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Abstract

The theory of collision-induced light scattering in atoms and symmetric molecules
is presented using the formalism of spherical tensors. Resulting expressions for the
intensity for first and second-order interactions are implemented in the programming
language "Mathematica" and results for the depolarization ratio as well as isotropic and
anisotropic components to the scattering intensity are presented. Experimental results are
shown of the absorption spectrum of water vapour in the far infrared, from 50 to 600
wavenumbers, with a nitrogen perturber. Finally, a novel new formulation of the

depolarization ratio based on only tensor ranks is presented.
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CHAPTER 1: Introduction

1.1 Historical Perspective

Collision—induc_ed Rayleigh and Raman scattering refers to Rayleigh and Raman
spectral features which are forbidden by the symmetry of a free molecule, but which
appear in the scattering from dense media through mplecular interactions. Though put on
a firm theoretical and experimental basis only in the past thirty years, the effect itself was
known about for several decades previous [1]. Broad tails on Rayleigh spectra of
molecular liquids were observed unexpectedly as far back as the 1930s, and greatly
puzzled workers at the time [1]. The invention of the laser in the 1960’s lead to improved
scattering experiments and accurate studies of weak induced spectra. The work on inert
gases by Thibeau et al. and Birnbaum et al. in 1968 led to a renewed interest in the
subject which persists up to the present time [1].

This interest is particularily motivated by the fact that collision-induced light
scattering is a general effect, appearing in the spectra of isotropic and anisotropic
molecules in the gas, liquid and solid phases [1}. Furthermore, it is a source of
information about the collision-induced polarizability and, in principle, intermolecular
forces. In this case, the inelastic scattering arises from coupling of the radiation field to

the translational motion of the molecules by the collision-induced polarizability.

1.2.1 Introductory Theory for Non-Interacting Molecules
Consider first the scattering by a collection of non-interacting molecules. The

polarizability of a pair of widely separated isotropic molecules is the sum of their



individual polarizabilities. The observed scattered radiation will then only have a non-
zero intensity component polarized in the same direction as that of the incident radiation

due to the properties of a radiating dipole, see figure 1.1.
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Figure 1.1: The general features of the interaction of light with a molecule [2]

The relation between the dipole moment W, and the external incident electric field€, is
given by the simple relation:

=08, (1.1)
where o is the polarizability of the individual molecule [3,4,5]. In general however,
molecules are to a greater or lesser degree anisotropic, thus the polarizability is dependent
on the orientation of the molecule relative to a coordinate system in the laboratory, (X, Y,

Z), say:



Uy =0xx€x +UxyEy +Ux7E7
Uy = Olyx€x +0yyEy +0yzE5 . (1.2)
Uz =0zx€x +UzyEy +UzzE7

Therefore the polarizability of the molecule is, in general, not a scalar quantity, but has a
tensorial nature [3,4,5]. This property is fundamental to the subject of this thesis as will
be shown later. Expressions for the scattered light intensity of individual radiating
dipoles can be obtained once an appropriate polarization/observation geometry is chosen.
The standard polarization geometry employed is the following: the light beam is incident
along the X-axis and is polarized in either the Y- or Z- directions. The scattered light
propagates along the Y-axis [1]. If the scattered beam has a Z-component, the

corresponding scattered intensities are referred to as I,y and I,

16m*v*
Iy = "“ET{”‘IOO@Y
) (1.3)
16m*v? _
Iy, = “:T“Iooczz

and if the scattered beam has an X-component, the scattered intensities are Iy, and Iy,

16m4v*
IXY :_‘“’Z—‘IOO@(Y
¢ . (1.4)
16n*vt
Iy, = _04_10 Xz

Here, Iy, is the intensity of the incident radiation, c is the speed of light in vacuum, and v
is the frequency of the radiation. The equations are to be read such that the first subscript
denotes the direction of polarization of the scattered beam and the second gives the
direction of polarization of the incident beam. The above expressions are appropriate for
a single radiator, but in practice we are dealing with a gas whose molecules are free to

assume all orientations with respect to the laboratory axes with equal probability [6].



Thus, the intensity equations need to be multiplied by the number of molecules present in
the experimental sample and averaged over all orientations of the molecular axes with
respect to the laboratory axes [6]. Thus it is of vital importance to be able to transform
between these to frames of reference. More will be said on these points as the thesis

progresses.

1.2.2 Introductory Theory for Interacting Molecules

However, the above situation changes when the separation between two
molecules is small, on order of the size of the molecules themselves [7,8]. Now the
polarizability of the pair, instead of being a simple sum of the individual molecular
polarizabilities, will have an additional contribution that arises due to molecular
interaction, see figure 1.2. The incident electric field, linearly polarized in one direction,
induces a dipble moment in one of the molecules of the pair, labeled 1, as before. But
now, to leading order, the total field acting on molecule 2 is the sum of the field of the
induced dipole in 1 plus the external field. The resulting dipole induced in molecule 2
manifests itself in an observed non-zero scattered intensity that is depolarized with
respect to the incident radiation, and will depend on time through the time dependence of
the intermolecular separation and of the orientation of the intermolecular axis [8]. These

depolarization ratios are given by [8]:

(1.5)



Figure 1.2: The first two induction terms for the dipolar induction interactions, showing the order in
polarizability. The solid and dashed arrows represent induced dipole moments due to the external
electric field and collisions, respectively. The “bonds” represent the interactions [9].



However if one chooses to use natural light as a source, or for incident linearly polarized

light detected with no analyzer, the depolarization ratio becomes [10]:

2
n, =2 (1.6)
I+n

Collision-induced light scattering based on this dipole induced-dipole (DID)
model has been well studied, and experimental results show good agreement with
theoretical spectra [1,8]. However, experiments on certain isotropic molecules like CFy4
and SF show a spectrum whose intensity in the tails, particularly in the region greater
than 100 cm™, is larger than what is accounted for by the DID model alone. Theoretical
investigation has shown that this excess intensity is adequately accounted for by
including more terms in the description of the induced molecular dipole moment,
corresponding to higher order effects. Of particular importance, is the effect of the
induced-dipole in 2 resulting from the gradient of the field of the dipole in 1 as well as
the dipole in 2 resulting from the second derivative of the field from the dipole in 1.
These additional terms are responsible for inducing rotational transitions, through higher
order molecular polarizabilities, which extend to high frequencies producing “tails” on
the spectra.

Although, the majority of work in collision-induced light scattering has been
concerned with the broad depolarized component in Rayleigh scattering, an induced
polarized component is also present [11]. Experiments on the inert gases, H,S, N, Hg
vapour, CFy and liquid Ar have clearly demonstrated its existence, and interest is
stimulated due to the fact that it contains, as a component, the purely isotropic (or trace)
scattering [11]. The significance is that the contributions to the induced dipole moment

coming from higher-order effects in the interaction, in the trace scattering case, are not



negligible. Whereas before we had molecule 1 inducing a dipole in molecule 2, a first-
order effect, we now must consider the effect of the induced-dipole in 2 inducing a dipole
back on 1 (DIDID), see figure 2, as well as the field of the dipole induced in molecule 1
inducing a quadrupole in molecule 2 whose field, in turn, induces a dipole back at
molecule 1 (D_IQID). Such second-order effects have little effect on the depolarized

component [11].

1.3 Some Experimental Considerations

The experimental apparatus required to study the phenomenon of collision-
induced light scattering is similar to that required for laser Raman spectroscopy; in which
an example is shown in figure 1.3 [1]. Light generated by a continuous laser is focused
on a sample cell, from which light scattered at 90° is collected and brought to a grating
double monochromator. The detector is a high gain, low noise photomultiplier tube

operated in the photon counting mode [1].
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Figure 1.3: An example of the experimental apparatus used in the study of collision-induced light
scattering [1].

The major differences from the standard Raman arrangement are the weak
focusing of the incident beam (using a lens of focal length 30 cm or larger), and the
collection of the scattered light occurs over a small angle (usually less than 4°) [1]. A
polarization rotator and prism polarizer in the incident beam and polarization analyzer in
the scattered beam allow the selection of polarization geometry [1]. An example of the
type of spectrum obtained from this experiment is shown in figure 1.4 for the case of

argon.
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Figure 1.4: An example of the depolarized component of the light scattering spectrum for Ar. The
symbols, ... represent the experimental two-body spectrum data, and ___ represents the theoretical

first order DID spectrum [12,13].



The overall spectrum decreases approximately exponentially following the relation:

I(w) = A exp(— Aw/wy )where Aw=m—w,and wy o 1/t where T is the characteristic

time of the interaction [12]. Of particular significance is the width of the peak, which is
approximately 15 cm™ at half the intensity. This leads to a value for wp of about 20 cm’™
and thus to a characteristic time, T, of 10™'! seconds. We can contrast this with the result
of the non-interacting case, where the spectral width has a value on order of 0.001 cm™
[13]. In this case, T, is about 2x107 seconds. We can understand this state of affairs by
appealing to the Heisenberg uncertainty principle relating the uncertainty of energy and
time. A large spread in energy corresponds to a rapid interaction time, which is what we
see in the first case. A very small spread in energy corresponds to a long interaction time

as is seen in the second case [9].

1.4 Modeling Collision-Induced Light Scattering (CILS)

The theoretical calculations of CILS parameters have always presented acute
challenges. Multipole moments are in general tensor quantities, and resulting theoretical
spectral intensities and depolarization ratios are obtained through orientational averaging
of tensor products [8]. To this end, the natural language for considering these types of
interactions is Cartesian tensor algebra, which gives clear insights into the geometry of
the system. However, unless one considers only atoms or highly symmetric molecules in
first-order DID interactions, calculations quickly become cumbersome or even intractable
when high-order interactions are considered [14].

Fairly recently, there has been an effort to circumvent some of these calculational

difficulties by re-expressing the theory of CILS in terms of irreducible spherical tensors.
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While this procedure may perhaps obscure some of the interpretational elegance that the
Cartesian formalism provides, it makes up for it by providing more general analytic
expressions for coupling tensors of arbitrary rank. Utilizing symmetries incorporated in
spherical tensor theory that can be exploited through Racah algebra, one can describe the
general tensor coupling properties (which appear as “coupling coefficients”) once, and
then choose particular rank tensors to study [10,14]. In particular, these general coupling
coefficients can be programmed into a computer for quick evaluation, thus enabling one
to study the interactions of arbitrary-order interactions.

It is in this spirit, that this thesis was conceived: to exploit the convenience of the
spherical tensor description of CILS employing the methods of Racah algebra. We
intend to argue that this description readily lends itself to calculations of CILS intensities,
particularly when high-order interactions are involved. Furthermore it will be shown that
the form of the autocorrelation functions obtained is independent of the type of
Interaction being considered, a useful property that will facilitate computer calculations.

The thesis consists of seven chapters and several appendicies. Chapters 2 and 3
contain the theory of CILS presented in the mathematical language of Cartesian and
irreducible spherical tensors respectively. This approach is chosen to illustrate the
equality of the two descriptions and to emphasize that while the Cartesian tensor method
provides little interpretational difficulties, there are several disadvantages eluded to
above. Chapter 4 describes briefly the transformation between Cartesian and spherical
tensors illustrating the procedure through a particular example. Chapter 5 discusses the
main subject of the thesis, the detailed derivation of the CILS autocorrelation function in

first and second-order using Racah algebra. In Chapter 6 the autocorrelation functions

11



from Chapter 5 and a Mathematica code are used to generate intensities and
depolarization ratios for spherical and tetrahedral symmetries. In Chapter 7 we discuss
the possible application of this technique to the study of the collision-induced absorption
spectrum of water vapour, a molecule that is highly asymmetrical [9]. This is
accompanied by preliminary examples of the far-infrared water vapour spectrum, the

frequency region of interest for future study.

12



CHAPTER 2: Collision-Induced Light Scattering — A Cartesian Approach

In this chapter, we will begin our consideration of collision induced light
scattering (CILS). As elaborated in the Introduction, the basic components of a light-
scatiering experiment consist of a scattering region, with the atoms of interest illuminated
by a parallel beam of light, and a detector that measures the scattered intensity at some
finite angle to the direction of the incident beam [1]. In terms of the quantum theory of
light, the scattering involves the destruction of a photon of energy Awfrom the incident

beam and the creation of a photon of energy 7w, in the scattered beam [2]. Thus light

scattering is a two-photon process, with two interactions taking place between the
radiation field and the molecular electrons. While scattering occurs at all values of the
incident frequency relative to the transition frequencies of the scattering atoms, the
intensity of scattering is particularly strong when the incident frequency lies close to that
of a atomic transition [1]. However, we will be making several assumptions in
constructing our formalism that will restrict the applicability of our theory to all possible
situations; and these assumptions will be mentioned at the outset. Despite the photon
nature of light being required in a full quantum picture of light scattering, we will be

assuming that the incoming exciting light field is classical and represented as a wave of
the form, E(t) = Eexp(—i(nt) , that is that the wave changes with time, but not with

position over atomic or molecular dimensions. This assumption is valid when we are
dealing with light of long wavelength such as that found in the visible and infrared

region. Secondly, we will be considering the interactions of atoms (which are spherical)

13



and highly symmetric molecules, i.e. molecules exhibiting tetrahedral, octahedral and

spherical symmetry.

2.1 Molecule in an External Field: The Hamiltonian

Keeping the above in mind, consider a single molecule interacting with an
external homogeneous electric field. The total Hamiltonian of this system consists of a
sum of the Hamiltonian of the molecule in the absence of the field and the interaction
Hamiltonian where the latter is treated as a perturbation to the former

A=A9+f™. @.1)
The eigenfunctions are W, and eigenvalues of the unperturbed system are E® [15]. The

perturbation Hamiltonian is explicitly given as
H™ = E, (2.2)

where W is the dipole moment operator for the molecule defined as p, = Zqiria [9,15].
i

The energy of the molecule can be obtained by solving the Schrodinger equation
for the unperturbed molecule states [y>:
H|y) = Uly) (2.3)
through the use of time-independent perturbation theory. This approach is valid because

we assumed that the interaction between the molecule and field is weak, in the form of a

perturbation to the free states [9,15].

14



+@E™).. (2.4)

i (O™ |n)(n|H™]0)
U=U + (0 tlo)—ng(j) (U<“> -U<°>)

where the summation occurs over all excited states, including the continuum, which have
U(n) > U(O)_
The first-order perturbed energy is called the electrostatic energy, Ueec; for the

nondegenerate unperturbed states l()) [9,15],
U gee = (0[H™|0) = (0| — o E|0)= ~(0[n, | O)E,, =—n{E,,, (2.5)
where <O|ua10> is the “permanent” dipole moment of the molecule when it is in the

unperturbed initial state |0>. However, since we assumed at the beginning that we would
only be considering species that did not have any low order permanent multipoles we can

take U, =0 in this case. The second-order perturbed energy is called the induction

elec —
energy, and can be expressed in general as

U,

ind

=10, E,Ep —1 A, E By + e, 2.6)

By o

where a5 is the dipole polarizability tensor given by

(Olugn)(n ug|0) |
Olop = 2;) 00 @7

and A, is the dipole-quadrupole polarizability defined as

e e R L

where © .4 is the quadrupole moment operator of the molecule, given as

O =124 (3ria h, ~ 28 B ) Since the external field has no gradient, E,, in the second
i
term of (2.6) equals zero. Furthermore, the induction energy is negative, since in

15



equation (2.4) the term <O]Him]n><ani’“lO> = I(OIHi’“ln)lz because H™ is hermitian.

Therefore, W is hermitian and so consequently Olp = g -

To understand why the induction energy has the form (2.6), it is useful to consider

the following plausibility argument. In a point charge model dipole, i = gx, induced

parallel to the external electric field E, where x is the separation between charges +q, the

work done dW in increasing x to x+dx is dW = (qE) dx = E dp. Using the relation, d(LE)

= duE + udE, we can write dW as dW = d(UE) — u dE. The total work done in creating

the dipole is thus W = uE - _fudE. The energy of interaction Ujy is therefore the sum of

W plus the energy (-UE) of the dipole in the field [9]. This gives U, 4 = —IudE , but
since p = oF, we getU,, = ~jocEdE =—10E? as required.
By applying the Hellman-Feynman theorem [9],
oy [H|w)/ 9B, = (w|oH/dE,|y), (2.8)
we obtain an expression for the dipole moment of the molecule in the presence of a
field,u, (B, ):

Mo (Bo) = (W ua| W) = (w| - 0H/E | v)
=-o(y[H|y)/oE,
~ -3U, /3B,

(2.9)

Similarly,

O (Eog) = (W]Op| W) = (W] —OH/0E|v)
=A . E

oBy Y

(2.9a3)

16



The preceding arguments hold for a pair of non-interacting molecules in an
external electric field as well. If we consider a system of two molecules, denoted 1 and 2,
subjected to an external electric field, the dipole moment of the pair is simply the sum of

the individual dipole moments

Mo (12) =g (D + 1y (2) ' (2.10)

2.2 Higher-order Molecular Polarizabilities

For a pair of interacting molecules, equation (2.10) may be expanded in terms of a series

of molecular polarizabilities

o (12) = tog OF (D~ L Ay, DBy, (D + £ Eog 5 (D5 (.

(2.11)
+ o (DF (2) + 1A oy (DB, (D) + 5 E g 15 ()5 (2)...

where Fq, Fup, and Fogy are general tensors describing the electric field, field-gradient and
second derivative of the field; a field which consists of the sum of the external field and
intermolecular fields arising from interactions; 0,4 (i) is the intrinsic dipole
polarizability of molecule i. While the external field is uniform by assumption, the

intermolecular fields are in general not because of near-field properties of fields of

multipoles. Thus higher multipole moments are induced in the pair, which eventually

contribute to the pair dipole moment. Note that, A is again the dipole-quadrupole

a.By?
~ polarizability tensor defined in (2.8). Note that A is odd under inversion, unlike o above;
and A is non-vanishing only for molecules lacking a centre of inversion [7,8,9,16].

Similarily E g 5, is the dipole-octopole polarizability tensor, which describes the dipole

17



moment induced by a second derivative of an electric field as well as the octopole

induced by a uniform field. This is given by

' Oln, [n)¥n|Q, 5|0 0|Q,s[n)nu |0
Bops =§( I(UI(D)X_ Ilj(f)ysjl ) +;( l( [}m(sl) E(UL»)I ) 2

where Q o is the octopole moment operator of the molecule.

One should keep in mind that the above treatment of the pair is not completely rigorous
as there are dispersion effects that occur as well and should in principle appear in the
derivation. These however are small and are usually ignored in study of the collision-

induced light scattering phenomenon; thus the above treatment is sufficient [8,16].

2.3 The Interaction Tensor

At this juncture, we can introduce the “interaction tensor” notation, which will
simplify the description of the radial dependence of the molecular interaction terms.

Thus, if R is the vector from the origin of molecule 1 to the origin of molecule 2 then:

T(1,2)=R™

T,(1,2)=V,R'=-R R

Typ(12) = Ty (2) = Vo VgR ™ = BR Ry ~R2%5 RS
Tys,(12) = VoYV, R = -35R RoR, ~R?(R S, +Rgd o +R, 80 )R

TOLBYS... (1’2) = VGVﬁV‘YVS ..R - .
@2.13)

The T tensors are symmetric in all suffixes, and

V.V, R!'=VR71=0 (2.14)

18



that is, repeated Greek suffixes together with summation reduce any T to zero. Because

the vector from 1 to 2 is the negative of the vector from 2 to 1, we also have that

T(21) = (-1)"T(1,2) (2.15)
where n is the rank of the tensor. Thus we see from (2.13) and (2.14) that the T tensor is
proportional to R"®™*Y; therefore, the multipole series in the interaction Hamiltonian is
really a series in inverse powers of molecular separation, and is rapidly convergent when
R is large compared to molecular dimensions [9]. Using this fact, we can write

expressions for Fy, Fup, and Fogy in terms of T tensors:

E,() = By + Tyy (L21p () +1Ts (1205, (2) .

E,g (1) = Tog, (L2 (2) +3 Topys (1,2)05(2) + ...

Eogy (1) = Togys L2)M5(2) + 5 Topyse (1,2)05, (2) + ...

and (2.16)
F,(2) = By +Toy (121 () — 1 Ty, (120, (1) + ..

Fup(2) = —Top, 21, (D) + 3 Tp,5 (1,205 (1) + ...

Eagy (2) = Toggs 1L2)Us (1) — 3 Topyee (1,205, () + ...

and thus (2.11) becomes

Mo (12) = ety V(B + Ty L2y (D) + 1Ty 5(1,2)0,5(2) + ..
~1 A g gy D(Tp5 L21t5 (2) + 1Ty 50 (12)05, @+ )
4 5By OTpse LM (2) + 1 Ty 00 (120 (D) + .. ).
+ 0o 2)(Ep + Ty L2ty (1) — L T (12005 (1) + ..
~ 1Ay O Ty (L2 (O + L Ty (12005, (D) +..)
+ 2 o ) (Tagse L2 (O — L Ty 0y 1,200 (D) +...)..

(2.17)
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2.4 Pair Dipole Polarizability

The light scattering of a pair of molecules is conveniently described in terms of

the pair polarizability tensor Ttog. From (2.17) we get,

d
Top = a;“ = (OL(I) + 06(2))5043 +20(1)ou(2) Tog +%Ta¥5 (O‘(DAB,YS (2)-ou2)Ag s (1))
B

1T (O A 15 (D)~ AU A g5 D)+ .

(2.18)
Thus, from (2.18) we obtain a general prescription for obtaining the effective

polarizability of molecule 1 when it is surrounded by more than one molecule, as [17]:

Top (1) = 0o (1) — 0y, (1) (ZDTY6 (Lg)mss(q) (2.18a)
q{q#

The above expression is amenable to solution through iteration, thus we have

Top (1) = g (1) = 0, (1) (Z:l;ryﬁ A Qogg(q) +...
q(g*

0y (1) DT (1), (@) T (GO (1) + . (2.18b)

q(q=1)
r(r#q)

+..

through second-order [17]. This expression only contains contributions due to classical
multipolar interactions between the molecules. Effects arising from non-linear
polarization in strong fields from the intrinsic multipole moments of neighbouring

molecules are too small to be significant [17].
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2.5 Time Dependence of the Pair Polarizability

The time dependence of 7,5 comes in through R(t) which is in turn controlled by

the intermolecular potential [1,8]. The scattered intensity I(w) is then obtained by taking

the Fourier transform of the correlation function of the polarizability:
I(w) e | (naﬁ RO [R(t)])e‘i“"dt (2.19)
where <75a;3 [R(O)]'rralsf [R(t)]> is a tensor contraction with the angular brackets denoting

an average over all angular orientations of the molecules, signifying a long-time or
ensemble average [1,8]. However, the intensity is further governed by the appearance of
selection rules, which arise from the symmetry of the particular species of molecule
under study. More is said on these points in Appendices A and E.

To compare the contribution of the various terms to the experimental scattered

intensity, it is necessary to further average the radial contribution, R™, over a pair

distribution function, g(R), to obtain R™ . In zeroth-order, the distribution function can

be written as
g,(R) = exp[- V(R)/KT] (2.20)

where V(R ) is the intermolecular potential such as the Leonard-Jones 6-12 potential:

12 6
V(R)=48[(—E—) -(%j } 2.21)

Thus the expression for the average radial distribution becomes:

R™ =47 [R"g(R)R%R = 41 [R ™ expl- VR)/KTR?AR . (2.22)
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2.6 Molecules of Tetrahedral and Octahedral Symmetry

When considering scattering from tetrahedral molecules, one usually chooses the
origin to be the central atom (tetrahedron center) and the corners of the tetrahedron to be
at coordinates: (1,1,1), (1,-1,-1), (-1,1,-1) and (-1,-1,1). In this case, the only non-zero
components of A are Axyz = Axzy = Ayzx = Ayxz = Ay = Azyx = A. Thus the tensor A may
be specified by a single parameter A, which is independent of the choice of origin:

Aggy = Aligigky +igiyks +igiyKe +iginks +iyiske) (2.23)
1, j, k are the unit vectors along the X, y, z axes of the tetrahedron [7,8,16]. With the
angular average performed on the product of polarizabilities, (ignoring the time
dependence), one obtains for tetrahedral molecules:

(RopTay ) = (001 + 01(2))* 858 oy + 2 (UD)U2) R (- 28 158y + 38y Spy + 385

+i8 (amA@)Y + (@@am) R0 98 oSy + 98 g + 9B oS ) F
(2.24)

This is essentially the zeroth moment of the correlation function and the total scattered
intensity is proportional to it. By now considering specific geometries, we can get
specific expressions for the above autocorrelation function. For example, we can

consider the incident light beam along the X axis with its electric vector polarized in the

Z direction. Observations are made in the Y direction so the relevant terms are <n§z>
and <n§z> , which can be obtained from (2.24):

<TE%Z> = (06(1) + 0((2))2 + 15—6(06(1)0L(2))2 R~¢ +%ka(1)A(2))2 + (OC(Z)A(I))ZJR—s g

(2.25)
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(n%e) = 2(ma@) R +2|amA@) +@@AD) R +... (2.26)

and the depolarization ratio is

()

A

When considering molecules of higher symmetry, such as octahedral molecules

2.27)

which posses a centre of symmetry, the polarizability A vanishes and contributions from
the next polarizability term, E, become important [1,8]. In the molecule fixed reference

system, Xyz, there are 21 non-zero components and only one origin-independent

parameter E = %(E sox TEyyyy T Eoppy ) determining E:

Eopys =2 Eliaiplyis + npiyis +Kakpkoks =2 (Bogdys + 80 ps +8550s - (2.28)
From this, the mean-square polarizabilitiy contribution due to E can be derived:

(Moo ) = %l(oc(l)E(Z))z +(a@E®D) R (3080380 + 11808y +11845845 ).

(2.29)

Using the same scattering geometry, we obtain,
(n2,) = 2| ®E@) + (@EOP R 2.30)
(1%) = 2[c®E@Y +(@@ED) R ™. @231)

23



2.7 Second-Order Interactions

As eluded to in the Introduction, in the study of scattering from purely isotropic
molecules the consideration of the induced polarized component is of growing
importance. This is due to the presence of contributions from second-order induced
moments (the first molecule receiving a perturbation from the perturbed second
molecule), and up to the time of this writing, only the contributions of the molecular
dipole, o, and quadrupole polarizability C, have been investigated [11].

O 45 (1) = C o5 (0)E,5(m) (2.32)
is the quadrupole moment induced in molecule (n) by the gradient of an electric field and

ng,)YS is the quadrupole polarizability, which describes the quadrupole moment induced

by such an electric field gradient.
In spherically symmetric species, the dipole and quadrupole polarizabilities take
the forms

Olgg =0 yg (2.33)
Copys = C[%(Sowsﬁs +5a555y)—§‘5aﬁ5y5] (2.34)
which lead to the pair polarizability [11]:

Moy = g}‘;_a = (o) + 02y + 20(1)0U2) Ty + UDYU(2)(0UD) + 0(2)) T Ty
¢
+20(1)> T, C(D) Ty +10U2)* T, CD Ty + ...

(2.35)
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The last two terms arise because the gradient of the field of the dipole induced in one

molecule by the external field acts through the polarizability C to induce a quadrupole in

the other molecule, whose field in turn contributes to the induction of a secondary dipole

in the first molecule {11].

The mean-square polarizabilities are:

42
() = 225561£o:6C |

() = 22

with depolarization ratios:

=Y . =85

(2.36)

(2.37)

(2.38)
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CHAPTER 3: Collision-Induced Light Scattering — A Spherical Tensor Approach
3.1 The Idea of an Irreducible Spherical Tensor

As discussed above, fairly recently there has been a tendency to re-express the
interaction in the basis of spherical harmonics [17]. One principal reason for this is that
difficulties in using Cartesian tensors in analysis arise because they tend to appear in
reducible form; that is products of these tensors form sets of linear combinations of
components of a Cartesian tensor, which transform differently [18]. For example, one
can form the following frbm the nine components of a Cartesian tensor of second-rank,
Tij: a) a scalar:

T=>Ty, (3.1)

that is the trace of the tensor having one component; b) an antisymmetric tensor:

Ay =%(Tij "Tji)’ (3.2)
having three components where i, j, k are cyclic; ¢) a symmetric second-rank tensor that
has no trace:

Sy = %(Tij +T; —%Tﬁij) , (3.3)
which has five independent components [18-21]. In fact,

T = %Tﬁij +Ay +S;, (3.4)
and the components of the three quantities T, A, and § transform in the same way as the

spherical harmonics of order zero, one, and two respectively [18-20]. Thus, one can

define an irreducible tensor of any rank in a way that it must transform like the spherical
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harmonic of corresponding rank. Therefore, an irreducible tensor of rank L is defined as
a set of 2L+1 functions, Toyy (M =-L, -L+1,...,L), which transform under the 21.+1

dimensional representation of the Rotation Group as [18-20],

RT R = Dy (@By) Ty - (3.5)
£

Here R = exp(-ifn.J) is the rotation operator and the Dy, (0BY) are the Wigner rotation
matrix elements in the LM representation.

Let TLlMl (A)) and ’I‘LZM2 (A,) be two such tensors of rank L; and Ly; the
symbols A; and A; represent all other variables on which the tensors depend: (for
instance, in the case of spherical harmonics, A; and A, are angular coordinates of two
points in space). Thus the sum of two spherical tensors of rank L,

TimAD+T i (A) (3.6)
is another tensor of rank L. This follows from the linear nature of the transformation in
the definition [18-20].

A tensor of rank L can be constructed from two tensors of ranks L1 and L2 by
[18-20]:

Tin(ApAy) = D (LM, LM, [LM)T, \ (AT (A,) (3.7)
MIMZ

where (L;M,,L,M, |LM) is a Clebsch-Gordan coefficient if the ranks Li, L, and L obey
the triangular condition:

A(LL,L){L; -L,|SL <L, +L,. (3.8)
That is, the ranks are added vectorially while the projection numbers are added

algebraically. The product of T,y (A;) and Ty y (A,) may also be written as:
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Tim(ALAL) = lTLlMl AD® TLZMZ (A, )JLM (3.9)
where the symbol ® denotes the irreducible tensor product. This shows that the direct

product of the tensors Ty (A;) and Ty y (A,) spans the representation D, ®D ,

which can be decomposed into the representation

Dyer, +Dpar i + -+ Dy - (3.10)

The fact that the particular linear combination of products Ty y (A;)Ty \ (A,), which

transform like Tym, are given through the Clebsch-Gordan coefficients shows that the
coupling of spherical tensors is mathematically equivalent to coupling angular
momentum eigenvectors with both using only group theoretic properties of operators and
states under rotation [18-20].

Of particular importance is the case when the rank of a product of spherical

tensors is zero, that being

Too(AAg) = D (LM, LM, [00)T, (AT (Ay). (3.11)
MM,

One can use the properties of Clebsch-Gordan coefficients for a coupled zero-rank state

to obtain

Too (A1, Ay) =D (-] BMaL, + 1)~1/2TL,M, (AT, (A3) 8y om, Orp,

Ml
=L+ DT (DM T o (AT, Ly, (A,) Spp,-

M,

(3.12)
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Thus we see that scalars can be built up from tensors of rank L by contracting two tensors
of the same rank. By convention, the generalized dot or scalar product is defined to be

[20]

Ag Bg =Y (-D%Ag By, (3.13)
q

and 1s related to [AK ® BK]oo by:

Ag ‘Bg =(-D*CK+D"*[A¢ ®B], (3.14)

3.2 The Description of CILS

In contrast to chapter 2, we will now treat molecular interactions using spherical
tensors, which though conceptually more challenging, simplify calculations due to the
fact that many symmetries incorporated in spherical tensor theory can be exploited
through Racah algebra [14]. Thus, the interaction portion of the total Hamiltonian
describing a pair of molecules in an external electromagnetic field, in spherical tensor

form, can be written [14],

 Hy, =3I, ) ® B, J, cosat + {§1,(2) ® E, |, cos ot

(3.15)

oL+, 172
—Nlk - ¢ A A
+%( ) ( i (212)!) {{M11(1)®TN(1,2)}12®Mlz(2)}00

with TN being the spherical interaction tensor, 1\7[1 the irreducible spherical operator of

the Iy, order multipole moment, and E, the external electric field [14].
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3.2.1 First-Order Interaction

From perturbation theory, to second-order we obtain an expression for the

correction to the dipole moment of molecule 1 resulting from the interaction with

molecule 2 [14]
Al 172 (=1)iats N 1, 1,
M, = ( J X5,
Orzilegey) T E L )
I, 1, 1 { l ) }
X{l y Jz}{{Bﬁ”(D®TN(L2)}13®B?J‘)(Z)}J®E'1

where Bﬁ]‘) is the irreducible J-rank spherical multipole polarizability tensor defined as

above
oM M_{0 oM M
B?"):zl[{(' oML [0)},  {OM,|orKor 1|0)}JJ 3.172)
a h Wep —® Wgp + O
and
{A B C}
(3.17b)
D E F

is the Wigner 6-j symbol. Ty denotes the spherical multipole interaction tensor. The sum
over « refers to all possible molecular rotational and vibrational states, but not electronic
ones.

To obtain the expression for the pair-polarizability correction, one must apply the
derivative with respect to the external electric field in spherical form; i.e. the gradient

with respect to field. This is given by [18,20]:
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€[f(E)Y,m(9, q))]: - %(% —%f)Yl‘,gl (6,0)+, fﬁ(g— - l—Jilf)Y,‘,;,‘ (6,0)

(3.18)

where YJII‘vx (6, ¢) is known as a vector spherical harmonic [18,20]. Rewriting equation

(3.16) as:
’21]1’12 12 (_1)I+JI+JZ+J3 N 11 12
M, ) =) (Jalp{IM X
‘ azﬁ< ) Py ((211 )!(212)J V3 Sl B U S §
J, L, 1
{3 4 Hewoera), espo) b,
2
(3.19)
we can apply equation (3.18) to (3.19), with L =0, J = 1, and M = B, to obtain the
p
correction to the molecular pair-polarizability as:
2N 172 J1 JZ J3
AAL, D=2 > [1+P12](_2T—"——J Xy 117
11, 13,35 ( l)'(212)‘ l l N
Y
x|:TN (Rp,)® (B}fll’ O® B§‘2‘2> (2))J } (3.20)
3 dJa
where
a b c
f (3.21)
j

is the Wigner 9-j symbol, X, ; =[(2a +1)(2b+1)...2f +1)]"?, Py, is a permutation

operator that interchanges the molecular labels, and N =1; + L,.
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By considering low-density scattering of incident radiation linearly polarized in
the e direction, and detected after passage through a analyzer with pass axis n, one has

the pair double-differential cross sections for scattered light as:

0’0 _ oL [exp(-ionF(t)de (3.22)
0w 2. P '
where
F(t) = Z(Dijjj(t) (3.23)
0,2

with the geometrical factors equal to @, = -;—(é -11)? for the isotropic spectrum, and
D,, = 3—‘0[3 +(€- ﬁ)2J for the anisotropic spectrum [10]. Fj(t) is the autocorrelation

function of equation (3.20),
Fyy (1) = (AA(0)- AA (1)) (3.24)

where the dot denotes a scalar tensor product, and the angular brackets again denote a
canonical average. Thus (3.24) is the general spherical tensor equivalent of equations
(2.24) and (2.29). And it is here that we first gain a glimpse of the usefulness of the
spherical tensor approach, for in (2.24) and (2.29) we had to initially specify the
geometry of the particular molecules under study. In contrast, equation (3.24) using
(3.20) is a general result, applicable to all molecular geometries [14]. Due to the fact that
the polarizability is symmetric in its indicies (see equation (2.18)), the spherical tensor

form contains contributions of rank 0 and rank 2 [10, 17].
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3.2.2 Second-Order Interaction

As before in chapter 2, through iteration we can further improve the accuracy of
our spherical tensor expression, by considering the case where the perturbed second
molecule induces a polarizability perturbation back on the first molecule. We provide
details of this general derivation because, to our knowledge, it does not appear anywhere
in the literature beyond second-order DID [17]. In this case then the polarizability on the

second molecule includes a correction of the type already considered. That is:
B (2)=B{"(2)+AB{"” (2) (3.25)

where the second term is of the form

12 J, I 7
N, 4 Js5 Js
AB§112)(2)= 22 Py ] | Xy iny 1 J
’ n,n,7,7,] (21,)1(2n,)! e
10304356 12 Il3 NZ
X [PFN2 (R'Zl) ® (B-(':lzlz) (2) ® B‘(Iins) (1))16 :’J (3.26)
Making this substitution in equation (3.20) we obtain
NN, vz
AB;,, ()= 1+P,][1+P X
a1 J; ,JZSJG[ i 2‘]( (211)!(212)!(2112)!(2113)!} RRARER S
1, n.n,
LPR PR EY I P R R (3.27)

xs1 1 T 1 7
I, I, NJin, n; N,

x‘:TN‘ (R12)®(B§j'ﬂ(1)®{rm (RZI)®(B§:‘212)(2)®B§15n3)(1))1 }J ) J
° I Jo
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Considering only the tensor component (square bracketed term), we can rewrite it as:

(__1) N1+J1+N2+J6—J {({Bg:zlz) (2) ® Bglsnz) (1))]6 ® T‘N2 (R 21 )}J ® B.('tl]) (1)) ® TNI (RIZ ):‘
’ Iy Jo
(3.28)
And with the help of (C.2) in Appendix C, it can further be rewritten as
Jo N, J
-1 N+ +N, T —J+1, +1, 4], X 6 2 2
QY Z S8 P
(3.29)
{(TNZ Ry)® {(Bﬁfl‘” (2)®BJ™ (1))J ® ng‘*’(l)} ) ®Ty, (Rlz):j
) 3l Ja

Jo N, J N a J
= (=1 Ny +J+ Ny +J g =F42) +1, +2) 3+ N +J X 6 2 2 X 2 3
= Z 1, I a %: 17 N; b

liﬁBg:'zlz) 2Q)® Bgins) (1))1 ® B%ll) (l)} ® {TN2 R,® TNI Ry, )}b]
¢ a Ja

(3.30)

Jo¢ N, J,||N, a J
= (-1 Ni+2N,+2) +3,42), 43 +I s +1-] -D*°X., X.. X 6 2 2 2 3
=D 2D X Xy X, J; 1, af|J N; b

abc

{J: ;e }[{er RO Ty R ), @B 0B @) @B ]|
1 o

(3.31)
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Thus, (3.27) becomes:

NN, 172
AB; ()= 1+P,][1+P X
s %3;%6[- ol 2‘](@11>!<212>!<2n2>!(2n3>!J PN
1

iy M0y

J1 J2 J3 J4 JS J6

J (__1)N,+2N2+21,+J2+2J3+J4+J5+JS—J (3 32)
Jo. N, J,|IN a J; (|, Jo J

abe 3 1 a 1 a 1 ©

x [{TNZ Ry)®Ty, (R © {(ng‘ﬂ (1) @B (2))C ®B{™ (1)}3 ]Ja

Consider now only the coupling part,

> Z[1+Pu][1+PZI]X,l,ZWSJ&NlNZ 1 1 Jxn, 1 J

Iilads JatsJe 11 12 N 12 0, N2
o NI.+2N2+2J1+Jz+213+J4+JS+JG-J Z -D*X, X, X,, Jo N, I, (3.33)
abe s 1 a

NLENEAT A A
J N, bjla J, ¢

We can rewrite the second 9-j symbol as:

Ta Is T I, N 3, I
Xiin n X X
n, 1 T =Y (D>@x+ ¢ 2 > 23 . (3.34)
b n; N,

Now we see that there are three 6-j symbols that contain the rank, Js. This is one of the

ranks that is summed over in (3.33), namely
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APR PR

Z Z [1 + P12 ][1 + P21 ]XJlJ§J§J4lsx2N,N2abC 1 1 I
JJ,J5 abc

T Jx L L N
X (___1)Nl+2N2+21l+Jz+2J,+J4+J5+2x+a—J (3 35)
I, 3 I
X{NZ a J3HJ4 N, x}{n3 n x|
J N, bfln, n, LI[|3, T3 1]
! x J, N,

Now we can rearrange the elements in the 9-j symbols so that we can sum over J, and J3:

J,J,J; abe

Tix L 1T 3] 3,y ¢ ] (3.36)

¢ (= 1) N+ 2Nt 24Ty 42T+ 2xcas) N, a J;{J, N, x|Jn; n, x
J Ny b)ln; n, Lij|J, J5 1

where € is a phase factor associated with the odd transposition of the rows and columns
of the second 9-j symbol: & = (~1)****NaHtht Lt ety - y6ing equality (C.6), from
Appendix C, we obtain:

N, +N,+J,+Js+c~J+b+n,; +N, +x+J,-J,-1-1-J
Z Z[l + PIZ ][l + P21]XJ1J4J5X2N‘N23bC (_1) e P o
J 3, Jsx abe

' I J a b '
Jo Ny x Y I\)I( 2 Jo Ly (337
S DX AN, Ny b R1 T o, :

1
Tt )y Jo L yjid ¢y

which can be rearranged to become

_ 1y Ny #J +I5+x+y+btetn
2 2P I +PyIX oy (CDNHS ,
JJ,Js abe
Xy

J, N, x){J a b (3.38)

I, N I, 1
xell, N, L W1 I, nyb7e T2 FlURe R YL
n, n, lLj|{1 ¢ J

y b ngj|l ¢ vy
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We can insert this into the original expression for the correction to the polarizability

(3.27) to obtain:

172
2N1+N2
AB (1)= [1+P ][1+P ](_1)J‘,+Js+y+c+ll+l2
* ”ZJ;ZY S (21)!(21,)!(21,)!(2n;)!
n,n,abc

J, N, x|[J a b

J, Ny x||J, I,y
X11J4-‘5X2y2N|NzabC 11 Nl 12 1 JS n3 {n )8 1 }{1 ¢ J
3 2 2 1

y b I ¢ vy

n
x[{TNl (Rp2) @ Ty, (Ry)} © {(Bg'l)a) ®B§jz‘z>(2))c @<>13§15"3>(1)}a]J .

o
(3.39)
Now if we perform a change of label on the above, in the formofa=K,b=M, ¢

=1L, Js =J,, J5s = J3, we obtain the final form of the second order correction to the

molecular pair polarizability:

AN, N, 12
AB, (1) = [1+P,][1+P ](_1)J2+J3+L+11+12
o “Z”ZJ 2 2t (21,)1(21,)1(21,)!(2n;)!
n,n3y

J, N, x|J K M
I, Ny x|[I, I}y
XJ,J2J3x2y2N1N2KML L Ny Ll J; n,

yMn31Lyn3n212 1 L J;
x[{er (R12)® Ty, (Rz,)}M ®{(B§j‘*>(1) ®B{™ (2))K ®B§15“3>(1)} ]

LJo

(3.40)

37



CHAPTER 4: Transformation Between Cartesian and Spherical Tensors

As indicated in the previous chapter, depending on the situation, the usefulness of
using either a Cartesian tensor or spherical tensor description to solve problems is usually
evident. Thus it is also useful to have a self-consistent procedure for transforming from
one description to the other, so that properties expressed in one form can readily be
expressed in the other [9, 22, 23]. Such a procedure was first introduced by Stone
[22,23], and this chapter will basically follow his arguments and include some more
explicit Cartesian to spherical tensor transformation calculations. Furthermore it should
be noted that only those results that are relevant to the thesis will be stressed. The
interested reader should consult the references directly for the complete treatment.

To begin our discussion, we can define a linear transformation T, which describes
components of a Cartesian tensor in terms of spherical tensor components. The
transformation is invertible, and the inverse describes the spherical tensor components in

terms of Cartesian components:

Aga,. ZT i (4.1)
and
Anj;m = z T(;Uatl .o, Aalaz...ocn (42)
.0,

where the symbol 1 is used to distinguish between spherical components of the same
rank derived from a given Cartesian tensor, should the need arise [22]. The

transformation is unitary, thus

TR = (rgee ) @3)

o, njm
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To explicitly evaluate the transformation, we can make use of the fact that any tensor

A o, Of rank n transforms under rotation in the same way as the tensorA, B, ...Z, ,

which is the generalization of the usual vector product [22,23]. Each vector here can be

transformed into spherical form using (4.2) above

A = 2 Te"A, (4.4)
o

where the transformation coefficients in matrix form, are

T ThO  h-l -L 0 L
y y y V2 V2 I .
o | |0 1

These spherical vectors can now be coupled together using (3.7):

(AB)ym = 2 25" Au 2T By {1 Im'm]jom)
mm” o
(4.6)
=> T5™A,B
2T AuBy

and this procedure can be continued to couple an arbitrary number of vectors,

(ABC) = %T;J’BzgﬁmAaBch : 4.7)
ofy

We see that the transformation coefficients take the form

T - S 1T (] @
1Jst Z TL mT1 m’ <_]21m'm”lj3m>. 4.9)

The order in which the coupling is made is arbitrary and the particular choice
made here is not the only possible one [22]. It is necessary to specify the intermediate

quantum numbers because they distinguish different spherical components of a particular
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jn. Here we have explicitly made the substitution j;=1, and implicitly assumed that there

1s also a notational jo=0 corresponding to a scalar transformation
Ago =T™A=A. (4.10)
As an application of these ideas, let us consider the second-order DID
contribution to the pair polarizability tensor:
Olgy = 040, (04 + 00, )T Ty, - 4.11)
Using the definition for the interaction tensors given in (2.13), we find that this

contraction of two rank-2 T tensors is itself a rank-2 tensor:

T, = ri8[3rar¢ #1258, | 4.12)

so (4.11) becomes,
= LB 25 4.13
Ol —oc,ocz(oc1+oc2)r—8 oLy +T704, |- (4.13)

In spherical form, this is expressed as

1]2 — ZTllz ™y

. Ly . (4.14)
= 0,01, (01 +00)r 8 Y Tk [3rar¢ +r 8a¢]
o
and we are now in a position to apply the method outlined above.
Considering only the tensorial part
5 = B T, 7 TR, @1)

od

the properties of the Kronecker delta ensure that we may express this as

S’ = (Z[srr;;z““rauﬂ”z [rme, v s, 1, ] @ao)

b
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while the other sums must be carried out independently using (4.6). Then

gl —3[22'1‘“" ZTlmr¢(l im’m”| j,m ):I+r2[Txli2;m8xx S

mm

4.17)

Applying the values for the transformation coefficients from (4.5) and calculating the

appropriate Clebsch-Gordan coefficients, we can evaluate all the components of SL{ :

6
10 _
3o _—73? 4.18)
3=
3 =0 (4.19)
gth=0
312 x?2 -y +21xy
2 r?
Xz +1iyz
312 _ l: r8 jl

3| 2z° —x* -y’
33=J§ﬂ——7;———} (4.20)
S |
r

2
3 x"—y" —2ixy
34 = 2{—m~7———}

r

These can be put into a more compact form if we recall the definitions of the spherical
harmonics [9, 18, 19, 20]. The spherical form of the second-order DID contribution to

the pair polarizability tensor thus can be written:
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0
Ol i 3 Y, “.21)
o' =
ag =0 (4.22)
all=0 ]
n_ o040 (o +O‘2) 247TY2
2 = 6 2
T 5
2 0G0, (0 + ) 247‘7Y2
| B 6 1
T 5
2 = OLIOLZ(O(; +0,) 24nY02 4.23)
r 5
0,0, (0 +a,) 2475Y2
-1 6 -1
r 5
2 _ 0,0, (0 +0a,) 2477~'Y2
- r$ 5 7%

As expected, there is no j=1 component due to the symmetry of the dipole

polarizability.
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CHAPTER 5: The Autocorrelation Function

As discussed above in chapters 2 and 3, the scattered intensities are conveniently
expressed in terms of molecular pair polarizabilities, and expressions were derived there
for the calculation of the correc-:tions to the pair polarizability for two interacting
molecules. In this chapter we will discuss a detailed derivation of the autocorrelation
function in spherical tensor form. This will allow us to implement a simple symbolic
computer code to evaluate scattering intensities for tetrahedral molecules and atoms

which are spherical.

5.1 Calculation of the Autocorrelation Function in First-Order

As presented in chapter 3, the oo component of the jth rank dipole-arbitrary order

multipole polarizability of a pair of interacting molecules 1 and 2 is given by

N /2 I 1, J 3
AA (D) = %J%‘h 1+ P12]£——(211)!(212)J X130 11 11 I{I
1 2
xR BB WOBLY (@), | - (5.1)
We want to calculate the autocorrelation function Fy(t) given by
Fyy (1) = (AA(0)- AA () (5.2)

where the angular brackets denote an angular or ensemble average. Substitution of (5.1)

into (5.2) leads to the expression
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2N1+N2 172
F;(t)= 1+P,]J[1+P X
1 ( ) J1J2J3 KIKZZKs [ 12 ][ 12 ]( (211 )!(212 )!(2m1 )!(zmz )!) J1J2J3K1KZK3NIN2

LI,  mm,
J1 JZ J3 Kl KZ K3

x¢1 1 JTx1 1 7 <[TN1(R12(0))®(Bﬁ“)(l,O)®B§‘2'2)(2,0))J]
l, 1, NJ{m m, N,

e ®,me B, D®BE™(2,0), ]} (5.3)

If we now apply identity (C.7), we can rewrite (5.3) as

2N,+Nz 1/2
Fy(t) = 1+ P, (O][L+P,, (¢
5 () ”ZJKKZK[ 12 O] 12()]((211)!(212)!(21111)!(ZmZ)J
L, mm,
XXJ|J2J3K1K2K3N|NZ 1 1 J 1 1 J

L I, Nyjim m, N,

N J J
x(—l)zN'“f”zZ<21+1>{K‘ ’ a}([Tm(Ru(on®TNZ<R12<t>>L
a 3 2
. [(B 1,0 @B (2,0)), ®BI™ 1, H@BL™ (2, t))K3 ] > . (5.4)
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Applying identity (C.4), we obtain

1/2
3 B js_Nz 2N1+N2
Ey()= >, > [+P,O0)[1+P,(0I2T+1)(-1) ((211)!(212)!(2m1)!(2m2)!]

10,0, KKK
Ll mm,

N1, Jl Jz J3 K] K, Kj
X XJIJT};KleKSNlNZ {K3 N2 a} 1]- 11 ; 1 1 I\?
1 ) ) m;  m, 2

P S
X3 XK Ky K ([T R 0) @ Ty, Rpp()]
gh
g h a

: [(Bﬁ"’ LO)®BE™ (1,0) ®(BIY 2.0 @BL™ (2.1), ] > . (5.5)

Now, we can consider explicitly the tensor coupling terms in (5.5) above:
o1 LK K, Ky

J,-N N, 3 7
Z(—l) T2 (2] +D(2K, +1) 1 1 7 1 1 J
1K, K; N, a L. L N
1 1 Jlmy m, N,

Jl JZ J3
g h a

Due to the symmetry properties of the Wigner 6-j and 9-j symbols, we can rewrite:
N, I; J _Ja K; 4 5.7)
K; N, a J N, N,

and

L, 5, L) (N, T T,
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(3, I, I, a K; J,
{K; K, K;p=<h K, J,;. (5.8)
L& h a g K ]

h KZ 1 J 1 Jl g
Ja m 1 K = Z (—1)Prer NN+ +dp e b-m, -,
2 1 . =
1 12 Nl a N2 m, 1 Kids
a K, J;|[N, J K.|IN, J J
a K; I, 3T 3| 3
I N, N,
g Ky Jyjlm 1 K J{L 1 g

and a re-expression of (5.5), consistent with Bancewicz [10]:

'2N,+N2 12
F (1) = 1+ Py (O)][1+ Py (0)](2T + 1)(=1) ¥
o LZJKK%,[ P O]+ P, (02T + DD ((211)!(212)!(2m1)!(2mz)J

_1ymy+l—h-g-N,-J-J
XX 51K K,NN,eh (D v I,

1 1, N, a N, m, 1

<[TN1 (R, (0) ® Ty, Ry, ()] - [(B W (1,0)@ BE™ (1, t))g ®(BIV (2,0)®BI™ (2,1)) ] >

(5.10)
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At this juncture, we make a common approximation in the theory of Collision-
Induced Rotational Raman (CIRR); that is we assume that the molecules of the scattering
volume are correlated radially but not orientationally [10]. The physical basis of this
assumption is that the anisotropy of the intermolecular potential is often small.
Therefore, we assume that the tensors of ranks a, g, h are isotropic and hence scalar. The

appropriate substitutions are, a =g =h = 0. Equation (5.10) is reduced to

1/2
2N1+N2
F; (1) = 14 Py, (0)][1+ Py, (£)](2T + I)(=1)™ MM
(1) J.ZJszZKz [1+ Py, (0)][1+ Py, ()I( =D I, Gm I 2my)!
11, mym,
0K, 50 %05
XXJJKKNN Z(._.1)N|+NZ+J1+J2+1+1_ml_ll (2J3+1)(2K3 +1) 3 3 O K2 J—2
1728 AR2t Yy ZKJ J N1 N2
o 0 K, J

N, J KJ[N, J I,
m, 1 K,UL, 1 7, <[TN1(R12(0))®TN2(R12(1:))]0
B anesian) e 0B 20)]). (5.11)

With the spherical tensor relationship (3.14), the following Wigner 6-j and 9-j symbol

properties,
{0 K3 J3}=(_1)K3+N|+J 6K3]36N1N2 (512)
J N, N, J2K; +1)2N, +1)
0 K, I,
;¢ 0y O
0 K, J,b= ALaREF S N LS , (5.13)
0 K, V@1, +1)(27, +1)(23; +1)

as well as the explicit form of the spherical interaction tensor,

(2N)!
2N

1/2 47[
) > R My (8,0), (5.14)

_ (_1\N
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we obtain a reduced form of (5.11):

8 @2N,)"? "
T 14) 1)
F;(t)= 1+ PL(O)][1+ P, (O] 2T+ D(-D)" ™
1 (0 2N1+1%h§[ 1o DI+, (01T +DED) ((211)!(212)!(2m1)!(ZmZ)J
N, T L[N, T OO, )
X3 @I;+Dm, 1 Tyl 1 7, <(R;2(N‘“)(O)YN1(Rlz(O))-sz(N'”)(t)YNl(Ru(t))\)
% m, 1 J 1, 1 7
x (BIW (1,0)- BE™ (1,0 B (2,0) - B{™) (2, t))> : (5.15)

In the static limit (t = 0), we make use of the relation [10]:

41
2N, +1

(RO, Rip O R (e =00V Ry (= 00) = (RZ™™)  (5.16)

to reach the final form for the first-order autocorrelation function

1/2
N )
F, (1) =2 1+ P, (O)][1+ P, ()](23 + 1) (=1) "1+ (2N,
35 () %mzZ[ 12 (O + Py, (DI )1 ((211)!(212)!(2m1)!(2m2)!j
N, J L[N, T I,
x> @, +DMm, 1 5,11, 1 1, {RZ%) B ,0)-BI™ @,1))
13 1 1
m, 1 5L 17

x (B (2,0 B{™ 2,0))

6.17)
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5.2 Calculation of the Autocorrelation Function in Second-Order

Up to this point we have been giving results, which though detailed, are
contributions made by others [10,14]. We will now consider the detailed derivation of
the second-order autocorrelation function, which is an analogous extension of the first
order case. To our knowledge, this is an original contribution. To begin, let us consider

the second-order correction to the molecular pair polarizability as derived in (3.40) of

chapter 3
Tyl L+ A "
AB,, (1) = 1+ P, [+ Py (1) s HsvLrhths
s (D 1?2”2,:[ I+ Poud=D ((211)!(212)!(212)!(2113)!}
03y

I, N, x]{T K M

J, Ny x|{J, 1} vy
XXJJstXzyzNINzKML 11 Nl 12 1 J3 Il3 {n n 1}{1 L J
3 2 1 1

y M n;){1 L vy

ar) (n,1;) (Iny)
x[{TNI R)®Ty R} ® (B 1) @B ), ®B¢ (1)}K ]m.

(5.18)
where Ni=1; + 1; and Ny =1; + n3. We will now calculate the function

By (6) = (®AB, (0)PAB; (1)) (5.19)

Making the appropriate substitutions, we obtain the lengthy expression:
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FU (t) — Z Z Z Z Z[1+P12][1+P12] (_1)12+J3+L+Il+12 (_1)]'2+J'3+L‘+1'1+l'2
T W VA 5 R T % VS
R KEVR TN Y

2N,+N2+N;+N’2 12
X X 2.2 D G P
((211)!(212)!(212)!(2n3)!(21’1)!(21’2)!(21'2)!(2n'3)!] $ilaJ Y NRGRME T, T Ty "N N, KM
1, N, x][T K M

L, N, x)f3, 1
)il, N, L, W1 7, n,W2 2 }{Zly}

n, n, Ljj1 L J
y M 1, \IL y 3 M2 2 1
J, N, xX][J K M

J' N‘ x' J' 1' 1
X4 1'1 Nl 112 1 J|3 n|3 '2 2 }{ 2 1 y}

n, n, /]|l L 7J
~y| M anJ 1 Ll yq 3 2 2 1

:{TNl R, 0Ty, (RZI,O)}M ®{(B§f"> (1,0)@Bgfz’z)(:z,o))L ®B;™ (1,0)}K]

—,

-[(TM (Riz D®Ty, Ry, 1) » ®{(B§§‘?>(1, H®B (2 t))L, ®B(, t)} ] >

K7

(5.20)
First we will consider only the tensorial part of (5.20), which we can recouple using (C.7)

as

<n> — (__ 1) 2M+K-M’ Z X”

a

{MKJ

© w a}<[(TNl 120)®T,, (210)) ® (T, 12,0®T,, (21,t))M,]a

HBw wooBe+ 20), @B 00} © B 0.0@BE" 2,0), @B A0} ] )

K'-a

6.21)
and then using identity (C.4) three times, the tensor products on both sides of the direct

product can be re-expressed as

v ok [N N M)LK,
_ _1 2ZM+K-M' X N/ N/ M/ L, J/ K, Jr ’ L,
=(-D Z JMM'LL'KK ‘bcdegh 1 2 3 1 2

b ¢ aj|d e ajlg h d

(lr, 2001, 02,0), @ (1, 2LO BT, 21,8) ] -

& 0 (1,0) @B (1,0) @ (BI* (2,0) ®BE(2,1), }d o 10 @By 0} | )
(5.22)

ived K' M' a

egh
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Now, let us consider the “T” portion only. To be able to average the tensors over all
orientations, we must first reduce the product of four T’s (in reality four spherical

harmonics) to a product of only two. To accomplish this, we make use of identity (C.5)

and obtain:

[Ty, 120)® T, 12,1)), ® (T, (2LO) ® Ty, (21,1)) |

C-a

= (D" 3 (b, By|ac)(Ty, (12.0) ® Ty, 12,0 P (T, 12.0) O Ty, (12,1))
By

, ). G
SN %:Z > (be, By |act)(be, By|nv)izl‘::$'3(NlN2,OO] N, 0)(N;N7,00| N;0)
nv N;3Nj
NN N (2N )I2N)I2N,)IEN)T?
x{N; N, N {YN3(12,0)®YN;(12,0}1(—1)”'*‘“3*’“2*“2[ e S }

2NZ+N’2+N,+N;

b ¢ n

2
(4m) R -Na NN #N+4)
X 12
KN

(5.23)

This lengthy expression reduces to

=4n(=D)™N " S (be, By|ac)(be, By|nv (N, N, 00| N, 0)(N7N;,00| N5 0) [T,

By nv NyNj

NNy N (2NI2NDIRN, )N,
A
b c n

x{¥y, 120)® Yy, 12,0}

(5.24)
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This can then be substituted back into equation (5.22) to give:

N, N, ML J, K)|{J, T, L

(=DM ManI+DY Y > (-DVMIN] Ny MWL T, K'®I; T, L
32§W1§2N3 b ¢ ajld e ajlg h d

N, N, N, MK T

N; N, N; {K " a}(bc,By]aoc)(bc,ByIanNlNz,OO[N30)(N;N’2,OO|N’30)

b c n

(2N, )I2N)IN N o e v

[ : 2N21+N’1+N,+r%1; 2 XMM'LL’KK’bzczdegh<{R12(N Z)YN3 (12’0)®R12(N 2)YN; (12, t)}n

N anesioq, 0), ® B 20 ®BYY 2,0), }d @B a0y 0,0} ] )

(5.25)
Now if we make use of the relation [20]:
> (be,By|ao)(be, By |nv) = 8,8, (5.26)
By
we obtain from equation (5.25) the expression
N, N, M|(L J, K|(J], J, L
() =DM Man@I+DD. Y DT (-D™MNINT N, MUMLT T; K'WI T, L
PR b ¢ ajld e ajlg h d
NN M ko [ (2N,)I2NDIQ2N,)I2N))!
N, N, N3 T H(N|N,,00|N,0)(NiN;,00|N;0) ~——t——_—La 2o 2o
K' M a QN2+ Np+ B+
b c n -
XMM'LL’KK'b%Z degh <{R ;2(N3+2)YN3 (12’0) ® RI—Z(N;+2) YN': az, t)}:

[{(B M (1,0) ®BIP (1, t))g ® (B (2,0)® BE™V (2,1)), }d ®{BI™ (1,0) @ BI™ (1,0} ]:‘)

(5.27)

At this point we can once again make the CIRR approximation; thus a=g=h=e=0

and equation (5.27) reduces to
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MKJN,NZMLLKJ,JZL

(") = (e (—1>”1*”*4n<21+1>2{ , }N; N, MWL 1, KNI 1, L
K' M 0

NN b ¢ O0fl|d o ol]lo o d

2N2+N’2+N1+Nj

N
1 2 3 ’ ’ 1/2
s , T OCNOENOERN )N
N; N, N; NINZ,OOIN3O>(N1N2,OO|N3O){( DIENDIEN,)K 2)}
C

X

FR— <{R LY, 120 @R VY (12,0]

[{(B}ll"’ 10 @ BYP(1,0) ® (B (2,0 @BY (2,1), }d ®{BI™ (10) ® BY (1,0} ]Z>

(5.28)
Evaluation of the 6-j and 9-j symbols in equation (5.28) leads to the expression
(-p¥M¥ N, N, MJ(N, N, N '
”X—“ N,l Nf b N/l Nf b3 6LL'8MM'6KK'8d08N3N’38.I‘J§6131’2613.!'3
M?L*p?K %5 J,3;N; 2 1 2 1
(5.29)

and so (5.28) becomes,

y X 2224 N N M||N N N
<n> — (_1)N1+N|+J 4n(2J + I)ZM_{ ,1 f }{ /l f 3}<N1N2,OOI N3 O)
bNs X M2 2K 2p25,3,0, N> Ni bjIN; Ny b

: , 12 N,
<N;N,2’OOIN;O>[(2Nl)!(2Nl)!(2N2)1(2N2)!} <(“1) { —(N3+2)Y (120) R—(N3+2)Y 3(12’0}

N, +N3 +N, +Nj
2 2 TN TN+ XNZ
3

(—I)J'”Z”z (B(Un) 1,0)- B(“;)(l t)XB(ﬂzlz) 2,0)- B2 @) t)XB (tay) (1,0)- B(lﬂ's) a t))>
X I ? I ? I, ? 1, ? I3 g I ’
13252
X 6LL’8MM'6KK’6d08N3N;81,1; 8121’25131’3 .
(5.30)

We can now substitute this back into the original expression for the autocorrelation

function, equation (5.20):
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F” (t) — ZZ Z z Z[l—*_Plz][l'*'Plz] (_1)J2+J3+L+l,+12 (_I)J'2+J'3+L'+l',+l'2

Wy L6 100, KLk x
0,03 non3 KLM KTM x{f'

2N,+N2+N{+N’2 12
X — X D G P
((211)!(212)!(212)!(2n3)!(211)!(212)!(21'2 )(2n'y )J Bl Jax Y NNKML 3005 Ty NN, KM
1, N, x|[J K M
L, Ny x{Jl, Ly
x¢1, N, L, Rl J; n,
n, n, L1 L J
ly M njil L vy
rJ'Z NZ x" J K' M Jl N| ' Jl lv T
<A, N, I HL T, mye 2 XHZ ' y}
y| M nv 1 L' y| n3 n2 12 1 L Jl
L 3)

X 2sos (N, N, M|(N, N, N
X(=DM N 42T +1) Y MY {N} Nf b}{N} Nf b3}<N1N2,00]N30)
ON; AP, U2 1 2 1

(2N, 1NN )N (=)™ . s
1 2N21N3+N1+;; 2 ] ) <{R;§N3 Z)YN3(12’O)'R1§N3 Z)YN3 (121:)})

x(N{N;,00|N; 0)[
™

—1)lrtith , . » . y
K E0T 7 (B 1,0)-BI 1, 0)BE 20)- BE 2, 0B 0.0)- B 1, v)

21242
Jihls

X811 Bnr O OuaoOnng 81,51 81,1 Oy -

(5.31)
Now, if we explicitly consider the sum:
N, N, M|[N, N, N
2Xp i w N (532)
5 N, N; bJ|N, N b
with the symmetries of the 6-j symbols [20], this can be written as
N, N; b][N, NI b
DX ) , (5.33)
> (N N, MJIN; N, N;
which is equivalent to [20]:
N, Ni b][N, N; b N, MAN'N, M
DXt o, ! ;o =8 {N, N, MAN; N; M} (5.34)
. N, N, M||N, N, N, : (2M +1)
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where {abc} =1 if a, b, ¢ satisfy the triangular condition, and {a b ¢} = 0 otherwise.
Making this substitution into equation (5.31), and after some algebraic simplification, we

obtain for the second-order autocorrelation function:

FJJ(t) — (21+1) Z Z Z Z[1+P12][1+Plz] (___1)1,+12+1‘1+1'2+J+J,+J2+J3

-4 Ll 31 xy

n,n;n;n; KEM XY
, , 1/2 X )
y (2NN (2N, I(2N))! Y NNKLK?y NG N,
(212,12, AD AN 2L, ) I(2n'5)! Km

1, N, x][J K M
o Ny x|JJ, Ly
x4, N, I, {1 J, n,
n; n, L1 L J,
M n;j|1 L vy
JJZN'ZX'JKM
X

L, N, x1{J, T !
1‘1 N|1 lv 1 J3 n|3 '2 2 H 2 1 Y}

y M nsf(l L ¥y my my LJil L
x{N; N, MJ{N{ N, MKN, N,,00| MO)(N;N3,00) M0><{R1—22(M+2)}>

x(B™ 1,0)-BI 1,0 BE= 2.0 BE 2,0BI 1,0 B 1,0)

N

(5.35)
Again we have made use of the identity, that if t=0, the average becomes explicit only

over the radial distance R between the two molecules.

Equations (5.17) and (5.35) can be directly applied and evaluated with symbolic
mathematical software such as Mathematica [10]. Before the autocorrelation function
can be evaluated, the rank of the induced multipole needs to be specified, as well as the
rank of the pair polarizability tensors and the rank of the interaction tensors. These

details will be demonstrated in the next chapter.
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CHAPTER 6: The Computer Program and its Results

This chapter will discuss the implementation of the computer program and the
results that the program gives. The language that was chosen was Mathematica,
primarily because the many vector-coupling coefficients are already precompiled in the
language. Thus Clebsch-Gordon and Wigner 6-j symbols are already defined, see
Appendix B. From these, one can define higher-order Wigner symbols as shown in
Appendix D. Thus we can define a Mathematica function to calculate the Wigner 9-j
symbol as

NineJsymbolA[{a_, £ , r }, {d,qa,e}, (P,c,b}] :=
sum[ (-1)2" (2T+1) SixJSynbol[{a, b, T}, {c, 4, P}]

* SixIsymbol[{c, 4, T}, {e, £, a}]
*SixJsymbol[{e, £, T}, {a, b, £}], (T, 0, NL+3j1}]; 6.1

using equation (3.34), and a function that checks for the triangular condition of the ranks
as

Triangularfa_,b_,c_J:=If[ Absfa-b]sc<a+b,1,0]; 6.2)
With the use of these functions, equations (5.17) and (5.35) were directly written in

Mathematica; thus one obtains:

Fjj=(2 j+1) 2 (- (I1+ml) 2N1)!/Sqrt[(2 I1)! 2 (N1-11))! (2 m1)! (2 N1-m1))!] RA(-2 (N1+1)) (1+(-
DAG1I+NL+j2+)) Sum{(2 x+1) SixJSymbol[{1,1,x},{1,1,j}1 SixJSymbolf{1,1,x},{N1-11,N1-m1,j2}]
SixJSymbol[{N1-11,N1-m1,x},{m1,11,N1}] SixJSymbol[{m1,11,x},{1,1,j1}],{x,0,2}] (Sum[(-1)"m

A[1,j1,11,m] A[1,j1,m1,-m],{m;,-j1,j1}] Sum[(-1)*m A[2,j2,(N1-11),m] A[2,j2,(N1-m1),-m],{m;-j2,j2}])

which calculates the first-order correction to the pair polarizability, and,
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H[j ]:=
23+ 4
12 12:03
Sum|
N-Aa{11-12) Ne=As{12-n3)

Sm[&m[(-l) AB+C+A+JL+32+33+7)
(St[(2NL) ! (2N2) ! 2NL) ! 2MN2) 1] /sxt[(211) ! (212)! (212) ! (2n3) ! (2al) ! (2a2) ! (2a2) ! (2B3) 1))
RA(-2 (N1+N2+2)) (2NL+1) (2M2+1) (2X+1) (2C+1) (2A+1) 2K+1) (2F+1) (2G+1)
(ClebsciGradn[{NL, 0}, {}2, 0}, {B, 0}])? Triangular[Nl, N2, B} Triangular(j2, 33, G] Triangular{jl, X, G
CopSum[NL, N2, Diff])
STl [{G, N2, C}, {K, j1, X}] SixdSwial [{G, N2, A}, {F, 1, X}] SixJsynidl [{N2, X, K}, {J, NI, B}]
SixJsynbal [{N2, X, F}, {j, NI, B}] NineJSynbolA[ {71, C, K}, {1, 1, 5}, {11, 12, N1}]
NineJSynbola[ {71, 4, F}, {1, 1, 3}, {al, a2, N1}] NineJSymibalB[ {32, j3, G}, {12, 1, C}, {12, n3, N2}]
NineJSynbclB[ (52, 3, G}, {a2, 1, A}, {a2, 13, N2}]

[i -1H2arl, 31, 1, 11, a] A[1, 31, 1, a1, —a]] ( i -L¥ar2, 52, 2, 12, b A[2, 32, k2, a2, —b]}
=71 J =32 J

33
{Z (-1°A[1, 33, 1, n3, c] A1, 33, 1, 13, —c]], {X, Zs[j1+12+1-N2], j1+12+1+m}], {B, 2bs[NL-N2], mu\n)],
o33 J

{C, Fos[12-1], 12+1}], (A, Bbs{a2-1], a2+1}], (K As[j1-12-1], j1+12+1}], {F, 2bs(jl-a2-1], jl+a2+1}],
{G, Bbs(j2-33], §2+33}]

F[j ] :=
i+ 4

Sum[Smf (-1) A (B+C+A+31+32+33+3)
(Srt[(2NL) ! (2N2) ¢ (2N1) ! (2N2) 1]/SrE[(211) ! (212)! (212)! (2m3) ¢ (2al)! (2a2) ! (2a2) ! (213) !])
RAM-2 (NL+N2+2)) (2NL+1) (2N2+1) (2X+1) (2C+1) (24+1) 2K+1) (2F+1) (2G+1)
(ClebschGordan] (NL, 0}, {N2, 0}, (B, 0}])* Triangular[NL, N2, B] Triangular{j2, j3, G] Tringular(il, X, G]
Sixggntal [ {G, K2, C}, {K, j1, X}] SixTsmbal [{G, N2, A}, {F, j1, X}] SixISwxbal [{M2, X, K}, {j, N1, B}]
Sisggdal [{N2, X, F}, {3, ML, B}] NireTymbolA[ (71, C, K}, (1, 1, §}, (11, 12, Ni}]
NineJgnbala] (71, A, F}, (1, 1, §}, {al, a2, NI}] NineTnbalB[ {2, 33, G}, {12, 1, C}, {12, n3, N2}]
NineJSyibalB([ (32, 33, G}, {82, 1, A}, {a2, b3, N2}]

( i (-12a[1, 51, 1, 11, a] A[1, j1, 1, ai, -a]‘ [ i -1Pa[2, 32, n2, 12, bl A[2, 52, 12, a2, -b]]
o | ] 32 J

i3
{ Z (-1)€A[1, 33, 1, n3, <] A[1, 33, 1, 13, —CJ]
=33 ]

s (X Bs[J1+12+1-N2], 31+12+1+ 12} ], (B, Aos[NL-N2], NL+N2}], {C, Abs[12-1}, 12+1}], {4, Abs[a2-1], a2+1],
{K, Bbs[j1-12-1], §1+12+1}], {F, Abs[j1-a2-1], jl+a2+1}], {G, Abs[32-33], j2+33}]:
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which calculate the second-order correction to the pair polarizability. Before running the
above programs, one needs to specify J, which is the rank of the pair polarizability (either
0 or 2), the ranks of the interaction tensors, N, Ny, N», as well as the ranks of the
multipole moments, 11, 12, n2, n3, and the polarizability tensors, J1, J2, and J3. An
example of this is shown in Appendix D for both the first and second-order cases.

The question arises why two functions are required to calculate the second-order
correction. The answer can be found in the nature of the molecular polarizability of
molecule 2. As explained in Chapter 2 of this thesis, the polarizabilities, A and E,
contribute to the induction of two different molecular moments. In the case of A, an
electric field acts to induce a quadrupole moment and the gradient of the field acts to
induce a dipole moment in the molecule. For E, a field induces an octupole and a
second-derivative of the field induces a dipole moment. Both of these contributions must
be taken into account when calculating the intensities and depolarization ratios.

To get a clearer sense of the above argument, consider the situation in diagram
6.1. In (a)-(c) we have a graphical depiction of the two molecules with the interaction
proceeding from left to right fof convenience. If we recall our experimental assumptions
that the incoming field is free of derivatives and that the final radiation due to the
interaction is dipolar in nature, we see that the number of contributions for any particular
case depends on which polarizability we are considering in molecule 2. For simplicity
we depict only the dipole polarizability (ct) in molecule 1 and the dipole (o),dipole -
quadrupole (A) and the dipole-octupole (E) polarizabilites in molecule 2 from (a) to (c)

respectively. The greek letters at the
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Figure 6.1: A graphical representation of the contributions leading to a particular multipolar intensity.

end of the line segments at each molecule represent the moments that are induced in that
particular molecule via the labelled polarizability. The “branches” between the
molecules, with their respective negative labels, represent the radial dependence of the
electromagnetic interaction where the label designates the exponent on R. Thus “-3”
means R, the electric field due to a dipole, while “-4” means R, the field of a
quadrupole and the field-gradient of a dipole._ Finally, “-5” means R, the electric field

of an octupole moment and the gradient of the gradient of a dipole field.
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Thus when the particular interaction involves only one branch, in the sense given

in diagram 6.1, the function F[J_] is used. If two branches are involved, the function
H[J_] is used whereby the two branches are evaluated and then summed.

The results of the program are displayed in table form below. Table 1 gives the

first-order depolarization ratios for molecules of tetrahedral geometry. Table 2 gives the

second-order depolarization ratios, and table 3 gives the second-order depolarization

ratios for atoms for isotropic scattering.

Table 1: Depolarization ratios and successive first-order multipolar mechanisms for two interacting
tetrahedral molecules. The * symbol indicates that the particular interaction occurs also between an atom

and a molecule.

Induction operator J1 J2 L m M n
aTo* 0 0 1 1 6 3
7 4
aT3;A* 0 3 1 1 i i
23 37
AT;0 3 0o 2 2 9 9
23 37
oTE* 0 4 11 22 11
63 52
ETa* 4 0 3 3 22 i
63 52
AT4A 3 3 2 2 1966 938
2477 1494
ATsE 3 4 2 2 29 29
36 43
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ET:A 3 3 29 29
36 43

ETE 33 103 103
126 149

Table 2: Depolarization ratios and successive second-order multipolar mechanismns for two interacting

tetrahedral molecules. The * symbol indicates that the particular interaction occurs also between an atom

and a molecule.

Induction J] Jz J3 11 n; lz ns Nn n
operator
alaT,c* 0 0 0 1 1 1 1 _2_ l
9 8
oT:ATs0* 0 3 0 1 1 2 1 2538 1269
4961 3692
ATsoqT0* 3 0 0 2 1 1 1 738 369
941 572
oT,oT:A* 0 0 3 1 1 1 2 ﬁ _111_
719 548
aT4ET,0* 0 4 0 1 1 3 1 1574318 787159
2359371 1572212
ETsoT0* 4 0 0 3 1 1 1 7058 3529
8901 5372
aT,oTsE* 0 0 4 1 1 1 3 598 @2
1231 932
o3 ATAA O 3 3 1 1 2 2 369324 848577
2346763 1498186
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ATz;aT:A* 3 12410 6205
25853 19648
ATATzor 3 369324 184662
505753 321091
oT4ETSE O 1312064070 656032035
1584530087 928498052
ET,oTE* 4 1413262 706631
3082187 2375556
ETsET,00 4 203483970042 101741985021
386682535957 284940550936
oT:ATsE O 674166 337083
908027 570944
oT4ETsA O 3946594 1973297
4938213 2964916
AT3(X.T4E* 3 1718 859
3615 2756
ATsETq00 3 35442751226 27721375613
96335891897 68614516284
ET.,oT:A* 4 257142 128571
553529 424958
ET:ATsa 4 17188934 8594467
24418203 15823736
ATATA 3 81116778 20538389
180359281 139800892
ATsETsA 3 2734251466 1367125733
4769436049 3402310316
ETAT.A - 4 114116348946 97058174473
179882860987 122824686514
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ATATSE

ATsETGE

ETsATsE

ETeETsA

ETGETE

46194222 23097111
99802679 76705568
62639016888858 31319508444429
103746032796217 72426524351788
116081946 58040973
258529561 200488588
500479852914 250239926457
2448311155733 2198071229276
8491458945654 4245729472827
16541830751663 12296101278836

Table 3: Depolarization ratios and successive second-order multipolar mechanisms for two interacting

atoms

Induction

operator

L L m n3

oTaT>0

(XT3CT3(Z

MNu n
2 1
9 8
8 4
51 47
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In the cases that were considered the anisotropic and isotropic intensities differ
only in numerical factors. Thus the depolarization ratios for linearly polarized light

detected with no analyzer (natural light):

6F,,
Ny =g —
7F,, +10F,,

And, for linearly polarized light with analyzer:

depend only on the ratio of the anisotropic and isotropic intensities, and so are constants
[10]. Thus they can be calculated without a detailed knowledge of the multipole
polarizability tensor terms, but as before, the ranks of the respective tensors must be
specified. This feature is further explored in Appendix F.

When calculating explicit expressions for light scattered intensities, a detailed
knowledge of the form of the irreducible spherical components of the multipole
polarizability tensors is necessary. Fof molecules of tetrahedral symmetry, the nonzero
Cartesian multipole polarizability components are well known [7, 24]. We can then use
the procedures discussed in chapter 4 to calculate the nonzero irreducible spherical
components of the dipole-dipole, dipole-quadrupole and dipole-octopole molecular

polarizabilities for tetrahedral molecules. Thus one obtains:

ALD = _\f3q, dipole — dipole
A(sli? =+i2A, dipole — quadrupole

(6.3)

L3) _
A = 1
AY) = %x/ﬁE dipole — octopole
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Table 4: Anisotropic and isotropic intensities for first-order multipolar mechanisms for two interacting

tetrahedral molecules

Induction Qs> <azzz>
operator
oTa 124 16 a*
5R6 5R6
oTsA 48 p22 o2 592 A22 o2
35 RS 105 R8
ATs0 48 A12 o 592 A22 o2
35 RS 105R8
oT4E 11 E2? o2 52 E22 o2
9 R10 9 R10
ET0 11 E2% o2 52 E22 o2
9 R10 9 Rr10
AT4A 62912 A12 A2? 10624 A12 22
4725 R10 525 R10
ATSE 464 A12 B2 688 A14 EQ?
21 R12 21 R12
ET:A 464 A1% E2? 688 A1% E22
21 R12 21 R12
ET.E 1133 E14E2% 1639 E1% E22

21 R14

21 Rl4
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Table 5: Anisotropic and isotropic intensities for second-order multipolar mechanisms for two interacting

tetrahedral molecules

Induction <axzz> <a222>
operator
oTL0TH00 12 oa1% 22 96 ol? a2?
) 5R12 5 R12
oT3AT;0 846 A2% o1* 7384 A2% o1
4375 RM 13125 R14
AT50T20. 1968 A12 a12 22 9152 A1% a1? a2?
175R14 525 Rl4
oT20T5A 228 A1% q1% 2% 2192 A1% 1% 22
175R14 525 R14
oTET40. 787159 E22% o14 393053 22 o14
190159200 R16 47539800 R16
ETs0T,0 3529 E12 12 o22 5372 E1% q12 22
315R16 315 R16
oT,0T4E 299 E12 q12 ¢22 233 E12 q12 24
252 R16 63 R16
oT:AT4A 1131436 A1% A22% o12 5992744 A12 A22 12
1378125 R16 4134375 R16
ATsoT:A 39712 A14 22 628736 A1% q22
5145 R16 25725 R16
AT4AT;0 164144 A1% A2% o12 2568728 A12 A22 q12
128625 R16 1157625 R16
OTETSE 43735469 E12 E22 a1? 232124513 E1% E2% a1
892480512 R20 3346801920 R20
ET,0T.E 706631 E1% a2? 197963 E1% 22
95256 R20 7938 R20




35617568867 E1% E22 012

ETsET, 33913995007 E12 E2° a1?
461500079040 R20 173062529640 R20
oT;ATsE 112361 A22 E1% a1? 570944 A2? E1% o1?
91875 R18 275625 R18
oT4ETsA 1973297 A12 E2% a1 1482458 A1° E2° a1?
83194650 R18 41597325 R18
AT;0T4E 3436 A1% E12 a2? 11024 A12 E12 022
441 R18 441 R18
ATsETq0 27721375613 A1? E2° o1? 5717876357 Al? E22 12
635369427000 R18 52947452250 R18
ETaT;A 342856 A12 E12 a2? 3399664 12 E1° a2?
46305 R18 138915 R18
ETsAT;0 1227781 222 E1% a1? 7911868 A2? E12 o1?
727650 R18 2546775 R18
ATATA 216311408 A1% A2? 29049536 A1% A2
1489863375 R18 58046625 R18
ATsET;A 1367125733 A1% E22 850577579 A14 E22
39332393100 R20 9833098275 R20
ET;AT.A 76077565964 A1® A2% E1° 491298746056 A1 A2“ E12
17381739375 R20 52145218125 R20
AT4ATSE 61592296 A1* A2% E1° 613644544 A1° A2 E1?
386260875 R20 1158782625 R20
ATsET:E  10439836148143 A12E12E2Z  18106631087947 A12 E12 E22
48457508299200 R22 36343131224400 R22
ETsATsE 6448997 A2° E14 50122147 A2° E14
52972920 R22 119189070 R22
ET:ET:A 27804436273 A12 E12 E2°2 42270600563 A12 E12 E2°2

3461250592800 R22

599062602600 R22




ETETGE

471747719203 E1% £22
26151671145600 R24

3074025319709 E14 E22

58841260077600 R24

Table 6: Anisotropic and isotropic intensities for second-order multipolar mechanisms for two interacting

atoms

Induction <ocx22 > <oczz2 >
operator
oT0T20 12 o1% 22 96 o1? a2
5R12 5R12
oT53CTsa 192022 1% 2256022 1%
5 R16 5 R16
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CHAPTER 7: Possible Implications for the Collision-Induced Absorption (CIA)

Spectrum of Water Vapour

In this chapter, the most speculative, we outline some of the possible implications
that the discussions in the previous chapters have on the analysis of the collision-induced
rotational spectrum of water vapour. This is motivated in part by the study of the
continuum absorption in the far-infrared region by water molecules in the Earth’s
atmosphere. This phenomenon was recognized more than sixty years ago [26,27].
Through numerous experiments since that time, nearly unanimous agreement has been
reached concerning the density dépendence of this absorption, which is quadratic, and the
temperature dependence, which is strongly negative [26]. However there is still
considerable disagreement as to the source of this absorption, but three proposed
theoretical mechanisms have come to the forefront of investigation: collision broadened
far-wings of allowed water transitions [26,27] (free-free transitions arising from the
allowed dipole moments of isolated molecules), diamers [26,27] (bound-bound and
bound—freé transitions involving the dipole moments of the pairs), aﬁd collision-induced
absorption [26,27] (arising from transient dipoles induced during collisions). In the
framework of this thesis, the third mechanism is of particular interest, it is here that the
methods developed hitherto could be of benefit. But the exact role played by CIA in the

continuum problem remains an open question.
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7.1 The Water Molecule
The water molecule is composed of one oxygen atom and two hydrogen atoms,

arranged in a structure depicted in the Figure 7.1.

Figure 7.1: The structure of the water molecule [28]

The angle between the two H-O bonds is 104° 36’. The hydrogen atoms are identical,
thus the water molecule has the following symmetry properties: one two-fold axis, and
two planes going through this axis at right angles to each other. These symmetries

indicate that the water molecule belongs to the point group C,, [3, 28].
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Figure 7.2: The symmetry properties of the water molecule [28]

In the gas phase, the water molecule rotates freely about an instantaneous axis,
thus acting like a rigid rotor. The moment of inertia of a rigid body about an axis is

defined to be

I=>mr (7.1)

where r; is the distance perpendicular to the axis of the mass element m;. The water
molecule has no three-fold or higher axis [28], thus the three principal moments of
inertia, I, Iy, and I, are not equal. Therefore the water molecule behaves as an
asymmetric top [28]. In calculating the structure of the rotational energy levels, one must
use a different procedure than one employed for the case of the symmetric top. Wang
[28] in 1929, put forward a theory in which the rotational energy of asymmetric top has

the form
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E,, = %[SJ(J +1)+ W, ] (7.2)

where J and ¢ are the angular momentum quantum numbers. J takes on the values: 0, 1,
2, ..., and for each J, there are 2J + 1 sublevels labelled by 6,6 =-J,-J+ 1, ..., -1, J.
The constant, S, can be determined from the three principal moments of inertia, while W

can be obtained through solving the secular equation:

P-w
0 bf(J,c+1) 0
(c+1-w 0 bf(J,0)
0 o’ -W 0 =0 (7.3)
bf(J, ) 0 (6-17-W
0 bf(J,o-1) 0
1-w
where
£(7,0) = —%[(J ~o)T—o+1)T+o)J+o+1)2 (7.4)

For each value of J, the determinant can be expressed by four algebraic equations, with a
total of 2J + 1 roots of W,. The lowest value corresponds to W j, and the highest, to W7,

This results in the energy level scheme depicted in Figure 7.3.
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Figure 7.3: The structure of rotational energy levels of the water molecule [28]

The water molecule has a permanent dipole moment [3,28]. The selection rule for J is
AY=0,%=1. (7.5)
The selection rule for the quantum number ¢ is more difficult to obtain. Consideration of

the rotational eigenfunction probability with respect to changes of orientation of the

ellipsoid formed by the three moments of inertia must be made [28].
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7.2 Measurements of the Water Vapour Spectrum

Preliminary measurements were made of the water vapour spectrum in a nitrogen
perturber bath using the methods of Fourier Transform Spectroscopy. A Nexus 870 FT-
IRE.S.P. Micﬁelson interferometer together with a 10 m multipass gas cell both
manufactured by Nicolet were used to take the spectra. A simple gas transfer vacuum
system was used to transfer sample into the cell. The region of interest was the far
infrared; thus the multipass cell had to be fitted with polyethylene windows, which are
transparent in this region. On the transfer system, primary vacuum was achieved using a
mechanical pump, while a lower vacuum pressure was achieved using an oil diffusion
pump. Pressure was measured directly in the multi-pass cell using a piezo transducer
accurate to 0.1 Torr. Illustrations of the interferometer and multi-pass cell are shown

below.
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Figure 7.4a: External view of the Nexus 870 FT-IR E.S.P. Michelson interferometer [taken from Nicolet
Nexus 870 instruction manual]
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Figure 7.4b: Internal view of the Nexus 870 FT-IR E.S.P. Michelson interferometer [taken from Nicolet
Nexus 870 instruction manual]
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Figure 7.5: The 10 m multi-pass cell

The general procedure followed was the following: the multi-pass cell was purged
with the mechanical pump and then the diffusion pump was engaged to evacuate the cell
for 24 hours. A small sample of water vapour was then added in the range of pressure
from 1 Torr to 100 Torr. Water was transferred to the multi-pass cell via a small sample
cell, which was attached to the vacuum system. Then N, was let into the multi-pass cell.
To ensure a minimum escape of water vapour, the pressure of the nitrogen was kept
higher, from 250 to 700 Torr, than the pressure in the water vapour inside the multi-pass
cell. Upon completion of its filling, the cell was transferred to the interferometer where
the background and sample interferograms were taken. Before each scan, the intensity of

the source in proportion to the aperture size was adjusted as well as the gain of the
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detector. The source used was a ceramic “Globar” and the detector was “DTGS
Polyethylene” and the beam-splitter was “Solid Substrate”. The interferograms were
reprocessed into absorbance spectra at a resolution of 0.125 cm™ using the Fast Fourier
Transform algorithm, with Happ-Genzel apodization, Mertz phase correction, and no
zero-filling. )

Two representative spectra are shown in figures 7.6 and 7.7 below. The first is
the spectrum of water vapour only, at a pressure of 2.5 +/- 0.1 Torr and a resolution of
0.125 cm™. It was compiled with 128 passes of the mirror moving at 0.1581 cm/s. The
second spectrum is of the same sample of water-vapour at 2.5 Torr with the addition of
530 Torr of nitrogen gas. Again 128 scans of the mirror were made at a velocity of
0.1581 cm/s. The region of interest for both spectra was the absorption of far infrared
radiation by the water molecule. Thus the spectral range from 50 to 450 cm™ was
sampled. Immediately we see that the spectrum of pure water-vapour is very
complicated in the low wavenumber region. This is adequately explained by the presence
of many rotational energy levels present in the water molecule, as seen in Figure 7.3. If
we compare the two graphs, however, we see a curious feature. In the second graph with

the presence of Ny, the absorbance does not fall off to zero away from the spectral lines,

particularly in the region between 100 and 200 cm’™'.
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Figure 7.6: Absorption spectrum of water vapour only, at a pressure of 2.5 +/- 0.1 Torr and a resolution of
0.125 cm™.
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Figure 7.7: Spectrum is of the same sample of water-vapour at 2.5 Torr with the addition of 530 Torr of

nitrogen gas at a resolution of 0.125 cm™. Water vapour continuum is beginning to form at low
frequencies.
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This anomalous excess absorption has been known for some time now and has been
given the name “The far-infrared water vapour continuum” [27]. As mentioned above,
the exact mechanisms leading to an explanation of the continuum are in some dispute and

are a topic of intensive research [26,27].

7.3 Implications for the Collision-Induced Absorption Spectrum

As a direct possible application of the general ideas of this thesis and a motivation
for future work in this area, one can consider the collision-induced absorption (CIA)
behaviour of the water molecule with a nitrogen perturber. CIA, unlike CILS involves
only the interaction of the permanent molecular multipole moments in the sample under
study [7]. One is interested in the attenuation of the incident radiation due to the
collision-induced dipole moment of a pair of molecules in the sample. This is portrayed

schematically in figure 7.8:

Collision-Induced
Dipole Moment

Figure 7.8: A schematic view of the pair-wise interaction of a water molecule with a nitrogen perturber.
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The probability of absorption of a light wave by a pair of molecules is proportional to the

square of the matrix element involving the pair collision-induced dipole moment [7]

Abs, _, o< |<¢1 IMCIAI¢2>|2 (76)

where ¢; and ¢, are molecular rotational states and Licya is the collision-induced dipole
moment of the pair. But from figure 7.8 together with the formalism developed in this
thesis we know that the collision-induced dipole moment is in reality the tensor product
of the permanent dipole-moment of water, the permanent quadrupole moment of nitrogen

and the T tensor describing their electro-magnetic interaction. That is, Ucra is of the form
Haa =027 ®Ty ® 68%) (7.7)
from which (7.6) may be expressed as

Abs,_, =< [(¢, Jof™® @ T, ® 3% |9,)| (7.8)

Unlike the molecules that have been considered up to now in the thesis, water has
the symmetry properties of an asymmetric top; leading to the explicit presence of more
than one polarizability tensor component. For the case of the dipole polarizability @, Oixx,
Oy and 0, all differ [7,9]. Whereas, N; is a homoatomic-linear molecule, belonging to

the group C_,. Being axially symmetric, it does not posses a permanent dipole moment

but does posses a permanent quadrupole moment, © [7,8]. Thus the spherical components

of the of the dipole polarizability, ot} are:
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\
ey ra,)
00 \/‘
3
o, =0
Oy, =0 )
a,, =0
(7.9)
a _ axx —a’yy
22
2
o, =
—(ocxx +o,, — Zoczz)
g \/_6—
o,,; =0
Oy Oy,
Oy sy 5 .

For molecules in the group C_, , the quadrupole moment tensor is specified by only a

ooy ?

single constant [7,9], thus the spherical component of the of the quadrupole

polarizability, © y is:

0, =0, (7.10)

Values for these components have been calculated using quantum mechanical methods
and are shown in Gray and Gubbins [9]. With these components in hand, one can utilize
the mathematical principles described, developed and exploited in the previous
calculation of the characteristics of induced light scattering to calculate the CIA of the

water molecule.
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CHAPTER 8: Summarizing Discussion

In this thesis, we have outlined a method for calculating CILS intensities and
depolarization ratios using a formalism based on irreducible spherical tensors. In chapter
2, we saw that the polarizability of a pair of widely separated molecules is the sum of
their isotropic polarizabilities, and that observed scattered radiation will only have a non-
zero intensity component polarized in the direction of the incident radiation due to the
properties of a radiating dipole. However, when the separation between the two
molecules is small enough, the polarizability will have a correction, which arises due to
their interaction, and occurs to arbitrary order. This results in an observed non-zero
intensity that is depolarized with respect to the incident radiation.

Furthermore, it was explained that the polarizability is in general a tensor quantity
depending on multiple spatial directions simultaneously, and initially the theory of CILS
was worked out in the Cartesian basis. Although this has an advantage in being
conceptually very simple, it holds a disadvantage in that unless the tensors being
considered are of low rank (<3), the number of components needed to specify them
becomes very large. In an attempt to try to circumvent some of these issues, a parallel
formulation using spherical tensors has been developed but its use has been more limited
because it is conceptually more difficult to interpret. Thus, up to this writing it had only
been applied to investigate the first-order correction of the pair polarizability.

Therefore, one of the main thrusts of the thesis was to extend the spherical tensor
CILS formalism so that the contribution to the pair polarizability from the second-order

correction could be investigated. In chapters 4 and 5, it was shown how this could be
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achieved in a consistent manner and in chapter 6, how the resulting intensities and
depolarization ratios could be calculated using symbolic programming techniques. The
results of the programming show a general increase in the size of the numerator and
denominator in the depolarization ratio in both first and second-order cases, even though
the ratio itself always remains less than unity. Specifically in the second-order case, the
depolarization ratio ranges from:

1 . . .
n= —, corresponding to the interaction: aT,0T2¢
8

to
_31319508444429

N 426524351788

corresponding to the interaction: ATsET¢E

This trend reflects the general increase in complexity of the polarizabilities acting in a
particular interaction. However, this rule does not appear to hold absolutely as there also
appears to be a strong dependence on the order of the polarizabilities for each molecule,
which is not manifest in the first-order case. As an example, consider the case,

aT3ATs0, which has three possible configurations:

1 aT3AT0 N= 1269
3692
2 AT3aT>0 n:@
572
3 aT,aTs5A _—];_7_1_
548

We see that configuration 1 has a depolarization ratio composed of factors far larger than
the either of the other two cases, whose factors are comparable to each other. A possible

explanation for this state of affairs is that because molecule 2 is not treated as a radiator
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in the interaction, it is in some sense in a virtual state. It is not known which multipole is
being induced in molecule 2 if the polarizablity considered has more than one type of
multipole associated with it, and all the possible contributions associated with that
polarizability must be accounted for. Thus configuration 1 above involves both dipolar
and quadrupolar contributions from molecule 2, and so the depolarization ratio is more
complic;ated than for configurations 2 and 3 which only involve dipolar contributions
from molecule 2.

In figures 7.5 and 7.6 we show far-infrared spectra, from 50 to 600 wavenumbers, of
water vapor-nitrogen mixtures obtained using the technique of Fourier Transform
spectroscopy. The measurements were made at a resolution of 0.125 wavenumbers and
at mixture pressures ranging from several tenths of a Torr to about 530 Torr. The most
significant feature of these spectra are their i) complexity, indicating that water is a very
strong absorber in this region of the electromagnetic spectrum, and ii) the presence of the
water vapour continuum, which is clearly seen in figure 7.6.

As a way of concluding this thesis, a few comments can be made about possible
directions for further research. As a direct extensién of the work presented here, the
intensities for collision-induced absorption in water vapour can be calculated. In addition
the analytic form for the depolarization ratio presented in Appendix F is for the case of
the first-order interaction only. However, the procedure presented is general and so one
should be able to extend it to obtain an analogous eXpression for the second-order case.
In fact, such an endeavpur could act as an appropriate consistency check for the results

obtained by calculating the entire autocorrelation function.
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APPENDIX A: Selection Rules

When discussing the spectrum of CILS it is important to consider the selection
rules, which govern the allowed rotational transitions. Our discussion mirrors that found
in Buckingham and Tabisz [8], and Shelton [12].

The calculation of the spectral distribution is analogous to the quantum
mechanical calculation of the spectrum for a diatomic rotor, however now one must

consider the rotational states of both molecules in the pair [8,12]. Therefore, the

(3735 laaBlJlJ2>l where J; and J’; are

quantities that will be of interest are of the form:

initial and final rotational states of molecule i, and ¢leg is the pair polarizability [8,12].

As wavefunctions, one uses the normalized symmetric-top wavefunction for a molecule

. . . 12 yx )

in rotational state J, given as [(2] + 1)/ 87t2]1 Dfnk (), m is the quantum number
associated with the projection of the angular momentum J on the space-fixed Z axis and k
is the quantum number associated with the projection of J on the molecule-fixed z axis.

Dfn; (Q2) is the Wigner rotation matrix where both k and m have (2J+1) components, and

each rotational state J is (2J+1)* degenerate which is the rigid-rotor approximation [8].

As a specific example of the technique, we can consider the tensor A, and it must
be noted that the terms which are only dependent on isotropic polarizabilities, ; (rank of
0; = 0) do not give rise to a rotational spectrum [8,12]. As an example, consider pair

polarizability contribution:

1T, s (0D A g5 (2) ~ (208 5 D)+ 1 Tys (DA 4.5 (D)~ U2 A L5 D). (A1)
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This can be rewritten in spherical form; in the molecule-fixed frame there are only two
non-zero components to the spherical tensor A in Tq symmetry. Thus in the space-fixed

coordinate system, A is given as

A% =iV3ADY (@) -D2, (@), (A2)
in the Wigner rotation matrix notation [8]. Here, €2, represents the Euler angles between
the space-fixed and molecule-fixed frames [8]. The matrix elements KJ 15 Jotp| 31T 2>|

reduce to

DI, (@)-D3,@)1,1,), (A3)

(135

from which the selection rules on AJ can be obtained as,

AY; =0;AY; =0,£1,£2,+3,(J; +J,23). (A4)

The subscripts i and j represent either a 1, 2 or a 2, 1 molecular pair [8].
Applying a similar analysis for the terms of type, o;E;, gives the selection rules as:

AY; =0;AY; =0,21,£2,£3,+4 (J, + T2 4). (A.5)

- Contributions to the pair polarizability involving A;A; result from the gradient of the
field of the induced quadrupole and lead to double rotational transitions;

AJ, =0+1,+£2,+3, (J;+J,23)
(A.6)

AT, =0,+1,22,£3, (J;+J,23).

This results because A tensors are involved for both molecules [8].
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The Stokes spectral intensity resulting from the rotational transitions
JiJ; = J'; J'; is proportional to

TQy,T;,03.0;) = 0f @1 +D@F, +1D(23; +1)(23, +1)

h (A.T)
xexp{—J,d, + DB, +1,(J, +1)B, 1hc/kT}

where,

wg =0, -[J,J+D)-J,J,+DI1B, -1, ', +)-J,J, +DIB,. (A.8)
Here, y is the incident light frequency and B; is the rotational constant of molecule i

[8,12].
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APPENDIX B: Useful MATHEMATICA Functions

In this appendix, we will list some explicit Mathematica functions that were used
in the implementation of the ideas of this thesis. All of these have been explicitly taken

from reference [30], and are gathered here for the convenience of the reader.

sqgrt(a]: Calculates the square root of A

ClebschGordan[{jl,ml}, {j2,m2},{j,m}]: Calculates the Clebsch-Gordan

coefficient of the arguments

SixJdSymbol[{a,b,c},{d,e,£}]1: Calculates the Wigner 6j symbol of the arguments

Sum[F([x], {x,-n,n}]: Calculates the sum of F[x] with x ranging from —-n ton
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APPENDIX C: Useful Spherical Tensor Relationships

In this appendix, we will list some explicit spherical tensor identities that greatly
simplify the operations of spherical tensor algebra. All of these have been explicitly

taken from reference [20], and are gathered here for the convienience of the reader.

bfed b
{p,®Q,}. ®R,}, =(-1)* ZX,,C{: . ;}{Pa ®{Q, ®R, L} (C.1)

+d+ b
{{Pa ®Qb}c ®Rd}f = (— 1)‘7 ‘ fZXch{? d ;}{Qb ®{Pa ®:Rd}h }f (CZ)
h

.00} R)=CD0* = er.),) €3

a b c :
{r.®Q,} ®fR, ®S8,}}, =X Xmid ¢ f1{P,®R,} ®fQ,®s.}L} (€4
& h k

, . ). G
v, @ey, @) {r.@)ey, (Qz)}’;f =y (L’L”,M’M”[LM)—"Z;’;LL
LM

1,

o (C.5)
x(1117,00[1,01,17,00[1,0)41;
Ll

14
7 Ly, @)ey, (92)}2d
" L

o et
— et

-
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a b xlle f x b

a

DED™X,.qc d yHeg h y{
Xy Y f e

P qQ s)lr t s

(C.6)

c g m|/f b k
Z
— (_1)k+m+a+c+p-—s—h—t-—f Z(_l)z ){z2 a e kWh d m {I: T }
’ zi|t g z 13

(@ ©0,} R, ®s.})= (- 1>Za+b-dzxm{

a b c
e d g

}({Pa ®R,},-{Q, ®s.},) (€7
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APPENDIX D: Sample Input

Below is an example of the first order correction being calculated for the case of aTou:

N1=2; <- rank of interaction tensor

j1=0; <- rank of polarizability of molecule 1

§2=0; <- rank of polarizability of molecule 2

11=1; <- rank of multipole moment operator of molecule 1

ml=1;

All1,0,1,0]:= -Sgrti3]l*a; <- components of dipole polarizability

A[2,0,1,0]:=-Sqgrt[3]*a;

j=0; <~ rank of pair polarizability

FOO=(2 j+1) 2(~-1)4(11+ml) (2N1)!/Sqgrti(2 11)! (2 (N1-11))! (2 ml1l)! (2
(N1-m1))!] RA(~2 (N1+1)) (1+(-1)A(F1+N1l+j2+j)) Sum[(2 x+1)
Sixgsymbol[{1,1,x},{1,1,3}] SixIsymbol[{1,1,x},{N1-11,N1-ml,j2}]
SixJSymbol[{N1-11,Nl1-ml,x},{ml,11,N1}]
Sixgsymbol[{ml,11,x},{1,1,31}]1,{x,0,2}] (Sum[(-1)*m A[1,31,11,m]
Afl,j1,ml,-m], {m,-j1,31}] Sum[(-1)*m A[2,j2,(N1-11),m] A[2,32, (N1-ml),-
m],{m,-32,32}1);

Clear([jl;

j=2; <~ rank of pair polarizability

F22=(2 j+1) 2(-1)4(1l1l+ml) (2N1)!/Sqgrt[(2 11)! (2 (N1-11))! (2 ml)! (2
(N1-m1)) 1] RA(-2 (N1+1)) (1+(-1)A(FL1+N1+3j2+3)) Sum[(2 x+1)
SixJsymbolf{l,1,x},{1,1,3}] SixISymbol[{1,1,x},{N1-11,Nl1-ml,j2}]
SixJSymbol [{N1-11,N1-ml,x}, {ml,11,N1}]
SixJgsymbol{{m1,11,x},{1,1,31}1,{%x,0,2}]1 (Sumi(-1)*m A[1,3j1,11,m]
Afl,j1,ml,-m],{m,~31,31}] Sum[(-1)*m A[2,j2,(N1-11),m] A[2,32, (N1-ml),-
m],{m,-32,32}1);

Clear[N1,j1,32,11,ml,j];

alphaXZ=F22/10

alphaZz=F00/3 + (2 F22)/15

Iso = alphaZz-4/3 (F22/10)

nn=6 F22/(7 F22+10 F00) <- calculation of depolarization ratio 7

n=nn/(2-nn) <- calculation of depoclarization ratio 7
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5R® <~ output for intensity <O‘X22>
1604
5R® <- output for intensity <O(ZZZ>
0
6
7 <- output for depolarization ratio 1,
3
4 <- output for depolarization ratio 7

Here is an example of the second-order correction being calculated for the case of
oT20T>0, the meanings of the functions are the same as in the first order case except

where indicated:



11i=1;

n2=1;
12=1;

n3=1;

ji=10;
j2=10;
j3= 0:

al=11;
a2 =12;
b2 =n2;
b3 =n3;

Diff=1;

H1=11+12;
H2=12+n3;

<- rank of multipole moment operator of molecule 1

<- ranks of multipole moment operators of molecule 2

<- rank of multipole moment operator of molecule 1

<- rank of polarizability of molecule 1 -
<- rank of polarizability of molecule 2
<- rank of second-order polarizability of molecule 1

<- user specified difference for the interaction tensors

<- rank of interaction tensor

HineJSymbol[{a ,f ,r },{d ,u ,e }, {p ,c ,b_}]:=
sum[(-1)°T (2T +1) SixISymbol[{a, b, T}, {c, d, p}] » SixISymbol[{c, d, T}, {e, £, q}]

»SixJSymbol[{e, £, T}, {a, b, r}], {T, 0, H1}]:

Triamyular[fa , b ,c_ ]:=If[fbsfa-b]l<cc=<a+hb, 1, 0];

CompSum[N1 , N2 , Q ]:=If[N1xHN2&& Abs[N1-H2] =-Q, 1, 0;

<- Wigner 9j symbol function

<- Compares the
ranks of the interaction
tensors with a user
specified difference

<-checks triangular inequality
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HO 1:= <- intensity calculating function when molecule 2 polarizability has multiple contributions
{23+04
Sinf
S|
Sunf
[
Sunf
Sunf

Sun[Sum[Sun| (-1} (B + C+4+31+32+33 +3) (IRt (2H1) ! (2H) ! (2H1) ! (210) 1] /Spt[
{2101 (21231 (212) ! (2n3) f (2a1) ! (2a2) 1 {2a2) ! 213} IDRA(-2 HL+H2+2)) 2HL+ D QR+ D
{2X+1) (2C + 1) 2A+1) (2K+1) (2F +1) {26+ 1} ClehshGardm[{H1, 03, {2, 0}, (B, 0}]) Triagnilar[H1, H2, B]
Trianglar [52, 53, G]Triangulac [31, X, 6] GnyfSum[HL, K2, Diff]
SinBwhol [{6, 12, C}, {K, 31, X} ] SixISyhal [{G, X2, 4}, {F, j1, X}] SixBwhal [(R, X, K}, {j, W1, B}]
Sixlwihal [(12, X, F}, {3, HI, BY] HinaBybal [(31, C, K}, {1, 1,3}, {11, 12, H1}]
HireXSwibal [(31, 4 F}, {1, 1,3}, {al, a2, H1)] HineTSwhbal [£52, 33, 6}, {12, 1, C}, {12, n3, I2}]
HiralSwikal [{32, 33, 6}, {a2, 1, &}, {a2, b3, 12}]
(Sun[ (-1} 'mA[1, 31, 1, 1, m] AL, 51, 1, at, -m], {m, 51, ISl D) *mAf2, 32, n2, 12, m] A[2, 32, b2, a2, -m],
{m, 32, 3231 Sun[(-1) “mA[L, 33, 1, n3, m] A1, 33, 1, b3, -], fm, 33, 33}])
« X, Ws[1+12+ 1-12], 31+12+ 1+12}], {B, As[NL-H2], HL+1R}], {C, Ts[12- 1], 12 +1}], {A, Fs[a2-1], a2+1}],
{K fs[§1-12-1],j1+12+13], {F, Msfi1-a2- 1], JL+a2+1}], {6, Ms[32-331, 32+33)], (01, @1+12) -Diff, 11.+123],

{12, (12 +n3) -Diff, 12 +18}];

F[i1:=
(23+1) 4

S ((-1) A(B+CrA+JL+32+ 33+ 3) (St (2ND) ¢ (2M2) ! (2NL) ! (2N2) 1]/
SEt[(211) 1 (212)! (212) ! (2m3) ! (2al) ! (2a2) ! (2a2) ! (21B) !]) RA (-2 (NL+ N2+ 2)) 2NL+1) (2N2+1)

(2X+1) (2C+1) (2A+1) (2K+1) (2F+1) (2G+1) (ClebschGodan[ (N, 0}, {I2, 0}, {B, 0}]) Triagular[Nl, N2, B]
‘Triangular{32, 33, G] Triangular(jl, X, G] SinXkabal[{G, N2, C}, (K, i1, X}] SixdSmbdl[(G, N2, 4}, {F, 31, X}]
SinISynidl [ (N2, X, K}, {j, NL, B}] SixIubol[{N2, X, F}, {j, NL, B}]
NinaJSnbal [ (i1, C, K, {1, 1, 3}, {11, 12, N1}] NineUSgnbol [ {31, A, F}, {1, 1, 3}, {al, a2, NL}]
NireJShabol [ (32, 33, G}, (12, 1, G}, {12, n3, N2}] Ninedmbol[ (52, 33, G}, {a2, 1, A}, (a2, b3, N2}]
(Sumf (-1) “mA{1, j1, 1, 11, m] A[1, j1, 1, al, -m], {m, -31, 1}]
Sum[ (-1) *mA[2, j2, n2, 12, m]) A[2, §2, 12, a2, -m], {m, -2, j2}]
Sum[ (-1) *mA[1, 33, 1, n3, m] A[1, 33, 1, b3, -m], {m, -33, §3}1))
¢ {X, Fbs[31+12+1-102], 31+12+1+12}], (B, Zbs[NL- ], NL+N2}], {C, Abs[12-1], 12+1}], (s, Hos[a2-1], a2+1}],

{K, Abs[jl-12-1], j1+12+1}], (F, Bbs[jl-a2-1], jl+a2+1}], {G, Abs[j2-33], 52+33}];
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A[1,0,1,1,0]:= - Sqgrtl3l*qal;
Af2,0,1,1,0]:= ~ Sqgrti3]l*a2;

A[1,3,1,2,31:=0; <~ components of dipole-quadrupole polarizability
Al1,3,1,2,2]:=4i*Sqrt[2]*A1;
A[1,3,1,2,1]:=0;
Af[1,3,1,2,0]:=0;
Af1,3,1,2,-1]1:=0;
al1,3,1,2,~2]:= - A*Sqrt[2]*Aal;
aAl1,3,1,2,-31:=0;
Af[2,3,1,2,31:=0;
Al2,3,1,2,2]:=4%Sqrt[2]1*A2;
Al2,3,1,2,1]:=0;
Afl2,3,1,2,0]1:=0;
Al2,3,1,2,-1]1:=0;
Al2,3,1,2,-2]:= —1*Sqrt[2]*A2;
Af2,3,1,2,-3]:=
All1,4,1,3,4]:=Sqrt[10]1/4E1;
A[1,4,1,3,3]1:=0; <~ components of dipole-octopole polarizability
All,4,1,3,2]:= 0;
Afl1,4,1,3,1]1:=0;
Af[1,4,1,3,0]:=S8Sqrt[7]1/2E1;
Al1,4,1,3,-11:=0
All,4,1,3,-2]1:= 0;
Af1,4,1,3,-31:=0;
All,4,1,3,-4]1:=Sqrt[10]/4E1;
Al2,4,1,3,4]:=Sqrt[10]1/4E2;
Al2,4,1,3,3):=0;
Afl2,4,1,3,2]:= 0;
Al2,4,1,3,1]:=0;
Al2,4,1,3,0]:=8qrt[7]1/2E2;
Al2,4,1,3,-1 (1]

)|
Al2,4,1,3,~-2] 0;
Al2,4,1,3,-3]1:=0;
Al2,4,1,3,-4]1:=Sqrt[10]/4E2;



BL, 4,2, 2 4]:=6;
A1, 4,2, 2, -3]:=0;

N1 4,2, 2, -2):=3CsSt[T;
1, 4,2,2, 11:=86;

1, 4,2, 2, 0] :=45t[2735]1C;
A1, 4,2, 2 1] :=0;

A1, 4,2, 2, 2] :=3CsSat[I];
A1, 4,2, 2, 3] :=0;

71, 4,2, 2, 4] :=0;

B2, 4,2, 2 -41:=0;

B2,4,2, 2 -3]:=0;

A2, 4, 2, 2, -2] 1= 3C/Sut[T;
112, 4,2, 2, -1]:=6;

02,4, 2, 2, 0] :=4Sqrt[2/35]C;
B2,4,2, 2, 1] :=0;

B2, 4, 2, 2, 21 :=3C/Sat1:
B2, 4,2, 2,31 :=0;

A2, 4, 2,2, 4] :=0;

- calculates the second-order intensity
IEM2==1&512 21, (alphaiZ =H[2] 7 10; alphaZZ =H[0]/3 + 20alphdZ 715; ), (@lphadZ =F[2] 7 10; dlphalZ = F[0]/3 + 2F[21/15:)];

Print]" «.’>= , Simgl i fy[alphadZ) | Prink [* «op,’>=" , Sinpli fyfalphatzZ] |
71 = 2alphedZ./ (AlphadZ.+ AlphaZZ);

2= M7 (2-M);

Print{" =", ]

Printy' 2", 71

ClebschGordan  ::txrdi @ SixJSynkol [{0, 2, 0}, {2, 0, 0}] is not triangular . Mare.
ClebschGordan  ::tri : SixdSymbol [{0, 2, 0}, {2, 0, 0}} is not triangular . More..
ClebschGordan  ::tri : SixISymbol [{2, 0, 2}, {2, 2, 0}] is not triangular . More.

5 12a1%a2?
<axz >= 12 2
5R <- output for intensity <%z >
5 96al%a2?
<Ogg >=——"— 2
SR <- output for intensity <%zz >
2
n=—
9 <- output for depolarization ratio 7,
n=—
8 <- output for depolarization ratio 7
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APPENDIX E: Time-Correlation Functions and Rotational Averaging

Whenever two systems are weakly coupled to one another (such as in the case of
radiation weakly coupled to matter), it is only necessary to know how both systems
behave in the absence of the coupling in order to describe the way in which one system
responds to the other. This description is the goal of linear response theory, which shows
that the response of one system to the other is completely describable by time-correlation
functions of the dynamical variables of the systems [6]. Correlation functions provide a
concise method for expressing the degree to which two dynamical properties are
correlated over some average time interval.

Suppose we are concerned with a property A, which depends on the positions and
momenta of all the particles in the system. Due to thermal motion, the particles are
constantly jostling about thus the momenta and positions of each particle are constantly
changing. Therefore, A is also constantly changing. Although the motion of the
individual particle is described by Schrédinger’s equation, the large number of them
makes their motion appear random, so generally the time dependence of property A, A(t),
resembles a noise pattern. Thus the (measured) bulk property of an equilibrium system

is, in actuality, a time average:

_ 1 totT
Alto, D= fA(tde (E.1)

where to is the time at which measurement was initiated and T is the averaging time [6].
Averages of this type are only meaningful if T>>At where At is the period of the

fluctuation, thus ideally
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ty+T

A(ty) = lim % fAat (E.2)

If the average of the property under consideration is in general independent of ty, it is

referred to as a stationary property [6],
1T
A)=lim— |A(t)dt E3
(A) = lim — J ® (E3)

Considering A(t) more closely, we note that at two different times, t and t + T,
A(t) can take on two different values such that A(t + 1) # A(t), or A(t+71)—A(t) =0.
As T approaches At, A(t+1)— A(t) # 0 so A(t + 1) is correlated with A(t) if T << At, and

this correlation is measured by the autocorrelation function [6]:
1 T
(A0)A(T)) = lim — j A(DA(t+T)dt (E4)
T T 0

An autocorrelation function is a measure of the similarity between two noise signals A(t)

and A(t + t) [6]. When T =0, the two signals are completely in phase and(A(O)A('c)) is
large; as t increases A(t) and A(t + T) become out of phase and <A(0)A('c)> is small [6].

Using these results we can define the spectral density IA(w) of the a time-

correlation function as

I, (0= ojf<A* (O)A('c)>e'i°“dt (E.5)

This quantity plays an important role in light scattering where sometimes one measures
the spectral density of the electric field of the scattered light [6]. If we apply an inverse

Fourler Transform to (E5) we obtain
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(A*(O)A(t)) = °]IA(w)e'im‘dm (E.6)

Thus we see that experimental determination of one is sufficient for determination of the
other, with Ix(w) being the quantity that is usually measured. If we set t =0, we get the

mean-square value of property A, so that
<]A]2> - <]A(O)|2> = [I,(@do (E.7)

In effect, 15(0)do is the “amount” of |A[* in frequency interval (o, ® + dw).

However, in dealing with the theory of light scattering the theoretical value of the
autocorrelation function describing scattering from collections of molecules is required,
and since the autocorrelation function frequently involves products of tensors, this
amounts to evaluating isotropic averages to tensor components [16,29]. An expression
for an observable, such as a polarization change in our case, is first written in terms of
molecular property tensor components specified in space fixed axes. Because we want to
r_eléte the observable to intrinsic molecular properties, we must then transform to a set of
axes fixed in the molecule’s frame. Then if the molecule is tumbling freely, the
expressions must be averaged over all orientations [16]. This problem reduces to the
evaluation of products of direction cosines, averaged over all possible relative
orientations of the two coordinate systems [16].

Thus, if we let the components of an nth rank tensor A with respect to a space-

fixed frame be A, ; , and if A refers to a molecular property, it can be expressed with

respect to a molecule-fixed frame through the relation
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A, =Cip iy A (E.8)

Leody ntn

Moy

where ¢, , is the cosine of the angle between the space-fixed axis i, and the molecule-

fixed axis A, [16,29]. The rotational average of A; |

1

requires the rotational average of

the direct cosine productc;, ..c; , , which can be obtained if the direction cosines are

expressed in terms of Euler angles. This leads to the following

T 2n27w

<Cil>~l -Ci > = é 0 6[ !cim -C; . sin 6d6d¢dy (E.9)

where ¢, 0, y are the Euler angles relating the two frames [16,29]. The averaging
procedure, though simple to use for tensors of low rank, becomes very tedious for high
rank. Included in this are products of low rank tensors leading to high rank tensors.
Therefore, techniques that re-express the property tensors in a form that allows one to
circumvent some of this tediousness are of great practical importance. Exploring one

such technique is of course the thrust of this thesis.
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APPENDIX F: The Depolarization Ratio

The purpose of this appendix is to act as a bit of an Afterward, and to report some
interesting results derived concerning the depolarization ratio for first-order interactions.
To our knowledge, this type of derivation does not appear anywhere in the literature.

From chapter 6 we saw that the depolarization ratio is expressible in spherical form as

3E
n=—=="— (F.1)
4E,, +10F,,
which can be rearranged to the simplified form
3
n=——m0m—7m 7 ”™—mm—. (F.2)
4 + lO(FOO /F22 )

From chapter 5, we saw that the separation of the tensor components from the rank

components means that the quotient inside the brackets reduces to

X N, T x][N, J x
Y @x+Dm, 1 T, 1 T
x=0
E m, 1 J |1, 17
__9_0_:_: : 1 1\ L 1 1: (F.3)
E, 5[, N, T y)(N, T y
> @y+h)*m, 1 I, ! L, 1 7J,}
= m, 1 I 1 1]
or equivalently
22:(2x+l)21 1 x|l 1 x|jl, m, x|/m 1 X
E, 1|5 110/, mi I,jlm, I, Nj{1 1 7J 4
D i(Zy-l—l)zl Lyt 1 y|jl, m y|jm L vy ﬂ »
& 11 2/, m, J,Jlm 1, NJ|1 1 J
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To evaluate (F.4), the challenge remaining is to carry out the above sums. This may be
accomplished using corﬁputer software like that employed in the thesis, or to analytically
reduce the sums into polynomial expressions. This second method will be elucidated
here.

It is advantageous to break up the sum into individual terms and deal with each,

one at a time. Thus the numerator:

2 11 x{j1 1 x|, m, x|im I X
> (@2x+1) (F.5)
oy 110}, m, J,Jlm 1, Nj|1 1 J

is the sum of three terms corresponding to x = 0, 1, 2; that is, So + Si+ S2. The term with
x = 0 can be evaluated using the relations for the 6j symbols shown in chapter 5,
particularly (5.42). This leads to the first term in the sum (So) being

(_1)N+J, +J,

°~ 9L, +1)2m, +1)

(F.6)

To simplify the expressions somewhat, the substitutions: [l =ml =aand12=m2=b,

can be made. Thus Sg becomes,

(_1)N+11+J2
= . F.7
° 9(2b+1)(2a+1) E7
S; is obtained if we make the substitutions:
111 1 (F.82)
=—= .8a
110 3
1 1 1 _ ' 12
= (=1 M v,1,7,,b) (F.8b)
b b J, 4 (2b+2)!

where V,(1,J,,b) = —2(J,(J, +1)~2-b(b+1))
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1/2
{b b 1}=(_Db+mm{<2b—1>!(2a—1>!} v (b.N.2) (E50)
a a N (2b+2)!(2a+2)!

where V,(b,N,a) = -2(N(N+1)-b(b+1)-a(a+1))

a a 1 2a-1! 1"
= (-1 a+J, ;
{1 1 J,} v {(2a+2)!4!} e D 50

where V,(a,J,,1) = -2(J,(J, +D)—a(a+1)-2)

Combining these we get:

S = (=DlrN (2b—1)!(2a—1)!(
T 9 (2b+2)!(2a+2)!
x(T,(J, +1)—aa+1)-2). (F9)

1,0, +1D)=2-b(b+D)N(N+1)-b(b+1)~a(a+1))

A similar analysis leads to a result for x = 2,

S - (=112 N (22 —2)1(2b-2)!
2 3.5 (2a+3)!(2b+3)!
x{6(J1(Jl +1)—a(a+1)-2) +6(J,(J, +1)—a(a+1)—2)—16a(a+1)}
x{6(N(N +1)-b(b+1)—aa+1))’ +6(N(N+1)—b(b+1)—a(a+1))-8ab(a +1)(b+1)}
{607, 7, +1)=2- b+ D) +6(1, (T, +1)~2—b(b+1))-16b(b+1)}

or

_ (=D *2*N (2a-2)1(2b-2)!

SZ
351 (2a+3)!(2b+3)!

V,(a,J,,)V,(b,N,a)V,(1,J,,b). (F.10)

Therefore, taking the sum S¢+S;+S; explicitly, leads to the lengthy expression for Fgo
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_ (_1)N+J|+Jz -(_I)J,+12+N (2b-1)!(2a~1)!
® " 9(2b+1)(2a+1) 4 (2b+2)!(2a+2)!
. (=D 2N (22 -)1(2b-2)!
3.5 (2a+3)!(2b+3)!

ViLJ,,b)Vi(b,N,a)V,(a,J,.1)

V2 (a) Jl ,1)V2 (b> N’ a)Vz (1’ J2 b b)‘

(F.11)
We now repeat the same procedure for the case of J = 2. Thus we need to

evaluate the sum,

2 ,i1 1 x{i1 1 x|fb b x||la a x
E, =5) (2x+1) ) (F.12)
~ 11 2/lb b Jfla a NJ[1 17,

Analogous procedures to those above lead to the following three terms in this sum. For

the term corresponding to x = 0 we get

(_1)N+Jl +J,

° T 92a+1)2b+1) E13)

the identical term to the J = 0 case. For x = 1 we obtain

_12(=1)"*"*N (2b-1)!(2a-1)!
(4 (2b+2)!(2a+2)!

8, = V,(1,T,,b)V,(b,N,2)V,(a,],.1), (F.14)

differing from the J = 0 case by only a numerical factor. Finally for the x = 2 case we get

_ 20(=1)" =N (2a - 2)1(2b - 2)!

> (5" (2a+3)!(2b+3)!

Vz(a,Jl’l)Vz(bv Nya)V2(17J29b)s (F'IS)

again differing by a numerical factor from the J = 0 case. Summing these three terms

leads to the expression

DM 1N (2h—1)1(2a— 1)
= (9(( ) _12¢h @b-DX2a Dy 1 5 b)V,(b,N,a)V,(a,J,.1)

2b+1)(2a +1) @) (@b+2)!(2a+2)!
20(=1)"""*"N (2a-2)1(2b - 2)!

+
(5 (2a+3)i(2b+3)!

V,(a,J,,)V,(b,N,a)V, (l,ngb)} (F16)
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Taking the quotient of Fy and F; leads to the following after some simplification

1 __(@b-D!2a-1!
9(2b+1)2a+1) 24(2b+2)!(2a +2)!
. (2a=2)12b-2)!

V,(1,7,,b)V,(b,N,a)V, (,7,.1)

2 (a7 Jx ,1)V2 (b, N’ a)V2 (1’ J2 I b)

Fy _ T 222 +3)1(26 + 3)! LE17)
F, 1 12 (2b-DY2a-1)!

V,(,1,,5)V,(b,N,a)V,(a,J, 1
9(2b+1)(2a+1) 576 (2b+2)!(2a +2)! {(LI5, D)V, (0, N, a) Vi (@, 1)

20 (2a-2)!(2b—2)!
14400 (2a +3)!(2b +3)!

V,(@,3,,)V,(b,N,a)V,(1,J,.b)

This expression can further be simplified if we rewrite the factorial expressions as

(2b-D!Y(2a-1D! _ 1 (F.182)
(2b+2)!(2a+2)! 4ab(2a+2)(2a+1)2b+2)(2b+1)’ )

and

(2a-2)!(2b-2)! 1

(2a+3)!(2b+3)!  (2a+3)(2a+2)(2a +1)2a(2a —1)(2b+3)(2b+2)(2b+1)2b(2b-1)

(F.18b)
Making these substitutions, we get
_9V,(1L1,,b)V, (b, N,a)V, (a,],.])
96ab(2a +2)(2a +1)(2b+2)(2b +1)
V,(a,1,,)V,(b,N,a)V,(1,J,,b)
E, 1 32ab(2a +3)(2a +2)(2a +1)(2a —1)(2b +3)(2b + 2)(2b +1)(2b—1) .19

les!

S 9V, (1,3,,b)V,(b,N,2)V,(a,J 1)
~ 192ab(2a+2)(2a +1)(2b +2)(2b +1)
V,(a,3,,)V, (b,N,a)V,(1,J,,b)
320ab(2a +3)(2a +2)(2a +1)(2a —1)}(2b+3)2b + 2)(2b + 1}(2b ~1)
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Substituting equation (F19) into (F2) leads to an analytic expression for the

depolarization ratio:

91,1, b)V,(b,N,2)V,(a,T 1)
96ab(2a +2)(2a +1)(2b+2)(2b +1)
V,(a,J,,)V,(b,N,a)V,(1,J,,b)
32ab(2a +3)(2a+2)(2a +1)(2a—1)(2b+3)(2b+2)(2b+1)(2b~1)
9V (L1, BV, (b,N,2)V,(a,1,.))
192ab(2a +2)(2a +1)(2b+2)(2b +1)
V,(,J,,)V,(b,N,2)V,(1,1,,b)
320ab(2a +3)(2a + 2)(2a +1)(2a—1)(2b+3)(2b+2)(2b+1)(2b—1)

n=34+2

(F.20)

With (F.20) 1} can be calculated by simple arithmetic. As an example, consider the case
of the interaction 0T4E. In Chapter 6 we saw that 1 was calculated to be 11/52, now

applying (F.20):

-1
neaso 81
11/4536 52

To our knowledge such a general expression for the depolarization ratio of two

interacting molecules in terms simply of tensor ranks does not appear in the literature.
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