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Part A -

In attémpting a summary of the work done on the Classical
Problems (i.e. Squaring the Circle, Duplication of the Cube, Tri-
section of the Angle, Comstruction of Regulér Polygons and the
Solving of Equations of degree higher ;han the fourth -- and espec-
ially the solving of fifth degree equations) I am going to trace
out an historieal account éf the attempts toward solution of each
- problem, leaving to the latter part the proofa.of the impossibility

of each. We shall see a number of most instructive examples of

great things arising out of impossibility, since from these "un-
successful® attempts, extending over more than two thousand years,
have, within the last one hundred and fifty years, come some of
the central and most char#cteristio developments of modern math-
ematics. A study of these efforts briﬁgs us then, at the end and
in certain fields, to the threshold of mathematics in the present
centurys It is also of interest for the surprising relations
whidh it reveals between apparently unrelated questions.

The first problem I shall approach is the squaring of the
circles In modern notation this problem may be described as the
attempt to find an exact value for 7" in the formula for the area
of a circle of radius r A .ZIrzz There are here two distinct
problems. Firstly there is the practiecal problem of finding the
value of /) with sufficient accuracy to satisfy the technologieal
needs of the time. This the Greeks had certainly done by the
time of Archimedes or even before; his value of 3 1/7 being.-

~accurate to 4 parts in 10,000 still Bﬁfficea for all but very
refined measurements, and he is reported to have obtained con-

8iderably better values than this. Secondly there is the theor-
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etical problem of constructing a line of length 7/ times a given
line using straight edge and compass alaner We shall be concern-
ed chiefly with the history of this theoretical problem, which
though apparently simple, has ocoupied the efforts of many great
men until it was finally shown to be impossible about sixty three
years ago; and it has occupied the efforts of many lesser men both
before and after it was shown to be impossible. _

Tﬁe earliest recorded value of‘ﬁ“is found in the Rhind Pap-
yrus (in the British Museum) copied about 1700 BaCe by the Egyﬁt-
ian Seribe Ahmess The Egyptians being so highly practical pro-
bably obtained their value for the relation between the diameter
and ares of a eircle by trial, and it is amazingly accurate: the
area of the circle is equal to the area of the square whose side
is the diameter diminished by 1/9 i.e. A .(% d)a', This would
give for”ﬁ”the value gg% s 3.1604 (in'plaoe of the exact value
3+14159«s49¢) a tremendous improvement on the Babylonian, also
on the Hebraic value of 3. (See 1 Kings V11, 23) used in Solom-’
on's building of the Templé. This reference "ten cubits from
one brim to the othér: it was round all about,...s. and a line

of thirty cubits did compass it about"™ reminds us that squaring

- the circle, that is, finding the side of a square whose area is

equal fo that of the given circle, and the rectification of the
ecircle, which is the laying off of a line equal in length to the

circumference, being given the radiua, are one and the same pro-

blem, both depending on the ratio. which later came to be called 7
Anaxagoras (born about 500 B.C.) is the earliest name we

have in connection with this problem, and he did not offer any

solutions He was trying to find an exact relation between the
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radius and the area. The Sophists Antiphon and Bryson and their
contemporary Hippocrates have left tﬁe results of their efforts.
Antiphon introduced the "Method of Exhaustion" by which a équare
or an equilateral triangle is inscribed in a circle, then a fig-
ure with twice aé meny sides, continuing the process until the
polygon and circle differed'by as little as one pleased. Antiphon
was really the only ancient who considered the circle to be a poly=-
gon of an infinite number of sides, though Bryson's qork differed
‘little except that he-introduced circﬁmscribed as well as inscribed
polygons, and finally took the mean of the two values. The area
of squares equal to the outer and inner polygons could be found,
as also could the area of their mean. Simplicius and Eudemus
poinfed out that the circle and the polygon cannot be equal, if
the principle that magnitudes are divisible without limit is true.
Hippocrates (about 430 B.C. a Pythagorean) attempted the squaring

of the circle by means of lunulae

7 or meniseci, which depends on the
proposition Euclid X1l (2) that fhe
areas of two circles are to each

?' ' ' other as the squares on their dia-

meters. I have shown the diagram but hazave not inecluded his rea-
soning here as Hippocrates himself did not c¢laim to have been
auéaeasful in the problem. His work on lunes is memorable howa;er
because the earliest specimens in exiatence of reasoned geometriec
proofa are contained therein,

Amongst all the varies subjects that Archimedes (287 - 212
B.C.) studied, quadrature and oubéture were his chief hobbies,

and the process he favored most was bj Exhaustions. He obtained
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the result thaﬁ 3 1/74??13 10/71 by a lengthy proof. (see Appen-
dix 1) He is credited with a still more accurate measurement,
5.141596, the account of which has been lost, but the first one
must have pleased Archimedes himself, as, according to Heath, he
was more interested in a value which could be used in daily life
than in one of theoretieal interest only. Archimedes' methods
were used for a thousand years to calculate 7’ to ever increasing
places of decimals.

Ptolemy (of Alexandria, around 139 B.C.) from the r.élation
of chords of a circle calculated the value 3 8’ 30 “ wnich is
3+1416, as is easily verified. This is the mean between the Arch-
imedean values of 3 1/7 and 3 10/71.

Oriental mathematicians alzo worked on this problem. Their
most noteworthy results are the following. The Hindu, Aryabhatta
(500 A.D.) obtained the value 3,1416, while Brahmagupta nearly a

century later ga.wﬁTl as fiﬁ which was the most commonly used

value in Mediaeval times. _Bhﬁakara with the correct relation

aa_n_.}/; -V4 - a:” between sides of an n-sided and a 2n-sided
inseribed polygon arrived at 3.1416. The Chinese as.tronomer
Tsu Ch'ungchih (born 430 A.D.) found the values 22/7 and 355/113.
The Chinese are represented again in the work of a later period.
‘ It is interesting to note that the great Leonardo de Vineci
attempted this problem, but arrived nowhere with it.

Besides aalcula.tiﬁg the value of 7', the anaient.a tried to
demonstrate that constructions could be given which would acc-
omplish the squaring of the circle. Thé-firat noteworthy one is

Archimedes' spiral which has the equation /a =ad,

Frpmﬂ. a line is drawn perpendicular



to the radius vector after ome com-

o /P . plete turn and this perpendicular

/D

meets the tangent drawn from Fe
Then OT will be the circumference -
of the circle with radius UP, but
I can not find full details of what

A Archimedes offered as proof, though

Gow indicates that it is linked up with his method of Exhaustion.

* @
Heath gives the following: Assuming OT -,é- (Proved by Archim-
edes!) and having the equation Fe ad, it can be seen that after

‘one complete revolution/os 27% = OP

(.l- T = /_ao.:: ../aﬁ ’/a-?-aﬂ-lé = 27;79: 2 7aup

Dinostratus applied the quadratrix (invented by Hippias of
®1lis about 430 B.C. who may also have used it in this problem)

to the quadrature of the circle. The quadratrix is deseribed

04 C thus: g ven a square, ABCD, suppose
that a radius of the circle moves

: : uniformly a2bout A from AB to the
/\ X position AD and that in the same -
A é i D time the line BC moves uniformly -

parallel to itself from the position BC to the pos.tion AD. The

interseotion of these two moving lines will determine a pbint and
the locus of this point is the quadratrix. The application of
the quadratrix to the rectification of the circle presents a diff-

iculty, recognized by the ancients, in that 1t requires us to

‘know the position of G, the point where the quadratrix inferseota

AD. (In the final position; both lines, radius and line parallel

to BC co-incide and so eannot actually intersect).
)
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Let AD be the X axis and Aﬁ the Y axis
For the point P, the ordinate y is propertional to the angleﬂ ’
end when y s l, @0 g U .35’ - Py
A Z

-l
but (# sten ¥y  yztanZy
X g 2
f X = ; which meets the X axis at x 2 1lim J
LI tan v Y=o ja',,,,'ﬂ’j
2
lim s 2

J=>e T/+ Ty, .. 7 |
When 2 is kné%n, ean easily be found. Now, each of these ine
geni;ﬁl constructions may be said to rectify the cirecles However
it is the classical problem of constructing a line of length ?
with atraight edge and compass alone, that we are considering,
(and will eventually show to be impossible), so that neither of
the above, nor the helix which is supposed to have beer used by
Apollon&us, are acceptable solutions, sinece they raquire more
slaborate mechanigcal devices for their conatruetion.

I find the simple, though admittedly only approximata Sole

utions balaw quite interesting. The first one was given by

Kocghansky in 1685 £ 1oy z 53
3 - U5

2

J _

L

A cirele of radius.l, having DL and BK tangents of length 3 is
drawns The angle BAJ is constructed to be 30. and JL is joined.

Then JL =W3 «if: 4 glf_%o - V12 = 3.141533
3 ; ,

Then the square is readily comstructed having ared practically

the same as the circle.
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Another, invented by Grunert uses7/'s 355/113 = 3
i 7+8

3.14159292..¢+ in place of 3.14159265se0ces
Let circle have radius 1, and refer

to diagram.
AR i]}l-+ %% - tF;%E_
. e @ 80
8 ke’ o AR &
iﬁ% 13 : ;%;%, ke
ﬁ;ﬁﬂ s 16
- 113
..3 + AH gives 3~L%%3 = %g% , the semi-circumference.

Amazing advences followed the attacks of the great math-
ematicians of the eighteenth century.on this, and rglated pro-
blems. John Wallis (1716-1703) had effected the quadrature of
curves whose ordinates are any integral powers of (1 - xa) i.e.
y.a (1 - ;?)ytwhere n is integral. qulowing this by the study
of y = (1 = xlioand y=2(1- 337. he ;ttempted to find y g (2 < xaji
by interpolation,; which brought this device into prominence.
Consideration of the difficulties that Wallis met led Newton to
the discovery of the Binomial Theorem. Another new development
came about in the inveamtion of the theory of continued fractions
due to Lord Brouncker's studies of Wallis' worke. Lord Brouncker
obtained the first infinite series for the area between an equil-
ateral hyperbola and its aaympteteg. and Nicolaus Mercator arre
ived at the logarithmic series, But the most startling result of

the study of quadrature was Newton's invention of the method of
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fluxions (the calculus) and also to the foundation of the theory
of limits. And it was through his detailed study of the quade
rature of curves that Leibnitx vecame acquainted with #}gher
mathematics. |

After the invention of ealculus all methods of determining
7n depended on Anslysis, Gregory (who was the first to try to

&
prove the problem impossible) used the series a g t = E:“al_ﬁ; ves
3r* br

where a s length of aro, t z length of tangent and r s radius of
eircle. This is now written in the form

Ll 3 —
tan Xg X=X - Qt.ooo.t‘li‘-.x ﬁl)o
-+e -

During the next hundred years many series and relations were dis-
covered by which 7> could be evaluated to ever inereasing numbers

: . st =
of places, Many used Machin's formula /"= 4 tan 1 - tan~_2
'y B B39

(I do not find how Machin eame upon this -« probably by trial --
at least it is easily verified). By expanding this series 777
was found to 100, and later to 707 places of decimals -~ the |
latter achievement by W. Shanks in 1874, "One ean ascribe this
feat to a sportsmanlike interest in making a record, since no
application could ever require auoh.aeouraoy.“ says Kléin in
hia?Elementa?y Mathematies from an advanced VIQWpoint: |
Remarkable work along this line was accomplished by both
Chinese and Japanese scientists but their methods weré likely
inspired by the teachings of the European missionary Pierre
Jartoux. In Europe more and more students were becoming eonvin-
ced that 7/ was not the root of any algebraic equations Neither
was any practical purpose served by evaluating 72to hundreds of

placess The fact that, using 10 decimal places, the circum-
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ference of the Earth can be computed to within a fraction of an
inch illustrates the futility of seeking still closer épprox-
imations to its value,

*  The problem of squaring the circle, or of finding a ration-
al vﬁlue for 7’ had not been done and mathematicians turned their
whole attention to attempting to prove the non-algebraic nature
of 7'+« On the other hand many men without training still kept
presenting solutions, as is evidenced in the pages and pages
De Morgan in his %A Bﬁndle of Paradoxes" devotes to defendiﬁs
himself from attacﬁa for not accepting their work. Even yet,
the attempt goes ones I came across a book in the Library
(University of Manitoba) entitled "The Circle squared beyond
Refutation™ by Carl Theodore Heisel =~ aoknowledging.ﬂarl Thso-
dore Faber -~ first edition 193l. This author “"published seve
eral thousand of these bboka at considerable expense to himself
and distributed thém'gggg-to-i;braries,'collegea_and scientists
throughout the Unifted States and Peréign Countries, to promulgate
the new truth and to leave the world better off because he lived.®
He does not c¢laim to be a rencuned mathematician but offers as
credentials that he is a successful businessman (and a Sscnason)
and publishes his picture to support his statements (this last
inference is clearly made). Quoting further we find *aAlthough
the Royal Society of England, over a hundred years ago, declared
that the e¢irele could not be squared, thousands of students and
scholars all over the world are continually studying and figuriﬁg
to find the true and exact ratio between the diameter and the
cirocumference of the cirele, which they know from the very nature

of things, must exist, or they would not devote their time to
the study.”
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The value for 77 which Heisel offers is 3 13/81, derived
from the diameter being in ratio 9:8 to the side of ths'squaré
of equal area. He admits that this value was siated in the
Rhind papyrus, but claims to have found it independently before
the discovery of the Papyrﬁs. I could find no proof in h;s
book other than the bald statement of fact, and certain measure~
ments of lines on diagrams. I tested only one of thea; and it |
was not exacts The book consistis largely of the reviling of
profﬁsaionsl mathematicians "who hesitate to ackndwladge anything
NeWeseosssofor fear of losing their positions.®

The problem of the Duplication of fhe flube is one ﬁf the
most ancient of alls It seems to have originated almost imnmed-
iately after the discovery that a square, double the size of a
given one, can be deseribed, using the diagonal as a sides o
doubt, the priest of the Oracle at Delos who ordered an Altar
built twice the size of the existing one, well knew what he was
saying and that the pestilence from which the ﬁeaple sought de=
liverance would have time to run itself out before the completion
of the Altar «- thgugh Plato, whose help they asked, interpreted
the task set by the god as proof that he wiahﬁd to shame the
Greeks for their neglect of goamatry.

For a time the problem was attacked as one in solid geon=
etry -~ but Hippocrates observed that the problem was identical
with that of finding two mean proportionals between two given
numbers. Let a be the side of'the original cube, then find two

mean proportionals x and y between a and 2a.

i€ 832 xe=x Y=y : 2a

L .,
ay a X y;ax_'&



2
also 2ax = ¥
' 4 3 2
v+ 28X = X i
= 28 = X

a
and x is the required length. After this the problem was always
considered as one in plane geometry. It should be noted here
that this seems to have been the introduction of the method of

geometrical reduction and the "reductio ad absurdum" procedure.

The one worth while attempt in three dimensions is that of
Archytas (428 - 347 B.C.). It is to determine the intersection
of the three surfaces of revolution -- the right cone, the ¢yl-

inder, and the anchor ring; having its inner diameter nil.

Let AC andlAB be the two lengths between which we wish to find
the two mean proportionals. Draw a semicircle AC but in a plane
perpendicular to the circle ABC and let this semicircle revolve
about an axis through A (thus generating the tore with inner
diameter zero), Then construct a right cylinder on the circle
ABC as base, which will cut the tore in some curve. Finally let
CD, the tangent to the cirele at C meet AB produced at D and let
the triangle ADC revolve about AC as axis, generating the sur-
face of a right cone and the point B deseribing a semicircle
BQE in a plane perpendicular to ABC, and with its dlameter BE
at right angles tp ACe The surface of the cone will cut across

the curve of the intersection of cylinder and tore in some point
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P, in which position Acl cuts the &ircle ABC at M; and AM is thé
side of the required cube, when AC =z 2AB.
Since both semicircles EQB and |In analytical geometry, using A
APG’ are perpendicular to the as origin and AC as X axis
plane, their line of intersection (1) xa+ yz-t- z - 7:'-::2' (cone)

2 a
QN will be perpendicular to BE. | (2) x +¥y =z ax (cylinder)

-"Q.NL- BN.NE g AN.NM | (3) x+ Jfa-'l-z& s a\£‘+ ¥ (tore)
L AQM 3 90 ere AC = &, and AB = b
‘Mg |l B¢ rom (1) and (2)
cAtAP.AP:AII-AHtA x+y+z a(xa_+1_f and combin-
1.84AC 3 AP = AP: AM o AM 3 AB ing this with !3!
or AB, AM, AP, AC are in con« x+y+z :+;

tinued proportion |[or AC ¢t AP = AP : AM = AM 3§ AB.

Kudoxus, & pupil of Archytas, apparently c¢laimed to have
solved the problem but there are no trustworthy records of any
original contribution to this problem on his part. It seems
that he used Archytas method, only projecting the curves onto
the plane, obtaining the curve\known as the Kampyle of Eudoxus.
| Menaechmus' solution appeals to me as the most interesting
- one of all, in its simplicity and in the fact that it led to the
diacovery of conics, the theory of which soon raised geometry to
the greatest height which it was to reach during ancient times.
_(Heath credits Menaechmus rather than Euclid with the atotum
"There is no royal road to geometry.")

Using the proportion a : x g X yay: b, he observes
that xa'g ay, ya'- bx and xy z ab. The intersection of any two
of these will give the value of x'correaponding to any given

value of a and b. In giving the detail of the solution, I shall
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use the parabela and hyperbela (though two parabolae could be

used). ¥
Construct a parabola with b as
m P | latus rectum and UY as principal
| axis, so that its equation is
_ ﬁ_— — . N X 5!1 = byr and the hyperbola such
that the rectangle formed by the

3 perpendiculars drawn to the
asymptotes has an area ab 1i.e. Xy = ab. The point of intersect-
ion P gives FN and PM, the required means for

AO : PN = PN ¢ FPM » PM ¢ OB

' AO 5 PM which is Xy = ab
‘*PN OB

. 2
and PN = PM which is x 2z by
PM OB '

If a 21, and b a 2, then a cube with side PN will have double
the volume of one with side OB, _

A purely mechanigal device is sometimes aseribed to Plato
(429 - 348 B.C.) though there is doubt conecerning this as Plato
definitely scorned mechahieal solutions., If his, some suggest
that he wished to ridicule the inventors of such, by its extreme
simpliocity., F |
\ m QA is twice OB and is ple_a.ced
: perpendicular to UB, ¥FNB is a
rigid wooden angle of 90" and L

A A *) is a sliding bar always remining

/ /N parallel to BN. The arm BN is
_ / 8 placed ﬁaaaing through B and with
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the right angle on OA produced. Then ML is slid along until
both the right gngle FMA has its vertex on OB produced and ML
passes through A. This ﬁould no doubt require many trials, the
position of BN being adjusted each time. Finally ON and OM are
the two mean proportionals between OB and OA, which is easily
seen from the three similar triangles of the figure. OUne recog=
nizes from the analytical statement that this is essentially the
interseotion of two parabolae (Menaechmus' method) since OMEN

is a rectangle

W

i 2,

8 = v, X w Ay

x y

also X : yz' 2ax
y - &

H
Hence = 2ax

/ \ and x3=333

where X is one co-ordinate of" the point of interseetion of the

two curves.

More readily done is Eratosthenes'(275-194% B.C.) solution.

It consists of three eqﬁgl reg:angles sliding along a common base

”n
EH. 4
g
P X P
£ £ <

Let AE and DH be the given lengths between whiech it is required
to find the two mean proportionals. 8lide one rectangle under

the other until the straight line joining A and D passes through
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the intersections of MF and NG with the diagona.la.‘ Let it meet
EH produced in K. Triangles DHK, CGK, BFK and AEK are similarjg
also the triangles CHK, BGK and AFK.

, DE =HE w CK = CB » 0K = BK o BF

+* CG OGK BK BF FK AK AE
. z €G - BE and CG is the side of the cube which will
CG BF AE

have double the volume of one with side DHe No wonder Eratos-.
thenes was pleased with his "mesolabium" or "mean finder", even
though it did not usher in any new curves to add to the sum of

geometric knowledge.
Nicomedes (about 150 B.C.) however, derided Eratosthenes'

effort as being impracticable(l) as well as ungeometrical, His

own, by means of the Conchoid is as follows:

.m BC and AB are the two given lengths.
Complete the rectangle and bisect

& AB at D and BC at E. Join LD and

produce to G on G__ZB produced, Draw

A
D
_ EF perpendicular to BC and of sueh
L o “
G gl . E._IC K a- length that ¥C g ADs Join FG.

F

f Draw CH parallel to §G, having it

F of such a length that HK « AD
where FHK is a straight line. Join KL and produce to M on BA
produced.

Proof: EK 2 BK - BE
' 2 Le B a2
'+ EK 3 BK = 2BE,BKY EE
= BK (BK -« 2BE) + mz‘
= BK (CK)-+ BE %

2 2
v« BK = BK.CK {CE (BC bisected at E)
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(] 2 2 a : 2,
', BEK +EF = BK.CK  CE + EF
- 2
J'IFK = BK.,CK <+CF o--oc---ao(l)

and using MD =z MA + AD we get
2
MD = BM.MA -I-DA& Q.-cc-coto(a')

From the similar triangles HNAL and LCK

MA = AL

TC CK
o‘% = ‘g—ﬂ.

4" AB CK

.! MA = 2BC

* $AB oK

., MA =2 GC (GB s AL s BC)

« ¢« AD CK

+ MA z FH

[ sAD m
AD HK
] AD .".FK
S TR
and _;@ = FK
AD AD

. HD - K

From (1) and (2)
' 2 ' 2
BH.MA 4+ DA = BK.CK + CF

. BM,MA gz BK.CK (since DA g CF

a%rcfz

or s CK = MA
% ) % BC -

s ElE

ioelég_ﬂ%a

and if AB is twice BC, then MA is the side of a cube having the

3
volume 2(BC) . Nicomedes was able to find the point K in the
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diagram by means of the Conchoid which he defined as a curve

such that the straight line joining any point on it with a given

point is cut by a given straight line so that the segment between

the curve and %

Y

L\

\

\
1
1

\
|
¥

he given straight line is of given length.

In cartesians (where O is the
given point, a - the given dist-
ance from given point %o given
atraight line, and b - the given

length) we have I s b (from
X X=a

similar triangles )) whence

rz(x - a) s b x> and

2 a S - S
(x+ y)(x-a) =« bx = 0. The curve is shown by the dotted .

line when b is negative,

Its polar equation is r = b +a se¢cd.

Nicomedes invented an insirument for drawing the curve to accomp-

any his solution. The arm AB can move horizontally along DE, the |

pivot C keeping the distance AC

¢onstant, the point P being the

Another solution was presented

by Apollonius (247 - 222 B.C.) but

its construction is along the lines of this last one, though it

leads to the equatidna of the conic as in Menaechmus worke.

Diocles (also about 150 B.C.) must also be mentioned. His

construction first required the invention of the Cissoid,



AB and CD are diameters of the
circle perpendicular to each other
and G and H are points equidistant

o no H from the centre,GE and HF are pere-

pendiculars to UC. Join ¥D and the

¥
F\ cissoid is the 1qoua of points of

intersection of DF and GE for 211l

E B F positions of ¢ (and of H). In the
= FH

cissoid EG = dDG:HC go that CG = DH and CG = GE
GE i1

GE DG

(from the semicirecle DEG)jalso ]aqg - % (from similar triangles)
: P .

= %% s %% and the cissoid gives two mean proportionals

¢ CH
ln'@'

between GP and CG.

K is taken on OB so that UK = b(here %)
o€C a

Join CK and produce it to cut the

cissoid in Q. Through Q draw the

ordinate LM,

Then % = % s 3 (from triangles

KOC ananCJandEg_l_i_g.m by
2 D IM CH

the properties of the cissoid and DM is the side of the cube which
shall have twice the volume of the one with the side Mg, The
cartesian equation of the cissoid, using D as origin and DC as axis

of X is obtained from GP g DG = GE
DG GE

L5 % - X .\Zx.iza - x) where DC = 28

m) 28 - x

: _ 2, 3
', y(2a « x) 2 xVx(2a - x) and by squaring y (2a - x) = x g
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In all these "solutions“, it must be noted that in no case
yas the problem been solved -- and these Greek scholars knew it had
not. In Eratosthenes' work, and in the one attributed to Plato, it
is frankly admitted that one must resort to trial which is highly
ungeometric, There is Platnfs;éritieiam that "the good of geom-
etry is set aside and destroyed for we again reduce it to tﬁe

world of sense, instead of elevating and imbuiqg it wifh the eter-

‘nal and incorporeal images of thought, even as it is employed by

God, for which reason He always is God." In other “solutions”,
use is made of curves that can not be oopatruotgd by means of

compasses and atraight edge. Actually, the drawing of the con-
choid, cissoid, and éonics is essentially done by trial so that

for all the tremenddua efforts and ingeniousness of the ancients,

‘the accomplishment was as far away as ever., Yet in the very

failure, much was added to the stors of mathematical knowledge

that would have been delayed many centuries, had a satisfactory

- solution been obtained.

Attention was probably focused on the problem of trisecting
an angle, in the course of attempting to construct a regular poly-
gon of nine sides (which will be considered later). One of the

earliest solutions, whose author is unknown is as follows:

Feo . H

> £

= - T T e s S e —-— o s

B c

‘Let ABC be the given angle to be trisected. Complete the rectangle

ACBF and produce FA to such a point E that when BE is Joined, ﬁE
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will be twice BA in length. Join AG where G i_a mid point of LE
and it is seen that AG will ;alao equal BA since ADE is a right
angled triangle. Then<l z-2, and <3 g 2(< 1)
V44 2 2(« 1) .~ 4 =2(«<5) since«l z«5 (exterior-
interiok) .’, the angle ABC is three times the angle DBC. Of

course, the difficulty here is to be able to find the point E, &

difficulty which can only be overcome with the help of coniecs.
4 ;

Using the same diagram as before gnd

taking OA, OB as axes of X and ¥, de-
soribe a circle with eentre C(a,b)
and radius 2BA. Also describe an

4 | hyperbola with OX and OY as asym-
ptotes 1,9.’ the liype_rbola Xy = abe Draw EG perpendicular to 0X
and join BE and this line trisects .the angle. It is necessary

to prove that DE = CG = 2BA and then the proof of trisection

given above, applies. Since xy = ab, then x 2L, X = b
, a "X ea Dey

or % = % in the triangle BEH,

.".CG is parallel to BE and DCGE is a parallelogram

V. IE = og
Analytioélly, the above solution is e:i:preased thus, The

hyperbola xy z ab and the circle (x - a) + (y = b)’\ = 4(3’4 b't)
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intersect, The equation of the circle may be expreasegl

(x4 a)(x-3) = (y+b)(3b = y) or By : xrs

and X +a za sinc@%: from xy = ab

+ vy

dip

!

o

. 3b -y = ., (30 - y) 2z a(x - 3a)

a
‘X - B y

1Y

', 9(3 = ¥) z a(ab - 3a) (since Xy z ab)
: 3 :

2
. a%(b - 3y) zy (30 -y)
1.80 ¥ = Sby> < 3a'y +6°D = 0

Now tan ABC = b ; and let tan DBC =« DC = y and let y z %,
a a a a

Then y = at and we have &’ t° - 3a’bt™ - 38°¢t + 8 b 2 0
. 1 . .
or at3 - 3bt - 3at + b = 0 which factors into
2, 3
a(t’ - 3t) +b(1 - 3t7) = 0 or b(l - 3t) 5 a(3t - t°)

3
b z 3t -t = tan ABC

.. % = tan(1/3 ABC) from the trigonometric relation for multiple
angles, so that the trisection of the angle is the same thing as
solving a cubiec equation.

Nicomedes! curve, the conchoid, (discussed earlier) ean be
uﬁed for the triseetion 'problem also, and actually, when used,
is another means of finding the peints D and E in the first dia-
g:_r:am in this seetion. Here B would be the given point, AC the

given straight li.ng, and 2AB the constant length required by the

conchoid.
Another curve, that has been deseribed before, is the gquad-
ratix of Hippias. (see -- the squaring of the cirele.) This

eurve can be used, not only to trisect an a.ngle,-buf also to

divide it into any number of equal parts.
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DFG is the quadratix and CAB the given

D angle which intersects the quadratix
at ¥. Draw FH parpendicular-to AB
and divide it in the ratio 1 3 2 (or
in any given ratib). Join a#'L and

A T :B ' LAB is one third of the given angle

as is easily seen from the properties of the quadratix.
Archimedes solution of this problem is interesting (as far
as it goes) because of its simplicity.
The angle BOC is to be trisected.

B /’\E o F From B, a chord of the circle with

centre 0 and radius 0B, is drawn and
produced until it meets CO produced

at F, care being taken that EF equals

the radius of the cirecle, Join EO

and tﬁe angle EOF is one third of the angle BOC: Draw CM pa.réllel
to BE and join OM. Angles. 1l and 2 a.re. equal, also angles 3 a:id 4
and 2 1 3. 3 (interior-alternate).
But angle FOM = < 3 + <« 4

. z 2(23)

§
S s 2(2)

,', angle EOM has been trise¢ted . 8Since the chords BE and CM

were parallel._ tﬁe ares BC and EM are equal, and hence angle BOC

is equal to 1l':he angle EOM and angle EOF is one third of angle BOC.
Returning to solutions making direct use of conies, this one

is found recorded by the historian Pappus =-- but the name of its

author is lost., Draw a hyperbola with e = 2y having centre ¢ and

yertic_aa A and A' and with GA' produced to S so that A'S = CA ’.
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On AS describe a segment to contain
the given angle_and let the right

bisector of AS cut the segment in 0.

With O as centre and radius UA de=-

scribe a cirele to cut the hyperholg

in Ps¢ Then the angle SOP is one third

the angle SOA. From the definitiom

of the hyperbola,%§ = 2, as it is
readily established that S is the foous and OL the directrix of
the conice Therefore the are SP = the ar¢c PM and the angle SOP

..... = angle POMj; but angle POM g 2« POL and as SOL is one half the

given angle, then angle SOP is one third of given angle SOA.

This contains one of the very few references to focus and direct-

rix of comiecs to be found,in Greek Mathematies, Too, we may mote

that this is essentially the same solution as the best one offered

by Newton (1642 -~ 1727) and, in a form that differs only slightly,

by Clairaut.

An ingenioua construction worked out by Descartes leads to

& cubic equation, With the curves }‘tﬂ ix and xa+ yp‘ - %_ax,day = 0,

where a = Sin 3A and 3A is the angle to be trisected, he finds

the points of intersegtion, other than the origin
5 :

BOX = 3A is the angle whose sine

is a. Substituting for x we get
X
4y3

-3y =az 0 or

4y® < 3y - Sin3A = 0 whien is
similar to a well known equation'
and has as its smallest positive

root y = Sin A. So, conatrueting
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the angle whose sine is this value of y, we have trisected the
AngLes |

I am indebted to Dr. C. Mark for an interesting communication
from Mre. Le J. Seaman to Prof. S. Beatty of the University of
Toronto, in which Mr. Seaman offers Frof. Bealty a partnerspip
(and a share in the royalties) for handling the "propaganda® for
his "solution of a problem considered insolvable for 2500 years.®
He had it copyrighted in the United States in 1931, It is as

follows, The Arec BFGC bounds the given angle. Describe a eircle

‘with the chord BC as diameter and on this cirecle locate the points
D and E sueh that the chords BD and EC are each equal to the radius.
With B as centre and BE as ragiua, qeanfibe an aro’outting CB pro=
duced at H and similarly an arc with C as centre, cutting B5C proe
duced at I. Biseet the arc BD at J’and.inp EJH. (It is readily
proved that EJE are qo-linear as Mr, Seaman suggests although 1
do not know why he introduces J at all). With centre H and radius
HD describe an arec cutting the are¢ BC at F. Similarly with centre
I end radius EI, cut the arc BC at 6. Join FO, and GO, and the
angle BOC is trisected -~ so Mr, Seamsn says.

The arcs DF and EG depend only on BC and are supposed to

work for any position of O on AO.(ﬁhat isy, for any size of angle
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on the segment BC). Actually the trisection is accomplished for
angles of two different magnitudes, but not for others. The hyp-

erbola with e g 2 really would triseet any angle, and it ¢ean be

drawn once BC is given and would go through B (oxr D)«

The circle and hyperbola cannot interseet in more thanm four points,
of which two are E and E's The other two Z and Z1lie between
theses The construction works for these points only though it is

" very c¢lose for its whole length.
Letting AC ¢ 3a, the distanece CJ g CI is found to be 33!/3 (from

the right angled triangle BEC) and the distance EI ia[}?ﬁaﬂ- 9a V3,
by using the law of cosines. The circie with centre [ |
(32 (1L +13), o) and radius d;eaa-&- 93 is

xz-f- ya' « 2(1 +73)3ax+U3 . 92~ s 0.

The equation of the hyperbola with e g 2, focus at ¢(3a,0) and
directrix X & o 18 3x « y < 68x - 9% o o- |

These intersect where 4x = 2/3 o 3ax +(V3 ~ 1) 92* = 0

or (2x ~ 3a)(23x ~ (V3 « 1) 3a) = 0

. L

‘X = _3% (ises at E and E'J

and x = (/3 - 1):5% (i.es at Z and 2')
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Thus, the Seaman construetion trisects an angle of'g&’,uat B
and also an angle of about ?29-

It is supposed that the real problem spurring on the Greeks,
to try to discover how to triaeot an angle was that of describing
a regular polygon of nine sides, It had been easy to consiruet
figures of threey, four, five, six and eight sides, A heptagon
seemed too difficult -~ as well it might -- and they concenirated
on the attempt to describe a nonagon, or to divide an angle of
360., into nine equal parts, which would achieve their goal for
them. The quadratrix could be used for fthis purpoae; as stated
previously, but this construction was not acceptable here either,
because the aim was to find a means of obtaining a nonagon with
ruler and compasses -« one that would lead to ideal results. Also
it is quite likely that they were able to arrive at good approx-

imations by which construetions could be worked out practically

such as: BAC is bisecteds Then CAE is bisected, then MAE, until
3

the bisecting lines ¢an no longer
be distinguished, and to all
intents and purposes XAC is an
angle one third the aizu of BAC.

. This is actually the sum of the
infinite GePe 1/2 = 1/4 + 1/8 = 1/16 secssvevs o 1/2--(2+1/2)s 1/3.
But of course one ean only approach, no% achievé, this limit.

The Greeks readily drew figures of ten, twélve. and aixtaon_
sides, and all multiples by two of any of these, besides the ones
mentioned earlier, but not until the time of Gauss (1777 - 1855)
was it guessed that a 17 sided figure was constructible., The

figure and description is given as Gauss worked it out at the age
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of 17 years but its proof necessitates some consideration of methe
ods of solving the reciprocal equation by periods, as discovered

by Gauss, . .
17 17
Solve x =1 =9 (i,e, find V' 1 which will give the ter-

minals of the sides of the inseribed polygon of 17 sides, in a

circle of radius 1)s Dividing both sides by x - 1, we get

{6 'y i
X + X 4+ X + avesscssscse X+ 1 =0,
To divide this into suitable periods, we seek an integer g such
that the 16 roots can be ax_'ranged in such an order that each root
is the gth power of the preceding enme. This integer g is found
by trial, That such an integer exists is proved in the theory of

numbers and the proof is found in the appendix, Two is unsuitable,

_ . - 7 ‘o
but g « & is successful so that the roots arer, r , ¥ , r

P s A o ¥ P 2 3B 3F 2P 4 ¥ ¥ 5P »aftler

27
noting that r ez ' (r'°) = 1(r‘°) w r'® and the 1ike. Taking
alternate terms we form the two periods

9 /3 785 16 g &
3' -3 o I - S S S S - e o S R

{0 § " 14 7 /2 é

Na=1'5+r+r+r+r+r+r + ¥
76 /3 1y
Then y’,,_ ya';the sum of the roots of X + X + X £ eseseex+l = 0

e y‘, - 2 yﬁ..: -]'-o

By multiplying out y Yy, we have 64 partial products, in the whole

of which each root is repeated four times .’ y, ¥y, = -4 so that
y, and yksatiafy the quadratie equation yzif-y * 4 = Ousveeaf(l)

Again, using alternate terms of ¥, » We have the two periods

13 A i
2 e EReR
? &

/ 2
Z, =T + r'r-l- r 4+ and the alternate terms of

2 = give

a
k] o 2 /
w.=r+r+r4+r'z‘

0 N 7 ‘
W, s +2 4+ ¢ £ 2
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or simply zl+ S’_ = 7_,

'I‘P '2.= Ve
Multiplying out z 2  term by term, we get the sum of all the
sixteen roots .’ 2z z, =z -1 and similarly WY, = -1

2 la.nd z, satisfy, 8,‘ B 1 2 O0ssnennal2)

L]

and W‘ and "2_ gatisfy Wa e yaw «]l = 01-0010-10(3)

Taking alternate terms in z we have v T 4 r"

X ™
’f‘tr...r
/a

: 'y £ 3
Here' .v’-;-v‘az' and V, Vo2 3+ T + T +7T

| = W, , 80 that v, and v, are the
& a
roots of v - 2, v + v, % Desesseess(4) and finally since
e e 7 A .
r+r sv, andrr sr zl, randr will be the roots of

tz-" ?‘t + p R - 0...-.---.(5)

Thus, to find the values of the roots, nothing more difficult
than the solving of quadratic equations is neededs
By De Moivre's theorem, each of the 17th roots of unity is

given by ¥ = cos 2n 10 { sin 2n T

17

where N g 1,2,3,0s0ss00e17

-

r = cos 27D { sin 27
gl + =z
e

r scoe 27 =« 1 sin 27 since cos 327 = gos 271
1 j =7 By 2 cos 247 end

aznaaﬁ‘;-mia??'j Cr+r e 2 L L
S el . TR

/3 :
Similarly r +rH s 2¢cos 87 =
| I " V=

. %z, = 2 cos 2;;7 + 2 cos 8T ~whieh is bound to be positive, fer

while cos 87110 is negative, it is not as large numerically as

'
cos 21, TLikewise ¥ = r3-|_ r t'. rr-+ rm_'

7



e 2 cos 61 , 2 cos 107” vwhich is also positive, and
+ | :

l % . .
3 ' 7 i 5 12 & "
y, sl )+ w4 r”) 4 rrT )+ (x r7)
=20c08 67  20c08 147 , 2¢co8 107 , 2 cos 127
.19 _"" 17 T 17 17

Eaeh of the last three terms is negative, and the second is greater
than the fii-st, so that the whole expression for y, is negative,

Going back to equation (1), i.e. -y’+ Yy » 4 = 0 we see that
the product of the roots is negative .’ y , is positive and Ya, is
negative.

Solving equation (1) y & = 11')1“" 16
2

oy o= 30/17 - 1) and y, w 327 - 1),
Solving equation (2), 1.e. za = AR l =0 we have

2 =y 25 &

s iy + /1 + Y, E |

and by solving equation (3) or 'wz - y,W=1lgz 0, we have
v =ZL+:E—""—4— = %*V"T—"W: A

The co-efficients for equation (4) are now known, so it can be
solved, and then equations (5) which will give the values of two
roots of the original equations A different choice of signs would
lead to a different pair of answers. The construction for an ine
: se:_'ihed regular polygon of seventeen sides is as followss

In a circle of radius unity, draw two diameters AB and €D
at right angles to each other, and draw tangents AS and LS. _

Find E so that AE = 4 A8 (by means of two besections.) Describe

a eoircle with centre E and radius OE s 4 /17, to cut AS at # and
/
¥



Fi' s €A WF H

Then AF s BF - BA 3 G - +w #/17 « 5 # 3, vhere y = #(/17 - 1)
A7 2P’y BA 2 B + 42 417 + 4o by, vhere y = #(-127 - 1)

(y‘ and y, s thus having the same values as in the foregoing recip~

roe¢al equation).

Wamtm
L YOS P

Let the circle with eentre F and radius FO cut AS at H, and the

circle with centre ¥ ' and radius ¥ O cut AS at H

Then AH ¢ AF +FH g AT + OF = ﬁy,+m

and it is seen that .thia is z, in the. w_ork above. Also

! 2 #'R' - 7'A & OF' -u’=m+fyzam this is

clearly W + The lengths AH s z, and AE' o w, are the coeefficients
of v in equation (4). The next step is to find the roots of the
equation with these co~efficients. Draw HIQ parallel to OA and
interseecting DC produced, in T and haﬁng ™ = aH', Using

B (0,1) to Q (z,, w, ) (where OB, O'i' are the axes) as diameter,
d‘aseribd a ¢irecle cutting OT in N and M, and we have 6N, OM the
roots of equation (4)s The larger root v, was previously shown

to be 2 cos 27, Bisect OM at L to get the value of cos 277,
17 . 17

and ereet the perpendicular LP, The angle POL is 27 therefore
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the chord CP is one side of the required regular polygons
The construection of the regular pentagon (while known by

other methods, to the Greeks) can be carried out in the same way,
Solve xs- 1l g 0. First divide by x - 1 getfing
e X 3w e T0E AL el R e e
are the roots. Take alternate roots as periods y, sr + r ¥

Yoz TET,
Since y, -t-y" s =, and by multiplying y, and Vo = (r+r")(r=+ r’)

3 s 2 2 ;
S¥ A+ T+ PP zael, we have the equationy + y = 1 = 0sse(l)

whose roots ere -1%+[s§ "

2
4% ' :
r+ r goos 2 ¢ bein27 , cos 2P - 4 sin 2
5 = - B i 9
= 2 cos 2/’ which is positive
]
< r+r'+= it /5,
2
B8 P With circle of radius 1, take M as
' 2,
mid-point of ODs Then BM ™ w OB + OM
=1+ 3
i ‘l' Bu : vr_-" :
D m o & & )¢ %

With centre M and radius kB, deseribe

an are outting OC at H, Bisect UH at
A L and erect the perpendicular LP.
on.n‘é\;n-ouann-ou;‘__g' -1 =,

«  OHeR2egs 27T OL = cos 277
e

.', the angle POC = 2 77 and the chord CP is one side of the inseribved

b 1
rentagon,
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Gauss established the imposlibility of deseribing a réegular

heptagon. Proceeding along similar lines,

2 *dn (z - 1)(zé+ B R R+ S+ B+ 1) z 0
let x 2 2 + 1 and the second factor becomes x3 X sBmelygh
which is 1rr:dncihle. 1f reducible it would have a factor x .'ﬁ
where p and q have no common factor and p would have to be a
factor of =l. But by trial neither 1 ngr -«l.ig a root of
x3 - % w 2% « 1 g 0 and hence the equation is irreducible, apd
hes no constructible root, cocnstructible, that is, by ruler and
compass, being a result in definite accord with the work of yet
more modern investigators.

A regular polygon of 257 sides has been comsiructed, but
until modern times, it was not known that only relatively few
regular polygons could be inscribed in a circle.

The story of the solution of algebraic equations is a long
one, that of a growth that proceeded 5lo§1y. Back in the Rhind
Papyrus, we find the earliest recorded equation in “heap, its
seventh, its whole, it makes 19" which we would write F+x 319
The quédratic equation was studied by Diophantus, the only Greek

| who wrete anything whatever on Algebra, though there likely were

' 'many others who used the knowledge that the Egyptians had had.
It is surprising that while he could multiply two negative numbers,
he did not recognize negative roots of an eyuation; he did not
admit two roots even when both were positive, evidently being
satisfied in having obtained one -- and of course he did not solve
the equation when the roots were irrational, although the Pythag-

oreans had known of the existence of irrational numbers, Diophantus

used symbols for the unknown, and for equality and minus. He



e 33 e
changed a tremendous numher_of pfoblems_to equations and solved
them. As has been noted earlier many geometric constructions

which nesded the intersection of two lines actually give a pract-

ical method of solving equations (most frequently they were cubies).

The second book of Euclid ialon quadratic equations, I quote
proposition X1 %o illustrate "To divide a given straight line into
two parts so that the rectangle contained by the whole and one of
the parts may be equal to the square on the other part.®

Both negative and irrational rﬁota were well known to the
ﬁindua who on the whole made much greater progress in Algebra
than the Greeks had done -« though undoubtedly they lkmew and used
such knowledge as the éreoka had possessed. The writiﬂgs of the
Hindug did not reach the western world direetly but through the
hands of the Arabians, of whom the most important writer was
Mohammed Ben ifusa who records the general solution of the quad-
ratic in much the form we use it today. Still he only admitted
the two roots when both were positive. Other Arabian mathematic-
ians were Alkarehi and Omar Alkhayyami who classified cubiec equat-
ions by means of their geometric constructions but there was no
attempt at a general solution of equations of the third degree,

The Arabian writings were brought to Italy in the thirteemth
céntury Ey xﬁonardo of Pisae and there interesting solutions were
found. Secipio Ferro solved the cubiec equation in the form
xaiumx = n but his methods are not known, a result of the fad in
those times of keeping findings secret. This matter of secrecy
reminds us of the bitter quarrel between Tartaglia and Cardan, as

%o who originated the general solution of the cubics It is gen-

erally believed that Tarteglia was the author and that he devised
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rules for the solution of the various forms of cubics included
under the classification made by the Arabians, The solution of
the general cubic equation xj-s.- bxa-a- ¢x + d = 0 can be made to
depend upon the solution of ya.q.'py + q 3 0 by using the substit-

9 - ;
ution x g y -% s obtaining y +(e -_g_’_‘)y+d -g%_,_ 2p° -0

| 2 3 .
and if we set ¢ = b = pand d - be 2b = q we have
T il '

a :
‘¥ +D0Y¥ + 4 = 0, the reduced cubic equation. In this put

3 .
yu'z-%_ and obtein 2z - p_ 4 q = 0 whence we get
‘ %2 2723

b 3 3
a.pqs_.g_aao‘

. 3
Solving this as a quadratic equation for z , we have

.333 'Qt:u—?:rj_g? ] 'qtabg‘g)l-r‘g;

-3 B,

Then write this as z° . %iﬁ where R & (§)3+ @)2

From the theory of complex numbers it is possible %o find the oube
r.oot of any complex humber (:lncludi.ng real numbers), using
(eoa&-i-z; sineia s cos 30+4 sin 36" s and having found one. oubel
root, the other two are obtained by multiplying the known root by
e =2 +U5 1 and vy o -%-ﬁ b,

8.1!108 (= .g. +m( - % -/R) - %ﬁ‘ - R
| - %2’ - [{g}%_ &}i = (-g’s we ¢an find particular cube roots

A;W. B;I‘aﬁi-ﬁ‘

auohthatABg-gi
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Therefore we have six values of 2z, i.e. A, WA, mqh.' B, wB, wLB-,
which can be paired thus AB,(»A(GJB) and wA(c.:B) each pa.:ll‘ having
a producé - % , S0 that for any one of the six values of z, there

is another paired with it that 2 = - P+ Originally we put
: 32

y=2z=- %27 80 the values of y are the sums of the values of z
in any of the above pairs, f.e. Yy =A+B, y, swA+ w'B,

¥y =0 A + B, whmh are now known as Cardan's fosrmalae for the
roots of the reduced cubic. They were published in his Ara
Magna 1545. Cardan definitely was a.ware of negative roots but
did not like them, calling them fictitious. If the roots of a
cubic equation are all real and distinet A and B of Cardan's for-
mulae require the finding of cube roots of imaginary quantities

for R tomans out to be negative.

Since (¥, = ¥,) 2 A «hA+ B =wB = (1 -w){A ~w B)

as &Jsg 1 and {y, - y3) = A -waA.; B-wB= -a}(l ~w (A «wB)
also (y, - ¥,) ;-c..»A -wLAq-csB ~wB sw(l =w){a - B)

The product of these three (y , - Y, )(y -y ”31 -

ce’(1=®) (A -"B)(A - B)(A - B)

% 1'[ 3( e --m)]@ - 8° | noting wWtws 120

-1 (3)(6 1)(2/R) = 6 I iR i,

IThe product of the aqua.rea of the differences of the roots of
any equation is callad the discriminanté; of the aquatmn

Lo sy, -3,) @, - 3,0, = 3,) = (673 1]z -208R.
This is obviously poaitive if the roots are real and distinet

’

p .'R must be negative.

It is called t:qo "irredueible case" when R is negative; and

this qaae is treated as follows, The equation is handled as
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;" 3
above to the point of finding A s H- _32-, GHJE and B

Then instead of what followed there, find r and 4 so that

w%qﬁ = T (ooat—)tb 8inb) d.e. -%q s T cosd

_ . 2. 2.
andrlf:r:vsiné or Rg=2 sind, -

Sines ¥~ = ‘rn'(e.osaa +8ind)

r(cos B+ 4 sinb) r {cosd - L siné)

(-%qﬂﬁl )(-%q-ﬁi)=%qa-3

- ‘E;_ as explained prev:louaiyu

r s l/—:? (R being negative means that - %; is positive and
7

g 3 2
cos) = y = As R is negative =« 'E7> lq
e 'y
g e
or [[=p2 \ - g* + eo8fl4£ 1 and can be found from a table
"% 2% -

of cosines., Similarly - 112 q -ﬁ— =7 (cosB+i sind) so that

fthe cube roots of = g*ﬁ and = % -ﬁi are

l,-‘g Eosﬂ ¥ masa° + 1 sinb+ m&ﬁ&] _ (me 0, 1, 2) and fo:A'

each value of m, the product of these two nuwbers is = ‘g and
therefore, their sum 2 ||« ,g cos 8 + .m:!cﬁemI for the three values of
: ]/ 3

m, gives the three real roots of the cubic. A purely algebraic
method of finding the cube root of the imaginary numbers entailed
in this, fails. There is a solution for the cubic with resl
distinet roots (the other cases offer no especial difficulty)
making even greater use of trigonometry that is due to Vieta.

3
He used cos 3% 3 4 co8 x -~ 3 cos X or putting z s cos x
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53 - %a -%coansO'

3 :
Compare this with y + py + Q4 3 0 after putting ¥ = nz

3 3 3
Z % = 0 from which
ies Nz +pnz+ qe 0 or .|.§_1+%1

n.' and ¢os 8 72 .
:U:%‘ d ax i /@

Then cos 3x can be found from a table of cosines. The three

values of z (= cos x) are cos x, cos (x +130°) and eo® (x + 240')

from which the values of y are easily written off, Vieta also

solved equations by a method of approximation that was def initely

the forerunner of Horner's method. Thus in ::_«L 14x ¢ 7929, taking

80 for the approximate root, and plaecing x s 80 ~ b, we ge¥

(80 + h)1+ 14(80 + b) = 7929

or 174 ® + 'bz'_:' 409,

Singce 174 b is much greater than bl,' put 174 b = 409 and get b = 2.

Hence the second approximation to the root is 82, rut x g 82 -+ o,

then (82 + o)l+ 14(82+ @) = 7929

or 178 ¢ + ca' = 57 and continue the process as far as desired.

| About this time we £ind negative roots for equations completely

aceepted. Stevin is the first to record his definite approval.
Naturally the equation of the fourth degree next claimed the

attention of mathematicians, Cardan seems to have tried ﬁa find a

solution, but where he failed, a pupil of his, Lodovico Ferrari,

succeeded, using a transformation to make both .aidea of the equat~

ion a perfect square, a new unknown quant ity being introduced

vhich is itself determined by an equation of the third degree,

To solve xq-t-bxs—&- cxl-t- dx + € g 0 write it in the equivalent

form (xi-k &bx)t ™ {gh"l - o)x"’- ix « @

4 _
By adding (x4 3bx)y + ﬁy" to both sides we have



a ES a - z-
(x +40x+ 2y) = (B0 -0+ y)x + (Boy - d)x +& - .
The first member is a perfect square and the_ gsecond member o¢an be
uade s0, by choosing a suitable value y, of y.
Lot b = 40 + 4y, = t (with t£0) .

22 2

T tx + ed)x +4y, <~es3 i*tz,,_éby,-d)
Then % (#vy, ; &

- 2
< i!fz -8 3 ‘#ﬂz{_:_j)
i.e, is}1 ~-ewn (iby, =~ d)
b - 4de+4y,
'y y,?' - cr,a+ tblyfl - eb + dee = 4ey, = -&y,l- bdy, -+ a:L
or 3,3 - cy,a-(-_(_hd - 4e)y, - b + dee = d",_g
which is a oubic and ¢an be solved for y,.

Now x> 43bx + 4y = +{itx , Joy - d)

O 4D - t)x 4 by, - By, =4 50
and 324-£(b +§)x + i,',- tb,f -d 20

From each of the above quadrétic equations, two values of X g¢an
be founds

The equation of the third degree, énd that of the fourth'
having been auoéeasfully solved, men were encouraged to %ry te
find a similar solution for the equation of the fifth degree.
Desoartes, Euler and Lagrange all contributed much to the know-

ledge of Algebra through their unsuccessful efforts; for example,
Descartes Rule of Signs* is still the handiest means of locating

real roots, Lagrange undertook to review the werk of all his
predecessors and showed that their results belonged to one uniform
principle, wh‘ioh gonsiste in reducing the given equation to that

of one of lower degree whose roots are linear functions of the
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roots of the giveﬁ equation and of ﬁhe roots of unity. He showed
teﬁ that th§ éuéntie could not be so reduced, the equation on
which its solution depended being of sixth degree, But there be-
gan to be suspicions that equations of higher degree were imposs~
ible of solution, and other lines to the approach to the study of
‘the equations were being followed. We have Gauss' proof that every
aléabraio equation of degree n, with complex coeefficients has n
rootss. For this Gauss needed imeginary numbers which héd been
used,though scarcely admitted, from the time of Cardan onwards.
Euler in 1748 set up the relation eéx & GOS8 X + 4 sin X, by
whioch time complex numbers were quite well established. Gauss®
proof that every equation has a root is, briefly, this:
Given the polynomial

n M1
£(2) 88 + 8,2 + ssessscessd, , We may write

-t(i +1y) & u(x,y) + iv(x,y) where u and v are real polynomials
in the variables x and y« We are to show that there are real
numbers x and y for which u(x,y) g 0 and v(x,y) = 0, in the

XY plene and therefore they must have one point in common, and
for that point f(x + &y) = O would be true; i.e. that point
would be a root of f(z) = 0. If we use the trigonometriec form
of z: z 2z r(cos® + 4 sind), it follows by De HMpinre's

theorem that z . ™ rs"(eog n6+4 sin n6). If r, the absolute
value of z, be taken very large, the limit

f!ZI = 1 a, Ba 4 scessossroncenln o 1
z2 =

"
or £(z) approaches z asymptotically., Therefore u and ¥ app-
" Yu
roach r cos n® and r sin n® in the same way, so that the

course of the curves u = 0 and v ¢ 0 can be found from
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ees nb 2 0 and sin nlg 0. The curve sin mégz 0 consists of n
straight lines which go through the origin and meet the X axis

at angles of 0y T 5 2T, eeossss(n = 1)}/, whereas cos ndz @
n n n

gonsistis of n lines through the origin which bisect the former

angles. (cos nfz 0 for angles of 7., 27, sesens(n = 1)7
' 2n 2n | . on '

The diagranm is drawn for n = 3 and it must be noted that in the

central part of the figure the true curves u ¢ 0 and v « 0 can
be essentially different from straight lines (indicated in the
second diagram) -- but as statéd before, if r is very large, the
values approach these siraight lines,

Drawing a circle with O as centre and very large value of r
for radius, it is obvious that the bronches u and v outside the
eirecle alternate so that it is'graphioally clear that these
branches must e¢ross one another inside the eirecles This establ-
ishes the fact that & point exists for which u's Oand v g 0
are both true and therefore that there is a point for which
fix + il!o") =z 0or £(2) » 0 is true or that £(z) = 0 has a root.
If one sueh root is found, we ean dividg out a lineay factor
which reduces the degree of the equation by one, and repeat the

argument n times: thus an equation 6f nth degree has n roots.

This explenation which is given by Felix Klein is somewhat briefer
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than Gauss?! origina; one but 1; easential;y the same.

In 1631 Harriot had discovered the_compoaition of an equat-
ion as the product of factors and the relations befween the roots
and the coe-efficients of an equation. This was an important
milestone, since it showed that any integraloroot mist be a fact-
or of the absolute term, but is naturally of no avail if the equa®.

ions has no integral roat;

Enowing that all aéuations of nth degree have n complex roots,
and despairing of finding a general method by which roots could
always be found exactly, mathematicians conecerned themselves with
the problem of finding the roots of an equation to any required
degree of accuracy, developing and improving Vieta's early methods.
Firgt the roots must be roughly located., Descartes "Rule of Signs®
gave (at least to within an even integer)'the:numher of'positive
roots and the number of negative roots. Rolle, Sturm, Fourier
and Budan worked out excellent methods of isolating the roots.

The equation ean then be solved by methods advances by Newton,
by Hormer, by Graffe, and one using continued fractions by

Bernoulli, and one al;o by Euler, though ILagrange showed that
this was essentially the same as Newton's. I shall give here,
the details of only Horner's method, by using it to solve the

P

equation =Y+ x“'a 12:5-+ 29% + 272 0 for the root whioh

exists between 1 and 24 A root does exist for f£(1) is positive
and £{2) is negative and sinee £(x) is coentinuous, at least one
value of £(x) = O must lie between 1 and 2, We shall use the

transformed equation with root = p where x 2 1 +p ieee P = Ix -1,

and our equation is the same as (x - 1) +6(x = 1) + 2(x - 1) -

St

32(x = 1)°= 24(x - 1) + 32 = 0 gwn ]
, UBRARY %
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or p + 6p +3P
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24p + 32 = 0

The oo-efﬁcienta of thia may be found thus, from the co-efficients

of the given equation

1 1 =12 «12 27 27 &
1 2 »10 =22 5
i 2 »10 w22 5 32
1 3 -7 =29
1 3 - 7 «29 =24
1 4 -3
1 4 -3 «32
1 5
i S 2
1
1 6

By trial the root of this is found Vo lie between ,7 and .8 so

finding a segond transformed equation as before from the equation

Y ‘o 3
P + 6p + 23p =

2
32p = 24p+ 32 g 0

1 6 2 -32 -24 32 (o7
W7 4.69 4.683 19,1219 «30,18533
1 647 6,69  =27,317 «43.1219| 1,81467
KA 5,18 - B.309 «13.3056
1 o4 11,87  =18.008| =56,4275
.7 5.67 12,278
1 8.1 17,54 = 64730
.7 6,16
1 8.8 23.70
K
1 945
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Ve mow can fq;-x_n the equation 35{- 9.5y4+ 2:_5.73' : - 6.73.?3" -
56,4275y + 1,81467 g 0 whose roots are 1.7 less than the roots
of the original equation, The value of y in this last equation
is very small so the two mos? 1mportaht terms are

«5644275 § 4 1481467 which are approximately equal to zafo,
from which y g .03216.. The next divisor therefore would be ,03
but a fairly accurate value is found by stopping at this point
and teking X g 1.7 + »03216 oxr 1,73216. This process can be
used fo find any and all real roots of an equation, and is quite
satisfactory from a practical puiht of view, 1t is however read- .
ily seen that this method entails "trial" and does not lead‘to
formulae by which the roots of a fifth degree eguation ¢an be
éxpresaed -= a8 i8 the ease with equations of lower degree. A
way around had been found but the problem had not been solved and

no further progress was made till the time of Abel aﬂd Gausg,
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Part B

In modern times it has been proved that it is impossible %o
solve the general fifth degree equation == that is, that no root
exists in any number field made up from the rational operations
on integers. To set forth clearly what is meant by field, it is
first necessary to define "Domain". An integral domain is any
get of elements for which the operations of éddition and subtraction
are defined with the following properties;

(2) each pair of elements a and b in the domain determine

uniguely a sum a + b and a product ab for which the dis-

tributive law f[;(h-+ ¢) = ab + gé],the associative laws

[; +(b 4 ¢)=(a +b) + ¢ and afbe) = (ab)q] and the
commutative laws [; +b 3 b'+.a and ab g ba] hold.
(b) the domain mﬁat contain the elements zero and unity to
act as 1ﬁdant1ties for addition and multiplication
(¢) For each a in the domain there is an elemeni - a.
(d) the cancellation law for multiplication holds.
Obviously the set of all integers forms a domain, and the set
of all integers with some surd adjoined also forms a domain as
a -+ bﬂ;. It can be easily seen that this satisfies the four
- postulates above. Now a Field is an integfal domain which also
contains an inverse a | for each element & ( not zero). That is,
division by any element except zero is possible in a field though
not in a domain, The field must be decided upon before it is
possible to decide whether a given equation is solvable. ¥For
example 2X = 5 g 0 is solvable easily if the field is one in which

x represents a number of dollars, but if x represents a number of
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people, no answer is possible. The field in which we seek the
answers to the fifth degree equation is that formed from the in-
tegers by the rational operations, addition, subtraction, multiﬁ-
lication and division, and the extracting of a root_of unity a
finite number of times.

Note that an algebraic expression may be reducible (that is
fh,factorable) or irreducible depending upon the field used. A
polynomial in one variable x with qo-efficienta in the field is
said to be reducible if it can be expressed as a prodnct.of poly~
nomials, neither being a constant, each having ca-ef:icients in the
field. For example xzﬁ'l is irredugible in the field of real
numbers, but factors into (x + i}(x - i)-in the field which con-
tains the imﬁginary element &4 This further illustrates the neg-
essity for specifying the field of operations,

The operation by which a set of elements X9 xa’ Kyo saces
X is changed into a set of elements X 0 x#g xcf vecseseX, is
called a substitution. To each of the indices a, b, Creeseel
there corresponds one and one only of 1, 2, 3, esessenla This we
call a one-one correspondence or an 1pomorphiam; A substitution
may be written 8 2 X, X, X_ seccescssaces

5

x:- xa x‘p tessosesscsoeae

OF 8 5 (1 2 3 soeensess) eithér of which means x , is replaced by

X, and so on, We define the "product" of two substitutions, s,
and B0 @8 the substitution 6btained by first performing s, and

afterwards performing s For example (123), meaning that x,

2' L]
is replaced by X0 X, by x, and x, by x,, mltiplied by (12) may

be written as (123)(12) and is equal to (23). It must be noted
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tnat the product of two substitutions is not commutative. The

product (12)(123) is (13).
An abstract group is a system composed of a set of elements

¢

(ay Dy Cyessssseeen) and the smultiplication® operation, and having
the properties (i) that the product of any two and the square of
each are elements of the system, (ii) that the assoeciative law
holds, (iii) that the system contains an identity element I, (by
which any element is replaced by itself) and (iv) that it contain
‘an inverse for every'elemant of fhe set (this allows that the
product of two elements fofme.thé product-i). The abstract group
definition can be applied to a wide variety of systems: for 1nafanee.
ths'elemehts mﬁy be the rqtatioqa of a regular hexagon through an
angle of 60 , or through multiples of 60 ; but what is important
here ié:fﬁéf a set of substitutions may form a group (said to
ﬁe'éf order m if it contains m elements)., We shall consider
only groups of substitutions in the foliawing. The group of sube
stitutions i, (123), (232), (12), (13), (23) is of order six. It
consists of the 3! possible substitutions on 3 letters, anmd is
known as the symmetric group of order six. Similarly the symmet«
rie group of order n} oonaiats of the n! substitutions on n letters.
If group is such that all its elements are powers of some one
element (other than the identity) it is known as a cyclic group.
That is, if s is a substitution of order n, the substitutions
I, 8, al, ..;....én“ form a cyclie group generated by the sub-
stitution s. Further, a group is "regular" if each element is

changed into every other element, and into itself, once and once

only by all the substitutions of the group,
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The group I, (123), (L32) is both regular and cyelie,

11123), (125)1'= (132), (125)3 zland x, X9 X5 becomes

X 0 X0 X, by I, and XKoo Xy X, by (123) and ::.':':r:"J:l:_t by (152!].

This group I, (123), (132) which is of order ihree is a subgroup

of the symmetric group of order six, since it is contained in the

latter but in itself satisfies all the requirements of the definite

ion of a group. Actually a group may be considered as a subgroup

"of itself, but since we are usually only interested in a subgroup

which is smaller than the whole, such a subgroup is called a “proe

-~ per subgroup". I and (12) form a proper subgroup of the symmetric

g:ohp of order six, as also do I, (123), and (132). The order of

a subgroup is a factor of the order of the group, for, given a
group G with n elements in it and a subgroup H containing r elem-
ents, then r is a factor of n, If a,, By 33 sesvesed  are the
elements of H, and if b, is some element of G but not of H, then
the products 80,5 8,0, 5 8B sesesssed,b will all be in G but not
in g from the defimition of a group. If G is not exhausted, choose
some other element b, of G (but not of H, nor of a,b,, 8.0, eececee
gbb,) and multiply the terms of H by it, obtaining a,ba, 8,0,
auyl.........§~h='which again_w;;l all be in G but neither in H,
nor in the previous aubéfoqy. Repeating this, the elements of G
all become used, and may be displayed as follows:

a.,, 8-&. 33 tcevsescsesrecssld
a,b,s ab , 8,0, seeseecsceeerd,
a'hz_, a&bl, &3b‘L o_ut,aoaponoﬁ-AbL
ete.

so that the whele number n is a multiple of the number of elements

in the first row. Thus the order of the subgroup is a factor of
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the order of the group. The result of dividing the order of the
group by the order of the subgroup is the "index" of the sube
group under the groupe. ‘

The alternating group is the full number of even substitutions
on n iettera, where by an even substitution is meant one that can
be decomposed into an even number of transpositions of two letters.
The alternating funection is

p z (x,-x)(x - x;)(x’ - xﬁ);.-.........,(x, -x)
(xa_' x,)(x, - x;).m...........(x:‘- x )
PSRRI RPN R IAS PP AR RANSREND I RGO s ONE

(x,  ==x)

An exchange or transposition of two numbers changes the sign
of the funetion P, as using (12), the first factor is changed in
sign, while those in the rest of that line are interchanged with

factors in the line below, so that the product is not further
altered. Similarly, for any odd number of transpositions the sign
~of P is changed. An even number of transpositions makes no change
in the product. The symmetriec group is of order ni Half of these
substitutions are odd. It contains at least one odd substitution
(2 transposition t), therefore all of its even substitutions
multiplied by t give distinet and odd substitutions, and there are
at least as many odd substitutions as even onese« Again, the pro-
duct of its odd substitutions by t give distinet and even substitut-
ions, so that there are at least as many even substitutions as odd.
Hence half of the substitutions of the symmetrie group are even.
These are the substitutiona'whiah make up the alternating.group

on n letters. 1Its order, therefore, 15'%31. The élternating



group is a subgroup of index 2 in the symmetric group.

The "transform" of one element by another is the result
obtained by multiply"ing any given element, on the right by some
other element and on the left by the inverse of the laitter. Thus
| g—'Hg is the transform of H by g, where g”! indicates the ine
verse of g. Thus the tramsform of (12) by (123) is the product
(132) (12) (123), ﬁlﬁz) being the inverse of (123), since
| (132)(123) = 'I'].. The result of the transform of (12) by (123)
is seen to be (23). A subgroup is called "invariant® if it con-
tains exactly the same elements, though perhaps in different
arrangement, when all the elements of the subgroup are iransform=-
ed by all the elements of the original group; that is, if it is
transformed into itself by all the substitutions of the group.
The idenftity is an invariant substitution of every group._' it
may be observed that the function{f g X %+ XX, is invariant
under the following Gg = I, (12)(34), (13)(24), (14)(23), (13),
(24), (1234) and (1432). Any other of the substitutions on four
letters changes (Y into some other function, say {/Lg X X4 X X

"l
which is obtained using (23)y not in Gye or stated otherwise:
any$of GP transformed.by a member of Go givea a result found in
Gg » for example (13) ((12)(34)] (L3), or (12)(34) transformed
by (13), gives (1432). A functio:; such as Y, = X X+ X%, which
is obtained from (/ by substitutions of the group G, , mot found in
the subgroup GS is said to be conjugate to ¥ . If the subgroup
is of index 3 under G, there will be three distinet conjugate

values of the function being considered and all the substitutions

of the group G will be divided into threé subgroups, which are

called a set of conjugate subgroups of G. If these conjugate
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subgroups are all identical, the subgroup is aa;d_to be aalf-qon-
jugate or invariante. The symmetxric groﬁp of order six contains
no invariant subgroup except the identity. The maximal invariant
proper auhgfoup (that_ia a proper self-conjugate subgroup, not
contained in a 1arger self conjugate subgroup of G) is the most
important one fof our purposes. If we have a succession of maxe
imal invariant proper subgroups each eontainad_within the preced-
ing 6ne. éay G,'ﬁ. K seitcnces wﬁa;e K is a subgroup of'H, and
H of G, and if a is the index of H under G, and if b is the
index of K under H, ete, then a, b esssssarle known as the com-

position factors of thé group'G. 'If all the composition factors

‘of the group G are prime numbers, G is galled a "solvable group%,

" but before dealing with a solvable group I shall consider the

grouﬁ of an eqﬁation. (ﬁot until pagé s however ﬁill it be -
possible to define the group of an equation,)

In the first place, every equation has assogiated with it
é definite group which will differ, in most cases, for different
fields. Let us take the equation ax3+ bxl-r ex+ d = 0, of the
third degree which has been proved to have three roots. we will
assume the roots to be diatino%._for-1f~they are not, f(x) and
its derivative f’(x) would have a common divisor g{x), not a
Eoﬁﬂtant, and we could treat the eduafion £(x)/e(x) = 0 as

having no multiple root. In all that follows, fhe:qfore. we

" will consider the roots of the eguation to be distincts In the

case in hand, let the roots be x,, x,and x, ,» If we take some
function of these roots, say x X, +x; and replace the X by each
other in as many ways as possible, we shall find there are 3%

possible substitutions [1. (12), (23)y (23), (123), (152)] and

»



e Bl =

if we had taken some function of all the roots of an equation of
the nth degree, there would be ni substitutions. Some of these
substitutions alter the value of the function and some do not, as
in the case above, of the cubic equation and the function x'xﬂ. xa.
the substitution (12) does not alter the value of the funetion
while (13) doea.l ‘Futhermore, a certain substitution may change
one function of the roots and yet not change another, as (12)
would change x, = X, hn__;t not X, 4+ X

-k
Suppose that for the equation of the nth degree, we take this

func¥ion of the roots: V zmx + mx L BE 4 esssssogsosns

: mx
(this is the Galeis function of the roots), then the m’s can be s0
chosen that every possible substitution of the xX’s does alter the
expression; hence it has ni! different values which are represented
by V,, V&. seeseeeV, ,. To show that it is possible to choose such
ms, give to m any integral value, say 0, and to m, any different
integral value, say l. Looking at the equations V, z V, {Where Vo
is obtained from V, by a substitution such as (215)] we find that

certain values of m, are determined if V6 ¢ V, containsm, but not

m, (4> 3) i.e. if vV, = V,» then x, +m.x = X, +m3X,

or if m, s X "%z ., any
X, - X,

value of m 3 except this will make V 7 + V,» There will be other
values to be avoided, at each later stage, -- ones which will make
‘T‘ 2 V,ﬁ or V, = V, for instance, but fhere is an infinite choice

of 'values that make V,» V:_, V3 all different. Next we give to m,,
an integral value different from the values of m y determined by
the relations V' = V; involving m, but not m (L > 4) and so on.

Using the n! Galois functions we form the expreaien
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PY) 2 (y - V)T = V(T = Vy)eeeeeniiciicnnacnnn(y = Vioy)

where y is a variable. Let 8, =1, 8,, By sevscecS, g be tﬁe sube
stitutions used %o form V, from V,. If 8,8 = s  (a group of sub-
stitutions) and we apply 8, to V,, getting qu » and follow this
by 8 o0 WE get Vsb. o« With X fixed and the values ly @, seseceen}
for j, ( will take the same values in some new order so that -a

simply permutes V, , Vsz..-......nvs

' amongst themselves, Thus
N

the elementary symmetric functions o.f Vs found in P(y) are symmet-
ric funo.tions of I x‘t ’ X aveoneeceX, and hence they are
integral rational funofiona of the co-efficients of the original
equation in x, They are also of course, integral rational funct-. ;
ions of the m*s. Thus the co-efficients of the various powers of

y in P(y) are quantities in the field F under consideration, If
P(y) is redueible in F, let G(y) be that factor, itself irreduc~
ible in F, for whiech G(V,) = 0. 1f P(y) is 1rredﬁoiﬁle in F then
G(y) = P(y)s The equation G(y) = (¥ = V, )(y = V,) eeeedy = V,) = O
is called a Galois resolvent of the given equation for the field

F. The Galois resolvent again is different for different fields.
The equation x3+ xa-b X +1 g 0 vhich is known to have the roots
xR ® Ly X,s t 4 X, ® =1 illustrates this.

V, = mx + m X + maxawith m =0, m, =1, and m, 3 -1l gives

!

Vs X «x slid

~ 3
Vae x,ox mal+y
Voe X «x =21
Vys X,oX, 219
Vyes xl*x al-:l:
V. & x‘_-xlgzﬂ



(e

o 53 e

) (v - V)7 - V)y = V)5 = V) = V)3 = Vi)

s (y ~Lle )y =17 Dy +20)(y +1+ i)(y =1+ &)(y ~ 28)

(7-1-8y -1+ Uy +2L)(y = 2L)(y +1 - b)(y+ 1+ i)
e (30 - 25+ 2)(y4 4)% 2w+ 2).

The irreducible part of this. that contains (y « V,) is

G(y) = yz- 2y +2 or (y -V, )(y - Vi)

if the field is the real numbers but _if the field is that with

complex numbers, then G(y) ey =1 « £ ory - V,s In order to

show that the substitutions of the xS which change the Vs into

one another form a group of the given equation for the given field,

- 4% is necessary to prove the following theorem which I am taking

from "Modern Algebraic Thecories™ by L. E. Dickson.

“Leté(x’ ’ u...-....x‘p) be eny polynomial, with co-efficients
in a field F, in the roots X, of an equation wiﬁ: coe-efficients in
F. Let 8 be any substitution on the roots and let it replace ?
by ¢s and V, by Vg where V, is the n! valued Galois function with

integral co-efficients, Thené L[ Vs ) whera A. is a polynomial

P"(V
with co-efficients in ¥ while P' is the derivative of the
polynomial,
P(y) aly -v, )y - Vz) sescssesccsssssne(y = V, ;) whose go-effic-
ients belong to F whence P '(V )# 0. Thus #_f is the same rational
funotion/o (Vs) of "J,". that?b; C)J' is of V, ., 1If 5 8,
x Teplaces ¢5‘ by ﬁ&, « Thus s, permutes ¢ 1yt e 46_"”, in the

Seme menner that it permutes V , ...........Y + Hence the terms

”f

of My) .?S,g_q_%‘ b BEL_ 4 eensesssresnans ?5 P(y)

y-v S'A!y'v.s-»f

L a\’.' » then

are merely permute;l amongst themselves by any substitution on

X, Iz. -...-u.-xﬁ Thus the co-efficients of). (v) are rational
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integral symmetric functions of X , Xy sesseeseeX, With co-effic-
jents in the field ¥, and hence are equal to qu_an_fl:ities_ in B

/
Taking y s Vg We obtain ),(Vs) - ésP (V; ) sinee all the fract-

ione & Ply) will have the factor y « Vo = 0 except A P!xtv.
L y s v y - s

/
which equals ;Ss P(V,) when Vg has been substituted for y.
/
SN e P V)

‘:#:17 .
s PV, )

Now let the roots of the Galois resolvent @(y) = O of degree
g be V, 9 v.', V“' contoacoocV.P where 1, a, boogao‘opoop_ indicate theg
* substitutions by which the different v’s are obtained from V, .
Then 1, &y D ssencsseseep form a group G(the group of the given
equation for the given field)s, We must show that the produet of

any two of them is equal to one of them,

Llat v, = A' g. )1 where R w f in the foraghing. Then
P '

Viss (Vads = A(V) ..
pi(vg)

We suppose V, is one of the roots of G(y) = 0, then the equation

G(M,(x!)) s 0 is satisfied when y =« V,s Multiply by the gth
PAy

/
power of P (y) and we obtain a polynomial H(y) which vanishes for
Yy 2 V,. Since G(y) = 0 is irredueible, any root V, of 6(y) =z O
is a root of H(y) = 0, and sinece P'Ws) is not zero, we may divide

H(Y ) by the gth power of P (V) and get 0 z ¢ /A(v ) = @(v,,)
BV,
S

hence V, o is one of the roots of G(y) = o.
Retufning to the illustration x3+ xa-{r- X+1=0, for which
G(y) 20 or (y = V))(y = V5) = 0 had roots V, and V._in the field

of real numbers, the group is iI.(x » xs_)], but in the field of
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-eomglax numhefa for which G(y) = 0 ory -V, ¢ 0, #he group is
the ident;ty. | e |

Two very important properties-of the group G of a givah equat-
ion follow; The first is |
A. %"If a rational function, with co-efficients in the field ¥, of
the roots of an equation with oo-offioienta in ¥ remains unaltered
in value by all the substitutions of the group &G of the equation |
for F, it is equal to a quantity in ¥",

A rational function of the rvots of the equation may be. ex-

pressed in the form—‘;é where, as in the theorem on page $§3

#525;’ %ﬁ‘{_ﬁ% s and when we express q/_;(//, in the fom/a;[“{v"]) -

In @5 we must restrict the co-efficients of the poiynomial <~
so that w:f 0. If 8 is any substitution of the group of substit-
utions 1, a; b, tseseesaly then({/s_ﬂ; 0, for if V; is a root of |

-/ua(.?) = 0, then so is V,, in virtue of the irredueibility of the

Galois resolvent G(y) = 0. Hence Jéig Avs) (s = 1, a, 'b,......p)
- ‘{/s /“’VJ'
are defined for each substitution s of the Group G.

Suppose that—‘;‘i is unaltered in value by all these substitut-

~ionsy; then

Vo
&

| i -
erexiore ( ‘.é_) = )& ‘. Vg erossoabasany |
'.!.’hl £ g) 7 /Jv" +/“L}V.U + | 1./%‘;;}
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or¢ i V). _gﬂ,}f, .....-......u..-}-lg%}
(2 g( plV, S \Va : AN
the second member of which is a rational symmetric function with
co-efficients in ¥ of the roots V , V , .........v; of G(y) = 0
therefore it equals a rational function of the co~efficients of G
and hence is a quantity in ¥, and therafore_% is in F and prop-
erty A is proved.
The Second of these properties is the converse:

B, "1f a rational function of the roots with co-efficients in
F is equal to a quantity in F, it remains unaltered in value by

all the substitutions of G." To prove this, let-é s r wherer

is in F. ‘I'hen A—((}-2 «r w0 is satisfied by y & V,, and so

My) - 1‘/;(5‘] = 0 for every root V. of the resolvent equation

"G(y) = 0. Thereforer = 7\[ g‘ - é "where 8 m 1; 8y Deseseed

80 that—% is unaltered by all the substitutions of .

To illustrate properties A and B with the equation

3 a
x+x+x+ 130, let us use the function (x -« x, )=z, - xa”xa*x})'

This expression equals ﬁ.abod - 4b%d + be™ - 4¢" - 2747 for
any cubic equation xs+ bxa—é- ex + d g 0 and is relatively easily
found. For our equation, this is -;1.6_. This equals a quantity
in the field of complex numbers and so, by property B, remains
unaltered by all the substitutions of the group of the equation
fc;r the complex fields If we try all the substitutions

I, (12), (13),‘(25). (123), (132) we find that only three of
them, i.e« 1, (123), and (132) leave the function unaltered,
hence the group for the complex field is no greater tha;a L33

I, (123), (152) but might be only the identity I. Try another

function of the roots, say x,» The equation under consideration
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has one rational root xl =z =l an_d! two ‘complfex ;L_'oots, so that the
substitutions (123) and (132) alter the fumetion X, , and there-
fore by property B, again, (123) and (L32) are not in the group
for the complex field, which thus consists of I along. In the
field of real numbers however, the group is seen to be I, (23),
on working with the same funot¥ions. In general, adjoining further

elements such anL in this case, reduces the group of the equation,
It is interesting to note that it is immaterial which of a

number of functions of the reots is used to determine the group

of the equation., First, if property A holds for a group

Hel, ry sonssessestny the co-efficients of

¢ (¥) 2 (3 =V )y = V) evevescencee(y = V) being symmetric

functions of ?,. V _seesessesV are not altered by the substitut-

‘ioms of H and therefore are equal to quantities in F. The equat-

1on<)5 (y) = 0 has one root V, of the irreducible equation G(y) = O,

therefore it has all the roots LA A vg_.;.......vﬁ of G(y) = 0y

so we see that G 2 1, @y By sesssesp OCOUr amongst the substite
utions 1, T, esveseseem of H and G is a subgroup of He

Again, 1et K g 1, py ssessscenct be a group for which property
B is trues The Galeis funmetion G(V, ) is equal to zero in # and
is unaltered in value by the substitutions of K, therefore
G¢(V,) = @(vﬁj ® senesceserevecm G(V,) g 0 and ¥, Vis eonnney ¥y
ocour amongst the roots of G(y) = 0 and XK is a subgroup of G. The
two properties evidently hold simultaneously if H = K = G and the
group of the equation is uniques The funotiona by which it ean
be determined are said to belong to the groups.

If a given function belongs to a subgroup H of index .,

there are conjugate functionss There are.w substitutions belong-
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ing %o the group which will carry the given fungtion into each of
ite 'cczi,jugatea. For example, the function Y= XX, 4 X3 X, belongs
to the subgroup I-I‘r = 3-9 and%. s XX, xix‘t and Lp3 s X xqf. X X,
belong to the subgroups H, and Ha + ( can be obtained from ¢, 'b}v
the substitution (234) and ¢, from¢, by the substitution (243).

The set of subatitﬁtions such that to any substitution of the

group on the letters X9 X, ;.;.-.....x;} there corresponds . one

definite substitution on the letters of onme of the conjugates is

called the group / . In the example above, it is [ 1, (234), (2453
If’4 is an invariant subgroup of é of prime index, the group ' .

f‘ia a transitive group of order u on «w letters and therefore is

a regular éroupa A group is said to be transitive.if, for aéoh >

eleuent of the group, we ean find substitutions in the group which

‘replace this element by each of the other elements in the group.

" The grggp GJ = [E, {123), (132i} is a transitive group pf crder

_ three on three letters, for I replaces x K by X, , {125]Irepl&cea

x, by xa! (132) replaces x, by X, etecetera, The symmetric group

on n letters is transitive ﬁut is not regular if n> 2, Let H be

the subgroup containing all tha'auhstitutions of G that leave one

element %, unaltered. Since the group is transitive; there will.

be a substitution s, say, which carries x, into xz_. Thigﬂgub-

stitution, applied to all the substitutiuna_in H mast giveua new -

set of substitutions, Hy having exactly as many members és!ﬁ

each of which is different from all the members of H. This pro-

cess can be continued till we have

G g H + ESJ"P HSB+ sesssscsceensply ~ where the number of elements

is nx, It is readily seen that every substitution of the group

ls in one of the Hs s0 that the order of the group is divisible

b
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Purther if an equation is irreducible in a field ¥, its
group for F will be transitive, and conversely. Suppose that the
group ¢ for £(x) g 0, irreducible in ¥, is intransitive and con-
tains aubatitutiona replacing X, by xl, xa, ........xqw, but
none replacing x, by the later terms ;”WI...........-.;W. con;
sider some one substitution s of G replacing x; by %, (L= m).

G contains a substitution t replaeing x by x. and therefore a
substitution ts replacing x‘ by xj with j < m and the

xl. X, ...}.....x”” are simply permuted amongst themselves by s,
and any symmetric function of 15. xl, ssvssvesX  is unaltered.

Therefore, by property A, the co-efficients of x in

8(x) 2 (x = x )(Xx » x) sseereee(x = x ) are in F and £(x) is

- seen to have the factor g(x), and it is established that if the

group is intransitive, the equation is reducible. Conversely,

~ let G be transitive and £(x) be reducible in ¥» Then f(x) has

some faector g{x) of degree m (m< n) such that g{x) = 0 has the
root x and since g(x) is equal to zero (in F) it is, by property
By unaltered in value by every substitution of G. .Since G is
transitive, x,  can be replaced by any x; giving g(x ) = 0 for
all ifg n, in contradiction to our assumption that m - n. To
illustrate, I will find the group of the equation x " X+1=0
for the field of rational numbers. The equation is irreducible in
this field, beecause if ii had been reducible, it would have had to
have at least one linear factor, and neither of the two possibil-
ities x+1 and x - 1 are factors. The funetion

(V g {x »x J(x \x )(x = % ) is the square root of the di s

eriminant of the equation and is aqual to +9 (in the rational



field) but only to either+9 or to -9, Any transposition of.
X » %X, 5 X, changes (¢ into - p and so alters ¢/ and therefore the
! .

transposition is not in G, by property B. Thai is (12), (13),

and (23) are not in the group which therefore consists of
{I, (123), (132)1. Thus we have a transitive group as the group
of the irreducible equation x3 « 3x +1 g 0,

One other expression that will be used later is "quotient
group". If H is an invariant subgroup of G, of index4t, the quo=-
tieﬁt group is designated G/H. It is of order <¢ , which is the
result of dividing the order of G by the order of H. As an example,
we consider as above Y = (x, = xi)(x:_- xs)(x3 - x‘), which be-
longs to G, [i.e. is unchanged under the substitutions of
G, :{1, (123), (132)}]&:1(1 which takes a second value y, = - ¢/
under G, j then G,/G’ is the g_roup [ = {I. (% % )}‘ Further,

a simplé group is one which has no invariant subgroup except }t-
self and the identify. Otherwise, it is composites It is seen
that a quotient group is simple, since in the ope;ation G/H, the
subgroup H must be invariant or self conjugate and if!v-had a sub-

group other than the identity, then the substitutions of the sube

/' group of[- applied to H would give different results from those

of the substitutions of,- not contained in the subgroup ofl‘ ’

contrary to the hypotheses that H is invariant. And now we are

ready to attack the statement that "a group is called solvable

if its factors of composition are all prime, otherWise insolvable.*
The solution of an equation with the group G for any given

field can be reduced to the solution of a series of equations,

each having a simple regular group for the field obtained hj

adjoining to the field of the previous one a root of one of the
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earlier equations of the series; or in other words, if G is a
solvable group, each auxiliary equatibn.haa a regular cyclic group
of prime order. If we begin with the group G of the given equat-
ion for the given field, we can find a series G, Hy Ky svevesl,
such that each is a maximal invariant subgroup of the preceding
one, and ending with the identity group. Ify is the index of H
under G, and we construct a rational function ¢ of the roots with
co-efficients in the field and such that Q}belongs to the subgroup
H of G, then (will be a root of an equation of degree v~ whose

group f-is simply isomorphic (i.e. there is a one-to-one corresp-

ondence between products) with the simple quotient group G/H.
Enlarge the field by the adjunction of the root ¢ and the group
will be reduced to the subgroup H, This process is continued
until the identify group is reached. The field then contains all
the roots of the equation, for any one root, say X, 9 is unchanged
by the substitution of the group, namely I, and, by property A,
is in the field. If in each case the index is prime, each auxil-
iary equation will be of prime degree.

It 'is now necessary to show that any equation with a regular
cyelic group of prime order p is solvable by radicals, when the

field contains an imaginary pth root of unitg,/o « Let x;, X

Izg oco-vooo.o,x'_l be the roots of the given equation and let
the gfoup be generated by the substitution

Construect the funetion

(p-0¢

8 = (ID’ zf’ xljﬂﬁl.otooo..,x
) ¢ ac 3¢
rngo-y-/ox‘ -\-/0 X, +/0 x3+ sevonocoasensnosas ) /0 X

ps )t

P-J
with co-efficients in the given field., The substitution s replaces
-‘: - i 11; (P-l}
Itcby/o /‘b': [:'"'QLL):X.*/O xa.i./: an-t-.-.., +/’ XP
i -0

zx,—\-fbxa_'i'ﬁ“xj*-..-‘-””-t/a Xo.



Let ¥ (r )b Then v  is unaltered by 8 for v, becomes -

O A . _
(F )‘UL) g (r;) a.ndpv ,; is therefore in the given field so . is
one o_f the pth roots UV; of a gquantity in the field. The given
function is as follows for 4 = 1y 29 seeseresseeyd -]
T

0 s X + x+‘x. + X 1...”......}.:: c

! p-v ® e

pel Pr—/

I‘:I = JC -l,-(:\ ,$F X -}-p I + --nn-atao.{-{ﬂ x = 'qj .
i b

r‘]. s xo*f’ = +{° ’~+€ xa-‘. oooo.n-oo-c-}(oa“’ ) i = l/'_v:-

'1'_’3 = 3"-01-(3 | +'o xf,f X, + ......._....?f. )"pr - W

P2 . | b
- p-t "‘(P“J -l) ' (P_l)’\ -~ \j;‘:;

; z 3 :
b-..\ ™ x‘ ‘?(O f'+ﬁ x,i‘ﬁ W -+/J
Multiplying these equatiocns b ¢ ~a =) o) we ge
pyi 24 8 a G y/,/o )/) 3 5ol )/O gt

T, & X+ X 4 X, ¢ xa.fa......ufcx{p ., & @

‘_/_‘r =/axo+x+/o f/:: aJr ...........-r/ P‘s/a [TT
P, =/0xo+x+f>x 4/0 Ry g weveessss g0 (‘"7{9 =5 "’F
/:»'-’:J s {9 xo +le* P x, +/o Xy 4 wasuvines 4 0 (-9 \7""

XP-I

/‘y (p-0 bz

f ) -.) D) ey,

p.l :x+- X -i/" .ooﬁaooo.-!—-/o XP—I’ _/O l./‘
Summing thesa, the result is
Xo (L + P 4 4 % /o—(!=-0) & e 4
3,1(1+(D+/°2+/J3+--——--—1-/0(!"))_,. -

2 a(p- v)
x (lf/°+ﬁ"+/0‘°+-—~~-- +/v o
3
Z(P‘“)-_‘_ o (P—a)(p_:))

K-t (14 /0"‘“+ P

ORI Ve e e

Since, from the theery of numbers, 1 _,r/J +/a L (p-Dt

=0
when p is & prime, for t & 1, 2, sssensegd = 1, then the above

. ’ P " ~
result becomes pxl s .C +-/° l/';,‘-(- /J am:_*- v %o o /9'0 f UP""-



- 65 L
~-2P # ( )
x - l b P QM_—' =3 i P—l
: '13_‘1_*/_0 l"_’nl+/J Vo, + P WWak <= creigf F
xi, Xz sesosegX lcan be found similarly by multiplying the ex=-
~/ =2 -2/

presaiona for roy 1", rz ...-...-.rh_, by 1.ﬂ )/G JJﬁ ._)/”
~_-/0_(/’")fwhere J has the values 2, 3, eesseeeed = 1 instead of 1
as in the case worked out to find the value of x -
B - -3 -2 p ?
Soxgr e o By s YR h e N
As the x's are distinet by hypothesds, the V3 are not all zero.

Some certain r‘; is not zero, and let us consider it as r The

)
substitution s then determines the other roots. We have thus
obtained expressions in terms of radicals for the roots of an
equation with a regul_ér cyclic group of prime b}dar; but it must b-e
noted that the work just given definitely rééuirss that one be
able to find the pth roots of unity, which is done by solving the
cyclotomic equation xP™% x P- ff— xP teeeoscncserx +1 30
where p is an odd prime, This equati-on is irreducible; for if
it were not, suppose that 1f had factors f(x) =cf{x)-t//(x) .

 Let x =1, then f(X) m D= qﬁ (l)-}[/ (1) and as p is prime, either

'99‘(’5 C;g (1) or (1mﬁjmuat be + 1, All the roots > D s

' (//}p-, /0’ ﬂ)/o

.........ﬂ of £(x) satisfy (;b (x)- (%) = 0, therefore ¢(x)

vanishes for at least one of these values,

.'.¢(/JJ.¢§4“)- 559,4‘). IR S .g!(/"”"):o

T _ or a funetion

P(x) = (#('x) é(%i) ?S(x") L #{'x f‘") P
for any one of the roots of £(x) = 0., Hence P(k) = f(ﬁ:).q(x).
Again letting x =z 1, we get P(1) g@(l)jr-; (+1) = peq(1),
which is impossible, therefore the cyclotomic equation is irred-
ueible in the field of rational numbers,.

Returning to the problem of solving



"

p-t P-2 P-3
b + X -+ x

+ esseses +X +1 = O which is obtained from
x" « 1l = 0 by dividing by X ~1lz= 0, we use the fact from the
theory of numbers that there exists a number g such .that the roots

;:._
P [ ,/’)
£y P )/o? /oﬂJ e _,,_f;7ﬁ1' because the integers

.o P2

1, g. g , g‘- g sscesssesd when divided by p give the numbers

' may be arranged in the order

i, 2, 3. vessvecscssd = 1 in some order. If x, [g y X zﬁ}
5 .

’-
x I/° ] xq -/o?)uu..........,xk_ f’

th@_ﬂ. x&- I',' » xa = xa} s X 3 x" u.......,x s xP_a

4 > p-1

and since gk_‘ 21 (mod p),x, = (x!’ ')? = will equal X, .

b X
Consider any substitution s of the group of the cyclotomie

equation 8 = x’, xag xspu..-....u,x}_’)

X

d-' 354, xc‘oiotOcu-oo.po-ch

we. have x, % x",’ S s xaﬁ’ . (By property B, if a rational

_funetion of the roots equals a number in the field, it remains

unaltered in value by all the Bubatitut-iona of the group) and

J'!E- = x+zoooootooaoctoosxa' = x"&’

‘3'

But, likewise from the fact that x. sz x. above, x =X ?’
L L~ at) @

‘*)

znd therefore x g =% (voth equal to x

a -+ |
x,&ﬂ sssvevcsnssgy x&‘ = x_e_“ and obvioualy b 5 a -,—1.
)

x -
.{; -
esb+1 5 a+2 (mod p = 1) so the substitution may be written
8 =(x-" xzi ng,x".;......-..,xb-’ )
xa, x‘m » xa"- xai_‘,.u..u.,xa**_z_
. where X . b . is replaced by %y since k4 p = 1 5 p(mod p = 1)

It is therefore seen that the subsiitution s is the a - 1 power of
(zI x, X, i .xl,_‘ ) as can be readily verified by putting

8 » 3, say, in the substitution s just given. s was any substitut-

ion of the group G, therefore G is a auﬁéroﬁp, not necessarily a
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proper subgroup, of the cyclic group generated by (x‘ X, X; ecese
ot ; )e Thé cyclotomic equation being irreducible, G will be tran-
sitive and therefore we can.aay that if p is an odd prime, the
group, for the field of rétional numbers, of the cyeclotomic equation
whose roots are the pth roots of unity, is a regular cyeclie group
of order p = 1. Too, one of the pth réota of unity can always be
found, and the others are successive powers of the one root.

An equation having a régul#g eyclic group of prime order p .
for any field F is solvable by fﬁ&ioaia relatively to that field.
Let C(x) = 0 be an equation haviﬁé a regular cyelic group. .Ado
~ join to F an imaginary pth root of unity ¢ .« when any element,
not in a given field (not obtainable from elements in the field
by addition, subtraction, multiplication or division) is adjoin-
ed to the field, the field is enlarged, as any sum, differenoe,
produét or quotient of this new element with itsoif or the orige
inal elements will be in the field, When the field has been en-
larged by the adjunetion of € , the group of ¢(x) g 0 is either
the original cyelic group or the 1@entity groups. Since the
order was prime, there is no other possibility, If the group of
C(x) =0 is cyelio, C(x) = 0 is solvable in (P, & ) as was shown
oﬁ pagec/ . If the group of C(x) = 0 is the identity grouf, the
roots are in (F, € ) and so can be found from the quantities in F
by rational operations and root extractions, the index of each
root ektractigngbeing a prime divisor of p -« 1 which is the order
of the cyclotomic group of the cyclotomie equation for the pth
roots of unity.

This completes the sufficient condition for the solvability

of an equation, 'If_ita group is eyclic, it can be solved, whether
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- the group is of prime order, or not. If it is not of prime order

then it will have factors of composition which are the prime factors
of its order and it will end in a cyclic group of prime order. Also
if the group of the equation has a series of factors of composition,
such that each subgroup is of prime index and ending in the iden=
tity group, it is solvable. In the latter case, there is a series
of auxiliary equations, each of prime degree, which will have ieF
gular cyclic groups of prime order, and hence each is solvdblé,
These roots are adjoinad to the field and the next aﬁxiiiary equat-
ion is solved, until the fieid containin: the roots of the givgn
equation is reache&.

The next task is to shbw.that if is a necessary condition,
that for an equation to be.soiiahla by radicals, its group must be
a solvable group; that is, that its group must be a regular cyclie
group or have a series of prime composition factors leading to the
identity. By hypothesgs, the roots X, , X, seeeesyXq, mst be able
to be found b& rational dperationa and root extractions from the
quantities in the field ¥ = (¥, k, Akl', K5 ssesesssk,), where
k,» ks X, geccccasagk, are the roots ofthe m auxiliary equations.

If (y is a rational function, of the roots of the equation, that

belongs to the subgroup H of G of index u, then(y is the root of

an equation of degree u with’co-efficiénta in F whose group is
isomorphic with the quotient group G/H. Let k’ be the root Q/.

Similarly ks K seeseessessk,, are the roots of the other auxiliary

~equations. The index of each root extraction may be assumed to be

prime for otherwise, it can be considered as two or more extract-
ions of prime index performed in succession. 11'5 ;__ s 9)
; 3 -7 ) = T

stand for the radicals in the expressions for X,» X vesesagX ,y

2



the procedure may be set forth by the series of binomial equat-

ions A | «

&=l fem, e

where L is a rational funetion of k’, kz_’ sessscegk, 3 M is & rat-
jonal funetion of 5‘, k, 5 k» .....‘..,k,,‘,and so on, with ® a ration-
al function of .(.................:3 5, k,y k,» sseseesk, }o Hence
‘cpnsider a binomial equa.i:ion of prime degree Py

(2) xP = A g 0 where A is in the field F. Let & be an imaginary
pth root of unity. If one root r of (2) belongs to the field

F '.-. (F, ¢ ), then all the other roots €ér, e‘r, ceesaveses, é‘IHr
belong to ¥’ and the group of (2) for F' is the identity. On the
other hand, if A is n.‘ot the pth- power of aiquantity in .B‘f, (2)
will not be reducible. Here the roots can be denoied X, = € X,
x3 = e X, .I..-...,x =exb_’ » X, = € Xy o By reasoning like thaf
on the cyclotomic equation, it is found that the group of (2) for
F ’is a subgroup of the cyclic group generated by (x( x, ......xﬁ)
but (2) being irreducible, its group is tra_nsitiva and therefore of
order 2 p and so it is the regular .cyclic group of order p. Thus
the binomial equations (1) are equivalent to a series of eﬁua.tions
of prime degrees, each with a regular cyclic groilp,'

¢(y; Kys Kjeesneoagle ) = 0 for field ¥ (k5 k, eeecavanayk,)

@ (25 ¥» k,, kx, eesssegk ) = 0 for field (y, F) ’

O (W cieeeSy ¥, k sk, ......,km) s 0 for £ield (esececeszy ¥y, F)
Solve t:_he first of these and a.d,join.ita root: tothe field and use
for the figld of the succeeding one. In this way, the field con-
taining eé.dh root of the giv_en egquation is finally reached. The
group of this aquatic[n with respect to this field is therefore the

identity group.
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Due to Galo:l‘B (1811 $ 1832) is the theorem that, by each of
these adjunctions, the group of the proposed equation is either not
reduced at all or else is reduced to an invariant subgroup of prime
index. I have been Lma.ble to find-Galois' proof of this, so must
be content with deducing it f:fom_.]'ordan's theorem which follows.

"Let the group G, , for a field F, of an algebraic eyuation
L, (x‘)’. 0 be veduced. to G," by the adjunction of all of the roots
of s second equation f (x) = 0, and let the group G for ¥ of the
aeeond equ&tion be reduced to G " by the adJunation of all of the
roots of the firat equation. Then G: and G; ‘are invariant sube-
groups of G} and G =L':r.'ei:'!;pe1::*!:—:!.731:,?,, of egual irid.icéa. and the quot-
ient groups G'%;" and G%: are simply isomorphic."

Therp does exist a rational function ¢, (with co-efficients
in F) of the roots g,} e wev .-, 5 of the first equation, such
‘thatQI, belongs to the subgroup G,' , Which is the subgroup to
which the group of the equation f (x) = 0 was reduced by the ad-
Jjunction of the roots'-7,) 7.1-. cenmnd Fn of the second equa.tion.
Therefore, by property A, ¢y, 1ies in the enlarged field.

S YUE S ) 5y, ey, ) where §
is a rational funclst'ion with co-efficients in #+ Let the numeric-

.ally distinet values which @, can assume under the substitution G,

on the roots ;,J 5,} 3 5,,,be denoted by ¢, ¢4 - - . ..., g
/ A '
Then G, 1is of index k under & . These k expressions &/ are the
roots of an irreducible equation in F, Similarly for the 1 quan-
titiesfﬁ where ? ' (}{U. _ fit are all the distinet numsrical
values which @, can take under the aubstitutions {on .
-7 7:) B )7"“'

of G « From (3) we see that these two equations have a common root

(|UJr = ¢‘. and Whenaverltwo irreducible equations have one c¢ommon

root, they are identieal, so that the roots of one correspond in



some order with the roots of the other, and therefore k = l.

If s is a substitution of G, which replaces ¢, by ¢/,- » then
the group G,' of ¢y is transformed by s, into the group of ¢, of the
same order as G, ! « Since %equala a certain ¢ o it is in the

’
field F = (F, Wos Taz- - == 7""“) and so is unaltered by the
substitutions of the group G,'- of £, (x) = 0 by property B. Hence
the group to which¢/ belongs has all the substitutions of ¢,” , and
is of the same order and therefore is identigal with G ,' s and hence
G f' is invariant in G - Thus the group for F of the irreduecible
G,

G’
Now let H, be the subgroup of G, to whlah¢( Woy Was- = o oo )7__)

equation satisfied by ¢/ is the quotient group

belongs. It is of index k, sin’oeé is a root of an equation of
degree 1 = k that is irreducible in F. By the adjunction of f,

(or of ¢, by (3) the group G, of £ (x) = 0 is reduced to H, and
perhaps to a subgroup of H, if all the roots of the-eguation
£ (x) 3 0 be adjoined as well as ¢, (which is a rational function
of those roots) but this last is the subgroup G_.,Jr $ hence it is
equal to, or contained in H, . Now we have the result that if a
group of f, (x) s O reduces to a subgroup, of index k, on adjoining
all the roots of f_.z("J = 0, then the group of f‘,{(x) = 0 reduces to
a subgroup of index k, , where k > k, when all the roots of g $x) = 0
are adjoined. If in the foregoing result £, and £ . 3¥e interchanged,
it will read: if the group of £,(x) s O reduces to a subgroup of
index k, on adjoining all the roots of £,(x) & 0, then the group of
£, {x) = 0 reduces to a subgroup of index k, where k, > k, baut k,
is seen to be the original k.
J. BEzk,2k > k and this means that k, = k_. Heﬁca, as before,
the subgroup G,’ is invariant in G, « Therefore the irreducible

€quation in F which is satisfied hyé has the quotient group % L.
: : s
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as its group. But the twe irreducible equations were identical
and so the group c/@'“ and c%" must either be identical ér_ simply
isomorphic;=~adnd Now, ==
Galois' theorem:-- ,

"By the adjunction of any one root of an equation £,(x) = 0
whose group for F is a regular cyeclic group of prime order p, the
group for F of the equation f,(x) = 0 either is not reduced at all,
or else is reduced toc an iﬁvariant-aubgroup of index p.* Note that
~i