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Abstract

As in Woodroofe (1982) and Sarkar (1991), we investigate the problem of optimal
Bayesian sequential allocation between two treatments incorporating a covariate. The
covariate-adjusted response model is determined by a linear regression with either
known or unknown o2. The goal of our design is to maximize the total discounted
expected response from a finite population of patients. This treatment allocation
problem is formulated as a two-armed bandit model and the optimal strategy is
characterized by means of stochastic dynamic programming. Our model assumption
is more general than that in Woodroofe (1982) and Sarkar (1991). We prove that
under the general setting, the myopic strategy is not optimal. When one of the two
treatments is known, the optimal strategy is characterized by an optimal stopping
solution for the linear regression models with either known or unknown o?. On the
other hand, when both treatments are characterized by linear regression models with
unknown parameters, a version of the play-the-winner rule is shown to be optimal for

the linear regression models with either known or unknown o2
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Chapter 1

Introduction

1.1 Bandit Problems

In many real situations, sequential decisions are made to maximize some expected
reward. But decisions, or the actions they generate, do not just bring in maximum
immediate reward; they can help discover new information in order to improve future
decisions. Such situations are exemplified by clinical trials where available treat-
ments are experimented to minimize patients’ losses or maximize patients’ survival
times. The general problem arising from these situations is to discover an allocation
rule to balance reward maximization based on the information already achieved and
information-gathering for better decisions in the future.

The multi-armed bandit model, originally developed by Robins (1952), is a suit-
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able way to solve this general problem. Multi-armed bandit processes are sequen-
tial decision problems with successive selections from several stochastic processes (or
arms, populations, treatments). Time may be discrete or continuous and the pro-
cesses themselves may also be discrete or continuous. These processes are typically
characterized by distributions which are unknown or have unknown parameters. The
process selected for each stage depends on the previous selections and observed re-
sponses. The goal of bandit problems is to determine a strategy to maximize certain
objective function of responses from all selections. This strategy specifies which of
the stochastic processes to select for every set of partial history of selections together
with their responses.

The majority of the bandit literature takes the Bayesian approach. In this ap-
proach, the utility of a strategy is averaged over the parameters with respect to some
measure. With a Bayesian approach, a bandit is a typical sequential problem solved
by the stochastic dynamic programming method. This is the major reason that much
of the recent bandit literature prefers this approach.

The second approach taken in the literature is to consider particular strategies
and compare their utilities as a function of the parameters. When the utility of
one strategy dominates that of others, this strategy is of course the best one in the
class of strategies under consideration. Otherwise, when there does not exist such a

dominating strategy, various strategies can be compared using tables.
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A third alternative is the minimax approach in which nature is regarded as an
opponent in a two-person, zero-sum game. Nature chooses the parameters in the unit
square, or in a subset of it, according to some restriction. The decision maker’s goal
is to minimize the expected difference between what is achieved and what could be
achieved if the parameters were known. Nature’s goal is to maximize the expected

difference.

1.2 Applications of Bandit Processes

First posted in 1930°s, bandit processes have been studied by many authors and
applied to different areas such as clinical trials in medicine, optimal pricing in finance,
job search in economics, and many aspects of optimization.

Since bandit processes take advantage of accruing information to optimize ex-
perimental objectives, they have long been proposed as models for clinical trials. A
thorough introduction and discussion of bandit models appears in Berry and Fristedt
(1985). Hardwick (1995) provides a bandit model for ethical sequential allocation in
a clinical trial with immediate dichotomous responses. Eick (1988) introduces a ban-
dit process with geometrically distributed survival times which may be censored. He
characterizes optimal strategies by break-even values of the parameters and proposes
an optimal stopping solution in the case of infinite horizon. Some of these results
have been extended and generalized by Wang (2000) and Wang (2002); these gen-

3
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eralizations may provide ideas for efficient computations and simulations. Hardwick
(2006) utilizes a delayed response bandit to allocate treatments in a clinical trial in
which patients arrive according to a Poisson process and their response times are
exponential.

In the field of optimal pricing, Rothschild (1974) demonstrates that the problem
of dynamically pricing a product with an unknown demand function can be formu-
lated as a two-armed bandit model with Bernoulli arms of sequential buyers and
an infinite horizon geometric discount sequence. Wang (2007) studies the extension
from Bernoulli arms to more general compound Poisson processes, and from infinite
horizon geometric discounting to the more realistic finite horizon general discounting.

Many articles have applied bandit models in other research fields, such as the prob-
lem of job search and match (McCall (1987), Banks (1992) and Bergemann (2001)), -
and effective algorithins for general online optimization problems in the bandit setting

(McMahan (2004) and Dani (2008)).

1.3 Motivation and Summary

1.3.1 Motivation

Consider a response adaptive design of clinical trial with two treatments. For each

patient recruited in the clinical trial, the response depends on the treatment allocated
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and a common covariate. Covariates of particular interest in most clinical trials
include clinic effects (in multicenter studies), demographic subgroups (such as age,
gender, and race) and time trends (a drift in patient characteristics over time). We
apply a response adaptive design of clinical trial so that the treatment allocated to the
current patient depends on the previous treatment allocations as well as previously
observed values of the covariate and response variables. Our objective is to maximize a
certain measure of optimality which is defined as a function of the expected responses
and the patient-specific covariates from all patients in the trial. However a drawback
of this design is the lack of randomization, as explained in Berry and Cheng (2007).

Similarly we can think of the problem of dynamically pricing a product when the
demand function is unknown. The profit of selling a product depends on the price
posted and a covariate such as the customer’s age. The objective is to post alternative
prices sequentially in order to maximize the expected value of the total revenue after
sells.

These two examples are typical applications of bandit processes for modeling se-
quential decision problems. An important characteristic of these examples is that
we have to effectively deal with the conflict between information gathering (such as
learning the effectiveness of the medical treatment or the demand function) and imme-
diate payoff (such as treating the current patient effectively). Information gathering

is crucial for understanding the unknown statistical characteristics of the arms or
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treatments, and its benefit is in the long run. The sooner we reduce the uncertainty
of the unknown treatments, the sooner we can make better informed decisions which

will in the long run bring higher overall benefits.

1.3.2 Summary of the Results

Our research in this paper is focused on bandit problems as related to response
adaptive designs of clinical trials. We discuss adaptive allocation strategies that
adapt on the basis of patient response and observed covariate.

The first work considering covariate models in bandit problems is done by Woodroofe
(1974) who investigates a one-armed bandit model with geometrically discounted re-
sponses from an infinite population. He established the asymptotic optimality of the
myopic strategy. Woodroofe (1982) discusses the optimal treatment allocation policy
of a bandit model where the responses of patients depending on a covariate model
come from a finite population and the discount sequence is assumed to be uniform.
Sarkar (1991) extends Woodroofe’s model and describes the difference between the
responses from the new and the standard treatment to follow a one-parameter expo-
nential family. Her main result is that the myopic strategy is optimal under several
conditions. The major restriction of the above research in bandit models with co-
variates is that the results depend greatly on model assumptions. Actually, myopic

strategies are not always optimal in general settings.
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To solve this problem, we extend Woodroofe’s and Sarkar’s models and formulate
treatments to incorporate a linear normal regression model without any restriction.
Besides, the discount sequence is extended from infinite horizon geometric discounting
to more realistic finite horizon general discounting.

We begin in Chapter 2 with an basic introduction of the theoretical and method-
ological framework of our bandit problems. A detailed Bayesian analysis of the normal
linear regression model is provided. We also explain the general model of bandit pro-
cesses. In Chapter 3, the bandit problem for modeling treatments characterized by a
normal linear regression model with unknown regression parameter and known error
distribution is studied. We separately discuss the one-armed bandit model consisting
of a new and a standard treatment and the two-armed bandit model consisting of two
unknown treatments. When only one treatment is unknown, the treatment allocation
is characterized by a sequence of break-even index values, which allows us to define
the optimal stopping solution. Moreover, the limiting property of this sequence is
discussed in detail. This limiting property provides asymptotic boundary conditions
for the index values. When both treatments are unknown, a version of the play-with-
winner allocation rule is developed. In Chapter 4, we further generalize the results in
Chapter 3 to the more complicated case where both the regression parameter and the
error distribution are unknown. Again we determine the optimal strategies for both

one-armed and two-armed bandit models. Similar results demonstrate that there ex-
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ists an optimal stopping solution when only one treatment is unknown. Moreover, in
the case of two unknown treatments, a play-the-winner strategy is applied again to
achieve the maximum of the total expected response of all patients. We conclude the
thesis in Chapter 5 with a brief summary of achievements and a discussion of future

research problems.



Chapter 2

Mathematical Formulation

2.1 Regression Models for Unknown Treatments

In a clinical trial, let X denote the patient-specific covariate of interest and let X; be
the covariate corresponding to the i** selection. The covariates X;,i = 1,2,..., are
assumed to be independent random variables with a common density function f(z),
a domain €2, and a finite mean u. Without loss of generality, assume u > 0.

If the " patient is assigned to an unknown treatment, then the random response

Y; of this patient given X; = z; is determined by a regression model

where [ is the unknown regression parameter describing the effectiveness of the un-
known treatment, and ¢; is the random error. We assume that ¢;,7 = 1,2,..., are

9
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independent Gaussian random variables with mean 0 and variance o2, We also as-
sume that the sequence Y;,i = 1,2,..., of random variables are independent and
identically distributed given x; = x.
The likelihood function based on n observations & = {(z;,v:),7 = 1,2,...,n}
from the regression model (2.1.1) is
(B,0°1 0) = 1] fwl 8,07
i=1
. . n
x o "exp 1i— {(n — o2+ (B - p)? fo} /202} , (2.1.2)
i=1

where o« means “proportional to”, 8 = Y& zy:/ > ., @7 is the ordinary least

squares estimate (OLSE) of 8 and (n — 1)o? = S (g — Bay)>.

2.1.1 Bayesian Inference for Known o?

When o? is known, the likelihood function (2.1.2) is reduced to

We take the conjugate prior N (B, c?/m) for B, then the posterior distribution of
works out to be
n ~1
N | 57, o* (m+fo) )
i=1

where

_ mBo + D i T
m+ Z?:l sz '

IB*

10
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It is evident to see that §* is a compromise between the prior mean [y and the least

squares estimator 3 of 3 if we rewrite

i1 B
=L 2/6 2ﬂ07

IB*
m+zzl z +Zzl z

which is a weignted average of 8 and (.
The predictive distribution of a future observation Y, 1, given X,,.; =z and & is

9(y| z,0)

+0o0

= flyl B)g(Bl 0)dB

— 00

x /:oexp!—%'?{x?(ﬁ—%f <m+2x>,@— H(w

x exp{ ! < Mt i O >(y—ﬂ*x)2J,

207 \mt Yo, @ o

which is the density function of the normal distribution

v ()

We may use the method of iterative expectations to find the mean and variance

of the predictive distribution. The predictive mean of a future observation Y,,,; is
E(Yy11| O) = E(E(Yy1| 8,0)| O) =2E(pB| O) =
and the predictive variance is given by

Var(Yoi1|0) = Var(E(Yasl 8,0)] )+ EVar(You| 8,0)] ©O)

<m+21 1xz+x>
m+zz 1%

11
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2.1.2 Bayesian Inference for Unknown o2

In this section, we consider a general model where both the regression parameter
and the variance ¢ are unknown.

Sometimes it is mathematically convenient and instructive to work with the pre-
cision 7 = 1/0? instead of the variance. Let us assume that the sample & of size n
is drawn from the regression model (2.1.1) where both 3 and o? are unknown. The
likelihood function of # and r given in (2.1.2) is modified to

n
0(3,7| O) < 17 exp {—g {(n — 1)+ (8- B)? foH .
i=1

The natural conjugate prior for (4, r) is such that

g(B,r) = g(B| r)g(r),

where g(f] r) is the normal prior N (5o, mr) and g(r) is the Gamma prior G(u,v) so
that

- uti—1 . T_ . 2
9(8,) ot Lexp [=r {u+ T8 - 4o}
The posterior density is then derived as
g(8,7] O) x {7’1/2 exp {—g(m + fo)(ﬁ — 6*)2” [r27 exp(—rv™)]
i=1
where

_ mfo + B Z?:l 3312
m -+ E?:l 5’312

fon (2.1.3)

)

12
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and

(n—1)o>  my i, a}(6~ bo)’
5+ 2(m—1#2?:1 2 (2.1.4)

Hence, the joint posterior distribution of 3 and r is a product of the conditional

v =0+

posterior distribution N(8*, (m+ >, z?)r) of 5 given r, and the marginal posterior

zlz

distribution G ("'22“, v*) of r. The marginal posterior distribution of § can now be

obtained by integrating out r from g(8,r| &), so that we have

+00

mmﬁ>=l[ o(6,7| O)dr

o0
( n+‘22u+1 )

o [1+(6 8) m—{-Za: )/2v*

which is a kernel of a 3-parameter t-distribution with (n + 2u) degrees of freedom,

location parameter 5%, and scale parameter U‘““) (m+ > i, 2%). It is noted that the
posterior variance of J is finite only when n > 3.

Moreover, the predictive density of a future observation Y;,1, given X,, 11 = z and

0, is

+-00 +oo
oyl 2,6) = / A 4(6,7| O)f(y| z,8,r)dBdr

[e's} n 2
nt2utl_q 1 m+§1 1 T3 . 2
T2 — — d
o /0 exp[ r{v +2m+z = _!_332(@/ 0x) T

=11
[ (mEa  (nr 2w (=g |
m+ Y. 2+ 2? 20 n+2u

where 3* and v* are defined in equations (2.1.3) and (2.1.4). It is obvious to see that

the predictive distribution of Y}, is a 3-parameter t-distribution with (n+42u) degrees

13



CHAPTER 2. MATHEMATICAL FORMULATION

of freedom, location parameter G*z, and scale parameter e ML (“+2“)
’ ’ m+y g zi+x? 2w~ /°

=1

2.2 Bandit Model Overview

In the general setting, an arm of a k-armed bandit problem will be characterized by
a probability measure F' on the Borel field of subsets of &, the space of probability
distributions on R with the topology of convergence in distribution. The space 2%
of ordered k-tuples of members of & will be considered to have the product topology
arising from the above defined topology on &. The Borel field generated by this
product topology is the only o-field of subsets of 2 that will be considered; it is
the the product o-field of k copies of the Borel o-field of 2. The component Q);
of (Q1,Qa,...,Qr) € 2* governs observations on arm 7. Since (Q1,Qa, ..., Q) is
random, the probability distribution G of (Q1, @, ..., @x) and the space Z(2*) play
a central role in the decision problem. A member G of 2(2*) represents the decision
maker’s prior information concerning the k£ arms.

Now we turn to the discussion of one special case of the k-armed bandit prob-
lem, the two-armed bandit process for modeling the sequential treatment allocation
problem in clinical trials consisting of two treatments.

Suppose that in a clinical trial, there are two independent treatments, treatment

1 and treatment 2, available for a common disease. Patients arrive sequentially and

14
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are treated immediately at times 1,2,..., N, one at a time. Let X, Yy;, Y5; denote
the covariate and the responses of patients from treatment 1 and treatment 2 at
time %, respectively. Suppose the distribution of X; and the linear regression models
for Yi; and Ys; are defined in the same way in section 2.1. Further suppose that
covariates X, Xs,..., Xy are observed sequentially and for each time i, we may
observe either Yj; or Ys;, but not both. Our objective is to sequentially allocate
treatments to patients in order to maximize the total discounted expected responses
from all patients. Given this, it is reasonable to model the above treatment allocation
problem as a two-armed bandit consisting of two arms, a discount sequence, a set
of strategies, and an objective functions as the optimality criterion for selecting an
optimal strategy.

The two arms of this bandit model are the sequences of conditionally independent
and identically distributed random responses {Yi1, Yo, - .., Yan} given the distribu-
tion of responses from treatment &,k =1, 2.

From the mathematical perspective, it is necessary to add a discount factor o
for each response in our bandit model. We assume that the discount sequence AY =
(on, a9, ..., an,0,...) is nonincreasing and sz\;l a; < 0o. The most commonly used
discount sequences include the uniform discount sequence (1,1,...,1,0,...) and the

finite geometric discount sequence (1,a,...,a’¥71,0,...),0 < a < 1. At time n, the

truncated discount sequence (v, Qny1,---,an,0,...) is denoted by AL,

15
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By a sequential allocation, we define a strategy m = (m1,m2,...,7n) in which
each 7; takes the value 1 or 2 to indicate that we observe Y3; or Y. For the conve-
nience of the proceeding discussion, the i** patient’s response under the strategy  is

characterized as

Yy;, if treatment 1 is selected,
Zz' -

Ys;, if treatment 2 is selected.

The response Z; is a function of X; and £, where J" denote the o-field generated

by the relevant data available at time ¢, that is
%ﬂ— = U{le s 7Xi—177T17 ceny -1, Zl; R Zi—l}-

F£™ may be denoted by % if the dependence on 7 is clear from the context. Since our
bandit model is a finite horizon Markov decision process, only deterministic strategies
need to be considered (Puterman (1994)). Therefore the strategy = is a sequence of
measurable function 7; : 54 — {1, 2} indicating treatment & to be selected at time ¢,
where k = m;(h;) and h; is the observed history of the past selections.

Let G be the initial state of our bandit model, then the worth of a strategy m,
given the discount sequence AN = (ay,ag,...,an,0,...), is defined as the expected

total discounted responses

N
W(G; AY;n) = E; (Z aiZ¢> .
i=1

16
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The value of the (G; AV)-bandit is the maximum worth
V(G AN) = max W(G; AN ) maxE’ <Z ; ) .
The objective of our treatment allocation problem is to find an optimal strategy =*
such that
W(G; AN, 1) = V(G; AN) = max W(G; A; 7).
At each state (G; AN), let VI)(G; AV) and V®)(G; AN) be the worths of the strate-
gies that allocate initially the treatment 1 and treatment 2, respectively, and follow

an optimal strategy afterward. Then the dynamic programming equation becomes
V(G; AN) = max{VW(G; AY), VE(G; AM)}.
Moreover, we define the advantage of the treatment 1 over the treatment 2 as
A(G; AY) = V(G; 4Y) — VI (G; AY),

which characterizes the initially optimal selection of treatment. Treatment 1 is op-
timal if and only if A(G;AY) > 0 while treatment 2 is optimal if and only if
A(G; AN) < 0. Both treatments are optimal when A(G;A) = 0, and there is no
unique optimal selection.

However, this equation is formidable to solve in general. We will prove in Chapters
3 and 4 that there exists a sequence of break-even index values to describe the optimal
selection in our bandit models. The limiting property of this sequence will also be
discussed.

17



Chapter 3

Linear Regression Model with

known o2

3.1 One-armed Bandit with a Covariate

Let’s consider a one-armed bandit, or equivalently a two-armed bandit with one arm
known. On the known (or standard) arm (or treatment), the response is random
but its mean is a known linear function of the covariate. On the unknown arm (or
treatment), the random response depends on the covariate and the relationship is
determined by a regression model. However the coefficient of the regression model is
unknown. Thercfore we face the tradeoff between information gathering (in order to

learn the unknown parameter characterizing the unknown treatment) and immediate

18
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payoff (so as to maximize the objective function).
If the ¢** selection is made with the unknown arm or treatment, the random

response Y7; is determined by a regression model

}/'12':,61131'—!-511', 1= 1,2,.‘. (311)

or

where z; is the observed covariate, 3 is the unknown regression parameter and ey;
is the random error. We assume that ey;,¢ = 1,2,..., are independent Gaussian
random variables with mean 0 and variance of. We also assume that the sequence
Yi;,1=1,2,..., of random variables are independent and identically distributed given
T; = X.

If the i** selection is made with the standard arm or treatment, the expected value

of the response is given by

where )\ is given. We assume that the sequence Ya;,7 = 1,2,..., of random variables

are independent and identically distributed given z; = z.

19



CHAPTER 3. LINEAR REGRESSION MODEL WITH KNOWN o*

3.1.1 Bayesian Method and Optimal Selection

Suppose that by time n = 2,..., N, some patients are assigned to the new treatment
at times ni,Mn9,...,n,. We assume the observations from this new treatment are
described as &, = {z;,y15,% = m1, Mg, ..., Mk} Let v, =22 +...+ 22 and 5, =

TnyYing + - - - + TnyYin,, the OLSE of 8 can be written as

Gy =T, (3.1.4)
Tn

Assume the prior distribution for 8 to be N (8o, o5/m), then the posterior distribution

of § is again a normal distribution

N(Bn, 02),
where
b, = "t (3.1.5)
m—+ Yn
and
2
e (3.1.6)
m+ Yn

This sequence { N(8,,02),n = 1,2,...} of distributions forms a process of information-
gathering and can be viewed as states of an underlying Markov process. The decision
at each time can be determined by state transition and expected immediate response.

Under the normal distribution N(3,,02),n = 1,2,..., the predictive distribution

of a future observation Yi,, given X, =z, is

N(Buz, (0f + 077°))

20
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with the density function

glyl =) = . exp <———L——~(y - 5n9:)2> :

2n(of + 022?) 2(0f + 032?)

Hence the posterior expected response is
E(Y1n| 2, N(n,0%)) = Boz.

Now the worth of a strategy « for the one-armed bandit with posterior distribution
N(B,,c2) of 3 is defined as
N
W (N(Bn,00), X; A7) = E, (Z A N(ﬂn,a,“i)) ,

where

Y1;, if the new treatment is selected,
Zy =

Ys;, if the standard treatment is selected.

The optimal value of this bandit model at stage n is
VN(Bn, 07), % AY) = max V(N (B, 07), X A7),

where V(N (8,,02), \; AN),i = 1,2 are the optimal values of allocating the new and
standard treatment at stage n respectively and then following an optimal strategy.
Moreover, the optimal selection of treatment at stage n is described by the advantage

function of the new treatment over the standard one, which is

AN (Bn, 02), X AT) = VIO(N(Ba, 07), X AY) = VE(N (B, 07), X5 Ay).

21
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Then the new (standard) treatment is optimal at stage n if and only if
A(N(Bn, a7), X A) = (2)0.
By the principle of backward induction,

V(l)(N(Bna 07%): >‘; Ag) - anﬁn.“’ + E(V(N(ﬁn-Ha 0721+1)7 )‘; Ag—i—l)l N(/jna 0-37,))3 (317)

where
n+1 — 5 3.1.8
6 +1 m"*”)/n“_XT% ( )
and
2
2 99
=— 3.1.9
O—n—i-l m+’Yn+X7% ( )

On the other hand,
VE(N(B,,02), % AY) = andin+ V(N (Br, 07), X ARli)-

Simple calculations from (3.1.7) and (3.1.8) by using equations (3.1.5) and (3.1.6)

give
023, + 02X, Y
,3 __YoMn O-n niin
n+1 — 2 2 2 )
00+0an
and
2 2
02 _ 0u9,
n+l = 2 2 v’
UO+Uan

So rewriting (3.1.7),

VO(N(Bn, 02), A AY)

n

2 2 2.2
_ anﬂnu+ B (V (N (Uoﬂn + O'anifln 060n > 7)\;A7I:f+1> l N(ﬁnﬁi)) )

2 2v2 2 2 V2
o +02X2 of +o2X?

22
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3.1.2 Main Results: Optimal Strategy and Monotonicity

We prove the main results in this section, which concern about the existence and

structure of optimal strategies.

Lemma 3.1.1. At each stage n,n =1,...,N, all functions V(N(B,,02), \; AY) and
VO(N(B,,02),\; AY),i = 1,2 are continuous and increasing in A. Therefore the

function A(N(B,,02), \; AN) is also continuous in \.
Proof. This result can be clearly proved by the method of induction on N. O

Lemma 3.1.2. At each stagen,n =1,...,N, let AY = (a,, apy1,...,an,0,...) de-
note the truncated discount sequence, then the function A(N(B,,02),\; AY) is non-

mcreasing in A.

Proof. Consider the induction on the horizon N. This lemma is evidently established
when N = n since A(N(8,,02),\; A%) = a,u(B, — A) is nonincreasing in .

Suppose this result is true for the horizon N. For any function f(z), we define
fH{z) =max{0, f(z)} and f~(z) = max{0, — f(x)}. Hence,

A(N(Bn, 02), A; AF)
= VON(B,,02), 5 AN = VE(N(B, 02), X AVHY)
= O‘nﬂn/’/

+o0 9 9 9 9
+/Q/ Vv <N (0-0571 + 0n$y7 00, ) 7/\,147]:?11) g(y] :l?)f(x)da:dy

02 + 02z% ’ 0 + o2x?
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—an A — V(N(By, 02), X AN

- an/@n.u
+oo o2 n+GT2La: 0203 ;
[T <N< $ntonzy g ),A;Aﬁrf) o] @) f(x)dedy

08 + 02z% o} + o222

+00 2 2 )
+// A (N <Uoﬁn+0n£13y 000, > >A3Avjyj11> g(yl x)f(.’L‘)de‘dy
QJ—-0

2 2,2 7 52 2 22
oy +onx? o5+ oLT

_‘Ofn)\:u' - V(l)(N(ﬂn; 0121)7 )‘; Aﬁlﬂl) - A_(N(ﬁm 02)7 )‘; A’r];/—:—ll)

= Qpfnfl+ Qnp1Ap
oo o2 ., + 02T 020,,%
o V<N< 36n + 02y o ),A;A;V:;) o(y| 2)f (x)dady
QJ—o0

2 22 2 2 2
oy + 05T oy + oLz

+o0 2 n+ 2 2 .2
+// At <N <0’0ﬁ g,y 0p0y, ) 7/\;A712f:-11) g(yl x)f(x)d:vdy
QJ -0

bl
o2 + o2z ' of + o222

_an/\,u - an-l—lx[jnp“

©o[Feo 020, + olx oao?
T (e (et ),A;A;V;;l) o(u] ) (@)dudy
QJ—~co

2 2,2 52 22
oy +osx° oy +oix

_A_(N(/Bn: 0721)7 )‘; Avjy—ii}-ll)

= (Ozn - an-i—l):u(/dn - /\)

L (v (B ) i) st e
. J—00 n n

— AT (N(Bay 02), X AV (3.1.10)

The first term in equation (3.1.10) is nonincreasing in A since o, > opy1 and

= 0. In addition, by the induction hypothesis,

2 2 2.2
At (N Uoﬁn + 0,7y 900p, A\ AN+
0f + 0222 ' of +o2g2 )T
0 n 0 n
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is nonincreasing and

A™(N(Bay 07)s A A
is nondecreasing in A. Therefore A(N(B,,02), \; AY) is nonincreasing in . O

The existence of an index value characterizing the optimal decision at each stage is
proved in the next theorem. In principle, we calculate the index value by the method
of backward induction and determine the optimal decision by comparing the index

value with the actual regression parameter of the standard treatment.

Theorem 3.1.3. At each stage n,n = 1,...,N for any B, and o2, there exists
an index value \* = N*(Bn, 02, AN) such that A(N(B,,02), \*; AY) = 0. The set
of all such index values forms an interval. Moreover, the new treatment is optimal
if and only if X < XN(Bn, 02, AY) while the standard one is optimal if and only if

A > X(B,, 02, AN).

Proof. The existence of the index value follows from the continuity and monotonicity
of A(N(B,02), \; AY) in A, and the facts that A(N(8,,02),0; AY) > 0 as well as
limy oo A(N(Bn, 02), \; AY) < 0. Furthermore, the set of all such index values forms
an interval since A(N(B,,02), ; AY) is nonincreasing in A. Finally, the optimal

decision is made based on A\* according to the advantage function A. O

Although the existence of the index has been proved, there is no close form solution
of X*(Bn, 02, AY). In the next major theorem, the monotonicity and limiting property
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of this decision index is discussed. We assume the special case of a finite horizon

geometric discount sequence, in which case the index A*(8,, 02, AY) is unique.

Lemma 3.1.4. Assume that AY = (1,a,02,...,6"71,0,...),0 < a < 1. For any

given 8 and o2, if A(N(B,0%),\; AY) =0, then A(N(3,0?), \; AN > 0.
Proof. The equation A(N(8,5?),\; AY) = 0 implies both
Bu—Au = aV(N(B,0%), A7)

2B+ 2 XY oo
—aF [VIN 0 0 \. AN-1 N ,
(0% ( < < 0'8—}—0‘2)(2 ’ 08+0_2xg> y Ny L1 ) | (/6’0- )

and

V(N(B,0%), X AY) = M+ aV(N(B,0%), % AL ™).

It follows from the above two equations that

A(N(B,0%), % AT )

2 2 2 2
B o308+ 0 XY 050 N 9
== ﬂp—l—aE(V <N< By R N AL NG, o7)

—Ap — aV(N(B,0%), A AY))

= aV(N(B,0%), ) AN )
o (v (v (LY o) dar) | wiso)

02 4+ 02X? " 0% + 09 X2

028+ 0’ XY  ojo?
E|{V|N[Z 0 NANVIN 2
e ( ( o5 + 02X? ’U§+02X2>’ ’ 1>| (8,0%)

—O{)\M - &2V(N(67 02)’ )‘a Aiv—l)

+o0 2 2 2 2
= a// v (v (Q0Fomy o0 ) )
0J-c 02 + 0222 ’ 03 + o222
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v (N ("3‘3 oty _oho” ) ,A;Ai“ﬂ o(y| 2)f(z)dady

o2 + o%x? ' of + o%z?

—adp+a(l — a)V(N(B,02), \; AX Y. (3.1.11)

Let 7* be the optimal strategy for

o2+ olzy  olo? _
V<N<° , ),A;A{“).

02 + 0222 ' 08 + oz?

We follow 7* for

2 2 2,2
v <N <JO,3+G Ty  0f0 )7/\;A11V>

02 + 0%z? 02 4 o2z?
during the first N — 1 stages and choose the standard treatment at stage N, then

2 2 2 2
v (N (Uoﬁ-{—a Ty 050 ),)\;Af[)

02 + o%z? ' 02 + o%z?

2 2 2.2
Y (N (”0ﬁ+” il ) ,A;A{V—1> >y (3.1.12)

02 + 0212 ' 02 + o2a?

for all z and y. On the other hand,

o2 +olzy  oio?
VIN|[ 2 0 XAV > (1 o+ aTHA 3.1.13
( <03+02x2’08+02a:2)’ o >(I+at...+a ) | )

if we select the standard treatment all the time. Therefore, a straight calculation

from (3.1.11) by using equations (3.1.12) and (3.1.13) gives
AN(B,0%), ; AV > oMy — adp+ ol — o) (T +a+ ...+ a7 )Ap) =0,

as desired. O
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Theorem 3.1.5. For fized 3 and o? but changing N = 1,2,..., let M (8,02, AY) be
the index value such that A(N(8,0?), \*(B, 02, AN); AY) = 0, where

AV =(1,a,...,a""1,0,...). Then
B=N(B,0% A1) <N(B,0% A < ... <X (B,0% AN) < ...,

Moreover, the limit \*(8, 0%) = limy—_.o, \*(8, 02, AY) ezists such that 3 < X\*(B,0?%) <
oo and A(N(B,02), \*(8,02); A) =0, where A= (1,,02,...).
Proof. Based on the monotonicity of
A(N(B,0%), ), AT

in A and the results that

A(N(B,0%), \*(8, 02, AN, AN+ =0
and

A(N(B, %), X(8,0°, A]); AYTH) > 0,

we conclude that

N (8,0% AY) < X (8, 0%, AV

for N=1,2,....

Furthermore, the limit of the nondecreasing sequence A\*(8, 02, AN) exists. Let

M8, 0?) = limy_0o M*(B, 0%, AY), then \*(53, o) satisfies the equation
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A(N(8,0%), \*(8,0%), A) = 0 due to the fact that A(N(8,02), ), AV) is continuous
in N. If A*(8,0%) = oo, then V(N(B,0?), \*(8,0?), A) = oo, which contradicts the
finiteness of the optimal value function.

Now we finish the proof by showing that 3 < A\*(8, 02, A?). By contradiction,

suppose that 4 = \*(8, 02, A?), then

0 = A(N(ﬁ, (72); )\*(/3, UQ,A%),Ai)

2 2 2.2
_ o3+ 0° XY oy te . 5 A2\ Al 5
= ﬂ/¢+aE<V<N< Bt XT it opxe ) B0 A AL N (G, o)

M (8,0% A — aV (N(B, %), \*(8, 0%, A3); AY)

= o o3 +ao’ry a5’ . 2 42y, 4l

a Q{/Q/—oo I:V <N < 0§+02x2 70(2)‘1'0‘2;1;2) ) A (/6’0 7A1)>A1>
—V(N(B,0%), \*(8, 02,A2);A1)} 9(y| =) f(z)dzdy

A N {ma % e L, o - m} 9(yl =) (z)dzdy. (3.1.14)

Since Y|z is normally distributed as N(8z, (02 + o%z?)), let y* be the smallest y
larger than fz when z is given. Then the right side of equation (3.1.14) is positive,

which is a contradiction. dJ

This fundamental result reveals the important idea of balancing the immediate
payoff and information gathering during the decision process. Moreover, it provides
a monotonic approximation for the Gittins index A\*(3, 0?) which is formidably com-
puted in practice. There are two interesting corollaries in the proceeding context.
The first corollary shows the non-optimality of the myopic strategy. The second one
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illustrates the optimal stopping solution.

In bandit problems generally, it may be wise to sacrifice some potential early payoft
for the prospect of gaining information that will allow for more informed choices later.
In our model, a strategy is myopic for normal distribution N(8,0%) when the new
treatment (standard treatment, respectively) is chosen if and only if 4 > (<)A. This

strategy is not optimal unless NV = 1.
Corollary 3.1.6. The myopic strategy is not optimal in general.

Proof. For a two-stage bandit problem, let A be such that 8 < A < X\*(8, 0%, A?). The
new treatment is uniquely optimal at the first stage while the myopic strategy selects

the standard treatment. O

Corollary 3.1.7. If the standard treatment is uniquely optimal at stage n, then it is

optimal for the rest of the decision horizon.

Proof. If the standard treatment is uniquely optimal at stage n, then A > \*(3, 02, A7),
which indicates that A > \*(83, 0%, A7™"). Clearly, the standard treatment is uniquely

optimal again. O

In view of the above corollary, if the standard treatment is uniquely optimal, no
information is gathered on the new treatment and the state of the bandit model is
not changed. Hence the standard treatment is selected again by the monotonicity of
the decision index. Based on this optimal stopping solution, we start by the initial
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selection of the new treatment and continue until it is optimal to permanently switch
to the standard one. By Theorem 3.1.3 and Theorem 3.1.5, the optimal time to
switch to the standard treatment is the smallest n such that A\*(3,,02, AY) < A
Furthermore, the above results illustrate that the longer the decision horizon N, the
more profitable the information gathering, and the more chance to choose the new
treatment. The sequence of index values approaches the Gittins index when N gets

sufficiently large.

3.2 Two-armed Bandit Model with a Covariate

In this section, we extend our results to the case of two unknown arms, that is we

2

examine the two-armed bandit processes. Again the variance o* is assumed to be

known for both arms.
We discuss the two-armed bandit problem consisting of two unknown treatments
with regression parameters ;, 4 = 1,2, following the prior distributions N (8, 02/m),

1 =1, 2, respectively. The first treatment is characterized as

}/11' Zﬁlﬂfi—i—c‘:h‘,i: 1,2,..., (321)

and the second one is described as

}/21' :,62.’%'-{-621',’1: = 1,2,..., (322)
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where z; is the observed covariate, and &; and €5; are independent Gaussian random
variables with mean 0 and known variance oZ.

Similar to the framework in the previous section, we define Y1, Nin, Bin, 0%, for
the unknown treatment 1 and 7y, 7on, Bon, 02, for the unknown treatment 2. Further
calculations show that at stage n, the predictive distribution of a future observation

Y;, from treatment 1, given X,, = z, is
N(Binz, (0f + 02 1%)).
and the predictive distribution of Y5,, from treatment 2 is
N(Baonz, 0p + 03 7%)).

Hence the predictive densities of Y1, and Ys,, given X,, = z, respectively, are

g1(y] X =) = 1 e (~srray v - )

\/2n (02 + o}, 72 0 + 07,23)

and

5o(y] X = ) = — e exp (~ g 0~ )’

v 2m(08 + 03,22) 0 + 03,73)

Furthermore, in the similar way as before, we characterize the worth function
W (N (Brn, 0%,), N(Ban, 05,); Ay ),
the optimal value function

V(N(ﬁlm 0’%”), N(/BQM Ogn); Ai\’)
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the optimal value function for each treatment

VO(N(Bin, 02,), N(Bon, 05,); AN )i = 1,2,

and the advantage function

A(N(ﬁlnv 0%71)? N(ﬂan Ugn); A,,J:[),

at each stage n,n =1,2,..., V.

Since it is necessary to understand the unknown parameters from both treatments,
the myopic strategy is reasonable on the first stage. For continuing decisions we will
prove the optimality of a version of the play-the-winner strategy. The play-the-winner

strategy was first studied by Zelen (1969).

Lemma 3.2.1. For any truncated discount sequence AY = (an, pt1,...,an,0,...),
n=12,...,N, and N(Bin,0%,),1 = 1,2, we have

A(N(/jlm U%n), N(IB2TL7 O_%n); Ag)

= ( - Ofn—l—l)(ﬁln 6277,)

+oo 2 2 2.2
// A+< <00ﬁ1n+01nx1y1 00%1n > (ﬁ2 0 )AN >
2 2 .2 y 2 2 .2 ny Y 2n 741
05 + 017 0g T 01,17

Xg1(y1| z1) f(z1)dz1dy,s

+oo 2 2 2.2
/ / N (B, 02), N (D2t Tl 00%n Y g
n 1 3 ? 1
o 02+ 02,23 of+03.a3) "

X g2(ya| m2) f(w2)dz2dys.
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Proof. Using equations V = V® + A+ and V = V) + A~ the advantage function

is expanded as

AN (Bin, 03,), N(Bans 93,); A7)

+oo 2 2 2.2
0301in + 05, T11 050
= anﬁlnﬂ'*’// V<N< 0 271 ang ’ g : 1271 2) (/62n702n) AQI—H)
QJ—~o0

0y T 01Ty 0y + 0121

xg1(y1| z1) f(z1)dz1dys — anfonpt

+oo 2 2 2.2
[T (ot v (B T )
n 1 ) ) 1
T o} + 03,23 02+ 02,75 et

X ga(y2| x2) f(x2)dmadys

oo 08B + 05T os0%
= an/ﬁlnﬂ“f‘// V(z) <N< 0 5 21 5 y o 0 1271 2) (ﬁ2n702n) Ag&—l)
QJ—00

o5 + 01,21 oy F 01,21

xg1(y1] 1) f(z1)dz1dys

+o0 2 2 2 2
+ 05 01n + 01,141 O0%1n 2 N
-+ A N 3 RN y o 2 9 3 N(ﬁ?n: U2n); An+1
Q J—o0o oy T 01,21 04 T 017

Xg1(y1] z1)f(z1)dz1dys — anfBonpt

+on 2 2 2.2
z
‘/Q/ v N(/Blm(f%n)aN<00622n+a22n 22y2, 2%022n 2) 3A7]2[+1>
—oQ0

o5 + 05,73 0§ + 09,75

><92(Z/2| $2)f($2)d$2dy2

+o0 2 2 2 2
_ A~ [N 2 ), N 05520 + 05, %2Y2 T092n AN
17y T1n ) 9 2 .2 2 2 .2 | n+1
QJ-co 05 +05,T5 0+ 03,25

X ga (yzl mg)f(%)d@dyz

- Q47"L/81n/~L + an—l—lﬁZn,Uf

400 +o0 2 2 2 2
o551 + 01,711 0001,
+ VN 2 52 22 g2 4 g2 g2 )0
QJ-o JoJ-x 05 T 01,71 0 T 07,77

N(m%+ﬁ@” %% 42, ) gu(n] @) f(@r)dd
g ) x
o2+ 02 a2 ol + 02,13 nt2 | 911 21)J(Z1)aZ10Y1
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X g2 (12| x2) f(2)dzadyys
Y e UZﬁ n+ Jznx 0202n
—l—/)/ AT <N< ° 12 21 21@/1’ 2 ° 12 2) 7N(ﬁ2magn)5ArIY+1>

0g t 01,7 oy + 01,77

X g1(y1] x1) f(z1)dz1dys — onfontt — Qni1Finit

+00 +o0 2 2 2 2
05 51n + 01,Z1Y1 G901
- VIN 2452 22 g2y 52 22 )0
0J-xo JaJ-x oy T 0127 oy T 01,73

02 Bon + 05 ToYs rters
N oM2n 2n 0Y2n ;AN " 2 2)dzod
( 03+ 02,23 'of+osai) " 92(9s] 2) f(w2)dadys

Xg1(y1] 1) f(z1)dzidy

+OO 2 2 2 .2
// N(Bin, 02 ), N 0p0an + 05,T2Ya 0705, AN
In 1 3 ) +1
T of +os,x35  og+osay) "

X g2 (2| z2) f(z2)dzadys. (3.2.3)

This lemma is completed after canceling the two forth integrals in (3.2.3) by changing

the order of integration. 0

Theorem 3.2.2. Let AY™ = (1,...,1,0,...) be a uniform discount sequence. For
given (3 and 02,i = 1,2, if A(N(By,0%), N(Ba,03); AN > 0, then there exist some

z* and y* such that

o2 +U2CC* * olo?
A<N< 0P + oizty . 071 '2>,N((/32,U§),Aiv)> > 0.

0d +oiz*? ol + ozt

Proof. From Lemma 3.2.1 we obtain

A(N(ﬂla U%)v N(ﬁ% 05)3 Aiw_l)

YA o] 0.2 +0.2x 0.20.2
- [ e (v (TR SR ) N oY )

2
oo oy +oixy oy + 07Ty

xg1(y1] z1) f(z1)dz1dyy

35



CHAPTER 3. LINEAR REGRESSION MODEL WITH KNOWN o2

+oo 2 2 2 2
0502 + 03Tay2 0505 AN
ﬁl 01) 2 2.2 2 2,2 |1
0y + 0575 0y + 0375

X g2 (Yol x2)f(1’2)d$2dy2

If no such z* and y* exist, then

o2 2 2 2
At <N< 061 + otz 00071 ) (/32,0_2) AN) —0

00+U1$1 Uo"’alxl

for all z and y. Therefore A(N(fBy,0%), N(By,02); AN*1) < 0, which is a contradiction.

It is evident to prove that V(N (61, 0%), N(Bs, 03); AN*T) is increasing in 3. In
view of Theorem 3.2.2, if treatment 1 is optimal at one stage, then it should be
selected again as long as y goes beyond a critical value y* given x*. Similar results

hold for treatment 2.
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Chapter 4

Linear Regression Model with

unknown o2

4.1 One-armed Bandit with a Covariate

We will investigate a more complicated one-armed bandit model in this section where
both the parameters § and o2 of the new treatment are unknown. The new treatment

is defined as

Vi =Bz +e,i=12.. (4.1.1)

where ¢; are independent Gaussian random variables with mean 0 and unknown
variance o2, The responses from the standard treatment have constant expectation

value A\z; as before if the covariate z; are given for each time 7.
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4.1.1 Bayesian Method and Optimal Selection

Let us assume the new treatment is selected k times at the decision times ny, no, ..., Nk
by the time n, and the observations from this treatment are characterized as 0, =
{(zsy1), % = na,ng, ..., ng ). Write y, = 22 +a2 +.. . 422, 70 = Y3y, +Yin, +- -+
y%nk, and 7, = TpyYing + TroYing + - - - + ToyYin,, then vy, 7, and 7, are the sufficient
statistics of 3 and r.

Now the likelihood function of # and r becomes
1 . .
0,0% 02) x +Pexp | -3 (= )53 + (- Bu) /222,
where the OLSE £, and 0221 can be calculated from

3 n
/Bn = '_n"a
Tn

and

R 2
(k—1)o2 = 20n " T
Tn

Further assume the conjugate prior for (4,r) to be

g(B,r) = g(B] r)g(r),

where g(f| r) is N(Bp, mr) and g(r) is Gamma density G(u,v). Thus the posterior

distribution can be derived as

9(B,7| O,) [7’1/2 exp (—g(m + v) (8 — ﬁn)2>J {7"15:“’_1 exp(—mn)} ,
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where
. mﬁO + Tn
B = ——,
m -+ Yn
and
TnTn — 2 m - n
o =y J2Tn T U
2771 2A/n(m + A/n)

Hence, the joint posterior distribution of 3 and r is a product of the conditional

posterior distribution N(G,,7(m + ~,)) of § given r, and the marginal posterior

distribution G (22, v,) of r. The marginal posterior distribution of § can now be

obtained by integrating out r from g(f5,r| &), so that we have

n+2u4-1 )

9(B] 6.)) o [1+ (8 — ) (m + 1) /20,] 3

which is a kernel of a 3-parameter t-distribution with (k + 2u) degrees of freedom,

location parameter 3,, and scale parameter Lk—"tz—“)(m + 7,). Denote k + 2u as k; for

2Un

convenience, then the sequence

k k
{t <k17ﬁna#(m+7ﬂ,)> 7G<?§‘:U7’L>}7n: 1723"'

constitutes a process of information gathering and can be considered as the states of
an underlying Markov process of our one-armed model. Furthermore, the predictive

density of a future observation Y, at stage n, given X, = z and &,, is
+ K B0\ )
m n 1 Y — PnZ
O, I+ | —— .
ol 2w o |1+ (35) () (5
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Thus, the predictive distribution of Y, is a 3-parameter t-distribution with %, degrees

of freedom, location parameter 3,z, and scale parameter ( mf’:j’:fx?) (5%)

By the principle of backward induction, given ¢ (kl, s 2u =2 (m + %)) and G (’”2—1, Un),
the optimal values from treatments 1 and 2 at stage n, respectively, are given as
v (¢ ( (kl By 2 (m+7n)> ,G (%, 0,) ,A;Aﬁl’)

ki +1
= anﬁnN+El:V< <A1+1 Brt1, —— (m+’yn+X2)>
2'Un—i—l

ki1+1 Lk
G (%"—vvn*%-l) ,)\,A ) l t<'l"laﬂn; Un(m+7n)> aG <§17vn)>} 3

(4.1.2)
where
mBo+ M1 MmbBo+ 1 + XnYn A
n = = — Mn Xn7 Yn s
Pt ™t T Mt t X2 Br( )
~ 2 . 2
U1 = U i1 T4l — Tag1 | M Mnt1 = BoYns1)
2Yn41 29n41(M + Yng1)
(o + X)) (0 + ¥2) = (1 + XaY3)?
= +
(’Yn + X2)
m (1 + XnYn — Bo(7n + X2))?
= Un Xn; Y;z
2+ X2)(m + 7 + X2 #1(Xn, Yn),
and

VE (¢ (ks By £(mt 1)), G (5,0,) 3 AY)

A -
= oA+ VI(t (Al ﬂn, oy (m—l-%)) ,G (%,vn> AN (4.1.3)

By writing £,+1 and v,.1 as functions of the random variables X,, and Y,,, equation
(4.1.2) becomes
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VO (¢ (b, Bas g2 (m+10) ), G (B20) 4 AY)

oo ki+1 2
= anﬁn,u_*— Vit k1+17:8n+1(x>y)> )(m—!-’\/n—i-.’l,‘) )
QJ—c0

27}71-{—1(1;7 )

6 (B o)) A ) alel 20 ey (4.1.4)

4.1.2 Main Results: Optimal Strategy and Monotonicity
The main results in this section concern optimal strategies.

Lemma 4.1.1. At each stage n,n =1,..., N, all functions

1% (t (kl, By 2 (m + %)) LG (5 v,) A Aﬁ)’) and

1%4% (t (kl,ﬂn, %(m + %)> ,G (2, v,) ,A;Ag) 1= 1,2 are continuous and increas-
wng in A. Therefore the advantage function

A (t (kl,ﬁn, fq}—n(m + %)) ,G (g—l,vn) A AQ’) is also continuous in \.
Proof. This result can be clearly proved by the method of induction on N. O

Lemma 4.1.2. At each stage n,n = 1,...,N, let AY = (an,any1,...,an,0,...)

denote the truncated discount sequence. Then the function

k: [
A (t <k17/8n7 Z}_(m"’_r)/n)) ’G (%)’UTL> ’/\’Ail\/')

1S monincreasing in .

Proof. The proof is by induction. The conclusion of this lemma clearly holds for
N = n. Assume it holds for horizon N and fix the horizon N + 1, then equations

41



CHAPTER 4. LINEAR REGRESSION MODEL WITH UNKNOWN ¢°

(4.1.3) and (4.1.4) give

A (t (kl,ﬁn: g];,_ln(m +’Yn)) ,G (%, vn) ,A;Af:’“)

oo k:l +1 ;
= anﬁnﬂ’_’_ Vit k1+1,ﬂn+1(x,y),—————————(m+’yn+x) )
QJ-

2Un+1($ay)
ky+1
6 (S oo} 1 AN ) oty 201 @)y

k
_O-/n)‘ru - V(t (]"135717 2 (m + ’)n)) 7G (317/071) A Ag—:_ll)
e ki +1
= O‘nﬁnﬂ+// ( <A1 + 1, ﬂn+1 T y) —L_)—(m+’)/”+x2)> ?
QJ-—

2'Un+1 (113, )

ky+1
6 (B (o)) X A ) ol o))y

+o0 k
L (o e o)

ky+ 1
¢ <1T’“"+1($>y)> A Affif) 9(y| =) f(z)dzdy

kq
= VO (b 2 20) ) G (00 ) 5 AN

k
—A ( <l‘11>ﬁn7 ’U <m+7n)> 7G(—él_7vn> :/\aATJY—:-ll)

= pfapt + Qnp1 A

+/ /.+OOV<t<k + 1, Bn1(z, v) —kl—i——l———(m+’y +x2)>
Jo oo 1 y On+1\T, Y 72'Un+1($;y) n )

ki +1
6 (B o)) 5 42 ) o] )iy
Foo ki +1
+// A+ <t <k1+1:/8n+1($:y)72_'1—_i__—_(m+%1+$2)> 3
QJ -0

Un+1 (.’17, y)
ki+1
G <—1—2——;Un+1($,y)> ;/\;Agﬁl) g(y| =) f(z)dzdy
—Oénxli — Ony10n it

—//+OOV<t(k + 1, Bpia(z )M—(m+ +:c2)>
0o 1 y Pn+1\T, Y ’2'Un-|-1(37,y) In 3
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G <£€12L1,vn+1(x,y)> ;A;Ai"i;) 9yl =) f(z)dzdy
_A“(t <]"1:/8m % (m —+ 771)) 7G <‘I;1 ) A; A’rjy—:_ll)
- ( O’n-l—l)ﬂ(ﬁ /\)

//+°°A+< (A1+1 (3, ), 2 <m+vn+x2>>,

2’Un+1(x y)
k 1
6 (P15 vosa(o) ) A5 AYE ) glul 2oty
—A~(t (Al,/ﬁn, oo (m-}—%)) G (%,vn> ¥ A,]:[jll) (4.1.5)

The first term in equation (4.1.5) is nonincreasing in A since o, > @11 and p > 0.

Moreover, the induction hypothesis implies that

v ki+1 ki+1
A+ (t <k1 + 1: ﬁn-i—la —1;{:—”(7’” + Tn + 372)) 7G <_1-‘“_a Un+1(x) y)) ) )‘; Ag—:—ll)
2/Un+1(x7y) 2

is nonincreasing and

k
A~ ( <k1,ﬁm s <m+vn>>,G<21, > A; Ai?”ﬁ)

is nondecreasing in A. Therefore,
k
A < (Ala ﬁna 'U (m + /Yn)> ) G <513 Un) ) A) Ag_l—l)
is nonincreasing in A. 0

Theorem 4.1.3. At each stage n,n = 1,...,N for any 0B, and v,, there ezists an

index value X* = X*(By, Un, AY) such that

A ( (l‘l:ﬂna 2% <m+ /n)) ,G <%,’l}n> 7)\;A7];[+1> = 0.
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The set of all such index values forms an interval. Moreover, the new treatment is
optimal if and only if X < X*(Bn, vn, AY) while the standard one is optimal if and only

if A > XN(Ba, vn, AY).

Proof. The existence of the index value is obvious from the continuity and mono-

A( (Al,,@m oy (m+%)) G(%%) ,A;Ai\’“)

in A, and the facts that

A( <k1,ﬁn, o (m + /n)) .G <%vn> ,O;Aﬁf”) >0,

tonicity of

and

. k
(o) o (). )

Furthermore, the set of all such index values forms an interval since

A (1 (I oo 70) )G () 22

is nonincreasing in \. Finally, the optimal decision is made based on A* according to

the advantage function A. a

Lemma 4.1.4. Assume that AY = (1,a,02,...,aY710,...),0 < a < 1. For any

given 0 and v, if

A(t (kl,ﬁ,%(m-i—ﬂ/)) G(% ) A; AN) =0,
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then

k k
A <t (kl,ﬂ, -2-%(m+“/)> ,G (—25'0) ,A;A§V“> > 0.

Proof. The equation

-k k
A (t (kl,ﬁ,é—;mm)) G(-Q—) ,A;A{V) 0

implies

Bu—Ap = aV (t (kl,ﬁ, (m+7)) G<%,v>,/\;Aiv_1>
+o0 A/1+1
—a./g./_oo ( <k1—|—1 B(z,y), 5o (x’y)(m—l-"/—l—ﬂ))’

6 (B u(w) ) 5 AY) otk ey (416

and

V (t (ke B, 55(m +7)) G (5,0) 5 A7)

= A\u+V <t (Al,ﬁ, “m+ /)) G (%v) ,A;A{\H). (4.1.7)

It follows from equations (4.1.6) and (4.1.7) that

A (t (1, 8, 55(m+ 7)), G (5,0) X\ AT

o [T P (rssen )

v
ki +1 ki + 1
G( 1t ,v(x,y)>,A;AiV> —V<t <k1+1,ﬂ($,y), ;:y (m+v+w2)>a

2 2v(z,y)
6 (B vto) xiaf ) | st @)y
—edi+a(l—a)V (t (kl,ﬁ, %(m+’y)> e (%u) ,A;A{V> | (4.18)
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Let 7n* be the optimal strategy for

[~

ki+1 ki +1 _
V(t <k1+1,[)’(:c,y),201(x y)(m+«/+x2)>,G( 12 ,v(x,y)),)\;Aiv 1>,

we define a strategy for

23

ky +1 ki +1
V(t <k1+1,ﬁ(w,y),2vl(w y)(m+v+x2)>,G( 12 ,v(w,y)>,A;A{V>

that allocates 7* during the first N — 1 decision times and selects the standard treat-

ment at time N. Thus,

v(t <k1+1,ﬁ(:v,y), Fi 1 1 (m+7+$2)) ,G(’““,v(m,y)) ,A;AiV)

2v(z,y) 2
ki+1 k41
-V (t <k1 +1, 8(z,y), 21)1(3: ” (m+ﬁ/+$2)> , G < 12 ,v(:z:,y)) A

A{V_l) > oV A

for all z and y. Besides, if we choose the standard treatment all the time, then

1% (t (kl,ﬂ, %(m+7)> ,G (kz?’“,v> ,/\;A{V> >(14+a+...+a"
Hence, it follows from the above inequalities and equation (4.1.8) that
A (t (ki B, 2 (m+7)),G (&,v), A AF)
>N —adp+al—a)((I+a+... +aV ")) =0.
O

Theorem 4.1.5. For fized § and v but changing N = 1,2,..., let \*(8,v, AY) be the

index value such that
] k1 k1 . Ny, AN Y
A t Alaﬁ:%(m_*_ﬁ/) 7G Evv :)‘(/671)7*’41 )aAl “‘07
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where AY = (1,c,...,a¥710,...). Then
B=N(B,v,AD) < M (B,v,A2) < ... <\ (B0, A) <.

Moreover, the limit \*(8,v) = lim,_.co N (8, v, AY) emists such that 8 < X*(8,v) < oo

and

A (t </€1,57§—;(m+7)> G (%v) ,X"(ﬁ,v);A> —o,

where A= (1,a,02,...).

Proof. Based on the monotonicity of

ki k1 AN+1
A <t (klaﬁa%(m—{_r)/)) >G ( 9 ,’U> 7A7A1

in A and the results

k k
A <t (kl,ﬂ, i(mﬂ)) G <51v> ,A*(ﬁ,fu,A{"“);A?“) =0

and
k1 k1 . Ny, gN+1
A t kl,ﬁ,%(m—*"\/) 7G Ea’u :A(ﬁv’v7A1 )7A1 207
we conclude that A\*(8,v, AN) < X\*(8,0%, ANt for N=1,2,....
Moreover, the limit of the nondecreasing sequence A\* (3, v, AY) exists. Let \*(8,v) =

limpy oo A*(B, v, AY), then \*(3,v) satisfies the equation
kl kl *
Alt kl)ﬁ:%(m_*—’\/) 7G ‘2—3’0 7)\ (ﬁav)vA =0
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since

(i) o(5) v

is continuous in N. If A*(8,v) = oo, then

(¢ (b gm ) 6 (5) X .04) =

which contradicts the finiteness of the optimal value function.

We now turn to prove 8 < M\*(83,v,4?) by contradiction. Suppose that § =

A*(B,v, A?), then

0 = ( (Al,ﬁ, <m+~/>) G<%,v>,A*(ﬁ,v,A?);A?>

= ﬂu%—a/ﬂ/_:ov(t<k1+1,ﬁ(x,y),£}&%(m+ﬂ/+m2)>,
6 (S o)) X (6,0, 454 ) o] )y

X (B0 A=V (¢ (1., §1<m+ fy)) (B0 (g0 atiat)

= a/ﬂ/_:o {v( <A1+1 Bz,y): 5 ( )(m+~/+x)>
G(Aﬁ;l’y(m, )> “(8,v, A2); A1> ( <A1, ,;;(m-i—“/)),
z)

6 (50) X (0,044 ) | ol 2)f oy

= o [ [ et DA gy g ot o) o, (419

If z is given, the predictive distribution of Y is a 3-parameter t-distribution with

location parameter Sx. Let y* be the smallest y larger than Sz, then the right side

of equation (4.1.9) is positive, which is a contradiction.
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Corollary 4.1.6. The myopic strategy 1s not optimal in general.

Proof. In our model with unknown 8 and o2, a strategy is myopic for ¢-distribution
k1
tlk, B8, —(m+n
< 1,0 2@( Y >>

when the new treatment(standard treatment, respectively) is chosen if and only if
B > (<)X. This strategy is not optimal unless N = 1. Consider a two-stage bandit
problem and let A be such that 8 < A < A\*(8,v, A%). The new treatment is uniquely

optimal at the first stage while the myopic strategy selects the standard treatment. [

Corollary 4.1.7. If the standard treatment is uniquely optimal at stage n, then it is

optimal for the rest of the decision horizon.

Proof. If the standard treatment is uniquely optimal at stage n, then A > \*(3,v, A}),
which indicates that A > \*(G,v, A7™!). Clearly, the standard treatment is uniquely

optimal again. O

4.2 Two-armed Bandit Model with a Covariate

In this section we assume both treatments are unknown and characterized by regres-
sion models with unknown parameters §; and o2, i = 1,2, respectively. Similar to

Chapter 2, the conjugate prior for (81,7) is

g(B1,7) = g(B| m)g(r),
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where g(1]r) is normal density N(Bi, mr) and g(r) is the Gamma density G(u,v),

while the conjugate prior for (Ga,7) is

g(B2,7) = g(Ba| )g(r),

where g(0s|r) is N(Ba0, mr) and g(r) is G(u,v).

Assume that treatment 1 is allocated k times to patients by time n, we simi-
larly define Y1, Tin, M1n from treatment 1 and <o, Ton, 7o, from treatment 2. With
the above conjugate priors it can be derived that at time n, the marginal posterior

distribution of 3y and r from treatment 1 are the ¢-distribution

k+2u
tk+2 ny —
( + U, /81 2U1n )
and the Gamma distribution
k+ 2u
G( 9 3 Uln):
where
mPBio + Min
Oin=—",
m+ Tin
and

YinTin — 77i9'n m(771n - /310’)’1n)
2’7’1n 27177, (m + Vln)

Uip = U+
On the other hand, the marginal posterior distribution of f; and 7 from treatment 2
are the ¢-distribution

n-—1—-%k+2u
27)271

t(n’ -1- k+2ua/82n7

)
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and the Gamma distribution

G »Van),
P 20)
where
mBao + Non
ﬁZn =
m —+ Yon
and

YonTon — T/%n m(’flzn - 5207%)
2Yan, 2799n (M + Yan)

Vo, = U+

In order to simplify calculations and derivations, we denote k+2u and n—1—k+2u
as ky and ko, respectively. Then the predictive distribution of a future observation

Yy, from treatment 1, given X,, = z, is a 3-parameter ¢-distribution with the density

m—+ Yin k1 Y= Pint -®)
g1yl ©) [H <m+m+x2> (21}1n> ( k1 H |

The predictive distribution of a future observation Y3, from treatment 2, given X, =

z, Is again a 3-parameter ¢-distribution with the density

>

™+ Yon oo v~ Az
ga(yl =) {1 + <m+72n+$2) <2U2n> ( ks >} .

Now we define the worth function

] ks ks ] ks k.,
W <t (Alyﬁln: 27}111) 7G <?7’U1n> 7t <A'2362n7 2U2n> 7G < 2 7U2n> aAn a7‘—> )

the optimal value function

. k‘] ]ﬂl 3 k2 k2 . AN
V <t (Alyﬂlna :?T?E) 7G (E;'Uln> Jt <l"27/62n7 5]{;;;) 7G <§7v2n> 7An,> J
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the optimal value function for each treatment

V(z) t kl:ﬁlnd—ﬁ— aG ﬁ7/0171 ’t k?aﬁQna_AZ_ >G _E,Ugn 3"41]7,\[ ) Z = 1a2
201, 2 202p, 2

and the advantage function

kl k’l . kz k2 N
B oo ), G (010 )t (s s 2 ) G (2,03 ) 142 )
A (t (kl,ﬂlna 2'U1n> 7G < 2 ,Uln> ,t (A‘27/62n7 2'02n> 7G ( 9 , U2 > n

at each time n,n=1,2,... N.

In the next context, we give a complete characterization of the optimal strategy.
First, the myopic strategy is reasonable on the first stage for the reason that it is
necessary to understand the unknown parameters for both treatments. Then a play-

the-winner strategy is applied for continuing decisions.

Lemma 4.2.1. For any truncated discount sequence Af:’ = (p, U1, - N, 0, .. 0),
n=12,...,N, and t(k;, Bin, 5%—), G(%,vm),z’ = 1,2, we have

A(t(kl ﬁln; ﬁ;)) G(%l—a Uln)a t(k27 62n) %)a G(%, U2n); A:;V)

= (O-’n - a’n—!—l)(/@ln - /6271),“

+//+OOA+<t<A 1, By (@1, 1), — L )
< ) $ ? 7 3
JoJ = ' Unt 1)L 81 2U1(n+1)($1,yl)

ki+1 k k
G ( 12 ,Ul(n+1)($1;yl>> ;T <k2:ﬁ2m 57—1—2;) G <_2_27“2n> ;Ag>

xg1 (1] 21) f(21)dz1dys

+00
N . k1 ky
*/gzlm A (75 <7v1,/31m§,;1—n) ,G <—2“avln> ;

ko +1 ky+1 N
t{ky+ 1,05 , G| ——, vyn, , A
( o + 1, Bopni1) (T2, 42), 2vz(n+1)(m2,y2)> ( 5 Van+) (2 Z/z)) n)
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X ga(ya| m2) f(22)dzadys,

where

mBo + Nin + TiYs ;

: Ti Ys) = 1=12
ﬁz(n—i—l)( z,yl) m+ﬁ/in+$12

and

(Vi + 27) (Tan + 97) — (hin + 333:)°
2('\/1'71 + -7512)

m(min + z3y; — Bo(Yin + 22))°

2(Yin + 27) (M + Yin + 27)

Ui(n+1)($z‘;yi) = v+

=12

Proof. Using equations V = V® 4+ At and V = VU + A, the advantage function

is expanded as

A(t(kl/ /Blna ﬁ )7 G(%) vln)a t(k% ﬁQna 21]211

g +//+°°A+<t<k 1, Brguny (1, 91)s )
= QpPinl v 3 n Z1, ) )
nf aJ—co ! Lt DT Y 201(n+1)($1,y1)

ky+1 k k
G ( 12 ,Ul(n+1)(£€1,yl)> 5T <k2,52m ZJ—E;) G <§2,U2n) ;Af:[>
xg1(y1| z1) f(21)dz1di

v pFoo B kl kl
_anﬂZn,U/ - / / A t kla /81717 "2-—_— y G =5 Vin |,
JOQ J -0 Vin 2

k2 + 1 ]fz + 1 N
t k 1 n 3 ) 3 e n ) aA
( 2+ ,ﬁz( +1)($2 yz) 21]2(%1)(3327%)) G< 5 Uo( +1)(~'C2 y2)> n

), G(%,v2n); A7)

92(y2| 22) f(22)dzodys

oo ki +1
= opfinp + / / v <t (kl + 1, Bi(ns1y (21, 91) - ) ,
QJ—-co

’ 2U1(n+1)($1,y1)
ki+1 k k
G <1—2“7U1(n+1)($1,y1)> b <k2;,32m ﬁ) G (§7U2n> ;AQI)

xg1(y1| z1) f(z1)dz1dy:
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oo ki + 1
+[f A+<t<k+1,ﬂn P p— )
0J-co ! 16121, 41) 201 (n1) (21, 1)
ki+1 k k
G <—}*2—,U1(n+1)(371,y1)> T (kz,ﬁm, ﬁ) , G <§,U2n> ;A,]Y)

xg1(y1| z1) f(z1)d1dys

+o0 ) ]{I kl
_a{nﬁQn/»l‘ - vV l"la ﬂln: G = Vin |,
QJ—0 2v Uin 2

kg +1 k2 1 N
tlky+1,0 n Za, , ,(;’ R T3, ;411
( 2 y M2( —l—1)( 2 y2) 21}2(”' 1)( 2,y2)> < 9 2( +1)( 2 y2)>

g2 yzl 5132) (552)61332(192

+oo
. ]\’51 kl
// <t <k1,ﬁ1n,“2“v”;> >G<27U1n) )

ky+1 ko +1
t (kz + 1)/62(n+1)(x23y2)5 2 )> , G <—22—‘,U2(n+1)($2,y2)> ;A7sz>

2U(n41) (72,10

92(y2| 2) f(z2)dzadys. (4.2.1)

This lemma is proved after canceling the second part of both V) and V® in

(4.2.1), which are two forth integrals, by changing the order of integration.

O

Theorem 4.2.2. Let AM*! = (1,...,1,0,...) be a uniform discount sequence. For

gwen B; and v, 1= 1,2, if

k -~ o &
Alt k‘ll'/[))l)—l 7G E)”l at k.27/62’__}_u_2_ 7G —A-Z"a'UZ ,Ai\f >07
2v1 2 209 2

then there exist some x* and y* such that

o Rl B+l
A(t <k1+1,ﬁ1($*,y*),—1‘“;‘)‘>,G< 12 7U1($7y)>7

2v1(z*,y
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t <k27/827 _k—2—> 7G <52-a’02> )A£LV> >0
2?)2 2

mBy + 1 + Y
m+ v + T2

where

ﬁl (.’L‘*7 y*> =

and

(n+z) (1 +y*?) — (m + 3*y)?
2(’)/1 -+ 33*2)

m(m + z*y* — Bo(n + z*%))?

2(m +2*%)(m + 1 + 2*?)

vi(z*,y") = v+

Proof. From Lemma 4.2.1 we obtain

A(t(ks, B, 35), GO v, tka, B, 3), GUE, v2); AT

oo ki + 1 ko + 1
// A+ (Az]_ +1 ﬁl(xl,yl) ECEl y1)> 7G< 12 7U1($1;y1)>7

(
t(wé—) ( ) )91 il 1) f (1) dosdy
S (e

ko +1
G< 22 ,UQ($27y2)> ;A > (y2| 372) ($2)d:1:2dy2

If no such z* and y* exist, then

ki +1 ki +1
AT < </v1 + 1, Bz, 11), - > ( ! 1(5131,@/1)) ,

21}1371,91
3 — 1 A
(i) o () ar) -0

for all z; and ;. Therefore,

At kl;ﬁl; kl 7G Evvl 7t k27/627—£2- 7G 2) V2 AN+1 SO/
2u1 2 29 2

95

Al
ko +1
7t k + 17 3 Y. .\
) ( > ( ’ falon 1) 202(%2, ¥2)
92
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which is a contradiction. O
It is evident to prove that

ky k1 ko ko N
3 — — 3 = —= s ANFL
A<t<kla/6152vl)aG<27vl>at<l’l27/8272?]2>5G<27'U2>a n )

is increasing in B;. In view of Theorem 4.2.2, if treatment 1 is optimal at one stage,
then it should be selected again as long as y goes beyond a critical value y* given z*.

Similar results can be established for treatment 2.
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Chapter 5

Conclusion and Discussion

This thesis presents new allocation rules between two treatments that incorporate
a covariate. The goal is to maximize the total discounted expected reward from an
finite population of patients. Patient’s response is determined from a general linear
regression model without any restriction. We develop the optimal strategy for various
cases when the variance o2 from the regression model is known or unknown. When
one of the two treatments is known, the optimal strategy is characterized by an
optimal stopping solution for both known and unknown ¢2. When both treatments
are unknown, a version of the play-the-winner rule is optimal for both known and
unknown o?. We also prove that the myopic strategy is not optimal in general settings.

Since there has been so little research addressing optimal adaptive designs with

covariate-adjusted responses, or addressing exact evaluations of general designs with

o7



CHAPTER 5. CONCLUSION AND DISCUSSION

covariate-adjusted responses, there are numerous outstanding problems in this area.

First, one might argue that exact optimal designs are not necessary in practice,
especially when good options are available. However, without a basis of comparison it
is difficult to assess how good the options are. Actually this may be a future research
direction since optimal strategies could be computationally formidable. Examining
the properties of optimal designs and the options can lead to the development and
selection of superior sub-optimal alternatives.

Another concern is a design’s robustness and how to apply it flexibly. In the
future work, we will adjust the parameters in the conjugate priors or use other prior
distributions to examine the robustness and operating characteristics of our bandit

models.
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