
Bayesian Analysis of Binary and Count Data

in Two-arm Trials

by

CYNTHIA KPEKPENA

A Thesis submitted to

the Faculty of Graduate Studies

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of STATISTICS

University of Manitoba

Winnipeg, Manitoba

Copyright c© 2014 by CYNTHIA KPEKPENA



Abstract

Binary and count data naturally arise in clinical trials in health sciences.

We consider a Bayesian analysis of binary and count data arising from two-

arm clinical trials for testing hypotheses of equivalence. For each type of

data, we discuss the development of likelihood, the prior and the posterior

distributions of parameters of interest. For binary data, we also exam-

ine the suitability of a normal approximation to the posterior distribution

obtained via a Taylor series expansion.

When the posterior distribution is complex and high-dimensional, the

Bayesian inference is carried out using Markov Chain Monte Carlo (MCMC)

methods. We also discuss a meta-analysis approach for data arising from

two-arm trials with multiple studies. We assign a Dirichlet process prior for

the study effects parameters for accounting heterogeneity among multiple

studies. We illustrate the methods using actual data arising from several

health studies.
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Chapter 1

Introduction

1.1 Binary Data in Two-arm Trials

An arm is a standard term for describing clinical trial and it represents

a treatment group or a set of subjects. A single-arm study involves only

one treatment where as the normal two-arm study compares a drug with

a placebo or drug A with drug B. A binary outcome is an outcome whose

unit can take on only two possible states “0” and “1”. Health studies

outcomes such as the morbidity and mortality studies are often binary in

nature.

As an example, consider a clinical trial, where a pharmaceutical com-

pany wants to test a new drug against a currently existing drug. The clin-

ical trial end point is the binary success or failure of the treatment. This

success/failure response variable could be heart disease (Yes/No), patient

condition (Good/Critical), how often patient feel depressed (Never/Often)

etc.
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The natural distribution for modeling these types of binary data is the

binomial distribution. The binomial is a discrete probability distribution

that summarizes the likelihood that a random variable will take one of two

independent values under a given set of parameters and assumptions. It is

assumed that there are only two outcomes (denoted ‘success’ or ‘failure’)

and a fixed number of trials (n). The trials are independent with a constant

probability of success.

The probability mass function for the binomial random variable is given

as:

f(x; p) =

(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n, p ∈ (0, 1).

The mean and variance for the binomial random variable are E(X) = np

and V ar(X) = np(1− p) respectively.

1.2 Count Data in Two-arm Trials

Count data refers to the occurrence of observations that can take only

the non-negative integer values {0, 1, 2, 3, ...}, and these integers arise from

counting rather than ranking (data composed of counts of the number

of events occurring within a specific observation period). When data are

not dominated by zeros, it is reasonable to assume such count data as

continuous and fit the usual linear models. However, real world count

variables such as the number of accidents on a particular spot on a highway,

the number of fish in a pond etc. are bound to be characterised by excessive

zero values, often called zero-inflated.
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In clinical trials, observations are sometimes in the form of counts, for

example, in an anti-viral therapeutic vaccine efficacy study, subjects are

assessed every day for viral shedding during the study follow-up period and

the number of seizures in epileptic patients during a follow-up period. In

these instances, only counts of the number with the attribute of interest is

taken but not the number without the attributes. The natural distribution

for modeling these type of count data is Poisson distribution. This is a

discrete distribution used to model the count of a specified event in a given

time interval. The assumptions underlying the Poisson distribution are

that:

• The number of events in disjoint intervals are independent of each

other

• The probability distribution of the number of events counted in any

time interval only depends on the length of the interval

• Events cannot be simultaneous

The probability mass function of the Poisson random variable is

P (X = x) =
λxe−λ

x!
for x = 0, 1, . . . , λ > 0.

The expection of the Poisson random variable is E(X) = λ and the

variance is Var(X) = λ.
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1.3 Hypothesis Testing in Two-arm Trials

The main objective of a clinical trial is to determine whether there is a

significant difference between active treatment (new drug) and reference

treatment (current drug). Tests of significance has generally been argued

not to be enough. That is, if the p-value for a test of significance leads

to the non-rejection of the null hypothesis, it is not a proof that the null

hypothesis holds. In other words, lack of significance does not imply the

two treatments are equivalent. The clinician may want to test hypothesis

of a relevant difference or a hypothesis stating one treatment is not lower

in standard than the another. To establish the credibility of the null hy-

pothesis, post hoc tests of treatment means have to be conducted. These

post hoc test could be formulated in terms of a null hypotheses of equiva-

lence against an alternative hypothesis that states that there is a sufficient

difference between the two drugs.

Equivalence testing is widely used when a choice is to be made between

a drug (or a treatment) and an alternative. The term equivalence in the

statistical sense is used to mean a weak pattern displayed by the data under

study regarding the underlying population distribution. Equivalence tests

are designed to show the non-existence of a relevant difference between two

treatments. It is known that the Fisher’s one sided exact test is the same

as the test for equivalence in the frequentist approach [26]. This testing

procedure is similar to the classical two sided test procedure but involves

an equivalence zone determined by equivalence margin (δ) explained in

section 1.4.
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Noninferiority test on the other hand are designed to show that a

new treatment does not fall short in efficacy by some clinically accept-

able amount when compared to some existing treatment. The objective

is to establish that the new treatment is no worse than the standard al-

ready existing. This means the new treatment measures up to the stated

standard (not lower in standard than the current drug usually by a mar-

gin). Noninferiority test are formulated by placing an upper limit on the

difference in treatment means [19].

For example, multiple injections that used to characterise polio vacci-

nations usually resulted in side effects. An alternative could be a vaccine

that combines all the active ingredients of the individual vaccines. Then, it

will have to be investigated that the mixture vaccine is as effective as each

of the individual vaccines. In another instance, the innovator of a drug

with a patent right may come up with a different formulation of the drug

with the same ingredients in the innovated drug. At this time the drug

is about to be out for competition, other manufacturers may claim their

product perform equally well as the innovated drug. The manufacturers

different formulation of the drug together with the other products consti-

tute alternatives to the innovated drug. Each of these alternatives require

the proof of equivalence of average bioavailabilities(ABE). The concept of

bioavailability refers to the rate and extent by which the drug is available

at its site of action [19].
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1.4 The Equivalence Margin

The equivalence margin (δ), which represents a margin of clinical indiffer-

ence, is usually estimated from previous studies and as such is also based

primarily on clinical criteria as well as statistical principle. It is influenced

by statistical principle but largely dependent on the interest of the exper-

imenter and research questions clinicians wish to answer. As such, the

statistical method employed together with the design of the study must

be in such a manner that the margin of difference is not too restrictive to

capture the bounds of the research question. This is usually chosen to be

a value less than the least expected disparity between the new treatment

and a placebo. For a test of equivalence of two binomial proportions, the

equivalence margin is discussed in [26]. When the goal is to establish that

one treatment is not equivalent to the other, the equivalence margin has

been presented as a fraction f of the lower limit of a confidence interval

for the difference in treatment means, but the choice of f is a matter of

clinical judgment and also overall benefit-cost and benefit-risk assessment

[14]. The frequentist approach to equivalence testing is the two one-sided

test (TOST) procedure. By the TOST, equivalence is established at the α

significance level if a (1−2α)×100% confidence interval for the difference in

treatment means µi−µj is contained within the interval (−δ, δ) where δ

is the equivalence margin. For a generic drug (G) and an Active Compara-

tor (A), if ∆ is the population treatment group difference (∆ = A−G), d?

is a threshold of clinical meaningfulness and δ the non-inferiority margin,
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G is clinically superior to A if ∆ > d? and A is clinically superior to G if

∆ < −d?. G is inferior to A if A − G < δ and A is non-inferior to G if

A−G > −δ [7].

1.5 Bayesian Model Ingredients

1.5.1 The Prior

The Statistical inferential procedure is similar to an inversion method

where the “cause” (parameters) are extracted from the “effects” (data)

[25]. The parameter represents a true state of nature whose value is usually

unknown and cannot be observed directly. In the usual classical paradigm,

the parameter of interest θ is assumed to be fixed (some constant value)

where as in the Bayesian paradigm the parameter is assumed to vary (ran-

dom in nature). For instance in estimating the recovery rate of a patient,

it is natural to assume the rate varies depending on several other factors.

This implies θ is a random variable and therefore has a distribution π(θ),

called the prior. If the distribution of θ depends on another parameter τ ,

then the prior is π(θ|τ), where the parameter τ is called a hyperparameter.

The prior distribution of θ reflects previous knowledge about the pa-

rameter θ. The prior could be noninformative or subjective. An infor-

mative prior gives a numerical information specific to the problem under

consideration. Prior distributions that are uniform with the intention of

bringing out the information from the likelihood in probabilistic terms are

noninformative. For example, for the variance parameter σ2 of a normal
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distribution for data in which the variability is low, a prior distribution

proportional to the inverse of σ2 is appropriate. This distribution sum-

marizes available prior information in the form of an appropriately chosen

probability distribution or mass function. As another example, the proba-

bility of success (p) in Bernoulli trials lies between 0 and 1 and therefore an

appropriate prior will be a density whose support lies in the range [0, 1],

for instance the Beta distribution or the Uniform(0, 1) distribution [25].

Prior distributions that do not provide contradicting information but are

capable of suppressing inaccurate deductions not reflected by the likeli-

hood are weakly informative prior. A subjective prior is the Statistician’s

best judgment about the uncertain parameters in a problem expressed in

scientific terms [9].

Conjugate Priors: If the posterior distribution (explained in section

1.5.3) p are in the same family as the prior probability distribution p,

the prior and posterior are called conjugate distributions, and the prior

is called a conjugate prior for the likelihood. Conjugate priors lead to

posterior distributions that belong to the same family as the prior and are

analytically tractable.

1.5.2 The Likelihood

The idea of likelihood denotes that, there is some data (observed responses)

for which we want to make statements (generalise) about some unknown

characteristics. Making inference about the parameter θ requires a proba-

bility model. That is a description of values of the parameter that are most
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possible in parametric form considering the observed data. Some values

of the parameter θ are more likely to produce the data than others are

and will be advisable to make inference about those values and the likeli-

hood can be thought of as a means of measuring the relative plausibility

of various values of θ by comparing their likelihood ratios [10].

Suppose a parametric model f(x; θ) is being considered, which is the

probability density function with respect to a suitable measure for a ran-

dom variable X. If the parameter is assumed to be k-dimensional and the

data are assumed to be n-dimensional, sometimes representing a sequence

of independent identically distributed random variables: X = (X1, ...Xn),

then the likelihood function represented by L(θ) [22] is given by

L(θ) = L(θ;x) =
n∏
i=1

f(xi; θ).

From the frequentist perspective, the parameter θ is assumed to be some

fixed value and data x is assumed to be one realisation of the random vari-

able X. Inference about θ involves calculating relevant summary statistic

(about θ without loss of substantial information) which can be used to

test hypothesis [12]. “Although the use of likelihood as a plausibility scale

is sometimes of interest, probability statements are usually preferred in

applications. The most direct way to obtain these is by combining the

likelihood with a prior probability function for θ to obtain a posterior

probability function” [22].
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1.5.3 The Posterior Distribution

The posterior distribution portrays the present state of affairs concerning

the unknown parameters. It is the updated state of the prior knowledge

by the observed data including missing, latent, and unobserved potential

data. The posterior distribution has its source from the Bayes Theorem

which states that for two events A and B, the conditional probability A

given B is defined as

P (A|B) =
P (B|A)P (A)

P (B)
.

Let X1, X2, . . . Xn be a random sample from f(x|θ) and π(θ) be the prior

of θ. The conditional distribution of θ given x, denoted by π(θ|x) is called

the posterior distribution of θ. Based on the Bayes Theorem, the posterior

distribution is

π(θ|x) =
L(x|θ)π(θ)∫
L(θ|x)π(θ)dθ

. (1.1)

The denominator term in 1.1 is known as the normalizing constant.

1.6 Meta-analysis in Clinical Trials

Meta-analysis includes the systematic methods which use statistical tech-

niques for combining results from several independent studies and the aim

is to get a consistent estimation of the global effect of an intervention or

treatment [6]. A meta-analysis combines in a single conclusion the results
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of different studies conducted on the same topic and with the same meth-

ods [11]. The most prominent area in which meta-analysis is being used

is genetics and health research. When it comes to health issues, everyone

is interested in what works and what does not [27] and, meta-analysis,

when well designed and appropriately performed, is a great tool that helps

in understanding the results of interventions in medicine. The updating

of clinical topics through the publication of medical reviews and guide-

lines shows the need for clinicians to practice evidence-based medicine.

Evidence-based medicine has introduced well-defined rules for the critical

evaluation of medical data. The use of meta-analysis has a prominent

role in the validation and interpretation of the results of clinical studies.

In other words, if a well designed and well conducted meta-analysis has

shown that drug A is more effective than drug B, we can assume that this

information is correct and there would be no need for further investigation

on this issue”[11].

In medicine, the effect size is called treatment effect but is simply called

effect size in other fields such as the Arts. The term effect size is appropriate

when the index is used to quantify the relationship between two variables or

a difference between two groups (for instance comparing the performance

of girls and boys on a subject) whilst treatment effect is appropriate only

for an index used to measure the impact of a deliberate intervention, for

example the impact of a new malaria drug [2].

The first step is the statement of the research problem in definite terms.

The question or the hypothesis of interest guides the researcher on which
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studies to choose and also the kind of data that justifies the inclusion of a

study in the meta-analysis. Upon stating the problem, the researcher can

start with the search for the relevant studies on the topic. This is done

through journals, electronic databases and references on articles. The re-

searcher needs to locate studies that have not been published as well to

avoid inclusion of only studies that are statistically significant since inclu-

sion of only studies which conclude the treatment improves for instance

patient’s condition will cause the result of the meta-analysis to be shifted

towards significance.

It is believed that studies that are not statistically significant are not

published in most cases [6]. When the manufacturer of a drug gives funding

to a reseacher to conduct research on the effectiveness of a drug in a given

geographical area, if the results conclude that there is no treatment effect,

it is likely that only results from other researchers or other geographical

locations that are significant will be published. This points to the issue

of bias in publication of research articles. Inclusion of the non-published

results in the meta-analysis may cause the conclusion drawn from the meta-

analysis to change .

Publication bias arises either because there is an already existing as-

sertion and it will be easier publishing results that validate the opinion or

authors may consider their results redundant because findings from var-

ious studies follow the same trend and people want something new that

has been discovered. The author may not be interested in publishing a

research that does not produce positive results and the editorial policy of

12



the journal in which the paper must be published may also be a potential

source of bias. Publication bias can be detected by making a funnel plot.

This is a plot of effect size (using risk ratios or odds ratios) against the size

of each study. If there is no bias in the publication on a topic, then the plot

is an inverted funnel. Departure from this pattern indicates the presence

of publication bias. The funnel plot, however, is only a graphical tool. The

Klein’s procedure provides a test on the dependability of the meta-analysis

with regard to publication bias. The Klein’s procedure is an answer to

the question “assuming publication bias is present , how many studies are

needed to change the conclusion of the meta-analysis from statistical sig-

nificance to no treatment effect”[11]. Bias could also result from the search

procedure, it is known that the rate at which an expert can identify the rel-

evant studies is between 32% and 80% and this rate is obviously lower for

inexperienced users [11]. Access to all the relevant studies depends on the

ability of the researcher to search the Internet or other sources to recover

all studies on the topic. In addition, if the criteria for inclusion of studies

in the meta-analysis is not clearly defined at the start of the research and

also if the selection criteria is such that important studies are neglected ,

the results of the meta-analysis will be biased as well.

A correct systematic review on a topic requires collection and analysis of

all published data and not only those which are more interesting, relevant,

or easily available - the available literature must be completely covered.

The methods used in meta-analysis limit the bias and help improve the

reliability (precision) and validates the conclusion made. “In clinical trails

13



and cohort studies, meta-analysis gives an indication of more events in

the groups observed (that is meta-analysis gives an indication of variables

that are not of immediate concern). In the absence of meta-analysis, these

events of interest and promising leads will be overlooked and researchers

will spend time and resources to find solutions to that which had already

been addressed elsewhere”[27].

Despite the difficulty that may sometimes be encountered in locating

studies to be included in meta-analysis, we have access to information

from many studies with less effort and hassle when the search procedure is

successful. Money and energy are saved compared to what would have been

required in survey planning and data collection and a considerable amount

of time is saved as well. Single studies rarely provide answers to clinical

questions. Meta-analysis of multiple studies establishes whether the results

of different studies on an issue are consistent and can be generalized across

populations, settings and treatment variations, or whether findings vary

by particular subsets. By pooling studies together by way of weighting,

sample size is increased with greater power and it is expected that the

estimates from a meta-analysis would be more precise compared to that

from single studies. Randomized control trials are presumed to be the best

in most cases but findings from different studies based on the randomized

controlled design do not necessarily produce similar results [21]. For a

treatment, some studies may report the benefits of the treatment while

others report its hazards.
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1.6.1 Odds Ratios

The effect size of a disease or an intervention drug is usually computed by

ratios such as the risk ratio. The Odds ratio is one of the several statistics

that is becoming increasingly important in clinical research and decision

making. It is particularly useful because as a treatment effect, it gives

clear and direct information to clinicians about which treatment approach

has the best odds of benefiting the patient. The odds ratio (OR) can be

said to be the ratio of two odds and may sometimes provide information

on the strength of the relationship between two variables[15]. The odds

ratio of a disease (say lung cancer) is the odds of cancer in the exposed

group divided by the odds of the cancer in the unexposed group. The odds

ratio is usually computed in case control studies - this is where individuals

with condition of interest are being compared with similar subjects without

conditions (the controls). For example, suppose

• tt is the number of subjects exposed (smoke) and have experienced

condition (lung cancer)

• tc is the number of subjects who have experienced condition (lung

cancer) in the control group(non-smokers)

• qt is the number of subjects exposed (smoke) but don’t have lung

cancer

• qc is number of subjects in the control group who does not have lung

cancer

15



Then the odds of lung cancer in the exposed group is
tt

qt
. The odds of

cancer in the control group is
tc

qc
. Then odds ratio of having cancer is

tt

qt
/
tc

qc
.

When the odds ratio is less than 1, the risk is less likely in the exposed

group and if it is greater than 1, the risk is more likely in the exposed group.

An odds ratio of 0.75 means that the outcome of interest is 25% less likely

in the exposed group. An odds ratio 1 indicates no difference and is called

the null value. Examples of the odds ratio are: the Likelihood Ratio Chi-

Square, Fishers Exact Probability test and the Pearson Chi-Square.

In Meta-analysis, individual studies will have respective odds ratios

calculated (OR1, OR2, . . . ), then the combined odds ratio can be calculated

by different methods:

Mantel-Haenszel method: Let the approximated variance from each

study be Vi and associated weights Wi = 1
Vi

. Then by the Mantel-Haenszel

[8] method, the combined odds ratio is

ORMH =
(OR1 ∗W1) + (OR2 ∗W2) + · · ·+ (ORk ∗Wk)

W1 +W2 + · · ·+Wk

(1.2)

The chi-square test statistic under the Mantel-Haenszel method is given as

Q =
k∑
i

Wi(ln ORi − ln ORMH).

The Peto method: The Peto method gives confidence interval that

covers the combined odds ratio. Suppose Vi is the variance corresponding
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to study i . For each study, the expected frequency(Ei) of each cell is

obtained. Then the natural logarithm of the odds ratio of the ith study is

LnORi =
sum of (observed - expected)

sum of the variances
and ORi = exp(Ln ORi).

The (1− α) % confidence interval for the pooled odds ratio is

exp

ORi ±
Zα

2√∑k
i Vi

 .

The chi-square test Statistic when odds ratios are calculated by the Peto

method is

Q =
∑[

wi ∗ (Oi − Ei)2
]
−
∑

(Oi − Ei)2∑
Vi

.

1.7 Organization of the Thesis

The motivation for this thesis is based on the fact that for a given disease,

there is likely to be many other substitute drugs or new drugs that can

be used to treat the patients. But these drugs may not all be at the

same cost, some may possibly have adverse side effects and the method of

application could be complex for others. On grounds of these information,

we do equivalence testing to see if two different drugs can be regarded as

equivalent in terms of the their treatment effect. A meta-analysis would

answer the question of whether on a large scale or in the long run the drug

will be beneficial.

The remaining section of this thesis is organized as follows. In Chap-

ter 2, the inferential procedures for binary and count data are discussed.
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Chapter 3 presents the statistical models and the analytic procedures in

Meta-analysis as well as a review of the Dirichlet process. In Chapter 4,

data on counts of the number of people experiencing myocardial infarction

from the use of drugs with an active ingredient “rosiglitazone” is analyzed

by testing hypothesis about the binomial proportions as well as multiple

determination of treatment effects through Meta-analysis. A count data

model is then considered. Chapter 5 presents a discussion of the results

and conclusions.

As future work, we will be interested in exploring Network meta-analysis

and the methods involved. This is a meta-analysis in which multiple treat-

ments are compared in multivariate analysis.
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Chapter 2

Statistical Models

2.1 Statistical Inference for Binary Data

Let Xt be the number of individuals with positive exposure out of a total

of nt patients in treatment group with proportion Pt. Accordingly, let Xc

denote the number of individuals with positive exposure out of a total nc

in the control group with proportion Pc. Then

Xt ∼Bin(nt, Pt) and

Xc ∼Bin(nc, Pc).

The priors on the parameters, Pt and Pc are given by

Pt ∼Beta(α, β) and

Pc ∼Beta(ε, η).
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The posterior distribution of Pt is given by:

π(Pt|Xt) ∝ L(Xt|Pt)π(Pt)

∝
(
nt
xt

)
P xt
t (1− Pt)nt−xt

1

B(α, β)
Pα−1
t (1− Pt)β−1

∝
(
nt
xt

)
1

B(α, β)
P xt+α−1
t (1− Pt)nt+β−xt−1

∝ Beta(xt + α, nt + β − xt)

Similarly, the posterior distribution of Pc is

π(Pc|Xc) ∝ L(Xc|Pc)π(Pc)

∝
(
nc
xc

)
P xc
c (1− Pc)nc−xc

1

B(ε, η)
P ε−1
c (1− Pc)η−1

∝
(
nc
xc

)
1

B(ε, η)
P xc+α−1
c (1− Pc)nc+η−xc−1

∝ Beta(xc + ε, nc + η − xc)

For Bayesian inference about treatment effect, a test is required to deter-

mine whether the posterior probability of treatment proportions Pt and

Pc lies within the bounds of the equivalence margin or not. There is

therefore, the need to sample from the posterior distribution of Pt − Pc.

The marginal posteriors of Pt and Pc are Beta distributions and therefore

π(Pt−Pt|Xt, Xc) is not in an analytically tractable form. So, P1t, P2t, . . . Pnt

are generated from π(Pt|Xt) and independently P1c, P2c, . . . Pnc generated

from π(Pc|Xc) because λt and λc are independent. Then P1t − P1c, P2t −

P2c, . . . , Pnt−Pnc can be treated as a random sample from π(Pt−Pc|Xt, Xc).
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2.2 Normal Approximation to the Beta Pos-

terior Distribution

Our posterior distributions of Pt, Pc are Beta distributions. A normal ap-

proximation to posteriors can be obtained using a Taylor series expansion

of the Beta distribution. We derive this approximation as follows: Let the

best estimate of P , P0 be the value of P for which the posterior is at it’s

maximum. That is,

dπ(P |x)

dp
|P0 = 0 and

d2π(P |x)

dP 2
|P0 < 0

The Taylor series expansion of a function f(x) at X = x0 is

f(x) =
∞∑
m=0

fm(x0)

m!
(x− x0)m

Let the log of the posterior distribution be

L(P ) = log(π(P |X)).

By applying a Taylor series expansion to L(P ) at P0 with first three terms,

L(P ) = L(P0) +
dL(P )

dP
|P0(P − P0) + 1/2

d2L(P )

dP 2
|P0(P − P0)

2 + . . .

= constant + 1/2
d2L(P )

dP 2
|P0(P − P0)

2 + . . .

By taking the exponential of L(P ),

π(P |X) ∝ K exp
1
2
d2L(P )

dP2 |P0(P − P0)
2

where K is a normalising constant.
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Let µ = P0 and σ = 1[
−d2L(P )

dP2 |P0
]1/2 . This gives

π(P |X) ≈ N (µ, σ).

π(Pt|Xt) ∼ Beta(xt + α, nt + β − xt)

∼ P xt+α−1
t (1− Pt)nt+β−xt−1

=⇒ L(P ) = k + (xt + α− 1) logPt + (nt + β − xt − 1) logPt

dL(Pt)

dPt
=

(xt + α− 1)

Pt
− (nt + β − xt − 1)

1− Pt
= 0

=⇒ (1− Pt)(xt + α− 1)− Pt(nt + β − xt − 1) = 0

α− 1 + xt + 2Pt − αPt − ntPt − βPt = 0 and

2Pt + xt + α− 1− αPt − ntPt − βPt = 0

P0 =
1− α− xt

2− α− nt − β

dL(Pt)

dPt
= (xt + α− 1)P−1t − (nt + β − xt − 1)(1− Pt)−1

d2

dP 2
t

(π(Pt|Xt)) = −(xt + α− 1)P−2t − [−(−1)(1− Pt)−2(nt + β − xt − 1)]

=
−(xt + α− 1)

P 2
t

− −(nt + β − xt − 1)

(1− Pt)2
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1− P0 = 1− 1− α− xt
2− α− nt − β

=
2− α− nt − β − 1 + xt + α

2− α− nt − β

=
1− nt − β + xt
2− α− nt − β

d2

dP 2
t

(π(Pt|Xt))|P0 =
(1− xt − α)[

1−xt−α
2−α−nt−β

]2 +
(1− nt − β + xt)[

1−nt−β+xt
2−α−nt−β

]2
= (1− xt − α)

[
(2− α− nt − β)2

(1− xt − α)2

]
+ (1− nt − β + xt)

[
(2− α− nt − β)2

(1− nt − β + xt)2

]

=
(2− α− nt − β)2

1− xt − α
+

(2− α− nt − β)2

1− nt − β + xt

= (2− α− nt − β)2
[

1− nt − β + xt + 1− xt − α
(1− xt − α)(1− nt − β + xt)

]

=
(2− α− nt − β)3

(1− xt − α)(1− nt − β + xt)

σ =
1[

− d2

dP 2
t

(π(Pt|Xt))|P0

] 1
2

=
1[

−(2−α−nt−β)3
(1−xt−α)(1−nt−β+xt)

] 1
2

Table 2.1 provides some approximations based on this development. We

investigate these approximations in Figures 2.1, 2.2 and 2.3. It is clear that

this approximation starts to work well for values of the posterior parameters
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from x + α = 10 and n + β − x = 10. However, the approximation is not

suitable when Beta posterior parameters are less than 10.

Table 2.1: Normal Approximation to the Beta Distribution
Exact Distribution Approximation

Beta(2, 1) N(1, ∞)
Beta(1, 2) N(0, ∞)

Beta(10, 10) N(0.5000, 8.4853)
Beta(5, 1) N(1, ∞)
Beta(1, 5) N(0, ∞)
Beta(2, 2) N(0.5000, 2.8284)
Beta(3, 3) N(0.5000, 4.0)
Beta(2, 4) N(0.2500, 4.6188)
Beta(4, 4) N(0.5000, 4.8990)
Beta(5, 5) N(1, 5.6569)

Beta(30, 20) N(0.6042, 14.1673)
Beta(20, 30) N(0.3958, 14.1673)
Beta(50, 20) N(0.7206, 18.3776)
Beta(20, 50) N(0.2794, 18.3776)

2.3 Statistical Inference for Count Data

Modelling count data is common in clinical trials. When the outcome can

take any value {0, 1, . . . }, one can model these outcomes using a Poisson

distribution. The Poisson distribution with parameter λ has the probability

mass function

P (X|λ) =
λxe−λ

x!
, λ > 0, k = 0, 1, . . . .

Classical inference involves obtaining the maximum likelihood estimator of

the parameter λ and making statements about it. For reasons of overdis-

persion, there is the need to investigate whether the data actually follows

a Poisson distribution. This is done by a chi-square test.
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Let Xt and Xc be the number of counts in the treatment and control

groups which are assumed to follow Poisson distributions with probability

mass functions P (λt) and P (λc). For a Bayesian inference, the parameters

λt and λc are assigned a prior distribution for which the posterior distri-

butions given the observed data are found. The prior distributions π(λt)

and π(λc) are both Gamma. The posterior distributions of λt and λc are

derived below:

π(λt|Xt) ∝
nt∏
i=1

P (Xt|λt)π(λt)

∝ e−ntλtλ
∑
xit

t
n∏
i=1

xit!

λαt−1t βαtt e
−λtβt

Γ(αt)

∝ λ
(
∑
xit+αt−1)

t βαtt e
−(nt+βt)λt

∝ λ
(
∑
xit+αt−1)

t βαtt e
−(nt+βt)λt

∝ Gamma
(∑

xit + αt, βt + nt

)
.

Hence the posterior distribution of λt is Gamma(
∑
xit + αt, βt + nt).

Similarly,

π(λc|Xc) ∝
nc∏
i=1

P (Xc|λc)π(λc)

∝ e−ncλcλ
∑
xic

c∏n
i=1 xic!

λαc−1c βαcc e
−λcβc

Γ(αc)

∝ λ(
∑
xic+αc−1)

c βαcc e
−(nc+βc)λc

∝ Gamma(
∑

xic + αc, βc + nc).
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Hence the posterior distribution of λc is Gamma(
∑
xic +αc, βc + nc). To

test the hypothesis of equivalence of the treatment mean λt and the control

mean λc, we require the posterior distribution of λt−λc (π(λt−λc|Xt, Xc))

which is not in analytically tractable form. If the marginal posterior dis-

tributions of λt and λc happened to be Normal, then π(λt−λc|Xt, Xc) will

be Normal too. However the marginal posteriors are Gamma and we don’t

know the form of π(λt − λc|Xt, Xc). Therefore, λ1t , λ
2
t , . . . , λ

N
t are gener-

ated from the marginal posterior distribution of λt and another set of values

λ1c , λ
2
c , λ

3
c . . . , λ

N
c are independently generated from the marginal posterior

distribution of λc. Subsequently, generating from π(λt − λc|Xt, Xc) is the

same as taking the differences λ1t − λ1c , λ2t − λ2c , . . . , λNt − λNc .

2.4 Estimating Missing Data in Arms

Missing data is easily handled in Bayesian inference by treating them as

another set of parameters. We estimate the missing values conditioning

on the observed data. For example, let X1, . . . Xn be a binary random

sample from Ber(P ) in an arm and suppose that Xm is missing. Let P ∼

Beta(α, β) and Y =
n∑

i 6=m

Xi. Then the likelihood of the observed data is

L(Xobs|P ) =

(
n− 1
y

)
P y(1− P )n−1−y.

The posterior of P based on the complete data X = (Y, Xm) is

π(P |X) ∝ P y+xm(1− P )n−y−xm
1

B(α, β)
Pα−1(1− P )β−1.
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The full conditionals of P and Xm are

π(P |y, xm) ∼ Beta(y + xm + α, n− y − xm + β)

π(xm|y, P ) ∼ Ber(P ).

It is easy to generate from these full conditionals in R so P and xm can be

estimated using Gibbs sampling.
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Figure 2.1: The normal approximations for Beta(50, 20) and Beta(20, 50)
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Figure 2.2: The normal approximations of Beta(2, 2), Beta(3, 3), Beta(2,4)
and Beta(4, 4)
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Figure 2.3: The Normal approximations Beta(5, 5), Beta(10, 10),
Beta(30, 20) and Beta(20, 30)
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Chapter 3

The Meta-analysis Procedure

with Multiple Studies

3.1 Fixed Effects and Random Effects Model

The assumption underlying the combined effect (true population) across

studies determines whether the model can be classified as Fixed Effects

Model (FEM) or Random Effects model (REM) [6].

3.1.1 Fixed Effects Model

The fixed effect model (FEM) is constructed under the assumption that

individual study effect sizes can be regarded as estimates of some common

effect size (true population effect size) as a whole. That is, estimates can

be regarded as coming from the same distribution and the factors that

influence effect size are the same [2]. The individual studies in a FEM are

believed to be practically alike. It is therefore not possible to generalize

conclusions beyond the domain of the studies involved since populations
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may differ from the common distribution from which the effect sizes are

drawn. Under the assumption that the true effect mean is constant in

each study, the observed effect size of the individual studies nevertheless

may deviate from the studies true effect mean (this is assumed mainly to

be due to sampling error) and this constitutes the within study variance.

The true effect size of a study is the effect size in the underlying distribu-

tion and is usually unknown. To justify the use of the fixed effect model,

there is the need to determine that statistical diversity (heterogeneity) is

non-existant among the different studies. Since the FEM is predicated on

the assumption that the studies share a common effect, the test of hetero-

geneity establishes whether the population parameter is constant or not.

When the test of heterogeneity is significant(that is we conclude the true

effect varies between studies), then the FEM will not be appropriate. The

chi-squared test of heterogeneity is one common test used to determine

whether the studies in the meta-analysis deal with the same parameter or

not. The test of the null hypothesis that all studies share a common effect

size is done by comparing the p-value of the Statistic Q (which has a chi

-square distribution with degree of freedom df = k − 1, where k is the

number of studies) with a stated level of significance. The statistic Q is

given as

Q =
k∑
i=1

Wi(Yi −M)2 where

Wi is the weight (or precision) of the ith study and is calculated as the

inverse of the variance of the ith study
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Yi is the ith study effect size

M is an estimate of the true effect size and

k is the total number of studies

Another measure of heterogeneity is I2, which reflects the proportion of

total variability (in effect size) that is real (for instance not due to chance

or measurement error). This is calculated as [11]

I2 =

(
Q− df
Q

)
∗ 100%.

I2 could be viewed as the ratio of actual heterogeneity to total variabil-

ity. I2 is a way of quantifying heterogeneity with values of 25%, 50% and

75% regarded as low, moderate and high respectively. However, I2 value

near zero does not necessarily indicate effects are clustered within a narrow

range; the observed effects could be dispersed over a wide range in studies

with a lot of error [2]. When the condition for FEM is fulfilled, the com-

bined effect size is the weighted average of individual study effects. The

weights corresponding to each study is calculated as Wi = 1/VYi where VYi

is the within-study variance for the ith study . If we let µ represent the

combined effect then,

û =

k∑
i=1

WiYi

k∑
i=1

Wi

where Yi is the ith study effect size.
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3.1.2 Random Effects Model

In a REM, the population effect size is assumed to vary from study to

study. The studies included in a given meta-analysis may be regarded as

being sampled from a universe of possible effects or some parent population

[1]. If each study is assumed to have come from a different population, then

the estimates of the effect sizes are expected to differ. If it was feasible to

perform an infinite number of studies from the different conceivable dis-

tributions, “then the effect sizes for the studies will be distributed about

some average. The observed effect sizes of trials actually performed are

assumed to be a random sample from the effect sizes of the different popu-

lations of distributions and the REM is appropriate in this instance”[2]. In

most experiments, there may be other variables that influence the response

variable but may not be of direct interest. These variables are referred to

as covariates. For instance, in an experiment to determine the impact of

smoking on lung cancer, other factors such as duration of smoking, family

record of lung cancer can have an effect on the outcome. These covariates

will definitely vary from study to study and therefore cause variations in

the effect size across studies. This introduces randomness in the analysis

and the random effects model is appropriate.

If yi is the estimate of the true effect size µi corresponding to the ith

study, αi the random effect of the ith study and the variance of the ith

study is σ2
i (> 0), then the random effects model is given as

yi = µ+ αi + ei, i = 1, . . . , k (3.1)
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where the study effects αi are assumed to be different but related. The

variation between αi are assumed to be equal τ 2. The random study effects

αi and the random error term ei are assumed to be distributed as follows.

ei
i.i.d∼ N(0, σ2

i )

αi
i.i.d∼ N(0, τ 2), i = 1, . . . , k (3.2)

where N(θ, η2) is a normal random variable with mean θ and variance η2.

The combined effect size in the REM is calculated as the weighted average

of individual effect sizes where the weights wi are inversely related to the

ith study variance. Let the variance of the ith study be V ?
Yi

, and this has

two components. V ?
Yi

is the sum of the within study variance (σ2
i ) and the

between study variance. Assuming T 2 is an estimate of the between study

variance (τ 2), then

V ?
Yi

= σ2
i + T 2

The Dersimonian and Laird method gives the frequentist estimates of

the overall mean effect µ and the estimate of the between study variation.

The Dersimonian and Laird estimate of the variation between studies is

[11]

τ̂ 2DL = max

0,
Q− (k − 1)

k∑
i=1

Wi −

(∑k
i=1W

2
i∑k

i=1Wi

)


where k is the number of studies, Wi = 1
σ2
i

andQ =
k∑
i=1

yi −( k∑
i=1

Wiyi/
k∑
i=1

Wi

)2
.
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When the normality assumption holds, a uniformly minimun-variance

unbiased (UMVUE) of µ is given as the weighted average. That is

µ̂ =

k∑
i=1

w?i yi

k∑
i=1

w?i

and the variance of the UMVUE is

Var(µ̂) = σ2
µ =

1
k∑
i=1

w?i

where w?i =
1

τ 2 + σ2
i

.

The ith study weight estimate ŵ?i = 1
τ̂2DL+σ

2
i

and the estimate of µ is given

as

µ̂DL =

k∑
i=1

ŵ?i yi∑k
i=1 ŵ

?
i

.

In the Bayesian paradigm, parameters are assumed to be random. On the

assumption that the study effects α1, α2, . . . , αk are unknown and random,

then the full likelihood function is given as [16]

L(µ, α1, α2, . . . , αk, |y1, y2, . . . , yk, σ2
i , . . . , σ

2
k) ∝

k∏
i=1

{
1

(σ2
i )

1
2

exp

(
−(yi − (αi + µ)

2σ2
i

)

)}

Suppose the prior distributions for µ, (α1, α2, . . . , αk), and τ 2 are given as

π(µ) ∝ c,−∞ ≤ µ ≤ ∞

α1, . . . , αk
iid∼ N(0, τ 2)

τ 2 ∼ IG(η, λ)
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The conditional posterior probability density functions (p.d.f) of µ,(α1, α2, . . . , αk)

and τ 2 are given as

µ|rest ∼ N(µ?, σ2
µ?) where µ? =

k∑
i=1

wi(yi − αi)

k∑
i=1

wi

, σ2
µ? =

(
k∑
i=1

wi

)−1
, wi =

1

σ2
i

αi|rest
iid∼ N(α?i , σ

2
α?i

), α?i =
σ2
i τ

2
i (yi − αi)
τ 2 + σ2

i

, σ2
α?i

=
τ 2σ2

i

τ 2 + σ2
i

, i = 1, . . . , k;

τ 2|rest ∼ IG(η?, λ?), η? = η +
k

2
, λ? = λ+

1

2

k∑
i=1

α2
i

where conditioning on “rest ” implies the other parameters that are not of

immediate interest [16]. Note that the model in 3.1 can be reparameterized

as follows:

yi = µi + ei where ei ∼ N(0, σ2
i ). (3.3)

Then,

Yi|µi, σ2
i ∼ N(µi, σ

2
i )

µi|µ, τ 2 ∼ N(µ, τ 2)

µ|µ0, σ
2
0 ∼ N(µ0, σ

2
0)

τ 2|η, λ ∼ IG(η, λ)

We derive the full conditional distributions of this model in the next

section.
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3.2 Deriving Full Conditional Distributions

of Model Parameters in Random Effects

Meta-analysis

The full conditional distributions of the parameters conditional on all other

parameters are found from the distributions that has information about

the parameter of interest. The conditional posterior distribution of µi is

proportional to the product of the distribution of yi conditional on µi , σ2
i

and the prior distribution on µi.

That is,

p(µi|others) ∝ p(Yi|µi, σ2
i )p(µi|µ, τ 2)

=

(
1√

2πσ2
i

)
exp

{
−(yi − µi)2

2σ2
i

}(
1√

2πτ 2

)
exp

{
−(µi − µ)2

2τ 2

}

=

(
1√

2πσ2
i

)(
1√

2πτ 2

)
exp

{
(− 1

2σ2
i τ

2
)
[
(yi − µi)2τ 2 + σ2

i (µi − µ)2
]}

=

(
1√

2πσ2
i

)(
1√

2πτ 2

)
×

exp

{
(− 1

2σ2
i τ

2
)[τ 2(y2i − 2µiyi + µ2

i ) + σ2
i (µ

2
i − 2µµi + µ2)]

}

=

(
1√

2πσ2
i

)(
1√

2πτ 2

)
exp

{
(− 1

2σ2
i τ

2
)
[
(τ 2 + σ2

i )µ
2
i − 2µi(τ

2yi + µσ2
i ) + τ 2y2i + µ2σ2

i

]}

=
1

2πσiτ
exp

{
(−τ

2 + σ2
i

2σ2
i τ

2
)

[
µ2
i − 2µi

(τ 2yi + µσ2
i )

τ 2 + σ2
i

+
τ 2y2i + µ2σ2

i

τ 2 + σ2
i

]}

Now, consider the exponential term as a quadratic in µi below:
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µ2
i − 2µi

(τ 2yi + µσ2
i )

τ 2 + σ2
i

+
τ 2y2i + µ2σ2

i

τ 2 + σ2
i

Completing the squares gives

µ2
i − 2µi

(τ 2yi + µσ2
i )

τ 2 + σ2
i

+

[
(τ 2yi + µσ2

i )

τ 2 + σ2
i

]2
+
τ 2y2i + µ2σ2

i

τ 2 + σ2
i

−
[

(τ 2yi + µσ2
i )

τ 2 + σ2
i

]2

=

(
µi −

(τ 2yi + µσ2
i )

τ 2 + σ2
i

)2

+
τ 2y2i + µ2σ2

i

τ 2 + σ2
i

−
[

(τ 2yi + µσ2
i )

τ 2 + σ2
i

]2

Hence

p(µi|rest) ∝ exp

{(
−τ

2 + σ2
i

2σ2
i τ

2

)[
µi −

(τ 2yi + µσ2
i )

τ 2 + σ2
i

]2}
.

Therefore the posterior distribution of µi given all the others is

N
(
τ 2yi + µσ2

i

τ 2 + σ2
i

,
σ2
i τ

2

τ 2 + σ2
i

)
.

The posterior distribution of µ conditional on all the other parameters is

derived as follows:
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p(µ|rest) ∝

(
k∏
i=1

p(µi|µ, τ 2)

)
p(µ)

∝ exp

{
−1

2τ 2

k∑
i=1

(µi − µ)2 − 1

2σ2
0

(µ− µ0)
2

}

= exp

{
−1

2τ 2

[
k∑
i=1

µi − 2µ
k∑
i=1

µi + kµ2

]
− 1

2σ2
0

[µ2 − 2µµ0 + µ2
0]

}

∝ exp

{
−1/2

[
µ2

(
k

τ 2
+

1

σ2
0

)
− 2µ

(∑k
i=1 µi
τ 2

+
µ0

σ2
0

)]}

∝ exp

−1

2

(
k

τ 2
+

1

σ2
0

)µ2 − 2µ

(∑k
i=1 µi
τ2

+ µ0
σ2
0

)
k
τ2

+ 1
σ2
0


Adding


(∑k

i=1 µi
τ2

+ µ0
σ2
0

)
k
τ2

+ 1
σ2
0

2

gives

p(µ|others) ∝ exp

−1

2

(
k

τ 2
+

1

σ2
0

)µ−
∑k
i=1 µi
τ2

+ µ0
σ2
0

k
τ2

+ 1
σ2
0

2


Hence the posterior distribution of µ given all other parameters is

N
(
σ2
0

∑
µi + τ 2µ0

kσ2
0 + τ 2

,
τ 2σ2

0

kσ2
0 + τ 2

)
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The posterior distribution of τ 2 is proportional to the product of µi

conditional on µ, τ 2 and τ 2 conditional on η, λ. That is,

p(τ 2|rest) ∝

(
k∏
i=1

p(µi|µ, τ 2)

)
p(τ 2|η, λ)

=

(
k∏
i=1

1√
2πτ 2

exp

{(
−1

2τ 2

)∑
(µi − µ)

})(
1

τ 2

)η+1

exp

(
−λ
τ 2

)

=

(
1√
2π

)(
1

τ 2

)( k
2
+η+1)

exp

{
−(
∑

(µi − µ)2 − 2λ)

2τ 2

}

∴ p(τ 2|rest) ∝
(

1

τ 2

)( k
2
+η+1)

exp

{
− (
∑

(µi − µ)2 + 2λ)

2τ 2

}

Hence the conditional distribution for τ 2 is IG
(
k
2

+ η,
∑

(µi−µ)2+2λ
2

)
.

3.3 Markov Chain Monte Carlo (MCMC)

Methods

Gibbs Sampling: In the Bayesian paradigm, inference is based on the pos-

terior distribution of θ given the observed data y, where θ is a vector of

the parameters of interest. The posterior distribution p(θ|y) ∝ p(y|θ)p(θ)

can be represented as f(θ) for fixed y which is the nonnormalised posterior

density [17].

Gibbs sampling is a simulation technique employed to sample from the

nonnormalised posterior density in order to make inference in the Bayesian

framework. The Gibbs sampling procedure is based on the Markov chain
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monte carlo methods via full conditional distributions of parameters. Markov

chain monte carlo (MCMC) methods are a class of algorithms for sampling

from probability distributions based on constructing a Markov chain that

has the desired distribution(the posterior density) as its equilibrium distri-

bution. A Markov chain denotes a sequence of random variables θ1, θ2, . . . ,

for which, for any t, the distribution of θt given all previous θ’s depends

only on the most recent value, θt−1 [9]. “In the applications of Markov chain

simulation, several independent sequences of simulation draws are created;

each sequence, θt, t = 1, 2, 3, . . . is produced by starting at some point

θ0 and then, for each t, drawing θt from it’s full conditional distribution”

[9].

Practical problems present situations in which it is not possible to sam-

ple directly from the posterior distribution p(θ|y) and as such MCMC sam-

pling only approximates the target distribution. Sampling is carried out in

a manner in which at the long-run the distribution of the sample coincides

with the target distribution, in particular, it is anticipated that at each it-

eration the distribution gets closer to the posterior P (θ|y) and the quality

of the sample improves as a function of the number of steps.

The Metropolis Algorithm : When the full conditionals of parameters

are not in closed form, one can use Metropolis sampling. This algorithm

is derived from the process of a random walk and is based on an accep-

tance/rejection rule to converge to the intended posterior distribution. The

procedure involved in the algorithm is as follows [9].
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Step 1 : Draw a starting point θ0, for which p(θ0|y) > 0, from a start-

ing distribution P0(θ). The starting distribution is mostly based on an

approximation.

Step 2 For iteration t = 1, 2, . . . :

(a) sample a proposal θ? from a jump distribution (or proposal distri-

bution ) at time t, Jt(θ
?|θt−1). The jump distribution must be symmetric,

satisfying the condition Jt(θa|θb) = Jt(θb|θa) for all θa, θb , and t. (b)

Calculate the ratio of the densities ,

r =
p(θ?|y)

p(θt−1|y)
.

(c) Set

θt =

{
θ? with probability min(r, 1).

θt−1 otherwise

θt = θt−1 implies the jump is not accepted and the process must be

repeated (iteration in the algorithm).

The Metropolist Hastings algorithm proceeds similarly as the Metropolist

algorithm except that the jumping distribution is not required to be sym-

metric and the ratio is modified as follows

r =
p(θ?|y)/Jt(θ

?|θt−1)
p(θt−1|y)/Jt(θt−1|θ?)

. (3.4)

The common application of MCMC–based algorithms involves numeri-

cally calculating multi-dimensional integrals. Inferencial methods emanat-

ing directly from the posterior is based on obtaining marginal distributions.
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In these instances , integration is also required to find marginal expecta-

tions and distribution of functions of subsets of the parameter θ. “The

difficulty in obtaining marginal distributions from a nonnormalised joint

density lies in integration. Suppose, for example, that θ is a p × 1 vector

and f(θ) is a nonnormalised joint density for θ with respect to Lebesgue

measure. Normalising f entails calculating
∫
f(θ)dθ. To marginalise, say

for θi, requires h(θi) =
∫
f(θ)dθ(i)/

∫
f(θ)dθ, where θ(i) denotes all com-

ponents of θ except θi. When p is large, such integration is analytically

infeasible [8].

The challenge of using MCMC methods lies in determining the mixing

time of the Markov chain. The mixing time of a Markov chain is the

time until the Markov chain is “close” to its steady state distribution.

Essentially, the experimenter needs to address the question of how large

must t be until the time-t distribution is approximately π, where π is the

posterior distribution. The variation distance mixing time, is defined as

the smallest t such that

|P (Yt ∈ A)− π(A)| ≤ 1

4
(3.5)

for all subsets A of states and all initial states.
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3.4 Bayesian Model Selection Criteria- The

Bayes Factor

The bayes factor is used to decide between two contesting discrete set of

hypothesis of interest. “The statistician (or scientist) is required to choose

one particular hypothesis out of the two available and there must be a

zero-one loss on that decision” [13]. The Bayes factor denotes the ratio of

the marginal likelihood under one model to the marginal likelihood under

a second model. If the two hypothesis are represented as H0 and H1 with

priors p(H0) and p(H1) , the ratio of the posterior probabilities is given as

:

p(H1|y)

p(H0|y)
=
p(H1)

p(H0)
∗ Bayes factor(H1, H0) where

B = Bayes factor(H1, H0) =
p(y|H1)

p(y|H0)
=

∫
p(θ1|H1)p(y|θ1, H1)dθ1∫
p(θ0|H0)p(y|θ0, H0)dθ0

=
P (H1|y)/P (H1)

P (H0|y)/P (H0)
.

Table 3.1 gives an interpretation of the Bayes Factor based on the Jef-

freys criteria for model selection [13].

Table 3.1 shows how the Bayes factor is used to choose between two

hypothesis. For values of the Bayes factor between 1 and 3, the evidence

against H0 (the equivalence hypothesis) is not worth more than a bare

mention. For values of the Bayes factor between 3 and 10, the evidence for

H1 is substantial.
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Table 3.1: Table showing decision rule using Bayes Factor
Bayes Factor(B) Strength of Evidence

B ≤ 0.1 Strong against
0.1 < B ≤ (1/3) Substantial against
(1/3) < B < 1 Barely worth mentioning against

1 ≤ B < 3 Barely worth mentioning for
3 ≤ B < 10 Substantial for
10 ≤ B <∞ Strong for

Note that the Bayes factor is only defined when the marginal density

of y under each model is proper. The goal when using Bayes factors is to

choose a single model Hi or average over a discrete set using their posterior

distributions, p(Hi|y).

3.5 The Dirichlet Process

A Dirichlet process (DP) is a distribution over probability distributions

[20]. Assume that G is a probability distribution over a measurable space

Θ, then a DP is a probability distribution over all the distributions of the

subsets of Θ. The Dirichlet process is specified by the pair (M,H) for

which H is the base distribution and M > 0 is a concentration parameter.

Two major methods of constructing a DP are discussed below [20]:

Stick-breaking construction: Suppose that an infinite sequence of “weights”

46



{πk}∞k=1 are generated such that

βk ∼Beta(1,M)

πk =βk

k−1∏
l=1

(1− βl)

Consider the discrete random probability distribution:

G(θ) =
∞∑
k=1

πkδ(θ=ζk) where ζk
iid∼ H and δ is an indicator function.

Then G ∼ DP(M,H).

Polya urn scheme: Suppose that colored balls are drawn from an urn G

and let θi represent the color of the ith ball drawn from the urn. Suppose

that for each ball drawn, it is replaced and another ball of the same color is

added. As more balls of the given color are drawn, it becomes more likely

to draw balls of the given color at subsequent draws. To add diversity,

a ball is occasionally drawn from a different urn H, replaced and a ball

of the same color added to the original urn G. If G ∼ DP (M,H) and

θ1, ..., θN ∼ G, then as the draw continues indefinitely GN converges to a

random discrete distribution which is a DP(M,H) [24].

It is observed that the normality assumption on µi is too restrictive

when the heterogeneity among studies is quiet appreciable and that this

assumption can be relaxed using a Dirichlet process. Muthukumarana &

Tiwari [16] considers a hierarchical Dirichlet Process formulation for αi of
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the model 3.1 based on

αi|G
iid∼ G, i = 1, . . . , k

G ∼ DP (M1, H1), M1 fixed

H1 ∼ N(0, τ 2)

τ 2 ∼ IG(η, λ).

We consider a Dirichlet Process formulation for µi in our Random effects

model 3.3 as follows.

µi|F ∼ F

F ∼ DP(M2, H2)

H2 ∼ N(µ, τ 2)

µ ∼ N(µ0, dτ
2)

1/τ 2 ∼ G(a, b).

where M2, µ0 and d are known.

Note that the above formulations of the Dirichlet Process are known as

the Ordinary and Conditional Dirichlet Processes respectively.
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Chapter 4

Data Analysis

4.1 Example 1

The data used in this sectionn provides information on diabetes patients, 42

diabetes treatments, and possible heart condition or death resulting from

the use of rosiglitazone (a treatment for diabetes). This data is attached as

part of the appendix. For each of the 42 treatments, a test of equivalence

is done to ascertain whether the treatment proportion is equivalent to the

control proportion. This example is based on the Statistical inferential

procedure for binary data discussed in Section 2.1. For each arm, the

number of patients who had myocardial infarction out of a total nt as a

result of using the diabetes treatment is considered to be the number of

successes in nt binomial trials. Similarly, the number of cases in the control

group is treated as a binomial outcome independent of the treatment group.

The equivalence margin δ is chosen to be as small as possible such that if the

absolute value of the difference in the control and treatment proportions

is less than δ, we can say that the two proportions are equivalent. For
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example, we assume a practically meaningful equivalence margin δ = 0.01.

The hypothesis for a test of equivalence of treatment number 20 and it’s

control group is as follows:

H0 : |Pt20 − Pc20| ≤ δ

H1 : |Pt20 − Pc20| > δ.

To evaluate how the Beta posterior is sensitive to the Beta prior assump-

tions, a plot of the likelihood, prior and posterior distribution is examined

for some of the treatments. The plots for four of the treatments with their

respective controls beside them are presented in Figures 4.1 and 4.2. Each

of these graphs depicts a pattern in which either the posterior distribution

looks like the likelihood distribution or the posterior seems to be a blend

of the likelihood and the prior. This implies values generated from this

posterior will reflect the state of the data because data is supposed to have

come from the likelihood.

The equivalence test is carried out using the Bayes factor. Tables 4.1

and 4.2 give the results of the equivalence test. The first column Di is

the ith drug (treatment). Columns 2 and 3 are the treatment proportion

(xt/nt) and control proportion (xc/nc) respectively. Columns 4 (P (H0|X))

and 5 (PA(H0|X)) are the posterior probabilities that H0 : |Pti − Pci| ≤ δ

is true under the Beta posterior distributions and under the normal ap-

proximation to the Beta posterior respectively. Column 6 (B) is the Bayes

Factor for exact posterior and BA is the Bayes Factor based on the normal

approximation. The Bayes Factors are calculated on the assumption that
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Table 4.1: Posterior Probabilities and Bayes Factor
Di Pti Pci P(H0|X) PA(H0|X) B BA

D1 0.0019 0.0000 0.7607 0.6757 0.3146 0.4788
D2 0.0017 0.0016 0.7190 0.6842 0.3908 0.4615
D3 0.0003 0.0018 0.4861 0.1857 1.0572 4.3826
D4 0.0000 0.0037 0.3428 0.2548 1.9171 2.9244
D5 0.0013 0.0000 0.5916 0.3325 0.6903 2.0079
D6 0.0000 0.0111 0.1924 0.0402 4.1975 25.8938
D7 0.0032 0.0032 0.4401 0.6145 1.2722 0.6272
D8 0.0280 0.0082 0.1806 0.7738 4.5370 0.2924
D9 0.0007 0.0000 0.8897 0.9711 0.1240 0.0297
D10 0.0010 0.0000 0.6673 0.3861 0.4986 1.5898
D11 0.0000 0.0009 0.8083 0.6501 0.2372 0.5382
D12 0.0011 0.0000 0.6860 0.7311 0.4577 0.3677
D13 0.0026 0.0011 0.7079 0.9717 0.4126 0.0291
D14 0.0016 0.0000 0.5808 0.7937 0.7218 0.2604
D15 0.0017 0.0017 0.6950 0.6392 0.4388 0.5646
D16 0.0016 0.0038 0.4136 0.3957 1.4180 1.5710
D17 0.0039 0.0097 0.3147 0.0381 2.1776 26.9081
D18 0.0037 0.0000 0.5330 0.4928 0.876 1.0210
D19 0.0110 0.0027 0.3362 0.5785 1.9744 0.7285
D20 0.0000 0.0000 0.5145 0.6454 0.9436 0.5495
D21 0.0000 0.0033 0.4455 0.0949 1.2447 9.5432

H0 and H1 are equally likely, that is, P (H0) = P (H1) = 0.5. For drug

number six labelled as 49653/085, the Bayes Factor for the exact poste-

rior is 4.1975 where as that of the normal approximation is 25.8938. Both

Bayes Factors are above 1 which imples H1 is more likely to be true and

H1 is the hypothesis that the treatment proportion is not equivalent to the

control proportion. Where as the evidence for H1 is substantial based on

the exact posterior distribution, there is a strong evidence for H1 based on

the normal approximation.

We now consider a missing data analysis in an arm. As an example,
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Table 4.2: Posterior Probabilities and Bayes Factor (Continuation of Table
4.1)

Di Pti Pci P(H0|X) PA(H0|X) B BA

D22 0.0053 0.000 0.5829 0.5570 0.7156 0.7953
D23 0.0051 0.0048 0.2397 0.3435 3.1719 1.9111
D24 0.0256 0.000 0.1638 0.3695 5.1050 1.7476
D25 0.0000 0.0072 0.5181 0.1164 0.9301 7.5725
D26 0.0172 0.0270 0.3149 0.0217 2.1756 45.0188
D27 0.0068 0.0000 0.5122 0.9982 0 .9552 0.0018
D28 0.0043 0.0000 0.8242 0.844 0.2133 0.1818
D29 0.0112 0.0000 0.3482 0.3491 1.8719 1.8641
D30 0.0060 0.0000 0.5609 0.9130 0.7828 0.0953
D31 0.0172 0.0270 0.3178 0.8182 2.1466 0.2222
D32 0.0009 0.0000 0.9483 0.7935 0.0545 0.2602
D33 0.0000 0.0000 0.9135 0.7935 0.0946 0.7134
D34 0.0049 0.0108 0.5297 0.4546 0.8879 1.1996
D35 0.0035 0.0000 0.0033 0.5398 0.2544 0.8528
D36 0.0032 0.0000 0.7441 0.7334 0.3039 0.3635
D37 0.0032 0.0000 0.7164 0.4792 0.3958 1.0868
D38 0.0000 0.0000 0.6692 0.5836 0.4943 0.7134
D39 0.0023 0.0000 0.5644 0.4546 0.7718 1.996
D40 0.0025 0.0000 0.6196 0.5814 0.6137 0.7198
D41 0.0057 0.0034 0.9997 0.9998 0.0003 0.0003
D42 0.0185 0.0142 0.8822 0.9995 0.1335 0.0005

suppose an observation was missing in the treatment labelled 49653/234

with three cases out of a sample of size 111. We estimate this missing

value using Gibbs sampling derived in section 2.4. R code for the Gibbs

sampling is given in Appendix.

Figures are based on 20000 MCMC simulations. According to Figure

4.3, it is likely that xm is 0. The trace plot in Figure 4.4 shows that mixing

is good enough and there are no large spikes in the autocorrelation plot

after lag 0. This is an indication of convergence of the Markov Chain.
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4.2 Example 2

We now consider a dataset relating to the number of deaths arising from

lung cancer as a consequence of smoking. This is a survey carried out by

Princeton University and the data is attached as part of the appendix. It

can also be accessed at http://data.princeton.edu/wws509/datasets/smoking.dat.

The dataset present two classes of smokers named “heavy” and “light”

smokers. The light smokers comprise the non-smokers and what has been

classified as cigarPipeOnly. The ’heavy’ smokers are those who smoke

cigarrette and cigarrettePlus ( probably large packets of ciggarrete in ad-

dition to cigar). Equivalence testing is done to determine if the average

number of deaths resulting from light smoking is different from the average

number of deaths arising from heavy smoking. The equivalence hypothesis

is given by

H0 :|λh − λl| < δ

H1 : |λh − λl| > δ

where λh is the average number of lung cancer deaths resulting from heavy

smoking and λl is the average number of people who died from light smok-

ing. We assume an equivalence margin of δ = 0.01. The data are as-

sumed to come from Poisson distributions and gamma priors are imposed

on λ’s. The distributions of Heavy and Light smokers are shown in Fig-

ure 4.5. The joint posterior distribution of (λt, λc) is shown in Figure

4.6. To do the equivalence test, the posterior probabilities of H0 and H1

are calculated and the higher probability is more likely. From section 2.2,
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the posterior distributions of λt’s are Gamma(
∑
xit + αt, βt + nt) and

Gamma(
∑
xic + αc, βc + nc) respectively. To test the equivalence hy-

pothesis, a function is written in R to count the number of Monte Carlo

estimates that falls within the margin specified in the null hypothesis. The

posterior probability that H0 is true is 0 for an equivalent margin of 0.01

which implies it is certain that the average number of deaths from heavy

smoking is not equivalent to the average number of deaths from light smok-

ing. For an equivalence margin of 2, the posterior probability that H0 is

true is still less likely with a probability of 0.0437.

4.3 Example 3

We now re-analyse the data in example 1 in terms of a meta-analysis. It

has been observed that 65% of deaths in diabetes patients are from cardio-

vascular causes [18]. It is therefore of importance to investigate the effect of

rosiglitazone on heart conditions. Out of a total of 116 studies available, 42

of the studies satisfied the pre-determined conditions for a meta-analysis.

The 42 trials comprise 15565 diabetes patients who were put on rosiglita-

zone(treatment group) and 12282 diabetes patients assigned to medication

that does not contain rosiglitazone(control group). The average age of

patients in the 42 trials is approximately 52 years. The interest is on my-

ocardial infarction and death from rosiglitazone as a treatment for diabetes.

Since the follow-up periods below treatments are similar for all trials, the

use of odds ratio as treatment effect is valid. Most of the responses from

the treatment are zero. Out of the 42 trials, only 13 treatment effects have
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been estimated by the Mantel-Haenszel method. Consequently, the odds

ratio calculated by the Mantel-Haenszel method has values designated as

0 or ∞. For instance, treatments labelled SB-712753/002, AVA100193 has

a lower 95% limit as C.I as undefined and upper 95% C.I limit as infinity.

The values of all the estimated odds ratios fall within the 95% confidence

interval. This implies that even in cases where myocardial infarction is

more likely in the treatment group, the occurance of the events ( myocar-

dial infarction) are not significant. The estimate of the combined odds

ratio by the Mantel -Haenszel method is 1.39 with a 95% confidence inter-

val of (1.01, 1.91). That is myocardial infarction is 39% more likely in the

diabetes patients treated with rosiglitazone compared to diabetes patients

not treated with rosiglitazone. The Dersimonian and Laird method gives

the summary odds ratio to be 1.25 and an estimate of the between study

variance to be 0.

It is clear that treatment effects are not estimable in this case. The

authors provided a remedy by pooling some of the studies. That is by

combining treatments in order to have values for each cell to be able to es-

timate treatment effect. This in turn gave estimates for treatment effects.

The chi-square test for heterogeneity is found to be 6.61 from the Mantel–

Haenszel method with a high p-value of 0.8825 which seeks to justify the

FEM where the studies as a group is assumed to have some common ef-

fect size which can be found by combining the studies. Nevertheless, this

approach is not the best since the high p-value only indicates statistical

non–significance and not practical significance. The merged cells represent
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different treatments and as such combining them may not be meaningful.

Moreover, the study has been carried out at different centers represent-

ing different populations with different characteristics and as such some

amount of variability is expected between the studies.

The literature suggest that when responses are mostly zeros, each cell

be adjusted by a value that is small in magnitude. In particular, adding

a value of 0.5 to all the cells [11]. This approach has been adapted in the

current study and the odds ratios re–estimated. The odds ratios of this

modification is shown in Table 4.3 and 4.4 . The summary odds ratio for

the modified data is 1.2, that is rosiglitazone is 20% more likely to cause

cardiovascular effects and death. A 95% confidence interval is (0.91, 1.6).

The DerSimonian–Laird method estimate of the summary odds ratio is

1.21 which does not vary so much from the Mantel-Haenszel estimate.

The value of the chi-square test statistic is 17.88 with a p-value of 0.9994.

The chi-square test statistic only assesses whether observed differences in

treatment across studies are compatible with chance.

Generally, if confidence intervals for the results of individual studies

(depicted graphically using horizontal lines) are non overlapping, this in-

dicates the presence of heterogeneity. A look at the forest plot of the data

in figure 4.7 shows the horizontal lines do not overlap. Figures 4.7 and 4.8

are the plots of the confidence intervals associated with the treatments.

Each study is represented by a horizontal line. However, studies having

zero events in both groups will not have lines representing them. The lines

represent the length of the confidence interval for each study. The line
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Table 4.3: The estimates of odds ratios by the Mantel–Haenszel method
after adding 0.5 to each response

Treatment OR lower 95% upper 95%
49653/011 2.36 0.11 49.33
49653/020 0.88 0.12 6.72
49653/024 0.24 0.02 2.30
49653/093 0.17 0.01 4.17
49653/094 1.50 0.06 37.19

100684 0.36 0.01 9.00
49653/143 3.55 0.14 88.01
49653/211 2.35 0.51 10.72
49653/284 3.02 0.12 74.46
712753/008 1.43 0.06 35.29

AMM100264 0.34 0.01 8.41
BRL49653C/185 1.26 0.06 26.44
BRL49653/334 1.68 0.22 12.80
BRL49653/347 2.55 0.12 53.25

49653/015 0.83 0.11 6.36
49653/079 0.52 0.05 5.05
49653/080 0.56 0.07 4.36
49653/082 2.54 0.12 53.42
49653/085 2.39 0.35 16.39
49653/095 0.49 0.01 24.81
49653/097 0.33 0.01 8.06

for each study has a box located on it and middle of the box represents

the magnitude of the treatment effect for the corresponding study. The

area of the box represent the weight assigned to each study. The diamond

is the combined treatment effect. Hence there is some inherent hetero-

geneity and a random effects model is fit to the data in this thesis. Even

though adding 0.5 to each cell enabled us to calculate odds ratios, it is still

not the best approach. In this study, this data is re-analysed by fitting a

semi–parametric random effects model described in Chapter 3.

Forest plot of observed treatment effects and 95% confidence intervals
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Table 4.4: Continuation of 4.3
OR ( lower 95% upper 95%)

49653/125 0.33 0.01 8.10
49653/127 3.17 0.13 79.37
49653/128 3.00 0.12 76.03
49653/134 0.10 0.00 2.04
49653/135 0.68 0.13 3.50
49653/136 2.92 0.12 72.23
49653/145 3.16 0.13 77.89
49653/147 3.00 0.12 74.66
49653/162 3.09 0.12 76.39
49653/234 0.68 0.13 3.50
49653/330 0.96 0.04 23.74
49653/331 0.46 0.01 23.23
49653/137 0.54 0.07 4.13

SB-712753/002 2.93 0.12 72.15
SB-712753/003 3.23 0.13 79.55
SB-712753/007 1.47 0.06 36.38
SB-712753/009 0.99 0.02 50.08

49653/132 0.76 0.03 18.77
AVA100193 0.94 0.04 23.32

DREAM 1.63 0.73 3.67
ADOPT 1.32 0.81 2.15

for rosiglitazone study. The horizontal lines represent the length of the

confidence interval. The center of each box represent the magnitude of the

study effect and the area of the box is the weight assigned to each study.

The funnel plot in figure 4.9 shows the actual responses of effect sizes

where as figure 4.10 represents the funnel plot after adjusting the responses

(by adding 0.5 to the treatment and control cases). Both shapes do not

deviate so much from the pattern of a funnel turned upside down. This

shows that publication bias may not be a problem with the rosiglitazone

dataset.
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In the Bayesian setting, when the posterior probability of the data given

a specific model is the highest, then that model is the preferred model.

“However, it is difficult to calculate the two marginal likelihoodsmc
h andmo

h

exactly, or very difficult to evaluate accurately even when feasible [4]. But,

it is possible to estimate their ratio (the Bayes factor) mc
h/m

o
h for all h from

a single Markov chain, run under modelMo
h1

, where h1 is some prespecified

value of the hyperparameter h1 = (M1, d1), M is the precision parameter

and d is vector of starting values for the hyperparameters. Mc and Mo

are respectively the Conditional Dirichlet and the Ordinary Dirichlet model

and mc
h and mo

h are the respective marginals” [5]. Figure 4.11 shows the

plot of Bayes factors for choosing between the mixtures of Conditional

Dirichlet model and the Ordinary Dirichlet model. The plot shows that

the ratio mc
h/m

o
h is always greater than 1 and the Conditional Dirichlet

model is preferred for the rosiglitazone dataset.

We now investigate the choice of M , precision parameters of DP. We

consider M = 1 and M = 10. The posterior distributions of µ (mu) and

τ (tau) are displayed in Figure 4.12. The posterior distributions of the

mean look similar for values of the concentration parameter equal 1 and

10. For M = 10, the responses seem to be clustered around 0 and the tails

of the distribution for M = 10 are flatter . However, the distribution of

τ is skewed to the right. The initial values and hyper parameters for the

Gibbs estimation is in table 4.5.

The parameters of the model are estimated by Gibbs sampling algo-

rithm implemented in R. The R code for the Gibbs sampling is attached
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Table 4.5: Initial Values for Gibbs sampling
µ0 τ 20 µ d a b
0 1 0 0.001 1 2

as part of the appendix. The estimates of study effects (µi) are given in

Table 4.6.

Table 4.6: The estimates of posterior treatments and standard deviations
Parameter Estimate S.d Parameter Estimate S.d

τ 2 0.74 0.2794073 µ21 -0.78 0.7748052
µ 0.71 0.4142608 µ22 -0.78 0.7449046
µ1 - 0.73 0.8151172 µ23 -0.71 0.8175963
µ2 -0.63 0.7358434 µ24 -0.75 0.8185433
µ3 1.2 0.4914719 µ25 -1.6 0.4702446
µ4 -1.1 0.6541732 µ26 -0.57 0.5950003
µ5 -0.74 0.8379231 µ27 -0.74 0.8104195
µ6 -0.77 0.7702218 µ28 -0.74 0.8192542
µ7 -0.70 0.8191522 µ29 -0.74 0.8091605
µ8 -0.61 0.7714286 µ30 -0.73 0.8372302
µ9 -0.74 0.7989194 µ31 -0.58 0.6008941
µ10 -0.75 0.8194161 µ32 -0.72 0.8096048
µ11 -0.77 0.7766973 µ33 -0.76 0.8134446
µ12 -0.74 0.8008516 µ34 -0.69 0.6464147
µ13 -0.67 0.7848413 µ35 -0.72 0.8196591
µ14 -0.73 0.8148389 µ36 -0.75 0.8109735
µ15 -0.65 0.7427869 µ37 -0.71 0.8172117
µ16 -0.72 0.6874473 µ38 -0.72 0.8127885
µ17 -0.67 0.6670385 µ39 -0.74 0.8024024
µ18 -0.74 0.8121317 µ40 -0.73 0.8114458
µ19 -0.69 0.7916802 µ41 -0.189 0.5258747
µ20 -0.74 0.8151257 µ42 0.01 0.3224310
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4.4 A Simulation Study

In this simulation study, each study has been simulated by means of a

binomial random variable in which the number of cases in the treatment

group and the control group are generated as independent binomial random

variables. That is, for the arm labeled 49653/011 for which there are

375 total number of patients in the treatment group with 2 cases, this is

regarded as 2 ‘successes’ out of a total of 375 trials with ‘success probability’

p = 2/375. In order to determine how the model performs, a typical

approach is the examination of estimates of the model to see if they make

sense [9]. As an example, we generate twenty binomial successes using the

rbinom random generator. We assume n = 200 in each case and fix the p at

0.7. This setting is similar to administering a treatment in twenty hospitals

with 200 patients in each hospital. Fixing p at 0.7 generates number of

cases that do not vary so much from each other. This is confirmed in the

non significance of the chi-square test for heterogeneity. Another set of

twenty ‘number of cases’ is generated from the binomial distribution but

this time we induce heterogeneity. This is done by varying the success

probability of each trial. For instance rbinom(1, 200, 0.86), rbinom(1, 200,

0.10), rbinom(1, 200, 0.55) . . .

Interest is in comparing the posterior treatment means of the hetero-

geneous studies with the studies that are not heterogeneous. Table 4.7

compares the posterior treatment means of 20 studies with heterogeneity

to the treatment means of 20 other studies in which there is no heterogene-

ity. Column 1 is the posterior treatment means of the non–heterogeneous
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(µi) studies where as µ?i in column 2 posterior treatments of the heteroge-

neous studies. Treatment means in column 1 (µi) are mostly 0.68 or just

slightly below or above it. On the other hand, all the treatment means

in column 2 (µ?i ) differ from each other significantly. If the responses are

similar, the treatment effects are supposed to be an estimate of a common

treatment mean, hence the model can be regarded as good.

Table 4.7: Estimates of treatment means for twenty studies with 200 ob-
servations within each study

Study µi µ?i
1 0.68 0.092
2 0.67 0.39
3 0.67 0.80
4 0.68 0.69
5 0.68 0.76
6 0.68 -2.8
7 0.68 -1.4
8 0.68 0.35
9 0.68 -0.11
10 0.70 0.53
11 0.67 0.69
12 0.70 -0.054
13 0.68 0.72
14 0.67 0.39
15 0.68 0.41
16 0.69 0.79
17 0.67 0.81
18 0.69 -0.94
19 0.68 -1.6
20 0.69 0.81

The estimates considered in this model are the posterior treatment

means and the respective standard deviations. Estimates have been ob-

tained in the different cases including small number of studies(k) involving
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small number of patients(n), large number of studies(k) involving small

number of patients(n), large k with large n and where both k and n are

small. Table 4.8 presents results for the case where there are small number

of studies(k = 5) with large number of patients(n = 200). Column 2 of

Table 4.8 labelled µi gives the treatment mean of five studies in which there

is no heterogeneity – the p–value for the chi–square test of heterogeneity is

0.35 with the associated posterior standard deviation in column 3 labelled

σi. Columns 3 and 4 give the estimates of five different studies in which

the studies differ from each other significantly ( with a p–value for the chi–

square test of heterogeneity as 0). The estimate of the posterior standard

deviation for the five studies with heterogeneity is slightly lower than the

posterior standard deviation of the five studies that are similar. This is

possibly due to the fact that the semi–parametric model fitted to the data

is a random effects model and therefore gives more precise estimates when

there is some heterogeneity among the studies. The case where there are a

smaller number of studies (k) with large number of patients appears to be

a practical situation but a more realistic scenario could be experiments on

a chronic disease which is characterised by a few patients (n) and possibly

a small number of studies (k) .
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Table 4.8: µi and σi are estimates of treatment mean and posterior stan-
dard deviation from five studies that are similar where as µ?i and σ?i are
estimates of five that studies that are heterogeneous

µi σi µ?i σ?i
µ 1.2 7.83 3.6 3.87
τ 0.92 12.6 4.7 4.26
1 1.01 0.92 0.46 0.31
2 1.01 0.92 0.38 0.26
3 1.01 0.92 7.70 0.59
4 1.02 0.86 0.40 0.20
5 1.01 0.88 0.38 0.21
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Figure 4.1: Graph showing the distributions of the Prior, Likelihood and
Posterior for treatment BRL49653/334 and 49653/135 with the respective
controls at the right hand side
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Posteriors of parameters using MCMC
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Figure 4.3: The distribution of xm shows it is more likely to be 0
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Figure 4.8: Forest plot of observed treatment effects and 95% confidence
intervals for rosiglitazone study

72



●
●

●

●●
●

●
●

●●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

Effect

S
iz

e

Figure 4.9: Funnel plot of rosiglitazone data
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Figure 4.10: Funnel plot of rosiglitazone data after adjustment
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Chapter 5

Conclusion

We have considered a Bayesian analysis of binary and count data in clinical

trials. For each type of data, Bayesian formulation was considered for

testing hypothesis of equivalence. We observe that normal approximation

to the beta posterior can used for moderately large sample sizes.

We also considered a meta analysis approach for data arising from mul-

tiple studies. In our example, the primary aim of the Meta-analysis of

different studies on the impact of the treatment of interest (rosiglitazone)

on myocardial infarction is to determine the overall effect. The individual

studies used in the Meta-analysis reported different effects of rosiglitazone

– some of which are positive and others negative.

The Bayes factor has been used to choose between the ordinary Dirich-

let process and the conditional Dirichlet process as priors and based on the

data, the conditional Dirichlet process is chosen. From the estimates ob-

tained, the posterior probability that the overall relative risk is less than 1

is .83 which means that the use of rosiglitazone as a treatment for diabetes

actually reduces the risk of myocardial infarction.
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A clinical equivalent test procedure has been employed to test for the

equivalence of treatment means. The estimates of the posterior means

obtained from the Semiparametric model has been used to do an equivalent

test. The test concludes that all treatment means are not the same and

therefore fitting a random effects model to the data is appropriate.

The conclusion of the Meta–analysis varies from the conclusion from

Maximum likelihood method called the Dersimonian–Laird method. Where

as the Meta–analysis concludes that rosiglitazone reduces the myocardial

infarction, Dersimonian–Laird method gives the summary odds ratio to be

1.21 which means rosiglitazone increases the risk of myocardial infarction

by 21%.

We would like to pursue some future work along the methods discussed

in the thesis. W are interested in enhancing the method to accommodate

extra covariates into the model as well as when there are multiple treat-

ments in one arm. The incorporation of covariates makes the Bayes Factor

inappropriate for model selection. We would like to examine the other

model selection criterions in place of Bayes Factor.

How a model fits data can be summarized numerically by the weighted

mean square error given as T (y, θ) = 1
n

∑n
i=1(yi − E(yi|θ))2/var(yi). An-

other measure which is proportional to the mean square of the model is

the deviance given as

D(y, θ) = −2 log p(y|θ) (5.1)

The disparity between data and the model fitted can be assessed by any

measure of discrepancy but the deviance is a standard measure. For a

78



measure of the disparity that depends only on data y and independent of

θ, the quantity Dθ̂(y) = D(y, θ̂(y)) can be used. A point estimate of θ for

instance the median can be used in the above formula.

The above disparity can be averaged as follows:

Davg(y) = E(D(y, θ)|y) (5.2)

An estimate of the average in 5.2 is obtained using posterior simulations

θl and this estimate is given as :

D̂avg(y) =
1

L

L∑
l=1

D(y, θl)

“The expected deviance — computed by averaging out the deviance over

the sampling distribution f(y) — equals 2 times the Kullback-Leibler in-

formation, up to a fixed constant ,
∫
f(y) log f(y)dy which does not de-

pend on θ . In the limit of large sample sizes, the model with the lowest

Kullback-Leibler information — and thus , the lowest expected deviance

will have the highest posterior probability ” [9] The difference between the

estimated posterior mean deviance and the deviance at θ̂ is used as a mea-

sure of the effective number of parameters that should be in the model.

This is represented as :

p
(1)
D = D̂avg(y)−Dθ̂(y) (5.3)

A relative measure of model complexity is calculated as half the posterior

variance of the deviance which is estimated from the posterior simulations
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and given by the formula:

p
(2)
D =

1

2

1

L− 1

L∑
l=1

(D(y, θl)− D̂avg(y))2

In hierarchical models, the effective number of parameters is greatly influ-

enced by the variance of the group-level parameters. Another approach to

measuring the disparity between data and the fitted model is by estimating

the error anticipated when the model is applied to future data for instance

the expected mean squared predictive error, Dpred
avg (y) = E[ 1

n

∑n
i=1(yi −

E(yi|y))2], where the expectation averages over the posterior predictive

distribution of replicated data yrep. The expected deviance for replicated

data can be computed as

Dpred
avg = E

[
D(yrep, θ̂(y))

]

where D(yrep, θ) = −2 log p(yrep|θ), and θ̂ a parameter estimate such as the

mean. The expected predictive deviance Dpred
avg is usually greater than the

expected deviance D̂avg since the predictive data yrep are being compared

to a model estimated from data y. The expected predictive deviance Dpred
avg

has been recommended as a yardstick of model fit when the aim is to pick

a model with best out-of-sample predictive power [9]. An estimate for the

expected predictive deviance is called the deviance information criterion

(DIC):

DIC = D̂pred
avg (y) = 2D̂avg −Dθ̂(y)
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The Akaike Information Criterion is based on the Kullback–Leibler (K-

L) information . The K–L information is a measure (a distance in an

heuristic sense) between conceptual reality, f and approximating model, g,

and is defined for continuous functions as the integral

I(f, g) =

∫
f(x) loge

(
f(x)

g(x|θ)

)
dx

where f and g are n–dimensional probability distributions, l(f, g) represent

a measure of the information lost in approximating the real model f by

g[3].

The goal here is to look for an approximating model that loses as little

information as possible which is equivalent to minimising l(f, g) over the

set of models of interest. The link between K–L information and maximum

likelihood estimation which makes it possible to bring estimation and model

selection under one framework is called optimization. The estimator of the

expected relative K–L information is based on the maximised log–likelihood

function. The derivation is an asymptotic result (for large samples) and

relies on the K–L information as an averaged entropy and this lead to

Akaike’s information criterion (AIC) given as

AIC = n loge(L(θ̂|data)) + 2K

where loge(L(θ̂|data)) is the value of the maximised log-likelihood over the

unknown parameters (θ), given the data and the model, and K is the

number of estimable parameters in that approximating model. In a linear
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model with normally distributed errors for all models under consideration,

the AIC is stated as:

AIC = n log(θ̂) + 2K

where σ̂2 =
∑
ε̂2

n
. The model with the smallest AIC is comparatively

better than all others and is the one selected.“ The AIC is asymptotically

efficient but not consistent and can be used to compare non-nested models.

A substantial advantage in using information-theoretic criteria is that they

are valid for nonnested models. Of course, traditional likelihood ratio tests

are defined only for nested models, and this represents another substantial

limitation in the use of hypothesis testing in model selection ” [3].

Table 5.1: Table showing empirical support for AIC
AICi - AICmin Level of Empirical Support for Model i

0 – 2 Substantial
4 – 7 Considerably Less
≥ 10 Essentially None

From Table 5.1, small values of AIC between 0 and 2 provides substan-

tial evidence in support of the model under consideration. Large values

of AIC gives considerably less evidence in support of the model. The

BIC as well as the AIC is a classical way of estimating the dimension

of a model . By the maximum likelihood principle, the model for which

logMj(X1, . . . , Xn) − 1
2
kj log n is the largest should be chosen [23] . In

choosing among different models, the likelihood function for each model

is maximized to get a Maximum Likelihood Estimate (MLE) of the form

Mj(X1, . . . , Xn) and kj is the dimension of the jth model. This result has
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been validated by as a large sample version of the Bayes procedure.
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Chapter 6

Appendix

##################################################################

To install and load packages required to estimate odds by

the Mantel-Haenszel method

##################################################################

install.packages("HSAUR2")

library("HSAUR2")

install.packages("rmeta")

library("rmeta")

##################################################################

R code to estimate odd ratios by the Mantel-Haenszel method

##################################################################

a <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\data.txt",

header=TRUE)

aOR <- meta.MH(a[["tt"]], a[["tc"]],

a[["qt"]], a[["qc"]],
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names = rownames(a))

summary(aOR)

O <- summary(aOR)

##################################################################

R code to make a Forest Plot of the Rosiglitazone data

by Mantel-Haenszel method

##################################################################

pdf(’forestplot_A.pdf’,width=7,height=13)

plot(aOR, ylab = "",cex.lab=0.05)

dev.off()

getwd()

##################################################################

R code to estimate Odds Ratios for the modified data

##################################################################

a1 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\data1.txt",

header=TRUE)

aO1R <- meta.MH(a1[["tt"]], a1[["tc"]],

a1[["qt"]], a1[["qc"]],

names = rownames(a1))

summary(aO1R)

a1DSL <- meta.DSL(a1[["tt"]], a1[["tc"]],

a1[["qt"]], a1[["qc"]],

names = rownames(a1))
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print(a1DSL)

pdf(’forestplotmodified.pdf’,width=7,height=15)

plot(aO1R, ylab = "",cex.lab=0.05)

dev.off()

getwd()

pdf(’funnelplot_B.pdf’,width=7,height=7)

funnelplot(a1DSL$logs, a1DSL$selogs,

summ = a1DSL$logDSL, xlim = c(-1.7, 1.7))

abline(v = 0, lty = 2)

dev.off()

getwd()

##################################################################

Bayesian analysis

To install package required for the Bayesian Semi-parametric model

##################################################################

install.packages("bspmma")

library("bspmma")

Ba <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\data2.txt",

header=TRUE)

Ba.new <- as.matrix(Ba)

attach(Ba)

## R code to change data to the log of odd ratios and standard errors
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Bam <- data.frame(OR, lower, upper)

se <- (upper -lower)/3.92

OR1 <- log(OR)

##################################################################

R code to compute and make a plot of Bayes factors

##################################################################

Ba <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\Bayesdata.txt",

header=TRUE)

rosiglitazone.data <- as.matrix(Ba)

chain1.list <- bf1(rosiglitazone.data)

cc <- bf2(chain1.list)

chain2.list <- bf1(rosiglitazone.data, seed=2)

rosiglitazone.bfc <- bf.c(to=20, cc=cc, mat.list=chain2.list)

draw.bf(rosiglitazone.bfc)

##################################################################

R code to compute Bayes for choosing between Conditional

and Ordinary Dirichlet Models

##################################################################

load("rosiglitazone-rdat-2lists-1000")

rosiglitazone.bfco <- bf.c.o(to=20, cc=cc, mat.list=chain2.list)

draw.bf(rosiglitazone.bfco)

##################################################################

R code to generate MCMC chians, plot autocorrelation,
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obtain posterior descriptives and graph of mu and tau

##################################################################

install.packages("bspmma")

library("bspmma")

Alt <- read.table("Altered.txt",header=FALSE)

rosiglitazone <- as.matrix(Alt)

set.seed(1)

Alt.c5 <- dirichlet.c(rosiglitazone, ncycles = 4000, M =1,

d=c(.1,.1, 0, 1000))

set.seed(1)

Alt.c6 <- dirichlet.c(rosiglitazone , ncycles = 4000, M =10,

d=c(.1,.1, 0, 1000))

pdf(’Autocorrelation3.pdf’,width=7,height=7)

Alt.coda <- mcmc(Alt.c5$chain)

autocorr.plot(Alt.coda[, 15:19])

dev.off()

## R code to make Graphs of mu and tau

Alt.c5c6 <- list("1" =Alt.c5$chain, "10" = Alt.c6$chain)

pdf(’Graph3.pdf’,width=6,height=6)

draw.post(Alt.c5c6, burnin = 100)

dev.off()
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describe.post(Alt.c5c6, burnin = 100)

data3<-capture.output(describe.post(Alt.c5c6, burnin = 100))

cat(data3,file="estimate3.txt",sep="\n",append=TRUE)

chain1.list <- bf1(rosiglitazone, ncycles = 5000, burnin = 1000)

cc <- bf2(chain1.list)

chain2.list <- bf1(rosiglitazone, seed=2, ncycles = 5000, burnin = 1000)

rosiglitazone.bfco <- bf.c.o(from =0.8, incr = 0.2, to = 20, cc = cc,

mat.list = chain2.list)

pdf(’BayesModel.pdf’,width=6,height=6)

draw.bf(rosiglitazone.bfco)

dev.off

getwd()

sd(Alt.c6$chain)

sigma10_i <- capture.output(sd(Alt.c6$chain))

cat(sigma10_i,file="standarddeviation.txt",sep="\n",append=TRUE)

rosiglitazone.bfc <- bf.c(df=-99, from = 0.8, incr = 0.2, to = 20, cc =cc,

mat.list = chain2.list)

pdf(’BayesM.pdf’,width=6,height=6)

draw.bf(rosiglitazone.bfc)

dev.off()

getwd()

rosiglitazone.bfc$y[9]/rosiglitazone.bfc$yinfinity

value <- capture.output(rosiglitazone.bfc$y[9]/rosiglitazone.bfc$yinfinity)
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cat(value,file="Bayesfactor.txt",sep="\n",append=TRUE)

set.seed(1)

Alt.c7 <- dirichlet.o(rosiglitazone, ncycles = 4000, M =1,

d=c(.1,.1, 0, 1000))

Alt.c7<-matrix(Alt.c7)

set.seed(1)

Alt.c8 <- dirichlet.o(rosiglitazone , ncycles = 4000, M =10,

d=c(.1,.1, 0, 1000) )

Alt.c8<-matrix(Alt.c8)

Alt.c7c8 <- list("1"=Alt.c7$chain, "10"=Alt.c8$chain)

Alt.c7

pdf(’Grapho.pdf’,width=6,height=6)

draw.post(Alt.c7c8, burnin = 100)

dev.off()

describe.post(Alt.c7c8, burnin = 100)

colnames(Alt.c7c8) <-c(Alt.c7,Alt.c8)

rosiglitazone.bfco <- bf.c.o(from = 0.8, incr = 0.2, to = 20,

cc = cc, mat.list = chain2.list)

pdf(‘BayesMo.pdf‘,width=6,height=6)

draw.bf(rosiglitazone.bfco)

##################################################################

Simulation Study

##################################################################
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qt <- c(rbinom(5, 200, 0.7))

qc <- c(rbinom(5, 200, 0.3))

tt <- rep(200, 5)

tc <- rep(200, 5)

Sdata <- cbind(tt, qt, tc, qc, deparse.level = 1)

Sdata

Sdata0 <- capture.output(Sdata)

cat(Sdata0, file="Sdata.txt",sep="\n",append=TRUE)

Sdata1 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\Sdata.txt",

header=TRUE)

Sdata1OR <- meta.MH(Sdata1[["tt"]], Sdata1[["tc"]],

Sdata1[["qt"]], Sdata1[["qc"]],

names = rownames(Sdata1))

summary(Sdata1OR)

SMH <- capture.output(summary(Sdata1OR))

cat(SMH, file="S_MH.txt",sep="\n",append=TRUE)

nh5 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\S.txt",

header=TRUE)

attach(nh5)

Sdata2 <- data.frame(OR, lower, upper)

se <- (upper -lower)/3.92

OR1 <- log(OR)

Sdata.new <- cbind(se, OR1, deparse.level = 1)
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Simulation <- capture.output(Sdata.new)

cat(Simulation, file="Simulated_D.txt",sep="\n",append=TRUE)

Sbinom <- read.table("Simulated_D.txt",header=TRUE)

Sbinom1 <- as.matrix(Sbinom)

set.seed(1)

Alt.c1 <- dirichlet.c(Sbinom1, ncycles = 4000, M =1,d=c(.1,.1, 0, 1000))

set.seed(1)

Alt.c2 <- dirichlet.c(Sbinom1 , ncycles = 4000, M =10,d=c(.1,.1, 0, 1000))

Alt.c1c2 <- list("1"=Alt.c1$chain, "10"=Alt.c2$chain)

describe.post(Alt.c1c2, burnin = 100)

Mean <- capture.output(describe.post(Alt.c1c2, burnin = 100))

cat(Mean, file="Smeans.txt",sep="\n",append=TRUE)

deviation <- capture.output(sd(Alt.c1$chain))

cat(deviation, file="Smeans.txt",sep="\n",append=TRUE)

qt <- c(rbinrbinom(1, 200, 0.45),(1, 200, 0.7), rbinom(1, 200, 0.01),

rbinom(1, 200, 0.9), rbinrbinom(1, 200, 0.65), rbinom(1, 200, 0.2))

qc <- c(rbinom(5, 200, 0.3))

tt <- rep(200, 5)

tc <- rep(200, 5)

SdataH1 <- cbind(tt, qt, tc, qc, deparse.level = 1)

H1_D <- capture.output(SdataH1)

cat(H1_D, file="Simulated_H1.txt",sep="\n",append=TRUE)

SH1 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\Simulated_H1.txt",
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header=TRUE)

SH1OR <- meta.MH(SH1[["tt"]], SH1[["tc"]],

SH1[["qt"]], SH1[["qc"]],

names = rownames(SH1))

summary(SH1OR)

SMH1 <- capture.output(summary(SH1OR))

cat(SMH1, file="S_MH1.txt",sep="\n",append=TRUE)

SD1 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\S1.txt",header=TRUE)

attach(SD1)

Sdata3 <- data.frame(OR1, lower1, upper1)

se1 <- (upper1 -lower1)/3.92

OR2 <- log(OR1)

SdataH.new <- cbind(se1, OR2, deparse.level = 1)

SimH <- capture.output(SdataH.new)

cat(SimH, file="SH2.txt",sep="\n",append=TRUE)

Sbinom1 <- read.table("SH2.txt",header=TRUE)

Sbinom2 <- as.matrix(Sbinom1)

set.seed(1)

Alt.c2 <- dirichlet.c(Sbinom2, ncycles = 4000, M =1,d=c(.1,.1, 0, 1000))

set.seed(1)

Alt.c3 <- dirichlet.c(Sbinom2 , ncycles = 4000, M =10,d=c(.1,.1, 0, 1000))

Alt.c2c3 <- list("1"=Alt.c2$chain, "10"=Alt.c3$chain)

describe.post(Alt.c2c3, burnin = 100)
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Mean <- capture.output(describe.post(Alt.c2c3, burnin = 100))

cat(Mean, file="Smeans.txt",sep="\n",append=TRUE)

deviation1 <- capture.output(sd(Alt.c2$chain))

cat(deviation1, file="Smeans.txt",sep="\n",append=TRUE)

qt <- c(rbinom(1, 200, 0.7), rbinom(1, 200, 0.65), rbinom(1, 200, 0.02),

rbinom(1, 200, 0.09), rbinom(1, 200, 0.86), rbinom(1, 200, 0.01),

rbinom(1, 200, 0.19), rbinom(1, 200, 0.35), rbinom(1, 200, 0.49),

rbinom(1, 200, 0.80), rbinom(1, 200, 0.11), rbinom(1, 200, 0.55),

rbinom(1, 200, 0.79), rbinom(1, 200, 0.27), rbinom(1, 200, 0.38),

rbinom(1, 200, 0.43),rbinom(1, 200, 0.46), rbinom(1, 200, 0.22),

rbinom(1, 200, 0.29), rbinom(1, 200, 0.63))

qc <- c(rbinom(20, 200, 0.3))

tt <- rep(200, 20)

tc <- rep(200, 20)

H_s <- cbind(tt, qt, tc, qc, deparse.level = 1)

S_0 <- capture.output(H_s)

cat(S_0, file="Sdata20.txt",sep="\n",append=TRUE)

SH20 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\Sdata20.txt",

header=TRUE)

SH20_mh <- meta.MH(SH20[["tt"]], SH20[["tc"]],

SH20[["qt"]], SH20[["qc"]],

names = rownames(SH20))

summary(SH20_mh )
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SMH20<- capture.output(summary(SH20_mh))

cat(SMH20, file="S_MH20.txt",sep="\n",append=TRUE)

Shbin <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\S_20.txt",

header=TRUE)

attach(Shbin)

Shbin2 <- data.frame(OR20, lower20, upper20)

se20 <- (upper20 -lower20)/3.92

OR_20 <- log(OR20)

Shbin3 <- cbind(OR_20, se20, deparse.level = 1)

Shbin4 <- capture.output(Shbin3)

cat(Shbin4, file="Shbin20.txt",sep="\n",append=TRUE)

Sbinom20 <- read.table("Shbin20.txt",header=TRUE)

Sbinom_20 <- as.matrix(Sbinom20)

set.seed(1)

Alt.c20 <- dirichlet.c(Sbinom_20, ncycles = 4000, M =1,

d=c(.1,.1, 0, 1000))

set.seed(1)

Alt.c21 <- dirichlet.c(Sbinom_20 , ncycles = 4000, M =10,

d=c(.1,.1, 0, 1000))

Alt.c20c21 <- list("1"=Alt.c20$chain, "10"=Alt.c21$chain)

describe.post(Alt.c20c21, burnin = 100)

Mean <- capture.output(describe.post(Alt.c20c21, burnin = 100))

cat(Mean, file="Smeans20.txt",sep="\n",append=TRUE)
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sd(Alt.c21$chain)

sd20 <- capture.output(sd(Alt.c21$chain))

cat(sd20, file="Smeans20.txt",sep="\n",append=TRUE)

qt <- c(rbinom(1, 200, 0.7), rbinom(1, 200, 0.65), rbinom(1, 200, 0.02),

rbinom(1, 200, 0.09), rbinom(1, 200, 0.86), rbinom(1, 200, 0.01),

rbinom(1, 200, 0.19), rbinom(1, 200, 0.35), rbinom(1, 200, 0.49),

rbinom(1, 200, 0.80), rbinom(1, 200, 0.11), rbinom(1, 200, 0.55),

rbinom(1, 200, 0.79), rbinom(1, 200, 0.27), rbinom(1, 200, 0.38),

rbinom(1, 200, 0.43), rbinom(1, 200, 0.46), rbinom(1, 200, 0.22),

rbinom(1, 200, 0.29), rbinom(1, 200, 0.63), binom(1, 200, 0.7),

rbinom(1, 200, 0.65), rbinom(1, 200, 0.31), rbinom(1, 200, 0.09),

rbinom(1, 200, 0.86), rbinom(1, 200, 0.53), rbinom(1, 200, 0.32),

rbinom(1, 200, 0.35), rbinom(1, 200, 0.49), rbinom(1, 200, 0.10),

rbinom(1, 200, 0.7), rbinom(1, 200, 0.01), rbinom(1, 200, 0.52),

rbinom(1, 200, 0.45), rbinom(1, 200, 0.2), rbinom(1, 200, 0.12),

rbinom(1, 200, 0.06), rbinom(1, 200, 0.36),

rbinom(1, 200, 0.44), rbinom(1, 200, 0.34))

qc <- c(rbinom(40, 200, 0.3))

tt <- rep(200, 40)

tc <- rep(200, 40)

H_s40 <- cbind(tt, qt, tc, qc, deparse.level = 1)

S_40 <- capture.output(H_s40)

cat(S_40, file="Sdata40.txt",sep="\n",append=TRUE)

SH40 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\Sdata40.txt",
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header=TRUE)

SH40_mh <- meta.MH(SH40[["tt"]], SH40[["tc"]],

SH40[["qt"]], SH40[["qc"]],

names = rownames(SH40))

summary(SH40_mh )

SMH40<- capture.output(summary(SH40_mh))

cat(SMH40, file="S_MH40.txt",sep="\n",append=TRUE)

Sh40 <- read.table("C:\\Users\\Cynthia\\Desktop\\Thesis\\d40.txt",

header=TRUE)

attach(Sh40)

Shbin40 <- data.frame(OR40, lower40, upper40)

se40 <- (upper40 -lower40)/3.92

OR_40 <- log(OR40)

Shbin5 <- cbind(OR_40, se40, deparse.level = 1)

Shbin_40 <- capture.output(Shbin5)

cat(Shbin_40, file="Shb40.txt",sep="\n",append=TRUE)

Sbinom40 <- read.table("Shb40.txt",header=TRUE)

Sbinom_40 <- as.matrix(Sbinom40)

set.seed(1)

Alt.c40 <- dirichlet.c(Sbinom_40, ncycles = 4000, M =1,d=c(.1,.1, 0, 1000))

set.seed(1)

Alt.c41 <- dirichlet.c(Sbinom_40, ncycles = 4000, M =10,d=c(.1,.1, 0, 1000))

97



Alt.c40c41 <- list("1"=Alt.c40$chain, "10"=Alt.c41$chain)

describe.post(Alt.c40c41, burnin = 100)

Mean <- capture.output(describe.post(Alt.c40c41, burnin = 100))

cat(Mean, file="Smeans40.txt",sep="\n",append=TRUE)

sd(Alt.c41$chain)

sd40 <- capture.output(sd(Alt.c21$chain))

cat(sd40, file="Smeans40.txt",sep="\n",append=TRUE)

Alt <- read.table("Altered.txt",header=FALSE)

y <- as.matrix(Alt)

##################################################################

R code to Estimate parameters of the model by Gibbs Sampling

##################################################################

mu0=0; sigma0=10000; eta=c=.001; lambda=d=.001; tau2=1; sigma2=1; mmu=0

n=nrow(y)

for(i in 1:20000){

mui= rnorm(n,

mean=(((tau2*(y[,1]+y[,2]))+sigma2*mmu)/(2*tau2+sigma2)),

sd=sqrt((tau2*sigma2)/(2*tau2+sigma2)))

mu =rnorm(1,

mean=(tau2*mu0+sigma0*sum(mui))/((tau2+n*sigma0)),

sd=sqrt((tau2*sigma0)/((tau2+n*sigma0))))

phi=rgamma(1, shape=(n/2+eta), rate=2/(sum((mui -mu)^2)+2*lambda))
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mu0 = mu

mmu = mui

tau2 = 1/phi

sigma0 = sigma0

if(i%%10==0 | i==1)

{print(c(i,mui[1],mu,tau2,sigma0))

write(c(i,mui[1],mu,tau2,sigma0),

file="c:\\result.out",append=T,ncol=5)}

}

xt <- c(2,2,1,0,1,0,1,5,1,1,0,2,2,2,2,1,1,2,3,0,0,0,1,

1,0,2,1,1,1,1,0,1,0,1,1,1,1,0,1,1,15,27)

xc <- c(0,1,1,1,0,1,0,2,0,0,1,0,1,0,1,1,2,0,1,0,1,

1,0,0,2,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,9,41)

nt <- c(357,391,774,213,232,43,121,110,382,284,294,563,

278,418,395,203,104,212,138,196,122,175,

56,39,561,116,148,231,89,168,116,1172,

706,204,288,254,314,162,442,394,2635,1456)

nc <-c(176,207,185,109,116,47,142,114,384,135,302,142,279,

212,198,106,99,107,139,96,120,173,58,38,276,111,

143,242,88,172,111,377,325,185,280,272,154,160,112,

124,1634,1895)

p1 <- xt/nt

p2 <- xc/nc
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alpha<-2

beta<-5

pc <- qbeta(p2, xc + alpha, nc+beta-xc )

pt <- qbeta(p1, xt + alpha, nt+beta-xt )

pt

pc

Pct <- capture.output(pt)

cat(Pct, file="Proportions.txt",sep="\n",append=TRUE)

Pct1 <- capture.output(pc)

cat(Pct1, file="Proportions.txt",sep="\n",append=TRUE)

##################################################################

R code to calculate posterior probabilities for Equivalence test

##################################################################

count = 0

H0_prob <-function(xc, xt, alpha, beta, nc, nt){

for(i in 1:10000){

pc[i] <- rbeta(1, xc + alpha, nc+beta-xc)

pt[i] <- rbeta(1, xt + alpha, nt+beta-xt)

D[i] <- pt[i]-pc[i]

count = ifelse(D[i] < 0.01 & D[i]>-0.01, count+1, count)

}

return(count)

}

R <- Probability(41,27,2,5,2895,1456)
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R

##################################################################

R code to plot the prior, likelihood and posterior for thr Beta-binomial

##################################################################

beta_binom<-function(n,y,a=1,b=1,main=""){

#likelihood: y|p~binom(n,p)

#prior: p~beta(a,b)

#posterior: p|y~beta(a+y,n-y+b)

p<-seq(0.001,0.999,0.001)

prior<-dbeta(p,a,b)

if(n>0){likelihood<-dbinom(rep(y,length(p)),n,p)}

if(n>0){posterior<-dbeta(p,a+y,n-y+b)}

#standardize!

prior<-prior/sum(prior)

if(n>0){likelihood<-likelihood/sum(likelihood)}

if(n>0){posterior<-posterior/sum(posterior)}

ylim<-c(0,max(prior))

if(n>0){ylim<-c(0,max(c(prior,likelihood,posterior)))}

plot(p,prior,type="l",lty=2,xlab="p",ylab="",main=main,ylim=ylim)

if(n>0){lines(p,likelihood,lty=3)}

if(n>0){lines(p,posterior,lty=1,lwd=2)}

legend("topright",c("prior","likelihood","posterior"),
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lty=c(2,3,1),lwd=c(1,1,2),inset=0.01,cex=.5)

}

##

pdf(’Plot1n1.pdf’,width=7,height=8)

par(mfrow=c(2,2))

beta_binom(278,2,8.5,3.5,main="Prior: beta(8.5, 3.5), data: 2/278")

beta_binom(279,1,8.5,3.5,main="Prior: beta(8.5, 3.5), data: 1/279")

beta_binom(116,2,6,59,main="Prior: beta(6,59), data: 2/116")

beta_binom(111,3,6,59,main="Prior: beta(6,59), data: 3/111")

dev.off()

getwd()

## 49653/015n49653/080

pdf(’Plot2.pdf’,width=7,height=8)

par(mfrow=c(2,2))

beta_binom(395,2,2,20,main="Prior: beta(2,20), data: 2/395")

beta_binom(198,1,5,15,main="Prior: beta(5,15), data: 1/198")

beta_binom(102,1,6,45,main="Prior: beta(6,45), data: 1/104")

beta_binom(198,1,7,60,main="Prior: beta(7,60), data: 2/99")

dev.off()

getwd()

## 49653/211n49653/011

pdf(’Plot3.pdf’,width=7,height=7)

par(mfrow=c(2,2))
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beta_binom(375,1,5,2,main="Prior: beta(2,5), data: 5/110")

beta_binom(176,0,2,5,main="Prior: beta(2,5), data: 2/114")

beta_binom(375,2,4,75,main="Prior: beta(4,75), data: 2/375")

beta_binom(176,0,4,75,main="Prior: beta(4,75), data: 0/176")

dev.off()

getwd()

##################################################################

R code to calculate posterior probabilities for Poisson model

##################################################################

alpha=1

beta=1

xc= 6021

xt=5101

count = 0

probability <-function(xc, xt, alpha, beta){

lambdac <- vector(length = 10000)

lambdat <- vector(length = 10000)

D <- vector(length =10000)

for(i in 1:10000){

lambdac[i] <- rgamma(1, xc + alpha, beta +19)

lambdat[i] <- rgamma(1, xt + alpha, beta+19)

D[i] <- lambdat[i]-lambdac[i]

count = ifelse(D[i] < 0.01 & D[i]>-0.01, count+1, count)

}

return(count)
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}

R <- probability(5,10,1,2)

R

R < probability

##################################################################

R code to plot the prior and posterior for Poisson likelihood and

Gamma prior

##################################################################

p_gamma <- function(y,a,b,main=""){

#likelihood: y|lambda~Poisson(lambda)

#prior: lambda~gamma(lambda)

#posterior: lambda|y~gamma(a+y,n+b)

a=2

b=1

n=19

lambda <- c(seq(1,10, length.out=1000))

y <- c(0.18,0.22,0.19,0.55,1.17,1.70,1.79,

1.20,1.20,0.02,0.04,0.03,0.38,1.13,

1.73,2.12,2.43,2.53)

prior <- dgamma(lambda,a,b)

likelihood<- (lambda^(sum(y))*exp(-n*lambda))/prod(factorial(y))

#likelihood <- exp(sum(y)*log(lambda) -n*lambda-sum(log(y)))

y1=sum(y)
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posterior<-dgamma(lambda,a+y1,n+b)

#loglikelihood <- log(loglikelihood1)

# Standardize

#loglikelihood <- loglikelihood/sum(loglikelihood)

# posterior <-posterior/sum(posterior)

#ylim<-c(0,max(prior))

ylim<-c(0,max(c(prior,likelihood,posterior)))

plot(lambda,prior,type="l",lty=2,xlab="lambda",ylab="")

#lines(lambda,likelihood,lty=3)

lines(lambda,posterior,lty=1,lwd=2)

legend("topright",c("prior","likelihood","posterior"),

lty=c(2,3,1),lwd=c(1,1,2),inset=0.01,cex=.5)

}

Light<- c(0.18,0.22,0.19,0.55,1.17,1.70,1.79,

1.20,1.20,0.02,0.04,0.03,0.38,1.13,

1.73,2.12,2.43,2.53)

Heavy <- c(1.49,1.69,1.93,5.73,10.01,9.01,6.13,3.37,

1.89,1.24,1.40,1.87,5.14,7.78,6.89,4.32,

2.14,0.63)

## Plot of Prior and Posterior distributions

pdf(’distrns.pdf’,width=7,height=8)

par(mfrow=c(2,1))

p_gamma(Heavysmoke,2,1,main="beta(2,1)")
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p_gamma(Lightsmoke,3,2,main="beta(3,2)")

dev.off()

getwd()

## Histogram of Smoking datasets

pdf(’histmoker1.pdf’,width=7,height=8)

par(mfrow=c(1,2))

hist(Heavy,sub="Deaths of Heavy Smokers",main="",xlab="", ylab="")

hist(Light,sub="Deaths of Light Smokers",main="",xlab="",ylab="")

dev.off()

getwd()

pdf(’trial1.pdf’,width=7,height=8)

p_gamma(y<-c(14,6,8,15,18,24,52,53,127,252,364,491,638,655,712,652,527,493),1,1,beta(1,1))

dev.off()

getwd()

##################################################################

R code to compute the posterior probabability for testing

the equivalence of two Poisson rates

##################################################################

xl <- c(0.18,0.22,0.19,0.55,1.17,1.70,1.79,

1.20,1.20,0.02,0.04,0.03,0.38,1.13,

1.73,2.12,2.43,2.53)

xh<- c(1.49,1.69,1.93,5.73,10.01,9.01,6.13,3.37,

1.89,1.24,1.40,1.87,5.14,7.78,6.89,4.32,

2.14,0.63)
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xh <- rpois(30,1)

xl <- rpois(30,1.2)

xh <- rpois(30,1.5)

xl <-c(rpois(5,5),rpois(5,20),rpois(5,1),rpois(5,89),rpois(5,3),

rpois(5,200))

sum(xh)

sum(xl)

nh=30

nl=30

lambdah <- dgamma(xh,2,1)

lambdal <-dgamma(xl,2,1)

count = 0

posterior<-function(xh, xl, alpha, beta, nh, nl){

lambdac <- vector(length = 100)

lambdat <- vector(length = 100)

D <- vector(length =100)

for(i in 1:100){

lambdah[i] <- rgamma(1, 38+alpha, nh+beta)

lambdal[i] <- rgamma(1, 1563+alpha, nl+beta)

D[i] <- lambdah[i]-lambdal[i]

count = ifelse(D[i] < 200 & D[i]>-200, count+1, count)

}

return(count)

}
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posterior(xh,xl,2,1,30,30)

##################################################################

R code for aa plot of Normal approximation to Beta distribution

##################################################################

beta_approx <- function(alpha,beta){

#a+xt = alpha

#nt+b-xt = beta

#a+b+nt= alpha+beta

S=alpha+beta

P_0 =(1-alpha)/(2-S)

sigma <- sqrt(-(2-S)^3/((1-beta)*(1-alpha)))

N <- c(P_0,sigma)

return(N)

}

beta_approx1<-function(alpha=1,beta=1,main=""){

S=alpha+beta

P_0 =(1-alpha)/(2-S)

sigma <-1/sqrt(-(2-S)^3/((1-beta)*(1-alpha)))

p<-seq(0.001,0.999,0.001)

Beta<-dbeta(p,alpha,beta)

#T <- qnorm(p,P_0,sigma)

if(n>0){Normal <-dnorm(p,P_0,sigma)}

#standardize!
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#Beta<-Beta/sum(Beta)

#if(n>0){Normal<-Normal/sum(Normal)}

ylim<-c(0,max(Beta))

if(n>0){ylim<-c(0,max(c(Beta,Normal)))}

plot(p,Beta,type="l",lty=2,xlab="p",ylab="",main=main,ylim=ylim)

if(n>0){lines(p,Normal,lty=1,lwd=2)}

legend("topright",c("Beta","Normal"),

lty=c(2,1),lwd=c(1,2),inset=0.01,cex=.5)

}

pdf(’Napprox.pdf’,width=7,height=8)

par(mfrow=c(5,2))

beta_approx1(2,2,"Beta(2,2)")

beta_approx1(3,3,"Beta(3,3)")

beta_approx1(2,4,"Beta(2,4)")

beta_approx1(4,4,"Beta(4,4)")

beta_approx1(5,5,"Beta(5,5)")

beta_approx1(10,10,"Beta(10,10)")

beta_approx1(30,20,"Beta(30,20)")

beta_approx1(20,30,"Beta(20,30)")

beta_approx1(50,20,"Beta(50,20)")

beta_approx1(20,50,"Beta(20,50)")

dev.off()
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getwd()

pdf(’Napprox21.pdf’,width=6,height=6.5)

par(mfrow=c(2,2))

beta_approx1(2,2,"Beta(2,2)")

beta_approx1(3,3,"Beta(3,3)")

beta_approx1(2,4,"Beta(2,4)")

beta_approx1(4,4,"Beta(4,4)")

dev.off()

getwd()

pdf(’Napprox31.pdf’,width=6,height=6.5)

par(mfrow=c(2,2))

beta_approx1(5,5,"Beta(5,5)")

beta_approx1(10,10,"Beta(10,10)")

beta_approx1(30,20,"Beta(30,20)")

beta_approx1(20,30,"Beta(20,30)")

dev.off()

getwd()

pdf(’Napprox41.pdf’,width=6,height=6)

par(mfrow=c(1,2))

beta_approx1(50,20,"Beta(50,20)")

beta_approx1(20,50,"Beta(20,50)")

dev.off()

getwd()
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##################################################################

A 3D plot of the joint posterior of lambdat and lambdac

##################################################################

xl <- c(0.18,0.22,0.19,0.55,1.17,1.70,1.79,

1.20,1.20,0.02,0.04,0.03,0.38,1.13,

1.73,2.12,2.43,2.53)

xh<- c(1.49,1.69,1.93,5.73,10.01,9.01,6.13,3.37,

1.89,1.24,1.40,1.87,5.14,7.78,6.89,4.32,

2.14,0.63)

sum(xl)=18

sum(xh)=72.66

## plot of exact posterior

Pgpost <- function(lambdat,lambdac,alphat=2,alphac=2,betat=3

,betac=3,nt=18,nc=18)

{

P = dgamma(lambdat,18+alphat,betat+nt)*dgamma(lambdac,

72.66+alphac,betac+nc)

}

xc =seq(2,5, length = 50)

xt =seq(0,2, length = 50)

P = outer(xt,xc,Pgpost)

pdf(’ppgamma1.pdf’,width=6,height=8)

persp(xt,xc,P,theta = 45,phi=30,expand = 0.6,ltheta = 120, shade = 0.7,

ticktype = "detailed",xlab="Treatment mean",
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ylab="Control mean", col="saddlebrown")

dev.off()

getwd()

Pgbeta <- function(Pt,Pc,alpha=2,beta=3,eta=2,epsilon=3)

{

xt <- c(2,2,1,0,1,0,1,5,1,1,0,2,2,2,2,1,1,2,3,0,0,0,1,

1,0,2,1,1,1,1,0,1,0,1,1,1,1,0,1,1,15,27)

xc <- c(0,1,1,1,0,1,0,2,0,0,1,0,1,0,1,1,2,0,1,0,1,

1,0,0,2,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,9,41)

nt <- c(357,391,774,213,232,43,121,110,382,284,294,563,

278,418,395,203,104,212,138,196,122,175,

56,39,561,116,148,231,89,168,116,1172,

706,204,288,254,314,162,442,394,2635,1456)

nc <-c(176,207,185,109,116,47,142,114,384,135,302,142,279,

212,198,106,99,107,139,96,120,173,58,38,276,111,

143,242,88,172,111,377,325,185,280,272,154,160,112,

124,1634,1895)

Pt <- xt/nt

Pc <- xc/nc

Posterior = dbeta(Pt,xt+alpha,beta+nt-xt)*dbeta(Pc,xc+epsilon,eta+nc-xc)

}

Pt <-seq(0, 1, length.out=1

Pc<- seq(0,1,length.out=42)

Posterior = outer(Pt,Pc,Pgbeta)
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pdf(’ppbeta.pdf’,width=7,height=8)

persp(xt,xc,Posterior,theta = 45,phi=30,expand = 0.6,ltheta = 120,

shade = 0.7, ticktype = "detailed",xlab="Pt",ylab="Pc",

col="saddlebrown")

dev.off()

getwd()

##################################################################

R code to estimate missing data in arm

##################################################################

m = 20000 # no of mcmc

burnin = 10000 # burn-in length

# initial values

P= 0.5

xm = 1

# matrix for mcmc

Px = matrix(0, m , 2)

##data

y = 3

n = 111

Px[1,] = c(P, xm)

### generating the mcmc

for( i in 2:m){
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P = Px[i-1,1]

Px[i,2] = rbinom(1,1,P)

Px[i,1] = rbeta(1, y+ Px[i,2]+1, n - y - Px[i,2] +1)

}

## get data after burn-in

b = burnin + 1

data = Px[b:m,]

### trace plots and acf for assessing convergence

burnin = b:m

index2 = 1:m

pdf(’tracenacf1.pdf’,width=5.5,height=8.5)

par(mfrow = c(2,1))

plot(burnin,data[,1],type ="l",xlab="iteration after burnin", ylab = "P")

acf(data[,1],main="")

dev.off()

getwd()

## Posterior summaries using MCMC after Burn-in

colMeans(data)

xm.freq = table(data[,2])

pdf(’Histogrammcmc.pdf’,width=4.8,height=8.5)

par(mfrow = c(2,1))

hist(data[,1],main = paste("Posteriors of parameters using MCMC"),
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xlab = "P",ylab="")

barplot(xm.freq,xlab=expression(x[m]))

dev.off()

getwd()

Nap <- function(alpha=2,beta=3,xt,nt,xc,nc){

mu1= (1-alpha-xt)/(2-alpha-nt-beta)

sigma1= 1/sqrt(-(2-alpha-nt-beta)^3/((1-xt-alpha)*(1-nt-beta+xt)))

mu2 = (1-alpha-xc)/(2-alpha-nc-beta)

sigma2 = 1/sqrt((-(2-alpha-nc-beta)^3/((1-xc-alpha)*(1-nc-beta+xc))))

mu = mu1 - mu2

sigma = sqrt(sigma1^2 + sigma2^2)

H0 = pnorm(-0.01,mu,sigma)

H = 1-2*H0

B = (1-H)/H

set = c(H,B)

return(set)

}
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nt xt nc xc

49653/011 375 2 176 0

49653/020 391 2 207 1

49653/024 774 1 185 1

49653/093 213 0 109 1

49653/094 232 1 116 0

100684 43 0 47 1

49653/143 121 1 142 0

49653/211 110 5 114 2

49653/284 382 1 384 0

712753/008 284 1 135 0

AMM100264 294 0 302 1

BRL49653C/185 563 2 142 0

BRL49653/334 278 2 279 1

BRL49653/347 418 2 212 0

49653/015 395 2 198 1

49653/079 203 1 106 1

49653/080 104 1 99 2

49653/082 212 2 107 0

49653/085 138 3 139 1

49653/095 196 0 96 0

49653/097 122 0 120 1

49653/125 175 0 173 1

49653/127 56 1 58 0

49653/128 39 1 38 0

49653/134 561 0 276 2
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49653/135 116 2 111 3

49653/136 148 1 143 0

49653/145 231 1 242 0

49653/147 89 1 88 0

49653/162 168 1 172 0

49653/234 116 2 111 3

49653/330 1172 1 377 0

49653/331 706 0 325 0

49653/137 204 1 185 2

SB-712753/002 288 1 280 0

SB-712753/003 254 1 272 0

SB-712753/007 314 1 154 0

SB-712753/009 162 0 160 0

49653/132 442 1 112 0

AVA100193 394 1 124 0

DREAM 2635 15 2634 9

ADOPT 1456 27 2895 41
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