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Abstract

In this thesis we examine the nature of three magnon excitations in alternating
spin/bond ferromagnetic chains. We study a Hamiltonian that describes a chain
(composed of two non-identical one-dimensional uniform and homogeneous sublat-
tices) with alternating spin magnitudes, S and §’, and alternating nearest neighbor
interactions, J; and J,. The Recursion Method is used to locate the bound states
and their relationship to the three-magnon continuum. The specific cases studied are
the § =5 =1/2, § =28 =1, and § = S’ =1 alternating spin chains. We consider
not only the effects of spin alternation but also of varying strengths. For each case,
we studied different bond sets, more exactly, J; =1 and J; equal to 0, 1/4, 1/2
and 1.
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Chapfer 1

Introduction

Physics (from the Greek physike, meaning nature) is the branch of science dealing
with nature at its most fundamental level, the branch searching for the rules that
govern the universe. Physicists have always been eager to understand the behavior
of atoms, gravity and electromagnetism. They have always wanted to discover the
laws of nature. In ancient Greece, some say that natural philosophers like Thales
knew that lodestone attracts bits of iron but amber, when rubbed by fur, attracts
bits of straw. The similarities between electricity and magnetism have attracted at-
tention for centuries and their investigation resulted in the birth of electrodynamics
when Maxwell showed that electricity and magnetism were two aspects of the same
phenomenon. But these interests are still alive, especially because the science of elec-
trodynamics underlines much of modern technological civilization. Electrodynamics
is brought into play every time a television or lightbulb is turned on, and magnetism
with every CD or cassette player used.

Magnetism is the direct result of purely quantum mechanical interactions between
atoms, interactions that are a consequence of the constraints placed on electronic
wavefunctions by the Pauli Exclusion principle. This principle states that the total
wavefunction of a system of fermions must be antisymmetric under a particle inter-

change. As the spatial and spin parts of the wavefunction cannot have the same



symmetry under exchange, the relative spin orientation of the electrons (as example
of fermions) can influence the electrostatic energy of the system.

The study of low-dimensional quantum spin systems has emerged as a central
problem in condensed matter physics since the discovery of high T, superconductivity
[1] in lightly doped cuprates with planar structures. Quantum effects are largest for
small values of the spin magnitude. These effects are even stronger in one-dimensional
quantum spin systems. One-dimensional exchanged-coupled spin systems offer the
possibility for describing phenomena that cannot be adequately explained in higher
dimensions. Although many exact results are possible in one dimeunsion, (see for
example Mattis [2]), these systems still provide a challenge to physicists because they
require a many-body solution. One of the first many-body problems which was solved
exactly was the spin one-half magnetic chain studied by Bethe [3]. This work has
only been recently translated into English and is contained in the book by Mattis
[2]. During recent years, mixed quantum spin chains have attracted the interest of
theorists [4, 5, 6]. Exactly solvable versions of sophisticated Hamiltonians have been
studied using the Bethe Anzatz.

The unusual magnetic behavior of exotic arrays of metal ions have catalyzed our
study. For example, a linear chain made up by gadolinium ions bridged by nitronyl
nitroxide radicals, Gd(hfac);NITEt, behaves as a one-dimensional material with dom-
inant next-nearest-neighbor (nnn) interactions. Benelli et al [7] studied this system
using a simple Ising model. A more correct Heisenberg exchange approach would
better characterize this system. Some of these systems can be described in terms of
isotropic exchange interactions which alternate in strength along a chain. The chains
are composed of two sublattices which have unequal spin magnitudes, S and S’.

A review of these systems and the methods for their study has to start with
the study of the Pauli principle and the constraints that it imposes on a group of
atoms in a lattice. The effect of the Pauli principle can be described by operators

of the form S; - .S-"J where S; and .§', are spin operators corresponding to different



atomic sites. In the case of two hydrogen-like atoms, there is a splitting in the energy
levels of the system depending on the spatial wavefunction symmetry under exchange.
If the spatial wavefunction is symmetric, then the corresponding two electron spin
wavefunction must be antisymmetric and vice versa. Thus, the splitting depends on
the symmetry of the spin wavefunction and can be expressed by a Hamiltonian of the

form:
H*» = _J§, .5, (1.1)

where J is a function of electrostatic force between electrons and is known as the ex-
change integral. When J is positive, it favors alignment of the spins (ferromagnetism)
and for J negative, it favors antiparallel alignment of the spins (antiferromagnetism).

The Hamiltonian above can be extended to include the interactions between all

pairs of atoms on a lattice:
—~r 1 - =
HY = —23  J5(S: - §5) (1.2)
6J

This operator was originally proposed by Dirac [8] but it is known as the Heisenberg
ezchange Hamiltonian. It was originally proposed as a model for strongly magnetic
systems.

The exchange coefficients J;; depend on many factors but the degree of overlap
between the i** and j** electroné is a important one. When ry; increases (the distance
between the two electrons), the magnitude of J;; decreases rapidly. If the material
is an insulator, the range of the interactions is essentially restricted to nearest and
next nearest neighbor spins on the lattice of atoms. Higher order terms are generally
much weaker. So, it is very realistic to assume that the interactions are important

only between nearest neighbors. The Hamiltonian (1.2) becomes
—ro: 1 - =
HHels — -3 Y°¥ Jisrs(Si - Sivs) (1.3)
T8

where § represents the sum over all nearest-neighbor atoms. We will restrict our

analysis to the case of a one-dimensional lattice reducing the Heisenberg Hamiltonian
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Figure 1.1: Graphical representation of an alternating spin/bond chain.

even further to
HHels = -‘ZJi,i-n(gi - Si1) (1.4)
Our problem will be to consider a chain composed of two non-identical sublattices,
each being uniform and homogeneous (Figure (1.1)). The Hamiltonian for these two
non-identical one-dimensional sublattices with alternating spin magnitudes, S and S’,
and alternating nearest neighbor interactions can be expressed as
2

H=- [Jl (Spm - Sonr1) + Jo(Sonat - §;n+2)] (1.5)

n=1

2

)

where the total number of sites of the chain N is even and J; and J, represent the
interactions which alternate in strength along the chain. §§n and Sn., are quantum
spin operators at the even and odd sites respectively and they satisfy the commutation

relations

[Sias Sigl = bij€apySiy (1.6)

with o, 8,7y =1,y 2.
We assume an infinite chain (or a large number of sites V) in which we impose

periodic boundary conditions to ensure translational invariance

[7,H =0 (1.7)

N



where 7 is an operator that performs a translation on each sublattice. This commuta-
tion relation indicates that the total wavevector K is a good quantum number. The

Hamiltonian (1.5) also satisfies the following commutation relations

[g‘tzota ﬁ] =0 (18)
[ tots ﬁ] =0 (1.9)

with S?ot denoting the total spin operator and 5%, the total spin in the z-direction.
Thus, S{, = Eﬂ_.zl(Sén + S%,..,) is also a good quantum number.

The ferromagnetic state in which all spins are aligned along some arbitrary direc-
tion is an exact eigenstate of H with eigenvalue Ey = —(N/2)SS'(J; + J»). Consider-
ing a very weak magnetic field in the z direction, the rotational symmetry (1.8) of our
Hamiltonian is broken. We denote the state with spins aligned in this direction by
|0} and we assume that this is the lowest energy state, or ground state. The ground
state has a z-component of total spin S, = (S +5').

The excitations relative to the ground state can be classified according to the total
amount of reduction in the z-component of the total spin, S = §(S+S’) —m, where
such a state is called a m-magnon excitation. The general problem is to solve the
Schrodinger equation

Hitpm) = Emn(K)lm) (1.10)

for the excitation energies E,,(K) of the m-magnon state as a function of total
wavevector K. ‘

These magnon excitations have been observed in real materials. Methods such as
inelastic magnetic neutron scattering, infrared absorption, and ESR experiments are
used to detect magnons. For example, Hoogerbeets et al. [9] used ESR experiments to
observe the first 7 bound magnon levels in (CgH;;NH3)CuClj, a quasi-one-dimensional
S = % nearly Heisenberg ferromagnetic compound. As well, Torrance and Tinkham

[10] observed bound magnons in the S = 1 quasi-one-dimensional ferromagnet CoCl,-

2H,0 using far-infrared absorption.



The focus of this thesis is on the solution of the three-magnon problem of an al-
ternating ferromagnetic chain described by the Hamiltonian (1.5). The two-magnon
excitations of a more general Hamiltonian have been studied previously by Medved
et al [11]. In Chapter 2, we use their analytic approach to soive both the one and
two-magnon problems for the Hamiltonian (1.5). The results of the one-magnon ex-
citation energy will be examined and used to obtain the two-magnon scattering state
continuum. We will discuss how to obtain the two-bound magnon state solutions
numerically. Chapter 3 discusses the three-magnon problem and the three-magnon
scattering state continua will be obtained using the two-magnon results. However,
the task of obtaining the three-bound magnon states will require a change in strategy.
Chapter 4 will review the concept of Green’s functions and, specially, how to obtain
the distribution of eigenvalues or the density of states (DOS). This knowledge will
provide a way to identify the presence of bound states for different cases of interest.
We will also describe the recursion method (12, 13], which will allow us to tridiago-
nalize the Hamiltonian and obtain a continued fraction representation for the density
of states. We will discuss methods of terminating the infinite continued fraction.
Chapter 5 applies these methods to different systems in which we try to identify the

presence of bound states. Finally, Chapter 6 summarizes the results of the thesis.



Chapter 2

One and Two-Magnon Excitations

We first review the treatment of the one and two-magnon excitations in alternating

spin/bond chains [15, 14, 11}.

2.1 One-magnon Excitations

A general one-magnon state can be written as
N/2
1) = Y_[azal2n) + azns1[2n + 1)] (2.1)

n=1
where the ket |n) represents the state with the z-component of the nth spin reduced

by one unit relative to the ground state.

Using the commutation relations (1.6) satisfied by the spin operators, we have

St - Sant1|28) = e V'SS'12n + 1) + S(S' — 63| 21) (2.2)
and
St - Son1|2i + 1) = 6 VSS|20) + S'(S — 60|26 + 1) (2.3)
The Schrédinger equation H [¥1) = E1j1) results in equations relating the am-
plitudes a,
(Br—S(J1+ J2)) 2n = —V55'(J182n+1+ J2azn1)
(Bi = S'(+ ) Gzmer = —VSS(Niazn + Ja8ons2) (2.4)



where E; is measured relative to the ground-state energy Eg = —(N/2)SS'(J; + J2).
These equations are easily solved considering that the solutions are plane waves

with different amplitudes on the even and odd sites:

azm = ae™™*

Qi1 = PeniDE (2.5)

Periodic boundary conditions are assumed and this restricts k to the range
—r/2< k<7w/2

Substitution into the equations leads to the following 2 x 2 matrix eigenvalue

equation
[Ey — €] Vk a ) _ 0 (2.6)
vi [E-€1|\ B
where
e=S(1+ k) (2.7)
g€ =8(+Jh) (2.8)
v = VSS'(J1e* + Jre ) (2.9)

and vg is the complex conjugate of v.

The eigenvalue F; can be written as

1
Ef=B+ 5#\/}(2 + 4| |? (2.10)

where

B= -;-(S+S’)(J1 +J) (2.11)

and
x=(S—-S5)(h+) (2.12)

The solutions of the excitations are characterized by real wavevectors. The index
pu = 1 labels the two branches which by convention are referred to as optic for the

upper branch and acoustic for the lower branch and the dimensionless wave vector

8



k lies in the range 0 to 7/2. The figure (2.1) displays the general form of the one-
magnon excitation energy E} for an alternating ferromagnetic chain with § = 25" =1
and exchange coefficients J; = 2J, = 1 (Ef is in units of J;). In general, there is a
non zero gap between the two branches at the Brillouin-zone boundary (k = 7/2):

Egap = 2y/B? — 458'JiJ, (2.13)

This gap vanishes only in the uniform case where S = §’' and J; = J;. Hence,
an important difference between uniform and non-uniform magnetic chains is the

presence of gaps in the excitation spectrum.

2.2 Two-Magnon Excitations

The two-magnon states |t;) can be written as

l2) = Y [a2n2m[2n,2m) + Gon2ms1|2n, 2m + 1) +
n<m
+a2n_1'2m|2n - 1, 271?.) + a2n+1,2m+1|2n + 1, 2m + 1)] (2.14)

where the ket |r, s) with r < s represents the state with single deviations on the rth
and sth spins relative to the ground state while the ket |r, r) represents the state with
two spin deviations on the same (rth) site.

As in the one-magnon problem, we consider the two-magnon Schrédinger equation
H |¥2) = Esl,), where E, is the two-magnon excitation energy measured relative
to the ground state energy Eo. The equations relating the various amplitudes are
obtained by applying our Hamiltonian (1.5) to the general form of the wavefunction
(2.14) and then equating the coefficients of each basis ket. The resulting equations can
be artificially grouped into two sets. One set involves amplitudes with spin deviations
separated by at least two sites (m > n) that we will refer as the “noninteracting
equations”. The other set will be called the “interacting equations” and will involve

amplitudes with spin deviations on the same or neighboring sites.



One —Magnon Excitation Energies

25

2.0
L)

o-o “Upm— v ¥
0.0 0.5 1.0

K

Figure 2.1: One-magnon excitation energy for an alternating ferromagnetic chain
with S =28’ =1 and J; = 2J> = 1. The energy is in units of J; and the wavevector

k is in units of%.
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The noninteracting equations (m > n) are

(Q—x)azmam = -—volJi(azn2m+1 +a2n+1,2m) + J2(a2n,2m-1 + G2n—1,2m))
Qazn—12m = —vo[J1(@2n—22m + @2n—1,2m+1) + J2(a2n2m + @2n—1,2m—-1)]
Qaznom+1 = ~vp[Ji(@2n,2m + @2n+1,2m+1) + J2(B2n—12m+1 + G20 2m+2)]

(Q+ x)am+12m+1 = ~vo[Ji(@2n2m+1 + 82n+1,2m) + J2(620+22m+1 + B2n+1,2m+2)]
(2.15)

where Q = FE, — 2B, E, is measured with respect to Ey and vg = V/SS’. The

interacting equations are

(R~ x)aznon = -v1[J182n 2041 + J2G2n—1,2n]
(Q+ Jh)azm—12n = —J1vo(azn—22n + G2n—1,2n+1) — J2(V1820,2n + V1@20-1,2n-1)
(Q+ NMazman+t = —Ji(vi82n2n + Viam+12n+1) + J20(G2n~1,2n41 + G20 2n+2)
(Q+x)azn+1,20+1 = -1 [J162n2n+1 + J2020+1,20+2] (2.16)

where

nw = /S5 -1) (2.17)
v, = J§@S—1) (2.18)

The noninteracting equations (2.15) are satisfied by solutions in the form of prod-

ucts of one-magnon solutions having wave vectors k; and ks, respectively, as follows:

Qonogm = @ ei2nk1 e2imlcz
Qn—19m = ﬂei@n—l)kxeﬁmkz
Anomsl = 7 eZtnk1 e‘l(2m+1)k2
Omiramir = O GntilkgiEmills (2.19)

where «, 3, v and § are generally non-equal complex coefficients corresponding to the

four possible configurations of spin deviation pairs.

11



Substituting into the noninteracting equations (2.15), it leads to the following

4 x 4 matrix eigenvalue equation

r [Q - ] Uk, Vi, 0 ] (54 \
o Q
Ve 0 o (2.20)
Vi, 0 Q 0
0 vy oy Qx| \ 5 )

where v}, and v, are the complex conjugates of v, and v, defined in (2.9) respec-
tively.

The secular determinant for this eigenvalue problem is given by
0 - 0 — 200, + ]+ — 2] =0 @21

By solving for Q22 and then substituting Q = E; —2B, it can be shown that the energy

eigenvalues are simply the sum of the energy of two noninteracting magnons:
Ey(k1, k2) = ER” = Ef! + Ef? (2.22)

where k; and ky are the wave vectors of the individual magnons, u, and u, label the

branches of the single magnon dispersion curves. The total wave vector K = k; + k;

and the relative wave vector ¢ = (k; — k)/2 can also be used to label the energies.

Translational invariance requires K to be real but k; and k» can be complex. Also,

the components of the corresponding eigenvectors are

Q%+ Qx —vi, — i,
2 v,

Vl%x - sz — QZ _ QX
20,

U£2 — Vgl it Ui Qx
20,

N N NR

(2.23)

with [af2 + B2 + b[? + [6[2 = 1.
For real values of k; and k,, or equivalently, for real values of K and gq, there are

three energy regions which form three different energy continua due to the gap in the

12



one magnon dispersion curve. Depending on the values used for x; and u,, they can
be identified as “acoustic-acoustic,” (u; = p = —1) “optic-optic,” (u1 = ps = +1)
or “mixed-mode” (u; = —uo = +1). The figure (2.2) represents these continua for
an alternating ferromagnetic chain with § =2S8'=1and J; =2J, =1.

We can use the equation (2.22) for the two-magnon dispersion relation to solve
for q with fixed values of K and E; (or ). Although K and E, are real, q can be
complex.

The expression for q as a function of K and 1 is

~Q?cos K + /I - (Qx sin K)?

24
488'J, Josin* K (2.24)

cos(2q) =

where
II = [Q% — 485'(J; sin K)?|[Q? — 455’ (Jz sin K)?| (2.25)

In general, there are four complex solutions for ¢ occurring in complex conjugate
pairs for each value of ) and K. For each value of g there is a corresponding eigen-
vector defined by (2.23), and any linear combination of these four eigenvectors is a
solution of the noninteracting two-magnon problem. However, only certain combi-
nations will also satisfy the interacting equations as well. There will always be a
nontrivial solution for the wave function for values of K and E, inside the energy
continua and these solutions are referred to as “scattering states.” Nonetheless, a
nonvanishing solution for the wave function only exists for certain values of K and E,
outside of the energy continua and such solutions are referred to as “bound states.”
These solutions correspond to complex values of g and are localized states. When we
consider points outside the energy continua, we will obtain four complex values of g.
They will form two pairs with equal and opposite imaginary parts.

From the equations (2.16) and as we are working with an infinite chain, only
decaying solutions for the wave function are acceptable. Only two solutions of ¢ will

give the appropriate decaying eigenvectors. Then, expressing the amplitudes as a

13
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Figure 2.2: Two-magnon scattering state continua for an alternating ferromagnetic
chain with S =28’ =1 and J; = 2J; = 1. The energy is in units of J; and the total



combination of this two eigenvectors

aman = e*K(Coa+ Do)
Aonom = eiK(ﬂ-Hn) (Cae—iq(2m—2n) + Da e—iq(zm_zn))
Qn-12m = eiK(n+m—3) (Cﬂe—iq(2m-—2n+l) +D Be—iq(zm-zu+1))
Q2n2m+l = eiK("m*'%)(C 76“9(2'“”2"+1) + Dﬁe—ﬁi(%—hﬂ))
Gmitoner = €XEH(Cob + Do)
Gni1ome1 = eKOEM+D(Ce=ia@m=2n) o fe=id(2m—2n)) (2.26)

where m > n and the sets a, 8,7, 6 and &, 3,9, § are the components of the “nonin-
teracting” eigenvectors corresponding to ¢ and §, respectively.

Substituting these expressions into the interacting equations (2.16), we obtain the
following 4 x 4 matrix eigenvalue problem which nonvanishing solutions of its secular

determinant correspond to the “bound states”.

( C,
D
M| " | =0 (2.27)
c

\ D

where

My; = a2—-x)

Mis = e (]2 + e K/2p)

My = Jo(v1e%%a + vje=%/%6)

My = (Q+ h)e 98+ Jyvge (e K/ 2 + '5/25)
Mz, = Ji(vie*?a + (/%)

May = (Q+ J)e %y + Juge (K2 + eHK/2p)
My = 6(Q+x)

My = vie (Je K%y 1 J,e'K/2p)
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The remaining elements can be obtained from those above by replacing the set

(g, 2, B8,7,98) by (g, &, 8,7, 5) and are given by

M, = My, My = My
My = My My = My
My = My My, = Mg
My = My My = Mg

where the bar over the matrix elements indicates that the set ¢, a, 8,7, 6 has to be
substituted by their corresponding bar set.

This eigenvalue equation is resolved numerically and the solutions are the bound
states of the problem. Figure (2.3) shows a typical two-magnon spectrum in the
E,(K) versus K plane. .

The knowledge of the solution of the one-magnon problem allows us to determine
the regions in the Ey(K) versus K plane where scattering state solutions correspond-
ing to two free magnons can occur. These continua correspond to solutions in which
both individual wave vectors k; and k; are real, or equivalently, both the total wave
vector K and the relative wave vector g are real.

However, by considering the possibility of solutions with ¢ complex, we also find
the existence of solutions (“bound states”) outside these continua. Hence, the energy
regions where the scattering states are located are determined by the one-magnon
spectrum. Similarly, the two-magnon spectrum will determine the location of the

scattering states in the three-magnon problem.

16






Chapter 3

Three-Magnon Excitations

A general three-magnon state can be written as

[¥3) = Y aijlisk) (3.1)

i<j<k
where we define an orthonormal set of three spin deviation states

.5, k) = CigeST Sy S 10) (3:2)

with Cjjx being the coefficients normalizing these states and satisfying

"

1 - -
Cogie = | Jasa@sn)’ 2 of 1, 7, k equal (3.3)
1 S
| V245'(25"-1)(5'-1)’ i=j=k
:
Toems 1#37
Caigjak+1 = 85’95; (3.4)

| VEsas D' t=J
In order to obtain the coefficients with two odd indices and one even index or with
three odd indices, we need only to exchange S with S'.

We study the effect of the Hamiltonian on the complete set of states in coordinate

space in the same way as was done for m = 1 and m = 2. The translational invariance
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property of the Hamiltonian can be taken into account by the following transformation

of the states |1, 7, k):

16,5, k) = l4; 7, 9) (3.5)
with i < j <k and
=73—13>0
ITh= (3.6)
y=k-320

In this transformation, there are two types of ket |m; z,y) for any pair of values (z,y)
where m is odd or even. Now, we define the following Fourier transforms with respect

to the center of mass of each ket

3 Nj2-1

m=0

N/2-1
o, K;z,y) = 2 3 et K@miLl-=[34y/B\om + 1;1,y) (3.7)
N m=0
where e and o stand for “even” and “odd” respectively.
The effect of the Hamiltonian on these states can be summarized by the following

two equations

(B3 —eKf)le, Kiz,y) + k5l Kz, y + 1) + o5 yle, Kz + 1,y) + 95 yle, Kz~ 1,y)+

+oz le. Kiz,y — 1) + 150, Kz — Ly + 1) + A lo, K;z+1,y—1) =0 (3.8)

(B3 — e£0)|o, K; 2, y) + K2 ylo, K z,y + 1) + p3 ylo, Ks  + 1, y) + 93, lo, Kz — 1,y)+

+02 lo, Kiz,y —1) + 72, le, K;z - Ly+1) + A2 le, K;z+1,y—1) =0 (3.9)

where the first equation represents the action of the Hamiltonian on a state at an
even site and the second equation corresponds to an odd site. These equations can
be divided into three groups depending on whether both z,y > 2, one is > 2 while
the other is < 1 and, the last group when both z,y < 1.

When both z,7 > 2, we have a set of three non-interacting magnons and the
coefficients in (3.8) have the form shown in Table 3.1. The notation used for the
coefficients in this table and for those that will follow, allow for a straightforward
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T,y

2l,2m

“ €6
20,2m+1 E,

20+1,2m | e,
20+1,2m+1 g

Non-interacting coeflicients
€xy | Moy | Pou | V2w | 5w | 7w | Moy
w | Wi w || W w
s | U || w |w | w
w|w | w |w W w
U | w|w |w W] w

Table 3.1: Coefficients for each of the terms obtained when the Hamiltonian is applied

on a state at an even site with both z,y > 2. The group of equations associated with

these coefficients is referred to as the non-interacting group.

transfer of an equation for an even site (with general form (3.8)) to an equation for

an odd site (with general form (3.9)). The coefficients are defined as follows:

€o

€1

)]

&4

S(J1 + Ja) from equation (2.7)
S'(S + Ja) from equation (2.8)

E3 =€ = 3€

2+ —2J;
e+2 - —Ja
26 +¢

2+ -

—EJ1\/3S(S’ - 1)
—kJ1\[S(28' - 1)

—kdi\/(25 - 1)(28" — 1)
—k,V3S

and x = e*¥/3. The presence of a prime indicates that S should be replaced by S’ and

vice versa, while the presence of a bar indicates that J; should be replaced by J; and
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vice versa in relation to the corresponding coefficient without the bar or the prime.
As usual, an asterisk (*) indicates that the complex conjugate of the coefficient should
been taken. For example, the coefficient £ (appearing in Table 3.1) is equal to 2’ +¢
once the proper replacements of S and S’ are made in the definition of ;. Similarly,
W = —kJpV/SS' once J; is replaced by J, in the definition for w.

The coefficients obtained by the action of the Hamiltonian on the odd states are
easily obtained by taking the corresponding even coefficients and putting or taking
away their primes or bars depending whether they are present or not. This is a
direct acknowledgment that one sublattice has the same equations as the other, only
with exchanged spins S and S’ and interactions J; and J,. As an example of the
above statement, the coefficients obtained when the Hamiltonian acts on an odd site
lo, K; 21, 2m) are (&;,% ,w™*,w ,w*,w™, @ ), where the above procedure was applied
to the first row of coefficients in Table 3.1.

Returning to the first group of equations when both z,y > 2, the energy eigen-

values are given by the sum of the energy of three non-interacting magnons:

Ey = B = Ef + Bt + B (3.10)

For k,, k3, k3 real, the solutions are scattering states as encountered in the two-magnon
problem and fall into four continua as shown in Figure (3.1). These continua are a
consequence of the three-magnon excitation energy being the sum of one-magnon
excitations and of the presence of the energy gap in the one-magnon dispersion curve
for all values of wavevector. Each of these continua arises from the different pairing of
one-magnon branches. The lowest continuum is due to the pairing of three acoustic
(A) branches (g1 = pa = p3 = —1) and is referred to as “A-A-A”"; the highest
continuum is due to the pairing of three optic (O) branches (u; = po = pz = +1)
and is referred to as “O-0O-0". The other two continua are labelled by “A-A-O” and
“A-O-O” and they both are three-fold degenerate.

When one of the values of £ and y is < 1 while the other is > 2, the coefficients

in (3.8) are given in Table 3.2.
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Two-bound and one-free magnon coefficients
z,Yy 55; E;'y P ;vy ﬂ:vy oi-!l T;a!l A;JI
0,2m €3 | W | W3 w* wa
0L,2m+1| &g | w | W5 w* wy
20,0 E3 |wp | W | w w5
204+1,0 (| g4 | wo | W | @ w5
1,2m & | w | w | @, | @t Wy | w
L.2m+1fl e | @ |w* | W, | w" |0 | w
21,1 E | w | | w | w | @ | wy
A+1,1 | & | @ |w | @ | wi | &* | wp

Table 3.2: Coefficients for each of the terms obtained when the Hamiltonian is applied
on a state at an even site. One of the values of z and y is < 1 while the other is
> 2. The group of equations associated with these coefficients is referred to as the

two-bound and one-free magnon group.
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Three-bound magnon coefficients
a:,y_le"" Key | Py | 92, |05y | Toy | AS

z’y z’v z’y x'y z'y z’y

T

0, 0 & Wo ‘U-Ja

0, 1 >3] w ‘!-!75 wa Wy
LOJ & | we | w* | wy Wy

—_ _ P 4 r
L1ff e | w |w | w | w W] w

Table 3.3: Coefficients for each of the terms obtained when the Hamiltonian is applied
on a state at an even site with both z,y < 1. The group of equations associated with

these coefficients is referred to as the three-bound magnon group.

We can express the eigenvalue solution of these equations as E3 = E,(ki, k2)+ Ef; .
The term FEs(k;, k2) corresponds to two bound magnons; and both terms are the
result of complex values of k; and k; and a real value of k3. Still, these eigenstates
correspond to scattering states in which one magnon is free and two are bound.
They form a continuum which overlap with the three-free magnon scattering state
continua, discussed previously. Figure (3.2) shows an example of the two-bound one-
free scattering state continuum. Figure (3.3) shows a superposition of the three-free
with the two-bound one-free scattering state continua.

Table 3.3 gives the coefficients obtained when the Hamiltonian is applied to a ket
le, K;z,y) with both z,y < 1, i.e. for the case of three magnons on the same sites or
on nearest neighbor sites.

The complete solution of the three-magnon problem involves finding the solution
of this last group together with the two previous groups. With the two-magnon prob-
lem, the combined problem of solving the non-interacting set of equations with the
interacting set reduced to a numeric implementation of a 4 x 4 matrix eigenvalue
problem. A similar approach to resolving the three-magnon problem is almost nu-
merically impossible, as we would have to find the eigenvalues of an infinite matrix
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that correspond to the set of three-magnon equations. In the next chapter, we will
present a different method that will give us the possibility of identifying bound states

for the three-magnon problem.
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Chapter 4

The Recursion Method and the
Three-Magnon Problem

The Recursion Method [13, 12, 16] can be used to obtain spectral information about
any Hamiltonian. The basic idea is to transform the Hamiltonian to a tridiagonal form
so that a continued fraction representation of the Green's function can be obtained.

We first review the definition of the Green’s function.

4.1 Green’s Function

The local Green’s function is defined by
Gi(E +1¢) = (jI(E — H +1)7]j) (4.1)

where € < 1 and |j) is an arbitrary ket in the three-magnon basis.
Writing |j) as a linear combination of the eigenstates of the Hamiltonian
(HIA) = Ex|A)

DEDICALY (4.2)
A
and substituting in (4.1), the local Green'’s function becomes
G;(E + 1) 2 Icf\lz (4.3)
1 E—E\+1€
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The imaginary part of G;(E + 1) is given by

1=
(E—E)?+é?

Im(G;(E +1¢)) = Z 4 (4.4)

which in the limit € — 0% is proportional to the sum of delta functions at the exact

eigenvalues, i.e.

lim{lm(G;(E +1))] = —wz IC[26(E — E») (4.5)

Then, the local density of states can be defined as
. —1
75(E) = lim —Tm{Gy(E +1)] (4.6)
and the total density of states is obtained by summing over all the kets in the basis
n(E) = S m(E) = ¥ 6(E ~ Ey) (47)
j A

since ¥; |c}[2 = L.

Using the definition in (4.1) and a matrix representation for the operator
(E — H)™, a single matrix element of this operator can be taken as the local Green’s
function, without loss of generality:

Dy([E — H))

: (4.8)
Do([E ~ H])

Go(E) =

where D,([E — H]) is the determinant of the matrix [E — H] with the first n rows
and n columns deleted.

If the local Green’s function were difficult to calculate, its definition would be of
little value. Only for some sets of bases is its calculation trivial as in the case where
a basis diagonalizes the Hamiltonian. Usually it is almost impossible or extremely
difficult to find a basis that diagonalizes the Hamiltonian, but it is always feasible to
find a basis which transforms the Hamiltonian to a tridiagonal and symmetric matrix
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form

( heo hon 0 )
hOl hll h12
A= hiz hy  ha (4.9)
0 .
\ Bo-in han )

Expanding (4.8) using the Hamiltonian in the form (4.9), the local Green’s func-

tion for the ket |0) is
1

2 Da({[E—H])
E - hOO - h’Ol D:([E—J'I])

Go(E) = (4.10)

The factor -gﬁ—gg—:% has the same form as (4.8) and the local Green’s function

can be represented by the continued fraction

Go(E) = (4.11
0( ) E—hoo-- hg’“h )

With a procedure to transform the Hamiltonian into a tridiagonal, symmetric matrix,
we would be able to find the local Green’s function and thus the density of states.
The Recursion method, described in the next section, is a procedure to tridiagonalize

the Hamiltonian.
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4.2 The Recursion Method

The recursion method will give us the tool to transform our Hamiltonian into a tridi-
agonal matrix. We will build a new basis {v,} in which the Hamiltonian assumes a
tridiagonal form, as opposed to our actual basis {|p, K;z,y} where it is not tridiago-
nal.

The main assumption of this method is that there exists a complete orthonormal
set of states ({v,} being the nth state) that under the action of the Hamiltonian

produces a three-term recursion relation of the form
H Up = @GnUn + by 1Uny 1 + baUng (4.12)
where a;,b; € R
¢ Recursion Method First Step

1. For this step, v_; is taken as zero and wvq is some arbitrary state in the

three-magnon basis, consequently equation (4.12) becomes
E[‘Uo = govg + vy (4.13)

where vy and Hvyg are known and ag, b, and v, are to be determined.

2. As {v,} is an orthonormal basis, the scalar product v{v, =0 and @ can

be determined by
ao = vjHvg (4.14)

blvl = fIvo — a9V (4.15)

4. b, is taken as the normalization factor for v;:

by = \/[f{ vo — aouo]t[Hvo — aguy] (4.16)

31



5. Finally for this step,

v, = _Iy_’ﬂ;_l_a_ﬂ (4.17)

which is orthonormal to v¢ and normalized to unity.

o Recursion Method General Step

By iterating this procedure, the orthonormal states {v;} with ¢ = 0,1,...,n
can be found together with the parameters {ao,...,an—1} and {by,...,bn}, so

that

fIvn = @pUn + bn11Vns1 + baUn—g (4.18)

where vn, bpv,—; and Hv, are known and a,, b,+1 and v,,; are to be

determined.

2. The scalar products v} v, = v} v,+1 =0 and a, can be determined by

a, =vlHv, (4.19)

bntiVns1 = fIvn — pVUnp — OpnUn-—1 (420)

4. b, is taken as the normalization factor for v, 1:

bn+1 = \/[flvn — QnUn — nvn—llt[gvn = QnUn — nvn—ll (421)

5. Having determined b, ;, ¥n+; can be determined by

Hv, —a,v, — byvn_1

(4.22)

YUn+1 = b .
n+

which is orthonormal to v; with ¢ = 0,1, ...,n and it is normalized to one.
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The new matrix representation of the Hamiltonian under the basis {v,} is

(111 b1
. b 0
= 1 a1 b (4.23)
b az b3
0 T-.

and the Green’s function for the initial ket in the three-magnon basis could be found
from

Go(E) = (4.24)

bz
—ag — s

B-a——

b
E-—ag——-a-

4.3 Tail of the Continued Fraction

In carrying on the procedure described above, we chose an initial ket in the three-
magnon basis and generate the coefficients a;,b;;1 up to some maximum value of
i = imez- The asymptotic behavior of these coefficients as function of i depends upon
the scattering state spectrum. If at a particular value of total wavevector K, there are
no gaps, then the coefficients will approach constant values asymptotically. However,
if there are one or more gaps present, then the asymptotic behavior is oscillatory.
In practice, we need only to calculate the coefficients up to some suitable value of
imaz and terminate the continued fraction using our knowledge of the scattering state

spectrum,

Go(E) = 2 (4.25)

E—ay bg‘

Gge (&)

E-%imaz ~Yimaz +1

In the case of no gaps in the scattering state continuum, the coefficients a; and b;

converge to constant values,

“=a } for i imas (4.26)

biy1 =5
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and the tail of the continued fraction will be given by
1

GP(E) =
o (E) [oppp——
- 1 (4.27)
T E—a—-b0GP(E) )
Solving for G3°, we have
E—a+ \/(E—a)?—4b?
o) - EooEVE-d (4.28)

2b2
This is known as the square root terminator and the choice of the positive or negative
square root depends on whether E is less than or greater than a. The terminator
determines the analytic properties of Gy. For example, Gg is complex in the region
of E where the argument of the square root is negative and this corresponds to the
scattering state continuum. However, Gy can also have isolated poles outside this
region.

In the case of the square root terminator, this condition is satisfied when:
(E—a)®>—4b2 <0 (4.29)

or equivalently when,
Eit=a-20<E<a+2b=E, (4.30)
It is straightforward to conclude that the asymptotic values of a; and b; (a and b
respectively) are related to the minimum energy F; and maximum energy E, by
1
q = §(E1 + Ez)
1
b= J(Ba-Ey) (4.31)
Hence, if at a particular value of K, the three-magnon continuum has no gaps,

we can terminate the continued fraction using equation (4.28). Using the Recursion

Method, we generate a large set of coefficients a; and b; assuming that it is reached
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the asymptotic behavior (4.26) in which the coefficients are constant. Then, with a

last pair (a;, b;+1) we calculate G° and using equation (4.25) we are able to evaluate

the Green’s function.

As was demonstrated in the work of Turchi et al [13], the coefficients (a;, b;+1) of
the continued fraction exhibit undamped oscillations if gaps are present. Consider

the case in which the coefficients oscillate between two pairs, (a1,b1) and (az,b2), in

the asymptotic region in the continued fraction, i.e.:

Ao = Q
#=M for 2> imas
bz,':bl
ans =a
F+l— T2 for 241> ings
52i+1 = bz

and the terminator of the continued fraction is equal to

Go(E) =

= 2

E —a; — _—ﬁ——E—az— 2GE(E)

Solving the previous equation, we obtain

1

G(E) 26}(E — a1)

{(E-a1)(E ~a;) + b} — 65 £ VF}
where the square root term F can be factored the following way

F = [(E—a)(E—a2)+b — b2 — 463(E — a1)(E — a3)
= (E—=MNE —X)(E-A3)(E—\)

and here

A = [a.l +ag — \/(0.1 - 02)2 + 4(b1 + b2)2]

[a,1 +as — \/(a.l —az)? +4(by — 62)2]

A =

N =N~
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(4.35)
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Az = [01 +az + \/ (a1 —a2)? +4(by — 52)2] (4.38)

[al +az + /(a1 — az) + 4(by + 62)2] (4.39)

Ay =

with A} S A2 S A3 < Ay

Now, we take the imaginary part of Gy with E = FE + 1¢ to find the regions of

OO = N

non-zero density of states in the limit of ¢ — 0F. F is negative when A\; < E < A3 and
Az < E < )\, are the only ones with non-zero density of states. The limits of these
regions constitute the edges of two bands extending from (E,, E;) = (A1, A2) and
(E3, E4) = (A3, A\q) and hence these are the regions corresponding to the scattering
states continua.

With the presence of one gap, the coefficients oscillate in the form a,, b;, a;, by and
with these two pairs we can calculate the tail of the continued fraction using equation
(4.34).

Turchi et al [13] generalized this procedure for the calculation of the tail of the
continued fraction in the presence of multiple gaps. Generalizing equations (4.28)
and (4.34), the tail of the continued fraction for the case of g gaps is given by,

Un(E) —X(E
Gy (E) = 2;;_3%_1(;) ) (4.40)

where
2g+1 2g+2 )
X(E)=[[(E-E)=)_ s;E>*> (4.41)
=0 =0

where the s; are symmetric functions of the F; with sq = 1.

The tail of the continued fraction corresponds to a periodic chain of period g + 1.
The polynomials a,(E) and v,_1(E) can be determined using the exact Green'’s
functions for an infinite ring with periodicity 4 + 1. The Green’s functions for an
infinite periodic ring have the form (Turchi et al [13])

oL an(E)
GunlE) = (i) = (@02
Gn—l,n(E) = (n - IIE, i I"{In) = - 21()( )\/X(E; ) (443)
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Expanding both sides of these equations in powers of é provides the necessary rela-
tionships between the coefficients {ay,, b} describing H and the polynomials.
The corresponding coefficients in the left hand side of (4.42) are the moments of

the local density of states at site n, i.e:

1 aZ +b2_, +b2
Gnn(E) —*E-o0 E + ‘aE';" + E31 ~ +

For the right hand side, since we will frequently have to expand |/X(FE), we

introduce the following notation:

(4.44)

X(E) — g E* 1+ A JE+---+ An/E™ +--") (4.45)

where A,, will be related to the s; defined in (4.41).
In the same way, we expand in powers of 1/F the off-diagonal Green’s function
(4.43) where the left hand side of G,_, , behaves as

’ bn— bn— 1+
Gn-l,n (E ) —*E—o0 EZI + I(GnE; an) +--- (4.46)

Finally, we can determine:

an(E) = (E—ag)---(E~af) (4.47)
Vn_1(E) = E91 + A E? + pﬂ_I(E) (4.48)
po-i(E) = (Ag+202_)E" ' +... (4.49)

In the present work, as we encounter a maximum of five gaps for the spin chains
that we studied, we have derived the previous expressions considering up to five gaps.
Appendix A presents a Mathematica program that implements this procedure. We

also list the results for the cases of one to four gaps.
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4.4 Summary
Summarizing our procedure to this point, for given values of S, S’, J; and Ja:

® We use the one-magnon results to determine the three-free continua in the

energy (F) versus wave vector (K) plane.

® We use the two-bound magnon state results and the one-magnon excitation

energy to determine the two-bound one-free continua in the E-K plane.

® We superimpose all these continua to determine the number of gaps in the

energy continua at any value of the total wavevector K.

@ We use the appropriate terminator to study the density of states for the three-

magnon problem.
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Chapter 5

Results

The procedures described in the previous chapters allow us to investigate the presence
of bound-state solutions for a system with alternating bonds, alternating spins or
both. Medved, Southern and Lavis [11] have previously examined the two-magnon
excitations for these systems. The three-magnon excitations were also studied for
ferromagnetic spin-S chains by Southern, Lee and Lavis [17]; but no alternation was
included in the analysis. We extend their work by studying the three-magnon problem

for various cases of spin chains using the Recursion method.

5.1 Uniform Bond Spin S = ' =3 Case

Before we discuss the results for either alternating spin or bond chains, we will first
consider the § = % uniform Heisenberg chain. This case was solved exactly by Bethe
[3, 2] for an arbitrary number of spin deviations using the Bethe Ansatz method.
The three-magnon spectrum consists of a three-free continuum, a two-bound one-free
continuum and a single bound state branch which lies below the continua throughout
the Brillouin zone. If alternation is introduced, a basis of two atoms per unit cell
must be used and this corresponds to a reduction in size of the first Brillouin zone by

a factor of two. In the alternating case, the wavevector K is restricted to the range
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—n/2 < K < ©/2 and corresponds to a folding of the zone at K = +x/2. In order
to make clear the relationship of the known exact results of Bethe with those to be
described here, we will first discuss Bethe's results for the m = 1,2, 3 magnon spectra
in the folded zone.

Bethe's analytic result for the one-magnon case has the familiar form

Ey (k) = J(1 — cos(k)) (5.1)

in the unfolded zone. In our case this would be described by two branches which

meet at the zone boundary with no gap
Ef = J(1 £ cos(k)) (5.2)

where k is now restricted to the range —7/2 < k < w/2. This corresponds to equation
(2.10) when ,=Jy =Jand § =85 =1.
The two-magnon spectrum of the uniform model consists of a continuum with a

single bound state below whose energy is half the one-magnon energy
J
Ey = -2-(1 —cos(K)) (5.3)

in the unfolded zone. However, in the folded zone, the bound state lies below the
continuum but folds back at K = #n/2 and enters the same region of energy occupied
by the continuum as shown in Figure (5.1). However, the bound state character is not
changed provided J; = J; and these contributions to the spectrum can be separated
by using different initial kets in our recursion procedure. This point will be discussed
later in this chapter. When the bonds alternate, we expect this upper branch of the
bound state to become a true resonance when it enters the continuum and a gap to
appear at the zone boundary.

Also, the uniform chain has a three-magnon bound state whose energy is equal to
one third of the one-magnon state and lies below a single continuum formed by the
three-free magnon scattering states and the two-bound one-free magnon scattering

states. Figure (5.2) shows the unfolded and the folded representations. As for the
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two-magnon spectrum in the folded representation, the optic branch of the three-
magnon bound state enters the continuum and can only be separated using different
initial conditions in the recursion method. But near K = /2, the two states appear
below the scattering continua with no gap at the zone boundary.

Using the Recursion Method, we reproduce these results for the Heisenberg spin
chain. In Figure (5.3), we show our three-magnon bound states obtained using the
numerical approach. The star symbols correspond to the bound state which evidently
agree with the exact results just described. The lines inside the continuum are an
artifact of the numerical approach and arise due to the fact that the termination
procedure uses the one and two-magnon results to determine where gaps may occur

in the continua. In this case there are no gaps.

5.1.1 S =_5'=; Alternating Bond Case

S. C. Bell et al [15] studied the two-magnon spectrum of the alternating bond
S = % ferromagnetic Heisenberg chain, finding three two-bound magnon state branches
which represents two additional to those appearing in the uniform chain. We extend
their study by resolving the three-magnon problem for alternating bond or spin chains.
Once an alternation of the spins or the bonds is introduced, the folded representation
becomes the natural one, as it corresponds to two sites per primitive cell. Then, the
optic branch of the three-magnon bound state is expected to become a resonant state
inside the continuum region unless it emerges again inside a continuum gap.

Only near the Brillouin boundary will the two bound state branches be easily
visible, showing a gap at the boundary. In Figures (5.4) and (5.5), we show the
effects of varying the bond strengths. First, as Jo/J; varies from 1.0 to 0.0, it is
clear that gaps open up and broaden, simultaneously with the decrease in the width
of each band. As expected from the uniform case, the lower three-magnon bound
state is still present below the continua. But as J,/J; — 0, additional three-magnon
bound state branches show up in the first and second gap. This behavior is similar to

42



Figure 5.2: The three-magnon continuum (shaded region) and the three-bound
magnon state branch (curve) of the uniform § = 1 chain. Representation result-
ing from considering (a) one site per cell (the primitive cell), and (b) two sites per

cell. The energy is in units of J; and the total wavevector K is in units of 7.
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Figure 5.3: The three-magnon continuum (shaded region) of the uniform § = %
chain. The star points represent the three-magnon bound states obtained using the
Recursion Method. Representation resulting from considering two sites per cell. The

energy is in units of J; and the total wavevector K is in units of %.



the two-magnon case studied by Bell et al [15] where additional bound states appear

within the gaps of the two-magnon continuum. However, there do not seem to be any

bound states in the third gap.

Exact results can be obtained in the case where either J; or J; is zero. We will

discuss this case next as it provides a useful reference for comparing our results with

both J; and J> non-zero. This limit will help understand why there are no bound

states in the highest gap for the case S =S5’ = 7.

5.2 Jy— 0 limit

In the J, — 0 limit, the Hamiltonian (1.5) becomes
N2
H=Y H,
n=1

where
Ebzn = —J1§2n_1 . S.;ﬂ

(5.4)

(5.5)

This constitutes an exactly solvable problem of isolated blocks. Let J=85+5 be

the total spin of a block. Considering the expression
§.5 =-;-[(§+§')2—§»S—S’-S’]
and since S and S’ are quantum spins, the energy per block is given by
E=<H >= —%[J(J +1)-8(S+1)—-S(S' +1)]

where J =|{S - 5'|,|S - S5'| +1,...,S+ §".
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Assuming that S > S, the values for the total spin J are S + S’,.§ + §' — 1,
S+8—-2,...,8 -8 and from (5.7), the energy levels present for each block are:

E(J=8+8) = —-588
E(J=S+8-1) = —~Ji[SS' - (S+S')]
EJ=8+8-2) = —/[SS—-2(S+8)+1]ifS5>1
E(J=8+8-3) = —A[SS—-3(5+8")+3]if S >3/2
E(J=S8-8) = JLiS(S+1) (5.8)

The ground state of each block has maximum J = S + S’ and energy —J,55’.
The excitations from this state within a block are given by:

AE; s.s—~j—s+5-1 = Ji(S+9)
AEJ=S+S’—.J=S+S'_2 = 2J1(S + S’) - J1 if S’ 2 1
AEj_s.s5—y=sis5-3 = 3J1(S+S8) -3 if S >3/2

AEj_sis—j=s-s¢ = 2,188 +J; (5.9)

When the system is in the ground state, all the blocks have a total spin of
J = S + S and the total energy is Ep = —J1SS'N/2. One-magnon excitations
correspond to having a single deviation in any block with the z-component of the
total spin, J;, jumping from +J to +J — 1. This excited state with J, = +J — 1
can correspond only to states with total spin equal to J or J — 1. Hence, the energy

transitions for the one-magnon excitations are

AE}j=iii-1d=tt—1 = J(S+5)

AE;j.—vstt=+s-1 = 0 (5.10)

which are in complete agreement with equation (2.10) when evaluated for J; = 0.
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The two;magnon case corresponds to two single deviations which can be in two
different blocks or in the same block of the system. When in different blocks, the

energy is the sum of two single excitations, i.e.:

AE = {0or Jy(S+ 8"} + {0 or i(S + S}
= {0,Ji(S+ 8,2/, (S+S)}

which correspond to the excitations for the two-free magnon problem.

Two deviations in the same block correspond to a transition
J, =+J —» J, = +J — 2. A state with J, = +J — 2 could correspond to states
with total spin equal to J, J — 1 or J — 2, and the excitation energies are given by:

0
AE=4{ Ji(§+ 5" (5.11)
2L(S+8)—Jy S >1

The combination of the transitions for the two deviations in different blocks or in

the same block, gives the two-magnon states of the system.

(o

J(S+S

_ 1 ) (5.12)
WL(S+8)—J, €S >1

| 20(S+9)

Similarly, the three-magnon states are the result of combining three deviations
that could be in three separate blocks, two in one block and the other in a different
block, or the three in the same block. When the three deviations are all in different
blocks, and considering the one-magnon excitations (5.10), the possible transitions

are the result of the following logical expression:

AE = {0or i(S+8)}+{00r /1(S+ S} +{00r /1(S+5)}
= {0,2i(S+5"),2/i(S + §),31(S + S")}
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and correspond to the three-free magnon states.
When two deviations are in the same block and the other in a different block, and
using the two-magnon excitation and the one-magnon excitation results above, the

possible transitions are given by:

(0
AE = {0 N Ji(S+ S
J(S + 8" 2 (S+S)—Jy S >1
| 27,(S+ 9
(0
L(S+ S
_ Q(S+S)—J S >1 5.13)
2J1(S + ")
3N(S+8)—J ES>1
| 341(S + 5Y)

and corresponds to the two-bound one-free continua.

For the condition where the three deviations are in the same block, a transition
J, =+J — J, = +J — 3 occurs. A state with J, = +J — 3 corresponds to states
with total spin equal to J, J — 1, J — 2 or J — 3, with excitation energies:

(0

J(S+ S
_ ] ) (5.14)
2J1(S +S') -4 ifS'>1

| 34(S+8) -3 S >3/2

which correspond to the three-magnon bound states.
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Summarizing, the three-magnon excitations will be given by:

[0

Ji(S+ S

2NH(S+S)-h S >1

AE ={ 2J,(S+ S (5.15)
3NH(S+S)-3L, fS >3/2

3L(S+S)—J fS>1

3L(S+S5")

In Table 5.1, we have grouped the three-magnon excitations derived from the
Jo — 0 limit for different S, S’ chains. The first observation that we can derived from
Table 5.1 is that the number of levels (not considering degeneracy) that the chain
will have for the three-magnon excitations will change from 4 to 6 and then to 7 as
the smaller spin in the chain takes the values %, 1 or 3/2. Also, these levels separate
as the total spin increases, augmenting the possibility that gaps will appear even in
the case of homogeneous bonds.

The degeneracy of each three-magnon level in the J; — 0 limit allows us to predict
where three-magnon bound states could be found in non-limit cases. We expect to
find three-magnon bound states in the bands associated with the levels 0, =, 2= — J;
and 3=—3J;, where = = J1(S+S’) (see equation 5.14). Depending on the degeneracy
of their corresponding energies, these bound states could split from the rest of the
levels, 3f and 2bit, once J; is different from zero. It is clear that the 2= — J; level will
only appear for chains with both spins greater or equal to 1; and the 3= — 3J; level,
for chains with both spins greater or equal to 3/2.

For example, returning to our previous discussion on the S = §' = % alternating
bond case, when considering the J, — 0 limit, the three-magnon excitations occur
at 0, J1,2J; and 3J;. And, as we can see in Figure (5.6), the three-magnon continua
for the S = §' = 3,J1 = 1,J, = s chain is quite collapsed into the predicted
discrete theoretical states, clearly manifesting this tendency as J, goes from 1 to 0
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Three-magnon excitations in the J; — 0 limit

S, S 0 = 2Z2—-J| 22 |3=E-3N/h 3=~ | 3=
degeneracy || 3f, 2b1(, 3b | 3f, 2b1f 3b | 2blf, 3b | 3f, bif 3b 2b1f | 36, 2b1f |
1/2,1/2 0 Jkl 2 3 |

1,1/2 0 1.5 3 45
3/2,1/2 0 2 4 6

1,1 0 2 3 4 5 6

3/2,1 0 2.5 4 5 6.5 7.5
3/2,3/2 0 3 5 6 6 8 9

2,3/2 0 3.5 6 7 7.5 9.5 10.5

Table 5.1: Three-magnon excitations for chains of isolated blocks in units of J; and
where = = J;(S+S'). The degeneracy of the levels due to the three-free (3f), two-free
one-bound (2vif ) and three-bound (3b) states has been explicitly tabulated.
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0.0 0.2 04 0.6 0.8 1.0

Figure 5.6: Graphical representation of the three-magnon excitation levels (star
points) in a system of isolated blocks, each block composed of two connected spins,
S = &' = ;. The shaded continua correspond to the three-magnon continuum of a
very weakly bond S =8 =3, /1=1, /2 = 1 chain. The energy is in units of J; and

the total wavevector K is in units of 7.
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in figures (5.3), (5.4) and (5.5). Also, we did not find bound states in the third
gap. Theoretically, we predict that a bound state would not exist in the last gap as
the last band will be formed from three-free and two-bound one-free states. Figures
(5.4) and (5.5) show the absence of bound states in the last gap which corroborate
this conclusion. Following the same theoretical analysis, the middle gap should not
present bound states as its upper band is also formed by three-free and two-bound
one-free states. Nonetheless, they are present for both the J; = 1 and the J, = §
cases. We estimate that these bound states are due to three-bound magnons in three
adjacent sites which can not be predicted in the J, — 0'limit. The three sites are

disconnected as they belong to two different isolated blocks.

583 S§=25 =1 Case

This section will briefly present the results for a S = 25’ = 1 chain. In the previous
Jo = 0 limit section, we predicted that gaps could appear due to the fact that the
levels separate as the total spin of a block increases, even in the case of no bond
alternation,. As can be seen in Figure (5.7) and comparing with Figure (5.3), one
gap is present as a simple consequence of the increase of the total spin. When J; — 0,
more gaps start to appear and widen as shown in Figures (5.8) and (5.9).

Figures (5.7), (5.8) and (5.9) summarize our results for the S = 2S5’ = 1 case. We
found bound states below the lower edge of the three-magnon continuum for chains
with J; equal to ,  and 1. Also, when gaps where present, there were bound states
below the third band associated with the 3J; limit level. For J, = i, we found bound
states in the first gap as expected from the J, — 0 analysis. Nonetheless, for J, = %,
we searched the same first gap for total wavevector K = 0,0.05,0.1 and 0.15 and we
did not find any. In general, the results for a S = 25’ = 1 chain look quite similar to
the S = S’ = ; ones: wider spectrum and gaps, and bound states located in similar

regions.
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Figure 5.7: The three-magnon state continuum for the S =2S'=1and J1 = J, =1
chain. The isolated points represent the bound states found through the Recursion

Method. The energy is in units of J; and the total wavevector K is in units of §.
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Figure 5.8: The three-magnon state continuum for the $ =258’ =land J; = 2J; =1
chain. The isolated points represent the bound states found through the Recursion

Method. The energy is in units of J; and the total wavevector K is in units of 5.
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Method. The energy is in units of J; and the total wavevector K is in units of 3.

Figure 5.9: The three-magnon state continuum for the § = 25’



54 S =5"=1 Case and the Initial Ket Effects

Figures (5.10) and (5.11) show that the S = S’ = 1 spin chain does provide different
results compared to the S = 25’ = 1 case. The spectrum is broader as the bands
increase in width due to a larger spin value. As predicted in the J, — 0 analysis,
we see that the spectrum collapse to six levels instead of the four levels seen in the
previous two cases. But in general, the same behavior can be observed.

Now, we want to discuss the influence of the chosen initial ket on the numerical
three-magnon density of states. The contributions that can be identified from both
bound states and scattering states will depend on the values chosen for the the initial
states |e, K; z,y) and |o, K; 7, y), as defined in equations (3.7). One first consideration
would be the effect of different choices of {z,y} on the results. In Figure (5.12) the
local density of states is presented for three different cases:

(a) Two magnons on the same site and the third one on the neighboring site;

ie., {r,y} ={1,0}.
(b) Three neighboring magnons on adjacent sites; i.e., {z,y} = {1,1}.

(c) Two neighboring magnons on adjacent sites and the third one on the second-

neighbor site; ie., {z,y} = {2,1}.

As can easily been seen from these plots, there is a stronger contribution to optical
states (higher energies) from the more widely distributed magnons than from tightly
bound magnons. This behavior is consistent with the fact that bound states usually
have lower energies than the scattering states.

Another important consideration is the symmetry of the initial ket with respect
to interchange of the spins on even and odd sites. This information is described in
terms of the weight for the initial even ket |e, K;z,y) in comparison to the initial
odd ket |o, K;z,y). In Figure (5.13) the local density of states is presented for four

different cases:
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chain. The isolated points represent the bound states found through the Recursion

Method. The energy is in units of J; and the total wavevector K is in units of 7.

Figure 5.11: The three-magnon state cont
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Figure 5.12: Density of states for (a) two magnons on the same site and the third one
on the neighboring site, (b) three neighboring magnons on adjacent sites and (c) two
neighboring magnons on adjacent sites and the third one on the second-neighboring

site for the S = 8’ = 1 and J; = 2J; =1 chain at K = 0. The energy is in units of
Ji.
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(a) no initial odd ket contribution; i.e., {|e, K;z,¥), |0, K:z,y)} = {1,0}.
(b) no initial even ket contribution; i.e., {le, K;z,¥), lo, K;z,y)} = {0, 1}.

(c) an initial symmetric contribution from both an even ket and odd ket; ie.,

{le, K;z,9), 10, K; z.9)} = {J5. 25}

(d) an initial antisymmetric contribution from both an even ket and odd ket; i.e.,

{le, K;z,9), 10, K; 2,9)} = {J5. — 5}

Although the difference is quite evident in each of the cases presented, it is im-
portant to emphasize the influence that has over the search for bound states. One
clear example occurs for the alternating bond chain (S = 5" =1 and J; =2J; = 1)
when K = 0 and in the first gap. Depending on the initial ket chosen, either two
bound states or only one of them is observed. In Figure (5.14) we present the
density of states near the energy gap located between [2.00,2.61]. We found two
bound states in this region at the energies 2.53 and 2.56. When the initial state
is taken as {|e, K;2,1), |0, K;2,1)} = {1,0}, only the bound state at 2.53 appears
as can be seen in Figure (5.14)(a). In contrast, when chosen the initial state as
{le,K;1,1), |0, K;1,1)} = {;}5, 715}, only the second bound state at 2.56 appears
as shown in Figure (5.14)(b). Figures (5.14)(c) and (5.14)(d) show both bound
states when the initial states correspond to {|e, K;1,1), |0, K;1,1)} = {1,0} and
{le, K;1,0),l0, K;1,0)} = {7, %}, respectively.
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the S = 8 =1and J; = 2J; = 1 chain at K = 0. For case (a) there is
no initial odd ket contribution ({le, K;z,),lo, K;z,¥)} = {1,0}); for case (b),
there is no initial even ket contribution ({|e, K;z,y), o, K;z,y)} = {0,1}). Case
(c) shows an initial symmetric contribution from both an even ket and an odd ket
({le, K;z,9), |0, K;z,4)} = {J5, 75}); and case (d), an initial antisymmetric contri-
bution from both an even ket and an odd ket ({|e, K;z,¥), [o, K; z,%)} = {715, -%h-

The energy is in units of J;.
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Figure 5.14: Density of states for the first gap region of the S = S’ = 1 and
Ji = 2J; = 1 chain at K = 0. The presence of two bound states near the
higher edge of the gap is observed depending on the initial kets chosen. For case
(@), {le,K;2,1),]0,K;2,1)} = {1,0}, only the lower bound state is observed. In
case (b), {le,K;1,1),|0,K;1,1)} = {71-2:, 715}, only the higher bound state ap-
pears. Cases (c) and (d) correspond to {Je,K;1,1),|0,K;1,1)} = {1,0} and
{le. K;1,0), o, K;1,0)} = {7, 715}, respectively, and both bound states appear. The

energy is in units of J;.
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Chapter 6

Summary

We have studied the three-magnon excitations for one-dimensional Heisenberg spin
chains, paying close attention to the effect of alternation for either spins and/or bonds.
We only considered systems with ferromagnetic ground states and described by the
Hamiltonian (1.5):
N/2
H == 3 [1(8n - Sener) + Jo(Soni - )] (6.1)
which describes a one-dimensional lattice with alternating spins/bonds. We suc-
cessfully applied the Recursion Method to solve the three-magnon problem. First,
we obtained the two-magnon states numerically and then combined the three-free
continuum and the two-bound one-free continuum to find the entire three-magnon
continuum, allowing us to determine where any gaps occur. Once the edges of the
three-magnon continuum are known, we were able to terminate the continued frac-
tion of the three-magnon density of states using a generalized procedure developed
by Turchi et al [13] that allows to obtain the tail of the continued fraction (4.40) in
the presence of multiple gaps. Using the three-magnon density of states, we were able
to determine the location of the bound states in different systems.
In general, we found the usual bound state branch below the lower edge of the

three-magnon continuum for every case studied. We compared our results to previous
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analytical results, such as those of Bethe in the § = §’ = 1/2 chain with homoge-
neous bonds. We were able to reproduce his exact results. Also, we extended the
study of S. C. Bell et al [15] from the two-magnon spectrum of the alternating bond
S = 1/2 ferromagnetic Heisenberg chain, to the three-magnon problem. When a
bond alternation is introduced for this chain, gaps immediately appear and addi-
tional bound states are found. As Jo decreases, the continuum start to collapse into
very predictable levels and the different bands of the spectrum become narrower.

In order to predict these levels and the location of bound states, as it was evident
that the higher gap never had bound states, we studied a J, — 0 limit case of isolated
S, S’ spin blocks. We derived from this limit analysis that the number of levels (not
considering degeneracy) for the three-magnon excitations changes from 4 to 6 and
then to 7 as the smaller spin in the chain takes the values 1/2, 1 or 3/2. Also, these
levels separate as the total spin increases, with gaps appearing even in the case of
homogeneous bonds as can be seen in the results for S =28"=1and S=95" =1
spin chains. The J; — 0 limit analysis also provided another way of checking the
numerical results obtained through the Recursion Method.

In conclusion, with this work, we have presented a direct and relatively simple
procédure to search for bound states in alternating spin/bond chains. The Recursion
Method was used very effectively to achieve this purpose and the generalization to
an m-magnon problem would be straight forward, specially with the implemented

termination of the continued fraction using a Mathematica program.



Appendix A

Tail of the Continued Fraction for
Multiple Gaps: Mathematica

Implementation

In this appendix, we explain how we implement the procedure to obtain the termina-
tion of the continued fraction as described in Section 4.3 for the case of several gaps.
To obtain the density of states for the specific cases of spin chains that we studied,
we had to consider a maximum of five gaps.

The following Mathematica program listing provides the coefficients needed to
obtain the tail of the continued fraction for cases of up to five gaps. Nonetheless, this

program can be easily generalized.

1. FstEq[ns_,q_,x_]:=
CoefficientList [Glhs [ns,x] ,x]==CoefficientList[Grhs[ns,q,x],x]

2. Glhs[ns_,x_] :=1+Sum(ph[i,0,0]*x"i,{i,1,ns}]
3. phl1,i_,j_1:=h[i,j]

4. phin_,i_,j_l:=Sum[h[i,1)*ph[n-1,1,j],{1,i-1,i+1}]
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n

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. hli_,j_]:=Which[i=j,alil,i=j-1,b[i],j==i-1,b[j],True,0]

Grhs(ns_,q_,x_] :=Normal(Series[gnnlq,x],{x,0,ns}1]

gnnlq_,x_]:=num(q,x]/den(q,x]

. oum[q_,x_]:=1+Sum(bx[i]*(~-x)"i,{i,1,q}]

. denlq_,x_]:=Sqrt[1+Sum[2*s[i]*x"i,{i,1, 2»q+2}] ]

ScndEq(ns_,q_,x_]:=
CoefficientList [ndGlhs [ns,x],x]==CoefficientList [ndGrhs[ns,q,x],x]

ndGlhs[ns_,x_]:=Sum[ph[i,-1,0]#x~(i+1),{i,1,ns-1}]
ndGrhs [ns_,q_,x_] :=Normal [Series [ndg(q,x],{x,0,ns}l]
ndglq_,x_]:=arr(q,x]/(2+*b[-1]*den[q,x])
arr(q.,x_]:=1+Sum[cx[i]l*x~1,{i,1,q+1}]-den[q,x]
eb1=Simplify[FstEq[1,1,x]]
eb2=Simplify{FstEq[2,2,x]]
eb3=Simplify(FstEq[3,3,x]]
eb4=Simplify[FstEq(4,4,x]]
eb5=Simplify[FstEq[5,5,x]]

sbi=Solve[ebl,{bx[1]}]

sb2=Solve[eb2, {bx[1],bx[2]}]

sb3=Solve[eb3, {bx[1] ,bx[2],bx[3]}]

sb4=Solve[eb4,{bx[1],bx[2],bx[3],bx[4]1}]
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4]1.

42.

43.

sb5=Solve [eb5, {bx[1],bx[2],bx[3],bx[4] ,bx{5]}]
FortranForm[Simplify[sbi]]>>>bxcoef.tex
FortranForm[Simplify[sb2]]1>>>bxcoef.tex
FortranForm [Simplify[sb3]]>>>bxcoef.tex
FortranForm [Simplify[sb4]]>>>bxcoef.tex
FortranForm[Simplify[sb5]]>>>bxcoef.tex
eci=Simplify[ScndEq[2,1,x]]
ec2=Simplify[ScndEq[3,2,x]]
ec3=Simplify([ScndEq[4,3,x]]
ec4=Simplify[ScndEq[5,4,x]]
ec5=Simplify[ScndEq[6,5,x]]
sci=Solve[ecl,{cx[1],cx[2]1}]

sc2=Solve [ec2,{cx[1],cx[2],cx([3]}]
sc3=Solve[ec3,{cx[1],cx[2],cx[3],cx[4]1}]
sc4=Solve[ec4,{cx[1],cx[2],cx[3],cx[4],cx[5]}]
sc5=Solve[ec5,{cx[1],cx[2],cx[3],cx[4],cx[5],cx[6]1}]
FortranForm[Simplify[sc1]]>>>cxcoef.tex
FortranForm[Simplify{sc2]]>>>cxcoef.tex
FortranForm [Simplify[sc3]]>>>cxcoef.tex

FortranForm[Simplify[sc4]]1>>>cxcoef.tex
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44. FortranForm{Simplify([sc5]]>>>cxcoef.tex

Line 1 represents the diagonal Green’s function of equation (4.42). Lines 2 and
6 are the series expansions for the left and right hand side of this Green’s function,
which are compared to determine the recurrence relations between the coefficients.
The definitions for phin_i_j] and hfi_,j.] give the moments for the local density of
states at site n as defined in equation (4.44). The s[i] coefficients defined in line 9
are the coefficients s; in equation (4.41).

The off-diagonal Green’s function of equation (4.43) is defined in line 10 with line
11 and 12 representing the series expansion of each side.

When o,(E) (4.47) is expanded, the coefficients of its series are represented by
bx[i] in line 8. Also, the expansion of v,_;(F) (4.48) gives the cx]i] coefficients of line
14.

Line 15 and forward resolve the first and second equations for the diagonal and off-
diagonal Green’s functions. Then, the program prints the coefficients bx[i] and cx]i]
in files "bxcoef.tex” and "cxcoef.tex”, which once substituted in expression (4.40),
the tail of the continued fraction G§°(F) is obtained.

The followings are the coefficients needed to compute a case of up to four gaps.

cx(0) = 1

ex(l) = s(1)

cx(2) = 2b2_,—s(1)%/2+5(2)

cx(3) = 2an_3b2_,+2an-1b2_, +2b2_,8(1) + s(1)3/2 — s(1)s(2) + s(3)

cx(4) = 2a2_,02_, 4 2an_oan 162 5+ 2a2_(b2_, + 262 b2, +262_ b2,
+2an_gb2_,5(1) + 2an_1b2_5s(1) — b2_,s(1)% + 2b2_,5(2)
+3s(1)25(2)/2 - s(2)%/2 — s(1)s(3) + s(4) + 2b%_, — 5s5(1)*/8

cx(8) = 2a) ob% ,+20] 2an-1b; 5+ 2an_za} b3 o+ 203 b5,

+2aﬂ—3b$|,—3b$|,—2 + 4%_2b'2‘_3b'21_2 + 2%—lb§_3bi_2 + 4an_2b:_2
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bx(0)
bx(1)
bx(2)
bx(3)

bx(4)

I

I

+4an_ b5+ 2an_3b2_,b2_; + dan_1b2_,b3 | +2anb%_ b,
+2aZ_,b2_,5(1) +2an_sa,_1b2_,s(1) + 2a2_,b2_,s(1) + 2b2_562_,s(1)
+2b3_,s(1) + 2b2_,b2_;5(1) — an_ab2_,8(1)? — ap_1b2_,s(1)?

+b2_58(1)3 + 75(1)%/8 + 2an_2b2_,3(2) + 2an_1b2_,5(2) — 2b2_,5(1)s(2)
—5s5(1)%5(2)/20 + 35(1)s(2)%/20 + 2b% _,5(3) + 3s5(1)%s(3)/20

—s(2)s(3) — s(1)s(4) + s(5)

1

an_1+5(1)

@ |+ 02 5+ b2 +an15(1) —s5(1)?/2+5(2)

ad | +anobl ,+2a,1b2_, +apbl_; +a2_;s(1) +b2_,5(1) — an-15(1)%/2
+5(1)3/2 + an_15(2) — 5(1)s(2) + 2a,_162_, + b2 _,s(1) + s(3)

a} |+ a2 b2, +2an_san_1b2_ 5 +3a b2, +b2_5b2_, +bi
430252 +2an_1anb? 40282 + W2 +bE_ B2 B2
+a3_5(1) + an_ab2_,5(1) + 2an_162_,s(1) +2a,_16%_,s(1)
+anbi_18(1) ~ @i 15(1)%/2 - b2 _,s(1)%/2 — b7 _,5(1)%/2
+an-15(1)*/2 — 58(1)*/8 + af_15(2) + b _,5(2) + b;_,5(2)
—an—18(1)s(2) + 35(1)25(2)/2 — 5(2)%/2 + an_15(3) — s(1)s(3) + s(4)
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