MS model does a more reasonable job in

preserving the observed autocorrelation.
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Appendix H

Multi-site MS Model Probability

Plots

H.1 Introduction

In the MS model, the agreement between the observed data and the fitted distributions

is assessed graphically using probability plots. Figures H.I-H.5 illustrate the associated

marginal distributions for the five sites using the 2-state multi-site MS model. When

sites are considered individually, the goodness-of-fit tends to be better, however, good

fits are obtained with five sites as well.
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Figure H.2: Saskatchewan River. Normal probability plot of observed annual flows and
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Figure H.4: Winnipeg River. Normal probability plot of observed annual flows and fitted
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Figure H.5: Aggregated Local Flows. Normal probability plot of observed annual flows
and fitted multi-site MS model.
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Appendix I

Autocorrelation Function

COlllparison of MS Models

1.1 Introduction

Figures 1.1-1.5 show the autocorrelation function for the single-site MS model, the

multi-site MS model, and the MS Disaggregation model along with the observed

autocorrelation function. The result, obtained from the theoretical autocorrelation

equations, confirms that the fit is much better when sites are considered individu­

ally compared to the simultaneous fitting of the five sites. For some of the sites, the

simultaneous fitting of the five sites considerably underestimates the observed auto­

correlation.
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Figure 1.5: Aggregated Local Flows. Observed and modeled autocorrelation functions.

261



Appendix J

The Multi-site 2-state MS Model:

Posterior Distributions

J.1 Introduction

The simulated posterior distributions of multi-site MS model parameters are shown in

the following sequence of figures. There is a good agreement between the maximum

likelihood estimates and the posterior distributions of the model parameters. The

ML-estimates are close to the mode of the posterior distributions.

262



J.1. INTRODUCTION

0.80.2 0.4 0.6
Transition Probability

0.5

0.80.2 0.4 0.6
Transition Probability

9 5

8
1- P121

4.5 1- P21 1
7 4

3.5
6

3
5

2.5
4

2

3
1.5

2

Figure J .1: Posterior distribution of transition probabilities for Multi-site MS model.

150005000 10000
State Standard Deviation

OC-- -----lIIIII_t----.....",.__---'

o4.5

X 10
4

43 3.5
State Mean

OC---__~-___lI__~~_----'

2.5

X 10-4
Churchill River_3

x10
8 1g g-J..l2 -°2

0.8
6

0.6

4

0.4

2
0.2

Figure J .2: Churchill River annual flows. Posterior distribution of state means and standard
deviations for Multi-site MS model.

263



J.l. INTRODUCTION

3.5

X 10
4

2 Stah~.~ean 3

X 10-4 Saskatchewar1~er

8 1.2g g-J.l2 - 0"2

6

0.8

4 0.6

0.4

2

0.2

Figure J .3: Saskatchewan River annual flows. Posterior distribution of state means and
standard deviations for Multi-site MS model.

State1Standard De1A?ttion 2
x 10

4

o~r6_---'------~... ---.J

0.5

2

3

2.5

0.5

1.5

3 3.5

X 10
4

state M~R1.5

2

x 10-4 Lake Winnipegx~~~
3r-------.-------,a--........----r-----.----. 4r--------.-----~-------,

I=~:I 35

0.5

2.5

1.5

Figure J .4: Lake Winnipeg PIAO. Posterior distribution of state means and standard
deviations for Multi-site MS model.

264



J.1. INTRODUCTION

o~rIL-------'-----::'W -----.J

0.5 State Sta~dard Deviatib·A5

0.5

4 4.5

X 10
4

~ate Me1iR
2.5

X 10-4
Winnipeg River-4

x10
3.5 4.5g g-J..l2

4
- (J23

3.5

2.5
3

2 2.5

1.5 2

1.5

0.5

Figure J .5: Winnipeg River annual flows. Posterior distribution of state means and stan­
dard deviations for Multi-site MS model.

0.2

0.6

0.4

0.8

1.6 1.8

x 10
4

1.2 State Mein
OL--......~_C------.._----:::::!lI __-------J

1

Aggregated Local-Fslows
x10~ x10

1 .-----....,--------.-------.I-=--~-:-'1 1.2 .-------.---.--------.--I-,=r---:-:-'1

0.4

0.6

0.8

0.2

Figure J .6: Annual Aggregated Local Flows. Posterior distribution of state means and
standard deviations for Multi-site MS model.
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Appendix K

The Spatial 2-state MS

Disaggregation Model: Fitted

Marginal Distributions

K.l Introduction

In the MSD spatial disaggregation model, Aggregated Basin Flows are first simulated

with a single-site MS model and the MS disaggregation model parameters are estimated

for the five sites. The goodness-of-fit of the marginal distribution of the MSD model is

illustrated in the following figures. The model appears to fit the data well at all sites.
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K.1. INTRODUCTION
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Figure K.l: Annual flows of the Churchill River at Southern Indian Lake. a) Marginal
probability density function of MSD model. b) Normal probability plot of observed annual
flows and fitted MSD model.
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Figure K.2: Annual flows of the Saskatchewan River at Grand Rapids. a) Marginal prob­
ability density function of MSD model. b) Normal probability plot of observed annual flows
and fitted MSD model.
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MSD model.
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Appendix L

The Spatial 2-state MS

Disaggregation Model: Regime

Changes in Observed StreamfloW"

L.l Introduction

Figure L.1 illustrates the state probabilities for the MSD model, estimated using the

single-site MS model for Aggregated Basin Flows. The mean levels associated with

the most probable states are given in Figures L.2-L.6. Because of the constraint that

all sites must have the same state sequence, the mean levels are closer to each other

at all sites compared to the single-site models.
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Figure L.2: The MSD model regime shifts for the Churchill River annual runoff.
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Appendix M

Verification of Stochastic Models

M.1 Modeling Framework 1.1

Simulated flows 100,000-yr

MODEL 1: SINGLE-SITE AR(l) ANNUAL MODEL

MEAN STANDARD DEVIATION LAG-1 AUTOCORRELATION

Obs (Norm) 14.993 0.0865 0.489
Syn (Norm) 14.993 0.0862 0.488

Obs (Raw) 1427424 283063 0.471
Syn (Inv-T) 1425755 281094 0.487

MODEL 2: MEJIA AND ROUSSELLE SPATIAL DISAGGREGATION MODEL

MEAN
Chur R Sask R PIAO Wpg R Local

Obs (Norm) 4772326 12.559 14.415 152.67 13.157
Syn (Norm) 4767817 12.559 14.415 152.70 13.157

Obs (Raw) 426644 241214 222048 379811 157705
Syn (Inv-T) 426295 241045 222121 380346 157733
Syn (Adj) 426389 241078 221294 378962 158032
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STANDARD DEVIATION
Chur R Sask R PIAO Wpg R

M.l. MODELING FRAMEWORK 1.1

Local

Obs (Norm) 1062897 0.237 0.063 13.352 0.076
Syn (Norm) 1058128 0.235 0.063 13.436 0.076

Obs (Raw) 79857 71610 116881 107091 39797
Syn (Inv-T) 79567 69346 115109 108414 39714
Syn (Adj) 82882 69905 114055 103815 41565

LAG-O CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

-------------------------------------------------------------------------

Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.226 0.172 -0.036 0.147

Obs (Raw) 1 0.229 0.183 -0.022 0.159
Syn (Inv-T) 1 0.223 0.171 -0.037 0.147
Syn (Adj) 1 0.262 0.163 -0.049 0.226

1 0.333 0.356 0.189 Sask R
1 0.355 0.361 0.208

1 0.295 0.352 0.166
1 0.351 0.354 0.204
1 0.342 0.346 0.249

1 0.541 0.693 PIAO
1 0.548 0.693

1 0.539 0.696
1 0.543 0.692
1 0.532 0.671

1 0.463 Wpg R
1 0.471

1 0.470
1 0.466
1 0.467

1 Local
1

1
1
1
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LAG-1 AUTOCORRELATION
Chur R Sask R PIAO Wpg R

M.2. MODELING FRAMEWORK 1.3

Local

Obs (Norm) 0.743 0.428 0.413 0.343 0.358
Syn (Norm) 0.739 0.413 0.465 0.300 0.446

Obs (Raw) 0.746 0.420 0.409 0.337 0.350
Syn (Inv-T) 0.739 0.405 0.465 0.296 0.445
Syn (Adj) 0.730 0.401 0.470 0.304 0.450

M.2 Modeling Framework 1.3

Simulated flows 100,000-yr

MODEL 1: SINGLE-SITE MS(2) ANNUAL MODEL

Obs
Syn

MEAN

1427424
1435796

STANDARD DEVIATION

283063
282509

LAG-1 AUTOCORRELATION

0.471
0.296

MODEL 2: MARKOV-SWITCHING SPATIAL DISAGGREGATION MODEL

MEAN

Obs
Syn

Chur R

426644
427870

Sask R

241214
242105

PIAO

222048
225375

Wpg R

379811
381800

Local

157705
158652

STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local

Obs
Syn

79857
78654

71610
71288

116881
117148

107091
106892

39797
39560
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LAG-l AUTOCORRELATION
Chur R Sask R PIAO Wpg R

M.2. MODELING FRAMEWORK 1.3

Local

Obs
Syn

0.746
0.059

0.420
0.084

0.409
0.233

0.337
0.146

0.350
0.155

LAG-O CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

Obs 1 0.229 0.183 -0.022 0.159 Chur R
Syn 1 0.227 0.183 -0.017 0.157

1 0.295 0.352 0.160 Sask R
1 0.294 0.357 0.164

1 0.539 0.696 PIAO
1 0.540 0.694

1 0.470 Wpg R
1 0.472

1 Local
1

TRANSFORMED (NORMAL) ANNUAL FLOW STATISTICS

MEAN
Chur R

Obs (Norm) 4772327
Syn (Norm) 4770589

STANDARD DEVIATION
Chur R

Obs (Norm) 1062897
Syn (Norm) 1060528

LAG-l AUTOCORRELATION
Chur R

Sask R

12.559
12.557

Sask R

0.237
0.236

Sask R

PIAO

14.415
14.415

PIAO

0.064
0.063

PIAO

Wpg R

152.668
152.560

Wpg R

13.352
13.320

Wpg R

Local

13.157
13.156

Local

0.0764
0.0760

Local

Obs (Norm)
Syn (Norm)

0.743
0.056

0.428
0.083

0.413
0.221

0.343
0.142

0.356
0.152
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M.3. MODELING FRAMEWORK 2.1

LAG-O CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.224 0.179 -0.024 0.152

1 0.333 0.356 0.189 Sask R
1 0.292 0.352 0.160

1 0.541 0.693 PIAO
1 0.534 0.694

1 0.463 Wpg R
1 0.466

1 Local
1

M.3 Modeling Framework 2.1

Simulated flows 100,000-yr

MODEL 1: MULTI-SITE AR(l) MODEL

MEAN
Chur R Sask R PIAO Wpg R Local

-----------------------------------------------------------------------------

Obs (Norm) 4772327 12.559 14.415 152.668 13.157
Syn (Norm) 4762787 12.560 14.416 152.729 13.157

Obs (Raw) 426644 241214 222048 379811 157705
Syn (Inv-T) 425943 241163 223074 380223 157167

STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local

-----------------------------------------------------------------------------

Obs (Norm) 1062897 0.237 0.064 13.352 0.076
Syn (Norm) 1048865 0.233 0.062 13.227 0.075

Obs (Raw) 79857 71611 116881 107091 39797
Syn (Inv-T) 78897 69348 113996 106714 39066
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M.3. MODELING FRAMEWORK 2.1

LAG-l AUTOCORRELATION
Chur R Sask R PIAO Wpg R Local

Obs (Norm) 0.743 0.428 0.413 0.344 0.358
Syn (Norm) 0.760 0.445 0.425 0.348 0.366

Obs (Raw) 0.746 0.420 0.409 0.337 0.350
Syn (Inv-T) 0.760 0.438 0.424 0.345 0.365

LAG-O CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

------------------------------------------------------------------------------------

Obs (Norm) 1 0.232 0.180 -0.029 0.151 Chur R
Syn (Norm) 1 0.238 0.184 -0.028 0.157

Obs (Raw) 1 0.229 0.183 -0.022 0.159
Syn (Inv-T) 1 0.235 0.184 -0.029 0.157

1 0.333 0.356 0.189 Sask R
1 0.349 0.356 0.201

1 0.295 0.352 0.160
1 0.344 0.351 0.197

1 0.541 0.693 PIAO
1 0.543 0.688

1 0.539 0.696
1 0.539 0.688

1 0.463 Wpg R
1 0.461

1 0.470
1 0.457

1 Local
1

1
1
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M.4 Modeling Framework 2.3

MA. MODELING FRAMEWORK 2.3

Simulated flows 100,000-yr

MODEL 1: MULTI-SITE MS(2) ANNUAL MODEL (Annual)

MEAN

Obs
Syn

Chur R

426644
423557

Sask R

241214
235067

PIAO

222048
217752

Wpg R

379811
374542

Local

157705
156590

STANDARD DEVIATION
Chur R Sask R PIAO Wpg R Local

Obs
Syn

79857
83140

71610
68751

116881
116253

107091
105860

39797
39683

LAG-l AUTOCORRELATION
Chur R Sask R PIAO Wpg R Local

Obs
Syn

0.746
0.044

0.420
0.265

0.409
0.036

0.337
0.068

0.350
0.013

LAG-O CROSS-CORRELATION
Chur R Sask R PIAO Wpg R Local

Obs 1 0.229 0.183 -0.022 0.159 Chur R
Syn 1 0.226 0.185 -0.059 0.167

1 0.295 0.352 0.160 Sask R
1 0.336 0.354 0.184

1 0.539 0.696 PIAO
1 0.535 0.694

1 0.470 Wpg R
1 0.460

1 Local
1
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TRANSFORMED (NORMAL) ANNUAL FLOW STATISTICS

MEAN

MA. MODELING FRAMEWORK 2.3

Chur R

Obs (Norm) 4772327
Syn (Norm) 4770147

STANDARD DEVIATION
Chur R

Sask R

12.559
12.559

Sask R

PIAO

14.415
14.415

PIAO

Wpg R

152.668
152.603

Wpg R

Local

13.157
13.156

Local

Obs (Norm)
Syn (Norm)

1062897
1062881

0.237
0.238

0.064
0.064

13.352
13.331

0.0764
0.0759

1

LAG-l AUTOCORRELATION
Chur R

Obs (Norm) 0.743
Syn (Norm) 0.038

LAG-O CROSS-CORRELATION
Chur R

Sask R

0.428
0.232

Sask R

PIAO

0.413
0.036

PIAO

Wpg R

0.343
0.068

Wpg R

Local

0.356
0.013

Local

Obs (Norm) 1 0.232 0.179 -0.029 0.151 Chur R
Syn (Norm) 1 0.223 0.180 -0.050 0.158

1 0.333 0.356 0.189 Sask R
1 0.377 0.353 0.208

1 0.541 0.693 PIAO
1 0.535 0.694

1 0.463 Wpg R
1 0.460

1 Local
1
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Appendix N

Conditional Drought Frequency
Curves

N.1 Introduction

As part of the drought frequency analysis, the frequency curves for drought severity

conditional upon drought duration are plotted for all modeling frameworks and the

two data sets. The conditional frequency curves are presented as Severity-Duration-

Frequency curves in Figures N.I-N.18.
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N.!. INTRODUCTION

MF-1.1 Severity-Duration-Frequency Curves (1912-98)
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Figure N.!: Conditional Drought Frequency Curves obtained from MF-1.1 (1912-98).
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MF-1.2 Severity-Duration-Frequency Curves {1912-98}
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Figure N.2: Conditional Drought Frequency Curves obtained from MF-1.2 (1912-98).
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MF-1.3 Severity-Duration-Frequency Curve (1912-98)

1000 .

- Drought duration 1 year and less
- Drought duration 2 years and less
- Drought duration 3 years and less
- Drought duration 4 years and less
- Drought duration 5 years and less
- Drought duration 6 years and less

3500

4000

500

OL....-..."",.=----'--_=t==......------'----'-----'--'---'---'----__---'-_---'-_'----'--'---'----'--L.-l-__------'_------'_-'---'---'--L.....J.......J.....J

101

~ 3000
~

:E 2500
Q)
>
Q)

en 2000
E
Ol
:::J

e 1500o

Return Period (year)

3000

2500

:2 20003:
~
~
.~

1500>
Q)

en
E
Ol
:::Je 1000
0

500

0
2 3 4 5 6

1000-yr

500-yr

Drought Duration (year) and less

Figure N.3: Conditional Drought Frequency Curves obtained from MF-1.3 (1912-98).
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MF-1.4 Severity-Duration-Frequency Curves (1912-98)
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Figure N.4: Conditional Drought Frequency Curves obtained from MF-1.4 (1912-98).
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MF-2.1 Severity-Duration-Frequency Curves (1912-98)
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Figure N.5: Conditional Drought Frequency Curves obtained from MF-2.1 (1912-98).
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MF-2.2 Severity-Duration-Frequency Curves (1912-98)
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Figure N.6: Conditional Drought Frequency Curves obtained from MF-2.2 (1912-98).
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MF-2.3 Severity-Duration-Frequency Curves (1912-98)
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Figure N.7: Conditional Drought Frequency Curves obtained from MF-2.3 (1912-98).
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MF-2.4 Severity-Duration-Frequency Curves (1912-98)
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Figure N.8: Conditional Drought Frequency Curves obtained from MF-2.4 (1912-98).
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MF-2.5 Severity-Duration-Frequency Curves (1912-98)
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Figure N.9: Conditional Drought Frequency Curves obtained from MF-2.5 (1912-98).

291



N.1. INTRODUCTION

MF-1.1 Severity-Duration-Frequency Curves {1930-98}
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Figure N.lO: Conditional Drought Frequency Curves obtained from MF-1.1 (1930-98).
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MF-1.2 Severity-Duration-Frequency Curves (1930-98)
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Figure N.II: Conditional Drought Frequency Curves obtained from MF-1.2 (1930-98).
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MF-1.3 Severity-Duration-Frequency Curves (1930-98)
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Figure N.12: Conditional Drought Frequency Curves obtained from MF-1.3 (1930-98).

294



N.!. INTRODUCTION

MF-1.4 Severity-Duration-Frequency Curves (1930-98)
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Figure N.13: Conditional Drought Frequency Curves obtained from MF-1.4 (1930-98).
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MF-2.1 Severity-Duration-Frequency Curves (1930-98)
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Figure N.14: Conditional Drought Frequency Curves obtained from MF-2.1 (1930-98).
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MF-2.2 Severity-Duration-Frequency Curves (1930-98)
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Figure N.15: Conditional Drought Frequency Curves obtained from MF-2.2 (1930-98).
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MF-2.3 Severity-Duration-Frequency Curves (1930-98)
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Figure N.16: Conditional Drought Frequency Curves obtained from MF-2.3 (1930-98).
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MF-2.4 Severity-Duration-Frequency Curves (1930-98)
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Figure N.17: Conditional Drought Frequency Curves obtained from MF-2.4 (1930-98).
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MF-2.5 Severity-Duration-Frequency Curves (1930-98)
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Figure N.18: Conditional Drought Frequency Curves obtained from MF-2.5 (1930-98).
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