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Abstract

Spherical Harmonic Inductive Detection Coils and their use in Dynamic Pre-emphasis for

Magnetic Resonance Imaging

by

Karl T. Edler

Doctor of Philosophy in Medical Physics

University of Manitoba, Department of Physics and Astronomy

D. I. Hoult, Chair

The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-

standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented

whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal

rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic

components of the magnetic field can be detected and corrections applied during the rise time of the gradi-

ents.

Sensing the temporal changes in each spatial harmonic is made possible with specially designed

detection coils. However to make the design of these coils possible, general relationships between the spatial

harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation.

These relationships allow the vector potential to be found from the field – an inverse curl operation – and

may be of use beyond the specific problem of detection coil design.

Using the detection coils as sensors, methods are developed for designing a negative feedback

system to control the eddy current effects and optimizing that system with respect to image noise and dis-

tortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead

to a discussion of how to incorporate similar designs into an operational MRI.

Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback,

quasi-static fields, vector potential, inverse curl



ii

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged

for providing the bulk of the funds for this research and Canada’s National Research Council (NRC-CNRC)

for allowing me access to their facilities.

Thanks go to my supervisor David Hoult for providing the initial idea for this research – that it

should be possible to use Faraday induction to sense the harmonics of the magnetic field thereby making

control feasible – and for his excellent guidance along the way.

Special mention also goes to Glen Kolansky who patiently answered so very many practical ques-

tions both electrical and mechanical.

Finally, without the support and encouragement of my wife Beckie I might not have had the

persistence to relate the harmonics of the fields to those of the potentials and this work might never have

been completed.



iii

Contents

List of Tables vii

List of Figures viii

I Introduction and Background 1

1 Introduction 2
1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Required Physics 4
2.1 Relevant Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Coulomb Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Quasi-statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3.1 Mutual- and Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3.2 Eddy Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Source-Free Region and Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . 11
2.2 Nuclear Magnetic Resonance (NMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Precession of a Proton Ensemble in a Magnetic Field . . . . . . . . . . . . . . . . . 12
2.2.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2.1 Spectral Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.2 The Origin of Bulk Magnetization and T1 . . . . . . . . . . . . . . . . . 18
2.2.2.3 The Origin of T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2.4 Phenomenological Bloch Equations . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Echoes and the Free Induction Decay . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 Signal and Quadrature Phase Sensitive Detection . . . . . . . . . . . . . . . . . . . 32

2.3 Magnetic Resonance Imaging (MRI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Frequency Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Slice Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Phase Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 MRI System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.5 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv

3 Required Engineering 47
3.1 Practical Gradient System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Gradient System Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1.1 Gradient and Shim Coil Design . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.1.2 Residual Eddy Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 Eddy Currents as a Limitation of the Gradient System . . . . . . . . . . . . . . . . 53
3.1.2.1 Echo Planar Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2.2 Magnetic Susceptibility and Dynamic Shimming . . . . . . . . . . . . . . 53

3.1.3 Proposed Dynamic Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Electronic Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Single Loop Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Electronic Control System Implementation and Op-amps. . . . . . . . . . . . . . . 60

3.2.2.1 Electronic Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2.2 Difference and Instrumentation Amplifiers . . . . . . . . . . . . . . . . . 62

3.2.3 Coupled Feedback Loop Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II The Theory 66

4 Designing a Spherical Harmonic Inductive Detection Coil 68
4.1 Fields and Potentials in Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 The Magnetic Scalar Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1.1 Finding Bx and By from the Magnetic Scalar Potential . . . . . . . . . . . 69
4.1.1.2 Integration Constants and Super-Sectoral Harmonics . . . . . . . . . . . 69
4.1.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2.1 Differentiating the Vector Potential . . . . . . . . . . . . . . . . . . . . . 73
4.1.2.2 Determining Ax and Ay: A Question of Symmetry . . . . . . . . . . . . . 74
4.1.2.3 Determining Az: Constraining the Vector Potential . . . . . . . . . . . . . 75
4.1.2.4 Verifying the Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.3 Relationships between Fields and Potentials . . . . . . . . . . . . . . . . . . . . . 79
4.1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Determining the Coil Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Voltage induced in a Wire Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Integrating the Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2.1 I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2.2 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2.3 I3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2.4 I4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2.5 Completing the Integration . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Harmonic Flux Linkage: Matrix Representation . . . . . . . . . . . . . . . . . . . . 87
4.2.4 Discretization and the Stream Function . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.5 An Example of Spherical Harmonic Detection Coil Design . . . . . . . . . . . . . . 89

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



v

5 Designing the Feedback System 94
5.1 System Layout and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Layout of a Single Harmonic Feedback Loop . . . . . . . . . . . . . . . . . . . . . 94
5.1.2 Harmonic Production Coil and Eddy Currents . . . . . . . . . . . . . . . . . . . . . 95
5.1.3 Improved Detection Coil Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.4 The Whole Feedback System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 General System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1 Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Feedback Cross-over Point Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.3 Preamplifier Noise and Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.4 Feedback Loop Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 The Image Quality Effects of Field Noise and Distortion: Choosing ωI and Fine Tuning the
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Quantitative Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Simulating the Harmonic Control System and NMR Signal . . . . . . . . . . . . . . 109

5.3.2.1 Linear Gradients Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2.2 Higher Order Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

III Methods and Results 113

6 Experiment Design and Results 114
6.1 Basic Setup and Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Practical Coil Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Gradient Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Detection Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2.1 Calculating the Flux Response . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2.2 The Voltage Induced in a Discretized Coil . . . . . . . . . . . . . . . . . 123
6.2.2.3 Detection Coil Aspect Ratio and nmax . . . . . . . . . . . . . . . . . . . . 124
6.2.2.4 A Detection Coil’s Resonant Frequency and Bandwidth . . . . . . . . . . 126

6.3 Electrical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 Electronics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Current Amplifiers: Techron 7570 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.3 Parameterizing the Eddy Currents and Selecting ωI . . . . . . . . . . . . . . . . . . 129
6.3.4 The Integrator and Split Feedback Path . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.4.1 The AMP01 and other Integrated Circuits . . . . . . . . . . . . . . . . . 131
6.3.4.2 The Pre-filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.4.3 The Total Feedback Path . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.5 The Feedback Compensator and the Whole Feedback Loop . . . . . . . . . . . . . . 137
6.3.6 The Field Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.1 Mutual Inductance Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.2 Field Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.3 Dynamic Pre-emphasis Verified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



vi

IV Discussion and Conclusion 146

7 Feedback Loop Considerations 147
7.1 Optimum Cross-over Frequency and Image Simulation . . . . . . . . . . . . . . . . . . . . 147

7.1.1 Selecting a Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Coupling between Feedback Loops and Oscillation . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Designing a Whole System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Coil Design Considerations 153
8.1 Discretization and Manufacturing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 Incremental Flux Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Mesh Detection Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.4 Detection Coils and Bore Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4.1 Production Coils Interspersed with or Surrounded by Detection Coils . . . . . . . . 157
8.4.2 Computing the Spherical Harmonics Without a Sphere . . . . . . . . . . . . . . . . 158

9 Conclusion 162
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.2 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165



vii

List of Tables

2.1 Vector derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Fundamental theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Cartesian derivatives of spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Gyromagnetic ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Approximate T1 values at 1.5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Approximate T2 values at 1.5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Field and potentials from Bz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Super-sectoral coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Probe positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Pre-filter differential and common mode signal definitions . . . . . . . . . . . . . . . . . . 134
6.3 Compensator implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



viii

List of Figures

2.1 Rotating frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Relaxing precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Distributed isochromats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Free induction decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Spin echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Gradient echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Signal reception model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Quadrature phase sensitive detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 One dimensional image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Slice selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Slice profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.12 Simple pulse sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.13 MRI system schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 Point spread function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Simple gradient coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 EPI sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 EPI distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Basic negative feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Phase margin and step response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Block manipulation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Op-amp. configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Instrumentation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Harmonic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Wire density distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Stream function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Coil design example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Harmonic control system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Harmonic production coil and eddy current model . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Transfer function of production coil and eddy currents . . . . . . . . . . . . . . . . . . . . 98
5.4 Detection coil circuit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Integrator implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7 Model feedback path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



ix

5.8 Noise block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Total system setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Mechanical setup details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Assembly photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Gradient coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 Coil details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Detection Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 Detection coil self-resonant frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.8 Single harmonic control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.9 Techron 7570 transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.10 Eddy current parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.11 Simulated step inputs vs ωI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.12 AMP01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.13 Pre-filter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.14 Pre-filter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.15 Total feedback path experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.16 Feedback compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.17 Mutual inductance plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.18 Field plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.19 Dynamic pre-emphasis channel x: single channel only . . . . . . . . . . . . . . . . . . . . 143
6.20 Dynamic pre-emphasis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1 Optimizing ωI by simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Multiple system feedback control in the presence of coupling . . . . . . . . . . . . . . . . . 151

8.1 Degradation of flux response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2 Flux comparison along the length of Dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3 Mesh detection coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4 Detection coils approaching the cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



x

List of Symbols

Constants
~ = 6.62606896 × 10−34 J·s/2π reduced Plank constant

ε0 = 8.854187817 × 10−12 A2 · s2 ·m−2 · N−1 electric permittivity of free space
µ0 = 4π × 10−7 N · A−2 magnetic permeability of free space

c = 1/
√
µ0ε0 speed of light in free space

mp = 1.672621637 × 10−27 kg proton mass
k = 1.3806504 × 10−23 J·K−1 Boltzmann constant

Coordinates
r cylindrical or spherical radial coordinate
r position vector (field point)
ro position vector (source point)
θ spherical declination angle
φ cylindrical or spherical azimuthal angle

x, y, z Cartesian coordinates
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Chapter 1

Introduction

Our ancestors, afflicted with both sickness and injury, did not simply bear these things. Instead,

believing that their maladies could be remedied, treatments were devised. In ages past, understanding the

body’s internal structure and operation required either the dissection of corpses or the risks of exploratory

surgery. However, in the twentieth century an array of medical imaging tools was devised allowing phys-

icians to peer into a living body without surgery. The insights gained from this enhanced perception have

accelerated medical progress.

One of these tools is magnetic resonance imaging (MRI) which excites, by means of magnetic

fields, protons in the body and then uses the excitation to form an image. MRI stands out from other medical

imaging modalities in its excellent soft tissue contrast and the lack of lasting physiological effect1 [119].

Moreover, its tissue contrast mechanisms allow images of internal anatomy, blood flow, heart motion, and

brain function [67, 90]; as well as tissue temperature [96, 22], chemical composition [4, 9], and mechanical

elasticity [89, 83]. However, a major challenge in MRI is to determine a sequence of magnetic fields with

which to excite the patient’s protons and then to design equipment capable of producing that sequence.

This thesis focuses on a new way to control a subset of the magnetic fields used in MRI – the

gradient fields which vary at audio frequencies. In a nutshell, this time-dependent subset is distorted by

interaction with nearby metal and the distortions must be corrected for successful image formation since the

metal may not be removed. Although there are existing solutions to this problem, they use a priori calibra-

tions rather than detection and correction of the distortions as they occur. Thus we present the hypothesis

that coils of wire can be shaped to sense the field distortions and that the resulting information can be used

to correct the distortions as they unfold. The hope is that, at least in some circumstances, this new method

will be preferable to existing solutions.

1Temporary effects of the electromagnetic fields are usually not observed but may include a tapping/tingling sensation or a slight
feeling of nausea. However, since the patient must lie in a narrow tube, claustrophobia is a common problem [119].
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1.1 Scope of the Thesis

The thesis develops the method mentioned above and explores how it may be used in future MRI

systems. In part I, chapter 2 reviews the relevant background in electromagnetism (section 2.1), nuclear

magnetic resonance (NMR) (section 2.2) and MRI (section 2.3). In chapter 3, the technology used to produce

gradient fields (section 3.1) is presented with the negative feedback control theory (section 3.2) that is used

to decide precisely how to correct field distortions.

With the background established, part II develops a theory applicable to dynamic detection and

correction of the field distortions. Chapter 4 describes the design of spherical harmonic detection coils such

that each coil detects the changes in a single harmonic component of the gradient field. This is done by

decomposing the gradient distortions into the spherical harmonics of equation 2.1.31 (section 4.1) and using

the decomposition to determine wire patterns (section 4.2). Chapter 5 designs a complete system around the

coils using negative feedback for each harmonic (section 5.2) and this system is then optimized with respect

to the MRI image (section 5.3). To verify the technique, part III presents an inexpensive experimental

method (chapter 6) and its results (section 6.4).

Part IV then discusses the scaling of this proof-of-concept experimental method to actual MRI

imaging. As part of that discussion chapter 7 presents the importance of isolation between control systems

for various harmonics as well as how to specify performance parameters. Regarding these parameters,

chapter 8 covers some practical considerations required to generate acceptable detection coils. Finally,

chapter 9 closes the thesis by proposing a path for future harmonic control system development.
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Chapter 2

Required Physics

2.1 Relevant Electromagnetism

As Sir Isaac Newton’s (1623-1727) laws of motion provided a theoretical foundation for the en-

gines of the industrial revolution, James Clerk Maxwell’s (1831-1879) equations unifying electricity, mag-

netism, and optics are a foundation for many of the technologies of the 20th century including NMR and

MRI. Since all subsequent parts of this thesis depend on them, we start by taking a moment to consider

Maxwell’s four equations:

∇ · E =
ρ

ε0
(2.1.1)

∇ × B = µ0J +
1
c2

∂

∂t
E (2.1.2)

∇ · B = 0 (2.1.3)

∇ × E +
∂

∂t
B = 0 (2.1.4)

which explain how the source charge and current densities ρ and J give rise to electric and magnetic vector

fields E and B. In these equations, ∇ is a differential operator as defined in table 2.1 while µ0, ε0, and the

speed of light in vacuo c = 1/
√
µ0ε0 are merely constants that depend on the system of units employed.

Although we could choose units such that these constants are unity1, we shall exclusively use the interna-

tional system of units (SI) which measures space in meters (m), time in seconds (s), current in amperes (A),

1Arranging the constants in Maxwell’s equations such that:

∇ · E =
ρ

ε0
∇ × (cB) = cµoJ + ∂

c∂t E
∇ · (cB) = 0 ∇ × E + ∂

c∂t (cB) = 0

makes it clear that the constants can be dropped by adjusting the units of charge, current, time, and magnetic field.
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and the electric and magnetic fields in volts per meter (V · m−1) and webers per square meter (Wb · m−2)

respectively; in this system ε0 = 8.854187817 × 10−12 A2 · s2 ·m−2 · N−1 and µ0 = 4π × 10−7 N · A−2.

The fields not only arise from charged particles, they also exert a force on each particle

F = q (E + v × B) (2.1.5)

called the Lorentz force that depends on the particle’s velocity v and charge q. Moreover, since current

density arises from the motion of charges, ρ and J are related by the continuity equation:

∂

∂t
ρ + ∇ · J = 0 (2.1.6)

derived by first taking the divergence of Ampère’s law (equation 2.1.2) and then by inserting Gauss’s Law

for electric field (equation 2.1.1) and Gauss’s Law for magnetic field (equation 2.1.3). An important implic-

ation of equation 2.1.3 is that magnetic fields always exist in closed loops; they have no sources or sinks.

This means that any magnetic field gradient along a given direction is accompanied by a perpendicular

concomitant field gradient.

Although these equations encompass all of classical electromagnetism, potentials are often more

convenient to use than fields. Following Jackson [52, pg 239], we note that since ∇ · B = 0 the magnetic

field may be expressed as the curl of a vector potential A

∇ × A = B (2.1.7)

transforming equation 2.1.4 into

∇ × (E +
∂

∂t
A) = 0.

This allows the entity E + ∂
∂t A to be written as the gradient of a scalar potential Θ

E +
∂

∂t
A = −∇Θ. (2.1.8)

and application of equation 2.1.1 then reduces Maxwell’s original four equations into two equivalent equa-

tions regarding potentials rather than fields:

∇2Θ +
∂

∂t
(∇ · A) = −

ρ

ε0
(2.1.9)

∇2A −
1
c2

∂2

∂t2 A − ∇
(
∇ · A +

1
c2

∂

∂t
Θ

)
= −µ0J. (2.1.10)
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Derivative Number
∇ ≡ x̂ ∂

∂x + ŷ ∂
∂y + ẑ ∂

∂z 0
∇ × ∇ψ = 0 1
∇ · (∇ × A) = 0 2

∇ × (∇ × A) = ∇ (∇ · A) − ∇2A 3
∇2ψ ≡ ∇ · (∇ψ) 4

∇ · (ψA) = A · ∇ψ + ψ∇ · A 5
∇ × (ψA) = ∇ψ × A + ψ∇ × A 6

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A) 7
∇ · (A × B) = B · (∇ × A) − A · (∇ × B) 8

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B 9
∇(ψφ) = ψ(∇φ) + φ(∇ψ) 10

ψ∇2ψ = ∇ · (ψ∇ψ) − (∇ψ · ∇ψ) 11
∇2

(
1

r−ro

)
= −4πδ3(r − ro) 12

δ3(r − ro) =

{
0 | r , ro
∞ | r = ro

13

∇
(

1
|r−ro |

)
= −

r−ro
|r−ro |

3 [52, pg 29] 14

Table 2.1: Vector derivatives. In the definition of the differential operator ∇ on line 0, the variables
x̂, ŷ, and ẑ are unit vectors along the Cartesian axes.

Theorem Name Theorem

Gradient Theorem
∫ b

a (∇ψ) · dl = f (b) − f (a)
Divergence Theorem (Gauss’s theorem)

∫
(∇ · A) dv =

∮
A · da

Curl Theorem (Stokes’s theorem)
∫

(∇ × A) · da =
∮

A · dl

Table 2.2: Fundamental theorems
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An important quantity related to the potentials is voltage, the line integral of electric field along

some path from a to b

V = −

∫ b

a
E · dl (2.1.11)

and by applying the gradient theorem from table 2.2 to equation 2.1.8, voltage may be expressed as

V = (Θ(b) − Θ(a)) +
∂

∂t

∫ b

a
A · dl (2.1.12)

where the quantity

ΦT = −

∫ b

a
A · dl (2.1.13)

is a measure of the total flux linkage. Note that if the path is a closed loop, a = b and Θ(a) = Θ(b) which

causes equation 2.1.12 to reduce to Faraday’s law Vloop = − ∂
∂t ΦTloop . By Stokes’s theorem (table 2.2), the

total flux linkage is the total magnetic field passing through any area that has the closed loop as its boundary;

expressed mathematically this is

ΦTloop =

∮
A · dl =

∫
(∇ × A) · da =

∫
B · da. (2.1.14)

The voltage is useful for calculating the current in a material with conductivity σ where the current density

obeys the simple relationship

J = σE (2.1.15)

arising from the Lorentz force of equation 2.1.5 and electron collisions in matter. By integrating along a

path of length l from a to b with constant J, σ, and area da we can re-write equation 2.1.15 as

I =
σda

l
V = V/R

where the resistance is R = l
σda , the current is I = J · da, and V is the voltage from equation 2.1.12.

2.1.1 Material Properties

Materials are composed of charged particles in constant motion giving rise to tumultuously fluc-

tuating microscopic fields. So, in order to find the field in or near a material we must know the field

contributions of the charges in that material. From basic chemistry, these charges are either constrained

within a certain vicinity; perhaps as part of an atomic nucleus, electron orbital, or chemical bond; or may

move to any location in the material, possibly by hopping from bond to bond as in semi-conductors. We

thus model material charges in two groups: the bound charges and associated currents which may be per-

turbed by external fields but remain attached to a certain location; and the free charges which redistribute

themselves throughout the material by flowing as free currents, often obeying equation 2.1.15.
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If we are interested only in macroscopic fields we can consider a large number – an ensemble

– of atoms or molecules over which the tumultuous quantum-scale fluctuations average away. In such an

ensemble average, the net bound charge is everywhere zero but, distributed throughout the material, there

may be both separations of bound charge as well as bound current loops. We model the average, but still

microscopic, bound charge separations as a distribution of electric dipoles called the polarization P and the

bound current loops as a distribution of magnetic dipoles called the magnetization M. An electric dipole is

the product p = qd of charges ±q separated by a very small vector d and a magnetic dipole is the product

m = Ia of a current I flowing around a very small area2 a.

In this scheme, the field and potential contributions from polarization and magnetization are added

to those from the free charge and current. Also, the polarization and magnetization can, in general, be

functions of the whole history of the material, as in ferro-electric and ferro-magnetic materials. However,

in many materials, including those of the human body, the polarization at a point is linearly related to the

electric field pulling bound charges apart and the magnetization is linearly related to the magnetic field

causing the magnetic dipoles to either align (paramagnetism) or change their magnitudes depending on

their orientations so as to oppose the external field (diamagnetism) [37, 6.1.3]. In these linear materials,

the polarization and magnetization obey the relations P = ε0 (εr − 1) E and M =
χm

µ0(1+χm) B [37, pg 180,

274] respectively where εr is the relative dielectric constant and χm
µ0(1+χm) is just a constant related to the

magnetic susceptibility χm of the material3. The result of placing a material with these properties in a

homogeneous field is that the material produces, by means of its bound charges and currents, local field

distortions proportional to the strength of the external field.

2.1.2 Coulomb Gauge

Since the potentials are defined such that they produce fields when differentiated, any aspect of

a potential that disappears under the prescribed differentiations does not contribute to the field and can be

chosen arbitrarily. For example, the gradient of any scalar function f can be added to the vector potential

(A′ = A + ∇ f ) without influencing the magnetic field since the curl of a gradient is zero (∇ ×A′ = ∇ ×A +

∇ × ∇ f = ∇ × A = B). This freedom allows the condition ∇ · A = 0 to be specified by replacing A with

A′ = A +∇ f where ∇ ·A′ = ∇ ·A +∇2 f = 0. A vector potential satisfying this condition is said to belong to

the Coulomb gauge [52, pg 241]. Clearly, the vector potential associated with a magnetic field is not unique

even if is a member of the Coulomb gauge since any such vector potential may have a function ∇g added to

it without violating the condition ∇ · A = 0 provided ∇2g = 0.

For potentials within the Coulomb gauge, equations 2.1.9 and 2.1.10 simplify [52, pg 242] to
2The vector nature of the area denotes its orientation.
3Although it is not ideal to write a simple constant as χm

µ0(1+χm) , the standard definitions of magnetic susceptibility χm and relative
magnetic permeability µr ≡ (1 + χm) do not permit a relation like M = 1

µ0
(1 + ar)B which would be symmetric with the electric

case.
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∇2Θ = −
ρ

ε0
(2.1.16)

1
c2

∂2

∂t2 A − ∇2A = µ0J −
1
c2∇

∂

∂t
Θ. (2.1.17)

Therefore the Coulomb gauge reduces Maxwell’s equations to Poisson’s equation for the electric scalar

potential and the inhomogeneous wave equation for the magnetic vector potential.

2.1.3 Quasi-statics

In a region of interest, whether near or far from sources, which is small enough that the actual

current J dominates over the field derivatives, we have4 µ0J � 1
c2

(
∂2

∂t2 A + ∇ ∂
∂t Θ

)
so equations 2.1.16 and

2.1.17 reduce to

∇2Θ = −
ρ

ε0
(2.1.18)

∇2A = −µ0J. (2.1.19)

Note that equations 2.1.18 and 2.1.19 imply [52, pg 180]

Θ =
1

4πε0

∫
ρ

|r − ro|
dV + Θo (2.1.20)

A =
µ0

4π

∫
J

|r − ro|
dV + ∇ψ (2.1.21)

(∇ψ and Θo are constants of integration) leading directly5 to the well known Biot-Savart law [52, pg 175]

through vector derivatives 1, 6 and 13 in table 2.1:

B = ∇ × A =
µ0

4π

∫
J(ro) × (r − ro)

|r − ro|
3 dV +

µ0

4π

∫
∇ × J(ro)
|r − ro|

dV (2.1.22)

B =
µ0

4π

∫
J(ro) × (r − ro)

|r − ro|
3 dV. (2.1.23)

So in this so-called “quasi-static region” the potentials can be computed directly from the sources even

though the fields are still inter-related.

4It could also be stated that the maximum size of the region r is much less than the minimum wavelength λ of the potentials or
fields (r � λ). Another way of imposing this criteria is to say that 1

c2
∂2

∂t2 A � ∇2A and µ0J � 1
c2∇

∂
∂t Θ.

5In equation 2.1.22, ∇ × J(ro) = 0 because J(ro) depends on the location of the source point ro over which we are integrating
rather than on the field point r over which the differentiation ∇ takes place.
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2.1.3.1 Mutual- and Self-Inductance

In a quasi-static region, current density alone gives rise to the vector potential A through equation

2.1.19. This means that the voltage along some path a1 → b1 in equation 2.1.12 depends on the potential

Θ as well as the flux linkages from all currents an → bn including itself. Since the flux linkages are

geometrically complex but linear with current (equation 2.1.21), it is common to express the flux linkage

between current paths p and q as

Φq,p = Mq,pIp

where Mp,q = Mq,p is the mutual inductance between the paths and Mq,q = Lq is a path’s self-inductance.

The voltage in path q is then:

Vq =
(
Θ(bq) − Θ(aq)

)
−

∑
p

Mq,p
∂

∂t
Ip (2.1.24)

and if the paths are closed circuits, equation 2.1.21 produces the Neumann equation [38, pg 8] for mutual

inductance:

Mq,p =
µ0

4π

∮
q

∮
p

dq · dp∣∣∣rq − rp
∣∣∣ . (2.1.25)

2.1.3.2 Eddy Currents

Within a quasi-static region filled with conductive material such that current density is proportional

to electric field, equations 2.1.15 and 2.1.8 yield

J = −σ

(
∂

∂t
A + ∇Θ

)
(2.1.26)

which, when used with equation 2.1.19, forms an inhomogeneous diffusion equation

1
µ0
∇2A − σ

∂

∂t
A = σ∇Θ. (2.1.27)

In situations where the region is not exposed to conservative electric fields, such as those caused by connect-

ing a conductor to a laboratory current source, ∇Θ = 0 and equation 2.1.27 simplifies to the homogeneous

diffusion equation [52, pg 219]

∇2A = µ0σ
∂

∂t
A. (2.1.28)

which has solutions of the form ei(ω±r/δ)te∓r/δ where ω is the angular frequency of the vector potential and

δ =

√
2

µ0σω
(2.1.29)
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is the skin depth, a measure of how far the vector potential at the conductor surface diffuses into the material.

Thus each vector component of the vector potential diffuses into electrical conductors as heat does into

thermal conductors. The spatial variation in vector potential is caused by induced eddy currents [128, pg

4] J = −σ ∂
∂t A distributed throughout the material which may be computed once equation 2.1.28 has been

solved using either analytical or numerical methods.

2.1.4 Source-Free Region and Spherical Harmonics

If the region of interest has no current or charge sources (J = 0, ρ = 0) then ∇(∇·B)−∇×(∇×B) =

∇2B = 0 and a magnetic scalar potential Ψ may be introduced such that ∇2Ψ = 0, ∇Ψ = B. In this source-

free region, equations 2.1.18 and 2.1.19 both reduce to Laplace’s equation so that6:

∇2Θ = 0 , ∇2Ψ = 0

∇2A = 0 , ∇2B = 0
. (2.1.30)

In a spherical region with coordinates (r, θ, φ), the solution to any of these equations may be written as a sum

of spherical harmonics [117, 15, 88]
∑∞

m=0
∑∞

n=m Ca,n,mTn,m + Cb,n,mT ′n,m where the azimuthally symmetric

and antisymmetric components of the spherical harmonics with respect to azimuth φ = 0 are

Tn,m = rnPn,m(cos θ) cos mφ T ′n,m = rnPn,m(cos θ) sin mφ, (2.1.31)

Pn,m are the associated Legendre polynomials defined [1, pg 332,785] by

Pn,m(x) =
(1 − x2)

m
2

(−1)n2nn!
dm

dxm
dn

dxn

[
(1 − x2)n

]
, (2.1.32)

and Ca,n,m and Cb,n,m are constants. The subscripts a and b on these constants denote that they are for Tn,m

and T ′n,m respectively. Following the nomenclature of Morse and Feshbach [88], we refer to zonal harmonics

as those where m = 0, sectoral harmonics as those where n = m, and call the rest tesseral harmonics.

In electrodynamics the potentials and fields are often differentiated with respect to spatial coordin-

ates. This motivated the development of the Cartesian derivatives of the spherical harmonics [111, 18, pg

111] which are summarized in table 2.3 as adapted to the notation of equation 2.1.31.

2.2 Nuclear Magnetic Resonance (NMR)

Magnetic resonance imaging [18, 73] is based on a physical effect known as nuclear magnetic

resonance (NMR) [122]. This effect arises because atomic nuclei are electrically charged and, provided

their charge and mass numbers are not both even7, have spin. The co-incidence of nuclear spin and charge
6The electric field also satisfies the Laplace equation ∇2E = 0.
7Nuclei with odd mass numbers have half-integral spin while those with even mass numbers but odd charge numbers have

integral spin [73, pg 60].
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∂Tn,m
∂x = 1

2
{
−(1 + δm,0)Tn−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)Tn−1,m−1

}
1

∂Tn,m
∂y = 1

2

{
−(1 + δm,0)T ′n−1,m+1 − (1 − δm,0)(n + m)(n + m − 1)T ′n−1,m−1

}
2

∂Tn,m
∂z = (n + m)Tn−1,m 3

∂T ′n,m
∂x = 1

2

{
−(1 + δm,0)T ′n−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)T ′n−1,m−1

}
4

∂T ′n,m
∂y = 1

2
{
(1 + δm,0)Tn−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)Tn−1,m−1

}
5

∂T ′n,m
∂z = (n + m)T ′n−1,m 6

δn,m =

{
1 | n = m
0 | n , m

7

Table 2.3: Cartesian derivatives of spherical harmonics.

produces a magnetic moment for which it is energetically favourable to align with an external magnetic field.

In an attempt to measure the nuclear magnetic moment, early workers subjected beams of atoms to both a

large static magnetic field and, at right angles, a much smaller oscillating magnetic field [106, 105]. Since

the behaviour of the nuclei in these experiments was strongly affected at a specific oscillatory frequency,

the effect was called nuclear magnetic resonance and it was soon realized that atomic nuclei exhibit similar

effects in bulk materials [104, 36], such as the human body, and these effects were eventually used for

imaging [69].

2.2.1 Precession of a Proton Ensemble in a Magnetic Field

Classically, the proton may be modelled, like any nucleus, as a sphere with charge ∆q(r) and

mass ∆m(r) distributions spinning at an angular frequency ωs about some axis. Considering an elemental

volume dV at position r in the proton, its contribution to angular momentum is dL = ωsr2∆m(r)dV where

r is the radial distance from the axis of rotation to position r and the direction of the vector ωs is such

that the proton spins counter-clockwise when viewed from the vector tip. Furthermore, the contribution of

this elemental volume to the proton’s magnetic moment is just the product of the current due to the charge

in that volume and the area swept out in a singe rotation: dm = ∆q(r)dV ωs
2ππr2. Performing the integral

over the entire proton we find a total angular momentum L = ωs
∫

r2∆m(r)dV and total magnetic moment

m = ωs
1
2

∫
r2∆q(r)dV . Provided the distributions remain constant, the angular momentum and magnetic

moment are related to each other by

m = γL (2.2.1)

where γ is the gyromagnetic ratio.

However, the proton is so small that this simplistic picture breaks down and quantum mechanics

must be applied. First of all, since the proton’s charge is distributed in space and thus has centripetal

acceleration, classical physics predicts that the spin energy will be radiated in the form of electromagnetic
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waves until the spinning eventually stops; but in actuality the proton continues to spin indefinitely. Moreover,

the classical expectation for the proton’s gyromagnetic ratio is just half its charge to mass ratio γpc =
q

2mp
=

4.789 × 107 T−1s−1 but in actuality it is γp = g q
2mp

= 2.675 × 108 T−1s−1 [26, 135, 136] where g = 5.5857

can be computed from relativistic quantum mechanics [24] and the internal quark structure of the proton

[102, pg 74].

Even more strange is the behaviour of the proton’s spin angular momentum [114, ch 3]. This

angular momentum has a fixed total value of
√

3~/2 but its component along an axis can only ever be ±~/2

in any interaction or measurement; ~ = h
2π is the reduced Planck constant. If the proton has an angular

momentum α, either ±~/2, along some axis A1 and then the angular momentum is measured along another

axis A2, the value along this axis becomes either ±~/2 completely at random. The measurement along

A2 changes the proton’s state such that a subsequent measurement along A1 no longer reveals an angular

momentum component α but rather a random value of either ±~/2. Note that a measurement need not imply

an observer [85, pg 687], since any interaction involving the angular momentum’s component along an axis

effectively measures that component. However, despite this random behaviour, the results are not entirely

beyond prediction since the probabilities for the two values along A2 can be predicted from the previous

angular momentum α along A1, the angle between A1 and A2, and the time between the interactions. So

although a single proton is inherently unpredictable, the average behaviour of a large number of protons

is predictable in that it samples deterministic probabilities. Moreover, although a single proton can only

project an angular momentum of ±~/2 along one axis at a time, a large number of protons can produce a

well defined, and seemingly continuously variable, angular momentum vector with components along all

three spatial dimensions.

Now the majority of the behaviour exploited in MRI is the result of a macroscopic (µm − cm)

distribution of hydrogen nuclei (protons) ~ and there are approximately 6.7 × 1022 hydrogen nuclei in a

millilitre of water ~ so we can easily take an ensemble of several billion such nuclei as our smallest scale

of consideration. For such a large number of protons, quantum behaviour averages away and, as an aid to

comprehension, we may revive the classical proton model. We either imagine each proton as a classical

spinning ball, realizing that this is only valid so long as we work only with the ensemble, or we imagine

the ensemble as a classical spinning ball with the state of individual protons contributing to the expected

magnetic moment. In either case we must not take the classical analogy too far since the charge does not

damp the spinning motion through radiation and the gyromagnetic ratio is the one observed in experiment

and predicted by quantum mechanics. Although subsequent discussion will focus on hydrogen nuclei, there

are other nuclei of interest in MRI and the gyromagnetic ratios for some of these are given in table 2.4.

Continuing with the classical model, the ensemble average magnetic moment per unit volume is

a magnetization which experiences a torque per unit volume Γ = M × B in a magnetic field B due to the

Lorentz force (equation 2.1.5). Using equation 2.2.1, and remembering that torque is the rate of change of
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Z Isotope spin number: I Abundance (%) γ
2π (MHz/T)

1 1H 1/2 99.9850 42.5775
1 2H 1 0.0115 6.5359
6 13C 1/2 1.07 10.7084
8 17O 5/2 0.038 5.7742
11 23Na 3/2 100 11.2688
15 31P 1/2 100 17.2515

Table 2.4: Gyromagnetic ratios, natural abundance, and nuclear spin numbers for several isotopes [74, 9-92].

angular momentum, gives the magnetization’s time evolution in a magnetic field

dM
dt

= γM × B. (2.2.2)

This is the Larmor equation describing precession of the magnetization about the direction of the applied

magnetic field – an analogous motion to that of a spinning top in the presence of gravity – and the magnet-

ization has a potential energy per unit volume defined by

U = −M · B. (2.2.3)

Since the motion is clockwise when viewed from the tip of B, the angular frequency defined in the Larmor

equation:

ω = −γB (2.2.4)

is defined with a negative sign so the motion is counter-clockwise about the tip of ω and the familiar right-

hand rule can be applied. Note that for convenience, the negative sign in this equation is omitted either

because only the magnitude is important or the direction of precession does not change any pertinent result.

NMR experiments, including MRI, involve both static and oscillating magnetic fields and it is

useful to split the magnetic field of equation 2.2.2 into a static B0 defining the z-direction and a perpendicular

component B1 rotating at angular frequency ωr

B = B1 cos(ωrt + ψ)x̂ + B1 sin(ωrt + ψ)ŷ + B0 ẑ = B1 + B0 ẑ. (2.2.5)

In order to consider a stationary B1, rather than one that rotates at ωr, a new coordinate frame is introduced

and denoted with a prime. In this new frame shown in figure 2.1, the rotation of B1 matches that of the

coordinate frame and thus B1 is stationary. However, in the absence of B1, magnetization in the x′y′-plane

now precesses with angular frequency ∆ω = ω0 − ωr where ω0 = −γB0 and since the magnetization is

precessing at angular frequency ∆ω, there must be a field in this frame: B′z = − 1
γ∆ω [122, pg 12]. Thus with

B1 engaged, the magnetic field in the rotating frame is the vector sum:
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Figure 2.1: In a reference frame that rotates with angular frequency ωr about the lab frame’s z-direction, the
rotating magnetic field B1 has a fixed orientation B′1.

B′ = B′1 + B′z = −
1
γ

(
ω1x x̂ + ω1y ŷ + ∆ω ẑ

)
(2.2.6)

where ω1x = ω1 cos(ψ), ω1y = ω1 sin(ψ) and ω1 = −γB1. Despite being in a new reference frame, the

magnetization still experiences a torque and we rewrite equation 2.2.2 as

d
dt


M′x
M′y
M′z

 =


0 −∆ω ω1y

∆ω 0 −ω1x

−ω1y ω1x 0




M′x
M′y
M′z

 (2.2.7)

where the magnetization moves about the effective magnetic field B′ in the rotating frame with angular

frequency |γB′|.

Equation 2.2.7 is useful in that the motion of M′ can be visualized using the matrix parameters

set by the magnitude, phase, and frequency (relative to ω0) of B1. If the applied B1 field is on-resonance,

∆ω = 0 and the magnetization simply nutates about B′1 with the solution to equation 2.2.7 taking the form

M′x = M0 sin(θ(t)) sin(ψ)

M′y = −M0 sin(θ(t)) cos(ψ)

M′z = M0 cos(θ(t))

θ(t) =
∫ t

0 ω1(t′)dt′

(2.2.8)

where ψ is the phase of B1 from equation 2.2.5, the initial condition is M′z = M0, and θ(t) is the flip

angle produced by ω1(t) = −γB1(t). Although B′1 is confined to the x′y′-plane, the application of short

on-resonance B1 pulses with correct duration and orientation may be used to nutate magnetization to any
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orientation in the rotating frame. For example, suppose all the magnetization is aligned with B0 and a

resonant pulse (∆ω = 0) with magnitude B1 and duration τ such that ω1τ = −γB1τ = π
2 is applied. The

result of this 90◦ pulse is that the magnetization is flipped into the transverse plane.

For a pulse where ∆ω � ω1, however, the effective field in the rotating frame is overwhelmingly

in the z-direction so the magnetization cannot be arbitrarily re-oriented. In short, the system is resonant

because the magnetization reacts appreciably only if ω1 > ∆ω which only occurs when ωr ' ω0. Between

externally applied B1 pulses, ω1 ' 0 and any initial transverse magnetization M′xy 0 in the x′y′-plane merely

rotates about the z-axis as

M′x = M′xy 0 cos(θ(t))

M′y = M′xy 0 sin(θ(t))

M′xy = M′x + iM′y = Mxy 0eiθ(t)

θ(t) =
∫ t

0 ∆ω(t′)dt′ + ψ

(2.2.9)

where ψ is the initial phase of the transverse magnetization and we may optionally express the transverse

magnetization M′xy with complex numbers where i =
√
−1. We have written ∆ω to depend on time since

the z-directed field may have a slight offset ∆Bz(t) in addition to the static component B0 such that Bz =

∆Bz(t) + B0 and thus ∆ω = −γ∆Bz(t) + ωo − ωr. In section 2.3 we shall see that these slight offsets, which

may vary spatially as well as temporally, have an important role in imaging.

2.2.2 Relaxation

We have seen that the nuclear magnetization is influenced by B0 and B1 fields. However, in a

biological sample the protons experience magnetic fields from each other, especially from those in the same

molecule, and from both the motion and spin of electrons [122, pg 87] in addition to those fields externally

applied. Thermal motion causes relatively free molecules to experience Brownian motion – random shifts

of position and orientation – while molecules fixed in a lattice vibrate therein. In this tumult, conservat-

ive electric fields mediate collisions while magnetic fields influence the proton ensemble’s magnetization

through equation 2.2.7. However, due to their microscopic size and chaotic nature, the magnetic fields are

not known precisely and thus the equation cannot be directly applied.

2.2.2.1 Spectral Density Function

Imagine, however, that we are somehow able to measure the microscopic thermal fluctuations

Btherm(t) superimposed on the field in an arbitrary direction – we assume the fluctuations are independent

of direction. Now as long as the temperature remains constant, the mean value and standard deviation of

the fluctuations do not change. Therefore, Btherm(t) is a stationary random process [101, 2.7.4] with the

property that its Fourier transform (table 2.5) has a specific magnitude at every frequency even though the
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F(ω) ≡ F[ f (t)] ≡
∫ ∞
−∞

f (t)e−iωtdt

F−1[F(ω)] = f (t) = 1
2π

∫ ∞
−∞

F(ω)eiωtdω

Table 2.5: Fourier transforms can be defined in various ways; we define them as above [101, Table 2.3].

phases at each frequency vary randomly with time. The square of these magnitudes can be expressed as a

power spectrum [93, ch 14] J(ω) = F(ω)F∗(ω), also known as a spectral density function, where F(ω) is the

Fourier transform and the superscript denotes complex conjugation. Taking the inverse Fourier transform of

the power spectrum and remembering that Btherm(t) is a real valued function yields

K(t) =

∫ ∞

−∞

Btherm(τ)Btherm(τ + t)dτ

which is an auto-correlation function showing the extent to which Btherm(t) is related to itself over time.

A crude estimate for the auto-correlation function, and thus the spectral density function, can be

made by assuming Btherm(τ) arises as a result of the various states that each of the molecular contributors to

Btherm have at time τ. Then if ωc is the probability per second that a contributor leaves its state, the number

of unchanged contributors N obeys the differential equation dN/dt = −ωcN. Assuming the auto-correlation

K(t) is proportional to N(t), it takes the form K(t) ∝ e−pt as long as t ≥ τ. Now if we look at what must have

happened before time τ, the same probability per second is at work but now changing the contributors to the

states that they have at time τ rather than away from them. Thus the auto-correlation has the form

K(t) ∝ e−ωc |t|

and its Fourier transform reveals an estimated spectral density8

J(ω) = F−1 [K(t)] ∝ 1/
(
1 + ω2/ω2

c

)
. (2.2.10)

Therefore the energy associated with thermal fluctuations in the magnetic field is constant over a

wide bandwidth; that is, the fluctuations produce white noise on the magnetic field. However, above some

critical frequency fc = ωc/(2π), possibly associated with molecular tumbling or vibration, the power drops

rapidly to zero. The importance of these results is not that they are strictly correct – the material may have

many critical frequencies or other complexities that do not fit this model – but rather that the fluctuating

magnetic field along each axis has contributions over a wide range of frequencies including the resonant

frequency ω0 = −γB0. As can be seen in equation 2.2.7, low frequency changes to Bz influence M′x,y while

transverse fields near ω0 flip magnetization either toward or away from the z-axis, providing a mechanism

for energy transfer between the proton ensemble and thermal motion in the material. It is to these effects

that we now turn.
8This is precisely the spectral density function presented by Farrar and Becker [31, ch 4].
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2.2.2.2 The Origin of Bulk Magnetization and T1

Returning to individual protons rather than the ensemble, interactions with the B0 field cause the

proton’s spin-state to take on either an angular momentum ~/2 aligned along B0 with energy −µB0 or anti-

aligned with energy µB0 where µ = γ ~2 is the z-component of the proton’s magnetic moment. Although

it is energetically favourable for the z-component of spin angular momentum to be aligned with the field,

thermal interactions along axes in the transverse plane flip the protons out of alignment. However, if left

undisturbed and at a constant temperature, an equilibrium is established in the ensemble between these two

tendencies. To examine the properties of this equilibrium, we employ Boltzmann statistics as described by

Pathria [93, p 12, p 43].

Let us consider a system A (which we will shortly identify as a single proton) in thermal equilib-

rium with an energy reservoir R consisting of an ensemble of many copies of that system. The combined

energy of A and R is just the sum of their individual energies E0 = Ea + Er where E0 ' Er since the reservoir

is much larger than A. The number of quantum states accessible to any system is a function of its energy

so that the number of states accessible to the system A, the reservoir R, and the combination of the two

are ΩA(Ea), ΩR(Er), and Ω0(Ea) = ΩA(Ea)ΩR(Er) respectively. Now in thermal equilibrium, the entropy

S = k ln Ω, and thus the total number of accessible states Ω0, is at a maximum so that

∂Ω0

∂Ea
= 0 = ΩR

∂ΩA

∂Ea
+ ΩA

∂ΩR

∂Er

∂Er

∂Ea
→

∂ ln ΩA

∂Ea
=
∂ ln ΩR

∂Er

where ∂ ln Ω
∂E = 1

kT since, keeping all other properties constant, we have ∂S
∂E = 1

T where k is Boltzmann’s

constant and T is absolute temperature in kelvin of the reservoir or system. Now if we assume that any

accessible state has the same probability as any other, the probability Ps that system A has an energy Es is

just the number of ways in which the reservoir can take take the energy Er = E0 − Ea over the total number

of the reservoir’s accessible states:

Ps =
ΩR(Er)∑
r ΩR(Er)

.

Since E0 ' Er we can expand ln(ΩR(Er)) as a Taylor series about Er = E0

ln(ΩR(Er)) = ln(ΩR(E0)) + (Er − E0)
∂ ln ΩR

∂Er
|Er=E0 + ...

which allows us to approximate ΩR(Er) as ΩR(Er) ' ξe−
Es
kT where ξ is just a constant and we have used

the relationship ∂ ln Ω
∂E = 1

kT . In this approximation, the probability that the system A in thermal equilibrium

takes on an energy Es is

Ps =
e−

Es
kT∑

s e−
Es
kT

(2.2.11)
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where the constants ξ have cancelled out9.

Now, if the system A is a proton in a magnetic field B0 the energies of the two possible states with

respect to this field are −µB0 and µB0 as above. Therefore, from equation 2.2.11, the ratio of the probability

of a proton being in the higher energy state P0
+ – in an interaction with the B0 field – to the probability of it

being in the lower state P0
− is [63, p 57-61]

P0
+

P0
−

=
e−µB0/kT

eµB0/kT = e−2µB0/kT (2.2.12)

and following Slichter [122, pg 4-9], if there are N protons per unit volume, and N+ of these protons are

anti-aligned with energy µBo, then the remaining protons

N− = N − N+ (2.2.13)

are in the state −µBo where the difference between these populations

n = N− − N+ (2.2.14)

is the average number of excess aligned protons per unit volume; that is Mz = µn. In equilibrium, denoted

with a superscript, the ratio of these two populations must be the same as the ratio of the probabilities in

equation 2.2.12

N0
+

N0
−

= e−2µB0/kT =
P0

+

P0
−

.

Whether equilibrium has been established or not, there is an average rate W+ at which an individual

proton flips from aligned to anti-aligned and another average rate W− at which the opposite occurs. The total

transition rate in either direction depends on the populations in each state and this provides a differential

equation for the number of aligned protons per unit volume

dN−
dt

= N+W− − N−W+. (2.2.15)

However at steady state, dN−
dt = 0 so

N0
+

N0
−

=
W+

W−
= e−2µB0/kT (2.2.16)

which gives the ratio of transition rates. Desiring to express equation 2.2.15 in terms of Mz, we assume
dN
dt = 0 and then use equations 2.2.13 and 2.2.14 to find dMz

dt = 2µ dN−
dt = µN(W− − W+) − Mz(W+ + W−).

This equation may then be re-arranged and expressed using the equilibrium magnetization M0 instead of

transition rates:
9At low temperatures Boltzmann statistics fails and one must use either Fermi-Dirac or Bose-Einstein statistics depending on

the properties of the particles [39, pg 75].
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Tissue Material T1 (ms)
cerebrospinal fluid (CSF) 4000+

blood (arterial) 1200
brain grey matter 920
brain white matter 790

skeletal muscle 870
lipids (fat) 260

Table 2.6: Approximate T1 values at 1.5 T [8, pg 961]

d
dt

Mz =
1

T1
(M0 − Mz) (2.2.17)

where

M0 = µN
(
W− −W+

W+ + W−

)
T1 =

1
W+ + W−

. (2.2.18)

Now since the average transition rates are not directly known, it is useful to express the equilibrium mag-

netization as

M0 = µN
(
eµBo/kT − e−µBo/kT

eµBo/kT + e−µBo/kT

)
using equations 2.2.16 and 2.2.18. However, µB0/kT is small thus allowing M0 to be approximated using a

Taylor expansion such that

M0 ' N
γ2~2B0

4kT
. (2.2.19)

Returning to Mz, the solution to equation 2.2.17 is that the difference from equilibrium M0 − Mz

decays with a characteristic time known as T1 according as

Mz = M0
(
1 − e−t/T1

)
. (2.2.20)

Therefore if the magnetization is not aligned with B0, possibly as a result of an externally applied B1 pulse,

the system of protons transfers its energy to the material as heat and Mz eventually attains its equilibrium

value M0 – this process is called spin-lattice relaxation since the arrangement of molecules is often loosely

referred to as the ’lattice’ even if the molecules do not form a regular array but move about freely in a liquid.

Now T1 depends on transitions between spin states and these transitions are mediated by molecular B1 fields

fluctuating at angular frequency ω0 = −γB0. Therefore T1 should be proportional to the value of the spectral

density J(ω) at ω0 [18, pg 31] and is thus a function of the externally applied field B0 [31, ch 4] as well as

the material properties; some practical values can be found in table 2.6.
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2.2.2.3 The Origin of T2

Having seen the effect of thermal interactions on Mz, we turn our attention to their influence over

transverse magnetization. Now the considerations of the previous section are of no use here since Mxy is

energetically neutral with respect to B0 and there is usually10 no appreciable exchange of energy with the

surrounding material. However, low frequency thermal fluctuations in Bz, due to molecular motion as de-

scribed in section 2.2.2.1, produce a succession of random shifts to the precession frequency, making it

either faster or slower than ω0, and thus causing the transverse magnetization Mxy to exhibit small random

phase changes slightly modifying its deterministic precession. These fluctuations are local to each proton

such that conceptually dividing the ensemble into smaller parts, but not down to individual protons, reveals

that each part experiences its own independent random phase walk. The result is that, over time, the indi-

vidual contributions to Mxy dephase and eventually the absolute value
∣∣∣Mxy

∣∣∣ relaxes to zero quite apart from

any spin-lattice interaction. Moreover, the dephasing of magnetic moments, also called spin-spin relaxation,

is irreversible since it is caused by random thermal fluctuations.

Although spin-spin relaxation cannot be reversed, the individual magnetic moments are conserved

and eventually the system settles such that there is a small average alignment with B0 as predicted by

equation 2.2.20. At this point a B1 pulse can once more flip magnetization so that it undergoes precession and

spin-spin relaxation. Thus while the re-growth of Mz does not reverse dephasing, alignment along z causes

previous transverse phase differences to become irrelevant. Since the individual proton magnetic moments

are conserved, spin-spin relaxation cannot cause transverse magnetization to disappear more slowly than

spin-lattice relaxation causes Mz to re-grow. Therefore, provided spin-spin relaxation is at work, M0 ≥√
M2

xy + M2
z where the magnetization is equal to M0 only in equilibrium when Mz = M0 or immediately

after a flip from equilibrium.

Since Mxy depends on the precise phase of each of its contributors, the actual time course of
∣∣∣Mxy

∣∣∣
may be quite complicated [18, pg 22]. However, since the phase spread increases as time goes on, spin-spin

relaxation may be approximated with an exponential decay
∣∣∣M′xy(t)

∣∣∣ =
∣∣∣M′xy(0)

∣∣∣ e−t/T2 allowing us to write

the differential equations

d
dt

M′x = −
1

T2
M′x,

d
dt

M′y = −
1

T2
M′y. (2.2.21)

where conservation of magnetic moment ensures that T2 ≤ T1. Although this model is fairly accurate for

typical experimental behaviour in liquids (see table 2.7 for some values) and is used throughout the NMR

and MRI literature, many materials, such as citrate [137], demonstrate non-exponential spin-spin relaxation.

10To see situations where there is appreciable energy exchange, see Slichter [122, pg 34 and ch 6].
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Tissue Material T2 (ms)
cerebrospinal fluid (CSF) ∼ 2000

blood (venus) 50
brain grey matter 100
brain white matter 90

skelatal muscle 50
lipids (fat) 80

Table 2.7: Approximate T2 values at 1.5 T [8, pg 961]

2.2.2.4 Phenomenological Bloch Equations

We now modify the predicted motion of a proton ensemble’s magnetization vector to include both

spin-spin and spin-lattice relaxation. Since equations 2.2.17 and 2.2.21 are independent of externally applied

B1 fields, they apply in both the laboratory and rotating frames and may be incorporated into equation 2.2.7

such that

d
dt


M′x
M′y
M′z

 =


− 1

T2
−∆ω ω1y 0

∆ω − 1
T2

−ω1x 0

−ω1y ω1x − 1
T1

1
T1




M′x
M′y
M′z
M0


. (2.2.22)

where the rows in this matrix generate the Bloch equations [10, 11] describing the magnetization vector’s

motion. Because of the approximations required to write equation 2.2.21, these equations are ’phenomenolo-

gical’ in that they describe the typical behaviour but may not capture the intricacies of a particular situation.

Now since T1 and T2 take into account the thermal field fluctuations, the terms ω1x and ω1y arise entirely

from an externally applied B1 field and not the microscopic field. Therefore, unless otherwise noted, any

further mention of the B1 field shall refer only to the externally applied field and not the thermally fluctuating

microscopic field.

On the other hand, ∆ω arises not only from the externally applied B0 but also from the average

field resulting from the material’s bulk magnetic susceptibility and the precise local field at a particular

position in a molecule produced by the motion of electrons within that molecule. This local molecular field

produces a “chemical shift” in ∆ω depending on the chemical structure in which a proton is embedded.

These shifts are static since the magnetic moments associated with the electrons remain in equilibrium and

are not perturbed by external B1 fields tuned to resonate with the protons.

This modified equation of motion (equation 2.2.22) still describes precession about the effect-

ive magnetic field B′1 but now unperturbed magnetization re-aligns at a rate 1
T1

to form an equilibrium

z-magnetization M0 while Mxy decays to zero at a faster rate 1
T2

. In the absence of an external B1 pulse,

ω1x = ω1y = 0 and the solution
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Figure 2.2: As seen from the laboratory frame, equation 2.2.23 shows that the bulk magnetization (arrow)
for a certain ensemble (sphere) precesses clock-wise about the z-axis as it slowly relaxes and aligns with
that same axis. The path traversed by the arrow’s tip is traced.

M′x = M0 sin(α) cos(θ(t))e−t/T2

M′y = M0 sin(α) sin(θ(t))e−t/T2

M′xy = M′x + iM′y = M0 sin(α)e−t/T2eiθ(t)

M′z = M0
(
1 − (1 − cos(α)) e−t/T1

)
θ(t) =

∫ t
0 ∆ω(τ)dτ + ψ

(2.2.23)

is visualized in figure 2.2. Moreover, when a B1 pulse has a duration much shorter than T2, equation 2.2.8

still applies.

Although finding a general analytical solution to equation 2.2.22 is quite difficult, a numerical

solution may be sought using the algorithm


M′x
M′y
M′z


j+1

= ∆t


− 1

T2
−∆ω ω1y 0

∆ω − 1
T2

−ω1x 0

−ω1y ω1x − 1
T1

1
T1




M′x
M′y
M′z
M0



j

+


M′x
M′y
M′z


j

(2.2.24)

where ∆t is the time step, M0 is the constant equilibrium magnetization, and j denotes the magnetization

at time j∆t. To reduce numerical error, ∆t must be chosen such that the small change to the magnetization

vector during each step is much smaller than M0.
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Figure 2.3: Since an isochromat is an ensemble of protons with a single resonant frequency, we can imagine
a regular lattice of isochromats even though molecules in a liquid have no regular arrangement.

2.2.3 Echoes and the Free Induction Decay

Thus far we have considered a proton ensemble at a specific position with a single resonant fre-

quency. However, as shown in figure 2.3, we can consider a distribution of proton ensembles where each en-

semble has its own magnetization vector and parameters M0, T1, T2, ∆ω, ω1x, and ω1y – proton ensembles

are usually referred to as isochromats in reference to their independent resonant frequencies. Most of the

differences between isochromats arise primarily from material properties, but the resonant frequencies are

also influenced by physical location in a spatially inhomogeneous Bz field. Regardless of cause, the spread

of resonant frequency causes deterministic dephasing between isochromats unlike the random dephasing

resulting in the spin-spin relaxation of a single isochromat.

After a B1 pulse, equilibrium isochromats flipped into the transverse plane rapidly dephase with

respect to one another, as shown in figure 2.4. Now just as spin-spin relaxation can cause
∣∣∣Mxy

∣∣∣ to be a com-

plicated function of time for a single isochromat, dephasing between isochromats can make the total trans-

verse magnetization’s disappearance complicated as well. However, as in section 2.2.2.3, this complexity is

often masked by assuming that the total transverse magnetization takes the form
∣∣∣MT xy

∣∣∣ =
∣∣∣MT xy(0)

∣∣∣ e−t/T ∗2

where T ∗2 expresses the time it takes for transverse magnetization to dephase both by reversible and irre-

versible processes. By assuming that dephasing of any kind produces an exponential decay we can write

1/T ∗2 = (1/T2) + (1/T ′2) where T ′2 is a time constant related only to dephasing between isochromats and

T2 is the spin-spin relaxation time from above. Although this greatly simplifies theoretical calculations

and has some validity in many experimental situations, it is a very coarse approximation and may break

down depending on the materials used and the precise geometry of the field inhomogeneities. Using this

approximation, the transverse magnetization evolves according as
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MT x,y(t) = MT x,y(0)e jω0te−t/T ∗2 . (2.2.25)

Since the dephasing between isochromats is deterministic, it can be reversed to form an echo.

As shown in figure 2.5, suppose the isochromats are initially aligned with B0 and then a 90◦ pulse flips

them into the transverse plane where each precesses at its own frequency – this 90◦ pulse is often called an

excitation pulse because it changes relaxed magnetization into precessing magnetization. Directly after this

pulse the isochromats produce a free induction decay and each isochromat accumulates phase proportional

to its own precession frequency. Then at a time τ, a 180◦ B1 pulse – known as an inversion pulse – flips

all the transverse magnetization such that an isochromat with phase θa− = τ∆ωa before inversion acquires

a phase θa+ = −τ∆ωa afterwards. Therefore at time 2τ, every isochromat returns to its original phase and

briefly contributes to a bulk alignment of nuclear magnetic moment known as a spin-echo [40]. Although

the isochomats re-phase with respect to one another, each isochromat has experienced spin-spin relaxation

during the time 2τ so the echo magnitude is reduced by a factor e−2τ/T2 with respect to the initial transverse

magnetization.

Although in the case of spin echoes the spread in ∆ω is beyond our control, arising from susceptib-

ility effects, chemical shifts, or magnet imperfections; we can, as shown in figure 2.6, intentionally introduce

a Bz field gradient along the x direction such that Bz = B0 + Gxx and ∆ω = −γGxx where Gx =
dBZ
dx . If

this gradient is applied for a time τ then the phase accumulated in the rotating frame by an isochromat at

position x is −γGxxτ. Then, by reversing the gradient such that Bz = B0 −Gxx for a subsequent time τ, the

isochromats re-phase at time 2τ forming a gradient echo. Unlike a spin echo, however, phases accumulated

due to B0 field inhomogeneity and chemical shift are not re-phased and the gradient echo is weighted by a

factor e−2τ/T ∗2 rather than e−2τ/T2 . In general, gradient echoes can be formed more quickly than spin echoes

since phasing and dephasing may be accelerated by employing stronger gradients. However, these gradi-

ents must be super-imposed over a very homogeneous B0 field since otherwise T ∗2 is short and the gradient

echoes are weak.

2.2.4 Signal Detection

Having seen how externally applied B1 fields can manipulate the isochromats of nuclear magnet-

ization, we now turn our attention to detecting these isochromats. Each isochromat is a magnetic moment

which, when changing with time, can both induce a voltage in a length of wire by Faraday’s Law and also

produce freely propagating electromagnetic waves. Thus isochromats precessing in the transverse plane are

of special importance because they produce the NMR signal – the so-called “free induction decay” or FID.

We follow Hoult and Ginsberg [48] and use the model shown in figure 2.7 to gain further insight.

In this model an isochromat precessing in the transverse plane is represented by two orthogonal current
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Figure 2.4: In a) we see that transverse magnetization is excited after a B1 pulse but then rapidly decays.
Part b) shows how the isochromats at the time labelled in part a) appear in the rotating frame; this dephasing
causes the decay. In c) the Mx and My components of the transverse magnetization during the FID are shown
in detail under the T ∗2 decay of equation 2.2.25; the decay rate relative to the precession frequency has been
exaggerated so that both effects can be clearly seen.
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Figure 2.5: In a) we see a schematic of a spin-echo sequence where each of the four time points (b,c,d,e) has
a corresponding isochromat schematic. In b), the newly flipped isochromats begin to dephase immediately
after the 90◦ pulse. Over time the isochromats evenly distribute themselves and the average transverse
magnetization is zero c). In d) the path of only two isochromats is seen during the 180◦ pulse about y′;
before the pulse the isochromat starting on the left had a phase −ψ while the other isochromat had a phase
ψ such that the inversion pulse causes them to switch positions. As shown in e), the isochromats finally
re-phase at time TE causing a spin-echo.
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Figure 2.6: Part a) shows a simple gradient-echo schematic indicating the times at which the isochromat
schematics b) and c) take place. The negative lobe of the gradient causes isochromats to dephase b) while
the positive lobe causes them to re-phase c), form an echo, and dephase once more.
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Figure 2.7: A model for signal reception. Two infinitesimal rings of oscillating current are placed at the
origin and oriented such that one is about the x-axis and the other about the y-axis. A wire ring of radius a
is placed a distance l along the x-axis and the voltage induced in it is the detected NMR signal.

loops p and q in which equal currents oscillate at the same frequency but are separated in phase by π/2. The

total magnetic moment m is merely the vector sum of the oscillating magnetic moments from the two loops

m = mp + mq

m = m0eiωt

mp = Re (m) x̂ mq = Im (m) ŷ

where complex numbers are a mathematical convenience; that is, we may perform computations with eiωt

with the understanding that the real and imaginary parts correspond to the physical x and y components of the

magnetic moment respectively. Note that in this calculation it is assumed that the magnitude of the transverse

magnetization m0 changes very slowly compared to the precession frequency – a good approximation since

echoes and free induction decays last tens to hundreds of milliseconds while a period of nuclear precession

takes only a fraction of a microsecond.

The electromagnetic analysis of an oscillating magnetic moment is standard fare in electrodynam-

ics texts [52, 37, 91] which state that the vector potential at a point r due to a magnetic moment at the origin

is

A = −
µ0

4πr3

(
r ×

(
[m] +

r
c
∂

∂t
[m]

))
where the square brackets indicate that the magnetic moment is evaluated at the retarded time t → t − r/c

where c is the speed of light in a vacuum. Since there are no free charges in this situation, ∇Θ = 0 and thus
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the vector potential and electric field (equation 2.1.8) associated with mp are

Ap =
m0µ0 sin(θ′)

4πr2

(
1 − i

r
c
ω
)

eiω(t−r/c)φ̂′

and

Ep = −
∂

∂t
Ap − ∇Θ = −

im0µ0 sin(θ′)ω
4πr2

(
1 + i

rω
c

)
eiω(t−r/c)φ̂′

where the real parts are the physical quantities, θ′ is the angle from the x-axis, and φ′ is the rotation angle

about it – analogous to the usual spherical polar coordinates where θ and φ are related to the z-axis. Integrat-

ing the time averaged value of Sp =
Re(Ep)·Re(Ep)

µoc over a sphere centred on the magnetic moment but with

radius in the far field (r � c
ω ) gives the well known power radiated by electromagnetic waves emanating

from the oscillating magnetic moment. Since our model has two oscillating magnetic moments, the total

power escaping as radiation is just twice this value

Prad =
µ0m2

0ω
4

6πc3 .

Now, as shown in figure 2.7, we use a wire ring of radius a about the x-axis placed a distance l

from the magnetic moment as a simple model for a signal reception coil. The voltage induced in this ring

Vring =
∂

∂t

∫
ring

A · dl = −

∫ 2π

0
Ep a dψ

Vring = i
m0µ0a sin(α)ω

2 f 2

(
1 + i

fω
c

)
eiω(t− f /c) (2.2.26)

is computed using equation 2.1.12 where f 2 = a2 + l2, f sin(α) = a, and the voltage is entirely due to mp

since the electric field arising from mq is everywhere perpendicular to the wire ring. Still following Hoult

and Ginsberg [48], provided the ring is placed in the near field where f � c
ω and Vring can be approximated

with a Taylor expansion in f

Vring '
µ0a2ω

2 f 3 m0

(
1 +

f 2ω2

2c2

)
ei(ωt+π/2) '

µ0a2

2 f 3
Nγ~2dV

4kT

(
ω2 +

f 2ω4

2c2

)
ei(ωt+π/2)

Signal = Re(Vring) ' µ0a2ω

2(a2+l2)3/2 m0

(
1 +

(a2+l2)ω2

2c2

)
sin(ωt) ' µ0a2

2(a2+l2)3/2
Nγ~2dV

4kT

(
ω2 +

(a2+l2)ω4

2c2

)
sin(ωt)

(2.2.27)

where m0 ' Nγ~2ω dV/4kT in a small valume dV . By comparing equations 2.2.26 and 2.2.27, we see that

the term proportional to ω2 is entirely due to the near field while the term proportional to ω4 is a first-order

correction taking voltage due to electromagnetic waves into account. From this simple model we glean that,

beyond heating the material through spin-lattice relaxation, there are two additional transfers of energy from

the nuclear magnetic moment: energy is transferred to nearby conductive paths if they are present and is also
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radiated as electromagnetic waves. Now since the average power Pav transferred to the ring is just the time

average of P = Re(Vring)2/R where R is the resistance of the ring, setting R = ∞ removes the conductive

path and thus the detected NMR signal. Moreover there are two separate mechanisms, in the two separate

terms in equation 2.2.26, by which energy is coupled to the conductive path: Faraday induction, which

dominates the coupling and only removes energy from the protons when a receiving coil is present, and the

slight interaction of this coil with the freely propagating electromagnetic radiation that leaves the protons

with or without the coil.

Let us compare the peak values for the various energy transfers. Considering equations 2.2.3 and

2.2.20, the peak power transfer to the lattice within a small volume ∆V is (divide in half for RMS power)

Psl max =
M0B0

T1
∆V

while the maximum powers transferred to the ring and radiated to the far field are

Pring max '
µ2

oM2
0a4ω2

8R
(
a2 + l2

)3 (∆V)2

1 +

(
a2 + l2

)
ω2

c2


and

Prad max =
µoM2

0ω
4

6πc3 (∆V)2

where M0 is computed from equation 2.2.19 and ω = γB0. For protons in one millilitre of water at temperat-

ure 37◦C with T1 ∼ 500 ms in a magnetic field of 3 T near a wire ring with radius a = 10 cm and resistance of

1 Ω placed such that l = 10 cm, we have that M0∆V = 9.3×10−9 J/T, ω/2π = 127.74 MHz and the respective

powers are Psl max = 55.7× 10−9 W, Pring max ' 137(1 + 0.14)× 10−12 W, and Prad max = 88.4× 10−15 W. So

although there is some radiation, and a signal (∼ 18 µV) can be detected in the wire ring; both these effects

are trivial compared to the transfer of energy into heat within the water. Moreover, the power transferred

to the wire ring is primarily a result of near-field inductive coupling, rather than electromagnetic waves.

The signal detection coil, which we modelled with a wire ring, is usually called an RF-coil referring to the

frequency of interaction (radio frequency) rather than the reception of electromagnetic waves.

From the view point of quantum mechanics, electromagnetic waves are photons; but since the con-

tribution of waves to the detected NMR signal is small, photons are not primarily responsible. A plausible

quantum explanation is that near-field interactions are mediated by virtual photons [47, 46] which do not

have the normal photon energy E = ~ω but rather take on other energy values as permitted by Heisenberg’s

uncertainty principle ∆E∆t ∼ ~ [114, 24, p 80, p 97 ]. As an indication that this is the case, consider virtual

photons with uncertain energies between 0 and ~ω over a time ∆t ∼ ~/∆E = 1/ω. If the virtual photons

travel at the speed of light then in this short time they may act over a limited radius ∆r ∼ c/ω which is

precisely the range of the classical near-field interaction. Despite this indication, no definitive evidence of
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virtual photons giving rise to the NMR signal has been found to date; all we have is the negative evidence

that freely moving photons, emitted either spontaneously or through stimulation, are not primarily respons-

ible11. Thus for most practical purposes, such as the computation of signal induced in a receiving coil, it

is preferable to remain within the realm of classical electrodynamics where inductive coupling is a simple

matter.

2.2.5 Signal and Quadrature Phase Sensitive Detection

From the detected NMR signal voltage we wish to acquire a digital representation of the transverse

magnetization components M′x and M′y in the rotating frame (equation 2.2.22). For the purposes of this thesis,

a key component in this process is the quadrature phase sensitive detector shown in figure 2.8 which is able to

recover the complex transverse magnetization Mxy from the real signal induced in a coil while reducing the

frequency to make it amenable to digital acquisition. Note however that digital signal processing methods

often sample an intermediate frequency.

Since any device sensitive to the magnetization signal with angular frequency ω0 is also sensitive

to the much larger B1 pulses with approximately the same frequency, signal acquisition is usually restricted

to times when B1 = 0. In this case, equation 2.2.23 shows that the transverse magnetization of an ensemble

of protons with a single resonant frequency and T2 within a small volume dV , known as a voxel, precesses

and decays as:

M′xy = I(x, y, z)e−t/T2ei(θ(t)+φ0)

M′xy = M′x + iM′y
(2.2.28)

where φ0 is the initial phase and I(x, y, z) is the initial magnetization flipped into the transverse plane. Within

every voxel there may be multiple isochromats obeying equation 2.2.28 where each isochromat is associated

with an ensemble of protons experiencing a different chemical environment (chemical shift, T1, T2).

From equation 2.2.27 we know that the pre-amplified voltage induced in a nearby RF-coil due to

this one isochromat in a voxel is

S = βI(x, y, z)e−t/T2 sin (ω0t + θ(t) + φ0) dV ≡ S 0 sin (ω0t + κ0)

where β encapsulates the effects of a specific coil geometry (which is probably not a simple ring), the signal

frequency dependence, and the pre-amplifier.

The first step in the quadrature phase sensitive detection process is to feed the signal, along with

reference signals mentioned below, into two separate mixers. A mixer produces at its output the product

11The long-held belief that the NMR signal arises from coherent spontaneous emission [23] can be shown to be false since the
radiated power predicted for this mechanism is exactly the radiated power predicted classically and not the signal detected in the
coil [48].
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Figure 2.8: Signal from the RF-coil is amplified and sent into the quadrature phase sensitive detector to be
demodulated and split into real and imaginary parts. The result is sampled by analog to digital converters
(ADC) and stored in a computer. Alternatively the signal may be sampled directly after the pre-amp and the
quadrature phase sensitive detector implemented in software [121].

of its inputs, so if the inputs to a mixer are the NMR signal S = S 0 sin(ω0t + κ0) and a reference signal

R = R0 sin(ωrt + κr) then the mixer output is

S R =
1
2

S 0R0 (cos ((ω0 − ωr)t + κ0 − κr) − cos ((ω0 + ωr)t + κ0 + κr))

and after using a low-pass filter, only the low-frequency component 1
2 S 0R0 cos((ω0 −ωr)t + κ0 − κr) remains

– note that S 0 = βI(x, y, z)e−t/T2dV and κ0 = θ(t) + φ0. The key to the quadrature phase sensitive detector is

that there are two mixers with separate references that are π/2 out of phase

Ra = R0 sin(ωrt + κr), Rb = −R0 cos(ωrt + κr)

so that after filtering, the two output signals are

sa =
1
2

R0S 0 cos((ω0 − ωr) t + κ), sb =
1
2

R0S 0 sin((ω0 − ωr) t + κ)

where κ = κ0 − κr. Using complex numbers, these signals are compactly represented as

s = sa + isb =
1
2

R0S 0ei((ωo−ωr)t+κ)

and if we set the reference frequency and phase such that ωr = ω0 and κr = φ0, the signal from a single

voxel after quadrature phase sensitive detection is
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s = αI(x, y, z)e−t/T2eiθ(t)

θ(t) =
∫ t

0 ∆ω(τ)dτ + ψ
(2.2.29)

where α is a constant that depends on the electronic hardware.

These output signals, which can be acquired using analog to digital converters (ADC) and stored

on a computer, precisely describe the motion of both components of the transverse magnetization as given in

equation 2.2.28. The quadrature phase sensitive detector has recovered the complex representation of trans-

verse magnetization from the purely real voltage induced in the coil. For this reason, all further references

to signal will refer to the complex signal as presented at the output of a quadrature phase sensitive detector.

Also note that the signal from the entire sample is found using the volume integral S =
∫

sample sdV .

2.3 Magnetic Resonance Imaging (MRI)

As we have seen, a distribution of precessing isochromats induces a detectable signal voltage in

a nearby coil. In magnetic resonance imaging the total signal is separated into contributions from each

small voxel12 which are then mapped to the pixels of an image. To distinguish the signal contributions,

they are encoded with spatial information by the external application of a pulsed sequence of magnetic field

gradients. This section begins by introducing basic imaging pulse sequences [18, 8, 73, 32], proceeds to

describe the main MRI system components, and ends by describing some limitations to image resolution.

2.3.1 Frequency Encoding

The signal’s frequency was historically the first [69], and is conceptually the simplest, parameter

to encode with voxel position. Suppose we take two jugs of water, as shown in figure 2.9a, and place them

in a strong Bz field of magnitude Bo to which the nuclear magnetization aligns. By using a 90◦ RF-pulse

we flip the magnetization into the transverse plane where it precesses at the Larmor frequency ωo = −γBo.

Then an x-directed spatial gradient Gx on the Bz field is imposed such that Bz = Bo + xGx and the total

externally applied field strength is

|B| =
√

(Bo + xGx)2 + (∆Bx)2 +
(
∆By

)2
= Bo

√
1 + 2

xGx

Bo
+

(
xGx

Bo

)2

+

(
∆Bx

Bo

)2

+

(
∆By

Bo

)2

where ∆Bx and ∆By are the spatially dependent x and y fields that accompany Gx according to Maxwell’s

equations (see section 2.1). Provided Bo is large compared to ∆Bx and ∆By, the Larmor frequency becomes

a simple function ω ' −γ (Bo + xGx) mapping precession frequency to position along the x-axis. Since Bo

is usually several teslas while xGx is on the order of milliteslas, the approximation holds. For this reason,

12A volume element as in section 2.2.5.
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whenever field gradients are mentioned, at least in this section, we consider only the spatial variations in Bz

and ignore the associated transverse fields since their influence on the Larmor frequency is small.

If, while the gradient is imposed, an echo signal is acquired over a time TAcq as shown in figure

2.9b, the signal from a voxel can be found from equation 2.2.29 by setting θ(t) =
∫ t

0 ∆ω(τ)dτ+ψ = −γGxxt+

φ since the gradient is constant during signal acquisition. Ignoring relaxation (TE � T2) and measuring the

time from TE , this signal is

s = αI(x, y, z)ei(−γxGx(t+TAcq/2)+φ).

Note that during the first half of the signal acquisition a magnetization phase −γGxxTAcq/2 accumulates

which is cancelled by the phase accumulated during the pre-phasing gradient lobe which sets φ = γGxxTAcq/2.

For a gradient-echo image, the pre-phasing lobe must be negative and placed between the 90◦ pulse and sig-

nal acquisition; however, for a spin-echo image, the pre-phasing lobe may be positive and placed before the

180◦ pulse as shown in the figure – the 180◦ pulse changes the sign of the phase. In either case the result is

an echo at time TE and the signal is

s = αI(x, y, z)e−iγxGxt

where I(x, y, z) is just the flipped equilibrium magnetization Mo(x, y) which depends on the local density

of hydrogen atoms. However, since more sophisticated pulse sequences can make I(x, y) depend on other

tissue properties, such as T1, we do not replace it with Mo(x, y) in the following calculations.

Now considering the whole material volume, the total acquired signal is

S (t) = α

∫
V
I(x, y, z)e−iγxGxtdV

and the inverse Fourier transform yields

I(x′) = α
2π

∫ ∞
−∞

(#
I(x, y, z)e−iγxGxtdxdydz

)
eiγx′Gxtdt

I(x) =
αγGx

2π

!
I(x, y, z)dydz

I(x) ∝
!
I(x, y, z)dydz.

Therefore I(x) is a one-dimensional image of the function I(x, y, z).

An important limitation of frequency encoding arises from the chemical shifts (slight differences

in resonant frequency) between biological materials, particularly between fat and water. During the imaging

sequence this difference shifts the image of fat with respect to the image of water. The actual image acquired

will therefore be composed of the water image added to the shifted fat image.
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Figure 2.9: In a) two jugs of water are placed in a field gradient and the real, or absorption, part of the
Fourier spectrum forms their one dimensional image. In b) and c) pulse sequences that may be used to
produce this image are shown for the spin- and gradient-echo cases.
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2.3.2 Slice Selection

Using a one dimensional projection at successive angles, a complete three dimensional image of

the initially flipped magnetization distribution I(x, y, z) could be re-constructed using the Radon transform

for back-projection. However in practice this is rarely done; instead separate techniques are used to localize

signal for each dimension. As shown in figure 2.10, one of these techniques is to confine the signal source

to a certain slice of material by flipping only the magnetization in that slice. If a slice of thickness ∆z in

the z-direction is selected, the frequency encoding described in the last section produces a one dimensional

image of only the selected slice and thus brings us one step closer to a three dimensional image.

Slice selection further exploits the linear relationship between resonant frequency and magnetic

field strength by applying a field gradient during the 90◦ excitation pulse. This confines on-resonance mag-

netization to a certain plane and ensures that magnetization far from that plane is not appreciably influenced

by the excitation pulse. By changing the centre frequency ωr/(2π) (see equation 2.2.5) of the excitation

pulse, the on-resonance plane can be placed anywhere along the applied field gradient. Once the slice has

been selected, any further RF pulses (B1 pulses are also referred to as “RF” due to the radio frequencies

involved) also require a concurrent gradient to keep magnetization outside the slice from becoming excited;

this includes the 180◦ inversion pulse used to create a spin echo. From section 2.2.1, off-resonance mag-

netization rotates about the vector sum of B′1 and B′z = − 1
γ∆ωẑ where ∆ω = ω0 − γGzz − ωr grows with

distance from the on-resonance plane. Thus magnetization near the on-resonance plane is also flipped by the

excitation pulse but not by the same rotation axis or angle. Thus although a slice with some finite thickness

is excited, the magnitude and phase of transverse magnetization has a varying profile over that slice.

As shown in figure 2.11, the RF pulse waveform defines the slice profile. A desirable slice profile

produces constant transverse magnetization with constant phase within the slice but produces no transverse

magnetization outside. If we assume, inaccurately, that the Bloch equations provide a linear relationship

between magnetization flip angle and the Fourier coefficients of the RF waveform, then an ideal RF pulse has

a rectangular spectrum and thus a waveform shaped as sinc(t) =
sin(t)

t . The figure shows that if the flip angle

remains small and only the magnitude of the transverse magentization is considered, a fairly rectangular

slice profile is achieved. However, the phase profile, while representing merely a delay for small flip angles,

becomes progressively non-linear as the flip angle increases. The reason for this complex behaviour is that

the Bloch equations are inherently non-linear – notice that as the RF amplitude increases the flip profile

does not grow linearly. The non-linearity is caused by magnetization with a particular resonant frequency

responding to a narrow bandwidth of the RF-pulse rather than a single frequency component; thus to produce

higher quality slice profiles, the non-linear nature of the Bloch equations must be taken into account. Much

work has been done on this subject and has resulted in specialized techniques for the design of slice-selective

pulses. An example is the Shinnar-Le Roux method [94, 51] where information about acceptable variations
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Figure 2.10: Part a) shows a slice of thickness ∆z selected by the application of a 90◦ RF-pulse applied with
a field gradient. Shifting the centre frequency of the pulse changes the z-position of the selected slice. Parts
b) and c) show the required modifications to the pulse sequences in figure 2.9. As shown, the slice selective
z-gradient needs a re-phasing lobe when used with a 90◦ pulse just as the x-gradient requires a pre-phasing
lobe.
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of magnetization over the slice can be specified and used to design the selective pulse.

2.3.3 Phase Encoding

With the signal isolated to a particular slice ∆z and its frequency mapped to x-position with Gx, the

signal’s phase can also be encoded with spatial information in the y-direction [73, pg 224-227]. This extra

information allows a two dimensional image of the slice to be reconstructed and a fully three dimensional

image can be formed from successive slices.

Figure 2.12 shows a schematic of the pulse sequences already considered but now repeated N

times and modified to include a y-gradient which has a different amplitude each time. During the time Tpe

over which each y-gradient is applied, the y-gradient introduces a unique phase to the signal acquired in that

repetition. Ignoring relaxation and measuring time from TE , the signal acquired on repetition j is:

S j(t) = α∆z
"

slice
I(x, y)e−iγy

∫ Tpe
0 p jGymax(τ)dτeiγGx xTacq/2e

−iγx
∫ t
−TAcq/2

Gx(τ)dτ
dxdy (2.3.1)

where p j = 2 j
N−1 −1 runs from −1 to 1 as the repetition number increases from zero, Gymax is the maximum

y-gradient magnitude applied during the sequence, and γGxxTacq/2 is the phase introduced by the pre-

phasing lobe of the x-gradient. However, assuming perfectly square gradient pulses, the signal becomes

S j(t) = α

"
slice
I(x, y, z)e−iγp jGymaxTpeye−iγGxtxdxdydz

which is immediately recognizable as the two-dimensional Fourier transform of the initially flipped mag-

netization distribution I(x, y, z) over the slice. After all the signals have been acquired, a two-dimensional

inverse Fourier transform may be used to reconstruct an image. Ignoring the discrete nature of the N repeti-

tions and signal sampling with respect to time, we assume a continuous variable p so that the inverse Fourier

transform yields

I(x, y) = 1
4π2

! [
S (p, t)

]
eiγpGymaxTpey′eiγGxtx′dpdt

I(x, y) =
αγ2GxGymaxTpe

4π2

∫
slice I(x, y, z)dz

I(x, y) ∝
∫

slice I(x, y, z)dz

(2.3.2)

which reconstructs the two dimensional initial magnetization distribution within the selected slice. The

discrete nature of signal acquisition further complicates the situation but as the number of signal samples

per phase encoding and the number of phase encodings both increase, the re-constructed image approximates

the continuous result ever more closely.



40

Figure 2.11: Isochromats in the presence of a gradient of magnitude Gz = 4.697 mT/m
(
γ
2πGz = 200 Hz/mm

)
and the B1x pulse shown in a) were simulated using equation 2.2.24 with different amplitudes for the B1x

pulse and the customary re-phasing gradient lobe shown in figure 2.10. The B1x pulse was Hann filtered(
cos2( πt

2ν )
)

to reduce Gibbs ringing [117, pg 141] in the frequency domain. In b) we see that there is a non-
linear relationship between flip angle and B1x amplitude. Parts c-f) show the final states of the simulated
isochromat components after the re-phasing gradient lobe and, since 180◦ pulses are not usually played with
a re-phasing lobe, part g) shows the isochromat components after the pulse but without the re-phasing lobe.
Clearly the linear approximation of the Bloch equations breaks down.
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Figure 2.12: Two dimensional spin- and gradient-echo pulse sequences require multiple signal acquisitions
where the y-gradient is applied with a different value each time. The dotted lines indicate successive y-
gradient values for each signal acquisition.

2.3.4 MRI System Overview

From this description of imaging we see that an MRI machine needs a main magnetic field B0,

magnetic field gradients, and a rapidly oscillating pulsed B1 field. In a clinical MRI system, shown schemat-

ically in figure 2.13, the main field is produced by a superconducting winding cooled in a metallic cryostat,

the x, y, and z gradients are each produced by their own gradient coil and associated power supply, while the

B1 field is produced, as well as signal acquired, by RF-coils and their associated electronics. The gradient

coils are supplemented with shim coils that produce spatial Bz field harmonics (section 2.1.4) used for fine

adjustments to the B0 field, and the whole system is enclosed within a Faraday cage to isolate it from external

electromagnetic signals. Since the gradient and shim coils both produce spherical harmonics of Bz, the first

four spherical harmonics being a homogeneous field and linear gradients along the x, y, and z directions, we

shall often refer to all of them together as spherical harmonic production coils, or just harmonic production

coils for short

The largest and most expensive MRI component is the main field magnet [87] which produces a

field of one or more teslas to an accuracy greater than ten parts per million over a roughly spherical region

around 50 cm in diameter. This marvel of precision engineering is made of super-conducting windings

bathed in liquid helium. As the strength of the main field increases so does the equilibrium magnetization

M0 (equation 2.2.19) and thus the available signal for imaging is proportional to ω2
0 (see section 2.2.4).

However the noise increases linearly with field strength13 and thus ω0 so the signal to noise ratio increases

linearly with B0 [49]. Stated differently, stronger gradients can be used at higher B0 field strengths for

13The effective RF-coil resistance Rm due to the patient’s conductivity increases as ω2
0 and thus the associated noise increases

proportional to
√

R ∝ ω0.
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Figure 2.13: The bulk of an MRI system is its main Bo magnet. Within the bore of this magnet there are
several layers of coils, both for the gradient and RF systems. At the centre is a table where the patient is
placed.

increased resolution without a loss in SNR. This increase in signal is the reason for the steady increase in

the field strength used for MRI designs with the most powerful field strengths now over 10 T. Higher field

strength is not without problems, however, since the wavelength of the B1 field becomes comparable to the

size of the patient and a homogeneous B1 field over the patient is no longer a solution to Maxwell’s equations

[45]. Moreover, the field shifts caused by magnetic susceptibility also increase with B0 and can ruin field

homogeneity over the region of interest.

Any increase in magnet bore space greatly increases the system cost due to engineering challenges

in the main magnet design. For this reason, there is a desire to keep the bore space small while maximizing

the space for the patient. As far as the gradient system is concerned, this is accomplished by placing the

gradient/shim coils as close to the magnet cryostat as possible. However, strong currents switching through

these coils induce eddy currents (section 2.1.3.2) in the nearby cryostat which produce their own fields that

distort the desired gradient field. Reducing the effect of eddy currents is a major challenge in gradient system

design, especially as gradient strength and switching rate increase, and is the main topic of this thesis.

2.3.5 Point Spread Function

As we have seen, magnetic resonance images are formed by encoding signal parameters with

spatial information. In this section we briefly investigate the two imaging sequences from section 2.3.3 and

show how image resolution is limited both by the MRI equipment and the properties of the material being
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imaged. If an image I(x, y) of some function of tissue-dependent initial magnetization I(x, y) is desired,

then image acquisition can be expressed with a point spread function PSF(x, y) such that the acquired image

I(x, y) is

I(x, y) =

"
I(x, y)PSF(x − x′, y − y′)dx′dy′ = I(x, y) ∗ PS F(x, y)

where ∗ denotes convolution [73, chapter 5]. Then for theoretically perfect imaging, the point spread func-

tion collapses into a Dirac delta function such that I(x, y, z) = I(x, y, z).

Let us re-consider the pulse sequences in figure 2.12 now taking into account the limited acquisi-

tion time −TAcq/2 ≤ t ≤ TAcq/2 and signal relaxation therein as well as the limited phase encoding window

−1 ≤ p ≤ 1. If we make the simplifying assumptions (section 2.2.3) that spin-spin relaxation takes the form

of an exponential decay and re-phasing in a spin echo takes the form e−|t|/T
′
2 we can re-write equation 2.3.1

as

S (p, t) = α∆zrect
(

t
Tacq

)
rect

(
p
2

)!
slice I(x, y)e−(TE+t)/Te−|t|/T

′

e−iγyTpe pGymaxe−iγxGxtdxdy

rect(q) =

 1 − 1/2 < q < 1/2

0 otherwise
.

(2.3.3)

In this equation we combine the signal formulae for gradient- and spin-echo imaging by introducing time

constants T and T′ which depend on the echo type. For a spin echo, de-phasing associated with Bo inhomo-

geneity re-phases so T = T2 and T′ = T ′2. For gradient echoes, however, that particular re-phasing does

not occur so T = T ∗2 and T′ = ∞. Note that we are still not taking into account the distorting effects of

eddy currents or the finite nature of sampling in either the frequency or phase direction. The upshot is that

any limitations found with this method are fundamental in that they still occur if eddy current effects are

practically eliminated and if the signal sampling rate and the amount of time spent acquiring phase encoded

signals become very large.

Limiting, for now, analysis to a region where T and T′ are uniform, we recognize equation 2.3.3

as a two-dimensional Fourier transform

S (p, t) =
α∆z

γ2GxGymaxTpe
e−(TE+t)/Te−|t|/T

′

rect
(

t
Tacq

)
rect

( p
2

)
Fx[Fy[I(x, y)]] (2.3.4)

where
Fx[ f (x)] =

∫ ∞
−∞

f (x)e−iωxtdωx Fy[ f (y)] =
∫ ∞
−∞

f (y)e−iωy pdωy

F−1
x [ f (t)] = 1

2π

∫ ∞
−∞

f (t)eiωxtdt F−1
y [ f (p)] = 1

2π

∫ ∞
−∞

f (p)eiωy pdp

ωx = γGxx ωy = γGymaxTpey

. (2.3.5)

Applying the inverse transform in both dimensions produces a function Q(x, y) = F−1
x [F−1

y [S (p, t)]]:
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Q(x, y) =
α∆z

γ2GxGymaxTpe
F
−1
x [u(t)e−(TE+t)/T] ∗ F−1

x [e−|t|/T
′

] ∗ F−1
x [rect

(
t

Tacq

)
] ∗ F−1

y [rect
( p

2

)
] ∗ I(x, y)

Q(x, y) =
α∆zTT′TAcq

4π4γ2GxGymaxTpe
e−TE/T

(
1 + iTωx

1 + T2ω2
x

)
∗

(
1

1 + T′2ω2
x

)
∗ sinc

(
TAcq

2
ωx

)
∗ sinc

(
ωy

)
∗ I(x, y).

where the unit step function u(t) has been included to facilitate the use of Fourier transform tables [123]. The

function Q(x, y) is the desired image I(x, y) convolved with something resembling a point spread function

except that the first convolution term has an imaginary component that does not collapse into a delta function.

To avoid this problem, the real part of Q(x, y), also called the absorption part, is taken as the acquired image

I(x, y)

I(x, y) = I(x, y) ∗ PSF(x, y)

PSF(x, y) ∝ e−TE/T
(

1
1+T2ω2

x

)
∗

(
1

1+T′2ω2
x

)
∗ sinc

(TAcq
2 ωx

)
∗ sinc

(
ωy

)
.

(2.3.6)

which is a version of the desired image I(x, y) blurred by the point spread function PSF(x, y). The image

resolution is limited by the width of the PSF at half its maximum value since two points placed that far apart

would be blurred by the PSF into a single wide peak. Although this analysis was limited to regions where T

and T′ are constant, these parameters vary throughout the material making the image resolution dependent

on position.

In figure 2.14, the point spread function’s convolution factors are plotted along the frequency

encoded direction (x) for a spin-echo image using typical parameters. In order to increase image resolution

along x, the convolution terms must be narrowed by increasing any of the quantities GxTAcq, GxT2, and

GxT ′2. Now the spin-spin relaxation time T2 is an intrinsic property of the material and thus beyond our

control but T ′2 is a function of Bo homogeneity and is partially under the control of the MRI system’s

designer and, through the shim coils, its operator. However, as shown in the figure, the quantity GxTAcq is

typically most important for image resolution [32] where the maximum value of Gx is set by the gradient

system performance and the maximum acquisition time is set by the bandwidth of the NMR signal reception

electronics through TAcq = 1/BW.

Although this analysis shows that image resolution in the frequency-encoded direction is usually

limited by the MRI equipment, image quality is not always improved by increasing the strength of Gx and the

length of TAcq. For example, since there is a limited equilibrium magnetization (equation 2.2.19) from which

to extract signal; as the image resolution increases the signal to noise ratio steadily decreases until eventually

a more powerful, and expensive, super-conducting magnet is needed. Moreover, concentrating solely on

long TAcq is counter-productive since the signal reception electronics must have a variable bandwidth, narrow

for high resolution and wide for a broad field of view.
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Figure 2.14: The point spread function components estimated using human white brain matter (T2 ≈ 67 ms
[73, pg 229], T ∗2 ≈ 53 ms [95], T ′2 ≈ 1/

((
1/T ∗2

)
− (1/T2)

)
= 253 ms) in a Tim Trio 3 T MRI with maximum

acquisition time 2 ms (computed from RF receiver bandwidth of 500 Hz [125, pg 586]), and Gx = 40 mT/m
[125, pg 585]. The full width half max (FWHM) of this point spread function is 0.2 mm giving a theoretical
resolution of 0.4 mm.
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2.4 Summary

The physics included in this chapter started with electromagnetism and built to a description of

image formation in MRI. With respect to electromagnetics, the spherical harmonics of fields and potentials

in a quasi-static source-free region were described along with eddy currents and mutual- and self-inductance.

As far as NMR and MRI are concerned, the Bloch equations (equation 2.2.22 or 2.2.24) and their special-

case solutions (equations 2.2.8 and 2.2.23) were presented along with the point spread function.



47

Chapter 3

Required Engineering

As mentioned in the introduction, this thesis introduces a new method of controlling the effects of

eddy currents produced by the gradient system. In order to understand this method it must be placed within

the context of gradient system engineering and electronic control system design. Thus we now adjust our

gaze to take a broad survey of the MRI’s gradient system – emphasizing the design of gradient coils, the

problem of eddy currents, as well as standard solutions to that problem – and present those parts of both

control-system theory and practice which will be of use in subsequent chapters.

3.1 Practical Gradient System Considerations

3.1.1 Gradient System Engineering

As mentioned in section 2.3, the ability to produce switched magnetic field gradients is central to

the formation of magnetic resonance images. An MRI’s gradient subsystem includes x, y, and z gradient

coils through which current waveforms with bandwidths up to 100 kHz flow. These currents, which may

be as great as 600 A, are produced by gradient amplifiers that have peak output voltages as high as 1.2 kV

[84] and often employ pulse width modulation (PWM) in their output stages to avoid over-heating [113] –

since the output transistors are either fully on or fully off at any instant when using PWM, minimal energy

is dissipated as heat in the amplifier. When the gradient coils and amplifiers are combined, they produce

gradient fields over a spherical region roughly 50 cm in diameter that are as strong as 0.040 T/m and may

slew at a rate of 180 T·m−1 · s−1 [125, pg 585]. The other field production coils, the shim coils used for

fine adjustments, also require their own amplifiers, albeit with significantly lower power than the gradient

amplifiers.

Fundamentally the gradient system is limited by peripheral nerve stimulation (PNS) [41, 119, 61]

caused by the electric fields produced as a gradient field slews. The first sign of this effect is a slight tap-
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ping/tingling sensation that may become painful as dB
dt increases1. PNS puts an upper limit on the maximum

patient volume over which a certain gradient slew rate can be used and thus strongly slewing gradients must

be applied using small gradient coils placed around a specific part of the patient’s anatomy. Also with re-

spect to patient safety, it is important that the mechanical design of the gradient coils be such that the loud

acoustic vibrations, produced by the Lorentz force2 on the current in the coils, do not damage the patient’s

hearing.

Although PNS and acoustic noise impose fundamental safety limitations, most of the effort in

gradient system design is directed towards producing strong gradient waveforms that are also accurate in

both space and time, while maximizing the bore space available for the patient and keeping the power

requirements, and thus gradient amplifier cost, down. Production of a spatially accurate gradient field, or an

arbitrary spherical harmonic for shim adjustment, requires a design algorithm which takes a field profile as

an input and produces a coil winding path. When current flows along this path it must produce the desired

field profile while keeping inductance L low and the strength of the harmonic per unit current η high. If we

use the root mean square deviation of the actual field Bactual from the desired field Bdesired over a region of

interest V as a measure of how well the design achieves the desired field, these factors can be combined in

a figure of merit [130]

β =
η2/L√

1
V

∫ (
Bactual(x,y,z)
Bdesired(x,y,z) − 1

)2
dV

(3.1.1)

providing a simple point of comparison between coils of the same radii produced by different algorithms.

Although spatial accuracy is a result of coil geometry, temporal accuracy is hindered by the eddy

currents which are induced in nearby conductors, primarily the magnet cryostat, which produce their own

distorting fields as the coil currents switch. Excluding gradient coils specialized for a specific anatomy,

limitations on bore space require that the field production coils be placed as close to the cryostat as possible.

For this reason, efforts are made to minimize flux linkage to the cryostat while keeping coil inductance, and

thus peak power requirements, small. Eddy currents are also a problem for the main magnet designer as they

deposit significant heat into the magnet cryostat which complicates magnet thermal design and contributes

to the loss of cryogenic helium by boiling.

3.1.1.1 Gradient and Shim Coil Design

The coils that Golay [35] embroidered, just as pictures are embroidered with thread into cloth, are

early examples of harmonic production coil design. He attached those coils to the pole faces of his NMR

magnet and used them to correct magnetic inhomogeneity. Today, there are many mathematical and/or

1Although PNS must be kept below painful levels, it is imperceptible in most scans [33].
2For 600 A flowing through a wire in a 3 T magnetic field the Lorentz force is 180 N/cm. This current may be switching at

several kHz.
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computational techniques used to design gradient and shim coils3 but since the design of these coils is not

our primary aim, the methods will be described in broad overview rather than mathematical detail.

One plan for the design of harmonic production coils is to use lines, arcs, rings or other current

elements in order to produce the desired spherical harmonic while cancelling undesired harmonics. A very

simple example of this technique is the Maxwell pair z-gradient coil in which current runs in opposite

directions through two circular rings that are placed on a common axis and spaced such that the third order

zonal harmonic cancels. A general mathematical framework for this method is given by Roméo and Hoult

[111] and can be used to build more complicated coils such as the x-gradient coil shown in figure 3.1a).

Unfortunately, coils designed with this method are highly sensitive to wire placement errors and are not

easily optimized for anything other than the desired magnetic field.

The second plan starts with a generalized current distribution, describes it mathematically, and

then optimizes it to produce the desired magnetic field. This plan has a significant advantage over the first in

that, in addition to producing a desired harmonic, the coil patterns can be optimized with respect to power

consumption [50], self-inductance [130], acoustic noise [17], and other criteria. Turner’s target field method

[129], which forms the basis for much subsequent work, describes a continuous current distribution on a

cylinder of infinite extent in terms of Fourier transforms along the axial and azimuthal directions and these

transforms are used to write the associated Bz field as a Fourier-Bessel series. Then a desired magnetic field,

called a target field, is specified – either analytically or numerically, point by point – and the coil’s current

distribution is found by inverting the Fourier-Bessel expression for the Bz field. Now the infinite extent of

the cylinder is a notable weakness in the original target field method but subsequent work has removed this

restriction [19, 34, 120]. To actually construct a coil, however, the current distribution is truncated to a finite

length and discretized into individual wires by following the contours of its stream function [12] – since

the current distribution is confined to a cylindrical surface, the vector potential associated with the current

distribution (remember from equation 2.1.6 that ∇ · J = 0 when ρ = 0) has a single vector component in

the cylindrically radial direction, the scalar value of which is the stream function. An important departure

from the target field approach, although it still employs a stream function, is the power-minimization-matrix

method of Hoult and Deslauriers [50] in which the magnetic field is expressed directly in terms of spherical

harmonics. In that method a finite length cylinder is split into discrete rings with the current on each ring

described with a Fourier series. The Fourier coefficients on each ring are related to the Bz harmonics and

this results in a rectangular matrix which can be inverted using the Moore-Penrose inverse [6] to find the

current coefficients given a desired Bz harmonic while minimizing power.

Although methods discussed so far employ orthogonal functions in the description of the mag-

netic field, coils have been designed with a combination of the Biot-Savart law and varying degrees of

computational brute force, such as simulated annealing [20] and conjugate gradient descent [138]. These

3Many of those developed before 1993 are summarized by Turner [131].
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Figure 3.1: In a) a simple saddle-shaped x-gradient coil is made from discrete current elements arranged
such that spherical harmonic T3,1 is nulled [111, fig 8b]. Below the coil diagram, a contour plot of the coil’s
Bz field in the xz-plane is shown over the whole coil b). In c) the contour plot only covers a small region near
the centre of the coil – the dotted ellipse encloses a region in which the spatial field variation is primarily a
x-gradient (Gx = dBz/dx). In d) the x-gradient coil has been designed using a generalized wire distribution
such that unwanted harmonics up to and including T9,1 have been nulled. As can be seen from the Bz contour
plots e) and f), this second coil produces a much larger region of constant Gx.
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techniques allow gradient and shim coils to be wound on geometries including discs [97], planes [2], and

domes [70, 115] to accommodate special considerations. Indeed, there are now computational techniques

that allow the winding of gradient coils on any arbitrary surface [98, 100]4. Yet other techniques, in an

attempt to provide more degrees of freedom during coil optimization, allow the wire to have a fully three

dimensional structure rather than constraining it to a surface [116, 134].

With respect to eddy currents, an important requirement for gradient coils is that they produce

minimal flux linkage to surrounding conductors, especially the cryostat. A passive shield can be made from

a thick conducting sheet or mesh but then eddy currents flow in the shield rather than the cryostat. However

for a coil surrounded by a passive shield, the magnetic fields, including those produced by eddy currents,

can be computed and the coil design altered to restore homogeneity [132] – albeit for a limited time period.

More conventionally, the flux interacting with the cryostat may be minimized as part of the gradient coil

design [13, 78, 79, 120] and this usually involves building the coil in layers, with current through the outer

layers actively cancelling the field outside the coil; coils of this kind are called “actively shielded”. Since

the cryostat is the most important host for eddy currents, there have also been efforts to integrate the design

of the cryostat and gradient coils [42]. Essentially all MRI systems are equipped with actively shielded

gradient coils made of multiple layers but these coils require more space than their unshielded counterparts;

moreover they still allow a small amount of flux to escape which induces residual deleterious eddy currents.

These are of greatest concern in localized spectroscopy and echo planar imaging.

3.1.1.2 Residual Eddy Currents

Including the eddy currents following a gradient pulse, Bz can be written [66, 54] as

Bz(t) =

∞∑
m=0

∞∑
n=m

Bz,n,m(t) =

∞∑
m=0

∞∑
n=m

Bza,n,m(t)Tn,m + Bzb,n,m(t)T ′n,m

where Tn,m and T ′n,m are the spherical harmonics from section 2.1.4. The subscript ’z’ on the magnetic

field coefficients Bza,n,m(t) and Bzb,n,m(t) denotes their association with Bz (rather than Bx or By) and the

coefficients have been written as explicit functions of time. Now the magnetic field Bz(t) arises from both

the coil currents and the eddy currents such that Bz(t) = Bcoil
z (t) − Beddy

z (t) which means that each of the

terms Bzab,n,m(t) may be expressed as

Bzab,n,m(t) = Bcoil
zab,n,m(t) − Beddy

zab,n,m(t) (3.1.2)

where the subscript ′ab′ is used rather than writing the equation first for Bza,n,m(t) and again for Bzb,n,m(t).

If we naively ignore oscillatory eddy currents due to mechanical vibration, Beddy
zab,n,m(t) may be approximated

4Gradient coil patterns have even been produced to be wrapped over coffee mugs and tea pots, not for practical reasons but to
demonstrate the generality of the approach. [99]
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with a sum of decaying exponentials

Beddy
zab,n,m(t) =

∑
j

E jab,n,me−t/τ jab,n,m (3.1.3)

each with its own magnitude E jab,n,m and time constant τ jab,n,m.

Now B1 pulse sequences can be designed to minimize the effect that eddy currents have on an

image [108] and the field distortions may be mapped, possibly with an array of NMR probes [80, 5, 139]

but more likely with a specialized MRI image acquisition, allowing the image distortion to be removed

after acquisition [21, 44, 53]. However, the most common solution to this problem is called pre-emphasis

[27, 55, 92] where the combined field from the gradient/shim coils and associated eddy currents is used to

produce the desired field harmonics. This requires that the field distortions be carefully mapped and then

that the current waveforms driven in the coils be shaped such that

Bcoil
zab,n,m(t) = Bdesired

zab,n,m (t) +
∑

j

E jab,n,me−t/τ jab,n,m .

This ensures that Bzab,n,m(t) = Bdesired
zab,n,m (t) where the functions of time Bdesired

zab,n,m (t) are the desired field

harmonics.

Although pre-emphasis is widely used, it makes two assumptions that are not strictly correct, the

first being that the required pre-emphasis current stays the same from scan to scan. Subtle hardware changes

alter the eddy currents so that pre-emphasis currents require frequent re-calibration; so frequently in fact, that

methods have been developed for its simplification [118]. Another common assumption is that the transient

field caused by eddy currents can be corrected by altering the current through the active field production coil.

In other words, it is assumed that the eddy current field has the same spatial profile as the harmonic which

excited it, although with a reduced and opposite amplitude. This is not strictly true since the eddy current

field can be shown to have a spatial profile which includes spherical harmonic components other than those

present in an applied gradient [126]; further, the temporal behaviour of each harmonic may be unique and

difficult to describe with decaying exponentials as in equation 3.1.3. A well-known example in this regard

is the transitory oscillation of the B0 field following a gradient pulse [112], an effect usually associated

with cryostat acoustic resonances. Correcting all such components by the use of pre-emphasis requires

measuring [27] the exponential terms in equation 3.1.3, computing the appropriate currents [68, 103, 58],

and then feeding them through the shim coils. However, the shim coils also produce further eddy currents,

greatly complicating the situation.
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Figure 3.2: A simple echo planar imaging sequence. Signal is acquired with every echo caused by the
alternating lobes of the x-gradient but the tiny ’blips’ on the y-gradient phase encode each echo. If maximum
resolution is desired in a 128×128 pixel image acquired in a time Timage ≈ 2T ∗2 ≈ 100 ms then the x-gradient
is switched at approximately 128/100 ms = 1.28 kHz.

3.1.2 Eddy Currents as a Limitation of the Gradient System

3.1.2.1 Echo Planar Imaging

The problem of eddy currents becomes particularly important whenever the gradient or shim cur-

rents are large and rapidly switched. This occurs in echo planar imaging [77, 73, pg 303] (EPI) where the

gradient field is continuously switched at or near the limits of the gradient system’s performance (figure

3.2). Since EPI can generate a 128x128 pixel image in under 100 ms [8, pg 702], it is useful for imaging

dynamic biological processes such as heart motion and brain function [8, pg 702]. The basic EPI sequence,

which can be modified for specific applications, extends the gradient-echo sequence by producing multiple

gradient echoes from a single excitation pulse. Since each of these echoes is individually phase-encoded,

a complete 2D-image can be acquired before the available signal fades as T ∗2 . However, fast imaging has a

price [8, pg 726]: the eddy currents, and associated distortions shown in figure 3.3, are at their maximum

since the gradients are switching at peak power.

3.1.2.2 Magnetic Susceptibility and Dynamic Shimming

Because it is based on gradient echoes, EPI is also particularly sensitive to B0 inhomogeneity

[56, 107], particularly that caused by variations in magnetic susceptibility [72, 71]. Essentially EPI recon-

struction assumes a certain mapping of phase to position along the phase encoding gradient but this mapping,

and thus the image, is distorted by the additional phase that is accumulated due to spatial variations in the B0

field. Fine adjustment of the shim coil currents can produce a homogeneous B0 field in a small region, but

outside that region these adjustments tend to reduce field homogeneity. Fortunately, to produce an undistor-
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Figure 3.3: Both parts a) and b) are 256× 256 pixel images of a phantom taken with a 3T Siemens Tim Trio
MRI; the vertical direction with respect to the page is phase encoded. The difference is that in a) a spin-echo
imaging sequence was used (201 Hz/pixel) while in b) an EPI sequence was used (752 Hz/pixel). The EPI
image has a reduced image quality compared to the spin-echo image and is characterized by image artifacts
in the phase-encoded direction. These residual artifacts – caused in part by field inhomogeneity and eddy
currents – are especially prevalent around the six circular vials in the top left quadrant of the phantom.
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ted three-dimensional image from a series of two dimensional slices, the field need only be homogeneous

over the slice being scanned at a given moment. Therefore the whole image volume can be dynamically

shimmed [109, 3, 86] by changing the shim coil currents between slices.

Today, dynamic shimming is not yet a standard option on clinical scanners and is usually only

attempted for imaging sequences that are particularly sensitive to magnetic susceptibility effects, including

but not limited to EPI, or at high field strengths where those effects are pronounced. However, as B0 field

strengths continue to increase so will the demand for dynamic shimming and the hardware required for

driving precise current waveforms, rather than static current levels, through the shim coils. Now, unlike the

gradient coils, shim coils are generally not actively shielded – doing so would further tax bore space – so

switching multiple shim coils during dynamic shimming produces complex eddy current fields. Although

these eddy current fields could be mapped and pre-emphasis applied [109] to the complete set of gradient

and shim coils, the task is significantly complicated by the fact that the ideal shim current pulses depend

on all the harmonics of the field and are unique for every image slice, every image sequence, and, due to

anatomical variations, every patient.

3.1.3 Proposed Dynamic Pre-emphasis

With the advent of dynamic shimming, especially when used in conjunction with EPI, the com-

plexity of eddy current fields will increase. It follows that an alternative method of pre-emphasis, which

does not require re-calibration and is easily expandable to a number of harmonics, is desirable. This thesis

proposes dynamic pre-emphasis as an alternative to the previously described static pre-emphasis. In static

pre-emphasis the fields are mapped before image acquisition, even if it is only minutes before in a quick

calibration scan, whereas the goal of dynamic pre-emphasis is to continuously sense the fields and correct

them concurrently with the waveforms that are driven through the gradient and shim coils. Of course such a

scheme requires a sensor that responds very quickly to the field, a mechanism to determine what correction

to apply, and a way to apply that correction.

Fortunately, a harmonic correction can be easily applied by altering the current through the appro-

priate gradient or shim coil and negative feedback, the topic of the next section, can be used to determine

that correction. However, the formidable problem remains of designing a sensor for each Bz harmonic and

then using the sensors in feedback loops to control the current through their respective harmonic production

coils. Since a changing magnetic field induces a voltage in a wire nearly instantly, and previous work shows

how to wrap coils to produce a single harmonic, it is natural to attempt a coil design where the voltage

induced is proportional to only the change in a single Bz spherical harmonic. These spherical harmonic

inductive detection coils could be wound on the surface of a cylinder to fit existing MRI geometry and avoid

interference with the patient. Using gradient coil design and negative feedback as a starting point, this thesis

therefore lays the foundation for dynamic pre-emphasis using spherical harmonic inductive detection coils
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as sensors.

3.2 Electronic Control System Design

Negative feedback control systems [25], which we shall use to control the spherical harmonics

of Bz, have been part of engineering practice since James Watt’s 1769 introduction of the fly-ball governor

for controlling the speed of steam engines [82, 25]. Although J. C. Maxwell, of electrodynamic fame,

analyzed feedback systems mathematically [81], it was the work of Bode, Nyquist, and Black [25, pg 5] –

on amplifiers for telephone systems – which made feedback analysis widely known. This section introduces

feedback theory for both single and coupled systems with a view to the design of a field harmonic control

system.

3.2.1 Single Loop Analysis

The central problem solved by negative feedback is that, for a given process and input, the time

course of the process output is undesirable. In our situation, the process is the combination of a harmonic

production coil, amplifier, and eddy currents while the output is the associated magnetic field harmonic as

a function of time. The solution shown in figure 3.4 is to use an accurate sensor to determine the process

output, compare it with the desired output, and compensate the process input appropriately. The system be-

haviour will then depend primarily on the properties of the sensor (B) and compensator (C) rather than the

process (A). However, system designers must neither under-compensate, producing sub-optimal perform-

ance, nor over-compensate such that the correction exceeds the initial error enough to cause oscillation or

excessive ringing.

For our purposes, we assume that all parts of the system are linear and time independent. That

is, a single frequency input to any system component at any time produces a single frequency output with

amplitude and phase modified according to the value of the component’s transfer function at that frequency.

A transfer function, found either by Fourier or Laplace [123, ch 32] analysis, has a complex number with

magnitude and phase associated with every frequency. Referring back to figure 3.4, we note that the input to

the compensator must be Diff = Input − B
(
Output

)
and thus the total system output is Output = (Diff) CA

which simplifies to:

Output =

( CA
1 + CAB

)
Input =

 1
B

1(
1 + 1

CAB

) Input = (T ) Input (3.2.1)

where T is the feedback system transfer function. The product CAB is called the open loop transfer function

since it describes the system as if the sensor output were not connected to the difference block, but rather

used as the system output. Note that if the absolute magnitude (gain) of the compensator’s transfer function
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Figure 3.4: The canonical negative feedback example. The output of a process (A) is sensed by (B) and the
difference between the sensor’s output and the system’s input is used to determine the input to the process.
Provided that the gain of (CA) is high, the characteristics of the total feedback system depend primarily on
the sensor.

is sufficiently high then the total system transfer function depends primarily on the properties of the sensor(
1
B

)
. However, all system components cause attenuation and phase lag at sufficiently high frequencies. Thus

if the open loop transfer function’s phase lag becomes 180◦ below the critical angular frequency ωc where

the transfer function’s magnitude drops to unity, the system will oscillate. This is because the −180◦ phase

shift causes the difference block to become an addition block which successively adds to the process input

with each pass through the loop. Therefore if the system is to remain stable, there must be a phase margin

(φm = φu + 180◦) between the phase of the open loop transfer function when its magnitude drops to unity

φu and a phase of −180◦; this is the Bode stability criterion.

Many feedback systems can be approximated by assuming that the sensor transfer function is a

real constant over a wide bandwidth and that the process and compensator transfer functions have the form

1/ (αs + 1) where s is the Laplace variable and α is some constant. In this case, using equation 3.2.1, the

total transfer function can be written in the form:

T =
K(

s2/ω2
n + 2ζs/ωn

)
+ 1

(3.2.2)

where K is a constant gain, ζ < 1 is called the damping ratio, and ωn is called the natural frequency. By

inspection of equations 3.2.1 and 3.2.2 the open loop transfer function is

Λ =
ω2

n

s (s + 2ζωn)
(3.2.3)

and the sensor gain is 1
K . Moreover, if the system input is a unit step, then the Laplace transform of the
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Figure 3.5: A simple example showing the characteristic overshoot and slight ringing typical of feedback
systems for various values of damping ratio ζ. Part a) shows the system response to a step input and b) is a
Bode plot of the open loop transfer function. The phase margin can be read from b) as the phase difference
from −180◦ of a transfer function when its magnitude reaches 1. Note that time and frequency are both
normalised to ωn.

system output is T/s which has the following time domain representation:

S tepResponse(t) = K

1 − e−ζωnt sin
( √

1 − ζ2ωnt + arccos ζ
)

√
1 − ζ2

 (3.2.4)

as can be verified from a table of Laplace transforms [101]. In figure 3.5 the step response and open loop

transfer function are plotted for various values of ζ and we see that adjusting the phase margin provides

control over the overshoot and settling time in the step response. Although a phase margin of 45◦ (ζ = 0.42)

is often used since it produces a rapid rise with minimal ringing, the correct choice ultimately depends on

the system under consideration.

Real world control systems are more complicated than the model shown in figure 3.4. For such

systems the reduction rules of figure 3.6 can be used to simplify the block diagrams until they resemble the

canonical system shown in figure 3.4. Once the block diagram is simplified, desired values for overshoot,

rise time, and settling time can be specified and used to choose an appropriate compensator. Often the

compensator has the form κ
s/α+1 where α is chosen so that the open loop transfer function satisfies the Bode

stability criterion and κ is a gain used to increase the magnitude of the open loop transfer function. In some

cases, however, the resulting feedback system is not satisfactory and the compensator must be given the

form
∑

i κ (s/αi + 1) /
∑

j

(
s/α j + 1

)
where the additional terms are intended to cancel similar terms in the

process transfer function. In any event, the use of negative feedback allows an undesirable transfer function

A to be replaced with T = 1/
(
B

(
1 + 1

CAB

))
' 1/B where B and C are specified by the system designer.
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Figure 3.6: These rules [25] are determined from simple algebraic considerations.
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3.2.2 Electronic Control System Implementation and Op-amps.

One way to implement the difference and compensation blocks of a feedback system is to use

operational amplifiers [76, 16, 59, 60] (shown in figure 3.7a). These devices, usually called ’op-amps.’,

multiply the difference between two high impedance (105 − 1012Ω) [60, pg 1.62] electrical inputs, usually

voltage inputs rather than current, by a large amplification factor
(
> 105

)
[60, pg 1.10] and produce the result

as a voltage at their output. If we assume, as shown in figure 3.7a, that an op-amp. has a transfer function

of the form Top =
Av

1+s/ωo
as well as an input error Verr = Vo f f set + Vnoise composed of a constant offset and

random electronic noise [14, 43, 75], then the output with response to V+ and V− at the input terminals is:

Vo = (V+ − V− + Verr) Top.

Normally there are manufacturing variabilities with respect to Av and ω0 so these devices are used within

local feedback blocks which make the transfer function of the block independent of the specific device

parameters. An important ramification of this approach is that the feedback elements define the operation

of the block, earning the operational amplifier its name. These operational blocks, rather than the op-amps.

themselves, are used as building blocks in control systems.

An important op-amp. configuration is shown in figure 3.7b. Analyzing this circuit, we see that

the voltage at the inverting input, marked with a ’-’ sign, has contributions from Vin and Vo

V− =
Z f

Zi + Z f
Vin +

Zi

Zi + Z f
Vo

while the voltage at the non-inverting input, marked with a ’+’ sign, has only a contribution from Vip

V+ =
ZpG

Zip + ZpG
Vip

where the components labelled Z can be composed of resistors, inductors, and capacitors yielding a complex

and frequency dependent impedance. Remembering the op-amp. error, this information is used to translate

the circuit diagram of figure 3.7b into the feedback diagram of figure 3.7c; and the block diagram simpli-

fication rules of figure 3.6 are used to reveal the individual transfer functions from Verr (figure 3.7d), Vin

(figure 3.7e), and Vip (figure 3.7f) to the output. Combining them gives the total output voltage

Vo =

(
ZpG

Zin

Zin + Z f

Zip + ZpG
Vp −

Z f

Zi
Vn +

(
1 +

Z f

Zi

)
Verr

)  1

1 +
(
1 +

Z f
Zi

)
/Top

 (3.2.5)

which is largely independent of Top provided Av is large.

3.2.2.1 Electronic Integrator

The first important operational block can be found from the configuration in figure 3.7b by con-

necting the positive op-amp. terminal directly to ground
(
Vp = Zip = ZpG = 0

)
, choosing the feedback im-
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Figure 3.7: In a) an op-amp. is shown and in b) it is placed in a common configuration with the power
rails hidden for simplicity. In c) the electrical circuit is converted to a feedback diagram and in d,e,f) this
feedback diagram is simplified by assuming that only one of the inputs (Verr,Vp,Vn) is active.
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pedance to be a capacitor
(
Z f = 1

jωC f

)
, and the input impedance to be a resistor Zi = Ri – note that we are

now following electrical engineering convention with j =
√
−1. This causes equation 3.2.5 to simplify to

Vo =

(
−

1
jωRiC f

Vn +

(
1 +

1
jωRiC f

)
Verr

)  1

1 +

(
1 + 1

jωRiC f

)
/Top

 (3.2.6)

which is just Vo = − 1
jωRiC f

Vin if we ignore Verr and Top. Now the transformation jω→ s shows this transfer

function to be the Laplace integration operator 1
s multiplied by a constant and thus this circuit performs

mathematical integration with respect to time on the input signal and produces the result at its output.

Unfortunately this is not a practical circuit because Verr includes a constant offset which, when

integrated, causes the output to rise until it hits the maximum output voltage. To solve this problem, we

choose the feedback impedance to be a resistor and capacitor in parallel Z f =
R f

1+ jωR f C f
rather than a capacitor

alone so that the output is

Vo = −
R f

Ri

(
1

1 + jωR f C f

)
Vn +

(
1 +

R f

Ri

(
1

1 + jωR f C f

))
Verr (3.2.7)

and the zero frequency contribution of Verr to the output is now only
(
1 +

R f
Ri

)
Voffset; this output offset can

be designed to fall within acceptable values for the op-amp. output voltage V0. Since we have changed the

circuit transfer function, this practical integrator now only works on signals with angular frequencies much

larger than ωc = 1
R f C f

.

In the context of feedback systems, the practical integrator may be used as a simple compensator

since it has a transfer function of the form 1
1+s/ω0

. If Zi is also replaced by a capacitor in parallel with a

resistor, rather than using a resistor alone, then the transfer function becomes T = −
R f
Ri

1+ jωRiCi
1+ jωR jC j

and a chain

of these blocks may be used for compensators of the form
∑

i(1+s/αi)∑
j(1+s/α j) .

3.2.2.2 Difference and Instrumentation Amplifiers

Another important operational block sets Zip = Zin = Ri and Z f = ZpG = R f such that the transfer

function in equation 3.2.5 becomes

Vo =

(
R f

Ri

(
Vp − Vn

)
+

(
1 +

R f

Ri

)
Verr

)  1

1 +
(
1 +

R f
Ri

)
/Top

 . (3.2.8)

This block can be used to implement the difference depicted as a circle in figure 3.4 by setting R f = Ri and

ignoring the error terms such that Vo = Vp − Vn. However when using this difference block, also called

a difference amplifier, care must be taken to drive the Vp and Vn inputs with low impedance sources, such

as op-amp. outputs, since the inputs to this block have relatively low impedance unlike the inputs to the

op-amp. itself.
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Figure 3.8: The instrumentation amplifier is a configuration of three op-amps. which amplifies the difference
between VinA and VinB without amplifying Vcm. Both VinA and VinB are high impedance op-amp. inputs.

When amplifying a sensor signal one often needs the difference of the voltage at the sensor’s

terminals but the low input impedance of the difference amplifier above would unacceptably modify the

sensor signal. The op-amp. configuration shown in figure 3.8, called an instrumentation amplifier [62],

still uses a difference amplifier but buffers each difference amplifier input with an op-amp. With reference

to figure 3.7a, the input op-amps. are configured such that Zip = 0 and ZpG = ∞ and, for the input

block involving A1, Vn = V2, Zin = RG, and Z f = RA such that VA ' −
RA
RG

V2 +
(
1 +

RA
RG

)
VinA. Now

VinA = Vcm + Vdiff and the high gain of A2 ensures V2 = VinB = Vcm so that applying the same analysis

to the block involving A2 while assuming that RB = RA and that the op-amps. all have the same transfer

function Top we have:

VA =
((

1 +
RA
RG

)
Vdiff + Vcm +

(
1 +

RA
RG

)
Verr1

)
Q

VB =
(
−

RA
RG

Vdiff + Vcm +
(
1 +

RA
RG

)
Verr2

)
Q

(3.2.9)

where

Q = 1/
(
1 + (1 + RA/RG) /Top

)
. (3.2.10)

An important property of this input stage is that there is no gain for Vcm. Assuming that the Verr term in

the second stage is insignificant, we can use equation 3.2.8 to find the instrumentation amplifier output:

Vo =
R f
Ri

(VB − VA) Q

Vo = −
R f
Ri

((
1 +

2RA
RG

)
Vdiff +

(
1 +

RA
RG

) (
Verr2 − Verr1

))
Q2.

(3.2.11)
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The instrumentation amplifier has very high input impedances equal to those of the input op-amps., re-

jects common mode signals, and allows the voltage difference between its input terminals to be amplified.

Moreover, setting the input stage amplification factor does not require careful matching of gains for each

input but can be done by adjusting a single resistor RG.

As we have seen, various op-amp. configurations form operational blocks that are useful in control

system implementation. The difference of two signals is found using the difference amplifier described by

equation 3.2.8; a simple compensator may be formed using the practical integrator of equation 3.2.7; and

the instrumentation amplifier shown in figure 3.8 may be used as a sensor pre-amplifier.

3.2.3 Coupled Feedback Loop Analysis

In engineering practice, feedback systems are designed to be un-coupled such that each system is

responsible for its own output variable. However, there are circumstances – which will manifest themselves

in our field harmonic control system – where each feedback system influences not only its own output

variable but also those of other systems. To quantify this effect, the single loop analysis of section 3.2.1

can be extended to multiple coupled feedback systems. First consider n independent feedback systems each

with its own input, transfer function, and output. Trivially, the inputs may be placed in an input vector and

multiplied by a diagonal transfer function matrix T such that Output = T Input.

Now if the systems are coupled at the process output, with each process influencing many output

variables, and also at the sensor inputs, with each sensor responding to many output variables, we write

DIFF = Input−B Output where B is not diagonal and DIFF is a vector of difference functions. The output

is then Output = C A DIFF, where C is a diagonal matrix but A is not, and a little matrix algebra yields

Output = (I + C A B)−1 C A (Input) = T Input (3.2.12)

where I is the identity matrix. Remembering that every element of the matrices in equation 3.2.12 is a

function of the Laplace variable s, the transfer function from input a to output b is the matrix element

Ta,b, not to be confused with the spherical harmonic, determined by matrix algebra. We can either find

Ta,b as an explicit function of s by using a computer algebra system such as Mathematica or numerically

for every frequency of interest using the discrete Fourier transform. By putting test inputs into the input

vector, such as a step function 1/s, the resulting output variables can be simulated to reveal any undesirable

cross-coupling interactions. Even though the form of equation 3.2.12 is very similar to that of equation

3.2.1, which suggests that the rules of figure 3.6 can be directly applied to coupled feedback systems, this

is not actually the case since matrix multiplication does not commute. Therefore when analyzing coupled

feedback systems we restrict ourselves to symbolic manipulations.
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3.3 Summary

An MRI machine’s gradient system is an impressive piece of engineering which aims to produce

a spatially and temporally accurate magnetic field over a region of interest within the patient. This system’s

accuracy is limited, in part, by the effects of eddy currents induced in nearby conductors. Established

techniques to reduce these effects become difficult as the number of switched gradient and/or shim coils

increases. With the inexorable rise in B0 field strengths, there is an associated desire to counter the effects of

magnetic susceptibility by dynamically switching the currents through the shim coils. Therefore, we have

proposed dynamic rather than static pre-emphasis to mitigate the influence of eddy currents without the need

for complex a priori calibrations.

Since dynamic pre-emphasis uses negative feedback – a standard technique in electronic design

– we briefly introduced the subject, including its implementation with op-amps. Dynamic pre-emphasis

requires the operation of coupled feedback loops, so a theory was developed in section 3.2.3 allowing us

to determine whether the coupling between feedback loops causes the system’s behaviour to depart sig-

nificantly5 from that of uncoupled loops. Although this theory of coupled feedback loops flows naturally

from that of single loops, and has most probably been investigated by others, I was unable to find it in the

literature.

For dynamic pre-emphasis to be actually employed, sensors must be developed that are able to

continuously detect the harmonics of the field during the rise time of the gradients without obstructing the

patient’s access to the magnet bore.

5A theory allowing the actual synthesis of coupled feedback systems is beyond the scope of this thesis.
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Part II

The Theory
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Prologue

Section 3.1.3 introduced a central goal of this thesis: to produce a wire pattern such that the voltage

induced in it is proportional to the rate of change of a single harmonic of Bz. The first step in achieving this

goal is to compute the voltage induced in a wire pattern by the change in a single harmonic through equation

2.1.12. Now we know from section 2.1.3 that in a source-free region small enough to be quasi-static for

frequencies of interest, the Cartesian components of the magnetic field, vector potential, and magnetic scalar

potential may be expressed in spherical harmonics. Although these functions have interrelated harmonic

coefficients, we do not yet know how to identify which harmonics of the vector potential are associated with

a particular harmonic of Bz. Therefore in chapter 4, section 4.1 outlines how to find these relationships and

section 4.2 uses them to develop a design method for harmonic detection coils.

Since the harmonic detection coils cannot control eddy currents on their own, the theory required

for a whole spherical harmonic feedback system is developed in chapter 5 where section 5.2 gives an over-

view of the design of such systems and insight into important trade-offs. Since image quality is of the utmost

importance, section 5.3 closes the chapter with a technique for optimizing the feedback systems with respect

to minimal image degradation arising from field noise and eddy current distortion.
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Chapter 4

Designing a Spherical Harmonic Inductive

Detection Coil

4.1 Fields and Potentials in Spherical Harmonics

As already mentioned, the goal of this section is to determine what transverse field, vector potential

and scalar potential correspond to a given magnetic field in a quasi-static source-free region (section 2.1.4)

so that they can be used to design a detection coil’s wire distribution. From Gauss’s Law for magnetic

field (section 2.1) we know that magnetic field exists in closed loops. Therefore if a magnetic field has

spatial variations in a region of interest, they are accompanied by relationships between the field’s Cartesian

components. Although the derivations are difficult, the result (section 4.1.3) is worth the effort since it

provides a succinct description of the fields and potentials with a single set of coefficients and is quite easy

to apply (see section 4.1.4). Much of the analysis in this section and section 4.2 is adapted and expanded

from a paper by Edler and Hoult [28].

4.1.1 The Magnetic Scalar Potential

Our first step is to focus on the magnetic scalar potential since it is simpler than the vector poten-

tial. Starting with the total Bz field in spherical harmonics:

Bz =

∞∑
m=0

∞∑
n=m

Bz,n,m =

∞∑
m=0

∞∑
n=m

Bza,n,mTn,m + Bzb,n,mT ′n,m (4.1.1)

and integrating term by term with respect to z gives magnetic scalar potentials of the form

Ψ0
n,m =

∫
Bz,n,mdz =

1
n + m + 1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

)
+ Qn,m(x, y)

where each scalar function Qn,m(x, y) is independent of z and acts as an integration constant.
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4.1.1.1 Finding Bx and By from the Magnetic Scalar Potential

The harmonics of the scalar potential may be differentiated, using the rules in table 2.3, to determ-

ine the harmonics of Bx and By associated with the harmonics of Bz (section 2.1):

Bx,n,m =
∂Ψ0

n,m

∂x
, By,n,m =

∂Ψ0
n,m

∂y

Bx,n,m =

1
2(n+m+1)

(
−(1 + δm,0)

{
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

}
+

(1 − δm,0)(n + m)(n + m + 1)
{
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

})
+

∂Qn,m
∂x

By,n,m =

1
2(n+m+1)

(
(1 + δm,0)

{
Bzb,n,mTn,m+1 − Bza,n,mT ′n,m+1

}
+

(1 − δm,0)(n + m)(n + m + 1)
{
Bzb,n,mTn,m−1 − Bza,n,mT ′n,m−1

})
+

∂Qn,m
∂y

(4.1.2)

4.1.1.2 Integration Constants and Super-Sectoral Harmonics

In equation 4.1.2, the derivatives of the scalar functions Qn,m(x, y) are unknown and thus the exact

form of the transverse field harmonics is uncertain. To identify these integration constants, we start by

considering the complete scalar potential Ψ

Ψ =

∞∑
m=0

∞∑
n=m

[
1

n + m + 1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

)
+ Qn,m(x, y)

]
where if we define

Ψn,m =
1

n + m + 1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

)
and collect the integration terms together we have Ψ = Q(x, y) +

∑∞
n=0

∑n
m=0 Ψn,m. Now the sectoral harmon-

ics do not depend on z, so we can consider the function Q(x, y) to be a sum of sectoral harmonics

Q(x, y) =

∞∑
p=0

qa,pTp,p + qb,pT ′p,p, (4.1.3)

so that

Ψ =

 ∞∑
p=0

qa,pTp,p + qb,pT ′p,p

 +

 ∞∑
m=0

∞∑
n=m

1
n + m + 1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

) .
Since the first sum is entirely sectoral while the second sum has no sectoral terms (n + 1 , m), the sums may

be unified by making the definition

qa,n ≡
Bza,n−1,n

2n , qb,n ≡
Bzb,n−1,n

2n (4.1.4)
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such that

Qn−1,m =
δn,m

2n

(
Bza,n−1,nTn,n + Bzb,n−1,nT ′n,n

)
(4.1.5)

and the magnetic scalar potential becomes

Ψ =

∞∑
m=0

∞∑
n=m−1

1
n + m + 1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

)
. (4.1.6)

Although equation 4.1.6 seems to be written in Bz harmonics, the physical meaning of the coeffi-

cients Bzab,m−1,m, where n = m − 1, remains unclear since they do not contribute to the Bz field in equation

4.1.1. As a first step in clarifying their meaning we examine the functions Tm−1,m, T ′m−1,n through the Le-

gendre polynomials Pm−1,m defined in equation 2.1.32. That equation shows that when n = m − 1, as it does

for the coefficients Bzab,m−1,m, the polynomial (1−x2)m−1 has terms of maximum exponent 2(m−1), and after

differentiating m − 1 times the maximum exponent is reduced to m − 1 such that the final m differentiations

leave

Pm−1,m(x) = 0. (4.1.7)

Therefore, the functions Tm−1,m,T ′m−1,m are trivial in that they are identically zero everywhere. However

since these functions are zero, their coefficients Bzab,m−1,m need not be. In fact the coefficients play an

important role in the following theory, and thus we give the name ’super-sectoral’ to any spherical harmonic

where n = m − 1.

Let us now turn our attention to the contribution that these coefficients make to the transverse

fields Bx and By. By setting n = m − 1 in equation 4.1.2 we find

Bx,m−1,m = 1
2 (1 − δm,0)(2m − 1)

{
Bza,m−1,mTm−1,m−1 + Bzb,m−1,mT ′m−1,m−1

}
+

∂Qm−1,m
∂x

By,m−1,m = 1
2 (1 − δm,0)(2m − 1)

{
Bzb,m−1,mTm−1,m−1 − Bza,m−1,mT ′m−1,m−1

}
+

∂Qm−1,m
∂y

(4.1.8)

and differentiation of equation 4.1.5 gives

∂Qm−1,m
∂x = 1

2 (1 − δm,0)(2m − 1)
(
Bza,m−1,mTm−1,m−1 + Bzb,m−1,mT ′m−1,m−1

)
∂Qm−1,m

∂y = 1
2 (1 − δm,0)(2m − 1)

(
Bzb,m−1,mTm−1,m−1 − Bza,m−1,mT ′m−1,m−1

) (4.1.9)

such that combining equations 4.1.8 and 4.1.9 produces

Bx,m−1,m = (1 − δm,0)(2m − 1)
{
Bza,m−1,mTm−1,m−1 + Bzb,m−1,mT ′m−1,m−1

}
(4.1.10)

By,m−1,m = (1 − δm,0)(2m − 1)
{
Bzb,m−1,mTm−1,m−1 − Bza,m−1,mT ′m−1,m−1

}
. (4.1.11)

Therefore the super-sectoral coefficients of Bz have physical meaning in that they are related to the sectoral

harmonics of the transverse field. Moreover, by adding and subtracting equations 4.1.10 and 4.1.11 we find
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Bza,m−1,m =
(1+δm−1,0)

(2m−1)

(
Bxa,m−1,m−1 − Byb,m−1,m−1

)
Bzb,m−1,m =

(1+δm−1,0)
(2m−1)

(
Bxb,m−1,m−1 + Bya,m−1,m−1

) (4.1.12)

where Bxab,m−1,m−1 and Byab,m−1,m−1 are sectoral coefficients of the transverse fields from the sums

Bx =
∑∞

m=0
∑∞

n=m Bxa,n,mTn,m + Bxb,n,mT ′n,m
By =

∑∞
m=0

∑∞
n=m Bya,n,mTn,m + Byb,n,mT ′n,m.

Thus the super-sectoral harmonic coefficients Bzab,m−1,m may be computed directly from the harmonics of

the transverse field ~ unlike the vague Q(x, y) functions which they replace.

Now the Bz sum in equation 4.1.1 can be safely extended to super-sectoral harmonics due to

equation 4.1.7 and thus we adjust all the magnetic field sums to absorb the integration constants of the

magnetic scalar potential (super-sectoral harmonics of Bz) so that equations 4.1.1 and 4.1.2 become:

Bz =

∞∑
m=0

∞∑
n=m−1

Bz,n,m, Bx =

∞∑
m=0

∞∑
n=m−1

Bx,n,m, By =

∞∑
m=0

∞∑
n=m−1

By,n,m

Bz,n,m = Bza,n,mTn,m + Bzb,n,mT ′n,m

Bx,n,m =

1
2

[
−

(1+δm,0)
(n+m+1)

(
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

)] (4.1.13)

By,n,m =

1
2

[ (1+δm,0)
(n+m+1)

(
Bzb,n,mTn,m+1 − Bza,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bzb,n,mTn,m−1 − Bza,n,mT ′n,m−1

)]
.

(4.1.14)

Although changing the summation indices has no influence on Bz, the transverse fields now depend on only

two Bz harmonics rather than showing a vague dependence on Q(x, y). Investigating the transverse fields

when n = m−1 reveals that the harmonics Tm−1,m+1, Tm−1,m+1 are zero1 but the harmonics Tm−1,m−1, T ′m−1,m−1

are the sectoral harmonics of the transverse field which arise partly from the integration constants in equation

4.1.2. The coefficients Bzab,m−1,m provide a way to represent the part of the transverse field that is completely

independent of Bz, which arises from currents flowing in the z-direction, within the summation for Bz. Note

that the coefficient Bza,−1,0, which influences the T0,0 component of the magnetic scalar potential, cannot be

defined in this way since the transverse field harmonics T−1,−1,T ′−1,−1 do not exist. Therefore, this coefficient

remains undefined and is the arbitrary offset which may be added to any scalar potential. The coefficients

Bzb,n,0 also remain undefined since T ′n,0 = 0 and so, as far as the field is concerned, they can take any value.

Later, in section 4.1.2.4 we set these coefficients to zero.
1The same logic used to develop equation 4.1.7 applies.
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4.1.1.3 Summary

In summary, by assuming a Bz magnetic field of the form

Bz =
∑∞

m=0
∑∞

n=m−1 Bz,n,m

Bz,n,m = Bza,n,mTn,m + Bzb,n,mT ′n,m
(4.1.15)

a magnetic scalar potential

Ψ =
∑∞

m=0
∑∞

n=m−1 Ψn,m

Ψn,m = 1
n+m+1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

) (4.1.16)

has been found along with the associated transverse magnetic fields

Bx =

∞∑
m=0

∞∑
n=m−1

Bx,n,m, By =

∞∑
m=0

∞∑
n=m−1

By,n,m

Bx,n,m =

1
2

[
−

(1+δm,0)
(n+m+1)

(
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

)] (4.1.17)

By,n,m =

1
2

[ (1+δm,0)
(n+m+1)

(
Bzb,n,mTn,m+1 − Bza,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bzb,n,mTn,m−1 − Bza,n,mT ′n,m−1

)]
.

(4.1.18)

where the coefficients of the super-sectoral harmonics of Bz are defined using equation 4.1.12. These super-

sectoral harmonics have no physical significance for Bz but are the sectoral coefficients of the magnetic scalar

potential which describe the part of the transverse fields unrelated to Bz – that is the sectoral harmonics of

the transverse field. Only the coefficient Bza,−1,0 is devoid of physical significance since it is just an arbitrary

offset of the magnetic scalar potential.

4.1.2 Vector Potential

Determining the vector potential from the magnetic field amounts to finding the inverse curl

A = ∇−1 × B. (4.1.19)

This difficult task is made easier by working in a quasi-static source-free region (section 2.1.4) where both

field and potential may be expressed in spherical harmonics such that the analysis may proceed term by

term. Moreover, working in the Coulomb gauge (section 2.1.2) provides the vector potential with a freedom

which may be exploited to simplify the mathematics.
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4.1.2.1 Differentiating the Vector Potential

We start by computing the field from the harmonics of the vector potential using the relationships:

Ax,n,m = Axa,n,mTn,m + Axb,n,mT ′n,m
Ay,n,m = Aya,n,mTn,m + Ayb,n,mT ′n,m
Az,n,m = Aza,n,mTn,m + Azb,n,mT ′n,m

(4.1.20)

Bx =
∂Az

∂y
−
∂Ay

∂z
, By =

∂Ax

∂z
−
∂Az

∂x
, Bz =

∂Ay

∂x
−
∂Ax

∂y
(4.1.21)

and the derivatives from table 2.3. We find

Bx,n,m =

−
(1+δm,0)

2

{
−Azb,n,mTn−1,m+1 + Aza,n,mT ′n−1,m+1

}
+

−
(1−δm,0)(n+m)(n+m−1)

2

{
−Azb,n,mTn−1,m−1 + Aza,n,mT ′n−1,m−1

}
+

−(n + m)
(
Aya,n,mTn−1,m + Ayb,n,mT ′n−1,m

)
By,n,m =

(1+δm,0)
2

{
Aza,n,mTn−1,m+1 + Azb,n,mT ′n−1,m+1

}
+

−
(1−δm,0)(n+m)(n+m−1)

2

{
Aza,n,mTn−1,m−1 + Azb,n,mT ′n−1,m−1

}
+

(n + m)
(
Axa,n,mTn−1,m + Axb,n,mT ′n−1,m

)
Bz,n,m =

−(1+δm,0)
2

{(
Aya,n,m + Axb,n,m

)
Tn−1,m+1 +

(
Ayb,n,m − Axa,n,m

)
T ′n−1,m+1

}
+

(1−δm,0)(n+m)(n+m−1)
2

{(
Aya,n,m − Axb,n,m

)
Tn−1,m−1 +

(
Axa,n,m + Ayb,n,m

)
T ′n−1,m−1

}

(4.1.22)

where the indices are for the harmonics of the vector potential and not the field. In these equations one

harmonic n,m of Ax or Ay influences two harmonics of Bz and a single harmonic of each transverse field. In

contrast, a single harmonic n,m of Az influences two harmonics of each transverse field but has no influence

on Bz.

Although the harmonics of the vector potential are related to those of the field, it is not immediately

obvious how to invert the relationship. Our first step is to change indices from those of the vector potential

to those of the field and collect terms:

Bx,n,m =

(
1
2 (1 + δm−1,0)Azb,n+1,m−1 +

(1−δm+1,0)(n+m+1)(n+m+2)
2 Azb,n+1,m+1 +

−(n + m + 1)Aya,n+1,m
)

Tn,m+(
−1

2 (1 + δm−1,0)Aza,n+1,m−1 −
(1−δm+1,0)(n+m+1)(n+m+2)

2 Aza,n+1,m+1 +

−(n + m + 1)Ayb,n+1,m
)

T ′n,m

(4.1.23)

By,n,m =

(
1
2 (1 + δm−1,0)Aza,n+1,m−1 −

(1−δm+1,0)(n+m+1)(n+m+2)
2 Aza,n+1,m+1 +

(n + m + 1)Axa,n+1,m
)

Tn,m+(
1
2 (1 + δm−1,0)Azb,n+1,m−1 −

(1−δm+1,0)(n+m+1)(n+m+2)
2 Azb,n+1,m+1 +

(n + m + 1)Axb,n+1,m
)

T ′n,m

(4.1.24)
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Bz,n,m =

1
2

{
−(1 + δm−1,0)

(
Aya,n+1,m−1 + Axb,n+1,m−1

)
+

(1 − δm+1,0)(n + m + 1)(n + m + 2)
(
Aya,n+1,m+1 − Axb,n+1,m+1

)}
Tn,m+

1
2

{
−(1 + δm−1,0)

(
Ayb,n+1,m−1 − Axa,n+1,m−1

)
+

(1 − δm+1,0)(n + m + 1)(n + m + 2)
(
Axa,n+1,m+1 + Ayb,n+1,m+1

)}
T ′n,m

(4.1.25)

Which, considering only Bz (equation 4.1.25) gives

Bza,n,m =

−(1+δm−1,0)
2

(
Aya,n+1,m−1 + Axb,n+1,m−1

)
+

(1−δm+1,0)(n+m+1)(n+m+2)
2

(
Aya,n+1,m+1 − Axb,n+1,m+1

)
Bzb,n,m =

−(1+δm−1,0)
2

(
Ayb,n+1,m−1 − Axa,n+1,m−1

)
+

(1−δm+1,0)(n+m+1)(n+m+2)
2

(
Axa,n+1,m+1 + Ayb,n+1,m+1

) (4.1.26)

but this relationship is a ladder where each harmonic of Bz is influenced by two harmonics of transverse

vector potential. To invert this relationship it seems one would need to know all the harmonics of Bz and

then adjust all the harmonics of the vector potential correctly; a difficult task to say the least.

4.1.2.2 Determining Ax and Ay: A Question of Symmetry

Undaunted, we remember from section 2.1.2 that the vector potential is not unique and any gradi-

ent of a spherical harmonic2 may be added without violating the Coulomb gauge criterion ∇ · A = 0. This

allows a specific vector potential to be selected to simplify equation 4.1.26 and make the inverse curl (equa-

tion 4.1.19) possible. Again, table 2.3 provides us with a means of determining the gradient of symmetric

and anti-symmetric spherical harmonics:

∇Tn,m =

1
2
{
−(1 + δm,0)Tn−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)Tn−1,m−1

}
x̂

1
2

{
−(1 + δm,0)T ′n−1,m+1 − (1 − δm,0)(n + m)(n + m − 1)T ′n−1,m−1

}
ŷ

(n + m)Tn−1,m ẑ

∇T ′n,m =

1
2

{
−(1 + δm,0)T ′n−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)T ′n−1,m−1

}
x̂

1
2
{
(1 + δm,0)Tn−1,m+1 + (1 − δm,0)(n + m)(n + m − 1)Tn−1,m−1

}
ŷ

(n + m)T ′n−1,m ẑ

(4.1.27)

Careful consideration of this gradient reveals that by adding a∇Tn,m to equation 4.1.20, any num-

ber a may be added to Axa,n,m provided it is also subtracted from Ayb,n,m; similarly adding b∇T ′n,m allows

any number b to be added to Axb,n,m provided it is also added to Aya,n,m. Of course adding such terms has

an influence on terms (n − 1,m + 1) in transverse A and (n − 1,m) in Az but the transverse influence can be

2Actually the gradient of any solution to Laplace’s equation.
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controlled by adding gradient terms of successively higher degree. In this way we may constrain the vector

potential such that

Axb,n,m = −Aya,n,m, Axa,n,m = Ayb,n,m (4.1.28)

causing equation 4.1.25 to become

Bz,n,m = (1 − δm+1,0)(n + m + 1)(n + m + 2)
{
Aya,n+1,m+1Tn,m + Ayb,n+1,m+1T ′n,m

}
(4.1.29)

and we pick out the coefficients

Aya,n+1,m+1 =
Bza,n,m

(n+m+1)(n+m+2)

Axa,n+1,m+1 =
Bzb,n,m

(n+m+1)(n+m+2)

(4.1.30)

where we have noted that m , −1 under any circumstance. Using these coefficients with equations 4.1.20

and 4.1.28 reveals a relation between the transverse components of the vector potential and Bz:

Ax,n,m =
Bzb,n,mTn+1,m+1−Bza,n,mT ′n+1,m+1

(n+m+1)(n+m+2)

Ay,n,m =
Bza,n,mTn+1,m+1+Bzb,n,mT ′n+1,m+1

(n+m+1)(n+m+2)

(4.1.31)

leaving only Az,n,m out of reach.

Therefore freedom in the Coulomb gauge has been used to make a harmonic of the transverse

vector potential influence only one Bz harmonic, rather than two as in equation 4.1.22. Instead, this freedom

could have been used to form simple relationships between the harmonics of Bx or By and the vector poten-

tial, but we have chosen to focus our attention on Bz. Stated differently, an infinite set of vector potentials

satisfies the Coulomb gauge criterion ∇ · A = 0 but only a subset allows a simple mapping from harmonics

of Bz to those of transverse vector potential; we have found and chosen that subset.

4.1.2.3 Determining Az: Constraining the Vector Potential

Now in order to find the harmonics of Az we re-arrange equation 4.1.21 as

∂Az

∂y
= Bx +

∂Ay

∂z
. (4.1.32)

but any harmonics of Bx and ∂Ay
∂z or ladder combination thereof could be tried in attempt to find a harmonic

representation of ∂Az
∂y which reveals Az,n,m. However, if we remember that the harmonics of Bx can be found

from equation 4.1.17 via the scalar potential while those of ∂Ay
∂z are found by differentiating equation 4.1.31

such that
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∂Ay,n,m

∂z
=

Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

(n + m + 1)
then we can write equation 4.1.32 using harmonics that are all derived from the same Bz coefficients:

∂Az,n,m

∂y
= Bx,n,m +

Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

(n + m + 1)
(4.1.33)

∂Az,n,m

∂y
=

1
2

[
−

(1+δm,0)
(n+m+1)

(
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

)]
+

Bza,n,mTn,m+1+Bzb,n,mT ′n,m+1
(n+m+1)

.

Fortunately, the right side of this equation is an anti-derivative as seen from combining lines 2 and 5 in table

2.3 so that

Az,n,m =

(
1 − δm,0

) (
−Bzb,n,mTn+1,m + Bza,n,mT ′n+1,m

)
(n + m + 1)

+ C(x, z) (4.1.34)

where C(x, z) is a function acting as a constant of integration.

Now applying these same logical steps starting from ∂Az
∂x =

∂Ax
∂z − By rather than equation 4.1.32

we also find

Az,n,m =
(1 − δm,0)

(
−Bzb,n,mTn+1,m + Bza,n,mT ′n+1,m

)
(n + m + 1)

+ D(y, z) (4.1.35)

and if both equations 4.1.34 and 4.1.35 are true, the integration constants must obey C(x, z) = D(y, z) = E(z).

Note that E(z) has no effect on the magnetic field since B = ∇ × A (equation 4.1.21) guarantees that only x

and y derivatives are ever applied to Az; this means that E(z) is a manifestation of freedom still remaining

in the vector potential. Although the function E(z) could be broken into zonal harmonics, we arbitrarily

constrain the vector potential such that E(z) = 0 yielding

Az,n,m =
(1 − δm,0)

(
−Bzb,n,mTn+1,m + Bza,n,mT ′n+1,m

)
(n + m + 1)

. (4.1.36)

Having found a form for Az,n,m we now ask if there is any alternative to our proposal in equation

4.1.33. We know that the vector potential can be written in spherical harmonics and that equation 4.1.32

is true; therefore by differentiating a single harmonic of Az we see the same pattern of harmonics as in

equation 4.1.33 which is the only pattern possible. Therefore we have stumbled across the correct set of

field harmonics to associate with Az,n,m plus or minus an arbitrary function E(z) which has no influence on

the magnetic field and which we have therefore set to zero. One can also approach this problem starting

with coefficients of Az rather than coefficients of the field but this makes the pattern of harmonics much

more difficult to recognize; in that case, however, the function E(z) arises from zonal harmonics of Az rather

than as an arbitrary integration constant.
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4.1.2.4 Verifying the Vector Potential

The analysis used to determine the vector potential from the field, leading to equations 4.1.31 and

4.1.36, is not a mechanical derivation using straightforward rules like those used to find the scalar potential.

Therefore it is natural to question whether the correct vector potential has actually been found. Fortunately

we have two simple checks that can be used to verify our result, namely ∇×A = B and ∇ ·A = 0. Certainly

the magnetic field as determined from the vector potential should match equations 4.1.15, 4.1.17, and 4.1.18

determined from the scalar potential and the vector potential should still satisfy the Coulomb criterion.

Magnetic field from the vector potential using table 2.3: To find Bz from the vector potential we employ

Bz,n,m =
∂Ay,n,m

∂x
−
∂Ax,n,m

∂y

such that

Bz,n,m =
1

(n + m + 1)(n + m + 2)(1 − δm+1,0)



[
Bza,n,m

1
2
{
−(1 + δm+1,0)Tn,m+2+

(1 − δm+1,0)(n + m + 1)(n + m + 2)Tn,m
}
+

Bzb,n,m
1
2

{
−(1 + δm+1,0)T ′n,m+2+

(1 − δm+1,0)(n + m + 1)(n + m + 2)T ′n,m
}]
−[

Bzb,n,m
1
2

{
−(1 + δm+1,0)T ′n,m+2−

(1 − δm+1,0)(n + m + 1)(n + m + 2)T ′n,m
}
−

Bza,n,m
1
2
{
(1 + δm+1,0)Tn,m+2+

(1 − δm+1,0)(n + m + 1)(n + m + 2)
}]


which simplifies to Bz,n,m = Bza,n,mTn,m + Bzb,n,mT ′n,m as it should. For Bx we have

Bx,n,m =
∂Az,n,m

∂y
−
∂Ay,n,m

∂z

Bx,n,m =

(1−δm,0)
(n+m+1)

[
−Bzb,n,m

1
2

{
−(1 + δm,0)T ′n,m+1 − (1 − δm,0)(n + m)(n + m + 1)T ′n,m−1

}
+Bza,n,m

1
2
{
(1 + δm,0)Tn,m+1 + (1 − δm,0)(n + m)(n + m + 1)Tn,m−1

}]
−

1
(n+m+1)(n+m+2)(1−δm+1,0)

[
Bza,n,m(n + m + 2)Tn,m+1+

Bzb,n,m(n + m + 2)T ′n,m+1

]
which becomes
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Bx,n,m =

(1−δm,0)
(n+m+1)

[
Bzb,n,m

1
2

{
T ′n,m+1 + (n + m)(n + m + 1)T ′n,m−1

}
+Bza,n,m

1
2
{
Tn,m+1 + (n + m)(n + m + 1)Tn,m−1

}]
−

1
(n+m+1)

[
Bza,n,mTn,m+1+

Bzb,n,mT ′n,m+1

]
and then

Bx,n,m =

(
(1−δm,0)

2 −1
)

(n+m+1)

[
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

]
+

1
2 (1 − δm,0)(n + m)

[
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

]
.

This simplifies to

Bx,n,m =

1
2

[
−

(1+δm,0)
(n+m+1)

(
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

)
+

(1 − δm,0)(n + m)
(
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

)]
which is identical to equation 4.1.17 and verification of By,n,m is so similar that it need not be shown. Thus

algebraic brute force verifies that the vector potential gives rise to the correct magnetic field.

Testing that ∇ · A = 0: Again this is merely a matter of algebraic manipulation using derivatives from

table 2.3. The divergence is ∇ · An,m =
∂Ax,n,m
∂x +

∂Ay,n,m
∂y +

∂Az,n,m
∂z where

∂Ax,n,m

∂x
=

[
Bzb,n,m

1
2
{
−(1 + δm+1,0)Tn,m+2 + (1 − δm+1,0)(n + m + 1)(n + m + 2)Tn,m

}
−

Bza,n,m
1
2

{
−(1 + δm+1,0)T ′n,m+2 + (1 − δm+1,0)(n + m + 1)(n + m + 2)T ′n,m

}]
(n + m + 1)(n + m + 2)(1 − δm+1,0)

∂Ay,n,m

∂y
=

[
Bza,n,m

1
2

{
−(1 + δm+1,0)T ′n,m+2 − (1 − δm+1,0)(n + m + 1)(n + m + 2)T ′n,m

}
+

Bzb,n,m
1
2
{
(1 + δm+1,0)Tn,m+2 + (1 − δm+1,0)(n + m + 1)(n + m + 2)Tn,m

}]
(n + m + 1)(n + m + 2)(1 − δm+1,0)

∂Az,n,m

∂z
= (1 − δm,0)

[
−Bzb,n,mTn,m + Bza,n,mT ′n,m

]
.

Collecting the coefficients for various harmonics

Tn,m : Bzb,n,m − (1 − δm,0)Bzb,n,m = 0 where m , 0

T ′n,m : −Bza,n,m + (1 − δm,0)Bza,n,m = 0 where m , 0

Tn,m+2 : (1+δm+1,0)(−Bzb,n,m+Bzb,n,m)
2(n+m+1)(n+m+2)(1−δm+1,0) = 0

T ′n,m+2 : (1+δm+1,0)(Bza,n,m−Bza,n,m)
2(n+m+1)(n+m+2)(1−δm+1,0) = 0
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gives an obvious zero for every case except m = 0. In that case, however, T ′n,0 = 0 so the coefficient of Tn,0

is Bzb,n,0 − (1 − δ0,0)Bzb,n,0 = Bzb,n,0 and thus we require that Bzb,n,0 = 0 to satisfy the Coulomb criterion.

Note that until now the coefficients Bzb,n,0 have not had any definition with regard to the field since T ′n,0 is

everywhere zero but these coefficients do influence the vector potential so we must set Bzb,n,0 = 0 for the

vector potential to remain a member of the Coulomb gauge.

4.1.3 Relationships between Fields and Potentials

In a quasi-static source-free region the mathematics above allows one set of coefficients to be used

to describe the complete vector magnetic field, vector potential, and scalar potential. These coefficients can

either be thought of as the spherical harmonic coefficients of the magnetic scalar potential or those of Bz plus

some terms for sectoral Bxy. Each coefficient represents a complete and independent solution to Maxwell’s

equations, albeit in a quasi-static source-free region, and these solutions can be built up to describe any

physically realizable solution therein. To make the results of this analysis clear, table 4.1 presents all the

important relationships between the fields and potentials with their respective equation numbers. In that

table, Ψ0 is an arbitrary number, E is an arbitrary sum of zonal harmonics and the coefficients Bza,n,m and

Bzb,n,m are usually the spherical harmonic coefficients of the Bz field. However when m = 0 we set Bzb,n,0 = 0

since it would otherwise remain undefined; and when n = m− 1, the super-sectoral case, the coefficients are

derived using the equations in table 4.2.

4.1.4 Examples

Despite their difficult derivation, the relationships in table 4.1 are easily applied. As a first ex-

ample, consider a uniform z-directed magnetic field produced within an infinitely long solenoid. Here only

the coefficient Bza,0,0 = 1 is non-zero and the equations from table 4.1 give

Bx = 0 Ax = − 1
2 T ′1,1 = −y

By = 0 Ay = 1
2 T1,1 = x

Bz = 1 Az = 0

Ψ = T1,0 = z

since T ′0,0 = T0,1 = T ′0,1 = 0. Note that there are no transverse fields, as is expected within a solenoid, and

that the potentials do indeed produce Bz = 1. All the information about the potentials and transverse fields

can be immediately found from knowledge of Bz.

Increasing the field complexity slightly, let us now consider a magnetic field where only the coef-

ficient Bza,1,0 = 1 differs from zero; this is a z-gradient which may be produced by passing current through

a Maxwell coil as seen in figure 4.1a. In this case the equations from table 4.1 give
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Equation Equation Number
Bx =

∑∞
m=0

∑∞
n=m−1 Bx,n,m

By =
∑∞

m=0
∑∞

n=m−1 By,n,m

Bz =
∑∞

m=0
∑∞

n=m−1 Bz,n,m

Ψ = Ψ0 +
∑∞

m=0
∑∞

n=m−1 Ψn,m

Ax =
∑∞

m=0
∑∞

n=m−1 Ax,n,m

Ay =
∑∞

m=0
∑∞

n=m−1 Ay,n,m

Az = E +
∑∞

m=0
∑∞

n=m−1 Az,n,m

Bx,n,m = 1
2(n+m+1)

{
−(1 + δm,0)

{
Bza,n,mTn,m+1 + Bzb,n,mT ′n,m+1

}
+

(1 − δm,0)(n + m)(n + m + 1)
{
Bza,n,mTn,m−1 + Bzb,n,mT ′n,m−1

}} 4.1.17

By,n,m = 1
2(n+m+1)

{
(1 + δm,0)

{
Bzb,n,mTn,m+1 − Bza,n,mT ′n,m+1

}
+

(1 − δm,0)(n + m)(n + m + 1)
{
Bzb,n,mTn,m−1 − Bza,n,mT ′n,m−1

}} 4.1.18

Bz,n,m = Bza,n,mTn,m + Bzb,n,mT ′n,m 4.1.15

Ax,n,m =
Bzb,n,mTn+1,m+1−Bza,n,mT ′n+1,m+1

(n+m+1)(n+m+2) 4.1.31

Ay,n,m =
Bza,n,mTn+1,m+1+Bzb,n,mT ′n+1,m+1

(n+m+1)(n+m+2) 4.1.31

Az,n,m =
(1−δm,0)
(n+m+1)

(
−Bzb,n,mTn+1,m + Bza,n,mT ′n+1,m

)
4.1.36

Ψn,m = 1
n+m+1

(
Bza,n,mTn+1,m + Bzb,n,mT ′n+1,m

)
4.1.16

Table 4.1: The equations above are written with indices for the spherical harmonics of Bz and are copied
from the equation numbers listed.

Equation Equation Number
Bza,m−1,m =

(1+δm−1,0)
(2m−1)

(
Bxa,m−1,m−1 − Byb,m−1,m−1

)
4.1.12

Bzb,m−1,m =
(1+δm−1,0)

(2m−1)

(
Bxb,m−1,m−1 + Bya,m−1,m−1

)
4.1.12

Table 4.2: The super-sectoral coefficients are derived from the sectoral components of the transverse fields
and have no physical significance for the Bz field.
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Bx = − 1
2 T1,1 = −1

2 x Ax = −1
6 T ′2,1 = − 1

2 yz

By = − 1
2 T ′1,1 = −1

2 y Ay = 1
6 T2,1 = 1

2 xz

Bz = z Az = 0

Ψ = 1
2 T2,0 = 1

4

(
2z2 − y2 − x2

) (4.1.37)

where the transverse fields match those produced about the centre of a Maxwell coil (see figure 4.1c-d)

and the transverse fields exist to support the field Bz = z. Again, the transverse fields and potentials are

found with ease from the knowledge that Bz = z. However, as the region of interest within the Maxwell coil

increases, a single coefficient Bza,1,0 = 1 is no longer sufficient to describe the field within that region – more

coefficients are required.

Thus far we have considered examples where Bz , 0; however, when the current is entirely in the

z-direction the Bz field vanishes and only super-sectoral coefficients are required. The field associated with

the first of these coefficients Bza,0,1 = 1 is

Bx = 1
2 T0,0 = 1

2 Ax = 0

By = 0 Ay = 0

Bz = 0 Az = 1
2 T ′1,1 = 1

2 y

Ψ = 1
2 T1,1 = 1

2 x

(4.1.38)

and exists in the half-space where y < 0 provided that a uniform current flows in the z-direction over the

entire zx-plane. Although this is merely a uniform Bx field, note how table 4.2 can be used to determine that

Bza,0,1 = 2Bxa,0,0 since Bx = 1
2 T0,0.

A slightly more interesting super-sectoral example is Bza,1,2 = 1. Yet again tables 4.1 and 4.2 can

be used to determine the associated fields and potentials:

Bx = 3
2 T1,1 = 3

2 x Ax = 0

By = − 3
2 T ′1,1 = − 3

2 y Ay = 0

Bz = 0 Az = 1
4 T ′2,2 = 3

2 xy

Ψ = 1
4 T2,2 = 3

4

(
x2 − y2

)
.

(4.1.39)

which may be physically realized, as shown in figure 4.1e-f, using a cylindrical array of current filaments.

Just as within the Maxwell coil, the field produced within this array can be accurately described with a single

harmonic coefficient (Bza,1,2) provided that the region of interest is not too large.

These examples demonstrate that each harmonic coefficient represents a physically realizable field

configuration, at least within a quasi-static region of interest. Moreover, the super-sectoral harmonics in-

troduced in section 4.1.1.2 have a simple interpretation: they correspond to allowable field configurations
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Figure 4.1: In a) we see the field produced by a Maxwell coil in the zy-plane. The arrows point in the direc-
tion of the field while the contours correspond to the values of Bz. Parts b-d) each plot a single component of
the magnetic field produced by the Maxwell coil along an axis. In e), sixteen infinitely long filaments carry
current in the z-direction. The contours correspond to values of Bφ while the arrows point in the direction of
the field as before. In f) the field By arising from the current filaments is plotted along the x-axis; the plot of
Bφ along any axis in the zy-plane passing through the origin has the same shape.
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where Bz = 0. Given a series of harmonic coefficients, the equations of table 4.1 provide simple3 and direct

access to a polynomial representation of the fields and potentials in terms of the coordinates x, y, z. The

relationships developed in this section may be useful for a broad range of problems.

4.2 Determining the Coil Pattern

Using the relationships developed in the last section, our goal is now to produce a wire pattern

where the sum of the voltages induced by a changing magnetic field cancel for every Bz harmonic except one.

Then the voltage measured at the coil leads is proportional to the time derivative of that unique harmonic.

The design processes for harmonic detection and harmonic production (gradient/shim) coils (chapter

3.1) are similar in that both seek an optimum wire pattern on the surface of a cylinder. However, upon invest-

igation of target field methods (section 3.1.1.1), we see that there are no target field points readily available

in the detection problem. Therefore, a method is used which describes the field in terms of an orthogonal

basis set and since shim coils have been designed along these lines by Hoult and Deslauriers [50], it is their

general mathematical pathway which we follow.

4.2.1 Voltage induced in a Wire Distribution

From equation 2.1.12, the voltage induced in an elementary length of wire dl at some point P

on the surface of a cylindrical coil former is dV = − (∇Θ) · dl − ∂
∂t A · dl where Θ is the electric scalar

potential from equation 2.1.8. Now as a point of clarification, the mathematics of this section uses two kinds

of points: as shown in figure 4.2, we use spherical coordinates (r, θ, φ) for the field points and spherical

( f , α, ψ) or cylindrical (z,R, ψ) coordinates for the location of elementary wires. Now if we have at P several

such elementary wire lengths in parallel covering a width ds, with each length being ultimately in series as

part of a single distributed winding, then the induced voltage at P is dV = −(Wds) ∂∂t A · dl where W is the

wire winding density in wires per meter and the contribution from Θ is dropped because the path eventually

forms a closed loop. If da is the elementary area dsdl, then for the entire winding

V = −
d
dt

∫
A ·Wda ≡ −

d
dt

∫
Φda ≡ −

d
dt

ΦT (4.2.1)

where W is the vector winding density which lies on the cylinder’s surface, Φ is magnetic flux linkage at

point P, and ΦT is the total flux linkage (equation 2.1.13). We must now deduce W over the surface of the

cylinder such that V = 0 for all potentials A but that desired. If, inside a sphere that encompasses the coil

former, we now write the vector potential A as a sum of spherical harmonics arising from the magnetic field

B according to the equations of section 4.1, we may compute the integral ΦT =
∫

A ·Wda over a cylindrical

surface with radius R.
3Converting the spherical harmonics Tn,m and T ′n,m into polynomials can be time consuming by hand but is easy to automate

with a computer algebra system.
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Figure 4.2: In a) a field or potential point has spherical coordinates (r, θ, φ) but source points, actually
voltage induction points in this case, have coordinates ( f , α, ψ). In b) the cylindrical coil former coordinates
(z,R, ψ) of a wire density element are shown with equivalent spherical coordinates ( f , α, ψ). The coil former
dimensions R and L are fixed.

We express the wire density on the surface of the coil former W as a Fourier series:

Wz(z, ψ) = F j(z) sin( jψ)

Wψ(z, ψ) = G j(z) cos( jψ)
(4.2.2)

where j is an integer and the relation

F j(z) =
j
R

∫
G j(z)dz (4.2.3)

ensures the condition ∇ ·W = 04 is met. Choosing Wψ to depend on cos( jψ) rather than sin( jψ) restricts

our calculation to the detection of Bz,n,m = Bza,n,mTn,m but we can easily extend the result to T ′n,m by rotating

the wire density. Using this wire density, the contribution to the total flux linkage at point P(R, ψ, z) (or

P( f , α, ψ) in spherical coordinates) is

Φda = A ·Wda =
(
(−Ax sinψ + Ay cosψ)Wψ + AzWz

)
dzRdψ (4.2.4)

and the flux linkage to a complete cylindrical wire density can be found by integrating this equation over ψ

and z with R kept fixed.

4This is just the continuity equation 2.1.6 adapted for the winding density.
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4.2.2 Integrating the Vector Potential

We start the vector potential integral by employing equations 4.1.31 and 4.1.36 so that the integral

of a single harmonic term in equation 4.2.4 becomes

Φn,m = R
∫ L

−L

∫ π

−π


−

Bzb,n,mTn+1,m+1−Bza,n,mT ′n+1,m+1
(n+m+1)(n+m+2) sin(ψ)G j(z) cos( jψ)+

Bza,n,mTn+1,m+1+Bzb,n,mT ′n+1,m+1
(n+m+1)(n+m+2) cos(ψ)G j(z) cos( jψ)+

(1−δm,0)
(n+m+1)

(
−Bzb,n,mTn+1,m + Bza,n,mT ′n+1,m

)
F j(z) sin( jψ)

 dψdz.

Collecting terms we have

Φn,m = R
∫ L

−L

∫ π

−π

(
(C1 + C2) G j(z) + (C3 + C4) F j(z)

)
dψdz

where

C1 =
Bza,n,m cos(ψ) − Bzb,n,m sin(ψ)

(n + m + 1)(n + m + 2)
cos( jψ)Tn+1,m+1( f , α, ψ)

C2 =
Bzb,n,m cos(ψ) + Bza,n,m sin(ψ)

(n + m + 1)(n + m + 2)
cos( jψ)T ′n+1,m+1( f , α, ψ)

C3 = −

(
1 − δm,0

)
Bzb,n,m

(n + m + 1)
sin( jψ)Tn+1,m( f , α, ψ)

C4 =

(
1 − δm,0

)
Bza,n,m

(n + m + 1)
sin( jψ)T ′n+1,m( f , α, ψ).

This leaves four separate integrals which may be added to find the total flux linkage due to a single Bz

harmonic

Φn,m = ∆zR
[
(I1 + I2) G j(z) + (I3 + I4) F j(z)

]
, Ik =

∫ L

−L

∫ π

−π
Ckdψdz. (4.2.5)

4.2.2.1 I1

Starting with I1 we have

I1 =

∫ L

−L

∫ π

−π

f n+1Pn+1,m+1(cosα)
(
Bza,n,m cos(ψ) − Bzb,n,m sin(ψ)

)
(n + m + 1)(n + m + 2)

cos( jψ) cos((m + 1)ψ)dψdz

where we remember that the integral of an odd function over an even interval such as −π to π is zero such

that the contribution of Bzb,n,m sin(ψ) cos( jψ) cos((m + 1)ψ) to this integral is equal to zero. Therefore we are

left with
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I1 =

∫ L

−L

f n+1Pn+1,m+1(cosα)Bza,n,m

(n + m + 1)(n + m + 2)
dz

∫ π

−π
cos(ψ) cos( jψ) cos((m + 1)ψ)dψ

and a little trigonometric manipulation gives

∫ π

−π
cos(ψ) cos( jψ) cos((m + 1)ψ)dψ = 1

2

∫ π

−π
cos((m + 1)φ) (cos(( j + 1)φ) + cos(( j − 1)φ)) dψ

= π
2

(
δm+1, j+1 + δm+1,− j−1 + δm+1, j−1 + δm+1,1− j

)
so that the integral becomes

I1 =
π

2

∫ L

−L

f n+1Pn+1,m+1(cosα)Bza,n,m

(n + m + 1)(n + m + 2)
dz

(
δm, j + δm,− j + δm,− j−2 + δm, j−2

)
where δa,b is the Kronecker delta function.

4.2.2.2 I2

In a similar fashion to I1, the contribution to

I2 =

∫ L

−L

∫ π

−π

f n+1Pn+1,m+1(cosα)
(
Bzb,n,m cos(ψ) + Bza,n,m sin(ψ)

)
(n + m + 1)(n + m + 2)

cos( jψ) sin((m + 1)ψ)dψdz

by Bzb,n,m drops to zero because it is multiplied by the even integral of an odd function. This leaves

I2 =

∫ L

−L

f n+1Pn+1,m+1(cosα)Bza,n,m

(n + m + 1)(n + m + 2)
dz

∫ π

−π
sin(ψ) cos( jψ) sin((m + 1)ψ)dψ

and again some trigonometric manipulation yields

∫ π

−π
sin(ψ) cos( jψ) sin((m + 1)ψ)dψ = 1

2

∫ π

−π
cos( jψ) (cos(mψ) − cos((m + 2)ψ)) dψ

= π
2

(
δm, j + δm,− j − δm,− j−2 − δm, j−2

)
such that

I2 =
π

2

∫ L

−L

f n+1Pn+1,m+1(cosα)Bza,n,m

(n + m + 1)(n + m + 2)
dz

(
δm, j + δm,− j − δm,− j−2 − δm, j−2

)
.

4.2.2.3 I3

The contribution from I3 is zero since

I3 = −

∫ L

−L

(
1 − δm,0

)
f n+1Pn+1,m(cosα)Bzb,n,m

(n + m + 1)
dz

∫ π

−π
sin( jψ) cos(mψ)dψ = 0

for any value of j or m.
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4.2.2.4 I4

Finally

I4 =

∫ L

−L

(
1 − δm,0

)
f n+1Pn+1,m(cosα)Bza,n,m

(n + m + 1)
dz

∫ π

−π
sin( jψ) sin(mψ)dψ

has the simple solution

I4 = π

∫ L

−L

(
1 − δm,0

)
f n+1Pn+1,m(cosα)Bza,n,m

(n + m + 1)
dz

(
δm, j + δm,− j

)
.

4.2.2.5 Completing the Integration

Adding the four integrals in equation 4.2.5 yields

Φn,m =

∫ L

−L

Rπ
(
δm, j + δm,− j

)
Bza,n,m

(n + m + 1)(n + m + 2)


(

f n+1Pn+1,m+1(cosα)
)
G j(z)+(

1 − δm,0
)

(n + m + 2) f n+1Pn+1,m(cosα)F j(z)

 dz.

Note that m ≥ 0 so that δm, j + δm,− j = δm, j except when m = 0 in which case it equals two. This means that

only when the degree of the field is the same as that of the wire density ( j = m) is there any contribution

to the flux and, for a field Bz,n,m oscillating at angular frequency ω, the induced voltage is Vn,m = −ωΦn,m

where

Φn,m =

πRBza,n,m(1+δm,0)
(n+m+1)(n+m+2)

∫ L
−L f n+1 [

Pn+1,m+1(cosα)Gm(z)+

(1 − δm,0)(n + m + 2)Pn+1,m(cosα)Fm(z)
]
dz

(4.2.6)

is the flux response to Bz,n,m. Therefore, the total voltage generated in the winding by an arbitrary magnetic

field is

VT = −ωΦT = −ω

∞∑
n=m−1

Φn,m (4.2.7)

where each term Φn,m is due to the Bz field harmonic Bza,n,m. The coefficients Bza,n,m set the magnitude of the

flux response Φn,m and the Bzb,n,m coefficients drop out due to our choice of azimuthal wire density variation

in equation 4.2.2. In contrast to shim coil design, where only azimuthally directed current influences the Bz

field, the induced voltage depends on both axial Fm(z) and azimuthal Gm(z) wire densities (equation 4.2.6).

4.2.3 Harmonic Flux Linkage: Matrix Representation

To design a harmonic detection coil we use matrix algebra and sample the wire density functions

at a finite interval ∆z. The integral then becomes a summation and equation 4.2.6 may be written in the

form:
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Figure 4.3: Equation 4.2.9 causes the axial wire density to be staggered by ∆z/2 with respect to the the
azimuthal wire density. As exaggerated in the figure, this produces alternating bands of axial and azimuthal
wire density where each band has its own Fourier coefficient. For this figure the coefficients were chosen
arbitrarily.

Φd = S D (4.2.8)

where the sum over the elements of Φd is the total flux ΦT = VT/ω. The vector D includes both the axial and

azimuthal wire density coefficients from the discrete rings and S is a matrix generated from the integrand of

equation 4.2.6 with rows corresponding to harmonic order and columns to axial position on the coil former.

The matrix S includes the Bza,n,m weights which represent a typical field for which we must find an optimum

coil. To avoid confusion between actual harmonic coefficients of a field and coefficients chosen by the coil

designer, we shall use the notation κab,n,m to refer to Bzab,n,m coefficients chosen by a coil designer and αab,n,m

to refer to a desired flux response rather than an actual flux response Φab,n,m
5. Following the logic of Hoult

and Deslauriers [50], we include equation 4.2.3 in the matrix S by extending the latter with equations of the

form

0 = −
m∆z

R
Gm(q ∆z) + Fm((q +

1
2

)∆z) − Fm((q −
1
2

)∆z) (4.2.9)

where q is the index of axial position. Note that for computational accuracy the axial and azimuthal sampling

points are staggered by ∆z/2 (figure 4.3). Finally, we add two more rows which set the axial wire density to

zero at the ends of the coil former.

Truncating the number of orders in Φd to some value nmax, causes equation 4.2.8 to become a

rectangular matrix of finite size and since the matrix is rectangular, there is a family of solutions rather

than a single unique solution. We desire a solution that keeps the total wire length small while being fairly

5As usual, the presence of a subscripts a and b denote association with the harmonics Tn,m and T ′n,m respectively while the
presence of both is a short hand for writing something like ’αa,n,m and αb,n,m’.
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simple to fabricate. The Moore-Penrose inverse [6] solves problems of this kind by imposing the additional

constraint that the sum of the squares of the result vector is minimal; in our case the result vector is composed

of the wire density coefficients and this additional constraint is a reasonable approximation to minimum wire

length. So if we apply the Moore-Penrose inverse to equation 4.2.8 we obtain

D = S†Φd (4.2.10)

which is a prescription for the windings needed to detect a distribution of flux densities or, if all terms but

one in Φd are zero, to detect a sole spherical harmonic.

4.2.4 Discretization and the Stream Function

Once the wire density coefficients have been found they are used to determine a stream function

Γ [12] on the surface of the coil former where Wψ = ∂Γ
∂z and RWz = ∂Γ

∂ψ . As shown in figure 4.4, a small

increment in this function

dΓ =
∂Γ

∂z
dz −

∂Γ

∂ψ
dψ = Wψdz −WzRdψ (4.2.11)

is the constant amount of wire density “flowing” between contours Γi and Γi+1 = Γi + dΓ over any helical

segment (Rdψ, dz) separating them. Thus the stream function contours may be used to place discrete wires

which, if there are a great number of them, approximate the continuous wire distribution.

Following Hoult and Deslauriers [50] once more, the stream function can be found by arbitrarily

setting Γ = 0 at z = ψ = 0 and then integrating

Γ =

∫
dΓ =

∫
Wψdz − R

∫
Wzdψ

first along z at ψ = 0 and then about the ψ direction with z held constant. Thus at the point (z, ψ) the stream

function is:

Γm =
∫ z

0 Gm(z) cos(0)dz − R
∫ ψ

0 Fm(z) sin(mψ)dψ

= R
m cos(mψ)Fm(z)

(4.2.12)

where we have made use of equation 4.2.3. From this function, given the coefficients Fm((q − 1
2 )∆z) from

above, the stream function contours can be found and split into discrete lengths of wire.

4.2.5 An Example of Spherical Harmonic Detection Coil Design

Having developed a theory for designing a detection coil’s continuous wire distribution, we now

use that theory to produce a wire distribution that detects the spherical harmonic T2,1 – chosen arbitrarily –

and none other up to and including n = 7. Since this is an example we start by arbitrarily choosing a coil
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Figure 4.4: The stream function on the surface of a cylindrical coil former.

former geometry with radius R = 0.6 m and total length 2L = 3.2 m and consider it as 401 strips of axially

directed wire density separated by 400 strips of azimuthal wire density as shown in figure 4.3. Given this

geometry it is a simple matter to generate the vector Φd and the matrix S from equation 4.2.8. The vector

Φd is merely

Φd =



0

0

1

0

0

0

0

0
...

0

0



(4.2.13)

where the ellipsis stands for the 400 zeros required to implement equation 4.2.9 and the final two zeros are

used to null the values of Fm on either end of the coil former. Note that since the summation in equation

4.2.7 is from n = m − 1, the desired response to T2,1 is the third element in Φd.

To generate the matrix S we replace the integral in equation 4.2.6 with a sum of the form:
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Φn,m = πR∆zκa,n,m

 399∑
q=0

K1(q) +

400∑
q=0

K2(q)

 (4.2.14)

where

K1(q) =
(1+δm,0)

(n+m+1)(n+m+2) f (q)n+1Pn+1,m+1(cosα(q))Gm(q∆z − L/2)

K2(q) =
(1−δm,0)
(n+m+1) f (q)n+1Pn+1,m(cosα(q))Fm((q − 1

2 )∆z − L/2)
(4.2.15)

and we choose κa,n,m =

((
L
2

)2
+ R2

)−n
such that high order harmonics are not excessively weighted (see

section 6.2.2.1). Then equation 4.2.6 takes the schematic form

Φd = S D =


K1 K2

∇ ·W = 0

end constraints





Fm(−(L + ∆z)/2)
...

Fm((L + ∆z)/2)

Gm(−L/2)
...

Gm(L/2)


(4.2.16)

where K1 and K2 stand for arrays of matrix elements produced using equation 4.2.15, ∆ ·W = 0 stands for

matrix elements generated using equation 4.2.9, and the end constraints are merely two lines stating that

Fm(−(L + ∆z)/2) = Fm((L + ∆z)/2) = 0. After producing the matrix S and taking its Moore-Penrose inverse,

we use equation 4.2.10 to compute the vector D. The first four hundred and one elements of D are the Fm

wire density coefficients shown in figure 4.5a and using equation 4.2.12 it is a trivial matter to compute the

stream function Γ shown in figure 4.5b. Finally, a simple test of this procedure is to take the vector D and

multiply it by the matrix S to see the wire density’s response to various harmonics. Performing this test for

the example above yields

Φ′d =



−3.46e − 14

−3.76e − 14

1.00

4.86e − 14

1.98e − 15

8.46e − 15

−8.40e − 15

2.40e − 14
...



(4.2.17)
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Figure 4.5: Part a) shows the four hundred and one Fm wire winding coefficients computed in section 4.2.5
for a coil designed to detect T2,1 while part b) shows selected contours of the associated stream function
Γ. These contours could be followed with wire to approximate the continuous distribution and produce a
spherical harmonic detection coil.

which is nearly identical to Φd specified in equation 4.2.13; the differences are caused by numerical rounding

error.

4.3 Summary

The goal of this chapter has been to develop a method to produce a wire path that produces a

voltage across its leads proportional to the rate of change of a single spherical harmonic of the magnetic

field. Since it seemed easiest to determine the voltage induced in a wire density – as described by equation

4.2.2 – from the vector potential (equation 2.1.12) rather than the electric6 or magnetic fields, section 4.1

determined what vector potential is associated with each harmonic of Bz; the related transverse fields Bx

and By are also found along the way. An important result – although unsurprising in retrospect – is that

knowledge of the rate of change of Bz through its spherical harmonics is insufficient to determine the voltage

induced in a wire since there are transverse magnetic fields that are independent of Bz which may nonetheless

induce a voltage. The mathematical trickery of “super-sectoral” harmonics was developed to incorporate the

coefficients of these independent transverse fields, composed solely of sectoral harmonics of Bx and By, into

a summation over the coefficients of Bz.

Section 4.2 borrowed the idea of a continuous current distribution from gradient/shim coil design

and adapted it to the essentially identical concept of a continuous wire distribution. The vector potential was

used to compute the flux linkage due to each field harmonic. Then this relationship was inverted allowing

6The electric field’s spherical harmonics can be found using equation 2.1.8 and the results in table 4.1.
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wire densities to be designed given a desired flux linkage or voltage. To produce a physically realizable

wire path, the continuous wire distribution was discretized using the contours of a stream function and these

contours were interconnected.

At the time of writing, the method developed in this chapter is the only known way to produce

spherical harmonic detection coils. However just as many methods exist for designing gradient and shim

coils, we expect that other design techniques may also be developed for detection coils.
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Chapter 5

Designing the Feedback System

5.1 System Layout and Model

Having developed a method for designing spherical harmonic inductive detection coils, we now

consider the incorporation of one such coil into a negative feedback system designed to control a single

detected harmonic.

5.1.1 Layout of a Single Harmonic Feedback Loop

Our first problem in designing such a system is that the voltage signal produced at the leads of a

harmonic detection coil is not proportional to the harmonic, as required for negative feedback, but rather the

harmonic’s time derivative. Therefore the detection coil’s signal must be integrated with respect to time as

shown in figure 5.1a; however the electronic circuit used to perform the integration introduces finite offsets

and, when integrated, these offsets accumulate until the integrator output saturates at its physical limit. For

this reason, just as in section 3.2.2.1, exact integration of the form 1/s must be replaced with practical

integration of the form 1/(s + ωI) where ωI is the angular frequency where integration starts.

Although practical integration keeps the offsets finite, for frequencies below ωI another problem

arises: the integrator output remains proportional to the harmonic’s time derivative rather than the harmonic

itself. Thus a feedback system relying solely on a detection coil followed by a practical integrator cannot

control any frequency below ωI , including a static offset. Thus solving the integrator’s offset problem has

produced a new offset problem, this time for the entire feedback system.

Fortunately, at low enough frequencies the eddy currents and their associated fields are essentially

zero (section 2.1.3.2) so each harmonic magnitude is simply proportional to the current through the asso-

ciated gradient/shim coil, which can be measured by the voltage drop across a series resistor. Therefore,

as depicted in figure 5.1b, at low frequencies the feedback signal can be produced by coil current flowing

through a resistor and at high frequencies, where eddy currents are important, the feedback signal can be
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taken from the integrator output. Merging the two branches of this split feedback path into a single feedback

path requires that the sensing resistor be followed by an active low-pass filter set for a smooth cross-over

between the two paths.

In order to determine the filter settings we describe the split feedback path mathematically. We

represent the harmonic under control with H, the sensing resistance with R, and the harmonic production

coil current with ic where Kc = H/ic is a constant describing the production coil’s ability to produce the

desired field harmonic. Then if D, FI , and FL are the transfer functions of the detection coil, electronic

integrator, and low-pass filter where

D = sKD FI =
KI

ωI + s
FL =

KL

1 + s/ωL
, (5.1.1)

and KD,KI ,KL, ωI , ωL are constants, then the transfer function B of the combined feedback path is

B =
RKL/Kc
1+s/ωL

+
sKDKI/ωI

1+s/ωI

B =
RKL
KC

(
1

1+s/ωL
+

s/ωQ
1+s/ωI

) (5.1.2)

where

ωQ =
RKL

KcKDKI
ωI . (5.1.3)

Therefore, as shown in figure 5.1c, we set

ωI = ωL = ωQ (5.1.4)

for a smooth cross-over between the paths and B = RKL/Kc = KDKI becomes a constant of proportionality

relating, over a wide bandwidth, the harmonic magnitude H to the voltage signal used for negative feedback.

The block diagram in figure 5.1b could be largely implemented with digital electronics. In such

an implementation the preamplified detection coil signal, resistor voltage, and input voltage would first be

sampled and then operated on by a computer algorithm acting as a compensator. The algorithm’s output

would then be used as a digital input to a pulse-width-modulated current source. However, only analog

components were used in the actual experimental method (part III) and thus we proceed with continuous

mathematics and the Laplace transform, deferring analysis of a discretely sampled system to some later date.

5.1.2 Harmonic Production Coil and Eddy Currents

Despite the complex geometry of harmonic production coils and eddy currents, their interaction

can be modelled quite simply by considering the eddy currents as a superposition of current distributions

each of which produces only a single harmonic of the Bz field. Therefore a harmonic production coil is

inductively coupled to a large number of these distributions but primarily to the one which produces the
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Figure 5.1: The feedback diagram in a) assumes an ideal integrator circuit with absolutely zero offset.
However to be practical, the feedback path is split as shown in b) and part c) shows the desired cross-
over between the two paths. The feedback diagrams are grouped into compensator, process, and sensor for
comparison with the canonical feedback system in figure 3.4.
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Figure 5.2: A model of the interplay between a harmonic production coil and that part of the eddy currents
which produce the same harmonic.

same harmonic as the coil. As shown in figure 5.2, we model this primary eddy current distribution ie as a

closed circuit inductively coupled to a field production coil in which a current ic is driven by an externally

applied voltage Vc.

Elementary circuit analysis reveals that

Vc = icRc + sicLc − sieM

0 = ieRe + sieLe − sicM

where M is the mutual inductance between the circuits while Re, Rc, Le and Lc are the respective resist-

ances and self-inductances of the eddy-current distribution and harmonic production coil; some manipula-

tion yields

ie =

(
Ms

Re + Les

)
ic. (5.1.5)

Now the strength of the magnetic field harmonic H has contributions from both the coil and eddy-current

distribution such that H = Kcic − Keie where Kc and Ke are the respective coupling constants and Kc has

already been defined in section 5.1.1. By employing equation 5.1.5 we can write H = Gic where
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Figure 5.3: The magnitude and phase of the combined model given in equation 5.1.6.

G = Kc −
KeMs

Re + Les
.

However the parameters Re and Le are not easily measured so we substitute ωe =
Re
Le

, and ωes =
ReKc
Ke M ≥ ωe

which yields

G = Kc
(
1 − s/ωes

1+s/ωe

)
= Kc

(1+ξs/ωe
1+s/ωe

)
.

(5.1.6)

We note that even for frequencies much greater than ωes the secondary contribution from the eddy currents

cannot exceed the primary contribution from the coil and thus ωes ≥ ωe. The characteristics of this transfer

function are depicted in figure 5.3 where the dimensionless parameter

ξ = (1 −
ωe

ωes
) (5.1.7)

lying between 0 and 1 has been defined such that as ξ approaches 0 the eddy-current effect becomes ever

more severe.



99

Figure 5.4: Detection coil circuit model

5.1.3 Improved Detection Coil Model

Moving beyond the simplistic detection coil model D = sKD used in equation 5.1.1 we now make

an effort to include the detection coil’s resistance RD, inductance LD, and inter-winding capacitance CD as

shown in figure 5.4. According to this model the voltage induced in the detection coil remains VDi = sKDH

as before but now the wire of the coil itself filters the signal. Considering the circuit model as a simple

voltage divider, the voltage across the capacitance, and thus the output coil terminals, is

VD =

(
1

1 + RDCDs + LDCDs2

)
VDi =

(
sKD

1 + RDCDs + LDCDs2

)
H

where we identify the detection coil’s transfer function as

D =
sKD

1 + RDCDs + LDCDs2 . (5.1.8)

Thus above some frequency determined by either RDCD or LDCD, the detection coil’s transfer function is

no longer sKD but rolls off. Clearly RD, CD, and LD can all be reduced – and thus the bandwidth expanded

– by using less wire on fewer contours in the approximation of the wire density function (section 4.2.3).

However this also decreases the detection coil’s sensitivity KD and the accuracy to which the continuous

wire distribution is approximated: a trade-off exists between sensitivity and bandwidth.

5.1.4 The Whole Feedback System Model

Having investigated the eddy currents, production coil, and detection coil, the only blocks in figure

5.1b that have not yet been modelled are the current source (F) and feedback compensator (C). The current

source, probably a commercial gradient amplifier as described in section 3.1.1, has a flat transfer function

below some critical frequency after which it begins to roll off due to its own internal feedback circuitry.

Although this transfer function can be measured experimentally or acquired from the manufacturer, the

model
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Figure 5.5: Simplified block diagram

FS =
KS

1 + s/ωS
(5.1.9)

encompasses its gain KS and limited bandwidth.

The feedback compensator, on the other hand, is entirely under the system designer’s control. It

should have sufficient gain such that the system output depends only on the input and the feedback path and

its transfer function should be chosen such that the system has sufficient bandwidth but does not oscillate.

Although the final form of this compensator depends on the actual transfer function of the current source

and the constraints on the total system’s overshoot and settling time (figure 3.5), for now we assume that it

is

C =
KCmp

1 + s/ωCmp
. (5.1.10)

Now that each part of the feedback system in figure 5.1b has a model, the block diagram may be

simplified to figure 5.5 using the rules in figure 3.6. The total transfer function T of the harmonic feedback

system is then

T =
1
B

 1
1 + 1

Λ

 (5.1.11)

where

A = FS G

B =
R FL

G + FID

Λ = A B C.

(5.1.12)

Applying the various models – FI and FL from equation 5.1.1, D from equation 5.1.8, G from equation

5.1.6, and FS from equation 5.1.9 – we write

A = Kc

(
KS

1 + s/ωS

) (
1 −

s/ωes

1 + s/ωe

)
(5.1.13)
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and

B =
RKL

Kc

 1

(1 + s/ωL)
(
1 − s/ωes

s/ωe+1

) +
s/ωQ

(1 + s/ωI)
(
1 + RDCDs + LDCDs2)

 (5.1.14)

where ωQ is defined in equation 5.1.3. Note that despite the complexity of these functions, provided that

ωI = ωL = ωQ, the complete system’s transfer function simplifies to T ' 1
B '

Kc
RKL

= 1
KDKI

over its

operational bandwidth.

Armed with a complete system model, our task is now to choose the various system parameters,

and possibly a different form for the compensator, such that the total system has the desired flat frequency

response, greatly reduced eddy current effects, and neither oscillates nor drifts. Independence from system

characteristics, in this case eddy currents, is a hallmark of negative feedback and is provided by a high open

loop gain which may be increased as necessary with KCmp and/or KS provided that the gain of Λ falls below

unity well before its phase reaches −180◦ (see chapter 3.2).

5.2 General System Considerations

Many of the choices made in the design of a harmonic feedback system inevitably depend on

factors specific to a given situation such as which harmonics are of interest, the time constants of the eddy

currents, the desired system performance, and the available funds and technology. However, there are a few

fundamental considerations that transcend the details of any particular system and it is to these that we now

turn.

5.2.1 Integrator Design

Any feedback system using a spherical harmonic inductive detection coil requires a preamplifier

incorporated into its integrator (FI in figure 5.1) to boost the small signals induced by low frequency changes

in the spherical harmonic. When designing the integrator one must consider common mode sensor voltage,

maximum harmonic slew rate, and the total system’s gain. The system’s gain is set by choosing KI since the

transfer function of the whole system is T ' 1/B ' 1/(KDKI) (equation 5.1.11) where KD is already fixed

(section 5.1.3). Therefore KI should be set such that a maximal swing of the input voltage, whatever that

may be for a given system, results in the desired maximal swing of the output harmonic.

Although the desired signal from the detection coil is the voltage difference between its leads,

there may also be signals common to both leads, possibly as a result of capacitive coupling to the gradient

coil. Therefore it is important that the combined integrator and preamplifier circuit reject these common-

mode signals. Instrumentation amplifiers (section 3.2.2.2) are specially designed for this purpose and, as in

figure 5.6a, the block FI can be implemented by the cascade of an instrumentation amplifier and practical
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op-amp. integrator from section 3.2.2.1. However, connecting a preamplifier directly to the detection coil

unnecessarily limits harmonic slew rate due to excessive signal at the mesh point pM – that is the dynamic

range of the block FI is limited which, because it is an integrator, limits the system’s harmonic slew rate.

To see this problem, consider both low frequency changes in the harmonic near ωI and high

frequency changes near the limit of the system’s bandwidth. Since the detection coil’s output signal is

proportional to frequency, the high frequency harmonic changes – caused by rapid gradient or harmonic

switching – induce large voltages in the detection coil that may damage the instrumentation amplifier while

the low frequency changes induce small voltages near the preamplifier’s noise floor. Because of these small

voltages, the instrumentation amplifier must be operated at high gain but this gain also amplifies the already

large high frequency signals. Since there is a limit to the preamplifier’s maximum output voltage at pM

there is also a limit on how large these high frequency signals can be and thus on the maximum rate of

change (slew rate) of the harmonic under control. However, for the configuration in figure 5.6a, the slew

rate is limited unnecessarily since the high frequency signals with large amplitude at pM are subsequently

greatly attenuated by the following integrator circuit. By moving the attenuation of high frequencies before

the preamplifier, the artificial limit on slew rate is relaxed without degrading the signal to noise ratio for the

small low frequency signals.

This is accomplished by dividing the electronic integrator into two stages. The first, as shown in

figure 5.6b, is a passive low-pass filter which connects directly to the coil, protects subsequent stages from

large transient voltages, and is balanced so that any common mode voltage is rejected by the preamplifier.

After amplification, the single ended signal has its low frequency components integrated by an active filter

which meshes with the low pass filter at ωM such that, as shown in figure 5.6c, the two stages comprise a

single low-pass filter with cut-off frequency ωI . Ideally ωM is set to the largest value compatible with not

overloading the preamplifier’s output at pM in order to maximize the signal to noise ratio of low frequency

signals for a given maximum harmonic slew rate.

If distortion or clipping occurs at pM, or any other point in the feedback path, incorrect information

about the controlled harmonic is fed back which leads to undesirable, and possibly unsafe, system behaviour.

Therefore some mechanism should shut the system down if the voltage at point pM nears the limit of the

preamplifier’s output swing.

5.2.2 Feedback Cross-over Point Revisited

The location of the cross-over point between the two branches of the split feedback path is of

critical importance to system design because even if it is set much lower thanωe, the characteristic frequency

of the eddy currents, the eddy currents still slightly distort the feedback path’s operation. Although our

original model of the feedback path (equation 5.1.2) does not show this distortion, it does show that the

feedback path transfer function can be simplified to the constant B = RKL/Kc = KDKI by choosing the
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Figure 5.6: In a) the preamplifier and integrator are cascaded naively. In b) high frequency signals are
attenuated before the preamplifier and the two filters are meshed as shown in c) so that together they integrate
the signal.
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integrator’s start frequency ωI , the low-pass filter’s cross-over frequency ωL, and the relationship between

the gains of the two paths (ωQ in equation 5.1.3) such that ωI = ωL = ωQ. However equation 5.1.14 is a

more complete model where setting ωI = ωL = ωQ yields

B =
KDKI

(1 + s/ωI)

 1(
1 − s/ωes

s/ωe+1

) +
s/ωI(

1 + RDCDs + LDCDs2)
 . (5.2.1)

Now at frequencies either far below ωI or far above ωes and ωI , but within the detection coil’s bandwidth,

this model of the split feedback path again simplifies to B ' KDKI = RKL/Kc but, as shown in figure 5.7,

the eddy currents cause a slight deviation near ωI which diminishes as the ratio

ζ =
ωe

ωI
(5.2.2)

is increased. The result of this deviation is that the feedback path does not perfectly sense the harmonic and

thus the system does not exactly reproduce the harmonic’s desired temporal evolution.

Now from equation 5.2.1 it is clear that to keep the deviation small we must have ωI � ωe but,

since the eddy currents become more significant as ξ = (1 − ωe
ωes

) (equation 5.1.7) goes to zero, precisely

how much below ωe we should set ωI depends on ξ. Thus a better, although still approximate, statement

is ωI � ωeξ or ξζ � 1; the actual relationship between ξ, ζ, and feedback deviation is plotted in figure

5.7d. However, since ξ is entirely determined by the eddy currents, the product ζξ may only be increased

by decreasing ωI but this amplifies errors associated with the preamplifier and integrator circuit (sections

3.2.2.1 and 5.2.1).

5.2.3 Preamplifier Noise and Offset

In order to analyze the errors associated with the integrator without precise knowledge of its

implementation we refer these errors to the integrator’s input, as shown in figure 5.8, realizing that the

power spectrum of this error signal depends on the system’s details. Although the detection coil’s intrinsic

resistance generates white noise which can also be referred to the integrator’s input, that noise is expected

to be much less than the low-frequency flicker noise produced by the preamplifier. In any case, just as we

used figure 5.1 to determine the transfer function from system input to system output (equation 5.1.11) we

now use figure 5.8 to find the transfer function between the error signal and the system output. Therefore

the harmonic output due to the error signal is Herr = TerrError where

Terr =
−CFS FIG

1 + CFsFLR + CFsFIGD
(5.2.3)

and manipulation using equations 5.1.11 and 5.1.12 yields

Terr = −FIT. (5.2.4)
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Figure 5.7: In a) the feedback path’s transfer function as modelled by equation 5.2.1 is plotted along with
its high and low frequency branches. Ideally the cross-over point would look like figure 5.1c but there is a
deviation as seen in the detailed view of the cross-over point in b); the absolute value of this deviation is

shown in c). This deviation can be assigned a numeric value with the integral ∆ f b =
∫ ωe×103

ωe×10−3

∣∣∣∣RKL
Kc
− B(ω)

∣∣∣∣ dω
used to produce the plot in d).
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Figure 5.8: In a) the feedback system is shown with an error signal referred to the input of the integrator FI .
In b) the system is re-arranged to show its form with respect to the error signal and harmonic output. The
diagram in b) is simplified to produce the diagram in c).

The total output harmonic is merely the superposition of the contributions from the input signal and the error

signal

H = T Input − FI T Error = T
(
Input − FI Error

)
. (5.2.5)

Since FI =
KI
ωI+s (equation 5.2.8), the low frequency noise and static offsets on the output field harmonic

are proportional to the term KI/ωI which increases as the integration start frequency ωI is reduced. So we

have two conflicting requirements: ωI must be kept as low as possible to reduce feedback path deviation

near the cross-over frequency (section 5.2.2) but must also be as high as possible to minimize the influence

of the error signal introduced by the preamplifier and integrator. Clearly a trade-off must be made between

spherical harmonic distortion and noise, the distortion arising from residual eddy current effects and the

noise originating in the integrator circuit.
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5.2.4 Feedback Loop Interaction

Another important consideration is the interaction of multiple feedback loops (section 3.2.3) used

to simultaneously control several harmonics of the magnetic field. These feedback loops inevitably interact

due to the imperfection of the production and detection coils as well as the production of multiple eddy

current harmonics. In order to determine if this interaction degrades system performance, we may express

the blocks of figure 5.1b in matrices modelling all the feedback loops at once. The production coil and eddy

current model from equation 5.2.6 can be placed into a matrix G with one row for every production coil and

elements

Gα,β = Kc,α,β

(
1 −

ξαs/ωe,α

1 + s/ωe,α

)
(5.2.6)

where Kc,α,β is the coupling of harmonic production coil α to harmonic β. In a similar fashion the detection

coils have a slight response to harmonics they were not designed to detect so the array of detection coils can

be represented with a matrix D with elements

Dα,β =
sKD,α,β

1 + RD,αCD,αs + LD,αCD,αs2 . (5.2.7)

Now the compensator, current source, integrator, resistor, and low-pass filter blocks from the various systems

can also be placed in matrices C, FS, FI, R, and FL with elements

Cα, FS ,α =
KS ,α

1 + s/ωS ,α
, FI,α =

KI,α

ωI,α + s
, Rα, FL,α =

KL,α

1 + s/ωL,α
(5.2.8)

but since there is no interaction between the systems at these stages the matrices are diagonal.

Referring to figure 5.1b, if Ic is a vector containing the Laplace transforms of the currents through

the various harmonic production coils then H = GIc is a vector of the Laplace transforms of the harmonic

coefficients. Arranging the Laplace transform of the system input into another vectorV we write

Ic = FSC [V − (FLR + FI.DG) Ic]

and remembering that matrix multiplication does not commute we can solve forH as

H = TV (5.2.9)

where

T = G [1 + FSC (FLR + FIDG)]−1 FSC (5.2.10)
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is the matrix of transfer functions relating the harmonics to the system inputs. Provided that the system

inputs and circuit parameters are known, then the time evolution of the harmonics under feedback control

can be computed by taking the inverse Laplace transforms of the elements ofH .

5.3 The Image Quality Effects of Field Noise and Distortion: Choosing ωI

and Fine Tuning the Compensator

In section 5.2.3 it became clear that regardless of the exact properties of a harmonic feedback

system, a method is required to choose ωI for an optimal trade-off between harmonic noise and distortion;

that is the combined influence of these effects must be minimized. Moreover, the choice of a feedback com-

pensator also affects harmonic distortion through the control system’s overshoot and settling time (see figure

3.4). Since the ultimate goal is to produce quality magnetic resonance images by reducing the distorting ef-

fect of eddy currents, we shall use “image degradation” as our minimization criterion and thus maximize

“image quality” with respect to ωI and the feedback compensator as well.

5.3.1 Quantitative Image Quality

In order to cast image quality as an objective quantity to be maximized, rather than leaving it in

the eye of the beholder, we return to the point spread function (PSF) presented in section 2.3.5. In MRI,

the PSF is fundamentally limited by factors including the imaging pulse sequence, the acquisition time

Tacq, the material being imaged, and the gradient magnitude. If PSFideal is the best possible PSF given the

limitations outside the control of the gradient system designer and PSFdegraded has been degraded further

by field noise and distortion from any aspect of the gradient system, then we may define the image quality

with respect to the ideal as

Quality = 1 − Degradation

Degradation = ∆PSF
PSF =

∫
image

PSFideal−PSFdegraded
PSFideal

2

dI.
(5.3.1)

Determining PSFideal and PSFdegraded from first principles is a daunting task. First of all, they

depend on the details of a particular imaging sequence and its digital image reconstruction. So the gradi-

ent system designer must start with a particular imaging sequence against which to optimize – probably a

gradient-echo sequence which operates the system near its limit – and then test that the image quality is near

maximum for other sequences as well. But even with a particular sequence in mind, the analytical tech-

niques of section 2.3.5 are difficult to apply since they must be expanded to incorporate the statistical nature

of noise and the effect of higher order spherical harmonics, neither of which may have been considered by

the sequence’s designer.
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Fortunately, image reconstruction in MRI always starts with a digital representation of the ac-

quired NMR signal and the subsequent algorithms are readily available, either in the literature or as func-

tional software. Therefore by simulating the NMR signal produced in response to a particular imaging

sequence, an image can be formed by passing the simulated signal through the appropriate algorithm.

Moreover, if the simulated volume is homogeneous save for one point, then the resulting image is a point

spread function which may be used to numerically compute image quality as defined in equation 5.3.1.

Therefore our task is to simulate the NMR signal both with and without noise and distortion on the har-

monics of the gradient field and repeat the simulation for different values of ωI and with various feedback

compensators until an optimum is found.

5.3.2 Simulating the Harmonic Control System and NMR Signal

Numerical simulation of the output harmonic for a given input is rather straightforward given

the system model in equations 5.1.11 and 5.1.12: merely take the discrete Fourier transform of the input

signal, multiply each frequency component by the complex number found by evaluating the model at that

frequency, and use the discrete inverse Fourier transform to find the result. The only complication comes

when simulating the effect of noise. However we note that electronic noise is a stationary random process:

the noise voltage changes with time but not the probability associated with each a particular voltage value.

Thus, like the thermally fluctuating magnetic field in section 2.2.2.1, the noise voltage has a Fourier trans-

form F(ω) with a specific magnitude at every frequency but randomly changing phases and thus its power

spectrum J(ω) = F(ω)F∗(ω) does not change with time. Provided we know this noise power spectrum – the

necessary information is usually found on the preamplifier’s data sheet – it may be used in conjunction with

numerically generated random phases from a uniform distribution to produce a simulated input error signal.

The effect that this error has on the output harmonic can be determined by using the error transfer function

from equation 5.2.3 just as equations 5.1.11 and 5.1.12 were used to determine the effect of the input on the

output. The total output harmonic is just the superposition of the output due to the error signal and that due

to the input signal.

Starting with the noisy and distorted harmonic magnitudes from simulated feedback loops, the

next step is to simulate the NMR signal. Numerical simulation of NMR and MRI is well established [133, 7,

124] and can be based on equation 2.2.24, a known solution to the Bloch equations such as equation 2.2.23,

or computational quantum mechanics. There are two main considerations when choosing a simulator for

the optimization of a harmonic control system: it must be able to accept arbitrary waveforms for many

harmonics of the gradient field as produced from circuit simulation and it must execute quickly enough that

an optimization can be performed in a reasonable amount of time. Most MRI simulation software does not

model the harmonics of the gradient field beyond the x, y, and z gradients and does not accept arbitrary

noisy waveforms even for those three. Moreover, simulation that is based directly on the Bloch equations is
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quite computationally demanding and is best performed using a cluster of parallel computers. Therefore as

a first attempt at optimizing a spherical harmonic control system, we develop the theory for a simple MRI

simulator based on the solution to Bloch’s equations when B1 = 0 that can accept arbitrary waveforms of

high order spherical harmonics.

Starting from equation 2.2.23, the transverse magnetization in the rotating frame when B1 = 0

evolves as

M′x,y(r, t) = M0(r) sin(α(r))e−t/T2(r)eiθ(r,t)

θ(r, t) =
∫ t

0 ∆ω(r, τ)dτ

where the initial transverse magnetization M0, relaxation T2, and flip angle α all depend on position r.

Remembering from section 2.2.1 that ∆ω = −γ∆Bz(t) where Bz = ∆Bz(r, t) + Bo, we can write the phase

evolution θ(r, t) in terms of the time integrals of the spherical harmonics coefficients

θ(r, t) = −γ
∑
n,m

[
Ai,n,m(t)Tn,m + Bi,n,m(t)T ′n,m

]
(5.3.2)

where

Ai,n,m(t) =

∫ t

0
An,m(τ)dτ Bi,n,m(t) =

∫ t

0
Bn,m(τ)dτ.

Then Ai,n,m(t) and Bi,n,m(t) can be found by numerically integrating the noisy and distorted waveforms of the

coefficients An,m(t) and Bn,m(t) generated by circuit simulation. Since this gives the transverse magnetization

M′x,y(r, t) of a point-like isochromat, the signal sv(t) from a rectangular voxel with volume ∆x∆y∆z can be

found by integrating

sv(t) = α

∫ x+ ∆x
2

x− ∆x
2

∫ y+
∆y
2

y− ∆y
2

∫ z+ ∆z
2

z− ∆z
2

M′x,y(r, t)dxdydz.

Assuming that the material properties do not change appreciably within a voxel we have

sv(t) = M0,v sin(αv)e−t/T2,vVint(r, t) (5.3.3)

where

Vint,v(t) =
#

voxel e−iγ
∑

n,m[Ai,n,m(t)Tn,m+Bi,n,m(t)T ′n,m]dV

=
#

voxel
∏

n,m

[
e−iγAi,n,m(t)Tn,me−iγBi,n,m(t)T ′n,m

]
dV

(5.3.4)

and dV = dxdydz. Thus, provided we choose a finite number of harmonics, simulation is reduced to finding

Ai,n,m(t), Bi,n,m(t) through circuit simulation, evaluating the integral Vint,v(t) to find sv(t) for every voxel, and

feeding the total digital signal S (t) =
∑

v sv(t) through the appropriate image reconstruction algorithm.
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5.3.2.1 Linear Gradients Only

To see how Vint,v(t) can be evaluated let us consider only the coefficients A1,1(t), B1,1(t), and A1,0(t)

,that is x,y, and z gradients which could also be written as Gx(t), Gy(t), and Gz(t). Denoting time integration

with a subscript ’i’, Vint,v(t) is now

Vint,v(t) =
#

voxel
[
e−iγGi,x(t)xe−iγGi,y(t)ye−iγGi,z(t)z

]
dxdydz

=
∫ x2

x1
e−iγGi,x(t)xdx

∫ y2

y1
e−iγGi,y(t)ydy

∫ z2

z1
e−iγGi,z(t)zdz

=

[
e−iγGi,x(t)x2−e−iγGi,x(t)x1

−iγGi,x(t)

] [
e−iγGi,y(t)y2−e−iγGi,y(t)y1

−iγGi,y(t)

] [
e−iγGi,z(t)z2−e−iγGi,z(t)z1

−iγGi,z(t)

] (5.3.5)

where the rectangular voxel is defined by diagonally opposite vertices (x1, y1, z1) and (x2, y2, z2). Note that

the functions Gi,x(t), Gi,y(t), and Gi,z(t) need only be determined once and do not vary between voxels but

that Vint,v(t), although trivial, must be recomputed for every voxel and at every time.

5.3.2.2 Higher Order Harmonics

Unfortunately evaluating Vint,v(t) for higher order harmonics becomes considerably more difficult.

In general the spherical harmonics Tn,m and T ′n,m can be represented as polynomials in x, y, z by converting

from spherical to Cartesian coordinates and thus Vint,v(t) involves the integral of an exponential with a large

polynomial in its argument. A closed form solution to this problem is not readily available and thus we

express Vint,v(t) as

Vint,v(t) =

$
voxel

cos(θ(r, t))dV + i
$

voxel
sin(θ(r, t))dV,

where θ(r, t) is from equation 5.3.2, and evaluate both integrals numerically for every time point. Fortunately

the integrands share the function θ(r, t) which varies only slightly over a voxel and this knowledge may be

used to speed up the computation but since our experimental method only involved the gradients Gx, Gy,

and Gz we defer the simulation of higher order harmonics to a later date.

5.4 Summary

In summary, figure 5.1b gives a general layout of a harmonic control system. When designing

such a system the desired bandwidth and slew rate must be specified for each harmonic and these can be

found from the most demanding imaging sequence – at least as far as the gradient system is concerned – that

is expected to be used. Given these constraints and a coil former geometry for the harmonic detection coils,

each detection coil should be designed with as many contours as the system bandwidth will allow. Perhaps

the most important design decision is the placement of ωI . Section 5.3 outlines a method for optimizing this
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parameter with respect to field noise and distortion but this method may also be used to optimize the choice

of feedback compensator. With ωI finally set, the integrator’s internal mesh point ωM is determined by the

specified harmonic slew rate.
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Part III

Methods and Results
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Chapter 6

Experiment Design and Results

Having developed a theory for the design of spherical harmonic detections coils and their associ-

ated feedback systems, we now describe a set of experiments used to test that theory. Incorporating spherical

harmonic control systems into an operational MRI machine requires accurately positioning a set of harmonic

detection coils within the bore of the magnet and re-routing the input of each harmonic production coil’s

current drive amplifier. Since this requires either a dedicated MRI or a large setup and tear down time, I was

unable to obtain access to a working instrument and experiments were therefore devised which do not rely

on the presence of a static B0 field. To further contain the cost of these experiments, I personally designed

and fabricated both the mechanical and electrical apparatus.

The goal of these experiments was to produce eddy current fields analogous to those in an MRI

and control those fields using dynamic pre-emphasis. The time evolution of a magnetic field’s harmonics up

to n = 5,m = 5 was determined by measuring the evolving Bz field following a gradient pulse at points on the

surface of a sphere and later computing the spherical harmonics at every time point. Since the experiments

were performed without an MRI machine and its associated B0 field, the design and fabrication of harmonic

production coils was greatly simplified as there was no significant Lorentz force. For simplicity, we chose

to implement feedback loops only for the Bz gradients Gx, Gy, and Gz.

6.1 Basic Setup and Mechanical Design

As shown in figure 6.1, the experimental setup includes a field probe (sniffer coil) to directly

measure the magnetic field, a computer to log the results, and the coils and electronics for the three feedback

loops. All the gradient coils are mounted together on a fixed coil former (figure 6.2a) while the detection

coils are mounted on a separate movable former (figure 6.2b) allowing the mutual inductance between the

two sets of coils to be plotted with respect to their relative position. An aluminium tube surrounding the

coils simulates an MRI machine’s cryostat and acts as a host for eddy currents. Adjusting the field plotting
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Declination θ (degrees) Azimuth φ (degrees)
7.5 0
22.5 30
37.5 60
52.5 90
67.5 120
82.5 150
97.5 180
112.5 210
127.5 240
142.5 270
157.5 300
172.5 330

Table 6.1: Probe positions used to compute spherical harmonics up to and including order and degree five.
Since every azimuthal position must be mapped for each declination, there are 144 points in all.

apparatus (figure 6.2c-f) allows the field probe to be positioned at points on the surface of a sphere (radius

4.1 cm) and the axial position of this sphere can be changed by moving the probe up or down within its

tube (figure 6.2d). After measuring the field at the positions shown in table 6.1 and storing the results

in a computer, the fast spherical harmonic transform [110, 65, 57, 64] was used to compute the spherical

harmonics of the magnetic field with respect to time.

The mechanical design consists of a stationary support structure shown in figure 6.2a on which the

gradient coils were wound and the other mechanical components rest. The cylindrical gradient coil former

was cut from a length of green plastic sewer pipe (outer diameter 21.3 cm) while the rest of the support

structure was machined from annealed high density polyethylene (white plastic). The detection coil former

(figure 6.2b was cut from a smaller green plastic sewer pipe (outer diameter 15.9 cm) and was attached to

a large acrylic tube which fit snugly (∼ 0.1 mm clearance) into several circular holes along the top of the

support structure. Moving the acrylic tube allows the detection coils to be repositioned and, as shown in

figure 6.3a-b, their position can be read from the markings on a wooden dowel as well as a paper protractor

affixed to the top of the support structure. The acrylic tube is held in place by two opposing grips.

Inside this support tube, and separated from it by plastic spacers, rests a field plotting apparatus

[80] (figure 6.2c-f) which consists of two wheels at fixed axial positions within a tubular acrylic chassis.

Two rods of equal length were connected to the wheels at positions 90◦ apart, one to hold the probe and

the other for support, such that the wheels turn together while both tubes remain axially orientated. As

the wheels turn, the field probe’s position (figure 6.3c) traces an arc in the θ direction which, when rotated

azimuthally by turning the whole acrylic chassis, sweeps out a sphere. The declination θ can be read from a

protractor on the top wheel and the azimuthal position φ can be read from the same protractor used to read

the azimuthal position of the detection coil. A large circular hole was cut in the bottom of the field plotter’s
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Figure 6.1: Part a) is a schematic of the complete experimental setup and b) is a photograph of its
implementation.
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Figure 6.2: Part a) shows the basic support structure and the fixed gradient coil former into which the
movable detection coil former in b) was fit. The rings at the top of the structure hold the detection coil
support tube shown in b) while the rings at the bottom hold the plotter chassis tube shown in g). Parts c-g)
show the apparatus used to position the field probe and in h) the two coil formers and field plotting apparatus
are shown assembled. Part i) shows the removable aluminium tube and j) shows the complete assembly.
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acrylic chassis (figure 6.3d) thus providing access to the bottom wheel such that the probe tube and support

rod can be connected.

6.2 Practical Coil Considerations

6.2.1 Gradient Coils

The gradient coils were wound in consecutive layers on the former shown in figure 6.2a. Since

this former has an outer radius of 10.6 cm, its outer surface is only 2.1 cm from the inner surface of the

aluminium tube and thus the gradient coils were wound in this space. Due to this close proximity, gradient

coils would usually be designed with substantial active shielding (section 3.1.1.1). However, our goal is

not to minimize eddy-current fields – as is done when designing an actual MRI machine – but rather to

verify dynamic pre-emphasis. Therefore gradient coils were designed using the unshielded shim-coil design

method of Hoult and Deslauriers [50]. Although this method is not ideal for gradient coils, it does produce

single layer coils which can fit into the 2.1 cm space and, due to commonality with the detection coil design

method in section 4.2, a single set of software tools can be applied to the design of either type of coil.

The result is that rapidly switched currents through the unshielded gradient coils strongly couple to the

aluminium tube and induce large, and easily detected, eddy currents.

The first of the software tools was written in Mathematica and used to determine the Fourier wire

density coefficients F j and G j (equation 4.2.2). For detection coils this software generated a rectangular

matrix from equation 4.2.8 which was then inverted using Mathematica’s ’PseudoInverse’ function. How-

ever for gradient coils, the matrix was generated using the relationship between the azimuthal wire density

coefficients G j(z) and the produced field harmonic coefficients Bza,n,m [50], that is

Bza,n,m =
∫ L
−L
−Gm(z)µo

4
∑∞

n=m
sin(α)(n−m)!
f n+1(n+m)!

[
Pn+1,m+1(cosα)−

(n − m + 2)(n − m + 1)Pn+1,m−1(cosα)
]
dz.

(6.2.1)

The three gradient coils were each designed to produce only a single harmonic while other harmonics of

order less than or equal to n = 5 were explicitly nulled.

The resulting wire density coefficients were then passed from Mathematica to a set of software

tools written in the computer languages C and Python. When given a desired number of contours with which

to approximate the stream function (section 4.2.4), one of these tools output a list of wire line segments

following those contours and another software tool then connected the contours with additional segments

so that the list formed a single closed wire path. With the segment endpoints saved to a file, yet more

software tools displayed the segments (figure 6.4a) and predicted the magnetic field using the Biot-Savart

law (equation 2.1.23). As shown in figure 6.4b, another software tool was able to produce a two dimensional

projection of a wire path, including arrows to mark wire direction, which could then be printed full size on
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Figure 6.3: Photos a) and b) show the top of the experimental assembly from two different angles. In
both photos the grips holding the detection coils in place, the top of the field plotting apparatus, and the
paper markings used for measurement can be seen. Photo c) shows the bottom of the assembly below the
aluminium tube. Here the bottom wheel of the field apparatus can be clearly seen as well as the large hole
cut to access it. The three photos in d) show the sniffer coil used as a field probe; the length of its former
provided stability when placed within the the probe tube. The photo in e) shows a close up of a hall effect
sensor placed within the probe tube which is on a tiny printed circuit board affixed to the top of a plastic
component used for mechanical stability. Turning a dial at the top of the probe tube moved a length of tailor’s
tape and since either probe could be connected to the tape, the probe could be placed precisely. Although
the Hall probe was useful for secondary verification, the results presented in this thesis were produced by
using the sniffer coil followed by an electronic integrator.
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a sheet of paper. This sheet could then be wrapped around the coil former and used as a winding template.

However before fabrication, software was used to verify that the contours were few enough that there would

be physical space for the wires.

Once the Gz wire path had been generated, the paper winding template was affixed to the gradient

coil former with spray-on artist’s glue. The coil was then hand-wound by following the arrows on the

template with 0.813 mm diameter copper magnet wire1 which was painstakingly fixed in place with clear

cellophane tape. After the gradient coil was wrapped, it was covered in a cellulose filler compound called

“Polyfilla” and, after waiting for the compound to become firm but not completely dry, the coil was centred

on an axial spindle and placed on the table of a milling machine. The milling machine’s bit was set to cut

into the polyfilla at a fixed depth so that as the gradient coil was turned on the spindle, and the table shifted in

the axial direction, a smooth cylindrical surface was formed just above the Gz coil. This cylindrical surface

was then used as the foundation for the Gx coil which was similarly wrapped, covered in “Polyfilla”, and

machined to provide a foundation for the Gy coil. Once complete, the three-layered gradient coils were

connected to their current sources using banana plugs and standard hook-up wire.

6.2.2 Detection Coils

The detection coil wire density coefficients and discrete wire segments were found using the same

software used for the gradient coils above, the differences being that the rectangular matrix was generated

directly from equation 4.2.8 and the matrix size was chosen to reject unwanted harmonics up to and including

n = 7. In both types of coil, the connections between contours take the form of short, axially directed wire

segments as can be clearly seen in figure 6.5. For a field production coil, axially directed wire segments

produce no Bz field and thus do not degrade coil performance. However for a harmonic detection coil, the

voltage induced in every wire segment contributes to the total voltage. Therefore the flux linkage to the

contour interconnects was cancelled by running a return wire directly over them.

6.2.2.1 Calculating the Flux Response

To simulate the performance of a detection coil design, the flux linkage of an arbitrary wire pat-

tern to the individual field harmonics can be found since the total flux linkage ΦT to a wire segment with

endpoints a and b is ΦT = −
∫ b

a A · dl (equation 2.1.13) where A is the vector potential expressed in terms

of the field harmonics. Using tables 4.1 and 4.2 the vector potential can be determined numerically at any

spatial location and thus by numerical integration2 of A · dl along the entire wire path – one segment at a

time – the coil pattern’s flux response can be computed.

1Belden 8076 magnet wire AWG 20 (www.belden.com)
2We used the Gauss-Kronrod 61 point algorithm implemented in the GNU scientific library [30].
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Figure 6.4: For each gradient coil, a) shows the wire path in three dimensions and b) shows a scaled version
of the wrapping template. Parts c) and d) are contour plots of the simulated Bz field at two levels of detail,
and part e) is a simulated field plot along an axis of interest assuming a current of 1 A flows in the coil. The
plots in e) begin to deviate slightly from a straight line as the distance from the centre increases.



122

Figure 6.5: Photo a) is of twin-axial cable and photo b) is a close-up of the Dx coil before it was covered in
polyfilla; the wire is held by clear plastic tape to the winding template which can be occasionally seen, with
its arrows, beneath the wire. Note the connections between contours and the return wires down the centre.
There are two return wires on the top half of the coil because winding was started at the coil’s axial centre
but the twin-axial connection was placed on the coil’s top edge.
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However, when computing the flux response we must select arbitrary harmonic coefficients κab,n,m

for the field rather than using physical coefficients Bzab,n,m and the arbitrary coefficients should be selected

such that comparing flux responses is meaningful. To appreciate the problem, consider computing a detec-

tion coil’s harmonic flux response with coefficients chosen such that κab,n,m = 1/Rn
re f where Rre f is chosen

to cancel the factors rn in the spherical harmonics Tn,m,T ′n,m first on a sphere much larger than the detection

coil and then a second time on a sphere much smaller than the coil. Obviously, due to the rn dependence of

the spherical harmonics, the high order flux responses computed when Rre f is the radius of the large sphere

will be much smaller than when Rre f is the radius of the small sphere. Thus, for a reasonably fair com-

parison between harmonics – and between coils of different geometry – we compute flux responses using

κab,n,m = 1/Rn
re f such that Rre f =

√
(L/2)2 + R2 where R and L and are the detection coil’s radius and length;

flux responses computed in this way are shown in figure 6.6.

6.2.2.2 The Voltage Induced in a Discretized Coil

Although the voltage induced in a discrete wire path can be computed directly from the flux

linkage to various field harmonics, it is useful to have a direct link between the desired flux coefficient αn,m

used in equation 4.2.8 and the simulated flux response computed from the wire path as above. From equation

4.2.7, the total voltage generated in a continuous wire distribution is VT = −ωΦT = −ω
∑∞

n=m−1 Φn,m

where each function Φn,m found in equation 4.2.6 depends on the wire density coefficients and the harmonic

coefficient Bza,n,m. Now when a detection coil’s wire pattern is designed, a desired flux response αi, j (usually

αi, j = 1) is specified for a given design harmonic (n = i,m = j) with arbitrary coefficient κi, j where all

other desired flux responses are specified as zero and thus all other harmonic coefficients κn,m are basically

irrelevant. Thus, imagining it were possible to produce the continuous wire distribution, the voltage induced

in it would be V = −ωαi, j when it is placed in a field where the harmonic of interest has amplitude κi, j

and oscillates at angular frequency ω. Therefore the voltage induced in this continuous distribution when

exposed to a physical harmonic magnitude Bza,i, j would be V = −ω
αi, jBza,i, j
κi, j

. However discretization of the

continuous wire distribution into wire segments causes stream function contours to be chosen such that each

contour is separated by an amount ∆Γ corresponding to a single wire in the physical coil (see section 4.2.4).

Thus the voltage induced in the actual wire path should be

V = −ω
αi, jBza,i, j

∆Γκi, j
(6.2.2)

and deviations from this value are caused by errors introduced either by discretization or by manufacturing.

Another important consideration when determining the voltage induced in a detection coil is its

mutual inductance to a nearby field production coil (gradient coil in our case). Since a field production coil

only produces a single harmonic within a limited region and a detection coil may not fit entirely within this
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region, the flux response to individual harmonics is not always sufficient to determine the mutual inductance

between coils. Instead we use the Neumann equation (equation 2.1.25) to directly compute the mutual

inductance between the sets of wire segments making up each coil and these results are given in figure 6.6.

With the simulations complete, the detection coils were fabricated on a coil former of radius

7.9 cm using 0.455 mm3 diameter copper magnet wire. This smaller wire could be used because, unlike the

gradient coils, the current flowing in a detection coil is limited by the high input impedance of the integrator

circuit. Twin-axial cable (see figure 6.5) was used to connect each coil to its preamplifier. In this cable

the conductors are very close together to minimize inductive coupling, and are surrounded by a conductive

sheath to minimize capacitive coupling. Just as with the gradient coils, the detection coils were wrapped in

successive layers separated by machined “Polyfilla”.

6.2.2.3 Detection Coil Aspect Ratio and nmax

Practically, the radius R and length L of the former on which the detection coils are wound is

limited by the dimensions of the magnet bore. Here, the length is not limited by the aluminium tube but

by the requirement that the detection coil former be free to move by 10 cm in the axial direction and not

interfere with other mechanical components.

In general, within a sphere of radius Rre f =
√

(L/2)2 + R2 < ∞ that encompasses the coil former4,

the magnetic field can always be described as a sum of spherical harmonics, and the larger the radius, the

more orders are needed to attain a given descriptive accuracy – certainly more than the maximum number

nvol needed to accurately describe the field in the volume of interest for magnetic resonance. For a fixed

radius R, longer coils require more orders to be rejected in the detection coil design – that is an increased

nmax. At first sight, this implies that the length L should be a minimum. However, as L decreases, it is found

that there is a limit to the number of orders that may be rejected, and an undesirable point may come where

that limit is less than nvol.

It follows that there is an optimal coil former aspect ratio R/L but that the determination of that

ratio is difficult. Compounding the difficulty is the accuracy to which a wire pattern approximates its con-

tinuous distribution. Then, increasing the maximum rejected order nmax may actually reduce a detection

coil’s accuracy. Further, the optimal length may be different for the detection of different harmonics. Figure

6.6 shows the wire pattern and flux response for first order detection coils with rejection up to and including

seventh order. The winding length required for the Dz coil is considerably less than that for the Dx or Dy

coils. However, attempts to reduce the length of the two tesseral detection coils resulted in an impractically

compressed wire density and eventually, the failure to find a solution.

All the above factors are reflected in the graphs of flux response. Because the windings of the zonal

3Rea 25.0 AWG HNSR magnet wire (www.reawire.com).
4The field at a point with radial coordinate f > Rre f can be described using harmonics that vary as f −(n+1).



125

Figure 6.6: For each coil: a) and b) are the wire pattern and wrapping template while c) is the harmonic flux
response computed using Rre f =

√
(L/2)2 + R2. The coil former length is L = 34 cm and for each coil the

mutual inductance M = KcKD between it and the corresponding gradient coil is given as computed using
the Neumann formula.
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Dz coil occupy a length considerably shorter than Rre f , the response to higher orders decreases rapidly even

when the design maximum of seven is exceeded. However, this is not the case for the longer Dx and Dy coils

and the response starts to rise by the point at which the fifth order is reached, implying that discretization

errors are present. A relatively large response is also seen for higher odd orders when comparing with the

response for the Dz coil, and this may be attributed to the longer winding. Clearly more orders should be

rejected for this winding length, but given that discretization errors are already evident by the fifth order,

there seemed to be little point in attempting this correction.

6.2.2.4 A Detection Coil’s Resonant Frequency and Bandwidth

Once the detection coils were constructed a simple experiment was performed to determine their

bandwidth and verify the model in figure 5.4 and equation 5.1.8. Each detection coil was placed in a circuit

as shown in figure 6.7a and the voltage amplitude across Ro measured as a function of the frequency of the

sinusoidal wave produced by the function generator. Theoretically the transfer function of the circuit should

be

Vo

Vi
=

Ro

Ro + ZD + Ri
(6.2.3)

where

ZD =
RD + sLD

1 + sRDCD + s2LDCD
(6.2.4)

is the impedance of the detection coil.

Each detection coil’s resistance RD was easily found using a digital multimeter but the values for

CD and LD were merely adjusted numerically until the theoretical parts of figure 6.7b-d approximately fit the

experimental results. Once these rough values for CD and LD were determined, they were used to plot (see

figure 6.7e) the transfer function from a voltage induced in the detection coil by nearby magnetic fields to

the resulting voltage between the coil’s leads (equation 5.1.8). From these results we see that our detection

coil model works reasonably well provided the coil is operated well below its self-resonant frequency. We

also note that these particular coils have operational bandwidths of approximately 100 kHz.

6.3 Electrical Design

6.3.1 Electronics Overview

Each feedback channel was designed as shown in figure 6.8 to include a feedback compensator,

gradient current amplifier (Techron 7570), gradient and detection coils, and a split feedback path consisting
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Figure 6.7: Part a) shows the experimental setup used to characterize the detection coils and parts b-d) plot
the ratio Vo/Vi found both from experiment and from equation 6.2.3 using the RD, LD, and CD values listed.
Finally in e), equation 5.1.8 is plotted using the values RD, LD, and CD values determined from the Dx coil’s
experimental results; the transfer functions for all three detection coils are nearly identical and so only one
is plotted.
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Figure 6.8: Single harmonic control system

of an integrator, low-pass filter, and summing circuitry. Since MRI images could not be acquired, the cross-

over frequency ωI between the two paths was not optimized as described in section 5.3 but was chosen to

be ωI/(2π) = 0.5 Hz.

6.3.2 Current Amplifiers: Techron 7570

The Techron 7570 power supply amplifiers, which are mounted in the rack shown in figure 6.1,

can each drive up to 2 kW of power (limited to 20 A and 100 V) into their respective gradient coils with a

maximum slew rate of 32 V/µs. These outdated (circa 1988) amplifiers do not employ digital pulse width

modulation and produce trivial output power compared to those normally used in MRI (see section 3.1.1) but

they were readily available, being castoffs from previous projects, and can draw power from standard 115 V

electrical sockets. Each Techron 7570 ensures that its output current is proportional to its single-ended input
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Figure 6.9: The transfer function from the the Techron 7570’s input voltage to its output current driven
through the Gx coil. The transfer function is essentially the same for the amplifiers driving the Gy and Gz

coils and the gain is KS = 10 A/V. Note that the transfer function’s magnitude is not level between 0.1 Hz
and 10 Hz.

voltage [127, pg 4-5] by using the voltage across an internal 5 mΩ current sensing resistor as a feedback

signal; this signal is amplified 20x and provided as an output on the amplifier’s front panel. Each amplifier’s

transfer function was measured by connecting a gradient coil to its output, a frequency generator and an

oscilloscope probe to its input, and another oscilloscope probe to its current sense output. By comparing

the oscilloscope waveforms to one another at successive frequencies, the result shown in figure 6.9 was

acquired.

6.3.3 Parameterizing the Eddy Currents and Selecting ωI

Before the feedback system could be designed, the parameters ωe and ξ in the eddy current model

G = Kc
(1+ξs/ωe

1+s/ωe

)
(equation 5.1.6) needed to be determined. This was accomplished separately for each of

the three gradients by driving a sinusoidal waveform through the gradient coil and measuring the output of

an electronic integrator ( fI = ωI/(2π) = 0.5 Hz) connected to the corresponding detection coil; the results

are shown in figure 6.10. The parameters ωe and ξ shown in the figure were found merely by adjusting them

until the model approximately fit the experimental results.

As can be seen, below ∼ 2 Hz the eddy currents are not appreciable and beyond ∼ 80 Hz their effect

remains constant with frequency. Now from equation 2.1.29 we know that the skin depth equals the tube’s
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Figure 6.10: Parts a), b) and c) graph the transfer function of the channels x, y, and z from the input of
the Techron 7570 through the gradient coil, detection coil, and an integrator with ωI/(2π) = 0.5 Hz. The
experimental results fit the simple eddy current model presented in figure 5.3 and for each channel ωe and
ξ were adjusted by hand to fit the experimental results. Below 0.5 Hz the integrator no longer functions but
rather produces a roll-off.

thickness5 at a frequency f = 1/(µoπσδ
2) = 78.1 Hz. For frequencies above this value, the eddy currents do

not flow appreciably in the whole thickness of the tube and thus the eddy current effect no longer increases

with frequency. However as the frequency drops below ∼ 2 Hz the tube becomes increasingly transparent

to magnetic fields.

Although the integrator used to characterize the eddy currents had ωI/(2π) = 0.5 Hz and below

this frequency the eddy current effects are small, it is not immediately obvious that 0.5 Hz is an acceptable

cross-over frequency between the two feedback paths (see figure 6.8) since small eddy current effects persist

albeit with vanishingly small amplitude (section 5.2.2). However, since we are not planning to acquire an

image and the mathematics of section 5.3 was developed after the experiment was designed, an alternative

method to that of section 5.3 was required for choosing ωI .

Fortunately, the equations of section 5.1.4 allow the entire feedback system to be modelled for any

value of ωI . Ignoring the limited bandwidth of the detection coils and using the compensator model to be

developed in section 6.3.5, the transfer function T of the entire feedback system was found. Multiplying T

by the Laplace transform of a unit step input (1/s) and using the ’InverseLaplaceTransform’ function from

Mathematica produces a closed form equation, albeit many pages long, for the system’s step response; this

equation is plotted for various values ofωI in figure 6.11. As can be seen in the figure, there is a characteristic

’droop’ in the step response caused by eddy current distortion of the feedback path (section 5.2.2) which has

nothing to do with the overshoot and ringing common to feedback systems (figure 3.5). Having no specific

engineering requirements to satisfy, we accept ωI/(2π) = 0.5 Hz as the cross-over frequency between the

two feedback paths because the associated step-response differs from the ideal by only a few percent.

5Aluminium has a resistivity of ρ = 1
σ

= 2.65 × 10−8 Ωm [74, ch 12] and the aluminium tube has a wall thickness of δ =

9.271 × 10−3 m (figure 6.2i).
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Figure 6.11: The feedback system’s step response is simulated for various choices ofωI . The high-frequency
feedback path causes the harmonic output to rise quickly and the low-frequency path ensures that the result
eventually converges to the correct value. However the ’droop’ during intermediate times is caused by
deviation in the feedback path due to eddy currents (see figure 5.7).

With ωI set, the integrator’s internal mesh frequency ωM was chosen to maximize signal to noise

ratio for a certain maximum harmonic slew rate (section 5.2.1). Although this value can be determined by

simulation, it was set by trial and error at approximately ωM ' 10ωI = 2π × 4.5 Hz. The mesh between the

two integrator stages was achieved by carefully measuring component values and was verified by measuring

the integrator response to a sine wave at frequencies above and below the mesh point to ensure that both

points fit on a single-pole filter response.

6.3.4 The Integrator and Split Feedback Path

The transfer function of the feedback path, especially that of the integrator (section 5.2.1), is of

the utmost importance in determining the transfer function of the complete feedback system. In addition to

producing an excellent transfer function, the feedback path must not introduce excessive noise or offset into

the system and this is accomplished primarily by selecting an appropriate preamplifier.

6.3.4.1 The AMP01 and other Integrated Circuits

The AMP01, shown in figure 6.12, was selected as a preamplifier because of its low flicker noise

(0.12 µVpp between 0.1 Hz and 10 Hz), its fairly low offset voltage (50µV maximum), and its high linearity.
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Figure 6.12: Part a) shows the AMP01’s schematic; note that the gain can be altered by adjusting Rs. In
b) the AMP01’s frequency response is shown for various gain settings and c) is a plot of the amplifier’s
input noise voltage which is dominated by flicker noise below 10 Hz and by white noise with a magnitude
of approximately 5 nV/

√
Hz above 10 Hz. The AMP01 is an instrumentation amplifier (section 3.2.2.2)

produced by Analog Devices (www.analog.com) and these three images were taken from the manufacturer’s
datasheet.

It has a bandwidth of over 10 kHz and by adjusting the resistor Rs while keeping RG fixed, the AMP01’s gain

can be adjusted between 0.1 and 104. A small bias current (4 nA) flows from each of the AMP01’s inputs

and must be given a path to ground and, depending on the path, the difference between these offset currents

(typically 0.2 nA) may introduce an erroneous input voltage in addition to the amplifier’s intrinsic 50 µV

input offset voltage. Since the AMP01’s properties are specified for ±15V power supplies, these supply

voltages were used for all analog components in the feedback system.

In addition to the AMP01, several other integrated circuits should be mentioned. As shown in

figure 6.8, the INA134 is an op-amp. with four integrated resistors which have been laser trimmed to

precisely 25 kΩ. This precision makes implementing both the difference amplifier of equation 3.2.8 and the

signal summing block between the two feedback paths fairly straightforward. Another important integrated

circuit is the OP177, a high quality op-amp. with a gain-bandwidth product of over 500 kHz; it was used

wherever a simple op-amp. is shown in figure 6.8.

The clip detector shown in figure 6.8 is a simple circuit which turns on a warning light if the

AMP01’s output departs from the range ±13 V. This was accomplished by monitoring the AMP01’s out-

put with two comparators, each with its output connected to a separate digital flip-flop. Therefore if the

AMP01’s output ever departed from the range ±13 V a warning light would turn on and stay on until expli-

citly reset by cycling the feedback system’s power.
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Figure 6.13: Pre-filter schematic

6.3.4.2 The Pre-filter

To provide a path for the AMP01’s bias currents, two resistors were added to the pre-filter circuit

in figure 5.6b resulting in the circuit in figure 6.13. However, the new resistors must not appreciably alter

the pre-filter’s transfer function or introduce excessive noise. Fortunately, provided that the value of the

additional resistors Rbi is much larger than that of the input resistors Ri, the circuit is simply a low-pass filter

as before. Moreover, when the resistors are matched such that Ri,1 = Ri,2 = Ri and Rbi,1 = Rbi,2 = Rbi,

symmetry ensures both that differential signals detected by the AMP01 arise solely from the difference

Vi,1 − Vi,2 and that common mode signals rejected by the AMP01 arise solely from signals common to

Vi,1 and Vi,2. However, to design the pre-filter properly we must know precisely how unmatched resistors

degrade common mode rejection and what influence the ratio Rbi/Ri has on the circuit’s transfer function.

We must also determine the noise generated by the resistors and how it compares to the noise of the AMP01.

Assuming that the AMP01’s input impedance (∼ 1 GΩ) is much higher than that of any component

in the pre-filter, the voltage at Vp,1 is merely a super-position of the voltages produced at Vp,1 due to each

of the inputs Vi,1, Vi,2, Vg,1, and Vg,2 – we are considering the points Vg,1 and Vg,2 as inputs to analyze the

noise arising from Rbi,1 and Rbi,2. Therefore the voltage at Vp,1 due to Vi,1 is found by the voltage divider

Vp,2 =
Rbi,2‖ZQ

Ri,2+Rbi,2‖ZQ
Vi,2 where a ‖ b = ab

a+b stands for the parallel combination of impedances and ZQ is formed

from the capacitor’s impedance Zci = 1
jωCi

in series with the parallel combination of Ri,1 and Rbi,1. From

similar considerations, the total voltages at Vp,1 and Vp,2 are

Vp,1 = D′LVi,1 + D′NVg,1 + DLD′MVi,2 + DN DMVg,2

Vp,2 = DLVi,2 + DNVg,2 + D′LDMVi,1 + D′N D′MVg,1
(6.3.1)

where
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δ = Vi,1 − Vi,2 input differential
q = 1

2
(
Vi,1 + Vi,2

)
input common mode

∆ = Vp,1 − Vp,2 output differential
Ξ = 1

2

(
Vp,1 + Vp,2

)
output common mode

Table 6.2: Pre-filter differential and common mode signal definitions

DL =
Rbi,2‖ZQ

Ri,2+Rbi,2‖ZQ
D′L =

Rbi,1‖Z′Q
Ri,1+Rbi,1‖Z′Q

DM =
Ri,1‖Rbi,1

ZQ
D′M =

Ri,2‖Rbi,2
Z′Q

DN =
Ri,2‖ZQ

Rbi,2+Ri,2‖ZQ
D′N =

Ri,1‖Z′Q
Rbi,1+Ri,1‖Z′Q

ZQ = Zci + Ri,1 ‖ Rbi,1 Z′Q = Zci + Ri,2 ‖ Rbi,2.

Since we are primarily interested in the differential and common mode voltages at the filter’s input

and output ports (summarized in table 6.2) we re-arrange equation 6.3.1 to read

∆ = D′L (1 − DM) Vi,1 − DL
(
1 − D′M

)
Vi,2 + D′N

(
1 − D′M

)
Vg,1 − DN (1 − DM) Vg,2

Ξ = 1
2 D′L (1 + DM) Vi,1 + 1

2 DL
(
1 + D′M

)
Vi,2 + 1

2 D′N
(
1 + D′M

)
Vg,1 + 1

2 DN (1 + DM) Vg,2.
(6.3.2)

and replacing the input voltages with the input differential and common mode signals we have

∆ = 1
2

[
D′L (1 − DM) + DL

(
1 − D′M

)]
δ +

[
D′L (1 − DM) − DL

(
1 − D′M

)]
q

Ξ = 1
2

[
D′L (1 + DM) + DL

(
1 + D′M

)]
q + 1

4

[
D′L (1 + DM) − DL

(
1 + D′M

)]
δ.

(6.3.3)

where we have assumed Vg,1 = Vg,2 = 0. The general effect of the additional resistors can be teased out

of these opaque equations by assuming that the resistors are perfectly matched and thus all primed terms

precisely equal their un-primed counterparts. Then after a little algebra we find that

∆ =

(
1

1 + Ri/Rbi

)
1

1 + jω2 (Ri ‖ Rbi) Ci
δ (6.3.4)

where, compared to a circuit where Rbi = ∞, the signal is attenuated by a factor 1/(1 + Ri/Rbi) and the

effective resistance for determining the cut-off frequency is 2 (Ri ‖ Rbi) rather than 2Ri. However, for realistic

resistor matching, equation 6.3.3 still permits numerical simulation of the degraded circuit performance.

The values Rbi = 1 MΩ, Ri = 1.8 kΩ, and Ci = 10 µF were selected for the pre-filter and the

resistors were matched to better than 1%. Using these values ensures that 99.8% of the DC signal passes

through the filter (equation 6.3.4) and in figure 6.14a we see that matching the resistors to better than 1%

ensures that common mode rejection is always greater than 40 dB. However, the AMP01’s 4 nA input bias

current flowing through Rbi generates a tremendous 4 mV offset voltage common to each input. Fortunately
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Figure 6.14: Equation 6.3.3 gives the transfer function from input common mode to output differential as
∆/q =

[
D′L (1 − DM) − DL

(
1 − D′M

)]
which is plotted in a) for various values of resistor mismatch. In b) the

noise contributions from resistors Rbi and Ri (equations 6.3.5 and 6.3.6) are compared to the intrinsic noise
of the AMP01 referred to its input.

only voltage differences are amplified and thus we are primarily interested in the input offset current [60,

pg 1.59], the difference between the the two input bias currents (typically 0.2 nA at 25◦C for the AMP01).

To find the differential voltage resulting from this bias current imbalance, we note that approximately half

of this current flows from one AMP01 input to ground through each of the two resistors Rbi. Therefore

the voltage difference generated by the input offset current is due to 0.1 nA flowing through 2Ri and the

detection coil to reach the second input. This produces an offset of only 3.6 µV which does not appreciably

alter the AMP01’s intrinsic offset voltage of 50 µV.

Ideally noise in a feedback system arises from the intrinsic properties of the sensor, in this case the

detection coil’s resistance. However, the realities of electronic amplification at low frequencies often cause

the preamplifier to be the prime noise source and from figure 6.12c we see that, after 10 Hz, the AMP01

has a flat noise power spectrum (section 2.2.2.1) JAMP01(ω) = (5 nV/
√

Hz)2 which is the same as that

generated by thermal noise in an object with resistance R = 1.5 kΩ at 25◦C6. Since, the presence of Ci

significantly attenuates the noise before it reaches the inputs of the AMP01, we expect that resistance values

larger than 1.5 kΩ may be used in the pre-filter without degrading noise performance but further analysis is

required.

Starting this noise analysis from equation 6.2, and assuming perfectly matched resistors, the com-

bined noise power generated from the resistors with value Rbi is

6The noise power spectrum generated by a resistor is is JR(ω) = 4kTR where T is the absolute temperature in kelvin, k is
Boltzmann’s constant, and R is the resistance in ohms.
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∆2
nbi = 2D2

N (1 − DM)2 V2
g

= 8
(

1
1+Rbi/Ri

)2 (
1

1+ jω2(Ri‖Rbi)Ci

)2
kTRbi

(6.3.5)

where the noise power generated by one resistor is 4kTRbi and we have assumed that the noise is un-

correlated. Moreover, due to the symmetry of the circuit, we also see that the noise power due to the

resistors with value Ri is

∆2
ni = 8

(
1

1 + Ri/Rbi

)2 (
1

1 + jω2 (Ri ‖ Rbi) Ci

)2

kTRi. (6.3.6)

These functions are plotted in figure 6.14b where we note that the noise contribution from the AMP01

always dominates that from the resistors, at least for the resistor values we chose, and thus explicitly adding

the resistors to any subsequent noise analysis will have little effect on the result.

6.3.4.3 The Total Feedback Path

Now that the pre-filter’s additional resistors have been considered, and both the feedback cross-

over frequency (ωI/(2π) = 0.5 Hz) and the integrator’s internal mesh frequency (ωM/(2π) = 4.5 Hz) have

been set, the remainder of the feedback path must be designed starting with the feedback path’s gain KDKI .

As mentioned in section 5.1.4, the system’s transfer function is approximately T ' 1
B '

Kc
RKL

= 1
KDKI

over

its operational bandwidth (equations 5.1.4, 5.1.11, and 5.1.14) and thus the product KDKI sets the system’s

gain from input voltage to output harmonic magnitude. Another important transfer function is that from the

system’s input voltage to the current driven in the gradient coil and it can be found using the rules from

table 3.6 to be T/G where G = Kc
(1+ξs/ωe

1+s/ωe

)
is the combined model of the gradient coil and eddy currents.

Therefore the correspondence between a DC input voltage and the gradient coil current is the low frequency

approximation T/G ' T/Kc '
1

KDKcKI
where KDKc is the mutual inductance between the gradient and

detection coils and KI/ωI is the DC gain of the integrator (equation 5.1.1).

Due to the limited dynamic range of the 12-bit digital-to-analog converter used as an input to the

feedback system, the product KDKcKI was chosen such that a 4 V DC input corresponds to the maximum

current that the Techron 7570 can drive into the Gx coil, that is 20 A. Since KDKc is set by coil geometry

(for the x-channel KDKc = 0.316 mH from figure 6.6), the DC gain of the x-channel’s integrator was set

to KI/ωI ' 200 by setting the AMP01’s gain to 100 and the integrator’s second stage gain to 2. With the

feedback path’s gain set, the low-frequency path’s gain and cut-off frequency were set to match. Note that

due to the 20× amplification of the Techron’s internal feedback signal, the value used for R in equation

5.1.12 is R = 20 × 5 mΩ = 0.1 Ω rather than 5 mΩ. The result of these settings is that the transfer function

from the input of the Techron 7570 to the feedback output (see figure 6.8) takes the form shown in figure

6.15 which has been verified by experiment. Since the product KDKc varies so little between the three

feedback systems, nearly identical settings were used for the y- and z-channels.
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Figure 6.15: This plot compares the experimental and theoretical transfer functions from the Techron 7570’s
input to the output of the feedback path. The magnitude of this plot is KDKIKCKS ' 2 and the small
deflection in the experimental results about the cross-over frequency is primarily due to the low frequency
deflection in the Techron’s frequency response as shown in figure 6.9.

6.3.5 The Feedback Compensator and the Whole Feedback Loop

With the feedback path’s transfer function set, the final design step is to choose a compensator

such that the system’s step response and bandwidth are acceptable. From section 3.2.1 we see that the

frequency at which the gain of the open loop transfer function descends to unity sets the bandwidth of the

closed loop system and at this frequency the phase difference from −180◦ is related to the the overshoot and

settling time of the step response. Using our model of the feedback path – including a Techron 7570 model

fit to the experimental results in figure 6.9 – we simulated the open loop transfer functions resulting from

various compensators and also investigated the closed loop transfer function and step response. Using this

technique, the compensator transfer function

Cs = KCmp
(1 + s/ωz1)
(1 + s/ωp1)

(1 + s/ωz2)
(1 + s/ωp2)

(6.3.7)

was chosen with KCmp = 375, ωz1/(2π) = 10 kHz, ωp1/(2π) = 50 Hz, ωz2/(2π) = 9.94 kHz and ωp2/(2π) =

99.9 kHz. The factors (1 + s/ωz) in the compensator’s numerator were chosen to counter-act two of the

many poles of the Techron’s transfer function and thus increase the total system’s bandwidth. Equation

6.3.7 is plotted in figure 6.16 along with its simulated ramifications for the complete feedback system. As

can be seen, this choice of feedback compensator yields a phase margin of 30◦ which is associated with
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Op-amp. # Rp Cp Rz Cz

1 3.38 kΩ 942 nF 2.37 kΩ 6.69 nF
2 15.9 kΩ 100 pF 2.43 kΩ 6.59 nF
3 10.0 kΩ None 1.00 kΩ None
4 7.98 kΩ None 1.99 kΩ None

Table 6.3: Each of the four op-amps. in figure 6.8 is connected to four passive components Rp, Cp, Rz, and
Cz. The actual measured component values used for the compensator in the x-channel’s feedback system
are given above. Essentially the same values were used for the other channels with the variability between
component values in different channels being less than 5%.

significant overshoot and a brief ringing. However the overshoot seems acceptable since it lasts less much

than a millisecond. The compensator’s passive components, shown in figure 6.8, were selected according to

table 6.3.

6.3.6 The Field Probe

In addition to the feedback circuitry, the sniffer coil shown in figure 6.3d was followed by an

electronic integrator and used as a field probe. The coil was made of AWG 36 magnet wire wound to a

radial thickness of 3 mm on a cylindrical former of radius 4.7 mm and length 12.7 mm placed within the

probe tube. The coil’s output fed into a length of twin-axial cable connecting it to a two stage integrator

using a design similar to that described above except it had ωI/(2π) = 0.02 Hz, ωM/(2π) = 0.2 Hz, and a

DC gain KI/ωI = 21000. This high gain was required due to the sniffer coil’s small size but resulted in an

output offset of approximately 1 V which was removed numerically after digital acquisition.

6.4 Results

Having described the coil designs and both the mechanical and electronic aspects of the exper-

imental apparatus in detail, we now turn our attention to how this apparatus was used to verify dynamic

pre-emphasis. Essentially each of the three channels was operated both with and without feedback while the

field was plotted with respect to time on points over the surface of a sphere. However before that could be

done, initial tests were performed verifying the operation of the apparatus.

6.4.1 Mutual Inductance Experiments

As shown in figure 6.17, the first of these tests was to remove the aluminium tube and measure the

mutual inductance M between the gradient coils and their corresponding detection coils. The relative coil

orientations were changed by moving the acrylic tube attached to the detection coil former and the mutual

inductance was found by driving a 10 Hz sinusoidal current with amplitude |ic| = 5 A into the gradient
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Figure 6.16: These four plots show the properties of the x-channel feedback system given the compensator
in equation 6.3.7. Part a) shows the compensator’s transfer function and its low frequency gain of 375.
Part b) shows the open loop transfer function and the phase margin of 30◦. The complete system’s transfer
function in part c) has a peak near 12 kHz characteristic of systems with significant overshoot and in d)
the system’s expected step response is simulated. Although precisely the same simulation was performed
to produce the part of figure 6.11 where ωI/(2π) = 0.5 Hz, the overshoot and ringing is not visible in that
figure because it ceases before 0.5 ms.
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Figure 6.17: In part a) the gradient coil’s field profile was plotted by measuring the mutual inductance
between the Gz coil and a sniffer coil moved along its axis. Outside the gradient coil’s central region the
field is no longer dominated by T1,0 and in part b) we see that the mutual inductance between the Gz and Dz

coils continues to match the computed values even far from the central region. Finally in part c) we see that
the mutual inductance between the Gx and Dx coils also matches the predicted value, this time as a function
of both axial and azimuthal offset. Since the mutual inductance between Gy and Dy is very similar to that
between Gx and Dx, it is not shown. (Parts a) and b) were published previously [28].)

coil and measuring the output amplitude |Vo| of an integrator with gain KI (equation 5.1.1) connected to

the detection coil. The experimentally determined mutual inductance M = |Vo| / (KI |ic|) was found to

match the value computed numerically using the Neumann formula7 (equation 2.1.25) and thus we can be

confident that the apparatus orients the coils correctly and that no significant errors occurred during coil

manufacturing.

6.4.2 Field Plots

The next step was to verify the operation of the field plotting apparatus shown in figure 6.2c-g.

The sniffer coil described in section 6.3.6 was moved over the surface of a sphere with radius 4.1 cm and

the field strengths due to each of the three gradient coils were measured at the points listed in table 6.1. As

shown in figure 6.18, the results generally agree with the Bz field values computed numerically using the

Biot-Savart Law (equation 2.1.23).

7For the zonal case, the mutual inductance between rings can also computed using a well known formula recorded by Grover
[38].
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Figure 6.18: With the aluminium tube removed, these field plots were obtained from each of the three
gradient coils using the sniffer coil followed by an integrator. The field plotting apparatus was used to place
the sniffer coil at positions over the surface of a sphere with radius 4.1 cm and the theoretical values were
computed using the Biot-Savart Law (equation 2.1.23).

Unfortunately the agreement between theory and experiment was initially very poor – approxim-

ately an order of magnitude worse than shown in figure 6.18 – mostly because the wheels at either end of

the field plotting assembly would wobble slightly. This wobble was greatly reduced by replacing the ori-

ginal narrow supports under each wheel with large plates (visible in figure 6.2d) such that each wheel was

supported under its entire bottom surface. Another important, and unresolved, problem is the static friction

between the field plotter’s tubular chassis and the plastic rings (shown in figure 6.2a) into which it fits. Al-

though this snug fit (∼ 0.1 mm) keeps the field plotting apparatus centred and allows for easy rotation, the

static friction is much greater than kinetic friction so the apparatus jumps at the start of any rotation. Thus

placing the sniffer coil at any azimuthal position takes multiple attempts. After being delayed for months

by these and other mechanical problems, the fairly accurate, albeit far from perfect, results shown in figure

6.18 were obtained. These results demonstrate that the gradient coils do in fact produce field gradients and

that the field plotting apparatus can be used to measure the field.
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6.4.3 Dynamic Pre-emphasis Verified

With the experimental apparatus operational, dynamic pre-emphasis could be attempted. After the

aluminium tube was put in place, a square pulse was fed repeatedly into the Techron 7570 responsible for

driving the Gx coil. Over the course of each pulse two signals were recorded by the computer: the output

of the sniffer coil’s integrator and the coil current as measured by the Techron 7570’s internal resister. Due

to the small size of the sniffer coil there was significant noise on the integrator’s output and thus for each

of the 144 probe positions in table 6.1 the results from ten pulses were averaged. Then the open-source

code SpharmonicKit [110] was used on the averaged data to calculate the spherical harmonic transform as

a function of time. The resulting harmonic magnitude for Bza,1,1 is shown in figure 6.19a along with the Gx

coil’s current; other harmonic magnitudes were much smaller. As can be seen, it took about 60 ms for the

eddy currents to die down and a constant harmonic magnitude to be established.

The experiment was then repeated with the feedback system engaged and square pulses fed into

the system’s input rather than directly into the Techron 7570. Again the sniffer coil was placed at a different

locations over the surface of a sphere and the results from ten pulses averaged for each location. After com-

puting the spherical harmonics as a function of time, the results shown in figure 6.19b were obtained. Note

that the feedback system automatically produced the exponentially decaying current pulse in order to rapidly

establish a constant harmonic magnitude. The results in this figure represent the successful completion of a

central goal of this thesis: to experimentally demonstrate dynamic pre-emphasis.

Notice the small bump in the harmonic magnitude directly after its rapid rise. Since the system’s

overshoot and ringing settles in less than 0.5 ms, this bump is due to the small deviation in the feedback

path caused by eddy currents (see figure 5.7) and is correctly predicted in figure 6.11 for a feedback system

with ωI/(2π) = 0.5 Hz. Further reduction of ωI would decrease this small deviation from a perfectly square

pulse.

With dynamic pre-emphasis demonstrated on a single channel, the obvious next step was to op-

erate all three channels simultaneously. The primary goal was to determine whether coupling between the

channels degrades system performance; the first experimental results are shown in the left column of figure

6.20. In those results, a z-gradient (Bza,1,0) was generated under three separate circumstances: without feed-

back control, with feedback control of the z-gradient, and with feedback control operating simultaneously on

x, y, and z channels. As can be seen by comparing parts b) and c) of figure 6.20, not only did simultaneous

operation of all three channels not cause oscillation, there was no perceptible change in system performance.

We have therefore experimentally demonstrated that multiple feedback loops can be used simultaneously to

control multiple harmonics of the magnetic field. Although this satisfied the primary aim of the experiment,

the limited accuracy of the field plotting apparatus meant that the beneficial effect of operating the two ad-

ditional channels was difficult to distinguish. In order to increase the magnitude of the spurious harmonics,
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Figure 6.19: These results [29] demonstrate dynamic pre-emphasis applied to an x-gradient of Bz. The
exponentially decaying pre-emphasis current in part b) was dynamically generated by analog circuits during
the gradient’s rise time without a priori knowledge of the gradient waveform or associated eddy currents.

and thus ease the detection of their cancellation, the symmetry of the aluminium tube about the central axis

was broken.

To break this symmetry, the experimental apparatus was modified by using an electric grinder to

remove approximately 0.5 cm from the plastic surface snugly fitting with the aluminium tube – there was

not space to remove more. The aluminium tube was then offset laterally from the central axis, tilted slightly,

and held in place with plastic spacers. With this new geometry the feedback experiments were repeated and

as can be seen by comparing parts d-e) of figure 6.20 to parts a-b), the magnitude of spurious harmonics

was increased as intended. Concentrating our attention on the spurious harmonic Bza,1,1 in part e), we found

that when all the feedback channels were operated simultaneously Bza,1,1 was suppressed – as can be seen in

part f) – because the x-channel feedback loop produced a small pre-emphasis current. This result indicates

that operating multiple feedback loops simultaneously is beneficial in that it can suppress the production of

spurious harmonics. However, much stronger evidence for suppression of unwanted harmonics could have

been found if feedback control loops – including field production and detection coils – had been produced

for the harmonics Bza,3,0 and Bza,0,0 (note the large spikes in these harmonics in parts e) of figure 6.20 which

would have been suppressed in part f) if there had been control loops for those harmonics).

6.5 Summary

Dynamic pre-emphasis using spherical harmonic inductive detection coils has been successfully

tested on three harmonics – the gradients Gx, Gy, and Gz – using three negative feedback loops each with

its own gradient coil and detection coil. For the first time, eddy current effects have been successfully

compensated by continuously generated – rather than previously calculated – pre-emphasis currents. This
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Figure 6.20: Dynamic pre-emphasis results
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technique not only functioned on a single channel but also with all three channels operating simultaneously;

thereby demonstrating that coupling need not cause oscillation. In fact, there was no observable degradation

in performance with all three channels operating together.

To prepare for this final set of experiments, I designed and built three detection coils, three gradient

coils, a mechanical support system on which to mount them, and a field plotting rig to independently measure

the magnetic field harmonics. The coils and plotting rig were verified using mutual inductance and field

plotting experiments. The eddy currents, the control system’s electronics, and the bandwidth of the detection

coils (approximately 10 kHz) were also characterized. The analysis of noise and mismatched components

in the pre-amplifier/integrator was done with particular care since imperfections there have a large influence

on the total system’s quality. In addition, the cross-over between the two feedback paths was investigated

both with simulation and experiment.

Despite an artificially severe eddy current problem, dynamic pre-emphasis has produced essen-

tially the same currents that would have been generated using static pre-emphasis but without the system

having a priori knowledge of the eddy currents. The cost of this convenience, however, is a set of specially

designed detection coils and a feedback system for each one.
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Part IV

Discussion and Conclusion
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Chapter 7

Feedback Loop Considerations

Having demonstrated experimentally that dynamic pre-emphasis can be achieved using spherical

harmonic detection coils in negative feedback loops, we now turn our attention to topics that may be of use

in this technique’s further development such that it might ultimately replace static pre-emphasis.

7.1 Optimum Cross-over Frequency and Image Simulation

When considering dynamic pre-emphasis for use in an actual imaging system, the optimal cross-

over frequency ωI between low- and high-frequency feedback paths must be found with respect to noise and

distortion as described in section 5.3. We now determine what value should have been chosen for ωI in our

experimental setup.

Given an arbitrary gradient waveform, such as one with noise and distortion, equations 5.3.3, 5.3.4,

and 5.3.5 provide a straightforward method for simulating both a point spread function and an MRI image.

Moreover, the models developed for the feedback system along with knowledge of the preamplifier’s noise

signal allow us to determine what gradient waveform would actually be produced in response to a signal at

the system’s input – provided the gradient amplifier can generate the required current.

Ignoring the preamplifier’s input offset voltage, we begin by simulating a gradient-echo used

to produce a one-dimensional projection image of three 125 cm3 cubes filled with human brain tissue

which have been placed in a magnetic field B0 = 3 T. Two of these cubes contain white matter (N =

0.61 NH2O, T1 = 510 ms, T2 = 67 ms)1 and are stacked in the z-direction with their faces aligned along the

coordinate axes and their centres located at x = −5 cm, y = 0 cm. The third cube also has its faces aligned

along the coordinate axes but is filled with human grey matter (N = 0.69 NH2O, T1 = 760 ms, T2 = 77 ms)

and has its centre at x = 5 cm, y = 0 cm. After subjecting the cubes to a 90◦ RF pulse at t = 0 ms

followed by the perfect gradient waveform shown in figure 7.1b, the Fourier transform of the 256 signal

1N can be used to find M0 from equation 2.2.19 and NH2O is the number of proton spins per unit volume in water.
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Figure 7.1: Part a) shows a simulated noise signal congruent with the information about the AMP01 given in
figure 6.12c. Part b) shows a perfect gradient waveform which was used to generate the perfect 1D projection
in part c). Part d) shows an attempt at optimizing ωI using the parameters of our experimental apparatus
and parts e) and f) show the resulting gradient waveform and 1D projection that such an optimum would
produce. Assuming an improved preamplifier, the ωI optimization is shown in part g) and the resulting
gradient waveform and image are shown in parts h) and i). All 1D projections were formed using 256
simulated signal samples during a 20 ms acquisition time starting 15 ms after a 90◦ RF pulse.
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samples collected during the 20 ms that the gradient remains steady at 1.5 mT/m produces the perfect one-

dimensional image shown in figure 7.1c; to reduce Gibbs ringing, the signal was weighted with a Hamming

window before Fourier transformation. The 90◦ RF pulse was simulated simply by starting all the simulated

magnetization in the transverse plane at t = 0.

However we want to determine the point spread function arising from a noisy and distorted gradi-

ent and then compare it to a perfect point spread function by computing the image degradation (equation

5.3.1). Now the r dependence of the spherical harmonics, including our gradient, causes their field values

to increase with distance from the origin and thus the influence of gradient noise and distortion on the point

spread function are greatest at the field of view’s outer edge. Therefore we repeat the simulation above but

now using a single small cube of white matter (1 cm3) placed at the field of view’s edge (x = 8 cm) in order

to simulate the image of a point – that is the point spread function.

Before proceeding, we must still specify a preamplifier noise signal to use in equation 5.2.5.

Fortunately figure 6.12c provides us with the square root of the AMP01’s noise power spectrum from which

we can generate a noise signal as described in section 5.3.2. One such signal is shown in figure 7.1a but

since it is not unique2 we expect the computed image degradation to be slightly different every time the

same power spectrum is used to generate a new noise signal. By repeating the computations several times

for every value of ωI , the average image degradation can be found as a function of ωI and the maximum

deviation from this value used as a measure of uncertainty.

In figure 7.1d this is done by computing the image degradation ten times for each value of ωI

where the AMP01’s noise power spectrum was used to generate a new noise signal each time. Since image

degradation seems to be minimized when ωI/(2π) = 0.1 Hz, this value was used in a simulated feedback

system to produce the gradient waveform shown in figure 7.1e which was then used to simulate the one-

dimensional image of the 125 cm3 cubes shown in figure 7.1f. Qualitatively this one-dimensional projection

is quite poor and thus for our experimental setup, where the eddy current effects are exceptionally large due

to the use of unshielded gradient coils, the AMP01’s intrinsic noise causes even the optimum choice of ωI

to produce an unacceptable result.

However, the results are greatly improved if we arbitrarily assume a preamplifier is used that has

the same noise power spectrum as the AMP01 but divided by 10. In this case the image degradation vs.

cross-over frequency is shown in figure 7.1g and has an optimum near ωI/(2π) = 75 mHz. Now using this

value, the simulated system produces the gradient waveform in figure 7.1h and, returning once more to the

125 cm3 cubes, the resulting one-dimensional image is fairly good (see figure 7.1i).

The surprising result of this analysis is that for significantly large eddy currents (ξ ' 0.5) and a

preamplifier with a noise performance ten times that of the AMP01, the optimum cross-over frequency is

2Since a random number generator is used to choose the phases, using a different seed in that generator results in a slightly
different signal.
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approximately an order of magnitude below where eddy current effects first begin to distort the field and

approximately two orders of magnitude below3 ωe. It is expected that the optimum cross-over frequency

may be increased by reducing the strength of the eddy currents, reducing the preamplifier’s noise level or

the frequency at which this noise becomes dominated by flicker noise, or by changing the system geometry

such that the characteristic frequency ωe of the eddy currents is increased.

7.1.1 Selecting a Preamplifier

From the analysis above it is clear that selecting the correct preamplifier is critically important.

Obviously the preamplifier must not distort the signal and its bandwidth must be at least as wide as that

desired for the entire system, but specifying the preamplifier’s noise and offset are more difficult. A possible

approach is to specify an acceptable level of output harmonic offset and, for a certain imaging sequence, an

acceptable level of image degradation (equation 5.3.1) due to imperfections in the gradient system. Then

starting with models for the eddy currents – that is ξ and ωe from equation 5.1.6 – and the electronic system

components including an initial preamplifier choice, the optimum cross-over frequency should be computed.

If both the image quality and the system’s output harmonic outset are both within the design specifications at

the optimum cross-over frequency, then the design is acceptable. If not, it is possible to trade image quality

for reduced output harmonic offset by slightly increasing the cross-over frequency.

To see how this works, remember that 1
B = 1

KDKI
is the gain of the complete feedback system

(equation 5.1.4) and that KI/ωI is the DC gain of the integrator (equation 5.1.1). Therefore from equation

5.2.3, the harmonic offset Hoffset due to the preamplifier’s input offset voltage Voffset is

Hoffset =
1
B

KI

ωI
Voffset =

1
KDωI

Vo f f set (7.1.1)

such that increasing ωI reduces Hoffset. Now if ωI starts at its optimum value, any increase trades im-

age quality for a reduced harmonic offset. However if this trade-off does not produce acceptable results,

either select or construct another preamplifier which does produce acceptable results or change the design

specifications.

7.2 Coupling between Feedback Loops and Oscillation

Another important topic is the possible degradation of system performance caused by simultan-

eous operation of multiple coupled feedback loops. Although this degradation was not apparent in the

experimental results presented in section 6.4, the coupling between x- and y-channels could be made suffi-

cient for oscillation by rotating the detection coil former with feedback engaged. In order to have confidence

3ωe/2π ∼ 10 Hz for our system (see figure 6.3.3).
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Figure 7.2: Multiple system feedback control in the presence of coupling

that a set of feedback loops will behave correctly, the models from section 5.1.4 can be used with the theory

of section 5.2.4 to simulate the coupled systems.

Figure 7.2 shows the simulated step response of two coupled harmonic feedback systems where

system A receives the step input while system B receives an input of zero. The two systems were generally

modelled after the experimental setup described in section 6.3 but three key simplifications were made

to reduce the computational expense: the compensator, Techron 7570, and integrator were all modelled

using single-pole filter responses. From the figure we see that when the inter-system couplings, that is

the products Kc,α,βKD,α′,β′ | α , α′, β , β′ from section 5.2.4, are approximately 1% of the on-diagonal

values Kc,α,βKD,α,β then the step-response seems quite reasonable. However, when the couplings reach 25%

the system performance is terribly degraded and, although it is not shown, when the couplings reach 30%

the systems oscillate wildly. Control despite coupling is possible since the coupling is non-existent at low

frequencies and therefore is only an issue during the gradient’s rise time where it slightly alters the shape of

the initial overshoot.

7.3 Designing a Whole System

When deciding whether or not to employ dynamic pre-emphasis rather than static pre-emphasis,

one must determine whether dynamic pre-emphasis affords some benefit to image quality and under what

circumstances this may be the case. Since this decision depends on the application, the eddy-current severity,

and the available preamplifier technology, we merely outline a possible decision-making procedure.

Start by identifying an imaging sequence to be improved, probably some variant of gradient-echo

imaging, and which harmonics may warrant a control system – likely those for which static pre-emphasis

is currently applied or being considered including B0. With respect to this imaging sequence, the designer
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must specify a percent improvement in image quality (see equation 5.3.1) as caused by the switch from static

to dynamic pre-emphasis. Moreover, each harmonic’s bandwidth, slew rate, and offset requirements must

be determined from the imaging sequence. With this done, the field production coils and amplifiers should

be produced using normal techniques or the existing gradient hardware accepted. The gradient system

should then be characterized so that static pre-emphasis can be applied; thus establishing a basis point for

improvement and also eddy current models for use in feedback simulations.

With the starting point defined, the location and geometry of the detection coil former must also be

chosen and an initial set of detection coils designed to fit on it. At this stage the most important aspects of the

detection coil design are that they reject unwanted harmonics and that their bandwidths are sufficient to meet

the specified requirements. Although we determined coil bandwidth experimentally in section 6.2.2.4, it

should be possible to determine the bandwidth using electromagnetic simulation and thus iteratively increase

the number of contours until the coil’s bandwidth just meets design specifications.

Having produced computer models of detection coils, the next step would be to perform a series

of simulations as in section 7.1 to find the optimum ωI for the given imaging sequence using initial choices

for the preamplifier and feedback compensator. As discussed in section 7.1.1, these simulations can be used

in an iterative process with different preamplifier models until the design specifications are met. When this

process is complete, the specified harmonic slew rates can each be used to finalize the internal mesh point

ωM of each integrator. Although further simulation may be performed to optimize the choice of feedback

compensator, provided the system does not oscillate and the rise time is fast, the choice of preamplifier and

ωI are expected to be far more important. To ensure that this final design works for many imaging sequences,

additional simulations should be performed using those sequences. However, the optimum value of ωI is

not expected to change significantly between imaging sequences.

As a side note, we expect that analog electronics are not the ideal choice due to the difficulties asso-

ciated with building low frequency integrators and the availability of digital alternatives. In a digital system

the detection coil’s signal would be digitized after the pre-amplifier, the sense resistor’s voltage would be

digitized directly, and the input could be a pure stream of digital information. Since pulse width modulation

is often used in modern current amplifiers, the input to such an amplifier could be digital as well. Replacing

physical filters with digital alternatives is quite reasonable at audio frequencies and should have advantages

with respect to manufacturing, miniturization, and the implementation of feedback compensators. However

dgitization does nothing to solve the problem of offset at the output of the preamplifier.
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Chapter 8

Coil Design Considerations

Narrowing our focus from the whole feedback system back to the detection coils, there are a

number of important issues to discuss beyond simply designing a working detection coil using the techniques

of section 4.2.

8.1 Discretization and Manufacturing Errors

Most notably, the performance of a theoretically perfect detection coil made from an unrealizable

continuous wire distribution is degraded first when it is discretized into the contours of a stream function,

then again when those contours are interconnected, and one final time when the pattern is manufactured

using actual wire. As an example, the first step in designing the Dx coil in figure 6.6a was to generate a set

of wire density coefficients by inverting a matrix generated from equation 4.2.6. By using equation 4.2.6

to test the flux response of the continuous wire distribution described by these coefficients, we find that the

response to harmonics other than T1,1 is supposedly less than 10−12 times the response to T1,1. Unfortunately

this continuous wire distribution could never actually be manufactured.

However the flux response of discrete contours approximating a continuous wire distribution (see

section 6.2.2.1) can be computed numerically for individual harmonics. Defining the minimum harmonic

rejection ratio as

HRRmin = Φleast/Φinterest (8.1.1)

where Φleast is a discrete coil’s flux response to the least rejected harmonic and Φinterest is that coil’s

response to the harmonic of interest, the results in figure 8.1a show that the contours generated for the Dx

coil have 20 log(HRRmin) = −47 dB. Now separate closed contours only form a coil when linked together

and although this further degrades the flux response, as can be seen in figure 8.1b, it seems to do so primarily

for harmonics which do not limit HRRmin. Finally, when the wire pattern is actually manufactured there are
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Figure 8.1: Each of the plots shows the flux response of the Dx coil at a different stage in its development
using Rre f =

√
(L/2)2 + R2 as in section 6.2.2.1. In a) the flux response is computed before the contours

are connected and in b) after they are connected. To simulate manufacturing errors, in c) each of the wire
segments of the connected Dx coil are randomly moved by a distance between ±2 mm – not physically but
within a computer – and the flux response simulated once more.

inevitably wire placement errors. In figure 8.1c we see the simulated flux response of the same detection coil

where each wire segment has been randomly moved by a distance −2 mm < Rψ < 2 mm in the azimuthal

direction. Again there is little effect on the minimum harmonic rejection ratio.

8.2 Incremental Flux Response

It is also interesting to investigate precisely how harmonics are either detected or rejected by a

detection coil’s wire distribution. Obviously there is a flux linkage, and thus the possibility of induced

voltage, wherever vector potential aligns with a wire. Therefore over the entire coil flux linkages must

cancel for rejected harmonics but add for the single detected harmonic. To see how the pseudo-inverse

solves this problem, we can use a detection coil’s wire density coefficients and equation 4.2.6 to determine

the flux response contributed by each of a coil’s discrete rings of axial or azimuthal wire density (see figure

4.3). As shown in figure 8.2, the contribution to flux response as a function of axial position along the

Dx coil reveals that the flux linkages do cancel out for every harmonic except T1,1. This is accomplished

for even ordered harmonics by the flux linkage at one end of the wire distribution cancelling that from the

other end. But for odd ordered harmonics the flux linkage near the centre cancels with that from both ends.

Moreover it seems that as the harmonic order increases so does the importance of the extreme ends of the

wire distribution. An understanding of why these patterns occur may be a useful starting point in developing

alternative design techniques for harmonic detection coils.
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Figure 8.2: Flux comparison along the length of Dx

8.3 Mesh Detection Coils

A possible alternative detection coil design method, although not one based on the patterns dis-

cussed above, would be to form a virtual set of harmonic detection coils by combining the outputs of a

cylindrical mesh of simple wire loops, shown in figure 8.3, each with its own preamplifier. One could work

out what weighted combination of these outputs is equivalent to the output of each of a set of actual har-

monic detection coils and since the preamplifier outputs can be simultaneously included in several weighted

combinations, a great many virtual detection coils could co-exist as part of a single cylindrical mesh.

In addition to the cost and complexity of precision combinatorial circuitry and an array of preamp-

lifiers, the summation of noise poses a significant difficulty for this idea. Let us compare the signal S m from

the output of a monolithic harmonic detection coil (sKD) followed by an integrator (KI/(s + ωI)) to the

signal S v produced by a virtual detection coil formed by the weighted combination of simple loops each

with its own integrator/preamplifier. Provided the harmonic H changes at frequencies much greater than ωI ,

the signals from these coils are

S m = KIKDH and S v = KI

∑
i

aikd,i

 H

where each kd,i is a flux linkage of the harmonic to a mesh element and the weighting coefficients |ai| ≤ 1

used to combine the integrator signals are chosen such that S v = S n and thus
∑

i aikd,i = KD. Now the

noise contribution to S m is simply Nm = KI pn where pn is the preamplifier’s noise signal referred to the

integrator’s input. However the noise power N2
v at the output of a virtual detection coil is produced from the
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Figure 8.3: Mesh detection coil

sum of squares of the noise powers from the integrators/preamplifiers in each element such that

Nv =

√∑
i

K2
I k2

d,i p
2
n = KI pn

√∑
i

a2
i

where
√∑

i a2
i > 1. Therefore the signal to noise ratio of a virtual detection coil is always less than that of a

normal detection coil and probably much less since many of the coefficients ai will be near ±1. Unfortunately

building up virtual detection coils from such a mesh is inadvisable.

8.4 Detection Coils and Bore Space

The use of detection coils introduces a significant drawback for dynamic pre-emphasis: the coils

require space within the magnet’s bore. However detection coils have two features that make this problem

much less severe than it initially seems. The first is that the detection coils are connected to a high imped-

ance and thus carry essentially zero current and experience very little Lorentz force. For these reasons the

detection coils need not be made from heavy wire and do not require extreme mechanical stability like the

gradient coils. Instead they could be fabricated by etching minute wires on paper thin layers laminated to-

gether to form a detection coil set; magnet wire was only used for the coils in figure 6.6 to facilitate winding

by hand. But even very thin detection coils must be placed on a coil former and if the radius of this former

is less than those of the gradient and shim coils, as it is in our experiments, then bore space is reduced.



157

8.4.1 Production Coils Interspersed with or Surrounded by Detection Coils

It may be possible either to intersperse the detection coils with the field production coils or place

them in the space between those coils and the cryostat; in either case bore space would not be limited at

all. To see how this might work, first consider what happens as a detection coil’s radius approaches that

of its corresponding field production coil. Looking at the field plots of the Gx coil in figure 6.4c-d, we see

that over a large region the field can be described with a single harmonic (Bza,1,1) and although the field

descriptions in ever larger regions require that higher order harmonics have greater amplitudes, the original

harmonic Bza,1,1 remains important. Let us define the region of interest, with respect to our Gx coil, as a

sphere of radius 4 cm where the field is primarily Bza,1,1. If a detection coil fits entirely within this region the

harmonics it experiences are those produced intentionally by the field production coils – including the Gx

coil – and unintentionally by the eddy currents. However, as a detection coil’s size increases it increasingly

experiences spurious harmonics produced directly by the field production coil since those harmonics are

part of the field description in the larger region surrounding the larger detection coil. Fortunately detection

coils are designed to reject all but one harmonic and thus dynamic pre-emphasis will not be immediately

affected.

Now if the detection coil’s radius is increased further, eventually the extra harmonics in the field

description may become so large that they overwhelm the detection coil’s minimum harmonic rejection

ratio. At this point the mutual inductance between the detection and production coils is no longer a measure

of a single field harmonic in the region of interest and dynamic pre-emphasis can no longer function. But

all is not lost since we are primarily interested in the fields arising from the eddy currents and even if the

detection coil’s radius approaches that of the gradient/shim coils it is still much less than that of the cryostat.

To see how this is helpful we conceptually split the eddy currents into a superposition of current

distributions which each produce only a single harmonic of the Bz field within the small region of interest,

just as in section 5.1.2. Without specifying precisely what these distributions are, we nonetheless know that

the detection coil is inductively coupled primarily to only one unless the detection coil’s radius is very close

to that of the cryostat. Whatever the actual shape of one of these eddy current distributions, if it produces a

single harmonic within the region of interest then that harmonic will remain important, but not necessarily

dominant, in the field description over larger regions associated with this eddy current distribution. Thus

ignoring the field production coils, a detection coil is inductively coupled primarily to that component of the

eddy currents responsible for a single field harmonic within the region of interest provided that the detection

coil’s radius does not become so close to the cryostat’s radius that the coupling to other field components

overwhelms the detection coil’s harmonic rejection ratio.

From equation 3.1.2 we remember that the harmonics of the field in the region of interest arise

from both the field production coils and the eddy currents according as Bzab,n,m(t) = Bcoil
zab,n,m(t)−

∑
j E jab,n,me−t/τ j .
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Therefore as long the detection coil for Bza,1,1 remains inductively coupled primarily to its one component

of the eddy currents, the voltage V induced in it is

V =

s
∑

k

Mkic,k

 + [sKDHe] (8.4.1)

where Mk is the mutual inductance between the detection coil and the kth field production coil while He =

−Kc
s/ωes

1+s/ωe
(see equation 5.1.6) is the contribution of the eddy currents to Bza,1,1; a similar expression could

be made for any harmonic. Therefore to recover the desired expression

V = sKDGic (8.4.2)

from equations 5.1.6 and 5.1.1, we must adjust the mutual inductances such that
∑

k Mkic,k = KDKcic. This

may be accomplished by using a matrix of air-core transformers between the detection and field production

coils placed outside the bore of the magnet. The number of turns on each side of each transformer can be

adjusted until equation 8.4.2 holds and then dynamic pre-emphasis may be applied once again.

8.4.2 Computing the Spherical Harmonics Without a Sphere

To move this discussion beyond mere speculation, we now attempt to see – at least roughly – how

the harmonics that a detection coil experiences change as its radius approaches that of the cryostat. First of

all we do not know what set of orthogonal eddy current distributions should be considered. However our

Gx coil, for example, does produce a single harmonic within the region of interest and was designed for

minimum power dissipation. Therefore since eddy currents follow the path of least resistance (minimum

power dissipation), we shall use our Gx coil as a very rough approximation of the eddy current distribution

which produces Bza,1,1.

To find the spherical harmonics experienced by the detection coil as a result of this eddy current

distribution we can use the Biot-Savart law to compute the magnetic field on points over the surface of

a sphere surrounding the detection coil and then perform the spherical harmonic transform. But as the

detection coil’s radius approaches that of the cryostat, the sphere surrounding the detection coil intersects

the eddy currents and thus only part of the region within the sphere obeys Laplace’s equation. Using field

points outside the cryostat to compute the spherical harmonics inside the cryostat is not correct. However

one may still draw a region entirely within the cryostat – where Laplace’s equation still applies – that

encompass the detection coil. We must compute the spherical harmonics within such a region using field

points on its surface.

As shown in figure 8.4a-d, one such region can be formed by starting with a sphere just en-

compassing the detection coil and then cutting away every part of that sphere outside the cylindrical sur-

face that is radially half-way between the cryostat and detection coil. The cylinder’s radius is Rcut =
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Figure 8.4: Part a) shows a sample detection coil former placed within a cylindrical cryostat. The spherical
region which just surrounds the detection coil (Rsphere = Rdetect

√
1 + α2

detect/4) is shown as well as the
field points used for the cylindrically restricted spherical harmonic transform. Parts b) and c) show the same
setup first looking down the cylinders and then from an angle. In part d) the original field point locations on
the sphere are also shown. Finally the plot in e) shows that as the region of interest increases so does the
influence of higher order harmonics.
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(Rdetect + Rcryostat)/2 and the sphere’s radius is

Rsphere = Rdetect
√

1 + α2
detect/4, αdetect = Ldetect/Rdetect

where αdetect is the detection coil’s aspect ratio while Rdetect and Ldetect are the detection coil’s radius

and length and Rcryostat is the cryostat’s radius. Then for any Rdetect, Rcryostat, and αdetect values we

can define field points on this surface by starting with the ones given for the spherical harmonic transform

and moving those outside the cylinder with radius Rcut until they lie on that cylinder; this can be done by

sliding the points in the cylindrically radial direction. Given these new field points our task is to use them

to compute the field’s spherical harmonics, a task which we shall call the cylindrically restricted spherical

harmonic transform or CRSHT.

Let us define this task more precisely: given the field values at points described above we wish to

find the set of harmonic coefficients that best re-produces those field values. By ’best’ we mean that the sum

of the square errors between the actual field values and those produced by the harmonic coefficients should

be at a minimum. If we want to find the harmonics up to and including n = 5,m = 5 (that is 36 coefficients)

the fast spherical harmonic transform that we have been using [110, 65] requires 144 points and thus so will

the CRSHT. Now given a set of harmonic coefficients it is a straightforward calculation to determine the

field value at any point so we can setup the CRSHT as a rectangular matrix problem

F = CH

where F is a vector of field values, H is a vector of harmonic coefficients, and C is the straightforward

mapping of coefficients to field values given the point positions and equation 2.1.31. To solve this problem

for F we can impose the extra constraint that the harmonic coefficients be simple in that the sum of their

squares be a minimum and thus use the pseudo-inverse to invert C. This process provides an alternative

method for finding the spherical harmonic transform that works for points on the surface of a sphere but is

not restricted to using such points. When using field points on a sphere, the results found using the CRSHT

agree to those found using the fast spherical harmonic transform to within 0.01%.

Using our Gx coil as an approximation of the eddy current distribution responsible for producing

Bza,1,1 and a detection coil aspect ratio αdetect = 4.25, the results of performing the CRSHT with various

values for Rdetect are shown in figure 8.4e. As can be seen, higher order harmonics become more im-

portant than Bza,1,1 as Rdetect/Rcryostat approaches unity but the influence of the highest order harmonics

only becomes relevant at the closest proximity. Since our Dx detection coil has a minimum harmonic re-

jection ratio of 47 dB (section 8.1) and Bza,7,1/Bza,1,1 < 2.5, the detection coil is still inductively coupled

primarily to the harmonic Bza,1,1 produced by the eddy current fields. These approximate and preliminary

findings suggest that the detection coils will still be useful even if placed in close proximity with the cryostat
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(Rdetect/Rcryostat ∼ 0.975) provided that a matrix of transformers is used to adjust the mutual inductances

between the detection and field production coils.
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Chapter 9

Conclusion

9.1 Overview

Regarding the hypothesis that coils of wire can be shaped to sense distortions of the gradient field

and that the resulting information can be used to correct the distortions as they unfold, we have shown that

this is indeed the case. We have developed a method to design spherical harmonic detection coils which

each produce a voltage proportional to the rate of change of a single spherical harmonic component of the

Bz field. Since the induced voltages depend on vector potential, a pre-requisite of the design method was to

determine what potentials and fields are associated with each spherical harmonic of Bz. These relationships

are not limited to the design of spherical harmonic detection coils and may be useful wherever the quasi-

static approximation is appropriate.

We have also investigated – both theoretically and experimentally – the use of harmonic detection

coils in negative feedback loops each designed to control a single harmonic of the gradient field. The

theoretical work allows detailed simulations and reveals that the feedback path in each loop should be split

at a characteristic frequency ωI between a high frequency branch capable of detecting the field directly and

a low frequency branch providing stability at zero frequency. The choice of ωI and the coil preamplifier are

both critically important to system performance since eddy current effects at frequencies less than ωI cannot

be corrected but lowering ωI increases the preamplifier’s contribution to the system’s offset and noise. For

a given preamplifier, a numerical technique was developed to optimize ωI with respect to the MRI image.

Experimentally, three feedback loops were constructed to simultaneously control the x, y, and z

field gradients within a test apparatus surrounded by an aluminium tube. By using a small probe to plot

the field within the apparatus as a function of time and then performing a spherical harmonic transform, the

time courses of the various harmonics were determined. These results demonstrate that the feedback loops

dynamically correct the gradient coil currents such that the effect of eddy currents on the field harmonics is

effectively cancelled. The current waveforms are the same ones that static pre-emphasis would have applied,
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but dynamic pre-emphasis generates them automatically without calibration or computation. Moreover

when the feedback loops are operated simultaneously, they do not interfere with one another.

9.2 Future Applications

The advancement of MRI technology is not driven by engineering acumen but first by med-

ical/biological curiosity and then by the desire to apply the fruits of that curiosity to health care. In the

long term, this creates a demand for MRI machines with ever higher spatial and temporal resolution and

thus ever higher B0 field strength (section 2.3.4). One of the many problems associated with higher field

strength is the B0 inhomogeneity due to the patient’s magnetic susceptibility. However the use of dynamic

shimming means that this inhomogeneity need not unduly distort the final image: since the shim coils

are unshielded, their dynamic use produces significant eddy current effects whose correction by static pre-

emphasis is particularly difficult. Since the correct shim coils settings vary from patient to patient, so do the

correct pre-emphasis waveforms. Thus we expect that developing dynamic pre-emphasis to a commercial

standard will eventually become desirable, but it is doubtful that using dynamic pre-emphasis on only three

channels would ever be superior to static pre-emphasis due to the extra hardware complexity. However,

since no direct comparison with static pre-emphasis has been made and no MRI images have been acquired,

we have not found the point at which dynamic pre-emphasis becomes preferable. Rather we have focused

on demonstrating that dynamic pre-emphasis is indeed possible, leaving the details to others.

To find this tipping point, two significant questions still need to be answered: can dynamic pre-

emphasis function with the detection coils near or outside the gradient/shim coils and what cross-over point

and pre-amplifier/integrator technology are required to improve image quality? Answering these questions

will undoubtedly require a close relationship with an MRI manufacturer and the ability to re-arrange the

gradient system in an operational high field MRI. Therefore if the problem of bore space can be removed

concurrent to an improvement in image quality, dynamic pre-emphasis will have a clear technical advantage

over static pre-emphasis. However, even with a clear technical advantage, dynamic pre-emphasis will not

become widely used unless the reduction in calibration time and the gains in image quality are sufficient

to justify the added hardware complexity. Of course the location of this tipping point depends on the ap-

plication; imaging techniques that struggle with eddy currents or those which employ dynamic shimming

to correct magnetic susceptibility effects stand to benefit the most from dynamic pre-emphasis. Moreover,

since the magnetic susceptibility effects and the gradient strength for a constant signal to noise ratio per

voxel both increase with the field strength, so does the benefit of using dynamic pre-emphasis.

Despite the fact that dynamic pre-emphasis is not yet ready to replace static pre-emphasis, a signi-

ficant advancement has been made. Although many have developed methods to measure the field and com-

pute static calibrations, an alternative approach now exists. This work has demonstrated that pre-emphasis
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currents can be generated dynamically in response to the eddy currents as they unfold; possibly with signi-

ficant advantages over the static case.



165

Bibliography

[1] M. Abramowitz and I. A. Segun, editors. Handbook of Mathematical Functions. Dover, 1968.

[2] B. Aksel, B.D. Collick, L. Marinelli, W.D. Barber, P.A. Bottomley, and C.J. Hardy. Local planar

gradients with order-of-magnitude strength and speed advantage. International Society for Magnetic

Resonance in Medicine Book of Abstracts, page 780, 2006.

[3] Andrew M. Blamire, Douglas L. Rothman, and Terry Nixon. Dynamic shim updating: A new ap-

proach towards optimized whole brain shimming. Magnetic Resonance in Medicine, 36:159–165,

1996.

[4] N.I. Avdievich, J.W. Pan, J.M. Baehring, D.D. Spencer, and H.P. Hetherington. Short echo spectro-

scopic imaging of the human brain at 7 T using transceiver arrays. Magnetic Resonance in Medicine,

62(1):17–25, 2009.

[5] Christoph Barmet, Nicola De Zanche, and Klaas P. Pruessmann. Spatiotemporal magnetic field mon-

itoring for MR. Magnetic Resonance in Medicine, 60:187–197, 2008.

[6] Adi Ben-Isreal and Thomas N. E. Greville. Generalized Inverses, Theory and Applications. Springer,

New York, second edition, 2003.

[7] H. Benoit-Cattin, G. Collewet, B. Belaroussi, H. Saint-Jalmes, and C. Odet. The SIMRI project: a

versatile and interactive MRI simulator. Journal of Magnetic Resonance, 173:97–115, 2005.

[8] Matt A. Bernstein, Kevin F. King, and Xiaohong Joe Zhou. Handbook of MRI Pulse Sequences.

Elsevier, 2004.

[9] Yoshitaka Bito, Satoshi Hirata, Takayuki Nabeshima, and Etsuji Yamamoto. Echo-planar diffusion

spectroscopic imaging. Magnetic Resonance in Medicine, 33(1):69–73, 1995.

[10] F. Bloch. Nuclear induction. Physical Review, 70:460–474, 1946.

[11] F. Bloch. Nuclear induction. Physical Review, 70:474–485, 1946.



166

[12] Michael A. Brideson, Larry K. Forbes, and Stuart Crozier. Determining complicated winding patterns

for shim coils using stream functions and the target-field method. Concepts in Magnetic Resonance,

14(1):9–18, 2002.

[13] Robert W. Brown and Shmaryu M. Shvartsman. Supershielding: Confinement of magnetic fields.

Physical Review Letters, 83(10):1946–9, 1999.

[14] Michael J. J. Buckingham. Noise in Electronic Devices and Systems. John Wiley and Sons, 1983.

[15] William Elwood Byerly. An Elementary Treatise on Fourier’s Series. Boston:Ginn & Co., 1893.

[16] Bruce Carter and Thomas R. Brown. Handbook of Operational Amplifier Applications - SBOA092A.

Texas Instruments, 2001.

[17] B.L.W. Chapman and P. Mansfield. Quiet gradient coils: active acoustically and magnetically

screened distributed transverse gradient designs. Meas. Sci. Technol., 6:349–54, 1995.

[18] C-N Chen and David I. Hoult. Biomedical Magnetic Resonance Technology. Adam Hilger, Bristol;

Philadelphia, 1989.

[19] Blaine A. Chronik and Brian K. Rutt. Constrained length minimum inductance gradient coil design.

Magnetic Resonance in Medicine, 39(2):270–8, 1998.

[20] S. Crozier, L. K. Forbes, and D. M. Doddrell. The design of transverse gradient coils of restricted

length by simulated annealing. Journal of Magnetic Resonance A, 107:126, 1994.

[21] Rhodri Cusack, Matthew Brett, and Katja Osswald. An evaluation of the use of magnetic field maps

to undistort echo-planar images. NeuroImage, 18:127–142, 2003.

[22] J. Delannoy, Ching-Nien Chen, R. Turner, R. L. Levin, and D. Le Bihan. Noninvasive temperature

imaging using diffusion MRI. Magnetic Resonance in Medicine, 19(2):333–339, 1991.

[23] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93(1):99, Jan 1954.

[24] P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, fourth edition, 1958.

[25] Richard Dorf and Robert Bishop. Modern Control Systems. Prentice Hall, Upper Saddle River, New

Jersey, ninth edition, 2001.

[26] R. L. Driscoll and P. L. Bender. Proton gyromagnetic ratio. Phys. Rev. Lett., 1(11):413–414, Dec

1958.



167

[27] C. D. Eccles, S. Crozer, M. Westphal, and D. M. Doddrell. Temporal spherical-harmonic expansion

and compensation of eddy-current fields produced by gradient pulses. Journal of Magnetic Reson-

ance, 103:135–141, 1993.

[28] Karl T. Edler and David I. Hoult. Spherical harmonic inductive detection coils for dynamic pre-

emphasis. Magnetic Resonance in Medicine, 60:277–287, 2008.

[29] Karl T. Edler and David I. Hoult. A transverse gradient detection coil for dynamic pre-emphasis. In

17th Annual Meeting of the ISMRM, page 1859, Honolulu, Hawaii, 2009.

[30] M. Galassi et al. GNU Scientific Library Reference Manual. second edition, 2004.

[31] Thomas C. Farrar and Edwin D. Becker. Pulse and Fourier Transform NMR. Academic Press, 1971.

[32] Farhad Farzaneh, Stephen J. Reiderer, and Norbert J. Pelec. Analysis of T2 limitations and off-

resonance effects on spatial resolution and artefacts in echo-planar imaging. Magnetic Resonance in

Medicine, 14:123–139, 1990.

[33] FDA. Guidance for industry and FDA staff: Criteria for significant risk investigations of magnetic

resonance diagnostic devices, 2003.

[34] Lawrence K. Forbes and Stuart Crozier. A novel target-field method for finite-length magnetic reson-

ance shim coils: III. shielded zonal and tesseral coils. J. Phys. D: Appl. Phys., 36(2):68–80, 2002.

[35] Marcel J. E. Golay. Field homogenizing coils for nuclear spin resonance instrumentation. Review of

Scientific Instruments, 29(4):313–315, 1958.

[36] C. J. Gorter and L. J. F. Broer. Negative result of an attempt to observe nuclear magnetic resonance

in solids. Physica, 9:591–596, June 1942.

[37] David J. Griffiths. Introduction to Electrodynamics. Prentice Hall, third edition, 1999.

[38] Frederick W. Grover. Inductance Calculations: Working Forumulas and Tables. D. Van Nostrad

Company Inc., New York, 1946.

[39] E.A. Guggenheim. Thermodynamics: An Advanced Treatment for Chemists and Physicists. Elsevier,

seventh edition, 1985.

[40] E. L. Hahn. Spin echos. Physical Review, 80:580–594, 1950.

[41] C. L. G. Ham, J. M. L. Engels, G. T. van de Wiel, and A. Machielsen. Peripheral nerve stimulation

during MRI: Effects of high gradient amplitudes and switching rates. Journal of Magnetic Resonance

Imaging, 7(5):933–937, 1997.



168

[42] O. Heid, M. Vester, and P. Beasley. A novel concept for gradient coil and magnet integration. Inter-

national Society for Magnetic Resonance in Medicine Book of Abstracts, page 895, 2005.

[43] Carl W. Helstrom. Probability and Stochastic Processes for Engineers. Macmillan Publishing Com-

pany, second edition, 1991.

[44] Mark A. Horsfield. Mapping eddy current induced fields for the correction of diffusion-weighted

echo planar images. Magnetic Resonance Imaging., 17(9):1335–1345, 1999.

[45] D. I. Hoult. Sensitivity and power deposition in a high-field imaging experiment. Journal of Magnetic

Resonance Imaging, 12:46–67, 2000.

[46] D. I. Hoult. The origins and present status of the radio wave controversy in NMR. Concepts in

Magnetic Resonance Part A, 34:193–216, 2009.

[47] D. I. Hoult and B. Bhakar. NMR signal reception: Virtual photons and coherent spontaneous emis-

sion. Concepts in Magnetic Resonance, 9:277–297, 1997.

[48] D. I. Hoult and N.S. Ginsberg. The quantum origins of the free induction decay signal and spin noise.

Journal of Magnetic Resonance, 148:182–199, 2001.

[49] D. I. Hoult and Paul C. Lauterbur. The sensitivity of the zeugmatographic experiment involving

human samples. Journal of Magnetic Resonance, 34:425–433, 1979.

[50] David I. Hoult and Roxanne Deslauriers. Accurate shim-coil design and magnet-field profiling by a

power minimization-matrix method. Journal of Magnetic Resonance A, 108:9–20, 1994.

[51] Vasiliki N. Ikonomidou and George D. Sergiadis. Improved Shinnar-Le Roux algorithm. Journal of

Magnetic Resonance, 143:30–34, 2000.

[52] John David Jackson. Classical Electrodynamics. Wiley, third edition, 1999.

[53] P. Jehenson and A. Syrota. Correction of distortions due to the pulsed magnetic field gradient-induced

shift in B0 field by postprocessing. Magnetic Resonance in Medicine, 12:253–256, 1989.

[54] P. Jehenson, M. Westphal, and N. Schuff. Analytical method for the compensation of eddy-current

effects induced by pulsed magnetic field gradients in NMR systems. Journal of Magnetic Resonance,

90:264–278, 1990.

[55] Dye J. Jensen, William W. Brey, Jean L. Delayre, and Ponnada A. Narayana. Reduction of pulsed

gradient settling time in the superconducting magnet of a magnetic resonance instrument. Medical

Physics, 14(5):859–862, 1987.



169

[56] Peter Jezzard and Robert S. Balaban. Correction for geometric distortion in echo planar images from

B0 field variation. Magnetic Resonance in Medicine, 34:65–73, 1995.

[57] D. Healy Jr., D. Rockmore, P. Kostelec, and S. Moore. FFTs for the 2-sphere - improvements and

variations. The Journal of Fourier Analysis and Applications, 9(4):341–385, 2003.

[58] Jun Shen, Douglas L. Rothman, Hoby P. Hetherington, and Jullie W. Pan. Linear projection method

for automatic slice shimming. Magnetic Resonance in Medicine, 42:1082–1088, 1999.

[59] Walter G. Jung. IC Op-Amp Cookbook. Howard W. Sams I & Co., Inc., Indianapolis, Indiana, second

edition, 1974.

[60] Walter G. Jung. Op Amp Applications. Analog Devices, 2002.

[61] Kevin F. King and Daniel J. Schaefer. Spiral scan peripheral nerve stimulation. Journal of Magnetic

Resonance Imaging, 12:164–170, 2000.

[62] Charles Kitchin and Lew Counts. A Designers Guide to Instrumentation Amplifiers. Analog Devices,

second edition, 2004.

[63] Charles Kittel and Herbert Kroemer. Thermal Physics. W. H. Freeman and Company, second edition,

2000.

[64] P. Kostelec, D. Maslen, D. Rockmore, and Jr. D. Healy. Computational harmonic analysis for tensor

fields on the two-sphere. Journal of Computational Physics, 162:514–535, 2000.

[65] P. J. Kostelec and D. N. Rockmore. FFTs on the rotation group. The Journal of Fourier Analysis and

Applications, 14:145–179, 2008.

[66] E.E. Kriezis, Theodoros D. Tsiboukis, Stavros M. Panas, and John A. Tegopoulos. Eddy currents:

Theory and applications. Proceedings of the IEEE, 80(10), 1992.

[67] Kenneth K. Kwong, John W. Belliveau, David A. Chesler, Inna E. Goldberg, Robert M. Weisskoff,

Brigitte P. Poncelet, David N. Kennedy, Bernice E. Hoppel, Mark S. Cohen, Robert Turner, Hong-

Ming Cheng, Thomas J. Brady, and Bruce R. Rosen. Dynamic magnetic resonance imaging of human

brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 89:5675–5679, 1992.

[68] L. Martyn Klassen and Ravi S. Menon. Robust automated shimming technique using arbitrary map-

ping acquisition parameters (RASTAMAP). Magnetic Resonance in Medicine, 51:881–887, 2004.

[69] P. C. Lauterbur. Image formation by induced local interactions: Examples employing nuclear mag-

netic resonance. Nature, 242:190–191, 1973.



170

[70] J. Leggett, D. Green, and R. Bowtell. Insert dome gradient coils for brain imaging. International

Society for Magnetic Resonance in Medicine Book of Abstracts, page 779, 2006.

[71] Shizhe Li, Bernard J. Dardzinski, Christopher M. Collins, Qing X. Yang, and Michael B. Smith.

Three-dimensional mapping of the static magnetic field inside the human head. Magnetic Resonance

in Medicine, 36:705–714, 1996.

[72] Shizhe Li, Gerald D. Williams, Timothy A. Frisk, Blake W. Arnold, and Michael B. Smith. A com-

puter simulation of the static magnetic field distribution in the human head. Magnetic Resonance in

Medicine, 34:268–275, 1995.

[73] Zhi-Pei Liang and Paul C. Lauterbur. Principles of Magnetic Resonance Imaging - A Signal Pro-

cessing Perspective. IEEE Press, 2000.

[74] David R. Lide, editor. CRC Handbook of Chemistry and Physics. CRC Press, 89th edition, 2009.

[75] Stephen Maas. Noise in Linear and Nonlinear Circuits. Artech House Publishers, second edition,

2005.

[76] Ron Mancini, editor. Op Amps For Everyone. Texas Instruments, 2002.

[77] P Mansfield. Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid

State Physics, 10:L55–L58, 1977.

[78] P. Mansfield and B.L.W. Chapman. Active magnetic screening of coils for static and time-dependent

magnetic field generation in NMR imaging. J. Phys. E: Sci. Instrum., 19(7):1080–4, 1986.

[79] P. Mansfield and B.L.W. Chapman. Multishield active magnetic screening of coil structures in NMR.

Journal of Magnetic Resonance, 72(2):211–223, 1987.

[80] J. Matwiy, B. Matwiy, P. Unger, and D. I. Hoult. A high-accuracy field plotting rig. In 11th Annual

Meeting of the ISMRM, page 2405, Toronto, Canada, 2003.

[81] J. C. Maxwell. On governors. Proceedings of the Royal Society of London, 16:270–283, 1868.

[82] Otto Mayr. The Origins of Feedback Control. MIT Press, Cambridge, MA, USA, 1970.

[83] Paul J. McCracken, Armando Manduca, Joel Felmlee, and Richard L. Ehman. Mechanical transient-

based magnetic resonance elastography. Magnetic Resonance in Medicine, 53:628–639, 2005.

[84] Graeme McKinnon. System design trade-offs. In 17th Annual Meeting of the ISMRM - Weekend

Syllabus, page 01.19, Honolulu, Hawaii, 2009.



171

[85] Jagdish Mehra, editor. The Physicist’s Conception of Nature. D. Reidel, 1973.

[86] G. Morrell and D. Spielman. Dynamic shimming for multi-slice magnetic resonance imaging. Mag-

netic Resonance in Medicine, 38:477–483, 1997.

[87] G. Morrow. Progress in MRI magnets. IEEE transactions on applied superconductivity, 10:744–751,

2000.

[88] Philip M. Morse and Herman Feshbach. Methods of Theoretical Physics. McGraw-Hill, New York,

1953.

[89] Raja Muthupillai, Phillip J. Rossman, David J. Lomas, James F. Greenleaf, Stephen J. Riederer,

and Richard L. Ehman. Magnetic resonance imaging of transverse acoustic strain waves. Magnetic

Resonance in Medicine, 36:266–274, 1996.

[90] Douglas C. Noll, Jonathan D. Cohen, Craig H. Meyer, and Walter Schneider. Spiral k-space MR

imaging of cortical activation. Journal of Magnetic Resonance Imaging, 5(1):49–56, 1995.

[91] Hans C. Ohanian. Classical Electrodynamics. Infinity Sciences Press, second edition, 2007.

[92] Nikolaos G. Papdakis, Kay M. Martin, John D. Pickard, Laurance D. Hall, T. Adrian Carpenter,

and Christopher L.H. Huang. Gradient preemphasis calibration in diffusion-weighted echo-planar

imaging. Magnetic Resonance in Medicine, 44:616–624, 2000.

[93] R.K. Pathria. Statistical Mechanics. Butterworth-Heinemann, second edition, 1996.

[94] John Pauly, Patrick Le Roux, Dwight Nishimura, and Albert Macovski. Parameter relations for the

Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Transactions on Medical Imaging,

10:53–63, 1991.

[95] Andrew M. Peters, Matthew J. Brookes, Frank G. Hoogenraad, Penny A. Gowland, Susan T. Francis,

Peter G. Morris, and Richard Bowtell. T2* measurements in human brain at 1.5, 3 and 7 T. Magnetic

Resonance Imaging., 25:748–753, 2007.

[96] Robert D. Peters, Eric Chan, John Trachtenberg, Serge Jothy, Linda Kapusta, Walter Kucharczyk,

and R. Mark Henkelman. Magnetic resonance thermometry for predicting thermal damage: An

application of interstitial laser coagulation in an in vivo canine prostate model. Magnetic Resonance

in Medicine, 44(6):873–883, 2000.

[97] Labros S. Petropoulos. Finite size disc gradient coil set for open vertical field magnets. Magnetic

Resonance Imaging., 18:615–24, 2000.



172

[98] Sergio Pissanetzky. Minimum energy MRI gradient coils of general geometry. Meas. Sci. Technol.,

3:667–73, 1992.

[99] M. Poole. Improved Equipment and Techniques for Dynamic Shimming in High Field MRI. PhD

thesis, University of Nottingham, 2007.

[100] M. Poole and R. Bowtell. Novel gradient coils designed using a boundary element method. Concepts

in Magnetic Resonance Part B: Magnetic Resonance Engineering, 31:162–175, 2007.

[101] Alexander D. Poularikas, editor. The Transforms and Applications Handbook. CRC Press, second

edition, 2000.

[102] Bogdan Povh, Klaus Rith, Christoph Scholz, and Frank Zetsche. Particles and Nuclei: An Introduc-

tion to the Physical Concepts. Springer, fourth edition, 2004.

[103] Manfred G. Prammer, John C. Haselgrove, Meir Shinnar, and John S. Leigh. A new approach to

automatic shimming. Journal of Magnetic Resonance, 77:40–52, 1988.

[104] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption by nuclear magnetic moments in

a solid. Phys. Rev., 69(1-2):37–38, Jan 1946.

[105] I. I. Rabi. Space quantization in a gyrating magnetic field. Phys. Rev., 51(8):652–654, Apr 1937.

[106] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch. A new method of measuring nuclear magnetic

moment. Phys. Rev., 53(4):318, Feb 1938.

[107] Devesh Raj, Derek P. Paley, Adam W. Anderson, Richard P. Kennan, and John C. Gore. A model

for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging.

Physics in Medicine and Biology, 45:3809–3820, 2000.

[108] T. G. Reese, O. Heid, R. M. Weisskoff, and V. J. Wedeen. Reduction of eddy-current-induced distor-

tion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49:177–

182, 2003.

[109] Robin A. de Graff, Peter B. Brown, Scott McIntyre, and Douglas L. Rothman. Dynamic shim updat-

ing (DSU) for multislice signal acquisition. Magnetic Resonance in Medicine, 49:409–416, 2003.

[110] D. N. Rockmore. www.cs.dartmouth.edu/ geelong/sphere/.

[111] Francoise Roméo and David I. Hoult. Magnet field profiling: Analysis and correcting coil design.

Magnetic Resonance in Medicine, 1:44–65, 1984.



173

[112] LN Ryner, P. Stroman, T. Wessel, David I. Hoult, and J.K. Saunders. Effect of oscillatory eddy

currents on MR spectroscopy. In 6th Annual Meeting of the ISMRM, page 1903, Sydney, Australia,

1998.

[113] J. Sabate, L. J. Garces, P. M. Szczesny, Qiming Li, and W.F. Wirth. High-power high-fidelity switch-

ing amplifier driving gradient coils for MRI systems. In Power Electronics Specialists Conference,

2004. PESC 04. 2004 IEEE 35th Annual, volume 1, pages 261–266, June 2004.

[114] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, revised edition, 1994.

[115] H. Sanchez, F. Liu, A. Trakic, E. Weber, and S. Crozier. Three-dimensional gradient coil structures

for magnetic resonance imaging designed using fuzzy membership functions. IEEE Transactions on

Magnetics, 43(9):3558–3566, 2007.

[116] H. Lopez Sanchez, M. Poole, F. Liu, and S. Crozier. Equivalent magnetization current method applied

to the design of gradient coils for magnetic resonance imaging. IEEE Transactions on Magnetics,

45:767–775, 2009.

[117] Giovanni Sansone. Orthogonal Functions. Interscience, rev. english edition, 1959.

[118] Vincent J. Schmithorst and Bernard J. Dardzinski. Automatic gradient preemphasis adjustment: A

15-minute journey to improved diffusion-weighted echo-planar imaging. Magnetic Resonance in

Medicine, 47:298–212, 2002.

[119] Frank G. Shellock. Reference Manual for Magnetic Resonance Safety, Implants, and Devices. Bio-

medical Research Publishing Group, 2005.

[120] Sh. M. Shvartsman, R. W. Brown, Y.-C.N. Cheng, T. P. Eagan, H. Fujita, M. A. Morich, L. S. Petro-

poulos, and J. D. Willig. Application of the SUSHI method to the design of gradient coils. Magnetic

Resonance in Medicine, 45:147–55, 2001.
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