
Collision-Induced Light Scattering and Absorption in Atoms and

Symmetric Molecules: a Spherical Tensor Approach

Andrew S. M. Senchuk

A Thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba

in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Physics and Astronomy

University of Manitoba

Winnipeg

by

Copyright @ 2006 by Andrew Senchuk



THE TI¡ITVERSITY OF MANITOBA

F'ACULTY OF GRADUATE STT]DIES
*****

COPYRIGHT PERMISSION

collision-rnduced Light scattering and Absorption in Atoms and
Symmetric Molecules: a Spherical Tensor Approach

BY

Andrew S.M. Senchuk

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

OF

MASTER OF SCIENCE

Andrew S.M. Senchuk @ 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may ónly be reiroduced ána copiea

as permitted by copyright laws or with express written authorization from thè copyright ownór.



TI{E UNIVERSITY OF MANITOBA

Collision-Induced Light Scattering and Absorption in Atoms and

Symmetric Molecules: a Spherical Tensor Approach

Andrew S. M. Senchuk

A TI{ESIS SUBMITTED TO

TIIE FACULTY OF GRADUATE STUDIES OF

TIIE UNIVERSITY OF MANITOBA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF

TIIE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF PHYSICS AND ASTRONOMY

WINMPEG, MANITOBA

August 2006

by



Abstract

The theory of collision-induced light scattering in atoms and symmetric molecules

is presented using the formalism of spherical tensors. Resulting expressions for the

intensity for first and second-ordér interactions are implemented in the programming

language "Mathematica" and results for the depolarization ratio as well as isotropic and

anisotropic components to the scattering intensity are presented. Experimental results are

shown of the absorption spectrum of water vapour in the far infrared, from 50 to 600

wavenumbers, with a nitrogen perturber. Finally, a novel new formulation of the

depolarization ratio based on only tensor ranks is presented.
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CHAPTER 1: Introduction

1.1 Historical Perspective

. Collision-induc_ed Rayleigh and Raman scattering refers to Rayleigh and Raman

spectral features which are forbidden by the symmetry of a free molecule, but which

appear in the scattering from dense media through molecular interactions. Though put on

a firm theoretical and experimental basis only in the past thirty years, the effect itself was

known about for several decades previous [1]. Broad tails on Rayleigh spectra of

molecular liquids were observed unexpectedly as far back as the 1930s, and greatly

puzzled workers at the time [1]. The invention of the laser in the 1960's lead to improved

scattering experiments and accurate studies of weak induced spectra. The work on inert

gases by Thibeau et al. and Birnbaum et al. in 1968 led to a renewed interest in the

subject which persists up to the present time [1].

This interest is particularily motivated by the fact that collision-induced light

scattering is a general effect, appearing in the spectra of isotropic and anisotropic

molecules in the gas, liquid and solid phases [1]. Furthernore, it is a source of

information about the collision-induced polarizability and, in principle, intermolecular

forces. In this case, the inelastic scattering arises from coupling of the radiation field to

the translational motion of the molecules by the collision-induced polarizability.

L.2.1 Introductory Theory for Non-Interacting Molecules

Consider first the scattering by a collection of non-interacting molecules. The

polarizability of a pair of widely separated isofopic molecules is the sum of their



individual polarizabilities. The observed scattered radiation will then only have a non-

zero intensity component polarized in the same direction as that of the incident radiation

due to the properties of a radiating dipole, see f,rgure 1.1.

polarization of
iraident light

À

n'ågrrifude
of sc¿ttereil
ü€ht

þt 
öPore

| 
,.o rLtior..lo*oi,

Figure 1.1: The general features of the interaction of light with a molecule [2]

The relation between the dipole moment p, and the external incident electric fieldë, is

given by the simple relation:

É=crE, (1.1)

where cr is the polarizability of the individual molecule [3,4,5). In general however,

molecules are to a greater or lesser degree anisoft'opic, thus the polarizability is dependent

on the orientation of the molecule relative to a coordinate system in the laboratory, (X, Y,

Z), say:



Fx = dxxtx +Cf,Xyty +Axzíz

Py =Gyxtx +Cf,yyty +g.yzÙz.

ILz = üzx9x + AzyÛy + AzzEz

(r.2)

(1.3)

(r.4)

Therefore the polarizability of the molecule is, in general, not a scalar quantity, but has a

tensorial nature 13,4,51. This property is fundamental to the subject of this thesis as will

be shown later. Expressions for the scattered light intensity of individual radiating

dipoles can be obtained once an appropriate polanzationlobservation geometry is chosen.

The standard polarization geometry employed is the following: the light beam is incident

along the X-axis and is polarized in either the Y- or Z- directions. The scattered light

propagates along the Y-axis 11l. If the scattered beam has a Z-component, the

corresponding scattered intensities are referred to as I' andl,,,

and if the scattered beam has an X-component, the scattered intensities are I*, and I*"

,,"=Y#,,oU"l

,-=t#r,*L]

,*=ry!',oil]
,*=ryr¡4)

Here, 16, is the intensity of the incident radiation, c is the speed of light in vacuum, and v

is the frequency of the radiation. The equations are to be read such that the first subscript

denotes the direction of polarization of the scattered beam and the second gives the

direction of polarization of the incident beam. The above expressions are appropriate for

a single radiator, but in practice we are dealing with a gas whose molecules are free to

assume all orientations with respect to the laboratory axes with equal probability [6].



Thus, the intensity equations need to be multiplied by the number of molecules present in

the experimental sample and averaged over all orientations of the molecular axes with

respect to the laboratory axes [6]. Thus it is of vital importance to be able to transform

between these to frames of reference. More will be said on these points as the thesis

progresses.

1.2.2 Intr oductory Theory fo r Interacti ng Molecules

However, the above situation changes when the separation between two

molecules is small, on order of the size of the molecules themselves [7,8]. Now the

polarizability of the pair, instead of being a simple sum of the individual molecular

polarizabilities, will have an additional contribution that arises due to molecular

interaction, see figure 1.2. The incident electric field, linearly polarized in one direction,

induces a dipole moment in one of the molecules of the pair, labeled 1, as before. But

now, to leading order, the total field acting on molecule 2 is the sum of the f,reld of the

induced dipole in 1 plus the external field. The resulting dipole induced in molecule 2

manifests itself in an observed non-zero scattered intensity that is depolarized with

respect to the incident radiation, and will depend on time through the time dependence of

the intermolecular separation and of the orientation of the intermolecular axis [8]. These

depolarization ratios are given by [8]:

(I*., + I,, )n--''- (r-+I-)' (1.s)

4
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Figure l.2zT}:re fi-rst two induction terms for the dipolar induction interactions, showing the order in
polarizabiliry. The solid and dashed arrows represent induced dipole moments due to the external
electric field and collisions, respectively. The "bonds" represent the interactions [9].



However if one chooses to use natural light as a source, or for incident linearly polarized

light detected with no analyzer, the depolarization ratio becomes [10]:

(1.6)

Collision-induced light scattering based on this dipole induced-dipole (DID)

model has been well studied, and experimental results show good agreement with

theoretical spectra [1,8]. However, experiments on certain isotropic molecules like CF+

and SF6 show a specffum whose intensity in the tails, particularly in the region greater

than 100 
"m-1, 

is larger than what is accounted for by the DID model alone. Theoretical

investigation has shown that this excess intensity is adequately accounted for by

including more terms in the description of the induced molecular dipole moment,

corresponding to higher order effects. Of particular importance, is the effect of the

induced-dipole in 2 resulting from the gradient of the field of the dipole in 1 as well as

the dipole in 2 resulting from the second derivative of the field from the dipole in 1.

These additional terms are responsible for inducing rotational ffansitions, through higher

order molecular polarizabilities, which extend to high frequencies producing "tails" on

the spectra.

Although, the majority of work in collision-induced light scattering has been

concerned with the broad depolarized component in Rayleigh scattering, an induced

polarized component is also present [11]. Experiments on the inert gases, H2S, N2, Hg

vapour, CF¿ and liquid Ar have clearly demonstrated its existence, and interest is

stimulated due to the fact that it contains, as a component, the purely isotropic (or nace)

scattering [11]. The significance is that the contr-ibutions to the induced dipole moment

coming from higher-order effects in the interaction, in the ftace scattering case, are not

2n
în =*.r+n

6



negligible. Whereas before we had molecule I inducing a dipole in molecule 2, afirst-

order effect, we now must consider the effect of the induced-dipole in 2 inducing a dipole

back on 1 (DIDID), see figure 2, as well as the f,reld of the dipole induced in molecule I

inducing a quadrupole in molecule 2 whose field, in turn, induces a dipole back at

molecule 1 (D1QID). Such second-order effects have little effect on the depolarized

component [11].

1.3 Some Experimental Considerations

The experimental apparatus required to study the phenomenon of collision-

induced light scattering is similar to that required for laser Raman spectroscopy; in which

an example is shown in figure 1.3 I1l. Light generated by a continuous laser is focused

on a sample cell, from which light scattered at 90o is collected and brought to a grating

double monochromator. The detector is a high gain, low noise photomultiplier tube

operated in the photon counting mode [1].
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Figure 1.3: An example of the experimental apparatus used in the study of collision-induced light
scattering [1].

The major differences from the standard Raman arrangement are the weak

focusing of the incident beam (using a lens of focal length 30 cm or larger), and the

collection of the scattered light occurs over a small angle (usually less than 4) tll. A

polarization rotator and prism polarizer in the incident beam and polarization analyzer in

the scattered beam allow the selection of polarization geomefy [1]. An example of the

type of spectrum obtained from this experiment is shown in hgure 1.4 for the case of

argon.
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Figure 1.4: An example of the depolarized component of the light scattering spectrum for A¡. The
symbols, ... represent the experimental two-body spectrum data, and _ represents the theoretical
frst order DID spectrum [L2,131.



. 
The overall spectrum decreases approximately exponentially following the relation:

I(rrl) = A exp(- Âo/trlo )where Aal = ú) - roo and ao * lr where r is the characteristic

time of the interaction [ 12] . Of particular significance is the width of the peak, which is

approximately 15 cm-l at half the intensity. This leads to a value for trr¡ of about 20 cmr

and thus to a characteristic time, T, of 10-ll seconds. We can contrast this with the result

of the non-interacting case, where the spectral width has a value on order of 0.001 cm-l

[13]. In this case, t, is about 2xl0-7 seconds. We can understand this state of affairs by

appealing to the Heisenberg uncertainty principle relating the uncertainty of energy and

time. A large spread in energy corresponds to a rapid interaction time, which is what we

see in the first case. A very small spread in energy corresponds to a long interaction time

as is seen in the second case [9].

1.4 Modeling Collision-Induced Light Scattering (CILS)

The theoretical calculations of CILS parameters have always presented acute

challenges. Multipole moments are in general tensor quantities, and resulting theoretical

spectral intensities and depolarization ratios are obtained through orientational averaging

of tensor products [8]. To this end, the natural language for considering these types of

interactions is Cartesian tensor algebra, which gives clear insights into the geometry of

the system. However, unless one considers only atoms or highly symmetric molecules in

first-order DID interactions, calculations quickly become cumbersome or even inractable

when high-order interacúons are considered [14].

Fairly recently, there has been an effort to circumvent some of these calculational

difficulties by re-expressing the theory of CILS in terms of irreducible spherical tensors.

10



While this procedure may perhaps obscure some of the interpretational elegance that the

Cartesian formalism provides, it makes up for it by providing more general analytic

expressions for coupling tensors of arbitrary rank. Utilizing symmetries incorporated in

spherical tensor theory that can be exploited through Racah algebra, one can describe the

general tensor coupling properties (which appear as "coupling coeffrcients") ónce, and

then choose particular rank tensors to study [10,14]. In particular, these general coupling

coefficients can be progranìmed into a computer for quick evaluation, thus enabling one

to study the interactions of arbitrary-order interactions.

It is in this spirit, that this thesis was conceived: to exploit the convenience of the

spherical tensor description of CILS employing the methods of Racah algebra. We

intend to argue that this description readily lends itself to calculations of CILS intensities,

particularly when high-order interactions are involved. Furthermore it will be shown that

the form of the autocorrelation functions obtained is independent of the type of

interaction being considered, a useful property that will facilitate computer calculations.

The thesis consists of seven chapters and several appendicies. Chapters 2 and3

contain the theory of CILS presented in the mathematical language of Cartesian and

irreducible spherical tensors respectively. This approach is chosen to illustrate the

equality of the two descriptions and to emphasize that while the Cartesian tensor method

provides little interpretational diff,rculties, there are several disadvantages eluded to

above. Chapter 4 describes briefly the ftansformation between Cartesian and spherical

tensors illustraúng the procedure through a particular example. Chapter 5 discusses the

main subject of the thesis, the detailed derivation of the CILS autocorrelation function in

first and second-order using Racah algebra. In Chapter 6 the autocorrelation functions

1i



from Chapter 5 and a Mathematica code are used to generate intensities and

depolarization ratios for spherical and tetrahedral symmetries. In Chapter 7 we discuss

the possible application of this technique to the study of the collision-induced absorption

spectrum of water vapour, a molecule that is highly asymmetrical [9]. This is

accompanied by preliminary examples oi the far-infrared water vapour spectrum, the

frequency region of interest for future study.

t2



CHAPTER 2: Collision-Induced Light Scattering - A Cartesian Approach

In this chapter, we will begin our consideration of collision induced light

scattering (CILS). As elaborated in the Introduction, the basic components of a lighr

scatiering experiment consist of a scattering region, with the atoms of interest illuminated

by a parallel beam of light, and a detector that measures the scattered intensity at some

finite angle to the direction of the incident beam [1]. In terms of the quantum theory of

light, the scattering involves the destruction of a photon of energy frrofrom the incident

beam and the creation of a photon of energy ñror" in the scattered beam [2]. Thus light

scattering is a two-photon process, with two interactions taking place between the

radiation field and the molecular electrons. While scattering occurs at all values of the

incident frequency relative to the transition frequencies of the scattering atoms, the

intensity of scattering is particularly strong when the incident frequency lies close to that

of a atomic transition [1]. However, we will be making several assumptions in

constructing our formalism that will restrict the applicability of our theory to all possible

sin¡ations; and these assumptions will be mentioned at the outset. Despite the photon

nature of light being required in a full quantum picture of light scattering, we will be

assuming that the incoming exciting light field is classical and represented as a wave of

the form, Ë1t¡ = Eexp(-itot), that is that the wave changes with time, but not with

position over atomic or molecular dimensions. This assumption is valid when we are

dealing with light of long wavelength such as that found in the visible and infrared

region. Secondly, we will be considering the interactions of atoms (which are spherical)

t3



and highly symmetric molecules, i.e. molecules exhibiting tetrahedral, octahedral and

spherical symmetry.

2.l Molecule in an External Field: The Hamiltonian

Keeping the above in mind, consider a single molecule interacting with an

external homogeneous electric field. The total Hamiltonian of this system consists of a

sum of the Hamiltonian of the molecule in the absence of the field and the interaction

Hamiltonian where the latter is treated as a perturbation to the former

Ê = ¡1tol + É{in' . (2.r)

The eigenfunctions are V(0), and eigenvalues of the unperturbed system are E(0) t151. The

pernrbation Hamiltonian is explicitly given as

¡¡int - -FoEo Q.2)

where ¡r is the dipole moment operator for the molecule defined as þo = Ig,r," [9,15].
i

The energy of the molecule can be obtained by solving the Schrodinger equation

for the unperturbed molecule states lr¡>:

ulv): ulv) (2"3)

through the use of time-independent pernrrbation theory. This approach is valid because

we assumed that the interaction between the molecule and field is weak, in the form of a

perturbation to the free states [9,15].

t4



s-s{o) +(olu,",lo)-U 
(tlË:lîl#oilt) +Ø(Hin3)..., (24)

where the summation occurs over all excited states, including the continuum, which have

1¡(n), y(0).

The first-order perturbed energy is called the electrostatic energy, flele"t for the

nondegenerate unperturbed states lO) Il,tSl,

u"r""=(olHt"'lo)=(ol-p"E"l0)=-(olrr"lo)Eo =-p!o)Eo, e.5)

where (Olfr"lO) is the "permanent" dipole moment of the molecule when it is in the

unperturbed initial state l0>. However, since we assumed at the beginning that we would

only be considering species that did not have any low order permanent multipoles we can

take U","" = 0 in this case. The second-order perturbed energy is called the induction

energy, and can be expressed in general as

Uioa =-joouEoEp -åA",prEoEBn *..., (2.6)

where crop is the dipole polarizability tensor given by

^=- 
(olr,ln)("lrrplo)croo=rà-g#_ffi (2.7)

and Ao,* is the dipole-quadrupole polarizability defined as

A..p,:äfftry.;ff",_$f (zB)

where@op is the quadrupole moment operator of the molecule, given as

@oÊ = åPn,þr,"r,u -ri2ô"g ). Sin"" the external held has no gradient, Eu, in the second

term of (2.6) equals zero. Furthennore, the induction energy is negative, since in

15



equarion (2.4) thererm (OlHi''ln)(nlH-'lo) = l(olH''ln)l' u""uuse Hin' is hermitian.

Therefore, p is hermitian and so consequently a.,B = c[po .

To understand why the induction energy has the form (2.6), it is useful to consider

the following plausibility argument. In a point charge model dipole, F = QX, induced

parallel to the external electric field E, where x is the separation between charges tq, the

work done dW in increasing x to x+dx is dW = (qE) dx = E d¡r. Using the relation, d(pE)

= dlrE + pdE, we can write dW as dW = d(pE) - ¡r dE. The total work done in creating

the dipole is thus W = pE - Ip¿g. The energy of interaction Uin¿ is therefore the sum of

W plus the energy (-pE) of the dipole in the freld [9]. This gives Uind = -JFdE, Uut

since ¡r = c[E, we getU,no = -JoEdE = -]o;Bz as required.

By applying the Hellman-Feynman theorem [9],

a(rylHl r¡r) tae" = (rylân¡ ae"l v), (2.8)

we obtain an expression for the dipole moment of the molecule in the presence of a

field,po(Eo):

po(Eo) = (vlrr"lv) = (vl- au¡aE"lv)

= -a(vlHlv)ran*
= -âuin¿ /ôEo Q9)

= 0oÊEF.

Similarly,

@"p(E"p) = (vlo"ulv)= (vl-atrlðE"ulv) 
(2.ea)

= Aop,rEr'

T6



The preceding arguments hold for a pair of non-interacting molecules in an

external elecffic field as well. If we consider a system of two molecules, denoted I and2,

subjected to an external electric f,reld, the dipole moment of the pair is simply the sum of

the individual dipole moments

lL"(I,z) = p". (1) + V,(2) (2.10)

2.2 Higher-order Molecular Polarizabilities

For a pair of interacting molecules, equation (2.10) may be expanded in terms of a series

of molecular polarizabilities

þ o (1,2) - cr cÊ (l)Fp (l) - å A o,pv (1)FÊï (1) + å E op,ro (1)Sr¡ (1)...
(2.r1)

+ o"u (2)$ (2) + ] A 
",u 

y (2)Fþy(2) + f E"u,yo (2)$y6 (2)...

where Fo, FsB, and Fspy are general tensors describing the electric field, field-gradient and

second derivative of the field; a field which consists of the sum of the external f,reld and

intermolecular fields arising from interactions; doB (i) is the intrinsic dipole

polarizability of molecule i. While the external field is uniform by assumption, the

intermolecular fields are in general not because of near-held properties of fields of

multipoles. Thus higher multipole moments are induced in the pair, which eventually

contribute to the pair dipole moment. Note that, Ao,þy, is again the dipole-quadrupole

polarizability tensor defined in (2.8). Note that A is odd under inversion, unlike o above;

and A is non-vanishing only for molecules lacking a centre of inversion [7,8,9,16].

Similarily Ecp.1s, is the dipole-octopole polarizability tensor, which describes the dipole

t7



moment induced by a second derivative of an elecffic f,ield as well as the octopole

induced by a uniform f,reld. This is given by

E _-(olp"ln)(nlou,ulo) -(olo*,ln)(nlp"lo)Dag,Tô - t-TJ,", _ UõT- - t-A',r _,rr0,;-' (2.12)

where Ç)ou, is the octopole moment operator of the molecule.

One should keep in mind that the above treatment of the pair is not completely rigorous

as there are dispersion effects that occur as well and should in principle appear in the

derivation. These however are small and are usually ignored in study of the collision-

induced light scattering phenomenon; thus the above treatment is sufficient [8,16].

2.3 The Interaction Tensor

At this juncture, we can introduce the "interaction tensor" notation, which will

simplify the description of the radial dependence of the molecular interaction terms.

Thus, if R is the vector from the origin of molecule 1 to the origin of molecule 2 then:

T(L,2) = R-r

T..(1,2)=VoR-l =-RoR-3

Tûp (1,2) = Tpo (2) = VoVpR-t = þnoRu - R'ô"p h-t
T,,py (l,z)= v.,vpvrR-t = -¡[5R'RBR, - R' (R"ôp, + RBôyo + Rïôop h-7

ToFy¡... (!,2) = V dV pVyV ô...R 
-1.

(2.13)

The T tensors are symmetric in all suffixes, and

(2.14)

18
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that is, repeated Greek suffixes together with summation reduce any T to zero. Because

the vector from 1 to 2 is the negative of the vector from 2 to 1, we also have that

T(2,r) = (-r)'r1¡z¡ (z.ts)

where n is the rank of the tensor. Thus we see from (2.13) and (2.L4) that the T tensor is

proportional to R-(n*l); therefore, the multipole series in the interaction Hamiltonian is

really a series in inverse powers of molecular separation, and is rapidly convergent when

R is large compared to molecular dimensions [9]. Using this fact, we can write

expressions for Fo, FgB, and Fopy in terms of T tensors:

F" (1) = Eo + Tou Q,2)ltr(2) + ]T*, (1,2)Opy Q) + ...

Fos (1) = ToBy 0,2)trry(2) + ]T** (1,2)oyô (2) +...

Fopv (1) = ToÊyô (1,2)¡tu(2) + åToBr¡. (1,2)@6, Q) + ...

and (2.16)

F"(2) = Eo + ToB (1,2)pU (1) - åT"p, (1,2)@py (1) + ...

[p (2) = -ToFy (1,2)tty(1) + ]T"syo (1,2)@yô (1) +...

&py (2) = Togyô (1,2)p6 (1) - *T.,pru, (1,2)@u, (1) + ...

and thus (2.11) becomes

tLo(1,2) = a"u (l)(Eu + Tu, (1,2)F ,(2) +{TByo (1,2)@ya (z) +...)

- å Ao,p, (r)(reru (1,2)po 1z¡ + {Tpo, (1,2)@ô. (2) + ...)

+ t E op,ru (Ð hsru, (r,2)þ,qz¡ + ] TBra, 
þ 

(1,2)@,þ (z) + ...)..

*o"u(2t(Ep +T*(r,2)tt,(1)-lTByo(1,2)@10(Ð+ ) 
(2'r7)

-åAo,s, (2)(-TFryô (1,2)p¡ 6¡ + jTpyo, (1,2)@ô, (1) +...)

+ *Eop,ru (z)(tr¡, (r,2)þ,(1) - ]Tsyo,q (1,2)@80 (1) *...)..
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2.4 P air Dipole Polarizability

The light scattering of a pair of molecules is conveniently described in terms of

the pair polarizability tensor noB. From (2.11) we get,

n.,þ 
H = (ø(1) + a(2)Þ"8 + 2ct(r)a(z)T"B + lr"ru þ{r)as,.,u e) - a(z)AB,vo (1))

t ]Teyo þ{Ðe",ru {z) - cr(2)A",ys (1))+...

= frþ.-

(2. r 8)

Thus, from (2.18) we obtain a general prescription for obtaining the effective

polarizability of molecule 1 when it is surrounded by more than one molecule, as [17]:

nop(l) - crcrÊ(l) -d*y(l) ITø(l,q)n¡p(q) (Z.tBa)
q(q*l)

The above expression is amenable to solution through iteration, thus we have

nop (1) - cra' (1) - d"y (1) I\ô (1, q)cros (q) +...
q(q*l)

+ G* (1) ITru (1,q)cro. (q)T,n (qr)crnp (r) +... (2.18b)
q(q*l)
r(r+q)

+...

through second-order [17]. This expression only contains contributions due to classical

multipolar interactions between the molecules. Effects arising from non-linear

polarization in strong fields from the intrinsic multipole moments of neighbouring

molecules are too small to be significant[L7]"
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2.5 Time Dependence of the Pair Polarizability

The time dependence of æoB comes in through R(t) which is in turn controlled by

the intermolecular potential [1,8]. The scattered intensiry I(rrl) is then obtained by taking

the Fourier transform of the correlation function of the polarizability:

I(rrr) * j(""u [nfoll""'. [nCOJ)e-'''dr (2.re)

where (""u [nCOlJn"p.[nf tll) is a tensor contraction with the angular brackets denoting

an average over all angular orientations of the molecules, signifying a long-time or

ensemble average [1,8]. However, the intensity is further governed by the appearance of

selection rules, which arise f¡om the symmetry of the particular species of molecule

under study. More is said on these points in Appendices A and E.

To compare the contribution of the various terms to the experimental scattered

intensity, it is necessary to further average the radial contribution, R-n, over a pair

distribution function, g(R), to obtain n* . In zeroth-order, the distribution function can

be written as

so(R) =exp[-v(R)/kr] (2.20)

where V( R ) is the intermolecular potential such as the Leonard-Jones 6-12 potential:

v(R) =*[(Ë)" -(;)'] (2.2r)

Thus the expression for the average radial distribution becomes:

(2"22)R-n - +nJn-"g6)R2dR 
= +øfR-'"*pþ v1n;/kr]R2dR.
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2.6 Molecules of Tetrahedral and Octahedral Symmetry

When considering scattering from tetrahedral molecules, one usually chooses the

origin to be the central atom (tetrahedron center) and the corners ofthe tetrahedron to be

at coordinates: (1,1,1), (1,-1,-1), (-1,1,-1) and (-1,-i,1). In this case, the only non-zero

components of A are A*rr- Axzy =Ayzx = Ayxz- Azxy= A"y*=4. Thus the tensorA may

be specified by a single parameter A, which is independent of the choice of origin:

Aopy = a(i"¡ut, + io jykp + iÊ jyko + iB jokB + iy jÊk" ) (2.23)

thei, j, k are the unit vectors along the x,y,z axes of the tetrahedron [7,8,16]. With

angular average performed on the product of polarizabilities, (ignoring the time

dependence), one obtains for tetrahedral molecules:

(n,pn,,p,) = (cr(l) + aqz¡)2ô"uôo,e, + f (a(1)a(2))t n-u (- 2õopôo,p, + 3ôd.,,ôpÊ, + 3ð"u,ô",p )

+ ffiftcrfl)e e))' +(o(2)A(l))'zþ* (res"uoo,p, * 9ôo...ôep, + gôc,p,ô",p )+...
(2.24)

This is essentially the zeroth moment of the correlation function and the total scattered

intensity is proportional to it. By now considering specific geometries, we can get

specific expressions for the above autocorrelation function. For example, we can

consider the incident light beam along the X axis with its electric vector polarized in the

Z direction Observations are made in the Y direction so the relevant terms are ("'-)

ana (n'*r), which can be obtained from(2.24):

("'-)= (o(1) +ue))z +f (a(l)a(Ð)'R* +ffi[(a(r)e e))'+(cr(2)A(1))'?.h* *...

(2.2s)
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("'rr)=f (o(1)o(2))'R u +S[aOe e))' +(cr(z)a(t))'z.h* *...

and the depolarization ratio is

(2.26)

(2.27\
hL\

'=6'
When considering molecules of higher symmetry, such as octahedral molecules

which posses a centre of symmetry, the polarizability A vanishes and contributions from

the next polarizability term, E, become important [1,8]. In the molecule fixed reference

system, xyz, there are 2l non-zero components and only one origin-independent

parameter E = å (E**** * Errr, *8,,,,) determining E:

EoFrô =;Efi"iuiriu + j,jpjyjo +kokukrku -å(ôøôru +ôorôBo +ô"uôur). e.zg)

From this, the mean-square polarizabilitiy contribution due to E can be derived:

(*"B*",p,) = f [o(1)e1 2))' +(cr(2)E(1))'zh'o þo¡"uôo.Ê. * 1 lô.,o,õÊp, + 1 lô"u.õ".u ) .

Using the same scattering geomeffy, we obtain,

("'-) = f; [a(r)e Q))' +(G(2)E(1) )'z h -10

("'*) = {r [cr(r)e e))' +(cr(2)E(l))'? h -r0

(2.2e)

(2.30)

(2.31)
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2.7 Second-Order Interactions

As eluded to in the Introduction, in the study of scattering from purely isotropic

molecules the consideration of the induced polarized component is of growing

importance. This is due to the presence of contributions from second-order induced

moments (the first molecule receiving a perturbation from the perturbed second

molecule), and up to the time of this writing, only the contributions of the molecular

dipole, o, and quadrupole polarizability C, have been investigated [11].

OoB (n) = C*Êyô (n)4,¡ (n) (2.32)

is the quadrupole moment induced in molecule (n) by the gradient of an electric field and

C!?,ìr is the quadrupole polarizability, which describes the quadrupole moment induced

by such an electric field gradient.

In spherically symmetric species, the dipole and quadrupole polarizabilities take

the forms

CX,op = C{,ôoB Q.33)

coÊyõ = cLt (¡*¡* + õ.,ôôÊy )- +¡"u¡ru ] e34)

which lead to the pair polarizability [11]:

noþ 
H 

= (a(1) + cr(2)Þ"0 + 2u(I)a(Z)Too + o(t)a(2)(cr(1) + u(2)þ"uTu,

+ { o(1) 2 
T"Bï C(2)TÊy0 + ! a(2)z T,u, C(l)Tur* + ...

(2.3s)

24



The last two tenns arise because the gradient of the field of the dipole induced in one

molecule by the external f,reld acts through the polarizability C to induce a quadrupole in

the other molecule, whose field in turn confributes to the induction of a secondary dipole

in the f,rrst molecule [11].

The mean-square polarizabilities are:

t*z \ -zzsalaaCzl\'"zzl- 5R"
(2.36)

("L)=

,=%, \^ =%t'

(2.37)

(2.38)

5R16
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CHAPTER 3: Collision-Induced Light Scattering - A Spherical Tensor Approach

3.1 The Idea of an Irreducible Spherical Tensor

As discussed above, fairly recently there has been a tendency to re-express the

interaction in the basis of spherical harmonics [17]. One principal reason for this is that

difficulties in using Cartesian tensors in analysis arise because they tend to appear in

reducible form; that is products of these tensors form sets of linear combinations of

components of a Cartesian tensor, which ffansform differently [18]. For example, one

can form the following from the nine components of a Cartesian tensor of second-rank,

Tij: a) a scalar:

T=I1., (3.1)
i

that is the trace of the tensor having one component; b) an antisymmetric tensor:

A* =å(Ti¡ -l'), (3.2)

having three components where i, j, k are cyclic; c) a symmetric second-rank tensor that

has no ftace:

Si¡ =å(Ti¡ +T,, -lTô¡¡), (3.3)

which has f,rve independent components [18-21]. In fact,

tu ={tôu +Ak +sü, (3.4)

and the components of the three quanúties T, A, and $ ransform in the same way as the

spherical harmonics of order zero, one, and two respectively tl8-20]. Thus, one can

define an ineducible tensor of any rank in away that it must transform like the spherical
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harmonic of corresponding rank. Therefore, an irreducible tensor of rank L is defined as

a set of 2L+1 functions, T¡¡a (M = -L, -L+1,...,L), which transform under the 2L+l

dimensional representation of the Rotation Group as [18-20],

RTLMR-r =IDhr(u0y)T',r,. (3.5)
M,

Here R = exp(-i0n.J) is the rotation operator and the Dh., (cÞy) are the Wigner rotation

matrix elements in the LM representation.

Let Tr,r, (4, ) and Tr_,rur, (4, ) be two such tensors of rank Lr and Lz: the

symbols Al and A2 represent all other variables on which the tensors depend: (for

instance, in the case of spherical harmonics, A¡ and Az are angular coordinates of two

points in space). Thus the sum of two spherical tensors of rank L,

T¡y(Ar) +TLM(42) (3.6)

is another tensor of rank L. This follows from the linear nature of the transformation in

the definition [1 8-20].

A tensor of rank L can be constructed from two tensors of ranks Ll and LLby

[18-20]:

T¡¡a(Ar,Ar) = )(l,tvt,,lrvtrlI-rrl)rr,u,(A,)Tr-,r,,r,(A) (3.7)
MrM,

where (L,M,, LrMrlnA) is a Clebsch-Gordan coefficient if the ranks Lt,Lzand L obey

the triangular condition:

^(LrL2L):ll-, 
-Lrl <L<Lr+Lr. (3.8)

That is, the ranks are added vectorially while the projection numbers are added

algebraically. The product of Tr,r, (4,) and Tr,r" (Ar) may also be written as:
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Tr* (A, , Ar) = h,r, (A, ) @ Tr,r, (A, )L" (3.e)

where the symbol Ø denotes the irreducible tensor product. This shows that the direct

product of the tensors Tl_,ru, (4, ) and TL,lur, (4, ) spans the representation Dr, @ Dr, ,

which can be decomposed into the representation

Dr,*r, +DL,*L"-l + ...+ D¡r-,*r-r¡ - (3.10)

The fact that the particular linear combination of product.Tr,r, (Ar)Tr_,r"r, (A), which

transform like T¡¡a, are given through the Clebsch-Gordan coeff,rcients shows that the

coupling of spherical tensors is mathematically equivalent to coupling angular

momentum eigenvectors with both using only group theoretic properties of operators and

states under rotation U8-201.

Of particular importance is the case when the rank of a product of spherical

tensors is zero, that being

Too(4,, Ar) = f (l,vt,,rrrra,loo)rr,r, (A,)Tr,, ,(A). (3.11)
MrM,

One can use the properties of Clebsch-Gordan coefficients for a coupled zero-rank state

to obtain

To0 (A r, A 2 ¡ = | {-t) 
L,+M' (2L 1 + l) -ll 2 

TL,M, (A, )T,_,r, (A z ) ô r"r, _r"r, ôr,r,
M1

= (zLr + 1) -t" t (-1) L' +M' 
Tl,r,n, (A 

1 )Tr,_r, (A 
z ) ôLL

Mr

(3.r2)
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Thus we see that scalars can be built up from tensors of rank L by contracting two tensors

of the same rank. By convention, the generalized dot or scalar product is defined to be

l20l

A* .B* = I(-i)qA*qB*_q

and is related to [Ax @ B* ]oo by:

A* .B* = (-t)K eK+ t)t" [A* @ B* ]oo

(3.13)

(3.14)

3.2The Description of CILS

In contrast to chapter 2, we will now ffeat molecular interactions using spherical

tensors, which though conceptually more challenging, simplify calculations due to the

fact that many symmetries incorporated in spherical tensor theory can be exploited

through Racah algebra [14]. Thus, the interaction portion of the total Hamiltonian

describing a pair of molecules in an external electromagnetic field, in spherical tensor

form, can be wrinen [14],

Hint = ..,,6 
[nût, al ø g, ]* cos or * {rta, 1z¡ @ E, }oo cos orl

(3.1s)

with f* being the spherical interaction tensor, û, the irreducible spherical operator of

the lu, order multipole moment, and E, the external electric field [14].
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3.2.L First-Order Interaction

From perturbation theory, to second-order we obtain an expression for the

correction to the dipole moment of molecule 1 resulting from the interaction with

molecule i tt+l

where B!tt'l tr the irreducible J-rank spherical multipole polarizability tensor defined as

above

and

[eBCl/ r (3.17b)
IoEFJ

is the Wigner 6-j symbol. TN denotes the spherical multipole interaction tensor. The sum

over ct, refers to all possible molecular rotational and vibrational states, but not electronic

ones.

To obtain the expression for the pair-polarizability correction, one must apply the

derivative with respect to the external electric field in spherical form; i.e" the gradient

with respect to field. This is given by [18,20]:

BÍ'n' = ?;[
(oln*, l"X

Oao

Mn

ú)
I lo)Ì, (olvr u

ú)

c[

+
"l"X
0cro

'lo)LJ , 3.r7a)+
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vlr rËrv,- ce, o)] =,ffit* - å')"x',0, 0) +,Ht# - #' )'*' (0, o)

(3.18)

whereYjLr(0,S)is known as a vector spherical harmonic [18,20]. Rewriting equation

(3.16) as:

M,(r) = f (rarpl,r),äÐ[ø#ilJ"' (-t)'1*"." *',,,,*{T i: i}
"{T'; j}fi"r'(1)@rN 0,2)},,tnÍ'J"(z)l"E,u

(3.1e)

we can apply equation (3.18) to (3.19), with L = 0, J = 1, and M = Ê, to obtain the

correction to the molecular pair-polarizability as:

^Arc(r) 
= I,ì,r,.&,r[e#,t)"'r,,,,,,.{l 

t; 
?l

,,ritlt,t,'. '"-[(21)!(''2t'1 
Lr, b. *J

,.[r*qn,,¡ @ (BÍ1",ir¡ on!",){r)),, ]r" ß.20)

where

la b cl

]o " rl e.zr)
t'hjJ

is the Wigner 9-j symbol, X"0..., =fçZa+ lX2b +l)...(zf *D]''', P12 is a permurarion

operator that interchanges the molecular labels, and N =\ *lz.
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By considering low-density scattering of incident radiation linearly polarized in

the e direction, and detected after passage through a analyzer with pass axis n, one has

the pair double-differential cross sections for scattered light as:

ôQâor
(3.22)

where

F(t) = IOjj4j(r) (3.23)
j=o,2

with the geomeffical factors equal to Õoo = å 
(ê .ñ)'z for the isotropic spectrum, and

Qzz =åþ * (ê.ñ)t.| for the anisotropic spectrum t101. F¡¡(Ð is the autocorrelation

function of equation (3.20),

Fr, (t) = (ner lo¡ .AAr (r)) (3.24)

where the dot denotes a scalar tensor product, and the angular brackets again denote a

canonical average. Thus (3.24) is the general spherical tensor equivalent of equations

(2.24) and (2.29). And it is here that we first gain a glimpse of the usefulness of the

spherical tensor approach, for in (2.24) and (2.29) we had to initially specify the

geometry of the particular molecules under study. In contrast, equation (3.24) using

(3.20) is a general result, applicable to all molecular geometries [14]. Due to the fact that

the polarizability is symmetric in its indicies (see equation (2.18)), the spherical tensor

form contains contributions of rank 0 and rank2 [10, 17].

ò2o
= kik3 

}'Þ^nr-toÐF(t)dt
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3.2.2 Second-Order Interaction

As before in chapter 2, through iteration we can further improve the accuracy of

our spherical tensor expression, by considering the case where the perturbed second

molecule induces a polarizability perturbation back on the hrst molecule. We provide

details of this general derivation because, to our knowledge, it does not appear anywhere

in the literature beyond second-order DID [17]. In this case then the polarizability on rhe

second molecule includes a correction of the type already considered. That is:

n!'r,){z) -"Í:"'(2) +ABÍ1")(2) (3.25)

where the second term is of the form

^BÍ',',, 
(2)=Z.I r,*p,,f=å1"'",.,,,.*,{il i JJ. 

}n¡,,¡.¡¡,' ""\(21)l(2\)'.) 
Ll, n3 NrJ

*[r*, (Rzr) @ (rÍ"r,,(Ð @ BÍ1',) (r))r, ]r, e.z6)

Making this substitution in equation (3.20) we obtain

Æ¡o(1)=,ä',ì.,,+Prz]t1-*,,[#)',,*,,,,,,,,J5J6NlN2
I,l, tr2tr¡

"{i 'i,:}{i I i}
,. 

[t,o 
rn,, i e (n!r', (1) @ {r"" r* r, I ø þ 1',',, 1z) @ 8t1",, (,)),. 

l, ),, ],"

(3"27)
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Considering only the tensor component (square bracketed

(-1¡ N, +r'+N,-,,' 

[[(" 
tt 

],, (2)r 
" 

!1",, (t) ),. @ r*, (R r, )f 
,

And with the help of (C.2) in Appendix C, it can

(-1)N,+J,+N'+J6-J+J,+J"+J3 t x^, fJu 
N2

?'-*,11.' Jr

[l*, (Rzr) @ {r!""'12¡ o n!'"') (1)),. @

L\

term), we can rewrite it AS:

I
)l
lr.,

(3.28)

@ B1','{r))r. ør*, (R,,

furthe

,rÌ
a)

r!1",(

r be rewritten as

t,Ì I *r*,,*,,,1
^1Jt J:o

= (-1) N, +J, +N'+J6-J+zJr+Jr+2Jr+Nt +J 
I X", lJ u N2 Jrì- _. f ¡r, u Jrì

l¡, Jr u l?"ol| l Nl a I

N2 JrlJN, u rrl
Jr ^JÌr N, bl

(3.2e)

(3.30)

(3.31)

[{"!:t'rrl 
e n!'"'{t)),. t 

"!1"' 
(1)} @ þ*. {n,,) @ r*, (R,,)}o],"

= (-f)N,+2N z+z:.*Jz+2!3+J4+Jr+J6-J I (-t), X"rX"rXr. j;:

:Ìth-, (Rzr) @r*, (R'r)Ìo ø (sÍ"'(1) @Bt'/')cri)" tB!'"'(1)Ì I .

{:
J5

J1
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Thus, (3.27) becomes:

aBr"(l)= I I It*&zl[t+
JrJ2J3 J4J5J6
l,l, f,2tr¡

)''' 
t""""r5r6N'1Nz

/ 1tt,+w,
T) -tl o

""[ (2Ð (21, (2.tt (2n, ) !

(3.32)

(3.33)

(3.34)

fr, Iz Jrl [J, Js lu 
ì

xi 1 1 Jf{n, I Jfl-1¡*'*'*'*2rit2+2J3+J1+J5+J6-J

Lt, b *j l', n3 N,j

x)(-l)"xr,xo,,X lJu N2 J'l lN' a l'|{l+ Js 
':}

abc

;lh^. (R 2r ) @ rN ;::i' h,,, .lL'" r: 
I,,,i 

l'1,,, 

", i;,,1 
iJ

paft,

J2

I
l2

Consider now only the coupling

?l{i; i i i
*J Lt, n3 N,J

'".{;: i: ?}

Js Ju 
'ì

i ,'|=I(-r)'- (zx+D{I4 N2 .^}f" nz .}ft' Js .}.
n3 *r-J ?' -' '-'^ ' ^/Ln3 n2 lr|ll, Js tJtlo N2 rul'

I lrr + P,rllr * Pr,]x,,,,,,,.,,,.*,*,{'i
JrJzJr J4J5r6 

lr,

X (_f) N'+zN' +2t iI z+zt 3+I 4+u *1.-l 
| (_l) u X oJ, X bJ,

*f*, a l,JJl. Js l,f-'Il N, uJL" J, cJ'

We can rewrite the second 9-j symbol as:

we see that there are three 6-j symbols that contain the rank, Jo. This is one of the

that is summed over in (3.33), namely

lIo
ln,
l',

Now

ranks
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lJ, Jz Jrl

I IU+&z][1+PzrJX¡,¡,r'ror,*,N,1.r,"u"] 1 I I I
i:'.,i,; "0" ltt tz Nt,J

X (_1)N,+ztrz+ztiJz+zt3+J4+Js+zx+a-t (3.35)

*j* 2 a JrlfJo N2 .lf '' iJ' Jr J'''l

^1 r N, ;lt,; ^: ',nT; 
i; iltl ;^ J,f

Now we can rearrange the elements in the 9-j symbols so that we can sum over J2 and J3:

lN, J Jrl lN, u Jrl

I Irr + Przltl + Pzrlxr,¡1¡;roJ,x=N,N,abc] 12 r l, fr] x Js lrl
i:liï "" Ll' t r, ,J L¡o c r, ) rz.tø>

x (-1)N,+2N, +zrir.+zr3+r4+r5+2x+a-r 
f 
N2 

-"- lrlf '- 
N2 

-- Ìf", 
n2 .i

I I Nr bjln, n2 trJlJ, Js tJ

where e is a phase factor associated with the odd transposition of the rows and columns

of the second 9-j symbol: Ê = (-1)u*"*x+N2+Jr+J2+J3+J4+J5 . Using equality (C.6), from

Appendix C, we obtain:

I Itt+&z]tl+pzr]X¡,ror.xrN,Nr"b"(-1¡N'+N'+J'+J'+c-J+b+n'+N,+x+J4-J,-l-l-J
J,JoJrx abc

{t, i; i}?,-,,'.,{* f i}{i : T}t? : i} 
Q37)

which can be rearranged to become

Z IU + Prz]t1 * Pzr]X¡,¡o¡,x,yrN,Nrabc (-1¡Nr+J++J'+x+v+b+c+n'

J,J.J, abc
xy

lI^ N" xl[¡ a bl. (3.38)

"'tÏ î lltl * ;]{:: i; ;}{? : ;}
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We can insert this into the original expression for the correction to the polarizability

(3.27) to obtain:

'.2t

N,

llr

,2

:t2

@

(21,)t(

{t^ l

Ln¡ :

" rzl)' 'tc
n?

4

+lt

b

n3

v
r (r)i-

b

rì:

,lz

2t1)t(2t)t(21.,l

Ml-
lIJ, N2

n¡ Ì1

tiLn' n2

"Í:'',,i2¡) 
ø n

2Nr+Nz

I^Br". 
(1) =

yl
J,I

(3.3e)

Now if we perform a change of label on the above, in the form of a = K, b = M, c

--L, J+ = Jz, Js = J3, we obtain the final form of the second order correction to the

molecular pair polarizability :

lrI I Itt* &zlt1+ Pr,l(-1)r.+J,+v+c+
l,l, J,J.J, xy
nrnrabc

lJo N2 xlfJ a

xr,rorr*'r'*,*ruo"l l, Nl t, llt J5

. Lr b n,J lr c

[r*, (R,r) 6 rN, (nr, )f ø (n!t',) {r) ø

(_

Ir

K
J3

L

@

2,)l(2lr)l(2nr)

*l lJo tr

r,Jl r c

BÍi"'(r)1"1.,.B

2N,+N, _l'
Qn)t)

^ìl¡,r,ll 1

Íi"'rrl]

t.2

l1

L

L

^BJ,(t) 
= I IIt*

I,l, J,JrJrx
nrnryKML

x xr,r,J,*'r'^

" [þ*, {n,,)

&z ]tl + P21 ](-l) J'*J3+L+lt+12

,.,.,*{1: t ;}{i
Lv M n3

6 Tn, ßr, )], ø (nfrr'r 11,

vI
Jr)

(3.40)
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CHAPTER 4: Transformation Between Cartesian and Spherical Tensors

As indicated in the previous chapter, depending on the situation, the usefulness of

using either a Cartesian tensor or spherical tensor description to solve problems is usually

evident. Thus it is also useful to have a self-consistent procedure for transforming from

one description to the other, so that properties expressed in one form can readily be

expressed in the other [9,22,23]. Such a procedure was first introduced by Stone

122,231, and this chapter will basically follow his arguments and include some more

explicit Cartesian to spherical tensor transformation calculations. Furtherrnore it should

be noted that only those results that are relevant to the thesis will be stressed. The

interested reader should consult the references directly for the complete treatment.

To begin our discussion, we can define a linear ffansformation T, which describes

components of a Cartesian tensor in terms of spherical tenso¡ components. The

ffansformation is invertible, and the inverse describes the spherical tensor components in

terms of Cartesian components:

4o,o,...o" = Irfiiff 'o'or,-
ru;m

(4.1)

and

Ani,-= I rüü...""4o,o,...o. @.2)
0t"'0n

where the symbol t1 is used to distinguish between spherical components of the same

rank derived from a given Cartesian tensor, should the need arise [22]. The

ffansformation is unitary, thus

rJ,;î 
"" 

= h,ili -'l . (4"3)
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To explicitly evaluate the ffansformation, we can make use of the fact that any tensor

Ao,o,...on of rank n transforms under rotation in the same way as the tensor A* B o,...Zs^ ,

which is the generalization of the usual vector product 122,231. Each vector here can be

transformed into spherical form using (4.2) above

Al,- = TtJ'o"
where the transformation coefficients in matrix form, are

[t]" rl'o rl'-'l l-h o #1
I 
tj" ri'o r,1'-' l= I -å o -il
Ltj" T,"o Ti'-'_l Io 1 o]

These spherical vectors can now be coupled together using (3.7):

(o"),,,,- = I lr}te" Ird,*nu (r r* m"l jrm)
m'm' cr p

= )rj¡'-a"nu

and this procedure can be continued to couple an arbitrary number of vectors,

(ABC),.i,¡,,- = I rj,ÊI,'-A c,BpcT .

cFv

We see that the fansformation coefficients take the form

Tå,É'- = IrJ*rË'-'qt rm m"l jzm)
m'm'

Tjr61,'* = Irå#'*{'t(j, rrn',""1 jr*) .

rím'

(4.4)

(4.s)

(4.6)

(4.7)

(4.8)

(4.e)

The order in which the coupling is made is arbinary and the particular choice

made here is not the only possible one 1221. It is necessary to specify the intermediate

quantum numbers because they distinguish different spherical components of a particular

39



jn. Here we have explicitly made the substitution j¡=1, and implicitly assumed that there

is also a notational j6=0 corresponding to a scalar transformation

Ao,o = To'oA = A. (4.10)

As an application of these ideas, let us consider the second-order DID

contribution to the pair polarizability tensor:

cro* = cr,tcr2 (crl + o, )T'UTU* . (4.1 1)

Using the def,rnition for the interaction tensors given in (2.13), we find that this

conffaction of two rank-2 T tensors is itself arank-Z tensor:

To. =*þr"rr+rtô**] Øn)qq 
ro'

so (4.11) becomes,

Goo crrc)¿z(crl +crr)+þtr* +r'ô"*] . @.r3)

In spherical form, this is expressed as

clj' = Itj'f ''o.,
c0

=atuz(cr, +ar)r-tl,rjf'^þraro +r'ô"r] 
(4'14)

d0

and we are now in a position to apply the method outlined above.

Considering only the tensorial part

sti' = 
Ç[: 

r,lf''r.,ro +r' .Tijr'''ô"r], (4.15)

the properties of the Kronecker delta ensure that we may express this as

sï' =hO-Tiå''-.,r*])+r2 .þri'''ô* +Til"'ô,, +Ti'''õ-] (4.16)
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while the other sums must be carried out independently using (4.6). Then

sl* = r[à.Ðt, -'ro I rj'*'r* (t tm m"li,*)] r'hll''*ô-. + r#'''ôvv + rj''-ô- ].
Lmm- d 0

(4.t7)

Applying the values for the transformation coefficients from (4.5) and calculating the

appropriate Clebsch-Gordan coefficients, we can evaluate all the components ofSþ :

qlo -- 
6:lti=-Jjru (4.18)

5l'=o
5ä' = o (4.ts)

Srl =0

'r" -31x' -Y'+2ix{lu'-zl .t l
sl, = 4l ^'+.il'l¿t-Lrrl

n, - Plz" -^' -Y'1";=rJzLÉ) (420)

.1" - ^l 
xz-ilzl

"_,_-L r, j
c(rz - zlx'-Y'-zixYl
--' - 2l- rt i

These can be put into a more compact form if we recall the definitions of the spherical

harmonics [9, 18, 19,20]. The spherical form of the second-order DID contribution to

the pair polarizability tensor thus can be written:
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såo =- 6.rrrur(ur+or) l4n-o----F--1T'o (4.2r)

ült =o
såt = o (4.22)

crll = o

^rz - 
c[rcrz(crr *crz) 74u,uz=- ra -t/ s t'

^rz - 
crrcrz(dr *gr) 74u,Lrr =-- ,u t/ s t'

-rz -draz(cx, 
+u) @u,cr; = 

-i-l 
s t; (4.23)

^.tz cr,c,, (u,, * cr, ) f24n-,,*-r= r¡-1 s t-'

u:,=*+aAPrt:,

As expected, there is no j-1 component due to the symmetry of the dipole

polarizability.
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CHAPTER 5: The Autocorrelation Function

As discussed above in chapters 2 and3, the scattered intensiúes are conveniently

expressed in terms of molecular pair polarizabilities, and expressions were derived there

for the calculation of the corr""tions to the pair polarizabilify for two interacting

molecules. In this chapter we will discuss a detailed derivation of the autocorrelation

function in spherical tensor form. This will allow us to implement a simple symbolic

computer code to evaluate scattering intensities for tetrahedral molecules and atoms

which are spherical.

5.1 Calculation of the Autocorrelation Function in First-Order

As presented in chapter 3, the o component of the jth rank dipole-arbitrary order

multipole polarizability of a pair of interacting molecules I and2 is given by

M,o(1) = ä,ä,,,.*,,[,r#r)"'r,rr,..{,; 
'Í, 

,i}

x F*(R,,) @ (BÍ1"'(r) @BÍ'h)(2)),,1". (s.1)

We want to calculate the autocorrelation function F¡¡(t) given by

F¡¡ (t) = (ne, (o) .^A, (Ð) 6.2)

where the angular brackets denote an angular or ensemble average. Substitution of (5.1)

into (5.2) leads to the expression
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)t"*''""*'¡K2K3NrNz
4r(t)

If we now apply identity (C.7), we can rewrire (5.3) as

Frr(r)= I Itr*&z(0)lt1
JrJ,Jr KrK,K3
I,l, ñrmz

(21 ) | (21 ) t (2m r) t (2m r) I

/ 1N,+N,
llñ tl L

'''[ {21, )r. (2l r)t (2m r)t (2m r)l
= I I tl+&zlt

JrJ2J3 KrK2K3
U, ffirmz

.fl '; ?lfT
lt, \ *,.J L*,

o)),, ]

K2 K,l
r r lþ-,(R,,(o)) @ (BÍ1"'(1,0) @ B\',r, (2,

mz NrJ

' h,(*,, (rll o (eÍ¿,'" (1, r) @ BÍll" (2, ,rl, l).

'; lfT' I' i'l
*,J L-, mz NrJ

ill rli llttt^,' 
(R rz (0)) 6 rN, (R,, (t))l

ll, Jz

xXJ,JrJrK,Kr*r*,*, ] , ,

Lt' b

x (-1)2N,+r,-N, >(2J + 1){

. [(sÍl',,(1,0) r 
"Íl',,(2,0)),,

(s.3)

(s.4)

)'''
2N,+N,* P,r(r)fI

s (B$,-'' (1, r) @ Bll-') {2, t¡)*, l)
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Applying identity (C.4), we obtain

(
Fr(t) = I

J,J'J, K,KrKra \l,l, Erñz

2N,+N,

)'''(21 ) t (2r ) t (2m r) t (2m r) t.

x XJ,JrJrK,K"K.N,N,

+ *Ì,* 
(R"(o)) 6rw, (R"(t))1,

.[(eÍ",'(1,0)@B[],'(r,tl[ ø("Íï,'(r,ol6nÍ11,,(2,,)),1). (s.s)

Now, we can consider explicitly the tensor coupling terms in (5.5) above:

){-r),,-* ,(21,+1x2K3.r{il ii l}{i 'i,;}{j: ;, J:}

I J'

*IXr,*,rnlK,
gh I'LÞ

f*, 13 'il| 'i ';liT' *,, T'
LK, N2 uJ 

|.,, b *,j L-, m2 N2

Wigner 6-j and 9-j

la K3 Jr'ì:¿ \
ll Nr NrJ

J.N, J Jrl
=lt, 1 Jrl,
It, 1 J,J

iJ, Jz J3

lr 1 r

ft' \ N,

Due to the symmetry

and

J, I
K, l'
^)

properties of the

f*,13 ll
lr, N2 uJ

symbols, we can rewrite:

[Jt J2

*lK, K2

Lt h

(5.6)

(s.7)
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Kz Kr l lN, J K,l
1 Jl=l*r 1 Krl,

mz Nrj l-, r r, 
-J

J2 Jr'ì la K3 Jrl
K2 r, l= {n K2 J, l. (s.s)

h aJ Lr K, r,J

the definition of the 18-j symbol,

1J,gì
lr Kr f=I(-t)n+s+Nt+N'+Jr+J"+l+l-mr-lr

N2 mr ll K,r,

IK,

tj,
IJ'

t:'
Combining these we obtain

ftrK2 lJ
l¡,m,
[t \ N, a

(s.e)"{î ir ü}{l ri Ti}{ii I ri}{i I Ti}

F¡(t)=ä-,à*[1+&z(0)]t1+&z(Ð](2J*1)(_1¡J,+J,_-,[6,','
1,1, m,m,

and a re-expression of (5.5), consistent with Bancewicz [10]:

x XJ,JrK,KrN,Nrgh (-l)-'+lt-h-g-N'-J'
K2

l2

K:}m2'{:12

1Jt
lr

NluNrmr

(h,{n,,{o))@r*,(R,,(r))l .[(eÍ1"'(1,0)6nÍ1,-"u,Ð), @(BÍï''(2,0)@ Bli,e¡)[I)

(5.10)
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At this juncture, we make a comrnon approximation in the theory of Collision-

Induced Rotational Raman (CIRR); that is we assume that the molecules of the scattering

volume are correlated radially but not orientationally [10]. The physical basis of this

assumption is that the anisotropy of the intermolecular potential is often small.

Therefore, we assume that the tensors of ranks â, B, h are isotropic and hence scalar. The

appropriate substitutions are, a = g = h = 0. Equation (5.10) is reduced to

F¡¡ (r) = I I [t + prz (0)]t1 + pr2 (r)X2J + 1X-1)-,+r,-N'-N' Ir, '*'**' ìt"
JrJ"KfK, 

12\v'lllr I r12\L/l\¿J t L''\ Lt 
[{ztr)t{ztr)t(2mr)l(2m)l)l'l' m'm'

xxr,r,x,r,ru,*, f {-1)*r+N"+Jr+Jz+l+l-m,-1,(2J3 +l)(2K,.r){? :' :: }fl i; if jK,J, J / \ ' 'U Nl *rJ 
Lo K; ;r)

[N, J K3lfNr J Jr'ì

l*, r r, fl r, 1 r, l(h*,(R,,(o))@rN,(R,,(r))L
L*, r r,Jlr, r ¡,J

. (eÍ",,(1,0) @ BÍl-,)(r,,1[ t (uÍil" tr,ol 6 nll,','(2, Ð[ l) . (s.11)

With the spherical tensor relationship (3.L4), the following Wigner 6-j and 9-j symbol

properties,

ft K3 tr 
Ì = (-l)K,*N,*r

LJ NI N'J
(s.12)

lo K, J,ll; ;' ;' [ - ô,,*,ô,,*'ô,,*,

1;i] ",',1-6'
as well as the explicit form of the spherical interaction tensor,

(s.13)

(s.14)

ôarrrô*,*,

ÞK;+lnrñÐ
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we obtain a reduced form of (5.11):

8n
F,, (t) =Jr\/ 2Nr+rrr-'rrrî

ilrDz

xl{zt, +
J3

" 
(eÍl',,(1,0) . BÍr'') (1, t)XBÍ"') (2,0) . BÍ:'', (2, r)) .

In the static limit (t = 0), we make use of the relation [10]:

Zft(.;*'*t)(0)Y*, (Rrz (0))'R,jN'*u (t = o)YN, (Rrz(t - 0)))

(2N1)!2

= (*;lt*'.")

)"'(21 t) | (21 z) I (2m r) | (2m r) I

(Rrz (o)) .R,"-(Nr+t) (r)y¡,r,

to reach the final form for the firsrorder autocorrelation function

(R,r(t))),'{Tl il;}{iii;}r(-;N,*,,(o,Y*,
L*, t JrJLlr t J,J

)"'

(s.15)

(5.16)

(s.17)

E, (t) = zlltl + P,,(0)lt1 + &r(r)l(2J + t¡1-t¡"." I
JrJ2 lrl2 t

ffilR2

)t'(2N

[N, r r,l[N, J J.l
+r¡']m, r l, fl r, r l, fln;,*,.',)(nÍ;',,{r,o¡.

L-, r l,JIt, t J,J

(21 t) 
t (21 ) t (2m') | (2m r) r.

gÍt*', (t, t))x\{zt,
l3

* þ1"', iz,o).8Í1*', (2, r))
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5.2 Calculation of the Autocorrelation Function in Second-Order

Up to this point we have been giving results, which though detailed, are

contributions made by others [10,14]. We will now consider the detailed derivation of

the second-order autãconelation function, which is an analogous extension of the f,rrst

order case. To our knowledge, this is an original contribution. To begin, let us consider

the second-order correction to the molecular pair polarizability as derived in (3.40) of

chapter 3

ABro(1) =

l, yl
L J,J

c[

(s.18)

where Nr = lr + lz and Nz = lz + n3. We will now calculate the function

Fr¡ (t) = (,t,o", 1o¡.(2)an, qt¡)

Making the appropriate substifutions, we obtain the lengthy expression:

(5.1e)

[,

K
J3

L

@

)J. 
+Ji+L+lr+1.

r}{i
ø{þ5"',rri

I Itr+Przltl+P2rX-1
I,l, J,J"Jrx
nrnryKML

lIt N2

xxr,rrrr*'r'N,*r*trl', Nl

lv M

" [r*, 
(R rz ) I T*, (Rr,)]*

')
I"

1t2

(2t)t(21

i}{
'BÍ:/') (1

N¡

)I

2

l2

J2

flr

2)

-N"

2l

N

n

@

+

('

t2

1

t

2

3

)L

,)t(2ry)

: ;Ì{

gÍt'"(t)
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$¡ (t) = I I I ) ftt + &21 I1+P121 (-1)r2+r3+L+rr+r2 1-1¡ 
J'z+J'r+L +t"+t''

'Å:h,Ífu,

"[,,

"fi
lI',

"ti
)

2

J',
nt,

rñ,

)IQI

'J2

.ns

Ii'
l''

+

:
)

t+{+

,.e(r)

vrl .il_ tttt¡ ñil
vJ -

M.
n',

v'

+N

¡)!

t\*
)_n3

K
I3

L

K
J',

T:

2

!(2

l

J

l

J

1

1

lt)

lr'

Jl

Lr2

II
fl
.'l

?r

í,rYr'

¡trzl,

;ll
',J I

,ll
r:j

ñt
J:J1
^í:ñ

;

,Jr JiJ
-MK1

,r.Ø,

N2

N1

M

l'I2

¡l"l

l'I2

¡l"l

M

J'Jt
KL

t)

vl
J'J

l', v'ì
L J'rJ

(21

l2

lr

v

J',

l"
y'

v2_l
l(2n')l)

Ur, lI

Jlr L

x'l ß'.

"lt 
i

xr,rrrr*'r'*,*r*Ir', r'rr', *'2 y'' l.Ir t [2KML'
;)t(21'2)

N2x
n2 12

IV

3['

( [h,,*, r,0, ør* (R 
2 r,0)]" ø (nf,"' 0,0) @ n!'r' ) lzol), ø n!1"" o,olL ]

.[þ* {*,r,Ðørv ßr,, r))o,r @(nf{r11g@n!;',r',i,z, Ð)r, øn!f;r1t, ÐL ],)

(s.20)

First we will consider only the tensorial part of (5.20), which we can recouple using (C.7)

AS

(") = (-1)'".**T""{l #, l}ft* ez,o)@rN, (21,0)), @ (r*; (rz, t) @r", (2r, r))M,]^

-[("Í1l,(1,0) @ BÍ;o', (2,0)), r rÍ1",,(1,0)t @ (BÍi",(1, t) I ø\r',''s çz,rlL, r BÍ1"i,(r, r)h l)
(s.2r)

and then using identify (C.4) three times, the tensor products on both sides of the direct

product can be re-expressed as

: (-1)'"**-"' 
à " 

rr"r.rr.***r, {l
egh

([h*, {tr,o¡ @ rN, (12, til ø (r., (21,0) @ TN, (21, r)l I
[{("Í",,(1,0) I BÍl'í,(r, ,iL r (uÍ;0,, (2,0) @ Bti')'ù e,ù)nl r t"Íï,,,1,0) @ ell":,rr, tl}.Jr],

iÌiÌ{i# rÌ{i il; y}{i
J3

J;

e

Iz
J;

h
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Now, let us consider the "T" portion only. To be able to average the tensors over all

orientations, we must first reduce the product of four T's (in reality four spheúcal

harmonics) to a product of only two. To accomplish this, we make use of identity (C.5)

and obtain:

[þ*, {tz,o) @TN, (12, r))o @ (T*, (2r,0)ø r*, 1zt, t¡) |
= (-f) Nz+Nä 

I (u., pv 
I 
uo)(r*, (1 2,0) @ TNí (1 2, ÐX (t-, (1 2,0) I TN. G2, t))v

9v

= (-t) Nz+N'z 

I I I (u", Êy I 
aa)(uc, Bv I 

*) \HE (w, N,,ool N3 oXNíN;,001 Ni 0)
By nv N3N'3

lN, N2 Nrl

"];i ü *; l{"*,(r2,0)@yN;(12,r)}:(-l)*,.*i+N'+N',t"N')l"Nr)l"N'^)ll"'
f u c n ., 

rru'(Iz'u).9 YNi (L'¿'t)rn' -' L Ñl

* (4n)' 
ft-"(Nz+N!+N,+r.r'++¡x*'*i*'*; 

(5.23)

This lengthy expression reduces to

= 4n(-1) *'*'o' I I I (u., Êv I 
ua)(u", Êv I 

nv)(N,N,,oo 
I 
N, o)(Ni N',,00 

| 
N; 0) nb.

py nv NrN',

(2N

(r2,

.{r' * i}t
* {Y*, (12,0)6rYN;

,)l(2
Rrr-(Nr+N':++),]'Nr)!(2N;)

r+Ní

Ní)!(2
çÑFÑ2

,lÌ,.

(s.24)
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J2 Lì
J'. L'f
ndJîÌ{i

íN;,00

R;(Ni+2)

@ BÍ1"1)

J"

ri
e

XN

)@

r,0)

"0'

,0)

'(t

)

n¡ )

c into equation(5.22) to give:

Ir.{, N2 MllL
I {-t)^'.*;]N; N; *'l]t'
lif' lu . uJla

c, By I 
acr)(bc, Êv I 

nv)(N, N,oo 
I 
N

X r",rü**,0,", o"rn ({*,J*,*r) y*, 
{1 2

.r') (),0)@ B jl''r',r (2, r))n ]r t {"1i",

,]"'

lNi0)

V*. 1tZ, t¡}"

c, r)Ì"1)

(s.2s)

iÌ{i 
";i}

Ní)!(2N, )!(2N; )
N2+N;+Nr+Ní

n!1";)1¡r)Ì"f 
)

[N, N2 Ml lL J3

)*,.*í I Ní N; lø'ljl' I;
[u " "Jla e

r.r, o)(N;N;,ool *i o)[gIry

*á*"YM 
1tz, t¡f

Bti'rÐ(2, r))o ] e {n1"" 1r,0¡ ø

(') = (-r)'".*-*'4n(zl - uãÐ_ì, (-t)n

lN, N^ r.r"l -

lTi ;; ti |{f #, ilr*,*,,oorN
|.b c nJ'
xvu,n *rr,", o"ro ({n ;J"'+2)yN, ltz,o¡ ø n ;j*

[{(uÍl',,(r,0) @ BÍ1'í,(r,,1[ o (sÍ:'0,(2,0) @ r

Now if we make use of the relation [20]:

)(uc,Pyl ao)(uc, Êvl "v) = ô-ôou
0v

we obtain from equation (5.25) the expression

(s.26)

(s.27)

At this point we can once again make the CIRR approximation; thus a-g-h-e-0

and equation (5.27) reduces to
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rl |.], J2 r-l
rl]lí I; r-'i
oJlo o aJ

Itzrl
j

l{ii
)!(2N;)

M
M

0

2N

Nr Nz

Ní N;
bc

)!(2Ní)!(Nr

rI

J

0

(2
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Evaluation of the 6-j and 9-j symbols in equation (5.28) leads to the expression

(-l)t*"*' lN, N" Ml lN, N" N.l ^x';i*r* t$ *i t Jt*; *í u'Jô"ô"''ôKK'ôd0ôN'N;ô'''';ô"';ô"'"

(s.2e)

and so (5.28) becomes,

(,,) = (-t)*,* Ni*t 4n(21+ g¡- xrcrc:-{N' *i tlf *l N^ N' l '

bN, Ârzrz*,0,,,,,,, tN', *i oJt*; ;r 
'o'|(*'*"oolN'o)

(NíN;,ool*;q[W]',,(+{*o-.*,*,,"*,(L2,o).Ri,.*,*,,Y*,(12,t)}

ffitrÍ1",ir,o) 
.BÍl'í,(r,,)XsÍ1,',,(2,0) .Bt"i,',)12, t¡[n!1",,(1,0) .B!,';r (L t))

x ôrr,ô"r,ô *K,ôdoöN,N, ôr,r;ôr,l; ôr,ri .

(s.30)

We can now substitute this back into the original expression for the autocorrelation

function, equation (5 .20):
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Now, if we explicitly consider the sum:

¡x,"{N: 
*i tU*'N2 N''l, 't*; *i oJt*; *i ;l (s'32)

with the symmetries of the 6-j symbols [20], this can be written as

¡x,"fNt 
Ní olf*: Ní : Ì, (s.33)

o 'tN', N2 vtj LN; Nz N,J'

which is equivalent to [20]:

\_ r¿ f N, Ní o I,f *, Ní o I : ^ {N, N, UHNí N; rr,r} (,

à*"1*i *, rlt*; Nz N,J=o*',ff (s'34)
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where {a b c} = 1 if a, b, c satisfu the triangular condition, and {a b c} = 0 otherwise.

Making this substitution into equation (5.31), and after some algebraic simplification, we

obtain for the second-order autocorrelation function:

Fr, (t) = (ã + Ð I I I f tt + & zl tl + P, rl (-l)r'I 
+rz+r" +r'2+r+r, +r2 +r3

- trt, líl; J,J,J, xy
nrnrn'"n'rKLM x'y'

,.( (2Nr)!(2Ní)!(2Nr)!(2N;)! 11r2 
X*,¡w,N,K'1,x,'y,,N,N,

^le\)'aÐaòIe\)te ) x-
lt. N" xll¡ K Ml-

"1Í $ lltl : ïfl:: i; ;}t? I ;Ì
lJ" N[" x'l ß K Ml -

'tÍ r :tlt, t ïflii i; ;}{? i íÌ
x{N, N, M}{Ní $ MXN, Nr,00l M0XNí$,00| ro{{*;,", })

,. þ1u', {tol . BÍuí, (r, o[nf¡', rzol . s!f,"; I 
1¿ t)XnÍ,",, {to) . n1,u, (t, Ð)

(s.3s)

Again we have made use of the identity, that if t=0, the average becomes explicit only

over the radial distance R between the two molecules.

Equations (5.I7) and (5.35) can be directly applied and evaluated with symbolic

mathematical software such as Mathematica [10]. Before the autocorrelation function

can be evaluated, the rank of the induced multipole needs to be specified, as well as the

rank of the pair polarizability tensors and the rank of the interaction tensors. These

details will be demonstrated in the next chapter.
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CHAPTER 6: The Computer Program and its Results

This chapter will discuss the implementation of the computer program and the

results that the program gives. The language that was chosen was Mathematica,

primarily because the many vector-coupling coeff,rcients are already precompiled in the

language. Thus Clebsch-Gordon and Wigner 6-j symbols are already defined, see

Appendix B. From these, one can define higher-order Wigner symbols as shown in

Appendix D. Thus we can define a Mathematica function to calculate the Wigner 9-j

symbol as

ÀürteJq¡rbofÀL{a- f- î), {d- q_, e_}, {p- c- bJ I :=
sr.-,¡ {-r) " (2 T + 1) si¡¡¡s¡¿¡rbo1t {a, b, T} , {c, d, p} l

*SfulJìslniboll{c, d, T}, {e, f, S}]
*Si:<JS1zrbo1 Í-{e, E, I}, {a, b, r}l , {1, O, Nl+ jl¡]; (6.1)

using equation (3.34), and a function that checks for the triangular condition of the ranks

AS

Triangular[â_,b_,c_]:=If IAbs[a-b] r c < a+b,1,01; (6-2)

With the use of these functions, equations (5.17) and (5.35) were directly written in

Mathematica; thus one obtains:

Fjj=(2 j+1) 2 (-1)^(11+ml) (2N1)!/SqrtK2ll)! (2 (N1-11)! (2 m1)! (2 (N1-m1))!l R^(-2 (Nl+L)) (t+G

l.)^fi1+N1+jZ+j)) Sum[(2 x+1) SixJSymbol[{l,1¡},{1,1j}] Sixlsymboll{1,1,x},{NlJt,N1-m1j2}]

SixJSymbot[{NlJ1,Nl-ml¡},{mL,tU.{1}] Sixlsymbol[{mL,tl¡},{1,1j1}],{x,0"2}l (Sum[(-1)^m

A[lj1,11,m] A[1j1,ml,-m],{n¡-jl'i1}l Sum[(-L)^m A[2j2,(N1-tl),m] A[2j2,(N1-mt),-m],{m,-iZ,JZ],l)

which calculates the f,rrst-order correction to the pair polarizability, and,
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Htll :=

(2j+L) 4

ll+12 72+rÈ

t tsnl/t ,/t
¡r=fl3tU-14 lfà.tuIl2-r¡31

snI
snI
smI
snI
s,mlsnl(-1) ^ (B+c+a+ jl+i2+i3+ j)

(sFEt(2NL)t(21@)!(2Nt)r(2¡e)tllqÉt(2Ðt(272)t(272)t(2ú)t(2a1)!(2a2)t(2a2)!(2b3)tj)
RÀ(-2 (NL+li2+2)) (2Nf+1) @rA+1) (2x+1) (2c+1) (24+1) (2K+1) (2F+1) (2c+1)
(CIéÊc}ÊEdãr[{NL, 0}, {M,0}, {g, O}])2Ei.a€ulæÛü., t€, Bj ÏrjaElr]^æt j2, j3,qti.agulæij1, )ç e
CtrqÉm[Nl' lQ' TtitFl

SL¡Jqñtñf.t{G, l€, C}, {K, jl, Ðl Si:rß!trbuic, De, a}, {Ð j1, X}l Si:{slúfu1-t{De, & q, {j, Iú, B}I

SLiXs]ûtolt{lQ, & 4, {j, Nl, B}l Ni¡Þß:ÈùofÀ[{ jL, C, 8, {1, t, j}, (ft, 12, NL}l

¡ü¡ÞlqÊfbolÀt{jl,a,Ð, {1,L, jI, {ú,&, lgt}l ¡ü¡ssl¡¡Ëol¡L{j2,)3,G|, {72,L,9,{D,D.3,!@}l
¡ü.rEs:Fb]3i{ j2, j3, I , {a2, L, a}, {a2, h3, tiz}l

lT,-r,"or, iL,L,TL,arA[1,j1,r,.r,-"¡] (7,nrr"orr,i2,rr2,12,brAr2,i2,b2,a2,-brl
\è-j1 / \b-jz I
(i1 \
llcu"atr, j3, 1,rB,clÀ{1, j3, 1,H¡,-cll,trl*¡jr*12+1-rial , j1+12+1+l@}], t+ltstlu--r.Dl ,Nt+¡a}],(*--j¡ l

{C,.¡È6t12-11,12+1}], ta,.¡bÊ[az-1], a2+Llf, {&.¡btjl-12-11 , j1+12+1}], te*stjr-û-Al,j1+a2+1}],
{c, É6tj2-j31 , j2+j3})

F[il:=
(zj+L) 4

smI
smI
s'nI
s¡nI
smI

(qtt(2Nt)l (2Iq)! (zNt) ! (2M)!l/qÉt(2lt) t (272)t (212)t (2rB) t (2a1)! (zaa)t (2a2) t @r$)!l)
R^(-2 (Nl+lü+2)) (2rú.+1) (2lA+1) (2x+1) (2c+1) (24+1) (2K+1) (2F+1) (2c+1)

(Ct#fnderrl{Nl, 0}, {M, 0}, {Ð O}])2tiaB¡:Læ[M, lü, B] EiãgÍ.rl j2, j3, q rliEEufEtj:{ )ç cl
si¡¡]qÀttolt{c, le,9, {K, jL l9l si¡{¡qÀftolt{c, lQ, a}, {F, jL x}l s¡$r$¡ùolt{liû, lÇ K}, {j, rü, B}l
Si:rxåFrbLt{rü, & F}, {j, lú, 8}l !ú¡rJ$Èùof.ê{{jl, Q B, {L t, j}, {la, l2, ll1}l
ÀúfEJq¡ùo]là'[{j1,Á,F}, fL,L" jl, {ú,û, Nt}l¡úfEJq¡IblBL{jz, j3,g, {þ,L"g,{D,rg,lia}l
NüEÐ¡úol3t{fl, j3,Q, {û,L,Lr, {a2, b3,t€}l

f I ntr"ort, iLL,Í,ar.A[1, jl"r,"r,-"rl f I nrr"orr,i2,ttz,,i2,b'JNz,i2,b2d,-b]ì(---:t j iu--¡ )

tF I
| | 1-f¡"a¡f, j3, L,rß, cl .â[1, j3, 1" b3, -c] |
t.*.-¡t j

, {)Ç&tj1+12+1-ti2l¡ j1+12+1+}@}] , {4,És¡r.n-lel, Nl+ra}], {q¡bt12-ï,12+$], {a,¡bla2-11 , a2+Llf,
{K,etj1-12-11, j1+12+Ð], tr,*tjr-û-L'!, j1+a2+g] , {c,rb6tj2-j31, j2+j3}f;
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which calculate the second-order correction to the pair polarizabilify. Before running the

above programs, one needs to specify J, which is the rank of the pair polarizability (either

0 or 2), the ranks of the interaction tensors, N, Nl, Nz, âS well as the ranks of the

multipolemoments, lI,12,n2,n3, andthepolarizabilitytensors, II,J2, andJ3. An

example of this is shown in Appendix D for both the first and second-orde¡ cases.

The question arises why two functions are required to calculate the second-order

correction. The answer can be found in the nature of the molecular polarizability of

molecule 2. As explained in Chapter 2 of this thesis, the polarizabilities, A and E,

contribute to the induction of two different molecular moments. In the case of A, an

electric field acts to induce a quadrupole moment and the gradient of the field acts to

induce a dipole moment in the molecule. For E, a field induces an octupole and a

second-derivative of the field induces a dipole moment. Both of these contributions must

be taken into account when calculating the intensities and depolarization ratios.

To get a clearer sense of the above argument, consider the situation in diagram

6.1. In (a)-(c) we have a graphical depiction of the two molecules with the interaction

proceeding from left to right for convenience. If we recall our experimental assumptions

that the incoming field is free of derivatives and that the final radiation due to the

interaction is dipolar in nature, we see that the number of contributions for any particular

case depends on which polarizability we are considering in molecule 2. For simplicity

we depict only the dipole polarizability (cr) in molecule 1 and the dipole (cr),dipole -

quadrupole (A) and the dipole-octupole (E) polarizabilites in molecule 2from (a) to (c)

respectively. The greek letters at the
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('i

(bi

(ci

Figure 6.1: A graphical representation of the contributions leading to a particular multipolar intensity.

end of the line segments at each molecule represent the moments that are induced in that

particular molecule via the labelled polarizability. The "branches" between the

molecules, with their respective negative labels, represent the radial dependence of the

electromagnetic interaction where the label designates the exponent on R. Thus "-3"

means R-3, the electric field due to a dipole, while "-4" means R-a, the field of a

quadrupole and the field-gradient of a dipole. Finally, "-5" means R-s, the electric field

of an octupole moment and the gradient of the gradient of a dipole field.
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Thus when the particular interaction involves only one branch, in the sense given

in diagram 6.1, the function F[J_] is used. If two branches are involved, the function

H[l is used whereby the two branches are evaluated and then summed.

The results of the program are displayed in table form below. Table 1 gives the

first-order depolarization ratios for molecules of tetrahedral geometry. Table 2 gives the

second-order depolarization ratios, and table 3 gives the second-order depolarization

ratios for atoms for isotropic scattering.

Table 1: Depolarization ratios and successive first-order multipolar mechanisms for two interacting
tetrahedral molecules. The * symbol indicates that the particular interaction occurs also between an atom
and a molecule.

Induction operator Jr Jz Ir rn1 Tlo fl

C[TzGx 0 0 1 I 6

7

J

4

G[T:A* 0 3 I I 9

23

9

37

AT¡C[* J 0 2 2 9

23

9

37

GT¿EI 0 4 1 22

63

11

52

ETac[* 4 0 -t -'t 22

63

11

52

AT¿A J 5 2 2 1966

2477

938

t494

ATsE -1 4 2 2 29

36

29

43
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ETsA

ET6E 4

29

36

103

29

43

103

r26 149

Table2: Depolarization ratios and successive second-order multipolar mechanisms for two interacting
tet¡ahedral molecules. The * symbol indicates that the particular interaction occurs also between an atom
and a molecule.

Induction Jr Jz J¡ Ir rt2 lz D3 1.

operator

rl

d.Tzu.Tza.*0001111 2

9
I
8

crT:AT¡cr*0301121 2538

4961

1269

3692

AT3crT2cr*3002I11 738

941

369

572

GTzcrT¡Ax00311I2 342

719

T7L

548

C[T¿ET¿C[* 0 4 0 I 1 -1 I 15743t8

2359371

787159

1572212

ET¿crTzc*4003111 7058

8901

3529

5372

GTzcrT¿E*0041113 598

t23l
299

932

cr,T3AT4A 0 3 J 1 1 2 2 369324

2346763

848577

1498186
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AT¡oT:Ax3 0 32112 T24TO

25853

6205

19648

AT¿AT¡g3302121 369324

505753

184662

321091

crT¿ETsE 0 4 4 1 I J 3 1312064070 656032035

9284980521584530087

ET¿dT¿Ex 4 0 4 -t t I -1 t413262

3082187

706631

2375556

ET5ETau4403I3I 203483970042 r0r74r98502t
386682535957 284940550936

gTsATsE 0 J 4 1 I 2 3 674166

908027

337083

570944

dT¿ETsA 0 4 3 1 I J 2 3946594

4938213

1973297

29649t6

AT¡crT¿E* 3 0 4 2 I 1 J 1718

36t5
859

2756

AT5ETac 3 4 0 2 I J I 5544275t226 2772t3756L3

96335891897 686t4516284

ET¿qT¡A* 4 0 J J 1 1 2 257r42

553529

t28571

424958

ETsAT¡g4303121 17t88934

z44r8203

8594467

15823736

AT4AT4A3332I22 81116778

180359281

40558389

139800892

ATsETsA3432132 2734251466 1367t25733

4769436049 34023t0316

1,141r6348946 57058t744'/3ETsAT¿^4333122
t79882860987 122824686514
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AT¿ATsE3342r23 46t94222

99802679

23097111

76705568

ATsET6E344213362639016888858 3r3r9508444429
103746032796217 72426524351788

ETsATsE4343I23 rr608L946

25852956r

58040973

200488588

ET6ET5A 4433132 500479852914 250239926457

24483r1155733 2t98071229276

ETøET6E 4 4 4 3113 8491458945654 4245729472827

T654t830751663 12296101218836

Table 3: Depolarization ratios and successive second-order multipolar mechanisrns for two interacting
atorns

Induction

operator

a"Tzdlza'

"TÑTr"

Jr Jz J¡ lr lz Ít2 Il3 I" n

221

2

9

E
51

1
8

4

4'
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In the cases that were considered the anisotropic and isoh'opic intensities differ

only in numerical factors. Thus the depolarization ratios for linearly polarized light

detected with no analyzer (natural light):

6F,,--'rn 7Fr, + loFoo

And, for linearly polarized light with analyzer:

-- 4n
" - z -"Iln

depend only on the ratio of the anisotropic and isotropic intensities, and so are constants

[10]. Thus they can be calculated without a detailed knowledge of the multipole

polarizability tensor terms, but as before, the ranks of the respective tensors must be

specified. This feature is further explored in Appendix F.

When calculating explicit expressions for light scattered intensities, a detailed

knowledge of the form of the irreducible spherical components of the multipole

polarizability tensors is necessary. For molecules of tetrahedral syrnmetry, the nonzero

Cartesian multipole polarizability components are well known U,241. We can then use

the procedures discussed in chapter 4 to calculate the nonzero irreducible spherical

components of the dipole-dipole, dipole-quadrupole and dipole-octopole molecular

polarizabilities for tetrahedral molecules. Thus one obtains:

A[ft' = -{3o", dipole-dipole

A\titr) = +i{zL, dipore - quadrupole 
(6.3)

n!',i" = +Jie,
A!ti'/ = +J-toE. dipole - octopole
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Table 4: Anisotropic and isotropic intensities for fi¡st-order multipolar mechanisms for two interacting
tetrahed¡al molecules

Induction 1o.>s.z) <ar"z>

operator

a,Tzcl, 12 aa 'J"6 aa

5R6 5R6

c[T¡A 48 A2/ a¿ 592 A22 a2

35 RB l-05 R8

AT3c¿ 48 A1¿ a¿ 592A2¿ az

35 RB 105 R8

c[T¿E LLE2¿ a¿ 5282¿ o.¿

9 R10 9 R10

ETacr lLE2z q¿ 52822 az

9 R10 9 R10

AT4A 629L2A72 P2/ L0624ÞJ¿ A2¿

4125F'10 525R10

ATsE 464ÞJ¿ E2¿ 688 A1¿ E2¿

21,N2 nRD

ET5A 464Ar¿82¿ 6ggAI¿82¿
2LRN 21,p.L2

ET6E Ll33E1¿82¿ t63gEL¿82¿

2IRL4 2LF14
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Table 5: Anisotropic and isotropic intensities for second-order multipolar mechanisms for two interacting
tetrahedral molecules

Induction

operator

z1Qw. ) .¿lqzz )

a,Tzc.ilzd, 12 aL" a2"
5Ru

96 q.L" a2"

5Ru

crT3AT3d 846 A2" q.I 1384A2'c.L
4375FcA 13125 R14

AT¡c[Tzc[ L968 A7" s-1" q.2"

l_75 R14

9a52 ñ" aa" a2"

525 R14

c[Tzc[T¡A 228 A7" aL" q-2"

175 R14

2192 ñz aL" a2"

525 R14

ctT¿ET¿c[ 187159E.2" q.I 393053 E2'q.L
t_901-59200 R16 47539800 R16

ET¿c[Tzc[ 3529 F-L" q-L" q.2"

3l_5 R16

5312EL" aL" q2"

3l-5 R16

CLTzCIT¿E 299 EL' q'Lo s.2 233 El' q.Io q.2o

252Fc6 63 R16

ctT¡AT¿A I13L436 AL" P2," aT"

1-3781-25 R16

5992144AL" A2" aL"

4l-34375 R16

AT3crT3A 39112 AL* s.2' 628736 AL* q.2

5145 R16 25725F.16

AT¿AT¡o 1-641-44A1¿ A2z aLz

128625fl6
2568728 Aa¿ A2" a1"

1_l_57625 R16

c[T¿ETsE 437354698L"82"a!" 2321245]-3E-L'E2"aL'

8924805r2F.20 3346801920 R20

ET¿crT¿E 706631'EI" a2 L97963F,L* s-2"

95256 R20 7938 R20
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ETsET¿c 3391-3995007 ELz E2¿ aL¿ 356175688 67 EL¿ 822 o.L¿

461,500019040 R20 t73062529640 R20

C[T3AT5E aL236LA2" F,L" a!"
91875 R1B

570944A2'ELz q.I¿

215625FcB

üT¿ETsA L973297 ALz E2z aL' 1-482458 A1¿ E2¿ aLz

831-94650 R18 41597325f,g

AT¡crT¿E 3436 AL" EI" a2"

441R18

LI024AL¿ Ea¿ a2z

441- R1B

ATsET¿cr 2772L375613 A1" E2¿ q.I¿ 57a7876357 Aa¿ E2 ¿ aI2

635369427 000 R18 52941452250 R18

ET¿c[TsA 342856 AL' EL" a2"

46305 R18

3399664 A]-" EI¿ q.2¿

13891-5 R18

ET5AT3a I22778LA2" E!" qI"
727650F.18

7911868 A2¿ ELz al¿
2s46775f,g

AT¿AT¿A 2L63Lt408 A14 A2¿ 29049536 P.14 A2 2

1_489863375 R1B 58046625 R18

ATsETsA L367r25733 Aa4 E2¿ 850577579 ÞJ4 E2 2

393323931_00 R20 9833098275 R20

ETsAT¿A 76077565964aJ¿ A2'EL' 49L298746056A1_z pe¿EL¿

17381739375 R20 52L452L8125F.20

AT4ATsE 6L592296 ñz P2 ¿ El-¿ 6L3644544AJZ P2 2 El_2

386260875 R20 rt58782625F.20

AT5ET6E 1_0439836148143 A1¿ Elz E2¿ 181_06631_097947 N.¿ Et_¿822

48457508299200 Rn 3æ43I3L2244OORZ

ETsATsE 6448997 A2z F.14 501221-47 Þ2¿ El-4

52972920F€2 1_t_91-89070 R22

27804436273 A12 ELz E2 2 42270600563 PJr2 ø12 p22ET6ETsA

346L250592800 F.22 599062602600 R22
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ETeETeE 47L74711-9203 EI+ E2 307 4025379709 F,r" E2

26A5L67AL45600Ñ4 58841-26001'7 600 F.24

Table 6: Anisotropic and isotropic intensities for second-order multipolar mechanisms for two interacting
atoms

Induction 1eo,") 1d77")

operator

a"IzuTzu L2 aI" a2 96 aL" o.2

5R12 5Ru

crT¡CT¡cr L92C2" aT" 2256C2" aI
5 R16 5 R16
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CHAPTER 7: Possible Implications for the Collision-Induced Absorption (CIA)

Spectrum of Water Vapour

In this chapter, the most speculative, we outline some of the possible implications

that the discussions in the previous chapters have on the analysis of the collision-induced

rotational spectrum of water vapour. This is motivated in part by the study of the

continuum absorption in the far-infrared region by water molecules in the Earth's

atmosphere. This phenomenon was recognized more than sixty years ago 126,271.

Through numerous experiments since that time, nearly unanimous agreement has been

reached concerning the density dependence of this absorption, which is quadratic, and the

temperature dependence, which is strongly negative [26]. However there is still

considerable disagreement as to the source of this absorption, but th¡ee proposed

theoretical mechanisms have come to the forefront of investigation: collision broadened

far-wings of allowed water transitions 126,27) (free-free transitions arising from the

allowed dipole moments of isolated molecules), diamers [26,271(bound-bound and

bound-free transitions involving the dipole moments of the pairs), and collision-induced

absorption 126,271(arising from transient dipoles induced during collisions). In the

framework of this thesis, the third mechanism is of particular interest, it is here that the

methods developed hitherto could be of benefit. But the exact role played by CIA in the

continuum problem remains an open question.
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7.1 The Water Molecule

The water molecule is composed of one oxygen atom and two hydrogen atoms,

arranged in a structure depicted in the Figure 7.1.

Figure 7.1: The structure of the water molecule [28]

The angle between the two H-O bonds is 1040 36'. The hydrogen atoms are identical,

thus the water molecule has the following symmetry properties: one two-fold axis, and

two planes going through this axis at right angles to each other. These syrnrnetries

indicate that the water molecule belongs to the point group C2, [3,281.
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Figure 7.2:The symmetry properties of the water molecule [28]

In the gas phase, the water molecule rotates freely about an instantaneous axis,

thus acting like a rigid rotor. The moment of inertia of a rigid body about an axis is

defined to be

J = lm,r,2
i

(7.r)

where ri is the distance perpendicular to the axis of the mass element mi. The water

molecule has no three-fold or higher axis [28], thus the three principal moments of

inertia, I*, Ir, and 1., aÍe not equal. Therefore the water molecule behaves as an

asymmetric top [28]. In calculating the sffucture of the rotational energy levels, one must

use a different procedure than one employed for the case of the symmefic top. Wang

[28] in 1929, put forward a theory in which the rotational energy of asymmetric top has

the form

1L



where J and o are the angular momentum quantum numbers. J takes on the values: 0, 1,

2,...,andforeachJ, there are2J + l sublevels labelledby o, o= -J, -J+ 1,..., J- 1, J.

The.çonstant, S, -can be determined from the three principal moments of inertia, while Wo

can be obtained through solving the secular equation:

J2 -w

Ero =f trrrr+1)+\l

0 bf(r,o'+l) 0

(o+t)2 -w o bf(J,o)
o o'-w o

bf(J,o) o (o-r)'z-w
o ur(r,o-t) o

(7.2)

- 0 (7.3)

J2 -w

where

r(J,o)=-å(t-o)(r-o+r)(r+o)(r+o+r)ll'2 (7.4)

For each value of J, the determinant can be expressed by four algebraic equations, with a

total of 2J + I roots of Wo. The lowest value corresponds to W-¡, and the highest, to W¡.

This results in the energy level scheme depicted in Figure 7.3.
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Figure 73: The structure of rotational energy levels of the water molecule [28]

The water molecule has a permanent dipole moment [3,28]. The selection rule for J is

AJ = 0,* 1. (7.s)

The selection rule for the quantum number o is more diffrcult to obtain. Consideration of

the rotational eigenfunction probability with respect to changes of orientation of the

ellipsoid formed by the three moments of inertia must be made [28].
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7.2 Measurements of the Water Vapour Spectrum

Preliminary measurements were made of the water vapour spectrum in a nitrogen

perturber bath using the methods of Fourier Transform Spectroscopy. A Nexus 870 FI-

IR E.S.P. Michelson interferometer together with a 10 m multipass gas cell both

manufactured by Nicolet were used to take the spectra. A simple gas transfer vacuum

system was used to transfer sample into the cell. The region of interest was the far

infrared; thus the multipass cell had to be fitted with polyethylene windows, which are

transparent in this region. On the transfer system, primary vacuum was achieved using a

mechanical pump, while a lower vacuum pressure was achieved using an oil diffusion

pump. Pressure was measured directly in the multi-pass cell using apiezo transducer

accurate to 0.1 Torr. Illustrations of the interferometer and multi-pass cell are shown

below.
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Figure 7.5: The 10 m multi-pass cell

The general procedure followed was the following: the multi-pass cell was purged

with the mechanical pump and then the diffusion pump was engaged to evacuate the cell

for 24 hours. A small sample of water vapour was then added in the range of pressure

from 1 Torr to 100 Torr. Water was transferred to the multi-pass cell via a small sample

cell, which was attached to the vacuum system. Then Nz was let into the multi-pass cell.

To ensure a minimum escape of water vapour, the pressure of the nitrogen was kept

higher, from 250 to 700 Torr, than the pressure in the water vapour inside the multi-pass

cell. Upon completion of its filling, the cell was ftansferred to the interferometer where

the background and sample interferograms were taken. Before each scan, the intensity of

the source in proportion to the aperture size was adjusted as well as the gain of the
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detector. The source used was a ceramic "Globar" and the detector was "DTGS

Polyethylene" and the beam-splitter was "Solid Substrate". The interferograms were

reprocessed into absorbance spectra at a resolution of 0.125 cm-l using the Fast Fourier

Transform algorithm, with Happ-Genzel apodization,l:[.4ertz phase correction, and no

zero-filling.

Two representative spectra are shown in figures 7.6 and7.7 below. The first is

the spectrum of water vapour only, at a pressure of 2.5 +/- 0.1 Torr and a resolution of

0.125 cm-l. It was compiled with 128 passes of the mirror moving at 0.1581 cmls. The

second spectrum is of the same sample of water-vapour at2.5 Ton with the addition of

530 Torr of nitrogen gas. Again 128 scans of the mirror were made at a velocity of

0.1581 cm/s. The region of interest for both spectra was the absorption of far infrared

radiation by the water molecule. Thus the spectral range from 50 to 450 cm-I was

sampled. Immediately we see that the spectrum of pure water-vapour is very

complicated in the low wavenumber region. This is adequately explained by the presence

of many rotational energy levels present in the water molecule, as seen in Figure 7 .3. If

we compare the two graphs, however, we see a curious feature. In the second graph with

the presence of N2, the absorbance does not fall off to zero away from the spectral lines,

particularly in the region between 100 and 200 cml.
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This anomalous excess absorption has been known for some time now and has been

given the name "The far-infrared water vapour continuum" 1271. As mentioned above,

the exact mechanisms leading to an explanation of the continuum are in some dispute and

are a topic of intensive research [26,27].

7.3 Implications for the Collision-Induced Absorption Spectrum

As a direct possible application of the general ideas of this thesis and a motivation

for future work in this area, one can consider the collision-induced absorption (CIA)

behaviour of the water molecule with a nitrogen perturber. CIA, unlike CILS involves

only the interaction of the permanent molecular multipole moments in the sample under

study [7]. One is interested in the attenuation of the incident radiation due to the

collision-induced dipole moment of a pair of molecules in the sample. This is portrayed

schematically in figure 7.8:

Figure 7.8: A schematic view of the pair-wise interaction of a water molecule with a nitrogen perhrrber.
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The probability of absorption of a light wave by a pair of molecules is proportional to the

square of the matrix element involving the pair collision-induced dipole moment [7]

Abs,-, - l(Q, lrr",^ l 0r )l' (7.6)

where Q1 and þ2 are molecular rotational states and pcn is the collision-induced dipole

moment of the pair. But from figure 7.8 together with the formalism developed in this

thesis we know that the collision-induced dipole moment is in realiry the tensor product

of the permanent dipole-moment of water, the permanent quadrupole moment of nitrogen

and the T tensor describing their electro-magnetic interaction. That is, þlcln is of the form

þcr^ = of-H'or @t* @@$')

from which (7.6) may be expressed as

(7.7)

Abs,-, * l(0,loÍ-"'o, @T* (7.8)

Unlike the molecules that have been considered up to now in the thesis, water has

the symmetry properties of an asymmetric top; leading to the explicit presence of more

than one polarizability tensor component. For the case of the dipole polarizability c[, cr**,

ørr and u.rrall differ [7,9]. Whereas, Nz is a homoatomic-linear molecule, belonging to

the group C-, . Being axially symmetric, it does not posses a pennanent dipole moment

but does posses a pennanent quadrupole moment, @ [7,8]. Thus the spherical components

of the of the dipole polarizability, o* are:

ø o$,)10,)l'

8l



0oo =

0rt =0
0lo =0
Ct,,. =0t-l

dr* - 0ru
d 

--
2

0r, =0

- (o-- + cryy + cr- )

J'

(7.e)

- G.. * 0r, - 2o.,)
20- 

J6
Cf,"^ =

For molecules in the group C-u , the quadrupole moment tensor is specified by only a

single constant [7,9], thus the spherical component of the of the quadrupole

polarizabiliry, @o* is:

Ø^ =@= (7.10)

Values for these components have been calculated using quantum mechanical methods

and are shown in Gray and Gubbins [9]. With these components in hand, one can utilize

the mathematical principles described, developed and exploited in the previous

calculation of the characteristics of induced light scattering to calculate the CIA of the

water molecule.

82



CHAPTER 8: Summarizing Discussion

In this thesis, we have outlined a method for calculating CILS intensities and

depolarization ratios using a formalism based on ir¡educible spherical tensors. In chapter

2, we saw that the polarizability ót u pair of widely separated molecules is the sum of

their isotropic polarizabilities, and that observåd scattered radiation will only have a non-

zero intensity component polarized in the direction of the incident radiation due to the

properties of a radiating dipole. However, when the separation between the two

molecules is small enough, the polarizability will have a correction, which arises due to

their interaction, and occurs to arbitrary order. This results in an observed non-zero

intensity that is depolarized with respect to the incident radiation.

Furthermore, it was explained that the polarizabilify is in general a tensor quantity

depending on multiple spatial directions simultaneously, and initially the theory of CILS

was worked out in the Cartesian basis. Although this has an advantage in being

conceptually very simple, it holds a disadvantage in that unless the tensors being

considered are of low rank (<3), the number of components needed to specify them

becomes very large. In an attempt to try to circumvent some of these issues, a parallel

formulation using spherical tensors has been developed but its use has been more limited

because it is conceptually more difficult to interpret. Thus, up to this writing it had only

been applied to investigate the first-order correction of the pair polarizability.

Therefore, one of the main thrusts of the thesis was to extend the spherical tensor

CILS formalism so that the contribution to the pair polarizability from the second-order

correction could be investigated. In chapters 4 and 5, it was shown how this could be
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achieved in a consistent manner and in chapter 6, how the resulting intensities and

depolarization ratios could be calculated using symbolic programming techniques. The

results of the programming show a general increase in the size of the numerator and

denominator in the depolarization ratio in both first and second-order cases, even though

the ratio itself always remains less than unity. Specifically in the second-order case, the

depolarization ratio ranges from:

n= 1, corresponding to the interaction: crTzcrTzcr
ð

to
31319508444429

Tl= -^- , corresponding to the interaction: AT5ET6E' 7242652435t788

This trend reflects the general increase in complexity of the polarizabilities acting in a

particular interaction. However, this rule does not appear to hold absolutely as there also

appears to be a strong dependence on the order of the polarizabilities for each molecule,

which is not manifest in the first-order case. As an example, consider the case,

oT3AT3C[, which has th¡ee possible conf,rgurations:

1 oT¡AT¡cr 
^_1269''- 3692

2 AT3cLT2c[ 
n=369' 572

3 dTzdT3A n=fJJ' 548

We see that configuration t has a depolarization ratio composed of factors far larger than

the either of the other two cases, whose factors are comparable to each other. A possible

explanation for this state of affairs is that because molecule 2 is not freated as a radiator

84



in the interaction, it is in some sense in a virtual state. It is not known which multipole is

being induced in molecule 2 if the polarizablity considered has more than one type of

multipole associated with it, and all the possible contributions associated with that

polarizability must be accounted for. Thus configuration 1 above involves both dipolar

and quadrupolar contributions from molecule 2, and so the depolarization ratio is more

complicated than for configurations 2 and 3 which only involve dipolar contributions

from molecule 2.

In figures 7.5 and,7.6 we show far-infrared spectra, from 50 to 600 wavenumbers, of

water vapor-nitrogen mixtures obtained using the technique of Fourier Transform

spectroscopy. The measurements were made at a resolution of 0.125 wavenumbers and

at mixture pressures ranging from several tenths of a Torr to about 530 Ton. The most

significant feature of these spectra are their i) complexity, indicating that water is a very

strong absorber in this region of the electromagnetic spectrum, and ii) the presence of the

water vapour continuum, which is clearly seen in figure 7.6.

As a way of concluding this thesis, a few comments can be made about possible

directions for further research. As a direct extension of the work presented here, the

intensities for collision-induced absorption in water vapour can be calculated. In addition

the analytic form for the depolarizationratio presented in Appendix F is for the case of

the first-order interaction only. However, the procedure presented is general and so one

should be able to extend it to obtain an analogous expression for the second-order case.

In fact, such an endeavour could act as an appropriate consistency check for the results

obtained by calculating the entire autocorrelation function.
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APPENDIX A: Selection Rules

When discussing the spectrum of CILS it is important to consider the selection

rules, which govern the allowed rotational transitions. Our discussion mirrors that found

in Buckingham and Tabisz [8], and Shelton [12].

The calculation of the spectral distribution is analogous to the quantum

mechanical calculation of the spectrum for a diatomic rotor, however now one must

consider the rotational states of both molecules in the pair [8,12]. Therefore, the

quanrities that will be of interest are of the form: l(l;l; lcr"u ll,J, )l where Ji and J'¡ ârê

initial and final rotational states of molecule i, and crop is the pair polarizability [8,I2].

As wavefunctions, one uses the normalized symmetric-top wavefunction for a molecule

in rorational srate J, given u, fuzl +t¡f firc'l''nll fol, m is rhe quantum number

associated with the projection of the angular momentum J on the space-fixed Z axis and k

is the quantum number associated with the projection of J on the molecule-fixed z axis.

pl,l fOi is the Wigner rotation matrix where both k and m have (2J+1) components, and

each rotational state J is (2J+1)2 degenerate which is the rigid-rotor approximation [8].

As a specific example of the technique, we can consider the tensor A, and it must

be noted that the terms which are only dependent on isotropic polarizabilities, ø¡ (rank of

oi = 0) do not give rise to a rotational spectrum [8,12]. As an example, consider pair

polarizability contribution :

åT"yô (cr(l)AB,y¡ (2) - cr(2)Ap,ya (r))+ jr*u þ{t)a 
",ru 

Q) - a(2)A",10 (1)) . (4. 1)
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This can be rewritten in spherical form; in the molecule-fixed frame there are only rwo

non.zero components to the spherical tensor A in T¿ syrnmetry. Thus in the space-fixed

coordinate system, A is given as

A'- = iJ-3Aþil tol - oll, toi), ( .2)

in the Wigner rotation matrix notation [8]. Here, Ç), represents the Euler angles between

the space-fixed and molecule-fixed frames [8]. The matrix elements l(lil; lcr"ull,lr)l

reduce to

l{r;U ln',"l (o) - D3-:, 1o¡ll,r, )l , (A.3)

from which the selection rules on ÀJ can be obtained as,

^Ji 
-O;ÂJj =0,11,+2,+3,(I j+J',>3). (4.4)

The subscripts i and j representeither aI,2or a2,Lmolecularpair [8].

Applying a similar analysis for the terms of fype, ctiEi, gives the selection rules as:

ÀJi =O;AJ¡ =0,1I,+2,+ 3,+4 (J¡ +J',>4). (4.5)

Contributions to the pair polarizability involving ArAz result from the gradient of the

field of the induced quadrupole and lead to double rotational transitions;

Â,J, =0+1,+2,+3, (J' +J">3)
(4.6)

Nj =0,+1,+2,+3, (J, +J'r>3).

This results because A tensors are involved for both molecules [8].
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The Stokes spectral intensity resulting from the rotational transitions

J,J, -+ J', J', is proportional to

l(J'i, J' j, J¡, J¡ ) = ol (2J',r + l)(21', 2 +r)(2J 1 + l)(2J, + l)
xexp{-[J,(J, +1)8, +lr(lr*rierlnc/tf¡ 

(A'7)

where,

oR = o0 -[J't (J't+1)-Jr(Jr +1)]Bt -fJ'r(J'r+L)-JzQz +1)lBr. (4.8)

Here, (ùo is the incident light frequency and Bi is the rotational constant of molecule i

18,121.
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APPENDIX B: Usefut MATHEMATICA Functions

In this appendix, we will list some explicit Mathematica functions that were used

in the implementation of the ideas of this thesis. All of these have been explicitly taken

fromreference [30], an_d are gathered here for the convenience ofthe reader.

sqrt [A] : Calculates the square root of A

ClebschGordan[ 1j1,mi-] , {j2,m2}, { j,m} I : Calculates the Clebsch-Gordan

coefficient of the arguments

sixJSymbol t {a,b, c}, {d, e, f } I : Calculates the Wigner 6j symbol of the arguments

sumlF [x] , {x, -n,n} I : Calculates the sum of F[x] with x ranging from -n to n
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APPENDIX C: Useful Spherical Tensor Relationships

In this appendix, we will list some explicit spherical tensor identities that greatly

simplify the operations of spherical tensor algebra. All of these have been explicitly

taken fromreference [20], and are gathered here for the convienience ofthe reader.

fiq øe,Ì" @RoI (c.1)

fiP" øerÌ" @RuÌ, (c.2)

({p^ ø e, }" "R" )= (- rI" fr to, .{p" ø R" h )

fiP. oeoÌ" @{no øs"h}-

= (-1)"*o*'ìr",{l : i}to, @{P" @R.h},

LM lrl2

ltl ri l, l
x(riri,oolr,o)(r;r;,oolr,o)lr; V r, ffu,(a,)@T,(a,)

ll' L' t-)

= (-r)u*o*'*'T""{: : l}e r{eo øR.hh

la b cl

=¡x",,n]a " r f{tr" e¡no}, @{eo øs"},}-gh 
Lehk-1

4n

ìr'l
IL

xrir,rrq;""

(c.3)

(c.4)

(c"s)

{¡, ro, i @ x; (4, )}T' . {y' (o, ) @ yr (o, )H = I I (1r", M'M"l LM)
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(c.6)
r l}lî : îÌ{; : å}

'fi : 

']{i 

; i}t' ;

.','{:;l}{;f {-t)".'x
xy

= (_1) **.*u*c+p-s-h-r-r 
I (_t), X

zl
r

SJ

6n.Ì,.{q, øs"},) G.i)({p" øeo}".{no øs"})= (-r)'".0-'t"-{l : ;}h
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APPENDIX D: Sample Input

Below is an example of the first order correction being calculated for the case of crTg:

N1=2i <- rank of interaction tensor
j1=0; <- rank of polarizability of molecule 1

j2=O¡ <- rank of polarizability of molecule 2

IL=t¡ <- rank of multipole moment operator of molecule 1

m1=1i

A[1,0,1,0]:= -SqrU[3]*a; <- components of dipole polarizability
Al2, O,L,0I : =-Sqrt [3] *a;

j=0; <- rank of pair polarizability
r00=(2 j+L) 2(-1)^(11+m1) (2N1)!/sqrtl(2 LLrt (2 (N1-L1))! (2 nrl-)t (2
(N1-n1)) !l R^(-2 (N1+1)) (1+(-1)^(i1+N1+j2+i)) Sr¡mI(2 x+l)
SixirSl'nbo1 [ { 1, L,:r-l, { 1, 1, i } ] six'JSymbol [ ( 1, L, x], {N1-11, Nl-rîL, i2} 7

Sixilsymbol [ {Nl-11'N1-ml,x}, {ml.,11,Nl} ]
Sixilslrmbol[{m1,L1,x},(.L,L,j1}t, {x,0,2}] (Sr¡mt(-1)^m .ê,[1, j1,11,m]
À[1, j1,m1,-Ír], {m,-j1, j1}l Sumt (-1) ^¡n À[2, j2, (N1-11),mJ À[2, j2, (N1-m1),-
mL {m, -j2,j2}J),
Clear [j I ;

j=2¡ <- rank of pair polarizability
F22=(2 j+L) 2(-1)^(11+m1) (2N1)!/sqrtt(2 11)! (2 (N1-L1))! (2 lnl)r (2
(N1-m1)) !l R^(-2 (N1+1)) (1+(-1¡^(i1+N1+j2+i)) Sumt(2 x+l)
Sixifsy¡ibol [ ( 1, L,:rl, { 1, 1, j } I Six.fSyribol [ { 1, L, xL {N1-11,Nl-mL, j2t 7

Six.fsymboL t {N1-11,NI-mJ.,x} , {mJ,,11,Nl} l
Six,fSlaibol [ {¡nl, 1l,xl {L, 1, j 1} 7, {>t, O, 2, 7 ( suml ( -1) ^m À [1, j 1, 11,m]
A[1,j1,ml.,-¡nI"(m,-j1,j1]l Sum[(-1)^rn Al2,j2, (Nl-11),m] À[2, j2, (N1-¡n-1),-

ml , {m, -j2,j2l1l ¡

Clear[Nl" jL, j2,LL,mL, jl ¡

aI¡rbaXZ=F22lLO
alBhazz=FO0/3 + (2 F22) lLs
Iso = aLp.baz,z-A|3 (F22|LO)

4n=6 F22/ (7 F22+L0 F00) <- calculation of depolarizat,ion ratio r'¡n

4=4n/ (Z-nn) <- calculation of depolarization ratio {
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72 q.4
---2

5 Rb <- output for intensity <aro'¡

16 a4
qp6 2f,l(" <- output for intensíty <Gzz >

0

6

7 <- output for depolarization ratio r1n

3

4 <- output for depolarization ratio q

Here is an example of the second-order correction being calculated for the case of

u.l2dl2d, the meanings of the functions are the same as in the first order case except

where indicated:
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11 = 1; <- rank of multipole moment operator of molecule 1

n2=1;
L2=lj

n3 = 1; <- rank of multipole moment operator of molecule 1

jl= 0; <- rank of polarizabilíty of molecule 1

32 = tt¡ <- rank of polarizability of molecule 2
j3 = 0; <- rank of second-order p0larizability of molecule I

al- = 11;

aZ =L2,
h2 = n2;

b3 = n3;

Dif f = 1; <- user specified difference for the interaction tensors

lI1 = 11+ l2;
<- rank of interaction tensor

lI2=12+n3;

HinerlSyrihol-l{a_, f_. r_}, {d_. {f_, e_}, {p_, c_. b_}] :=
sun[{-r}2r (2T+1}sixrtspreol[{a. b. T}, {c. d, p}]rsinilspr&oI[{c¡ rl¡ T}. {e, f . q}]

*SÍ:aISpr&oI l{e, t, T}, {a. h. r}1 . {T. 0, tfl}]; <- Wignergj symbol function

Triangular[d_, h_, c_] := If [Ãhø[a - b] < c s a.+ h. 1, 0l; <-checks triangular inequality

cør¡rSun[Hl_, H2_.0_] :=If IHl- +fizú&Ãhs[trl -u2] ==0, 1, 0I . <- Compares the
ranks of the interaction
tensors with a user
specif¡ed difference
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HE-J:= 
<- intensity calculating function when molecule 2 polarizability has multiple conrributions

(2j+Ð4
s"{
s-t
s,rt
smI
s"{
s,"{
s^[s"{sr{(-r} ^@ +c+Å+ j1+j2+ j3 + j} Frttterul ! eru} ! (2rü} ! (zru} !I /qÉt

(21I) ! (2rz) ! (212) ! (2nÐ ! (2aÐ l(àdzrt (2a2) ! (2h3) !llR^(-z SIt+tT2+2)) Ërü+Ð (2ru+g
(2X+$ (2C+Ð @Å+$ (2K+$ (2F+$ (2G+Ð SgrdmrrrHrf+ 01, GÐ.01, {8, lt}l}2Triagl¡rrr'ltürlI2,ErI
ftia¡ff¡^ætjZ, j3, Gl TriaEilLiltjl, )Ç EJ ftrrff¡r¡lHf, lU¡ Di-t q
Six$¡mf t{CtlE.,Cr¡ {K. j1, X}lsixEl¡botl$, lü, Å}, {F. j1-,X}lSi:rEyüof ff}U, }ÇK}, {j, fn"B}I
Sixf$¡mltgT2, )Ç F). fi. ltl" B)l l[rnöyüof[ûl-, C, K], {L f" j }, {IJr f2r fü}l
lü¡nfl¡nortû+ Å,F), {1, 1, j}. {a!a2,IT1[IfrnrE¡¡boll{J2,j3,GL lD,I, C}¡ GZ¡nj/ lU}]
ff:n$¡mf tû 2 | 73, El. laz, L, L, r {a2, b3/ lUÐ

tSÍrI(-ÐtrÃtf, jL1. IJ.,rnlÃfl, jl. 1.al,-rnl, {n, -jL jÐlSmt(-Ð^rTrI .? ,jZ.rtZtLZ.rnl{2, j2.}r2.ú,-¡¡¡,
{rn, -j2, j2}lSmt(-Ð^mÃF" j3, f"É.mlI[1"j3. 1.]r3¡ -ml¡ fiL -j3, j3]l)

, {X,Iæfi1+12+l-IPl, j1+12+l+lu}]. {8, re¡lü-ttz¡. Hl+IP}]. {c¡IGE-2-il.12+g]. {¡vnGtaz-1I. a2+1{.

{KnGE1-12-11. j1+12+g], {n.n*Er-a2-11. jl+d*lil, {8, ilGtj2-j3l¡ j2+j3}], grJ" fl-l+rz) -Diff, 1t+12}1,

$D. O2 *n3l -Diff , 12 +É)];

F[iJ :=

(2j+L) 4
stt{
s"tt
smI
Srr,{

"r,ts-l
s.m[(cÐ ^(B+c+a+ j1+J2+ j3+ j) (sqrrl(2NL) ! (2t€) ! (2Nt) t (2!e) !] /

ftrEI(211)t (212)t(214 ! (2n3)! (2a1:)t(2a2)t(2a2)t (2b3)tl)R^(-2(Nl+lQ+2)) (2Nt+1) (2tP+1)
(2T.+t) (2C+L) (2a,+1) (2K+1) (2F+1) (2e+1) (Cta.*rl¡rqa{{M, 0}, {M,0}, {8, O}l)2Triæul^æFiÍ., tip, Bl

TrjqúælJ2, J3, QI t¡^4l¡Lætjl, )ç cl Si:¡tq¡ùolt{c, te, C}, {K, j1,:Çl Siritg@L[{G, Ie, 
^}, 

{Ð j1, X}]
Sixglúolt{lü, rÇ R, {j, N[, B]l si:¡E@lt{r@, )ç Ð, {j, tü, B}I

tüEtq&lt{jl, c, 4, {L, L, jl, {TL" D, Nt}l }úEJq&ll{f, a, E}, (L, L, j.l, {úo a2, tú}l
rúEEÉolt{ j2, j3,9, {þo L, q, {72,î3, te}l tüEtgðfrolÍ{jz, j3,9, {ú, L, a}, {a2, b3, t€}l
lsnl (-1) ^mÀ{L jL, L, LL, m] À{1" ;1-, L, aL, -m] , {m, -j1, jÐl

.qm[ (-1) ^mÀ[2, j2, û, J2, m] Al2, f2, W, a2" -ml , {m, -J2, J2tl
Sr{(-1) ^mÀ[1, j,3,L,ú, m]À[1, j3,L,b3, -m], {& -J3, j3}l))

, {lÇ.ebtjl+12+1-lü1 , j1+J2+1+tiP}] , {s,.fut¡ú--tiPl,NL+liD}] , tc,æ¡:Z-L1 ,12+L}f , {a,¡b6[a2-q, a2+L]f ,
{&¡bÉtj1-12 -L), jL+72+L} I, t+*tjr-ú-Ll, j1+a2+g], {e,¡blj2-jBl, j2+j3¡l;

95



À[1,0, L,L,Ol:=
Al2,O,L,L,O7¿=

Sqrt [3] *cr]-;

Sqrt [3J *cr2;

AÍLr3,L,2,3fz=O2 <- components
AÍL,3,L,2,21 : = :i-*Sqrt l2f *AL¡
AlL,3,L¡2rLlz=O¡
AÍ.L'3'L,2rQ7¿=Oi
À.[1,3,L,2,-Llt=O¡
A1L,3,7.,2, -27 z= - ù*Sqrt 127*AL¡
A[1,3,t¡2¡-31:=Oi
AÍ2,3 ,L,2,37 z=0 i
A12,3, t' 2 r 2l : = i.*Sqrt t2l *M ¡
AÍ2'3'L¡21Lf¿=Q¡
AÍ2,3'L,2'Ofz=O¡
AÍ2,3,L,2r-tl:.=O¡
A12,3, I,2, -2f : = - :i-*Sqrbt2)*A2 ¡
A12,3,L,21-3fz=O;

AÍL, 4, L, 3, 47 : =Sqrt l.LOl / 4El ¡
AlLr4,L,3,3lz=O¡ <- components
AlLr4,L,3,2l:= 0i
ALL,4,1r3,11 :=o;
AÍ.L' 4'1' 3, 0I : =Sqrt 17 7 I 2E,L¡
a.lL,4,1¡3¡-11 ¡=Q
A|L,4,L,3,-2J:= 0i
AlL,4'L,3,-3lz=0¡
AtL,4,L,3,-41 :=Sqrt LLOl /4EL¡
Afz,4,L,3,41 z =Sqrt ELOI / 482¡
AI2,4rlr3¡31:=0;
AI2,4rL,3,2fz= O¡
a-Lz,4rL,3,1l :=0;
A12, 4' L, 3' Of : =SqrË Í7 J I 2F.2 ¡
A12,4 tL,3, -11 : =0
Al.2r4rL,3r-21:= 0;
¿.L2,4,Lo3r-31 :=0;
Al2,4,L,3 

" -47: =Sqrt. LLOT / 482 ¡

of dipole-quadrupole polarizalrility

of dipole-oct.opole polarizability
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Ill" 4, 2. 4 4lz=Oi

N7u 41 2' 2. -3¡ := ll;

III" 4, 21 2, -21:= 3c¡rsqrtt?I;

N7, 4, 21 2, -11 : = 0;

N7+ 4, 2, 2, 0l :=4SErt[2¡.35I C:

Al7+ 4,2,4 Ll t=tl
N7" 4, 2,2, 2¡ := SClSqÉl?l;

III" 4, 2¡ 4 3l i=Oi

Itt,4, 2.2¡ 4l i=O¡

N|+ 2,2,47:=t¡
u2,4,2,2¡ -3I:=o;
AI2, 4t 2, 2, -21 z = 3c¿rsqrtt?l ;

\\4,2, 2, -Ill.= tì
N2, 4, 2, 2¡ ftl :=4sqrtl2/351 C;

u}4t2,4I¡ |=Oi

Al2, ¿1,2,2. 2¡ :=3C.rg¡rt[?l;
fr12r 41 2r 2, 3l := 0;

N2,4.21 2,41 t=tì

- calculates the second-order intensity

If [n2==1úeI2*1, 1al¡lrdØ =lt2l¡r1t; aùrM =HI0l/3 + 20arftùn)Ø¡tLli; )¡ (aEùE)ø =r'lzl iln1. åUfr#=Ftftl/3 + 2FI2I/15;)l;

kirÈ[" 4o2>J ¡ sinÍilifrfa]trñdüI lkirtf'a2>J' . sin¡ilifl.IaEft#l I
r¡ = 2 aþffi / (aEl¡dø + atsùFæl ) ;

¡l= tFl {2 -¡fr);
kirt¡'r 4r=tt, 4¡¡
kirÉ.Irr¡tsrr, tfl

Cl-d:sdÊordan
C1&sclÊordan
Cl#dúcrdær

sù<JqÆbol l{0,2,0}, {2, 0,0}l
siøsf¿¡lcol l{0,2,0}, {2, 0,0}l
sixls¡¡rbol t{2, 0,2}, {2, 2,0})

triar€ular lvbre..

tria¡çr¡l¿r }ke...
t=:ia¡gul¿r lvbre,..

is noL

is not
is nob

)
10'>ø,

!2aLa q.22
2--

5Ru
zr-96 c.14 a22

5Ru

2
output for intensity <aro ¡

2
output for intensity <an s

ldzz

)
nug

1,

n=-I

<- output for depolarization ratio t1n

<- output for depolarization ratio q
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aPPENDIX E: Time-correlation Functions and Rotationar Averaging

Whenever two systems are weakly coupled to one another (such as in the case of

radiation weakly coupled to matter), it is only necessary to know how both systems

behave in the absence of the coupling in order to describe the way in which one system

responds to the other. This description is the goal of linear response theory, which shows

that the response of one system to the other is completely describable by time-correlation

functions of the dynamical variables of the systems [6]. Comelation functions provide a

concise method for expressing the degree to which two dynamical properties are

correlated over some average time interval.

Suppose we are concerned with a property A, which depends on the positions and

momenta of all the particles in the system. Due to thermal motion, the particles are

constantly jostling about thus the momenta and positions of each particle are constantly

changing. Therefore, A is also constantly changing. Although the motion of the

individual particle is described by Schrödinger's equation, the large number of them

makes their motion appear random, so generally the time dependence of property A, A(t),

resembles a noise pattern. Thus the (measured) bulk property of an equilibrium system

is, in actuality, a time average:

Ã1to,t¡ =1
to+T

Jait¡at
to

(E.1)

where to is the time at which measurement was initiated and T is the averaging time [6].

Averages of this type are only meaningful if T>>at where Ât is the period of the

fluctuation, thus ideally
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Ifthe average ofthe property under consideration is in general independent ofto, it is

referred to as a stationary property [6],

t to*J

A(to):.1111 
,jo,r,o,

(n) = lgåjor,r"

(n1o¡e1c¡) = +11+i^(r)A(r + t)dt

Io(ar) = + j(o.10¡eqt¡)e-i'tat

(8.2)

6.3)

(8.4)

(E.5)

Considering A(t) more closely, we note that at two different times, t and t + t,

A(t) can take on two different values such that A(t + r) + A(t), or A(t + t) - A(t) = 0 .

As r approaches Ât, A(t +r)-A(t) + 0 so A(t + r) is correlated with A(t) if r << At, and

this correlation is measured by the autocorrelation function [6]:

An autocorrelation function is a measure of the similarity between two noise signals A(t)

and A(t + r) [6]. When r = 0, the two signals are completely in phase anO(e1O¡a(r)) is

large; as t increases A(Ð and A(t + r) become out of phase anO(e1O¡.e.(t)) is small [6].

Using these results we can define the spectral density Ia(co) of the a time-

correlation function as

This quantiry plays an important role in light scattering where sometimes one measures

the spectral density of the electric f,reld of the scattered light t6l. If we apply an inverse

Fourier Transform to (E5) we obtain
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(e.10¡ait¡) : lt" 
(or¡e-i'tdrrr (8.6)

(E.7)

Thus we see that experimental determination of one is sufficient for determination of the

other, with le(ro) being the quantity that is usually measured. If we set t = 0, we get the

mean-square value of property A, so that

(ol') = (lerol') = IIo (rrl)drrl

In effect, In(ro)dco is the "amount" of lel2 in frequency interval (rrr, ro + dto).

However, in dealing with the theory of light scattering the theoretical value of the

autocorrelation function describing scattering from collections of molecules is required,

and since the autocorrelation function frequently involves products of tensors, this

amounts to evaluating isotropic averages to tensor components |6,291. An expression

for an observable, such as apolat''zation change in our case, is first written in terms of

molecular property tensor components specified in space fixed axes. Because we want to

relate the observable to intrinsic molecular properties, we must then transform to a set of

axes fixed in the molecule's frame. Then if the molecule is tumbling freely, the

expressions must be averaged over all orientations [16]. This problem reduces to the

evaluation ofproducts ofdirection cosines, averaged over all possible relative

orientations of the two coordinate systems [16].

Thus, if we let the components of an nth rank tensor A with respect to a space-

fixed frame b" 4,,..," , and if A refers to a molecular properfy, it can be expressed with

respect to a molecule-fixed frame through the relation
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4,,...t" = ci,r., ..'ci"r., 4r,,...r," (E.8)

where 
",0^o 

ir the cosine of the angle between the space-fixed axis io and the molecule-

fix_ed axis Xp[L6,291. The rotational average ofA,,...," requires the rotational average of

the direct cosine productc,,^, ...cin,.n , which can be obtained if the direction cosines are

expressed in terms of Euler angles. This leads to the following

(",,^, "'","^, ) =
1 r-2y21

rþ I J l"'o, 
"'c'"^" sin ododQdrY (E.e)

where 0, 0, V are the Euler angles relating the two frames 116,291. The averaging

procedure, though simple to use for tensors of low rank, becomes very tedious for high

rank. Included in this are products of low rank tensors leading to high rank tensors.

Therefore, techniques that re-express the property tensors in a form that allows one to

circumvent some of this tediousness are of great practical importance. Exploring one

such technique is of course the th¡ust of this thesis.
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APPENDIX F: The Depolarization Ratio

The purpose of this appendix is to act as a bit of an Afterward, and to report some

interesting results derived concerning the depolarizationratio for first-order interactions.

To our knowledge, this type of derivation does not appear anywhere in the literature.

From chapter 6 we saw that the depolarization ratio is expressible in spherical form as

q=
4$, +10$o '

(F.1)

which can be rearranged to the simplified form

3
(F.2)

(F.3)

or equivalently

3F,,

from the rank

n = 4*10(F*iÐ'

chapter 5, we saw that the separation of the tensor components

rnents means that the quotient inside the brackets reduces to

f , [N, I xlfN, r xll

qo_11å,'^.','{i, I l}tï lî:}l
F,, sl , lN, J yl[N,r yll

Lå,,'.','ti: llltï l;:ll

rom cn¿

)mpone

Fror

com

(F"4)
;Ì{*, î' ii{l' i i}lt xlft

r oflr,

;){*, î' i}{l' T i}l
r vlfl
r zJlt,

1

m2

1

m2

F* -11åt'^.t''{lF" t 
[Ér'r.ti'{l

t02



To evaluate (F.4), the challenge remaining is to carry out the above sums. This may be

accomplished using computer software like that emptoyed in the thesis, or to analytically

reduce the sums into polynomial expressions. This second method will be elucidated

here.

It is advantageous to break up the sum into individual terms and deal with each,

one at a time. Thus the numerator:

p^,,^.'),{l I ä}ü ;, ;}{* î, i,}iï i i} (F.5)

(F.7)

(F.8a)

(F.8b)

is the sum of three terms corresponding to x = 0,1,2; that is, So + Sr+ Sz. The term with

x = 0 can be evaluated using the relations for the 6j symbols shown in chapter 5,

particularly (5.42). This leads to the first term in the sum (Ss) being

(-1¡N*l' *l'
(F.6)

o(ztr+t\zm,+t)'

To simplify the expressions somewhat, the substitutions: l1 = ml = a andlZ = Ít2 =b,

can be made. Thus So becomes,

So=

^ (-l)N+rr +r2

to = q(2b+r)(2,u+Ð'

Sr is obtained if we make the substitutions:

Ir l tl 1
\ r'= --tl 10J 3

fl t tl=(_r)b*r,[ (zu-r)r ì"'
tr b r,J=' L4t(zb+zll.l 

vr(1'J2'b)

where V,(1, J, b) = -2(J r(J, + 1) - 2 - b(b +1))

r03



(2b -t)r.(Za- 1)! I
Qb+r)tt a+r\)

b(b + 1) - a(a +1))

¡o*r-r-* 
[

(N+1)-

lu b 1li t-
lauNJ

where Vr(b,N,a) = -

V,(b, N, a)(-l

2(N

{" " t 
} = (_r)u*r, l 3!:r)t l'''

{t r r,J' Leu+z¡w) 
v'(a'J"l)

where V, (a, J,,1) = -2(J, (J, + 1) - a(a + l) -2)

(F.8c)

(F.8d)

Combining these we get:

s. - (-l)r'*r'*N *ÅffiF rg, +t) -2-b(b +riXNrtN+1) -b(b+1) - a(a +1))' 9 (2b-

x(1,¡1, +l)-a(a +\-z). (F9)

A similar analysis leads to a result for x = 2,

o _ (-l)''+t,+N (2a-2)l(zb-z)l
ot - 3.f Qa+3)tlrb+3\

* {o(r, 1r, + 1) - a(a +t) - z)z + o(1, 11, + t) - a(a + r) - z) -r6a(a + 1)}

* {o(r.r1N + 1) - b(b + 1) - a(a + t¡)'z + o(N(N + 1) - b(b + 1) - a(a + 1))- 8ab(a + 1)(b + 1)}

* {o(r, 1r, + t) - 2 - b(b + 1) )'? + e(t r1t, + t) - z -b(b + 1)) - 1 6bþ + r) }
or

- (_1)r,+r,+N (2a _Z)l(Zb_Z)t
S, =L rVr(a,J,,l)Vr(b,N,a)%(1,Jz,b). (F.10)" 3-51 (2a+3)t(2b+3).

Therefore, taking the sum Sg+S1+S2 explicitly, leads to the lengthy expression for Foo
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* 
(-t)j'.1'.* 

\?^.?!i\?? z)iv, (a, J,,1)v2 (b, N, a)v, (r, r,, b).3.s! (2a+3)t(2b +3)l

(F.11)

We now repeat the same procedure for the case of J = 2. Thus we need to

evaluate the sum,

IL: (_1¡N*r' *r' (_1)r'*r' ** (2b _1)!(2a _1)!
, J, b)v, (b, N, a)\ (a, J,,1, N, a)V, (a, J,,1)

s(za+l(za+t) 4t (2b+2)l(2a+2)t'l

,,,=,å<'.*'r,{l I ;}{; ; ;}{: : i}{î î i} (F.12)

Analogous procedures to those above lead to the following three terms in this sum. For

the term corresponding to x = 0 we get

(-1¡N*l' nl'

o - eþu*4(26nt)'

the identical term to the J = 0 case. For x = I we obtain

s,=

differingfromthe J= 0caseby only anumerical factor. Finally forthe x = 2 case we get

q _ 20(-l)r,+¡z+N Qa-Z)l(2b-2)!--st =-j[' 
Qa+3)!(2b*e¡v'{u'lt'1)V'(b'N'a)v'(1'J2'b)' 

(F'15)

again differing by a numerical factor from the J = 0 case. Summing these three terms

leads to the expression

F : af (-1)**''*" -"22 "l{zu+t[2a+t)
lftlz

\,
)

-1)
(+t

r2( +N

Vr (1, J2, b)V, (b, N, a)V, (a, J,,1)
!

1)!

2)I

2a

2a
T
!(

1)

2)+

(2b

(2b

(F.13)

(Fl6)
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Taking the quotient of Foo andFzz leads to the following after some simplification

1 (2b-l)l(2a-I)l ,,.
f6+ffiTi- ffivr (1' J2' b)v' (b' N' a)v' (a' J"1)

. (2a-2)l(2b .)\r
+ -#,v, (a, J,,1)V2 (b, N, a)V' (1, J2, b)

72(2a+3)!(2b+3)!
l)!
2)t

J,,1

) fe\

J

).

T+1

2)lt

2)t.

3)!

fied

x,

1)!

¿)!

T
i)!

t-

+

+:

rif

+

(2b

2b

2b-

2b

mp

¿̂a'

)tI
'6 (2

',)t(2

i)t(2

: sin

-'--1-
ab12

(2a-
(F.17)

(F.18a)

(2a+

Yr(a'

if we w

)v

a)

'ac

Ð

f

zb +z)(za +

l z,b

), N,

the f

I2

b,

(1,

'a(

V,(1,

)Vr(

write

1

2a

and

(2a-2)t(2b-z)l
(2a + 3) t (2b + 3) t (za + z\z a + z)(2a + t)za(za - t)(za + z)(za + z)(zu + t)zu (zu - t )'

Making these substitutions, we get

9V1(1,J2,b)V, (b, N,a)V, (a,J,,1)

2b-r)

(F.18b)

(F.1e)

e 6ab(za + z)(za + t)(zu + z\za + t)
V, (a, J,,l)Vz (b, N, a)V, (1, J' b)

32ab(2a ú)(2a + z)(za + t)(2a - 1X2b + t\zu + z)(zu + r4o =1Fr, 5

, (b,N,a)V,(a,J,,1))

I

Ivr(l,J",b) |

)

torial expressions as

106



Substituting equation (F19) into (F2) leads to an analytic expression for the

depolarization ratio:

9V, (1, J, b)V, (b, N, a)V, (a, J,,1)

e6ab(za + z)(za+ tx2b + z)(zu + t)

Vr(a, J,,l)Vr(b, N, a)Vr(1,J2, b)

ïl= 4+2
+ nña+3 2b+3)Qb+2 za+l(zu-t)
, 9ï(1, J2, b)Y(b, N, a)Vr (a, J,,1)' tezab(2a + z)(za it)(zu + z)(zv +t)

, %(a, J,,l)Vr(b, N, a)Vr(1,J, b)
-

(F.20)

With (F.20) r¡ can be calculated by simple arithmetic. As an example, consider the case

of the interaction crT¿E. In Chapter 6 we saw that 11 was calculated to be ILl52, now

applying (F.20):

n=zl +*r( ttu l-l-'=ll.' L \tr/ 4s36)) s2

To our knowledge such a general expression for the depolarization ratio of two

interacting molecules in terms simply of tensor ranks does not appear in the literature"

2a+2ll2a+t
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