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ABSTRACT

A novel Feed-Reflector system for large Cassegrain antennas for Radio Astronomy
and Deep-Space Communication applications is investigated. This Feed-Reflector is used
to illuminate a hyperboloid sub-reflector with 5-10 m diameter located 500 m above the
ground. Because the sub-reflector is located in the near field of the Feed-Reflector
antenna, a theory based on the near field focusing properties of paraboloid reflectors is
established. The focusing at near distance is formed by moving the feed horn away from
the focal point of the Feed-Reflector. In this theory the properties of axial defocused

paraboloid reflectors at near distance are investigated in some detail.

By using equivalence path law, sub-reflector shape is obtained. It is found that the
hyperbola can approximate the sub-reflector well. A detailed ray tracing analysis is per-
formed on the entire system which reveals that some part of the sub-reflector receive three
rays per point from the feed. The performance of the system over the operating band (1-22
GHz) is also studied and shown that the lower frequency limit is dependent on sub-refiec-

tor and Feed-Reflector sizes.

To obtain higher efficiencies, three sets of shaping techniques, based on the genetic
algorithm and Jacobi Fourier surface expansion, are performed. An efficiency of 78.5%

for a 5 m sub-reflector is obtained.

In another method of analysis, the Feed-Reflector aperture field distribution is
expanded into a set of Gaussian-Laguerre modes. These modes propagate from the Feed-

Reflector aperture in a simple and well defined way. The Feed-Reflector near field radia-



tion pattern is calculated at the sub-reflector location. The sub-reflector parameters in this
system are found by maximizing the Large Adaptive Reflector (LAR) aperture efficiency

which includes phase and taper efficiencies, and minimizing the LAR spillover loss.

An exact equation for the offset LAR surface is obtained in this thesis. To scan the
beam up to 60°, which is one of the LAR requirements, the concept of the dual offset LAR
with the Feed-Reflector is introduced. In this design the cross-polarization is eliminated
by proper orientation of the sub-reflector. The parameters of the configuration are obtained
by utilizing generalized Gauss-Laguerre beam modes and matrix representation of beam
mode transformation factor. In this design the blockage effect due to the Feed-Reflector is

totally removed.

il
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Chapter 1

INTRODUCTION

1.1. Motivation and Objective of the Thesis

The concept of Large Adaptive Reflector antenna (LAR) has been previously pro-
posed as a candidate for the next generation Radio Telescopes [1]. It consists of a large
and almost flat paraboloid reflector of diameter in excess of 200 m, having an adjustable
shape made of identical flat panels supported by actuators on the ground, as shown in Figs.
1.1 and 1.2. Its nearly flat profile allows wide angle beam scanning of around 60 . Its
manageable actuator plays and maintains acceptable beam characteristics. It, however,
requires large focal lengths, in excess of unity. This imposes an unusual condition that the
feed or sub-reflector be carried by an airborne vehicle, a tethered aerostat. During the
beam scan, to compromise between large panel actuator displacements and excessive aer-
ostat motions, the airborne device moves along a constant radius trajectory, where the dis-
tance between the centre of the reflector and aerostat is kept constant. For further
minimization of the actuator plays, an optimum reflector surface may be found, which in

general will be an offset configuration.

Variations of the concept, especially using smaller reflectors may also be used for
other applications, such as deep space communication. A possible set of parameters for
this application are shown in Table i.1. The sub-reflector diameter Dg= 5 ~ 10 m is

selected due to the aerostat size limitation. With a prime focus configuration this dimen-



sion, Dg, may also be used for the feed carriage motion to accommodate small beam scan-
ning without the acrostat motion. The main reflector diameter of 200 m can provide a peak
gain in excess of 85 dBi at the Ku-band, with a reasonable aperture efficiency of 70 per-

cent, making it a good candidate for this intended application.

Because of the large reflector focal length, the optical system configuration is an
important issue. The prime focus configuration provides the best optical preference [2],
but requires the receiver to be located at the aerostat. This requires, a powered aerostat,
which complicates its design and increases the cost. Conventional Cassegrain and Grego-
rian designs are also not suitable, since they further increase the focal length. An inverted
sub-reflector to reduce the system focal length is more desirable, but also suffers from the
same problems of the prime focus case. With sub-reflector sizes of 5~10 m and a small
spillover power, a conventional feed horn must be in its close proximity to allow efficient
illumination. This again means that the receiver must be near the aerostat. Naturally, the
best place for the receiver is on the ground. This requires the feed to be on the ground, at a
distance of 500 m from a small sub-reflector of diameter 5~10 m. The feed aperture there-
fore must be very large to illuminate the sub-reflector efficiently with small spillover
power, which renders a conventional feed horn useless. A better choice is a larger aperture
antenna with adequate aperture phase aberration to focus its beam on the small sub-reflec-
tor [3]-[6]. Such a larger aperture can be generated conveniently, using a defocused parab-
oloid [7]-[10]. Thus, a cost effective feed design for a LAR that is located on the ground,
is another paraboloid, i.e. a “Feed-Reflector”. The advantage of a paraboloid over an ellip-
soid reflector [11] is its flexible focii distances. The design of such a Feed-Reflector and

performance of a dual-reflector LAR, using this feed, is the object of this investigation.



For radio astronomy applications the frequency band of interest is 1-22 GHz,
which also covers active communication bands. In this frequency range the sub-reflector is
in the near field of the Feed-Reflector, and must intercept most of its radiated power. The
near field focusing properties of aperture antennas in general and reflector antennas in par-
ticular are investigated in [3]-[10], [12]. Beamwidth and sidelobes of the field distribution
in the image region of a focusing device is nearly independent of the image point location,
provided it is not too close to the antenna to cause serious aberrations[5]. For large anten-
nas a convenient distance limit is the size of its aperture, where the first order term for the
observation distance is dominant. That is, the beamwidth and sidelobes of the focused
beams remain nearly constant as the image point moves from infinity towards the aperture,

until it reaches a distance of about the size of the antenna aperture.

1.2. Structure of the Thesis

The structure, parameters and the importance of the Large Adaptive Reflector
antenna (LAR) were stressed in this chapter. As mentioned in the previous section a Feed-
Reflector for Cassegrainian LAR is one of the candidates to feed this system. This sug-
gests development of various analytical tools and physical model to design the Feed-
Reflector and analyse the whole configuration. The existing theoretical frameworks in the
design and analysis of the Feed-Reflector and the LAR Cassegrainian system will be dis-
cussed in chapter 2. This chapter is not meant to be an exhaustive review on reflector
antenna and radio telescope feed systems. The area is too wide to be covered in a single

chapter. Nevertheless it is hoped to provide sufficient background on the most important



issues used in this thesis. The radio telescope feed systems, numerical techniques, synthe-
sis techniques for reflector antennas and aperture near field and defocused paraboloid
reflector are addressed in chapter 2. Also, mentioned are the Gaussian beam techniques

and offset reflector antennas.

Chapter 3 deals with theories to design the Feed-Reflector system for the LAR.
This theory is established based on the near field focusing properties of aperture antennas.
Because the sub-reflector is located in the Fresnel region of the Feed-Reflector antenna,
the fields at this region for paraboloid reflector antenna are calculated. The quadratic phase
at the Fresnel region is cancelled by defocusing the feed horn away from the Feed-Reflec-
tor focal point which brings the far field radiation patterns to the near field. The formula
for the Feed-Reflector diameter to illuminate the sub-reflector properly is derived. The
sub-reflector profile is obtained to maximize the LAR efficiency by utilizing Geometrical

Optics (GO).

Chapter 4 includes the investigation of the performance of the symmetric Casseg-
rainian LAR with the Feed-Reflector. The formulation for the hyperboloid sub-reflector in
this symmetric configuration is derived. Detailed ray tracing is performed on the entire
system which reveals that the feed system uses some part of sub-reflector three times. The
gain, side lobe level, cross-polarization, and aperture distribution are calculated for differ-
ent feed horn locations and taper at the edge of Feed-Reflector, and also for different sizes
and eccentricity of the sub-reflector. The performance of the system over the operating
band (1-22 GHz) is also studied in this chapter. To obtain higher efficiencies, three sets of

shapings, based on genetic algorithm and Jacobi Fourier surface expansion, are per-



formed. Physical Optics (PO) using Jacobi-Bessel series [13]-[15] and body of revolution
formulation [16], [17] are applied on the Feed-Reflector, sub-reflector and LAR. TICRA
reflector antenna software, GRASP8W [19], has been used to confirm this study. For the
sub-reflector, Physical Theory of Diffraction (PTD) [18] implemented in GRASP8W, is

used in addition to Physical Optics.

A novel approach for analysing the quasi-optical LAR Cassegrain system Is
described in chapter 5. In the proposed method of analysis, the Feed-Reflector aperture
field distribution is expanded into a set of Gaussian-Laguerre modes. These modes propa-
gate from the Feed-Reflector aperture in a simple and well defined way. The Feed-Reflec-
tor near field radiation pattern is calculated at the sub-reflector location. The sub-reflector
parameters in this system is found by maximizing the LAR aperture efficiency, which
includes phase and taper efficiencies, and minimizing the LAR spillover loss. This process
is computationally more efficient than the physical optics current distribution method, and
more accurate than the ray tracing approach. It also provides a new insight into the opera-

tion of the Feed-Reflector system.

Chapter 6 introduces the concept of the offset Cassegrainian LAR. In this chapter
the formulation for the LAR surface to scan different scan angles is derived. Two Casseg-
rainian configurations are presented. The first one is an open Cassegrainian configuration,
where the Feed-Reflector sits in the middle of the LAR. The second one is a dual offset
Cassegrainian system. In the latter design, the introduction of generalized Gaussian beam
modes, which includes modes representing the cross-polarization, facilitates the derivation

of the system parameters. Also in this chapter, the performance of a dual offset LAR over



its frequency band are investigated.

Table 1.1: Typical parameter for LAR Cassegrain system

Parameter Symbol Dimension /Unit
LAR Diameter Dy 200 m
LAR Focal Length 1L 500 m
LAR Cylindrical Coordinates PL O 2z (m) & (Degree)
Feed-Reflector Diameter Dg Design Parameter (m)
Feed-Reflector Focal Length IF Design Parameter (m)
Feed-Reflector Defocus Distance dr Design Parameter (cm)
Field Taper at the Feed-Reflector Edge 7, Design Parameter (dB)
Feed-Reflector Cylindrical Coordinates | Pz 0g zg (m) & (Degree)
Sub-reflector Diameter Dg 5~10(m)
Hyperboloid Sub-Reflector Focal 2c Design Parameter (m)
Distance
Hyperboloid Sub-reflector eccentricity e Design Parameter
Sub-reflector Cylindrical Coordinates Ps bs zg (m) & (Degree)
Beam Cartesian Coordinates xyz (m)
Operating Frequency f 1 ~22 (GHz)
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Figure 1.2: LAR flat panels supported by actuators on the ground



Chapter 2

BACKGROUND INFORMATION

The Feed-Reflector design for the LAR has taken advantage of many aspects of
antenna design, such as radio telescope feed system, numerical techniques for reflector
antennas, synthesis techniques, defocused paraboloid reflector, aperture antenna near field
calculation, Gaussian beam analysis and offset reflector properties. In the following sec-

tions a short review of literature is provided.

2.1. Radio Telescope Feed Systems

Reber (1940) built the first radio telescope, using a paraboloidal reflector, almost
60 years ago. The world’s largest fully steerable reflector was built in a valley of Eifle
mountain near Bonn. This telescope has a 100 m diameter paraboloid reflector. It can
operate at the wavelength as short as 1 cm, and can use either prime focus or Cassegrain-

ian feed system.

The most famous of large radio telescopes is the 305 m diameter dish suspended in
a mountain valley at Arecibo, Puerto Rico. Many feed options have been considered since
its design. Love [20] designed slotted-waveguide line sources which can be swung
through an angle of 20° from vertical, allowing beam scanning over a solid angle around
the zenith of 6 percent of the sky above the horizon. Aperture efficiency of 53 percent with

16 dB sidelobes was obtained at 430 MHz. However, this feed system suffers from a



number of deficiencies [21] such as, ohmic losses which increase the noise temperature,
and limited bandwidth which requires new line feeds, when new frequency bands are
needed. To overcome these difficulties Kildal et al. [22] proposed a Gregorian dual reflec-
tor feed which is shown in Fig. 2.1. The idea of using a Gregorian-type sub-reflector, is to

correct the spherical aberration.

| J1IN)

L X1V

Figure 2.1: Cross section of Arecibo trireflector system a) Dual-reflector feed b) Total
trireflector [22]

Kraus [23] designed the Ohio State University radio telescope which is shown in

Fig. 2.2. It consists of a fixed standing-curved reflector and a tiltable-flat reflector. The

10



fixed-standing-curved reflector is a rectangular section of a sphere or paraboloid of revolu-

tion with the dimensions of 110 m by 21 m. The tiltable flat reflector dimensions are 104

m by 31 m. Two reflectors are joined by a flat conducting ground plane. Incoming rays are

reflected by the flat reflector into the parabola which brings the rays to a focus at the

ground level near the base of the flat reflector. The antenna feed system can work in two

modes. In one mode (Fig. 2.3a) the feed horn axis is aligned with the centre of parabola

and the ground plane is incidental. In the second mode (Fig. 2.3c) the horn axis is coinci-

dent with conducting ground plane. The ground plane serves as a guiding boundary sur-

face. In this mode polarization should be vertical, and the feed horn required is 1/4 the

height and 1/2 the length of the horn required in first mode.

incoming
wave

Tiltable flat
_ / reftector
Focusing i Final
reflector ! pmern /
Wave path 6"
: Feed horns o

LNASs and
refrigerator

Ground plane

128 m

Receivers, computers and recorders

Figure 2.2: Elevation of cross section of Kraus radio telescope[23]
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- Tiitable flat
refliector

()

Figure 2.3: Arrangement for feeding antenna without ground plane, (a) requires 4 times
horn height of arrangement at (c) using ground plane. Diagram (b) shows that half the
horn in (a) produces too sharp a pattern when used with ground plane and must be

reduced in size, as at (c).[23]
The other version of Ohio State radio telescope is Nancy (France) radio telescope

which consists of a fixed spherical reflector 300 m long and 34.56 m high. The tiltable-flat
reflector is 200 m long and 40 m high. The feed system is at the quasi- focus position of
spherical reflector as shown in Fig. 2.4a. A new feed system was suggested by James et al.
[24] for this telescope. This new feed system is based on using corrugated homn in dual-
reflector Gregorian configuration which is shown in Fig. 2.4b. The proposed feed system
uses the high performance wide band properties that can be obtained from a corrugated
horn, while the designed Gregorian configuration transfers the horn’s circularly symmetric
radiation pattern to the highly elliptical pattern required to illuminate the fixed spherical

reflector antenna.
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THE NANCAY RADIO TELESCOPE AS DN 199

“ADJ"MMI HOGHORN PFEEDS FOR H {

®)

Figure 2.4: The Nancy radio telescope a} as in 1994 and b) with the proposed new feed
system [24]

2.2. Numerical Techniques For Reflector Antennas

Efficient and accurate high frequency diffraction analysis techniques for reflector
antennas have been investigated for many years. PO (Physical optics) is one of the tech-
niques that has been used regularly in the analytical calculation of the radiation pattern of
reflector antennas. Its simplicity, ability to accurately predict the far field pattern near the
main beam, and the availability of efficient numerical techniques to perform the necessary

surface integration make it popular{25]. Nevertheless, for accurate calculation of the fields
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far from the main beam other techniques must be employed.

One of the methods which is able to estimate the fields at the far angles is Keller’s
Geometrical theory of diffraction (GTD)[26,27]. Aside from simplicity and accuracy,
GTD can be made even more powerful by employing the uniform asymptotic theory
(UAT) [28],{29] and the uniform geometrical theory of diffraction (UTD) [30], to remove
its deficiency at the shadow boundary and reflection boundary. However, the singularities
of GTD at caustics still remain in the uniform version. It is usually difficult to find the
observation angle at which a switch between GTD and PO should be taken when the two

methods are used together.

Another technique developed at the same time as GTD is the physical theory of
diffraction (PTD) pioneered by Ufimtsev [31]. Two significant modifications to the origi-
nal PTD have been obtained. The first is the application of the concept of equivalent edge
current which removes the caustic singularities in the original ray tracing PTD. The sec-
ond is an extension for observation angles. Ando’s modified PTD [32] is one modification

which uses the concept of equivalent edge current.

Mitzner, on the other hand, did not use equivalent edge current explicitly but rather
expressed the PTD correction fields in term of incremental length diffraction coefficients
(ILDC) [33]. When these coefficients are multiplied by the incident fields of arbitrary inci-
dent angles and integrated over the edge of the scatterer, one may determine the fringe

field.

The third modification in PTD is Michaeli work[34]. He derived the GTD equiva-
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lent edge current by asymptotically reducing the surface to edge integral. These currents
were then written in terms of diffraction coefficients. It has been mentioned [35] that if the
PO components are deducted from Michaeli’s total scattered field, the fringe field con-
structed by Mitzner’s ILDC are recovered. Later, Michaeli calculated the fringe current
radiation integral over the ray coordinates instead of over normal coordinates, which cor-

rected many of the singularities in Mitzner’s [LDC [36].

2.3. Synthesis Techniques for Reflector Antennas

Many techniques have been proposed to solve the problem of synthesizing reflec-
tor antenna systems. Most of these methods are established based on principal of geomet-
rical optics (GO). GO shaping of circularly symmetric dual-reflector antennas was
formulated in terms of simultaneous nonlinear ordinary differential equations [37]-[39].
For offset dual-reflector antennas, the shaping problem can be described by a partial dif-
ferential equation [40]. While, there has been a long controversy about the existence of the
exact solution to the problem; but it has finally been accepted that several exact solutions
are possible [41]-[43]. Another formulation of GO-shaping is based on the apparatus of
complex coordinates [44], [45]. Other versions of the GO-shaping procedures can also be

found in the literature [46]-[50].

A major drawback of the GO-shaping techniques is that diffraction effects are not
incorporated in the process of reflector shaping. The diffraction effects that are ignored,
include the near field effect between the feed and the reflector, that between the main and

sub-reflector, and the diffraction from the surface and edges of the reflectors. The radiation
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patterns of a GO shaped reflector antenna, when evaluated by the diffraction analysis tech-
niques, may at times deviate from the desired pattern to the extent that stringent specifica-
tions such as very low sidelobe levels are violated. Due to this limitation, GO-shaping
methods are essentially applicable to large antenna system where ray-tracing is an accept-
able approximation. Another difficulty involving these techniques is that, array and aper-
ture-type feeds (such as Feed-Reflector) may not be easily incorporated in the synthesis
procedure. Although modifications of GO-shaping techniques have been suggested to
overcome this difficulty {51],[52], they are mainly used as the initial designs for subse-

quent accurate diffraction synthesis.

It is noticed that in GO algorithms, one typically synthesizes the aperture field,
from which the far field patterns are inferred. This is sometimes referred to as the “indi-
rect” approach in contrast to techniques in which far field radiations are synthesized
directly. The aperture field and radiated far field can be related by methods such as closed
form formulas in pencil beam designs [53], [54], and optimization algorithms in contour
beam designs [55]. A shaped reflector result from GO techniques is typically characterized
by a set of discrete points, which may produce a surface that has discontinuities and irreg-
ular boundary. The interpolation procedure which is needed before fabrication may further

add errors that degrade the radiation pattern.

To overcome the limitation associate with the GO shaping techniques, several
methods have been investigated. Wood [56] carried out the first reflector shaping by dif-
fraction synthesis using “Spherical Wave Expansion”. Clarricoats et al. [57] employed

reflector surface expansion and coefficient optimization that incorporated both GO algo-
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rithm and physical optics analysis. This concept was further extended to methods that
carry out full PO synthesis of reflector antenna with circular aperture and single feed. In
the PO+PTD shaping introduced in [58,59] a set of orthogonal expansion functions was
applied to represent reflectors with circular, rectangular or any intermediate rounded-cor-
ner shapes described by the superquadric functions[60]. This method can be applied to
synthesize single, dual reflector with a single feed and array feed. Later Ramat-Samii
introduced PO/GO analysis to this synthesis procedure [61], where the analysis of subre-

flector was carried out by GO Technique.

2.4. Aperture Near-Field and Defocused Paraboloid Reflector

The synthesis of axial field pattern has important applications to imaging apertures
designed to achieve diffraction limited lateral and axial resolution by focusing in the Fres-
nel region. However, just few papers can be found in literature. In early 1960’s Kay [3],
Hansen [62], and Sherman [4] investigated the properties of focused aperture in Fresnel
region. The issue remained intact until 1983 when Graham [5] showed the axial field pat-
tern of an aperture focused in the Fresnel region can be synthesis in the same manner as
the angular pattern of an aperture in Fraunhofer region. Later Shafai et al. [6], [10] consid-

ered the applications of near-field focusing aperture for array and refiector.

Before advanced antenna measurement facilities were introduced, people meas-
ured antennas in a test site. The trend toward higher operating frequencies and larger aper-
ture dimensions for microwave reflector-type antennas has brought about the need for

taking far-zone radiation patterns at distances too great for the average test site. This led to
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a defocusing practice which the feed is displaced along axis of symmetrical reflector away
from the surface in the attempt to simulate far-zone patterns in the Fresnel region [7].
Cheng[8] derived the first analytical solution for amount of defocusing in three ways,
namely: i) The geometrical approach, ii) The aperture-phase approach, and finally iii) The
ellipsoidal-reflector approach. However, he found inconsistencies among these

approaches. Later Chu, in a communication [9], resolved this ambiguity.

The defocused far-field radiation pattern was the interest of Rusch when he pub-

lished a paper [12] in 1973.

2.5. Gaussian Beam Methods

Quasi-optical propagation is hardly new. In fact, many of Hertz’s and Bose’s
experiments at the end of nineteen century on the propagation, refraction, polarization and
reflection of electromagnetic waves were carried out using apparatus only a few times

larger than the wavelength employed {63, 64].

The modern era of quasi optics had its start in two quite distinct areas of research
in the late 1950’s and bore fruit in the early part of the following decade. The first was the
study of modes in resonators operating at optical wavelengths, which were of great inter-
est due to of their applications to lasers [65, 66]. The transverse field distributions of the
low loss modes of the resonators consisting of a pair of reflecting mirrors were found to be
Gaussian functions. Analysis of the variation of the electric field distribution as a function

of position within the resonator yielded an understanding of Gaussian beam propagation.
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Much of the early work in this field is summarized in the article by Kogelnik and Li [67].

The second line of investigation leading to the development of Gaussian beam the-
ory was the study of beam waveguides, which are repeated sequences of lenses or mirrors
designed to achieve low loss propagation of a beam of radiation over large distances.
Analyses using diffraction theory revealed that the low loss electric field distribution in the

beam waveguide is again essentially a Gaussian[68].

The significance of Gaussian beams, and the fundamental Gaussian mode in par-
ticular, is greatly increased by the high degree to which this relatively simple form repre-
sents the radiation pattern of different types of feed homs. These are critical elements for
coupling to guided wave devices such as mixers and detectors. The analysis of radiation
patterns in terms of Gaussian modes is carried out by expanding the electric field in the
horn aperture in terms of a set of Gauss-Hermite or Gauss-Laguerre functions. If many
modes are required to reproduce the aperture distribution, the Gaussian mode approach
may be useful computational tool, albeit not an extremely simple one. Only if the fraction
of the power in the fundamental mode is large, the radiation pattern in terms of a single

Gaussian mode can be represented satisfactorily.

Corrugated or scalar feed horns are widely used at the millimetre wavelengths, and
have an aperture field distribution which ideally is of the form J, (ap/a), where o= 2.405
and a is the aperture radius [69]. Since this Bessel function is quite similar to exp[-(p/#)°]
(W is the beam radius), it is expected that the fundamental Gaussian mode alone to be a
good representation of the aperture field. Indeed, for W/a = 0.64, 98% of the radiated

power is in the fundamental mode [70-72].
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2.6. Offset Reflectors

The offset parabolic reflector has found application as an antenna for many years
and was certainly receiving some attention during 1940s. However, it is only in recent
times that analytical and numerical models have been developed for this antenna[73].
Much of the initial difficulty in dealing with offset parabolic reflector can be attributed to
its asymmetric geometry. This geometry is the key to the analysis of the offset antenna and
to ultimately understanding its electrical properties. One of the best analyses of the offset
reflector geometry can be found in a monograph issued by the Bell Telephone System
[74]. The depolarization properties of asymmetric antennas have deservedly received con-
siderable attention in the literature. The polarization characteristics of the offset reflector
were subject to the independent study of a number of authors like the work by Chu and

Turrin [75]. Some important features of offset reflectors were demonstrated in [76].

For applications involving complex primary-feed structures, the use of a Casseg-
rainian feed system has some obvious advantages. In particular, the Cassegrainian config-
uration allows the feed elements and the associated circuitry to be located close to the
main reflector surface possibly avoiding long RF transmission paths and the need for
extended feed support structure while the forward pointing feed format can be a desirable

attribute for applications requiring low noise performance.

Of the variety of offset Cassegrainian systems proposed in the literature, perhaps
the best known is the open Cassegrainian antenna introduced in 1965 by the Bell Tele-

phone Laboratories[74]. The antenna, which is illustrated in Fig.2.5c comprises an offset
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section of a paraboloid an offset hyperboloid sub-reflector, fed by a primary feed which

protrudes from an aperture in the main reflector surface.

An alternative dual-offset reflector configuration, which offers a number of attrac-
tive features, is the so-called double-offset antenna shown in Fig. 2.5a. This antenna,
which was first implemented by Graham [77] provides a convenient location for the pri-
mary feed hardware by use of an offset section of a hyperboloidal sub-reflector in a Cas-

segrainian configuration. Two arrangements of the double offset are shown in Fig. 2.5.

Analyses performed by several researchers [78-83] have shown that the double off-
set antenna can be designed such that, when fed by a conventional linearly polarised pri-
mary feed, the depolarisation arising from the two offset reflectors can be made to cancel.
Thus providing an overall low cross-polar characteristic. This performance is achieved by

matching the scattered radiation fields from the sub-reflector to the main reflector.

Approximate techniques based upon the use of geometric optics indicate that a
perfect mach can be achieved when the axis of the parent sub-reflector is depressed by an
angle B from the axis of the parent paraboloid. This condition is illustrated in Fig. 2.5b. A
mathematical expression relating the depression angle B to the parameter of the sub-reflec-

tor was derived by Mizugutch [79]. In its simplified form this can be expressed as

ff) - L5

where e is the eccentricity of the sub-reflector, o is the feed offset angle.
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Figure 2.5: Dual-offset reflector configurations: a) Double offset system; b) Optimised
double offset; c) Open Cassegrainian system [73] (paraboloid vertex at O and feed phase
centre located at O°)



Chapter 3

THEORY OF THE FEED-REFLECTOR

3.1. Introduction

The main element in the design of the LAR fed from the ground is the Feed-
Reflector antenna. Due to the large aperture size Dy of the Feed-Reflector, the sub-reflec-
tor is located in its Fresnel region (i.e the distance R, between the feed and sub-reflector is
less than ZDFZ/)L [73]), for almost all of the operating frequencies. Thus, the paraboloid
Feed-Reflector needs to focus in the Fresnel region instead of Fraunhofer region. This
issue was the concern of researchers in late 1950°s. At that time the trend toward higher
operating frequencies and larger aperture dimensions for microwave reflector antennas
brought about the need for taking Fraunhofer region radiation patterns at distances far too
great for the average available test site. This led to a defocusing practice whereby the
antenna feed was displaced along the principal axis away from the reflector in the attempt
to simulate far-zone patterns in the optical Fresnel region. The amount of defocus required

for given test site was by approximated a geometrical optics method.

This chapter will establish a theory for the design of a paraboloid Feed-Reflector to
generate radiation pattern similar to a feed horn. In this theory, the properties of axial
defocused paraboloid reflectors at near distances are investigated in more detail. By using
equivalence path law, the sub-reflector shape is obtained. It is found that a hyperbola can

approximate the sub-reflector well.



3.2. Defocused Paraboloid Reflector Relations

The above mentioned theory is established based on the near field focusing proper-
ties of aperture antennas. The field in the Fresnel region of a circular aperture can be cal-

culated by the following diffraction integrals [84].

(1 - sin’6cos (9 —¢"))

. —jkR ik
e’ 7k 2R

Jj J.Zm s o\ Jjkp’sin@cos(¢—0”)
, = 12 DJZF(p,q))e’ e

p'dp’dd” (3-1)

where p’, ¢’ are the radial, and angular dimensions of aperture plane. a= D /2 (Fig. 3.1a),

0 and ¢ are zenith and azimuth angle of observation point r&epectivelx, and F(p'¢ ) is the

—j/c‘z’—R(l ~sin*6cos’ (6 - $))
amplitude illumination function over the aperture. The term e ,

introduces quadratic phase error and is necessary for calculating the near-field of aper-
tures (i.e. when R is in the near distance). In this equation terms of order greater than //R
are discarded. In the neighbourhood of z-axis or focal region, sinZG =0, and the term
inside the bracket of this second exponential reduces to unity which facilitates the calcula-

tion of the radiation pattern.

The simulation of Fraunhofer radiation patterns in the Fresnel region of paraboloid
reflector antennas was previously discussed in [8]. The general practice is to defocus the
primary source of the reflector by a small distance, along the principal axis in a direction

away from the paraboloid reflector surface.

A symmetric paraboloid reflector can be represented by an aperture Fig. 3.1b.
When the primary source is displaced from the focus of the paraboloidal reflector along

the reflector axis away from the reflector, a quadratic phase error (aberration) on its
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Figure 3.1: a) Aperture near-field scheme b) Reflector near-field scheme
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aperture surface is uced. The quadratic phase error due to the defocused feed is [7],

§ = —2d/(1+p”/4f) (G-2)

where fis focal length, dris defocus distance, and (p’,¢’,2’) are cylindrical coordinate sys-

tem of paraboloid reflector aperture.

In this case for the reflector antenna in Fig. 3.1b, the phase term |r"-r| in Fresnel

region becomes

|F - 7| = R—p’sinBcos (P — ') —z'cosO +

p"2[1 —s5in®0cos> (0 — )] +z7°[1 — cos*0] — p’z’sin28cos (¢ — &”) (3-3)
2R

Again the region of interest is the focal region of the reflector, i.e. near the z-axis where the
following small angle approximation is valid: 1 — cos’8 =0 , 1 —sinzecosz(cb -¢)=1,

and p’z » p’z’sin26cos (¢ — ¢’) resulting in:

2

-~

[F -7 = R—p’sinBcos (¢ —9’) ~z'cosO + gR

(-4

The last term in right hand side of the above equation shows the quadratic phase error of
the paraboloid reflector which is similar to Eq.(3-1) for the aperture antenna. At the focal
plane this quadratic phase error cancels that in Eq.(3-2), and leaving the well known dif-
fraction integral with a linear phase function. In other words, using the aperture field inte-
grals, introduction of a quadratic phase error on its aperture field brings the far field
radiation pattern to the focal field. Eq.(3-5) shows the total diffraction integral of the defo-

cused reflector at a distance R [15].
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where J(p’,¢ ) is the current distribution on the aperture of the reflector antenna shown in

Fig. 3.1b.

Fig. 3.2 shows the results of ray tracing over a defocused paraboloid reflector. By
moving the feed away from the focal point, the rays reflecting from the reflector surface
cross the symmetrical axis somewhere on a line (paraxial focus) ended at P’. The ray hit-
ting the surface of reflector at Q(p ’,z’) intersects the symmetric axis of the reflector at the

point P(0,R) where R can be calculated as

R=f+L+L2_, P _ (3-6)

In Fig. 3.2, OF =fis the focal length of the Feed-Reflector, and FF’= dfis the feed defocus

distance. The starting point of the paraxial focus is O '(0O.R,)

lim R = f+ﬁ =R
p’—0 df

3-7

o

M(0,R,,),the point on the paraxial focus where the maximum energy density occurs, is
located along the paraxial focus. For focusing at this point the amount of defocusing is cal-

culated by [8]

<+~ £lleir) (3]

As an example, a 25 meter reflector with f/D=0.36, and defocusing distance dris
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considered. Sample power distribution on the symmetric axis is shown in Fig. 3.3, for
different values of defocusing distances. This figure shows for each value of defocusing

distance there is a point on the paraxial focus, where the energy density is maximum.

3.3. Feed-Reflector Size

It was shown in the last section that the field pattern obtained by Eq.(3-5) is equiv-
alent to the far-field [5]. This field equivalence can remain almost linear for distances
between the aperture and its image, as small as the aperture size. In this range the focusing
property is governed by the aperture phase distribution and the field intensity variation is
less important. In the other words, the terms with the order higher than //R can be
neglected (Fig. 3.1b). However, at distances less than the aperture size, the field intensity
variation dominates and the image plane field distribution losses its primary dependence
on the aperture phase, i.e. higher order terms are significant. In the present study the dis-
tance of the sub-reflector is much larger than the Feed-Reflector diameter and so the field
intensity dependence does not occur. Thus, the focal plane field distribution remains iden-

tical to the far field shape at infinity.

The above relationship allows a quick study of the focal plane field. The geometry
for a cross section of circular aperture is shown in Fig. 3.4, where D is the aperture size,
R is its distance from the focal plane. The important parameters of the focal plane field are
its 3 dB beamwidth and beamwidths of the main beam nulls, and the sidelobe levels. Their

angular dependence remains the same as those of the far field distribution. To study
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Figure 3.3: Axial power distribution of a reflector focused in its near field

the sub-reflector illumination, the beamwidth can be translated into a spot size on the focal
plane, representing the equivalence of Airy disks in optics. The aperture theory can then

be used to calculate the beamwidths, spot sizes, sidelobes and gain.

The objective here is to generate simple relationships to determine the focused spot
sizes which they are simply proportional to the ratio of R/Dg; a linear relationship [10].
For a circular aperture, the far field and that in the image plane resemble J;(x)/x. The main
beam generally contains most of the power and nearly 90% [85] for the focal region of the

paraboloid. Thus, if the size of the sub-reflector is selected equal to the null-to-null spot
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size of the Feed-Reflector, it intercepts the same percentage of the power, i.e. 90%
(Fig.3.4). However, in practice, this may result in an oversized sub-reflector, which has
zero (i.e. —o dB) edge illumination. More realistic edge illuminations of between -10 dB
to -20 dB are normally selected in practice, without significantly reducing the power inter-

ception efficiency of sub-reflector.

To calculate the Feed- Reflector diameter, Dpg; to feed a sub-reflector with diameter

Dy, the following circularly symmetric aperture distribution is selected[73].

F(pp) = B+(1—B)(1—pp/a)’ (3-9)

where n=2, and B=-18 dB (a close approximation for Feed-Reflector aperture distribution
of next chapter). p is the radial dimension of aperture plane of Feed-Reflector. The 3 dB,

and null-to-null spot size are (from Fig. 3.4)[73]

A

X
Y A
7" tan(0y,,) =On.yy = 3.66517[: (3-11)
A reasonable selection may be their average, such as
Average spot size = X'=1/2[1.31+3.665](R/Dg)A=2.49(R/Dg)A (3-12)

Now, assuming the sub-reflector size Dy is equal to the average spot size, it gives a
simple relationship of Dg=X. Thus, for a LAR with D¢=5 ~10 m, and R = 500 m, one can

find the required aperture size of the Feed-Reflector as [88, 89]

Dp=2.49(R/DgA (3-13)

32



3.4. Sub-Reflector Profile

As can be seen from Fig. 3.2, replacing a hormn antenna by the Feed-Reflector
antenna imposes new conditions on the Cassegrain system. In this new system the rays
converge, while for a horn antenna they diverge. The sub-reflector should be placed some-
where on the paraxial line as shown by Eq.(3-8), to intercept maximum energy. However,
by locating the sub-reflector at this place, two or more reflected rays from the Feed-Reflec-
tor may pass through each point of sub-refiector surface. This means the sub-reflector sur-
face should be approximated after being corrected [86] for uniform phase distribution over

the LAR aperture.

Fig. 3.5 shows a family of incoming rays ('O, F P, and F'G) emanating from a
horn antenna. The equations for correcting the sub-reflector surface are obtained by
requiring all rays to have equal path lengths as measured from a reference wavefront pass-

ing through F’, that is

FP+PP+PQ = FO+OB+BQ G-14)
where O, and Q’ are points in a circle with the centre at F;, and radius a. F is the focus of
the sub-reflector which coincides with LAR focus. The various coordinates and the sur-

faces or points are defined as follows [90]:
(przr) Feed-Reflector surface
(pszs) Sub-reflector or Corrector surface as referred in [86]

B(0,b) vertex of sub-reflector
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F1(0,2¢) upper focus of the sub-reflector

F’(0, fp+dy feed horn location

I(0,R) cross section of a ray and symmetric axis Eq.(3-6)

Eq.(3-14) can now be expressed as:

’\/pF2+(ZF—fF_df)2+ A/(pF_ Ps)2+(zr‘zs)2

(3-15)
~JPi+(zs—2e) +a = 2b-2c+a+ fr+d,
In Fig. 3.5, calculation of relation between (pszg) and(pgzg) yields
Pr _ _ _Ps -
R—z. tan@ R (3-16)

Simultaneous solution of Eqs.(3-15), and (3-16) for the coordinates (ps.zg) of the sub-

reflector surface yields
A2 (2p)~24(zp) =2 — 42 + R
_ cos©
zg = T G-17)
2R—4c—-2—%
cos@
ps = tanO(zg—R) (3-18)
where
AGp) = S opwde—frmd o2t o fy—d ) (3-19)
r cos6 C=JFrm T APr TEr—JF—dy '
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The plot of Eqgs.(3-17), and (3-18) is shown in Fig. 3.6. The solid curve in this fig-
ure shows the only solution for the sub-reflector corresponding to a Feed-Reflector with a
25 m diameter, 9 m focal length, and the defocusing distance of 0.23 m. It can be seen that
for pg less than [pg,|, three values exist for zg, where each is related to a ray coming from
different location of the Feed-Reflector. Parameter b, which fixes the vertex of sub-reflec-
tor, is an important parameter in designing the LAR Cassegrain, because it determines the
curvature of the sub-reflector and consequently the portion of LAR which must be illumi-

nated. In Fig. 3.6, b is considered to be 489.824.

25 T T
2_ ............................................. D -
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osf. PR L S S I I ]
el _
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Figure 3.6: Sub-reflector surface and its hyperboloid approximation.
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The surface plotted in Fig. 3.6 is not physically realizable and must be approxi-
mated by another surface. In the next chapter it is demonstrated that hyperbola is the best

fitted surface for this system.

3.5. Conclusion

The Feed-Reflector concept was introduced in this chapter. The feed was based on
the near field focusing properties of reflector antennas. The theory of this feed system was
established by using the defocused paraboloid reflector characteristics and the aperture
theory. It was found that feed defocusing distance can be approximated well by the for-
mula developed by [8]. An approximated formula was developed to estimate the illumi-
nated portion of the Feed-Reflector antenna (-15 dB taper at the edge). By employing the

concept of equal ray path theory, the sub-reflector profile was obtained.
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Chapter 4

CHARACTERISTICS OF THE SYMMETRICAL
CASSEGRAIN LAR SYSTEM WITH FEED-REFLECTOR

4.1. Introduction

To verify the theory derived in chapter 3, a paraboloid reflector with Dr=25 m and
a focal length of fr=9 m is considered. Performance of the LAR and Feed-Reflector are
investigated by changing the feed system parameters. These parameters are the feed horn
defocusing distance dg and field taper T, at the Feed-Reflector edge. A detail ray tracing is
performed on the entire system. The performance of the system over the operating band
(1-22 GHz) is also studied in this chapter. To obtain higher efficiencies, three sets of shap-
ings, based on genetic algorithm and Jacobi Fourier surface expansion, are performed.
However, before proceeding to this stage, it is instructive to consider the sub-reflector

shape and investigate its relevant system performance.

4.2. Sub-Reflector Formulation

The geometrical parameters of a Cassegrain LAR system with a paraboloid Feed-
Reflector are shown in Fig. 4.1. The field taper at the Feed-Reflector edge is considered to
be -15 dB, and df=0.23 m. The sub-reflector diameter is chosen to be § m. The influence
of these parameters on the LAR performance are discussed later. The effect of blockage is

taken into account by removing the central portion of the LAR, the radius of which is
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rp, = 15m, or 15% of the LAR radius (Fig.4.1). The operating frequency is assumed to be 3

GHz.

To make it feasible for fabrication, it is preferable to estimate Eqgs.(3-17) and (3-
18) with the simplest configurations. One of these configurations is a conventional sub-
reflector with conical section. To accomplish this goal, a hyperboloid is considered. One
of its focal points is located on the LAR focus F, and the other focal point on the Feed-
Reflector vertex, O. For (AZ = 0), the Feed-Reflector vertex coincides with that of the LAR
is considered. Thus, the hyperboloid reflector inter-focal distance 2¢ is 500 m. The equa-
tion of the hyperboloid can be determined by selecting parameter b, which is the distance
between hyperbola vertex O’ and LAR vertex O,

2 2

Z
> - Ps s =1 4-1)
(b—c)* 2bc-b

which is drawn in Fig. 3.6 for 5 = 489.824. Other parameters of the hyperboloid sub-

reflector are

2 = g(cota+ cotdy) (4-2)
_ % o«
M = tan?cot-i- (4-3)
_M+1
e =31 (4-4)

where «, ¢, are the lower and upper hyperboloid half angles respectively, M is the Cas-

segrain magnification, and e is the hyperboloid eccentricity.
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4.3. Performance of Hyperboloid Sub-Reflector in the LAR System

To investigate the properties of the LAR Cassegrainian system with a hyperboloid
sub-reflector, the radiation pattern of the system shown in Fig. 4.1 for D=25 m, fr=9 m,
dr=0.23 m, T, = -15 dB (Taper at the edge of Feed-Reflector) Dg=5 m, 2¢ = 500 (inter -
focal distances) and e =1.0424 (b =489.824, dash curve in Fig. 3.6), is calculated and dis-
played in Fig. 4.2. The efficiency of the system is 72.0% which is related to a directivity of
74.52 dBi at 3 GHz. The half power beamwidth, HPBW, is 0.03°. The diffraction cross-
polarization (feed horn is assumed to be ideal and have no cross-polarization) and first side
lobe level are -71 dB and -19.04 dB below maximum directivity respectively, which are in
acceptable range [87]. The cross polarization is calculated in the 45° plane. The sub-
reflector field induces a taper of -9.5 dB at the edge of the LAR, while the taper at its edge

due to the Feed-Reflector is -13 dB.

The calculated result for the co-polarized pattern, using PO on each reflector sur-
face, is compared to that of the GRASP8W, good agreement is evident. Implementation of
body of revolution techniques remarkably facilitate the computation of radiation pattern.
In this calculation the effect of the Feed-Reflector parasitic fields on the LAR radiation
patterns is taken into account. This parasitic fields are due to the current induced by the
sub-reflector on the Feed-Reflector. It is observed that the Feed-Reflector radiation pattern
has impact only on the LAR sidelobes which are located at least 10 beamwidth away from
the main lobe. In the analysis of sub-reflector adding the PTD to PO has a considerable
impact on the LAR cross-polarization similar to ordinary Cassegrain system [18]. A 10 dB

increase in the diffraction cross-polarization of the LAR radiation pattern is observed by
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using the PTD compared to pure PO analysis. However, the impact of adding PTD on the

Feed-Reflector and LAR, on the system cross-polarization is not considerable.

In ordinary Cassegrain systems, the lower focal point is normally located on the
phase centre of the feed horn. The rays diverge from the phase centre and cover the surface
of the sub-reflector. However, in the case of the Feed-Reflector, there is no specific point to
locate the lower focal point. To investigate the effect of the lower focal point on the results,
its position was changed with respect to the LAR or the Feed-Reflector vertex (AZ), while
the upper focal point was located on the LAR focus. It is observed that as long as |AZ |
<D the variation in directivity is not significant for above parameters. The effect of inter-

focal distance will be explained in chapter S in more details.

A full ray tracing study was performed on this configuration. Figs. 4.3, and 4.4
show the ray tracing result for the LAR. Since the reflectors are rotationally symmetric
only a cross section of the structure can be utilized for analysis. To illustrate the ray trac-
ing sequence, five rays are selected and numerically assigned in Figs. 4.4a and 4.4b. Rays
number 1, 2, and 3 which are emitted from the horm antenna and being reflected from left
side of the Feed-Reflector symmetric axis, intercept the sub-reflector on the right side of
the symmetric axis. But ray number 3 which incident farther away from the Feed-Reflec-
tor axis compared to ray number 2, i.e. |pg3>|p£2|, intercepts the sub-reflector closer to the
sub-reflector axis, i.e. [pg3[<|ps,|- Rays 4, and 5 which are reflected far away from the sym-
metry axis (relate to rays 1, 2,and 3), do not cross the symmetric axis. However, ray 5
passes the sub-reflector without interception. This ray is considered as spillover. This anal-

ysis reveals, that by considering the rays reflecting from the other half of the
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Figure 4.2: Radiation pattern of the LAR, Dg=25 m d=0.23 m, T,=-15dB, 2¢=500 m,
Jf=3GHz, Dg=5 m, e=1.0424
Feed-Reflector some part of the sub-reflector, which corresponds to {pg{< |ps4| of Fig. 3.6,

receives three rays at each point.

Rays reflected from the sub-reflector intercept the LAR, and the Feed-Reflector on
the same side of reflection (Fig. 4.3). From aforementioned observation, and the system
ray tracing of Fig. 4.3, it is perceived that the inner part of the LAR and the whole Feed-

Reflector receive three rays at each point. However, the other part of the LAR collects only
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one ray per point. Rays reflected from the LAR are almost parallel to the z-axis, which
means the system focus to infinity. Unlike the LAR, those rays scattered from the Feed-
Reflector go other directions than the zenith angle. These rays, which produce parasitic
fields, contribute to the sidelobes locating several beamwidth away from the LAR main

beam.

4.4. LAR System Aperture Distributions

Aperture amplitude and phase distributions for the Feed-Reflector with Dg=25 m,
JF=9 m, d¢=0.23, =3 GHz, T, =-15 dB at the Feed-Reflector edge are shown in Figs. 4.5a,
and 4.5b. Aperture plane for the Feed-Reflector is located on the focal plane. PO tech-
niques is employed to compute the aperture distribution. In Fig. 4.5a the Feed-Reflector
computed aperture amplitude distribution shows -18 dB field taper at the aperture edge. In
this figure, approximation of Eq.(3-9) is compared to the calculation which indicates a rea-
sonable agreement. Fig. 4.5b shows the computed Feed-Reflector aperture phase distribu-
tion and is compared to that of Eq.(3-2) derived by using geometrical optics [7]. A'good
agreement is evident between them. Also the Fresnel quadratic phase error (e—jkg_R_) of

Eq.(3-5) for R=489.824 (location of sub-reflector vertex) is plotted in the same figure.

The radiation pattern for the sub-reflector with Dg¢= 5 m, 2¢ = 500 m, e =1.0424,
and /= 3 GHz, at the place of the LAR is depicted in Figs. 4.6a, and 4.6b. These figures
show a field taper of -9.5 dB at the LAR edge, and a phase distribution with maximum 12°
variation on the LAR. The dip in the middle of the sub-reflector radiation pattern reduces

the effect of the sub-reflector on the Feed-Reflector and reduces its parasitic fields.
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In Fig. 4.7a the gap in the middle of LAR aperture distribution is due to the Feed-
Reflector blockage. The field taper at the LAR aperture edge is -15 dB which is equal to
feed homn taper at the Feed-Reflector edge. The LAR Phase distribution (Fig. 4.7b) shows
about 0.07A phase error across the LAR aperture. This phase error is mostly due to estima-

tion of sub-reflector surface.
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4.5. Effect of Defocusing Distance, dy

Fig. 4.8 shows the radiation patterns of the Feed-Reflector with D =25 m, fr-=9
m, and 7, = -15 dB, at the sub-reflector (Dg=5 m, 2¢ = 500 m, e =1.0424) location which
is located in the Fresnel region of the Feed-Reflector. The results were for different values
of feed defocusing drat 3 GHz. The maximum field intensity occurs when dr=0.23 m.
This value also provides the maximum efficiency for the LAR as shown in Fig. 4.9.
Fig.4.10 shows the effect of feed defocusing on the LAR sidelobe level (SLL) and cross-
polarization, which indicates that dr=0.23 m provides minimum SLL and cross-polariza-

tion for LAR.

The field taper at the edge of the sub-reflector and LAR are presenied in Fig. 4.11,
as a function of defocusing distance dr At dr=0.23 m both curves reach their minimum,
indicating that, the minimum spillover is occurred. A ray tracing of the system for this
value of defocusing as cited earlier, confirms that most of the rays emanating from the
Feed-Reflector are intercepted by the sub-reflector, and most of the LAR surface is illumi-

nated efficiently by the reflecting rays.

It has been shown in [8] that the defocusing value is independent of the operating
frequency. This property was examined by the results of simulation at 5 GHz for the afore-
mentioned Feed-Reflector and sub-reflector and 7, = -40 dB. Again maximum efficiency

of 70% occurs at df=0.23 m.

The feed defocused distance which places the maximum energy density, at the sub-

reflector location, i.e. R=489.648 m, was also calculated using Eq.(3-8). It was found to
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be 0.25 m, in lieu of 0.23 m calculated above.

4.6. Effect of Field Taper at Feed-Reflector Edge, 7,

The size of the Feed-Reflector is determined by Eq.(3-13), and depends on the
wavelength. In this design, the Feed-Reflector physical diameter is 25 m and by increasing
the frequency, the effective aperture area in wavelength of the Feed-Reflector is kept con-
stant by increasing the taper at the edge of the reflector, resulting in a nearly constant spot
size on the sub-reflector. To investigate the effect of field taper at the edge of the Feed-
Reflector, a system with parameters similar to those of the last section and dr=0.23 m is

considered.

Fig. 4.12 shows the normalized radiation pattern of the Feed-Reflector at the sub-
reflector at 3 GHz. The field taper should be selected in a manner that the sub-reflector is
placed in the main beam of the Feed-Reflector. Otherwise, a phase change over the sub-
reflector will reduce the system efficiency. By investigation, it is found that the best field
taper values are between -15 dB to -20 dB, at 3 GHz. By increasing the frequency to 5
GHz, the required field taper (7)) becomes -40 dB. The reduction of field taper keeps the
Feed-Reflector effective aperture area in wavelength constant, and compensates for the
effect of beamwidth narrowing due to the frequency incréase, and consequently places the
sub-reflector in the Feed-Reflector main beam. According to Eq.(3-13), at this frequency
the Feed-Reflector diameter is reduced to 14.63 m with 7, =-15 dB which is equivalent to

-18 dB field taper at its aperture plane (Eq.(3-9)).
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4.7. Sub-Reflector Eccentricity

The sub-reflector eccentricity, Eq.(4-4), determines thes curvature of the sub-reflec-
tor, and as a result that portion of the LAR which must be illwminated. The results of dif-
ferent eccentricity values on the LAR gain are shown in Tables 4.1. To obtain these results
a 5 m diameter sub-reflector is considered. Parameters of the- Feed-Reflector are Dg=25
m, and dy=0.23 m, with a field taper of -15 dB at the Feed-RefJector edge, 2¢ = 500 m and

the operating frequency was 3 GHz.
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Table 4.1: Effect of the eccentricity of the sub-reflector on the LAR performance

e | @o(degree) | Efficiency% | SLL(dB) | X-Pol.(dB) | LAR TAPER (dB)
1.052 11.42 64.4 20.85 -66.95 -19.5
1.050 12.0 67.45 -20.15 -68.5 -17.5
1.046 13.0 70.63 -19.45 71.2 -12.5
1.044 13.5 71.6 -19.26 71.81 -10
1.042 14.0 72.0 -19.04 71.74 9.5
1.040 14.5 71.78 -18.92 -71.02 -10.5
1.039 15.0 70.63 -18.85 -70.35 -12.5

4.8. Sub-Reflector Size, Dg

The sub-reflector size, according to Eq.(3-13), depends on the Feed-Reflector
diameter, field taper at its edge, and the operating frequency. However, ray tracing shows
that rays near the Feed-Reflector edge do not intercept the 5 m sub-reflector. This
increases the spillover loss of the system and reduces the aperture efficiency. This can also
be observed by referring to Figs. 3.4 and 4.8, where the 5 m sub-reflector does not inter-
cept large amounts of energy in the Feed-Reflector main beam. Attempts to increase the
field taper at the Feed-Reflector edge, which would make the beam narrower and locate

more of its energy on the sub-reflector, will increase the Feed-Reflector spillover.

To minimize the effect of spillover, the sub-reflector diameter was increased to 10
m. The increase in the sub-reflector size places its edge over the Feed-Reflector radiation

pattern sidelobes. To increase the radiation pattern average spot size X~ in Fig. 3.4, it is
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necessary to decrease Feed-Reflector diameter to 12.2 m, at 3 GHz (with 15 dB edge
taper) according to Eq.(3-13). However, the Feed-Reflector physical diameter is fixed (25
m). So the only way to decrease the illumination area is to select a higher directivity horn
antenna to illuminate a smaller part of the Feed-Reflector. A horn which can illuminate a
smaller part of the Feed-Reflector with Dg=12.0 m (the horn produces -15 dB field taper
at this part edge) and generate adequate radiation pattern spot size to cover the sub-reflec-
tor, was found by trial and error. The difference between this value and that of Eq.(3-13) is
due to the fact that the actual diameter of the Feed-Reflector is more than 12.2 m, which

contributes to the radiation pattern.

The effect of increasing the sub-reflector size for different eccentricities are also
calculated. For e = 1.096, or ¢5=13.0°, the LAR efficiency reaches to 74.8%. The corre-
sponding radiation patterns are shown in Fig. 4.13. This increase in efficiency is due to the

reduction of spillover from the sub-reflector and the Feed-Reflector.

4.9. LAR Performance Over Its Operating Band

The LAR’s primary purpose is to operate over a frequency band from 1 to 22 GHz.
The idea of designing the Feed-Reflector to cover this frequency band is to maintain the
effective aperture area in wavelength constant which results in a fixed spot size. This can
be done by utilization of different homns with various directivities. To investigate the per-
formance of the LAR over its bandwidth, a Feed-Reflector with a fixed diameter of 25 m
and 9 m focal length is assumed. Two sub-reflectors with 5 m (e=1.0424) and 10 m

(e=1.096) diameters and 2¢ =500 m are considered.

57



Directivity (dBi)

70

— Co-Pol ||

— — X-Pol

0.25
© (Degree)

02 0.3

Figure 4.13: Radiation pattern of LAR, d=0.23 m, 2¢=500 m, D = 12 m, f=3GHz,
Dg=10m, e=1.096

The LAR efficiency with the Feed-Reflector antenna is calculated over its operat-
ing band, and is shown in Fig. 4.14. For deriving this graph, the feed horn was assumed to
be 0.23 m away from focal point with a Gaussian radiation pattern. For each frequency, the
central part of the Feed-Reflector with diameter Dy, (shown in Fig. 4.15) is considered to
be illuminated by a Gaussian beam, which produces -15 dB taper at its boundary. Also in
this figure, the values obtained by Eq.(3-13) are plotted. The difference between these two
plots can be interpreted as in latter, it is assumed that the diameter of the Feed-Reflector
aperture is limited to the value obtained. However, the former values show that central part

of the Feed-Reflector which has -15 dB taper at its selected boundary.
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Due to the Feed-Reflector size limitation, which prevents utilization of constant
effective aperture area, the efficiency drops for the frequencies below 3 GHz and reaches
to about 18% for a 5 m sub-reflector at 1 GHz. However, this reduction in efficiency is less
for the 10 m sub-reflector. If the minimum 50% efficiency is set as a criteria, the system
with 5 m sub-reflector can operate well above 2 GHz and this value reduces to 1 GHz for
the 10 m sub-reflector. For the frequencies between 3-22 GHz, small variations in the effi-

ciency are observed, but the overall efficiencies are almost uniform.

By decreasing the Feed-Reflector size, it is expected that the defocusing distance
according to Eq.(3-8) will change. However, results of simulation show, for example at 22
GHz, the directivity remains almost constant for 0.18 < df< 0.25 m. The radiation patterns

of LAR at 22 GHz for different value of defocusing distances are shown in Fig. 4.16.
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Figure 4.14: Symmetric LAR efficiency versus frequency
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Figure 4.16: Radiation patterns of LAR at 22 GHz for different value of defocusing
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4.10. Performance of the Shaped LAR

In order to obtain higher directivities from the LAR, it is necessary to shape its sur-
face and those of its Cassegrain feed system. In this section, first a shaping procedure
which is based on a diffraction synthesis is explained and then applied to the LAR system.
Three sets of shaping techniques have been carried out i) Shaping the LAR and the sub-
reflector, ii) Shaping the LAR and the Feed-Reflector and iii) Shaping all three surfaces

together.

4.10.1. Global Surface Expansion Using Orthogonal Functions
The first step in the diffraction synthesis of the LAR is to parameterize the antenna
system. An orthogonal global expansion of the Fourier-Jacobi type that is related to the
Zernike functions was used to represent shaped reflector surfaces by Rahmat-Samii [S9
917
N M
Z(t,y) = ¥ Y (C,cosny + D, sinny)F,"(¢) 4-5)
0 0
where C,,,,, and D,,, are the expansion coefficients, ¢,  are planar aperture parameters to

show the coordinates of a point r’,,=(x "y 'z ) on the reflector as

x=x'(tLy),y =y (tw),z =24, ) (4-6)
0<t<1,0<sy<2r “4-7)
F:'n(t) is the modified Jacobi polynomial defined in Appendix I. In this work the

expansion is applied to each reflector of the LAR Cassegrainian system in terms of the
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corresponding local coordinate system as shown in Fig. 4.1.

The expansion of Eq.(4-5) is global in the sense that each basis fianction acts in the
entire domain of Eq.(4-7), in contrast to a localized function which has usually nonzero
values only with subgridded patch. The Eq.(4-5) guarantees that the reflector surface is

continuous, and so are the derivatives of all orders.

For a given reflector surface z'(z,y), the expansion coefficient czan be determined

by
() = 320 o v S v o
" {; nn :00 (4-9)

For the LAR system surfaces, due to their symmetric property for the scan angle of
0°, it suffices to use Cy,, coefficients alone in Eq.(4-5) to represent the shaaped reflectors. In
this case the number of the expansion coefficients is reduced from a tw-o-dimensional to
one-dimensional set. The coefficients for the LAR, the sub-reflector witth 2¢ = 500 m, e=
1.0424,and 5 m diameter, and the Feed-reflector with a focal length of 9 mn and diameter of

25 m is summarised in Table 4.2.

Table 4.2: Jacobi Fourier Coefficients of the LAR System, D =25 m, fr=9m, Dg=5
m, 2¢=500 m, e =1.0424

Coefficient LAR Sub-Reflector Feed-Reflector
=:
Coo -351.7856 -346.411 -4 8294
Cor -1.0206 0.0307 -0.88:6
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The goal is to maximize the directivity of the system. In this approach, the best
solution is determined by an optimization technique, and the criterion is the minimization
of an object (penalty, cost) function (Cost = -Directivity). The initial values of the optimi-
zation are the original LAR, sub-reflector, and Feed-Reflector surfaces. In this study,

genetic algorithm is used as the optimization utility [94].

4.10.2. Shaping LAR and Sub-Reflector

The first shaping process is done on the LAR and its sub-reflector surfaces at 3
GHz. For each surface six coefficients are considered. The Feed-Reflector remains
unchanged, with a 0.23 m defocusing of the feed horn. The coefficients after shaping are

presented in Table 4.3.

The peak gain of 74.80 dBi, which is equivalent to the efficiency of 76.5% is
obtained. Radiation patterns of LAR and sub-reflector are shown in Figs.4.17 and 4.18,

and compare with that obtained by Grasp8W.

Table 4.3: Shaped LAR and Sub-Reflector Coefficients, Dg =25 m, fr=9m

Coefficient LAR Sub-reflector
Coo -351.7856 -346.293
Cop, -1.0229 0.0307
Coz 0 0.0023
Cos 0 0
Coq4 0 0
Cos 0 0
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Figure 4.17: LAR radiation patterns for the shaped LAR and sub-reflector at 3 GHz
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4.10.3. Shaping LAR and Feed-Reflector

Another shaping process is to shape the LAR and the Feed-Reflector antenna.
Again, the operating frequency is 3 GHz. This process is mostly used to reduce the spillo-
ver on the sub-reflector and to make the LAR aperture distribution uniform. Six coeffi-
cients are utilized for each surface. The sub-reflector parameters are 2c = 500 m, e=
1.0424, and 5 m diameter. In this optimization process, defocusing distance df and the
Feed-reflector edge taper are also considered as parameters to be optimized. The peak gain
reaches to 74.71dBi, which is equivalent to an efficiency of 75%. The coefficient of
Jacobi-Fourier series after shaping are depicted in Table 4.4, and the radiation patterns of
the LAR are shown in Fig. 4.19 and is compared to that of Grasp8W. Defocusing distance

ds, and Feed-Reflector edge taper T, after shape are 0.2433 m,and -15 dB respectively.

Table 4.4: Shaped LAR and Feed-Reflector Coefficients, D=5 m, 2¢=500 m, e

=1.0424
Coeflicients LAR Feed-Reflector

Coo -351.7856 -4.8294
Cos -1.0205 0.886

Coz 0 0.0012

Co3 0 0

Coq 0 0.0004
Cos 0.0001 0
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Figure 4.19: LAR radiation pattern for the shaped LAR and Feed-Reflector, Dg= 5 m,
2c=500m, e =1.0424, f = 3 GHz.

4.10.4. Shaping LAR, Sub-Reflector, and Feed-Reflector

The last shaping process is to shape all three reflectors together. The operating fre-
quency is 3 GHz. Again, six coefficients are utilized for each surface. In this optimization
process, defocusing distance dj; and the Feed-Reflector edge taper are also considered as
parameters to be optimized.The peak gain reaches to 74.91 dBi, which is equivalent to the
efficiency of 78.5%. The coefficients of Jacobi-Fourier series after shaping are depicted in
Table 4.5, and the radiation patterns of the LAR and sub-reflector are shown in Figs 4.20.
and 4.21, which are compared to those of Grasp8W. dj; and the Feed-Reflector edge taper

after optimization are 0.2371 m, and -16.81 dB, respectively.
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Figure 4.21: Sub-reflector radiation pattern for shaped LAR, sub-reflector and Feed-
Reflector at 3 GHz
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Table 4.5: Shaped LAR, Sub-Reflector, and Feed-Reflector Coefficients

Coefficients LAR Sub-reflector Feed-Reflector
Coo -351.9135 -346.4515 -4.8294
Cor -1.0211 0.0307 -0.886
Coz 0 0.0016 0.0009
Cos 0 0.0003 0.0004
Coq 0.0005 0.0001 0
Cos 0 0 0

Results of these three sets of shaping techniques are summarized in Table 4.6

Table 4.6: Summary of shaping techniques

Shaping Technique Efficiency(%) SLL(dB) X-Pol(dB)

LAR & Sub-Reflector 76.5 -16.17 -71.12
LAR & Feed-Reflector 75 -19.42 -70.17
LAR & Feed-Reflector & 78.5 -16.10 -70.25

Sub-reflector

68



4.11. Conclusion

The performances and characteristics of the LAR using the Feed-Reflector were
investigated. To make it feasible for fabrication, a conventional hyperboloid sub-reflector
was considered, which approximated the surface obtained by the equal path law. The
effect of sub-reflector second focal point position, eccentricity, and size were investigated.
ray tracing was used for better understanding of the system performance. For the unshaped
surfaces a maximum efficiency of 75% was obtained with less than -65 dB cross polariza-

tion. The SLL is in the acceptable range {95].

The performance of the LAR was investigated over its operating band. It was
found that for a 5 meter sub-reflector and a 25 m Feed-Reflector, the LAR efficiency is
more than 72% for frequencies above 3.0 GHz. However, if the sub-reflector diameter is

increased to 10 m this frequency reduces to | GHz.

Three shaping processes were conducted on the LAR system based on a diffraction
synthesis technique, using Jacobi-Fourier series to represent the reflector surface. An effi-
ciency of 78.5% was obtained by shaping all three reflectors. The final radiation patterns
of each case were compared to those of Grasp8w, and showed an excellent agreement

[96].
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Chapter 5

GAUSSIAN BEAM ANALYSIS OF LARGE ADAPTIVE
REFLECTOR ANTENNA USING FEED-REFLECTOR

5.1. Introduction

The recent trend in microwave instruments is the use of multiple millimetre and
sub-millimetre wavelength bands. These systems are typically analysed by using physical
optics, Gaussian beams or ray tracing techniques. Physical optics offers high accuracy at
the expense of computational time. This trade-off becomes particularly apparent in the
analysis of multiple reflector antennas, such as beam waveguide antennas, where physical
optics is used to compute the current on each reflector from the current on the previous
reflector. One example of the beam waveguide antennas is the Cassegrainian LAR fed by
the Feed-Reflector. At the other end of the spectrum are ray tracing approaches that ignore
diffraction effects entirely. These methods are fast but fail to predict some effects accu-

rately.

An intermediate approach is to use an appropriate set of expansion functions to
model the field between the reflectors. If the set is chosen wisely, only a few coefficients
need to be determined from each refiector current. The field is then computed at the next
reflector through the use of the expansion functions and their coefficients rather than by
using the previous reflector current. For a waveguide system with no enclosing tubes an

excellent set of expansion functions is Gaussian-Laguerre beam modes set. In many cases

70



a preliminary design which includes the effects on diffraction may be obtained by consid-
ering only the fundamental mode and a thin lens model for the reflectors. Higher order
modes are included to model the effects of the curved reflector, which include asymmetric

distortion of the beam, cross polarization and beam truncation.

In Section 5.2. after a brief review of orthogonal Gaussian-Laguerre expansion the
equivalent Gaussian beam modes for the Feed-Reflector are calculated. Then in section
5.3. the sub-reflector parameters are obtained by utilizing the Gaussian mode analysis of

the system.

5.2. Gaussian Beam Analysis of the Feed-Reflector

For the LAR using the Feed-Reflector system as a beam waveguide, an excellent
approach for the analysis is the Gaussian beam method. This method not only facilitates
the performance investigation of the system, but also provides a powerful tool to calculate
the sub-reflector parameters for maximum LAR efficiency. Thus, before proceeding to the
analysis of Feed-Reflector, it is advantageous to review the techniques of Gaussian beam-

mode optics.

The Gauss-Laguerre beam modes are approximate solutions to the wave equation
in cylindrical coordinates, which are valid when the wave propagates in nearly parallel
beams [67]. The beam-mode superposition representing the transverse electric field £ of
an axially-symmetric beam, in cylindrical polar co-ordinates (p,z), with the z-axis being

coincident with the beam axis, is
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- 2 o[2p” —p? k,p’
E(p,z) = A |—L [—z-l exp —-Jexp(—jk Z—j——r +jO ) (s-1)
where £, is the wave number, and p =0, 1, 2, 3,... is the mode number. Lpo is a zero-order

Laguerre polynomial of argument (2p2/W2) [971.

The first exponential term in Eq.(5-1) indicates the form of the variation of the
modulus of p"’ beam-mode over a cross-sectional plane. This is a Gaussian function of p?
modulated by the Lp". The scale of this variation changes with z through the z-dependence
of the beamwidth parameter W, beam radius defined when intensity reduces to e’ [67] of

the fundamental mode. Gauss-Laguerre functions form an orthogonal set, such that [71]

4 0 2p2 0 2p2 —2p2 _ ~
sz:Lm[ Wl]L”[ Wl]exp( 7 )pdp 8 mn (5-2)

4, is the amplitude of the p”' mode and is independent of p and z. Its values are to
be determined by fitting the above superposition to actual field over some transverse plane
for which the form of the field is known. For the Feed-Reflector, this will be its aperture

plane. The mode coefficients are in general complex and can be determined at z,, as

4 202 2
Ap =~ [ IE, za>|L2[§2—]exp(;"2—]pdp (5-3)

The phase term in Eq.(5-1) has three components. The first term is a linear propa-
gation phase. The second term in the exponential shows the variation of the phase of the
beam mode field over a cross-sectional plane, relative to its value on axis. The form of this

term (quadratic) indicates a spherical wave-front with radius of curvature, R. The values of

72



R varies with the propagation distance, z, as shown in Eq.(5-4) below. The fact that R is not
linearly dependent on z means that the location of the centre of the curvature of the beam
modes, equi-phase surfaces varies with beam distance. The last component of the phase

term is mode dependent. It represents a mode-dependent phase shift, or phase slippage.

The beam parameters, the mode independent beam radius W, the mode independ-
ent radius of curvature of the wavefront R, and the phase slippage per beam mode 8, vary

with z according tof71]

W = W2+ {2(z—2,)/(k,W,)}*
R = (z—zo)+{(ko Wﬁ/z)z/(z—zo)} (5-4)
0, = (2p+ V)tan™ {2(z—z2,)/k, W’}
where in general W, and z,, beam waist and its position, are constants which can be

expressed in terms of the values W, and R, assigned to W and R at the aperture plane

located at z =z, thus

w? = Wﬁ/{l +(k, Wﬁ/zka)z}

(5-3)

z,~z, = —Ra/{l + (2R, /k, Wi)z}

The values of W, and R, are not uniquely determined. That is to say, an arbitrary
axially symmetric function can be fitted by a superposition of Gauss-Laguerre functions
with any choice of values for the parameters # and R. The best choice is that to maximize

the power in the fundamental mode[71].
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In Gaussian-beam optics the relationship between the beam parameters of the inci-
dent and reflected fields are necessary for solving a reflection problem. In reflector anten-
nas the reflecting surface is conical. Fig. 5.1 shows a representative example of conical
section with focii at F; and F,. The transformation of a paraxial beam-mode parameters,
W and R (emitted from F;) that occur as the beam is reflected from the conical section can
be shown to be related by[98]

W_ =W,

r i (5-6)
I/R= 1/R-1/f

where W; and R;, are beam radius and radius of curvature of the incident and W, and R,
are those for the reflected wavefront at the reflection point V. The sign of R; or R, is nega-
tive when F; or F) lies in the direction of wave propagation shown by the arrow in Fig.

5.1. fis the “focal length” of the conical section and from Fig. 5.1 it can be defined as

1/Ry, = /R —-1/f (5-7)
In this equation, R; and R; are distances between F; and N, and F, and N, respectively. R,
or R, is positive when they lie on opposite side of the reflection surface, and negative
when they are on the same side. In this thesis, the subscript S relates parameters #;, W,, R;,

R, Ry, R, f, F;, F; to the sub-reflector, and L associates them with the LAR.

To apply the Gaussian beam method to the system, the feed horn of the Feed-
Reflector is represented by the first term of Gaussian-Laguerre modes [71]. The feed horn

is displaced 0.23 m away from the focal point of the paraboloid Feed-Reflector with

74



Conical Section of a Quadratic Surface of Revolution

Figure 5.1: Cross-section of a conical reflector with the direction of wave propagation
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Dp=25m (a=12.5 m) and a focal length of f-=9 m, which provides -15 dB field taper
at the edge of the Feed-Reflector at 3 GHz. Due to the Feed-Reflector curvature and also
low aperture edge field taper, exercising Eqs.(5-6) and (5-7) to find reflected beam param-
eters at its aperture i.e the beam radius W, = W and the radius of curvature R, = R may
cause an inaccurate result. However, the Feed-Reflector aperture distribution E_,(p, zj), can
be calculated accurately by employing the physical optics (PO). Then, the field at the aper-
ture is decomposed into a sum of orthogonal Gaussian-Laguerre beam modes[71]. All
these constituent beam modes have identical equi-phase radii of curvature. However, as
the beam from the Feed-Reflector aperture propagates, the relative phases of the modes
shift as discussed above. The Feed-Reflector aperture is considered to be at its edge, i.e. z,

= zy=4.341 m, as shown in Fig. 5.2.

The logical choice for Wr/a is that which maximizes the fractional power in the

fundamental beam mode i.e. p = 0. The fractional power in the first mode is given by[71]

2 2
n[W 4 D:[Ef(p,zf)l exp(—p~/ Wff)pdp] s
¢ Wi‘ j:lEf(p’ zf)lzpdp

Using Eq.(5-8), the fractional power in the fundamental beam mode is calculated and
shown in Fig. 5.3. Its peak value is 99.01% and is given for the beam radius,
Wr

Thus, the Feed-reflector can have a very high fundamental Gaussian beam mode

component. Fig. 5.4 shows the coefficients of the first 30 modes calculated by Eq.(5-3),

76



ZA

Sub-Reflector

W,s z,s Sub-Reflector Fif Fos
beam waist and its location ?zs 1 >
W,rS:RrS S - — —_ -3 WlS’RiS
I
®— W5 z,rFeed-Reflector
r k beam waist and its location
ll |‘
. {
I .
[ i
ll' | A
] “
I | ' |
I . I \
! { ' \
I l \
I 1)
: \
1
/I ‘ \\
/ [ '
/ . l \
/ | ‘ \\
LAR Aperture DlStI1bllt109 ,' : \
Erp(Pz)  / : \ \

(GB Expansion)
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which indicates that only the first few modes contribute to the aperture field distribution.
Fig. 5.5a shows a comparison between the Feed-Reflector aperture distribution obtained
by PO and its interpolation by Gaussian-Laguerre modes using both the fundamental

mode and the first 30 modes.

The Feed-Reflector radius of curvature Rrat its aperture, can be determined from
the Feed-Reflector aperture phase distribution, calculated by PO as shown in Fig. 5.5b.
However, for a defocused paraboloid reflector, the aperture phase distribution as a function
of radius is not entirely a quadratic function, especially for small ratios of //D. That means
the appropriate value of Rymust be found through a trial and error procedure to minimize
the difference between the actual aperture phase distribution and the quadratic term of the
phase component of the Gaussian-beam mode representation given by Eq.(5-1). For the
above mentioned system, Ry = -467.75 m minimizes this error at 3 GHz. The aperture
phase distribution and its equivalent quadratic phase representation, on the Feed-Reflector
aperture, are shown in Fig. 5.5b. It shows that, their difference increases towards the edge

of the Feed-Reflector, but as it will be shown later the selected representation is adequate.

Fig. 5.6 shows the Feed-Reflector near field radiation pattern at the sub-reflector
location (z = 489.824 m), obtained by both the Gaussian beam mode expansion of Eq.(5-1)
and the PO technique. The comparison between them reveals an excellent agreement for
the main beam down to -25 dB, adequate enough to satisfy the LAR design requirements
with a 5 m diameter sub-reflector. Considerable discrepancies are, however, observed for
the side-lobes, which are due to imperfect match between the aperture phase distribution

and Gaussian-beam radius of curvature. W5 and R;g are the beam radius and the radius of
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Figure 5.3: First Gaussian-Laguerre mode efficiency versus beam radius, W for the
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Figure 5.6: Feed-Reflector near field radiation pattern at 3 GHz and z = 489.824

curvature of the incident wave at the sub-reflector location and are equal to 1.9706 m, and
300.66 m, respectively. The beam waist of the Feed-Reflector W,r1s equal to 1.8260 m,
and is located at Zor= 447.3211 m, as shown in Fig. 5.2. Unlike feed homns for which the
beam waist is located at the horn throat, the Feed-Reflector beam waist is away from its
aperture. This implies that the sub-reflector must be redesigned to match this type of feed

system.
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5.3. Sub-Reflector and LAR Gaussian Beam Analysis

The main idea behind Gaussian beam analysis of the LAR system is to acquire the
sub-reflector parameters, and investigate the LAR performance. For the purpose of initial
design, one of the sub-reflector focii must be at the LAR focal point and the other one is
considered to be located at the LAR vertex, i.e 2¢ = 500 m. However, as it will be shown in
Fig. 5.10, this is not a necessary requirement and the optimum value of 2¢ will depend on

the Feed-Reflector edge taper.

The beam propagating away from the sub-reflector is still made up of the beam-
modes with unchanged coefficients, 4,,. Consider the plane SS’, a plane at the vertex of the
sub-reflector as shown in Fig. 5.2. It is considered to be as a new source plane for the sub-
reflector, similar to plane 77" the Feed-Reflector aperture. Thus, in this case too, the beam
parameters W, and R, of Eq.(5-5) can be acquired as before [71] and be designated as W,g
and R,.¢ by Eq.(5-6). By utilizing Eqgs.(5-1) and (5-4), the field radiating from the sub-
reflector can be obtained at any distance. As cited earlier, since almost the entire power is
contained in the fundamental mode, the series representation can be reduced to the funda-

mental mode. This will simplify the analysis and will be used in the rest of this study.

To achieve the maximum efficiency from the LAR, the following conditions must

be satisfied:

* Phase distribution must be uniform over the LAR aperture (1)
= A compromise between the high aperture-illumination efficiency, 1;,

and low spiliover efficiency, 1 must be sought such that the product n; 7;
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is maximized.
Because only the symmetric configuration is considered here, asymmetric Gaussian beam
modes which are responsible for the cross-polarization are not excited. Thus, the cross-

polarization loss is assumed to be zero.

To meet the first requirement, in an ideal case, R;; at the LAR, i.e.the incidental
wave radius of curvature, must be equal to LAR focal length f; which makes the reflected

radius of curvature R,; to be infinite according to Eq.(5-6). This results in the quadratic
2

phase component in Eq.(5-1), i.e. exp [—j J , to be constant at the aperture. In a con-

(4
2RrL
ventional Cassegrainian reflector design, the uniform phase distribution at the main reflec-
tor aperture can be obtained by setting one of the sub-refiector focii at the feed horn phase
centre and the other at paraboloid reflector focal point. This condition provides case R;g =
R;s R,.s = Ryg and R;; = f;. However, by replacing the feed horn by the Feed-Reflector,
R;s is not equal to R;g any more, as shown in Fig. 5.2. Thus the sub-reflector parameters

(1.e. eccentricity, e, and focii distance, 2¢), must be calculated to match R;; to the LAR

focal length f;. In other words, the LAR phase efficiency 1, must be maximized [99]

lf;nszELap(p, ®, zc)pdpdtbl i

T 2 (5-10)
[ﬁ JIELIELap(p’ ¢, z,.)| pdpdq)]

p =

where E;,,(p, ¢, z.) is the LAR aperture distribution at the distance z, from its vertex, and

pz =100 m is the LAR radius.

To achieve the maximum aperture efficiency from LAR, the radius of curvature of

the incoming wave W, should be adjusted to minimize the spillover loss while maintain-
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ing the aperture illumination efficiency as high as possible. The spillover efficiency can be

calculated from [99]

f,nszIEs(p, 0)|*pdpdo
N, = 5= -
j; [ |Esto. 9] pdpde

(5-11)

where |[Eg(p,¢)|° is the power-radiation pattern of the sub-reflector at the LAR location (z =
0), which can be easily evaluated using Eq.(5-1) by substituting the sub-reflector parame-

ters.

The illumination efficiency of the LAR can be expressed as[99]

R B e, 020l pdods |

2
np; _‘in_‘;L|ELap(p, o, zc)|2pdpd¢

n; = (5-12)
Due to the symmetry of the reflectors, £;4,(p.¢.2.) = Er4,(p.z.), and [E(p.o)? = |E«(p)I .
Thus, the integrals in Eqs.(5-10)-(5-12) reduce to one dimensional integrals, which expe-

dite the computations process.

The total LAR efficiency n4 can be computed by the product of the above men-
tioned efficiencies, i.e. 1, =N, NN, Fig. 5.7 shows the LAR efficiency vs. sub-reflector
eccentricity, when the distance between its focii, 2¢, is equal to 500 m. The maximum effi-
ciency occurs for e = 1.046, which is slightly more than 80%. However, this efficiency is
not attainable because of the spillover losses of the Feed-Reflector and sub-reflector, and
also the effect of blockage at of LAR centre, due to the Feed-Reflector. As it will be shown

later, inclusion of these parameters can reduce the efficiency of the system by as much as
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10%. Thus, the overall efficiency becomes about 71%.

The sub-reflector radiation pattern at LAR location for e = 1.046, and 2¢ = 500 m is calcu-
lated by using Egs.(5-1), (5-4) and (5-6) and is shown in Fig. 5.8. In this figure, the sub-
reflector radiation pattern with the radius of 2.5 m, computed by the PO, is also depicted.
The comparison between them reveals an overall agreement. Fig. 5.2 shows the Gaussian
beam reflected from the sub-reflector has a beam waist #,g of 0.1617 m which is located

at 0.1989 m from the sub-reflector second focal point Fg.

Fig. 5.8 also shows that the LAR edge taper of -9.5 dB, which is very close to the

Efficiency (%)
© © © o o o o
w » n [ ~ (-] o

o
N

0.1

1 ] L
1 1.02 1.04 1.06 1.08 11
Eccentricity

Figure 5.7: LAR efficiency vs. sub-reflector eccentricity using Gaussian beam (1 4 = p
nMy
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beam taper of -8.7 dB at its waist (-8.7 dB). This implies that the LAR far field radiation
pattern be calculated by integrating from the LAR aperture distribution instead of direct
computation of the reflected Gaussian beam, as in Eq.{5-1) which requires lower edge
tapers to be accurate (by substituting of LAR parameters). Following the usual aperture

theory integral, the LAR far field radiation pattern can be calculated from

En,(©) = 2m jg “E/ (P, )7 ,(k,psin®)pdp (5-13)

Fig. 5.9 shows the LAR normalized far field radiation patterns obtained by using
Eq.(5-13) for the fundamental Gaussian mode and an accurate PO technique, which indi-
cates a good agreement between them. The blockage effect is ignored in this graph. The
CPU time required for the Gaussian beam technique is substantially less than its PO coun-
terpart. Also in this figure, the LAR radiation pattern calculated by Eq.(5-1) is depicted,

which shows considerable difference as can be predicted.

The LAR efficiency vs. the sub-reflector focii-distance is depicted in Fig. 5.10
which indicates that the maximum efficiency occurs at 2¢ =250 m. The LAR efficiency at
2¢ =500 m is only half a percent less than the maximum efficiency which indicates low
sensitivity for this parameter. Fig. 5.10 also shows that the optimum 2c¢ value is dependent
on the Feed-Reflector edge taper and may be selected accordingly. One should, however,
note that this Gaussian-beam efficiency is the limiting value for large sub-reflector and
neglecting blockage and the Feed-Reflector spillover. The true LAR efficiency must be

determined by the physical optics method.
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The LAR radiation pattern for a sub-reflector size Dg= 5 m and 2¢ = 500 m, e
=1.046, and /= 3 GHz, is also calculated by using GRASP8W and displayed in Fig. 5.11.
In this computation, the effect of the blockage and Feed-Reflector parasitic field on the
LAR far fields are also taken into account. The efficiency of the system is about 71%,
which is related to the directivity of 74.40 dBi. The half power beamwidth is 0.03 degree.

The diffraction cross-polarization and the FSLL are -71.2, and -19.45 dB, respectively.
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5.4. Conclusion

The performance of the Feed-Reflector, for a Large Adaptive Reflector Cassegrain-
ian system was investigated by means of the Gaussian-Laguerre beam mode analysis. The
electric field at the aperture of the Feed-Reflector was calculated by physical optics and
expanded in terms of the Gaussian-Laguerre modes. The fractional power in the funda-
mental beam mode was about 99%, which indicated that it can be used as an efficient
Gaussian beam launcher in quasi-optical systems. By utilizing the Gaussian beam analysis
the hyperboloid sub-reflector parameters were found to maximize the LAR aperture effi-
ciency. An overall efficiency of 71% was obtained for this system. A comparison between
the physical optics and Gaussian beam approach revealed a reasonable agreement. The
Gaus;',ian beam optics provided a simple and elegant method of understanding the opera-

tion of the LAR with the Feed-Reflector system, and its optimization.
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Chapter 6

CHARACTERISTICS AND DESIGN OF THE LAR OFFSET
SYSTEM WITH FEED-REFLECTOR

6.1. Introduction

Offset reflector antennas are among the most common types of reflector antennas
and regularly used at microwave frequencies. The offset paraboloidal reflector antennas
have advantages in low side lobe levels and high efficiency, due to the lack of aperture
blockage. Also the reaction of the reflector upon the primary-feed can be reduced signifi-
cantly. Similar to its axisymmetric counterpart, the offset paraboloid reflector can be
arranged in a dual reflector system where the main reflector is illuminated by the combina-
tion of a primary-feed and sub-reflector. The geometry of this configuration can be
adjusted such that no blockage of the optical path occurs either by the primary feed or the

sub-reflector.

In previous chapters the axisymmetric LAR using the Feed-Reflector was designed
and investigated in detail. Several disadvantages were associated with this configuration.
The major drawback was that, it couid only scan over several tenths of a degree without
leading to degradation of the system performance. However, the LAR beam is expected to
scan to large angles up to 60°. The aperture blockage is another disadvantage of the sym-
metric LAR. Almost 15% of the LAR’s surface had to be removed to install the Feed-

Reflector which decreased the overall system efficiency. Finally, the parasitic fields from
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the Feed-Reflector interfered with the main reflector radiation pattern.

In section 6.2., new equations are developed for the LAR surface, which is capable
of handling large scan angles. In section 6.3., the LAR open Cassegrain system [74] is
introduced and investigated. To overcome the blockage and reduce cross polarization, dual

offset systems are utilized, which is the subject of investigation in section 6.4.

6.2. Geometry of Offset LAR

The geometry of an offset LAR is shown in Fig. 6.1a, where there is no direct
mechanical coupling between the reflector surface and the focal point[1,104]. This allows
the antenna to be steered by moving the focal point while adjusting the shape of the sur-

face accordingly.

The system shown in Fig. 6.1a is designed to be very large, thus the airborne plat-
form is required at or near the focus to support either a prime focus feed or sub-refiector.
The LAR beam is steered by adjusting the Azimuth (®,,) and Zenith (Scan) Angle
(074 )0f the vector, R,, of this figure. This can be done by simultaneously adjusting the
shape of the surface. The main objective of the design is to allow the focal ratio, f; /Dy, to
be sufficiently large that the reflector is almost flat, which permits construction of the
reflector parallel to the ground. In this design the LAR is considered as a small portion of

a paraboloid who’s axis is tilted to be in the scanning direction.

Because the LAR main reflector is a paraboloid, its scan capability is very limited.

Thus, to accommodate large scans, the reflector surface itself must be rotated and trans-
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lated with the scanning ray. But, the surface deformation of the LAR on the ground, with
respect to its size, must be small due to practical actuator plays. An interesting question
thus arises, “can the rotated-translated reflector surfaces of different beams, with scan
angles from zero to 60 degree, share a nearly common surface?”. This problem was inves-
tigated in [104] and corresponding reflector surfaces were shown to satisfy a generalized

parabolic equation given by

2

- = -
cos(0,,) 0 (D

tan(0,,) sin(ez,,)z2 - 4R0(1 + ZiRsm(OZA))z + xzcos(BZA) +

The detail of derivations of the rotated-translated paraboloids, and investigation of
the resulting surface properties are provided in Appendix II. In particular, a plot of
rotated-translated paraboloids are shown in Fig. II.1 and repeated in Fig. 6.1b, providing a
nearly common surface on the ground for —100 < X < 100, the intended size of the LAR.
The ray tracing plots of Fig. II.2 show that these paraboloid sections can be used as the
LAR surface, provided the focal point is moved appropriately for each rotated angle 6, .
With this assumption, the resulting surfaces of Eq. (6-1) are used in this chapter to investi-
gate the performance of the offset LAR. Three different configurations, which were

defined in chapter 2, are designed and investigated:

» a) an open Cassegrainian LAR
¢ b) an optimised dual offset LAR

e ¢)adual offset LAR

93



Incoming Ray

Reflector (LAR)

Projection of
Ray Path

:

. 6. _=0degree

= 15 degree

_____ 6,, =30 degree
. ©_, =45degree

6, =60 degree []

Z(m)
§ 8 8 8§ 8 8 8§ 8

g

0 i L - L '
-1000 -800 -600 -400 -200 0 200 400 600 1000

Figure 6.1: a) The Geometry of offset LAR for the scan angle 8z,. The reflector does not

contain the paraboloid vertex, b) Different rotated-translated paraboloid surfaces for
various rotation angles 9z, ( the actual reflector is for X<|100|) [104]
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6.3. LAR Open Cassegrainian System

Of the variety of offset Cassegrainian systems proposed in literature, perhaps the
easiest for the LAR application is the open Cassegrainian antenna introduced in 1965 by
Bell Telephone Laboratories [74]. The antenna, which is illustrated in Fig. 6.2 ,comprises
an offset section of the LAR and symmetric section of hyperboloid sub-reflector fed by the
Feed-Reflector which protrudes from an aperture in the LAR surface similar to the sym-
metric case. With this structure it is possible to design a system such that the sub-reflector
moves in a sphere with a constant radius R, while its vertex faces the Feed-Reflector ver-
tex in all scan angles. The Feed-Reflector is located in the middle of the LAR with its ver-
tex located at (xp zp) and can tilt up to 60°. Although for most scan angles the sub-
reflector does not block the aperture of the main reflector (LAR), as a direct consequence
of the position of the primary feed, considerable blockage due to the feed system, particu-

larly for the large scan angles (6874,>30°) is unavoidable.

Unlike other offset reflectors which have a circular aperture rim in the direction of
maximum radiation, the LAR always has circular aperture rim at 67, = 0°. To make the
results comparable to other offset cases, in this section, in addition to a regular LAR with
circular rim at 87, = 0° for all scan angles, the LAR with circular rim in the direction of
radiation (scan direction) is also considered. The latter case produces an elliptical rim at

the scan angle of zero degree.

To investigate the properties of the open Cassegrainian LAR system with a hyper-

boloid sub-reflector, the radiation patterns of the system shown in Fig. 6.2 for D= 25 m,
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JF=9m,dr~=0.23 m, T, =-15 dB (Taper at the edge of Feed-Reflector) Dg= 5 m, 2c = 500
(focii distances) and e = 1.0424 (b = 489.824, dash curve in Fig. 3.6), are calculated for
scan angles of 15, 30, 45, 60 degrees at 3 GHz. Both elliptical and circular rims are con-
sidered for each angle. All radiation patterns are in the beam coordinate system as shown
in Fig. 6.2. Two blockage sources occurred in this configuration, which are: i) the block-
age due to the removal of the central portion of the LAR, similar to its symmetric counter-
part, and ii) the shadowing blockage of the Feed-Reflector that hinders the incoming rays
to reach the LAR surface. The radius of the blockage is 15 m for scan angles up to 30°,
because for these scanning angles the shadowing blockage is less than the LAR removed
portion. However, for larger angles, the shadowing blockage by the Feed-Reflector
exceeds that from the removal of the central section and thus, further area of the LAR is
blocked due to the Feed-Reflector projection effect. For example, for the scan angle of

60°, the blockage radius increases to 25 m.

Important features of this configuration are summarized in Tables 6.1 and 6.2. Also
the radiation patterns for elliptical and circular rims at 30, and 60 degrees are depicted in
Figs. 6.3 and 6.4 respectively. These tables and figures indicate that the side lobe level and
cross-polarization increase by increasing scan angles and the efficiencies decrease. At
large scan angles, the patterns in different planes do not have same beamwidth which is

partly due to the blockage effect.
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Table 6.1: Parameters for different Scan Angles of Open Cassegrainian LAR with
elliptical aperture rim at 6z, = 0° D; =200cos(6z4) m, Dx=25 m, d;=0.23 m, Dg=

Sm
Scan ° e Efficien
Ang[es GZA 45° X-Pol. 90° X-Pol. SLL (dB) Gain (dBi.) 01 Cy
(dB) (dB) (%)
(deg)
15 -38.1 -35.1 -18.6 74.1 69.78
30 324 -29.4 -17.9 72.9 65.91
45 -28.95 -25.95 -15.75 69.95 50.00
60 -26.22 -21.22 -11.25 64.22 27.00

Table 6.2: Parameters for different Scan Angles of Open Cassegrainian LAR with
circular aperture rim at 6z, =0°% D; =200m, Dz =25 m, df=0.23m, Dg=5m

Angslce:%m 45°X-Pol. | 90°XPol. | 11 4By | Gain(dBi)
(deg) (dB) (dB)
15 -38.15 -35.15 -18.85 74.35
30 -30.97 -28.47 -17.72 73.72
45 -25.35 -23.65 -15.1 71.85
60 -19.5 -18.58 -13 69.38
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XL,¥Ye.2r: LAR Coordinate System
XgYp2e Feed-Reflector Coordinate System X
Xe,Ys:Zs: Sub-Reflector Coordinate System

X,y,Z: Radiation Patterns Coordinate System

#Ys

Sub-reflector

Feed-Reflector

Figure 6.2: Configuration of Open Cassegrainian LAR system, with its related
coordinate systems
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6.4. Dual Offset Cassegrainian LAR

In the previous section, the open Cassegrainian LAR was investigated. In spite of
its simple configuration, it suffers from high cross-polarization and a considerable amount
of blockage, especially for large offset angles, which decreases the aperture efficiency. To
overcome these difficulties an offset dual reflector configuration can be designed [78-83].
The geometry of an offset dual reflector for the LAR application is shown in Fig. 6.5. The
paraboloid has a focal length f7, and a distance R, from its focal point to its centre equal to
500 m. The sub-reflector has an eccentricity e and interfocal distance 2¢. The axis of par-
ent hyperboloid is tilted an angle B with respect to the axis of the parent paraboloid (LAR

coordinate system). Four Cartesian coordinate systems shown in these figure are:

s x;-yr-zr, the LAR coordinate system centred at paraboloid (LAR)
focus.
s xg-ysZs, the sub-reflector coordinate system centred at paraboloid focus.
~ xgypzp the Feed-Reflector coordinate system centred at the second
hyperboloid focal point which coincides the Feed-Reflector vertex.
s x-y-z, the beam coordinate system, where z-axis is located at the centre
ray. x-axis Is in the plane of incidence and y-axis is normal to the plane of
incidence.
Each one of these Cartesian systems is assumed to have an associated spherical coordinate
system, namely r;-0;-®;, r¢-05Pg, 6P and r-0-®, respectively. The feed parame-

ters are the sub-reflector edge angle 0, as observed from the Feed-Reflector vertex, and
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the feed pointing angle c.

The additional parameters which are of interest in this work are X5 the distance
between the LAR and the Feed-Reflector vertices; R;¢ and R,¢ which are equal to OgN,
and OgN, respectively. To make this system comparable to classical dual offset reflectors,
the LAR rim is considered to be circular in the x-y plane of the radiation pattern coordinate

system (Fig. 6.5).

To design the above system, in addition to the LAR parameters which were defined
in chapter 1, R;g, Ry5, Xpp, O, B, e, 2¢, and 0, (Feed-Reflector subtended angle) must be
known. The sub-reflector is assumed to have a projection of 5 m diameter in xzyz plane,
thus, 6, = 0.2905°. The other seven parameters can be determined to minimize the LAR
cross-polarization and maximize its aperture efficiency. Of the above parameters, only

four of them, i.e. o, B, e, and 2¢, can be independently specified.

It is well known that a dual offset reflector configuration can eliminate geometri-
cal optics cross-polarization in the main reflector aperture through Mizugutchi’s condition
[79]. However, introducing the Feed-Reflector, instead of a feed horn antenna, imposes
new situations which requires the Mizugutchi’s condition to be verified for this new sys-
tem. A powerful and convenient means to analyze the LAR system, as quoted in chapter 5,
is the Gaussian-beam mode technique. In the next sub-section the generalized Gaussian
modes representation of the cross-polarization fields will be introduced. These modes are
launched at any offset section of a conical surface and by proper orientation of the LAR
and the sub-reflector, the modes introduced at each section can cancel each other. Adding

these modes help to understand the field propagation between the sub-reflector and the
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LAR. The maximum efficiency from the LAR aperture can be obtained by a precise selec-
tion of the Gaussian-modes parameters at the LAR, i.e. W, R; (beam radius and the

radius of curvature of the incident wave).

6.4.1. Generalized Gauss-Laguerre Beam Modes
For a beam coordinate system with a cylindrical coordinates of (p, ¢, z) (Fig. 6.5)

the general form of Eq.(5-1) is [100]

[=-) o 2
_ t2 [ pt pY 1|2p
Ep.®.2) = 3 3 42 |2 (38 LP[—Wz]
p=0[=0 (6-2)
(—pz -k -k0p2+ .e[ .[
eXP\——WZ exp| —jk,z—j 55+ j0,~jl0

where Lp’ is a generalized Laguerre polynomial, and p and / are the radial and angular
mode numbers. L pl(x) obeys the differential equation [67]
2,1 !

x P+(1+1-x)fi—L-£+ L' =0 (6-3)
I dx  Phr

W and R are beam radius and radius of curvature, respectively, which are described in

Eq.(5-4). The phase slippage per beam mode Bpl, varies with z according to [102, 103]

0, = 2p+1+ )tan ' {2(z—2,)/k, W5} (6-4)

where z, is the beam waist position. Following the notation used in [67], p and / refer to
the standard TEM,,; mode. It will be illustrated in the next section that only two modes are

used in the dual offset LAR Gaussian-beam analysis, namely TEM,;, and TEMj,.
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6.4.2. Cross-Polarization Induced by Offset Quadratic Surface

Using the paraxial ray approximation, simple formulas for the cross polarization
introduced by a curved reflector was developed in [102] and [103]. Fig. 6.6 shows a cut in
x-z plane (¢ = 0°, plane of incidence) of a reflector with the quadratic surface of revolution
with the centre ray of the beam passing through the foci. The expression for maximum

cross-polarization is[103]

Wk J_sin(-g)
Cas = —=—— (6-5)

where W, is the beam radius of the wave front by the primary radiator at the reflector. ¢ is

the angle between incidence and reflected rays. k, is the curvature of the reflector in the

direction normal to the plane of incidence. Thus, the maximum cross-polarized field is in

Figure 6.6: Cross-section of a conical reflector in the plane of incidence (¢ =0). W; and
W, are the beam radii of incidence and reflected wave respectively
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the direction normal to the plane of incidence, which in this case is ¢ =90° or 270° plane.
The curvature in the plane perpendicular to the plane of incidence for the quadratic surface
of revolution, with beam centre ray passing through the foci, is[103]
a (o]
K, = _cos(-) (6-6)
L bz 2
where a is the major axis, and b is the minor axis of the quadratic surface. Using Eqs.(6-5)

and (6-6), the maximum cross-polarization is

C = — ©6-7

in this equation, f'is the “focal length™ of conical section and can be obtained from Eq. (5-
7). The maximum cross-polarization occurs at p = % {100], where p is the distance
from the centre ray (z-axis) as indicated in Fig. 6.6.

It is shown in [102] that the reflected field from an offset quadratic surface reflector
can be approximately represented by a superposition of two Gaussian-beam modes. A fun-
damental mode with the in-line polarization is denoted by E, and a higher-order Gaus-
sian-beam mode which includes the cross-polarization is denoted by E,;. The subscripts
refer to the standard TEMj and TEM|; modes respectively[102]. (See Appendix III for
the typical aperture field decomposition into Gaussian-beam modes)

2 kol

x N4 : Ko™ -
Ego = (Hypk + VW)W“exp(— Jhoz—E5-j= + jtan ‘{2(_-zo)/k0W§}] (6-8)

WZ
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EoL = [V, (2cosd —psing) — Hy, (£sind + Hcoso)]

J2p W, 2 kp’

2 (6-9)
— CXP(—J"COZ—?F—J' i +f2tan“{2(z—zo>/koW§}J

where Hy,, Hp; and Vyy, V), are the phasor coefficients for horizontally and vertically
polarized fields; (p, ¢, z) are the standard cylindrical coordinates[102]. W is the beam

radius and can be found by Eqgs.(5-4) and (5-5) from W,

For the TEMy mode (exp(-p*/W?)), the field decreases to the e/ value of its max-
imum on axis at p = W, whereas the TEMj; mode (p exp(-p2/W?)) at p = W decreases to

Af2/e of its maximum which occurs at p = L4 .

N)

From the above statements and by using Eqs.(6-8) and (6-9), it is found that if the
higher order mode is generated by reflection from a quadratic surface with the angle
between incidence and reflected rays, 6, and the curvature k, in the direction perpendicu-

lar to the plane of incidence, then for convenience the parameter 7 is defined as [103]

Y= =g = JeC, = ———= (6-10)

If the reflection point N is considered at z = z,, there is a relative phase shift
between the higher order mode and fundamental mode at an observation point z = z,,,.
From Egs. (6-8) and (6-9)[103]

AD = @g(2,5) ~ Poo(2,5)

6-11
= (tan” " (2(z,p— 2,) Kk, W) —tan” (2(z,—2,)/ k, W) -
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where @y, and ®(; are phases of fundamental and higher order modes respectively. Note
that, at the reflection point on the reflector, i.e. z,, the two modes are in the phase. As the
beam progresses along the z-axis, it undergoes a phase shift between the fundamental and

the higher order modes.

6.4.3. Matrix Representation of Beam Mode Transformation Factors

To keep a track of the cross-polarization produced by a sequence of factors in the
LAR system, it is useful to represent each factor in terms of its transmission matrix for the
fundamental and higher order modes[103]. Three types of factors that affect cross-polari-

zation in the reflection process can be categorized as follow:

e i) the reflection from a reflector
* ii) the logitudinal propagation length
e iii) the rotation of plane of incidence.

The effect of each factor is shown in Appendix IV, Fig. IV.1.

As a dual-mode beam progresses along, undergoing a number of reflections, each
factor may be thought of as a reflectionless, passive, eight-port devices as shown in
Appendix IV, Fig.IV2. The coupling between these two modes in the LAR system, can be

stated by the matrix equation [103]

b=Ta | (6-12)

where a is a vector with components being the phasors of the input modes,
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a= a (6-13)

and b is a vector with components being the phasors of the output modes

Voo

b= (6-14)

T is a four by four matrix which explains the properties of the beam factors

Tll T12 Tl3 Tl4
T = TZI TZZ TB T24 (6'15)
T31 T32 T33 T34

T4y Tap Taz Ty

each of the aforementioned three factors has its own transformation matrix.

To express the beam modes in a form which allows the reflectors to be oriented
arbitrary in space, the beam coordinate systems at the input and output of a reflector are
defined with z-axis in the direction of propagation, x in the plane of incidence and perpen-
dicular to z, and y normal to z and x (thus normal to the plane of incidence) so that (x, y, z)
forms a right-handed cartesian system as shown in Figs. 6.5 and 6.6. Thus, the transforma-

tion matrix T, (transformation matrix for the first factor, i.e. the reflection from a reflec-

tor) for reflector is (See Appendix [V)
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- .
Ji-y2 0 —y 0
ref 5
—Y 0 —1—7vy 0
|0 ¥ 0 N1-v}

where v is described in Eq.(6-10). Note that ¥ modes (normal to plane of incidence
modes) do not couple to A modes (plane of incidence modes) during reflection from a

curved reflector.

As cited in the previous section, there is a relative phase shift between the higher
order mode and its corresponding fundamental mode. Thus, the beam transformation

matrix for a longitudinal-propagation length / is [103]

10 0 0]
, ot o o 617
 loo® o
00 o %%
where
A® = tan” (2(zy-2,)/ k,Wo) —tan” ' (2(z,~z,)/k, W) (6-18)

and z, and z; are the position of the input and output respectively (z;-z, = I).

As explained before, the beam coordinate systems are attached to the plane of inci-
dence of each reflector. Thus, as one passes from one reflector to another, the plane of inci-
dence may rotate. From Fig. IV.1, if the plane of incidence is rotated clockwise by an

angle &, the projection of the input modes onto the output modes produces the following
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beam factor matrix for rotation of the plane of incidence [103]

cos§ —sin§ 0 0

7 = |sin§ cos§ O 0 (6-19)
0 0 cos2f —sin2g
0 0 sin2& cos2g

The total transmission matrix for a beam is a multiplication of each factor matrix, that

beam is undergone of its effect.

6.4.4. Application of The Gaussian-Beam Modes for Cross-Polarization Elimination

The LAR Cassegrainian system is an asymmetric configuration in the sense that
the plane of incidence is rotated 180 degree, as shown in Fig.6.5 (plane of incidence
rotates from the plane of z and n to plane of z and n;, where ng and n; are normal vectors
to the sub-reflector and the LAR respectively). The overall matrix is the product of four
beam factor matrices. A reflection from the sub-reflector (T, refS)s @ 180 degree rotation of
the plane of incidence (7},,,), 2 longitudinal propagation from the sub-reflector vertex to

the LAR vertex (7},), and a reflection from the LAR (T,q) [103].

T = Treﬂ, T [pT romT refS (6-20)

Thus, using Egs. (6-16) to (6-19) and neglecting terms of order yz, one finds

-1 0 ('ys+'yLejA¢) 0
iAD
7= 0 . -1 0 ('ys-f-'yLe' ) (6-21)
(YL +¥s€ ) 0 AP 0
0t 0 &
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where Y, and y; are related to the sub-reflector and the LAR and can be obtained by Eq.
(6-10). Note that, vg is negative because f5 (the hyperboloid sub-reflector focal length) is

also negative.

In Eq.(6-21),T,3 and T, show a conversion from a higher-order mode to a funda-
mental mode. 73; and T,, show the conversion from a fundamental mode at input to a
higher-order mode at the output (cross-polarization). From Eqgs.(6-10) and (6-21), the ratio
C o Of the peak value of cross-polarization component to that of co-polarization compo-

nent is [101]

1

Cmax=7*£;

where the W, and W}, are the beam radii of waves incident on the sub-reflector and LAR,

w; c W, .\ -
—’Stan( s) + than( L)e jAD
fs

3 ) (5 (6-22)

respectively, and G and 6; = 207, are the angles as shown in Fig. 6.5. C,,,, can be written
as an amplitude of a complex number with Cg and C; being its real and imaginary parts

respectively.

Cc = jci+C (6-23)

where from [100] and the assumption of R,¢= R, ¢ and R;; = f, for maximum LAR phase

efficiency one finds
W, c 1 (] 1
Cp = i(tan(—s)-_ﬂan(i)-—-) 6-24
S Gk S A A ) ©29
1 o\ 1 ASfL—R,s)
C, = ——tan(—)-—-—————— 6-25
' e 2) f1 W 629
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The above representation of Ck does not incorporate A, and C;= 0 when A = 0. This means
the condition Cp = 0 is a geometric optics condition to eliminate the cross-polarization
component. Thus, to eliminate the cross-polarization component, the stipulation (6-25)
can be rewritten as follows:
Os) 1 AN
tan(—) L tan(—) Lo (6-26)
2) fs 2/ Ry

which is another form of Mizugutchi’s condition[79].

6.4.5. Sub-Reflector Parameters Evaluation

The method adopted in the last chapter for designing the sub-reflector can also be
applied in this section for evaluation of its parameters. However, the approach must be
modified to include the effect of the asymmetric mode (TEMj,;). As indicated before,
besides the sub-reflector eccentricity and the focii distance (i.e. e and 2c¢) its orientation
parameters (o, and B and also Xzp) the distance between the LAR and the Feed-Reflector
vertices must be also calculated. Again for the purpose of initial design, one of the sub-
reflector focii must be at the LAR focal point and the other one is considered to be at the
Feed-Reflector vertex. However, this does not necessarily means that 2¢ = 500 m. Similar
to the symmetric case discussed in chapter §, this is not a necessary requirement. The loca-
tion of the sub-reflector second focal point is located on the line connecting the LAR focal
point and the Feed-Reflector vertex. The separation of two focal point, 2¢, depends on the

Feed-Reflector edge taper.

To achieve the maximum efficiency from the LAR, the following conditions must
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be satisfied:

¢ Phase distribution must be uniform over the LAR aperture (1,,)

¢ A compromise between the high aperture-illumination efficiency, n;,

and low spillover efficiency, 1, must be sought such that the product 1, 1;

is maximized

The equations for phase, spillover and illumination efficiencies were shown in

Eqgs.(5-10), (5-11), and (5-12) respectively. In those equations, ELap(p. 0, z,) is the LAR
aperture distribution at the distance z, from its vertex, [E¢(p.0) lz is the power-radiation pat-
tern of the sub-reflector at the LAR location (z = z;), and p; =100cos(8z,) m is the LAR

aperture radius in the direction of propagation.

By carrying out Eq.(6-26) and neglecting Cp, it can be found that £, ,,(p, ¢, z,) has

only a component in co-polar direction, i.e. y. However, E¢(p ¢) can be written as

_ { 2%, ; W, N2pW, .
Es = Voo[x['Y — e s(¢)) (Hf > s (¢>H

5 (6-27)
exp(_i_jkop
w2 7 2R
thus
- 12 _ = %
|Es|” = Ese Eg
(6-28)

= W°22"‘°2+1 2.2vL cos(AD)si 20
-(7) YF = 22Y5;c08(AD)sin(9) CXP—F

By utilizing the above two equations in Eqs.(5-10)-(5-12), for the maximum LAR
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aperture efficiency, G, Ry, 2¢ and e can be determined uniquely. From Fig. 6.5,c, B and

XFR are

sin(e) _ Sin(w—0y)

Rys 2¢ (6-29)
=0, ta-Oy (6-30)
. (m, %L
. smm| =+——0C
0o _ G2
sin{Gg) _ "\2 2 6-31)

X FR Ro

where R, is distance between the LAR vertex and its focal point.

6.4.6. Results for Scan Angles Greater Than 7 Degree (Optimised Dual Offset LAR)

Utilizing the above theories pave the way to design and analyze the dual offset
LAR. A system similar to the one shown in Fig_ 6.5 is designed. The characteristics and
the performances of the system are investigated for different zenith angles (or scan angle
02,) on the LAR operating frequencies (1-22 GHz). A summary of parameters and results

obtained are presented below.

For the first step, the operating frequency is considered to be 3 GHz and scan
angles vary between 7- 60 degrees. Scan angles less than 7° are examined later in the next
sub-section. Parameters of the system are displayed in Figs. 6.7-6.9. All these parameters
are evaluated to maximize the LAR aperture efficiency and minimizing its cross-polariza-
tion. The initial parameters to design the system are D; = 200c0s(6z4) m, R, =500 m, D¢

=25m, fr=9m,d,=0.23 m, Dg = 5/cos(07,) =, T, = -15 dB.
'f S ZA a
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In Fig. 6.7 the eccentricity of the system defined in Eq. (4-4) is depicted for the
various scan angles. Although the range of variation is small, it has a great impact on the
system performance. The alternation of a and B versus scan angles are displayed in Fig.
6.8a which indicates the values for B are much less than those for o and are closed to zero.
Unlike o which increases with the scan angle (8z4), B has a peak value at 45 degree and

then decreases.

The inter-focal distance of hyperboloid sub-reflector, 2¢, slightly changes over the
LAR scan range as shown in Fig. 6.8b. This figure also shows the distance between the
LAR and the Feed-Reflector vertices (Xgg) which varies from 124.65 m to 846.541m for

scan angles between 7 to 60 degrees. This means that the Feed-Reflector must be able to

1.055 T T ! T T
105¢ - o o -
1.045

1.04f

Eccentricity

1.035

103 -

1.0251

1.02 L 1 : ! i
0 0 10 20 30 40 50 60

8,, (deg)

Figure 6.7: Eccentricity of dual offset LAR vs. scan angle, f =3 GHz, D; = 200c0s(674)
m, R, =500m, Dp=25m, fr=9 m, d¢=0.23 m, Dg = 5/cos(8z5) m, T, =-15 dB, for
LAR Min. X-Pol. & Max. directivity
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move on the area of a ring with a inner radius of 124.65 m and an outer one of 846.541.
For 67,< 7 9, the inter-vertex distance of LAR and Feed-Reflector is less than 100 m,
which makes the Feed-Reflector to merge with the LAR. To prevent this situation another

method must be selected for these scan angles.

R ;¢ the distance between the sub-reflector second focal point and its vertex N (Fig.
6.5), and R, the radius of curvature of the incidence beam, are shown in Fig. 6.9a. This
graph indicates that in contrast to the conventional Cassegrainian configuration, consider-
able differences exist among the values of R;¢ and R;gand these discrepancies even
increase by increasing the scan angle. However, R,¢ and R, g, the corresponding parame-
ters of the sub-reflector, i.e. the distance between the sub-reflector first focal point and its

vertex N, and the radius of curvature of the reflected beam, are almost equal.

W;r and W;¢ the beam radii of incidence waves to the LAR and the sub-reflector are
shown in Fig. 6.9b. Due to the projection of the LAR surface into the direction of scan and
to maintain the LAR maximum efficiency, W;; decreases with an increase in the scan
angle. However, W values are nearly constant and are due to the constant Feed-Reflector

subtended angle 6,.

Efficiency and the directivity of the LAR in a dual offset configuration are shown
in Figs. 6.10 and 6.11a. The efficiency of the system drops by increasing the scan angle.
This is mostly because of the increase in the LAR offset angle. Maximum directivity for
uniform aperture distribution of the LAR is also displayed in Fig. 6.11a. The maximum
directivity also decreases because the projection of the LAR aperture in the direction of

the scan angle is reduced (Fig. 6.5).
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Figure 6.8: (a) o.and B vs. scan angle (b) 2c and Xgg vs. scan angle, f =3 GHz, D =
200cos(®z,) m, R, =500 m, D= 25 m, fp =9 m, dy=0.23 m, Dg = 5/cos(0za) m, I,=
-15 dB, for LAR Min. X-Pol. & Max. directivity
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The first sidelobe level (FSLL) of the LAR for different scan angles is depicted in
Fig. 6.11b, which shows its values are nearly constant and are about -24 dB. Cross-polari-
zation of the LAR obtained by Physical Optics technique (PO+PTD) and Gaussian beam
(GB) of Eq.(6-25) are also shown in this figure. As can be predicted, the cross-polarization
increases with 8z,. The differences between values obtained by these two techniques is
approximately 2 dB and can be elucidated as the Gaussian beam is an approximate solu-

tion.

The sub-reflector radiation patterns for the scan angles (67,4) of 30 and 60 degrees
and for different planes are shown in Figs. 6.12a and 6.12b respectively. The maximum
cross-polarization occurrs at the 90° plane (orthogonal to the plane of incidence). The
radiation patterns show a narrower beamwidth and higher directivity for 8, ,=60° compare

to 62,=30° (The sub-reflector size for 8;,=60° is larger than for 6;,=30°).

The LAR aperture distributions for the scan angles (07,4) of 30 and 60 degrees are
illustrated in Figs. 6.13a and 6.13b respectively. The aperture field taper, on average, is 20
dB for each scan angle. The LAR radiation patterns for these scan angles are shown in
Figs. 6.14a and 6.14b. These figures indicate the LAR radiation patterns are symmetric in
the main beam. The maximum cross-polarization occurrs at the 90° plane which is well

below the co-polarization.
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Figure 6.9: (a) R;s, Ryg, R;s, and R,g vs. scan angle b) incidence beam radius on the LAR
and the sub-reflector, f =3 GHz, D; = 200 cos(0z5) m, R, =500 m, Dg =25 m, fr =9 m,
dr=0.23 m, Ds = 5/cos(@zs) m, T, = -15 dB, for LAR Min. X-Pol. & Max. directivity
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Figure 6.10: Efficiency of the dual offset LAR vs. scan angle, f =3 GHz, D; =
200cos(®9zp) m, R, = 500 m, D =25 m, fr =9 m, dr=0.23 m, Dg = 5/cos(8z4) m, T, =
-15 dB, for LAR Min. X-Pol. & Max. directivity

121



75 - T LI T I T
T~ ; — Actual Directivity
Tees — — Maximum Directivity
b £ 1 SRR s e “\_ ............... feceeeneeeea R . -
741
@
2
2
S b
g
a
T0F
69fF - - - et ie e e
68 L 1 ; 1 N
0 10 20 30 40 50 60
(@
-'20 l L] 1 ] t
............... oo W g : -
—25F--- - .--. ' ....... . ...... . ....... .'.' ...... . IRUDRRNE. Sidedes. SETTIM
_30._ - ..: - : -
—— X-Pol, PO Calculation : :
—3sl- .| —— X-Pol,GaussianBeam|. ..... ... ... .o ]

--&- SLL, PO Calculation

dB
W

(b)

Figure 6.11: (a) Actual and maximum directivity (b) sidelobe level and cross-polarizartion
of the dual offset LAR vs. scan angle, f =3 GHz, D; = 200cos(0za) m, R, = 500 m, D p =
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6.4.7. Results for Scan Angles Less Than 7 Degree (Dual Offset LAR)

The parameters and results which have been shown up to now, are for scan angles
between 7 to 60 degrees. For scan angles less than 7°, Xz must be less than 100 m to sat-
isfy the minimum cross-polarization condition of Eq.(6-26). However, it is observed from
the previous results that the calculated cross-polarizations are far below -40 dB. This basi-
cally means for small scan angles, the maximum cross-polarization is in acceptable range

even if Eq.(6-26) is not satisfied.

A new configuration is shown in Fig. 6.15 for 8;4= 0°(similar configuration can
be designed for other scan angles less than 7°). In this figure all parameters are similar to
Fig. 6.5 except for a new parameter 8y which is an offset angle. To design the system, Xz
is considered to be 130 m. The other parameters are as follow: = 10.0929°, oc = 0.3201°,
e =1.044, 6, = 0.2905°, 6 = 4.6956°, and 2c = 507.8592 m. The LAR radiation patterns
at 3 GHz are shown in Fig. 6.16. The maximum directivity is 74.75 dBi with the efficiency
of 75.68%. The cross-polarization and the first sidelobe level are -45.25 and -22.25 dB
respectively. A comparison between this result and those of the symmetric configuration

reveals a considerable improvement in the LAR performance.

6.4.8. Dual Offset LAR Performance Over Its Operating Band

The performances of the system over the frequency band of 2 to 22 GHz, is also
investigated. The idea of designing the Feed-Reflector to cover this frequency band was
explained in chapter 4, which is to maintain the effective aperture area in wavelength con-
stant which results in a fixed spot size. This can be done by utilization of different horns of

different directivities. To investigate the performance of the LAR over its bandwidth, a
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Feed-Reflector with a fixed diameter of 25 m, 9 m focal length and 0.23 m defocusing dis-
tance is assumed. The sub-reflector parameters and its orientation are similar to those for 3

GHz.

Directivities of the dual offset configuration for various scan angles over operating
frequencies are plotted in Fig. 6.17a. Fig. 6.17b shows the efficiency of this system which
indicates for almost all frequencies over 3 GHz they are more than 70%. Cross-polariza-
tion for the entire frequency band and for all scan angles (shown in Fig. 6.18a) are below -
40 dB which is acceptable for most applications. The first sidelobe level (FSLL) of this

configuration is depicted in Fig. 6.18b.
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6.5. Conclusion

An exact equation for the offset LAR surface was obtained in this chapter. Open
Cassegrainian LAR was introduced and analysed. Although the structure was simple, the
cross-polarization and blockage due to the Feed-Reflector were high, specially for large

scan angles.

To overcome these difficulties, the concept of dual offset LAR with the Feed-
Reflector was introduced. In that design the cross-polarization was eliminated by proper
orientation of the sub-reflector. The parameters of the configuration were obtained by
using generalized Gauss-Laguerre beam modes and a matrix representation of beam mode
transformation factor. The efficiency of the system was maximized by the method intro-
duced in chapter 5. The results obtained for this design indicated a considerable improve-
ments in cross-polarization and gain. Also in that design the blockage effect was totally
removed. Performances of the system over the LAR operating band were investigated

which indicated satisfactory results.
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Chapter 7

CONCLUSIONS

7.1. Summary

The concept of a Large Adaptive Reflector was described briefly in this thesis, and
a novel feed system was designed. Various aspects of the LAR Cassegrainian system using
the Feed-Reflector were investigated. The feed was based on the near field focusing prop-
erties of reflector antennas. The theory of this feed system was established by using the
defocused paraboloid reflector characteristics and the aperture theory. By employing the
concept of equal ray path theory, the sub-reflector profile was obtained. The effect of the
feed horn defocusing distance and taper at the Feed-Reflector edge were studied. The field
taper at the Feed-Reflector edge was found to be dependent on the wavelength and sub-
reflector size. An approximated formula was developed to estimate the illuminated portion

of the Feed-Reflector antenna (-15 dB taper at the edge).

To make it feasible for fabrication, a conventional hyperboloid sub-reflector was
considered for the LAR symmetric configuration, which approximated the surface
obtained by the equal path law. The effect of sub-reflector second focal point position,
eccentricity, and size were investigated. A ray tracing was used for better understanding of
the system performance. For the unshaped surfaces, a maximum efficiency of 75% was

obtained with less than -65 dB cross polarization. The SLL is in the acceptable range.

The performance of the LAR was investigated over its operating band. It was
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found that for a 5 meter sub-reflector and a 25 m Feed-Reflector, the LAR efficiency is
more than 72% for the frequencies above 3.0 GHz. However, if the sub-reflector diameter

is increased to 10 m this frequency reduces to 1 GHz.

Three shaping processes were conducted on the LAR Cassegrainian system for its
symmetric configuration based on a diffraction synthesis technique, using Jacobi-Fourier
series to represent the reflector surface. An efficiency of 78.5% was obtained by shaping

all three reflectors.

The performance of the Feed-Reflector, for the LAR Cassegrainian system was
investigated by means of the Gaussian-Laguerre beam mode analysis. The electric field at
the aperture of the Feed-Reflector was calculated by physical optics and expanded in term
of the Gaussian-Laguerre modes. The fractional power in the fundamental beam mode
was about 99%, which indicated that it can be used as an efficient Gaussian beam launcher
in quasi-optical systems. By utilizing the Gaussian beam analysis the hyperboloid sub-
reflector parameters which maximize the LAR aperture efficiency were found. It was
found that Gaussian beam optics provided a simple and elegant method of understanding

the operation of the LAR with the Feed-Reflector system, and its optimization.

An exact equation for the offset LAR surface was obtained in this thesis. Open
Cassegrainian LAR was introduced and analysed. Although the structure was simple, the
cross-polarization and blockage due to the Feed-Reflector were high specially for large

scan angles.

To overcome these difficulties associated with the symmetric configuration and
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also open Cassegrainian system such as blockage and cross-polarization, the concept of a
dual offset LAR with the Feed-Reflector was introduced. In that design the cross-polariza-
tion was eliminated by proper orientation of the sub-reflector. The parameters of the con-
figuration were obtained by utilizing generalized Gauss-Laguerre beam modes and matrix
representation of beam mode transformation factor. The efficiency of the system was max-
imized. The results obtained for the design indicated considerable improvements in cross-
polarization and gain. Also in that design, the blockage effect due to the Feed-Reflector
was totally removed. Performance of the offset system over the LAR operating band was

investigated which indicated satisfactory results.

7.2. Future Work

Large Adaptive Reflector antenna using a Feed-Reflector is a new configuration.
Further research can be pursued on experimental and theoretical aspects of such structures
to develop novel designs capable of coping with future technological requirements for

high gain applications.

The Feed-Reflector can be considered as a member of the feed family. Virtually, all
the research that has been done in the areas of the feeds can be repeated for the Feed-
Reflector. New research can be done on the performance and design of an offset Feed-
Reflector. This research might help to reduce the movements of the Feed-Reflector in a

dual offset configuration.

In this research it was assumed that the LAR surface is continuous. However, fur-
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ther research can be done to investigate for the effect of the gaps between the panels. Also

the following topics for investigation can be suggested:

a) Investigating the scanning performance of the LAR symmetric and offset con-

figurations.

b) Deriving an equation for the equivalent parabola in the LAR Cassegrainian

structure.
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APPENDIX I
Modified Jacobi Polynomials

This material is from reference [59] and included as an aid for understanding the

relationship (4-5)

Definition of the modified Jacobi polynomials, and formulas that are convenient

for numerical evaluation of the derivatives dFﬁl( t)/dt are present in this appendix.
The modified Jacobi polynomials, F/, () , are defined as [92]
Fi(e) = L2nt2m+ 1) e P2O(1-27%) o " 0<t<1 (I-1)

where Pf:’ 9 s a Jacobi polynomial. The Jacobi polynomials, are generally denoted by
ana’ B)(Jc) , are defined as [93]
(1-0)%(1+x)PP*Px) = ( L ( )[(1 )" +x)" R 1-2)
- n!

They can be calculated most efficiently using the recurrence relations
PP = 1 3)
1 1
PP (x) = S(a+B+2)x+(a-B) @-4)
2n(n+o+B)2n+o+B-2)P"P(x)

= @n+o+B-D{@n+ o+ B)2n+atB-2)x+ (- p)] L-5)
P(G,B)(t) —2(n+o-1)(n+PB-1)x(2n +a+B)P(01,B)(x)
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n=273,4,..

In the diffraction analysis of reflector antennas, one typically has to find the deriv-

atives such as

, d_,9d ,0_,
*y= (550 57) -
For reflector that is represented by the modified Jacobi polynomials Fﬁt(t) as shown in

Eq.(4-5), the derivative dF,(¢)/dt must be calculated. For this purpose, we use the

recurrence relation for the derivatives of the Jacobi polynomials [93]to obtain that of the

modified Jacobi polynomials
dEn() _mpni _m
dt g m n+2m t(l—tz)

(I-7)

{[n—(n +2m)(1-26%)] - F.(t) + 2(n + m) /;’:;—:’n’_”_’—;zs’,’"_l(t)}

Equation (I-7) is not convenient for the computer program implementation because of the
apparent singularities at ¢ = 0, t = 1, n=m=0, and n+2m-1=0. To overcome this diffi-
culty, a study on Eq.(I-7) for various combinations of the indices 7 and » is conducted. As
a result, it is found that the apparent singularities in Eq.(I-7) can be avoided using the for-
mulas (I-8)-(I-11). These formulas consist of an algorithm which can be directly trans-

ferred into the computer code.

s When n=0 and m =0,

dFAD) _
a0 (-8)

151



» Whenn=0and m= 1,2,3,...,

dF" (¢
;t( ) _ ~BCm+1)-(m+1)-¢-PU D1 —24 (1-9)
e Whenn =1,2,3,.. and m=0,
dF" (¢ _
;z( ) - S22n+ 1) -n-t"" -10)
e Whenn=123,..andm=123,...,
dF",,,Zt) n-1 2 (n+1,1) 2
5 = N2(n+2m+1)-£'7 (20 -(n+m+ )P, " (1-2¢ )(1-11)

()P 01 - 26%)]
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APPENDIX II

Offset LAR Surface Equation

This appendix provides a detailed investigation of paraboloid surface families that
arise by rotating and translating the paraboloid and keeping a single point on the ground
fixed, i.e. common to all paraboloids. They were investigated in [104] and shown to satisfy

Eg. (6-1), shown later in Eq. (II-11)

Fig. II.1 shows a cut through the x-z plane of Fig. 6.1, containing the focus and the
centre of the LAR, shown in configuration where R, is held constant during the scan.
Only, a small part of the paraboloid near the origin in Fig. II.1 is actually constructed as a
physical reflector. The focal length and the degree of offset from the vertex of the parabo-
loid vary with scan angle. Unlike other radio telescopes where the geometry either is fixed
or may be adjusted slightly, the fundamental parameters of the paraboloid change continu-

ously as telescope scans.

The reasons for the use of parabolic surface are:

s rays parallel to the axis of the paraboloid are reflected to the focus
s the ray path distances from any wavefront plane to the focus are equal

Fig. II.2 shows example of rays for several scan angles, i.e. scanned beams.

The equation for the LAR paraboloid surface, in a coordinate system with its ver-
tex at the origin and its focus on the z,-axis along the incoming ray, i.e. the reflector beam,

is simply
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Figure II.1: Different rotated-translated paraboloid surfaces for various rotation angles
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where f; is the LAR focal length.

However, this equation is not appropriate for describing the LAR. A more useful
equation, based in the coordinate system of Fig. 6.1, can be derived from Eq.(Il-1) by the

transformation of coordinate systems displayed in Fig. I1.3.

Fig. I1.3 shows a cut in x,-z, plane of Eq.(II-1), which has been constructed to con-
tain the focus, the centre of the LAR reflector (x; z;), and the paraboloid vertex at x,-z,

origin O,. In this plane, equation of the parabola is

2
x

z = -2
Sy (II-2)
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Figure II.2: Another view of the reflector geometry showing off-centre rays paths 500 m
apart to show the whole profile of the rotated-translated reflector, converging at the focus.

Referring to Fig. I1.3, the local vertical, represented as the z-axis, is normal to the reflector,
and the tangent line at (xg, zp) is at the angle of 8z, to the x,-axis, which is also the angle
of the focus, as viewed from the reflector centred (xg zp). The slope of parabolic surface,

tangent at (xg, zp) is

92 _ %o tang -3
Fey Z4 (I-3)

Substituting Eq.(II-3) into Eq.(II-2), evaluated at (x; zg), produces
zo = f,tan’0,, (I-4)

Another relation can be derived from Fig. I1.3. The sum of the distances from the
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Parabola Wavefront

X
-

Figure [1.3: A geometry to illustrate the transformation of the coordinates for the offset
LAR surface

wavefront line shown in this figure to the focus must be constant for all rays parallel to the

z,-axis, including the one reflected at (x;, z). Thus
R, +(fr—z9) = 2f, (II-5)
Combining Eqs.(II-4) and (I1-5) yields
R, = f1(1+tan’6,,) (II-6)

Eq.(II-6) relates R, to the focal length of the paraboloid.
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The required coordinate transformation steps are

¢ translate the coordinates to (xp, zg)

¢ rotate them by 074 in the x,-z, plane
The intermediate coordinates are (x, z,), and the final coordinates are (x, z). For the trans-
lation step the transformation equations are

xt = x’."xo (II 7)

Z‘ = Z'."ZO

Substituting these into Eq.(II-2) yields the equation for the parabola in (x, z,) system[104]:

| 2
z, = 4—fL(x‘ +4x,f,tan"0z,) (II-8)

For the rotation step, the transformation matrix is:
x| _ |cosOz, —sinOz | |x (I1-9)
z, sin@,, cosB,, ||z
Substituting Eq.(II-9) into Eq.(II-8), and using Eq.(II-6) for f;, after some simplification

gives

x sin(BZA))z-i-x?‘cos(OZA) -0 (I10)

tan(8,,,)sin(8,,)z> ~ 4R (1 +
ol T3R

which does not contain f;. If the same analysis is used for the three dimensional case, an

analogous 3-D equation can be derived, with a y- term[104]

2
. 2 x . 2 y _
tan(0,,)sin(6,,)z ~4Ro(l +2—Rsm(92A))z+x COS(OZA)+EBS_(E)_ZD =0 (II-11)

Fig. I1.4 shows 3- dimensional views of the reflector surface for various scan

(zenith) angles.
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Figure II.4: Three dimensional views of the LAR surface. They are all calculated for R, =
500 m and D = 200 m a) Top left: Oz, = 15 deg. b) Top right: ©z4 = 30 deg. c¢) Bottom
left: @74 = 45 deg. d) Bottom right: © 7, = 60 deg.
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APPENDIX IHII

Aperture Field Decomposition

This material is from reference [102] and included as an aid for understanding the

relationships (6-8) and (6-9).

\|//

t[l]t + <>

Egg + Egy — Eror
FUNDAMENTAL HIGHER ORDER TOTAL
(a)

————e —
. )\-/( .
—_— + = —
————— - ﬁ
— /\ —
€ + Eo = Eror

FUNDAMENTAL HIGHER ORDER TOTAL

(b)

Figure III.1: Two mode decomposition of aperture field (looking opposite to direction of
propagation) a) Feed horn vertically polarized b) Feed horn horizontally polarized
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APPENDIX IV

Beam Mode Transformation Factors

This material is from reference [103] and included as an aid for understanding the

relationships of section 6.4.3.

LONGITUDINAL
PROPAGATION

LONGITUDINAL
PROPAGATION

~-REFLECTOR

REFLECTOR~ " \

-
f’—
-

ROTATION’L
OF PLANE LONGITUDINAL
. OF INCIDENCE Zout PROPAGATION

Figure IV.1: Factors influencing cross polarization in a reflector-type beam system.

By using the cross-polarization formulas and the mode definitions of section
6.4.2., and the conservation of power, the matrix elements applying when a fundamental
mode is incident are easily determined:

/ / 2
Iy, = 1—72 Ty =-y Ty = —Al-v Ty =Y

T =Ty =T,y=Ty=0

(IV-1)
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where v is given in Eq. (6-10). Note that, for reflectors concave or convex in direction per-

pendicular to the plane of incidence, Y is positive or negative, respectively.

SIDE a SIDE b
—n 8
Von [0 S e ——T vm
Hog O BEAM Hg,
o 0
——a WAVEGUIDE —*b
T FACTOR ———=3°Va:
— &
Oyt t— p———)
“°| —— by Hﬁ'
5= T3
Voan Vaos
T .| Moo T .| Hoos
Vo:b Voia
Hoy Hois
Ty Tia Tia Tyg
r- T2y T2 T2z Ty
Tyy T3z Taa Ty

Ta

Ty Taa

Taa

Figure I[V.2: The beam waveguide factor as a reflectionless eight port.

Since the complex conjugate electric field satisfies Maxwell’s equations and the

boundary conditions on a perfect conductor (time reversal symmetry), the remaining

matrix elements follow readily from the above real matrix elements of Eq. (IV-1):

Tyy = —N1-Y°

T3 =-v

T4l

To = 1%

T3 = Ty3=T3 =0

2

Note that V modes do not couple to H mode during the reflection from a curved reflector.

Jl—yz

0
Tref

-Y

0

2

— 1_'Y
0

Y

=Y
o
_,/1 _Yz

O
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0

Y
0

J1—97

(IV-3)
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Figure IV.3: Reflector matrix components (fields viewed in direction opposite to propaga-
tion direction). a) Vg incident. b) Hyg incident.
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