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Abstract 

In this thesis we examine the nature of three magnon excitations in alternating 

spin/bond ferromagnetic chains. We study a Hamiltonian that describes a chain 

(composed of two non-identical one-dimensional d o m  and homogeneous sublat- 

tices) with alternating spin magnitudes, S and Srt and alternating nearest neighbor 

interactions, JI and J2. The Recwsion Method is used to locate the bound states 

and their relationship to the three-magnon continuum. The specific cases studied are 

the S = S' = 112, S = 2s' = 1, and S = Sr = 1 alternating spin chains. We consider 

not only the &ects of spin alternation but also of varying strengths. For each case, 

we studied ditferent bond sets, more exactly, JI = 1 and J2 equal to 0, 114, 112 

and 1. 
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Chapter 1 

Introduction 

Physics (kom the Greek physika, meaning nature) is the branch of science dealing 

with nature at its most fundamental level, the branch seilfching for the d e s  that 

govern the universe. Physicists have always been eager to understand the behavior 

of atoms, gravity and electromagnetism. They have always wanted to discover the 

laws of nature. In ancient Greece, some say that natural philosophers like Thales 

knew that lodestone attracts bits of iron but amber, when rubbed by fur, attracts 

bits of straw. The similarities between electncity and magnetism have attracted at- 

tention for centuries and theû investigation resulted in the birth of electrodynamics 

when Maxwell showed that electncity and magnetism were two aspects of the same 

phenornenon. But these interests are stül alive, especially because the science of elec- 

trodynamîcs underlines much of modem technological civilizat ion. Electrodynamics 

is brought into play every t h e  a television or lightbulb is tumed on, and magnetism 

with every CD or cassette playet used. 

Magnetism is the direct result of purely quantum mechanical interactions between 

atoms, interactions that are a consequence of the constraints placed on electronic 

wavefunctions by the Pauli Exclusion principle. This principle states that the total 

wavefunction of a system of fermions must be antisymmetric under a particle inter- 

change. As the spatial and spin parts of the wavefunction cannot have the same 



symmetry under exchange, the relative spin orientation of the electrons (as example 

of fermions) can inauence the electrostatic energy of the system. 

The study of low-dimemional quantum spin systems has emerged as a central 

problem in condensed matter physics since the discovery of high Tc superconductivity 

[l] in lightly doped cuprates with planar structures. Quantum effects are largest for 

small values of the spin magnitude. These effects are even stronger in onedirnensional 

quantum spin systems. One-dimensional exbged-coupled spin systerns offer the 

possibility for describing phenornena that cannot be adequately explaineci in higher 

dimensions. Although many exact results are possible in one dimension, (see for 

example Mattis [2]), these systems still provide a challenge to physicists because they 

require a rnany-body solution. One of the fkst many-body problems which was solved 

exactly was the spin one-half magnetic chain studied by Bethe [3]. This work has 

only been recently translated into English and is containcd in the book by Mattis 

[2]. During recent years, mixed quantum spin chains have attracted the interest of 

theorists [4, 5, 61. Exactly solvable versions of sophisticated H d t o n i a n s  have been 

studied using the Bethe Anzatz. 

The unusud magnetic behavior of exotic arrays of metal ions have catalyzed our 

study. For example, a linear chain made up by gadolinium ions bndged by nitronyl 

nitroxide radicals, Gd(hfa~)~hTTEt, behaves as a one-dimensional material with dom- 

inant n&-nearest-neighbor (mm) interactions. Benelli et al [?] studied this system 

using a simple Ising model. A more correct Heisenberg exchange approach would 

better characterize this system. Some of these systems can be described in terms of 

isotropie exchange interactions which alternate in strength along a chah  The chains 

are composed of two sublattices which have unequa1 spin magnitudes, S and S'. 

A review of these systems and the methods for their study has to start with 

the study of the Pauli principle and the constraints that it imposes on a group of 

atoms in a lattice. The effect of the Pauli principle c m  be described by operators 

of the form $ where and are spin operators correspondhg to difkrent 



atomic sites. In the case of two hydrogen-like atoms, there is a splitting in the energy 

levels oE the system depending on the spatial wavefunction symmetry under exchange. 

If the spatial wavefunction is symmetric, then the corresponding two electron spin 

wavefunction must be antisymmetric and vice versa. Thus, the splitting depends on 

the symmetry of the spin wavefunction and can be expresseci by a Hamiltonian of the 

form: 

where J is a function of electrostatic force between electrons and is known as the ex- 

change integral. When J is positive, it f a m  alignment of the spins (ferromagnetism) 

and for J negative, it favors antipardel alignment of the spins (antiferromagnetism) . 
The Hnmiltonian above can be extended to include the interactions between all 

pairs of atoms on a lattice: 

This operator was originally proposed by Dirac [8] but it is known as the Heisenberg 

ezchange Humaltonian. It was originally proposed as a mode1 for strongly magnetic 

çystems- 

The exchange coefficients J, depend on many factors but the degree of overlap 

between the ith a d  ji'" electrons is a important one. When rîj increases (the distance 

between the two electrons), the magnitude of J, decreases rapidly. If the material 

is an insuiator, the range of the interactions is essentially restricted to nearest and 

next nearest neighbor spins on the lattice of atoms. Higher order tenns are generally 

much weaker. So, it is very r e h t i c  to assume that the interactions are important 

only between neaxest neighbors . The Hamiltonian (1.2) becomes 

where 6 represents the sum over aJl neaxest-neighbor atoms. We will restrict our 

analysis to the case of a one-dimensional lattice reducing the Heisenberg Hamütonian 



Figure 1.1: Graphical representation of an altemating spin/bond ch&. 

even furthet to 

Our problem will be to consider a chah composed of two non-identical sublattices. 

each being d o m  and homogeneous (Figure (1 -1)). The Hamiltonian for these two 

non-identical one-dimensional sublattices with alternathg spin magnitudes, S and S', 

and altemating nearest neighbor interactions can be expressed as 

where the total number of sites of the chah N is even and J1 and J2 represent the 

interactions which alternate in strength dong the chain. g~ and &nrl are quantum 

spin operators at the even and odd sites respectively and they satisfy the commutation 

reiat ions 

[Si= 3 Sj8] = 4 j e a h  Se (1.6) 

with a, p, 7 = x, y, t. 

We assume an infinite chain (or a large number of sites N) in which we impose 

periodic boundary conditions to ensure translational invariance 



where T is an operator that performs a translation on each sublattice. This commuta- 

tion relation indicates that the total wavevector K is a good quantum number. The 

Hamihonian (1 -5) also satisfies the foUowing commutation relations 

with qOt denoting the total spin operator and Siot the total spin in the z-direction. 

Thus, SEot = El(s& + SL,,) is also a good quantum number. 

The ferromagnetic state in which all spins are aligned along some arbitrary direc- 

tion is an exact eigenstate of 3 with eigendue Eo = -(N/2)SSf ( JI + J2). Consider- 

h g  a very weak magnetic field in the z direction, the rotational symmetry (1.8) of our 

H d t o n i a n  is broken. We denote the state with spins aügned in this direction by 

10) and we assume that this is the lowest energy state, or ground state- The ground 

date has a z-component of total spin Stot = $(S + S f ) .  

The excitations relative to the ground state can be classi£ied according to the total 

amount of reduction in the 2-component of the total spin, Sz = $(s+sf) - m, where 

such a state is cded a m-magnon excitation. The general problem is to solve the 

Schrodinger equat ion 

for the excitation energies E,,,(K) of the m-magnon state as a function of total 

wavevector K. 

These magnon excitations have ben observed in real materials. Methods such as 

inelastic magnetic neutron scattering, infrared absorption, and ESR experiments are 

used to detect magnons. For example, Hoogerbeets et al. [9] used ESR experiments to 

observe the first 7 bound magnon levels in (C6Hl1NH3)CuC~, a quasi-one-dimensional 

S = f nearly Heisenberg ferromagnetic compound. As well, Torrance and Tinkham 

[IO] observed bound magnons in the S = f quasi-onedimensiond ferromagnet CoC12 

2H20 using far-infrared absorption. 



The focus of this thesis is on the solution of the three-magnon problem of an al- 

ternating ferromagnetic chah described by the Hamiltonian (1.5). The two-magnon 

excitations of a more general Hamiltonian have been studied previously by Medved 

et al [Il]. In Chapter 2, we use their analytic approach to solve both the one and 

two-magnon problems for the Hamiltonian (1.5). The results of the one-magnon ex- 

citation energy will be examinecl and used to obtain the two-magnon scattering state 

continuum. We will discuss how to obtain the two-bound magnon state solutions 

n u d c d y -  Chapter 3 discusses the three-magnon problem and the three-magnon 

scattering state continua WU be obtaïned using the two-magnon results. However, 

the task of obtaining the threebound magnon states will require a change in strategy. 

Chapter 4 dl review the concept of Green's hinctions and, specially, how to obtain 

the distribution of eigendues or the density of states (DOS). This knowledge wül 

provide a way to identify the presence of bound states for difFerent cases of interest. 

We will also describe the recursîon method [12, 131, which will d o w  us to tridiago- 

nalize the Hamiitonian and obtain a continued fraction representation for the density 

of states. We will discuss methods of terminating the infinite continued fraction. 

Chapter 5 applies these methods to Merent systems in which we try to identify the 

presence of bound states. Finally, Chapter 6 summarizes the results of the thesis. 



Chapter 2 

One and Two-Magnon Excitations 

We hst review the treatment of the one and two-magnon excitations in alternat h g  

spinibond chains [15, 14, 111. 

2.1 One-magnon Excitations 

A general one-magnon state can be written as 

where the ket In) represents the state with the tcomponent of the nth spin reduced 

by one unit relative to the ground state. 

Using the commutation relations (1.6) satisfied by the spin operators, we have 
-0 

SL, - gmci l2i) = bmdSS'12n + 1) + S(Sf - bm) l2i) (2-2) 

and 
4 sk, &+l l2i + 1) = &,&Fl2n') + Sr (S - bm) 122 + 1) (2-3) 

The Schrodinger equation & , b l )  = E&b1) results in equations relating the am- 

plitudes a, 

(El -S(Jl  + & ) ) a h  = - m ( ~ l a m + l +  Jzak-1) 

(El - S'(A + J2)) w!n+i = -m( ~ l a h  + Jzaai+2) 



where El is measured relative to the ground-state energy & = - (NI2)  SS'(J1 + &) . 

These equations are easily solved considering that the solutions are plane waves 

with different amplitudes on the even and odd sites: 

Penodic boundary conditions are assumed and this restricts k to the range 

- ~ / 2  5 k 5 r/2. 

Substitution into the equations leads to the following 2 x 2 mat* eigenvalue 

equat ion 

where 

E = S(J1+ J2) 

and v; is the cornplex conjugate of vk. 

The eigenvalue El can be written as 

where 

and 

x = (S - Sf)(Jl + J2) 

The solutions of the excitations are characterized by real wavevectors. The index 

p = f l labels the two branches which by convention are referred to as optic for the 

upper branch and acoustic for the lower branch and the dimensionless wave vector 



k lies in the range O to n/2. The figure (2.1) displays the general fom of the one- 

magnon excitation energy EL for an alternathg ferromagnetic chain with S = 2Sf = 1 

and excbange coefficients JI = 2J2 = 1 (EL is in units of JI). In general, there is a 

non zero gap between the two branches at the BriiIouin-zone boundary (k = ~ / 2 ) :  

This gap vanishes only in the unifom case where S = Sf and Ji = Jz. Hence, 

an important dinerence between uniform and non-uniforni magnetic chahs is the 

presence of gaps in the excitation spectnun. 

2.2 Two-Magnon Excitations 

The two-magnon states I&) can be written as 

where the ket Ir, s) with r < s represents the state with single deviations on the r th  

and sth spins relative to the ground state while the ket Ir, r )  represents the state with 

hHo spin deviations on the same (7th) site. 

As in the one-magnon problem, we consider the two-magnon Schrodinger equation 

Hl$2) = & lr12), where Ez is the twwnagnon excitation energy measured relative 

to the ground state energy Eo. The equations relating the various amplitudes are 

obtained by applying our Hamiltonian (1.5) to the general form of the wavefunction 

(2.14) and then equating the coefficients of each basis ket . The resulting equations cm 

be artificially gxouped into two sets. One set involves amplitudes with spin deviations 

separated by at least two sites (na > n) that we will refer as the "noninteracting 

equations" . The other set will be called the "interacting equations" and will involve 

amplitudes with spin deviations on the same or neighboring sites. 



One - Magnon Gccitaaon Energies 

Figure 2.1: One-magnon excitation energy for an alternating ferromagnetic chain 

with S = 2s' = 1 and Ji = 2& = 1. The energy is in units of Ji and the wavevector 

k is in units of 5. 



The noninteracting equations (m > n) are 

where R = Er - 28 ,  Ez is measured with respect to Eo and uo = m. The 

interacting equations are 

wbere 

The noninteracting equations (2.15) are satisfied by solutions in the form of prod- 

ucts of one-magnon solutions having wave vectors kl and k2, respectively, as follows: 

where a, p, r  and 6 are generdy non-equal complex coefficients corresponding to the 

four possible configurations of spin deviation pairs. 



Substituting into the noninteracting equations (2.15), it l a d s  to the Çollowing 

4 x 4 matrix eigenvdue equation 

where v& and uk are the complex conjugates of uh and uk2 deîmed in (2.9) respec- 

t ively. 

The secular determinant for this eigendue problem is given by 

By solving for R2 and then substituting R = & - 2B, it can be shown that the energy 

eigenvalues are simply the sum of the energy of two noninteracting magnons: 

where kl and k2 are the wave vectors of the individual magnons, pl and p2 label the 

branches of the single magnon dispersion curves. The total wave vector K = ki + k2 
and the relative wave vector q = (ki - kz) /2  can also be used to label the energies. 

Translational invariance requires K to be real but k1 and k2 can be complex. Also, 

the components of the corresponding eigemtors are 

For real values of kl and k2, or equivalently, for real values of K and q, thete are 

three energy regions which form three different energy continua due to the gap in the 



one magnon dispersion c w e .  Depending on the values used for pl and pz, they can 

be identifid as "acoustic-acoustic," (pi = pz = -1) "optic-optic," (pi = p2 = +l) 

or "mixed-mode" (pi = -112 = f 1). The figure (2.2) represents these continua for 

an alternating ferromagnetic chah with S = 2 s  = 1 and JI = 252 = 1. 

We can use the equation (2.22) for the two-magnon dispersion relation to solve 

for q with fixed values of K and & (or O ) .  Although K and E; are red, q can be 

complex. 

The expression for q as a h c t i o n  of K and fl is 

-O2 cos K f JII - (0xsi.n K)2 
cos(2q) = 

4SS JI J2 sin2 K 

where 

ïï = [Q2 - 4SSf (JI sin K )  2] [n2 - 4SSf( 5 2  sin K) 2] (2.25) 

In general, there are four complex solutions for q occurring in complex conjugate 

pairs for each value of R and K. For each value of q there is a corresponduig eigen- 

vector dehed by (2.23), and any linear combination of these four eigenvectors is a 

solution of the noninteracting two-magnon problem. However, only certain combi- 

nations d l  also sati* the interacting equations as weIl. There will always be a 

nontrivial solution for the wave function for values of K and E2 inside the energy 

continua and these solutions axe referred to as "scattering states." Nonetheless, a 

nonvanishing solut ion for the wave iùnction only exist s for certain values of K and E2 

outside of the energy continua and such solutions are referred to as "bound states." 

These solutions correspond to complex values of q and are localized states. When we 

consider points outside the energy continua, we will obtain four complex values of q. 

They will form two pairs with equal and opposite imaginary parts. 

Fkom the equations (2.16) and as we are working with an infinite chah, only 

decaying solutions for the wave function are acceptable. Only two solutions of q wül 

give the appropriate decaying eigenvectors. Then, expressing the amplitudes as a 



Two Magnon Scattering State Regions 

5 .  

Figure 2.2: Two-magnon scattering state continua for an alternat ing ferromagnetic 

chain with S = 2s' = 1 and JI = 2J2 = 1. The energy is in units of JI and the total 

wavevector K is in units of 5. 



combination of this two eigenvectors 

where m > n and the sets a, p, r,6 and 6, @, 7, d are the components of the "nonin- 

t eracting" eigenvectors corresponding to q and if, respectively- 

Substituting t hese expressions into the interacting equat ions (2.16), we O bt ain the 

following 4 x 4 mat* eigenvalue problem which nonvanishing solutions of its secular 

determinant correspond to the "bound states" . 

where 



where the bar over the matrix elements indicates that the set q, a, p, r , b  has to be 

substituted by their corresponding bar set. 

This eigenvalue equation is resolved numerically and the solutions are the bound 

states of the problem. Figure (2.3) shows a typical two-magnon spectrum in the 

E2(K) versus K plane. 

The knowledge of the solution of the one-magnon problem allows us to determine 

the regions in the &(K) versus K plane where scattering state solutions correspond- 

ing to two hee magnons can occur. These continua correspond to solutions in which 

both individual wave vectors ki and k2 are r d ,  or equivalently, both the total wave 

vector K and the relative wave vector q are real. 

However, by considering the possibility of solutions with q cornplex, we also fmd 

the existence of solutions ("bound states") outside these continua Hence, the energy 

regions where the scattering states are located are determineci by the one-magnon 

spectrum. Simiiarly, the tmemagnon spectnun will determine the location of the 

scattering states in the three-magnon problem. 



Two Magnon Bound States 

5' 

Figure 2.3: Two-bound magnon state branches and scattering date continua for an 

alternating ferromagnetic chah with S = 2s' = 1 and Ji = 23' = 1. The energy is 

in units of Ji and the total wavevector K is in units of 8. 



Chapter 3 

Three-Magnon Excitations 

A general three-magnon state can be written as 

where we define an orthonormal set of three spin deviation states 

with C* being the coefficients normalking these states and satisfying 

In order to obtain the coefEcients with two odd indices and one even index or with 

three odd indices, we need only to exchange S with Sr. 

We study the efFect of the Hamiltonian on the complete set of states in coordinate 

space in the same way as was done for na = 1 and nt = 2. The translational inVanance 



property of the H d t o n i a n  can be taken into account by the following transformation 

of the states li, j, k): 

lit 5 k) = lj; x,  Y) (3.5) 

In t his transformation, there are two types of ket lm; x,  y) for any pair of values (x, y) 

where m is odd or even. Now, we define the followiog Fourier transforms with respect 

to the center of mass of each ket 

where e and O stand for "even" and "odd" respectively. 

The &ect of the Hamiltonian on these states can be summarized by the following 

two equations 

where the first equation represents the action of the Hamiltonian on a state at an 

even site and the second equation corresponds to an odd site. These equations can 

be divided into three groups depending on whether both x, y 2 2, one is 2 2 wMe 

the other is 5 1 and, the last group when both x, y < 1. 
When both x, y 2 2, we have a set of three non-interacting magnons and the 

coefficients in (3.8) have the fomi shown in Table 3.1. The notation used for the 

coefficients in this table and for those that will follow, d o w  for a straightforward 



Table 3.1: Coefficients for each of the terms obtained when the Hdtonian is applied 

on a state at an even site with both x, y 2 2. The group of equations associated with 

these coefficients is referred to as the non-interacting group. 

transfer of an equation for an even site (with general form (3.8)) to an equation for 

an odd site (with general form (3.9)). The coefficients are defined as follows: 

E = S(&+ Jz) fkom equation (2.7) 

É = S'(Ji + J2) Som equation (2.8) 

and n = eaI3. The presence of a prime indicates that S should be replaced by S and 

vice versa, while the presence of a bar indicates that Ji should be replaced by J2 and 



vice versa in relation to the corresponding coefficient without the bar or the prime. 

As usuai, an asterisk (*) indicates that the complex conjugate of the coefficient should 

been t aken. For example, the coefficient E', (appearing in Sable 3.1) is equal to 28 + E 

once the proper replacements of S and Sr are made in the definition of €4. Similarly, 

w = -K ~~4s once Ji is replaced by J2 in the definition for W .  

The coefficients obtained by the action of the Hamiltonian on the odd states are 

easily obtained by taking the corresponding even coefficients and putting or taking 

away their primes or bars depending whether they are present or not. This is a 

direct acknowledgment that one sublattice has the same equations as the other, only 

with exchanged spins S and Sr and interactions Ji and J2. As an example of the 

above statement, the coefficients obtained when the Hamiltonian acts on an odd site 

10, K; 21,2712) are (&, d, wr*, w', wr*, zut*, a'), where the above procedure was applied 

to the first row of coefficients in Table 3.1. 

Returning to the first group of equations when both x, y 5: 2, the energy eigen- 

values are given by the sum of the energy of three non-interacting magnons: 

4 = EpJ&W = Eh' + Eg + E g  

For Ici, k2, k3 real, the solutions are scattering states as encountered in the two-magnon 

problem and fall into four continua as shown in Figure (3.1). These continua are a 

consequence of the three-magnon excitation energy being the sum of onemagnon 

excitations and of the presence of the energy gap in the one-magnon dispersion c w e  

for al l  values of wavevector. Each of these continua arises fiom the dinerent pairing of 

one-magnon branches. The lowest continuum is due to the pairing of three acoustic 

(A) branches (pi = p2 = p3 = -1) and is referred to as 'A-A-A"; the highest 

continuum is due to the paVing of three optic (O) branches (pl = pz = ps = +l) 

and is referred to as 'cO-O-Oy'. The other two continua are labelled by "A-A-On and 

"A-0-0" and they both are threefold degenerate. 

When one of the values of x and y is 5 1 while the other is 2 2, the coefficients 

in (3.8) are given in Table 3.2. 



Three - Free Magnon Scattering State Reg ions 

Figure 3.1: Three-fiee magnon scattering state continua for an alternat ing ferromag- 

netic chah with S = 2s' = 1 and JI = 2J2 = 1. The energy is in units of JI and the 

total wavevector K is in units of 2. 



T wo-bound and one-free magnon coefficients 

Table 3.2: Coefficients for each of the terms obtained when the 

I 

3dtonian  is applied 

on a state at an even site. One of the values of s and y is 5 1 while the other is 

2 2. The group of equations associated with these coefncients is referred to as the 

two-bound and one-free magnon group. 



Table 3.3: Coefficients for each of the terms obtained when the Hamiltonian is applied 

on a state at an even site with both x, y 5 1. The group of equations associated with 

these coefficients is referred to as the three-bound magnon group. 

We can express the eigenvalue solution of these equations as & = E2(kl , k2) + E g  . 

The term &(kl, kZ) corresponds to two bound magnons; and both terms are the 

resdt of complex values of kl and k2 and a real value of k3. Still, these eigenstates 

correspond to scattering states in which one magnon is £ree and two are bound. 

They form a continuum wbich overlap with the t h r e h e e  magnon scattering state 

continua, discussed previously. Figure (3.2) shows an example of the two-bound one 

bee scattering state continuum. Figure (3.3) shows a superposition of the three-hee 

with the two-bound one-fkee scattering state continua. 

Table 3.3 gives the coefficients obtained when the Hamiltonian is applied to a ket 

le, K;x, y) with both x, y 5 1, i.e. for the case of three magnons on the same sites or 

on nearest neighbor sites. 

The complete solution of the three-magnon problem involves finding the solution 

of this last group together with the two previous groups. With the two-magnon prob- 

lem, the combined problem of solving the non-interacting set of equations with the 

interacting set reduced to a numeric implementation of a 4 x 4 mat* eigenvalue 

problem. A similar approach to resolving the three-magnon problem is almost nu- 

merically impossible, as we would have to find the eigenvalues of an infinite matrix 



Two - Bound One - Free Magnon Scattering State Regions 

Figure 3.2: The twc~bound one-lree magnon scattering state continua for an alter- 

nating ferromagnetic chah with S = 2s' = 1 and Ji = 2J2 = 1. The energy is in 

units of JI and the total wavevector K is in units of 5. 



Thrw - Magnon Scattering State Regions 

Figure 3.3: Three-magnon scattering state continua for an alternatkg ferromagnetic 

chah with S = 2s' = 1 and Ji = 2 J2 = 1. The results of the three-fiee and two-bound 

one-& are superimposed. The energy is in units of Ji and the total wavevector K 

is in units of 5. 



that correspond to the set of three-magnon equations. In the next chapter, we will 

present a different method that will give us the possibilim of i d e n t w g  bound States 

for the three-magnon problem. 



Chapter 4 

The Recursion Method and the 

Three-Magnon Problem 

The Recursion Method [13, 12, 161 can be used to obtain spectral information about 

any Hamiltonian. The basic idea is to transfonu the Hamiltonian to a tridiagonal fom 

so that a continued fiaction representation of the Green's function can be obtained. 

We first review the definition of the Green's function. 

4.1 Green's F'unction 

The local Green's function is defued by 

where E < 1 and U) is an arbitrary ket in the three-magnon basis. 

Writing 1 j )  as a linear combination of the eigenstates of the H d t o n i a n  

and substituthg in (4.1), the local Green's function becomes 



The imaginary part of Gj(E + E) is given by 

which in the lMit E -* O+ is proportional to the s u  of delta functions at the exact 

eigenvalues, i.e. 

Then, the local density of states can be dehed as 

-1 
qj(E) = lim -Im[C$(E + ZE)] 

€40 

and the total density of states is obtained by summing over ail the kets in the basis 

since Cj 14l2 = 1. 

Using the definition in (4.1) and a matrix representation for the operator 

(E - H)-', a single matrix element of this operator can be taken as the local Green's 

function, without loss of generality: 

where Dn([E - a]) is the determinant of the matrix [E - fi] with the first n rows 

and n columns deleted. 

If the local Green's function were di£Ecult to calculate, its definition would be of 

little value. Only for sorne sets of bases is its calculation trivial as in the case where 

a basis diagonalizes the Hamiltonian. Usually it is almost impossible or extrernely 

difncult to find a basis that diagonaüzes the Hamiltonian, but it is always feasïble to 

find a basis which transforms the Hamütonian to a tridiagonal and symmetric matrix 



Expmding (4.8) using the Hamiltonian in the form (4.9), the local Green's h c -  

tion for the ket 10) is 
1 

The factor has the same form as (4.8) and the local Green's function 

can be represented by the continued fraction 

f 

With a procedure to transform the Hamiltonian into a tridiagonal, symmetric matrix, 

we would be able to find the local Green's h c t i o n  and thus the density of states. 

The Recursion met hod, described in the next section, is a procedure to tridiagonalize 

the H d t o n i a n .  



4.2 The Recursion Method 

The recursion method will give us the tool to t r d o r m  our H d t o n i a n  into a tridi- 

agonal matrix. We d l  build a new basis {v,) in which the H d t o n i a n  assumes a 

tridiagonal form, as opposed to our a c t d  basis {Ip, K; z, y) where it is not tridiago- 

nal. 

The main assumption of this method is that there exists a cornpiete orthonormal 

set of states ({v,} being the nth state) that under the action of the H d t o n i a n  

produces a three-term recursion relation of the form 

where %,Li E 92 

0 Recursion Method First Step 

1. For this step, v-1 is taken as zero and vo is some arbitrary state in the 

thee-magnon basis, consequently equation (4.12) becomes 

where vo and ho are known and ao, bl and vl axe to be deteraLined. 

2. As {v,) is an orthonormal basis, the scalar product vivl = O and a0 can 

be determined by 

a. = v b ~ v ~  (4.14) 

A 

b lv l  = HuO - aovo 

4. bl is taken as the nomakation factor for V I :  



5. Findy for this step, 

which is orthonormal to vo and normalized to unity. 

Etecursion Method General Step 

By iterating this procedure, the orthonormal states {vi)  with i = O, 1, . . . , n 

can be found together with the parameters {ao, . - . , ~ - 1 )  and {b l ,  . . . , bn}, so 

t hat 

* 
where v,, bnvn-, and H v ,  are known and G, and vn+l are to be 

determined. 

2. The scalar products V:V,-~ = V ~ V ~ + ~  = O and n, can be determined by 

4. bncl is taken as the normalization factor for v,+i: 

5. Having determined b,+l, v,+~ can be determined by 
A 

Hun - h W n  - bnvn-1 
Vn+l = (4.22) 

bn+ï 

which is orthonormal to vi with i = 0,1,. . . , n and it is normaüzed to one. 



The new matrix representation of the Hamiltonian under the basis {v,) is 

and the Green's hinction for the initial ket in the the-magnon basis could be found 

h m  

4.3 Tai1 of the Continued Fraction 

In carrying on the procedure described above, we chose an initial ket in the three- 

magnon basis and generate the coefficients bi+l up to some maximum value of 

i = i-. The asymptotic behavior of these codcients as function of i depends upon 

the scattering state spectrum. If at a particular value of total wavevector K, there are 

no gaps, then the coefficients wül approach constant values asymptoticdy. However, 

if there are one or more gaps present, then the asymptotic behavior is oscillatory 

In practice, we need only to calculate the coefficients up to some suitable value of 

z- and terminate the continued fraction using our lmowledge of the scattering state 

In the case of no gaps in the scattering state continuum, the coefficients ai and bi 

converge to constant dues, 

- .  
for z > 2- 



and the tail of the continued &action will be given by 

1 

Solving for Gr,  we have 

This is known as the square root terminator and the choice of the positive or negative 

squase root depends on whether E is l e s  than or greater than a. The terminator 

determines the analytic properties of Go. For example, Go is complex in the region 

of E where the argument of the square root is negative and this corresponds to the 

scattering state continuum. However, Go can also have isolated poles outside this 

region. 

In the case of the square root terminator, this condition is satisfied when: 

or equivalently when, 

E l = a - 2 b s E  s a + 2 b = l &  

It is straightforward to conclude that the asymptotic values of ai and bi (a and b 

respectively) axe related to the minimum energy & and maxirnwn energy E2 by 

1 

Hence, if at a particular value of K, the three-magnon continuum has no gaps, 

we can terminate the continued fraction using equation (4.28). Using the Recursion 

Method, we generate a large set of coefficients 4- and bi assuming that it is r e d e d  



the asymptotic behavior (4.26) in which the coefficients are constant. Then, with a 

last pair (q , bi+l) we calculate GF and using equation (4.25) we are able to evduate 

the Green's function. 

As was demonstrated in the work of Turchi et al [13], the coefficients (ai, b,+i) of 

the continued fraction exhibit undamped oscillations if gaps are present. Consider 

the case in which the coefficients oscillate between two pairs, (al,bi) and (a2,b2), in 

the asymptotic region in the continued fiaction, Le.: 

and the terminator of the continued 

for 2i > 2- 

for 2i+1>2,, 

fraction is equd to 

Solving the previous equation, we obtain 

where the square root term F can be factored the following way 

F = [(E - al)(E - al) + bf - ba2 - 4b:(~ - ai)(E - aa) 

= ( E  - Xl)(E - A2) ( E  - A3) ( E  - X q )  (4.35) 

and here 



Now, we t h  the imaginary part of Go with E = E + ZE to find the regions of 

non-zero density of states in the Iimit of E + OC. F is negative when XI 5 E 5 X2 and 

XJ 5 E < Xq are the only ones with non-zero density of states. The limits of these 

regions constitute the edges of two bands extendhg fkom (El, E2) = (Xi, X2) and 

(&, E4) = (A3, &) and hence these are the regions correspondhg to the scattering 

states continua. 

Wit h the presence of one gap, the coefficients o s d a t e  in the form al, b2, q, bl and 

with these two pairs we can cdculate the tail of the continued fraction ushg equation 

(4.34). 

Turchi et al [13] generalized this procedure for the calculation of the tail of the 

continued &action in the presence of multiple gaps. Generlalizig equations (4.28) 

L and (4.34), the tail of the continued fraction for the case 

where 

of q gaps is given by, 

(4.40) 

where the si are symmetric functions of the Ei with so = 1. 

The tail of the continued hc t ion  corresponds to a periodic chah of period q + 1. 
The polynomials %(E) and v ~ - ~ ( E )  c m  be determineci using the exact Green's 

functions for an infinite ring with periodicity q + 1. The Green's bct ions  for an 

Uisnite periodic ring have the form (Turchi et al [13]) 



Expanding both sides of these equations in powers of provides the necessary rela- 

tionships between the coefficients {G, b,,) describing and the polynomials. 

The corresponding coefficients in the left hand side of (4.42) are the moments of 

the local density of states at site n, Le: 

For the ri& hand side, since we will frequently have to expand 

introduce the following notation: 

@(E) -~-btm iT2(i + A I / E  + - - - + &/F + - - -) 

where A, will be related to the si defined in (4.41). 

In the same way, we expand in powers of 1/E the off-diagonal Green's function 

(4.43) where the left hand side of Gn-l,n behaves as 

Finally, we can determine: 

1 %(E) = ( E  - a,,) - ( E  - a:) (4.47) 

v,-i(E) = E~+' + Al EQ + pn-l ( E )  (4.48) 

P ~ - ~ ( E )  = ( A 2 + 2 b i - l ) ~ q - 1  + * * -  (4.49) 

In the present work, as we encounter a mrwcimum of five gaps for the spin chains 

that we studied, we have derived the previous expressions considering up to five gaps. 

Appendk A presents a Mathematica program that implements this procedure. We 

also list the results for the cases of one to four gaps. 



SummanZing our procedure to this point, for given values of S: S', Ji and Jz : 

We use the one-magnon results to determine the three-free continua in the 

energy (E)  versus wave vector (K) plane. 

We use the twc~bound magnon state results and the onemagnon excitation 

energy to determine the two-bound one-£me continua in the E-K plane. 

We superimpose d these continua to determine the. number of gaps in the 

energy continua at any value of the total wavevector K. 

We use the appropriate terminator to study the density of states for the three- 

magnon problem. 



Chapter 5 

Results 

The procedures described in the previous chapters d o w  us to investigate the presence 

of bound-state solutions for a system with alternating bonds, altemating spins or 

both. Medved, Southem and Lavis [Il] have previously m m i n e d  the two-magnon 

excitations for these systems. The three-magnon excitations were also studied for 

ferromagnetic spin-S chahs by Southem, Lee and Lavis [17]; but no altemation was 

included in the analysis. We extend their work by st  udying the three-magnon problem 

for various cases of spin chains using the Recursion method. 

5.1 Uniform Bond Spin S = S' = $ Case 

Before we discuss the results for either altemating spin or bond chains, we will first 

consider the S = 4 unSom Heisenberg chah This case was solved exactly by Bethe 

[3, 21 for an arbitraxy number of spin deviations using the Bethe Ansatz method. 

The three-magnon s p e c t m  consists of a thee-free continuum, a two-bound one-hee 

continuum and a single bound state branch which lies below the continua throughout 

the Brillouh zone. If altemation is introduced, a basis of two atoms per unit cell 

must be used and this corresponds to a reduction in size of the kst Brillouin zone by 

a factor of two. In the alternating case, the wavevector K is restricted to the range 



- r / 2  < K 5 7r/2 and corresponds to a folding of the zone at K = */2. In order 

to make clear the relationship of the known exact results of Bethe with those to be 

described here, we will fÙst discuss Bethe's results for the m = 1'2'3 magnon spectra 

in the folded zone. 

Bethe's analytic result for the one-magnon case has the fslmiIiar form 

in the unfoldecl zone. In our case this would be described by two branches which 

meet at the zone boundary with no gap 

where k is now restricted to the range -7r/2 5 k 5 a/2. This corresponds to equation 

(2.10) when J2 = JI = J and S = S' = i. 
The two-magnon spectrum of the uniform mode1 consists of a continuum with a 

single bound state below whose energy is half the one-magnon energy 

in the unfolded zone. However, in the folded zone, 

continuum but fol& back at K = 4 2  and enters the 

by the continuum as shown in Figure (5.1). However, 

(5.3) 

the bound state lies below the 

same region of energy occupied 

the bound state character is not 

changed provided Ji = 5 and these contributions to the spectrum c m  be separated 

by using dinerent initial kets in our recursion procedure. This point will be discussed 

later in this chapter. When the bonds altemate, we expect this upper branch of the 

bound state to become a tme resonance when it enters the continuum and a gap to 

appear at the zone boundary. 

Also, the d o m  Chain has a three-magnon bound state whose energy is equal to 

one third of the one-magnon state and lies below a single continuum formed by the 

thre&ee magnon scattering states and the two-bound one-kee magnon scattering 

states. Figure (5.2) shows the unfoided and the folded representations. As for the 



Figure 5.1: The t w d i e e  magnon continuum (shaded region) and the two-bound state 

branch (curve) of the d o r m  S = f Chain. Representation resulting fiom considering 

(a) one site per cell and (b) two sites per cell. The energy is in uni ts  of JI and the 

totd wavevector K is in units of a. 



two-magnon spectrum in the folded representation, the optic branch of the three- 

magnon bound state enters the continuum and can only be separated using different 

initial conditions in the recursion method. But near K = 7r/2, the two states appear 

be1ow the scattering continua with no gap at the zone boundazy. 

Using the Recursion Method, we reproduce these results for the Heisenberg spin 

chah. In Figure (5.3), we show our three-magnon bound states obtained using the 

numerical approach. The star symbols correspond to the bound state which evidently 

agree with the exact results just described. The lines inside the continuum are an 

artifact of the numerical approach and &se due to the fact that the termination 

procedure uses the one and two-magnon results to d e t e d e  where gaps may occur 

in the continua. In this case there are no gaps. 

5.1.1 S = S' = $ Alternathg Bond Case 

S. C. Bell et al [15] studied the two-magnon spectrum of the alternating bond 

S = f ferromagnetic Heisenberg Chain, finding three two-bound magnon state branches 

which represents two additional to those appearing in the uniform chah We extend 

t heir study by resolving the threemagnon problem for alternating bond or spin chains. 

Once an alternation of the spins or the bonds is introduced, the folded representation 

becomes the natural one, as it corresponds to two sites per primitive ceU. Then, the 

optic branch of the three-magnon bound state is expected to becorne a resonant state 

inside the continuum region unless it emerges again inside a continuum gap. 

Only near the Brillouin bomdazy will the two bound state branches be easily 

visible, showing a gap at the boundary. In Figures (5.4) and (5.5), we show the 

effects of varying the bond strengths. First, as J2/Ji &es from 1.0 to 0.0, it is 

clear that gaps open up and broaden, simultaneously with the decrease in the width 

of each band. As expected from the uniform case, the lower three-magnon bound 

state is still present below the continua. But as Jz/ JI -r O ,  additional three-magnon 

bound state branches show up in the first and second gap. This behavior is similar to 



Figure 5.2: The thme-magnon continuum (shaded region) and the t hree-bound 

magnon state branch (cwve) of the d o m  S = f chah. Representation result- 

hg from considering (a) one site per c d  (the primitive cell), and (b) two sites pei 

cell. The energy is in units of JI and the total wavevector K is in units of r. 



Figure 5.3: The three-magnon continuum (shaded region) of the udorm S = f 

chah The star points represent the the-magnon bound states obtained using the 

Recursion Method. Representation resulting £rom considering two sites per cell. The 

energy is in units of Ji and the total wavevector K is in units of $. 



the twemagnon case studied by Bell et al [lq where additional bound states appear 

within the gaps of the two-magnon continuum. However, there do not seem to be any 

bound states in the third gap. 

Exact results can be obtained in the case where either JI or J2 is zero. We wiU 

discuss this case next as it provides a usefut reference for comparing our results with 

both JI &d J2 non-zero. This limit will help understaad why there are no bound 

States in the highest gap for the case S = S = '. 2 

In the J2 + 0 limit, the Hamiltonian (1 5)  becomes 

where 

This constitutes an exactly solvable problem of isolateci blocks. Let f = 9 + S' be 

the total spin of a block. Considering the expression 

and since S and S are quantum spins, the energy per block is given by 

where J = jS - S'I, IS - S'I + 1,. . . , S + S'. 



Figure 5.4: The three-magnon continuum and the three-magnon bound states (star 

points) of the uniforni spin S = S = 1 2 chain with alternathg bonds (Ji = 2J2 = 1). 

The energy is in units of Ji and the total wavevector K is in units of f. 



Figure 5.5: The three-magnon continuum (shaded region) and the three-magnon 

bound states (star points) of the uniform spin S = S = f chah with alternating 

bonds (Ji = 4& = 1). The energy is in units of Ji and the total wavevector K is in 

units of f. 



Assuming that S 2 Sr, the values for the total spin J are S + SroS  + Sr - 1, 

S + Sr - 2,. . . , S - Sr; and fiom (5.7), the energy levels present for each block are: 

E ( J =  S + S r )  = -JISSf 

E ( J = S + S t - 1 )  = - J 1 [ S S f - ( S + S r ) ]  

E ( J = S + S r - 2 )  = - J I I S S f - 2 ( S + S ' ) + 1 ] i f S r z 1  

E ( J = S + S r  - 3 )  = -J l [SS' -3 (S+Sf )+3]  i f S f 1 3 / 2  

E(J = S -  S') = JISr(S+ 1) (5.8) 

The ground state of each block has maximum J  = S + Sr and energy -JISSr. 

The excitations hom this state within a block are givea by: 

When the system is in the ground state, a l l  the blodcs have a total spin of 

J  = S + Sr and the total energy is Eo = - JiSSrN/2. One-magnon excitations 

correspond to having a single deviation in any block with the z-component of the 

total spin, Jz, jumping kom +J to f J  - 1. This excited date with Jz = +J  - 1 

can correspond ody to states with total spin equal to J or J - 1. Hence, the energy 

transitions for the one-magnon excitations are 

which are in complete agreement with equation (2.10) when evaluated for J2 = 0. 



The twcmmgnon case co~esponds to two single deviations which c m  be in two 

different blocks or in the same block of the system- m e n  in dBerent blocks, the 

energy is the sum of two single excitations, i.e.: 

hE =  or J1(S+Sr))+{O or J 1 ( S + S f ) )  

= { O ,  J ~ ( S + S f ) , 2 J 1 ( S + S ' ) )  

which correspond to the excitations for the two-fiee magnon problem. 

Two deviations in the same block correspond to a transition 

Jz = +J + Jz = +J - 2. A state with Jz = +J - 2 could correspond to states 

with total spin equal to J, J - 1 or J - 2, and the excitation energies are given by: 

The combination of the transitions for the two deviations in different blocks or in 

the same block, gives the two-magnon states of the system. 

Similarly, the t hree-magnon states are the result of combining t hree deviat ions 

that could be in three separate blocks, two in one block and the other in a different 

block, or the three in the same block. When the three deviations are a l l  in different 

blocks, and considering the onemagnon excitations (5. IO), the possible transitions 

are the result of the following logical expression: 

hE = {Oor J~(S+S'))+{O or J1(S+S'))+{O or J 1 ( S + S f ) )  

= {0 ,J , (S+Sr) ,2J i (S+S' ) ,3J l (S+Sr) )  



and correspond to the three-free magnon states. 

When two deviations are in the same block and the other in a diaerent block, and 

using the two-magnon excitation and the onemagnon excitation results above, the 

possible transitions are given by: 

( 2J1(S + S') 

and corresponds to the two-bound one-& continua. 

For the condition where the three deviations axe in the same block, a transition 

Jz = +J -t Jz = + J - 3 occurs. A state with Jz = + J - 3 corresponds to states 

with total spin equal to J, J - 1, J - 2 or J - 3, with excitation energies: 

which correspond to the three-magnon bound states. 



Summarizing, the three-magnon excitations wiil be given by: 

O 

Ji ( S  + Sr) 

2 J 1 ( S + S t ) - J i  i fs11 

2 Ji (S + S') 
3J1(S+St) -3J1 ifS'z3/2 

3 JI (5 + Sr) - JI if S 2 1 

3 JI ( S  + S') 

In Table 5.1, we have grouped the three-magnon excitations denved fiom the 

J2 -' O b i t  for different S, S' chains. The first observation that we can derived hom 

Table 5.1 is that the number of levels (not considering degeneracy) that the chah 

will have for the threemagnon excitations will change kom 4 to 6 and then to 7 as 

the smaller spin in the chah takes the values f ,  1 or 3/2. Also, these levels separate 

as the total spin increases, augmenthg the possibility that gaps will appear even in 

the case of homogeneous bonds. 

The degeneracy of each three-magnon level in the J2 + O limit d o m  US to predict 

where three-magnon bound states could be found in non-Mt cases. We expect to 

find the-magnon bound states in the bands associated with the levels 0, Z, 2 2  - JI 

and 3E - 3J1, where S = Ji (S  + S') (see equation 5.14). Depending on the degeneracy 

of their corresponding energies, these bound states could split fkom the rest of the 

levels, 3f and 2 b i ~  once Jz is merent kom zero. [t is ciear that the 2s - Ji level 

only appear for c h a h  with both spins greater or equal to 1; and the 38 - 3Ji level, 

for chains with both spins greater or equal to 312. 

For exampIe, returning to our previous discussion on the S = S' = ? alternating 

bond case, when considering the J2 -r O limit, the three-magnon excitations occur 

at O, J I ,  2 J1 and 3J1. And, as we can see in Figure (5.6), the three-magnon continus 

for the S = S = a, JI = 1, Jz = $ ch" is q&e collapsed into the predicted 

discrete theoretical states, clearly manifesting this tendency as J2 goes £rom 1 to O 



Three-magnon excitations in the J2 + O Mt 

Table 5.1: Three-magnon excitations for chains of isolated blocks in units of JI and 

where 3 = JI (S +Sr).  The degeneracy of the levels due to the three-free (rr), two-free 

one-bound ( 2 b ~  ) and three-bound (3b) States has been explicitly tabulated. 



Figure 5.6: Graphicd representation of the t hree-magnon excitation levels (star 

points) in a system of isolated blocks, each block composed of two connecteci spins, 

S = S' = k .  2 The shaded continua correspond to the threemagnon continuum of a 

very weakly bond S = S = i, JI = 1, JÎ = 1 IO chain. The energy is in units of JI and 

the total wavwector K is in units of q. 



in figures (5.3), (5.4) and (5.5). Also, we did not h d  bound States in the third 

gap. Theoreticdy, we predict that a bound state would not exist in the last gap as 

the last band will be fonned from thred'ree and two-bound onefiee states. Figures 

(5.4) and (5.5) show the absence of bound states in the last gap which corroborate 

this conclusion. Following the same theoretical malysis, the middle gap should not 

present bound states as its upper band is &O formed by three-free and two-bound 

one-free states. Nonetheless, they are present for both the Jz = ) and the J2 = f 

cases. We estimate that these bound states are due to the-bound magnons in three 

adjacent sites which can not be predicted in the Jz + O' limit. The three sites are 

disconnected as they belong to two di£Ferent isolateci blocks. 

5.3 S=2S'= 1 Case 

This section will briefly present the results for a S = 2s = 1 chain. In the previous 

Jz = O b i t  section, we predicted that gaps could appear due to the fact that the 

levels separate as the total spin of a block increases, even in the case of no bond 

alternation,. As can be seen in Figure (5.7) and comparing with Figure (5.3), one 

gap is present as a simple consequence of the increase of the total spin. When J2 + 0, 

more gaps start to appear and widen as shown in Figures (5.8) and (5.9). 

Figures (5.7), (5.8) and (5.9) sumrnarize our r d t s  for the S = 2s' = 1 case. We 

found bound states below the lower edge of the three-magnon continuum for chains 

with Ja qua1 to f , f and 1. Also, when gaps where present, there were bound states 

below the third band associated with the 3J1 lunit level. For J2 = a, we found bound 

states in the fust gap as expected from the J2 - O analysis. Nonetheless, for J2 = $, 
we searched the same first gap for total wavevector K = 0,0.05,0.1 and 0.15 and we 

did not fmd any. In general, the results for a S = 2s = 1 chah look quite similar to 

the S = S = 1 2 ones: wider sp,ectrum and gaps, and bound states located in similar 

regions. 



Figure 5.7: The three-magnon state continuum for the S = 2s' = 1 and JI = J2 = 1 

ch&. The isolated points represent the bound states found through the Recursion 

Method. The energy is in units of JI and the total wavevector K is in units of f. 



Figure 5.8: The three-magnon state continuum for the S = 2s = 1 and JI = 2J2 = 1 

chah The isolated points represent the bound states found through the Recursion 

Method. The energy is in units of Ji and the total wavevector K is in units of 5. 



Figure 5.9: The three-magnon state continuum for the S = 2s = 1 and JI = 4J2 = 1 

chah. The isolated points represent the bound states found through the Recursion 

Method. The energy is in units of JI and the total wavevector K is in units of f . 



5.4 S = S' = 1 Case and the Initial Ket Effects 

Figures (5.10) and (5.11) show that the S = Sr = 1 spin chah does provide different 

results compared to the S = 2s' = 1 case. The spectnim is broader as the bands 

increase in width due to a larger spin value. As predicted in the J2 + O andysis, 

we see that the s p e c t m  collapse to six levels instead of the four levels seen in the 

previous two cases. But in general, the same behavior can be observed. 

Now, we want to discuss the influence of the chosen initial ket on the numerical 

three-magnon density of states. The contributions that can be identifid from both 

bound states and scattering states will depend on the values chosen for the the initial 

states 1 e, K; x, y) and 1 O, K; 2, y), as defineci in equations (3.7). One first consideration 

would be the effect of different choices of {x, y) on the results. In Figure (5.12) the 

local density of states is presented for three different cases: 

(a) Two magnons on the same site and the third one on the neighboring site; 

i.e., {x, y} = {1, O}. 

(b) Three neighboring magnons on adjacent sites; Le., {x, y) = (1,l). 

(c)  Two neighboring magnons on adjacent sites and the third one on the second- 

neighbor site; i.e., {x, y) = {2,1}. 

As can easily been seen from these plots, there is a stronger contribution to optical 

states (higher energies) from the more widely distributed magnons than from tightly 

bound marnons. This behavior is consistent with the fact that bound states usudy 

have lower energies than the scattering states. 

Another important consideration is the symmetry of the initial ket with respect 

to interchange of the spins on even and odd sites. This information is described in 

terms of the weight for the initial even ket le, K; x, y) in cornparison to the initial 

odd ket 10, K; x, y). In Figure (5.13) the local density of states is presented for four 

different cases: 



Figure 5.10: The three-magnon state continuum for the S = S' = 1 and JI = 2 J2 = 1 

chah The isolated points represent the bound states found through the Recursion 

Method. The energy is in units of Ji and the total wavevector K is in units of $. 



Figure 5.11: The three-magnon state continuum for the S = Sr = 1 and Ji = 4J2 = 1 

chain. The isolated points represent the bound states found through the Recursion 

Method. The energy is in units of JI and the total wavevector K is in units of q. 



Figure 5.12: Density of states for (a) two magnons on the same site and the third one 

on the neighboring site, (b) three neighboring magnons on adjacent sites and (c) two 

neighboring magnons on adjacent sites and the third one on the second-neighboring 

site for the S = Sr = 1 and Ji = 25' = 1 chah at K = O. The energy is in units of 

Ji 



(a) no initial odd ket contribution; Le., {le, K; X ,  y), 10, Kr X, y)) = (1, O). 

(b) no initial even ket contribution; i-e., {le, K; z, y), (0, K; z, y)) = {O, 1). 

(c) an initial symmetric contribution fiom both an even ket and odd ket; Le., 

{le, K; G Y) Y 10, K; 2, Y)) = (5 5)- 
(d) an initial antisymmetric contribution fiom both an even ket and odd ket; i.e., 

{le, K; x, Y), Io, K; 2, Y)) = (59 -A)- 
Although the difference is quite evident in each of the cases presented, it is im- 

portant to emphasize the influence that has over the search for bond  states. One 

clear example occws for the alternating bond chah (S = S = 1 and JI = 2& = 1) 

when K = O and in the first gap. Depending on the initial ket chosen, either two 

bound states or only one of them is obsewed. In Figure (5.14) we present the 

density of states near the energy gap located between [2.00,2.61]. We found two 

bound states in this region at the energies 2.53 and 2.56. When the initial state 

is taken as {le, K; 2, l), 10, K; 2 , l ) )  = (1, O), only the bound state at 2.53 appears 

as can be seen in Figure (5.14)(a). In contrast, when chosen the initial state as 

(le, K; 1, l), 10, K; 1, l ) )  = {-& $1, ody the second bound state at  2.56 appears 

as shown in Figure (5.14)(b). Figures (5.14)(c) and (5.14)(d) show both bound 

states when the initial states correspond to (le, K; 1 , l )  , 10, K; 1 , l ) )  = (1 , O} and 

{le, K; 1, O), (O, K; 1, O)} = {Si, A), respectively. 



Figure 5.13: Densiw of states for three neighboring magnons on adjacent sites for 

the S = Sf = 1 and JI = 252 = 1 chah at K = O. For case (a) there is 

no initial odd ket contribution ({le, K;x, y), 10, K;x, y)) = {1,0)); for case (b), 

there is no initial even ket contribution ({le, K; x, y), 10, K; x, y)) = {O, 1)). Case 

(c) shows an initial symmetric contribution from both an even ket and an odd ket 

({le, K; z, Y), 10, K; x, y)) = (5, h)); and case (d), an initial antisymmetnc contri- 

bution from both an even ket and an odd ket ({le, K; X ,  Y), 10, K; X, Y)) = (51 - 

The energy is in units of JI .  
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Figure 5.14: Density of states for the first gap region of the S = S' = 1 and 

Ji = 2 J2 = 1 dain at K = O. The presence of two bound states near the 

higher edge of the gap is observed depending on the initial kets chosen. For case 

(a), {le, K;2, l), [O, K;2,1)) = {l,O), only the lower bound state is observed. In 

case (b), (le, K; 1,l) , Io, K; 1,l)) = {&, Ji), only the higher bound state a p  

pears. Cases (c) and (d) correspond to {le, K; 1, l), Io, K; 1,l)) = {1,0) and 

{le, K; 1, O), 10, K; 1,O))  = {&, &), respectively, and both bound States appear. The 

energy is in units of J I .  
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Chapter 6 

Summary 

We have studied the three-magnon excitations for onedimensiond Heisenberg spin 

chahs, paying close attention to the &ect of altemation for either spins andfor bonds. 

We only considered systems with ferromagnetic ground states and described by the 

Hamihonian (1.5): 

which describes a one-dimemional lattice with alternating spins/bonds. We suc- 

cessfully applied the Recursion Method to solve the three-magnon problem. First, 

we obtained the two-magnon states numericdy and then combined the three-free 

continuum and the two-bound onebee continuum to find the entire three-magnon 

continuum, dowing us to determine where any gaps occur. Once the edges of the 

three-magnon continuum are known, we were able to terminate the continued frac- 

tion of the threemagnon density of states using a generalized procedure developed 

by Turchi et al [13] that d o m  to obtain the tail of the continued fraction (4.40) in 

the presence of multiple gaps. Using the three-magnon density of states, we were able 

to determine the location of the bound states ig different systems. 

In general, we found the usud bound state branch below the lower edge of the 

three-magnon continuum for every case studied. We compared our results to previous 



analytical results, such as those of Bethe in the S = Sr = 112 chain with homoge- 

neous bonds. We were able to reproduce his exact resdts. Ah, we extended the 

study of S. C. Bell et al [15] fiom the two-magnon spectrum of the altemating bond 

S = 112 ferromagnetic Heisenberg chain, to the threemagnon problem. When a 

bond alternation is introduced for this chain, gaps imrnediately appear and addi- 

tiond bo*d states are found. As J2 decreases, the continuum start to collapse into 

very predictable levels and the dinerent bands of the spectrum become nmower. 

In order to predict these levels and the location of bound states, as it was evident 

that the higher gap never had bound states, we studied a J2 + O limit case of isolated 

S, Sr spin blocks. We derived fiom this limit analysis that the number of levels (not 

considering degeneracy) for the three-magnon excitations changes kom 4 to 6 and 

then to 7 as the smder spin in the chah takes the values 112, 1 or 3/2. Also, these 

levels separate as the total spin increases, with gaps appearing even in the case of 

homogeneous bonds as can be seen in the results for S = 2s' = 1 and S = Sr = 1 

spin chains. The J2 + O limït analysis also provided another way of checkhg the 

numerical results obtained through the Recursion Method. 

In conclusion, with this work, we have presented a direct and relatively simple 

procedure to search for bound states in alternating spinfbond ch-. The Recursion 

Method was used very effectiwly to achieve this purpose and the generalization to 

an m-magnon problem wodd be straight forward, specially with the implemented 

termination of the continueci Eraction using a Mathematica program. 



Appendix A 

Tai1 of the Continued Fraction for 

Multiple Gaps: Mat hemat ica 

Implement at ion 

ki this appendix, we explain how we implement the procedure to obtain the termina- 

tion of the continued fiaction as described in Section 4.3 for the case of several gaps. 

To obtain the density of states for the specific cases of spin chains thât we studied, 

we had to consider a maximum of five gaps. 

The following Mat hematica program listing provides the coefficients needed to 

obtain the tail of the continued fraction for cases of up to five gaps. Nonetheles, this 

program can be easily generalized. 

1. FstEqCns-,q-,d := 

Coef f icientList [Glhs [ne ,x] ,XI ==Coeff icientList [Grhs [ns , q,xl , d 



10. ScndEq[ns-.q-.xA := 

CoefficientList [ndGïhs [ns ,XI ,x] =Coeff icientList CndGrhs [ns ,q,x] ,XI 

18. eWSimp1if y [FstEq[4,4 ,XI 1 

19. eb5=Simplif y [FstEq C5.5, XI 1 



24. sb5=Solve Ceb5, {bx C i ]  , bx C23 , bx C31 , bx [4] , bx CS] )] 

25. ~ o r t r a n ~ o r m  [Simplif y [sbl] 1 >>>bxcoef. t e x  

26. ~ortranForm [Simplif y [sb2] ] >»bxcoef. tex 

27. ~ o r t r a n ~ o r m  [Simplif y [sb3] 1 >>>bxcoef. tex 

28. FortranForm [Simplif y [SM] 1 >>>bxcoef. t e x  

29. FortranForm [Simplif y [sb5l] »>bxcoef. tex 

30. ecl=Simplify CScndEqC2.l.x]] 

31. ec2=~implify [~cndEqC3,2,xl~ 

32. ec3=Simplif y [ScndEq[4,3 ,XI 3 

33. ec4iSimplify[Scnd~q[5,4,x]] 

34. ec5=5implif y [ScndEq[6,5 ,XI 1 

35. scl=Solve Cecl, Ccx Cil , cx C2111 

36. sc2=Solve Cec2, Ccx Cil , cx C23 , cx C313I 

37. sc3=Soïve [ a d ,  C a  L i ]  , cx [2], cx C33 , cx C41H 

38. sc4=Sohre Cec4, Ccx Cl1 , cx 8 1  , cx C31, cx C41, cx CS1 11 

39. sc5=Soïve CecS , Icx Cil , cx C21. cx C33 , cx C4l , cx C51 , [61)1 

40. FortranForm [Simplif y [scl] 1 >»cxcoef. t e x  

41. ~ortranForm [Simplif y ûc211 >>>cxcoef. tex 

42. FortranForm [Simplify [sc3] »>cxcoef . tex 

43. FortranForm [Simplif y [sc4] 1 >>>cxcoef. t ex  
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44. FortranForm[Simplify CscSl] >»cxcoef. tex 

Line 1 represents the diagonal Green's function of equation (4.42). Lines 2 and 

6 are the series expaasions for the left and right hand side of this Green's function, 

which are compared to determine the recurrence relations between the coefficient S. 

The definitions for ph[n&,j-j-] and h[i 4-1 give the moments for the local density of 

states at site n as d e e d  in equation (4.44). The s Ci] coefficients defined in line 9 

are the coefficients si in equation (4.41). 

The off-diagonal Green's function of equation (4.43) is defined in line 10 with line 

11 and 12 representing the series expansion of each side. 

When %(E) (4.47) is expanded, the coefficients of its series are represented by 

bx[i] in line 8. Also, the expansion of v,-, (E) (4.48) gives the cx[i] coefficients of line 

14. 

Line 15 and forward resolve the hrst and second equations for the diagonal and off- 

diagonal Green's bctions. Then, the program prints the coefficients bx[i] and cx[i] 

in files " bxcoef.tex" and " cxcoef.tex", which once substituted in expression (4.40), 

the tail of the continued fraction GF(E) is obtained. 

The followings are the coefficients needed to compute a case of up to four gaps. 
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