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Abstract

As in Woodroofe (1982) and Sarkar (1991), we investigate the problem of optimal

Bayesian sequential allocation between two treatments incorporating a covariate. The

covariate-adjusted response model is determined by a linear regression with either

known or unknown o2. The goal of our design is to maximize the total discounted

expected response from a finite population of patients. This treatment allocation

problem is formulated as a two-armed bandit modei and the optimal strategy is

characterized by means of stochastic dynamic programming. Our model assumption

is more general than that in Woodroofe (1982) and Sarkar (1991). We prove that

under the general setting, the myopic strategy is not optimal. When one of the two

treatments is known, the optimal strategy is characterized by an optimal stopping

solution for the linear regression models with either known or unknown o2. On the

other hand, when both treatments are characterized by linear-r'egression rnodels with

unknown parameters, â version of the play-the-winner rule is shown to be optimal for

the linear regression models with either known or unknown o2.
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Chapter 1-

Introduction

1.1 Bandit Problems

In many real situations, sequential decisions are rnade to maximize some expected

reward. But decisions, or the actions they generate, do not just bring in maximum

irnmediate reward; they can help discover new information in order to improve future

decisions. Such situations are exemplified by clinical trials where available treat-

ments are experimented to rninimize patients' losses or maximize patients' survival

times. The general problem arising from these situations is to discover an allocation

rule to balance reward rnaximization based on the information already achieved and

information-gathering for better decisions in the future.

The multi-armed bandit model, originally developed by Robins (i952), is a suit-



CHAPTtrR 1. INTRODUCTION

able way to solve this general problern. iVlulti-armed bandit processes are sequen-

tial decision problems with successive selections from several stochastic processes (or

arms) populations, treatments). Time may be discrete or continuous and the pro-

cesses themselves may also be discrete or continuous. These processes are typically

characl,eúzed by distributions which are unknown or have unknown parameters. The

process selected for each stage depends on the previous selections and observed re-

sponses. The goal of bandit problems is to determine a strategy to maximize certain

objective function of responses from all selections. This strategy specifies which of

the stochastic processes to select for every set of partial history of selections together

with their responses.

The majority of the bandit literature takes the Bayesian approach. In this ap-

proach, the utility of a strategy is averaged over the parameters with respect to some

measure. With a Bayesian approach, a bandit is a typical sequential problem solved

by tlie stochastic dynarlic programming method. This is the major reason that much

of the recent bandit literature prefers this approach.

The second approach taken in the literature is to consider particular strategies

and compale their utilities as a function of the parameters. When the utility of

one strategy dominates that of other-s, this strategy is of course the best one in the

class of strategies under consideration. Otherwise, when there does not exist such a

dominating strategy, various strategies can be compared using tables.
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A third alternative is the minimax approach in which nature is regarded as an

opponent in a two-person) zero-sum game. Nature chooses the parameters in the unit

square, or in a subset of it, according to sorre restriction. The decision maker's goal

is to minimize the expected difference between what is achieved and rn'hat could be

aclrieved if the parameters were known. Nature's goal is to maximize lhe expected

difference.

L.2 Applications of Bandit Processes

First posted in 1930's, bandit processes have been studied by many authors and

applied to different areas such as clinical trials in medicine, optimal pricing in finance,

job search in econornics, and many aspects of optimization.

Since bandit processes take advantage of accruing information to optirnize ex-

perimental objectives, they have iong been proposed as models for clinical trials. A

thorough introduction and discussion of bandit models appears in Berry and Fristedt

(1985). Hardwick (1995) provides a bandit model for ethical sequential allocation in

a clinical trial with immediate dichotomous responses. Eick (1988) introduces a ban-

dit process with geometrically distributed survival times which rnay be censored. He

characterizes optimal strategies by break-even values of the parameters and proposes

an optimal stopping solution in the case of infinite horizon. Some of these results

lrave been extended and generalized by Wang (2000) and Wang (2002); these gen-



CHAPTER 1. INTRODUCTION

eralizations ìnay provide ideas for efficient computations and simulations. Hardwick

(2006) utilizes a delayed response bandit to allocate treatments in a clinical trial in

which patients arrive according to a Poisson process and their response times are

exponential.

In the fieid of optimal pricing, R.othschilcl (1974) demonstrates that the probiem

of dynamically pricing a product with an unknown demand function can be formu-

lated as a two-armed bandit model with Bernoulli arms of sequential buyers and

an infinite horizon geometric discount sequence. Wang (2007) studies the extension

fï'or¡l Br:nroulli ¿u'rrrs trl rnorc gcneraì coulporiri,d Poisson tr)roccsscs, ¿rnrl fi'orn iilfirritc

horizon geometric discounting to the more realistic finite horizon general discounting.

Ndany articles have applied bandit models in other research fields, such as the prob-

lem of job search and match (McCall (1987), Banks (1992) and Bergemann (2001)),

¡rnd cf{cctivc :rlgolithrns fbr g{:)ncral orrlinc o¡ltirnizatiorr problems in thr: b¿rrrdit sr:ttirtg

(\tlcl'Iahan (2004) and Dani (2008)).

1.3 Motivation and Summary

1.3.1 Motivation

Consider a response adaptive design of clinical trial with two treatrnents. For each

patient recruited in the clinical trial, the response depends on the treatment allocated
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and a common covariate. Covariates of particular interest in most clinical trials

include clinic effects (in multicenter studies), demographic sr-rbgroups (such as age,

geuder, and race) and tirle trends (a drift in patient characteristics over time). We

apply a response adaptive design of clinical trial so that the treatment allocated to the

current patient depends on the previous treatment allocations as well as previously

observed values of the covariate and response variables. Our objective is to maximize a

certain measure of optimality which is defined as a function of the expected responses

and the patient-specifi.c covariates from all patients in the trial. However a drawback

of this design is the lach of randomization, as explained in Berry and Cheng (2007).

Similarly v/e can think of the problern of dynarnically pricing a product when the

demand function is unknown. The profit of selling a product depends on the price

posted and a covariate such as the customer's age. The objective is to post alternative

prices sequentially in order to rnaximizethe expected value of the total revenue after

selis.

These two examples are typical applications of bandit processes for modeling se-

quential decision problems. An important characteristic of these examples is that

we have to effectively deal with the conflict between information gathering (such as

learning the effectiveness of the medical treatment or the demand function) and imme-

diate payoff (such as treating the current patient effectively). Information gathering

is cruciai for under-standing the unknown statistical characteristics of the arrrs or
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treatments. and its benefit is in the long run. The sooner we reduce the uncertainty

of the unknown treatments, the sooner we can make better informed decisions which

will in the long run bring higher overall benefits.

1.3.2 Summary of the Results

Our research in this paper is focused on bandit problerns as related to response

adaptive designs of clinical trials. We discuss adaptive allocation strategies that

adapt on the basis of patient response and observed covariate.

The first work considering covariate models in bandìt problems is done by \ÃIoodroofe

(1974) who investigates a one-armed bandit model with geometrically discounted re-

sponses from an infinite population. He established the asymptotic optimality of the

myopic strategy. Woodroofe (1982) discusses the optimal treatment allocation poiicy

of a bandit model where the responses of patients depending on a covariate rnodel

come from a finite population and the discount sequence is assumed to be uniform.

Sarkar (1991) extends Woodroofe's model and describes the difference between the

responses from the new and the standard treatment to follow a one-pararneter expo-

nential family. Her main result is that the myopic strategy is optimal under several

conditions. The major restriction of the above research in bandit models with co-

variates is that the results depend greatly on model assumptions. Actually, myopic

stlategies are not always optimal in general settings.
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To solve this problelrì) we extend Woodroofe's and Sarkar's models and folmulate

treatments to incorporate a linear normal regression model without auy restriction.

Besides, the discount secluence is extended from infinite horizon geometric discounting

to more realistic finite horizon general discounting.

We begin in Chapter 2 with an basic introduction of the theoretical and method-

ological framework of our bandit problems. A detailed Bayesian analysis of the normal

linear regression model is provided. We also explain the general model of bandit pro-

cesses. In Chapter 3, the bandit problem for modeling treatments characterized by a

normal linear regression model with unknown regression parameter and known error

distribution is studied. We separately discuss the one-armed bandit model consisting

of a new and a standard treatment and the two-armed bandit model consisting of two

unknown treatments. When only one treatment is unknown, the treatment aliocation

is ch¿l,r¿r.r:tr:rizcd by a sc<1ucnrc of brc¿lk-cvcrr inciex v?rltt<:s, wlridr allows us to clcfin<,:

the optimal stopping solution. Moreover, the limiting property of this sequence is

discussed in detail. This limiting property provides asymptotic boundary conditions

for the index values. When both treatments are unknown, a version of the play-with-

winner allocation lule is developed. In Chapter 4, we further generalize the results in

Chapter 3 to the more complicated case where both the regression parameter and the

error distribution are unknorn'n. Again we determine the optimal strategies for both

one-armed and two-armed bandit models. Similar results demonstrate that there ex-
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ists an optimal stopping solution when only one treatment is unknown. Moreover, in

the case of two unknown treatments, a play-the-winner strategy is applied again to

achieve the maximum of the total expected response of all patients. We conclude the

thesis in Chapter 5 with a brief summary of achievements and a discussion of future

research problems.



Chapter 2

Mathematical Formulation

2.L Regression Models for IJnknown Treatments

In a clinical trial, Iet X denote the patient-specific covariate of interest and let X¿ be

tlre covariate corr-esponding to the zÚh selection. The covariates X¿,'i : L,2,. .. ) are

assumed to be independent random variables with a common density function /(r),

a domain f), and a finite mean ¡;. Without loss of generality, assume ¡t,> 0.

If the z¿l' patient is assigned to an unknown treatment, then the random response

Y¿ of this patient given X¿: r¿ is determined by a regression model

Y: þr¿ t e¿, 'i : I,2,. . . (21r)

where B is the unl<nown regression parameter describing the effectiveness of the un-

known treatment, and e¿ is the random error. We assume that ei.,'¿ : I,2,... , are
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independent Gaussian random variables with mean 0 and variance o2. We also as-

sume that the sequence Y,i : I,2,. .. , of random variables are independent and

identically distributed given r,¿: r.

Tlre likelihood function based on n observations ô : {(r¿,a¿),'i : 7,2,. . . ,n}

from the reglession model (2.1.1) is

t(p,o2l o) : ItfuS !3,o')
;_1

l( n I I
c( a-'exp 

L- t," 
- r)iz + (ø - tÐ'Ð"?j tzæ|, er2)

where c( means "proportional to" ,, Ê : Ð]:tr¿A¿lD\:r"? is the ordinary least

squares estimate (OLSE) of p and (n - t¡62 : D].:r(Ao - l3"u)'.

z.L.L Bayesian fnference for Known ø2

When o2 is known, the likelihood function (2.1.2) is reduced to

[''n]
{(0,o'l o) x expl-fAD,"?tB - ø'l

Lr:1 I

We take the conjugate prior N(00,o'l*) lor p, then the posterior distr-ibutionof B

works out to be

*00 + lDi:r"?
m + li:rr!

10

" (r., "'(*-Ð"t)-')
where
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It is evident to see that þ. is a compromise between the prior lnean p6 and the least

squares estimator 0 of 13 if we rewrite

n*- D?:r*? â, rn ,)tJ - n +ÐrlQ, -r 
rn + Ðf,_'-' r?uo)

whiclr is a weighted average of þ and. ps.

TÌre predictive distribution of a future observationYn¡1, given Xn+t : r and O is

g(al r,0)

r*oo
I: 

J_* f(al 0)s(01 o)d0

o( I_:*' [-# {o 
(u -ï)'. (-. å ":) ro - t3.)'}] ,ø

c( "'l-#(#ffi) ''-P.ù'f'
which is the density function of the normal distribution

w (o.r.r, (^+Ð7=:? +=*\\" \' -'" \ m +li:rrl ) )
We rnay use the method of iterative expectations to find the mean and variance

of the predictive distribution. The predictive mean of a future observation Y,,11 is

E(h+rl o) : E(E(h*'l 0, O)l O) : rÐ(þl O) : p*r,

and the predictive variance is given by

Var(Y"¡11ô) : Var(E(Y"*tl þ,O)l A)) + E(Var(Y"*tl þ,O)l A)

: 
"z 

(m+ÐL:? +-*1
\ m+l,iu|rrl )

11
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2.I.2 Bayesian Inference for lJnknowrt o2

ln tiris section, we consider a general model where both the regression parameter B

and the variance o2 àre unknown.

Sometimes it is rnathematically convenient and instructive to work with the pre-

cision r: Ilo2 instead of the variance. Let us assume that the sample O of sizen

is drau'n from the regression model (2.I.1) where bottr ii and o2 are unknown. The

likelilrood function of p and r given in (2.7.2) is modified to

[ *( n ìl
t@,,1 o) xri."p l-; { t" - t)oz + (p - pY I': llL'l. =- ))

Tlre natural conjugate prior for (p,r) is such that

s(0,r): s(Pl r)s(r),

wlrere g(01 r) is the normal prior l/(B6 ,mr) and 9(r) is the Gamma prior G(u,u) so

that

where

s(p,r) o ru+|-t.*n l-" {, *T(J - prY}]

The posterior density is then derived as

g(þ,rt o) *1,'n""0 
{ -î¡-+ å 

,?)@ - t3.)'}l ¡'t."-l exp(-ru-)l ,

,)* m1o * 0Di:r"?
l').stz)) rn + Li_rrí

72

(2.1.3)
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ând

(n - 1\o2ô,+-a! | \ ' +
2

mÐT:,"?(þ - Êo)' (2.r.4)

Hence, the joint posterior distribution of p and r is a product of the conditional

posterior distribution l/(p., (*+D!:rr!)r) of p given r, and the marginal posterior

distribntio" G (ry,u.) of r. The rnarginal posterior distribution of 13 can now be

obtained bv integrating out r from g(þ,rl O), so that we have

s(øt o) : I_: s@,rl o)d,r

f n 1-('1+!)o( It*(p -Ê")'(*+t r)lzu.l
L n:t I

wlriclr is a kernel of a 3-parameter t-distribution with (n + 2u) degrees of freedom,

location parameter p*, andscale parameter ffi (* +D?:rr!). h is noted that the

posterior variance of p is finite only when n ) 3.

Moreover, the predictive density of a future observatioûY,,,+t,, given Xn+r : r and

o, is

s(al r, o) :

where p. and u* a e defined in equations (2.i.3) and (2.1.4). It is obvious to see that

tlre predictive distribution of Y,,+r is a 3-parameter t-distribution with (n-lZz) degrees

13
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of freedom, location parameter p*r, and.scale param "t* (ffifu) f*l

2.2 Bandit Model Overview

In the general setting, an arm of a ,k-armed bandit problem will be characterized by

a probability measure F on the Borel fieid of subsets of Ø, the space of probability

distributions on lR with the topology of convergence in distribution. The space Øk

of ordered k-tuples of members of. Ø will be considered to have the product topology

arising from the above defined topology on Ø. The Borel field generated by this

product topoiogy is the only o-field of subsets of. Øk ttrat will be considered; it is

the the product o-field of k copies of the Borel o-field of Ø. The component Q¿

of (Qr,Qz,.. ,Qn) e Øk governs observations on arm ¿. Since (Qt,Qr,...,8r) ls

Landom, tlre probability distribution G of (Q1,Qr,. . . ,Qr) and the space Ø(Øk) play

a central role in the decision problem. A rnember G of Ø(Ø^) represents the decision

maker's prior information concerning the k arms.

Now we turn to the discussion of one special case of the k-armed bandit prob-

Iem, the two-armed bandit process for modeiing the sequential treatment allocation

problern in clinical tr-ials consisting of two treatments.

Suppose that in a clinical trial, there are two independent treatments, treatment

1 and treatment 2, available for a common disease. Patients arrive sequentially and

T4
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are treated immediateiy at times I,2,. . . , N, one at a time. Let X¿, Yt¿, Yz¿ denote

the covariate and the responses of patients from treatment 1 and treatment 2 at

time 'i, respectively. Suppose the distribution of X, and the linear regression models

f.or Y1¿ and Y2¿ are defined in the same way in section 2.1. Further suppose that

covariates Xt,Xz,...,XN are observed sequentially and for each time z, rve rnay

observe either Y1¿ or Y2¿, but not both. Our objective is to sequentially allocate

treatments to patients in order to maxirnize the total discounted expected responses

from all patients. Given this, it is reasonable to model the above treatment allocation

problem as a two-armed bandit consisting of two arms) a discount sequence, a set

of strategies, and an objective functions as the optirnality criterion for selecting an

optirnal strategy.

The two arms of this bandit model are the sequences of conditionally indepeudent

and identically distributed random responses {Ynt,Yrr,. . . , Y*"} given the distribu-

tion of responses from treatment k, k : I,2.

Flom the mathematical perspective, it is necessary to add a discount f.actor a¿

for each response in our bandit rnodel. We assume that the discount sequence AN :

(a1, a2,. . . , û¡¡, 0, . . .) is nonincreasing and f[, a¿ ( oo. The rnost commonly used

discount sequences include the uniform discount sequence (1, 1, .. . , 1,0,.. . ) and the

finite geometric discount sequence (1,*,...,ûN-t,0,...),0 < a < 1. At time n, the

truncated discount sequence (an, an+t, . . . , eN,0, . . .) is denoted Iw AI .

15
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By a sequential allocation, we define a strategy n : (nr,'1t2,...,ø¡¿) in which

each r¿ takes the value 7 or 2 to indicate that we observe Yu ü Y2¿. For the conve-

nience of tire proceeding discussion, the i,th patient's response under the strategy zr. is

characterized as
(
I Y,, if treatment 1 is selected,

7.: ¿

ì

I n r, if treatment 2 is selected.

The response Z¿ is a function of X¿ and ,fr", where ,fi" denote the o-fielcl genereltctl

by the relevant data available at time i, that is

.4 : o{Xtr..., Xi-r,Ttrt. . .,'tti-r, Ztr..., Zo-t}.

,ft" may be denoted bV ,4 if the dependence on 7r is clear from the context. Since our

bandit model is a finite horizon Markov decision process) only deterministic strategies

need to be considered (Puterman (1994)). Therefore the strategy zr is a sequence of

measurable function r¿: ,ff¿ -* {1,2} indicating treatment k to be seiected at time z,

where k : r¿(h¿) and h¿ is the observed history of the past selections.

Let G be the initiai state of our bandit model, then the worth of a strateçY T,

given the discount sequence AN : (*r,*.r,...,ûN,0,...), is defined as the expected

total discounted responses

W(G;AN;r): Bn (þ--''')

16



CHAPTER 2. MATHEMATICAL FORViULATION

The value of the (G;AN)-bandit is the maximum worth

V(G; AN): rnax W(G; A*;n) : r7tàxEn

Thr: objectivc of ou.r' treatlrr<:rrt ¿l,lloc¿l.tiorr plol;lcrn is to

such that

W (G; A* ; n*) : V (G;,4t) : maxW (G; A; 
").

At each state (G; .4N), let yQ) (G;AN) and yØ (G;AN) be the worths of the strate-

gies that allocate initially the treatrnent 1 and treatment 2, respectively, and follow

an optimal strategy afterward. Then the dynamic plogramrning equation becomes

V (G; AN ) : max{V(t) (G; ÁN), ytz) (G;,4t) }.

N4oreover, we define the advantage of the treatment 1 over the treatment 2 as

A(G; AN) : y(t) G; A*) - y(z) (G; A*),

which characterizes the initially optimal selection of treatment. T[eatrnent 1 is op-

timal if and only if A(G;AN)

A(G;,AN) < 0. Both treatments are optimal when L(G; A) : 0, and there is no

unique optimal selection.

However, this equation is formidable to solve in general. We will prove in Chapters

3 and 4 that there exists â sequence of break-even index values to describe the optimal

selection in our bandit models. The limiting property of this sequence will also be

discussed.

(þ'-''')

find a,rr optirnir,l stratr:gy n*

77



Chapter 3

Linear Regression Model with

known o2

3.1 One-armed Bandit with a Covariate

Let's consider a one-armed bandit, or equivalently a two-armed bandit with one arm

known. On the known (or standard) arm (or treatment), the response is randorn

but its mean is a known linear function of the covariate. On the unknown arm (or

treatrnent), the random response depends on the covariate and the relationship is

determined b)' a regression model. Horvever the coefficient of the regression model is

urrknou'n. Th<:rcfbrt: wr: fa,cc thc tl¿rdcofl bctween irúorrrr¡rtiorr gatherirrg (in ordt:r' to

learn the unknown pararneter characterizing the unknown treatrnent) and irnmediate

18
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payoff (so as to maxirnize the objective function).

If the i¿r' selection is made with the unknown arm or treatment, the random

response Y1¿ is determined by a regression model

Yt¿ : þr¿ + eri) '¿ : I,2,. . . (3.1 1)

E(Ytl *t) : þ.t¿, 'i : I,2,. . . , (3.1.2)

where z¿ is the observed covariate, B is the unknown regression parameter and e1¿

is tlre random error. We assume that €ri,i:7,2,..., are independent Gaussian

random variables with mean 0 and variance oo2. We also assume that the sequence

Yt¿,i : 7,2, . .. , of random variables are independent and identically distributed given

([i : tr.

If the zÚr' selection is made with the standard arm or treatment, the expected value

of the response is given by

E(Yrnl *o) : Àr¿,i : I,2,.. ., (3 1.3)

wlrere À is given. We assume that the sequence Y2¿,'i : I,2,. . . ,of random variables

are independent and identically distributed given ti::r.

19
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3.1.1 Bayesian Method and Optimal Selection

Suppose that by time n :2,. .. , iy', sorne patients are assigned to the new treatment

at times rL!,T12,...,r;t". We assume the observations from this new treatment are

described as On : {r¿,At¿,'i : TL¡,TL2,...,nt}. Let 1n : 17, + ... + rl^- and r¡n :

rntUrnt + . . . + tnt"ATn¡, the OLSE of þ can be written as

; rln
vn,

'Yn

Assume the prior distribution for B io be l/(p6 ,o3lm), then the posterior distribution

of {3 is again a normal distribution

N(o,,oZ),

where

þn:
mþo I nn (3 1.5)
m i'Y"

ol

and

(3 14)

(3.1.6)trî- :
m l'Y"

This sequence {,n/(p" ,62n),n:7,2,. .} of distributions forms aprocess of information-

gathering and can be viewed as states of an underlying Nlarkov process. The decision

at each time can be determined by state transition and expected irnmediate response.

Under the normal distribution .À/(Br, o'*),n: 7,2,. . ., the predictive distribution

of a fi-rture observatiotT Ytn, given Xn : r, is

N (þnr, (o3 + o',"t))
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E(Y.I r, N (þn, o2,17 : P,r.

Now the worth of a strategy n for the one-armed bandit with posterior distribution

N (13., o2") of B is defined as

r,vith the density function

g(yl r)
Jrr@+4ñ""p (,cT;4ø(a - þ"")' )

Hence the posterior expected response is

wlrere 
( nn,if trre new treatment is serected,

zn: 
\
[ %n, if the standard treatment is selected.

The optirnal value of this bandit model at stage n is

w (N (t3,, o",), 
^; 

AI ; n) : 
"" (þ_*a¿z,l N (P, 'rr)

V (N ({3 *, o'*), 
^; 

AI ) : mgl iz(i) (N (P,, o2.;, X;''+[ ¡,

wlrere Vø (w (P", o?,), À; AY), i. : 1,2 are the optimal values of allocating the new and

standard treatment at stage n respectively and then following an optimal str-ategy.

Moreover, the optimal selection of treatment at stage n is described by the advantage

function of the new treatment over the standard one, which is

L(N (13,, o',), À; AX ) : y lt) (N ({3 *, o',), 
^; 

AÐ - V Ø (N (0^, o2,), S; AI ) .
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Then the new (standard) treatment is optimai at stage n if and only if

A(N(p", 02),^;AÐ > (<)0

By the principle of backward induction,

y{t)(N(0,,o2,),^;AI): an1nþ+ E(V(N(þn+r,o2n+r),À;Alu*r)l N(l3.,ol\, Q.r.7)

where

and

On the other hand,

o mpo * nn + XnYn
lJn+I - trc )m*1n-f'Yã

,
-2 

uo
unIT - *+i;+4

(3.1.8)

(3 1.e)

y {z) (N (g*, 02), 
^; 

Al ) : an\ þ + v (N (p 
", 

o'^), 
^; 

AI*) .

Sirnple calculations fi'om (3.1.7) and (3.1.8) by using equations (3.1.5) and (3.1.6)

give

4n+t: 
o3þ.^+ o'r=x--o-J',u" 

,

o! + o2"xfl )

and

o2n+t: -44-ofr + oz"xfi'

So rewriting (3.1.7),

y{t) (N (Þ", o2^), X; A{)

: .n,nþ + n (v (. (tW, ##I)' ^,'**,) t "tø,'Ð)
22
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3.L.2 Main Results: Optimal Strategy and Monotonicity

\Ãie prove the main resuLts in this section, which concern about the existence and

structure of optimal strategies.

Lemma3.1.1. Ateachstagen,n:7,...,N, allfuncti,onsV(N(13.,o'^),À;A{) and

y(t')(N(Þ.,o',),À;A,N),i. : I,2 are cont'inuous and 'increasi.ng i,n ). Therefore the

functi,on L(N(P",ot),À;A{) is also conti,nuous 'in À.

Proof . This result can be cleariy proved by the method of induction on N. n

Lemma 3.L.2. At each stage n,n : 7,.. .,N, let A{ : (an,crn*It..., &¡¿, 0,...) de'

note the truncated, di,scount sequence, then the functi,on L(N(p",o',),À;A{) is non-

i,ncreasi,ng i,n À.

Proof. Consider the induction on the horizon l/. This lemma is evidently establisired

wlren N:n since A(l/(0,,oT.),^;AÐ: onlr(þn - À) is nonincreasing in À.

Suppose this result is true for the horizon N. For any function f (r), we define

Í* (r) : max{O, Í (")} and /- (r) : max{0, - f @)}. Hence,

A(¡rr(p", o"*), À; AI*')

: ytr) (N (0., o2,), 
^; 

AI*t) - y(z) (N @,, o2,), 
^; 

AInt)

: dnþnll

. l" l_:u (" (%#, #fu), ^, 
r*ïi) oør r)r(r)drdv
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-a,Àþ - V (N (tJ",o'.), 
^; 

AII,,')

: ùn1nþ

. 
I" [urzr (irr (t##, ffi), ^, 

råï,') søt r)r(r)d,rd,y

. l,[: o. (' (W#,ffi) ,^,rri,') nør r)r(r)drdE

- a,Àþ - y(t) (N (p,, ot*) , ¡; Aiii) - A- (N(p" , 01), 
^;Áåtirt 

)

: ù.nþnll i a,,¡1À¡t,

. l" [u (' (%#, ffi), ^, 
oxr) nøt r)r(r)d,rdv

. II o. (' (%#,#%) ,^,rfi,') nør r)r(r)drdv

-anÀþ - an+rlSnlJ

- l, l.:u(" (%#,ffi) ,^'rfi,')o{utr)r(r)drdy

- L- (N (p", o'.), 
^;Á#irt)

: (o^ - u"+t) p(ll" - À)

. l" l_:o. (' (%#,ffi) ,^,ofi,')'ørr)r(r)crrcry

-A-(¡/(8" ,o',),^; AlTrt) (3.1.10)

The first term in equation (3.1.10) is nonincreasing in À since ùn ) a,2.r1 âild

¡-t.> 0. In addition, by the induction hypothesis,
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is nonincreasing and

A- (N(p", o2.), 
^;Á#irt)

is nondecreasing in À. Therefore A(l/(13^,o'-),,t;A#) is nonincreasing in ). !

The existence of an index value characterizing the optimal decision at each stage is

proved in the next theorem. In principle, we calculate the index value by the method

of backward induction and determine the optirnal decision by comparing the index

value with the actual regression parameter of the standard treatment.

Theorem 3.1.3. At each stage n,n : 7,. . . , N for any pn and o2n, there eri'sts

an i.nrler ualue À* : À(1n,"',,AY) such that A(N(P.,I'^),À.;AI) :0. The set

of aII such znder ualues forms an'interual. Moreouer, the new treatment'is opti'mal

i,f and only i,f À. 
^.(P*,"|,A,N) 

wh'ile the standard one'is opti'mal ì'f and only i'f

À , À(pn, o'", Ay).

Proof. The existence of the index value follows from the continuity and

of A(,n/(p",o'^),À;Af ) in À, a.rrrl thc fa,cts that A(,n/([3*,o2n),0;Al) >

limr-* L(N(P", o'^), \; A,N) < 0. Furthermole, the set of all such index

an interval since L(N(13",o'.),À;,4f;) is nonincleasing in À. Finall¡

decision is made based on À* according to the advantage function A.

monotonicity

0 as well as

values forms

the optimal

Although the existence of the index has been proved, there is no close forrn solution

of À* (Bn, 
"?", 

AI). In the next major theorem, the monotonicity and limiting property
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of this decision index is discussed. We assume the special case of a finite horizon

geometric discount sequence) in which case the index À*(0n,o'",A,N) is unique.

Lemma 3.L.4. Assume that A{ : (1, e,e2,...,ûN-1,0,...),0 < cv < 1. For any

g'iuen p and02, iÍ A(¡r/(P, o2),À;Áfl) :0, then A(¡i(p, o'),À;¿fl*t) > O.

Proof. The equation A(N(p , c2), 
^; 

Ay) :0 implies both

þp- Àp : av(N(P,e2),^;Al-t)

-*n (v (. (%#, #l*), ^,ril-') t o',ø, "'r)

ancl

V (N (tl, e2), 
^;Áfl 

) : À p, -t aV (N ([], o"),À;,afl -t ).

It follows from the above two equations that

L(N (p, o'), À;Áfl*t)

: t3tL'r aE(" (' (%#, #l*),.,,o1) t N@,,\)

-À¡t, - aV (N(p, 
"2t, 

X; A{¡¡

: av (N (p , o'), 
^;, 

fl-t ))

-"ø (v (. (##, #æ), ^, 
rn-') t 

"tø, "'r)
+.n (v (. (##, #**), ^, 

or) t N@, "\)
-c,ÀLr - uzvçxçp,o"), À;-Afl-t)

: - l"l-: [' (" (#+#'#*)'^'or)
26



CHAPTER 3. LINtrAR REGRESSION NIODEL WITH KNOWN O2

-v ( x ( o\P + o=2ry 4+), .r, ¿fl-')l ntrl r) f (r)d,rd.s'\' \ of;+o2r2'oB+o"') )")-^r ))"
-c,ÀP -l cv(1 - a)I'l(,nr( 0, o"), À; Áfl-t)' (3'1'11)

Let r" be the optimal strategy for

u("(#+#,#*) '^''n-')

We follow zr* for

u(" (#+#,#*) ,.,,ar)

chring the first N - 1 stages and choose the standard treatment at stage ly', then

u('(#+#,#*) ,^''r)

-u('(H##,#*) ,^,ofl-') =o'-'^, (3 112)

for all r and g. Ou the other hand,

u(t (#+#,#*) ,^,,fl-') =tt*a* +aN-2)À¡'l (3 113)

if we select the standard treatment all the tirne. Therefore, a straight calculation

from (3.1.11) by using equations (3.1.12) and (3.1.13) gives

A(¡/(p, o'),^;Áfl*t), ** 
^p 

- aÀtt+ cr(1 - *)((t * a * ... * ctN-2)Àp) : 0,

nas desired.
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Theorem 3.1.5. For fi,red þ and o2 but changi,ng ly': 1,2,..., Iet À.({),o2,Al) be

the i,nder ualue such that L(N (13, o'), À* (þ,o, ,¿f ); ¿fl) : 0, where

Al: (1,*,...,rN-t,0,...) . Then

0 : À. (13, o' , AT) . À" (p, o' , A?)

Moreouer, the li,mi,t À. (0, o') : lim¡¿*- À* (þ , o2 , Al ) erists such that 13 < 
^. 

(P, 62) <

æ and A(N(P, r2),^*({J,"2);A):0, where A: (L,a,u2,...).

Proof. Based on the monotonicity of

A(N(p, o'), À,,4fl*t)

in À and the results that

A(¡\/(iJ, o'), 
^* 

(þ, o,,Áfl*t); Áfl*t) : o

and

A(¡r/(/t, c2), 
^. 

(p, o',, A{);,Afl*t) > 0,

we conclude that

\* (13, 02,-4fl ) < À* (0, o',,.Afl*t)

for-.^/:1,2,....

Furthermore, the limit of the nondecreasing sequence À*(0,o',Áfl) exists. Let

À(þ,o'): lim¡¿-* À*(þ,o2,,4fl), then À.(0,o') satisfies the equation
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A(¡/(p, o'),^*(P,o'),A):0 due to the fact that a(N(p, o2),À,,4fl) is continuous

in N' H 
^(0,o'): 

oo, then v(N(þ,o2),^*(13,o'),A): ñ, which contradicts the

finiteness of the optimal value ftrnction.

Now we finish the proof by showing that p < 
^.U3,or,A?). 

By contradiction,

suppose that þ : À* (þ, o2 , Al), then

0 - A(N(8, c2),^*(p,o2,,+l),a?r)

: 0t¿**E("(r (##,#æ) ,^.,r, o,,A?);rl) I N@,,,))

-À. (P, o', A?) p - aV (N (8, c2), 
^* 

(p, o2, Al); A!)

: -1,[: ["(" ffiS#,#*) ,^.,0, ",,et¡;ai)
-v (N (p, or), 

^* 
(p, o, , A?); .qi)l s@l r) f (r)d,rdy

f /*- [,ou* $f : ("y r",0t] - Brl s(yl *)Í(r)d,rd,y. (3.1.14)* 
J n J -* l"'^n\ o2o + o2r2 lr J

Since Ylz is normally distributed as N(pr, ("3 + o'*')), ret, y* be the smallest E

larger than þr when r is given. Then the right side of equation (3.1.14) is positive,

which is a contradiction. n

This ftrndamental lesult reveals the important idea of balancing the immediate

prr,yoff ¿l.rtrl irrforut¿l,tion ¡;a,thclirrg durirrg th<: dr:<:ision proccss. N4orcovcr', it prorriclcs

a nronotonic approxirnation for the Gittins index À.({3,o') which is formidably corn-

pr-rted in practice. There are two interesting corollaries in the proceeding context.

The first corollary shows the non-optimality of the myopic strategy. The second one
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illustrates the optirnal stopping solution.

In bandit problems generally, it may be wise to sacrifice some potential early Pa)'off

for the plospect of gaining information that will alLow for tnore informed choices later.

In our model, a strategy is rnyopic for normal distribution ,n/(B, o2) when the new

treatment (standard treatrnent, respectively) is chosen if and only if p > (<)À. This

strategy is not optimal unless ly' : 1.

Corollary 3.1.6. The myopi,c strategy i,s not opti,mal i.n general.

Proof. For atwo-stagebandit problern, let À besuchthat P < 
^ 

< À-(p, o',A?). The

new treatment is uniquely optimal at the first stage while the myopic strategy selects

the standard treatment.

Corollary 3.I.7. If the standard treatment i,s uni,quely opti,mal at stage n, then i't i's

opti,mal for the rest of the deci.si,on horizon.

Proof. If ttre standard treatment is uniquely optimal at stage n, then 
^, ^. 

({t, 02, AT),

wlriclr indicates that À > 
^. 

(P, o' , AT-t). Clearly, the standard treatment is uniquely

optimal again.

In view of the above corollaly, if the standard treatment is uniquely optitnal, no

information is gathered on the new treatment and the state of the bandit model is

not changed. Hence the standard treatment is selected again by the mouotonicity of

the decision index. Based on this optimai stopping solution, we start by the initial
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selection of the neu' treatment and continue until it is optirnal to permanently switch

to the standard one. By Theorem 3.1.3 and Theorem 3.1.5, the optimal time to

switclr to tlre standard treatment is the smallest n such that À.(p,,ol,A[) < À.

Furtherrnore, the above results illustrate that the longer the decision horizon l/, the

more profitable the information gathering, and the more chance to choose the new

treatrnent. The sequence of index values approaches the Giitins index when l/ gets

sufficiently large.

3.2 Two-armed Bandit Model with a Covariate

In this section, we extend our results to the case of two unknown arms, that is we

examine the two-armed bandit processes. Again the variance o2 is assumed to be

known for both arrns.

We discuss the two-armed bandit problem consisting of two unknown treatments

witlr regression parameters 13¿,'i : I,2, following the prior distributions ,Ä/(p¿¡, o3l*),

'i : I,2, respectiveiy. The first treatment is characterized as

\,r 
-A- 

t - ;-1.)17¿ : lJlLi -T tr7i.t L - rt Lt. . . t

and the second one is described as

(321)

Yz¿ : 0zr¡ I €2i)i : 7,2,.. .,

31
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where z¿ is the observed covariate, and e1¿ and e2¿ are independent Gaussian random

variables with rnean 0 and known variance oo2.

Similar to the frameworir in the prerrions section, u'e define lrn,Tlrn,lj6,oln for

tlre unknown treatment 1 and nf2n1e2nt /zn, o\n fol the unknown treatment 2. Further

calculations show that at stage n, the predictive distribution of a future observation

Y1r, frorn treatment 1, given Xn: x:, is

N(pr**,@3 + o?,"')).

and tlre predictive distribution of Y2n from treatrnent 2 is

N(1r.r,ol + o|,r2)¡.

Hence the predictive densities of Y1," and Y2n, given Xn : r, respectively, are

gt(ulX.-r):-+ / 1 \
' ,/ar@B +,7ñ'*P ( ,@;4Ã(u - i'*')') '

and

sz(al x" - r) :

Furthermore, iu the similar \Ã¡ay as before, we characterize the worth function

w (N (0r., oL), N (l3rn, o3n); AL ; n),

the optimal value function

v (N (þr,, oL), N (p2*, o3); AX),

""0 (- ,@+ðÃ(a - tt"ù')2n(ofi-l oLr2)
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the optimal vaiue fuuction for each treatment

v@ (N (13r,, o?,), N (13r,, o3^); AI),'i : 7,2,

and the advantage fitnction

L(N(l3r*, o?,), N(02*, o3,); AX),

at each stage TL,rL : I,2,..., N.

Since it is necessary to understand the unknown parameters from both treatments,

the rnyopic stla,tegy is lc¿r"sonable ou the first stagc. For continuing decisiotts we will

prove the optimality of a version of the play-the-winner strategy. The play-the-winner

strategy was first studied by Zelen (1969).

Lemma 3.2.I. For anE truncated di,scount sequence AX : (an,an¡t,...,(rN,0, ..'),

n:7,2,. . . ,N, and N(l3o*,o7^),i,: 1,2, we haae

L(N (13r,, o'^), N (0r., 
"'^); 

AI)

: (*. - an+\)(7r" - þròp

. l" l_:o. (" eH#, ffiF,), *,0,,, 
"3^), 

AI*,)

xslatl 11)f(r1)drtdat

- l"l_:o- (',r, n,o?n),. effi#,#+*u;) ,of.,)

xgzfuzl 12)f@2)dr2dE2.
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Proof. Using equations V : VQ) + A+ andV : VQ) + A-, the advantage function

is expanded as

A(N(Ér,, o3), N(0r",o3); A|,)

: a,.,""u. 
l" l_:u (" (úH##, ffi), *,0,,,"3,), AI*,)

x9{Atl 11)f (r1)drtdAt - ctn]znþ

- l"[, (*rn,.,o?,),N (úH#,#g) ,ol,.,)

x gz(Azl 12) f (r 2) dr2dg2

: anutntL. 
l" l_:ut'r (' (úHW, #ãl), * ru,., oz^)' AI*,)

x g t(y tl 11) f (r 1) drtdut

. I l::o. (' (ú+#' ffir,)' n'0"''3')' AI*')

x7íAtl n1)f (r1)drtdh - anþznþ

- I, l.:u*r ('rn,n, o?,), - eHW, #p,), o*-,,)

x9z(yzl 12) f (r2)drzdaz

- l"l_:o- (",r,,,o?,),. PH##,#æ,) ,r#.,)

x g2(Azl 12) f (r 2) dr2dy2

: anþn¡t I ar+t]znp

. l" l_: I l_:u (' (úH##,ffi\,
N ( "30': ! o!"'^'a' i4-) , ¿f-,) st@tl 11) J @)d,r1d.v1\ o(+ ol,rl ' o3+ o3^ri/ /
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x Sz(Azl 12) f (r2) drzdAz

. l" l:: o. (' eft##,#r;),*,0,.,"2),Ar*,)
x7íAtl r1)f (r1)drtdh - anl3znþ - ûn+t/ntt

- l,l.: l,l.:u (' (úH#,ffi¡,
x ( "3þ,n 

+ "'^rra, %,) ,rf.r) gz@zl r2)f (r2)d,r2d,s2- \ ofi+ ol,rl ' o3+ o\,*i

x9ÁAtl 11)f (r1)drtdAt

_ 
l" l_:o- (r,r,,,oT),. PH#, #æ,), r#.,)

xs2(a2l 12) f (r2)dr2dy2. (3.2.3)

This lemma is completed afier canceling the two forth integrals in (3.2.3) by changing

CHAPTER 3. LINEAR REGRESSION MODEL WITH KNOWN o2

the order of integration.

Theorem 3.2.2. Let A{+1 : (1, . . . , 1,0, .. .) b" a uni,form di,scount sequence. For

gi.uen þ¿ and o?,i:1,2, ,i,f A(N(pr, o?),N(13r,"3);Al*') ) 0, then there etist some

r* and y* such that

n

o (r (ú##, 
"8.-Å#*),nu,,",";7,ai¡) 

> o

Proof. From Lemma 3.2.1 we obtain

A(N(É,, o?), N(0r,"3); Al*')

: 
l, l.:o. (" (ú##, #æ,), n,o, "lt, Ai)

x gt(A tl r 1) f (r1) dr tdUt

ói_)
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- I, l.:o- (",0, o?), N (ú##, ffi) r*)

x sz(Azl 12) f (r r) dr zdAz

If no such z* and g/* exist, then

n* ( w ( o34+ oÏ"ta' . o3o? \ 
^Tt 

R..ol),¿fl) : oa 
\" \-;¡;;5¡' ozo ¡ *) 

) r\ \t)2't)2))r17

for all z and gr. Therefore A(.n/(81 , o?), N (13r, oB); A{n') < 0, which is a contradiction.

It is evident to prove that V(N(l3r,o?),N(þr,oB);AI*') is increasing in dr. In

view of Theorem 3.2.2, if treatment 1 is optimal at one stage, then it should be

selected again as long as y goes beyond a criticai value E* given r*. Similar results

hold for treatment 2.

!
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Chapter 4

Linear Regression Model with

unknown o2

4.L One-armed Bandit with a Covariate

We will investigate a more complicated one-armed bandit model in this section where

botli the parameters p and o2 of the new treatment are unknown. The new treatment

is defined as

Yt¡ : ]rn + €i)i : I,2,..., (4.1.1)

where €¿ àre independent Gaussian random variables with mean 0 and unknown

variance o2. The responses from the standard treatment have constant expectation

value Àz¿ as before if the covariate r,¿ àle given for eacÌr time 'i.

.ft
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4.L.L Bayesian Method and Optimal Selection

Let us assume the new treatment is selected k times at the decision times rLr,TL2,. . . ,TLk

by the time n, and the observations from this treatment are characterized as On :

{(rn,Ato),'i: Tlt,tu2,. . . ,nn}.Wlite .yn: r7r+r2*r+. ..lr\.rt Tn: U?nrtU?."t...*

Lt?nu,andTl,,.:rntUtuirnryrn2+...Ilxrt"Utnn,theu'Yn,T,-andr1,-arethesufficient

statistics of p and r.

Now the likelihood function of p and r becomes

t(0, o'l ô,) 6 rk/' e*p [-; (," - Ð;r. + U3 - O.Yn) lro'f ,

where tlie OLSE [3, and, i', 
"un 

be calculated from

; 'Ìln
Pn- tnln

and

^ I ^t -n2(k - t)o'z" - 'n tn 'tn

Fulther assume the conjugate prior for (B, r') to be

g(þ,r): s(Pl r)g(r),

whele g(gl ,) is N(Bs, rnr) and 9(r) is Gamma density G(u,u). Thus the posterior

distlibution can be derived as

sU3,rl a.) o.lr'/'"*v (-if*-r t^)@ - p"Y))lr+*"-' e*p(-r'u,)] ,
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rn'ltere

''' -rn1olnnvn- 
**-'j

and

^.2 - ^., ^lnTn - tl2n, m(nn - 1on)un-u- 21,. - 21Á^+^/")'

Hence, the joint posterior distribution of p and r is a product of the conditional

posterior distribution N(p,,r(m -f f,)) of p given r, and the marginal posterior

distributio" G (ry,u.) of r. The marginal posterior distribution of B can now be

obtained by integrating out r from g(l.l,rl On), so that we have

s@l o,)) x [t + (0 - tJ*)'(* + y)lzu^)-('*?*')

whiclr is a kernel of a 3-parameter t-distribution with (k + 2u) degrees of freedom,

location parameter Bn, and, scale parameter ff(*+n). Denote k+2u as,k1 for-

convenience, then the sequence

{, (*,, rr., *(,¿ + ?,)) ," (+,,") } ,n: r,z,

constitutes a plrocess of information gathering and can be considered as the states of

an underlying Markov process of our one-armed model. Furthermore, the predictive

density of a futur-e observation Ç at stage n, given Xn : z and Ôn, is

g(ato,,,r * 
[, 
.(##7) (#) (-#)] (-'#)
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Thus, the predictive distribution of Yn rs a 3-pararneter t-distribution with k1 degrees

of freedom, location parameter pnr, and.scaie param 
"tu, (##æ) (*)

By the principle of backward ind,uction, given t (fr, Ê*, fi(** t")) and G (* ,r*) ,

the optimai values from treatments 1 and 2 at stage n, respectively, are given as

ytrt (t (rr, ,t,, *(^* t,)) ,G (+,r,) , s; e{)

: *np,þ+ nlv (r (*, *r,þn+t,#(m*n* rÐ),

" ('#.,'*,) ,.r;,a#*,) ¡, (u,, tt,,*ç**rs),* (+,,"))l ,

(4.r.2)

where

þn+r : ry# : ffiffi I on*,(x^,Y.),

^., ^ln¡rTn+t - Tl2r+t, m(tl,"+t - 0o1r+t)2un*I u- z-yr+r - 2.rr*rçm+1.+)

^. , ?t"+ xZ)?^+Y:) - ('t^+ x*Y*)'
'- 

'ç''* 
*

_m(tn -t X,h - þo(t. t XZ))' ,' 2(1n+ xr,il*îffi 4 un*'(x''h)'

and

yrzt (t (rr, 0*. *(^* r,)) ,G (+ ,r,) , s; a!)

: a,Àþt + v (t (r,, 0., *r^* r,l) ," (+ ,r,) , 
^, 

AIn,). (4 1 3)

By writing B2¡1 and un¡1 às functions of the random variables Xn and Y",, equation

(4.L.2) becomes
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yot (t (rr, p.. *(** r,)) ,G (+,u.) , s; a{)

: anþnu. l, [: u (t (r, i r.0,+t(,,tì, #Ã(* + ^t.* ",))
c(k'+t \ '" \

\ , :,'ttn+r(',u) 
) , s; A|*') g(al 

")f 
(")drdv. (4.r.4)

4.L.2 Main Results: Optimal Strategy and Monotonicity

The main results in this section concern optimal strategies.

Lemma 4.I.L. At each stage n,n: I,. . . ,ff, alL functi,ons

v (t (nr, 0,, *@ + u)) , G (+ ,u.) , À; a{) ana

V (ù (t (rr, p., * (^ + n)), G (+, u,), À; oI),,i : r, 2 are conti,nuous and,,increas-

òng i.n ). Therefore the aduantage functi,on

n (t (r' ,þ.,hç*+n)),G (+,un),À;oy) * abo conti,nuous i.n À.

Proof. This result can be clearly proved by the method of induction on 1V. n

Lemma 4.L.2. At each stage n,n : I,...,ff, let A{ : (ùn,ùn*r¡...,ùN,0,...)

denote the truncated di,scount sequence. Then the functi,on

a (r (r,, t3,,hç**r;),, (+,,,).^,oy)

'is non'increasi,ng i,n À.

Proof. The proof is by induction. The conclusion of this lemma clearly holds for'

N : n. Assume it holds for horizon l/ and fix the horizon ¡/ + 1, then equations
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(4.1.3) and

x (t (r',, ¡s.

(4.1.4) give

,*(^+ 
"")) 

,G (*,u^)

ant3ntr. l"l_:v (r (t, ._r,p.a(r,ù,ffi¿(^+ j-

" (t# ,un+t(r,u)) ,,r,rf#) g@l *)J@)d"rdry

-anÀþ -v(t (r,,u,,*6* rul) ," (+,,,) ,^,Afi,')

: anþntr. l,l_: ,o' (r(*, * r, þ,+t(r,ø, ffi¡(m i n * "\)

" (+,u,+t(',v)) , 'r,of#) s@l ')r@)d'rdry

. l,l_: o. (, (*, * r, t3-,+t(r,rl, ffi¡(m t ,n*,')) ,

" (+,u'+t(r,u)) , r,'fii) g@l ùr@)d'rd"Y

-an\tt - y.o(, (*,, p-, hç* * ",s),, (+,,,), 
^, 

Aå'i,')

-A- (ú (r,, 0,, *r** .,,,1) ," (+,,,) , 
^, 

.4f#)

: unþnlJ * un¡1Àpt'

. l, l_: , (t (r, t r, on+t(,,a), ##ã(m * h * ,\)

" ('#,un+t(r,r)) , 'r, o!i;) s(ul ùf @)d'rd'v

. l"l_:o. (, (*'* r,on+t(,,a),;#Ã(mino,')) ,

" (+,un+t(r,,)) ' 
r',a#rt) s@l ùr@)d'rd'E

-anÀþ - dn+r]nþ

- l"l_:u (, (*, +L,Bn*,(r,ù,ffi¡(rnt1n*"'))

, r;1å'*t)

* r'))
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CHAPTER 4. LiNEAR REGRESSION MODEL WITH UNKNOWN a2

^(kr+I \ \
" (ï 

,u,+t(x:,ù ) 
- >,; Aii; 

) 
g(al r)f (r)drdv

-a-(ú (0,,0., h,** r,l) ," (+,,") ,^,.AI*1')

: (*n - ct"¡1)¡t,(p" - À)

. l,l.:o. (, (*, * r,o,+t(,,a),#Ã(mr^rn*.'))

^/h-tr .\ ^--\
" (ï ,1)n+t(r,u) ) ' 

s'; '+ii| ) s(al r)f (')drds

-A-(ú (r,,r*,*r^*r,l) ," (+,,.),x;e{;i¡ (4 1b)

The first term in equation (4.1.5) is nonincreasing in À since (r,'>. (rn+r and ¡r ) 0.

Moteover, the induction hypothesis implies that

o. (' (*' * r' tjn+t', #Ã(* + 1-* 
")) 

," (\#,un+t(r,rl) , r,'#ii)

is nonincreasing and

o- (, (r,,o.,hr^*r,l) ,, (+,u^),^,rfrr)

is nondecreasing in À. Therefore,

o (, (*,, p,,*ç**",s)," (+,u*),¡,Á#*')

is nonincreasing in À. !

Theorem 4.L.3. At each stage n,n : I,. . . , ¡y' for any Bn and un, there erists an

'inder ualue À : \*(1n,u^,AI) such that

o (, (*, ,0.,*ç**^,s)," (+,u,),.r;af+,) : o
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The set of all such 'inder ualues forms an tnterual. Moreouer, the new treatment'is

oltti.mal i,f and onty i,! À 1 À*(þ.,u,,A,N) wh'ile the standard one'is opti'mal i'f and onlg

Lf 
^> 

À.(13*,u.,AI).

Proof. The existence of the index value is obvious from the continuity and mono-

tonicity of

n (t (r, ,o^,*@+.yò)," (+,,,) ,^,4.')

in À, and the facts that

n (t (r,, rt.,*@+ù) ,, (+,,*) ,o,o#*') '0,

and

rim a (, (n,, p,, hç* * 
.,;) ," (+ ,,,) , 

^, 
,f *') . o

Furthermore, the set of all such index values forms an interval since

n (t (r, , p,, *1- * ,")) ,, (+,,,) ,^,rf*')

is nonincreasing in À. Finally, the optimal decision is made based on À* according to

the advantage function A. !

Lemma 4.L.4. Assume that Al: (1, e,d2,...,*N-t,0,...),0 < o < 1. For any

gi,uen B and u, i.f

n (r (r,, o,ft@*rl) ," (+,,) ,^,rfl) :
/1 /1TT
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then

a (r (r,, o,fi@* rr) ," (+,,) ,^,ril.,) 
= 

o

Proof. The equation

a (r (r,, ø,fr@* rl) ," (+,,) ,^,rfl) :

irnplies

(4.1 6)

þt, - Àt, : *v (t (r,, u,hr^* rl) ,, (+,r) ,^,rl-')

-. .1, l_:u (, (*, r r, tj(r,ø, ffi(m.r ^t * "'))

" (+, u@, ù), ^,,fl) 
s(slr) f (r)d"rd'Y

and

v (t (nr, 0,h(^ + r)) ,G (+ ,'u) , .r; efl)

: Àtttu (, (*, ,p,Y;1-*rl) ," (+,,) ,^,rl-') eLT)

It follows from equations (4.1.6) and (a.1.7) ihat

n (r (rcr, þ,*(^+ z)) ,G (+,r) ,À;Af*')

: . l, l:: [" (, (*, * L, ri(r,ø, ffi(* + t * ,\)
, (\#,,@,r)), 

^, 
ofl) -' ('(*, * 1, þ(r,ø, ffi(m *'v* 

"))'
" ('#,,@,r)), .r, Afl-')) o{a@) r @)d'rd'v

-aÀt,* a(r - *)v (, (*', o,fr@* rl) ," (+,,) ,^,rf,) (4 1 s)

45
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Let n* be the optimai strategy for

i, (t (r, * 7 fi(r,ù,##)(mi ^t*,,)) ," (\#,u@,a)) .r,Áfl-') ,

we define a strategy for

v (r (r, tr,o(r,ù,2,þ#)(m+t*",)) ," (+,,@,ù) À;afl)

that allocates ¡ * during the first ¡/ - 1 decision times and selects the standard treat-

ment at time l/. Thus,

i, (r (r, tr,B(r,ù,##)(*-rt*"')) ," (+,,@,a)),^,ofl)

-, (t(*,* r,o(r,ø,ffi(mit*,')) ," (+,uç,y¡),s;
,Alt-t) > aN-tÀ¡,

for all r and y. Besides, if we choose the standard treattnent all the time, then

v (t(n,,o,fi@*'l) ,"(ry,,) ,^,ofl) 
= 

(1 +a+ + **-\^p

Hence, it follows from the above inequalities and equation (a.1.8) that

a (r (r,, þ, *(- + r)) ,G (+ ,r) , À; .Afl*')

> eNÀp - o,Àp+a(1 - û)((1 *a* ... I ov-2)Àp) : 0.

n

Theorem 4.L.5. For fired B and,u but changi.ngly' : 1, 2,. .., let À.(p,", Ay) be the

i,nder ualue such that

r (t (r,, 0,fi{**,l) ," (+,u) ,^.(r,u,A{);rfl) :
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13 : À* (í3,u, AI) < À.(p,u, A?)

Moreouer, the ti.mi.t À.(0,u): Iim,"-oo À*(0,u, A{) eri,sts such that 13 < 
^.(13,T.,) 

< oo

and

a (t (r, , t3,*1- *,l) ," (+,,) ^.r0,,);a) 
: o,

where A: (L,o,u2,.. .).

Proof. Based on the monotonicity of

in ) and the results

r (r (r,, o,fr{^*,l) ," (+,,) ,^.,0, ,u,A{*,);rf*') :

and

n (t (r, ,p,hç^*",1),, (+,,) ,^.,r, u,Al);ofl*') - o,

rn'e conclude that À*(0,u,,4fl) < À*(0,02,.Afl*t) for N : I,2,....

\4oreover, the lirnit of the nondecreasing sequence À*(p,u, Ay) exists. Let À*(p,u) :

lim¡¿*oo À*(þ,u,Áfl), then À.(0,u) satisfies the equation

n (, (r,, ø,fr@*,r) ," (+,,) ,^,rfl.')

a (r (rc,, o,fi{**,l) ,* (+,,) ,^.(r,,¡;a) : o
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slnce

n (t (r,, o,fi@*rl) ,, (+,,) ,^,ri.')

is contiuuous in ly'. If 
^.(13,u) 

: oo, then

r, (t (r,, o,fiw*rl) ," (+,,),^.rr.ù'A): ".,

which contradicts the finiteness of the optimal value function.

We now turn to prove P < 
^.U3,u,A?) 

by contradiction. Suppose thal B :

À*(0,u,,41), then

o - n (t (r, , p,*1- * ,l) ," (+,,) ,^. (0,u, al¡; a1)

: urt*a [, [.: u (t (0, -tr p(r,rl,ffi(m-rt*"'))

" ('# , u@,a)) 
' 
À. (rt' t' - Al); Aî) nrrl r) f (r)d,rd'v

- À. (p,,, A?) p -, (t (0,, r, *r** rl), " (+, u), 
^. 

(u,,,,q?1, Al)

: , l,[: [" (' (*,* 
t,þ(r,ù,*#(*+^r*,,))

, (+,,@,ù), À*(0,,, A?);rt) u (t (r,, ø,fi{** rt),

, (+, u), 
^. 

rr.,,, A?); oî)l t rrl r) r (r)d'rd'v

: - l, l.:l^"tfi##r,,0r,\-urlg@tùf@)d"r.y (4 1e)

If r is given, the predictive distribution of Y is a 3-par-ameter t-distribution with

iocation parameter pr. Let A* be the smallest gr larger Lhan pr, then the right side

of equation (4.1.9) is positive, which is a contradiction. !
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Corollary 4.L.6. The myopi,c strategy 'is not opti.mal i.n general.

Proof. In our model with unknown lj and o2, a strategy is myopic for ú-distribution

/ k,. .\tlh,0.^ (m+z) I\'"'2,' ')

when the new treatment(standard treatment, respectively) is chosen if and only if

P > (<)) This strategy is not optimal unless ly' : 1. Consider a two-stage bandit

problem and let À be such that B < ) < À*(þ,a,,al). The new treatment is uniquely

optimal at the first stage while the myopic strategy selects the standard treattnent. !

Corollary 4.L.7. If the standard treatment i,s un'iquely opti,mal at stage n, then i,t i.s

opti,mal for the rest of the deci,si,on horizon.

Proof . If the standard treatment is uniquely optimal at stage n, then 
^ 

t 
^. 

(8, u, AT),

whiclr indicates that À > 
^.(P,u,AT-'). 

Clearly, the standard treatment is uniquely

optimal again.

4.2 Two-armed Bandit Model with a Covariate

In this section we assume both treatments are unknown and characterized by regres-

sion models with unknown parameters p¿ and 02,'i:1,2, respectively. Similar to

Clrapter 2, the conjugate prior for (B1, r) is

s(h,r) : e(]tl ,)g(r),
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wlrere g({Jtlr) is normal density N([Jro,mr) and g(r) is tire Gamma density G(u,u),

wlrile the conjugate prior for (p2,,r) rs

s(02,r) : s(þzl r)g(r),

wlrere g(0zlr) is l/(B2¡, mr) and 9(r) is G(u,u).

Assume that treatment 1 is allocated k times to patients by time rz, we simi-

larly define 1rn,Ttn,rl1.n from treatment 1 and 12n,T2n, T2n from treatment 2. With

the above conjugate priors it can be derived that at time n, the marginal posterior

distlibution of fu and r from treatment 1 are the ú-distribution

t(k + 2u,ptn,r-J'")
lU1n.

and the Gamma distribution

G(Y,u,^),

where

,r -m7nintnprn_ m+^lh,

and

, 'ytn'ttn-T?. , m(nn- {1rc'n,)urn:'-f 2^l* -t 
2TJln + "lh) '

On the other hand, the marginal posterior distribution of p2 and r from treatment 2

are the ú-distribution
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and the Gamrna distribution

G(
n-I-k+2u

2 ) "¿rL/)u2?')

wirere

,, m]zo * rlznp2n: m+12r,

and

'u2n:,*þTb.**ø#
In order to simplify calculations and derivations, we denote k+2u and n- 7-kÏ2u

as k1 and rk2, respectively. Then the predictive distribution of a future observation

Y1n from treatment 1, given Xn: z, is a 3-parameter ú-distribution with the density

s.(atr)* [,* (##ï7) (#) (-#')] '*'
Tlre predictive distribution of a future observationYz, frorn treatment 2, given Xn:

r, is again a 3-parameter ú-distribution with the density

g,(at r)* 
[' 

* (##*) æ) (-#') 
] 

- ( ? )

Nou' we define the worth function

* ('(r,,0,,,h) ,, (+,u,.) ,, (*,,0,,,h) ," (+,,,,)'*,*) ,

the optimai value function

v (t (n,, o,^, *), " (+,u,*),t (n,, r,,, h), " (+,,,,), oi),
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the optimal value function for each treatment

vot (t (r'' u'^' h)' " (+'u")'' (r"' o'-' h)' " (?'u") ;'i) " i 
: r'2

and the advantage function

n (t (r' ,r,-,h)," (+,',,),'(r,,u,,,h)," (+,u,,),'f) ,

at eaclr time n, n : 7,2,.. ., N.

In the next context, we give a cornplete characterization of the optimai strategy.

First, the myopic strategy is reasonable on the first stage for the reason that it is

necessary to understand the unknown parameters for both treatments. Then a play-

the-winner strategy is applied for continuing decisions.

Lemma 4.2.L. For any truncated di,scount sequence Al : (en,an+t,...,dN,0,...),

rL : I,2,. . ., N, and t(ku, þn,, *),G(+,ui,-),,i : 7,2, we haue

^ 
(¿(k1, gr,, fi), G (+, u-), t(k2, l3r*, ffi), G (+, rz*) ; AI )

: (an - a,+ùU3t - þròp

. [, l.: o. ('(*'* r'þtØ+t)(rt"!]t)' 

^##;ì 
'

, ('#,ur(n+,)(",,s,)) ,t (r,,'0,,,h) ," (+,,,,),a:)
xg{Atl 11)f (r1)drtdUt

- l,l.: o- (, (r,,r,,,*)," (+,u,,) ,

, (r, * r, oz@+t)(rz,az),ú##;ñ) ,, (r#,uz(n+t)@,,sù) ^I)
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x gz(Azl r 2) f (r2) drzdAz,

where

or6+t1(rn,ao) : *!: I T^ | !;o' ,i : r,2,
mt^/¿ntIi

and

u4n+t)('o,a) : o *bt¿^* r?)(rn'+'az) --'(' ** 
"'z200" + r?)

, m(r¡in I r¡A¿ - l)o(^'t,, + *?))' .. 1 ñ- zç1,, ¡ 
"'r¡¡u" 

* ^,* * * ) L: r) ¿'

Proof. Using equations V : VQ) + A+ and 7 : yG) + A-, the advantage function

is expanded as

A (¿(k1, 0r,, f,), G (+, u6), t(k2, 0r*, ]fi), G (+, rr.) ; AI )

: anþntt,. I"I o. (, (*, n r,þtØ+t)(rt,at), 

^##;iJ),
" ('#, ut1n+t)(",, a')),' (rr, u", h),' (+,',,), a:)

xs{atl r1)f (r1)drtdat

-onþznþ- [, l.: o- (, (r,,u,,,h)," (+,u,,),

t (r, * r, uz@+t)(rz, az), 

^##ã), 
" ('#, uz@+t)(*,, a,)) oI)

gz(Azl 12) f (r2)dr2dy2

: anþntt. l,l_: ,o, (r(n, * r, þ\n+t)(*,,a,1,A##;J) ,

" ('#, ur(n1t;(',, s')),' (*,, 0,,, h),' (+,'r,), ei)

x9t(atl rùf (rt)drtdat
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. l,l.: o. ('(*'* 7'þ\n+t)("''a')' 

^##;iJ) 
'

" (+,u4n+t)@,,ar)) ,, (r,,or-,h) ,, (+,rr.),oi)
x 9 t(atl r 1) f (r1) dr tdAt

-an{rznLt,- l" l_: ,u, (t (r,,0,,,h) ," (+,,,,) ,

, (n, * L, uz@+t)(rz, az), ú##;ù), " (+, uz@+t)@,, uù), o:)

gz(Azl 12)f (r2)dr2dg2

- l"l_: o- (, (r,,u,.,*)," (+,u,,),

t (r, * r, t3zØ+t)(,,,a,), ú##*;) ," (+,uzçn+t){r,,uù) ^I)
gz(azl 12) f (r2)dr2dy2. (4.2.1)

This lemma is proved after canceling the second part of both T(1) and i/(2) in

(4.2.L), which are two forth integrals, by changing the order of integration.

tr

Theorem 4.2.2. Let A{+1 : (1,...,1,0, ...) b" a uni,form d,iscount sequence. For

gi,uen þ¿ and, ui,)'¿: L,2, i,l

o (, (u, ,n,,h) ,, (+,,,) , (r",u",h) ," (+,u,),r*) '0,

then there erist some r* and g* such that

x(t(rrtr,t,'r(r*,a*),=t+l.)," l& *t / * *'\
'-. \'\ ,r1*,a\/ '" \ 2 'ut\r '' )) 

'
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' (r,, 
u,,h) ,, (+,,,) , ei) , o,

where

n t * *\ tnp6 1-t¡1 *r*y*
Pr\r.A ): m+.yr+r.2 ,

and

ut(r*,a\: r*

.

Proof . From Lemma 4.2.1 we obtain

A (ú (k1, 0r, fi), G (+, u1), t(k2, 0r, fr), G (+, rr) ; Al *')

: I,l.: o. (, (*,* r,þ,(r,,ù,ffi) ," (t# ,u,(r,,r,)) ,

t (r,, o,,h) ," (+,*) 'rl) 
gt@tt 11)f (r1)dr1d,y1

- l" l_:^- (, (r,, 0,, +)," (+,,,), (0, * r, 0z(rz,r¡, #ø),
, ('#,uz(ïz,rs) , oi) n,@,1 12)f (r2)d,rzctaz

If no such z* and gr* exist, then

o. (,(u,* r,o,(rt,ù,ffi) 
"(L#,ut(rt,o,)) 

,

, (r,, o,h) ,, (+,*) ,afl) : o

for all 11 and gr1. Therefor-e,

" (, (*, ,t,,+) ," (+,,,) , (r,,r,,h) ," (+,u,);a{*') = 
o,
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which is a contradiction.

It is evident to prove that

n (r (r,, ,,,*)," (+,u,), (r,,r,,h),, (?,,"),4.,)

is increasingin 0t In view of Theorem 4.2.2, if treatment 1is optimal at one stage,

then it should be selected again as long as y goes beyond a critical value gr* given r*.

Similar results can be established for treatmenl 2.

!
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Chapter 5

Conclusion and Discussion

This thesis presents new allocation rules between two treatments that incolporate

a covariate. The goal is to maximize the total discounted expected reward frorr an

finite population of patients. Patient's response is determined from a general linear

regression model without any restriction. We develop the optimal strategy for various

cases when the variance o2 from the regression rnodel is known or unknown. When

one of the two treatments is known, the optimal str-ategy is characterized by an

optimal stopping sohition for both known and unknown o2. When both treatments

are unlçnown) a version of the play-the-winner rule is optimal for both known and

unknown o2. We also prove that the myopic strategy is not optimal in general settings.

Since there has been so little resealch addressing optirnai adaptive designs with

covariate-adjusted responses, or addressing exact evaluations of general designs with
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covariate-adjusted responses) there are numerous outstanding problems in this area.

First, one might argue that exact optirnal designs are not necessâry in practice,

especially rn'hen good options are available. However, without a basis of comparison it

is difficult to assess how good the options are. Actually this may be a future research

direction since optirnal strategies could be cornputationally formidable. Exarnining

the properties of optimal designs and the options can lead to the development and

selection of superior sub-optimal alternatives.

Another concern is a design's robustness and how to appiy it flexibly. In the

future work, we will adjust the pararneters in the conjugate priors or use other prior

distributions to examine the robustness and operating characteristics of our bandit

models.
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